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Titre: Sur quelques modèles des fluides géophysiques 

Résumé :Dans cette thèse nous étudions trois modèles décrivant la dynamique 
de l’écoulement d’un fluide à densité variable, dans des échelles spatio-temporelles 
grandes. Dans ce cadre, le mouvement relatif induit par des forces extérieures, 
comme la force de Coriolis ou la poussée hydrostatique, s’avère être beaucoup plus 
important que le mouvement intrinsèque du fluide induit par le transport des 
particules. Une tel déséquilibre contraint ainsi le mouvement, induisant des 
structures persistantes dans l’écoulement du fluide.

D’un point de vue mathématique, l’une des difficultés consiste en l’étude des 
perturbations induites par les forces extérieures, qui se propagent à grande vitesse. 
Ce type d’analyse peut être effectué au moyen de plusieurs outils mathématiques ; 
on choisit ici d’employer des techniques caractéristiques de l’analyse de Fourier, 
comme l’analyse des propriétés dispersives des intégrales oscillantes.

Tout au long de cette thèse, on se restreint à considérer des domaines spatiaux sans
frontière : c’est le cas de l’espace entier, ou encore de l’espace périodique. Les 
modèles considérés sont donc les suivants:

• Équations primitives dont les nombres de Froude et de Rossby sont comparables, 
et pour lesquelles la diffusion verticale est nulle,

• fluides stratifiés dans un régime à faible nombre de Froude,

• fluides faiblement compressibles et tournants dans un régime où les nombres de 
Mach et de Rossby sont comparables.

On prouve que ces systèmes propagent globalement dans le temps des donnés peu 
régulières. Nous n’imposons jamais de condition de petitesse sur les données 
initiales. Toutefois, on prendra en compte certaines hypothèses spécifiques de 
régularité, lorsque des raisons techniques l’imposent.

Mots clés : équations de Navier-Stokes, dynamique des fluides, fluides 
géophysiques, inegalitées de Strichartz



Title : On some models in geophysical fluids

Abstract : In this thesis we discuss three models describing the dynamics of 
density-dependent fluids in long lifespans and on a planetary scale. In such setting 
the relative displacement induced by various external physical forces, such as the 
Coriolis force and the stratification buoyancy, is far more relevant than the intrinsic 
motion generated by the collision of particles of the fluid itself. Such disproportion of 
balance limits hence the motion, inducing persistent structures in the velocity flow.

On a mathematical level one of the main difficulties relies in giving a full description of
the perturbations induced by the external forces, which propagate at high speed. This
analysis can be performed by the aid of several tools, we chose here to adopt 
techniques characteristic of harmonic analysis, such as the analysis of the dispersive
properties of highly oscillating integrals.

All along the thesis we consider boundary-free, three-dimensional domains, and in 
specific we study only the case in which the domain in either the whole space or the 
periodic space . The models we consider are the following ones:

• Primitive equations with comparable Froude and Rossby number and zero vertical 
diffusivity,

• density-dependent stratified fluids in low Froude number regime,

• Weakly compressible and fast rotating fluid in a regime in which Mach and Rossby 
number are comparable.

We prove that these systems propagate globally-in-time data with low-regularity. No 
smallness assumption is ever made, specific constructive hypothesis are assumed 
on the initial data when required.

Keywords: Navier-Stokes equations, fluid dynamics, geophisical fluids, 
Strichartz estimates

Institut de Mathématiques de Bordeaux
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Acknowledgements

I’d like first and foremost to express my gratitude to my thesis advisor, Prof. Marius Paicu,
since he had the patience to teach me some beautiful mathematics in these last three years.
He taught me that mathematical knowledge is acquired through a mix of enthusiasm, curios-
ity, dynamism and a lot of hard work.

My gratitude goes as well to Prof. Daniele Del Santo, which honors me being present at
my defense. Since when I was a first year undergraduate student he became (unconsciously)
a mathematical and professional example to me. Then, later, he set the standard for what it
means to be a Man as well.

I’d like to thank Frédéric Charve and Didier Bresch, which accepted the onerous task to
read in detail my thesis. Their corrections and suggestions greatly improved the quality of
my work. I would like to thank also David Lannes and Franck Sueur, for being part of my
thesis jury, and for having been very kind colleagues in these past years.

My experience in France would not have had the same flavour without the friends I met
here: Marc, Pepe, Pippo, Robi and all the others which I’m forgetting to mention. I’d like to
express a special thought for Francesco, for not only he’s a brilliant scholar, but an incredibly
funny guy as well, and for Alessandro, loyal concert-partner in these Bordeaux years.

Obviously I cannot forget to express my gratitude to my parents and my brother. Their
support and good mood has been, and will always be, utterly essential to me.

At last I express my Love to Jeanne. You simply make things possible.

i





Contents

Acknowledgements i

1 Introduction (version française). 1
1.1 Formulation mathématique du problème. . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions de la thèse. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Équations primitives. . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Dynamique à nombre de Froude petit. . . . . . . . . . . . . . . . . 7

1.2.3 Fluides faiblement compressibles et tournantes. . . . . . . . . . . . 11

2 Introduction. 15
2.1 A gentle introduction to the main physical actors. . . . . . . . . . . . . . . 16

2.1.1 The rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 The centrifugal force. . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 The stratification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 A glimpse into continuum mechanics: budget laws. . . . . . . . . . . . . . 20

2.3 A closer look: models for incompressible fluids. . . . . . . . . . . . . . . . 22

2.3.1 The equations on the linear momentum. . . . . . . . . . . . . . . . 25

2.3.2 The energy budget. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 The Boussinesq approximation. . . . . . . . . . . . . . . . . . . . 28

2.3.4 Two dimensional dynamics: the geostrophic equilibrium. . . . . . . 29

2.3.5 Stratification effects. . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Final remarks on the simplification of the primitive equations (2.3.20). . . . 35

2.4.1 Informal derivation of the limit model in the regime ε→ 0. . . . . . 37

2.5 Non-dimensionalized Navier-Stokes inhomogeneous system. . . . . . . . . 38

2.6 The weakly compressible models. . . . . . . . . . . . . . . . . . . . . . . 41

2.7 (Some) Known results on Navier-Stokes equations and singular perturbation
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7.1 Navier-Stokes and Euler. . . . . . . . . . . . . . . . . . . . . . . . 45

iii



Contents

2.7.2 When ε goes to zero: singular perturbation problems. . . . . . . . . 46

2.7.3 Physical motivations. . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7.4 Mathematical formulation. . . . . . . . . . . . . . . . . . . . . . . 46

2.7.5 Functional framework. . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7.6 The Navier-Stokes-Coriolis equations. . . . . . . . . . . . . . . . . 51

2.7.7 Fluid dynamics with vanishing Mach number. . . . . . . . . . . . . 54

2.7.8 Primitive equations. . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.8 Contributions of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.8.1 Primitive equations. . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.8.2 Stratified fluids in low Froude number regime. . . . . . . . . . . . 64

2.8.3 Isentropic rotating fluids. . . . . . . . . . . . . . . . . . . . . . . . 69

3 Primitive equations with null vertical diffusivity. 73

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1.1 Notation and results. . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1.2 Anisotropic spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2 Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2.1 Elements of Littlewood-Paley theory. . . . . . . . . . . . . . . . . 84

3.2.2 Preliminary results on the Navier-Stokes equations with zero vertical
diffusivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3 Spectral analysis of the linear system an analysis of the Poincaré filtration
e−τPA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3.1 The global splitting of the limit bilinear form Q. . . . . . . . . . . 92

3.4 Proof of Theorem 3.1.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5 Weak convergence in the weak limit as ε→ 0. . . . . . . . . . . . . . . . . 100

3.6 Propagation of H0,s regularity. . . . . . . . . . . . . . . . . . . . . . . . . 108

3.6.1 The quasi-geostrophic part. . . . . . . . . . . . . . . . . . . . . . . 108

3.6.2 The oscillatory part. . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.6.3 Proof of Theorem 3.1.12 . . . . . . . . . . . . . . . . . . . . . . . 110

3.7 Convergence of the system as ε→ 0. . . . . . . . . . . . . . . . . . . . . . 111

3.8 The energy estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.8.1 Estimates for the global well-posedness of the limit system. . . . . 120

3.8.2 The bilinear form Q. . . . . . . . . . . . . . . . . . . . . . . . . . 127

iv



Contents

4 Dynamic of stratified fluids in low Froude number regime in space-periodic do-
mains. 131

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.1.1 A survey on the notation adopted. . . . . . . . . . . . . . . . . . . 134

4.1.2 Anisotropic spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.1.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.1.4 Physical derivation of the system (PBSε) and previous works on
symilar systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.1.5 Elements of Littlewood-Paley theory. . . . . . . . . . . . . . . . . 145

4.2 The linear problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.3 The filtered limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.3.1 Uniform bounds of the weak solutions and formal identification of
the limit system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.3.2 Oscillating behavior of V ε. . . . . . . . . . . . . . . . . . . . . . . 158

4.3.3 Proof of Lemma 4.3.3. . . . . . . . . . . . . . . . . . . . . . . . . 159

4.4 The limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
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Chapter 1

Introduction (version française).

Mathematics allows for no hypocrisy
and no vagueness.

Stendhal

L’objectif principal de cette thèse est l’étude de l’évolution de plusieurs phénomènes
physiques pouvant être décrits par une famille d’équations aux dérivées partielles paramé-
trées par des grandeurs physiques. En particulier on s’intéresse aux régimes asymptotiques
quand ces paramètres explosent.

Il existe une grande quantité de phénomènes physiques dans la dynamique est bien ap-
proximée, dans un premier temps, par la limite formelle de certains systèmes lorsque des
paramètres tendent à l’infini. Pour cette raison il est intéressant d’étudier ce type d’équations

Pour une construction physique physique complète des systèmes traités dans cette thèse
on renvoie le lecteur au Chapitre 2 et à la monographie [50].

L’étude des fluides géophysiques est une branche de la mécanique des fluides. Les mo-
dèles étudiés sont généralement obtenus grâce à une analyse multi-échelle sur des systèmes
qui décrivent l’évolution d’un fluide hors d’un système de référence planétaire, dans des
temps longs. Plusieurs simplifications mathématiques doivent être apportées à ce système
pour être étudié mathématiquement.

Les fluides étudiés peuvent avoir une grande variété de propriétés physiques (compres-
sibilité/incompressibilité, inhomogénéité, etc.), mais en général, les systèmes les décrivant à
une échelle planétaire partagent une caractéristique particulière : il y a une force extérieure
très forte (en magnitude) qui agit sur le fluide (force de Coriolis, poussée hydrostatique, per-
turbations acoustiques...). La présence d’une telle force extérieure comporte des propriétés
de rigidité sur l’écoulement du fluide, et donc contraint le mouvement. Une telle propriété
de rigidité peut donc être utilisée pour prouver que des modèles hydrodynamiques trois-
dimensionnels sont globalement bien posés dans des espaces invariantes par le changement

1



Chapter 1. Introduction (version française).

d’échelle
u (t, x) 7→ λu

(
λ2t, λx

)
.

1.1 Formulation mathématique du problème.

La méthodologie que l’on appliquera à l’étude de ce type de problème varie beaucoup se-
lon la géométrie du domaine considéré. Dans cette thèse on considère seulement les cas
de l’espace entier tridimensionnel R3, et d’un espace périodique tridimensionnel T3. On
considère donc le problème à perturbation singulière générique suivante:

∂tU
ε (t, x) + B (U ε (t, x) , U ε (t, x)) + A2U

ε (t, x)

+
1

ε
S (U ε (t, x)) = 0,

(t, x) ∈ R+ × Ω

U ε (t, x)|t=0 = U ε
0 (x) , x ∈ Ω.

(SPPε)

Dans (SPPε) la forme bilinéaire B est de la forme

B (u, v) =
3∑

i,j=1

qi,j (D) (u⊗ v) ,

où les coefficients qi,j sont des multiplicateurs de Fourier d’ordre un symétriques par rapport
à i et j. Par simplicité on peut toutefois identifier B avec la forme de transport B (u, v) ∼
u · ∇v. L’opérateur A2 est un opérateur différentiel elliptique d’ordre deux et S est un
perturbation linéaire et antisymétrique. On s’intéresse à l’analyse de solutions fortes de
(SPPε) quand ε → 0, le domaine Ω est toujours considéré comme R3 où T3, mais il peut
avoir des formes plus génériques. Quand le régime s’approche à celui de la limite ε→ 0 les
solutions du (SPPε) se "divisent" en deux parties:

• Ū ε qui est la projection de U ε sur kerS,

• Ũ ε = U ε − Ū ε qui est une partie fortement oscillante de la solution.

On peut donc étudier la décomposition Ū ε, Ũ ε tel que U ε = Ū ε + Ũ ε. Si on pro-
jette l’équation (SPPε) sur le noyau de l’opérateur pénalisé kerS l’équation résultante, qui
est satisfaite par Ū ε, peut changer sensiblement selon la structure même de l’espace kerS.
Néanmoins il y a une caractéristique qui reste invariante: la projection de la perturbation
linéaire singulière 1

ε
S est nulle, et donc l’équation satisfaite par Ū ε ne présente plus un com-

portement turbulent. L’écoulement pénalisé Ū ε est (généralement) un champ de vecteurs
tridimensionnel, mais il partage parfois des propriétés caractéristiques des écoulements bidi-
mensionnels. Par exemple, il est parfois possible définir un "tourbillon modifié" qui satisfait,
soit une équation de transport, soit une équation de transport-diffusion (comme dans le cas
d’Euler ou Navier-Stokes bidimensionnel). Cette propriété est la clé qui nous permettra
(éventuellement) de prouver que Ū ε, la partie pénalisée de la solution, est globalement bien
posée.

La partie à hautes oscillations Ũ ε doit être traitée différemment selon la géométrie de
l’espace:

2



1.2. Contributions de la thèse.

1. Ω = R3. L’équation satisfaite par Ũ ε présente encore une perturbation singulière
linéaire. Il est donc possible (pour cette partie seulement de la solution) d’appliquer
des outils d’analyse harmonique, à savoir les estimations de Strichartz, pour prouver
que cette partie converge fortement vers zéro.

2. Ω = T3. Dans ce cas-ci il peut y avoir une interaction constructive des interactions
fortement oscillantes (résonance). Une étude détaillée de l’ensemble de résonance
détermine des conditions géométriques qui doivent être satisfaites afin de ne pas avoir
d’interactions entre oscillations fortes, et donc simplifier l’équation satisfaite par Uosc.

1.2 Contributions de la thèse.

1.2.1 Équations primitives.

Les équations primitives décrivent l’évolution d’un fluide sous l’effet de la rotation de la terre
et de la poussée hydrostatique dans de grandes échelles spatio-temporelles. L’atmosphère
terrestre et les océans sont ici nos domaines de référence. Ces domaines rentrent dans la
classification de domaines minces, (longueur caractéristique verticale ∼ 10 km, longueur
caractéristique horizontale ∼ 103 km). Ce type de domaine est également déterminé par une
échelle spatiale verticale caractéristique bien plus petite de celle horizontale. Cette particu-
larité géométrique du domaine est à la base du phénomène suivant: les forces de frottement
dans la direction verticale sont négligeables par rapport à celles horizontales (voir [126] pour
une description plus détaillée) c’est à dire que l’on considère le système suivant:

∂tu
1,ε + uε · ∇u1,ε − νh∆hu

1,ε − 1

ε
u2 = −1

ε
∂1Φε

∂tu
2,ε + uε · ∇u2,ε − νh∆hu

2,ε +
1

ε
u1,ε = −1

ε
∂2Φε

∂tu
3,ε + uε · ∇u3,ε − νh∆hu

3,ε +
1

F ε
θε = −1

ε
∂3Φε

∂tθ
ε + uε · ∇θε − ν ′h∆hθ

ε − 1

F ε
u3,ε = 0

divuε = 0,

(uε, θε)|t=0 = (u0, θ0) = V0.

(PEAε)

Pour une interprétation physique du système (PEAε) on renvoie le lecteur au Chapitre 2.

On considère le suivante domaine périodique

T3 = R3

/
3∏
i=1

aiZ =
3∏
i=1

[0, 2π ai] .

Les paramètres ai, i = 1, 2, 3 doivent satisfaire la condition suivante:

Definition 1.2.1. On dit que un tore T3 satisfait la condition (P) si une des deux conditions
suivantes est satisfaite:
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Chapter 1. Introduction (version française).

1. T3 n’est pas résonant,

2. si T3 est résonante, le nombre de Froude F 2 est rationnel et

• soit a2
3/a

2
1 ∈ Q et a2

3/a
2
2 n’est pas un nombre algébrique de degré plus petit ou

égal à quatre,

• soit a2
3/a

2
2 ∈ Q et a2

3/a
2
1 n’est pas un nombre algébrique de degré plus petit ou

égal à quatre.

On renvoie à la Définition 3.1.6 pour une définition de domaine (périodique) résonante.

Le système (PEAε) est un système non-linéaire du type mixte parabolique-hyperbolique.
Les espaces de Sobolev anisotropes suivantes sont bien adaptés pour étudier Ce type de
problème:

Hs,s′
(
T3
)

=

{
u ∈ S

∣∣∣∣∣ ∑
n∈Z3

(
1 + |ňh|2

)s (
1 + |ň3|2

)s′ |ûn|2 <∞} ,
avec s, s′ ∈ R et ň = (n1/a1, n2/a2, n3/a3) avec ai, i = 1, 2, 3 paramètres du tore. Notam-
ment on étudie dans ce travail des espaces Hs,s′ (T3) avec s′ suffisamment grand pour avoir
une inclusion du type Hs′ (T1

v) ↪→ L∞ (T1
v).

Dans ces espaces il est possible prouver le théorème suivant

Theorem 1.2.2. Soit s > 1/2 et V0 ∈ H0,s un champ de vecteurs à divergence nulle. Il existe
donc un T = TV0 > 0 indépendant de ε et une unique solution V ε du système (PEAε) qui
appartient à l’espace

U ε ∈ C
(
[0, T ];H0,s

)
, ∇hU

ε ∈ L2
(
[0, T ];H0,s

)
.

Si en plus ‖V0‖H0,s 6 c min {νh, ν ′h} alors T = TV0 =∞.

Le système (PEAε) est égal à
∂tU

ε + uε · ∇U ε − DU ε +
1

ε
AU ε = −1

ε
∇Φε,

divuε = 0,

U ε|t=0 = (u0, θ0) ,

avec

D =


ν∆h 0 0 0

0 ν∆h 0 0
0 0 ν∆h 0
0 0 0 ν ′∆h

 , A =


0 −1 0 0
1 0 0 0
0 0 0 F−1

0 0 −F−1 0

 .

Définissons maintenant l’opérateur

P =

(
1−∆−1∇div 0

0 1

)
, (1.2.1)
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1.2. Contributions de la thèse.

qui agit comme l’opérateur de Leray sur les premières trois composantes et comme l’identité
sur la quatrième. On définit le groupe de transformations

L (τ) = e−τPA,

et l’inconnue auxiliaire

V ε = L
(
t

ε

)
P U ε,

qui satisfait l’équation suivante{
∂tV

ε +Qε (V ε, V ε)− DεV ε = 0,

V ε|t=0 = (u0, θ0) ,
(1.2.2)

où

Qε (V ε, V ε) = L
(
− t
ε

)
P
[
L
(
t

ε

)
V ε · ∇L

(
t

ε

)
V ε

]
,

DεV ε = L
(
− t
ε

)
DL
(
t

ε

)
V ε.

Il est possible de prouver (comme dans [79], [72] ou [125], situations que envisagerons plus
tard) que le système (1.2.2) admet une limite distributionnelle de la forme{

∂tV +Q (V, V )− DV = 0,

V |t=0 = (u0, θ0) .
(1.2.3)

La formulation explicite des formes limites Q,D est omise pour le moment.

Une caractéristique intéressante du système (1.2.3) est qu’il admet des solutions à la
Leray. Celle-ci n’est pas une conséquence de l’application du théorème de Leray au système
filtré (1.2.2). L’opérateur Dε fait défaut au terme diffusif verticale et donc l’espace anisotrope
de Sobolev H1,0 n’est pas compactement inclus dans L2, donc aucun argument de compacité
peut fonctionner dans ce cas.
Malgré ce manque d’inclusions compactes, on peut contourner la difficulté en remarquant
que l’opérateur quadratiqueQ (V, V ) agit localement dans l’espace de Fourier. En particulier
les modes qui donnent une interaction bilineaire sont les solutions d’un équation polynomiale
du type

P (X) = 0,

avec X ∈ Z9. En définissant X = (X1, X
′) et en fixant X ′ ∈ Z8 on se retrouve avec

un équation unidimensionnelle du type P (X1, X
′) = 0 dont les solutions peuvent s’écrire

de la forme X1 (P,X ′), et naturellement elles sont en nombre fini en vertu du théorème
fondamentale de l’algèbre. Il est donc possible appliquer le résultat prouvé dans [112] pour
déduire que

|X1 (P,X ′)| 6 KP (X ′) ,

ou KP est une fonction polynômiale de la variable X ′.
Cette localisation anisotrope des racines nous permet de transformer une dérivé verticale ∂3

dans un multi-indice
(
C1 ∂

N1
1 , C2 ∂

N2
2

)
, avec, éventuellement C1, C2, N1, N2 grands. Cette

observation clé nous permet donc de prouver le théorème suivant [137]

5



Chapter 1. Introduction (version française).

Theorem 1.2.3. Soit T3 un tore tridimensionnel, considérons U0 ∈ L2 (T3) un champ de
vecteurs à divergence nulle tel que Ω0 = −∂2u

1
0 + ∂1u

2
0 − F∂3θ0 ∈ L2 (T3). Il existe donc

une solution distributionnelle V de (1.2.3) telle que

V ∈L∞
(
R+;L2

(
T3
))

∇hV ∈L2
(
R+;L2

(
T3
))
,

et que satisfait, pour chaque t > 0, l’estimation

‖V (t)‖2
L2(T3) + c

∫ t

0

‖∇hV (s)‖2
L2(T3) ds 6 C ‖U0‖2

L2(T3) ,

avec c = min {νh, ν ′h} > 0.

Il est possible d’étendre le résultat du Théorème 1.2.3 au cadre des solutions fortes si la
donnée initiale est plus régulière (dans le sens de régularité anisotrope) et bien préparé.

Theorem 1.2.4. Soit T3 un tore tridimensionnel qui satisfait la condition (P) et U0 ∈ H0,s

un champ vecteur à divergence nulle et à moyenne horizontale nulle tel que Ω0 ∈ H0,s, pour
s > 1 et F 6= 1. Le système limite (1.2.3) admet une solution globale tel que

V ∈L∞
(
R+;H0,s

)
∇hV ∈L2

(
R+;H0,s

)
,

et qui satisfait l’estimation suivante

‖V (t)‖2
H0,s + c

∫ t

0

‖∇hV (s)‖2
H0,s 6 E

(
‖U0‖2

H0,s

)
,

où E c’est une fonction réelle bornée sur les ensembles bornés. La solution U est unique
dans la topologie de L∞ (R+;H0,σ) ∩ L2 (R+, H

1,σ) pour σ ∈ [−1/2, s).

À ce stade, on peut donc s’interroger sur la question du comportement de solutions du
(PEAε) par rapport aux solutions (maintenant globales) de (1.2.3) quand ε est très petit.

Theorem 1.2.5. Soit T3 ⊂ R3 un tore qui satisfait la condition (P), Ω0 = −∂2u
1
0 + ∂1u

2
0 −

F∂3θ0 ∈ H0,s, U0 ∈ H0,s de moyenne horizontale nulle, alors

lim
ε→0

(
U ε − L

(
t

ε

)
V

)
= 0 dans C

(
R+;H0,σ

)
lim
ε→0
∇h

(
U ε − L

(
t

ε

)
V

)
= 0 dans L2

(
R+;H0,σ

)
pour σ < s et V c’est la seule solution du système (1.2.3).
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1.2. Contributions de la thèse.

1.2.2 Dynamique à nombre de Froude petit.

Supposons qu’on néglige l’effet de la rotation terrestre dans les équations (PEAε). La pous-
sée hydrostatique est donc la seule force qui agit sur le fluide. Etant donné qu’on s’intéresse
aux fluides stratifiés sans rotation, cela n’a plus de sens de considérer des grandes échelles
spatiales (le nombre d’Ekman devient donc proche de 1 et non plus négligeable) mais on
considère toujours une dynamique à temps longs. Un tel fluide est décrit par les équations

∂tu
ε + uε · ∇uε − ν∆uε − 1

ε
θε−→e 3 =− 1

ε
∇Φε,

∂tθ
ε + uε · ∇θε − ν ′∆θε +

1

ε
u3,ε = 0,

divuε = 0,

(uε, θε)|t=0 = U0 = (u0, θ0) .

(PBSε)

Pour une description complète du système (PBSε) on renvoie le lecteur au Chapitre 5. Il est
donc clair que (PBSε) peut s’écrire sous la forme

∂tU
ε + U ε · ∇U ε − DU ε +

1

ε
AU ε = −1

ε

(
∇Φε

0

)
,

divuε = 0,

U ε = (uε, θε) ,

(PBSε)

avec

A =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 , D =


ν∆ 0 0 0
0 ν∆ 0 0
0 0 ν∆ 0
0 0 0 ν ′∆

 .

Le cas de l’espace périodique.

Il est donc possible de définir l’opérateur P comme dans (1.2.1) et la variable auxiliaire

V ε = L
(
t

ε

)
U ε.

La fonction V ε satisfait donc l’équation{
∂tV

ε +Qε (V ε, V ε)− DεV ε = 0,

V ε|t=0 = (u0, θ0) ,
(1.2.4)

où

Qε (V ε, V ε) = L
(
− t
ε

)
P
[
L
(
t

ε

)
V ε · ∇L

(
t

ε

)
V ε

]
,

DεV ε = L
(
− t
ε

)
DL
(
t

ε

)
V ε.
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Chapter 1. Introduction (version française).

On peut alors prouver que le système (2.8.2) converge (dans un sens distributionnel) vers{
∂tV +Q (V, V )− DV = 0,

V |t=0 = (u0, θ0) .
(1.2.5)

La définition explicite des opérateurs Q, D est omise pour le moment.

Il est naturel se demander dans quel sens (1.2.4) converge vers (1.2.5). L’opérateur du
filtrage L transforme le système (PBSε) en (1.2.4) : le dernière ne présente plus un opéra-
teur singulier, donc il est possible trouver des bornes uniformes sur la suite (∂tV

ε)ε>0 dans
l’espace Lploc

(
R+;H−N

)
avec N suffisamment grand et p ∈ [2,∞]. Des arguments standard

de compacité comme le lemme de Aubin-Lions [4] prouvent qu’à extraction prés il y a la
convergence

V ε ε→0−−→ V in L2
loc

(
R+;L2

(
T3
))
.

Malheureusement ce type de raisonnement ne prouve pas que l’interaction bilinéaireQε (U ε, U ε)
converge vers une interaction limite Q (U,U). Ce résultat peut être prouvé au moyen d’une
application du théorème de phase non-stationnaire. Pour plus de détails on renvoi au Cha-
pitre 4.

On considère U0 = (u0, θ0) de moyenne horizontale nulle, i.e.

1

|T2
h|

∫
T2
h

U0 (yh, x3) dyh = 0.

La moyenne globale des champ de vecteurs est toujours considérée comme nulle.

Définissons

Ū0 = ∆−1
h


−∂2

∂1

0
0

(−∂2u
1
0 + ∂1u

2
0

)
, Uosc,0 = U0 − Ū0,

le premier résultat qui est prouvé est le suivant :

Theorem 1.2.6. Soit V la solution limite distributionnelle de (1.2.5), alors V peut être écrit
comme

V (x) = V̄ (xh, x3) + Vosc (xh, x3) ,

où V̄ , Vosc sont respectivement des solutions faibles des systèmes suivantes{
∂tv̄

h + v̄h · ∇hv̄
h − ν∆v̄h = −∇hp̄,

v̄h
∣∣
t=0

= ūh0 ,
(1.2.6){

∂tVosc + 2Q
(
V̄ , Vosc

)
− (ν + ν ′) ∆Vosc = 0,

Vosc|t=0 = Uosc,0,
(1.2.7)

avec Q définie dans (4.3.2) pour presque tous (a1, a2, a3) ∈ R3 paramètres du tore T3 =∏
i [0, 2π ai].
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1.2. Contributions de la thèse.

La forme bilinéaire limiteQ dans (1.2.5) est bien définie seulement pour des interactions
bilinéaires dont les deux premières composantes sont de moyenne horizontale nulle. Il est
donc important de prouver qu’à la limite ε → 0 la moyenne horizontale de Qε (U ε, U ε) est
nulle, au moins au sens de distributions. Nous prouvons donc le résultat suivant:

Lemma 1.2.7. Au sens de distributions, la limite

lim
ε→0

(∫
T2
h

(Qε (U ε, U ε))h dxh, 0, 0

)
= 0,

est vraie.

L’avantage d’étudier (1.2.5) comme superposition du systèmes (1.2.6)–(1.2.7) réside
dans le fait que le système (1.2.5) présente les mêmes difficultés que les equations de Navier-
Stokes tridimensionnelles pour la propagation de le régularité des interactions bilinéaires
dans Q. Les systèmes (1.2.6)–(1.2.7) sont respectivement un système bidimensionnel de
Navier-Stokes et un système linéaire: ça nous permet de prouver le résultat suivante:

Theorem 1.2.8. Soit ūh0 ∈ L∞v (Hσ
h ) et ∇hū

h
0 ∈ L∞v (Hσ

h ) où σ > 0, alors V̄ , solution faible
de (1.2.6) est globalement bien définie dans R+, et appartient à l’espace

v̄h ∈ C
(
R+;Hs

(
T3
))
∩ L2

(
R+;Hs+1

(
T3
))
, s > 1/2,

et pour chaque t > 0 l’inégalité suivante est vérifié:∥∥v̄h (t)
∥∥2

Hs(T3)
+ ν

∫ t

0

∥∥∇v̄h (τ)
∥∥2

Hs(T3)
dτ 6 E1 (U0) .

La fonction E1 est définie comme le membre de droit de (4.5.2).
Soit Vosc une solution faible de (1.2.7), alors Vosc est globalement bien posé et

Vosc ∈ C
(
R+;Hs

(
T3
))
∩ L2

(
R+;Hs+1

(
T3
))
,

pour tout s > 1/2. Pour chaque t > 0 on a la borne suivante:

‖Vosc (t)‖2
Hs(T3) +

ν + ν ′

2

∫ t

0

‖∇Vosc (τ)‖2
Hs(T3) dτ 6 E2 (U0) ,

la fonction E2 est définie dans (4.5.19).

Le dernier théorème est un résultat de convergence forte pour les solutions de (PBSε)
dans le régime ε→ 0 aux solutions de (1.2.5):

Theorem 1.2.9. Soit U0 dans Hs (T3) pour s > 1/2, si ε > 0 suffisamment petit (PBSε) est
globalement bien définie dans C (R+;Hs (T3))∩L2 (R+;Hs+1 (T3)), et, si V est la solution
forte globale de (1.2.5), alors

U ε − L
(
− t
ε

)
V = o (1) ,

dans C (R+;Hs (T3)) ∩ L2 (R+;Hs+1 (T3)).
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Chapter 1. Introduction (version française).

Le cas de l’espace entier.

Dans le cas de l’espace entier, motivé par le travail dans l’espace périodique, on considère le
système suivant : 

∂tū
h + ūh · ∇hū

h − ν∆ūh = −∇hp̄

divh ūh = 0,

ūh
∣∣
t=0

=

(
−∂2

∂1

)
∆−1
h

(
−∂2u

1
0 + ∂1u

2
0

)
= ūh0 .

(1.2.8)

Le système (1.2.8) est un écoulement tridimensionnel (ūh dépend de toutes les variables
spatiales) qui présente des caractéristiques de fluides en dimension deux. Par exemple le
"tourbillon horizontal"

ωh = −∂2ū
1 + ∂1ū

2,

peut décrire le champ vitesse au travers de la relation de Biot-Savart bidimensionnelle

ūh =

(
−∂2

∂1

)
∆−1
h ωh,

et satisfait l’équation de transport-diffusion{
∂tω

h + ūh · ∇hω
h − ν∆ωh = 0,

ωh
∣∣
t=0

= −∂2u
1
0 + ∂1u

2
0 = ωh0 .

(1.2.9)

C’est bien sûr cette structure particulière qui nous permet de prouver le résultat suivant
d’existence globale dans des espaces à régularité faible:

Theorem 1.2.10. Soit ūh0 ∈ L2 (R3) ∩ Ḣs (R3), s > 0 tel que ωh0 ∈ L2 (R3), il existe donc
une solution forte globale de l’équation (1.2.8) dans l’espace

ūh ∈ L∞
(
R+; Ḣs

(
R3
))
∩ L2

(
R+; Ḣs+1

(
R3
))
,

telle que, pour chaque t > 0

∥∥ūh (t)
∥∥2

Ḣs(R3)
+ ν

∫ t

0

∥∥∇hū
h (τ)

∥∥2

Ḣs(R3)
dτ

6 C
∥∥ūh0∥∥2

Ḣs(R3)
exp

{
CK2

ν

(∥∥ūh0∥∥4

L2(R3)
+
∥∥ωh0∥∥4

L2(R3)

)}
. (1.2.10)

Si s > 1/2 la solution ūh est de plus unique dans L∞
(
R+; Ḣs (R3)

)
∩L2

(
R+; Ḣs+1 (R3)

)
.

La question de convergence en régime de nombre de Froude petit se pose donc naturel-
lement, en suivant les travaux [42], [38], [28] on s’attend à ce que

U ε + (terme perturbatif en ε) ε→0−−→ Ū =
(
ūh, 0, 0

)
.
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1.2. Contributions de la thèse.

Theorem 1.2.11. Soit U0 ∈ L2 (R3) ∩ Ḣ 1
2 (R3) , ωh0 ∈ L2 (R3), alors

U ε −W ε −
(
ūh, 0, 0

)ᵀ ε→0−−→ 0, dans l’espace L∞
(
R+; Ḣ

1
2

(
R3
))
,

∇
(
U ε −W ε −

(
ūh, 0, 0

)ᵀ) ε→0−−→ 0, dans l’espace L2
(
R+; Ḣ

1
2

(
R3
))
,

avec U ε solution forte locale unique de (PBSε) et W ε, ūh unique solution globale de
∂tW

ε − DW ε +
1

ε
PAW ε =


0
0
−∂3p̄

0

 ,

divwε = 0,

W ε|t=0 = (P− + P+)U0,

et (1.2.8).
Les opérateurs P0,P± sont les projections sur les espaces CE0,CE±, où E0, E± sont les
vecteurs propres à divergence nulle de Lε = PA − εD. La solution forte U ε de (PBSε) en
particulier est globale et est dans l’espace

L∞
(
R+; Ḣ

1
2

(
R3
))
∩ L2

(
R+; Ḣ

3
2

(
R3
))
.

1.2.3 Fluides faiblement compressibles et tournantes.

La description physique d’un modèle décrivant le mouvement d’un fluide faiblement com-
pressible sujet à une force de rotation très intense est décrit dans la Partie 2.6. L’équation
dérivée est

∂t
(
ρε,θuε,θ

)
+ div

(
ρε,θuε,θ ⊗ uε,θ

)
+

1

θ2
∇P

(
ρε,θ
)

+
1

ε
e3 ∧

(
ρε,θuε,θ

)
= 0

∂tρ
ε,θ + div

(
ρε,θuε,θ

)
= 0(

ρε,θ, uε,θ
)∣∣
t=0

=
(
ρε,θ0 , uε,θ0

)
,

où ε est le nombre de Rossby et θ celui de Mach. Considérons le régime particulier ε = θ,
et introduisons l’hypothèse de faible compressibilité

ρε = 1 + εbε.

La densité ρε est donc une petite variation autour d’un état constant. C’est le cas par exemple
dans les océans et dans la troposphère.

Considérons encore une pression barotropique de la forme

P (ρε) = A ργ, A > 0, γ > 1,

et définissons γ = (γ − 1)/2. Avec la substitution

1 + εbε =
(4γA)1/2

γ − 1
(ρε)γ ,

11



Chapter 1. Introduction (version française).

le système considéré devient
∂tu

ε +
1

ε

(
γ∇bε + e3 ∧ uε

)
+ uε · ∇uε + γ bε∇bε = 0

∂tb
ε +

γ

ε
divuε + uε∇bε + γ bεdivuε = 0

(bε, uε)|t=0 = (b0, u0) .

(1.2.11)

Le système (1.2.11) peut s’écrire sous la forme compacte ∂t

(
uε

bε

)
− 1

ε
B
(
uε

bε

)
+

(
uε · ∇uε + γ bε∇bε
uε · ∇bε + γ bεdivuε

)
= 0,

(uε, bε)|t=0 = (u0, b0) ,

(1.2.12)

avec B défini comme

B =


0 1 0 −γ∂1

−1 0 0 −γ∂2

0 0 0 −γ∂3

−γ∂1 −γ∂2 −γ∂3 0

 . (1.2.13)

On peux encore modifier le système (1.2.12) en écrivant la nonlinearité sous la forme

(
uε · ∇uε + γ bε∇bε
uε · ∇bε + γ bεdivuε

)
= A (U,D)U =


uε · ∇ 0 0 γbε∂1

0 uε · ∇ 0 γbε∂2

0 0 uε · ∇ γbε∂3

γbε∂1 γbε∂2 γbε∂3 uε · ∇

( uε

bε

)
.

(1.2.14)
En se basant sur ces considérations, on peut donc se limiter à l’étude du système ∂tU −

1

ε
BU +A(U,D)U = 0,

U |t=0 = U0 = (u0, b0) .
(1.2.15)

Le système sous la forme (1.2.15) est un système hyperbolique symétrique avec pertur-
bation antisymétrique, il est donc avantageux de travailler avec un système dans cette forme.

La donnée initialeU0 ∈ Hs (R3) , s > 5/2 est tridimensionnelle et donc, grâce à l’analyse
faite dans [68] qui montre que les éléments du noyaux de B sont des champ de vecteurs bi-
dimensionnels, on s’attend à un résultat de dispersion complète.

Pour prouver cet résultat-ci on va définir

U ε = (uε, bε) = Ū ε + Ũ ε

12



1.2. Contributions de la thèse.

où Ū ε =
(
uε, b

ε
)

et Ũ ε =
(
ũε, b̃ε

)
sont respectivement solutions des systèmes suivants ∂tŪ

ε − 1

ε
BŪ ε = 0

Ū ε
∣∣
t=0

= Ψr,R (D) (u0, b0)
, (1.2.16)


∂tŨ

ε − 1

ε
BŨ ε +A(U,D)U = 0

Ũ ε
∣∣∣
t=0

= (1−Ψr,R (D)) (u0, b0) .
(1.2.17)

L’opérateur Ψr,R est un opérateur de troncature de fréquences, où les paramètres 0 <
r < R seront choisis en fonction du paramètre ε. En particulier Ψr,R est une fonction test
(dans l’espace de Fourier) qui est supporté dans C r

2
,2R et qui est identiquement égale à un

sur l’ensemble Cr,R. On est forcé d’avoir une dépendance explicite de r et R en fonction
de ε parce que le système (1.2.15) est du type hyperbolique. On ne peut pas donc absorber
plusieurs termes comme dans le cas parabolique. Le système (1.2.16) est bien sûr linéaire,
homogène et localisé en fréquences, il est donc possible prouver le suivant résultat dispersif:

Theorem 1.2.12. Soit q ∈ [2,+∞] et p > 4q
q−2

. Pour tout U0 ∈ L2 (R3), le système (1.2.16)
admet une solution globale Ū ε telle que,∥∥Ū ε

∥∥
Lp(R+;Lq(R3))

6 CR
3
2
− 3
q

+ 4
p r−

2
p ε

1
p ‖U0‖L2(R3) .

Au contraire le système (1.2.17) est fortement non-linéaire, mais on peut quand même
utiliser la symétrie de l’opérateur A et les propriétés dispersives de Ū ε pour déduire un
résultat d’existence locale dans l’espace L∞ ([0, T ];Hs) aves T indépendant de ε. Un fois
que ce résultat est établi, on s’intéresse au contrôle du temps de vie maximale de Ũ ε.

Theorem 1.2.13. Soient s > 5/2, s0 > 0, 1 < p < 2 et soit la donnée initiale

U0 ∈ Ys,s0,p = Hs+s0
(
R3
)
∩ L2

(
R2
h;L

p
(
R1
v

))
∩ Lp

(
R2
h;L

2
(
R1
v

))
.

Il existe un temps T ?ε > 0 et une unique solution U ε = (uε, bε) de (2.8.16) qui satisfont

U ε ∈ L∞
(
[0, T ?ε ];Hs

(
R3
))
∩ C

(
[0, T ?ε ];Hs

(
R3
))
,

avec T ?ε qui explose quand ε converge vers zéro. De façon plus détaillé, il existe un constante
C > 0 et α > 0 tel que

T ?ε >
C

C(U0) εα
,

et C(U0) est une constante qui dépende de la donnée initiale seulement.

L’espace Ys,s0,p est un espace de Banach avec la norme

‖u‖s,s0,p = max
{
‖u‖Hs+s0 , ‖u‖L2

hL
p
v
, ‖u‖LphL2

v

}
.

On peut donc maintenant définir la constante C (U0), de la façon suivante:

C(U0) = max
{
‖U0‖s,s0,p , ‖U0‖2

s,s0,p

}
.
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Chapter 2

Introduction.

But in my opinion, all things in nature
occur mathematically.

René Descartes

The geophysical fluid dynamic is a discipline which studies the dynamic of naturally oc-
curring flows on a large scale. The physical and mechanical theory on which the study of
geophysical fluids builds its roots is general enough to describe motions in both liquid and
gas phase, but it focuses on the dynamical properties which are characteristic of large-scale
motions.

The present section aims to give a self-contained physical motivation of the study of geo-
physical fluid systems. The will is to provide a simple chapter explaining the most relevant
physical features of geophysical fluids, yet detailed enough to develop a completely self-
contained theory without any accessory knowledge of advanced mathematics.
The reader which is interested in a more comprehensive discussion on physical motivations
of geophysical fluids is referred to the beautiful monograph [50] and references therein,
which was as well the main reference in writing this introduction.

The variety of physical phenomena which can be described in terms of geophysical flu-
ids equations is vast and includes physical manifestations which may appear very far related;
such as the motion in the Earth’s interior responsible of the dynamo effect and the tendency
of oceanic currents to move West-Eastwards. We shall in any case consider geophysical dy-
namics only in the restricted case of liquid and gases motion on a large scale.
Two main ingredients distinguish the discipline from traditional fluid mechanics: the effects
of rotation and those of stratification. The predominant influence of one, the other, or both
give rise to substantially different dynamics.
Notably the physical occurrence characterizing the motion of a geophysical fluid is the rota-
tion of the Earth around its axis. Such rotation inevitably modifies the motion of any particle
on the Earth, and fluids are not immune to such effect. This variation on the velocity flow
is twofold: in one stance it forces a particle of a fluid to move toward the outer space, in
a second stance it induces a variation of the velocity perpendicularly to the direction of the
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Chapter 2. Introduction.

motion at a time t. These accelerations can be interpreted, thanks to Newton’s second law of
dynamic, as forces. These are respectively the centrifugal force and the Coriolis force (for
a detailed explanation on the Coriolis force, see [140]). Despite the fact that the centrifugal
force is the more palpable of the two on a planetary scale its effect is irrelevant, on the other
hand the Coriolis force is fundamental in determining the dynamics of such motions.

The Coriolis force has a rather bizarre effect on the overall dynamic of a fluid: if the
magnitude of the force is sufficiently large and the fluid homogeneous it constraints the mo-
tion to be strictly columnar. This tendency of a rotating fluid to displace himself in vertical
homogeneous columns is generally known as Taylor-Proudmann theorem. Taylor-Proudman
theorem was first derived by Sidney Samuel Hough (1870-1923), a mathematician at Cam-
bridge in the work [83], but it was named after the works of G.I. Taylor [141] and Joseph
Proudman [130].

The stratification instead is present only in non-homogeneous fluids. Gravity is the cause;
it tends to lower regions of the fluid with higher density and raise regions with lower density.
On a dynamical point of view this mechanism is easily explained: a naturally occurring mo-
tion, in absence of external forces, tends to stabilize in a configuration in which the potential
of the forces acting on it is minimal, in such configuration the motion stops. It is hence nat-
ural to imagine that a fluid which is composed of horizontally stacked layers of decreasing
density is not affected any more (dynamically) by gravity.

2.1 A gentle introduction to the main physical actors.

Let us give a first glimpse in the main physical forces which constrain the motion at a macro-
scopic scale: the rotation and the gravitational stratification.

2.1.1 The rotation.

As we mentioned above the rotation of the Earth around his axis (Coriolis force) is one of
the most relevant constraint in the motion of a geophysical flow. This fact is completely
counter-intuitive for an observer placed on the surface of the Earth: the relative location with
respect to a certain reference system trick us to suppose that we live in an inertial reference
system. However, in a sufficiently large lifespan (say a week), (almost) any relative motion
performed on the surface of the Earth is negligible with respect to the relative motion induced
by the rotation of the planet in the space.

A rather important question when it comes to study rotating fluids is to determinate a
reasonable criterion in order to describe the influence of the rotation on the motion. To
answer this question, we must first define the ambient rotation rate, which we denote by Ω
and define as:

Ω =
2π radians

time of revolution
.
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2.1. A gentle introduction to the main physical actors.

Let us take in consideration a time-scale T comparable or bigger to the characteristic time of
rotation. We define the dimensionless quantity

ω =
time of one revolution

motion time-scale
=

2π/Ω

T
=

2π

Ω T
.

We shall use implicitly the following criterion: if ω is comparable to the unity or smaller
(ω . 1) then the rotation should be taken in consideration. On the earth, loosely speaking,
if the characteristic time-span T is bigger than 24 hours than the rotation is not any more a
negligible effect in the relative motion of a fluid for an observer situated outside the planet.

The limit of the above criterion resides in the fact that it depends exclusively on a ratio
between characteristic rotation time and observation time. If a motion occur in a short time-
scale but it is bestowed with a large spatial imprint the rotation effects shall be non-negligible
again. Whence we define a second more adapted criterion : we consider the velocity and
length scales of the motion, and we denote them respectively as U and L. Naturally, if a
particle traveling at the speed U covers the distance L in a time longer than or comparable
to a rotation period, we expect the trajectory to be influenced by the ambient rotation, and so
we write

ε =
time of one revolution

time taken by particle to cover distance L at speed U
,

=
2π/Ω

L/U
=

2π U

Ω L
.

(2.1.1)

Hence we can replace the criterion ω . 1 above with the more general ε . 1 in order to
determinate whether the rotation has a strong influence on the motion.

The one above is a very brief introduction which explains how, in some determinate, sim-
plified models, the rotation may become a significant factor once large space- and time-scales
are considered. Let us give now hence a quick glimpse to the mathematical consequences of
the Coriolis force in some inertial1 reference system.

To facilitate the mathematical developments, let us first investigate the two-dimensional
case. Let theX– and Y –axes form the inertial framework of reference and the x– and y–axes
be those of a framework with the same origin but rotating at the angular rate Ω (defined as
positive in the trigonometric sense). The correspondent unit vectors will be denoted as (I,J)
and (i, j) respectively. At any time t, the rotating x–axis makes an angle Ω t with the fixed
X–axis. It follows that

i = + I cos (Ω t) + J sin (Ω t) , I = + i cos (Ω t)− j sin (Ω t) ,

j = − I sin (Ω t) + J cos (Ω t) , J = + i sin (Ω t) + j cos (Ω t) .
(2.1.2)

Let us define the position vector r. In the two reference systems it is defined as

r = XI + Y J,

= xi + yj.

1By inertial we mean a reference system which is not rotating with the planet, i.e. a reference system which
is fixed with respect to the distant stars, and whose origin is fixed for practical purposes at the center of the
earth.
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Chapter 2. Introduction.

The coordinate functions (X, Y ) and (x, y) are related by

x = +X cos (Ω t) + Y sin (Ω t) ,

y = −X sin (Ω t) + Y cos (Ω t) .

It suffice hence to differentiate in time the above relations in order to deduce the velocity
field (ẋ, ẏ) = (u, v)

u = ẋ = + Ẋ cos (Ω t) + Ẏ sin (Ω t) + Ωy,

v = ẏ = − Ẋ sin (Ω t) + Ẏ cos (Ω t)− Ωx,
(2.1.3)

and indeed

u = ẋ i + ẏ j,

U = Ẋ I + Ẏ J,

whence using the relations (2.1.2) we can write the absolute velocity in terms of the rotating
unit vectors

U =
(

+Ẋ cos (Ω t) + Ẏ sin (Ω t)
)

i +
(
−Ẋ sin (Ω t) + Ẏ cos (Ω t)

)
j, (2.1.4)

= U i + V j.

Comparing hence (2.1.3) and (2.1.4) we easily deduce

U = u− Ωy, V = v + Ωx. (2.1.5)

In three-dimensions the procedure is very similar and we deduce that

U = u + Ω ∧ r, (2.1.6)

whence, considering that the rotation is homogeneous (Ω = Ω K is a constant vector, in
particular it is time-independent). This implies that taking a time derivative of a vector with
respect to the inertial framework is equivalent to applying the operator

d
dt

+ Ω∧,

in the rotating framework of reference. From the equation above we hence deduce that

d
dt

U =
d
dt

u + 2 Ω ∧ u +
1

2
∇ (|Ω ∧ r|) ,

the term 2 Ω ∧ u represents the Coriolis force.

2.1.2 The centrifugal force.

The centrifugal force is a concept of which everybody of us is familiar with thanks to direct
experience. Unlike the Coriolis force, which is proportional to the velocity, the centrifugal
force depends solely on the rotation rate and the distance of the particle to the rotation axis.
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2.1. A gentle introduction to the main physical actors.

A particle subjected to the centrifugal force has the tendency to move radially, outward. Yet
we do not experience in our everyday life a force which displaces bodies to the outer space:
Newton first principle applies again, and gravity exerts an equal and contrary force on the
body.
This is not to say that such force has really no effect; it flattens planets as well as any other
rotating elastic body distorting the geometry: the equatorial radius is (slightly) larger than
the polar one. On the earth, for example, the distortion is very slight, because gravity by
far exceeds the centrifugal force; the terrestrial equatorial radius is 6378 km, slightly greater
than its polar radius of 6357 km.

2.1.3 The stratification.

The next question concerns the condition under which stratification effects are expected to
play an important dynamical role. Geophysical fluids are generally miscible fluids with
varying density. Gravity acts on masses hence it affects strongly the region of a fluid with
higher density: it tends to dispose a fluid in stacks whose density is decreasing in height. In a
situation of perfect dynamical stability gravity tends to minimize the gravitational potential,
hence a configuration in which the density profile is decreasing is a dynamical attractor.
The intrinsic motion of a fluid however can disturb such configuration lowering hi-density
regions or lifting low-density ones, increasing the potential energy of the fluid. Being the
system conservative the increase of potential energy is performed at the expense of kinetic
energy, slowing the flow. On occasions, obviously, the opposite happens.
If ∆ρ is the density variations in the fluid andH is its height scale, a prototypical perturbation
to the stratification consists in raising a fluid element of density ρ0 + ∆ρ over the height H
and lowering a lighter fluid element of density ρ0 over the same height. The corresponding
change in potential energy, per unit volume, is

(ρ0 + ∆ρ) gH − ρ0gH = ∆ρ gH.

With a typical fluid velocity U , the kinetic energy available per unit volume is 1
2
ρ0U

2. We
construct the relative comparative energy ratio

σ =
1
2
ρ0U

2

∆ρ gH
.

Let us give a sense of the energy ratio σ.

• σ � 1: in this case the kinetic effects are insignificant respect to the stratification, and
hence the variation of the velocity does not perturbs the stratification which constrains
greatly the flow.

• σ ≈ 1: a typical potential-energy increase necessary to perturb the stratification con-
sumes a sizable portion of the available kinetic energy, thereby modifying the flow
field substantially. Stratification is then important.

• σ � 1:potential-energy modifications occur at very little cost to the kinetic energy,
and stratification hardly affects the flow.

19



Chapter 2. Introduction.

In conclusion we can hence say that the gravitational stratification of a flow plays an im-
portant role in the evolution if σ . 1. The quantity σ is to stratification what the number ε
defined in (2.1.1), is to rotation.
Indeed studying the motion of a fluid at a planetary scale it may happen that rotation and
stratification effects are both relevant at the same time, i.e. the dimensionless quantities
ε ≈ 1 and σ ≈ 1 and yields the following relations among the various scales:

L ≈ U

Ω
, U ≈

√
∆ρ

ρ0

gH,

Elimination of the velocity U yields a fundamental length scale:

L ≈ 1

Ω

√
∆ρ

ρ0

gH.

Experimental verifications give us the following characteristic scales

Latmosphere ≈ 500 km, Locean ≈ 60 km,
Uatmosphere ≈ 30 m/s, Uocean ≈ 4 m/s.

(2.1.7)

2.2 A glimpse into continuum mechanics: budget laws.

Fluids, as well as any object in the universe, are subjected to motions. The concept of motion
is very intuitive and well understood by anybody, but a mathematical formulation of such
natural concept may not be straightforward. We shall adopt the following definition

Definition 2.2.1. Let Ω ⊂ Rd, a motion is a C3 map ψ : R+ × Ω → Rd such that for every
t ∈ R+, x ∈ Ω the map ψt = ψ (t, ·) is an affine transformation. We define

• Ωt = ψ (t,Ω) as the set which the body occupies at time t,

• T = {(t, x) : t ∈ R+, x ∈ Ωt} is the set of trajectories,

• the map Ψt = ψ−1
t : Ωt → Ω is called the reference map or back-to-label map,

• the velocity flow is defined as u (t, ψ (t, x)) = d
dtψt = ∂tψ (t, x).

We shall many times refer to a generic motion ψ as a flow.

One of the most important properties of bodies is that they possess mass. We here con-
sider bodies whose mass is distributed continuously. No matter how severely such a body
is deformed, its mass is the integral of a density field. Let us make these concept formal, a
reference density is a function

ρ0 : Ω→ R+,

and the mass of the body Ω is defined as

m (Ω) =

∫
Ω

ρ0 (x) dV (x) .
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2.2. A glimpse into continuum mechanics: budget laws.

Indeed the deformed body Ωt possesses as well a mass, and we assume that, no matter
the deformation ψt, the mass is an invariant of the motion, i.e.

m (Ωt) = m (Ω) , ∀ t > 0,

and since the mass can always be described as the integral of a density field

m (Ωt) =

∫
Ωt

ρ (t,X) dV (X) .

We want to express such integral in terms of the space variable x ∈ Ω, indeed

X = Xt = ψ (t, x) ,

hence

m (Ωt) =

∫
Ω

ρ (t, ψ (t, x)) dV (ψ (t, x)) ,

=

∫
Ω

ρ (t, ψ (t, x)) det [∇xψ (t, x)] dV (x) .

Since Ω is arbitrary we can hence deduce the following relation which describes the density
of the deformed body Ωt in terms of the reference density ρ0 :

ρ0 (x) = ρ (t, ψ (t, x)) det [∇xψ (t, x)] .

Being the mass constant we deduce hence that

d
dt

∫
Ωt

ρ (t,X) dV (X) = 0,

applying Reynold’s transport theorem (see [81]) we deduce that∫
Ωt

(
d
dt
ρ (t,X) + ρ (t,X) div u (t,X)

)
dV (X) = 0,

but, since Ω was arbitrarily, the fact that

d
dt
ρ (t,X) =

d
dt
ρ (t, ψ (t, x)) = ∂tρ (t, ψ (t, x)) + u (t, ψ (t, x)) · ∇ρ (t, ψ (t, x)) ,

we finally deduce the conservation of mass equation

∂tρ+ div (ρ u) = 0.

We say that a motion is isochoric if and only if div u = 0.

Next we focus on the forces acting on a determinate body. From first Newton’s law from
each action it corresponds a second, equal with opposite direction, hence we can assume
that, for a moving body Ωt, at each t > 0 there is a balance of forces, i.e.

Fi = Fe,
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where Fi are the internal forces and Fe are the external forces acting on the body. One of
the most important and far reaching axioms in continuum mechanics is Cauchy’s hypothesis
concerning the form of the contact (internal) forces. Cauchy assumed the existence of a sur-
face force density σ (n, x, t) defined for each unit vector n and every (x, t) in the trajectory
T of the motion. Let B be an oriented surface in Ωt with positive unit normal n at x. Then
σ (n, x, t) is the force, per unit area, exerted across B upon the material on the negative side
of B by the material on the positive side. This is a kind of stress that the body (fluid) exerts
on himself, and falls into the effects of Fi. Translated in mathematical terms it means that
for every (x, t) ∈ T , n ∈ Sd−1 and for all ωt ⊂ Ωt the force that Ωt\ωt exerts upon ωt is

Fσ (Ωt, ωt) = −
∫

Ωt∩∂ωt
σ (n (x) , x, t) dS (x) ,

where dS is assumed to be the d− 1 dimensional Hausdorff measure.
This stress and eventual external forces Fe modify the velocity of the body, inducing an
acceleration and with it producing a force (Newton’s law), such force is quantified by the
variation of the linear momentum, hence the balance becomes

FLM + Fσ = Fe.

The linear momentum is defined as

l (t) =

∫
Ωt

ρt u dV,

while, as explained, the stress force Fσ is defined as

Fσ = −
∫
∂Ωt

σ dS,

while we can assume that Fe =
∫

Ωt
F dV . The balance equation becomes hence

d
dt

∫
Ωt

ρt u dV −
∫
∂Ωt

σ dS =

∫
Ωt

F dV.

Gauss theorem and Reynold’s transport theorem allow us hence to the deduce the equation
for the conservation of the linear momentum (here we abuse of the notation and we denote
with F the acceleration related to the point-wise external force)

∂t (ρ u) + div (ρ u⊗ u)− div (σ) = ρ F.

2.3 A closer look: models for incompressible fluids.

The previous section was devoted to prove that the equations describing the evolution of a
fluid are derived form physical considerations, and are the conservation of mass equation

∂tρ+ div (ρ u) = 0, (2.3.1)
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where ρ is the density of the fluid and u is its velocity field, and the conservation of the linear
momentum m = ρ u equation,

∂t (ρ u) + div (ρ u⊗ u)− div (σ) = ρ F, (2.3.2)

and σ is the stress tensor and F is the ensemble of the external forces (rotation, stratifica-
tion buoyancy, acoustic waves, gravity...) acting on the fluid. We refer to [11] and [101].
Although it is true that, a priori, the density function ρ depends from both time and space
variable t, x the oceans and the troposphere (lower layers of the atmosphere) have generally
a density that does not varies wildly, i.e.

ρ (t, x) = ρ0 + dρ (t, x) ,

where ρ0 is a (positive) constant, which we shall call characteristic density, around which the
density oscillates. This simplification is usually known as Boussinesq approximation 2 . We
want to deduce some relation of magnitude between the function dρ and the constant ρ, we
shall perform this analysis for adiabatic perfect gases, although it remains true for different
fluids as well.
The quantity M is a dimensionless scalar called Mach number. In the literature ( [101],
[109]...) the Mach number can be defined as follows. Let us consider a fluid moving in a
domain U of length-scale comparable to the ones given in (2.1.7), with a velocity u (t, x).
The Mach number is the ratio of the speed of the gas, to the speed of sound in the gas. The
speed of sound is equal to the speed of transmission of small, isentropic disturbances in the
flow, formally it is defined as

c =
√
γRT ,

where R is the specific gas constant and T is the absolute temperature. We can hence define
the Mach number as the ratio

M =
V

c
, (2.3.3)

where V is the local flow velocity with respect to the boundaries, and c is the speed of sound
in the medium.
To determine the role of the Mach number on compressibility effects we begin with the
conservation of momentum equation 3:

ρ V dV = −dp,

where ρ is the fluid density, V is the velocity, and p is the pressure. Here dV and dp denote
differential changes in the velocity and pressure. From our derivation of the conditions for

2The full description of Boussinesq approximation is, actually slightly more complex and can be applied
to stratified fluids only, for a more detailed description we refer to Section 2.3.3. By an abuse of lexicon we
denote this simplified case as Boussinesq approximation as well.

3Here we simplify the internal stresses of the fluid σ = p 1Rd , i.e. we consider the effects of the hydrostatic
pressure only. Such hypothesis is physically relevant in the sense that for general fluids (and even more so for
geophysical fluids) the main contributions in σ are effectively induced by the hydrostatic pressure.

23



Chapter 2. Introduction.

isentropic flow, we know that:

dp
p

= γ
dρ
ρ
,

dp = γRTdρ,
=c2dρ,

which hence leads to the relation

ρV dV = −c2dρ,

which gives, after some basic manipulations

−M2 dV
V

=
dρ
ρ
. (2.3.4)

Let us hence now denote the (dimensionless) function

〈V 〉 (t, x) =
dV
V

(t, x) ,

the variation of the fluid velocity. As the following formal calculations show

〈V 〉 (x) ≈ V (x)− V (x+ dx)

V (x)
,

=1− V (x+ dx)

V (x)
,

is a function whose value is close to zero for fluids which are not very turbulent. Whence
considering the relation ρ = ρ0 + dρ and (2.3.4) we deduce

dρ =
−M2ρ0

1 + M2 〈V 〉
.

Thanks to a Taylor expansion around zero with respect to the parameter M we deduce that

dρ = O
(
M2
)
,

hence it makes sense to deduce the following low Mach number approximation:

ρ (t, x) = ρ0 + M2 ρ̃ (t, x) , (2.3.5)

The speed of sound c depends on the fluid considered, the temperature, pressure, salinity
and many other physical variables. For the air at 15 degrees Celsius and the water at 20
degree Celsius it has approximately the following values

cair ≈ 340 m/s, cwater ≈ 1481 m/s,

which compared to the characteristic scales given in (2.1.7) give the following values for the
Mach number

Matmosphere ≈ 0.08823529411, Mocean ≈ 0.00270087778,
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hence the Mach number is generally very small if it is evaluated accordingly to the standard
displacement of air and water at a planetary scale. This is very reasonable since the au-
tonomous motion of a fluid is always subsonic (M < 1). For practical purposes, if M < 0.3,
the fluid is considered to be incompressible, i.e. compression waves do not disturb the global
motion of the fluid. With this consideration (2.3.1) becomes:

div u =
1

ρ0

O
(
M2
)
,

which can be substituted with the more familiar (and simple) incompressibility condition

div u = 0. (2.3.6)

In this first part we shall give some physical derivation of systems which are supposed
to satisfy the "zero Mach number" condition. In the following section we shall focus on the
case in which the Mach number is small and not identically null.

What follows is a multi-scale analysis for rotating and stratified fluids, we underline
the fact that there is no novelty in this section and the result presented are taken from [50]
and [27].

2.3.1 The equations on the linear momentum.

We adopt the same notation as in Section 2.1.1, i.e. we consider the motion of a fluid from
two different reference systems: the first one is the inertial one, the velocity flow with respect
to this reference shall be denoted as U, the latter is the rotating reference system, whose ve-
locity flow is u.

The orthonormal basis with respect to the inertial reference system shall be denoted as
(I,J,K). We recall that this reference system is fixed. In particular hence we recall that we
can write the velocity flow U and the position vector r as

U = U1 I + U2 J + U3 K,

r = X1 I +X2 J +X3 K.

In a very similar way we denote with (i, j,k) the basis of a reference system whose origin
stays on a determinate point at latitude φ on the surface of the earth. The vector i denotes the
direction West-East, j the direction South-North and k has the same direction of the radius
of the earth and it is pointed outward. With this notation we have

u = u1 i + u2 j + u3 k,

r = x1 i + x2 j + x3 k.

Let us consider the equation of conservation of linear momentum (2.3.2) in the inertial
reference system under the hypothesis

F = −∇Φg,
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where Φg = gx3 k, i.e. the external force is the gradient of the gravitational potential and
that the stress tensor σ assumes the form

σ = −p 1R3 + τ,

where p is a scalar function and τ is the viscous tensor. It reads as

ρ

(
D

Dt

)
i
U = −ρ∇Φg −∇p+ div (τ) . (2.3.7)

The operator
(
D
Dt

)
i denotes the material derivative with respect to the inertial reference sys-

tem and it assumes the surprisingly simply form of(
D

Dt

)
i
=

D

Dt
+ Ω∧, (2.3.8)

where indeed the material derivative D
Dt

is defined as

D

Dt
= ∂t + u · ∇.

The (vectorial) angular velocity Ω is defined as

Ω = Ω K,

= Ω cos (φ) j + Ω sin (φ) k, (2.3.9)

where Ω is indeed a scalar value which we consider to be constant in both space and time.

By the aid of the relations (2.1.6) and (2.3.8) we deduce that(
D

Dt

)
i
U =

D

Dt
u + 2Ω ∧ u + Ω ∧ (Ω ∧ r) . (2.3.10)

Let us analyze just for a moment the right hand side of (2.3.10):

• The term D
Dt

u = ∂tu + u · ∇u represents the material derivative, which describes
the rate of change of the velocity flow subjected to transport effects due to the velocity
flow itself.

• The Coriolis force Ω ∧ u.

• The term Ω ∧ (Ω ∧ r) is the centrifugal acceleration. Let us remark that

Ω ∧ (Ω ∧ r) = ∇
(

1

2
|Ω ∧ r|2

)
,

hence it makes sense to define the geopotential

Φ = Φg −
1

2
|Ω ∧ r|2 . (2.3.11)
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Let us consider a (vertical) displacement dr of a volume of a fluid. Let us denote
Ψc = 1

2
|Ω ∧ r|2 the potential associated to the centrifugal acceleration. Let us denote

as dΦg and dΨc respectively the variation of the gravitational and centrifugal potential
caused by a vertical displacement dr of the fluid. It is clear that

dΦg = O (dr) ,

dΨc = O
(
(dr)2) .

Since any vertical displacement which may happen in the atmosphere on in the oceans
has magnitude irrelevant if compared to the radius of the earth it is reasonable to as-
sume that Φ ≈ Φg = gx3 k as a first-order approximation.

The equations (2.3.11) and (2.3.10) applied to (2.3.7) allow to deduce the following evolution
equation satisfied by the velocity flow in the rotating system u = (u1, u2, u3):

ρ
D

Dt
u + 2ρ (Ω ∧ u) = −ρ∇Φ−∇p+ div (τ) .

Still we need to simplify more the above equation. Let us suppose that the viscous tensor τ
assumes the following form:

τ = µ∇u,

where µ > 0. Moreover as we explained above at a first-order approximation we can consider
∇Φ ≈ g k. This combined with(2.3.9) allows us to deduce

ρ

(
D

Dt
u1 + f?u

3 − fu2

)
= −∂1p+ µ∆u1,

ρ

(
D

Dt
u2 + fu1

)
= −∂2p+ µ∆u2,

ρ

(
D

Dt
u3 − f?u1

)
= −∂3p+ µ∆u3 − ρ g,

(2.3.12)

where f = 2Ω sin (φ) and f? = 2Ω cos (φ). The preceding equations assume a Cartesian
system of coordinates and thus hold only if the dimension of the domain under consideration
is much shorter than the earth’s radius. On Earth, a length scale not exceeding 1000 km is
usually acceptable.

2.3.2 The energy budget.

Obviously a fluid has an (absolute) temperature. This physical quantity evolves indeed ac-
cordingly to the density and the velocity flow. From the first law of thermodynamics the
internal energy gained by a parcel of matter is equal to the heat it receives minus the me-
chanical work it performs, which translates in the equation

D

Dt
e = Q−W.

The internal energy is the amount of agitation of internal molecules and it is proportional to
the temperature

e = Cv T,
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Cv is the capacity at a constant volume.
At a first approximation we can consider that there is no internal heat source in the air or
water, hence using the Fourier law of heat conduction, which states that the thermal energy
transforms into an homogeneous, local, change of temperature

Q =
kT
ρ

∆T,

while
W = − p

ρ2

d
dt
ρ,

hence
Cv

D

Dt
T =

kT
ρ

∆T −− p

ρ2

d
dt
ρ,

we finally deduce

ρ Cv
D

Dt
T + p div u = kT∆T. (2.3.13)

Since we introduced the new equation T we need a new equation relating p and T to close
the system

• If we assume the air a perfect gas

p = ρRT,

• the water can be considered to be incompressible, hence the pressure does not affect
the motion of the fluid and we can consider it constant. On the other hand the salinity S
may have physical relevance, this indeed modifies the density by mean of the following
equation of state

ρ = ρ0

(
1− α (T − T0) + β (S − S0)

)
, (2.3.14)

where S satisfied a diffusion law

D

Dt
S = κS∆S. (2.3.15)

2.3.3 The Boussinesq approximation.

Let us consider a fluid with variable density. Accordingly to the theory explained in the
previous sections it evolves accordingly to the laws described by (2.3.12). We say that a
stratified fluid satisfies the Boussinesq approximation if the variation of density is relevant
only in the buoyancy term ρg while it can be approximated as a constant ρ0 otherwise.

As we already mentioned various times we consider large perturbations around a station-
ary state for a stratified fluid, and we are interested to study the dynamics induced by the
fluid when it strives to restore such equilibrium, whence we conceive the variation in density
mainly along the vertical direction and we suppose that heavier layers lay under lighter ones
(i.e. ρ is decreasing in the variable x3), i.e.

ρ (t, x) = ρ0 + ρ̄ (x3) + θ (t, x) , (2.3.16)
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with
|θ| � 1.

Let us denote
ρ′ = ρ̄+ θ,

with the Boussinesq approximation here explained, the incompressibility condition (2.3.6)
the conservation of mass equation (2.3.1) becomes

∂tρ
′ + u · ∇ρ′ = 0. (2.3.17)

Combing the above equation (2.3.17) with the evolution equation (2.3.15), (2.3.13) and the
equation of state (2.3.14), supposing κT = kt/ (ρ0Cv) = κS = κ we finally deduce the
equation

D

Dt
ρ′ = κ∆ρ′. (2.3.18)

Thanks to the Boussinesq approximation ρ ≈ ρ0 we can rewrite (2.3.12) in the new form

D

Dt
u1 + f?u

3 − fu2 = − 1

ρ0

∂1p+ ν∆u1,

D

Dt
u2 + fu1 = − 1

ρ0

∂2p+ ν∆u2,

D

Dt
u3 − f?u1 = − 1

ρ0

∂3p+ ν∆u3 − ρ

ρ0

g,

(2.3.19)

where ν = µ/ρ0 is the kinematic diffusion. Combining (2.3.6), (2.3.19) and (2.3.18) we
finally deduce the very generic model (here we denote ρ = ρ′)

∂tu
1 + u · ∇u1 + f?u

3 − fu2 = − 1

ρ0

∂1p+ ν∆u1,

∂tu
2 + u · ∇u2 + fu1 = − 1

ρ0

∂2p+ ν∆u2,

∂tu
3 + u · ∇u3 − f?u1 = − 1

ρ0

∂3p+ ν∆u3 − ρ

ρ0

g,

∂tρ+ u · ∇ρ = κ∆ρ,

div u = 0.

(2.3.20)

2.3.4 Two dimensional dynamics: the geostrophic equilibrium.

Until now we have been studying how the rotation modifies the structure of the evolution
equations for a geophysical fluid, but we did not really understand until now if the rotation
has a stabilizing effect on the motion of the fluid itself.

To deduce informally the limit system we shall perform a multi-scale analysis as it is done
in [27] and [50]. Let us define as L the characteristic length in the horizontal directions, H
in the vertical direction, T is the characteristic time, which we suppose to be bigger than
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the rotation time TΩ, U is the characteristic horizontal speed and W the vertical one, P the
pressure and ∆ρ the variation of density. Indeed the following relations hold true

T � TΩ =
1

Ω
,

U

L
. Ω, H � L, ∆ρ� ρ.

This analysis of magnitudes will allow us to remarkably simplify the equations (2.3.20).
With the incompressibility condition div u = 0 we can deduce that U/L ∼ W/H , but since
H � L we easily deduce that W � U . This implies that the term f?u

3, whose order of
magnitude is ΩW is negligible if compared to−fu2 of magnitude ΩU , under the hypothesis
that the latitude φ is far from zero. In the same way the term (∂2

1 + ∂2
2)u is small compared

to ∂2
3u. In the same way the left-hand side of the equation governing the motion of u3 is

negligible compared to the right-hand side, with these simplification (2.3.20) becomes

∂tu
1 + u · ∇u1 − fu2 = − 1

ρ0

∂1p+ ν∂2
3u

1,

∂tu
2 + u · ∇u2 + fu1 = − 1

ρ0

∂2p+ ν∂2
3u

2,

0 = − 1

ρ0

∂3p−
ρ

ρ0

g,

∂tρ+ u · ∇ρ = κ∂2
3ρ,

div u = 0.

(2.3.21)

The scaling analysis just performed was developed in order to neglect some small terms.
The remaining terms may, though, be of very different magnitude: this is the second shell of
simplifications that we are going to perform.
The terms of the horizontal momentum equations in the form (2.3.21) scale as

U

T
,

U2

L
,

U2

L
,

WU

H
, ΩU,

P

ρ0L
,

νU

H2
.

We are interested to study the motion as long as the rotation plays a significant role, for this
reson we divide the above relations for ΩU obtaining the following order of magnitude

1

ΩT
,

U

ΩL
,

U

ΩL
,

W

ΩH
, 1,

P

ρ0LΩU
,

ν

ΩH2
.

• The ratio
RoT =

1

ΩT
,

is called the temporal Rossby number, it compares the local time rate of change of the
velocity to the Coriolis force and is on the order of unity or less.

• The ratio
Ro =

U

ΩL
, (2.3.22)

which compares advection to Coriolis force, is called the Rossby number and is again
of order smaller than one.
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• The ratio
W

ΩH
=
WL

UH
· U

ΩL
,

is the product of the Rossby number by WL
UH

which is of order smaller than one.

• The ratio
P

ρ0LΩU
is of order one.

• Finally the ratio

Ek =
ν

ΩH2
, (2.3.23)

is called the Ekman number, and for geophysical flows it assumes a very small value.

Neglecting the terms whose order is small compared to one we deduce hence the geostrophic
equilibrium

−fu2 = − 1

ρ0

∂1p, (2.3.24)

fu1 = − 1

ρ0

∂2p, (2.3.25)

0 = − ∂3p, (2.3.26)
div u = 0. (2.3.27)

The dynamic described by this set of equations is constraint and simplified: taking the
operator ∂3 onto the equation (2.3.24) and (2.3.25) with the information of equation (2.3.26)
we deduce

∂3u
1 = ∂3u

2 = 0,

moreover thanks to equations (2.3.24) and (2.3.25)

∂1u
1 + ∂2u

2 = 0.

This result is known as Taylor-Proudman theorem (for more we refer to [50] and [126]).
Physically it means that in a regime in which the rotation plays an important role the fluid
moves horizontally and has no vertical displacement. Solving (2.3.24) and (2.3.25) with
respect to u1 and u2 we deduce

u1 = − 1

f ρ0

∂2p, u2 = +
1

f ρ0

∂1p.

The horizontal velocity flow moves hence orthogonally with respect to the gradient flow of
the pressure. This means that the flow displaces along the directions in which there is no
variation of pressure, these directions are known as isobars.
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Upward pull

Downward push

Figure 2.1 – Stratification buoyancy.

2.3.5 Stratification effects.

In the previous section we have seen how the rotation affects the motion of (2.3.21) deducing
the geostrophic equilibrium (2.3.24)–(2.3.27). In this analysis we did not take in any con-
sideration the effects induced by the stratification. In the present section our aim is to give
description of the stratification effects for geophysical fluids.
Let us consider a fluid which is in a statical equilibrium, composed of layers of different
densities. The gravity tends to stratify the fluid in a way that heavier layers lay below lighter
ones. We are interested to study how large perturbations of equilibrium modifies the mo-
tion in large time and space scales. The idea is the following one, let us suppose that that
a small volume dV of a fluid with a certain density is displaced (upwards) in a region of
lower density. The gravity will tend to move the fluid volume downwards until it reaches
a layer whose density is comparable to its own. Once the fluid reaches such situation its
motion does not stops immediately, but, thanks to the inertia, it will have a tendency to move
downwards still, entering in a region with higher density. Once it reaches such configuration
Archimede’s principle will provide a upward buoyancy, creating a pseudo-periodic motion
around the layer of density comparable to the one of dV . We refer to Figure 2.1 as well for
a graphical intuition of the effect. Let us verify such intuition, we consider hence a volume
dV placed at a height x3 with density ρ (x3), and let us move it to a height x3 + h where the
fluid has density ρ (x3 + h), if the fluid can be considered to be incompressible the vertical
displacement does not influence the volume dV , and accordingly to Archimede’s principle it
is subject to a buoyancy force which is

g
(
ρ (x3 + h)− ρ (x3)

)
dV.
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Accordingly to Newton’s principle F = m a we deduce hence the following balance of
forces

ρ (x3) dV ḧ = g
(
ρ (x3 + h)− ρ (x3)

)
dV.

As we have already see in the case in which we consider regimes with low Mach number the
Boussinesq approximation hold, hence we can say that

ρ (x3 + h)− ρ (x3) ≈ ∂3ρ (x3) h,

with this consideration we can hence deduce the following differential equation

ḧ− g
ρ0

∂3ρ h = 0. (2.3.28)

The above differential equation presents two different behaviors accordingly to the sign of
− g
ρ0
∂3ρ. As we already stated we suppose ∂3ρ < 0, i.e. the density is decreasing with the

altitude, in this case if we set
N2 = − g

ρ0

∂3ρ,

and we consider N to be constant the solution h of (2.3.28) has an oscillatory character, with
frequency N . The quantity N is called stratification frequency or Brunt-Väisälä frequency
and quantifies the rate with which a fluid tends to stratify to a stable configuration.

Quantifying the stratification: the Froude number.

In Section 2.3.4 we performed a multi-scale analysis which allowed us to introduce the di-
mensionless Rossby number Ro: such number quantifies the effects of the Coriolis force on
the motion of a fluid at planetary scale in time-spans bigger than a day. Conceptually what
we want to derive here is the same, but considering the intrinsic buoyancy provided by grav-
ity as explained in the previous section. By analogy we might expect that N and H shall
play a similar role as Ω and L for the rotation. We consider a stratified fluid of thickness H
and stratification frequency N moving horizontally at a speed U over an obstacle of length
L and height ∆z. The presence of such obstacle will force some heavy fluid layer to move
upward, a configuration that generally does not occur. Hence there is a transformation of ki-
netic energy into gravitational energy due to a displacement from a situation of equilibrium,
such transformation of energy provides a vertical velocity of magnitude comparable to

W =
∆z

T
=
U ∆z

L
.

The vertical modification causes as well a density perturbation of the order of

∆ρ =

∣∣∣∣dρ̄dz

∣∣∣∣ ∆z,

=
ρ0 N

2

g
∆z.

In turn, this density variation gives rise to a pressure disturbance that scales, via the hydro-
static balance, as

∆P = gH∆ρ,

= ρ0N
2H ∆z.
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Obviously hence a variation in the horizontal components of the pressure induces a variation
of the velocity flow

U2

L
=

∆P

ρ0L
=⇒ U2 = N2H∆z,

and since ∂1u
1 + ∂2u

2 = −∂3u
3 we derive that

W/H

U/L
=

∆z

H
=

U2

N2H2
.

The above equation implies that if U is smaller than NH then W/H has to be smaller
than U/L: the variation in the vertical direction hence cannot fully meet the horizontal diver-
gence. Supposing hence that |∂3u

3| <
∣∣divhuh

∣∣ some compensation has to be performed by
the term divh uh: The fluid cannot displace in a purely vertical way, and some of its motion
is deflected horizontally (winds which tends to surround an obstacle).

We define hence at this point the Froude number

Fr =
U

N H
,

which is a measure of the tendency of the fluid to dispose in horizontal stacks; a quantifica-
tion of the stratification. Obviously the smaller Fr is the more relevant stratification effects
are.

The quasi-geostrophic three-dimensional equilibrium.

As in Section 2.3.4 we derived the two-dimensional geostrophic equilibrium by use of the
rotation of the Earth only in this section we want to deduce a simplified dynamics which takes
in consideration both rotation and stratification; such dynamics is called quasi-geostrophic
or semi-geostrophic equilibrium and it is way more complex and rich than the geostrophic
equilibrium. We shall omit to give a full derivation and we refer the reader to [27] and [50].
Following the Boussinesq simplification (2.3.16) we can indeed suppose that the pressure p
can be written as

p (t, x) = p̄ (x3) + π (t, x) ,

we can hence define the stream function

ψ =
π

f0ρ0

,

where f0 is the fist order approximation of 2Ω sinφ and the potential vorticity

q = −∂2u
1 + ∂1u

2 − ∂3

(
f0g
N2ρ0

θ

)
.
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The quasi-geostrophic flow is hence defined as

u1 = −∂2ψ,

u2 = ∂1ψ,

u3 = − f0

N2

(
∂t∂3ψ + u1∂1q + u2∂2q

)
,

π = ρ0f0ψ,

θ =
ρ0f0

g
∂3ψ.

2.4 Final remarks on the simplification of the primitive equa-
tions (2.3.20).

Let us consider the primitive equations as in (2.3.20), neglecting the parameter f? we deduce
the following equations

∂tu
1 + u · ∇u1 − fu2 = − 1

ρ0

∂1p+ ν∆u1,

∂tu
2 + u · ∇u2 + fu1 = − 1

ρ0

∂2p+ ν∆u2,

∂tu
3 + u · ∇u3 = − 1

ρ0

∂3p+ ν∆u3 − ρ

ρ0

g,

∂tρ+ u · ∇ρ = κ∆ρ,

div u = 0.

With the Boussinesq approximation (2.3.16), recalling that ∂3ρ̄ = −ρ0N
2/g, neglecting the

term κ∂2
3 ρ̄ we obtain the following set of equations (here we denote θ appearing in (2.3.16)

as ρ): 

∂tu
1 + u · ∇u1 − fu2 = − 1

ρ0

∂1p+ ν∆u1,

∂tu
2 + u · ∇u2 + fu1 = − 1

ρ0

∂2p+ ν∆u2,

∂tu
3 + u · ∇u3 +

g ρ
ρ0

= − 1

ρ0

∂3p+ ν∆u3,

∂tρ+ u · ∇ρ− ρ0 N
2

g
u3 = κ∆ρ,

div u = 0.

We want to perform a dimensional re-scaling which nondimensionalises the above set of
equations and magnifies the rotational and gravitational effects via suitably defined dimen-
sionless numbers. Let us introduce hence the following characteristic scales

• L, characteristic horizontal length,

• U , characteristic horizontal speed,
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• T = L/U , characteristic time,

• TR = f−1, rotation time,

• TN = N−1, stratification time,

• ρ0, average density,

• p0, average pressure.

With the following change of scales 

x′ =
x

L
,

t′ =
t

T
,

v =
v′

U
,

ρ′ =
g

ρ0 NU
ρ,

p′ =
p

p0

,

and, defining the following quantities
Ro =

TR
T

=
U

Lf
,

Fr =
TN
T

=
U

LN
,

p̄ =
p0

ρ0U2
,

and with the abuse of notation ν = νU
L
, ν ′ = κU

L
we can finally deduce the system

∂tu
1 + u · ∇u1 − 1

Ro
u2 = − p̄

ρ0

∂1p+ ν∆u1

∂tu
2 + u · ∇u2 +

1

Ro
u1 = − p̄

ρ0

∂2p+ ν∆u2

∂tu
3 + u · ∇u3 +

1

Fr
ρ = − p̄

ρ0

∂3p+ ν∆u3

∂tρ+ u · ∇ρ− 1

Fr
u3 = ν ′∆ρ

The Froude and Rossby number are small compared to one, and in particular we shall con-
sider the following relations

ε = Ro, ε F = Fr,

defining Φ = p̄
ρ0
p we deduce the system
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∂tu
1,ε + uε · ∇u1,ε − ν∆u1,ε − 1

ε
u2 = −1

ε
∂1Φε

∂tu
2,ε + uε · ∇u2,ε − ν∆u2,ε +

1

ε
u1,ε = −1

ε
∂2Φε

∂tu
3,ε + uε · ∇u3,ε − ν∆u3,ε +

1

F ε
θε = −1

ε
∂3Φε

∂tθ
ε + uε · ∇θε − ν ′∆θε − 1

F ε
u3,ε = 0,

which can be reduced to the more compact form (here we denote U ε = (uε, θε)) ∂tU
ε + uε · ∇U ε − DU ε +

1

ε
AU ε = −1

ε
∇Φε,

U ε|t=0 = (u0, θ0) ,
(PEε)

where

D =


ν∆ 0 0 0
0 ν∆ 0 0
0 0 ν∆ 0
0 0 0 ν ′∆

 A =


0 −1 0 0
1 0 0 0
0 0 0 F−1

0 0 −F−1 0

 .

2.4.1 Informal derivation of the limit model in the regime ε→ 0.

As we mentioned we are interested in the study of the regime ε→ 0, in particular we would
like to determinate whether U ε converges to some limit flow as ε→ 0. This kind of question
was already introduced in Section 2.3.5, whence we want to deduce a informally simplified
dynamics for the limit flow. The following deduction have a mere informal motivation.
Let us suppose that (U ε,Φε) → (UQG,ΦQG) in a sufficiently strong topology to justify the
convergence uε · ∇U ε → uQG · ∇UQG. Letting ε→ 0 we deduce from (PEε)

− u2
QG = −∂1ΦQG,

+ u1
QG = −∂2ΦQG,

+ θQG = −F ∂3ΦQG,

+ u3
QG = 0.

(2.4.1)

From (2.4.1) we immediately deduce

divh uhQG = 0,

as it was already mentioned in Section 2.3.5. Let us define the operator

∆F = ∂2
1 + ∂2

2 + F 2∂2
3 ,

from the equations of the quasi-geostrophic balance (2.4.1) we deduce

Ω = − ∂2u
1
QG + ∂1u

2
QG + F∂3θQG,

= + ∆FΦQG.
(2.4.2)
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The quantity Ω is called potential vorticity and, supposing that in the domain considered the
operator ∆F is invertible the quasi-geostrophic balance (2.4.1) writes as

− u2
QG = −∂1∆−1

F Ω,

+ u1
QG = −∂2∆−1

F Ω,

− θQG = −F ∂3∆−1
F Ω,

+ u3
QG = 0.

(2.4.3)

Considering hence equations (PEε) we can derive the equation satisfied by Ω which is
(after a suitable number of algebraic simplifications):

∂tΩ + uhQG · ∇hΩ + Γ (D) Ω = 0, (2.4.4)

where Γ is a suitable elliptic operator of order two which assumes the form

Γ = −∆∆−1
F

(
ν∂2

1 + ν∂2
2 + ν ′F 2∂2

3

)
.

From (2.4.4) and (2.4.3) we can easily deduce the limit dynamic equations satisfied by the
quasi-geostrophic flow UQG:

∂t


u1

QG
u2

QG
0
θQG

+ Γ


u1

QG
u2

QG
0
θQG

 = −


−∂2

∂1

0
−F∂3

∆−1
F

(
uhQG · ∇hΩ

)
. (2.4.5)

2.5 Non-dimensionalized Navier-Stokes inhomogeneous sys-
tem.

We do consider in this section a density-dependent incompressible fluid whose only external
force acting on it the gravity.
Let us suppose moreover that the fluid density ρ can be written as

ρ (t, x) = ρ0 + ρ̄ (x3) + ρ′ (t, x) , (2.5.1)

and such that
|ρ′| � 1, (2.5.2)

where ρ ∈ R+ is a constant state. This physical hypothesis is very reasonable and non-
restrictive, we considered in fact the gravity as the only external force acting on the fluid,
the downwards acceleration affects in a more accentuated way the regions of a fluid with a
higher density. The variation of density in macroscopic fluids, such as the oceans, is given by
the variation of some determined physical quantities. Let us analyze the case of the variation
of salinity in the oceans, the salinity varies in a relatively simple way with respect to the
depth and depends on the latitude. The variation is illustrated in Figure 2.2.

Some consideration on the salinity is due:

• the rate of variation of oceanic salinity on an entire planetary scale is about 10%,
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Figure 2.2 – Salinity density in relation with depth.
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• on the upper layers and the lower layers of oceans the salinity is virtually constant,
more than 90% of variation of salinity occurs in an intermediate region called Halo-
cline. The depth of the Halocline varies accordingly to the latitude.

Since the variation of salinity can hence be generally considered to be "small" or "irrelevant"
the hypothesis (2.5.1)–(2.5.2) is hence justified.

The Navier-Stokes incompressible equations with hypothesis (2.5.1)–(2.5.2) and Boussi-
nesq approximation read hence as


∂tu+ u · ∇u = − 1

ρ0

∇p+
1

ρ0

ν∆u−

 0
0
ρ
ρ0
g

 ,

∂tρ
′ + u · ∇ρ′ + u3∂3ρ̄ = κ∆ρ′ + κ∂2

3 ρ̄,

divu = 0.

(2.5.3)

If we define the Brunt-Väisälä stratification frequency as it was done in Section 2.3.5, i.e.

N2 = − g

ρ0

∂3ρ̄ =⇒ ∂2
3 ρ̄ ≈ 0,

equation (2.5.3) becomes (denoting ρ′ as ρ)


∂tu+ u · ∇u = − 1

ρ0

∇p+
1

ρ0

ν∆u−

 0
0
ρ
ρ0
g

 ,

∂tρ+ u · ∇ρ = κ∆ρ+
ρ0

g
N2 u3,

divu = 0.

(2.5.4)

Equation (2.5.4) describe hence the dynamics of a density-dependent fluid under the sole
(physically relevant) hypothesis that the variation of density is small and the density increase
with depth.
On a point of view of oceanography (2.5.4) is hence a good approximation of the local
dynamic of sea water in non-tropical regions4, as well as a number of other physical mani-
festations.

