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The thesis deals with the problem of high-dimensional Gaussian sampling. Such a problem arises for example in Bayesian inverse problems in imaging where the number of variables easily reaches an order of 10 6 ∕10 9 . The complexity of the sampling problem is inherently linked to the structure of the covariance matrix. Different solutions to tackle this problem have already been proposed among which we emphasize the Hogwild algorithm which runs local Gibbs sampling updates in parallel with periodic global synchronisation.

Our algorithm makes use of the connection between a class of iterative samplers and iterative solvers for systems of linear equations. It does not target the required Gaussian distribution, instead it targets an approximate distribution. However, we are able to control how far off the approximate distribution is with respect to the required one by means of a single tuning parameter.

We first compare the proposed sampling algorithm with the Gibbs and Hogwild algorithms on moderately sized problems for different target distributions. Our algorithm manages to outperform the Gibbs and Hogwild algorithms in most of the cases. Let us note that the performances of our algorithm are dependent on the tuning parameter.

We then compare the proposed algorithm with the Hogwild algorithm on a large scale real application, namely image deconvolution-interpolation. The proposed algorithm enables us to obtain good results, whereas the Hogwild algorithm fails to converge. Let us note that for small values of the tuning parameter our algorithm fails to converge as well. Notwithstanding, a suitably chosen value for the tuning parameter enables our proposed sampler to converge and to deliver good results.
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Résumé : La thèse traite du problème de l'échantillonnage gaussien en grande dimension. Un tel problème se pose par exemple dans les problèmes inverses bayésiens en imagerie où le nombre de variables atteint facilement un ordre de grandeur de 10 6 ∕10 9 . La complexité du problème d'échantillonnage est intrinsèquement liée à la structure de la matrice de covariance. Pour résoudre ce problème différentes solutions ont déjà été proposées, parmi lesquelles nous soulignons l'algorithme de Hogwild qui exécute des mises à jour de Gibbs locales en parallèle avec une synchronisation globale périodique.

Notre algorithme utilise la connexion entre une classe d'échantillonneurs itératifs et les solveurs itératifs pour les systèmes linéaires. Il ne cible pas la distribution gaussienne requise, mais cible une distribution approximative. Cependant, nous sommes en mesure de contrôler la disparité entre la distribution approximative est la distribution requise au moyen d'un seul paramètre de réglage.

Nous comparons d'abord notre algorithme avec les algorithmes de Gibbs et Hogwild sur des problèmes de taille modérée pour différentes distributions cibles. Notre algorithme parvient à surpasser les algorithmes de Gibbs et Hogwild dans la plupart des cas. Notons que les performances de notre algorithme dépendent d'un paramètre de réglage.

Nous comparons ensuite notre algorithme avec l'algorithme de Hogwild sur une application réelle en grande dimension, à savoir la déconvolution-interpolation d'image. L'algorithme proposé permet d'obtenir de bons résultats, alors que l'algorithme de Hogwild ne converge pas. Notons que pour des petites valeurs du paramètre de réglage, notre algorithme ne converge pas non plus. Néanmoins, une valeur convenablement choisie pour ce paramètre permet à notre échantillonneur de converger et d'obtenir de bons résultats.

Résumé étendu Introduction

La croissance soutenue du volume des données disponibles signifie que des méthodes efficaces de traitement des données ne sont pas seulement un souhait mais une nécessité. Le présent travail consacré à un algorithme efficace d'échantillonnage gaussien en grande dimension a été développé dans un tel état d'esprit.

La nécessité d'échantillonner une distribution Gaussienne en grande dimension se pose dans divers domaines, tels que la vision par ordinateur, le traitement d'images ou la prévision météorologique, par exemple. Pour une application de traitement d'image ou de vision par ordinateur, le nombre de variables atteint facilement un ordre de grandeur de 10 6 ∕10 9 . La nécessité apparait généralement aussi dans les problèmes inverses bayésiens où le processus d'inférence résume l'information contenue dans la distribution a posteriori.

Dans un contexte à grande dimension, l'inférence peut devenir délicate même dans le cas où nous avons une expression analytique pour la distribution a posteriori et pour les estimateurs ponctuels. La raison en est qu'une évaluation directe des estimateurs ponctuels peut impliquer des opérations qui ont un coût de calcul très élevé. Dans un tel scénario, nous utilisons généralement des méthodes numériques pour effectuer l'inférence.

Notre contribution principale vise précisément ce problème de l'inférence dans un contexte à grande dimension. Nous proposons un algorithme efficace pour l'échantillonnage des distributions gaussiennes en grande dimension. La nature parallèle de l'algorithme proposé lui permet de profiter des avancées récentes des techniques de calcul numérique.

Avant de passer à la présentation de l'algorithme proposé, nous passons rapidement en revue certaines des méthodes existantes pour l'échantillonnage en grande dimension dans chapitre 2. Nous présentons et analysons ensuite notre algorithme proposé dans chapitre 3, puis nous l'appliquons à un problème inverse bayésien à grande échelle en imagerie dans chapitre 4. Enfin, nous présentons nos conclusions et discutons quelques perspectives dans chapitre 5.

Nous donnons maintenant un résumé de chacun des chapitres.

Chapitre 2 -High-Dimensional sampling

Le problème que nous essayons de résoudre est d'échantillonner efficacement une distribution gaussienne en grande dimension

 ( ; , ) = 1 (2 ) ∕2 | | 1∕2 exp - 1 2 ( -) -1 ( -) (i)
dont , ∈ ℝ , ∈ ℝ × et ≫ 1. L'approche standard impliquant la décomposition de Cholesky de la matrice de covariance échoue en raison du coût élevé, i.e.  3 , associé à la décomposition.

Une méthode efficace pour échantillonner des distributions gaussiennes multivariées en grande dimension existe dans le cas des matrices de covariance circulante. Dans ce cadre, l'échantillonnage d'une variable multivariée dans le domaine spatiale/temporel se transforme en la problème d'échantillonner variables univariées dans le domaine de Fourier suivies d'une transformée de Fourier inverse.

Les algorithmes de Gibbs et de Metropolis-Hastings (MH) sont sans doute les algorithmes les plus utilisés de Monte-Carlo par chaîne de Markov (MCMC). Malgré leur polyvalence, il n'est pas simple de les appliquer ou de les mettre à l'échelle dans le cas à grande dimension. L'algorithme de Gibbs est pénalisé par sa nature séquentielle alors que l'algorithme MH est sensible au choix de la distribution de proposition. Néanmoins, ils peuvent toujours être utilisés comme blocs de construction dans la construction d'algorithmes d'échantillonnage efficaces pour le cas de haute dimension.

Dans [START_REF] Papandreou | Gaussian sampling by local perturbations[END_REF] et [START_REF] Orieux | Sampling highdimensional Gaussian distributions for general linear inverse problems[END_REF], le problème de l'échantillonnage est transformé en problème d'optimisation : un échantillon est obtenu en minimisant un critère quadratique perturbé. Les résultats de convergence sont implicites pour la minimisation exacte du critère. En pratique cependant, effectuer une minimisation exacte est un processus coûteux. Au lieu de cela, une approche itérative est utilisée avec un nombre tronqué d'itérations. Les implémentations pratiques ont montré des résultats cohérents, malgré l'incertitude quant à la convergence de l'algorithme.

Le travail de [START_REF] Gilavert | Efficient Gaussian sampling for solving large-scale inverse problems using MCMC[END_REF] s'attaque à ce problème de convergence et utilise l'algorithme basé optimisation pour proposer des échantillons candidats dans un algorithme RJ-MCMC. La convergence de l'algorithme RJ-MCMC garantit que les échantillons générés proviennent bien de la distribution cible.

Le travail de [START_REF] Johnson | Analyzing Hogwild parallel Gaussian Gibbs sampling[END_REF] discute d'un algorithme d'échantillonnage hautement parallèle qui utilise l'algorithme de Gibbs dans sa construction. Les auteurs se réfèrent à l'algorithme comme "Hogwild Gibbs sampling". L'algorithme effectue des mises à jour locales de l'échantillonnage de Gibbs en parallèle avec une synchronisation globale de temps en temps. L'algorithme converge vers une distribution approximative ayant la moyenne correcte et une matrice de covariance approximative. Les auteurs ne présentent cependant aucune manière directe de contrôler la distribution approximative.

Les auteurs de [START_REF] Fox | Accelerated Gibbs sampling of normal distributions using matrix splittings and polynomials[END_REF] ont exploré la construction d'algorithmes d'échantillonnage à partir des algorithmes itératifs pour résoudre les systèmes linéaires. Ils x ont établi que, étant donné un solveur itératif convergent, on peut construire un échantillonneur itératif convergent à partir de celui-ci. La connexion établie peut être utile car elle simplifie la construction et l'analyse de nouveaux algorithmes d'échantillonnage. Cette approche n'est pas dépourvue de réserves car il n'y a aucune garantie implicite d'efficacité ou d'évolutivité de l'échantillonneur résultant.

Chapitre 3 -Parallel high-dimensional approximate Gaussian sampling

Nous commençons ce chapitre par examiner l'approche de [START_REF] Fox | Accelerated Gibbs sampling of normal distributions using matrix splittings and polynomials[END_REF] pour construire des algorithmes d'échantillonnage à partir de solveurs linéaires itératifs. Nous exploitons le lien entre la convergence du solveur itératif et la convergence de l'itération stochastique résultante dans l'analyse de la convergence de notre algorithme proposé.

Considérons un système linéaire

= et le matrix splitting = -. En utilisant le formalisme de matrix splitting, un solveur itératif est exprimé comme

= -1 -1 + -1 , avec → -1 quand → ∞.
Selon les résultats de [START_REF] Fox | Accelerated Gibbs sampling of normal distributions using matrix splittings and polynomials[END_REF]] la construction d'un échantillonneur itératif à partir d'un solveur itératif revient à injecter juste du bruit de forme appropriée à chaque itération du solveur itératif. Soit -1 = -, puis l'algorithme suivant

= -1 -1 + -1 , i.i.d. ∼  , + (ii) 
échantillonne de façon approximative la distribution (i). Notez que (ii) définit en fait une classe d'algorithmes d'échantillonnage car différents choix pour et conduisent à des algorithmes d'échantillonnage différents. L'algorithme de Gibbs composante par composante est un cas particulier de (ii). L'intérêt de l'approche explorée par [START_REF] Fox | Accelerated Gibbs sampling of normal distributions using matrix splittings and polynomials[END_REF] est que la convergence de l'itération stochastique est liée à la convergence du solveur itératif sous-jacent. La condition nécessaire et suffisante pour la convergence est -1

< 1 [Axelsson, 1996, Golub andVan Loan, 2013]. La praticité de l'algorithme d'échantillonnage dérivé repose sur :

• Est-il facile de résoudre des systèmes de la forme = , ∀ ?

• Est-il facile d'échantillonner i.i.d.

∼  , + ?

Notre algorithme pour l'échantillonnage gaussien en grande dimension est donnée dans l'algorithme I. Nous utilisons le formalisme matrix splitting dans sa formulation. Il devrait être clair qu'il s'avère à une implémentation efficace : résoudre des systèmes de la forme = est facile comme est diagonal et l'échantillonnage de est trivial.

xi Algorithm I -L'algorithme Clone MCMC 1: Décompose la matrice de précision comme = + + 2: Choisi la valeur de > 0 et construisez le splitting = -= + 2 = 2 -+ 3: Choisi un point de départ 0 4: for =1, 2, … do

= -1 -1 + -1 , i.i.d.
∼  ( , 2 ) (iii)

5: end for L'algorithme proposé s'écarte de l'approche proposée par [START_REF] Fox | Accelerated Gibbs sampling of normal distributions using matrix splittings and polynomials[END_REF]] pour construire des algorithmes d'échantillonnage, cependant, nous sommes toujours capables d'utiliser la connexion entre les solveurs itératifs et les algorithmes itératifs d'échantillonage pour prouver la convergence de notre algorithme. Ainsi, notre algorithme converge si -1 < 1. Une condition suffisante pour la convergence est que la matrice de précision soit strictement diagonalement dominante.

La chaîne de Markov induite par (iii) converge en distribution vers une distribution approximative  ( , ) ayant la moyenne correcte et une matrice de covariance approximative

= 2 + -1 -1 = - 1 2 -1 -1 -1
.

Le paramètre permet de contrôler la disparité entre la distribution approximative et la cible. Une petite valeur pour conduit à une approximation grossière alors qu'une grande valeur conduit à une approximation fine et dans le cas limite → ∞ nous ciblons la bonne distribution.

Une interprétation du rôle du paramètre est qu'il permet un compromis biais-variance. Une faible valeur conduit à une plus grande disparité entre la distribution approximative et la cible, d'où une augmentation du biais, les échantillons présentant un degré de corrélation réduit, donc une diminution de la variance des estimations empiriques. Une valeur élevée provoque exactement le contraire, une disparité réduite au prix des échantillons plus corrélés qui conduisent à une augmentation de la variance.

Les figures I et II montrent l'erreur d'estimation de la matrice de covariance et du vecteur moyenne en fonction de la valeur de et de la taille de l'ensemble d'échantillons considéré. La figure Ia contient l'erreur d'estimation de la matrice de covariance par rapport à et montre clairement le compromis biais-variance. La figure II montre l'erreur d'estimation du vecteur moyenne et comme on a la bonne moyenne nous observons que le seul facteur qui influence l'erreur d'estimation est la variance accrue à cause de l'augmentation de la corrélation entre les échantillons . Nous avons comparé notre algorithme avec les algorithmes de Gibbs et Hogwild sur des problèmes de taille modérée et pour différentes distributions cibles. La comparaison consiste à examiner l'erreur d'estimation obtenue pour chacun des trois algorithmes pour des durées d'exécution fixes. Hogwild et notre algorithme se prêtent à une implémentation parallèle et sont donc exécutés sur GPU, alors que Gibbs a été exécuté sur le CPU en raison de sa nature séquentielle.

Les figures III et IV montrent les résultats d'erreur d'estimation pour une matrice de précision de type AR-1 et une matrice de précision bande pour un temps d'exécution de 80 s. Dans l'ensemble, nous voyons qu'il y a une gamme de valeurs de pour lesquelles notre algorithme atteint la plus petite erreur d'estimation. Des résultats similaires ont été obtenus pour les autres temps d'exécution.

Un aspect important concernant notre algorithme est son coût et sa variation en fonction de la dimension du problème et du nombre d'unités de calcul disponibles. L'expression du coût est 

Chapitre 4 -Application deconvolution-interpolation

Nous montrons maintenant l'utilité de notre algorithme sur une application en inversion bayésienne à grande échelle. Nous considérons une image de taille 1000 × 1000 qui correspond à une taille de la variable de 10 6 et à une taille de la matrice de covariance de 10 6 × 10 6 .

Nous abordons le problème de la déconvolution-interpolation d'images. Nous considérons un filtre boîte de taille 10 × 10 et 20% de pixels manquants. Les pixels manquants sont dispersés dans toute l'image et leur emplacement est connu. Nous utilisons le modèle xiv dans lequel ∈ ℝ est l'image observée et ∈ ℝ est la vraie image non observée. Notre but est de récupérer l'image non observée étant donné l'image observée , la matrice de convolution et l'emplacement des pixels manquants encodé par la matrice de troncature .

La distribution à posteriori est la distribution gaussienne en grande dimension suivante

| ( | ) = | ( | ) ( ) ( ) =  | , | ,
avec la moyenne et la matrice de covariance ayant les expressions suivantes :

| = | , | = + 0 + -1 .
La figure V contient les résultats. Comme référence, nous avons également inclus l'image obtenue en maximisant numériquement la distribution à posteriori (MAP). Nous voyons que l'image MAP et celle obtenue en utilisant notre algorithme sont presque indiscernables. Nous avons utilisé un nombre total d'échantillons de 15000 afin de calculer l'image reconsituee avec 4000 échantillons comme temps de chauffe.

L'algorithme a été exécuté cette fois sur le CPU où il a atteint un temps d'exécution moyen d'environ 250 ms par échantillon généré. Ce résultat en termes de temps d'exécution montre que l'algorithme est efficace même lorsqu'il est exécuté sur du matériel de base, ce qui renforce sans aucun doute son attrait.

Nous avons également considéré l'algorithme de Hogwild pour échantillonner la distribution à posteriori, mais l'algorithme n'a pas réussi à converger.

xv

Chapitre 5 -Perspectives

Nous avons proposé un nouvel algorithme d'échantillonnage efficace pour des distributions gaussiennes en grande dimension. En développant l'algorithme, nous avons exploité des résultats récents qui établissent une connexion entre une classe de solveurs itératifs pour des systèmes linéaires et des algorithmes d'échantillonnage itératifs.

L'échantillonneur proposé cible une distribution gaussienne approximative ayant la moyenne correcte et une matrice de covariance approximative. Nous sommes capables de contrôler l'écart entre la distribution approximative et la distribution cible au moyen d'un seul paramètre scalaire noté . Une petite valeur implique une approximation grossière alors qu'une grande valeur implique une approximation fine au prix d'un tirage d'échantillons plus corrélés. Une condition suffisante pour la convergence de l'échantillonneur proposé est que la matrice de précision soit diagonalement dominante.

On peut soutenir que l'aspect le plus important qui nécessite une clarification supplémentaire est comment choisir la valeur du paramètre de réglage . Nous aimerions avoir des lignes directrices concrètes sur la façon de choisir sa valeur de sorte que nous obtenions les meilleurs résultats possibles pour un budget de calcul donné. 
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Introduction

The surge in recent years in the volume of available data means that efficient data treatment methods are not only a desideratum but a must. The present work was developed with such a mindset. We propose and analyse an efficient high-dimensional Gaussian sampling algorithm. We then apply it to a large scale Bayesian inverse problem in imaging.

Before we move on to the description of the proposed sampling algorithm, we first address the need for high-dimensional Gaussian sampling in section 1.1 and discuss the concepts of inverse problems and Bayesian inference in sections 1.2 and 1.3 respectively. The sections on inverse problems and Bayesian inference serve just to give a quick introduction to some of the notions pertaining to the two concepts and to highlight some of the associated issues.

We then perform a quick overview of several existing algorithms for high dimensional Gaussian sampling in chapter 2. The proposed sampling algorithm is presented in detail in chapter 3. The large scale Bayesian inverse problem is dealt with in chapter 4. Chapter 5 concludes the work and hints at future directions of work.

The thesis comprises several appendices. In appendix A we look at the marginal and conditional distribution of a general stochastic iterate. Appendices B and C detail intermediary computations for chapter 3. Appendix D discusses parallel matrix-matrix and matrix-vector multiplication. Appendices E and F contain extra material pertaining to chapter 4.

Gaussian sampling

The need for sampling multivariate Gaussian distributions arises in numerous applications the likes of image deconvolution, medical/astronomical/satellite imaging, computer vision, or weather forecasting just to name a few. On a more general level, the need usually arises in posterior inference in hierarchical Bayesian models via Markov Chain Monte Carlo (MCMC) algorithms. Furthermore, the choice of a Gaussian distribution as a modelling tool is easily justified by the maximum entropy principle [Jaynes, 2003].

In [START_REF] Geman | Nonlinear image recovery with half-quadratic regularization[END_REF] Gaussian sampling is used in the Bayesian deconvolution of an image of Saturn obtained using the Hubble Space Telescope. The same problem of Bayesian deconvolution for astronomical images is treated also in [START_REF] Fox | Fast sampling in a linear-Gaussian inverse problem[END_REF] where again the authors resorted to Gaussian sampling to perform the deconvolution. In [START_REF] Orieux | Estimating hyperparameters and instrument parameters in regularized inversion. Illustration for SPIRE/Herschel map making[END_REF] Gaussian sampling is used as an elementary block of a Gibbs sampler in a hierarchical Bayesian model for an unsupervised regularized inversion problem applied to data from the Herschel observatory.

Both [START_REF] Orieux | Sampling highdimensional Gaussian distributions for general linear inverse problems[END_REF] and [START_REF] Gilavert | Efficient Gaussian sampling for solving large-scale inverse problems using MCMC[END_REF] used Gaussian sampling in an unsupervised image super-resolution problem. [START_REF] Papandreou | Gaussian sampling by local perturbations[END_REF] used Gaussian sampling for an image inpainting problem. [START_REF] Gel | Calibrated probabilistic mesoscale weather field forecasting: The geostatistical output perturbation method[END_REF] resorted to Gaussian sampling in their work on weather forecasting.

One thing that all the previously cited applications have in common is that the Gaussian distribution to be sampled has a rather important size. The problem of high-dimensional Gaussian sampling is an actual one given the ever increasing amount of available data. It is very common in an image processing application for the dimension of the random variable to reach an order of 10 6 ∕10 9 . This brings us to the problem of how to efficiently sample from a high-dimensional Gaussian distribution. Solutions to this problem have already been proposed and we mention several of them in chapter 2. Our proposed sampling algorithm tackles exactly this problem and provides an efficient solution. We show the efficiency of our algorithm on a large scale Bayesian inverse problem in imaging.

In the following we provide a quick discussion about what constitutes an inverse problem followed by a quick discussion about the Bayesian formalism and the inference process. Note however, that the proposed algorithm is not particularly tied to Bayesian inverse problems and it remains a valid proposition in the general case as well.

Inverse problems

An inverse problem is broadly speaking any problem in which we try to infer on the input of a system given its output. As a dual of the inverse problem we have the direct or forward problem in which given the input and the model for the system we determine its output.

Inverse problems naturally arise when there is a measurement/sensing instrument involved. The direct problem is the recording of the respective physical quantity, like measuring a voltage in an electronic circuit or taking a picture of a scene. The instrument used, be it a voltmeter, a camera, or a telescope for that matter, has its limitations when it comes to accurately reproduce the physical quantity of interest. Furthermore, it also introduces additional errors usually modelled as an additive noise. Figure 1.1 presents the block scheme for such a data recording process. The inverse problem is then to recover the respective physical quantity given the measured data. Intrinsically the inverse problem is more difficult than the direct one. The degradations introduced by the measurement/sensing instrument are usually of such a nature that it is not possible to perfectly reconstruct the true physical quantity. As such we must content with providing only an approximate reconstruction.

The discussion from the previous paragraphs hinted at a very important aspect related to solving inverse problems, namely ill-posedness. A problem is said to be well-posed when the following three conditions are satisfied [Idier, 2008, Chung et al., 2015]:

1. the solution of the problem is unique 2. the solution exists for any data 3. the solution depends with continuity on the data.

A problem is said to be ill-posed if any of the above conditions is not met.

In order to overcome the ill-posedness of inverse problems we introduce additional prior information to compensate for the information lost during the data recording process. The solution to the inverse problem will then act to perform a compromise between the information contained in the observations and the prior information.

The mathematical formulation of an inverse problem thus involves two types of terms: terms that model the adequacy of the proposed solution with respect to the available observations and regularisation/penalty terms which serve to impose certain desired properties on the solution, terms which reflect our prior beliefs about the true physical quantity.

The regularisation terms usually involve one or several additional scalar parameters called regularisation parameters [START_REF] Chung | Large-scale inverse problems in imaging[END_REF]. The role of the regularisation parameter(s) is to control the trade off between the adequacy with respect to the observed data and the adequacy with respect to the prior beliefs by putting more or less weight on the regularisation terms.

The solution to an inverse problem can be formulated in either a deterministic or a statistical framework. The original work by Tikhonov made use of a deterministic framework and defined the solution as the minimiser of a compound criterion [START_REF] Tikhonov | Numerical Methods for the Solution of III-Posed Problems[END_REF]. Nowadays, both the deterministic and statistical approaches are widely used. Moreover, and as it is pointed out in [Idier, 2008], it is usually possible to give a statistical interpretation to the deterministic approaches. In the following we make use of the statistical framework.

Bayesian inference

The choice of a statistical framework for the treatment of inverse problems can easily be justified by considering the following statement by [Robert, 2007]: "the purpose of a statistical analysis is fundamentally an inversion purpose since it aims at retrieving the causes -reduced to the parameters of the probabilistic generating mechanism -from the effects -summarized by the observations".

The central element in the Bayesian inference process is the posterior distribution over the unknown quantities we wish to infer on. It encapsulates all available information with respect to the unknowns. The key elements in deriving the posterior distribution are the likelihood function and the prior distribution. The former is formulated in accordance to the observation model whereas the latter is formulated according to any a priori information on the unknowns.

In an inverse problem setting the prior distribution acts as the means to introduce additional prior information on the unknowns. Thus, we could arguably say that solving inverse problems using the Bayesian formalism comes natural.

Inference in the Bayesian framework is about summarising the information contained within the posterior distribution. The most common approach is the use of point estimates with the most used ones being the mean, mode and median. An alternative approach consists in using interval estimates where we are actually looking at regions from the posterior distribution.

