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Abstract

This thesis work is centered around two key aspects of quantum technologies: quantum
information processing and quantum sensing. It builds up onto the microwave light
toolbox, developed in circuit quantum electrodynamics, to investigate the properties
of mesosocopic circuits. Those circuits, here made out of carbon nanotubes, can be
designed to act as quantum bits of information or as condensed matter model systems
and this thesis explores both aspects. The realization of a coherent spin-photon interface
illustrates the first one. The experiment relies on ferromagnetic contacts to engineer an
artificial spin-orbit coupling in a double quantum dot. This coupling hybridizes the spin
and the charge degree of freedom of the electron in this circuit. By embedding this
circuit into a microwave cavity, whose electrical field can be coupled to the charge, we
realize an artificial spin-photon interface. A second project, started during this thesis,
focuses on using quantum dot circuits as model systems for studying condensed matter
problems. This project consists in coupling, via a microwave cavity, a superconducting
qubit, that will serve as a delicate probe, and a single quantum dot circuit. Such a circuit
can display several behaviors including the Kondo effect which is intrinsically a many-
body effect. In this work, we present both a theoretical study of some possible outcomes
of this experiment, and experimental developments. Finally, a theoretical proposition
to detect the self-adjoint character of Majorana fermions using a microwave cavity, is
presented.
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Résumé

Ce travail de thèse est centré autour de deux aspects des technologies quantiques: le
calcul quantique et la mesure quantique. Il s’appuie sur la boîte à outils de la lu-
mière micro-onde, développé en électrodynamique quantique, pour sonder des circuits
mésoscopiques. Ces circuits, fabriqués ici à base de nanotubes de carbone, peuvent
être conçus comme des bits quantiques ou comme des systèmes modèles de la matière
condensée, et cette thèse explore les deux aspects. La réalisation d’une interface spin-
photon cohérente illustre le premier. L’expérience repose sur l’utilisation de contacts
ferro-magnétiques pour induire un couplage spin-orbit artificiel dans une double boîte
quantique. Ce couplage hybride les degrés de liberté de charge et de spin de l’électron.
En incluant ce circuit dans une cavité micro-onde, dont le champ électrique peut être
couplé à la charge, nous réalisons une interface spin-photon. Un second project est centré
sur l’utilisation de boites quantiques comme systèmes modèles pour l’étude de problèmes
de matière condensée. Ce projet consiste à coupler, via une cavité micro-onde, un qubit
supraconducteur, qui servira de sonde peu invasive, et une boîte quantique unique. Un
tel circuit peut exhiber différents comportements dont l’effet Kondo, qui est un effet à
N-corps. Dans ce travail, nous présentons à la fois une étude théorique, et des travaux
expérimentaux. Finalement une proposition théorique pour détecter le caractère auto-
adjoint des fermions de Majorana en utilisant une cavité micro-onde, est présenté.

Mots clés : cQED, boîte quantique, spin, nanotube de carbone
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Résumé long

Parmi les phénomènes dont l’explication a mené à l’émergence de la mécanique
quantique, on peut citer l’effet photo-électrique. Cet effet, qui ne peut être expliqué dans
une description purement ondulatoire de la lumière, força les scientifiques à reconsidérer
la lumière dans une approche corpusculaire. Dans cette approche, les quantas de lumière,
les photons, ne se comporte pas uniquement comme des sphères dures mais aussi comme
des ondes. Cette dualité s’applique aux photons mais aussi à n’importe quel autre
object en principe. Et tandis que pour les photons, la représentation classique est
la représentation ondulatoire et la quantique la représentation corpusculaire, pour la
plupart des objets c’est l’inverse. Un exemple est la molécule de fullerène dont il a été
démontré qu’elle interférait de façon similaire à la lumière dans une expérience de fentes
d’Young[1]. Il convient cependant de noter que ces propriétés ne se manifestent pas
seulement dans le cas d’objets isolés mais aussi dans la matière condensée.

Dans un système de matière condensée, les électrons peuvent, sous certaines conditions,
présentés des comportements liés à leur nature ondulatoire. Bien entendu, la cohérence
des fonctions d’onde électroniques peut être détruite de bien des manières: lors de col-
lisions avec d’autres électrons ou avec les atomes du réseau cristallin lorsqu’ils vibrent
par exemple. C’est pourquoi dans les conditions ambiantes, la description corpusculaire
des électrons suffit à décrire les circuits électriques. Cependant lorsque la taille des cir-
cuits devient faible, que l’on améliore la qualité des matériaux et si la température est
abaissée, la fonction d’onde électronique peut se propager sur de longues distances sans
être perturbée. Les phénomènes d’interférences peuvent dès lors fortement modifier les
propriétés du circuit. De tels phénomènes ne peuvent être décrit classiquement et for-
ment les fondations du transport quantique. Parmi les phénomènes observables on peut
citer: la formation d’interféromètres de type Fabry-Pérot, la localisation faible ou forte
d’électrons dans certaines portions du circuit, l’anti-localisation, ou l’effet Aharonov-
Bohm.

Les circuits dans lesquels se manifestent ces effets n’appartiennent ni au monde macro-
scopique ni réellement au monde microscopique puisqu’ils contiennent, malgré leur taille,
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encore des milliards d’atomes. On les qualifie généralement de circuits mésoscopiques.
Expérimentalement, il est généralement nécessaire de les refroidir à des températures
proches du zéro absolu (sous 4K ou de façon équivalente−269◦C), pour que des phénomènes
non-classiques soient observables.