Let us now nondimensionalize equations (2.5.4), this process is very often used by physi-

4Tropical regions exhibit the characteristic of having waters with higher salinity on the surface as shown in
Figure 2.2. This imbalance is not motivated by any dynamical effect, but rather from a disproportion between
evaporation and precipitation effects.
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cists in order to compare magnitudes in different terms of an equation. Defining

L = standard legth-scale of the system,
U = standard velocity of the flow,
TN = N−1,

T = L/U,

Fr = TN/T,

we can define the following adimensional unknowns:

t? = t/T,

x? = x/L,

u? = u/U,

p? =
p

ρ U2
,

ρ? =
g

ρ0NU
ρ.

The dimensionless number Fr is the Froude number as is was introduced in Section 2.3.5.
The equations (2.5.4) in nondimensional form become

∂tu
? + u? · ∇u? − ν?∆u? +

 0
0

1

Fr
ρ?

 = −∇p?,

∂tρ
? + u? · ∇ρ? − κ?∆ρ? − 1

Fr
u3,? = 0,

divu? = 0,

where ν? and κ? are modified kinematic viscosities which depend on the Reynold number.
Setting Fr = ε we hence derived the system

∂tu
ε + uε · ∇uε − ν∆uε − 1

ε
ρε−→e 3 =− 1

ε
∇Φε,

∂tρ
ε + uε · ∇ρε − ν ′∆ρε +

1

ε
u3,ε = 0,

divuε = 0,

(2.5.5)

which will be studied in Chapter 4 and 5.

2.6 The weakly compressible models.

In the previous section we derived via a careful scale-analysis the evolution equation gov-
erning the motion of a fluid under the incompressibilty condition (2.3.6). Despite the fact
that for many practical applications a fluid might be considered incompressible, in general,
the propagation of acoustic (compression) waves is not a negligible phenomenon. Let us
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give a motivation of a very reduced dynamics of geophysical compressible fluids. We adopt
the same notation as in Section 2.3.1, i.e. capital letters shall denote the inertial reference
and small letters shall denote the rotating reference system. The conservation of momentum
equations read as

ρ

(
D

Dt

)
i
U− div (σ) = ρF.

Let us neglect the gravitational effects, i.e. F = 0. Let us moreover consider the stress tensor
σ to have the following reduced form

σ = p (ρ) 1R3 ,

with p scalar function depending on the unknown ρ. The equation above becomes hence

ρ

(
D

Dt

)
i
U +∇p (ρ) = 0. (2.6.1)

We perform the following change of variable

ρM (t, x) = ρ

(
t

M
, x

)
, UM =

1

M
U

(
t

M
, x

)
, (2.6.2)

which hence transforms (2.6.1) into

ρM
(
D

Dt

)
i
UM +

1

M2∇p
(
ρM) = 0. (2.6.3)

Now we know that (
D

Dt

)
i
U =

D

Dt
u + 2Ω ∧ u + Ω ∧ (Ω ∧ r) .

Let us consider for a moment the term

D

Dt
u + 2Ω ∧ u,

we suppose that
Ω = Ω k,

where Ω is the scalar magnitude of the vector associated. We know it is defined as

Ω =
1

TR
=

T

TR
· 1

T
=

1

Ro T
,

where TR is the time of rotation and T is the timespan considered. We deduced hence:

D

Dt
u + 2Ω ∧ u =

D

Dt
u +

2

Ro T
k ∧ u.

We have been finally able to make appear a direct dependence on the Rossby number Ro for
the rotation. Unfortunately there is a scaling parameter T which messes up with our notation,
our aim is to absorb such term via a suitable change of parameters. Some observation has to
be done.
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• The parameter T which we want to absorb is the reference time-scale of the motion.
the material derivative

D

Dt
u = ∂tu + u · ∇u,

involves a differentiation-in-space. Hence in order to avoid multiple change in scales
we shall consider the propagation of u along the flow (say ψ), and abusing the notation
we shall denote u (t) = u (t, ψ (t)).

• We are interested to define a change of unknown which is sensible to changes in the ve-
locity flow in a time-scale T (along the lines of the flow the space-scale is determinate
by the variation of time), hence we define

uRo (t) =
1

T
u

(
t

T

)
.

Whence considering the change of time-scale u (t) 7→ u
(
t
T

)
we deduce that

d
dt

u

(
t

T

)
+

2

Ro T
k ∧ u

(
t

T

)
=

d
dt

uRo (t) +
2

Ro
k ∧ uRo (t) .

Finally hence defining

ρRo (t, x) = ρ

(
t

T
, x

)
,

we deduce from (2.6.3)

ρM,Ro D

Dt
uM,Ro +

2

Ro
k ∧

(
ρM,RouM,Ro)+

1

Ro2∇
(
|xh|2

)
+

1

M2∇p
(
ρM,Ro) = 0 (2.6.4)

There is a number of precisions that have to be done relatively on how we deduced the
system (2.6.4):

1. we supposed Ω = Ωk when in reality Ω = ΩK. This simplification is motivated by
the fact that, thanks to a multi-scale analysis, we neglected the terms f?u3 and −f?u1

in equation (2.3.20),

2. there is two kind of perturbations which modify the dynamics of (2.6.4): the first
ones are small isotropic perturbations, these are fast-traveling (of speed c) local waves.
Their speed of propagation is indeed quantified by the Mach number M and they pro-
duce a rapid variation of the pressure (from here in fact the appearance of the term
1

M2∇p (ρM,Ro)). The scaling (2.6.3) was in fact introduced in order to magnify the ef-
fect of such waves and, doing so, avoiding to neglect the effects of compressibility of
the flow,

3. the final scale can be read as:
uRo,M (t) =

1

MT
u

(
t

MT
, x

)
,

ρRo,M (t) = ρ

(
t

MT
, x

)
,
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this scale allowed us to put in evidence in (2.6.4) terms describing isentropic perturba-
tions,

1

M2∇p
(
ρM,Ro) ,

and terms describing geophysical perturbations

2

Ro
k ∧

(
ρM,RouM,Ro)+

1

Ro2∇
(
|xh|2

)
,

the magnitude of these terms is evaluated accordingly to the importance of the physical
numbers Ro,M,

4. if the Rossby number Ro� 1 the centrifugal acceleration

1

Ro2∇
(
|xh|2

)
,

has indeed a large impact on the dynamics of (2.6.4). As explained in Section 2.1.2,
generally, centrifugal effects are negligible in magnitude due to a compensated balance
with gravitational effects. In order to simplify the model we decided not to take in
consideration the gravity, but in a real-life word such balance takes place, for this
reason from now on we neglect the centrifugal effects.

Combining hence the momentum budget equation with the conservation of mass we de-
duce the following system describing the motion at a planetary scale of a fluid which is
weakly compressible (the unknowns here obviously depend on the quantities M and Ro ):

∂t
(
ρM,Ro uM,Ro)+ div

(
ρM,Ro uM,Ro ⊗ uM,Ro)

+
2

Ro
k ∧

(
ρM,RouM,Ro)+

1

M2∇p
(
ρM,Ro) = 0,

∂tρ
M,Ro + div

(
ρM,Ro uM,Ro) = 0.

Supposing Rossby and Mach number are comparably small, i.e.

Ro = 2ε, M = ε,

we can finally write the system in the form in which it will be used ∂t (ρε uε) + div (ρε uε ⊗ uε) +
1

ε
k ∧ (ρεuε) +

1

ε2
∇p (ρε) = 0,

∂tρ
ε + div (ρε uε) = 0.

(CEε)

2.7 (Some) Known results on Navier-Stokes equations and
singular perturbation problems.

The aim of the present section is to give an overview of what is known about singular per-
turbation problems. The singular perturbation problems we are interested in arise from
the study of the fluid dynamic, hence we (briefly) present here a (very) partial exposition
on known results for Navier-Stokes equations. For a much deeper survey on incompress-
ible Navier-Stokes equations we refer the reader to the two monographs of P.-G. Lemarie-
Rieusset [102], [103] and references therein.
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2.7.1 Navier-Stokes and Euler.

In 1755 L. Euler in [64] derived the equations for a general fluid, compressible or not, in the
presence of arbitrary external forces. The Euler equations{

∂tu+ u · ∇u+∇p = 0,

u|t=0 = u0

(E)

use Newton’s law when the fluid element is submitted only to the external forces and to the
pressure exerted by the other elements.
Taking into account internal stresses which the fluid exerts onto itself led to the Navier–Stokes
equations {

∂tu+ u · ∇u− ν∆u+∇p = 0,

u|t=0 = u0,
(NS)

which were introduced by Navier in [118] and than formalized by Stokes in [139]. Back in
those days the tools of analysis were completely inappropriate in order to have an analytical
understanding of solutions of equations (E) and (NS), but Oseen first in [122] proved the
existence of local-in-time solutions for the Navier-Stokes equations (NS). The long-time ex-
istence of smooth solutions of (NS) is a famous open problem. It is in fact so famous that it
is one of the few mathematical problems known in mainstream culture, thanks to the million-
dollar prize awarded by the Clay institute. In his Ph.D. thesis [104] Leray proved that, as
long as we can define derivatives in a weak sense, there exist global "solutions". Such so-
lutions does not solve the equation (NS) in the classical sense, since they may even not be
differentiable, these were consequently denoted as solutions à la Leray or weak solutions.

Nonetheless the modern study of strong solutions for Navier-Stokes equations had a new
birth in the sixties, with the pioneering work of H. Fujita and T. Kato [70]. The conceptual
novelty in this work has been to conceive (NS) as an equation of the form{

∂tu+ L (t)u = f (t, u) ,

u|t=0 = u0,
(2.7.1)

where L is a suitable linear operator and f a forcing term, and hence to apply semigroup
theory to study existence and regularity of solutions of such problem. This methodology is
now known as mild solutions approach, which hence allowed the authors to prove in [70]
that, given u0 ∈ H1 and f ∈ L2 ([0, T ];L2), there exists a positive time T0 6 T such that
and a solution u of (2.7.1) defined in [0, T0] and such that

u ∈ C
(
[0, T0] ;H1

)
∩ L2

(
[0, T0] ;H2

)
.

Such methodology has been subsequently applied in a wide number of cases in order to prove
that (NS) is solvable locally in suitable spaces, and globally if the initial data is small. We
mention some work but the list is non-exhaustive. T. Kato proved in [94] that (NS) is locally
well posed in Lp spaces, where p satisfies some compatibility condition. Cannone Meyer
and Planchon proved in [18] that the same result holds true in the homogeneous Besov space

Ḃ
d
p
−1

p,∞
(
Rd
)
, until finally arriving to the endpoint space BMO−1 introduced by H. Koch and

D. Tataru in the work [97] which encompasses all the cases mentioned above and gives a
final answer in the widest possible space for mild solutions of Navier-Stokes equations.

45



Chapter 2. Introduction.

2.7.2 When ε goes to zero: singular perturbation problems.

Singular perturbation problems have a long history. The interest in studying this kind of
systems is motivated by the fact that they describe the dynamics of many turbulent physical
phenomena occurring in Nature. Harmonic analysis tools are very well adapted in order to
comprehend the behavior of perturbations which propagates at a high speed, such as acoustic
waves and geophysical waves. Since the literature concerning such topic is vast is not trivial
to give a comprehensive and exhaustive introduction to such problems. We decide hence
first to give a brief introduction on the general methodology used in such problem, and to
introduce the functional setting which will be adopted all along the thesis. Next we consider
three systems which fall within the category of singular perturbation problems:

1. Navier-Stokes-Coriolis equations,

2. weakly compressible fluids equations,

3. primitive equations,

and to explain the mathematical background concerning such systems.

2.7.3 Physical motivations.

The study of geophysical fluids is a discipline which falls in the wider category of Fluid Me-
chanics. The mathematical models used are generally derived from a physical multi-scale
analysis describing the motion of a fluid outside a planetary reference system, in large time-
spans. Several mathematical simplifications are generally performed in order to reduce the
physical system in a suitable mathematical form.
The fluids studied may have a wide variety of physical properties (compressible/ incom-
pressible, density-dependent etc.), but, generally, the systems describing them at a planetary
scale share some characteristic feature: there is a strong (in the sense of singular) external
force acting on them (Coriolis-force, stratification buoyancy, acoustic perturbation...). The
presence of such external forcing, i.e. a moving action which does not takes origin from the
internal collision of particles, induces some rigidity on the evolution of the fluid, constraining
the motion. This rigidity may hence be used, in some model, to prove that three-dimensional
geophysical fluids are in fact globally well-posed in suitable scale-invariant spaces with no
particular smallness assumption on the initial data.

2.7.4 Mathematical formulation.

The methodology applied varies greatly depending on the domain considered, In this thesis
we shall consider either the whole space R3 or a generic periodic-in-space domain T3. Let
us consider the generic singular perturbation problem

∂tU
ε (t, x) + B (U ε (t, x) , U ε (t, x)) + A2U

ε (t, x)

+
1

ε
S (U ε (t, x)) = 0,

(t, x) ∈ R+ × Ω

U ε (t, x)|t=0 = U ε
0 (x) , x ∈ Ω.

(SPPε)
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In (SPPε) B is a bilinear (generally transport) form, A2 is a second order elliptic operator
and S a skew-symmetric, linear perturbation. This analysis can be done for a wider category
of singular perturbations. We are interested in the regime ε → 0. The domain Ω shall
be considered to be Ω = R3,T3, but it can assume more general forms. In such state the
solutions of (SPPε) tend to "split" in two parts:

• Ū ε which is the projection of U ε onto kerS,

• Ũ ε = U ε − Ū ε which is a highly perturbative part of the solution.

We can hence study the decomposition Ū ε, Ũ ε, such that U ε = Ū ε + Ũ ε separately. At this
stage the techniques adopted differ from the geometry of the domain Ω. Nonetheless we
can proceed as follows: we project the equation (SPPε) onto kerS. The resulting equation
satisfied by Ū ε, which is the projection of U ε onto kerS, can noticeably differ, accordingly
to the singular perturbation S. In any case there is one feature which is invariant: being
Ū ε ∈ kerS the equation satisfied by Ū ε does not present any more the singular external force
ε−1S, and with it a turbulent behavior. At this point hence the kernel flow Ū ε is (generally) a
three-dimensional flow, but it sometimes shares some property which is characteristic of bi-
dimensional flows, such as we can extract some invariant "modified vorticity" which solves a
transport or transport-diffusion equation. This is the key property which, eventually, allows
us to prove that the penalized part of the solution is globally well-posed in some suitable
space of subcritical regularity.
The part Ũ ε has to be dealt differently accordingly to the geometry of the domain Ω. We
shall briefly explain the cases Ω = R3,T3:

1. Ω = R3. The equation satisfied by Ũ ε presents still a singular linear perturbation.
Dispersive tools such as Strichartz estimates can be used to prove that Ũ ε converges to
zero, strongly, in some suitable space.

2. Ω = T3. In this case there can be a constructive interaction of highly oscillating
nodes (resonance). A careful study of the resonance sets leads hence to a suitable
simplification of the equation satisfied by Ũ ε.

The above explanation is a first, very simplified, step of the analysis which is usually per-
formed in dealing with such problems, nonetheless it give some interesting insight already
on the approach which has to be used in order to obtain stronger results.

Ω = R3: In this case the dispersive estimates suggest that the part Ũ ε → 0 strongly in some
suitable space. Hence we can already deduce that, at least in a distributional sense

U ε − Ū ε D′−−→
ε→0

0.

In particular if we allow U ε
0 = Ū0 ∈ kerS the derived solution U ε = Ū ∈ kerS is

stationary w.r.t. ε, in the sense that it does not presents a highly oscillating behavior.
Once we consider a generic ill-prepared initial data U0 (we omit the dependence of ε
for the initial data for the sake of simplicity) indeed there cannot be a convergence of
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the form U ε − Ū ε = U ε − Ū → 0. This is motivated by the fact that the initial data
U0 = Ū0 + Ũ0 is not small in any norm under the assumption that there is a nonzero
oscillating part Ũ0. To avoid such problem we define the free-wave linear equation ∂tW

ε
r,R +

1

ε
S
(
W ε
r,R

)
= 0,

W ε
r,R

∣∣
t=0

= Ψr,R (D) Ũ0.

In the above equation Ψr,R is a localization (in the Fourier space) on a set that we
call Cr,R. Such localization is generally chosen in a way that the eigenvalues of S
which span spaces which are orthogonal to kerS are non-singular on Cr,R. This choice
implies that G (t/ε), the semigroup generated by ε−1S has no stationary phase in his
evolution. Under these assumptions hence the free-wave function W ε

r,R has very nice
dispersive properties (see [10, Chapter 8]), whence we can finally deduce the equation
satisfied by the auxiliary function

δεr,R = U ε −W ε
r,R − Ū ,

and to prove that, fixed 0 < r � 1 � R, δεr,R
ε→0−−→ 0 in some suitable topology of

strong type.

Ω = T3: The spatially periodic setting has a more involved behavior, due to the fact that dis-
persive estimates cannot be applied in such setting. Nonetheless several authors (no-
tably [133], [72], [5], [8], [79], [123], [13], [127], [128]) developed suitable techniques
in order to handle such case. Let us define as above G (t/ε), the semigroup generated
by ε−1S, whence we can define the auxiliary unknown

V ε = G (−t/ε)U ε,

which satisfies an equation of the form{
∂tV

ε +Qε (V ε, V ε)−Aε2V ε = 0,

V ε|t=0 = U0.
(2.7.2)

The operators Qε,Aε2 are of the form

Qε (V ε, V ε) = G
(
− t
ε

)[
B
(
G
(
t

ε

)
V ε,G

(
t

ε

)
V ε

)]
,

Aε2V ε = G
(
− t
ε

)
A2 G

(
t

ε

)
V ε.

The advantage of considering the system in the form (2.7.2) is that the time-derivative
∂tV

ε is bounded in the distributional space Lp
(
R+;H−N (T3)

)
, p ∈ [2,∞] for N

sufficiently large. Standard compactness arguments and an application of stationary
phase theorem (see [133] and [72]) allow us to deduce that V ε → V ? distributionally,
such function solves the following Cauchy problem{

∂tV
? +Q? (V ?, V ?)−A?2V ? = 0,

V ?|t=0 = U0,
(2.7.3)
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where Q? and A?2 are suitable limit-operators. We avoid to give any detail about the
explicit form of such operators, what has to be retained is the fact they have better
smoothing properties than B,Qε, A2,Aε2. This is motivated by the fact that the appli-
cation of the stationary phase theorem cancels many interactions in the Fourier space,
and hence what remain are operators whose action is localized on a very specific set of
Fourier modes. With this in mind it is possible (sometimes, up to suitable hypothesis
of various kind) to prove that (2.7.3) is globally well posed in some strong-type topol-
ogy.
What remains to understand is the (eventual) convergence of solutions of (2.7.2) to so-
lutions of (2.7.3). Defining the unknown W ε = V ε − V ? and deducing the equations
satisfied by the vector field W ε it can be remarked that there appear some nonlinearity
Rε which converges to zero only in the sense of distributions, hence a direct bootstrap
procedure is impossible to apply. To avoid such problem I. Gallagher developed in [72]
a techinque based on the work [133] of S. Schochet which consists in a suitable change
of unknown which cancels the problematic terms. This technique will be applied in
the present thesis as well.

2.7.5 Functional framework.

As this thesis is focused to study hydrodynamical systems in the whole space and in the
periodic setting Fourier analysis provides an extremely well-adapted tool to study the prop-
agation of perturbations arising from nonlinear interactions. We shall use all along the
manuscript the remarkable Bony decomposition tool, introduced by J.-M. Bony in [14]. Such
technique is based on the following concept: let us define a sequence (indexed by q) of op-
erators

4qf = F−1
(
φq

( ·
2q

)
f̂ (·)

)
,

which basically localize (in the Fourier space) the function f on frequencies of size com-
parable to 2q. The advantage of such choice is that derivation operators act on 4qf as
multiplications of constants Cq which depend (exponentially) on q. Bony decomposition
hence consists in studying how dyadic localizations4q acts on products of functions (see as
well [10, Chapter 2]).
This kind of decomposition can moreover be used in order to define in a very simple way an
entire plethora of functional spaces, most notably Sobolev spaces and Besov spaces. Besov
spaces can be understand as, somehow, a generalization of Sobolev spaces, in particular they
are functional spaces which describe very well the rate of oscillations of a function. Despite
being these spaces very well-adapted to study critical propagation of perturbations we shall
restrict, in the present thesis, to the use of Sobolev spaces.

Let us start with the simplest possible case: let us consider a tempered distribution u
defined on Rd, we say that u belongs to the homogeneous Sobolev space Hs

(
Rd
)
, s ∈ R if

‖u‖Hs(Rd) =

(∫
Rd

(
1 + |ξ|2

)s |û (ξ)|2 dξ
)1/2

<∞.

It is hence immediate to deduce that there is natural counterpart for Sobolev spaces in peri-
odic domains: let us consider a tempered distribution u defined on Td, we say that u belongs
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to the homogeneous Sobolev space Hs
(
Td
)
, s ∈ R if

‖u‖Hs(Td) =

(∑
n∈Zd

(
1 + |n|2

)s |û (n)|2
)1/2

<∞.

The notion of such spaces belongs to the mathematical folklore, hence we shall not give
more detailed descriptions of them.

In the study of evolutionary nonlinear equations a very important concept is the propaga-
tion of regularity. This concept is very intuitive: given an initial data we want to understand
how the evolution of the system can create eventual perturbations or waves. Mathematically
speaking we are hence considering how a derivative of a certain degree evolves in time. We
would like hence to define functional spaces who carry less information on a determinate
function: ideally we want to understand if a derivative of a certain degree (even large) blows
up in a finite or asymptotic time.
Let us hence consider the set of functions u whose Fourier transform belong to the space
L1

loc

(
Rd
ξ

)
, we say that u belongs to the homogeneous Sobolev space Ḣs

(
Rd
)
, s ∈ R if

‖u‖Ḣs(Rd) =

(∫
Rd
|ξ|2s |û (ξ)|2 dξ

)1/2

<∞.

The hypothesis û ∈ L1
loc

(
Rd
ξ

)
may seem unusual at a first sight, but it can be easily justified.

The multiplier |ξ|s acts on u as a derivative of order s. Let us hence consider a polynomial
p = p (x) such that deg p 6 s, then indeed F−1 (|ξ|s p̂ (ξ)) = 0, whence the above norm
would be well defined modulo a polynomial in the case such hypothesis would be missing.

There is no periodic counterpart for homogeneous Sobolev spaces.

As explained in detail in Section 2.7.4, in the regime ε → 0, solutions of (SPPε) con-
verge (in some way) to elements which belong to kerS. Obviously such space (kerS) varies
accordingly to the explicit formulation of the penalized operator S. There is no generic clas-
sification of this kind of space, but very often it happens that solutions which belong to kerS
have a very different behavior along vertical and horizontal directions. This motivates to
introduce functional spaces which are well adapted to such anisotropy, in the context of fluid
dynamics these spaces have been introduced by D. Iftimie in [88], [85] and [86] and have
been later refined by M. Paicu in [124] and [125]. We shall consider anisotropic spaces of
Sobolev type for functions defined of three-dimensional domains only.

Let u be a tempered distribution, u belongs to the non-homogeneous anisotropic Sobolev
space Hs,s′ (R3) , s, s′ ∈ R if

‖u‖Hs,s′ (R3) =

(∫
R3

(
1 + |ξh|2

)s (
1 + |ξ3|2

)s′ |û (ξ)|2 dξ
)1/2

<∞.
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The periodic counterpart is indeed defined as the tempered distributions such that

‖u‖Hs,s′ (T3) =

(∑
n∈Z3

(
1 + |nh|2

)s (
1 + |n3|2

)s′ |û (n)|2
)1/2

<∞.

2.7.6 The Navier-Stokes-Coriolis equations.

The Navier-Stokes-Coriolis equations describe the motion of a homogeneous fluid at a plan-
etary scale, namely these equations describe the motion of a fluid, at a mid-latitude, under
the effect of a strong (in magnitude) external rotating force orthogonal to the x3 axis. These
read as  ∂tu

ε + uε · ∇uε − ν∆uε +
1

ε
e3 ∧ uε = −1

ε
∇pε in R+ × Ω,

uε|t=0 = uε0 in Ω.
(RFε)

The vector e3 in (RFε) stays for e3 = (0, 0, 1).
Let us consider at first the case in which the (three dimensional) spatial domain is periodic
in all dimensions, i.e.

Ω = T3 = R3

/
3∏
i=1

aiZ =
3∏
i=1

[0, 2π ai] .

We start with the work [79] of E. Grenier. In such paper the author studied the convergence
of solutions of (RFε) to the solutions of the two-dimensional Navier-Stokes equations in the
case in which the initial data uε0 = u0 = u0 (xh) depends on the horizontal variables only.
Such setting for the initial data is known as the well-prepared case. This name comes from
the fact that vector fields depending on the horizontal variable only belong to the kernel of
the operator P (e3 ∧ ·), where P is the Leray projector onto divergence-free vector fields,
defined as

P = 1R3 −∆−1∇div .

Generally, for singular perturbation problems, the definition of well-prepared initial data
shall always denote a choice of an initial data which belongs to the kernel of the singular
perturbation. The result is attained studying the perturbative waves thanks to a group of
isometries known as the Poincaré group.
Next we mention the work [5] of A. Babin, A. Mahalov and B. Nikolaenko, which studied the
system (RFε) in a periodic setting in the case in which the initial data depends on all three-
dimensional variables, case know as ill-prepared. In this work the authors decide to impose
certain geometric restrictions on the domain in way that bilinear interactions between highly
oscillating perturbations does not occur. Such domain setting is known as non-resonant do-
main. Then the same authors studied in [8] the same problem but in generic domains. The
result is attained via improved product algebraic rules deduced on the bilinear form.
In [91] the global stability of the Navier-Stokes-Coriolis equations is studied in a different
functional setting
T. Colin and P. Fabrie studied in [48], [49] the periodic system (RFε) in the case in which the
diffusivity assumes the form (νh, ενv), i.e. the vertical diffusivity goes to zero at the same
rate as the Rossby number. For periodic boundary conditions and suitable, well-prepared
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initial data they study the long-time existence of the system (RFε) and convergence to the
two-dimentional Navier-Stokes equations.
Isabelle Gallagher studied in [72] singular perturbation periodic problems in a very general
setting. In the case with ill-prepared initial data and non-resonant domains she proved global
well posedness and convergence of solutions of (RFε) to the ones of the two-dimensional
Navier-Stokes equations in the critical Besov-Sobolev space B0, 1

2 (T3).
Marius Paicu studied in [123] the more generic case in which the viscosity in (RFε) assumes
an anisotropic form (νh, νv), where νh > c > 0 and νv > 0. He assumes all over his work
hence that νv ≡ 0 in order to take in account all cases possible. This kind of problem presents
a mixed parabolic-hyperbolic behavior respectively in the horizontal and vertical variables.
The initial data is considered to be ill-prepared, and the domain satisfies a suitable geometri-
cal condition. Such condition (which we do not explicit here, as it is very tedious) is generic
enough to include all non-resonant tori and a large class of resonant domains.

Next we focus on the case in which

Ω = R3,

in [40] and [38] J.-Y- Chemin, B. Desjardins, I. Gallagher and E. Grenier proved that the
solutions of the system (RFε) with zero vertical diffusivity converge globally to the solutions
of the two dimensional Navier-Stokes equations, and such solutions are globally well posed
for ε sufficiently small. Then in [42] they proved that such result holds true in the case in
which the viscosity is isotropic (i.e. spherically symmetric). These results are attained via
a methodology which is completely different to the one adopted in the case of the periodic
space. The main concept in this kind of approach is that the singular operator ε−1P (e3 ∧ ·)
produces perturbations which propagates with a speed of order ε−1, such a fact can be used,
implementing what is called dispersive Strichartz estimates, to prove that there is a part of
the solution which converges globally and strongly to zero in some Lq (R+, L

p (R3)) space.
This fact can be hence exploited via a bootstrap procedure in order to prove that

uε − wε − ūh → 0

in some suitable, global, energy space. The function wε is called the free-wave function, and
is solution to the linear problem associated to (RFε) ∂tw

ε − ν∆wε +
1

ε
e3 ∧ wε = 0,

wε|t=0 = wε0.

The function ūh is the solution of the two-dimensional Navier-Stokes equation. In [98] P.
Konieczny and T. Yoneda prove that the Coriolis force has stabilizing effects even for flows
which are not decaying at infinity.
V.-S. Ngo proved in [119] that this result remain true if the horizontal viscosity vanishes as
well as a suitable positive power of the Rossby numer, i.e. νh = O (εα), and even when the
vertical viscosity is null.

Indeed on a planetary scale the oceans and the atmosphere are thin layers, in the sense
that their vertical dimension is very small if compared with the horizontal reference scale.
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For this reason it makes sense to consider a spatial domain of the form

Ω = R2
h × [0, 1].

Close to the boundary of the domain, i.e. close to x3 = 0, 1, there happens a physical effect
which is worth to be taken in consideration, the Ekman layer. This is the layer in a fluid
where there is a force balance between pressure gradient force, Coriolis force and turbulent
drag. It was first described by Vagn Walfrid Ekman in [61], and it describes a phenomenon
in which turbulence tends to vanish close to surface of the Earth, which translates, on a
mathematical point of view, to consider Dirichelet boundary conditions on ∂Ω. Moreover
experimental verifications show that the vertical viscosity tends to be irrelevant when the
rotation is sufficiently strong. All in all hence it makes sense to consider the following
system 

∂tu
ε + uε · ∇uε −

(
νh∆h + εβ∂2

3

)
uε +

1

ε
e3 ∧ uε = −1

ε
∇pε,

uε|t=0 = uε0,

uε|x3=0,1 = 0.

(Ekε)

E. Grenier and N. Masmoudi studied in [80] the case in which the spatial domain is Ωh ×
[0, 1], with Ωh = R2

h,T2
h. The initial data was considered to be well prepared, in the sense

that is independent on the variable x3. They proved the following result via a WKB analysis:
it is possible to construct a function uεBL, of the form

uεBL = uεBL

(
t, xh,

x3

ε

)
,

which is regular, such that, given uε a weak solution of (Ekε) then

uε − uεBL → ūh,

weakly, where ūh is a solution of the two-dimentional Navier-Stokes equation with damp-
ing. N. Masmoudi proved in [114] the same result but for generic initial data, and in [113] he
proves that weak solution of Navier-Stokes equations with large Coriolis term converges to
the Euler system with damping term under the conditions that viscosity and Rossby number
go to zero at a suitable rate. J.-Y. Chemin et al. in [41] proved that the same result is true for
the case of ill-prepared data in the space domain Ω = R2

h × [0, 1]. In this case a boundary
layer in time has to be taken as well in consideration.

Concerning the problem of Ekman boundary we mention that in the works [80], [114]
and [41] were considered horizontal boundary layers only. The problem of nonflat Ekamn
boundary layers appears to be significantly more complex. In this setting we mention the
work [16] in which the authors investigate the limit dynamic, when the Rossby number
tends to zero, of the Navier-Stokes-Coriolis equations in a cylinder C = B1 (0) × [0, 1]. In
the work [51], instead, are studied the Navier-Stokes-Coriolis equations in a non-flat bottom
setting.
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2.7.7 Fluid dynamics with vanishing Mach number.

Classically a fluid in motion is submitted to two kinds of stresses corresponding to compres-
sion effects and viscous effects, then one writes

σ = −p1 + τ,

where p is a scalar function, the pressure ad τ is the viscous stress tensor. We denote by 1
the identity matrix (tensor).
Let us postulate that τ is a linear function of ∇u, invariant under translation and rotation,
and that the fluid is isotropic. It is possible to deduce that necessarily

τ = λdivu+ µ
(
∇u+∇tu

)
,

and µ, λ are the so-called Lamé viscosity coefficients. These three assumptions on the stress
tensor τ (linearity, invariance, isotropy) define what is known as a newtonian fluid. A priori
the Lamé coefficients λ, µ may depend on the density ρ, but in in a general mathematical
framework they are considered to be constants such that µ > 0 and ν = λ + 2µ > 0.
Such conditions ensure that the operator µ∆ + (λ+ µ)∇div is elliptic. For most fluids
experiments indicate that λ and µ are, in practice, very small.
As explained in Section 2.6 it is easy, thanks to the scaling (2.6.3), and without considering
the influence of the rotation of the Earth, to deduce the system

∂t (ρεuε) + div (ρεuε ⊗ uε)− µ∆uε − (λ+ µ)∇divuε +
1

ε2
∇P (ρε) = ρεf

∂tρ
ε + div (ρεuε) = 0

(ρε, uε)|t=0 = (ρε0, u
ε
0) ,

(WCε)

where we implicitly assumed M = ε. Many results have been obtained concerning the
system (WCε) in the case of well prepared initial data, i.e.

ρε0 = 1 +O
(
ε2
)

and divuε0 = O (ε) ,

such hypothesis on the magnitude of Mach number is motivated by the physical analysis
performed in Section 2.3. In this setting S. Klainerman and A. Majda in [95] develop a
first general theory adapted to study existence and convergence of some quasi-linear hyper-
bolic system arising in physics when some physical parameter tends to infinity. This theory
is broad enough to study a wide variety of singular limits in compressible fluid flow and
magneto-fluid dynamics. Always in the setting of well-prepared initial data it is proved
in [99] that solutions of (WCε) in the simplified form ∂tu

ε + uε · ∇uε −∇∆uε +∇pε = 0,

∂tp
ε + uε · ∇pε +

1

ε2
divuε = 0,

in a periodic setting admit the following asymptotic expansion

uε = U + uε1 +O
(
ε4
)
,

pε = P + pε1 +O (ε) ,
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where (U, P ) solve the incompressible Navier-Stokes equations and (uε1, p
ε
1) are highly os-

cillating in-time functions.
Always in the well prepared initial data setting it is proved in [105] and [82] that solutions
of the compressible Navier-Stokes equation converge strongly to the solutions of the incom-
pressible system,

In the case of ill prepared initial data, it is only assumed that

ρε0 = 1 + εbε0

and (bε0, u
ε
0) are only bounded in some suitable spaces which does not necessarily belong to

the kernel of the penalized operator. If Puε0 → v0 when ε goes to zero, one expects that
uε → v where v is the solution of the incompressible Navier-Stokes equations (NS). The
expected convergence is however not easy to be rigorously justified. The main difficulty lies
in the fact that one has to deal with the propagation of acoustic waves with speed of order
ε−1, a phenomenon which does not occur in the case of well prepared data.
In [110], P.-L- Lions proved the existence of global weak solutions of (WCε) for initial data
with minimal regularity assumptions. The fluid is supposed to be isentropic and the pressure
is of the form P (ρ) = aργ , with certain restrictions on γ depending on the space dimension
d. In the same setting P.-L. Lions and N. Masmoudi in [111] proved that weak solutions of
(WCε) converges weakly to weak solutions of (NS) in various boundary settings. This result
is proved via some weak compactness methods (see also [77] and [66]). In the work of B.
Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi [57], considering (WCε) with f ≡ 0, in
a bounded domain Ω with Dirichlet boundary conditions, the authors proved that as ε → 0,
the global weak solutions of (WCε) converge weakly in L2 to a global weak solution of the
incompressible Navier-Stokes equations (NS). In [56], using dispersive Strichartz-type es-
timates, Desjardins and Grenier proved that the gradient part of the velocity field (i.e. the
gradient of the acoustic potential) of the system (WCε) converges strongly to zero. Finally,
we want to mention the works of R. Danchin [52] and [54]. In [52], the author proved global
existence of strong solutions for the system (WCε) for small initial data in some suitable,
critical, scale-invariant (Besov) spaces, in the same spirit as in the work of Cannone, Plan-
chon and Meyer [18] or the work of Fujita-Kato [70] for the incompressible model. In [54],
the author addressed to the convergence of (WCε) to (NS) for ill-prepared initial data when
the Mach number ε tends to zero. When the initial data are small, the author obtains global
convergence and existence, while for large initial data with some further regularity assump-
tions, it is shown that the solution of (WCε) exists and converges to the solution of (NS)
in the same time interval of existence of the solution of (NS). For compressible inviscid
fluids in the non-rotating case, in A. Dutrifoy and T. Hmidi [60], the authors considered
the system (WCε) in R2 with initial data not uniformly smooth (i.e. the C1 norm is of order
O (ε−α) , α > 0). The convergence to strong, global solutions of 2D Euler equation is proved
by mean of Strichartz estimates and the propagation of the minimal regularity.
We mention as well the work [73]; in such work it is proved that three-dimensional, peri-
odic, weakly compressible fluids propagate (globally) smoothness when the Mach number
is sufficiently small. It is assumed that that the initial data is small with respect to a constant
which only depends on the viscosity.

Let us now focus on fast rotating, compressible fluids. To the best of our knowledge, there
is no result yet concerning the the inviscid system (CEε). In the viscous fast rotating case,
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in [68], E. Fereisl, I. Gallagher and A. Novotný studied the dynamics, when the Mach number
equals the Rossby number, of weak solutions of the system system (CEε) with viscous tensor
in R2 × T1, with non-slip boundary conditions

uε,3
∣∣
x3=0,1

= 0 and (S2,3,−S1,3, 0)|x3=0,1 =0,

where S is the stress viscous tensor

S (∇u) = µ

(
∇u+∇ᵀu− 2

3
divuI

)
.

i.e. the system
∂t (ρε uε) + div (ρε uε ⊗ uε)− divS (∇u) +

1

ε
e3 ∧ (ρεuε) +

1

ε2
∇p (ρε) = 0,

∂tρ
ε + div (ρε uε) = 0,

(uε, ρε)|t=0 = (u0, ρ0) .

(CNSε)

Their result relies on the spectral analysis of the singular perturbation operator. Using RAGE
theorem (see [132]), the authors proved the dispersion due to fast rotation and that weak so-
lutions of (CNSε) converges to a 2D viscous quasi-geostrophic equation for the limit density.
We refer to [68] for a detailed description of the limit system. In [67], Feireisl, Gallagher,
Gérard-Varet and Novotný studied the system (CNSε) in the case where the effect of the cen-
trifugal force was taken into account. Noticing that this term scales as ε−2, they studied both
the isotropic limit and the multi-scale limit: namely, they supposed the Mach-number to be
proportional to εm, for m > 1. We want to point out that, in the analysis of the isotropic
scaling (m = 1), the authors had to resort to compensated compactness arguments in or-
der to pass to the limit: as a matter of fact, the singular perturbation operator had variable
coefficients, and spectral analysis tools were no more available. Recently in [65], F. Fanelli
proved a similar result as the one proved in [68], by adding to the system (CNSε) a capillarity
term and studying various regimes depending on some positive parameter. We mention as
well the work [93] in which A. Jüngel, C.-K. Lin and K.-C. Wu study the incompressible
and vanishing capillarity limit for the two-dimensional, periodic, barotropic Navier-Stokes
equations with constant (hence nonsingular) horizontal rotation effects.

We want to remark that all the compressible systems previously mentioned are isother-
mal. In the case of variable temperature, the generic system governing a heat conductive,
compressible fluid is the following

∂tρ+ div (ρu) = 0,

∂t (ρu) + div (ρu⊗ u)− div (τ) +∇P = ρf,

∂t

(
ρ

(
|u|2

2
+ e

))
+ div

[
u

(
ρ

(
|u|2

2
+ e

)
+ P

)]
= div (τ · u)− div q + ρf · u,

(HCCNS)

which can be derived from the conservation of mass, linear momentum and energy. We refer
the reader to [109] and references therein for more details. Here, the fluid is always supposed
to be newtonian and e = e (t, x) is the internal (thermal) energy per unit mass. The heat
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conduction q is given by q = −k∇T , where k is positive and T stands for the temperature.
If e obeys Joule rule (i.e. e is a function of T only), the initial data is smooth and the
initial density is bounded and bounded away from zero, the existence and uniqueness of a
local classical solution has already been known for a long time (see [117] or [90]). In [53],
R. Danchin proved that (HCCNS) is locally well posed in the critical scale-invariant space

B
d
p
−1

p,1

(
Rd
)
, p ∈ [1,∞).

Indeed the system (HCCNS) can be studied in the regime in which the Mach number goes to
zero, we mention hence the works of G. Métivier and S. Schochet [115] and T. Alazard [2]
in which is proved that, for generic initial data, the solutions of the Navier-Stokes equations
exist and they are uniformly bounded for a time interval which is independent of the Mach,
Reynolds and Peclet numbers.

2.7.8 Primitive equations.

Primitive equations (PEε) can be understood as a system describing the dynamics of a fluid at
a planetary scale in long time-scales where the difference of density induced by gravitational
stratification effect is taken in consideration. This was explained in great detail in Section
2.3 and 2.4, but for a more detailed physical discussion on the topic we refer the reader to
the monographs [50] and [126].

As in the subsection concerning the Navier-Stokes-Coriolis equations we divide tem-
atically the present section accordingly to the geometry of the domain. As in the case of
Navier-Stokes-Coriolis equations we analyze in detail the results present in the literature
when the space domain Ω is either

T3, R3, R2 × [0, 1] .

Before starting to discuss such particular configurations it is (in our opinion) worth to men-
tion the works [107] and [108] in which J.-L- Lions R. Temam and S. Wang derive the for-
mulation of the primitive equations in a spherical reference system (hence the formulation is
more complex than in (PEε)). They prove that such equations admit strong local-in-time and
analytical in time solutions, and then they focus on the Hausdorff and fractal dimension of
the attractors of the system.

For the space-periodic setting we mention the work of T. Beale and A. Bourgeois [15]
which studied the inviscid primitive equations with a simplified equation for the density in
a domain which is periodic in the horizontal direction and bounded in the vertical, with a
regular initial data. Adopting a suitable change of variables they reduce themselves to a
problem which is periodic in all directions, in such domain they prove local and then global
well-posedness for the quasi-geostrophic system and convergence of solutions of primitive
equations (PEε) in the case in which the initial data is H3 and well-prepared, in the sense
that it is in the quasi-geostrophic equilibrium.
Next we mention the works [62] and [63]. In these works the authors consider primitive equa-
tions (and even more generic systems) in different regimes in domain which are periodic-in-
space. In particular the authors are interested to study the interactions between fast gravity
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waves. They state and prove various weak convergence results, such as the (weak) conver-
gence for well-prepared data of rotating Boussinesq and shallow-water equations to quasi-
geostrophic flows in the regime in which the Rossby number vanishes.
In [6] Babin et al. study the inviscid primitive equations: they prove that the lifespan of the
solutions tends to infinity as the rotation and the stratification buoyancy increase in magni-
tude. I. Gallagher proved always in [72] that the solutions of the primitive equations converge
to the solutions of the quasi-geostrophic system in a periodic setting, for generic initial data
and non-resonant domains. The result she proves is derived as a special case of convergence
for singular parabolic systems with symmetric nonlinearity: being the limit equation glob-
ally defined she sets up an adapted bootstrap procedure which permits to prove convergence
globally.
A. Babin, A. Mahalov and B. Nicolaenko continue in [7] the development of the theory
started in [5] and [8]. In such work the limit dynamic of primitive equations in the periodic
setting is described. It is proved that the flow describing the limit dynamic can be globally
split in a geostrophic and ageostrophic part which represent the dynamical attractor of the
system.
Next we mention the works [127], [92] and [128]. In [127] M. Petcu, R. Temam and D.
Wirosoetisno study the two-dimensional primitive equations using a renormalization group
technique introduced in [44], [45], [145], [116], [142] and [143]. The result they prove is an
approximation of the exact solutions of the bi-dimensional primitive equations by mean of
an asymptotic smooth solution which exists for all times, moreover the authors estimate the
difference between approximate and exact solutions. In [92] the authors study the problem
of a sigularly perturbed quasigeostrophic equation when the viscosity tends to zero: this gen-
erates boundary layers. They hence construct suitable smooth correctors which compensate
the perturbative effects generated by a vanishing viscosity. In the article [128] the authors
address the same problem as in [127] but in dimension three.

In the case of the whole space R3, J.-Y. Chemin proved in [36] that, if the Froude number
is equal to the Rossby number, and both of them converge to zero at the same rate, the
solutions of the primitive equations converge to the ones of the quasi-geostrophic system
assuming that only a part of the initial data (called U ε

osc,0) is small (in fact converges to zero
as ε → 0) in a suitable norm. The convergence takes place in the homogeneous Sobolev
Ḣs (R3) topology. The assumption that F = 1 (see (PEε)) alienates any hope of using
dispersive tools.
The fact that F = 1 implies that, for algebraic reasons, the phase is no more oscillating,
hence dispersive estimates cannot be applied. All along this thesis we shall instead always
consider systems which present oscillating behaviors.
D. Iftimie studied in [87] the inviscid primitive equations in the case that F 6= 1. He proves
the convergence of solutions of (PEε) to the ones of the quasi-geostrophic system in the
L∞loc (R+;Hσ (R3)) topology, with σ < s, s > 5/2. He assumes the initial data to be well
prepared, in the sense that U ε

0 = U ε
QG,0 + U ε

osc,0, and U ε
osc,0 → 0 as ε → 0 in L2 (R3). The

methodology adopted is a propagation of Hs (R3), s > 5/2 regularity in the spirit of the well
known Beale-Kato-Majda criterion [12] for the potential vorticity Ωε.
We mention next the works of F. Charve, whose Ph.D. thesis [27] is entirely devoted to the
primitive equations in the form (PEε). He proved several results on such system: first of all
he proved in [29] that, under the assumption F 6= 1 and minimal regularity assumption U0 ∈
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L2 (R3), the weak solutions of (PEε) converge weakly to the ones of the quasi-geostrophic
system. In [28] he proves that, if the initial data is in Ḣs (R3) , s ∈

[
1
2
, 1
]
, then

U ε −W ε → UQG,

in the space L∞
(
R+; Ḣs (R3)

)
∩ L2

(
R+; Ḣs+1 (R3)

)
, s ∈ [1/2, 1]. The function W ε is a

solution of a suitable linear system derived from the system solved by UQG. We do not go
into details. Next he improved the above results in [31] assuming that the initial data U ε

0 can
explode as some suitable negative power ε−γ of the Rossby and Froude number and in [32]
assuming less regular initial data. In the joint work [34] F. Charve and V.-S. Ngo proved
that the primitive equations (PEε) are globally well posed even in the case that the vertical
diffusivity νv, ν ′v = 0 and the horizontal diffusivities νh, ν ′h go to zero as a suitable power
of the Rossby number in the case that the initial data is well-prepared, in the sense that the
quasi-geostrophic part of the initial data is null. The works [33] and [26] are a generalization
of [31]. In [31] the author assumes the viscosity and the thermal diffusivity to be equal,
while in the works [33] and [26] it is not the case. In such setting the three-dimensional
quasi-geostrophic system is a transport equation with nonlocal diffusive operator −Γ, such
operator induces a number of additional technical difficulties in the study of the propagation
of regularity for the quasi-geostrophic equations.

In the case in which the spatial domain is an infinite slab between two fixed planes i.e.
R2
h × [0, 1] with Dirichelet boundary conditions B. Desjardins and E. Grenier proved in [55]

that, for well-prepared initial data, there is existence and weak convergence as the Rossby
number tends to zero. In the same setting D. Niu proves in [121] a similar result adopting
slightly different techniques; it is proved that, for well-prepared initial data, the smooth solu-
tions of the primitive equations converge to smooth solutions of quasi-geostrophic equations
as the Rossby number, the vertical viscosity and the vertical heat conductivity tend to zero.
In [9] Babin et al. study the viscid primitive equations in an infinite slab and they focus on
the convergence toward a suitable limit system.

We mention as well the work [131] in which M. Puel and A. Vasseur study a system in
a semi-geostrophic balance. In such setting the quasi-geostrophic velocity flow can be fully
recovered from a scalar function known as stream function Ψ. They hence prove that the
evolution equations satisfied by Ψ admit a weak solution in the half space R2

(x1,x2)× (R+)x3
.

In the (non exhaustive) series of works [23], [24], [25], [20], [19], [21] and [22], C. Cao,
J. Li and E. Titi proved several results of global well posedness for the equations

∂tu
h + u · ∇uh +∇hp+ f e3 ∧ uh + L1u

h = 0,

u =
(
uh, u3

)
,

∂3p+ T = 0,

divu = 0,

∂tT + u · ∇T + L2T = 0,

in which L1 and L2 are second order differential (isotropic or anisotropic) diffusion opera-
tors, in various domains and boundary settings.
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At last we mention that the primitive equation (PEε) describe the dynamic of a stratified,
rotating fluid in the very simplified setting in which gravity and rotation waves have compa-
rable frequencies. In the series of works [77], [75], [76], [46], [47] and [74] I. Gallagher and
L. Saint-Raymond with other authors study the dynamics of more physically relevant sys-
tems: gravity and rotation waves are considered to have a wider spectrum of frequencies and
the superposition dynamic of such perturbation is hence way richer. We do not give a more
detailed characterization of such works since the systems considered in the present thesis are
considerable simplifications of the systems considered in the aforementioned papers.

2.8 Contributions of the thesis.

The main idea underlying the present thesis is to use the techniques developed in the works
[38], [72], [133] and [123] (dispersion, Schochet’s technique, control of resonance) and to
apply them to a variety of problems which present strong (in magnitude) forces acting on
them. These external forces may have very different physical motivations.

2.8.1 Primitive equations.

We re-write here for the convenience of the reader the primitive equations (PEε):

∂tu
1,ε + uε · ∇u1,ε − νh∆hu

1,ε − 1

ε
u2 = −1

ε
∂1Φε

∂tu
2,ε + uε · ∇u2,ε − νh∆hu

2,ε +
1

ε
u1,ε = −1

ε
∂2Φε

∂tu
3,ε + uε · ∇u3,ε − νh∆hu

3,ε +
1

F ε
θε = −1

ε
∂3Φε

∂tθ
ε + uε · ∇θε − ν ′h∆hθ

ε − 1

F ε
u3,ε = 0

divuε = 0,

(uε, θε)|t=0 = (u0, θ0) = V0.

(PEAε)

These equations, as explained in detail in Section 2.3 and 2.4 describe the long-time
behavior of an incompressible, stratified, rotating fluid. There is a simplification between
system (PEε) and (PEAε) which was made implicitly: we assume that the viscosity ν =
(νh, 0) , ν ′ = (ν ′h, 0) has no vertical component. This choice is motivated by the fact that
experimental verifications show that the Ekman number (2.3.23) is very small in geophysical
fluids, hence it makes sense to consider the vertical diffusivity null.
We place ourselves in a spatially-periodic domain

T3 = R3

/
3∏
i=1

aiZ =
3∏
i=1

[0, 2π ai] .

The parameters (a1, a2, a3) ∈ R3 shall not be chosen randomly but they have to satisfy the
following criterion:
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Definition 2.8.1. We say that a torus T3 ⊂ R3 satisfies the condition (P) if either one or the
other of the following situation is satisfied:

1. T3 is non-resonant.

2. If T3 is resonant, the Froude number F 2 is rational, and either

• a2
3/a

2
1 ∈ Q and a2

3/a
2
2 is not algebraic of degree smaller or equal than four.

• a2
3/a

2
2 ∈ Q and a2

3/a
2
1 is not algebraic of degree smaller or equal than four.

We refer to Definition 3.1.6 for a formal definition of resonant domain.

The first result we address to is whether there exists a local strong solution of (PEAε) for
any initial data in a suitable space of low-regularity:

Theorem 2.8.2. Let s > 1/2 and V0 ∈ H0,s (T3) a divergence-free vector field. Then there
exists a time T > 0 independent of ε and a unique solution V ε for the system (PEAε) which
belongs to the space

V ε ∈C
(
[0, T ] ;H0,s

)
, ∇hV

ε ∈L2
(
[0, T ] ;H0,s

)
.

The existence part of Theorem 2.8.2 has been proved in [38], while the uniqueness (in
the same energy space) has been proved in [89].

Again as for (PEε) we can re-write (PEAε) in a more compact form: ∂tU
ε + uε · ∇U ε − DU ε +

1

ε
AU ε = −1

ε
∇Φε,

U ε|t=0 = (u0, θ0) ,

where

D =


νh∆h 0 0 0

0 νh∆h 0 0
0 0 νh∆h 0
0 0 0 ν ′h∆h

 , A =


0 −1 0 0
1 0 0 0
0 0 0 F−1

0 0 −F−1 0

 .

Let us now define the following operator

P =

(
1−∆−1∇div 0

0 1

)
, (2.8.1)

the operator P acts as the Leray projector onto divergence-free vector fields in the first three
components as the identity on the fourth. Let us define the propagator

L (τ) = e−τPA,

defining the auxiliary unknown

V ε = L
(
t

ε

)
U ε,
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Chapter 2. Introduction.

we can deduce (following S. Schochet [133], E. Grenier [79], I. Gallagher [72] and M.
Paicu [123]) that the function V ε satisfies the following equation{

∂tV
ε +Qε (V ε, V ε)− DεV ε = 0,

V ε|t=0 = (u0, θ0) ,
(2.8.2)

where

Qε (V ε, V ε) = L
(
− t
ε

)
P
[
L
(
t

ε

)
V ε · ∇L

(
t

ε

)
V ε

]
,

DεV ε = L
(
− t
ε

)
DL
(
t

ε

)
V ε.

It can be proved that the system (2.8.2) admits a distributional limit{
∂tV +Q (V, V )− DV = 0,

V |t=0 = (u0, θ0) ,
(2.8.3)

where the explicit expression of the operators Q,D is now omitted.

We can moreover prove that system (2.8.3) admits global solutions of weak-type, such
result is not is not a standard derivation of solutions à la Leray. Indeed the operators Dε

and D above are differential operators in the horizontal directions xh only. In particular is
hence missing a diffusive vertical term of the form νv∂

2
3 . This implies that standard Galerkin

approximation scheme cannot be applied, being the anisotropic Sobolev spaceH1,0 not com-
pactly embedded in L2. Despite such problem we are able to overcome such difficulty by
noticing that the limit form Q acts in very well defined localized (in the Fourier space) way.
In particular the nodes which provide a bilinear interaction are solutions of a polynomial
equation of the form

P (X) = 0,

with X ∈ Z9. Defining X = (X1, X
′) and fixing X ′ ∈ Z8 we can hence deduce that

the equation P (X1, X
′) = 0 has become a one-dimensional equation, whose solutions

X1 (P,X ′) are finite due to the very well know fundamental theorem of algebra. More-
over applying the result [112], which uses tools of complex analysis, we can deduce a bound
of the form

|X1 (P,X ′)| 6 K (P,X ′) ,

on the roots of the equation P (X1, X
′) = 0. This anisotropic localization of nodes allows

us to transform a vertical derivative ∂3 to a multi-index
(
C1 ∂

N1
1 , C2 ∂

N2
2

)
, where eventually

C1, C2, N1, N2 are large. This is the key observation which allows us to prove the following
result

Theorem 2.8.3. Let T3 be a 3-dimensional torus, for each divergence-free vector field U0 ∈
L2 (T3) and Ω0 = −∂2u

1
0 + ∂1u

2
0 − F∂3θ0 ∈ L2 (T3) there exists a distributional solution to

the system (2.8.3) in the space D′ (R+ × T3) which moreover belongs to the space

V ∈L∞
(
R+;L2

(
T3
))

∇hV ∈L2
(
R+;L2

(
T3
))
,
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and satisfies the following energy estimate for each t > 0

‖V (t)‖2
L2(T3) + c

∫ t

0

‖∇hV (s)‖2
L2(T3) ds 6 C ‖U0‖2

L2(T3) ,

where the constant c = min {νh, ν ′h} > 0.

Despite this result has a theoretical interest since, due to the special properties of the limit
system (2.8.3), we have to prove a result that generally does not holds true for Navier-Stokes
anisotropic equations, we are still interested to prove propagation of data regularity in sub-
critical topologies.

Nonetheless it is possible to prove that the solution of (2.8.3) is globally well-posed in
some anisotropic super-critical Sobolev space, i.e. we prove

Theorem 2.8.4. Let T3 satisfy the condition (P) and consider a vector field U0 ∈ H0,s with
zero horizontal average and Ω0 ∈ H0,s, for s > 1 such that divu0 = 0, F 6= 1 the limit
system (2.8.3) admits a unique global solution

V ∈L∞
(
R+;H0,s

)
∇hV ∈L2

(
R+;H0,s

)
,

that satisfies the following energy bound

‖V (t)‖2
H0,s + c

∫ t

0

‖∇hV (s)‖2
H0,s 6 E

(
‖U0‖2

H0,s

)
,

where E is a suitable (bounded on compact sets) function. Moreover the solution U is unique
in the space L∞ (R+;H0,σ) ∩ L2 (R+, H

1,σ) for σ ∈ [−1/2, s).

The limit system (2.8.3) admits hence unique global strong solution. The next step is to
understand if such state is an attractor for the local solution of (PEAε) identified in Theorem
2.8.2 in the regime ε→ 0 of strong rotation and stratification, and, if that is the case, which
is the appropriate topology in which such convergence takes place.

Theorem 2.8.5. Let T3 ⊂ R3 satisfy the condition (P), Ω0 = −∂2u
1
0 +∂1u

2
0−F∂3θ0 ∈ H0,s,

U0 ∈ H0,s with zero horizontal average, then the following convergences take place

lim
ε→0

(
U ε − L

(
t

ε

)
V

)
= 0 in C

(
R+;H0,σ

)
lim
ε→0
∇h

(
U ε − L

(
t

ε

)
V

)
= 0 in L2

(
R+;H0,σ

)
for σ < s and V is the unique solution of the limit system (2.8.3).

It is hence interesting to remark that the above theorem implies the fact that the local
solutions of (PEAε) are in fact globally well-defined, improving the lifespan of Theorem
2.8.2 which can be deduced thanks to energy estimates alone.
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2.8.2 Stratified fluids in low Froude number regime.

The primitive equations (PEε) describe stratified fluids under the influence of the rotation of
the Earth. We can indeed neglect the effects of the rotation and study the motion of a fluid
in a long time-scale under the effects of the stratification buoyancy. The system was derived
from physical considerations in Section 2.5 and reads as:

∂tu
ε + uε · ∇uε − ν∆uε − 1

ε
θε−→e 3 =− 1

ε
∇Φε,

∂tθ
ε + uε · ∇θε − ν ′∆θε +

1

ε
u3,ε = 0,

divuε = 0,

(uε, θε)|t=0 = U0 = (u0, θ0) .

(PBSε)

Again we can rewrite the system (PBSε) into the following more compact form
∂tU

ε + U ε · ∇U ε − DU ε +
1

ε
AU ε = −1

ε

(
∇Φε

0

)
,

U ε = (uε, θε) ,

divuε = 0,

(PBSε)

where

A =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 , D =


ν∆ 0 0 0
0 ν∆ 0 0
0 0 ν∆ 0
0 0 0 ν ′∆

 .

The spatially-periodic setting.

Again we can define the operator P as in (2.8.1) and defining the auxiliary unknown

V ε = L
(
t

ε

)
U ε,

we can deduce that the function V ε satisfies the following equation{
∂tV

ε +Qε (V ε, V ε)− DεV ε = 0,

V ε|t=0 = (u0, θ0) ,
(2.8.4)

where

Qε (V ε, V ε) = L
(
− t
ε

)
P
[
L
(
t

ε

)
V ε · ∇L

(
t

ε

)
V ε

]
,

DεV ε = L
(
− t
ε

)
DL
(
t

ε

)
V ε.
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It can be proved (details omitted here) that the system (2.8.2) admits a distributional limit{
∂tV +Q (V, V )− DV = 0,

V |t=0 = (u0, θ0) ,
(2.8.5)

where the explicit expression of the operators Q, D is now omitted.

Naturally one may wonder if, and in which sense (2.8.4) converges to (2.8.5). The filter-
ing operator L transforms the system (PBSε) in (2.8.4): the latter does not presents any more
the singular perturbation, being this the case we can provide uniform bounds for the sequence
(∂tV

ε)ε>0 in the space Lploc

(
R+;H−N

)
where N is sufficiently large and p ∈ [2,∞]. Hence

standard compactness arguments in functional spaces can be applied; applying Aubin-Lions
lemma [4] we prove in fact that, up to subsequences, not relabeled

V ε ε→0−−→ V in L2
loc

(
R+;L2

(
T3
))
.

The above argument does not explain how the bilinear interactions Qε (U ε, U ε) converge to
a limit bilinear interaction Q (U,U): this can be proved applying the non-stationary phase
theorem. We omit to introduce the details of such result of convergence and we refer to the
Chapter 4.

We consider U0 = (u0, θ0) to be of zero horizontal average, i.e.

1

|T2
h|

∫
T2
h

U0 (yh, x3) dyh = 0.

The global average of the vector fields instead will be always considered to be zero.

Let us define

Ū0 = ∆−1
h


−∂2

∂1

0
0

(−∂2u
1
0 + ∂1u

2
0

)
, Uosc,0 = U0 − Ū0,

the first result proved is the following one:

Theorem 2.8.6. Let V be the distributional limit solution of (2.8.5), then V can be written
as

V (x) = V̄ (xh, x3) + Vosc (xh, x3) ,

where V̄ , Vosc are respectively distributional solutions of the systems{
∂tv̄

h + v̄h · ∇hv̄
h − ν∆v̄h = −∇hp̄,

v̄h
∣∣
t=0

= ūh0 ,
(2.8.6){

∂tVosc + 2Q
(
V̄ , Vosc

)
− (ν + ν ′) ∆Vosc = 0,

Vosc|t=0 = Uosc,0,
(2.8.7)

where Q, is the bilinear form defined in (4.3.2) for almost all (a1, a2, a3) ∈ R3 parameters
of the three-dimensional torus T3 =

∏
i [0, 2π ai].

65



Chapter 2. Introduction.

Let us point out some some technical difficulty characteristic of the system that we study
in this part of the thesis. The limit bilinear formQ in (2.8.5) is well defined only for bilinear
interactions whose first two components have zero horizontal average. Whence is is impor-
tant to prove that in the limit ε → 0 the horizontal average of the horizontal components of
the bilinear interaction Qε (U ε, U ε) are zero, at least in a distributional sense. Whence we
require to prove the following result:

Lemma 2.8.7. The limit

lim
ε→0

(∫
T2
h

(Qε (U ε, U ε))h dxh, 0, 0

)
= 0,

hods in a distributional sense.

The proof of the above lemma relies on a careful analysis on the horizontal average of
the vertical oscillations: we exploit symmetric properties of the localization of the sum in
order to deduce that suitable cancellation properties can be applied.

The main advantage in studying the limit system (2.8.5) as the superposition of the evo-
lutions of the two systems (2.8.6)–(2.8.7) is that system (2.8.5) presents the same difficulties
as the classic three-dimensional Navier-Stokes equation as far as concerns the propagation of
Sobolev regularity due to the bilinear interaction Q, while on the other hand (2.8.6)–(2.8.7)
are respective a 2D-stratified Navier-Stokes system and a linear system. If we consider sep-
arately such equations we can prove that they are globally well posed as it is formalized in
the following theorem

Theorem 2.8.8. Let us assume ūh0 ∈ L∞v (Hσ
h ) and ∇hū

h
0 ∈ L∞v (Hσ

h ) with σ > 0, then V̄ ,
distributional solution of (2.8.6) is globally well posed in R+, and belongs to the space

v̄h ∈ C
(
R+;Hs

(
T3
))
∩ L2

(
R+;Hs+1

(
T3
))
, s > 1/2,

and for each t > 0 the following estimate holds true

∥∥v̄h (t)
∥∥2

Hs(T3)
+ ν

∫ t

0

∥∥∇v̄h (τ)
∥∥2

Hs(T3)
dτ 6 E1 (U0) .

Where the function E1 is defined as the right-hand-side of equation (4.5.2).
On the other hand, if we denote as Vosc as the distributional solution of (2.8.7), then, Vosc is
globally defined and it belongs to the space

Vosc ∈ C
(
R+;Hs

(
T3
))
∩ L2

(
R+;Hs+1

(
T3
))
,

for s > 1/2. For each t > 0 the following bound holds true

‖Vosc (t)‖2
Hs(T3) +

ν + ν ′

2

∫ t

0

‖∇Vosc (τ)‖2
Hs(T3) dτ 6 E2 (U0) ,

and the function E2 is defined as the right-hand-side of equation (4.5.19).
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The last step is obviously to prove that solutions of (PBSε) converge as ε → 0 in some
appropriate topology to the solutions of (2.8.5):

Theorem 2.8.9. Let U0 in Hs (T3) for s > 1/2 as above, for ε > 0 small enough (PBSε) is
globally well posed in C (R+;Hs (T3)) ∩ L2 (R+;Hs+1 (T3)), and, if V is the global strong
solution of (2.8.5), then

U ε − L
(
− t
ε

)
V = o (1) ,

in C (R+;Hs (T3)) ∩ L2 (R+;Hs+1 (T3)).

The above theorem is proved applying a methodology known as Schochet method, which
was formalized by I. Gallagher in [72] for parabolic nonlinear systems. Nonetheless this
technique has to be adapted in order to control the decay of the bilinear vertical perturbations
mentioned above.

The whole-space setting.

Let us now consider the system (PBSε) in the whole space R3. The projection of (PBSε) onto
kerPA is a two-dimensional, stratified, Navier-Stokes equation with full diffusion:

∂tū
h + ūh · ∇hū

h − ν∆ūh = −∇hp̄

divh ūh = 0,

ūh
∣∣
t=0

=

(
−∂2

∂1

)
∆−1
h

(
−∂2u

1
0 + ∂1u

2
0

)
= ūh0 .

(2.8.8)

Such system shares many interesting features with the classical two-dimensional Navier-
Stokes equations, in particular the "horizontal vorticity"

ωh = −∂2ū
1 + ∂1ū

2,

can describe the velocity flow via a two-dimensional Biot-Savart law,

ūh =

(
−∂2

∂1

)
∆−1
h ωh,

and satisfies the following transport-diffusion equation{
∂tω

h + ūh · ∇hω
h − ν∆ωh = 0,

ωh
∣∣
t=0

= −∂2u
1
0 + ∂1u

2
0 = ωh0 .

(2.8.9)

We are able to prove that, under suitable hypothesis, the system (2.8.8) is globally well
posed in suitable homogeneous Sobolev space, in detail

Theorem 2.8.10. Let ūh0 ∈ L2 (R3) ∩ Ḣs (R3), s > 0 and ωh0 ∈ L2 (R3), then there exists a
global strong solution of the system (2.8.8) which belongs to the space

ūh ∈ L∞
(
R+;L2

(
R3
)
∩ Ḣs

(
R3
))
∩ L2

(
R+; Ḣ1

(
R3
)
∩ Ḣs+1

(
R3
))
,
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and for each t > 0 the following bound holds

∥∥ūh (t)
∥∥2

Ḣs(R3)
+ ν

∫ t

0

∥∥∇hū
h (τ)

∥∥2

Ḣs(R3)
dτ

6 C
∥∥ūh0∥∥2

Ḣs(R3)
exp

{
CK2

ν

(∥∥ūh0∥∥4

L2(R3)
+
∥∥ωh0∥∥4

L2(R3)

)}
. (2.8.10)

The question of convergence in low Froude number regime arise hence naturally, follow-
ing the works [42], [38], [28] we expect that

U ε + perturbative term in ε ε→0−−→ Ū =
(
ūh, 0, 0

)
.

The detailed statement of the result we prove is the following one:

Theorem 2.8.11. Let U0 ∈ L2 (R3) ∩ Ḣ 1
2 (R3) , ωh0 ∈ L2 (R3), then

U ε −W ε −
(
ūh, 0, 0

)ᵀ ε→0−−→ 0, in the space L∞
(
R+; Ḣ

1
2

(
R3
))
,

∇
(
U ε −W ε −

(
ūh, 0, 0

)ᵀ) ε→0−−→ 0, in the space L2
(
R+; Ḣ

1
2

(
R3
))
,

where U ε is the local strong solution of (PBSε) and W ε, ūh are respectively the global solu-
tions of 

∂tW
ε − DW ε +

1

ε
PAW ε =


0
0

−∂3 (−∆h)
−1 divh

(
ūh · ∇hū

h
)

0

 ,

W ε|t=0 = (P−,ε + P+,ε)U0,

and (2.8.8).
The operators P0,P±,ε are the projections onto CE0,CE±, whereE0, E± are the divergence-
free eigenvectors of the operator Lε = PA− εD. In particular hence the strong solution U ε

of (PBSε) is in fact global and belongs to the space

L∞
(
R+; Ḣ

1
2

(
R3
))
∩ L2

(
R+; Ḣ

3
2

(
R3
))

The methodology adopted in order to prove such result is very similar to the one adopted
in [42], [28] and [34]. We use the following dispersive result

Proposition 2.8.12. Let us consider the linear system

∂tW
ε
r,R − DW ε

r,R +
1

ε
PAW ε

r,R

= −Pr,R (P+,ε + P−,ε)


0
0

∂3 (−∆h)
−1 divh divh

(
ūh ⊗ ūh

)
0

 ,

divwεr,R = 0,

W ε
r,R

∣∣
t=0

= Pr,R (P+,ε + P−,ε) U0.

(2.8.11)
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The operator Pr,R localizes tempered distribution onto the set

Cr,R =
{
ξ ∈ R3

ξ : |ξh| > r, |ξ| < R
}
.

The unique global solution of (2.8.11) is such that∥∥W ε
r,R

∥∥
Lp(R+;L∞(R3))

6 Cr,R

(
1 +

1

ν

)
ε

1
4p max

{
‖U0‖L2(R3) , ‖U0‖2

L2(R3)

}
,

for p ∈ [1,∞).

We want to point out that, differently as in [42], the dispersive result is proved on a linear
non-homogeneous system associated to (PBSε) in the same fashion as in [56], [28] and [34].
The bulk force on the right hand side of (2.8.11) is introduced for technical reasons which
we do not explain in detail at the moment.

2.8.3 Isentropic rotating fluids.

The derivation of a model describing the motion of a fluid which is compressible and rotating
was explained in detail in Section 2.6. The equation derived is the following one

∂t
(
ρε,θuε,θ

)
+ div

(
ρε,θuε,θ ⊗ uε,θ

)
+

1

θ2
∇P

(
ρε,θ
)

+
1

ε
e3 ∧

(
ρε,θuε,θ

)
= 0

∂tρ
ε,θ + div

(
ρε,θuε,θ

)
= 0(

ρε,θ, uε,θ
)∣∣
t=0

=
(
ρε,θ0 , uε,θ0

)
,

where ε is the Rossby number and θ is the Mach number. Let us set ε = θ, and let us consider

ρ = 1 + εbε,

i.e. the density ρ is a small variation around a steady state which we normalized to one.

Let us consider the barotropic pressure to assume the form

P (ρε) = A ργ, A > 0, γ > 1,

and let us define γ = (γ − 1)/2. We consider the substitution

1 + εbε =
(4γA)1/2

γ − 1
(ρε)γ

hence the system becomes (after a few algebraic calculations)
∂tu

ε +
1

ε

(
γ∇bε + e3 ∧ uε

)
+ uε · ∇uε + γ bε∇bε = 0

∂tb
ε +

γ

ε
divuε + uε∇bε + γ bεdivuε = 0

(bε, uε)|t=0 = (b0, u0) ,

(2.8.12)
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or in a more compact form ∂t

(
uε

bε

)
− 1

ε
B
(
uε

bε

)
+

(
uε · ∇uε + γ bε∇bε
uε · ∇bε + γ bεdivuε

)
= 0,

(uε, bε)|t=0 = (u0, b0) ,

(2.8.13)

where B is the following operator

B =


0 1 0 −γ∂1

−1 0 0 −γ∂2

0 0 0 −γ∂3

−γ∂1 −γ∂2 −γ∂3 0

 , (2.8.14)

and where ∂i, for any i ∈ {1, 2, 3} stands for the derivative with respect to the xi variable.
Moreover we can write the nonlinearity as follows

(
uε · ∇uε + γ bε∇bε
uε · ∇bε + γ bεdivuε

)
= A (U,D)U =


uε · ∇ 0 0 γbε∂1

0 uε · ∇ 0 γbε∂2

0 0 uε · ∇ γbε∂3

γbε∂1 γbε∂2 γbε∂3 uε · ∇

( uε

bε

)
,

(2.8.15)

where U stays for
(
uε

bε

)
. With all the above considerations, the system (2.8.13) can be

rewritten as  ∂tU −
1

ε
BU +A(U,D)U = 0,

U |t=0 = U0 = (u0, b0) .
(2.8.16)

The advantage in in the above formulation is that we expressed the system as an hyper-
bolic symmetric system with singular perturbation.

The initial data considered (u0, b0) ∈ Hs (R3) , s > 5/2, whence it is fully three di-
mensional. The analysis performed in [68] showed that the elements belonging to kerB are
bi-dimensional, whence in this particular work we do not consider data which belong to the
kernel of the penalized operator. As explained in Section 2.7.4 we do not expect hence a
convergence to stationary flows, but rather a full dispersive result.

To achieve such result we proceed as follows: we set

Cr,R =
{
ξ ∈ R3

ξ

∣∣ |ξ| 6 R, |ξh| > r, |ξ3| > r
}
,

for a visual definition of Cr,R we refer to Figure 2.3.

Our strategy to study the system (2.8.16) consists in finding a solution of the form

U ε = (uε, bε) = Ū ε + Ũ ε
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ξh

ξ3

R

r

Cr,R

Figure 2.3 – The set Cr,R in dimension two.

where Ū ε =
(
uε, b

ε
)

and Ũ ε =
(
ũε, b̃ε

)
are respectively solutions to the following systems ∂tŪ

ε − 1

ε
BŪ ε = 0

Ū ε
∣∣
t=0

= Ψr,R (D) (u0, b0)
, (2.8.17)


∂tŨ

ε − 1

ε
BŨ ε +A(U,D)U = 0

Ũ ε
∣∣∣
t=0

= (1−Ψr,R (D)) (u0, b0)
. (2.8.18)

Here, the frequency cut-off radii 0 < r < R will be precisely chosen, depending on ε
and Ψr,R is a radial function supported in C r

2
,2R and is identically equal to 1 in Cr,R. The

dependence on ε of the cut-off radii is motivated by the fact that the system (2.8.16) is of
hyperbolic type, hence we cannot absorb many terms as we could usually do for parabolic
systems, this implicated that we shall have to require a more delicate control of the dispersion
in terms of powers of ε. The system (2.8.17) is indeed linear and localized, hence we can
prove the following dispersive result:

Theorem 2.8.13. Let q ∈ [2,+∞] and p > 4q
q−2

. For any U0 ∈ L2 (R3), the system (2.8.17)
has a global solution Ū ε such that,∥∥Ū ε

∥∥
Lp(R+;Lq(R3))

6 CR
3
2
− 3
q

+ 4
p r−

2
p ε

1
p ‖U0‖L2(R3) .

The system (2.8.18) on the other hand is highly nonlinear. We can use the symmetry of
the operator A and the dispersive properties of Ū ε stated above to deduce a local-existence
result in the space L∞ ([0, T ], Hs) where T is independent of ε. Once such result is estab-
lished we can control the optimal lifespan of Ũ ε = U ε − Ū ε, this is done in the following:
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Theorem 2.8.14. Let s > 5/2, s0 > 0 be fixed constants, 1 < p < 2 and the initial data

U0 ∈ Ys,s0,p = Hs+s0
(
R3
)
∩ L2

(
R2
h;L

p
(
R1
v

))
∩ Lp

(
R2
h;L

2
(
R1
v

))
,

There exists a time T ?ε > 0 and a unique solution U ε = (uε, bε) of system (2.8.16) satisfying

U ε ∈ L∞
(
[0, T ?ε ];Hs

(
R3
))
∩ C

(
[0, T ?ε ];Hs

(
R3
))
,

where the maximal time T ?ε tends to infinity as ε tends to zero, more precisely, there exist
positive constants C > 0 and α > 0 such that

T ?ε >
C

C(U0) εα
,

where C(U0) is a constant depending on the initial data only.

The space Ys,s0,p is a Banach space once it is endowed with the norm

‖u‖s,s0,p = max
{
‖u‖Hs+s0 , ‖u‖L2

hL
p
v
, ‖u‖LphL2

v

}
.

We can hence at this point to make sense of the constant C (U0), given in fact a U0 ∈ Ys,s0,p,
we set

C(U0) = max
{
‖U0‖s,s0,p , ‖U0‖2

s,s0,p

}
.
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Chapter 3

Primitive equations with null vertical
diffusivity.

The essence of mathematics lies in its
freedom.

Georg Cantor

3.1 Introduction

The primitive equations describe the hydro-dynamical flow in a large scale (of order of hun-
dreds or thousands of kilometers) on the Earth, typically the ocean or the atmosphere, under
the assumption that the vertical motion is much smaller than the horizontal one and that the
fluid layer depth is small compared to the radius of the Earth. Concerning the difference
between horizontal and vertical scale, it is observed that for geophysical fluids the vertical
component of the diffusion term (viscosity or thermal diffusivity in the case of primitive
equations) is much smaller than the horizontal components. In the case of rotating fluids
between two planes (see [80] for the first work in which the initial data is well prepared, in
the sense that it is a two-dimensional vector field and [114] and [41] for the generic case) the
viscosity assumes the form (−νh∆h − εβ∂2

3), with ∆h = ∂2
1 + ∂2

2 , whence such geophysical
motivation justifies the study of anisotropic (i.e. non-spherically symmetric) viscosities.

The present chapter was submitted for a peer-review under the name Highly rotating fluids with vertical
stratification for periodic data and vanishing vertical viscosity, see [137].
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The primitive system consists in the following equations

∂tv
1,ε + vε · ∇v1,ε − νh∆hv

1,ε − νv∂2
3v

1,ε − 1

ε
v2,ε = −1

ε
∂1Φε + f1

∂tv
2,ε + vε · ∇v2,ε − νh∆hv

2,ε − νv∂2
3v

2,ε +
1

ε
v1,ε = −1

ε
∂2Φε + f2

∂tv
3,ε + vε · ∇v3,ε − νh∆hv

3,ε − νv∂2
3v

2,ε +
1

Fε
T ε = −1

ε
∂3Φε + f3

∂tT
ε + vε · ∇T ε − ν ′h∆hT

ε − ν ′v∂2
3T

ε − 1

Fε
v3,ε = f4

div vε = 0

(vε, T ε)
∣∣∣
t=0

= (v0, T0) = V0,

(PEε)

in the unknown vε = (v1,ε, v2ε, v3,ε) , T ε,Φε. In what follows we write V ε = (vε, T ε) =
(V 1,ε, V 2,ε, V 3,ε, V 4,ε). All the functions described depend on a couple (x, t) ∈ T3 × R+

where T3 represents the torus

T3 = R3

/
3∏
i=1

ai Z =
3∏
i=1

[
0, 2πai

)
.

The only assumption which is made on the vertical viscosity is νv, ν ′v > 0, while the
horizontal viscosities νh, ν ′h are strictly positive constants. The results obtained will be uni-
form with respect to the vertical viscosities (νv, ν

′
v) and hence from now on we can suppose

them zero without loss of generality. We refer to [124] for a result of well-posedness of the
Navier-Stokes equation in critical spaces in the whole space with anisotropic viscosity and
to [125] for the periodic case.

Under the assumption νv = ν ′v = 0 we can rewrite system (PEε) in the more compact
form 

∂tV
ε + vε · ∇V ε −DV ε + 1

ε
AV ε = 1

ε
(−∇Φε, 0) + f

div vε = 0
V ε
∣∣
t=0

= V0

(PEε)

where

D =


νh∆h 0 0 0

0 νh∆h 0 0
0 0 νh∆h 0
0 0 0 ν ′h∆h

 A =


0 −1 0 0
1 0 0 0
0 0 0 F−1

0 0 −F−1 0

 (3.1.1)

with νh, ν ′h > 0 and V ε = (vε, T ε).

This system is obtained by combining the effects of the Coriolis force and the vertical
stratification induced by the Boussinesq approximation. We refer to [42], [126] or [50] for a
discussion on the model and its derivations.
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In the study of hydrodynamical flows on this scale two important phenomena have to
be taken in consideration: the Earth rotation and the vertical stratification induced by the
gravity. The Coriolis force induces a vertical rigidity on the fluid. Namely, in the asymp-
totic regime, the high rotation tends to stabilize the motion, which becomes constant in the
direction parallel to the rotation axis: the fluid moves along vertical columns (the so called
Taylor-Proudman columns), and the flow is purely horizontal.

Gravity forces the fluid masses to have a vertical structure: heavier layers lay under
lighter ones. Internal movements of the fluid tend to destroy this structure and gravity tries
to restore it, which gives a horizontal rigidity (to be opposed to the vertical rigidity induced
by the rotation). In order to formally estimate the importance of this rigidity we also com-
pare the typical time scale of the system with the Brunt-Väisälä frequency and introduce the
Froude number εF . We shall not give more details in here, we refer to [126], [42], [50].

The primitive equations are obtained with moment, energy and mass conservation (see
[62]). The coefficient ε > 0 denotes the Rossby number, which is defined as

ε =
displacement due to inertial forces
displacement due to Coriolis force

.

As the characteristic displacement of a particle in the ocean within a day is very small com-
pared to the displacement caused by the rotation of the Earth (generally ε is of order 10−3

outside persistent currents such as the gulf stream), the Rossby number is supposed to be
very small hence it is reasonable to study the behavior of the solutions to (PEε) in the limit
regime as ε→ 0.
We denote the Froude number as εF . Assuming that the Brunt-Väisälä frequency is constant,
in the whole space R3, when ε→ 0, the formal limit of the system (PEε), when the viscosity
is isotropic, is the quasi-geostrophic system

∂tVQG + Γ (D)VQG = −

 ∇⊥h
0
−F∂3

∆−1
F

(
vhQG · ∇hΩ

)
,

div vQG = 0

VQG

∣∣∣
t=0

= VQG,0,

(QG)

and Γ (D) is the pseudo-differential operator given by the formula

Γ (D)u = F−1

(
|ξ|2

(
ν |ξh|2 + ν ′F 2ξ2

3

)
|ξh|2 + F 2ξ2

3

û (ξ)

)
.

The differential operator ∆F is defined as ∆F = ∂2
1 + ∂2

2 + F 2∂2
3 , while its inverse ∆−1

F in
L2 is the Fourier multiplier

−∆−1
F f = F−1

(
1

ξ2
1 + ξ2

2 + F 2ξ2
3

f̂

)
.

The quantities VQG and Ω are respectively called the quasi-geostrophic flow and the potential
vorticity. We focus on the latter first, the potential vorticity is defined as

Ω = −∂2V
1

QG + ∂1V
2

QG − F∂3V
4

QG,
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and it is related to the quasi-geostrophic flow via the 2D-like Biot -Savart law

VQG =


−∂2

∂1

0
−F∂3

∆−1
F Ω.

The vectors vhQG and vQG represent respectively the first two and three components of the
vector field VQG. In the present setting, i.e. with periodic data, the limit system is more
involved than the one mentioned above. In this case, as well as in many problems with sin-
gular perturbation, the idea is to decompose the unknown (in the case of the system (PEε)
is V ε) into two parts V ε = V ε

ker + V ε
osc, where V ε

ker belongs to the kernel of the perturbation
PA, where P is the Leray projector in the first three components which leaves untouched the
fourth one, and V ε

osc to its orthogonal complement. In the whole space it can be proved that
the oscillating part, V ε

osc, tends to zero strongly as ε→ 0. In the case of periodic data instead
these perturbations interact constructively, as in [5], [8], [72] and [123], whence the limit
system is different from the quasi-geostrophic system mentioned above (see (S)). We aim to
study the behavior of strong solutions of (PEε) in the regime ε → 0 in the periodic setting
for a large class of tori (see Definition 3.1.8) which may as well present resonant effects. In
particular we prove that the equation (S) is globally well posed in some suitable space of
low-regularity, hence we prove the (global) convergence of solutions of (PEε) to solutions of
(S).

We recall some results on primitive equations. We refer to J.-L. Lions, R. Temam and S.
Wang ( [107] and [108]) for the asymptotic expansion of the primitive equations with respect
the Rossby number ε in a spherical and Cartesian geometry.

J.T. Beale and A. J. Bourgeois in [15] study the primitive equations (without viscosity,
and with a simplified equation for the density) in a domain which is periodic in the hori-
zontal direction and bounded in the vertical one. By the use of a change of variables they
recover a purely periodic setting, on which they prove their result. They study as well the
quasi-geostrophic system (fist on short times, then globally) as well as the convergence of
primitive equations for regular (i.e. H3) and well prepared initial data.

In [62] P. Embid and A. Majda present a general formulation for the EVOLUTION of
geophysical fluids in the periodic setting and derive the limit equation for the kernel part of
the solution.

Let us now mention some known result of existence and convergence of solutions for
the primitive equations when the spatial domain is R3. In [36] J.-Y. Chemin proved that the
solutions of the primitive equations converge toward those of the quasi geostrophic system
in the case F = 1 for regular, well prepared data and under the assumption that |ν − ν ′| (the
difference between the diffusion and the thermal diffusivity) is small.
When F 6= 1, F. Charve proved in [28] and [29], using dispersive Strichartz estimates, that
the solutions of the primitive equations (PEε) converge globally toward a linear correction of
the global solutions of the quasi-geostrophic system (QG).
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For the inviscid case in the whole space, when F = 1, we mention the work of D. Iftimie [87]
which proves that the potential vorticity Ω propagates Hs (R3) , s > 5/2 data under the hy-
pothesis U ε

osc,0 = oε (1) in L2 (R3). If F 6= 1, A. Dutrifoy proved in [58] the same result
under much weaker assumptions, i.e. Ω0 is a vortex patch and ‖U ε

0‖Hs(R3) = O (ε−γ) , γ > 0
and small. For the viscid case in the periodic setting I. Gallagher proves in [72] the global
convergence of (PEε) toward (QG) using a technique introduced by S. Schochet in [133].
Such technique consists in a smart change of variables which cancels some nonlinear inter-
actions which are otherwise impossible to control. We mention at last the work of F. Charve
and V.-S. Ngo in [34] for the primitive equation in the whole space for F 6= 1 and anisotropic
vanishing (horizontal) viscosity.

We recall that the primitive equations and the rotating fluid system

∂tv + v · ∇v − ν∆v +
e3 ∧ v
ε

= −∇p, (RFε)

are intimately connected. In such system the rotation has a stabilizing effect on the solutions
of (RFε), inducing the fluid to have a strictly columnar dynamic. This was proved at firs
by E. Grenier in [79] and A. Babin et al. in [5] for the periodic case and by J.-Y. Chemin,
B. Desjardins, I. Gallagher and E. Grenier [39] in R3. We recall as well the results in [77]
in which I. Gallagher and L. Saint-Raymond proved a weak convergence result for weak
solutions for fast rotating fluids in which the rotation is inhomogeneous and given by 1

ε
v ∧

b(xh)e3.

3.1.1 Notation and results.

In this article we are interested to obtain a global-in-time result of existence and uniqueness
for solutions of the system (PEε) and to some results of convergence when the Rossby and
Froude number tend to zero at a comparable rate.
Before stating the results that we prove let us give a brief introduction about the spaces that
we are going to use.
All the vector fields that we consider are real i.e we consider applications of the following
form V : T3 → R4. We will often associate to a vector field V the vector field v : T3 → R3,
which is simply the projection on the first three components of V . Moreover all the vector
fields considered are periodic in all their components xi, i = 1, 2, 3 and have zero global
average, i.e.

∫
T3 vdx = 0, which is equivalent to assume that the first Fourier coefficient

V̂0 = 0. We remark that this property is preserved for the Navier-Stokes equations as well as
for the primitive equations (PEε). We will always work with divergence-free vector fields.

3.1.2 Anisotropic spaces.

The anisotropy of the problem forces to introduce anisotropic spaces, i.e. spaces which
behave differently in the horizontal and vertical directions. Let us recall that, in the periodic
case, the non-homogeneous Sobolev anisotropic spaces are defined by the norm

‖u‖2
Hs,s′ (T3) = ‖u‖2

Hs,s′ =
∑

n=(nh,n3)∈Z3

(
1 + |ňh|2

)s (
1 + |ň3|2

)s′ |ûn|2 , (3.1.2)
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where we denoted ňi = ni/ai, ňh = (ň1, ň2) and the Fourier coefficients ûn are given by
u =

∑
n ûne

2πiň·x. In the whole text F denotes the Fourier transform and Fv the Fourier
transform in the vertical variable.
We are interested to study the regularity of the product of two distributions (which is a
priori not well defined), in the framework of Soboled spaces it can be proved (see [72]) the
following product rule

Lemma 3.1.1. Let u, v be two distributions with zero average defined on Hs
(
Td
)

and
H t
(
Td
)

respectively, with s+ t > 0, s, t < d/2, then

‖u · v‖Hs+t−d/2(Td) 6 Cs,t ‖u‖Hs(Td) ‖v‖Ht(Td) .

As in classical isotropic spaces (see [1]) if s > 1/2 the spaceHs (T1
v) is a Banach algebra.

Combining this fact with the above lemma we deduce the following result which we shall
apply all along the paper

Lemma 3.1.2. Let u ∈ Hs1,s′ , v ∈ Hs2,s′ distributions with zero horizontal average with
s1 + s2 > 0, s1, s2 < 1 and s′ > 1/2, then u · v ∈ Hs1+s2−1,s′ and the following bound holds
true

‖u · v‖Hs1+s2−1,s′ 6 C ‖u‖Hs1,s
′ ‖v‖Hs2,s

′ .

