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1

French abstract of the thesis

We provide a French abstract of the thesis to comply with the regulation of
Université de Lorraine. The rest of the document is written in English.

Méthodes d’optimisation pour la gestion de
stocks multi-échelon

Introduction

Dans un contexte de mondialisation, la gestion de chaînes logistiques est un
problème toujours plus important. L’augmentation des capacités de trans-
port, la libéralisation des échanges à une échelle mondiale, obligent les en-
treprises à sans cesse réduire leurs coûts de production et de distribution
afin de faire face à la compétition. La gestion des stocks est un sujet de pre-
mière importance : les coûts résultant du stockage des produits représen-
tent des sommes considérables, et il est crucial d’éviter toute perturbation
sur la chaîne, de sorte que la demande des clients puisse être satisfaite dans
les délais. Dans ce contexte, la gestion des stocks vise à proposer des out-
ils efficaces et des méthodes d’optimisation pour minimiser ces coûts. La
planification de production concerne l’organisation des flux physiques de
composants ou de produits finis le long d’une chaîne logistique. Ce sys-
tème peut être un atelier de production de grande taille pour lequel il est
nécessaire de répondre à des questions telles que comment acheminer les
composants le long de la chaîne, quand et quelle quantité produire, quand
et quelle quantité commander auprès du fournisseur, et où et quand stocker.
La production et la distribution de ces produits sont souvent effectuées par
lots, ce qui permet d’effectuer d’importantes économies d’échelles. Les sys-
tèmes de production peuvent être modélisés comme un ensemble de niveaux
sur lesquels s’effectuent le processus de fabrication. Ce processus se décom-
pose en un flux de produits, allant d’un niveau à un autre, suivant une suite
de procédures telles que des processus d’assemblage, de production ou de
distribution. Les niveaux au sommet de la chaîne commandent des matières
premières ou différents composants auprès d’un fournisseur extérieur. Les
niveaux en fin de chaîne doivent satisfaire la demande des clients.

Dans le domaine de la recherche opérationnelle, le problème du dimen-
sionnement de lots, ou lot-sizing, introduit par Wagner and Whitin, 1958
traite de planification de production ou de réseaux de distribution intégrant
des stocks. Ce problème vise à organiser le processus global tout en min-
imisant tous les coûts impliqués dans le système. Dans des modèles avec un
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horizon de temps discret et fini, le temps est décomposé en un ensemble de
périodes de temps avec leurs propres paramètres et demande de clients. Les
modèles de lot-sizing peuvent représenter des systèmes de planification de
production, pour lesquels chaque niveau est une étape dans le processus de
production, généralement une machine. Lancer la production à une période
peut générer des coûts dus aux besoins de main d’oeuvre, à la consommation
d’énergie occasionnée par le démarrage de la machine, au transport entre
deux machines, etc. Pour cette raison, des coûts de lancement de produc-
tion sont considérés dans la plupart des modèles étudiés dans la littérature.
Ces coûts sont payés chaque fois que la production est lancée à une période
donnée, quel que soit le nombre d’unités produites. Bien sûr les coûts de pro-
duction dépendent aussi de la quantité produite, avec les coûts de produc-
tion unitaire. A chaque niveau, il est possible de stocker des unités avant de
les livrer au niveau suivant. Dans la plupart des études sur le sujet, un coût
de stockage unitaire est pris en compte lorsque qu’une unité et stockée d’une
période à un autre. Les coûts de stockage peuvent modéliser, entre autres, la
réduction du capital de l’entreprise, la détérioration des produits stockés, le
coût de location d’espaces de stockage. Les problèmes de lot-sizing peuvent
aussi gérer des réseaux de distribution, lorsqu’un ou plusieurs entrepôts ap-
partiennent à une même compagnie. Chaque entrepôt passe commande et
fournit d’autres niveaux du réseau, des grossistes aux détaillants qui doivent
livrer les clients. Les coûts de lancement peuvent représenter des coûts de
transport ou des coûts de traitement de commande. Des coûts de commande
unitaires sont considérés et chaque entrepôt possède sa propre zone de stock-
age.

Dans nos recherches, nous avons principalement considéré des problèmes
de lot-sizing sur plusieurs niveaux organisés en série, c’est à dire, que chaque
niveau a un unique fournisseur et un unique niveau à fournir. Le premier
niveau commande auprès d’un fournisseur extérieur et le dernier niveau doit
satisfaire le client. Un autre sujet abordé dans cette thèse est la considération
de capacités de production, ou de volume de commande limité, afin de mieux
refléter la réalité. En effet, une machine possède nécessairement une capac-
ité de production limitée durant une période de temps donnée. D’un point
de vue distribution, cela peut représenter des capacités de transport ou de
manutention.

Etude bibliographique

Le problème de lot-sizing avec capacités (CLSP pour capacitated lot-sizing
problem) a été introduit par Florian and Klein, 1971. Ils proposent un algo-
rithme exact de programmation dynamique pour des capacités stationnaires
et des fonctions de coûts concaves. Van Hoesel and Wagelmans, 1996 ont en-
suite proposé une amélioration de leur résultat. Van Vyve, 2007 présente une
version du problème avec des contraintes des livraisons par lots. Tous ces ar-
ticles ont pour hypothèse des capacités stationnaires dans le temps, Florian,
Lenstra, and Rinnooy Kan, 1980a et Bitran and Yanasse, 1982a ayant montré
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que le problème avec des capacités variables dans le temps était NP-difficile,
même dans de nombreux cas particuliers.

Quelques articles traitent également du cas multi-niveaux avec capacités
de production : Kaminsky and Simchi-Levi, 2003 pour le cas à deux niveaux
et capacités de production sur chacun des deux niveaux, mais sans coût fixe
de lancement de production. Sargut and Romeijn, 2007 ont considéré le
problème sur deux niveaux, avec capacités de production au premier niveau
uniquement. Van Hoesel et al., 2005 ont considéré le cas multi-niveaux et
capacités de production seulement au premier niveau, proposant un algo-
rithme polynomial en T , mais exponentiel en N , T étant le nombre de péri-
odes et N le nombre de niveaux. Hwang, Ahn, and Kaminsky, 2013 ont ré-
solu ce dernier problème en proposant un algorithme polynomial à la fois
polynomial en T et en N . Hwang, Ahn, and Kaminsky, 2016 ont proposé
plusieurs algorithmes en temps polynomial pour le problème du lot-sizing a
deux niveaux avec capacités au premier niveau et des coûts concaves de pro-
duction et de stockage. Hwang, Ahn, and Kaminsky, 2016 ont considéré un
problème sur un nombreN de niveaux en séries avec capacités. Ils proposent
un algorithme exact en temps polynomial, mais dont la complexité devient
rapidement trop importante avec la taille de l’instance.

Contributions de la thèse

La plupart des recherches sur des approches exactes pour des problèmes de
lot-sizing multi-niveaux en série avec des capacités de production concernent
des réseaux avec des capacités au premier niveau uniquement. Cela permet
de modéliser des cas réalistes, par exemple si la restriction vient des mesures
protectrices concernant les matières premières, si la capacité du fournisseur
extérieur est limitée, ou si le premier niveau représente le niveau de pro-
duction avec une capacité, tandis que les autres niveaux sont des niveaux
de distribution. Cependant, dans de nombreux cas, le problème de capac-
ité peut survenir au sein de la chaîne d’approvisionnement, à des niveaux
intermédiaires. Si on considère une société de taille moyenne particulière-
ment, à moins qu’elle se fournisse en matériaux rares, on peut supposer que
l’offre du marché est assez riche pour satisfaire ses besoins. Les capacités à
l’intérieur du réseau peuvent provenir de restriction au niveau des ressources
matérielles ou humaines : la capacité d’une machine, ou la taille d’un camion
ou d’un conteneur dans un réseau de distribution. C’est pourquoi cette thèse
vise à étudier des cas plus généraux avec des capacités à chaque niveau.

Nous avons tout d’abord étudié un problème du lot-sizing sur deux
niveaux en série, avec des capacités aux deux niveaux. On suppose que les
capacités sont identiques et stationnaires au deux niveaux. Ce modèle peut
représenter un atelier de production équilibré, sur lequel les machines ont
la même capacité. Cela peut aussi représenter une chaîne logistique dans
laquelle un constructeur s’approvisionne auprès d’un fournisseur extérieur,
délivre les biens manufacturés à un détaillant, qui les livre aux clients. Les
capacités identiques décrivent alors le fait que les mêmes véhicules effectuent
la livraison aux deux niveaux. Contrairement à Kaminsky and Simchi-Levi,
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2003, on considère des coûts de lancement de production, non-croissants
avec le temps au premier niveau, et généraux au second. Les coûts de pro-
duction et de stockage unitaires sont linéaires et respectent une nouvelle
structure de coût, appelée non-spéculative chemin, généralisant la structure
de coût non-spéculative classique, spécifiant qu’il est moins cher de produire
aux deux niveaux à une période t, que d’anticiper la production à l’un des
niveaux. On introduit une nouvelle classe de politiques, appelée politique
doublement imbriquée, dans laquelle une production fractionnaire au pre-
mier niveau à une période donnée entraine de facto une production fraction-
naire au second niveau à cette période. Réciproquement, une production sat-
urée au second niveau entraine une production saturée au premier niveau.
Notre approche de résolution est basée sur une décomposition d’une solu-
tion point extrême en un ensemble de composantes connexes. On montre
que sous nos hypothèses, une composante connexe peut à son tour être dé-
composée en sous-plans indépendants, lorsqu’on considère le second niveau
uniquement. On propose un algorithme exact en temps polynomial sous ces
hypothèses, avec une complexité de O(T 5). Avec des hypothèses de non-
spéculation échelon, la complexité est réduite à O(T 3).

Dans le chapitre suivant, nous étendons ces résultats au cas avec un nom-
bre général de niveauxN en série. De plus, on considère qu’à chaque niveau,
le stock est réapprovisionné par le niveau en amont, avec des livraisons par
lots (batch deliveries), pour lesquelles un coût fixe est comptabilisé pour
chaque lot commandé. On considère aussi une limitation sur le nombre de
lots pouvant être commandés à une période et un niveau donnés. La taille
des lots est supposée identique et stationnaire à chaque niveau, le problème
du lot-sizing sur un niveau avec des livraisons par lots étant NP-difficile avec
des tailles de lots dépendant du temps (voir Akbalik and Rapine, 2013). Des
tailles de lots identiques peuvent modéliser, dans une chaîne logistique, une
flotte de véhicules identiques. Contrairement à l’étude précédente, les coûts
unitaires de production et de stockage respectent l’hypothèse classique de
non-spéculation échelon, ce qui signifie que ce chapitre est un complément
mais pas un substitut du précédent. Pour autant que nous le sachions, le
statut de ce problème est ouvert. Nous mettons en évidence des propriétés
dominantes de politique optimale, et fournissons un algorithme qui est poly-
nomial à la fois en la taille de l’horizon de temps et au nombre de niveaux.
Nous réutilisons le concept de basis path introduit par Hwang, Ahn, and
Kaminsky, 2013 pour proposer une décomposition du problème en com-
posantes connexes restreintes à un sous-ensemble de niveaux. La propriété
doublement imbriquée introduite dans le chapitre précédant est étendue au
cas multi-niveaux : les lots pleins commandés au premier niveau sont aussi
commandés aux niveaux en amont aux mêmes périodes, et si un lot fraction-
naire est commandé à une période et un niveau donnés, un lot fractionnaire
est aussi commandé aux niveaux suivants à cette période. Finalement, notre
modèle est étendu pour incorporer des coûts de lancement de production au
premier niveau.

Nous étudions ensuite des extensions du problème étudié dans le
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chapitre précédent, pour lequel nous proposons des résultats de complex-
ités et des algorithmes d’approximation. Nous considérons tout d’abord le
problème du lot-sizing multi-niveaux sans capacité, avec des livraisons par
lots dont la taille dépend du niveau, ce qui est pertinent en pratique, puisque
différents types de véhicules peuvent être utilisés selon le niveau. Nous
prouvons que ce problème est NP-difficile. Nous proposons ensuite un al-
gorithme de 2-approximation, pour des tailles de lots dépendant du temps
et du niveau, ce qui est un résultat intéressant étant donné la complexité
d’un tel problème. Pour cette approximation, nous introduisons une méth-
ode consistant à encadrer les coûts d’approvisionnement à chaque niveau par
deux fonctions affines avec lesquelles on peut résoudre le problème en temps
polynomial. Un autre résultat de complexité est donné pour le problème
du lot-sizing multi-niveaux avec des capacités dont les valeurs dépendent
du niveau. Finalement, un algorithme d’approximation est proposé pour
le problème du lot-sizing multi-niveaux avec des capacités dont les valeurs
dépendent du niveau, des coûts de lancement de production non-croissants,
et une absence de motifs de spéculation.

Pour finir, nous présentons un travail en collaboration avec Ayse Akbalik,
de l’Université de Lorraine, qui concerne un problème du lot-sizing avec des
limitations périodiques d’énergie. Le système étudié n’est pas en série, mais
consiste en un ensemble de machines identiques et parallèles ayant une ca-
pacité limitée, chacune consommant un certain montant d’énergie lors de son
allumage, et pour chaque unité produite. On considère un coût d’allumage
des machines, en plus d’un coût unitaire de production et de stockage, cha-
cun dépendant du temps. On peut noter que ce système possède des points
communs avec le problème du lot-sizing multi-niveaux en série avec des
livraisons par lots. En effet, la capacité de production du système peut être
augmentée en démarrant une machine supplémentaire, ce qui entraine un
coût. La similitude avec le modèle précédent avec livraisons par lots réside
dans le fait que dans ce dernier, la capacité du système peut être étendue
en commandant un lot supplémentaire, ce qui entraine un coût fixe égale-
ment. La différence étant qu’une machine allumée le reste durant les péri-
odes suivantes, ce qui revient à dire que le coût fixe n’est payé qu’une seule
fois pour augmenter la capacité de tout l’horizon de temps jusqu’à extinction
de la machine. Outre les décisions classiques aux problèmes du lot-sizing,
de combien et à quelles périodes produire, il faut décider du nombre de ma-
chine allumer ou éteindre à chaque période. Nous montrons que ce problème
est NP-difficile même avec des conditions très fortes sur les paramètres. En
revanche, en supposant des paramètres d’énergie stationnaires, nous pro-
posons un algorithme dynamique ayant un temps d’exécution polynomial,
et résolvant le problème à l’optimalité en temps O(N5T 4). On généralise
également notre modèle afin d’incorporer des coûts de lancement de pro-
duction communs, des coûts de fonctionnement, et la prise en compte de
la consommation énergétique des machines allumées. Nous montrons que
notre algorithme peut être adapté pour résoudre cette version plus générale
du problème en tempsO(M6T 6) pour des paramètres d’énergie stationnaires.
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Chapter 1

Introduction

In our globalized world, supply chain management is an increasingly impor-
tant issue. Growing transport capacity, trade liberalization on a global scale,
pressure companies to permanently reduce their production and distribu-
tion costs in order to face increasing competition. Inventory management
is a matter of prime importance: the costs arising from the storage of prod-
ucts represent huge amounts of money, and it is crucial to avoid disruption,
so that customer demand may be satisfied in time. In this context, inven-
tory management aims to propose efficient tools and optimization methods
to minimize these costs. Inventory management, and more generally produc-
tion planning, concern the organization of physical flows of components or
finished goods in a system. This system can be a large supply chain for which
we need to answer questions like when and what to produce, when and what
to order from the supplier, and where and when to store. The production
and the distribution of these items are often achieved in lots, which allows
significant economies of scale. Logistic systems can be modeled as a series of
stages or levels. Logistic and production processes can be decomposed into
flows of products going from one level to another, proceeding assembly, pro-
duction or distribution operations. Levels at the top of the chain may order
raw materials or other various components from an external supplier. Lev-
els at the end of the supply chain must meet demand from their customers.
For example, Figure1.1 represents a logistic network containing a production
facility located in China, which supplies a warehouse in Europe, which in
turn provides a retailer in Western Europe. The system can also represent
a shop floor, where each level represents a machine or a group of parallel
machines, and where semi-finite products are stored at each level. Multi-
echelon inventory management problems are challenging and complex from
a combinatorial optimization point of view, due to their size and the need of
coordination between the different levels. Efficient policies are required for
these multi-level systems.

In the field of operational research, the lot-sizing problem introduced by
Wagner and Whitin, 1958 deals with production planning or distribution net-
works including inventories. It aims to satisfy the demand of clients while
minimizing all costs involved in the system. In models with discrete-time
finite horizon, the time decomposes into a set of discrete-time periods with
their specific cost parameters and customer demand. Lot-sizing models may
represent production systems, for which each level is a step in the production
process, usually a machine. Starting the production at a period may cause
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FIGURE 1.1: Logistic network on several levels.

some costs due to the need for labor, the energy consumption to turn on the
machine, transportation between two machines, etc. For this reason, setup
costs are taken into account in most of the models studied in the literature.
These costs are paid whenever a production is started, whatever the num-
ber of produced units. Of course costs also depend on quantity produced
through unit production costs. At each level, it is possible to store some units
before being delivered to the next level. In most of the studies, a unit inven-
tory cost or holding cost is charged to carry a unit in stock from one period
to another. Inventory costs can model, among other, the reduction of capital
of the company, the impairment loss of the goods, the cost of renting storage
space. Lot-sizing problems can also deal with distribution networks, when
one or more warehouses belong to the same company. Each warehouse or-
ders and provide other levels of the network, from the wholesalers to the
retailers which deliver the clients. Setup costs can represent transportation
costs or order processing costs. Unit ordering costs are charged and each
warehouse has its own storage area. Lot-sizing models address both produc-
tion systems and logistic systems. We use in this document both terminolo-
gies. This thesis aims to study multi-level in series lot-sizing problems with
capacities.

Lot-sizing literature is far too wide to propose here an exhaustive review
of all variants of the problem. In our research we chose to focus on determin-
istic models for which all parameters are known including the demand to sat-
isfy, but a large range of studies deals with stochastic models. Moreover, we
consider problems in which backlogging is not allowed, that is, the demand
must be met on time. We also deal mainly with multi-level lot-sizing prob-
lems with levels organized in series, that is, each level has a unique provider
and a unique level to supply. First level purchases from an external supplier
and the last level must satisfy the client (see Figure 1.3). Another topic in this
thesis concerns the consideration of production capacities, or limited order
volumes, in order to better reflect reality. Indeed, a machine necessarily has
a limited processing capability during a given period of time. In a distribu-
tion system, vehicles have also limited capacities and warehouse can have
limited handling capacities. In the next section we present a brief overview
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of the literature of single-item lot-sizing problems. For a complete and re-
cent survey on single-item dynamic lot-sizing problems, see Brahimi et al.,
2017 and Pochet and Wolsey, 2006. We focus in this thesis on models with a
discrete time horizon, but many studies deal with models with a continuous
time horizon (see Roundy, 1985, Muckstadt and Roundy, 1993).

1.1 Lot-sizing models

The single-level uncapacitated lot-sizing problem (ULSP ) introduced by
Wagner and Whitin, 1958 aims to determine an inventory management pol-
icy minimizing the total costs to satisfy a known demand over a discrete-time
finite horizon discretized into T periods. It is possible to keep some units in
inventory from one period to another. At each period t it must be decided
which quantity is ordered and how many units are stored from period t to
period t+1. An order at a period involves a time-dependent fixed setup cost.
Unit ordering and inventory costs are also time-varying. The demand must
be entirely satisfied on time by placing orders from an external supplier at
some periods. The goal is to find a compromise between frequent ordering,
which involves large setup costs, and ordering more rarely, implying impor-
tant inventory costs. The problem can also represent a machine producing
units to satisfy the demand, with the setup costs reflecting the cost of prepar-
ing the machine to produce, and with an inventory for the manufactured
products. The following notations are used to model the ULSP :
T Length of the planning horizon;
dt Demand in period t, t ∈ {1, .., T};
Kt Setup cost at period t;
pt Unit ordering cost at period t,
ht Unit holding cost at period t;

The decision variables are, for each period t ∈ {1, .., T}:
xt Amount of unit ordered at period t;
yt Production indicator (binary variable) at period t;
st Stock level at the end of period t;

The ULSP can be formulated as follow:

min
T∑
t=1

(Ktyt + ptxt + stht) (P)

subject to
xt + st−1 = dt + st, ∀t ∈ {1, .., T}, (1.1)

xt ≤
T∑
t′=t

dt′yt, ∀t ∈ {1, .., T}, (1.2)

s0 = 0, (1.3)

xt ≥ 0, st ≥ 0, yt ∈ {0, 1}, ∀t ∈ {1, .., T} (1.4)
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The objective function minimizes the setup, ordering and inventory costs.
Constraints (1.1) correspond to the flow conservation, that is, at each period,
the entering stock plus the amount ordered is equal to the demand to serve
plus the outgoing stock. Constraints (1.2) ensure that an order at period t in-
curs a setup costs. Constraint (1.3) imposes a null inventory at the beginning
of the horizon. Other formulations more efficient have been proposed, see
Pochet and Wolsey, 2006 and Brahimi et al., 2017.

Wagner and Whitin, 1958 use a dynamic programming (DP) approach
based on a time decomposition to solve the problem optimally. A property
is said to be dominant for a problem if it admits at least an optimal solu-
tion which exhibits this property. A classical approach for finding an opti-
mal solution consists in finding some dominance properties for the problem,
which allows to reduce the solution space of a problem focusing on the so-
lutions verifying the properties. The class of ZIO (Zero-Inventory Ordering)
policies is introduced in Wagner and Whitin, 1958: a policy is ZIO if pro-
ductions/orders only occur at periods without entering stock. Wagner and
Whitin, 1958 show that ZIO policies are dominant for the single-level unca-
pacitated lot-sizing problem with concave cost functions.

A regeneration point is a period t without entering stock, that is, st−1 = 0.
A subplan is a set of consecutive periods (u, ..., v) such that the inventory
between periods u and v − 1 is always positive and u and v are two (consec-
utive) regeneration points. In other words, su−1 = 0, sv−1 = 0 and st > 0
∀t ∈ {u, ..., v − 2}. Each subplan is independent from the other periods of
the problem. Consequently, for given periods u and v, the optimal cost of
subplan (u, v) can be evaluated independently. A classical method for find-
ing the optimal solution of a single-level problem consists in evaluating the
minimum cost of every of all the O(T 2) possible subplans in a first phase.
A shortest path problem is then solved, in the acyclic graph whose nodes
represent the periods from 1 to T , and whose arcs represent the costs of the
subplans defined by the two nodes they are adjacent to. The minimum cost
path between node 1 and a fictive node (T + 1) represents an optimal (ZIO)
solution of the problem and can be computed in O(T 2), given that the mini-
mum costs of each subplan are yet computed.

A classical assumption is to consider non-speculative motives for the unit
ordering and holding costs, also called the Wagner-Within property. This
property prevents speculation, that is, without considering the setup costs, it
is preferable to order as late as possible. In other words, it is more expensive
to order a unit at a period t and to store it until period t + 1 rather than
to directly ordering this unit at period t + 1: pt + ht ≥ pt+1 must hold for
any period t ∈ {1, ..., T − 1}. This property allows to greatly simplify the
structure of extreme point solutions. Wagner and Whitin, 1958 proposed an
O(T 2) algorithm for solving this problem for linear variable ordering and
holding costs. Several authors proposed an algorithm running in O(T log T )
for general linear cost functions and O(T ) without speculative motives (see
Federgruen and Tzur, 1991, Wagelmans, Van Hoesel, and Kolen, 1992 and
Aggarwal and Park, 1993).
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FIGURE 1.2: Full Truck Load (FTL) cost like structure.

Capacitated lot-sizing problems

Our research deals with problems having a limited production capacity, that
is, it is assumed that the amount of units which can be produced at a given
period is limited, which is clearly a more realistic assumption. We are focus-
ing here on hard capacities, in contrast to soft capacities (batch deliveries)
presented in the next section. At each period t, the amount xt produced
is limited by a capacity Ct. The capacitated lot-sizing problem (CLSP) was
introduced by Florian and Klein, 1971. They proposed a dynamic program-
ming algorithm to solve this problem in timeO(T 4) with a stationary capacity
and concave cost functions. Using the concept of subplan they give a char-
acterization of an extreme point solution which drastically reduce the set of
solutions which are likely to be optimal. Van Hoesel and Wagelmans, 1996
developed an efficient algorithm in O(T 3) for CLSP, assuming a stationary
capacity, concave production costs and linear holding costs. The algorithm
proposed by Van Vyve, 2007 can solve this problem under linear cost func-
tions and non-speculative motives in O(T 2 log T ). Chung and Lin, 1988 de-
signed an O(T 2) algorithm for the special case of non-increasing setup costs,
unit production costs and non-decreasing capacities. On the opposite, if the
capacity is time-varying, CLSP is NP-hard, even in many special cases (see
Florian, Lenstra, and Rinnooy Kan, 1980a and Bitran and Yanasse, 1982a).

Lot-sizing problem with batch deliveries

Capacities are also present in distribution networks due to vehicle sizes.
However, when the capacity of a vehicle is reached, usually, another one
can be ordered. That is, the fleet of vehicles is often constituted of several
vehicles, eventually belonging to a third-party logistics. To deal with such
situations, more general cost structures were introduced, like the Full Truck
Load (FTL) and the Less than Truck Load (LTL) procurement costs, when
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products are delivered by batches from a supplier. Of course, the fleet of ve-
hicles or the number of containers can be limited, in this case a limit mt is
considered on the number of batches which can be ordered at a period t. It
can be seen as an extension of the capacitated lot-sizing problem whose ca-
pacity can be extended if the setup cost is paid again. For this reason, batch
deliveries are often referred to as soft capacities. Assuming a batch size of
C, the cost of ordering x units in the FTL case is equal to Kt + dx/Cekt + ptx
if x > 0, and is null otherwise. Hence, kt represents a fixed cost per batch,
paid for each ordered batch, whenever it is full or not. In the LTL case, the
setup cost kt is charged only for full batches and an additional cost is paid
depending on the actual number of units in the truck partially loaded, de-
termined by a freight cost function. Kt is a general setup cost for ordering
some units in period t. Figure 1.2 represents the shape of the curve with
Kt = 0. The single-level lot-sizing problem with time-dependent batch sizes
has been shown to be NP-hard by Akbalik and Rapine, 2013. Regarding the
issue of identical batch sizes, Van Vyve, 2007 studied a single-level lot-sizing
problem with constant batch size and linear ordering and holding costs. He
considers time-varying ordering capacities by limiting the maximal number
mt of available batches in each period. He proposes a O(T 3) algorithm for
the general case with backlogging and with null setup costs (Kt = 0). In the
absence of speculative motives the complexity drops to O(T 2 log T ). Li, Hsu,
and Xiao, 2004 proposed an O(T 3 log T ) algorithm for the problem with non-
decreasing LTL freight cost functions and non-decreasing concave holding
costs. Akbalik and Rapine, 2012 proposed two polynomial time algorithms
for the constant capacitated lot sizing problem with batch deliveries when
production capacities and batch sizes are constant and assuming a Wagner-
Whitin cost structure.

Multi-level in series lot-sizing problems

In this thesis, we focus on multi-echelon inventory problems. These may rep-
resent distribution systems over several warehouses located geographically
apart from each other. Transferring goods between two entities may involve
different transportation modes such as a fleet of trucks or container barges.
For structures with levels in series, which are studied in the next three chap-
ters, each level gets units from its upstream level and must satisfy the orders
of its downstream level. Figure 1.3 provides a schematic representation of
a system in series with N levels, setup costs Ki

t , unit ordering costs pit and
inventory costs hit at each level i ∈ {1, ..., N} and period t ∈ {1, .., T}. The
multi-level in series lot-sizing problem can also model serial assembly line,
when an item must go through several machines to obtain a final product de-
livered to the client. At each level semi-finished goods can be stored at a cost
hit. An important notion in multi-echelon systems is the echelon holding cost.
The echelon holding cost at a level i is defined as the difference between the
holding costs at level i and level i + 1: h′it = hit − hi−1

t . It represents the extra
cost to pay to move forward a unit in the system. A common assumption is
to consider that holding costs increase with the level, which can be due to the
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FIGURE 1.3: Representation network of a multi-level in series
lot-sizing problem with N levels.

added value at each transportation or manufacturing step. It corresponds to
the assumption that h′i−1

t ≤ h′it . In this case it is referred to as positive echelon
holding costs. For multi-level problems, the Wagner-Within property has to
be written using the echelon holding costs. Specifically, at the first level, it
implies that p1

t + h1
t ≥ p1

t+1 holds for any period t. At the other levels, for any
period t, we must have pit + (hit−hi−1

t ) ≥ pit+1. It means that it is always more
expensive to move units downstream instead of keeping them at upstream
levels. To make the distinction from the classical single-level Wagner-Within
property, this cost structure is referred inside this document as the echelon
non-speculative cost structure.

Zangwill, 1969 proposed an algorithm for the uncapacitated multi-level
lot-sizing problem running in timeO(NT 4). More recently, Melo and Wolsey,
2010 presented a dynamic algorithm for the 2-level uncapacitated problem
with a time complexity in O(T 2logT ).

Kaminsky and Simchi-Levi, 2003 were the first to propose an efficient al-
gorithm for the 2-level case with capacities at both levels and an intermediary
transportation level. Capacities are time-dependent and they assume posi-
tive echelon holding costs and no speculative motives at both levels. How-
ever, in their model, production setup costs are null. As a consequence, the
production at the second level is performed as late as possible, subject to the
capacity constraints, which allows them to reduce the problem into a single-
level CLSP and to solve it in time complexity O(T 4).

Sargut and Romeijn, 2007 considered the 2-level capacitated lot-sizing
problem allowing backlogging and subcontracting, with (stationary) produc-
tion capacities only at the first level. They proposed different polynomial
time algorithms for special cases. Van Hoesel et al., 2005 developed an algo-
rithm for the multilevel lot-sizing problem with production capacities, with
general concave cost functions, which is polynomial if the number N of lev-
els is fixed, but whose complexity grows exponentially with N . Consider-
ing more restrictive cost structures, they were able to propose an algorithm
that stays polynomial even if N is part of the input. Finally, using the novel
concept of basis path, Hwang, Ahn, and Kaminsky, 2013 developed the first
polynomial algorithm for the multilevel lot-sizing problem with production
capacities with general concave costs and the number N of levels being part
of the inputs. Hwang, Ahn, and Kaminsky, 2016 proposed several polyno-
mial time algorithms for the 2-level capacitated lot-sizing problem with sta-
tionary capacities at the first level and concave production and inventory
costs. Notice that all these studies consider a limited capacity only at the first
level of the chain.

Very recently, Ahmed et al., 2016 considered the minimum concave cost
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flow problem over a two-dimensional grid network. The multi-level lot-
sizing problem is a special case of this problem: a N -level serial lot-sizing
problem can be modeled by a (N + 1)-level 2-dimensional grid network.
For the capacitated case, they proposed a polynomial-time algorithm for the
problem with a fixed number of levels and a fixed number of different fi-
nite capacity values. However, the time complexity of their algorithm is in
O(N4KN−4K+1T 4KN+4N−4K−3), where K is the number of different capacity
values and N is the number of levels. Hence, although this is a strong theo-
retical result, the algorithm is of limited practical use.

