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Résumé

La thèse est consacrée à des problématiques d’algorithmique et de complexité sur
deux sujets.

Le premier sujet s’intéresse à la composition des services web, une question cruciale
dans l’intégration flexible et l’interopérabilité d’applications autonomes, hétérogènes
et distribuées. En considèrent une description comportementale des services-web,
ce problème a été réduit à la simulation d’un automate par le produit fermé d’un
ensemble d’automates. La thèse étudie dans sa première partie la complexité de ce
problème en considérant deux paramètres : le nombre des instances considéré de
chaque service et la présence des états hybrides : état à la fois intermédiaire et final
dans un automate.

Quand le nombre des instances de chaque services est borné, le problème est
exptime-complet. Nous définissons également le cas particulier où le nombre des
instances considéré en paralléle de chaque service est borné, et prouvons que le
problème devient exptime-complet également.

Finalement, on étudie l’impact de la présence des états hybrides dans les services
composants. Nous prouvons que la composition devient exptime-complet quand ce
nombre est borné par 0, 1 et 2.

Le second sujet porte sur les systèmes de fermeture et s’intéresse au calcul de
l’extension maximale d’un système de fermeture ainsi qu’à l’énumération des clefs
candidates d’une base implicative.

L’extension maximale d’un système de fermeture est le plus grand système de
fermeture (dans le sens d’inclusion) qui le contient et qui ne change pas la borne sup
de ses éléments. Nous donnons un algorithme incrémental polynomial qui génère
cette extension avec une relation binaire comme input et output.

Pour le problème d’énumération des clefs candidates, la notion de key-ideal est
définie, en prouvant que leur énumération est équivalente à l’énumération des clefs
candidates. Ensuite, on donne un algorithme qui permet de générer les key-ideal
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minimaux en temps incrémental polynomial et les key-ideal non minimaux en délai
polynomial.

Mots clé : service web, comportement de service web, composition de service web,
simulation des automates, complexité, Exptime-complet, théorie d’ordre, système
de fermeture, treillis, extension maximale, bases de données, base d’implications,
relation binaire, Clé candidate, énumération, délai polynomial, délai incrémental
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Abstract

In the first part of this thesis, we are interested in some complexity aspects of the
web services composition problem. It is a crucial question in the interoperability
and integration of autonomous web service applications. One of the related issues is
deciding whether a web service can be composed out of an existing repository of web
services. This question was reduced to the theoretical issue of automata simulation,
when each service is described by its business protocol.

We define web services composition, its platform and the theoretical issue be-
hind, namely state machines simulation. In the general case of the problem, it is a
question of simulation between a finite state machine and an infinite one : the prod-
uct closure machine. The complexity of the issue relies mainly on two parameters;
the number of considered instances and the presence of the so-called hybrid states
(states that are both intermediate and final) in the composing machine. When the
number of instances of each web service is bounded, we prove that the problem is
exptime-complete. This subproblem resembles the well-studied case where each web
service can be called at most once in the composition process. Then, we define the
particular case where the number of instances used simultaneously in the composi-
tion is bounded and prove it exptime-complete. Finally, we investigate the issue of
hybrid states. We study its behavior and prove that if their number is bounded by
either 0, 1 or 2 then the problem is exptime-complete.

The second part concerns closure systems and two related issues: Maximal exten-
sion of a closure system and Candidate keys enumeration. We start by establishing
the correspondence between certain representations of closure systems in the litera-
ture: lattices, implicational bases and binary relations.

Then, we investigate the problem of a closure system’s maximal extension. The
complexity of this issue depends on the encoding of the closure system. The most
interesting case is when the input is a lattice’s join-irreducible and meet-irreducible
sets families, equivalently a binary relation, then we give an incremental polynomial
algorithm that computes the lattice’s maximal extension.
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Finally, the last chapter raises the question of candidate keys enumeration prob-
lem. It concerns generating all candidate keys of a given implicational base. We
introduce the notion of key-ideal set: an ideal of a candidate key in an order defined
through the implicational base. We demonstrate that candidate keys enumeration is
as hard as the enumeration of a subset of key-ideal sets that we call minimal key-ideal
sets. Knowing that the number of the latter can be significantly smaller than the
number of candidate keys, we give an efficient key-ideal sets enumeration algorithm,
that enumerates all non-minimal key-ideal sets in a polynomial delay from minimal
key-ideal sets that are generated in incremental polynomial time.

Key words: web service, web service behaviour, web service composition, au-
tomata simulation, complexity, product closure of automata, asynchronous prod-
uct, Exptime-complete, order theory, closure system, lattice, maximal extension,
database, implicational base, candidate key, binary relation, enumeration, polyno-
mial delay, incremental delay.
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Part I

General Introduction
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This thesis contains two independent parts. The first part is a complexity study
of web services composition problem, while the second concerns the closure system
structure and some related computational issues.

Web services is a computing solution that facilitates integration among au-
tonomous and distributed applications over a network. It is based on an architecture
built around three principal roles: a service provider, a service requester and a reg-
ister [5].

Web services composition (WSC) raises from the situation where none of
the existing services can satisfy a client request. This leads to questioning if a
collaboration of the existing services can achieve the requested task [28]. This is
what we call web services composition.

When the service is described by its behavior through Finite State Machines
(FSM), namely Business protocol based composition, [28] proves that the composi-
tion issue is equivalent to simulation of a finite state machine by the infinite product
of a state machine called Product Closure State Machine. In case of unbounded
instances, this problem has been proved decidable with an Ackermanian function as
upper bound in [28]. Their proof is based on Dickson lemma, and hence cannot be
exploited to derive tighter upper bounds. An Expspace-hard lower bound is given
by Lasota [35]. The source of complexity derived from the analysis of the algorithm
given in [28] is related to the presence of the so-called hybrid states1 in the com-
ponents and loops in the target: if the target FSM is loop free, the WSC problem
becomes NP-complete and when the components are hybrid state free the problem
is proven Exptime.

In the first chapter of part I, we give the general context of the problem and
its motivation by defining the concept of web services, web services modeling and
web services composition. In the second chapter, we consider additional parameters
related to bounded/unbounded web services composition. When the number of in-
stances is bounded, we prove that the problem is Exptime-Complete [23]. We then
consider the web service composition when the number of hybrid states is bounded
by an integer k. We show that this problem is Exptime-Complete for k = 0, k = 1
[23] and k = 2.

In the second part, we begin by defining closure systems as a natural model-
ing structure that is related to many known and well studied structures: lattices,
implicational bases and formal contexts. A closure system is a subset family F
over a set X ∈ F and for every pair in F, their intersection is in F.

We investigate two enumeration issues related to closure systems. We begin

1Hybrid states of an FSM are final states with outgoing transitions and correspond to unbounded
places in Petri net terminology.
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with the problem of computing a closure system’s maximal extension. It raises the
question of computing the maximal closure system (inclusion wise) that contains
the initial one, while preserving upper bounds. Adaricheva and Nation [2] have
simplified the construction given in [3] and gave an exact formula for the largest
extension of any closure system. It was however observed in [47] that the direct use
of the characterization of the largest extension given in [2] leads to an exponential
time algorithm for building the largest extension of a closure space. Hence, we give
a polynomial incremental algorithm that computes the lattice’s maximal extension.

Finally, we focus on the problem of candidate keys enumeration of an implica-
tional base. This problem has several applications (such as formal context analysis
[36], systems security [44]). A candidate key of an implicational base, also known as
minimal generator in lattice or FCA terminologies, is a minimal subset of attributes
that identifies uniquely every tuple of the relation. A candidate key of an implica-
tional base can be computed in linear time. However, the best known algorithm that
lists all candidate keys is given in [37] by Lucchesi and Osborn with a polynomial
incremental complexity, but using exponential space. Saiedian and Spencer [41], in-
troduce the notion of attribute graph of a set of functional dependencies and show
that candidate keys are union of candidate keys of strongly connected components
of the attribute graph.

We define a key-ideal set, an ideal of a candidate key in an order defined through
Σ. We demonstrate that candidate keys enumeration is as hard as the enumeration
of a subset of key-ideal sets that we call minimal key-ideal sets. Assuming that the
number of the latter can be significantly smaller than the number of candidate keys,
we give an efficient key-ideal sets enumeration algorithm, that enumerates all non-
minimal key-ideal sets in a polynomial delay from minimal key-ideal sets that are
enumerated in incremental polynomial time [22].
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Part II

Web Services Composition
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Chapter 1

Introduction

1.1 Context
Web Service [6] is an evolving computing paradigm that tends to become a technol-
ogy of choice to facilitate integration among autonomous and distributed applications
over a network. Its service oriented architecture is based on three main roles: ser-
vice provider, service requester and service registry [33]. It provides a conceptual
description of these roles and their interactions.

One main web services purpose is to deal with integration challenges such as
service description, service discovery, service composition, service quality and others
[34].

A formal description of a web service considers either one or both of two aspects:
the profile and the behavior [14]. The first one refers to the functional aspect of a
service: message exchange and data impact. The latter however deals with the exter-
nal behavior of these services and describes possible scenarios of their interactions.
A description of a web service’s behavior is also called a service business protocol.
Transition systems are a widely used format of service business protocols.

Through literature, different models have been used to represent web service
business protocols. Transition systems formalism is widely adopted in this context
to model statefull applications exposed as web services. A transition system’s model
is usually used to describe discrete systems, by considering a set of states and a set of
transitions representing their interactions. It is an abstract model that covers other
popular formalism such as Finite State Machines and Petri Nets. In this context,
states represent the different phases that a service may go through while transitions
represent ”abstract” activities that a service can perform [16, 7, 8].

Web Services Composition (WSC) raises from the situation where none of the
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existing services can satisfy a client request. The idea is to find out, computationally,
if the target service can be composed out of the existing ones and eventually compute
it. This automatic approach of composition simplifies the development of software
by reusing existing components and offers capabilities to customize complex systems
built on the fly [28].

Decomposition depends as well on the chosen model: profile or behavior or both.
We focus here on business protocol based composition, described through finite state
machines. Complexity analysis of this problem was first considered by Muscholl et al.
[38], under the implicit assumption that at most one instance of each available service
can be used in a composition, where it is shown Exptime-Complete. In fact, [38]
shows that when business protocols are described by means of Finite State Machines,
the composition issue can then be formalized as the problem of deciding whether
there exists a simulation relation between the target protocol and the asynchronous
product of the available ones.

This setting has been extended in [28] to the case where the number of instances
that can be used in the synthesis is unbounded. Web Services Composition is for-
malized in this latter case as a simulation problem between a Finite State Machine
and an Infinite State Machine, called Product Closure State Machine, that is able to
compute the asynchronous product closure of a Finite State Machine.

Asynchronous product of Finite State Machines (and Product Closure State Ma-
chines) is a subclass of Basic Parallel Processes [18] , the class of communication free
petri nets: every transition has at most one input place. Simulation of Finite State
Machines by Basic Parallel Processes was proven Expspace-hard by Lasota [35] and
2-Exptime-hard in [19].

In case of unbounded instances, the WSC problem has been proved decidable
with an Ackermanian function as upper bound in [28]. The proof of [28] is based
on Dickson lemma, and hence cannot be exploited to derive tighter upper bounds.
An Expspace-hard lower bound is given by Lasota [35]. The source of complexity
derived from the analysis of the algorithm given in [28] is related to the presence of
hybrid states in the components and loops in the target: if the target FSM is loop
free, the WSC problem becomes NP-complete and when the components are hybrid
state free the problem is proven Exptime.

1.2 Contributions
We consider additional parameters related to bounded/unbounded web services com-
position. We consider as inputs an FSM M (the target protocol) and a set of FSMs
R (the protocols of the available services) and we investigate the complexity of test-
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ing simulation between M and the shuffle closure of R, represented as a PCSM [28].
More precisely, we study the complexity of the following problems:

1. WSC(M,R): The problem of composing M using an unbounded number of
instances of R.

2. BC(M,R, k): The problem of composing M using at most k instances of each
FSM in R.

3. UCHS(M,R, k) : The problem of composing M using an unbounded number
of instances of R, with the number of hybrid states in R is bounded by k.

Note that the upper bound complexity of WSC(M,R) given in [28] is a an
exptime tower driven from the Dickson lemma. We define in the second chapter
certain sub-cases of WSC where we bound the number of hybrid states in R by 0, 1
and 2 and prove that the problem can be solved in these cases in exponential time.

Table 1.1 displays known and new complexity results regarding the WSC problem.

M Acyclic FSM general FSM
BC(M,R, k) NP-complete [28] Exptime-complete
BC(M,R, 1) Exptime-complete [38]
WSC(M,R) NP-complete [28] Decidable [28]
UCHS(M,R, 0) Exptime-complete [23]
UCHS(M,R, 1) Exptime-complete [23]
UCHS(M,R, 2) Exptime-complete

Table 1.1: Complexity of Web services composition problem.

1.3 Outline

The first part of this thesis is organized as follows. The second chapter introduces the
concept of web services as a computing solution founded around the service oriented
architecture proposed by W3C in order to challenge certain application integration
issues. It goes on defining different Web service’s modeling approaches and forms.
Then, it defines web services composition issue, in its context, singling out business
protocol based composition.

The third chapter begins with preliminaries section that recalls some basic defi-
nitions about state machines, simulation and order theory. Section 3.2 investigates
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the problem of bounded web services composition and proves that it is Exptime-
Complete. In section 3.3, we consider the web service composition when the number
of hybrid states is bounded. We show that this problem is Exptime-Complete for
k = 0, k = 1 and k = 2.
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Chapter 2

Web Services

2.1 Web Services Formalism

2.1.1 Definition

Web Service [6] is an evolving computing paradigm that tends to become a technology
of choice to facilitate inter-operation among autonomous and distributed applications
over a network. It has changed the way software applications are designed and
implemented, aiming for a more rapid, independent, standardized solutions that can
be loosely composed in order to fulfill more complex tasks.

Web services propose a computation approach, based on a service oriented archi-
tecture. In this context, a service refers to a computational entity capable of running
autonomously a task, platform-independent and inter-operable in the sense that it
can be dynamically discovered and loosely composed with other services, in order to
perform more complex tasks.

The service oriented architecture proposed by W3C does not impose any imple-
mentation restrictions. In fact, it describes a set of functional components and their
interactions, in a conceptual level (Figure 2.1). It is based upon the interactions
between three roles [33]:

• Service provider: From a business perspective, this is the entity (person or
organization) that owns the service. From an architectural perspective, this is
the platform that hosts access to the service.

• Service requester: From a business perspective, this is the business entity
that requires certain functions to be satisfied. From an architectural perspec-
tive, this is the application that is looking for and invoking or initiating an in-
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Figure 2.1: Web Services architecture.

teraction with a service. The service requester role can be played by a browser
driven by a person or a program without a user interface, for example another
Web service.

• Service registry: This is a searchable registry of service descriptions where
service providers publish their service descriptions. Service requesters find
services and obtain binding information (in the service descriptions) for services
during development for static binding or during execution for dynamic binding.

However, the basic service oriented architecture does not necessarily address in a
sufficient manner certain key issues faced while implementing or using service oriented
computing solutions such as:

Service description must be formulated in a standardized, multi-levelled and
precised manner in order to guarantee the interoperability and collaboration of dif-
ferent entities, increasing recursively the utility of the web service.

Service Discovery refers to the issue of locating easily available services, then
helping in the process of selecting the one that meets the requested functional needs
and eventually calling and executing it in an acceptable time. The typical way
of addressing these issues is providing services descriptions stored in a standardized
directories that can be browsed in order to identify the most relevant services by using
dynamic binding techniques. During the discovery process, other question might be
raised such as advertisement techniques that the service providers are constantly
interested in developing and the service negotiation process where the provider and
the requester (the client) enter in, in order to establish sort of an agreement.
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Since web services are based on the idea of integrating multiple software com-
ponents from diverse environments into one process, Service security can be an
issue as well. Such a distributed computing activity needs a solution that considers,
instead of applications, services and end-to-end processes, as well as authentication
issues of users, their roles and authorities in internal and external functionalities and
their privileges in common resources. Tracking users activities is also necessary in
order to manage unauthorized operations.

An other related issue is Service composition. In fact, web services are mostly
seen as a promising solution to deal with integration issues such as application de-
scription and composition. When none of the existing services can perform a certain
task individually, two questions are raised in this context. First, there is the veri-
fication question: Can they do it together? If the answer is yes, the second one is:
How can they do it? The answer to this starts in the early steps of the implemen-
tation process of the web service; In fact, the correct attitude while developing it is
to predict its collaboration with other unspecified components. Hence, it should be
self-described, in a standardized manner, as explained in the next W3C definition:

Web service is a software system designed to support inter-operable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web service
in a manner prescribed by its description using HTTP with an XML serialization in
conjunction with other Web-related standards.