Let us recall as well the definition of the anisotropic Lebesgue spaces, we denote with
LphL

q
v the space Lp (T2

h;L
q (T1

v)), defined by the norm:

‖f‖LphLqv =
∥∥∥‖f (xh, ·)‖Lq(T1

v)

∥∥∥
Lp(T2

h)
=

(∫
T2
h

(∫
T1
v

|f (xh, x3)|q dx3

) p
q

dxh

) 1
p

,

in a similar way we define the space LqvL
p
h. It is well-known that the order of integration is

important as it is described in the following lemma

Lemma 3.1.3. Let 1 6 p 6 q and f : X1×X2 → R a function belonging toLp (X1;Lq (X2))
where (X1;µ1) , (X2;µ2) are measurable spaces, then f ∈ Lq (X2;Lp (X1)) and we have the
inequality

‖f‖Lq(X2;Lp(X1)) 6 ‖f‖Lp(X1;Lq(X2))

In the anisotropic setting the Hölder inequality becomes;

‖fg‖LphLqv 6 ‖f‖Lp′h Lq
′
v
‖g‖

Lp
′′
h Lq

′′
v
,

where 1/p = 1/p′ + 1/p′′, 1/q = 1/q′ + 1/q′′.

3.1.3 Results.

We recall at first a result of local existence and uniqueness of solutions for Navier-Stokes
equations without vertical viscosity and periodic initial conditions.
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Theorem 3.1.4. Let s > 1/2 and V0 ∈ H0,s (T3) a divergence-free vector field. Then there
exists a time T > 0 independent of ε and a unique solution V ε for the system (PEε) in the
space

V ε ∈ C
(
[0, T ] ;H0,s

)
, ∇hV

ε ∈ L2
(
[0, T ] ;H0,s

)
.

Moreover (V ε)ε>0 is uniformly bounded (in ε) in the space

V ε ∈ L∞
(
R+;L2

(
T3
))
, ∇hV

ε ∈ L2
(
R+;L2

(
T3
))
.

The existence part of Theorem 3.1.4 was proved in [39], while the uniqueness (in the
same energy space) was proved in [89].

Remark 3.1.5. We want to point out that, as it was proved by M. Paicu in [125] (see Propo-
sition 3.2.7) the maximal lifespan does not depend on the regularity of the initial data, as
long as V0 ∈ H0,s, s > 1/2. �

Let L (τ) be the semigroup generated by PA, where P is the Leray projector on the
divergence-free vector fields on the first three components, which leaves unchanged the
fourth. In particular the Leray projector in three dimensions is given by the formula P(3) =
1−R(3) ⊗R(3), whereR(3) is the three dimensional Riesz transform

R(3) =
(

∂1√
−∆
, ∂2√

−∆
, ∂3√

−∆

)
,

whileA is the matrix defined in (5.1.3). In the same way we define the operators Λ =
√
−∆,

Λh =
√
−∆h, Λv = |∂3|.

Let L(t)V0 be the unique global solution of{
∂tVL + PA VL = 0,
VL
∣∣
t=0

= V0.

Let us further define U ε = L
(
− t
ε

)
V ε. We will denote U ε as the sequence of filtered solu-

tions, we define

Qε (U, V ) =L
(
− t
ε

)
P
[
L
(
t

ε

)
U · ∇L

(
t

ε

)
V

]
, DεU =L

(
− t
ε

)
DL

(
t

ε

)
U,

where D is defined in (5.1.3), and we consider their limitsQ,D inD′ (we shall see that these
limit exists). We can hence formally introduce the limit system

∂tU +Q (U,U)− DU = 0,
divu = 0,
U |t=0 = V0,

(S)

Since the space domain is periodic resonant effect may play an important role.
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Definition 3.1.6. The resonant set K? is the set of frequencies such that

K? =
{

(k,m, n) ∈ Z9
∣∣ ωa(k) + ωb(m) = ωc(n) with k +m = n, (a, b, c) ∈ {−,+}

}
,

=
{

(k, n) ∈ Z6
∣∣ ωa(k) + ωb(n− k) = ωc(n), (a, b, c) ∈ {−,+}

}
,

where ωj, j = ± are the eigenvalues of a suitable operator (see Section 3.3 for further
details). Relatively to the present problem the explicit expression of the eigenvalues is

i ω±(n) =± i

F

√
|ňh|2 + F 2ň2

3

|ň|
.

We may as well associate a resonant space to a determinate frequency n, in this case we
define

K?n =
{

(k,m) ∈ Z6
∣∣ ωa(k) + ωb(m) = ωc(n) with k +m = n, (a, b, c) ∈ {−,+}

}
.

Definition 3.1.7. We say that the torus T3 is non-resonant if K? = ∅.

Tori which are non-resonant, are, generally, a better choice since the oscillating part of
the solution satisfies a linear equation (see [72]). Indeed though a generic torus may as well
present resonant effects. For this reason we introduce the following definition:

Definition 3.1.8. We say that a torus T3 ⊂ R3 satisfies the condition (P) if either one or the
other of the following conditions is satisfied:

1. T3 is non-resonant.

2. If T3 is resonant, the Froude number F 2 is rational, and either

• a2
3/a

2
1 ∈ Q and a2

3/a
2
2 is not algebraic of degree smaller or equal than four.

• a2
3/a

2
2 ∈ Q and a1

3/a
2
2 is not algebraic of degree smaller or equal than four.

Remark 3.1.9. The above definition (Definition 3.1.8) is motivated in Section 3.5. Point 2
ensures that even with resonant effects we can propagate the horizontal average of the initial
data, thing that, generally, is not true for three-dimensional Navier-Stokes equations. �

Although (S) is an hyperbolic system in the vertical variable we are able to prove that
there exist weak (in the sense of distributions) global solutions. This was first remarked by
M. Paicu in [123] and it is due to the fact that the limit bilinear form Q has in fact better
product rules than the standard bilinear transport form (see as well Lemma 3.8.4). The
complete statement of the theorem is the following one.

Theorem 3.1.10. Let T3 be a 3-dimensional torus in R3 and let F 6= 1, for each divergence-
free vector field V0 ∈ L2 (T3) and Ω0 = −∂2v

1
0 + ∂1v

2
0 − F∂3T0 ∈ L2 (T3) there exists a

distributional solution of the system
∂tU +Q (U,U)− DU = 0,
divu = 0,
U
∣∣
t=0

= V0,
(S)
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in the space D′ (R+ × T3) which moreover belongs to the space

U ∈L∞
(
R+;L2

(
T3
))
, ∇hU ∈L2

(
R+;L2

(
T3
))
,

and satisfies the following energy estimate

‖U(t)‖2
L2(T3) + 2c

∫ t

0

‖∇hU(s)‖2
L2(T3) ds 6 ‖U0‖2

L2(T3) ,

where the constant c = min {νh, ν ′h} > 0.

We remark that Theorem 3.1.10 holds for any three-dimensional torus. We do not require
the condition (P) to hold.

A natural question we address to is whether system (PEε) converges (even in a weak sense)
to the limit system (S) as ε→ 0. This is the scope of the following theorem:

Theorem 3.1.11. Let the initial data V0 be as in Theorem 3.1.10, then defining the operator

L (τ) = e−τPA,

and denoting as U the distributional solution of the limit system (S) identified in Theorem
3.1.10 the following convergence holds in the sense of distributions

V ε − L
(
t

ε

)
U

ε→0−−→ 0.

Moreover U weak solution of the limit system (S) can be described as the superposition of
the evolution of U = UQG + Uosc = VQG + Uosc where VQG solves

∂tVQG + aQG (Dh)VQG = −

 ∇⊥h
0
−F∂3

∆−1
F

(
vhQG · ∇hΩ

)
,

divh vhQG = div vQG = 0,

VQG

∣∣∣
t=0

= VQG,0,

and Uosc solves
∂tUosc +Q (VQG, Uosc) +Q (Uosc, VQG) +Q (Uosc, Uosc) + aosc (Dh)Uosc = 0,
divuosc = 0,

Uosc

∣∣∣
t=0

= Uosc,0 = (V0)osc .

The operators aQG and aosc are elliptic in the horizontal variables, in the sense that there
exists a positive constant c > o such that

(aQG (Dh)u|u)L2 , (aosc (Dh)u|u)L2 > c ‖∇hu‖2
L2 ,
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Chapter 3. Primitive equations with null vertical diffusivity.

and Q is a bilinear form which shares many aspects with the more classical transport form,
but has better properties as far as the regularity of the product is concerned.

Performing some a priori estimates on the limit system (S) we can improve of the above
theorem, at the cost of having well prepared initial data and tori which satisfy Condition (P).
We say that a data V0 is well prepared if it has zero horizontal mean, i.e.

∫
T2
h
V0 (xh, x3) dxh =

0. This property is conserved by the limit system (S) as long as the condition (P) is satisfied
(see Lemma 3.5.6, 3.5.7). Moreover we ask as well that the potential vorticity, defined as

Ω (t, x) = −∂2U
1 (t, x) + ∂1U

2 (t, x)− F∂3U
4 (t, x) , (3.1.3)

belongs to H0,s, s > 0 at time t = 0.

Theorem 3.1.12. Let T3 satisfy the condition (P) and consider a divergence-free vector field
U0 ∈ H0,s with zero horizontal average. Let Ω0 ∈ H0,s, for s > 1 and F 6= 1, the global
weak solution of (S) is in fact strong and it belongs to the space of sub-critical regularity

U ∈L∞
(
R+;H0,s

)
, ∇hU ∈L2

(
R+;H0,s

)
.

Moreover it satisfies, for each t > 0, the energy bound

‖U(t)‖2
H0,s + c

∫ t

0

‖∇hU(s)‖2
H0,s 6 E

(
‖U0‖2

H0,s

)
,

where E is a suitable function which is bounded on compact sets. The solution U is unique
in the space L∞ (R+;H0,σ) ∩ L2 (R+, H

1,σ) for σ ∈ [−1/2, s).

Remark 3.1.13. Compared to the work of M. Paicu [123] the author requires only s > 1/2.
This discrepancy is due to the fact that in the present work the limit system is well-posed
only for s > 1. Indeed we are able to propagate H0,s, s > 0 norms for the potential vorticity
Ω, and, as explained in Lemma 3.5.5, ‖VQG‖H0,s+1 . ‖Ω‖H0,s .

The main idea in the propagation of regularity stated in Theorem 3.1.12 is that we can
recover the missing viscosity in the vertical direction using the fact that the vector field u
is divergence-free. We can in fact observe that in the nonlinear term the vertical derivative
is always multiplied by the third component u3 of the vector field considered (i.e. terms of
the form u3∂3). We hence remark the fact that the term ∂3u

3 is more regular thanks to the
relation −∂3u

3 = divh uh, and due to the fact that the horizontal viscosity has a regularizing
effect on the derivatives in the horizontal variable xh.

Theorem 3.1.14. Let T3 satisfy the condition (P), Ω0 = −∂2v
1
0 + ∂1v

2
0 −F∂3T0 ∈ H0,s and

V0 ∈ H0,s for s > 1 a divergence free vector field. Let V ε be a local solution of (PEε) and U
be the unique global solution of the limiti system (S). Then the following convergences take
place

lim
ε→0

(
V ε − L

(
t

ε

)
U

)
= 0 in C

(
R+;H0,σ

)
,

lim
ε→0
∇h

(
V ε − L

(
t

ε

)
U

)
= 0 in L2

(
R+;H0,σ

)
,

for σ ∈ [1, s).
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3.2. Preliminaries.

The paper is divided as follows

• In Section 3.2 we introduce some mathematical tools that will be useful in the devel-
opment of the paper.

• Section 3.3 we provide a careful analysis of the spectral properties of the linear system
whose evolution is determined by the operator PA. In Subsection 3.3.1 we state some
results proved in [62], [63] and [7] which describe the behavior of the limit bilinear
interaction Q (U,U) in (S) along the eigendirections spanned by the eigenvectors of
PA.

• In Section 3.4 we prove Theorem 3.1.10. Such result is not a straightforward applica-
tion of Leray Theorem since, due to the lack of the vertical diffusivity, the solutions
are bounded in the space L2

loc (R+;H1,0) only. Such space is not compactly embedded
in L2

loc (R+;L2), this prevents us to use standard compactness theorems in functional
spaces such as Aubin-Lions lemma (see [4]). Nonetheless using Fujiwara near-optimal
bound (see [112]) we can transform a vertical derivative ∂3 in a multi-index of the form
C
(
∂N1

1 , ∂N2
2

)
, where N1, N2 may as well be large. The system (PEε) has a non-zero

diffusive effects in the horizontal directions, hence we can prove that bilinear inter-
actions of weakly converging (in the sense that converge w.r.t. a Sobolev topology of
negative index) sequences converge in the sense of distributions to some limit element.

• In Section 3.5 we prove Theorem 3.1.11. The approach is twofold:

– Thanks to a topological argument we prove that the sequence (V ε)ε>0 is compact
in some weak sense,

– A careful analysis of the bilinear interactions in the limit ε → 0 gives us the
explicit form of the bilinear limit interactions.

Next in Subsection 3.5 we prove that, under some suitable geometric conditions (see
Definition 3.1.8) the limit system (S) propagates globally-in-time the horizontal aver-
age of the initial data.

• In Section 3.6 we prove that the limit system propagates globally-in-time H0,s data,
at the price of having well prepared (in the sense of zero-horizontal average) initial
data and domains which satisfy the condition (P) given in Definition 3.1.8. Hence we
prove Theorem 3.1.12.

• Lastly in Section 3.7 we prove Theorem 3.1.14, i.e. that we can approximate globally
the solutions of (PEε) as ε → 0 with the (global) solutions of (S) in some suitable
subcritical topology.

3.2 Preliminaries.

This section is devoted to introduce the mathematical tools that will be used all along the
paper and which are necessary to understand the contents described in the following pages.
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Chapter 3. Primitive equations with null vertical diffusivity.

3.2.1 Elements of Littlewood-Paley theory.

A tool that will be widely used all along the paper is the anisotropic theory of Littlewood–
Paley, which consists in doing a dyadic cut-off of the vertical frequencies.
Let us define the (non-homogeneous) vertical truncation operators as follows:

4v
qu =

∑
n∈Z3

ûnϕ

(
|ň3|
2q

)
eiň·x for q > 0

4v
−1u =

∑
n∈Z3

ûnχ (|ň3|) eiň·x

4v
qu =0 for q 6 −2

where u ∈ D′ (T3) and ûn are the Fourier coefficients of u. The functions ϕ and χ represent
a partition of the unity in R, which means that are smooth functions with compact support
such that

Supp χ ⊂ B
(

0,
4

3

)
, Supp ϕ ⊂ C

(
3

4
,
8

3

)
,

Moreover for each t ∈ R the sequence (χ (·) , ϕ (2−q·))q∈N is a partition of the unity. Let us
define further the vertical cut-off operator as Svqu =

∑
q′6q−14v

q′u.

Anisotropic paradifferential calculus.

The dyadic decomposition turns out to be very useful also when it comes to study the product
between two distributions. We can in fact, at least formally, write for two distributions u and
v

u =
∑
q∈Z

4v
qu; v =

∑
q′∈Z

4v
q′v; uv =

∑
q∈Z
q′∈Z

4v
qu4v

q′v (3.2.1)

We are going to perform a Bony decomposition in the vertical variable (see [10], [14],
[37] for the isotropic case and [39], [86] for the anisotropic one).
Paradifferential calculus is a mathematical tool for splitting the above sum in three parts

uv = T vuv + T vv u+Rv (u, v) ,

where

T vuv =
∑
q

Svq−1u4v
qv,

T vv u =
∑
q′

Svq′−1v4v
q′u,

Rv (u, v) =
∑
k

∑
|µ|61

4v
ku4v

k+µv.
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3.2. Preliminaries.

In particular the following almost orthogonality properties hold

4v
q

(
Sv
q′−1a 4v

q′b
)

=0 if |q − q′| > 5

4v
q

(
4v
q′a 4v

q′+µb
)

=0 if q′ < q − 4, |µ| 6 1

and hence we will often use the following relation

4v
q (uv) =

∑
|q−q′|64

4v
q

(
Svq′−1v 4v

q′u
)

+
∑
|q−q′|64

4v
q

(
Svq′−1u 4v

q′v
)

(3.2.2)

+
∑
q′>q−4

∑
|µ|61

4v
q

(
4v
q′u 4v

q′+µv
)

=
∑
|q−q′|64

4v
q

(
Svq′−1v 4v

q′u
)

+
∑
q′>q−4

4v
q

(
Svq′+2u 4v

q′v
)
. (3.2.3)

In the paper [43] J.-Y. Chemin and N. Lerner introduced the following asymmetric de-
composition, which was first used by J.-Y. Chemin et al. in [39] in its anisotropic version.
This particular decomposition turns out to be very useful in our context

4v
q (uv) = Svq−1u4v

qv

+
∑
|q−q′|64

{[
4v
q, S

v
q′−1u

]
4v
q′v +

(
Svqu− Sv

q′−1u
)
4v
q4v

q′v
}

+
∑
q′>q−4

4v
q

(
Svq′+2v4v

q′u
)
, (3.2.4)

where the commutator
[
4v
q, a
]
b is defined as

[
4v
q, a
]
b = 4v

q (ab)− a4v
qb.

All along the following we shall denote as (bq)q>−1 any sequence which is summable
that may depend on different parameters such that

∑
q bq 6 1 . In the same way we shall

denote as (cq)q ∈ `
2 (Z) any sequence such that

∑
q c

2
q 6 1 . As well C is a (large) positive

constant independent of any parameter and c a small one, these two constants may differ
implicitly from line to line. We remark that the regularity of a function can be rephrased in
the following way: we say that u ∈ H0,s only if there exists a sequence (cq)q depending on
u such that ∥∥4v

qu
∥∥
L2(T3)

6 C cq (u) 2−qs ‖u‖H0,s . (3.2.5)

Dyadic blocks and commutators as convolution operators.

The dyadic blocks and the low-frequencies truncation operators can be seen as convolution
operators, in particular if we denote as h = F−1ϕ and g = F−1χ we have

4v
qu = ϕ

(
2−qD

)
u = 2q

∫
T
h (2qy)u (x− y) dy, (3.2.6)

Svqu = χ
(
2−qD

)
u = 2q

∫
T
g (2qy)u (x− y) dy.
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Chapter 3. Primitive equations with null vertical diffusivity.

This is due to the fact that 4v
qu (x) = (Fv)−1 (ϕ (·) û (·)) (x). We introduce this alternative

way to consider commutators and truncations because we need it in Appendix 3.8. In par-
ticular we want to express a commutator as a convolution operator, since a commutator is
defined as [

4v
q, a
]
b (x) = 4v

q (ab) (x)− a (x)4v
qb (x) ,

and we apply to the right hand side of the above equation the relation in (3.2.6) we obtain in
fact that[

4v
q, a
]
b (x) = 2q

∫
T
h (xh, x3 − y3) (a (xh, y3)− a (xh, x3)) b (xh, y3) dy3.

Thanks to Taylor expansion with reminder in Cauchy form we know that

a (xh, y3)− a (xh, x3) = ∂3a (xh, x3 + τ (x3 − y3)) (x3 − y3) ,

for some τ ∈ (0, 1), hence we can write the commutator as[
4v
q, a
]
b (x) = 2q

∫
T

(x3 − y3)h (xh, x3 − y3) ∂3a (xh, x3 + τ (x3 − y3)) b (xh, y3) dy3.

(3.2.7)

Some basic estimates.

The interest in the use of the dyadic decomposition is that the derivative in the vertical direc-
tion of a function localized in vertical frequencies of size 2q acts like the multiplication of a
factor 2q (up to a constant independent of q ). In our setting (periodic case) a Bernstein type
inequality holds. For a proof of the following lemma we refer to the work [86].

Lemma 3.2.1. Let u be a function such that supp Fvu ⊂ T2
h × 2qC, where Fv denotes the

Fourier transform in the vertical variable. For all integers k, p ∈ [1,∞], 1 6 r′ 6 r 6 ∞,
the following relations hold

2qkC−k ‖u‖LphLrv 6
∥∥∂kx3

u
∥∥
LphL

r
v
6 2qkCk ‖u‖LphLrv ,

2qkC−k ‖u‖LrvLph 6
∥∥∂kx3

u
∥∥
LrvL

p
h

6 2qkCk ‖u‖LrvLph .

Let now∞ > r > r′ > 1 be real numbers. Let supp Fvu ⊂ T2
h × 2qB, then

‖u‖LphLrv 6C2q(
1
r′−

1
r ) ‖u‖LphLr′v

‖u‖LrvLph 6C2q(
1
r′−

1
r ) ‖u‖Lr′v Lph

The following are inequalities of Gagliardo-Niremberg type, we will avoid to give the
proofs of such tools since they are already present in [123].

Lemma 3.2.2. There exists a constant C such that for all periodic vector fields u on T3 with
zero horizontal average (

∫
T2
h
u (xh, x3) dxh = 0) we have

‖u‖L2
vL

4
h
6 C1 ‖u‖H1/2,0 6 C2 ‖u‖1/2

L2(T3) ‖∇hu‖1/2

L2(T3) . (3.2.8)
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From Lemma 4.1.8 and (3.2.8) we can deduce the following result

Corollary 3.2.3. Let u be a periodic vector field such that Supp Fvu ⊂ T2
h × 2qB, then

‖u‖L∞v L2
h
6 C2q/2 ‖u‖L2(T3) , (3.2.9)

moreover if u has zero horizontal average

‖u‖L∞v L4
h
6 C2q/2 ‖u‖1/2

L2(T3) ‖∇hu‖1/2

L2(T3) (3.2.10)

Lemma 3.2.4. Let s be a real number and T3 a three dimensional torus. For all vector fields
u with zero horizontal average, the following inequality holds

‖u‖H1/2,s 6 C ‖u‖1/2

H0,s ‖∇hu‖1/2

H0,s (3.2.11)

Corollary 3.2.5. Let s > 1/2. There exists a constant C such that the inequality

‖u‖L∞v L2
h
6 C ‖u‖H0,s

holds. Moreover if u is of zero horizontal average we have

‖u‖L∞v L4
h
6 C ‖u‖1/2

H0,s ‖∇hu‖1/2

H0,s

Finally we state a lemma that shows that the commutator with the truncation operator in
the vertical frequencies is a regularizing operator. The proof of such lemma can be found
in [125].

Lemma 3.2.6. Let T3 be a 3D torus and p, r, s real positive numbers such that ∞ >
r′, s′, p, r, s > 1 1

r′
+ 1

s′
= 1

2
and 1

p
= 1

r
+ 1

s
. There exists a constant C such that for

all vector fields u and v on T3 we have the inequality∥∥[4v
q, u
]
v
∥∥
L2
vL

p
h

6 C2−q ‖∂3u‖Lr′v Lrh ‖v‖Ls′v Lsh

3.2.2 Preliminary results on the Navier-Stokes equations with zero ver-
tical diffusivity.

A primary tool in the study of the convergence of the primitive equations (PEε) to the limit
system (S) will be a careful study of the Navier-Stokes equation with only horizontal diffu-
sion horizontal diffusion

∂tv + v · ∇v − νh∆hv +∇p = 0 in R+ × T3

div v = 0
v|t=0 = v0

(NSh)

This equation in the case of the periodic data on T3 has been carefully studied in [125],
hence we will refer to this work as we go along.

Indeed the equation satisfied by U ε, i.e. (FSε) is a Navier-Stokes equation with zero
vertical diffusion and hence can be well described by the system (NSh). Here we start giving
the following energy estimate for three-dimensional anisotropic Navier-Stokes equations
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Chapter 3. Primitive equations with null vertical diffusivity.

Proposition 3.2.7. Let s > s0 > 1
2

and v a solution of (NSh) belonging to the space
C ([0, T ] ;H0,s) whose horizontal gradient ∇hv ∈ L2 ([0, T ] ;H0,s). Let us suppose more-
over that v = v + ṽ where v is the horizontal average of v and ṽ has zero horizontal mean.
Suppose moreover that ‖v (t)‖Hs0

v
6 ca−1

3 νh in [0, T ], then for t ∈ [0, T ]

‖v(t)‖2
H0,s + νh

∫ t

0

‖∇hv (τ)‖2
H0,s dτ

6 ‖v0‖2
H0,s exp

(
C

∫ t

0

‖∇hv (τ)‖2
H0,s0 dτ + C

∫ t

0

‖v (τ)‖2
H0,s0 ‖∇hv (τ)‖2

H0,s0

)
Remark 3.2.8. Proposition 3.2.7 has been proved by M. Paicu for s > s0 >

1
2
. Indeed in

[123] the limit system was a coupling between a 2d Navier-Stokes system and the oscillating
part. Indeed the 2d Navier-Stokes system is globally well posed if the initial data depends
on xh only and it is in H0,s for s > 0. The oscillating part instead is globally well posed in
H0,s for s > 1/2. In our case though the limit flow is the sum of VQG satisfying (3.5.11) and
the oscillating part Uosc which are two three-dimensional vector fields. Now, Uosc is globally
well posed inH0,s for s > 1/2 (see Proposition 3.6.5), but VQG is globally well posed inH0,s

for s > 1 (see Proposition 3.6.2 and Lemma 3.5.5). This is why in the following as long as
we are required to apply Proposition 3.2.7 we shall use the index s0 > 1 instead of s0 > 1/2.
�

For a proof of Proposition 3.2.7 we refer to the works [123, Proposition 3.1] and [125].

Given any vector field A we denote

A (x3) =
1

|T2
h|

∫
T2
h

A (yh, x3) dyh,

and
Ã (xh, x3) = A (xh, x3)− A (x3) .

Proposition 3.2.9. Let s > 1
2

and T3 an arbitrary torus and w ∈ C ([0, T ] ;H0,s) ,∇hw ∈
L2 ([0, T ] ;H0,s) a solution of the problem

∂tw + w · ∇w + u · ∇w + w · ∇u− νh∆hw +∇p = f
divw = 0
w|t=0 = w0,

(3.2.12)

where u ∈ C ([0, T ] ;H0,s) ,∇hu ∈ L2 ([0, T ] ;H0,s) a divergence-free vector field such that
its horizontal average satisfies ‖u (t)‖Hs

v
6 ca−1

3 νh for all t ∈ [0, T ] and f = f + f̃ is such
that

f ∈L1
(

[0, T ] ;H
− 1

2
v

)
f̃ ∈L2

(
[0, T ] ;H−1,− 1

2

)
.
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Then there exists a constant C > 0 such that we have for all t ∈ [0, T ]

‖w(t)‖2

H0,− 1
2

+ νh

∫ t

0

‖∇hw(s)‖2

H0,− 1
2

ds

6 C

(
‖w0‖2

H0,− 1
2

+

∫ t

0

∥∥∥f̃(s)
∥∥∥2

H−1,− 1
2

ds+

∫ t

0

∥∥f(s)
∥∥
H
− 1

2
v

ds
)
×

exp

{∫ t

0

∥∥f(s)
∥∥
H
− 1

2
v

ds
}

exp

{∫ t

0

(
1 + ‖w(s)‖2

H0,s

)
‖∇hw(s)‖2

H0,s ds

+

∫ t

0

(
1 + ‖u(s)‖2

H0,s

)
‖∇hu(s)‖2

H0,s ds
}

Proof. [123, Proposition 3.2, p. 182]

Remark 3.2.10. Let us remark the fact that we impose two different kind of regularities on
the exterior force. In order to obtain global results in time we shall apply this proposition for
bulk forces which are f ∈ L1

(
R+, H

−1,−1/2
)
∩ L2

(
R+, H

−1,−1/2
)
. �

3.3 Spectral analysis of the linear system an analysis of the
Poincaré filtration e−τPA.

Let us consider the following linear equation{
∂tVL + PA VL = 0
VL|t=0 = V0

, (3.3.1)

where P is the Leray projection onto the divergence free vector fields, without changing V 4
L .

The Fourier multiplier associated to P has the following form

Pn = 1− 1

|ň|2


n2

1

a2
1

n1n2

a1a2

n1n3

a1a3
0

n2n1

a2a1

n2
2

a2
2

n2n3

a2a3
0

n3n1

a3a1

n3n2

a3a2

n3
2

a3
2

0

0 0 0 0

 , (3.3.2)

where |ň|2 =
∑

j

n2
j

a2
j

and 1 is the identity matrix on C4. The operator A was defined in

(3.1.1). The solution to the linear equation is indeed VL(τ) = e−τPAV0. We denote the
propagator operator e−τPA as L (τ). One can compute the matrix PnA

PnA =



− ň1ň2

|ň|2 −1 +
ň2

1

ň2 0 − ň1ň3

F |ň|2

1− ň2
2

|ň|2
ň1ň2

|ň|2 0 − ň2ň3

F |ň|2

− ň2ň3

|ň|2
ň1ň3

|ň|2 0 1
F

(
1− ň2

3

|ň|2

)
0 0 − 1

F
0


, (3.3.3)
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whose eigenvalues are

ω0(n) = 0, i ω±(n) =± i

F

√
|ňh|2 + F 2ň2

3

|ň|
, (3.3.4)

where the eigenvalue ω0 has multiplicity 2, and we can write ω± = ±ω. The associated
normalized eigenvectors are

e0(n) =
1

|ň|F


−ň2

ň1

0
−Fň3

 ,

e±(n) =
1(

1 + F 2 |ω (n)|2
)
|ňh|2 |ň|2


−Fň3 (ň2 ∓ iň1ω (n))
Fň3 (ň1 ± iň2ω (n))

∓iFω(n) |ňh|2

|ňh|2

 ,

(3.3.5)

where |ň|F =
√
ň2

1 + ň2
2 + F 2ň2

3.

A case of particular interest happens when |nh| = 0, in such setting we recover the following
matrix

P(0,n3)A =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 − 1

F
0

 ,

while the oscillating eigenvalues become

i ω± (0, n3) = ±i,
and the oscillating and non-oscillating eigenvectors are given by

e±(0, n3) =
1√
2


±i
1
0
0

 , e0(0, n3) =


0
0
0
1

 . (3.3.6)

The eigenvalue ω0 has algebraic multiplicity 2, but there is only one eigenvector related to
it, namely e0. Indeed the matrix PA has a nontrivial 2× 2 Jordan block structure associated
to the eigenvalue 0, hence the fourth is a generalized eigenvector ẽ0. This though is not
divergence-free, hence it shall play no role in the evolution of the system (PEε), for this
reason it is omitted. For a more detailed discussion on the spectral properties of the linear
system we refer the reader to the papers [62] and [63].
Once we have introduced the eigenvectors in (3.3.5) we can consider a generic divergence-
free vector field V as direct sum of the elements belonging to Ce0 and Ce− ⊕ Ce+. We
shall call the projection of V onto Ce0 the quasi-geostrophic part, while the projection onto
Ce− ⊕ Ce+ the oscillating part. The projection can be explicitly defined as follows

VQG =F−1
((

V̂n

∣∣∣ e0 (n)
)
C4
e0 (n)

)
,

Vosc =
∑
i=±

F−1
((

V̂n

∣∣∣ ei (n)
)
C4
ei (n)

)
.

(3.3.7)
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The element Vosc is called oscillating because is the only part of the initial vector field V0

which is affected in the evolution of the system (3.3.1), VQG stays still being in the kernel of
PA.
We would like to point out the following relevant fact, the non-oscillating eigenspace Ce0 is
orthogonal to the oscillating eigenspace Ce− ⊕ Ce+, whence in particular it is always true
that VQG ⊥ Vosc.

In the following we shall denote as ea(n) the eigenvector of PnA associated with the
eigenvalue i ωa, i.e. PnA (eiň·xea(n)) = exp {iň · x+ i τωa(n)} ea(n). Let us define
U ε = L

(
− t
ε

)
V ε, we want to reformulate (PEε) in terms of the new unknown U ε. A straight-

forward computation shows that the vector field U ε satisfies the following equation
∂tU

ε +Qε (U ε, U ε)− DεU ε = 0
div vε = 0
U ε
∣∣
t=0

= V0

(FSε)

where

Qε (U ε, U ε) =L
(
− t
ε

)
P
[(
L
(
t

ε

)
U ε · ∇

)
L
(
t

ε

)
U ε

]
(3.3.8)

DεU ε =L
(
− t
ε

)
DL

(
t

ε

)
U ε. (3.3.9)

We shall call the system (FSε) the filtered system.

Before using the above results to find the limit of (FSε) we introduce the "potential vor-
ticity"

Ωε = −∂2U
1,ε + ∂1U

2,ε − F∂3U
4,ε. (3.3.10)

The potential vorticity has been introduced by J.-Y. Chemin in [36] and it is now a well-
known tool in the study of primitive equation (see [30], [34], [72], [87]). The diagonalization
explained in (3.3.7) can as well be obtained by writing U ε = U ε

QG + U ε
osc, with

U ε
QG =

(
−∂2∆−1

F Ωε, ∂1∆−1
F Ωε, 0, −∂3F∆−1

F Ωε
)
, (3.3.11)

where ∆−1
F denotes the Fourier multiplier

−∆−1
F u = F−1

((
1

ň2
1 + ň2

2 + F 2ň2
3

ûn

)
n

)
.

We remark the fact that since U ε
QG belongs to the kernel of PA we obtain indeed that

U ε
QG = V ε

QG.

One of the major problem is to understand exactly which is the limit for ε → 0 of the
forms Qε,Dε and, if possible, how to give a closed formulation for it. To do so we use
the explicit formulation of Qε,Dε given in equation (3.3.8) and (3.3.9). Let us decompose
divergence-free vector field U as:

FU(n) =
∑

a∈{−,0,+}

Ua (n) =
∑

a∈{−,0,+}

(FU (n)| ea (n))C4 e
a(n),
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Chapter 3. Primitive equations with null vertical diffusivity.

and after some computations we obtain that;

F (Qε (U, V )) (n) =
∑

a,b,c∈{−,0,+}

e−i
t
ε(ωa(k)+ωb(n−k)−ωc(n))

×

( ∑
j=1,2,3

(
ňj − ǩj

)
Ua,j(k)V b(n− k)

∣∣∣∣∣ ec(n)

)
C4

ec(n). (3.3.12)

In the following we will write ωa,b,ck,n−k,n = ωa(k) + ωb(n − k) − ωc(n) for the sake of con-
ciseness, as well as ωa,bn = ωa(n) + ωb(n). With Ua,j we denote the j-th component of the
vector Ua =

(
Û
∣∣∣ ea)

C4
ea for a = 0,±.

Similar calculations give us that

DεU = F−1

 ∑
a,b∈{−,0,+}

e−i
t
ε
ωa,bn
(
D(n)U b(n)

∣∣ ea(n)
)
C4 e

a(n)

 , (3.3.13)

where D(n) is the Fourier symbol associated to the second-order differential operator D, see
(3.1.1).
Letting ε → 0 we only have to use the non stationary phase theorem ( see, for instance [3],
[10], [138]) to obtain that, if U, V are smooth functions;

Q (U, V ) = F−1

Pn
∑

ωa,b,ck,n−k,n=0

(
3∑
j=1

(
ňj − ǩj

)
Ua,j(k)V b(n− k)

∣∣∣∣∣ ec(n)

)
C4

ec(n)

 ,

(3.3.14)

DU = F−1

 ∑
ωa,bn =0

(
D(n)U b(n)

∣∣ ea(n)
)
C4 e

a(n)

 . (3.3.15)

Here we implicitly define as D (n) the Fourier symbol associated to the matrix D defined in
(3.1.1), while Pn is the Fourier symbol associated to the operator (3.3.2).

3.3.1 The global splitting of the limit bilinear form Q.

This section is aimed to explain how the bilinear interaction Q defined in (3.3.14) behaves
along non-oscillating and oscillating subspaces Ce0 and Ce− ⊕ Ce+. Such kind of result is
very well known in the theory of singular perturbation problems in periodic domains, and the
results that we present here have been already proved by several authors in [7], [62] and [63],
for this reason we will not prove them but instead we will refer to the works mentioned and
references therein.
The results presented in the present section derive from the geometrical properties of vector
decomposed as in (3.3.7) and from the localization in the frequency space of the limit bilinear
form Q, localization which reads as{

(k, n) ∈ Z6
∣∣∣ ωa (k) + ωb (n− k) = ωc (n) , a, b, c ∈ {0,±}

}
,
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where the eigenvalues are defined in (4.2.3).

In this section we will always consider smooth vector fields, in particular given a smooth
vector field W we define

ΩW = − ∂2W
2 + ∂1W

2 − F∂3W
4,

WQG =


−∂2

∂1

0
−F∂3

∆−1
F ΩW ,

=
(
wQG,W

4
QG

)
,

Wosc = W −WQG.

Obviously WQG and Wosc are respectively the projections of W onto the non-oscillating and
oscillating subspaces defined in (3.3.7).

Lemma 3.3.1. The following identity holds true

F−1
((
F Q (W,W )| |ň|F e

0
)
C4

)
= wQG · ∇ΩW ,

where Q is defined in (3.3.14) and e0 is the non-oscillating eigenvector defined in (3.3.5).

Corollary 3.3.2. The following identity holds true

F−1
((
F Q (W,W )| e0

)
C4

)
=


−∂2

∂1

0
−F∂3

∆−1
F (wQG · ∇ΩW ) .

For a proof of Lemma 3.3.1 we refer the reader to [62] and [63]. What has to be retained
is the facts that the projection of Q (W,W ) onto the potential non-oscillating subspace does
not presents interactions of the oscillating part of the vector field.

Lemma 3.3.3. Let W be a smooth vector field, then the following identity holds true

(Q (WQG,WQG))osc = 0.

Proof. Considering the explicit formulation of the limit bilinear form Q we deduce

(Q (WQG,WQG))osc

= F−1

 ∑
k+m=n
ω0,0,±
k,m,n=0

(
ň ·
(
W 0 (k)⊗ W 0 (m)

)∣∣ e± (n)
)
C4 e

± (n)

 . (3.3.16)
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Let us consider hence the equation ω0,0,±
k,m,n = 0, thanks to the explicit expression of the

eigenvalues in (3.3.4) then it is equivalent to the equation

|ňh|2 + F 2ň2
3 = 0,

which is true only if n = 0, and in this case the contributions arising in (3.3.16) are null,
concluding.

Corollary 3.3.4. The projection of the limit bilinear form Q onto the oscillating subspace
can be written as

(Q (W,W ))osc = (Q (WQG,Wosc))osc + (Q (Wosc,WQG))osc + (Q (Wosc,Wosc))osc ,

thanks to the decomposition (3.3.7).

3.4 Proof of Theorem 3.1.10.

Remark 3.4.1. As the reader may have noted Theorem 3.1.10 states the existence of à la
Leray-type solutions. This can seem to be unexpected since, generally, Leray solutions are
constructed thanks to compactness methods. In system (S) we cannot apply any compact-
ness method since we do not have any second-order vertical derivative ∂2

3 and L2 is not
compactly embedded in H1,0. Nonetheless the bilinear form Q has better product rules than
the standard bilinear form in the Navier-Stokes equations, this will allow us to make sense
(distributionally) of the termQ (U,U). Moreover we require the initial potential vorticity Ω0

to be L2 (T3), which, roughly speaking, is "almost as" requiring the initial velocity field to
be H1.

Proof of Theorem 3.1.10 : Before starting the proof we point out the following fact,
Navier-Stokes equations preserve the global average of the unknown function. This happens
as well for the system (PEε), whence we can consider data with zero horizontal average.
Thanks to this property homogeneous and non-homogeneous Sobolev spaces are equivalent,
we shall use this constantly in the present proof. In particular they will be always non-
homogeneous. This fact concerns the isotropic spaces Hs (R3) only.
The proof is standard application of Galerkin’s approximation. We define the truncation
operator

JNu =
∑

{k∈Z3||k|6N}

ûke
iǩ·x,

and consequently the approximated system
∂tUN + JNQ (UN , UN) + DUN = 0
divuN = 0
UN
∣∣
t=0

= JNU0,
(3.4.1)

in the unknown UN . We recall that for a fixedN , JN maps continuously anyHk space to any
Hk+h space for h > 0 thanks to Bernstein inequality. Thus (3.4.1) is a differential equation
in the space

L2
N

(
T3
)

=
{
u ∈ L2

(
T3
)∣∣ ûk = 0 if |k| > N

}
.
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Since the support of the Fourier transform of UN ∈ L2
N (T3) is included in the ball of center

0 and radius N and the support of F (UN ⊗ UN) is included in B2N(0) we obtain easily
that JNQ ∈ C (L2

N (T3)× L2
N (T3) ;L2

N (T3)). Hence Cauchy-Lipschitz theorem gives the
existence of a unique solution to (3.4.1) on a maximal interval of time [0, TN) taking values
in L2

N (T3).
Moreover since

Q (A,B) = lim
ε→0
L
(
− t
ε

)
P
[(
L
(
t

ε

)
A · ∇

)
L
(
t

ε

)
B

]
,

it is clear that (JNQ (UN , UN)|UN)L2(T3) = (Q (UN , UN)|UN)L2(T3) = 0 since divuN = 0.
Hence by a standard energy estimate on the parabolic-hyperbolic equation (3.4.1) we get

1

2
‖UN(t)‖2

L2(T3) + c

∫ t

0

‖∇hUN(s)‖2
L2(T3) ds 6

1

2
‖U0‖2

L2(T3) ,

from which for all t ∈ [0, TN) we have ‖UN(t)‖2
L2(T3) 6 ‖JNU0‖2

L2(T3) 6 ‖U0‖2
L2(T3). We

deduce that TN =∞ and for all t > 0 UN(t) satisfies

‖UN(t)‖2
L2(T3) + 2c

∫ t

0

‖∇hUN(s)‖2
L2(T3) ds 6 ‖U0‖2

2 .

Consider the relation ‖UN‖L2((0,t);L2(T3)) 6
√
t ‖UN‖L∞((0,t);L2(T3)) 6

√
t ‖U0‖L2(T3) we can

say that the sequence UN is bounded in L∞ (R+;L2 (T3))∩L2
loc (R+;H1,0). By the structure

of (3.4.1) we obtain easily that ∂tUN is bounded in L2
loc

(
R+;H−N

)
for N sufficiently big

(the proof of such fact is identical as the proof of Proposition 3.5.1), hence (∂tUN)N is a
sequence of uniformly bounded functions in L2

loc

(
R+;H−M

)
. We can infer via Aubin-Lions

lemma [4] obtaining that UN → U in L2
loc (R+;H−ε (T3)) where ε ∈ (0,M) up to (non-

relabeled) subsequences.

Since the sequence (UN)N converges in L2
loc (R+;H−ε (T3)) only, and products ofH−ε func-

tions are, a priori, not well defined we introduce a diagonalization method which allows us
to split (3.4.1) in two systems which we will be able to handle.

We rely on a diagonalization method introduced by P. Embid and A. Majda in [62], in detail,
we define

ΩN =− ∂2U
1
N + ∂1U

2
N − F∂3U

4
N , (3.4.2)

VQG,N = UQG,N =

 ∇⊥h
0
−F∂3

∆−1
F ΩN , (3.4.3)

Uosc,N =UN − UQG,N .

Applying Lemma 3.3.1 on the smooth vector field UN we deduce that(
FJNQ (UN , UN)| |ň|F e0 (n)

)
C4 = F

(
JN
(
vhQG,N · ∇hΩN

))
.
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Whence the projection of the element JNQ (UN , UN) onto the potential space defined by the
potential vorticity is the quasi-geostrophic transport JN

(
vhQG,N · ∇hΩN

)
. The proof of such

result is omitted in the present work, but it relies on a careful analysis of the cancellation
properties induced by the limit bilinear form Q.
Applying Corollary 3.3.4 we deduce:

(JNQ (UN , UN))osc

= (JNQ (VQG,N , Uosc,N))osc + (JNQ (Uosc,N , VQG,N))osc + (JNQ (Uosc,N , Uosc,N))osc .

Projecting hence (3.4.1) onto the oscillating subspace and the potential nonoscillating sub-
space we obtain the following global splitting for the first equation of (3.4.1):

∂tΩN + JN
(
vhQG,N · ∇hΩN

)
+ aQG (Dh) ΩN = 0,

∂tUosc,N + (JNQ (VQG,N , Uosc,N))osc + (JNQ (Uosc,N , VQG,N))osc
+ (JNQ (Uosc,N , Uosc,N))osc + aosc (Dh)Uosc,N = 0.

(3.4.4)

The operators aQG and aosc are nothing but the projection of the operator −D onto the poten-
tial space defined by Ω and the oscillating subspace. We avoid to give a detailed description
of such operators now (see Section 3.5), what has to be retained is that they are symbols such
that there exists a positive constant c such that |aQG (n)| , |aosc (n)| ≥ c |ňh|2.
On the splitting (3.4.4) we can apply the same procedure as above to obtain that ΩN → Ω in

L2
loc (R+;H−ε (T3)), and defining VQG =

 ∇⊥h
0
−F∂3

∆−1
F Ω for Ω the limit of the sequence

(ΩN)N , and since  ∇⊥h
0
−F∂3

∆−1
F ∈ L

(
Hα, Hα+1

)
, α ∈ R

we obtain as well that
VQG,N → VQG in L2

loc

(
R+;H1−ε) ,

and (VQG,N)n uniformly (in N ) bounded in L∞ (R+, H
1) .

Combining the definitions (3.4.2) and (3.4.3) we can hence rewrite VQG,N as

VQG,N =


−∂2

∂1

0
−F∂3

∆−1
F

(
−∂2, ∂1, 0,−F∂3

)
· UN = ΠQGUN ,

with ΠQG Fourier multiplier of order zero, hence ΠQG ∈ L (Hα (T3)) for each α ∈ R. This
implies in particular that, defining Uosc = U − VQG

‖Uosc,N − Uosc‖H−ε = ‖(UN − VQG,N)− (U − VQG)‖
= ‖(1− ΠQG) (UN − U)‖H−ε
6C ‖UN − U‖H−ε .

This implies in particular that Uosc,N → Uosc in L2
loc (R+;H−ε (T3)). The same idea can be

applied to show that (Uosc,N)N is bounded in L∞ (R+;L2 (T3)) and (∇hUosc,N)N is bounded
in L2 (R+;L2 (T3)).
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At this point we can project Q (UN , UN) on the spaces Ce0,Ce− ⊕ Ce+ (see (3.3.5))
obtaining, thanks to the results of Corollary 3.3.2 and 3.3.4:

Q (UN , UN) = Q (UN , UN)QG +Q (UN , UN)osc

= (−∂2, ∂1, 0,−F∂3)ᵀ∆−1
F

(
vhQG,N · ∇hΩN

)
+ (Q (VQG,N , Uosc,N))osc + (Q (Uosc,N , VQG,N))osc + (Q (Uosc,N , Uosc,N))osc .

It is matter of standard energy bounds with classical product rules in Sobolev spaces to prove
that

(−∂2, ∂1, 0,−F∂3)ᵀ∆−1
F

(
vhQG,N · ∇hΩN

)
→ (−∂2, ∂1, 0,−F∂3)ᵀ∆−1

F

(
vhQG · ∇hΩ

)
,

(Q (VQG,N , Uosc,N))osc → (Q (VQG, Uosc))osc ,

(Q (Uosc,N , VQG,N))osc → (Q (Uosc, VQG))osc ,

in the sense of distributions as N →∞. The limit of the product of terms of the form Uosc,N

is, in general, not well defined. Indeed system (S) lacks of vertical dissipation, hence the
best we know is that Uosc,N → Uosc in L2

loc (R+;H−ε), but generally a product between H−ε

elements is not well-defined. We claim that

(Q (Uosc,N , Uosc,N))osc

D′(R+×T3)
−−−−−−−→

n→∞
(Q (Uosc, Uosc))osc , (3.4.5)

The proof of (3.4.5) is postponed. Whence we finally proved that Q (UN , UN) → Q (U,U)
in D′ (R+ × T3 ), concluding. �

Proof of (3.4.5).

As we already stated M. Paicu in [123] proved a similar result. We shall prove (3.4.5) using
different techniques.
Defining Q (A,B) = div Q̃ (A,B), i.e.

Q̃ (A,B) =
∑
K

(
Âa (k) B̂b (m)

∣∣∣ ec (n)
)
C4
ec (n) ,

=
∑
K

Âa (k) B̂b,c (m,n)

where Âa (k) =
(
Â (k)

∣∣∣ ea (k)
)
ea (k), B̂b,c (m,n) =

(
B̂b (m)

∣∣∣ ec (n)
)
ec (n). It suffices in

fact to prove that
Q̃ (Uosc,j − Uosc, Uosc,j + Uosc)→ 0,

in D′ (R+ × T3) as j → ∞ to conclude. To do so we consider a φ ∈ D and, by Plancherel
theorem∫

R+×T3

φ (t, x) Q̃ (Uosc,j − Uosc, Uosc,j + Uosc) (t, x) dxdt

=

∫
R+

∑
n∈Z3

∑
K?n

φ̂ (t, n) ̂(Uosc,j − Uosc)
a

(t, k) ̂(Uosc,j + Uosc)
b,c

(t,m, n) dt

=

∫
R+

∑
n,kh,mh

φ̂n (t)
∑

{k3:(k,(mh,n3−k3),n)∈K?}

̂(Uosc,j − Uosc)
a

(t, k) ̂(Uosc,j + Uosc)
b,c

(t,mh, n3 − k3, n) dt.

(3.4.6)
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We make a couple of remarks in order to simplify the notation. Since we considered the
eigenvectors as normalized all along the paper the following relations are easy to deduce∣∣∣Û b,c (m,n)

∣∣∣ . ∣∣∣Û b (m)
∣∣∣ . ∣∣∣Û (m)

∣∣∣ .
Hence from now on the terms ̂(Uosc,j − Uosc)

a

(t, k) and ̂(Uosc,j + Uosc)
b,c

(t,mh, n3 − k3, n)

shall be substituted respectively to ̂(Uosc,j − Uosc)k and ̂(Uosc,j + Uosc)(mh,n3−k3). Here we
chose to make implicit the dependence on the variable t. We want to stress out the fact that
this choice is made only to simplify the notation. Indeed we have that

̂(Uosc,j − Uosc)k
̂(Uosc,j + Uosc)(mh,n3−k3)

= ǩ−ε/2 ̂(Uosc,j − Uosc)kǩ
ε/2 ̂(Uosc,j + Uosc)(mh,n3−k3). (3.4.7)

The set {k3 : (n, k) ∈ K?} is indeed finite and, in particular, it is composed by the k3 which
satisfy the following equation(

F 2
(
ǩ3

)
2 +

(
ǩh
)

2
)

1/2
(
(m̌h)

2 +
(
ň3 − ǩ3

)
2
)

1/2

=
((
ǩh
)

2 +
(
ǩ3

)
2
)

1/2
(
(m̌h)

2 +
(
ň3 − ǩ3

)
2
)

1/2

−
((
ǩh
)

2 +
(
ǩ3

)
2
)

1/2
(
F 2
(
ň3 − ǩ3

)
2 + (m̌h)

2
)

1/2.

Expanding the above equation and collecting term by term in the powers of k3 give us the
following polynomial equation

℘
(
ǩ3

)
=

8∑
i=0

Ai
(
ǩh, m̌h, ň

)
ǩi3 = 0,

where the Ai take the following form

A8 =
(
1− 4F 2

)
A7 =4(−1 + 4F 2)ň3

A6 =− 6
(
F 2ǩ2

h + F 2m̌2
h +

(
−1 + 4F 2

)
ň2

3

)
A5 =4ň3

(
6F 2ǩ2

h + 3F 2m̌2
h +

(
−1 + 4F 2

)
ň2

3

)
A4 =−

(
F 2
(
−4 + F 2

)
ǩ4
h + F 2

(
−4 + F 2

)
m̌4
h

−6F 2m̌2
hň

2
3 +

(
1− 4F 2

)
ň4

3 − 2ǩ2
h

((
3 + 2F 2 + F 4

)
m̌2
h + 18F 2ň2

3

))
A3 =4ǩ2

hň3

(
−F 2

(
−4 + F 2

)
ǩ2
h +

(
3 + 2F 2 + F 4

)
m̌2
h + 6F 2ň2

3

)
A2 =− 2ǩ2

h

((
2 + F 2

)
m̌4
h +

(
3 + 2F 2 + F 4

)
m̌2
hň

2
3

+3F 2ň4
3 + ǩ2

h

((
2 + F 2

)
m̌2
h − 3F 2

(
−4 + F 2

)
ň2

3

))
A1 =4ǩ4

hň3

((
2 + F 2

)
m̌2
h − F 2

(
−4 + F 2

)
ň2

3

)
A0 =− ǩ4

h

(
3m̌4

h + 2
(
2 + F 2

)
m̌2
hň

2
3 − F 2

(
−4 + F 2

)
ň4

3

)
.

Although we have been giving the explicit expression of the Ai’s we outline the fact that
the explicit expression by itself is irrelevant, the only thing that matters is that the Ai’s
are polynomials in the variables ǩh, m̌h, ň. We can hence apply the following result which
bounds the modulus of a root of a complex root of a polynomial in terms of its coefficients,
the following proposition is known as Fujiwara near-optimal bound.
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3.4. Proof of Theorem 3.1.10.

Proposition 3.4.2. Let P (z) =
∑n

k=0 anz
k a polynomial P ∈ C [z], let ζ be one of the n

complex roots of P , then

|ζ| 6 2 max

{∣∣∣∣an−1

an

∣∣∣∣ , ∣∣∣∣an−2

an

∣∣∣∣1/2 , . . . , ∣∣∣∣a1

an

∣∣∣∣1/(n−1)

,

∣∣∣∣a0

an

∣∣∣∣1/n
}
.

We shall omit to prove Proposition 3.4.2 and refer the reader to the work [112] instead.
Proposition 3.4.2 applied on ℘ (k3) tells us that∣∣ǩ3

∣∣ . |ň|α1 |m̌h|α2
∣∣ǩh∣∣α3

,

where ǩ3 is any root of ℘, hence∣∣ǩ∣∣ε/2 . ∣∣ǩh∣∣ε/2 +
(
|ň|α1 |m̌h|α2

∣∣ǩh∣∣α3
)ε/2

.

by concavity on the function hε (x) = xε/2, with α1 +α2 +α3 < N for some large and finite
N . Coming back to (3.4.6) and (3.4.7) this means that∣∣∣∣∣
∫
R+

∫
T3

φ (x) Q̃ (Uosc,j − Uosc, Uosc,j + Uosc) (x) dxdt

∣∣∣∣∣
.
∫
R+

∑
n,kh,mh

∣∣∣φ̂n∣∣∣ ∑
{k3:(k,(mh,n3−k3),n)∈K?}

∣∣ǩh∣∣ε/2 ∣∣ǩ∣∣−ε/2 ∣∣∣ ̂(Uosc,j − Uosc)k

∣∣∣
×
∣∣∣ ̂(Uosc,j + Uosc)(mh,n3−k3)

∣∣∣ dt
+

∫
R+

∑
n,kh,mh

∣∣∣φ̂n∣∣∣ ∑
{k3:(k,(mh,n3−k3),n)∈K?}

∣∣ǩ∣∣−ε/2 ∣∣∣ ̂(Uosc,j − Uosc)k

∣∣∣
×
(
|ň|α1 |m̌h|α2

∣∣ǩh∣∣α3
)ε/2 ∣∣∣ ̂(Uosc,j + Uosc)(mh,n3−k3)

∣∣∣ dt
=

∫
R+

∑
n,kh,mh

∣∣∣φ̂n∣∣∣ ∑
{k3:(k,(mh,n3−k3),n)∈K?}

∣∣ǩh∣∣ε/2 ∣∣ǩ∣∣−ε/2 ∣∣∣ ̂(Uosc,j − Uosc)k

∣∣∣
×
∣∣∣ ̂(Uosc,j + Uosc)(mh,n3−k3)

∣∣∣ dt
+

∫
R+

∑
n,kh,mh

|n|
α1ε
2

∣∣∣φ̂n∣∣∣ ∑
{k3:(k,(mh,n3−k3),n)∈K?}

∣∣ǩh∣∣α3ε
2
∣∣ǩ∣∣−ε/2 ∣∣∣ ̂(Uosc,j − Uosc)k

∣∣∣
× |m̌h|

α2ε
2

∣∣∣ ̂(Uosc,j + Uosc)(mh,n3−k3)

∣∣∣ dt
= I1,j + I2,j .

We prove that I2,j → 0 as j → ∞. In order to prove that I1,j → 0 the procedure is very
similar (and actually simpler) to the one we are going to perform now, for this reason is
omitted. We start remarking that∣∣ǩh∣∣α3ε

2
∣∣ǩ∣∣−ε/2 ∣∣∣ ̂(Uosc,j − Uosc)k

∣∣∣
=
(∣∣ǩ∣∣−ε ∣∣∣ ̂(Uosc,j − Uosc)k

∣∣∣)1/2 (∣∣ǩh∣∣α3ε
∣∣∣ ̂(Uosc,j − Uosc)k

∣∣∣)1/2

,

hence

I2,j .
∫
R+

∑
n,kh,mh

|ň|
α1ε

2

∣∣∣φ̂n∣∣∣ ∑
{k3:(k,(mh,n3−k3),n)∈K?}

(∣∣ǩ∣∣−ε ∣∣∣ ̂(Uosc,j − Uosc)k

∣∣∣)1/2

(∣∣ǩh∣∣α3ε
∣∣∣ ̂(Uosc,j − Uosc)k

∣∣∣)1/2

|m̌h|
α2ε

2

∣∣∣ ̂(Uosc,j + Uosc)(mh,n3−k3)

∣∣∣ dt. (3.4.8)
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Chapter 3. Primitive equations with null vertical diffusivity.

Applying Lemma 3.8.4 we obtain

I2,j . ‖φ‖
L∞loc

(
R+;H

1
2 +

α1ε
2

) ‖Uosc,j + Uosc‖
L2

loc

(
R+;H

1
2 +

α2ε
2 ,0

)
× ‖Uosc,j − Uosc‖1/2

L2
loc(R+;Hα3ε,0)

‖Uosc,j − Uosc‖1/2

L∞loc(R+;H−ε) .

Both Uosc,j, Uosc belong to L∞ (R+;L2) and L2
(
R+; Ḣ1,0

)
, and hence to L2

loc (R+;L2) and

by interpolation to L2
loc

(
R+; Ḣσ,0

)
for σ ∈ (0, 1). This means that is ε is sufficiently small

the quantities ‖Uosc,j + Uosc‖
L2

loc

(
R+;H

1
2 +

α2ε
2 ,0

), ‖Uosc,j − Uosc‖2
L2

loc(R+;Hα3ε,0) are bounded, while

since
‖Uosc,j − Uosc‖2

L∞loc(R+;H−ε)

j→∞−−−→ 0,

we proved that I2,j → 0 distributionally. This implies hence that Q (Uosc,j, Uosc,j) →
Q (Uosc, Uosc) in a distributional sense.

3.5 Weak convergence in the weak limit as ε→ 0.

Introducing the filtered system (FSε) allows us to deal with a system of equations which has a
closer form to the classical Navier-Stokes system. In particular we can not have any uniform
bound, in ε, for the norm ‖∂tV ε‖Hs(T3), but this is possible for the system (FSε). We recall
that we denoted |ň|F =

√
ň2

1 + ň2
2 + F 2ň2

3.

It is natural to ask ourselves if in the limit ε → 0 the filtered system (FSε) converges to the
limit system (S).

Proposition 3.5.1. Let U0 ∈ H0,s and U ε be a local strong solution identified by Theorem
3.1.4 of (FSε), then the sequence (U ε)ε>0 has the following regularity uniformly in ε

U ε ∈ L∞
(
R+;L2

(
T3
))
, ∇hU

ε ∈ L2
(
R+;L2

(
T3
))
, (3.5.1)

and is compact in the space
L2

loc

(
R+;H−η

(
T3
))
,

for some η > 0 (possibly small).

Proof. The proof of (3.5.1) is merely an L2 (T3) energy estimate on the filtered system (FSε),
hence is omitted.

We prove now that (∂tU
ε)ε is bounded, uniformly in ε, in L2

loc

(
R+;H−N

)
where N is

large.
The only thing to prove is to control the bilinear interactionQε (U ε, U ε) in theL2

loc

(
R+;H−N

)
space. Since the propagator L (τ) acts as an isometry in any Sobolev space we can safely as-
sert that as far as concerns Sobolev estimates we can identify Qε (U ε, U ε) with the transport

100



3.5. Weak convergence in the weak limit as ε→ 0.

form U ε · ∇U ε. Indeed

U ε · ∇U ε = uh,ε · ∇hU
ε + u3,ε∂3U

ε,

= Bε
h +Bε

v.

The term Bε
h is easy to bound by the aid of the uniform estimates (3.5.1). The term Bε

v is
slightly more involved, but the methodology is the same. Let us consider a smooth, com-
pactly supported function φ. Integrating by parts and applying Hölder inequality we deduce∣∣∣∣∫

R+×T3

u3,ε∂3U
ε φ dxdt

∣∣∣∣ =

∣∣∣∣∫
R+×T3

U ε
(
divh uh,εφ+ u3,ε ∂3φ

)
dxdt

∣∣∣∣ ,
6 ‖U ε‖L∞(R+;L2(T3)) ‖∇hU

ε‖L2(R+;L2(T3)) ‖φ‖L2(R+;L∞(R3))

+ ‖U ε‖2
L2

loc(R+;L2
vL

4
h)
‖∂3φ‖L2

(
R+;L2

vL
4/3
h

) .
But indeed

‖U ε‖2
L2

loc(R+;L2
vL

4
h)
6 C ‖U ε‖L2

loc(R+;L2(T3)) ‖U
ε‖L2

loc(R+;H1,0(T3)) .

Indeed (3.5.1) assures us that U ε ∈ L2
loc (R+;H1,0 (T3)) uniformly in ε, whence, by density,

we proved that (∂tU
ε)ε is bounded, uniformly in ε, in L2

loc

(
R+;H−N

)
where N is large.

It suffices hence to apply Aubin-Lions lemma (see [4]) to deduce the claim.

Proposition 3.5.1 asserts hence that (up to subsequences, not relabeled):

U ε = U + rε,

where rε is an L2
loc (R+;H−η (T3)) perturbation and U is a non-highly-oscillating state. In

what follows we denote as VQG the projection onto the non-oscillating space defined in (3.3.7)
of the limit non-highly-oscillating state U , similarly Uosc is the projection of U onto the os-
cillating subspace. The element Ω is indeed defined as Ω = −∂2U

1 + ∂1U
2 − F∂3U

4.

First of all we have to make sense of a convergence of the form

Qε (U ε, U ε)→ Q (U,U) ,

where U is a weak solution of the limit system (S) of which we can say at best that it belongs
to the space

U ∈ L∞
(
R+;L2

(
T3
))
, ∇hU ∈ L2

(
R+;L2

(
T3
))
, (3.5.2)

thanks to Theorem 3.1.10, and (U ε)ε>0 a (not relabeled) sequence of local strong solutions
of (FSε) which satisfy (3.5.1) uniformly in ε and that converge to a limit element U in
L2

loc (R+;H−η) for some η > 0. In fact in order to define Q in (3.3.14) we applied the
nonstationary phase theorem for smooth function. This is obviously not the case but by
mollification we can deduce the same result.

Lemma 3.5.2. Let (U ε)ε>0 a (not relabeled) sequence of local strong solutions of (FSε)
which satisfy (3.5.1) uniformly in ε and that converges to a limit element U in L2

loc (R+;H−η)
for some η > 0. Then the following limit holds in the sense of distributions

Qε (U ε, U ε)→ Q (U,U) .
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Chapter 3. Primitive equations with null vertical diffusivity.

Proof. Let us define the mollifications

U ε
α = F−1

(
1{|n|6 1

α}Û
ε
)
, Uα = F−1

(
1{|n|6 1

α}Û
)
.

Indeed
Qε (U ε, U ε)−Q (U,U) = Qε (U ε, U ε)−Qε (U ε

α, U
ε
α)

+Qε (U ε
α, U

ε
α)−Q (Uα, Uα)

+Q (Uα, Uα)−Q (U,U) ,

(3.5.3)

and
Qε (U ε, U ε)−Qε (U ε

α, U
ε
α)

α→0−−→ 0,

Q (Uα, Uα)−Q (U,U)
α→0−−→0,

(3.5.4)

weakly since U ε
α

α→0−−→ U ε, Uα
α→0−−→ U in L∞loc (R+;L2 (T3)). As the space domain T3 is

compact we do not require a passage to subsequences on the parameter α but the convergence
holds true for the entire sequence. Next we can say that

Qε (U ε
α, U

ε
α)−Q (Uα, Uα) = (Qε (U ε

α, U
ε
α)−Qε (Uα, Uα))

+ (Qε (Uα, Uα)−Q (Uα, Uα)) ,

and again, for α > 0 fixed

Qε (U ε
α, U

ε
α)−Qε (Uα, Uα)

ε→0−−→ 0, (3.5.5)

weakly since U ε
α

ε→0−−→ Uα in L2
loc (R+;H−η) due to the topological argument performed in

Proposition 3.5.1, while finally we can apply the nonstationary phase theorem onQε (Uα, Uα)−
Q (Uα, Uα) deducing that

Qε (Uα, Uα)−Q (Uα, Uα)
ε→0−−→ 0, (3.5.6)

in the sense of distributions for α > 0 fixed. Whence (3.5.3)–(3.5.6) imply that, fixed
a (possibly small) positive α > 0, considering a φ ∈ D (R+ × T3), there exists a cα =
cα (φ) > 0 such that cα → 0 as α→ 0 and such that

lim
ε→0

∣∣∣∣∫
R+×T3

(Qε (U ε, U ε)−Q (U,U)) · φ dx dt
∣∣∣∣ 6 cα. (3.5.7)

The left-hand side of (3.5.7) is indeed independent from the parameter α, whence

lim
ε→0

∣∣∣∣∫
R+×T3

(Qε (U ε, U ε)−Q (U,U)) · φ dx dt
∣∣∣∣ 6 lim

α→0
cα = 0.

We underline the fact that the following calculations are an adaptation of the ones present in
the work [72] to the case of anisotropic viscosity. For this reason many calculations shall not
be carried out in detail, or we shall directly refer to the work [72] and references therein.

Once the convergence for the bilinear interactions is formalized we focus to understand
how the global splitting introduced in Section 3.3.1 can be applied on bilinear interactions of
elements which are not smooth.
P. Embid and A. Majda proved the following lemma in [62]:
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3.5. Weak convergence in the weak limit as ε→ 0.

Lemma 3.5.3. F−1
(
(FQε (U ε, U ε) ||ň|F e0(n))C4

) ε→0−−→ vQG · ∇Ω. The limit holds in the
sense of distributions.

Proof. Let us compute

F−1
((
FQε (U ε, U ε)

∣∣|ň|F e0(n)
)
C4

)
− vQG · ∇Ω

= F−1
((
FQε (U ε, U ε)

∣∣|ň|F e0(n)
)
C4

)
−F−1

((
FQε (U ε

α, U
ε
α)
∣∣|ň|F e0(n)

)
C4

)
+ F−1

((
FQε (U ε

α, U
ε
α)
∣∣|ň|F e0(n)

)
C4

)
− vQG,α · ∇Ωα

+ vQG,α · ∇Ωα − vQG · ∇Ω.

The element

F−1
((
FQε (U ε, U ε)

∣∣|ň|F e0(n)
)
C4

)
−F−1

((
FQε (U ε

α, U
ε
α)
∣∣|ň|F e0(n)

)
C4

)
D′(R+×T3)
−−−−−−−→

α→0
0,

since U ε
α

α→0−−→ U ε in L∞loc (R+;L2). Next applying the nonstationary phase theorem and
Lemma 3.3.1 we can say that

F−1
((
FQε (U ε

α, U
ε
α)
∣∣|ň|F e0(n)

)
C4

)
− vQG,α · ∇Ωα → 0,

as ε → 0 in the sense of distributions. Lastly again we can argue as above in order to state
that

vQG,α · ∇Ωα − vQG · ∇Ω
D′(R+×T3)
−−−−−−−→

α→0
0,

since vQG,α → vQG and Ωα → Ω in L∞loc (R+;L2), concluding.

We want to understand which are the projections of DεU on the oscillatory and non
oscillatory space as ε → 0. This is easily done if we consider the formulation of the limit
form as it is given in (3.3.15). Let us consider the projection of the limit linear form onto the
potential space defined by Ω = F−1

(
(FU ||ň|F e0 )C4

)
,(

FDU
∣∣|ň|F e0

)
C4 =

∑
ωa,bn =0

(
D(n)U b(n)

∣∣ ea(n)
)
C4

(
ea(n)| |ň|F e

0
)
C4 .

As it has been pointed out above e0 ⊥ e±, hence a = 0. On the other hand if we consider the
limit set ωa,bn = 0 with the fact that a = 0 we easily obtain that ωb(n) ≡ 0, whence b = 0 as
well, hence we obtained that(
−L

(
− t
ε

)
DL

(
t

ε

)
U ε

∣∣∣∣F−1
(
|ň|F e

0
))

C4

ε→0−−→ aQG (Dh) Ω

= F−1

(
ν (ň2

1 + ň2
2) + ν ′F 2ň2

3

ň2
1 + ň2

2 + F 2ň2
3

(
ň2

1 + ň2
2

)
Ω̂n

)
.
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Chapter 3. Primitive equations with null vertical diffusivity.

In the same way, defining Ua = (FU | ea) ea

− lim
ε→0
L
(
− t
ε

)
DL

(
t

ε

)
U ε

osc = aosc (Dh)U
ε
osc

= F−1

 ∑
ωa,bn =0
a,b=±

(
D(n)U b(n)

∣∣ ea (n)
)
C4 e

a (n)

 .

We want now to understand which form assumes the limit as ε → 0 of the projection
of Qε (U ε, U ε) onto the oscillatory subspace Ce− ⊕ Ce+. In particular the following result
holds true:

Lemma 3.5.4. For every three-dimensional torus T3 we have

Qε (U ε, U ε)osc
ε→0−−→ (Q (VQG, Uosc))osc + (Q (Uosc, VQG))osc + (Q (Uosc, Uosc))osc . (3.5.8)

Proof. We avoid to give a detailed proof of such result since the proof is very similar to the
one performed in Lemma 3.5.3 but using Corollary 3.3.4 instead of Lemma 3.3.1.

The above lemmas hence states that in the limit ε → 0 there is no bilinear interaction of
kernel elements in the equation describing the evolution of Uosc.

Whence the filtered system (FSε) can be described, as ε → 0, thanks to the following
two systems: 

∂tΩ + vhQG · ∇hΩ + aQG (Dh) Ω = 0
divh vhQG = div vQG = 0

Ω
∣∣∣
t=0

= Ω0

(3.5.9)


∂tUosc + (Q (VQG, Uosc))osc + (Q (Uosc, VQG))osc

+ (Q (Uosc, Uosc))osc + aosc (Dh)Uosc = 0

divuosc = 0

Uosc

∣∣∣
t=0

= Uosc,0 = (V0)osc .

(3.5.10)

System (3.5.9) represents the projection of the limit system onto the non-oscillatory potential
subspace defined by Ω, and (3.5.10) represents the projection onto Ce− ⊕ Ce+.

It is easy to deduce from (3.5.9) that if VQG =

 ∇⊥h
0
−F∂3

∆−1
F Ω then


∂tVQG + aQG (Dh)VQG = −

 ∇⊥h
0
−∂3F

∆−1
F

(
vhQG · ∇hΩ

)
,

divh vhQG = div vQG = 0

VQG

∣∣∣
t=0

= VQG,0 =
(
∇⊥h , 0,−F∂3

)ᵀ
∆−1
F Ω0.

(3.5.11)

104



3.5. Weak convergence in the weak limit as ε→ 0.

We remark that in (3.5.10) the term Q (Uosc, Uosc) represents a bilinear interaction between
highly oscillating modes, i.e. we are taking into account some potentially resonant effect
such as in [123].

The following lemma gives a connection in terms of regularity between the solutions of
(3.5.9) and (3.5.11), and will result to be extremely useful in the energy estimates for the
global well posedness of the limit system.

Lemma 3.5.5. Let Λs
hΛ

s′
v Ω ∈ L2 (T3), with VQG =

 ∇⊥h
0
−F∂3

∆−1
F Ω. Let σ ∈ [0, 1], then

there exists a uniformly finite (in σ) constant Cσ depending only on σ such that∥∥∥Λs+σ
h Λs′+(1−σ)

v vQG

∥∥∥
L2(T3)

6 Cσ

∥∥∥Λs
hΛ

s′

v Ω
∥∥∥
L2(T3)

.

Propagation of the horizontal average.

In the following lemmas we identify some conditions which suffices to guarantee that the
horizontal average of U = UQG + Uosc solution of the limit system (3.5.10)-(3.5.11) is pre-
served for each time t > 0. This turns out to be very important since we are dealing with
periodic functions, hence, generally we cannot use inequalities such as the one stated in
(3.2.8) or Corollary 3.2.5 unless the horizontal mean of the function considered is zero. It is
in this setting that the condition (P) shall play a fundamental role.

Lemma 3.5.6. Let VQG the solution of (3.5.11), if we define

VQG(t, x3) =
1

|T2
h|

∫
T2
h

VQG (t, yh, x3) dyh,

then
∂tVQG(t, x3) = 0.

Proof. It suffices to remark that

(−∂2, ∂1, 0,−F∂3)ᵀ∆−1
F

(
vhQG · ∇hΩ

)
= (−∂2, ∂1, 0,−F∂3)ᵀ∆−1

F divh
(
vhQGΩ

)
.

Lemma 3.5.7. Suppose that the limit system (3.5.9)–(3.5.11) is well posed. Then, setting
U = VQG + Uosc

∂t

∫
T2
h

U(t, xh, x3)dxh = 0,

for almost every torus T ⊂ R3, and F 6= 1.

Proof. Taking in consideration the oscillatory part described by equation (3.5.10) it suffices
to prove that∫

T2
h

Q (VQG, Uosc) dxh =

∫
T2
h

Q (Uosc, VQG) dxh =

∫
T2
h

Q (Uosc, Uosc) dxh = 0,
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Chapter 3. Primitive equations with null vertical diffusivity.

we consider at first the term
∫
T2
h
Q (VQG, Uosc) dxh. To do so we consider

F
∫
T2
h

Q (VQG, Uosc) dxh =
∑

ω0,b,c
k,m,(0,n3)

=0

b,c=±
k+m=(0,n3)

(
n3v̂

3
QG (k)

)
Ûosc (m) .

If we look what the term v̂3
QG (k) is we can easily deduce that v̂3

QG (k) = V̂QG (k)·e0 (k) e0,3 (k),
where e0 is defined in (3.3.4) and e0,3 is the third component of e0. Looking at (3.3.4) we
immediately notice that e0,3 ≡ 0, and hence the above value is null.
Next we consider the following term

F
∫
T2
h

Q (Uosc, VQG) dxh =
∑

ωa,0,c
k,m,(0,n3)

=0

a,c=±
k+m=(0,n3)

(((
ň3û

3
osc (k)

)
V̂QG (m)

)∣∣∣ ec (n)
)
C4
ec (n) ,

(3.5.12)
to show that the above quantity is zero we have to study the summation set. Recall that
the eigenvalues are given by formula (3.3.4), the right hand side of the above equation has
been evaluated explicitly thanks to the explicit formulation of the bilinear form Q. The
formulation of the summation set turns out to be quite simple thanks to the relation nh ≡ 0,
writing down in fact explicitly the relation ωa,0,ck,(0,n3)−k,(0,n3) = 0 1 we deduce that we are
considering the following modes:

K± =
{
k ∈ Z3

∣∣ω± (k) = 1
}
.

The equation ω± (k) = 1 characterizing K± reads as(
F 2ǩ2

3 +
∣∣ǩh∣∣2)1/2∣∣ǩ∣∣ = ±F,

which is equivalent to (
F 2 − 1

) ∣∣ǩh∣∣2 = 0.

It is trivial that this relation is satisfied only if kh ≡ 0, but let us consider now in de-
tail what the element û3

osc (k)|k=(0,k3) appearing in (3.5.12) is. By definition û3
osc (k) =

(FU (k)| e± (k)) e±,3 (k), where e±,3 (k) is the third component of the oscillating eigen-
vectors defined in (3.3.6), i.e. e±,3 (k) ≡ 0. Whence û3

osc (0, k3) ≡ 0 and this implies that the
contribution in (3.5.12) is zero.
Next we shall deal with the more complex term, namely the term∫

T2
h

(Q (Uosc, Uosc))osc dxh,

being the deduction for the other ones appearing a matter of straightforward computations.
In this term there are present interactions between perturbations which do not live in the

1 (0, n3)− k = m and we recover the same summation set as in (3.5.12).
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kernel of the penalized operator. In this context the resonance set defined in Definition 3.1.6
shall play a fundamental role. Let us consider the explicit expression of the above term∫

T2
h

(Q (Uosc, Uosc))osc dxh

= F−1

 ∑
K?

(0,ň3)

( ∑
j=1,2,3

Ua,j (k)mjU
b (m)

∣∣∣∣∣ ec (0, n3)

)
C4

ec (0, n3)

 .

We prove that the above quantity is zero by proving that K?(0,ň3) = ∅. Since ňh = 0 and we
have the convolution constraint ǩ + m̌ = ň we immediately understand ǩh + m̌h = 0, i.e.∣∣ǩh∣∣ = |m̌h| = λ. Writing down the resonant equation we obtain the following equality(

F 2ǩ2
3 + λ2

)1/2(
λ2 + ǩ2

3

)1/2
± (F 2m̌2

3 + λ2)
1/2

(λ2 + m̌2
3)

1/2
= ±1.

Taking square (twice) and after some algebraic manipulation we obtain that the above equa-
tion is equivalent to(
λ4 + F 2λ2m̌2

3 + ǩ2
3

(
−
(
−2 + F 2

)
λ2 + m̌2

3

))
2 = 4

(
λ2 + ǩ2

3

)
2
(
λ2 + m̌2

3

) (
λ2 + F 2m̌2

3

)
.

We multiply the above equation for a8
3, obtaining the new equality in the unknown µ2 = λ2a2

3(
µ4 + F 2µ2m2

3 + k2
3

(
−
(
−2 + F 2

)
µ2 +m2

3

))
2

= 4
(
µ2 + k2

3

)
2
(
µ2 +m2

3

) (
µ2 + F 2m2

3

)
, (3.5.13)

and

µ2 = λ2a2
3 =

(
a3

a1

)2

k2
1 +

(
a3

a2

)2

k2
2 = µ1k

2
1 + µ2k

2
2.

Since the torus satisfies the Condition (P) we know that F = r1/r2 ∈ Q, hence we can
transform the expression in (3.5.13) into an equation of the form P (µ) = 0, with P ∈ Z [µ].
Whence by the definition of Condition (P) given in Definition 3.1.8 we argue that

• If µ1 = a2
3/a

2
1 ∈ Q the (3.5.13) can be rewritten as P̃ (µ2) = 0 where deg P̃ = 4,

hence by hypothesis in Definition 3.1.8 we have that µ2 is not algebraic of degree
smaller or equal than four, this implies that the equation P̃ (µ2) = 0 has no solution,
concluding.

• If µ2 = a2
3/a

2
2 ∈ Q the procedure is the same as above, but symmetric (see Definition

3.1.8).

We have hence identified some conditions under such we can say that the horizontal mean

of the limit function U = lim
ε→0
L
(
− t
ε

)
V ε is preserved. Hence if we consider initial data

with zero horizontal average we can use freely (3.2.8) and moreover the following Poincaré
inequality ‖U‖Lp(T3) 6 C ‖∇hU‖Lp(T3) , holds.
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Chapter 3. Primitive equations with null vertical diffusivity.

3.6 Propagation of H0,s regularity.

3.6.1 The quasi-geostrophic part.

Section 3.4 ensures us that there exists a solution U for the limit system (S) which is

U ∈L∞
(
R+;L2

(
T3
))

∇hU ∈L2
(
R+;L2

(
T3
))
.

The scope of the present and following section though is to prove if, under suitable initial
conditions, the equations (3.5.9) and (3.5.10) propagate H0,s regularity.

Proposition 3.6.1. Let Ω be a solution of (3.5.9). Then if Ω0 ∈ L2 (T3) Ω ∈ L∞ (R+;L2 (T3))
, ∇hΩ ∈ L2 (R+;L2 (T3)), and in particular for each t > 0 the following bound holds true

‖Ω(t)‖2
L2(T3) + 2c

∫ t

0

‖∇hΩ(τ)‖2
L2(T3) dτ 6 C ‖Ω0‖2

L2(T3) .

This is a standard L2 energy estimate on the parabolic equation (3.5.9) which has been
already proved in Theorem 3.1.10.

Proposition 3.6.2. Let Ω be the solution of (3.5.9) and let Ω0 ∈ H0,s for some s > 0. Then
for all t ∈ R we have that Ω ∈ C (R+;H0,s) and ∇hΩ ∈ L2 (R+;H0,s), and in particular
the following estimates hold:

‖Ω(t)‖2
H0,s + c

∫ t

0

‖∇hΩ(τ)‖2
H0,s dτ

6 C ‖Ω0‖2
H0,s exp

{
2C

c

(
1 + ‖Ω0‖2

L2(T3)

)
‖Ω0‖2

L2(T3)

}
(3.6.1)

Proof. Applying the vertical truncation 4v
q on both sides of equation (3.5.9), multiplying

both sides for4v
qΩ and taking the scalar product in L2 (T3) we obtain

1

2

d
dt

∥∥4v
qΩ
∥∥2

L2(T3)
+ c
∥∥4v

q∇hΩ
∥∥2

L2(T3)
6
∣∣∣(4v

q

(
vhQG · ∇hΩ

)∣∣4v
qΩ
)
L2(T3)

∣∣∣ .
By use of Cauchy-Schwartz inequality and (3.8.1) we obtain

1

2

d
dt

∥∥4v
qΩ
∥∥2

L2(T3)
+ c
∥∥4v

q∇hΩ
∥∥2

L2(T3)

6 C 2−2qsbq(t)
[
‖Ω‖1/2

L2(T3) ‖∇hΩ‖1/2

L2(T3) ‖Ω‖
1/2

H0,s ‖∇hΩ‖3/2

H0,s

+ ‖∇hΩ‖L2(T3) ‖Ω‖H0,s ‖∇hΩ‖H0,s

]
(3.6.2)

We recall that in (3.6.2) (bq)q is a `1 (Z) positive sequence which depends on Ω and such that∑
q bq (t) 6 1. Multiplying equation (3.6.2) on both sides for 22qs, summing on q ∈ Z and

using the convexity inequalities 2ab 6 a2 + b2 and ab 6 1
4
a4 + 3

4
b4/3 we obtain

1

2

d
dt
‖Ω‖2

H0,s + c ‖∇hΩ‖2
H0,s

6
c

2
‖∇hΩ‖2

H0,s + C
((

1 + ‖Ω‖2
L2(T3)

)
‖∇hΩ‖2

L2(T3)

)
‖Ω‖2

H0,s (3.6.3)
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3.6. Propagation of H0,s regularity.

whence, applying Gronwall inequality to (3.6.3) in [0, t] we get the bound

‖Ω(t)‖2
H0,s + c

∫ t

0

‖∇hΩ(τ)‖2
H0,s dτ

6 C ‖Ω0‖2
H0,s exp

{
2C

∫ t

0

(
1 + ‖Ω(s)‖2

L2(T3)

)
‖∇hΩ(s)‖2

L2(T3) ds
}
.

Hence, considering that Ω is bounded inL∞ (R+;L2 (T3)) and∇hΩ is bounded inL2 (R+;L2 (T3))
we deduce the estimate (3.6.1).

Remark 3.6.3. In Proposition 3.6.2 we do not require the initial data to be of zero horizontal
average in order to propagate H0,s norms. �

3.6.2 The oscillatory part.

We can now turn our attention on the oscillatory part Uosc solution of the equation (3.5.10).
Indeed the terms Q (VQG, Uosc) and Q (Uosc, VQG) present in (3.5.10) should not present a
problem in the propagation of regularity, being linear in Uosc. The termQ (Uosc, Uosc) though
is a bilinear term of the form

√
−∆ (Uosc ⊗ Uosc). Fortunately as pointed out in Lemma 3.8.4

the bilinear form Q has better product rules than the standard Navier-Stokes bilinear form,
this will allow us to recover the global well posedness result for (3.5.10) as well.

Lemma 3.6.4. Let U be the weak solution defined in Theorem 3.1.10, then Uosc = U − VQG

satisfies the energy bound

‖Uosc (t)‖2
L2(T3) + c

∫ t

0

‖∇hUosc (τ)‖2
L2(T3) dτ 6 C ‖U0‖2

L2(T3) .

Proof. The proof stems from the fact that Uosc = ΠoscU where Πosc = 1− ΠQG is a pseudo-
differential operator of order zero as it has been explained in the proof of Theorem 3.1.10.

Proposition 3.6.5. Let Uosc be the solution of (3.5.10) and VQG,0, Uosc,0 = 0. Let T3 sat-
isfy the condition ((P)) and Uosc,0,Ω0 ∈ H0,s for s > 1/2, then Uosc ∈ C (R+;H0,s) and
∇hUosc ∈ L2 (R+;H0,s) and the following bound holds

‖Uosc(t)‖2
H0,s + c

∫ t

0

‖Uosc(τ)‖2
H0,s dτ

6 C ‖Uosc,0‖2
H0,s exp

{
2C

c

[
‖Ω0‖H0,s exp

{
2C

c

(
1 + ‖Ω0‖2

L2(T3)

)
‖Ω0‖2

L2(T3)

}
+
(

1 + ‖U0‖2
L2(T3)

)
‖U0‖2

L2(T3)

]}
.

Proof. As in the proof of Proposition 3.6.2 apply the vertical truncation4v
q on both sides of

(3.5.10) and taking scalar product in L2 (T3) we obtain

1

2

d
dt

∥∥4v
qUosc

∥∥2

L2(T3)
+ c
∥∥4v

q∇hUosc
∥∥2

L2(T3)
6
∣∣(4v

qQ (VQG, Uosc)
∣∣4v

qUosc
)∣∣

+
∣∣(4v

qQ (Uosc, VQG)
∣∣4v

qUosc
)∣∣+

∣∣(4v
qQ (Uosc, Uosc)

∣∣4v
qUosc

)∣∣ .
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Chapter 3. Primitive equations with null vertical diffusivity.

Taking moreover in account the estimates (3.8.8) and (3.8.9) the above inequality turns
into

1

2

d
dt

∥∥4v
qUosc

∥∥2

L2(T3)
+ c
∥∥4v

q∇hUosc
∥∥2

L2(T3)

6 Cbq (t) 2−2qs ‖∇hΩ‖H0,s ‖∇hUosc‖H0,s ‖Uosc‖H0,s

+ Cbq (t) 2−2qs ‖Ω‖1/2

H0,s ‖∇hΩ‖1/2

H0,s ‖Uosc‖1/2

H0,s ‖∇hUosc‖3/2

H0,s

+ Cbq (t) 2−2qs ‖∇hUosc‖L2(T3) ‖Uosc‖H0,s ‖∇hUosc‖H0,s

+ Cbq (t) 2−2qs ‖Uosc‖1/2

L2(T3) ‖∇hUosc‖1/2

L2(T3) ‖Uosc‖1/2

H0,s ‖∇hUosc‖3/2

H0,s .

(3.6.4)

We recall that (bq)q is a `1 (Z) positive sequence which depends on Ω and Uosc and such that∑
q bq (t) 6 1. Multiplying both sides of (3.6.4) for 22qs, summing over q ∈ Z, and using the

inequalities 2ab 6 a2 + b2 and ab 6 1
4
a4 + 3

4
b4/3 we obtain

d
dt
‖Uosc‖2

H0,s + c ‖∇hUosc‖2
L2(T3)

6 2C
((

1 + ‖Ω‖2
H0,s

)
‖∇hΩ‖2

H0,s +
(

1 + ‖Uosc‖2
L2(T3)

)
‖∇hUosc‖2

L2(T3)

)
‖Uosc‖2

H0,s

(3.6.5)

applying Gronwall inequality to (3.6.5) we obtain

‖Uosc(t)‖2
H0,s + c

∫ t

0

‖Uosc(τ)‖2
H0,s dτ

6 C ‖Uosc,0‖2
H0,s exp

{
2C

∫ t

0

(
1 + ‖Ω(τ)‖2

H0,s

)
‖∇hΩ(τ)‖2

H0,s +(
1 + ‖Uosc(τ)‖2

L2(T3)

)
‖∇hUosc(τ)‖2

L2(T3) dτ
}
,

concluding.

3.6.3 Proof of Theorem 3.1.12

At this point it is very easy to prove Theorem 3.1.12 Let us consider a data V0 ∈ H0,s,Ω0 ∈
H0,s, s > 1 and V0 with zero horizontal average. Thanks to Proposition 3.6.2 we have
that Ω ∈ C (R+;H0,s−1) ∩ C (R+;H0,s), ∇hΩ ∈ L2 (R+;H0,s−1) ∩ L2 (R+;H0,s), which
in particular implies, thanks to Lemma 3.5.5 that Λs

vVQG ∈ C (R+;L2 (T3)), ∇hΛ
s
vVQG ∈

L2 (R+;L2 (T3)). Since VQG is defined as VQG = ΠQGU where ΠQG is a Fourier mul-
tiplier of order zero which maps continuously any Hs,s′ space to itself, this implies that
VQG ∈ L∞ (R+, L

2), ∇hVQG ∈ L2 (R+, L
2) since U is so thanks to Theorem 3.1.10, hence

VQG ∈ C (R+;H0,s) ,∇hVQG ∈ L2 (R+;H0,s). For the oscillating part it suffices to apply
Proposition 3.6.5 and the proof is complete.

