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Introduction

The discovery of the superconducting behavior of mercury at low temperature in 1911
by Kamerlingh Onnes [1] forerunned the rise of a new field of research in physics aiming
at understanding the emerging properties of quantum many-body systems. It was among
the first of a continuously growing list of materials to exhibit unexpected and puzzling
properties at low temperature due to strong quantum correlations between the constituent
particles. Other paradigmatic examples include the superfluid phase of liquid 4He dis-
covered in 1938 [2, 3] and the fractional quantum Hall effect first observed in 1982 [4, 5].
The deep understanding of these systems is generally strongly hindered by the absence
of generic theoretical or numerical methods to solve the associated quantum many-body
problems and hence requires considerable inputs from the experimental side. Indeed, it
took almost 50 years to figure out what was the underlying mechanism allowing for super-
conductivity and provide a model that could explain quantitatively its features. However,
this so-called “conventional” theory proposed by Bardeen, Cooper, and Schrieffer (BCS)
in 1957 [6] was later proved unable to explain the properties of a new class of super-
conductors discovered in 1985 [7] that exhibited anomalous high critical temperatures, a
mystery that remains to this day.

In parallel with these discoveries in condensed matter, progress were made in the
study of light-matter interaction and the development of laser technologies, following the
path of the seminal works of Kastler and Brossel on optical pumping in the 1950’s [8]. It
then became possible in the 1980s to cool and trap atomic vapors down to low tempera-
tures using the radiation pressure of laser beams and designed magnetic fields [9]. This
eventually led to the experimental breakthroughs of the production of Bose-Einstein con-
densates (BEC) with alkali atoms in 1995 [10, 11] followed by degenerate Fermi gases in
1999 [12]. Since then, ultracold gases have emerged as a versatile platform for studying
quantum phases of matter [13]. Indeed, such systems offer an unprecedented degree of
control of various parameters essential for their study. Among them, a first important
feature is the possibility to create trapping potentials of various shapes for the atoms: har-
monic, box-like, periodic or disordered potentials. Second, the interatomic interactions
are short-ranged and can be characterized by a single parameter at low temperature, the
s-wave scattering length which is almost freely tunable by means of the Feshbach res-
onances. Finally, the atoms can be coupled to artificial gauge fields that can mimic the
effect of a magnetic field on electrons. With these tools, one can realize a quantum system
that has all the essential ingredients to be strongly correlated and exhibits the emergent
properties observed in condensed matter, predicted for some exotic systems such as neu-
trons stars [14, 15] and quark-gluon plasmas [16, 17], or yet to be discovered.
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Many-body physics with cold atoms
Up to now, several classes of many-body systems have been realized and investigated us-
ing cold atoms. One major trend is the study of atoms in periodic potentials mimicking
the ion-crystal lattice structure of solid materials experienced by electrons. This allows
in particular for the exploration of the rich physics of the so-called Hubbard model [18].
One important feature is the existence of the Mott insulating phase when the on-site re-
pulsive interactions are sufficiently strong [19]. This was observed for both fermionic
and bosonic species [20, 21, 22]. For the latter case, a quantum phase transition to a su-
perfluid state when varying the interaction strength was also demonstrated [20]. Many
recent experiments have now access to the single atom resolution and can explore fur-
ther the phase diagram of such systems [23, 24, 25, 26, 27, 28]. Important goals are
the observation of antiferromagnetic phase and the elusive d-wave superfluid phase that
should be present in the phase diagram of the repulsive 2D Fermi Hubbard model [29] or
the realization of topological superfluids by implementing spin-orbit coupling or artificial
gauge-fields [30, 31, 32, 33].

Another direction, is the investigation of the bulk properties of homogeneous strongly
correlated gases. Here, interactions between atoms are tuned by the means of Feshbach
resonances. For an ultracold two-component Fermi gas, one can explore the so-called
BEC-BCS crossover [34], where by changing the interactions from weakly to strongly
attractive, the system smoothly interpolates between a superfluid of Cooper pairs to a
Bose-Einstein condensate of tightly-bound molecules. In between, for infinite scattering
lengths, the gas enters the unitary regime, which is a paradigmatic example of strongly
correlated system with fascinating properties such as scale invariance and a high critical
temperature for superfluidity. The strongly interacting Bose gas is also of high interest
as it could bridge the gap between ultracold vapors and superfluid liquid 4He. However,
the lifetime of the gas is strongly reduced due the enhancement of inelastic losses close to
resonance [35, 36, 37]. It results from few-body exotic physics, namely the Efimov effect,
which states the existence of a infinite log-periodic set of three-body bound states [38].
Hence the open question of the stability and the nature of the degenerate unitary Bose
gas. The recent realization of homogeneous Bose [39] and Fermi gases [40] has opened
up new routes to study these correlated gases and might enable the observation of exotic
phases such as the long predicted FFLO phase [41, 42].

In 2014, during my first year of PhD, our group demonstrated the first realization of
a mixture of Bose and Fermi superfluids using ultracold vapors of 7Li and 6Li. In the
following years, we have investigated various aspects of the mixture focusing mainly on
its superfluid properties and its stability with respect to inelastic decay. Before going
to the outline of this thesis, I give a short overview of those two compelling topics that
illustrates the richness of quantum few-body and many-body physics.

Probing superfluidity with cold atoms
One of the remarkable properties a quantum many-body system can exhibit at low temper-
ature is superfluidity. Abstractly speaking, it arises for interacting systems for which the
associated density matrix operator exhibits off-diagonal long range or quasi long-range
order, meaning that the system possesses a phase coherence over macroscopic distances.
This is the case for Bose-Einstein condensates, as it was revealed by matter-wave inter-
ference experiments [43, 44, 45], but also for two-dimensional (2D) systems, where as
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initially predicted by Beresinkii, Kosterlitz, and Thouless (BKT) [46, 47], a transition to
a superfluid phase with quasi long-range order exists despite the impossibility of con-
densation at finite temperature in 2D. The BKT transition was indeed demonstrated for
both interacting 2D Bose and Fermi gases [48, 49]. The phase coherence (and hence the
superfluidity) can be mitigated by a deep optical lattice or a disordered potential leading
respectively to a Mott insulator [20] and Anderson localization [50, 51].

Superfluidity manifests through a collection of spectacular effects mainly related to
flow properties of the system. Probably the most defining one is the existence of a super-
fluid fraction (equal to the fluid density at zero temperature) that is not put into motion
by shearing force using a moving external potential. Indeed, in the spirit of the Hess and
Fairbank experiment performed with superfluid liquid helium [52], a strongly interacting
Fermi gas was shown to remain at rest in a slowly rotating container [53]. Moreover, quan-
tization of the circulation in the superfluid implies that for increasing rotation frequencies,
angular momentum will only be transferred to the system by the nucleation of quantized
vortices, which will form a regular hexagonal Abrikosov lattice due to their mutual repul-
sion [54]. Vortex lattices were observed for Bose gases [55, 56, 57] and two-component
Fermi gases in the BEC-BCS crossover [58, 59], demonstrating unambiguously the su-
perfluidity of the strongly interacting Fermi gas at low temperature.

The absence of shear viscosity also allows for persistent currents. Experiments done
with a rotating BEC in a ring trap indeed showed that metastable currents could last for
more than one minute only limited by the lifetime of the sample [60, 61]. As shown
by Landau [62], the frictionless nature of the flow stems from the existence of a critical
velocity below which a moving impurity cannot deposit energy in the superfluid. The
observation of such a critical velocity was reported for Bose gases both in 3D [63, 64] and
2D [65] and for the interacting Fermi gas in the BEC-BCS crossover [66, 67].

Finally, another hallmark of superfluidity is the existence of a second sound, an en-
tropy wave in which the superfluid and the non-superfluid components oscillate with op-
posite phases. The second sound was directly observed in a unitary Fermi gas [68]. The
measurement of its speed allowed for the extraction of the superfluid fraction as a function
of temperature providing another benchmark for many-body theories.

Cold atom setups offer the unique possibility to prepare ultracold mixtures of different
atomic species or atoms in different internal states that can exhibit simultaneous super-
fluidity. An interesting prospect is then to investigate how the features mentioned above
generalize to such superfluid mixtures and what kind of dynamics are possible. First in-
vestigations on the dynamics of Bose-Bose superfluid mixtures showed strong non-linear
and dissipative effects such as the generation of dark-bright train solitons due to a weak
miscibility of the two components [69, 70]. The dynamics is expected to be even richer
for spinor condensates which exhibit a vectorial order parameter [71, 72, 61].

Inelastic losses in cold atoms
A very specific feature of cold atom systems is that they are actually metastable and are
subject to inelastic losses that can strongly limit their lifetime. This originates from the
formation of deeply-bound molecules during the collisions of three bodies or more. As
such, a natural approach to estimate the inelastic loss rate is to solve the associated quan-
tum few-body problem. For three identical bosons, the existence of an Efimov scattering
channel, leads to enhanced inelastic losses when going toward resonant s-wave interac-
tions as mentioned before. This property was actually used to reveal the existence of the
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Figure 1: Sketch of the two experiments performed using our mixture of Bose and Fermi
superfluids (shown as a small and large ellipsoid respectively) and presented in this thesis.
Left figure: Counterflow experiment, where an oscillatory relative motion is created by
exciting the dipole modes of both clouds. Right figure: Measurement of the three-body
recombination in a strongly correlated system. Each inelastic collision leads to the loss of
three particles due to the large released binding energy.

elusive Efimov trimers by the observation of resonant loss peaks associated to their merg-
ing with the three-body scattering continuum [73, 74, 75, 76]. In contrast, equal-mass two
component Fermi gas were shown to be extremely stable close to resonance due to Pauli
repulsion [77, 78, 79, 80]. For mixture of different atomic species, the few-body prob-
lem exhibits even more richer features, in particular the Efimov effect is also predicted to
occur for fermionic systems in presence of light impurities [81, 82, 83].

However, in a many-body ensemble, inelastic collisions are affected by correlations
with surrounding particles and hence cannot be conveniently described using a few-body
framework. A striking example is the reduction of the inelastic losses at the condensa-
tion threshold for a Bose gas as predicted in [84]. When the gas is fully condensed the
reduction amount to a factor 3! due to a complete indiscernability of the colliding bosons
as demonstrated in [44]. In a strongly interacting gas, the correlations between atoms be-
come highly non trivial and understanding the behavior of inelastic losses is a compelling
problem connected to many-body physics. Indeed, recent experiments done on the uni-
tary Bose gas have observed unusual fractionnal scalings in density for the inelastic loss
rate [37, 85].

Outline of the thesis
In this thesis, I will present some of the results we obtained with our 6Li-7Li mixture
as well as studies done in parallel to these works that enrich our understanding and give
perspective to the phenomena investigated experimentally. In a first part (chapter 3 and
4), I address mainly the topics of energy exchange and mechanisms of dissipation in a
counterflow of superfluids. In a second part, I consider the problem of inelastic losses in
a strongly correlated gas (chapter 6, 7 and 8).

• The first chapter is dedicated to a presentation of the basic notions and properties of
interacting cold gases. We start by discussing the two body problem, to introduce
the scattering length, the zero-range model and the Feshbach resonances. We then
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review the three-body problem and the Efimov physics, which will be useful for
chapter 5 and 6. Finally, we presents some known results on the thermodynamics
of interacting Bose and Fermi gases, which will be used multiple times throughout
this work.

• The second chapter presents the experimental setup that we use to produce our dual
Bose-Fermi superfluid. We describe the different steps to achieve double degener-
acy using the two lithium isotopes 7Li and 6Li. The final trap consists in a harmonic
cigar-shaped trap where the small BEC of 7Li is immersed in the Fermi superfluid of
6Li, see Fig. 1. An adjustable bias magnetic field allows us to tune the interactions
between the fermions and to explore the BEC-BCS crossover.

• The third chapter describes a superfluid counterflow experiment. The dynamics
is initiated by exciting the dipole modes of the two clouds and letting the system
evolve, as depicted in the left panel of Fig. 1. In a first part, we describe the dynam-
ics at low relative speed, where the motion is long-lived and shows at most weak
dissipation. We observe a coherent energy exchange between the two superfluids
that can be captured theoretically using a sum rule approach and interpreted in terms
of coupled oscillators. In a second part, we investigate the dynamics for faster rel-
ative motion and identify a threshold for dissipation. We measure the associated
critical velocity in the BEC-BCS crossover. The extracted values are surprisingly
high and close to theoretical predictions derived for ideal systems [86].

• The fourth chapter presents the results of a numerical simulation of two counter-
flowing BECs that we have performed to get a better understanding of the counter-
flow experiment results. We investigate the dynamics for various relative velocities
and coupling between the condensates. For low relative velocity , the motion of the
clouds is accurately described by the same sum rule model used for the experimen-
tal data. For larger relative velocity, we identify two mechanisms of dissipation.
One of them corresponds to the simultaneous generation of elementary excitations
and exhibits a well defined activation threshold despite the oscillatory motion.

• Chapter 5 is a short review on universal contact relations that relates various observ-
ables of a many-body system to two key quantities, the two-body contact parameter
(also known as Tan’s contact) and three-body contact parameter that describe short-
range correlations in the system.

• Chapter 6 introduces the physics of three-body recombination and provides a the-
oretical framework to predict the loss rate in various regime and in particular for
strong interactions. We show that the loss rate can be expressed in terms of the
contact parameters that can themselves be computed using the equation of state of
the gas.

• Chapter 7 describes two studies of the inelastic losses in the dilute unitary Bose
gas. In a first part, we present a model taking into account both three-body re-
combination and evaporation to describe the atom losses and temperature dynamics
in a dilute unitary Bose gas. It allows us to do a quantitative measurement of the
three-body loss rate and the method is applied to results obtained by our team (with
7Li) and Chen Chin’s group at Chicago (with 133Cs). It demonstrates the universal
behavior of the dynamics and confirm the 1/T 2 scaling of the loss rate measured
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in [36], where T is the sample temperature. In a second part, we study theoretically
the effect of three-body losses and interactions on the momentum distribution of a
homogeneous unitary Bose gas in the dilute limit. We compare it to the results at
JILA on a gas of 85Rb [37].

• Chapter 8 presents present a study of three-body recombination in our ultracold
Bose-Fermi mixture, see right panel of Fig. 1. Using the framework introduced in
chapter 6, we expect the decay rate to be proportional to the Tan’s contact of the
Fermi gas. We probe the recombination rate in both the thermal and dual superfluid
regimes. When the interactions between fermions become resonant, we show that
the loss rate is proportional to n4/3

f , where nf is the fermionic density. This unusual
exponent signals non trivial two-body correlations in the system.



Chapter 1

From few to many

The versatility of ultracold atomic ensembles to study quantum many-body physics mainly
lies in the simplicity and large tunability of the interactions between atoms. In this chapter,
we review central concepts used to describe interactions and correlations in cold atomic
systems. First, we start with the cornerstone of any interacting model, the two body-
problem. Then we describe the rich physics that emerges when a third particle is added.
Finally, we provide known results on the thermodynamical properties of interacting Bose
and Fermi gas. These different properties and theoretical tools will prove useful to un-
derstand the physics of inelastic losses in strongly correlated systems or the dynamics of
counterflowing superfluids that will interest us in the following chapters.

1.1 Two-body problem

The starting point for any interacting many-body theory is the modeling of interactions be-
tween the particles. In this section, we will describe the dominant interaction mechanisms
for lithium atoms. They can be simplified to a more practical interacting “potential”, the
pseudo-potential which is parametrized by a single parameter, the scattering length. Fi-
nally, we will see, that this scattering length can be tuned to any arbitrary value by the
means of Feshbach resonances.

1.1.1 Interacting potential

As for others alkali atoms, two lithium atoms will mainly interact via an isotropic van der
Waals interaction coming from their induced dipole. This gives the well-known −C6/r

6

attraction law at long distances. The range of this interaction is given by the van der Waals
length

lvdw =
1

2

(
mC6

~2

)1/4

, (1.1)

which is of the order of a few nanometers for alkali atoms.
On the contrary, at short distances, typically the atomic scale, atoms will experience a
strong electron-exchange repulsive barrier [87]. As a result of the large range difference
between the two contributions, the combined interaction potential, as sketched in Fig. 1.1,
supports many vibrational bound-states (generally a few tens). Their binding energy can

13
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Figure 1.1: Schematic representation of a Van der Waals potential with associated bound
states energies (red-dashed line).

be order of several hundred Kelvins and their typical size denotedR∗ is smaller than lvdw
1.

The presence of bound states allows for inelastic collisions when three atoms are within
a distance R∗. We will discuss this process in more details in chapter 6.

In dilute gases where lvdw � n−1/3, with n the atomic density, we can expect that
both inelastic collisions and elastic collisions should be rare events. We will see that the
wave-like nature of atoms at low temperature can actually strongly enhance interactions
but also potentially increase the deeply-bound molecule formation rate.

1.1.2 Scattering theory
The next step is to investigate how two atoms scatter2. In the center of mass frame, for
two atoms of mass m, the following Schrödinger equation has to be considered[

−~2

m
∆r + V (r)

]
Ψ(r) = EΨ(r) , (1.2)

where V is the interacting potential.
For negative energies E < 0, we should recover the bound states mentioned in the pre-
vious section. For E > 0, solutions are scattering states that we can search with the
asymptotic form

Ψ(r) '
r→∞

eik .r + fk(n)
eikr

r
, (1.3)

where n = r/r and fk is the scattering amplitude.
The scattering states can be expanded onto the basis of partial spherical waves indexed by
l the associated angular momentum quantum number. A centrifugal barrier term of order
l2~2/ml2vdw & mK strongly suppress partial waves with l > 0 at low temperature and the
scattering is thus purely s-wave. Hence, in the low-energy limit, the scattering amplitude
is isotropic and takes the form

fk(n) '
k→0

−1
1
a

+ ik − rek2
, (1.4)

1The shallowest bound state can however have drastically different binding energy and size as we will
see in the following sections.

2An in-depth description of scattering theory for cold-atom systems can be found in [88].
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where a is the (s-wave) scattering length and re the effective range. Both parameters
depend on the precise shape of the interacting potential. In the limit rek � 1, only the
knowledge of a single quantity, a, is needed to describe the scattering. Thus we can use a
simplified interaction potential provided that it gives the same scattering length.
The differential scattering cross-section can be readily computed 3,4

dσ

dΩ
= |fk(n)|2 '

k→0
a2 . (1.5)

Consequently, atoms can be seen as having an effective size of order a and the regime of
strong interactions is achieved whenever na3 & 1. As we will see later in some “reso-
nant” situations a can be orders of magnitude larger than lvdw leading to the possibility of
strong interactions in a dilute system, where n−1/3 � lvdw.
In the following we will investigate the behavior of the scattering length a in two impor-
tant examples.

A Van der Waals potential

A simple way to describe the hard-core repulsion and the Van der Waals attraction at large
distances is given by the following potential:

V (r) =

{
−C6/r

6 if r > b

∞ if r ≤ b
(1.6)

where b is the size of the hard-core potential. For this simple model we have the exact
expression for the scattering length [87]

a = ā [1− tan(Φ− 3π/8)] , (1.7)

where ā = 0.956lvdw and

Φ =

∫ ∞
rc

dr
√
m|V (r)|/~ = 2l2vdw/b

2 . (1.8)

Hence, we see that a should have the same order of magnitude as lvdw but can be enhanced
(or diminished) to extremely large (low) values via the tangent term in eq. (1.7), where
the short-range part of the interaction comes into play.
The effective range is given by [89]

re = 2.92ā

(
1− 2

ā

a
+ 2

( ā
a

)2
)
. (1.9)

Here again, the magnitude of the effective range is essentially given by lvdw. However, we
can notice that the effective range re will diverge whenever the scattering length a→ 0.

3For indistinguishable particles, the (anti-)symmetrisation of the wave function imposes dσ = |fk(n) +
εfk(−n)|2dΩ with ε = 1 for identical bosons and ε = −1 for identical fermions. It leads to the famous
result that identical fermions do not interact via a s-wave channel, dσ = 0.

4For a→∞, σ will reach its maximal value 4π/k2 (8π/k2 for identical bosons).
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A box potential

The divergence of the scattering length is associated to the apparition of new bound state
pulled in from the continuum. This can be readily seen with the example of an attractive
box potential of size b:

V (r) =

{
0 if r > b

−v ~2

mb2

(
π
2

)2 if r ≤ b
(1.10)

This potential supports a bound state whenever v > 1 and a new bound state appears for
v = vk = (1 + 2k)2, k ∈ N. Away from those discrete values, the binding energies are
of the order ∼ −~2/mb2 and the dimers extent are proportional to the box potential size
∼ b, see Fig. 1.2. These bound-states can be used to model the deeply bound dimers of
alkali atoms, by taking b = R∗.
By computing the low energy scattering state k → 0 which has the asymptotic form
1− a/r at large distance r, we can compute the scattering length a, it reads

a = b(1− 2

π
√
v

tan(
π

2

√
v)) , (1.11)

which shows a periodic resonant enhancement each time a new bound state appears. In
this case, it can be shown that the newly appeared bound state has a size which diverges
as

〈r〉 ∼
v→v+

k

a/2 , (1.12)

see Fig. 1.2, and the binding energy

Eb ∼
v→v+

k

−~2/ma2 . (1.13)

In the zero-range limit, a/b → ∞, the weakly-bound dimer wave function simplifies to
the simple expression

Ψ(r) =
e−r/a

r
√

2πa
. (1.14)

The properties of the weakly bound state along with the associated divergence of the
scattering length are universal. It will occur for any potential provided that it decreases
sufficiently fast (and applies in particular to the potential mentioned in the previous sec-
tion).

1.1.3 Pseudo-potential

The zero-range limit of (almost) any two-body problem will converge toward the same
universal limit5. This universal limit can be described exactly using a simple model, the
pseudo-potential. It is defined as

− ~2

m
∆rΨ(r) = EΨ(r) . (1.15)

5If the two-body potential vanishes fast enough.
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Figure 1.2: Bound-state wavefunctions for different trap depths v of a box potential. Red
curve: Weakly bound state, v = 1.1, a ' 8.90 b. Blue-dashed curve: Deeply bound state:
v = 3, a = 1.16 b. Green-dot-dashed curve: Weakly bound state in the zero-range limit
with a = 8.90 b.

for r 6= 0.
In addition, the relative wavefunction should have the following behavior at short dis-
tances

Ψ(r) '
r→0

A

(
1

r
− 1

a

)
. (1.16)

The pseudo-potential is thus a zero-range potential and its effect is solely contained in the
Bethe-Peierls boundary condition (1.16).
In momentum space, it leads to the high-momentum behavior

Ψ(k) ∼
k→∞

1

k2
. (1.17)

The scattering amplitude is

fk =
−1

1
a

+ ik
. (1.18)

Hence we can identify a as the usual scattering length and the effective range is re = 0.
For positive a, there is a halo-dimer with energy Eb = − ~2

ma2 and wavefunction

Ψ(r) =
e−r/a

r
√

2πa
. (1.19)

1.1.4 Feshbach resonance
Along their simple description in terms of a single quantity, the scattering length a, an-
other feature of the interactions in many cold-atom systems is their large tunability by
the use of the so-called Feshbach resonance. It allows one to increase the scattering
length to values far beyond the interparticle spacing and hence to reach strongly interact-
ing regimes. An extended description of the physics behind Feshbach resonances can be
found in [90, 88]. Here, we will restrict ourselves to a fairly short but synthetic description
of its mechanism and give its important properties.
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Figure 1.3: Schematic representation of two coupled channels that can give rise to a
(magnetic) Feshbach resonance. The energy difference between the continuum threshold
of the open channel and the bound-state of the open-channel, δ, can be tuned using a
magnetic field thanks to the different magnetic moments of the two channels. As δ goes
to 0, the bound-state becomes resonantly coupled to the open-channel diffusive states and
lead to a divergence of the scattering length.

To begin with, we have to consider at least two interacting potentials through which
the two atoms can scatter. For alkali atoms, those are played by the singlet and triplet
potentials, Vs and Vt respectively. Both potentials have the same Van der Waals tail at
large distance but can strongly differ at short distance. They can be added to form a
(electron) spin dependent potential

V (r) =
1

4
(Vs(r) + 3Vt(r)) + (Vt(r)− Vs(r))

s1.s2

~2
. (1.20)

Another ingredient is the possibility to shift one potential respectively to the other. In
the case of magnetic Feshbach resonances, this is done by applying constant external
magnetic field. The primary effect will be a spin-Zeeman interaction

HZ = γes1.B + γes2.B . (1.21)

Hence, the degeneracy between the triplet states is lifted while the singlet state energy is
not affected. The relative energy between triplet and singlet channels can thus be tuned
by changing the magnetic field. More generally, this will be possible every time the
channels have different magnetic moments. The channel having the lowest energy at
infinite spacing is then called the entrance or open channel, the others are said to be
closed. Indeed, at low temperatures, atoms will only emerge from the entrance channel,
as the others are not energetically accessible (since the energy difference results from
hyperfine and Zeeman contributions & mK).

The last ingredient needed is a coupling between the open and closed channels. It
is actually already present in the case of magnetic Feshbach resonances. Indeed, the
hyperfine interactions (but not only) will lead to electronic eigenstates that are not fully
spin-polarized. The initial incoming state is not a pure triplet and is thereby coupled to
the closed channels.

Then, a Feshbach resonance occurs when the bound molecular state in the closed
channel energetically approaches the scattering state in the open channel, see Fig. 1.3.
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The magnetic resonances can be described using the following expression

a(B) = abg

(
1− ∆B

B −B0

)
, (1.22)

where abg is the background scattering length in the absence of coupling, B0 is the reso-
nance position, and ∆B its width.

The minimal description of a Feshbach resonance relies on a two-channel model and
a natural question to ask is the role of the closed channel on the effective description of
scattering between two atoms. This is characterized by the resonance strength parameter
:

sres '
lvdw

r?
, (1.23)

where r? is an intrinsic length scale that is inversely proportional to the coupling strength
of the resonance [90]. It allows to classify Feshbach resonances into two limiting cases.
For sres � 1, the resonance is open-channel-dominated, the scattering state projection
onto the closed-channel resonant bound state is very small over the full width of the
resonance. Hence, the scattering of atoms can be effectively described by a single chan-
nel model. This type of resonances are also called broad resonances and usually have a
large width ∆B. The effective range re remains small, ∼ lvdw, and interactions can be
accurately described by the universal limit. As an example, for the well-known broad
resonance in 6Li near 832 G, the resonance strength is sres ' 59 and the closed-channel
fraction6∼ 10−4 [90, 91] . The other limiting case, sres � 1, is the closed-channel-
dominated resonance, or narrow resonance. The closed-channel admixture is negligible
only for a fraction of the resonance width. A single channel description of scattering is
generally not possible. Furthermore, strong inelastic collisions occurs as the resonantly
coupled bound state can decay easily to a deeply bound state.

1.2 Three-body problem

The next step toward the study of many-body systems is the three-body problem. Indeed,
novel physics already appears when a third particle is added. With three atoms, an infinite
sequence of universal three-body bound states called Efimov trimers can arise and have
dramatic consequences on the many-body system. Also, the three-body problem is of
great importance when dealing with molecule formation, since the process need at least
three particles close to each other. In this section, we will review mainly the unitary
case (|a| = ∞), where numerous analytical results were obtained. In particular, we will
uncover the Efimov physics which plays a central role in strongly interacting Bose gases.
Extended details on the three body problem can be found in the review [92] and in the
thesis of F. Werner [93].

6In the two-body case we expect the closed-channel fraction to be exactly zero at resonance. The
measured finite value comes from correlations with the many-body ensemble, see the Section 5.
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1.2.1 Setting up the framework

As for the two-body problem, we have to solve a Schrödinger equation which now in-
volves three particles, and can be readily expressed in the center of mass frame[

~2

m
(∆r + ∆ρ) + V (r,ρ)

]
Ψ(r,ρ) = EΨ(r,ρ) , (1.24)

where we have introduced the Jacobi coordinates

r = r2 − r1 (1.25)

ρ =
2√
3

(
r3 −

r1 + r2

2

)
, (1.26)

ri, i ∈ {1, 2, 3} being the three particles coordinates and V is the sum of the three two-
body potentials.

1.2.2 Zero-range model

Now, in the zero-range limit, we can remove the interacting potential whenever r 6= 0 or
±r/2 + (

√
3/2)ρ 6= 0 and use a Bethe-Peierl condition (1.16) for each pair of atoms with

potentially three different scattering lengths.
In the following we will only consider two specific cases that are relevant for the next
chapters:
-Three identical bosons, which implies the particle-exchange condition

P̂ij|Ψ〉 = |Ψ〉, ∀ i, j (1.27)

where P̂ij transpose particles i and j.
-Two spin-up fermions (i = 1 and 3) and a spin-down fermion (i = 2), which imposes
the condition

P̂13|Ψ〉 = −|Ψ〉 . (1.28)

For both cases, due to their exchange symmetry one can only use a single Bethe-Peierl
condition

Ψ(r,ρ) ∼
r→0

(
1

r
− 1

a

)
A(ρ) . (1.29)

1.2.3 Efimov’s ansatz

Let us first discuss the unitary case, |a| = ∞. It is convenient to introduce the hyper-
spherical coordinates (R,Ω). The hyperradius is:

R =

√
r2 + ρ2

2
, (1.30)
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by construction, it will vanish whenever the three particles get close to each others. Ω is
a set of three (hyper)angles Ω = (α, r̂, ρ̂) with7

α = arctan

(
r

ρ

)
(1.31)

r̂ =
r

r
(1.32)

ρ̂ =
ρ

ρ
. (1.33)

With this new set of coordinates, the Schrödinger equation (1.24) can be rewritten as

− ~2

2m
∆RΨ(R,Ω) = EΨ(R,Ω) , (1.34)

where ∆R is the Laplacian operator on the hypersphere

∆R =
1

R2

(
∂2

∂R2
+

1

R

∂

∂R
+

1

R2
TΩ

)
R2 , (1.35)

and TΩ is an operator that contains all the hyperangular dependence of the Laplacian (in
a similar fashion as the angular momentum operator for the usual spherical Laplacian).
In the absence of any length scale (i.e. unitarity with |a| = ∞), the problem is separable
into a hyperangular and a hyperadial problem as shown by Efimov [94]. The three-body
wavefunction can be written as

Ψ(R,Ω) =
F (R)

R2
φ(Ω) , (1.36)

where F and φ are respectively solutions of the hyperradial and hyperangular problems.

1.2.4 Hyperangular problem

The hyperangular problem is an eigenvalue problem with boundary conditions. I.e, φl,m,n
are the eigenfunctions of the hyperangular part of the Laplacian operator:

TΩφl,m,n(Ω) = −s2
l,nφl,m,n(Ω) . (1.37)

The boundary conditions given by the Bethe-Peierl condition eq. (1.29) and by imposing
that Ψ should be finite at ρ = 0 lead to a quantization of sn,l. The eigenvalues are solution
of a transcendental equation [93] and can be indexed by two positive integers l and n,
where l is the quantum number associated to the total relative angular momentum of the
three particles. For the fermionic case, all sn,l are strictly positive. For the bosonic case,
in the l = 0 channel (called Efimov channel), there exists a pure imaginary eigenvalue,
s0,0 ≡ is0 ' i × 1.0062, while all the others are shown to be strictly positive. Values for
the lowest channels are listed in Table 1.1 (coming from [93]). As we will see in the next
section, sl,n pilots the behavior of the three-body wavefunction at short distances.

7In terms of differentials we have d3r1d
3r2d

3r3 = (3/2)3/2d3CR5dRd5Ω and d5Ω =
2sin2(2α)dαd2r̂d2ρ̂.
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Three bosons

l n sl,n

0 0 i · 1.0062

1 4.4653

1 0 2.8639

1 6.4622

Three fermions

l n sl,n

0 0 2.1662

1 5.1273

1 0 1.7727

1 4.3582

Table 1.1: sl,n values in the “lowest” channels for the two discussed systems, taken
from [93].

1.2.5 Hyperradial problem
From equations (1.34, 1.35, 1.37), we see that F is solution of the following equation

− F ′′(R)− 1

R
F ′(R) +

s2
l,n

R2
F (R) =

2mE

~2
F (R) . (1.38)

It can be seen as a Schrödinger equation for a fictitious particle living in two dimensions,
where R is the distance to the origin and s2

l,n/R
2 is an effective isotropic potential. We

thus see that depending on the sign of s2
l,n, the effective potential can be either repulsive

or attractive and supports bound state (called Efimov trimers), see Fig. 1.4.

Universal channels

For sl,n ≥ 0, the three-body problem is universal. There only exist diffusive states de-
scribed by a Bessel function F (R) = AJsl,n(kR), where k2 = 2mE/~2, and with the
following asymptotic behavior at short distances

F (R) ∼
R→0

(kR)sl,n , (1.39)

and long distances
F (R) ∼

R→∞
AeikR +Be−ikR . (1.40)

Efimov channel

For s0, E > 0 solutions of the hyperradial problem are linear combinations of Bessel
functions:

F (R) = AJis0(kR) +BJ−is0(kR) . (1.41)

For R → 0, F (R) ∼ R±is0 has a singular behavior (oscillations with diverging fre-
quency). For the three-body Efimovian problem to be hermitian, one has to introduce an
additional boundary condition [95, 93], using a new quantity, the three-body parameter
Rt:

F (R) ∼
R→0

sin

[
s0ln

(
R

Rt

)]
, (1.42)

which can be seen as imposing a node of the wavefunction at R = Rt. The introduc-
tion of this new parameter can be seen as a loss of universality, a is not the only relevant
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Figure 1.4: Schematic representation of the attractive effective potential in the Efimov
channel and associated universal bound-states (red dashed lines). The blue-shaded area
shows the region where the Efimov scenario breaks-down due to the short-range physics
that cannot be neglected anymore. The geometric factor which relates the different energy
levels, λ2, is set to 2 for pratical convenience.

length scale for interactions in the zero-range limit. Rt depends on all the details of the
two- and three-body potentials. Suprinsingly, it seems that for most Efimov resonances
experiments, Rt has a universal behavior, Rt = 8.9(4)lvdw [96].
The most interesting consequence of an Efimov channel is that it supports infinitely-many
three-body bound-states (trimers) while two-body bound states are absent (at least at uni-
tarity). Moreover, the absence of a length scale associated to the attractive potential (due
to the particular −2 exponent) leads to a peculiar universal spectrum. Indeed, Efimov
showed that two successive energy levels are connected via a geometric relation [38]

En+1 =
En
λ2

, (1.43)

with λ = eπ/s0 ' 22.7.
The boundary condition (1.42) will set the absolute positions of the levels. The spectrum
is not bounded by below which should lead to a collapse of the wave function, as initially
discovered by L.H. Thomas [97]. However, in realistic systems, the number of different
trimers is finite due to both lower and upper bounds for their sizes.The nth Efimov trimer
extent scales as λn. For large binding energies, the trimer size becomes comparable to
the range of the two-body potential ' lvdw, in this case the short-range approximation
is no longer valid and the Efimov scenario breaks down. For low binding energies, the
trimer size becomes larger than interparticle distance ' n−1/3 and will thus be affected
by the interactions with surrounding atoms. In practice the number of accessible trimers
is small8 ' ln(n−1/3/lvdw)/ln(22.7) . 3.

1.2.6 Finite scattering length
In the previous sections, we gave results on the unitary three-body problem. Most of them
relied on the use of Efimov anzats (1.36). For finite scattering length, the separability into

8For heteronuclear systems having large mass differences, there also exist an Efimov channel and the
scaling parameter can be drastically smaller, e.g. for 6Li-174Yb2, λ ' 4.04.
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Figure 1.5: Efimov spectrum as a function of inverse scattering length. The Efimov
trimers energy levels (blue curves) connect to the continuum threshold for negative a
(and will lead to resonant three-body losses, see next chapter). For positive a they con-
nect to the weakly-bound dimer level (red curve). The outer-shaded area represents the
short-range physics dominated region where the Efimov scenario breaks down. The inner-
shaded area shows the region where Efimov trimers are larger than the interparticle dis-
tance and interactions with other surrounding particles have to be taken into account.

a hyperangular and a hyperradial problem is no longer valid in the entire space. However,
one can still apply its results in the universal sector, when re � R � a. Consequently,
there still exists universal trimers away from unitarity but their number is reduced as |a| is
now a new upper bound for their size, see Fig. 1.5. By dimensional argument, the energy
of the trimers takes the form

En = − ~2

mR2
t

fn(Rt/a) , (1.44)

where the function fn should obey the following scaling

fn(x) = f0(x/λn)/λ2n , (1.45)

for En to be scale invariant. More generally, quantities involving a/Rt will also share this
scale invariance property that usually translates as a log-periodic behavior, f(x) = f(λx),
signaling the underlying Efimov physics.

1.2.7 Adding more bodies
A natural question is to wonder whether there is an Efimov effect for systems involv-
ing more than three particles. Indeed, the existence of several infinite ladders of N-body
bound states would lead to the introduction of as many N-body parameters which could
limit the universal properties of the zero-range limit for interactions in a many-body en-
semble. It was rapidly conjectured after Efimov discovery that no such effect was possible
for more than three identical particles [98], however the general proof, if true, is still an
ongoing work.

Recently, in the case of identical bosons, it was demonstrated that no Efimov effect
was possible for four or more bosons [99]. Indeed, the introduction of a three-body param-
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eter is expected to render all N-body problems well defined9. However, the unbounded by
below Efimov trimers spectrum suggests that without introducing in the model a cut-off
at short distance, the N-bosons system is at most meta-stable (Thomas collapse [97]).

For a spin 1/2 fermionic systems, there are no general results obtained for the N -body
problem, but it was shown that a three-body Efimov effect could occur when the mass ratio
between ↑ and ↓ is above some critical value, m↑/m↓ ' 13.607 [81]. A four-body Efimov
is also predicted to occur for a small mass ratio window 13.384 < m↑/m↓ < 13.607 [82].
However, for equal-mass fermions ensemble, no Efimov effect is predicted to occur at any
level10.

Consequently, it seems that except in some particular systems or conditions, the inter-
actions in a many-body ensemble in the zero-range limit can be accurately described by
the scattering length a and, in presence of an Efimov channel, a three-body parameter Rt.

1.3 Universal thermodynamics of the many-body prob-
lem

From the previous sections, we can conclude that in the vicinity of a Feshbach resonance
and at low temperature it is possible to produce a many-body ensemble whose properties
are universal, i.e they do not depend on the microscopic details associated with their con-
stituent atoms. The equation of state and all thermodynamic quantities solely depends on
a few variables: the density n, the temperature T , and the scattering length a and possi-
bly the three-body parameter Rt. Hence, they can be directly compared to predictions of
many-body theories as the Hamiltonian is completely determined. In this section dealing
with the many-body problem, we illustrate this universality by quickly reviewing known
results on the thermodynamical properties of the Bose and Fermi interacting ensembles
and in particular on their equation of state. We will explore the effect of increasing in-
teractions in bosonic systems, leading to the celebrated Gross-Pitaevskii equation, the
Lee-Huang-Yang corrections, and the unitary Bose gas. Finally, we will describe the
rich physics involved in the low temperature interacting Fermi gas, with its asymptotic
regimes, the molecular Bose-Einstein condensate, the Barden-Cooper-Schriefer super-
fluid, and the unitary Fermi gas. But, to begin with, we will provide some results for
non-interacting gases.

1.3.1 Ideal gases
The physics of a uniform ensemble of non-interacting identical particles at a tempera-
ture T is dictated by the comparison of the only two length-scales available, the mean
interparticle distance n−1/3 and the thermal de Broglie wavelength

λth =

√
2π~2

mkBT
, (1.46)

which is a measure of the average size of a matter-wave packet. When λth & n−1/3,
wave-packets start interfering and quantum effects are expected to occur. Equivalently,

9Universal N-body bound states are still possible, e.g. four-body bound states resonances were observed
in the vicinity of the Efimov resonances [100].

10Yet, it is still mathematically unproven in three dimensions [101].
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one can define a temperature scale,

Tn =
~2

2mkB
(3π2n)2/3 , (1.47)

which is exactly the same definition as the Fermi temperature Tn = TF .
Quantum effects will occur whenever T/Tn . 1. At high temperature (or low density),
the occupation number of each energy state (labelled by λ) is small (� 1) and can be
described by a Boltzmann distribution

Nλ(β = 1/kBT, µ) = e−β(ελ−µ) , (1.48)

where µ is the chemical potential. This leads to the the well-known equation of state

nλ3
th = eβµ . (1.49)

On the contrary, at low temperature, the quantum nature of the particles and in particular
their exchange symmetry cannot be neglected.

Identical bosons

For identical bosons, we have

Nλ,b(β, µb) =
1

eβ(ελ−µb) − 1
, (1.50)

with the constraint µb ≤ Min
λ

[ελ] (set to 0 in the following) for Nλ,b to be always positive.
For a 3D-uniform system, Nb bosons in a volume V , by assuming that all the states are
weakly populated we have the equation of state

nbλ
3
th = Li3/2(eβµ) . (1.51)

The equation predicts an upper bound for the phase-space density and is reached when
µ = 0 and all excited states are fully occupied. However, in this limit, the occupation
number of the ground state is diverging and can be macroscopically populated. Hence,
any additional particle will accumulate in the fundamental state leading to the famous
Bose-Einstein condensation at low temperature/high density 11. This occurs below the
transition temperature given by

Tc,b =
1

(Li3/2(1))2/3

2π~2

mbkB

(
Nb

V

)2/3

' 0.69Tn , (1.52)

The ground state occupation number Nc reads

Nc = Nb

(
1−

(
T

Tc

)3/2
)
. (1.53)

This textbook scenario for condensation was actually verified recently using 87Rb atoms
in a quasi uniform 3D potential [39].

11The occurence of Bose-Einstein condensation depends on the trap geometry and dimensionality. For a
uniform system, it occurs in 3D at finite temperature and in 2D at T = 0 but not in 1D.
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Identical fermions

For identical fermions, we have instead

Nλ,f (β, µ) =
1

eβ(ελ−µ) + 1
, (1.54)

and by definition it can only take values between 0 and 1. There is no phase transition at
low temperature, but a smooth evolution toward a Fermi sea, where all low-energy states
are occupied until there is no particle left to place.
At T = 0, the chemical potential is equal to the Fermi energy

µf = Ef = kBTF , (1.55)

and all states below Ef are occupied, while the others are empty. And finally, for T 6= 0
we have the equation of state

nfλ
3
th = −Li3/2(−eβµ) . (1.56)

The uniform ideal Fermi gas was also recently studied experimentally in [40]. Using spin
polarized 6Li atoms in a uniform trap, they directly observed the appearance of a Fermi
surface and the saturation of low-energy states at low temperature.

1.3.2 Interacting bosons
If we now include interactions, we have a new length-scale in our toolbox, the scatter-
ing length a 12. A new dimension can be explored in the phase diagram and can be
parametrized by na3 or equivalently 1/kFa where kF is the Fermi wave-vector kF =
(3π2n)1/3.

Mean-Field regime

For na3 � 1 and T � Tc,b, interactions can be treated in the mean field approximation
and atoms condense in the same macroscopic state. Contrarily to the non-interacting case,
the condensate wavefunction φ(r) is density dependent and is described by the celebrated
Gross-Pitaevskii equation:(

− ~2

2m
∇2 + V (r) +

4π~2a

m
n(r)

)
φ(r) = µφ(r) , (1.57)

where V is the trapping potential and n = N |φ|2.
For a uniform system, the chemical potential µ is now shifted by the interactions

µ = gn . (1.58)

where g = 4π~2a/m.
The total energy density is then

ε =
1

2
gn2 . (1.59)

The condensate is thus mechanically unstable if a < 0, since its energy decreases with
increasing density. Along with its time dependent version (see chapter 4) the Gross-
Pitaevskii equation sucessfully described all the results of early experiments on Bose-
Einstein condensates, such as the density profiles of the cloud [102, 103] or the properties
of vortices in rotating condensates [55, 56, 57].

12And of course, for large scattering length, we have Rt which comes into play.
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Beyond Mean-Field corrections

For increasing interactions, quantum fluctuations of the low-energy Bogoliubov modes
start depleting the condensate13. The associated corrections to the zero-temperature equa-
tions of state reads

µ = gn

(
1 +

32

3
√
π

√
na3 + 4(4π − 3

√
3)(ln(na3) +D)na3 + ...

)
, (1.60)

where the first term is the mean field term, the second term was first calculated by
Lee, Huang, and Yang (LHY) in the 50’s [104] and the next terms were calculated later
on [105]. The LHY correction was quantitatively checked in several experiments [106,
107, 108]. The constant D was shown to be non-universal and to depend log-periodically
on the three-body parameter Rt and is thus the first signature of emerging Efimov physics
when increasing interactions14. This chemical potential corresponds to the following en-
ergy density

ε =
1

2
gn2

(
1 +

128

15
√
π

√
na3 +

8

3
(4π − 3

√
3)

(
ln(na3) +D − 1

3

)
na3 + ...

)
. (1.61)

The unitary Bose gas

The unitary case (a = ∞) is a paradigmatic example of strongly correlated bosonic sys-
tems, and still represents an important theoretical as well as experimental challenge in
cold atom systems. The stability and the precise nature of the degenerate unitary Bose
gas is still an open theoretical problem and under intense investigation, e.g. for recent
results see [109, 110, 111, 112].
By dimensional analysis, at unitarity and zero temperature, since the only length scales
remaining are the density n and the three-body parameter Rt, we expect the equation of
state to be of the form

µ = ξ(n1/3Rt)EF = ξ(n1/3Rt)
~2

2m
(3π2n)2/3 , (1.62)

where ξ is a dimensionless log-periodic function for which only theoretical upper-bound
or estimates are available [113, 114]. Up to some numerical function, we recognize here
the equation of state of an ideal Fermi gas, all the effects of interactions are encapsulated
in ξ. However, this “simple” picture of the degenerate unitary Bose gas is most probably
strongly modified by the presence of resonant three-body recombination processes. At
high temperatures, the unitary problem becomes tractable, rigorous approaches and exact
results are available and some of them will be presented in chapter 7.

1.3.3 Interacting fermions: The BEC-BCS crossover
We now turn to the case of a balanced gas of fermions, in which the two spin-state are
equally populated. Contrarily to the Bose gas, the interacting Fermi gas is stable for large
values of the scattering length, positive and negative. At T = 0, fermions of opposite

13Indeed, even at T = 0, an interacting Bose gas is not fully condensed, to leading order the non-
condensed fraction scales like

√
na3.

14It has also an imaginary part to account for three-body recombinations toward shallow two-body bound
states [92].
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spins will pair up leading to the superfluidity of the ensemble. However, upon changing
1/kFa over the range from −∞ to +∞, the nature of the pairing changes dramatically
from a weak coupling BCS-type to molecular binding. Thus by tuning the interactions,
the state of the fermionic gas interpolate between a molecular BEC and a BCS superfluid.
In between, it crosses the unitary limit where the scattering length drops out and the prop-
erties of the gas become scale invariant. This realises the so-called BEC-BCS crossover
proposed early by Leggett [115], Nozières and Schmitt-Rink [116] and confirmed by sev-
eral recent theoretical approches [34], a fixed-node Monte-Carlo simulation [117] and
experiments [118, 119]. In addition, the equation of state of the unitary Fermi gas at finite
temperature is precisely known thanks to several experiments [120, 121].

BCS superfluid

In the regime of small negative scattering lengths 1/kFa→ −∞, the fermions are weakly
attracted to each-other and will form an ensemble of phase-coherent Cooper pairs. How-
ever, the energy contribution of the BCS pairing in the superfluid phase ∼ ∆2/Ef where
∆ ∼ e−π/2kF |a| is the pairing gap, is exponentially small. Hence, the ground state energy
of the BCS-superfluid is mainly given by

ε =
3

5
nEF

(
1 +

10

9π
kFa+

4(11− 2ln(2))

21π2
(kFa)2 + ...

)
, (1.63)

where the first term is the energy of the ideal Fermi gas, the second is a mean-field shift
and the next term was obtained by Galitskii, Lee and Yang in the 50’s, in the context
of repulsive hard-sphere fermions [122, 123]. The generalization of this expansion to
attractive interactions was shown recently in [124].

Molecular BEC

In the regime of small positive scattering lengths, opposite-spin fermions are strongly
attracted to each other and form tightly bound dimers of size ∼ a and binding energy
−~2/ma2. The dimers are composite bosons that condense at low temperature and can be
described by a Gross-Pitaevskii equation for small scattering lengths. Consequently, the
ground state energy reads

ε = − ~2

ma2
nd +

1

2
gdn

2
d

(
1 +

128

15
√
π

√
nd(cda)3 + ...

)
, (1.64)

where nd = n/2 is the dimer density, gd = 2π~2cda/m and cda ' 0.6a is the dimer-
dimer scattering length [77]. The first term is the binding energy density followed by the
mean-field term and the LHY corrections [125].

Unitary Fermi gas

In the unitary limit, the scattering length drops out as a scaling parameter and we retrieve
relations that are analog to the ideal Fermi gas. All the complexity of the interacting
system is thus encapsulated in a few universal numerical constants. Indeed, the energy
density can be expanded as

ε =
3

5
nEf (ξ −

ζ

kFa
+ ...) . (1.65)
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The numerical constant ξ is the Bertsch parameter and was measured with high precision
in [121], ξ = 0.376(4). The other numerical constant ζ was extracted via the measurement
of the equation of state in the crossover [118] and yields ζ = 0.93(5). A more precise
measurement was done by performing a local Bragg-spectroscopy experiment and gives
ζ = 0.87(3) [126]. The analytical or numerical calculation of those two parameters repre-
sent a challenging problem as they cannot be obtained by standard perturbative methods
due to the lack of small parameters in the system. A review of the various theoretical
and numerical approaches used for their calculation can be found in [34]. ζ is directly
related to the unitary two-body contact C2, a fundamental quantity that will be introduced
in chapter 5. In chapter 8, we will exploit this relation to demonstrate a new method to
measure ζ using few-body losses.

When varying the temperature, the unitary Fermi gas undergoes a superfluid to normal
phase transition as observed in [120, 121]. The transition temperature was found to be
Tc ' 0.16TF . We will exploit this unusual large value to produce a fermionic superfluid
by evaporating 6Li atoms at resonance.
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Producing a dual Bose-Fermi superfluid

In this chapter, we describe the experimental apparatus that we use to produce a quantum
degenerate mixture of Bose and Fermi gases. The current setup results from almost 20
years of continuous upgrading, repairing, and maintenance work starting from 1997. As
the experiment is already described in great detail in the thesis of G. Ferrari [127], F.
Schreck [128], L. Tarruel [129], S. Nascimbène [130], and I. Ferrier-Barbut [131] and no
major changes were made in the past few years, we will provide here a short overview of
the experiment and solely focus on the technical aspects which are useful for the rest of
this mansucript.

2.1 General description
The general scheme of the setup is similar to many cold atom experiments. The overall
idea is to cool a vapor of atoms down to quantum degeneracy via laser cooling and evapo-
rative cooling. In our case, we use the two stable isotopes of lithium: the bosonic 7Li and
the fermionic 6Li. A hot vapor beam (500 ◦C) is produced by heating lithium in an oven
and letting the gas escape through a tube. The jet is slowed down by a Zeeman slower.
The atoms are afterwards captured and further cooled (∼ mK) in a magneto-optical trap
(MOT) in the glass cell, see Fig. 2.1. Once the MOT is fully loaded (40 s), we elevate
magnetically the atoms to an appendage of the glass cell. At this stage, the atoms are
trapped in a strongly confining magnetic trap and sympathetic cooling is applied: The
6Li atoms are cooled by thermal contact with evaporating 7Li atoms. This cooling step
(∼ 50µK) allows us to load efficiently the atoms in an optical dipole trap. Finally, we
apply a second evaporative cooling step at high magnetic field in order to exploit a broad
6Li Feshbach resonance. This time, 7Li is sympathetically cooled by 6Li. At the end
of the evaporation ramp we reach a typical temperature of 100 nK and both 6Li and 7Li
clouds are in the quantum degenerate regime.

2.2 The lithium atom

2.2.1 Atomic structure

Lithium is the lightest alkali element. A single electron occupies the outer shell and its
atomic structure is thus quite simple. A schematic representation of the ground state and
first excited states level structure for both isotopes is shown in Fig. 2.2. The Li ground
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Figure 2.1: Schematic representation of the main parts of the experiment in the glass cell
region. The yellow arrow indicates the atomic jet coming from the oven and the Zeeman
slower assembly. The purple coils (MOT coils) and the three pairs of beams (large red
beams) realize the magneto-optical trap. In the upper part of the cell, the appendage,
atoms are first trapped in a Ioffe-Pritchard trap, created by the four Ioffe bars (brown bars),
the pinch curve coils (green) and the Feshbach coils (blue). The final trap is composed of
an optical dipole trap (red beam centered on the appendage) and a magnetic confinement
provided mainly by the pinch-curve coils. The large bias field needed to go to the 832 G
Feshbach resonance is provided by the Feshbach coils (blue). The offset coils (yellow)
allow for rapid change of the bias field.
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Figure 2.2: Energy level structure of the two Lithium isotopes, 6Li and 7Li. The transitions
used for cooling and repumping for the MOT and the Zeeman slower are indicated in grey.

state is of 2s nature, while the first excited states is of kind 2p. The splitting between
the s and p states of the outer shell is large for alkali atoms and the associated transition
(called the “D-line”) lies in the visible and near infrared region. For lithium the 2s→ 2p
transition is in the visible red spectrum, λLi = 671 nm. The degeneracy between the
22P1/2 and 22P3/2 states is lifted by the spin-orbit coupling and leads to a fine-structure
splitting of ∼ 10.05 GHz. Hence, the D-line splits into two subfeatures: the D1 and D2

lines associated with the 22S1/2 → 22P1/2 and 22S1/2 → 22P3/2 transition respectively.
Incidentally, the isotopic shift for 2s→ 2p transition is also equal to∼ 10.05 GHz so that
the D1 line of 7Li is extremely close to the D2 line of 6Li. Hyperfine coupling splits the
different atomic levels even further. However due to a natural linewidth of Γ ∼ 5.9 MHz,
the hyperfine states of the 22P3/2 manifold cannot be completely resolved, see Fig. 2.2.

In Fig. 2.3, we show the magnetic field dependence of the energy levels of the 22S1/2

manifolds for both isotopes. In the following, we will label the associated states |is〉 with
i = 1, 2, ... starting from the lowest energy state at high field and the index s refers to the
isotope (s = b for 7Li and s = f for 6Li). Since we will use the states |1f〉 and |2f〉 to
produce a strongly interacting Fermi gas, they can be seen as the two states of a two-spin
component Fermi gas, hence we will also use the common notation: | ↑〉 = |2f〉 and
| ↓〉 = |1f〉.