Another way of predicting these collaborations is to agree on both the semantics
and the mechanics of the message exchange. The latter is established by a two level
description of the web service in question. In order for it to be adaptable to any
sort of agents, this description ought to be standardized and machine processable,
defining basic details of the service’s interface. On the semantic level, an agreement
is established between the service provider and requester, framing the goals and
possible outcomes of their cooperation. This contract can be implicit in certain
cases or explicitly written in any chosen language.

Other related issues are Services quality which determines their usability and
utility, Service Interaction regarding the infrastructures and tools that enable
services interaction.This is by no means an exhaustive list.

2.1.2 Web Services Modeling

A formal description of a web service usually considers two aspects: the web service
profile and the web service behavior. On one hand, the profile stands here for the
functional aspect of a service. It deals with the message exchanges between its

25



operations and considers the impact of and on data during their execution.
The behavior, on the other hand, describes the interaction between services,

by giving all acceptable scenarios of message exchanges and operation execution
between them, i.e its external behavior. It is also known as the web service business
protocol. It is statefull representation of the internal logic and private details of the
services implementation. It specifies how an entity initiates a dialog or responds
if invoked by other agents. This level of internal description is not mentioned in
communication protocols; They are more focused on the external behavior of web
services while interacting with each other. We give next an example illustrating the
business protocol concept.

Example 1. Consider a service that manages the access to a catalog. It allows
to check the catalog (CheckCatalog) and choose an item (SelectItem). The first
thing a client can do is checking the catalog. Then he can either leave or choose an
item. Once an item is chosen, he can either go back to the catalog display and choose
another one, or end the process. Obviously, in order to choose an item we must select
the catalog first. In other words, a valid conversation would be : (CheckCatalog,
SelectItem, CheckCatalog), but not (CheckCatalog, SelectItem, SelectItem). In figure
2.2, we describe the behavior (business protocol) of this service in an informal way.

The second service verifies the availability of an order. It starts with checking its
availability (CheckAvailability). Then it is either confirmed (ConfirmOrder) or
canceled (CancelOrder). The valid conversations in this service are: (CheckAvail-
ability, ConfirmOrder) or (CheckAvailability, CancelOrder), but not (CheckAvailabil-
ity). We give an informal description of this service in figure 2.3, the same way as
for the previous service in figure 2.2.

Through literature, different models have been used to represent web service
business protocols. Transition systems formalism is widely adopted in this context
to model statefull applications exposed as web services. A transition system’s model
is usually used to describe discrete systems, by considering a set of states and a set of
transitions representing their interactions. It is an abstract model that covers other
popular formalisms such as Finite State Machines and Petri Nets. In this context,
states represent the different phases that a service may go through while transitions
represent ”abstract” activities that a service can perform [16, 7, 8]. For instance, we
give in the next example a finite state machine representation of two web services.

Example 2. We go back to the web services in example 1. We give in figure 2.4.a
the finite state machine that describes the behavior of the web service managing the
access to a catalog. This behavior is described informally in figure 2.2.
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CheckCatalog
Catalog
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SelectItem
Item

display

Start Quit

Quit

Figure 2.2: An informal description of the behavior of a service managing a catalog

CheckAvailabilityStart Answer

ConfirmOrder CancelOrder

Confirmation
Message

Cancellation
Message

Quit Quit

Figure 2.3: An informal description of a verification service’s behavior
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CheckCatalog

Start

SelectItem CheckCatalog

CheckAvailability

Confirm Cancel

Start

b. Service of checking an order’s availabilitya. Service managing a catalog’s access

Figure 2.4: Finite state machines describing Services Business Protocols

In figure 2.4.b, we give a finite state machine representation of the behavior of a
service that verifies an order’s availability (Figure 2.3).

The beginning of each service’s execution process is indicated by an unlabeled
entering arrow to a state. A state is a possible end of this process if it is double
circled.

Needless to say that the interface along with its various descriptions must al-
low the service’s functionalities to be used independently of the hardware, software
platform or the programming language chosen. This allows and encourages Web
Services-based applications to be loosely coupled, specially with new ideas aiming
their construction as the current project.

2.2 Web Services Composition Problem

2.2.1 Definition

The issue of web services composition raises from the situation where none of the
existing services can satisfy a client request. The idea is to find out, computationally,
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if the target service can be composed out of the existing ones and eventually compute
it. This automatic approach of composition simplifies the development of software
by reusing existing components and offers capabilities to customize complex systems
built on the fly [28].

There has been some work aiming a manual web services composition, based
on a low level description models (Microsoft’s BizTalk 1). A human agent takes in
charge the complex task of orchestrating the synthesis and the results are not always
accurate.

The automatic Web Services Synthesis has been motivated by the continuous
work done by the business world to develop a number of standards and formalize the
specification of Web services, their flow composition and execution [43]. In addition
to that, the Semantic Web community focuses on reasoning about web resources by
explicitly declaring their preconditions and effects with terms precisely defined in
ontologies [43].

The dimensions of the decomposition process depend on the description pro-
vided of the services and their conceptual level. A syntactic description provides a
standardized machine processable representation of the allowed interactions between
services. It focuses mainly on the way a service behaves and less about the aim of its
operations. A semantic representation, on the other hand, is about the purpose and
consequences of these operations. It is more flexible than the syntactic one, and can
be presented in different shapes: explicit or implicit, machine processable or human.

Decomposition depends as well on the chosen model: profile or behavior or both.
The profile is more about data management: consequences of the services operations
on the database and the influence of the database’s state on non deterministic de-
cisions in the web service. The behavior is more about a contract between different
entities, describing for each one of them the messages that they can receive or send
to other services. It is an internal description from the web service’s point of view,
but external for each of the composing services considered a black box in this level
of description.

There is a wide interest in computing web services composition, which motivated
a lot of effort and progress. Several models have been considered

However, the difficulty of automatic web services composition is still an issue
due to several reasons [42]. For instance, the bigger the services repository is, the
better chances are to compose new ones, the more interesting this computing solution
becomes. However, this makes the search, identification and selection process more
difficult. Another example is the changing aspect of web services. They are updated
on the fly, hence the composition needs to keep up with that at a runtime.

1http://www.microsoft.com/france/serveur-cloud/biztalk/
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2.2.2 Business Protocol based Composition

This section deals with composing web services described by their business protocol.
The formalism considered is finite state machines, where each state indicates a phase
of the service’s execution, and a transition refers to an activity. An end-to-end process
begins with the unique initial state and halts with a final one. This corresponds to
the Roman model studied in [10]. [28] gives a generic definition of protocol synthesis
problem using this formalism and reduces it to a simulation issue between transition
systems. This will be explained in thorough details in the next chapter.

Needless to say that such description omits the database effect on the synthesis
considered in the Colombo model [4][9]. Their work considers alongside with the
behavioral aspect, the message exchange formalism and the activities consequences
on the real world.

A business protocol presents every valid conversation made by an end-to-end ex-
ecution of the corresponding web service. Business protocol based composition is
interested in synthesizing every valid conversation C of the targeted service with a
number of an end-to-end executions of the available services. A delegator is a finite
state machine equivalent to the targeted service’s business protocol, where each tran-
sition is assigned to a composing service. After the decision problem interrogating
the synthesis possibility is positively answered, a delegator should be computed.

Example 3. We want to compose a web service capable of managing long-distance
renting from a library. It allows a member to check the library’s collection (Check-
Collection), choose a book (SelectBook), verify its availability (CheckAvailabil-
ity) then either confirm the rent (Confirm), cancel it (Cancel) or go back to the
library’s collection (CheckCollection). Figure 2.6.a is a finite state machine de-
scribing its business protocol.
We consider the two web services described in figure 2.5 as our repository in order
to compose the targeted service.
Such composition is possible since we are able to construct, in figure 2.5.b, a delegator
assigning each transition of the targeted service into an end-to-end process of either
the service in 2.5.a managing access to a catalog (marked in blue) or the one in 2.5.b
verifying the availability of an order (marked in red). The catalog here represents the
library’s collection and the order is a chosen book.

Each activity of a web service can be engaged in different conversations simulta-
neously. This means that, while composing, each web service can be instantiated any
number of times. This number makes a huge difference in the problem’s complexity.
The simplest version is to allow the use of each service of the repository once. In [8],
they consider the simplifying hypothesis that the number of instances involved of an
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CheckAvailabality

Confirm Cancel
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b. Service of checking an order’s availabalitya. Service managing a catalog’s access
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Figure 2.5: Finite state machines describing the available web services

CheckCollection

SelectBook

Start

CheckAvailability

CheckCollection

Confirm Cancel

CheckCollection

SelectBook

Start

CheckAvailability

CheckCollection

Confirm Cancel

a. Business protocol of a web service managing
the renting service of a library

b. A delegator composing the web service

Figure 2.6: Finite state machine describing the targeted web service
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available protocol is bounded by a fixed constant k. Note that this k-bounded in-
stance protocol synthesis problem can be reduced w.l.o.g to the simplest case where
k=1 [28]. However, the most realistic assumption would be to take in consideration
that each available protocol can be called as many times as possible. In this case,
[28] proves that the problem of composition is decidable. This is done by reducing
the decision problem of a web service composition by a repository, where each service
can be used an unbounded number of time, to a problem of simulation between a
finite state machine and an infinite state machine.

In the next chapter, we focus on this reduction as well as introduce other com-
plexity parameters that can indicate the difficulty of the web services composition
problem.
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Chapter 3

Web Services Composition
Complexity

3.1 Preliminaries
Service business protocols are formally described in this context as FSMs. We recall
below the definition of such machines.

Definition 1. (Finite State Machine (FSM))
A State Machine (SM) M is a tuple M = (ΣM , QM , FM , q

0
M , δM), where: ΣM is

a finite alphabet, QM is a set of states, δM ⊆ QM × ΣM × QM is a set of labeled
transitions, FM ⊆ QM is a set of final states, and q0

M ∈ QM is the initial state. If
QM is finite then M is called a Finite State Machine (FSM).

Moreover, a state q ∈ QM is called: accessible, if there exists a path from
the initial state to q; co-accessible, if there exists a path from q to a final state;
intermediate, if q /∈ FM and ∃p1, p2 ∈ QM , s.t (p1, a, q) ∈ δM and (q, b, p2) ∈ δM ,
we denote by I(M) the set of intermediate states of M ; hybrid, if q ∈ FM , q 6= q0

M

and there exist at least one transition (q, b, p) ∈ δM , with p ∈ QM and b ∈ Σ, the set
of hybrid states is denoted H(M) and terminal, if q ∈ FM and is not hybrid.

We consider here only FSMs where all states are both accessible and co-accessible.
We define the norm of a state q as the finite length of the shortest path from q
to a final state. The norm of an FSM M , noted norm(M), is the maximal norm
of its states.

k-Iterated Product Machine (k-IPM) and Product State Machine (PCSM)
We start by defining the asynchronous product and union operations on FSMs:
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Definition 2. (Asynchronous product and Union of two FSMs)
Let M = (ΣM , QM , FM , q

0
M , δM) and M ′ = (ΣM ′ , QM ′ , FM ′ , q

0
M ′ , δM ′) be two state

machines. We have :

• The shuffle or asynchronous product of M and M ′, denoted M ×M ′, is
a state machine (ΣM ∪ΣM ′ , QM ×QM ′ , FM ×FM ′ , (q0

M , q
0
M ′), λ) where the tran-

sition function λ is defined as follows: λ = {((q, q′), a, (q1, q1
′)) : ((q, a, q1) ∈

δM and q′ = q′1) or ((q′, a, q1
′) ∈ δM ′ and q = q1)}.

For {M1, ...,Mk} a set of state machines where k ≥ 3, we define reciprocally
M1 × ....×Mk as the state machine ((M1 × ...×Mk−1)×Mk).

• The union ofM andM ′, denotedM∪M ′, is the state machine (ΣM∪ΣM ′∪{ε},
QM ∪QM ′ ∪ {q0}, FM ∪ FM ′ , q0, δM ∪ δM ′ ∪ {(q0, ε, q

0
M), (q0, ε, q

0
M ′)}).

For a set of available FSMs R = {M1, ...Mm}, we consider a compact structure
that abstracts all possible executions that can be produced using the components of
R. First, we begin by the simple case where each Mj can be used only once:

Definition 3. (Union of asynchronous products of FSMs set) The asyn-
chronous product of all the subsets elements of FSMs repository R = {M1....Mm} is
the FSM: �(R) =

⋃
{i1,...,ij}⊆{1,...,m} (Mi1 × ...×Mij).

Second, we consider the case where the number of copies of each Mj ∈ R is
bounded by an integer k:

Definition 4. (k-iterated product of FSMs set R) The k-iterated product of
R is defined by R⊗k = R⊗k−1 ×�(R) with R⊗1 = �(R).

Finally, we consider the general case where the number of instances of each Mj ∈
R is unbounded. This corresponds to the product closure of R [28]:

Definition 5. (Product closure of FSMs set) The product closure of R, noted
R⊗, is defined as: R⊗ =

⋃+∞
i=0 R⊗i.

The Product Closure State Machine (PCSM) of R, defined in [28] and proven
equivalent to R⊗, is the SM with unbounded number of tokens stacked at the be-
ginning in the initial states in R. Then, the instantaneous description of a PCSM
gives the number of tokens (instances) at each state in R that the PCSM currently
underlies. This description is called a configuration of R⊗ and every componenet of
the configuration is called a witness of its corresponding state. We omit from this
description the initial states (source:infinite number of tokens) and terminal states
(sink:terminated instances) and represent only intermediate and hybrid states.
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A configuration in R⊗ is called final if all witnesses that correspond to inter-
mediate states (not final) are null. We define a path of a PCSM as a sequence of
transitions between configurations in R⊗ and a path’s length as the number of its
transitions. For a configuration c ∈ R⊗, norm(c) denotes the length of the shortest
path from c to a final configuration.

Example 4. Figure 3.1 illustrates the execution of the sequence ”abca” by the PCSM
of the FSM set {M,M ′} in figure 3.1-(a). M and M ′ contain one intermediate state
q1 and two hybrid states q2 and q5. Therefore, figure 3.1-(b) depicts a part of the
PCSM {M,M ′}⊗ with triplets as configurations where integers witness respectively
the number of tokens in q1, q2 and q5. For each configuration c in figure 3.1-(b), we
associate an instant t (or several instants) during the execution when c describes the
PCSM. At the beginning (t = 0), {M,M ′}⊗’s instantaneous description is (0, 0, 0),
interpreting an empty stack in every state of M and M ′, except the initial states q0

and q′0 with an infinite number of tokens (figure 3.1-(c)). To execute the transition
(q0, a, q1), a token is moved from q0 to q1 in figure 3.1-(d), corresponding to the
configuration (1, 0, 0) in instant t = 1. In t = 2, the executed transition (q′0, b, q4)
corresponds to moving a token from the initial state q′0 to a terminal one q4 (figure
3.1-(e)). Since the instantaneous description does not consider neither initial states
nor terminal ones, then the configuration stays the same as the previous instant.
Notice that this move corresponds to both creating and terminating an instance of
the FSM M ′. Then, the transition (q′0, c, q5) is executed by moving a token from q′0
to the hybrid state q5. This creates a new instance implying, in this case, an increase
in the number of simultaneously used instances in the execution. This is depicted
in figure 3.1-(f). Finally, a token is moved from the state q1 to q2 in figure 3.1-(g),
in order to execute the transition (q1, a, q2). It changes {M,M ′}⊗’s instantaneous
description in t = 4 into (0, 1, 1) which is a final configuration (i.e (0, 1, 1) ∈ FC)
since all tokens in the PCSM are in final states (either hybrid or terminal).

Formally, we define the PCSM of R as the SM (ΣR, CR⊗ , FC, c0,ΦR⊗), where:

1. ΣR =
⋃
Mj∈RΣMj

;

2. CR⊗ is the set of states (also called configurations ofR⊗). CR⊗ ⊂ Nn, with: n =
nI(R) + nH(R) with: nI(R) = ΣMj∈R|I(Mj)| and nH(R) = ΣMj∈R|H(Mj)|.
For each configuration c, c[m] (the mth component of c) is called a witness of
the unique state qm ∈ QMj

. Note that:

• qm is an intermediate state, if 1 ≤ m ≤ nI(R);
• qm is an hybrid state, if nI(R) + 1 ≤ m ≤ n.
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Figure 3.1: An example of execution of a sequence using a PCSM.

In an abuse of notation, we use c[m] and c[qm] interchangeably.