We outline how to prove that solutions to the limit system are H0,s′-stable, for s′ ∈
[−1/2, s) globally with a continuous dependence of the initial data. To do so consider the
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3.7. Convergence of the system as ε→ 0.

two solutions U1, U2 to the limit system
∂tU1 +Q (U1, U1)− DU1 = 0
divu1 = 0

U1

∣∣∣
t=0

= U1,0

(3.6.6)


∂tU2 +Q (U2, U2)− DU2 = 0
divu2 = 0

U2

∣∣∣
t=0

= U2,0.
(3.6.7)

Subtracting (3.6.7) from (3.6.6) and setting U = U1 − U2 we obtain the following system
∂tU +Q (U1, U) +Q (U,U2)− DU = 0
divu = 0

U
∣∣∣
t=0

= U0 = U1,0 − U2,0.
(3.6.8)

We apply now a stability result proved by M. Paicu in [125], namely Proposition 3.2.9, to
the system (3.6.8). This gives the following estimate

‖U‖2

H0,− 1
2

+ c

∫ t

0

‖∇hU (τ)‖2

H0,− 1
2

dτ

6 C ‖U0‖2

H0,− 1
2

exp

{∫ t

0

(
1 + ‖U (τ)‖2

H0,s

)
‖∇hU (τ)‖2

H0,s dτ

+

∫ t

0

(
1 + ‖U1 (τ)‖2

H0,s

)
‖∇hU1 (τ)‖2

H0,s dτ

+

∫ t

0

(
1 + ‖U2 (τ)‖2

H0,s

)
‖∇hU2 (τ)‖2

H0,s dτ
}
.

The argument of the exponential is indeed uniformly bounded thanks to the estimates on the
limit system performed above, whence if ‖U0‖2

H0,− 1
2

is small the whole right hand side of the
above equation if small. Since moreover

‖U‖2
H0,s + c

∫ t

0

‖∇hU (τ)‖2
H0,s dτ 6 C

(
‖U0‖2

H0,s

)
,

uniformly in t by interpolation we prove the assertion stated above. �

3.7 Convergence of the system as ε→ 0.

Remark 3.7.1. We point out the fact that Proposition 3.2.9 can be applied as well to systems
with the form

∂tw +Qε (w,w) +Qε (u,w)− ah (D)w =f, divw =0.

�
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Chapter 3. Primitive equations with null vertical diffusivity.

Remark 3.7.2. In the present section our aim is to use Proposition 3.2.7 and 3.2.9 to the
systems (FSε) and (S). Let us compare these two systems with (NSh): the only structural
difference between these two is that in (FSε) and (S) the Poincaré semigroup couples velocity
field and temperature vε, T ε in a new variable U ε, but the structure itself of the equation is
unchanged. For this reason Propositions 3.2.7 and 3.2.9 can be applied in the present case.

We shall require as well the following result

Lemma 3.7.3. Let f ∈ Hs,s′ , s, s′ ∈ R such that the horizontal average f ∈ Hs′
v . Then∥∥f∥∥

Hs′
v
6 ‖f‖Hs,s′ .

Proof. Since the element f is the horizontal average of the function f we can indeed argue
that

f (x3) = F−1
v

((
f̂ (0, n3)

)
n3

)
,

at least in L2. Whence calculating explicitly the Sobolev norms∥∥f∥∥2

Hs′
v

=
∑
n3∈Z

(
1 + n2

3

)s′ ∣∣∣f̂ (0, n3)
∣∣∣2 , (3.7.1)

‖f‖2
Hs,s′ =

∑
n∈Z3

(
1 + |nh|2

)s (
1 + n2

3

)s′ ∣∣∣f̂ (nh, n3)
∣∣∣2 , (3.7.2)

Comparing the expressions in (3.7.1) and (3.7.2) we remark that (3.7.1) is the restriction of
(3.7.2) on the fiber {nh = 0}, concluding.

Remark 3.7.4. Let us recall that Theorem 3.1.4 implies that for each ε > 0 fixed there exists
a maximal time T ?ε 6 ∞ such that for each T ? < T ?ε and s > 1/2 the function U ε belongs
to the space

U ε ∈ L∞
(
[0, T ?] ;H0,s

)
, ∇hU

ε ∈ L2
(
[0, T ?] ;H0,s

)
.

�

We prove that, given V ε
0 ∈ H0,s, s > 1, the solution of our filtered system (FSε) con-

verges to the solutions of the limit system (3.5.9), (3.5.10) in the sense that

lim
ε→0

(
V ε − L

(
t

ε

)
U

)
= 0 in C

(
R+;H0,σ

)
lim
ε→0
∇h

(
V ε − L

(
t

ε

)
U

)
= 0 in L2

(
R+;H0,σ

)

for σ ∈ [1, s), where U = Uosc +UQG and UQG = VQG =

 ∇⊥h
0
−F∂3

∆−1
F Ω with Ω solution

of (3.5.9). A suitable change of variable has to be performed so that the singular perturbations
cancels among themselves. The same method has been studied in a wide generality by I.
Gallagher in [72] in the generic context of parabolic (nonlinear) equations with singular,
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3.7. Convergence of the system as ε→ 0.

linear, skew-symmetric perturbation. We mention as well the works [79] and [123] in which
such technique has been used.
We want to underline a major difference between the application of Schochet method in the
present work and in the work [123]. In [123] in fact the convergence takes place for the
values of σ between 1/2 and s. Indeed in our case σ ∈ [1, s). This difference is motivated
by the fact that our limit system is globally well posed in H0,s, s > 1 only. This is due to the
fact that we have been proving the propagation of H0,s, s > 0 data for Ω in Proposition 3.6.2
and hence we have applied Lemma 3.5.5 to state that H0,s, s > 1 data is propagated for VQG.

Let us denote T ?ε the maximal lifespan of U ε solution of (FSε) in the spaceH0,s (T3) with
s > 1, which exists thanks to the work [125]. Then there exists a time T ?ε > T > 0 such
that U ε ∈ C ([0, T ];H0,s) and ∇hU

ε ∈ L2 ([0, T ];H0,s) uniformly in ε small enough. Let us
define W ε = U ε − U defined on the interval [0, T ?ε ] taking values in H0,s. We obtain that
W ε satisfies the following equation

∂tW
ε +Qε (W ε,W ε) + Q̃ε (U,W ε)− DεW ε

= − (Dε − D)U −
(
Qε (U,U)−Q (U,U)

)
,

divwε = 0,

W ε
∣∣
t=0

= 0,

(3.7.3)

where the form Q̃ε is symmetric, bilinear and defined via

Q̃ε (A,B) = Qε (A,B) +Qε (B,A) .

Let us define Rε
osc (U) = Qε (U,U)−Q (U,U), where Qε (A,B)

ε→0−−−−−−−→
D′(R+×T3)

Q (A,B).

It is it a strongly oscillating in time function, given by the formula

Rε
osc(U) = F−1

 ∑
ωa,b,ck,n−k,n 6=0

16j63

ei
t
ε
ωa,b,ck,n−k,n

(
Ua,j(k) (nj − kj)U b (n− k)

∣∣ ec(n)
)
C4 e

c(n)

 ,

where we have been using the notation ωa,b,ck,n−k,n = ωa(k)+ωb(n−k)−ωc(n), a, b, c ∈ {±},
ω±(n) defined as in (3.3.4), Ua(k) =

(
Û(k)

∣∣∣ ea(k)
)
ea(k) and Ua,j is the j-th component

of Ua.
As well the function Sεosc = (Dε − D)U is a highly oscillating function given by the follow-
ing formula

Sεosc (U) = F−1

 ∑
ωa,bn 6=0

ei
t
ε
ωa,bn
(
D(n)U b(n)

∣∣ ea(n)
)
C4 e

a(n)

 ,

and as well as Rε
osc even Sεosc → 0 as ε → 0 only in D′. For the rest of the section when we

write the scalar product ( ·| ·) we implicitly mean ( ·| ·)C4 .
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We decompose Rε
osc and Sεosc in high and low frequencies, i.e.

Rε,Nosc,LF(U) =F−1

1{|n|6N}
∑

ωa,b,ck,n−k,n 6=0

16j63

ei
t
εω

a,b,c
k,n−k,n1{|k|6N}

(
Ua,j(k) (nj − kj)U b (n− k)

∣∣ ec(n)
)
ec(n)

 ,

Sε,Nosc,LF (U) =F−1
1{|n|6N}

∑
ωa,bn 6=0

ei
t
εω

a,b
n
(
D(n)U b(n)

∣∣ ea(n)
)
ea(n)

 ,

and

Rε,N
osc,HF(U) =Rε

osc(U)−Rε,N
osc,LF(U)

Sε,Nosc,HF(U) =Sεosc(U)− Sε,Nosc,LF(U).

Indeed the subscript fHF stands for high frequencies and the subscript fLF stands for low
frequencies.
Concerning the high frequencies terms the following lemma hold

Lemma 3.7.5. If N →∞ the terms Rε,N
osc,HF(U), Sε,Nosc,HF(U) tend uniformly to 0 in ε respec-

tively in the space Lp
(
[0, T ];H−1,−1/2

)
and Lp ([0, T ];H−1,s) for all 1 6 p 6 2, s > 1.

The proof of Lemma 3.7.5 is postponed to the end of the section for the sake of clarity.
The term Rε,N

osc,LF(U) tends only weakly to zero. In order to absorb it in the following compu-
tations we introduce the following notation

R̃ε,Nosc,LF(U) =F−1

1{|n|6N}
∑

ωa,b,ck,n−k,n 6=0

16j63

ei
t
εω

a,b,c
k,n−k,n

ωa,b,ck,n−k,n
1{|n|6N}

(
Ua,j(t, k) (nj − kj)U b (t, n− k)

∣∣ ec(n)
)
ec(n)


S̃ε,Nosc,LF (U) =F−1

1{|n|6N}
∑

ωa,bn 6=0

ei
t
εω

a,b
n

iωa,bn

(
D(n)U b(n)

∣∣ ea(n)
)
ea(n)

 .

We do as well the following change of unknown

Ψε,N
LF = W ε + ε

(
R̃ε,N

osc,LF(U) + S̃ε,Nosc,LF(U)
)
. (3.7.4)

Considering the substitution defined in (3.7.4) into (3.7.3), and after some algebraic manip-
ulation we obtain that Ψε,N

LF satisfies the following equation

∂tΨ
ε,N
LF +

1

2
Q̃
(

Ψε,N
LF ,Ψ

ε,N
LF − 2ε

(
R̃ε,N

osc,LF(U) + S̃ε,Nosc,LF(U)
)

+ 2U
)
− DεΨε,N

LF

= Γε,N (U) , (3.7.5)

where
Γε,N = Rε,N

osc,HF + Sε,Nosc,HF + εΓεN ,
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and

ΓεN = Dε
(
R̃ε,N

osc,LF(U) + S̃ε,Nosc,LF(U)
)

+
1

2
Q̃
((
R̃ε,N

osc,LF(U) + S̃ε,Nosc,LF(U)
)
, ε
(
R̃ε,N

osc,LF(U) + S̃ε,Nosc,LF(U)
)
− 2U

)
+(

R̃ε,N,t
osc,LF(U) + S̃ε,N,tosc,LF(U)

)
(3.7.6)

and respectively

R̃ε,N,tosc,LF =F−1

1{|n|6N}
∑

ωa,b,ck,n−k,n 6=0

16j63

ei
t
εω

a,b,c
k,n−k,n

ωa,b,ck,n−k,n
1{|n|6N}∂t

[(
Ua,j(t, k) (nj − kj)U b (t, n− k)

∣∣ ec(n)
)
ec(n)

]


S̃ε,N,tosc,LF =F−1
1{|n|6N}

∑
ωa,bn 6=0

ei
t
εω

a,b
n

iωa,bn
∂t
[(
D(n)U b(t, n)

∣∣ ea(n)
)
ea(n)

] .

Lemma 3.7.6. The term ΓεN given by the relation (3.7.6) is bounded uniformly in ε by a
constant C(N) which depend solely on N in the spaces Lp

(
[0, T ];H−1,−1/2

)
for 1 6 p 6 2.

Proof. The result is due to the fact that we are considering functions localized in a ball of
radius N in the frequency space, hence we can gain all the regularity that we want at the
price of a constant which behaves like a power of N , and, in particular if ωa,bn , ωa,b,ck,n−k,n 6= 0
implies that

1∣∣∣ωa,bn ∣∣∣ , 1∣∣∣ωa,b,ck,n−k,n

∣∣∣ 6 C(N).

Whence we easily obtain that ΓεN belongs to the space Lp
(
R+, H

−1,−1/2
)

and that is uni-
formly bounded by a constant C(N).

We remark that for ε sufficiently small the term U − ε
(
R̃ε,N

osc,LF(U) + S̃ε,Nosc,LF(U)
)

has a
small horizontal mean in Hs

v , whence we can apply Proposition 3.2.9 to equation (3.7.5) in
order to obtain, for all t ∈ [0, T ?ε ] the following bound∥∥∥Ψε,N

LF (t)
∥∥∥2

H0,−1/2
+ c

∫ t

0

∥∥∥∇hΨ
ε,N
LF (τ)

∥∥∥2

H0,−1/2
dτ 6 C (‖U0‖H0,s0 )

×
(∥∥∥Ψε,N

LF (0)
∥∥∥2

H0,−1/2
+

∫ t

0

∥∥Γε,N(τ)
∥∥
H−1,−1/2 dτ +

∫ t

0

∥∥Γε,N(τ)
∥∥2

H−1,−1/2 dτ
)

× exp

{∫ t

0

∥∥Γε,N(τ)
∥∥
H−1,−1/2 dτ

+

∫ t

0

(
1 +

∥∥∥Ψε,N
LF (τ)

∥∥∥2

H0,s0

)∥∥∥∇hΨ
ε,N
LF (τ)

∥∥∥2

H0,s0
dτ
}
. (3.7.7)

Since we want to obtain global in time solutions it is important to have Γε,N at the same
time in both spaces L1

(
R+;H−1,−1/2

)
and L2

(
R+;H−1,−1/2

)
.
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• We remark the fact that writing the estimate (3.7.7) we have been using implicitly the
bound ∫ t

0

(
1 + ‖U(τ)‖2

H0,s0

)
‖∇hU(τ)‖2

H0,s0 dτ 6
C

c
C̃ (‖U0‖H0,s0 ) ,

for s0 > 1, and we denoted C
(
‖U0‖HH0,s0

)
= exp

{
C
c
C̃ (‖U0‖H0,s0 )

}
.

• We used Lemma 3.7.3 to deduce the inequality∥∥Γε,N (τ)
∥∥
H
−1/2
v
6
∥∥Γε,N (τ)

∥∥
H−1,−1/2 ,

which has consequently be applied in order to deduce (3.7.7).

Considering Lemma 3.7.5 we can say that for each η > 0 there exits a large enough N
such that, setting X = L1

(
R+;H−1,−1/2

)
∩ L2

(
R+;H−1,−1/2

)
,∥∥∥Rε,N

osc,HF + Sε,Nosc,HF

∥∥∥
X
6
η

2
,

and thanks to Lemma 3.7.6 for ε sufficiently small

ε ‖ΓεN‖X 6 εC(N) 6
η

2
,

whence we obtain that ∥∥Γε,N
∥∥
X 6 η.

Thanks to the definition (3.7.4) we can argue that for each η > 0 and t < T time of local
existence of the solutions, there exists a ε1 = ε1 (η, T ) such that for each ε ∈ (0, ε1):∥∥∥Ψε,N

LF (t)−W ε(t)
∥∥∥2

H0,−1/2
+ c

∫ t

0

∥∥∥∇hΨ
ε,N
LF (τ)−∇hW

ε(τ)
∥∥∥2

H0,−1/2
dτ 6 εC(N) 6

η

2
,

in the same way we can write∥∥∥Ψε,N
LF (0)

∥∥∥
H0,−1/2

= ε
∥∥∥R̃ε,N

osc,LF (U0) + S̃ε,Nosc,LF (U0)
∥∥∥
H0,−1/2

6 εC(N) ‖U0‖2
H0,s 6

η

2
.

Whence for ε sufficiently small and t ∈ [0, T ?ε ) we have

∥∥∥Ψε,N
LF (t)

∥∥∥2

H0,−1/2
+ c

∫ t

0

∥∥∥∇hΨ
ε,N
LF (τ)

∥∥∥2

H0,−1/2
dτ

6 Cη

(
1 + exp

{∫ t

0

∥∥∥∇hΨ
ε,N
LF (τ)

∥∥∥2

H0,s0

(
1 +

∥∥∥Ψε,N
LF (τ)

∥∥∥2

H0,s0

)
dτ
})

. (3.7.8)

We want to use now the definition of Ψε,N
LF given in (3.7.4), in particular this implies that∥∥∥Ψε,N

LF

∥∥∥ = ‖W ε‖ + ON(ε) for N fixed. This means that Ψε,N
LF and W ε have the same norm
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up to an error which is comparable to ε which is, anyway, considered to be small. Whence
(3.7.8) gives us that

‖W ε(t)‖2
H0,−1/2 + c

∫ t

0

‖∇hW
ε(τ)‖2

H0,−1/2 dτ

6 Cη

(
1 + exp

{∫ t

0

‖∇hW
ε(τ)‖2

H0,s0

(
1 + ‖W ε(τ)‖2

H0,s0

)
dτ
})

. (3.7.9)

For the real numbers s′ ∈ [−1/2, s] we introduce the following continuous function

fε,s′(t) = ‖W ε(t)‖2
H0,s′ +

∫ t

0

(
1 + ‖W ε(τ)‖2

H0,s′
)
‖∇hW

ε(τ)‖2
H0,s′ dτ.

The function ‖W ε(t)‖2
H0,s′ is defined on the interval [0, T ?ε ), by use of (3.7.9) we get

fε,−1/2(t) 6 Cη, (3.7.10)

for each t ∈ [0, T ?ε ).
We consider now an s0 > 1 and the maximal time

T s0ε = sup
{

0 < t < T ?ε

∣∣∣ fε,s0 (t) 6 1, for each 0 6 t 6 T s0ε

}
.

Interpolating between H0,−1/2 and H0,s0 we get

fε,σ (t) = O
(
ηϑ(s0,σ)

)
6 1, t ∈ [0, T s0ε ) , (3.7.11)

where 0 < ϑ (s0, σ)
σ→s0−−−→ 0 and 0 < σ ∈ [−1/2, s0).

We consider at this point U ε = W ε + U , since U has zero horizontal mean we can easily
point out that

U ε(t) = W ε(t).

Whence using Lemma 3.7.3, the definition of the function fε,σ given in (3.7), and the small-
ness property on fε,σ given in (3.7.11) we deduce:

‖W ε(t)‖Hσ
v
6 ‖W ε(t)‖H0,σ ,

6 C
√
fε,σ (t),

6 Cηϑ/2 � 1.

Since the horizontal average of U ε is small we can infer via Proposition 3.2.7 obtaining, for
σ ∈ (1, s0);

‖U ε(t)‖2
H0,s + c

∫ t

0

‖∇hU
ε(τ)‖2

H0,s dτ

6 C ‖V0‖H0,s exp

(∫ t

0

(
1 + ‖U ε(τ)‖2

H0,σ

)
‖∇hU

ε(τ)‖2
H0,σ dτ

)
, (3.7.12)
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on the other hand 0 6 t < T s0ε , and since U ε = W ε + U we get∫ t

0

(
1 + ‖U ε(τ)‖2

H0,σ

)
‖∇hU

ε(τ)‖2
H0,σ ds

6 fε,σ(t) +

∫ t

0

(
1 + ‖U(τ)‖2

H0,σ

)
‖∇hU(τ)‖2

H0,σ dτ + Fσ(t). (3.7.13)

Fσ (t) in particular is defined as

Fσ (t) =

∫ t

0

(
1 + ‖W ε (τ)‖2H0,σ

)
‖∇hU (τ)‖2H0,σ dτ +

∫ t

0

(
1 + ‖U (τ)‖2H0,σ

)
‖∇hW ε (τ)‖2H0,σ dτ

.
∫ t

0

(
1 + ‖W ε (τ)‖2H0,σ

)
‖∇hU (τ)‖2H0,σ dτ +

(
1 + ‖U‖2L∞(R+;H0,σ)

)
fε,σ (t)

.

(
sup
[0,t]

fε,σ

)
‖∇hU‖L2(R+;H0,σ) +

(
1 + ‖U‖2L∞(R+;H0,σ)

)
fε,σ (t) ,

which in turn implies that, considering the above estimate in (3.7.13),∫ t

0

(
1 + ‖U ε(τ)‖2

H0,σ

)
‖∇hU

ε(τ)‖2
H0,σ ds

6 fε,σ(t) +

∫ t

0

(
1 + ‖U(τ)‖2

H0,σ

)
‖∇hU(τ)‖2

H0,σ dτ

+

(
sup
[0,t]

fε,σ

)
‖∇hU‖L2(R+;H0,σ) +

(
1 + ‖U‖2

L∞(R+;H0,σ)

)
fε,σ (t) .

We have seen though that in [0, T s0ε ) that fε,σ (t) 6 1 for σ ∈ (−1/2, s0), and since U ∈
L∞ (R+, H

0,σ) and ∇hU ∈ L2 (R+, H
0,σ) for σ ∈ (1, s0] (this is simply Proposition 3.6.2

combined with Lemma 3.5.5), we obtained that∫ t

0

(
1 + ‖U ε(τ)‖2

H0,σ

)
‖∇hU

ε(τ)‖2
H0,σ ds 6 C.

If we consider the above bound in (3.7.12) we have hence obtained that

‖U ε(t)‖2
H0,s + c

∫ t

0

‖∇hU
ε(s)‖2

H0,s ds 6 C,

for all times t ∈ [0, T s0ε ) and s > 1. We deduce that T s0ε = T ?ε and since the constant C
is independent of the time t, this implies that U ε(t) can be extended in H0,s beyond T ?ε and
hence we obtain that T ?ε =∞ as long as ε is sufficiently small. Recalling that ‖W ε‖ = o(1)
in [0, T ?ε ) we deduce that U ε → U globally in time in H0,σ for −1/2 6 σ < s.

Proof of Lemma 3.7.5: In the following the index s addressing to the anisotropic Sobolev
space H0,s is always considered to be s > 1. An interesting feature is that if s > 1/2
then Hs

v is a Banach algebra. We shall use this property all along the proof. We perform
at first the estimates for the term Rε,N

osc,HF. Since U(t) is of zero horizontal average for all
t > 0 and ∇hU ∈ L2 (R+;H0,s) we obtain that U ∈ L2 (R+;H0,s). Consequently U ∈
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C (R+;H0,s) ∩ L2 (R+;H0,s), and, interpolating U ∈ Lp′ (R+, H
0,s) for each p′ ∈ [2,∞].

Let us observe that the term Rε,N
osc,HF can be decomposed as

Rε,N
osc,HF = Rε,N

osc,1 +Rε,N
osc,2,

where we denoted
Rε,N

osc,1 = F−1
(

1{|n|>N}R
ε,N
osc,HF

)
,

and

Rε,Nosc,2(U) = F−1

1{|n|6N}
∑

ωa,b,ck,n−k,n 6=0

16j63

ei
t
εω

a,b,c
k,n−k,n1{|k|>N}

(
Ua,j(k) (nj − kj)U b (n− k)

∣∣ ec(n)
)
ec(n).


For the first term we use the fact that we are on the high frequencies and of an element

in Lp
(
R+, H

−1,−1/2
)

which tends uniformly at zero as long as ε → 0 thanks to Lebesgue
theorem and Sobolev embeddings. In fact

‖Rε
osc (U)‖H−1,−1/2 6

∥∥∥∥∥F−1

( ∑
k+m=n

(
Ua (k)⊗ U b (m)

∣∣ ec (n)
)
Z4 e

c (n)

)∥∥∥∥∥
H0,1/2

= ‖U ⊗ U‖H0,1/2

. ‖U‖2
H1/2,s .

Now, since U has null horizontal average we can apply Lemma 3.2.4 to obtain finally that

‖Rε
osc (U)‖H−1,−1/2 . ‖U‖H0,s ‖∇hU‖H0,s .

Since L2 ([0, T ]) ⊂ Lp
′
([0, T ]) for p′ ∈ [1, 2) if we prove that ‖Rε

osc (U)‖L2([0,T ];H−1,−1/2) <

∞ we can apply Lebesgue theorem and conclude that
∥∥∥Rε,N

osc,1

∥∥∥
Lp′([0,T ];H−1,−1/2)

→ 0 as

N →∞. But this is in fact true since

‖‖U‖H0,s ‖∇hU‖H0,s‖2
L2
t

=

∫ t

0

‖U (τ)‖2
H0,s ‖∇hU (τ)‖2

H0,s dτ 6 ‖U‖2
L∞(R+;H0,s) ‖∇hU‖2

L2(R+;H0,s) . (3.7.14)

For the second term we argue as follows∥∥∥Rε,N
osc,2

∥∥∥
H−1,−1/2

6

∥∥∥∥∥F−1

( ∑
k+m=n

1{|k|>N}
((
Ua(k)⊗ U b(m)

)∣∣ ec(n)
)
ec(n)

)∥∥∥∥∥
H0,1/2

6

∥∥∥∥∥F−1

( ∑
k+m=n

1{|k|>N}

(
Û(k)

∣∣∣ ea(k)
)
ea(k)

)∥∥∥∥∥
H1/2,s

‖u‖H1/2,s ,

and, using (3.2.11) we obtain the following bound∥∥∥Rε,N
osc,2

∥∥∥
H−1,−1/2

6
∥∥F−1

(
1{|k|>N}U

a(k)
)∥∥1/2

H0,s

∥∥F−1
(
1{|k|>N} (∇hU)a (k)

)∥∥1/2

H0,s ‖U‖
1/2

H0,s ‖∇hU‖1/2

H0,s ,
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which evidently tends to zero thanks to Lebesgue theorem.
For the term Sε,Nosc,HF it comes straightforward since

∥∥∥Sε,Nosc,HF

∥∥∥
H−1,s

=

∥∥∥∥∥∥F−1

1{|n|>N}
∑
ωa,bn 6=0

ei
t
ε
ωa,bn
(
D(n)U b(n)

∣∣ ea(n)
)
ea(n)

∥∥∥∥∥∥
H−1,s

6 C ‖∇hU‖H0,s . (3.7.15)

�

3.8 The energy estimates

In this appendix we refer to VQG and Uosc respectively as the solution of equation (3.5.11)
and (3.5.10). Moreover vQG, uosc represents the projection of the first three components of
VQG and Uosc.
The aim of this section is essentially to give an energy bound for the bilinear term appearing
in equation (3.5.10).
Given a generic vector field u we refer to u as the horizontal average of u. This gives the
natural decomposition u = u + ũ. Since ũ has zero horizontal average the results given in
the Subsection 4.1.5 can be applied.

3.8.1 Estimates for the global well-posedness of the limit system.

Proposition 3.8.1. Let VQG =

 ∇⊥h
0
−F∂3

∆−1
F Ω where Ω is the potential vorticity defined

in (3.3.10), then(
4v
q

(
vhQG · ∇hΩ

)∣∣4v
qΩ
)
6 C2−2qsbq(t)

×
[
‖Ω‖1/2

L2(T3) ‖∇hΩ‖1/2

L2(T3) ‖Ω‖
1/2

H0,s ‖∇hΩ‖3/2

H0,s + ‖∇hΩ‖L2(T3) ‖Ω‖H0,s ‖∇hΩ‖H0,s

]
,

(3.8.1)

where (bq)q is a `1 (Z) positive sequence which depends on Ω and such that
∑

q bq (t) 6 1.

Proof. Thanks to Bony decomposition (4.1.11) we can write

4v
q

(
vhQG · ∇hΩ

)
= Svq−1v

h
QG4v

q∇hΩ+∑
|q−q′|64

([
4v
q;S

v
q′−1v

h
QG

]
4v
q′∇hΩ +

(
Sv
q′−1v

h
QG − Svq−1v

h
QG

)
4v
q4v

q′∇hΩ
)

+
∑
q′>q−4

4v
q

(
Svq′+2∇hΩ4v

q′v
h
QG

)
, (3.8.2)

and hence we can decompose
(
4v
q

(
vhQG · ∇hΩ

)∣∣4v
qΩ
)

=
∑4

k=1 I
k
h (q) .
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First of all, since div hv
h
QG = 0 we have I1

h = 0. We remark that we proved in Lemma
3.5.6 that vhQG = 0. Whence vhQG = ṽhQG. Moreover∇hΩ = ∇hΩ̃, hence

I2
h (q) =

∑
|q−q′|64

([
4v
q;S

v
q′−1v

h
QG

]
4v
q′∇hΩ

∣∣4v
qΩ
)

=
∑
|q−q′|64

([
4v
q;S

v
q′−1ṽ

h
QG

]
4v
q′∇hΩ̃

∣∣∣4v
qΩ̃
)

+
([
4v
q;S

v
q′−1ṽ

h
QG

]
4v
q′∇hΩ̃

∣∣∣4v
qΩ
)

= I2,1
h (q) + I2,2

h (q) .

We consider first the term I2,1
h . By Hölder inequality and Lemma 4.1.10 we can deduce

I2,1
h (q) .

∑
|q−q′|64

2−q
∥∥Sv

q′−1∂3ṽ
h
QG

∥∥
L∞v L

4
h

∥∥∥4v
q′∇hΩ̃

∥∥∥
L2(T3)

∥∥∥4v
qΩ̃
∥∥∥
L2
vL

4
h

we can hence apply (3.2.10) to the term
∥∥Sv

q′−1∂3ṽ
h
QG

∥∥
L∞v L

4
h

and (3.2.8) to
∥∥∥4v

qΩ̃
∥∥∥
L2
vL

4
h

, and

then (3.2.5) and Lemma 3.5.5 in order to deduce

I2,1
h (q) .

∑
|q−q′|64

2−q+q
′/2
∥∥∂3ṽ

h
QG

∥∥1/2

L2(T3)

∥∥∂3∇hṽ
h
∥∥1/2

L2(T3)

∥∥∥4v
q′∇hΩ̃

∥∥∥
L2(T3)

×
∥∥∥4v

qΩ̃
∥∥∥1/2

L2(T3)

∥∥∥4v
q∇hΩ̃

∥∥∥1/2

L2(T3)

.bq (t) 2−q/2−2qs ‖Ω‖1/2

L2(T3) ‖∇hΩ‖1/2

L2(T3) ‖Ω‖
1/2

H0,s ‖∇hΩ‖3/2

H0,s . (3.8.3)

For the following terms the tools used are the same as for the term I2,1
h (q), hence, we

shall not explain the procedure in details. For the term I2,2
h (q)

I2,2
h (q) .2−q

∥∥Sv
q′−1∂3ṽ

h
QG

∥∥
L∞v L

2
h

∥∥∥4v
q′∇hΩ̃

∥∥∥
L2(T3)

∥∥4v
qΩ
∥∥
L2
v

.bq (t) 2−2qs−q′/2 ‖∇h∂3VQG‖L2(T3) ‖Ω‖H0,s ‖∇hΩ‖H0,s

.bq (t) 2−2qs−q′/2 ‖∇hΩ‖L2(T3) ‖Ω‖H0,s ‖∇hΩ‖H0,s , (3.8.4)

where in the first inequality we have used (3.2.9) and by Poincaré inequality in the horizontal
variable to obtain ∥∥Sv

q′−1∂3ṽ
h
QG

∥∥
L∞v L

2
h

. 2q
′/2
∥∥Sv

q′−1∇h∂3ṽ
h
QG

∥∥
L2(T3)

Next, we consider the term

I3
h (q) =

∑
|q−q′|64

((
Sv
q′−1v

h
QG − Svq−1v

h
QG

)
4v
q4v

q′∇hΩ
∣∣4v

qΩ
)

=
∑
|q−q′|64

((
Sv
q′−1ṽ

h
QG − Svq−1ṽ

h
QG

)
4v
q4v

q′∇hΩ̃
∣∣∣4v

qΩ̃
)

+
((
Sv
q′−1ṽ

h
QG − Svq−1ṽ

h
QG

)
4v
q4v

q′∇hΩ̃
∣∣∣4v

qΩ
)

= I3,1
h (q) + I3,2

h (q) .
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With calculations similar and since Supp F
(
Sv
q′−1v

h
QG − Svq−1v

h
QG

)
⊂

⋃
|q−q′|64

2qC, and

hence localized from above and below in the frequency space, using respectively in the first
inequality (3.2.10), Bernstein inequality, (3.2.8), (3.2.5) and Lemma 3.5.5

I3,1
h (q) 6

∑
|q−q′|64

∥∥Sv
q′−1ṽ

h
QG − Svq−1ṽ

h
QG

∥∥
L∞v L

4
h

∥∥∥4v
q4v

q′∇hΩ̃
∥∥∥
L2(T3)

∥∥∥4v
qΩ̃
∥∥∥
L2
vL

4
h

.bq (t) 2−q/2−2qs ‖∂3VQG‖1/2

L2(T3) ‖∇h∂3VQG‖1/2

L2(T3) ‖Ω‖
1/2

H0,s ‖∇hΩ‖3/2

H0,s

.bq (t) 2−q/2−2qs ‖Ω‖1/2

L2(T3) ‖∇hΩ‖1/2

L2(T3) ‖Ω‖
1/2

H0,s ‖∇hΩ‖3/2

H0,s (3.8.5)

The procedure for the term I3,2
h (q) is almost the same as the one for the term I3,1

h (q), except
that we do not use (3.2.8) and we use Poincaré inequality in the horizontal variables

I3,2
h (q) 6 bq (t) 2−q/2−2qs ‖∇hΩ‖L2(T3) ‖Ω‖H0,s ‖∇hΩ‖H0,s . (3.8.6)

The last term

I4
h (q) =

∑
q′>q−1

(
4v
q

(
Svq′+2∇hΩ4v

q′v
h
QG

)∣∣4v
qΩ
)

=
∑
q′>q−1

(
4v
q

(
Svq′+2∇hΩ4v

q′v
h
QG

)∣∣4v
qΩ̃
)

+
∑
q′>q−1

(
4v
q

(
Svq′+2∇hΩ4v

q′v
h
QG

)∣∣4v
qΩ
)

= I4,1
h (q) + I4,2

h (q) .

Let us deal with the term I4,1
h (q). Applying Hölder inequality we deduce

I4,1
h (q) 6

∑
q′>q−1

∥∥4v
q′v

h
QG

∥∥
L∞v L

4
h

∥∥Svq′+2∇hΩ
∥∥
L2(T3)

∥∥∥4v
qΩ̃
∥∥∥
L2
vL

4
h

.

Using Bernstein inequality twice,(3.2.8), Lemma 3.5.5 and lastly (3.2.5) we deduce∥∥4v
q′v

h
QG

∥∥
L∞v L

4
h

. 2q
′/2
∥∥4v

q′v
h
QG

∥∥
L2
vL

4
h

. 2−q
′/2
∥∥∂34v

q′v
h
QG

∥∥
L2
vL

4
h

.2−q
′/2
∥∥∂34v

q′v
h
QG

∥∥1/2

L2(T3)

∥∥∂3∇h4v
q′v

h
QG

∥∥1/2

L2(T3)

.2−q
′/2
∥∥4v

q′Ω
∥∥1/2

L2(T3)

∥∥∇h4v
q′Ω
∥∥1/2

L2(T3)

.cq′ (Ω, t) 2−q
′/2−q′s ‖Ω‖1/2

H0,s ‖∇hΩ‖1/2

H0,s .

An application of (3.2.8) and (3.2.5) gives instead∥∥∥4v
qΩ̃
∥∥∥
L2
vL

4
h

. cq (Ω, t) 2−qs ‖Ω‖1/2

H0,s ‖∇hΩ‖1/2

H0,s , (3.8.7)

whence we deduce the bound

I4,1
h (q) 6 C2−2qs−q/2bq (Ω, t) ‖∇hΩ‖L2(T3) ‖Ω‖H0,s ‖∇hΩ‖H0,s .

To bound the term I4,2
h (q) is a similar procedure and hence is omitted. Whence collecting

estimates (3.8.3)–(3.8.7) we deduce the bound (3.8.1).
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Proposition 3.8.2. Let VQG and Uosc respectively be the solution of equation (3.5.11) and
(3.5.10), then if the horizontal mean of VQG and Uosc is zero (see Lemmas 3.5.6 and 3.5.7)
the following estimates hold(
4v
qQ (VQG, Uosc)

∣∣4v
qUosc

)
L2(T3)

+
(
4v
qQ (Uosc, VQG)

∣∣4v
qUosc

)
L2(T3)

6 C2−2qsbq (t) ‖∇hΩ‖H0,s ‖∇hUosc‖H0,s ‖Uosc‖H0,s

+ C2−2qsbq (t) ‖Ω‖1/2

H0,s ‖∇hΩ‖1/2

H0,s ‖Uosc‖1/2

H0,s ‖∇hUosc‖3/2

H0,s

(3.8.8)

(
4v
qQ (Uosc, Uosc)

∣∣4v
qUosc

)
L2(T3)

6Cbq (t) 2−2qs ‖∇hUosc‖L2(T3) ‖Uosc‖H0,s ‖∇hUosc‖H0,s

+ Cbq (t) 2−2qs ‖Uosc‖1/2

L2(T3) ‖∇hUosc‖1/2

L2(T3) ‖Uosc‖1/2

H0,s ‖∇hUosc‖3/2

H0,s .
(3.8.9)

The sequence (bq)q is a `1 (Z) positive sequence which depends on Ω, Uosc and such that∑
q bq (t) 6 1.

Remark 3.8.3. From now on (· |·) = (· |·)L2(T3) �

Proof. We shall divide the proof of the above proposition in two parts, namely one part for
each estimate.
In the following we always consider s > 1/2, hence in particular the embedding Hs

v ↪→ L∞v
holds true. Moreover we underline the fact that VQG (t) and Uosc (t) have zero horizontal
average for each t > 0 is the initial data has zero horizontal average thanks to the results of
Lemma 3.5.6 and Lemma 3.5.7, whence the estimates (3.2.8) and (3.2.11) can be applied in
this context as well as Lemma 3.1.2.

Proof of (3.8.8): in order to prove the estimate (3.8.8) we shall substitute the bilinear
form Q with the transport bilinear form. This choice is done only in order to simplify the
notation.

Indeed we have∣∣(4v
q (vQG · ∇Uosc)

∣∣4v
qUosc

)∣∣ =
∣∣(4v

q

(
vhQG · ∇hUosc

)∣∣4v
qUosc

)∣∣ ,
=
∣∣(divh4v

q

(
vhQG ⊗ Uosc

)∣∣4v
qUosc

)∣∣ ,∣∣(4v
q (uosc · ∇VQG)

∣∣4v
qUosc

)∣∣ 6 ∣∣(divh4v
q

(
uhosc ⊗ VQG

)∣∣4v
qUosc

)∣∣
+
∣∣(∂34v

q

(
u3

osc VQG
)∣∣4v

qUosc
)∣∣ ,

and indeed∣∣(divh4v
q

(
vhQG ⊗ Uosc

)∣∣4v
qUosc

)∣∣+
∣∣(divh4v

q

(
uhosc ⊗ VQG

)∣∣4v
qUosc

)∣∣
6 2

∣∣(4v
q (Uosc ⊗ VQG)

∣∣4v
q∇hUosc

)∣∣ ,
whence∣∣(4v

q (vQG · ∇Uosc)
∣∣4v

qUosc
)∣∣+

∣∣(4v
q (uosc · ∇VQG)

∣∣4v
qUosc

)∣∣
6 2

∣∣(4v
q (Uosc ⊗ VQG)

∣∣4v
q∇hUosc

)∣∣+
∣∣(∂34v

q

(
u3

osc VQG
)∣∣4v

qUosc
)∣∣

= Bh (q) +Bv (q) .
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Thanks to (3.2.5) and Lemma 3.1.2 we deduce

Bh (q) . 2−2qsbq (t) ‖Uosc ⊗ VQG‖H0,s ‖∇hUosc‖H0,s ,

. 2−2qsbq (t) ‖VQG‖H1/2,s ‖Uosc‖H1/2,s ‖∇hUosc‖H0,s . (3.8.10)

An application of Poincaré inequality and and (3.2.11) allow us to deduce that

‖VQG‖H1/2,s . ‖∇hVQG‖H1/2,s ,

. ‖∇hVQG‖1/2

H0,s

∥∥∇2
hVQG

∥∥1/2

H0,s .

An application of Lemma 3.5.5 leads to

‖∇hVQG‖1/2

H0,s

∥∥∇2
hVQG

∥∥1/2

H0,s . ‖Ω‖
1/2

H0,s ‖∇hΩ‖1/2

H0,s ,

whence with use of (3.2.11) we deduce the bound

Bh (q) . 2−2qsbq (t) ‖Ω‖1/2

H0,s ‖∇hΩ‖1/2

H0,s ‖Uosc‖1/2

H0,s ‖∇hUosc‖3/2

H0,s . (3.8.11)

The term Bv can instead be written as

Bv (q) =
∣∣(4v

q

(
divh uhosc VQG

)∣∣4v
qUosc

)∣∣+∣∣(4v
q

(
u3

osc ∂3VQG
)∣∣4v

qUosc
)∣∣ = B1

v (q)+B2
v (q) .

For the term B1
v (q), applying (3.2.5) and Lemma 3.1.2

B1
v (q) . 2−2qsbq ( t)

∥∥divh uhosc VQG
∥∥
H−1/2,s ‖Uosc‖H1/2,s

. 2−2qsbq (t) ‖VQG‖H1/2,s ‖Uosc‖H1/2,s ‖∇hUosc‖H0,s ,

which is the same estimate as (3.8.10) and whence we can deduce the same bound as for
Bh (q). i.e. (3.8.11).
The termB2

v (q) is indeed less regular due to the presence of the vertical derivative. Similarly
as before we can apply (3.2.5) and Lemma 3.1.2 to deduce

B2
v (q) . 2−2qsbq (t) ‖∂3VQG‖H0,s ‖Uosc‖2

H1/2,s .

Poincaré inequality and Lemma 3.5.5 imply

‖∂3VQG‖H0,s . ‖∂3∇hVQG‖H0,s . ‖∇hΩ‖H0,s ,

while using (3.2.11) we can conclude with the following bound

B2
v (q) . 2−2qsbq (t) ‖∇hΩ‖H0,s ‖Uosc‖H0,s ‖∇hUosc‖H0,s . (3.8.12)

Whence (3.8.11) and (3.8.12) prove (3.8.8).

Proof of (3.8.9): Lastly we consider the term(
4v
qQ (Uosc, Uosc)

∣∣4v
qUosc

)
=
(
4v
qQh (Uosc, Uosc)

∣∣4v
qUosc

)
+
(
4v
qQ3 (Uosc, Uosc)

∣∣4v
qUosc

)
=Ch (q) + Cv (q) ,
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where Qh and Q3 are respectively defined as

Qh (Uosc, Uosc) = lim
ε→0
L
(
− t
ε

)[(
L
(
t

ε

)
U ε

osc

)h
· ∇hL

(
t

ε

)
Uosc

]
, (3.8.13)

Q3 (Uosc, Uosc) = lim
ε→0
L
(
− t
ε

)[(
L
(
t

ε

)
U ε

osc

)3

∂3L
(
t

ε

)
Uosc

]
(3.8.14)

By aid of Bony decomposition as in (4.1.10) we can say that

Ch (q) =
∑
|q−q′|64

(
4v
qQh

(
Sv
q′−1Uosc,4v

q′Uosc
)∣∣4v

qUosc
)

+
∑
q′>q−4

(
4v
qQh

(
4v
q′Uosc, S

v
q′+2Uosc

)∣∣4v
qUosc

)
= Ch

1 (q) + Ch
2 (q) .

By use of Lemma 3.8.4

Ch
1 (q) .

∑
|q−q′|64

∥∥Sv
q′−1Uosc

∥∥
H1/2,0

∥∥4v
q′∇hUosc

∥∥
L2(T3)

∥∥4v
qUosc

∥∥
H1/2,0 ,

moreover since Uosc is a vector field with zero horizontal average we can apply (3.2.8)∥∥Sv
q′−1Uosc

∥∥
H1/2,0 . ‖Uosc‖1/2

L2(T3) ‖∇hUosc‖1/2

L2(T3) ,∥∥4v
qUosc

∥∥
H1/2,0 .

∥∥4v
qUosc

∥∥1/2

L2(T3)

∥∥∇h4v
qUosc

∥∥1/2

L2(T3)
,

whence thanks to (3.2.5) and the fact that we are summing on a finite set of q′

Ch
1 (q) . bq (t) 2−2qs ‖Uosc‖1/2

L2(T3) ‖∇hUosc‖1/2

L2(T3) ‖Uosc‖1/2

H0,s ‖∇hUosc‖3/2

H0,s . (3.8.15)

Similar computations give us the result for Ch
2 , here we sketch the procedure. Respectively

using (3.8.21), (3.2.5) and summing on the summation set

Ch
2 (q) =

∑
q′>q−4

(
4v
qQh

(
4v
q′Uosc, S

v
q′+2Uosc

)∣∣4v
qUosc

)
.bq (t) 2−2qs ‖∇hUosc‖L2(T3) ‖Uosc‖H0,s ‖∇hUosc‖H0,s . (3.8.16)

On the term Cv we apply instead Bony decomposition as in (3.8.2) obtaining

Cv (q) =
(
Q3
(
Svq−1Uosc,4v

qUosc
)∣∣4v

qUosc
)

+
∑
|q−q′|64

(
Q3
(
Svq−1Uosc − Svq′−1Uosc,4v

q4v
q′Uosc

)∣∣4v
qUosc

)
+

∑
|q−q′|64

lim
ε→0

([
4v
q, S

v
q′−1

(
L
(
t

ε

)
Uosc

)3
]
4v
q′∂3L

(
t

ε

)
Uosc

∣∣∣∣∣4v
qL
(
t

ε

)
Uosc

)

+
∑
q′>q−4

(
4v
qQ3

(
4v
q′Uosc, S

v
q′+2Uosc

)∣∣4v
qUosc

)
=

4∑
k=1

Cv
k (q) ,
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where Q3 is defined in (3.8.14). Let us consider the term Cv
1 (q) first. Integration by parts

and the fact that we are considering divergence-free vector fields gives us

Cv
1 (q) = lim

ε→0

∫
T3

Svq−1

(
L
(
t

ε

)
Uosc

)3

∂3L
(
t

ε

)
4v
qUoscL

(
t

ε

)
4v
qUoscdx

=− 1

2
lim
ε→0

∫
T3

Svq−1divh

(
L
(
t

ε

)
Uosc

)h ∣∣∣∣L( tε
)
4v
qUosc

∣∣∣∣2 dx.

Moreover using the fact that L
(
t
ε

)
is an isometry on Sobolev spaces, and (3.8.21) we deduce

Cv
1 (q) = lim

ε→0

∫
T3

Svq−1divh

(
L
(
t

ε

)
Uosc

)h(
L
(
t

ε

)
4v
qUosc

)2

dx

.bq(t)2
−2qs ‖∇hUosc‖L2(T3) ‖Uosc‖H0,s ‖∇hUosc‖H0,s . (3.8.17)

Let us consider the term Cv
2 which is defined as

Cv
2 (q) =

∑
|q−q′|64

(
Q3
(
Svq−1Uosc − Svq′−1Uosc,4v

q4v
q′Uosc

)∣∣4v
qUosc

)
=
∑
|q−q′|64

∑
(k,m,n)∈K?
a,b,c,d=±

(
Ŝvq−1U

a,3
(k)− Ŝvq′−1U

a,3
(k)
)
m̌34̂v

q4v
q′U

b,c
(m,n) 4̂v

qU
d

(n) ,

where Û b,c (m,n) =
(
Û b (m)

∣∣∣ ec (n)
)
ec (n). Since the eigenvectors ec can always be con-

sidered normalized to norm one we deduce
∣∣∣Û b,c (m,n)

∣∣∣ . ∣∣U b (m)
∣∣. At this point we can

use Lemma 3.8.4 to obtain the bound

Cv
2 (q) .

∑
|q−q′|64

∑
a=±

∥∥Svq−1U
a,3 − Svq′−1U

a,3
∥∥
L2(T3)

∥∥4v
q4v

q′∂3Uosc
∥∥
H1/2,0

∥∥4v
qUosc

∥∥
H1/2,0 .

We remark that the term Ua is in fact divergence-free.
Thanks to Lemma 4.1.8∥∥Svq−1U

a,3 − Svq′−1U
a,3
∥∥
L2(T3)

.2−q
∥∥(Svq−1 − Svq′−1

)
∂3U

a,3
∥∥
L2(T3)

.2−q
∥∥(Svq−1 − Svq′−1

)
∇hUosc

∥∥
L2(T3)∥∥4v

q4v
q′∂3Uosc

∥∥
H1/2,0 .2q

∥∥4v
q4v

q′Uosc
∥∥
H1/2,0

Hence using first (3.2.5) and then (3.2.11)

Cv
2 (q) . bq (t) 2−2qs ‖∇hUosc‖L2(T3) ‖Uosc‖H0,s ‖∇hUosc‖H0,s . (3.8.18)

The term Cv
3 (q) will be handled in a different way. First of all, writing fε = L

(
t
ε

)
f and

considering that commutators can be expressed as convolutions (as it has been expressed in
detail in the Section 3.2.1, see equation (3.2.6)) we can write Cv

3 (q) as

Cv
3 (q) = lim

ε→0

∑
|q−q′|64

∫
T3

∫
T1
v×[0,1]

h̃ (2qy3)
(
Sv
q′−1∂3U

3
osc,ε

)
(xh, x3 + τ (x3 − y3))

× ∂34v
q′Uosc,ε (xh, x3 − y3)4v

qUosc,ε(x)dy3dτdxhdx3,

126



3.8. The energy estimates

with h̃(z) = zh(z) and h = F−1ϕ. Taking the limit as ε → 0, using the divergence free-
property we obtain the following bound

|Cv
3 (q)| 6

∑
|q−q′|64

∫
T1
v×[0,1]

∑
(k,n)∈K?

h̃ (2qy3)
∣∣F ((Sv

q′−1∇hUosc
)

(xh, x3 + τ (x3 − y3))
)

(k)
∣∣

×
∣∣∣F (∂34v

q′Uosc (xh, x3 − y3)
)

(n− k)4̂v
qUosc(n)

∣∣∣ dy3dτ,

applying Lemma 3.8.4

Cv
3 (q) .

∑
|q−q′|64

∫
T1
v×[0,1]

h̃ (2qy3)
∥∥Sv

q′−1∇hUosc (xh, x3 + τ (x3 − y3))
∥∥
L2(T3)

×
∥∥∂34v

q′Uosc (xh, x3 − y3)
∥∥
H1/2,0

∥∥4v
qUosc

∥∥
H1/2,0 dy3dτ,

by standard calculations, localization of the term ∂34v
q′Uosc and (3.2.8) we obtain

Cv
3 (q) . bq(t)2

−2qs ‖∇hUosc‖L2(T3) ‖Uosc‖H0,s ‖∇hUosc‖H0,s . (3.8.19)

Lastly, for the reminder term Cv
4 (q), if we apply Lemma 3.8.4 and Lemma 4.1.8 as for the

term Cv
2 (q) we get

Cv
4 (q) .

∑
q′>q−4

∥∥Svq′+2Uosc
∥∥
H1/2,0

∥∥4v
q′∇hUosc

∥∥
L2(T3)

∥∥4v
qUosc

∥∥
H1/2,0 ,

hence by localization and the interpolation (3.2.11) we obtain

Cv
4 (q) . bq(t)2

−2qs ‖Uosc‖1/2

L2(T3) ‖∇hUosc‖1/2

L2(T3) ‖Uosc‖1/2

H0,s ‖∇hUosc‖3/2

H0,s . (3.8.20)

The estimates (3.8.15)–(3.8.20) prove hence (3.8.9).

3.8.2 The bilinear form Q.

In this section we state some particular property of the quadratic limit form defined in
(3.3.14). In particular we state a product rule which can be applied thanks to the particu-
lar structure of the resonance set K? =

⋃
n∈Z3

K?n, which is a crucial feature in the energy

estimates for the limit system.
The following property has been remarked at first by A. Babin et al. in [8], but was first
explicitly proved by M. Paicu in [123]. The proof is based on the fact that, fixed (kh, n), the
fiber J (kh, n) = {k3 : (k, n) ∈ K?} is of finite cardinality.

Lemma 3.8.4. Let a, b ∈ H1/2,0 (T3) , c ∈ L2 (T3) vector fields of zero horizontal average
on T2

h. Then there exists a constant C which depends only of a1/a2 such that∣∣∣∣∣∣
∑

(k,n)∈K?
â (k) b̂ (n− k) ĉ (n)

∣∣∣∣∣∣ 6 C

a3

‖a‖H1/2,0(T3) ‖b‖H1/2,0(T3) ‖c‖L2(T3) (3.8.21)
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The following proof can be found [42, Lemma 6.6, p. 150] or [123, Lemma 6.4, p. 222].

Proof. We shall give the proof on the torus [0, 2π)3, whence

IK? =

∣∣∣∣∣∣
∑

(k,n)∈K?
âkb̂n−kĉn

∣∣∣∣∣∣ 6
∑

(kh,n)∈Z2×Z3

∑
{k3:(k,n)∈K?}

∣∣∣âkb̂n−kĉn∣∣∣
6

∑
(kh,n)∈Z2×Z3

|ĉn|
∑

{k3:(k,n)∈K?}

|âk|
∣∣∣b̂n−k∣∣∣ , (3.8.22)

by Cauchy-Schwarz inequality

∑
{k3:(k,n)∈K?}

|âk|
∣∣∣b̂n−k∣∣∣ 6

 ∑
{k3:(k,n)∈K?}

|âk|2
∣∣∣b̂n−k∣∣∣2

1/2 ∑
{k3:(k,n)∈K?}

1

1/2

,

now, fixing (kh, n) ∈ Z2×Z3 there exists only a finite number (8) or resonant modes k3, i.e.
# ({k3 : (k, n) ∈ K?}) 6 8. Let us briefly explain why this is true. We write explicitly the
resonant condition ω+,+,+

k,n−k,n = 0 (the same procedure holds for the generic case ωa,b,ck,n−k,n =
0, a, b, c 6= 0), this reads as(

|Fk3|2 + |kh|2

|k3|2 + |kh|2

)1/2

+

(
(F |n3 − k3|)2 + |nh − kh|2

|n3 − k3|2 + |nh − kh|2

)1/2

=

(
|Fn3|2 + (nh|2

|n3|2 + |nh|2

)1/2

.

Taking squares several times on both sides of the above equation give us an expression which
is free of square roots. Moreover putting everything to common factor and recalling that n, kh
are fixed we transformed the above equation in the formR (k3) = 0,R ∈ R [x], hence thanks
to fundamental theorem of algebra it has a finite number of roots.

From this we deduce

∑
{k3:(k,n)∈K?}

|âk|
∣∣∣b̂n−k∣∣∣ 6 √8

 ∑
{k3:(k,n)∈K?}

|âk|2
∣∣∣b̂n−k∣∣∣2

1/2

,

which considered into inequality (3.8.22) gives

IK? 6
√

8
∑
kh,nh

∑
n3

|ĉn|

(∑
k3

|âk|2
∣∣∣b̂n−k∣∣∣2)1/2

.

Moreover

∑
n3

|ĉn|

(∑
k3

|âk|2
∣∣∣b̂n−k∣∣∣2)1/2

6

(∑
n3

|ĉn|2
)1/2(∑

n3,k3

|âk|2
∣∣∣b̂n−k∣∣∣2)1/2

,

and hence

IK? 6
√

8
∑

(kh,n)∈Z2×Z3

(∑
n3

|ĉn|2
)1/2(∑

p3

∣∣∣b̂nh−kh,p3

∣∣∣2)1/2(∑
k3

|âk|2
)1/2

. (3.8.23)
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Let us denote at this point

ãnh =

(∑
n3

|ân|2
)1/2

, b̃nh =

(∑
n3

∣∣∣b̂n∣∣∣2)1/2

, c̃nh =

(∑
n3

|ĉn|2
)1/2

,

and the following distributions

ã (xh) =F−1
h (ãnh) b̃ (xh) =F−1

h

(
b̃nh

)
c̃ (xh) =F−1

h (c̃nh) .

Whence the inequality (3.8.23) can be read, applying Plancherel theorem and the product
rules for Sobolev spaces, as

IK? 6
(
ãb̃
∣∣∣ c̃)

L2(T2
h)

6
∥∥∥ãb̃∥∥∥

L2(T2
h)
‖c̃‖L2(T2

h)

6 ‖ã‖H1/2(T2
h)

∥∥∥b̃∥∥∥
H1/2(T2

h)
‖c̃‖L2(T2

h)

= ‖a‖H1/2,0(T3) ‖b‖H1/2,0(T3) ‖c‖L2(T3) .

To lift this argument to a generic torus
∏3

i=1 [0, 2πai) it suffices to use the transform

ṽ (x1, x2, x3) = v (a1x1, a2x2, a3x3) ,

and the identity
‖ṽ‖L2([0,2π)3) = (a1a2a3)−1/2 ‖v‖L2(

∏3
i=1[0,2πai)) .
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Chapter 4

Dynamic of stratified fluids in low Froude
number regime in space-periodic
domains.

If we knew what it was we were doing,
it would not be called research, would
it?

Albert Einstein

4.1 Introduction.

In the present article we study the behavior of strong solutions of the following modified
Boussinesq system 

∂tv
ε + vε · ∇vε − ν∆vε − 1

ε
θε−→e 3 =− 1

ε
∇Φε,

∂tθ
ε + vε · ∇θε − ν ′∆θε +

1

ε
v3,ε = 0,

div vε = 0,

(vε, θε)|t=0 = (v0, θ0) ,

(PBSε)

for data which are periodic-in-space in the regime ε → 0. The space variable x shall be
many times considered separately with respect to the horizontal and vertical components,
i.e. x = (xh, x3) = (x1, x2, x3). We denote ∆ = ∂2

1 + ∂2
2 + ∂2

3 the standard laplacian, ∆h =
∂2

1 + ∂2
2 is the laplacian in the horizontal directions. The symbol ∇ represents the gradient

in all space directions∇ = (∂1, ∂2, ∂3)ᵀ, while we denote∇h = (∂1, ∂2)ᵀ ,∇⊥h = (−∂2, ∂1)ᵀ

respectively the horizontal gradient and the "orthogonal" horizontal gradient. Considered a

This chapter is submitted for publication under the name Derivation of limit equation for a perturbed 3D
periodic Boussinesq system, see [135].
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vector field w we denote divw = ∂1w
1 + ∂2w

2 + ∂3w
3. Given two three-components vector

fields w, z the notation w · ∇z indicates the operator

w · ∇z =
3∑
i=1

wi∂iz.

Generally for any two-components vector field u = (u1, u2) we shall denote as u⊥ =
(−u2, u1). The viscosity ν, ν ′ above are strictly positive constants ν, ν ′ > c > 0.

As we already mentioned the goal of the present paper is to study the behavior of (strong)
solutions of (PBSε) in the regime ε → 0 for periodic-in-space data, i.e. given ai > 0, i =
1, 2, 3 we consider the domain

T3 =
3∏
i=1

[0, 2π ai] ,

and we look for a divergence-free vector field vε : R+ × T3 → R3 and a scalar function
θε : R+ × T3 → R such that (vε, θε) solves (PBSε). The functions (vε, θε) depend on
(t, x) ∈ R+ × T3. The system (PBSε) belongs to a much wider family of problems which
may be written in the following general form ∂tV

ε + vε · ∇V ε + A2 (D)V ε +
1

ε
S (V ε) = 0,

V (0, x) = V0(x),
(4.1.1)

where A2 is an elliptic operator and S is skew-symmetric.
The problem of systems with skew symmetric singular perturbation is not at all new in the
literature. S. Klainerman and A. Majda in [96] develop a first generic theory whose aim is to
study a number of problems arising in physics, when certain physical magnitudes blow-up,
which can be described by the aid of quasilinear symmetric hyperbolic systems. They use
this theory in order to study the following system describing the motion of a compressible
fluid 

∂tρ
ε + div (ρεvε) = 0,

∂tv
ε + vε · ∇vε = − 1

ε2 ρε
∇p (ρε) ,

vε|t=0 = v0 (x) , ρε|t=0 = ρ0,

div v0 = 0,

(WCEε)

when ε → 0. The parameter ε is called the Mach number and describes the rate of com-
pressibility of a fluid. Let us underline the fact that the initial data is of "incompressible
type". The choice of the initial data is relevant since "compressible initial data" generate
fast oscillating perturbations which propagate at speed O (ε−1) which are not easy to handle
mathematically. The authors prove that solutions of (WCEε) converge locally (in time) and
strongly to local solutions of the incompressible Navier-Stokes system.

Another system which falls in the family of singular perturbations problems is the Navier-
Stokes -Coriolis equations

∂tv
ε
RF + vεRF · ∇vεRF − ν∆vεRF +

1

ε
e3 ∧ vεRF = −1

ε
∇pεRF,

div vεRF = 0,

vεRF (0, x) = vεRF,0 (x) .

(RFε)
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E. Grenier in [79] proved that, as long as the initial data is a bidimensional flow (case which
we refer as well prepared initial data) the solutions of (RFε) in a periodic setting converge
strongly, after a suitable renormalization, to those of a two-dimensional Navier-Stokes sys-
tem.

A. Babin A. Mahalov and B. Nicolaenko studied at first the equation (RFε) in the periodic
setting in a series of work ( such as [5], [8] , this list is non exhaustive) when the initial data
is considered to be generic or ill-prepared, in the sense that it is not a bidimensional flow.
Purely three-dimensional perturbations hence can interact constructively between each other,
such as in standard Navier-Stokes equations. This problem is overcome in a twofold way: at
first in [5] a geometric hypotheses on the domain is done so that no bilinear interaction can
occur. Such domains are said to be non-resonant, we shall adopt this kind of approach in the
present work. In [8] instead the domain is considered to be generic, but the authors manage
to prove that three-dimensional bilinear interactions are localized in a very specific way in
the frequency space. This observation allows hence to deduce an improved product rule
which hence can be used to prove that the limit system, despite being three-dimensional and
nonlinear, is well posed. This is the key observation which allows them to prove a result of
strong, global convergence to a two-dimensional Navier-Stokes system after renormalization.

Finally in [72] I. Gallagher studied systems in an even more generic form than (4.1.1),
giving a generic theory for the convergence of parabolic systems with singular perturbation
in periodic domains. This allowed her to obtain some global strong convergence results
for rapidly rotating fluids (RFε) and for a system describing density dependent fluids un-
der the effects of rotation and gravitational stratification called the primitive equations (see
(PEε)). The convergence theory developed by the author is based on a theory developed by
S. Schochet in [133] in the setting of quasilinear hyperbolic systems and hence adapted to
the parabolic case. Such technique consists in determining a "smart" change of variable,
which cancels interactions which converge to zero only in a distributional sense. The result-
ing new unknown is anO (ε) perturbation of the original unknown, but the equation satisfied
by the new variable has a simpler spectrum of nonlinear interactions, making hence possible
to prove that this new unknown is globally well posed and deducing the result for the initial
functions. This technique shall be adopted in the present work as well.

As mentioned many times already we are interested in the dynamics of the system (PBSε)
in the limit as ε → 0 in the periodic case. Recently K. Widmayer in [144] proved that,
in the whole space and for the inviscid case, the limit system solves a two dimensional
incompressible stratified Euler equation

{
∂tū

h
E + ūhE · ∇hū

h
E +∇hp̄E = 0,

div hū
h
E = 0.

(E-2D)

His proof relied on the fact that, in the whole space R3, the highly perturbative part of the
solution decay at infinity as ε → 0. Recently S. Ibrahim and T. Yoneda studied in [84]
the system (PBSε) in a quasi-periodic setting proving a stability result for arbitrarily, finite,
timespans [0, T ].
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Let us rewrite the system (PBSε) into the following more compact form
∂tV

ε + vε · ∇V ε − DV ε +
1

ε
AV ε = −1

ε

(
∇Φε

0

)
,

V ε = (vε, θε) ,

div vε = 0,

(PBSε)

where

A =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 , D =


ν∆ 0 0 0
0 ν∆ 0 0
0 0 ν∆ 0
0 0 0 ν ′∆

 . (4.1.2)

4.1.1 A survey on the notation adopted.

All along this note we consider real valued vector fields, i.e. applications V : R+×T3 → R4.
We will often associate to a vector field V the vector field v which shall be simply the
projection on the first three components of V . The vector fields considered are periodic in
all their directions and they have zero global average

∫
T3 V dx = 0, which is equivalent to

assume that the first Fourier coefficient V̂ (0) = 0. We remark that the zero average propriety
stated above is preserved in time t for both Navier-Stokes equations as well as for the system
(PBSε).
Let us define the Sobolev space Hs (T3), which consists in all the tempered distributions u
such that

‖u‖Hs(T3) =

(∑
n∈Z3

(
1 + |ň|2

)s |ûn|2)1/2

<∞. (4.1.3)

Since we shall consider always vector fields whose average is null the Sobolev norm defined
above in particular is equivalent to the following semi-norm∥∥∥(−∆)s/2 u

∥∥∥
L2(T3)

∼ ‖u‖Hs(T3) , s ∈ R,

which appears naturally in parabolic problems.
Let us define the operator P as the three dimensional Leray operator P(3) wich leaves un-
touched the fourth component, i.e.

P =

(
δi,j −∆−1∂i∂j 0

0 1

)
i,j=1,2,3

=

(
P(3) 0
0 1

)
.

The operator P is a pseudo-differential operator, in the Fourier space its symbol is

Pn =

 δi,j −
ňi ňj

|ň|2
0

0 1


i,j=1,2,3

, (4.1.4)

where δi,j is Kronecker’s delta and ňi = ni/ai, |ň|2 =
∑

i ň
2
i .
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4.1.2 Anisotropic spaces.

The problem presents a singular perturbation A which does not acts symmetrically on the
two-dimensional unit-sphere S2, namely there is a relevant external force acting along the
vertical direction. This asymmetry in the balance of forces induces the solutions of (PBSε)
to behave differently along the horizontal and vertical directions. For this reason we are
forced to introduce anisotropic spaces, which means spaces which behaves differently in the
horizontal or vertical direction. Let us recall that, in the periodic case, the non-homogeneous
Sobolev anisotropic spaces are defined by the norm

‖u‖2
Hs,s′ (T3) =

∑
n=(nh,n3)∈Z3

(
1 + |ňh|2

)s (
1 + |ň3|2

)s′ |ûn|2 ,
where we denoted ňi = ni/ai, nh = (n1, n2) and the Fourier coefficients ûn are given by
u =

∑
n ûne

2πiň·x. In the whole text F denotes the Fourier transform. In particular our
notation will be

Fu(n) = û(n) = ûn =

∫
T3

u(x)e2πiň·xdx.

Let’s recall as well the definition of the anisotropic Lebesgue spaces, we denote with
LphL

q
v the space Lp (T2

h;L
q (T1

v)), defined by the norm:

‖f‖LphLqv =
∥∥∥‖f (xh, ·)‖Lq(T1

v)

∥∥∥
Lp(T2

h)
=

(∫
T2
h

(∫
T1
v

|f (xh, x3)|q dx3

) p
q

dxh

) 1
p

,

in a similar way we demote the space LqvL
p
h. It is well-known that the order of integration is

important as it is described in the following lemma

Lemma 4.1.1. Let 1 6 p 6 q and f : X1×X2 → R a function belonging toLp (X1;Lq (X2))
where (X1;µ1) , (X2;µ2) are measurable spaces, then f ∈ Lq (X2;Lp (X1)) and we have the
inequality

‖f‖Lq(X2;Lp(X1)) 6 ‖f‖Lp(X1;Lq(X2)) .

In the anisotropic setting the Cauchy-Schwarz inequality becomes;

‖fg‖LphLqv 6 ‖f‖Lp′h Lq
′
v
‖g‖

Lp
′′
h Lq

′′
v
,

where 1/p = 1/p′ + 1/p′′, 1/q = 1/q′ + 1/q′′.

We shall need as well to define spaces which are of mixed Lebesgue-Sobolev type.
Namely, we define the space

Lpv (Hσ
h ) = Lp

(
T1
v;H

σ
(
T2
h

))
, p ∈ [1,∞) ,

as the closure of the tempered distributions with respect to the norm

‖u‖Lpv(Hσ
h) =

∫
T1
v

∣∣∣∣∣∣
∑
nh∈Z2

(
1 + |ňh|2

)σ |Fhu (nh, x3)|2
∣∣∣∣∣∣
p/2


1/p

.

We define the space L∞v (Hσ
h ) = L∞ (T1

v;H
σ (T2

h)) thanks to the norm

‖u‖L∞v (Hσ
h) = sup

x3∈T1
v

‖u (·, x3)‖Hσ
h
.
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4.1.3 Results.

Theorem 4.1.7 is the main result proved in the present work. Unfortunately in order to under-
stand in detail the statement of such theorem some notational explanation (notably Section
4.1.1) was introduced. The first part of the present section instead focuses in introducing
some result which is classical in the theory of Navier-Stokes equations and which is of the
utmost importance in order to develop the theory in the present work.
We recall at first the celebrated Leray and Fujita-Kato theorems. The first is a result of ex-
istence of distributional solutions for Navier-Stokes equations, while the second is a result
of (local) well-posedness in Sobolev spaces for Navier-Stokes equations. The proof of such
results is considered to be nowadays somehow classical and can be found in many texts, we
refer to [69] and [71] or [42].

Theorem (LERAY). Let us consider the following system describing the evolution of an
incompressible viscid fluid in the d-dimensional periodic space Td

∂tu+ (u · ∇)u− ν∆u = −∇p,
∇ · u = 0,
u (0) = u0.

(NS)

Let u0 be a divergence-free vector field in L2
(
Td
)
, then (NS) has a weak solution u such

that
u ∈ L∞

(
R+;L2

(
Td
))
, ∇u ∈ L2

(
R+;L2

(
Td
))
.

Theorem (FUJITA-KATO). Let u0 ∈ H
d
2
−1
(
Td
)
, then there exists a positive time T ? such

that (NS) has a unique solution u ∈ L4
(

[0, T ?] ;H
d−1

2

(
Td
))

which also belongs to

C
(

[0, T ?] ;H
d
2
−1
(
Td
))
∩ L2

(
[0, T ?] ;H

d
2

(
Td
))
.

Let us denote T ?u0
be the maximal lifespan of the solution of (NS) with initial datum u0, then

there exists a constant c > 0 such that if

‖u0‖
H
d
2−1 6 cν =⇒ T ?u0

=∞.

Since the perturbation appearing in (PBSε) is skew symmetric we know that the bulk
force AV ε does not apport any energy in any Hs (T3) space, whence Leray and Fujita-Kato
theorem can be applied mutatis mutandis to the system (PBSε), and in particular this is the
formulation which we shall use:

Theorem 4.1.2. Let V0 = (v0, θ0) ∈ L2 (T3) and such that div v0 = 0. Then for each ε > 0
there exists a weak solution V ε of (PBSε) which belongs to the energy space

V ε ∈ L∞
(
R+;L2

(
T3
))
, ∇V ε ∈ L2

(
R+;L2

(
T3
))
.

Theorem 4.1.3. If V0 ∈ Hs (T3) with s > 1/2 there exists a positive time T ? independent of
ε > 0 and a unique strong solution V ε of (4.1.1) in the space L4

(
[0, T ] ;Hs+ 1

2 (T3)
)

which

also belongs to the space C ([0, T ] ;Hs (T3)) ∩ L2 ([0, T ] ;Hs+1 (T3)) for each T ∈ [0, T ?).
In particular if ‖V ε

0 ‖Hs+ 1
2 (T3)

6 cν for some positive and small constant c then the solution
is global in R+.
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In the framework of d-dimensional Navier-Stokes equations the propagation of H
d
2
−1

Sobolev regularity is usually referred as propagation of critical regularity. It is hence a gen-
erally accepted choice of lexicon to denote the regularity Hs, s > d/2− 1 as subcritical and
Hs, s < d/2− 1 as supercritical.

The dynamics of (PBSε) varies accordingly to the real parameter ε. The asymptotic
regime ε → 0 is of particular interest since it describes long-time dynamics of stratified
fluids (for a more detailed physical discussion we refer to Section 4.1.4), it is hence relevant
to prove that (PBSε) admits a limit when ε→ 0. The limit system may be written as follows:{

∂tU +Q (U,U)− DU = 0,

U |t=0 = V0.
(S0)

The sense in which system (PBSε) converges to (S0) shall be explained in detail in Sec-
tion 4.2 and 4.3. Section 4.3 is entirely devoted to explain in detail in what consists the limit
form Q and D.
As it is proven in [72] any system in the generic form (4.1.1) converges to a limit system of
the form (S0) in the sense of distributions. In the Section 4.6 we extend this convergence to
a strong setting. Such technique has been introduced by S. Schochet in [133] in the frame-
work of quasilinear symmetric hyperbolic systems, but the theory in the parabolic setting
was developed by I. Gallagher in [72, Theorem 1]. The statement of [72, Theorem 1] is the
following:

Theorem (GALLAGHER). Let U0 ∈ Hs
(
Td
)

with s > d
2
− 1. Let T ? be as in the statement

of Theorem 4.1.3. Let T ∈ [0, T ?), and U be the local, strong solution of (S0) determined by
Theorem 4.1.3 satisfy

U ∈ C
(
[0, T ] ;Hs

(
Td
))
∩ L2

(
[0, T ] ;Hs+1

(
Td
))

then, for ε > 0 small enough the associate solution V ε of (4.1.1) is also defined on [0, T ]
and

V ε − L
(
t

ε

)
U = o (1) ,

in C
(
[0, T ] ;Hs

(
Td
))
∩ L2

(
[0, T ] ;Hs+1

(
Td
))

.

The operator L (τ) appearing in the above theorem is nothing but the backward propaga-
tor eτPA, we refer to Section 4.2 and 4.3 for a more detailed introduction.

The result we prove has rather long and technical statement, but it simply addresses a
stability result of (PBSε) to a simplified 3-dimensional nonlinear model, and it is divided in
four parts:

1. as ε→ 0 the system (PBSε) converges, in the sense of distributions, to a limit system,

2. the limit system can be simplified, in particular it can be written as the sum of two
systems. The first one is similar to a 2D-Navier-Stokes system, the second is a linear
system,
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3. the aforementioned systems are, individually, globally well posed. Hence the limit
system is globally well-posed,

4. (PBSε) converges (now strongly) to the limit system which now we know to be globally
well-posed. We deduce the convergence to be global.

We would like to spend a couple of words more on the result (4) of the list here above. The
convergence procedure gives an additional result which is crucial: we proved in the point (3)
that the limit system solved by U is globally well posed in some Sobolev space: V ε solution
of (PBSε) converges globally to a renormalization of U , hence V ε is globally well posed as
well if ε is sufficiently small.

The first result we prove is the following compactness result concerning the solutions à
la Leray of the system (PBSε):

Theorem 4.1.4. Let L (τ) = eτPA where A and P are defined respectively in (4.1.2) and
(4.1.4), and let V0 ∈ L2 (T3) such that div v0 = 0. The sequence

(
L
(
t
ε

)
V ε
)
ε>0

whith V ε

energy solution determined in Theorem 4.1.2 is weakly compact in the L2
loc (R+ × T3) topol-

ogy and each element U of the topological closure of
(
L
(
t
ε

)
V ε
)
ε>0

w.r.t. the L2
loc (R+ × T3)

topology solves (S0) in the sense of distributions and belongs to the energy space

L∞
(
R+;L2

(
T3
))
∩ L2

(
R+;H1

(
T3
))
.

The second result we prove is the following simplification of the limit system in the
abstract form (S0):

Theorem 4.1.5. Let us define

ωh0 = curlh V h
0 , Ū0 =

(
∇⊥h ∆−1

h ωh0 , 0, 0
)
, Uosc,0 = V0 − Ū0.

= − ∂2V
1

0 + ∂1V
2

0 =
(
ūh0 , 0, 0

)
.

The projection of (S0) onto kerPA is the following 2d-Navier-Stokes stratified system with
full diffusion{

∂tū
h (t, xh, x3) + ūh (t, xh, x3) · ∇hū

h (t, xh, x3)− ν∆ūh (t, xh, x3) = −∇hp̄ (t, xh, x3)

ūh (t, xh, x3)
∣∣
t=0

= ūh0 (xh, x3) .
(4.1.5)

While the projection of (S0) onto (kerPA)⊥ satisfies, for almost all (a1, a2, a3) ∈ R3 pa-
rameters of the three-dimensional torus T3 =

∏
i [0, 2π ai], the following linear system in

the unknown Uosc {
∂tUosc + 2Q

(
Ū , Uosc

)
− (ν + ν ′) ∆Uosc = 0,

Uosc|t=0 = Uosc,0 = V0 − Ū0.
(4.1.6)

Theorem 4.1.5 hinges to a rather important deduction: the limit system in the abstract
form (S0) is hence the superposition of (4.1.5) and (4.1.6). General theory of 2D Navier-
Stokes systems and of linear parabolic equations gives hence the tools the prove a global
well-posedness result which reads as follows:

138



4.1. Introduction.

Theorem 4.1.6. Let us consider a vector field V0 = (v0, V
4

0 ) = (V 1
0 , V

2
0 , V

3
0 , V

4
0 ) ∈ Hs (T3),

s > 1/2. Let V0 be of global zero average and of horizontal zero average, i.e.∫
T3

V0 (y) dy = 0,

∫
T2
h

V0 (yh, x3) dyh = 0. (4.1.7)

Let us assume ūh0 ∈ L∞v (Hσ
h ) and ∇hū

h
0 ∈ L∞v (Hσ

h ) with σ > 0, then ūh solution of
(4.1.5), is globally well posed in R+, and belongs to the space

ūh ∈ C
(
R+;Hs

(
T3
))
∩ L2

(
R+;Hs+1

(
R3
))
, s > 1/2,

and for each t > 0 the following estimate holds true

∥∥ūh (t)
∥∥2

Hs(T3)
+ ν

∫ t

0

∥∥∇ūh (τ)
∥∥2

Hs(T3)
dτ 6 E1 (U0) .

Where the function E1 is defined as the right-hand-side of equation (4.5.2).
Let Uosc be the solution of the linear system (4.1.6). It is globally defined and it belongs to
the space

Uosc ∈ C
(
R+;Hs

(
T3
))
∩ L2

(
R+;Hs+1

(
R3
))
,

for s > 1/2. For each t > 0 the following bound holds true

‖Uosc (t)‖2
Hs(T3) +

ν + ν ′

2

∫ t

0

‖∇Uosc (τ)‖2
Hs(T3) dτ 6 E2 (U0) ,

and the function E2 is defined as the right-hand-side of equation (4.5.19).

The assumption of zero horizontal average is important in this context: in what follows
we will use operators1 of the form (−∆h)

−1, such operators are not well defined when we
consider vector fields with non-zero horizontal average.

The last question we address to is the stability of the dynamics of (PBSε) in the limit
regime ε → 0. As mentioned above this is done with a methodology introduced by I. Gal-
lagher in [72] and already outlined in the introduction:

Theorem 4.1.7. Let V0 be in Hs (T3) for s > 1/2 as in Theorem 4.1.6. For ε > 0 small
enough (PBSε) is globally well posed in C (R+;Hs (T3)) ∩ L2 (R+;Hs+1 (T3)), and, if U is
the solution of (S0), then

V ε − L
(
− t
ε

)
U = o (1) ,

in C (R+;Hs (T3)) ∩ L2 (R+;Hs+1 (T3)).

Let us, now, outline the structure of the paper:

1In the sense of Fourier multipliers.
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• In Section 4.2 we shall study the linear problem associated to the singular perturbation
ε−1PA characterizing the system (PBSε). By mean of a careful spectral analysis of the
penalized operator PA we define what shall be called the non-oscillating and oscillat-
ing subspace. The first is the subspace in Fourier variables defined by the divergence-
free elements belonging to the kernel of PA. Being in the kernel of such operator the
evolution of such elements shall not be influenced by the highly external force ε−1PA
and hence it shall not exhibit any oscillating behavior. On the other hand the element
belonging to the oscillating subspace, which is the orthogonal complement of kerPA
will present an oscillating behavior which depends (inversely) on the parameter ε.

• In Section 4.3 we prove Theorem 4.1.4. We apply the Poicaré semigroup

L (τ) = eτPA,

to the system (PBSε). The new variable U ε = L
(
t
ε

)
V ε satisfies an equation which is

very close to the three-dimensional periodic Navier-Stokes equation which we denote
as the filtered system. We avoid to give a detailed description of the filtered system
now, but the reader which is already familiar with this kind of mathematical tools is
referred to (Sε). What has to be retained is the fact that it is possible to construct
from (PBSε) another family of systems, indexed by ε, which is somehow better suited
for the study of the problem. Thanks to this similarity we can deduce that the weak
solutions (U ε)ε are in fact uniformly bounded in some suitable space, and thanks to
standard compactness arguments we deduce that

U ε → U,

weakly. In particular U satisfies a three-dimensional Navier-Stokes-like equation,
whose bilinear interaction (defined in (4.3.2)) has better product rules than the standard
transport-form. Lastly we deduce that V ε can in fact be written as

V ε = stationary state + high oscillation + remainder.

• in Section 4.4 we prove Theorem 4.1.5 via a study of the limit (in the sense of distri-
butions) of the filtered system as ε → 0. In particular such limit has two qualitatively
different behaviors once we consider its projection onto (kerPA) and (kerPA)⊥:

– The projection of the limit system (S0) onto (kerPA) presents, as a bilinear in-
teraction, bilinear interactions of elements of (kerPA) only, and in particular
it is represented by a two-dimensional, stratified, Navier-Stokes equation with
additional vertical diffusion.

– The projection of the limit system (S0) onto (kerPA)⊥ is, for almost all three-
dimensional tori, a linear equation of the unknown Uosc. Such deduction is a
result of a geometrical analysis on the domain, we denote the domains which
satisfy such properties as non-resonant domains.

• The Section 4.5 is devoted to the proof of Theorem 4.1.6. As well as in Section 4.4
we divide the proof in two sub-parts, considering the projection of the solutions onto
(kerPA) and (kerPA)⊥ respectively
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– The kernel part, as already stated, is a two-dimensional stratified Navier-Stokes
equation. We take advantage of the fact that, along the vertical direction, the
equation is purely diffusive without transport term. This allows us to prove that in
fact, for some suitable anisotropic strong norms, the solution decay exponentially-
in-time, and hence the global-in-time result.

– For the oscillating subspace we exploit the fact that the solution satisfied by Uosc

is linear to achieve the global result.

• Lastly, in Section 4.6, we prove Theorem 4.1.7 using a smart change of variable, to
prove that

V ε − L
(
− t
ε

)
U → 0 in L∞

(
R+, H

s
(
T3
))
∩ L2

(
R+, H

s+1
(
R3
))
, s > 1/2.

4.1.4 Physical derivation of the system (PBSε) and previous works on
symilar systems.

In the present section we linger for a while on the physical motivations which induce us to
study the system (PBSε) and we continue to (briefly) expose some relevant result concerning
various system related to (PBSε).

In the following v = (v1, v2, v3) represents the velocity flow of the fluid, and Ro,Fr are
positive constants which have a physical relevance. They will be defined precisely in what
follows. The fluid is considered to be density-dependent, and the density is considered to be
a slight oscillation from a stationary state for a strongly stratified fluid (such as the oceans or
the troposphere). We consider the full fluid density ρ = ρ (t, x) = ρ (t, xh, x3) as

ρ (t, xh, x3) = ρ0 + ρ̄ (x3) + θ (t, xh, x3) ,

and
|θ| � 1,

i.e. the fluid density ρ is slight oscillation around the constant state ρ0 whose main variation
ρ̄ is along the x3 axis due to gravitational stratification effects and on which acts a different
variation of density θ which can be arbitrary.

We start considering the equations governing the motion of viscous (ν, ν ′ > c > 0),
density-dependent fluid at a planetary scale (primitive equations)

∂tv
1 + v · ∇v1 − 1

Ro
v2 =− p0

1

ρ0

∂1φ+ ν∆v1,

∂tv
2 + v · ∇v1 +

1

Ro
v1 =− p0

1

ρ0

∂2φ+ ν∆v2,

∂tv
3 + v · ∇v3 +

1

Fr
θ =− p0

1

ρ0

∂3φ+ ν∆v3,

∂tθ + v · ∇θ − 1

Fr
v3 = ν ′∆θ,

div v = 0.

(P-I)
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The term p0 appearing in (P-I) is called the reference pressure. For static gases the
reference density and the reference absolute temperature ρ0, T0 are given physical quantities.
For adiabatic gases the equation of state and the conservation law read as

p = RρT,

p

p0

=

(
ρ

ρ0

)γ
,

for γ > 1, hence the reference pressure is defined as p0 = Rρ0T0 with R physical constant
depending on the gas. The above laws hence give us the variation of the absolute temperature
with respect to the density, i.e.

T =
T0

ργ−1
0

ργ−1.

The derivation of (P-I) is not completely trivial, for this reason we refer the reader to [50,
Chapter 11, 15]. We point out though that there are two intrinsic features which characterize
a motion described by a system of the form (P-I)

• The skew-symmetric perturbation (v1, v2) 7→ Ro−1 (−v2, v1) acting on the first two
components of (P-I). This linear force is a rotational force acting along an axis which
is parallel to the x3 axis. It describes relatively well the effect of the Coriolis force
locally on mid-latitude regions. Ro is called the Rossby number, and it is a physical
magnitude describing the importance of the earth rotation on the system. We shall
define it in detail in what follows.

• The second one is the linear application (v3, θ) 7→ Fr−1 (θ,−v3). This application
describes the force which is applied due to stratification of the fluid. Namely, let
us consider a (static) fluid whose density is decreasing along the vertical direction.
This hypothesis is completely natural since layer with higher density are heavier, and
the gravity tends to minimize the gravitational potential, moving them below the lay-
ers which are lighter. Suppose to move a volume of heavier fluid in a region of low
density. Indeed the gravitation will tend to restore the stratification, hence the "high
density volume" will tend to move down. Once it reaches the layers whose density are
comparable to his he will not stop immediately, but by inertial force he will tend to go
below it, until Archimedes’ principle will provide sufficient buoyancy to invert such
motion.
The quantity Fr is said the Froude number and measures the stratification of a fluid.
We shall define it in detail in what follows.

As we said before the system (P-I) describes the motion of a fluid on which are present
rotational and stratification effects. The rotating motion which induces the Coriolis force is
indeed bestowed of a certain (angular) frequency, which we shall denote as Ω. On the other
hand once a stratification equilibrium is broken we induce a vertical pulsating motion of
frequency, say, N (during all this paper we shall consider N to be constant). This is known
in the literature as the Brunt-Väisälä frequency.
We can indeed associate to Ω, N the following quantities

TΩ =
1

Ω
, TN =

1

N
,
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which are respectively the period of rotation and the period of stratification. The system
(P-I) describes hence how the rotation and gravity tend to restore this horizontal-vertical
equilibrium in a timescale T , where Ro and Fr are respectively defined as

Ro =
TΩ

T
, Fr =

TN
T
.

The short introduction given above explains that in fact (P-I) is a family of systems, whose
asymptotic varies accordingly to the ratio Ro/Fr. In the present paper we are interested to
study the regime

TN � T � TΩ,

hence we suppose that the stratification effects have a frequency N � Ω and we focus in a
timescale T which is significantly bigger than TN but still irrelevant respect to TΩ, with these
hypotheses hence the physical numbers Fr,Ro becomes

Ro�1, Fr ≈ 0,

setting Fr = ε, and, omitting the term
(
−Ro−1v2,Ro−1v1

)
since 1/Ro ≈ 0 we simplify the

primitive equations to the following form

∂tv
1 + v · ∇v1 =− p0

1

ρ0

∂1φ+ ν∆v1,

∂tv
2 + v · ∇v1 =− p0

1

ρ0

∂2φ+ ν∆v2,

∂tv
3 + v · ∇v3 +

1

ε
θ =− p0

1

ρ0

∂3φ+ ν∆v3,

∂tθ + v · ∇θ − 1

ε
v3 = ν ′∆θ,

div v = 0.

(P-II)

Indeed the solutions of (P-II) depend on the Froude number ε, for this reason from now on
we denote

(v, θ) = (vε, θε) ,

and
p0

ρ0

φ = Φε.

It may be interesting to notice that, as mentioned above, varying the ratio Ro/Fr we can
deduce many different systems which are already well known.
Let us suppose, for instance, that the fluid considered is viscid, and completely homogeneous,
i.e. its density is a constant value ρ0. Being absent any variation of density it lacks the
physical mean to have stratification effects, i.e. the gravitational potential is considered to be
constant (or linearized around a minimum). This in turn implies that TN =∞ and Fr =∞.
It is easy to deduce hence that, in a timescale T � TΩ (hence Ro = ε ≈ 0) the flow shall
evolve accordingly to the following law (Navier-Stokes-Coriolis equations) ∂tv

ε
RF + vεRF · ∇vεRF − ν∆vεRF +

1

ε
e3 ∧ vεRF = −1

ε
∇pεRF,

vεRF (0, x) = vεRF,0 (x) .
(RFε)
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It is relevant to mention that Chemin et al. in [38] proved global strong convergence of
solutions of (RFε) with only horizontal viscosity −νh∆h instead of the full viscosity −ν∆
to a purely 2D Navier-Stokes system in the case in which ε → 0 and the space domain is
R3. This result is attained with methodologies which are very different with respect to the
ones mentioned for the periodic setting. Using dispersive estimates the authors prove that
the global solutions of the linear system associated to (RFε)

∂tw
ε
RF,r,R +

(
1

ε
P
(
e3 ∧ ·

)
− νh∆h

)
wεRF,r,R = 0,

divwεRF,r,R = 0,

wεRF,r,R

∣∣
t=0

= wεRF,r,R,0,

has vanishing norm is some Lq (R+;Lp (T3)) space. The detailed hypothesis on the initial
data is here omitted since it is pretty technical and does not represent an interest for the
present introduction. Roughly speaking hence we can say that the perturbations induced by
the external force are somehow negligible in a suitable topology, with this in mind a bootstrap
argument can hence be put in place to prove that the solutions exist globally and converge to
those of a 2D Navier-Stokes system.

Another interesting system which can be derived from a multi-scale analysis of the ratio
Ro/Fr is the case

Ro
Fr

=
1

F
, F ∈ R.