2.2.2 Feshbach resonances
Lithium is characterized by a large number of Feshbach resonances that can be exploited
to produce and study strongly interacting ensembles. In Fig. 2.4, we show the different
resonances relevant for the different experiments discussed in this thesis. We use the large
Feshbach resonance between the |1f〉 and |2f〉 states at 832.18 G [132] to produce a Fermi
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Figure 2.3: Magnetic field dependence of the energy levels of the 22S1/2 manifold of 6Li
and 7Li.

superfluid. The state |1b〉 possesses a borad Feshbach resonance at 738.2 G which was
previously used by our team to study the unitary Bose gas [36]. This state cannot be used
to produce a BEC near the fermions Feshbach resonance, since it has a negative scattering
length in the mentioned magnetic field region. In order to reach Bose condensation and
superfluidity for the 7Li cloud, we use the state |2b〉 which has mostly a positive scattering
length in the region of the fermions Feshbach resonance. However, this state features two
resonances, a narrow one at 845.5 G and a broad one at 893 G [74], which deteriorate
the stability of the mixture in their vicinity. The scattering length between bosons and
fermions is featureless at high magnetic fields and equals to 40.8 a0 and is independent of
the discussed spin states. This small scattering length value ensures that the two clouds are
weakly coupled: Phase separation is only expected to occur for vanishing boson-boson
scattering length, which in practice should happen (at low temperature) for magnetic fields
lower than 720 G or in the vicinity of the zero-crossing near 845 G.

2.3 Laser system
Our laser system follows the MOPA (master-oscillator - power-amplifier) scheme. We use
master lasers for frequency references and a series of injection-locked slave diodes and
tapered amplifiers to amplify the total optical output power. We work with high-power
laser diodes (Hitachi HL6545MG), with a maximal output power of 120 mW. At room
temperature, the spectrum is centered around 660 nm, and the diodes need to be heated
up to 70◦C to be able to reach lithium D-lines at ∼ 671 nm. The diodes are thus mounted
inside thermally isolated boxes and need to be regularly replaced due to their reduced
lifetime.

We use external cavities in Littrow configuration for the master laser in order to sta-
bilize their frequencies and reduce the modes linewidth. They are locked using saturated-
absorption spectroscopy on theD1 andD2 lines of 6Li and theD2 line of 7Li. We generate
the different frequencies required for the experiment using several acousto-optic modula-
tors. Optical power amplification is done by injection locking a dozen of slave diodes and
using two tapered amplifiers1. All the different optical stages are decoupled from each

1The tapered amplifiers (TA) provide a larger power amplification than diodes (up to 500 mW), however



2.4 35

��� ��� ��� ��� ����
-���

-���

-���

�

���

���

���

� (�)

�
(�
�
)

���/��� � |��〉-|��〉

��� � |��〉-|��〉

���� � |��〉-|��〉

��� � |��〉-|����〉

Figure 2.4: Magnetic field dependence for the different scattering lengths involved in our
system.

other by means of optical fibers. This results in an optical power loss of 20-50% after
each fiber, but minimizes the consequences of alignment drifts and therefore realignment
work. The locking of the different diodes is monitored using three Fabry-Perot cavities.
The first one is used to check the locking of the master diodes. The two others are for the
locking of the MOT and Zeeman slower beams and also provide a useful reference for the
beams alignment.

2.4 Loading the dual magneto-optical trap

2.4.1 The atomic beam source

The atomic beam is produced by heating a reservoir containing several grams of lithium
(with natural isotopic abundance). The reservoir is connected to the rest of the vacuum
chamber via a small tube that collimates the jet of atoms. The bottom of the reservoir is
heated up to 400◦C, the entrance of the collimation tube to 510 ◦C and its end to 190 ◦C.
In this configuration, lithium is liquid at the bottom of the reservoir and a sufficient atomic
flux leaves the oven. In principle, lithium cannot solidify in the tube and the temperature
gradient allows lithium droplets to get back to the reservoir thanks to a temperature de-
pendent surface tension. From time to time, the tube gets clogged and further heating (up
to 600 ◦C ) of the tube allows us to evaporate the undesired liquid. In order to guarantee
an ultra-high vacuum in the main chamber, the atomic beam goes through two differential
pumping stages before reaching the Zeeman slower, see Fig. 2.5.

the only 671 nm chips available on the market have an output mode which is highly non-gaussian and their
output power tends to decrease rapidly with time (down to 250 − 300 mW). Their replacement takes far
more time than for diodes, as the beam shaping optical stage has to be redone entirely each time.
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2.4.2 The Zeeman slower
The oven produces a jet of atoms with a mean velocity of 1700 m.s−1. The MOT will only
capture atoms with velocities less than the capture velocity ∼ 50 m.s−1. Therefore, we
use a Zeeman slower which is a specific combination of counter-propagating bi-chromatic
beam and a designed magnetic field in order to reduce the average atomic velocity. After
each photon absorption event, the atom gets decelerated and quickly moves out of reso-
nance due to the Doppler effect. This effect is compensated by the spatially-dependent
magnetic field along the trajectory of the atoms provided by the coils. Indeed, the en-
ergy levels of the atoms are shifted by the Zeeman effect and the magnetic field is finely
tailored so that the Zeeman shift constantly compensates the Doppler shift. Our Zeeman
slower is in a spin-flip configuration consisting of two coils with opposite sign current, see
Fig. 2.5, so that in between the two the magnetic field becomes zero and reversed, which
avoids to have resonant light with the cold trapped atoms. The magnetic field between
both ends goes from 800 G to -200 G and the Zeeman slower has a capture velocity of
about 1100 m.s−1 [129].

Two laser beams are used to slow down 6Li and 7Li atoms (called principal beams).
They are tuned to the D2 : F = 3/2, mF = 3/2 → F ′ = 5/2, mF = 5/2 and D2 :
F = 2, mF = 2 → F ′ = 3, mF = 3 transitions respectively and shifted by −400 MHz
to compensate the Doppler effect at the magnetic field zero crossing (v ' 250 m.s−1).
The 6Li principal beam slightly deteriorates the slowing of 7Li due to the 7Li-D1

6Li-D2

coincidence, which finally forces a trade-off between the 6Li and 7Li flux. Two repumper
beams are also necessary for the zero crossing region for the two following reasons: First,
due to the narrow hyperfine structure of the 22P3/2 manifold, the open transitions D2 :
F = 3/2 → F ′ = 3/2 and D2 : F = 2 → F ′ = 2 are excited and the atoms can fall
in the 22S1/2 F = 1/2 and F = 1 states. Second, there is no adiabatic following near
the zero crossing and atoms can flip to the “wrong” mF ′ states. We use the transitions
D1 : F = 1/2→ F ′ = 3/2 and D2 : F = 1→ F ′ = 2 for 6Li and 7Li respectively, also
shifted by -400 MHz in order to repump these depolarized atoms.

2.4.3 Magneto-Optical trap
The next step is to trap the slow atoms of the beam and further cool them down in a
magneto-optical trap (MOT). It consists of three pairs of circularly polarized counter-
propagating laser beams as depicted in Fig. 2.1 and a magnetic field gradient provided by
one pair of coils. As a result, the atoms feel a combination of restoring and friction forces
that trap them in the vicinity of the zero magnetic field region.

We use the D2 : F = 3/2 → F ′ = 5/2 and D2 : F = 2 → F ′ = 3 lines as cooling
transitions for the 6Li and 7Li MOT respectively, similarly to the zeeman slower. We also
need strong repumping beams to avoid loosing atoms that fall in the 22S1/2 F = 1/2 and
F = 1 states. For this purpose we utilize the lines D1 : F = 1/2 → F ′ = 3/2 and
D2 : F = 1 → F ′ = 2 of 6Li and 7Li respectively. The cooling beams are red-detuned
by δ6P ' −6Γ for 6Li and δ7P ' −7Γ for 7Li, and the repumpers beams by δ6R ' −3Γ
for 6Li and δ7R ' −5.5Γ for 7Li. Each beam has a 1/e2 diameter of 1.5cm and a peak
intensity of about 2 mW/cm2 (The on-resonance saturation intensity of the D1 and D2

lines are Isat = 7.6 mW/cm2 and Isat = 2.5 mW/cm2 respectively). The applied magnetic
field gradient at the MOT is 25 G/cm.

In these conditions, we are able to load the dual-MOT in 40 s and it typically contains
several 109 7Li atoms and 108 6Li atoms at a temperature of approximately 3 mK. In com-
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parison, a single-isotope MOT can have twice as many atoms (by switching off the other
MOT beams). In particular, the 6Li cooling beams enhance the light-assisted inelastic
collisions in the 7Li MOT, and we tune its power to have a good balance between the two
isotope numbers.

Once the dual-MOT is fully loaded, we perform a compressed-MOT phase. The cool-
ing beams are brought closer to resonance (δ6P = −1.5 Γ and δ7P = −5 Γ) and the
repumping light intensities are ramped to zero in 8 ms. This results in all atoms being
pumped in the lowest hyperfine manifold and a reduced temperature of T ' 600µK. We
do not reach a temperature as low as the Doppler temperature TD = ~Γ/2kB = 140µK
mainly because of the unresolved hyperfine structure of the 22P3/2 states and multiple
photon scattering processes.

2.5 Magnetic trapping

2.5.1 Optical pumping

In order to trap magnetically the atoms, we perform an optical pumping step to transfer
them into the the fully polarized states |6f〉 = |F = 3/2,mF = 3/2〉 and |8b〉 = |F =
2,mF = 2〉 of the second lowest hyperfine manifold (see Fig. 2.3). These states are low
field seeking states, i.e their energy increases with increasing magnetic field. In addition,
the two states are stable with respect to spin-exchange collisions.

To perform the optical pumping, we turn off the CMOT and illuminate the atoms with
a combination of two circularly polarized beams in presence of a weak magnetic field
(10 G) during 300µs. The first beam is tuned to the D2 : F = 1 → F ′ = 2 transition
and pumps the 7Li atoms in the F = 2 manifold. The second beam is tuned close to the
D1 : F = 2 → F ′ = 2 and D2 : F = 1/2 → F ′ = 3/2 lines. It achieves both the
hyperfine pumping for 6Li F = 1/2→ F = 3/2 and the Zeeman pumping for 7Li, since
|8b〉 is a dark state in our scheme.

2.5.2 Lower magnetic trap and transfer to the appendage

After the optical pumping, we quickly turn on a quadrupole trap (within 2 ms) using the
MOT coils (resulting in a magnetic field gradient of 200 G.cm−1 at 300 A). The atoms not
in states |6f〉 and |8b〉 are lost by spin-exchange collisions and/or expelled by the magnetic
trap. The overall efficiency of the optical pumping and magnetic trapping loading is
typically 50% for 7Li atoms and 30% for 6Li atoms.

Next, we transport the cloud in the appendage of the cell: We simultaneously ramp up
the current in the Feshbach coils and ramp down the current in the MOT coils in 500 ms
so that the magnetic trap center is progressively elevated to the appendage. The cloud is
transported over 6 cm and during the transfer approximately 50% of the atoms are lost,
mainly due to collisions with the walls of the appendage.

Atoms are then transferred from the quadrupole trap to a Ioffe-Pritchard trap [133]: A
strong magnetic radial confinement is provided by four bars placed near the appendage,
a pair of coils (the pinch-curve coils) create a curvature along the axial direction, and
finally another pair of coils (Feshbach coils) create an adjustable bias field (and only a
small curvature). This creates a cigar-shaped harmonic trap with a non-zero minimum
which avoid Majorana losses [134].
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2.5.3 Doppler Cooling

In the Ioffe trap, the cloud has an initial temperature of T ' 3 mK. The collisional cross-
section is cancelled at momenta corresponding to a temperature of 6mK and is still weak
at 3 mK [128]. Hence, to start evaporative cooling with better conditions (i.e. a larger
collisional rate) we perform an additional Doppler cooling on 7Li atoms. We send on the
cloud a circularly polarized light beam red-detuned to the transition D2 : F = 2,mF =
2→ F ′ = 3,mF ′ = 3 at the corresponding bias field felt by the atoms (500 G). The beam
will solely cool the atoms lying at the center of the trap and in the axial direction. The
anharmonicity of the trap and at some point the elastic collisions will lead to a thermaliza-
tion of the cloud in all spatial directions. This cooling procedure is repeated twice, with a
stronger confinement and a smaller detuning the second time. As a result, the cloud has a
temperature of 300µK, with a loss of 25% 7Li atoms, and the collisional rate is increased
by a factor of ∼ 16.

2.5.4 RF evaporation

The last step performed in the Ioffe-Pritchard trap is a radio-frequency evaporation of the
7Li atoms. Evaporative cooling consists in removing the hottest atoms of the cloud so that
the mean energy per particle is reduced and the phase-space density is increased [135].
The evaporation cannot be done with 6Li atoms as they can neither collide via s-wave
channel since they are spin-polarized in the |6f〉 state, nor via higher partial wave channels
as they are already inhibited by the low temperature of the sample (The p-wave threshold
for Li is ∼mK). 6Li atoms are instead cooled by thermal contact with the 7Li atoms that
can be efficiently evaporated.

Here, the Ioffe-Pritchard is highly compressed and the bias field is maintained to a low
value (5 G). A radio-frequency field blue-detuned with respect to the transition |1b〉−|8b〉
(803.5 MHz at B = 0) is sent on the cloud. As a result energetic 7Li atoms are transferred
to the high-field seeking state |1b〉 and expelled from the trap. Thanks to the smaller
isotope hyperfine splitting of the 22S3/2 state of 6Li (228.2 MHz), the RF-knife essentially
only affect 7Li atoms.

The RF-knife frequency is ramped from 1050 MHz down to 840 MHz in 22s. Typical
final numbers are N6 = 2.5 × 106 and N7 = 0.5 × 106 at a temperature T = 10µK
which correspond to a peak phase-space density of ∼ 10−1 for 6Li atoms. These numbers
strongly depends on the initial numbers of both species and in practice we adjust them by
varying the population balance between the two MOT clouds.

2.6 Hybrid magnetic-optical trap

The Ioffe-Pritchard trap does not allow for an independent adjustment of the magnetic bias
field and trap confinement. Hence, in order to profit from the 832 G Feshbach resonance
of 6Li where we can perform a second evaporation to quantum degeneracy, we load the
atoms in a hybrid-magnetic optical trap resulting from the combination of a focussed
1073 nm beam and a axial magnetic curvature + bias field created by the pinch-curve and
the Feshbach coils.
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2.6.1 Trap description

The dominant effect of a far-detuned light beam on an atom is a shift of its energy levels
proportional to the beam intensity (known as light shift or Stark shift) [136]. If the beam is
red-detuned, the shift is negative for atoms in their ground state and they will be attracted
by maxima of intensity. For lithium atoms, if the fine structure splitting of the 22P state
is negligible with respect to the laser detuning, the dipole potential created by a beam is
well described by the equation :

Udip(r) =
3πc2

2ω3
0

Γ

∆
I(r), (2.1)

where c is the speed of light in the vacuum, ω0 is the bare frequency of the atom’s transi-
tion with linewidth Γ, ∆ = ωL − ω0 is the laser detuning and I(r) is the intensity profile.
For a gaussian TEM00 mode we have the profile

I(r) =
2P

πw(z)2
e−2r2/w(z)2

, (2.2)

with P is the laser power and w(z) = w0

√
1 + (z/zR)2, where w0 is the beam waist

and zR = πw2
0/λ is the Rayleigh length. In the vicinity of the beam focus, r � w0 and

z � zR, the dipole potential is harmonic. For an atom of mass m it reads

Udip = −U0 +
1

2
m(ω2

rr
2 + ω2

zz
2) (2.3)

withU0 = 3c2ΓP/ω3
0|∆|w2

0 the potential depth, and ωr =
√

4U0/mw2
0, ωz = ωrλ/

√
2πw0

the radial and axial trap frequencies respectively. Hence, the trap and therefore the clouds
are highly elongated in the axial direction as depicted in Fig. 2.6.

In the experiments described in chapter 3 and 8, the beam waist is w0 = 27(2)µm and
w0 = 36(3)µm respectively. Typical frequencies at high power (7 W) are ωr ' 2π×7 kHz
and ωz ' 2π × 40 Hz .

To increase the axial confinement at low optical power, a magnetic curvature is added
using the pinch-curve coils and the Feshbach coils. For low-field seeker states, a magnetic
minimum is superimposed to the beam waist while for high-field seeker states we create
a saddle point with a maximum in the axial direction. Thanks to this magnetic confine-
ment, the trap is highly harmonic in the axial direction (see section 2.9.3). Typical axial
frequency provided by the magnetic curvature is ωz = 2π×20 Hz. In first approximation,
the two lithium isotopes see the same trapping potential so that their trapping frequencies
differ by a factor

√
m7/m6 =

√
7/6.

2.6.2 Trap loading

We load atoms initially in the Ioffe-Pritchard trap to the dipole trap at relatively high-
power2 (7 W). Thanks to similar aspect ratios, the transfer between the two traps can be
done efficiently with solely 20% atom loss.

2We observe increasing losses in the dipole trap when loading at higher power (thus higher density),
probably due to dipolar losses in the state |8b〉. The associated loss rate coefficient L2 = 1.05(10) ×
10−14 cm3/s was measured in [137].
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2.6.3 Mixture preparation

In order to exploit the Feshbach resonance at 832G and to have a stable mixture of Bose
and Fermi superfluid, we need to transfer the atoms in the states |1f〉 = |F = 1/2,mF =
1/2〉 and |2f〉 = |F = 1/2,mF = −1/2〉 for 6Li and in the states |2b〉 = |F = 1,mF = 0〉
for 7Li, see Fig. 2.3.

This is done by doing several radio-frequency transfers using the adiabatic passage
technique. Atoms are dressed by a strong radio-frequency field whose frequency is varied
across the transition resonance between the two involved levels. For slow enough fre-
quency sweep, the atoms follow adiabatically the dressed state to eventually end up being
in the target level.

The technique is repeated for three times. First at low field to do two transfers:
|8b〉 → |1b〉 = |F = 1,mF = 1〉 and |6f〉 → |1f〉 = |F = 1/2,mF = 1/2〉 using
a fixed frequency RF radiation of 827 MHz and 240 MHz respectively and ramping the
bias magnetic field from 13 G to 4 G in 50 ms. Then, before crossing the Feshbach res-
onance at 750 G of the |1b〉 state, we perform a third transfer |1b〉 → |2b〉 at 656 G with
a RF radiation whose frequency is swept from 170.9 MHz to 170.7 MHz in 10 ms. The
typical efficiency of those transfers is 90% and is limited by decoherence effects due to
atoms collisions, trap inhomogeneities or field fluctuations. Remaining atoms in the initial
states |8b〉 and |6f〉 are expelled by the magnetic curvature that is now trapping high-field
seeker states. |1b〉 atoms are lost by three-body recombination when crossing the 738.2 G
Feshbach resonance.

Finally, a |1f〉 − |2f〉 mixture is prepared by a doing a RF transfer at 835 G, the RF is
swept from 76.25 MHz to 76.3 MHz. By varying the RF power or the sweep velocity, we
can adjust the spin mixture according to the Landau-Zener formula:

Ptr = 1− e−2πΩ2/ω̇, (2.4)

where Ptr is the transition probability, Ω is the Rabi frequency of the RF radiation and
ω̇ = dω/dt is the frequency sweep velocity. To obtain a 50/50 mixture we typically do a
5 ms sweep implying a Rabi frequency of Ω ' 2π × 600 Hz.

2.6.4 Evaporation at 835 G

As soon as some 6Li atoms are transferred in the |2f〉 state, evaporative cooling is engaged.
The collision rate between opposite spin fermions is extremely large (∼ 10 kHz) thanks to
a unitary limited scattering cross-section. As we have γ66 � γ67 > γ77, where γij is the
collision rate between particles of type i and j, 7Li atoms are essentially sympathetically
cooled by the evaporating 6Li atoms. The initial atoms numbers are typicallyN6 = 2×106

andN7 = 3×105 at a temperature T = 45µK and a trap depth U0 ' 180µK (P = 7 W).
The trap depth is lowered exponentially with time. For our coldest samples, we go as low
as U0 = 1.5µK (P = 60 mW) in 3 s. After waiting 1 s at constant trap depth, both
clouds are thermalized and final numbers are typically N6 = 3× 105, N7 = 4× 104 and
the temperature is T ' 80 − 100 nK: both clouds are quantum degenerate. We provide
in section 2.8 several evidence that both clouds are actually superfluid and a frictionless
counterflow between the two clouds will be demonstrated in chapter 3. The mixture shows
a good stability at low temperature with a typical lifetime of∼ 5−10 s and will be studied
in detail in chapter 8.
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Figure 2.6: Schematic representation of the clouds trapped in the optical dipole trap. The
arrows show the two different imaging directions. After passing through the clouds, and
several optical components, the imaging light is collected on a camera shown as a grid.

2.7 Imaging

2.7.1 Absorption imaging
All the observables associated with the atomic clouds such as the temperature and atom
numbers are obtained by imaging the atoms either in-situ (i.e when trapped) or after a
time-of-flight expansion. Imaging of the atomic clouds is done by absorption imaging.
A resonant probe is sent along a given direction (in the following examples the y-axis)
on the atomic cloud that will partly absorb it. The intensity profile I(x, z) of the probe
after passing through the cloud is recorded on a camera, see Fig. 2.6. In order to cancel
the inherent spatial inhomogeneity of the probe beam, a second image I0(x, z) is taken
without the atomic cloud. For a probe with small intensity I � Isat, according to the
Beer-Lambert law the two intensity profiles are related by the formula

I(x, z) = I0(x, z)e−σ
∫
dyn(x,y,z), (2.5)

where σ is the absorption cross-section and n the cloud’s atomic density. Hence, the ratio
of the two intensity profiles gives a direct access to the simply integrated density profile
of the cloud.

For a resonant light beam with a narrow linewidth, the absorption cross-section reads
σ = 6π(λ/2π)2C where C is the Clebsh-Gordan coefficient associated to the absorp-
tion transition and light polarization. However, we cannot rely on this theoretical value
to count our atom numbers, inasmuch as several experimental imperfections can reduce
drastically this cross-section. In particular, the imaging light linewidth is comparable to
the atomic natural linewidth. Therefore, the absorption cross-section is measured experi-
mentally, see section 2.9.3.

2.7.2 Imaging directions
In the appendage, the clouds can be imaged along two directions: Along the axial direc-
tion (the z-axis), parallel to the magnetic field direction and along a radial direction with
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Figure 2.7: Examples of simply integrated density profiles ñ obtained by absorption imag-
ing. Here, the images are taken at 817 G after a full evaporation at 835 G. The two spin
states of the fermions are imaged along the y-direction after a short time-of-flight expan-
sion of 500µs. The bosons are imaged along the z-direction after a longer time-of-flight
expansion of 4.5 ms.

a σ+ polarization and π polarization respectively in order to address the transitions listed
in next section.

In the axial direction, the optical resolution is about 10µm and cannot be used for
in-situ imaging (the typical radial sizes for the clouds is 5-10µm ). However, thanks to
the integration along the long axis of the clouds, this direction allows for the detection of
small atoms numbers even after a long time-of-flight expansion.

In the radial direction, the resolution is ' 5µm. Again, we cannot resolve the in-
situ spatial distribution of the clouds along the radial direction. By integrating over the
remaining transverse direction, we retrieve accurate (doubly integrated) density profiles
n̄(z) =

∫
dxdyn(x, y, z).

2.7.3 Imaging transitions
At low bias field (i.e to image atoms early in the sequence) we use the transitions

D2 : F = 3/2 → F ′ = 5/2, (2.6)
D2 : F = 2 → F ′ = 3, (2.7)

to image 6Li atoms and 7Li atoms respectively.
At high field, we use the closed transitions

D2 : mJ = −1/2,mI = 1 → mJ ′ = −3/2,mI′ = 0, (2.8)
D2 : mJ = −1/2,mI = 0 → mJ ′ = −3/2,mI′ = −1, (2.9)
D2 : mJ ′ = −1/2,mI′ = 1/2 → mJ ′ = −3/2,mI′ = −1/2, (2.10)

to image the states |1f〉, |2f〉, and |2b〉 respectively.

2.7.4 Double and triple imaging sequences at high field
In order to have access to both boson and fermion density distributions, the clouds are
imaged sequentially. For the counterflow measurements presented in chapter 3, we image
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Figure 2.8: Examples of doubly integrated density profiles n̄ corresponding to the images
shown in Fig. 2.7 taken at 817 G after evaporation at 832 G. Left figure: quasi-in situ den-
sity profiles for the | ↑〉 (red line), | ↓〉 (orange line) states, and the difference (purple
line). The plateau at the center of the difference profile (red region) indicates pairing be-
tween atoms with different spins, which corresponds to the superfluid region of the cloud.
For smaller spin-imbalance, the superfluid core is larger. Right figure: Density profile of
the bosons after time-of-flight (4.5ms) showing an almost pure Bose-Einstein condensate,
the condensed fraction is superior to 80%, which corresponds to an upper-bound tem-
perature of 120 nK. In the inset we show a typical in-situ boson density profile at higher
temperature showing the bimodal signature of an emerging condensate. By fitting the
thermal fraction by a gaussian we extract a temperature of 580(25) nK in agreement with
a measured condensed fraction NBEC/Nb = 0.25(4).

the bosons and one state of the fermions in-situ along the radial direction using 50µs
imaging pulses separated by 10µs. If we are interested in both fermionic spin states in situ
density distribution we use a sequence of three imaging pulses. Both spin component of
the fermionic gas are imaged in situ in the radial direction and the bosonic cloud after time
of flight in the axial direction, see examples of images in Fig. 2.7. To avoid heating that
can modify the density profiles, we use 10µs pulses separated by 10µs at low intensities
I/Isat = 0.06 for the fermions. In any cases, reference images (providing I0) are taken
20 ms later.

2.8 Evidence for superfluidity

By analyzing the density profiles obtained by absorption imaging such as the ones shown
in Fig. 2.7, it is already possible to infer that both clouds are superfluid at the end of the
evaporation.

2.8.1 Bose gas

Superfluidity in the Bose gas is signaled by the Bose-Einstein condensation which due to
the interactions is described by a Thomas-Fermi profile. For a doubly integrated profile,
it reads

n̄BEC(z) = n̄0

(
µb −

1

2
mbω

2
z,bz

2

)2

, (2.11)
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where the central chemical potential reads

µb =
~ω̄b

2

(
15NBECabb

√
mbω̄b

~

)2/5

. (2.12)

with ω̄b = (ωz,bω
2
r,b)1/3, abb the boson-boson scattering length, and NBEC the number

of condensed bosons. Hence, the cloud has an axial extent given by the Thomas-Fermi
radius RTF,z,b = 2µb/mbω

2
z,b (and RTF,r,b = RTF,z,bωz,b/ωr,b).

In Fig. 2.7, the bosons are imaged after a long time-of-flight expansion. Thanks to
its hydrodynamic behavior, the BEC density distribution is modified by simple scaling
factors and is thus described by a Thomas-Fermi profile with time dependent Thomas-
Fermi radii. For a free expansion of duration t, the transverse radial Thomas Fermi radius
of an elongated BEC reads [138]:

RTF,r,b(t) = RTF,r,b(0)
√

1 + (ω,r,bt)2. (2.13)

In our experiment, the expansion is done in the presence of a magnetic curvature, but its
effect is negligible (few percents difference for a typical 5 ms time-of-flight). In Fig. 2.8,
we show a doubly integrated profile of bosons after time-of-flight. We extract a radial
Thomas-Fermi radius of 40µm meaning an in-situ radius of 3µm in the radial direction
and 85µm in the axial direction (see left panel of Fig. 2.8).

In terms of temperature, as there is no visible thermal fraction, we can only give
an upper-bound for the cloud temperature. In a harmonic trap the condensed fraction
ρ = NBEC/Nb follows the equation

ρ = 1−
(
T

Tc,b

)3

, (2.14)

where the transition temperature reads

kBTc,b = ~ω̄b

(
Nb

ζ(3)

)1/3

. (2.15)

Typically, the thermal fraction is no longer resolved for condensed fractions higher than
80 %. Hence, we get a conservative upper bound temperature of 120 nK. At higher temper-
ature, we can extract the temperature directly from the thermal fraction using a Gaussian
fit (a polylog fit would give similar results). In the inset of Fig. 2.8, we show a Bose gas in
situ density profile at intermediate temperature with a recognizable bimodal structure. By
fitting the thermal wings we extract a temperature of 580(25) nK, and a condensed frac-
tion of 0.27(4)% in good agreement with the prediction of equation (2.14): ρ = 0.30(4).

2.8.2 Fermi gas
Superfluidity of the strongly interacting Fermi gas can be inferred via several arguments.
First, for a balanced unitary Fermi gas in a harmonic trap, the critical temperature was
found to be Tc,f = 0.19TF,h [139, 121] with kBTF,h = EF,h = ~ω̄f(3Nf)

1/3 the Fermi
temperature of the trapped Fermi gas. For typical fermion numbers Nf = 3 × 105 and
trapping frequencies ωz,f = 18 Hz and ωr,f = 500 Hz, we get a transition temperature
Tc,f = 150 nK which is above the typical upperbound temperature given by the condensate
fraction of the Bose gas (120 nk).
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Another evidence can be seen on the imbalanced Fermi gas such as in figs. 2.8. At
low temperature, for small enough imbalance (i.e below the Clogston-Chandrasekhar
limit [140, 141]), the cloud is composed of three different concentric layers (shown as
three different colored regions in Fig. 2.8). At the core, the opposite spin fermions are
paired and form a superfluid phase. Then, the second layer is a normal phase containing
both spin states but with a strong imbalance, so that the minority atoms dressed by the
majority form a gas of polarons. Finally, the outermost layer contains all the remain-
ing majority atoms and forms an ideal Fermi gas. This structure can be directly seen on
doubly integrated profiles thanks to the local density approximation. Indeed, under this
assumption one can relate the local pressure P along the symmetry axis of the cloud to its
doubly integrated density:

P (z, r = 0) =
mω2

r

2π
n̄(z). (2.16)

Hence, using the Gibbs-Duhem identity ∂P/∂µ = n we get the local density along the
symmetry axis

n(z, r = 0) = −ω
2
r

ω2
z

1

2πz

dn̄

dz
(2.17)

In the superfluid core, the density of the two fermionic spin states are equal n↑ = n↓ so
that we get the following equation for the doubly integrated densities:

d(n̄↑ − n̄↓)
dz

= 0. (2.18)

Therefore, full pairing of atoms in the core region is signaled by a plateau in the doubly
integrated profiles. This is what is observed on the difference profile shown in Fig. 2.8.
The superfluidity of paired atoms was demonstrated by observing vortices solely in the
core region when the Fermi gas was put in rotation [59]. Furthermore, the observation of
a well defined plateau implies that the temperature of the cloud is significantly below the
transition temperature Tc,f , as for intermediate temperature the superfluid can be slightly
polarized [142]. Finally, the superfluid core size is given by the plateau length: in Fig. 2.8,
the radius is 110µm. For small imbalance, the radius is typically 300µm. Finally, at
unitarity and zero temperature, the balanced Fermi gas has a Thomas-Fermi profile:

n̄f(z) = n̄f,0

(
µf −

1

2
mfω

2
z,fz

2

)5/2

, (2.19)

where the chemical potential reads µf =
√
ξEF,h.

2.9 Final trap calibrations

2.9.1 Magnetic field calibration
The precise knowledge of the magnetic field is essential for a fine tuning of the various
different scattering lengths describing interactions in the system. As one of the Feshbach
coils was replaced in 2015, we describe in this section its calibration at high-fieldt. We use
the resonance frequency of the hyperfine transition |1b〉 → |2b〉whose field dependence is
known with great precision. At high field, the transition frequency is typically 175 MHz
and has a field dependence of ' 40 kHz/G. In practice, we measure transitions with a
typical linewidth of 4 kHz, implying an upper bound for the magnetic field stability of ∼
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Figure 2.9: Bias field as a function of current in the Feshbach coils. The bias field is
measured by looking at the radio-frequency resonance between the states |1b〉 and |2b〉 as
shown in inset. A linear fit (orange line) to the different bias field measurements (black
squares) gives a slope BBias/IFeshbach = 2.301(2) G/A.

0.1 G (see inset Fig. 2.9). Because of the large width of 7Li and 6Li Feshbach resonances,
this precision is more than sufficient in our experiments. By repeating the measurement
for different currents in the Feshbach coils, we can calibrate the coils, see Fig. 2.9. A
linear fit gives a slope BBias/IFeshbach = 2.301(2) G/A.

2.9.2 Trap frequency calibration

In order to characterize the trapping potential we measure the associated frequencies by
exciting the dipole mode of a cloud. This also allows us to check the harmonicity of the
trap which is essential for the counterflow experiment described in the next chapter.

In the axial direction, we profit from the small position difference between the two
curvature minima of the optical potential and the magnetic field. By slowly increasing the
optical power, the cloud is adiabatically displaced toward the optical potential minimum
and a sudden decrease of the power to its initial value will then make the cloud oscillate
in the trap. In virtue of the Kohn’s theorem, if the trap is harmonic the oscillations should
last forever. In Fig. 2.10, we show two examples of dipole-mode oscillations. Measuring
the oscillations over numerous periods allows for the extraction of the trap frequency with
a high precision. Furthermore even for amplitude larger than the cloud size, no damping
is visible over 1 s which validates the harmonic approximation in the axial direction.

In the radial direction, we excite the dipole mode by abruptly turning off the optical
dipole trap for a short period of time (500µs), the slight displacement induced by the
anti-trapping magnetic curvature and the gravity is enough to initiate radial oscillations
of the cloud. In order to amplify the oscillations amplitude, we image the cloud after
a time-of-flight (which typically increase the amplitude by a factor of 3). Depending
on the isotope used and the temperature of the cloud, the oscillations can exhibit a fast
damping or long-lived oscillations. In the case of a pure 7Li BEC, there is no damping
for amplitudes similar to the cloud sizes of the two isotopes (8µm amplitude while the
fermions radial size is 10µm). In contrast, the oscillations of a fermionic superfluid show
a strong damping rate as it experiences more easily the anharmonicities of the trap due to
its larger radial extent (10µm while the Bose gas has a typical radial extent of 3µm).
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Figure 2.10: Examples of axial frequency measurements by exciting the dipole mode of
the fermionic cloud. Left figure: typical oscillations in our shallowest trap, by measuring
the oscillations over a few periods we extract a typical frequency of νf,z = 19.61(5) Hz,
the precision can be improved (generally up to a factor ∼ 3) by increasing the number
of measured periods of oscillation. At low optical power the axial confinement is mainly
magnetic and highly harmonic, it allows for undamped oscillations of amplitude larger
than the cloud size.
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Figure 2.11: Examples of radial frequency measurements. At low optical power, a con-
venient method is to excite the cloud dipole mode by briefly shutting off the YAG laser.
This induces oscillations of few micrometers amplitude in one of the radial directions. To
amplify this movement, we measure the cloud position after time-of-flight. On the left
figure we show the oscillations of the fermionic cloud showing a strong damping rate. On
the contrary, oscillations of the 7Li BEC show at most a weak damping (right figure).



2.10 49

2.9.3 Number calibration
Finally, as aforementioned, the experimental absorption cross-section of the atoms usu-
ally differs from the ideal theoretical estimate. In order to accurately count the atoms
numbers, the cross-section is calibrated experimentally. At low temperature, the density
profiles of our clouds are described by Thomas-Fermi profile and the extent of the clouds
is thus related to their total atom number. Hence, provided the magnetic field and the
trap frequencies are well known, we can calibrate the cross-section so that the total atom
number obtained by integration of the density profil corresponds to the one obtained by
measuring the Thomas-Fermi radius. For bosons in the state |2b〉 we use the equation
(2.11), we find a correction αcal = 2.8(5). For the fermions in the states |1f〉 and |2f〉, we
use the equation (2.19) and we find αcal = 1.9(5).

2.10 Conclusion
In this chapter, we have given an overview of the experimental setup that allows us to
bring 6Li and 7Li vapors down to quantum degeneracy. While it is a rather complicated
(and capricious) machine, it is largely compensated by its quite unique features:

• The tunability of interactions for both isotopes using their various broad Feshbach
resonances. A direct consequence is the ability of producing new type of mixtures,
such as our dual superfluid Bose-Fermi mixture that will be investigated in the next
chapter.

• The possibility to use the 7Li BEC to probe locally the strongly interacting Fermi
gas which allows for a measurement of its temperature, equation of state and local
two-body correlations as previously used in [139] and demonstrated in chapters 3
and 8 respectively.
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Chapter 3

Counterflowing mixture of Bose and
Fermi superfluids

The discovery of superfluidity goes back to 1938 when two teams in Oxford led by J.F
Allen and A.D Misener and in Moscow led by P. Kapitsa reported the anomalous hydro-
dynamic behavior of liquid 4He below 2.17 K [2, 3]. The fluid was showing no visible
viscosity and could flow without friction through very small apertures. In analogy to the
superconductors, Kapitsa baptised this type of intriguing fluid, a superfluid. It was soon
conjectured that despite the strong interactions between 4He atoms, superfluidity was re-
lated to Bose-Einstein condensation [143, 144]. The missing piece of puzzle connecting
superfluidity to superconductivity was found in 1970 when the team of D. Osheroff, D.
Lee, and R. Coleman managed to observe the superfluid behavior of liquid 3He below a
transition temperature of 2.49 mK [145]. Here, as 3He atoms are fermions with attractive
interactions, superfluidity arises via the Cooper pairing mechanism like for electrons in a
superconductive metal as predicted by the BCS theory in 1957 [146, 6].

After those two discoveries of the superfluidity of bosonic 4He and fermionic 3He, the
idea of studying a Bose-Fermi superfluid mixture rapidly emerged [147, 148]. However
because of strong interactions between the two isotopes, 3He-4He mixtures contain only a
small fraction of 3He (typically 6%) which, so far, has prevented attainment of simultane-
ous superfluidity for the two species [149, 150]. With the advent of ultracold gases in the
90’s, new possibilities to study superfluidity became available. In particular, it allowed for
the study with unprecedented control of the phase coherence of these quantum fluids [43],
the superfluid to Mott insulator transition [20], the Berezinskii Kosterlitz Thouless tran-
sition in reduced dimensions [48] or the BEC-BCS crossover [151, 78, 152]. Mixtures
of degenerate gases were also produced such as Bose-Bose superfluid mixtures [153] or
Bose-Einstein condensate immersed in a Fermi sea [128].

In this chapter, in the spirit of the historical experiments done on superfluid liquid
helium, we describe the first observation of a counterflow between Bose and Fermi super-
fluids using our 6Li-7Li mixture. The counterflow is created by exciting center-of-mass
oscillations. At low amplitude, the oscillations exhibit extremely low damping and a
coherent energy exchange is observed between the two superfluids. These results can
be captured within a sum-rule approach and interpreted in terms of a coupled-oscillator
model. We then show how friction arises when the relative velocity between the Bose and
Fermi gas is increased. A sharp onset of dissipation is observed above a certain critical
velocity vc that we measure in the BEC-BCS crossover. Our results are compared to the
Landau criterion for superfluidity [154] and its generalization to a superfluid mixture [86].
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Figure 3.1: Center of mass oscillations of the two superfluids (6Li top, 7Li bottom) after
being initially displaced from the trap center. In first approximation, the clouds oscillate
at frequencies that differs by a factor

√
7/6. They thus progressively acquire a relative

motion and get out of phase after ∼ 4.5 periods. For an initial displacement of 100µm,
the maximal velocity between the two clouds is 1.8 cm/s.

The experiments have been described in great details in the thesis of I. Ferrier-Barbut [131],
and M. Delehaye [155], to which we refer the interested reader. Therefore, we will delib-
erately focus on a simple description and emphasize the aspects that connect to the next
chapter.

3.1 Creating a counterflow of Bose and Fermi superfluids
The full experimental sequence to cool our 6Li-7Li mixture down to double degeneracy is
described in chapter 2. For the final cooling step, we start with 6 Li atoms in a balanced
mixture of their two lowest hyperfine states |1f〉 & |2f〉 and 7Li atoms spin polarized in
the second lowest state |2b〉. The clouds are confined in a strong optical dipole trap, and
by lowering the trap depth in the vicinity of the 6Li Feshbach resonance we perform an
extremely efficient evaporation and the clouds reach the dual degenerate regime. Typical
final atoms numbers are Nf = 3 × 105 and Nb = 4 × 104 at a temperature T ' 80 nK
which is significantly below the critical temperatures for superfluidity of both gases, see
section 2.8.

Contrary to liquid 3He-4He experiments, the Bose-Fermi interaction in our system is
weak (abf = 40.8a0) and ensures that the superfluid mixture is stable with respect to phase
separation. However, this also means that the effect of the interspecies coupling is difficult
to see directly on the density profiles (and even more if the profiles are doubly integrated)1.
As we will see, the small coupling between the two superfluids can be actually probed by
counterflow experiment.

We create a relative motion between the two superfluids by exciting the center of
mass oscillations of the two clouds, a scheme used previously for the study of mixtures
of Bose-Einstein condensates [69, 156], mixtures of Bose-Einstein condensates and spin-
polarized Fermi seas [157], spin diffusion in Fermi gases [158], or integrability in one-
dimensional systems [159]. The oscillations are initiated by displacing the clouds from
the trap center in the axial direction where the confinement is mostly magnetic and highly

1For example, the fermion central chemical potential µf is typically 20 times larger than the interspecies
mean-field interaction term gbfnb, with gbf = 2π~2abf/mbf and mbf = mbmf/(mb + mf). Hence, the
deviation from the fermion density profile without interspecies coupling is typically a few percents.
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Figure 3.2: Example of low amplitude oscillations of the center of mass of the two super-
fluids (blue circles: bosons, red circles: fermions) taken at 835 G. Solid lines are fit to the
data using the equations (3.7,3.8).

harmonic. At high field, both isotopes are in the Paschen-Back regime and have the
same energy dependence with magnetic field so that both clouds feel the same trapping
potential in the axial direction. As a consequence, due to the different atomic masses of
the two clouds, the trapping frequencies are related by2 ωf/ωb =

√
7/6 ' 1.08. Hence,

as depicted in Fig. 3.1, after being displaced by the same quantity, the clouds oscillate
in the trap and progressively acquire a relative motion. The relative velocity reaches
its maximal value after ' 4.5 periods. For an initial displacement of 100µm, we have
typically vrel,max = 1.8 cm/s. The cloud positions are monitored during up to 4s, which
represents ∼ 60 periods of oscillations and we can determine the oscillations frequency
with a typical precision of ∆ω/ω . 2× 10−2.

3.2 Low amplitude oscillations: Coherent energy exchange

For a small initial displacement (typically ≤ 100µm), contrary to the large damping
observed in the Bose-Bose mixtures [69], we observe long-lived oscillations of the Bose-
Fermi superfluid mixture. They can extend up to 4 s with no visible damping, see fig (3.2)
and our measurement is solely limited by the lifetime of the mixture. Furthermore, the
oscillations of the mixture exhibits two features not observed in absence of one of the
two isotopes. First, the 7Li oscillation frequency ω̃b is downshifted by several percent,
while the 6Li frequency ω̃f is almost unchanged. At unitarity (832 G), we measure ω̃b =
15.00(2) and ω̃f = 16.80(2), while the associated bare trapping frequencies are ωb =
15.27(1) and ωf = 16.80(50). Second, we observe an amplitude modulation on the bosons
oscillations at a frequency ' (ω̃f − ω̃b)/2π, which implies a coherent energy exchange
between the two superfluids.

2Because of a slight deviation from the Paschen-Back regime for 7Li this ratio is 1.10 instead of 1.08.
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3.2.1 Frequency shift
The small frequency shift observed for the boson oscillations comes from a modification
of its confinement due to the interactions with the fermions. The Bose gas can be seen as a
mesoscopic impurity immersed in the Fermi superfluid. Hence, the bosons see an effective
potential which is the sum of the trapping potential V (r) and the mean-field interaction
gbfnf(r), where nf is the total fermion density, gbf = 2π~2abf/mbf , and mbf = mbmf

mb+mf

is the 6Li/7Li reduced mass. In first approximation we can neglect the back action of the
bosons on the fermions, so that within the local-density approximation the density of the
fermions is given by nf(r) = n

(0)
f (µf − V (r)), where n(0)

f (µ) is the stationary equation of
state (EoS) of the Fermi gas. Due to its small size RTF,b ' 0.35RTF,f , the BEC probes
mainly the central density of the fermions. We can thus expand nf around r = 0, and we
get

Veff = gbfnf(0) + V (r)

[
1− gbf

(
dn

(0)
f

dµf

)
r=0

]
. (3.1)

The effective potential is still harmonic and to first order the associated frequency is given
by

ω̃b ' ωb

[
1− 1

2
gbf

(
dn

(0)
f

dµf

)
r=0

]
. (3.2)

The chemical potential of a unitary Fermi gas reads

µf = ξ
~2

2mf

(3π2nf)
2/3. (3.3)

Hence, in the weakly coupled limit the frequency shift is

δωb

ωb

=
ωb − ω̃b

ωb

=
13kF,habf

7πξ5/4
, (3.4)

where kF,h =
√

2~mf ω̄f(3Nf)
1/3 is the Fermi momentum of a non-interacting harmoni-

cally trapped Fermi gas. For our experimental parameters kF,h = 4.6× 106 m−1, eq (3.4)
predicts a value ωb ' 2π × 14.97 Hz, in very good agreement with the observed value
15.00(2) Hz.

3.2.2 Amplitude modulation
To further understand the observed dynamics of the superfluids, it is necessary to include
the back action of the bosons on the fermions. Experimentally, we remark that the initial
displacement of the trap only excites the dipole modes of the cloud so that the underlying
effective model should be a two-level system. In the absence of interspecies interactions,
the two levels are the two dipole modes which get dressed when the coupling is turned
on. Hence, the observed amplitude modulation on the boson oscillations comes from a
beating between the two dressed modes. This modulation is a priori also present on the
fermions but is smaller due to a larger inertia of the cloud Nfmf � Nbmb.

The observed center of mass oscillations of the mixture can be recovered using a
phenomenological coupled oscillator model :

Mf z̈f = −Kfzf −Kbf(zf − zb), (3.5)
Mbz̈b = −Kbzb −Kbf(zb − zf), (3.6)
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where Mb = Nbmb (Mf = Nfmf) is the total mass of the 7Li (6Li) cloud, Kb = Mbω
2
b

(Kf = Mfω
2
f ) is the spring constant of the axial magnetic confinement, and Kbf is a

(weak) coupling constant describing the mean-field interaction between the two isotopes.
To recover the correct frequency shift (eq. (3.2)), we take Kbf = 2Kb

δωb

ωb
.

If we now solve these equations with the initial condition zf(0) = zb(0) = d, the
beating between the two dressed modes is parametrized by two factors ρ = Nb/Nf and
εm = 2mb

mb−mf

δωb

ωb
. In our experiment, both factors are small and we can take the limit

ρ, εm � 1, so that we get

zf(t) = d [(1− εmρ) cos(ω̃ft) + ρεm cos(ω̃bt)] , (3.7)
zb(t) = d [−εm cos(ω̃ft) + (1 + εm) cos(ω̃bt)] , (3.8)

with ω̃f ' ωf .
The predictions of eqs. (3.7, 3.8) agree well with experiment (Fig. 3.2). In particular, the
amplitude modulation on the bosons oscillations is given by εm. Thanks to the large mass
prefactor (= 14) in its expression, εm has a typical value of ' 0.25 at unitarity and it
explains the observed amplitude modulation. This stems from the almost resonant bare
frequencies of the two oscillators which allow for an efficient energy exchange despite a
weak coupling.

3.2.3 Sum-rule approach
We can actually recover the equations (3.7, 3.8) within a fully quantum formalism, using
a sum-rule approach [160, 161, 162]. The full derivation is given in appendix A. The
sum-rule method is a variational approach that relates the properties of collective excita-
tions (here the dressed dipole modes) to equilibrium properties of the system that can be
computed using the local-density approximation. The principal result is that the squared
frequencies of the two eigenmodes are given by the extrema of the following function

S : |Ψ〉 → k
〈Ψ|Ψ〉
〈Ψ|M|Ψ〉

, (3.9)

with k = mαω
2
α the (species independent) spring constant, Ψ = (ub, uf) is a 2-dimensional

vector expressed in the basis of the two bare dipole modes and M is an effective mass
operator given by

Mαβ =
√
mαmβ

√
Nα

Nβ

∂〈zα〉
∂bβ

, (3.10)

with 〈zα〉 the mean displacement of species α when the trapping potential of species β is
shifted by a quantity bβez. The extrema of S can be obtained by a diagonalisation ofM.
Assuming ∂bf 〈zb〉 � 1, we get to first order

ω̃f = ωf

(
1− Nb

Nf

∂〈zb〉
∂bf

)
' ωf , (3.11)

ω̃b = ωb

(
1− ∂〈zb〉

∂bf

)
. (3.12)

The associated eigenmodes are the dressed dipole modes, and by expressing the initial
condition over this eigenmode basis, one recovers the equations (3.7, 3.8).
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Finally the crossed susceptibility term ∂bf 〈zb〉 can be calculated using the local-density
approximation

nb(r) = n
(0)
b (µ

(0)
b − V (r)− gbfnf(r)), (3.13)

nf(r) = n
(0)
f (µ

(0)
f − V (r− bfez)− gbfnb(r)). (3.14)

To first order in gbf , we readily get

∂〈zb〉
∂bf

' kgbf

Nb

∫
d3rz2∂n

(0)
f

∂µf

∂n
(0)
b

∂µb

. (3.15)

Assuming that the Bose gas is much smaller than the fermionic cloud , we can approxi-
mate this expression by

∂〈zb〉
∂bf

' kgbf

Nb

(
∂n

(0)
f

∂µf

)
r=0

∫
d3rz2∂n

(0)
b

∂µb

. (3.16)

The integral can be calculated exactly, assuming a usual Thomas-Fermi distribution, so
that we get the simplified expression

∂〈zb〉
∂bf

' gbf

(
∂n

(0)
f

∂µf

)
r=0

. (3.17)

Hence, we recover the expression for the frequency shift given in equation (3.2).

3.2.4 Frequency shift in the crossover
Equation (3.2) allows us to predict the frequency shift of the Bose gas in the whole BEC-
BCS crossover. More precisely, the frequency shift obeys a universal scaling

δωb

ωb

= kF,habff

(
1

kF,haff

)
. (3.18)

where the function f is computed numerically using the zero temperature EoS of the
interacting Fermi gas measured in [107] and is shown as a blue solid line in Fig. 3.3.
In addition to the unitary limit (1/kF,h = 0) where f(0) = 13/7πξ5/4, the two other
asymptotic limits for the frequency shift can be understood easily. In the far BEC limit,
the Fermi gas forms a molecular BEC whose size decreases with aff so that the mean field
interaction seen by the bosons increases. In the mean field regime, we have ∂nf/∂µf =
2mfaddπ~2, where add = 0.6aff is the dimer-dimer scattering length [77]. Thus, we get

lim
1/kF,haff→∞

f(1/kF,haff) = 6.19
1

kF,haff

. (3.19)

Hence the frequency shift increases when going toward the BEC limit3.
In the far BCS limit, the equation of state of the Fermi gas becomes that of a non-
interacting Fermi gas and leads to the same frequency shift as at unitarity provided we
set ξ = 1:

lim
1/kF,haff→−∞

f(1/kF,haff) =
13

7π
, (3.20)

3However, we expect deviations from this mean-field result as the boson-dimer scattering length abd
will differ from its mean-field expression abd = 2abf in the deep BEC limit [163]. In our experiment, for
the interaction parameter region we covered, the maximal deviation in frequency shift remains small . 7%.
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Figure 3.3: Relative frequency shifts for the bosons center of mass oscillations in the
BEC-BCS crossover. The red circles are the experimental measurements, error bars rep-
resents 1-sigma uncertainty on the frequency measurment and the value of kF,h. Solid line
is the model (eq. (3.18)) calculated using the EoS measured in [107]. The dashed line is
the asymptotic frequency shift predicted in the BCS limit.

Therefore, we expect the frequency shift to reach a constant value in the BCS limit.
To verify these predictions, we repeat the counterflow measurement for different magnetic
field ranging from 780 G to 860 G where 1/kF,haff spans the interval−0.4,+0.8. The
comparison is plotted in Fig. 3.3, and shows an excellent agreement between experiment
and our model.

This demonstrates that precision measurements of collective modes of an impurity
(the bosons) are a sensitive dynamic probe of equilibrium properties of a quantum many-
body system. In chapter 8, we will also show that this same impurity can be also used as
a probe for local quantum correlations in the many-body system by means of three-body
recombinations. Finally, an interesting prospect that will be explored in the next chapter
is to test if the sum rule model is also capable to describe the dynamics of two oscillating
superfluids for stronger interspecies coupling.

3.3 Large amplitude oscillations: Friction and critical ve-
locity

For small initial displacements of the clouds, we observed long-lived oscillations of their
center of mass as expected in virtue of the frictionless flow property of superfluids. In
sharp contrast, for amplitudes larger than a critical value the BEC oscillations are rapidly
damped until a steady state regime is reached, as shown in Fig. 3.4. To extract the damping
rate, we fit the data using equations (3.7, 3.8) with phenomenological time-dependent
amplitudes dα given by

db(t) = (1 + δbe−γbt)d, (3.21)
df(t) = (1 + δfe

−γf t)d. (3.22)



58 Chapter 3

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●●

●

●
●

● ●

●
●

●

●
●

●

●

●

●
●
●

●●●

●
● ●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●●

●

●
●

● ●

●
●

●

●
●

●

●

●

●
●
●

●●●

●
● ●

●
●

-���

-���

�

���

���

� �
(�
)
(μ
�
)

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●●

●
●

●

●●

� ��� ���� ���� ���� ����
-���

-���

�

���

���

� (��)

� �
(�
)
(μ
�
)

Figure 3.4: Example of center of mass oscillations taken a unitarity (832 G) with large
initial displacements (200µm). The oscillations are first rapidly damped until the relative
velocity is lower than a critical relative velocity. Following oscillations are undamped.
Solid lines are fit to the data using equations (3.7, 3.8) with time dependent amplitudes
(eqs. (3.21, 3.22)).