Few other articles on multi-level lot-sizing problems deal with differ-
ent network structures such as the One-Warehouse Multi-Retailer problem
(OWMR) and the Joint Replenishment Problem (JRP). It consists in a distri-
bution network composed of one warehouse which orders from an external
supplier, and which provides a set of different retailers. The difference be-
tween the two problems lies in the fact that the warehouse cannot hold in-
ventory in the JRP. Each retailer must meet the demand of its client. So far,
limited research has been done on these problems in their discrete-time ver-
sion. Chan et al., 2002 have shown that both problems are NP-hard and study
the class of zero-inventory-ordering (ZIO) policies. Levi et al., 2008 proposed
a 3.6-approximation algorithm for a transportation cost structure, assuming
time-independent (but retailer-dependent) batch sizes. In Gayon et al., 2017,
the authors improved this result to a 2-approximation algorithm for OWMR
with FTL cost structures, allowing non null setup costs and a capacity con-
straint on a special set of retailers.

There are also some studies on multi-level lot-sizing problems with in-
ventory bounds, modeling a limit on the physical size of the stock, that is, the
capacity constraint is on the inventory variable. Hwang et al., 2013 consid-
ered a multi-level lot-sizing problem where one of the levels has a stationary
inventory bound. They proposed an exact algorithm, based on the concept
of basis path, in time complexity O(LT 7). Recently, Phouratsamay, Kedad-
Sidhoum, and Pascual, 2016 considered a 2-level lot-sizing problem with in-
ventory bounds. They provide a polynomial dynamic programming algo-
rithm for the case with bounds at the first level. With bounds at both levels,
they prove that the problem is NP-hard and propose a pseudo-polynomial
time algorithm.

Other studies focus on polyhedral approaches by proposing extended for-
mulations of the problem, using valid inequalities, including among others
Zhang, Küçükyavuz, and Yaman, 2012 which proposed an effective branch-
and-cut algorithm for capacitated multi-item, multilevel problems, and Van
Vyve, Wolsey, and Yaman, 2014 which studied several variants of the 2-level
lot-sizing problem with constant capacity at both levels. They provide an
extended formulation for the problem with constant production capacities at
both levels but they did not test its performance.
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FIGURE 1.4: Network representation of a multi-level in series
lot-sizing problem with N = 2 levels and T = 6 periods.

List of abbreviations for multi-level in series lot-sizing prob-
lems

Throughout this document, we use several abbreviations to describe the
multi-level lot-sizing problems addressed, listed below:
M-ULSP multi-level uncapacitated lot-sizing problem.
M-CLSP multi-level lot-sizing problem with hard capacities at each

level.
M-LSP-PC multi-level lot-sizing problem with production capacity at

the first level only.
M-ULSP-B multi-level uncapacitated lot-sizing problem with batch de-

liveries.
M-LSP-B multi-level lot-sizing problem with batch deliveries and with

an upper limit on the number of batches of each order.
We namely focus on stationary and identical capacity/batch size, except in
Chapter 4.

1.2 Network flow representation

Lot-sizing problems can be modelled as minimum-cost flow network prob-
lems. As minimum-cost-flow problems are easy to visualize, we abundantly
use the representation of a policy as a flow in this document. For multi-level
in series lot-sizing problems with hard capacities, we can define the follow-
ing network: a node (i, t) is associated to each level i and each period t, for
i ∈ {1, ..., N} and t ∈ {1, ..., T}. For each level i ∈ {1, ..., N} matches a row
of nodes (i, 1), (i, 2),..., (i, T ) gathering all information about the decision at
level i. Similarly, for each t ∈ {1, ..., T} matches a column of nodes (1, t),
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(2, t),..., (N, t). Two nodes (i, t) and (i, t + 1) are linked by an arc which cor-
responds to an inventory flow between periods t and t + 1 at level i, and
whose unit cost is hit. Two nodes (i− 1, t) and (i, t) are linked by capacitated
arcs which corresponds to a production flow at level i at period t, and whose
cost is equal to the production cost at period t and level i. We denote by
Dt,t′ ≡ dt+· · ·+dt′ the cumulative demand between periods t and t′. A source
node (0, 0), connected to the nodes of the first level, corresponds to the exter-
nal supplier, withD1,T units available. Finally, each node (N, t) has a positive
demand dt. The objective is to route all the units available at the source node
to the sinks at minimal cost. As an example, Figure 1.4 represents a problem
with 2 levels and 6 periods of time. To represent lot-sizing problems with
soft capacities, i.e., obeying a batch delivery cost structure (with null setup
costs), a network with an arc for each batch is defined, each with a capacity
and a cost corresponding to those of the batch. Notice that the size of the
resulting network is not polynomially bounded since the number of batches
which can potentially be used at a period t and a level i is equal to dDt,T/B

i
te.

We can prevent exponentially large networks by using binary representation
of capacities: only log dDt,T/B

i
te arcs are requested at each node (i, t) of the

network. The kth arc representing the ordering of 2k−1 batches.
The models we study have a concave objective function and a feasible

region defined by linear constraints, that is, are polyhedron and thus have
an extreme point optimal solution. Recall that an arc is said to be free if it is
not saturated and it its flow is positive. A period with a production which
is not saturated is called a fractional period. We also say that an arc is full or
saturated if its flow is equal to its capacity. A well-known dominant property
states that for problems with concave cost functions, the network induced
by the free arcs contains no cycle in an extreme point solution (see Zangwill,
2013 and Ahuja, Magnanti, and Orlin, 1993). For single-level problems, this
means that there can be at most one fractional period on the same subplan.
If the problem is uncapacitated, this production must therefore fulfill all de-
mand of the subplan. As a result, productions are only carried out at periods
without entering stock (st−1 = 0), that is, the extreme point solution are ZIO.
On multi-level problems, it is also possible to decompose an extreme point
solution into independent elements using connected components. A con-
nected component is a set of nodes such that each of these nodes are linked
by a flow. We use such decomposition through this document to design effi-
cient dynamic programming approaches.

1.3 Contributions of the thesis

Most of research efforts on exact approach for multi-level in series lot-sizing
problems with production capacities concern networks with capacities at the
first level only (Sargut and Romeijn, 2007, Van Hoesel et al., 2005, Hwang,
Ahn, and Kaminsky, 2013). This can model realistic cases, for example if the
restriction comes from protective regulations on raw materials, if the exter-
nal supplier capacity is limited, or if the first level represents a production
level, while other levels are distribution levels. However, in many cases, the
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capacity bottlenecks may arise within the supply chain, at some intermedi-
ate levels. Considering a mid-sized company in particular, unless it needs
to procure scarce products, one can assume that the market offer should be
rich enough to satisfy its needs. The capacities inside the network may come
from material or human resource restrictions: the capacity of a machine, or
the size of a truck or a container in a distribution network. For these reasons,
this thesis aims to study the more general case with capacities at each level.

In Chapter 2 we study a 2-level in series lot-sizing problem with capaci-
ties at both levels. We assume that capacities are identical and stationary at
both levels. This model may represent a well-balanced flowshop production
line, where the machines have the same capacity. It may also represent a sup-
ply chain in which the manufacturer gets supplies from an external supplier,
and provides the retailer which delivers the goods to the client with a sin-
gle vehicle. Identical capacities describe a situation where the same type of
vehicle performs the shipments at both levels. In contrast to Kaminsky and
Simchi-Levi, 2003, we consider time-dependent setup costs, which are non-
increasing at the first level and unrestricted at the second one. The unit pro-
duction and holding costs are linear and follow a new cost structure, called
path non-speculative, generalizing the classical non-speculative cost structure,
which specifies that it is less expensive to produce at both levels at a period
t, rather than to anticipate the production at some levels. We introduce a
new class of policies, called double-nested policies, in which a fractional pro-
duction at the first level at a given period involves a fractional production
at the second level at this period. Conversely, a full production at the sec-
ond level causes a full production at the first level. The approach of resolu-
tion is based on a decomposition of an extreme point solution into connected
components. We show that under our hypothesis, a connected component
can in its turn be decomposed into independent subplans considering the
second level only. That is, the problem is reduced to a single-level CLSP.
We propose an exact polynomial time algorithm under these assumptions,
in time complexity O(T 5). Assuming echelon non-speculative motives, the
time complexity is reduced to O(T 3). This problem is a particular case of a
grid network of three levels and one finite capacity value. Consequently, the
algorithm proposed by Ahmed et al., 2016 allows to solve the problem we
introduced in time complexity O(T 17). Even if the time complexity of the al-
gorithm is polynomial, it is quite prohibitive to use in practice. In contrast,
our problem is a way less general, but the assumptions we make allow us
to propose a more efficient polynomial time algorithm, applicable to some
practicable problems, even for a large number of periods.

In Chapter 3 we extend these results to the case with a general number
N of levels in series. Moreover, we consider that at each level, the inventory
is replenished from its upstream level using batch deliveries, where a fixed
cost is incurred for each batch ordered. We also consider a limitation on
the number of batches that can be ordered at a given period. Batch sizes are
assumed identical and stationary at each level, the single-level problem being
NP-hard with time-dependent batch sizes (see Akbalik and Rapine, 2013).
Identical batch sizes may model in a supply chain a fleet of identical vehicles.
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Contrary to the previous chapter, unit production and holding costs follow
the classical echelon non-speculative motives at every levels, which means
that the results of this chapter is a complement and not a full generalization
of Chapter 2. As far as we know, the status of this multi-level capacitated lot-
sizing problem with batch deliveries is open. We highlight some structural
properties of an optimal policy, and provide a dynamic algorithm which is
polynomial both in the length of the planning horizon and in the number of
levels. We reuse the concept of basis path introduced by Hwang, Ahn, and
Kaminsky, 2013 to propose a decomposition of the problem into induced
connected components restricted to a subset of levels. The double-nested
property introduced in the previous chapter is extended to the multi-level
case: full batches ordered at a level are also ordered at its upstream level, and
an ordering period is fractional at a level, then it is also a fractional ordering
period at its downstream level. Finally, we extend our model to incorporate
non null setup costs at the first level in addition to the fixed costs per batch.

We consider in Chapter 4 generalizations of the problem studied in Chap-
ter 3, for which we propose complexity results and approximation algo-
rithms. We first consider the multi-level uncapacitated lot-sizing problem
with batch deliveries and level-dependent batch sizes (M-ULSP-B), that is,
each level orders using a specific batch size Bi. This model is relevant in
practice, as different types of vehicles can be used depending on the level.
We establish that this problem is NP-hard. We provide then a simple 2-
approximation algorithm for M-ULSP-B, with time-dependent and level-
dependent batch sizes, which is an interesting result considering the com-
plexity of this problem. For this approximation, we use a method con-
sisting in sandwiching the procurement costs of each level in each period
between two affine functions. Another complexity result is given for the
multi-level lot-sizing problem with level-dependent (hard) capacities Ci (M-
CLSP). Finally, an approximation algorithm is proposed for M-CLSP with
level-dependent capacities, non-increasing setup costs and non-speculative
motives. Notice that under these assumptions, the complexity of the prob-
lem is open. We are currently trying to reuse this idea of sandwiching to
other problems, through an on-going collaboration with Albert Wagelmans
and Wilco van den Heuvel, from Erasmus University Rotterdam.

Chapter 5 is a collaborative work with Ayse Akbalik, from University of
Lorraine, which deals with a single-item lot sizing problem under a periodic
energy limitation. The system here is not in series, but consists in identical
and parallel capacitated machines, each one consuming a certain amount of
energy when being switched on and when producing. The originality of this
model lies in the fact that we consider a limit of the amount of energy that
can be consumed in each period by the production system. Considering the
energy consumption is an important issue in many industries, and is in ac-
cordance with the context of energy aware production and environmental
sustainability. We consider a cost for starting-up the machines, in addition
to a unit production cost and a unit holding cost, all being time-dependent.
Notice that this system shows similarities with the multi-level in series lot-
sizing problem with batch deliveries. Indeed, the production capacity of the
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system can be extended by turning on an additional machine, incurring a
starting cost. This is similar in a sense to batch deliveries where the capac-
ity can be extended by ordering additional batches with a fixed cost. The
difference is that a machine turned on once may remain running during the
next periods, that is, a start-up cost is paid only once to increase the capacity
on the whole remaining horizon. Besides the classical lot sizing decisions of
how much and in which periods to produce, we have to decide the number
of machines to switch on and to switch off in each period. We show that this
problem is NP-hard even under restricted conditions. In contrast, assuming
stationary energy parameters, we propose a polynomial time dynamic pro-
gramming algorithm to solve to optimality the problem in time O(M5T 4),
with M being the number of machines and T the number of periods consid-
ered in the planning horizon. We also generalize our model to incorporate
joint setup costs, running costs and running energy consumption due to ma-
chines that are not turned off. We show that we can adapt our algorithm to
solve this generalized version of the problem in time complexity O(M6T 6)
for stationary energy parameters.

Finally, Chapter 6 concludes the thesis, recalling our main results and pro-
viding some guidelines for further research.
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Chapter 2

An efficient algorithm for the
2-level capacitated lot-sizing
problem with identical capacities at
both levels

This chapter deals with a 2-level in series lot-sizing problem with identical
and stationary production capacities at both levels. We use inside this chap-
ter a production terminology, since we consider hard capacities, unlike the
next chapter where batch deliveries are considered. We propose an exact
dynamic algorithm running in O(T 5), which significantly reduces the time
complexity of the algorithm proposed by Ahmed et al. (2014) Ahmed et al.,
2016 (see literature review in the introductory chapter). In addition, we ex-
hibit a new original class of policies, called double-nested policies, that we
prove dominant for this problem. The nice and simple structure of double-
nested policies, where both levels produce at full capacity in a synchronous
way, can certainly be reused in future works. Finally, this work also intro-
duces the new path non-speculative cost structure, which generalizes in a
simple manner the classic echelon non-speculative cost structure of the liter-
ature (see Section1.1). In particular, the non-speculative path cost structure
is verified by any non-negative holding costs when production costs are sta-
tionary. This chapter is based on an article published in the European Journal
of Operational Research (Goisque and Rapine, 2017a).

2.1 Introduction

FIGURE 2.1: Serial supply chain with two production levels.

We consider a serial structure composed of two production levels in series
with identical and stationary production capacities. For convenience, we call
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the first level the manufacturer and the second level the retailer, see Figure 2.1.
This problem is a natural extension of the capacitated single-item lot-sizing
problem (CLSP), well-studied in the literature since the seminal paper of Flo-
rian and Klein (1971) Florian and Klein, 1971. CLSP, on a single level, is
known to be NP-hard if the capacity is time-varying. For this reason, we re-
strict ourselves to the case of stationary capacities. In addition, we assume
that the capacities are identical at both levels, that is, C1

t = C2
t = C for all

periods t. This problem may model the realistic situation of a well-balanced
flowshop production line, where each machine has the same capacity. It may
also model a supply chain in series, where setup costs represent the fixed
transportation cost paid to order units from an external supplier to the man-
ufacturer, and from the manufacturer to the retailer, see Figure 2.1. In order
to propose a quite efficient algorithm, we consider that the setup costs are
non-increasing at the manufacturer level, that is, K1

t ≥ K1
t+1 for all periods

t. We also assume that production and holding costs are following the path
non-speculative cost structure defined below.

Path non-speculative cost structure

In this chapter we consider a cost structure which is slightly more general
than the echelon non-speculative cost structure. To introduce this cost struc-
ture, let us define qtab as the cost associated with the production and the stor-
age of a unit that is processed at the manufacturer at period a, at the retailer at
period b, to satisfy a demand at period t. Cost qtab is hence the production and
holding costs associated with the path from node (1, a) at the manufacturer
to demand node (2, t), via production node (2, b) at the retailer, see Figure 2.2.
We require that costs qtab are non-negative. We say that a cost structure is path
non-speculative if the following properties hold:

(1) qtab ≥ qttt for all periods a, b, t such that 0 ≤ a ≤ b ≤ t ≤ T

(2) qtab ≥ qta′b for all periods a, a′, b, t such that 0 ≤ a ≤ a′ ≤ b ≤ t ≤ T

The first condition stipulates that for a given demand period t, the cheapest
unit path consists in producing directly at period t both at the manufacturer
and the retailer level. Figure 2.2 illustrates this condition: any grey path,
which represents the costs incurred by a unit produced at period a at the
manufacturer and at period b at the retailer to satisfy demand at period t,
is more expensive than the black path, which represents the situation where
a unit is directly produced at period t at both levels. The second condition
specifies that for a unit supplying the demand at a given period t and pro-
duced at a given period b at the retailer, the cheapest path consists in produc-
ing it as late as possible at the manufacturer. Notice that considering costs qtab
defined on paths is more general than considering costs defined edge by edge
independently. It can among others capture the case of perishable goods (for
instance, if a unit cannot be produced in advance more than a certain number
P of periods, we can simply set qtab =∞ for any periods such that t− a > P ).
It can also be used to encapsulate backlogging costs, by allowing a and b to
be greater than t.
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FIGURE 2.2: Illustration of the cost structure.

We now show that this new cost structure generalizes the echelon non-
speculative cost structure, that is, a cost structure obeying the echelon non-
speculative properties also satisfies the path non-speculative properties.
Consider a cost structure with unit production and holding costs satisfy-
ing the echelon non-speculative properties. The cost associated with the
production and the storage of a unit produced at the manufacturer at pe-
riod a, at the retailer at period b, to satisfy demand at period t is equal to
qtab ≡ p1

a + h1
a + · · · + h1

b−1 + p2
b + h2

b + · · · + h2
t−1. The second condition of

path non-speculative motives is equivalent to have echelon non-speculative
motives at the manufacturer level, and thus is satisfied. To establish that
the first condition is also satisfied, consider any periods a, b and t, with
a ≤ b ≤ t. Using the echelon non-speculative property at the retailer
level, we have p2

b + h2
b + · · · + h2

t−1 ≥ h1
b + · · · + h1

t−1 + p2
t . It implies that

qtab ≥ p1
a + h1

a + · · ·+ h1
t−1 + p2

t . Using now the echelon non-speculative prop-
erty at the manufacturer level, we obtain finally that qtab ≥ p1

t + p2
t ≡ qttt.

Hence, the cost structure is also path non-speculative.
On the contrary, some cost structures may satisfy the path non-

speculative properties and not the echelon non-speculative properties. One
noticeable case corresponds to stationary production costs. In this situation,
if production costs are stationary, the path non-speculative properties are
verified by any non-negative holding costs, while echelon non-speculative
properties require non-negative echelon holding costs, that is, h1

t ≤ h2
t for all

period t.
Organization of the chapter.
Section 2.2 provides a formulation of the problem and presents the struc-

ture of extreme points. Section 2.3 introduces some dominance properties
that allows us to restrict to what we call the double-nested policies. Based
on these properties, we present in section 2.4 a dynamic programming algo-
rithm to solve the problem in time complexity O(T 5) for path non-speculative
cost structures, and in time complexity O(T 3) for echelon non-speculative
cost structures. Finally, section 2.5 concludes the chapter.



24 Chapter 2. An efficient algorithm for the 2-CLSP-CC

2.2 Problem Formulation and structure of extreme
points

We present in this section a mixed integer linear formulation for the 2−level
capacitated lot-sizing problem with identical capacities at both levels (2-
CLSP-CC). We summarize below the different notations used in the chapter:

C Production capacity;
Ki
t Setup cost at period t at level i, t ∈ {1, .., T}, i ∈ {1, 2};

pit Unit production cost at period t at level i, t ∈ {1, .., T}, i ∈ {1, 2};
hit Unit holding cost at period t at level i, t ∈ {1, .., T}, i ∈ {1, 2};

The decision variables are, for each period t ∈ {1, .., T} and level i ∈ {1, 2}:
xit Amount of production at period t at level i;
yit Production indicator (binary variable) at period t at level i;
sit Stock level at the end of period t at level i;

2-CLSP-CC can be formulated as follows:

min
T∑
t=1

(K1
t y

1
t +K2

t y
2
t + p1

tx
1
t + p2

tx
2
t + s1

th
1
t + s2

th
2
t ) (P)

subject to
x1
t + s1

t−1 = x2
t + s1

t , ∀t ∈ {1, .., T}, (2.1)

x2
t + s2

t−1 = dt + s2
t , ∀t ∈ {1, .., T}, (2.2)

xit ≤ min{C,
T∑
t′=t

dt′}yit, ∀t ∈ {1, .., T}, ∀i ∈ {1, 2} (2.3)

s1
0 = s2

0 = 0 (2.4)

xit ≥ 0, ∀t ∈ {1, .., T}, ∀i ∈ {1, 2} (2.5)

sit ≥ 0, ∀t ∈ {1, .., T}, ∀i ∈ {1, 2} (2.6)

yit ∈ {0, 1}, ∀t ∈ {1, .., T}, ∀i ∈ {1, 2} (2.7)

The objective function minimizes the setup, production and inventory
costs. Constraints (2.1) and (2.2) correspond to the flow conservation at each
production level. Constraints (2.3) ensures that a production at period t can-
not exceed the capacity and incurs a setup costs. Constraint (2.4) imposes a
null inventory at the beginning of the horizon.

Structure of Extreme Points

Figure 2.3 provides a network representation of a 2-CLSP-CC instance over
an horizon of T = 6 periods: A node (i, j) represents level i at period j and
the arcs between the nodes indicate the possible flows between two nodes
and the corresponding production/holding costs (see Section1.1). As an il-
lustration, let us consider the following instance (I) over a time horizon of
6 periods. The capacity at each level is equal to C = 10; the setup costs
are K1

t = 100 at the manufacturer level and K2
t = 1 at the retailer level
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FIGURE 2.3: The network representing a 2-level lot-sizing-
problem with T = 6 periods

FIGURE 2.4: Representation of the optimal solution of instance
(I). Full arcs are represented in bold, and correspond to satu-
rated productions periods, while empty arcs represent the free

arcs (non-saturated productions or inventory).

∀t ∈ {1, .., T}. Unit costs of production are null at both levels (p1
t = 0 and

p2
t = 0 ∀t ∈ {1, .., T}). Holding costs are defined as follow: h1

t = 2 for
t ∈ {2, 3, 4}, h2

t = 1 for t ∈ {1, 2, 4, 5} and h1
1 = 100, h1

5 = 100, h2
3 = 100.

Finally, the demand to satisfy is given by the vector d = [5, 9, 1, 8, 3, 1]. Fig-
ure 2.4 represents a solution for instance (I): an arc between two nodes (i1, j1)
and (i1, j2) illustrates a flow between two periods j1 and j2 at level i1, i.e. the
amount of inventory stored between these the two periods. Similarly, an
arc between two nodes (i1, j1) and (i2, j1) represents a production at level i2
in period j1. Observe that instance (I) obeys the path non-speculative cost
structure since the unit production costs are null, but not the echelon non-
speculative cost structure since the echelon holding cost of the first periods
is negative.

It can be easily checked that the solution drawn in Figure 2.4 is the unique
optimal solution of instance(I), and thus is an extreme point. Notice that the
graph induced by the free arcs is acyclic. However, it is relevant to observe
that the graph corresponding to an extreme point solution of the problem can
contain cycles, like the one between nodes (1, 4), (1, 5), (2, 4) and (2, 5), due to
the full arcs. Such structures are non-trivial and may be difficult to analyze.
We present in the next section some additional dominance properties, based
on our assumptions on the cost structure, which will be useful to characterize
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the possible structures of an optimal solution.

2.3 Properties of double-nested policies

In this section we present some structural properties for 2-CLSP-CC, satis-
fied by path non-speculative cost structures. These properties on what we
call the double-nested policies, will enable us to propose an efficient dy-
namic programming algorithm in the next section. We assume for the rest
of the chapter that unit costs of production and inventory costs follow the
cost structure defined in section 2.1. Recall that setup costs at the first level
are non-increasing in time. Also notice that we do not make any assumption
on h1

t and h2
t . In particular, we do not restrict to positive echelon holding

costs. Be aware that, although the non-speculative property is expressed on
paths, costs are defined on arcs.

First, since we consider linear holding costs, we can assume that the de-
mand in each period is lower than or equal to the capacity at the retailer.
Indeed, if at a period t we have dt > C, any feasible policy has to carry at
least (dt − C) units in stock at the retailer to satisfy the demand in period t,
incurring a holding cost of h2

t−1(dt − C). Hence, we can transfer the excess of
demand to the preceding period t−1 without changing the set of feasible so-
lutions, and decreasing the cost of any policy by a fixed term (see van Hoesel
and Wagelmans Van Hoesel and Wagelmans, 1996).

We state the classical following proposition:

Property 1 There exists an optimal solution such that at most one fractional period
occurs in each manufacturer subplan. If there exists, the fractional period is the first
period of the subplan.

Proof. The proposition relies on the fact that for concave costs, there exists an
optimal flow with no cycle of free arcs. Since a positive inventory is carried
on the arcs inside a subplan, we can have at most one free arc connecting the
source of the network to a period of the subplan. This establishes that at most
one fractional production period may occur. To establish that it corresponds
to the first period, we can notice that postponing the production of one unit
at a period a to a later period a′ where the setup cost is already paid cannot
increase the cost of the policy since qtab ≥ qta′b with our cost structure. This
exchange is feasible if a′ is not saturated and the inventory level is positive
between a and a′. As a consequence, if the fractional period occurs at a period
ā which is not the first period u of the subplan, we can postpone some units
of u, till either ā becomes saturated, or another regeneration period appears
between u and ā. The result follows. �

A policy is said to be nested if the retailer produces in each period the
manufacturer produces. It means that there is no incentive for the manufac-
turer to anticipate the production of an order of the retailer. The following
property holds:
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Property 2 (Dominance of nested policies) There exists an optimal policy
which is nested, that is, x1

t > 0 implies x2
t > 0.

Proof. Let us consider an optimal solution having a period a with a pro-
duction x1

a > 0 at the manufacturer and no production at the retailer. As a
consequence, we have s1

a ≥ x1
a. We show that this production can be post-

poned at a subsequent period without increasing the cost of the solution. Let
us focus on the amount of units stored in periods subsequent to a. As long as
both levels do not produce, the stock does not evolve. If both levels produce,
Property 1 implies that the manufacturer produces at full capacity (the pe-
riod is not the first of a manufacturer subplan). As both capacities are equal,
whatever the quantity produced at the retailer, the stock at the end of the
period is at least equal to the stock at its beginning. Hence, there exists a
period a′ subsequent to a with a production at the retailer and no production
at the manufacturer, and such that the amount of stock between a and a′ is
always greater than or equal to x1

a. It is thus possible to postpone the produc-
tion at the manufacturer from period a to a′ while keeping a feasible policy.
Recall that we restrict ourselves to the case of non-increasing setup costs at
the manufacturer level. Moreover, qtab ≥ qta′b due to our cost structure. As a
consequence, the production at period a can be postponed to period a′ with-
out increasing the cost of the solution, and thus the resulting policy is still
optimal. �

For the same reasons, there exists an optimal policy such that s1
t < C for

each period t, that is, the stock level at the manufacturer is always lower
than its capacity: a stock greater than C implies that a production can be
postponed. Notice that this property is not verified in general at the retailer.

In a network representation, a connected component is a subgraph in
which any two vertices are connected by a path. Consider an optimal nested
policy π. Its flow partitions the network associated with our problem into
a set of connected components. For instance, in Figure 2.4, the solution is a
unique connected component. Consider such a connected component. It is
constituted at each level of a set of consecutive periods. Let r be the first pe-
riod of the component at the manufacturer level, and let s be the last period
of the connected component at the retailer level. Necessary period r corre-
sponds to the first period with a manufacturer production, and thereby also
to the first period with a retailer production as the policy is nested. Hence, r
is also the first period of the component at the retailer level. Considering now
period s, it corresponds to the last period whose demand is satisfied by units
produced inside the component. Again, since the policy is nested, if there is
a production at the manufacturer in a period t ∈ [r, s], the units produced
cannot be used to satisfy the demands inside another connected component.
Thus each period t ∈ [r, s] at the manufacturer level either belongs to the
connected component, or is isolated, that is, is a connected component by
itself (like node (1, 6) in Figure 2.4). By convention, we consider that isolated
period t of [r, s] belongs to the connected component. As a consequence, the
connected component can be described only with the two periods r and s.
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A connected component [r, s] decomposes at each level into a series of sub-
plans. We turn now our attention to the retailer level. Our first dominance is
the counterpart of the nested dominance at the manufacturer, see Property 2.
Basically it states that if a production occurs in period t at the retailer, then
the manufacturer also produces in period t. However, this property holds
only for full production periods:

Property 3 There exists an optimal policy such that each full production period at
the retailer is also a full production period at the manufacturer, that is, x2

t = C ⇒
x1
t = C.

Proof. The property is a direct consequence of Property 1, and the fact that
the stock level at the manufacturer is always lower than its capacity: let t
be a period which contradicts the Property, that is, x2

t = C and x1
t < C. If

x1
t > 0, s1

t−1 must be strictly positive to balance the flows, which contradicts
Property 1. If x1

t = 0, the C units produced at the retailer at period t must
come from the inventory. Thus s1

t−1 = C, which contradicts the fact that the
stock level at the manufacturer is always lower than its capacity. �

Definition 1 A policy is said double-nested if the retailer produces whenever the
manufacturer does, and the manufacturer produces at full capacity whenever the
retailer does. That is, x2

t = 0⇒ x1
t = 0 and x2

t = C ⇒ x1
t = C

Properties 2 and 3 imply that double-nested policies are dominant for our
problem. Such double-nested policies have a very nice structure. In particu-
lar, if the production at the retailer is not fractional, then the production at the
manufacturer and at the retailer are equal. As a consequence, in any double-
nested policy, the amount of inventory at the manufacturer is only modified
at a period with a fractional production at the retailer. This gives rise to the
following property:

Property 4 There exists an optimal double-nested policy such that there is no unit
in stock at the manufacturer level between any two consecutive retailer fractional
periods belonging to the same retailer subplan.

Proof. Consider an optimal double-nested policy. We can choose it such
that no cycle of free arcs appears in the flow. Let k and l be two consecutive
fractional production periods in a retailer subplan (u, v). At the manufacturer
level, the stock level s1

k at the end of period k is equal to the entering stock
level s1

l−1 at period l. Since the stock level is positive at the retailer level
between k and l by definition of a subplan, a positive stock at the end of
period k at the manufacturer level would create a cycle of free arcs in the
flow, which contradicts our choice of the optimal policy. �

The fact that at most one fractional period can take place in each manu-
facturer subplan holds under very general cost structure, namely for concave
costs. Under our cost structure, using double-nested policies, we can state a
property stronger than Property 1:
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Theorem 1 There exists an optimal solution such that at most one fractional period
occurs at the manufacturer level in each connected component. Moreover, under
our cost structure, the fractional period is located at the first period of the connected
component.