Hence in this case stratification and rotation have comparable frequencies, it is easy to deduce
that the system derived in this case is the following one

∂tV
ε
P + vεP · ∇V ε

P − DV ε
P +

1

ε

(
−V 2,ε
P , V 1,ε

P , 1
F
V 4,ε
P , − 1

F
V 3,ε
P
)ᵀ

= −1

ε

(
∇Φε

P , 0
)ᵀ
,

V ε
P (0, x) = V ε

P,0 (x) ,

(PEε)

where D is defined in (4.1.2). J.-Y. Chemin studied the system (PEε) in the case F ≡ 1
in [36] obtaining a global existence result under a smallness condition made only on a part
of the initial data. In the series of works [27], [28] and [29], F. Charve proved that, setting
Ωε = −∂2v

1,ε
P + ∂1v

2,ε
P − F∂3v

4,ε
P , the system (PEε) converges to what it is known as the

quasi-geostrophicsystem, i.e.

∂tVQG − ΓVQG +


−∂2

∂1

0
−F∂3

∆−1
(
V h

QG · ∇hΩ
ε
)

= 0, (QG)

where VQG =
(
V h

QG, V
3

QG, V
4

QG

)
= (−∂2∆−1Ω, ∂1∆−1Ω, 0,−F∂3∆−1Ω) and Γ is an elliptic

operator of order two defined as

Γ =
∆ (ν∆h + ν ′∂2

3)

∆h + F 2∂2
3

.
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I. Gallagher proved strong convergence of solutions of (PEε) to a limit system in the form
(S0) in the periodic case always in the work [72], F. Charve proved first weak convergence
of solutions of (PEε) to solution of (QG) in [29], and strong convergence in [28]. The case
in which the system (PEε) presents only horizontal diffusion, hence it is a mixed parabolic
hyperbolic type has been studied by Charve and Ngo in [34] in the whole space in the case
νh = νεh = O (εα) , α > 0 and by the author in [137] in the periodic case when the horizontal
viscosity is strictly positive.

We mention as well work of D. Bresch, D. Gérard-Varet and E. Grenier [17]. In this work
the authors consider the primitive equations in the form

∂tv
ε
P + uεP · ∇vεP − ν∆vεP +

1

ε
e3 ∧ vεP = −1

ε
∇hφ

ε
P ,

∂3φ
ε
P = θεP

divh vεP = −∂3w
ε
P ,

∂tθ
ε
P + uεP · ∇θεP − ν ′∆θεP + wεP = Q,

uεP = (vεP , w
ε
P ) .

(P̃Eε)

The methodology used in [17] although is completely different respect to the other works
mentioned. The penalization in particular is not skew-symmetric, this prevents the authors to
apply energy methods as in the other works mentioned.

4.1.5 Elements of Littlewood-Paley theory.

A tool that will be widely used all along the paper is the theory of Littlewood–Paley, which
consists in doing a dyadic cut-off of the frequencies.
Let us define the (non-homogeneous) truncation operators as follows:

4qu =
∑
n∈Z3

ûnϕ

(
|ň|
2q

)
eiň·x, for q > 0,

4−1u =
∑
n∈Z3

ûnχ (|ň|) eiň·x,

4qu =0, for q 6 −2,

where u ∈ D′ (T3) and ûn are the Fourier coefficients of u. The functions ϕ and χ represent
a partition of the unity in R, which means that are smooth functions with compact support
such that

supp χ ⊂ B

(
0,

4

3

)
, supp ϕ ⊂ C

(
3

4
,
8

3

)
,

and such that for all t ∈ R,
χ (t) +

∑
q>0

ϕ
(
2−qt

)
= 1.

Let us define further the low frequencies cut-off operator

Squ =
∑
q′6q−1

4q′u.
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Anisotropic paradifferential calculus.

The dyadic decomposition turns out to be very useful also when it comes to study the product
between two distributions. We can in fact, at least formally, write for two distributions u and
v

u =
∑
q∈Z

4qu; v =
∑
q′∈Z

4q′v; u · v =
∑
q∈Z
q′∈Z

4qu · 4q′v. (4.1.8)

We are going to perform a Bony decomposition (see [10], [14], [37] for the isotropic case
and [39], [86] for the anisotropic one).
Paradifferential calculus is a mathematical tool for splitting the above sum in three parts

u · v = Tuv + Tvu+R (u, v) ,

where

Tuv =
∑
q

Sq−1u 4qv,

Tvu =
∑
q′

Sq′−1v 4q′u,

R (u, v) =
∑
k

∑
|ν|61

4ku 4k+νv.

The following almost orthogonality properties hold

4q (Sqa4q′b) =0, if |q − q′| > 5,

4q (4q′a4q′+νb) =0, if q′ < q − 4, |ν| 6 1,

and hence we will often use the following relation

4q (u · v) =
∑
|q−q′|64

4q (Sq′−1v 4q′u) +
∑
|q−q′|64

4q (Sq′−1u 4q′v) (4.1.9)

+
∑
q′>q−4

∑
|ν|61

4q (4q′a4q′+νb) ,

=
∑
|q−q′|64

4q (Sq′−1v 4q′u) +
∑
q′>q−4

4q (Sq′+2u4q′v) . (4.1.10)

In the paper [43] J.-Y. Chemin and N. Lerner introduced the following decomposition,
which will be used by Chemin et al. in [39] in its anisotropic version. This particular
decomposition turns out to be very useful in our context

4q (uv) = Sq−1u 4qv +
∑
|q−q′|64

{[4q, Squ]4q′v + (Sq′u− Squ)4q4q′v}

+
∑
q′>q−4

4q (Sq′+2v 4q′u) , (4.1.11)
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where the commutator [4q, a] b is defined as

[4q, a] b = 4q (ab)− a4qb.

There is an interesting relation of regularity between dyadic blocks and full function in the
Sobolev spaces, i.e.

‖4qf‖L2(T3) 6 Ccq2
−qs ‖f‖Hs(T3) , (4.1.12)

with
∥∥∥{cq}q∈Z∥∥∥

`2(Z)
≡ 1. In the same way we denote as bq a sequence in `1 (Z) such that∑

q |bq| 6 1.

In particular in Section 4.5 we shall need paradifferential calculus in the horizontal vari-
ables, everything is the same as in the isotropic case except that we shall take the Fourier
transform only on the horizontal components, i.e.

Fhf (nh, x3) =

∫
T2
h

f (xh, x3) e−2πixh·nhdxh,

and we can define hence the horizontal truncation operators (as well as the low frequencies
cut off, reminders, etc...) 4h

q in the same way as we did for 4q except that we act only on
the horizontal variables. This difference shall be denoted by the fact that that we will always
put an index h when it comes to the horizontal anisotropic paradifferential calculus.

Some basic estimates.

The interest in the use of the dyadic decomposition is that the derivative of a function local-
ized in frequencies of size 2q acts like the multiplication with the factor 2q (up to a constant
independent of q). In our setting (periodic case) a Bernstein type inequality holds. For a
proof of the following lemma in the anisotropic (hence as well isotropic) setting we refer to
the work [86]. For the sake of self-completeness we state the result in both isotropic and
anisotropic setting.

Lemma 4.1.8. Let u be a function such that Fu is supported in 2qC, where F denotes the
Fourier transform. For all integers k the following relation holds

2qkC−k ‖u‖Lp(T3) 6
∥∥∥(−∆)k/2 u

∥∥∥
Lp(T3)

6 2qkCk ‖u‖Lp(T3) .

Let now r > r′ > 1 be real numbers. Let suppFu ⊂ 2qB, then

‖u‖Lr 6C · 2
3q( 1

r′−
1
r ) ‖u‖Lr′ .

Let us consider now a function u such that Fu is supported in 2qCh × 2q
′Cv. Let us define

Dh = (−∆h)
1/2 , D3 = |∂3|, then

C−q−q
′
2qs+q

′s′ ‖u‖Lp(T3) 6
∥∥∥Ds

hD
s′

3 u
∥∥∥
Lp(T3)

6 Cq+q′2qs+q
′s′ ‖u‖Lp(T3) ,
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and given 1 6 p′ 6 p 6∞, 1 6 r′ 6 r 6∞, then

‖u‖LphLrv 6C
q+q′2

2q
(

1
p′−

1
p

)
+q′( 1

r′−
1
r ) ‖u‖

Lp
′
h L

r′
v
,

‖u‖LrvLph 6C
q+q′2

2q
(

1
p′−

1
p

)
+q′( 1

r′−
1
r ) ‖u‖

Lr′v L
p′
h

.

The following are inequalities of Gagliardo-Niremberg type, which combined with the
anisotropic version of the Bernstein lemma will give us some information that we will use
continuously all along the paper. We will avoid to give the proofs of such tools since they
are already present in [123].

Lemma 4.1.9. There exists a constant C such that for all periodic vector fields u on T3 with
zero horizontal average (

∫
T2
h
u (xh, x3) dxh = 0) we have

‖u‖L2
vL

4
h
6 C · ‖u‖1/2

L2(T3) ‖∇hu‖1/2

L2(T3) . (4.1.13)

Finally we state a lemma that shows that the commutator with the truncation operator is
a regularizing operator.

Lemma 4.1.10. Let T3 be a 3D torus and p, r, s real positive numbers such that r′, s′, p, r, s >
1 1
r′

+ 1
s′

= 1
2

and 1
p

= 1
r

+ 1
s
. There exists a constant C such that for all vector fields u and

v on T3 we have the inequality

‖[4q, u] v‖L2
vL

p
h
6 C · 2−q ‖∇u‖Lr′v Lrh ‖v‖Ls′v Lsh ,

indeed there exists an isotropic counterpart of such Lemma (see [125], [137]).

4.2 The linear problem.

Let us introduce at first some notation. Let us consider the generic linear problem associated
with the linear operator PA: 

∂τW + PA W = 0,

div w = 0,

W =
(
w,W 4

)
,

W |τ=0 = W0.

(4.2.1)

A is the skew symmetric penalized matrix defined in (4.1.2). P is the Leray projection onto
the divergence free vector fields, without changing V 4 which is defined in (4.1.4). In the
present section (and everywhere) the Fourier modes are considered to be

ň = (n1/a1, n2/a2, n3/a3)

where ni ∈ Z and the ai’s are the parameters of the three-dimensional torus. We shall gen-
erally ignore the check notation (unless differently specified) in order to simplify the overall
notation.
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To the sake of completeness we give here the action of the matrix PA in the Fourier
space, which is

F (PA u) =


0 0 0 −n1n2

|n|2

0 0 0 −n2n3

|n|2

0 0 0 1− n2
3

|n|2

0 0 −1 0

 ûn.

Such kind of equation has been thoroughly first studied by Poincaré in [129]. The study
of the linear equation (4.2.1) is essential in the study of the nonlinear problem (PBSε). The
solution of (4.2.1) is obviously

W (τ) = e−τPAW0 = L (−τ)W0. (4.2.2)

We want to give an explicit sense to the propagator e−τPA. To do so we perform a spectral
analysis of the operator PA. After some calculations we obtain that the matrix PA admits
an eigenvalue ω0 (n) ≡ 0 with multiplicity 2 and other two eigenvalues

ω± (n) = ±i |nh|
|n|

= ±iω (n) . (4.2.3)

The matrix
(
P̂A
)
n

admits a basis of normal (in the sense that they have norm one) eigen-
vectors. In particular the basis is the following one

ẽ0
1 =


1
0
0
0

 ẽ0
2 =


0
1
0
0

 e± (n) =
1√
2


± i n1n3

|nh| |n|

± i n2n3

|nh| |n|

∓ i |nh||n|

1

 .

We imposed that the solutions of (4.2.1) are divergence-free, in the sense that they are orthog-
onal, in the Fourier space, to the vector (n1, n2, n3, 0). Now, not all the subspace Cẽ0

1⊕Cẽ0
2,

which is the kernel of the operator PA, satisfies this property. In any case there exist a
subspace of Cẽ0

1 ⊕ Cẽ0
2 which is divergence free. This space is the space generated by

e0 (n) =
1

|nh|


−n2

n1

0
0

 ,

we underline again that Ce0 ⊂ Cẽ0
1 ⊕ Cẽ0

2.
We have hence identified a basis of divergence-free, orthogonal eigenvectors associated to
the linear problem (4.2.1), which is

e0 (n) =
1

|nh|


−n2

n1

0
0

 , e± (n) =
1√
2


± i n1n3

|nh| |n|

± i n2n3

|nh| |n|

∓ i |nh||n|

1

 . (4.2.4)
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A case of particular interest which shall be crucial in Section 4.4 is the subspace {nh = 0} of
the frequency space. Performing the required computation we prove that the only eigenvalue
is ω (n) ≡ 0 with multiplicity four. The Fourier multiplier

(
P̂A
)

(n) associated to PA in
this case is (

P̂A
)

(0, n3) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 −1 0

 ,

which admits three eigenvalues related to ω:

ẽ0
1 =


1
0
0
0

 , ẽ0
2 =


0
1
0
0

 , ẽ0
3 =


0
0
0
1

 . (4.2.5)

We underline the fact that ẽ0
i , i = 1, 2, 3 are divergence-free on the restriction {nh = 0} of

the Fourier space. We remark the fact that the hypothesis (4.1.7) automatically excludes the
case which the initial data V0 is a function depending on x3 only. In fact∫

T2
h

V0 (x3) dyh = 0 =⇒ V (x3) = 0 for each x3 ∈ T1
v.

This case is hence not considered in the present work.

The eigenvectors in (4.2.4) are orthogonal with respect the standard C4 scalar product,
whence the generic solution given in (4.2.2) can be expressed in the following form

W = W̄ +Wosc.

We denoted as W̄ the orthogonal projection ofW onto the space Ce0, i.e. onto the divergence-
free part of the kernel. This projection takes the form (in the Fourier variables)

F W̄ (n) =
(
F W (n)| e0 (n)

)
C4 e

0 (n) . (4.2.6)

In the same way Wosc is defined as

F Wosc (n) =
(
F W (n)| e+ (n)

)
C4 e

+ (n) +
(
F W (n)| e− (n)

)
C4 e

− (n) , (4.2.7)

i.e. the decomposition of the (Fourier) data along the directions of e+, e−.

We shall denote these two parts of the solution respectively as the oscillating and the
non-oscillating part of the solution. This choice of the names has an easy mathematical
justification. Let us in fact consider W̄0 and let us consider the evolution imposed by the
laws of the system (4.2.1) on such vector field. By mean of the explicit solution given in
(4.2.2) we obtain (recall that W̄ belongs to ker PA)

W̄ (t) = W̄0.
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Hence the non-oscillating part of the solution W̄ is in fact a stationary (in the sense that is
not time-dependent) flow. This is reasonable since once we consider the linear system (4.2)
restricted on ker PA there is no external force at all acting on it.
On the other hand along the direction of (say) e+ the evolution at time τ of the solution has
direction (in the Fourier space)(

e−τ(P̂A)
n

)
e+ (n) = e−i τ ω(n) e+ (n) ,

hence it spins with a angular speed ω = ω (n) = |nh|
|n| .

Introducing hence a small parameter ε we act, on a physical point of view, on the system in
very well-defined way: the spinning linear force grows and with it the turbulent behavior of
the solution.

Indeed as long as we consider a generic time-dependent nonlinearity the problem does
not behave in such a rigid and well-defined way. Let us consider hence a nonlinear problem
associated to (4.2.1) 

∂τWN + PA WN = N (τ) ,

div wN = 0,

WN =
(
wN ,W

4
N

)
,

WN |τ=0 = WN,0.

(4.2.8)

The nonlinearity N (τ) is very generic and only time-dependent, but this is not restrictive,
since we want to give a qualitative analysis of the behavior of the solutions.
By mean of the Duhamel formula the solution is expressed as

WN (τ) = e−τPAWN,0 +

∫ τ

0

e−(τ−σ)PAN (σ) dσ.

This generic formulation does not say much, but we can still extract interesting information.
Let us denote N̄ the projection of N onto the nonoscillatory space, i.e.

F N̄ =
(
F N| e0

)
e0.

The projection of WN onto the nonoscillatory space shall hence be described by the law

W̄N (τ) = W̄N,0 +

∫ t

0

N̄ (σ) dσ.

The influence of the propagator (spinning behavior) is not any more a direct consequence of
the application of Duhamel formula, but it can still be present as long as N̄ is depending
on the spinning eigenvectors e±. We shall see that this will be a major problem in the
comprehension of the limiting process as ε→ 0.

4.3 The filtered limit.

Our strategy shall be to "filter out" the system (PBSε) by mean of the propagator L defined
above. Such technique is classic in singular problems on the torus ( [72], [79], [123], [137]).
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Let us apply from the left the operator L
(
t
ε

)
to the equation (PBSε). Setting U ε = L

(
t
ε

)
V ε

we obtain that the vector field U ε satisfies the following evolution equation
∂tU

ε +Qε (U ε, U ε)− DεU ε = 0,
div vε = 0,
U ε
∣∣
t=0

= V0,
(Sε)

where

Qε (A,B) =
1

2
L
(
t

ε

)
P
[
L
(
− t
ε

)
A · ∇L

(
− t
ε

)
B + L

(
− t
ε

)
B · ∇L

(
− t
ε

)
A

]
,

DεA =L
(
t

ε

)
DL
(
− t
ε

)
A.

It is interesting to notice that the application of the Poincaré semigroup L allowed us to
deduce an equation (namely (Sε)) on which we can obtain uniform bounds for the sequence
(∂tU

ε)ε. It results in fact that (∂tU
ε)ε is uniformly bound in Lp

(
R+;H−N

)
, p ∈ [2,∞] for

N large. This shall result to be fundamental in order to obtain some compactness result in
the same fashion as it is done for solutions à la Leray of Navier-Stokes equations.

4.3.1 Uniform bounds of the weak solutions and formal identification
of the limit system.

In this section we prove Theorem 4.1.4; whose extended claim is here proposed:

Lemma 4.3.1. The sequence (U ε)ε>0 of distributional solutions of (PBSε) identified in The-
orem 4.1.2 is uniformly bounded in

L∞
(
R+;L2

(
T3
))
∩ L2

(
R+;H1

(
T3
))
,

and sequentially compact inL2
loc (R+;L2 (T3)). EveryU belonging to the topological closure

of (U ε)ε>0 w.r.t. theL2
loc (R+;L2 (T3)) topology belongs to the energy spaceL∞ (R+;L2 (T3))∩

L2 (R+;H1 (T3)) and is a distributional solution of the limit system (S0).

Lemma 4.3.1 is composed of two parts:

• Topological convergence of a (not relabeled) subsequence (U ε)ε>0 to an element U as
ε→ 0 in some suitable topology and,

• Determination of the limit system to whom (Sε) converges.

More in specific the second point above proves that there exists a bilinear form Q such that

Qε (U ε, U ε)
ε→0−−→ Q (U,U) ,

in a weak sense.
The first point above will be proved in Lemma 4.3.2, while the second will be studied in
detail in Lemma 4.3.4.
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Lemma 4.3.2. Let U ε be a Leray solution of (PBSε). Let the initial data V0 be bounded in
L2 (T3). The sequence (U ε)ε is compact in the space L2

loc (R+;L2 (T3)) and converges (up
to a subsequence) to an element U which belongs to the space

L∞
(
R+;L2

(
T3
))
∩ L2

(
R+;H1

(
T3
))
,

and the following uniform bound holds

‖U ε (t)‖2
L2(T3) + 2c

∫ t

0

‖∇U ε (τ)‖2
L2(T3) dτ 6 ‖V0‖2

L2(T3) , (4.3.1)

where c = min {ν, ν ′}.

Proof. A standard L2 (T3) estimate on the equation (Sε) shows that

‖U ε (t)‖2
L2(T3) + 2c

∫ t

0

‖∇U ε (τ)‖2
L2(T3) dτ 6 ‖V0‖2

L2(T3) .

Let us prove that (∂tU
ε)ε is uniformly bounded in L2

loc

(
R+;H−

3
2 (T3)

)
in terms of the

L2 (T3) norm of the initial data V0. Since L (τ) is unitary as an application between any
Sobolev space Hσ, σ ∈ R we can safely say that as long as concerns energy estimates in
Sobolev spaces we can identify Qε (U ε, U ε) ∼ U ε · ∇U ε. We can use the product rules in
Sobolev spaces to deduce that

‖U ε · ∇U ε‖L2
loc(R+;H−3/2) 6 C ‖U

ε ⊗ U ε‖L2
loc(R+;H−1/2) ,

6 C ‖U ε‖L2
loc(R+;H1) ‖U

ε‖L∞(R+;L2) .

It is very easy moreover to deduce that ‖−DεU ε‖L2
loc(R+;H−1) . ‖U ε‖L2

loc(R+;H1). Whence
since ∂tU ε = −Qε (U ε, U ε) + DεU ε we conclude. Since L2 (T3) is compactly embedded
in H−3/2 (T3) and that H1 (T3) is continuously embedded in L2 (T3) it is sufficient to apply
Aubin-Lions lemma [4] to deduce the claim.

The convergence of U ε to the element U does not give any qualitative information of the
(eventual) solution which is satisfied byU . Especially the bilinear limit involvingQε (U ε, U ε)
is a priori not well-defined.

The result we prove now is needed in order to prove that, in the limit as ε→ 0, the limit
lim
ε→0
Qε (U ε, U ε) belongs to the space spanned by the eigenvectors e0, e±.

Lemma 4.3.3. The limit

lim
ε→0

(∫
T2
h

(Qε (U ε, U ε))h dxh, 0, 0

)
= 0,

holds in a distributional sense.

Since the proof of Lemma 4.3.3 is rather long and technical is postponed at the end of
the present section.

By mean of stationary phase theorem we prove the following lemma
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Lemma 4.3.4. Let U ε be a Leray solution of (Sε) and let U be the limit of one of the con-
verging subsequences of (U ε)ε identified in Lemma 4.3.2. Then the following limits hold (in
the sense of distributions, subsequence not relabeled)

lim
ε→0
Qε (U ε, U ε) = Q (U,U) ,

lim
ε→0

Dε U ε = D U,

where Q and D has the following form

F Q (U,U) = Pn
∑

ωa,b,ck,m,n=0

k+m=n
a,b,c∈{0,±}

(( ∑
j=1,2,3

Ua,j (k)mj

)
U b (m)

∣∣∣∣∣ ec (n)

)
C4

ec (n) (4.3.2)

F D U =
∑
ωa,bn =0

(
D (n)Ua (n)| eb (n)

)
C4 e

b (n) , (4.3.3)

where ωa,b,ck,m,n = ωa (k) +ωb (m)−ωc (n) and ωa,bn = ωa (n)−ωb (n), the Fourier multiplier
D (n) in noting but the Fourier multiplier associated to the matrix D defined in (4.1.2), the
eigenvalues ωi are defined in (4.2.3) and the operator P is defined in (4.1.4).

Remark 4.3.5. Lemma 4.3.3 proves that only the firs two components of the horizontal
average of Qε (U ε, U ε) converge (weakly) to zero. We need to prove such result since the
eigenvectors defined in (4.2.4) present in their firs two components a Fourier symbol of the
form |nh|−1, and such operator is well-defined only for vector fields with zero horizontal
average. These are hence applied on the bilinear interaction as it is shown in (4.3.2). �

Proof. We start proving (4.3.3) since it is easier. We claim that

DεU ε ε→0−−→ DU,

in D′. Indeed via standard manipulations we can express the difference DεU ε − DU as

DεU ε − DU = D (U ε − U) + (Dε − D)U ε.

The element D (U ε − U)
ε→0−−→ 0 in D′ since U ε → U w.r.t. the L2

loc (R+;L2 (T3)) topology
as it is proved in Lemma 4.3.1.

Hence all we have to prove is that

F ((Dε − D)U ε) =
∑
ωa,bn 6=0

ei
t
ε
ωa,bn
(
D (n)Ua,ε (n)

∣∣eb (n)
)
C4 e

b (n)→ 0,

as ε → 0 in the sense of distributions. To do so we consider φ ∈ D (R+ × T3). Since for
s, t < 3/2, s+ t > 0 the map

Hs
(
T3
)
×H t

(
T3
)
→ Hs+t− 3

2

(
T3
)
,

(u, v) 7→ u⊗ v,
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is continuous we deduce that

(∂tU
ε)ε uniformly bounded in L2

(
R+;H−3/2

(
T3
))
.

We want hence to prove that

Sε1 =
∑
n

∑
ωa,bn 6=0

∫
ei

t
ε
ωa,bn
(
D (n)Ua,ε (t, n)

∣∣eb (n)
)
C4 e

b (n) φ̂ (t, n) dt ε→0−−→ 0. (4.3.4)

Indeed the sum on the left-hand-side of (4.3.4) is well defined (in the sense that the sum is
smaller than infinity). We can decompose it as

Sε1 = Sε1,N + SN,ε1 ,

Sε1,N =
∑
|n|6N

∑
ωa,bn 6=0

∫
ei

t
ε
ωa,bn
(
D (n)Ua,ε (t, n)

∣∣eb (n)
)
C4 e

b (n) φ̂ (t, n) dt,

SN,ε1 =
∑
|n|>N

∑
ωa,bn 6=0

∫
ei

t
ε
ωa,bn
(
D (n)Ua,ε (t, n)

∣∣eb (n)
)
C4 e

b (n) φ̂ (t, n) dt.

The term SN,ε1 is indeed an oN (1) function, considering in fact that the symbol D (n) can be
bounded as |D (n)| 6 C |n|2 we deduce

SN,ε1 6
1

N

∑
|n|>N

∑
ωa,bn 6=0

∫
|D (n)Ua,ε (t, n)| |n|

∣∣∣φ̂ (t, n)
∣∣∣ dt,

6
C

N

∑
|n|>N

∑
ωa,bn 6=0

∫
|n| | Ua,ε (t, n)| |n|2

∣∣∣φ̂ (t, n)
∣∣∣ dt

6
C

N
‖U ε‖L2(R+;H1) ‖φ‖L2(R+;H2) ,

which indeed tends to zero as N →∞ thanks to the uniform bound (4.3.1).
For the term Sε1,N We exploit the fact that

ei
t
ε
ωa,bn = − i ε

ωa,bn
∂t

(
ei

t
ε
ωa,bn
)
, (4.3.5)

and the fact that
∣∣ωa,bn ∣∣ > c = cN > 0 in the set |n| 6 N . Using (4.3.5) on S1,N and

integrating by parts we obtain that

Sε1,N =
∑
|n|6N

∑
ωa,bn 6=0

i ε

ωa,bn

∫
ei

t
ε
ωa,bn
(
D (n) ∂tU

a,ε (t, n)
∣∣eb (n)

)
C4 e

b (n) φ̂ (t, n) dt

+
∑
|n|6N

∑
ωa,bn 6=0

i ε

ωa,bn

∫
ei

t
ε
ωa,bn
(
D (n)Ua,ε (t, n)

∣∣eb (n)
)
C4 e

b (n) ∂tφ̂ (t, n) dt.

It is obvious that the term∑
|n|6N

∑
ωa,bn 6=0

i ε

ωa,bn

∫
ei

t
ε
ωa,bn
(
D (n)Ua,ε (t, n)

∣∣eb (n)
)
C4 e

b (n) ∂tφ̂ (t, n) dt ε→0−−→ 0,
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hence we shall focus on the other one. Since
∣∣ωa,bn ∣∣ > c = cN > 0, on the set |n| 6 N and∣∣eb∣∣ ≡ 1 and the fact that the symbol |D (n)| 6 C |n|2 we can deduce∣∣∣∣∣∣

∑
|n|6N

∑
ωa,bn 6=0

i ε

ωa,bn

∫
ei

t
ε
ωa,bn
(
D (n) ∂tU

a,ε (t, n)
∣∣eb (n)

)
C4 e

b (n) φ̂ (t, n) dt

∣∣∣∣∣∣
.
∑
|n|6N

∑
ωa,bn 6=0

ε

∣∣∣∣∫ ∂tU
a,ε (t, n) |n|2 φ̂ (t, n) dt

∣∣∣∣
6 C ε ‖∂tU ε‖L2(R+;H−3/2) ‖φ‖L2(R+;H7/2) → 0.

This concludes the proof of (4.3.3).

The proof of (4.3.2) is more delicate.
At first: if we consider the equation of the filtered system (Sε) it is easy to deduce that

(Qε (U ε, U ε))ε bounded in L4
(
R+;H−1/2

)
∩ L2

(
R+;H−3/2

)
,

(−DεU ε)ε bounded in L2
(
R+;H−1

)
,

uniformly in ε. From this we deduce that

(Qε (U ε, U ε))ε bounded in L2
loc

(
R+;H−1/2

)
∩ L2

loc

(
R+;H−3/2

)
,

since L4
loc (R+) ↪→ L2

loc (R+). Hence by interpolation in Sobolev spaces

(Qε (U ε, U ε))ε bounded in L2
loc

(
R+;H−1

)
,

uniformly in ε.
This implies hence that

(∂tU
ε)ε = (−Qε (U ε, U ε) + DεU ε)ε bounded in L2

loc

(
R+;H−1

)
,

uniformly in ε.
We can finally focus on the proof of (4.3.2). As is is done for the linear part standard algebraic
manipulations on the bilinear form allow us to deduce that

Qε (U ε, U ε)−Q (U,U) = (Qε −Q) (U ε, U ε) +Q (U ε, U ε − U) +Q (U ε − U,U) .

Again we can assert that

Q (U ε, U ε − U) +Q (U ε − U,U)
ε→0−−→ 0,

in D′ to to the convergence of U ε to U in L2
loc (R+;L2 (T3)) proved in Lemma 4.3.1. What it

remain hence to be proved is that

(Qε −Q) (U ε, U ε) =
∑

k+m=n

ωa,b,ck,m,n 6=0

a,b,c=0,±

ei
t
ε
ωa,b,ck,m,n

( ∑
j=1,2,3

Ua,j (k) mjU
b (m)

∣∣∣∣∣ ec (n)

)
C4

ec (n)
ε→0−−→ 0,

(4.3.6)
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in some weak sense.

To prove (4.3.6) is equivalent, thanks to the orthogonality of the eigenvectors ei defined in
(4.2.4), to prove that, for each φ ∈ D (R+ × T3)

Sε2 =
∑
n

∑
ωa,b,ck,m,n 6=0

a,b,c=0,±,
n=k+m

∫
ei

t
ε
ωa,b,ck,m,nUa,ε (t, k)⊗ U b,ε (t,m) φ̂ (t, n) dt→ 0,

as ε→ 0.
As it has been done above for the term Sε1 we can decompose Sε2 into

Sε2,N =
∑
|n|6N
|k|6N

∑
ωa,b,ck,m,n 6=0

a,b,c=0,±,
n=k+m

∫
ei

t
ε
ωa,b,ck,m,nUa,ε (t, k)⊗ U b,ε (t,m) φ̂ (t, n) dt

SN,ε2 = Sε2 − Sε2,N .

The term SN,ε2 → 0 as N →∞ as for the term SN,ε1 above. Using the fact that

ei
t
ε
ωa,b,ck,m,n = − i ε

ωa,b,ck,m,n

∂t

(
ei

t
ε
ωa,b,ck,m,n

)
,

and the fact that
∣∣∣ωa,b,ck,m,n

∣∣∣ > c = cN > 0 uniformly in k,m, n in the frequency set {|n| , |k| 6 N}
to deduce that

Sε2,N =
∑
|n|6N
|k|6N

∑
ωa,b,ck,m,n 6=0

a,b,c=0,±,
n=k+m

i ε

ωa,b,ck,m,n

∫
ei

t
ε
ωa,b,ck,m,n∂tU

a,ε (t, k)⊗ U b,ε (t,m) φ̂ (t, n) dt

+
∑
|n|6N
|k|6N

∑
ωa,b,ck,m,n 6=0

a,b,c=0,±,
n=k+m

i ε

ωa,b,ck,m,n

∫
ei

t
ε
ωa,b,ck,m,nUa,ε (t, k)⊗ ∂tU b,ε (t,m) φ̂ (t, n) dt

+
∑
|n|6N
|k|6N

∑
ωa,b,ck,m,n 6=0

a,b,c=0,±,
n=k+m

i ε

ωa,b,ck,m,n

∫
ei

t
ε
ωa,b,ck,m,nUa,ε (t, k)⊗ U b,ε (t,m) ∂tφ̂ (t, n) dt.

Is obvious that the term∑
|n|6N
|k|6N

∑
ωa,b,ck,m,n 6=0

a,b,c=0,±,
n=k+m

i ε

ωa,b,ck,m,n

∫
ei

t
ε
ωa,b,ck,m,nUa,ε (t, k)⊗ U b,ε (t,m) ∂tφ̂ (t, n) dt→ 0,

while for the first two term on the right-hand-side of the equation above the procedure is the
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same, hence we focus on the first one only. It is indeed true that∣∣∣∣∣∣∣∣∣∣∣
∑
|n|6N
|k|6N

∑
ωa,b,ck,m,n 6=0

a,b,c=0,±,
n=k+m

i ε

ωa,b,ck,m,n

∫
ei

t
ε
ωa,b,ck,m,n∂tU

a,ε (t, k)⊗ U b,ε (t,m) φ̂ (t, n) dt

∣∣∣∣∣∣∣∣∣∣∣
6
∑
|n|6N
|k|6N

∑
ωa,b,ck,m,n 6=0

a,b,c=0,±,
n=k+m

C ε

∫
|∂tUa,ε (t, k)|

∣∣∣U b,ε (t,m) φ̂ (t, n)
∣∣∣ dt

6 C ε ‖∂tU ε‖L2
loc(R+;H−1) ‖U

εφ‖L2
loc(R+;H1) ,

which uniformly tends to zero w.r.t. ε thanks to the uniform bounds given above, concluding
the proof.

4.3.2 Oscillating behavior of V ε.

The above uniform bounds give a shady determination of the limit function U ε. By definition
of U ε = L

(
t
ε

)
V ε with V ε distributional solution of (PBSε) we want to determinate some

qualitative connection between the oscillating behavior of the filtered system (Sε) and the
initial system (PBSε).

Thanks to Lemma 4.3.1 we can say that

U ε (t, x) = U (t, x) + rε (t, x) ,

where rε → 0, in L2
loc (R+, L

2 (T3)) .Hence rε is a perturbative term in theL2
loc (R+, L

2 (T3))
topology. As it has been explained in detail in Section 4.2 we can decompose the (weak)
limit U projecting it onto the non-oscillating and oscillating space U = Ū + Uosc, where
the orthogonal projection is defined in (4.2.6)-(4.2.7). Since U ε = L

(
t
ε

)
V ε we can hence

deduce

V ε (t, x) = L
(
− t
ε

)
Ū (t, x) + L

(
− t
ε

)
Uosc (t, x) + L

(
− t
ε

)
rε (t, x) .

By the definition itself of Ū we know that Ū belongs to the kernel of the penalized operator
PA, hence

L
(
− t
ε

)
Ū = Ū .

Moreover the operator L (τ) , τ ∈ R is unitary in L2 (T3), whence the function

Rε (t) = L
(
− t
ε

)
rε (t) ,

is still an oε (1) function in the L2
loc (R+, L

2 (T3)) topology. Hence

V ε (t, x) = Ū (t, x) + L
(
− t
ε

)
Uosc (t, x) +Rε (t, x) ,
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i.e. V ε is a (high) oscillation around a stationary state Ū modulated by a L2
loc (R+, L

2 (T3))
perturbation which tends to zero as ε→ 0.

4.3.3 Proof of Lemma 4.3.3.

Lemma 4.3.6. The following limits hold, in the sense of distributions

lim
ε→0

(∫
T2
h

(Qε (U ε, U ε))h dxh, 0, 0

)
= F−1

v

 ∑
(a,b)∈{0,±}2

∑
Ia,b(n3)

n3

(
Ua,3 (k) Û b,h (m)

) ,

= Q (U,U) ,
(4.3.7)

where, fixed (a, b) ∈ {0,±}2 the summation set Ia,b is defined as

Ia,b (n3) =
{

(k,m) ∈ Z6
∣∣ k +m = (0, n3) , ωa (k) + ωb (m) = 0

}
(4.3.8)

Proof. Let us hence study the distributional limit for ε→ 0 of
(∫

T2
h

(Qε (U ε, U ε))h dxh, 0, 0
)

.

Let us consider a function φ ∈ D (R+ × T1
v) of the form φ = (φ1, φ2, 0, 0), and evaluate

∫
R+

∫
T1
v

(∫
T2
h

(Qε (U ε, U ε)) dxh (t, x3)

)
· φ (t, x3) dx3 dt

=

∫
R+

∫
T1
v

(∫
T2
h

L
(
t

ε

)[
L
(
− t
ε

)
U ε · ∇L

(
− t
ε

)
U ε

]
dxh

)
(t, x3) · φ (t, x3) dx3dt

=

∫
R+

∫
T1
v

(∫
T2
h

[
L
(
− t
ε

)
U ε · ∇L

(
− t
ε

)
U ε

]
dxh

)
(t, x3) · φ (t, x3) dx3dt.

In the above equality (and for the rest of the proof) A · B is the standard scalar product in
C4. We underline the fact that, being φ = (φ1, φ2, 0, 0) an element of the form A ·φ has only
the horizontal components which give a non-null contribution to the scalar product. The last
equality is justified by the fact that the adjoint of L

(
t
ε

)
is L

(
− t
ε

)
and L

(
− t
ε

)
φ (t, x3) =

φ (t, x3). By use of Placherel theorem we can hence deduce

∫
R+

∫
T1
v

(∫
T2
h

(Qε (U ε, U ε)) dxh (t, x3)

)
· φ (t, x3) dx3 dt

=

∫
R+

∑
n3∈Z

k+m=(0,n3)
a,b

ei
t
ε
ωa,bk,m n3

(
Ua,3,ε (t, k)U b,ε (t,m)

)
· φ̂ (t, n3) dt.

In this case ωa,bk,m = ωa (k) + ωb (m). Indeed an application of stationary phase theorem a
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allows us to deduce that∫
R+

∑
n3∈Z

k+m=(0,n3)
a,b

ei
t
ε
ωa,bk,m n3

(
Ua,3,ε (t, k)U b,ε (t,m)

)
· φ̂ (t, n3) dt

ε→0−−→
∫
R+

∑
n3∈Z

k+m=(0,n3)

ωa(k)+ωb(m)=0

n3

(
Ua,3 (t, k)U b (t,m)

)
· φ̂ (t, n3) dt,

which is exactly the result stated.

Lemma 4.3.7. Let Q (U,U) be defined as in (4.3.7), then

Q (U,U) = 0.

Proof. Let us recall that

FvQ (U,U) =
∑

(a,b)∈{0,±}2

∑
Ia,b(n3)

n3

(
Ua,3 (k) Û b,h (m)

)
,

hence we shall prove that for any (a, b) ∈ {0,±}2 the quantity
∑

n3, Ia,b(n3)

n3

(
Ua,3 (k) Û b,h (m)

)
is null. The summation set Ia,b (n3) is defined in (4.3.8).

• We consider at first the case in which (a, b) = (0, 0), then the contributions of FvQ
restricted on the set (a, b) = (0, 0) are∑

k+m=(0,n3)

n3

(
U0,3 (k) Û0,h (m)

)
,

but U0,3 ≡ 0 (see (4.2.4) and (4.2.5)) hence this contribution is null.

• Let us suppose (a, b) = (±, 0), the contributions of (4.3.7) restricted on such set are∑
k+m=(0,n3)
ω±(k)=0

n3

(
U±,3 (k) Û0,h (m)

)
.

The condition ω± (k) = 0 implies that kh ≡ 0, while the condition k + m = (0, n3)
implies that mh ≡ 0, but Ua,3 (0, k3) ≡ 0 (see (4.2.5)), whence such term gives a null
contribution. The same approach can be applied for the case (a, b) = (0,±).

• We consider now the case in which (a, b) = (±,±), the contributions are hence∑
k+m=(0,n3)

ω±(k)+ω±(m)=0

U±,3 (k)m3 Û
± (m) .

160



4.3. The filtered limit.

Since k + m = (0, n3) then |kh| = |mh| = λ. Taking in consideration the constraint
ω± (k) + ω± (m) = 0, which reads as (thanks to the explicit formulation of the eigen-
values in (4.2.3))

λ√
λ2 + k2

3

+
λ√

λ2 +m2
3

= 0,

which implies that λ ≡ 0. Then we can argue as in the two points above to deduce that
such contribution is null.

• Next we handle the more delicate case in which (a, b) = (±,∓). In this case the
contributions are given by ∑

k+m=(0,n3)
ω±(k)=ω±(m)

n3

(
U±,3 (k) Û∓,h (m)

)
, (4.3.9)

where we used implicitly the divergence-free property of the vector U±. The condi-
tions k +m = (0, n3) , ω± (k) = ω± (m) imply now that kh = −mh and

λ√
λ2 + k2

3

=
λ√

λ2 +m2
3

,

which implies that m3 = ±k3.

– If m3 = −k3 the convolution constraint k3 + m3 = n3 in (4.3.9) implies that
n3 ≡ 0, and hence the contributions in (4.3.9) arising from this case are nil.

– In this case kh = −mh and k3 = m3 = n3

2
. Hence we are dealing with an

interaction of the form

B±,∓n3
=
∑
mh∈Z2

n3

(
U±,3

(
−mh,

n3

2

)
Û∓,h

(
mh,

n3

2

))
, n3 ∈ 2Z.

We shall now reformulate the infinite sum B+,−
n3

+ B−,+n3
in way in which its

symmetric properties are explicit.
If we consider the element

β (mh, n3) =
n3

2

[
U+,3

(
−mh,

n3

2

)
Û−,h

(
mh,

n3

2

)
+ U−,3

(
−mh,

n3

2

)
Û+,h

(
mh,

n3

2

)
+ U+,3

(
mh,

n3

2

)
Û−,h

(
−mh,

n3

2

)
+ U−,3

(
mh,

n3

2

)
Û+,h

(
−mh,

n3

2

)]
, (4.3.10)

we can indeed say that

B+,−
n3

+B−,+n3
=
∑
mh∈Z2

β (mh, n3) .

We claim that
β (mh, n3) = 0, ∀mh, n3, (4.3.11)

the proof of (4.3.11) is postponed, this implies that B+,−
n3

+ B−,+n3
= 0, and we

finally conclude the proof.
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Proof of (4.3.11).: Let us write the elements β (mh, n3) as

β (mh, n3) = β± (mh, n3) + β∓ (mh, n3) ,

where

β± (mh, n3) =
n3

2

[
U+,3

(
−mh,

n3

2

)
Û−,h

(
mh,

n3

2

)
+ U−,3

(
mh,

n3

2

)
Û+,h

(
−mh,

n3

2

)]
,

(4.3.12)

β∓ (mh, n3) =
n3

2

[
U−,3

(
−mh,

n3

2

)
Û+,h

(
mh,

n3

2

)
+ U+,3

(
mh,

n3

2

)
Û−,h

(
−mh,

n3

2

)]
.

We shall prove only β± (mh, n3) ≡ 0 being the proof of β∓ (mh, n3) ≡ 0 identical. By
definition itself of such elements we know that

U+,3
(
−mh,

n3

2

)
Û−,h

(
mh,

n3

2

)
=
(
Û
(
−mh,

n3

2

)∣∣∣ e+
(
−mh,

n3

2

))
C4
e+,3

(
−mh,

n3

2

)
×
(
Û
(
mh,

n3

2

)∣∣∣ e− (mh,
n3

2

))
C4
e−,h

(
mh,

n3

2

)
,

U−,3
(
mh,

n3

2

)
Û+,h

(
−mh,

n3

2

)
=
(
Û
(
mh,

n3

2

)∣∣∣ e− (mh,
n3

2

))
C4
e−,3

(
mh,

n3

2

)
×
(
Û
(
−mh,

n3

2

)∣∣∣ e+
(
−mh,

n3

2

))
C4
e+,h

(
−mh,

n3

2

)
.

By the aid of the explicit definition of the eigenvectors given in (4.2.4) we can argue that

e−,h
(
mh,

n3

2

)
= e+,h

(
−mh,

n3

2

)
= Ahmh,n3

,

e+,3
(
−mh,

n3

2

)
= − e−,3

(
mh,

n3

2

)
= A3

mh,n3
.

Whence setting

Cmh,n3 =
(
Û
(
−mh,

n3

2

)∣∣∣ e+
(
−mh,

n3

2

))
C4

(
Û
(
mh,

n3

2

)∣∣∣ e− (mh,
n3

2

))
C4
,

by the aid of the above definitions we hence deduced that

U+,3
(
−mh,

n3

2

)
Û−,h

(
mh,

n3

2

)
= − Cmh,n3A

h
mh,n3

A3
mh,n3

,

U−,3
(
mh,

n3

2

)
Û+,h

(
−mh,

n3

2

)
= Cmh,n3A

h
mh,n3

A3
mh,n3

.

Inserting such relations in the definition of β± (4.3.12) we deduce hence that β± (mh, n3) ≡
0, concluding.

4.4 The limit.

The aim of this section is to give a full description of the limit system written in the generic
form (S0) in the case in which the penalized system is given by (PBSε), i.e. in the present
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section we prove Theorem 4.1.5.

In the present work we aim to prove large time propagation of strong solutions with
no particular assumption on the smallness of the initial data for the system (PBSε). To
achieve this goal we shall divide the limit system (S0) in two parts, the first one represents
the evolution of U onto the kernel of the penalized operator PA. Such projection is defined
by the element Ū in (4.2.6). The second part will represent the projection of U onto the space
(kerPA)⊥, this projection is denoted by the element Uosc defined in (4.2.7).

The result we prove is Theorem 4.1.5, in order to prove it we proceed as follows: we
consider separately the evolution of U distributional solution of (S0) onto the non-oscillating
and oscillating subspace and prove that respectively Ū solves (4.1.5) and Uosc solves (4.1.6).
These results are codified respectively in Proposition 4.4.1 and Proposition 4.4.5.
The structure of the following two subsections is very similar, namely we shall proceed in
the following manner

• We project the equation (S0) onto the non-oscillatory or oscillatory subspace.

• We study the bilinear interaction Q (U,U) once it is projected onto these spaces. We
deduce that, under some suitable assumptions, such bilinear interaction once it is re-
stricted on the subspaces mentioned above assumes a "suitable" form. We refer to the
statements of Proposition 4.4.1 and 4.4.5 for further details of what "suitable" means.

• We study the form of the second-order linear elliptic operator D defined in (4.1.2) once
it is projected on the non-oscillatory or oscillatory subspace.

4.4.1 Derivation of the equation for Ū .

The procedure we adopt to derive the limit system is pretty straightforward, we mention the
works [72] and [123] where the authors adopted the same techniques.
As we already mentioned in this section we want to deduce the equations satisfied by the
projection of U onto the non-oscillating space Ce0. Such projection will be denoted as
Ū =

(
ūh, 0, 0

)
as it is already mentioned in (4.2.6). The result we want to prove is codified

in the following proposition

Proposition 4.4.1. Let Ū0 =
(
ūh0 , 0, 0

)
=
(
∇⊥h ∆−1

h ωh, 0, 0
)

be in L2 (T3). The projection of
U distributional solution of (S0) onto the non-oscillating space Ce0 (see (4.2.3)) defined as

Ū = F−1
((
FU | e0

)
C4 e

0
)
,

satisfies the following two-dimensional stratified Navier-Stokes equations with vertical dif-
fusion (in the sense of distributions){

∂tū
h + ūh · ∇hū

h − ν∆ūh = −∇hp̄,

ūh
∣∣
t=0

= ūh0 .

We divide the proof in steps:
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Step 1 We project the equation (S0) onto the non-oscillatory space generated by the vector
e0 defined in (4.2.4). We recall again that such projection is defined as follows (see
(4.2.6) as well): given a vector field W the orthogonal projection is defined as

F W̄ =
(
Ŵ
∣∣∣ e0
)
C4

e0,

with this projection we can derive the evolution equation for the limit flow Ū , i.e.{
∂tŪ +Q (U,U)− D U = 0,

Ū0

∣∣
t=0

= Ū0 = V̄0,
(4.4.1)

Step 2 We prove by mean of a careful analysis that the projection of Q (U,U) onto the non-
oscillating subspace Ce0, i.e. the element Q (U,U) is in fact

Q (U,U) = B
(
Ū , Ū

)
,

for a suitable bilinear form B. Hence the projection onto the kernel of the penalized
operator PA of all the bilinear interactions is a suitable bilinear interaction of elements
of the kernel.

Step 3 The last step of this section is to prove that

−D U =− ν∆Ū

We have explained the structure of the present session.

To prove Proposition 4.4.1 it is sufficient to prove Step 1 – Step 3 mentioned above.

To understand the limit of the system (PBSε) means to diagonalize the system (PBSε) in
terms of the oscillating and non-oscillating modes introduced in Section 4.2. To do so we
introduce the following quantities

ωh,ε =− ∂2u
1,ε + ∂1u

2,ε; ūh,ε =∇⊥h ∆−1
h ωh,ε;

ψε =∆−1
h ωh,ε; ψ̃ε =∆

−1/2
h ωh,ε.

(4.4.2)

Step 1 is only a constructive consideration, hence there is nothing to prove.

Proof of Step 2.

The proof of the Step 2 is codified in the following lemma:

Lemma 4.4.2. Let U ε → U in L2
loc (R+;L2 (T3)) as proved in Lemma 4.3.1, the limit of

(FQε (U ε, U ε)| e0 (n)) as ε→ 0 is F
(

∆
−1/2
h

(
ūh · ∇hω

h
))

, in the sense of distributions.
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Proof. Let us recall that explicit expression ofFQε (U ε, U ε)is given in (4.3.2). As explained
before in Lemma 4.3.4 thanks to the stationary phase theorem in the limit as ε→ 0 the only
contributions remaining in (4.3.2) is

FQ (U,U) (n) = Pn
∑

ωa,b,ck,m,n=0

k+m=n
j=1,2,3

(
Ua,j (k)mjU

b (m)
∣∣ ec (n)

)
C4 e

c (n) . (4.4.3)

Now, since e0 is orthogonal to e± as is evident from the definition of the eigenvectors given in
(4.2.4) we obtain that, projecting on the non-oscillatory potential subspace (FQ (U,U)| e0)C4(

FQ (U,U) (n)| e0 (n)
)
C4 = Pn

∑
ωa,b,0k,m,n=0

k+m=n
j=1,2,3

(
Ua,j (k)mjU

b (m)
∣∣ e0 (n)

)
C4

∣∣e0 (n)
∣∣2 ,

whence we can reduce to the case c = 0.

Reading in the Fourier space the projection of the bilinear form it is clear that not all
Fourier modes contribute to the bilinear interaction. In the special case that we are consider-
ing now in fact the set of bilinear interactions is{

(k,m, n) ∈ Z9 : ωa,b,0k,m,n = 0, a, b = 0,±, k +m = n
}

= R =
3⋃
i=0

Ri,

where

R0 =
{

(k,m, n) ∈ Z9 : ω0,0,0
k,m,n = 0, k +m = n

}
,

R1 =
{

(k,m, n) ∈ Z9 : ω±,±,0k,m,n = 0, k +m = n
}
,

=

{
(k,m, n) ∈ Z9 : ±|kh|

|k|
± |mh|
|m|

= 0, k +m = n

}
,

R2 =
{

(k,m, n) ∈ Z9 :
(
ω±,0,0k,m,n = 0

)
∨
(
ω0,±,0
k,m,n = 0

)
, k +m = n

}
,

=

{
(k,m, n) ∈ Z9 :

(
±|kh|
|k|

= 0

)
∨
(
±|mh|
|m|

= 0

)
, k +m = n

}
,

R3 =
{

(k,m, n) ∈ Z9 : ω±,∓,0k,m,n = 0, k +m = n
}
,

=

{
(k,m, n) ∈ Z9 : ±|kh|

|k|
∓ |mh|
|m|

= 0, k +m = n

}
Thanks to the above decomposition of the set of bilinear interactions we can assert that
(FQ (U,U)| e0) =

∑3
i=0 Bi, where

Bi (n) = Pn
∑

(k,m,n)∈Ri
j=1,2,3

(
Ua,j (k)mjU

b,j′ (m)
∣∣∣ e0 (n)

) ∣∣e0 (n)
∣∣2 .

We start at this point to study the resonance effect on the expression (4.4.3). Indeed the
triple (a, b, c) = (0, 0, 0) is admissible which determinate the bilinear interaction set R0.
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Namely R0 describes the set of blinear interactions between element of kerPA. The term
B0 gives hence a non-null contribution, we want to show that the contributions coming from
the other Bi’s are null. At first let us suppose that a = b 6= 0, i.e. we are considering the
contributions coming from the term B1 which is defined by the resonant set R1. Let us say
a = b = +. Whence the resonance condition ω+,+,0

k,m,n = 0 reads as |kh| = |mh| = 0.
As it was proved in Section 4.2 in the case in which nh = 0 the eigenvalues collapse all to
zero, and hence we obtain that{

(k,m, n) ∈ Z9 : ω+,+,0
k,m,n , k +m = n

}
⊂ R0.

The very same analysis can be done for the triplets (−,−, 0) , (±, 0, 0) , (0,±, 0), and hence
to prove that B1 = B2 = 0.
What is left hence at this point is to prove that the triplets (±,∓, 0) do not produce any
bilinear interaction, or, alternatively, to prove that the contribution coming from B3 is zero.
To do so let us set

Ûa
n =

(
Û (n)

∣∣∣ ea (n)
)
,

Ca,b,c
k,m,n =

3∑
j=1

ea,j (k)mj

(
eb (m)

∣∣ ec (n)
)
,

in particular with this notation the limit form (4.4.3) can be written as

FQ (U,U) = Pn
∑

ωa,b,ck,m,n=0

k+m=n

Ca,b,c
k,m,nÛ

a
k Û

b
me

c (n) .

Let us consider at this point the resonant condition ω± (k)+ω∓ (m) = 0, it is equivalent,
after some algebraic manipulation, considering the explicit expression of the eigenvalues
given in (4.2.3) to

k2
3 |mh|2 = m2

3 |kh|
2 . (4.4.4)

Some straightforward computations, using the explicit expression of the eigenvectors
given in (4.2.4) gives us that

C−,+,0k,m,n = C+,−,0
k,m,n

def
=

1

2
C±,0k,m,n ∈ R. (4.4.5)

Moreover Û±n = ±i c (n) + d (n), c and d are complex-valued and assume the following
form

c (n) =
n1n3

|nh| |n|
Û1 +

n2n3

|nh| |n|
Û2 − |nh|

|n|
Û3,

d (n) =Û4.

The Û i above is the i-th component of the Fourier transform of U . Hence we can write

Û∓k Û
±
m = C (k,m)± iD (k,m) ,

C (k,m) = c (k) c (m) + d (k) d (m) ,

D (k,m) = c (k) d (m)− c (m) d (k) ,
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withC symmetric andD skew-symmetric with respect to k andm. With these considerations
hence ∑

ω±,∓,0k,m,n=0

k+m=n

C±,∓,0k,m,n Û
±
k Û

∓
m =

∑
k2

3 |mh|
2=m2

3|kh|
2

k+m=n

(
C−,+,0k,m,n Û

−
k Û

+
m + C+,−,0

k,m,n Û
+
k Û

−
m

)
,

=
∑

k2
3 |mh|

2=m2
3|kh|

2

k+m=n

C±,0k,m,nC (k,m) . (4.4.6)

We rely now on the following lemma whose proof is postponed at the end of the present
section.

Lemma 4.4.3. Under the convolution constraint k + m = n the element C±,0k,m,k+m defined
in (4.4.5), is skew symmetric with respect to the variables k,m.

Using at this point Lemma 4.4.3 it is easy to conclude. If we consider the expression in
(4.4.6), and we remark that the summation set, given by the relation (4.4.4), is symmetric
with respect to k and m, since C is symmetric and C±,0k,m,k+m is skew symmetric we obtain
that the sum in (4.4.6) is zero, hence the only admissible triple is (0, 0, 0).
At this point hence all that remains is to fully describe what is the sum

(
FQ (U,U)| e0

)
=

Pn
∑

k+m=n
j=1,2,3

Û0
k Û

0
me

0,j (k)mj

(
e0 (m)

∣∣ e0 (n)
)
e0(n)

∣∣∣∣∣∣∣ e0 (n)


C4

.

The matrix Pn is symmetric and purely real, hence selfadjoint, and the vector e0 is divergence-
free, this implies that(

FQ (U,U)| e0
)

=
∑

k+m=n
j=1,2,3

Û0
k Û

0
me

0,j (k)mj

(
e0 (m)

∣∣ e0 (n)
)
C4

∣∣e0(n)
∣∣2 ,

by our choice of e0 (see (4.2.4)) we have that |e0(n)|2 ≡ 1 and a straightforward computation
gives us that, considering the relations defined in (4.4.2),

3∑
j=1

Û0
k̄ Û

0
m̄e

0,j
(
k̄
)
m̄j = F

(
ūh · ∇hψ̃

)
(n̄) ,

where k̄ + m̄ = n̄, whence evaluating what (e0 (m)| e0 (n)) is, under the convolution condi-
tion k +m = n we obtain(

e0 (m)
∣∣ e0 (n)

)
=

1

|nh| |mh|
(n1m1 + n2m2) ,

=
1

|nh| |mh|
[(
m2

1 +m2
2

)
+ (k1m1 + k2m2)

]
.

At this point we first apply the operator defined by the symbol 1
|nh||mh|

(m2
1 +m2

2) to the

element evaluated above F
(
ūh · ∇hψ̃

)
(n), this gives

F
(

∆
−1/2
h

(
ūh · ∇hω

h
))

(n) ,
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while computing

1

|nh| |mh|
(k1m1 + k2m2)F

(
ū1∂1ψ̃ + ū2∂2ψ̃

)
=

1

|nh|
(k1m1 + k2m2)F

(
ū1∂1ψ + ū2∂2ψ

)
,

=
1

|nh|
F
(
∂1ū

1∂2
1ψ + ∂2ū

2∂2
2ψ + ∂2ū

1∂2
1,2ψ + ∂1ū

2∂2
1,2ψ

)
,

=0,

where in the last equality we used the relation ūh =

(
−∂2ψ
∂1ψ

)
already defined in (4.4.2).

Putting together all the results we hence obtained that(
FQ (U,U)| e0

)
= F

(
∆
−1/2
h

(
ūh · ∇hω

h
))
,

which concludes the proof of the lemma.

This concludes the proof of the Step 2, the bilinear interactions of the kernel part are the
same as the ones present in the evolution equation for 2d Euler equations in vorticity form.

Proof of Lemma 4.4.3. We recall that

1

2
C±,0k,m,n =

3∑
j=1

e±,j (k)mj

(
e± (m)

∣∣ e0 (n)
)
,

whence in particular thanks to the explicit expressions of the eigenvectors e± given in (4.2.4)
and the convolution constrain k +m = n we obtain that

−1

2
C±,0k,m,k+m =

(
k1k3m1 + k2k3m2 − |kh|2m3

)
(m2m3 (k1 +m1)−m1m3 (k2 +m2))

=
(
m1m2m3k

2
1k3 − k1k2k3m

2
1m3

)
+
(
k1k2k3m

2
2m3 −m1m2m3k

2
2k3

)
,

which is indeed skew-symmetric. �

Proof of Step 3.

It remains to understand how the projection onto the non-oscillating space Ce0 affects the
second-order linear operator D defined in (4.1.2). I.e. we want to prove the Step 3 of the list
above. We study the limit as ε → 0 of the second order linear part. The result we prove is
the following one

Lemma 4.4.4. The following limit holds in the sense of distributions

lim
ε→0
F−1

((
−F (DεU ε)n| |nh| e

0 (n)
)
C4

)
=− ν∆ωh.
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Proof. Let us write explicitly what limε→0 (−F (DεU ε)n| |nh| e0 (n))C4 is. By the aid of
the limit formulation for the second order linear differential operator given in (4.3.3) and
some computations which can be performed explicitly thanks to the exact formulation of the
eigevector e0 given in (4.2.4) (and recalling that the eigenvectors (4.2.4) are orthonormal) we
deduce

lim
ε→0

(
−F (DεU ε)n| |nh| e

0 (n)
)
C4 =

∑
ω0,b
n =0

ν |n|2
(
−n2U

b,1 + n1U
b,2
)
. (4.4.7)

ωa,bn = ωa (n)−ωb (n). Let us consider hence what the interaction condition ω0,b
n = 0 means.

If b = ± then indeed ω0,b
n = 0 is equivalent to nh = 0 since the equation we derive it the

following one
|nh|
|n|

= 0.

As it has been explained in Section 4.2 as long as nh = 0 the eigenvalue corresponding, i.e.
ωb, it collapses to zero, and hence it belongs to the kernel of the penalized operator. This
implies that in (4.4.7) the only nonzero contributions are given if b = 0, proving Step 3.

With the proof of Step 1–Step 3 above we hence proved that, given an initial ωh0 , the
element

ωh = curlh ūh,

solves in the sense of distribution the following Navier-Stokes system in vorticity form{
∂tω

h + ūh · ∇hω
h − ν∆ωh = 0,

ωh
∣∣
t=0

= ωh0 .
(4.4.8)

We hence apply the 2d-Biot-Savart law ūh = ∇⊥h ∆−1
h ωh, to the system (4.4.8) to deduce the

claim of Proposition 4.4.1.

4.4.2 Derivation of the equation for Uosc.

The result we want to prove in the present section is the following one

Proposition 4.4.5. Let beUosc,0 = V0−Ū0 ∈ L2 (T3). Then the projection ofU distributional
solution of (S0) onto the oscillating space defined Ce− ⊕ Ce+ defined as

Uosc = F−1
((
FU | e−

)
C4 e

− +
(
FU | e+

)
C4 e

+
)

satisfies, for almost all (a1, a2, a3) ∈ R3 parameters defining the three-dimensional periodic
domain T3 the linear equation{

∂tUosc + 2Q
(
Ū , Uosc

)
− (ν + ν ′) ∆Uosc = 0,

Uosc|t=0 = Uosc,0,

where Q is defined (4.3.2).
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Step 1 We project the equation (S0) onto the oscillatory space generated by the vectors e−, e+

defined in (4.2.4). We recall again that such projection is defined as follows (see (4.2.7)
as well): given a vector fieldW the orthogonal projection onto the oscillating subspace
is defined as

F Wosc =
(
Ŵ
∣∣∣ e−)

C4
e− +

(
Ŵ
∣∣∣ e+
)
C4

e+,

with this decomposition we can derive the evolution equation for the limit flow U , i.e.{
∂tUosc + (Q (U,U))osc − (D U)osc = 0,

Uosc|t=0 = Uosc,0 = Vosc,0.
(4.4.9)

Step 2 Next we turn our attention to the oscillating part of the bilinear interaction (Q (U,U))osc.
We prove that for almost all tori

(Q (U,U))osc = 2Q
(
Ū , Uosc

)
.

This result is not a free-deduction and it can be attained only thanks to some geometri-
cal hypothesis on the domain. We say in fact in this case that we consider non-resonant
domain.
A direct consequence is that Uosc satisfies hence a linear equation, hence it is globally
well posed if the perturbation Ū acting on his evolution system is globally well posed
as well.

Step 3 The last step of this section is to prove that

− (D U)osc =− (ν + ν ′) ∆Uosc.

As well as in the previous section in order to prove Proposition 4.4.5 it i to prove Step
1–Step 3 above.

As well as above the Step 1 consists of constructive considerations only, hence there is
nothing really to prove.

Proof of Step 2.

Our goal is to study the interaction of the kind (Qε (U ε, U ε))osc, hence to prove the Step
2. These are bilinear interactions between highly oscillating modes, which create a bilinear
interaction of the same form of the classical three-dimensional Navier-Stokes equations. We
want to prove that in the limit as ε → 0, for almost each torus T3, interactions between
highly oscillating modes vanishes, leaving linear interactions between Uosc and Ū only.
Since U ε = Ū ε + U ε

osc it shall hence suffice to prove that

lim
ε→0

(Qε (U ε
osc, U

ε
osc))osc = 0, (4.4.10)

lim
ε→0

(
Qε
(
Ū ε, Ū ε

))
osc = 0. (4.4.11)

We prove (4.4.10) and (4.4.11) respectively in Lemma 4.4.6 and Lemma 4.4.7.
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Lemma 4.4.6. For almost each torus T3 the following limit holds in the sense of distributions

lim
ε→0

(Qε (U ε
osc, U

ε
osc))osc = 0.

Proof. In the proof of this lemma we shall see how the resonant effects play a fundamental
role in the limit of the projection of the bilinear form onto the oscillatory space. In this proof
only we will use again the check notation on the Fourier modes since the structure of the
torus itself shall play a significant role. First of all we recall that

(FQε (U ε, U ε))osc =

Pn
∑

a,b,c∈{0,±}
k+m=n

ei
t
ε
ωa,b,ck,m,n

( ∑
j=1,2,3

Ua,ε,j (k)mjU
b,ε (m)

∣∣∣∣∣ ec (n)

)
ec (n)


osc

,

whence, since Fosc = (F | e±) e± and e0 ⊥ e± we easily deduce that c = ±. Letting ε → 0
by stationary phase theorem all that remain are interactions of the form,

FQ (U,U) = Pn
∑

ωa,b,±k,m,n=0

k+m=n
j=1,2,3

(
Ua,j (k) m̌jU

b (m)
∣∣ e± (n)

)
e± (n) ,

and in particular we focus on the ones which have purely highly oscillating modes interact-
ing, i.e. when a = ±, b = ± (but they may be different the one from the other) and the
frequency set of bilinear interaction satisfies the relation∣∣ǩh∣∣∣∣ǩ∣∣ + ε1

|m̌h|
|m̌|

= ε2
|ňh|
|ň|

ε1, ε2 = ±1. (4.4.12)

We want to prove, specifically, that the bilinear interaction restricted on these modes gives a
zero contribution for almost all tori.
The above relation can be expressed as a polynomial in the variables

(
ǩ, m̌, ň

)
at the cost of

long and tedious computations. In particular we shall use the following expansion

2
∣∣ǩh∣∣2 |m̌h|2

(∣∣ǩh∣∣2 +
∣∣ǩ3

∣∣2) (|m̌h|2 + |m̌3|2
) (
|ňh|4 + |ň3|4 + 2 |ňh|2 ň2

3

)
=∣∣ǩh∣∣4 (|m̌h|4 + m̌4

3 + 2 |m̌h|2 m̌2
3

) (
|ňh|4 + ň4

3 + 2 |ňh|2 ň2
3

)
+ |m̌h|4

(∣∣ǩh∣∣4 + ǩ4
3 + 2

∣∣ǩh∣∣2 ǩ2
3

) (
|ňh|4 + ň4

3 + 2 |ňh|2 ň2
3

)
+ |ňh|4

(∣∣ǩh∣∣4 + ǩ4
3 + 2

∣∣ǩh∣∣2 ǩ2
3

) (
|m̌h|4 + m̌4

3 + 2 |m̌h|2 m̌2
3

)
− 2

∣∣ǩh∣∣2 |ňh|2 (∣∣ǩh∣∣2 + ǩ2
3

) (
|ňh|2 + ň2

3

) (
|m̌h|4 + m̌4

3 + 2 |m̌h|2 m̌2
3

)
− 2 |m̌h|2 |ňh|2

(
|m̌h|2 + m̌2

3

) (
|ňh|2 + ň2

3

) (∣∣ǩh∣∣4 + ǩ4
3 + 2

∣∣ǩh∣∣2 ǩ2
3

)
.

(4.4.13)

We underline the fact that (4.4.12) and (4.4.13) are equivalent. The expression in (4.4.13)
could be further expanded and refined, but for our purposes the form in (4.4.13) shall be
sufficient.
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We take the expression in (4.4.13) and we evaluate the sum of monomials in the leading
order in the variables ǩh, m̌h, ňh, which is

P̌0

(
ǩh, m̌h

)
= −3

∣∣ǩh∣∣4 |m̌h|4 |ňh|4 ,

while the sum of monomial in the leading order for the variables ǩ3, m̌3, ň3 is

P̌8

(
ǩ, m̌

)
= m̌4

3ň
4
3

∣∣ǩh∣∣4 + ǩ4
3ň

4
3 |m̌h|4 + ǩ4

3m̌
4
3 |ňh|

4

− 2
∣∣ǩh∣∣2 |m̌h|2 ǩ2

3m̌
2
3ň

4
3 − 2

∣∣ǩh∣∣2 |ňh|2 ǩ2
3ň

2
3m̌

4
3 − 2 |m̌h|2 |ňh|2 m̌2

3ň
2
3ǩ

4
3.

We point out the P̌8 is homogeneous of degree 8 in the variables ǩ3, m̌3, ň3 while P̌0 is
homogeneous of degree zero.
Since P̌8

(
ǩ, m̌

)
is homogeneous of degree 8 we can rewrite is as

P̌8

(
ǩ, m̌

)
= P̌8

(
k

a
,
m

a

)
= a−8

3 P8 (k,m, ah) .

Since a1, a2, a3 are parameters of a torus we can indeed consider them different from zero.
Moreover

P0 (k,m, ah) = −3 (a1a2)−12 (a2
2k

2
1 + a2

1k
2
2

)2 (
a2

2m
2
1 + a2

1m
2
2

)2 (
a2

2n
2
1 + a2

1n
2
2

)2
= 0,

if and only of kh or mh or nh = kh + mh is equal to zero. Let us suppose hence that one
of these three conditions is satisfied. We have seen in Section 4.2 that once we consider
(say) nh = 0 all the eigenvalues collapse to the degenerate case of ω = 0 with multiplicity
four, whence there is no triple interaction of highly oscillating modes and we can consider
kh,mh, nh 6= 0.
As explained under this condition hence P0 (k,m, ah) 6= 0, hence we can rewrite the resonant
condition (4.4.13) in the abstract form

P0 (k,m, ah) a
8
3 +

8∑
α=1

Pα (k,m, ah) a
8−α
3 = 0, (4.4.14)

where we made sure that P0 (k,m, ah) 6= 0. Whence fixing (k,m, ah) ∈ Z6× (R+)2 we can
state that there exists a finite a3 (k,m, ah) solving (4.4.14). These elements are finite and
unique once we fix a 8-tuple (k,m, ah). At this point hence it is obvious that

a3

(
Z6, ah

)
=

⋃
(k,m)∈Z6

a3 (k,m, ah) ,

has zero measure in R. Whence we proved that outside a null measure set in R3 there is not
bilinear interaction of highly oscillating modes, proving the lemma.

We turn now our attention to study the limit dynamic as ε → 0 of the projection of the
bilinear interactions of elements in the kernel onto the oscillating subspace, i.e. we prove
(4.4.11).
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Lemma 4.4.7. The following limit(
Qε
(
Ū ε, Ū ε

))
osc

ε→0−−→ 0,

holds in the sense of distributions.

Lemma 4.4.7 states that, on the oscillatory subspace in the limit ε→ 0 there is no bilinear
interaction of elements of the kernel.

Proof. The element
(
Qε
(
Ū ε, Ū ε

))
osc reads as, in the Fourier space

F
(
Qε
(
Ū ε, Ū ε

))
osc =

∑
k+m=n
j=1,2,3

ei
t
ε
ω±(n)

(
PnU0,j,ε (k)mj U

0,ε (m)
∣∣ e± (n)

)
C4 e

± (n) ,

letting ε→ 0 and applying the stationary phase theorem the limit results to be

lim
ε→0
F
(
Qε
(
Ū ε, Ū ε

))
osc =

∑
k+m=n
j=1,2,3
ω±(n)=0

(
PnU0,j (k)mj U

0 (m)
∣∣ e± (n)

)
C4 e

± (n) .

The condition

ω± (n) =
|nh|
|n|

= 0 ⇒ nh = 0,

combined with the convolution condition k+m = (0, n3) imply that mh = −kh. Under this
assumption∑

j=1,2,3

U0,j (k)mj U
0 (m) = k3U

0,3 (k) U0 (m) + U0,3 (k) m3U
0 (m) ,

= n3U
0,3 (k) U0 (m) .

We deduced hence that

lim
ε→0
F
(
Qε
(
Ū ε, Ū ε

))
osc =

∑
k+m=n
j=1,2,3
nh=0

(
n3U

0,3 (k) U0 (m)
∣∣ e± (0, n3)

)
C4 e

± (0, n3) . (4.4.15)

The term U0 (m) =
(
Û (m)

∣∣∣ e0 (m)
)
C4

e0 (m) and e0 has the first two components only

which are nonzero (see (4.2.4)), while e± (0, n3) = (0, 0, 0, 1) as it is given in (4.2.5), hence
the contribution in (4.4.15) is null, concluding.

Proof of Step 3.

It remains hence only to prove the Step 3 above, i.e. to understand the (distributional) limit as
ε→ 0 of the interaction generated by the second-order elliptic operator D defined in (4.1.2).
This is done in the following lemma:
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Lemma 4.4.8. The following limit holds in the sense of distributions

lim
ε→0

(
−DεU ε| e− + e+

)
=− (ν + ν ′) ∆Uosc.

Proof. We proceed as follows. By definition of the projection onto the oscillatory space (see
(4.2.7) (−DεU ε)osc is given by the formula (4.3.3)

F (−DεU ε)osc (n) =
∑

ωa,±n =0

(
−Dε (n) Û ε (n)

∣∣∣ e± (n)
)
C4

e± (n) ,

=
∑

ω+,+
n =0

(
−Dε (n) Û ε,+ (n) e+ (n)

∣∣∣ e+ (n)
)
C4

e+ (n)

+
∑

ω−,+n =0

(
−Dε (n) Û ε,− (n) e− (n)

∣∣∣ e+ (n)
)
C4

e+ (n)

+
∑

ω+,−
n =0

(
−Dε (n) Û ε,+ (n) e+ (n)

∣∣∣ e− (n)
)
C4

e− (n)

+
∑

ω−,−n =0

(
−Dε (n) Û ε,− (n) e− (n)

∣∣∣ e+ (n)
)
C4

e− (n) ,

(4.4.16)

where for the second equality we used the decomposition Û ε =
∑

a=0,± Û
a,ε ea and the fact

that the eigenvectors are orthogonal.
Computing the explicit expression of (−Dε (n) e+ (n)| e+ (n))C4 we deduce

(
−Dε (n) e+ (n)

∣∣ e+ (n)
)
C4 =

(
−D (n) e−i

t
ε
ω(n) e+ (n)

∣∣∣ e−i tεω(n) e+ (n)
)
C4
,

=
(
−D (n) e+ (n)

∣∣ e+ (n)
)
C4 ,

= (ν + ν ′) |n|2 .

(4.4.17)

While for the element (−Dε (n) e− (n)| e+ (n))C4(
−Dε (n) e− (n)

∣∣ e+ (n)
)
C4 = e2i t

ε
ω(n)

(
−D (n) e− (n)

∣∣ e+ (n)
)
C4 → 0, (4.4.18)

in the sense of distributions thanks to the stationary phase theorem. In this case we automat-
ically excluded the case ω (n) = 0 since, as explained in Section 4.2, saying ω (n) = 0 is
equivalent to say that nh = 0 and hence, in this case, all eigenvectors belong to the kernel of
the penalized operator and hence Q (U,U)osc|nh=0

= 0.
The same ideas can be applied to deduce(

−Dε (n) e− (n)
∣∣ e− (n)

)
C4 = (ν + ν ′) |n|2 , (4.4.19)(

−Dε (n) e+ (n)
∣∣ e− (n)

)
C4 → 0. (4.4.20)

The limit (4.4.20) has to be understood in the sense of distributions. Inserting (4.4.17)–
(4.4.20) into (4.4.16) we deduce the claim, proving the Step 3.
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4.5 Global existence of the limit system.

In Section 4.4.1 and 4.4.2 we performed a careful analysis whose goal was to understand
which equations are solved (in the sense of distributions) by the functions Ū and Uosc which
were defined as the projection respectively onto the non-oscillating subspace Ce0 and the
oscillating space Ce− ⊕ Ce+ of U , distributional solution of (S0). The present section is
devoted to study the propagation of strong (Sobolev) norms under the assumption that the
initial data is sufficiently regular.
In particular we are interested to understand if the system (S0) propagates (isotropic) Sobolev
data Hs (T3), s > 1/2 and, if so, under which conditions on the initial data. Our expectation
in that such system can propagate sub-critical Sobolev regularity globally-in-time without
any particular smallness assumption on the initial data. The result we prove is the following
one:

Proposition 4.5.1. Let U0 ∈ Hs (T3) ∩ L∞ (Tv;Hσ (T2
h)), and ∇hU ∈ L∞ (Tv;Hσ (T2

h))
for s > 1/2, σ > 0, and let U be of zero horizontal average, i.e.∫

T2
h

U0 (xh, x3) dxh = 0 for each x3 ∈ T1
v,

then the weak solution of 
∂tū

h + ūh · ∇hū
h − ν∆ūh = 0,

div hū
h = −∇hp̄,

U (0, x) = U0

(4.5.1)

is in fact strong, and has the following regularity:

ūh ∈ C
(
R+;Hs

(
T3
))
∩ L2

(
R+;Hs+1

(
T3
))
.

Moreover for each t > 0 the following estimate holds true

∥∥ūh (t)
∥∥2

Hs(T3)
+ ν

∫ t

0

∥∥ūh (τ)
∥∥2

Hs+1(T3)
dτ

6 C
∥∥ūh0∥∥2

Hs(T3)
exp

{
CK

cν
Φ (U0)

∥∥∇hū
h
0

∥∥
Lpv(Hσ

h)

}
. (4.5.2)

where

Φ (U0) =

exp

CK
2
∥∥∇hū

h
0

∥∥2

L∞v (L2
h)

cν
exp

{
K

cν

(
1 +

∥∥ūh0∥∥2

L∞v (L2
h)

)∥∥∇hū
h
0

∥∥2

L∞v (L2
h)

} . (4.5.3)

Moreover if Uosc,0 ∈ Hs (T3), s > 1/2 then Uosc, weak solution of{
∂tUosc + 2Q

(
Ū , Uosc

)
− (ν + ν ′) ∆Uosc = 0,

Uosc|t=0 = Uosc,0.
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is global-in-time and belongs to the space

Uosc ∈ C
(
R+;Hs

(
T3
))
∩ L2

(
R+;Hs+1

(
T3
))
,

for s > 1/2. For each t > 0 the following bound holds true

‖Uosc (t)‖2
Hs(T3) +

ν + ν ′

2

∫ t

0

‖Uosc (τ)‖2
Hs+1(T3) dτ

6 C ‖Uosc,0‖2
Hs(T3) exp

{
C

ν

∥∥ūh0∥∥2

Hs(T3)
exp

{
CK

cν
Φ (U0)

∥∥∇hū
h
0

∥∥
Lpv(Hσ

h)

}}
.

Thanks to the bounds above we can hence claim that, if U0 ∈ Hs (T3) ∩ L∞ (Tv;Hs (T2
h)),

and ∇hU ∈ L∞ (Tv;Hs (T2
h)) for s > 1/2, and let U be of zero horizontal average, then

U = Ū + Uosc,

distributional solution of (S0) is in fact global-in-time and belongs to the space

U ∈ C
(
R+;Hs

(
T3
))
∩ L2

(
R+;Hs+1

(
T3
))
,

for s > 1/2.

The statement of Proposition 4.5.1 is divided in two macro areas:

1. Control of strong Sobolev norms for the kernel-part of the solution Ū .

2. Control of strong Sobolev norms for the orthogonal of the kernel-part of the solution
Uosc.

The derivation of the regularity of U = Ū + Uosc is hence a simple deduction due to the
orthogonality of Ū and Uosc.

We shall hence divide the proof of Proposition 4.5.1 in the next two sub-sections: at first
we prove the propagation of Sobolev norms for Ū , then we prove the same result for Uosc.

4.5.1 The kernel part: propagation of Hs
(
T3
)
, s > 1/2 data.

The equation (4.4.8) is the vorticity equation associated to ūh, this comes from the fact that
∇⊥h · ūh = ωh and hence∇⊥h ·

(
u− ūh

)
= 0. Whence ūh satisfies the following equation

∂tū
h + ūh · ∇hū

h − ν∆ūh = −∇hp̄
h,

div hū
h = 0,

Ū (0, x) = Ū0 (x) .

(4.5.4)

This tells us that ūh satisfies a stratified 2D Navier-Stokes equation with full diffusion. In
particular the 2D Biot-Savart ūh = ∇⊥h ∆−1

h ωh law holds.
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Lemma 4.5.2. Let ūh0 ∈ Hs (T3), s > 1/2 and of zero horizontal average i.e.∫
T2
h

ūh0 (yh, x3) dyh = 0.

The function ūh local solution of (4.5.4) defined in the space

ūh ∈ C
(
[0, T ?] ;Hs

(
T3
))
∩ L2

(
[0, T ?] ;Hs+1

(
T3
))
,

for some T ? > 0 is of zero horizontal average in its lifespan, i.e.∫
T2
h

ūh (t, yh, x3) dyh = 0,

for each 0 < t < T ?.

Remark 4.5.3. The above lemma in particular implies that, for local solutions of equation
(4.5.4), the horizontal homogeneous and nonhommogeneous Sobolev spaces are equivalent
i.e. ∥∥∥(−∆h)

s/2 u (·, x3)
∥∥∥
L2
h

∼ ‖u (·, x3)‖Hs
h
.

For this reason, from now on, we shall always use the nonhomogeneous Sobolev space (al-
though, as explained, for equation (4.5.4) they are equivalent) since the embedding

H1+ε
(
T2
h

)
↪→ L∞

(
T2
h

)
, ε > 0,

holds true (which is not the case with homogeneous spaces, generally) and we do not leave
any place to ambiguity. �

The main result of the present section shall be the first part of the claim of Proposition
4.5.1, namely

Proposition 4.5.4. Let U0 ∈ Hs (T3) ∩ L∞ (Tv;Hσ (T2
h)), and ∇hU ∈ L∞ (Tv;Hσ (T2

h))
for s > 1/2, σ > 0, and let U be of zero horizontal average, i.e.∫

T2
h

U0 (xh, x3) dxh = 0 for each x3 ∈ T1
v,

then the weak solution of 
∂tū

h + ūh · ∇hū
h − ν∆ūh = −∇hp̄,

div hū
h = 0,

U (0, x) = U0

(4.5.5)

is in fact strong, and has the following regularity:

ūh ∈ C
(
R+;Hs

(
T3
))
∩ L2

(
R+;Hs+1

(
T3
))
.

Moreover for each t > 0 the following estimate holds true∥∥ūh (t)
∥∥2

Hs(T3)
+ ν

∫ t

0

∥∥ūh (τ)
∥∥2

Hs+1(T3)
dτ

6 C
∥∥ūh0∥∥2

Hs(T3)
exp

{
CK

cν
Φ (U0)

∥∥∇hū
h
0

∥∥
Lpv(Hσ

h)

}
, (4.5.6)

where Φ (U0) is defined in (4.5.3).

The following two sections exist to this scope
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The kernel part : smoothing effects of the heat flow.

This first subsection is aimed to prove some global-in-time integrability results for some
suitable norms for (weak) solutions of the limit system (4.5.4). The result we present here
are a consequence of the fact that (4.5.4) is a transport-diffusion equation in the horizontal
variables, but a purely diffusion equation in the vertical one, in the sense that there is no
vertical transport contribution.

The final result we want to prove is the following one

Proposition 4.5.5. Let ūh be a weak solution of (4.5.4), and assume that ūh0 ,∇hū
h
0 ∈

L∞v (Hσ
h ). Let the inital data be of zero horizontal average, i.e.∫

T2
h

ūh0 (yh, x3) dyh = 0,

for each x3 ∈ T1
v. Then the solution ūh belongs to the space

ūh ∈ L2
(
R+;L∞

(
T3
))
,

and in particular ∥∥ūh∥∥
L2(R+;L∞(T3))

6
CK

cν
Φ (U0)

∥∥∇hū
h
0

∥∥
Lpv(Hσ

h) ,

where c, C,K are constants which do not depend on any parameter of the problem and
Φ (U0) is defined in (4.5.3).

The tools required in order to prove Proposition 4.5.5 are rather easy, but the procedure
adopted is slightly involved, for this reason we decide to outline the structure of the proof in
the following lines:

1. Using the fact that the transport effects in (4.5.4) are horizontal only we perform an L2-
energy estimate in the horizontal direction. Next, on the vertical direction we exploit
the fact that (4.5.4) is purely diffusive and linear equation: this fact allows us to use the
smoothing effects of the heat kernel (at least along the x3-direction) in order to prove
that

ūh ∈ L2
(
R+;L∞v

(
L2
h

))
,

∇hū
h ∈ L2

(
R+;L∞v

(
L2
h

))
.

2. We use the results of the point 1 in order improve the regularity result to the following
statement (at a cost of having smoother initial data):

ūh ∈ L2 (R+;L∞v (Hσ
h )) ,

∇hū
h ∈ L2 (R+;L∞v (Hσ

h )) .

for σ > 0.
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3. Since the equation (4.5.4) propagates the horizontal average we exploit the embedding
L∞v
(
H1+σ
h

)
↪→ L∞ (T3) to deduce the result.

The following Poincaré inequality shall be crucial in the proof of time-smoothing effects
we want to prove

Lemma 4.5.6. Let f ∈ W 1,2 ([0, 2π a1]× [0, 2π a2]) and such that it zero average, i.e.∫ 2π a1

0

∫ 2π a2

0

f (x1, x2) dx2dx1 = 0.

Then the following inequality holds true

‖f‖L2([0,2π a1]×[0,2π a2]) 6 C ‖∇f‖L2([0,2π a1]×[0,2π a2]) ,

where in particular the constant C is independent of the parameters a1, a2 characterizing
the torus [0, 2π a1]× [0, 2π a2].

The following lemma is a key step for the rest of the results presented in the present paper

Lemma 4.5.7. Let ūh be a (weak) solution of the equation (4.5.4). Let us suppose moreover
that u0,∇hu0 ∈ Lpv (L2

h) for some p ∈ [2,∞]. Let us assume as well that∫
T2
h

ūh0 (yh, x3) dyh = 0,

for each x3 ∈ T1
v. Then

ūh ∈Lq
(
R+;Lpv

(
L2
h

))
, for q ∈ [1,∞] , p ∈ [2,∞] , (4.5.7)

∇hū
h ∈Lq

(
R+;Lpv

(
L2
h

))
, for q ∈ [1,∞] , p ∈ [2,∞] . (4.5.8)

In particular the time-decay rate is exponential, i.e.∥∥ūh (t)
∥∥
Lpv(L2

h)
6 e−νc t

∥∥ūh0∥∥Lpv(L2
h)
,∥∥∇hū

h (t)
∥∥
Lpv(L2

h)
6 K e−νc t

∥∥∇hū
h
0

∥∥
Lpv(L2

h)
,

where c,K are strictly positive constants which depend on the dimension of the horizontal
domain only (in this case two).

Proof. Let us multiply the equation (4.5.4) for ūh and let us take L2
h scalar product. Since

the vector field ūh is horizontal-divergence-free, i.e. ∂1ū
1 (x1, x2, x3)+∂2ū

2 (x1, x2, x3) = 0
for each x ∈ T3 we deduce the following normed equality

1

2

d
dt

∥∥ūh (x3)
∥∥2

L2
h

+ ν
∥∥∇hū

h (x3)
∥∥2

L2
h

+ ν
∥∥∂3ū

h (x3)
∥∥2

L2
h

− ν∂2
3

∥∥ūh (x3)
∥∥2

L2
h

= 0.

The term ν
∥∥∂3ū

h (x3)
∥∥2

L2
h

has indeed a positive contribution, hence we deduce the following
inequality

1

2

d
dt

∥∥ūh (x3)
∥∥2

L2
h

+ ν
∥∥∇hū

h (x3)
∥∥2

L2
h

− ν∂2
3

∥∥ūh (x3)
∥∥2

L2
h

6 0.
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At the same time we can use the Poincaré inequality as stated in Lemma 4.5.6 to argue that

ν
∥∥∇hū

h (x3)
∥∥2

L2
h

> cν
∥∥ūh (x3)

∥∥2

L2
h

,

where c = C−1 appearing in Lemma 4.5.6. Whence we deduced the inequality

1

2

d
dt

∥∥ūh (x3)
∥∥2

L2
h

+ cν
∥∥ūh (x3)

∥∥2

L2
h

− ν∂2
3

∥∥ūh (x3)
∥∥2

L2
h

6 0. (4.5.9)

Let us now consider a p ∈ [2,∞), and let us multiply (4.5.9) by

∥∥ūh (x3)
∥∥(p−2)

L2
h

=

(∫
T2
h

ūh (yh, x3)2 dyh

) p−2
2

,

and hence integrate the resulting inequality with respect to x3 ∈ T1
v. The resulting inequality

we deduce is

1

p

d
dt

∥∥ūh∥∥p
Lpv(L2

h)
+ cν

∥∥ūh∥∥p
Lpv(L2

h)
+

8 (p− 2)

p2

∫
T1
v

∂3

(∫
T2
h

u2dxh

) p
4

2

dx3︸ ︷︷ ︸
=Ip(u)

6 0,

and since Ip (u) > 0 for each p we deduce the following inequality neglecting it

d
dt

((
ecν t

∥∥ūh∥∥
Lpv(L2

h)

)p)
6 0.

Integrating in-time the above equation we deduce hence that.

∥∥ūh (t)
∥∥
Lpv(L2

h)
6 e−cν t

∥∥ūh0∥∥Lpv(L2
h)
, (4.5.10)

and hence ūh is Lq-in-time for each p ∈ [2,∞). In order to lift the result when p = ∞ it
suffice to recall that, given a finite measure space (X ,Σ, µ) and a φ ∈ Lp (X ,Σ, µ) for each
p ∈ [1,∞], the application p 7→ |X |−1 ‖φ‖Lp(X ,Σ,µ) is continuous, increasing in p and con-
verges to ‖φ‖L∞(X ) as p→∞, hence it suffice to consider the limit for p→∞ in (4.5.10).

To prove the statement for ∇hū
h let us consider the equation satisfied by ωh = curlh ūh.

The equation is the following one{
∂tω

h + ūh · ∇hω
h − ν∆ωh = 0,

ωh
∣∣
t=0

= ωh0 = curlh ūh0 .