3. FC is the set of final states. FC = {c ∈ CR⊗|c[m] = 0, for each: 1 ≤ m ≤
nI(R)};

4. c0 = {0}n is the initial state of R⊗;

5. ΦR⊗ ⊆ CR⊗ × ΣR × CR⊗ is the set of transitions. we have (c1, a, c2) ∈ ΦR⊗ if
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and only if:

• there exists (q0, a, q) ∈ QMj
, such that: q0 is the initial state of Mj and

c2[q] = c1[q] + 1 and c2[p′] = c1[p′] for each p′ 6= q. Or

• there exists (p, a, q) ∈ QMj
, such that: p is not the initial state of Mj, q

is either a terminal state or the initial state of Mj, c2[p] = c1[p] − 1 and
c2[p′] = c1[p′] for each p′ 6= p. Or

• there exists (p, a, q) ∈ QMj
, such that: neither p nor q is the initial state of

Mj, c2[p] = c1[p]− 1, c2[q] = c1[q] + 1 and c2[p′] = c1[p′] for each p′ 6= p, q.

We recall below the definition of the simulation preorder between two SMs.

Definition 6. (Simulation)
Let M = (ΣM , QM , FM , q

0
M , δM) and N = (ΣN , QN , FN , q

0
N , δN) be two SMs. A state

p ∈ QM is simulated by a state q ∈ QN , denoted p�(M,N) q (p�q when M and N
are understood from context), if and only if the following two conditions hold:

1. ∀a ∈ ΣM and ∀p′ ∈ QM such that (p, a, p′) ∈ δM , there exists (q, a, q′) ∈ δN
such that p′�q′, and

2. if p ∈ FM , then q ∈ FN .

M is simulated by N , denoted M�N , if and only if the initial state of N simulates
the initial state of M, i.e. q0

M�q0
N .

Observe that, by definition, each transition of a PCSM can at most increase or
decrease a configuration component by 1. In addition, if a configuration is final then
all intermediate states witnesses are equal to 0. Therefore, given a set of FSMs R
and c ∈ CR⊗ , we have Σq∈

⋃
Mi∈R

I(Mi)c[q] ≤ norm(c). Moreover, since final states
can only be simulated by final ones, then for M an FSM and p ∈ QM , if p�c then
norm(c) ≤ norm(p). Hence, we are able to derive the following property.

Property 1. (Intermediate witnesses bound) [28] For c ∈ CR⊗ and p ∈ QM , if
p�c then Σq∈I(R)c[q] ≤ norm(p), where I(R) =

⋃
Mi∈R I(Mi).

We denote CMR⊗ = {c ∈ CR⊗|Σq∈I(R)c[q] ≤ norm(M)}.

In [28], the WSC problem in the unbounded case is reduced to simulation test
between an FSM and a PCSM and proven to be decidable. The termination of the
algorithm given in [28] is proven using the following property:
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Property 2. (configuration cover) [28] Let c and c′ be two configurations of R⊗,
such that: c[m] = c′[m], m ∈ [1, nI(R)] and c[m] ≤ c′[m], m ∈ [nI(R) + 1, n]. if
q�c, where q is a state of a SM M, then q�c′.

We say that c′ covers c, denoted c / c′.

We introduce below the algorithm of [28], focusing the presentation on the struc-
ture of its execution tree.

Definition 7. (Simulation Tree of an FSM by a PCSM)
We call a simulation tree Tsim(M,R⊗) = (V, v0, E) with:

• v0 = (q0
M , c0) is the root of the tree;

• V ⊂ QM × CMR⊗ is the set of nodes;

• If (q, c) ∈ V and q is final in M then so is c in R⊗;

• E ⊂ V × V is the set of the tree’s edges. ∀e = ((p, c), (q, d)) ∈ E : ∃a ∈
ΣM s.t (p, a, q) ∈ δM and (c, a, d) ∈ ΦR⊗.

• v = (p, c) ∈ V is a leaf in Tsim(M,R⊗) iff p is terminal in A or there exists an
ancestor (p, c′) ∈ V of v in Tsim(M,R⊗) such that c/c′.

Example 5. Figure 3.2-(c) is an example of a simulation tree, verifying if the ini-
tial state s0 of the FSM A (figure 3.2-(a)) is simulated by the initial configuration
c0 = (0, 0, 0) of the PCSM {M,M ′}⊗ (figure 3.2-(b)). A branch is terminated with
success when a terminal state of A is reached and paired with a final configuration (all
intermediate witnesses are null), or when a configuration of {M,M ′}⊗ that covers
one of its predecessors is reached and paired with the same state of A. In this case,
the simulation tree proves that A�{M,M ′}⊗.

In the next section, we shall bound the size of this tree in the case of bounded
WSC problem (i.e., when the number of web services instances allowed to be used
in the simulation is bounded by a parameter k).

3.2 Bounded Composition

3.2.1 Composition with bounded number of instances

We call a bounded WSC problem, a service composition problem where the number
of copies of each web service in the repository R used to compose the target M is
bounded a priori by an integer k. This problem is formally stated as follows.
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Figure 3.2: An example of a simulation tree.

Problem 1. Bounded Composition BC(M,R, k)

Input : R a set of FSMs; M a target FSM; k an integer.
Question : M�R⊗k?

The particular caseBC(M,R, 1) has been investigated by Muscholl andWalukiewicz
[38] where it is shown to be Exptime-Complete. We shall prove in this section that
BC(M,R, k) is also Exptime-Complete. We point out that the straightforward re-
duction ofBC(M,R, k) toBC(M,R, 1), obtained by duplicating k times each service
of R, is not polynomial in the input size, since k may be large, and hence cannot be
used to achieve our goal.

The parameter k drops the infinite aspect and reduces the search space. In this
case, a loop in M can only be simulated by loops in R.

For example, one can observe that, in figure 3.3,M is not simulated by {R1, R3}⊗k

for every k ∈ N. This is because when we repeat the loop in M (k + 1) times, there
is no corresponding execution in {R1, R3}⊗k . However, we have M�{R1, R2}⊗k , for
any k ≥ 1.

In the following, we give an upper bound of the number of states that might
appear in R⊗k , with k ∈ N.

Lemma 8. Let R be a set of FSM and k is an integer. The number of states in
R⊗k , noted |CR⊗k |, is bounded by |{c ∈ Nn s.t c[i] ≤ k, i ∈ [1, n]}| = O(2nlogk), where
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Figure 3.3: An example of bounded composition problem instances.

n = nI(R) + nH(R).

Proof:
Notice that R⊗ = (

⋃k
i=0R⊗i) ∪ (

⋃+∞
i=k+1R⊗i).

In fact, the states in
⋃k
i=0R⊗i correspond to the PCSM’s configurations subset

{c ∈ CR⊗k | 0 ≤ c[i] ≤ k, i ∈ [1, n]}. Hence, the number of states of
⋃k
i=0R⊗i is

bounded by (k + 1)× . . .× (k + 1)︸ ︷︷ ︸
n times

= 2nlog(k+1). �

This lemma reduces the search space to an exponential size and leads to the
following theorem.

Theorem 9. BC(M,R, k) is Exptime-Complete

Proof: Exptime. To show that BC(M,R, k) is Exptime, we bound the size
of the simulation tree. A node of the simulation tree corresponds to (q, c) where q is
a state of M and c a configuration of R⊗k . According to Lemma 8, the number of
PCSM’s configurations is bounded by kn. So the number of nodes in the simulation
tree is at most |QM | × kn = 2nlog(k)+log(|QM |). And since each node does not have to
be visited more than once, then the complexity is in Exptime.

Exptime-Hardness. It can be deducted directly from the Exptime-Hardness of
the particular case BC(M,R, 1) [38]. �

3.2.2 Composition with bounded number of parallel instances

We consider a new parameter in service web composition that bounds the number
of communications in parallel between the target and the services, i.e. the number
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of live services executions is bounded, but the number of instances is not. It appears
that the web services composition with unbounded instances and bounded parallel
instances is Exptime-Complete.

To do so, we limit the configurations of the PCSM R⊗ to configurations where
the number of waiting instances is bounded by k. Indeed, when we need to use a
new instance in ΦR⊗ , we check if

∑n
i=1 c[i] ≥ k. If so, we decrease c[j] for some

j ∈ [nI(R) + 1, nI(R) + nH(R)], i.e. we finish an instance that is waiting in an
hybrid state. Let us denote by R⊗k,p the obtained state machine.

Problem 2. Bounded Parallel Instances Composition (PBC(M,R, k))
Input : R a set of FSMs;

M a target FSM.
k an integer, bounding the number of parallel instances of R’s components used

simultaneously in the simulation.
Question : M�R⊗k,p?

Note that PBC(M,R, k) can use an unbounded number of instances but only k
instances in parallel.

Theorem 10. PBC(M,R, k) is Exptime-complete.

Proof: First we show that PBC(M,R, k) is Exptime. Clearly the entry of any
configuration is bounded by k (hybrid states are included) and therefore we can check
simulation in Exptime, since the depth of the simulation tree is bounded by kn (see
Lemma 8).

To show the Exptime-hardness, we reduce the unbounded composition without
hybrid states to the problem PBC(M,R, k). In fact, the number of tokens in inter-
mediate states of R is bounded by norm(M) (property 1). Hence, when R is hybrid
state free, the number of instances that can be used in the simulation is bounded by
norm(M). In other words, it corresponds to PBC(M,R, norm(M)). And since un-
bounded composition without hybrid states is Exptime-hard ??, then PBC(M,R, k)
is Exptime-hard, and therefore Exptime-complete. �

For k a constant, we obtain the following.

Corollary 11. PBC(M,R, k) is polynomial, for each fixed integer k.

Proof: First of all, let us consider for every configuration c of R⊗k,p , a new
component c[n+ 1] = k − (

∑n
i=1 c[i]), with n = nI(R) + nH(R).

For every configuration c in R⊗k,p , the non-empty witnesses {c[i] > 0, 0 ≤ i ≤ n}
correspond to a partition of k elements (instances) into a sequence of j non empty
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subsets, for j = |{c[i] > 0, 1 ≤ i ≤ n}| ≤ k. Note that j is in fact inferior to
min(k, n), but since k is a constant then it is more interesting to keep it as a lower
bound of j.

For every j ≤ k, the number of labeled partitions of k elements into a sequence
of j non empty subsets is j!×{kj}, where {kj} is a Stirling number of the second kind
[1]. Hence, the number of configurations in R⊗k,p that have j non-empty witnesses
is bounded by Cj

n × j!× {kj}. Notice that Cj
n = en...×(n−j+1)

j!
is in the order of O(nj).

We conclude that the number of configurations in R⊗k,p is bounded by
∑k

j=1C
j
n×

j!× {kj} ∈ O(nk).
Finally, by applying the simulation algorithm in [29], PBC(M,R, k) can be de-

cided in O(mv.me), where mv = |QM |+ |CR⊗| and me ≤ |QM |2 + |CR⊗|2 are respec-
tively the number of edges and transitions in M and R⊗k,p . �

Another factor of complexity of the WSC problem is the number of hybrid states
in the available services. We investigate next the effect of this parameter on the
complexity of the WSC problem.

3.3 Bounded number of hybrid states

The presence of hybrid states is a source of complexity in a WSC problem. As
mentioned before, the size of intermediate states witnesses in configurations of R⊗
used to simulate M is bounded by norm(M). We are however unable to provide a
similar bound for the number of hybrid states witnesses.

Figure 3.4 is an example of simulation between an FSM M and a PCSM R⊗.
The FSMs in R contain two hybrid states (state 1 and 2) and no intermediate state.
Hence, a configuration of R⊗ is a pair of integers witnessing the number of tokens in
state 1 and state 2. The example illustrates the different roles that an hybrid state
of R can play to simulate a state of M . Indeed an hybrid state of R, can be used as:
(i) a terminal state, e.g., when testing whether q5�(1, 1), we can consider the second
hybrid state of R as a terminal state and terminate the test, or (ii) an intermediate
state, e.g., when testing whether q2�(1, 1), the second hybrid state of R here plays
the role of intermediate state, or (iii) both a terminal and an intermediate state,
e.g., when testing whether q1�(1, 0), a transition of ΦR⊗ labeled by (b, (−1, 0)) only
appears in one branch in the simulation tree Tsim(M,R⊗). Hence, the first hybrid
state of R⊗ is considered intermediate in one branch and terminal in the other, or a
hybrid state, e.g., when it is used to simulate an hybrid state of H(M).

We consider in the following the problem defined below.
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Figure 3.4: Example of the simulation tree

Problem 3. Unbounded Composition With limited number of Hybrid States
UCHS(M,R, k)

Input : k an integer; R a set of FSMs, containing at most k hybrid states; M a
target FSM.
Question : M�R⊗?

We point out that UCHS(M,R, k + 1) is harder then UCHS(M,R, k). In the
sequel, we progressively investigate the complexity of UCHS(M,R, k) problem for
k = 0, then for k = 1 and finally for k = 2.

3.3.1 Case of composition without hybrid states

In this section, we are interested in the problem UCHS(M,R, 0). We first give
a polynomial transformation, denoted K, which is used to reduce BC(M,R, 1) to
UCHS(N,R′, 0). This transformation provides a mean to bound the number of
instances used to prove simulation.

Definition 12. Transformation K. For an FSM M = (ΣM , QM , FM , q
M
0 , δM) and

a set of FSMs R = {M1, ...,Mm}, we define K(M,R)=(N,R′={N1, .., Nm}) where:

1. Each Ni is built based on Mi, by adding a letter ti to its alphabet, a final state
fi and a transition set {(qMi

0 , ti, fi)} ∪ {(q, ti, fi)|q ∈ FMi
}. All final states of

Mi become intermediate in Ni.
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2. N is defined as:

• ΣN = ΣM ∪ {ti|1 ≤ i ≤ m};
• QN = QM ∪ {ri|1 ≤ i ≤ m};
• FN = {rm};
• δN = δM ∪ {(q, t1, r1)|q ∈ FM} ∪ {(ri, ti+1, ri+1)|1 ≤ i < m}.

Figure 3.5 illustrates an example of this transformation. We prove later in propo-
sition 14 that K defines a polynomial reduction of BC(M,R, 1) to UCHS(N,R′, 0).
In fact, the intuition behind this reduction is based on two points:

• By adding the sequence of letters t1, ...., tm at the end of every execution ac-
cepted by N and adding ti at the end of every execution accepted by Ni ∈ R′,
we ensure that even in an unbounded instances simulation, we can not use
more than one instance of every Ni in order to simulate N .

• The construction of R′ verifies that every hybrid state in Mi ∈ R becomes
intermediate in Ni, while keeping its dual role: either terminate the execution
by adding the letter ti to the execution of Ni and reaching the terminal state
fi, or keep the execution in the same way as Mi.

M R N R′

s0

s1

s2 s3

s4

p0

p1

p2 p3

q0

q1

q2

a

b c

b

a

b c

b

d

a
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s1

s2 s3

s4

p0
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p2 p3
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b c
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b c
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q2
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d

a
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t1 t1

f1 f2

t2
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t2
t1

t1

t2
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r2

(a) (b)

s5

d

s5

d t1

Figure 3.5: An example of transformation K
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The following propositions show that the transformation K preserves the simula-
tion preorder.

Proposition 13. Let M be an FSM, R = {M1, ...,Mm} be a set of FSMs and
K(M,R) = (N,R′ = {N1, .., Nm}). For p and q two states of respectively M and
R⊗1, we have: p�(M,(R)⊗1 ) q iff p�(N,(R′)⊗1 ) q.

Proof: Let p be a state of M and q be a state R⊗1 verifying p�(M,(R)⊗1 ) q.
By construction of K(M,R), if p is terminal in M then p�(N,(R′)⊗1 ) q.
We suppose next that for every (p, a, p′) ∈ δM and (q, a, q′) ∈ δR⊗1 , if p′�(M,R⊗1 )

q′, then p′�(N,(R′)⊗1 ) q
′. We prove, under this hypothesis, that p�(N,(R′)⊗1 ) q.

For each (p, a, p′) ∈ δN , we have:

• if a ∈ ΣM , then there exists (q, a, q′) ∈ δR⊗1 ⊆ δ(R′)⊗1 such that p′ �(N,(R′)⊗1 )

q′.

• else a = t1, p′ = r1 and q is a product of final states of R. therefore, there
exists (q, t1, q

′) ∈ δ(R′)⊗1 such that q′ = (f1, q
′
i1 , ..., q

′
il
) where q′ij is final in R

such that p′�(N,(R′)⊗1 ) q
′.

We conclude that if p�(M,R⊗1 ) q then p�(N,(R′)⊗1 ) q.
Reciprocally, we have (p, a, p′) ∈ δN (respectively δ(R′)⊗1 ) and a /∈ {ti|1 ≤ i ≤ m}

iff (p, a, p′) ∈ δM (respectively δR⊗1 ). In addition, the definition of K ensures that if
p is final in M and p�(N,(R′)⊗1 ) q then q is final in R⊗1 . Hence if p�(N,(R′)⊗1 ) q then
p�(M,R⊗1 ) q. �

In particular, we take p as the initial state of M and q the initial state of R⊗1 .
This implies that:

Proposition 14. Let M be an FSM, R = {M1, ...,Mm} be a set of FSMs and
K(M,R) = (N,R′ = {N1, .., Nm}). We have: M�R⊗1 iff N�(R′)⊗.