Repeating the measurement for different initial displacements, hence different maximal
relative velocities (estimated using the fits), we observe a well-defined threshold above
which damping arises, see fig 3.5. We extract the associated critical velocity with a simple
ad-hoc fit

γfit = AΘ(v − vc)((v − vc)/vF)p, (3.23)

where Θ is the Heaviside function and vF =
√

2kBTF,h/mf is the Fermi velocity.
There is currently no theoretical model that provides a value for the exponent p. Never-
theless, a χ2 test shows that for most of our data, the best fits are obtained for p ' 1 .
Hence we fix p to one and we estimate the uncertainty on vc by allowing p to vary between
0.5 and 2. At unitarity we find vc = 0.42+0.08

−0.14vF. As we will see in the following section,
the critical velocity can be seen as a threshold for the creation of elementary excitations
in the dual superfluid.

3.3.1 Simple and generalized Landau criterion for superfluidity

Another aspect of superfluidity predicted by Lev Landau [164], is the existence of a criti-
cal velocity above which an impurity moving through the superfluid starts to feel a friction
force and its kinetic energy gets dissipated.

In the simple situation imagined by Landau, a microscopic impurity of massm is mov-
ing trough an homogeneous superfluid at a constant speed. The first step for dissipation of
the kinetic energy of the impurity is the emission of a single elementary excitation in the
superfluid. Initially, the impurity has a velocity v and a kinetic energy mv2/2. After the
emission of an elementary excitation of momentum p and energy ε(p), by conservation
of the total momentum, the new velocity of the impurity is v − p/m. Hence, by en-
ergy conservation the momentum of the elementary excitation has to fulfill the following
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Figure 3.5: Damping rate for the BEC oscillations as a function of the maximal relative
velocity between the superfluids and for three different interaction regimes. The solid
lines are fit using equation (3.23) with p = 1.

equation

v.p =
p2

2m
+ ε(p). (3.24)

Since v.p ≤ vp, this equation admits solutions only if the velocity is above the Landau
critical velocity :

vc = Min
p

[
p2

2m
+ ε(p)

p

]
. (3.25)

In the limit of an infinite mass impurity, the critical velocity takes the simple expression

vc = Min
p

[
ε(p)

p

]
. (3.26)

The critical velocity can then be obtained graphically by finding the minimal slope possi-
ble among all the lines joining the origin (0,0) to a given point of the dispersion relation
(p, ε(p)). The homogeneous weakly interacting Bose gas has a convex dispersion relation
and is linear at low momenta

εb =
p→0

pcb. (3.27)

Hence the critical velocity is just the sound velocity

vc,b = cb =

√
gbbnb

mb

. (3.28)

The case of the interacting Fermi gas is more complicated as it possesses two excita-
tion branches: the bosonic collective excitations linear at low momenta and the gapped
fermionic quasi-particles excitations. The value of the critical velocity depends on the
precise shape of the two dispersion relations that actually strongly vary in the BEC-BCS
crossover. A calculation of the fermion critical velocity was done in the limit of infinite
mass impurity in [165] and was extended in [86] for any mass. In the BEC limit and up to
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unitarity, the critical velocity is given by the sound velocity of the Fermi gas

vc,f = cf =

√
nf

mf

∂µf

∂nf

, (3.29)

which can be computed using the EoS. On the BCS side of the resonance, the collective
excitations merge into the pair-breaking continuum and the critical velocity is given by
the fermionic branch

vc,f =

[
1

mf

(
√

∆2
f + µ2

f − µf)

]1/2

, (3.30)

where ∆f is the gap parameter. For a finite mass impurity, the region where the critical
velocity is given by the sound velocity is larger and can extend on the BCS side. Hence,
the critical velocity is expected to be maximal around unitarity with a value close to the
unitary sound velocity ' 0.36~kF/mf .

In order to describe our experiment, the Landau criterion for superfluidity, eq. (3.25),
has to be generalized to counterflowing superfluids. This extension was done in [86]
where the method to calculate the new critical velocity is actually very similar to the
case of a finite mass impurity. The minimal process for dissipation is the creation of
one excitation in each superfluid with opposite momenta4. Hence, energy conservation
implies

εf(−p) + εb(p) + p.v = 0 (3.31)

where εf is an effective dispersion relation of the Fermi superfluid [86] and the term p.v
is the Doppler shift of the excitation of momentum p in the BEC.
Consequently, the generalized critical velocity is

vc = Min
p

(
εf(p) + εb(p)

p

)
. (3.32)

According to [86], around unitarity and on the BEC side, the critical velocity is then the
sum of the sound velocities

vc = cb + cf . (3.33)

In [166], it was shown that in the hydrodynamic approximation, this critical velocity
corresponds to the appearance of a dynamical instability in the counterflowing superfluids
where excitations grow exponentially with time. They also calculated the reduction of the
critical velocity when the interspecies coupling is increased5. Furthermore, it can also be
shown that the friction force between the two superfluids is directly proportional to the
dynamical structure factor of the fermionic superfluid [167].

4Two fermionic excitations in the Fermi superfluid if it involves breaking a pair, which is the dominant
mechanism on the BCS side.

5The reduction of the critical velocity is driven by the parameter

εbf =
c2bf
cbcf

, (3.34)

where

c2bf =

√
nb
mb

nf
mf

∂µb

∂nf

∂µf

∂nb
. (3.35)

For εbf = 0, the critical velocity is cb+cf and goes to 0 when εbf → 1, which corresponds to the mechanical
instability of the mixture (phase separation). In our experiment, we have εbf ∼ 10−1−10−2, and the effect
of the coupling on the critical velocity is negligible.
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Figure 3.6: Critical velocity of the dual Bose-Fermi superfluid in the BEC-BCS crossover.
Red circles: Experimental points obtained using the fit given by eq. (3.23) with p set to
1. Error bars are the variation of vc when changing the power p from 0.5 to 2. Red
dot dashed line: Sound velocity of the Fermi gas calcultated from its equation of state
[168, 107]. Blue bars: calculated sound velocity of the Bose gas. Green squares: sum of
the calculated sound velocities.

3.3.2 Critical velocity in the BEC-BCS crossover

In Fig. 3.6, we show the critical velocity extracted from the measurement of the oscilla-
tions damping rates in the BEC-BCS crossover. We compare them to the predictions of
eqs. (3.28, 3.29, 3.33) using the central sound velocities for elongated superfluids c̄α=b,f

obtained by integration over the transverse degree of freedom6. c̄b does not depend on
1/kFaff but rather on the associated magnetic field. It contributes typically to 20 − 25%
to the sum of the sound velocities and is clearly excluded as being the threshold for dis-
sipation in our system. Instead, our data is compatible with a threshold for dissipation
given by the fermionic sound velocity c̄f (i.e. the Landau criterion for a “rigid” impurity
moving in the fermionic superfluid ) or the sum of the two sound velocities c̄b + c̄f .

Despite the uncertainity of our measurements, this agreement is remarkable inas-
much as previous measurements of the fermionic critical velocity were systematically
significantly lower than Landau’s prediction [171, 67]. In these studies, the friction was
probed using a stirring laser beam that moves through the whole cloud including its non-
superfluid part. In addition, the beam creates strong density modulation that allows for
high-order process to be excited. Those factors limit a direct comparison to the ideal setup
imagined by Landau [172].

6For a polytropic equation of state µ ∝ nγ and provided µ� ~ωr, the 1D sound velocity is

c̄ =

√
γ

γ + 1

µ

m
=

1√
γ + 1

c (3.36)

For a BEC in the Thomas-Fermi regime, this gives c̄ = c/
√

2 [169]. For a unitary Fermi gas or in the BCS
limit c̄ = c/

√
5 [170]
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In our case, the BEC probes mainly the central density of the fermionic cloud thanks
to its small size. Additionally, the critical velocity is always first reached when the centers
of the clouds coincide as the ratio vrel/cf is maximal in that position7. Furthermore, the
weak repulsive coupling between the two superfluids ensures that vortex shedding or the
generation of higher order excitations are strongly inhibited. Nevertheless several other
factors are expected to affect the onset of dissipation in our system:

• The confinement in the radial direction induces a back-bending of the dispersion
relation [173, 174]. This effect is expected to lower the critical velocity by a factor
(µ/~ωr)1/3. However, the associated high-frequency modes are localized on the
edges of the cloud and due to the different sizes of our superfluids, the generation
of those modes in the Fermi superfluid should be inhibited by their weak overlap
with the BEC.

• The Landau criterion is a priori only valid at T = 0. The thermal fluctuations
tend to smear out the onset of dissipation and therefore reduce the apparent critical
velocity as demonstrated in [172]. This could explain the lower critical velocity
observed on the BEC side of the resonance (780 G) where enhanced inelastic losses
heat-up the cloud (see chapter 8).

• The oscillatory motion of the impurity is also expected to blur the threshold as it
allows to create excitations at any speed. This effect is present in [67] where the
stirrer has a circular motion and was shown to be an important reduction factor for
the apparent critical velocity [172]. In the next chapter, we will look at how the
non uniform motion affects the generation of excitations in a system similar to our
counterflowing Bose-Fermi mixture.

Estimating the order of magnitude of these effects on the critical velocity is rather diffi-
cult, especially for the strongly interacting Fermi gas, but could potentially improve the
agreement with the predicted value for our mixture vc = c̄b + c̄f (at unitarity and on the
BEC side).

3.4 Conclusion
In this chapter, we presented experimental results on our counterflowing superfluids. The
counterflow is created by exciting the dipole modes of the two clouds. For small initial
displacements the oscillations are long-lived, providing a strong evidence of the superflu-
idity of our Bose-Fermi mixture. By carefully analyzing the BEC oscillations we observe
a frequency shift and an amplitude modulation that demonstrate a coherent energy ex-
change between the two superfluids. The measured frequency shifts are well described
by a sum-rule model and allow us to probe the EoS of the Fermi gas in the BEC-BCS
crossover.

In a second part, we studied the oscillations at larger amplitude and observed an onset
of dissipation characteristic of the generation of excitations in the system as predicted

7Indeed, for a polytropic equation state µf ∝ nγf and an oscillatory motion z(t) = Z0Cos(ωt), using
the LDA we have

v(z)2

cf(z)2
=

v(0)2

cf(0)2
1− z2/Z2

0

1− z2/R2
TF,z

, (3.37)

which is maximum for z = 0 when Z0 ≤ RTF,z.
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by the Landau criterion for superfluidity. The extracted critical velocities in the BEC-
BCS crossover are remarkably high and compatible with theoretical predictions derived
for ideal configurations. This can be partially explained by several properties that are
unique to our system, in particular our impurity played by the BEC is weakly coupled
to the Fermi gas and only locally probes its superfluid part. Two aspects of our system
that can affect our measurement however remain to be explored: the effect of the finite
temperature of the mixture and the non-uniform motion of the impurity. As it was done for
the experiments presented in [67] with the numerical simulation done in [172], our results
call for complementary studies. In the next chapter, we will partially fulfill that need by
presenting the results of a Gross-Pitaevski simulation of two counterflowing BECs at zero
temperature.
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Chapter 4

Numerical simulation of counterflowing
superfluids

In order to understand the frictionless nature of superfluidity, Landau investigated the
thought experiment of a moving impurity in a superfluid. He conjectured the existence
of a critical velocity above which dissipation nevertheless arises. As we have seen in the
previous chapter, in its simplest form, this critical velocity marks the threshold beyond
which the impurity can generate a stationary wake of elementary excitations. As such, it
is a physical phenomenon similar to the Cherenkov radiation in electrodynamics [175],
to a supersonic bang or to the generation of surface waves by an object moving at the
surface of a liquid [176, 177]. However, the direct observation of such a treshold was
shown to be challenging as in actual experiments other decay channels can strongly mod-
ify the response of the superfluid to the moving impurity. It was first observed that in
the case of a strong perturbation, vortex shedding could supersede generation of elemen-
tary excitations [178, 179, 180, 181, 182]. Moreover, in trapped gases, density inhomo-
geneities [173, 174] and thermal fluctuations [183, 172, 184] can also strongly decrease
the value of the critical velocity. Finally, the threshold is even completely smeared out
when the impurity does not move at constant velocity [185, 172], just like accelerated
charged particles radiate electromagnetic waves at any speed [186].

Despite all those mentioned potential limitations, we observe in our counterflow ex-
periments thresholds for dissipation that are close to the expected value using the Landau
criterion in the ideal case (i.e homogeneous superfluids moving at constant speed). This
is surprising inasmuch as other measurements reported critical velocities below theoret-
ical predictions [63, 66, 67]. Contrary to all other cold atom experiments where friction
is probed using a stirring laser beam, our experiment uses two counterflowing superfluids
and dissipation is expected to arise from a different mechanism [86] which might lead to
a more robust threshold.

In order to gain more insight about the potentially original dynamics acting in our
system, we started a collaboration with Philippe Parnaudeau, Atsushi Suzuki and Ionut
Danaila from Laboratory Jacques Louis Lions to perform numerical simulations of coun-
terflowing superfluids. The superfluids are interacting Bose-Einstein condensates mod-
eled by two coupled Gross-Pitaevskii equations. This is a simplified situation where the
strongly interacting Fermi gas is replaced by a Bose-Einstein condensate, an approxima-
tion that is valid on the molecular side of the fermionic Feshbach resonance. Like in
the experiment, we simulate the dynamic of two harmonically trapped clouds initially
displaced from their position at rest.

65
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In this chapter, we describe the results obtained from the simulation and different phe-
nomenological approaches used to interpret them. To begin with, we check the accuracy
of the sum rule model introduced in the previous chapter to predict the full dynamics of
the dipole mode oscillations. Then, with the help of a principal component analysis algo-
rithm [187] we reveal the rich underlying dynamics of the collective modes excited during
the counterflow. Using an hydrodynamic model, we are able to identify two mechanisms
of excitation in our system. Firstly, in an analog manner to laser stirring beams, collective
modes can be excited in a cloud by the perturbation potential created by the interactions
with the other cloud. In the case of an oscillatory movement, we show that there is no
threshold for the onset of dissipation, and the collective modes can be resonantly excited
even at low velocity. The second mechanism is unique to counterflowing superfluids:
pairs of modes from both superfluids can be parametrically excited. It is closely related
to the generalized Landau criterion predicted for homogeneous counterflowing superflu-
ids [166, 86]. Contrary to the first mechanism, an oscillatory movement does not destroy
the threshold for excitation and a critical velocity is observed in our simulation like in our
experiment.

4.1 Mathematical and numerical settings
In this section, we introduce the equations used to model the dynamics of two oscillating
condensates in the simulation. We briefly explain the methods used to solve them. We
also give all the parameters involved in the simulation.

4.1.1 Gross-Pitaevskii equations
The time evolution of a two-component Bose-Einstein condensate with complex macro-
scopic wave-functions ψ1(r, t) and ψ2(r, t) can be described by the coupled GP equations:

i~
∂ψ1

∂t
=

[
− ~2

2m1

∇2 + U(r, t) +N1g11|ψ1|2 +N2g12|ψ2|2
]
ψ1, (4.1)

i~
∂ψ2

∂t
=

[
− ~2

2m2

∇2 + U(r, t) +N1g21|ψ1|2 +N2g22|ψ2|2
]
ψ2. (4.2)

The number of particles Ni for each component is conserved and we have∫
R3

|ψ1|2 = 1,

∫
R3

|ψ2|2 = 1. (4.3)

The atomic mass of each component can be expressed as:

mi = dim, i = 1, 2. (4.4)

Interaction constants gij are defined as:

gii = 4π~2aii/mi, (4.5)

and for i 6= j

gij = 2π~2aij/µ, with the reduced mass µ =
m1m2

m1 +m2

. (4.6)
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The aij are the s-wave scattering lengths and a12 = a21.
The two BECs feel the same trapping potential:

U(r, t) =
m

2
d2

[
ω2
⊥(x2 + y2) + ω2

z (z − zc(t))2] , (4.7)

with

zc(0) = z0, zc(t) = 0, t > 0. (4.8)

The two condensates having different atomic mass, displacing the center of the trap by
the quantity z0 will make them oscillate at different frequencies like in the experiment.

4.1.2 Dimensionless equations

In order to choose the relevant time and space resolution of the numerical simulation, the
Gross-Pitaevskii equations have to be recast in a dimensionless form. The starting point
is to consider a general length (xs) and time (ts) scales. Non-dimensional variables will
be then

x̃ =
x

xs
, t̃ =

t

ts
, ϕ1 =

ψ1

x
−3/2
s

, ϕ2 =
ψ2

x
−3/2
s

. (4.9)

We take the usual scalings

ts =
1

ω
, xs = aho, aho =

√
~
mω

. (4.10)

Hence, equations (4.1, 4.2) become (in the following we drop the˜notation for r and t):

i
∂ϕ1

∂t
=

[
− 1

2d1

∇2 + Ua(r, t) + β11|ϕ1|2 + β12|ϕ2|2
]
ϕ1, (4.11)

i
∂ϕ2

∂t
=

[
− 1

2d2

∇2 + Ua(r, t) + β21|ϕ1|2 + β22|ϕ2|2
]
ϕ2, (4.12)

with: 

Ua =
d2

2

[
γ2
⊥(x2 + y2) + γ2

z (z − b(t))2],
β11 = 4π

1

d1

N1a11

aho
, β12 = 2π

d1 + d2

d1d2

N2a12

aho
,

β21 = 2π
d1 + d2

d1d2

N1a12

aho
, β22 = 4π

1

d2

N2a22

aho
.

(4.13)

with γ⊥ = (ω⊥/ω), γz = (ωz/ω) and b = zc/aho.

4.1.3 Numerical methods

The numerical simulation procedure can be decomposed in two parts, a preparation step
where the initial wave functions are computed and the dynamics itself.
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Initialization

As for the experiment, the clouds are initially in their ground state. In the Thomas-Fermi
regime, the ground state of the coupled superfluids can be a priori calculated analytically.
Here, we won’t neglect the kinetic terms and instead compute the wave functions numer-
ically. Stationary solutions have the form:

ϕi(r, t) = exp(−iµg,it)φi(r), i = 1, 2, (4.14)

with µg,i the global chemical potentials. Among these solutions, the ground state will
minimize the total energy of the system E(φ1, φ2), where

E(φ1, φ2) =

∫
R3

2∑
i=1

[
1

2di
|∇φi|2 + Ua |φi|2 +

1

2

2∑
j=1

βij|φi|2|φj|2
]
. (4.15)

To find such a solution, we use a pseudo-time (or imaginary time) propagation [188] by
solving:

∂φ1

∂t
=

[
1

2d1

∇2 − Ua(r, t)− β11|φ1|2 − β12|φ2|2
]
φ1, (4.16)

∂φ2

∂t
=

[
1

2d2

∇2 − Ua(r, t)− β21|φ1|2 − β22|φ2|2
]
φ2. (4.17)

For the time discretization of these equations, we use a semi-implicit backward Euler
method[188].

Real-time dynamics

For the real-time dynamics we use a second order time splitting method [188]. This
method is used when two or more terms of the Hamiltonian do not commute, here A
and B. For small time steps, their contribution can be calculated separately using the
following formula:

∂ψ

∂t
= (A+B)ψ =⇒ ψ(x, t+ δt) = e(A+B)δtψ(x, t) (4.18)

≈ eAδt/2eBδteAδt/2ψ(x, t). (4.19)

This particular choice is second order accurate in time t [189].
In our case

A1 = i
1

2d1

∇2, B1 = −i
[
Ua(r, t) + β11|ϕ1|2 + β12|ϕ2|2

]
, (4.20)

A2 = i
1

2d2

∇2, B2 = −i
[
Ua(r, t) + β21|ϕ1|2 + β22|ϕ2|2

]
. (4.21)

The Ai and Bi operators are respectively diagonal in Fourier and real space. Their con-
tribution can be computed easily by going back and forth in those spaces using Fourier
pseudo-spectral methods.
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Figure 4.1: Simply integrated density profiles of the two initial wavefunctions ñi(x, z) =∫
dy ni(x, y, z) for a simulation run with b = 3 and β12/β22 = 3.1× 10−3.
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Figure 4.2: Doubly integrated density profiles of the two initial wavefunctions n̄i(z) =∫
dx dy ni(x, y, z) for a simulation run with b = 3 and β12/β22 = 3.1× 10−3.
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4.1.4 Simulation parameters
Fixed physical parameters

The parameters of the simulation are chosen to reproduce (but only partially) the ex-
perimental conditions described in the previous chapter. We consider a large and strongly
interacting BEC and a small and weakly interacting BEC in a 3D harmonic trap elongated
along one direction. For the clouds we thus took as fixed parameters

m = 6u, d1 = 7/6, d2 = 1.

N1 = 2 · 104, N2 = 6 · 105

a11 = 40.83a0, a22 = 300a0.

The masses are choosen to reproduce the bare trapping frequency difference in our mix-
ture of 6Li-7Li, ωb/ωf =

√
6/7.

The dimensionless interacting parameters are then

β11 = 80.20, β22 = 20621.52, β12/β21 = 30.

For the trapping frequencies, we choose

ω⊥ = 2π · 300 Hz, ωz = 2π · 50 Hz,

Hence by setting ω = ωz,
aho = 5.80 · 10−6 m.

We can estimate the size of the two condensates (Thomas-Fermi radii in units of aho)

R⊥1 = 0.81, Rz1 = 5.26,

R⊥2 = 2.58, Rz2 = 15.47.

Examples of the simply integrated and doubly integrated density profiles of the initial
wave functions are shown in figures 4.1 and 4.2 respectively . A Thomas-Fermi fit gives
Rz1 = 4.47 and Rz2 = 15.45, close to the estimated values.

Numerical parameters

The space domain is chosen so that the clouds stay away from the boundaries during
oscillations. We took

Lx = Ly = 8aho, Lz = 64aho.

It allows us to have oscillations amplitude up to ' 16aho along the z-direction, which
is more than enough to have a relative velocity larger than the sum of the central sound
velocities of the condensates (reached typically for ' 5.5aho).
For the space resolution we have

∆r = 1/24aho,

which corresponds to a grid of 128 × 128 × 1024 computational points. The gradient
of the phase ϕ of the wave function phase being proportional to the velocity, assuming a
sinusoidal movement RCoM = b ahosin(ωzt), we infer a phase resolution of ∆ϕ = b/24.
In order to capture both fast and slow dynamics present during the oscillations of the
clouds, we used a refined time resolution ∆t = 5× 10−4/ωz and a large number of steps
Nt = 4× 105. This allows to simulate ' 32 periods of oscillations along the z-direction.
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Figure 4.3: Summary of parameters for which simulations were performed (blue dots).
The red dashed line shows the amplitude above which the critical velocity is expected to
be reached in the limit of a vanishing coupling between the superfluids. For β12/β22 =
0.292, we have g2

12/g11g22 = 1, which means that a homogeneous mixture of those super-
fluids is dynamically unstable and will demixe.

Simulation runs overview

Among all the possible configurations, we focused only on two parameters to vary:

• The initial displacement of the clouds, denoted as above by b. It will set the am-
plitude of the oscillations of the center of mass , and implicitly the relative speed
between the clouds.

• The couplings between the two superfluids, β12 and β21.

All in all, using the high-perfomance computing center of UPMC, we performed more
than 30 simulation runs, which represents over 50000 hours of CPU time and teraoctets
of data. A summary of parameters used for the simulations are shown in Fig. 4.3.

4.2 Low amplitude oscillations

The dynamics of oscillating condensates can be predicted using the sum rule method
introduced in the previous chapter. As such, it provides a good test-bed to check the
accuracy of the model using the numerical simulation data1. Similar to the experiment
described in the previous chapter, the dipole mode oscillations are long-lived and the
coupling between the superfluids will shift their frequencies from the bare trapping fre-
quencies and modulate their amplitude. An example of center of mass evolution is shown
in Fig. 4.4, as well as in Appendix C. We ran several simulations with interspecies cou-
pling β12 encompassing two orders of magnitude. The frequency shifts and the amplitude

1It is also a good way to check the good behavior of the simulation, so that this comparison is actually
a cross-validation of both the simulation and the model.
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Figure 4.4: Example of low amplitude oscillations of the center of mass of the two super-
fluids (b = 2 and β12/β22 = 0.031). The small atomic mass difference (m1−m2)/m1 � 1
combined with a large atom number ratio N2/N1 = 30 induces a strong amplitude mod-
ulation of the small condensate oscillations (i = 1, in blue) while the oscillations of the
large condensate are mostly not affected (i = 2, red). Dashed lines represent fits used to
extract the frequency shifts and modulation factors.

modulation are extracted by fitting the center of mass using a sum of cosine functions

z1(t) =
b

α11 + α12

(α11cos(ω1t) + α12cos(ω2t)) , (4.22)

z2(t) =
b

α21 + α22

(α21cos(ω1t) + α22cos(ω2t)) . (4.23)

Results of the fit are displayed in Fig. 4.5a as blue dots. We will first compare them to
the predictions of the sum-rule model restricted to the leading order term in β12 as we
did for the experimental data. Then, as this first-order calculation will prove inaccurate
for large interspecies coupling, we compute the exact solutions and compare them to the
simulation points.

As explained earlier, the sum-rule method connects the dynamics of oscillating con-
densates with their static properties that are easier to compute. More precisely, it shows
that all the dynamics can be derived knowing a single non-trivial quantity

χ12 =
∂〈z1〉
∂b2

(4.24)

where 〈z1〉 is the mean displacement along z of the cloud i = 1, when the trap center of
the cloud i = 2 is shifted by a quantity b2ez

2. In our case, where the condensate i = 1 is
smaller than the i = 2, it can be shown, assuming the local density approximation and as
long as they are miscible, that we have

χ12 = − β12/β22

1− β12/β22

. (4.25)

2By symmetry, we have χ12 = N2/N1χ21
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In the limit β12/β22 = g12/g22 � 1, we recover the first order result used for the experi-
mental data

χ12 '
g12

g22

= g12

(
∂n2

∂µ2

)
r=0

. (4.26)

For the frequency shifts we get

ω̃1 ' ωz,1

(
1− 1

2

β12

β22

)
, (4.27)

ω̃2 ' ωz,2

(
1− 1

2

N1

N2

β12

β22

)
. (4.28)

First order theory is shown as black lines in figs. 4.5a,4.5b and is in good agreement with
the simulation data only for low coupling. To go beyond the first order results and to
predict the amplitude modulation, we now have to consider the effective mass operator
M̂ provided by the sum rule method. Its eigenvectors and eigenvalues will give the two
oscillation modes and their effective mass respectively. In matrix representation, M̂ takes
the form

M =

 m1

(
1− N1

N2
χ12

) √
m1m2

√
N1

N2
χ12

√
m1m2

√
N1

N2
χ12 m2 (1− χ12)

 .

The new mode frequencies will then be given by

ω̃1 =

√
m1

m̃1

ωz,1, (4.29)

ω̃2 =

√
m2

m̃2

ωz,2, (4.30)

where m̃i is the eigenvalue of M that corresponds to mi at low coupling. The associated
eigenvectors will give the eigen-modes of oscillation Ψ̃i such that3(

z1(t)

z2(t)

)
=

2∑
i=1

cicos(ω̃it)Ψ̃i. (4.31)

The coefficients ci are fixed by the initial conditions z1(0) = z2(0) = b (we also assumed
that initial velocities are zero).

The complete sum rule method (orange lines) fits better the oscillations at larger cou-
pling. While there is almost no difference for the frequency shift, there is however some
visible discrepancy for the relative weight between the two modes. We can reproduce the
simulation results almost exactly using a slightly different approach. Indeed, since at low
amplitude we expect that only two modes are excited, the “dressed” dipole modes, the
system should be completely analog to two coupled classical oscillators of frequency ωz,1
and ωz,2 and masses M1 = N1m1 and M2 = N2m2 are in this case coupled with a spring
constant K12. The equations of motion are in this case:

M1
d2z1

dt2
= −M1ω

2
z,1z1 +K12(z2 − z1), (4.32)

M2
d2z2

dt2
= −M2ω

2
z,2z2 +K12(z1 − z2). (4.33)

3with Ψ̃i =

( √
N1/m1 0

0
√
N2/m2

)
Ψi, where MΨi = m̃iΨi.
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Figure 4.5: Frequency shifts (a) and modulation factor (b) for the oscillations of the small
condensate (i = 1) for different interspecies coupling. Blue dots: simulation data. Black
line: first order perturbation theory. Orange line: non-perturbative sum rule method. Red
dashed line: coupled harmonic oscillator analogy method. For the frequency shifts, the
last two models give the same results.

To complete the analogy, we have to choose K12 so that it mimics the coupling between
the two superfluids. Since the sum rule method suggested that χ12 was the driving param-
eter, we can express K12 as a function of the classical expression of χ12, one finds

K12 = M1ω
2
z,1

χ12

1− (1 + N1

N2
)χ12

. (4.34)

Inserting the expression (4.25) in eq. (4.34), we are able to reproduce the dynamics of the
oscillating condensates. Indeed, the results of this model are shown as red dashed lines in
figs. 4.5a,4.5b and are in excellent agreement with the simulation points. The departure of
the simulation data from the first order perturbation theory can be well accounted by a two
level model, showing the underlying simplicity of the clouds dynamic at low amplitude.
The sum rule method thus seems to provide the good frequencies but do not give the
correct eigenmodes at large coupling; this means that while the product of the off-diagonal
terms of the effective mass operator is correct, the matrix shouldn’t be symmetric. This is
actually a well known drawback of variational methods.
We didn’t investigate the regime where superfluids are partially or completely phase-
separated. In that case, the description in terms of two excited levels should fail since
dipole oscillations could easily couple to some higher-order excitations. For homogenous
superfluids with mean-field interactions, the mixture is unstable when g2

12/(g11g22) ≥ 1,
which is equivalent in the numerical simulations to β12/β22 ≥ 0.292. We explore in
the next section the case of oscillations with larger amplitudes where higher-order modes
should be excited as well.

4.3 Large amplitude oscillations
The maximal relative velocity between the two superfluids during the oscillations is ap-
proximately given by b(ω̃1 + ω̃2) and is reached when the clouds are out of phase. Based
on what was observed in the experiment and predicted for homogeneous counterflowing
superfluids [166, 86], dissipation is expected to occur in our system when vrel ≥ c̄1 + c̄2,
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Figure 4.6: Damping rates for the center of mass z1(t) versus maximal relative velocity
during the oscillations in units of the expected critical velocity vc = c̄1 + c̄2. Blue dots:
rates for the β12/β22 = 0.031 simulation runs. Yellow squares: rates for the β12/β22 =
0.186 simulation runs. The others runs (β12/β22 = 0.003 and β12/β22 = 0.291) showed a
damping compatible with zero (i.e. in the fit error bars).

where c̄1,2 are the radially averaged central sound velocities. This velocity is attained
with an initial displacement of b & 5.3 (in units of aho) for small coupling between con-
densates. To explore this phenomenon we ran four sets of simulations for four different
coupling parameters β12/β22 = {0.003, 0.031, 0.186, 0.291}; for each set we varied the
initial displacement around this predicted threshold for dissipation (see Fig. 4.3). At first
sight, the obtained results show at most weak signals of dissipation in the system in sharp
contrast with the experimental data. Nevertheless, using a principal component analysis
(PCA) to look at small fluctuations in the clouds, we uncovered a rich set of phenomena
that were at the beginning quite puzzling. In fact, the PCA gives us access to the dynamic
of many collective modes excited during the counterflow. With the help of some theoret-
ical modeling of our counterflowing superfluids, the behavior of most of the modes can
be understood in terms of two mechanisms that we will discuss thoroughly in the next
section.

4.3.1 First observations: The center of mass evolution

As in experiments, we can analyze the center of mass evolution to seek for dissipation
related to the critical velocity. However, even at high oscillation amplitudes the simulation
does not exhibit the strong damped motion observed in the experiment. Most of the
runs showed an extremely weak decay rate γ . 10−4ωz

4. The only exception is for the
β12/β22 = 0.186 set of simulations where a damping was visible at large amplitude of
oscillations and γ ∼ 10−2ωz, see Fig. 4.6. Additionally, the damping does not show any
evidence of the existence of a threshold in relative velocity and seems featureless.

Nevertheless, by comparing oscillations at low and high amplitude we can observe
some interesting features. A simple test is to look at rescaled oscillations differences
∆zi = zi,b1(t)/b1 − zi,b2(t)/b2 , where zi,bj is the center of mass of the cloud i initially

4To extract the damping rate, we used the functions defined in (4.23) multiplied by an exponentially
decaying term e−γt.
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Figure 4.7: Rescaled amplitude difference ∆z = zi,b1(t)/b1−zi,b2(t)/b2 for b1 = 2, b2 = 8
and β12/β22 = 0.003. Blue line: small condensate i = 1, Red line: large condensate i = 2
rescaled with a global factor N2/N1 = 30.

displaced by a quantity bj . An example is shown in Fig. 4.7 for b1 = 2, b2 = 8 and
β12/β22 = 0.003. If the overall difference between these two runs is small, only a few
percent, it shows a quite peculiar behavior. Indeed, for both clouds, the envelopes of ∆z1

and ∆z2 seem to be step-wise functions of time and equal up to a factorN2/N1 = 30. The
growing of the oscillations starts after 5 periods and corresponds to a situation where the
clouds are oscillating almost out of phase and have a large peak relative velocity. Since
there is no damping for these runs, the increase seen for the ∆z functions come mainly
from a dephasing between the oscillations of the two considered simulation runs. Since
changing the phase of an oscillator has no cost in energy, it means that the underlying
source of this phenomenon is perturbing very weakly the dynamics.

If we now extract the instantaneous phase of the oscillations for different initial dis-
placements, we observe the same behavior as for ∆zi, see Figs. 4.8a, 4.8b. The height
of the steps increases non-linearly with the initial displacement and no clear plateaus are
observed for the b ≤ 4 simulation runs. Additionally, the phase difference start to grow
earlier as the initial displacement is increased, see Fig. 4.8b. All these observations were
done with β12/β22 = 0.003, a case where the two superfluids are very weakly coupled.
For larger couplings, the same plateau features can be observed at large amplitude but get
smoothed as the inter-species interactions are increased (see appendix C).

As a conclusion, there is a weak but clear signal that something happens when the
relative velocity between the superfluids is large, i.e. for a large initial displacement
(b & 5) and when the clouds are out of phase (t ' 7× 2π/ωz and t ' 21× 2π/ωz). The
next step is thus to understand what is the underlying source of these features observed
from the center of mass oscillations.

4.3.2 Fluctuation analysis using a principal analysis component

The clouds images contain a handful of information but is dispersed in a a priori complex
manner on a large set of variables, the pixels. One way to analyse them is to compute
pre-determined quantities such as the center of mass, the size of the cloud, etc. By do-
ing so, much of the information is washed out only to reveal a very specific one that
might be not so relevant. In this context, a powerful method is the principal component
analysis (PCA). The PCA is a model free algorithm to identify the main sources of fluc-
tuations/correlations in a set of data and calculate their contribution. It greatly simplifies
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Figure 4.8: Accumulated phase difference over time for different initial displacements
but same coupling β12/β22 = 0.003. The phase difference is calculated by comparing the
phase of the oscillations to the one at low amplitude, b = 2aho. For b ≥ 5, we can observe
fast increases of the phase followed by well defined plateaus. The time at which the phase
difference starts to increase, ts, diminishes when the initial displacement increases, see
the zoom on fig (b) and the associated inset.

the analysis since it provides the pertinent quantities to look at. Similarly to the procedure
used in [187] to observe collective excitations in a 2D Bose gas, we apply the PCA to our
density images to reveal the subtle phenomena at play in our system. In the following we
will briefly discuss how the PCA is used and show some example of results.

Method

In short, the PCA is just the diagonalisation of a covariance matrix. The eigenvectors are
the different orthogonal modes of fluctuations and the eigenvalues their relative impor-
tance. As input data for the PCA, we use integrated density profiles

n̄i(x, z, t) =

∫
dy ni(x, y, z, t), i = 1, 2. (4.35)

which can be obtained in an experiment by absorption imaging.
All the profiles are arranged in a single matrix (one matrix per cloud)

Mi = (n̄i(rk, tl))k,l, k = 1 ... Np, l = 1 ... NI . (4.36)

so that each line of the matrix represents the time evolution of the density at a specific
pixel. In practice we use NI = 4000 images with NP = 128× 500 pixels. The associated
covariance matrix is then

Ci =
1

NI − 1
M̃T

i M̃i, (4.37)

where M̃i(k, l) = n̄i(rk, tl) − 〈n̄i(rk)〉t and 〈...〉t is a time-average. Ci is thus a 4000 ×
4000 symmetric and positive matrix. The diagonalization of Ci provides a set of NI real
eigenvalues λi,k and normalized eigenvectors Pi,k (the principal components). The spatial
modes of fluctuations ũi,k are then

ũi,k =
1√

λi,k(NI − 1)
M̃iPi,k, (4.38)
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and their time evolution ai,k(t) are given by

ai,k(tl) =
√
λi,k(NI − 1)Pi,k(l), (4.39)

with Pi,k(l) the l-th coefficient of the vector Pi,k. Hence, the density can be written as

ñi(rk, tl) = 〈ñi(rk)〉t +

NI∑
p=1

ai,p(tl)ũi,p(rk), (4.40)

with the properties

〈ai,k1|ai,k2〉t =

NI∑
l=1

ai,k1(tl)aj,k2(tl) = λi,k1(NI − 1)δk1,k2 , (4.41)

〈ũi,k1|ũi,k2〉r =

NP∑
l=1

ũi,k1(rl)ũj,k2(rl) = δk1,k2 . (4.42)

In the limit of infinitesimal time steps and pixels we can write

ñi(x, z, t) = 〈ñi(x, z)〉t +
∞∑
p=1

ai,p(t)ũi,p(x, z). (4.43)

The PCA thus provides a decomposition of each image as a sum of modes. In the limit of
small fluctuations, we can expect them to be associated to the elementary excitations of
the superfluids5. However, in our case, the dipole mode is strongly excited by the initial
displacement. To circumvent this problem we center each image on the cloud center of
mass which filters out the dipole mode. Using 4000 images distributed on a total time span
of 32 periods of dipole oscillations allows to have a frequency resolution of ∆ν = νz/32
and maximal observable frequency of νmax = 62.5νz

6.

Examples of output/Zoology of the PCA modes

Applied to our cloud images, the PCA gives for each of them a set of 4000 modes together
with their associated eigenvalues and their temporal evolutions. This is clearly a lot of
information, but most of it can be ignored. Indeed, only a limited number of modes play
a non-negligible role in the fluctuations. This can be noticed on the distribution of the
eigenvalues, usually at least 99% of the eigenvalues are 106 times smaller than the largest
one as shown in Fig. 4.9 7. For each run, we typically limit our analysis to the 10-30 most
populated modes given by the PCA. An example of mode we obtain using the PCA on
the clouds images is shown in Fig. 4.10. More examples are shown in Appendix C. We
observe various types of behavior that we can sort in 4 categories:

• Parametric modes. As we will describe it later on, a numbers of PCA modes exhibit
a parametric type of behavior, i.e. they seem to emerge spontaneously from the
noise after some time. In addition, they exhibit a dominant frequency peak in the
Fourier space. Finally, these modes are observed for both clouds but only for large
amplitudes of oscillations.

5And in the limit of a small coupling between the superfluids, since we compute a PCA on each cloud
separately.

6Contrary to a Fourier analysis, spatial modes with frequency higher than νmax can also be identified by
the PCA [187].

7The PCA is computed using double precision variables.
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Figure 4.9: List of the eigenvalues given by the principal component analysis applied to
the small cloud (i = 1) density images for three different simulations (same coupling
β12/β22 = 0.003). Blue dots: Initial displacement b = 2. Orange squares: Initial dis-
placement b = 5. Red triangles: Initial displacement b = 8.

• Linearly forced modes. Again, this designation will be justified later. They usually
display a quasi-periodic time evolution and a rich Fourier spectrum. They can be
seen for both clouds at all amplitudes.

• The filtered dipole modes. The recentering process will typically make the conden-
sates oscillate with a random amplitude of at most 1px = 1/16aho. Still, the PCA
is able to identify the dipole modes and they remain in the most populated modes
if the superfluids are almost not perturbed by the oscillations. This is the case for
many simulations especially those at low amplitude of oscillations where only a few
modes are excited. The filtered dipole modes are easily recognizable due to their
seemingly random time evolution.

• Harmonic modes. When subject to a perturbation, high order terms of the clouds
response also contribute as modes identified by the PCA. For example, for a given
perturbation along the z-axis fz(t), we have for the density n(z + fz(t))− n(z) =
fz(t)∂zn(z) + 1

2
f 2
z (t)∂2

zn(z) + .... The harmonic modes are simply related to the
fundamental mode (spatial derivative and frequency harmonics) and can be easily
identified.

Example of each types of modes are shown in Fig. 4.11. The two first categories are not
completely exclusive since it is possible, in principle, for a mode to have both behaviors.
Finally, to be completely exhaustive, there are also all the non-physical modes that are
just associated to the numerical noise of the simulation and the spurious modes coming
from a bad frequency resolution of the PCA (i.e. they are some unknown combinations of
several physical modes). They actually constitute the major part of the weakly populated
modes and is the PCA’s main limitation to identify physical modes8.

8The presence of high harmonics modes with a broad frequency spectrum prevent the PCA to identify
weakly populated modes as they will share similar frequencies
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Figure 4.10: Example of a fluctuation mode identified by the PCA for the large cloud
(i = 2). Its spatial structure is shown in a) and b). Its time evolution is shown in d) and
its Fourier analysis in c). The number of spatial nodes is 6 and the mode oscillates at a
frequency of 3.68ωz.

4.3.3 PCA’s modes versus collective excitations of the superfluids
The question is now whether the PCA modes can be related to the true elementary ex-
citations of the superfluids or not. To answer this, we will compare them to theoretical
models of collective excitations in elongated superfluids.

Hydrodynamic equations of a superfluid

In the hydrodynamic limit, the dynamic of a (single) superfluid is described by a set of
two equations

m
∂v

∂t
+
m

2
∇v2 = −∇ (U + µ) , (4.44)

∂n

∂t
+∇(nv) = 0, (4.45)

where v is the velocity field and the chemical potential µ is defined locally so that the
global chemical potential is µg = U + µ. The excitation spectrum can be obtained by
considering small perturbations on top of the superfluid ground state:

v = v0 + δv, (4.46)
n = n0 + δn, (4.47)

where v0 and n0 are solutions of equations (4.44), (4.45) and we have the weak perturba-
tion conditions δn/n� 1. In the center of mass frame, v0 = 0 and we have

mi
∂δv

∂t
= −∇

(
∂µ

∂n
δn

)
, (4.48)

∂δn

∂t
= −∇(n0δv) . (4.49)
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Figure 4.11: Examples of a mode’s amplitude and spatial structure (inset) for each of the
four categories listed in the main text. a) Parametric mode. b) Linearly forced mode. c)
Filtered dipole mode. d) High order “clone” mode. (easily seen by its asymmetric time
evolution with respect to the horizontal axis)
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In terms of chemical potential shift δµ = ∂µ
∂n
δn we get

∂2δµ

∂t2
=

1

m

∂µ

∂n
∇(n0∇δµ) . (4.50)

We can thus define an operator

L = − 1

m

∂µ

∂n
∇(n0∇) . (4.51)

L is symmetric and positive for the scalar product

〈φ|ψ〉 =

∫
d3r

∂n

∂µ
φ∗ψ . (4.52)

Therefore stationary solutions of equation (4.50) can be sought as an orthogonal set of
eigenstates of L, (vk)k with

Lvk = ω2
kvk , (4.53)

where ωk is the associated eigenfrequency.
And we have

n(r, t) = n0(r) +
∑
k

akcos(ωkt+ φk)uk(r), (4.54)

where
uk =

∂n

∂µ
vk. (4.55)

Since the superfluids are Bose-Einstein condensates in the mean field regime, we have
∂µ
∂n

= g. Hence, the scalar product, eq. (4.52), is the same as the one used by the PCA,
and its modes can be expected to be the collective excitations 9.

Hydrodynamic modes of an elongated superfluid

To be more quantitative, it is useful to know the exact shape of the collective excitations
and their frequency spectrum. In the case where ω⊥ � ωz, relevant for many experimental
systems and for our simulation, the low energy dynamics of a superfluid is essentially one-
dimensional. In [169], the spectrum of hydrodynamic modes in a highly deformed trap
was calculated. In the case where µ � ~ω⊥ � ~ωz, the cloud is in the Thomas-Fermi
regime in both radial and axial directions and we have the following dispersion relation
for the low energy modes:

ωk =
1

2

√
k(k + 3)ωz, (4.56)

where k is a positive integer. In particular, k = 1 corresponds to the dipole mode ω1 = ωz
and k = 2 to the breathing mode ω2 =

√
5/2ωz. The corresponding solutions are the

Gegenbauer polynomials10 G
(3/2)
n . For k � 1, we recover a linear dispersion ωk = k ωz/2

and we have a simple expression for the corresponding solutions of eq. (4.53) using a
WKB approximation [190]

v̄k(z) =

√
2m∆ωc̄(z)

n̄0(z)
cos

[∫ z

0

dz′
ωk
c̄(z′)

+ k
π

2

]
, (4.57)

9We are only interested in real solutions, so the complex conjugate is not relevant
10The Gegenbauer polynomialsG(m)

n are solutions to the differential equation (1−z2)y′′−(2m+1)zy′+

n(n+ 2m)y = 0 and orthogonal for the scalar product 〈f |g〉 =
∫ 1

−1 dz(1− z
2)m−1/2fg.
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where the ·̄ notation indicates a radially integrated quantity and ∆ω−1 = Rz/2πc̄(0) is
the density of state. We have the following expressions for the radially integrated density

n̄0(z) = n̄0(0)

(
1−

(
z

Rz

)2
)2

, (4.58)

and the radially averaged sound velocity

c̄(z) = c̄(0)

(
1−

(
z

Rz

)2
)1/2

, (4.59)

with c̄(0) =
√
µ/2m the radially averaged central sound density. Theses results are

valid as long as kR⊥ � Rz, otherwise the radial degrees of freedom come into play. In
particular the dispersion relation becomes sub-linear at large momentum [174, 191, 169].
In the simulation, the condition µ� ~ω⊥ translates as Rz � 3

√
2aho ' 3.5aho which is

well satisfied for the large condensate (Rz,2 = 15.45aho) but not for the small condensate
(Rz,1 = 4.47aho).
Another situation of interest is the regime where ~ω⊥ � (µ − ~ω⊥) � ~ωz, which
corresponds to the case where the condensate occupies the lowest oscillator level in the
radial direction. In that case, the dispersion relation is [192, 169]

ωk =

√
k(k + 1)

2
ωz, (4.60)

and the associated eigenfunctions are Legendre polynomials. For large k, they can be
described by similar WKB modes as in eq. (4.57). The small condensate (i = 1) should
be better described by this second situation as we have ~ω⊥ ' 1.5(µ1 − ~ω⊥).

Comparison with the PCA’s modes

Since we deal with a quasi one-dimensional geometry, the low-energy collective excita-
tions can be indexed by their number of nodes. Thus, a PCA mode with k nodes should
be equal to ũk up to a normalization constant. As we have the relation11

∫
ũk(x, z)dx ∝

(
1−

(
z

Rz

)2
)
v̄k(z), (4.61)

we can directly compare the PCA’s mode of the large condensate (i = 2) to the solutions
eq. (4.57) by a simple integration over the x axis. Some examples are shown in Fig. 4.12.
The agreement is quite good but diminishes as k increases inasmuch as radial degrees of
freedom were not taken into account by the model. For the small condensate, the Legendre
polynomials fail to describe accurately the PCA’s modes which are better described using
an ad-hoc function (1 − (z/Rz)

2)7/2G
(9/2)
n (z/Rz). This discrepancy is probably due to

the fact that the condition ~ω⊥ � µ1 − ~ω⊥ does not hold.
Concerning the spectra, since some PCA’s modes can exhibit a complex time evolution
with multiple frequencies involved, we restrict the analysis to the modes where a single

11 Indeed, in a regime where µ� ~ω⊥ � ~ωz , we have a similar relation as in eq. (4.55) for the doubly
integrated modes: ūk = v̄k∂µn̄.
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Figure 4.12: Comparison between PCA’s mode of the large cloud i = 2 (red line) and the
WKB modes of eq. (4.57) (black dashed line) for k =5, 6, 10, and 14.

dominant frequency peak is observed. The comparison to the two dispersion relations
eq. (4.56,4.60) is displayed in Fig. 4.13 and shows good agreement between the measured
and predicted frequencies. It confirms the one-dimensional character of the system but
more importantly it shows that many of the PCA’s modes are not just some numerical
artifacts but true collective excitations in superfluids. All the associated information can
be then used to study the dynamics of the system.

4.3.4 Linearly forced modes

We now move to the study of a particular category of observed modes during the oscilla-
tions of the two condensates, the linearly forced modes. To first order, a superfluid is just
a moving perturbation potential for the other one and vice-versa. Hence, different collec-
tive modes are forced by this oscillating perturbation and depending on the spatial overlap
and frequency matching it can be more or less enhanced. This is a realistic version of the
Landau experiment where the perturbation is just a point-like impurity moving at constant
speed in a homogeneous superfluid. However, an important difference is the absence of
an associated critical velocity in our case. Indeed, as observed in the simulation and as we
will justify below there is no velocity threshold for observing these linearly forced modes
in our system. We will first derive a hydrodynamic model to explain this phenomenon
and then use it to reproduce the observed behavior of some PCA’s modes.

Hydrodynamic model for two coupled superfluids

As the modes identified by the PCA are hydrodynamic modes, we can restrict our analysis
of the counterflowing Bose-Einstein condensates to an hydrodynamic approach. This is
also useful as it can be also applied to more general superfluids.

We now have to consider the case of two coupled BECs labelled by i, j ∈ {1, 2}.
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Figure 4.13: Frequency of PCA’s modes versus their number of nodes. Blue circles :
Small condensate’s modes (i = 1). Red circles: Large condensate’s modes (i = 2).
Red dashed line: Dispersion relation for an elongated condensate with a large chemical
potential µ � ~ω⊥, eq. (4.56). Blue dashed line: Dispersion relation for an elongated
condensate with a small chemical potential µ ∼ ~ω⊥, eq. (4.60).

They are described by a set of coupled hydrodynamic equations in their respective center
of mass frame

mi
∂vi
∂t

+
m

2
∇v2

i = −∇ (Ui + µi + gijnj) , (4.62)

∂ni
∂t

+∇(nivi) = 0 , (4.63)

where nj is a time dependent function f(r ± rrel(t)) where rrel is the relative position
between the two superfluids.
If the coupling between the superfluids is weak, we get to first order for the perturbations
δµi = µi − µi,0

∂2δµi
∂t2

= −Li [δµi + gij(nj,0 + δnj)] , (4.64)

with
Li = − 1

mi

∂µi
∂ni
∇(ni,0∇) . (4.65)

Again, we can express the chemical potentials as a sum of eigenstates of the operators Li,
denoted (vi,k)k

δµi =
∑
k

ai,kvi,k , (4.66)

with
Livi,k = ω2

i,kvi,k (4.67)

so that
d2ai,k
dt2

+ ω2
i,kai,k = ω2

i,kgij (〈vi,k|nj,0〉i + 〈vi,k|δnj〉i) , (4.68)

with
〈φ|ψ〉i =

∫
d3r

∂ni
∂µi

φ∗ψ . (4.69)
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Furthermore, we have

δni =
∂ni
∂µi

∑
k

ai,kvi,k , (4.70)

such that
〈vi,k|δnj〉i =

∑
q

aj,q

∫
d3r

∂ni
∂µi

∂nj
∂µj

v∗i,kvj,q . (4.71)

It follows immediately that

d2ai,k
dt2

+ ω2
i,kai,k = ω2

i,kgij

(
Ai,k +

∑
q

Bi,kqaj,q

)
, (4.72)

with

Ai,k = 〈vi,k|nj,0〉i , (4.73)

Bi,kq =

∫
d3r

∂ni
∂µi

∂nj
∂µj

v∗i,kvj,q , (4.74)

Again, we stress that the quantities nj,0 and vj,q are time dependent functions f(r±rrel(t))
where rrel is the relative position between the two superfluids. Equations (4.72) can thus
be seen as a set of coupled driven and parametric harmonic oscillators. The first term of
the rhs is a forcing term and should be a priori dominant since excitations are considered
to be weakly populated initially. However, the second term, which couples the modes of
the two superfluids with time-dependent coefficients can lead to parametric-like resonant
contributions and allow to explain the second class of observed PCA’s modes, the para-
metric modes. Before that, let’s study more thoroughly the physics associated to the first
rhs term Aik.

Homogeneous case

First, we can look at the ideal case imagined by Landau where the impurity is point-like
(let assume the small condensate i = 1) and moving at constant speed V through an
homogeneous superfluid (i = 2). Then the collective excitations are plane waves

v2,k =
1√
V

√
∂µ2

∂n2

eik.r, (4.75)

where V is a quantification volume.
The perturbation is a Dirac delta function ∝ δ(r−Vt) and we have

A2,k ∝ eik.Vt, (4.76)

which is a simple oscillating forcing term.
The forcing is resonant when

ω2,k = k.V. (4.77)

Since we have a linear dispersion relation ω2,k = |k| c2, where c2 is the sound velocity,
phonons can only be resonantly excited if

|V| ≥ c2, (4.78)
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Figure 4.14: Amplitude of a collective mode (a plane wave) forced by a sinusoidal relative
movement rrel = b sin(Ωt)ez after tf = 200 × 2π/Ω with |Ak,2| = 0.1. Blue circles:
resonant case ω2,k = 10Ω (n = 10). Yellow squares: non-resonant case ω2,k = 9.99Ω.
The black dashed line is the expected amplitude in the resonant case. The inset is the
same data shown in log scale. The excitation growth rate peaks at nbΩ ' c2 but there is
no threshold associated to the sound velocity.

which is the usual Landau criterion for superfluidity. Above this critical velocity excita-
tions will grow linearly with time at a rate ω2,k|A2,k|/2.
Now, for a sinusoidal relative movement rrel = b sin(Ωt)ez, we get

A2,k ∝ eikzb sin(Ωt) ∝
+∞∑

n=−∞

Jn(kzb) einΩt, (4.79)

The appearance of Bessel functions here is not surprising but will have important conse-
quences in the following. We will have a resonance whenever there exists a set {n, k}
such that ω2,k = nΩ. This criterion is independent of the relative velocity between the
superfluids and can therefore occur at any amplitude. In the resonant case, the amplitude
of the excitation will grow as ω2,k|Ak,2|Jn(kzb)t as shown in Fig. 4.14 and is maximal
around bΩ ' c2. Both in experiments and in our simulation the impurity has always a
finite size s. It sets an upper bound for the validity domain of the Landau model: Only
excitations with |k| � s will see a forcing term as in eq. (4.76). Additionally, the collec-
tive excitations in a trapped superfluid are quantized, so, a priori solely a small number of
modes can be excited resonantly by the impurity.