We can perform the exactly same procedure as it has been done with ūh, obtaining hence that∥∥ωh (t)
∥∥
Lpv(L2

h)
6 e−cν t

∥∥ωh0∥∥Lpv(L2
h)
.

Since the application ωh 7→ ∇hū
h is a Calderòn-Zygmund operator it maps continuously L2

h

to itself and has operator norm K we deduce that∥∥∇hū
h (t)

∥∥
Lpv(L2

h)
6 K e−cν t

∥∥∇hū
h
0

∥∥
Lpv(L2

h)
,

for each p ∈ [2,∞].
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Lemma 4.5.7 deals hence with the propagation of some anisotropic Lpv (L2
h) regularity for

(weak) solutions of equation (4.5.4). In our context we are particularly interested to study
the propagation of the anisotropic L∞v (L2

h) norm.
Similarly we are interested to understand how (4.5.4) propagates data which are bounded
in the horizontal variables. Standard theory of two-dimensional Navier-Stokes and Euler
equations suggests that, if the data is sufficiently regular in terms of Sobolev regularity, the
propagation of horizontal norms should not be problematic.
The regularity statements proved until now are not sufficient to perform our analysis, for this
reason we require the following lemma

Lemma 4.5.8. Let us consider ūh a (weak) solution of (4.5.4), with initial data ūh0 ,∇hū
h
0 ∈

L∞v (Hσ
h ) , σ > 0 and assume ūh0 has zero horizontal average, then

ūh ∈Lq (R+;Lpv (Hσ
h )) , for q ∈ [1,∞] , p ∈ [2,∞] ,

∇hū
h ∈Lq (R+;Lpv (Hσ

h )) , for q ∈ [1,∞] , p ∈ [2,∞] .

Moreover the decay rate of the Lpv (Hσ
h ) norms is exponential-in-time, in particular the fol-

lowing bounds hold∥∥ūh (t)
∥∥
Lpv(Hσ

h)

6 C exp

{
K

cν

(
1 +

∥∥ūh0∥∥2

L∞v (L2
h)

)∥∥∇hū
h
0

∥∥2

L∞v (L2
h)

}
e−

cν
2
t
∥∥ūh0∥∥Lpv(Hσ

h) ,
(4.5.11)

∥∥∇hū
h (t)

∥∥
Lpv(Hσ

h) 6 CK Φ (U0) e−
cν
2
t
∥∥∇hū

h
0

∥∥
Lpv(Hσ

h) , (4.5.12)

where Φ (U0) is defined in (4.5.3).

Proof. We prove at first (4.5.11).
Let us recall the bound(

ūh (·, x3) · ∇hū
h (·, x3)

∣∣ ūh (·, x3)
)
Hσ
h

6 C
(

1 +
∥∥ūh (·, x3)

∥∥
L2
h

)∥∥∇hū
h (·, x3)

∥∥
L2
h

∥∥ūh (·, x3)
∥∥
Hσ
h

∥∥∇hū
h (·, x3)

∥∥
Hσ
h

,

6 C
(

1 +
∥∥ūh (·, x3)

∥∥2

L2
h

)∥∥∇hū
h (·, x3)

∥∥2

L2
h

∥∥ūh (·, x3)
∥∥2

Hσ
h

+
ν

2

∥∥∇hū
h (·, x3)

∥∥2

Hσ
h

,

= C f (t, x3)
∥∥ūh (·, x3)

∥∥2

Hσ
h

+
ν

2

∥∥∇hū
h (·, x3)

∥∥2

Hσ
h

,

(4.5.13)

Performing an Hσ
h energy estimate onto (4.5.4) with the bound (4.5.13) we deduce that

1

2

d
dt

∥∥ūh (·, x3)
∥∥2

Hσ
h

+
ν

2

∥∥∇hū
h (·, x3)

∥∥2

Hσ
h

+ ν
∥∥∂3ū

h (·, x3)
∥∥2

Hσ
h

− ν∂2
3

∥∥ūh (·, x3)
∥∥2

Hσ
h

− C f (t, x3)
∥∥ūh (·, x3)

∥∥2

Hσ
h

6 0.

By use of Lemma 4.5.6 and the fact that ν
∥∥∂3ū

h (·, x3)
∥∥2

Hσ
h

> 0 we deduce

1

2

d
dt

∥∥ūh (·, x3)
∥∥2

Hσ
h

+
(cν

2
− ν∂2

3 − C f (t, x3)
)∥∥ūh (·, x3)

∥∥2

Hσ
h

6 0. (4.5.14)
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Let us define

F (t, x3) = C

∫ t

0

f (t′, x3) dt′,

The function F is bounded in L∞v thanks to the results in Lemma 4.5.7, in particular

e‖F‖L∞ 6 C exp

{
K

cν

(
1 +

∥∥ūh0∥∥2

L∞v (L2
h)

)∥∥∇hū
h
0

∥∥2

L∞v (L2
h)

}
hence again as it was done in equation (4.5.9) we multiply (4.5.14) for

∥∥ūh (x3)
∥∥p−2

Hσ
h

=

(∫
T2
h

(1−∆h)
σ ūh (yh, x3)2 dyh

) p−2
2

,

where p > 2, σ > 0 and we integrate in x3 to deduce

∥∥ūh (t)
∥∥
Lpv(Hσ

h) 6 C exp

{
K

cν

(
1 +

∥∥ūh0∥∥2

L∞v (L2
h)

)∥∥∇hū
h
0

∥∥2

L∞v (L2
h)

}
e−

cν
2
t
∥∥ūh (t)

∥∥
Lpv(L2

h)
,

in the same fashion as it was done in (4.5.10) for any p ∈ [2,∞]. The bound (4.5.11) is then
proved.

For the inequality (4.5.12) the procedure is the same but slightly more involved. We
recall that the following bound holds true for zero-horizontal average vector fields:(

ūh (·, x3) · ∇hω
h (·, x3)

∣∣ωh (·, x3)
)
Hσ
h

6
ν

2

∥∥∇hω
h (·, x3)

∥∥2

Hσ
h

+ C K2
∥∥ūh (·, x3)

∥∥2

Hσ
h

∥∥ωh (·, x3)
∥∥2

L2
h

∥∥ωh (·, x3)
∥∥2

Hσ
h

. (4.5.15)

We postpone the proof of (4.5.15).
We set

g (t, x3) =
∥∥ūh (t, ·, x3)

∥∥2

Hσ
h

∥∥ωh (t, ·, x3)
∥∥2

L2
h

,

G (t, x3) = CK2

∫ t

0

g (t′, x3) dt′,

where K denotes again the norm of ωh 7→ ∇hū
h as a Calderon-Zygmung application in L2

h.

Performing an Hσ
h energy estimate onto the equation satisfied by ωh with the bound

(4.5.15) we deduce the inequality

1

2

d
dt

∥∥ωh (x3)
∥∥2

Hσ
h

+
(cν

2
− C K2 g (t, x3)− ν∂2

3

)∥∥ωh (x3)
∥∥2

Hσ
h

6 0.

Net, we multiply the above inequality for
∥∥ωh (x3)

∥∥p−2

Hσ
h

, p > 2 in order to deduce as it was

done for ūh that ∥∥ωh (t)
∥∥
Lpv(Hσ

h) 6 Ce−
cν
2
t
∥∥eG∥∥

L∞

∥∥ωh0∥∥Lpv(Hσ
h) .
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The function eG ∈ L∞ (T1
v) thanks to the results in Lemma 4.5.7 and the estimate (4.5.11),

hence we deduce the bound

e‖G‖L∞v 6 C exp

CK
2
∥∥ωh0∥∥2

L∞v (L2
h)

cν
exp

{
K

cν

(
1 +

∥∥ūh0∥∥2

L∞v (L2
h)

)∥∥∇hū
h
0

∥∥2

L∞v (L2
h)

} ,

which lead to the final bound∥∥ωh (t)
∥∥
Lpv(Hσ

h)

6 C exp

CK
2
∥∥ωh0∥∥2

L∞v (L2
h)

cν
exp

{
K
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(
1 +

∥∥ūh0∥∥2

L∞v (L2
h)

)∥∥∇hū
h
0

∥∥2

L∞v (L2
h)

}
× e−

cν
2
t
∥∥ωh∥∥

Lpv(Hσ
h) ,

for p ∈ [2,∞].
Since the application ωh 7→ ∇hū

h is a Calderòn-Zygmung application we can conclude with
the following estimate∥∥∇hū

h
∥∥
Lpv(Hσ

h)

6 CK exp

CK
2
∥∥∇hū

h
0

∥∥2

L∞v (L2
h)

cν
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{
K
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(
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L∞v (L2
h)

)∥∥∇hū
h
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∥∥2

L∞v (L2
h)

}
× e−

cν
2
t
∥∥∇hū

h
0

∥∥
Lpv(Hσ

h) ,

which proves (4.5.12).

Proof of Proposition 4.5.5 At this point the proof of Proposition 4.5.5 is direct corollary of
Lemma 4.5.8. Since the vector field ūh has zero horizontal average the following equivalence
of norms hold true ∥∥∇hū

h (·, x3)
∥∥
Hσ
h

∼
∥∥ūh (·, x3)

∥∥
Hσ+1
h

It is sufficient in fact to remark now that, for vector fields with zero horizontal average, the
embedding H1+σ (R2

h) ↪→ L∞ (R2
h) , σ > 0 holds true. I.e.∥∥ūh (·, x3)
∥∥
L∞h
6 C

∥∥ūh (·, x3)
∥∥
Hσ+1
h

.

These considerations together with the inequality (4.5.12) (setting p = ∞) lead us to the
following estimate ∥∥ūh∥∥

L∞(T3)
6 CK Φ (U0) e−

cν
2
t
∥∥∇hū

h
0

∥∥
Lpv(Hσ

h) .

An integration-in-time completes hence the proof of Proposition 4.5.5. �
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Proof of (4.5.15). This is the only part of the present paper in which we use the anisotropic
(horizontal) paradifferential calculus introduced at Section 4.1.5. We recall that, given two
functions f, g ∈ Hσ

h

(f | g)Hσ
h
∼
∑
q∈Z

22qσ
(
4h
qf
∣∣4h

qg
)
L2
h

.

This deduction is a consequence of the almost-orthogonality property of dyadic blocks.
Whence it is sufficient to prove bounds for terms of the form

Aq =
(
4h
q

(
ūh (·, x3) · ∇hω

h (·, x3)
)∣∣4h

qω
h (·, x3)

)
L2
h

,

=
(
4h
q

(
ūh (·, x3)ωh (·, x3)

)∣∣4h
q∇hω

h (·, x3)
)
L2
h

.

Using the (horizontal) Bony decomposition (4.1.10) we decompose Aq into the following
infinite sum

Aq =
(
4h
q

(
ūh (·, x3)ωh (·, x3)

)∣∣4h
q∇hω

h (·, x3)
)
L2
h

,

=
∑
|q−q′|64

(
4h
q
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Shq′−1ū

h (·, x3)4h
q′ω

h (·, x3)
)∣∣4h

q∇hω
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L2
h

,

+
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(
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(
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h (·, x3)

)∣∣4h
q∇hω

h (·, x3)
)
L2
h

,

=A1
q + A2

q.

We start bounding the term A1
q . We recall that thanks to the Bernstein inequality the operator

4h
q maps continuously any Hσ

h space to itself.
Using Hölder inequality (twice)∣∣A1

q

∣∣ 6 ∑
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h (·, x3)
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L2
h

.

Thanks to the Remark 4.5.3 we know that ūh and ωh are vector fields with zero horizontal
average for each x3. Hence we can use the Gagliardo-Nirenberg-type inequality (4.1.13), to
deduce ∥∥ūh (·, x3)
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L4
h

6 C
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.

Since the application ωh 7→ ∇hū
h is a Calderon-Zygmung application we can say that, there

exists a K constant independent of any parameter of the problem such that∥∥∇hū
h (·, x3)

∥∥1/2
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6 K1/2
∥∥ωh (·, x3)
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.

Moreover for vector fields whose horizontal average is zero the embeddingHσ
h ↪→ L2

h, σ > 0
holds true, hence ∥∥ūh (·, x3)
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h
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Since there exists a `2 (Z) sequence such that∥∥4h
q′ω

h (·, x3)
∥∥1/2
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h
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q′∇hω
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we formally deduced the bound∣∣A1
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−2qσ
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It remains to prove the same kind of bound for the termA2
q . Again, using Hölder inequal-
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∣∣ 6 ∑
q′>q−4

∥∥4h
q′ū
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Since the vector fields have zero horizontal average we can apply (4.1.13), the fact that
ωh 7→ ∇hū

h is a Calderon-Zygmund operator and (4.1.12) to deduce∥∥4h
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Using (4.1.13) and the embedding Hσ
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h which hods for vector fields with zero horizon-
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Hence with the aid of (4.1.12)∥∥4h
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We hence deduced that∣∣A2
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With these bounds we hence proved that(
ūh (·, x3) · ∇hω

h (·, x3)
∣∣ωh (·, x3)
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To deduce the estimate (4.5.15) it is sufficient hence to apply the convexity inequality ab 6
C4

4
a4 + 3

4C4/3 b
4/3 to the above estimate. �
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Propagation of isotropic Sobolev regularity.

We apply in this Section the result proved in the previous one in order to conclude the proof
of Proposition 4.5.4.

Proof of Proposition 4.5.4. Let us apply the operator 4q to both sides of (4.5.5) and let
us multiply what we obtain with 4qū

h and let us take scalar product in L2 (T3), we obtain
in particular

1

2

d
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∥∥4qū
h
∥∥2

L2(T3)
+ ν
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∣∣∣ , (4.5.16)

whence to obtain the claim everything reduces to bound the term
∣∣∣(4q
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Since div hū
h = 0 we immediately obtain that I1 ≡ 0, whence if we consider the second

term, thanks to Hölder inequality and Lemma 4.1.10 we can argue that
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Accordingly to Bernstein inequality we have that∥∥Sq′−1∇ūh
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Finally form the reminder term I4 the following computations hold
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h
∥∥
L2(T3)

∥∥4qū
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but, since we are dealing with localized functions∥∥Sq′+2∇hū
h
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h
∥∥
L∞(T3)

,∥∥4q′ū
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(4.5.17)
Whence inserting (4.5.17) into (4.5.16), multiplying both sides for 22qs and summing over q
we obtain that
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∥∥ūh∥∥
L∞(T3)

∥∥ūh∥∥
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whence by Young inequality∥∥ūh∥∥
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which, together with (4.5.18) and a Gronwall argument lead to the following estimate∥∥ūh (t)
∥∥2

Hs(T3)
+ ν

∫ t

0

∥∥ūh (τ)
∥∥2

Hs+1(T3)
dτ 6 C

∥∥ūh0∥∥2

Hs(T3)
exp

{∫ t

0

∥∥ūh (τ)
∥∥2

L∞(T3)
dτ
}
.

We can hence apply on the above inequality Proposition 4.5.5 to deduce the bound (4.5.6).
�

4.5.2 The oscillating part: propagation of Hs
(
T3
)
, s > 1/2 data.

In this section we consider the propagation of Sobolev regularity for the equation (4.1.6)
satisfied (distributionally) by the function Uosc. We proved in Section 4.4.2 that for almost
all three-dimensional tori T3 the equation for Uosc is linear. The result claimed is hence the
following:

Proposition 4.5.9. Let Uosc,0 ∈ Hs (T3), s > 1/2, suppose Ū =
(
ūh, 0, 0

)
solution of

(4.5.4) is globally defined and ūh ∈ L2 (R+;Hs+1), hence the solution Uosc of the system
(4.1.6) satisfies

Uosc ∈ C
(
R+;Hs

(
T3
))
∩ L2

(
R+;Hs+1

(
T3
))
,

and the following estimates hold for each t > 0

‖Uosc (t)‖2
Hs(T3) +

ν + ν ′

2

∫ t

0

‖Uosc (τ)‖2
Hs+1(T3) dτ

6 C ‖Uosc,0‖2
Hs(T3) exp

{
C
∥∥∇ūh∥∥2

L2(R+;Hs(T3))

}
. (4.5.19)

For a proof for Proposition 4.5.9 we refer to [72, Appendix B].
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4.6 Convergence for ε→ 0 and proof of Theorem 4.1.7

Remark 4.6.1. Given an N ∈ N (generally large) in the present section we denote with KN

and kN two constant such that KN → ∞ and kN → 0 respectively as N → ∞. These
constant depend on N only, and their value may vary from line to line.
In the present proof for the convergence we shall reduce ourselves to the simplified case
ν = ν ′. It is a simple procedure to lift such result when the diffusivity is different. We
chose to make such simplification in order not to make an already very complex notation
even heavier. �

The previous section has been devoted to the study of the global-well-posedness of the
limit system (S0) in some sub-critical Hs (T3), s > 1/2 Sobolev space. The present section
shall use this result to prove that, for 0 < ε 6 ε0 sufficiently small the (local, strong)
solutions of (PBSε) converge (globally) in the space

C
(
R+;Hs

(
T3
))
∩ L2

(
R+;Hs+1

(
T3
))
,

to the now global and strong solution U of (S0). This shall imply that as long as ε is suffi-
ciently close to zero the strong solutions of (PBSε) are in fact global.

The method we are going to explain reduces to a smart choice of variable substitution
that cancels some problematic term appearing in the equations. This technique has been
introduced by S. Schochet in [133] in the context of hyperbolic systems with singular per-
turbation. I. Gallagher in [72] adapted the method to parabolic systems. We mention as well
the work of M. Paicu [123] and E. Grenier [79].
Let us subtract (S0) from (Sε), and we denote the difference unknown by W ε = U ε − U .
After some basic algebra we reduced hence ourselves to the following difference system

∂tW
ε +Qε (W ε,W ε + 2U)− ν∆W ε = − (Qε (U,U)−Q (U,U)) ,

divW ε = 0,

W ε|t=0 = 0.

(4.6.1)

We define Rε
osc = Qε (U,U) − Q (U,U). We remark that Rε

osc → 0 only in D′, since it is
defined asRε

osc = Rε
osc,I +Rε

osc,II where

Rε
osc,I = F−1

 ∑
ωa,b,ck,n−k,n 6=0

j=1,2,3

ei
t
ε
ωa,b,ck,n−k,n

(
Ua,j (k) (nj − kj)U b (n− k)

∣∣ ec (n)
)
ec (n)

 ,

(4.6.2)

Rε
osc,II = F−1

v

 ∑
k+m=(0,n3)

ω̃a,bk,m 6=0

ei
t
ε
ω̃a,bk,m n3

(
Ua,3 (k)U b,h (m) , 0, 0

)ᵀ
 , (4.6.3)

where ω̃a,bk,m = ωa (k)+ωb (m). The termRε
osc,II represents the high-frequency vertical pertur-

bations induced by the horizontal average
(∫

T2
h

(Qε (U ε, U ε))h dxh, 0, 0
)

which converges to
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zero only weakly as explained in Lemma 4.3.3. Hence we divide it in high-low frequencies
in the following way, for the low-frequency part

Rε
osc,I,N = F−1

(
1{|n|6N}∩{|k|6N}F Rε

osc,I

)
,

Rε
osc,II,N = F−1

(
1{|n3|6N}∩{|k|6N}F Rε

osc,II

)
,

Rε
osc,N =Rε

osc,I,N +Rε
osc,II,N ,

while the high-frequency part is defined as

Rε,N
osc = Rε

osc −Rε
osc,N . (4.6.4)

Lemma 4.6.2. LetRε,N
osc be defined as in (4.6.4). Rε,N

osc
N→∞−−−→ 0 in L2 (R+;Hs−1) uniformly

in ε, and the following bound holds∥∥Rε,N
osc

∥∥
L2(R+;Hs−1)

6 kN
N→∞−−−→ 0. (4.6.5)

The proof of Lemma 4.6.2 is postponed to the end of the present section, at Subsection
4.6.1.

Let us now perform the following change of unknown

ψεN = W ε + εR̃ε
osc,N , (4.6.6)

where, in particular, R̃ε
osc,N is defined as R̃ε

osc,N = R̃ε
osc,I,N + R̃ε

osc,II,N where

R̃εosc,I,N = F−1

 ∑
ωa,b,ck,n−k,n 6=0

j=1,2,3

1{|n|,|k|6N}
ei
t
εω

a,b,c
k,n−k,n

iωa,b,ck,n−k,n

(
Ua,j (k) (nj − kj)U b (n− k)

∣∣ ec (n)
)
ec (n)

 ,

R̃εosc,II,N = F−1v

1{|n3|6N}
∑

k+m=(0,n3)

ω̃a,bk,m 6=0

1{|k|6N}
ei
t
ε ω̃

a,b
k,m

i ω̃a,bk,m
n3
(
Ua,3 (t, k)U b,h (t,m) , 0, 0

)ᵀ


in particular we remark that

∂t

(
εR̃ε

osc,N

)
= Rε

osc,N + εR̃ε,t
osc,N , (4.6.7)

with R̃ε,t
osc,N is defined as R̃ε,t

osc,N = R̃ε,t
osc,I,N + R̃ε,t

osc,II,N where

R̃ε,tosc,I,N = F−1

 ∑
ωa,b,ck,n−k,n 6=0

j=1,2,3

1{|n|,|k|6N}
ei
t
εω

a,b,c
k,n−k,n

iωa,b,ck,n−k,n
∂t
(
Ua,j (t, k) (nj − kj)U b (t, n− k)

∣∣ ec (n)
)
ec (n)

 ,

R̃ε,tosc,II,N = F−1v

1{|n3|6N}
∑

k+m=(0,n3)

ω̃a,bk,m 6=0

1{|k|6N}
ei
t
ε ω̃

a,b
k,m

i ω̃a,bk,m
∂t n3

(
Ua,3 (t, k)U b,h (t,m) , 0, 0

)ᵀ
 .
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We underline the fact that the termRε
osc,N in (4.6.7) is what we require in order to cancel

the low frequencies of Rε
osc which otherwise converge to zero only weakly due to stationary

phase theorem. This here is the key observation and most important idea on which Schochet
method is based: despite the fact that the difference system presents nonlinearities which
does not converge strongly to zero we can define an alternative unknown ψεN which is an
O (ε)-corrector of the difference W ε which solves an equation in which this problematic
nonlinear interaction vanishes.

Tanks to definition (4.6.6) and system (4.6.1) we can deduce the equation satisfied by ψεN
after some elementary algebraic manipulation, which is

∂tψ
ε
N +Qε

(
ψεN , ψ

ε
N − 2εR̃ε

osc,N + 2U
)
− ν∆ψεN = −Rε,N

osc − εΓεN ,

divψεN = 0,

ψεN |t=0 = ψεN,0 = εR̃ε
osc,N

∣∣∣
t=0

,

(4.6.8)

with ΓεN defined as

ΓεN =ν∆R̃ε
osc,N +Qε

(
R̃ε

osc,N , εR̃ε
osc,N + 2U

)
+ R̃ε,t

osc,N .

We outline that ψεN is divergence-free since it is a linear combination of the eigenvectors
e0, e± defined in (4.2.4) which are all divergence-free.

Now we claim that

Lemma 4.6.3. ΓεN is bounded in L2 (R+;Hs−1) by a constant KN which depends on N
solely.

This is usually referred as small divisor estimate in the literature. The proof is due to
the fact that all the elements composing ΓεN = ΓεN (U) are localized in the frequency space,
hence they have all the regularity we want them to have at the cost of some power of N .
We omit a detailed proof only for the sake of brevity, but this can be deduced thanks to the
energy estimates performed on U in the previous section.

Let us, at this point, perform an Hs (T3) energy estimate on equation (4.6.8), we obtain
that

1

2

d
dt
‖ψεN‖

2
Hs(T3) + ν ‖ψεN‖

2
Hs+1(R3)

6

∣∣∣∣(Rε,N
osc + εΓεN +Qε

(
ψεN , ψ

ε
N − 2εR̃ε

osc,N + 2U
)∣∣∣ψεN)

Hs(T3)

∣∣∣∣ . (4.6.9)

Now, if we consider two four component vector fields A,B such that their first three com-
ponents are divergence-free it is indeed true that ‖Qε (A,B)‖Hs(T3) 6 C ‖A⊗B‖Hs+1(R3),
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we shall use repeatedly this property in what follows. We shall use as well the fact that
Hs+1 (R3) , s > 1/2 is a Banach algebra. Whence

(Qε (ψεN , ψ
ε
N)|ψεN)Hs(T3) 6 C ‖ψεN ⊗ ψεN‖Hs+1(R3) ‖ψ

ε
N‖Hs(T3) ,

6 C ‖ψεN‖Hs(T3) ‖ψ
ε
N‖

2
Hs+1(R3) ,

(Qε (ψεN , 2U)|ψεN)Hs(T3) 6 C ‖ψεN‖Hs(T3) ‖ψ
ε
N‖Hs+1(R3) ‖U‖Hs+1(R3) ,(

Qε
(
ψεN , 2εR̃ε

osc,N

)∣∣∣ψεN)
Hs(T3)

6 Cε ‖ψεN‖Hs(T3) ‖ψ
ε
N‖Hs+1(R3)

∥∥∥R̃ε
osc,N

∥∥∥
Hs+1(R3)

.

(4.6.10)

Using the estimates in (4.6.10) into (4.6.9) and using repeatedly Young inequality ab 6
η
2
a2 + 1

2η
b2 we obtain

1

2

d
dt
‖ψεN‖

2
Hs(T3) +

(ν
2
− C ‖ψεN‖Hs(T3)

)
‖ψεN‖

2
Hs+1(R3)

6 C

(
‖U‖2

Hs+1(R3) + ε
∥∥∥R̃ε

osc,N

∥∥∥2

Hs+1(R3)

)
‖ψεN‖

2
Hs(T3)

+ C
∥∥Rε,N

osc + εΓεN
∥∥2

Hs−1 . (4.6.11)

Whence let us define

1

2
Θε,N (t) = C

(
‖U‖2

Hs+1(R3) + ε
∥∥∥R̃ε

osc,N

∥∥∥2

Hs+1(R3)

)
, (4.6.12)

by variation of constant method we transform (4.6.11) into

1

2

d
dt

(
‖ψεN‖

2
Hs(T3) e

−
∫ t
0 Θε,N (s)ds

)
+
(ν

2
− C ‖ψεN‖Hs(T3)

)
‖ψεN‖

2
Hs+1(R3) e

−
∫ t
0 Θε,N (s)ds

6 C
∥∥Rε,N

osc + εΓεN
∥∥2

Hs−1 e
−
∫ t
0 Θε,N (s)ds. (4.6.13)

Now we claim the following

Lemma 4.6.4. The function Θε,N defined in (4.6.12) is an L1 (R+) function uniformly in ε,
moreover we can write the L1 (R+)-bound as

‖Θε,N‖L1(R+) 6 C + ε KN . (4.6.14)

We do not give a detailed proof of Lemma 4.6.4. What it has to be retained is that it is
possible to bound the term R̃ε

osc,N since it is localized on the low frequencies, at the cost of
making appear a (large in N ) constant KN depending on N only.

Lemma 4.6.4 in particular asserts, that fixing an (eventually large) N > 0 there exists an
ε = εN > 0 such that there exist two constants 0 < c1 (ε,N) 6 c2 (ε,N) such that

c1 (ε,N) 6
∣∣∣e− ∫ t0 Θε,N (s)ds

∣∣∣ 6 c2 (ε,N) ,

independently of t ∈ R+.
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We fix now an η > 0 (which we can suppose to be small) and we select two quantities
N = Nη and ε = εN = εNη such that∥∥ψεN,0∥∥Hs(T3)

6
ν

8C
, eC+εKN

∥∥ψεN,0∥∥Hs(T3)
6
η

2
, C c2 (ε,N) (kN + εKN) 6

η

2
.

(4.6.15)
The first and second inequality in (4.6.15) holds true thanks to the following procedure:
we consider the definition of ψεN given in equation (4.6.6) we immediately deduce that
ψεN,0 = ε R̃ε

osc,N

∣∣∣
t=0

, but in particular
∥∥∥R̃ε

osc,N

∣∣∣
t=0

∥∥∥
Hs(T3)

6 KN thanks to an argument

similar to the one which proves Lemma 4.6.3, i.e. we exploit the fact that R̃ε
osc,N is sup-

ported in a ball of radiusN in the frequency space and hence we can gain all the integrability
we want at the price of some power of N . The constants C and KN in particular are consid-
ered to be the ones appearing in (4.6.14).

We integrate now (4.6.13) in time, using the above consideration combined with Lemma
4.6.3 and (4.6.5) we transform (4.6.13) into

‖ψεN (t)‖2
Hs(T3) +

∫ t

0

(
ν − 2C ‖ψεN (s)‖Hs(T3)

)
‖ψεN (s)‖2

Hs+1(R3) e
∫ t
s Θε,N (s′)ds′ds

6 Cc2 (kN + εKN) +
∥∥ψεN,0∥∥Hs(T3)

e
∫ t
0 Θε,N (s)ds, (4.6.16)

where we used the following notation ψεN,0 = ψεN |t=0. Whence considering the hypothesis
(4.6.15) that we set for the bootstrap procedure we deduce∥∥ψεN,0∥∥Hs(T3)

e
∫ t
0 Θε,N (s)ds 6

η

2
, Cc2 (kN + εKN) 6

η

2
. (4.6.17)

Thanks to the existence theorem given in Theorem 4.1.3 we can assert that the application
t 7→ ‖ψεN (t)‖Hs(T3) is continuous, hence, since we considered

∥∥ψεN,0∥∥Hs(T3)
small in (4.6.15)

it makes sense to define the time

T̃ ?ε = sup
{

0 6 t 6 T ?
∣∣∣‖ψεN (t)‖Hs(T3) 6

ν

4C

}
. (4.6.18)

The definition of T̃ ?ε implies that ν − 2C ‖ψεN (s)‖Hs(T3) 6 ν/2 in
[
0, T̃ ?ε

]
, and moreover,

since∣∣∣e∫ ts Θε,N (s′)ds′
∣∣∣ > 1 and estimates (4.6.17) transform (4.6.16) in the following differential

inequality

‖ψεN (t)‖2
Hs(T3) +

ν

2

∫ t

0

‖ψεN (s)‖2
Hs+1(R3) ds 6 η. (4.6.19)

Now the bound on the right hand side of (4.6.19) is independent of t and arbitrary small,
whence selecting η < ν2

16C2 the condition (4.6.18) defining T̃ ?ε is always satisfied, whence we
can assert that T̃ ?ε =∞ (bootstrap) and hence we obtained the following result

Proposition 4.6.5. Let be η > 0, there exists an εη > 0 and Nη ∈ N? such that for each
ε ∈ (0, εη) , N > Nη the function ψεN defined as in (4.6.6) solves globally (4.6.8) and for
each t > 0 the following bound holds true

‖ψεN (t)‖2
Hs(T3) +

ν

2

∫ t

0

‖∇ψεN (s)‖2
Hs(T3) ds 6 η.
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To prove the end of Theorem 4.1.7 is now a corollary pf Proposition 4.6.5. Let us set

Es = L∞
(
R+;Hs

(
T3
))
∩ L2

(
R+;Hs+1

(
T3
))
.

Thanks to the same procedure as always (R̃ε
osc,N is localized in the frequency set) we can

safely assert that
‖W ε‖Es 6 ‖ψ

ε
N‖Es + εKN <∞, (4.6.20)

which accidentally implied thatW ε belongs to Es. Let us remind thatW ε = U ε−U , and that
U belongs to Es thanks to the results proved in Proposition 4.5.4 and 4.5.9, hence U ε ∈ Es if
ε is sufficiently small.
From (4.6.20) we deduce that

lim sup
ε→0

‖W ε‖Es 6 2η,

for any η > 0, whence we finally deduced that U ε ε→0−−→ U in Es. �

4.6.1 Proofs of technical lemmas.

Proof of Lemma 4.6.2 : The proof of Lemma 4.6.2 consists in an application of Lebesgue
dominated convergence theorem. Since every time that Schochet method is applied (notably
we refer to [72]) an estimate of this form on the high frequencies has to be performed we
shall outline the proof of Lemma 4.6.2.
The element Rε,N

osc converges point-wise (in the frequency space) to zero when N → ∞
(computations omitted), and it is indeed true that∣∣|n|s−1

∣∣F Rε,N
osc (t, n)

∣∣∣∣2 6 ∣∣∣ |n|s |F (U ⊗ U) (t, n)|
∣∣∣2 = Gs (t, n) .

By Plancherel theorem the L1 (R+ × Z3, dt× d#) norm of Gs is indeed the square of the
L2 (R+;Hs) norm of U ⊗ U (here we denote with # the discrete homogeneous measure on
Z3). The function Gs will be the dominating function. We apply the following product rule
(for a proof of which we refer to [10, Corollary 2.86, p. 104])

‖U ⊗ U‖Hs(T3) . ‖U‖L∞(T3) ‖U‖Hs(T3) ,

while thanks to the embedding Hs+1 (T3) ↪→ L∞ (T3) for s > 1/2 we can finally state that

‖U ⊗ U‖L2(R+;Hs) . ‖U‖L2(R+;Hs+1(R3)) ‖U‖L∞(R+;Hs(T3)) <∞.

Since Rε,N
osc converges point-wise to zero in the Fourier space as N → ∞ we can hence

deduce (4.6.5). �
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Chapter 5

Low Froude number dynamic in the
whole space.

Mathematics knows no races or
geographic boundaries; for
mathematics, the cultural world is one
country.

David Hilbert

5.1 Introduction.

In the present article we study the behavior of strong solutions of the following modified
Boussinesq system 

∂tu
ε + uε · ∇uε − ν∆uε − 1

ε
ρε−→e 3 =− 1

ε
∇Φε,

∂tρ
ε + uε · ∇ρε − ν ′∆ρε +

1

ε
u3,ε = 0,

divuε = 0,

(uε, ρε)|t=0 = (u0, ρ0) ,

(PBSε)

where the functions (uε, ρε) = U ε depend on the variables (t, x) ∈ R+ × R3, in the regime
ε → 0. The space variable x shall be many times considered separately with respect to the
horizontal and vertical components, i.e. x = (xh, x3) = (x1, x2, x3). In the present paper
we denote ∆ = ∂2

1 + ∂2
2 + ∂2

3 the standard laplacian, ∆h = ∂2
1 + ∂2

2 is the laplacian in
the horizontal directions, as well as ∇h = (∂1, ∂2)ᵀ ,∇⊥h = (−∂2, ∂1)ᵀ. In the same way
the symbol ∇ represents the gradient in all space directions ∇ = (∂1, ∂2, ∂3). Considered a

This chapter in available as a preprint, see [136].
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vector field w we denote divw = ∂1w
1 + ∂2w

2 + ∂3w
3. Given two three-components vector

fields w, z the notation w · ∇z indicates the operator

w · ∇z =
3∑
i=1

wi∂iz.

Generally for any two-components vector field u = (u1, u2) we shall denote as u⊥ =
(−u2, u1). The viscosity ν, ν ′ above are strictly positive constants ν, ν ′ > c > 0 We give in
what follows a short physical justification of the system (PBSε). The system describing the
motion of a fluid with variable density under the effects of (external) gravitational force is
(see [50]): 

∂tu
1 + u · ∇u1 = − 1

ρ0

∂1p+ ν∆u1,

∂tu
2 + u · ∇u2 = − 1

ρ0

∂2p+ ν∆u2,

∂tu
3 + u · ∇u3 +

g ρ
ρ0

= − 1

ρ0

∂3p+ ν∆u3,

∂tρ+ u · ∇ρ− ρ0 N
2

g
u3 = κ∆ρ,

divu = 0.

(5.1.1)

The system (5.1.1) already presents many physical simplifications which were made implic-
itly, such as the incompressibility condition divu = 0 and the Boussinesq approximation:

Fluid density = ρ0 + ρ̄ (x3) + ρ (t, x) , |ρ| � |ρ̄|.

For the sake of simplicity we renormalize the constants ρ0, g to one. The system (PBSε) de-
scribes how a stratified fluid reacts in a long time-scale T to big perturbations around a state
of dynamical equilibrium. To understand in what consist such perturbation let us consider a
fluid which is perfectly stratified: gravity tends to minimize the gravitational potential and
hence to dispose heavier layers under lighter ones. An equilibrium state is hence a config-
uration in which the fluid density is a function depending on the vertical variable x3 only
and it is decreasing in x3. Let us suppose now to displace a certain volume of fluid with
high density in a higher region with lower density (perturbation of equilibrium). Gravity will
induce downward motion and Archimede’s principle will provide upward buoyancy. This
process induces a periodic motion of frequency N appearing in the third equation of (5.1.1).
The valueN appearing in the equation for ρ is called Brunt-Väisälä frequency, and describes
the oscillatory behavior induced by the buoyancy which is caused by the stratification in
decreasing-density stacks. We suppose N to be constant, and indeed N = T−1

N where TN is
the characteristic time of stratification. We define the Froude number as

Fr =
TN
T
� 1.

The Froude number Fr quantifies the stratification effects on the dynamics of the fluid; the
smaller it is the more relevant such effects are. In fact Fr = TN/T is a ratio which involves
time-scales only; the characteristic time of stratification TN is an intrinsic magnitude of the
system which is determinate by the stratification frequency only, while T can be chosen as
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large as the observer desires. It is reasonable hence to think that in very large time-scales T
the periodic motion caused by an induced equilibrium disturbance will somehow disperse,
and the fluid will once again recover a configuration of equilibrium.
Defining the following change of reference scale

uFr (t, x) =
1

T
u

(
t

T
, x

)
, ρFr (t, x) =

TN
T
ρ

(
t

T
, x

)
, pFr (t, x) =

TN
T
p

(
t

T
, x

)
,

the system (5.1.1) becomes

∂tu
Fr + uFr · ∇uFr − ν∆uFr − 1

Fr
ρFr−→e3 = − 1

Fr
∇pFr,

∂tρ
Fr + uFr · ∇ρFr − ν ′∆ρFr +

1

Fr
u3,Fr = 0,

divuFr = 0,(
uFr, ρFr)∣∣

t=0
= (u0, ρ0) .

(5.1.2)

Setting Fr = ε we deduce hence the system (PBSε). Let us rewrite the system (PBSε) into
the following more compact form

∂tU
ε + uε · ∇U ε − DU ε +

1

ε
AU ε = −1

ε

(
∇Φε

0

)
,

U ε = (uε, ρε) ,

divuε = 0,

(PBSε)

where U ε = (uε, ρε) and

A =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 , D =


ν∆ 0 0 0
0 ν∆ 0 0
0 0 ν∆ 0
0 0 0 ν ′∆

 . (5.1.3)

The above form for the system is the one we shall always adopt. We shall use as well the
following differential operator

P =

(
δi,j −∆−1∂i∂j 0

0 1

)
i,j=1,2,3

. (5.1.4)

The operator P acts in the following way: given a four component vector field V = V (x) =
(V 1, V 2, V 3, V 3) = (V ′, V 4) it maps V ′ onto a divergence-free vector field and leaves un-
touched V 4, i.e.

PV =
(
V ′ −∆−1∇divV ′, V 4

)
.

We underline that P and D commute. We shall use this property (even implicitly) repeatedly
all along the present work.

The system (PBSε) falls into a wider category of mathematical problems known as sin-
gular perturbation problems. The idea behind this kind of problems is that, once we have an
external, linear, force acting on a system such as in (PBSε), such force with great magnitude
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will constraint the motion of the system described. This kind of rigidity can hence be used in
order to prove that suitable three-dimensional hydrodynamical flows are globally well-posed
without any smallness assumption on the initial data.

Another system which falls in the category of singular perturbation problems is the sys-
tem describing the motion of a flow under the effect of a strong horizontal rotation, namely
what is known as the Navier-Stokes-Coriolis equations: ∂tv

ε
RF + vεRF · ∇vεRF − ν∆vεRF +

e3 ∧ vεRF

ε
= −1

ε
∇pεRF,

vεRF|t=0 = vRF,0.
(NSCε)

In the case in which the spatial domain is the full three-dimensional space R3, if the initial
data is of the form

vRF,0 = ūh2D,0 + ũ3D,0,

where ūh2D,0 is a two-dimensional vector field it is proved in [42] that

vεRF − wε − ūh2D → 0, in L∞
(
R+; Ḣ

1
2

(
R3
))
,

∇
(
vεRF − wε − ūh2D

)
→ 0, in L2

(
R+; Ḣ

1
2

(
R3
))
,

where wε is the global solution of the linear homogeneous equation associated to (NSCε)
and ūh2D is the global solution of the two-dimensional Navier-Stokes equations.
Many more are the works on global existence and convergence for the equation (NSCε):
in the whole space it was proved in [38] a result of global existence and convergence in
Sobolev spaces of anisotropic type in the case in which the vertical diffusivity is null. Such
result is physically significant since experimental proof suggests that for fluids at a planetary
scale the vertical diffusivity (Ekman number) tends to be very small, see [50] and [126].
We mention as well [80], [114] and [41] for works describing rotating fluids between two
parallel rigid layers with Dirichelet boundary conditions, [119] for rotating fluids with zero
vertical diffusivity and vanishing horizontal diffusivity and [59] for propagation of tangential
regularity in rotating inviscid fluids.

To the best of our knowledge there are not many works concerning the system (PBSε).
In [63] P. Embid and A. Majda study the distributional limit of the primitive equations

∂tu
Ro,Fr + uRo,Fr · ∇uRo,Fr − ν∆uRo,Fr

+
1

Ro
uRo,Fr ∧ −→e3 −

1

Fr
ρRo,Fr−→e3 = −∇P Ro,Fr,

∂tρ
Ro,Fr + uRo,Fr · ∇ρRo,Fr − ν ′∆ρRo,Fr +

1

Fr
u3,Ro,Fr = 0,

divuRo,Fr = 0,(
uRo,Fr, ρRo,Fr)∣∣

t=0
= (u0, ρ0) .

(PE)

In the regimes Ro,Fr = O (ε) and Ro � Fr = O (ε) in the case in which the domain is
periodic-in-space. The value Ro is called the Rossby number and quantifies the influence
of the rotation on the motion of a fluid in the same way as the Froude number quantifies
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the stratification effects. The systems (PE) and (PBSε) are intimately related, for a formal
derivation of (PE) in the case Ro,Fr = O (ε) we refer to the beautiful introduction of [27].
Concerning always the equations (PE) in the regime Ro,Fr = O (ε) in the whole space we
refer to the pioneering work [36] in which J.-Y. Chemin proves that (PE) is globally well
posed in the case in which Fr = Ro = ε, only a certain part of the initial datum is small and
the difference |ν − ν ′| is small. Moreover in [28] and [29] F. Charve uses dispersive tools
(Strichartz estimates) proves that (PE) in the regime Ro,Fr = O (ε) , Ro 6= Fr are globally
well posed and converge to a suitable limit system known as the quasi-geostrophic system
without any smallness assumption on the initial data.

The system (PBSε) is very close to the system (PE) in the regime Ro� Fr = O (ε), we
refer to [63] and references therein for a justification of such fact. Recently K. Widmayer
proved in [144] that the inviscid counterpart of (PBSε) converges locally in L2 (R3) to a
stratified two-dimensional Euler system. In Chapter 4 it is proved that, in a domain which
is three-dimensional, periodic-in-space and non-resonant, the solutions of (PBSε) converge
globally and strongly to the global solutions of a suitable limit system.

5.1.1 The functional setting.

In this section we introduce the functional spaces we shall adopt all along the paper. We
define the homogeneous Sobolev spaces Ḣs

(
Rd
)
, s ∈ R as the space of tempered distribu-

tions u on Rd whose Fourier transform û ∈ L1
loc

(
Rd
)

and such that

‖u‖2
Ḣs(Rd) =

∥∥∥(−∆)s/2 u
∥∥∥2

L2(Rd)
=

∫
Rd
|ξ|2s |û (ξ)|2 dξ <∞.

Since we intend to study the behavior of solutions of nonlinear partial differential equations
we are interested to understand the regularity of a product of distributions. Generally a
product of distributions is not well defined as it was first proved in [134]. This is no longer
true if the distributions considered belong to some suitable homogeneous Sobolev space;

Lemma 5.1.1. Let u ∈ Ḣs1
(
Rd
)
, v ∈ Ḣs2

(
Rd
)

where s1, s2 < d/2 and s1 + s2 > 0. Then

‖u v‖
Ḣs1+s2−

d
2 (Rd)

6 Cs1,s2 ‖u‖Ḣs1(Rd) ‖v‖Ḣs2(Rd) ,

or, equivalently, the point-wise multiplication maps continuously Ḣs1
(
Rd
)
× Ḣs2

(
Rd
)

to
Ḣs1+s2− d2

(
Rd
)
.

Homogeneous Sobolev are Hilbert spaces if and only if s < d/2, in this case the scalar
product of two elements of Ḣs

(
Rd
)

is defined as

(u| v)Ḣs(R3) =

∫
Rd

[
(−∆)s/2 u (x)

]
·
[
(−∆)s/2 v (x)

]
dx,

=

∫
Rdξ

(|ξ|s û (ξ)) · (|ξ|s v̂ (ξ)) dξ.
(5.1.5)
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Chapter 5. Low Froude number dynamic in the whole space.

We refer to [10, p. 26] for a counterexample in the case in which s > d/2.
The norm of Ḣs (R3) does not take in account the behavior of u in a frequency set close to
zero, the non-homogeneous Sobolev space Hs (R3) defined as

Hs
(
Rd
)

=

{
u ∈ S ′

(
Rd
) ∣∣∣∣ ∥∥∥(1−∆)s/2 u

∥∥∥
L2(Rd)

<∞
}
,

gives a deeper description of the tempered distribution u and a mean to control the low-
frequencies as well. Nonetheless we shall work constantly with homogeneous Sobolev
spaces since the propagation of a critical homogeneous Sobolev regularity suffices to de-
duce smoothness of solutions, we shall briefly explain such fact. It is moreover interesting
to notice that

Hs
(
R3
)

= L2
(
R3
)
∩ Ḣs

(
R3
)
, if s > 0.

We shall see that the solutions of (PBSε), if ε is sufficiently close to zero, develop a
behavior which is radically different along the horizontal direction xh and the vertical x3.
This motivates the introduction of the following anisotropic Lebesgue spaces, which are
spaces of function whose integrability differs along horizontal and vertical directions. The
anisotropic Lebesgue spaces Lph (Lqv) with p, q ≥ 1 are defined as

Lph
(
Lqv(R3)

)
= Lp(R2

h;L
q(Rv))

=

u ∈ S ′
∣∣∣∣∣∣ ‖u‖LphLqv =

[∫
R2
h

∣∣∣∣∫
Rv
|u(xh, x3)|q dx3

∣∣∣∣ pq dxh
] 1
p

< +∞

 .

Here, the order of integration is important. Indeed, if 1 ≤ p ≤ q and if u : X1 × X2 → R
is a function in Lp(X1;Lq(X2)), where (X1, dµ1), (X2, dµ2) are measurable spaces, then
u ∈ Lq(X2;Lp(X1)) and

‖u‖Lq(X2;Lp(X1)) ≤ ‖u‖Lp(X1;Lq(X2)) . (5.1.6)

Obviously we can define in a symmetric way the space Lpv (Lqh) = Lp (Rv;L
q (R2

h)). We
shall be interested to study spaces of the kind L∞v (Lqh), q ∈ [1,∞], they are indeed defined
as the tempered distributions such that

‖u‖L∞v (Lqh)
= ess sup

x3∈Rv
‖u (·, x3)‖Lq(R2

h)
<∞.

In a similar way we can define Lph (L∞v ) spaces via the norm

‖u‖Lph(L∞v ) =

(∫
R2
h

ess sup
xx∈Rv

|u (xh, x3)|p dxh

) 1
p

.

Parabolic equations such as Navier-Stokes equations develop a classical integrability regu-
larity of the form L∞ (R+;L2) ∩ L2

(
R+; Ḣ1

)
. It is well known (see [35], for instance)

that as long as Navier-Stokes equations can propagate Ḣ
1
2 (R3) data the solutions are in fact

regular, for this reason it makes sense to define the following space for s > 0:

ĖsT
(
Rd
)

= C
(

[0, T ); Ḣs
(
Rd
))
∩ L2

(
[0, T ); Ḣs+1

(
Rd
))
,

and since we are interested in global-in-time regularity we define hence the space

Ės
(
Rd
)

= Ės∞
(
Rd
)
.
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5.2 Statement of the main result and preliminaries.

Before stating the main result let us mention that, asA defined in (5.1.3) appear in (PBSε) is
skew-symmetric it does not bring any energy in suitable energy spaces which are calibrated
on L2, such as homogeneous and non-homogeneous Sobolev spaces Ḣs, Hs, s ∈ R and
Besov spaces Bs

2,r, s ∈ R, r > 1. We refer to [10] for a detailed definition and a deep de-
scription of Besov spaces in the whole space. This implies in particular that Fujita-Kato and
Leray theorem [10], [104] can be applied on system (PBSε). At first we state the following
theorem à la Leray:

Theorem 5.2.1. Let U0 be in L2 (R3), for each ε > 0 there exist a sequence (U ε)ε>0 such
that, for each ε > 0, the function U ε is a distributional solution of (PBSε) with initial data
U0. Moreover the sequence (U ε)ε>0 is uniformly bounded in Ė0 (R3).

Let us now state a result of existence in the homogeneous Sobolev setting, for a proof we
refer to [10],

Theorem 5.2.2. Let us suppose U0 ∈ Ḣ
1
2 (R3), then there exists a time T = TU0 independent

of ε such that there exists a unique solution U ε of (PBSε) in L4
(

[0, T ]; Ḣ1 (R3)
)

which also

belongs to the space Ė1/2
T (R3).

• If the initial data is small in the space Ḣ
1
2 (R3), i.e. if ‖U0‖Ḣ 1

2 (R3)
6 c̃min{ν, ν ′},

then TU0 =∞.

• If TU0 is finite then ∫ TU0

0

‖U ε (τ)‖4
Ḣ1(R3) dτ =∞. (5.2.1)

Theorem 5.2.2 states that there exist always local, strong solutions for the system (PBSε),
moreover if the Ḣ1/2 initial data is small with respect to the viscosities characterizing the sys-
tem (namely if the constant c̃ in Theorem 5.2.2 is small) the solution is global.

The blow-up condition (5.2.1) gives already an insight on how to connect the critical
homogeneous Sobolev regularity Ḣ

1
2 (R3) with its non-homogeneous counterpart. Indeed

by interpolation of Sobolev spaces we can argue that

‖U ε (τ)‖4
Ḣ1(R3) 6 ‖U

ε (τ)‖2

Ḣ
1
2 (R3)

‖∇U ε (τ)‖2

Ḣ
1
2 (R3)

,

whence to control the Ė1/2 (R3) norm impose a control on the blow-up condition (5.2.1). The
following result stems in a relatively simple way from Theorem 5.2.2:

Corollary 5.2.3. Let U0 ∈ Hs (R3) , s > 1/2, then the unique solution U ε identified by
Theorem 5.2.2 satisfies the following inequality, for each t ∈ (0, TU0):

‖U ε (t)‖2
Hs(R3) + c

∫ t

0

‖∇U ε (τ)‖2
Hs(R3) dτ

6 C ‖U0‖2
Hs(R3) exp

{∫ t

0

‖U ε (τ)‖4
Ḣ1(R3) dτ

}
.

201



Chapter 5. Low Froude number dynamic in the whole space.

The proof of Corollary 5.2.3 is rather simple, but it involves the tools of paradifferential
calculus and Bony decomposition, for this reason is postponed to Section 5.2.2.

Whence the blow-up condition (5.2.1) which is calibrated in the critical homogeneous
Sobolev setting suffices to determinate non-homogeneous subcritical regularity, and the max-
imal lifespan in Corollary 5.2.3 is hence the same one as in Theorem 5.2.2. In what follows it
suffices hence that we focus on the propagation of homogeneous critical Sobolev regularity.

A question of great importance in the study of hydro-dynamical systems is whether
three-dimensional hydro-dynamical flows admit classical solutions which are globally well-
defined. For two-dimensional systems the answer is affirmative and it is known since the
classical works [100] and [106]. In dimension three the question of global solvability for
generic large data remain unsolved. Nonetheless there exist many three-dimensional sys-
tems which admit global-in-time solution of strong type for arbitrary data, notably geophys-
ical fluids [42] belong to such category due to the constraining effects of the rotation of
the Earth. The system (PBSε) can be studied with the methodologies characterizing such
discipline and we prove the following result:

Theorem 5.2.4. Let U0 ∈ H
1
2 (R3), such that ωh = −∂2u

1
0 + ∂1u

2
0 ∈ L2 (R3), there exists a

ε0 > 0 such that for each ε ∈ (0, ε0) the unique local solution U ε of (PBSε) is in fact global
and belongs to the space

U ε ∈ L∞
(
R+; Ḣ

1
2

(
R3
))
∩ L2

(
R+; Ḣ

3
2

(
R3
))

= Ė1/2
(
R3
)
.

Moreover as ε→ 0 the following convergence takes place,

U ε −W ε −
(
ūh, 0, 0

)ᵀ ε→0−−→ 0, in the space Ė1/2
(
R3
)
,

where U ε is the strong solution identified by Theorem 5.2.2 and W ε, ūh are respectively the
unique global solutions (in the space Ė1/2 (R3)) of

∂tW
ε − DW ε +

1

ε
PAW ε =


0
0

−∂3 (−∆h)
−1 divh

(
ūh · ∇hū

h
)

0

 ,

W ε|t=0 = (P−,ε + P+,ε)U0,

(5.2.2)

and (5.4.3). The operators P±,ε are defined in (5.3.7).

Remark 5.2.5. We point out that Theorem 5.2.4 is composed of two main statements:

1. global well-posedness in the energy space Ė1/2 (R3) for positive, small ε,

2. convergence as ε→ 0 in the space Ė1/2 (R3) to the solutions of a suitable limit system,

we prove at first the global well-posedness, and subsequently, thanks to the theory developed
in order to prove such result, we prove the convergence result. �

To prove Theorem 5.2.4 we shall proceed as follows:
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• In Section 5.3 we perform a careful spectral analysis of the linear operator Lε = PA−
εD, where P is the Leray projector onto the first three-components and the identity on
the fourth and A, D are defined in (5.1.3). Such analysis will be of great relevance in
the Sections 5.5 and 5.4.

• In Section 5.4 we prove that the system (5.4.3) is globally well posed in Ės (R3) , s >
0. The system (5.4.3) is the system to whom (PBSε) approaches as ε→ 0.

• In Section 5.5 we study the linear system (5.5.3). The initial data of (5.5.3) is consid-
ered to be in what we denote as the oscillating subspace of Lε, which is introduced
at the end of Section 5.3, and moreover is localized in a a set Cr,R (see (5.3.4)) of the
frequency space which makes his evolution to be described by an oscillating integral
with no stationary phase. This observation is hence the key observation which allows
us to prove some adapted dispersive estimates on the solutions of (5.5.3).

• In Section 5.6 we prove the global well-posedness part of Theorem 5.2.4, i.e. we prove
that for ε sufficiently small the solution U ε of (PBSε) belongs to the space Ė1/2 (R3).
To do so we perform a bootstrap argument on the function δεr,R = U ε − W ε

r,R − Ū
which requires the use of the dispersive estimates performed in Section 5.5.

• Finally in Section 5.7 we prove the convergence part of the statement of Theorem
5.2.4.

Remark 5.2.6. All along the paper we shall denote with C a generic positive constant,
independent by any parameter. Such value may differ from line to line. The positive constant
Cr,R depends instead from the parameter 0 < r < R, and

Cr,R 6 C

(
1 +

RN

rN

)
,

for some positive and finite N ∈ N. �

5.2.1 Dyadic decomposition

We recall that in Rd, with d ∈ N∗, for R > 0, the ball Bd(0, R) is the set

Bd(0, R) =
{
ξ ∈ Rd : |ξ| ≤ R

}
.

For 0 < r1 < r2, we defined the annulus

Ad(r1, r2)
def
=
{
ξ ∈ Rd : r1 ≤ |ξ| ≤ r2

}
.

Next, we recall the following Bernstein-type lemma, which states that Fourier multipliers act
almost as homotheties on distributions whose Fourier transforms are supported in a ball or
an annulus. We refer the reader to [37, Lemma 2.1.1] or [10, Lemma 2.1] for a proof of this
lemma.
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Lemma 5.2.7. Let k ∈ N, d ∈ N∗ and R, r1, r2 ∈ R satisfy 0 < r1 < r2 and R > 0. There
exists a constant C > 0 such that, for any a, b ∈ R, 1 ≤ a ≤ b ≤ +∞, for any λ > 0 and
for any u ∈ La(Rd), we have

supp (û) ⊂ Bd(0, λR) =⇒ sup
|α|=k
‖∂αu‖Lb ≤ Ckλk+d( 1

a
− 1
b ) ‖u‖La , (5.2.3)

supp (û) ⊂ Ad(λr1, λr2) =⇒ C−kλk ‖u‖La ≤ sup
|α|=k
‖∂αu‖La ≤ Ckλk ‖u‖La . (5.2.4)

In order to define the (non-homogeneous) dyadic partition of unity, we also recall the
following proposition, the proof of which can be found in [37, Proposition 2.1.1] or [10,
Proposition 2.10].

Proposition 5.2.8. Let d ∈ N∗. There exist smooth radial function χ and ϕ from Rd to [0, 1],
such that

suppχ ∈ Bd
(

0,
4

3

)
, suppϕ ∈ Ad

(
3

4
,
8

3

)
, (5.2.5)

∀ ξ ∈ R3, χ(ξ) +
∑
j>0

ϕ(2−jξ) = 1, (5.2.6)

|j − j′| > 2 =⇒ suppϕ(2−j·) ∩ suppϕ(2−j
′·) = ∅, (5.2.7)

j > 1 =⇒ suppχ ∩ suppϕ(2−j·) = ∅. (5.2.8)

Moreover, for any ξ ∈ Rd, we have
1

2
6 χ2(ξ) +

∑
j>0

ϕ2(2−jξ) 6 1. (5.2.9)

The dyadic blocks are defined as follows

Definition 5.2.9. For any d ∈ N∗ and for any tempered distribution u ∈ S ′(Rd), we set

4qu = F−1
(
ϕ(2−q |ξ|)û(ξ)

)
, ∀q > 0,

4−1u = F−1
(
χ(2−1 |ξ|)û(ξ)

)
,

4qu ≡ 0, ∀q 6 −2,

Squ =
∑
q′≤q−1

∆q′u, ∀q ∈ Z.

Using the properties of ψ and ϕ, for any tempered distribution u ∈ S ′(Rd), one can formally
write

u =
∑
q

4qu in,

and the homogeneous Sobolev spaces Hs(Rd), with s ∈ R, can be characterized as follows

Proposition 5.2.10. Let d ∈ N∗, s ∈ R and u ∈ Hs(Rd). Then,

‖u‖Hs ∼

(∑
q

22qs ‖4qu‖2
L2

) 1
2

=
∥∥∥(2qs ‖4qu‖L2

)
q∈Z

∥∥∥
`2
.

Moreover, there exists a square-summable sequence of positive numbers (cq)q with
∑

q c
2
q =

1, such that
‖4qu‖L2 ≤ cq(u)2−qs ‖u‖Hs . (5.2.10)
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5.2.2 Paradifferential calculus.

The decomposition into dyadic blocks allows, at least formally, to write, for any tempered
distributions u and v,

u v =
∑
q∈Z
q′∈Z

4qu4q′v (5.2.11)

The Bony decomposition (see for instance [14], [37] or [10] for more details) consists in
splitting the above sum in three parts. The first corresponds to the low frequencies of u
multiplied by the high frequencies of v, the second is the symmetric counterpart of the first,
and the third part concerns the indices q and q′ which are comparable. Then,

uv = Tuv + Tvu+R (u, v) ,

where

Tuv =
∑
q

Sq−1u4qv, Tvu =
∑
q′

Sq′−1v4q′u, R (u, v) =
∑
|q−q′|61

4qu4q′v.

Using the quasi-orthogonality given in (5.2.7) and (5.2.8), we get the following relations.

Lemma 5.2.11. For any tempered distributions u and v, we have

4q (Sq′−1u4q′v) = 0 if |q − q′| > 5

4q (Sq′+1u4q′v) = 0 if q′ 6 q − 4.

Lemma 5.2.11 implies the following decomposition, which we will widely use in this paper

4q(uv) =
∑
|q′−q|64

4q (Sq′−1v4q′u) +
∑
q′>q−4

4q (Sq′+2u4q′v) . (5.2.12)

Proof of Corollary 5.2.3 : Let us consider the three dimensional Navier-Stokes equations
∂tu+ u · ∇u− ν∆u = −∇p,
divu = 0,

u|t=0 = u0.

Let us apply the dyadic block on such equation and lat us multiply the resulting equation
for4qu and let us integrate in space; we deduce the following differential inequality:

1

2

d
dt
‖4qu‖2

L2 + ν ‖4q∇u‖2
L2 6

∣∣(4q (u⊗ u)|4q∇u)L2

∣∣ . (5.2.13)

With Bony decomposition we deduce∣∣(4q (u⊗ u)|4q∇u)L2

∣∣
6

∑
|q−q′|64

∣∣(Sq′−1u⊗4q′u|4q∇u)L2

∣∣+
∑
q′>q−4

∣∣(Sq′+2u⊗4q′u|4q∇u)L2

∣∣
= I1,q + I2,q.
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Since I1,q and I2,q are symmetric we bound the term I2,q which involves an infinite sum and
it is hence more difficult. Applying Hölder inequality we deduce

I2,q =
∑
q′>q−4

∣∣(Sq′+2u⊗4q′u|4q∇u)L2

∣∣
6 ‖u‖L6 ‖4q∇u‖L2

∑
q′>q−4

‖4q′u‖L3 .

We use now the embedding Ḣ1 ↪→ L6 and Ḣ1/2 ↪→ L3 and the property

‖4qu‖L2 ∼ 2−qscq (u) ‖u‖Ḣs , (5.2.14)

where (cq)q ∈ `
2 to deduce that

I2,q . 2−2qscq ‖u‖Ḣ1 ‖u‖
Ḣs+1/2

‖u‖
Ḣs+1

∑
q′>q−4

2(q−q′)scq′ .

We notice that ( ∑
q′>q−4

2(q−q′)scq′

)
q

= ((2sp 1p<4) ? cp)q ∈ `
1,

whence the sequence (bq)q defined as

bq = cq
∑
q′>q−4

2(q−q′)scq′ ∈ `1.

Sobolev interpolation, Young inequality, a multiplication for 22qs, the use of (5.2.14), a
parabolic absorption and Gronwall inequality transform (5.2.13) into

‖u‖2
Ḣs + ν

∫ t

0

‖∇u‖2
Ḣs dτ . ‖u0‖2

Ḣs exp

{
C

ν3

∫ t

0

‖u‖4
Ḣ1 dτ

}
. (5.2.15)

A standard L2 estimate on the Navier-Stokes equations gives us the bound

‖u‖2
L2 + ν

∫ t

0

‖∇u‖2
L2 dτ 6 ‖u0‖2

L2 . (5.2.16)

Summing (5.2.15) and (5.2.16) and since for s > 0 the non-homogeneous Sobolev space is
continuously embedded in both Ḣs and L2, we deduce hence the inequality

‖u‖2
Hs + ν

∫ t

0

‖∇u‖2
Hs dτ 6 C ‖u0‖2

Hs

[
exp

{
C

ν3

∫ t

0

‖u‖4
Ḣ1 dτ

}
+ 1

]
,

concluding. �
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5.3 Spectral analysis of the linear operator.

In the context of singular perturbation problem a important role is determined by the dy-
namical effects induced by the singular operator PA, where P is defined in (5.1.4) and A in
(5.1.3). In particular we are interested to study the effects of the perturbation induced by such
operator. This is generally done with tools of Fourier analysis such as dispersive estimates
on highly oscillating integrals ( [138]). To perform such analysis is hence very important to
understand the explicit structure of the eigenvalues of the linear operator ε−1PA−D, this is
the scope of the present section.
We consider the linear operator

Lε = PA− εD, (5.3.1)

whose Fourier symbol is

L̂ε =


εν |ξ|2 0 0 − ξ3ξ1

|ξ|2

0 εν |ξ|2 0 − ξ3ξ2
|ξ|2

0 0 εν |ξ|2 |ξh|2

|ξ|2

0 0 −1 εν ′ |ξ|2

 .

We study the parabolic operator Lε instead of the hyperbolic PA since we want to take
in account the regularizing effects induced by the second-order elliptic operator −D. This
choice will become clear in Section 5.5.
The characteristic polynomial associated to L̂ε is

PL̂ε (λ) =
(
εν |ξ|2 − λ

)2

(
λ2 − λε |ξ|2 (ν + ν ′) +

|ξh|2

|ξ|2
+ ε2νν ′ |ξ|4

)
.

which admits four roots,
λε0 (ξ) = εν |ξ|2 , (5.3.2)

which has multiplicity two and

λε± (ξ) =
1

2
ε (ν + ν ′) |ξ|2 ± i |ξh|

|ξ|
Sε (ξ) , (5.3.3)

where

Sε (ξ) =

√
1− ε2

(ν − ν ′)2 |ξ|6

4 |ξh|2
.

Let us restrict ourselves on the localization

Cr,R =
{
ξ ∈ R3

ξ : |ξh| > r, |ξ| < R
}
, (5.3.4)

we choose such localization since in Cr,R the eigenvalues λε0, λ
ε
± are well-defined. Moreover∣∣λε± (ξ)

∣∣ > r
2R

(if ε is sufficiently small) for any ξ ∈ Cr,R, hence the oscillating eigenvalues
are never null in such set. It is clear that, for ε sufficiently small, on Cr,R

|Sε (ξ)− 1| 6 Cr,R ε,
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hence from now on we shall consider implicitly Sε ≈ 1.

Let us evaluate the eigenvectors related to the eigenvalues λεi , relatively to the eigenvalue
λε0, which has multiplicity two, we have two eigenvectors

e1 =
(

1 0 0 0
)ᵀ
, e2 =

(
0 1 0 0

)ᵀ
.

These eigenvectors are not divergence-free, hence, a priori, they do not describe the evolution
of solutions to equation (PBSε). In any case there is a subspace of the space Ce1⊕Ce2 which
is composed by divergence-free vector fields, namely the space spanned by the vector

E0 (ξ) =
1

|ξh|
(
−ξ2 ξ1 0 0

)ᵀ
. (5.3.5)

Relatively to the eigenvalues λε± the following eigenvectors can be computed

Eε
± (ξ) =


±i ξ3ξ1|ξ||ξh|

S±ε (ξ)

±i ξ3ξ2|ξ||ξh|
S±ε (ξ)

∓i |ξh||ξ| S
±
ε (ξ)

1

 , (5.3.6)

where

S±ε (ξ) = Sε (ξ)± i

2
ε

(ν − ν ′) |ξ|3

|ξh|
,

hence if ξ ∈ Cr,R and ε small S±ε ≈ 1.

An important feature of the spectral analysis of the operator Lε is that the eigenvectors
are not orthogonal. We will in Section 5.5 require to analyze the regularity of the propagation
of some vector field along the eigendirections spanned by Eε

±. this cannot hence be done by
a standard application of the triangular inequality since, as we will see below, the projections
onto the eigenspaces are defined by suitable Fourier multipliers, hence a more thorough
analysis is required.
Let us now consider a solenoidal vector field V = (V 1, V 2, V 3, V 4) which belongs to the
space

X =
⊕
i=0,±

C Eε
i ,

indeed

V = F−1

(∑
i=0,±

ki,ε (V ) Eε
i

)
,

where the elements ki,ε, i = 0,± are suitable forms which act on the space of solenoidal
vector fields and they describe the magnitude of the projection of V̂ onto the eigenspace
C Eε

i . We can hence define the projections of a divergence-free vector field in X onto the
eigenspace spanned by Eε

i as

Pi,ε (V ) = F−1 (ki,ε (V ) Eε
i ) , i = 0,±. (5.3.7)
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5.3. Spectral analysis of the linear operator.

The definition of Pi,ε does not give any insight of the regularity of the element Pi,ε (V ) w.r.t.
the regularity of V . We expect that the form ki acts as a Fourier multiplier of a suitable
degree. We prove in fact that, as long as we restrict ourselves in the set Cr,R, the map
V̂ 7→ ki,ε (V )Eε

i acts as a multiplication for a constant in terms of L2 regularity:

Lemma 5.3.1. Let V ∈ X a solenoidal vector field such that supp
(
V̂
)
⊂ Cr,R, then for

i = 0,±
‖Pi,ε (V )‖L2(R3) 6 Cr,R ‖V ‖L2(R3) .

Proof. This is a problem of linear algebra. Let us consider the following basis of C4 (in the
Fourier space)

B =
{
e1, E0, E

ε
+, E

ε
−
}
,

and the canonical basis
Bcan = {ej}4

j=1 .

The matrix L̂ε is indeed diagonalizable, hence there exists an invertible matrix Q such that

QL̂ε (ξ)Q−1 = diag
{
λε0 (ξ) , λε0 (ξ) , λε+ (ξ) , λε− (ξ)

}
,

the matrix Q is the change of base matrix from the base Bcan to the base B and, given the
explicit expression of the eigenvectors in (5.3.5), (5.3.6) it assumes the form

Q =


1 −ξ2

|ξh|
i ξ3ξ1|ξ||ξh|

S±ε (ξ) −i ξ3ξ1|ξ||ξh|
S±ε (ξ)

0 ξ1
|ξh|

i ξ3ξ2|ξ||ξh|
S±ε (ξ) −i ξ3ξ2|ξ||ξh|

S±ε (ξ)

0 0 −i |ξh||ξ| S
±
ε (ξ) i |ξh||ξ| S

±
ε (ξ)

0 0 1 1

 .

Let us note that the first column of Q is (1, 0, 0, 0)ᵀ, this is motivated by the fact that we
completed the basis B with the vector e1 in order to obtain a complete basis of C4.
The matrix Q performs the following transformation,

Q


0
k0,ε

k+,ε

k−,ε

 =


V̂ 1

V̂ 2

V̂ 3

V̂ 4

 ,

we deduce hence that the element
0
k0,ε

k+,ε

k−,ε

 = Q−1


V̂ 1

V̂ 2

V̂ 3

V̂ 4

 , (5.3.8)

gives the expression of the ki’s in terms of the variables V̂i’s multiplied by suitable Fourier
multipliers determined by the inverse matrix Q−1. Whence it suffices to compute the explicit
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Chapter 5. Low Froude number dynamic in the whole space.

expression of the matrix Q−1 to solve the linear system above. The matrix Q−1 assumes the
form

Q−1 =


1 ξ2

ξ1

ξ3
ξ1

0

0 |ξh|
ξ1

ξ2ξ3
|ξh|ξ1

0

0 0 −i |ξ|
2S±ε (ξ)

1
2

0 0 +i |ξ|
2S±ε (ξ)

1
2

 , (5.3.9)

whence it is clear that, since V̂ is supported in Cr,R:∣∣∣∣∣∣∣∣


0
k0,ε

k+,ε

k−,ε


∣∣∣∣∣∣∣∣ 6
∣∣Q−1

∣∣ ∣∣∣V̂ ∣∣∣ ,
6 Cr,R

∣∣∣V̂ ∣∣∣ .
The claim follows applying Plancherel theorem.

Lemma 5.3.1 gives hence a complete answer regarding the regularity of the projectors
Pi,ε, nonetheless we did not compute explicitly their form. Regarding the first two equations
of the system (5.3.8) we can deduce the following explicit equations thanks to the explicit
expression of Q−1 given in (5.3.9):

0 = ξ1V̂
1 + ξ2V̂

2 + ξ3V̂
3,

k0 =
1

|ξh|

(
−ξ2V̂

1 + ξ1V̂
2
)
,

hence we can compute explicit expression of the projector P0V = F−1 (k0 (V )E0), which
in particular assumes the form (in the Fourier variables):

F (P0,εV ) = k0,ε (V )E0,

=
1

|ξh|2


−ξ2

+ξ1

0
0

(−ξ2V̂
1 + ξ1V̂

2
)
.

Whence we can define the projector P0 (which does not depend any more on the parameter
ε) which maps a solenoidal vector field V onto CE0 via the following pseudo-differential
operator of order zero

P0V =


− (−∆h)

−1 ∂2 curlhV
+ (−∆h)

−1 ∂1 curlhV
0
0



= (−∆h)
−1


∂2

2 −∂1∂2 0 0
−∂1∂2 ∂2

1 0 0
0 0 0 0
0 0 0 0

V,

(5.3.10)
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where the operator curlh is defined as curlh V = −∂2V
1 + ∂1V

2.

The space CE0 shall be denoted as non-oscillating subspace, whereas the space CEε
+ ⊕

CEε
− shall be denoted as oscillating subspace. This choice of lexicon can easily be justified:

let us consider the following linear system, ∂tWL +
1

ε
Lε WL = 0,

WL|t=0 = WL,0.

The unique solution of such system can be written as

WL (t) = e
t
ε
LεWL,0.

Respectively hence the projection of WL onto the subspaces CE0,CEε
± is

P0WL (t) = F−1
(
e−νt |ξ|

2

P̂0WL,0 (ξ)
)
,

P±,εWL (t) = F−1
(
e− i t

ε
λ±ε (ξ) ̂P±,εWL,0 (ξ)

)
.

We can immediately see hence that the elements P0WL and P±,εWL have two qualitatively
very different behaviors: the former has a purely parabolic decay-in-time, while the latter is
described by an oscillating integral.

5.4 Global well posedness of the limit system.

A consistent part of Theorem 5.2.4 deals with the convergence of solutions of (PBSε) in the
regime ε→ 0 to a certain limit function.
We expect hence that once we restrict ourselves on CE0, no dispersive effect occur due to
the absence of the singular perturbation, determining hence a candidate for the limit model
we look for.

5.4.1 Formal derivation of the limit system.

An important step as long as concerns singular perturbation problems is to deduce for-
mally a limit system to whom (PBSε) converges. Several works on geophysical fluids such
as [42], [28] or [68] suggest that the solutions of (PBSε) converge (in a sense which we do
not specify at the moment) to an element belonging to the nonoscillatory space CE0.

The next result is a direct deduction of Theorem 5.2.1 (see for instance [77, Corollary
2.1]):

Lemma 5.4.1. Let U0 be in L2 (R3), and let U ε be a weak solution of (PBSε), there exists a
U? ∈ L∞ (R+;L2 (R3)) ∩ L2

(
R+; Ḣ1 (R3)

)
and a subsequence εj

j→∞−−−→ 0 such that

U εj ⇀ U? weakly in L2
loc

(
R+;L2

loc

(
R3
))

as j →∞.
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Chapter 5. Low Froude number dynamic in the whole space.

Taking a formal limit for ε → 0 in (PBSε) and supposing that (U ε,Φε) → (U?,Φ?) the
following balance

u3,? = 0,

ρ? = ∂3Φ?,
(5.4.1)

has to take place by simple comparison of magnitude in (PBSε) in the limit ε→ 0.
Le us consider now the subsequence (εj)j identified in Lemma 5.4.1. With a standard argu-
ment of cancellation of the pressure on (PBSε) we can deduce that

−∆Φεj = −∂3ρ
εj + εjdiv div (uεj ⊗ uεj) .

Since

‖div div (uε ⊗ uε)‖L2
loc(R+;H−3) 6 ‖u

ε‖L∞loc(R+;L2) ‖u
ε‖L2

loc(R+;H1) <∞, ∀ ε > 0,

we deduce that εdiv div (uε ⊗ uε) is anO (ε) function in the L2
loc (R+;H−3) topology, hence

since ρεj ⇀ ρ? in L2
loc (R+;L2) for the same subsequence (εj)j we deduce

−∆Φεj → −∆Φ? = −∂3ρ
?,

in the sense of distributions. The above relation together with (5.4.1) imply that

−∆ρ? = −∂2
3ρ

? ⇒ −∆hρ
? = 0.

But−∆hρ
? = 0 in the whole space implies that ρ? = ρ? (x3), and hence Lemma 5.4.1 allows

us to state that ρ? ≡ 0 in L2.
We hence deduced (formally) until now that(

uh,ε, u3,ε, ρε,Φε
)
⇀
(
uh,?, 0, 0,Φ?

)
,

we want to understand (heuristically) which equation is satisfied by the limit function uh,?.

Next let us consider some very specific test functions φ ∈ D (R+ × R3) such that φ =
(φ1, φ2, 0, 0) and

φ1 = −∂2∆−1
h Ψ, φ2 = ∂1∆−1

h Ψ,

for some potential Ψ. This in particular implies that divh φh = 0, these hypothesis have been
imposed so that

φ̂ (t) ∈ CE0, ∀ t > 0.

Let us suppose moreover that the weak convergence sated in Lemma 5.4.1 is strong enough
so that

uεj ⊗ uεj ⇀ u? ⊗ u?. (5.4.2)

Obviously this is not the case, but an educated guess which motivated the development of
the present work.

Testing the equation (PBSε) against functions of such form we deduce that (here we
denote as uh,ε the horizontal components of U ε)〈
uh,εj

∣∣ ∂tφh〉−〈uh0∣∣ψ (0)
〉
+
〈
uh,εj ⊗ uh,εj

∣∣∇hφh
〉
+
〈
u3,εjuh,εj

∣∣ ∂3φh
〉
+
〈
uh,εj

∣∣∆φh〉 = 0,
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Let us take now formally the limit as εj → 0, justified by Lemma 5.4.1. First of all we
remark, thanks to the balance deduced in (5.4.1), and the hypothesis (5.4.2):

u3,εj ⇀ 0 ⇒
〈
u3,εjuh,εj

∣∣ ∂3φh
〉
→ 0 as ε→ 0.

Whence we deduce that, at least in this restricted distributional sense, the limit function
describing the evolution of the horizontal components shall satisfy the system{

∂tu
h,? + uh,? · ∇hu

h,? − ν∆uh,? = −∇hΦ
?,

divh uh,? = 0.

5.4.2 Detailed study of the limit system.

Section 5.4.1 motivates hence the study of the 2-dimensional, incompressible, stratified
Navier-Stokes system

∂tū
h (xh, x3) + ūh (xh, x3) · ∇hū

h (xh, x3)− ν∆ūh (xh, x3) = −∇hp̄ (xh, x3)

divh ūh (xh, x3) = 0,

ūh (xh, x3)
∣∣
t=0

= P0 U0 (xh, x3) = ūh0 (xh, x3) .

(5.4.3)

The operator P0 is defined in (5.3.10). The velocity field ūh is endowed with a 2d-like
vorticity

ωh (xh, x3) = −∂2ū
h,1 (xh, x3) + ∂1ū

h,2 (xh, x3) ,

which, as well as for the two-dimensional Navier-Stokes equation satisfies the transport-
diffusion equation{

∂tω
h (xh, x3) + ūh (xh, x3) · ∇hω

h (xh, x3)− ν∆ωh (xh, x3) = 0

ωh (xh, x3)
∣∣
t=0

= ωh0 (xh, x3) .
(5.4.4)

We can recover ūh from ωh via a 2D-like Biot-Savart law

ūh (xh, x3) =

(
−∂2

∂1

)
∆−1
h ωh (xh, x3) ,

as it was already outlined and justified in the previous section deducing the explicit expres-
sion of the projector P0 in (5.3.10).

Let us make a couple of remarks on the system (5.4.3), the unknown ūh of (5.4.3) de-
pends on all three space variables and is time-dependent, i.e. ūh = ūh (t, x) = ūh (t, xh, x3).
The equations (5.4.3) represents hence a Navier-Stokes system in the horizontal directions
xh, while it is a diffusive equation along the vertical direction x3.

The results stated in the following lemmas are classical, hence the proof is omitted.
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Lemma 5.4.2. Let ūh0 ∈ L2 (R3) and ωh0 ∈ L2 (R3). Then there exists respectively a weak
solution ūh, ωh of (5.4.3) and (5.4.4) such that

ūh, ωh ∈ L∞
(
R+;L2

(
R3
))
∩ L2

(
R+; Ḣ1

(
R3
))
,

and, for each t > 0, the following bounds hold∥∥ūh (t)
∥∥2

L2(R3)
+ 2ν

∫ t

0

∥∥∇ūh (τ)
∥∥2

L2(R3)
dτ 6

∥∥ūh0∥∥2

L2(R3)
,

∥∥ωh (t)
∥∥2

L2(R3)
+ 2ν

∫ t

0

∥∥∇ωh (τ)
∥∥2

L2(R3)
dτ 6

∥∥ωh0∥∥2

L2(R3)
.

Lemma 5.4.3. Let U = U (x) be in L2 (R) ∩ Ḣ1 (R), then U ∈ L∞ (R) and

‖U‖L∞(R) 6 C ‖U‖1/2

L2(R) ‖U
′‖1/2

L2(R) .

The results in Lemma 5.4.2 and 5.4.3 are classical results hence we do not prove them
here. This is all we require in order to prove the following lemma, which is the main
result which will allows us subsequently to prove that (5.4.3) is globally well posed in
Ḣs (R3), s > 0:

Lemma 5.4.4. Let ūh0 , ω
h
0 satisfy the hypotheses of Lemma 5.4.2, then

ūh ∈ L4
(
R+;L4

(
R2
h;L

∞ (Rv)
))

= L4
(
R+;L2

h (L∞v )
)
,

ūh ∈ L4
(
R+;L∞

(
Rv;L

4
(
R2
h

)))
= L4

(
R+;L∞v

(
L4
h

))
,

and for each t > 0 the following bounds hold∫ t

0

∥∥ūh (τ)
∥∥4

L∞v (L4
h)

dτ 6
∫ t

0

∥∥ūh (τ)
∥∥4

L4
h(L∞v )

dτ 6
CK2

ν

(∥∥ūh0∥∥4

L2(R3)
+
∥∥ωh0∥∥4

L2(R3)

)
.

Proof. Let us start considering the value
∥∥ūh∥∥4

L4
h(L∞v )

, applying Lemma 5.4.3 we deduce∥∥ūh∥∥4

L4
h(L∞v )

6 C
∥∥ūh∥∥2

L4
h(L2

v)

∥∥∂3ū
h
∥∥2

L4
h(L2

v)
.

By use of (5.1.6) and a Gagliardo-Nirenberg interpolation inequality we deduce∥∥ūh∥∥2

L4
h(L2

v)
6
∥∥ūh∥∥2

L2
v(L4

h)

6 C
∥∥ūh∥∥

L2(R3)

∥∥∇hū
h
∥∥
L2(R3)

,∥∥∂3ū
h
∥∥2

L4
h(L2

v)
6
∥∥∂3ū

h
∥∥2

L2
v(L4

h)

6 C
∥∥∂3ū

h
∥∥
L2(R3)

∥∥∂3∇hū
h
∥∥
L2(R3)

,

whence we deduce∥∥ūh∥∥4

L4
h(L∞v )

6 C
∥∥ūh∥∥

L2(R3)

∥∥∇hū
h
∥∥
L2(R3)

∥∥∂3ū
h
∥∥
L2(R3)

∥∥∂3∇hū
h
∥∥
L2(R3)

,

6 CK2
∥∥ūh∥∥

L2(R3)

∥∥ωh∥∥
L2(R3)

∥∥∂3ū
h
∥∥
L2(R3)

∥∥∂3ω
h
∥∥
L2(R3)

,

6 CK2
∥∥ūh∥∥

L2(R3)

∥∥ωh∥∥
L2(R3)

∥∥∇ūh∥∥
L2(R3)

∥∥∇ωh∥∥
L2(R3)

(5.4.5)
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where in the second inequality we used the fact that the map ωh 7→ ∇hū
h is a Calderon-

Zygmund application of norm K in L2 (R2
h). Integrating in time (5.4.5) using Young in-

equality and the results of Lemma 5.4.2 we deduce the inequality∫ t

0

∥∥ūh (τ)
∥∥4

L4
h(L∞v )

dτ 6
CK2

ν

(∥∥ūh0∥∥4

L2(R3)
+
∥∥ωh0∥∥4

L2(R3)

)
.

To complete the proof it suffices hence to apply (5.1.6).

Lemma 5.4.4 is the cornerstone of the proof of the propagation of the isotropic Sobolev
regularity, which is formalized in the following proposition

Proposition 5.4.5. Let ūh0 ∈ Hs (R3) , s > 0 and ωh0 ∈ L2 (R3), then the weak solution ūh

of (5.4.3) which exists thanks to Lemma 5.4.2 belongs to the space

ūh ∈ L∞
(
R+;Hs

(
R3
))
, ∇ūh ∈ L2

(
R+;Hs

(
R3
))
,

and for each t > 0 the following bound holds∥∥ūh (t)
∥∥2

Hs(R3)
+ ν

∫ t

0

∥∥∇ūh (τ)
∥∥2

Hs(R3)
dτ

6 C
∥∥ūh0∥∥2

Hs(R3)
exp

{
CK2

ν

(∥∥ūh0∥∥4

L2(R3)
+
∥∥ωh0∥∥4

L2(R3)

)}
. (5.4.6)

Proof. Let us apply the operator 4q to the equation (5.4.3) and multiply it by 4qū
h and

integrate in space, we deduce

1

2

d
dt

∥∥4qū
h
∥∥2

L2(R3)
+ ν

∥∥4q∇ūh
∥∥2

L2(R3)
6
∣∣∣(4q

(
ūh · ∇hū

h
)∣∣4qū

h
)
L2(R3)

∣∣∣ . (5.4.7)

Indeed, since divh ūh = 0 and integrating by parts,∣∣∣(4q

(
ūh · ∇hū

h
)∣∣4qū

h
)
L2(R3)

∣∣∣ =
∣∣∣(4q

(
ūh ⊗ ūh

)∣∣4q∇hū
h
)
L2(R3)

∣∣∣ .
Applying Bony decomposition we deduce∣∣∣(4q

(
ūh ⊗ ūh

)∣∣4q∇hū
h
)
L2(R3)

∣∣∣
6

∑
|q−q′|64

∣∣∣(4q

(
Sq′−1ū

h ⊗4q′ū
h
)∣∣4q∇hū

h
)
L2(R3)

∣∣∣
+
∑
q′>q−4

∣∣∣(4q

(
4q′ū

h ⊗ Sq′+2ū
h
)∣∣4q∇hū

h
)
L2(R3)

∣∣∣ = I1,q + I2,q.

Since the operators 4q, Sq map continuously any Lp (R3) space to itself and by Hölder in-
equality we deduce

I1,q 6 C
∥∥ūh∥∥

L∞v (L4
h)

∑
|q−q′|64

∥∥4q′ū
h
∥∥
L2
v(L4

h)

∥∥4q∇hū
h
∥∥
L2(R3)

,

6 C
∥∥ūh∥∥

L∞v (L4
h)

∑
|q−q′|64

∥∥4q′ū
h
∥∥1/2

L2(R3)

∥∥4q∇hū
h
∥∥3/2

L2(R3)
,

6 Cbq2
−2qs

∥∥ūh∥∥
L∞v (L4

h)

∥∥ūh∥∥1/2

Hs(R3)

∥∥∇hū
h
∥∥3/2

Hs(R3)
.

(5.4.8)
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In the second inequality we used a Gagliardo-Nirenberg inequality and in the third one the
regularity properties of dyadic blocks. The sequence (bq)q ∈ `

1 (Z). For the term I2,q we can
apply the very same procedure to deduce the same bound

I2,q 6 Cbq2
−2qs

∥∥ūh∥∥
L∞v (L4

h)

∥∥ūh∥∥1/2

Hs(R3)

∥∥∇hū
h
∥∥3/2

Hs(R3)
, (5.4.9)

but in this case the sequence (bq)q, which is `1, assumes the convolution form

bq = cq
∑
q′>q−4

2−(q′−q)scq′ .

Thanks to (5.4.8), (5.4.9) we hence deduced that∣∣∣(4q

(
ūh · ∇hū

h
)∣∣4qū

h
)
L2(R3)

∣∣∣ 6 Cbq2
−2qs

∥∥ūh∥∥
L∞v (L4

h)

∥∥ūh∥∥1/2

Hs(R3)

∥∥∇hū
h
∥∥3/2

Hs(R3)
.

(5.4.10)
With the bound (5.4.10) applied to (5.4.7) we deduce

1

2

d
dt

∥∥4qū
h
∥∥2

L2(R3)
+ν
∥∥4q∇ūh

∥∥2

L2(R3)
6 Cbq2

−2qs
∥∥ūh∥∥

L∞v (L4
h)

∥∥ūh∥∥1/2

Hs(R3)

∥∥∇hū
h
∥∥3/2

Hs(R3)
,

(5.4.11)
hence, multiplying (5.4.11) by 22qs, summing on q ∈ Z and using the convexity inequality
ab 6 Ca4 + ν

2
b4/3 we deduce the bound

d
dt

∥∥ūh∥∥2

Hs(R3)
+ ν

∥∥∇ūh∥∥2

Hs(R3)
6
∥∥ūh∥∥4

L∞v (L4
h)

∥∥ūh∥∥2

Hs(R3)
. (5.4.12)

it suffices hence to apply Gronwall inequality on (5.4.12) and consider the result of Lemma
5.4.4 to deduce the bound (5.4.6).

The following result is a direct deduction of the above proposition:

Corollary 5.4.6. The solutions of (5.4.3) are Ḣ
1
2 (R3)-stable if the initial data belong to the

space L2 (R3) ∩ Ḣ 1
2 (R3).

Proof. Let us consider ūh1,0, ū
h
2,0 ∈ L2 (R3) ∩ Ḣ 1

2 (R3), and let us set ūh1 , ū
h
2 respectively the

solutions of 
∂tū

h
1 + ūh1 · ∇hū

h
1 − ν∆ūh1 = −∇hp̄1,

divh ūh1 = 0,

ūh1
∣∣
t=0

= ūh1,0,
∂tū

h
2 + ūh2 · ∇hū

h
2 − ν∆ūh2 = −∇hp̄2,

divh ūh2 = 0,

ūh2
∣∣
t=0

= ūh2,0.