Depuis les années 1980, ce champ de recherche s’est constamment élargi avec le développe-
ment de nouveau matériaux et la conception de nouveaux circuits. Partant de circuits
composés uniquement de métaux, agencés soit en couches, fils ou poussant les systèmes
à leurs limites d’un atome unique joignant deux ilots métalliques, ce champ de recherche
s’est étendu aux semi-conducteurs, aux oxydes et aux molécules. Dans chaque cas,
les propriétés du circuit sont le résultat non seulement des propriétés intrinsèques des
matériaux mais aussi de la manière dont ils sont combinés. L’utilisation d’électrodes fer-
romagnétiques ou supraconductrices permet, au travers de l’effet de proximité, d’induire
ce type de propriétés dans des matériaux qui ne les possèdent pas. Ce type de com-
binaison a donné naissance aux champs de la spintronique et de la supraconductivité
mésoscopique.

Dans ce travail de thèse, nous nous intéressons à une sous classe particulière de circuits:
les boites quantiques [2]. Dans ce type de structure, toutes les dimensions spatiales (hau-
teur, largeur, longueur) sont réduites de façon à ce que le vecteur d’onde de la fonction
d’onde électronique soit quantifié dans toutes les directions. Une telle quantification
conduit à l’existence d’un ensemble discret d’état autorisé similaire à ceux d’un atome.
Ces boîtes à électrons peuvent être réalisées à partir d’objets de plus haute dimension,
telle qu’un fil unidimensionnel ou un gas électronique piégé dans un plan, dès lors que
les électrons peuvent être confinés en utilisant, par exemple, des contacts métalliques ou
des champs électriques. Dans le cadre de cette thèse, nous utilisons des nanotubes de
carbone (CNT) qui sont des conducteurs unidimensionnels. En les contactant à des élec-
trodes métalliques, les électrons sont confinés dans la dernière dimension ce qui conduit
à la formation de boîtes quantiques [3]. Comparé aux atomes "naturels", dont les pro-
priétés sont fixées, les propriétés ces structures peuvent être ajusté sur de large gammes
grâce à des leviers macroscopiques. L’application de potentiels électrostatiques est un
de ces leviers. Un grand nombre de phénomènes de transport quantique peuvent être
observés dans les boîtes quantiques dont l’effet Kondo qui résulte de la formation d’un
état intriqué à N-corps. Cet effet résulte de l’interaction du spin d’un électron piégé
dans la boîte quantique avec les électrons de conduction des électrodes, et modélise ce
qui peut se passer dans un métal au voisinage d’une impureté magnétique.

De tels atomes artificiels pourraient trouver des applications dans le cadre du traitement
quantique de l’information. En particulier, le spin de l’électron est une système à deux
niveaux naturel qui peut être utilisé comme qubit [4]. De plus, son faible couplage



naturel à son environnement permet d’espérer de long temps de cohérence qui sont clefs
dans le cadre de l’information quantique, comme discuté dans le chapitre 1.

Historiquement, l’information quantique expérimental a émergé à la fin des années 1990
dans les communautés de la résonance magnétique nucléaire [5] et de l’optique atom-
ique et moléculaire. En particulier, le champ de l’électrodynamique quantique en cavité
(QED), qui s’intéresse à l’interaction lumière-matière à l’échelle la plus élémentaire en
couplant un atome unique à un unique photon, a développé un grand nombre d’outils
permettant de contrôler et de mesurer de petits systèmes quantiques[6]. Le développe-
ment d’atomes artificiels dans la matière condensée, à base de circuits supraconducteurs,
a permis de transférer ces idées aux circuits [7]. Ce nouveau champ est dénommé élec-
trodynamique quantique sur circuit (cQED).

Le champ, auquel ce travail de thèse appartient, est le champ voisin de l’électrodynamique
quantique mésoscopique dans laquelle le circuit supraconducteur, utilisé comme atome
artificiel, est remplacé par un circuit mésoscopique tel qu’un contact atomique [8] ou
une boîte quantique [9, 10, 11, 12, 13]. L’émergence de ce champ a, dans un premier
temps, été motivé par la possibilité de coupler des qubits distants via une cavité comme
démontré en cQED [14, 15]. Jusqu’à très récemment [16], les qubits réalisés dans des
circuits de boîtes quantiques ne pouvaient être couplé de manière fiable entre eux [17],
et donc la perspective de coupler deux systèmes distant via une cavité semblait très
intéressante. Cependant, cette possibilité n’était qu’une des multiples possibilités qui
ont émergé avec ce nouveau champ. Par exemple, la possibilité de réaliser un MASER,
dans lequel le circuit de boîtes quantiques joue le rôle de milieu amplificateur, avait déjà
été envisagée en 2004 [18]. Même si la réalisation du couplage de deux systèmes distants
reste un but à long terme, un MASER a été réalisé récemment [19].

De part la double nature des circuits de boîtes quantiques, atomes artificiels d’une part
et systèmes modèles pour la matière condensée, ce champ est plus large que le traitement
quantique de l’information. En particulier, il est possible de transposer les techniques
développé dans le cadre de la cQED et de les adapter pour réaliser des mesures de haute
précision sur des systèmes modèles de la matière condensée. Ce travail de thèse s’efforce
d’illustrer cette double nature du champ.