Simulation case

Generally speaking, for any kind of density profile and collective modes, we can expand
A2,k in powers of zrel:

Ai,k(t) =
∞∑
k=0

(±1)n
znrel

n!
〈vi,k|∂nz nj,0〉i, (4.80)

with rrel(t) = zrel(t)ez. Depending on the involved scalar products, Ai,k can contain
a large set of frequencies and therefore excite more or less resonantly a given mode.
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Since the density profile is even, only odd/even terms will be non null for respectively an
odd/even mode. Additionally, a Thomas-Fermi profile is a polynomial of degree two in
position so that only the first three terms are non zero (∂kznj,0 = 0 for k > 3). In practice,
higher-order terms can appear as the clouds are not perfectly in the Thomas-Fermi regime
(which is the case for large interspecies coupling).
We should be able to reproduce all the linearly forced modes time evolution using the
solution of

d2a

dt2
+ ω2

(
a+

∑
k

αkz
k
rel

)
= 0, (4.81)

where the αk are numerical coefficients (they can be accurately estimated using models
for the collectives modes introduced previously).
In the simple case where only one term of the sum is involved, the only unknown is the
value of the mode frequency (but again it can be precisely estimated), the remaining un-
known coefficient αk is just a scaling factor. This configuration is expected to be relevant
for the lowest frequency modes and for a small initial displacement so that high order
terms can be neglected. Indeed, we are able to accurately reproduce the time evolution of
the breathing mode (k = 2) of both clouds see Fig. 4.15 by using only the z2

rel(t) term. It
allows for the extraction of the breathing mode frequency with a good precision and we
find ω1,2/ωz = 1.490(3) and ω2,2/ωz = 1.580(3) for the small condensate (i = 1) and
large condensate (i = 2) respectively. They are in very good agreement with the expected
frequencies ω1,2/ωz =

√
15/7 ' 1.464 and ω2,2/ωz =

√
5/2 ' 1.581 using eqs (4.56,

4.60).
Another interesting scenario is when there is a quasi resonance between a mode fre-

quency and a combination of the two frequencies present in the dipole oscillations. In this
particular scenario, the mode amplitude should increase linearly with time. This is what
we observed for the mode k = 10 of the large cloud in two sets of simulations, β22/β12 =
0.003 and β22/β12 = 0.031. The measured mode frequency is ω2,10/ωz = 5.697(3) (ex-
pected value is ω2,10/ωz =

√
65/2 ' 5.701) which is close to 2×1+4×

√
6/7 ' 5.696,

a frequency that is present in the term z6
rel. Similarly to the homogeneous situation, see

Fig. 4.14, the mode’s amplitude exhibits a Bessel-like behavior eq. (4.79) when varying
the relative velocity as shown in Fig. 4.16. As β22/β12 is increased and the frequencies of
dipole oscillations are shifted, the resonance with this particular mode fades away and is
not observed in the other simulations. However, some other resonances become possible
and for β22/β12 = 0.186, the k = 6 mode takes over as ω2,6 = 3.669(3)ωz ' 2(ω̃1 + ω̃2).
In particular, it explains the unexpectedly large damping observed on the dipole oscilla-
tions for this particular set of simulations shown in Fig. 4.6.

Conclusion

This simple linear forcing model explains a large set of the observed PCA’s modes. It
demonstrates that linear forcing is one of the dominant phenomenon at play in our system.
Contrary to the ideal Landau set up, the collective modes can be resonanlty excited even
at low relative speed and the usual criterion for superfluidity vc = ci is not observed in
our system. It is mainly due to the oscillating behavior of the relative movement, as also
pointed out in [172]. A comprehensive understanding of the resonance conditions is still
open and depending on the atomic mass ratio and interaction parameters, some collective
modes can be resonantly excited or completely absent during the dynamics. However,
with a precise knowledge of the system’s parameters and elementary excitations, one can
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Figure 4.15: Time evolution of the breathing mode (k = 2) of both clouds for the simu-
lation run β22/β12 = 0.291 and b = 1. Blue line (fig (a)): breathing mode of the small
condensate i = 1. Red line (fig (b)): breathing mode of the large condensate (i = 2).
Dashed line is a fit using the solution of eq. (4.81) with only the α2 coefficient being non-
zero in the sum. The fit allows to extract the mode frequency with a good precision: we
find ω1,2/ωz = 1.490(3) and ω2,2/ωz = 1.580(3) in good agreement with the predicted
values ω1,2/ωz =

√
15/7 ' 1.464 and ω2,2/ωz =

√
5/2 ' 1.581.
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Figure 4.16: Eigenvalue of the mode k = 10 for the large cloud (i = 2) versus maximal
relative velocity during the dipole oscillations for two simulation runs β22/β12 = 0.003
(blue circles) and β22/β12 = 0.031 (orange squares). Inset: example of associated time
evolution showing the typical linear increase of the amplitude at resonance. The two data
sets show a similar behavior to what is expected for a resonant mode in the homogeneous
case as shown in Fig. 4.14.

predict when such resonance would happen. It might be possible to exploit this idea
experimentally to excite some chosen high order mode via the dipole mode oscillations
of the two superfluids.

4.3.5 Parametric modes

Another important class of mode that we observe in our simulation using the PCA are the
so-called parametric modes. As we will show below, they originate from the second rhs
term in eq. (4.72),

∑
q Bi,kqaj,q, which couples modes of both superfluids and can lead to

parametric resonances. In the homogeneous case and uniform relative speed, the paramet-
ric instability occurs only above a critical velocity equal to the sum of the sound velocities
vc = c1 + c2. Contrary to the linear forcing term, this threshold is preserved when the
relative movement is not uniform anymore and the superfluids are not homogeneous. We
believe that this mechanism explains the observation of a well defined threshold for dis-
sipation in the counterflowing experiment and their large associated critical velocity.

Homogeneous case

For homogeneous superfluids moving with a constant and uniform relative velocity V,
the excitations are planes waves. We can compute the different terms in equations (4.72).
From (4.74) and (4.75) we obtain:

Bi,kq =

(
∂µ1

∂n1

∂µ2

∂n2

)−1/2

eik.Vtδk,q (4.82)
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Figure 4.17: Evolution of two modes (1: red curve, 2: green curve) with frequencies
ω2 = 2ω1 and coupled via a cosine term ε cos(α(ω1 + ω2)t) with ε = 0.2 and α = 0.98.
The amplitude increases exponentially.

and Ai,k = 0. Only modes with the same wave vector are coupled and equations (4.72)
simplify to

d2a1,k

dt2
+ ω2

1,k(a1,k − εeik.Vta2,k) = 0, (4.83)

d2a2,k

dt2
+ ω2

2,k(a2,k − εe−ik.Vta1,k) = 0, (4.84)

where

ε =

(
g2

12
∂µ1

∂n1

∂µ2

∂n2

)1/2

. (4.85)

These equations can be seen as coupled Mathieu’s equation describing a parametric reso-
nance between two modes, as illustrated in figure 4.17. In the limit ε→ 0, the instability
occurs when12

|k.V| = ω1,k + ω2,k, (4.86)

which readily gives the Landau criterion for superfluidity for the case of counterflowing
superfluids. Indeed, to be able to create excitations in the system, a necessary condition
is:

|V| ≥ c1 + c2. (4.87)

We recover a critical velocity that is the sum of the two sound velocities vc = c1 + c2, as
found in [86]. Increasing the coupling ε will enlarge the instability window and we obtain
the condition

ω1,k + ω2,k − ε
√
ω1,kω2,k ≤ |k.V| ≤ ω1,k + ω2,k + ε

√
ω1,kω2,k, (4.88)

which gives a lower critical velocity

vc = c1 + c2 − ε
√
c1c2 , (4.89)

12There are no harmonic resonances as in the classical 1D Mathieu equation.
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(a) Uniform relative movement (b) Oscillating relative movement

Figure 4.18: Instability domain (yellow-green regions) of two coupled modes with same
frequencies ωk for two different types of counterflow: A uniform relative movement at
speed V = V ez (with Vc = 2ωk/|kz|) (a) and an oscillating relative movement with
amplitude b and frequency Ω = ωk/10 (with bc = 2ωk/|kz|Ω) (b). Red dashed lines
correspond to the limits of the instability domain in case of a uniform movement.

in agreement with the results of [166] in the limit ε � 1. In figure 4.18a, we show the
parametric instability domain for two given coupled modes and where the two superflu-
ids have the same sound velocity c1 = c2 = c. In this simple configuration, the domain
boundaries are given by v± = 2c

√
1± ε. The domains can be calculated either by numer-

ical integration of the differential equations eqs. (4.84, 4.83) or by using Floquet theory
(numericals as well).

Generalisation to an oscillating relative movement

Since parametric instabilities develop within a time scale ∼ 1/(εω), for Ω � εω the
relative velocity is slowly varying with time with respect to the growth of the instability.
We can approximate the relative position as

rrel(t− t0) = r0 + V(t0)t+ ... (4.90)

Thus, for ε� 1, high momentum excitations will spontaneously emerge if

Max|V(t)| ≥ c1 + c2. (4.91)

and in particular, if bΩ ≥ c1 + c2 for a sinusoidal movement. In figure 4.18b, we show the
parametric instability domains for two coupled modes with same frequency (ω = 10Ω)
and same sound velocities c. The domain is very similar to the uniform velocity case,
see Fig. 4.18a. An important difference is that the parametric instability regions are also
present way above the critical velocity. This is also visible in figures 4.19a, 4.19b where
we plot the range of amplitudes leading to a parametric resonance with respect to the
mode frequency (black regions). Surprisingly, even at low frequency, where our previous
argument should fail, the system continues to show an amplitude threshold above which
the modes are parametrically unstable (which tends to 0 as ω/Ω→ 0).



4.3 93

(a) ε = 0.05 (b) ε = 0.4

Figure 4.19: Instability domain (in black) of two coupled modes as a function of their
common frequency ω when subject to an oscillating relative velocity |V | = bsin(Ωt) for
two different values of ε. Red dashed lines correspond to the critical amplitude reduced
by a factor

√
1− ε as in the uniform movement case (c1 = c2).

To go beyond this quasi-uniform motion approach and understand better the instability
domains shown in figs 4.18b, 4.19a, 4.19b we have to look at the structure of the terms
Bi,kq in case of an oscillating motion rrel = b sin(Ωt)ez. Like we did for the term Ai,k,
we can express Bi,kk in terms of Bessel functions:

Bi,kk ∝ eikzb sin(Ωt) ∝
∑
n

Jn(kzb) einΩt . (4.92)

Bi,kk contains an infinite set of harmonic frequencies. For any given frequency Ω is thus
possible to find a pair {k, n} such that nΩ = ω1,k + ω2,k.
From this we could naively infer that there is no threshold in velocity or in oscillation
amplitude for the onset of parametric instabilities and consequently no critical velocity.
However, contrary to the linear forcing situation, the interplay between the different res-
onant terms leads to discrete and bounded instability regions.

It is possible, using a multi-scale approach, to compute analytically the instability
domains in the limit ε → 0 and in the symmetric situation where ω = ω1,k = ω2,k. We
find that the domains are given by the inequality, see Appendix B:

Jn(kzb)
2 ≥ (J0(kzb)±

1

ε
δω)2, (4.93)

where n is the closest integer to 2ω/Ω and δω = nΩ− 2ω.
For large values of n, using the stationary phase approximation, Jn(kzb) will take signifi-
cant values when there exists a time t such that kzbcos(Ωt)− n = 0, which is equivalent
to |k.V(t)| = 2ω (neglecting δω) and we recover the criterion13 (4.91.
In figure 4.20 is shown the evolution of two coupled high frequency modes in case of
oscillating superfluids. While their amplitude remain constant at low relative speed, the

13 Below vc, there exists a finite number of small parametric domains, close to each node of J0(kzb) as
it can be seen in figs. 4.19a, 4.19b)
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Figure 4.20: Dynamics of high frequency modes (blue curve) when the relative movement
of the superfluids is oscillating z(t) = b(cos(Ωt) − cos(

√
6/7Ωt)) (black curve) with

b = 1.1bc = 2.2ωk/kΩ, ε = 0.21 and ωk = 10Ω. The modes are strongly excited when
the amplitude of oscillations is maximal, i.e. when the relative velocity is close to the
critical velocity.

modes are strongly excited when the relative instantaneous velocity is close to the critical
velocity.

To sum up, the addition of a time dependent relative velocity does not suppress the
parametric critical velocity contrary to the linear forcing case. For trapped superfluids,
the number of low frequency modes being small, we can expect to see a threshold close
to the generalized Landau criterion vc = c1 + c2.

Extension to elongated condensates in a harmonic potential

In our simulation, the collective modes are not as simple as planes waves but they tend
to be very similar for large k. We can expect the dynamics of the modes to be described
by equations similar to eqs.(4.84). For elongated condensates such that µ1, µ2 � ~ω⊥ �
~ωz we can use the WKB solutions (4.57) to compute the mode overlap terms B1,kq and
B2,kq (they are the same). After a few simplifications we get

g12B1,kq = α

∫ 1

−1

duw(u)w(λ(u− urel)) cos

[
Rz,1ω1,k

c̄1(0)
arcsin(u) + k

π

2

]
×

cos

[
Rz,2ω2,q

c̄2(0)
arcsin(λ(u− urel)) + q

π

2

]
,

(4.94)

with w(u) = (1− u2)1/4, λ = Rz,1/Rz,2, urel = zrel(t)/Rz,1 and

α = 2π
ωz
ω⊥

λ−1/2

(
g2

12

g11g22

)1/2

. (4.95)

Since the superfluids do not have the same size, the integral is taken over the smallest
(i = 1). The weight functions w are almost flat and slowly varying functions, especially
for the largest of the two superfluids and their time dependence can be neglected. The
overlap between the two modes will be important if

∀u ∈ [−1, 1],
Rz,1ω1,k

c̄1(0)
arcsin(u) =

Rz,2ω2,q

c̄2(0)
arcsin(λu), (4.96)
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This condition is well fulfilled (exactly for λ = 1) when

ω1,k

c̄1(0)
' ω2,q

c̄2(0)
, (4.97)

which means that the local central wavevectors of the two modes should be equal. Hence,
we can write

g12B1,kq '
α

2
cos

(
ω2,q

c̄2(0)
zrel(t) + (q − k)

π

2

)
. (4.98)

Then, by using the same arguments and the slowly varying velocity assumption as in
the previous section and equation (4.97), parametric instabilities should occur when (for
α→ 0)

Max

∣∣∣∣dzrel

dt

∣∣∣∣ ≥ c̄1(0) + c̄2(0). (4.99)

The critical velocity in the trapped system is thus equal to the sum of the radially averaged
central sound velocities. This result was obtained using collective modes that are specific
to a system of two elongated BECs but since the WKB approach is valid for a large class
of elongated superfluids, we estimate that this result can be generalized to other types of
superfluid mixtures including the Bose-Fermi mixture we studied experimentally.

Comparison with the PCA’s modes

To sum up what we found in previous sections, we can list the important features that a
parametric mode should display to be easily identified.

• The amplitude of a parametric mode starts to increase only when the relative ve-
locity reaches the critical velocity. In our simulation, the critical velocity for small
interspecies coupling is vc = c̄1(0) + c̄2(0) 14. In practice we have, c̄1(0) ' 0.25vc
and c̄2(0) ' 0.75vc. In terms of clouds initial displacement, the critical velocity is
reached for b ' 5.3aho (by neglecting the frequency shifts and the amplitude mod-
ulation caused by interspecies interactions) and we should see parametric modes
only above this amplitude threshold.

• For each parametric mode in one superfluid, there exists its counterpart in the other
superfluid which will have the same time evolution. They should have a good over-
lap and consequently similar wavevectors.

• A priori, this is valid only for high frequency modes with ω � ωz.

In the simulation, the PCA’s modes that we can consider to be excited parametrically,
i.e. modes that appear suddenly out of the noise after a few center of mass oscillations,
are indeed seen only for a large initial displacement generating a large relative velocity
between the clouds. An example of time evolution is shown in Fig. 4.21. As expected,
the mode amplitude seems to increase only when the relative velocity is above the critical
velocity (gray regions). We observe this behavior mainly for two sets of simulation, in
the β12/β22 = 0.003 and β12/β22 = 0.031 runs and typically for initial displacements
b ≥ 5. Above this amplitude threshold, all the most populated modes (largest eigenvalues

14The clouds are a priori in different regimes and the sound velocities have to be calculated differently :
c̄2(z = 0) = c2(r = 0)/

√
2 [169] and c̄1(0) =

√
ω2
zR

2
1,z/2 [193].
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Figure 4.21: Example of a parametric-like behavior observed for a PCA mode of the large
cloud (i = 2) in the simulation run β12/β22 = 0.003 and b = 8. The grey regions shows
the different time intervals where the relative velocity between the two clouds is above
the expected critical velocity vc = c̄1(0) + c̄2(0).

λ) of the small cloud show a parametric-like growth (see an example in Appendix C). In-
deed, the linear forcing terms are negligible for the small condensate since the perturbing
potential (i.e the density profile of the other condensate) is almost flat, hence its collec-
tive modes will mainly be excited parametrically. Conversely, the large superfluid sees a
sharper forcing potential and many of the PCA’s modes are linearly forced even at high
relative velocity. This makes the second requirement a bit difficult to prove, as the para-
metric modes can be hidden by the presence of strongly populated linearly forced modes.
Nevertheless, the few observed parametric modes in the large cloud can be easily associ-
ated to a partner mode of the small cloud. They show an excellent overlap and a similar
behavior in time as for the example displayed in Fig. 4.22.
The depletion of the fundamental state of a cloud into its collective modes can be quanti-
fied by looking at the sum of the eigenvalues given by the PCA∑

k

λi,k ∝ 〈(ñi − 〈ñi〉t)2〉t. (4.100)

For the simulation runs with β12/β22 = 0.003, since the modes in the small cloud are
almost only excited parametrically, we observe a nice threshold in velocity above which
the population of excited modes start to grow, see the blues circles data in Fig. 4.23. The
threshold is located around 0.9vc which tend to confirm our prediction of vc = c̄1 + c̄2.
For the β12/β22 = 0.031 runs (yellow squares), the growth starts at low relative velocity,
meaning that linearly forced modes already play an important role in the dynamics.
Finally, going back to the first observations made in section 4.3.1, the presence of plateaus
in the re-scaled amplitude differences and in the accumulated phase differences was al-
ready an indication of the presence of parametric resonances between modes in our sys-
tem.

Conclusion

We have shown in this section the possibility of parametric resonances between collec-
tive modes of the two clouds. It allows to explain the behavior of another large set of
PCA modes. In the case of homogeneous superfluids with constant relative velocity, the
resonance only occurs above a critical velocity equal to the sum of the sound velocities.
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(a) a1(t) (blue curve) & a2(t) (red curve)
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(b) ũ1(0, z) (blue curve) & ũ2(0, z)(red curve)

Figure 4.22: Example of modes in both clouds that show the same parametric behavior
(a) and have an excellent overlap (b). Taken from the simulation run β12/β22 = 0.003 and
b = 5.
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Figure 4.23: Variance of the small cloud i = 1 as a function of the maximal relative veloc-
ity during the oscillations. The variance characterizes the total population of collectives
modes in the cloud. Blue circles: β12/β22 = 0.003 simulation runs. We can observe a
nice threshold (in logscale !) in velocity above which the variance start to grow. Orange
squares: β12/β22 = 0.031, no threshold is observed, as linearly forced modes are already
present during the dynamic.
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Interestingly and contrary to the linear forcing terms treated before, the effect of an oscil-
lating velocity does not suppress the threshold.

4.4 Conclusion
In this chapter, we have presented the results of numerical simulations of two oscillating
coupled Bose Einstein condensates. Firstly, the low amplitude oscillations of the clouds
center of mass are well explained by the predictions of the sum rule method, validating
the approach. Secondly, using a principal component analysis we revealed two mecha-
nisms of mode excitation in superfluids. The first one is the linear response of a mode to a
perturbation introduced by one superfluid. This process can occur even at small velocities
and there is no associated critical velocity as also pointed out in [172]. The second mech-
anism, is a parametric resonance between modes of both superfluids. It occurs only at
large relative velocity and connects to the Landau generalized critical velocity for homo-
geneous superfluids [166, 86]. We saw that for low coupling between the two condensates,
the parametric excitation is the dominating mechanism for the small condensate, and it
allows to observe a threshold for excitation close to the expected value vc = c̄1 + c̄2.
This mechanism is absent in all the experiments where dissipation is probed using a rigid
perturbation such as laser beams.

These findings therefore suggest that the surprising large values of critical velocities
observed in our Bose-Fermi counterflow experiment, as opposed to other reported values
is due to the dominant presence of parametric excitations. Indeed, the Bose and Fermi
superfluids are weakly coupled and we have typically 15 ε ' 10−2, a value close to the
β12/β22 = 0.003 case in the simulation where ε = 1.05 × 10−2; a nice threshold in
velocity is also observed for this case.

Additionally, this is an original application of the principal component analysis and
demonstrates its strength to uncover the dynamics of collective modes in a superfluid. It
is a model free approach and its results show good agreement with existing theories on
collective modes in elongated traps.

There are still some open and unanswered questions that call for future works. First,
why contrary to the experiment, the center of mass oscillations are not strongly damped
for large relative velocity in the simulation ? Second, what are the consequences of a non-
zero temperature in the system ? Finite temperature simulations of binary condensates
are more involved but were recently developed [194, 195] and could also help understand
better our experimental results. Third, can we observe directly in the experiment the dis-
sipation mechanisms uncovered in the simulation ? The parametric growth of elementary
excitation when the relative velocity crosses the critical velocity should lead to a tem-
perature burst in the system and might be detected by a sudden appearance of a thermal
fraction in the Bose gas. Finally, similarly to the experiment done in Cambridge [196], is
there a turbulent cascade between modes that might explain the intriguing structure of the
eigenvalues of the PCA shown in Fig. 4.10 ?

15 ε is calculated using the formula [166]

ε2 =

(
3

π

)1/3
(mf +mb)

2

ξmfmb

a2bfn
1/3
f

abb
(4.101)

where ξ is the Bertsch parameter.



Chapter 5

Contact relations

In chapter 1, we laid the basis of interactions in cold atomic ensembles, the two-body and
three-body problems, and gave some results on the universal thermodynamic properties
of some many-body system realized using cold atoms. Starting with the seminal works of
S. Tan [197, 198] and M. Olshanii [199] in the years 2000, it was discovered that those
thermodynamical observables are actually connected to various others microscopic and
macroscopic quantities via a set of exact universal relations that hold for any interaction
strength, temperature, number of atoms or trap geometry. Thus far, they all involve the
same quantities, called the two-body contact and three-body contact which are intimately
related to the few-body short-range correlations in the system. We will review those
results in the context of two spin-component Fermi gas and Bose gas. Extended details of
what will be presented here can be found in [197, 198, 200, 101, 201].

5.1 General framework
In the following we will treat two different cases:
– N identical bosons
– N fermions dispatched in two internal states: | ↑〉 (labelled by i = 1, ..., N↑) and | ↓〉
(labelled by i = N↑ + 1, ...N↑ +N↓ = N ).
In the zero-range model, the N -body Schrödinger equation for the orbital part of the
many-body wavefunction reads

HΨ(r1, ..., rN) = EΨ(r1, ..., rN) , (5.1)

with

H = − ~2

2m

N∑
i=1

∆ri . (5.2)

which is just the Hamiltonian of a non-interacting ensemble of free particles. To account
for contact-interactions, the wavefunction should obey the Bethe-Peierls contact condition
for any pair of interacting particles i, j

Ψ(r1, ..., rN) ∼
rij→0

(
1

rij
− 1

a

)
Aij (Rc,ij, (rk 6=i,j)) , (5.3)

where rij = |ri − rj|, Rc,ij = (ri + rj)/2 and Aij is an unknown function1

Additionally, if Efimov effects are present, a second boundary limit has to be fulfilled for
1For fermionic systems, we have also Aij = 0 if i, j particles have the same spin.
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every triplet i, j, k of interacting particles

Ψ(r1, ..., rN) ∼
Rijk→0

Φ(Rijk,Ωijk)Bijk (Rc,ijk, (rl 6=i,j,k)) , (5.4)

withRijk and Ωijk the hyperradius and hyperangle associated with particles i, j, k, Rc,ijk =
(ri + rj + rk)/3, Bijk is an unknown function, and Φ reads

Φ(R,Ω) =
1

R2
sin

[
|s0|ln

(
R

Rt

)]
φs0(Ω) . (5.5)

Instead, if no Efimov effect is present, Ψ will be automatically of the form

Ψ(r1, ..., rN) =
Rijk→0

1

R
2−sl,n
ijk

l∑
m=−l

φl,n,m(Ωijk)Bm,ijk (Rc,ijk, (rl 6=i,j,k)) . (5.6)

where sl,n is the lowest non-efimovian exponent.

5.2 The two and three-body contact
From these very general assumptions, it was discovered that one could deduce universal
relations between different properties of the many-body system. Each time, the same
intermediate quantity was used, the two-body contact C2. In the context of two-spin
component Fermi gas, the exact relations were first obtained by Shina Tan [197, 198], and
the two-body contact is often called Tan’s contact. Similar relations were then obtained
using another quantity, the three-body contact C3 [200, 101].
In a very abstract manner, one can define the two-body contact, C2, using the following
scalar product

(A(1), A(2)) ≡
∑
i<j

∫ (∏
k 6=i,j

d3rk

)
d3Rc,ijA

(1)∗
ij (Rc,ij, (rk 6=i,j))A

(2)
ij (Rc,ij, (rk 6=i,j)) ,

(5.7)
then2

C2 ≡

{
2(4π)2(A,A) for identical bosons

(4π)2(A,A) for 2-spin component fermions .
(5.8)

The two-body contact can thus be seen as the squared-norm of the regular part of the
many-body wave function when two particles get very close and is an extensive quantity.
Similarly, we can define the three-body contact as3

C3 ≡
∑
i<j<k

∫ ( ∏
l 6=i,j,k

d3rl

)
d3Rc,ijk|Bijk (Rc,ijk, (rl 6=i,j,k)) |2 . (5.9)

It will be useful in the following chapters to use the intensive counterparts of C2 and C3,
namely the contact densities C2 = C2/V and C3 = C3/V , where V is the volume of
the system. In the following sections, we will see how these quantities appear through
different observables and gain more insight of what is the physical meaning of these
contact parameters.

2The numerical factor is chosen so that C2 can be defined in a unified manner by C2 ≡ lim
k→∞

k4n(k), as

we will see later.
3If l 6= 0, there is an additional summation over −l ≤ m ≤ l.

Note also that with this definition C3 dimension will depend on the considered channel, [C3] =

1/L
2(sn,l+1).
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5.3 Relation to the tail of the momentum distribution
With the assumption of two-body contact interactions, and no Efimov effect, it seems in-
tuitive that the large momentum properties of the N -body ensemble should be dominated
by two-body physics, equivalently to the Bethe-Peierls condition at short interparticle dis-
tance in the real space. We will see that for the momentum distribution we will indeed
recover two-body physics in the high-momentum limit but also that many-body physics
will remain in the form of a prefactor which will be exactly the two-body contact C2.
Calculation will be shown for a system of spin 1/2 fermions, since no Efimov effect is
present.
In first quantization, the momentum distribution in a given internal state σ is defined as

nσ(k) =
∑
i:σ

∫ (∏
l 6=i

d3rl

)∣∣∣∣∫ d3rie
−ik.riΨ(r1, ..., rN)

∣∣∣∣2 , (5.10)

where i : σ denotes the summation over all the fermions with a spin σ, and with the
normalization ∫

d3k

(2π)3
nσ(k) = Nσ . (5.11)

In the large k limit, the Fourier transform integral is dominated by the contribution of the
short-distance divergences (whenever ri → rj):∫

d3rie
−ik.riΨ(r1, ..., rN) '

k→∞

∫
d3rie

−ik.ri
∑
j 6=i

1

rij
Aij(rj, (rk 6=i,j)) . (5.12)

Then, using the identity ∫
d3re−ik.r 1

r
=

4π

k2
, (5.13)

we have ∫
d3rie

−ik.riΨ(r1, ..., rN) '
k→∞

4π

k2

∑
j 6=i

e−ik.rjAij(rj, (rk 6=i,j)) , (5.14)

where we can already see the high momentum limit 1/k2 signature of two-body physics,
see eq. (1.17). Thus, we now have for the momentum distribution

nσ(k) '
k→∞

(4π)2

k4

∑
i:σ

∫ (∏
l 6=i

d3rl

)∣∣∣∣∣∑
j 6=i

e−ik.rjAij(rj, (rk 6=i,j))

∣∣∣∣∣
2

. (5.15)

By expanding the modulus squared, one see that it involves crossed terms that will vanish
in the large-k limit, so that it simplifies to the following expression

nσ(k) '
k→∞

(4π)2

k4

∑
i:σ,j 6=i

∫ (∏
l 6=i

d3rl

)
|Aij(rj, (rk 6=i,j))|2 . (5.16)

We readily recognize the expression for the two-body contact4

k4nσ(k) '
k→∞

(4π)2(A,A) = C2 . (5.17)

4Since for fermions
∑
i:σ,j 6=i =

∑
i<j .
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For identical bosons, the same relation holds

k4nb(k) '
k→∞

2(4π)2(A,A) = C2 . (5.18)

but cannot be obtained in a simple manner as before. Indeed, due to the Efimov channel,
the wave function is now also diverging whenever three particles get close, see eq. (5.5).
This leads to a new contribution in the large momentum limit due to three-body physics:

nb(k) '
k→∞

C2

k4
+ F (kRt)

C3

k5
, (5.19)

where F is a universal log-periodic function [200].
In fact, the 1/k4 tail appears also in one and two-dimensional systems [199, 101], and is
independent of the statistical nature of the involved particles, thus the two-body contact
is usually directly defined via the momentum tail:

C2 ≡ lim
k→∞

k4n(k) . (5.20)

5.4 Relations to the pair and triplet distributions at short
distances

The number of pair or triplet of atoms close together is a quantity that comes up in sev-
eral phenomena and in particular in the formation of deeply-bound molecules which can
strongly limit the stability of an interacting gas 5. As it will be shown here, the contact
parameter C2 (respectively C3) is directly related to the pair (resp. triplet) distribution at
short distances.

5.4.1 Pair distribution
Intuitively again, we can expect the two-body correlations to be given by two body-
physics at short distance (i.e. ∝ 1/r2) and guess that the prefactor should be, somehow,
the two-body contact. The probability density of finding two fermions with opposite-spin
at given positions is in second quantization:

g
(2)
↑↓ (r↑, r↓) = 〈(Ψ̂†↑Ψ̂↑)(r↑)(Ψ̂

†
↓Ψ̂↓)(r↓)〉 , (5.21)

and in first quantization,

g
(2)
↑↓ (r↑, r↓) =

∑
i:↑,j:↓

∫ ( ∏
k,6=i,j

d3rk

)
|Ψ(r1, ..., ri = r↑, ..., rj = r↓, ..., rN)|2 . (5.22)

The probability density of finding two opposite spin fermions separated by a vector r is
then given by

G
(2)
↑↓ (r) =

∫
d3Rc g

(2)
↑↓

(
Rc +

r

2
,Rc −

r

2

)
. (5.23)

and for r → 0 we readily have

G
(2)
↑↓ (r) ∼

r→0

(A,A)

r2
=

C2

(4πr)2
. (5.24)

5See next chapter.
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Thus, if one measures the positions of all particles, the number of pairs of particles of
opposite spin separated by a distance less than d is

N↑↓(d) =

∫
r<d

d3r G(2)(r) =
C2

4π
d . (5.25)

For identical bosons, the probability density of finding two bosons separated by a distance
r has the same limit

G(2)(r) ∼
r→0

2(A,A)

r2
=

C2

(4πr)2
. (5.26)

and the number of pairs of particles separated by a distance less than d is then

Npair(d) =
1

2!

∫
r<d

d3r G(2)(r) =
C2

8π
d . (5.27)

5.4.2 Triplet distribution
For the triplet distribution, we can apply the same reasoning. In the fermionic case of
(↑↑↓) triplet, we have to look at

g
(3)
↑↑↓(r1, r2, r3) = 〈Ψ̂†↑(r1)Ψ̂†↑(r2)Ψ̂†↓(r3)Ψ̂↓(r3)Ψ̂↑(r2)Ψ̂↑(r1)〉 . (5.28)

Then the number of triplets of hyperradius smaller than d is given by

N↑↑↓ =
1

2!

∫
R<d

d3r1d
3r2d

3r2g
(3)
↑↑↓(r1, r2, r3) , (5.29)

which in the limit of small hyperradii gives

N↑↑↓ '
d→0

1

4

(
3

2

)3/2

d2 d2sn,l

1 + sn,l
C3 , (5.30)

where the non-usual dependence with d comes from eq. (5.6).
For identical bosons, one has to use instead the boundary (5.5), and one finds for the
triplet number

Ntriplet '
d→0

1

16

(
3

2

)1/2

d2

(
1− Re

[
(d/Rt)

2is0

1 + is0

])
C3 . (5.31)

5.5 Relation to the energy
The relation that probably raised the most interest connects the two-body contact and
the derivative of the energy with respect to the inverse scattering length and is called the
adiabatic sweep theorem.
For two-spin component fermions it reads

dE

d(1/a)
= −~2C2

4πm
. (5.32)

For identical bosons, we have instead(
∂E

∂(1/a)

)
Rt

= −~2C2

8πm
. (5.33)
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Their derivations using the standard tools introduced in section 5.1 is more involved and
can be found in [201]. As a result, the knowledge of C2 as a function of inverse scat-
tering length determines the energy of the system by an integration starting from the
non-interacting case at a = 0.
A similar relation was also demonstrated for the three-body contact in the case of identical
bosons [200, 101] (

∂E

∂(ln(Rt))

)
a

=
~2

m

√
3s2

0

4
C3 . (5.34)

5.6 Extension to statistical mixtures
So far, we only discussed the case of pure states, but these relations can be generalized
to the case of arbitrary statistical mixtures described by a density matrix operator ρ̂ =∑
pn|Ψn〉〈Ψn|6. In particular at thermal equilibrium, equation (5.32) now reads(

∂F

∂(1/a)

)
T

= −~2C2

4πm
, (5.35)

where F is the free energy and T is the temperature. It can also be written using the total
internal energy U (

∂U

∂(1/a)

)
S

= −~2C2

4πm
, (5.36)

where S is the entropy.
This generalization to statistical mixture and in particular states at thermal equilibrium is
a crucial feature of the contact relations. It means that they apply at any temperature, and
for any phase (e.g. a superfluid or a Fermi-liquid phase) of the system. By measuring the
local properties of the gas such as the two-body correlations at short distances, one can
obtain information about the thermodynamics of the whole ensemble and conversely.
Using equation (5.36), we can actually compute the exact value of the contact provided
we know the equation of state of the system we are interested in.

5.7 Conclusion
In this short chapter, we reviewed some important universal and exact relations that in-
volve the two-body and three-body contacts. Numerous others relations were derived
showing that the contact parameters actually play a central role in many of the most im-
portant probes for ultracold atoms. Notable examples where the two and three body con-
tacts show up are the RF-spectroscopy where interacting atoms are transferred to a non
interacting state [202, 203, 204, 205], photoassociation of atoms to form deeply-bound
molecules [91, 206] or the structure factors measured by Bragg spectroscopy [207, 208,
209]. In the following chapter, we will show that inelastic losses are also intimately re-
lated to the contact parameters.

6Provided (but it’s not the only requirement) the Ψn still satisfy the two-body contact condition 5.3 and,
if there is an Efimov effect, the three body contact condition 5.5.
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Universal inelastic losses in cold gases

Cold atomic vapors are metastable systems. Indeed at such low temperatures their abso-
lute ground-state is solid. To start solidifying, gaseous atoms need to find an “impurity”
through which they can release their binding energy and form a cluster that will even-
tually contain all atoms of the vapor. In fact, the role of the impurity can be played by
any atom of the vapor ensemble. In that way the first step of solidification would be
the formation of a deeply-bound molecule resulting from the collision of three atoms.
When the density is large, this inelastic process can drastically limit the lifetime of the
atomic cloud. In this chapter, we will introduce the physics of three-body recombination
in cold-atoms systems. We will show that interactions can strongly enhance or inhibit this
process, and while it can severely limit the stability of the interacting system, it allows to
probe the effects of interactions, such as the Efimov physics and quantum correlations at
short distances.

6.1 Three-body recombination
Whenever three atoms collide, there is a probability that two of them will form a molecule.
The released binding energy will be converted in momentum and the two final bodies will
fly away from each other. This inelastic process is usually called a three-body recombi-
nation event. As said in chapter 1.1.1, the two-body Van der Waals potential possesses
several bound states of size R∗ . lvdw. Hence, the formation of deeply-bound molecules
requires the three atoms to approach within a distance R∗. Classically, we then expect the
recombination probability to scale as (nR3

∗)
2, which is a small parameter for dilute gases.

The released energy is typically ∼ 102 − 104 K and is orders of magnitude larger than
any relevant energy scale in ultracold systems. The kinetic energy imparted to the final
products is thus enough for them to escape quickly from the confining potential. Conse-
quently, we usually characterize three-body recombinations by a loss-rate coefficient Γ3

and an associated differential equation

1

N

dN

dt
= −Γ3(N). (6.1)

In addition to atom losses, three-body recombinations can affect the rest of the gas in
several other manners:

• It is a source of heating. Indeed, in a non-uniform trap, the maxima of densities are
associated to minima of the trapping potential, so that three-body losses will mainly
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remove atoms which have low potential energies and thus increase the mean energy
per particle of the system. In addition, three-body losses are in some situations
more likely to occur when the kinetic energy of the particles is low, which reinforce
the heating effect. In chapter 7, we describe and apply a model which takes into
account both three-body recombinations and evaporative losses to describe the atom
losses and temperature dynamics of a dilute unitary Bose gas.

• By removing preferentially a certain kind of particles (e.g. atoms with low kinetic
energy, Feshbach molecules, etc ...), the three-body losses can modify the equi-
librium properties of the gas. An original work on this topic will be discussed in
chapter 7, where we compute the effect of the three-body losses on the momentum
distribution of a dilute unitary Bose gas.

• At the quantum level, three-body losses can be seen as an absorptive boundary con-
dition at short interparticle distances. If the absorption is too strong or for resonant
cases, it can strongly affect the many-body wave function and break the universality
of the zero-range model.

As we can intuitively guess, Γ3 encompasses non-universal and complicated short-range
physics that describes the formation of a molecule whenever three atoms are close to each
other. In the zero-range limit, a � lvdw, and assuming perturbative losses, the recombi-
nation rate also possess universal properties that will depend on the scattering length a
and, if Efimov effects are present, on the three-body parameter Rt. The knowledge of the
associated scaling laws is of utmost importance to determine the stability of a gas.

6.2 General principles

6.2.1 A general statement
As said earlier, the energy released by the formation of a deeply bound molecule exceeds
by far all the energy scales of the system. As a consequence the momentum and energy
conservation equations of the recombination are dominated by the final state. Indeed, if
we label the three particles by α = 1, 2, 3 and suppose the first two will recombine to form
a molecule α = M , we have the following energy and momentum conservation equations

k2
1 + k2

2 + k2
3 = −εb +

1

2
k2
M + k2

3 (6.2)

k1 + k2 + k3 = kM + k′3 (6.3)

where εb = 2mEb/~2 is the binding energy of the molecule.
In order for the rhs of the first equation to be positive we have k2

M/2 + k2
3 ≥ εb and since

the binding energy is larger than any typical energy scale εb � k2
th, k

2
F we have in good

approximation
1

2
k2
M + k2

3 = εb (6.4)

and finally
kM = −k′3. (6.5)

The final state of the three-body system is completely decoupled from the momenta of the
initial incoming particles. As a consequence, demonstrated in the next section, we have
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Figure 6.1: Sketch of a three-body recombination in a many-body system. Whenever
three particles collide (left figure), there is a given chance that two of them form a deeply
bound molecule (purple circles on the right figure). The large released binding energy
exceeds greatly any energy scale involved in cold ensemble and the final state is indepen-
dent of the initial momenta of the particles (black arrows). Therefore, the loss rate should
be proportional to the probability to find triplet of atoms at short distances. This proba-
bility can be strongly modified by the interactions/correlations in the many-body system
(depicted as orange shaded areas).

in a good approximation that the recombination rate is proportional to the probability of
having the three particles within a distance R∗:

Γ3NM = γ

∫
R<R∗

d3r1d
3r2d

3r3〈Ψ̂†1(r1)Ψ̂†2(r2)Ψ̂†3(r3)Ψ̂3(r3)Ψ̂2(r2)Ψ̂1(r1)〉 (6.6)

where γ is a constant that depends on the short-range physics and R is the hyperradius
associated to the three particles and Ψ̂α are the field operators for the atoms (α = 1, 2, 3).
It shows in a more explicit way that the losses are probing the few-body correlations of
the ensemble at short distances. If the many-body wave function is unaffected by the
losses, we can thus use directly all the contact relations introduced in the previous chapter
to derive the loss rates. It is worth noticing that this same idea can be applied to describe
light-assisted two-body losses [206, 91] or two-body inelastic scattering [210].

6.2.2 A justification using a microscopic model
We can actually derive an expression similar to equation (6.6) by considering a micro-
scopic model for the three-body recombination. Assuming that the loss rate is small, we
can compute it using perturbation theory. Similar approach to what will be described
here can be found in an early work of Kagan et al. [84] and in our more recent publica-
tion [211]. We consider the three-body Hamiltonian

Ĥ3 =

∫
d3r1d

3r2d
3r3g(ρ1,ρ2)Ψ̂†M (rM) Ψ̂†3(r3)Ψ̂3(r3)Ψ̂2(r2)Ψ̂1(r1) + h.c., (6.7)

where Ψ̂M is the field operators for the molecule (α = M ) with rM = (r1 + r2)/2.
g(ρ1,ρ2) is a kernel describing the molecule formation and is expressed in term of Ja-
cobi’s coordinates ρ1 = r1 − r2 and ρ2 = r3 − (r1 + r2)/2. Its characteristic width



108 Chapter 6

is of the order of the typical size R∗ of the deeply bound molecule and is assumed to
be much smaller than the other relevant length scales of the problem (scattering length
and inter-particle distance). Finally we assume for the sake of simplicity that all atomic
species (α = 1, 2, 3) have the same mass.

Assuming that the Hamiltonian Ĥ3 can be treated perturbatively1, the molecule for-
mation rate (the number of recombinations per unit time) is given by Fermi’s Golden
Rule

Γ3NM =
1

~2

∫ ∞
−∞

dt〈i|Ĥ3(0)Ĥ3(t)|i〉 (6.8)

where
Ĥ3(t) = eiĤ0t/~Ĥ3e−iĤ0t/~, (6.9)

H0 is the (complicated) Hamiltonian of the system without three-body recombinations,
but contains deeply bound states.
If we now recast H3 in momentum space by taking

Ψ̂α(r) =
1√
Ω

∑
k

eik·râα(k) (6.10)

where Ω is a quantization volume, we have

Ĥ3 =
1

Ω3/2

∑
k1,k2

k3,k′3

g̃((k1 − k2)/2, (k′3 − k3))âM(kM)†â3(k′3)†â3(k3)â2(k2)â1(k1) + h.c.,

(6.11)
with

g̃(q, q′) =

∫
d3ρ1d

3ρ2e
−i(q·ρ1+q′·ρ2)g(ρ1,ρ2),

and kM = k1 + k2 + k3 − k′3 owing to momentum conservation.
If we then consider that the excited molecule and the fast atom have a free motion with
energy ~2k2

M/4m− Eb and ~2k
′2
3 /2m, respectively, then for each set of momenta, H3(t)

will accumulate a phase

exp

[
−i t

~

(
~2k2

M

4m
+

~2k
′2
3

2m
− Eb + ∆

)]
, (6.12)

where ∆ is the energy gained or lost by removing three particles of the many-body ensem-
ble. Since Eb is much larger than any typical single-particle energies of the initial state
we can neglect ∆ and we recover the two conditions (6.4) and (6.5). The time integral
in (6.8) transforms as a Dirac delta function and if we note that the initial state does not
contain any molecules and fast atoms we can rewrite the loss rate as

Γ3NM '
2π

~Ω3

∑
k1,k2,k3

k′1,k
′
2,k
′
3

χ(k1 − k2,k
′
1 − k′2)×

〈i|â1(k′1)†â2(k′2)†â3(k′3)†â3(k3)â2(k2)â1(k1)|i〉,

(6.13)

with

χ(q, q′) =
1

Ω

∑
k′3

δ

(
3~2k′3

2

4m
− Eb

)
g̃(q,k′3)g̃(q′,k′3)∗ (6.14)

1In practice, this is justified by a decay time longer than any other characteristic time scales.
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Going back into real space and using the fact that thanks to momentum conservation, we
must have k1 + k2 + k3 = k′1 + k′2 + k′3, we obtain

Γ3NM '
2π

~

∫
d3ρ1d

3ρ2G(ρ1,ρ2)

〈i|Ψ̂†1(−ρ2/2)Ψ̂†2(ρ2/2)Ψ̂†3(0)Ψ̂3(0)Ψ̂2(ρ1/2)Ψ̂1(−ρ1/2)|i〉
(6.15)

with
G(ρ,ρ′) =

1

Ω2

∑
q,q′

χ(q, q′)e−i(q·ρ+q′·ρ′). (6.16)

Since G takes significant values for ρ1, ρ2 . b, we have essentially the same structure
for the loss rate expression as in equation (6.6). In [84], this formalism was applied on
a system of identical bosons and predicted that the three-body loss rate should decrease
by a factor 3! = 6 under the critical temperature for condensation because of the indistin-
guishability of the condensed bosons. It was thus thought as a strong signal to detect the
famous phase transition not yet observed at that time. The prediction was actually verified
later on in [44].

6.2.3 Application to some generic cases
Using the boundary conditions (5.3, 5.5, 5.6) introduced in the previous chapter we can
directly relate the recombination rate to the two and three-body contact. If no Efimov
effect is present we indeed have

Γ3nM = C3
2π

~

∫
d3ρ1d

3ρ2
G(ρ1,ρ2)

(R1R2)2−sl,n
(6.17)

where C3 is the three body-contact density and R1,2 = ρ1,2/
√

2.
If instead, there is an Efimov channel, we have

Γ3nM = C3
2π

~

∫
d3ρ1d

3ρ2
G(ρ1,ρ2)

(R1R2)2
sin

[
|s0|ln

(
R1

Rt

)]
sin

[
|s0|ln

(
R2

Rt

)]
. (6.18)

If one kind of particle (here α = 3) is weakly interacting with the two others, we readily
get

Γ3nM = C2
n3

8~

∫
d3ρ1d

3ρ2
G(ρ1,ρ2)

ρ1ρ2

(6.19)

where C2 is the two-body contact density associated to particles α = 1, 2 and n3 is the
density of the weakly coupled particles α = 3.
The precise values of the integrals in equations (6.17, 6.18, 6.19) relies on short-range
physics but are almost independent of external parameters, such as magnetic field, tem-
perature, etc2. More importantly, all the effects of resonant interactions are decoupled

2If we assume the function G to be constant for R ≤ b and 0 otherwise, we can write (here for the
non-Efimovian case) the loss rate as

Γ3nM =
~
m
C3

b2sn,l

2sl,n + 2
α, (6.20)

where α is a numerical constant. It shows explicitly that the intensity of the losses is given by comparing
the three-body contact C3 to the interaction range b (to some specific power).
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Figure 6.2: Simplified picture of the various scaling laws in density n, temperature T
and scattering length a for the three-body loss rate Γ3 = ṅ/n for different asymptotic
limits assuming a ideal system subject to three-body collisions without shallow bound
states nor Efimov trimers. The red area shows the strongly correlated regime where three-
body collisions are affected by the presence of surroundings atoms leading to a non-usual
density dependence of the loss rate. The exponent q can be recovered using the contact
theory.

from the short range physics and contained in a single prefactor that is again played by a
contact parameter C2 or C3. All the dependence of the three-body loss rate on the system
parameters T , n, a, and Rt is encapsulated in the contact parameter and we get simple
differential equations of the form

dnα
dt

= −γ C3 , (6.21)

or for the case of a weak coupling between the third type of particles with the two others

dnα
dt

= −γ n3C2 , (6.22)

where γ is a numerical constant containing all the short-range physics.
With this simple formulation of three-body recombination, one can recover known results
coming from few-body physics, such as the ∝ a4 dependence of the loss rate for weakly
interacting bosons (see section 6.3) or the 1/a2.55 scaling for inelastic collisions between
weakly bound dimers of fermions in the BEC limit (see section 8.4) [77].
Furthermore, it is worth emphasizing that this formalism allows one to describe losses in
a strongly interacting many-body system as we have expressed the correlations in terms of
the contact parameters. In particular, at low temperature and in the unitary limit, the only
relevant length scale is given by the system density n and by dimensional analysis the loss
rate will have a non trivial density dependence np where p differs from the usual values
2 or 3 (it can be a fractional or even an irrational number), as depicted in Fig.6.2. This
results from the impossibility to isolate a set of three particles in a strongly interacting
system, i.e their collisions are affected by the presence of surrounding atoms. Exam-
ples of unusual exponent p will be given in the following sections and an experimental
confirmation shown in chapter 8.
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6.2.4 Inelasticity parameter
To go beyond this perturbative approach we have to include the effects of three-body re-
combination on the many-body wave function. This is a priori a challenging task for a
strongly correlated ensemble. For a set of three particles and in the case of an Efimov
channel, Braaten and Hammer proposed to model the cumulative effects of all the two
body-bound state as a simple absorptive boundary condition at short distance [92]. The
hyperradial wave function can be seen as a superposition of an in-going and outgoing
waves at short distances. Instead of having a purely reflective boundary condition with
some phase-shift associated to the three-body parameter, they included a new factor de-
pending on a single quantity, the inelasticity parameter η∗ that will describe the fraction of
triplet particles that is lost at short distances. This factor is not universal and will depend
on the considered atomic species. The three-body contact condition becomes: ∃B such
that3

Ψ(R) ∼
R→0

[(
R

Rt

)−is0
− e−2η∗

(
R

Rt

)is0] B(Ω)

R2
. (6.23)

With this new assumption, the three-body recombination rate can be calculated non-
perturbatively and allows one to describe loss resonances that occur when the energy of
an Efimov trimer crosses the scattering threshold or a shallow two-body bound state [92,
212, 213].

In the limit of η∗ → 0 and if the system is far from a three-body recombination
resonance, one should recover the perturbative result (6.21) with

γ =
η∗→0

η∗2
√

3
~
m
|s0|. (6.24)

6.3 Scalings for the Bose gas
Three-body losses were historically first investigated on bosonic system, as it was poten-
tially an important constraint to overcome in order to obtain a Bose-Einstein condensate.
In the universal regime and low temperature, it was shown that the loss rate increases
sharply with interactions as a4 [214, 215], leading to an inevitable instability of the Bose
gas when going toward strong interactions. Rapidly after, it was demonstrated both nu-
merically and theoretically that there was some additional periodic resonant enhancement
of the loss rate [216, 217]. It was then understood that the predicted resonant loss features
were actually the signature of log-periodically emerging Efimov trimers [218, 219, 92],
and their existence was confirmed experimentally by a first experiment with Cesium
atoms [73], followed by several others using different atomic species [74, 75, 76].

Positive side of the resonance

Using the knowledge of the energy density of the low temperature interacting Bose gas,
eq. (1.61) and the adiabatic sweep theorem, we can readily get the three-body loss rate

dn

dt
= −γC3 = −γ 1

s2
0

64

3
√

3
(4π − 3

√
3)

(
∂D

∂ln(Rt)

)
a

n3a4, (6.25)

3This condition is written for the three-body problem but can be readily generalized for any N-body
wave function.
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that we can rewrite as
dn

dt
= −L3n

3, (6.26)

with

L3 =
~
m
f

(
a

Rt

)
a4, (6.27)

and f is a numerical log-periodic function. We recovered the n3 dependence as expected
for recombinations involving three independent particles and the a4 scaling law leading to
strong losses for large scattering lengths4, and we also obtained the log-periodic behavior
coming from the Efimov physics.

Since the Efimov channel allows for atoms to be extremely close, the presence of
deeply bound states can resonantly affect the many-body wave function. Thus, to compute
the precise form of the loss-rate coefficient, it is convenient to introduce the inelasticity
parameter η∗ in the three-body contact condition, eq.(6.23). For positive scattering length
a > 0, the log-oscillations are strongly suppressed by a factor e−2πs0 ' 1/557 as we have
the expression [92]

f(a/Rt) = 64π2(4π − 3
√

3)
th(πs0)ch(πs0)ch(η∗)sh(η∗)

sh2(πs0 + η∗) + sin2(s0ln(a/Rt) + φ)
. (6.28)

To be complete, there are three-body recombination occurring via the collision of a shal-
low dimer and a free atom. A loss resonance will take place whenever a trimer’s energy
reaches the atom-dimer threshold Eb = −~2/ma2.

Negative side of the resonance

On the negative side of the Feshbach resonance, the three-body loss coefficient has much
more prononced log-periodic oscillations [92]

L3 =
3590 sh(2η∗)

sin2(s0ln(a/a−)) + sh2η∗

~a4

m
, (6.29)

with s0ln(a/a−) = s0ln(a/Rt) + 1.72(3).
The loss resonances are located at a = a−e−nπs0 and their width are given by the inelas-
ticity parameter η∗. The observation of such resonances was used to prove for the first
time the existence of the long sought Efimov trimers [73].