Let us set now

δūh = ūh1 − ūh2 , δp̄ = p̄1 − p̄2,
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the function δūh solves the equation
∂tδū

h − ν∆δūh = −∇hδp̄− 2divh
(
δūh ⊗

(
ūh1 + ūh2

))
,

divh δūh = 0,

δūh
∣∣
t=0

= ūh1,0 − ūh2,0.
(5.4.13)

Performing a Ḣ
1
2 (R3) estimate on the system (5.4.13) we deduce the following differential

inequality:

1

2

d
dt

∥∥δūh (t)
∥∥2

Ḣ
1
2 (R3)

+ ν
∥∥∇δūh (t)

∥∥2

Ḣ
1
2 (R3)

6 C
∣∣∣(divh

(
δūh (t)⊗

(
ūh1 (t) + ūh2 (t)

))∣∣ δūh (t)
)
Ḣ

1
2 (R3)

∣∣∣ .
Applying an integration by parts, Hölder inequality, Sobolev product rules an a interpolation
of Sobolev norms we can deduce:∣∣∣(divh

(
δūh ⊗

(
ūh1 + ūh2

))∣∣ δūh)
Ḣ

1
2 (R3)

∣∣∣
6 C

(∥∥ūh1∥∥1/2

Ḣ
1
2 (R3)

∥∥∇ūh1∥∥1/2

Ḣ
1
2 (R3)

+
∥∥ūh2∥∥1/2

Ḣ
1
2 (R3)

∥∥∇ūh2∥∥1/2

Ḣ
1
2 (R3)

)
×
∥∥δūh∥∥1/2

Ḣ
1
2 (R3)

∥∥∇δūh∥∥3/2

Ḣ
1
2 (R3)

,

whence applying the convexity inequality ab 6 ν
2
a4/3 + C

ν3 b
4, a parabolic absorption and a

Gronwall inequality we deduce

∥∥δūh (t)
∥∥2

Ḣ
1
2 (R3)

+ ν

∫ t

0

∥∥∇δūh (τ)
∥∥2

Ḣ
1
2 (R3)

dτ

6
∥∥δūh0∥∥2

Ḣ
1
2 (R3)

exp

{
C

ν3

∫ t

0

∥∥ūh1 (τ)
∥∥2

Ḣ
1
2 (R3)

∥∥∇ūh1 (τ)
∥∥2

Ḣ
1
2 (R3)

dτ
}

× exp

{
C

ν3

∫ t

0

∥∥ūh2 (τ)
∥∥2

Ḣ
1
2 (R3)

∥∥∇ūh2 (τ)
∥∥2

Ḣ
1
2 (R3)

dτ
}
,

concluding.

5.5 Dispersive properties.

We recall that, for 0 < r < R, in (5.3.4), we defined

Cr,R =
{
ξ ∈ R3

ξ : |ξh| > r, |ξ| < R
}
.

Let ψ a C∞-function from R3 to R such that

χ(ξ) =

{
1 if 0 6 |ξ| 6 1

0 if |ξ| > 2
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and Ψr,R : R3 → R the following frequency cut-off function

Ψr,R(ξ) = χ

(
|ξ|
R

)[
1− χ

(
|ξh|
r

)]
. (5.5.1)

Then, we have Ψr,R ∈ D(R3), supp Ψr,R ⊂ C r
2
,2R and Ψr,R ≡ 1 on Cr,R. Indeed the operator

Ψr,R maps any tempered distribution f to

Ψr,R(D)f = F−1
(

Ψr,R(ξ)f̂(ξ)
)
, (5.5.2)

with this in mind we want to study the following linear system
∂tW

ε
r,R +

1

ε
LεW

ε
r,R = −Ψr,R (D) (P+,ε + P−,ε) Λ

(
ūh
)
,

divwεr,R = 0,

W ε
r,R

∣∣
t=0

= Ψr,R (D) (P+,ε + P−,ε)U0,

(5.5.3)

where P±,ε is the projection respectively onto the space CEε
± defined in (5.3.7) and Lε is

defined in (5.3.1). We stress out the fact that Lemma 5.3.1 implies that the maps Pi,ε are
bounded operators onto L2 as long as we consider functions localized on the set Cr,R.
The forcing term Λ appearing on the right-hand-side of (5.5.3) is defined as

Λ
(
ūh
)

=


0
0
∂3p̄
0

 , (5.5.4)

where the scalar function p̄ the limit pressure of the limit system (5.4.3). We expressed
the nonlinearity Λ as depending on the velocity flow ūh, but in the above definition the
dependence on p̄ is made explicit. Indeed we can express p̄ it in term of ūh as

p̄ = (−∆h)
−1 divh

(
ūh · ∇hū

h
)
,

= (−∆h)
−1 divh divh

(
ūh ⊗ ūh

)
,

(5.5.5)

and this justifies the above observation.
Let us remark that the operator (−∆h)

−1 divh divh is a Fourier multiplier of degree zero. It is
known hence that such operators map continuously Lp (R3) onto itself if p ∈ (1,∞). Some-
times hence we shall implicitly simplify p̄ ∼ ūh ⊗ ūh when we perform energy estimates in
some Lp (R3), p ∈ (1,∞) norm.

The forcing term Λ presents an interesting property

Lemma 5.5.1. Let P0 be the projector onto the non-oscillating subspace defined in (5.3.10),
then

P0Λ = 0.

Proof. It suffices to remark that the only non-zero component of Λ is the third one and that
the projector P0 defined in (5.3.10) maps the third component to zero.
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Lemma 5.5.1 implies in particular that

Λ = (P+,ε + P−,ε) Λ, (5.5.6)

and hence we shall use (5.5.6) repeatedly along this work.

The presence of the external forcing term −Ψr,R (D) Λ is motivated by technical needs
which will be explained in detail in Section 5.6.

5.5.1 Study of the linear system (5.5.3).

In this small section we prove some existence and regularity result concerning the free-wave
system (5.5.3). Let us define the space

H
1/2
r,R =

{
g
∣∣∣ g = Ψr,R (D) f, f ∈ L2

(
R3
)
∩ Ḣ

1
2

(
R3
)}

,

it is indeed trivial to deduce that H1/2
r,R ⊂ H

1
2 (R3) = L2 (R3) ∩ Ḣ 1

2 (R3). The space H1/2
r,R

endowed with the H
1
2 (R3) norm is a Banach space.

Lemma 5.5.2. Let U0 ∈ H
1
2 (R3) such that ωh0 ∈ L2 (R3), for each ε > 0 and 0 < r < R

there exist a solution W ε
r,R of (5.5.3) in the space

W ε
r,R ∈ C1

(
R+;H

1/2
r,R

)
,

moreover the sequence
(
W ε
r,R

)
ε>0

is bounded in the space Ė1/2 (R3) and for each t > 0 and
ε > 0, 0 < r < R the following bound holds true:

∥∥W ε
r,R (t)

∥∥2

Ḣ
1
2 (R3)

+ c

∫ t

0

∥∥∇W ε
r,R (s)

∥∥2

Ḣ
1
2 (R3)

ds 6 Cr,R ‖U0‖2

Ḣ
1
2 (R3)

+
C

ν
‖U0‖4

Ḣ
1
2 (R3)

exp

{
CK2

ν

(∥∥ūh0∥∥4

L2(R3)
+
∥∥ωh0∥∥4

L2(R3)

)}
, (5.5.7)

where c = min {ν, ν ′}.

In order to prove Lemma 5.5.2 it suffices apply Cauchy-Lipschitz theorem (which was
already implicitly used in the proof of Corollary 5.2.3).

Lemma 5.5.3. Let us consider the ordinary differential equation{
u̇ = F (u, t)

u|t=0 = u0 ∈ ω
, (ODE)

where ω is an open subset of a Banach space X . Let

F : ω × R+ → X

(u, t) 7→ F (u, t)
,
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be such that, for each u1, u2 ∈ ω there exists a function L ∈ L1
loc (R+) such that

‖F (u1, t)− F (u2, t)‖X 6 L (t) ‖u1 − u2‖X . (5.5.8)

Let us suppose moreover that

‖F (u, t)‖X 6 β (t)M (‖u‖X) ,

where M ∈ L∞loc (R+) , β ∈ L1
loc (R+). Then there exists a unique maximal solution u in the

space C1 ([0, t?);X) of (ODE), such that, if t? <∞,

lim sup
t↗t?

‖u (t)‖X =∞.

Proof. See [10, Proposition 3.11, p. 131].

Proof of Lemma 5.5.2 : It suffices to consider (5.5.3) in the form

∂tW
ε
r,R = Fε

(
t,W ε

r,R

)
,

where (using as well (5.5.6)):

Fε
(
t,W ε

r,R

)
= −1

ε
LεW

ε
r,R −Ψr,R (D) Λ

(
ūh (t)

)
.

It is easy to prove that Fε satisfies (5.5.8) with a locally L1 function which depends on ε, r
and R. We aim to prove that, for each r, R, ε > 0 the function W ε

r,R belongs to the space

C1
(
R+; Ḣ

1
2 (R3)

)
: accordingly to Lemma 5.5.3 it suffices hence to prove that

sup
t>0

∥∥W ε
r,R (t)

∥∥
Ḣ

1
2 (R3)

<∞.

Let us now multiply (5.5.3) for W ε
r,R and let us take the Ḣ

1
2 (R3) scalar product of it, we

deduce hence that
1

2

d
dt

∥∥W ε
r,R

∥∥2

Ḣ
1
2 (R3)

+ c
∥∥∇W ε

r,R

∥∥2

Ḣ
1
2 (R3)

6
∣∣∣(Ψr,R (D) ∂3 (−∆h)

−1 divh divh
(
ūh ⊗ ūh

)∣∣W ε
r,R

)
Ḣ

1
2 (R3)

∣∣∣ ,
where c = min {ν, ν ′}. Integration by parts, Cauchy-Schwartz inequality, and the fact that
the operator Ψr,R (D) (−∆h)

−1 divh divh maps continuously any Ḣs (R3) space to itself with
norm independent of r and R allow us to deduce∣∣∣(Ψr,R (D) ∂3 (−∆h)

−1 divh divh
(
ūh ⊗ ūh

)∣∣W ε
r,R

)
Ḣ

1
2 (R3)

∣∣∣
6 C

∥∥ūh ⊗ ūh∥∥
Ḣ

1
2 (R3)

∥∥∇W ε
r,R

∥∥
Ḣ

1
2 (R3)

,

and since ∥∥ūh ⊗ ūh∥∥
Ḣ

1
2 (R3)

6 C
∥∥ūh∥∥2

Ḣ1(R3)
,

6 C
∥∥ūh∥∥

Ḣ
1
2 (R3)

∥∥∇ūh∥∥
Ḣ

1
2 (R3)

,

whence applying Young inequality we obtain the estimate
1

2

d
dt

∥∥W ε
r,R

∥∥2

Ḣ
1
2 (R3)

+
c

2

∥∥∇W ε
r,R

∥∥2

Ḣ
1
2 (R3)

6 C
∥∥ūh∥∥2

Ḣ
1
2 (R3)

∥∥∇ūh∥∥2

Ḣ
1
2 (R3)

.

Integrating in-time the above equation and to using the estimate (5.4.6) we hence conclude
the proof. �
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5.5.2 Dispersive properties of (5.5.3).

In the previous section we made sure that (5.5.3) is solvable (locally) in the classical sense
and that the solutions of (5.5.3) belong to the space Ė1/2 (R3) uniformly w.r.t. the parameters
ε, r, R. In the present section we are hence interested to study the perturbation induced by
the operator ε−1Lε, and to prove that such perturbations induce some dispersive effect on
W ε
r,R.

The result we want to prove in this section is the following one

Theorem 5.5.4. Let U0 ∈ H
1
2 (R3), 0 < r < R and ε > 0. Then W ε

r,R solution of (5.5.3)
belongs to the space Lp (R+;L∞ (R3)) , p ∈ [1,∞) and if ε > 0 is sufficiently small∥∥W ε

r,R

∥∥
Lp(R+;L∞(R3))

6 Cr,R

(
1 +

1

ν

)
ε

1
4p max

{
‖U0‖L2(R3) , ‖U0‖2

L2(R3)

}
, (5.5.9)

for p ∈ [1,∞).

Some preparation is indeed required in order to prove Theorem 5.5.4.

By use of Duhamel formula we can write (at least formally) the solution of (5.5.3) as

W ε
r,R (t) = e−

t
ε
LεW ε

r,R,0 −
∫ t

0

e−
t−s
ε

LεΨr,R (D) (P+,ε + P−,ε) Λ
(
ūh (s)

)
ds,

whence along the eigendirection Eε
± the evolution of (5.5.3) assumes the value

P±,ε
(
W ε
r,R

)
(t, x)

= F−1
(
k±
(
W ε
r,R (t)

)
Eε
±
)

(x) ,

=

∫
R3
y×R3

ξ

e±i
t
ε
λε±(ξ)+iξ(x−y)Ψr,R (ξ)P±,ε (U0) (y) dy dξ

−
∫ t

0

∫
R3
y×R3

ξ

e±i
t−s
ε
λε±(ξ)+iξ(x−y)Ψr,R (ξ)P±,εΛ

(
ūh (s, y)

)
dy dξ ds,

= K±,r,R
(
t,
t

ε
, ·
)
? P±,ε (U0) (x)

−
∫ t

0

K±,r,R
(
t− s, t− s

ε
, ·
)
? P±,εΛ

(
ūh (s, ·)

)
ds,

= Gε±,r,R
(
t

ε

)
U0 (x)−

∫ t

0

Gε±,r,R
(
t− s
ε

)
Λ
(
ūh (s)

)
(x) ds.

(5.5.10)

where λε± is defined in (5.3.3). The convolution kernels K±,r,R assume the form

K±,r,R (t, τ, z) =

∫
R3
ξ

e±iτ
|ξh|
|ξ| Sε(ξ)− 1

2
(ν+ν′)|ξ|2t+iξ·zΨr,R (ξ) dξ. (5.5.11)

The convolution kernel K±,r,R is hence a highly oscillating integral. It is well known that
integrals with such a behavior are L∞ (R3) functions whose L∞ (R3) norm decays in time
(see [3], [10], [42], [138]...), we shall apply the methodology of [42] in order to prove the
following result

221



Chapter 5. Low Froude number dynamic in the whole space.

Lemma 5.5.5. For any r, R such that 0 < r < R there exists a constant Cr,R such that for
each z ∈ R3

|K±,r,R (t, τ, z)| 6 Cr,R min
{

1, τ−1/2
}
e−

1
4

(ν+ν′)r2t. (5.5.12)

Proof. Taking the modulus of both sides of (5.5.11) and integrating, considering that Ψr,R is
supported in Cr,R, it is sufficient to prove that

|K±,r,R (t, τ, z)| 6 Cr,R e
− 1

2
(ν+ν′)r2t,

for each t, τ ∈ R+ and z ∈ R3. This holds hence in particular if τ ∈ [0, 1].

The rest of the proof is devoted to improve the above estimate in the case τ > 1.

Let us fix some notation first, we denote as φ (ξ) = |ξh|
|ξ| Sε (ξ) and thanks to Fubini’s

theorem

|K±,r,R (t, τ, z)| =
∫
R3
ξ

e±iτφ(ξ)− 1
2

(ν+ν′)|ξ|2t+iξ·zΨr,R (ξ) dξ

=

∫
R2
ξh

eξh·zh

(∫
Rξ3

e±iτφ(ξ)− 1
2

(ν+ν′)t |ξ|2+iξ3·z3Ψr,R (ξ) dξ3

)
dξh,

=

∫
R2
ξh

eξh·zhI±,r,R (t, τ, ξh, z3) dξh.

Indeed since I± is supported, relatively to the variable ξh, in the set {ξh : r 6 |ξh| 6 R}, we
deduce

|K±,r,R (t, τ, z)| 6 Cr,R |I±,r,R (t, τ, ξh, z3)| ,

hence it shall suffices to prove an L∞ bound for the function I±. Let us remark that I± are
even functions w.r.t. the variable z3, hence we can restrict ourselves to the case z3 > 0.
We are interested to study the L∞ norm of the elements I±, these norms are invariant under
dilation, in particular hence we consider the transformation z3 7→ τz3, τ > 1, with these

I±,r,R (t, τ, ξh, τz3) =

∫
Rξ3

eiτ(±φ(ξ)+ξ3z3)− 1
2

(ν+ν′)t |ξ|2Ψr,R (ξ) dξ3.

Let us fix some notation, we define

Φ (ξ) = ∂ξ3φ (ξ)

=

(
|ξh|
|ξ|

Sε (ξ)− ε2 (ν − ν ′) |ξ| |ξh|
Sε (ξ)

)
ξ3,

θ± (ξ, z3) = ± φ (ξ) + ξ3z3,

Θ± (ξ, z3) = ∂ξ3θ± (ξ, z3) ,

=

(
|ξh|
|ξ|

Sε (ξ)− ε2 (ν − ν ′) |ξ| |ξh|
Sε (ξ)

)
ξ3 + z3.
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With this notation indeed

I±,r,R (t, τ, ξh, τz3) =

∫
Rξ3

eiτθ±(ξ,z3)− 1
2

(ν+ν′)t |ξ|2Ψr,R (ξ) dξ3.

Let us define the differential operator

L± :=
1

1 + τ Θ2
± (ξ, z3)

(1 + i Θ± (ξ, z3) ∂ξ3) ,

in particular there exists a positive constant C independent by any parameter of the problem
such that, being ξ ∈ Cr,R defined in (5.3.4),

r2

CR
ξ3 + z3 6 |Θ± (ξ, z3)| 6 CR2

r
ξ3 + z3. (5.5.13)

Indeed L±
(
eiτθ±

)
= eiτθ± , hence integration by parts yields

I± (t, τ, ξh, τz3) =

∫
R1
ξ3

eiτθ±(ξ,z3)Lᵀ±
(

Ψr,R (ξ) e−
1
2

(ν+ν′)t |ξ|2
)

dξ3, (5.5.14)

where

Lᵀ±
(

Ψr,R (ξ) e−
1
2

(ν+ν′)t |ξ|2
)

=

(
1

1 + τΘ2
±
− i (∂ξ3Θ±)

1− τΘ2
±

(1 + τΘ2
±)

2

)
Ψr,R (ξ) e

1
2

(ν+ν′)t |ξ|2

− iΘ

1 + τΘ2
±
∂ξ3

(
Ψr,R (ξ) e−

1
2

(ν+ν′)t |ξ|2
)
.

Since ξ ∈ Cr,R and thanks to the estimate (5.5.13) we can deduce easily that (here we use the

fact that
∣∣∣∣ 1−τΘ2

±

(1+τΘ2
±)

2

∣∣∣∣ 6 ∣∣∣ 1
1+τΘ2

±

∣∣∣)
1

1 + τΘ2
±
6

Cr,R
1 + τξ2

3

.

Moreover

|Θ±|
1 + τ |Θ±|2

6 Cr,R
1 + z3

1 + τ |z3 + ξ3|2
,

6 Cr,R
1 + z3

1 + τz2
3 + τξ2

3

,

6 Cr,R
1 + z3

(1 +
√
τz3)

2

1

1 + τξ2
3

6 Cr,R
1

1 + τξ2
3

.

The last inequality is true since τ > 1. As is ξ localized in Cr,R it is a matter of straightfor-
ward computations to prove that

|∂ξ3Θ±| 6 Cr,R,
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moreover, being Ψr,R ∈ D,∣∣∣∂ξ3 (Ψr,R (ξ) e−
1
2

(ν+ν′)t |ξ|2
)∣∣∣ 6 Cr,Re

− 1
4

(ν+ν′)r2t,

whence we finally deduced that∣∣∣Lᵀ± (Ψr,R (ξ) e−
1
2

(ν+ν′)t |ξ|2
)∣∣∣ 6 Cr,R

1 + τξ2
3

e−
1
4

(ν+ν′)r2t.

With the above bound and (5.5.14) we deduce hence

|I±,r,R (t, τ, ξh, τz3)| 6 Cr,Re−
1
4

(ν+ν′)r2t

∫
R1
ξ3

dξ3

1 + τξ2
3

,

6 Cr,R τ
−1/2 e−

1
4

(ν+ν′)r2t

which concludes the proof.

Proposition 5.5.6. Let us consider a vector field U0 ∈ L2 (R3) and the functions Gε±,r,R U0

of the variables (t, x) defined in (5.5.10). Then∥∥Gε±,r,RU0

∥∥
Lp(R+;L∞(R3))

6 Cr,R ε
1
4p ‖U0‖L2(R3) , (5.5.15)

for each p ∈ [1,∞).

Proof. Indeed Gε±,r,RU0 can be written as a convolution operator as explained in equation
(5.5.10), in particular

Gε±,r,R
(
t

ε

)
U0 (x) = K±,r,R

(
t,
t

ε
, ·
)
? P±,ε (U0) (x) ,

where P±,ε are the projections onto the eigenspaces generated by Eε
± defined in (5.3.7), and

the convolution kernels K±,r,R are defined in (5.5.11). Considering the dispersive estimate
(5.5.12) given in Lemma 5.5.5 we can apply what is known as TT ? argument (see [10,
Chapter 8]) in the exact same way as it is done in [42], [40], [38], [28], [34] to deduce that

‖K±,r,R ? P±,ε (U0)‖L1(R+;L∞(R3)) 6 Cr,Rε
1/4 ‖P±,ε (U0)‖L2(R3) .

We can hence apply Lemma 5.3.1 obtaining∥∥Gε±,r,RU0

∥∥
L1(R+;L∞(R3))

6 Cr,Rε
1/4 ‖U0‖L2(R3) . (5.5.16)

The element Gε±,r,R
(
t
ε

)
U0 has the following properties:

• Gε±,r,R
(
t
ε

)
U0 is localized in the frequency space,

•
∥∥Gε±,r,RU0

∥∥
L∞(R+;L2(R3))

6 ‖U0‖L2(R3),

whence an application of Bernstein inequality allow us to deduce that∥∥Gε±,r,RU0

∥∥
L∞(R+;L∞(R3))

6 Cr,R ‖U0‖L2(R3) . (5.5.17)

An interpolation between (5.5.16) and (5.5.17) gives finally (5.5.15).
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The oscillating behavior of the propagator allow us to deduce the following dispersive
result on the external forcing −Ψr,R (D) Λ as it is done, for instance, in [78], [56] or [28].

Proposition 5.5.7. There exists a constant Cr,R depending on the localization (5.3.4) such
that, for ε small∥∥∥∥∫ t

0

Gε±,r,R
(
· − s
ε

)
Ψr,R (D) Λ (s) ds

∥∥∥∥
Lp(R+;L∞(R3))

6 Cr,Rε
1
4p ‖Ψr,R (D) Λ‖L1(R+;L2(R3)) ,

(5.5.18)
for each real p > 1.

Proof. For this proof only we write Gε±,r,R = G, Ψr,R = Ψ in order to simplify the notation,∥∥∥∥∫ t

0

G
(
· − s
ε

)
Ψ (D) Λ (s) ds

∥∥∥∥
L1(R+;L∞(R3))

6
∫ ∞

0

∫ t

0

∥∥∥∥G (t− sε
)

Ψ (D) Λ (s)

∥∥∥∥
L∞

ds dt,

applying Fubini theorem and performing the change of variable τ = t− s we deduce∥∥∥∥∫ t

0

G
(
· − s
ε

)
Ψ (D) Λ (s) ds

∥∥∥∥
L1(R+;L∞(R3))

6
∫ ∞

0

∫ ∞
0

∥∥∥G (τ
ε

)
Ψ (D) Λ (s)

∥∥∥
L∞(R3)

dτ ds,

=

∫ ∞
0

‖GΨ (D) Λ (s)‖L1(R+,τL∞(R3)) ds,

whence applying (5.5.15) we deduce that

‖GΨ (D) Λ (s)‖L1(R+,τL∞(R3)) 6 Cr,Rε
1/4 ‖Ψ (D) Λ (s)‖L2(R3) ,

which in turn implies the claim for p = 1.

To lift up the argument to a generic p it suffices to notice that, being Ψ (D) Λ localized in
Cr,R, there exist a constant CR depending on the magnitude of the localization Cr,R such that∥∥∥∥∫ t

0

Gε±,r,R
(
· − s
ε

)
Ψr,R (D) Λ (s) ds

∥∥∥∥
L∞(R+;L∞(R3))

6 CR ‖Ψ (D) Λ‖L1(R+;L2(R3)) ,

hence (5.5.18) follows by interpolation.

Proof of Theorem 5.5.4: to prove Theorem 5.5.4 it suffices to collect all the results proved
in the present section. By superposition we obviously have that

W ε
r,R = P−,εW ε

r,R + P+,εW
ε
r,R,

and applying (5.5.10)

P±,εW ε
r,R = Gε±,r,RU0 −

∫ t

0

Gε±,r,R
(
· − s
ε

)
Ψr,R (D) Λ

(
ūh (s)

)
ds,

whence it suffices to apply (5.5.15) and (5.5.18) to deduce∥∥W ε
r,R

∥∥
Lp(R+;L∞(R3))

6 Cr,R ε
1
4p

(
‖U0‖L2(R3) +

∥∥Ψr,R (D) Λ
(
ūh
)∥∥

L1(R+;L2(R3))

)
,
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hence since ∥∥Ψr,R (D) Λ
(
ūh
)∥∥

L1(R+;L2(R3))
6 R1/2

∥∥ūh∥∥2

L2(R+;Ḣ1(R3)) ,

and thanks to the results of Lemma (5.4.2) we can hence argue that∥∥Ψr,R (D) Λ
(
ūh
)∥∥

L1(R+;L2(R3))
6
Cr,R
ν
‖U0‖2

L2(R3) ,

which implies in turn that∥∥W ε
r,R

∥∥
Lp(R+;L∞(R3))

6 Cr,R

(
1 +

1

ν

)
ε

1
4p max

{
‖U0‖L2(R3) , ‖U0‖2

L2(R3)

}
,

concluding. �

5.6 Long time behavior: the bootstrap procedure.

This section is devoted to deduce the maximal lifespan of the function

δεr,R = U ε −W ε
r,R − Ū , (5.6.1)

where U ε is the local solution of (PBSε) identified in the Theorem 5.2.2, W ε
r,R is the global

solution of the free-wave system (5.5.3) and Ū is the global solution of the limit system iden-
tified in Section 5.4.1 , i.e. the system (5.4.3). By the definition itself of δεr,R we understand
that, being Ū and W ε

r,R globally well-posed, U ε and δεr,R have the same lifespan in the space
Ė1/2 (R3).

This first regularity result is a very rough bound on the Ė0 norm of δεr,R:

Lemma 5.6.1. Let U0 ∈ H
1
2 (R3) such that ωh0 ∈ L2 (R3), the function δεr,R defined as in

(5.6.1) belongs uniformly in ε > 0 to the space Ė0 (R3) and

∥∥δεr,R∥∥2

Ė0(R3)
6 Cr,R

(
1 +

1

c

)
‖U0‖2

L2(R3)

+ C

(
1 +

1

c2

)
‖U0‖2

L2(R3) ‖U0‖2

Ḣ
1
2 (R3)

exp

{
CK2

ν

(
‖U0‖4

L2(R3) +
∥∥ωh0∥∥4

L2(R3)

)}
,

where c = min {ν, ν ′}.

Proof. Theorem 5.2.1 implies that U ε ∈ Ė0 as well as Lemma 5.4.2 implies that Ū ∈ Ė0 and
moreover

‖U ε‖2
Ė0(R3) +

∥∥Ū∥∥2

Ė0(R3)
6 C

(
1 +

1

c

)
‖U0‖2

L2(R3) ,

where c = min {ν, ν ′}. ForW ε
r,R the procedure is similar: let us multiply (5.5.3) forW ε

r,R and
let us integrate in space. Recalling that p̄ = (−∆h)

−1 div div
(
ūh ⊗ ūh

)
= p0 (D)

(
ūh ⊗ ūh

)
it suffices to prove a suitable energy bound on the element∣∣∣(∂3

(
ūh ⊗ ūh

)∣∣W ε
r,R

)
L2(R3)

∣∣∣ .
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Integration by parts and Young inequality allow us to deduce that∣∣∣(∂3

(
ūh ⊗ ūh

)∣∣W ε
r,R

)
L2(R3)

∣∣∣ 6 c

2

∥∥∇W ε
r,R

∥∥2

L2 + C
∥∥ūh ⊗ ūh∥∥2

L2(R3)
.

Product rules in Sobolev spaces imply∥∥ūh ⊗ ūh∥∥2

L2(R3)
6
∥∥ūh∥∥2

Ḣ
1
2 (R3)

∥∥ūh∥∥2

Ḣ1(R3)
,

whence an integration in time

∥∥W ε
r,R (t)

∥∥2

L2(R3)
+ c

∫ t

0

∥∥∇W ε
r,R (τ)

∥∥2

L2(R3)
dτ

6 Cr,R ‖U0‖2
L2(R3) +

∥∥ūh∥∥2

L∞
(
R+;Ḣ

1
2 (R3)

) ∥∥ūh∥∥2

L2(R+;Ḣ1(R3)) .

it suffices hence to use the bounds in Lemma 5.4.2 and Proposition 5.4.5 to deduce the
claim.

Lemma 5.6.1 provides a first rough bound on δεr,R under some rather strong regularity
assumptions on the initial data (U0 ∈ H1/2 and curlh U0 ∈ L2 (R3)). Nonetheless such bound
shall be required in the proof of Lemma 5.6.6 (see function gr.R3 ), which is an important step
in the proof of Proposition 5.6.4, the main result of the present section. Let us remark
moreover that the hypothesis on the initial data of Lemma 5.6.1 are the same as the ones of
Proposition 5.6.4.

The following procedure is standard in singular perturbation problems (see [38], [42]
and [28]). In particular, being the diffusion isotropic we shall follow closely the method-
ology in [42], proving that δεr,R is globally well posed in Ė1/2 (R3). If we prove this, as
mentioned above, we prove as well that U ε is globally well-posed in the space Ė1/2 (R3),
and hence we prove the global-well-posedness part in Theorem 5.2.4.

Let us at first deduce the equation satisfied by the function δεr,R. This is a matter of careful
algebraic computations, which lead us to deduce the following equations

∂tδ
ε
r,R − Dδεr,R +

1

ε
PAδεr,R = −1

ε
∇p̃ε −

(
F ε
r,R +Gε

r,R

)
− (1−Ψr,R (D)) Λ

(
ūh
)
,

div δεr,R = 0,

δεr,R
∣∣
t=0

= [1−Ψr,R (D) (P+,ε + P−,ε)− P0]U0.
(5.6.2)

Where the modified pressure p̃ε = Φε − εp̄ and the nonlinearity is defined as

F ε
r,R = δεr,R · ∇δεr,R + δεr,R · ∇ūh + δεr,R · ∇W ε

r,R + ūh · ∇hδ
ε
r,R + wεr,R · ∇δεr,R,

Gε
r,R = ūh · ∇hw

ε
r,R + wεr,R · ∇ūh + wεr,R · ∇wεr,R.

We can now explain why in the equation (5.5.3) we introduced artificially the external forc-
ing −Ψr,R (D) Λ where Λ is defined in (5.5.4). The pressure p̄ appears with an horizontal
gradient only in the equation (5.4.3), whence the difference

∇Φε − ε∇hp̄,
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Chapter 5. Low Froude number dynamic in the whole space.

arising when we compute the difference equation of U ε − Ū is not the gradient of a scalar
function, being p̄ dependent on the variable x3 as it is clear from its expression in terms of
the velocity flow ūh given in (5.5.5).
The forcing term−Ψr,R (D) Λ = −Ψr,R (D) (P+,ε + P−,ε) Λ on the right-hand-side of (5.5.3)
is hence a corrector term: it adds the intermediate frequencies of ∂3p̄ in order to later obtain
a full gradient function in the system (5.6.2) describing the evolution of δεr,R. Obviously we
require an additional corrector which covers the very low and very high frequencies of Λ, for
this reason it is present in equation (5.6.2) the term − (1−Ψr,R (D)) Λ. We had as well to
use the property (5.5.6) in such process.

Let us define η = ηr,R any positive function depending on the parameters r, R which
determinate the localization Cr,R defined in (5.3.4) such that

lim
r→0
R→∞

ηr,R = 0. (5.6.3)

We shall in fact require more than one η function. Let us point out that, given two functions
η1, η2 which satisfy the above hypothesis if we define η̃ = max {η1, η2} it still satisfy (5.6.3),
hence from now on we shall write simply ηr,R knowing that this process can be applied when
required.

Lemma 5.6.2. Let U0 ∈ Ḣ
1
2 (R3) and P0 be a Fourier multiplier of order 0, then the follow-

ing bound holds true∥∥(1−Ψr,R (D))P0 (D)
(
ūh ⊗ ūh

)∥∥
L2
(
R+;Ḣ

1
2 (R3)

) 6 ηr,R
3C

.

Proof. The proof is an application of Lebesgue dominated convergence theorem. Indeed the
function

|1−Ψr,R (ξ)|2 |ξ| |P0 (ξ)|2
∣∣F (ūh ⊗ ūh) (ξ)

∣∣2 ,
converges point-wise to zero when r → 0, R→∞, hence it suffices to prove that

|ξ| |P0 (ξ)|2
∣∣F (ūh ⊗ ūh) (ξ)

∣∣2 ∈ L1
(
R+;L1

)
.

By Plancherel theorem and product rules in Sobolev spaces we deduce∫ t

0

∫
R3

|ξ|P0 (ξ)2F
(
ūh ⊗ ūh

)2
(t, ξ) dξdt 6 C

∥∥ūh ⊗ ūh∥∥2

L2
(
R+;Ḣ

1
2 (R3)

)
6 C

∥∥∥∥∥ūh∥∥2

Ḣ1

∥∥∥2

L2(R+)

6 C
∥∥ūh∥∥2

L∞
(
R+;Ḣ

1
2 (R3)

) ∥∥∇ūh∥∥2

L2
(
R+;Ḣ

1
2 (R3)

)
<∞,

thanks to the results in Proposition 5.4.5, concluding.
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Let us analyze now the initial data of the system (5.6.2), it is defined as

δr,R,0 = [1−Ψr,R (D) (P+,ε + P−,ε)− P0]U0, (5.6.4)

where the projectors Pi,ε defined in (5.3.7), are the projections onto the eigendirections
Eε
i , i = 0,± defined in (5.3.5) and (5.3.6). The initial data is localized onto the very hi

and low frequencies along the eigendirections of the eigenvectors E± defined in (5.3.6). Un-
fortunately the projectors P±,ε are not bounded on such set of frequencies, hence we cannot
deduce directly the regularity of δr,R,0 in terms of the regularity of U0. Nonetheless we can
prove the following result

Lemma 5.6.3. Let δr,R,0 be the initial data of (5.6.2) be defined as in (5.6.4). For any s ∈ R
if U0 ∈ Ḣs (R3) there exists a constant C which does not depend on the parameters r, R of
the localization Cr,R such that

‖δr,R,0‖Ḣs(R3) 6 C ‖U0‖Ḣs(R3) .

Proof. We can prove Lemma 5.6.3 in a simple way. Let us remark that 1 = P0 +P+,ε+P−,ε,
this in turn implies that

1−Ψr,R (D) (P+,ε + P−,ε)− P0 = (1−Ψr,R (D)) (1− P0) ,

whence
δr,R,0 = (1−Ψr,R (D)) (1− P0)U0.

The projector P0 has been evaluated in detail in (5.3.10), and in particular it is a Fourier
multiplier of order zero. This implies that the operator (1−Ψr,R (D)) (1− P0) is as well
a Fourier multiplier of order zero, such operators map continuously any Ḣs (R3) , s ∈ R
space to itself, whence we deduce the claim.

Given U0 ∈ Ḣ
1
2 (R3) Lemma 5.6.3 and a dominated convergence argument allow us

hence to choose some 0 < r < R such that

‖δr,R,0‖Ḣ 1
2 (R3)

<
ηr,R
3C

, (5.6.5)

with ηr,R real and sufficiently small such that

ηr,R <
c

4 C
,

where c, C are fixed positive constant.

The result we prove in this section is the following one:

Proposition 5.6.4. Let the initial data U0 ∈ H
1
2 (R3) such that ωh0 = −∂2U

1
0 + ∂1U

2
0 ∈

L2 (R3). Let us set 0 < r � 1 � R such that δr,R,0 defined in (5.6.4) satisfies (5.6.5). Let(
δεr,R
)
ε>0

be a sequence indexed by ε of solutions of (5.6.2), there exists a ε0 = ε0 (r, R) > 0

such that for each ε ∈ (0, ε0) and t > 0∥∥δεr,R (t)
∥∥2

Ḣ
1
2 (R3)

+ c

∫ t

0

∥∥∇δεr,R (τ)
∥∥2

Ḣ
1
2 (R3)

dτ 6 η2
r,R, (5.6.6)

where c = min {ν, ν ′} and ηr,R satisfies (5.6.3) and it is independent of the time-variable.
In particular hence for each ε ∈ (0, ε0), being δεr,R defined as in (5.6.1), the solution U ε of
(PBSε) is in fact global and belongs to the space Ė1/2 (R3).

229



Chapter 5. Low Froude number dynamic in the whole space.

The proof of the above proposition consists in a bootstrap argument as it is done in
[42]. The main step in order to prove such bootstrap argument is an energy bound on the
nonlinearity F ε

r,R +Gε
r,R. This is formalized in the following lemma:

Lemma 5.6.5. The following bounds hold true∣∣∣(δεr,R · ∇δεr,R∣∣ δεr,R)Ḣ 1
2 (R3)

∣∣∣ 6 C ∥∥δεr,R∥∥Ḣ 1
2 (R3)

∥∥∇δεr,R∥∥2

Ḣ
1
2 (R3)

,∣∣∣(div
(
δεr,R ⊗

(
ūh +W ε

r,R

))∣∣ δεr,R)Ḣ 1
2 (R3)

∣∣∣ 6 C (∥∥ūh∥∥1/2

Ḣ
1
2 (R3)

∥∥∇ūh∥∥1/2

Ḣ
1
2 (R3)

+
∥∥W ε

r,R

∥∥1/2

Ḣ
1
2 (R3)

∥∥∇W ε
r,R

∥∥1/2

Ḣ
1
2 (R3)

)
×
∥∥δεr,R∥∥1/2

Ḣ
1
2 (R3)

∥∥∇δεr,R∥∥3/2

Ḣ
1
2 (R3)

,∣∣∣( ūh · ∇hW
ε
r,R

∣∣ δεr,R)Ḣ 1
2 (R3)

∣∣∣ 6 Cr,R ∥∥∇δεr,R∥∥L2(R3)

∥∥W ε
r,R

∥∥
L∞(R3)

∥∥ūh∥∥
L2(R3)

,∣∣∣(wεr,R · ∇ūh∣∣ δεr,R)Ḣ 1
2 (R3)

∣∣∣ 6 C ∥∥W ε
r,R

∥∥
L∞(R3)

∥∥ūh∥∥1/2

Ḣ
1
2 (R3)

∥∥∇ūh∥∥1/2

Ḣ
1
2 (R3)

×
∥∥δεr,R∥∥1/2

Ḣ
1
2 (R3)

∥∥∇δεr,R∥∥1/2

Ḣ
1
2 (R3)

,∣∣∣(wεr,R · ∇W ε
r,R

∣∣ δεr,R)Ḣ 1
2 (R3)

∣∣∣ 6 Cr,R ∥∥W ε
r,R

∥∥
L∞(R3)

∥∥W ε
r,R

∥∥
L2(R3)

∥∥δεr,R∥∥Ḣ 1
2 (R3)

.

Thanks to the above bounds we can deduce the following bounds for the nonlinearity
F ε
r,R +Gε

r,R, which shall be the ones that we will use in the proof of the bootstrap argument

Lemma 5.6.6. The following bounds hold true∣∣∣(F ε
r,R

∣∣ δεr,R)Ḣ 1
2 (R3)

∣∣∣ 6 ( c
16

+ C
∥∥δεr,R∥∥Ḣ 1

2 (R3)

)∥∥∇δεr,R∥∥2

Ḣ
1
2 (R3)

+ fr,R
∥∥δεr,R∥∥2

Ḣ
1
2 (R3)

,

(5.6.7)∣∣∣(Gε
r,R

∣∣ δεr,R)Ḣ 1
2 (R3)

∣∣∣ 6 c

16

∥∥∇δεr,R∥∥2

Ḣ
1
2 (R3)

+ gr,R1,ε

∥∥δεr,R∥∥2

Ḣ
1
2 (R3)

+
(
gr,R2 + gr,R3

) ∥∥W ε
r,R

∥∥
L∞(R3)

+ g4

∥∥W ε
r,R

∥∥2

L∞(R3)
,

(5.6.8)

where

fr,R (t) = C
(∥∥ūh (t)

∥∥2

Ḣ
1
2 (R3)

∥∥∇ūh (t)
∥∥2

Ḣ
1
2 (R3)

+
∥∥W ε

r,R (t)
∥∥2

Ḣ
1
2 (R3)

∥∥∇W ε
r,R (t)

∥∥2

Ḣ
1
2 (R3)

)
, ∈ L1 (R+) ,

gr,R1,ε (t) = C
∥∥∇ūh (t)

∥∥2

Ḣ
1
2 (R3)

+ Cr,R
∥∥W ε

r,R

∥∥
L2(R3)

∥∥W ε
r,R

∥∥
L∞(R3)

, ∈ L1 (R+) ,

gr,R2 (t) = Cr,R
∥∥W ε

r,R

∥∥
L2(R3)

, ∈ L∞ (R+) ,

gr,R3 (t) = Cr,R
∥∥ūh∥∥

L2(R3)

∥∥∇δεr,R∥∥L2(R3)
∈ L2 (R+) ,

g4 (t) = C
∥∥ūh (t)

∥∥
Ḣ

1
2 (R3)

, ∈ L∞ (R+) .

Moreover if U0 ∈ Ḣ
1
2 (R3) then f = fr,R ∈ L1 (R+) uniformly with respect to the variables

r, R and for 0 < ε < ε0 (r, R) the function g1 = gr,R1,ε belongs to L1 (R+) uniformly with
respect to the variables r, R.
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5.6. Long time behavior: the bootstrap procedure.

The proofs of Lemmas 5.6.5 and 5.6.6 are postponed.

We can finally prove the convergence result.
Proof of Proposition 5.6.4: Let us perform an Ḣ

1
2 (R3) energy estimate onto the system

(5.6.2), we indeed deduce that

1

2

d
dt

∥∥δεr,R (t)
∥∥2

Ḣ
1
2 (R3)

+ c
∥∥∇δεr,R (t)

∥∥2

Ḣ
1
2 (R3)

6
∣∣∣(F ε

r,R (t)
∣∣ δεr,R (t)

)
Ḣ

1
2 (R3)

∣∣∣+
∣∣∣(Gε

r,R (t)
∣∣ δεr,R (t)

)
Ḣ

1
2 (R3)

∣∣∣
+
∣∣∣((1−Ψr,R (D)) Λ

(
ūh
)∣∣ δεr,R)Ḣ 1

2 (R3)

∣∣∣ . (5.6.9)

Thanks to the explicit definition of Λ given in (5.5.4) an integration by parts and young
inequality we deduce∣∣∣((1−Ψr,R (D)) Λ

(
ūh
)∣∣ δεr,R)Ḣ 1

2 (R3)

∣∣∣
6
∣∣∣((1−Ψr,R (D)) (−∆h)

−1 div div
(
ūh ⊗ ūh

)∣∣ ∂3δ
ε
r,R

)
Ḣ

1
2 (R3)

∣∣∣ ,
6
c

16

∥∥∇δεr,R∥∥2

Ḣ
1
2 (R3)

+
∥∥(1−Ψr,R)P0

(
ūh ⊗ ūh

)∥∥2

Ḣ
1
2 (R3)

,
(5.6.10)

where we denoted P0 = (−∆h)
−1 div div .

With the bounds (5.6.7), (5.6.8) ans (5.6.10) the equation (5.6.9) becomes

1

2

d
dt

∥∥δεr,R (t)
∥∥2

Ḣ
1
2 (R3)

+

(
3 c

4
− C

∥∥δεr,R (t)
∥∥
Ḣ

1
2 (R3)

)∥∥∇δεr,R (t)
∥∥2

Ḣ
1
2 (R3)

6 (f (t) + g1 (t))
∥∥δεr,R (t)

∥∥2

Ḣ
1
2 (R3)

+
(
gr,R2 (t) + gr,R3 (t)

) ∥∥W ε
r,R (t)

∥∥
L∞(R3)

+ g4 (t)
∥∥W ε

r,R (t)
∥∥2

L∞(R3)
+ gr,R5 (t) , (5.6.11)

where
gr,R5 =

∥∥(1−Ψr,R)P0

(
ūh ⊗ ūh

)∥∥2

Ḣ
1
2 (R3)

. (5.6.12)

We omit the dependence of f and g1 on the parameters r, R, ε in light of the results of Lemma
5.6.6.

Let us define at this point the time

T ? = sup
{

0 < t 6 T
∣∣∣ ∥∥δεr,R (t)

∥∥
Ḣ

1
2 (R3)

<
c

4C

}
,

where T is the lifespan defined in Theorem 5.2.2.
For each t ∈ [0, T ?), thanks of the definition of T ?, we can deduce that

3 c

4
− C

∥∥δεr,R (t)
∥∥
Ḣ

1
2 (R3)

>
c

2
,
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Chapter 5. Low Froude number dynamic in the whole space.

from which, combined with (5.6.11) we can deduce:

1

2

d
dt

∥∥δεr,R (t)
∥∥2

Ḣ
1
2 (R3)

+
c

2

∥∥∇δεr,R (t)
∥∥2

Ḣ
1
2 (R3)

6 (f (t) + g1 (t))
∥∥δεr,R (t)

∥∥2

Ḣ
1
2 (R3)

+
(
gr,R2 (t) + gr,R3 (t)

) ∥∥W ε
r,R (t)

∥∥
L∞(R3)

+ g4 (t)
∥∥W ε

r,R (t)
∥∥2

L∞(R3)
+ gr,R5 (t) . (5.6.13)

Let us set

Ξ (t) = −2

∫ t

0

(f (τ) + g1 (τ)) dτ,

and let us remark that since f, g1 ∈ L1 (R+) then Ξ, e±Ξ ∈ L∞ (R+), and moreover

e−Ξ(t) > e
−‖Ξ‖L∞(R+) , eΞ(t) 6 e

‖Ξ‖L∞(R+) . (5.6.14)

Standard calculation on (5.6.13) and integration-in-time imply that

∥∥δεr,R (t)
∥∥2

Ḣ
1
2 (R3)

+ c

∫ t

0

e−(Ξ(t)−Ξ(τ))
∥∥∇δεr,R (τ)

∥∥2

Ḣ
1
2 (R3)

dτ

6 e−Ξ(t) ‖δr,R,0‖2

Ḣ
1
2 (R3)

+ C

∫ t

0

e−(Ξ(t)−Ξ(τ))
((
gr,R2 (τ) + gr,R3 (τ)

) ∥∥W ε
r,R (τ)

∥∥
L∞(R3)

+g4 (τ)
∥∥W ε

r,R (τ)
∥∥2

L∞(R3)
+ gr,R5 (τ)

)
dτ,

whence by the use of (5.6.14) we deduce

∥∥δεr,R (t)
∥∥2

Ḣ
1
2 (R3)

+ c

∫ t

0

∥∥∇δεr,R (τ)
∥∥2

Ḣ
1
2 (R3)

dτ

6 C ‖δr,R,0‖2

Ḣ
1
2 (R3)

+ C

∫ t

0

((
gr,R2 (τ) + gr,R3 (τ)

) ∥∥W ε
r,R (τ)

∥∥
L∞(R3)

+g4 (τ)
∥∥W ε

r,R (τ)
∥∥2

L∞(R3)
+ gr,R5 (τ)

)
dτ. (5.6.15)

Moreover since gr,R2 , g4 ∈ L∞ (R+), gr,R3 ∈ L2 (R+) and thanks to the estimates (5.5.9) we
deduce

C

∫ t

0

((
gr,R2 (τ) + gr,R3 (τ)

) ∥∥W ε
r,R (τ)

∥∥
L∞(R3)

+ g4 (τ)
∥∥W ε

r,R (τ)
∥∥2

L∞(R3)

)
dτ

6 C
(∥∥W ε

r,R

∥∥
L1(R+;L∞(R3))

+
∥∥W ε

r,R

∥∥
L2(R+;L∞(R3))

+
∥∥W ε

r,R

∥∥2

L2(R+;L∞(R3))

)
,

6 Cr,R
(
ε1/4 + ε1/8

)
,

(5.6.16)

for ε < ε0 positive and sufficiently small. In light of the definition of gr,R5 given in (5.6.12)
and Lemma 5.6.2 we deduce

C

∫ ∞
0

gr,R5 (τ) dτ 6
η2
r,R

3
, (5.6.17)
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5.6. Long time behavior: the bootstrap procedure.

The bound (5.6.16), (5.6.17) and (5.6.5) transform (5.6.15) into

∥∥δεr,R (t)
∥∥2

Ḣ
1
2 (R3)

+ c

∫ t

0

∥∥∇δεr,R (τ)
∥∥2

Ḣ
1
2 (R3)

dτ 6
2

3
η2
r,R + Cr,R

(
ε1/4 + ε1/8

)
.

Moreover if ε is sufficiently small

2

3
η2
r,R + Cr,R

(
ε1/4 + ε1/8

)
< η2

r,R,

and hence the bound is independent from the time variable. Applying Lemma 5.5.3 we
deduce that T ? =∞. Moreover, thanks to (5.6.3) and the above results:

lim
r→0
R→∞

lim sup
ε→0

(∥∥δεr,R (t)
∥∥2

Ḣ
1
2 (R3)

+ c

∫ t

0

∥∥∇δεr,R (τ)
∥∥2

Ḣ
1
2 (R3)

dτ
)

= 0,

for each t > 0. �

5.6.1 Proof of Lemma 5.6.5

The first bound is a simple application of the definition (5.1.5) and of Lemma 5.1.1∣∣∣(δεr,R · ∇δεr,R∣∣ δεr,R)Ḣ 1
2 (R3)

∣∣∣ =
∥∥δεr,R ⊗ δεr,R∥∥Ḣ 1

2 (R3)

∥∥∇δεr,R∥∥Ḣ 1
2 (R3)

,

6 C
∥∥δεr,R∥∥2

Ḣ
1
2 (R3)

∥∥∇δεr,R∥∥Ḣ 1
2 (R3)

.

The estimate is derived by interpolation of Sobolev spaces.
For the second estimate∣∣∣(div

(
δεr,R ⊗

(
ūh +W ε

r,R

))∣∣ δεr,R)Ḣ 1
2 (R3)

∣∣∣
6 C

∥∥δεr,R ⊗ (ūh +W ε
r,R

)∥∥
Ḣ

1
2 (R3)

∥∥∇δεr,R∥∥Ḣ 1
2 (R3)

,

6 C
∥∥δεr,R∥∥Ḣ1(R3)

∥∥(ūh +W ε
r,R

)∥∥
Ḣ1(R3)

∥∥∇δεr,R∥∥Ḣ 1
2 (R3)

,

an interpolation of Sobolev spaces and triangular inequality conclude the second estimate.
For the next term∣∣∣( ūh · ∇hW

ε
r,R

∣∣ δεr,R)Ḣ 1
2 (R3)

∣∣∣ 6 ∥∥ūh · ∇W ε
r,R

∥∥
L2(R3)

∥∥∇δεr,R∥∥L2(R3)
,

6 Cr,R
∥∥ūh∥∥

L2(R3)

∥∥W ε
r,R

∥∥
L∞(R3)

∥∥∇δεr,R∥∥L2(R3)
,

where in the last inequality we applied Hölder inequality and Bernstein inequality. For the
last term it suffices to remark that the function wεr,R ·∇W ε

r,R is well-defined and still localized
in the Fourier space, hence apply Hölder and Bernstein inequalities.
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Chapter 5. Low Froude number dynamic in the whole space.

5.6.2 Proof of Lemma 5.6.6

To deduce the bound (5.6.7) and (5.6.8) it suffices to apply repeatedly Young inequality to
the bounds of Lemma 5.6.5, in detail:
applying the convexity inequality α β 6 c

16
α4/3 + C β4 we deduce∣∣∣(div

(
δεr,R ⊗

(
ūh +W ε

r,R

))∣∣ δεr,R)Ḣ 1
2 (R3)

∣∣∣
6 C

(∥∥ūh∥∥1/2

Ḣ
1
2 (R3)

∥∥∇ūh∥∥1/2

Ḣ
1
2 (R3)

+
∥∥W ε

r,R

∥∥1/2

Ḣ
1
2 (R3)

∥∥∇W ε
r,R

∥∥1/2

Ḣ
1
2 (R3)

)
×
∥∥δεr,R∥∥1/2

Ḣ
1
2 (R3)

∥∥∇δεr,R∥∥3/2

Ḣ
1
2 (R3)

6
c

16

∥∥∇δεr,R∥∥2

Ḣ
1
2 (R3)

+ C
(∥∥ūh∥∥2

Ḣ
1
2 (R3)

∥∥∇ūh∥∥2

Ḣ
1
2 (R3)

+
∥∥W ε

r,R

∥∥2

Ḣ
1
2 (R3)

∥∥∇W ε
r,R

∥∥2

Ḣ
1
2 (R3)

)∥∥δεr,R∥∥2

Ḣ
1
2 (R3)

,

and hence we set

fr,R = C
(∥∥ūh∥∥2

Ḣ
1
2 (R3)

∥∥∇ūh∥∥2

Ḣ
1
2 (R3)

+
∥∥W ε

r,R

∥∥2

Ḣ
1
2 (R3)

∥∥∇W ε
r,R

∥∥2

Ḣ
1
2 (R3)

)
,

obtaining the bound (5.6.7).

Next we prove (5.6.8). In the third inequality of Lemma 5.6.6 we proceed as follows∣∣∣( ūh · ∇hW
ε
r,R

∣∣ δεr,R)Ḣ 1
2 (R3)

∣∣∣ 6 Cr,R ∥∥∇δεr,R∥∥L2(R3)

∥∥ūh∥∥
L2(R3)

∥∥W ε
r,R

∥∥
L∞(R3)

= gr,R3

∥∥W ε
r,R

∥∥
L∞(R3)

.

Next, in the fourth inequality of Lemma 5.6.6 we apply the inequality

α β γ 6
c

64
α4 + C β4 + C γ2

in order to deduce the following inequality∣∣∣(wεr,R · ∇ūh∣∣ δεr,R)Ḣ 1
2 (R3)

∣∣∣
6 C

∥∥W ε
r,R

∥∥
L∞(R3)

∥∥ūh∥∥1/2

Ḣ
1
2 (R3)

∥∥∇ūh∥∥1/2

Ḣ
1
2 (R3)

∥∥δεr,R∥∥1/2

Ḣ
1
2 (R3)

∥∥∇δεr,R∥∥1/2

Ḣ
1
2 (R3)

6
c

64

∥∥∇δεr,R∥∥2

Ḣ
1
2 (R3)

+ C
∥∥∇ūh∥∥2

Ḣ
1
2 (R3)

∥∥δεr,R∥∥2

Ḣ
1
2 (R3)

+ C
∥∥ūh∥∥

Ḣ
1
2 (R3)

∥∥W ε
r,R

∥∥2

L∞(R3)
,

hence we set

g4 = C
∥∥ūh∥∥

Ḣ
1
2 (R3)

,

gr,R1,I = C
∥∥∇ūh∥∥2

Ḣ
1
2 (R3)

.
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5.7. Proof of the main result.

For the last inequality it suffices to remark that∣∣∣(wεr,R · ∇W ε
r,R

∣∣ δεr,R)Ḣ 1
2 (R3)

∣∣∣ 6 Cr,R
∥∥W ε

r,R

∥∥
L∞(R3)

∥∥W ε
r,R

∥∥
L2(R3)

∥∥δεr,R∥∥2

Ḣ
1
2 (R3)

+ Cr,R
∥∥W ε

r,R

∥∥
L∞(R3)

∥∥W ε
r,R

∥∥
L2(R3)

,

whence we set

gr,R1,II,ε = Cr,R
∥∥W ε

r,R

∥∥
L∞(R3)

∥∥W ε
r,R

∥∥
L2(R3)

,

gr,R2 = Cr,R
∥∥W ε

r,R

∥∥
L2(R3)

.

Lastly we finally define
gr,R1,ε = gr,R1,I + gr,R1,II,ε,

and we deduce the bound (5.6.8).

The function fr,R belongs indeed to L1 (R+) uniformly with respect to r, R thanks to the
result in Proposition 5.4.5 and Lemma 5.5.2.
For the function gr,R1,ε it suffices to integrate in time and to use the result in Proposition 5.4.5
and (5.5.9) to obtain∥∥∥gr,R1,ε

∥∥∥
L1(R+)

6 C
∥∥∇ūh∥∥2

L2
(
R+;Ḣ

1
2 (R3)

) + Cr,R
∥∥W ε

r,R

∥∥
L∞(R+;L2(R3))

∥∥W ε
r,R

∥∥
L1(R+;L∞(R3))

6 C + Cr,R ε
1/4,

<∞,

if ε is sufficiently small.

5.7 Proof of the main result.

Section 5.6 gives us all the ingredients required in order to prove the main result of the
present paper, namely Theorem 5.2.4. Remarkably the statement in Theormem 5.2.4 and
Proposition 5.6.4 are very similar: the difference is that W ε solution of (5.2.2) does not
depends on the parameters r, R as W ε

r,R solution of (5.5.3). Let us hence define

δε = U ε −W ε − Ū .

In Section 5.5 we focused on existence, regularity and dispersive results for W ε
r,R, but no

result was proved for W ε. Remarkably the initial data of the system (5.2.2), which is solved
by W ε, is not any more localized in the frequency space. The estimate (5.5.7) hence does
not hold true any more, in particular the bound∥∥∥W ε

r,R

∣∣
t=0

∥∥∥2

Ḣ
1
2 (R3)

6 Cr,R ‖U0‖Ḣ 1
2 (R3)

,

is false for initial data which are not localized as for W ε. Fortunately we can extend the
result of Lemma 5.5.2 to the system (5.2.2) with an argument very similar to the one given
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Chapter 5. Low Froude number dynamic in the whole space.

in the proof of Lemma 5.6.3. We omit a detailed proof here, but it suffices to remark that the
operator P+,ε + P−,ε = 1 − P0, and that the operator 1 − P0 is continuous in any Ḣs (R3)

space. We hence showed that, if U0 ∈ Ḣ
1
2 (R3),

W ε ∈ Ė1/2
(
R3
)
,

and we shall use this property continuously in what follows

Let us fix 0 < r � 1� R such that (5.6.3) is satisfied, indeed we have that

δε = δεr,R −
(
W ε −W ε

r,R

)
.

In the last equation we hence introduce artificially a dependence on r, R. From this we derive
that

lim sup
ε→0

‖δε‖Ė1/2(R3) 6 lim sup
ε→0

(∥∥δεr,R∥∥Ė1/2(R3)
+
∥∥W ε −W ε

r,R

∥∥
Ė1/2(R3)

)
,

6 ηr,R + lim sup
ε→0

∥∥W ε −W ε
r,R

∥∥
Ė1/2(R3)

,

where we used (5.6.6). The left-hand-side of the above equation is independent from the
parameters r, R, hence

lim sup
ε→0

‖δε‖Ė1/2(R3) 6 lim
r→0
R→∞

(
ηr,R + lim sup

ε→0

∥∥W ε −W ε
r,R

∥∥
Ė1/2(R3)

)
,

= 0,

where in the last equality we used (5.6.3) and a dominated convergence argument to deduce
that lim

r→0
R→∞

∥∥W ε −W ε
r,R

∥∥
Ė1/2(R3)

= 0 for each ε > 0.
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Chapter 6

Weakly compressible and fast rotating
fluids.

Life stands before me like an eternal
spring with new and brilliant clothes.

Carl Friederich Gauss

The present chapter is a joint work with V.-S. Ngo, maître de conférences at the Labora-
toire de Mathématiques Raphaël Salem, departement of the Université de Rouen.

6.1 Introduction

In this paper, we consider the following system of weakly compressible, fast rotating fluids
in the whole space R3


∂t
(
ρε,θuε,θ

)
+ div

(
ρε,θuε,θ ⊗ uε,θ

)
+

1

θ2
∇P

(
ρε,θ
)

+
1

ε
e3 ∧

(
ρε,θuε,θ

)
= 0

∂tρ
ε,θ + div

(
ρε,θuε,θ

)
= 0(

ρε,θ, uε,θ
)∣∣
t=0

=
(
ρε,θ0 , uε,θ0

)
.

(CREε,θ)

Here, the Rossby number ε represents the ratio of the displacement due to inertia to the
displacement due to Coriolis force. On a planetary scale, the displacement due by inertial
forces, i.e. the collision of air molecules (in the case of the atmosphere) or water molecules
(in the case of oceans) is generally much smaller than the relative displacement due to the
rotation of the Earth around his own axis. Away from persistent streams such as the Gulf
stream, the value of Rossby number is around 10−3. On the other hand, the Mach number is a
dimensionless number representing the ration between the local flow velocity and the speed

The present chapter was submitted for publication under the name Dispersive effects of weakly compress-
ible and fast rotating inviscid fluids, see [120].
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of sound in the medium. For geophysical fluids appearing in meteorology for exemple, the
Mach number θ is also very small.

We want to have a few words about the low Mach-number regime and the fast rotation
limit. For the weak compressible limit, the fluid is expected to have an incompressible be-
haviour. In the fast rotation limit, the Coriolis force becomes dominant and plays a very
important role. Indeed, the fast rotating fluid have tendency to stabilize and to move in verti-
cal columns (the so-called “Taylor-Proudman” columns). This phenomenon can be observed
in many geophysical fluids (such as oceanic currents in the western North Atlantic) and is
well known in fluid mechanics as the Taylor-Proudman theorem (see [126] for more details).

We remark that if ε � θ or ε � θ, then either the high rotation or the weak compress-
ibility dominates the other, and one can separately take the high rotation limit and the weak
compressible limit. In this paper, we are interested in the case where these two numbers are
very small and where the high rotation and weak compressibility limits occur at the same
scale, i.e. θ = ε → 0. Moreover, in our study, we suppose that the fluid is inviscid and
isentropic, which means that it has no viscosity and the pressure satisfies

P = P (ρ) = Aργ,

where A > 0 and γ > 1 are given. We refer the reader to [126] and the references therein
for further physical explanations, and to [42] for a brief physical introduction of fast rotating
hydrodynamic systems with strong emphasis on the problem under the mathematical point
of view.

6.1.1 Formulation of the system

Let us give a brief explanation of the formulation of our system. In general, the motion
of a compressible fluid with a homogeneous temperature can be derived from the laws of
conservation of mass and of linear momentum (see [11], [101] or [109] for instance), and is
described by the following system{

∂t (ρu) + div (ρu⊗ u)− div (σ) = ρf

∂tρ+ div (ρu) = 0.

Here, σ is the stress tensor and f represents the external body forces acting on the fluid
(gravity, Coriolis, electromagnetic forces, etc. . . ). For an isotropic newtonian fluid, the stress
tensor is supposed to be linearly dependent on the strain rate tensor D = 1

2

(
∇u+ T∇u

)
,

and writes
σ = −p1 + λdivu+ µ

(
∇u+ T∇u

)
,

where the scalar function p stands for the pressure, 1 is the identity matrix (tensor) and
µ, λ > 0 are the Lamé viscosity coefficients (which may depend on the density ρ). In fluid
mechanics, µ is referred to as the dynamic viscosity of the fluid and in a case of a barotropic
fluid, p is a function of the density ρ only. These considerations lead to the following system
describing the motion of a compressible newtonian barotropic fluid{

∂t (ρu) + div (ρu⊗ u)− div
(
λdivu+ µ

(
∇u+ T∇u

))
+∇p = ρf

∂tρ+ div (ρu) = 0.
(CNS)
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In the case of low Mach-number flow, the Mach number θ is suppose to be very small (the
fluid is pseudo-incompressible), we perform the rescaling

ρθ (t, x) = ρ

(
t

θ
, x

)
and uθ (t, x) =

1

θ
u

(
t

θ
, x

)
,

and the system (CNS), endowed with some initial data, becomes
∂t
(
ρθuθ

)
+ div

(
ρθuθ ⊗ uθ

)
− µ∆uθ − (λ+ µ)∇divuθ +

1

θ2
∇P

(
ρθ
)

= ρθf

∂tρ
θ + div

(
ρθuθ

)
= 0(

ρθ, uθ
)∣∣
t=0

=
(
ρθ0, u

θ
0

)
.

(CNSθ)

In physical experiments and observations, λ and µ are usually very small. For this reason,
it makes sense to study the case of inviscid compressible fluids where λ = µ = 0 and we
obtain the following system

∂t
(
ρθuθ

)
+ div

(
ρθuθ ⊗ uθ

)
+

1

θ2
∇P

(
ρθ
)

= ρθf

∂tρ
θ + div

(
ρθuθ

)
= 0(

ρθ, uθ
)∣∣
t=0

=
(
ρθ0, u

θ
0

)
.

(CEθ)

Now, for geophysical fluids such as the oceans or the atmosphere, effects of the rotation
of the Earth can not be neglected. Rewriting the systems (CNSθ) or (CEθ) in a rotating
frame of reference tied to the Earth, we have to take into accounts two factors, the Coriolis
acceleration and the centrifugal acceleration. We assume that the centrifugal force is in
equilibium with the stratification due to the gravity of the Earth, and so can be neglected. We
also suppose that the rotation axis is parallel to the x3-axis, and that the speed of rotation is
constant, which is often considered in the study of geophysical fluids in mid-latitude regions.
Then, the system (CNSθ) writes

∂t
(
ρε,θuε,θ

)
+ div

(
ρε,θuε,θ ⊗ uε,θ

)
− µ∆uε,θ − (λ+ µ)∇divuε,θ

+
1

θ2
∇P

(
ρε,θ
)

+
1

ε
e3 ∧

(
ρε,θuε,θ

)
= 0

∂tρ
ε,θ + div

(
ρε,θuε,θ

)
= 0(

ρε,θ, uε,θ
)∣∣
t=0

=
(
ρε,θ0 , uε,θ0

)
.

(CRNSε,θ)
In the case where there is no viscosity, we obtain the system (CREε,θ).

6.1.2 Brief recall of known results

For non-rotating fluids, many results have been obtained concerning the systems (CNSθ) and
(CEθ) in the case of well prepared initial data, i.e.

ρθ0 = 1 +O
(
θ2
)

and divuθ0 = O (θ) ,
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for which, we refer to the works [95], [99], [105] or [82]. In the case of ill prepared initial
data, it is only assumed that

ρθ0 = 1 + θbθ0

and
(
bθ0, u

θ
0

)
are only bounded in some suitable spaces which does not necessarily belong to

the kernel of the penalized operator. If Puθ0 → v0 when θ goes to zero1, one expects that
uθ → v where v is the solution of the incompressible Navier-Stokes equations

∂tv + v · ∇v − µ∆v +∇Π = 0,
div v = 0
v|t=0 = v0.

(INS)

The expected convergence is however not easy to be rigorously justified. The main difficulty
lies in the fact that one has to deal with the propagation of acoustic waves with speed of order
θ−1, a phenomenon which does not occur in the case of well prepared data.

In [110], P.-L- Lions proved the existence of global weak solutions of (CNSθ) for initial
data with minimal regularity assumptions. The fluid is supposed to be isentropic and the
pressure is of the form P (ρ) = aργ , with certain restrictions on γ depending on the space
dimension d. In the same setting P.-L. Lions and N. Masmoudi in [111] proved that weak
solutions of (CNSθ) converges weakly to weak solutions of (INS) in various boundary set-
tings. This result is proved via some weak compactness methods (see also [77] and [66]).
In the work of B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi [57], considering
(CNSθ) with f ≡ 0, in a bounded domain Ω with Dirichlet boundary conditions, the au-
thors proved that as θ → 0, the global weak solutions of (CNSθ) converge weakly in L2 to
a global weak solution of the incompressible Navier-Stokes equations (INS). In [56], using
dispersive Strichartz-type estimates, Desjardins and Grenier proved that the gradient part of
the velocity field (i.e. the gradient of the acoustic potential) of the system (CNSθ) converges
strongly to zero. Finally, we want to mention the works of R. Danchin [52] and [54]. In [52],
the author proved global existence of strong solutions for the system (CNSθ) for small initial
data in some suitable, critical, scale-invariant (Besov) spaces, in the same spirit as in the
work of Cannone, Planchon and Meyer [18] or the work of Fujita-Kato [70] for the incom-
pressible model. In [54], the author addressed to the convergence of (CNSθ) to (INS) for
ill-prepared initial data when the Mach number θ tends to zero. When the initial data are
small, the author obtains global convergence and existence, while for large initial data with
some further regularity assumptions, it is shown that the solution of (CNSθ) exists and con-
verges to the solution of (INS) in the same time interval of existence of the solution of (INS).
For compressible inviscid fluids in the non-rotating case, in [60], A. Dutrifoy and T. Hmidi
considered the system (CEθ) in R2 with initial data not uniformly smooth (i.e. the C1 norm is
of order O (θ−α) , α > 0). The convergence to strong, global solutions of 2D Euler equation
is proved by mean of Strichartz estimates and the propagation of the minimal regularity.

In the case of incompressible fast rotating fluids, we first recall the works of J.-Y. Chemin,
B. Desjardins, I. Gallagher and E. Grenier [40] and [38] for incompressible viscous rotating
fluids, with initial data of the form

u0 = u0 + ũ0,

1Here P is the Leray projector on the space of solenoidal vector fields defined as P = I −∆−1∇div
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6.1. Introduction

where the 2D part u0 only depends on (x1, x2) and the 3D part ũ0 belongs to the anisotropic
Sobolev spaces H0,s, with s > 1

2
. It is proved that the 2D part is governed by a 2D incom-

pressible Navier-Stokes system, while the 3D part converges to zero as the Rossby number
ε → 0, using Strichartz estimates obtained for the associated linear free-wave system. As
a consequence, if the rotation is fast enough, the solution of the 3D incompressible viscous
rotating fluids exists globally in time and converges to the solution of the 2D incompressible
Navier-Stokes system. In the case of incompressible, inviscid fluids, however, we cannot get
the global existence of strong solutions when the rotation is fast, due to the lack of smoothing
effect given by the viscous term. It is proved in A. Dutrifoy [59] that if the rotation is fast
enough (ε→ 0), the solution of a incompressible inviscid rotating fluids exists almost global
in time, with the lifespan is at least equivalent to ln ln ε−1. However, in the case where the
viscosity is not zero, but very small (of order εα, for α in some interval [0, α0[), when the
rotation is fast enough, the global existence on strong solutions can still be proven in the case
of pure 3D initial data (see [119]).

Let us now focus on fast rotating, compressible fluids. To the best of our knowledge,
there is no result yet concerning the the inviscid system (CREε,θ). In the viscous fast rotating
case, in [68], E. Fereisl, I. Gallagher and A. Novotný studied the dynamics, when θ = ε→ 0,
of weaks solutions of the system (CRNSε,θ) in R2 × T1, with non-slip boundary conditions

uε,3
∣∣
x3=0,1

= 0 and (S2,3,−S1,3, 0)|x3=0,1 =0,

where S is the stress viscous tensor

S (∇u) = µ

(
∇u+ T∇u− 2

3
divuI

)
.

Their result relies on the spectral analysis of the singular perturbation operator. Using RAGE
theorem (see [132]), the authors proved the dispersion due to fast rotation and that weak
solutions of (CRNSε,θ) converges to a 2D viscous quasi-geostrophic equation for the limit
density. We refer to [68] for a detailed description of the limit system. In [67], Feireisl,
Gallagher, Gérard-Varet and Novotný studied the system (CRNSε,θ) in the case where the
effect of the centrifugal force was taken into account. Noticing that this term scales as ε−2,
they studied both the isotropic limit and the multi-scale limit: namely, they supposed the
Mach-number to be proportional to εm, for m > 1. We want to point out that, in the analysis
of the isotropic scaling (m = 1), the authors had to resort to compensated compactness
arguments in order to pass to the limit: as a matter of fact, the singular perturbation operator
had variable coefficients, and spectral analysis tools were no more available. Recently in
[65], F. Fanelli proved a similar result as the one proved in [68] and [93], by adding to
the system (CRNSε,θ) a capillarity term and studying various regimes depending on some
positive parameter.

To complete our brief survey of known results, we want to remark that all the compress-
ible systems previously mentionned are isothermal. In the case of variable temperature, the
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generic system governing a heat conductive, compressible fluid is the following

∂tρ+ div (ρu) = 0,

∂t (ρu) + div (ρu⊗ u)− div (τ) +∇P = ρf,

∂t

(
ρ

(
|u|2

2
+ e

))
+ div

[
u

(
ρ

(
|u|2

2
+ e

)
+ P

)]
= div (τ · u)− div q + ρf · u,

(HCCNS)

which can be derived from the conservation of mass, linear momentum and energy. We refer
the reader to [109] and references therein for more details. Here, the fluid is always supposed
to be newtonian and e = e (t, x) is the internal (thermal) energy per unit mass. The heat
conduction q is given by q = −k∇T , where k is positive and T stands for the temperature.
If e obeys Joule rule (i.e. e is a function of T only), the initial data is smooth and the
initial density is bounded and bounded away from zero, the existence and uniqueness of a
local classical solution has already been known for a long time (see [117] or [90]). In [53],
R. Danchin proved that (HCCNS) is locally well posed in the critical scale-invariant space

B
N
p
−1

p,1

(
RN
)
, p ∈ [1,∞[.

6.1.3 Main result and structure of the paper.

The aim of this paper is to study the behavior of strong solutions of the system (CREε,θ) in
the limit θ = ε→ 0 and in the case of ill-prepared initial data in the whole space R3, say

ρ0 = 1 + εb0.

Let γ = (γ − 1)/2. We consider the substitution

1 + εbε =
(4γA)1/2

γ − 1
(ρε)γ

and (CREε,θ) becomes (after a few algebraic calculations)
∂tu

ε +
1

ε

(
γ∇bε + e3 ∧ uε

)
+ uε · ∇uε + γ bε∇bε = 0

∂tb
ε +

γ

ε
divuε + uε∇bε + γ bεdivuε = 0

(bε, uε)|t=0 = (b0, u0) .

(6.1.1)

From now on we shall always consider the system (CREε,θ) in the form (6.1.1) or in a more
compact form  ∂t

(
uε

bε

)
− 1

ε
B
(
uε

bε

)
+

(
uε · ∇uε + γ bε∇bε
uε · ∇bε + γ bεdivuε

)
= 0,

(uε, bε)|t=0 = (u0, b0) ,

(6.1.2)

where B is the following operator

B =


0 1 0 −γ∂1

−1 0 0 −γ∂2

0 0 0 −γ∂3

−γ∂1 −γ∂2 −γ∂3 0

 , (6.1.3)
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and where ∂i, for any i ∈ {1, 2, 3} stands for the derivative with respect to xi variable.
Moreover we can write the nonlinearity as follows(

uε · ∇uε + γ bε∇bε
uε · ∇bε + γ bεdivuε

)
= A (U,D)U

=


uε · ∇ 0 0 γbε∂1

0 uε · ∇ 0 γbε∂2

0 0 uε · ∇ γbε∂3

γbε∂1 γbε∂2 γbε∂3 uε · ∇

( uε

bε

)
,

(6.1.4)

where U stays for
(
uε

bε

)
. With all the above considerations, the system (6.1.2) can be

rewritten as  ∂tU −
1

ε
BU +A(U,D)U = 0,

U |t=0 = U0 = (u0, b0) .
(6.1.5)

Remark 6.1.1. We would like to underline that, given a L2 (R3) vector field F , we have

(BF |F )L2(R3) =
(
B̂F
∣∣∣ F̂)

L2(R3)
= 0.

In order to state our result, we recall the definitions of the functional spaces we will use
in our paper. We use the index “h” to refer to the horizontal variable, and the index “v” or “3”
to refer to the vertical one. Thus, xh = (x1, x2) and ξh = (ξ1, ξ2). The anisotropic Lebesgue
spaces LphL

q
v with p, q ≥ 1 are defined as

LphL
q
v(R3) = Lp(R2

h;L
q
v(R))

=

u ∈ S ′ : ‖u‖LphLqv =

[∫
R2
h

∣∣∣∣∫
Rv
|u(xh, x3)|q dx3

∣∣∣∣ pq dxh
] 1
p

< +∞

 .

Here, the order of integration is important. Indeed, if 1 ≤ p ≤ q and if u : X1 × X2 → R
is a function in Lp(X1;Lq(X2)), where (X1, dµ1), (X2, dµ2) are measurable spaces, then
u ∈ Lq(X2;Lp(X1)) and

‖u‖Lq(X2;Lp(X1)) ≤ ‖u‖Lp(X1;Lq(X2)) .

We recall that the non-homogeneous Sobolev spaces Hs (R3), with s ∈ R, are defined as the
closure of the set of smooth functions under the norm

‖u‖Hs

def
=

(∫
R3

(
1 + |ξ|2

)s |û(ξ)|2 dξ
) 1

2

.

For any s > 5/2, s0 > 0, 1 < p < 2, we define the spaces

Ys,s0,p = Hs+s0
(
R3
)4 ∩ L2

hL
p
v

(
R3
)4 ∩ LphL

2
v

(
R3
)4
, (6.1.6)

endowed with the norm

‖u‖s,s0,p = max
{
‖u‖Hs+s0 , ‖u‖L2

hL
p
v
, ‖u‖LphL2

v

}
. (6.1.7)
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From now on, for any initial data U0 ∈ Ys,s0,p, we set

C(U0) = max
{
‖U0‖s,s0,p , ‖U0‖2

s,s0,p

}
. (6.1.8)

The main result of this paper is the following theorem.

Theorem 6.1.2. Let s > 5/2, s0 > 0 be fixed constants, 1 < p < 2 and the initial data
U0 ∈ Ys,s0,p. There exists a time T ?ε > 0 and a unique solution U ε = (uε, bε) of system
(6.1.1) satisfying

U ε ∈ L∞
(
[0, T ?ε ];Hs

(
R3
))
∩ C

(
[0, T ?ε ];Hs

(
R3
))
,

where the maximal time T ?ε tends to infinity as ε tends to zero, more precisely, there exist
positive constants C > 0 and α > 0 such that

T ?ε >
C

C(U0) εα
,

where C(U0) is defined in (6.1.8).

Remark 6.1.3.

1. The estimate of the lifespan T ?ε of U ε is much better than in [59] (for incompressible
fast rotating fluids). The reason is that we only consider 3D initial data, which is of
finite energy in R3. As a consequence, the limit system is zero, since the only vector
field of finite energy in R3 which belongs to the kernel of the penalized operator B is
zero. In the more general case where the initial data is the sum of a 2D part (which
belongs to the kernel of the penalization operator B) and a 3D part (of finite energy
in R3), the limit system is not zero but some 2D nonlinear hyperbolic system. Thus,
in the case of general data, we can only hope for a similar lifespan as in [59]. This
general case will be dealt in a forthcoming paper.

2. If U0 is small, then the lifespan is inversely proportionnal to the Ys,s0,p-norm of U0,
which is somehow expected for this type of hyperbolic system with small initial data.

3. The initial data can be chosen not only to be large but to blow up as ε → 0. Indeed,
for data U0 ∼ ε−ω, with 0 < ω < α

2
, the maximal lifetime of the solution still goes to

∞ as
T ?ε & ε−(α−2ω) →∞.

Throughout this paper, we set

Cr,R =
{
ξ ∈ R3

ξ

∣∣ |ξ| 6 R, |ξh| > r, |ξ3| > r
}
. (6.1.9)

Our strategy to study the system (6.1.1) consists in finding a solution of to (6.1.2) of the form

U ε = (uε, bε) = Ū ε + Ũ ε
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where Ū ε =
(
uε, b

ε
)

and Ũ ε =
(
ũε, b̃ε

)
are respectively solutions to the following systems

 ∂tŪ
ε − 1

ε
BŪ ε = 0

Ū ε
∣∣
t=0

= Ψr,R (D) (u0, b0)
,


∂tŨ

ε − 1

ε
BŨ ε +A(U,D)U = 0

Ũ ε
∣∣∣
t=0

= (1−Ψr,R (D)) (u0, b0)
.

Here, the frequency cut-off radii 0 < r < R will be precisely chosen, depending on ε
and Ψr,R is a radial function supported in C r

2
,2R and is identically equal to 1 in Cr,R. The

precise definition of Ψr,R will be given in (6.3.1) in Section 6.3. We will also prove in
Section 6.3 that, if R is sufficiently large, the system describing Ũ ε can be considered as a
3D hydrodynamical system with small initial data, which is known to be globally well posed
in critical spaces ( [70], [18], [97], [52]). For the linear part Ū ε which describes the evolution
of 3D free waves, we will prove that it goes to zero in some appropriate topology using
similar Strichartz-type estimates as in [40], [38], [59] or [119]. We want to emphasize that,
unlike the RAGE theorem using in [68], Strichartz estimates give very precise quantitative
estimates of the rate of decay to zero of Ū ε, as ε→ 0.

This paper will be organized as follows. In Section 6.2 we introduce the notation and a
detailed description of the critical spaces that we are going to use all along the work. More-
over, we introduce some elements of the Littlewood-Paley and the paradifferential calculus,
which is primodial to the study of critical behavior of nonlinearities. In Section 6.3, we
study a specific decomposition of the initial data in two parts, one only containing medium
Fourier frequencies and the other very high or very low frequencies and we provide a pre-
cise control of the latter. Section 6.4 is devoted to the study of the cut-off linear free-wave
system associate to (6.1.1). Using the spectral properties of the penalized operator B defined
in (6.1.3), we prove some Strichartz-type estimates for this system, which show that its solu-
tions vanish in some appropriate Lp (R+;Lq (R3)) spaces as ε → 0. The nonlinear problem
is finally dealt in Section 6.5, where, combining with the results of Section 6.4, we prove an
existence result for the system (6.1.1). Performing a bootstrap procedure, we also prove that
the solution of (6.1.1) is almost global when the rotation is fast enough.

6.2 Preliminary

The aim of this section is to briefly recall some elements of the Littlewood-Paley theory,
which are the main technique used all along the paper.

6.2.1 Dyadic decomposition

We recall that in Rd, with d ∈ N∗, for R > 0, the ball Bd(0, R) is the set

Bd(0, R) =
{
ξ ∈ Rd : |ξ| ≤ R

}
.

For 0 < r1 < r2, we defined the annulus

Ad(r1, r2)
def
=
{
ξ ∈ Rd : r1 ≤ |ξ| ≤ r2

}
.
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Next, we recall the following Bernstein-type lemma, which states that Fourier multipliers act
almost as homotheties on distributions whose Fourier transforms are supported in a ball or
an annulus. We refer the reader to [37, Lemma 2.1.1] or [10, Lemma 2.1] for a proof of this
lemma.

Lemma 6.2.1. Let k ∈ N, d ∈ N∗ and R, r1, r2 ∈ R satisfy 0 < r1 < r2 and R > 0. There
exists a constant C > 0 such that, for any a, b ∈ R, 1 ≤ a ≤ b ≤ +∞, for any λ > 0 and
for any u ∈ La(Rd), we have

supp (û) ⊂ Bd(0, λR) =⇒ sup
|α|=k
‖∂αu‖Lb ≤ Ckλk+d( 1

a
− 1
b ) ‖u‖La , (6.2.1)

supp (û) ⊂ Ad(λr1, λr2) =⇒ C−kλk ‖u‖La ≤ sup
|α|=k
‖∂αu‖La ≤ Ckλk ‖u‖La . (6.2.2)

In order to define the dyadic partition of unity, we also recall the following proposition,
the proof of which can be found in [37, Proposition 2.1.1] or [10, Proposition 2.10].

Proposition 6.2.2. Let d ∈ N∗. There exist smooth radial function χ and ϕ from Rd to [0, 1],
such that

suppχ ∈ Bd
(

0,
4

3

)
, suppϕ ∈ Ad

(
3

4
,
8

3

)
, (6.2.3)

∀ ξ ∈ R3, χ(ξ) +
∑
j>0

ϕ(2−jξ) = 1, (6.2.4)

|j − j′| > 2 =⇒ suppϕ(2−j·) ∩ suppϕ(2−j
′·) = ∅, (6.2.5)

j > 1 =⇒ suppχ ∩ suppϕ(2−j·) = ∅. (6.2.6)

Moreover, for any ξ ∈ Rd, we have

1

2
6 χ2(ξ) +

∑
j>0

ϕ2(2−jξ) 6 1. (6.2.7)

The dyadic blocks are defined as follows

Definition 6.2.3. For any d ∈ N∗ and for any tempered distribution u ∈ S ′(Rd), we set

4qu = F−1
(
ϕ(2−q |ξ|)û(ξ)

)
, ∀q ∈ N,

∆−1u = F−1 (ψ(|ξ|)û(ξ)) ,

4qu = 0, ∀q ≤ −2,

Squ =
∑
q′≤q−1

∆q′u, ∀q ≥ 1.

Using the properties of ψ and ϕ, for any tempered distribution u ∈ S ′(Rd), one can formally
write

u =
∑
q≥−1

4qu in,

and the non-homogeneous Sobolev spaces Hs(Rd), with s ∈ R, can be characterized as
follows
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Proposition 6.2.4. Let d ∈ N∗, s ∈ R and u ∈ Hs(Rd). Then,

‖u‖Hs :=

(∫
Rd

(1 + |ξ|2)s |û(ξ)|2 dξ
) 1

2

∼

(∑
q≥−1

22qs ‖4qu‖2
L2

) 1
2

Moreover, there exists a square-summable sequence of positive numbers {cq(u)}q with
∑

q cq(u)2 =
1, such that

‖4qu‖L2 ≤ cq(u)2−qs ‖u‖Hs . (6.2.8)

6.2.2 Paradifferential calculus.

The decomposition into dyadic blocks allows, at least formally, to write, for any tempered
distributions u and v,

uv =
∑
q∈Z
q′∈Z

4qu∆q′v (6.2.9)

The Bony decomposition (see for instance [14], [37] or [10] for more details) consists in
splitting the above sum in three parts. The first corresponds to the low frequencies of u
multiplied by the high frequencies of v, the second is the symmetric counterpart of the first,
and the third part concerns the indices q and q′ which are comparable. Then,

uv = Tuv + Tvu+R (u, v) ,

where

Tuv =
∑
q

Sq−1u4qv

Tvu =
∑
q′

Sq′−1v∆q′u

R (u, v) =
∑
|q−q′|61

∆qu∆q′v.

Using the quasi-orthogonality given in (6.2.5) and (6.2.6), we get the following relations.

Lemma 6.2.5. For any tempered distributions u and v, we have

4q (Sq′−1u∆q′v) = 0 if |q − q′| > 5

4q (Sq′+1u∆q′v) = 0 if q′ 6 q − 4.

Lemma 6.2.5 implies the following decomposition, which we will widely use in this paper

4q(uv) =
∑
|q′−q|64

4q (Sq′−1v∆q′u) +
∑
q′>q−4

4q (Sq′+2u∆q′v) . (6.2.10)
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As in J.-Y. Chemin and N. Lerner [43] we will also use the following decomposition of the
first term on the right hand side of (6.2.10)∑
|q′−q|64

4q (Sq′−1v∆q′u)

= Squ4qv +
∑
|q′−q|64

[4q, Sq′−1u] ∆q′v +
∑
|q′−q|64

(Sq − Sq′−1)u ∆q′v, (6.2.11)

where the commutator [4q, a] b is defined as

[4q, a] b = 4q (ab)− a4qb.

We also recall the following lemma concerning the commutators. One can find a proof of
this lemma in [10, p. 110].

Lemma 6.2.6. Let be p, q, r ∈ [1,∞] such that
1

p
+

1

q
=

1

r
and f ∈ W 1,p (R3), g ∈ Lq (R3).

Then
‖[4q, f ] g‖Lr 6 C2−q ‖∇f‖Lp ‖g‖Lq . (6.2.12)

6.2.3 Auxiliary estimates

We first recall the following classical product rule in Hs (R3) spaces.

Lemma 6.2.7. For any s > 0, there exists a constant C such that, for any u, v in Hs (R3) ∩
L∞ (R3), we have

‖uv‖Hs 6
Cs+1

s
(‖u‖L∞ ‖v‖Hs + ‖v‖L∞ ‖u‖Hs) . (6.2.13)

To prove Lemma 6.2.7 it suffice to decompose the data uv using the decomposition (6.2.10)
and apply repeatedly Hölder inequality.

In this paper, in order to perform a bootstrap argument in Section 6.5, for t > 0, we define
the spaces L̃p ([0, t], Hs (R3)), with p > 2, as the closure of the set of smooth vector-fields
under the norms

‖u‖L̃p([0,t],Hs) =
(∑

q

22qs ‖∆qu‖2
Lp([0,t],L2)

) 1
2
.

From the above definition, it is easy to see that, for any p > 2, L̃p ([0, t], Hs (R3)) is smoother
than Lp ([0, t], Hs (R3)). From the above definition, we can prove the following lemma
which gives similar estimates as (6.2.8).

Lemma 6.2.8. Suppose that u belongs to L̃p ([0, t], Hs (R3)), with s > 0, then there exists a
square-summable sequence of positive numbers {cq(u)}q>−1, with

∑
q

cq(u)2 = 1, such that

‖∆qu‖Lp([0,t],L2) ≤ cq(u)2−qs ‖u‖L̃p([0,t],Hs) .
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For functions in L̃p ([0, t], Hs (R3)), we can prove similar estimates as in (6.2.13).