Le manuscrit est divisé en six chapitres. Le premier est une brève introduction des
technologies quantiques et de la manière dont elles ont inspirés les travaux présen-
tés dans cette thèse. Ce chapitre est divisé en deux parties. La première traite de
l’encodage de l’information quantique dans un bit d’information. Elle traite notamment
des phénomènes de relaxation et de de décohérence, et introduit deux plateformes qui ont
servi à la réalisation de qubit: les circuits supraconducteurs et les spin-qubits. L’objectif
de ce chapitre étant principalement introductif, seul les principes de fonctionnement de



base de ces systèmes sont abordés. Toujours dans la même partie, l’interaction de qubits
avec un mode bosonique, pouvant servir de canal de communication entre deux qubits,
est introduite, à nouveau sur des considérations assez générale. La seconde partie de ce
premier chapitre traite de l’utilisation de systèmes quantiques comme sonde de précision.
Elle discute dans un premier temps l’utilisation des photons piégés dans une cavité de
grande finesse, avant de discuter le cas des systèmes à deux niveaux qui est illustré sur
l’exemple du centre NV− du diamant. Ces différentes approches peuvent être transposé
à la situation expérimentale du chapitre 5.

Le second chapitre se concentre plus directement sur les systèmes utilisés dans le cadre
de cette thèse et est divisé en deux parties. La première traite des circuits mésoscopiques
utilisés. Cette partie commence par présenter les propriétés des nanotubes de carbone
à partir desquels sont réalisées les boîtes quantiques utilisées dans le cadre de ce travail
de thèse. La physique des boîtes quantiques est ensuite discutée. On s’intéresse tout
d’abord aux boîtes quantiques uniques qui seront utilisés dans le chapitre 5 et notam-
ment à leur susceptibilité de charge. Deux principaux régimes sont discutés: d’une part
le régime de blocage de Coulomb, dans lequel la susceptibilité peut-être calculée ana-
lytiquement, et le régime Kondo pour lequel des techniques numériques sont utilisées.
La physique des doubles boîtes quantiques est discutée dans la section suivante et sert
de base au chapitre 4. Finalement, cette partie se conclue sur la présentation du trans-
mon, un qubit supraconducteur, qui est utilisé dans le cadre du chapitre 5. La seconde
partie discute les propriétés des résonateurs/cavités supraconductrices utilisées comme
boîtes à photons, la manière dont on peut y coupler les circuits mésoscopiques présentés
précédemment ainsi que les différents régimes de couplage qui peuvent en résulter.

Le troisième chapitre est dédié aux techniques expérimentales mises en œuvre dans le
cadre de ce travail. La conception des échantillons est tout d’abord discutée et notam-
ment l’apport des outils de simulations numériques. On montre notamment comment
la structuration du champ électrique micro-onde à des échelles bien inférieures à la
longueur d’onde peut permettre d’augmenter le couplage entre les photons de la cavité
et les circuits mésoscopique (Figure 1).

La fabrication des échantillons, les techniques de mesure nécessaire à leur caractérisation,
et les outils d’interfaçage informatique mis en œuvre pour automatiser les mesures sont
ensuite discuter.

Les trois derniers chapitres se concentrent chacun sur un aspect particulier de ce travail
de thèse.
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Figure 1: Ecrantage d’une boîte quantique unique:

a), b) Champ électrique simulé (composante selon x) d’un mode à 7.5 GHz (longueur
d’onde ∼ 1 cm) dans deux géométries a) non-écranté b) écranté. Les régions
grisé correspondent à l’emplacement d’électrodes métalliques (100 nm de large
pour la plus fine). L’échelle de couleur est la même pour les deux tracés mais
est tronquée pour aider le lecteur à identifier les différences dans la géométrie
du champ.

c) Tracé du potentiel électrique (intégrale du champ) le long de la ligne pointillé
de la figure a). L’origine du potentiel est prise à gauche du tracé, ce qui n’est
pas exact comme le montre le fait que le potentiel est non-nul pour les grandes
valeurs de x. On peut noter une augmentation du maximum du potentiel de
l’ordre de 30% dans la situation écrantée.

Couplage spin-photon cohérent dans une architecture de cQED

Le quatrième chapitre présente une expérience dont le but était d’atteindre le régime de
couplage fort entre le spin d’un électron unique piégé dans un circuit mésoscopique et
les photons piégés dans une cavité. L’architecture de circuit que nous avons utilisé
pour réaliser cette expérience a été proposé en 2010 dans [20]. Cette architecture,



présenté dans la figure 2, repose sur une double boîte quantique contactée à des électrodes
ferromagnétiques.'

&

$

%

a) b)

Figure 2: Couplage spin-orbite artificiel dans une double boîte qunatique à base
de CNT :

On considère un électron de spin −→s piégé dans une double boîte quantique.
On représente sa densité de probabilité de présence |ψ|2 en vert. Chaque boîte
est connectée à une électrode ferromagnétique, dont l’aimantation est notée −→M .
L’aimantation induit une polarisation de spin de la fonction d’onde. Cependant,
comme les aimantations des électrodes ne sont colinéaires, les axes de quantification
dans chaque boîte ne le sont pas non plus, comme illustré en a). Ainsi en induisant
des oscillations de l’électron entre les deux boîtes grâce à un champ électrique alter-
natif, l’électron voit un champ magnétique AC effectif qui est orthogonal à son axe
de quantification. Ce champ effectif peut-être utilisé pour contrôler le spin. L’axe
de quantification est défini par les champs induits par les électrodes et par le champ

magnétique extérieur appliqué.