Unitary limit

At unitarity and T = 0 using the usual saturation argument a→ n−1/3, we can expect the
3 body loss coefficient to be of the form

L3 =
~
m
f

(
n−1/3

Rt

)
n−4/3. (6.30)

Thus the loss rate has the surprising fractional density dependence(
dn

dt

)
3b

∝ −n5/3. (6.31)

4The a4 scaling law can also be obtained by a simple dimensional argument assuming a n3 dependence
and forgetting about the short-range length scale, but it actually works because of the Efimov channel and
Re(s0,0) = 0 for identical bosons: The short-range length scale only appears via log-periodic oscillations.
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This expression might be drastically modified by resonant effect of losses on the many-
body wave function. Nevertheless, the 5/3 exponent was confirmed in a recent experiment
at JILA [85].
The unitary problem is actually tractable in the high-temperature limit and it was found
that [36, 213]

L3 =
72
√

3π2~(1− e−4η∗)

mk6
th

∫ ∞
0

(1− |s11|2)e−k
2/k2

thkdk

|1 + (kRt)−2is0e−2η∗s11|2
. (6.32)

where kth =
√
mkBT/~.

The s11 coefficient comes from a S-matrix formalism that describes how the long-range
and short-range part of the three-body wave function connect. At unitarity, we have the
expression s11 = −e−πs02i(s0ln(2) + argΓ(1 + is0)) and |s11| = 0.04 so that L3 can be
well approximated by

L3 '
~5

m3
36
√

3π2 1− e−4η∗

(kBT )2
. (6.33)

We can remark a 1/T 2 dependence of the loss rate, which could be obtained by assuming
that the relevant length scale for interactions becomes λth when a→∞. This temperature
dependence was confirmed by two experiments [36, 220] that will be discussed in more
detail in the next chapter.

6.4 Conclusion
In this chapter, we have given a short overview of three-body recombination in cold gases.
In particular, we have shown that the loss rate is directly related to the short-distance cor-
relations in the atomic ensemble. In the universal regime, assuming that we can treat the
losses perturbatively, we can indeed predict the loss rate scaling laws in density, temper-
ature, and scattering length using our knowledge on the two-body and three-body contact
of the system. Conversely, it shows that few-body losses can be used as a probe for the
quantum correlations at play in a many-body system. In chapter 8, we will indeed use
the link between three-body recombination and short-distance correlations to measure the
local two-body contact of the unitary Fermi gas by looking at inelastic losses in our ultra-
cold Bose-Fermi mixture. In chapter 7, we will describe how three-body losses modify
the equilibrium properties of a dilute unitary Bose gas and how a dynamic competition
can arise with evaporative losses.
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Chapter 7

Inelastic losses in a strongly interacting
Bose gas

The low temperature unitary Bose gas is under both experimental and theoretical intense
investigation as it should display rich physics emerging from the interplay between strong
many-body correlations and exotic Efimov few-body physics [37, 221, 222, 223, 224,
110, 85]. However, on the experimental side, its study is severely limited by the presence
of resonant three-body recombination as shown in chapter 6. A way to overcome this
challenge is to work at finite temperature where the three-body loss rate scaling as a4

actually saturates when a � λth, where λth is the thermal wavelength. Indeed, it was
shown both theoretically and experimentally [36, 213] that at unitarity the three-body
loss rate coefficient is given by

L3 '
~5

m3
36
√

3π2 1− e−4η∗

(kBT )2
. (7.1)

where η∗ is the inelastic parameter characterizing the probability of forming a deeply
bound molecule at short distance (see sections 6.2.4 and 6.3).
Thus the unitary Bose gas is metastable at high temperature as the three-body losses
vanishes thanks to the 1/T 2 scaling. More precisely, a quasi-equilibrium is ensured in
presence of losses provided that the characteristic loss rate Γ3 = L3n

2 is small in compar-
ison to the elastic scattering rate Γ2 = nσv, where σ is the scattering cross-section and v
the characteristic velocity of the atoms. At unitarity the scattering cross section follows a
universal scaling σ = 1

k2 , where k is the relative wave vector of two scattering particles.
Plugging eq. (7.1) into the expression for Γ3, we readily see that quasiequilibrium can be
achieved as long as (1− e−4η∗)nλ3

th is small, i.e. when the system is not too deeply in the
quantum degenerate regime.

In this chapter we illustrate two consequences of the interplay between three-body
inelastic losses and two-body collisions in a thermal unitary Bose gas, where a quasi-
equilibrium is ensured and losses can be treated pertubatively . In a first part, we in-
vestigate the dynamic competition that can happen between two-body evaporation and
three-body recombination. We develop a model that can describe accurately the full tem-
perature and decay dynamics of the system. We identify a universal “magic” trap depth
where, within some parameter range, evaporative cooling is balanced by recombination
heating and the gas temperature stays constant. We apply the model for data coming from
experiments done with two atomic species, 7Li and 133Cs, lying at the extreme ends of
the (stable) alkaline group. We demonstrate that the dynamics are universal up to a single
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atomic-dependent factor, the inelasticity parameter η∗. In the second part, we explore the
effect of three-body recombination on the equilibrium properties of the unitary Bose gas.
Using a combination of Boltzmann’s equation and virial expansion, we compute the effect
of three-body losses and interactions on the momentum distribution of a dilute homoge-
neous unitary Bose gas. Our result are compared to the measurement made at JILA on a
unitary gas of 85Rb [37].

7.1 Universal loss dynamics

Along with the loss of all the colliding atoms, a three-body recombination also generates
“anti-evaporative” heating as it occurs more frequently at the center of the trap (loss of
atoms with small potential energy) and for particles with small momenta [36, 213]. With
a rapidly increasing temperature, evaporative cooling can be reactivated and lead to a non
trivial time dependence of the sample temperature. In particular, for a well chosen trap
depth, the residual evaporation compensates for three-body loss heating and maintains the
gas temperature constant. We will briefly present a model that describes this competition
and then apply it to analyze the measured loss dynamics of unitary Bose gases prepared at
various temperatures and atom numbers. The data come from two different experiments
done at ENS with 7Li atoms and previously published [36] and at Chicago (JFI) using
133Cs atoms. The model allows to accurately extract the loss coefficients and we verify
the universality of the L3 ∝ 1/T 2 scaling law. Extended details can be found in our
publication [220].

7.1.1 The model

In the following we will consider a dilute unitary Bose gas trapped in a harmonic potential
with a finite depth U . The cloud is described by a Maxwell Boltzmann distribution and the
loss rate coefficient can be written as L3 = λ3/T

2, where λ3 is a temperature independent
constant.

Recombination decay and heating

As we have seen previously the atom number decay of a dilute (non-degenerate) Bose gas
is given by the equation

dn

dt
= −L3n

3. (7.2)

Integrated over the system volume it reads

dN

dt
= −γ3

N3

T 5
, (7.3)

where

γ3 = λ3

(
mω̄2

2
√

3πkB

)3

, (7.4)

with ω̄ the geometric mean of the trap frequencies.
Each loss of atom via a three-body recombination leads to an excess of (5/3)kBT of
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energy left in the sample1. Each atom carrying on average an energy 3kBT , we have the
differential equation for the total energy of the system:

dE

dt
=

(
3− 5

3

)
kBT

dN

dt
, (7.5)

Using the total energy expression E = 3NkBT , we get the differential equation for the
temperature

dT

dt
=

5

3

T

3
γ3
N2

T 5
. (7.6)

Evaporative cooling

The evaporative cooling can be modeled using standard kinetic theory of gases [135].
Here, we suppose a 3 dimensional isothermal evaporation in a harmonic trap, for which
analytic expressions can be derived. We have for the loss rate:

Ṅ = −ΓevN, Γev = n0σUve
−ηVev

Ve

. (7.7)

where n0 = N/Ve is the peak density, v̄ = 8kBT
πm

is the mean quadratic velocity, σU =
16π~2/mU is the scattering cross-section [225], η = U/kBT is the trap depth, Ve =
(2πkBT/mω̄

2)3/2 is the effective volume of the sample, and the evaporative volume Vev

is defined by
Vev

Ve

= η − 4
P (4, η)

P (3, η)
, (7.8)

with P (a, η) being the incomplete Gamma function

P (a, η) =

∫ η
0
ua−1e−udu∫∞

0
ua−1e−udu

. (7.9)

The energy loss associated to the evaporation of atoms is given by

dE

dt
= (η + κ̃)kBT

dN

dt
, (7.10)

where κ̃ is the mean excess energy an evaporated atom carries in addition to the trap depth
energy in units of kBT . For a harmonic trap it reads [135]

κ̃ = 1− P (5, η)

P (3, η)

Ve

Vev

. (7.11)

Using E = 3NkBT , we get the temperature differential equation

3
Ṫ

T
=
Ṅ

N
(η + κ̃− 3) . (7.12)

1This follows from [36, 213], where they calculate the three-body recombination rate for three scattering
particles (plane waves at large distance) which is equivalent to computing the three-body contact C3 of the
associated system. It was shown that the loss rate coefficient is actually energy dependent, L3(Erel) ∝
1/E2

rel (where Erel is the system energy in the center of mass frame), favoring the recombination of low
momenta atoms. The energy lost per recombination event is then obtained by a thermal averaging of
L3(Erel)Etot.



118 Chapter 7

The above model allows to describe the evaporation in the 133Cs experiment. However, for
the 7Li experiment the evaporation is two dimensional due to the magnetic axial confine-
ment which has essentially an infinite trap depth. The description of a two-dimensional
evaporation is a lot more involved and in pratice is done using Monte-Carlo simula-
tions [226]. The analysis suggests that the 2D evaporation dynamics follows the same
functional form as the well-established 3D model, but it requires a modification of the
evaporation parameter:

ηeff = η + 1. (7.13)

Combined equations

We can now combine the two processes of recombination heating eq. (7.3, 7.5) and evap-
orative cooling eq. (7.7,7.10) to get two coupled differential equations that will describe
the temperature and atom number evolutions:

dN

dt
= −γ3

N3

T 5
− γ2e

−ηVev

Ve

N2

T
(7.14)

dT

dt
=

T

3

(
5

3
γ3
N2

T 5
− γ2e

−ηVev

Ve

(η + κ̃− 3)
N

T

)
. (7.15)

where γ2 = 16~2ω̄3/πkBU .
The equations (7.15, 7.14) are solved numerically and an example with typical experi-
mental settings is displayed in Fig. 7.1. We can see a non monotonous behavior of the
temperature (orange line) showing the competition between evaporative cooling and re-
combination heating. The atom number decay is amplified by two-body evaporative losses
with respect to three-body decay alone (red line). Thus, if not taken into account, evapo-
rative cooling can lead to an important overestimation of the three-body loss coefficient.
Due to its two-body nature, evaporative cooling is always dominant on the long term as
the associated terms scale as N2 while the three-body recombination terms scale as N3.
For short times, depending on the value of γ2, γ3, and U , the dynamics can be either
dominated by one of the two processes or present in similar proportion leading to dif-
ferent dynamical behaviors. In particular, there exist a “magic” relative trap depth ηm,
for which the first-order time derivative of the sample temperature vanishes, leading to
an almost constant temperature over time. This property can be exploited to measure the
temperature dependence of L3, by doing decay measurements for different constant tem-
peratures as done in [36]. The theoretical value of ηm is found by solving the equation
dT/dN = 0. Up to a factor (1 − e−4η∗), ηm depends only on the phase-space density of
the cloud N(~ω̄/kBT )3. In that constant temperature situation, the ratio between the two
body and three-body loss rates is given by

Ṅ2b

Ṅ3b

=
5

3

1

ηm + κ− 3
(7.16)

which is ∼ 30% for a typical relative trap depth ηm = 8.
For η(t = 0) > ηm, there is an initial phase with an increasing temperature (as in Fig.7.1)
where evaporative cooling can be potentially neglected. With this model we are now able
to accurately extract the loss coefficient L3 by fitting the entire atom loss and temperature
curves.
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(b) Decay of atom number

Figure 7.1: Example of temperature (a) and atom number decay (b) dynamics for typical
experimental settings N(0) = 105, T (0) = 3µK, U/kBT (0) = 9, ω̄ = 2π × 500 Hz and
λ3 = 1×10−20 µK2 cm6. The orange line is the full model (3-body losses + evaporation).
The red dashed line is the model without evaporative cooling.

7.1.2 Analysis of the experimental data
The 7Li and 133Cs experimental setups are described in [36] and in [227] respectively.
Both experiments follow a similar protocol. The Bose gas is first evaporated in a weakly
interacting regime. The trap depth and frequencies are changed to reach a target tem-
perature and density. Then the magnetic field is quickly ramped to unitarity. The clouds
are imaged for different waiting times to measure N(t) and T (t). The 133Cs Feshbach
resonance at 47.8 Gauss and the 7Li Feshbach resonance at 737.8 Gauss used in the
experiments have very similar resonance strength parameters sres = 0.67 and 0.80 re-
spectively [228, 90]) and are in the intermediate coupling regime (neither in the broad nor
narrow resonance regime).

Analysis of the N(T) trajectories

To analyze the data, we perform a coupled least-square fit2 of the atom number and tem-
perature trajectories, eqs. (7.15, 7.14), to the data. The only free fit parameters are the trap
depth U and the three-body loss constant λ3. In Fig. 7.2a, we present typical results for
the evolution T (N) in the case of 133Cs. We show trajectories for different initial relative
trap depths ηin = U/kBTin. We also plot the relative temperature T/Tin as a function of
the relative atom number N/Nin for the same data in Fig. 7.2b, and for 7Li in Fig. 7.2c.
Each data point results from the averaging of 5-10 measurements taken at a given waiting
time t (or within a short time window), error bars are 1 standard deviation from the mean.
The fits shown as solid lines in Fig. 7.2 are able to reproduce the different observed dy-
namics for a large variety of initial atom numbers and temperatures. The extracted values
for the trap depth U are in good agreement with their calculated values using our knowl-

2We fit both temperature and atom number individually with solutions to the coupled differential equa-
tion set of eqs. (7.15, 7.14). For both fits, we use a common three-body loss coefficient λ3, and a common
trap depth U . The fitting is done by minimizing the weighted sum αχT + α−1χN by varying both the
weighing factor α and the fit parameters. The quadratic deviations are defined as χT,N = Σσ2

T,N (σT,N be-
ing the deviations of data and fit). This method accounts for the different amount of relative signal-to-noise
ratio of both data sets.
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edge on the trapping beams and magnetic fields. As an example, a comparison with 7Li
experiment calculated trap depth values is shown in Fig. 7.3.

Universality of three-body losses

Using the extracted values of λ3, we can test the validity of the L3 ∝ T−2 law for the
three-body loss of unitary 7Li and 133Cs Bose gases. Thanks to the large mass ratio
between the two atomic species 7/133 = 19, we check the universality of the three-body
loss rate over two orders of magnitude in temperature from 0.1µK to 10µK. We present in
Fig. 7.4 the results for the rate coefficient L3, which varies over approximately two orders
of magnitude for both species. In order to emphasize universality, the loss data is plotted
as a function of (m/mH)3T 2

in, where mH is the hydrogen mass. In this representation, the
unitary limit for any species collapses to a single universal line (dotted line in Fig. 7.4, cf.
eq. (7.1)) up to the only remaining non-universal factor η∗.

The 7Li results are obtained by reanalyzing the data used in [36] but also unpublished
data where the temperature was not constant over time. This allows us to cover the 1-
10µK temperature range. We find for the temperature-independent loss coefficient λ3 =
3.0(3) × 10−20 cm6µK2s−1 which is slightly higher than the previously measured value
λ3 = 2.5(3)stat(6)syst × 10−20 cm6µK2s−1 found in [36] but compatible within the error
bars. It is very close to the unitary limit λmax

3 ≈ 2.7× 10−20 cm6µK2s−1 and significantly
larger than the predicted value λ3 ≈ 1.5 × 10−20 cm6µK2s−1 using η∗ = 0.21 measured
in [229].

For 133Cs dataset we find λ3 = 1.27(7) × 10−24 cm6µK2s−1 significantly below the
unitary limit value λ3 ≈ 2.68 × 10−24 cm6µK2s−1. We deduce a value of the previously
unknown inelasticity parameter of the 47.8-G resonance η∗ = 0.098(7), which is compa-
rable to the values found for other resonances in 133Cs, in the range 0.06...0.19 [73, 230].

In eq. (7.1), we neglected the log periodic oscillations in temperature associated to the
Efimov physics. The full expression is given in eq. (6.32) in chapter 6. Assuming a quasi-
universal value of the three-body parameter for 133Cs atoms Rt = −9.73(3)lvdW [231]
and η∗ = 0.098, we expect a relative peak-to-peak amplitude of 7%, which is not resolved
in the experimental data because of limited signal-to-noise ratio and temperature range.
For 7Li , the contrast is predicted to be even smaller ∼ 6%.

7.1.3 Conclusion

In this section, we have described a model that accounts for both three-body recombi-
nation heating and evaporative cooling in a dilute unitary Bose gas. It accounts for the
various temperature and atom number decay behaviors observed experimentally. As such,
it enables an independent determination of the trap depth and the method could be used for
complex trap geometries. More importantly, it allows an accurate extraction of the three-
body loss rate coefficient in presence of residual evaporation. By applying this model on
the experimental data obtained for two different atomic species 7Li and 133Cs, we check
the L3 ∝ 1/T 2 universal scaling law over two orders of magnitude in temperature. It
is worth pointing out that the same scaling in temperature was observed for the unitary
three-body contact C3 using Ramsey interferometry [205] which confirms the proportion-
ality between the two quantities that we have described in chapter 6. An interesting extent
of this work would be to observe the small log-periodic oscillations of L3(T ) signaling
the underlying Efimov discrete scaling invariance of the unitary Bose gas.
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Figure 7.2: Example of temperature versus atom number trajectories for unitary 133Cs
atoms in (a) absolute and (b) relative numbers and for unitary 7Li atoms (c). Solid lines are
fits of the data using our model, and extracted initial relative trap depths ηin = U/kBTin

are given in the legend. The constant temperature behavior dT/dN = 0 is typically
reached for η ' 8.2 and ηeff ' 8.5 for 133Cs and 7Li atoms respectively and can be seen
on the green data sets. All errors bars represent 1 standard deviation.
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line represents the unitary limit (eq. (7.1) with η∗ → ∞). For comparison, we show
predictions of universal theory [36] with η∗ = 0.21 for 7Li [229] and fitted η∗ = 0.098(7)
for 133Cs as solid lines. The data confirms the universality of the L3 ∝ T−2 law.
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7.2 Momentum distribution of a dilute unitary Bose gas
with three-body losses

The properties of the degenerate unitary Bose gas are generally investigated theoretically
without considering the presence of resonant three-body losses. Yet, as we have shown in
the chapter’s introduction, the effects of three-body recombination on the equilibrium of
the system are driven by the phase space density parameter nλ3

th. Hence, in the degenerate
regime these effects are highly non perturbative and the question of whether the unitary
Bose gas can be stable or not at low temperature is still debated. In this section, we inves-
tigate the imprint of 3-body losses on the momentum distribution of a unitary Bose gas in
a controlled regime, i.e at high temperature where losses can be treated perturbatively and
the unitary Bose gas described by a semi-classical approach using the Boltzmann’s equa-
tion. To complete our approach we also compute the first virial correction associated with
unitary interactions. We show that both effects deplete the center of the momentum dis-
tribution proportionally to the phase-space density of the gas and for realistic parameters,
this depletion is dominated by three-body losses. Finally, we compare our result to the
experiment done at JILA where they demonstrated universal dynamics of the momentum
distribution of a unitary Bose gas towards a quasi-equilibirum state [37]. The following
paragraphs are directly reproduced from our publication [232] with minor changes.

7.2.1 The model
We investigate the effect of 3-body losses on the momentum distribution of a unitary
Bose gas using a semi-analytical resolution of Boltzmann’s equation. Since Boltzmann’s
equation neglects all many-body correlations, our work is restricted to a low-phase space
density regime where, as aforementioned, three-body losses can be treated perturbatively.

Starting point

Consider a homogeneous Bose gas that we describe by a phase space density f(p). In the
presence of losses, f is the solution of Boltzmann’s equation that we write formally

∂tf = Icoll[f ]− L3[f ], (7.17)

where Icoll and L3 are non linear operators describing respectively the elastic collisions
and the three-body losses. At low phase space density, we can neglect the bosonic stimu-
lation and we have

Icoll[f ](p1) =

∫
d3p2d2ω′

dσ

dω′
|p2 − p1|

m
(f3f4 − f1f2) . (7.18)

Here, fα stands for f(pα), (p1,p2) (resp. (p3,p4)) are the incoming (outgoing) momenta
satisfying energy and momentum conservation and dσ/dω′ = 8~2/|p1 − p2|2 is the dif-
ferential scattering cross-section towards the outgoing solid angle ω′. From [36], the loss
rate operator for a unitary Bose gas can be written as

L3[f ](p1) =

∫
d3p2d3p3

A3

E2
123

|φ(Ω3)|2f(p1)f(p2)f(p3), (7.19)

where E123 = (p2
1 + p2

2 + p2
3)/2m − (p1 + p2 + p3)2/6m is the energy in the center of

mass frame of the three particles of momenta (p1,p2,p3),A3 = 2π3(kBT )2L3 and φ(Ω3)
is the hyperangular wave-function describing the angular structure of the Efimov trimers
that we normalize by the condition

∫
d5Ω3|φ(Ω3)|2 = 1.
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Linearisation and solving

In absence of losses the system thermalizes to a distribution G solution of Icol[G] = 0.
For a classical gas, the solution of this equation is a Gaussian distribution G(n,E; p) =
nλ3

the
−βp2/2m/h3, where β = 1/kBT and E =

∫
(G(p)p2/2m)d3p = 3nkBT/2 is the

energy density.
In the quasi-static regime γ3/γ2 � 1, three-body losses are small and we can use A3

as an expansion parameter. Since for A3 = 0 the system can reach a stationary thermal
state, we expect the characteristic evolution time in the presence of losses to vary as A−1

3

and thus ∂t must be considered to scale as A3. We write then f = f0 + f1 + ... where
fj ∝ Aj3. The expansion of eq. (7.17) to first order in A3, yields

Icoll[f0] = 0 (7.20)
∂tf0 = I ′coll[f1]− L3[f0]. (7.21)

where I ′coll is the linearized collisional operator.
According to (7.20), f0 is a Maxwell-Boltzmann distribution. However, since the system
loses particles by three-body recombination, its atom number and its energy vary with
time. We therefore have f0(p, t) = G(nt, Et; p). We then have in eq. (7.21)

I ′coll[f1] = L3[f0] + Ė∂EG+ ṅ∂nG. (7.22)

Take f1(p, t) = G(nt, Et; p)α(p, t). eq. (7.22) then becomes

C[α] =
1

G
L3[G] + Ė∂E ln(G) + ṅ∂n ln(G). (7.23)

with

C[α] =
1

G
I ′coll[Gα] (7.24)

=

∫
d3p2d2ω′f0(p2)

dσ

dω′
|p2 − p1|

m
(α3 + α4 − α1 − α2) . (7.25)

and αk = α(pk) for k = 1, · · · 4. The operator C is symmetric for the scalar product
[233]

〈α|α′〉 =

∫
d3pG(p)α(p)α′(p). (7.26)

Due to energy and particle number conservation, the kernel of C is spanned by α(p) = 1
and α(p) = p2. Finally, being a symmetric operator, its image is orthogonal to its kernel.
To find the time evolution of the energy and the atom number, we project eq. (7.23) on 1
and p2. Using the structure of the kernel of C, the collisional term vanishes and we obtain

ṅt = −〈1| 1
G
L3[G]〉 (7.27)

Ėt = −〈 p
2

2m
| 1
G
L3[G]〉. (7.28)

The explicit calculation of the rhs of these equations involves 9-dimensional integrals over
the three momenta (p1,p2,p3) in the three-body loss rate operator. This calculation can
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Figure 7.5: Deformation of the momentum distribution of a unitary Bose gas due to three-
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th(1 − e−4η) = 0 (Blue, Boltzmann gas); nλ3
th(1 −
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th(1− e−4η) = 0.1 (Red).

be performed analytically by introducing the momentum-space Jacobi coordinates, see
Appendix D, and we finally obtain

ṅt = −L3n
3 (7.29)

Ėt = −5

9
EL3n

2. (7.30)

where we recover the usual formula for three-body losses, as well as the recombination
heating discussed in [36, 35].

To find α, we project eq. (7.23) on the range of C (ie orthogonally to Span(1, p2)).
We then have

C[α] = P

[
1

G
L3[G]

]
, (7.31)

where P is the orthogonal projector on Im(C), and where we used the fact that lnG is a
linear combination of 1 and p2 and thus lies in the kernel of C and P .
Eq. (7.31) is solved numerically by decomposing its solution over a basis of orthogonal
polynomials, see Appendix D. The results are displayd in Fig. 7.5, where we observe a
flattening of the momentum distribution when the three-body losses strength is increased.

7.2.2 Comment on the depletion time scale
In the experiment described in [37], the cloud is not directly prepared in the quasi-static,
strongly interacting state. Rather, the experimental sequence starts with a weakly interact-
ing Bose-Einstein condensate in a regime where losses can be neglected. The magnetic
field is then ramped quickly to unitarity where the system can relax towards the quasi-
equilibrium described above. To get some insight on the relaxation of the system towards
equilibrium, we consider the simpler case of a non-condensed gas for which the mo-
mentum distribution before the ramp is gaussian. We write as before f = f0 + f1 with
f1 = f1,qs + δf1, where f1,qs is the quasi-static solution and δf1satisfies the initial condi-
tion δf1(p, t = 0) = −f1,qs(p; t = 0), since at t = 0, f = f0. Expanding Boltzmann’s
Equation to first order in f1 and using the properties of f1,qs, we obtain for δf1
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∂tδf1 = I ′coll[δf1]. (7.32)

This equation shows that the relaxation towards the quasi-static regime is solely driven
by two-body collisions and occurs at a rate ∼ γ2. This may seem paradoxical since
one would rather expect the three-body characteristic rate ∼ γ3 . However, as far as the
phase-space density is concerned, the depletion of f at low momenta is quite small since
the relative decrease of the peak momentum density is ∝ nλ3. Since 1/γ3 is the time
required to lose typically half the initial atom number, the dip should form on a time scale
' nλ3/γ3 ' 1/γ2.

7.2.3 First virial correction

The three-body losses lead to a correction to the momentum distribution proportional to
nλ3. This scaling is similar to the first virial correction, and one may wonder if the three-
body losses might not mask the effects of two-body interactions. To clarify this point,
we calculated3 the leading order corrections to the occupation number ρ(p) = h3f(p)
using the scheme presented in [234]. In the virial expansion, the leading order term
corresponds to the ideal Boltzmann gas. In the grand canonical ensemble, this term reads
ρ(1)(p) = ze−βεp , where z is the fugacity and εp = p2/2m. The next order term is the
sum of two contributions. The first one corresponds to Bose’s statistics and is simply
ρ(2,a)(p) = z2e−2βεp while the second one is more involved and is due to interactions.
Following [234], it is given by

ρ(2,b)(p) =
8πz2

m

∫
Cγ

ds

2πi

∫ +∞

0

dPP 2

2π2

e−βs√
−ms

× e−β
P2

4m[
s+ P 2

4m
− p2

2m
− (P−p)2

2m

] [
s+ P 2

4m
− p2

2m
− (P+p)2

2m

] (7.33)

where Cγ is a Bromwich contour [235]. We note that this expression is simply twice
that obtained for spin 1/2 fermions [234]. To convert this momentum distribution to the
canonical ensemble, we use the virial expansion of the equation of state of the unitary
Bose gas, nλ3

th = z + 2b2z
2 + ..., with b2 = 9/4

√
2 [236]. We thus obtain

ρ(p) = nλ3
the
−βεp + (nλ3

th)2
[
ξ(λthp/~)− 2b2e

−βεp
]
, (7.34)

where we took ρ(2)(p) = ρ(2,a)(p) + ρ(2,b)(p) = z2ξ(λthp/~).
In Fig. 7.6, we compare the effect of 3-body losses with the virial corrections to the mo-
mentum distribution. We observe that for 7Li, for which η = 0.2, the dip in the momentum
distribution is dominated by three-body losses.

7.2.4 Comparison to the JILA experiment

We now turn to the quantitative comparison of our results with the experimental data
presented in [37]. In this experiment an ultra-cold, weakly interacting Bose-Einstein con-
densate is ramped abruptly to the Feshbach Resonance and after a 100 µs-long waiting

3This calculation was carried out by Xavier Leyronas.
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Figure 7.6: Correction to the Boltzmann gas: three-body losses vs interactions. The
correction to Boltzmann’s distribution is plotted for maximal three-body losses (η = ∞,
red dashed line), η = 0.2, corresponding to 7Li (Orange dotted line). The blue solid line
corresponds to the correction eq. (7.34) due to Bose statistics and two-body interactions.

time, the system reaches a quasi-equilibrium characterized by the momentum distribu-
tion of Fig. 7.7. To compare this experiment with our results, we must first determine
the temperature of the cloud and since the dynamics is very fast (in the experiment the
trapping frequencies are a few Hz), it is most-likely inhomogeneous. We therefore as-
sume a purely local heating and we consider that the thermalization mechanism depends
only on elastic processes. Neglecting the initial scattering length, we conclude that the
local temperature must scale like T (r) = CTn(r) where C is a numerical constant and
Tn = ~2(6π2n)2/3/kBm. In other words, the phase-space density (or equivalently the
fugacity) is homogeneous over the cloud. Furthermore, the dynamics being too fast for
transport phenomena to occur, we can assume that the density profile is not affected by
the thermalization. We can therefore average the predicted momentum distribution over
the Thomas-Fermi density profile of the initial, weakly-interacting BEC and we fit the
experimental data taking η = 0.06 and using the uniform fugacity z as the only fitting
parameter, see Appendix D. In this way, we find a surprisingly good agreement between
experiment and theory for z = 0.6(1) (Note that as expected for such a small value of η,
the three-body losses play only a small role in the wing of the momentum distribution).
Using the virial expansion, this fugacity corresponds to temperature of 110 nK at the cen-
ter of the trap. This temperature is much higher than that of the initial weakly interacting
Bose gas and justifies universal thermalization hypothesis.

In principle, the virial expansion is valid only in the limit of vanishingly small fugac-
ities, and its accuracy is therefore questionable in the present case. Even though there is
no reliable way to assess the accuracy of the virial expansion for unitary Bose gases, we
note that for the equation of state of the unitary Fermi gas, the first order virial expansion
gives the correct result at a' 10% level at z = 0.6 [139, 121]. If we assume that the same
level of accuracy is achieved in the case of bosons, our calculation should provide a quan-
titative description of JILA’s experiment. To further support our analysis we note that the
temperature deduced from the virial expansion yields a three-body loss rate comparable
to the one observed in [37].
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Figure 7.7: The dimensionless momentum occupation number for the unitary Bose gas
in a semi log scale. κ = p/~ kn with kn ≡ (6π2〈n〉)1/3 and 〈n〉 the spatially-averaged
density (〈n〉 = 5.5 × 1012 cm−3 and 〈n〉 = 1.6 × 1012 cm−3 ). The occupation number
is normalized so that

∫
n(κ)4πκdκ = 8π3. The continuous line is the experimental result

from Ref.[37] , the dashed line is the result of eq. (7.34) averaged over the initial density
profile for z = 0.6, and the dotted line includes the effect of three-body losses. The
fit is restricted to κ > 0.5 since for lower momenta, the momentum distribution never
equilibrates.

7.2.5 Conclusion
The approach presented above provides a quantitative way to study unitary Bose gases
in the dilute limit. In the case of the results presented in [37], we find that three-body
losses are negligible and that the tail of the momentum distribution is well described
by a first-order virial expansion at a fugacity z = 0.6(1). This value raises a series of
open questions: first, is it possible to derive this value from a purely microscopic model
describing the dynamics of a Bose gas projected from a weakly interacting regime to
unitarity. Second, is it really universal? In our work, we assumed that, after the ramp, the
thermalization was only driven by the two body scattering length. However, for strongly
interacting bosons, we know that three-body Efimov physics cannot be neglected and
requires the introduction of the three-body parameter Rt. In this case, the fugacity would
be a log-periodic function of the dimensionless parameter kFRt, as suggested in [224].
This assumption could be tested by reproducing JILA’s experiment on different atoms to
vary the value of Rt.



Chapter 8

Inelastic losses of a weakly coupled
impurity immersed in a resonant Fermi
gas

In a large quantum ensemble with strong interactions, correlations are highly non-trivial
and their understanding represents a fundamental challenge in modern physics. As we
have shown in chapter 5, short-range correlations present in a quantum gas are connected
to various microscopic and macroscopic observables of the many-body system via the
contact relations [199, 197, 198, 200, 101, 201]. For a two-component fermionic system,
the two-body contact was measured via several observables: high momentum and RF
tails [204, 237, 238, 239], structure factor [209, 240, 126], closed-channel fraction [91,
206] or equation of state [107, 241, 242]. In this chapter, we present a demonstration of
the universal link between the fermionic two-body contact and inelastic losses of a weakly
coupled impurity in a resonant Fermi gas by measuring the lifetime of our 6Li/7Li mixture.
On the strongly attractive side of the fermionic Feshbach resonance, we recover known
results on atom-dimer inelastic scattering [243, 244]. This first step allows us to calibrate
the losses with respect to the two-body contact and to predict the loss rate anywhere in the
BEC-BCS crossover. At unitarity, where the fermion-fermion scattering length diverges,
we show that the loss rate is proportional to n4/3

f . This exponent differs from the generic
integer case and signals non-trivial two-body correlations in the system. Moreover, our
calibration done on the BEC side of the resonance, allows us to measure the local unitary
two-body contact, in excellent agreement with measurements cited above.

8.1 Bose-Fermi losses scalings in the BEC-BCS crossover
Understanding the loss mechanisms in multi-component mixtures has been an important
topic in the last few years, as more and more experiments were able to cool down several
atomic species or several atomic states in a same trap. Pioneer works at Innsbruck using
a 6Li/40K mixture [245] and at Washington using a 6Li/174Yb mixture [246] have studied
the lifetime of an impurity (the fermionic 40K and bosonic 174Yb atoms respectively)
immersed in a strongly interacting two-spin component Fermi gas. Both studies showed
a good collisional stability of the mixture on the BCS side of the 6Li Feshbach resonance
and increasing losses when going toward the BEC side of the resonance.

In the strongly attractive limit of the BEC-BCS crossover, the fermions form halo-
dimers of size ' aff and the relaxation occurs through two-body processes between one

129
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Loss rate (a.u)

-1/kFaff

1/aff

aff
2

-1 +1BEC side BCS side0

Figure 8.1: Sketch of inelastic decay of an impurity immersed in a Fermi gas with tunable
interactions. On the BEC side, ↑ and ↓ fermions form tightly bound dimers and the decay
mechanism can be effectively described as a two-body process involving the impurity
(green disk) and a dimer. The loss rate scales as 1/aff[243, 244]. On the BCS side, the loss
occurs through a three body-process and it scales as a2

ff in the mean-field limit [243]. The
extrapolation of these two asymptotic behaviors towards the strongly correlated regime
yields contradictory results (grey area).

such molecule and one impurity atom. The loss rate equations reads

dni

dt
= −L2ninm, (8.1)

where ni and nm = nf/2 are the impurity density and molecule density respectively.
This particular recombination process was studied previously in [244] with a mixture of
40K atoms and 87Rb Feshbach molecules. As a consequence of the enhanced overlap of
the halo-dimer wavefunction with the deeply bound product molecules, the two-body loss
rate was shown to scale as 1/aff as predicted in [243].

On the BCS limit of the resonance, the fermions behave almost as isolated particles
and the recombination can be described as a three-body process involving three distin-
guishable particles, one spin-up (↑), one spin-down fermion (↓) and one impurity atom.
We can thus write the loss rate equation as

dni

dt
= −L3nin

2
f . (8.2)

Three-body recombination between three distinguishable particles with large scattering
lengths can lead to Efimov resonances as observed in a three-component mixture of 6Li
atoms [247, 248, 249]. Here, as the impurity is weakly coupled to the fermions, the loss
rate scales simply as a2

ff [243], leading to vanishing losses in the BCS limit.
The two scalings we have described here allow us to explain the lifetime of an impurity
immersed in a two-component Fermi gas in the two limits of the BEC-BCS crossover.
However, as depicted in Fig. 8.1, they lead to an apparent paradox at unitarity where they
predict by extrapolation either an increasingly long or a vanishingly small lifetime. In
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BEC Unitary BCS

ṅi

ni

∝ nm

aff

[243] ∝ n
4/3
f ∝ a2

ffn
2
f [243]

C2 8π
nm

aff

2ζ

5π
k4
F 4π2a2

ffn
2
f

Table 8.1: Scaling of the impurity/fermion mixture loss rate and of Tan’s contact density
C2 = C2/V [197] in the BEC-BCS crossover. Both scalings are identical in the weakly
and strongly attractive limits. As kF = (3π2nf)

1/3, at unitarity C2 scales as n4/3
f . ζ is a

dimensionless constant, ζ = 0.87(3) [126].

the two experiments [245, 246], a small decay could be observed at unitarity, but its
interpretation was left over, as it was unclear what kind of recombination process could
be at play. As a matter of fact, we can notice that by a simple dimensional argument
assuming that the decay rate saturates for aff ' n

−1/3
f , the two asymptotic behaviors

give the same scaling at unitarity ṅi ∝ nin
4/3
f , yielding a finite loss rate and an unusual

fractional exponent on the fermions density.
In chapter 6, we have shown that provided inelastic decay processes can be treated

perturbatively, the decay rate is directly proportional to the probability of finding three-
particles within a distance R∗, where R∗ is the typical size of the deeply bound molecule
formed during the collision. As such, three-body recombination can be calculated in
a unified manner for any interacting regime using the universal contact relations. In our
specific situation, we have to consider ρ3(r↑, r↓, ri) the three-body probability distribution
of the system. Assuming a weak coupling between the impurity and the fermions, we can
factor it as ρ3(r↑, r↓, ri) = ρf(r↑, r↓)ρi(ri). Finally, integrating over the positions of the
three atoms we readily see that the three-body loss rate is proportional to Tan’s Contact
parameter C2 of the fermions. Using our knowledge of the equation of state of the system
(see section 1.3), we can calculate C2 thanks to the adiabatic-sweep theorem

C2 = −4πmf

~2

(
∂F

∂(1/aff)

)
T

. (8.3)

where mf is the fermion mass and F is the free-energy of the fermionic gas [199, 198].
The asymptotic expressions of C2 at zero temperature in the BEC, BCS and unitary
regimes are listed in Table 8.1. In the deep BEC limit, the free energy is dominated
by the binding energy of the molecules ~2/mfa

2
ff ; in the BCS regime C2 is derived

using the mean-field approximation [197]. At unitarity, the expression of the contact
stems from the absence of any length scale other than the inter-particle distance and
is proportional to n

4/3
f . The dimensionless parameter ζ was determined both theoreti-

cally [117, 250, 251, 252, 253, 254] and experimentally [204, 107, 126, 240], the most
recent measurement yields ζ = 0.87(3) [126]. Expressions listed in Table 8.1 confirm that
the contact parameter and the impurity loss rate follow the same scalings with density and
scattering length. Hence, the inelastic losses can be described in the whole BEC-BCS
crossover by a single unifying equation

dni

dt
= −γC2ni, (8.4)
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where C2 = C2/V is the two-body contact density. As we have shown in chapter 6,
the constant γ describes the coupling to deeply bound non-resonant states; hence γ has
essentially no variation with magnetic field across the fermionic Feshbach resonance.

In the following, we will explore the consequences of equation (8.4) by measuring the
lifetime of an ultracold Fermi-Bose mixture of 6Li and 7Li atoms. The impurity is a boson
in our experiment and we now use the index b instead of i to denote the impurity.

8.2 Experiments on the BEC side

In this first series of experiments we check the prediction of eq.(8.4) on the BEC side:
relaxation occurs dominantly via collisions between boson and fermionic dimers and the
loss rate reads

dnb

dt
= −γ 8π

aff

nmnb. (8.5)

The two clouds are prepared at a relatively high temperature and are well described by
Maxwell-Boltzmann distributions which will greatly simplify the analysis. The experi-
mental setup and the different cooling steps are described in chapter 2. In short, the 6Li
atoms are prepared in a spin mixture ↑, ↓ of |1f〉 and |2f〉 and the 7Li atoms are transferred
into the state |2b〉, see section 2.2.2. Importantly, the scattering length between bosons
and fermions is abf = 40.8 a0 and is equal for the ↑, ↓ states and it can be considered
constant in the magnetic field range that we explored, 680-832 G. The atoms are confined
in a hybrid magnetic/optical trap and are evaporated at the 6Li Feshbach resonance until
we reach the target temperature. We ramp the magnetic field to an adjustable value in 200
ms and wait for a variable time t. We then measure the atom numbers of the two species
by in situ imaging or after time of flight.

8.2.1 Nature of the losses

In order to determine what is the dominant recombination mechanism for the bosons
on the BEC side, we compare the boson losses for spin-balanced and spin-polarized
fermionic samples. To do so, we measure the remaining number of atoms for two waiting
times (ti = 0 and tf ) and for different magnetic field values in the range 680 − 800 G.
The experiment is done at a temperature T ' 1.6µK, with initial atom numbers Nb '
1.5 × 105 and Nf ' 3 × 105, and trap frequencies νz = 26Hz and νr = 2.0 kHz. For
each magnetic field value we record 3 to 5 images for each waiting time ti and tf .

In Fig. 8.2, we display the remaining fraction of bosons and fermions N(tf )/N(0)
after a waiting time of tf = 1 s for balanced fermions and tf = 1.5 s for spin-polarized
fermions with 90% polarization. We observe that with spin polarized fermions, bosons
losses are highly suppressed indicating that in this magnetic field range bosonic three-
body losses are negligible and that both spin states are needed to eliminate a boson. When
the fermions are spin balanced we observe increasing losses for both bosons and fermions
when going toward the deep BEC limit (low magnetic fields) as expected for losses dom-
inated by boson-dimer and dimer-dimer recombination.
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Figure 8.2: Remaining fraction of bosons (blue symbols) and fermions (red symbols,
inset) after a 1 s and 1.5 s waiting time for spin-balanced (filled symbols), resp. 90%
polarized (open symbols) fermions. The blue dash-dotted (red dashed, inset) curve is
a coupled loss model describing the competition between boson fermion-dimer decay
(∝ 1/aff) and dimer-dimer decay (∝ 1/a2.55

ff ) [77]. The blue-shaded area represents the
1σ fluctuations for the remaining fraction of bosons with spin-polarized fermions. The
initial atom numbers are 3×105 for 6Li and 1.5×105 for 7Li at a temperature T ' 1.6µK
with trap frequencies νz = 26 Hz and νr = 2.0 kHz.
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Figure 8.3: Example of atom losses at B = 720 G for a nondegenerate Bose-Fermi mix-
ture at T = 1.25µK. Red circles: fermion decay. Blue circles: boson decay. Each circle
is the average of 3 to 5 data points with their standard deviation. The red dashed curve is
a fit of the fermion decay using eq. (8.11) to estimate nf(t). The blue dashed curve is a fit
to the boson decay using eq. (8.6) and the previously fitted nf(t) to extract Lbf .
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8.2.2 Loss coefficient measurement on the BEC side
In Fig. 8.3, we show a typical loss rate measurement at 720 G for a cold thermal Bose-
Fermi mixture. Each point is the average of 3 to 5 data points1. On the BEC side of the
6Li resonance, several processes can contribute to the loss of 6Li atoms: atom-dimer and
dimer-dimer inelastic collisions, evaporation losses and Bose-Fermi losses, resulting in a
non-trivial time dependence. On the contrary, the 7Li cloud will mainly lose atoms via
Bose-Fermi losses, since evaporation losses and three-body losses are negligible due to
the small 7Li-7Li scattering length in this region of magnetic field. We thus extract the
interspecies decay rate by fitting the time evolution of the bosonic population

Ṅb = −Lbf〈nf〉Nb − ΓvNb, (8.6)

where 〈· · · 〉 represents the trap-average2, and Γv is the one-body residual gas loss rate
(0.015 s−1) measured independently.
For Nf(t), we use instead a two-body decay function fitted to the measured decay of the
fermions

Nf(t) =
N0

1 + αt
. (8.11)

This method has the advantages to be independent of the boson number calibration con-
trary to a simultaneous fit of both boson and fermion using coupled differential equations
and does not require a precise knowledge of all the mentioned decay channels for the
fermions. The fits are shown as dashed lines in Fig. 8.3, the fermion decay (in red) is well
reproduced by the ad-hoc function in eq. (8.11) and the fit for the bosons (in blue) gives
for this measurement an interspecies decay constant Lbf = 1.33(24)× 10−13cm3.s−1.

8.2.3 Molecule fraction
In our experiment we do not have direct access to the number of dimers in the fermionic
cloud. However, in the weakly interacting regime na3

ff � 1 (deep BEC side of the res-
onance), the molecular fraction η = 2Nm/(Nf + 2Nm) can be calculated using the law
of mass-action [255]. We model the fermionic ensemble as a non-interacting mixture of

1The total number of points is often limited by the presence of long term drifts in atom numbers in our
experiment. Also, due to our cooling scheme, the atom numbers of the two species are anti-correlated. It
leads to enhanced number fluctuations with respect to a single atomic specie decay measurement.

2For thermal clouds we have the densities:

nb(r) = Nb
ω̄3
b

(2πkBT/mb)3/2
e
− mb

2kBT (ω2
r,br

2+ω2
z,bz

2) (8.7)

nf(r) = Nf
ω̄3
f

(πkBT/mf)3/2
e
− mf

kBT (ω2
r,fr

2+ω2
z,fz

2) (8.8)

It leads to

〈nf〉 = Nf
λ2rλzd

3/2

(d2λ
2
z + 1)(d2λ

2
r + 1)1/2

(
mf ω̄

2
f

2πkBT

)3/2

(8.9)

With λα = ωα,b/ωα,f , d = mb/mf .
In a good approximation we have λα = 1/d1/2 =

√
6/7 ' 0.926. It leads to the simplified expression:

〈nf〉 = Nf

(
mf ω̄

2
f

6πkBT

)3/2

(8.10)
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Figure 8.4: Calculated molecular fraction η (green) and nfa
3
ff (blue) versus magnetic field

for a total number of fermions Nf = 3 × 105, a temperature T ' 1.6µK, and trap
frequencies νz = 26 Hz and νr = 2.0 kHz. The model used to estimate η is valid for
nfa

3
ff � 1

Nm molecules and Nf free atoms. The dimer-atom mixture can be considered to be at
chemical equilibirum during the losses owing to the high formation rate of halo-dimers
(' ~a4

ff/mf)[214]. We thus simply write a chemical equilibrium condition between atoms
and molecules in the trap at temperature T :

Nf = 2
(
kBT
~ω̄

)3
Li3(z) (8.12)

Nm =
(
kBT
~ω̄

)3
Li3(z2e−Eb/kBT ) (8.13)

where Li is a polylogarithm function, z = eµ/kBT the fugacity and Eb = −~2/mfa
2
ff the

molecule’s binding energy. The fugacity is calculated by imposing the total number of
atoms in the trap Ntot = Nf +Nm.
In Fig. 8.4, we show typical values of the molecule fraction η in the BEC side of the
resonance as well as the interaction parameter nfa

3
ff for the experimental conditions of

Fig. 8.2. Together with the results shown in Fig. 8.2, it already indicates that boson-dimer
recombination is the main loss mechanism for bosons in the deep BEC limit.

8.2.4 Bose-fermi losses versus molecular fraction and magnetic field
To verify our prediction of dominant boson-dimer losses we measure the Bose-Fermi loss
rate Lbf at a fixed magnetic field (720G) for various molecule fractions. This fraction
is varied by changing the temperature from 1µK to 4µK and 6Li densities from 2 ×
1012 cm−3 to 1.0× 1013 cm−3. In practice, it is done by performing different evaporation
ramps and trap recompression. The data in Fig. 8.5 shows that the boson loss-rate is
indeed proportional to the molecule fraction of the fermionic cloud. A linear fit gives
Lbf = (1.12(21)η + 0.14(13)) × 10−13cm3/s. It is thus now convenient to introduce the
boson-fermion dimer molecule loss rate Lbm defined by Lbm〈nm〉 = Lbf〈nf〉.

Finally, we can check the proportionality of Lbm with 1/aff predicted in table 8.1 by
repeating the loss measurements for different magnetic fields in the interval 690-800 G,
see Fig. 8.6. From a linear fit to the data where interaction effects are negligible (nfa

3
ff ≤

0.025), we extract the slope γ = 1.17(11) × 10−27 m4.s−1 entering in eq. (8.4). Since γ
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Figure 8.5: Boson-fermion loss rate vs molecule fraction. Circles: experimental data.
The vertical error bars represent the statistical errors for Lbf from fitting the loss curves.
The horizontal error bars represent the statistical errors on the molecule fraction due to
6Li number fluctuations. The red dashed line is a linear fit to the data.

doesn’t depend on the magnetic field we can now predict the loss rate anywhere in the
BEC-BCS crossover using eq. (8.4).

8.3 Experiment at unitarity
We now move to the strongly interacting regime (1/aff = 0). This is of particular inter-
est as three-body recombination is now a many-body process and usual inelastic losses
models based on solving the three-body problem are bound to fail as they cannot take
into account the quantum correlations with the surrounding atoms. On the contrary, our
modeling of inelastic decay in terms of two-body contact allows us to describe them in
the unitary regime and equation (8.4) now reads

dnb

dt
= −γ 2ζ

5π
(3π2nf)

4/3nb. (8.14)

To check this prediction, we measure the boson decay rate at 832 G in the low temperature
dual superfluid regime. The mixture is initially composed of about 40 × 103 fully con-
densed 7Li bosons and 150×103 6Li spin-balanced fermions at a temperature T ' 100 nK
which corresponds to T/TF ' 0.1 where TF is the Fermi temperature.

8.3.1 Loss coefficient measurement
In Fig. 8.7, we show a typical loss rate measurement in the dual superfluid regime at
unitarity. The atoms are now closer to the boson Feshbach resonance located at 845.5 G
and bosonic three-body losses are no longer negligible. Loss by evaporation are negligible
for the bosons as they were sympathetically cooled by the fermions and U ' 20µb, where
U is the trap depth and µb the bosons chemical potential. The time dependence of the
boson number is then given by

Ṅb = −Lb〈n2
b〉Nb − ΓbfNb − ΓvNb. (8.15)
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Figure 8.6: Boson-dimer loss rate vs inverse scattering length. The blue dot-dashed line
is a linear fit to the data with nfa

3
ff ≤ 0.025 (black circles), providing γ = 1.17(11) ×

10−27 m4.s−1, see eq. (8.4).

In order to measure the Bose-Fermi loss rate Γbf we first extract the loss coefficient Lb

associated to three-boson recombination. For this purpose, we measure the decay of a
BEC alone and fit its time dependence using the following equation

Ṅb = −Lb〈n2
b〉Nb − ΓvNb. (8.16)

We restrict the measurement over a period of time for which the thermal fraction sur-
rounding the BEC is not visible. We thus assume that the 7Li cloud density is given
by a Thomas-Fermi distribution3.We typically have Lb〈n2

b〉 = 0.1 − 0.4 s−1, and Lb =
0.11(1)× 1026 cm6. s−1 consistent with the model of [257].

For our experimental conditions, the predicted Bose-Fermi loss rate is expected to
share the same order of magnitude Γbf ' 0.15 s−1. However, due to the stronger de-
pendence in bosons density the three-body recombination constitutes the main source of
losses, typically ∼ 80% of the lost bosons. The experimental challenge is to be able to
detect the 20% supplementary contribution coming from Bose-Fermi losses (the differ-
ence between the light blue and blue dashed curves shown in Fig. 8.7). In comparison,
the Fermi gas does not suffer from severe losses, and Bose-Fermi recombination should
represent a decrease of ∼ 10% of the total atom number. Yet, we do not use the fermion
decay to measure Γbf given the larger numbers fluctuations and potential remaining evap-
orative losses (µf ' 0.5U ) which are difficult to estimate4.

8.3.2 Density dependence of the loss rate
Repeating decay measurements for different fermion numbers and trap confinement, we
are able to test the expected n

4/3
f dependence of the Bose-Fermi loss rate at unitarity

3We take as in [256]

〈n2b〉 =
7

6

(
152/5

14π

)2(
mbω̄b

~√abb

)12/5

N
4/5
b , (8.17)

where ω̄ = (ω2
rωz)

1/3.
4In addition, three-fermion recombination are present and of unknown magnitude.
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Figure 8.7: Example of atom loss at B = 832.1 G in the dual superfluid regime. Green
circles: BEC without fermions. Blue circles: BEC in presence of the fermionic superfluid.
Each circle is the average of 3 to 5 data points with their standard deviation. Green dashed
curve: fit to the decay of the BEC alone using eq. (8.16) providing the three body loss
coefficient Lb. Blue dashed curve: fit to the BEC with fermions using eq. (8.15) which
gives Γbf = 0.14(4) s−1. Light blue dashed curve: expected BEC decay without Bose-
Fermi losses. Inset: the number of 6Li atoms for the same time duration (red circles). As
it is nearly constant we use the mean number of 6Li atoms shown as a red dashed line to
compute the peak density of the fermionic superfluid during the losses.
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Figure 8.8: Boson loss rate versus fermion central density at unitarity, nf = nf(0). Circles:
experimental data. The red line is the n4/3

f prediction of eq. (8.20) without any adjustable
parameter. The red shaded area represents the 1 σ uncertainty resulting from the error on
γ.
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(central column in Table 8.1). In practice we varied fermion central density by a factor∼ 3
from 0.3×1013 cm−3 to 1×1013 cm−3, as for strong confinements we are limited by rapid
three-body losses for the bosons. Γbf is assumed to be constant since nf ∝

√
Nf does not

vary significantly during the measurement duration, see Fig. 8.7. In this dual superfluid
regime, the size of the BEC is much smaller than that of the fermionic superfluid and the
BEC will mainly probe the central density region nf(r = 0). However, it is not truly a
point-like probe, and introducing the ratio ρ of the Thomas-Fermi radii for bosons and
fermions, we obtain the finite size correction for eq. (8.14)5:

Γbf = γ C2(0) (1− 6

7
ρ2), (8.20)

where6 C2(0) = 2ζ
5π

(3π2nf(0))4/3, and the last factor in parenthesis amounts to 0.89(3).
The prediction of eq. (8.20) is plotted as a red line in Fig. 8.6 and is in excellent agreement
with our measurements without any adjustable parameter. Alternatively, a power-law fit
Anp to the data yields an exponent p = 1.36(15) which confirms the n4/3

f predicted
scaling at unitarity. Finally fixing p to 4/3 provides the coefficient A and a value of
the homogeneous contact ζ = 0.82(9) in good agreement with previous measurements,
ζ = 0.87(3) [126].