Lemma 6.2.9. Let T > 0. For any s > 0, there exists a constant C(s) depending on s such
that, for any u, v in L̃∞([0, T ], Hs (R3)) ∩ L∞([0, T ], L∞ (R3)), we have

‖uv‖L̃∞([0,T ],Hs)

6 C(s)
(
‖u‖L∞([0,T ],L∞) ‖v‖L̃∞([0,T ],Hs) + ‖u‖L̃∞([0,T ],Hs) ‖v‖L∞([0,T ],L∞)

)
.

Finally, we recall the definition of the weak-Lp spaces and a refined version of Young’s
inequality that we need in Section 6.4 (see [10] for a proof, for instance).

Definition 6.2.10. For 1 < p <∞ and for any measurable function f : Rd → R, we define
the space

Lp,∞(Rd)
def
=
{
f : Rd → R measurable : ‖f‖Lp,∞ < +∞

}
,

where the quasinorm

‖f‖Lp,∞
def
= sup

λ>0
λµ
({
x ∈ Rd : |f(x)| > λ

}) 1
p ,

and where µ is the usual Lebesgue measure on Rd.

Theorem 6.2.11. Let p, q, r ∈]1,∞[ satisfying

1

p
+

1

q
= 1 +

1

r
.

Then, a constant C > 0 exists such that, for any f ∈ Lp,∞(Rd) and g ∈ Lq(Rd), the
convolution product f ∗ g belongs to Lr(Rd) and we have

‖f ∗ g‖Lr 6 C ‖f‖Lp,∞ ‖g‖Lq . (6.2.14)

6.3 Decomposition of the initial data

We recall that, for 0 < r < R, in (6.1.9), we defined

Cr,R =
{
ξ ∈ R3

ξ

∣∣ |ξ| 6 R, |ξh| > r, |ξ3| > r
}
.

Let ψ a C∞-function from R3 to R such that

ψ(ξ) =

{
1 if 0 6 |ξ| 6 1

0 if |ξ| > 2

and Ψr,R : R3 → R the following frequency cut-off function

Ψr,R(ξ) = ψ

(
|ξ|
R

)[
1− ψ

(
|ξh|
r

)][
1− ψ

(
|ξ3|
r

)]
. (6.3.1)
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Then, we have Ψr,R ∈ D(R3), supp Ψr,R ⊂ C r
2
,2R and Ψr,R ≡ 1 on Cr,R. We will decompose

U0 in the following way
U0 = U0 + Ũ0,

where
U0 = Pr,RU0 = Ψr,R(D)U0 = F−1

(
Ψr,R(ξ)Û0(ξ)

)
.

Our goal is to get precise controls of the Hs (R3)-norms of Ũ0 with respect to the fre-
quency cut-off radii r and R.

Lemma 6.3.1. Let s > 5
2
, s0 > 0, p ∈]1, 2[ and the initial data U0 ∈ Ys,s0,p, where Ys,s0,p is

defined as in (6.1.6) and (6.1.7). There exists δ > 0 such that, for R > 0 large enough and
r = R−δ, ∥∥∥Ũ0

∥∥∥
Hs
6 C C(U0)R−s0 ,

where C(U0) is defined in (6.1.8).

Proof. By the definition of Hs (R3)-norm, we have∥∥∥Ũ0

∥∥∥2

Hs
6
∫
|ξ3|<r
|ξh|<R

(
1 + |ξ|2

)s ∣∣∣Û0 (ξ)
∣∣∣2 dξ3dξh +

∫
|ξ3|<R
|ξh|<r

(
1 + |ξ|2

)s ∣∣∣Û0 (ξ)
∣∣∣2 dξ3dξh

+

∫
|ξ|>R

(
1 + |ξ|2

)s ∣∣∣Û0 (ξ)
∣∣∣2 dξ

= I1 + I2 + I3.

In what follows, we denote as Fh and Fv respectively the horizontal and vertical Fourier
transforms. Let q, p′ be positive numbers such that q = p

p−1
, q′ = q

2
and p′ = p

2−p . Thus
1 6 p < 2 < q, and p′ ∈ [1,∞] and the following relations hold

1

p
+

1

q
=

1

p′
+

1

q′
= 1.

For the first integral, we write

I1 =

∫
|ξ3|<r
|ξh|<R

(
1 + |ξh|2 + ξ2

3

1 + ξ2
3

)s (
1 + ξ2

3

)s ∣∣∣Û0(ξ)
∣∣∣2 dξ3dξh

6 CR2s

∫
|ξ3|<r

∫
|ξh|<R

(
1 + ξ2

3

)s ∣∣∣Û0 (ξ)
∣∣∣2 dξhdξ3

6 CR2s

∫
|ξ3|<r

∫
R2
ξh

(
1 + ξ2

3

)s ∣∣∣Û0 (ξ)
∣∣∣2 dξhdξ3.

Plancherel theorem in the horizontal variable yields

I1 6 CR2s

∫
|ξ3|<r

∫
R2
ξh

(
1 + ξ2

3

)s ∣∣∣Û0 (ξ)
∣∣∣2 dξhdξ3

= CR2s

∫
|ξ3|<r

∫
R2
xh

(
1 + ξ2

3

)s |FvU0 (xh, ξ3)|2 dxhdξ3.
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Applying Fubini theorem and Hölder inequality in the vertical direction, we get

I1 6 CR2s

(∫
|ξ3|<r

(
1 + ξ2

3

)p′s) 1
p′
∫
R2
xh

(∫
Rξ3

|FvU0(xh, ξ3)|2q
′
ξ3

) 1
q′

dxh

6 CR2sr
1
p′

∫
R2
xh

(∫
Rξ3

|FvU0 (xh, ξ3)|q ξ3

) 2
q

dxh,

Finally, we use Hausdorff-Young inequality in the vertical direction, taking into account the
relation r ∼ R−δ, to obtain

I1 =

∫
|ξ3|<r
|ξh|<R

(
1 + |ξh|2 + ξ2

3

)s ∣∣∣Û0 (ξ)
∣∣∣2 dξ3dξh 6 CR

2s− δ
p′ ‖U0‖2

L2
hL

p
v
. (6.3.2)

Similar calculations lead to the following estimate for the second integral

I2 =

∫
|ξ3|<R
|ξh|<r

(
1 + |ξh|2 + ξ2

3

)s ∣∣∣Û0 (ξ)
∣∣∣2 dξ3dξh 6 CR

2s− δ
p′ ‖U0‖2

L2
vL

p
h
. (6.3.3)

The third term contains only the very high frequencies, hence is much simpler to control

I3 =

∫
|ξ|>R

(
1 + |ξ|2

)−s0 (
1 + |ξ|2

)s+s0 ∣∣∣Û0(ξ)
∣∣∣2 dξ 6 R−2s0 ‖U0‖2

Hs+s0 . (6.3.4)

We choose the free parameter δ such that

δ

p′
= 2(s+ s0).

Combining the estimates (6.3.2) to (6.3.4), we can conclude the proof.

6.4 Strichartz-type estimates for the linear system

We recall that the projector Pr,R associates any tempered distribution f to

Pr,Rf = Ψr,R(D)f = F−1
(

Ψr,R(ξ)f̂(ξ)
)
, (6.4.1)

where the function Ψr,R is defined in (6.3.1). In this section, we consider the following
frequency cut-off free-wave system ∂tŪ

ε =
1

ε
BŪ ε

Ū ε
∣∣
t=0

= Pr,RU0.
(6.4.2)

where the linear hyperbolic operator B is defined in (6.1.3). Since the system (6.4.2) is linear
and the Fourier transform of the initial data are supported in C r

2
,2R, the Fourier transform of

the solution Ū ε (t) is also supported in C r
2
,2R for any t > 0. The aim of the present section

is to analyze the dispersive properties of system (6.4.2) as ε→ 0, i..e to prove the following
theorem
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Theorem 6.4.1. Let q ∈ [2,+∞] and p > 4q
q−2

. For any U0 ∈ L2 (R3), the system (6.4.2) has
a global solution Ū ε such that,∥∥Ū ε

∥∥
Lp(R+;Lq(R3))

6 CR
3
2
− 3
q

+ 4
p r−

2
p ε

1
p ‖U0‖L2(R3) . (6.4.3)

Writing this system in Fourier frequency variable, we get ∂t
̂̄U ε =

1

ε
B̂ ̂̄U ε

̂̄U ε|t=0 = Ψr,R(D) Û0,

(6.4.4)

where

B̂(ξ) =


0 1 0 −iγξ1

−1 0 0 −iγξ2

0 0 0 −iγξ3

−iγξ1 −iγξ2 −iγξ3 0

 .

The characteristic polynomial of B̂(ξ) writes

PB̂(ξ) (λ) = det
(
B̂(ξ)− λIR4

)
= λ4 +

(
1 + γ2 |ξ|2

)
λ2 + γ2ξ2

3 . (6.4.5)

So, straightforward calculations shows that the eigenvalues of B̂(ξ) are

λε1,ε2(ξ) = ε1i

√
1

2

((
1 + γ2 |ξ|2

)
+ ε2

√(
1 + γ2 |ξ|2

)2 − 4γ2ξ2
3

)
.

where ε1, ε2 ∈ {−1, 1}. We recall that, for any A,B ∈ R, we have√
A±
√
B =

√
A+
√
A2 −B
2

±

√
A−
√
A2 −B
2

.

Then, setting

A = 1 + γ2 |ξ|2

B =
(
1 + γ2 |ξ|2

)2 − 4γ2ξ2
3 ,

we can rewrite the eigenvalues as

λε1,ε2(ξ) = ε1
i

2

(√
1 + γ2 |ξ|2 + 2γξ3 + ε2

√
1 + γ2 |ξ|2 − 2γξ3

)
. (6.4.6)

We remark that a similar spectral analysis has already been performed in the work [68] with
the difference that the domain considered in [68] was of the form R2

h × T1
v instead of R3.

Now, in order to understand the behavior of the solutions to (6.4.2) we define the follow-
ing operators

Gλ (t) f (x) = F−1
(
e
t
ε
λ(ξ)f̂ (ξ)

)
(x) =

∫
R3
ξ×R3

y

f (y) e
t
ε
λ(ξ)+i(x−y)·ξdξdy,

where the eigenvalues λ (ξ) are given in (6.4.6)

λ (ξ) = ± i
2

(√
1 + γ2 |ξ|2 + 2γξ3 +±

√
1 + γ2 |ξ|2 − 2γξ3

)
.
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Lemma 6.4.2. For any f ∈ L1 (R3) and for any t > 0, we have∥∥4h
j4v

kGλ (t) f
∥∥
L∞(R3)

6 C max
{

2
5j
2
−k, 25j−k

}(ε
t

) 1
2 ‖f‖L1(R3) (6.4.7)

Remark 6.4.3. The estimates in Lemma 6.4.2 are not optimal for t 6 ε. Indeed, for t 6 ε,
using Bernstein lemma 6.2.1, we can simply bound∥∥4h

j4v
kGλ(t)f

∥∥
L∞(R3)

6 C2j2
k
2

∥∥4h
j4v

kGλ(t)f
∥∥
L2(R3)

(6.4.8)

6 C2j2
k
2

∥∥4h
j4v

kf
∥∥
L2(R3)

6 C22j2k
∥∥4h

j4v
kf
∥∥
L1(R3)

6 C22j2k ‖f‖L1(R3)

To prove Lemma 6.4.2, we write

4h
j4v

kGλ (t) f(x) =

∫
R3
y

f(y)

∫
R3
ξ

e
t
ε
λ(ξ)+i(x−y)·ξϕ

(
2−j |ξh|

)
ϕ
(
2−k |ξ3|

)
dξdy

= Kλ
j,k

(
t

ε
, ·
)
∗ f(x),

where
Kλ
j,k (τ, x) =

∫
R3
ξ

eτλ(ξ)+ix·ξϕ
(
2−j |ξh|

)
ϕ
(
2−k |ξ3|

)
dξ. (6.4.9)

The key point to prove Lemma 6.4.2 is to estimate the kernel function Kλ
j,k using the method

of [40] and [38]. For that purpose, we perform the change of variables

z = 2jx and ζ = 2−jξ.

Then, we have
Kλ
j,k(τ, x) = 23jK̃λ

j,k(τ, z),

where
K̃λ
j,k(τ, z) =

∫
R3
ζ

eτλ(2jζ)+iz·ζϕ (|ζh|)ϕ
(
2j−k |ζ3|

)
dζ. (6.4.10)

We remark that the invariance of K̃λ
j,k by rotation in the plane R2

ζh
allows to restrict the study

to the case z2 = 0. Indeed, if z2 6= 0, we can perform a rotation of angle θ, with cot θ = z1
z2

to suppress the second component of z. Following the ideas of [40] and [38], we will apply
an integration by parts to K̃λ

j,k(τ, z). Let

Aj(ζ) =

√
1 + 22jγ2 |ζ|2 + 2j+1γζ3

Bj(ζ) =

√
1 + 22jγ2 |ζ|2 − 2j+1γζ3

λj(ζ) = λ
(
2jζ
)

= ± i
2

(Aj(ζ)±Bj(ζ))

aj(ζ) = ∂ζ2λj(ζ) = ±i2
2jγ2ζ2

2

(
1

Aj(ζ)
± 1

Bj(ζ)

)
.
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We consider the operator

Lλ
def
=

1

1 + τa2
j

(Id− iaj∂ζ2) . (6.4.11)

Direct calculations give

Lλ
(
eτλj(ζ)+iz·ζϕ

(
2j−k |ζ3|

))
= eτλj(ζ)+iz·ζϕ

(
2j−k |ζ3|

)
,

thus,

K̃λ
j,k(τ, z) =

∫
R3
ζ

eτλ(2jζ)+iz·ζϕ
(
2j−k |ζ3|

)
TLλ (ϕ (|ζh|)) dζ,

where

TLλ (ϕ (|ζh|)) =

[
1

1 + τa2
j

+ i (∂ζ2aj)
1− τa2

j(
1 + τa2

j

)]ϕ (|ζh|) +
iaj

1 + τa2
j

∂ζ2ϕ (|ζh|) . (6.4.12)

Lemma 6.4.4. There exists a constant C > 0 such that∣∣TLλ (ϕ (|ζh|))
∣∣ 6 C (1 + 2j)

1 + min {1, 23j} τζ2
2ζ

2
3

.

Proof. By definition of ϕ, to estimate K̃λ
j,k, we can consider

3

4
6 |ζh| , |ζ3| 6

8

3
.

Then, there exist constants C1, C2 > 0 such that

C12j 6 Aj(ζ) =

√
22jγ2 |ζh|2 + (1 + 2jγζ3)2 6 C2 max

{
1, 2j

}
C12j 6 Bj(ζ) =

√
22jγ2 |ζh|2 + (1− 2jγζ3)2 6 C2 max

{
1, 2j

}
,

and

|Aj(ζ)−Bj(ζ)| = |Aj(ζ)2 −Bj(ζ)2|
Aj(ζ) +Bj(ζ)

=
2j+2γ |ζ3|

Aj(ζ) +Bj(ζ)
> C1 min

{
1, 2j

}
|ζ3| .

As a consequence, we have

C1 min
{

1, 23j
}
|ζ2ζ3| < |aj(ζ)| < C22j. (6.4.13)

Now, differentiating aj with respect to ζ2, we get

∂ζ2aj(ζ) = ±i22j−1γ2

(
1

Aj(ζ)
± 1

Bj(ζ)

)
− i24j−1γ4ζ2

2

(
1

Aj(ζ)3
± 1

Bj(ζ)3

)
Then, we can choose C2 such that

|∂ζ2aj(ζ)| < C22j. (6.4.14)
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Using Estimates (6.4.13) and (6.4.14), we obtain∣∣∣∣ϕ (|ζh|)
1 + τa2

j

∣∣∣∣ 6 C

1 + min {1, 23j} τζ2
2ζ

2
3∣∣∣∣∣i (∂ζ2aj)

1− τa2
j(

1 + τa2
j

)2ϕ (|ζh|)

∣∣∣∣∣ 6 C2j

1 + min {1, 23j} τζ2
2ζ

2
3∣∣∣∣ iaj

1 + τa2
j

∂ζ2ϕ (|ζh|)
∣∣∣∣ 6 C2j

1 + min {1, 23j} τζ2
2ζ

2
3

,

which imply ∣∣TLλ (ϕ (|ζh|))
∣∣ 6 C (1 + 2j)

1 + min {1, 23j} τζ2
2ζ

2
3

.

Lemma 6.4.5. For any τ > 0, j, k ∈ N,∥∥∥K̃λ
j,k(τ, ·)

∥∥∥
L∞z

6 C
(
1 + 2j

)
max

{
1, 2−

3j
2

}
τ−

1
2

∥∥ϕ (2j−kζ3

)
ζ−1

3

∥∥
L∞ζ

.

Proof. We recall that

K̃λ
j,k(τ, z) =

∫
R3
ζ

eτλ(2jζ)+iz·ζϕ
(
2j−k |ζ3|

)
TLλ (ϕ (|ζh|)) dζ,

Then, using Lemma 6.4.4 and the definition of ϕ, there exist positive constants c1, c2 > 0
such that∥∥∥K̃λ

j,k(τ, ·)
∥∥∥
L∞z

6 C
(
1 + 2j

) ∥∥∥∥ϕ (2j−kζ3

) ∫ c2

c1

dζ2

1 + min {1, 23j} τζ2
2ζ

2
3

∥∥∥∥
L∞ζ3

6 C
(
1 + 2j

)
max

{
1, 2−

3j
2

}
τ−

1
2

∥∥ϕ (2j−kζ3

)
ζ−1

3

∥∥
L∞ζ

.

From Lemma 6.4.5, we deduce the following immediate corollary

Corollary 6.4.6. For any τ > 0, j, k ∈ N,∥∥Kλ
j,k(τ, ·)

∥∥
L∞x
6 C

(
24j−k + 25j−k)max

{
1, 2−

3j
2

}
τ−

1
2 .

Proof of Lemma 6.4.2. We recall that

4h
j4v

kGλ (t) f(x) = Kλ
j,k

(
t

ε
, ·
)
∗ f(x).

Using Young’s inequality, we obtain∥∥4h
j4v

kGλ (t) f
∥∥
L∞x
6 C

∥∥∥∥Kλ
j,k

(
t

ε
, ·
)∥∥∥∥

L∞x

,

‖f‖L1
x
6 C max

{
2

5j
2
−k, 25j−k

}(ε
t

) 1
2 ‖f‖L1

x
.

�
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Lemma 6.4.7. Let 0 < r � 1� R and recall that

Cr,R =
{
ξ ∈ R3

∣∣ |ξh| , |ξ3| > r, |ξ| 6 R
}
.

Let Ψr,R : R3 → R, supp Ψr,R ⊂ C r
2
,2R and Ψr,R|Cr,R

≡ 1. Then,

‖Ψr,R(D)Gλ(t)f‖L∞(R3) 6 Cr−1R4
(ε
t

) 1
2 ‖f‖L1(R3) .

Proof. We choose m1 ∈ Z− and m2 ∈ Z+ such that

3

4
6 r2−m1 6

8

3
and

3

4
6 R2−m2 6

8

3
.

Then,

‖Ψr,R(D)Gλ(t)f‖L∞(R3) 6
m2∑
j=m1

m2∑
k=m1

∥∥4h
j4v

kGλ(t)f
∥∥
L∞(R3)

.

It remains to apply Lemma 6.4.2 to obtain Lemma 6.4.7.

Lemma 6.4.8. For t 6 ε, we have

‖Ψr,R(D)Gλ(t)f‖L∞(R3) 6 CR3 ‖f‖L1(R3) .

Proof. We use the same estimates as in Remark 6.4.3.

Lemma 6.4.9. For any q ∈ [2,+∞] and q ∈ R such that 1
q

+ 1
q

= 1, we have

‖Ψr,R(D)Gλ(t)f‖Lq(R3) 6 C

[
R3 min

{
1, R2r−1

(ε
t

) 1
2

}]1− 2
q

‖f‖Lq(R3) .

Proof. We already proved that

‖Ψr,R(D)Gλ(t)f‖L∞(R3) 6 CR3 min

{
1, R2r−1

(ε
t

) 1
2

}
‖f‖L1(R3)

The definition of Ψr,R(D)Gλ(t) implies that

‖Ψr,R(D)Gλ(t)f‖L2(R3) 6 C ‖f‖L2(R3) .

Since the point
(

1
q
, 1
q

)
belongs to the line segment

[
(0, 1) ,

(
1
2
, 1

2

)]
, the Riesz-Thorin theorem

yields

‖Ψr,R(D)Gλ(t)f‖Lq(R3) 6 C

[
R3 min

{
1, R2r−1

(ε
t

) 1
2

}]1− 2
q

‖f‖Lq(R3) .

The following theorem gives Strichartz estimates of Ū ε in the direction of each eigenvec-
tor of the operator B̂.
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Theorem 6.4.10. Let q ∈ [2,+∞] and p > 4q
q−2

. Then,

‖Ψr,R(D)Gλ(t)f‖Lpt (Lq(R3)) 6 CR
3
2
− 3
q

+ 4
p r−

2
p ε

1
p ‖f‖L2(R3) .

Proof. Following the ideas of [40] and [38], we will apply the so-called TT ∗ method, which
consist in an argument of duality. Let p and q such that

1

p
+

1

p
=

1

q
+

1

q
= 1,

and

B =
{
ϕ ∈ D

(
R+ × R3

)
| ‖ϕ‖Lpt (Lqx) 6 1

}
.

Then, considering Φ = Ψr,R(D)ϕ and using Plancherel theorem and Cauchy-Schwarz in-
equality, we have

‖Ψr,R(D)Gλ(t)f‖Lpt (Lq(R3)) = sup
ϕ∈B

∫
R+

〈Ψr,R(D)Gλ(t)f , ϕ〉L2
x
dt

= (2π)−3 sup
ϕ∈B

∫
R+×R3

ξ

f̂ (t, ξ) Φ̂ (t, ξ) e
t
ε
λ(ξ)dt dξ

6 (2π)−3 sup
ϕ∈B
‖f‖L2

∥∥∥∥∫
R+

Φ̂ (t, ξ) e
t
ε
λ(ξ)dt

∥∥∥∥
L2
ξ

.

It remains to estimate

I =

∥∥∥∥∫
R+

Φ̂ (t, ξ) e
t
ε
λ(ξ)dt

∥∥∥∥
L2
ξ

.

Recalling that λ(ξ) is an imaginary number, using several times Fubini’s theorem, Plancherel
theorem and Hölder’s inequality, we have

I2 =

〈∫
R+

Φ̂(t, ξ)e
t
ε
λ(ξ)dt,

∫
R+

Φ̂(s, ξ)e
s
ε
λ(ξ)ds

〉
L2

=

∫
R3
ξ

(∫
R+

Φ̂(t, ξ)e
t
ε
λ(ξ)dt

)(∫
R+

Φ̂(s, ξ)e−
s
ε
λ(ξ)ds

)
dξ

=

∫
R3
ξ

(∫
(R+)2

Φ̂(t, ξ)Φ̂(s, ξ)e−
t−s
ε
λ(ξ)ds dt

)
dξ

=

∫
(R+)2

∫
R3
ξ

(
Ψr,R(D)ϕ(t,−x)

)(
Ψr,R(D)Gλ(t− s)ϕ(t, x)

)
dx dt ds

6 C

∫
(R+)2

‖ϕ(s)‖Lqx ‖Ψr,R(D)Gλ(t− s)ϕ(t)‖Lqx dt ds.
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Next, using Lemma 6.4.9, Hölder’s inequality, we get

I2 6 C

∫
(R+)2

‖ϕ(s)‖Lqx ‖ϕ(t)‖Lqx

[
R3 min

{
1,
R2r−1ε−

1
2

|t− s|
1
2

}]1− 2
q

ds dt

6 C ‖ϕ‖Lpt (Lqx)

∥∥∥∥∥∥
∫
R+

‖ϕ(s)‖Lqx

[
R3 min

{
1,
R2r−1ε−

1
2

|t− s|
1
2

}]1− 2
q

ds

∥∥∥∥∥∥
Lpt

6 C ‖ϕ‖Lpt (Lqx)R
3(1− 2

q )
∥∥∥‖ϕ(·)‖Lqx ∗tM(·)

∥∥∥
Lpt

,

where

M(t) =

[
min

{
1,
R2r−1ε−

1
2

|t|
1
2

}]1− 2
q

.

If (p, q) = (+∞, 2), Theorem 6.4.10 is obvious from the definition of Ψr,R(D)Gλ(t). In
the case where q > 2, we study two different cases

• If p > 4q
q−2

then M ∈ L
p
2
t . For any q > 2,

‖M‖
L
p
2
t

=

(∫ R4r−2ε

0

dt+

∫ +∞

R4r−2ε

(
R4r−2ε

t

) p
2( 1

2
− 1
q )
dt

) 2
p

=
(
R4r−2ε

) 2
p

(
1 +

∫ +∞

1

(
1

τ

) p
2( 1

2
− 1
q )
dτ

) 2
p

6 C
(
R4r−2ε

) 2
p .

Thus, using the classical Young’s inequality, we obtain

I2 6 CR3(1− 2
q ) ‖ϕ‖2

Lpt (L
q
x) ‖M‖L

p
2
t

6 CR3(1− 2
q )
(
R4r−2ε

) 2
p ‖ϕ‖2

Lpt (L
q
x) . (6.4.15)

• If p = 4q
q−2

then Young’s inequality does not work anymore because M /∈ L
p
2
t . Since

M belong to the space L
p
2
,∞

t and

‖M‖
L
p
2 ,∞
t

∼
(
R4r−2ε

) 2
p ,

applying Theorem 6.2.11, we also get

I2 6 CR3(1− 2
q ) ‖ϕ‖2

Lpt (L
q
x) ‖M‖L

p
2 ,∞
t

6 CR3(1− 2
q )
(
R4r−2ε

) 2
p ‖ϕ‖2

Lpt (L
q
x) . (6.4.16)

Since,

I2 6 CR3(1− 2
q )
(
R4

r2

) 2
p

ε
2
p ‖ϕ‖2

Lpt (L
q
x) ,

we immediately deduce that,

‖Ψr,R(D)Gλ(t)f‖Lpt (Lqx) 6 C (2π)−3R
3
2
− 3
q

+ 4
p r−

2
p ε

1
p ‖f‖L2

x
.
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6.4. Strichartz-type estimates for the linear system

Remark 6.4.11. We want to make some remarks about the dispersive result in Theorem
6.4.10.

1. Unlike the case of viscous fluids (see for instance [40], [38] or [119]), we cannot obtain
dispersive estimates for Ψr,R(D)Gλ(t)f in an L1

t (L
q
x)-norm, due to the fact that we do

not have damping effect given by the viscosity terms. This is one of the main reasons
why we can only obtain an almost global existence result.

2. The result of Theorem 6.4.10 is slightly better than the dispersive estimates obtained
in [59] in the sense where we can treat the limit case p = 4q

q−2
, using Theorem 6.2.11

to get (6.4.16). In general cases, (6.4.16) is known as the Hardy-Littlewood-Sobolev
inequality, where one uses the fact that the function |x|−

d
p belongs to Lp,∞

(
Rd
)

but
not to Lp

(
Rd
)
.

Proof of Theorem 6.4.1. We recall that in the Fourier variable, the system (6.4.2) writes as ∂t
̂̄U ε =

1

ε
B̂ ̂̄U ε

̂̄U ε|t=0 = Ψr,R(D)Û0,

(6.4.4)

where

B̂ =


0 1 0 −iγξ1

−1 0 0 −iγξ2

0 0 0 −iγξ3

−iγξ1 −iγξ2 −iγξ3 0

 .

We also recall that the eigenvalues of B̂ are

λε1,ε2(ξ) = ε1
i

2

(√
1 + γ2 |ξ|2 + 2γξ3 + ε2

√
1 + γ2 |ξ|2 − 2γξ3

)
,

with ε1, ε2 ∈ {−1, 1}. Since B̂ is a skew-Hermitian matrix, the unit eigenvectors
−→
V ε1,ε2(ξ)

corresponding to the eigenvalues λε1,ε2(ξ) form an orthonormal basis of R4. Decomposing

Û0(ξ) =
∑

ε1,ε2∈{−1,1}

Cε1,ε2(ξ)
−→
V ε1,ε2(ξ),

the solution of the system (6.4.4) write

̂̄U ε(t, ξ) =
∑

ε1,ε2∈{−1,1}

Ψr,R(ξ)e
t
ε
λε1,ε2 (ξ) Cε1,ε2(ξ)

−→
V ε1,ε2(ξ).
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Using the orthogonality of
{−→
V ε1,ε2(ξ)

}
and applying Theorem 6.4.10 and Plancherel theo-

rem, we have∥∥Ū ε
∥∥
Lp(R+;Lq(R3))

6
∑

ε1,ε2∈{−1,1}

∥∥∥F−1
(

Ψr,R(ξ)e
t
ε
λε1,ε2 (ξ) Cε1,ε2(ξ)

−→
V ε1,ε2(ξ)

)∥∥∥
Lp(R+;Lq(R3))

6 CR
3
2
− 3
q

+ 4
p r−

2
p ε

1
p

∑
ε1,ε2∈{−1,1}

∥∥∥Cε1,ε2(ξ)
−→
V ε1,ε2(ξ)

∥∥∥
L2
ξ

6 CR
3
2
− 3
q

+ 4
p r−

2
p ε

1
p

∥∥∥∥∥∥
∑

ε1,ε2∈{−1,1}

Cε1,ε2(ξ)
−→
V ε1,ε2(ξ)

∥∥∥∥∥∥
L2
ξ

6 CR
3
2
− 3
q

+ 4
p r−

2
p ε

1
p ‖U0‖L2(R3) .

Theorem 6.4.1 is then proved. �

6.5 The nonlinear part

In this section, we decompose the local solution U ε =

(
uε

bε

)
of (6.1.1) into two parts

U ε = Ū ε + Ũ ε,

where Ū ε is the global solution of (6.4.2) and Ũ ε solves (locally) the system
∂tŨ

ε +
1

ε
BŨ ε =

(
−uε · ∇uε − γbε∇bε
−uε∇bε − γbεdivuε

)
Ũ ε
∣∣∣
t=0

= Ũ0 = (1− Pr,R)U0.

(6.5.1)

As proven in Section 6.4, the linear system (6.4.2) is globally well-posed inL∞(R+, H
s (R3)

4
)

and its solution goes to zero as ε → 0 in some Lp (R+;Lq)-norm. On the contrary, the sys-
tem (6.5.1) is a nonlinear hyperbolic system, the solutions of which can only be expected
to exist almost globally in time, in the sense that, there exist T ε → +∞ as ε → 0, such
that, Ũ ε ∈ L∞

(
[0, T ε], Hs (R3)

4
)

. The main goal of this section is to prove the following
theorem.

Theorem 6.5.1. Let s > 5
2
, s0 > 0, 1 < p < 2 and the initial data U0 ∈ Ys,s0,p, where Ys,s0,p

is defined in (6.1.6) and (6.1.7). Then, for any 0 < ε < 1, there exist T ?ε > 0 and a unique
solution Ũ ε to the system (6.5.1) satisfying

Ũ ε ∈ L∞
(

[0, T ?ε ], Hs
(
R3
)4
)
∩ C

(
[0, T ?ε ], Hs

(
R3
)4
)
.

Moreover, the lifespan T ?ε of Ũ ε goes to∞ as ε → 0 and there exists constant C > 0 and
α > 0 such that

T ?ε >
C

C(U0) εα
,
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where C(U0) is defined in (6.1.8). In addition, we can choose β > 0 such that the asymptotic
behavior of Ũ ε when ε→ 0 is determined as follows∥∥∥Ũ ε

∥∥∥
L∞([0,T ?ε ],Hs)

= O
(
εβs
)
.

The proof of Theorem 6.5.1 will be divided into two parts

Part 1 In the first part, using an iterative scheme, we prove that, for ε0 small enough (which
will be precised later), and for any ε ∈]0, ε0[, there exists a unique strong solution Ũ ε

of (6.5.1) in L∞ ([0, T ] , Hs (R3)), with the lifespan T > 0 independent of ε.

Part 2 In the second part, we prove more refined estimates which, combining with a bootstrap
argument, allow to prove that the maximal lifespan T ?ε goes to ∞ as ε → 0, despite
the fact that (6.1.1) is a 3D nonlinear hyperbolic system.

6.5.1 Local-in-time existence result for the nonlinear part.

Throughout this part, we will always fix constants β, δ > 0 and the Rossby number ε > 0.
We also set the radii of the frequency cut-off to be

R = ε−β, r = R−δ = εβδ. (6.5.2)

Our choice of these parameters will be explained and precised during the proof, at the place
where we need to ajust their values. The setting of r and R in (6.5.2) is to prepare for the
bootstrap argument in the second part.

Our goal is to prove the existence of a unique, local strong solution of the system (6.5.1).
To simplify the notations and the calculations, we rewrite (6.5.1) as follows

∂tŨ
ε +

1

ε
BŨ ε = −uε · ∇U ε − γ

(
bε∇bε
bεdivuε

)
Ũ ε
∣∣∣
t=0

= (1− Pr,R)U0

(6.5.3)

where we set U ε = Ū ε + Ũ ε and where Ū ε is the solution of (6.4.2) . Our approach can be
resumed in the following steps

1. We introduce a sequence of linear systems, indexed by n ∈ N, starting from (6.5.3)
and by induction with respect to n, we construct a solution of the n-th system defined
in L̃∞

(
[0, Tn] , Hσ (R3)

4
)

, for some given σ ∈]s, s+ s0[ and for some Tn > 0.

2. We prove that we can choose ε0 > 0 small enough such that, for any ε ∈]0, ε0[,
the sequence of solutions of the previously introduced linear systems are uniformly
bounded in L̃∞ ([0, Tε] ;Hσ(R3)4), for some Tε > 0 independent of n.
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3. We prove that the sequence of solutions is a Cauchy sequence in L̃∞ ([0, Tε];H
s(R3)4).

4. We check that the limit Ũ satisfies (6.5.1).

The main technique result needed for our approach consists in the control of the bilinear
terms. This control is given in the following lemma, which will be proven in the appendix.

Lemma 6.5.2. The following estimates hold∫ t

0

∣∣∣〈4q (uε(τ) · ∇U ε(τ))
∣∣ 4qŨ

ε(τ)
〉
L2

∣∣∣ dτ
6 C C(U0)bq2

−2qsR
7+δ

2 t
3
4 ε

1
4

+ C C(U0)bq2
−2qs

(
R

7+δ
2 t

3
4 ε

1
4 + t

∥∥∥Ũ ε
∥∥∥
L̃∞([0,t],Hs)

)∥∥∥Ũ ε
∥∥∥2

L̃∞([0,t],Hs)
, (6.5.4)

∫ t

0

∣∣∣〈4q (bε(τ)∇bε(τ))
∣∣ 4qũ

ε(τ)
〉
L2 +

〈
4q (bε(τ)divuε(τ))

∣∣ 4q b̃
ε(τ)

〉∣∣∣ dτ
6 C C(U0)bq2

−2qsR
7+δ

2 t
3
4 ε

1
4

+ C C(U0)bq2
−2qs

(
R

7+δ
2 t

3
4 ε

1
4 + t

∥∥∥Ũ ε
∥∥∥
L̃∞([0,t],Hs)

)∥∥∥Ũ ε
∥∥∥2

L̃∞([0,t],Hs)
, (6.5.5)

where bq is a summable sequence such that
∑

q bq = 1.

Step 1. We fix σ ∈]s, s+ s0[, say σ = (s+ s0
2

). For any n ∈ N∗, we define the operator

Jnf = F−1
(

1{|ξ|<n}∩{|ξh|>1/n}∩{|ξ3|>1/n}f̂
)

which is continuous from L2 (R3) to L2 (R3). Setting Ũ0 = 0, by induction, we define the
following family of linear systems, related to (6.5.3)

∂tŨ
n+1 +

1

ε
BŨn+1 = −Jn+1

(
A (Un, D) Jn+1U

n+1
)

Ũn+1
|t=0

= Ũn+1
0 = F−1

(
1B(0,n+1)F (1− Pr,R)U0

)
Un+1 = Ū ε + Ũn+1

(6.5.3n)

A is defined in (6.1.4). We remark that since Ũ0 ≡ 0, Ũ1 is solution to the following linear
system  ∂tŨ

1 +
1

ε
BŨ1 + J1

(
A
(
Ū ε, D

)
J1Ũ

1
)

= −J1

(
A
(
Ū ε, D

)
J1Ū

ε
)

Ũ1
|t=0

= Ũ1
0 = F−1

(
1B(0,1)F (1− Pr,R)U0

) (6.5.30)

We have Ū ε ∈ L∞ (R+, H
α(R3)4), for any α > 0, because of its frequency localization

property and Lemma 6.3.1 implies that Ũ1
0 ∈ Hσ(R3)4. Then, we can easily construct Ũ1,

with the Fourier transform of which localized in B (0, 1) using Hahn-Banach theorem.
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6.5. The nonlinear part

Now, for any n ∈ N∗, let L2
n (R3) be the space

L2
n

(
R3
)

=
{
f ∈ L2

(
R3
) ∣∣ Suppf̂ ⊂ ({|ξ| < n} ∩ {|ξh| > 1/n} ∩ {|ξ3| > 1/n})

}
.

Let η > 0 be a fix positive constant and we suppose that, for any 0 6 k 6 n − 1, we can
construct a unique maximal solution Ũk+1 of (6.5.3k) in

C1
(

[0, Tk+1], L2
k+1

(
R3
)4
)
∩ L̃∞

(
[0, Tk+1] , Hσ

(
R3
)4
)

such that ∥∥∥Ũk+1
∥∥∥
L̃∞([0,Tk+1];Hσ)

6 η.

Thanks to the embedding Hσ(R3) ↪→ L∞(R3), we have Un ∈ L∞
(

[0, Tn], L∞ (R3)
4
)

,
which implies that

Jn+1

(
A (Un (t) , D) Jn+1U

n+1(t)
)
∈ L2

(
R3
)4
,

and we can rewrite (6.5.3n) as an ODE

∂tŨ
n+1 = Ln+1Ũ

n+1,

where the linear operator Ln+1 maps continuously L2 (R3)
4 to L2 (R3)

4. The Cauchy-
Lipschitz theorem ensure the existence of a unique maximal solution to the system (6.5.3n)

Ũn+1 ∈ C1
(

[0, Tn+1] ;L2
(
R3
)4
)
.

Moreover, since J2
n+1 = Jn+1, applying Jn+1 to (6.5.3n), we obtain, by uniqueness, that

Jn+1Ũ
n+1 = Ũn+1.

Hence, Ũn+1 belongs not only to L2 (R3)
4 but to L2

n+1 (R3)
4, which conclude the first step

by induction.

Step 2. We recall that throughout this paper, we use C to denote a generic positive constant
which can change from line to line. In this step, we want to prove that, for previously chosen
ε > 0 small enough, the sequence {Tn} is bounded from below from zero, which means that
there exists Tε > 0 such that, for any n ∈ N,∥∥∥Ũn

∥∥∥
L̃∞([0,Tε];Hσ)

6 η. (6.5.6)

We will prove (6.5.6) by induction. For n = 0, we have nothing to do. So we suppose
that, for fix Tε > 0 which will be precised later, (6.5.6) is true for any 0 6 k 6 n. Now, we
want to estimate Ũn+1 in L̃∞ ([0, Tε], H

σ (R3))-norm. Applying 4q to (6.5.3n), taking the
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L2-scalar product of the obtained equation with4qŨ
n+1 and then integrating with respect to

the time variable on [0, t], we get∥∥∥4qŨ
n+1(t)

∥∥∥2

L2
6
∥∥∥4qŨ

n+1
0

∥∥∥2

L2
+ 2

∫ t

0

∣∣∣〈Jn+14q

(
un · ∇Un+1

)〉 ∣∣ 4qŨ
n+1
∣∣∣ (τ) dτ

(6.5.7)

+ 2

∫ t

0

∣∣∣ 〈Jn+14q

(
bn∇bn+1

) ∣∣ 4qũ
n+1
〉
L2 +

+
〈
Jn+14q

(
bndivun+1

) ∣∣ 4q b̃
n+1
〉 ∣∣∣(τ) dτ

Using the same method as in the proof of Lemma 6.5.2, we decompose the bilinear term on
the right hand side of (6.5.7) into the following sums∫ t

0

∣∣∣〈Jn+14q

(
un · ∇Un+1

)〉 ∣∣ 4qŨ
n+1
∣∣∣ (τ) dτ 6 Bn+1

1 +Bn+1
2 +Bn+1

3 +Bn+1
4 ,

and∫ t

0

∣∣∣〈Jn+14q

(
bn∇bn+1

) ∣∣ 4qũ
n+1
〉
L2 +

〈
Jn+14q

(
bndivun+1

) ∣∣ 4q b̃
n+1
〉∣∣∣ (τ) dτ

6 Cn+1
1 + Cn+1

2 + Cn+1
3 + Cn+1

4 .

where, applying Lemmas 6.6.1, 6.6.2 and 6.6.3 in the appendix, we have

Bn+1
1 =

∫ t

0

∣∣∣〈4q

(
uε · ∇Ū ε

)〉 ∣∣ 4qŨ
n+1
∣∣∣ (τ) dτ (6.5.8)

6 C ‖U0‖Hσ R
7+δ

2 t
3
4 ε

1
4 bq2

−2qσ
∥∥Ū ε

∥∥
L̃∞([0,t],Hσ)

∥∥∥Ũn+1
∥∥∥
L̃∞([0,t],Hσ)

6 C C(U0) t
3
4 ε

1
4
−β(7+δ)

2 bq2
−2qσ

(
1 +

∥∥∥Ũn+1
∥∥∥2

L̃∞([0,t],Hσ)

)
,

Bn+1
2 =

∫ t

0

∣∣∣〈4q

(
ũn · ∇Ū ε

)〉 ∣∣ 4qŨ
n+1
∣∣∣ (τ) dτ (6.5.9)

6 C C(U0)R
7+δ

2 t
3
4 ε

1
4 bq2

−2qσ
∥∥∥Ũn

∥∥∥
L̃∞([0,t],Hσ)

∥∥∥Ũn+1
∥∥∥
L̃∞([0,t],Hσ)

6 C C(U0) η t
3
4 ε

1
4
−β(7+δ)

2 bq2
−2qσ

(
1 +

∥∥∥Ũn+1
∥∥∥2

L̃∞([0,t],Hσ)

)
,

Bn+1
3 =

∫ t

0

∣∣∣〈4q

(
uε · ∇Ũn+1

)〉 ∣∣ 4qŨ
n+1
∣∣∣ (τ) dτ (6.5.10)

6 C C(U0)R
7+δ

2 t
3
4 ε

1
4 bq2

−2qσ
∥∥∥Ũn+1

∥∥∥2

L̃∞([0,t],Hσ)

6 C C(U0) t
3
4 ε

1
4
−β(7+δ)

2 bq2
−2qσ

∥∥∥Ũn+1
∥∥∥2

L̃∞([0,t],Hσ)
,
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Bn+1
4 =

∫ t

0

∣∣∣〈4q

(
ũn · ∇Ũn+1

)〉 ∣∣ 4qŨ
n+1
∣∣∣ (τ) dτ (6.5.11)

6 Cbq2
−2qσ

∥∥∥Ũn
∥∥∥
L̃∞([0,t],Hσ)

∥∥∥Ũn+1
∥∥∥2

L̃2([0,t],Hσ)

6 Cη t bq2
−2qσ

∥∥∥Ũn+1
∥∥∥2

L̃∞([0,t],Hσ)
,

and

Cn+1
1 =

∫ t

0

∣∣∣〈4q

(
b
n∇bn+1

) ∣∣4qũ
n+1
〉∣∣∣ (τ) dτ

+

∫ t

0

∣∣∣〈4q

(
b
n
divun+1

) ∣∣4q b̃
n+1
〉∣∣∣ (τ) dτ

6 C ‖U0‖Hσ R
7+δ

2 t
3
4 ε

1
4 bq2

−2qσ
∥∥Ū ε

∥∥
L̃∞([0,t],Hσ)

∥∥∥Ũn+1
∥∥∥
L̃∞([0,t],Hσ)

6 C C(U0) t
3
4 ε

1
4
−β(7+δ)

2 bq2
−2qσ

(
1 +

∥∥∥Ũn+1
∥∥∥2

L̃∞([0,t],Hσ)

)
,

Cn+1
2 =

∫ t

0

∣∣∣〈4q

(
b̃n∇bn+1

) ∣∣4qũ
n+1
〉∣∣∣ (τ) dτ

+

∫ t

0

∣∣∣〈4q

(
b̃ndivun+1

) ∣∣4q b̃
n+1
〉∣∣∣ (τ) dτ

6 C C(U0)R
7+δ

2 t
3
4 ε

1
4 bq2

−2qσ
∥∥∥Ũn

∥∥∥
L̃∞([0,t],Hσ)

∥∥∥Ũn+1
∥∥∥
L̃∞([0,t],Hσ)

6 C C(U0) η t
3
4 ε

1
4
−β(7+δ)

2 bq2
−2qσ

(
1 +

∥∥∥Ũn+1
∥∥∥2

L̃∞([0,t],Hσ)

)
,

Cn+1
3 =

∫ t

0

∣∣∣〈4q

(
b
n∇b̃n+1

) ∣∣4qũ
n+1
〉∣∣∣ (τ) dτ

+

∫ t

0

∣∣∣〈4q

(
b
n
div ũn+1

) ∣∣4q b̃
n+1
〉∣∣∣ (τ) dτ

6 C C(U0)R
7+δ

2 t
3
4 ε

1
4 bq2

−2qσ
∥∥∥Ũn+1

∥∥∥2

L̃∞([0,t],Hσ)

6 C C(U0) t
3
4 ε

1
4
−β(7+δ)

2 bq2
−2qσ

∥∥∥Ũn+1
∥∥∥2

L̃∞([0,t],Hσ)
,

Cn+1
4 =

∫ t

0

∣∣∣〈4q

(
b̃n∇b̃n+1

) ∣∣ 4qũ
n+1
〉∣∣∣ dτ

+

∫ t

0

∣∣∣〈4q

(
b̃ndiv ũn+1

) ∣∣ 4q b̃
n+1
〉∣∣∣ (τ) dτ

6 Cbq2
−2qσ

∥∥∥Ũn
∥∥∥
L̃∞([0,t],Hσ)

∥∥∥Ũn+1
∥∥∥2

L̃2([0,t],Hσ)

6 Cη t bq2
−2qσ

∥∥∥Ũn+1
∥∥∥2

L̃∞([0,t],Hσ)
,

where C(U0) is defined in (6.1.8).
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Inserting Estimates (6.5.8) to (6.5.12) into (6.5.7), multiplying the obtained inquality by
22qσ, then summing with respect to q > −1 and applying Lemma 6.3.1 leads to∥∥∥Ũn+1

∥∥∥2

L̃∞([0,t],Hσ)
6 C C(U0) ε2βs0 + Cη t

∥∥∥Ũn+1
∥∥∥2

L̃∞([0,t],Hσ)

+ C C(U0) t
3
4 ε

1
4
−β(7+δ)

2

(
1 +

∥∥∥Ũn+1
∥∥∥2

L̃∞([0,t],Hσ)

)
.

We recall that σ ∈]s, s + s0[ and η > 0 are fixed positive constants and δ > 0 is given in
Lemma 6.3.1. We choose ε0 > 0, Tε > 0 and β > 0 such that

β(7 + δ) <
1

2

CηTε + C C(U0)T
3
4
ε ε

1
4
−β(7+δ)

2
0 <

1

2

C C(U0) ε2βs0
0 + C C(U0)T

3
4
ε ε

1
4
−β(7+δ)

2
0 6

η2

2
.

(6.5.12)

Then, for any ε ∈ [0, ε0], we deduce that,∥∥∥Ũn+1
∥∥∥
L̃∞([0,Tε],Hσ)

6 η,

and Step 2 is concluded.

Remark 6.5.3. In fact, the time of existence Tε = T > 0 depends only on ε0 > 0 and thus
is independent of ε, for ε ∈]0, ε0[.

Step 3. At first, we will prove that
{
Ũn
}
n

is a Cauchy sequence in the spaceL∞
(

[0, T ] ;L2 (R3)
4
)

.

We define the auxiliary sequence
{
Ṽ n
}
n

by

Ṽ n+1 = Ũn+1 − Ũn, ∀ n ∈ N.

For any n ∈ N, Ṽ n+1 is solution of the system
∂tṼ

n+1 +
1

ε
BṼ n+1 +A

(
Ũn, D

)
Ṽ n+1 +A

(
Ṽ n, D

)
Ũn

+A
(
Ṽ n, D

)
Ū ε +A

(
Ū ε, D

)
Ṽ n+1 = 0

Ṽ n+1
∣∣∣
t=0

= Ũn+1
0 − Ũn

0 .

(6.5.13)

We will need the following estimates, the proof of which is simple and direct.

Lemma 6.5.4. The following estimates hold∣∣∣〈A(Ũn, D
)
Ṽ n+1

∣∣∣ Ṽ n+1
〉
L2

∣∣∣ 6 C
∥∥∥∇Ũn

∥∥∥
L∞

∥∥∥Ṽ n+1
∥∥∥2

L2∣∣∣〈A(Ṽ n, D
)
Ũn
∣∣∣ Ṽ n+1

〉
L2

∣∣∣ 6 C
∥∥∥∇Ũn

∥∥∥
L∞

∥∥∥Ṽ n
∥∥∥
L2

∥∥∥Ṽ n+1
∥∥∥
L2∣∣∣〈A(Ṽ n, D

)
Ū ε
∣∣∣ Ṽ n+1

〉
L2

∣∣∣ 6 C
∥∥∇Ū ε

∥∥
L∞

∥∥∥Ṽ n
∥∥∥
L2

∥∥∥Ṽ n+1
∥∥∥
L2∣∣∣〈A (Ū ε, D

)
Ṽ n+1

∣∣∣ Ṽ n+1
〉
L2

∣∣∣ 6 C
∥∥∇Ū ε

∥∥
L∞

∥∥∥Ṽ n+1
∥∥∥2

L2
.
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Taking the L2 scalar product of the first equation of (6.5.13) with
∥∥∥Ṽ n+1

∥∥∥−1

L2
Ṽ n+1 and us-

ing Bernstein Lemma 6.2.1, Lemma 6.5.4 and the Sobolev inclusionHσ (R3) ↪→ W 1,∞ (R3),
we obtain

d
dt

∥∥∥Ṽ n+1
∥∥∥
L2
6
(∥∥∥Ũn

∥∥∥
Hσ

+R
∥∥Ū ε

∥∥
L∞

)(∥∥∥Ṽ n+1
∥∥∥
L2

+
∥∥∥Ṽ n

∥∥∥
L2

)
. (6.5.14)

We recall that, for any n ∈ N, ∥∥∥Ũn
∥∥∥
L̃∞([0,T ];Hσ)

6 η

and that Hölder inequality and Strichartz-type estimates (6.4.3) in Section 6.4 give, pour tout
0 < t 6 T ,∫ t

0

∥∥Ū ε
∥∥
L∞

ds 6
(∫ t

0

ds

) 3
4 ∥∥Ū ε

∥∥
L4([0,t],L∞(R3))

6 C C(U0)T
3
4R

5+δ
2 ε

1
4 ,

where C(U0) is defined in (6.1.8). Using Bernstein Lemma 6.2.1, we also have∥∥∥Ṽ n+1(0)
∥∥∥2

L2
=
∥∥∥Ũn+1

0 − Ũn
0

∥∥∥2

L2
6
∫
|ξ|>n

(
1 + |ξ|2

)−s (
1 + |ξ|2

)s ∣∣∣Û0

∣∣∣2 dξ 6 C C(U0)n−2s.

Integrating (6.5.14) with respect to the time variable and taking into account all the above
inequalities and remarking that we already choose R = ε−β , β > 0, we obtain

vn+1 ≤ C C(U0)n−s +
(
ηT + C C(U0)T

3
4 ε

1
4
−β(7+δ)

2

)
(vn+1 + vn) ,

where for any n ∈ N, we set
vn =

∥∥∥Ṽ n
∥∥∥
L∞([0,T ],L2)

.

If we choose the parameters such that
β(7 + δ) <

1

2

ηT + C C(U0)T
3
4 ε

1
4
−β(7+δ)

2
0 <

1

3
,

(6.5.15)

then, for any ε ∈]0, ε0[, we have

vn+1 ≤ C C(U0)n−s +
1

2
vn.

Since s > 5
2
, the series

∑
n∈N n

−s is convergent, which implies that the sequence {vn}n is

summable, which in turn implies that
{
Ũn
}
n

is a Cauchy sequence inL∞
(

[0, T ], L2 (R3)
4
)

.

Since
{
Ũn
}
n

is a bounded sequence in L̃∞
(

[0, T ], Hσ (R3)
4
)

, for some σ ∈]s, s + s0[, by

interpolation, we deduce that
{
Ũn
}
n

is a Cauchy sequence in L̃∞
(

[0, T ], Hs (R3)
4
)

, and

so, there exists Ũ ε in L̃∞
(

[0, T ], Hs (R3)
4
)

such that

Ũ ε = lim
n→+∞

Ũn.
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Remark 6.5.5. Fixing s > 5
2
, s0 > 0, σ ∈]s, s + s0[, η > 0, δ > 0, the conditions (6.5.12)

and (6.5.15) can easily be satisfied by choosing β > 0, T > 0 and ε0 > 0 sufficiently small.

Step 4. It remains to verify if Ũ ε is a solution of (6.5.1). In fact, we only have to check if
we can pass to the limit in the bilinear term. Since s > 5

2
, classical product laws in Sobolev

spaces yield∥∥∥A(Ũ ε, D
)
Ũ ε −A

(
Ũn, D

)
Ũn+1

∥∥∥
Hs−1

6
∥∥∥A(Ũn − Ũ ε, D

)
Ũn+1

∥∥∥
Hs−1

+
∥∥∥A(Ũ ε, D

)(
Ũn+1 − Ũ ε

)∥∥∥
Hs−1

6
∥∥∥Ũn − Ũ ε

∥∥∥
Hs−1

∥∥∥∇Ũn+1
∥∥∥
L∞

+
∥∥∥Ũn − Ũ ε

∥∥∥
L∞

∥∥∥Ũn+1
∥∥∥
Hs

+
∥∥∥Ũ ε

∥∥∥
Hs−1

∥∥∥∇(Ũn+1 − Ũ ε
)∥∥∥

L∞
+
∥∥∥Ũ ε

∥∥∥
L∞

∥∥∥Ũn+1 − Ũ ε
∥∥∥
Hs

6 C
∥∥∥Ũ ε

∥∥∥
Hs

∥∥∥Ũn+1 − Ũ ε
∥∥∥
Hs

+ C
∥∥∥Ũn+1

∥∥∥
Hs

∥∥∥Ũn − Ũ ε
∥∥∥
Hs

We recall that Ũn and so Ũ ε are bounded in L∞
(

[0, T ], Hs (R3)
4
)

by η > 0. Besides, we
also prove in Step 3 that

lim
n→+∞

∥∥∥Ũn − Ũ ε
∥∥∥
L∞([0,T ],Hs)

= 0.

Thus, we obtain

lim
n→+∞

∥∥∥A(Ũ ε, D
)
Ũ ε −A

(
Ũn, D

)
Ũn+1

∥∥∥
L∞([0,T ],Hs−1)

= 0,

which allows to pass to the limit and conclude Step 4.

We remark that the continuity in L2(R3)4 and the boundedness in Hσ(R3)4 implies the
continuity of Ũ ε with respect to the time variable. To finish this part, we study the uniqueness
and the continuity with respect to the initial data of the previously contructed solution. More
precisely, we prove the following lemma.

Lemma 6.5.6. Let U0 ∈ Hs+s0 , s > 5/2, s0 > 0. There exists a unique solution of the
system (6.1.5) in L̃∞

(
[0, T ] ;Hs (R3)

4
)

. Moreover, if Φ is the function which associates to

U0 ∈ Hs+s0 the unique solution U of (6.1.5), then

Φ ∈ C
(
Hs
(
R3
)4

;L∞
(

[0, T ] ;Hs
(
R3
)4
))

.

Proof. Let us consider two initial data Ui,0 ∈ Hs+s0 , s > 5/2, s0 > 0, i = 1, 2. These data
generate two solutions Ui, i = 1, 2, to the system ∂tUi −

1

ε
BUi = −A (Ui, D)Ui,

Ui|t=0 = Ui,0.
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We remark that δU = U1 − U2 solves the system{
∂tδU +

1

ε
BδU = −A (δU,D)U2 −A (U1, D) δU

δU |t=0 = U1,0 − U2,0.
(6.5.16)

Taking L2 (R3) scalar product of (6.5.16) with δU , and considering the following inequali-
ties, ∣∣∣∣〈A (δU,D)U2

∣∣∣ δU〉
L2(R3)

∣∣∣∣ 6 ‖∇U2‖L∞(R3) ‖δU‖
2
L2∣∣∣∣〈A (U1, D) δU

∣∣∣ δU〉
L2(R3)

∣∣∣∣ 6 ‖∇U1‖L∞(R3) ‖δU‖
2
L2 ,

we deduce via Gronwall inequality, and the embedding Hs (R3) ↪→ W 1,∞ (R3) that

d

dt
‖δU (t)‖2

L2(R3) 6 ‖δU0‖2
L2(R3) e

2
∫ t
0

(
‖U1(τ)‖Hs(R3)+‖U2(τ)‖Hs(R3)

)
dτ
.

From the construction of the solution, we have

‖Ui‖L̃∞([0,T ];Hs(R3)4) 6 ‖Ui,0‖Hs(R3) + η,

hence

e
2
∫ t
0

(
‖U1(τ)‖Hs(R3)+‖U2(τ)‖Hs(R3)

)
dτ
6 e

(
4η+2‖U1,0‖Hs(R3)+2‖U2,0‖Hs(R3)

)
T
,

which implies the uniqueness and the continuity of the solution in the spaceL∞
(

[0, T ];L2 (R3)
4
)

.

The uniqueness and the continuity in L∞
(

[0, T ] ;Hs (R3)
4
)

follows by interpolation.

6.5.2 Lifespan of the nonlinear part.

In this part, we will provide a control of the maximal lifespan T ?ε of the solution previously
constructed using a bootstrap argument. Applying4q to (6.5.1), taking the L2-scalar product
of the obtained equation with4qŨ

ε and then integrating with respect to the time variable on
[0, t], we get∥∥∥4qŨ

ε(t)
∥∥∥2

L2
6
∥∥∥4qŨ0

∥∥∥2

L2
+ 2

∫ t

0

∣∣∣〈4q (uε(τ) · ∇U ε(τ))
∣∣ 4qŨ

ε(τ)
〉∣∣∣ dτ

+ 2

∫ t

0

∣∣∣∣〈4q

(
bε∇bε
bεdivuε

)
(τ)

∣∣ 4qŨ
ε(τ)

〉
L2

∣∣∣∣ dτ. (6.5.17)

We recall that R = ε−β , β > 0. Then, Lemma 6.3.1 implies, for ε > 0 small enough,∥∥∥Ũ0

∥∥∥
Hs
≤ C C(U0)R−s0 = C C(U0) εβs0 6 ε

βs0
2 ,

where C(U0) is defined in (6.1.8). Let

T ?ε = sup

{
T > 0 :

∥∥∥Ũ ε(t)
∥∥∥
L̃∞([0,t],Hs)

6 2ε
βs0

2 , ∀ t ∈ [0, T ]

}
. (6.5.18)
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The continuity of Ũ ε with respect to the time variable implies that T ?ε > 0. Multiplying
(6.5.17) by 22qs and summing with respect to q > −1, then using Lemma 6.5.2, for any
t ∈ [0, T ?ε [, we obtain∥∥∥Ũ ε

∥∥∥2

L̃∞([0,t],Hs)
6
∥∥∥Ũ0

∥∥∥2

Hs
+ C C(U0) t

3
4 ε

1
4
−β(7+δ)

2

+ C C(U0)

(
t

3
4 ε

1
4
−β(7+δ)

2 + t
∥∥∥Ũ ε

∥∥∥
L̃∞([0,t],Hs)

)∥∥∥Ũ ε
∥∥∥2

L̃∞([0,t],Hs)

which implies, for 0 < ε < 1 small enough, and for any t ∈ [0, T ?ε [,∥∥∥Ũ ε
∥∥∥2

L̃∞([0,t],Hs)
6 εβs0 + C C(U0) t

3
4 ε

1
4
−β(7+δ)

2

+ C C(U0)
(
t

3
4 ε

1
4
−β(7+δ)

2 + tεβs0
)∥∥∥Ũ ε

∥∥∥2

L̃∞([0,t],Hs)
.

If
β (14 + 2δ + 4s0) < 1 (6.5.19)

and if
C C(U0)

(
(T ?ε )

3
4 ε

1
4
−β(7+δ)

2 + T ?ε ε
βs0
)
6

1

2
(6.5.20)

then for ε > 0 small enough, for any 0 < t < T ?ε , we have

1

2

∥∥∥Ũ ε
∥∥∥2

L̃∞([0,t],Hs)
6 εβs0 + C C(U0) t

3
4 ε

1
4
−β(7+δ)

2 < 2εβs0 ,

and so, for any 0 < t < T ?ε , ∥∥∥Ũ ε
∥∥∥
L̃∞([0,t],Hs)

< 2ε
βs0

2 .

Thus, the solution Ũ ε exists at least up to a time T ?ε > 0 satisfies (6.5.20). From (6.5.19), if
we set

α = min

{
1

4
− β(7 + δ)

2
,
βs0

2

}
> 0 and C =

1

4C
,

then we have
T ?ε > CC(U0)−1ε−α.

Theorem 6.5.1 is proved. �

6.6 Estimates on the bilinear terms

In this appendix, we prove important estimates on the bilinear term, which allow to prove
Lemma 6.5.2. First of all, we prove the following lemma

Lemma 6.6.1. Let i ∈ {1, 2, 3} and ∂i = ∂
∂xi

. For any s > 5
2

and for any functions u, v and
w in Hs (R3), we have∫ t

0

∣∣〈4q(w(τ) ∂iu(τ))
∣∣ 4qu(τ)

〉
L2

∣∣ dτ
6 Cbq2

−2qs ‖w‖L̃∞([0,t],Hs) ‖u‖
2
L̃2([0,t],Hs) , (6.6.1)
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and∫ t

0

∣∣〈4q(w(τ) ∂iu(τ))
∣∣ 4qv(τ)

〉
L2 +

〈
4q(w(τ) ∂iv(τ))

∣∣ 4qu(τ)
〉
L2

∣∣ dτ
6 Cbq2

−2qs ‖w‖L̃∞([0,t],Hs) ‖u‖L̃2([0,t],Hs) ‖v‖L̃2([0,t],Hs) , (6.6.2)

where bq is a summable sequence such that
∑

q bq = 1.

Proof. We will only prove Estimate (6.6.2). Estimate (6.6.1) can be obtained from (6.6.2)
by choosing u = v. Applying the Bony decomposition as in (6.2.10) and (6.2.11) to the
products w∂iu and w∂iv, we can write∫ t

0

∣∣〈4q(w(τ) ∂iu(τ))
∣∣ 4qv(τ)

〉
L2 +

〈
4q(w(τ) ∂iv(τ))

∣∣ 4qu(τ)
〉
L2

∣∣ dτ 6 IA + IB,

(6.6.3)
where

IA =

∫ t

0

∣∣∣〈∆q

∑
q′>q−4

Sq′+2 (∂iu) ∆q′w
∣∣∣ ∆qv

〉
+
〈

∆q

∑
q′>q−4

Sq′+2 (∂iv) ∆q′w
∣∣∣ ∆qu

〉∣∣∣(τ) dτ

IB =

∫ t

0

∣∣∣〈∆q

∑
|q′−q|64

Sq′−1w ∂i∆q′u
∣∣∣ ∆qv

〉
+
〈

∆q

∑
|q′−q|64

Sq′−1w ∂i∆q′v
∣∣∣ ∆qu

〉∣∣∣(τ) dτ.

Since Sq′+2 continuously mapsL∞ (R3) toL∞ (R3), using Lemma 6.2.8, Hölder inequal-
ity and the Sobolev inclusion Hs (R3) ↪→ W 1,∞(R3), we get

IA 6
∑
q′>q−4

‖Sq′+2∂iu‖L2([0,t],L∞) ‖∆q′w‖L∞([0,t],L2) ‖4qv‖L2([0,t],L2) (6.6.4)

+
∑
q′>q−4

‖Sq′+2∂iv‖L2([0,t],L∞) ‖∆q′w‖L∞([0,t],L2) ‖4qu‖L2([0,t],L2)

6 C bq 2−2qs ‖w‖L̃∞([0,t],Hs) ‖u‖
2
L̃2([0,t],Hs)

where

{bq}q =

{ ∑
q′>q−4

2−(q′−q)scq′(w) (cq(u) + cq(v))

}
q

∈ `1,

using Young convolution inequality and the fact that {cq(u)}q, {cq(v)}q and {cq′(w)}q′ are
square-summable sequences.

To estimate the second term IB of (6.6.3), we decompose it as follows

IB 6 IB1 + IB2 + IB3,

where

IB1 =

∫ t

0

∣∣〈Sqw 4q∂iu
∣∣ 4qv

〉
+
〈
Sqw 4q∂iv

∣∣ 4qu
〉∣∣ (τ) dτ

IB2 =

∫ t

0

∑
|q−q′|64

∣∣〈(Sq − Sq′−1)w ∆q′∂iu
∣∣ 4qv

〉
+
〈
(Sq − Sq′−1)w ∆q′∂iv

∣∣ 4qu
〉∣∣ (τ) dτ

IB3 =

∫ t

0

∑
|q−q′|64

∣∣〈[4q, Sq′−1w] ∆q′∂iu
∣∣ 4qv

〉
+
〈
[4q, Sq′−1w] ∆q′∂iv

∣∣ 4qu
〉∣∣ (τ) dτ.
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Recalling that Sq continuously maps L∞ (R3) to L∞ (R3), an integration by parts, Hölder
inequality, Lemma 6.2.8 and the Sobolev inclusion Hs (R3) ↪→ W 1,∞(R3) give

IB1 =

∫ t

0

|Sq(∂iw(τ)) 4qu(τ) 4qv(τ)| dτ (6.6.5)

6 ‖Sq∂iw‖L∞([0,t],L∞) ‖4qu‖L2([0,t],L2) ‖4qv‖L2([0,t],L2)

6 C bq 2−2qs ‖w‖L∞([0,t],Hs) ‖u‖L̃2([0,t],Hs) ‖v‖L̃2([0,t],Hs) ,

where {bq}q = {cq(u)cq(v)}q is a summable sequence. For IB2, we remark that Sq − Sq′−1

does not contains low frequencies and continuously maps L∞ (R3) to L∞ (R3). Then, using
Bernstein lemma 6.2.1 and Hölder inequality, we obtain the same estimates as in (6.6.5)

IB2 6 C

∫ t

0

∑
|q′−q|64

‖(Sq − Sq′−1)w(τ)‖L∞ 2q
′ ‖∆q′u(τ)‖L2 ‖∆qv(τ)‖L2 dτ (6.6.6)

+ C

∫ t

0

∑
|q′−q|64

‖(Sq − Sq′−1)w(τ)‖L∞ 2q
′ ‖∆q′v(τ)‖L2 ‖∆qu(τ)‖L2 dτ

6 C
∑
|q′−q|64

‖(Sq − Sq′−1)∂iw‖L∞([0,t],L∞) ‖∆q′u‖L2([0,t],L2) ‖∆qv‖L2([0,t],L2)

+ C
∑
|q′−q|64

‖(Sq − Sq′−1)∂iw‖L∞([0,t],L∞) ‖∆q′v‖L2([0,t],L2) ‖∆qu‖L2([0,t],L2)

6 C bq 2−2qs ‖w‖L∞([0,t],Hs) ‖u‖L̃2([0,t],Hs) ‖v‖L̃2([0,t],Hs)

where

{bq}q =

 ∑
|q′−q|64

2−(q′−q)s (cq(v)cq′(u) + cq(u)cq′(v))


q

∈ `1.

Finally, for the term IB3, Hölder inequality and Lemma 6.2.6 yield

IB3 6 C
∑
|q−q′|64

2−q ‖Sq′−1∇w‖L∞([0,t],L∞) ‖∆q′∂iu‖L2([0,t],L2) ‖4qv‖L2([0,t],L2)

+ C
∑
|q−q′|64

2−q ‖Sq′−1∇w‖L∞([0,t],L∞) ‖∆q′∂iv‖L2([0,t],L2) ‖4qu‖L2([0,t],L2) .

Using the fact that Sq continuously maps L∞ (R3) to L∞ (R3), Bernstein lemma 6.2.1 and
Estimate (6.2.8), we have

IB3 6 C
∑
|q−q′|64

2q
′−q ‖Sq′−1∇w‖L∞([0,t],L∞) ‖∆q′u‖L2([0,t],L2) ‖4qv‖L2([0,t],L2) (6.6.7)

+ C
∑
|q−q′|64

2q
′−q ‖Sq′−1∇w‖L∞([0,t],L∞) ‖∆q′v‖L2([0,t],L2) ‖4qu‖L2([0,t],L2)

6 C bq 2−2qs ‖w‖L∞([0,t],Hs) ‖u‖L̃2([0,t],Hs) ‖v‖L̃2([0,t],Hs) ,

where

{bq}q =

 ∑
|q′−q|64

2−(q′−q)(s−1) (cq′(u)cq(v) + cq′(v)cq(u))


q

∈ `1.
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Inserting (6.6.4)–(6.6.7) into (6.6.3), we deduce Estimate (6.6.2).

In order to prove Lemma 6.5.2, we also need the following estimates when the bilinear
term contains functions whose Fourier transform is localized in Cr,R (see (6.1.9) for the
definition of Cr,R).

Lemma 6.6.2. Let T > 0, i ∈ {1, 2, 3}, ∂i = ∂
∂xi

and Ū ε be the solution of the cut-off linear

system (6.4.2). For any s > 5
2
, for any functions v and w in L̃∞ ([0, T ], Hs (R3)), for any

component uj of Ū ε, j ∈ {1, 2, 3, 4}, and for any 0 < t 6 T , we have∫ t

0

∣∣〈4q

(
v(τ) ∂iu

j(τ)
) ∣∣ 4qw(τ)

〉
L2

∣∣ dτ
6 C C(U0)R

7+δ
2 t

3
4 ε

1
4 bq2

−2qs ‖v‖L̃∞([0,t],Hs) ‖w‖L̃∞([0,t],Hs) , (6.6.8)

where C(U0) is defined in (6.1.8) and bq is a summable sequence such that
∑

q bq = 1.

Lemma 6.6.3. Let T > 0, i ∈ {1, 2, 3}, ∂i = ∂
∂xi

and Ū ε be the solution of the cut-off linear

system (6.4.2). For any s > 5
2
, for any functions v and w in L̃∞ ([0, T ], Hs (R3)), for any

component uj of Ū ε, j ∈ {1, 2, 3, 4}, and for any 0 < t 6 T , we have∫ t

0

∣∣〈4q

(
uj(τ) ∂iv(τ)

) ∣∣ 4qv(τ)
〉
L2

∣∣ dτ
6 C C(U0)R

7+δ
2 t

3
4 ε

1
4 bq2

−2qs ‖v‖2
L̃∞([0,t],Hs) , (6.6.9)

and∫ t

0

∣∣〈4q

(
uj(τ) ∂iv(τ)

) ∣∣ 4qw(τ)
〉
L2 +

〈
4q

(
uj(τ) ∂iw(τ)

) ∣∣ 4qv(τ)
〉
L2

∣∣ dτ
6 C C(U0)R

7+δ
2 t

3
4 ε

1
4 bq2

−2qs ‖v‖L̃∞([0,t],Hs) ‖w‖L̃∞([0,t],Hs) , (6.6.10)

where C(U0) is defined in (6.1.8) and bq is a summable sequence such that
∑

q bq = 1.

Proof of Lemma 6.6.2. We apply the same Bony decomposition into paraproducts and re-
mainders as in (6.6.3) and we have∫ t

0

∣∣〈4q

(
v(τ) ∂iu

j(τ)
) ∣∣ 4qw(τ)

〉
L2

∣∣ dτ 6 JA + JB, (6.6.11)

where

JA =

∫ t

0

∣∣∣〈∆q

∑
q′>q−4

Sq′+2

(
∂iu

j(τ)
)

∆q′v(τ)
∣∣∣ ∆qw(τ)

〉
L2

∣∣∣ dτ
JB =

∫ t

0

∣∣∣〈∆q

∑
|q′−q|64

Sq′−1v(τ)∆q′∂iu
j(τ)

∣∣∣ ∆qw(τ)
〉
L2

∣∣∣ dτ.
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For the term JA, Lemma 6.2.8 and similar estimates as in (6.6.4) imply

JA 6
∑
q′>q−4

∥∥Sq′+2 ∂iu
j
∥∥
L1([0,t],L∞)

‖∆q′v‖L∞([0,t],L2) ‖4qv‖L∞([0,t],L2)

6 CRt
3
4

∥∥Ū ε
∥∥
L4([0,t],L∞)

2−2qs

( ∑
q′>q−4

2−(q′−q)scq′(v)cq(w)

)
‖v‖L̃∞([0,t],Hs) ‖w‖L̃∞([0,t],Hs)

Using Strichartz-type estimates (6.4.3) and fixing 0 < r = Rδ, δ > 0, we have

JA 6 C C(U0)R
7+δ

2 t
3
4 ε

1
4 bq2

−2qs ‖v‖L̃∞([0,t],Hs) ‖w‖L̃∞([0,t],Hs) , (6.6.12)

where

{bq}q =

{ ∑
q′>q−4

2−(q′−q)scq′(v)cq(w)

}
q

∈ `1.

The term JB is a little more difficult to estimate. Using Hölder inequality and the fact
that Sq′−1 continuously maps Hs (R3) into L2 (R3), we have

JB 6
∑
|q′−q|64

‖Sq′−1v‖L∞([0,t],L2)

∥∥∆q′∂iu
j
∥∥
L1([0,t],L∞)

‖4qw‖L∞([0,t],L2)

6 CRt
3
4

∑
|q′−q|64

∥∥∆q′Ū
ε
∥∥
L4([0,t],L∞)

‖v‖L∞([0,t],Hs) ‖4qw‖L∞([0,t],L2) .

Strichartz-type estimates (6.4.3) imply

JB 6 CR
7+δ

2 t
3
4 ε

1
4

∑
|q′−q|64

‖∆q′Pr,RU0‖L2 ‖v‖L∞([0,t],Hs) ‖4qw‖L∞([0,t],L2) (6.6.13)

6 CR
7+δ

2 t
3
4 ε

1
4 bq2

−2qs ‖U0‖Hs ‖v‖L∞([0,t],Hs) ‖w‖L̃∞([0,t],Hs)

6 C C(U0)R
7+δ

2 t
3
4 ε

1
4 bq2

−2qs ‖v‖L̃∞([0,t],Hs) ‖w‖L̃∞([0,t],Hs) ,

where

{bq}q =

 ∑
|q′−q|64

2−(q′−q)scq′(U0)cq(w)


q

∈ `1.

Putting (6.6.12) and (6.6.13) into (6.6.11), we deduce Estimate (6.6.8). �

Proof of Lemma 6.6.3. As in the proof of Lemma 6.6.1, we will only prove Estimate (6.6.10).
Estimate (6.6.9) will follow if we choose v = w. Applying the Bony decomposition into
paraproducts and remainders, we have∫ t

0

∣∣〈4q

(
uj(τ) ∂iv(τ)

) ∣∣ 4qw(τ)
〉
L2 +

〈
4q

(
uj(τ) ∂iw(τ)

) ∣∣ 4qv(τ)
〉
L2

∣∣ dτ 6 KA+KB,

(6.6.14)
where

KA =

∫ t

0

∣∣∣〈∆q

∑
q′>q−4

Sq′+2 (∂iv) ∆q′u
j
∣∣∣ ∆qw

〉
+
〈

∆q

∑
q′>q−4

Sq′+2 (∂iw) ∆q′u
j
∣∣∣ ∆qv

〉∣∣∣(τ) dτ

KB =

∫ t

0

∣∣∣〈∆q

∑
|q′−q|64

Sq′−1u
j∆q′∂iv

∣∣∣ ∆qw
〉

+
〈

∆q

∑
|q′−q|64

Sq′−1u
j∆q′∂iw

∣∣∣ ∆qv
〉∣∣∣(τ) dτ.
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The term KA can be bounded by similar estimates as we did for JB in (6.6.13)

KA 6
∑
q′>q−4

‖Sq′+2v‖L∞([0,t],L2)

∥∥∆q′∂iu
j
∥∥
L1([0,t],L∞)

‖4qw‖L∞([0,t],L2) (6.6.15)

+
∑
q′>q−4

‖Sq′+2w‖L∞([0,t],L2)

∥∥∆q′∂iu
j
∥∥
L1([0,t],L∞)

‖4qv‖L∞([0,t],L2)

6 CR
7+δ

2 t
3
4 ε

1
4

∑
q′>q−4

‖∆q′Pr,RU0‖L2 ‖v‖L∞([0,t],Hs) ‖4qw‖L∞([0,t],L2)

+ CR
7+δ

2 t
3
4 ε

1
4

∑
q′>q−4

‖∆q′Pr,RU0‖L2 ‖w‖L∞([0,t],Hs) ‖4qv‖L∞([0,t],L2)

6 C C(U0)R
7+δ

2 t
3
4 ε

1
4 bq2

−2qs ‖v‖L̃∞([0,t],Hs) ‖w‖L̃∞([0,t],Hs) ,

where

{bq}q =

{ ∑
q′>q−4

2−(q′−q)scq′(U0) (cq(v) + cq(w))

}
q

∈ `1.

The term KB is more difficult to estimate because we can not simply commute Sq′−1 and
∂i. So, we use the same method as for the term IB of (6.6.3) and we decompose

KB 6 KB1 +KB2 +KB3,

where

KB1 =

∫ t

0

∣∣〈Squj 4q∂iv
∣∣ 4qw

〉
+
〈
Squ

j 4q∂iv
∣∣ 4qw

〉∣∣ (τ) dτ

KB2 =

∫ t

0

∑
|q−q′|64

∣∣〈(Sq − Sq′−1)uj ∆q′∂iv
∣∣ 4qw

〉
+
〈
(Sq − Sq′−1)uj ∆q′∂iw

∣∣ 4qv
〉∣∣ (τ) dτ

KB3 =

∫ t

0

∑
|q−q′|64

∣∣〈[4q, Sq′−1u
j
]

∆q′∂iv
∣∣ 4qw

〉
+
〈[
4q, Sq′−1u

j
]

∆q′∂iw
∣∣ 4qv

〉∣∣ (τ) dτ.

For KB1, performing an integration by parts, we have

KB1 =

∫ t

0

∣∣Sq(∂iuj(τ)) 4qv(τ) 4qw(τ)
∣∣ dτ (6.6.16)

6
∥∥Sq∂iŪ ε

∥∥
L1([0,t],L∞)

‖4qv‖L∞([0,t],L2) ‖4qw‖L∞([0,t],L2)

6 C C(U0)R
7+δ

2 t
3
4 ε

1
4 bq2

−2qs ‖v‖L̃∞([0,t],Hs) ‖w‖L̃∞([0,t],Hs) ,
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where {bq}q = {cq(v)cq(w)}q is a summable sequence. For KB2, we have

KB2 6 C

∫ t

0

∑
|q′−q|64

∥∥(Sq − Sq′−1)uj(τ)
∥∥
L∞

2q
′ ‖∆q′v(τ)‖L2 ‖∆qw(τ)‖L2 dτ (6.6.17)

+ C

∫ t

0

∑
|q′−q|64

∥∥(Sq − Sq′−1)uj(τ)
∥∥
L∞

2q
′ ‖∆q′w(τ)‖L2 ‖∆qv(τ)‖L2 dτ

6 C
∑
|q′−q|64

∥∥(Sq − Sq′−1)∇Ū ε
∥∥
L1([0,t],L∞)

‖∆q′v‖L∞([0,t],L2) ‖∆qw‖L∞([0,t],L2)

+ C
∑
|q′−q|64

∥∥(Sq − Sq′−1)∇Ū ε
∥∥
L1([0,t],L∞)

‖∆q′w‖L∞([0,t],L2) ‖∆qv‖L∞([0,t],L2)

6 C C(U0)R
7+δ

2 t
3
4 ε

1
4 bq2

−2qs ‖v‖L̃∞([0,t],Hs) ‖w‖L̃∞([0,t],Hs) ,

where

{bq}q =

 ∑
|q′−q|64

2−(q′−q)s (cq′(v)cq(w) + cq′(w)cq(v))


q

∈ `1.

Finally, for KB3 we can write

KB3 6 C
∑
|q−q′|64

2q
′−q ∥∥Sq′−1∇uj

∥∥
L1([0,t],L∞)

‖∆q′v‖L∞([0,t],L2) ‖4qw‖L∞([0,t],L2) (6.6.18)

+ C
∑
|q−q′|64

2q
′−q ∥∥Sq′−1∇uj

∥∥
L1([0,t],L∞)

‖∆q′w‖L∞([0,t],L2) ‖4qv‖L∞([0,t],L2)

6 C C(U0)R
7+δ

2 t
3
4 ε

1
4 bq2

−2qs ‖v‖L̃∞([0,t],Hs) ‖w‖L̃∞([0,t],Hs) ,

where

{bq}q =

 ∑
|q′−q|64

2−(q′−q)(s−1) (cq′(v)cq(w) + cq′(w)cq(v))


q

∈ `1.

Summing Estimates (6.6.15) to (6.6.18) and putting the obtained result into (6.6.14), we
deduce Inequality (6.6.10) of Lemma 6.6.3. �

Proof of Lemma 6.5.2 We recall the decomposition of U ε as the sum

U ε = Ū ε + Ũ ε,

then, we can write

∫ t

0

∣∣∣〈4q (uε(τ) · ∇U ε(τ))
∣∣∣ 4qŨ

ε(τ)
〉
L2

∣∣∣ dτ 6 A1 + A2 + A3 + A4,
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where

A1 =

∫ t

0

∣∣∣〈4q

(
uε(τ) · ∇Ū ε(τ)

) ∣∣∣ 4qŨ
ε(τ)

〉
L2

∣∣∣ dτ
A2 =

∫ t

0

∣∣∣〈4q

(
ũε(τ) · ∇Ū ε(τ)

) ∣∣∣ 4qŨ
ε(τ)

〉
L2

∣∣∣ dτ
A3 =

∫ t

0

∣∣∣〈4q

(
uε(τ) · ∇Ũ ε(τ)

) ∣∣∣ 4qŨ
ε(τ)

〉
L2

∣∣∣ dτ
A4 =

∫ t

0

∣∣∣〈4q

(
ũε(τ) · ∇Ũ ε(τ)

) ∣∣∣ 4qŨ
ε(τ)

〉
L2

∣∣∣ dτ.
Using Lemma 6.6.2, we have

A1 6 C C(U0) bq2
−2qsR

7+δ
2 t

3
4 ε

1
4

∥∥∥Ũ ε
∥∥∥
L̃∞([0,t],Hs)

A2 6 C C(U0) bq2
−2qsR

7+δ
2 t

3
4 ε

1
4

∥∥∥Ũ ε
∥∥∥2

L̃∞([0,t],Hs)
.

For A3, using Lemma 6.6.3, we have

A3 6 C C(U0) bq2
−2qsR

7+δ
2 t

3
4 ε

1
4

∥∥∥Ũ ε
∥∥∥2

L̃∞([0,t],Hs)
.

Finally, for A4, Lemma 6.6.1 and the Sobolev embedding Hs (R3) ↪→ W 1,∞ (R3), with
s > 5

2
, simply yield

A4 6 Cbq2
−2qs

∥∥∥Ũ ε
∥∥∥
L̃∞([0,t],Hs)

∥∥∥Ũ ε
∥∥∥2

L̃2([0,t],Hs)
≤ Cbq2

−2qst
∥∥∥Ũ ε

∥∥∥
L̃∞([0,t],Hs)

∥∥∥Ũ ε
∥∥∥2

L̃∞([0,t],Hs)
.

Now, we can prove (6.5.5) exactly in the same way as we do to prove (6.5.4). We can
decompose the term on the right hand side of (6.5.5) as∫ t

0

∣∣∣〈4q (bε(τ)∇bε(τ))
∣∣ 4qũ

ε(τ)
〉
L2 +

〈
4q (bε(τ)divuε(τ))

∣∣ 4q b̃
ε(τ)

〉
L2

∣∣∣ dτ
6 A′1 + A′2 + A′3 + A′4,

where

A′1 =

∫ t

0

∣∣∣〈4q

(
b
ε
(τ)∇bε (τ)

) ∣∣ 4qũ
ε(τ)

〉
L2

+
〈
4q

(
b
ε
(τ)divuε(τ)

) ∣∣ 4q b̃
ε (τ)

〉
L2

∣∣∣ dτ
A′2 =

∫ t

0

∣∣∣〈4q

(
b̃ε (τ)∇bε (τ)

) ∣∣ 4qũ
ε(τ)

〉
L2

+
〈
4q

(
b̃ε(τ)divuε(τ)

) ∣∣ 4q b̃
ε (τ)

〉
L2

∣∣∣ dτ
A′3 =

∫ t

0

∣∣∣〈4q

(
b
ε
(τ)∇b̃ε (τ)

) ∣∣ 4qũ
ε(τ)

〉
L2

+
〈
4q

(
b
ε
(τ)div ũε(τ)

) ∣∣ 4q b̃
ε (τ)

〉
L2

∣∣∣ dτ
A′4 =

∫ t

0

∣∣∣〈4q

(
b̃ε (τ)∇b̃ε (τ)

) ∣∣ 4qũ
ε(τ)

〉
L2

+
〈
4q

(
b̃ε(τ)div ũε(τ)

) ∣∣ 4q b̃
ε (τ)

〉
L2

∣∣∣ dτ.
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Using Lemma 6.6.2, we have

A′1 6 C C(U0) bq2
−2qsR

7+δ
2 t

3
4 ε

1
4

∥∥∥Ũ ε
∥∥∥
L̃∞([0,t],Hs)

A′2 6 C C(U0) bq2
−2qsR

7+δ
2 t

3
4 ε

1
4

∥∥∥Ũ ε
∥∥∥2

L̃∞([0,t],Hs)
.

Next, Lemma 6.6.3 yields

A′3 6 C C(U0) bq2
−2qsR

7+δ
2 t

3
4 ε

1
4

∥∥∥Ũ ε
∥∥∥2

L̃∞([0,t],Hs)
.

Finally, Lemma 6.6.1 and the Sobolev embedding Hs (R3) ↪→ W 1,∞ (R3), with s > 5
2
,

imply

A′4 6 Cbq2
−2qs ‖ũε‖L̃∞([0,t],Hs)

∥∥∥b̃ε∥∥∥2

L̃2([0,t],Hs)
≤ Cbq2

−2qst
∥∥∥Ũ ε

∥∥∥
L̃∞([0,t],Hs)

∥∥∥Ũ ε
∥∥∥2

L̃∞([0,t],Hs)
.

Lemma 6.5.2 is then proved. �
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Résumé
Dans cette thèse nous étudions trois modèles décrivant la dynamique de l’écoulement d’un fluide à
densité variable, dans des échelles spatio-temporelles grandes. Dans ce cadre, le mouvement relatif
induit par des forces extérieures, comme la force de Coriolis ou la poussée hydrostatique, s’avère
être beaucoup plus important que le mouvement intrinsèque du fluide induit par le transport des
particules. Une tel déséquilibre contraint ainsi le mouvement, induisant des structures persistantes
dans l’écoulement du fluide.
D’un point de vue mathématique, l’une des difficultés consiste en l’étude des perturbations induites
par les forces extérieures, qui se propagent à grande vitesse. Ce type d’analyse peut être effectué au
moyen de plusieurs outils mathématiques ; on choisit ici d’employer des techniques caractéristiques
de l’analyse de Fourier, comme l’analyse des propriétés dispersives des intégrales oscillantes.
Tout au long de cette thèse, on se restreint à considérer des domaines spatiaux sans frontière : c’est le
cas de l’espace entier R3, ou encore de l’espace périodique T3. Les modèles considérés sont donc les
suivants:

• Équations primitives dont les nombres de Froude et de Rossby sont comparables, et pour
lesquelles la diffusion verticale est nulle,

• fluides stratifiés dans un régime à faible nombre de Froude,

• fluides faiblement compressibles et tournants dans un régime où les nombres de Mach et de
Rossby sont comparables.

On prouve que ces systèmes propagent globalement dans le temps des donnés peu régulières. Nous
n’imposons jamais de condition de petitesse sur les données initiales. Toutefois, on prendra en compte
certaines hypothèses spécifiques de régularité, lorsque des raisons techniques l’imposent.

Abstract
In this thesis we discuss three models describing the dynamics of density-dependent fluids in long
lifespans and on a planetary scale. In such setting the relative displacement induced by various ex-
ternal physical forces, such as the Coriolis force and the stratification buoyancy, is far more relevant
than the intrinsic motion generated by the collision of particles of the fluid itself. Such disproportion
of balance limits hence the motion, inducing persistent structures in the velocity flow.
On a mathematical level one of the main difficulties relies in giving a full description of the perturba-
tions induced by the external forces, which propagate at high speed. This analysis can be performed
by the aid of several tools, we chose here to adopt techniques characteristic of harmonic analysis,
such as the analysis of the dispersive properties of highly oscillating integrals.
All along the thesis we consider boundary-free, three-dimensional domains, and in specific we study
only the case in which the domain in either the whole space R3 or the periodic space T3. The models
we consider are the following ones:

• Primitive equations with comparable Froude and Rossby number and zero vertical diffusivity,

• density-dependent stratified fluids in low Froude number regime,

• Weakly compressible and fast rotating fluid in a regime in which Mach and Rossby number are
comparable.

We prove that these systems propagate globally-in-time data with low-regularity. No smallness as-
sumption is ever made, specific constructive hypothesis are assumed on the initial data when required.
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