In the simplest of cases the inference process is straightforward as the posterior distribution is available analytically and we are able to evaluate the expressions for the point estimates. However, in a significant number of problems the posterior distribution is not a standard one and we do not have explicit expressions for the point estimates. In such a case we usually resort to numerical methods to carry out the inference.

We have a choice of either deterministic or stochastic numerical methods to perform the inference. The deterministic approaches are usually optimisation based and yield the posterior mode. The stochastic approaches involve sampling the posterior distribution. From the resulting sample set we usually compute the posterior mean, however, we can easily also compute posterior variances/covariances and/or posterior credible intervals.

The sampling algorithms most often used belong to the class of Markov Chain Monte Carlo (MCMC) algorithms. The underlying idea behind an MCMC type algorithm is to construct a Markov Chain whose stationary distribution is the posterior distribution [START_REF] Gilks | Markov Chain Monte Carlo in practice[END_REF], Gelman et al., 2004, Gamerman and Lopes, 2006]. The sampling algorithm that we propose in chapter 3 belongs to this class of MCMC algorithms.

In a high-dimensional setting performing the inference may become troublesome even for the case when we have analytical expressions for the point estimates. The reason is that evaluating their expressions may involve operations which have a very high associated computational cost. In such a scenario we resort as well to numerical methods to perform the inference.

CHAPTER 2

Gaussian high-dimensional sampling

The problem we are trying to solve is how to efficiently sample a high-dimensional multivariate Gaussian distribution

 ( ; , ) = 1 (2 ) ∕2 | | 1 ∕2 exp - 1 2 ( -) -1 ( -) (2.1) = 1 (2 ) ∕2 | | -1 ∕2 exp - 1 2 --1 --1 (2.2)
with , , ∈ ℝ , , ∈ ℝ × , = -1 , = -1 and ≫ 1. The complexity of the sampling problem is mostly influenced by the structure, or lack thereof, of the precision/covariance matrix.

In the general case of an unstructured precision/covariance matrix the standard approach for sampling a multivariate Gaussian distribution involves the Cholesky decomposition of the covariance matrix or of the precision matrix [START_REF] Rue | Gaussian Markov random fields: theory and applications[END_REF]. However, in the high dimensional setting this approach fails due to the high cost, i.e.  3 , and high memory requirements associated with the Cholesky decomposition.

An efficient method for sampling high dimensional multivariate Gaussian distributions exists for the case of circulant covariance matrices. In this setting, the problem of sampling a multivariate Gaussian random variable transforms into the problem of sampling univariate Gaussian random variables in the Fourier domain followed by an inverse Fourier transform.

Such an approach has been used in [START_REF] Geman | Nonlinear image recovery with half-quadratic regularization[END_REF], and more recently in [START_REF] Orieux | Bayesian estimation of regularization and point spread function parameters for Wiener-Hunt deconvolution[END_REF], in the case of an image deconvolution problem. It is worth mentioning however, that there are many problems for which the covariance matrix does not have a circulant structure. The authors in [START_REF] Rue | Gaussian Markov random fields: theory and applications[END_REF] looked at the implications of approximating Toeplitz covariance matrices as circulant ones in order to profit from the computational advantage offered by the latter.

Before we move on to discuss some of the available solutions to the problem of sampling a high-dimensional Gaussian distribution we would like to stress out two additional aspects that could add complexity to the sampling problem. It is important to note that the presence of either or both of these two aspects could add complexity and not necessarily that it will add complexity to the sampling problem.

First, there are practical applications in which the precision/covariance matrix changes, or evolves, after each generated sample. This is notably the case for hierarchical Bayesian models in which sampling a high-dimensional Gaussian distribution is only a step in a more general sampling scheme comprising also the sampling of an additional set of hyperparameters. The precision/covariance matrix is a function of the hyper-parameters and as the hyper-parameters are updated at each iteration of the overall sampling algorithm then so does the precision/covariance matrix. We can cite for example [Giovannelli, 2008, Orieux et al., 2010, Gilavert et al., 2015[START_REF] Fox | Fast sampling in a linear-Gaussian inverse problem[END_REF] as instances of such applications in which the precision/covariance matrix changes with the iterations.

It is important to stress out that the change to the precision/covariance matrix does not necessarily mean a change in the structure of the precision/covariance matrix. In most of the cases it means a change in the values of the elements. Nonetheless, such a change can still impair an (important) additional cost for each generated sample.

Second, we have that the mean vector may not be directly available, instead being available only as the solution of a system of linear equations. Consider the expression from equation (2.2) for the multivariate Gaussian distribution. It employs the potential vector = . If we have access to the potential vector and not the mean, then computing the mean would require solving a system of linear equations.

We reiterate the fact that a changing, or evolving, precision/covariance matrix and a mean vector only available as the solution of a linear system do not immediately imply an increase in the complexity of the sampling problem. We can cite for example [Giovannelli, 2008, Orieux et al., 2010, Gilavert et al., 2015] were the presence of both aspects did not add to the complexity of the sampling problem or impaired an (significant) additional cost. However, they are two important aspects that we need not forget about and as such we deemed necessary to discuss them.

The Gibbs and Metropolis-Hastings algorithms

The Gibbs and Metropolis-Hastings (MH) algorithms are arguably the most used MCMC algorithms. In spite of their versatility it is not straightforward to apply or scale them to the high-dimensional case. Notwithstanding, they are still important as they can be used as building blocks in constructing sampling algorithms for the high-dimensional case.

The popular Gibbs sampler provides a simple solution to sample the target Gaussian distribution. Algorithm 2.1 presents the Gibbs algorithm in the general setting were several components are grouped, or blocked, together. In its most basic form we have the component-wise Gibbs sampler. A sample from the target distribution is generated by sequentially sampling the component-wise conditional distributions. The motivating factor is that each conditional distribution is univariate Gaussian.

Algorithm 2.1 The Gibbs algorithm

Choose a partition 1 , 2 , … , of {1, 2, … , } Set 0 for = 1, 2, … do for = 1, 2, … , do ∼ | | | 1 … -1 -1 +1 … -1 end for end for
Unfortunately, the Gibbs algorithm has two important shortcomings. First, the sequential nature of the algorithm forbids a parallel implementation. Second, it is well known, see for example [START_REF] Gilks | Markov Chain Monte Carlo in practice[END_REF], that a high degree of correlation between the components of the random variable diminishes the convergence speed of the Gibbs sampler. [START_REF] Roberts | Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler[END_REF] present an in depth analysis of the convergence speed of the Gibbs sampler. The authors particularly looked at blocking as a solution to increase the speed of convergence. They proved [Roberts and Sahu, 1997, Thm. 8] that if all offdiagonal elements of the precision matrix are non-positive, then blocking improves the speed of convergence. However, in a general setting the authors noted that it is difficult to formulate a blocking strategy which guarantees an increase in the convergence speed. Furthermore, they also presented two examples to show that in certain settings, blocking actually worsens the convergence speed.

The partially collapsed Gibbs sampler introduced in [van Dyk and Park, 2008] is another solution to improve the convergence speed of the Gibbs sampler. The algorithm proceeds to replace some of the conditional distributions in the standard Gibbs sampler with "conditional distributions under some marginal distributions of the joint posterior distribution". The authors noted that in general the partially collapsed Gibbs samplers converges faster than the component-wise Gibbs sampler.

In the case when the Gaussian distribution is used to define a Markov Random Field and the precision matrix has a certain degree of sparsity, it may be possible to derive a parallel version of the Gibbs sampler. [START_REF] Gonzalez | Parallel Gibbs sampling: From colored fields to thin junction trees[END_REF] The different groups are still sampled sequentially however, the components within each group are sampled in parallel. Naturally, the more components there are in each group and the smaller the number of distinct groups the better. [START_REF] Gonzalez | Parallel Gibbs sampling: From colored fields to thin junction trees[END_REF] pointed out that this approach is as well affected by slow convergence speed when there is a strong correlation between the components. To overcome this issue they then propose a new algorithm called Parallel Splash sampler.

The MH algorithm is presented in algorithm 2.3. The basic idea of the algorithm is to replace the sampling of the target distribution with the sampling of a proposal distribution which should be easy to sample from. The sample from the proposal distribution is then either accepted as a sample from the target distribution or rejected according to a well determined rule.

The key component of the algorithm is the proposal distribution. If it is similar to the target distribution, then only a small number of the proposed samples will get rejected. Otherwise, a high number of samples will get rejected rendering the algorithm inefficient. There has been a lot of effort devoted to developing good proposal distributions and we can mention the Langevin [START_REF] Gilks | Markov Chain Monte Carlo in practice[END_REF], Hamiltonian [Neal, 1993, Neal, 2011] and Fisher adapted [START_REF] Văcar | Langevin and Hessian with Fisher approximation stochastic sampling for parameter estimation of structured covariance[END_REF] MH algorithms as prominent examples.

In the case of the Langevin MH algorithm the proposal distribution is built as one step of a discrete Langevin diffusion from the current sample. The algorithm uses the information provided by the gradient of the target distribution to propose samples from regions with high density. [START_REF] Gilks | Markov Chain Monte Carlo in practice[END_REF] note that a special attention should be paid to the smoothness of the target distribution as it can have an important effect on the quality of the proposed samples.

In the case of the Hamiltonian MH algorithm, an analogy is made with physical systems in which the current sample is seen as a particle having a given position and a given

Algorithm 2.3 The Metropolis-Hastings algorithm

Choose a proposal distribution (⋅)

Set 0 for = 1, 2, … do Sample ∼ | -1 Compute -1 , = min 1 , ( ) -1 -1 | | -1 Sample ∼  (0,1) if -1 , ≥ then = else = -1 end if end for
momentum and whose evolution is described using the Hamiltonian dynamics. The algorithm calls for the introduction of a set of auxiliary variables, one for each component of the random variable, to model the momentum. The position is modelled by the current sample. Generating a proposal is a two step process: one first samples the set of auxiliary variables and then updates the "position" of the current sample according to the Hamiltonian dynamics. The differential equations of the Hamiltonian dynamics are usually discretized using the so-called "leapfrog" scheme [Neal, 1993, Neal, 2011].

The underlying idea in the Fisher adapted MH algorithm is to propose a new sample according to Newton's direction. Constructing the proposal distribution involves the Hessian matrix and there are some concerns when it is not positive definite. The authors propose to replace the Hessian matrix with the Fisher information matrix for which there are no concerns with respect to its positive definiteness.

The Hogwild algorithm

The "Hogwild Gibbs Sampling" strategy [START_REF] Newman | Distributed inference for latent dirichlet allocation[END_REF], Johnson et al., 2013] divides the components of the random variable in groups and runs local Gibbs sampling updates for each group in parallel with periodic global synchronization. The Hogwild sampler is presented in algorithm 2.4.

The authors established that the algorithm converges if the precision matrix of the target distribution is generalized diagonally dominant. In deriving this sufficient condition, the authors made a very interesting connection with a class of iterative algorithms for solving a system of linear equations. As a matter of fact, the Hogwild Gibbs sampling strategy can be seen as a stochastic version of a two-stage iterative solver. We discuss more about the connection between iterative solvers for system of linear equations and stochastic samplers in the following section and in section 3.1.

The Hogwild algorithm does not converge towards the target distribution, instead it

Algorithm 2.4 Hogwild algorithm Choose a partition 1 , 2 , … , of {1, 2, … , } Define the inner iteration schedule ( , ) > 0 Set 0 for = 1, 2, … do for = 1, 2, … , in parallel do = -1 for = 1, 2, … , ( , ) do for ∈ do ( ) ∼ ( ) | -1 1 … ⧵ … -1 end for end for end for = ( ,1)
1 , … , ( , ) end for converges towards an approximate distribution having the correct mean and an approximate covariance matrix. Moreover, in the general case the expression of the covariance matrix is not known analytically. An analytical expression for the covariance matrix is available when the groups of components are sampled exactly either by replacing the Gibbs sampler with an exact sampler or by running the Gibbs sampler for a very high number of iterations.

Samplers from iterative linear systems solvers

The connection between iterative algorithms for solving systems of linear equations and stochastic samplers is known for quite a while. Among the first to acknowledge it we can cite [START_REF] Goodman | Multigrid Monte Carlo method for lattice field theories[END_REF] and [START_REF] Goodman | Multigrid Monte Carlo method. conceptual foundations[END_REF].

It was also acknowledged by [START_REF] Roberts | Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler[END_REF] where it was used only in a limited extent in their study of the Gibbs algorithm. More recently, it was also acknowledged in [START_REF] Johnson | Analyzing Hogwild parallel Gaussian Gibbs sampling[END_REF] where the authors actually made use of it in their analysis of the convergence of the Hogwild algorithm.

The authors in [START_REF] Fox | Accelerated Gibbs sampling of normal distributions using matrix splittings and polynomials[END_REF] formalized the connection between iterative methods for solving a system of linear equations and iterative samplers derived from them. They established that given a convergent iterative linear solver one can construct a convergent iterative sampler from it. Similar results restricted to the Gaussian case were presented as early as [START_REF] Goodman | Multigrid Monte Carlo method. conceptual foundations[END_REF]]. Algorithm 2.5 summarizes the procedure in the case of a Gaussian distribution.

One important aspect that we need to mention is that algorithm 2.5 actually defines a class of sampling algorithms. Different iterative solvers lead to different sampling algorithms. As we shall see in section 3.1 we can rewrite the Gibbs algorithm under such a form.

The benefit of using the approach described by algorithm 2.5 is that the convergence of the resulting sampling algorithm is implied by the convergence of the iterative solver. Furthermore, the convergence speed of the sampling algorithm is inherited from the iterative solver. Moreover, one could make use of existing techniques to speed up the convergence of the iterative solvers in order to speed up the resulting sampler. Such an approach is used in [Fox andParker, 2014, Fox andParker, 2017] where the authors make use of polynomial acceleration [Axelsson, 1996] to increase the convergence speed of the Gibbs sampler.

Algorithm 2.5 Matrix splitting derived samplers

Construct the matrix splitting = -Set 0 for = 1, 2, … do

i.i.d. ∼  , + = -1 -1 + -1 end for 2.

Sampling by optimisation

This idea of converting iterative linear solvers to sampling algorithms is a very interesting one and we have made use of it in analysing our solution to the problem of efficiently sampling the target distribution from equation (2.1). Section 3.1 contains a more thorough discussion of this approach.

Sampling by optimisation

The solutions detailed so far all relied on the construction of a Markov chain having as stationary distribution the target distribution or an approximation of it. The downside of such an approach is that the generated samples exhibit a certain degree of correlation. The algorithm detailed in this section does not employ a Markov chain in its construction and is able to generate uncorrelated samples.

The main idea behind the algorithm is to recast the sampling problem as an optimisation one: a sample is obtained by minimising a perturbed quadratic criterion. The algorithm was proposed in an independent manner by [START_REF] Papandreou | Gaussian sampling by local perturbations[END_REF] and [START_REF] Orieux | Sampling highdimensional Gaussian distributions for general linear inverse problems[END_REF]. The resulting algorithm is referred to as Independent Factor Perturbation (IFP) or Perturbation-Optimisation (PO) respectively.

The proposed algorithm can be used when the mean and the precision matrix of the target distribution are expressed as:

= -1 ∑ =1 -1 = ∑ =1
Such forms for the mean and covariance matrix are rather common since they arise for example in Gaussian linear inverse problems, see as a record [Idier, 2008].

The algorithm is presented in algorithm 2.6. It replaces the difficult problem of directly sampling the target distribution with the sampling of several simpler distributions and the minimisation of a quadratic criterion.

The cost of generating one sample is divided between the cost of sampling the perturbations and the cost of minimising the quadratic criterion. The cost of sampling the ,end for perturbations is usually not that important as the distributions that we need to sample have a structure that allows for efficient sampling. The cost of minimising the criterion can be important and special attention should be paid to the choice of the minimisation technique. Exact minimisation of the criterion is a requisite for the generated samples to be distributed under the target distribution.

In practice however, given the size of the problem, exact minimisation is a costly process. A workaround is to use an approximate solution, as for example given by an iterative solver with a truncated number of iterations. Clearly this yields only an approximate sample. Practical implementations have showed consistent results, see for example [START_REF] Papandreou | Gaussian sampling by local perturbations[END_REF], Orieux et al., 2012, Orieux et al., 2013], despite the incertitude with respect to the actual distribution of the generated samples.

The work by [START_REF] Gilavert | Efficient Gaussian sampling for solving large-scale inverse problems using MCMC[END_REF] addresses this exact uncertainty with respect to the distribution of the generated samples. The authors consider the optimisation-based sampler as a means of proposing candidates in a Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) algorithm. The convergence of the RJ-MCMC algorithm guarantees that the generated samples are indeed samples from the target distribution. Naturally, the closer the approximate solution is to the true solution, the smaller the number of rejected samples.

CHAPTER 3 Parallel high-dimensional approximate Gaussian sampling

The previous chapter discussed the different existing approaches to sample from a highdimensional Gaussian distribution. In this chapter we focus on our proposed solution to the sampling problem. The proposed sampler can be seen as a stochastic version of an iterative algorithm for solving systems of linear equations.

We start the chapter with a description on how to construct sampling algorithms from iterative solvers for systems of linear equations in section 3.1. We introduce the proposed sampling algorithm in section 3.2. We discuss its convergence speed, provide a sufficient condition for convergence and analyse its computational cost.

We perform a numerical analysis of the estimation error in section 3.3. We first analyse the estimation error all by itself and then perform a comparison with the Gibbs and Hogwild estimation errors. We then give the intuition behind the proposed sampling algorithm in section 3.4 and also discuss an extension of the algorithm to other distributions. We end the chapter with a series of conclusions and present some additional perspectives.

Linear iterative solvers and stochastic iterates

The natural way to start exploring the connection between linear iterative solvers and stochastic iterates is by analysing the Gibbs algorithm applied to the target multivariate Gaussian distribution. For convenience we repeat in the following the expression of the probability density function given in equation (2.1), however this time we ignore the normalizing constant:

 ( ; , ) ∝ exp - 1 2 ( -) -1 ( -) . (3.1)
The most common way of expressing the probability density function, and the one used in equations (2.1) and (3.1), employs the mean vector and the covariance matrix as parameters. An alternative writing of the probability density function makes use of the precision matrix = -1 and the potential vector = :

 ; -1 , -1 ∝ exp - 1 2 + . (3.2)
One of the main advantages of expressing the probability density under this form is that the precision matrix directly reveals dependencies among the components of the random variable. Let denote the entry in the -th row and -th column of the precision matrix and ( ) and ( ) denote the -th and -th components of the random vector . If = 0, ≠ , then ( ) and ( ) are conditionally independent given the other components [Rue and Held, 2005, p. 2].

Let us focus on the representation from equation (3.2). The Gibbs sampler induces a Markov chain =1,2,… with stationary distribution  ( ; , ). Let ( ) denote the -th component of the -th iterate , ℎ( ) the -th component of the vector and ( ) the -th component of the stochastic term . One iteration of the component-wise, or single site Gibbs sampler writes as:

for = 1, 2, … , do ( ) = ( ) √ + ℎ( ) - 1 -1 ∑ =1 ( ) + ∑ = +1 -1 ( ) , ( ) i.i.d. 
∼  (0, 1)

end for

If we express the precision matrix as = + + with = diag ( ) and the strictly lower triangular part of , then we can express one iteration of the Gibbs sampler in matrix form as [Johnson et al., 2013, Fox andParker, 2017

] = --1 --1 -1 + -1 + -1 ∕2 , i.i.d. ∼  ( , ) ,
where by 1 ∕2 we denote the diagonal matrix obtained by taking the square root of each element of the diagonal matrix and by -1 ∕2 its inverse. Furthermore, we can rewrite the above into an update equation:

= -( + ) -1 -1 + ( + ) -1 + ( + ) -1 1 ∕2 , i.i.d. ∼  ( , ) . (3.3)
The interest towards this second writing of the matrix form becomes apparent if we consider the expected value. We have

| -1 = -( + ) -1 -1 + ( + ) -1 , (3.4)
which is nothing but the expression of the Gauss-Seidel linear iterative solver update applied to the system = (see discussion below).

In order to make the previous statement (more) obvious, we need to first review some of the concepts involved with solving a system of linear equations. Let us consider the following system of linear equations:

= , (3.5)
with , ∈ ℝ and ∈ ℝ × a non-singular symmetric matrix. A naive albeit correct approach would be to just invert the system matrix. However, computing the inverse of a matrix is a costly operation which besides does not scale well, i.e. ( 3 ), with the size of the problem.

An alternative approach comes in the form of iterative linear solvers. They start from an initial approximation of the solution, say 0 , which with each iteration gets further refined such that eventually we end up with the correct solution. Their main advantage is that they have a small computational cost per iteration, typically  2 , and a small memory footprint, typically  ( ).

Linear iterative solvers are usually analysed in the context given by the matrix splitting formalism, see for example [Axelsson, 1996, Golub andVan Loan, 2013]. That is, given the system of linear equations in (3.5), write the system matrix as the difference between two other matrices, say = -. The splitting then enables rewriting the system of linear equations as = + .

By appropriately indexing the unknown in the left-hand side and in the right-hand side, we easily convert the previous equation into an update equation:

= -1 + . More so, if the matrix is invertible we then have

= -1 -1 + -1 . (3.6)
Different choices of and lead to different linear iterative solvers. For practical reasons, we are interested in splittings which allow solving systems of the form = , for a general vector , in an efficient manner. Let = + + with = diag( ) and the strictly lower triangular part of . The Gauss-Seidel iterative linear solver is obtained for choosing = + and = -. Since is a lower triangular matrix, solving systems of linear equations of the form = is straightforward using forward substitution.

The convergence of the iterative solver in (3.6) hinges on the spectral radius of the update matrix = -1

. Let ( ) denote the set of all eigenvalues of , then the spectral radius of is defined as [Golub and Van Loan, 2013]:

( ) = max {| | ∶ ∈ ( )} .
(3.7)

The iterative solver converges if and only if the spectral radius of the update matrix is inferior to one, i.e. ( ) < 1 [Axelsson, 1996, Thm. 5.3] [Golub andVan Loan, 2013, Thm. 11.2.1]. When this is the case the splitting is referred to as being convergent.

Let us now tackle the claim that the expectation of equation (3.3) is the Gauss-Seidel linear iterative solver update applied to the system = . In this case, we apply the splitting to the precision matrix , that is = -. Let = + + , then = + and = -. Replacing with and and with their respective expressions in equation (3.6) yields

= -( + ) -1 -1 + ( + ) -1 . (3.8)
We immediately notice that equations (3.4) and (3.8) have an identical structure. We could arguably say that in fact Gibbs sampling applied to a multivariate Gaussian distribution is a stochastic version of the Gauss-Seidel algorithm.

This similarity between sampling a Gaussian distribution using the Gibbs algorithm and solving a system of linear equations using the Gauss-Seidel algorithm is known for quite a while. Among the first to acknowledge it we have [START_REF] Goodman | Multigrid Monte Carlo method. conceptual foundations[END_REF]. It was further acknowledged in [START_REF] Roberts | Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler[END_REF], however the authors did not fully explore it in their study of the Gibbs sampler.

[ [START_REF] Goodman | Multigrid Monte Carlo method. conceptual foundations[END_REF]], [START_REF] Johnson | Analyzing Hogwild parallel Gaussian Gibbs sampling[END_REF] and [START_REF] Fox | Accelerated Gibbs sampling of normal distributions using matrix splittings and polynomials[END_REF] highlighted that as a matter of fact the connection between the Gibbs sampler and the Gauss-Seidel iterative solver is just a particular instance of a connection between an iterative algorithm to sample from a Gaussian distribution and an iterative solver for a system of linear equations in the precision matrix.

The work by [START_REF] Fox | Accelerated Gibbs sampling of normal distributions using matrix splittings and polynomials[END_REF] established that given a convergent iterative solver there exists an equivalent convergent iterative sampler. [Fox and Parker, 2017, Thm. 1] states that the iterative solver in (3.6) converges for any fixed vector , with → -1 as → ∞, if and only if there exists a distribution Π such that the stochastic iteration

= -1 -1 + -1 , i.i.d. ∼ (⋅) , ( 3.9) 
with (⋅) some probability distribution with zero mean and fixed non-zero covariance, converges in distribution to Π, with  → Π as → ∞ whatever the initial state 0 .

The previous result is an important one. However, it tells us nothing with respect to the distribution to which the stochastic iteration converges. To be of any use in practice we must be able to control to which distribution the algorithm converges. The authors in [Fox and Parker, 2017, Thm. 2] further describe how to construct the distribution of the stochastic component injected at each iteration such that the stochastic iterate converges towards a desired distribution.