Proof: We have N�(R′)⊗1 if and only if N�(R′)⊗. Indeed, each path that
starts from the initial state to a final one in N contains exactly one transition labeled
by ti, for each i ∈ [1,m] and a similar path in each Ni contains exactly one transition
labeled by ti. �

Hence, K is a polynomial reduction of BC(M,R, 1) problem to the UCHS prob-
lem. This enables to derive the following result.

Theorem 15. UCHS(M,R, 0) problem is Exptime-complete.
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Proof: According to proposition 14, the K transformation reduces BC(M,R, 1)
to UCHS(M,R, 0) in polynomial time. Thus UCHS(M,R, 0) is Exptime-hard.
Since it is also proven Exptime in [28], then UCHS(M,R, 0) is Exptime-complete.
�

3.3.2 Case of composition with one hybrid state

We consider the problem UCHS(M,R, 1) where M is an FSM and R a set of FSMs
containing at most one hybrid state (nH(R) ≤ 1). We denote k0 = |QM |.2nI(R).log(norm(M)).
Two nodes (q, c) and (q′, c′) in a simulation tree are called comparable if q = q′ and
either c/c′ or c′/c. The nodes (q, c) and (q′, c′) are said incomparable otherwise.

Property 3. Let R be a set of FSMs containing at most one hybrid state. Two
configurations of R⊗ are comparable by the cover relation, if and only if they have
exactly the same intermediate witnesses.

Proof: According to property 2, for c, c′ two configurations in R⊗ we have c / c′
iff :

1. c and c′ have the same intermediate witnesses; and

2. for every hybrid witness c[h], we have: c[h] ≤ c′[h].

In the current case, we consider that R has at most one hybrid witness. Hence, for
any pair of configurations of R⊗, condition 2 is verified.

We conclude that for every two configurations c, c′ in R⊗, c / c′ iff c and c′ have
the same intermediate witnesses. �

Property 4. Let S be a set of nodes of Tsim(M,R⊗) that are pairwise incomparable,
then |S| ≤ k0.

Proof: In configurations considered in Tsim(M,R⊗), intermediate witnesses are
bounded by norm(M) (property 1). Therefore and according to property 3, the num-
ber of incomparable configurations considered in Tsim(M,R⊗) is at most 2nI(R).log(norm(M)).
Since S ⊂ QM × CR⊗ , then |S| ≤ k0. �

Proposition 16. If nH(R) = 1, then for each (q, c) ∈ Tsim(M,R⊗), the witness c[h]
of the unique hybrid state in R is bounded by k0

2 + k0.

Proof: Let P be a path in Tsim(M,R⊗) and S = (vn = (qn, cn))n∈N be the
sequence of nodes in P where each vi ∈ S is the ith node met in P that is comparable
to exactly one of its predecessors v = (qi, c) in P. Note that:
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1. Each vi and vj in S are incomparable;

2. If a node v ∈ P is comparable to more than one ot its predecessors in P , then
v /∈ S;

3. Nodes in S are indexed in the order of their appearance of P .

If S = ∅, then all nodes of P are not comparable. The size of P is then bounded
by k0 (property 4), therefore, c[h] ≤ k0 for each (q, c) in P .

We suppose next that S 6= ∅ and take S = (v1, ..., vk), k ∈ N. We prove recur-
sively that for each n ∈ [1, k], cn[h] ≤ n.k0.

For n = 1, all predecessors of v1 in P form a set of nodes that are incomparable
pairwise. Hence, c1[h] ≤ k0 (property 4).
For 1 < n < k, we suppose that cn[h] ≤ n.k0. Each node v = (q, c) strictly between
vn and vn+1 in P , v is not in S, therefore either:

1. v is comparable to a node vi with i ∈ [1, n]. In this case, c[h] < ci[h] ≤ n.k0

(otherwise ci/c, thus by definition of Tsim(M,R⊗), v should be a leaf).

2. v is incomparable to all its predecessors. The number of such nodes in P is
strictly bounded by k0 − 1 (because they should all be incomparable to each
other and to vn and vn+1). And since transitions displacements is in {−1, 0, 1}h,
then we have c[h] < n.k0 + k0 − 1.

We conclude from above that for every v = (q, c) between vn and vn+1 in P , c[h] ≤
n.k0 + k0− 1 (supposing w.l.o.g that k0 ≥ 1). Thus, cn+1[h] ≤ n.k0 + k0 = (n+ 1).k0.

Once we reach the last node vk in S, all its possible successors in P are either:
comparable to a node vi ∈ S with c[h] < ci[h], or incomparable to any of its prede-
cessors in P or it is the leaf of P.

Finally, since k < k0 (because S is a sequence of incomparable nodes), we conclude
that each node of P is in QM × ([1, norm(A)]nI(R) × [1, k0

2 + k0]). �

Lemma 17. UCHS(M,R, 1) is in Exptime.

Proof: To show that UCHS(M,R, 1) is Exptime, we bound the size of the
simulation tree. A node of the simulation tree corresponds to (q, c) where q is a
state ofM and c a configuration of R⊗ that verifies, according to proposition 16, the
following:
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• c[h] ≤ k0
2 where c[h] is the witness of the unique hybrid state in R;

• c[i] ≤ norm(M) where c[i] is a witness of an intermediate state in R.

Hence, the number of nodes in the simulation tree is bounded by

|QM |.norm(M)nI(R)︸ ︷︷ ︸
k0

. (k2
0 + k0) = O(k3

0)

And since deciding simulation only requires to visit a node once, then the com-
plexity is in Exptime.
�
To prove the Exptime-hardness of the problem, we recall that UCHS(M,R, 0)

is Exptime-hard (theorem 15) and that UCHS(M,R, 1) is harder than UCHS(M,
R, 0).

Theorem 18. UCHS(M,R, 1) is Exptime-complete.

3.3.3 Case of composition with two hybrid states

In this section, we consider the problem of unbounded composition of web services
with at most 2 hybrid states in R, i.e UCHS(M,R, 2).

Our approach is based on reducing the simulation problem to the Z-reachability
issue [13, 17].

Interestingly, the simulation verification has been reduced in [40] to a two players
game in a directed graph (Vatt, Vdef , δ, v0), such that V = Vatt ∪ Vdef is the set of
vertices with Vatt ⊆ QM×QN and Vdef ⊆ QM×QN×ΣM , δ ⊆ (Vatt×Vdef )∪(Vdef×Vatt)
is the edge set verifying:
-for (q, p) ∈ Vatt and (q, a, q′) ∈ δM , we have ((q, p), (q′, p, a)) ∈ δ; and
-for (q, p, a) ∈ Vdef and (p, a, p′) ∈ δN , we have ((q, p, a), (q, p′)) ∈ δ.

The game is played by an attacker and a defender. It starts by putting a token
in v0 = (q0

M , q
0
N) ∈ Vatt, then the players move it along the edges of the graph. If the

token is on a vertex v ∈ Vatt then the attacker moves it, otherwise it is the defender’s
turn.

A strategy of a player x ∈ {a, d} is a function S : V ∗.Vx 7→ V , where V ∗.Vx denotes
all sequences of vertices in V that end with a vertex in Vx and S(v0, ..., vk) = vk+1

implies that (vk, vk+1) ∈ δ. In each different play, a player x adapts a strategy that
decides his moves.
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The defender wins every infinite play. Otherwise, the first player who cannot
move loses. M is simulated by N iff the defender has a winning strategy regardless
of his opponent’s strategy.

The Z-reachability game, on the other hand, is played on a finite weighted graph
(V�, V♦, E, v0, e0, k) by 2 players � and ♦. A play begins by placing a token in
v0 ∈ V�, then the players move it along the graph’s edges E ⊆ V × V × {−1, 0, 1}k,
with V = V� ∪ V♦ and k ∈ N. If the token is in vertex v ∈ V� then � moves it,
otherwise his opponent does. The play is winning for ♦ if the components of the sum
of the weights of the edges traversed plus e0 ∈ Nk are strictly above (0, .., 0) ∈ Nk

during the whole play, otherwise � wins. if the play is finite, then the first player
who cannot move loses. We define here a strategy of a player x ∈ {�,♦} like in the
simulation game. A player wins the Z-reachability game if he has a strategy that
ensures winning, whatever his opponent’s strategy is. Chaloupka proves in [17] that
a 2-dimensional Z-Reachability problem (for k=2) can be solved in O(|V |17).

Considering an instance of the problem UCHS(M,R, k), we build next an equiv-
alent k-dimensional Z-Reachability game of an exponential size.

Theorem 19. There exist an algorithm that can solve UCHS(M,R, 2) in
O((norm(M)n × |QM | × |ΣM |)17), with n is the number of states in R.

Proof: Considering the simulation game (Vatt, Vdef , δ, v0) associated to M and
R⊗, note that the only known upper bound of |Vatt ∪Vdef | is Ackermanian. However
the set CI = {(c[1], ..., c[nI(R)])|c ∈ CMR⊗} has an exponential size (Property 1).
Hence, we consider the weighted graph (V�, V♦, E, w0, e0, k) with: V� ⊆ QM × CI ;
V♦ ⊆ QM × CI × ΣM ; E ⊆ V × V × {−1, 0, 1}k, with V = V� ∪ V♦, k = nH(R) and:
-for (q, c) ∈ V� and (q, a, q′) ∈ δM , we have ((q, p), (q′, p, a), (0, ..., 0)) ∈ δ;
-for (q, c, a) ∈ V♦ and (d, a, d′) ∈ ΦR⊗ with c and d have the same intermediate
components (c[i] = d[i], i ∈ [1, nI(R)]), we have ((q, c, a), (q, c′)) ∈ δ with c′[i] =
d′[i], i ∈ [1, nI(R)].
and w0 = (q0

M , (0, ..., 0)) ∈ V� and e0 = (1, .., 1) ∈ Nk.
We consider two mappings:

Let f : Vdef ∪ Vatt 7→ V be defined for q, c, a ∈ QM , CMR⊗ ,ΣM as: f(q, c) = (q, c′) and
f(q, c, a) = (q, c′, a) with c′[i] = c[i] for i ∈ [1, nI(R)].

Let g : V ∗ 7→ Vd ∪ Vatt be defined for q, c, a ∈ QM , CMR⊗ ,ΣM and w0, ..., wl ∈ V as:
g(w0, ..., wl, wl+1 = (q, c)) = (q, c′) or g(w0, ..., wl, wl+1 = (q, c, a)) = (q, c′, a) and for
each i ∈ [1, nI(R)] and j ∈ [1, nH(R)], c′[i] = c[i] and c′[nI(R)+ j] is equal to the jth
component of the sum of weights of the edges traversed in the path {w0, ..., wl+1}.
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Let S♦ be a winning strategy of ♦ in the Z-Reachability game (V�, V♦, E, v0, e0, k).
We build next a winning strategy Sd for the defender in the simulation game (Vatt, Vdef ,
δ, v0). Let v0, ..., vl ∈ Vatt ∪ Vdef be a path in the simulation game and wi = f(vi)
for each i ∈ [1, l] and wl+1 = S♦(w0, ..., wl). we take Sd(v0, ..., vl) = g(w0, .., wl+1)
because by construction we have (vl, g(w0, .., wl+1)) ∈ δ. Hence, if S♦ is the winner,
then so is the defender.

Reciprocally, we take Sd a winning strategy of the defender in the simulation game
and we build S♦, a winning strategy of ♦ in the Z-Reachability game. Let w0, ..., wl ∈
V be a path in the Z-Reachability with the sum of weights of the edges traversed in
the path {w0, ..., wl} is superior to (0, ..., 0). Considering vi = g(w0, ..., wi) for each
i ∈ [1, l] and vl+1 = Sd(v0, ..., vl), we take S♦(w0, ..., wl) = f(vl+1).

Hence we conclude that there is simulation between M and R⊗ iff ♦ wins the
Z-Reachability game. Since for k=2, this is decided in O(|V |17) [17] and |V | ≤
norm(M)nI(R) × |QM | × |ΣM |, we conclude the result. �

We conclude in the next corollary the Exptime-completeness of UCHS(M,R, 2).

Corollary 20. UCHS(M,R, 2) is Exptime-complete.

Proof: First, UCHS(M,R, 2) is Exptime according to theorem 19. Second,
it is harder then UCHS(M,R, 0) which is Exptime-hard (theorem 15). Hence,
UCHS(M,R, 2) is Exptime-complete. �
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Chapter 4

Conclusion

4.1 Summary
In this work, we investigated the complexity of web services composition problem.
We have considered two parameters that are source of complexity of the web services
composition problem. We have shown that among the considered problems, several
instances remain Exptime-complete when one of these parameters is bounded.

When final states are considered, this problem is related to reachability issue
where we raise the question of achieving a stable configuration in each execution
path. This is mainly, as we see the problem, its source of difficulty. Hybrid states
convey an obstacle as well, because of their non-decidable role in the execution: they
are both intermediate states that can be recalled later and final states that define a
definite execution’s termination.

4.2 Perspectives
It remains an open question to identify the complexity of UCHS(M,R, k) for any
k ∈ N; [13] proves in the context of Z-Reachability that the problem is k-Exptime.
This complexity is quite far from the known lower bound (Exptime). This may open
some new tracks in defining upper bound complexity for a restricted k-dimensional
Vector Addition Systems with States (VASS) classes.

It is also interesting to improve the polynomial complexity given for k=2 in [17]
and/or give a simpler algorithm that can eventually be extended to the general case.

Left to say that the relation between this problem and the reachability issue con-
vinced us that finding the complexity of the general problem requires a collaborative
and long study of the issue.
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Part III

Closure systems and related issues
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Chapter 5

Introduction

5.1 Context

An efficient process to solve a problem has to begin with a modeling step. It is
the phase where the question and all its considered constraints are put into a formal
analyzable format, whether it is a plain text, a graph or a mathematical equation...or
any other conceptual model.

The appearance and development of logic in the twentieth century, arising from
the work of Gödel and Tarski [30, 32], gave a big boost to scientific research. It gave
a formal platform of problem modeling that questions valid reasoning. Along with
the electronic and computer science revolution, this took problem resolution process
into a whole other level. It is however still not enough for certain problem classes
that still demand an unpractical time of response. Hence the challenge of developing
algorithms and getting a better understanding of mathematical structures in order
to enhance the complexity of such problems or prove that it is not possible.

Partial orders [20] are one of the mathematical modelings that permeates our
everyday life to such an extent that we take it for granted. Many important properties
of an ordered set are related to the existence of certain upper bounds and lower
bounds of its subsets. When such an upper bound and a lower bound exist for
every pair of an order set, we are in the presence of a lattice. A popular example
is natural numbers ordered by divisibility; the upper bound of two numbers is their
least common multiple and the lower bound is their greatest common divisor.

Closure system is a natural modeling structure that has applications, to name
a few, in topology, algebra and logic [11]. It is basically a subset family F on a
set X verifying that X is in F and for every pair in F their intersection is in F.
Ordered by inclusion, every closure system forms a lattice. Reciprocally, every lattice
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arises as a closure system on some set. Another representation of closure systems is
closure operators [11], implicational bases [45] and binary relations [26]. The choice
of representation is mainly dependent on the application and the problem considered
(Database, Datamining, Game theory, Logic...).

5.2 Contributions and outline
Chapter 6 is an opening of this part, where we define closure systems and related
modeling concepts: closure operator, lattice, implicational bases and binary relations.
We establish the correspondence between these objects.

Chapter 7 investigates the problem of computing a closure system’s maximal
extension. We demonstrate how such an extension can be computed depending on
the input closure system’s encoding.

When the input is the implicit closure system’s sets, we give a description of the
maximal extension’s closed sets.

When the input is an implicational base Σ, we give a new simple proof that
erasing all unitary implications from Σ defines a base of the maximal extension.

When the input is lattice’s join and meet-irreducible sets, equivalently a binary
relation, then we give an incremental polynomial algorithm that computes the lat-
tice’s maximal extension.

Chapter 8 concerns the problem of candidate keys enumeration of an implicational
base. We define a key-ideal set, an ideal of a candidate key in an order defined through
Σ. We demonstrate that if we can enumerate a subset of key-ideal sets, that we call
minimal key-ideal sets, in polynomial delay with a polynomial space, then we can
enumerate candidate keys in polynomial delay and space as well. Knowing that the
number of the latter can be significantly smaller than the number of candidate keys,
we give an efficient key-ideal sets enumeration algorithm, that enumerates all minimal
key-ideal sets in incremental polynomial time and then enumerates all non-minimal
ones in a polynomial delay.
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Chapter 6

Closure Systems and Representations
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This chapter defines closure systems and some of its representations. We show
how closure systems, closure operators, lattices, implicational bases and binary re-
lations are all strongly related. The following definitions and notations will be con-
sidered all along the rest of the manuscript. Note also that all considered objects
are finite.