Les aimantations des électrodes ne sont pas colinéaires si bien que les axes de quantifi-
cation du spin de l’électron dans chaque boîte ne sont pas colinéaires. Lorsque l’électron
passe d’une boîte à l’autre, le spin tourne ce qui peux être vu comme le résultat d’un cou-
plage spin-orbit. Ce couplage permet de coupler le degré de liberté orbital de l’électron
et son spin. Le degré de liberté orbital peut être couplé au photons piégés dans la cavité,
ce qui permet de au final d’obtenir un couplage spin-photon. Grâce à l’expérience ac-
quise dans le laboratoire lors d’expériences précédentes [13], nous avons inclut ce circuit
dans une cavité micro-onde, cf figure 3.

Dans ce système nous avons démontré l’existence de transitions hybrides mêlant le de-
gré de liberté orbital et l’état de spin (figure 4) ainsi qu’un couplage cohérent entre



'

&

$

%

Gnd R
es

o
n

a
to

r

Gnd

Stamp
print

DC lines 1 µm 1 µm
D

S

Vg1

Vgt

Vg2

PdNi

PdNi

SWNT

VgRes

Double quantum dot

45°

20 µm

a) b) c)

Figure 3: Échantillon:

a Image (microscope optique) de l’échantillon étudié centré sur la double boîte
quantique.

b Image de microscopie à force atomique de l’échantillon sur laquelle le CNT
apparaît en fausses couleurs.

c Image de microscopie à force magnétique. L’aimantation des électrodes fer-
romagnétiques apparaît dans le damier blanc et noir où les zones blanches et
noires correspondent aux pôles Nord et Sud de l’aimantation.

les photons micro-ondes et une transition associée à un changement de l’état du spin
électronique [21]. Le couplage ainsi obtenu est de l’ordre du MHz, ce qui est un ordre de
grandeur inférieur au couplage aux états orbitaux mais 5 ordre de grandeur supérieur
au couplage magnétique direct que nous pourrions obtenir dans ce système.'
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Figure 4: Dispersion des états du système fonction de la grille ε et du champ
magnétique externe B:

La carte de la transmission de la cavité (figure de droite) présente trois creux cor-
respondants à la mise en résonance de trois transitions avec la cavité. Ces trois
transitions dépendent à la fois de la grille et du champ magnétique, ce qui montre

leur nature hybride.

Finalement ce chapitre discute l’influence de la parité du nombre d’électron dans la
double boîte sur le spectre du système.



Sonder les dynamiques d’une boîte quantique à l’aide d’un transmon:

Le cinquième chapitre explore la possibilité d’utiliser un qubit supraconducteur (un
transmon) comme une sonde de grande sensibilité des propriétés d’une boîte quantique.
Il se concentre sur les boîtes quantiques uniques qui peuvent être utilisé comme systèmes
modèles pour la matière condensée. Dans de précédents expériences menés dans le
laboratoire [22, 23], l’utilisation d’une cavité micro-onde a été cruciale pour révéler
certaines propriétés de ces circuits. L’addition d’un transmon à de tels expériences
ouvre plusieurs nouvelles perspectives. Tout d’abord le transmon pourrait être utilisé
pour analyser le champ photonique de la cavité et mesurer, pour la première fois de
façon quantitative, le couplage entre le champ photonique et la boîte quantique. Dans
les expériences précédemment citées, seul le produit du couplage par le nombre de photon
dans la cavité a été mesuré et le nombre de photons ne pouvait être mesuré avec précision.
Une autre perspective, exploré de manière théorique dans une première partie, consiste
à utiliser transmon comme spectromètre, ce qui peut fournir de nouvelles informations
sur la dynamique interne de ces circuits dans le régime de blocage de Coulomb et dans
le régime Kondo.'
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Figure 5: Schéma de principe de l’expérience discuté dans le chapitre 5:
Une boîte quantique et un transmon (oscillateur anharmonique à base de ciruits
supra) sont tous les deux couplés à un unique mode d’une cavité micro-onde leur

permettant d’interagir.

La partie expérimentale ne comporte que des résultats préliminaires, notamment la car-
actérisation d’un des premiers transmon réalisé. L’absence de résultats plus significatifs
tient aux difficultés rencontrées lors de la fabrications des échantillons.



Probing Majorana fermions using a cavity:

Le sixième et dernier chapitre est dédié à un travail théorique centré sur l’étude des
circuits topologiques hybrides grâce aux photons d’une cavité micro-onde [24]. Les
circuits hybrides combinant des nano-conducteurs dotés d’un fort couplage spin-orbit
contactés à des électrodes supra-conductrices ont été proposés comme base pour obtenir
des fermions de Majorana [25, 26]. Jusqu’à présent, ces structures ont été principalement
étudié via des mesures de transport DC qui révèle la densité d’état de ces circuits [27,
28, 29, 30, 31, 32]. Dans ce travail nous proposons un protocole permettant de mettre
en évidence le caractère auto-adjoint des fermions de Majorana reposant sur la mesure
couplé des propriétés de transport du système et de celles d’une cavité micro-onde à
laquelle le système est couplé. Une particularité de ce travail est qu’il traite l’intégralité
des effets du contact supraconducteur, et notamment la densité d’état résiduelle sous le
gap supra souvent observé dans les réalisations expérimentales. La signature du caractère
auto-adjoint de la paire d’état de Majorana dont chacun des membres est localisé à une
des extrémités du fil provient de leur absence de couplage au champ photonique. Le
protocole proposé permet de déterminer indépendamment de toute théorie les énergies
auxquelles une signature d’un couplage entre la photons et les états de Majorana serait
attendu. Il permet de plus de vérifier que l’absence de signature n’est pas le fruit
de l’absence de couplage entre le circuit et les photons en utilisant la signature d’une
transition entre les états de Majorana et la densité sous le gap du supraconducteur.
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Figure 6: Dissipation induite par le circuit hybride fonction du champ magnétique
externe appliqué EZ et de l’énergie considérée ω0:

La figure a) présente les résultats d’une simulation menée sur une chaine unidimen-
sionnelle discrète avec couplage spin orbite et couplage à un contact supraconduc-
teur. On peut y discerner un grand nombre de strcutures qui sont schématisées dan
la figure b). La figure c) présentent trois coupes prises à trois énergies différentes
de la structure 1. Les marqueurs utilisées correspondent à ceux présents sur le coté
gauche del afigure a). La figure d) décrit la nature des transitions associées à chacune

des structures de la figure b).

1 Cette structure correspond à une transition entre la densité sous le gap et les
états de Majorana. Elle apparaît quand la fréquence de la cavité est égale à
différence en énergie entre les deux états de Majorana ω0 = ε

2 Cette structure correspond à une transition entre l’état de Majorana à basse
énergie et un état d’Andreev.

3 Cette structure correspond à un processus implicant à la fois les états de
Majorana et la densité sous le gap.

4 Cette structure correspond à des transitions entre états d’Andreev.

P and Q Ces structures, qui sont absentes des résultats de simulations, correspondrait
à des transitions entre les deux états de Majorana ou deux états non-dégénérés
d’Andreev. Leur absence prouve le caractère auto-adjoint des états de Majo-
rana.

Cette figure est tirée de [24]
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Introduction

Among the phenomena whose explanation ultimately led to the emergence of quan-

tum mechanics, one can cite the photo-electric effect. This effect, which cannot be

explained in a purely ondulatory description of the light, forced people to reconsider

that light may be made out of quanta. These quanta, the photons, behave not only as

hard particles but also as waves. This duality applies to photons in quantum mechanics

but in principle also to any object. And while for photons, the classical representation is

the wavy one, and the quantum representation the particle one, for many other objects

it goes the other way around. One can think of large objects such as molecules like

fullerene that were demonstrated to interfere similarly to light in Young slits experi-

ments [1]. But actually those properties do not manifest only for isolated objects but

also in condensed matter systems.

In condensed matter systems, electrons can under certain conditions exhibit behaviors

that are linked to their wavy nature. Of course, the coherence of the electronic wave

can be destroyed in many ways: through collisions with others electrons or with atoms

vibrating in the crystal lattice. This is why under ambient conditions, we can perfectly

describe electric circuits using a corpuscular representation of the electrons. However

when the size of the circuits becomes very small, the quality of the material improves and

if the temperature is reduced, the electronic wave can propagate without being disturbed

over large distances, resulting in interference between different waves. Such phenomena

cannot be described classically and are at the foundations of the field of quantum trans-

port in which one can observe for example: electronic Fabry-Perot interferometers, weak

or strong localization of the electrons in particular areas, or the Aharonov-Bohm effect.

Because the circuits in which those effects manifest themselves belong neither to the

macroscopic world nor to the truly microscopic world as they still contain billions of

1
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atoms, they are often referred to as mesoscopic circuits. Experimentally, they usually

need to be cooled down to cryogenic temperatures (below 4K or equivalently below

−269◦C) to display a truly non-classical behavior.

Since the 1980s, this field has constantly broadened as new materials were developed

and new circuits have been designed. Starting from purely metallic circuits, either in

layers, wires, or pushing the systems to their limits and limiting the contact between two

islands to a single atom, the field grew to include semi-conductors, oxides and molecules.

In each case, the properties of the circuit are tailored, not only by the intrinsic proper-

ties of materials, but also by how they are combined. Using ferromagnetic contacts or

superconducting contacts can induce those properties in materials lacking them through

proximity effects, which gave birth to the fields of spintronics and mesoscopic supercon-

ductivity.

In this thesis, we are interested in a particular subclass of circuits called quantum dot

circuits [2]. In such structures, all the spatial dimensions (height, width, length) are

reduced such that the allowed wave vector for the electronic wavefunction is quantized

along all directions. This means that those structures exhibit a discrete spectrum sim-

ilar to the one of an atom. These electron boxes can be realized starting from higher-

dimensional objects, provided that the electrons can be ultimately confined using either

metallic electrodes or electrostatic fields. For example, in this work, we use carbon nan-

otubes which are naturally unidimensional conductors. By contacting them to metallic

electrodes, we confine the electrons in the last available dimension hence fabricating our

quantum dots circuits [3]. Compared to natural atoms, whose properties are fixed, the

properties of those structures can be tuned over large ranges using macroscopic knobs,

such as DC voltages. Quantum dot circuits display most of the quantum transport phe-

nomena mentioned above. An important effect, which can be studied in quantum dots,

is the Kondo effect which reveals many-body interactions. The spin of an electron con-

fined in the quantum dot is interacting with the many electron spins of the contacting

electrodes, which models the presence of a magnetic impurity in a metal.