Let us consider the case of a multivariate Gaussian distribution  -1 , -1 with a symmetric positive definite matrix, = -a convergent splitting and a finite vector. Given the stochastic iteration in (3.9) we have that [Fox and Parker, 2017, Thm. 2

]  →  -1 , -1 (3.10) if and only if i.i.d. ∼  , + . (3.11)
Similar results restricted only to the case of Gaussian distributions were given as early as [START_REF] Goodman | Multigrid Monte Carlo method. conceptual foundations[END_REF], and also in [START_REF] Johnson | Analyzing Hogwild parallel Gaussian Gibbs sampling[END_REF].

We now take a look at how we can obtain the update rule expression for the Gibbs algorithm given in (3.3) using this time [Fox and Parker, 2017, Thm. 2]. Let us reconsider the target distribution from equation (3.2). We see that the two parameters of the Gaussian distribution are expressed in a similar way to the two parameters of the target distribution in (3.10). We identify = and = .

It remains to perform the splitting of the precision matrix = -. We choose = + and = -. According to equation (3.11) the distribution of the stochastic component is  ( , ): the expression for the mean is immediate whereas the covariance matrix is obtained as the result of evaluating + = + -= . We have

= -( + ) -1 -1 + ( + ) -1 , i.i.d. ∼  ( , ) . Let = + 1 ∕2 , i.i.d.
∼  ( , ). We then have:

= -( + ) -1 -1 + ( + ) -1 + ( + ) -1 1 ∕2 , i.i.d.
∼  ( , ) , (3.12) which shows that using the approach described in [START_REF] Fox | Accelerated Gibbs sampling of normal distributions using matrix splittings and polynomials[END_REF] we are indeed able to derive the Gibbs algorithm starting from the Gauss-Seidel algorithm.

One last thing that we wish to discuss concerning linear iterative solvers is their convergence speed. One usual way to measure the convergence speed is with the convergence factor, see for example [Axelsson, 1996, Saad, 2003]. The convergence factor is defined as follows:

= lim →∞ ‖ ‖ ‖ 0 ‖ 1 ∕
, with = - * and * is the solution vector to the system of linear equations in (3.5). It can be shown that for linear iterative solvers of the form (3.6) we have that = -1 [Saad, 2003].

Clone MCMC

We have seen that there is a similarity between approximately sampling from a Gaussian distribution using the single site Gibbs algorithm and solving a system of linear equations in the precision matrix using the Gauss-Seidel algorithm. Furthermore, the work in [START_REF] Fox | Accelerated Gibbs sampling of normal distributions using matrix splittings and polynomials[END_REF]] established that we can construct an iterative sampler by taking an iterative solver for a system of linear equations and injecting appropriately shaped noise at each iteration. We then saw that using this approach we were able to derive the Gibbs sampler starting from the Gauss-Seidel algorithm.

Gauss-Seidel is only one instance of an iterative algorithm for solving a system of linear equations. Other well known and widely used algorithms are the Jacobi algorithm, the algorithm of successive over-relaxation (SOR) and the symmetric SOR (SSOR) algorithm [Axelsson, 1996, Saad, 2003, Golub and Van Loan, 2013]. Let us reconsider the system of linear equations from (3.5) and the decomposition = + + , with = diag ( ) and is the strictly lower triangular part of . The Jacobi algorithm for solving a system of linear equations is obtained by choosing = and = -+ . The SOR algorithm is obtained by choosing = -1 + and = -1 -1 -with ∈ (0, 2) [Axelsson, 1996] a parameter of the algorithm.

We repeat ourselves in stressing out that the usefulness of a splitting is given by how easy it is to solve systems of the form = for a general vector . For the Jacobi algorithm it is straightforward since is diagonal. For the SOR algorithm, and for Gauss-Seidel for that matter, it is again straightforward since is lower-triangular.

One very important aspect that differentiates the Jacobi algorithm from Gauss-Seidel and SOR algorithms is that the individual components of the solution vector of the system = can be computed in parallel. Indeed, as is a diagonal matrix, the -th component of the solution vector is computed independently of all the other components. For the Gauss-Seidel and SOR algorithms, due to the lower triangular structure of the matrix , solving for the -th component requires first solving for the ( -1)-th component and so forth.

The question that naturally arises is whether we cannot make use of the Jacobi algorithm for solving a system of linear equations to construct an efficient parallel iterative sampler. Let us consider the target Gaussian distribution  ; -1 , -1 from equation (3.2) and let us consider the stochastic iterate from equation (3.9). Let = + + and we perform the splitting = -with = and = -+ . According to equation (3.11) the distribution of the stochastic component is  , -+ . The Jacobi derived sampler is

= -1 -1 + -1 , i.i.d. ∼  , - + . (3.13)
A quick analysis of the resulting sampler easily reveals that it is of no practical use. Indeed, sampling the stochastic component is as difficult as sampling the original target distribution since its distribution has a full covariance matrix.

Sampling the stochastic component does not pose any problem whatsoever in the case of the Gibbs algorithm. If we look at equation (3.12) we see that the stochastic component has a trivial distribution. However, the Gibbs algorithm requires computing each new sample in a sequential manner which is impractical for large scale applications.

What we would like is to have an algorithm with a trivial distribution for the stochastic component and with a parallelizable update equation. Our proposed sampling algorithm achieves exactly that. It is given in algorithm 3.1 and we refer to it as Clone MCMC. The proposed algorithm was the main subject of our paper [START_REF] Bărbos | Clone MCMC: Parallel high-dimensional Gaussian Gibbs sampling[END_REF].

It should be clear that the Clone MCMC algorithm satisfies both desiderata: the covariance matrix of the stochastic component is diagonal, thus the stochastic component can be sampled in parallel, and each component of the vector = -1 -1 can be computed independently of the other components. It should be also clear that a global synchronization is required after each iteration.

We express the proposed sampling algorithm using the matrix splitting formalism, however, it deviates from the approach proposed by [START_REF] Fox | Accelerated Gibbs sampling of normal distributions using matrix splittings and polynomials[END_REF]. We do make use however of the connection between linear solvers and stochastic iterates for proving the convergence of the proposed sampling algorithm. In section 3.4 we give the intuition behind the choice of the transition and the name Clone MCMC.

The following theorem links the convergence of the proposed sampling algorithm to the convergence of the underlying linear solver and gives the distribution to which the Markov chain defined by (3.16) converges. 

= -1 -1 + -1 , i.i.d. ∼  ( , 2 ) (3.16)
5: end for Theorem 1. Let be a fixed vector, = -1 be some positive semi-definite matrix and = -be a matrix splitting with positive semi-definite as well. If the stationary linear equation = -1 -1 + -1 converges for any , then the Markov chain defined by (3.16) converges in distribution to  , with

= 2 + -1 -1 = - 1 2 -1 -1 -1
.

(3.17)

Proof. We break the proof in two parts: we first prove that the convergence of the linear iterative solver implies the convergence of the stochastic sampler and then we prove that the mean and covariance matrix of the stationary distribution have the given expressions.

[ Fox and Parker, 2017, Thm. 1] tells us that the solver for the system of linear equations converges if and only if there exists a distribution Π such that the stochastic iterate converges in distribution to Π. The theorem is given for the case when the distribution of the stochastic component has a zero mean. In our case the distribution of the stochastic component has a non null mean. However, and as we will shortly see, we can rewrite the stochastic iterate such that the distribution of the stochastic component has a zero mean.

Let = + , i.i.d.
∼  , 2 . We have:

= -1 -1 + -1 + = -1 -1 + -1 - + -1 = -1 -1 --1 + -1 + from which it follows that -= -1 -1 - + -1 . Let -= ′ and -1 -= ′ -1 , then ′ = -1 ′ -1 + -1 ,
which concludes the rewrite of the stochastic iterate. Thus, [Fox and Parker, 2017, Thm. 1] applies to our case as well which concludes the first part of the proof. Note that we could have also used [Duflo, 1997, Thm. 2.3.18] to prove that the convergence of the solver implies the convergence of the stochastic iterate, more so as it is employed in the proof of [Fox and Parker, 2017, Thm. 1].

For the second part of the proof, we start with the expression for the mean. It should verify the recurrence

= -1 + -1 .
Let us see that this is indeed the case. We have

--1 --1 = --1 --1 -1 = -1 - ⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟ -1 --1 -1 = ,
which proves that the mean indeed verifies the recurrence.

The covariance matrix should verify the recurrence

= -1 -+ 2 -1 -.
As = with -= -1 implicitly, and = we have that

= -1 -1 + 2 -1 .
Let us now verify that indeed the covariance matrix satisfies the recurrence. We first have:

--1 -1 -2 -1 = --1 --1 --1 -1 -2 -1 = -1 -1 + -1 -1 --1 -1 -1 -1 -2 -1 .
We replace with its actual expression from equation (3.17) and we obtain:

--1 -1 -2 -1 = - 1 2 -1 -1 -1 -1 -1 + -1 -1 - 1 2 -1 -1 -1 --1 -1 - 1 2 -1 -1 -1 -1 -1 -2 -1 = - 1 2 -1 -1 -1 + -1 - 1 2 -1 -1 -1 - - 1 2 -1 -1 -1 -2 -1 = 2 - 1 2 -1 -1 - - 1 2 -1 -2 -1 .
The above expression should reduce to . In order to see that indeed this is the case, let us rewrite the last term:

2 -1 = 2 -1 - 1 2 -1 - 1 2 -1 -1 = 2 - 1 2 -1 -1 - - 1 2 -1
.

We finally obtain

--1 -1 -2 -1 = 2 - 1 2 -1 -1 - - 1 2 -1 -2 - 1 2 -1 -1 + - 1 2 -1 = .
which proves that the covariance matrix of the approximate distribution satisfies the required recurrence and which concludes the proof as well.

The Markov chain induced by (3.16) converges towards an approximate distribution  , having the correct mean and an approximate covariance matrix. The quality of the approximation depends on how close the matrix product -1 -1 is to the null matrix. More specifically, it depends on how close the matrix -1 is to the null matrix.

We control the degree of closeness through the parameter : when → ∞ then -1 → × . Let , , = 1, … , , denote the entry in the -th row and -th column of the precision matrix . Let us also consider the expression of the matrix given in equation (3.14): it is a diagonal matrix obtained by adding the positive quantity 2 to the positive elements on the diagonal of the precision matrix, i.e.

= + 2 . The elements of the diagonal matrix -1 are the scalar inverse of the elements of :

-1 = ( + 2 ) -1 . Indeed, → ∞ implies -1 → 0 for = 1, … , , which in turn implies that -1 → × .
Naturally we would then want to set to a value as high as possible in order to ensure that the discrepancy between the approximate covariance matrix and the covariance matrix of the target distribution is minimum. However, choosing a high value leads to drawing samples which are more and more correlated. Consequently, choosing the value for is an important aspect which we have to deal with. We discuss more on the influence of in section 3.3.1 where we numerically look at the estimation error as a function of .

A sufficient condition for convergence and the speed of convergence

The previous section introduced our solution to the problem of efficiently sampling high dimensional Gaussian distributions. In this section we introduce a sufficient condition on the precision matrix of the target distribution which ensures the convergence of the proposed sampling algorithm.

Theorem 1 establishes the convergence of the proposed algorithm. It is intrinsically linked to the convergence of the underlying linear iterative solver:

= -1 -1 + -1 .
If it converges, then so does our proposed algorithm. The necessary and sufficient condition for the convergence of the iterative linear solver is

-1 < 1.
Let denote the ( , ) element of the precision matrix . We call matrix strictly (row) diagonally dominant if [Golub and Van Loan, 2013]

| | > ∑ =1 ≠ | |, ∀ ∈ {1, 2, … , } .
Theorem 2 shows that -1 < 1 if the precision matrix is strictly diagonally dominant.

Theorem 2. Let and be the matrices defined in (3.14) and (3.15) respectively. If = -1 is strictly diagonally dominant then ( -1 ) < 1 for all ≥ 0.

Proof.

is non-singular hence

det -1 - = 0 ⇔ det -1 - = 0 ⇔ det - = 0 .
Assume that = -is strictly diagonally dominant, hence -= ( -1) + -is also strictly diagonally dominant, for any ≥ 1 (as we are adding positive terms on the diagonal).

A strictly diagonally dominant matrix is non-singular [Varga, 2000, Thm. 1.21], so det -≠ 0 for all ≥ 1. We conclude that the eigenvalues of the matrix -1 are strictly inferior to 1 which leads to -1

< 1.

Before we discuss the speed of convergence of the proposed sampling algorithm, let us first look at the expression of the mean and covariance matrix of the iterates at a given iteration . Let and , denote the mean vector and covariance matrix at iteration . Equations (3.18) and (3.19) contain their respective expressions.

= -1 -1 + -1 , (3.18) , = -1 , -1 -1 + -1 -1 . (3.19)
We have slightly altered the notation for the two parameters of the distribution of the stochastic component. We have used = and = 2 to denote the mean and covariance matrix respectively. This was done to underline the fact that these results are valid even in a more general setting. The two equations are called the mean and covariance propagation equations [Kay, 1993, p. 429].

We assume the initial point 0 to be a Gaussian random variable with distribution equations (3.18) and(3.19) we obtain

0 ∼  0 , 0 . From
= -1 0 + -1 ∑ =0 -1 -1 , (3.20) , = -1 0 -1 + -1 ∑ =0 -1 -1 -1 -1 . (3.21)
The following theorem gives the convergence factor for the covariance matrix.

Theorem 3. Let = -1 be a real positive symmetric definite matrix and -1 = be a convergent splitting, with positive definite as well. Let 0 ∼  0 , 0 and for

= 1, 2, … = -1 -1 + -1 with ∼  , 2 . Let , = Var . Then , = + -1 0 - - (3.22) with = lim →∞ , = 2 + -1 -1 = - 1 2 -1 -1 -1
.

Hence , converges to with convergence factor -1 2

.

Proof. From equation (3.21) we have It then follows that 2 -1 = -.

, = 0 + -1 ∑ =0 2 -1 , ( 3 
We inject the above expression into equation (3.23) and we obtain:

, = 0 + -1 ∑ =0 - = 0 + -1 ∑ =0 - -1 ∑ =0 +1 +1 = 0 + + + 1 1 + 2 2 + … + -1 -1 -1 1 -2 2 -… --1 -1 - = 0 + - = + 0 -
from which it immediately follows that

, = + -1 0 - - .
The covariance matrix at iteration is expressed as the sum between the approximate covariance matrix and a compound term which quantifies the influence of the initial point. As increases the influence of the initial point diminishes with

-1 0 - - → as → ∞.
The convergence factor is given by just how fast the influence of the initial point diminishes.

In order to determine the convergence factor we perform an eigenvalue decomposition of the update matrix = -1 . We have

= -1 ,
with the matrix containing the eigenvectors and the diagonal matrix containing the eigenvalues. We further have = -1 .

We can rewrite the compound term that quantifies the influence of the initial point as:

0 - = -1 0 - - ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ * = * .
Let denote the ( , ) element of the matrix * . The elements of the resulting matrix * are of the form and they go to zero as → ∞. Let be the largest eigenvalue, then the element = ( 2 ) will be the slowest to convergence hence the convergence factor of -1 2 .

Computational aspects

An important aspect that we must consider is the cost of the algorithm. It is the highdimensional nature of the problem at hand that motivated the development of the method to begin with. So it is natural to analyse how the cost of the algorithm scales up with the size of the problem. There are several aspects to consider when one defines the cost of an algorithm. In order not to complicate matters too much, we will look at flop counting1 as the metric to asses the cost of the algorithm.

If we look at the matrix splitting writing of the algorithm, given in equation (3.16), we identify the following operations that have to be carried out at each step:

1. sample the stochastic component 2. compute the matrix-vector product -1 3. compute the matrix-vector product -1 -1 4. add the results from steps 2 and 3.

Note that the matrix = -1 is constant with the iterations so it suffices to compute it only once.

The first operation is to generate the stochastic component , that is sample the distribution  , 2

. The sampling operation is divided in two steps: first generate a random vector from the zero-mean distribution  , 2 and then add the mean:

= + , i.i.d. ∼  , 2 . (3.24)
A couple of remarks are worth making with respect to the sampling operation. The first one is with respect to the cost of sampling the distribution of the stochastic component  , 2

: the covariance matrix 2 is a diagonal matrix, see equation (3.14), thus generating the random vector amounts to just drawing i.i.d. univariate samples.

The second remark concerns the mean of the noise distribution = = -1 : it is given under the form of a matrix-vector product. On the upside it does not change with the iterations so it suffices to compute it only once and then store it in memory. On the downside it requires having access to the precision matrix.

There might be situations in which we actually have access to the covariance matrix and not the precision matrix. In such a scenario we would then need to invert the covariance matrix, a costly process which does not scale well, i.e.  3 , with the dimension of the matrix. In the case of Bayesian Gaussian linear inverse problems in signal and image processing, a class of problems we are interested in, we usually have access to the precision matrix, see for example [START_REF] Orieux | Sampling highdimensional Gaussian distributions for general linear inverse problems[END_REF], Gilavert et al., 2015, Fox and Parker, 2017].

Further more, and as we shall see in chapter 4, we also have direct access to the potential vector eliminating the need to compute it as the matrix vector product .

The cost of computing step 1 is flops. For its derivation we considered neither the cost of computing the mean vector = nor the cost of generating the i.i.d. univariate random variables. This means that the sole operation to consider is the sum of two vectors of size [ × 1].

Step 2 requires performing the matrix-vector product -1 . In the general case when is dense the cost of this operation is 22 -flops 2 . In our case, as the matrix -1 is diagonal, the cost decreases to just flops.

Step 3 requires computing the matrix vector product -1 -1 . The matrix -1 is a dense matrix, thus the cost of this matrix-vector product is 2 2 -flops. Note that cost of this step does not account for the cost of computing the matrix = -1 . Step 4 requires flops as we just add two vectors of size [ × 1].

Equation (3.25) illustrates in a concise manner the previous discussion relating to the cost of each step. It is a rewrite of equation (3.16) to include the sub-step in equation (3.24) for generating the stochastic component . The cost for each step is written above or below the corresponding operation.

= -1 -1 ⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟ ( 2 2 -) f lops + -1 f lops ⏞⏞⏞⏞⏞ + ⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟ f lops ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ f lops , i.i.d. ∼  , 2 . (3.25)
The overall cost of one iteration of the algorithm is

C = 2 2 -+ + + = 2 2 + 2 ,
which expressed using the big  asymptotic notation yields

C =  2 . (3.26)
Equation (3.26) tells us that each iteration of the algorithm requires a quadratic amount of work with respect to the dimension of the problem. For very high values of , even one iteration can become prohibitive to compute. Not to mention that in order to draw samples from the target distribution, we must evaluate equation (3.25) -times ( = + , where is the number of burn-in samples).

One way to diminish 3 the cost is to look at carrying out the computations in parallel. The focus will be on the matrix-vector product -1 -1 = -1 as it has the highest associated cost. In the following we analyse the gain achieved by performing the matrixvector product in parallel. Appendix D contains a more thorough discussion on the topics of parallel matrix-matrix and matrix-vector multiplication.

The first operation to carry out is to perform a block decomposition of the vector -1 and of the matrix = -1

. We divide the vector -1 into a number of blocks ( )

-1 ∈ ℝ and we divide the matrix into a number of × blocks ( ) ∈ ℝ ℎ × :

-1 = ⎡ ⎢ ⎢ ⎣ (1) -1 ⋮ ( ) -1 ⎤ ⎥ ⎥ ⎦ , = ⎡ ⎢ ⎢ ⎣ (11) … (1 ) ⋮ ⋱ ⋮ ( 1) … ( ) ⎤ ⎥ ⎥ ⎦ .
To keep matters simple, we consider that the vector -1 is divided in equally sized blocks, i.e. = = * , ∀ , = 1, 2, … , . Furthermore, we consider that the blocks ( ) are square and of equal size, i.e. ℎ = = * for all = 1, 2, … , and = 1, 2, … , .

From the fact that the matrix = -1 is square and that we are decomposing it in square blocks, it follows that = , that is we divide the columns and rows of the matrix in an equal number of blocks. We further deduce that the vector resulting from the product -1 will be equally composed of (= ) blocks. Each of the blocks from the resulting vector are independent of each other which caters for computing them in parallel.

We consider that we dispose of a total of processing units. In an ideal scenario, the number of processing units would equal the number of blocks to compute, i.e.

= . However, more often than not the number of processing units is inferior to the number of blocks, i.e.

< or even ≪ . Thus, each processing unit will in fact be responsible for the computation of several blocks. In order to simplify the analysis we consider that each unit has the same number of blocks = to compute, where = . The cost per processing unit is thus:

=  2 * . We can further process the obtained result for the cost such that it is a function of the size of the original data and of the number of available processing units. We have * = ∕ and = ∕ . The cost thus becomes:

=  2 * =  2 from which it follows that =  2 .
(3.27)

The cost of the algorithm is however lower bounded by the dimension of the problem, i.e.

, thus it has the following expression:

=  2 min , .
(3.28)

We see that the cost of the algorithm ranges from being quadratic to linear with respect to the size of the problem depending on the number of available processing units. Naturally we are interested in having a linear cost, however that requires having as many processing units as components of the random variable. In most of the cases though, the cost will be somewhere in between.

Empirical evaluation

The Clone MCMC algorithm converges to an approximate distribution having the correct mean and an approximate covariance matrix. We saw that we can control the discrepancy between the approximate distribution and the target distribution through the tuning parameter . A small value leads to a coarse approximation whereas a large value of leads to a fine approximation however at the cost of drawing more correlated samples.

Before we move on we would like to state that when we will be referring to the estimation error of the empirical estimates, unless otherwise specified, we will be referring to the error between the estimates and the parameters of the target distribution and not of the approximate distribution. Let us not forget that the empirical estimates are in fact estimates for the mean and covariance matrix of the approximate distribution and not of the target distribution.

In the following two sections we perform a numerical analysis of the estimation error. We first analyse the estimation error with respect to the value of the tuning parameter and the sample set size. We then compare the Clone MCMC estimation error with the Gibbs and Hogwild estimation errors for different target distributions in a fixed computational budget setting.

Estimation error analysis

There are two factors that influence the estimation error: the first one is the discrepancy between the target distribution and the approximate distribution while the second one is the degree of correlation between the drawn samples. Note however that the first factor influences only the estimate for the covariance matrix as the approximate distribution has the correct mean.

Recall from section 3.2.2 that = + with being the total number of samples and the number of burn-in samples. Let

̂ = 1 - ∑ = +1 -̂ -̂ and ̂ = 1 - ∑ = +1
denote the empirical estimate for the covariance matrix and the mean vector respectively.

Let us consider the norm of the estimation error. We first look at the estimation error for the covariance matrix. We have

‖ -̂ ‖ = ‖ -+ -̂ ‖ , which by the triangle inequality yields ‖ -̂ ‖ ≤ ‖ -‖ + ‖ -̂ ‖.
(3.29)

The above inequality gives us a bound for the norm of the error where the bound itself depends on the approximation error and the degree of correlation between the samples. The first term on the right hand side expresses the influence of the approximation error whereas the second term expresses the influence of the degree of correlation.

The estimation error analysis consists in performing a numerical evaluation of the terms from equation (3.29) across a range of different values of and for varying sizes of the sample set used for computing the estimates. Such an analysis should allow us to gain insight into how each of the two factors influences the estimation error.

For the numerical evaluation of the estimation error of the Clone MCMC algorithm we consider the vector 2-norm for the mean and the Frobenius norm for the covariance matrix. We recall in the following the definition of the two norms. Let ∈ ℝ be a vector and ∈ ℝ × be a matrix, then the vector 2-norm of and the Frobenius norm of are [Golub and Van Loan, 2013]:

‖ ‖ 2 = √ √ √ √ ∑ =1 | ( )| 2 , ‖ ‖ = √ √ √ √ ∑ =1 ∑ =1 | | 2 .
We chose a target Gaussian distribution with mean = 1 2 … and the following strictly diagonally dominant precision matrix:

= - 1 + 1
11 -, with = 10 and 1 a column vector of size having all elements equal to 1. In all experiments the initial point 0 is drawn from the stationary distribution, i.e. 0 ∼  , , hence = 0 as we start directly in the stationary regime.

In a first experiment we considered the dimension = 100 for which the results are given in figures 3.1 and 3.2. We looked at different values of and different sample set sizes. For we performed a sweep using logarithmically spaced values over the interval [10 -3 , 10 3 ]. For the size of the sample set we performed a sweep over the interval [1000,20000] in increments of 200 samples. The results are averaged over 100 independent experiments.

Figure 3.1a displays the variation of the Frobenius norm of the estimation error for the covariance matrix with respect to the value of . The different traces correspond to different sizes of the sample set used for computing the estimate. We observe that the norm of the estimation error has a similar non-linear variation for all the considered sample set sizes.