6.1 Closure system
Closure system refers to a collection of subsets over a finite set X, closed by inter-
section and containing X. This mathematical structure appears in the litterature
under different names, such as convexity space [15] and Moore family [11].

Definition 21. Closure System
F is called a closure system over a non-empty finite set X if and only if it is a

subset of 2X verifying:

• X is in F; and

• for every S, S ′ in F, S ∩ S ′ is in F.

Each subset in F is called an F-closed set, or simply closed set when F is un-
derstood from the context. The complementary of a closed set is called feasible
set.

6.2 Closure operator
Definition 22. Closure Operator

A closure operator Φ on a set X is a function Φ : 2X 7→ 2X verifying for every
subset S of X:

• Φ(S) contains S (extensive); and

• if S ′ is a subset of S, then Φ(S ′) is a subset of Φ(S) (increasing); and

• Φ(Φ(S)) = Φ(S) (idempotent).

To highlight the strong correspondence between closure systems and closure op-
erators, we describe next the classic bijection between both objects. On one hand,
with every closure system F, we associate the following closure operator:

ΦF : 2X 7→ 2X , S 7→ ΦF(S) =
⋂
{S ′ ∈ F|S ⊆ S ′}
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On the other hand, for every closure operator Φ, the corresponding closure system
is the family of subsets F = {Φ(S)|S ⊆ X}.

6.3 Lattice

We begin by defining formally a partial order:

Definition 23. Partial Order
A binary relation 6 on a set X is a partial order if it is:

• reflexive: for every x in X, x6x; and

• antisymmetric: for x, y in X, if x6y and y6x then x = y; and

• transitive: for x, y, z in X, if x6y and y6z then x6z.

Partially ordered set P = (X,6) is a set X together with a partial order 6.
When an order relation≤ over a setX verifies that for every x and y inX, we have

either x ≤ y or y ≤ x, then ≤ is called a total order. We call the lexicographical order
derived from ≤, the order defined over 2X that converts subsets of S into increasingly
ordered sequences and defines such sequence (x1, ..., xi) ofX lexicographically smaller
than another sequence (y1, ..., yj) of X if (x1, ..., xi) ⊆ (y1, ..., yj) or xl ≤ yl, for the
first l where xl and yl differ.

Definition 24. Upper Bound, Lower Bound
Consider a partially ordered set P = (X,6) and S a subset of X. The upper

bound (i.e. supremum or join) of S in P is the least element in X, if exists, that is
greater or equal to all elements of S. We define dually the lower bound (i.e. infimum,
or meet) of S in P .

We denote x1 ∨ ... ∨ xi (resp. x1 ∧ ... ∧ xi) or
∨
S (resp.

∧
S) an upper bound

(resp. lower bound) of S = {x1, ..., xi}.

Definition 25. Cover relation
Consider a partially ordered set P = (X,6) and two elements x, y in X, we say

that x is covered by y and note x ≺ y if x<y and for every z in X, x<z6y implies
that y = z.

Definition 26. Ideal and filter
Consider a partially ordered set P = (X,6).
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• an ideal of P is a subset I of X such that if x ∈ I and y6x then y ∈ I. We
denote, for every subset S of X, ↓6 S the smallest ideal containing S, noted
↓ S when 6is understood from the context. For every ideal I of P , Max(I) is
the set {x ∈ I | y ∈ I imply x 6<y}.

• a filter of P is a subset F of X such that x ∈ F and x6y imply y ∈ F . We
denote, for every subset S of X, ↑6 S the smallest filter containing S, noted
↑ S when 6is understood from the context.

Definition 27. Join-semilattice, Meet-semilattice, Lattice
Consider a partially ordered set L = (X,6) with X 6= ∅. L is called a join-

semilattice (resp. a meet-semilattice) if each two element-subset {x, y} of X has a
join (resp. a meet) in L. L is a lattice if it is both a join-semilattice and a meet-
semilattice.

A join-sublattice (resp. meet-sublattice) of L is a lattice L′ = (X ′ ⊆ X,6’)
verifying for every pair of attributes in X ′, their join (resp. meet) in L is the same
in L′.

We recall the arrow relations introduced in [46]. Let L = (X,6) be a lattice and
x, y ∈ X. Then:

1. x↙L y (noted x↙ y when L is understood from the context), if and only if x
is minimal in L\ ↓ y.

2. x↗L y (noted x↗ y when L is understood from the context), if and only if y
is maximal in L\ ↑ x.

3. x↗↙L y (noted x↗↙ y when L is understood from the context), if and only if
x↙L y and x↗L y.

Definition 28. Join-irreducible, Meet-irreducible
Consider a lattice L = (X,6). An element j in X is called join-irreducible if for

each x, y in X, x ∨ y = j implies either x = j or y = j.
Dually, m in X is called meet-irreducible if for each x, y in X, x∧ y = m implies

either x = m or y = m.
JL (resp. ML) refers to the set of all join-irreducibles (resp. meet-irreducibles) in

L.

Every finite lattice has one greatest element called the top and denoted > and
one least element called bottom and denoted ⊥. The elements covered by > are
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called co-atoms and those that cover ⊥ are called atoms. Note that every atom is
join-irreducible and every co-atom is meet-irreducible.

Lattices and closure systems are two strongly connected concepts. In fact, for
every closure system F on a set X, the partially ordered set (F,⊆) is a lattice.

In an abuse of notation, we may refer in this document to the lattice (F,⊆) by
its corresponding closure system F. JF and MF refer to join-irreducible sets and
meet-irreducible sets of the lattice (F,⊆).

Reciprocally, a lattice L = (L,6) is isomorphic to both closure systems defined
over its join-irreducible sets and its meet-irreducible sets as follows:

• FJ(L) = {J(x), x ∈ L}, where J(x) = {j ∈ JL | j ≤ x}.

• FM(L) = {M(x), x ∈ L}, where M(x) = {m ∈ ML | x ≤ m}.

When all join-irreducible sets of a lattice L are singletons, then L (and its corre-
sponding closure system FJ(L)) is called atomistic.

Definition 29. Join-semidistributive and meet-semidistributive Lattice
A lattice L is called join-semidistributive, if x ∨ y = x ∨ z implies that x ∨ y =

x ∨ (y ∧ z) for every x, y and z in L. Dually, we call L meet-semidistributive if
x ∧ y = x ∧ z implies that x ∧ y = x ∧ (y ∨ z).

6.4 Implicational base

Definition 30. Implicational Base or Definite Horn CNF
Let X be a finite set of elements. An implicational base Σ over X is a set of pairs

(L,R) in 2X×2X . Each pair is called a functional dependency or an implication and
denoted L → R. L and R are respectively called premise and conclusion. If |L| = 1
(L is a singleton), then the implication L→ R is called unitary.

To an implicational base Σ, we associate a closure operator Φ (and consequently
a closure system) where for every subset of elements S, Φ(S) is the smallest subset
of elements SΣ containing S and verifying for every L → R in Σ: if L ⊆ SΣ then
R ⊆ SΣ. We say that Σ satisfies a functional dependency L→ R if and only if R is
a subset of LΣ.

A closure system, however, can correspond to multiple equivalent implicational
bases. The number of dependencies in these bases differ and can be exponential in
the size of the closure system’s representation (for example meet-irreducible set).
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Two bases are said equivalent, if they define the same closure system. A base Σ
is called minimum when |Σ| ≤ |Σ′| for every Σ′ equivalent to Σ.

Note that for x and y two different elements in X, if x → y and y → x, then
x and y are said equivalent. In such case, the corresponding lattices (F,⊆) and
({F \ {x}|F ∈ F},⊆) are isomorphic. We suppose w.l.o.g that if x ∈ Φ({y}) then
y /∈ Φ({x}).

6.5 Binary relations and coloured posets
Definition 31. Binary Relation

A binary relation, called Formal Context in FCA terminology, over two sets X
andM is a subset of the Cartesian product X×M . We identify a binary relation C by
the triplet (X,M, I), where X is an object set, M is an attribute set, and I ⊆ X×M
is called incidence expressing the correspondence between objects and attributes.

A binary relation can also be seen as a binary matrix where every row (resp.
column) corresponds to an object (resp. an attribute). It is a way of representing
lattices, and therefore closure systems.

Given a binary relation C = (X,M, I), we define :

f : 2X → 2M , f(S) = {m ∈M |∀x ∈ S, (x,m) ∈ I}

g : 2M → 2X , g(S ′) = {x ∈ X|∀m ∈ S ′, (x,m) ∈ I}
The composed functions f ◦g and f ◦g are in fact closure operators. We associate

to C the concept lattice ({(S, S ′)|g(S) = S ′ and f(S ′) = S, S ⊆ M , S ′ ⊆ X},4),
where the order 4 is formalized by: (S1, S

′
1) 4 (S2, S

′
2) if and only if S1 ⊆ S2.

Reciprocally, a lattice L = (X,6) is isomorphic to the concept lattice of the
binary relation (JL,ML,6). Note that L can be constructed efficiently from the
binary relation (JL,ML,6) [39, 12, 24].

Another interpretation of such binary relations was given in [27], using coloured
partially ordered sets (c-poset).

Definition 32. C-poset
A c-poset is a 4-tuple (X,6,M, γ), where (X,6) is a partially ordered set, M is

a colours set and γ is a set colouring of the elements of X by subsets of M .

For a c-poset Pc = (X,6,M, γ) and any subset S of X, we define γ(S) =
⋃
x∈S

γ(x).

An ideal colour set of Pc is a set Ic ⊆M such that there is an ideal I of (X,6) with
Ic = γ(I). Denote by F(Pc) the set of all ideal colour sets of Pc.
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Figure 6.1: A lattice example L and its associated binary relation Bip(L) and c-poset
Pc(L).

For every Ic = γ(I) and Ic′ = γ(I ′)) in F(Pc), Ic∪ Ic′ = γ(I ∪ I ′) is in F(Pc), since
I ∪ I ′ is an ideal in (X,6). Thus F(Pc) = {M \ Ic | Ic ∈ F(Pc)} is a closure system
(i.e F(Pc) is a co-closure system).

We associate with a lattice L = (X,6) the c-poset (JL,6,ML, γ) where γ is a set
colouring of the elements of JL by subsets of ML defined by:

γ : JL → 2ML , γ(j) = {m ∈ ML | j ↙ m}

In fact, the mapping ϕ from L to (F(JL,6,ML, γ),⊆) is bijective:

ϕ : L→ (F(JL,6,ML, γ),⊆), where ϕ(a) = {m ∈ ML, a 
 m} (6.1)

Example 6 is an example of a closure system and its different representations.

Example 6. We consider the closure system F = {∅, {a}, {b}, {c}, {a, b}, {b, c},
{a, b, c}}. Its closure operator is Φ defined over 2{a,b,c} as: Φ({a, c}) = {a, b, c} and
Φ(S) = S for every other subset S of {a, b, c}.

Figure 6.1 displays a lattice L = ({⊥, a, b, c, d, e,>},6) isomorphic to (F,⊆).
Its join and meet-irreducible sets are respectively J = {a, b, c} and M = {a, c, d, e}.
Pc(L) is the c-poset (J,6,M, γ) that corresponds to L, where (J,6) is an antichain
and γ(a) = {c, e}, γ(b) = {a, c} and γ(c) = {a, d}. We also give in figure 6.1 Bip(L)
the binary relation (J,M,6) associated to L.

Σ = {ac→ b} is a minimum implicational base that corresponds to F.
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Chapter 7

Closure Systems Extension

We give in this chapter an efficient algorithm for building the largest extension of
a closure system. We show that the given algorithm gives additional insight on the
structure of the largest extension by studying meet-irreducible sets transformation
through the process.

7.1 Introduction
An extension of a closure system on a finite set X is a closure system on the same
set X containing the given one as a join-sublattice.

Extension of closure systems has been the subject of several research work.
Among them is [3] where Adaricheva, Gorbunov and Tumanov show that the largest
meet-semidistributive extension of a meet-semidistributive lattice is in fact a convex
geometry.

Adaricheva and Nation [2] have simplified the construction given in [3] and gave
an exact formula for the largest extension of any closure system. It was however
observed in [47] that the direct use of the characterization of the largest extension
given in [2] leads to an exponential time algorithm for building the largest extension
of a closure space, since one has to check a condition for every subset of X. This
fact can hinder applications needing the manipulation of large closure systems such
as those arising in knowledge space theory [21]. Thus the main motivation of this
chapter is to give efficient algorithms for building the largest extension of a closure
system.

We begin by pointing out the extension relation considered in this chapter:

Definition 33. Let F and F′ be two closure systems over a set of elements X and
Φ and Φ′ respectively their corresponding closure operators. We say that F′ (resp.
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Φ′) is an extension of F (resp. Φ) if and only if F′ contains F and for every family
{S1, ..., Sk} of Φ-closed subsets of X, Φ(S1 ∪ ... ∪ Sk) = Φ′(S1 ∪ ... ∪ Sk).

In [25], it is proven that for every closure system F, there exists a unique maximal
extension, denoted Fmax, that contains any extension of F.

We consider all along this chapter a closure operator Φ over a finite set X, F its
corresponding closure system, M its meet-irreducible sets family and UΦ the elements
subset {x ∈ X|Φ(x) 6= {x}}, i.e UΦ corresponds to the elements in X that are not
atoms in (F,⊆).

Let ΣΦ be an implicational base corresponding to the closure operator Φ and
verifying:

For every non-unitary implication L → R in ΣΦ, L and R are Σp-closed, where
Σp = {x→ Φ(x)|x ∈ UΦ}.

We recall that a subset S of X is called Φ-closed when Φ(S) = S. For an element
x ∈ X, Φ∗(x) denotes the set Φ(x) \ {x}. Notice that for x in UΦ, Φ∗(x) is always
Φ-closed since there is no equivalent elements in X. Moreover, Φ∗(x) is the only
Φ-closed set covered by Φ(x).

Example 7. Let us consider the closure system F = {∅, {a}, {b}, {ac}, {ad}, {abcd}}
(see figure 7.1.1). Let Φ be the closure operator corresponding to F. Observe how
for Φ({c}) = {a, c}, Φ∗({c}) = {a} is the only Φ-closed set covered by Φ({c}).
Similarly, we have for Φ({d}) = {a, d}, Φ∗({d}) = {a} is the only Φ-closed set
covered by Φ({c}).

7.2 Maximal closure system extension
In this section, we give a description of a closure system’s maximal extension. Our
strategy is to drop at each step the implication x → Φ(x) from ΣΦ, where x is in
UΦ. We prove that this defines an extension of the original closure system. Then,
once all unitary implications are dropped, we prove in theorem 35 that the resulting
atomistic closure system is the maximal extension.

Theorem 34. Let Φ be a closure operator over a finite set X, F be its corresponding
closure system and x be an element in UΦ. We consider that ∆x(F) = {∆x(F ) =
F ∪{x}|F is Φ-closed and F does not contain Φ∗(x)} and that Fx denotes the subset
F ∪∆x(F) . Then:

1. Fx is a closure system. Let Φx be the corresponding closure operator.

2. Φx is an extension of Φ.

66



3. ΣΦx is equivalent to ΣΦ \ {x→ Φ(x)}.

Proof:

1- Let F1 and F2 be two sets in Fx, we prove that F1 ∩ F2 is in Fx. If F1 and
F2 are Φ-closed, then F1 ∩ F2 is in F ⊆ Fx. Else if none of them is Φ-closed, then
Fi = ∆x(Ei) where Ei is equal to Fi \ {x} and is Φ-closed, for i = 1, 2. Hence,
F1 ∩ F2 = ∆x(E1 ∩ E2). Else if F1 is Φ-closed but not F2, then E2 = F2 \ {x} is
Φ-closed and either:

• F1 ∩ F2 = F1 ∩ E2, hence F1 ∩ F2 is in Fx; Or

• F1 ∩ F2 = (F1 ∩E2)∪ {x} and since Φ∗(x) * E2 (see definition of ∆x()F) then
F1∩E2 does not contain Φ∗(x) either. Hence, ∆x(F1∩E2) = (F1∩E2)∪{x} =
F1 ∩ F2 is in Fx.

2- We prove that for F1 and F2 two sets in F, we have Φx(F1 ∪ F2) = Φ(F1 ∪ F2).
We recall that the closure of a subset of elements F is the smallest set in the closure
system containing F . Since F is a subset of Fx, this means that proving Φx(F1∪F2) =
Φ(F1 ∪ F2) is equivalent to proving that Φx(F1 ∪ F2) is Φ-closed.