Proof.: Consider a policy which is double-nested and an extreme point so-
lution. For the sake of contradiction, assume k and l to be two fractional
production periods at the manufacturer located in a connected component
[r, s]. We will prove that the entering stock and the outgoing stock at the
highest level (that is, at level one if such a stock exists, otherwise at level
two) of each period between k and l are either at the same level or linked by
a free arc, thus creating a path of free arcs between k and l. For each period
t ∈ {k + 1, ..., l − 1}, since we are inside a connected component, there is a at
least one entering stock, and one outgoing stock. Let us consider the entering
stock at the highest level in t and the outgoing stock at the highest level in t.
If both flows are at the same level, periods t − 1 and t + 1 are linked by free
arcs. Otherwise, if one of the flow is at the manufacturer while the other one
is at the retailer, the amount of inventory at period t changes, which implies
that there is a fractional production at the retailer in t. As a result, in each
case the two flows are at the same level or linked by a free arc. As the highest
outgoing flow at period t corresponds to the highest entering flow in t + 1,
there is a path of free arcs linking periods k + 1 and l − 1 of the connected
component. Moreover, periods k and l are connected to this path as there is a
fractional production at both levels at these periods. Hence, we have a cycle
of free arcs with the source, which contradicts that the policy is an extreme
point solution. This contradicts our choice of the policy as an extreme point
solution.
For the second part of the theorem, recall that under our cost structure, dis-
regarding the setup costs, there is no incentive to anticipate a production.
Let w be a fractional production period at the manufacturer in a connected
component (r, s). Due to the nested property and to Property 3, a fractional
production also occurs at the retailer in w. As a consequence, an additional
unit can be produced in period w, both at the manufacturer and the retailer
level. For the sake of contradiction, assume that w > r. Since s1

w = 0 due
to Property 1, we must have s2

w > 0 inside the connected component. Con-
sider one unit in stock and let b be the period where it has been produced at
the retailer and a be the period where it has been produced at the manufac-
turer. Due to our cost structure, as a ≤ b < w, we have qwab ≥ qwww. Hence,
we can increase this way the production in period w, without increasing the
production costs, until one capacity is saturated, at the retailer or at the man-
ufacturer level. Since we have x1

w ≥ x2
w, the capacity at the manufacturer

is saturated first. As a result, if a fractional production exists in a connected
component of an optimal solution, it must be the first period of the connected
component. �

A retailer subplan is more involved than a manufacturer subplan, for
which we know that at most one fractional period may occur, and only in
the first period (see in Figure 2.4). However, as a direct consequence of the
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FIGURE 2.5: Schematic illustration of the cost of a retailer sub-
plan (u, v) in a connected component (r, s)

preceding property, we can assert that at most 2 fractional periods may occur
in a retailer subplan:

Property 5 There exists an optimal policy such that each retailer subplan contains
at most two fractional periods.

Proof. We consider an optimal policy satisfying the preceding dominances.
Let (u, v) be a retailer subplan, and assume for the sake of the contradiction
that j, k and l, with u ≤ j < k < l ≤ v − 1, correspond to consecutive frac-
tional production periods. Since there is no stock at the manufacturer level
between periods j and k and between periods k and l (Property 4), the con-
servation of the flow implies that x1

k = x2
k. As a consequence, period k is a

fractional period at the manufacturer, that is, 0 < x1
k < C. But obviously

period k cannot be the first period of the connected component, thus Defini-
tion 1 implies that x1

k ∈ {0, C}, which contradicts Property 4
�

In the next section, we use the dominance properties of the double-nested
policies to develop a polynomial time dynamic programming algorithm.

2.4 A Dynamic Programming Algorithm

A solution of problem 2-CLSP-CC decomposes into a set of connected com-
ponents. Recall that a connected component can be represented by its first
and its last period, so there are O(T 2) possible connected components. A
classical way to find an optimal solution of a given instance is to evaluate
the minimal cost of all the O(T 2) possible connected components, and then
to solve a shortest path problem, in the acyclic graph whose nodes represent
the periods from 1 to T , and whose arcs represent the costs of the connected
components defined by the two nodes they are adjacent to. The minimum
cost path between node 1 and a fictive node (T + 1) represents an optimal
solution of the problem and can be computed in O(T 2), given that the mini-
mum costs of each connected component are yet computed.
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2.4.1 Computation of the minimum cost of a connected com-
ponent

From now on, we focus on the computation of the optimal cost of the con-
nected components. In the following, we consider a connected component
defined by its first period r and its last period s. We denote by C [r, s] its op-
timal cost. To find an optimal policy on the connected component [r, s], the
principle of our algorithm is to decompose it in its turn into a sequence of
retailer subplans. Notice that by definition of a connected component, there
is no entering stock at period r and no outgoing stock at period s. Hence,
period r is the first period of a retailer subplan and s is the last period of
a retailer subplan. Thus such a decomposition into retailer subplans exists.
Consider a retailer subplan (u, v) inside the connected component. We de-
note by C (u, v) its cost in an optimal policy. In this cost, in addition to the
production and holding costs at the retailer level over the periods u up to v−1
(included), we also account for the production and holding costs incurred at
the manufacturer level between periods u to v − 1, see a schematic repre-
sentation Figure 2.5. Again, if the costs C (u, v) are known for all the possible
retailer subplans (u, v) inside the connected component [r, s], the optimal cost
C [r, s] of the connected component can be computed as a shortest path prob-
lem. However, to use this approach, there are two difficulties we have to
overcome:

1. If period u is by definition a regeneration point at the retailer level, it
is not a regeneration point at the manufacturer level, except if u = r.
Hence, C (u, v) depends on the entering stock level s1

u and the outgo-
ing stock level s1

v−1 at the manufacturer. Nevertheless, we show that
the amount of entering stock at the manufacturer at the beginning of
a retailer subplan (u, v) inside a connected component [r, s] is fixed in
a dominant double-nested policy, making the optimal cost of a retailer
subplan independent of the evaluation of the other retailer subplans of
the connected component.

2. Evaluating cost C (u, v) is still a 2-level capacitated lot-sizing problem.
The main idea of our algorithm is to reduce this problem to a single ech-
elon lot-sizing problem, without considering the manufacturer level.
As a consequence, algorithms of the literature for CLSP can be used to
compute efficiently C (u, v).

The second point, the computation of the optimal cost of a retailer sub-
plan, is detailed in Section 2.4.3. We show that it can be performed in time
O(T 2) for a given retailer subplan. We explain now the first point, that is,
how the cost of a given connected component can be determined using a
decomposition into retailer subplans. Recall that we consider a connected
component [r, s]. We first show that the cost C (u, v) of an optimal policy over
a retailer subplan (u, v) can be determined regardless of the others subplans,
that is, that the entering stock level s1

u−1 at the manufacturer is fixed in a dom-
inant policy. If u = r, we have clearly s1

u−1 = 0. If r < u, due to Theorem 1, no
fractional production period may occur at the manufacturer level between
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period u and the end of the connected component. Thus, the total amount
X1
u,s produced at the manufacturer during these periods is a multiple of ca-

pacity C. Writing the conservation of the flow, we have s1
u−1 + X1

u,s = Du,s.
Modulo C the equality boils down to s1

u−1 ≡ Du,s (mod C). For short we de-
note by σsu the quantity Du,s mod C. As stressed by the notation, quantity σsu
only depends on periods u and s. Since the number of units in stock at the
manufacturer level is lower than C in every periods of a dominant policy, we
obtain from the previous discussion that:

s1
u−1 =

{
0 if u = r
σsu ≡ Du,s mod C if u > r

The first retailer subplan (r, v) of the connected component has a special
structure, since period r is the only fractional period of the connected com-
ponent. Notice that the fractional quantity produced is σsr . We denote by
C s

FST
(r, v) the optimal cost of such a first subplan, and by C s

IN
(u, v) the optimal

cost of a subplan with a positive entering stock σsu. For a given period s, we
can compute in time complexity O(T 2) the shortest path C(u,s] from each pe-
riod u to period s in the acyclic graph with costs C s

IN
(u, v) on the arcs. The

optimal cost C [r, s] of a connected component [r, s] can then be determined
in time O(T ) as min{C s

FST
(r, v) + C(v,s] | r ≤ v ≤ s}. Hence, assuming that

the O(T 3) values for the optimal cost of the retailer subplans are known, the
optimal cost of a connected components [r, s] can be computed O(T 2) time
complexity.

2.4.2 Time complexity of the algorithm

The overall time complexity of the algorithm can be analyzed as follows:

• We have O(T 3) costs C s
FST

(r, v) to evaluate, for all possible triples of pe-
riods r, v, s, with r ≤ s and r < v ≤ s + 1, which corresponds to the
optimal costs of the first retailer subplan of a connected component.

• We have O(T 3) costs C s
IN

(u, v) to evaluate, for all possible triples of pe-
riods u, v, s, with u ≤ v and u < v ≤ s + 1, which corresponds to the
optimal costs of the other retailer subplans. Notice that these costs are
independent of the first period r of their connected component.

Once the O(T 3) values for the optimal cost of the retailer subplans are
computed, the optimal cost of all the possible connected components [r, s] can
be evaluated in timeO(T 3). The optimal planning can then be determined by
a shortest path algorithm in time O(T 2) as explained in the beginning of this
section. Hence, the time complexity of our algorithm is dominated by the
computation of the optimal costs of all the possible retailer subplans. More
precisely, if the optimal cost of a given retailer subplan can be determined in
time complexity at most f(T ), then the overall complexity of our dynamic
approach is in O(T 3f(T )). It is hence essential to compute these costs effi-
ciently. We detail in the next section how we can reduce this computation
to a one-level CLSP, taking advantage of the structure of the double-nested
policies.
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2.4.3 Computation of the minimum cost of a retailer subplan

In this section, we consider a retailer subplan (u, v) inside a connected com-
ponent [r, s]. We show that the problem of evaluating the minimum cost
C (u, v) of the retailer subplan can be reduced to a single-echelon capacitated
lot-sizing problem, CLSP. This is due to the fact that, roughly speaking, in a
double-nested policy, the two levels are synchronous: Except at the fractional
periods of the retailer, both levels produce the same amount in each period,
either 0 or C units, see Definition 1.

We focus first on the case where r < u and v − 1 < s, which implies that
there is an entering and an outgoing stock level at the manufacturer level
(σsuσsv > 0). It corresponds to the case of a subplan located between two
other subplans, which is the most complex structure. Other structures are
presented in Appendix A. Recall that a fractional production at the manufac-
turer level can only occur at the first period of the connected component, see
Corollary 1. Hence, only full production periods can take place at the man-
ufacturer in (u, v). Moreover, there exists an optimal policy such that each
retailer subplan contains at most two fractional periods, see Property 5. Let k
and l, k ≤ l, be the two fractional periods at the retailer, with k = l if only one
fractional production occurs inside the subplan, and by convention k = l = v
if no fractional production occurs. We show that the optimal cost C s

IN
(u, v) of

the subplan can be computed as

C s
IN

(u, v) = G(k, l) +H(k, l) (2.8)

whereG(k, l) is the minimum cost of a single-level CLSP problem, andH(k, l)
accounts for the holding costs incurred at the manufacturer level in an opti-
mal solution. For convenience, production costs at fractional periods k and l
are also incorporated in H(k, l), since we show in the following that quanti-
ties xik and xil are fixed at both levels when k and l are fixed. We detail first
how this cost H(k, l) can be determined, depending on the number of frac-
tional periods occurring at the retailer level inside the subplan. We have only
3 cases to distinguish.

Case with two fractional periods inside the subplan

We consider first the case where two fractional periods k and l, k < l, occur
in the subplan (u, v). Recall that for any other period t different of k and l,
we have x1

t = x2
t , and either t is a full production period, or no production

occurs at period t. We have also established that there is no unit in stock at
the manufacturer between the two fractional periods of a retailer subplan,
see Property 4. In particular, we have s1

k = s1
l−1 = 0. It implies that:

• As 0 < x2
k < C and s1

k = 0, no production can occur at the manufacturer
in period k, that is, x1

k = 0. Indeed, period k cannot be a fractional
production period at the manufacturer (Theorem 1). It follows that x2

k =
s1
k−1. Moreover, since both levels produce the same quantity in period
u up to k− 1, the amount of stock at the manufacturer cannot evolve. It
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FIGURE 2.6: Retailer subplan with two fractional retailer pro-
duction periods. Full productions are represented with bold

arcs.

follows that exactly σsu units are carried in stock from period u−1 up to
k.

• Since s1
l−1 = 0, a full production must occur in period l at the manu-

facturer to supply the fractional production of the retailer. As a conse-
quence, there is a strictly positive amount of units stored at the man-
ufacturer at the end of period l, equal to s1

l = C − x2
l . Similarly, this

amount is carried in stock till period v, and thus must be equal to σsv.
As a consequence, we have x2

l = C − σsv.

Figure 2.6 illustrates the situation inside the subplan. Clearly, the holding
costs incurred at the manufacturer can be easily deduced from periods k and
l. Recall that the quantities produced at the fractional periods at the retailer
are also fixed. From the previous discussion, we have x2

k = σsu and x2
l =

C − σsv. The cost H(k, l) is thus equal to:

H(k, l) = σsu(h
1
u + · · ·+ h1

k−1) + σsv(h
1
l + · · ·+ h1

v−1) +K2
k + p2

k(σ
s
u)

+K1
l +K2

l + p1
l (C) + p2

l (C − σsv)

Case with a single fractional period inside the subplan

Let us now assume that there is a single fractional period at the retailer, oc-
curring at period k, see Figure 2.7. In a way similar to the previous case, the
entering stock σsu is carried at the manufacturer from period u to k and the
outgoing stock σsv is carried at the manufacturer from periods k to v. Con-
sidering the amount of production x2

k at the retailer in the fractional period,
two different cases have to be distinguished. If σsu is greater than σsv, then the
entering stock in period k at the manufacturer is greater than its outgoing
stock. It implies that k is not a production period at the manufacturer, and
we have x2

k = σsu−σsv, see Figure 2.7. Consequently, the holding cost incurred
at the manufacturer plus the production costs at period k sum up to:

H(k, k) = σsu(h
1
u + · · ·+ h1

k−1) + σsv(h
1
k + · · ·+ h1

v−1) +K2
k + p2

k(σ
s
u − σsv)

Otherwise, if σsu is lower than σsv, period k is necessarily a full production
period at the manufacturer. The conservation of the flow implies that σsu +
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C = σsv + x2
k, see Figure 2.8. Thus we have: x2

k = C + σsu − σsv. Consequently,
the holding cost incurred at the manufacturer plus the production costs at
period k are equal to:

H(k, k) = σsu(h
1
u+· · ·+h1

k−1)+σsv(h
1
k+· · ·+h1

v−1)+K1
k+p1

k(C)+K2
k+p2

k(C+σsu−σsv)

FIGURE 2.7: Retailer subplan with one fractional retailer pro-
duction period and no manufacturer production in k

FIGURE 2.8: Retailer subplan with one fractional retailer pro-
duction period with a manufacturer production in k

Case with no fractional period inside the subplan

Let us finally assume that there is no fractional production at the retailer
inside the subplan (u, v). Recall that by convention we have k = l = v. Since
in each period the same amount is produced at the manufacturer and at the
retailer, the stock level at the manufacturer does not vary inside the subplan.
Hence, we must have σsu = σsv and H(v, v) boils down to:

H(v, v) = σsu(h
1
u + · · ·+ h1

v−1)

Reduction to a single-level CLSP problem

We have shown that, if the location of the fractional productions at the retailer
are known in a subplan, then the amount of units produced at the fractional
periods and all the quantities stored at the manufacturer along (u, v − 1) are
also known, due to the fact that the other production periods are full produc-
tion periods simultaneously at the retailer and at manufacturer levels in a
double-nested policy. We now explain how to compute the cost represented
by G(k, l) in Equation 2.8.
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To determine in which periods full productions take place in an optimal
policy, we reduce the problem to a single-level capacitated lot-sizing problem
in the following way. Assuming that we know the fractional periods, we can
decrement the demands which are totally or partially satisfied by the units
produced at the fractional retailer production periods. Here we assume that
units produced at a fractional period k are used to fulfill the closest demands,
that is, dk, then dk+1 if x2

k > dk, and so on. In the reduced problem, we
prevent a policy to order in periods k and l by setting a very large setup
cost. The setup cost for another period t is defined as K ′t = K1

t + K2
t , since

t is necessarily a (full) production period both at the manufacturer and at
the retailer in a double-nested policy. We have obtained a single echelon lot-
sizing problem, forgetting about the manufacturer level, with full production
periods to be determined to satisfy the remaining demand. This problem is a
discrete CLSP, which can be solved in time complexity O(T ) with the greedy
algorithm presented by van Hoesel and Wagelmans (1996) Van Hoesel and
Wagelmans, 1996. Since we have O(T 2) possible couples to consider for the
fractional periods k and l, the optimal cost C s

IN
(u, v) of the subplan can be

computed in time O(T 3).

Improvement of time complexity

It is possible to reduce the complexity by a factor T by using the algorithm
presented by van Hoesel and Wagelmans in 1996 Van Hoesel and Wagel-
mans, 1996. They proposed an O(T 3) algorithm for CLSP with a constant
capacity, concave production costs and linear holding costs. The algorithm
is in two phases: the first one evaluates the minimum cost for all subplans
(u, v), 1 ≤ u ≤ v ≤ T and the second phase applied a shortest path algorithm
to find the optimal solution of the problem. We focus here on the first
phase. Our idea is to fix only one fractional period, and to let the algorithm
of Van Hoesel and Wagelmans, 1996 determine optimally the location of
the second one, if any. Notice that the authors define a subplan as a set of
consecutive periods u, .., v − 1 such that at most one fractional production
occurs. It implies that (u, v) is still a subplan after the production of the fixed
fractional period has been discarded from the demands. The principle of
their algorithm is to compute in time O(T ) a first optimal solution for the
subplan (u, v) when the fractional production is fixed in a period t. From
this solution, they establish that it is possible to evaluate in constant time
the optimal solution when the fractional solution occurs in t− 1. As a result,
the minimum cost of the subplan can be found in time O(T ) by varying
the fractional production period from v down to u. We apply their result
to a subplan having two fractional production periods by fixing the first
fractional period k: the fractional production x2

k is discarded of the demands,
and k is made unavailable for production. For a fixed fractional period k,
the best location for the remaining fractional period l can be found in O(T ),
by varying l from v down to k + 1. The computation is repeated for each
possible location of k. As there are T possible positions for k, it incurs an
overall complexity in time O(T 2) to determine the optimal position of k and
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l for a given subplan. If subplan (u, v) has less than two fractional periods,
the algorithm of Van Hoesel and Wagelmans, 1996 directly determines the
optimal cost of the subplan in time O(T ).

In Appendix A, we present the other possible structures of retailer sub-
plans and how to evaluate them. In each case, the optimal cost of the subplan
can be determined in time at most in O(T 2). Since there is O(T 3) different
configurations of retailer subplans to be evaluated, the overall complexity of
the algorithm to deliver an optimal policy over the time horizon is in O(T 5).
We state the following result:

Theorem 2 If our cost structure follows the path non-speculative motives, the 2
level in series lot-sizing problem with identical and stationary capacities can be
solved in time O(T 5)

Case with echelon non-speculative motives

We discuss here the particular case of echelon non-speculative motives. Re-
call that at the retailer level, this cost structure requires that p2

t + (h2
t − h1

t ) ≥
p2
t+1 for any period t. Notice that the condition is written with the echelon

holding cost (h2
t − h1

t ), but does not require it to be positive. As proved in
section 2.1, it is a particular case of the path non-speculative cost structure.
Thus all the properties established previously remain valid. However, under
an echelon non-speculative cost structure, there are stronger properties on
the structure of an optimal solution:

Property 6 Under echelon non-speculative motives, there exists an optimal solution
such that at most one fractional period occurs at the retailer level in each retailer
subplan. Moreover, the fractional period is located at the first period of the retailer
subplan.

Proof. To see this, it is sufficient to observe that there exists an optimal solu-
tion such that the retailer produces a fractional quantity only at periods for
which the entering stock level is null, that is, at regeneration points. Indeed,
consider a fractional period k at the retailer, and assume that s2

k−1 > 0. Let us
consider a unit stored at the retailer between periods k− 1 and k, and let t be
the period at which it was produced at the retailer. Due to non-speculative
motives at the retailer, p2

t + h2
t + h2

t+1 + ...+ h2
k−1 ≥ h1

t + h1
t+1 + ...+ h1

k−1 + p2
k.

It is thus possible to postpone the production of this unit at the retailer from
period t to period k without increasing the global cost of the solution. This
process can be repeated until the production at the retailer in k is saturated,
or until s2

k−1 becomes null. �

With this property the time required to compute the cost of a retailer sub-
plan is reduced to O(T ) since only the full production periods need to be
determined. Hence, the time complexity to compute the optimal cost of a re-
tailer subplan drops to O(T ) with echelon non-speculative motives, instead
of O(T 2) assuming only path non-speculative motives. Moreover, we can
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notice that it is not necessary to know the last period of the connected com-
ponent to which each subplan belongs. This is due to the fact that, in a given
subplan (u, v), all the production periods located between periods u + 1 and
v − 1 are full productions. Hence, the value of the fractional production in
u is necessarily equals to Du,v−1 mod C. As a consequence, the optimal cost
of a retailer subplan (u, v) can be determined, in time complexity O(T ), inde-
pendently of its connected component. The overall time complexity of our
algorithm is reduced to O(T 3). We have the following result:

Theorem 3 If our cost structure follows the echelon non-speculative motives, the
2 level in series lot-sizing problem with identical and stationary capacities can be
solved in time O(T 3)

2.5 Conclusion

In this chapter, we present a 2-level production-in-series lot-sizing problem
with identical capacities at both levels. We define a new cost structure gen-
eralizing the echelon non-speculative cost structure. We highlight the par-
ticular structures of an optimal solution, introducing the double-nested poli-
cies, and show how the problem can be reduced to a single-level lot-sizing
on a given retailer subplan. This reduction is possible due to the fact that
the production periods at both levels are nearly synchronous, except for the
fractional production periods, which are limited on a retailer subplan. We
propose a dynamic programming algorithm based on the construction of an
optimal solution from the set of every possible retailer subplans. The over-
all time complexity of our algorithm is O(T 5) for path non-speculative cost
structure, and in O(T 3) for echelon non-speculative cost structure, which
makes it, we believe, of practicable use.

In the next chapter, we study a lot-sizing problem with a general number
of level, and we consider procurement costs following a FTL structure, with
batch deliveries.
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Chapter 3

The multi-level in series lot-sizing
problem with batch deliveries

This chapter extends the results of the previous chapter towards two direc-
tions: the number of levels is part of the input and the procurement costs
follow a FTL structure, that is, deliveries are made by batches. Moreover, the
number of batches which can be ordered at each period is limited. This prob-
lem is denoted as the multi-level lot-sizing problem with batch deliveries and
with an upper limit on the number of batches of each order (M-LSP-B). We
have presented the previous chapter using a production terminology. Here,
we switch to a distribution terminology which fits better with the cost struc-
ture with batch deliveries. Under a specific cost structure with identical and
stationary batch sizes, we propose an exact dynamic algorithm running in
O((N2 +N log T )T 3). Our approach is based on a decomposition of a solution
into induced connected components, called boxes, which can be evaluated
independently, and reuses the concept of basis path. This chapter is derived
from an article submitted to the journal Operations Research and currently
in a major revision process (Goisque and Rapine, 2017b).

3.1 Introduction

The multi-level lot-sizing problem with batch deliveries consists in a system
of N levels organized in series, typically a supply chain, with an external
supplier at the beginning of the chain, and a client with a deterministic
periodic demand at the end. The levels are numbered from 1, the most
upstream level, to N , the most downstream level where the demand is to be
satisfied. Each level i can carry units in stock, from one period to the other,
and orders its units from its upstream level i − 1, using batch deliveries of
size C (see Section1.1), identical and stationary at each level. At a level i
and a period t, the limit of batches which can be ordered is equal to mi

t. We
think that this problem captures the essence of a large number of complex
logistics systems, as the shipments between different storage facilities are
often carried out using a common container size. Each transportation of a
container operated by a truck incurred a cost which depends mainly on the
traveled distance and on the volume. Hence, shipment costs can be quite
accurately modeled in many cases by a fixed cost per container plus a unit
cost per product transported, resulting in a lot-sizing problem with batch



40 Chapter 3. Multi-level lot-sizing with batch deliveries

deliveries. The limitation of the size of the shipments that we incorporate
in our model allows to reflect practical situations with a transportation
capacity, due to the limited number of trucks in the fleet, or with a facility
capacity, due to limited available resources for handling operations, or due
to a limited number of docks to receive inbound trucks. This multi-level
lot-sizing problem with batch deliveries captures two important special
cases. In the case where mi

t = 1 for all levels i and all periods t, that is, at
most one batch can be ordered, we have a multi-level capacitated lot-sizing
problem (M-CLSP). Switching to a production terminology, this problem
can model a production line of N machines in series, each one with the
same hard production capacity C, and where the fixed cost per batch can
be identified with a setup cost of production, that is, if level i decides to
produce a positive quantity at period t, a setup cost kit is to be paid. Notice
that Chapter 2 deals with the 2-CLSP problem. In the case where all the mi

t

have large values (larger than the total remaining demand dt + · · · + dT ), we
have a multi-level uncapacitated lot-sizing problem with batch deliveries
(M-ULSP-B), which can model a supply chain where items are transported
using identical shipping containers or trucks of capacity C. As many items
as needed can be shipped in each order, but a fixed cost kit is incurred
for each vehicle/container used. The batch size C is often referred in the
literature as a soft capacity. As far as we know, the status of both problems,
with hard or soft capacities, is open when the number N of levels is part of
the inputs.

Very few results are known for multi-level lot-sizing problems with batch
deliveries. We establish in this chapter that the multi-level lot-sizing problem
M-LSP-B can be solved in polynomial time under the following 3 assump-
tions on the parameters:

(A1) Unit ordering and holding costs follow a non-speculative motives echelon
cost structure (see Section1.1). At the first level the assumption is similar
to that used in single-level problems: p1

t + h1
t ≥ p1

t+1 must hold for any
period t ∈ {1, ..., T − 1}. At the other levels, the condition is slightly
modified to take into account the holding cost incurred at level i − 1
when postponing the order: Inequality pit + (hit − hi−1

t ) ≥ pit+1 must
hold for all i ∈ {2, ..., N}, t ∈ {1, ..., T − 1}. The absence of specula-
tive motives is a classical assumption in literature, also known as the
Wagner-Whitin cost structure, which states that, considering only the
unit ordering and holding costs, it is always preferable to order as late
as possible at each level;

(A2) At each level, the fixed costs per batch are non-increasing with time,
except for the last level for which they are unrestricted. That is, kit ≥
kit+1 for each level i < N and each period t < T ;

(A3) At each period t, the limit mi
t of the number of batches that can be or-

dered is non-increasing with the index level. That is, the maximal num-
ber of batches a level i can order is smaller than or equal to the maximal
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number of batches its upstream level can order. Notice that we do not
require the mi

t ’s to be monotone relatively to the periods.

To the best of our knowledge, we are the first to propose an algorithm
which is both polynomial in the length of the planning horizon and in
the number of levels, for the multi-level lot-sizing problem with capacities
(hard or soft) at each level. Without the assumptions A1, A2 and A3, the
complexity status of problem M-CLSP with identical hard capacities is open.
Not only we prove that the problem is polynomial under our assumptions,
but the algorithm is really attractive for a practical use, due to its low
time complexity and its simplicity. In addition, we extend our model to
incorporate non-null setup costs at the first level of the network. Since the
first level may represent orders to an external supplier (or the production
stage in a distribution network), it is particularly relevant to be able to model
more general cost structure at this level. Our approach reuses the concept
of basis path introduced by Hwang, Ahn, and Kaminsky, 2013 inside a new
decomposition of an optimal flow into connected components on networks
restricted to a subset of levels.

Organization of the chapter. Next section presents formulations of the
problem together with some dominant properties implied by our assump-
tions A1, A2, A3. In §3.3, we study the connected components of a policy
induced on each of the networks restricted to the last downstream levels, in-
troducing the concepts of box, basis path and gate. We show in §3.4 that an
optimal solution admits a decomposition into boxes that can be computed
efficiently by a dynamic programming approach. Finally, in §3.5, our results
are extended to a more general cost structure with non-null setup costs at the
first level. §3.6 concludes the chapter.

3.2 Problem Formulation and Structural Proper-
ties

This section provides a mixed integer linear formulation for the multi-level
lot-sizing problem with batch deliveries and a limit on the number of batches
that can be ordered at each period. We then introduce a classical network
flow representation of the problem and establish some structural properties
of an optimal policy. These properties allow us to decompose an optimal
flow in §3.4. We give below the notations used throughout the chapter. We
have the following parameters:

N number of levels of the distribution network; levels are indexed from
1 to N ;

C size of a batch;
mi
t maximal number of batches that can be ordered at period t at level i;

kit fixed cost of a batch ordered at period t at level i;

We also use as a shorthand the following notations:
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H i
t,t′ ≡ hit + · · ·+ hit′ cumulative holding cost between periods t and t′

at level i;
qit(x) ≡ pitx+ dx/Cekit cost of ordering x units at period t at level i;

Since we can assume a FIFO discipline, a policy is entirely specified by the
amount of units ordered in each period at each level. We say that a period
t at a level i is an ordering period if a positive amount is ordered. As the
problem is deterministic, we can consider w.l.o.g. that the leadtimes are null:
units ordered at a period t are instantaneously available. For convenience,
we also manipulate the number of units carried in stock at each level. For
each period t ∈ {1, .., T} and each level i ∈ {1, .., N}, we introduce the
following decision variables:

xit amount of units ordered in period t at level i;
yit number of batches ordered in period t at level i;
sit stock level at the end of period t at level i;

3.2.1 Problem Formulation

The multi-level in-series lot-sizing problem with batch deliveries (M-LSP-B)
can be formulated as follows:

min
T∑
t=1

N∑
i=1

(kity
i
t + pitx

i
t + hits

i
t)

subject to

xit + sit−1 = xi+1
t + sit, ∀t ∈ {1, .., T}, i ∈ {1, .., N − 1}, (3.1)

xNt + sNt−1 = dt + sNt , ∀t ∈ {1, .., T}, (3.2)

xit ≤ Cyit, ∀t ∈ {1, .., T}, i ∈ {1, .., N}, (3.3)

yit ≤ mi
t, ∀t ∈ {1, .., T}, i ∈ {1, .., N}, (3.4)

si0 = 0, ∀i ∈ {1, .., N}, (3.5)

xit ≥ 0, ∀t ∈ {1, .., T}, ∀i ∈ {1, .., N} (3.6)

sit ≥ 0, ∀t ∈ {1, .., T}, ∀i ∈ {1, .., N} (3.7)

yit ∈ Z+, ∀t ∈ {1, .., T}, ∀i ∈ {1, .., N} (3.8)

The objective function minimizes the ordering costs and the inventory
costs. Constraints (3.1) and (3.2) correspond to the flow conservation at each
level. Constraints (3.3) ensures that sufficiently many batches are used to
ship the units ordered, while Constraints (3.4) limits the number of batches
effectively used by the maximum number of batches that it is possible to ship.
Constraint (3.5) imposes a null inventory at the beginning of the horizon.