Figure 3.1b presents a closer look at the norm of the estimation error for a sample set comprising 20000 samples. It displays the variation with respect to for all the terms from equation (3.29). The figure clearly enables us to see that each of the two terms from the right-hand side has a range of values of over which it is the dominant factor in driving the norm of the estimation error for the covariance matrix. We see that for small values of the approximation error is the dominant factor, whereas for large values the correlation between samples is the dominant factor. We further notice that the minimum value of the norm of the estimation error lies at or near the point where the approximation error gives way to the correlation between samples in being the dominant factor in driving the estimation error. In a way this outcome was hinted at from the very first paragraph. Indeed, as we increase the value of we see that the norm of the difference between the covariance matrix of the target distribution and the approximate covariance matrix decreases towards zero. However, increasing leads to the samples being more correlated which degrades the quality of the empirical estimates.

We already know from the theoretical results that as → ∞ the approximate covariance matrix tends to the target covariance matrix . What figure 3.1b also shows us is that the norm of the difference between the target covariance matrix and the approximate covariance matrix gets close to zero for relatively small values of . In the current case, for values past 10 2 we can easily neglect the effect of the approximation.

If we go back to figure 3.1a we notice that increasing the number of samples shifts the position of the minimum towards higher values of . The explanation for this fact is rather simple. We have seen that increasing the value of diminishes the approximation error while at the same time it increases the degree of correlation between samples. For high values of it is the high degree of correlation that is the dominant factor in driving the estimation error.

Increasing the number of samples used to compute the estimate alleviates the effect of a higher degree of correlation. The immediate effect is that the point at which the degree of correlation between the samples becomes the dominant factor in driving the estimation error shifts towards higher values of . Considering that the minimum estimation error lies at the point where the two factors switch roles in being the dominant factors in driving the estimation error and that the approximation error decreases as increases, it is then natural that the minimum shifts towards higher values of as the number of samples increases.

Figure 3.1c contains the norm of the error between the empirical estimate for the mean and the mean of the approximate target distribution. As we already know, the mean of the target distribution and of the approximate distribution coincide. Furthermore, the mean does not depend on . The variation that we observe in the norm of the estimation error with respect to the value of is only due to the higher degree of correlation between samples which degrades the quality of the empirical estimate. Naturally, an increase in the number of drawn samples improves the accuracy of the empirical estimate. Figure 3.2 displays the estimation error for varying sample set sizes used to compute the estimates for fixed values of . Figure 3.2a displays the variation of the Frobenius norm of the estimation error for the covariance matrix with respect to the sample set size for three distinct values of . One of the aspects that first catches our attention is that for small sample set sizes the smallest estimation error is achieved for = 10 0 whereas for moderate to large sample set sizes the smallest estimation error is achieved for = 10 2 .

To better understand why as the sample set size increases the estimation error for = 10 2 becomes smaller than that for = 10 0 we first need to go back to figure 3.1a. We see that 10 0 lies in a range of values where the approximation error dominates the estimation error and that 10 2 lies in a range of values where the high degree of correlation between the samples dominates the estimation error.

Increasing the sample set size for a value of where the approximation error is the dominant factor in driving the estimation error has little effect on the estimation error. Increasing the sample set size has an effect, and an important one for that matter, for values of where the degree of correlation between the samples is the dominant factor in driving the estimation error. Indeed, as figure 3.2a clearly shows it, increasing the number of samples has little effect on the estimation error for the case 10 -2 , some limited effect for the case = 10 0 and an important effect for the case = 10 2 .

The explanation as to why for small sample set sizes the smallest estimation error is achieved for = 10 0 whereas for moderate to large sample set sizes the smallest estimation error is achieved for = 10 2 now starts to become clear. As we increase the sample set size, the empirical estimate will get closer and closer to the approximate covariance matrix. Coupled with the fact that the approximation error is greater for the case = 10 0 , it is then natural that the estimation error for the case = 10 2 eventually becomes smaller than that for the case = 10 0 . In the limit case of an infinite sample set size, the estimation error will be bounded by the approximation error.

Figures 3.2c and 3.2d display the variation of all terms from equation (3.29) with respect to the sample set size. Figure 3.2c enables us to clearly see that as the sample set size increases the approximation error becomes the dominant factor in driving the estimation error and that the estimation error is indeed bounded by the approximation error. This is not so obvious in figure 3.2d. We see that for all the considered sample set sizes it is the correlation between the samples that drives the estimation error. Had we kept on increasing the sample set size even more we would have definitely noticed that after a certain value, the approximation error would have become the factor driving the estimation error.

Figures 3.2c and 3.2d clearly exemplify the explanation as to why there is the change in the value of for which we achieve the smallest estimation error as the sample set size increases. We can clearly see that for the case = 10 0 as the sample set size increases the estimation error is bounded by the approximation error. For the case = 10 2 the approximation error is small which enables the estimation error to decrease below the approximation error for the case = 10 0 as the sample set size increases.

Figure 3.2b displays the variation of the norm of the estimation error for the mean vector. We immediately notice that the best results are obtained for the smallest value. This is no surprise since the approximate distribution has the correct mean. For all considered values, increasing the sample set size has the effect of decreasing the estimation error which is what we would expect to happen.

Figures 3.3 and 3.4 contain the same set of experiments as figures 3.1 and 3.2, with = 1000. The results are similar to those obtained for = 100. We do notice that for the considered values and sample set sizes, the smallest estimation error for the covariance matrix is obtained for = 10 0 . We also see from figure 3.4a that if we were to further increase the sample set size then once more the smallest estimation error would be obtained for = 10 2 . Indeed, the estimation error for the cases = 10 -2 and = 10 0 begins to taper off for the greater sample set sizes, whereas the estimation error for the case = 10 2 continues to decrease at a moderated pace.

Figure 3.4c exemplifies the best the transition between the two factors in driving the estimation error as the sample set size increases for fixed value. We can clearly see that for small sample set sizes the correlation between samples drives the estimation error. Then as the sample set size increase, the approximation error becomes the driving factor. For moderate sample set sizes we see that both factors influence the estimation error.

We have seen that for fixed sample set size, increasing the value of at first decreases the estimation error as the approximation error decreases, but then the estimation error increases back due to the samples being more correlated. We have further seen that for a fixed value, increasing the sample set size leads to a decrease in the estimation error. The decrease is however bounded by the approximation error. Ideally, we would choose a high value and an important sample set size. In practice though, we usually have a limited computation budget which means that we need to be careful in choosing the value of the tuning parameter .

The numerical analysis of the estimation error has enabled us to get a good understanding of how the approximation error and the degree of correlation between the drawn samples intertwine in determining the performances of the proposed sampling algorithm. We see that choosing a proper value for is not an easy task. There exists a trade-off to be performed between the accuracy in estimating the mean vector and the accuracy in estimating the covariance matrix.

Estimation error comparison: Clone MCMC, Gibbs and Hogwild

The experiments contained within this section sought to perform a comparison between the estimation error that is achieved with three different algorithms for a fixed computation time. We considered the component-wise Gibbs algorithm, the Hogwild algorithm running on the GPU and the Clone MCMC algorithm running on the GPU. For the Hogwild algorithm we have considered only the variant with one component per block.

As was the case for the previous section, when we talk about the estimation error, unless otherwise stated, we are referring to the error between the empirical estimates and the parameters of the target distribution. This is important as both Hogwild and Clone MCMC algorithms converge to an approximate distribution and not to the target distribution. Naturally the empirical estimates are estimates for the parameters of the respective approximate distribution for each of the two algorithms.

The basic idea is that in the amount of time required by the Gibbs sampler to draw a given number of samples according to the target distribution, we can draw more samples

Hogwild

Clone MCMC

Splitting = = - + = + 2 = 2 - + Update rule = -1 -1 + -1 i.i.d. ∼  , = -1 -1 + -1 i.i.d. ∼  , 2 Approximate distribution  →  , = + -1 -1 = 1 2 - 1 2 -1 -1 -1  →  , = 2 + -1 -1 = - 1 2 -1 -1 -1
Table 3.1: Side-by-side comparison of the Hogwild and Clone MCMC algorithms using either Hogwild or Clone MCMC algorithms. The fact that we can draw more samples should enable us to obtain a smaller estimation error even though we are sampling an approximate distribution. The point is that the approximate distribution should not be too different from the target one as then the bias in the empirical estimates caused by the fact that we target an approximate distribution would cancel out any gain from the fact that we can draw more samples.

We begin our analysis by a side-by-side comparison of the Hogwild and Clone MCMC algorithms. Let  ( ; , ) =  ; -1 , -1 denote the target distribution and let = + + . Table 3.1 contains the side-by-side comparison of the two algorithms. We immediately notice that the two algorithms rather resemble each other.

We see that both algorithms employ a splitting into a diagonal matrix and a nondiagonal one. In a way, we can see the Clone MCMC splitting as the Hogwild splitting where to each of the two matrices defining the splitting we added the matrix 2 . Since both algorithms are expressed using matrix splittings it is then natural that their update rules are similar. We do notice however the factor 2 in front of the covariance matrix of the stochastic component for the Clone MCMC algorithm. Finally we notice that the two approximate distributions have a similar analytical expression for the covariance matrix. Let us make the remark that the fact the approximate covariance matrices have a similar expressions does not necessarily mean that they will be similar if we are to actually compute them.

Seeing the similarities between the two algorithm we questioned ourselves if it is not possible to express the estimation error for the Clone MCMC algorithm as function of the Hogwild estimation error. We have tried different approaches when computing the estimation error for the Clone MCMC algorithm, however we have not managed to obtain an expression which is a function of the Hogwild estimation error. Appendix C.1 contains some computations that illustrate the sort of results that we obtained.

We have also looked at the Kullback-Leibler divergence between the approximate distributions and the target distribution. The Kullback-Leibler divergence between two Gaussian multivariate distributions  0 0 , 0 and  1 1 , 1 , where ∈ ℝ , ∈ ℝ × , ∈ {1, 2}, is:

D  0 ‖ 1 = 1 2 tr -1 1 0 + 1 -0 -1 1 1 -0 -+ ln det 1 det 0 .
If the two distributions have the same mean, then the above expression becomes

D  0 ‖ 1 = 1 2 tr -1 1 0 -+ ln det 1 det 0 .
Let  denote the Hogwild approximate distribution and  the Clone MCMC approximate distribution. The expression of the KL divergence for the Hogwild algorithm is

D  ‖ = 1 2 -tr -1 -1 + ln det -ln det 2 --1 ,
and the expression of the KL divergence for the Clone MCMC algorithm is

D  ‖ = 1 2 ln 2 - 1 2 tr -1 -1 + ln det -ln det 2 --1 .
Appendix C.2 details the computation of the two KL divergences.

In the following sub-sections we shall perform a numerical analysis of the estimation error for the three distinct algorithms for different choices of the target distribution.

Bivariate Gaussian target distribution

Before we get ourselves going with the numerical analysis of the estimation error for the three algorithms, let us first take a look at the approximate distribution for the Hogwild and Clone MCMC algorithms in the case of a bivariate Gaussian target distribution. Since both approximate distributions have the correct mean, we shall look only at the expression of the covariance matrix.

The interest towards analysing the bivariate case is that we are able to obtain analytical expressions for the covariance matrices of the two approximate distributions. However, any conclusion that we might draw from these analytical expressions won't necessarily apply to the general case ∈ ℝ . Nonetheless we might still get some valuable insight into the behaviour of the two algorithms.

In a first time let us recall the expression of a bivariate Gaussian distribution  ( , ):

= 1 2 , = 2 1 12 12 2 2 = 2 1 1 2 1 2 2 2 , with = 12 1 2
the correlation coefficient. The precision matrix is:

-1 = 1 2 1 2 2 -2 12 2 2 -12 -12 2 1 = 1 2 1 2 2 1 -2 2 2 -1 2 -1 2 2 1 .
We start with the approximate covariance matrix for the Hogwild algorithm. We first determine the expressions of the matrices and . We have:

= 1 2 1 2 2 1 -2 2 2 0 0 2 1 , = 1 2 1 2 2 1 -2 0 1 2 1 2 0 .
We then have:

= + -1 -1 = 2 1 0 0 2 2 . Appendix C.3 contains the intermediate computations.
The first thing that we notice is that the approximate covariance matrix is diagonal. Both components have the correct variance, however the correlation between them is not captured by the approximate covariance matrix. One might be tempted to think that in general the approximate covariance matrix for the Hogwild algorithm will be diagonal. However, and as we shall see in the following sections, this is not necessarily the case.

Let us now determine the approximate covariance matrix for the Clone MCMC algorithm. We start by first determining the expressions of the matrices and . We have:

= 1 2 1 2 2 1 -2 2 2 + 2 2 1 2 2 1 -2 0 0 2 1 + 2 2 1 2 2 1 -2 , = 1 2 1 2 2 1 -2 2 2 1 2 2 1 -2 1 2 1 2 2 2 1 2 2 1 -2 .
We then have:

= 2 + - -1 = 2 det + -1 ⎡ ⎢ ⎢ ⎢ ⎣ 2 1 ( 2 1 +4 ) 2 1 +2 - 2 2 1 2 2 2 2 +2 1 2( 2 1 +4 ) 2 1 +2 -1 3 2 2 2 +2 1 2( 2 2 +4 ) 2 2 +2 - 3 1 2 2 1 +2 2 2 ( 2 2 +4 ) 2 2 +2 - 2 2 1 2 2 2 1 +2 ⎤ ⎥ ⎥ ⎥ ⎦ , with = 2 1 2 2 1 -2 . The intermediate computations are given in appendix C.3.
We see that the approximate covariance matrix for the Clone MCMC algorithm is dense. As opposed to the approximate covariance matrix corresponding to the Hogwild algorithm it is able to model the correlation between the two components. Furthermore, we see that for an arbitrary value the variances and covariances have a rather complicated expression. We know already from the theoretical analysis that → as → ∞. Notwithstanding, given the availability of an explicit expression for the approximate distribution we can double check that this is indeed the case as a quick exercise.

We analyse individually each of the elements of the approximate covariance matrix. We start with the two variances. Taking the limit for the first variance yields (for clarity we don't write the lower order terms)

lim →∞ 2 det + -1 2 1 2 1 + 4 2 1 + 2 - 2 2 1 2 2 2 2 + 2 = lim →∞ 2 4 2 2 16 2 2 8 2 2 2 1 4 2 2 = 2 1
and for the second it yields

lim →∞ 2 det + -1 2 2 2 2 + 4 2 2 + 2 - 2 2 1 2 2 2 1 + 2 = lim →∞ 2 4 2 2 16 2 2 8 2 2 2 2 4 2 2 = 2 2 .
Let us now analyse the covariances. Since they are equal we consider the limit only for one of them. We have:

lim →∞ 2 det + -1 1 2 2 1 + 4 2 1 + 2 - 1 3 2 2 2 + 2 = lim →∞ 2 4 2 2 16 2 2 8 2 2 1 2 4 2 2 = 1 2 ,
which clearly shows that lim →∞ = . The intermediate computations are detailed in appendix C.3.

Let us now also determine the resulting covariance matrix when → 0. We start with the two variances. We have

lim →0 2 det + -1 2 1 2 1 + 4 2 1 + 2 - 2 2 1 2 2 2 2 + 2 = 2 2 1 2 2 2 1 2 2 1 -2 4 1 2 2 1 -2 2 1 2 2 = 2 2 1 and lim →0 2 det + -1 2 2 2 2 + 4 2 2 + 2 - 2 2 1 2 2 2 1 + 2 = 2 2 1 2 2 2 1 2 2 1 -2 2 1 4 2 1 -2 2 1 2 2 = 2 2
2 . For the covariances we obtain:

lim →0 2 det + -1 1 2 2 1 + 4 2 1 + 2 - 1 3 2 2 2 + 2 = 2 2 1 2 2 2 1 2 2 1 -2 0 2 1 2 2 = 0 .
We see that when → 0, the approximate covariance matrix tends to a diagonal matrix. The variances of the two components are twice those of the target distribution and the two components are decorrelated.

From the results for the two cases → 0 and → ∞ we can get an idea about the behaviour of the approximate distribution as function of for a bivariate Gaussian distribution. For small values the approximate distribution will have a wider spread than the target one with the two components being almost decorrelated. For large values the approximate distribution will have roughly the same spread as the target distribution and the two components will have roughly the same degree of correlation as for the target distribution.

Besides the theoretical analysis we have also carried out a numerical one. Namely, we have looked at the probability density function of the approximate distribution for different degrees of correlation. We have considered = 0, = 0.45 and = 0.9. Given that the Hogwild approximate covariance matrix is diagonal, we can already anticipate that it will not perform very well for the cases = 0.45 and = 0.9. It remains to see how the Clone MCMC performs and from which values the approximate distribution starts to resemble to the target distribution.

Figure 3.5 contains the contour plots of the target distribution and of the two approximate ones for the case = 0. Without surprise we see that the Hogwild algorithm targets the correct distribution. We also see that in the case of the Clone MCMC algorithm small values lead to an approximate distribution having a wider spread than the target distribution and that as increases the contours get tighter and tighter together. We see that for = 10 3 the approximate distribution is almost identical to the target distribution.

Let us now consider the case of a moderate degree of correlation given in figure 3.6. We see that the approximate distribution of the Hogwild algorithm does not capture the correlation between the components. In agreement with the theoretical analysis we see that for small values the Clone MCMC algorithm as well does not capture the correlation between the components and that the two components have greater variances. As increases, the approximate distribution starts to capture the correlation between the components and more so, the variances of the two components tend towards the correct variances. Again we see that for = 10 3 the approximate distribution is almost identical to the target one. The results for highly correlated components given in figure 3.7 are similar to those for a moderate degree of correlation. The analysis of the bivariate case turned up some interesting results. We first saw that the Hogwild algorithm does not capture the correlation between the two components. We then saw that as → 0 then the Clone MCMC algorithm as well does not capture the correlation between the components. Furthermore, under the approximate distribution the respective variance of each component is twice that of corresponding one from the target distribution. In the end we would like to stress out one more time that these results for the bivariate case do not necessarily apply as well to the general case ∈ ℝ .

Diagonal precision matrix

We take a one more diversion before we actually get to the numerical analysis of the estimation error for the three algorithms. We take a look at a target distribution having a diagonal covariance/precision matrix. It is obvious that in practice we won't be using any of the three algorithms to sample from such a distribution. However, the fact that we are able to get analytical expressions for the Hogwild and Clone MCMC approximate distributions justifies the interest. As for the bivariate Gaussian target distribution the analysis carried out in this sub-section concerns only the Hogwild and Clone MCMC algorithms.

In a first scenario we consider the precision matrix to be proportional to the identity matrix:

= ⇔ = -1 .
We first determine the approximate covariance matrix for the Hogwild algorithm. The two matrices defining the Hogwild matrix splitting of the precision matrix are:

= , = .
The approximate covariance matrix is

= + ( ) -1 -1 = .
We immediately notice that the approximate distribution of the Hogwild algorithm has the correct covariance matrix. Thus, the KL divergence between the approximate distribution and the target distribution is 0:

D  ‖ = 1 2 tr -1 -+ ln det det = 1 2 [tr ( ) -+ ln (1)] = 1 2 [ -+ 0] = 0 .
Let us turn our attention to the Clone MCMC algorithm. The two matrices defining the Clone MCMC splitting of the precision matrix are:

= + 2 = ( + 2 ) , = 2 .
The approximate covariance matrix is

= 2 + (( + 2 ) ) -1 2 -1 = 2 + 2 + 4 .
We see that the approximate covariance matrix is a weighted version of the covariance matrix of the target distribution. A quick analysis reveals that when → 0 the variance of the components is twice that under the target distribution. Let us now analyse the case → ∞:

lim →∞ 2 + 2 + 4 = 2 lim →∞ + 2 + 4 = 2 2 4 = .
The second to last equality follows from l'Hôpital's rule. We see that when → ∞ our method as well targets the correct covariance matrix. As a double check let us consider the KL divergence as well:

D  ‖ = 1 2 tr -1 -+ ln det det = 1 2 1 2 + 4 + 2 -+ ln 2 + ln + 2 + 4 .
Taking the limit of the KL divergence when → ∞ yields

lim →∞ D  ‖ = lim →∞ 1 2 1 2 + 4 + 2 -+ ln 2 + ln + 2 + 4 = 1 2 1 2 2 -+ ln 2 + ln 1 2 = 0 .
As expected the Clone MCMC approximate covariance matrix tends to the covariance matrix of the target distribution.

As a second scenario, let us now consider a precision matrix that is still diagonal, but not proportional to the identity matrix:

= ⎡ ⎢ ⎢ ⎢ ⎣ 1 0 … 0 0 2 … 0 ⋮ ⋮ ⋱ ⋮ 0 0 … ⎤ ⎥ ⎥ ⎥ ⎦ .
Let us start with the Hogwild algorithm. We have the following expressions for the matrices defining the Hogwild splitting of the precision matrix:

= , = .
The expression of the the approximate covariance matrix is immediate:

= + -1 -1 = .
As for the previous case, the Hogwild approximate distribution has the correct covariance matrix. Let us now analyse the Clone MCMC algorithm. We have the following expressions for the matrices defining the Clone MCMC splitting of the precision matrix:

= ⎡ ⎢ ⎢ ⎢ ⎣ 1 + 2 0 … 0 0 2 + 2 … 0 ⋮ ⋮ ⋱ ⋮ 0 0 … + 2 ⎤ ⎥ ⎥ ⎥ ⎦ , = 2 .
The approximate covariance matrix becomes

= 2 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 + 2 1 +2 0 … 0 0 1 + 2 2 +2 … 0 ⋮ ⋮ ⋱ ⋮ 0 0 … 1 + 2 +2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ -1 = 2 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 +2 1 +4 0 … 0 0 2 +2 2 +4 … 0 ⋮ ⋮ ⋱ ⋮ 0 0 … +2 +4 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .
If we take again the limit → ∞ then → .

We have seen that in the case of a diagonal covariance matrix the Hogwild algorithm targets the correct distribution whereas the Clone MCMC algorithm targets the correct distribution only when → ∞. Moreover, when → 0 the variance of each component under the approximate distribution is twice the corresponding one under the target distribution. This is a result that we have also seen in the case of the bivariate Gaussian target distribution.

It would be interesting to analyse if → 0 leads to an approximate distribution having a diagonal covariance matrix with twice the variances of the covariance matrix of the target distribution no matter the choice of target distribution. However, such an analysis is not an easy task if even possible and we shall not tackle it in our analysis of the estimation error for the subsequent choices of the target distribution.

AR-1 precision matrix

The first choice of a target distribution for which we actually perform the numerical comparison of the estimation error for the three sampling algorithms is a target distribution having the covariance matrix of an AR-1 process of parameter | | < 1. The advantage of such a choice is that the distribution allows modelling different degrees of correlation between the components of the random variable by simply changing the value of . It is also worth mentioning that for such a choice we have access to an analytical expression for both the covariance and the precision matrix. The mean vector is chosen as = 1 2 … .

Let us quickly recall the expressions for the covariance and precision matrices:

= 1 1 -2 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 2 … 1 … -1 ⋮ ⋱ ⋱ ⋱ ⋮ -1 … 1 … 2 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 - -1 + 2 - ⋱ ⋱ ⋱ -1 + 2 - - 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .
In the following we consider the dimension of the random variable to be = 1000. Figure 3.8 depicts the covariance matrix as an image for three different values of the parameter from which we can easily see the varying degree of correlation as function of .

The dimension that we chose is not that important to actually prohibit sampling the target distribution using the Cholesky factorisation of the covariance matrix. However, we chose such a dimension such that to be still able to compute and store into memory the covariance matrix of the target distribution and of the two approximate distributions. Moreover, the results presented in this sub-section and the following ones rather serve just to give one an idea on how the three methods compare to each other for different target distributions.

We divided the estimation error analysis in two parts. First we carried out an analysis of the approximation error for the Hogwild and Clone MCMC algorithms. Afterwards, we proceeded with the actual estimation error analysis. The interest of the approximation error analysis is that it gives us important information with respect to the behaviour of the Hogwild and Clone MCMC algorithms. Indeed, let us recall that the estimation error for the covariance matrix is bounded by the approximation error.

For the approximation error analysis we have looked at both the KL divergence between the approximate distribution and the target distribution and at the Frobenius norm of the difference between the approximate covariance matrix and the covariance matrix of the target distribution. The results for the approximation error analysis are given in figure 3.9. We have looked at the approximation error for different values of the parameter : we have considered 0.25, 0.6 and 0.95 which corresponds to a low, medium and high degree of correlation between the components of the random variable.

Based on the previous results for the bivariate Gaussian target distribution and the target distribution having a diagonal covariance matrix, we would expect the Hogwild algorithm to achieve good results for the the case of a low degree of correlation between the components. For the case of a moderate or high degree of correlation we would expect the Clone MCMC algorithm to achieve the better results. The results in figure 3.9 seem to somewhat confirm the prior expectations. We see that for = 0.25 both the KL divergence and the Frobenius norm for the Hogwild algorithm attain a ratter small value. In the case of the Clone MCMC algorithm we see that for small values both the KL divergence and the Frobenius norm attain rather high values. As expected, as increases both quantities decrease towards the limit value 0 which is attained for → ∞. Since the Hogwild algorithm has no parameter to fine tune the KL divergence and the Frobenius norm take on a respective constant value.