• If Φ∗(x) is a subset of F1 or F2 (or both), then Φ∗(x) is a subset of Φx(F1∪F2).
Therefore Φx(F1 ∪ F2) is in F (see definition of ∆x). Else

• If Φ∗(x) is not a subset of F1 and F2, then F1 and F2 do not contain x. We
suppose that F = Φx(F1 ∪ F2) is not Φ-closed. Hence, F \ {x} is in F ⊆ Fx
and contains F1 ∪ F2. This implies that Φx(F1 ∪ F2) ⊆ F \ {x} (by definition
of a closure operator). However this contradicts the fact that F \ {x} ⊂ F =
Φx(F1 ∪ F2). Hence, F = Φx(F1 ∪ F2) is Φ-closed.

3- We prove that Fx corresponds to the closure system of ΣΦx = ΣΦ \ {x→ Φ(x)}.
First, let F be in Fx. We prove next that F is ΣΦx-closed. We have:

• either F is ΣΦ-closed. And since ΣΦ contains ΣΦx then F is also ΣΦx-closed;

• or F = F ′ ∪ {x} where F ′ is in F and Φ∗(x) * F ′. Let L → R be in ΣΦx

verifying L ⊆ F . To prove that R is a subset of F , we distinguish two cases:

– x /∈ L: then we have L ⊆ F \ {x} = F ′. And since F ′ is ΣΦ-closed then
R is a subset of F ′ and therefore of R ⊆ F . Thus, F is ΣΦx-closed
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– x ∈ L: since L → R is in ΣΦx = ΣΦ \ {x → Φ(x)} and x ∈ L, then
L 6= {x}. Therefore L → R is non-unitary implication. We recall that
for every non unitary implication L′ → R′ in ΣΦ, L′ and R′ are supposed
to be Σp-closed where Σp is the set of unitary implications in ΣΦ. This
implies that L is closed under unitary implications Σp of ΣΦ, in particular
x→ Φ∗(x). Thus, Φ∗(x) is a subset of L, which contradicts the fact that
Φ∗(x) * F and L ⊆ F .

Second, let F be a ΣΦx-closed subset of X. We prove that F is either in F or in
∆x(F). We distinguish the following cases:

• x /∈ F : In this case, for every L → R in ΣΦ verifying L ⊆ F , x is not in L.
Hence, L→ R is in ΣΦx and therefore R is a subset of F . This means that F
is ΣΦ-closed.

• Φ∗(x) ⊆ F and x ∈ F : Let L→ R be in ΣΦ verifying L ⊆ F . If L = {x}, then
R ⊆ Φ∗(x) is a subset of F . Else, L → R is in ΣΦx . Since F is ΣΦx-closed,
then R is a subset of F . This means that F is in F.

• Φ∗(x) * F and x ∈ F : In this case we prove that F is in ∆x(F). To do so, we
consider F ′ = F \ {x} and prove that F = ∆x(F

′), equivalent to F ′ is in F and
Φ∗(x) * F ′.

Let L → R be in ΣΦ such that L is a subset of F ′. Since L ⊆ F ′ and x /∈ F ′,
then x is not in L. This implies that L→ R is in ΣΦx . And since L ⊆ F ′ ⊆ F
and F is ΣΦx-closed, then R is a subset of F .Moreover, we recall that for every
non unitary implication L′ → R′ in ΣΦ, L′ and R′ are supposed to be closed
under unitary implications set Σp of ΣΦ. Hence, R is Σp-closed. This implies
that if x ∈ R then Φ∗(x) ⊆ R ⊆ F and this contradicts the fact that Φ∗(x) is
not a subset of F . Therefore, we conclude by contradiction that x /∈ R. Thus,
we have R ⊆ F \ {x}, i.e R ⊆ F ′. To sum up, for every L→ R in ΣΦ verifying
L ⊆ F ′, we have R ⊆ F ′.Thus, F ′ is in F and does not contain Φ∗(x). Hence
F = F ′ ∪ {x} is in ∆x(F) (by definition of ∆x).

We conclude that F is in Fx if and only if it is ΣΦx-closed. �

Let UΦ = {x1, ..., xk}. We define the closure operator Φx1,...,xk corresponding to
ΣΦx1,...,xk

= ΣΦ \ Σp where we drop every unitary functional dependency xi → Φ(xi)
from ΣΦ, at each step shown in the previous theorem. Note that for every x, x′ in
UΦ, we have Φx(x

′) = Φ(x′), since unitary implications where L = {x′} are the same
in ΣΦx as in ΣΦ.
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Let Fx1,...,xk be the closure system defined by Φx1,...,xk . Since Fx1,...,xk is atomistic,
then we could use the results of [25] in order to prove that Φx1,...,xk corresponds to
the maximal extension. However, we choose to give a full proof in the next theorem.

Theorem 35. Let Φ be a closure operator over a finite set X, F be its corresponding
closure system and UΦ = {x1, ..., xk}. Then Fx1,...,xk is the maximal extension Fmax
of F.

Proof: First, note that a closure systems extension is a transitive relation: an
extension of an extension of F is an extension of F. Hence, we can deduce from
theorem 34 that Fx1,...,xk is an extension of F. Thus, Fmax contains Fx1,...,xk , since
it is the unique maximal extension of F. Second, we prove that Fmax is a subset of

Fx1,...,xk .

Let us suppose that Fmax is not a subset of Fx1,...,xk and let F be in Fmax and
not in Fx1,...,xk . Then, there exists L → R in ΣΦx1,...,xk

verifying that L ⊆ F and
R * F . Thus, L → R is not satisfied by ΣΦmax . We prove that Φ(L) 6= Φmax(L).
Since L → R is in ΣΦx1,...,xk

⊆ ΣΦ, then R ⊆ Φ(L). However, since ΣΦmax does not
satisfy L→ R, then R * Φmax(L). We conclude that Φ(L) 6= Φmax(L).

We prove next that L is the union of ΣΦ-closed sets: The fact that L → R is in
ΣΦx1,...,xk

implies that L→ R is in ΣΦ and that L→ R is non unitary (by definition
of ΣΦx1,...,xk

). And since for every non unitary implication in ΣΦ, its left side is
Σp-closed, then L = A1 ∪ ... ∪ Ak where Ai = Φ(ai), for ai ∈ L.

From all above, we conclude that there exists a family S = {A1, ..., Ak} of ΣΦ-
closed sets verifying Φ(A1 ∪ ... ∪ Ak) 6= Φmax(A1 ∪ ... ∪ Ak). This contradicts the
fact that Φmax is an extension of Φ. Hence, Fmax is indeed a subset of Fx1,...,xk . We
conclude from all above that Fmax = Fx1,...,xk . �

Example 8. Figure 7.1 shows an example of a closure system’s maximal extension.
We consider F = {∅, a, b, ac, ad, abcd} illustrated in figure 7.1.1.

Figure 7.1.2 and figure 7.1.3 show the two steps of theorem 34. The resulting
closure system in figure 7.1.4 is the maximal extension, according to theorem 35.
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with ΣFcd
= {ab → cd, acd → b}

with ΣFmax
= {ab → cd, acd → b}

Figure 7.1: Application of theorem 34 to complete a closure system’s maximal extension.

7.3 Meet-irreducibles of maximal closure system ex-
tension

For every x in UΦ, the construction process of Φx’s closure system, defined in theorem
34, implies that Φ and Φx have the same number of join-irreducible sets. We can not
however say the same thing about meet-irreducible sets. We give in this section an
upper and lower bound of |Mx|, the number of meet-irreducible sets in Fx.

Let Lbe the lattice (F,⊆). We define a partition (M1,M2,M3,M4,M5) of M (figure
7.2) where:

• M1(x) are meet-irreducible sets that contain x;

• M2(x) are meet-irreducible sets that contain Φ∗(x) but not x;

• M3(x) is the set {F ∈ M such that Φ∗(x)↗L F and Φ(x)↗L F};

• M4(x) is the set {F ∈ M such that Φ∗(x)↗L F and Φ(x) 6↗L F};
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• M5(x) are meet-irreducible sets that do not contain Φ∗(x) and are not inM3(x)∪
M4(x).

We refer to Mi(x) by Mi, when x is understood from the context.

Φ∗(x)

Φ(x)

M1

M2

M5

M3M4

Figure 7.2: Partition of meet-irreducible sets of Φ relative to x ∈ UΦ

The following properties describe meet-irreducible sets of the extension Φx as
defined in theorem 34.

Property 5. Let F be meet-irreducible in F, then:

1. If F is in M1 ∪ M2, then F is meet-irreducible in Fx.

2. If F is in M4 ∪ M5, then ∆x(F ) is meet-irreducible in Fx and F is not meet-
irreducible in Fx.

3. If F is in M3, then F and ∆x(F ) are meet-irreducible in Fx. In addition,
{x}↗↙Φx

F .

Proof:

1- F is in M1 ∪ M2 implies that F contains Φ∗(x). This implies that all covers
of F in Fx contain Φ∗(x) and therefore they are Φ-closed. We conclude that F is
meet-irreducible in Fx.

2- For F inM4 orM5, F has a unique cover F ′ in F that does not contain x. In
F, F is also covered by ∆x(F ) and ∆x(F ) * F ′ and F ⊆ F ′. We conclude that F is
not meet-irreducible in Fx.

71



3- Let F be in M3. First, we point out that, by definition of Fx, F does not contain
Φ∗(x). Since Φ(x)↗ F then for every closed set F ′ in F, F ′ contains F implies that
x ∈ F ′ , and therefore ∆x(F ) ⊆ F ′. Hence, F is meet-irreducible in Fx and ∆x(F )
is its unique cover. We prove next that ∆x(F ) is meet-irreducible. We suppose that
∆x(F ) = F1∩F2, with F1 and F2 in Fx. If F1 and F2 are both Φ-closed, then F1∩F2

is also Φ-closed. However, ∆x(F ) = F1∩F2 is not Φ-closed. Hence the contradiction.

Else, either F1 or F2 (or both) are in ∆x(F). Let F1 be in ∆x(F). Hence, F1 \{x}
is in F, does not contain Φ∗(x) and contains F . This contradicts the fact that
Φ∗(x)↗ F .

We conclude that ∆x(F ) is meet-irreducible.

In addition, {x} is an atom and x /∈ F . Hence, {x} ↙ F . Moreover, F is meet-
irreducible in Fx and its only cover ∆x(F ) contains x. Therefore, {x} ↗ F . We
conclude that {x}↗↙ F . �

Example 9. In figure 7.3, we reconsider the closure system in example 8 F =
{∅, {a}, {b}, {a, c}, {a, d}, {a, b, c, d}} and its extension Fc = {∅, {a}, {b}, {c}, {a, c}, {a, d}, {b, c},
{a, b, c, d}} with c→ a ∈ ΣF.

Figure 7.3.1 distinguishes meet-irreducible sets of F; MF = {{b}, {a, c}, {a, d}}.
Following the decomposition of MF defined in 7.2 for x = c, we have (column 1 and
2 in figure 7.3.2):

• {a, c} ∈ M1 because c ∈ {a, c};

• {a, d} ∈ M2 because φ∗(c) = a ∈ {a, c} and c /∈ {a, d};

• {b} ∈ M3 because Φ∗(c)↗L {b} and Φ(c)↗L {b}.

Property 5 dictates then that {a, c} and {a, d} stay meet-irreducible sets in the ex-
tension Fc and both {b} and its image ∆c({b}) = {b, c} are meet-irreducible sets in
Fc (figure 7.3.3).
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2. Table of the correspondence between

meet-irreducible sets of F and meet irreducible sets

of Fc

Figure 7.3: Example of the correspondence between meet-irreducible sets of a closure
system F and meet-irreducible sets of its extension Fx.

Property 5 gives a lower bound of the number of meet irreducible sets in Fx in
corollary 36.

Corollary 36. The number of meet irreducible sets in Fx is at least |M|+ |M3|.
Proof: This is a direct result of properties 5. In fact, for every meet-irreducible

F in F, either F or ∆x(F ) is in Mx or both (for F ∈ M3). �

Notice that if S ∈ ∆x(F) is a new meet-irreducible in Fx, then S \ {x} has at
most a unique cover in F \ (↑ Φ∗(x)). This does not mean necessarily that S is
meet-irreducible in F.

Let M6 be the set {F ∈ F \ (↑ Φ∗(x)) such that F has exactly one cover in
F \ (↑ Φ∗(x)) and F is not in M}.
Theorem 37. Let F be meet-irreducible in Fx. we have either:

1. F is in M1 ∪ M2 ∪ M3; Or

2. F is not Φ-closed and F \ {x} is in M3 ∪ M4 ∪ M5 ∪ M6.

Proof: Let F be meet-irreducible in Fx. We distinguish 3 cases:

If F is in ↑ Φ∗(x): In this case, F has exactly the same covers in F and in Fx.
Hence, if F is meet-irreducible in Fx then F is meet-irreducible in F, implying that
F is in M1 ∪ M2.

If F is in F\ ↑ Φ∗(x): In this case, F is covered by ∆x(F ). Hence, if F is meet-
irreducible in Fx then all covers of F in F contain x, implying that F is in M3.
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If F = ∆x(F
′): In this case, F is covered by ∆x(F

′′), for every F ′′ that covers F ′
in F\ ↑ Φ∗(x). Hence, if F is meet-irreducible in Fx then F has at most one cover in
F\ ↑ Φ∗(x), implying that F is in M3 ∪ M4 ∪ M5 ∪ M6. �

Next, we give properties for an element in M6 which satisfies that ∆x(F ) is meet-
irreducible in Fx. The next property helps in giving an upper bound of the number
of meet-irreducible sets in Fx, by describing them as the join of meet-irreducible sets
of F.

Property 6. For every F in M6, if ∆x(F ) is meet-irreducible in Fx, then there exists
F ′ ∈ M3 ∪ M4 and F ′′ ∈ M1 ∪ M2 such that F = F ′ ∩ F ′′.

Proof: Let F1 be the unique cover of F in F \ (↑ Φ∗(x)) and F2 = F ∨ Φ∗(x) be
the cover of F in ↑ Φ∗(x).

First, since Φ∗(x) * F1 then there exists F ′ in M3 ∪ M4 that contains F1.
Second, considering that F2 is not a subset of F1 and it contains Φ∗(x), then there

exists F ′′ in M1 ∪ M2 such that F ′′ contains F2 and F1 * F ′′.
To sum up, F ′ is in M3 ∪ M4 and F ′′ is in M1 ∪ M2 and F ′ ∩ F ′′ is in F and it

contains F . However, we have: F ′ does not contain Φ∗(x) ⊆ F2, hence F2 * F ′∩F ′′.
And F ′′ does not contain F1, hence F1 * F ′ ∩ F ′′. Therefore, F ⊆ F ′ ∩ F ′′ implies
that F = F ′ ∩ F ′′. �

The following property gives a necessary and sufficient condition that helps decide
if a subset M in M6 correspond to a meet-irreducible sets in Fx or not.

Property 7. Let F be in M6. ∆x(F ) is meet-irreducible in Fx if and only if Φ(F ∪
{x}) = Φ(F ′ ∪ {x}), where F ′ is the cover of F in F\ ↑ Φ∗(x).

Proof: First of all, we prove the following proposition:

For F in F, if F does not contain Φ∗(x)

then Φ(F ∪ {x}) is equal to Φx(∆x(F ) ∪ Φ(x)). (7.1)

Notice that Φ(F ∪ {x}) = Φ(F ∪ Φ(x)).
We have ∆x(F ) = F ∪ {x} and x ∈ Φ(x). Hence, F ∪ Φ(x) = ∆x(F ) ∪ Φ(x).

Therefore, Φx(F ∪ Φ(x)) = Φx(∆x(F ) ∪ Φ(x)). And since Φx is an extension of Φ
and F and Φ(x) are Φ-closed, then Φx(F ∪ Φ(x)) = Φ(F ∪ Φ(x)).

We conclude that Φ(F ∪ {x}) = Φ(F ∪ Φ(x)) = Φx(∆x(F ) ∪ Φ(x)).

Let F be in M6 and F ′ be its unique cover in F\ ↑ Φ∗(x). First, We prove that:
∆x(F ) is meet-irreducible ⇒ Φ(F ∪ {x}) = Φ(F ′ ∪ {x}).
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If ∆x(F ) is meet-irreducible then ∆x(F
′) is its unique cover. This implies that ev-

ery Φx-closed set that contains ∆x(F ), contains also ∆x(F
′). In particular, ∆x(F ) ⊆

Φx(∆x(F ) ∪ Φ(x)) implies that ∆x(F
′) ⊆ Φx(∆x(F ) ∪ Φ(x)). Hence, Φx(∆x(F

′) ∪
Φ(x)) ⊆ Φx(∆x(F ) ∪ Φ(x)). Moreover, we have ∆x(F ) ⊆ ∆x(F

′) and therefore
Φx(∆x(F ) ∪ Φ(x)) ⊆ Φx(∆x(F

′) ∪ Φ(x)). We conclude that Φx(∆x(F ) ∪ Φ(x)) =
Φx(∆x(F

′)∪Φ(x)). And according to 7.1, we have Φx(∆x(F )∪Φ(x)) = Φ(F ∪ {x})
and Φx(∆x(F

′) ∪ Φ(x)) = Φ(F ′ ∪ {x}).