In the minimum-cost flow network representation, each arc has a capac-
ity of C, a unit cost of pit and a fixed cost kit to be paid if a positive flow is
rooted through the arc. Notice that the number of arcs in the network be-
tween node (i − 1, t) and (i, t) must be as large as dDt,T/Ce, since all the
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remaining demand can be ordered at this period in a policy (see Section 1.2).
Hence, the size of the network may not be polynomially bounded in the size
of the inputs. This is not an issue, since we use the flow representation of the
problem to demonstrate the properties of an optimal solution, and not in our
resolution algorithm, based on dynamic programming. A source node (0, 0),
connected to the nodes of the first level, corresponds to the external supplier,
with D1,T units available. Finally, each node (N, t) has a positive demand dt.
The objective is to route all the units available at the source node to the sinks
at the minimal cost.

3.2.2 Structural properties

Consider a flow in the network defined in §3.2.1. For ordering arcs, a free arc
corresponds to a fractional batch, that is, a batch that is neither empty nor full.
By extension, we say that an ordering period is fractional if it orders at least
one fractional batch. Notice that any holding arc with a positive flow is free,
since holding arcs are uncapacitated. In the following, (x mod C) represents
the modulo of x by C, that is, the rest of x in the Euclidean division by C. We
also denote by bxcC the quotient in the Euclidean division of x by C. Hence,
x = CbxcC + (x mod C).

We give in this section some structural properties derived from our as-
sumptions on the cost structure, see §3.1. The first property stipulates that
there exists an optimal policy such that each node of the network has at most
one free entering arc. It is named the single free source property. As a conse-
quence, the flow representation of an optimal policy is an out-forest on the
free arcs. Another way to state this property is that a node with an entering
stock cannot order a fractional batch:

Property 7 (Single free source) There exists an optimal policy such that frac-
tional orderings only occur at periods with no entering stock, that is, (xit mod
C)sit−1 = 0 ∀i = 1, .., N , ∀t = 1, .., T .

Proof. Consider an optimal flow, and assume that the property is not ver-
ified. Let (i, t) be the most bottom left node of the network such that
(xit mod C)sit−1 > 0, in the sense that the property is true at any node (j, u)
with u > t or with u = t and j > i. Consider a unit entering in stock at
period t at level i. Let τ < t be the period at which this unit has been ordered
at level i. Due to non-speculative motives, postponing the ordering of this
unit at level i from period τ to period t cannot increase its cost. The resulting
policy is still feasible as one batch ordered at i at period t was fractional. This
interchange can be repeated until only full batches are ordered at level i at
period t, or until the amount of entering units in stock at level i at period t
drops to zero. As the interchange does not affect the periods subsequent to
t and the levels downstream i, we can apply the transformation at upstream
levels and precedent periods. �

The next properties are the corner stones of our analysis. Their correct-
ness is established into a joint proof given in Appendix B. The first property
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stipulates that there exists an optimal policy such that, at each level except
the last one, the amount of units carried in stock from one period to another
is always lower than C.

Property 8 There exists an optimal policy obeying Property 7 such that all the stock
levels are lower than C at the N − 1 first levels of the network. That is, sit < C
∀i = 1, . . . , N − 1, ∀t = 1, . . . , T .

Notice that Properties 7 and 8 induce some restrictions on the number of
batches ordered at two consecutive levels at the same period. Indeed, for a
level i < N , in a period t where xit < xi+1

t , there is necessarily an entering
stock at node (i, t) in order to satisfy entirely the order of its downstream
level. Due to Property 7, this implies that xit is a full ordering period. In
addition, since sit−1 is lower than C, node (i, t) must order at least as many
full batches as node (i + 1, t). Conversely, if xit ≥ xi+1

t , we also have bxitcC ≥
bxi+1

t cC , due to the monotony of b.cC . As a consequence, in a policy obeying
Properties 7 and 8, we can assert that if a level orders β full batches (and
possibly one fractional batch) at a period t, then its upstream level orders at
least β full batches at the same period. Turning our attention to fractional
orders, we prove in appendix that if (i, t) is a fractional ordering period, then
its downstream level (i+ 1, t) also is. We have the following property:

Property 9 There exists an optimal policy obeying Properties 7 and 8 such that, (i)
for any period, all the full batches ordered at a level are also ordered at its upstream
level, and (ii) if an ordering period is fractional at a level, then it is also a fractional
ordering period at its downstream level. That is, for all periods t ∈ {1, ..T} and all
levels i ∈ {1, .., N − 1}, we have:

bxitcC ≥ bx
i+1
t cC and (xit mod C) 6= 0 ⇒ (xi+1

t mod C) 6= 0

Considering the whole network, Property 9 induces a form of inheritance
for full and fractional orderings over the levels. More precisely, for any given
period, if level i orders only full batches, then all its upstream levels up to
level 1 also order only full batches at this period. Moreover, they must order
exactly the same number of full batches, otherwise their outgoing stock level
would be larger to or equal to C, contradicting Property 8. Conversely, if
level i orders one fractional batch, then all its downstream levels down to
level N also order one fractional batch. We call this structure of policy Full
Up / Fractional Down, as full batches ordered at a level go up to the first level,
and fractional batch ordered at a level goes down to the last level (though
the number of units in the batch may vary from one level to another). We
highlight this structure in the following corollary:

Corollary 1 (Full-Up/Fractional-Down) There exists an optimal policy obeying
Properties 7 and 8 such that, for each level i and each period t:

• If xit is a full ordering, then xjt is a full ordering for all upstream level j ≤ i,
and xjt = xit
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• If xit is a fractional ordering, then xjt is a fractional ordering for all downstream
level j ≥ i

In addition, if period t is an ordering period at level i, then period t is also an ordering
period at all downstream levels j ≥ i.

The last assertion is immediate if xit is a fractional ordering. Otherwise, xit
is a full ordering. In particular, this implies that at least C units are ordered.
Due to Property 8, node (i+ 1, t) must order a positive quantity to assert that
the stock level at the end of period t at level i is lower than C. The result
follows by direct induction.

We say that a policy is dominant if it satisfies the Properties 7, 8 and 9. We
have established in this section that there exists an optimal and dominant
policy. We present in the next section a decomposition of dominant policies
into induced connected components. Based on the structural properties es-
tablished in this section, we exhibit a particular structure of the components,
which will allow us to propose a polynomial time dynamic programming
algorithm.

3.3 Induced Connected Components

In this section we consider an optimal policy π satisfying Properties 7, 8
and 9, see §3.2. In its flow representation, policy π induces a set of connected
components. Connected components are a natural way to decompose a pol-
icy, since each connected component is independent of another one. How-
ever, for problem M-LSP-B, the connected component of a dominant policy
seems too complicated to be studied directly. We need to decompose fur-
ther the problem. One alternative would be to consider the connected com-
ponents induced by the free arcs of a policy: Due to Property 7, each such
component is an out-tree. We use in this article a new decomposition. Our
originality is to consider the connected components of the flow induced on
each of the networks restricted to the last N − i+ 1 levels, for i = 1, . . . , N .

More precisely, consider a fixed level i < N , and a connected component
C induced on the network restricted to levels {i, i + 1, . . . , N}. For short, we
say that C is a connected component induced on level i. We restrict our at-
tention to non-trivial connected components, that is, components that do not
contain only a single node. Notice that, by definition, any two nodes of the
connected component are linked by a path, and that there is no connection
between a node of C and the other nodes of the network restricted to levels
{i, i + 1, . . . , N} which are not in C : connected component C can be linked
with other nodes only by ordering arcs at level i.

Let l be the first period of the connected component C at level i. That is,
node (i, l) belongs to C and, if l is not the first period of the time horizon, for
any period t < l, node (i, t) belongs to another connected component induced
on level i. We call period l a regeneration point of the network at level i, and we
denote by R = {r1, . . . , rn} the set of regeneration points of the network at
level i. For convenience, we add to R a fictive period rn+1 = T + 1 at the
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end of the time horizon. Notice that, by definition, node (i, l) has no entering
stock. Since we assume that C is non-trivial, node (i, l) has necessarily an
entering flow, and thus l is an ordering period at level i. Due to Corollary 1,
this implies that period l is also an ordering period at all downstream levels.
As a consequence, each nodes (j, l) belongs to C for j = i, . . . , N . In addition,
none of these nodes can have an entering stock, otherwise, since (0, 0) is the
only source in the network, a unit in stock at the beginning of period l at a
level j ≥ i would have been necessarily ordered at a period t < l at level i,
contradicting the fact that l is the first node of C at level i. Hence, at a regen-
eration point of the network, we have a straight separation with the previous
connected component induced on level i. This implies that two non-trivial
connected components on level i cannot have a node located at the same pe-
riod. More precisely, if r is the next regeneration point of the network at level
i, with possibly r = T + 1 if C is the last non-trivial connected component
induced on level i, we can assert that all the nodes of C lie between periods l
and r − 1. Hence, in our network representation, nodes of C are included in
a rectangle whose four angles corresponds to nodes (i, l), (i, r− 1), (N, l) and
(N, r − 1). That is, the rectangle is delimited on top by level i, below by level
N where the demand is to be served, and on its left and right hand sides by
successive regeneration points of the network, namely l and r. We call such
a rectangle a box, and we introduce the following definition:

Definition 2 (Box) A box Bi(l, r) corresponds to the network delimited vertically
by periods l and r and horizontally by levels i and N , that is, containing the nodes
{(j, t) | i ≤ j ≤ N and l ≤ t < r}, such that l and r are two successive regeneration
points of the network at level i.

Due to our definition, box Bi(l, r) contains all the nodes of the non-trivial
connected component C starting at node (i, l), plus eventually some isolated
nodes, that is, nodes without entering nor outgoing flow. In Figure 3.1, the
set of nodes and arcs inside the red rectangle represents box Bi(l, r). Recall
that there is no inventory flow entering the box at period l, and no outgoing
inventory flow at period r − 1. Hence, nodes of Bi(l, r) can be linked with
another node outside the box only via an ordering arc at level i at a period
occurring between l and r−1, that is, somehow, via the top of the box. In Fig-
ure 3.1, Bi(l, r) is connected to other nodes of the policy through the ordering
arc in (i, l) for example.

The remainder of this section provides a set of properties resulting from
Properties 7, 8 and 9, available within a box in an optimal policy. We also
introduce the concept of basis path and gate to describe the structure of a box:
As detailed in §3.4, these elements naturally decompose a box at level i into
a set of boxes at downstream levels.

3.3.1 Basis path

In their paper, Hwang, Ahn, and Kaminsky, 2013 introduce the new notion of
basis path of a connected component. Considering a network representation
of a solution, they define a regeneration network (s1, s2, t1, t2) as a connected
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component of the subnetwork induced by the free arcs, involving periods
between s1 and s2 at the first level and periods t1 and t2 at the last level. The
basis path of (s1, s2, t1, t2) corresponds to the unique path linking the nodes
(1, s1) and (1, s2). For a box Bi(l, r), we introduce the following definition of
its basis path: It is defined as the unique path of free arcs linking node (i, l)
to the latest node of the box at level i with an entering stock. In addition, we
show in the next property that the basis path of a box Bi(l, r) always remains
at level i.

Property 10 Let w be the last period in {l+ 1, . . . , r− 1} such that siw−1 > 0. If no
node of the box at level i has an entering stock, we set by convention w = l. In box
Bi(l, r), there exists a unique path of free arcs linking node (i, l) and (i, w), and all
the nodes of this path are located at level i.

Definition 3 (Basis path) The basis path of box Bi(l, r) is defined as the unique
path ((i, l), (i, l + 1) . . . , (i, w)) of free arcs linking node (i, l) and (i, w).

Proof. Let consider a box Bi(l, r). If w = l, the property is immediate. Hence,
assume that there exists a node at level i inside the box with an entering
stock. To establish Property 10, we simply demonstrate that units are carried
in stock at level i at all the periods between period l and period w. This
proves the existence of a path of free arcs, namely ((i, l), (i, l + 1) . . . , (i, w)),
linking node (i, l) and (i, w). Its uniqueness is due to the fact that the free arcs
of an optimal solution constitute an out-forest. For the sake of contradiction,
assume that there exists a period t, l < t < w, with no entering stock at level
i. We can choose t to be the last period before w with no entering stock. We
thus have sit−1 = 0 and sit > 0. Due to Corollary 1, the amount of inventory
at a level i < N can be modified only at periods ordering a fractional batch
at level i + 1. Consequently, period t must be a fractional ordering period at
level i + 1. Again Corollary 1 implies that period t is a fractional ordering
period also at all its downstream levels. Since a fractional ordering period
cannot have an entering stock (Property 7), we have sjt−1 = 0 at all levels
j = i, . . . , N . Hence, nodes (i, l) and (i, w) cannot be connected by a path
(of free or saturated arcs) in the network restricted to levels {i, i + 1, .., N}.
Since node (i, w) has an entering stock, this is not an isolated node, that is, it
belongs to a non-trivial component of level i. This contradicts the fact that
node (i, l) and (i, w) belongs to the same box Bi(l, r) �

Figure 3.1 represents a BoxBi(l, r). The basis path is colored in green, and
corresponds to the part located at level i of the unique path linking periods
l and r − 1. It lies between periods l and w. Notice that in the case where
the basis path is of length 0, that is, w = l, we are in the situation where
no units are carried in stock at level i inside the box. Hence, level i plays
the role of a transhipment level, where orders received from the upstream
level are immediately shipped integrally to the downstream level. Basically,
“nothing” happens in the box Bi(l, r) at level i, and we can instead focus on
box Bi+1(l, r), or at a box at a higher level j > i + 1, with a non-null basis
path.
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FIGURE 3.1: BoxBi(l, r) on levels i, i+ 1, ..., N between periods
l an r. Black arcs correspond to full ordering while grey arcs are
fractional ordering. Green arcs represent the basis path of the

box

3.3.2 Gate

Consider a box Bi(l, r) of an optimal dominant solution π. Let (i, τ) be a
node situated on the basis path of the box, such that τ is an ordering period
at level i+ 1. Notice that Corollary 1 implies that τ is also an ordering period
at all downstream levels {i + 2, i + 2, .., N}. Hence we have a set of orders
linking the basis path to the last level of the network. In addition, if there
is no entering stock at period τ at each of the levels i + 1, i + 2, . . . , N , we
obtain the splitting element to decompose vertically a box. We introduce the
following definition:

Definition 4 (Gate) The set of nodes {(i, τ), (i+ 1, τ), . . . , (N, τ)} is called a gate
of box Bi(l, r) at period τ if period τ belongs to the basis path of the box, and for all
downstream levels j = i+ 1, . . . , N , we have xjτ > 0 and sjτ−1 = 0.

Observe that each fractional ordering of level i placed at a period τ such
that (i, τ) belongs to the basis path, defines de facto a gate, since a fractional
ordering propagates at downstream levels (Corollary 1), and implies a null
entering stock at these levels (Property 7). Notice that period w, the last pe-
riod of the basis path, always define a gate if the basis path is not null since
there is necessarily a fractional ordering in (i + 1, w). The first period l of
the basis path also always defines a gate. The important property of a gate
is that, due to its definition, there is one and only one entering flow into the
gate, and this flow enters at level i. For the gate at period l, this flow cor-
responds to the units ordered by node (i, l) ; for a gate at a period τ > l,
this flow corresponds to the entering stock of node (i, τ). Hence, nodes of
Bi(l, r) located at periods prior to τ and nodes located at subsequent periods
are linked only by the flow on the basis path. In Figure 3.2, the two gates of
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FIGURE 3.2: The gates of Box Bi(l, r), situated at periods r and
w, are represented in green and define two boxes on level i+ 1:

Bi+1(l, w) and Bi+1(w, r)

Bi(l, r) are colored in green: one is situated at period l and the other at pe-
riod w. Using these two gates, box Bi(l, r) can be decomposed in two parts,
as depicted in Figure 3.2, where each part is highlighted by a blue rectangle.
These two rectangles are effectively linked by (and only by) the basis path of
Bi(l, r) on the network restricted to levels {i, . . . , N}. Said differently, if there
is a gate at period τ at level i, then there is a regeneration point of the net-
work at level i+ 1. As a consequence, two consecutive gates at periods τ and
τ ′ in Box Bi(l, r) define a box Bi+1(τ, τ ′). This shows how an optimal policy
can be decomposed level by level, starting with boxes on the N levels, and
decomposing them into boxes on levels {2, .., N}, and repeating this process
in a recursive way. This will be fully detailed in §3.4.

The remainder of this section shows that we can determine the size of
the single fractional batch ordered at the highest level of a box Bi(l, r), that
is, linking the box to its upstream level i − 1. Moreover, we prove that the
amount of inventory on the basis path can be easily deduced, knowing the
gates of the box.

3.3.3 Fractional flow at the top of a box

In this section, we consider the flow of a box at its top level, that is, both the
flow entering the box via an ordering arc at level i, and the flow routed on the
basis path (at level i) via inventory arcs. Firstly, let us focus on the quantities
ordered at level i inside the box. We can notice that all the ordering arcs at
level i correspond to full ordering periods, except eventually for period l.
Indeed, if a period τ is a fractional ordering period at level i, then τ is also a
fractional ordering period at all downstream levels, due to Corollary 1. Since
a fractional ordering period has no entering stock (Property 7), such a period
τ would disconnect the flow of a dominant solution induced in the network
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restricted to levels {i, . . . , N}. In other words, such a period τ would be a
regeneration point of the network at level i, and thus, would correspond to
the first period of a box at level i. We have the following property, that allows
us to determine the quantity ordered in the fractional batch, if any, in the first
period of a box:

Property 11 (Entering fractional flow of a box) In a box Bi(l, r), there is at
most one fractional ordering period at level i. If there exists, this fractional ordering
period is located at period l, and the quantity ordered in the fractional batch is equal
to Dl,r−1 mod C.

Proof. The proof is quite immediate since any other ordering period at level
i must order only full batches, that is, xit (mod C) ≡ 0 for any period t =
l + 1, . . . , r − 1. Besides, the whole demand Dl,r−1 of a box Bi(l, r) must be
entirely satisfied by the units ordered at level i between periods l and r − 1,
as these are the only flows entering the Box. Writing the conservation of the
flow modulo C, the result follows. �

Secondly, let us consider the flow routed on the basis path of the box. Let
τ > l be a period defining a gate of the box. The inventory flow at level i be-
tween periods τ−1 and τ is the only flow linking the nodes ofBi(l, r) located
at periods prior to τ , to the nodes of Bi(l, r) located at periods subsequent to
τ , including τ . The cumulative demand Dτ,r−1 between periods τ and r − 1
must be entirely satisfied by the entering stock in (i, τ) plus the units ordered
at level i between periods τ and r − 1, which is a multiple of C, as the only
fractional ordering period at level i in boxBi(l, r) occurs necessarily at period
l (Property 11). Property 8 stipulates that the stock level is lower than C in a
dominant policy. Hence, we obtain, similarly to Property 11, that the enter-
ing stock of the gate is siτ−1 = Dτ,r−1 mod C. As the amount of inventory can
be modified only at periods with a fractional ordering at the downstream
level i + 1, the stock on the basis path between two gates does not evolve.
Evaluating the entering stock at each gate gives the value of the flow on the
basis path, as stated in the following property:

Property 12 (Flow on the basis path) Let τ and τ ′ be two periods defining two
successive gates. For all periods t = τ, . . . , τ ′− 1, the stock level sit on the basis path
is identical and equal to Dτ ′,r−1 mod C

3.3.4 Number of batches ordered at the top of a box

In this section, we compare the difference in the number of batches ordered
at two consecutive levels. Due to Corollary 1, at a given period t, all the full
batches ordered at level i + 1 are also ordered at level i. Our decomposi-
tion consists in evaluating boxes at level i, using boxes at level i + 1. When
connecting boxes with upstream level, we must keep track of the number of
batches resulting from the structure of the boxes to ensure that limits mi

t are
not exceeded. We have the following property:
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Property 13 For all levels i < N and for all periods t, we have dxi+1
t eC − 1 ≤

dxiteC ≤ dx
i+1
t eC + 1. In addition, dxiteC > dxi+1

t eC implies that t is a regeneration
period at level i.

Proof. We can write xit and xi+1
t , the orders at period t at levels i and i + 1,

as xit = βC + α and xi+1
t = β′C + α′, with β ∈ N, β′ ∈ N, 0 ≤ α < C and

0 ≤ α′ < C. Notice that dxiteC = β if and only if α = 0, and equals β + 1
otherwise. Corollary 1 states that, at period t, all the full batches ordered
at level i + 1 are also ordered at level i, that is, β ≥ β′, which implies that
dxiteC ≥ β ≥ dxi+1

t eC − 1. Which proves the left part of the inequality.
According to Property 8, the inventory at level i is always lower than or

equal to C−1, since i is not the last level. Notice that sit ≥ xit−xi+1
t . It implies

that C − 1 ≥ (β − β′)C + (α− α′).

• If α = 0, that is, dxiteC = β, it gives (β − β′)C ≤ C − 1 + α′. If α′ = 0,
it implies that β = β′ = dxi+1

t eC . If α′ > 0, it implies that β ≤ β′ + 1 =
dxi+1

t eC . In any case, we have dxiteC ≤ dx
i+1
t eC .

• If α > 0, that is, dxiteC = β+1, it gives (β−β′)C ≤ C−1+α′ ≤ 2(C−1).
If α′ = 0, it implies that β = β′ = dxi+1

t eC . If α′ > 0, it implies that β ≤
β′ + 1 = dxi+1

t eC . This is the only case where dxiteC can be greater than
dxi+1

t eC . Notice that α > 0 corresponds precisely to the case where t is a
regeneration period at level i. In any case, we have dxiteC ≤ dx

i+1
t eC + 1.

As a result, in both cases dxiteC ≤ dx
i+1
t eC + 1, which proves the left part of the

inequality. �

This property states that the difference in the number of batches ordered
on two consecutive levels at any period is at most one. Moreover, the num-
ber of batches ordered at level i at period t can be greater than the number
ordered at level i + 1 only if t is a regeneration period at level i. As a result,
the number of batches ordered at a given period t can only increase from
one level to its upstream level, at levels i such that t is the first period of a
box at level i. In the next section, we show how the decomposition of a box
along its gates and its basis path into boxes of its downstream level allows to
determine entirely an optimal flow.

3.4 Box decomposition of a policy

Consider an optimal solution following all the properties introduced in §3.2.
This solution decomposes into a set of connected components. Consider one
of these connected components: It is included into a unique box at level 1,
say box B1(l, r). Figure 3.3 represents an optimal policy over a network of 4
levels and 8 periods. The policy has a single connected component, included
in boxB1(1, 9). On the figure, free arcs are colored in light grey and saturated
arcs are colored in dark grey. Property 11 specifies that only the first period
l of a box can be a fractional ordering period at its top level, and that x1

l mod
C = Dl,r−1 mod C. In Figure 3.3, the only fractional order at level 1 occurs at
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period 1, and the amount ordered in the fractional batch is equal to D1,8 mod
C. This arc is represented in green to highlight the fact that we know its flow
modulo C.

FIGURE 3.3: The flow of an optimal policy on a network ofN =
4 levels and T = 8 periods. Free arcs are represented in light

grey and saturated arcs are in dark grey.

FIGURE 3.4: Decomposition of B1(1, 9) into two boxes B2(1, 6)
andB2(6, 9) at level 2. The limits of the boxes correspond to the

gates of box B1(1, 9)

Consider now the basis path, as defined in Subsection 3.3.1. It has been
shown in §3.3.2 that, for each fractional ordering period τ at a level i + 1
such that node (i, τ) belongs to the basis path, the solution is split on levels
(i + 1, ..., N) by a gate into two independent parts, only linked by the ba-
sis path. Decomposing a box along its basis path and its gates makes boxes
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FIGURE 3.5: Decomposition of boxes B2(1, 6) and B2(6, 9) at
level 2

appear on the downstream level. That is, a box can be decomposed into a
set of boxes at its downstream level, linked by the arcs of its basis path and
of its gates. This process is illustrated in Figure 3.4: The basis path of box
B1(1, 9) is path ((1, 1), (1, 2), .., (1, 6)). It admits two gates, situated respec-
tively at period 1 and at period 6, for which a fractional ordering occurs at
level 2. When considering the network restricted to levels {2, . . . , N}, Fig-
ure 3.4 shows how the policy decomposes in two boxes, B2(1, 6) andB2(6, 9).
Notice that the amount ordered in the fractional batch entering B2(1, 6) at
node (2, 1) is D1,5 mod C, and the amount ordered in the fractional batch en-
tering B2(6, 9) at node (2, 6) is D6,8 mod C. Notice also that, knowing the
gates of box B1(1, 9), we know the flow rooted on the basis path. It is equal
to D6,8 mod C on the example.

Repeating this process dynamically, a dominant policy can be decom-
posed into a set of independent boxes at each level, each box being itself
decomposed in the same way. Figure 3.5 shows the decomposition of box
B2(1, 6) into two boxes B3(1, 3) and B3(3, 6) at level 3. For box B2(6, 9), its
basis path is null, and thus its decomposition results in only one Box B3(6, 9)
at level 3. Finally, the decomposition at level 3 (see Figure 3.6) results into a
single box at the last level for B3(1, 3) and B3(3, 6), respectively box B4(1, 3)
and box B4(3, 6). Box B3(6, 9) is decomposed into two boxes, namely box
B4(6, 7) and box B4(7, 9). Notice that the value modulo C of the all the green
arcs in Figure 3.6 are imposed by the box decomposition.

At the last level, a boxBN(l, r) coincides (almost) with the classical notion
of subplan, that is, a sequence of periods such that all the periods, except
the first and the last ones, have a positive entering stock level. The only
distinction is that a box also incorporates isolated nodes, which corresponds
to periods with neither an entering nor an outgoing stock level. In the next
section, we show how the decomposition into boxes of an optimal policy can
be found using a dynamic programming approach.
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FIGURE 3.6: Decomposition of boxes B3(1, 3), B3(3, 6) and
B3(6, 9) at level 3

3.4.1 A Dynamic Programming Algorithm for the cases m =
+∞ and m = 1.

In this section we propose an exact dynamic algorithm to solve M-LSP-B for
its two particular cases, namely the case with soft capacities, m = +∞, and
the case with hard capacities, m = 1. The idea of our algorithm is to compute
dynamically the decomposition into boxes of an optimal policy, that is, the
decomposition inducing the lowest cost. Consider a level i < N and a box
Bi(l, r) of the decomposition of a dominant optimal policy π. We define cost
Ci(l, r) as the cost incurred by all the flows rooted inside the box on ordering
and inventory arcs, plus the cost of full orders at level i incurred at all the
upstream levels. More precisely, if at a period t ∈ {l, . . . , r − 1}, an order is
constituted of β full batches at level i, we account in Ci(l, r) the cost of order-
ing these batches at levels j = i, i − 1, . . . , 1 at period t. Notice that, due to
Corollary 1, we can assert that in policy π these β full batches are indeed or-
dered in period t also at all levels j < i. Let r1 = l ≤ r2 ≤ · · · ≤ rn = w be the
gates of the box, where w is the last period of the basis path. For convenience
we define rn+1 = r. With this notation, box Bi(l, r) is decomposed at level
i + 1 into a set of n boxes, B = {Bi+1(rk, rk+1) | 1 ≤ k ≤ n}. Assume that
the optimal cost Ci+1(u, v) of each box Bi+1(u, v) ∈ B is known. We detail
how cost Ci(l, r) can be determined dynamically. For that, consider the flow
inside box Bi(l, r). It can be partitioned into:

• The flows induced on levels {i + 1, . . . , N}. These flows are routed in-
side the boxes of level i+1, and hence, their costs are already accounted
in ∑

(u,v):Bi+1(u,v)∈B

Ci+1(u, v) (3.9)

• The flows rooted on the basis path. Consider a period t of the basis
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path. Recall that due to Property 10, the basis path lies at level i between
period l and period w. Period t is necessarily situated between two
gates u and v, such that u ≤ t < v. Said differently, period t is included
in box Bi+1(u, v) at level i + 1. Due to Property 12, we can assert that
the stock level sit at the end of period t is equal to Dv,r−1 mod C. Hence,
the total holding costs paid along the basis path of box Bi(l, r) is equal
to: ∑

(u,v):Bi+1(u,v)∈B

H i
u,v−1(Dv,r−1 mod C) (3.10)

where H i
u,v−1 ≡ hiu + · · · + hiv−1 denotes the sum of the holding costs at

level i between periods u and v − 1.

• The flows corresponding to orders at level i. Let us first focus on peri-
ods t /∈ R, that is, that are not a gate of the box. Consequently, period
t is a full ordering period at level i + 1. Due to Corollary 1, period t
is also a full ordering period at level i and Property 8 implies that the
same amount is ordered at both levels. As a consequence, these costs
are already accounted in cost Ci+1(u, v) of the box Bi+1(u, v) where t
belongs. That is, they already appear in Equation 3.9

• Finally, the flows corresponding to the orders at the gates. Let u ∈ R
be a gate, and v be the next gate, with possibly v = r if u = w. Re-
call that the quantity ordered in the fractional batch at period u at
level i + 1 is imposed by box Bi+1(u, v). Precisely, we have xi+1

u =
Cbxi+1

u cC + (Du,v−1 mod C), see Property 11. For short, let us denote
by β = bxi+1

u cC the number of full batches ordered at level i+ 1. Notice
that the cost of ordering these β batches at all the upstream levels is yet
accounted in cost Ci+1(u, v). Due to Property 12, the entering and the
outgoing stock level at period u on the basis path is also imposed, equal
respectively to siu−1 = (Du,r−1 mod C) and to siu = (Dv,r−1 mod C). Writ-
ing the conservation of the flow at node (i, u), we obtain that:

xiu = xi+1
u + siu − siu−1 = βC + (Du,v−1 mod C) + (Dv,r−1 mod C)

− (Du,r−1 mod C) (3.11)

We can remark that the quantity xiu ordered is clearly a multiple of C,
which complies with the fact that only full batches can be ordered at
level i at a period t > l. Since the stock level is lower than C in a
dominant policy, only the two values βC and (β+1)C are admissible for
xiu. this implies that either the same number of full batches are ordered
at period u at levels i and i+ 1, or an additional full batch is ordered at
level i. The ordering cost of this additional full batch must be accounted
at level i and at all the upstream levels. For short, let us denote by Qi

t

the cost of ordering a full batch at all the levels j = 1, . . . , i at a period
t, which is equal to:

Qi
t ≡

i∑
j=1

kjt +
i∑

j=1

pjtC
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FIGURE 3.7: Schematic representation of a box Bi+1(u, v): cost
Ci+1(u, v − 1) on the left, and its augmented cost if its belong to
a box Bi(l, r), with its basis path and an eventual full batch on

level i at period u

Notice that all the quantities Qi
t can be precomputed in time O(NT ).

Let us also denote by δir(u, v) the quantity:

δir(u, v) ≡ b(Du,v−1 mod C) + (Dv,r−1 mod C)− (Du,r−1 mod C)cC

which corresponds to the number (0 or 1) of additional batches ordered
at level i relatively to level (i + 1). Notice that δ depends on the right
hand side limit r of the box, but not on the left hand side limit l. With
these notations, the cost incurred at period u in Ci(l, r) due to the possi-
ble ordering of an additional full batch, is equal to Qi

uδ
i
r(u, v).