An interesting aspect that emerged is that for values around 10 0 both the KL divergence and the Frobenius norm for the Clone MCMC attain values that are already smaller than those for the Hogwild algorithm. We would expect that the point at which the approximation error, as measured by both the KL divergence and the Frobenius norm, for the Clone MCMC algorithm to become less important than that of the Hogwild algorithm to occur for higher values, more so as for this value of there is a rather reduced degree of correlation between the components of the random variable. This is an encouraging result for the Clone MCMC algorithm as for those values the drawn samples should not exhibit a high degree of correlation. Consequently the Clone MCMC algorithm should be able to obtain an estimation error that is inferior to the Hogwild one. For = 0.60 and = 0.95 we see that the point at which the approximation error for the Clone MCMC algorithm becomes inferior to the Hogwild one takes place for even smaller values the order of 10 -1 . Furthermore, we see that for = 0.95 the Frobenius norm of the difference between the approximate covariance matrix and the covariance matrix of the target distribution for the Clone MCMC algorithm is always inferior to the Hogwild one. Although this does not necessarily imply that no matter the sample set size the estimation error will always be smaller for the Clone MCMC algorithm, it tells us that by increasing the sample set size we are able to obtain an estimation error for the Clone MCMC algorithm that is inferior to the Hogwild one.

As interesting as the results in figure 3.9 are they do not present the whole story when it comes to the estimation error. They convey no information on the estimation error of the empirical estimates with respect to the parameters of the approximate distribution. This error plays an important role especially when we have a reduced sample set size or when the samples are correlated. And let us not forget that the Clone MCMC algorithm generates more and more correlated samples as → ∞. And last but not least they tell us nothing with respect to the estimation error for the Gibbs algorithm.

We analyse the estimation error in a fixed computational budget scenario, that is we fix the execution time and draw the maximum number of samples possible with each of the three algorithms. We can already anticipate that the Hogwild and Clone MCMC algorithms are able to yield a similar number of samples whereas the Gibbs algorithm is penalised by its sequential nature and is able to yield only a reduced number of samples.

One very important aspect concerning the estimation error analysis is that we carried it out directly in the stationary regime of all three algorithms. Consequently there is no burnin time. The downside of this approach is that it does not depict the whole picture as each algorithm most likely requires a different number of burn-in samples to reach the stationary state. Had we not started in the stationary regime, then for a given fixed computation time the number of posterior samples actually used in computing the estimates would have been different for each algorithm.

For the sake of simplicity, we decided to go forward with this approach of analysing the estimation error directly in the stationary regime. The starting point for the Gibbs sampler The results for the estimation error analysis are given in figures 3.10 and 3.11. We have chosen 20 and 80 seconds as the fixed computational budget. The traces given in both figures are averaged over a number of different independent runs: for = 0.6 the average is over 10 runs whereas for = 0.95 the average is over 25 runs. Let us first analyse the result for = 0.60 and for an execution time of 20 seconds. We see that in the range of values from 10 -1 to 10 1 it is the Clone MCMC algorithm that achieves the smallest estimation error. Outside of that range it is the Hogwild algorithm that achieves the smallest estimation error. The Gibbs algorithm achieves the worst estimation error except for high values where the Clone MCMC algorithm achieves the worst performances. We can clearly see the effect of the drawn samples being more correlated on the Clone MCMC estimation error. We also see that for the chosen execution time the estimation error for the Hogwild algorithm almost equals the approximation error.

If we analyse the results for the execution time of 80 seconds, we notice that the range of values over which the Clone MCMC algorithm achieves the smallest estimation error increases slightly towards higher values of . This increase is natural given that increasing the number of samples helps to reduce the effect of the samples being more correlated.

Another aspect that we notice is that the Gibbs algorithm achieves an estimation error that is smaller than that of the Hogwild algorithm. Even for the 20 seconds execution time we saw that the Hogwild estimation error was almost equal to the approximation error. Increasing the number of samples has a limited benefit for the Hogwild algorithm whereas for the Gibbs and Clone MCMC algorithms it has a rather important one.

Let us now analyse the results for the case = 0.95. We first look at the results for the 20 seconds execution time. We see that again there is an interval of values over which the Clone MCMC algorithm achieves the smallest estimation error. As opposed to the case = 0.60, we see that in this case the interval is more or less over low values.

The explanation for this shift of the interval over which the Clone MCMC achieves the smallest estimation error is rather simple. First and foremost we notice that even for small values the Clone MCMC approximation error is inferior to the Hogwild one. As we already know, for small values there is a reduced degree of correlation between the samples drawn with the Clone MCMC algorithm. Given that for both algorithm we are able to draw roughly the same number of samples then for small values the two empirical estimates should have roughly the same accuracy. It is then natural that for small values the Clone MCMC estimation error is inferior to the Hogwild one. The upper limit of the interval is around = 10 0 as opposed to 10 1 in the previous case of = 0.60, so there isn't such a big change to the upper limit of the interval as opposed to the lower one.

We further see that the Gibbs estimation error is rather important when compared to both Hogwild and Clone MCMC. It is a known fact that the Gibbs algorithm can be slow to converge when there is a high degree of correlation between the components of the random variable. Coupled with the fact for the given execution time the Gibbs algorithm is not able to draw an important number of samples it is then normal that the Gibbs algorithm has an important estimation error. For the Hogwild algorithm we see once more that the estimation error is close to the approximation error for the 20 seconds execution time.

If we look at the estimation error results for the 80 seconds execution time we see that the results are rather similar. We notice that the upper limit of the range of values over which the Clone MCMC estimation error is the smallest shifts as expected towards higher values. We also notice that the Hogwild estimation error decreases to almost equal the approximation error and that the Gibbs estimation error decreases as well.

One thing for which we do not have an explanation, or at least not yet, is the decrease that we observe in the Clone MCMC estimation error for values past 10 1 and 10 2 respectively. Naturally as the samples get more and more correlated the estimation error should increase and not decrease. This is a problem which we have not encountered for the case = 0.60, at least not for the range of values that we considered.

Up to so far we have analysed only the estimation error results for the covariance matrix. Figure 3.11 contains the estimation error results for the mean vector. Things are a bit more simpler when it comes to the mean vector as the limit distributions of all three sampling algorithms have the correct mean.

We can say that the results for the estimation error for the mean are in line with our prior expectations. Indeed, we would expect the Gibbs algorithm to achieve the worst results except for high values where we would expect the Clone MCMC algorithm to achieve the worst results. And for that matter that is exactly what we observe. We see that up to roughly = 10 0 Clone MCMC and Hogwild algorithms have more or less the same estimation error. As increases past 10 0 the samples start to become more and more correlated which decreases the performances of the empirical estimate for the Clone MCMC algorithm. If we look at the results from figure 3.10 we see that the correlation between the drawn samples starts to degrade the performances of the empirical estimate for the Clone MCMC algorithm at more or less the same value of 10 0 .

To do a quick summary of the results, we saw that when it comes to the estimation error for the covariance matrix there is a range of values of over which the Clone MCMC algorithm achieves the best results. When it comes to the mean vector the Clone MCMC and Hogwild algorithm achieve similar results for values up to roughly 10 0 , after which the Clone MCMC estimation error increases due to the samples being more and more correlated.

We are naturally interested in having the best performances for the estimation error for both the mean vector and the covariance matrix. We see that in the current case for values close to 10 -1 the Clone MCMC algorithm comes very close to fulfilling both requirements. For low and high values it is the Hogwild algorithm that achieves the smallest estimation error for both the mean and the covariance matrix, however the estimation error for the covariance matrix is rather important when compared to the estimation error for the Clone MCMC algorithm for an appropriate value.

Band precision matrix

Let us now analyse the estimation error for a different choice of target distribution. We chose a distribution having the following band precision matrix:

= ⎡ ⎢ ⎢ ⎣ ⋱ ⋱ ⋱ ⋱ ⋱ 0.15 0.3 1 0.3 0.15 ⋱ ⋱ ⋱ ⋱ ⋱ ⎤ ⎥ ⎥ ⎦ .
For the given choice of precision matrix we don't have an analytical expression for the covariance matrix so we have to numerically compute it. We use the precision matrix to specify the distribution since we apply the splitting to the precision matrix. The mean vector is the same as for the target distribution having an AR-1 type covariance matrix.

Figure 3.12 displays the covariance matrix of the target distribution, the covariance matrix of the Hogwild approximate distribution and the covariance matrix of the Clone MCMC approximate distribution. We display the latter for different values. The images that are displayed are in fact cut-outs of size [100 × 100] from the centre of the covariance matrices. Displaying the full covariance matrices would result in the figures being more or less unreadable.

We see from figure 3.12 that even the components of the random variable that are relatively close to each other are hardly correlated at all. This choice of precision/covariance We see that the Hogwild approximate covariance matrix is rather different from the covariance matrix of the target distribution. It models a random variable for which the components at moderate positions from each other have a somewhat important correlation between them. When it comes to the Clone MCMC algorithm, we notice that for small values the approximate covariance matrix fails to correctly capture the variances of the components of the random variable and that components at moderate positions from each exhibit a somewhat important degree of correlation. As increases the approximate covariance matrix starts to become more and more similar to the target covariance matrix. We see that for = 10 3 the approximate covariance matrix is almost identical to the target covariance matrix.

Before we move to the estimation error analysis we first take a look at the approximation error analysis for which the results are given in figure 3.13. We notice that for small values the Hogwild approximation error is inferior to the Clone MCMC one. As expected, as increases then the Clone MCMC approximation error becomes smaller than the Hog- . In a way we expected the switch to take place at a higher value, more so as the target distribution models a random variable for which the components are not that correlated. We have also expected the Hogwild approximate distribution to approximate better the target distribution.

If we compare the approximation error results for the current choice of target distribution with the ones for the previous choice, we see that they are similar to the case = 0.60 for the target distribution having an AR-1 type covariance matrix. As we have seen, for that value of the target distribution models a random variable having a moderate degree of correlation between the components. We do see that in the current case the approximation error results are somewhat better than those for = 0.60. Given these results for the approximation error analysis we would expect the estimation error analysis for the current target distribution to be similar to those for the target distribution having an AR-1 type covariance matrix for = 0.60.

Figures 3.14 and 3.15 contain the results for the estimation error analysis for a fixed computation time. Let us start with the estimation error analysis for the covariance matrix. We notice that for the 20 seconds execution time the Clone MCMC achieves the smallest estimation error over roughly the interval 10 -1 to 10 1 . We do see that in fact the interval of values over which the Clone MCMC achieves the smallest estimation error is somewhat larger, however we stick we these round values. We see that for this execution time the Hogwild estimation error equals the approximation error. We further notice that the Gibbs sampling algorithm has roughly the same estimation error as the Hogwild algorithm. We see that in the current case the Hogwild algorithm is really penalised by the approximation error.

If we look at the result for the 80 seconds execution time we see that over the interval 10 0 to 10 1 the Clone MCMC algorithm achieves the smallest estimation error. Again the actual interval of values is somewhat larger, but for the sake of simplicity we stick with these round values. The estimation error for the Hogwild algorithm is more or less the same as for the 20 seconds execution time.

The estimation error for the Gibbs algorithm has decreased to be inferior to the Hogwild one. As opposed to the target distribution having an AR-1 type precision matrix, we see that in the current the estimation error for the Gibbs algorithm has decreased significantly. As we said it already, the Gibbs algorithm is notorious for converging slowly when the components of the random variable are highly correlated. However, this is not the case for the current target distribution which explains why for the same execution time the Gibbs algorithm achieves a smaller estimation error.

Let us now analyse the results for the mean vector estimation error. What we notice is that for all sampling algorithms the estimation error is rather small. As was the case of the previous target distribution, for small values the Hogwild and Clone MCMC algorithm have a similar estimation error. When increases the correlation between the drawn samples strongly penalises the estimate for the Clone MCMC algorithm.

To sum up the results so far, we saw that there still exists a range of values for which the Clone MCMC manages to achieve the smallest estimation error for the covariance matrix and that for a value midway between 10 -1 and 10 0 it offers a very good compromise between the estimation error for the mean vector and for the covariance matrix.

We shall now look at the estimation error for a target distribution having a different band precision matrix. This matrix resembles a block Toeplitz matrix. As a matter of fact it can be seen as the precision matrix of a distribution modelling an image of size 40 × 25 ( = 1000) pixels expressed as a vector where there is an interaction between neighbouring pixels on the same line of pixels.

We say it can be seen as the precision matrix of such a distribution and not that it is since we have zeroed out some of the elements of the precision matrix. Namely, we have eliminated the interaction terms corresponding to the first and last column of pixels, we have eliminated the interaction terms corresponding to the pixels on the top line of pixels and we have eliminated the interaction terms corresponding to the first half of the 13-th column of pixels.

When we designed the precision matrix we first and foremost wanted a precision matrix that models an image expressed as a vector. We have not designed this precision matrix with a given application in mind. As such we tried to make it somewhat random by zeroing out some interaction terms from the precision matrix in a somewhat not so deterministic manner. Figure 3.17: Approximation error analysis Figure 3.16 depicts the precision and covariance matrices for a size = 1000 which, as previously said, corresponds to an image of size 40 × 25 pixels expressed as a vector. Despite the fact that the precision matrix models interactions only between neighbouring pixels, we see that there is a degree of correlation between the components of the random vector.

Let us first analyse the approximation error for the Hogwild and Clone MCMC algorithm for which the results are given in figure 3.17. We see that the Hogwild algorithm has a rather important approximation error and that for values past 10 -1 the Clone MCMC algorithm has a smaller approximation error.

Figures 3.18 and 3.19 contains the results for the estimation error analysis. As we have done so far, we start with the estimation error analysis for the covariance matrix and for the 20 seconds execution time. We see that the estimation error is rather important for all three sampling algorithms. We also see that the Hogwild estimation error almost equals the approximation error. Furthermore we see that over the interval from 10 -2 to 10 1 the Clone MCMC algorithm achieves the smallest estimation error. Last but not least we notice that for high values the estimation error for the Clone MCMC algorithm starts to decrease. This behaviour is similar to what we have observed in the case of the AR-1 target covariance matrix for = 0.95. The results for the 80 seconds execution time are rather similar to those for 20 seconds. We see that the Gibbs estimation error decreases in as much to equal the estimation error for the Hogwild algorithm. We further see that the upper bound of the interval of values over which the Clone MCMC achieves the smallest estimation error shifts towards higher values as the increase in the number of drawn samples alleviates the effects of the samples being more correlated.

The results for the mean vector estimation error are similar to the results that we have observed for the other choices of target distribution. To sum things up once more, we saw that there is a range of values of for which the Clone MCMC algorithm achieves the smallest estimation error for the covariance matrix and that if we are to consider both errors then we are still able to find at least a value of for which the Clone MCMC algorithm offers the best compromise between the estimation error for the mean vector and the estimation error for the covariance matrix.

Dense precision matrices

The last choice of a target distribution for which we perform the estimation error analysis is the one that was used in section 3.3.1 describing the estimation error for the Clone MCMC We recall the expression of the precision matrix:

= - 1 + 1
11 -, with = 10, = 1000 and 1 is a column vector of size having all elements equal to 1.

Figure 3.20 contains the covariance matrices represented as images for the case = 1000. As was the case for the first band precision matrix, the images that are displayed are in fact cut-outs of size [100 × 100] from the centre of the covariance matrices. We immediately see that the covariance matrix of the target distribution is very close to being a diagonal one. From the results seen so far, we would expect the Clone MCMC algorithm not to perform that well for this choice of target distribution.

Let us first take a look at the approximation error analysis given in figure 3.21. We immediately see that the Hogwild approximation error is smaller than the Clone MCMC one for almost all of the tested values. These results are not surprising at all given that we already saw that for a diagonal covariance matrix the Hogwild algorithm targets the correct distribution. Truth be told, the covariance matrix of the current target distribution is not diagonal, however it is very close to being one.

We do see that for very high values the Clone MCMC approximation error becomes smaller than the Hogwild one. However, and to anticipate a bit, those values lead to a high degree of correlation between the drawn samples. Consequently we don't necessarily expect the estimation error for the Clone MCMC algorithm to be smaller than to the Hogwild one.

The results for the estimation error analysis for this choice of target distribution are given in figures 3.22 and 3.23. When it comes to the estimation error for the covariance matrix we notice that no matter the value of the estimation error for the Hogwild algorithm is always smaller than the Clone MCMC one. Furthermore we notice that the there is a range of values over which the Clone MCMC estimation error is smaller than the Gibbs one. Even though the components of the random variable exhibit a low degree of correlation which should enable the Gibbs algorithm to converge relatively fast, it does not achieve the smallest estimation error. We see that it is penalized by its sequential nature which results in a low yield in term of the sample set size. To be fair though, we do notice that all algorithms achieve a rather small estimation error.

The results for the mean vector estimation error show that for small values the Clone MCMC and Hogwild algorithms achieve similar results. As increases the Clone MCMC achieves the worst estimation error.

To conclude we saw that for the current choice of target distribution it is the Howild algorithm which achieves the best results for the estimation error for both the mean vector and the covariance matrix. These results are not unexpected since the covariance matrix of the target distribution is close to being a diagonal one. We previously saw that when the covariance matrix of the target distribution is diagonal the Hogwild algorithm actually targets the correct distribution. As was shown by the approximation error analysis the Hogwild approximate distribution is very close to the target one.

Extension to pairwise Markov random fields

Before we discuss the extension of the algorithm to general pairwise Markov Random Fields, we must first present a second interpretation of the algorithm. We assume in the following that the algorithm has converged to its stationary distribution. Consider the sequence of iterates

⋯ → 2 -2 → ( 2 -1 → 2 ) → ( 2 +1 → 2 +2 ) → 2 +3 → ⋯
The algorithm has a more intuitive interpretation if instead of considering the transition from one iterate to the next we consider the transition from one pair of iterates to the next.

Consider the following pairs of iterates ( 2 -1 , 2 ) and ( 2 +1 , 2 +2 ). The transition ( 2 -1 , 2 ) → ( 2 +1 , 2 +2 ) can be performed as one iteration of a Gibbs sampler with the following two conditional distributions:

2 +1 | 2 =  ( -1 2 + -1 , 2 -1 ) , 2 +2 | 2 +1 =  ( -1 2 +1 + -1 , 2 -1 ) .
Sampling either of the two conditional distributions is nothing but one iteration of the Clone MCMC algorithm.

Using standard manipulations involving the conditional and marginal distributions of the iterates it can be shown that for all couple of iterates 2 -1 , 2 =1,2,… the joint distribution is

̃ 2 -1 , 2 =  ⎛ ⎜ ⎜ ⎝ , ∕2 -∕2 -∕2 ∕2 -1 ⎞ ⎟ ⎟ ⎠ . (3.30)
The marginal distribution of either of the two components is naturally the stationary distribution of the Clone MCMC algorithm, i.e. ̃ ( 2 -1 ) =  , and ̃ ( 2 ) =  ,

. Appendix B contains the computations that show that indeed it is the case.

The marginal distributions under this joint distribution have the following expression:

̃ ( ) =  , 1 2 - 1 2 -1 -1 -1 , ̃ ( ) =  , 1 2 - 1 2 -1 -1 -1
.

We see that the marginal distributions differ from the target distribution. The construction from equation (3.34) lends itself useful for efficient sampling of the joint distribution, however at the cost of drawing samples approximately distributed under a fixed approximate target distribution.

It should be clear that the removal of within random variable cross-interactions and the introduction of between random variable cross-interactions is what enabled for the modified joint distribution to have conditional distributions with a diagonal covariance matrix. It should be also clear that it is also the cause why the marginal distributions differ from the target distribution.

We need to be able to efficiently sample the conditional distributions, thus the within random variable cross-interactions need to be eliminated and the between random variable cross-interactions are here to stay. The challenge is then to find a way to correct the marginal distributions.

The solution that we settled on was to further modify the joint distribution from equation (3.35) by the addition of the quadratic term ( -) ( -) which enforces the two random variables to be similar. In the limit case when we enforce the two random variables to be identical, the between random variable cross-interactions terms would then act as if they were within random variable cross-interactions.

Consider the resulting joint distribution in an explicit form

̃ ( , ) ∝ exp - 1 2 ( -) ( -) + ( -) ( -) + ( -) ( -) + ( -) ( -) + ( -) ( -) , (3.36)
with the following compact expression

̃ ( , ) ∝ exp - 1 2 ( -) ( -) + - - + ( -) ( -) . (3.37)
The conditional distributions still have a diagonal covariance matrix and hence they are easy to sample. The marginal distributions have the following expressions:

̃ ( ) =  , 1 2 - 1 2 ( + ) -1 -1 -1 , ̃ ( ) =  , 1 2 - 1 2 ( + ) -1 -1 -1
.

We have that

lim →∞ 1 2 - 1 2 ( + ) -1 -1 -1 = 1 2 ,
which shows that by the means of the scalar parameter we are able to correct for the approximate marginal distribution.

The downside of the joint distribution from equation (3.37) is that in the limit case the marginal distributions tend to a distribution having the correct mean and a covariance matrix which is a scaled version of the covariance matrix of the target distribution with a scale factor of 1∕2. We can hint about the existence of an value for which the marginal distributions and the target distribution coincide, however determining that particular value is by no means an easy undertaking.

In order to get from the joint distribution in equation (3.36) to the Clone MCMC joint distribution in equation (3.31) all that we have to do is to replace in equation (3.36) the matrices and with a scaled version of them with the scale factor being 1∕2. We have already seen that the Clone MCMC limit distribution tends to the correct target distribution as → ∞. This concludes the intuition behind the construction of the Clone MCMC joint distribution.

The clone idea can be generalized further to pairwise Markov random fields. Consider the target distribution

( ) ∝ exp - ∑ 1≤ ≤ ≤ ( ( ), ( ))
for some potential functions , 1 ≤ ≤ ≤ . The clone distribution is

̃ ( 1 , 2 ) ∝ exp - 2 ( 1 -2 ) ( 1 -2 ) - 1 2 ∑ 1≤ ≤ ≤ ( 1 ( ), 2 ( )) + ( 2 ( ), 1 ( )) , with ̃ ( 1 | 2 ) = ∏ =1 ̃ ( 1 ( )| 2 ) , ̃ ( 2 | 1 ) = ∏ =1 ̃ ( 2 ( )| 1 ) .
Assuming ̃ is a proper probability density function, we have ̃ ( 1 ) → ( 1 ) and ̃ ( 2 ) → ( 2 ) as → ∞.

The important property that conditionally on the other variable the components of the current one are independent is still retained. It is this property that ensures efficient sampling of the clone distribution which is done via the Gibbs sampling algorithm.

The parameter plays the same role as it does for the Gaussian case, that is to tune the bias-variance trade-off. It achieves that by increasing or decreasing the correlation between the two variables which can be further interpreted as increasing or decreasing the similarity between the clones.

Conclusions and further perspectives

In this chapter we have introduced our solution to the problem of efficiently sampling a high dimensional Gaussian distribution. The proposed solution makes use of the recent work by [START_REF] Fox | Accelerated Gibbs sampling of normal distributions using matrix splittings and polynomials[END_REF] which formalises the connection between iterative algorithms for solving systems of linear equations and stochastic iterates derived from them. It was then natural to start the chapter by discussing this new approach to construct sampling algorithms. As an illustrative example we have showed that the Gibbs algorithm can easily be derived from the Gauss-Seidel algorithm.

Before we introduced the proposed sampler we discussed the Jacobi derived sampler. We showed that it cannot be a solution to the Gaussian high-dimensional sampling problem as we cannot efficiently sample the distribution of the stochastic component. We then cast the proposed sampler as a modified Jacobi sampler for which sampling the distribution of the stochastic component is trivial. However, we then saw that the limit distribution of the proposed sampler is not the target Gaussian distribution. The algorithm converges to an approximate distribution having the correct mean and an approximate covariance matrix.

The discrepancy between the approximate distribution and the target distribution can be controlled with the parameter : a small value implies a coarse approximation whereas a large value implies a fine approximation. The downsize of choosing a large value is that the drawn samples are more correlated which degrades the convergence speed of the empirical estimates.

Since the convergence of the stochastic iterate is tied to the convergence of the underlying linear iterative solver we gave a sufficient condition which ensures the convergence of the modified iterative solver. An interesting aspect that emerged is that the modified Jacobi solver and the standard Jacobi solver share the same sufficient condition for convergence. We then gave the convergence factor for the covariance matrix which is a function of .