8.4 Concluding remarks and perspectives
We have shown in this chapter that equation (8.4) stating the proportionality of the impu-
rity loss rate to the fermions two-body contact could accurately predict the inelastic losses
in our Bose-Fermi mixture both in weakly and strongly interacting regimes. Indeed, on the
BEC side, we recovered known results on atom-halo-dimer inelastic collisions [243, 244],
and at unitarity, we observed the unusual n4/3

f dependence of the loss rate indicating the
non-trivial two-body correlations at play in the system. Furthermore, our localized im-
purity in the center of the resonant Fermi gas allowed us to measure a local two-body
contact in excellent agreement with previous measurements.

Our method thus demonstrates that impurity losses can be used as a quantitative probe
for short-range correlations in a many-body system. An interesting extent of this work is

5 The slight reduction of the Bose-Fermi losses due to the BEC finite size is computed using the local
density approximation:

〈n4/3f (r)〉BEC

n
4/3
f (0)

=

∫
d3rnb(r)n

4/3
f (r)

n
4/3
f (0)

∫
d3rnb(r)

. (8.18)

Introducing the Thomas-Fermi radii RTF,b and RTF,f , we find

〈n4/3f (r)〉BEC

n
4/3
f (0)

= 1− 6

7

(
RTF,b

RTF,f

)2

+
5

21

(
RTF,b

RTF,f

)4

. (8.19)

In practice, we have ρ = RTF,b/RTF,f ' 0.35(5) for all the data sets as it weakly depends on the total
atoms numbers of both clouds.

6The peak density of a trapped unitary Fermi gas is related to its total atom number via the formula

nf(0) =
4
√
Nf√

6π2ξ3/4

( ω̄fmf

~

)3/2
, (8.21)

where ξ = 0.376(4) is the Bertsch parameter measured with high precision in [121].
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to measure the two-body contact of the unitary Fermi gas at finite temperature, whose be-
havior is still largely debated7 near the normal-superfluid transition [258]. More generally,
our results are another illustration of the universal behavior of three-body recombination
for large scattering lengths as we have shown in chapter 6. The 1/T 2 and n−4/3 scaling
laws of the three-body loss coefficient L3 of the unitary Bose gas at high and low temper-
atures respectively are other remarkable observed examples [36, 85]. Similarly, another
interesting perspective would be to measure the decay of the unitary Fermi gas. Indeed,
the loss rate should be proportional to the three-body contact of the unitary Fermi gas,
which is to our knowledge only known at high temperature. By dimensional argument,
we can however predict its scaling at zero temperature ṅf ∝ n2.85

f (see the perspective
section in the conclusion chapter).

Finally, this unified description of impurity losses in the BEC-BCS crossover also
provides a framework to interpret the experimental data on 6Li/40K mixture [245] and
6Li/174Yb mixture [246] mentioned at the beginning of the chapter. In appendix E, we
analyze the data presented in [245].

7In [258], a sharp decrease of the two-body contact is observed near the transition temperature. How-
ever, as the unitary Fermi gas belongs to the 3D XY universality class, the contact is expected to be contin-
uous and its derivative finite [259].



Conclusion

Summary

The results presented in this thesis can be divided into two parts that illustrate complemen-
tary aspects of interacting quantum gases. The first part consider the dynamical properties
of a mixture of superfluids while the second part deals with inelastic losses in a strongly
correlated gas.

To investigate the hydrodynamic property of our mixture, we excited the dipole modes
of the clouds to initiate a counterflow between them. At low relative velocity, the oscilla-
tions are long lived demonstrating the superfluid behavior of the ensemble. Furthermore,
we observed a coherent energy exchange between the clouds signaled by a frequency shift
and an amplitude modulation of the boson oscillations. These observations can be fully
captured using a sum-rule approach which can be interpreted in terms of two coupled os-
cillators. We then measured for various interaction strengths in the BEC-BCS crossover
a critical velocity above which dissipation occurs. The extracted values are found to be
close to the sum of the sound velocities of the two clouds as it can be expected for two ho-
mogeneous counterflowing superfluids [86, 166] and the sound velocity of the fermions.
This is surprising in as much as several factors and phenomena usually tend to reduce
the critical velocity in experiments and make a direct comparison to ideal models dif-
ficult [172]. Hence, to complete our experimental findings, we performed a numerical
simulation of two counterflowing Bose-Einstein condensates. Similarly to the experi-
ment, the coupled-oscillator model could accurately describe the dynamics of the clouds
at low relative velocity, even for large interspecies coupling. To investigate the dynam-
ics for larger oscillation amplitude, we used a principal component analysis to reveal the
collective modes dynamics at play in the system. We uncovered two mechanisms of dis-
sipation. One is analogue to the simple Landau mechanism corresponding to the emission
of a single excitation in the superfluid by a rigid impurity which doesn’t show any activa-
tion threshold when the relative motion is oscillatory. The second one corresponds to the
generalized Landau criterion where excitations are created in both superfluids [86, 166].
Contrary to the first scenario, this mechanism presents a threshold behavior that remains
when the relative velocity is oscillating in time. For low interspecies coupling we ex-
pect the second mechanism to dominate, which could explain why we observed such nice
onset of dissipation in our experiments.

In a second part, we considered the inelastic losses in our cold gases. We showed the-
oretically, that the three-body recombination rate is proportional to the few-body correla-
tions at short distances. Using the universal contact relations it is thus possible to relate
the loss rate to several microscopic and macroscopic quantities of the system such as the
equation of state of the gas. With this, we can predict the loss rate in various regimes and
in particular for strongly correlated systems where few-body processes cannot be isolated
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Figure 8.9: Schematic view of a mixture of superfluids in a ring trap (purple) that could be
created using a ring shaped dipole trap for radial confinement and a sheet trap for vertical
confinement. A counterflow between the two species can be created by a stirring laser
(green) with a well chosen wavelength.

from the many-body environment. As a matter of fact for resonant interactions, this leads
to an unusual dependence on density or temperature of the loss rate, that we illustrated on
two cases.

We first considered the case of the unitary Bose gas, where interactions between
bosons are resonant. Its stability is hindered by strong three-body recombination. In a
first part, we presented a model taking into account both three-body recombination and
evaporation to describe the atom losses and temperature dynamics in a dilute unitary Bose
gas. It allows for a quantitative measurement of the three-body loss rate and the method is
applied to results obtained by our team (7Li) and Cheng Chin’s group at Chicago (133Cs).
This analysis confirms the 1/T 2 universal behavior of the losses at unitarity found in [36].
In a second part, we studied theoretically the effect of three-body losses and interactions
on the momentum distribution of a homogeneous unitary Bose gas in the dilute limit. We
compared it to the results at JILA on a gas of 85Rb.

Finally, we presented a study of inelastic losses in our ultracold Bose-Fermi mixture.
One possible inelastic decay channel is via the recombination of two different spin states
fermions and a boson. The associated loss rate is then proportional to the Tan’s contact
parameter of the Fermi gas. We verified this prediction by probing the recombination rate
in our 7Li/6Li mixture in both the thermal and dual-superfluid regimes. When the interac-
tions between fermions become resonant, we showed that the loss rate is proportional to
n

4/3
f , where nf is the fermionic density. This unusual exponent signals strong correlations

among fermions.

Perspectives

The work presented in this thesis can be extended in several directions, here we focus on
two compelling ideas that could be tested in near future in our group.
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Superfluid counterflow in a ring trap
As we have seen in chapter 3 and 4, non-uniform densities and an oscillatory relative
motion hinder the analysis of a superfluid counterflow. An interesting way to extend our
study of counterflowing superfluids is to repeat the experiment (and possibly the numeri-
cal simulations) in a better suited environment: a ring trap, as depicted in Fig. 8.9. It could
allow for a counterflow with a quasi-constant velocity and with a uniform density in the
direction of motion. The ring trap can be realized by various means [260, 261, 262, 263].
As in [261, 262], it could be made with a combination of red detuned beams creating a
ring shaped dipole trap for the radial confinement and a sheet trap for vertical confine-
ment. Another possibility is to use blue detuned beams to create repulsive walls in order
for the clouds to be also homogeneous in the radial direction [39, 40].

Metastable currents with long persisting times can be prepared by several methods.
As it was done in [261, 260], a rotation can be induced on the atoms by a transfer of the
orbital momentum of a Laguerre-Gauss (LG) beam to the atoms by a two-photon Raman
process. This necessitates two internal states and hence could be done on a Bose gas
provided the states have convenient scattering properties (positive scattering lengths for
the BEC to be stable, which is not always the case for 7Li). The created rotation frequency
is l×Ω0 where l is the orbital angular momentum of the LG beam and Ω0 = ~/mR2 is the
rotational quantum, withR the ring radius. For lithium atoms in a ring of radius of 30µm,
with l = 10 as used in [261], the flow velocity is about ' 0.5 cm/s. Hence, this might
not be enough to reach the predicted critical velocity cb + cf which for typical densities
(1013 cm−3) should be on the order of a few cm/s. The other existing strategy is to use a
stirring laser beam [262]. This creates a so-called weak link that allows the superfluid to
gain angular momentum via the phase slip phenomenon that occurs every time the stirring
frequency is close to a multiple of the rotational quantum [262]: A vortex-antivortex pair
is nucleated in the vicinity of the beam and separates to reach the confinement walls.
The net result is an increase of the winding number l by one unit. In order to create a
counterflow between two superfluids, the stirring beam has to affect only one specie. This
might prove difficult for a 6Li-7Li mixture due to similar transition frequencies, but could
be implemented more easily with different element mixtures e.g. 6Li-41K [264] using a
blue-detuned beam close to the 6Li D-lines.

The onset of dissipation could be detected by the appearance of a dynamical instability
in the clouds density [166], or by a rapidly decaying relative velocity. The ring geometry
can also be used to probe the superfluid fraction by measuring the fraction of atoms put
in motion by a weakly perturbing stirring potential. Finally, another phenomenon that
could observed is the Andreev-Bashkin effect [148] initially predicted for the superfluid
3He-4He mixture. Due the strong interspecies interaction, the 3He atoms are dressed by
the surrounding 4He atoms and form quasiparticles with a large effective mass so that a
superfluid flow of 3He atoms should also transport a substantial mass of 4He atoms. This
non-dissipative drag might be observable in a superfluid cold atom mixture close to an
interspecies Feshbach resonance. In particular it could be seen as a shift of the rotational
quantum Ω0 due to the effective mass of the superfluid particles.

Measuring the three-body contact of a strongly interacting Fermi gas
Another strongly correlated system where three-body loss rate should exhibit exotic scal-
ing is the resonant Fermi gas itself (without impurities). Contrary to the interacting Bose
gas, the 2-spin component interacting Fermi gas does not suffer from severe three-body
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recombination close to the Feshbach resonance. The probability to find two fermions
with the same spin at short distances is strongly reduced by the Pauli exclusion princi-
ple (and also from the absence of an Efimov channel8). Inelastic losses in the degenerate
regime were investigated experimentally in [78, 79, 80] and theoretically in [77, 265, 266].
The different inelastic processes are well understood in the two asymptotic limits of the
BEC-BCS crossover, but the unitary regime still lacks both theoretical and quantitative
experimental investigation.

Before considering the resonant case, it is useful to start first with the two limits of
the crossover. On the BEC side, the losses are dominated by two-body processes, dimer-
dimer and atom-dimer collisions. Indeed the vanishing size of the weakly bound dimer
which scale like a strongly enhances the probability to find closeby triplets of fermions.
On the BCS side, the size of the Cooper pairs being large∼ 1/kF , losses are described by
three-body processes which require p-wave collisions and vanish for |a| → 0. Following a
suggestion from Félix Werner, one can predict the precise scaling in density and scattering
length for the loss rates using dimensional arguments on the three-body contact9. For a
wave function in a given three-body channel characterized by the parameter sl,n (given
in table 1.1) the three-body contact density C3 has the dimension L−2sl,n−5 where L is a
length (see section 5.2). Since we can infer the scaling of C3 on the density we can deduce
its dependence on the other variables.

BEC limit

For the dimer-dimer collisions we can consider a four-body wavefunction composed of
two dimers. The dimers collide dominantly via a two-body s-wave channel at low tem-
perature. However, a triplet subset of those four particles can undergo a p-wave collision
while having a total orbital angular momentum still equal to zero [77]. The dominant
relaxation process is thus via the l = 1, n = 0 channel which has the lowest exponent
s1,0 ' 1.77. Hence, we have

dnd
dt
∝ −n2

da
−2s1,0+1 ' −n2

da
−2.55. (8.22)

Atom-dimer collisions are also dominantly s-wave and the relaxation will occur via the
l = 0, n = 0 channel with s0,0 ' 2.17. We then have

dnd
dt

=
dna
dt
∝ −nanda−2s0,0+1 ' −nanda−3.34. (8.23)

This process is actually negligible at low temperatures (T � Eb) as the Fermi gas is
fully molecular in the far BEC limit and the atom-dimer loss rate decreases faster than
the dimer-dimer loss rate when going to unitarity. The lifetime of an ultracold mixture
of molecules and atoms of 40K was measured in [78, 79]. They found a scaling ap with
p = −2.3(4) for the loss rate in agreement with the dimer-dimer predicted exponent
p ' −2.55 [77].

BCS limit

Three-body s-wave collisions of three unbound fermions are strongly supressed by the
Pauli principle, see [267]. The main relaxation process is via p-wave collisions and thus

8For mass-imbalanced fermionic system there can exist an Efimov channel and resonant losses can
happen via p-wave collisions.

9Or equivalently by looking at the probability of finding three fermions within a vanishing hyperradius.
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through the channel l = 1, n = 0 and the exponent s1,0 ' 1.77. Hence,

dna
dt
∝ −n3

a|a|−2s1,0+4 ' −n3
a|a|0.45. (8.24)

We neglected the effects of Cooper pairing which actually tend to enhance the losses [266]
but is a subleading contribution. The exponent on the scattering length p ' 0.45 is within
less than a factor two to what was measured experimentally in [80] where they found an
exponent p = 0.79(14).

Unitary limit

The most interesting case and yet unexplored is the unitarity regime. At zero temperature,
the only remaining length scale is 1/kF so that we have the unusual density dependence
of the loss rate

dn

dt
∝ −

∑
l,n

αl,nn
(2sl,n−5)/3 (8.25)

In principle both s-wave and p-wave collisions are possible, but relaxation will mainly
occur via the channel which has the lowest exponent sl,n, here s1,0 ' 1.77, as the others
channels contribution are smaller by a factor (nb3)(sl,n−s1,0)2/3 � 1. We can thereby
expect like for the unitary Bose gas another fractional density dependence of the loss rate:

dn

dt
∝ −n2.85 (8.26)

At high temperature, the many-body correlations are negligible, we should recover the n3

scaling so that
dn

dt
∝ − n3

T 0.23
. (8.27)

These exotic scaling laws predicted at both low and high temperatures remain to be con-
firmed experimentally. More generally, measuring the inelastic losses in a strongly in-
teracting Fermi gas would provide information about its three-body correlations at short
distance or equivalently its three-body contact C3 for which there are currently no the-
oretical estimates. Furthermore, by performing a calibration of the losses on the BEC
or the BCS side like we did in chapter 8 for the impurity losses, it should be possible to
measure the precise value of C3. Its determination might prove useful for characterizing
the effect of three-body interactions that are expected to occur between neutrons in the
crust of neutron stars [268].
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Appendix A

Derivation of the coupled oscillator
model using the sum-rule approach

In this appendix we provide the derivation of equations (3.7, 3.8) using the sum rule
method as given in our publication [269].

The dynamics of the system is described by a Hamiltonian

Ĥ =
∑
i,α

[
p̂2
α,i

2mα

]
+ U(rα,i), (A.1)

where α = b, f labels the isotopes, and U describes the total (trap+interaction) potential
energy of the cloud.

Consider the operators F̂α =
∑Nα

i=1 ẑα,i, where zα,i is the position along z of the i-th
atom of species α = b, f and take F̂ (df , db) =

∑
α dαF̂α an excitation operator depending

on two mixing coefficients (dα). We introduce the moments Sp defined by

Sp =
∑
n

(En − E0)p
∣∣∣〈n|F̂ |0〉∣∣∣2 ,

where |n〉 and En are the eigenvectors and the eigenvalues of the Hamiltonian Ĥ (by
definition |0〉 is the ground state and E0 is its energy). Using the Closure Relation and
first order perturbation theory, S1 and S−1 can be calculated exactly and we have

S1 = −
∑
α

~2

mα

Nαd
2
α, (A.2)

S−1 = −1

k

∑
α,β

dαdβNα
∂〈zα〉
∂bβ

, (A.3)

where k is the restoring force of the axial magnetic trap and 〈zα〉 is the center of mass
position of atoms α in the presence of a perturbing potential −k

∑
β bβF̂α corresponding

to a shift of the trapping potential of species β by a distance bβ . 〈zα〉 satisfies two useful
conditions. First, using Hellmann-Feynman’s theorem, the matrix Nα∂bβ〈zα〉 = ∂2

bαbβ
Ĥ

is symmetric. Secondly, if we shift the two traps by the same quantify bβ = b, the center
of mass of the two clouds move by 〈zα〉 = b. Differentiating this constraint with respect
to b yields the condition

∑
β ∂bβ〈zα〉 = 1.

Experimentally, we observe that only two modes are excited by the displacement of
the trap center. We label |n = 1〉 and |n = 2〉 the corresponding modes and we take
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~ωn = En − E0, with, by convention, ω1 ≤ ω2. We thus have for any set of mixing
parameters (df , db),

~2ω2
1 ≤

S1

S−1

≤ ~2ω2
2. (A.4)

To find the values of the two frequencies ω1 and ω2, one thus simply has to find the
extrema of S1/S−1 with respect to df and db. Using the sum rules (A.2) and (A.3), we see
that

S1

S−1

= ~2k

∑
αNα/mαd

2
α∑

α,β Nαdαdβ
∂〈zα〉
∂bβ

. (A.5)

This expression can be formally simplified by taking d′α = dα
√
Nα/mα and Ψ = (d′f , d

′
b).

We then have
S1

S−1

= ~2k
〈Ψ|Ψ〉
〈Ψ|M|Ψ〉

, (A.6)

where the scalar product is defined by 〈Ψ|Ψ′〉 =
∑

α ΨαΨ′α and the effective-mass oper-
ator is given by

Mαβ =
√
mαmβ

√
Nα

Nβ

∂〈zα〉
∂bβ

. (A.7)

With these notations, the frequencies ωi=1,2 are given by ωi =
√
k/m̃i, where m̃i is an

eigenvalue ofM.
In the weak-coupling limit, the cross-terms ∂bβ〈zα〉 (α 6= β) are small and using their

symmetry properties, we can writeM asM0 +M1 with

M0 =

(
mf 0

0 mb

)
, (A.8)

M1 =

 −mf
∂〈zf〉
∂bb

√
mfmb

√
Nb

Nf

∂〈zb〉
∂bf

√
mfmb

√
Nb

Nf

∂〈zb〉
∂bf

−mb
∂〈zb〉
∂bf

 . (A.9)

Since the matrixM is symmetric we can use the usual perturbation theory to calculate
its eigenvalues and eigenvectors. We have to first order

m̃1 = mf

(
1− ∂〈zf〉

∂bb

)
, (A.10)

m̃2 = mb

(
1− ∂〈zb〉

∂bf

)
. (A.11)

Using the symmetry of Nα∂bβ〈zα〉, we see that in the experimentally relevant limit
Nf � Nb, we have ∂bf 〈zb〉 � ∂bb〈zf〉. Thus the frequency of 6Li is essentially not
affected by the coupling between the two species. To leading order, we can identify ω1

(ω2) with ω̃b (ω̃f) and we have

ω̃f ' ωf , (A.12)

ω̃b ' ωb

(
1 +

1

2

∂〈zb〉
∂bf

)
. (A.13)
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To calculate the frequency ω̃b we need to know the crossed-susceptibility ∂bf 〈zb〉.
Since this is in equilibrium quantity, we can calculate it using the local-density approxi-
mation. We then obtain

∂〈zb〉
∂bf

=
kgbf

Nb

∫
d3rz2

(
∂nf

∂µf

)(
∂nb

∂µb

)
(A.14)

In the limit Nb � Nf , the bosonic cloud is much smaller than the fermionic cloud. We
can therefore approximate this expression by

∂〈zb〉
∂bf

' kgbf

Nb

(
∂nf

∂µf

)
0

∫
d3rz2

(
∂nb

∂µb

)
(A.15)

where the index zero indicates that the derivative is calculated at the center of the trap.
The integral can be calculated exactly and we finally obtain

∂〈zb〉
∂bf

= gbf

(
∂nf

∂µf

)
0

, (A.16)

where we recover eq. (A.13) from chapter 3.
To get the dynamics of the system after the excitation, we need to calculate the eigen-

vectors of the matrixM. Note Ψi = (d′i,f , d
′
i,b) the eigenvector associated to the eigen-

value ωi. Using once more first order perturbation theory, we have

Ψ1 =

 1
√
mfmb

mf−mb

√
Nb

Nf

∂〈zb〉
∂bf

 , (A.17)

Ψ2 =

 √
mfmb

mb−mf

√
Nb

Nf

∂〈zb〉
∂bf

1

 , (A.18)

from which we deduce the vectors Ψ̃i=1,2 = (di,f , di,b) giving the excitation operator
F̂ (di,f , di,b). More precisely

Ψ̃1 =

√
mf

Nf

(
1

mb

mf−mb

∂〈zb〉
∂bf

)
, (A.19)

Ψ̃2 =

√
mb

Nb

(
mf

mb−mf

Nb

Nf

∂〈zb〉
∂bf

1

)
. (A.20)

Note d the initial displacement of the two species and expand the initial condition
Z = (zf(0), zb(0)) = (d, d) over the basis {Ψ̃1, Ψ̃2} as Z =

∑
i ciΨ̃i. Since by con-

struction the operator F̂ (di,f , di,b) excites solely the mode ωi we must have at time t
Z(t) =

∑
i ci cos(ωit)Ψ̃i (we assume that the initial velocities are zero). After a straight-

forward calculation, we get

zf(t) = d

[
(1− εmρη) cos(ω1t) + ηρεm(1 + εm) cos(ω2t)

1 + ε2
mρη

]
, (A.21)

zb(t) = d

[
−εm(1− εmρη) cos(ω1t) + (1 + εm) cos(ω2t)

1 + ε2
mρη

]
, (A.22)
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with η = mf/mb, ρ = Nb/Nf , and εm = mb/(mb −mf)∂bf 〈zb〉.
In experimentally relevant situations, we have εm � 1, ρ � 1 and η ' 1, we can thus
approximate the previous equations by

zf(t) ' d [(1− εmρ) cos(ω̃ft) + ρεm cos(ω̃bt)] (A.23)
zb(t) ' d [−εm cos(ω̃ft) + (1 + εm) cos(ω̃bt)] , (A.24)

and where according to Eq. (A.13), we can take

εm =
2mb

mb −mf

(
ω̃b − ωb

ωb

)
. (A.25)



Appendix B

Instability domains of modified 2D
Mathieu’s equations

In this appendix, we compute the parametric instability domains associated to the follow-
ing modified Mathieu’s equations:

d2u

dt2
+ u+ εeiαcos(Ωt)v = 0, (B.1)

d2v

dt2
+ v + εe−iαcos(Ωt)u = 0. (B.2)

If we introduce the new variables r = u + v∗ and s = u − v∗ we have the uncoupled
differential equations

d2r

dt2
+ r + εeiαcos(Ωt)r∗ = 0, (B.3)

d2s

dt2
+ s− εeiαcos(Ωt)s∗ = 0, (B.4)

which will have the same solutions provided ε→ −ε.
Since parametric instabilities develop in a time scale given by ε, in the limit ε � 1 we
can adopt a multi-scale analysis. Here, let’s introduce two timescales τ0 = t and τ1 = εt
and write our general solution as a perturbation series solution dependent both on τ0 and
τ1:

r(t) =
∞∑
n=0

εnrn(τ0, τ1). (B.5)

We will also look at frequencies close to an a priori resonant one ω0 such that Ω =
ω0 + εω1.
For a function f(τ0, τ1) we have the identity

d2f

dt2
=
∂2f

∂τ 2
0

+ 2ε
∂2f

∂τ0∂τ1

+ ε2∂
2f

∂τ 2
1

. (B.6)

Then to 0-order in ε, the equation (B.3) gives

∂2r0

∂τ 2
0

+ r0 = 0. (B.7)

The solutions can be written as

r0(τ0, τ1) = A(τ1)eiτ0 +B(τ1)e−iτ0 . (B.8)
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If we now plug in these solutions into (B.3), we can look at the first order terms in ε and
we obtain the equation

∂2r1

∂τ 2
0

+ r1 + 2i

(
∂A

∂τ1

eiτ0 − ∂B

∂τ1

e−iτ0
)

+ eiαcos(ω0τ0+ω1τ1)
(
A∗(τ1)e−iτ0 +B∗(τ1)eiτ0

)
= 0

(B.9)
We can recognize the equation of an harmonic oscillator forced by oscillating terms. For
the solution r1 to not diverge on a time scale τ0 and the multiscale approach to be valid,
there shouldn’t be any resonant terms.
Using the identity

eiαcos(ω0τ0+ω1τ1) =
∑
k

ikJk(α)eikω0τ0eikω1τ1 (B.10)

we will have a resonance whenever there exist an integer k such that kω0 = 2.
In other words the resonant frequencies are

ω0,n =
2

n
, n ∈ N. (B.11)

To cancel the resonance we need that

2i
∂A

∂τ1

+ inJn(α)einω1τ1A∗ + J0(α)B∗ = 0, (B.12)

−2i
∂B

∂τ1

+ J0(α)A∗ + (−i)nJn(α)e−inω1τ1B∗ = 0. (B.13)

By introducing the new variables a = exp−inω1τ1/2A and b = expinω1τ1/2B, we get a time
independent set of differential equations

2i
∂a

∂τ1

− nω1a+ inJn(α)a∗ + J0(α)b∗ = 0, (B.14)

−2i
∂b

∂τ1

− nω2b+ J0(α)a∗ + (−i)nJn(α)b∗ = 0. (B.15)

If we now consider the set a, b, a∗, b∗ as independent variables, we have to solve

d

dt


a

b

a∗

b∗

 =
i

2


−nω1 0 inJn(α) J0(α)

0 nω1 −J0(α) −(−i)nJn(α)

−(−i)nJn(α) −J0(α) nω1 0

J0(α) inJn(α) 0 −nω1




a

b

a∗

b∗

 .

(B.16)
The eigenvalues of the matrix are

λ±,± = ± i
2

√
(J0(α)± nω1)2 − Jn(α)2. (B.17)

We will thus have a parametric instability if

Jn(α)2 ≥ (J0(α)± nω1)2. (B.18)

The eigenvalues can be obtained numerically using a Floquet method. A comparison for
two mode frequencies is displayed in fig.(B.1) and shows an excellent agreement. We
also recover similar instability domains in the (α, 1/Ω) plane as shown in fig.(B.2).
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Figure B.1: Real part of λ±,± as a function of the amplitude α for ω1 = 0. Blue line:
n=20, Yellow line: n=22. Dashed lines represent the eigenvalue obtained numerically
using Floquet theory on eqs.(B.1,B.2).

Figure B.2: Instability domains (in black) in the (α, 1/Ω) space for ε = 0.05. Red dashed
line correspond to the critical velocity predicted in the uniform movement case.
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Appendix C

Numerical simulation of counterflowing
superfluids: supplemental data

In this appendix, we present supplemental data in order for the reader to have a larger
overview of the different signals obtained from the numerical simulation itself but also
from the principal component analysis. This is of course not exhaustive.

In fig.(C.1), we present the center of mass oscillations of both clouds for different
interspecies couplings β12/β22.

In fig.(C.2), we show the rescaled amplitude difference ∆z = zi,b1(t)/b1 − zi,b2(t)/b2

for different interspecies coupling β12/β22.
In figs.(C.3,C.4,C.5,C.6) we show some typical results obtained from the PCA. We

display the 5 most populated modes for each cloud for two different simulation runs.
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Figure C.1: Center of mass oscillation of both clouds (i = 1 in blue, i = 2 in red) for
different interspecies coupling β12/β22 and same initial dispalcement b = 2.
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Figure C.2: Rescaled amplitude difference ∆z = zi,b1(t)/b1 − zi,b2(t)/b2 for different in-
terspecies coupling β12/β22. Blue line: small condensate i : 1, Red line: large condensate
i = 2 rescaled with a global factor N2/N1 = 30.
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Figure C.3: First five PCA’s modes for the small cloud i = 1 and the simulation run
β12/β22 = 0.003, b = 6. From left to right figures: Mode’s parameters: λ is the asso-
ciated covariance matrix’s eigenvalue. k is the extracted number of nodes which allows
to predict the mode frequency ωtheo. ωexp is the frequency of the highest peak in the
fourier spectrum. The spatial mode structure. The associated fourier spectrum. Mode
time evolution.
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Figure C.4: First five PCA’s modes for the large cloud i = 2 and the simulation run
β12/β22 = 0.003, b = 6. From left to right figures: Mode’s parameters: λ is the asso-
ciated covariance matrix’s eigenvalue. k is the extracted number of nodes which allows
to predict the mode frequency ωtheo. ωexp is the frequency of the highest peak in the
fourier spectrum. The spatial mode structure. The associated fourier spectrum. Mode
time evolution.
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Figure C.5: First five PCA’s modes for the small cloud i = 1 and the simulation run
β12/β22 = 0.186, b = 4.. From left to right figures: Mode’s parameters: λ is the asso-
ciated covariance matrix’s eigenvalue. k is the extracted number of nodes which allows
to predict the mode frequency ωtheo. ωexp is the frequency of the highest peak in the
fourier spectrum. The spatial mode structure. The associated fourier spectrum. Mode
time evolution.
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Figure C.6: First five PCA’s modes for the large cloud i = 2 and the simulation run
β12/β22 = 0.186, b = 4. From left to right figures: Mode’s parameters: λ is the asso-
ciated covariance matrix’s eigenvalue. k is the extracted number of nodes which allows
to predict the mode frequency ωtheo. ωexp is the frequency of the highest peak in the
fourier spectrum. The spatial mode structure. The associated fourier spectrum. Mode
time evolution.
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Appendix D

Momentum distribution of a dilute
unitary Bose gas: Supplemental
material

In this appendix, we reproduce without modifications the supplemental material of arti-
cle [232] given in section 7.2 .

D.1 Derivation of the loss equations
The coefficient 〈1| 1

G
L3[G]〉 can be written as

〈1| 1
G
L3[G]〉 =

(
nλ3

th

h3

)3 ∫
d3p1d3p2d3p3

A3

E2
123

|φ(Ω3)|2e−βEtot (D.1)

where Etot = (p2
1 + p2

2 + p2
3)/2m. We then define three new momentum variables which

are conjugated to Jacobi coordinates in real space and verify

p1 =
P

3
− Π1

a
− aΠ2

2
(D.2)

p2 =
P

3
+

Π1

a
− aΠ2

2
(D.3)

p3 =
P

3
+ aΠ2. (D.4)

with a = (4/3)1/4.
The energy in the center of mass frame is then E123 = Π2/2µ with Π2 = Π2

1 + Π2
2 and

µ = m/
√

3 while the total energy is Etot = P 2
G/6m + Π2/2µ. The jacobian of such a

change of variables is equal to one and we have the differential transformation

d3p1d3p2d3p3 = d3PGΠ5dΠ
1

2
sin2(2α)dαd2Π̂1d2Π̂2 (D.5)

where Π̂i = Πi/Πi and α = arctan(Π1/Π2) ∈ [0; π/2].
It can be rewritten in terms of the hyperangular differential d5Ω3 = 1/2sin2(α)dαd2Π̂1d2Π̂2.
We thus obtain a new form for the integral

〈1| 1
G
L3[G]〉 =

(
nλ3

th

h3

)3 ∫
d3PGΠ5dΠd5Ω3

A3

E2
123

|φ(Ω3)|2e−βEtot . (D.6)
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Using the normalization condition on φ(Ω3) we are left with Gaussian integrals which are
straightforward to calculate. We then get ṅt = −L3n

3.
To calculate 〈 p2

2m
| 1
G
L3[G]〉 we use the fact that it can be written as

〈 p
2
1

2m
| 1
G
L3[G]〉 =

(
nλ3

th

h3

)3 ∫
d3p1d3p2d3p3

Etot

3

A3

E2
123

|φ(Ω3)|2e−βEtot . (D.7)

Therefore we can use the same change of variables to get rid of the hyperangular depen-
dence and finally retrieve the loss equation Ėt = −5EL3n

2/9.

D.2 Decomposition of the solution over the Laguerre Poly-
nomial basis

In this section, we solve the Eq.

C[α] = P

[
1

G
L3[G]

]
(D.8)

In the spirit of Chapman-Enskog’s expansion, we expand α on a basis of orthogonal
polynomials for the scalar product

〈α|β〉 =

∫
d3pG(p)α(p)β(p). (D.9)

Such a basis can be expressed in terms of the generalized Laguerre polynomials [270]

qk(p) =

√ √
πk!

2nΓ(k + 3/2)
L

(1/2)
k (βp2/2m) (D.10)

By definition, q0 and q1 lie in Ker(C) and as such will not contribute to the expansion.
Take α(p) =

∑
k≥2 akqk(p), where the coefficients ak are real numbers, Eq. (D.8) is then

equivalent to the infinite set of linear equations∑
k′≥2

ak′〈qk|C[qk′ ]〉 = 〈qk|
1

G
L3[G]〉, (D.11)

for k ≥ 2. In these equations, the coefficients 〈qk|C[qk′ ]〉 can be calculated analytically
to arbitrary order, while the complex form of the Efimov wave-function allows only for
a numerical calculation of the projection of the loss term on this polynomial basis. We
solve this equation by truncating the indices (k, k′) to a value kmax. We observe in Fig.
(D.1) that the convergence is very fast and that the first order result (kmax = 2) gives the
correct answer within a few percent accuracy.

D.3 Calculation of C
The coefficients 〈qk|C[qk′ ]〉 can be expressed as follow 〈qk|C[qk′ ]〉 = −n~2

√
πβ/m3Ckk′ ,

C = (Ckk′) being a matrix with purely numerical coefficients. Those coefficients can be
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Figure D.1: Convergence of the numerical solution of Eq. (D.11). We estimate the error
on the solution using the norme ‖α‖2 = 〈α|α〉 and we compare the solution of Eq. (D.11)
obtained by truncation at k = kmax with the “true” result corresponding to kmax = 15.

calculated analytically to arbitrary order. As a “proof”, all the coefficients to a value
kmax = 6 are shown below:

C =
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(D.12)

D.4 Momentum distribution in a harmonic trap
The virial expansion of the momentum distribution was derived for a uniform system and
we need to take into account for the fact that in [37] the density is not uniform. Since the
quasi-equilibration time is much shorter than any collective mode period we can assume
that the density is given by the Thomas-Fermi density of the initially weakly interacting
Bose Einstein condensate n(r) = n(0) (1− r2/R2). The density at the center n(0) and
the Thomas-Fermi radius R are related to the total atom number N , the initial scattering
length a and the harmonic oscillator length aho thanks to n(0) = (15)2/5/(8π) 1

a2
hoa

(Na
aho

)2/5

and R = (15Na4
hoa)1/5. The two-body scattering rate being large compared to the in-

verse of typical experimental time, we assume locally thermal equilibrium. For dimen-
sional reasons, the temperature at radius r is proportional to the degeneracy temperature
at density n(r). Therefore we have kB T (r) = C ~2 (6π2n)2/3/m with C a dimension-
less constant. Hence we have a uniform phase-space density n(r)λth(r)

3 = D, with D a
dimensionless constant.

D is related to the the fugacity z = eµ/(kBT ) through the equation of state

D = z + 2 b2 z
2 + · · · (D.13)

Therefore we find that the fugacity is uniform in the cloud.
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Figure D.2: The product κ4 n(κ) from Eq.D.15 and z = 0.5.

In order to calculate the momentum occupation number in the cloud, we have to in-
tegrate on space the result for a homogeneous system, keeping track of the fact that the
temperature and the chemical potential are non-uniform. The sum of the three contribu-
tions to the momentum occupation number ρ(2)(p) of order z2 is denoted by f2(p λth/~).
This includes Bose statistics correction, interaction effects and three-body losses. There-
fore we have locally for the momentum occupation number, up to second order in fugacity

ρ(p; r) = z e
− p2

2mkBT (r) + z2 f2(p λth(r)/~) (D.14)

with kBT (r) = 2π n(0)2/3

mD2/3 (1− r2/R2)
2/3 and z is related to D in Eq.D.13. The results

of Ref.[37] are given for dimensionless wave vector κ defined by p = ~ kn κ and kn ≡
(6π2〈n〉)1/3, with 〈n〉 a spatial average density. For a Thomas-Fermi profile, we easily get
n(0) = Ak3

n, with A = 5/(12π2). Moreover the dimensionless wave vector occupation
number n(κ) should be normalized such that 4π

∫ +∞
0

dκ κ2 n(κ) = 8π3. In this way, we
find for the dimensionless momentum distribution

n(κ) =
15

2A

∫ 1

0

du u2{z e
− D2/3

4π A2/3
1

(1−u2)2/3
κ2

+ z2 f2

(
D1/3

A1/3

1

(1− u2)1/3
κ

)
}

In Fig.D.2, we show the product κ4 n(κ) for z = 0.5. From Eq.D.15, we find this
product should tend to ' 5.018. We also notice that this asymptotic value is not reached
for κ equals 3.



Appendix E

Analysis of impurity losses of the
Innsbruck experiment.

We present in this appendix, a quick analysis of the data presented in [245], where they
measured the decay rate of an impurity (40K atoms, denoted i) immersed in a strongly in-
teracting Fermi gas (6Li atoms ) accross the BEC-BCS crossover, see fig.(E.1) (taken from
[245]). The Fermi gas is in the superfluid regime as T/TF = 0.15. According to what
we have presented in chapter 6 and 8, the loss rate Γ = ṅi/ni is given by the two-body
contact of the interacting Fermi gas. On the BEC side, far from the resonance we thus
have Γ = γ4π〈nf〉/aff , where the brackets denotes the averaging over the impurity density
distribution. Applied to the data point taken at 730 G we get γ = 3.4(5) × 10−27m4.s−1

(at 690 G, the mixture suffers from strong dimer-dimer losses (see fig. 1 of the paper) and
the impurity decay seem to be underestimated). However, as the scattering length is still
large (' 2500 a0) , kFaff is close to 1 and the value of γ is an upper estimation. In the
far BCS limit we have instead Γ = γ4π2〈n2

f 〉a2
ff . Using the data point with the highest

magnetic field (1190 G) we get γ = 2.1(5) × 10−27m4.s−1. Similarly to the BEC data
point, the scattering length is still large (' −2700 a0), the value of γ is underestimated.
At unitarity and at zero temperature we should have

Γ = γ
2ζ

5π
(3π2)4/3〈n4/3

f 〉 , (E.1)

where ζ = 0.87(3) is a dimensionless constant.
In the experiment, at resonance, the peak density is nf,peak = 2× 2.1× 1012 cm−3. More-
over, as they give nf,peak/〈nf〉 = 1.7 and n2

f,peak/〈n2
f 〉 = 2.4, we can take by extrapolation

n
4/3
f,peak/〈n

4/3
f 〉 = 1.9. The measured unitary loss rate is Γ = 0.07(2)s−1 and we thus get

γ = 2.5(5)× 10−27m4.s−1. We did not take into account the corrections to the two-body
contact coming from the finite temperature of the mixture that can slightly modify this
result.

The extracted values of γ in the three asymptotic regimes of the BEC-BCS crossover
shows at most a weak variation with the magnetic field. The data presented in [245] is thus
consistent with losses proportional to the two-body contact. A more refined analysis in-
cluding the beyond mean-field corrections to the contact could improve the agreement. In-
terestingly, the value of γ found here for the 40K/6Li mixture share the same order of mag-
nitude than what we have measured for our 7Li/6Li mixture γ = 1.17(11)× 10−27m4.s−1.
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Figure E.1: 40K impurity decay rate in the BEC-BCS crossover, taken from [245]. The
decay is fitted either by a two-body loss term or a three-body loss term. Red circles: two-
body loss rate coefficient L2 = Γ/〈nf〉. Blue triangles:three-body loss rate coefficient
L3 = Γ/〈n2

f 〉. The dashed black line marks the unitary limit where 1/af = 0. The dotted
lines indicates the strongly interacting regime, where |kFaff | ≥ 1.
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Ulrich Eismann, Lev Khaykovich, Sébastien Laurent, Igor Ferrier-Barbut, Benno
S. Rem, Andrew T. Grier, Marion Delehaye, Frédéric Chevy, Christophe Salomon,
Li-Chung Ha, and Cheng Chin
Physical Review X, 6, 021025 (2016)

• “Connecting few-body inelastic decay to quantum correlations in a many-body sys-
tem: a weakly coupled impurity in a resonant Fermi gas”
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collisions. An analysis with some similarities to
ours for the bright debris disk of HD 172555
(20) found that dust created in a hypervelocity
impact will have a size slope of ~ –4, in agreement
with the fits of (10) to the IR spectrum of ID8.
After the exponential decay is removed from

the data (“detrending”), the light curves at both
wavelengths appear to be quasi-periodic. The
regular recovery of the disk flux and lack of ex-
traordinary stellar activity essentially eliminate
coronal mass ejection (21) as a possible driver of
the disk variability. We employed the SigSpec al-
gorithm (22) to search for complex patterns in
the detrended, post-impact 2013 light curve. The
analysis identified two significant frequencies with
comparable amplitudes, whose periods are P1 =
25.4 T 1.1 days and P2 = 34.0 T 1.5 days (Fig. 3A)
and are sufficient to qualitatively reproducemost
of the observed light curve features (Fig. 3B).
The quoted uncertainties (23) do not account for
systematic effects due to the detrending and thus
are lower limits to the real errors. Other peakswith
longer periods in the periodogram are aliases or
possibly reflect long-term deviation from the ex-
ponential decay. These artifacts make it difficult
to determine whether there are weak real signals
near those frequencies.
We now describe the most plausible inter-

pretation of this light curve that we have found.
The two identified periods have a peak-to-peak
amplitude of ~6 × 10−3 in fractional luminosity,
which provides a critical constraint for models of
the ID8 disk. In terms of sky coverage at the disk
distance inferred from the IR SED, such an am-
plitude requires the disappearance and reappear-
ance every ~30days of the equivalent of an opaque,
stellar-facing “dust panel” of radius ~110 Jupiter
radii. One possibility is that the disk flux perio-
dicity arises from recurring geometry that changes
the amount of dust that we can see. At the time
of the impact, fragments get a range of kick ve-
locities when escaping into interplanetary space.
This will cause Keplerian shear of the cloud (24),
leading to an expanding debris concentration
along the original orbit (supplementary text). If
the ID8 planetary system is roughly edge-on, the
longest dimension of the concentration will be
parallel to our line of sight at the greatest elon-
gations and orthogonal to the line of sight near
conjunctions to the star. This would cause the
optical depth of the debris to vary within an
orbital period, in a range on the order of 1 to 10
according to the estimated disk mass and par-
ticle sizes. Our numerical simulations of such dust
concentrations onmoderately eccentric orbits are
able to produce periodic light curves with strong
overtones. P2 and P1 should have a 3:2 ratio if
they are the first- and second-order overtones of
a fundamental, which is consistent with the mea-
surements within the expected larger errors (<2s
or better). In this case, the genuine period should
be 70.8 T 5.2 days (lower-limit errors), a value
where it may have been submerged in the perio-
dogram artifacts. This period corresponds to a
semimajor axis of ~0.33 astronomical units, which
is consistent with the temperature and distance
suggested by the spectral models (10).

Despite the peculiarities of ID8, it is not a
unique system. In 2012 and 2013, we monitored
four other “extreme debris disks” (with disk frac-
tional luminosity ≥10−2) around solar-like stars
with ages of 10 to 120My. Various degrees of IR
variations were detected in all of them. The
specific characteristics of ID8 in the time domain,
including the yearly exponential decay, addition-
al more rapid weekly to monthly changes, and
color variations, are also seen in other systems.
This opens up the time domain as a new dimen-
sion for the study of terrestrial planet formation
and collisions outside the solar system. The var-
iability of many extreme debris disks in the era
of the final buildup of terrestrial planets may
provide new possibilities for understanding the
early solar system and the formation of habitable
planets (25).
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SUPERFLUIDITY

A mixture of Bose and Fermi superf luids
I. Ferrier-Barbut,* M. Delehaye, S. Laurent, A. T. Grier,† M. Pierce,
B. S. Rem,‡ F. Chevy, C. Salomon

Superconductivity and superfluidity of fermionic and bosonic systems are remarkable
many-body quantum phenomena. In liquid helium and dilute gases, Bose and Fermi
superfluidity has been observed separately, but producingamixture inwhich both the fermionic
and the bosonic components are superfluid is challenging. Here we report on the observation
of such a mixture with dilute gases of two lithium isotopes, lithium-6 and lithium-7.We probe
the collective dynamics of this system by exciting center-of-mass oscillations that exhibit
extremely low damping below a certain critical velocity. Using high-precision spectroscopy
of these modes, we observe coherent energy exchange and measure the coupling between
the two superfluids. Our observations can be captured theoretically using a sum-rule
approach that we interpret in terms of two coupled oscillators.

I
n recent years, ultracold atoms have emerged
as a unique tool to engineer and study quantum
many-body systems. Examples include weakly
interacting Bose-Einstein condensates (1, 2),
two-dimensional gases (3), and the superfluid-

Mott insulator transition (4) in the case of bosonic
atoms, and the crossover between Bose-Einstein
condensation (BEC) and fermionic superfluidity
described by the the theory of Bardeen, Cooper,
and Schrieffer (BCS) for fermionic atoms (5). Mix-

tures of Bose-Einstein condensates were produced
shortly after the observation of BEC (2), and a
BEC mixed with a single-spin state Fermi sea
was originally observed in (6, 7). However, realizing
a mixture in which both fermionic and bosonic
species are superfluid has been experimentally
challenging. This has also been a long-sought goal
in liquid helium, where superfluidity was achieved
separately in both bosonic 4He and fermionic 3He.
The double superfluid should undergo a transition
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between s-wave and p-wave Cooper pairs as the
3He dilution is varied (8). However, because of
strong interactions between the two isotopes,
3He-4He mixtures contain only a small fraction
of 3He (typically 6%) which, so far, has prevented
attainment of simultaneous superfluidity for the
two species (8, 9).
Here we report on the production of a Bose-

Fermi mixture of quantum gases in which both
species are superfluid. Our system is an ultracold
gas of fermionic 6Li in two spin states mixed with
7Li bosons and confined in an optical dipole trap.
Using radio-frequency pulses, we prepare 6Li atoms
in their two lowest hyperfine states j1f 〉 and j2f 〉,
whereas 7Li is spin polarized in the second-to-
lowest state j2b〉 (10). For this combination of states,
in the vicinity of the 6Li Feshbach resonance at a
magnetic field of 832 G (11), the scattering length
of the bosonic isotope ab = 70a0 (a0 is the Bohr
radius) is positive, preventing collapse of the BEC.
The boson-fermion interaction is characterized by
a scattering length abf ¼ 40:8a0 that does not
depend on magnetic field in the parameter range
studied here. At resonance, the Fermi gas exhibits
a unitary limited collision rate, and lowering the
optical dipole trap depth leads to extremely ef-
ficient evaporation. Owing to a large excess of
6Li atoms with respect to 7Li, the Bose gas is sym-
pathetically driven to quantum degeneracy.
The two clouds reach the superfluid regime

after a 4-s evaporation ramp (10). As the 7Li Bose
gas is weakly interacting, the onset of BEC is
detected by the growth of a narrow peak in the
density profile of the cloud. From previous studies
on atomic Bose-Einstein condensates, we con-
clude that the 7Li BEC is in a superfluid phase.
Superfluidity in a unitary Fermi gas is notori-
ously more difficult to detect because of the
absence of any qualitative modification of the
density profile at the phase transition. To dem-
onstrate the superfluidity of the fermionic com-
ponent of the cloud, we slightly imbalance the
two spin populations. In an imbalanced gas, the
cloud is organized in concentric layers, with a
fully paired superfluid region at its center, where
Cooper pairing maintains equal spin popula-
tions. This 6Li superfluid core can be detected
by the presence of a plateau in the doubly in-
tegrated density difference (12). Examples of
density profiles of the bosonic and fermionic
superfluids are shown in Fig. 1, where both the
Bose-Einstein condensate (blue circles) and the
plateau (black diamonds in the inset) are clearly
visible. Our coldest samples containNb ¼ 4" 104
7Li atoms and Nf ¼ 3:5" 105 6Li atoms. The
absence of a thermal fraction in the bosonic cloud
indicates a temperature below 0.5Tc,b, where
kBTc;b ¼ 0:94ℏwbN

1=3
b is the critical temperature

of the 7Li bosons, and wb (wf ) is the geometric

mean trapping frequency for 7Li (6Li). Com-
bined with the observation of the 6Li plateau,
this implies that the Fermi cloud is also super-
fluid with a temperature below 0:8Tc;f . Here,
Tc;f is the critical temperature for superfluid-
ity of a spin-balanced, harmonically trapped
Fermi gas at unitarity, Tc;f ¼ 0:19TF (13), and
kBTF ¼ ℏwfð3NfÞ1=3 is the Fermi temperature.
The superfluid mixture is very stable, with a
lifetime exceeding 7 s for our coldest samples.
As seen in Fig. 1, the Bose-Fermi interaction is

too weak to alter significantly the density pro-
files of the two species (14). To probe the inter-
action between the two superfluids, we study the
dynamics of the mass centers of the two isotopes
(dipole modes), a scheme used previously for the
study of mixtures of Bose-Einstein condensates
(15, 16),mixtures of Bose-Einstein condensates and
spin-polarized Fermi seas (17), spin diffusion in
Fermi gases (18), or integrability in one-dimensional
systems (19). In a purely harmonic trap and in
the absence of interspecies interactions, the di-
polemode of each species is undamped and can
therefore be measured over long time spans to
achieve a high-frequency resolution and detect
small perturbations of the system. We excite the
dipole modes by shifting the initial position of
the 6Li and 7Li clouds by a displacement d along
the weak direction z of the trap (10). We then
release themand let themevolve during a variable
time t, after which we measure their positions. By
monitoring the cloud oscillations during up to 4 s,
we determine their frequencies with high precision
(Dww ≲ 2" 10−3Þ: In the absence of the other spe-
cies, the oscillation frequencies of 6Li and 7Li are,
respectively, wf ¼ 2p" 16:80ð2Þ Hz and wb ¼

2p" 15:27ð1Þ Hz. In the axial direction, the con-
finement is mostly magnetic, and at high mag-
netic field, both species are in the Paschen-Back
regime, where the electronic and nuclear spin
degrees of freedomare decoupled. In this regime,
the magnetic confinement mostly results from
the electronic spin and is therefore almost iden-
tical for the two isotopes. The ratio wf=wb is then
very close to the expected value

ffiffiffiffiffiffiffiffi
7=6

p
≃ 1:08

based on the ratio of the atomic masses (20).
Contrary to the large damping observed in the

Bose-Bose mixtures (15), we observe long-lived
oscillations of the Bose-Fermi superfluid mixture
at frequencies (w̃b, w̃f ). These oscillations extend
over more than 4 s with undetectable damping
(Fig. 2 and fig. S2). This very weak dissipation
is only observed when the initial displacement
d is below 100 mm, corresponding to a maxi-
mum relative velocity vmax ¼ ðw̃b þ w̃fÞd below
18 mm/s ≃ 0:4 vF, where vF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTF=mf

p
. In

this situation, the BEC explores only the central
part of the much broader Fermi cloud. When
vmax > vc ¼ 0:42þ0:05

−0:11 vF ¼ 20þ2
−5 mm/s, we ob-

serve a sharp onset of damping and heating of
the BEC compatible with the Landau criterion for
breakdown of superfuidity (Fig. 2C) (10). For com-
parison, the sound velocity of an elongated Fermi
gas at its center is vs0 ¼ x1=4vF=

ffiffiffi
5

p
¼ 17 mm/s

(21), where x ¼ 0:38 is the Bertsch parameter
(5, 13). The measured critical velocity vc is very
close to vs0 and is clearly above the BEC sound
velocity of ≃5 mm/s at its center.
Two striking phenomena are furthermore ob-

served. First, whereas the frequency w̃f of 6Li
oscillations is almost unchanged from the value
in the absence of 7Li, that of 7Li is downshifted
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Fig. 1. Density profiles in the double superfluid regime. Nb ¼ 4" 104 7Li atoms and Nf ¼ 3:5" 105 6Li
atoms are confined in a trap at a temperature below 130 nK. The density profiles nb (blue circles) and
nf;↑(red squares) are doubly integrated over the two transverse directions.The blue (red) solid line is a fit
to the 7Li (6Li) distribution by a mean-field (unitary Fermi gas) EoS in the Thomas-Fermi approximation.
Inset: Spin-imbalanced Fermi gas (Nf;↑ ¼ 2" 105, Nf;↓ ¼ 8" 104) in thermal equilibrium with a BEC.
Red circles: nf;↑; green squares: nf;↓; black diamonds: difference nf;↑−nf;↓. The plateau (black dashed line)
indicates superfluid pairing (12). Gray solid line: Thomas-Fermi profile of a noninteracting Fermi gas for the
fully spin-polarized outer shell prolonged by the partially polarized normal phase (gray dashed line).
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to w̃b ¼ 2p" 15:00ð2Þ Hz. Second, the ampli-
tude of oscillations of the bosonic species displays
a beat at a frequency ≃ðw̃f − w̃bÞ=ð2pÞ, reveal-
ing coherent energy transfer between the two
clouds (Fig. 2B). To interpret the frequency shift
of the 7Li atoms, we note that Nb ≪ Nf ; which
allows us to treat the BEC as a mesoscopic im-
purity immersed in a Fermi superfluid. Similar-
ly to the Fermi polaron case (22), the effective
potential seen by the bosons is the sum of the
trapping potential V ðrÞ and the mean-field in-
teraction gbfnfðrÞ, where nf is the total fermion
density, gbf ¼ 2pℏ2abf =mbf , and mbf ¼ mbmf

mbþmf
is

the 6Li/7Li reduced mass. Neglecting at first
the back-action of the bosons on the fermions,
we can assume that nf is given by the local-density-
approximation result nfðrÞ ¼ nð0Þ

f ðm0f − V ðrÞÞ,
where nð0Þ

f ðmÞ is the stationary equation of state
(EoS) of the Fermi gas. Because the Bose-Einstein
condensate is much smaller than the Fermi cloud
(Fig. 2A), V ðrÞ is smaller than m0f over the BEC
volume. We can thus expand nð0Þf , and we get

VeffðrÞ ¼ gbfnfð0Þ þ V ðrÞ 1 − gbf
dnð0Þ

f

dmf

 !

r¼0

" #

ð1Þ
We observe that the effective potential is still har-
monic and the rescaled frequency is given by

w̃b ≃ wb 1 − 1
2
gbf

dnð0Þ
f

dmf

 !

r¼0

 !