For period l, the first period of the box, we are in a similar situation,
except that l can be a fractional ordering period at level i. We must
also ensure that the quantity ordered in the fractional batch is equal to
(Dl,r−1 mod C), and should be accounted only at level i in cost Ci(l, r).
Hence, the additional cost incurred by the orders at the gates is equal
to:

qil(Dl,r−1 mod C) +
∑

(u,v):Bi+1(u,v)∈B

Qi
uδ
i
r(u, v) (3.12)

Notice that, in the case of hard capacities (mi
t = 1, ∀i ∈ {1, ..., N},

∀t ∈ {1, ..., T}), if δir(u, v) = 1, a full batch must be ordered at period u, in
addition to the fractional batch. As a consequence, the limit of the number of
batches is exceeded, so the box is unfeasible. It means that there is no such
box observing the dominant properties described in Section 3.2. In this case,
we set Di+1

r (u, v) = +∞, which prevents using this box in the solution. We
can conclude that cost Ci(l, r) induced by box Bi(l, r) is equal to the sum of
the quantities defined in Equations 3.9, 3.10 and 3.12.

We write the expression of Ci(l, r) in this way to make apparent that this
cost decomposes itself into the costs of the boxes at level i+1. More precisely,
knowing the right side period r of the box at level i, for each box Bi+1(u, v)
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FIGURE 3.8: Representation of the optimal cost of a boxBi(l, r),
as a combination of the augmented costs of boxes on level i+1.

at level i+ 1, we can associate the following augmented cost:

Di+1
r (u, v) ≡ Ci+1(u, v) +H i

u,v−1(Dv,r−1 mod C) +Qi
uδ
i
r(u, v) (3.13)

The left part of Figure 3.7 illustrates a box Bi+1(u, v). The green frame repre-
sents the cost of the box, plus the costs incurred at the upper levels. Knowing
that this box is included in a box Bi(l, r), the augmented costs Di+1

r (u, v) can
be deduced easily. With this notation, cost Ci(l, r) of boxBi(l, r) is equal to the
sum of the cost Di+1

r (u, v) over all the boxes Bi+1(u, v) of its decomposition,
plus the cost qil(Dl,r−1 mod C) of ordering eventually a fractional batch at pe-
riod l. Figure 3.8 provides the representation of cost Ci(l, r) of box Bi(l, r),
composed by 4 boxes at level i+1: Bi+1(l, u),Bi+1(l, u),Bi+1(v, w),Bi+1(w, r).
Of course, we do not know the decomposition of box Bi(l, r). However,
knowing the augmented cost of all possible boxes Bi+1(u, v), we can com-
pute Ci(l, r) as a shortest path problem in the directed graph whose vertices
represent periods from 1 to r. An arc (u, v) indicates that box Bi+1(u, v) be-
longs to the optimal partition. Its associated length is precisely Di+1

r (u, v).
The shortest path in the graph between period 1 and r provides the optimal
cost Ci(l, r) of all the boxes at level i with r as its right hand side: It suffices to
add to the length of the path between period l and r the cost qil(Dl,r−1 mod C)
of the fractional ordering at period l. Recall that the augmented cost of a box
Bi+1(u, v) includes the costs of full batches ordered at all its upstream levels.
Through to Corollary1 ensures that they are ordered in this period. It could
be argued that it may imply an unfair comparison with "short" boxes which
may order no full batch. However, each possible path used to build a box
at level i necessarily have the same number of full batches ordered at level i.
We have the following lemma:

Lemma 1 Knowing the costs Ci+1(u, v) of all the possible boxes at level i + 1, the
costs Ci(l, r) of all the possible boxes at level i can be computed in time O(T 3), plus
a precomputation step in O(NT )

Proof. From the previous discussion, we only need to check that this com-
putation can be performed in time O(T 3). Consider a period r. Notice that
the graph where the shortest path problem is solved for period r is a directed
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acyclic graph with r vertices. Hence, the shortest path between periods 1 and
r can be found in time O(T 2). The computational effort to build the graph is
also in O(T 2): Basically, for each arc (u, v), 1 ≤ u < v ≤ r, we have to com-
pute the augmented cost Di+1

r (u, v) from the cost Ci+1(u, v) of box Bi+1(u, v),
see Equation 3.13. This can be achieved in constant time if we precompute
the different quantities H i

t,t′ , Dt,t′ for all periods t, t′, 1 ≤ t ≤ t′ ≤ T . This pre-
computation clearly requires at most O(T 2) operations. Finally, we can also
precompute the quantities Qj

t for all t = 1, . . . , T and all j = 1, . . . , N . This
precomputation can be done in time O(NT ). We account separately this pre-
computation step in the time complexity of the lemma, since it can be done
once for the whole network, and hence is dominated in the final complexity
of our algorithm. �

Lemma 1 shows that the costs of the boxes can be computed from one
level to the next upstream level in an efficient way. The cost of an optimal
policy can be computed as a shortest path problem at level 1 given the costs
C1(l, r) of all the possible boxes. Equivalently, it can be defined as the optimal
cost of a box B0(1, T ). The basis on the induction corresponds to solve the
problem at level N . Notice that this is a single-level lot-sizing problem, iden-
tical to the one studied in Van Vyve, 2007. The author proposes a polynomial
time algorithm in time O(T 3), allowing the backlog of demand. However,
our cost structure slightly differs, due to the fact that in CN(u, v), each full
batch ordered at a period t is accounted for its ordering cost QN

t through all
the levels, while a fractional batch is accounted only for its actual ordering
cost at the last level. This difficulty can be easily overcome, since a fractional
ordering only occurs in the first period of a box. Hence, assuming a FIFO
discipline, we can discard the quantity (Du,v mod C) ordered in the fractional
batch of a box BN(u, v) from the demand of period u (and of the following
periods if necessary), to boil down with a lot-sizing problem where only full
batches can be ordered. Van Vyve, 2007 proposes a very efficient algorithm
in time O(T log T ) for this problem. We have the following lemma:

Lemma 2 The cost CN(u, v) of all the possible boxes at level N can be computed
in time O(T 3 log T ). If the setup costs at the last level are also non-increasing, this
complexity reduces to O(T 3).

Proof. For each possible box BN(u, v), with 1 ≤ u < v ≤ T + 1, we can
compute its cost as explained above using the algorithm of Van Vyve, 2007.
Since there are O(T 2) boxes to consider, the result follows. When setup costs
at the last level are assumed non-speculative motives, the problem becomes
quite straightforward. Due to non-speculative motives and non-increasing
setup costs at each level, the cost QN

t is also non-increasing with t. Hence,
each unit must be ordered as late as possible, with respect to its demand and
to the restriction on the maximum number of batches at each period. We can
greedily consider the periods starting from period v − 1 down to period u,
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ordering one full batch each time the unmet demand exceeds C. This greedy
algorithm can be clearly implemented in linear time for each possible box. �

We give in Algorithm 1 a sketch of our algorithm, where the main steps
have already been detailed in the two previous lemmas: Lemma 1 for the
induction step, and Lemma 2 for the basis of the induction at levelN . We can
conclude this section with our main result, given in Theorem 4:

Algorithm 1 Algorithm Box Decomposition M-ULSP-B/M-CLSP

// Precomputation step
Compute quantities Du,v for all u, v, 1 ≤ u ≤ v ≤ T
Compute quantities Qi

u for all u, i, 1 ≤ u ≤ T and 1 ≤ i ≤ N
// Basis of the induction on the last level
Solve the single-level lot sizing problems at level N for all possible boxes
BN(u, v), 1 ≤ u < v ≤ T + 1 to obtain costs CN(u, v)
// Induction on the levels
for i = N − 1→ 1 do

Compute quantities H i
u,v for all u, v: 1 ≤ u ≤ v ≤ T

Determine costs Ci(l, r) for 1 ≤ l < r ≤ T + 1 as a shortest path problem
on the augmented costs Di+1

r (u, v) of its downstream level (i+ 1)
end for
Determine the cost of an optimal policy as a shortest path problem on the
costs C1(l, r) of the boxes at level 1.

Theorem 4 Problems M-ULSP-B and M-CLSP can be solved in time complexity
O((N+log T )T 3) under our assumptions, see §3.1. Assuming non-increasing setup
costs at the last level, the time complexity is reduced to O(NT 3).

Proof. The algorithm computes the optimal cost CN(u, v) of all possible boxes
at level N in time complexity O(T 3 log T ) or O(T 3) when setup costs are non-
increasing. Then the optimal cost of all the boxes at upper level can be com-
puted dynamically (Lemma 1). This computation requires O(T 3) operations
at each level, plus a precomputation step in O(NT ) for quantities Qj

t , which
is dominated in the final complexity. The optimal cost of a policy can be
computed in O(T 2) as a shortest path over the boxes of level 1. �

This complexity is somehow surprisingly low. In particular, it depends
only linearly on the number N of levels. This allows to model quite pre-
cisely a practical distribution network, taking into account all the physical
storage points (inbound, intermediate, outbound, . . . ), without jeopardizing
the resolution time of the problem. In the next section, we provide a detailed
example of the execution of the dynamic algorithm on a small instance of
M-CLSP.



60 Chapter 3. Multi-level lot-sizing with batch deliveries

FIGURE 3.9: Example parameters

FIGURE 3.10: The different boxes B2(u, v) for the last level

Execution of the dynamic algorithm through an example

To illustrate the behavior of our algorithm, we consider a 2-level problem
with 4 periods of time. The costs kit, pit and hit, as well as the demand dt, are
given in Figure 3.9. We consider that all the mi

t are equal to 1.
The first phase of our algorithm consists in solving the single-level lot

sizing problems at level N = 2 for all possible boxes B2(u, v), 1 ≤ u < v ≤ 5
to obtain costs C2(u, v). The different boxes are represented in Figure 3.10.
Consider the evaluation of B2(1, 5) as an example. The cumulative demand
from period 1 to 4 is equal to 16, thus the value of the fractional batch ordered
in period 1 must be equal to 6 (Property 11).

Some boxes B2(u, v) are not considered because the amount of the frac-
tional batch ordered at period u is lower that the demand du. As a result,
an additional full batch needs to be ordered in u, which is impossible since
m1
u = 1 (for instance B2(3, 5)). These boxes are ignored (we set an infinite

cost to them) since they cannot fit with the dominant properties describe in
Section 3.2.
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The purpose of the next phase of the algorithm is to evaluate the opti-
mal costs C1(l, r) for each possible Box B1(l, r), for 1 ≤ l < r ≤ 5 at level
1. It begins with the determination of the augmented costs D2

r(u, v), for all
1 ≤ u < v ≤ r ≤ 5. Recall that D2

r(u, v) is computed from C2(u, v) using
3.13, adding the holding costs on the basis path, plus the extra full batch at
the first period if requested. Figure 3.11 shows the boxes considered with
their augmented costs when the value of r is equal to 5. It means that these
values of D2

5(u, v) can be used to evaluate boxes B1(l, r) when r = 5. For
example, let us evaluate C1(1, 5), the minimum cost of box B1(1, 5). To do
that, we construct a shortest path problem as described in Section 3.4.1 and
illustrated in Figure 3.12. The shortest path is of length 205, and decomposed
box B1(1, 5) into boxes B2(1, 2) and B2(2, 5) (see Figure 3.13). Adding the
cost of the fractional batch ordered in the first period at level 1, it results that
C1(1, 5) = 283.

The same process is used to evaluate all boxes B1(l, r). Figure 3.14 pro-
vides illustration of every possible boxes obtained. Once again some boxes
are not considered since they are not feasible (the limit mi

t = 1 is exceeded at
their first period).

Finally, a shortest path problem is defined using these boxes and their
respective costs (see Figure 3.15). Solving this shortest path problem provides
the optimal solution of the problem, which is composed by the unique box
B1(1, 5), with a cost of 283.

FIGURE 3.11: The augmented costs D2
5(u, v) of boxes B2(u, v),

if included in box B1(1, 5)

In the next section, we explain how our algorithm can be adapted to work
with a general limitation on the number of batches.
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FIGURE 3.12: Shortest path problem for finding the optimal de-
composition of B1(1, 5)

FIGURE 3.13: Flow of B2(1, 5) with cost C2(1, 5)

FIGURE 3.14: The different boxes B1(u, v) of the first level
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FIGURE 3.15: Shortest path problem for finding the optimal so-
lution

3.4.2 A Dynamic Programming Algorithm for the case with a
limitation on the number of batches.

First of all, let us explain briefly why the dynamic algorithm needs to be
adapted to work correctly in the case where the number of batches which
can be ordered is limited. Notice that the dominant structure with boxes
described in Section 3.3, as well as the box decomposition detailed in Sec-
tion 3.4 remain valid. However, algorithm of Section 3.4.1 must be modified
to consider the limits mi

t. This algorithm works recursively, starting with the
evaluation of the optimal cost of the boxes at level N , then using these op-
timal boxes to evaluate boxes at level N − 1, and so on until the first level.
As explain in Section 3.3.4 (Property13), the number of batches ordered at a
period t, from one level to the next one, is the same, except at the regener-
ation periods where an additional batch must possibly be ordered. As we
assumed that mi

t is non increasing (mi+1
t ≤ mi

t), it results that we only need
to check the first box of each decomposition. More precisely, let Bi(l, r) be
a box, and Bi+1(l, v), with l < v ≤ r, be the first box of its decomposition.
Box Bi+1(l, v) has a fractional batch entering at level i + 1 at period l, whose
amount is given by (Dl,v−1 mod C). At level i and period l, the outgoing
stock, that is, the basis path of Bi(l, r), has a value of (Dv,r−1 mod C). If the
value of (Dl,v−1 mod C) + (Dv,r−1 mod C) is larger than (Dl,r−1 mod C), that
is, the value of the fractional batch of Bi(l, r) at level i, then an additional full
batch must be ordered at period l at level i, as well as at all the upstream lev-
els. However, if the constraint on the number of batches ordered at level i+1
is saturated, and if mi

l = mi+1
l , it is then impossible to order this additional

batch at level i. The resulting solution is not feasible. One might think of
setting a infinite value to the augmented cost of Bi+1(l, v) when it is used in
box Bi(l, r), since the resulting box would be unfeasible, as in the case mi

t = 1
of the previous section. However, we show through an example that an op-
timal solution may indeed use a sub-optimal box B′i+1(l, v) to get an optimal
decomposition of box Bi(l, r).

We consider a problem on two levels and four periods for which all the
parameters are stationary, except kit, where only the first period has a null
cost (see Figure 3.16). We have mi

t = 2 ∀i ∈ {1, .., N}, ∀t ∈ {1, .., T}, that
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FIGURE 3.16: Parameters values of the instance (N = 2, T = 4)

FIGURE 3.17: Optimal flow for box B2(1, 4)

is, up to 2 batches can be ordered at any point of the network. The size of a
batch is equal to 10. When evaluating the minimum cost of box B2(1, 4), all
the orders are placed at the first period, which is feasible (see Figure 3.17). A
quantity x2

1 = 13 = D1,4 is ordered, which represents two batches (one full,
one fractional). If one wants to use this box inside box B1(1, 5), an additional
batch must be ordered in (1, 1), which exceeds the limit (see Figure 3.18) and
leads to an unfeasible solution, where x1

1 = 22 > 20. Nevertheless, there
exists another solution which can be obtained by postponing the order of a
full batch to period 2 (see Figure 3.19). The resulting solution could not have
been found by the algorithm, since the resulting box at level i+1 has a higher
cost than the box in Figure 3.17.

In this new version of the algorithm, adapted to the case with a limitation
on the number of batches which can be ordered, the subproblems consist-
ing in evaluating the boxes are overconstrained with a modified value of mi

t.
Instead of evaluating the minimum cost Ci(u, v) of a box Bi(u, v), for given
values of i, u, and v, we evaluate boxesBi(u, v)〈µ〉, defined as the boxBi(u, v)
with a modified value of mi

u equal to µ. Similarly, Ci(u, v)〈µ〉 defines the min-
imum cost of the box Bi

j(u, v)〈µ〉. Regarding the value of µ that we need to
consider, µ is clearly upper bounded by mi

t. For its lower value, µ must ver-
ify that µ ≥ ddu/Ce, so that the limit on the number of batches allows the
demand at period u to be satisfied. In the same way, µ must be greater than
0 since it must be possible to order at least a fractional batch at period u (u
is the first period of the induced connected component, and thus its entering
stock is null). Finally, at most one additional batch can be ordered from one
level to the previous one at a given period (see Property 13). It is thus useless
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FIGURE 3.18: The decomposition of box B1(1, 5) using box
B2(1, 4) is not feasible, since the limit on m1

1 is exceeded.

FIGURE 3.19: B′1(1, 5) which is feasible and respects the domi-
nance properties.
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to evaluate a box Bi(u, v)〈µ〉 for a value of µ ≤ mi
t− (i− 1). That is, if at most

mi
t−(i−1) batches are ordered at level i, then at mostmi

t−j+1 ≤ mj
t batches

are ordered at any upstream level j : the policy respects the constraints. As a
consequence, at most O(N) different values of µ need to be considered.

Consider a box Bi(l, r)〈µ〉. The value of Dl,r−1 mod C corresponds to the
amount of the fractional batch ordered at period l at level i. Let Bi+1(l, v)〈µ′〉
be the first box at level i+1 insideBi(l, r). The amount of the fractional batch
in (l, i+1) is necessarily equal toDl,v−1 mod C. The amount of outgoing stock
at level i at period t is equal to Dv,r−1 mod C). If (Dl,v−1 mod C + Dv,r−1 mod
C) > (Dl,r−1 mod C), we have dxileC = dxi+1

l eC + 1 (see paragraph 3.3.4), that
is, one more batch is ordered at level i. It implies that µ′ = µ − 1, such that
Bi+1(l, v)〈µ′〉 does not order more than µ − 1 batches at period l. Otherwise,
if Dl,v mod C ≥ Dl,r mod C, we have dxileC = dxi+1

l eC , and thus µ′ = µ.
As a result, for given values of i, l and r, two types of boxes are used at

level i + 1 to evaluate the set of boxes Bi(l, r)〈µ〉 which may be used in the
optimal solution of the problem:

• boxes Bi+1(u, v)〈mi+1
u 〉 for values of u greater than l and for all v such

that l < v ≤ r. For these boxes, the number of full batches ordered at
level i cannot be larger than the number of batches at level i+ 1, during
the evaluation of the augmented costs. Consequently, the constraint on
the number of batches cannot be violated (see Property 13).

• boxesBi+1(l, v)〈µ′〉 for all v such that l < v ≤ r, that is, the set of boxes at
level i+ 1 whose first period is l and whose number of batches ordered
at level i may exceed the number of batches ordered at level i + 1. If
mi+1
l < mi

l, even if an additional batch must be ordered in (i, l), the
constraint on mi

l cannot be exceeded. The box Bi+1(l, v)〈mi+1
l 〉 is thus

considered. If mi+1
l ≥ mi

l and if δir(l, v) = 0, the constraint may be
exceeded for values of mi+1

l greater than mi
l. The box Bi+1(l, v)〈mi

l〉
is thus used. Finally, if mi+1

l ≥ mi
l and if δir(l, v) = 1, the constraint

mi
l may be exceeded for values of mi+1

l greater than mi
l − 1. The box

Bi+1(l, v)〈mi
l − 1〉 is thus used.

For given values of i, r and j, assuming that the costs of every boxes
at level i + 1 are known, the shortest path between periods 1 and r can be
evaluated in O(T 2). There are O(T ) possible values for r and O(N) possible
values for µ. We have the following lemma:

Lemma 3 Knowing the costs Ci+1(u, v) and Ci+1(l, v) < µ′ > of all the possible
boxes at level i + 1, the costs Ci(l, r)〈µ〉 of all the possible boxes at level i can be
computed in time O(NT 3), plus a precomputation step in O(NT )

For level N , for determining the costs of the different boxes, we start by
evaluatingBN(u, v)〈mi

u〉 for given values u and v. If a feasible solution exists,
CN(u, v)〈mN

u − 1〉 is then evaluated, and so on until µ reaches its minimum
value, or until there is no feasible solution for the tested value of j. It is
possible to evaluate CN(u, v)〈µ〉 inO(T log T ) time using the algorithm of Van
Vyve, 2007. At most N values of µ are then evaluated, so the overall process
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requires O((N log T )T ) time. Since there are O(T 2) possible values of u and
v, we have the following lemma:

Lemma 4 The cost CN(u, v)〈µ〉 of all the possible boxes at level N can be computed
in time O(NT 3 log T ).

Finally, we have the following theorem:

Theorem 5 Problem M-LSP-B can be solved in time complexity O((N2 +
N log T )T 3) under our assumptions, see §3.1.

3.5 Setup costs at the first level

In this section, we generalize the cost structure at the first level, by consider-
ing a fixed setup cost. Specifically, at each period t where units are ordered
at the first level, a fixed cost Kt is paid, in addition to the fixed costs per
batch and the unit ordering cost. This cost structure may allow to model im-
portant practical situations. Indeed, while the different levels may represent
an internal distribution network between facilities of a company or of an in-
tegrated supply chain inside a region, the external supplier can be situated
overseas. For short to medium range distances, that is, inside the region, con-
tainers are most often shipped by trucks. The costs incurred by a shipment
hence mainly boils down to a cost for each truck used, similar to our cost
structure with fixed cost per batch. For long range distance, containers usu-
ally travel by boat, resulting in a different cost structure. The first level may
also represent the manufacturing stage where the product is realized, and
then shipped, via the downstream distribution chain, to its final customers.
Again, manufacturing activities may result in a different costs structure than
transportation activities. The setup cost may model here a classical prepara-
tion cost of the machines for the production in a period. In the rest of this
section, we call the first level the manufacturer level, to distinguish it from the
other levels, called distribution levels. For the distribution levels, we assume
the same cost structure as previously, that is, a FTL cost structure with null
setup cost. In addition, we focus on the unbounded case at the manufacturer
level, that is, m1

t =∞ for all periods t.
Notice that introducing non-null setup costs changes dramatically the

structure of a dominant optimal policy at the first level. In particular, Prop-
erties 8, 9 and Corollary 1 do not hold anymore, since a policy is incited to
group the ordering of batches in order to avoid to pay for too many setups.
Hence, the stock level at a period can be larger than C, and the ordering of a
full batch at level 2 does not lead anymore to order it at the same period at the
manufacturer level. We can only rely on Property 7. This implies that each
subplan at the first level contains at most one fractional batch, and this batch
is located in the first period of the subplan. Hence, all the other orders inside
a manufacturer subplan are composed only of full batches. On the opposite,
the structure of a dominant policy remains unchanged for the distribution
levels: The connected component induced on the network restricted to lev-
els {2, . . . , N} still admits a decomposition into boxes, as described in §3.3
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and §3.4. Our idea is, quite classically, to decompose a policy according to its
subplans (u, v) at the manufacturer level. However, we cannot solve directly
this problem as a single lot-sizing problem, since ordering decisions at the
manufacturer level clearly incurred costs and constraints at the distribution
levels. We can remark that if the decomposition into boxes at the distribution
levels is known for an optimal policy, then the cost incurred by a subplan
(u, v) at the manufacturer level can be easily evaluated. Again, we do not
know what is the decomposition into boxes of an optimal policy. Instead,
we show that for a given subplan at level 1, only a few number of boxes of
level 2 need to be known in order to evaluate the cost of the subplan in the
whole network. These boxes correspond basically to the ones containing the
extremities of the subplan.

We start by giving a dominant property on the manufacturer level. This
property is similar to Property 8, except that it applied only to the ordering
periods:

Property 14 There exists an optimal solution such that the entering stock level of
each ordering period at the manufacturer level is lower than C.

Proof. Let t be an ordering period, included in a manufacturer subplan (u, v).
Consider the case where s1

t−1 ≥ C. By a simple interchange argument, we
show that we can obtain another optimal policy satisfying the property at
period t. Let t′ be the last ordering period occurring before t. Since no batch
is ordered between periods t′ and t, we must have s1

t′ ≥ s1
t−1 ≥ C. Notice

that at least one full batch is ordered at period t′: Otherwise t′ orders only
a fractional batch, and hence t′ must be a regeneration point (Property 7).
This contradicts the fact that at least C units are in stock at the end of period
t′. It is thus possible to postpone the ordering of a full batch from period
t′ to period t at the manufacturer. The solution remains feasible and its cost
does not increase due to our assumption of non-speculative motives and non-
increasing fixed cost per batch. �

Consider a manufacturer subplan (u, v), 1 ≤ u < v ≤ T + 1, in a dominant
optimal policy π. Let k and k′ be two consecutive ordering periods inside the
subplan, with u ≤ k < k′ < v. Notice that any period t belongs to a unique
box B2(τ, τ ′) of level 2 in policy π, with τ ≤ t < τ ′. In particular, periods
k, k′ and v − 1 belong to some boxes of level 2 in the decomposition of π.
We denote by g[a,b][a′,b′][e,f ](k, k

′) the minimum cost associated with all the or-
dering and inventory flows in the network between period k (included) and
period k′ (excluded), such that boxes B2(a, b), B2(a′, b′) and B2(e, f) belongs
to the decomposition of π and a ≤ k < b, a′ ≤ k′ < b′ and e ≤ v − 1 < f .
In other words, these are the three boxes on level 2 containing periods k, k′

and v−1, respectively. Notice that in some cases two out of these three boxes
can be identical, for example if the same box spans the time interval [k, k′] or
[k′, v − 1]. We can also have a single box (a = a′ = e and b = b′ = f ) if it
contains all the periods k, . . . , v − 1. We claim that for given values k, k′, a, b,
a′, b′, and f , we are able to evaluate g[a,b][a′,b′][e,f ](k, k

′) in polynomial time.
We consider the case where k is not the first period of the subplan (u, v)

and neither k nor k′ coincide with the beginning of their box, e.g., we have
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FIGURE 3.20: Representation of g[a,b][a′,b′][e,f ](k, k
′) (green box).

It includes all costs associated with periods between k and k′ −
1.

a < k < b, a′ < k′ < b′. We also assume that v is not the first period of a box,
see Figure 3.20. We establish here that the entering stock at periods k (and
k′) at the manufacturer level is fixed by the box decomposition at level 2 of
policy π. Since k is not the first period of (u, v), all orders at the first level
between period k and period v − 1 are constituted only of full batches. Let
X i
t,t′ = xit + · · · + xit′ denote the cumulative orders at level i between periods

t and t′. We thus have X1
k,v−1 mod C = 0. Consider now the orders at level

2. Recall that a fractional batch can be ordered only in the first period of a
box. It follows that we have X2

v,f−1 mod C = 0 since e < v ≤ f − 1, and
X2
k,b−1 mod C = 0 since a < k due to our hypothesis. Observe that some

fractional batches can be ordered at level 2 in time interval {b, . . . , v − 1}, as
the decomposition of π may be composed of (many) other boxes. Consider
the network M induced by nodes (1, k), . . . , (1, v − 1) at the manufacturer
level and all the nodes (j, t) for j = 2, . . . , N and t = b, . . . , f − 1 at the
distribution levels. Since period b is a regeneration point of the network, no
stock is carried from period b−1 to period b at the distribution levels. Hence,
the entering flow of M is equal to s1

k−1 + X1
k,v−1 + X2

v,f−1. Again, since there
is no stock carried from period v− 1 to v at level 1 and from period f − 1 to f
at the distribution levels, the outgoing flow of M is equal to X2

k,b−1 + Db,f−1.
Writing the conservation of the flow modulo C, and using Property 14, we
obtain that:

s1
k−1 = Db,f−1 mod C (3.14)

As a result, the amount of entering stock in node (1, k) corresponds to
the fractional part of the cumulative demand Db,f−1 between periods b and
f − 1. That is, the entering stock of an ordering period at the manufacturer is
fixed by the regeneration point of the network at level 2 following this period
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and the next regeneration point of the network at level 2 following the end
of the subplan. Similarly, the entering stock level of node (1, k′) is equal to
s1
k′−1 = Db′,f−1 mod C.

Since a, b, a′ and b′ are fixed, the flows rooted in boxes B2(a, b) and
B2(a′, b′), and in particular values of Xk,b−1 and Xa′,k′−1, are known. More-
over, demand of the time interval [b, k′−1] must be supplied by units ordered
at period k at the manufacturer, or already in stock at the manufacturer at the
end of period k−1. It is thus possible to deduced the amount of units ordered
in k. We have:

x1
k + s1

k−1 = X2
k,b−1 +Db,a′−1 +X2

a′,k′−1 + s1
k′−1 (3.15)

Again, the quantity ordered at period k at the manufacturer is imposed
by the boxes at level 2 containing period k and the next ordering period k′.
Particular cases, e.g., the situation where k = u or k = a, are very similar and
thus are omitted here.

To evaluate g[a,b][a′,b′][e,f ](k, k
′), it remains to determine how to satisfy the

demand on time interval [b, a′ − 1], using boxes on levels 2. Notice that the
decomposition of policy π on level 2 may involve a large number of boxes be-
tween b and a′− 1. Assuming that the minimum cost of each box has already
been evaluated, using the same method presented above (with a slight ad-
justment in order to not propagate full ordering costs at the first level) their
holding costs incurred on the first level can be easily deduced, since all the
units are carried from period k, the last ordering period before b. Hence, the
holding cost incurred at level 1 by a unit ordered at a period t ∈ [b, a′ − 1] at
level 2 is equal to H1

k,t. It is then possible to use again a shortest path algo-
rithm to determine the optimal set of boxes supplying demand of [b, a′ − 1].
We can notice that this decomposition does not depend on periods k and k′,
but solely on the right hand side b and left hand side a′ of the boxes contain-
ing these periods, since whatever the effective period k, the units are carried
in stock from period b−1 to the period when they are ordered at level 2. Con-
sider that boxes B2(a, b), B2(a′, b′) and period f are fixed. To evaluate all the
costs g[a,b][a′,b′][e,f ](k, k

′) for a ≤ k < b and a′ ≤ k′ < b′, we start by finding the
optimal decomposition in boxes at level 2, taking into account the holding
cost incurred by carrying units from period b − 1. This can be achieved in
time complexity O(T 2), assuming that all the boxes have been precomputed
using Algorithm 1. Then cost g[a,b][a′,b′][e,f ](b− 1, a′) can be evaluated in time
O(N), accounting the cost of the flows in the network at period b − 1. The
cost for all k ∈ [a, b− 1] can be determined iteratively, as the cost for a period
k can be deduced from the cost for period k + 1 in O(N). We can proceed in
a symmetric way to evaluate the cost at all period k′. We have the following
Lemma:

Lemma 5 All the costs g[a,b][a′,b′][.,f ](k, k
′) can be computed in time O(NT 7)

The case where periods k, k′, and v − 1 are contained in only two boxes,
or a single one, is somehow easier and is not detailed here. Once these costs
have been determined, we compute classically the cost of all the possible sub-
plans (u, v) at the manufacturer level. Consider a given period v − 1 and a
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given period f . We construct the acyclic directed graph where each node is
triple (k, a, b) associated with an ordering period k and a boxB2(a, b) contain-
ing k. The length of the arc from (k, a, b) to another node (k′, a′, b′) is equal
to g[a,b][a′,b′][.,f ](k, k

′). Such an arc exists if b ≤ a′ or a = a′ and b = b′. The
shortest path in this graph can be computed in time O(T 6) and provide the
optimal cost of all the subplan (u, v), for 1 ≤ u < v for all the boxes B2(a, b)
and B2(e, f) that may contain u and v, respectively. Since we have O(T 2) pe-
riods v and f to consider, the cost of all the subplans can be obtained in time
O(T 8). Finally, we can determine the optimal cost of a policy by solving a
shortest path problem on the directed graph where each node (u, a, b) repre-
sents a regeneration point u and its associated box B2(a, b) at level 2. An arc
represents the cost of a subplan. Since we have O(T 6) arcs, this problem can
be solved in time O(T 6). We have the following result:

Theorem 6 Problem M-LSP-B with setup costs at the first level can be solved in
time complexity O(NT 7 + T 8)

3.6 Conclusion

In this chapter, we establish that under some assumptions on the parameters,
the multi-level lot-sizing problem with batch deliveries M-LSP-B is polyno-
mially solvable even if the number of levels is part of the input. Our approach
is based on the decomposition of an optimal policy into a set of independent
induced connected components. This box decomposition relies on the main
property that each full batch ordered at a level is ordered at the same pe-
riod at all the upstream levels, while a fractional ordering propagates at all
the downstream levels. The overall time complexity of our algorithm is in
O((N2 + N log T )T 3). This low time complexity clearly makes the algorithm
of practical use even for large supply chains.