An important aspect that we then covered is the computational cost of the method. Considering that we are proposing a sampling algorithm for high-dimensional problems it is primordial that the algorithm has a cost which scales well with the size of the problem. We saw that the cost per iteration of the algorithm is a function of the number of processing units available, ranging from a quadratic cost when we have a single processing unit to a linear cost when we have as many processing units as components in the random variable.

The numerical analysis of the estimation error shed additional light on the influence of on the estimation error. We were able to see that for small values the approximation error drives the estimation error whereas for high values it is the correlation between samples which drives the estimation error. For moderate values we have the two factors which jointly drive the estimation error. The minimum estimation error is attained for the point where the two factors switch roles in being the dominant factor in driving the estimation error.

We then compared the proposed algorithm with the Gibbs and Hogwild algorithms in terms of the estimation error for the mean vector and the covariance matrix. The main interest was to see how the algorithm compares with respect to the Hogwild algorithm as both algorithms are expressed using from matrix splittings and both algorithms target an approximate distribution. The advantage of the proposed sampling algorithm over the Hogwild algorithm is that we can control the discrepancy between the approximate distribution and the target distribution. The Gibbs algorithm is heavily penalized by its sequential nature which forbids its use in an actual high dimensional setting. Its advantage over the two other algorithms is that it targets the correct distribution.

For almost all of the considered target distributions we saw that there was a region of values for which the proposed sampler achieved the best results in terms of the estimation error for the covariance matrix. For the mean vector the performances of the proposed sampler were similar to those for the Hogwild algorithm for small to moderate values. However as the values of increased the performances degraded significantly. Overall the proposed sampler managed to offer the best compromise in terms of the estimation error for both the mean vector and the covariance matrix.

The Hogwild algorithm outperforms our proposed algorithm in cases where the covariance matrix of the target distribution is rather close to being a diagonal one. We also saw that when the target distribution actually has a diagonal covariance matrix the Hogwild algorithm targets the correct distribution.

The name and choice of the transition for the proposed algorithm become evident when we consider the Markov chain defined over pairs of consecutive iterates. The joint distribution over the couple sees the constituent iterates as clones of each other with the tuning parameter controlling the correlation between them. The transition between couples is done via the Gibbs sampler in which sampling either of the conditional distributions equates to one iteration of the Clone MCMC algorithm.

One aspect that requires further investigation is how to choose the value of for which the Clone MCMC attains the minimum estimation error. In both section 3.3.1 and 3.3.2 we determined the best value for by performing a sweep over a range of values of and picking the one for which the estimation error was minimal.

Such an approach of determining the best value by performing a sweep over a range of values and picking the one for which the estimation error is minimal is usually not feasible in practice. Let us not forget that for sections 3.3.1 and 3.3.2 we chose a dimension of the random variable that was not that important. The dimension of the problems that this algorithm tries to solve usually prohibit such an approach.

One type of application where this approach would work is one in which it would suffice to calibrate the value once or every once in a while and run the algorithm with the fixed value for long times. Such a scenario would for example be encountered for acquisition systems situated in a controlled environment.

Considering the results from section 3.3 we can devise the following rough guide rule for choosing the value of . If we are mostly interested in having a small estimation error for the mean vector then a small(er) value is preferable whereas when we are interested in also having a small estimation error for the covariance matrix then a moderate value is preferable.

Another aspect of the proposed sampling algorithm that could benefit from additional work is the speed of convergence. It is a known fact that the matrix splitting derived linear iterative solvers are rather slow to converge, see for example [Axelsson, 1996]. The sampling algorithms derived from such solvers are naturally going to inherit their slow convergence speed. One technique for accelerating the convergence of the matrix splitting derived linear iterative solvers is the use of the so-called Chebyshev (Semi-)Iterated Method; for more details see [Varga, 2000, Axelsson, 1996, Golub and Van Loan, 2013]. Such an approach is discussed in [Fox andParker, 2014, Fox andParker, 2017] in the context of accelerating a Gibbs sampler for large scale 3D problems. It would be interesting to see if such an approach is applicable to the proposed sampler to begin with and then what is the associated increase in the computational cost of the method.

Last but not least we would be interested to see if it possible to use our algorithm for sampling high dimensional Gaussian distribution as a building block for a sampler for high-dimensional non-Gaussian target distributions. It is known that the Gaussian model may not be the best of choices when it comes to image modelling as it was also pointed out by [START_REF] Portilla | Image denoising using scale mixtures of Gaussians in the wavelet domain[END_REF].

We imagine using the Gaussian Scale Mixture (GSM) model to construct the non-Gaussian sampler. The GSM model requires two ingredients: a Gaussian distributed random variable/vector and a random scalar variable usually referred to as the multiplier. The GSM model works by then defining a joint distribution over the couple. The key property of the GSM model is that conditioned on the multiplier, the distribution of the Gaussian random variable is still Gaussian. However, the marginal distribution is no longer Gaussian and hence the appeal of this approach.

Different choices for the distribution of the multiplier naturally lead to different joint distributions and different marginals. One particular aspect that must be considered is the ease of sampling the multiplier considering that besides sampling the Gaussian random variable at each iteration one has to sample the multiplier as well. It would be futile to devise an algorithm where sampling the multiplier would pose more problems than sampling the Gaussian random variable. Ideally the cost of sampling the multiplier should be negligible with respect to the cost of sampling the Gaussian random variable.

[ Wainwright and Simoncelli, 2000] and [START_REF] Portilla | Image denoising using scale mixtures of Gaussians in the wavelet domain[END_REF] have used this approach to accurately model the statistics of wavelet coefficients of natural images. The GSM model was also used in [Văcar, 2014] to model the distribution of the Fourier coefficients of textured images. We reckon the GSM approach to be worthy of further study and we hope to be able to look into it in the near future.

CHAPTER 4 Application: image deconvolution-interpolation

Images are a given nowadays, be it the ordinary images every one of us takes, i.e. images of our pets, images from the last holiday, or the more purposeful ones the likes of an X-Ray image, a satellite image, etc. One of the things that each of these different types of images have in common is that they are a deformed depiction of reality.

The different acquisition systems used have their own limitations/imperfections which means that the recorded image is an imperfect representation of the true unobserved image. For the everyday images this might not be such a big problem. However, an X-Ray image must accurately depict the bones in the studied region of the body.

One of the most common limitation of imaging systems is their inability to accurately reproduce the fine(r) details present in the real object. Mathematically this is often modelled as the convolution between the true image and the point spread function (PSF) of the imaging system.

In its most basic form the deconvolution process amounts to plain inverse filtering. This approach has two important shortcomings. First, there might be frequencies which are strongly attenuated or completely rejected by the direct filter and second, the imaging system introduces additional errors which are usually modelled as an additive noise. The inverse filtering will act to amplify the frequencies that are attenuated/rejected by the direct filter. However, that will also amplify the noise at those frequencies. If the noise level at the respective frequencies is important the result will be dominated by the noise.

Another possible imperfection of imaging systems is the case of dead pixels on the camera sensor; a list of some of the defects encountered in the case of CCD sensors is given in [Host, 1998]. In such a case there are methods which allows us to estimate the values of the missing pixels. We refer to this process as interpolation. In the field of computer vision the term interpolation is actually used to refer to the process of upsampling an image [Szeliski, 2010]. The term inpainting can also be used to describe this process of filling in values for the missing pixels. However, inpainting refers to much more than just that. As an example, inpainting also refers to the process adding or removing elements from an image [START_REF] Bertalmio | Image inpainting[END_REF].

The imaging systems suffer from other limitations besides blurring and dead pixels. As a record we can mention the geometric distortions present in the case of optical imaging systems [Jähne, 2005]. We shall not delve any further with respect to the limitations of the imaging systems and instead focus only on blurring and missing pixels.

The work by [START_REF] Geman | Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[END_REF] in a sense paved the way for numerical sampling as a practical means of performing image restoration. The authors introduced the now ubiquitous Gibbs sampling algorithm and demonstrated its use on a Bayesian image restoration problem. Let us note though that the sampling approach to performing inference is not limited to image restoration. However, we only focus on such cases.

We mentioned in chapter 2 that there exists an efficient approach to sample from a multivariate Gaussian distribution having a circulant covariance matrix. The approach exploits the property that circulant matrices can be diagonalised by means of Fourier transform and casts the problem of sampling a correlated multivariate Gaussian random variable in the spatial domain into the problem of sampling a decorrelated multivariate random variable in the Fourier domain.

Such an approach was employed by [START_REF] Orieux | Bayesian estimation of regularization and point spread function parameters for Wiener-Hunt deconvolution[END_REF] in their work on Bayesian estimation of the regularisation and PSF parameters for an image deconvolution application. The authors used the approach to sample from the conditional posterior Gaussian distribution for the image in a Gibbs algorithm. Such an approach was also used in [START_REF] Fox | Fast sampling in a linear-Gaussian inverse problem[END_REF] where the authors looked at a Bayesian image deconvolution problem coupled with an automatic estimation of the regularisation parameters. The Fourier domain sampling approach is employed to sample the conditional posterior Gaussian distribution for the true image in their proposed Marginal Then Conditional (MTC) sampling algorithm.

The image deconvolution problem is also treated in [START_REF] Orieux | Sampling highdimensional Gaussian distributions for general linear inverse problems[END_REF], though this time coupled with a super-resolution problem. The presence of a truncation matrix in the observation model yields a posterior covariance matrix which is not circulant. The sampling of the posterior is achieved using the Independent Factor Perturbations (IFP) / Perturbation-Optimisation (PO) algorithm described in [Papandreou andYuille, 2010, Orieux et al., 2012] and in section 2.4. A further look at the image deconvolution coupled with super-resolution problem is carried out in [START_REF] Gilavert | Efficient Gaussian sampling for solving large-scale inverse problems using MCMC[END_REF] in which a new sampling algorithm entitled Reversible Jump Perturbation-Optimization (RJPO) is proposed in order to overcome the concerns with respect to the convergence of the IFP / PO algorithm.

The image interpolation/inpainting problem has equally received a lot of attention. There is a variety of different methods used to perform image inpainting, ranging from partial differential equations approaches [START_REF] Bertalmio | Image inpainting[END_REF][START_REF] Tschumperlé | Fast anisotropic smoothing of multi-valued images using curvature-preserving PDE's[END_REF] to stochastic approaches [START_REF] Efros | [END_REF]Leung, 1999, Papandreou andYuille, 2010].

The approach in [START_REF] Papandreou | Gaussian sampling by local perturbations[END_REF] makes use of the Bayesian formalism and performs the image inpainting by sampling the posterior Gaussian distribution. They use the (IFP) algorithm to sample the posterior distribution. As a matter of fact the IFP and PO algorithms were independently proposed by [START_REF] Papandreou | Gaussian sampling by local perturbations[END_REF] and [START_REF] Orieux | Sampling highdimensional Gaussian distributions for general linear inverse problems[END_REF] in two different albeit more and more connected fields.

In the following we tackle the joint image deconvolution and interpolation/inpainiting problem. We make use of the Bayesian formalism and (as such) we perform the inference by sampling the high-dimensional Gaussian posterior distribution. We make use of the Clone MCMC algorithm described in section 3.2 to sample the posterior distribution. The reconstructed image is then computed as the posterior mean from the drawn samples.

Image Deconvolution-Interpolation

We shall now consider that we dispose of an observed image that is blurred, has missing pixels and is corrupted by noise. We consider the missing pixels to be scattered throughout the image, as could be the case of a faulty sensor with a high number of dead pixels. We use the following mathematical model to describe the imaging system

= + , (4.1)
in which ∈ ℝ is the observed image, ∈ ℝ is the true unobserved image, ∈ ℝ is the additive noise, ∈ ℝ × is the convolution matrix, ∈ ℝ × is the truncation matrix and ≥ . Our goal is to recover the true unobserved image given the observed image , the convolution matrix , and the location of the missing pixels. This is the same application that we considered in our paper [START_REF] Bărbos | Clone MCMC: Parallel high-dimensional Gaussian Gibbs sampling[END_REF] describing the Clone MCMC algorithm.

In the observation model from equation (4.1) we treat the images as vectors. For each image we construct the associated vector by stacking the columns of pixels on top of each other. In this setting the convolution matrix has a Toeplitz block-Toeplitz structure with the size of the block given by the number of rows of pixels. Note that this treatement of images as vectors only concerns the theoretical developments. For the practical implementation we do not need to vectorize the images, all operations involving images are carried out in their natural format.

We model the blur introduced by the imaging system as the convolution of the unobserved image with a box filter. We can envision other choices for the blurring filter, for example Gaussian or Bartlett [START_REF] Velho | Image Processing for Computer Graphics and Vision[END_REF], if we need a better fidelity with respect to a given imaging system. For the considered deconvolution-interpolation problem we did not have a specific imaging system in mind and as such we went with a generic choice for the blurring filter.

The choice of a box filter further proves to be a very convenient one as we shall shortly in the discussion concerning how to efficiently compute the elements of the matrix from the splitting | = -of the precision matrix. This is not to say that other blurring filters would not allow for an efficient computation of the matrix , it was only the case that the box filter enabled us to easily devise an approach that allowed for an efficient computation of the aforementioned matrix. And to anticipate a bit, we do mention in section 4.3 the use of a different blurring filter as a direction of future work .

A subtlety of the observation model is that it disregards the missing pixels. We see this more clearly if we look at the size of the corresponding vectors for the observed and unobserved image: the former is of size while the latter is of size with ≥ . We model this process of not observing some pixels with the aid of the truncation matrix . It is of size × and we construct it from the identity matrix of size × from which we eliminate the rows corresponding to unobserved pixels.

We tackle the image deconvolution-interpolation problem in the Bayesian framework. The posterior distribution synthesizes all the available information concerning the true unobserved image and our job is to then extract this information and to recover the unobserved image.

Let us first specify the ingredients needed to obtain the posterior distribution. We start with the distribution of the additive noise for which we settled on a multivariate Gaussian distribution. Furthermore, we assumed the noise to be white and stationary. Thus

( ) =  , =  , -1 =  , -1 .
The likelihood function immediately follows

| ( | ) =  , -1 .
We now specify the prior distribution for the true unobserved image. We settled on a multivariate Gaussian distribution

( ) =  , =  , -1 .
The precision matrix of the prior distribution is defined as

= 0 + , with = 1∕ 1∕ … 1∕
a column vector of size , such that computes the average over the components of the vector ∈ ℝ , and is the resulting Toeplitz block Toeplitz convolution matrix corresponding to the following 2D Laplacian filter

⎡ ⎢ ⎢ ⎣ 0 -1 0 -1 4 -1 0 -1 0 ⎤ ⎥ ⎥ ⎦ .
The choice of prior distribution is such that to impose a certain degree of smoothness for the reconstructed image. This property is enforced through the term which incorporates the 2D Laplacian differential operator. The hyper-parameter tunes the degree of smoothness. The first term 0 accounts for the mean level of the image and most importantly ensures that the prior distribution is proper, see for example [START_REF] Orieux | Bayesian estimation of regularization and point spread function parameters for Wiener-Hunt deconvolution[END_REF] for a concise discussion on this topic.

The need to impose a certain degree of smoothness for the reconstructed image stems from the ill-posed character of the deconvolution problem at hand. The observed image lacks the fine details present in the true image. The fine variations that are present in the observed image are mainly due to observation noise. The deconvolution process aims to reverse the effects of the observation system and acts to enhance the details in the observed image. However, that would mainly enhance the noise and would result in a restored image that lacks fidelity with respect to the true image. By enforcing the restored image to exhibit a certain degree of smoothness we limit the level at which the noise in the observed image is amplified while still providing for an increase in the resolution of the restored image.

The same smoothness constraint has for instance been used by [START_REF] Orieux | Bayesian estimation of regularization and point spread function parameters for Wiener-Hunt deconvolution[END_REF] in an image deconvolution problem or by [START_REF] Orieux | Sampling highdimensional Gaussian distributions for general linear inverse problems[END_REF], Gilavert et al., 2015] in an image super-resolution problem. One limitation of the chosen approach to enforce the smoothness of the reconstructed image is the limited resolution of the reconstructed image. This aspect is clearly highlighted in [Idier, 2008] for example. Solutions that cater for a higher resolution of the restored image have already been proposed, see for example [START_REF] Geman | Nonlinear image recovery with half-quadratic regularization[END_REF] or [Giovannelli, 2008].

We do acknowledge that we could have pursued a more advanced approach in order to provide for a reconstructed image of a better resolution. However, for the sake of simplicity we decided to stay with the given choice for the prior distribution. Moreover, the limited resolution of the reconstructed image is a consequence of the chosen prior and not of the sampling algorithm. Consequently, the limited resolution of the reconstructed image does not disprove the viability of the proposed algorithm, which is our foremost goal for this chapter nonetheless.

Having defined the prior distribution for the unobserved image and the likelihood function, the posterior distribution immediately follows from applying Bayes rule:

| ( | ) = | ( | ) ( ) ( ) =  | , | . (4.2)
The mean and covariance matrix of the posterior distribution have the following expressions:

| = | -1 = | , (4.3) -1 | = -1 + -1 = + 0 + . (4.4)
In the current context it is more natural to express the posterior distribution under the following form

| ( | ) =  -1 | | , -1 | (4.5)
since this writing is identical to the one in equation (3.10). The vector | and the precision matrix

| have the following expressions:

| = | | = , (4.6) | = -1 | = + 0 + . (4.7)
As we can see from equation (4.2) or (4.5) we dispose of an analytical expression for the posterior distribution. We can compute the mean of the posterior distribution by means of numerical optimisation, as it is shown in appendix F. However, computing the full set of variances and/or covariances is computationally too expensive.

Performing the inference on the unobserved image is done by means of sampling the posterior distribution using the Clone MCMC algorithm. In section 4.2 we also take a look at using the Hogwild algorithm to sample the posterior distribution.

Efficient computation of

| -1

Let us first explicit the matrix-vector product from equation (4.9) involving the precision matrix:

| -1 = -1 + 0 -1 + -1 . (4.10)
If we recall ourselves that is a convolution matrix, is a truncation matrix, is a vector such that computes the average over the components of the vector , and that is a convolution matrix, then we start to get an idea about why we do not need to construct or store in memory the precision matrix | . The first term -1 is efficiently computed by means of two convolutions with a zero-padding of the positions corresponding to the missing pixels in between the two. The chosen blurring filter has a symmetric kernel which results in the two convolution matrices and taking on the same expression. The matrix is diagonal with the diagonal entries being either 1 or 0 depending on whether the corresponding pixel is observed or not.

Computing the second term 0 -1 is straightforward as it requires computing the average over the components of the iterate -1 and then performing a scalar vector multiplication. The last term -1 is efficiently computed by means of two convolutions. The two convolution matrices and take on the same expression as the Laplacian filter is symmetric.

We have thus seen that the writing in equation (4.9) allows us to circumvent the need to store, or to compute for that matter, either the matrix or the precision matrix | . The sole memory overhead is the storage of the box and Laplacian filters at a negligible cost.

Efficient computation of

|

The mean vector of the distribution of the stochastic component | = is efficiently computing by first zero-padding the positions corresponding to unobserved pixels and then performing the convolution of the result with the box filter. It does not change with the iterations so it suffices to compute it only once at the beginning of the algorithm.

Efficient computation of the matrix

The key ingredients required in constructing the matrix are the elements on the diagonal of the precision matrix | . We need to be able to extract them without constructing or storing the precision matrix which is by no means trivial.

Let 1 = 0 0 … 0 1 0 … 0 be a column vector of size containing a 1 on the -th position. The construction 1

| 1 then extracts the ( , ) diagonal element of the precision matrix. We compute the ( , ) diagonal element of the matrix as follows:

( , ) = 1 | 1 + 2 = 1 1 + 0 1 1 + 1 1 + 2 .
The above equation can be rewritten as

( , ) = ‖ 1 ‖ 2 2 + 0 ‖ 1 ‖ 2 2 + ‖ 1 ‖ 2 2 + 2 . (4.11)
The above expression can be computed using convolutions and truncations in a similar vein to equation (4.10). In the following for simplicity reasons we drop the subscript from the norm.

Computing all the elements of the matrix requires evaluating equation (4.11) a number of times equalling the total number of pixels in the image. A straightforward implementation of equation ( 4.11) has an important computational cost in terms of execution time which renders it impractical to use in a high-dimensional case.

Of the three terms from equation (4.11), computing the first one, i.e. ‖ 1 ‖ 2 , is the most troublesome. The term 1 is nothing more than a convolution and it can be efficiently computed. Multiplying the resulting vector with the truncation matrix is again computed in an efficient manner. However, the problem we face is that once we have computed the result for position ( , ) we cannot reuse it for position ( + 1, + 1) or ( -1, -1), or any other position for that matter.

The box filter used to model the blur introduced by the imaging system has all the coefficients equal. Their value is equal to 1 over the total number of coefficients. We can rewrite the box filter as a constant times a filter whose coefficients are all 1. Let denote the respective constant, i.e. equals 1 over the number of coefficients. We can thus write the convolution matrix as = , where is the convolution matrix corresponding to the all 1's filter. With this new writing of the convolution matrix the first term from the right hand side of equation (4.11) becomes:

‖ 1 ‖ 2 = 2 ‖ 1 ‖ 2 . (4.12)
What is very important is that the result of the product 1 is a binary vector. Indeed, the result of the matrix-vector product 1 is a vector containing the all 1's impulse response centred on the -th position. Further multiplying the resulting vector with the truncation matrix results in another binary vector as well.

Let us now consider the norm of a binary vector . We have:

‖ ‖ 2 = ∑ 2 = ∑ = 1 , (4.13)
where 1 = 1 1 … 1 is a vector comprised only of 1's. The second equality follows from the fact that the elements of are either 0 or 1. Furthermore, we have that:

‖ 1 ‖ 2 = ‖ 1 ‖ 2 .
(4.14)

The equality holds because inserting zeros in between some of the elements of a vector does not change the value of its norm.

With the results from equations (4.12), (4.13), and (4.14) we now start to see how we can efficiently compute the first term from the right hand side of equation (4.11). We have:

‖ 1 ‖ 2 = 2 ‖ 1 ‖ 2 = 2 ‖ 1 ‖ 2 = 2 1 1 = 2 1 1 = 2 1 . (4.15)
The result of the product = 1 is a binary vector which indicates the observed and unobserved components: a 0 indicates an unobserved component whereas a 1 indicates an observed component.

The advantage offered by the expression in (4.15) is that the term does not depend on the position and is hence computed once for all positions. Moreover, it can be efficiently computed by means of a single convolution and it has an interesting interpretation. Computing the convolution is equivalent to counting the number of observed pixels in the neighbourhood of each pixel. The dimension of the neighbourhood is given by the size of the blurring filter.

The second term from the right hand side of equation (4.11) is readily computed as 0 ∕ 2 . To see that this is the case, let us first note that the result of 1 equals 1∕ no matter the value of . Computing the squared norm of a real scalar amounts to just squaring the scalar. Then it remains to just multiply the result with 0 .

The third term from the right hand side of equation (4.11) is efficiently computed through several convolution operations. For the positions for which the filter is fully immersed we only need to compute the convolution once. Indeed, the matrix-vector product 1 results in a vector containing the impulse response centred on the -th position.

Care must be taken when computing the convolution for the positions for which the filter is not fully immersed. However, even for those positions we can reuse results obtained for neighbouring positions. The following drawing displays using the same colour the positions for which the term ‖ 1 ‖ 2 takes on the same value.

We see that there are only three different colours in the drawing: the red squares correspond to the four pixels in the corners of the image, the yellow strips are one pixel deep and correspond to the pixels on the edges of the image except the corner ones, and the blue region encapsulates all remaining pixels.

The three distinct colours correspond to the three different convolutions that have to be carried out. This reduced number of convolutions is a consequence of the Laplacian filter being symmetric. Had it not been the case then we would have been required to perform more convolutions. Computing the term ‖ 1 ‖ 2 for all positions ∈ {1, 2, … , } thus requires performing three distinct convolutions which are naturally computed only once and then just selecting the corresponding value for each position.

The following equation sums up the efficient computation of the elements of the matrix:

( , ) = 2 1 + 0 2 + ‖ 1 ‖ 2 + 2 (4.16)
with the term ‖ 1 ‖ 2 taking one of the three precomputed possible values depending on the position of the corresponding pixel.

Image deconvolution-interpolation results

For the image deconvolution-interpolation application we considered several scenarios with respect to the size of the blurring box filter and with respect to the value of the tuning parameter . The test image is given in figure 4.1 and is of size [1000 × 1000] which corresponds to a dimension of the random variable of = 10 6 . We considered 10 × 10 and 15 × 15 as the different sizes for the blurring box filter. We considered 20% missing pixels randomly scattered throughout the image. The location of the missing pixels is the same for all considered scenarios. The standard deviation of the added noise is = 10 corresponding to a signal to noise ratio (SNR) of roughly 8 dB and we have used the same noise realisation in each scenario. Figure 4.2 displays the distorted observed images corresponding to the two sizes for the blurring box filter.