Such artificial atoms appear as a potential resource for quantum information processing.

In particular, the spin of a trapped electron is a natural two-level system that can be

used as a qubit [4]. Furthermore, its natural weak coupling to its environment promises
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long coherence times which is a key property in the perspective of quantum information,

as discussed in chapter 1.

Historically, experimental quantum information emerged in the late 90’s in the Nuclear

Magnetic Resonance (NMR) [5] and Atomic Molecular and Optical (AMO) physics com-

munities. In particular, the field of cavity quantum electrodynamic (QED), which studies

the light matter interaction at the most elementary level by coupling a single atom to a

single mode of the electromagnetic field, developed a large toolox to control and measure

small quantum systems [6]. The development of artificial two-level systems in condensed

matter, based on superconducting circuits, has allowed to transfer these ideas to circuits

[7]. This new field was named circuit QED (cQED).

The field, into which this thesis work falls, is the related field of mesoscopic QED, in

which the superconducting circuit used as an artificial atom is replaced by a mesoscopic

circuit such as an atomic contact [8] or a quantum dot circuit [9, 10, 11, 12, 13]. The

emergence of this field was at first driven by the possibility to couple distant qubits

through the cavity as demonstrated in cQED [14, 15]. Up to very recently [16], solid

state qubits based on quantum dot circuits could not achieve in a reliable fashion a

coupling between two qubits [17], the perspective of long distance coupling through a

microwave cavity hence appeared promising. However, this was only one among several

directions that emerged with this new field. For instance, the realization of MASERs

had already been envisionned in 2004[18]. Even though the coupling of two distant

qubits remains a long term goal, a MASER has been demonstrated recently [19].

Thanks to the dual nature of quantum dot circuits, artificial atoms on one side and

condensed matter model systems on the other, this field encompasses more subjects than

quantum information processing. In particular, one can transpose techniques developed

in the context of cQED and adapt them to high sensitivity measurements of condensed

matter model systems. This thesis work will try at best to illustrate this dual nature of

the field.

This manuscript is divided into six chapters. The first one serves as a brief introduction

to quantum technologies and how they have inspired this thesis. It does not go into the

details of the discussed systems but rather provides broad overviews. The second one

focuses more directly on the devices used in this thesis, namely quantum dots, transmon

qubits, superconducting cavities, and their multiple regimes of interactions. The third
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chapter is dedicated to the experimental techniques, ranging from the design of the

samples to their fabrication and the measurement techniques required to characterize

them. The three remaining chapters focus each on one particular topic of this thesis

work and are summarized below.

Coherent spin-photon coupling in a cQED architecture

The fourth chapter discusses an experiment whose goal was to achieve strong coupling

between a single electronic spin trapped in a mesoscopic circuit and the photonic field

of a microwave cavity. The spin qubit we used, has been proposed in [20] and is based

on a double quantum dot contacted by ferro-magnetic electrodes. Building upon a

previous experiment carried out in our lab [13], we embedded it into a microwave cavity

and demonstrated a coherent coupling between spin-full transitions and the microwave

photons trapped inside the cavity [21]. We have further studied the role of parity of

the number of electrons inside the double quantum dot and showed that it can strongly

affect the system spectrum.

Probing single-dot dynamics using a transmon qubit:

The fifth chapter explores the possible use of a transmon superconducting qubit as a

tool to probe quantum dot circuits properties with a high sensitivity. It focuses on

single quantum dots that can be used as condensed matter model systems. In previous

experiments [22, 23], the use of a microwave cavity proved to be instrumental in revealing

such circuits properties. The addition of a transmon to such experimental setup provides

several interesting opportunities. First, the transmon could be used to analyze the

cavity field and allow the first quantitative determination of the coupling between single

quantum dots and cavity photons. In previous experiments, only the product of the

photon number by the coupling have been measured and the photon number could not

be determined with accuracy. Furthermore, the transmon could be used as a sensitive

spectrometer and provide further insight into the properties of quantum dot circuits. The

chapter discusses this problem both from the theoretical point of view for a quantum

dot at equilibrium in either the Coulomb blockade regime or the Kondo regime and from

the experimental point of view.
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Probing Majorana fermions using a cavity:

The sixth and last chapter is dedicated to a theoretical work on the investigation of

topological hybrid circuits with cavity photons [24]. Hybrid nano-circuits combining

nano-conductors with spin-orbit interaction and superconducting contacts have been

proposed to obtain Majorana fermions [25, 26]. So far the structures have been studied

mainly through the DC current measurements which essentially reveal the DOS of the

devices [27, 28, 29, 30, 31, 32]. We propose a protocol to evidence the self-adjoint char-

acter of Majorana fermions relying on the use of microwave cavity coupled to standard

transport measurements. One specificity of this work is that it treats fully the effects

of the superconducting contact including the residual subgap density of states often

observed in experiments.





Chapter 1

Quantum technologies

7
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In the last decades, experimental studies of the basic laws of quantum mechanics, de-

scribing the light matter interaction, have opened the possible use of quantum resources

for computation, communication, simulation and sensing using quantum systems. Those

works were first carried out using trapped ions [33] or Rydberg atoms [34]. Thanks to the

advances in material science and nano-fabrication techniques, they have been nowadays

extended to the domain of condensed matter with great success.