In the next chapter we study more general multi-level lot-sizing prob-
lems with capacities. We provide NP-hard results for M-ULSP-B with level-
dependent batch sizes and M-CLSP with level-dependent capacities. Ap-
proximations algorithms are given for M-ULSP-B where batch sizes are both
time-dependent and level-dependent and for M-CLSP with level-dependent
capacities.
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Chapter 4

Approximation algorithms and
complexity results for multilevel
lot-sizing problems with capacities

In the previous chapter we proposed an exact algorithm running in O((N2 +
log T )T 3) time for the multi-level lot-sizing problem with batch deliveries.
We considered a model with identical and stationary batch sizes, and with a
limitation on the number of batches which can be ordered at a period. Ech-
elon non-speculative motives were assumed at each level, as well as non-
increasing setup costs, except at the last level. In this chapter, we consider
more general M-ULSP problems where the capacities/size of the batches
may differ from one level to another. We prove that the M-ULSP-B with
level-dependent batch sizes and the M-CLSP with level-dependent capaci-
ties are both NP-hard. We propose then 2-approximation algorithms, respec-
tively for the M-ULSP-B with level-dependent and time-dependent batch
sizes and for the M-CLSP with level-dependent capacities with echelon non-
speculative motives and non-increasing setup costs.

4.1 Introduction

As in the previous chapter, we consider both the multi-level lot-sizing prob-
lem with either soft and hard capacities, but with non-identical capaci-
ties/batch sizes and with setup costs. Again, we consider problem M-LSP-B
with batch deliveries, which encapsulates both cases by introducing an up-
per limit mi

t on the number of batches of each order. The multi-level in-series
lot-sizing problem with batch deliveries can be formulated as follows:
Ki
t fixed setup cost for ordering a positive amount at period t at level i;

Bi
t size of a batch at period t at level i;

yit order indicator (binary variable) at period t at level i;

min
T∑
t=1

N∑
i=1

(Ki
ty
i
t + d x

i
t

Bi
t

ekit + pitx
i
t + sith

i
t) (P)

subject to

xit + sit−1 = xi+1
t + sit, ∀t ∈ {1, .., T}, i ∈ {1, .., N − 1}, (4.1)



74 Chapter 4. Approximations and complexity results for
M-CLSP

xNt + sNt−1 = dt + sNt , ∀t ∈ {1, .., T}, (4.2)

xit ≤ mi
tB

i
ty
i
t, ∀t ∈ {1, .., T}, i ∈ {1, .., N}, (4.3)

si0 = 0, ∀i ∈ {1, .., N}, (4.4)

xit ≥ 0, ∀t ∈ {1, .., T}, ∀i ∈ {1, .., N} (4.5)

sit ≥ 0, ∀t ∈ {1, .., T}, ∀i ∈ {1, .., N} (4.6)

yit ∈ {0, 1}, ∀t ∈ {1, .., T}, ∀i ∈ {1, .., N} (4.7)

We focus on the 2 important special cases: mi
t = +∞, that is, the unca-

pacitated problem M-ULSP-B with batch deliveries, and mi
t = 1, that is, the

capacitated version M-CLSP (see Section3.1). For time-dependent batch sizes
or production capacities, both problems are known to be NP-hard even on a
single level (see Akbalik and Rapine, 2013, Florian, Lenstra, and Rinnooy
Kan, 1980a and Bitran and Yanasse, 1982a). We first prove that the multi-
level lot-sizing problem with batch deliveries is NP-hard in the case of level-
dependent batch sizes. That is, each level i uses a stationary batch sizeBi but
batch sizes may differ from one level to another. For instance, it may be rele-
vant to deal with distribution networks using different transportation modes
at each level. In the chapter, we provide a 2-approximation algorithm in the
case of batch sizes which are both time-dependent and level-dependent. We
then turn our attention to the problem with hard capacities, that is, mi

t = 1
∀t ∈ {1, .., T}, i ∈ {1, .., N}, when the capacities are level-dependent. We
prove that this problem is also NP-hard. Finally, we propose an approxima-
tion algorithm for the latter problem with echelon non-speculative motives
and non-increasing setup costs. Our approximation algorithms use a simple
approximation technique which could be reused for other problems.

4.2 Complexity of the multi-level uncapacitated
lot-sizing problem with level-dependent batch
sizes

We consider in this section M-ULSP-B where batch sizes are stationary but
level-dependent (Bi), and without limitation in the number of batches, that
is, mi

t = ∞ ∀t ∈ {1, .., T}, i ∈ {1, .., N}. We show that this problem can be
reduced to a single-level lot-sizing problem with time-dependent batch sizes.
The latter has been shown to be NP-hard by Akbalik and Rapine, 2013. We
have the following theorem:

Theorem 7 M-ULSP-B with batch sizes which are stationary but level-dependent
is NP-hard whenN is part of the input, even with null setup costs, null unit ordering
costs, and assuming echelon non-speculative cost structure.

Proof. Consider an instance I of a single-level problem with time-dependent
batch sizes on a time horizon of T periods. For each period t, let Bt be the
size of a batch and kt denotes the fixed cost per batch ordered. The other
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FIGURE 4.1: Network representation of instance I .

FIGURE 4.2: Network representation of instance I ′. Arcs with
an infinite cost are not represented. Light colored arcs have a

null ordering cost.

parameters, that is, the setup costs and the unit ordering and holding costs
are null (Kt = 0, pt = 0 and ht = 0) (see Figure 4.1). Akbalik and Rapine,
2013 showed that this problem is NP-hard. We associate to I an instance I ′

of the multi-level lot-sizing problem as follows: I ′ also covers a time horizon
of T periods and has a number N = T of levels. Setup costs, unit ordering
costs are null. Moreover, all unit holding costs are set to ∞ except at the
last level where they are null. It results that I ′ observes the echelon non-
speculative cost structure. At level i ∈ {1, ..., N}, for all t ∈ {1, ..., T}\{i}, the
fixed cost of a batch is null. For t = i, the fixed costs per batch correspond
to those of instance I , that is, kit = kt. The demand at the last level is the
same as in instance I . Figure 4.2 provides a network representation of I ′.
Comparing Figure 4.1 and Figure 4.2, it is easy to see that both instances are
equivalent: the costs of ordering and routing x units from the source node
to the last level are the same in both problems, and the only way to store
units is at the last level, at the same cost. As a result, any feasible policy for
I can be readily converted into a feasible policy for I ′, of the same cost, and
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conversely. Since I is a NP-hard problem, it implies that the multi-level lot-
sizing problem with level-dependent batch sizes is also NP-hard when N is
part of the input, even with null setup costs, null unit ordering costs, and
assuming echelon non-speculative cost structure. �

4.3 A 2-approximation algorithm for the multi-
level lot-sizing problem with batch deliveries

In this section we propose a 2-approximation algorithm for M-ULSP-B where
batch sizes are time-dependent and level-dependent (Bi

t). Recall that an λ-
approximation algorithm for a minimization problem is a polynomial algo-
rithm which, for any instance of the problem, returns a solution whose value
is not greater than λ times the optimal solution value. Our approximation
algorithm is remarkably simple but, considering the complexity of the prob-
lem, a 2-approximation algorithm is a very interesting result. It consists in
solving a relaxation of the problem where the FTL ordering costs are replaced
by affine costs functions. To get a performance guarantee, we want the affine
cost function to "sandwich" the FTL ordering cost, has explained in the fol-
lowing.

Let consider a M-ULSP-B problem (P ). Recall that the procurement costs
are given by qit(x) = Ki

t + dx/Bi
tekit, ∀t ∈ {1, .., T}, i ∈ {1, .., N}. Let us con-

sider a M-ULSP problem (P ′) without batch deliveries, whose parameters
are similar to (P ) except the procurement costs. We have the same number
of levels and periods, and holding costs h′it are equal to hit ∀t ∈ {1, .., T},
i ∈ {1, .., N}. For all possible values of i and t, we want to find an affine func-
tion rit(x) such that rit(x) ≤ qit(x) ≤ βrit(x) holds whatever the quantity x or-
dered (see in Figure 4.3). Since rit(x) is an affine procurement cost, an optimal
solution π′ of (P ′) can be found in O(NT 4) using the algorithm of Zangwill,
2013. Since rit(x) ≤ qit(x), (P ′) is a relaxation of (P ), and hence its optimal
policy π′ provides a lower bound. Since the only difference between (P ) and
(P ′) is the procurement cost, that is, both problems have the same set of fea-
sible solutions, π′ is feasible for (P ). Moreover, as rit(x) ≤ qit(x) ≤ βrit(x), the
cost incurred by π′ in (P ) is at most β times greater than the optimal solution
of (P ). As a result, we obtain a β-approximation of M-ULSP-B where batch
sizes are time-dependent and level-dependent running in time complexity
O(NT 4).

We now have to find an affine function r(x) such that the value of β is
as small as possible. Let us define the following affine function rit(x), ∀t ∈
{1, .., T}, i ∈ {1, .., N}, where 0 ≤ α ≤ 1 is a given parameter:

rit(x) =

{
0 if x = 0

Ki
t + αkit +

(1−α)kit
Bi

t
x if x > 0
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FIGURE 4.3: Representation of rit(x), qit(x) and βrit(x).

We claim that for any parameter α ∈ [0, 1], we have rit(x) ≤ qit(x) ∀ x ≥ 0. For
any positive value of x, we have, on one hand

qit(x) ≥ Ki
t + x

kit
Bi
t

, since d.e is a non-increasing function.

and, on the other hand

qit(x) ≥ Ki
t + kit, since x > 0

By multiplying the first inequality by (1−α) and the second inequality by α,
we obtain that:

(1− α)qit(x) + αqit(x) ≥ (1− α)(Ki
t + x

kit
Bi
t

) + α(Ki
t + kit)

which gives:

qit(x) ≥ Ki
t + αkit +

(1− α)kit
Bi
t

x = rit(x)

Hence, for any value of α ∈ [0, 1], function rit(x) is upper bounded by
FTL cost qit(x). We now have to determine the value of β verifying qit(x) ≤
βrit(x), and to choose the value of parameter α such that β is minimized. Since
qit(x) ≤ βrit(x) must hold for any value of x, in particular we must have:

• Ki
t + kit ≤ β(Ki

t + αkit), that is, the inequality holds for x→ 0

• kit/Bi ≤ β(1− α)kit/B
i, that is, the inequality holds for x→ +∞

Notice that qit(x) is under the affine function q′it (x) = (Ki
t + kit) + kit/B

ix. The
two previous inequalities in fact ensure that qit(x) ≤ βrit(x), ∀x, since βrit(x)
is affine. As a result, the minimum value of β can be found by solving the
following non-linear problem:
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min β
s.t. β(Ki

t + αkit) ≥ Ki
t + kit

β(1− α) ≥ 1
0 < α ≤ 1

(4.8)

Figure 4.3 might help in representing the constraints. A feasible solution
is given by:

α =
kit

Ki
t + 2kit

, β =
Ki
t + 2kit
Ki
t + kit

It corresponds to the solution obtained when both constraints of problem 4.8
are saturated. The value of β is clearly always lower than 2, so we obtain
a 2-approximation algorithm. Notice that better a posteriori performance
guarantee can be obtained depending on the parameters of the instance, for
instance, if the setup cost is always greater than the fixed cost per batch (Ki

t ≥
kit), which seems a plausible assumption, the algorithm provides a solution
at most 3/2 times the optimal.

Theorem 8 The multi-level lot-sizing uncapacitated lot-sizing problem with batch
deliveries can be approximated within a ratio 2 in O(NT 4) time complexity.

4.4 Multilevel capacitated lot-sizing problem with
level-dependent capacities

We consider now the multi-level capacitated lot-sizing problem (M-CLSP)
with level-dependent (hard) capacities Ci, that is, mi

t = 1 ∀t ∈ {1, .., T},
i ∈ {1, .., N}. Notice that CLSP with time dependent capacities is NP-hard
even on a single level. Ahmed et al., 2016 proposed a polynomial time algo-
rithm for M-CLSP when the number of different capacities is constant. They
prove that the problem is NP-hard when source and sinks are in more than
two rows. We consider the case with N being part of the input. As a result
the number of different capacities is not constant and their result does not
stand for our problem. In fact, we prove that M-CLSP with level-dependent
capacities is NP-hard:

Theorem 9 The M-CLSP with level-dependent capacities Ci is NP-hard when N
is part of the input, even if the Ci are non-increasing with the levels.

Proof. The reduction is made from the partition problem. Recall that an in-
stance of Partition is constituted of a list of n integers ai. We assume, w.l.o.g.,
that a1 ≥ a2 ≥ ... ≥ aN . Denoting by A the quantity

∑
i ai/2, it is asked

whether there exists a subset S ⊆ {1, ..., n} such that
∑

i∈S ai = A. For short,
for a given subset S, we denote by a(S) the sum of the ai’s for i ∈ S. We also
denote by Ak the sum of the k first ai’s: Ak = a1 + a2 + ...+ ak = a({1, ..., k}).
We transform an instance I of Partition into an instance τ(I) of M-CLSP as
follows:
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• To each element ai there are i time periods associated. The planning
horizon is thus constituted of T =

∑n
i=1 i = n(n + 1)/2 periods. The

demand at the last period is equal to A. Other demands are defined
below.

• There are N = n levels. The capacity of level i is Ci = AN−i+1. Notice
that capacities are level-dependent but stationary. We also have C1 =
2A ≥ C2 ≥ ... ≥ CN = a1.

• The setup costs are set to +∞ except at the last level, where they are
null, and at some periods specified below.

• The holding costs are set to +∞ except at some periods, specified below.

• It is asked if a solution of cost at most A exists.

FIGURE 4.4: Example of transformation of a partition instance
with 4 elements, into a M-CLSP with level-dependent capaci-

ties. Only arcs with a finite cost are represented.

A network representation of an instance associated to n = 4 elements
{a1, a2, a3, a4} is given in Figure 4.4. We define the remaining costs of the
instance such that, if we remove the set of arcs with an infinite cost, the
holding arcs at the last level, the remaining arcs form a forest, with a tree Ti
associated to the i periods of each ai, see Figure 4.4. All the setup costs and
holding costs of the arcs of Ti are null, except at level N , for the last period
of the tree, whose setup cost is equal to ai. To sum-up our construction, for
the i periods associated with ai:

• Ti spans on the i periods,

• The penultimate period has a demand equal to Ai−1,

• Setup cost of the last period at level N is equal to ai. All other setup
costs of the arcs of Ti are null.
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Notice that the structure of tree Ti is identical to Ti−1 with an additional
branch. By induction, it is easy to see that the bottleneck of Ti is imposed
by the ordering arc of level N − i + 1 through which all units rooted on the
tree must transit. Its capacity is equal to Ai. At the next level (N − i+ 2), the
units must split in two parts: the first part is brought for free until the last
level using the i − 1 first periods of the tree, identical to Ti−1. Notice that a
limit of Ai−1 units is imposed by the capacity at level N − i + 2, which cor-
responds to the demand associated with the tree. Therefore, we can assume
that the demand of the tree is fully satisfied using these arcs. The additional
units must use the ordering arcs of the tree at the last period spanned by Ti.
This path has a cost ai due to the setup cost at the last level at this period. The
capacity of the path is given by the smallest level capacity CN = a1. How-
ever, the difference between CN−i+1 and CN−i+2 being equal to ai, at most ai
units can be routed on this path in a dominant solution. Since the capacities
at each level are greater than or equal to a1, and ai ≤ a1, it is indeed pos-
sible to route ai units through this path. Hence, the tree Ti can route Ai−1

units to the last level at null cost, and possibly ai additional units, involving
a cost ai, if it used its last branch. Since the demand of each tree Ti is equal
to Ai−1, a feasible policy also satisfies the demand at the last period, with a
subset of trees using their last period to route units to satisfy the demand A.
Let S ⊆ {1, ..., n} be such a subset of indices, such that i ∈ S if and only if
units are rooted on the last branch of tree Ti. We must have a(S) ≥ A, so
that the demand at period T is satisfied. However, to obtain a solution which
costs less than A, we must also have a(S) ≤ A. As a result, we must have
a(S) = A. Hence, the instance of the partition problem is positive if and only
if the instance of the M-CLSP is positive.

�

4.5 Approximation algorithm for the multi-level
lot-sizing problem with level-dependent ca-
pacities

We consider a multi-level lot-sizing problem with level-dependent capaci-
ties Ci. We assume that the capacities are non-increasing with the level,
that is, C1 ≥ C2 ≥ ... ≥ CN . We also assume that setup costs Ki

t are non-
increasing in time for a given level, that is, Ki

t ≥ Ki
t+1 for every levels and

every periods. Finally, holding costs hit and unit ordering costs pit are eche-
lon non-speculative at each level, that is, pit + (hit − hi−1

t ) ≥ pit+1. Notice that
the complexity of this problem is open since our complexity result for level-
dependent capacities (Section 4.2) is not valid with echelon non-speculative
motives and non-increasing setup costs. Without loss of generalities, we can
assume that the demand at a period t is lower than CN . Otherwise, as ex-
plained in Section 2.3, we can transfer the excess of demand to the preceding
period t − 1 without changing the set of feasible solutions, and decreasing
the cost of any policy by a fixed positive term. This transformation cannot
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affect the efficiency of the approximation algorithm, since adding the same
positive amount to two solution values can only reduce their ratio.

Our idea is to relax the problem (P ) by removing the capacity constraints
and using FTL procurement costs, with batch of sizes Ci. We then relax again
the resulting problem by replacing the FTL procurement costs by affine func-
tions. The optimal solution of this problem is then modified, without increas-
ing its cost, such that it becomes feasible for problem (P ).

Consider a M-ULSP-B problem (P ′) with FTL procurement costs bit(x) =
dx/CieKi

t + pitx for x > 0, and null if x = 0. That is, we consider batch
deliveries, with batch of size Ci and a fixed cost per batch Ki

t . Notice that for
any ordered quantity x ≤ Ci, we have bit(x) = qit(x). Hence, (P ′) is clearly
a relaxation of (P ). In particular, if OPT’ is the optimal solution of (P ′), we
have OPT’≤OPT.

To build a feasible solution π′ for (P ′), as in Section 4.3, we replace the
FTL procurement cost bit(x) by an affine procurement cost rit(x) = Ki

t/2+(pit+
Ki
t/2C)x for x > 0, and null if x = 0. The optimal solution π′′ of this second

relaxation can be found in time O(NT 4) with the algorithm of Zangwill, 2013
when using rit(x) instead of bit(x). Since we have rit(x) ≤ bit(x) ≤ 2rit(x) for
any ordered quantity x, the cost C ′(π′′) of π′′ in (P ′) is at most 2OPT’ which
is lower than or equal to 2OPT. We show that π′′ can be transformed into a
feasible solution π for (P ), such that the cost C (π) of π in (P ) is not greater
than C ′(π′′). This transformation, as explained below, can be done in time
complexity O(NT ). It results that C (π) ≤ 2OPT, and thus we obtain a 2-
approximate solution for (P ) in time O(NT 4).

We now detail how π′′ is modified to obtain a feasible solution for (P )
without increasing the cost of the solution. Let x′′ be the quantity ordered
in policy π′′. Notice that x′′it can be larger than Ci. We define x the quan-
tity ordered in policy π by induction, simply postponing the units exceeding
the actual capacity Ci. Start with x = x′′. Let t be the first period such that
xNt > Ci. Postponing the order of xNt − Ci units does not make the solu-
tion unfeasible since the demand at a given period is lower than or equal to
CN . Moreover, the cost of the solution can only decrease since we assume
non-increasing setup costs and echelon non-speculative motives. Finally, the
number of batches ordered does not increase and can even decrease if two
fractional batches are gathered at period t + 1. By reiterating this process at
all subsequent periods, the resulting solution π is feasible at the last level for
(P ).
The same process can be performed at level N − 1. Considering the first pe-
riod t such that xN−1

t > Ci−1, the order of xN−1
t − Ci−1 units are postponed,

without increasing the cost of the solution. Since the demand of level N is
lower than or equal to CN , through the shifts of the last step, the resulting
solution is feasible for (P ). Repeating the process at each period, and then at
all previous levels, the resulting solution π is feasible for (P ) and is cheaper
than π′′ for (P ′). The transformation can be performed in time complexity
O(NT ). We thus have the following theorem:

Theorem 10 The multi-level lot-sizing problem with level-dependent capacities,
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non-increasing setup costs, and echelon non-speculative motives can be approxi-
mated within a ratio 2 in O(NT 4) time complexity.

4.6 Conclusion

In this chapter, we proved that M-ULSP-B with level-dependent batch sizes
and M-CLSP with level-dependent capacities are both NP-hard. We propose
an approximation algorithm for the multi-level lot-sizing problem with batch
deliveries, which consists in replacing the procurement costs by an affine
function. Based on this result, a 2-approximation algorithm is also proposed
for the M-CLSP with level-dependent capacities under some assumptions on
the parameters. Since the complexity of the latter problem is open, it could
be a matter for future research. Our approximation method, using sandwich
affine (or concave) functions, could also be used for other problems whose
complexity arises from the structure of the objective function.
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Chapter 5

Energy-aware lot sizing problem:
Complexity analysis and exact
algorithms

This chapter deals with a single-item lot sizing problem under a periodic en-
ergy limitation. In contrast to the other chapters, the system studied here is
not in series. We consider identical and parallel capacitated machines which
can be turned on and off according to the production requirements. This
system shows similarities to the multi-level in series lot-sizing problem with
batch deliveries since the production capacities can be extended by switching
machines on, which results in additional costs. However, machines turned
on may remain on at the next periods, that is, a start-up cost is paid only
once to increase the capacity on the whole remaining horizon. Besides the
classical lot sizing decisions of how much and in which periods to produce,
we have to decide the number of machines to switch on and to switch off
in each period. In addition, the models studied here take into account the
energy consumed in the production process. We provide complexity results
and propose polynomial algorithms for the case with stationary energy pa-
rameters. This chapter is based on an article wrote with Ayse Akbalik, from
University of Lorraine.

5.1 Introduction

Energy-efficiency in production planning becomes more and more appeal-
ing for researchers and practitioners. According to Biel and Glock, 2016, “In
2010, the industrial sector was responsible for 39.4% of the overall energy consump-
tion and this latter largely originates from manufacturing industries." The same
authors mention that the aim of energy-efficient production planning models
is not only to take into account the classical metrics such as the minimization
of overall cost or completion time, but also to consider energy-aware fac-
tors such as energy related constraints, energy cost or energy consumption
minimization, etc. There is also a change in the consumers’ behavior, with
a higher sensitivity to the environmental impacts of the industrial activities
(pollution, energy consumption, etc.). For couple of years, numerous compa-
nies have thus begun to rethink and optimize their production processes in
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order to produce at lower cost, but also more ecologically and with a lower
energy consumption.

We consider in this chapter a lot-sizing problem taking into account the
energy consumption as a hard constraint, in a capacitated machines envi-
ronment. In addition to an extensible production capacity, dependent on the
number of machines running in a given period (which is a decision variable
in our problem), we consider a limit of the amount of energy that can be
consumed in each period by the production system. The different activities
responsible for consuming energy that we consider in this chapter include
the start-up of the machines, the production of goods, and keeping the ma-
chines running, either they do produce or are idle. The aim is to decide when
and how much to produce, when and how many machines to turn on or to
turn off, in order to minimize the total cost, respecting the amount of energy
available in each period. The problem studied is thus in accordance with the
context of energy aware production and environmental sustainability. We
call this energy aware lot sizing problem energy-LSP in the rest of the chapter.

Problem energy-LSP in a parallel production system was first introduced
by Rapine et al., 2016a; Rapine et al., 2016b. They propose a very efficient
O(T log T ) algorithm for a restricted version assuming that start-up costs
are stationary and that only one activity (start-up or production) consumes
energy. In this article we extend the model in different directions to render
it more realistic: First, we consider time-varying cost parameters, including
start-up costs but also non-null joint production setup costs, to be paid in
each period where production occurs, and running costs, to be paid for each
machine that is not turned off. Second, we consider that all activities may
have a non-negligible energy consumption. It means that, in each period one
has to arbitrate how the available amount of energy is to be shared between
the start-up of machines, which increases the production capacity of the
system, and the effective production of units. In addition, we also consider
a running energy consumption, that represents the energy consumed by a
machine that is turned on, whenever producing or not. Under this quite
general framework, we establish that the problem is NP-hard if some energy
parameters are time-varying, even on a single resource with non-null setup
or running costs. In contrast, we show that the problem is polynomially
solvable if all the energy parameters, that is, periodic amount of available
energy, start-up and unit consumptions, are stationary. Our approach is
based on dynamic programming and provides an O(M6T 6) exact algorithm
for the most general case studied in this chapter. To the best of our knowl-
edge, there is no other theoretical studies on this integrated lot sizing and
energy issues, except Rapine et al., 2016a and Rapine et al., 2016b.

Organization of the chapter.
The chapter is organized as follows. In Section 5.2, we present relevant

studies in both lot sizing and energy-efficient production planning problems.
We first study a restricted version of the problem, with null setup cost and



5.2. Literature review 85

null running cost/consumption. The problem description is given in Sec-
tion 5.3 via a mixed integer programming formulation. In Section 5.4, we
establish that problem energy-LSP is NP-hard, even with null production and
null holding costs. A polynomial time algorithm, based on dynamic pro-
gramming, with a time complexity in O(M5T 4), is proposed in Section 5.5
under stationary energy parameters. In Section 5.6, different extensions are
studied, namely under running cost, joint setup cost and running energy con-
sumption. For different extensions NP-hardness results are established and
the previous dynamic programming algorithm is slightly modified to solve
the problem with stationary energy parameters to optimality. We finally con-
clude in Section 5.7.

5.2 Literature review

The problem studied in this article can be positioned at the intersection of
the single-item dynamic lot sizing problem (LSP) and energy-efficient man-
ufacturing. In this section, relevant studies published in both domains are
presented, together with the very few studies at their intersection.

The single-item LSP aims to determine how much and in which periods to
produce in order to satisfy a deterministic and discrete demand over a given
time horizon, while minimizing the total production and storage costs. The
reader can refer to Wagner and Whitin, 1958 for a seminal paper, and to Flo-
rian, Lenstra, and Rinnooy Kan, 1980b and to Bitran and Yanasse, 1982b for
the first complexity analysis on the capacitated LSP. For more details on the
different extensions and the methods proposed for this well-known produc-
tion planning problem, refer to Brahimi et al., 2006, Pochet and Wolsey, 2006.
In the literature, most of the existing problems in production planning focus
on the minimization of production and holding costs. However, in order to
respect the new environmental standards and energy consumption issues,
more and more theoretical and practical applications integrate them within
the optimization of the production planning (see Gahm et al., 2016 and Biel
and Glock, 2016).

The aim of this chapter is to integrate the energy constraints into the lot
sizing problem. In the related literature, some studies integrate explicitly
the energy cost in the optimization problem (see Özdamar and Birbil, 1999,
Uzel, 2004, Tang, Che, and Liu, 2012 and Ding et al., 2016), but they sup-
pose that the available energy is unlimited. We propose here an approach
assuming a certain limit on the energy level in each period, which also lim-
its the quantity that can be produced. Notice that a limit on the amount
of available energy is also considered by Artigues, Lopez, and Haït, 2013,
Nattaf, Artigues, and Lopez, 2015, Nattaf et al., 2016 and Ngueveu, Artigues,
and Lopez, 2016 for scheduling problems, by Schultz, Sellmaier, and Rein-
hart, 2015 for a short term production control problem and by Masmoudi et
al., 2017 for a single-item capacitated LSP. In Masmoudi et al., 2017, the au-
thors consider a flow-shop system with a maximum allowable energy level,
as well as an electricity price in their objective function. The flow-shop sys-
tem considered in Masmoudi et al., 2017 makes the problem quite different
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than ours with deadlines to respect. Moreover, the authors propose heuristics
to solve their problem, while we theoretically study our models, analysing
their complexity and proposing polynomial time exact algorithms. A very
recent study from Giglio, Paolucci, and Roshani, 2017 integrates energy con-
sumption issues into the lot sizing and scheduling decisions in a multi-item,
multi-machine job-shop environment, with additional backlogging and re-
manufacturing assumptions. The capacitated machines consume a certain
amount of energy when being idle and when producing units with a nor-
mal or with an accelerated mode. All the later energy issues are modeled via
costs of energy consumption into the objective function. The authors propose
a relax-and-fix heuristic to cope with this integrated problem. There are also
several papers dealing with industrial case studies on energy issues in pro-
duction planning problems (see Artigues, Lopez, and Haït, 2013, Santos and
Almada-Lobo, 2012, Waldemarsson, Lidestam, and M., 2013 and Zhao, Ier-
apetritou, and Rong, 2016). For a recent review on energy-efficient schedul-
ing issues in manufacturing, refer to Gahm et al., 2016 and for recent reviews
on energy-efficient production planning to Biel and Glock, 2016.

The majority of the papers published in the domain of energy-efficient
production planning consists in energy-efficient machine scheduling prob-
lems (see Biel and Glock, 2016). To the best of our knowledge, there are only
a few studies in the literature coupling energy issues with discrete lot siz-
ing problem: Masmoudi et al., 2017, Giglio, Paolucci, and Roshani, 2017
and Rapine et al., 2016a. In Masmoudi et al., 2017 and Giglio, Paolucci,
and Roshani, 2017, the authors consider respectively flow-shop and job-shop
systems where they integrate some energy cost or constraints and propose
heuristics to solve the related complex problems (see the details above). As
mentioned earlier, the problem we study in this chapter consists in an ex-
tension of the energy lot sizing problem studied in Rapine et al., 2016a. The
main differences between the two models are the time-dependent start-up
costs we consider here instead of stationary start-up costs considered in Rap-
ine et al., 2016a, and the fact that both the production of units and the start-
up of machine may have a non-null energy consumption. We also consider a
more general cost structure, including running cost, setup cost and running
energy consumption of the machines.