For all the tested scenarios we used the same number of posterior samples = 15000 to compute the reconstructed image. The number of burn-in samples varies with the box filter size and the value of the parameter, ranging from = 4000 for a filter size of The code implementing the deconvolution-interpolation was written in the MATLAB programming language and was run on a laptop computer having a dual core 5 processor clocked at 2.5 GHz. Unlike the previous chapter where we run the Clone MCMC algorithm on a GPU, this time we ran the algorithm only on the CPU.

Running the algorithm on the GPU would have definitely led to smaller execution times needed to compute the diagonal elements of the precision matrix and to generate one sample. However, running the code on an average computer shows that the algorithm does not require specialist hardware to be of practical use.

We begin by first taking a look at a series of deconvolution-interpolation results obtained using a deterministic approach. These results then serve as reference when evaluating the results obtained using the Clone MCMC algorithm. We then present and analyse the deconvolution-interpolation results for the 10 × 10 blurring filter followed by those for the 15 × 15 blurring filter.

MAP reference images and hyper-parameter values

In order to be able to properly evaluate the results obtained using the Clone MCMC algorithm we also computed the posterior mean by maximising the posterior distribution using the steepest ascent algorithm, see appendix F for further details. The MAP images are solutions to the deconvolution-interpolation problem. Consequently, one could arguably question the advantage/usefulness of using the Clone MCMC algorithm to perform the image-deconvolution interpolation. The answer to this question is rather straightforward.

The numerical maximisation of the posterior distribution yields only the MAP image and nothing more. The Clone MCMC algorithm provides us with a set of samples from the posterior distribution. For a start, we can use the samples to compute the mean which gives us the same information as the MAP image. However, from the same set of samples we can easily compute variances/covariances or we can construct posterior credible intervals for each pixel of the image. The availability of this extra information is important as we can use it for example to asses the quality of the proposed solution.

The posterior mean depends on the three hyper-parameters , and 0 through the ratios 0 = 0 ∕ and = ∕ , as it is shown in appendix E. For each blurring filter size we considered three combinations of values for the ratios 0 = 0 ∕ and = ∕ . We varied only the parameter while setting 0 = 1. The reason is that relatively small changes in the value of 0 parameter have little effect over the resulting images. We used the optimisation-based approach to also determine the hyper-parameter values which yield the best visual deconvolution-interpolation results. We ran the steepest ascent Having selected the combination of values for the ratios 0 and it remained to determine the value of the three hyper-parameters. It sufficed to choose the value for one of the three parameters as the values for the other two followed immediately. We set the precision parameter of the noise distribution to = 10 -2 . The values for the other two parameter immediately followed as = 10 -2 and 0 = 10 -2 .

The chosen value for the precision parameter of the noise distribution corresponds to a standard deviation of = 10 which is the same as the standard deviation of the noise that was added to test image. Our interests are in evaluating the performances of the Clone MCMC algorithm in this high dimensional setting. If we choose a value for the precision parameter that is far from the true one we may be artificially degrading the results and thus influence their interpretation.

It is worth mentioning that we do not necessarily have the guarantee of obtaining the best possible results by selecting the standard deviation of the added noise as the standard deviation of the noise distribution. However, the results that are actually obtained should not be that different from the best possible ones.

Deconvolution-interpolation results for a 10 × 10 blurring filter

We first look at the deconvolution-interpolation results for a blurring filter of size 10 × 10. The results are given in figures 4. 5,4.6 and 4.7. Figures 4.5a Overall we find the reconstructed images to be of good quality. We notice that in this case the results are visually very similar for all considered values of . Figure 4.6 contains a more detailed analysis of the results by looking at an individual line of pixels. The line that is analysed is indicated by the dark cyan line segments in the figures containing the restored images. The line that we chose contains low, mid and high tones, and it has both smooth regions and edges. It should enable us to get a good view into the general behaviour of the algorithm. Figure 4.6a displays the same line of pixels from the MAP image and from the true image. As we already said, we consider the MAP image as reference and not the true image. We do not consider the true image as the reference since it is known that a quadratic penalisation, as introduced by the Gaussian prior on the unobserved image, does not exhibit good edge restoration properties. For = 0.5 and = 1 the reconstructed images are almost indistinguishable from the MAP image. Even for = 5 the reconstructed image is very similar to the MAP image, though we do notice that the dip from the encircled region does not descend as low as it does for the other two values. We can see that for most of the pixels, if not for all, the estimated value lies within the ±3̂ interval which shows that we are able to obtain good results with the Clone MCMC algorithm. As we already mentioned, for each value of we used = 15000 posterior samples to compute the restored image. For = 0.5 and = 1 the number of burn-in samples required for the algorithm to converge was = 4000. For = 5 the number of burn-in samples required was = 10000. For = 5 the number of burn-in samples is rather high, not very different from the actual number of useful samples. This is due to the fact the a higher value of leads to a higher degree of correlation between the drawn samples which slows the convergence of the algorithm. On the upside though, we do notice that the increase in the degree of correlation between the drawn samples did not have such a significant impact on the resulting image as opposed to the impact it had on the convergence speed.

The number of burn-in samples was determined through a visual analysis of the chains for 4 selected pixels. The location of the respective pixels is indicated by the 4 coloured markers from figure 4.5a:

• the red marker corresponds to an observed pixel from a mid-grey toned region with 2 out of its 8 neighbouring pixels being unobserved

• the green marker corresponds to an observed pixel from a white toned region with 5 out of its 8 neighbouring pixels being unobserved

• the dark blue marker corresponds to an observed pixel from dark toned region with 1 out of its 8 neighbouring pixels being unobserved

• the cyan marker corresponds to an observed pixel from a white toned region with none of its 8 neighbouring pixels being unobserved For this size of the blurring filter computing all the elements on the diagonal of the precision matrix using equation (4.16) took on average around 140 ms whereas generating one sample using equation (4.10) took on average 250 ms. For = 0.5 and = 1 the algorithm required = 4000 samples whereas for = 5 the algorithm required = 10000 samples. These are the same burn-in values as for the blurring filter size of 10 × 10. Again, the number of burn-in samples required for = 5 is rather high. However, in this case it would be arguably better to increase the number of samples used to compute the restored image.

Deconvolution-interpolation results for a 15 × 15 blurring filter

Computing the diagonal elements of the precision matrix took roughly 250 ms whereas generating one sample requires on average 400 ms. This increase in execution time is directly due to the increase in the size of the blurring filter since at each iteration we have two compute two convolutions involving it.

The results presented in this section show the viability of the proposed sampling algorithm for solving a high-dimensional problem. More so, we do necessarily not need specialised hardware such as a GPU to make use of the proposed algorithm, although running the algorithm on the GPU would definitely decrease the running time of the algorithm.

Convergence and the parameter

One aspect that we have not addressed so far for the image deconvolution-interpolation application is the convergence of the Clone MCMC algorithm. We know from section 3.2 that the Clone MCMC algorithm converges if and only if -1 < 1. Furthermore, we know from theorem 2 that if the precision matrix is strictly diagonally dominant then the spectral radius is smaller than 1.

In this high-dimensional setting it is not straightforward to verify if the precision matrix is diagonally dominant. First, we have the aspect of how to efficiently compute all the elements of the precision matrix. We have the following expression for how to compute the element ( , ) of the precision matrix

| ( , ) = 1 1 + 0 1 1 + 1 1 .
In the general case ≠ we cannot rewrite the above equation such that it involves vector norms as was the case for the matrix containing the diagonal elements. Consequently, it is not immediate how to efficiently compute the above equation for all positions and . Second, even if we were able to efficiently compute all the elements of the precision matrix, we would then have to store in memory a matrix of size 10 6 × 10 6 which is out of reach on an ordinary computer.

We have not attempted to verify if the precision matrix from equation (4.7) is diagonally dominant or not. We believe however that the precision matrix is most likely not diagonally dominant. Let us take a quick look at the individual matrices from the expression of the precision matrix:

• The first term is most likely not diagonally dominant.

• The second term 0 is a constant matrix obtained as the outer product of two constant vectors and thus is not diagonally dominant.

• The third term is most likely not diagonally dominant.

Even if the three matrices were diagonally dominant, we would still not be able to state that in general the precision matrix is diagonally dominant as the following counter-example clearly shows it:

⎡ ⎢ ⎢ ⎣ 2 1 0 0 3 1 1 1 4 ⎤ ⎥ ⎥ ⎦ + ⎡ ⎢ ⎢ ⎣ 5 2 2 2 5 2 2 2 5 ⎤ ⎥ ⎥ ⎦ + ⎡ ⎢ ⎢ ⎣ 3 -1 -1 1 2 0 1 0 -5 ⎤ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎣ 10 2 1 3 10 3 4 3 4 ⎤ ⎥ ⎥ ⎦ .
The precision matrix being diagonally dominant is only a sufficient condition, so even if it is not fulfilled the algorithm still converges as long as

-1 < 1.
The values that were used to obtain the deconvolution-interpolation results in the previous section undoubtedly led to -1 < 1. The question that naturally arises is whether there exists an value for which the algorithm diverges. The answer is yes. Figure 4.10 clearly shows that for = 0.05 the algorithm diverges whereas for = 0.075 it converges. The figure depicts the sequence of drawn samples corresponding to the 4 selected pixels for a filter size of 10 × 10. Identical results were obtained for the other considered filter size wherein the algorithm diverged for = 0.05 and converged for = 0.075.

We cannot state exactly what is the smallest value for which the algorithm converges. What we do know is that for the current case it lies in the interval (0.05, 0.075]. Furthermore, we don't know if it is the same for both blurring filter sizes. We tend to believe that a different blurring filter size leads to a different value starting from which the algorithm converges given that the blurring filter intervenes in the expression of the precision matrix and consequently in the expression of the matrices and . However, given the reduced range of values of the interval (0.05, 0.075], those values would be very similar.

It would be interesting to find the minimum value for which the algorithm converges for each blurring filter size. However, we will not pursuit such a search given that our ensures the convergence of the Hogwild algorithm is for the precision matrix to be generalized diagonally dominant [Johnson et al., 2013, Thm. 1]. Again, due to the high dimensionality of the problem it is not straightforward to verify if the precision matrix is indeed a generalized diagonal dominant matrix and we did not attempt to verify it.

Figure 4.11 contains the first 900 samples for the same 4 pixels as previously. The inset plots present the first 10 samples for each chain. What we notice is that for a 10 × 10 blurring filter the algorithm diverges. Similar results were observed for the 15×15 blurring filter size. We see from the inset plots that even after just 10 samples the values that are generated are of the order of 10 3 .

If we come to think of it, the fact that the Hogwild algorithm diverges should not be such a surprise after all. Ignoring the difference in the covariance matrix of the stochastic component, we can see the Hogwild algorithm as the Clone MCMC algorithm with set to zero. But then we just saw in section 4.1.2 that the Clone MCMC algorithm diverges for ≤ 0.05, so we could have already hinted about the divergence of the Hogwild algorithm from the Clone MCMC results.

Conclusions and Perspectives

In this chapter we sought to highlight the usefulness of the proposed sampling algorithm on a real high-dimensional problem. We looked at the problem of image deconvolutioninterpolation, that is given a blurred image with missing pixels to recover the true image. Obviously, since it is not possible to recover the exact true image we could only provide an estimate of it. This chapter also provided an insight into the difficulties encountered when working in a high-dimensional setting. We saw that we had an analytical expression for the posterior distribution. However, due to the high-dimensional nature of the problem, computing the mean vector and covariance matrix was not possible in a straightforward way. We resorted to a numerical optimisation technique, namely the algorithm of steepest ascent, to compute Another interesting aspect that we would like to analyse is the use of a different type of blurring filter. We saw that the current choice of a box blurring filter allowed for a fast computation of the elements on the diagonal of the precision matrix. The question that immediately follows is whether a different choice of blurring filter would still allow for a fast computation of the elements on the diagonal of the precision matrix. This is an important aspect since if it takes too long to compute the diagonal elements then the algorithm looses its attractiveness. We consider the algorithm to be still attractive as long as the time required to compute the diagonal elements does not have an order of magnitude much greater than the time it takes to generate one sample. cost of increasing the number of rejected samples as there is a greater disparity between the approximate and the target distribution while on the other hand a great value of should ensure that few samples are rejected as the approximate distribution is close to the target one. A subsequent question would then be if it is possible to devise an automatic way of choosing the value of given a criteria to fulfil, like for example a specified percentage of accepted samples.

As a second extension of the proposed algorithm we would like to investigate sampling non-Gaussian Distributions. A first approach would be the extension of the Clone MCMC idea to pairwise Markov random fields as given in section 3.4. A second approach would involve using the Clone MCMC as it is as a building block for a non-Gaussian target distributions. We imagine using for example the Gaussian Scale Mixtures (GSM) model or the Gaussian Location Mixture model to build the non-Gaussian sampler.

Let us now focus on the whole expression inside the expectation. We have

- | -1 - | -1 = - - .
Finally, we have

| -1 = - - = - - ,
from which it follows that

| -1 = .

To conclude, the conditional distribution of a stochastic iterate is:

| -1 ∼  -1 + , .
(A.2)

A.2 The marginal distribution

We are now looking to determine the mean and covariance matrix of the marginal distribution of an iterate obtained using equation (A.1). We first focus on the mean vector = . From the definition of the expected value we have:

= -1 + = -1 + ,
from which it follows that = -1 + .

For determining the covariance matrix, we naturally start again from its definition. Thus we have = --.

Let us first compute the term inside the parentheses:

- = -1 + - -1 - = -1 - -1 + - .
Let us now compute the whole expression inside the expectation:

- -1 - -1 = = -1 - -1 + - -1 - -1 + - = -1 - -1 -1 - -1 + - - + -1 - -1 - + - -1 - -1
.

A.2. The marginal distribution

Taking the expected value of the above yields:

= -1 - -1 -1 - -1 + - - + -1 - -1 - + - -1 - -1 = -1 + + + ,
from which it follows that = -1 + .

To conclude the marginal distribution of a stochastic iterate is:

∼  -1 + , -1 + . (A.3) 1 , 2 ∼  2 , 2 .
In the following we will focus only on determining the expression of the covariance matrix as determining the expression of the mean vector is a trivial operation.

The first thing that we have to do is to determine the expression of the covariance matrix as it is given as the inverse of the precision matrix. For a general [2 × 2] symmetric block partitioned matrix = , there exists an analytical expression for its inverse based on Schur complements. We have [Horn and Johnson, 2012, p. 18]:

-1 = - -1 -1 --1 - -1 -1 --1 - -1 -1 - -1 -1
.

The covariance matrices 1 and 2 of the marginal distributions of the two blocks are located on the diagonal of the covariance matrix . We have

1 = 1 2 -- 1 2 1 2 -1 - 1 2 -1 = 2 - -1 -1 = 2 - + - -1 -1 = 2 - + - -1 -1 = 2 -1 + -1 -1 = 2 + -1 -1 = 2 + -1 --1 -1 = 2 2 --1 -1 -1
, from which it immediately follows that

1 = - 1 2 -1 -1 -1
.

Similar computations yield 2 = - 1 2 -1 -1 -1
, which show that indeed the marginal distribution have the same expression as the stationary distribution of the proposed sampling algorithm.

C.1 Hogwild and Clone MCMC estimation error

We start by first looking at the Hogwild estimation error. We have

- = - + -1 -1 = - -1 + -1 -1 = - -1 + -1
, from which it immediately follows that -= -+ -1

.

Let us now switch to the Clone MCMC estimation error. We observe that = + 2 and that = + 2 . We have:

- = -2 + -1 -1 -1 = -2 + + 2 -1
+ 2 

C.2 Hogwild and Clone MCMC KL divergence

Let us first look at the KL divergence from the Hogwild approximate distribution to the true distribution D  ‖ . We have:

D  ‖ = 1 2 tr -1 -+ ln det det .
We shall analyse each term from the above equation individually. We shall look first at the matrix product inside the trace operator:

-1 = + -1 -1 -1 = -1 + -1 = + -1 -1 --1 = + --1 -1 = 2 --1 -1 .
We apply the trace operator to the above expression and we obtain:

tr 2 --1 -1 = 2tr ( ) -tr -1 -1 = 2 -tr -1 -1 .

Let us now look at the ratio of the determinants. We have:

det det = det + -1 -1 det = det + -1 -1 det det = det + -1 --1 -1 = det 2 --1 -1 -1 = det 2 -1 --1 -1 -1 = det det 2 --1 -1 .
The expression of the KL divergence for the Hogwild algorithm thus becomes:

D  ‖ = 1 2
-tr -1 -1 + ln det -ln det 2 --1 .

Let us now look at the KL divergence from the Clone MCMC approximate distribution to the true distribution D  ‖ . We have: D  ‖ = 1 2 tr -1 -+ ln det det .

We will again look at each term individually. We start with the trace operation, and more exactly with the matrix product -1 :

-1 = 2 + -1 -1 -1 = 1 2 -1 + -1 = 1 2 2 --1 -1 = - 1 2 -1 -1 .
We apply the trace operator and we obtain:

tr - 1 2 -1
-1 = tr ( ) -1 2 tr -1 -1 = -1 2 tr -1 -1 .

Let us turn our attention to the ratio of the determinants. We have:

det det = det 2 + -1 -1 det = 2 det + -1 -1 det det = 2 det + -1 --1 -1 = 2 det 2 --1 -1 -1 = 2 det 2 -1 --1 -1 -1 = 2 det det 2 --1 -1 .
The expression of the KL divergence for the Clone MCMC algorithm thus becomes:

D  ‖ = 1 2 ln 2 - 1 2
tr -1 -1 + ln det -ln det 2 --1 .

C.3 Bivariate target distribution

We start with the approximate covariance matrix for the Hogwild algorithm. We have:

= + -1 -1 = ⎛ ⎜ ⎜ ⎝ + 1 2 1 2 2 1 -2 2 2 0 0 2 1 -1 1 2 1 2 2 1 -2 0 1 2 1 2 0 ⎞ ⎟ ⎟ ⎠ -1 = 1 0 0 1 + 0 1 2 2 1 0 -1 = 1 1 -2 1 -1 2 -2 1 1 2 1 1 2 1 2 2 2
, from which it follows that We can now proceed to compute the expression of the approximate covariance matrix

= 2 + - -1
. We compute it in several steps and we start with computing -1

. In order to simplify the expressions of the and matrices, we introduce the notation = 2 1 2 2 1 -2 . We then have

-1 = 1 2 2 +2 0 0 1 2 1 +2 × 1 2 1 2 1 2 2 = ⎡ ⎢ ⎢ ⎣ 2 2 2 +2 1 2 2 2 +2 1 2 2 1 +2 2 2 1 +2 ⎤ ⎥ ⎥ ⎦ .
We then proceed to compute the expression of + -1

+ -1 = 1 0 0 1 + ⎡ ⎢ ⎢ ⎣ 2 2 2 +2 1 2 2 2 +2 1 2 2 1 +2 2 2 1 +2 ⎤ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎣ 2 2 +4 2 2 +2 1 2 2 2 +2 1 2 2 1 +2 2 1 +4 2 1 +2 ⎤ ⎥ ⎥ ⎥ ⎦
and that of

+ -1 -1 + -1 -1 = 1 det + -1 ⎡ ⎢ ⎢ ⎢ ⎣ 2 1 +4 2 1 +2 -1 2 2 2 +2
- .

Finally we have:

= 2 + -1 -1 = 2 det + -1 ⎡ ⎢ ⎢ ⎢ ⎣ 2 1 +4 2 1 +2 -1 2 2 2 +2 -1 2 2 1 +2 2 2 +4 2 2 +2 ⎤ ⎥ ⎥ ⎥ ⎦ 2 1 1 2 1 2 2 2 = 2 det + -1 ⎡ ⎢ ⎢ ⎢ ⎣ ⇒ Cost =  ( ) . (D.
2)

The quantity indicated by the under-brace is the cost of performing the matrix product while the quantity indicated by the over-brace is the cost of performing the matrix addition.

As indicated by [Golub and Van Loan, 2013] the first step is to break up the original problem into several smaller tasks that exhibit a measure of independence. The following decomposition The cost of computing each of the smaller tasks is:

= ⎡ ⎢ ⎢ ⎣ 11 … 1 ⋮ ⋱ ⋮ 1 … ⎤ ⎥ ⎥ ⎦ , = ⎡ ⎢ ⎢ ⎣ 11 … 1 ⋮ ⋱ ⋮ 1 … ⎤ ⎥ ⎥ ⎦ , = ⎡ ⎢ ⎢ ⎣ 11 … 1 ⋮ ⋱ ⋮ 1 … ⎤ ⎥ ⎥ ⎦ , with ∈ ℝ 1 × 1 , ∈ ℝ 1 × 1 , ∈ ℝ 1 × 1 , = 1 , = 1 ,
= 1 1 ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞ + ∑ =1 ⏟⏟ ⏟ 2 1 1 1 -1 1 ⏟⏞⏞⏞⏞⏞⏞ ⏟⏞⏞⏞⏞⏞⏞ ⏟ ( 2 1 1 1 -1 1) ⇒ Cost =  1 1 1 . (D.3)
For notational convenience we also double index the available processing units. That is, let us assume that the number of processing units can be written as = . It is important to note that the double indexing is not a statement about the actual physical connectivity of the processing units as it is clearly stressed out in [Golub and Van Loan, 2013].

In the ideal case one has the same number of processing units as number of blocks to compute, i.e. = . More often than not the number of processing units is less than the number of blocks. This implies that each unit has to compute several blocks. Efficient usage of the available processing calls for all units to perform an (roughly) equal amount of work. In the following we shall look at a load sharing strategy called 2-dimensional blockcyclic distribution [Golub and Van Loan, 2013, p. 50] which has the required property of being load balanced [Golub and Van Loan, 2013, p. 52].

Let us consider a generic processing unit designated as Proc( , ). The load sharing strategy assigns it the computation of the blocks with = ∶ ∶ and = Let us now consider a particular processing unit, say Proc(1,2). By the assignment rule it follows that the indices of the blocks to process are given by the Cartesian product between the sets {1, 3, 5, 7} and {2, 5, 8}, i.e. {(1, 2), (1, 5), (1, 8), (3, 2), … , (7, 2), (7, 5), (7, 8)}. Similar computations are carried out for the other processing units. In the current case each unit has a total of 12 blocks to compute.

Let us now consider the cost per processing unit for the considered load sharing strategy. In an idealistic scenario, i.e.

= 1 and = 2 , each processing unit has a number of = 1 2 blocks to compute giving a cost per processing unit of =  1 2 1 1 1 . In a more realistic scenario we have that

= 1 + 1 , 0 ≤ 1 < = 2 + 2 , 0 ≤ 2 < ,
and that the number of blocks to compute assigned to each processing unit varies from a maximum of ,max = 1 + 1 2 + 1 to a minimum of ,min = 1 2 . In the worst case the number of operations to be performed by a processing unit equals to 1 + 1 2 + 1 2 1 1 1 -1 1 ( -1) operations, whereas in the best case the number reduces to just 1 2 2 1 1 1 -1 1 ( -1) operations. In either cases, expressing the cost using the big  notation yields the same value: This is of no surprise as the block-cyclic distribution method is load balanced. Figure D.2 exemplifies the distribution of tasks among the available processing units in the case where neither nor is an integer multiple of and respectively .