The development of those so called quantum technologies offer a lot of interesting per-

spectives both from the fundamental and applied point of views, as they require unprece-

dented understanding and control of the physical systems they are built upon, while

providing new tools to study physical problems, such as extremely sensitive probes. In

the following, I will discuss how information can be encoded and manipulated in such

quantum systems. I will also focus on how the use of bosonic modes, such as photons

trapped in a cavity, has been demonstrated as a very efficient way to exchange and

extract information between/from quantum systems. Finally, I will discuss how those

ideas can be transposed to probe, in a very delicate fashion, condensed matter systems.

1.1 Quantum information encoding :

Classical information can be encoded as a sequence of binary values, so called bits of

information. A quantum bit of information, usually denoted as qubit, can, just as a

classical bit, takes two distinct values. But it can also be in any superposition of those

two states. The key idea of quantum computation is to take advantage of quantum

superposition to execute in "parallel" a large number of operation in a single step. A

very naive way to look at it is illustrated in Fig 1.1. A slightly more involved example

is discussed below.

Let’s say we are interested in knowing whether a function returns the same output (0 or

1) for all inputs or if it returns 1 for half of them and 0 for the other. Considering that

the function can have 2n different inputs, classically it takes at least 2n−1 +1 evaluations

to actually test that property. Using a quantum computer it can be shown that actually

a single evaluation is enough. The rough principle is the following :

• starting from n+1 qubits, a large superposition of all possible input values is

created
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Figure 1.1: Quantum information processing :
Given a certain function taking n bits as its input a classical computer will need to
perform 2n evaluations of the function to determine its behavior. On the other hand,
a quantum computer can use a superposition state as input and get a superposition
of the outputs. For one (qu)bit, we go from 2 evaluations to 1 as illustrated in a. For
two (qu)bits as shown in b, we go from 4 evaluations to 1. In a classical computer
the computational powers increases linearly with the number of bits, whereas in a

quantum one it increases in an exponential fashion.

• that superposition is used as input for the function to test

• after the evaluation a final transformation is applied to all qubits

• the qubit states are measured (actually it is sufficient in theory to measure only

one)

If the function is balanced (returns 1 only half of the time), the outputs corresponding

to different inputs will interfere destructively and all qubits will end up in 0. On the

other hand for a constant function we would get 1. This algorithm is known as the

Deutsch–Jozsa algorithm [35].

For such a simple problem, the actual speed-up is not very large, in the sense that it

scales only as N . Some other possible quantum algorithms have been demonstrated

to provide an exponential speed-up (eN ). The most widely known of such algorithm is

probably the Shor algorithm [36] that applies to number factorization. The development

of such an algorithm has been a strong drive to develop quantum based computers.

In order to build a quantum computer, the first building block one needs is a quantum

bit or qubit. In the following sections, we will present a brief overview of the main

figures of merit of a single qubit along with some of the existing qubits in condensed
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matter, and look into the many interesting features coming from coupling such systems

to bosonic modes.

1.1.1 Quantum bits :

Just like in a classical computer, the qubit is the basic unit that is used to store the

information and perform operations. It corresponds to a quantum two-level system.

Compared to a classical bit, a qubit is, in a sense, much richer due to the existence of

superposed states. However, the information it carries is also much more fragile as we

will see.

As a qubit does not only take two discrete values but can actually be in any superposition

of those two, its state |ψ〉, or more precisely its density matrix, defined as ρ = |ψ〉〈ψ|,

is conveniently described on the Bloch sphere as presented in Fig 1.2. In the lab frame,

the X and Y axis rotate at the qubit frequency, and it is hence convenient and we will

do so in the following, to work in a frame rotating at the qubit frequency. In order to

move from the north (0 state) to the south (1 state) pole, one needs to be able to induce

rotations of the qubit state around an axis lying in the xy plane. However in order to

take full advantage of the possibility offered by quantum computation, such a control is

not sufficient as it does not allow to prepare the qubit in an arbitrary state. To achieve

this, one needs, at least, to be able to perform operations on a second axis non colinear

to the first one. One figure of merit of a qubit is the speed at which such operations

can be performed. This speed will fundamentally fix the maximal speed of a quantum

processor. Another figure of merit is the accuracy at which those operations can be

performed. Contrary to a classical computer, in which the only manipulation error is

discrete in nature as it corresponds to a failed flip (or unwanted flip), in a quantum

computer, manipulation errors are essentially continuous and can be accumulated in a

more complex fashions leading to different kind of errors.

Those errors can fall in two categories:

• bit flip errors: those are errors similar to the ones happening in classical bits and

lead to a 0 becoming a 1.

• phase flip errors: those errors are specific to qubits and correspond to unwanted

rotation around the z-axis of the state vector.
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Figure 1.2: Bloch sphere representation of a qubit state:
Any two levels system density matrix ρ = |ψ〉〈ψ| can be described using the Pauli
matrices usually noted σx, σy, σz and the identity matrix. In that matrix represen-
tation, the identity does not carry any information and can be discarded, leaving
only three components that can be represented as a vector in a 3 dimensional space.
Because a quantum state is normalized, this vector is unitary and hence lives on the

surface of a sphere. In that representation one can identify specific points:

• the north and south poles corresponding respectively to |0〉 and |1〉.

• the equatorial plane associated with equal superposition of |0〉 and |1〉.

Quantum computation is actually equally sensitive to both kinds of errors and hence

both should be minimized.