ð2Þ

For a unitary Fermi gas, the chemical potential is
related to the density by mf ¼ xℏ2ð3p2nfÞ2=3=2mf .

In theweakly coupled limit,weget dwb
wb

¼ wb − w̃b
wb

¼
13kFabf
7px5=4

, whereℏkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏmfwfð3NfÞ1=3

q
is theFermi

momentum of a noninteracting harmonically
trapped Fermi gas. Using our experimental pa-
rameters kF ¼ 4:6" 106 m−1, we predict a value
w̃b ≃ 2p" 14:97 Hz, in very good agreement with
the observed value 15.00(2)Hz.
To understand the amplitude modulation, we

now take into account the back-action on the
fermions. A fully quantum formalism using a
sum-rule approach (23–25) leads to a coupled
oscillator model in which the positions of the
two clouds obey the following equations (10)

Mf
::
z f ¼ −Kfzf − Kbfðzf − zbÞ ð3Þ

Mb
::
zb ¼ −Kbzb − Kbfðzb − zfÞ ð4Þ

whereMb ¼ Nbmb (Mf ¼ Nfmf ) is the total mass
of the 7Li (6Li) cloud, Kb ¼ Mbw2

b ðKf ¼ Mfw2
f Þ

is the spring constant of the axial magnetic con-
finement, and Kbf is a phenomenological (weak)
coupling constant describing the mean-field in-

teraction between the two isotopes. To recov-
er the correct frequency shift (Eq. 2), we take
Kbf ¼ 2Kb

dwb
wb

: Solving these equations with the
initial condition zfð0Þ ¼ zbð0Þ ¼ d, and defining
r ¼ Nb=Nf and e ¼ 2mb

mb−mf

w̃b − wb
wb

" #
, in the limit

r; e ≪ 1 we get

zf ¼ d½ð1 − erÞcosðw̃f tÞ þ ercosðw̃btÞ' ð5Þ

zb ¼ d½−ecosðw̃ftÞ þ ð1þ eÞcosðw̃btÞ' ð6Þ

The predictions of Eqs. 5 and 6 agree well with
experiment (Fig. 2B). Interestingly, the peak-to-
peak modulation of the amplitude of 7Li is much
larger than the relative frequency shift, a conse-
quence of the almost exact tuning of the two
oscillators (up to a factor

ffiffiffiffiffiffiffiffi
6=7

p
). Thus, the mass

prefactor in the expression for e is large (=14) and
leads to e ≃ 0:25 at unitarity. This results in
efficient energy transfer between the two modes
despite their weak coupling, as observed.
We now extend our study of the Bose-Fermi

superfluid mixture to the BEC-BCS crossover by
tuning the magnetic field away from the reso-
nance value Bf ¼ 832 G. We explore a region
from 860 G down to 780 G where 1=kFaf spans
the interval ½−0:4;þ0:8'. In this whole domain,
except in a narrow region between 845 and
850 G where the boson-boson scattering length
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Fig. 2. Coupled oscillations of the superfluid mixture. (A) Center-of-mass
oscillations. The oscillations are shown over the first 500 ms at a magnetic
field of 835 G for a Fermi superfluid (top) and a Bose superfluid (bottom).The
oscillation period of 6Li (7Li) is 59.7(1) ms [66.6(1) ms], leading to a
dephasing of π near 300 ms. These oscillations persist for more than 4 s
with no visible damping.The maximum relative velocity between the two clouds
is 1.8 cm/s. (B) Coupled oscillations. Symbols: Center-of-mass oscillation of
7Li (top) and 6Li (bottom) displaying coherent energy exchange between both

superfluids. Solid lines: Theory for an initial displacement d of 100 mm at a
magnetic field of 835 G; see text. (C) Critical damping. Symbols: Damping
rate (blue circles) of the amplitude of the center-of-mass oscillations of the
7Li BEC as a function of the maximal relative velocity between the two
superfluids normalized to the Fermi velocity of the 6Li gas. Data taken at
832 G. From these data and using a fit function given in (10) (solid line), we
extract vc ¼ 0:42þ0:05

−0:11 vF.The red dashed line shows the speed of sound of an
elongated unitary Fermi superfluid v

0

s ¼ x1=4vF=
ffiffiffi
5

p
¼ 0:35vF (20).
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is negative, the mixture is stable and the damp-
ing extremely small.
The frequency shift of the BEC (Eq. 2) now

probes the derivative of the EoS nfðmfÞ in the BEC-
BCS crossover. In the zero-temperature limit and
under the local density approximation, Eq. 2
obeys the universal scaling dwb

wb
¼ kFabf f 1

kFaf

" #

In Fig. 3, we compare our measurements to
the prediction for the function f obtained from the
zero-temperature EoS measured in (26). On the
BCS side, (1=kFaf < 0), the frequency shift is re-
duced and tends to that of a noninteracting
Fermi gas. Far on the BEC side ð1=kFaf ≫ 1Þ, we
can compute the frequency shift using the EoS
of a weakly interacting gas of dimers. Within the
mean-field approximation, we have dnf

dmf
¼ 2mf

pℏ2add
,

where add ¼ 0:6af is the dimer-dimer scatter-
ing length. This expression explains the increase
in the frequency shift when af is reduced, i.e.,
moving toward the BEC side [see (10) for the
effect of Lee-Huang-Yang quantum correction].
The excellent agreement between experiment

and our model confirms that precision measure-
ments of collective modes are a sensitive dynamical
probe of equilibrium properties of many-body quan-
tum systems (27). Our approach can be extended to
the study of higher-order excitations. In particular,
although there are two first sound modes, one for
each atomic species, we expect only one second
sound for the superfluid mixture (28) if cross-
thermalization is fast enough. In addition, the
origin of the critical velocity for the relative motion
of Bose and Fermi superfluids is an intriguing ques-
tion that can be further explored in our system.
Finally, a richer phase diagram may be revealed
when Nb=Nf is increased (29) or when the super-
fluid mixture is loaded in an optical lattice (30).
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EARTHQUAKE DYNAMICS

Strength of stick-slip and creeping
subduction megathrusts from heat
flow observations
Xiang Gao1 and Kelin Wang2,3*

Subduction faults, called megathrusts, can generate large and hazardous earthquakes.The
mode of slip and seismicity of a megathrust is controlled by the structural complexity of the
fault zone. However, the relative strength of a megathrust based on the mode of slip is far from
clear.The fault strength affects surface heat flow by frictional heating during slip.We model
heat-flow data for a number of subduction zones to determine the fault strength.We find that
smooth megathrusts that produce great earthquakes tend to be weaker and therefore
dissipate less heat than geometrically rough megathrusts that slip mainly by creeping.

S
ubduction megathrusts that primarily ex-
hibit stick-slip behavior can produce great
earthquakes, but some megathrusts are ob-
served to creep while producing small and
moderate-size earthquakes. The relation-

ship between seismogenesis and strength of sub-
duction megathrust is far from clear. Faults that
produce great earthquakes are commonly thought
of as being stronger than those that creep (1).

Megathrusts that are presently locked to build
up stress for future great earthquakes are thus
described as being “strongly coupled.” However,
some studies have proposed strong creeping
megathrusts because of the geometric irregular-
ities of very rugged subducted sea floor (2, 3).
Contrary to a widely held belief, geodetic and

seismic evidence shows that very rough subduct-
ing sea floor promotes megathrust creep (2). All
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Using a combination of Boltzmann’s equation and virial expansion, we study the effect of three-body
losses and interactions on the momentum distribution of a homogeneous unitary Bose gas in the dilute limit
where quantum correlations are negligible. The comparison of our results to the recent measurement made
at JILA on a unitary gas of 85Rb allows us to determine an experimental fugacity z ¼ 0.5ð1Þ.
DOI: 10.1103/PhysRevLett.113.220601 PACS numbers: 67.85.-d, 05.20.Dd, 34.50.Cx, 67.10.-j

In the past few years, ultracold gases have become a
unique tool for the experimental study of strongly corre-
lated systems. In atomic vapors, strong interactions can be
achieved either by trapping the atoms in an optical lattice or
by using Feshbach resonances. While the first route has
been very successful and has led to ground-breaking
discoveries such as the observation of the Mott transition
in both Bose [1] and Fermi gases [2,3], Feshbach reso-
nances could only be used to study strongly correlated
Fermi gases. Indeed, despite interest in strongly correlated
bosonic systems [4–13], the lifetime of the cloud of bosons
near a Feshbach resonance is strongly reduced by the onset
of three-body recombination towards deeply bound
molecular states [14,15]. Recent experimental results sug-
gested new routes to overcome this challenge and that it
might be possible to quantitatively study the unitary Bose
gas. First, it was demonstrated that at finite temperature the
increase of the three-body loss rate scaling as a4 actually
saturates when a ≫ λth, where λth ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmkBT

p
is the

thermal wavelength [16,17]. Moreover, recent experimental
results from JILA demonstrated universal local dynamics
of the momentum distribution of a unitary Bose gas
towards a quasi-equilibrium state [18] and have triggered
several theoretical works on the dynamics of strongly
correlated Bose gases near Feshbach resonances [19–21].
The stability of the unitary Bose gas hinges on the

following argument [11]. First, the three-body losses are
characterized by a coefficient L3 such that _N ¼ −L3n2N,
where N is the total atom number and n is the particle
density. This phenomenological law defines a characteristic
loss rate γ3 ¼ L3n2. For a thermal gas, the cloud is brought
back to equilibrium by elastic scattering at a characteristic
rate γ2 ≃ nσv, where σ is the scattering cross section and v
is the characteristic velocity of the atoms. At unitarity, the
scattering cross section follows a universal scaling
σ ¼ 8π=k2, where k is the relative wave vector of two
scattering particles. In the presence of losses, the system
can be kept in a quasiequilibrium state provided that the
ratio γ3=γ2 stays small. It was shown both theoretically and

experimentally [16,17] that at unitarity the three-body loss
rate is given by

L3 ≃ 36
ffiffiffi
3

p
π2

ℏ5

m3ðkBTÞ2
ð1 − e−4ηÞ; ð1Þ

where η is a dimensionless parameter characterizing the
probability of forming a deeply bound molecule at a short
distance [22]. Plugging Eq. (1) into the expression for γ3,
we see that quasiequilibrium can be achieved as long as
ð1 − e−4ηÞnλ3th is small, i.e., when the system is not too
deeply in the quantum degenerate regime.
In this Letter, we investigate the effect of three-body

losses on the momentum distribution of a unitary Bose gas.
Our analysis is based on a semianalytical resolution of
Boltzmann’s equation. Since Boltzmann’s equation
neglects all many-body correlations, our work is restricted
to a low phase-space density regime where, as aforemen-
tioned, three-body losses can be treated perturbatively. We
calculate the first correction to the momentum distribution
and we compare it to the effect of two-body interactions.
We show that in the dilute limit, both effects deplete the
center of the momentum distribution proportionally to the
phase-space density of the gas. Moreover, for realistic
parameters, this depletion is dominated by three-body
losses.
Consider a homogeneous Bose gas that we describe by a

phase-space density fðpÞ. In the presence of losses, f is the
solution of Boltzmann’s equation that we write formally

∂tf ¼ Icoll½f� − L3½f�; ð2Þ

where Icoll and L3 are nonlinear operators describing,
respectively, the elastic collisions and the three-body
losses. At low phase-space density, we can neglect the
bosonic stimulation and we have
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Icoll½f�ðp1Þ ¼
Z

d3p2d2ω0 dσ
dω0

jp2 − p1j
m

ðf3f4 − f1f2Þ:
ð3Þ

Here, fα stands for fðpαÞ, (p1, p2) [respectively, (p3, p4)]
are the incoming (outgoing) momenta satisfying energy
and momentum conservation and dσ=dω0 ¼ 8ℏ2=jp1 −
p2j2 is the differential scattering cross section towards
the outgoing solid angle ω0.
From [16], the loss rate operator for a unitary Bose gas

can be written as

L3½f�ðp1Þ ¼
Z

d3p2d3p3
A3

E2
123

jϕðΩ3Þj2fðp1Þfðp2Þfðp3Þ;

ð4Þ

where E123 ¼ ðp2
1 þ p2

2 þ p2
3Þ=2m − ðp1 þ p2 þ p3Þ2=6m

is the energy in the center of mass frame of the three
particles of momenta (p1, p2, p3), A3 ¼ 2π3ðkBTÞ2L3 and
ϕðΩ3Þ is the hyperangular wave function describing the
angular structure of the Efimov trimers that we normalize
by the condition

R
d5Ω3jϕðΩ3Þj2 ¼ 1.

In the absence of losses, the system thermalizes to a
distribution G solution of Icol½G� ¼ 0. For a classical gas,
the solution of this equation is a Gaussian distribution
Gðn; E;pÞ ¼ nλ3the

−βp2=2m=h3, where β ¼ 1=kBT and E ¼R ðGðpÞp2=2mÞd3p ¼ 3nkBT=2 is the energy density.
In the quasistatic regime γ3=γ2 ≪ 1, three-body losses

are small and we can use A3 as an expansion parameter.
Since for A3 ¼ 0 the system can reach a stationary thermal
state, we expect the characteristic evolution time in the
presence of losses to vary as A−1

3 and thus ∂t must be
considered to scale asA3. We write then f ¼ f0 þ f1 þ � � �
where fj ∝ Aj

3. The expansion of Eq. (2) to first order in
A3 yields

Icoll½f0� ¼ 0; ð5Þ

∂tf0 ¼ I0coll½f1� − L3½f0�; ð6Þ

where I0coll is the linearized collisional operator.
According to Eq. (5), f0 is a Maxwell-Boltzmann

distribution. However, since the system loses particles by
three-body recombination, its atom number and its energy
vary with time. We therefore have f0ðp; tÞ ¼ Gðnt; Et;pÞ.
We then have in Eq. (6)

I0coll½f1� ¼ L3½f0� þ _E∂EGþ _n∂nG: ð7Þ

Take f1ðp; tÞ ¼ Gðnt; Et;pÞαðp; tÞ. Equation (7) then
becomes

C½α� ¼ 1

G
L3½G� þ _E∂E lnðGÞ þ _n∂n lnðGÞ; ð8Þ

with

C½α� ¼ 1

G
I0coll½Gα� ð9Þ

¼
Z

d3p2d2ω0f0ðp2Þ
dσ
dω0

jp2 − p1j
m

× ðα3 þ α4 − α1 − α2Þ; ð10Þ

and αk ¼ αðpkÞ for k ¼ 1;…; 4. The operator C is sym-
metric for the scalar product [23]

hαjα0i ¼
Z

d3pGðpÞαðpÞα0ðpÞ: ð11Þ

Because of energy and particle number conservation, the
kernel of C is spanned by αðpÞ ¼ 1 and αðpÞ ¼ p2.
Finally, being a symmetric operator, its image is orthogonal
to its kernel. To find the time evolution of the energy and
the atom number, we project Eq. (8) on 1 and p2. Using the
structure of the kernel of C, the collisional term vanishes
and we obtain

_nt ¼ −
�
1

���� 1GL3½G�
�
; ð12Þ

_Et ¼ −
�
p2

2m

���� 1GL3½G�
�
: ð13Þ

The explicit calculation of the rhs of these equations
involves nine-dimensional integrals over the three momenta
(p1, p2, p3) in the three-body loss rate operator. This
calculation can be performed analytically by introducing
the momentum-space Jacobi coordinates [24] and we
finally obtain

_nt ¼ −L3n3; ð14Þ

_Et ¼ −
5

9
EL3n2; ð15Þ

where we recover the usual formula for three-body losses,
as well as the recombination heating discussed in [16,17].
To find α, we project Eq. (8) on the range of C [i.e.,

orthogonally to Spanð1; p2Þ]. We then have

C½α� ¼ P

�
1

G
L3½G�

�
; ð16Þ

where P is the orthogonal projector on ImðCÞ, and where
we used the fact that lnG is a linear combination of 1 and
p2 and thus lies in the kernel of C and P.
Equation (16) is solved numerically by decomposing its

solution over a basis of orthogonal polynomials [24]. The
results are displayed in Fig. 1, where we observe a
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flattening of the momentum distribution when the three-
body losses strength is increased.
In the experiment described in [18], the cloud is not

directly prepared in the quasistatic, strongly interacting
state. Rather, the experimental sequence starts with a the
weakly interacting Bose-Einstein condensate in a regime
where losses can be neglected. The magnetic field is then
ramped quickly to unitarity where the system can relax
towards the quasiequilibrium described above. To get some
insight on the relaxation of the system towards equilibrium,
we consider the simpler case of a noncondensed gas for
which the momentum distribution before the ramp is
Gaussian. We write as before f ¼ f0 þ f1 with f1 ¼
f1;qs þ δf1, where f1;qs is the quasistatic solution and
δf1 satisfies the initial condition δf1ðp; t ¼ 0Þ ¼
−f1;qsðp; t ¼ 0Þ, since at t ¼ 0, f ¼ f0. Expanding
Boltzmann’s equation to first order in f1 and using the
properties of f1;qs, we obtain for δf1,

∂tδf1 ¼ I0coll½δf1�: ð17Þ

This equation shows that the relaxation towards the
quasistatic regime is solely driven by two-body collisions
and occurs at a rate ∼γ2. This may seem paradoxical since
one would rather expect the three-body characteristic rate
∼γ3. However, as far as the phase-space density is con-
cerned, the depletion of f at low momenta is quite small
since the relative decrease of the peak momentum density is
∝ nλ3. Since 1=γ3 is the time required to lose typically half
the initial atom number, the dip should form on a time
scale, ≃nλ3=γ3 ≃ 1=γ2.
The three-body losses lead to a correction to the

momentum distribution proportional to nλ3. This scaling
is similar to the first virial correction, and one may wonder
if the three-body losses might not mask the effects of two-
body interactions. To clarify this point, we calculated the
leading order corrections to the occupation number ρðpÞ ¼
h3fðpÞ using the scheme presented in [26]. In the virial

expansion, the leading order term corresponds to the ideal
Boltzmann gas. In the grand canonical ensemble, this term
reads ρð1ÞðpÞ ¼ ze−βεp , where z is the fugacity and
εp ¼ p2=2m. The next order term is the sum of two
contributions. The first one corresponds to Bose’s statistics
and is simply ρð2;aÞðpÞ ¼ z2e−2βεp, while the second one is
more involved and is due to interactions. Following [26], it
is given by

ρð2;bÞðpÞ ¼ 8πz2

m

Z
Cγ

ds
2πi

Z þ∞

0

dPP2

2π2
e−βsffiffiffiffiffiffiffiffiffiffi
−ms

p

×
e−βðP2=4mÞ

½sþ P2

4m − p2

2m − ðP−pÞ2
2m �½sþ P2

4m − p2

2m − ðPþpÞ2
2m �

;

ð18Þ

where Cγ is a Bromwich contour [27]. We note that this
expression is simply twice that obtained for spin 1=2
fermions [26]. To convert this momentum distribution to
the canonical ensemble, we use the virial expansion of the
equation of state of the unitary Bose gas, nλ3th ¼ zþ
2b2z2 þ � � �, with b2 ¼ 9=4

ffiffiffi
2

p
[13]. We thus obtain

ρðpÞ ¼ nλ3the
−βεp þ ðnλ3thÞ2½ξðλthp=ℏÞ − 2b2e−βεp �; ð19Þ

where we took ρð2ÞðpÞ ¼ ρð2;aÞðpÞ þ ρð2;bÞðpÞ ¼
z2ξðλthp=ℏÞ.
In Fig. 2, we compare the effect of three-body losses with

the virial corrections to the momentum distribution. We
observe that for 7Li, for which η ¼ 0.2, the dip in the
momentum distribution is dominated by three-body losses.
We now turn to the quantitative comparison of our results

with the experimental data presented in [18]. In this
experiment an ultracold, weakly interacting Bose-
Einstein condensate is ramped abruptly to the Feshbach
Resonance and after a 100-μs-long waiting time, the system
reaches a quasiequilibrium characterized by the momentum
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FIG. 1 (color online). Deformation of the momentum distribu-
tion of a unitary Bose gas due to three-body losses. From top to
bottom: nλ3thð1 − e−4ηÞ ¼ 0 (blue, Boltzmann gas), nλ3thð1 −
e−4ηÞ ¼ 0.05 (orange), and nλ3thð1 − e−4ηÞ ¼ 0.1 (red).
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FIG. 2 (color online). Correction to the Boltzmann gas: Three-
body losses vs interactions. The correction to Boltzmann’s
distribution is plotted for maximal three-body losses (η ¼ ∞,
red dashed line), η ¼ 0.2, corresponding to 7Li (orange dotted
line). The blue solid line corresponds to the correction, Eq. (19),
due to Bose statistics and two-body interactions.
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distribution of Fig. 3. To compare this experiment with our
results, we must first determine the temperature of the cloud
and since the dynamics is very fast (in the experiment the
trapping frequencies are a few Hz), it is most likely
inhomogeneous. We therefore assume a purely local heat-
ing and we consider that the thermalization mechanism
depends only on elastic processes. Neglecting the initial
scattering length, we conclude that the local temperature
must scale like TðrÞ ¼ CTnðrÞ where C is a numerical
constant and Tn ¼ ℏ2ð6π2nÞ2=3=kBm. In other words, the
phase-space density (or equivalently the fugacity) is homo-
geneous over the cloud. Furthermore, the dynamics being
too fast for transport phenomena to occur, we can assume
that the density profile is not affected by the thermalization.
We can therefore average the predicted momentum dis-
tribution over the Thomas-Fermi density profile of the
initial, weakly interacting Bose-Einstein condensate and we
fit the experimental data taking η ¼ 0.06 and using the
uniform fugacity z as the only fitting parameter [24]. In this
way, we find a surprisingly good agreement between
experiment and theory for z ¼ 0.6ð1Þ (Note that as
expected for such a small value of η, the three-body losses
play only a small role in the wing of the momentum
distribution.) Using the virial expansion, this fugacity
corresponds to a temperature of 110 nK at the center of
the trap. This temperature is much higher than that of the
initial weakly interacting Bose gas and justifies the uni-
versal thermalization hypothesis.
In principle, the virial expansion is valid only in the limit

of vanishingly small fugacities, and its accuracy is therefore
questionable in the present case. Even though there is no

reliable way to assess the accuracy of the virial expansion
for unitary Bose gases, we note that for the equation of state
of the unitary Fermi gas, the first-order virial expansion
gives the correct result at a ≃10% level at z ¼ 0.6 [28,29].
If we assume that the same level of accuracy is achieved in
the case of bosons, our calculation should provide a
quantitative description of JILA’s experiment. To further
support our analysis we note that the temperature deduced
from the virial expansion yields a three-body loss rate
comparable to the one observed in [18].
The approach presented above provides a quantitative

way to study unitary Bose gases in the dilute limit. In the
case of the results presented in [18], we find that three-body
losses are negligible and that the tail of the momentum
distribution is well described by a first-order virial expan-
sion at a fugacity z ¼ 0.6ð1Þ. This value raises a series of
open questions. First, is it possible to derive this value from
a purely microscopic model describing the dynamics of a
Bose gas projected from a weakly interacting regime to
unitarity. Second, is it really universal? In our work, we
assumed that, after the ramp, the thermalization was only
driven by the two-body scattering length. However, for
strongly interacting bosons, we know that three-body
Efimov physics cannot be neglected and requires the
introduction of the three-body parameter Rt. In this case,
the fugacity would be a log-periodic function of the
dimensionless parameter kFRt, as suggested in [20]. This
assumption could be tested by reproducing JILA’s experi-
ment on different atoms to vary the value of Rt.
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We study the dynamics of counterflowing bosonic and fermionic lithium atoms. First, by tuning the
interaction strength we measure the critical velocity vc of the system in the BEC-BCS crossover in the low
temperature regime and we compare it to the recent prediction of Castin et al., C. R. Phys. 16, 241 (2015).
Second, raising the temperature of the mixture slightly above the superfluid transitions reveals an
unexpected phase locking of the oscillations of the clouds induced by dissipation.
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Superconductivity and superfluidity are spectacular
macroscopic manifestations of quantum physics at low
temperature. Besides liquid helium 4 and helium 3, dilute
quantum gases have emerged over the years as a versatile
tool to probe superfluid properties in diverse and controlled
situations. Frictionless flows have been observed with both
bosonic and fermionic atomic species, in different geom-
etries and in a large range of interaction parameters from
the weakly interacting Bose gas to strongly correlated
fermionic systems [1–6]. Several other hallmarks of super-
fluidity such as quantized vortices or second sound were
also observed in cold atoms [7–9].
A peculiar feature of superfluid flows is the existence of

a critical velocity above which dissipation arises. In
Landau’s original argument, this velocity is associated
with the threshold for creation of elementary excitations
in the superfluid: for a linear dispersion relation, it predicts
that the critical velocity is simply given by the sound
velocity in the quantum liquid. This critical velocity has
been measured both in superfluid helium [10] and ultracold
atoms [1,4–6,11]. However, the recent production of a
Bose-Fermi double superfluid [12] raised new questions on
Bose-Fermi mixtures [13–16] and interrogations on the
validity of Landau’s argument in the case of superfluid
counterflow [17–22].
In this Letter, we study the dynamics of a Bose-Fermi

superfluid counterflow in the crossover between the Bose-
Einstein condensate (BEC) and Bardeen-Cooper-Schrieffer
(BCS) regimes and at finite temperature. We show how
friction arises when the relative velocity of the Bose and
Fermi clouds increases and we confirm that damping
occurs only above a certain critical relative velocity vc.
We compare our measurements to Landau’s prediction and
its recent generalization vc ¼ cFs þ cBs , where cFs and cBs are
the sound velocities of the fermionic and bosonic compo-
nents, respectively [18]. Finally, we study finite temper-
ature damping of the counterflow and we show that the
system can be mapped onto a Caldeira-Leggett-like model
[23] of two quantum harmonic oscillators coupled to a bath
of excitations. This problem has been recently studied as a

toy model for decoherence in quantum networks [24] or for
heat transport in crystals [25] and we show here that the
emergence of dissipation between the two clouds leads to a
Zeno-like effect which locks their relative motions.
Our Bose and Fermi double-superfluid setup was pre-

viously described in [12]. We prepare vapors of bosonic (B)
7Li atoms spin polarized in the second-to-lowest energy
state and fermionic (F) 6Li atoms prepared in a balanced
mixture of the two lowest spin states noted j↑i, j↓i. The
two species are kept in the same cigar-shaped hybrid
magnetic-optical trap in which evaporative cooling is
performed in the vicinity of the 832 G 6Li Feshbach
resonance [26]. The final number of fermions NF ¼ 2.5 ×
105 greatly exceeds that of the bosons NB ∼ 2.5 × 104 and
the temperature of the sample is adjusted by stopping the
evaporation at different trap depths. The thermal pedestal
surrounding the 7Li BEC provides a convenient low
temperature thermometer for both species after sufficiently
long thermalization time (∼1 sec). The lowest temperature
achieved in this study corresponds to almost entirely
superfluid clouds with T=Tc;α¼B;F ≤ 0.5, where Tc;α is
the superfluidity transition temperature of species α.
The magnetic field values used in the experiment (780–

880 G) enable us to scan the fermion-fermion interaction
within a range −0.5 ≤ 1=kFaF ≤ 1. Here, aF is the s-wave
scattering length between j↑i and j↓i fermions and the
Fermi momentum kF is defined by ℏ2k2F=2mF ¼
ℏω̄ð3NFÞ1=3 with ω̄ the geometric mean of the trap
frequencies, and NF the total number of fermions of mass
mF. In our shallowest traps, typical trap frequencies for 6Li
are ωx ¼ ωy ¼ 2π × 550 Hz and ωz ¼ 2π × 17 Hz. Since
the bosonic and fermionic isotopes experience the same
trapping potentials, the oscillation frequencies of the two
species are within a ratio

ffiffiffiffiffiffiffiffi

6=7
p ≃ 0.9.

We excite the dipole modes of the system by displacing
adiabatically the centers of mass of the clouds from their
initial position by a distance z0 along the weakly confined z
direction, and abruptly releasing them in the trap. The two
clouds evolve for a variable time t before in situ absorption
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images perpendicular to the z direction are taken. The
measurement of their doubly integrated density profiles
gives access to axial positions and atom numbers of both
species. Typical time evolutions of the centers of mass are
shown in Fig. 1 for different parameter values. Since the

Bose and Fermi components oscillate at different frequen-
cies, they oscillate in quadrature after a few periods. By
changing z0, we can thus tune the maximum relative
velocity between the two clouds and probe the critical
superfluid counterflow.
As shown in Fig. 1(a), the superfluid counterflow

exhibits no visible damping on a ≃5 s time scale for very
low temperature and small initial displacement. A striking
feature is the beat note on the 7Li oscillation amplitude due
to the coherent mean-field coupling to the 6Li cloud [12].
For larger relative velocities, 7Li oscillations are initially
damped [Fig. 1(b)] until a steady-state regime as in
Fig. 1(a) is reached. We fit the time evolution of the cloud
position using the phenomenological law

zBðtÞ ¼ dðtÞ½a cosðωBtÞ þ b cosðωFtÞ�;
dðtÞ ¼ d1 þ d2 expð−γBtÞ: ð1Þ

We measure the damping rate γB as a function of
relative velocity for six different values of magnetic field,
exploring a large region of the crossover going from the
BCS (1=kFaF ¼ −0.42, B ¼ 880 G) to the BEC side
(1=kFaF ¼ 0.68, B ¼ 780 G), see Fig. 2. For these mag-
netic field values, the Bose gas remains in the weakly
interacting (repulsive) regime and the Bose-Fermi scatter-
ing length is aBF ≃ 41a0, constant in this magnetic field
range, and equal for both j↑i and j↓i spin states.
We extract the critical velocity vc using an ad hoc power-

law fitting function γB ¼ AΘðv − vcÞ½ðv − vcÞ=vF�α, where
Θ is the Heaviside function and vF is the Fermi velocity
given by vF ¼ ℏkF=mF. For details, see [27]. vc in the
BEC-BCS crossover is displayed in Fig. 3 (red dots)
and compared to the predictions of Landau and Castin
et al. [18]. In this latter work, dissipation arises by the
creation of excitation pairs and yields a critical velocity

FIG. 1 (color online). Center-of-mass oscillations of bosons
(blue, top) and fermions (red, bottom), for different sets of
parameters at unitarity. Solid lines: fits using Eq. (1) for the
bosons and a similar equation for the fermions. (a) T=TF ¼ 0.03,
T=Tc;b ≤ 0.5, z0 ¼ 10 μm. Superfluid regime, no damping is
observed and ωB ¼ 2π × 15.41ð1Þ Hz ≈ ffiffiffiffiffiffiffiffi

6=7
p

ωF. The observed
beating at ωF − ωB is due to coherent energy exchange between
the clouds. (b) T=TF ¼ 0.03 and z0 ¼ 150 μm. For a larger initial
displacement, initial damping (γB ¼ 2.4 s−1) is followed by
steady-state evolution. ωB ¼ 2π × 14.2ð1Þ Hz ≈ ffiffiffiffiffiffiffiffi

6=7
p

ωF.
(c) T=TF ¼ 0.4 and z0 ¼ 80 μm. At higher temperature, phase
locking of the two frequencies is observed with ωF ≈ ωB ¼
2π × 17.9ð3Þ Hz and γB ¼ γF ¼ 1.4ð5Þ s−1.

FIG. 2 (color online). Damping rate of the center-of-mass
oscillations versus maximal relative velocity in the BEC-BCS
crossover in units of the Fermi velocity vF. Dark blue dots, BEC
side (780 G) 1=kFaF ¼ 0.68; red squares, unitarity (832.2 G)
1=kFaF ¼ 0; light blue diamonds, BCS side (880 G)
1=kFaF ¼ −0.42. Power law fits with thresholds provide the
critical velocity (solid lines).
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vc ¼ Min
p

σ¼f;b

f½ϵBðpÞ þ ϵFσ ðpÞ�=½p�g. In this expression, ϵBðpÞ
denotes the dispersion relation of excitations in the BEC
and ϵFσ ðpÞ refers to the two possible branches of the Fermi
superfluid, phononlike (σ ¼ b), and threshold for pair
breaking excitations (σ ¼ f) [28]. For homogeneous gases,
at unitarity and on the BEC side of the crossover, this
critical relative velocity turns out to be simply the sum of
the respective sound velocities of the Bose and Fermi
superfluids, vc ¼ cFs þ cBs . We thus plot in Fig. 3 the
calculated sound velocities of both superfluids in an
elongated geometry obtained by integration over the trans-
verse direction [29–33] (red dashed line cFs , blue bars cBs ).
Typically, cBs contributes ≃20%–25% to the sum shown as
green squares in Fig. 3. Around unitarity and on the BCS
side of the resonance, our experimental data are consistent
with this interpretation as well as with a critical velocity
vc ¼ cFs that one would expect by considering the BEC as a
single impurity moving inside the fermionic superfluid. By
contrast, we clearly exclude the bosonic sound velocity as a
threshold for dissipation.
Our measured critical velocities are significantly higher

than those previously reported in pure fermionic systems
which, for all interaction strengths, were lower than
Landau’s criterion [4,6]. The main difference with our
study is the use of focused laser beams instead of a BEC as
a moving obstacle. In [6], the laser beam is piercing the
whole cloud including its nonsuperfluid part where the
density is low, and its potential may create a strong density
modulation of the superfluid. These effects make a direct

comparison to Landau criterion difficult [35]. On the
contrary, in our system the size of the BEC (Thomas
Fermi radii of 73; 3; 3 μm) is much smaller than the typical
size of the Fermi cloud (350; 13; 13 μm around unitarity).
For oscillation amplitudes up to �200 μm the BEC probes
only the superfluid core of the fermionic cloud. During its
oscillatory motion along z the Bose gas may explore the
edges of the Fermi superfluid where the density is smaller.
However, it is easy to check that the ratio v=cFs is maximum
when the centers of the two clouds coincide [27]. Finally, as
the mean-field interaction between the two clouds is very
small [27] our BEC acts as a weakly interacting local probe
of the Fermi superfluid.
On the BEC side of the resonance (780 G), however, we

observe a strong reduction of the measured critical velocity
compared to the predicted values. The effect is strikingly
seen in Fig. 2, dark blue dots (see also Supplemental
Material [27]). This anomalously small value for positive
scattering lengths is consistent with previous measurements
[4,6]. Its origin is still unclear but several explanations can
be put forward [35]. First, it is well known that vortex
shedding can strongly reduce superfluid critical velocity.
However, this mechanism requires a strong perturbation.
The density of the Bose gas and the mean-field interaction
between the two clouds are probably too small for vortex
generation through a collective nucleation process. Second,
inelastic losses increase on the BEC side of a fermionic
Feshbach resonance and heat up the system [36]. This
hypothesis is supported by the presence of a clearly visible
pedestal in the density profiles of the BEC taken at 780 G.
At this value of the magnetic field, we measure a ≃60%

condensed fraction, corresponding to a temperature
T=Tc;B ≃ 0.5. Even though the two clouds are still super-
fluids as demonstrated by the critical behavior around vc,
the increased temperature could be responsible for the
decrease of vc.
We now present results of experiments performed at a

higher temperature (0.03≲ T=TF ≲ 0.5) for B ¼ 835 G.
For low temperatures (T=TF ≤ 0.2), the two clouds remain
weakly coupled and, as observed in Fig. 4, the bosonic and
fermionic components oscillate at frequencies in the
expected ratio ≃0.9≃ ffiffiffiffiffiffiffiffi

6=7
p

. A new feature emerges for
T ≳ Tc;B ≈ 0.34TF > Tc;F where both gases are in the
normal phase. In this “high” temperature regime, the
two clouds are locked in phase: 7Li oscillates at 6Li
frequency (Fig. 4) and the two components are equally
damped [Fig. 1(c)]. This remarkable behavior can be
understood as a Zeno effect arising from the increased
dissipation between the two components. Indeed, the
system can be described as a set of two harmonic oscillators
describing, respectively, the macroscopic motion of the
global center of mass of the system (Kohn’s mode [37]) and
the relative motion of the two clouds [27]. These two
degrees of freedom are themselves coupled to the “bath” of

FIG. 3 (color online). Critical velocity of the Bose-Fermi
superfluid counterflow in the BEC-BCS crossover normalized
to the Fermi velocity vF. Red dots, measurements. Red dot-
dashed line, sound velocity cFs of an elongated homogeneous
Fermi superfluid calculated from its equation of state [29,30] after
integration of the density in the transverse plane, and also
measured in [34]. Blue bars, calculated sound velocity cBs of
the elongated 7Li BEC for each magnetic field (880, 860, 832,
816, 800, 780 G). Green squares indicate the prediction
vc ¼ cFs þ cBs . Error bars and cBs are discussed in [27].
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the internal excitations of the two clouds (breathing mode,
quadrupole modes, pair breaking excitations…).
In the spirit of the dressed-atom picture, we can represent

the state of the two harmonic oscillators by the “radiative”
cascade of Fig. 5. Here the states jN; ni are labeled by the
quantum numbers associated to Kohn’s mode (N) and
relative motion (n) of the two clouds and we trace out the
degrees of freedom of the bath. On the one hand, Kohn’s
mode is not an eigenstate of the system for fermions and
bosons of different masses; center-of-mass and relative-
motion modes are coupled and this coherent coupling is
responsible for the dephasing of the oscillations of the two
clouds in the weakly interacting regime. On the other hand,
interspecies interactions do not act on the center of mass of
the whole system, owing to Kohn’s theorem, but on the
contrary lead to an irreversible “radiative” decay of the
relative motion at a rate γ.

In our experiments, the initial state is a pure center-of-
mass excitation jN; 0i. If we neglect the interspecies
coupling, the system evolves in the subspace spanned by
jN − n; nin¼0;…;N of the two coupled oscillators and the
system oscillates at a frequency δω≃ ωB − ωF as the
centers of mass of the Bose and Fermi clouds dephase.
If we now consider the opposite limit where the decay rate γ
is larger than the dephasing frequency δω, the strong
coupling to the bath prevents the conversion of the
center-of-mass excitations into relative motion. As soon
as the system is transferred into jN − 1; 1i it decays towards
state jN − 1; 0i. Similarly to optical pumping in quantum
optics, we can eliminate adiabatically the excited states of
the relative motion and restrict the dynamics of the system
to the subspace jN; 0iN¼0;…;∞ of Kohn’s excitations. This
situation is reminiscent of the synchronization of two spins
immersed in a thermal bath predicted in [38] or to
phenomenological classical two-coupled oscillators model.
In this Letter, we have investigated how a Bose-Fermi

superfluid flow is destabilized by temperature or relative
velocity between the two clouds. In the limit of very low
temperature the measured critical velocity for superfluid
counterflow slightly exceeds the speed of sound of the
elongated Fermi superfluid and decreases sharply towards
the BEC side of the BEC-BCS crossover. In a future study,
we will investigate the role of temperature, of the confining
potential, and of the accelerated motion of the two clouds
[35] that should provide a more accurate model for the
damping rate versus velocity and more insights on the
nature of the excitations. In particular, the ab initio calcu-
lation of the damping rate will require clarification of the
dissipation mechanism at play in a trapped system where
the bandwidth of the excitation spectrum is narrow, in
contrast to a genuine Caldeira-Leggett model [39].

The authors acknowledge support from Institut
Francilien de Recherche sur les Atomes Froids (Atomix
Project), ERC (ThermoDynaMix Project), and Institut de
France (Louis D. Prize). They thank I. Danaila, N.
Proukakis, K. L. Lee, and M. Pierce for insightful com-
ments and discussions, and J. Dalibard, Y. Castin, S.
Nascimbène, and T. Yefsah for critical reading of the
manuscript.
M. D. and S. L. contributed equally to this work.

*Present Address: 5. Physikalisches Institut and Center for
Integrated Quantum Science and Technology, Universität
Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany.

[1] C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E.
Kuklewicz, Z. Hadzibabic, and W. Ketterle, Phys. Rev.
Lett. 83, 2502 (1999).

[2] A. P. Chikkatur, A. Görlitz, D. M. Stamper-Kurn, S. Inouye,
S. Gupta, and W. Ketterle, Phys. Rev. Lett. 85, 483
(2000).

FIG. 4 (color online). Ratio ωB=ωF versus temperature of the
cloud. Blue circles, the two clouds are superfluids. Yellow
squares, only the bosonic component is superfluid. Green
open diamonds, the two components are normal. Above
T ≈ Tc;B ≈ 0.34TF > Tc;F, oscillations of the Bose and Fermi
clouds become locked together at ωF. Oscillations frequencies
are obtained using a Lomb-Scargle algorithm [27]. The lower
dashed line is the prediction of a low temperature mean field
model [12].

FIG. 5 (color online). Radiative cascade of the center-of-mass
motion. In jN; ni, N (respectively, n) refers to the center-of-mass
(respectively, relative) motion of the two clouds (see text). When
the decay rate of the relative motion is larger than the oscillation
frequency difference between the two species, the dynamics is
restricted to the center-of-mass degree of freedom: in this Zeno-
like process, dissipation prevents excitation of the relative motion
and the center-of-mass modes of the Bose and Fermi gases do not
dephase.

PRL 115, 265303 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2015

265303-4



[3] C. Ryu, M. F. Andersen, P. Cladé, V. Natarajan, K.
Helmerson, and W. D. Phillips, Phys. Rev. Lett. 99,
260401 (2007).

[4] D. E. Miller, J. K. Chin, C. A. Stan, Y. Liu, W. Setiawan, C.
Sanner, andW. Ketterle, Phys. Rev. Lett. 99, 070402 (2007).

[5] R. Desbuquois, L. Chomaz, T. Yefsah, J. Léonard, J.
Beugnon, C. Weitenberg, and J. Dalibard, Nat. Phys. 8,
645 (2012).

[6] W. Weimer, K. Morgener, V. P. Singh, J. Siegl, K. Hueck, N.
Luick, L. Mathey, and H. Moritz, Phys. Rev. Lett. 114,
095301 (2015).

[7] K.W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard,
Phys. Rev. Lett. 84, 806 (2000).

[8] M. Zwierlein, J. Abo-Shaeer, A. Schirotzek, C. Schunck,
and W. Ketterle, Nature (London) 435, 1047 (2005).

[9] L. A. Sidorenkov, M. K. Tey, R. Grimm, Y.-H. Hou, L.
Pitaevskii, and S. Stringari, Nature (London) 498, 78
(2013).

[10] J. Wilks and D. Betts, An Introduction to Liquid Helium
(Oxford Science Publications, Clarendon Press, Oxford,
1987).

[11] D. Dries, S. E. Pollack, J. M. Hitchcock, and R. G. Hulet,
Phys. Rev. A 82, 033603 (2010).

[12] I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M.
Pierce, B. S. Rem, F. Chevy, and C. Salomon, Science 345,
1035 (2014).

[13] T. Ozawa, A. Recati, M. Delehaye, F. Chevy, and S.
Stringari, Phys. Rev. A 90, 043608 (2014).

[14] R. Zhang, W. Zhang, H. Zhai, and P. Zhang, Phys. Rev. A
90, 063614 (2014).

[15] X. Cui, Phys. Rev. A 90, 041603 (2014).
[16] J. J. Kinnunen and G.M. Bruun, Phys. Rev. A 91, 041605

(2015).
[17] M. Abad, A. Recati, S. Stringari, and F. Chevy, Eur. Phys. J.

D 69, 126 (2015).
[18] Y. Castin, I. Ferrier-Barbut, and C. Salomon, C.R. Phys. 16,

241 (2015).

[19] W. Zheng and H. Zhai, Phys. Rev. Lett. 113, 265304 (2014).
[20] L. Wen and J. Li, Phys. Rev. A 90, 053621 (2014).
[21] F. Chevy, Phys. Rev. A 91, 063606 (2015).
[22] H. Shen and W. Zheng, Phys. Rev. A 92, 033620 (2015).
[23] A. O. Caldeira and A. J. Leggett, Physica (Amsterdam)

121A, 587 (1983).
[24] C.-H. Chou, T. Yu, and B. L. Hu, Phys. Rev. E 77, 011112

(2008).
[25] U. Zürcher and P. Talkner, Phys. Rev. A 42, 3267

(1990).
[26] G. Zürn, T. Lompe, A. N. Wenz, S. Jochim, P. S. Julienne,

and J. M. Hutson, Phys. Rev. Lett. 110, 135301 (2013).
[27] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.115.265303 for extra
comments and discussion.

[28] R. Combescot, M. Y. Kagan, and S. Stringari, Phys. Rev. A
74, 042717 (2006).

[29] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon,
Science 328, 729 (2010).

[30] G. Astrakharchik, Ph.D thesis, University of Trento, 2004,
arXiv:1412.4529.

[31] S. Stringari, Phys. Rev. A 58, 2385 (1998).
[32] P. Capuzzi, P. Vignolo, F. Federici, and M. P. Tosi, Phys.

Rev. A 73, 021603 (2006).
[33] L. Luo, B. Clancy, J. Joseph, J. Kinast, and J. E. Thomas,

Phys. Rev. Lett. 98, 080402 (2007).
[34] J. Joseph, B. Clancy, L. Luo, J. Kinast, A. Turlapov, and

J. E. Thomas, Phys. Rev. Lett. 98, 170401 (2007).
[35] V. P. Singh, W. Weimer, K. Morgener, J. Siegl, K. Hueck, N.

Luick, H. Moritz, and L. Mathey, arXiv:1509.02168.
[36] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,

083201 (2004).
[37] W. Kohn, Phys. Rev. 123, 1242 (1961).
[38] P. P. Orth, D. Roosen, W. Hofstetter, and K. Le Hur, Phys.

Rev. B 82, 144423 (2010).
[39] R. Onofrio and B. Sundaram, Phys. Rev. A 92, 033422

(2015).

PRL 115, 265303 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2015

265303-5



E.0 187

Universal loss dynamics in a unitary Bose gas
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The low-temperature unitary Bose gas is a fundamental paradigm in few-body and many-body physics,
attracting wide theoretical and experimental interest. Here, we present experiments performed with unitary
133Cs and 7Li atoms in two different setups, which enable quantitative comparison of the three-body
recombination rate in the low-temperature domain. We develop a theoretical model that describes the
dynamic competition between two-body evaporation and three-body recombination in a harmonically
trapped unitary atomic gas above the condensation temperature. We identify a universal “magic” trap depth
where, within some parameter range, evaporative cooling is balanced by recombination heating and the gas
temperature stays constant. Our model is developed for the usual three-dimensional evaporation regime as
well as the two-dimensional evaporation case, and it fully supports our experimental findings. Combined
133Cs and 7Li experimental data allow investigations of loss dynamics over 2 orders of magnitude in
temperature and 4 orders of magnitude in three-body loss rate. We confirm the 1=T2 temperature
universality law. In particular, we measure, for the first time, the Efimov inelasticity parameter
η� ¼ 0.098ð7Þ for the 47.8-G d-wave Feshbach resonance in 133Cs. Our result supports the universal
loss dynamics of trapped unitary Bose gases up to a single parameter η�.

DOI: 10.1103/PhysRevX.6.021025 Subject Areas: Atomic and Molecular Physics

I. INTRODUCTION

Resonantly interacting Bose systems realized in ultra-
cold atomic gases are attracting growing attention thanks to
being among the most fundamental systems in nature and
also among the least studied. Recent theoretical studies
have included hypothetical BEC-BCS–type transitions
[1–5] and, at unitarity, calculations of the universal constant
connecting the total energy of the system with the only
energy scale left when the scattering length diverges: En ¼

ℏ2n2=3=m [6–9]. The latter assumption itself remains a
hypothesis as the Efimov effect might break the continuous
scaling invariance of the unitary Bose gas and introduce
another relevant energy scale to the problem. A rich phase
diagram of the hypothetical unitary Bose gas at finite
temperature has also been predicted [10,11].
In experiments, several advances in the study of the

resonantly interacting Bose gas have recently been made
using the tunability of the s-wave scattering length a near a
Feshbach resonance. The JILA group showed signatures of
beyond-mean-field effects in two-photon Bragg spectros-
copy performed on a 85Rb BEC [12], and the ENS group
quantitatively studied the beyond-mean-field Lee-Huang-
Yang corrections to the ground-state energy of the Bose-
Einstein condensate [13]. Logarithmic behavior of a
strongly interacting two-dimensional (2D) superfluid was
also reported by the Chicago group [14]. Experiments have
also started to probe the regime of unitarity (1=a ¼ 0)
directly. Three-body recombination rates in the nondegen-
erate regime have been measured in two different species,
7Li [15] and 39K [16], and they clarified the temperature
dependence of the unitary Bose gas lifetime. In another
experiment, fast and nonadiabatic projection of the BEC
on the regime of unitarity revealed the establishment of
thermal quasiequilibrium on a time scale faster than
inelastic losses [17].
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In a three-body recombination process, three atoms
collide and form a dimer, the binding energy of which is
transferred into kinetic energies of the colliding partners.
The binding energy is usually larger than the trap depth and
thus leads to the loss of all three atoms. Because three-body
recombination occurs more frequently at the center of
the trap, this process is associated with “anti-evaporative”
heating (loss of atoms with small potential energy) which
competes with two-body evaporation and leads to a non-
trivial time dependence for the sample temperature.
In this article, we analyze the loss dynamics of 133Cs and

7Li unitary Bose gases prepared at various temperatures
and atom numbers. We develop a theoretical model that
describes these atom loss dynamics. By simultaneously
taking into account two- and three-body losses, we quan-
titatively determine each of these contributions. Our analy-
sis covers both the case of three-dimensional evaporation,
which applies to our 133Cs experimental data, and two-
dimensional evaporation, which applies to the 7Li data. In
both cases, we find the existence of a “magic” value for the
trap-depth-over-temperature ratio, where residual evapora-
tion compensates for three-body loss heating and maintains
the gas temperature constant within some range of param-
eters. Comparing measurements in these two atomic
species, we find the dynamics to be universal; i.e., in both
systems, the three-body loss rate is found to scale univer-
sally with temperature. Excellent agreement between
theory and experiment confirms that the dynamic evolution
of the unitary Bose gas above the condensation temperature
can be well modeled by the combination of two- and three-
body interaction processes.

II. EXPERIMENTS

In this section, we present experimental TðNÞ trajecto-
ries of unitary 133Cs and 7Li Bose gases trapped in shallow
potentials with non-negligible evaporation, where T is the
cloud temperature and N the atom number. We initially
prepare the samples at temperature T in and atom number
Nin in a trap of depth U, as described in Appendix A. We
measure the atom numbers and the temperatures from
in situ absorption images taken after a variable hold time t.
The 133Cs Feshbach resonance at 47.8 Gauss and the 7Li

Feshbach resonance at 737.8 Gauss used in the experiments
have very similar resonance strength parameters sres ¼ 0.67
and 0.80, respectively [18,19], and are in the intermediate
coupling regime (neither in the broad nor narrow resonance
regime). We note that in the 133Cs case, the dimer state
giving rise to the Feshbach resonance is of d-wave nature.
Both the two-body and three-body collisions happen in the
s-wave channel; we therefore expect to observe universal
Efimov (s-wave) physics.
In Fig. 1(a), we present typical results for the evolution

TðNÞ in the case of 133Cs. We show trajectories for different
initial relative trap depths ηin ¼ U=kBT in, where kB is
Boltzmann’s constant. We also plot the relative temperature

FIG. 1. Evolution of the unitary 133Cs gas in (a) absolute and
(b) relative numbers (points). The solid lines are fits of the data
using the theory presented in Sec. III, and the fitted initial relative
trap depth ηin ¼ U=kBT in is given in the legend. The condition
for ðdT=dNÞjt¼0 is expected for ηin ≈ ηm ≈ 8.2, very close to the
measured data for ηin ¼ 7.4 [green lines in (a) and (b)].
(c) Evolution of the unitary 7Li gas. The solid lines are fits of
the data using our 2D evaporation model and the fitted initial
relative trap depth ηin as in (b). In 2D evaporation, ηin ≈ ηeffm ¼
ηm þ 1 ¼ 8.5 is required to meet the ðdT=dNÞjt¼0 condition and
is found to be in good agreement with the measured value 8.5
[green line in (c)]; see text. All error bars represent 1 standard
deviation.
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T=T in as a function of the relative atom number N=Nin
for the same data in Fig. 1(b), and for 7Li in Fig. 1(c).
Each data point results from averaging about ten
fNðtÞ; TðtÞg measurements at a given t, and error bars
are 1 standard deviation from the mean.
The readily observed maxima in the T − N plots indicate

deviation from the usually applied model for three-body
recombination loss of atoms and “anti-evaporation” heating
associated with it [20]. This model is valid in the limit of
deep trapping potentials (trapping depth much larger than
the gas temperature) and for temperature-independent
losses. We show below that the additional dynamics come
from the two-body evaporation due to the finite trap depth.
In order to analyze the observed data quantitatively, and to
correctly extract the three-body recombination loss rate
constant, we now describe our theoretical model which
generalizes the study [20] to arbitrary trap depths.