5.3 Problem formulation

The system we study is constituted of M parallel, identical and capacitated
machines that can be started at any period respecting the energy restriction.
We say that a machine is running if it is not turned off. That is, a running
machine may either be producing units, or simply idle, ready to produce.
We assume through the chapter that the amount of energy available in each
period is stationary, and denoted by E. Note that, in our problem, the capac-
ity limit related to the available energy amount is hard, whereas the capacity
limit related to the capacitated machines is soft, since the available produc-
tion capacity is not known in advance and is dependent on the number of
running machines. In particular, we can take the decision to switch on more
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machines, if less than M machines are currently turned on, in order to in-
crease the production capacity. We denote by mt the number of machines
that are running, and thus available for production, during period t. Initially
we assume that all the machines are turned off, that is,m0 = 0. In each period
t, we have to decide:

• How many machines m+
t to turn on and how many machines m−t to

turn off.

• Which quantity xt to produce to satisfy the demand or/and to store in
inventory.

The aim is to minimize the total cost over a finite horizon of length T
to satisfy a deterministic demand dt in each period t, without backlogging,
while respecting the production capacity and the limit on the amount of
energy available. The cost of a production planning includes the cost to start
the machines, the cost to produce units and the cost to carry units in stock.
The parameters used are listed below:

dt: demand in period t
ct: unit production cost in period t
ht: unit holding cost to carry a unit from period t to t+ 1
ft(k): cost to turn on k machines on period t
U : capacity of a machine
M : number of machines in the system
E: amount of energy available in each period
pt: unit energy consumption to produce one unit in period t
wt: energy consumption to start a machine in period t

The energy-LSP is formulated as the following mixed-integer program:

min
∑T

t=1(ft(m
+
t ) + ctxt + htst)

s.t. st−1 + xt = st + dt ∀t ∈ {1..T} (1)

xt ≤ Umt ∀t ∈ {1..T} (2)

ptxt + wtm
+
t ≤ E ∀t ∈ {1..T} (3)

mt = mt−1 +m+
t −m−t ∀t ∈ {1..T} (4)

mt ≤M ∀t ∈ {1..T} (5)

st ≥ 0, xt ≥ 0,mt ∈ Z+,m+
t ∈ Z+,m−t ∈ Z+ ∀t ∈ {1..T} (6)

Constraint (1) is the classical material balance between the produced,
stored and satisfied units. In each period t the production is limited by
two constraints: production capacity constraint (2) and energy restriction
constraint (3). Finally, constraint (4) represents the total number of machines
running in each period, taking into account the machines switched on and
switched off at the beginning of the period. Constraint (5) stipulates that this
number of machines running cannot exceed the number of machines of the
system. The feasibility domains are given by constraint (6).
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We assume through the chapter that production costs follow non-
speculative motives, also called Wagner-Whitin (WW) cost structure. Non-
speculative motives imply that for any period t, we have ct + ht ≥ ct+1. In
other words, producing and storing one unit in a period t has a higher cost
than producing it later in period t+1. Under WW costs, it is dominant to pro-
duce as late as possible. Notice that, w.l.o.g., we can consider that the holding
costs are null, by substituting unit production costs ct with c̃t = ct +

∑T
u=t hu.

This transformation is possible due to the linearity of the holding costs. For
the details, see Pochet and Wolsey, 2006. WW cost assumption implies that
c̃t ≥ c̃t+1 holds for all periods, in other words, modified unit production costs
c̃t are non-increasing over time.

5.4 Complexity result

In this section, we establish that energy-LSP is computationally difficult if
the unit energy consumption parameter pt is time-dependent, even if other
energy parameters are stationary and most of the cost parameters are null.
Next section will demonstrate that energy-LSP is polynomially solvable if all
the energy parameters are stationary, which set quite precisely the frontier
between hard and easy problems for energy-LSP.

Theorem 11 If the number M of machines is part of the instance, problem energy-
LSP is NP-hard even with null production cost (c = 0) and null holding cost (h =
0), and with stationary energy parameters E and w.

Proof. The reduction is made from the PARTITION problem. Recall that an
instance of PARTITION is constituted of a list of n integers ai. Denoting by A
the quantity

∑
i ai/2, it is asked whether there exists a subset S ⊆ {1, . . . , n}

such that
∑

i∈S ai = A. For short we denote by a(S) the sum of the ai’s for i ∈
S. Notice that we can restrict to instances such that all the ai are lower than
A, otherwise the answer is trivial. We transform an instance I of PARTITION
into an instance τ(I) of energy-LSP as follows:

• We have n + 2 periods, indexed from 0 to T = n + 1. The only positive
demand appears in the last period, with dT = nA

• The capacity of a machine is U = A. The number of machines is equal
to M = n. Unit production and holding costs are null.

• The amount of energy available in each period is E = Πi=1,n(A− ai)

• The amount of energy required to start a machine is w = E

• The amount of energy required to produce one unit at period t is equal
respectively to: p0 = 1, pt = E/(A − at) for t = 1, . . . , n, and pT = 0.
Notice that for t = 1, . . . , n, due to the limited amount E of energy, at
most (A− at) units can be produced.

• The start-up cost function is linear, with f0(1) = 0, ft(1) = at for t =
1, . . . , n, and fT (1) = A+ 1
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• It is asked whether a solution of cost at most A exists.

The following table gives an overview of the time-dependent parameters pt
and ft for the instance τ(I):

Period t 0 1, . . . , n T
pt 1 E/(A− at) 0
ft(1) 0 at A+1

We show that τ(I) is positive if and only if instance I is positive. Consider
any planning x, and define S as the subset of periods of {1, . . . , n} where a
machine is started. Since the energy needed to start a machine is w = E, at
most one machine can be started in each period, and in this case nothing can
be produced, except for the last period T . Notice that starting a machine at
period 0 is clearly dominant, and starting a machine at period T is prohibited
for a planning of cost at most A. Hence, the number of machines available
to produce at the last period is equal to 1 + |S|. Let us denote by X the
cumulative production of periods 0, . . . , n, and let S̄ = {1, . . . , n}\S. Notice
that a production before the last period can only occur in periods of S̄. In
these periods, at least one machine is on (the one started in period 0). Hence,
production is limited by the amount of energy available. For the planning to
be feasible, we must have X + xT ≥ dT = nA. We have:

• X =
∑

i∈S̄ xi ≤
∑

i∈S̄(A − ai) = |S̄|A − a(S̄). Hence, we have X ≤
(n− |S|)A+ (a(S)− 2A)

• xT ≤ (1 + |S|)A since 1 + |S|machines are on at the last period

As a result, on one hand, for a planning to be feasible, we must have the
inequality (n − 1)A + a(S) ≥ nA, or written differently, a(S) ≥ A. On the
other hand, for a planning to cost at most A, we must have a(S) ≤ A, since
starting a machine in a period i ∈ S incurs a cost fi(1) = ai. We can conclude
that instance I is positive, as S defines a partition of value A. Conversely, if S
is a partition of value A, it is easy to check that a planning starting a machine
at period 0 and at each period of S, is feasible and costs at most A. �

5.5 A polynomial time algorithm for stationary en-
ergy parameters

In this section we propose an exact O(M5T 4) time dynamic programming
algorithm for the important case when all the energy parameters are station-
ary over time. More precisely, we assume that, in each period, an amount
E of energy is available, the unit energy consumption is equal to p and the
energy consumption to start a machine is equal to w. Notice that the cost
parameters of the problem are allowed to be time-varying, under the re-
striction that the unit production and holding costs follow a non-speculative
motive. Considering the formulation of energy-LSP given in Section 5.3, we
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call a period C−saturated if it saturates the production capacity constraint
(2), and E−saturated if it saturates the energy constraint (3). If a period t is
C−saturated, by definition we have xt = mtU , whereas if t is E−saturated,
we have xt = (E−wm+

t )/p. Notice that bothmt andm+
t are decision variables

of the problem. Following the classical terminology of lot-sizing problems,
we also called a period a regeneration point if its entering inventory is null. We
have the following property:

Property 15 In a dominant solution, each period t is either:

• a regeneration point, that is, st−1 = 0

• or C−saturated, that is, xt = mtU

• or E−saturated, that is, pxt + wm+
t = E

A period may eventually be at the same time a regeneration point, a C−saturated
period and/or a E−saturated period.

Proof. Let us consider an optimal solution π′ and let t be the last period which
complies with none of these possibilities. Consider one unit entering in stock
in period t, and let t′ be the production period of this unit. Since both capaci-
ties are not reached (t being neither C−saturated nor E−saturated), and due
to non-speculative motives (delaying a production is not more expensive), it
is possible to postpone the production of this unit from period t′ to period
t without increasing the cost of the solution or rendering it unfeasible. This
operation can be iterated until the stock vanishes at the beginning of period t
or t becomes C−saturated or E−saturated. As a result, Property 15 becomes
valid at period t and remains valid at the subsequent periods. The process
can be repeated until Property 15 is valid at each period. The result follows.
�

In lot sizing domain, a very common problem-solving approach consists
in decomposing the entire horizon into independent subplans (u, v), solv-
ing each subplan separately and then constructing the optimal solution via
a shortest path algorithm. Recall that a subplan is defined as the set of peri-
ods between two consecutive regeneration points. By definition of a subplan
(u, v), the entering stock level in periods u and v is null, and in any period
t inside the subplan the stock level is positive. Very classically, we compute
the optimal cost of each possible subplan (u, v) using dynamic programming.
However, this cost clearly depends on the numbermu−1 of machines on at the
beginning of period u, which depends on prior decisions, and on the number
mv−1 of machines on at the beginning of period v, which impact decisions
on subsequent periods. For this reason, to render the cost of a subplan in-
dependent of the rest of the horizon, we fix the number of machines on at
the beginning of the regeneration periods. That is, we compute the optimal
cost of a policy for all pairs of periods (u, v), 1 ≤ u < v ≤ T + 1 and all
pairs of integers (k, l), 0 ≤ k, l ≤ M , assuming that k machines, respectively
l, are running at the beginning of period u, respectively v. Let us denote by
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S (u, k, v, l) the optimal cost of such a subplan. To compute the optimal cost
of a policy, we consider the graph whose nodes are labeled by pairs (u, k),
for 1 ≤ u ≤ T + 1 and 0 ≤ k ≤ M , and where an arc between a node (u, k)
and a node (v, l) exists if u < v. The length of the arc ((u, k), (v, l)) is pre-
cisely S (u, k, v, l). We also add a leaf node S, which is a successor of each
node (T + 1, k), for 0 ≤ k ≤ M . The length of any arc ((T + 1, k), S) is
null. Notice that this graph has O(TM) nodes. Since this graph is acyclic, the
shortest path between root node (1, 0) and leaf node S can be computed in a
time linear in the number of arcs, and thus quadratic in the number of nodes.
The length of this shortest path corresponds to the cost of an optimal pol-
icy over the time horizon 1, . . . , T . As a consequence, assuming that all the
costs S (u, k, v, l) are known, the optimal cost of a policy can be computed in
time O(M2T 2). We detail now how the cost S (u, k, v, l) of a subplan can be
determined using dynamic programming.

Optimal cost of a subplan

Let us consider a subplan (u, v), such that k machines, respectively l, are
running at the beginning of period u, respectively v, in an optimal solution.
Let us denote by B = {u + 1, . . . , v − 1} the periods inside the subplan. Due
to Property 15, each of these periods is either C−saturated or E−saturated,
or both. We denote by BC = {t ∈ B | t is C−saturated} and by BE = {t ∈
B | t is E−saturated and not C−saturated}. It clearly defines a partition of
set B. Let t ∈ {u + 1, v − 1} be a period inside the subplan. Assume that we
know the value of the following quantities in an optimal planning:

• m: number of machines running at the beginning of period t, before
one decides how many machines m+

t to start in this period, that is, m =
mt−1.

• NC : the sum of the number of the machines running during each period
of BC over the time horizon {t, . . . , v − 1}: NC =

∑
i∈BC :i≥tmi

• N+
E : the sum of the number of machines started over the periods of BE

over the time horizon {t, . . . , v − 1}: N+
E =

∑
i∈BE :i≥tm

+
i

• nE : the number of periods of BE over the time horizon {t, . . . , v − 1},
that is, nE = |BE|

We claim that the entering stock level st−1 of period t in an optimal planning
is fixed for a given vector (t,m,NC , N

+
E , nE). To see why, let us write the flow

conservation on time horizon {t, . . . , v − 1}. We have:

Dt,v−1 + sv−1 = st−1 +
∑v−1

i=t xi
= st−1 +

∑
i∈BC :i≥t xi +

∑
i∈BE :i≥t xi

= st−1 +
∑

i∈BC :i≥tmiU +
∑

i∈BE :i≥t(E −m
+
i w)/p

= st−1 +NCU + (nEE −N+
Ew)/p
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Since sv−1 = 0 as v is a regeneration period, we obtain that:

st−1 = Dt,v−1 −NCU − (nEE −N+
Ew)/p (5.7)

We denote by σt−1(v,m,NC , N
+
E , nE) this quantity. Notice that σt−1 can

be computed in constant time if the cumulative demand Dt,v−1 has been
pre-computed. Vector (t,m,NC , N

+
E , nE) represents the state vector of our

dynamic programming algorithm. For fixed values v and l, we com-
pute C (t,m,NC , N

+
E , nE) the minimal cost of a policy on the time horizon

{t, . . . , v − 1}, such that the inventory level at the end of period v − 1 is null
and the number of running machines is equal to l. To express this cost, we
distinguish between two cases, depending whether t belongs to BC or BE .

t ∈ BC : t is a C−saturated period

If m′ is the number of machines running during period t, by definition the
quantity produced is equal to m′U . In this case, (m′ − m)+ machines are
started at the beginning of period t, incurring a cost of f((m′ − m)+) and
consuming an amount w(m′−m)+ of energy. For the planning to be feasible,
the energy constraint must be satisfied, which implies that pm′U + w(m′ −
m)+ ≤ E must hold. We must also havem′U+st−1 ≥ dt in order to satisfy the
demand at period t. The minimal possible cost of a policy on the remaining
time horizon {t+1, . . . , v−1} is by definition C (t+1,m′, NC−m′, N+

E , nE). Let
us denote by γC(m,m′) the cost incurred at period t, including the start-up
cost of the machines and the variable production cost. We set by convention
γC(m,m′) = +∞ if the energy constraint is violated or the demand cannot be
satisfied in a full production period. We obtain the formula:

γC(m,m′) =


+∞ if m′U + σt−1(v,m,NC , N

+
E , nE) < dt

+∞ if pm′U + w(m′ −m)+ > E
ft((m

′ −m)+) + c̃tm
′U otherwise

We must have by suboptimality:

C (t,m,NC , N
+
E , nE) = min

m′=0,...,M
{γC(m,m′) + C (t+ 1,m′, NC −m′, N+

E , nE)}
(5.8)

t ∈ BE : t is not a C−saturated period but an E−saturated period

Again, knowing the number m+ of machines started in period t, the produc-
tion xt is fixed, since we have pxt + wm+

t = E. We can enumerate all the
possible values of m′ as previously, with m+ = (m′ −m)+. For a given value
of m′, the amount xt produced is equal to (E − w(m′ −m)+)/p. For the plan-
ning to be feasible, we must satisfy demand dt and ensures that the quantity
xt produced is non-negative. It results that we must have dt ≤ st−1 + xt and
xt ≥ 0. The optimal cost on the remaining time horizon till period v is then
equal to C (t + 1,m′, NC , N

+
E − (m′ −m)+, nE − 1). Again we introduce cost



5.5. A polynomial time algorithm for stationary energy parameters 93

γE(m,m′) incurred by period t if it saturates the energy constraint. We have:

γE(m,m′) =


+∞ if (E − w(m′ −m)+)/p+ σt−1(v,m,NC , N

+
E , nE) < dt

+∞ if E − w(m′ −m)+ < 0
ft((m

′ −m)+) + c̃t(E − w(m′ −m)+)/p otherwise

It results that

C (t,m,NC , N
+
E , nE) =

min
m′=0,...,M

{γE(m,m′) + C (t+ 1,m′, NC , N
+
E − (m′ −m)+, nE − 1)} (5.9)

Dynamic programming algorithm

For a given regeneration point v and a given number l of machines running
at the beginning of period v, we compute cost C (t,m,NC , N

+
E , nE) for all pos-

sible state vectors such that t ≤ v using Equations (5.8) and (5.9), by taking
the minimal of both expressions. The basis of the induction is given in period
v by setting:

C (v,m,NC , N
+
E , nE) =

{
0 for vector (v, l, 0, 0, 0)
+∞ otherwise (5.10)

The computation of each cost C (t,m,NC , N
+
E , nE) according to Equa-

tions (5.8) and (5.9) requests to compare O(M) different values of m′, where
each computation for a given m′ can be performed in constant time. The
number of state vectors to consider is bounded by (M + 1)3T 3: t and nE can
take at most T different values, m is clearly bounded by (M + 1) and NC by
(M + 1)T . Parameter N+

E can also take at most (M + 1) different values, since
at mostM machines can be started in a period. Recall that in our setting there
is no incentive to shut down a machine. It results that the number of starts
over the time horizon is bounded by M , since a machine is started at most
once. Hence, the computation of all the costs C (t,m,NC , N

+
E , nE) for a given

pair (v, l) requires O(M4T 3) operations.
Recall that we want to compute the cost S (u, k, v, l) of all possible

subplan (u, v), with k and l being the number of machines running at
the beginning of period u and respectively v. Assume that all the costs
C (t,m,NC , N

+
E , nE) have been computed for pair (v, l). Again, if we know

the state vector (u+ 1,m,NC , N
+
E , nE) reached at period u+ 1, we can deduce

the quantity xu produced in period u and the numberm+
u of machines started

in period u. Indeed, we have xu = du + σu(v,m,NC , N
+
E , nE) and, clearly,

m+
u = (m − k)+. In order to be feasible, the production must respect the ca-

pacity available and the energy limitation. With our convention that the cost
γR(k,m) is infinite if the constraints are violated in period u, we have:

γR(k,m) =


+∞ if du + σu(v,m,NC , N

+
E , nE) > mU

+∞ if p(du + σu(v,m,NC , N
+
E , nE)) + w(m− k)+ > E

fu((m− k)+) + c̃u(du + σu(v,m,NC , N
+
E , nE)) otherwise
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This cost γR(k,m) can be computed in constant time if the value σu of the
stock level is known. The cost S (u, k, v, l) of the subplan starting at period u
with k machines running can be obtained as:

S (u, k, v, l) = min{γR(k,m) + C (u+ 1,m,NC , N
+
E , nE)

| 0 ≤ m ≤M, 0 ≤ NC ≤MT, 0 ≤ N+
E ≤M, 0 ≤ nE ≤ T} (5.11)

Hence, computing S (u, k, v, l) for a given subplan can be performed in
time O(M3T 2). Computing this cost for all the subplans (u, k, v, l) represents
a computation effort in O(M5T 4), since we have in total O(M2T 2) subplans
to consider. Notice that this complexity dominates the computation com-
plexity in O(M4T 3) of determining the costs C (t,m,NC , N

+
E , nE). The final

complexity of the algorithm is thus in O(M5T 4) time. We have the following
result:

Theorem 12 Problem energy-LSP can be solved in polynomial time in O(M5T 4) if
energy parameters p, w and E are stationary.

Recall that Theorem 11 shows that the problem becomes NP-hard if the
unit production energy consumption p is allowed to be time-varying. In the
next section, we generalize the problem by considering a joint set-up cost for
production, and a running cost and a running energy consumption incurred
by each machine which is not turned off.

5.6 Extensions

In the previous sections, there was no incentive to shut down a machine due
to the cost structure we considered. This may be quite unrealistic, since an
idling machine that is not switched off may incur some costs, and eventually
may consume some energy. Also, only start-up costs are considered in the
previous sections, whereas starting a production (on a machine already run-
ning) usually incurs a fixed set-up cost. In this section we extend our results
by including the following parameters in our model:

rt: running cost, incurred by each machine running during period t. This
cost is incurred whether the machine is producing or is idle. Notice that
an additional cost of c̃tx is still to be paid if a machine produces x units
during period t.

gt: running energy consumption, which represents the energy consumed
by a machine running during period t. In the same way, this energy
is consumed whenever the machine is not turned off. Notice that if a
machine produces x units during period t, it consumes an additional
ptx amount of energy.

Kt: joint set-up cost for producing in period t, whatever the number of ma-
chines used.
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We first provide complexity results considering separately each of these
three new parameters. We show that problem energy-LSP becomes NP-hard
on a single resource if one of these parameter is not null. Then we show how
the polynomial time algorithm given in Section 5.5 can be modified to fit with
this more general problem when energy parameters are stationary.

5.6.1 Complexity result for non-null running costs

We consider that, for each machine running during period t, a cost rt has to
be paid, whether it produces or not. The costs incurred at a given period t
where a quantity xt is produced in the system with mt machines running,
are now equal to ft(m+

t ) + ctxt + htst + rtmt, where m+
t is as before the num-

ber of machines started at the beginning of the period, and st the stock level
at the end of the period. Karmarkar, Kekre, and Kekre, 1987 proposed an
O(T 2) time algorithm for a special case of our problem, considering a single
uncapacitated machine and without energy consideration. Next theorem es-
tablishes that problem energy-LSP with running costs is NP-hard even for a
single machine. This result strengthens Theorem 11 where the number M of
machines is part of the inputs.

Theorem 13 Problem energy-LSP with running costs is NP-hard, even for a single
machine and null start-up energy consumption (w = 0).

Proof. The reduction is made from the capacitated lot-sizing problem (CLSP),
which has been shown to be NP-hard by Florian, Lenstra, and Rinnooy Kan,
1980b. In a CLSP instance, the amount that can be produced in each period is
limited by a capacity C ′t. We also have a set-up cost K ′t to be paid if a positive
quantity is produced in period t. Let c′t, h′t and d′t be the unit production cost,
unit holding cost and the demand of CLSP instance I ′, respectively, on a time
horizon of T ′ periods. It is asked whether a feasible schedule of total cost at
most Z exists. The complexity proof of Florian, Lenstra, and Rinnooy Kan,
1980b allows us to assume that h′t = 0 and that the c′t are non-increasing, that
is, they obey a non-speculative cost structure. We can also restrict ourselves
to the instance with non-null capacities. We transform instance I ′ of CLSP
into an instance I of energy-LSP as follows:

• We have T = 2T ′ periods, indexed from 1 to T .

• We have a single machine of stationary capacity U = maxtCt.

• The amount of energy available in each period is E = Πt=1,...,TCt

• The amount of energy required to start a machine is null, w = 0

• It is asked if a feasible planning of cost at most Z exists

In the instance I of energy-LSP, we distinguish between odd and even peri-
ods. We set the value of the different parameters as follows:
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t dt ft ct ht pt rt
2t′ − 1 dt′ Kt′ ct′ 0 E/Ct′ 0
2t′ 0 0 0 0 0 Z+1

Notice that in each odd period 2t′−1, the production is limited by E/pt =
Ct′ due to the limited amount of energy available. Basically, an odd period
t = 2t′− 1 in instance I plays the role of period t′ in instance I ′, whereas even
periods force to shut-down the machine, since the running cost rt in these
periods exceeds Z. It is immediate to check that I is positive if and only if
instance I ′ is positive. �

5.6.2 Complexity result for non-null running energy con-
sumption

We consider that a machine that is not turned off consumes some energy even
if it does not produce. This running energy consumption parameter reflects
practical situation where a non-negligible amount of energy is required to
keep a machine ready or on standby, for instance to maintain the temperature
of a furnace. It involves that in each period, one has now to arbitrate how to
share the available amount E of energy between 3 activities, namely the start
of machines, the effective production and keeping the machines on running.
In the formulation given in Section 5.3, the energy constraint (3) at a period
t becomes ptxt +wtm

+
t + gtmt ≤ E. Again, the problem becomes NP-hard on

a single machine when considering running energy consumption:

Theorem 14 Problem energy-LSP with running energy consumption is NP-hard,
even for a single machine and null start-up energy consumption (w = 0).

We can use the same reduction as in the proof of Theorem 13. In order to
force the shut-down of the machine during the even periods we simply set
the running consumption parameter gt equal to E + 1.

5.6.3 Complexity result for non-null joint setup costs

In lot-sizing literature, it is common to consider that a positive production
at a period incurs a setup cost, representing typically the efforts and mate-
rials requested to prepare the machines. We assume here a joint setup cost
for the system: A positive production at a period t incurs a fixed setup cost
Kt, whatever the amount produced and the number of running machines.
Hence, if xt > 0, the costs to be paid for period t are ft(m+

t ) + ctxt + htst +Kt.
Otherwise, if no production takes place, the costs reduce to htst. We have the
following result:

Theorem 15 Problem energy-LSP with a joint setup cost is NP-hard, even on a
single machine with null start-up energy consumption (w = 0) and null start-up
cost (f = 0).
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Proof. Once again, the reduction is made from the capacitated lot-sizing
problem. Using the same notations as in the proof of Theorem 13, the in-
stance I ′ of CLSP is transformed into an instance I of energy-LSP as follows:

• We have T = T ′ periods, indexed from 1 to T .

• We have a single machine of stationary capacity U = maxtC
′
t.

• The amount of energy available in each period is E = Πt=1,...,TC
′
t

• The amount of energy required to start the machine is null, w = 0

• The cost to start the machine is null, ft = 0

• The unit energy consumption is pt = E/C ′t

• The setup costs are identical to the setup costs of instance I ′, Kt = K ′t

Notice that, in instance I of energy-LSP, the quantity xt that can be produced
in period t is limited by min{U,E/pt} = C ′t. It results that instance I is posi-
tive if and only if instance I ′ of CLSP is positive. �

Bitran and Yanasse, 1982b establish other NP-hardness results for differ-
ent variants of CLSP. In particular, the authors show that even with null
holding and null unit production costs (and hence obeying non-speculative
motives), problem CLSP remains NP-hard when the setup costs and the
production capacities are both non-increasing or both non-decreasing over
time. With the previous transformation, this result immediately translates to
energy-LSP: Problem energy-LSP is NP-hard even in the special case of null
holding and null unit production costs, if joint setup costs are non-increasing
and unit energy consumption are non-decreasing, or vice-versa.

5.6.4 Polynomial time algorithm for running cost, joint setup
cost and running energy consumption case

We finally consider the general version of energy-LSP including all three pa-
rameters, that is, running cost, joint setup cost and running energy consump-
tion. We show that when all the energy parameters p, w, g and E are station-
ary, the problem is still polynomially solvable. Introducing a binary variable
yt to indicate the periods with a positive production, the formulation of the
problem can be written as follows:
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min
∑T

t=1(ft(m
+
t ) + ctxt + htst + rtmt +Ktyt)

s.t. st−1 + xt = st + dt ∀t ∈ {1..T} (11)

xt ≤ Umt ∀t ∈ {1..T} (12)

pxt + wm+
t + gmt ≤ E ∀t ∈ {1..T} (13)

mt = mt−1 +m+
t −m−t ∀t ∈ {1..T} (14)

mt ≤M ∀t ∈ {1..T} (15)

xt ≤ UMyt ∀t ∈ {1..T} (16)

st ≥ 0, xt ≥ 0, yt ∈ {0, 1},mt ∈ Z+,m+
t ∈ Z+,m−t ∈ Z+ ∀t ∈ {1..T} (17)

Constraint (16) forces variable yt to be equal to 1 if the quantity xt
produced in period t is positive. Notice that UM is an upper bound of the
quantity that can be produced in any period. Recall that we assume non
speculative motives, that is, c̃t ≡ ct+(ht+· · ·+hT ) is non-increasing over time.

One important difference with the basic model introduced in Section 5.3
is that now each running machine incurs a cost and consumes energy, even
if it is not producing units. As a consequence, an optimal solution may have
to switch off some machines in a period to start them again latter, in order
to save their running costs and to limit their energy consumption. Another
difference is that, due to economies of scale induced by the joint setup costs,
there can be periods with null production even if the number of running
machines is positive and with a demand to satisfy. As a result, Property 15
must be slightly modified for our generalized model.

Property 16 In a dominant solution, each period t is either:

• a regeneration point, that is, st−1 = 0

• or C−saturated, that is, xt = mtU

• or E−saturated, that is, pxt + wm+
t + gmt = E

• or a null production period, that is, xt = 0

It implies that a period t with both a positive entering stock (st−1 > 0) and
a positive production (xt > 0) is either C−saturated or E−saturated. The
proof is similar to the proof of Property 15, by considering a period t with a
positive production (hence the joint setup cost is already paid for): Due to
the non-speculative cost structure, postponing the production of one unit
carried in the entering stock to period t cannot increase the cost of the solu-
tion. As a consequence of Property 16, only the first period of a subplan can
have a production that does not saturate constraints (12) and (13). Note that
a null production period may also occur if all the machines are switched off.
This is a special case of a C−saturated period, withmt = 0 and xt = mtU = 0.
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We explain in the remainder of this section how the dynamic program-
ming algorithm proposed in Section 5.5 can be slightly modified to solve this
more general problem, to obtain the following result:

Theorem 16 Problem energy-LSP with running costs, joint setup costs and run-
ning energy consumption can be solved in polynomial time in O(M6T 6) if energy
parameters p, w, g and E are stationary.

We point out the modifications by following the structure of Section 5.5
where the initial version of our dynamic programming algorithm is pre-
sented. Recall that we compute the optimal cost S (u, k, v, l) of each possi-
ble subplan, using a state vector (t,m,NC , N

+
E , nE) to determine the optimal

costs C (t,m,NC , NE, N
+
E , nE) over the time horizon {t, . . . , v − 1} inside a

given subplan.

Optimal cost of a subplan (u, v)

The main modification of the algorithm is the enlargement of the state vec-
tor by the addition of a new component NE , which represents the sum of the
number of machines running during each period of BE over the time horizon
{t, . . . , v − 1}, that is, NE =

∑
i∈BE :i≥tmi. Notice that NE is the counterpart

of NC for the periods of BE . This new component is necessary to be able to
evaluate the entering stock level of a period in our dynamic programming al-
gorithm, as explained below. Consider the state vector (t,m,NC , NE, N

+
E , nE)

associated with a period t inside the subplan (u, v). Using the conservation
of the flow over the time interval {t, . . . , v − 1}, we have:

Dt,v−1 + sv−1 = st−1 +
∑v−1

i=t xi
= st−1 +

∑
i∈BC :i≥t xi +

∑
i∈BE :i≥t xi

= st−1 +
∑

i∈BC :i≥tmiU +
∑

i∈BE :i≥t(E −m
+
i w −mig)/p

= st−1 +NCU + (nEE − wN+
E − gNE)/p

Since sv−1 = 0, as v is a regeneration point, we obtain that the entering
stock level at period t is equal to:

st−1 = Dt,v−1 −NCU − (nEE − wN+
E − gNE)/p

Slightly abusing the notation, we denote by σt−1(v,m,NC , NE, N
+
E , nE) this

quantity.