Thus, we have Φ(F ∪ {x}) = Φ(F ′ ∪ {x}). Second, we prove that ∆x(F ) is

meet-irreducible in Fx ⇐ Φ(F ∪ {x}) = Φ(F ′ ∪ {x}).

We suppose that Φ(F∪{x}) = Φ(F ′∪{x}). This implies that Φx(∆x(F )∪Φ(x)) =
Φx(∆x(F

′)∪Φ(x)) (according to 7.1). Thus, since ∆x(F
′) ⊆ Φx(∆x(F

′)∪Φ(x)) then
∆x(F

′) is a subset of Φx(∆x(F ) ∪ Φ(x)).

Since Φ(x) = {x}∪Φ∗(x) and x ∈ ∆x(F ), then Φx(∆x(F )∪Φ(x)) = Φx(∆x(F )∪
Φ∗(x)). Therefore ∆x(F

′) is a subset of Φx(∆x(F ) ∪ Φ∗(x)).

To sum up, ∆x(F
′) is the only cover of ∆x(F ) in Fx\ ↑ Φ∗(x) and ∆x(F ) is a

subset of Φx(∆x(F ) ∪ Φ∗(x)). We conclude that ∆x(F
′) is the only cover of ∆x(F )

in Fx. �

Example 10. Let us consider in figure 7.4, the closure system Fc = {∅, {a}, {b}, {c},
{a, c}, {a, d}, {b, c}, {a, b, c, d}} from the previous example 7.3 and its extension Fcd =
{∅, {a}, {b}, {c}, {d} {a, c}, {a, d}, {b, c}, {b, d}, {b, c, d}, {a, b, c, d}}, with d → a ∈
ΣFc.

Figure 7.4.1 distinguishes meet-irreducible sets of Fc; MFc = {{b}, {a, c}, {a, d},
{b, c}}. Figure 7.4.2 depicts the correspondence between meet irreducible sets of Fc
and Fcd. Then, table in figure 7.4.3 distinguishes closed sets in M6 using the property
6. In this case M6 = {{c}}. Then, we use property 7 to verify that ∆d({c}) is
meet-irreducible in Fcd: since Φ({c}∪ {d}) = {a, b, c, d} is equal to Φ({b, c}∪ {d}) =
{a, b, c, d} where {b, c} is {c}’s cover that does not contain Φ∗({d}), then ∆d({c}) =
{c, d} is meet-irreducible in Fcd.
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Figure 7.4: Example of meet-irreducible sets of a closure system and its extension.

From theorem 37 and property 6, we give in the next corollary an upper bound
of the number of meet irreducible sets in Fx.

Corollary 38. The number of meet irreducible sets in Fx is bounded by |M|+ |M3|+
(|M1|+ |M2|)× (|M3|+ |M4|).

7.4 Computation of the maximal extension
Given the set of meet-irreducible sets M of a closure system F over a set X, we
propose an algorithm to compute the set of meet-irreducible sets Mmax of Fmax the
maximal extension of F.

At each step, the algorithm takes an element x ∈ X verifying that its closure in
F is different than {x} and apply theorem 34 to compute Mx the meet-irreducible
sets of the extension Fx, based on M.

Extension calls a subroutine, named Closure, to determine the smallest closed
set containing an element S, for S a subset of X. This function calculates basically
the intersection of all meet-irreducible sets that contain S.

The function Expand generates the extension corresponding to an element x,
of a closure operator defined by its meet-irreducible sets M. Its output is Mx, meet-
irreducible sets of Fx. The algorithm starts by adding all subsets in M that stay
meet-irreducible in the extension. Then, it adds subsets F in ∆x(M) that are in Mx,
as well as meet-irreducible sets that verify the properties 6 and 7.
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Algorithm 1: Extension(X,M)

Output: Meet-irreducible sets Mmax of the maximal extension
begin

UΦ = {x ∈ X| Closure(x) 6= {x}};
for x ∈ UΦ do

M =Expand(x,M);

Theorem 37 and property 6 prove that Mx, as generated by Expand, covers all
meet-irreducible sets of the extension. For everyM in M, eitherM is meet-irreducible
in Fx (algorithm 2, line 3), or M ∪ {x} is meet-irreducible in Fx (algorithm 2, line
1) or both (algorithm 2, line 2). This depends on where M belongs in the partition
{M1,M2,M3,M4,M5} of M as defined in the previous section (see 7.2).

In addition, Mx contains meet-irreducible sets of the form F ∪ {x} where F is
an intersection of a pair (M1, M2) in M1 ∪ M2 and M2 ∪ M3 (algorithm 2, line 4). In
order to verify which of these intersections is indeed meet-irreducible in Fx, we use
the sufficient and necessary condition in property 7 (algorithm 2, line 5), which is
easier to confirm than verifying if F ∪{x} is meet-irreducible by comparing it to the
intersection of all other sets in Mx.

We conclude the correctness of the algorithm.

Theorem 39. Expand (X,M) computes the extension Mx of the closure system of
M, for every x in UΦ.

Theorem 40. Extension (X,M) computes the maximal extension of the closure
system F in incremental-polynomial time.

Proof: According to theorem 35, Fx1,...,xk is the maximal extension Fmax of F,
where UΦ = {x1, ..., xk}. Hence by applying the function Expand(xi,M) where M
corresponds to meet-irreducible sets of the extension Fx1,...,xi , for every xi ∈ UΦ, the
resulting meet-irreducible sets family corresponds to the maximal extension of the
input.

For every extension Fx, Expand generates its meet irreducible sets in polynomial
time of the order O(|M|3.|X|), in function of the input size of the current execution.

Hence, Extension runs in an incremental polynomial time in order to generate
all meet irreducible sets of the maximal extension. Its complexity is of the order
O(|X|2.|Mmax|3).
�
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Generating all meet-irreducible sets of the maximal extension is an enumeration
problem. Another enumeration question that this problem may inspire, is the rela-
tion between generating candidate keys of a closure system and candidate keys of its
maximal extension. Generally, is there an impact of the existence of unitary implica-
tions on the problem of enumerating candidate keys? We investigate this question in
the next chapter and give an efficient algorithm that generates candidate keys based
on this point of view.
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Algorithm 2: Expand(x,M)

Output: Meet-irreducible sets of the extension Mx

begin
Mx = ∅;
M1∪2 = ∅;
M3∪4 = ∅;
Fx =Closure(x);
F ∗x = Fx \ {x};
for M ∈ M do

if F ∗x *M then
1 Mx = Mx ∪ {M ∪ {x}};

if (F ∗x ↗Φ M) then
M3∪4 = M3∪4 ∪ {M} ;
if (Fx ↗Φ M) then

2 Mx = Mx ∪ {M};

else
M1∪2 = M1∪2 ∪ {M};

3 Mx = Mx ∪ {M};

for (M1,M2) ∈ M3∪4 × M1∪2 do
4 F = M1 ∩M2;

F ′ = X;
for M ∈ M3∪4 do

if F ⊆M then
F ′ = F ′ ∩M ;

5 if Closure(F ∪ {x})=Closure(F ′ ∪ {x}) then
Mx = Mx ∪ {F ∪ {x}};

Return Mx
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Chapter 8

Candidate Keys Enumeration of an
Implicational Base

We explore in this chapter the problem of candidate keys enumeration. We begin
by giving some related definitions in the preliminaries section. Then, we explore,
in the second section, the algorithm proposed by Lucchesi and Osborn through the
structure of candidate keys graph. We improve its complexity by defining a total
order over the attributes set. Third section defines, inter alia, the concept of key-ideal
sets formally and distinguishes a subset of minimal key-ideal sets. Then, we prove our
main contribution of this chapter stating that if there is a polynomial delay and space
algorithm enumerating all minimal key-ideal sets, then there is one for candidate keys
enumeration. We give, as well, algorithms that generate minimal key-ideal sets in
polynomial incremental time, non minimal key-ideal sets in polynomial delay and an
algorithm that can generate all key-ideal sets in polynomial delay if the number of
minimal key-ideal sets is polynomial in the input size.

8.1 Preliminaries

For an implicational base Σ over an element set X, we suppose, without loss of
generality, that |R| = 1 for every functional dependency L→ R in Σ.

A candidate key of an implicational base, also known as minimal generator in
lattice or FCA terminologies, is a minimal subset of elements that identifies uniquely
every tuple of the relation, in database terminology.

Definition 41. K is a key of an implicational base Σ over X, if its closure KΣ is
exactly X. K is a candidate key if no subset of K is also a key of Σ.
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We denote by K(Σ, X) the set of all candidate keys of Σ over X (also called
minimal keys in the literature), noted K(Σ) when X is understood from the context.

Enumeration problems, in a computational context, raise the question of deter-
mining the set of all solutions of a certain problem associated to a polynomial pred-
icate P . This is different than counting problems that searches only for the number
of all possible solutions.

The complexity of such problems often depends not only on the difficulty of the
associated decision problem and the input size, but also on the number of these
solutions and the ability to avoid regenerating a solution multiple times; An easy
enumeration problem could be exponential in the input size, if the number of solutions
is exponential. Hence, complexity classes of such problems differ than the usual
decision problems; various complexity classes of enumeration problems are introduced
in [31].

• Output polynomial: an algorithm enumerating all solutions in polynomial
time in the order of P and the number of solutions.

• Polynomial delay: (1) the time to compute the first solution, (2) the time
between outputting any two solutions, and (3) the time to detect that no further
solution exists, are all polynomial in the order of P .

• Incremental Polynomial time : the time to compute the next solution and
for detecting that no further solution exists is polynomial in the order of both
P and of number of the already computed solutions.

Certain algorithms demand stocking every generated solution in order to avoid re-
dundancy. This requires an exponential space when the number of solutions is ex-
ponential. In certain cases, this exponential space can be reduced into polynomial
space by defining a parent relation between solutions that avoids redundancy with-
out revisiting at each step the solutions set, which is the case in the non-minimal
key-ideal sets enumeration problem.

8.2 Candidate keys enumerations
The difficulty of enumerating candidate keys depends on the input of the problem
which can be a relation or a relation schema, i.e. an implicational base.

When the input is a relation schema, Lucchesi and Osborn [37] gave a incre-
mental polynomial algorithm to list all candidate keys, but using exponential space.
Saiedian and Spencer [41], introduce the notion of element graph of a set of functional
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dependencies and show that candidate keys are union of candidate keys of strongly
connected components of the element graph.

When the input is given by a relation, it is an open question if there is an output-
polynomial time algorithm for candidate keys enumeration.

The candidate keys enumeration problem considered in this chapter is as follows:

Keys Enumeration (K-Enum)

Input: An implicational base Σ over X.

Output: The set of all candidate keys K(Σ).

Lucchesi and Osborn’s algorithm, in [37], solves this problem for an input Σ in
O(|Σ|.|K(Σ)|2) elementary operations. They start by initializing a keys set K with a
random candidate key, then generate new ones using functional dependencies from
Σ. Each time a new candidate key is generated, K is revisited to avoid redundancy.
It is an incremental polynomial algorithm with complexity O(|X|.|Σ|.|K(Σ)|(|K(Σ)|+
|X|)). This algorithm is based on the following theorem:

Theorem 42. [37] Let K ⊆ K(Σ) be a non-empty subset of candidate keys. If K 6=
K(Σ), then K contains a key K and Σ contains a functional dependency (L, a) such
that L ∪K r {a} includes a candidate key from K(Σ)r K.

Lucchesi and Osborn’s algorithm can also be seen as a Depth-first search of the
super graph of candidate keys. We propose next a formal definition of this graph.

Definition 43. We define the directed transition graph of candidate keys of an
implicational base Σ on X, noted G(Σ) = (K(Σ), T ) where vertices are candidate
keys of Σ and (K,K ′) belongs to T if there is a dependency (L, a) ∈ Σ with K ′ ⊆
(L ∪K r a). We label the arc (K,K ′) with the dependency (L, a).

Theorem 42 implies that for every two candidate keys K and K ′, K is reachable
from K ′ in the candidate keys graph. Hence the next corollary.

Corollary 44. G(Σ) is strongly connected.

We describe next a new implementation of Lucchesi and Osborn Algorithm by
improving its time complexity to O(|X|.|Σ|.|K(Σ)|).

We consider the lexicographical order derived from the total order (X = {a1, ..., an}, <
) where a1 < a2 < ... < an. We consider a key S of Σ. Algorithm Alpha-Key(S,Σ)
computes the lexicographically last candidate key contained in S.
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Algorithm 3: Alpha-Key(S,Σ)

Output: the last candidate key K ⊆ S in the considered lexicographical
order

begin
Let S = {s1, ..., sn} with s1 < ... < sn;
K = S;
for i = 1, n do

if (K \ {si})Σ = X then
K = K \ {si};

Return K;

Algorithm 4: All-Keys(Σ)

Output: All keys of Σ
begin

K = {Alpha-Key(X,Σ)};
Mark(K) = unvisited;
K = {K};
while there is a unmarked K ∈ K do

Mark(K) = visited;
for L→ a ∈ Σ do

S = L ∪ (K \ {a});
K ′ =Alpha-Key(S,Σ);
if K ′ /∈ K then

Mark(K ′) = unvisited;
K = K ∪ {K ′};

Theorem 45. Algorithm All-Keys outputs all keys in incremental polynomial time
with a time complexity of the order O(|K(Σ)|2.|Σ|+ |K(Σ)|.|Σ|2.|X|).

Proof: The complexity Cα of the algorithm Alpha-Key is of the orderO(|Σ|.|X|).
For every candidate key in K(Σ) and every implication in Σ, we apply All-Keys
and browse K(Σ) in order to verify that the new solution is new. Hence, the com-
plexity of All-Keys is of the order O(|K(Σ)|.|Σ|.(Cα + |K(Σ)|)) = O(|K(Σ)|2.|Σ| +
|K(Σ)|.|Σ|2.|X|). Moreover, it takes O(|K(Σ)|.|Σ|+|Σ|2.|X|) time in order to generate
a new solution. Hence, this enumeration algorithm is incremental polynomial. �

Example 11. We consider a relational database schema with an element set {a, b, c, d, e, f}
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and functional dependencies as follows: Σ = {c → b, b → a, f → e, e → d, bd →
a, bd→ c, bd→ e, bd→ f, ae→ b, ae→ c, ae→ d, ae→ f}.

All-Keys(Σ) searches the candidate keys graph in figure 8.1. A transition from
a candidate key K to another K ′ in this graph means that for a functional dependency
L→ a in Σ with a in K, K ′ is the last candidate key, in the alphabetic order, included
in K \ {a} ∪ L.

cf

ce bf

cd
be af

bd aebd → c

f → e c → b

e → d b → a

ae → f

bd → e

ae → b

bd → f ae → f

Figure 8.1: Candidate keys graph

The resulting execution tree of All-Keys(Σ) algorithm is given in figure 8.2. All
enumerated keys set must be revisited at each step in order to avoid redundancy.

BD

BE
AE

CD

BD CE AE BD

CD
BE

CF AE

BF

CF AF BE BD BF BD AE BF

AF
CD CE

BEAFBDBECE BF BD AE

Figure 8.2: Candidate keys enumeration using Lucchesi and Osborn’s algorithm
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8.3 Key-ideal sets enumeration

This section defines the concept of key-ideal sets. Then, we prove that if there is a
polynomial delay algorithm enumerating all minimal key-ideal sets, then there is one
for candidate keys enumeration.

Let Σ be an implicational base over an element set X. We begin by defining an
order over X, induced by a subset of Σ. We consider the set of unitary functional
dependencies ΣP = {L→ R ∈ Σ | |L| = 1} and G(ΣP ) the graph which vertices are
the elements in X and there is an arc from an element a to an element b, if b ∈ aΣP .
ΣP is said to be acyclic if G(ΣP ) is acyclic.

Lemma 46. If ΣP is not acyclic, then: A subset K ⊆ X is a candidate key if and
only if for every a ∈ K and b in the same strongly connected component of G(ΣP ),
we have (K \ {a}) ∪ {b} a candidate key.

Proof: Let K ⊂ X be a candidate key, a ∈ K and b ∈ X in a same strongly
connected component of ΣP with a. We have a ∈ bΣP and b ∈ aΣP . This implies
that KΣ = ((K \ {a}) ∪ {b})Σ. Hence, ((K \ {a}) ∪ {b}) is a key.