III. THEORETICAL MODEL

A. Rate equation for atom number

The locally defined three-body recombination rate
L3n3ðrÞ=3 leads, through integration over the whole
volume, to the loss rate of atoms:

_N ¼ −3
Z

L3n3ðrÞ
3

d3r ¼ −L3hn2iN; ð1Þ

where the factor of 3 in front of the integral reflects the fact
that all 3 atoms are lost per each recombination event. In the
following, we neglect single-atom losses due to collisions
with the background gas, and we assume that two-body
inelastic collisions are forbidden, a condition that is
fulfilled for atoms polarized in the absolute ground state.
An expression for the three-body recombination loss

coefficient at unitarity for a nondegenerate gas has been
developed in Ref. [15]. Averaged over the thermal distri-
bution, it reads

L3 ¼
72

ffiffiffi
3

p
π2ℏð1 − e−4η� Þ
mk6th

×
Z

∞

0

ð1 − js11j2Þe−k2=k2thkdk
j1þ ðkR0Þ−2is0e−2η�s11j2

; ð2Þ

where kth ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mkBT

p
=ℏ, R0 is the three-body parameter,

and the Efimov inelasticity parameter η� characterizes the
strength of the short-range inelastic processes. Here, ℏ is
the reduced Planck’s constant, and s0 ¼ 1.00624 for three
identical bosons [21]. The matrix element s11 relates the
incoming to outgoing wave amplitudes in the Efimov
scattering channel and shows the emerging discrete scaling
symmetry in the problem (see, for example, Ref. [22]).
Details are given in the supplementary material to Ref. [15]
for the calculation of s11ðkaÞ, where a is the scattering

length and k is the relative wave number of the colliding
partners. Because of its numerically small value for three
identical bosons at unitarity, we can set js11j ¼ 0, and L3 is
well approximated by

L3 ≈
ℏ5

m3
36

ffiffiffi
3

p
π2

1 − e−4η�

ðkBTÞ2
¼ λ3

T2
; ð3Þ

where λ3 is a temperature-independent constant. Assuming
a harmonic trapping potential, we directly express the
average square density hn2i through N and T. In combi-
nation with Eq. (3), Eq. (1) is represented as

_N ¼ −γ3
N3

T5
; ð4Þ

where

γ3 ¼ λ3

�
mω̄2

2
ffiffiffi
3

p
πkB

�
3

; ð5Þ

with ω̄ being the geometric mean of the angular frequencies
in the trap.
To model the loss of atoms induced by evaporation, we

consider time evolution of the phase-space density distri-
bution of a classical gas:

fðr;pÞ ¼ n0λdB3

ð2πℏÞ3 e
−UðrÞ=kBTe−p2=2mkBT; ð6Þ

which obeys the Boltzmann equation. Here, n0 is the
central peak density of atoms, λdB ¼ ð2πℏ2=mkBTÞ1=2 is
the thermal de Broglie wavelength, and UðrÞ is the external
trapping potential. The normalization constant is fixed by
the total number of atoms, such that

R
fðr;pÞd3pd3r ¼ N.

If the gas is trapped in a three-dimensional (3D) trap with
a potential depth U, the collision integral in the Boltzmann
equation can be evaluated analytically [23]. Indeed, the
low-energy collisional cross section

σðkÞ ¼ 8π

k2 þ a−2
ð7Þ

reduces at unitarity to a simple dependence on the relative
momentum of colliding partners: σðkÞ ¼ 8π=k2. However,
not every collision leads to a loss of atoms due to
evaporation. Consider

η ¼ U=kBT: ð8Þ
In the case of η ≫ 1, such loss is associated with a transfer
of a large amount of energy to the atom, which ultimately
leads to the energy-independent cross section. This can be
understood with a simple argument [24]. Assume that two
atoms collide with the initial momenta p1 and p2. After the
collision, they emerge with the momenta p3 and p4, and if
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one of them acquires a momentum jp3j≳
ffiffiffiffiffiffiffiffiffiffi
2mU

p
, the

momentum jp4j is necessarily smaller than the most
probable momentum of atoms in the gas and jp3j ≫ jp4j.
In the center-of-mass coordinates, the absolute value
of the relative momentum is preserved, so 1

2
jp1 − p2j ¼

1
2
jp3 − p4j ≈ 1

2
jp3j. Assuming jp3j ¼

ffiffiffiffiffiffiffiffiffiffi
2mU

p
, we get

jp1 − p2j ¼
ffiffiffiffiffiffiffiffiffiffi
2mU

p
. Substituting the relative momentum

in the center-of-mass coordinate, ℏk ¼ 1
2
ðp1 − p2Þ, into the

unitary form of the collisional cross section, we find that the
latter is energy independent:

σU ¼ 16πℏ2

mU
; ð9Þ

and the rate equation for the atom number can be written as

_N ¼ −ΓevN; Γev ¼ n0σUv̄e−η
Vev

Ve
: ð10Þ

The peak density is n0 ¼ N=Ve, where Ve is the effective
volume of the sample. In the harmonic trap, Ve can be
related to ω̄ and the temperature T: Ve ¼ ð2πkBT=mω̄2Þ3=2.
The ratio of the evaporative and effective volumes is
defined by [23]

Vev

Ve
¼ η − 4ð3; ηÞ Pðaþ 1; ηÞ

Pða; ηÞ ; ð11Þ

where Pða; ηÞ is the incomplete Gamma function

Pða; ηÞ ¼
R η
0 u

a−1e−uduR∞
0 ua−1e−udu

:

Finally, taking into account both three-body recombi-
nation loss [see Eqs. (4) and (5)] and evaporative loss, we
can express the total atom number loss rate equation as

_N ¼ −γ3
N3

T5
− γ2e−η

Vev

Ve

N2

T
; ð12Þ

where

γ2 ¼
16

π

ℏ2ω̄3

kBU
: ð13Þ

Note that η and the ratio of the evaporative and effective
volumes explicitly depend on temperature, and γ2 is
temperature independent.

B. Rate equation for temperature

1. Anti-evaporation and recombination heating

Reference [20] points out that in each three-body
recombination event, a loss of an atom is associated
with an excess of kBT of energy that remains in the sample.

This mechanism is caused by the fact that recombination
events occur mainly at the center of the trap, where the
density of atoms is highest, and it is known as anti-
evaporation heating. We now show that the unitary limit
is more anti-evaporative than the regime of finite scattering
lengths considered in Ref. [20], where L3 is temperature
independent. We separate center-of-mass and relative
motions of the colliding atoms and express the total loss
of energy per three-body recombination event as follows:

_E3b ¼ −
Z �

L3n3ðrÞ
3

ðhEcmi þ 3UðrÞÞ

þ n3ðrÞ
3

hL3ðkÞEki
�
d3r: ð14Þ

The first two terms in parentheses represent the mean center-
of-mass kinetic energy hEcmi ¼ hP2

cmi=2M and the local
potential energy 3UðrÞ per each recombination triple. M ¼
3m is the total mass of the three-body system. The last term
stands for thermal averaging of the three-body coefficient
over the relative kinetic energy Ek ¼ ðℏkÞ2=2μ, where μ is
the reduced mass.
Averaging the kinetic energy of the center-of-mass motion

over the phase-space density distribution [Eq. (6)] gives
hEcmi ¼ ð3=2ÞkBT. Then, the integration over this term is
straightforward, and using Eq. (1), we have

−
Z

L3n3ðrÞ
3

hEcmid3r ¼
1

2
kBT _N: ð15Þ

The integration over the second term can be easily
evaluated as well:

−
Z

3L3

3
n3ðrÞUðrÞd3r ¼ 1

2
kBT _N: ð16Þ

To evaluate the third term, we recall the averaged over
the thermal distribution expression of the three-body
recombination rate in Eq. (2). Now, its integrand has to
be supplemented with the loss of the relative kinetic energy
per recombination event Ek. Keeping the limit of Eq. (3),
this averaging can be easily evaluated to give hL3ðkÞEki ¼
L3kBT. Finally, the last term in Eq. (14) gives

−
Z

n3ðrÞ
3

hL3ðkÞEkid3r ¼
1

3
kBT _N: ð17Þ

Finally, getting together all the terms, the lost energy per
lost atom in a three-body recombination event becomes

_E3b

_N
¼ 4

3
kBT: ð18Þ

This expression shows that the unitarity limit is more
anti-evaporative than the regime of finite scattering length
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(kjaj ≤ 1). As the mean energy per atom in the harmonic
trap is 3kBT, at unitarity each escaped atom leaves behind
ð3 − 4=3ÞkBT ¼ ð5=3ÞkBT of the excess energy as com-
pared to 1kBT when L3 is energy independent. In the latter
case, thermal averaging of the relative kinetic energy gives
hEki ¼ 3kBT, and thus _E3b= _N ¼ 2kBT.
Equation (18) is readily transformed into the rate

equation for the rise of temperature per lost atom using
the fact that E3b ¼ 3NkBT in the harmonic trap and Eq. (4):

_T ¼ 5

3

T
3
γ3

N2

T5
: ð19Þ

Another heating mechanism pointed out in Ref. [20] is
associated with the creation of weakly bound dimers whose
binding energy is smaller than the depth of the potential.
In such a case, the three-body recombination products stay
in the trap, and the binding energy is converted into heat.
In the unitary limit, this mechanism causes no heating.

In fact, in this regime, as shown in the supplementary
material to Ref. [15], the atoms and dimers are in chemical
equilibrium with each other; e.g., the rate of dimer
formation is equal to the dissociation rate. We therefore
exclude this mechanism from our considerations.

2. Evaporative cooling

“Anti-evaporative” heating can be compensated by
evaporative cooling. The energy loss per evaporated atom
is expressed as

_E ¼ _Nðηþ ~κÞkBT; ð20Þ

where ~κ in a harmonic trap is [23]

~κ ¼ 1 −
Pð5; ηÞ
Pð3; ηÞ

Ve

Vev
; ð21Þ

with 0 < ~κ < 1.
In a harmonic trap, the average energy per atom is

3kBT ¼ ðE=NÞ. Taking the derivative of this equation and
combining it with Eq. (20), we get

3
_T
T
¼

_N
N
ðηþ ~κ − 3Þ: ð22Þ

From Eqs. (10) and (22), evaporative cooling is expressed as

_T ¼ −γ2e−η
Vev

Ve
ðηþ ~κ − 3ÞN

T
T
3
; ð23Þ

where, as before, the temperature dependence remains in η.
Finally, combining the two processes of recombination

heating [Eq. (19)] and evaporative cooling [Eq. (23)],
we get

_T ¼ T
3

�
5

3
γ3

N2

T5
− γ2e−η

Vev

Ve
ðηþ ~κ − 3ÞN

T

�
: ð24Þ

Equations (12) and (24) form a set of coupled rate
equations that describe the atom loss dynamics which we fit
to our data.

C. Extension of the model to 2D evaporation

The above model was developed to explain 3D iso-
thermal evaporation in a harmonic trap, and experiments
with 133Cs presented below correspond to this situation.
Our model can also be extended to 2D isothermal evapo-
ration, as realized in the 7Li gas studied in Ref. [15] and
presented in Fig. 1. In this setup, the atoms were trapped in
a combined trap consisting of optical confinement in the
radial direction and magnetic confinement in the axial
direction. Evaporation was performed by lowering the laser
beam power, which did not lower the axial (essentially
infinite) trap depth due to the magnetic confinement. Such a
scenario realizes a 2D evaporation scheme. Here, we
explore the consequences of having 2D evaporation. In
the experimental section, we show the validity of these
results with the evolution of a unitary 7Li gas.
Lower-dimensional evaporation is, in general, less effi-

cient than its 3D counterpart. One-dimensional evaporation
can be nearly totally solved analytically, and it has been an
intense subject of interest in the context of evaporative
cooling of magnetically trapped hydrogen atoms [23,25,26].
In contrast, analytically solving the 2D evaporation scheme
is infeasible in practice. It also poses a rather difficult
question considering ergodicity of motion in the trap [27].
The only practical way to treat 2D evaporation is by using
Monte Carlo simulations, which were performed in Ref. [27]
to describe evaporation of an atomic beam. However, as
noted in Ref. [27], these simulations follow amazingly well a
simple theoretical consideration, which leaves the evapora-
tion dynamics as in 3D but introduces an “effective” η
parameter to take into account its 2D character.
This consideration is as follows. In the 3D evaporation

model, the cutting energy ϵc is introduced in the Heaviside
function that is multiplied by the classical phase-space
distribution of Eq. (6) [23]. For the 2D scheme, this
Heaviside function is Yðϵc − ϵ⊥Þ, where ϵc is the 2D
truncation energy and ϵ⊥ is the radial energy of atoms
in the trap, the only direction in which atoms can escape.
Now, we simply add and subtract the axial energy of atoms
in the trap and introduce an effective 3D truncation energy
as follows:

Yðϵc − ϵ⊥Þ ¼ Yððϵc þ ϵzÞ − ðϵ⊥ þ ϵzÞÞ ¼ Yðϵeffc − ϵtotÞ;
ð25Þ

where ϵtot is the total energy of atoms in the trap and
the effective truncation energy is given as ϵeffc ¼ ϵcþ
ϵz ≃ ϵc þ kBT, where we replaced ϵz by its mean value
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kBT in a harmonic trap. The model then suggests that the
evaporation dynamics follows the same functional form
as the well-established 3D model, but it requires a
modification of the evaporation parameter (8):

ηeff ¼ ηþ 1: ð26Þ
Then, the experimentally provided 2D η should be
compared with the theoretically found 3D ηeff reduced
by 1 (i.e., ηeff − 1).

IV. DATA ANALYSIS

A. N-T dynamics and the magic ηm
We now perform a coupled least-squares fit of the atom

number and temperature trajectories, Eqs. (12) and (24),
to the data. We note that with our independent knowledge
of the geometric mean of the trapping frequencies, ω̄, the
only free fit parameters apart from initial temperature and
atom number are the trap depth U and the temperature-
independent loss constant λ3. The solid lines in Fig. 1 are
the fits (see Appendix D for details on the fitting) to our
theory model that describe the experimental data well for a
large variety of initial temperatures, atom numbers, and
relative trap depth. We are able to experimentally realize
the full predicted behavior of rising, falling, and constant-
to-first-order temperatures.
The existence of maxima in the T-N plots indicates the

existence of a “magic” relative trap depth ηm, where the first-
order time derivative of the sample temperature vanishes.
The theoretical value of ηmðT;NÞ is found by solving the

equation dT=dN ¼ 0, i.e., when TðNÞ becomes indepen-
dent on the atom number up to the first order inN. From the
general structure of this equation, we see that ηm is solely a
function of the dimensionless parameter:

α ¼ N

�
ℏω̄
kBT

�
3

ð1 − e−4η�Þ: ð27Þ

Up to a factor ð1 − e−4η� Þ, ηm depends only on the phase-
space density Nðℏω̄=kBTÞ3 of the cloud. We plot in Fig. 2
the dependence of ηm vs α. Since our approach is valid only
in the nondegenerate regime where the momentum distri-
bution is a Gaussian, we restricted the plot to small (and
experimentally relevant) values of α.
Using the knowledge of η� for both 133Cs and 7Li, we can

compare the observed values of ηm to the theory values of
Fig. 2 (note that in the case of 7Li, we plot ηeffm , which enters
into the effective 3D evaporation model). We see that for
both the 3D evaporation 133Cs data and 2D evaporation 7Li
data, the agreement between experiment and theory is
remarkable.
Furthermore, in Appendix E, we show that from the

three-body loss coefficients and the evaporation model, we
can obtain the trap depth, which is found to be in good
agreement with the value deduced from the laser power,

beam waist, and atomic polarizability. Note that, although
the theory is developed for harmonic traps, it can be applied
to more complex setups (crossed dipole traps or hybrid
magnetic-optical traps), where the average-energy atoms
sense the harmonic part of the potential only.
We furthermore note that in an experimental situation with

a finite error bar on temperature δT, and a range of atom
number ΔN ¼ maxNðtÞ −minNðtÞ, the ðdT=dNÞjt¼0 ¼ 0
condition can be of less practical meaning than the weaker
expression jðdT=dNÞjfinite tj < δT=ΔN. If the atom number
spreadΔN needs to be maximized at approximately constant
temperature, this second condition requires a slightly higher
value than ηm given by ðdT=dNÞjt¼0 ¼ 0. For instance, with
α ¼ 0.002, ηm ¼ 8.2 and δT=T in ¼ 10%, η ≈ 10maximizes
the spread in ΔN at nearly constant T.

B. Universality of the three-body loss

We now show the validity of the L3 ∝ T−2 law for the
three-body loss of unitary 7Li and 133Cs Bose gases. Because
both species are situated at the extreme ends of the (stable)
alkaline group, they have a large mass ratio of 133=7 ¼ 19,
and the temperature range is varied over 2 orders of
magnitude from 0.1 μK to 10 μK. We determine the
three-body loss coefficients λ3 from fits to decay curves
such as those shown in Fig. 1. We present in Fig. 3 the results
for the rate coefficient L3, which varies over approximately 2
orders of magnitude for both species. In order to emphasize
universality, the loss data are plotted as a function of
ðm=mHÞ3T2

in, where mH is the hydrogen mass. In this
representation, the unitary limit for any species collapses
to a single universal line [dotted line in Fig. 3, cf. Eq. (3)].
For 7Li, we cover the 1−10 μK temperature range. For

the temperature-independent loss coefficient, we find

0.000 0.002 0.004 0.006 0.008 0.010
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FIG. 2. “Magic” ηm as a function of the dimensionless parameter
α ¼ Nðℏω̄=kBTÞ3ð1 − e−4η� Þ (solid line). The blue solid circles
correspond to the results obtained for 133Cs in Fig. 1(a) with
η� ¼ 0.098. The red solid squares correspond to the 7Li data of
Fig. 1(c) with η� ¼ 0.21 [28]. Error bars are statistical.
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λ3 ¼ 3.0ð3Þ × 10−20 cm6μK2s−1, very close to the unitary
limit λmax

3 ≈ 2.7 × 10−20 cm6μK2s−1. It is also consistent
with the result λ3 ¼ 2.5ð3Þstatð6Þsyst × 10−20 cm6μK2s−1

found in Ref. [15] with a restricted set of data, and to
the prediction from Eq. (3) with η� ¼ 0.21 from Ref. [28]
(red solid line in Fig. 3). Because the 7Li data nearly
coincide with the unitary limit, the value of η� cannot be
deduced from our measurements.
Furthermore, the quality of the 133Cs temperature and

atom number data enables us to directly measure the
previously unknown η� parameter of the 47.8-G
Feshbach resonance. The standard technique for obtaining
η� is by measuring the three-body loss rate L3ða; T → 0Þ as
a function of scattering length in the zero-temperature limit
and subsequently fitting the resulting spectrum to universal
theory. However, for a given experimental magnetic field
stability, this method is difficult to put into practice for
narrow resonances like the 47.8-G resonance in 133Cs.
Instead, we use the fits to our theory model in order to
obtain η� from λ3. We cover the 0.1−1 μK range and find
λ3 ¼ 1.27ð7Þ × 10−24 cm6μK2s−1. Plugging this number
into Eq. (3), we deduce a value for the Efimov inelasticity
parameter η� ¼ 0.098ð7Þ. The corresponding curve is the
blue line in Fig. 3 and is significantly below the unitary line
because of the smallness of η�. This new value is compa-
rable to the Efimov inelasticity parameter found for other
resonances in 133Cs, in the range 0.06;…; 0.19 [29,30].
The plot of the full theoretical expression Eq. (2) for

L3ðm3T2
inÞ in Fig. 3 (solid lines) requires an additional

parameter describing three-body scattering around this
Feshbach resonance, the so-called three-body parameter.
It can be represented by the location of the first Efimov
resonance position R0 [31]. Because of the lack of

experimental knowledge for the 47.8-G resonance, we take
the quasiuniversal value R0 ¼ −9.73ð3ÞrvdW, rvdW being
the van der Waals radius, for which theoretical explanations
have been given recently [31–33]. The theory curve
then displays log-periodic oscillations with a temperature
period set by the Efimov state energy spacing of
expð2π=s0Þ ≈ 515, where s0 ¼ 1.00624, and with a phase
given by R0. The relative peak-to-peak amplitude is 7% for
133Cs with η� ¼ 0.098. As seen in Fig. 3, such oscillations
cannot be resolved in the experimental data because of a
limited signal-to-noise ratio and the limited range of
temperature. Thus, the assumption of the quasiuniversal
value of R0 for the 47.8-G resonance, although strongly
suggested by theory and experimental findings [30],
remains to be proven. The predicted contrast of these
oscillations for 7Li with η� ¼ 0.21 is even smaller (about
6%). This is a general property of the system of three
identical bosons due to the smallness of js11j [15].

V. CONCLUSIONS

In this article, we have examined the coupled time
dynamics of atom number and temperature of the 3D
harmonically trapped unitary Bose gas in the nondegener-
ate regime. We have presented a set of experiments using
lithium and cesium with vastly different mass and temper-
ature ranges.
We have developed a general theoretical model for the

dynamics observed, taking full account of evaporative loss
and the related cooling mechanism, as well as of the
universal three-body loss and heating. It is furthermore
extended to the special case of 2D evaporation. We have
theoretically obtained and experimentally verified the
existence of a “magic” trap depth, where the time derivative
of temperature vanishes both in 3D and 2D evaporation,
and which only depends on phase-space density and the
Efimov inelasticity parameter η�. Our data illustrate the
universal T−2 scaling over 2 orders of magnitude in
temperature, and we obtained an experimental value of
η� for the 47.8-G resonance in 133Cs. Furthermore, the
theory enables an independent determination of the trap
depth in the experiment. The agreement we have found here
with standard methods shows that it can be used in more
complex trap geometries, where the actual trap depth is
often not easy to measure.
In future work, it would be very interesting to probe the

discrete symmetry of the unitary Bose gas by revealing the
7% log-periodic modulation of the three-body loss coef-
ficient expected over a factor 515 energy range.
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APPENDIX A: CESIUM SETUP

Our setup is a modified version of the one presented in
Ref. [34]. The 133Cs atoms are trapped by means of three
intersecting laser beams, and a variable magnetic-field
gradient in the vertical direction (partially) compensates
gravity. An intrinsic advantage of the scheme is the perfect
spin polarization in the lowest hyperfine ground state
jF;mFi ¼ j3; 3i because the dipole trap potential is too
weak to hold atoms against gravity if they are in any other
ground state. As we will see, the trap frequencies stay
almost constant when reducing the trap depth, making
evaporation very efficient [34].

1. Trap model

The trap consists of three 1064-nm laser beams and an
additional magnetic gradient field [see Fig. 4(a)]. All beams
propagate in the horizontal plane. An elliptical light sheet
beam [power PLS ¼ 520 mW, waists of wLSv ¼ 33.0 μm
(vertical direction) and wLSh ¼ 225 μm (horizontal direc-
tion)] creates the vertical confinement, together with the
magnetic gradient. Two round beams (PR1;R2 ¼ 1.1=1.2 W,
waist ofwR ¼ 300 μm) stabilize the horizontal confinement.
The light sheet center is z0 ¼ 6 μm lower than the center

of the trap formed by the round beams only. The potential
along the vertical axis can therefore be written as

VðzÞ ¼ −ULSe−½ð2z
2Þ=ðw2

LSvÞ� −URe−½2ðz−z0Þ
2=ðw2

RÞ� þ γz;

ðA1Þ

where the ULS and UR are the contributions from the light
sheet and round beams, respectively. The tilt γ has a
gravitational and a magnetic contribution,

γ ¼ mg − μB0; ðA2Þ
where m is the atomic mass, g is the gravitational accel-
eration, B0 ¼ ∂zBz is the magnetic field gradient along the z
axis, and μ ¼ 0.75μB is the atom’s magnetic moment in the
j3; 3i state, with μB being Bohr’s magnetic moment. Thus, a
gradient of B0

0 ¼ B0ðγ ¼ 0Þ ¼ 31.3 G=cm is needed for
magnetically levitating the cloud. An example potential
shape is given in Fig. 4(b).

2. Trap frequency calibration

When we intentionally change the trap depth, we also
change the trap frequencies, mostly affecting the vertical
direction. The data were taken during two different meas-
urement campaigns in 2012 and 2013. Therefore, the trap
had to be recalibrated for each of these campaigns, and the
data are presented in a normalized way.
We measure the oscillation frequency ωz along the z axis

as a function of the tilt [see Fig. 4(c)]. This is established by
inducing sloshing oscillations to a small, weakly interacting
Bose-Einstein condensate (BEC) and performing time-of-
flight measurements of its position after a variable hold time.

FIG. 4. (a) Schematic drawing of the hybrid trap. It consists of three intersecting lasers, and a magnetic-field gradient in the z direction
(vertical) created by a pair of coils. The light sheet beam (blue) confines dominantly along the vertical direction. The additional round
beams (red) stabilize the horizontal confinement. (b) Trap shape along the vertical (z) direction. It is composed of two Gaussians and a
linear contribution from the tilt [see Eq. (A1)]. Relative dimensions are to scale. Also indicated are the contributions of the tilt only
(dashed line) and the round beams (dotted line). (c) Trap frequency measurements (dots) and fits (line) as a function of the tilt of the trap.
The frequencies are normalized with respect to the zero-tilt frequency ωz;0 ¼ 2π × 140 Hz. We normalize the tilt from our knowledge of
the critical γc, where the trap opens (see text).
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We fit the measured z-axis frequencies to a numerical
model of the trap potential Eq. (A1). In the model, we insert
the aspect ratio of the trap depth contributions from the
three beams i,

Ui ¼
2

π

αPi

whwv
; ðA3Þ

where α=kB ¼ 2.589 × 10−12 Kcm2 mW−1 is the atomic
polarizability at 1064 nm [35], Pi is the power in beam i,
and wh=v are the waists in the horizontal or vertical
direction. We are left with two fit parameters: The fre-
quency at zero tilt ωzðγ ¼ 0Þ ¼ ωz;0 and the critical tilt
γc ¼ γðB0 ¼ B0

cÞ where the trap opens [local minimum in
VðzÞ disappears] and ωz goes to zero by construction. We
find ωz;0 ¼ 2π × 139ð1Þ Hz and 2π × 140ð1Þ Hz for 2012
and 2013, and B0

c ¼ −0.3ð4Þ G=cm and −4.3ð7Þ G=cm for
2012 and 2013. With this calibration, we introduce the
normalized tilt γ=γc. The values for B0

c coincide well with
the gradient values observed when increasing the tilt until a
small (< 5000 atoms) weakly interacting BEC drops out of
the trap.
The kink in the trap depth theory curve (Fig. 5) near

γ=γc ¼ 0.02 [shaded area in Fig. 5(a)] corresponds to a
situation depicted in Fig. 4(b), where the contribution of the
large-waist horizontal beams on the trap depth vanishes.
The blue-shaded region of the horizontal beams’ contri-
bution extends over the small region from γ=γc ¼ −0.02 to
0.02. Therefore, small experimental uncertainties on the
applied magnetic gradient, or additional trap imperfections,
can explain the fact that we do not find this sudden rise in
U. Other than that, we see a remarkable correspondence
between theory and experiment.
We note that the data can also be well described by the

analytical model of a single Gaussian potential (UR ¼ 0)

with tilt, as presented in Ref. [34]. Because of the large
mismatch between wR and wLS, the presence of the round
beams mainly affects the horizontal trapping. The critical
gradient we find is only 2% larger than the single-Gaussian
value

ffiffiffi
e

p
γwLS=2ULSv [34]. Furthermore, the horizontal

trapping frequencies ðωx;ωyÞ ≈ 2π × ð13; 30Þ Hz, mea-
sured with a similar method for each data set, remain
constant.

3. Imaging system calibration

The high-resolution imaging system is similar to the one
presented in Ref. [14]. It is well calibrated using the
equation of state of a weakly interacting 2D Bose gas
for the absorption-coefficient-to-atomic-density conversion
(in good accordance with the method of classical 2D gas
atomic shot noise [36]). The imaging magnification is
obtained from performing Bragg spectroscopy on a 3D
BEC, using the variable retroreflection of the 1064-nm
round beams.

4. 133Cs sample preparation

We prepare the 133Cs samples in the trap described
before. In brief, after magneto-optical trapping and degen-
erate Raman sideband cooling, we obtain magnetically
levitated (γ ¼ 0) samples of 106 133Cs atoms at 1 μK [34].
We can cool the samples further by evaporative cooling. In
order to achieve this, we adjust the trap depth UðγÞ by
changing the tilt γ of the potential (A1). Thus, the samples
can be evaporatively cooled all the way to quantum
degeneracy in ≈2 s [34] at 20.8 G, yielding a scattering
length of 200 a0, with a0 being the Bohr radius [29].
We prepare our samples by stopping the evaporation at a

given tilt. We then ramp the tilt adiabatically to the desired
value. Finally, at a time t0, we jump the field to the
Feshbach resonance at 47.8 G [18] in typically < 1 ms and

FIG. 5. (a) Relative 133Cs trap-depth results from the fits to our data (dots) and theoretical model [Eqs. (A1) and (A3), line]. The trap
depth is normalized with respect to the trap depth ULS ≈ 11 μK given by the Gaussian light sheet only. The shaded area corresponds to
the region where the horizontal confinement beams significantly contribute to the trap depth. (b) Absolute 7Li trap-depth results from the
fits to our data (dots). The solid line indicates theoretical knowledge of our trap [Eqs. (A1) and (A3), line], with wR ¼ 38ð1Þ μm.
The shaded area accounts for the combined uncertainty of wR and Ptrap.
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wait for at least 2π=ωx in order for the samples to reach
dynamical equilibrium. We are therefore able to prepare
samples of variable initial parameters: Atom number Nin,
temperature T in, and relative trap depth ηin ¼ UðγÞ=kBT in,
where kB is the Boltzmann constant. After a hold time t, we
take an in situ absorption image with a vertical imaging
setup.

APPENDIX B: LITHIUM SETUP

The 7Li data were taken using the apparatus described in
Ref. [15]. This trap consists of a 1073-nm single-beam
optical dipole trap providing adjustable radial confinement,
and an additional magnetic-field curvature providing essen-
tially infinitely deep harmonic axial confinement along the
beam axis. After loading into this trap, the gas is evaporated
by lowering the radial trap depth at a magnetic field of
720 G, where the two-body scattering length is 200 a0. The
evaporation in this hybrid trap is then effectively 2D. After
the temperature and atom number of the gas have stabi-
lized, the radial trap is adiabatically recompressed by about
a factor of 2. Since the axial magnetic confinement is
practically unchanged, this recompression causes the
temperature of the gas to increase with ω3=2

r , while
the trap depth increases as ω2. Consequently, by varying
the amount of recompression, we can vary ηin. After this
recompression, the magnetic field is ramped to the
Feshbach resonance field of 737.8 G in 100–500 ms,
and NðtÞ and TðtÞ are measured with in situ resonant
absorption imaging perpendicular to the long axis of the
cloud. The trap shape can be described by Eq. (A1) with
ULS ¼ 0, wR ¼ 37ð1Þ μm, and by replacing z by ρ, the
radial coordinate.UR is the dipole trap potential with power
Ptrap, and α is the polarizability of the 7Li atoms at
1073 nm. We can neglect the tilt γ because of the small
mass of 7Li.

APPENDIX C: TIME SCALE ORDER

In order for the theory to be valid, we make sure the time-
scale order is not violated:

τ3B; τev ≫ τtrap; τ2B; ðC1Þ

where we have the three-body loss time constant
[cf. Eq. (19)]

τ−13B ¼ 5

9
γ3

N2

T5
; ðC2Þ

the evaporation time constant [cf. Eq. (24)]

τ−1ev ¼ 1

3
γ2

�
e−η

Vev

Ve

�
ðηþ ~κ − 3ÞN

T
; ðC3Þ

the two-body scattering time constant

τ−12B ¼ n0σUv̄; ðC4Þ

and the trapping time constant

τ−1trap ¼ ωslow; ðC5Þ

where ωslow is the slowest trapping frequency (along z in
the 133Cs case).

APPENDIX D: FITS TO THE MODEL

For each data set, we have decay data for NðtÞ and TðtÞ
from the mean values of ≈10 individual measurements. The
error bars from Figs. 3(a)–3(c) are the 1σ standard devia-
tions of the individual measurements. We fit both temper-
ature and atom number individually with solutions to the
coupled differential equation set of Eqs. (12) and (24). For
both fits, we use a common three-body loss coefficient λ3
and a common trap depth U. The fitting is done by
minimizing the weighted sum αχT þ α−1χN by varying
both the weighing factor α and the fit parameters. The
quadratic deviations are defined as χT;N ¼ Σσ2T;N (σT;N
being the deviations of data and the fit). This method also
accounts for the different amount of relative signal-to-noise
ratio of both data sets.

APPENDIX E: TRAP DEPTH

As an independent test of the theory fits, we compare the
fitted trap depth U to its independently known counterpart
from experimental parameters. In Fig. 5(a), we plot the
133Cs results as a function of the relative trap tilt γ=γc. We
also plot the theoretical value for Uðγ=γcÞ as a solid line.
Except near zero tilt, we find excellent agreement of the
fitted values with the values known from experimental
parameters. For 7Li [see Fig. 5(b)], we find excellent
agreement with our theoretical knowledge of the trap
depth, which is given by the dipole laser waist wR, power
Ptrap, and the atom’s polarizability. It is indicated by the
shaded area in Fig. 5(b). Therefore, we can infer the dipole
trap laser’s waist in an independent fashion. From the fit to
our measured trap depths (solid line) in Fig. 5(b), we obtain
wR ¼ 38ð1Þ μm. This value coincides with independent
measurements of wR from fitting the trap frequencies as a
function of Ptrap. These results emphasize the validity of the
theory model [Eqs. (12) and (24)].
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We study three-body recombination in an ultracold Bose-Fermi mixture. We first show theoretically that,
for weak interspecies coupling, the loss rate is proportional to Tan’s contact. Second, using a 7Li=6Li
mixture we probe the recombination rate in both the thermal and dual superfluid regimes. We find excellent
agreement with our model in the BEC-BCS crossover. At unitarity where the fermion-fermion scattering

length diverges, we show that the loss rate is proportional to n4=3f , where nf is the fermionic density. This

unusual exponent signals nontrivial two-body correlations in the system. Our results demonstrate that
few-body losses can be used as a quantitative probe of quantum correlations in many-body ensembles.

DOI: 10.1103/PhysRevLett.118.103403

Understanding strongly correlated quantum many-body
systems is one of the most daunting challenges in modern
physics. Thanks to a high degree of control and tunability,
quantum gases have emerged as a versatile platform for the
exploration of a broad variety of many-body phenomena
[1], such as the crossover from Bose-Einstein condensation
(BEC) to Bardeen-Cooper-Schrieffer (BCS) superfluidity
[2], quantummagnetism [3], or many-body localization [4].
At ultralow temperatures, atomic vapors are metastable
systems and are plagued by three-body recombination
which represents a severe limitation for the study of some
dense interacting systems. A prominent example is the
strongly correlated Bose gas [5,6] that bears the prospect of
bridging the gap between dilute quantum gases and liquid
helium. However, inelastic losses can also be turned into an
advantage. For instance, they can be used to control the
state of a system through the Zeno effect [7–9], or serve as a
probe of nontrivial few-body states, as demonstrated by the
observation of Efimov trimers, originally predicted in
nuclear physics, but observed for the first time in Bose
gases as resonances in three-body loss spectra [10].
In this Letter, we study inelastic losses in a mixture of

spinless bosons and spin 1=2 fermions with tunable inter-
action.We show that when theBose-Fermi coupling is weak,
the loss rate can be related to the fermionic contact parameter,
a universal quantity overarching between microscopic and
macroscopic properties of a many-body system with zero-
range interactions [11–19]. We first check our prediction on
the strongly attractive side of the fermionic Feshbach
resonance, where we recover known results on atom-dimer
inelastic scattering. We then turn to the unitary limit where
the fermion-fermion scattering length is infinite. We dem-
onstrate both theoretically and experimentally—with a
6Li=7Li Fermi-Bose mixture—that the bosons decay at a

rate proportional ton4=3f , wherenf is the fermion density. The

unusual fractional exponent results from nontrivial quantum
correlations in the resonant gas.Ourmethod offers a newway
to measure the two-body contact of the homogeneous Fermi
gas. More generally, our work shows that the decay of an
impurity immersed in a strongly correlated many-body
system is a quantitative probe of its quantum correlations.
Inelastic decay of an impurity inside a two-component

Fermi gas has been studied previously both in the weakly

Loss rate (a.u)

-1/kFa

1/a

a 2

-1 +1
BEC side BCS side

0

FIG. 1. Sketch of inelastic decay of an impurity immersed in a
tunable Fermi gas. On the BEC side, ↑ and ↓ fermions are paired
in tightly bound molecules and the decay mechanism is a two-
body process involving the impurity (green disk) and a molecule.
The loss rate scales as 1=aff [20,24]. On the BCS side, the loss
occurs through a three-body process and it scales as a2ff in
the mean-field limit [20]. The extrapolation of these two
asymptotic behaviors towards the strongly correlated regime
yields contradictory results (grey area).
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and strongly attractive limits of the BEC-BCS crossover
[20–23], see Fig. 1 and Table I. When the fermion-fermion
interaction is weak, the fermions behave almost as isolated
particles and the recombination can be described as a three-
body process involving one spin-up (↑), one spin-down (↓)
fermion and the impurity (a boson in our experiments). In
this case, the impurity or boson density nb follows a rate
equation _nb ¼ −L3n2fnb, with L3 ∝ a2ff, where aff is the
fermion-fermion scattering length [20,22,24]. In contrast,
on the strongly attractive side of the Feshbach resonance,
the fermions form halo dimers of size ≃aff and the
relaxation occurs through two-body processes between
one such molecule and one boson. In this case the rate
equation for bosons reads _nb ¼ −L2nmnb, where nm ¼
nf=2 is the molecule density. Far from the Feshbach
resonance, the two-body loss rate scales as 1=aff as a
consequence of the enhanced overlap of the halo dimer
wave function with the deeply bound product molecules
[20,24]. However, these two scalings give rise to a paradox
in the central region of the BEC-BCS crossover. Indeed, as
depicted in Fig. 1, the extrapolation towards unitarity leads
to contradictory results depending on whether we approach
the resonance from the BEC or the BCS side. In the former
case, one would predict an increasingly long lifetime at
unitarity while it tends to a vanishingly small value in the
latter case. This paradox has a fundamental origin: these
two scalings are obtained in the dilute limit where the
recombination can be described by a well-defined few-
body process, whereas this hypothesis fails in the strongly
correlated regime where nfjaffj3 ≫ 1. There, it is not
possible to single out two fermions from the whole many-
body system. Instead, the inelastic loss involving a boson
and two fermions is tied to the correlations of the whole
ensemble. A first hint towards reconciling these two
behaviors near unitarity is to assume that they saturate
for aff ≃ n−1=3f , yielding the same scaling _nb ∝ n4=3f nb.
The three asymptotic regimes—BEC, BCS, and unitary—

were obtained using different theoretical approaches and we
now show that, using Tan’s contact, they can be unified
within the same framework. The recombination rate is
proportional to the probability of having the three particles
within a distance b from each other, where b is the typical
size of the deeply bound molecule formed during the

collision [26–28]. Take ρ3ðr↑; r↓; rbÞ the three-body prob-
ability distribution of the system. When the bosons are
weakly coupled to the fermions, we can factor it as
ρ3ðr↑; r↓; rbÞ ¼ ρfðr↑; r↓ÞρbðrbÞ. Integrating over the posi-
tions of the three atoms we readily see that the three-body
loss rate is proportional to Tan’s contact parameter C2

of the fermions that gives the probability of having two
fermions close to each other [11]. C2 is calculated using the
equation of state of the system thanks to the adiabatic-sweep
theorem

C2 ¼ −
4πmf

ℏ2

∂F
∂ð1=affÞ ; ð1Þ

wheremf is the fermion mass andF is the free-energy of the
fermionic gas per unit-volume [12,13]. The asymptotic
expressions of C2 in the BEC, BCS and unitary regimes
are listed in Table I. In the deep BEC limit, the free energy is
dominated by the binding energy of the molecules
ℏ2=mfa2ff; in the BCS regime C2 is derived using the
mean-field approximation [11]. At unitary, the expression of
the contact stems from the absence of any length scale other
than the interparticle distance. The dimensionless parameter
ζ ¼ 0.87ð3Þ was determined both theoretically [29] and
experimentally [14–19]. Expressions listed in Table I con-
firm that the contact parameter and the bosonic loss rate
follow the same scalings with density and scattering length.
We support this relationship between inelastic losses

and Tan’s contact by considering a microscopic model
where the recombination is described by a three-body
Hamiltonian

Ĥ3 ¼
Z

d3rbd3r↑d3r↓gðrb; r↑; r↓Þ

× Ψ̂†
m

�
r↑ þ r↓

2

�
Ψ̂†

bðrbÞΨ̂bðrbÞΨ̂↑ðr↑ÞΨ̂↓ðr↓Þ

þ H:c:; ð2Þ

where Ψ̂α is the field operator for the species α and the
coupling g takes significant values only when the three
particles are within a distance b [30]. Assuming that b is the
smallest distance scale in the problem and that this
Hamiltonian can be treated within Born’s approximation
we find that (see Ref. [31])

_nb ¼ −γC2nb: ð3Þ
The constant γ depends on the coupling g and describes the
coupling to deeply bound nonresonant states; hence, γ has
essentially no variation with the magnetic field across the
fermionic Feshbach resonance.
Equation (3) is the main prediction of this Letter and we

explore the consequences of this equation by measuring the
lifetime of an ultracold Fermi-Bose mixture of 6Li and 7Li
atoms. Our experimental setup is described in Ref. [37].

TABLE I. Scaling of the boson-fermion mixture loss rate and of
Tan's contact [11], C2, in the BEC-BCS crossover. Both scalings
are identical in the weakly and strongly attractive limits. As
kF ¼ ð3π2nfÞ1=3, at unitarity C2 scales as n

4=3
f . ζ is a dimension-

less constant, ζ ¼ 0.87ð3Þ [17,25].

BEC Unitary BCS

ð _nb=nbÞ ∝ ðnm=affÞ [20] ∝ n4=3f ∝ a2ffn
2
f [20]

C2 8πðnm=affÞ ð2ζ=5πÞk4F 4π2a2ffn
2
f
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The 6Li atoms are prepared in a spin mixture ↑;↓ of jF ¼
1=2; mF ¼ �1=2i for which there is a broad Feshbach
resonance at 832 G [33]. The 7Li atoms are transferred into
the jF ¼ 1; mF ¼ 0i featuring two Feshbach resonances, a
narrow one at 845.5 G and a broad one at 893.7 G [31].
The scattering length between bosons and fermions is
abf ¼ 40.8a0 and is equal for the ↑;↓ states. It can be
considered constant in the magnetic field range that we
explored, 680–832 G. The atoms are confined in a hybrid
magnetic-optical trap and are evaporated at the 6Li
Feshbach resonance until we reach dual superfluidity or
any target temperature. We ramp the magnetic field to an
adjustable value in 200 ms and wait for a variable time t.
We then measure the atom numbers of the two species by
in situ imaging or after time of flight.
We first show that the dominant boson loss mechanism

on the BEC side of the resonance involves one boson, one
fermion ↑, and one fermion ↓. This is easily done by
comparing the boson losses for spin-balanced and spin-
polarized fermionic samples. Figure 2 displays the remain-
ing fraction of bosons and fermions after a waiting time of
1 s for balanced fermions and 1.5 s for spin-polarized
fermions with 90% polarization. We observe that the losses
for high spin polarization are strongly suppressed indicat-
ing that fermions of both spin components are required to
eliminate one boson.
Second we show that the losses in the weakly interacting

regime na3ff ≪ 1 (deep BEC side of the resonance, 720 G)
are proportional to the fraction of molecules in the sample,
η ¼ 2Nm=ðNf þ 2NmÞ. This fraction is varied by changing

the temperature from 1 μK to 4 μK and 6Li densities from
2 × 1012 cm−3 to 1.0 × 1013 cm−3. In these temperature
and density ranges, both gases are well described by
Maxwell-Boltzmann position and velocity distributions.
The molecular fraction is calculated using the law of mass
action [31,36] and is assumed to be time independent
owing to the high formation rate of halo dimers
(≃ℏa4ff=mf)[38]. We extract the interspecies decay rate
by fitting the time evolution of the bosonic population

_Nb ¼ −LbfhnfiNb − ΓvNb; ð4Þ
where h� � �i represents the trap average, and Γv is the one-
body residual gas loss rate (0.015 s−1).
The data in Fig. 3(a) show that the boson loss rate is

proportional to the molecule fraction of the fermionic
cloud. Introducing the boson-fermion dimer molecule loss
rate Lbm defined by Lbmhnmi ¼ Lbfhnfi, we check the
proportionality of Lbm with 1=aff predicted in Table I by

FIG. 2. Remaining fraction of bosons (blue symbols) and
fermions (red symbols, inset) after a 1 s and 1.5 s waiting time
for spin-balanced (filled symbols), resp. 90% polarized (open
symbols) fermions. The blue dash-dotted (red dashed, inset)
curve is a coupled loss model describing the competition between
boson fermion-dimer decay (∝ 1=aff) and dimer-dimer decay
(∝ 1=a2.55ff ) [27,31]. The blue-shaded area represents the 1σ

fluctuations for the remaining fraction of bosons with spin-
polarized fermions. The initial atom numbers are 3 × 105 for 6Li
and 1.5 × 105 for 7Li at a temperature T ≃ 1.6 μK with trap
frequencies νz ¼ 26 Hz and νr ¼ 2.0 kHz.

(a)

(b)

FIG. 3. (a) Boson-fermion loss rate vs molecule fraction.
Circles: Experimental data. The vertical error bars represent
the statistical errors for Lbf from fitting the loss curves. The
horizontal error bars represent the statistical errors on the
molecule fraction due to 6Li number fluctuations. The red dashed
line is a linear fit to the data. (b) Boson-dimer loss rate vs inverse
scattering length. The blue dot-dashed line is a linear fit to the
data with nfa3ff ≤ 0.025 (black circles), providing γ¼1.17ð11Þ×
10−27m4 ·s−1, see Eq. (3).
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repeating the loss measurements for different magnetic
fields in the interval 690–800 G, see Fig. 3(b). From a linear
fit to the data where interaction effects are negligible
(nfa3ff ≤ 0.025), we extract the slope γ ¼ 1.17ð11Þ ×
10−27 m4 · s−1 entering in Eq. (3).
Since γ doesn’t depend on the magnetic field, we can

now predict the loss rate anywhere in the BEC-BCS
crossover using Eq. (3). The strongly interacting unitary
regime (1=aff ¼ 0) is particularly interesting and we
measure the boson decay rate at 832 G in the low
temperature dual superfluid regime [37]. The mixture is
initially composed of about 40 × 103 fully condensed 7Li
bosons and 150 × 103 6Li spin-balanced fermions at a
temperature T≃ 100 nKwhich corresponds to T=TF ≃ 0.1
where TF is the Fermi temperature. At this magnetic field
value, the atoms are now closer to the boson Feshbach
resonance located at 845.5 G and bosonic three-body losses
are no longer negligible. The time dependence of the boson
number is then given by

_Nb ¼ −Lbhn2biNb − ΓbfNb − ΓvNb: ð5Þ
To extract Γbf we measure independently Lb with a BEC

without fermions in the same trap and inject it in Eq. (5),
see Ref. [31]. We typically have Lbhn2bi ¼ 0.1–0.4 s−1, and
Lb ¼ 0.11ð1Þ × 1026 cm6 · s−1 consistent with the model
of Ref. [35]. Repeating such measurements for different
fermion numbers and trap confinement, we now test the
expected n4=3f dependence of the Bose-Fermi loss rate at
unitarity (central column in Table I). In this dual superfluid
regime, the size of the BEC is much smaller than that of the
fermionic superfluid and the BEC will mainly probe the
central density region nfðr ¼ 0Þ. However, it is not truly a
pointlike probe, and introducing the ratio ρ of the Thomas-
Fermi radii for bosons and fermions, we obtain the finite
size correction for Eq. (3) [31]:

Γbf ¼ γC2ð0Þ
�
1 −

6

7
ρ2
�
; ð6Þ

where C2ð0Þ ¼ ð2ζ=5πÞ(3π2nfð0Þ)4=3, and the last factor
in parenthesis amounts to 0.9. The prediction of Eq. (6) is
plotted as a red line in Fig. 4 and is in excellent agreement
with our measurements without any adjustable parameter.
Alternatively, a power-law fit Anp to the data yields an
exponent p ¼ 1.36ð15Þ which confirms the n4=3f predicted
scaling at unitarity. Finally, fixing p to 4=3 provides the
coefficient A and a value of the homogeneous contact
ζ ¼ 0.82ð9Þ in excellent agreement with previous mea-
surements, ζ ¼ 0.87ð3Þ [17,25]. This demonstrates that
impurity losses act as a microscopic probe of quantum
correlations in a many-body system.
The bosonic or fermionic nature of the probe is of no

importance. Provided the coupling between the impurity
and the resonant gas is weak, our method can also be

applied to other mixtures. It gives a framework to interpret
the experimental data on 6Li=40K [22] and, in particular, to
test our prediction on the BCS side of the Feshbach
resonance. It can also be applied to the recently observed
6Li=174Yb [39], 6Li=41K [40], and 6Li=7Li [41] dual-
superfluid Bose-Fermi mixtures and even to the case where
one of the collision partners is a photon as in photo-
association experiments [42,43]. Our observation of a loss
rate scaling ∝ n4=3f at unitarity is in stark contrast with the
generic case np, where the integer p is the number of
particles involved in the recombination process. A frac-
tional exponent is also predicted to occur for the resonant
Bose gas [5,6] and Fermi gas [27,44].
A first extension of this work is to investigate regimes

where abf ≃ aff ≫ n−1=3 and the Born approximation
breaks down. In this case Efimovian features are expected
to occur [45,46]. Second, our method provides a unique
microscopic way to measure the contact quasilocally in a
harmonic trap. An important perspective is to determine the
homogeneous contact of the unitary Fermi gas at finite
temperature, whose behavior is largely debated near the
normal-superfluid transition [18].
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three-body problem. Theses, Université Pierre et Marie Curie - Paris VI, July 2008.

[94] V Efimov. Weakly-bound states of three resonantly-interacting particles. Sov. J.
Nucl. Phys, 12(589):101, 1971.

[95] GS Danilov. On the three-body problem with short-range forces. Sov. Phys. JETP,
13(349):3, 1961.

[96] F. Ferlaino, A. Zenesini, M. Berninger, B. Huang, H. C. Nägerl, and R. Grimm. Efi-
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[256] J Söding, D Guéry-Odelin, P Desbiolles, F Chevy, H Inamori, and J Dalibard.
Three-body decay of a rubidium bose–einstein condensate. Applied Physics B:
Lasers and Optics, 69(4):257–261, 1999.



224 Chapter E

[257] Zav Shotan, Olga Machtey, Servaas Kokkelmans, and Lev Khaykovich. Three-
body recombination at vanishing scattering lengths in an ultracold bose gas. Phys.
Rev. Lett., 113:053202, Jul 2014.

[258] Yoav Sagi, Tara E. Drake, Rabin Paudel, and Deborah S. Jin. Measurement of the
homogeneous contact of a unitary fermi gas. Phys. Rev. Lett., 109:220402, Nov
2012.

[259] B. Svistunov, F. Werner, private communication.
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avec cette machine1. Il ne restera cependant de ces moments parfois difficiles que de bons
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et à comprendre, travailler ensemble fut stimulant et un réel plaisir.
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let 2017. Je suis fier d’avoir pu prendre part à cette aventure pleine de rebondissements
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Résumé
La compréhension des effets des interactions dans un
ensemble de particules quantiques représente un enjeu
majeur de la physique moderne. Les atomes ultra-froids
sont rapidement devenus un outil incomparable pour étu-
dier ces systèmes quantiques fortement corrélés. Dans
cette thèse, nous présentons plusieurs travaux portant
sur les propriétés d’un mélange de superfluides de Bose
et de Fermi créé à l’aide de vapeurs ultra-froides de 7Li
et de 6Li.
Nous étudions tout d’abord les propriétés hydrodynami-
ques du mélange en créant un contre-courant entre les
superfluides. L’écoulement est dissipatif uniquement au
dessus d’une vitesse critique que nous mesurons dans
le crossover BEC-BCS. Une simulation numérique d’un
contre-courant de deux condensats permet demieux com-
prendre les mécanismes sous-jacents mis en jeu dans la
dynamique. En particulier, l’étude numérique fournit des
preuves supplémentaires que l’origine de la dissipation
dans nos expériences est liée à l’émission d’excitation
élémentaires dans chaque superfluide.
Finalement, nous nous intéressons aux pertes inélasti-
ques par recombinaison à trois corps qui peuvent limiter
la stabilité de nos nuages. Ces pertes sont intimement
liées aux corrélations à courte distance présentes dans
le système et sont ainsi connectées aux propriétés uni-
verselles du gaz quantique. Cela se manifeste notam-
ment par l’apparition de dépendances en densité ou en
température inusuelles du taux de perte lorsque le sys-
tème devient fortement corrélé. Nous démontrons cet
effet dans deux exemples où les interactions sont réso-
nantes, le cas du gaz de Bose unitaire et celui de notre
mélange de superfluides Bose-Fermi. Plus généralement,
nos travaux montrent que ces pertes inélastiques peu-
vent être utilisées pour sonder les corrélations quantiques
dans un système en fortes interactions.

Mots Clés
Gaz quantiques, mélange de superfluides, vitesse cri-
tique, simulation de Gross-Pitaevskii, gaz de Fermi forte-
ment corrélé, gaz de Bose unitaire, pertes inélastiques,
contact de Tan, corrélations quantiques

Abstract
Understanding the effect of interactions in quantummany-
body systems presents some of themost compelling chal-
lenges inmodern physics. Ultracold atoms have emerged
as a versatile platform to engineer and investigate these
strongly correlated systems. In this thesis, we study the
properties of a mixture of Bose and Fermi superfluids
with tunable interactions produced using ultracold vapors
of 7Li and 6Li.
We first study the hydrodynamic properties of the mixture
by creating a counterflow between the superfluids. The
relative motion only exhibit dissipation above a critical ve-
locity that we measure in the BEC-BCS crossover. A nu-
merical simulation of counterflowing condensates allows
for a better understanding of the underlying mechanisms
at play in the dynamics. In particular, this numerical study
provides additional evidence that the onset of friction in
our experiment is due to the simultaneous generation of
elementary excitations in both superfluids.
Finally, we consider the inelastic losses that occur via
three-body recombination in our cold gases. This few-
body process is intimately related to short-distance cor-
relations and is thereby connected to the universal prop-
erties of the many-body system. This manifests as the
apparition of an unusual dependence on density or tem-
perature in the loss rate when increasing the interactions.
We demonstrate this effect in two examples where inter-
actions are resonant: the case of a dilute unitary Bose
gas and the one of impurities weakly coupled to a unitary
Fermi gas. More generally, our work shows that inelastic
losses can be used to probe quantum correlations in a
many-body system.

Keywords
Quantum gases, mixture of superfluids, critical velocity,
Gross-Pitaevskii simulation, strongly interacting Fermi gas,
unitary Bose gas, inelastic losses, Tan’s contact, quan-
tum correlations
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