=  1 2

D.2 Parallel matrix-vector multiplication

We tackle the problem of parallel matrix-vector multiplication as a special case of the parallel matrix-matrix multiplication problem. The parallel matrix-matrix multiplication problem was discussed in the case of the matrix update operation given in equation (D.1). The parallel matrix-vector multiplication problem is discussed on the vector update operation given in the following equation:

= + , (D.6)
where ∈ ℝ , ∈ ℝ × and ∈ ℝ . It is readily observed that this vector update operation can be cast as a particular case of the parallel matrix-matrix multiplication problem by simply choosing = 1 in the latter. The cost associated with this vector update model is:

= ⏞⏞⏞⏞⏞⏞⏞⏞⏞ + ⏟⏟ ⏟ 2 - ⇒ Cost =  ( ) . (D.7)
As in the case of the matrix-matrix multiplication problem, we begin by breaking up the problem into a set of smaller and independent tasks. For this purpose we consider the following block decomposition

= ⎡ ⎢ ⎢ ⎣ 1 ⋮ ⎤ ⎥ ⎥ ⎦ , = ⎡ ⎢ ⎢ ⎣ 11 … 1 ⋮ ⋱ ⋮ 1 … ⎤ ⎥ ⎥ ⎦ , = ⎡ ⎢ ⎢ ⎣ 1 ⋮ ⎤ ⎥ ⎥ ⎦
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  refer to this parallel version of the algorithm as Chromatic parallel Gibbs sampler; it is given in algorithm 2.2. The underlying principle behind this approach is that the components can be separated into dis-

	tinct groups wherein the components in a group are independent of each other conditioned
	on the remaining components.					
	Algorithm 2.2 The Chromatic parallel Gibbs algorithm	
	Define the partition 1 , 2 , … ,	of {1, 2, … , } according to the colour of each
	component					
	Set 0					
	for = 1, 2, … do					
	for = 1, 2, … , do				
	for ∈ in parallel do				
	( ) ∼	( ) |	1 …	-1	-1	+1 … -1
	end for					
	end for					
	end for					

Une première et intéressante extension de l'algorithme proposé consisterait à le considérer comme une distribution de proposition dans un algorithme de type MH. L'intérêt immédiat d'une telle approche est que l'algorithme résultant cible la distribution correcte. De plus, le paramètre de réglage pourrait aussi jouer le rôle de paramètre de réglage de l'algorithme résultant : d'une part, un petit devrait assurer une bonne exploration de l'espace au prix d'une augmentation du nombre des échantillons rejetés car il y a une plus grande disparité entre la distribution approximative et la distribution cible, tandis qu'un grand devrait, par contre, s'assurer que peu d'échantillons sont rejetés car la distribution approximative est proche de la cible.En tant que deuxième extension de l'algorithme proposé, nous aimerions étudier l'utilisation de l'algorithme proposé en tant que bloc de construction pour un échantillonneur de grande dimension pour les distributions cibles non gaussiennes. Nous imaginons utiliser par exemple le modèle de Gaussian Scale Mixtures (GSM) ou le modèle de Gaussian Location Mixtures pour construire des échantillonneurs non gaussiens. Pour une telle approche, nous devrons faire attention à la facilité avec laquelle nous pouvons échantillonner la distribution de la variable auxiliaire introduite par le modèle.

We use the definition given by[Golub and Van Loan, 

2013] for a flop: A flop is a floating point add, subtract, multiply, or divide.

In order to compute one element of the resulting vector we have to perform multiplications and -1 additions for a total of 2 -1 floating point operations

Let one not forget that a decrease in the number of operations per processing unit entails an increase in the number of processing units required, which nonetheless represents a cost associated with the algorithm.

4.1. Image Deconvolution-Interpolation
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The joint distribution for the couple 2 -1 , 2 can be expressed in an explicit form as follows

(3.31)

Under the above rewrite of the joint distribution, the two iterates ( 2 -1 , 2 ) can be interpreted as being clones of each other, hence the name Clone MCMC for the proposed algorithm. The two iterates are obviously correlated with tuning the correlation between them: as → ∞, the clones become more and more correlated with corr( 2 -1 , 2 ) → 1 and also ̃ ( 2 -1 ) →  ( , Σ).

A very important property of the joint, or better said, clone distribution, is that conditioned on the other iterate of the couple the components of the current one are independent, i.e.

which enables a straightforward parallel sampling of the conditional distributions.

Let us now detail the construction of the Clone MCMC joint distribution from equation (3.31). The main idea behind its construction is to allow for an efficient sampling of the conditional distributions, property which we highlighted in the previous paragraph. The starting point in the construction of the joint distribution is naturally the target distribution given in equations (3.1) and (3.2). Consider , i.i.d. ∼  , -1 , recall that = + + and let = + . The joint distribution for the couple is:

or in an explicit form

+ ( -) ( -) + ( -) ( -) .

(3.33)

Sampling the joint distribution for the couple is done by individually sampling each component. However, that would require sampling the target distribution which is the problem we are trying to solve to begin with.

Consider now the following modified joint distribution: (3.35)

The difference between the joint distribution in (3.32) and the joint distribution in (3.34) is that in the case of the latter the cross-interaction terms, i.e. ( -) ( -) and ( -) ( -), are between the components of the two random variables and not between the components of the same random variable, aspect that can be clearly seen from equations (3.33) and (3.35).

Sampling the joint distribution from (3.34) can be done by means of Gibbs sampling as the two conditional distributions have a diagonal covariance matrix. The two conditional distributions are:

If we take a glance at algorithm 3.1 we see that we need to construct the matrices defining the Clone MCMC splitting and determine the parameters of the distribution of the stochastic component. We fist decompose the precision matrix as | = + + and then we construct the two matrices and as follows:

Equation (4.8) is just a rewrite of equation (3.16) for the current case. The problem with this writing of the sampling algorithm is that we need to store both matrices defining the splitting in memory. Considering that we are in a high-dimensional setting the cost of storing them in memory becomes an issue: we can do with storing the matrix since it is diagonal, however storing the matrix is out of reach.

We did not encounter this problem in the previous chapter since we purposely choose the dimension of the random variable such that we are able to store the two matrices in memory. The problem that we need to solve for the current case is how to implement the algorithm without making use of the matrix. Let us recall that | = -, then making use in (4.8) of the fact that

, from which it immediately follows that

(4.9)

Let us now explain how the update rule in equation (4.9) circumvents the problem of storing into memory any additional matrix besides . One might be arguably tempted to think that what we have done is to just replace the need to store the matrix with the need to store the precision matrix | which is of the same size. We raise the following three issues with respect to the update rule in equation (4.9):

1. How to efficiently compute | -1 without constructing or storing the precision matrix | ? 2. How to efficiently compute the mean vector | = without constructing or storing any of the matrices involved in its expression? 3. How to efficiently compute the matrix without constructing or storing the precision matrix

| ?

The answer to the first one explains why we do not have to store the precision matrix | in memory. The answers to the following two serve to shed light on some important practical aspects with respect to the implementation of the algorithm which might not be that obvious at a first glance. Let us now tackle each of these issues in turn. Pitching the deconvolution-interpolation results against the true image would unfairly penalise the Clone MCMC algorithm since the inability to accurately restore the edges is not due to the algorithm itself. If we take a close look at figure 4.6a we see that in this case the MAP image is very similar to the true image. We do see that the MAP image is indeed not able to fully capture all the dynamics found in the true image, most notably in the regions encircled in red. is of a decent quality. However, we notice that the edges are rather soft. As we already mentioned, this is due to the chosen Gaussian prior. The increased size of the blurring filter exacerbates the limitations of the chosen Gaussian model. Figure 4.9a shows in more detail the differences between the true and MAP image, in which we can also see that the intensity levels of the MAP image are not as high as those found in the true image.

The reconstructed images for the different values are similar to each other and to the MAP image. We can see this more clearly if we analyse figures 4.9b, 4.9c and 4.9d depicting the selected line of pixels. We see that overall the trace corresponding to the reconstructed image is almost superimposed with the trace corresponding to the MAP image. However, we also see that there are new regions besides the encircled one where we have rather noticeable differences between the reconstructed images and the MAP image. For = 0.5 and = 1, the reconstructed image is within the ±3̂ credible interval. For = 5 we see that there are pixels for which the reconstructed value is barely within (if it is not outside of) the credible interval. For this size of the blurring filter one could arguably say that the number of samples = 15000 used for computing the reconstructed images is on the low side if not too low. This is more true for = 5, while arguably not so for the other two values. When it comes to how we have determined the two values = 0.05 and = 0.075 the answer is simple: we just ran the algorithm for different values and observed whether or not the algorithm converges. We don't have any theoretical or numerical results for the variation of the spectral radius of the update matrix -1 with respect to the value of . We could have had numerical results for the problems that we treated in section 3.3.2 by directly computing the eigenvalues of the update matrix. However, how those results would extrapolate to the current case remains rather unclear.

A positive side of the results from figure 4.10 is that the smallest value for which the algorithm converges is rather small. This is important since a high minimum value which ensures convergence would penalise the algorithm in the sense that even for the smallest possible value the algorithm would generate samples exhibiting a rather high degree of correlation. Consequently, the convergence speed of the algorithm would suffer as well as the performances of the algorithm in terms of estimation error. Given that in the current case the smallest value which ensures converges is small, we still have some leeway when it comes to choosing the value for .

Hogwild Deconvolution-Interpolation

Performing the image deconvolution-interpolation using the Hogwild algorithm is very similar to performing it using the Clone MCMC algorithm. When running the Hogwild algorithm we used the same input data, same prior and likelihood, and the same values for the hyper-parameters:

= 0 = = 10 -2 . Consequently we have the same target distribution given in equation (4.5).

We start with the decomposition | = + + of the precision matrix. We then construct the matrices defining the Hogwild splitting as

The sampling step is:

The Hogwild algorithm is subject to the same issues as the Clone MCMC algorithm with respect to its computational and memory requirements. The approaches that we used for the Clone MCMC algorithm work as well for the Hogwild algorithm. As a matter of fact, implementing the Hogwild algorithm required performing minimal changes to the code for the Clone MCMC algorithm.

The Hogwild algorithm converges if and only if the spectral radius of the update matrix, which in this case is -1 , is smaller than one. A sufficient condition which the mean vector which we denoted . We then used the vector as ground truth when we evaluated the results obtained using the CloneMCMC algorithm.

An interesting aspect that emerged during this chapter is that the formulation that we gave in section 3.2 is not appropriate for a practical implementation of the algorithm. We provided a slightly altered formulation which has a reduced memory overhead and which can be effectively implemented by means of rather elementary operations.

The algorithm was evaluated for different blurring filter sizes and for different values of the tuning parameter . We obtained satisfactory results with respect to the image obtained by numerical optimisation. With respect to the true image the results may seem unsatisfactory at least for an important blurring filter size. We saw that the tuning parameter had more of an influence on the convergence speed of the algorithm than on the obtained results.

One important aspect that we also looked into was the convergence of the algorithm. Section 3.2.1 presented a sufficient condition for the convergence of the algorithm, namely for the precision matrix to be strictly diagonally dominant. For the chosen observation model it is more likely that the sufficient condition is not met. The convergence of the algorithm is dependent on the value of the tuning parameter and we saw that for small values, i.e. smaller than 0.075, the CloneMCMC algorithm diverges.

Finally we looked at performing the image deconvolution-interpolation using the Hogwild algorithm. We did not manage to obtain any results as the Hogwild algorithm diverged for all considered blurring filter sizes. We see that in this scenario the CloneMCMC algorithm offers an advantage since there exist values for which it is able to convergence.

Overall, we can conclude that the CloneMCMC algorithm is a useful algorithm for performing inference in a high-dimensional case as the image deconvolution-interpolation application showed it. However, and we can say as always, there are aspects for which there is room for improvements and we shall discuss some of them in the following.

We begin by reiterating the fact that we would like to have an automatic way to choose the value of the tuning parameter , more so as we have seen in this section that the convergence of the algorithm may depend on it.

We would also like to incorporate the automatic estimation of the hyper-parameters in the deconvolution-interpolation application. We can see in appendix E that the hyperparameters appear in the expression of the update rule. There is a high likelihood that they also play a role in the convergence of the algorithm thus rendering the choice of their values an important aspect. Solutions for the automatic estimation of the hyper-parameters in image deconvolution problems have already been proposed, see for example the work by [Giovannelli, 2008, Orieux et al., 2010, Orieux et al., 2012, Gilavert et al., 2015].

We reckon it would be interesting to compare the results of the image deconvolutioninterpolation application obtained using the CloneMCMC algorithm with the results one would obtain using for example the IFP/PO algorithm or the RJPO algorithm. For now we have only focused on the Hogwild algorithm due to its similarity with the CloneMCMC algorithm. Such a comparison would allow us to better position our algorithm with respect to other existing algorithms.

CHAPTER 5 Conclusion and perspectives

We have proposed a new sampling algorithm for efficient sampling of high-dimensional Gaussian distributions. In developing the algorithm we exploited recent results which establish a connection between a class of iterative solvers for systems of linear equations and iterative sampling algorithms.

The connection enables us to look at some sampling algorithms as stochastic versions of linear solvers. More importantly, the connection ties together the convergence of the sampling algorithms to the convergence of the linear solvers. A direct implication is that one can resort to existing results for the convergence of the linear solvers to prove the convergence of the sampling algorithms.

The proposed sampler targets an approximate Gaussian distribution having the correct mean and an approximate covariance matrix. We are able to control the discrepancy between the approximate distribution and the target distribution by means of a single scalar parameter denoted . A small value of implies a coarse approximation whereas a large value implies a fine approximation at the cost of drawing more correlated samples. We presented a sufficient condition for the convergence of the proposed sampler, namely the precision matrix to be diagonally dominant.

The numerical analysis of the estimation error allowed us to clearly see the influence of the tuning parameter on the estimation error. The optimal value for lies at the point where the approximation error gives way to the correlation between samples in becoming the dominant factor in the estimation error.

The comparison of the proposed sampler with the Gibbs and Hogwild algorithms on a moderately sized target distribution allowed us to see that usually there exists a region of values where our method achieves the best results. The Hogwild algorithm outperforms our algorithm when the covariance matrix is close to being diagonal.

The cost per iteration of the proposed sampler is a function of the number of processing units available, ranging from a quadratic cost when we have a single processing unit to a linear cost when we have as many processing units as components in the random variable.

We proved the usefulness of the proposed sampler on a large scale Bayesian image deconvolution-interpolation application. The algorithm was used to sample the posterior distribution for the true unobserved image. The reconstructed image was then computed as the posterior mean. A slight reformulation of the update rule of the proposed sampler was needed in order to reduce the memory overhead. The reformulated update rule allows for an efficient implementation by means of rather elementary operations.

The results that we obtained were satisfactory when compared to a reference image obtained by numerically maximising the posterior distribution. We saw that the tuning parameter had more of an influence on the convergence speed of the algorithm than on the obtained results. We further saw that the tuning parameter also had an influence on the convergence itself of the proposed algorithm. The algorithm diverged for values smaller to 0.075. Although we were not able to verify, it is more likely that the precision matrix is not diagonally dominant. For the same image deconvolution-interpolation application the Hogwild algorithm failed to converge altogether.

We consider the proposed sampler to be a viable solution to the problem of efficiently sampling high-dimensional Gaussian distributions. However, we admit that there are aspects which could be improved as we highlight in the following. Furthermore, we also discuss some extensions to the algorithm which could further strengthen its appeal.

Arguably the most important aspect that needs further clarification is how to choose the value of the tuning parameter . We would like to have concrete guidelines on how to choose its value such that first and foremost the algorithm converges and second we obtain the best possible results for a given computational budget. We do note that if the precision matrix of the target distribution is diagonally dominant then the first requirement is fulfilled irrespective of the value of .

We would like to explore if it is possible to speed up the convergence of the proposed sampler. We imagine using an approach similar to that used by [Fox andParker, 2014, Fox andParker, 2017] for the acceleration of the Gibbs sampler. The approach makes use of existing results for accelerating the convergence of linear solvers and it is enabled by the established connection between iterative solvers and stochastic iterates.

We would also like to compare the results for the image deconvolution-interpolation application with the results one would obtain using the IFP/PO algorithm or the RJ-PO algorithm. Such a comparison would give us an insight on how our algorithm stands up with respect to more competing algorithms.

Another aspect that we would like to analyse is whether a different choice of a blurring filter would still allow for a fast computation of the elements on the diagonal of the precision matrix. If the time required to compute the diagonal elements is of an order of magnitude significantly greater than the time required to compute one sample, the algorithm may loose its attractiveness.

A first and interesting extension of the proposed algorithm would be to consider it as a proposal distribution in a MH type algorithm. The immediate interest of such an approach is that the resulting algorithm would target the correct distribution. Moreover, the tuning parameter could also act as a tuning parameter of the resulting algorithm: on the one hand, a small value of should ensure a good exploration of the probabilistic space at the

Appendices APPENDIX A The conditional and marginal distribution of a stochastic iterate

Let us consider the following general stochastic iterative model

with ∈ ℝ and , , ∈ ℝ × . Furthermore, we have 0 ∼  0 , 0 and independent of 0 for all > 0.

A.1 The conditional distribution

We are now interested in determining the expression of the mean vector and covariance matrix of the conditional distribution of the iterate given the previous iterate -1 .

First, we look at the expected value

| -1 . We have

from which it immediately follows that

We now look at the covariance matrix | -1 . From the definition of the covariance matrix we have:

Let us first compute the term inside the parentheses:

APPENDIX B Joint Clone MCMC distribution

In the following we show that the two marginal distributions of the joint distribution from equation (3.30) have the same expression as the stationary distribution of the proposed sampling algorithm.

We know that for a Gaussian 2-block partitioned random variable ∼  , , where

, the marginal distribution for each block is still Gaussian [Rue and Held, 2005, p. 21].

Moreover, the parameters of the marginal distributions are readily available:

APPENDIX C Hogwild and Clone MCMC comparison

We detail here some of the computations related to the comparison between the Hogwild algorithm and the Clone MCMC algorithm. Section C.1 details our try to express the Clone MCMC estimation error as a function of the Hogwild estimation error. Section C.2 details the intermediate computations for obtaining the expressions of the KL divergence for the two algorithms. Finally, section C.3 details the intermediary steps in computing the approximate distribution for Hogwild and Clone MCMC algorithms in the case of a bivariate target Gaussian distribution.

= lim

Let us now analyse the covariances. We have:

Although at a first glimpse the two covariances might seem to differ, in fact they are equal as the following computations show it:

Let us now take the limit:

which clearly shows that lim →∞ = .

APPENDIX D Parallel matrix-matrix and matrix-vector multiplication

This discussion on parallel matrix-matrix and matrix-vector multiplication is based on the analysis of parallel matrix multiplication presented in [Golub and Van Loan, 2013]. It is intended to act just as a quick introduction to some of the aspects related to parallel computations. We tried to keep the notation employed as close as possible to the notation employed in [Golub and Van Loan, 2013].

When evaluating algorithms a very important aspect is their associated cost. There are several ways of assessing the cost of an algorithm. We consider flop counting as the metric used to evaluate the cost of an algorithm. We refer to the following definition for a flop given by [Golub and Van Loan, 2013]: A flop is a floating point add, subtract, multiply, or divide. When comparing algorithms it is very common to compare them with respect to the order of growth of the associated cost. The big  notation is commonly employed to express the order of growth of an algorithm. We use the following definition given in [Levitin, 2012] for the big  notation: Definition 1. A function ( ) is said to be in ( ( )), denoted ( ) ∈ ( ( )), if ( ) is bounded above by some constant multiple of ( ) for all large , i.e., if there exist some positive constant and some nonnegative integer 0 such that

D.1 Parallel matrix-matrix multiplication

Let ∈ ℝ × and ∈ ℝ × be two dense matrices. The interest is how to compute the matrix-matrix product = , with ∈ ℝ × , in an efficient manner knowing that we dispose of processing units. We make the assumption that each processing unit has its own local memory and executes its own local program as in [Golub and Van Loan, 2013].

In the following we will actually consider how to compute the matrix update operation

This latter model is a generalisation of the original model and caters for more general use cases. To obtain the original model it suffices to set the initial value of the matrix to zero. The cost associated with this model is:

, and = 1 . The vector update operation partitions nicely into tasks of the form Task(

where the cost associated with each task is:

The load sharing strategy is seen as a special case of the load sharing strategy used in the case of the parallel matrix-matrix multiplication problem. We consider = 1 which results in =

. The processing unit ( ) is assigned the computation of the blocks with = ∶ ∶ . In the ideal case, i.e.

= , each processing unit has = blocks to compute. In a realistic case with = + , 0 ≤ < , the number of blocks a processing unit has to compute varies from a maximum of ,max = + 1 to a minimum of ,min = . The number of operations per processing unit in the worst case scenario equals ( + 1) 2 1 1 -1 ( -1) . Expressing the cost using the big  notation yields 

APPENDIX E Influence of the hyper-parameters

The likelihood function and the prior distribution for the image deconvolution-interpolation application from chapter 4 introduced three parameters: models the noise level in the observed image, 0 and control the degree of regularisation.

Let us now analyse how the three parameters influence the posterior distribution. We shall first look at the influence they have on the mean of the distribution. Let us recall the expression of the mean:

.

Let 0 = 0 ∕ and = ∕ , we then have:

.

As it can be easily observed the mean of the posterior distribution depends on the ratios 0 = 0 ∕ and = ∕ and not necessarily on the individual parameters.

Let us now turn our attention to the covariance matrix. We have

.

Unlike the mean, the covariance matrix depends on the parameters individually and not on their ratio.

If we look at equation (4.9) and, more specifically, at equation (4.10) we see that the three parameters also have an influence on the update rule of the Clone MCMC algorithm. Let us now thus look at how the three parameters influence the iterative process itself. From equations (4.9) and (4.10) together with 0 = 0 ∕ and = ∕ we have:

, ∼  ( , ). We have

.

The three parameters intervene in the expression of the matrix as well. Let us explicit the influence with respect to . We have previously defined the matrix in terms of the matrix containing the elements on the diagonal of the precision matrix

| . We seek now to define it in terms of the matrix = diag(diag( | )) containing the elements on the diagonal of the matrix | . We note that = from which it immediately follows that = + 2 . We then have

.

Let us further denote = + 2 from which it immediately follows that = . We finally have:

.

Unfortunately the dependency of the update rule on 0 , and is not obvious. We first have the matrix | which depends on the ratios 0 = 0 ∕ and = ∕ . We then have the matrix which depends both on the two ratios 0 and , and on the ratio 2 ∕ . Finally we have the stochastic component which is multiplied with the matrix and with the inverse square root of .

APPENDIX F Computing the mean and posterior covariances using the steepest descent algorithm

In the following we detail how to compute the mean and sets of variances and covariances of the posterior distribution for the image deconvolution-interpolation application in chapter 4 using the steepest descent algorithm.

Throughout chapter 4 we mentioned using the steepest ascent algorithm to compute the maximiser of the posterior distribution. The difference is terminology is explained by the different point of view that we employ in this appendix: here we look at minimising the quadratic criterion inside the expression of the posterior distribution. As a matter of fact minimising the said quadratic criterion is equivalent to maximising the posterior distribution.

We first recall the steepest descent algorithm. Let us consider the following quadratic equation:

with , ∈ ℝ and ∈ ℝ × a symmetric positive-definite matrix. The gradient of the quadratic equation

The steepest descent algorithm is an iterative algorithm for finding the minimizer MAP of the quadratic equation (F.1). It starts from an initial estimate of the minimizer, denoted hereafter by ̂ 0 , which gets updated at each iteration such that it gets closer and closer to the solution. Algorithm F.1 details the steps of the algorithm.

We resort to the steepest descent algorithm to compute the posterior mean and variances/covariances since in practice we cannot use equations (4.3) and (4.4) to compute them as that would involve computing the inverse of the high-dimensional precision matrix. The mean and variances/covariances computed using this approach then serve as references for evaluating the results obtained using the Clone MCMC algorithm.

Algorithm F.1 Steepest descent algorithm

Initialize ̂ 0 for = 1, 2, … , until convergence do

end for

We first show how to compute the posterior mean | using the steepest descent algorithm. Let us reconsider the expression of the posterior distribution:

-2 .

(F.6)

The term inside the exponential in the expression of the posterior distribution from equation (F.6) is a quadratic equation in similar to (F.1) except that the constant term has been omitted. Its minimiser, which we denote MAP , is also the posterior mean | . We identify = + 0 + , = -2 .

It remains now just to plug in these two expressions in the equation of the gradient in (F.3) and then to run algorithm F.1. Computing the gradient involves the same type of operations as for computing the product | -1 or computing the elements on the diagonal of the precision matrix and as such does not pose any problems.

We now look at how to compute the variance and covariances for a given pixel using the steepest descent algorithm. Let denote the vector containing the variance and covariances corresponding to the pixel . We have:

We can express the above equation as a linear equation in the precision matrix | :

Unlike the case for computing the mean vector, when computing the variance and covariances for a given pixel there is no obvious quadratic equation to minimize for which is the minimizer. However, there exists such an equation and most importantly we do not necessarily need to know it.

Let us reconsider the expression of the gradient in (F.2) for the quadratic equation in (F.1). The direct way to compute the minimizer is to set the gradient to zero and solve the resulting system. Setting the gradient to zero yields ∇ ( ) = ⇔ 2 + = ⇔ = -1 2 . (F.8) Equation (F.8) shows us that computing the minimizer of a quadratic equation involving a symmetric positive-definite matrix is equivalent to solving a system of linear equations in the minimizer. Thus we can conclude that for the system of linear equations in equation (F.7) there exists a quadratic equation which has as minimizer the solution to the system of linear equations.

We compare equation (F.7) with equation (F.8) and we identify the expression of the matrix and of the vector . We have:

We then plug those expression in algorithm F.1 which will then yield the variance and covariances corresponding to the pixel .

We run the steepest descent algorithm for a finite number of iterations in either of the two cases. Consequently, the results that we obtain are not the exact mean vector or the exact variance and covariances. Nonetheless, they are a good approximation of the true quantities and we shall consider them as ground truth when we evaluate the results obtained using the Clone MCMC algorithm.