Suppose that S ⊂ ((K \ {a}) ∪ {b}) is a key. Either S or ((S \ {b}) ∪ {a}) is a
subset of K and they are both keys. This contradicts the fact that K is a candidate
key. Hence ((K \ {a}) ∪ {b}) is a candidate key. �

Whenever ΣP is not acyclic, we consider the implicational base Σ′ over X ′, where
X ′ is composed by choosing one element from each strongly connected component
and Σ′ is obtained from Σ by replacing elements of each connected component by
the one chosen in X ′.

Example 12. Consider the implicational base Σ = {a → b, b → a, b → c, bd → e}
on the set X = {a, b, c, d, e}. The graph G(ΣP ) is not acyclic as shown in Figure
8.3. {a, b} and {c} are the strongly connected components in G(ΣP ). The obtained
implicational base is Σ′ = {a→ c, ad→ e}.
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a

b c

G(Σp)

Figure 8.3: Unary functional dependencies with a cycle

We suppose in this chapter, without loss of generality, that ΣP is acyclic and
consider the partial order P (X,Σ) = (X,≤) defined by Σp over X, where a ≤ b if
and only if a ∈ bΣp . We define pred(a) = {b ∈ X | @c ∈ X, such that a < c < b}.

Definition 47. Key-ideal set, Minimal key-ideal set
An ideal I ⊆ X in P (X,Σ) is called a key-ideal if its maximal elements set

Max(I) is a candidate key. IK refers to P (X,Σ)’s key-ideals sets.
A key-ideal set I ∈ IK is called minimal if no subset of I is a key-ideal set. The

set of all minimal key-ideal sets of Σ are denoted by IK
min. We denote by P (IK,⊆)

the set of all key-ideal sets ordered under set inclusion.

Note that every key-ideal set of Σ is also a key of Σ, but not necessarily a
candidate key. The notion of minimal key-ideals sets seems important for candidate
keys enumeration, since the number of key-ideal sets may be exponential either in the
size of minimal key-ideal sets. Consider X = {a1, a2, ..., a2p−1, a2p} for some integer
p and Σ = {a1...ap → X} ∪ {ap+i → ai, 1 ≤ i ≤ p}. Then there is a unique minimal
key-ideal set I = {a1, ..., ap}, but there is 2p key-ideal sets.

In addition to the previously defined candidate keys enumeration problem K-
Enum, we consider the following enumeration problems:

Key-Ideals Enumeration (KI-Enum)

Input: An implicational base Σ on a set X.

Output: The set of all key-ideals sets IK of Σ.

Minimal Key-Ideals Enumeration (MinKI-Enum)

Input: An implicational base Σ on a set X.
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Output: The set of all minimal key-ideals sets IK
min of Σ.

There is a one-to-one mapping between IK and K (K = Max(I) and I = KΣP ).
Thus problems K-Enum and KI-Enum are linearly equivalent since the size of a
key-ideal is bounded by |X|.

Proposition 48 demonstrates how any key-ideal set that is not minimal, can be
generated through others by adding one element and its closure in Σp. This defines
the idea of the transition function (proposition 49) of a forest (a set of trees) that
covers all key-ideal sets and where roots set is exactly IK

min (theorem 50). Then, we
prove that knowing IK

min, the generation of this forest can be done in polynomial
delay.

Proposition 48. Let I ∈ IK \ IK
min. There exists a ∈Max(I) and I ′ ∈ IK such that

I = I ′ ∪ {a}ΣP and I covers I ′ in P (IK,⊆).

Proof: First, since I is not a minimal key-ideal then there exists at least one
a ∈Max(I) such that I \ {a} is a key. Hence Max(I \ {a}) is also a key.

We consider K ⊆Max(I \ {a}) a candidate key and I ′ = KΣP its corresponding
key-ideal set.

Second, we prove by contradiction that Max(I) \ {a} is a subset of K. If we
suppose the opposite, then for b in Max(I) \ ({a} ∪ K), we have K is a subset of
(Max(I) \ {b})ΣP . Hence, Max(I) \ {b} is a key, which contradicts the fact that
Max(I) is a candidate key. We conclude from it that I = KΣP ∪{a}ΣP = I ′∪{a}ΣP .

Finally, we show that I covers I ′ in P (IK,⊆). For every ideal set I ′′ ⊆ X
verifying that I ′ ⊂ I ′′ ⊂ I, we have K ⊂Max(I ′′). This means that Max(I ′′) is not
a candidate key and therefore, I ′′ /∈ IK. �

Proposition 48 ensures the existence of I ′ but not its uniqueness. Therefore, we
distinguish in the next proposition one of these key-ideal sets as the parent of I,
using a lexicographical total order (≤lex, X).

Proposition 49. For every I ∈ IK \ IK
min, there exists a unique key-ideal I ′ =

Parent(I) ∈ IK, satisfying the following:

1. I covers I ′ in P (IK,⊆).

2. I = I ′∪{a}ΣP , where a is the lexicographically largest element in Max(I) such
that I \ {a} is a key.

3. Max(I ′) is the lexicographically largest candidate key included in Max(I \{a}).
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Proof: Let I ∈ IK \ IK
min, S = {a ∈ Max(I)|I \ {a} is a key} and Ia = {K ∈

K|I = KΣp ∪ {a} and I covers KΣp} for some a ∈ S. Since I /∈ IK
min then S is not

empty and according to Proposition 48, there exists at least one element a′ ∈ S such
that Ia′ 6= ∅.

We consider a as the lexicographically largest element in S with Ia 6= ∅ and I ′ is
the key-ideal set corresponding to the lexicographically largest key in Ia. �

For every I ∈ IK \ IK
min, recall that Parent(I) denotes the unique ideal sat-

isfying properties of Proposition 49, and it is empty if I ∈ IK
min. Now we define

G(Σ) = (IK, E) as a directed graph of key-ideal sets where (I ′, I) ∈ E if and only if
Parent(I) = I ′.

Theorem 50. G(Σ) = (IK, E) is a covering forest of P (IK, ⊆), with roots key-ideal
sets in IK

min.

Proof: First, key-ideal sets in IK
min have no parent and thus IK

min are roots. Ac-
cording to Proposition 49, for every I ∈ IK\IK

min, there exists a unique (Parent(I), I)
in E. Moreover, the size of I is strictly greater than the size of Parent(I). Thus
for any I ∈ IK, there exists a sequence I0 ⊂ ... ⊂ Ik = I of key-ideal sets such that
I0 ∈ IK

min and Ij−1 = Parent(Ij), 1 ≤ j ≤ k with aj ∈ X \ Ij−1. �

We conclude in theorem 51 the main result of this section.

Theorem 51. If there is a polynomial delay and space algorithm to enumerate IK
min,

then there is one to enumerate all candidate keys in polynomial delay and space.

Proof: According to theorem 50, the set IK
min correspond to roots of the forest

of all key-ideal sets. Let I1, ..., Ij be the sequence of key-ideal sets in IK
min already

found in polynomial delay. We show that the enumeration of remaining key-ideal
sets in the tree rooted at Ij can be enumerated in polynomial delay and space.

We apply a depth first search algorithm at Ij. At each step I, we compute the
children of I using Proposition 49, i.e. the set {I ∪ {a}ΣP | a ∈ X \ I, Parent(I ∪
{a}ΣP ) = I}. Since checking conditions of Proposition 49 can be done in polynomial
time, the total cost at each node is bounded by a polynomial. Moreover the depth
of the tree is bounded by the size of X. Thus to find the next key-ideal is bounded
by a polynomial in the two cases, i.e. the case when the next belongs to the tree or
the case where the next is the key-ideal Ij+1 ∈ IK

min.
The dfs algorithm uses a polynomial space since the depth of the tree is bounded

by the size of X. Thus the total space used is polynomial, since the enumeration of
IK
min. �
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In the following we give an algorithm to enumerate all minimal key-ideal sets in
incremental polynomial time and for each minimal key-ideal found, we apply theorem
50 to enumerate the key-ideal sets in the associated tree.

Lucchesi and Osborn give in [37] an algorithm that enumerates candidate keys of
an implicational base Σ. It starts with a random candidate key, then generate new
ones using functional dependencies from Σ: substitute an element a from the current
key with a subset L such that L→ a is in Σ, then minimize following a certain order.
Each time a new candidate key is generated, the set of already enumerated keys is
revisited to ensure that there is no redundancy. It is an incremental polynomial
algorithm with complexity O(|X|.|Σ|.|K|(|K + |X|)) which can be easily improved to
O(|X|2.|Σ|.|K|) by using a trie or lexicographical tree to store candidate keys. We
prove in theorem 52 that we can enumerate only minimal key-ideal sets in the same
way as this algorithm.

Theorem 52. Let I be a non-empty subset of IK
min. I 6= IK

min if and only if I
contains a minimal key-ideal set I and Σ contains an implication L → a such that
(L ∪ I r {a}ΣP )ΣP does not include any key-ideal set in I.

Proof: We first prove that the stated condition is sufficient to have I 6= IK
min.

First, since L → a is in Σ, then (L ∪ I ∪ {a}ΣP ) ⊆ (L ∪ I r {a}ΣP )Σ. Moreover
(L∪I ∪{a}ΣP ) is a key because it contains a key-ideal set I, hence (L∪Ir{a}ΣP ) is
also a key. This means that (L∪ I r {a}ΣP )ΣP is a key and an ideal, thus it contains
a minimal key-ideal set that does not figure in I according to the condition.

To prove that the condition is necessary, we assume that there exists a minimal
key ideal set I ′ /∈ I. Let S be an ideal in P (X,Σ) verifying: (1) S includes I ′ and
(2) for every I ′′ in I, S does not include I ′′ and (3) for every element a /∈ S, S ∪ {a}
is either not an ideal, or it contains a key-ideal set in I. Note that S is a proper
subset of X and a key.

Since S 6= SΣ = X, then Σ contains L→ a with L included in S and a /∈ S. Let
b = minP (X,Σ){b′ ∈ X \ S | b′ ≤ a}. Then we have S ∪ {b} is an ideal in P (X,Σ).
Hence according to (3), S ∪ {b} contains a key-ideal set I in I.

Now we prove that (L ∪ I \ {a}ΣP )ΣP is a subset of S. First, I \ b is included in
S by construction. Second, b is in {a}ΣP . Third, S includes L. We conclude that
L ∪ I \ {a}ΣP is included in S. And since S is an ideal then the closure over Σp is
also in S. Therefore, (L∪ I \ {a}ΣP )ΣP does not include any key-ideal set from I. �

Hence, the next algorithm All-Min-Key-ideals generates all minimal key-ideal
sets, using mainly the same strategy as the algorithm in [37]. The only difference is
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while minimizing: instead of searching for a subset candidate key, we minimize in a
certain order until reaching a minimal key-ideal set.

Theorem 53. Algorithm All-Min-Key-ideals outputs all minimal key-ideal sets
in incremental polynomial time, i.e. O(|X|. |Σ|. |IK

min|).

Algorithm 5: All-Min-Key-ideals(Σ)

Output: All minimal key-ideal sets of Σ
begin

I =Alpha-Minimal-Key-Ideal(X,Σ);
I = {I};
Output(I);
Mark(I) = unmarked;
while there is an unmarked I ∈ I do

Mark(I) = marked;
for L→ a ∈ Σ do

S = LΣP ∪ (I \ aΣP );
I ′ =Alpha-Minimal-Key-Ideal(S,Σ);
if I ′ /∈ I then

Mark(I ′) = unmarked;
I = I ∪ {I ′};

return I;

All-Min-Key-ideals calls the routine Alpha-Minimal -Key-Ideal to de-
termine the lexicographically last minimal key-ideal set of Σ that is a subset of a
specified key S. It requires O(|Σ|.|X|2).

The chosen lexicographical order (X,≤lex) verifies that if a ≤ b in P (X,Σ) then
b ≤lex a. This is convenient to the structure of the algorithm, in order to verify that
it generates the lexicographically last minimal key-ideal set in a subset S by erasing
elements from it in an increasing lexicographical order. We also assume for every
element subset denoted next {a1, ..., an}, that ai ≤lex aj for i ≤ j.
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Algorithm 6: Alpha-Minimal-Key-Ideal(S = {a1, ..., an},Σ, X)

Output: A minimal key-ideal I ⊆ S
begin

if S is not an ideal or SΣ 6= X then
Return NULL;

for i = 1, n do
if ai ∈Max(S) and (S \ {ai})Σ = X then

S = S \ {ai};

Return S;

For every new minimal key-ideal set I generated by All-Min-Key-ideals, the
algorithm Key-Ideal-Sets can traverse a tree of non minimal key-ideal sets using
the transition function Parent. What makes this approach interesting is that the
algorithm Key-Ideal-Sets takes a polynomial delay and space to generate these
non-minimal key-ideal sets.

Algorithm 7: Key-Ideal-Sets(I,Σ)

Output: key-ideal sets I all containing I
begin

(X \ I) = {a1, ..., an};
S = X \ I;
I = {I};
i = n;
while i > 0 do

I ′ = I ∪ {ai}ΣP ;
if I =Parent(I ′,Σ) then
I = I∪Key-Ideal-Sets(I ′,Σ);

i = i− 1;

Return I;
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Algorithm 8: Parent(I,Σ)

Output: Key-ideal set I ′ ⊆ I verifying property 49
begin

Max(I) = {a1, ..., an};
i = n;
while i > 0 do

if I is an ideal and (I \ {ai})Σ = X then
K = Max(I \ {ai}) = {a′1, ..., a′l};
for j = 1, l do

if (K \ {a′j})Σ = X then
K = K \ {a′j};

return KΣp ;

i = i− 1;

According to theorem 50, every key-ideal set is in exactly one tree generated by
Key-Ideal-Sets. Hence, if we apply this algorithm each time we find a new minimal
key-ideal set, then this enumerates all key-ideal sets and therefore all candidate keys.
Since Key-Ideal-Sets runs in polynomial space and time in the size of the input,
then the following algorithm All-Key-ideals stays in incremental polynomial time.

Theorem 54. Algorithm All-Key-ideals outputs all key-ideal sets in incremental
polynomial time. In particular, it enumerates all minimal key-ideal sets in O(|X|2.|Σ|.|IK

min|).
And given IK

min, it generates all key-ideal sets that are not minimal in polynomial de-
lay, using O(|X|.|IK

min|) space memory.
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Algorithm 9: All-Key-ideals(Σ)

Output: All key-ideal sets of (Σ)
begin

I =Alpha-Minimal-Key-Ideal(X,Σ);
Imin = {I};
I =Key-Ideal-Sets(I,Σ);
Mark(I) = unmarked;
while there is an unmarked I ∈ Imin do

Mark(I) = marked;
I = I∪Key-Ideal-Sets(I,Σ);
for L→ a ∈ Σ do

S = LΣP ∪ (I \ aΣP );
I ′ =Alpha-Minimal-Key-Ideal(S,Σ);
if I ′ /∈ Imin then

Mark(I ′) = unmarked;
Imin = Imin ∪ {I ′};

return I;
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Chapter 9

Conclusion

9.1 Summary

This part concerns closure systems and related structures: implicational bases, binary
relations and lattices. We have investigated two problems: enumeration of candidate
keys of an implicational base and generation of closure system’s maximal extension.

We begin by dealing with the generation of a closure system’s maximal extension.
We gave an incremental polynomial algorithm that enumerates all meet-irreducible
sets of the maximal extension. We gave as well some properties that describe the
maximal extension.

Then, we proposed a new approach to enumerate candidate keys of an impli-
cational base by defining a key-ideal set, an ideal of a candidate key in an order
defined by Σ. We demonstrated that candidate keys enumeration is as hard as the
enumeration of a subset of key-ideal sets that we call minimal key-ideal sets. And
since candidate keys can be exponentially more numerous than minimal key-ideal
sets, we gave an efficient key-ideal sets enumeration algorithm, that enumerates all
non-minimal key-ideal sets in a polynomial delay and minimal key-ideal sets in in-
cremental polynomial time.

9.2 Perspectives

Several questions exist to follow further research directions based on the present work.
The existence of a polynomial delay algorithm that can generate the maximal exten-
sion is still an open question. It is also interesting to identify lattice properties that
could parametrize the complexity of the problem, for example k-semi distributivity
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of lattices.
As for candidate keys enumeration, our framework can also be improved using

the idea in [41] where they consider acyclicity of Σ. Our work can be applied to
each strongly connected component of Σ. It can also be applied to minimal genera-
tors in FCA terminology. Identification and complexity characterization of different
implicational base classes can help as well to achieve efficient algorithms and new
complexity bounds. The existence of a polynomial delay and space algorithm that
enumerates all candidate keys is also an open question.

A common perspective between both problematics, is to describe candidate keys
of closure system based on its extension, and vice versa.
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