Another modification of the algorithm is that, due to Property 16, a period
inside a subplan (u, v) may be never C-saturated nor E-saturated, but a null-
production period. Hence, when computing cost C (t,m,NC , NE, N

+
E , nE),

we now need to distinguish between 3 cases, depending whether t belongs
to BC , BE or is a null production period.
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t ∈ BC : t is a C-saturated period.

Since the modified energy constraint pm′U + w(m′ − m)+ + gm′ ≤ E must
hold, the new formula to evaluate γC(m,m′) taking into account the setup
and running costs is:

γC(m,m′) =


+∞ if m′U + σt−1(v,m,NC , NE, N

+
E , nE) < dt

+∞ if pm′U + w(m′ −m)+ + gm′ > E
ft((m

′ −m)+) + c̃tm
′U +Kt1{m′} + rm′ otherwise

Where 1{z} is the indicator function, equals to 1 if z > 0 and to 0 otherwise. It
results that:

C (t,m,NC , NE, N
+
E , nE)

= min
m′=0,...,M

{γC(m,m′) + C (t+ 1,m′, NC −m′, NE, N
+
E , nE)}

t ∈ BE : t is a E−saturated period and not a C−saturated period

Again some changes appear: the amount xt produced is now equal to (E −
wm+

t − gm′)/p. Hence γE(m,m′) is given by:

γE(m,m′) =


+∞ if (E − w(m′ −m)+ − gm′)/p

+σt−1(v,m,NC , NE, N
+
E , nE) < dt

+∞ if E − w(m′ −m)+ − gm′ < 0
ft((m

′ −m)+) + c̃t(E − w(m′ −m)+ − gm′)/p
+Kt1{E−w(m′−m)+−gm′} + rm′ otherwise

It results that:

C (t,m,NC , NE, N
+
E , nE)

= min
m′=0,...,M

{γE(m,m′) + C (t+ 1,m′, NC , NE −m′, N+
E − (m′−m)+, nE − 1)}

t /∈ BC ∪BE : t is a null production period

The value of xt is by definition equal to 0. We must ensure that the entering
stock level is greater than or equal to the demand in t for the planning to be
feasible. Notice that it is possible to start some machines during period t and
to keep some other running, even if no unit is produced. Hence we must also
ensure that the energy constraint is not violated. The cost γN(m,m′) incurred
by a null production period t is given by:

γN(m,m′) =


+∞ if σt−1(v,m,NC , NE, N

+
E , nE) < dt

+∞ if w(m′ −m)+ + gm′ ≥ E
ft((m

′ −m)+) + rm′ otherwise
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The optimal cost on the remaining time horizon till period v is equal simply
to C (t+ 1,m′, NC , NE, N

+
E , nE). It results that

C (t,m,NC , NE, N
+
E , nE) = min

m′=0,...,M
{γN(m,m′)+C (t+1,m′, NC , NE, N

+
E , nE)}

Complexity of the algorithm.

The number of state vectors (t,m,NC , NE, N
+
E , nE) to consider in a given sub-

plan is bounded by ((M + 1)4T 5). Indeed, the new component NE can take
at most (M + 1)T values, in the same way as NC . Moreover, the feasible set
of N+

E is also enlarged. Recall that N+
E is the sum of the number of machines

started in each period of BE over {t, . . . , v − 1}. Without running costs nor
running energy consumption, we only have M possibilities, since a machine
is started at most once in a dominant planning. This is not true anymore
in our extension: In a period one can switch off all the machines and later
the same machines can be switched on again. Hence, the number of pos-
sible values for N+

E increases to (M + 1)T possibilities. As a consequence,
the computation of all the costs C (t,m,NC , NE, N

+
E , nE) for a given pair (v, l)

requires O(M5T 5) operations. Considering all pairs (v, l), the final complex-
ity becomes O(M6T 6). Recall that the optimal cost S (u, k, v, l) of a subplan
starting at period u with k machines running, is computed using the expres-
sion:

S (u, k, v, l) = min{γR(k,m) + C (u+ 1,m,NC , NE, N
+
E , nE)

| 0 ≤ m ≤M, 0 ≤ NC , NE, N
+
E ≤MT, 0 ≤ nE ≤ T}

Where γR(k,m) is defined by:

γR(k,m) =


+∞ if du + σu(v,m,NC , NE, N

+
E , nE) > mU

+∞ if p(du + σu(v,m,NC , N
+
E , nE)) + w(m− k)+ + gm > E

fu((m− k)+) + c̃u(du + σu(v,m,NC , N
+
E , nE))

+Ku1{du+σu(v,m,NC ,N
+
E ,nE)} + rum otherwise

Hence, for a given subplan, cost S (u, k, v, l) can be computed in time com-
plexity O(M4T 4). Since we have O(M2T 2) 4-uplet (u, k, v, l) to consider, we
obtain the overall complexity claimed in Theorem 16. We can remark that
with null running energy consumption (g = 0), we do not need to incor-
porate NE in the state vector. In this case the complexity of the algorithm
reduces to O(M5T 5).

5.7 Conclusion

In this chapter, we have investigated a new energy-aware lot-sizing prob-
lem, where the amount of energy available in each period is limited. In the
system under study, different activities consume energy, from turning on a
machine, keeping it on running, to the effective production of goods. Hence,
in each period, one has to arbitrate the use of energy between the increase of
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system capacity by starting up machines and keeping them running, and the
effective production of units. We have established that problem energy-LSP
is NP-hard, even in very restricted cases with null production cost and null
holding costs. We have also shown that the problem is polynomially solv-
able if all energy consumption parameters are stationary. We have proposed
an O(M6T 6) algorithm based on dynamic programming for the most gen-
eral case studied in this article, including running costs, joint setup costs and
running energy consumptions.
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Conclusion

In this thesis we have studied several multi-level lot-sizing problems with
capacities. Such problems are particularly important in supply chain man-
agement and production flow problems, which require effective inventory
management. We have been focusing on problems with capacities at each
level, which reflects the fact that some restrictions usually occur in practice,
due to transportation or warehouse handling capacities.

In Chapter 2, we have considered a 2-level in series lot-sizing problem
with identical capacities at both level. A new cost structure called path non-
speculative has been introduced, generalizing the non-speculative property
of Wagner-Whitin. We have defined a class of new policies, named double-
nested, which states that if the second level orders at full capacity, the first
level also does. We established that double-nested policies are dominant for
our problem. We have proposed an exact algorithm running in O(T 5) time
when setup costs are non-increasing at the first level. Assuming echelon non-
speculative motives at both levels, the complexity is reduced to O(T 3).

We think that our algorithm could be used as the basis of approximation
algorithms or heuristics to solve problems with different capacity values
C1 and C2. Such problems can be divided in two cases depending on the
values of C1 and C2. In the case where C1 > C2, the manufacturer has a
greater production capacity than the retailer. This invalidates the dominance
of double-nested policies (Property 3) since the productions will tend to be
gathered at the manufacturer, to get economies of scale and to reduce the
number of periods for which a setup cost is paid. A simple heuristic can be
designed by setting the capacity at the retailer as C̄1 = C2. The problem is
then over-constrained, which implies that the resulting solution is feasible
for the initial problem. It is then possible to re-optimize the solution by fixing
all productions at the retailer in the solution, and by regrouping productions
at the manufacturer by solving a single level lot-sizing problem with the true
manufacturer capacity C1. With a greater capacity at the retailer, similarly to
the previous case, Property 2 is invalidated since productions at the retailer
will tend to be gathered. We can consider the same two-phase approach
by setting C̄2 = C1. It would be interesting to study through numerical
experiments if this two-phase simple heuristic provides efficient solutions.

In Chapter 3, we have considered the M-LSP-B with a number of levels N
which is part of the input, and for which deliveries are done using batches
of size C, typically the capacity of a container. The number of batches which
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can be ordered is also limited. We have proposed an exact algorithm running
in O((N2 + log T )T 3) under some particular cost structure. This model ex-
tends Chapter 2, however, our algorithm does not work without considering
non-speculative motives at each level, so the problem considered of second
chapter is not a particular case of this one.

The low complexity of our algorithm encourages us to think that some of
our assumptions on the parameters and the cost structure may be relaxed to
deal with more general distribution networks, as we did in §3.5 when consid-
ering non-null setup costs at the first level. One direction of future researches
would be to extend our algorithm by allowing backlogging of the demand, as
studied by Van Vyve, 2007 on a single level. Another direction is to consider
that the size of a batch may be different from one level to another. As far as we
know, the status of the problem with a fixed number of different batch sizes
is open. Finally, another extension would be to consider inventory bounds
on the number of batches that can be stored at a level from one period to an-
other, in addition to the limit of the number of batches one can order. Observe
that under our assumptions, we have established that less than C units are
carried in stock in a dominant policy at any level, except the last one. Hence,
introducing an inventory bounds at the last level seems particularly relevant.
Finally, one can investigate if our approach considering induced connected
components can be used to approximate more general distribution networks
or different structures of distribution not in series. While the class of poli-
cies admitting a box decomposition is certainly not dominant anymore, we
can study if, under some assumptions, it may lead to a solution with proven
performance guarantee.

In Chapter 4 we have provided NP-hardness results for M-ULSP-B when
batch sizes are stationary and level-dependent, as well as for M-CLSP with
level-dependent capacities. We have then proposed a 2-approximation al-
gorithm for M-ULSP-B where batch sizes are time-dependent and level-
dependent. The principle of the algorithm is to sandwich the FTL procure-
ment cost by two affine functions. This process has been reused to approxi-
mate the M-CLSP with level-dependent capacities Ci, but under the assump-
tions of non-increasing setup costs and non-speculative motives.

The complexity of the latter problem is, however, an open question. It
could be an interesting track for further research. The sandwich method
could be reused for other problems with complex cost functions. We are cur-
rently trying to answer these questions, in collaboration with Albert Wagel-
mans and Wilco van den Heuvel, from Erasmus University Rotterdam.

Finally, in Chapter 5, we have studied a single-level lot-sizing problem
under a periodic limit on energy consumption. The system is composed of
identical machines working in parallel. At each period it must be decided
how many machines to switch on or off. Turning a machine on increases
the production capacity of the system, but incurs a start-up cost and con-
sumes energy. Therefore, this shows a kind of similarity with problems with
batch deliveries, except that the capacity is maintained at the subsequent pe-
riods. In this problem we consider that energy is a scarce resource, that is, in
each period the amount of available energy is limited. NP-hardness results
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were provided under restrictive assumptions, and a polynomial time exact
dynamic algorithm was proposed, inO(M5T 4) time, assuming stationary en-
ergy parameters. The model is also generalized to take in account joint setup
costs, running costs and running energy consumption due to machines that
remains on. In the literature, very few studies integrate energy issues into
the lot sizing problem from a theoretical point of view. This work is among
one of the first attempts to study such production problem.

Among the different perspectives of this work, one can investigate if effi-
cient approximation algorithms can be developed for energy-LSP with time-
dependent energy parameters. Exact approaches for the problem, through
polyhedral studies and the design of new cuts, would also be of interest.
One extension of our model is to distinguish among more than two possible
states for a machine (either turned off or running in our study). In many
situations, an idle machine can be put on a standby or sleep state, where it
consumes less energy than in a running state, but may require an additional
warm-up cost/energy consumption to resume. There can also exist different
production modes on a machine, each one with a given processing speed and
a given energy consumption. That is, the production capacity of a machine
can be modulated with its energy consumption level. It would be interesting
to see if our model can be extended to capture such different energy con-
sumption levels/states of the machines.

More generally, energy consumption limitations could be introduced on
multi-level lot-sizing problems for further research. Production lines or sup-
ply chains may be subject to periodic limitation on the amount of available
energy, for instance to reduce the emission of greenhouse gases and pollution
impact. The study of such problems would be an interesting perspective as a
merge of the different chapters of this thesis.
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Appendix A

The other possible structures of
retailer subplans, §2.4.3

A.1 Subplan located at the beginning of a con-
nected component

FIGURE A.1: Subplan located at the beginning of a connected
component with x2

u < x1
u

FIGURE A.2: Subplan located at the beginning of a connected
component with x2

u = x1
u

We consider a subplan (u, v) such that u = r and v − 1 < s, that is (u, v) is
the first (but not last) subplan of a connected component [r, s]. There are two
different possible structures for such a subplan, depending on the values of
x1
u and x2

u.
Recall that the amount produced at the manufacturer at period u is
x1
u = σsu ≡ Du,s mod C and the amount of outgoing stock at period v is
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σsv ≡ Dv,s mod C. Notice that x2
u ≤ x1

u and thus x2
u is fractional if x1

u < C.
There are two possible cases for the value of x2

u:

Case x2
u < x1

u (see Figure A.1). It implies that x2
u is fractional and s1

u > 0,
whether u is a full production or not. As a result, there can’t be another
fractional production at the retailer between periods from u + 1 to v due to
Property 5. All other periods, from u+1 to v are either full production periods
at both levels (due to Property 4), or periods with no production at both level
(due to nested policy). Consequently the stock is maintained until v and we
have s1

u = σsv and x2
u = x1

u−σsv. Hence the amount of stock at the manufacturer
is fixed so the inventory costs at the manufacturer, the production costs at
period u as well as their induced inventory costs at the retailer can be directly
computed. The cost H(u, u) is thus equal to:

H(u, u) = σsv(h
1
u + · · ·+ h1

v−1) +K1
u + p2

u(x
1
u) +K2

u + p2
u(x

1
u − σsv)

After decrementing the demands totally or partially satisfied by the units
produced in u, the problem consists in satisfying the remaining demand at
a minimum cost by locating periods with full productions at both levels. It
can be reduced to a discrete CLSP problem and can be solved in O(T ).

Case x2
u = x1

u (see Figure A.2). It implies that s1
u = 0. As (u, v) is not the

last retailer subplan of (r, s), there must be an outgoing stock at the end of
the subplan. Hence a fractional production must occur at a period k located
between periods u + 1 and v. x2

k has to be supplied by a full production
in k (Property 3), thus there is a stock at the end of period k. This stock
is maintained until period v and we have s1

k = σsv and x2
k = C − σsv. In a

similar way to the first case, inventory costs at the manufacturer as well as
the production costs in u and in k can be directly computed and the demands
satisfied by units produced in u and k decremented. The cost H(u, k) is thus
equal to:

H(u, k) = σsv(hk + · · ·+hv−1) +K1
u +p1

u(x
1
u) +K2

u +p2
u(x

1
u) +K1

k +p1
k(C) +K2

k

+ p2
k(C − σsv)

The problem consists then in satisfying the remaining demand at a
minimum cost by locating periods with full productions at both levels. It
can be reduced to a discrete CLSP problem and can be solved in O(T ). To
find the value of k which minimize the cost of (u, v), the subplan have to be
evaluated for values of k from u + 1 to v. It can be done in linear time with
the algorithm of van Hoesel and Wagelmans (1996) once the subplan has
been evaluated for a given value of k.

To find the minimum cost of a retailer subplan (u, v) located at the begin-
ning of a connected component, the algorithm pick the minimum value of
the optimal subplans found for the two possible structures presented above.
Hence the overall total complexity is in O(T ).
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Subplan located at the end of a connected compo-
nent

FIGURE A.3: Subplan located at the end of a connected compo-
nent

We consider the last (but not first) subplan (u, v) of a connected compo-
nent [r, s], with r < u and v − 1 = s. Such a subplan has an entering stock σsu
at the manufacturer in u and no outgoing stock in v−1 (see Figure A.3). Since
σsu 6= σsv, it follows that a fractional retailer production must occur at a period
k located between u and v − 1 and we have x2

k = σsu. There can’t be a second
fractional production period at the retailer on the subplan because it would
create a positive inventory which would necessarily be maintained until the
end of the subplan while the outgoing stock must be null. Once again fixed
costs are immediately determined and demands satisfied by units produced
in k are decremented. The cost H(k, k) is thus equal to:

H(k, k) = σsu(h
1
u + · · ·+ h1

k−1) +K2
k + p2

k(σ
s
u)

The problem consists then in satisfying the remaining demand at a minimum
cost by locating periods with full productions at both levels which can be
reduced to a discrete CLSP problem and can be solved in O(T ).
To find the value of k which minimize the cost of (u, v), the subplan have to
be evaluated for values of k from u to v. It can be done in linear time with the
algorithm of van Hoesel and Wagelmans (1996) once the subplan has been
evaluated for a given value of k.
Notice that such a subplan can be treated as a an inside subplan, that is a
subplan with positive entering and outgoing stock, by simply stating that
σsv = 0.

Subplan forming an isolated connected component

We consider a retailer subplan forming an isolated connected component,
with u = r and v − 1 = s. Such a subplan has neither entering stock in u nor
outgoing stock in v − 1 (see Figure A.4). There are fractional productions at
both levels in u (except if Du,v mod C ≡ 0), which are x1

u = x2
u ≡ Du,v mod C

and the other productions are full productions at both levels and are placed
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FIGURE A.4: Retailer subplan forming an isolated connected
component

according to the greedy algorithm from van Hoesel in O(T ). The cost H(u, u)
is thus equal to:

H(k, k) = K1
u + p1

u(x
1
u) +K2

u + p2
u(x

1
u)

Another fractional production period at the retailer would create a positive
inventory which would necessarily be maintained until the end of the sub-
plan while the outgoing stock must be null.
Notice that such a subplan can be treated as a an inside subplan, that is a
subplan with positive entering and outgoing stock, by simply stating that
σsu = 0 = σsv = 0.
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Appendix B

Proof of the dominance of FUFD
policies, §3.2

In this appendix, we prove that policies obeying Properties 7, 8 and 9 are
dominant for problem M-LSP-B. Consider an optimal policy π observing
Property 7. We have to establish that we can choose π such that, for any
level i < N and for any period t > 1, the two following conditions hold:

(C1) sit−1 < C

(C2) (xit mod C) 6= 0 ⇒ (xi+1
t mod C) 6= 0

As noticed in §3.2, the fact that bxitcC ≥ bx
i+1
t cC is then a direct consequence

of Property 7 and of the upper bound given by Condition (C1) on the stock
level. Assume that policy π does not satisfy Property 8 or Property 9. Let t be
the last period such that one of the two conditions (C1) or (C2) is violated,
and let i ∈ {1, ..., N − 1} be the most upstream level such that sit−1 ≥ C or xit
(mod C) 6= 0 and xi+1

t (mod C) = 0. Observe that both cases cannot occur
simultaneously, since sit−1 ≥ C obviously implies that there is an entering
stock at node (i, t), and xit (mod C) 6= 0 means by definition that (i, t) is
a fractional ordering period. As a consequence, since policy π satisfies
Property 7, at least one of the two conditions (C1) and (C2) are verified in
each node. We distinguish between 2 cases, depending if Condition (C1) or
Condition (C2) is violated at node (i, t).

Case 1. Assume that Condition (C1) is violated at (i, t), that is, we have
sit−1 ≥ C. Firstly, we show that there exists a path between the source node
(0, 0) and node (i, t), going forward in time, such that the flow on this path
is always greater than or equal to C. The units in stock entering node (i, t)
must have been ordered at some previous periods at level i, since we assume
no initial inventory. Let t′ < t be the last ordering period at level i before t.
Since no units are ordered between t′ and t, we clearly have sit′ ≥ sit−1 ≥ C.
In particular, the in-going flows of node (i, t′) sum-up to at least C units.
Observe that if only a fractional batch is ordered at period t′ (xit′ < C), the
entering stock at (i, t′) need to be positive to obtain an outgoing stock of C or
more units, contradicting Property 7. Hence, we can assert that at least one
full batch is ordered at node (i, t′). As a result, at least C units must enter
node (i− 1, t′). In the same way, the last ordering period t′′ ≤ t′ at level i− 1
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FIGURE B.1: Initial solution π: the nested property is violated
in (i, t)

orders at least one full batch. We can exhibit this way, going up till level 1, a
path σ with at least C units of flow rooted on each arc in solution π.

Secondly, we show that part of this flow can be rerooted, without increas-
ing the total cost of the policy. We consider the alternate policy π′ where
C units of flow along path σ are rerouted on path ((0, 0), (1, t), . . . , (i, t)). It
corresponds to postpone the ordering of one full batch along σ to period t
at each level j = 1, . . . , i. Due to our assumptions (A1) on echelon non-
speculative motives and (A2) on the monotony of the fixed cost per batch, see
§3.1, the cost of policy π′ cannot be greater than the cost of policy π. We must
check that policy π′ is feasible, which boils down to verify that the number of
batches ordered at period t at a level j ≤ i does not exceed the upper bound
mj
t . Consider policy π. Due to our choice of period t, we have sit−1 ≥ C and

sit < C. It results that xi+1
t > xit. Moreover, due to Property 7, period t is a full

ordering period at level i. Hence, we have xit = βC for some integer β. The
conservation of the flows at node (i, t) implies that level i + 1 orders at least
one more batch than level i at period t, and thus we have mi+1

t ≥ β + 1. Due
to our assumption (A3), it results that mj

t ≥ β + 1 for all j = 1, . . . , i. Now,
due to our choice of i, all the nodes (j, t) for j < i verify conditions (C1) and
(C2), and have an outgoing stock lower than C. As a consequence, only full
batches are ordered at all the upstream levels, and we have xjt ≤ βC. We
can conclude that one additional batch can be ordered at each level without
violating the constraint on the maximum number of batches.

Hence, we have obtained a feasible policy π′, of cost at most the cost of
π. Observe that policy π′ still obeys Property 7 since only full batches have
been postponed. Also observe that policy π′ is identical to π for periods
subsequent to t, and thus conditions (C1) and (C2) are verified in policy π′

by all the nodes after period t and by all the nodes at period t at the levels
{1, . . . , i}, level i included.
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FIGURE B.2: Solution π1: the fractional batch in (i, t) is shifted
to period t′. Property 7 becomes violated in (i, t′)

FIGURE B.3: Solution π2: part of the orders at level i and peri-
ods t1 and t2 are shifted to period t′. The entering stock in (i, t′)

vanishes.
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FIGURE B.4: Solution π3: the order of one full batch is post-
poned from t2 to t′ at levels (1, ..., i− 1)

Case 2. Assume that Condition (C2) is violated at (i, t), that is, xit mod
C > 0 and xi+1

t mod C = 0 (see Figure B.1). We can write xit = βC + α, with
β ∈ Z+ and 0 < α < C, which corresponds to set β = bxitcC and α = xit mod C.
On one hand, due Property 7, there is no entering stock in (i, t). Hence, the
conservation of the flow at node (i, t) implies that xi+1

t ≤ xit. On the other
hand, due to our choice of t, we have sit < C, which implies that xi+1

t > xit−C.
Since period t is a full ordering period at level i+ 1, we thus have xi+1

t = βC
and sit = α.

Consider the first period t′ > t such that xit′ < xi+1
t′ . Observe that for all

periods τ , t < τ < t′, the entering stock in (i, τ) is lower than or equal to the
outgoing stock. As sit = α, this implies that the flow on the inventory arcs
between periods t and t′ is greater than or equal to α. In particular, sit′−1 > 0,
which implies due to Property 7 that the ordering in (i, t′) is not fractional,
that is, xit′ = β′C, with β′ ∈ Z+. Since xit′ < xi+1

t′ by our choice of t′, one more
batch is ordered in (i + 1, t′) compared to (i, t′). As a consequence, we have
mi
t′ ≥ mi+1

t′ ≥ β′ + 1 : It is thus possible to order an additional batch at node
(i, t′). We consider the alternate policy π1 where the ordering of the fractional
batch of α units is postponed from node (i, t) to node (i, t′). It consists in
rerouting α units of flow on the inventory arcs between periods t and t′ from
level i to its upstream level i− 1. The limit of number of batches is respected
and thus policy π1 is feasible. Moreover, since echelon non-speculative mo-
tives are assumed at level i and setup costs are non-increasing in time, this
postponing cannot increase the cost of the solution.

However, Property 7 may be violated in policy π1 at node (i, t′), since a
fractional batch is now ordered at this node. On the contrary, notice that
Corollary 1 is still satisfied, as the order xi+1

t′ at node (i + 1, t′) is fractional.
To ensure that Property 7 still holds for all periods τ > t, solution π′ has to
be modified. Consider the initial solution π and let {t1, t2, .., tK} be the set
of periods located between t and t′ such that more units are ordered at level
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i than at level i + 1. In Figure B.1, we have a set of periods {t1, t2}. Notice
that periods tk’s correspond to all the ordering periods between t and t′ at
level i, except the ones for which the same amount is ordered at both levels,
which do not modify the inventory level. Due to Property 7, {t1, t2, .., tK}
are full ordering periods at levels i and fractional ordering periods at level
i + 1, since the difference in the quantity ordered at two consecutive levels
at a given period cannot exceed C − 1 units (Property 8). Hence, for each
period τ ∈ {t1, t2, .., tK}, we can assume that xi+1

τ = βτC − ατ , with βτ ∈ Z+

and 0 < ατ < C. Consequently, an amount of stock ατ is stored at the end
of period τ , and these units are kept in stock until period t′. As a result,
if set {t1, t2, .., tK} is not empty, Property 7 is violated in π′ at node (i, t′),
where there is a positive entering stock and a fractional order (see Figure B.2).
We consider the alternate solution which postpones the ordering at periods
(i, τ) of the ατ units for all τ ∈ {t1, t2, .., tK}, to order them in (i, t′). Let
π2 denotes this solution (see Figure B.3). After these shifts, we have xit′ =
β′C + α + αt1 + αt2 + ... + αtK in policy π2. By construction, the amount
α + αt1 + αt2 + ... + αtK is equal to the entering stock level sit′−1 in policy π :
Due to Property 8, this amount is thus lower than C. Consequently, at most
C− 1 additional units are ordered at node (i, t′) in policy π2, and the solution
remains feasible. Properties 7 is now satisfied at period t′.

It remains to ensure that Properties 7 and 8 are still satisfied by policy π2

at level i − 1 between periods t and t′, where the stock level has increased.
Firstly, observe that there is no fractional ordering in policy π between pe-
riods t + 1 and t′ at level i − 1. Indeed, a fractional ordering at level i − 1
would imply, due to Corollary 1, a fractional ordering at level i, which vi-
olates Property 7. Consequently, Property 7 is satisfied in π2 at level i − 1.
Secondly, let us turn our attention to Property 8 at level i − 1. In policy π2,
the stock level between t and t1 has increased by α units, between t1 and t2
by α + α1 units, and so on until (i − 1, t′) for which the entering stock has
increased by α+ αt1 + αt2 + ...+ αtK units. Let us denote by α the stock level
si−1
t , outgoing from note (i − 1, t), in policy π. Since only full ordering takes

place at levels i − 1 and i between periods t and t′, the amount of units in
stock does not evolve in policy π, and remains equal to α (see Figure B.1).
As a result, the amount of inventory in π2 at level i − 1 is non-decreasing
between t and t′, and goes from α in t to α+ α+ αt1 + αt2 + ...+ αtK . Since it
corresponds to values of the stock level in π at periods later than t, we have
α < C and α+αt1 +αt2 + ...+αtK < C (Property 8). It can therefore be argued
that α + α + αt1 + αt2 + ... + αtK < 2C. If this value is in fact lower than C,
Property 8 is satisfied at level i − 1 in policy π2. Otherwise, let Z be the last
period such that its entering stock is lower than C, and its outgoing stock is
greater than or equal to C. Notice that Z is necessarily one of the periods tk.
We again modify the policy by postponing the ordering of a full batch from
period Z to period t′ at level i, as well as at each higher levels 1, . . . , i− 2. In
the example, we have si−1

t2−1 < C and si−1
t2 ≥ C, thus the ordering of one full

batch is postponed from period t2 to period t′ at levels 1, . . . , i − 1, see Fig-
ure B.4. In the new solution, denoted by π3, the stock level between period t
and period t′ is now always lower than C at level i− 1.
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Notice that node (i, t) orders only full batches in the final policy. If node
(i − 1, t) happens to order a fractional batch, the nested property is now
violated at this node. However, the process can be reiterated, as well as at
the higher levels, until the solution observes the nested property at period t
at levels 1, . . . , i.

Once the appropriated case has been resolved, the resulting solution still
observes Property 7 over the entire time horizon. Moreover, Property 8 and
Corollary 1 are now satisfied at period t at levels 1, . . . , i (and at subsequent
periods). This process can thus be repeated at period t at each lower levels
which doesn’t exhibit Property 8 and Corollary 1, and then at earlier peri-
ods. The resulting solution is optimal and observes Properties 7 and 8 and
Corollary 1.
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Abstract

In this thesis we are interested in several multi-level lot-sizing problems taking
into account production capacities. We first study a 2-level in series lot-sizing
problem with identical and stationary capacities at both levels, for which we
propose an exact dynamic algorithm running in polynomial time under some
hypothesis. Next chapter extends this result on two main lines: we consider the
multi-level in series lot-sizing problem with batch deliveries and with a number
of level which is part of the input. We provide a very efficient exact algorithm
for this problem, which is polynomial in the number of levels and in the number
of periods, based on an original decomposition into induced connected compo-
nents. Then, we consider more general versions of this problem, for which we
provide NP-hardness results when batch sizes or capacities are level-dependent.
We propose 2-approximation algorithms for these problems, based on the sand-
wiching of the objective function by two affine functions. Finally, we study
a single-level lot-sizing problem in a system composed of identical machines
working in parallel. The originality of this study is to consider a periodic en-
ergy limitation. At each period it must be decided how many machines to switch
on or off and the volume to be produced and stored. Complexity results are
provided, showing that this problem is NP-hard, even under some restrictive
assumptions, and an exact dynamic algorithm running in polynomial time is
proposed for the case of stationary energy parameters.

Résumé

Dans cette thèse nous nous intéressons à plusieurs problèmes de gestion de
stocks, à travers des modèles de dimensionnement de lots sur plusieurs niveaux,
en tenant compte de capacités de production. Nous étudions tout d’abord un
problème de dimensionnement de lots à deux niveaux en série avec des capacités
de production identiques et stationnaires aux deux niveaux, pour lequel pro-
posons un algorithme dynamique exact pouvant résoudre le problème en temps
polynomial sous certaines hypothèses. Dans le chapitre suivant nous étendons ce
résultat dans deux directions : nous considérons le problème de gestion de stocks
sur un nombre quelconque de niveaux en série, et nous considérons des livraisons
par lots. Nous présentons un algorithme exact de résolution, polynomial et
très efficace, basé sur une décomposition originale en composantes connexes in-
duites. Nous considérons ensuite des versions plus générales de ce problème,
en établissant des résultats de NP-complétude lorsque chaque niveau à une ca-
pacité ou une taille de lot différentes. Nous proposons pour ces problèmes une
2-approximation, basé sur l’encadrement de la fonction objectif par deux fonc-
tions affines. Pour finir nous étudions un problème sur un seul niveau mais
dans un système de production composé de machines identiques fonctionnant
en parallèle. L’originalité de ce problème est de considérer une limitation de
la consommation énergétique. A chaque période, on doit décider combien de
machines allumer ou éteindre, et quel volume produire et stocker. Des résultats
de complexité sont proposés, montrant que ce problème est NP-difficile même
sous des hypothèses fortes, et un algorithme dynamique exact est présenté pour
le cas de paramètres d’énergie stationnaires.
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