However, active manipulation is not the only possible source of errors in a quantum

computer. Just like in a classical computer, the qubits cannot be perfectly isolated from

their environment. In the case of classical computer, thermal fluctuations can induce bit

flip. Those are exponentially suppressed as the energy difference between the two state

of the bit increases (or conversely when the temperature decreases) and are usually quite

rare (for example there is no need to correct for them in laptops). For a quantum bit,

the situation is more complex. The interaction between the qubit and its environment

will entangle the qubit with the environment, but because the environment state is not

usually accessible, the information is lost. Depending on the kind of interaction between

the qubit and the environment, this can lead to different kind of errors as illustrated
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in Fig 1.3. Because we forget about the environment, the state cannot be represented

anymore by a wave function. However we can represent such a state as a vector with a

norm smaller than one. The vector is not anymore confined to the surface of the Bloch

sphere but can be anywhere inside it.

If the environment can exchange energy with the qubit, it will be able to induce flip

between the 0 and 1 state. Such a process, similar to the effect of thermal fluctuation

in the classical case, will cause the state to collapse towards a thermal state. This

collapse, which is equivalent to a contraction of the Bloch sphere, happens usually in

an exponential manner and is characterized by a time T1. This time is usually referred

to as the relaxation time. On the other hand, if the environment cannot exchange

energy but can induce fluctuations in the energy difference between the 0 and 1 state,

the state of the qubit will precess in a random fashion around the z-axis. This will lead

to a different kind of collapse: the probabilities that the qubit occupies the state 0 or

1 are not affected however the knowledge of angle between the x-axis and the state is

completely lost. Once again this collapse can be, usually, described by an exponential

decay whose characteristic time is noted T ∗2 . This time is usually referred to as the

dephasing time. From the previous arguments and from Fig 1.3, it should appear

obvious that actually the relaxation necessarily limits the coherence.

When trying to characterize a qubit, it is important not to consider those numbers in

an isolated way. For example, a qubit with a very long relaxation time but on which one

can only operate at a limited speed may not be better than a qubit with fast operation

and limited lifetime. The ratio of the operation rate to the dephasing/relaxation rate is

usually more meaningful.

One key step of any computation has not been mentioned so far: the read out of the

result. Once the set of operations, we are interested in, has been carried out, we are

usually interested in knowing the actual result. For a classical bit, the possible answers

are straightforward: we get either 0 or 1. As a quantum bit does not carry actually

more information than a classical bit we cannot hope to extract more than a binary

answer. However, for a quantum bit, one more degree of freedom exists, i.e. one can

choose the Bloch sphere axis on which to measure. It is for example perfectly possible

that at the end of the computation, the information is carried by the fact that the qubit

is in 1 along the x-axis rather than the z axis. Usually only one axis is straightforward
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Figure 1.3: Qubit relaxation and dephasing:
When two quantum systems interact they tend to entangle. However, when mea-
suring only one system, we discard any information stored in the second one. This
is exactly what happens in the case of a noisy environment. This loss of information
can be represented in the Bloch sphere picture, by drawing a vector whose norm is
less than 1. In the figure, the yellowish surface represents the "sphere" to which the
vector is bounded. Relaxation and dephasing affects the system in different ways:

• dephasing is an energy conserving process, hence the z axis component is
unaffected as it represents the probability to find the qubit in |0〉 or |1〉.

• relaxation on the other hand leads to a complete loss of information (with
different rates on the different axes).

to measure but, using qubit manipulation, it is actually possible to measure on any axis

by properly mapping the axis of interest to the measurable axis.

From a naive point of view, it would hence looks like that, by measuring on multiple

axes, we could extract more than one bit of information. But that would be forgetting

that the measurement is not without consequences for a quantum system. Actually if

a measurement is projective, i.e. its outcome allows to perfectly discriminate the two
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states, the state of the qubit after the measurement is actually the measured state. Such

a measurement is also called "strong measurement". For example, let’s assume that we

start from a qubit in (|0〉+ |1〉)/
√

2 and we measure along the z-axis. The result we are

going to get will mean that the qubit is projected in |0〉 or in |1〉 with equal probability.

The main point is that the final state of the qubit is not the initial one and hence

measuring along a different axis is actually meaningless as illustrated in Fig 1.4.

Read-out schemes can of course be differentiated by how well they can discriminate two

states, but there can actually be one more key difference between two schemes: whether

or not the state resulting from the measurement survives the measurement. Let’s take

an example. Let’s say we need to know when an atom has emitted a photon. In the

optical domain, this would usually be done by collecting the photon on an avalanche

photo-diode and converting it into a classical electrical signal. After such a measurement

the photon does not exist anymore. This is what is called a non-QND measurement by

opposition to a Quantum Non Demolition (QND) measurement in which, even after the

detection of the photon, the photon would still exist. Such measurements have been

carried out in many systems, such as Rydberg atoms coupled to microwave photons

[37], superconducting qubits [38], and are particularly well suited to the study of the

electromagnetic field.

Now that we have introduced some basic ideas about the working principles of a qubit

we will do a quick overview of two kinds of qubits that are of interest in this thesis. First,

we will discuss the superconducting qubits, which is one of the most advanced platform

for quantum computation in condensed matter. Second we will discuss be another broad

family of qubits: the spin qubits.

1.1.1.1 Superconducting qubits:

Superconductors are appealing for quantum information processing because of their lack

of dissipation promising long lifetime of the information stored in them. The simplest

electrical circuit one can think of to store information is the LC resonator. It is an

harmonic oscillator and one could think about encoding information in the presence or

absence of a single excitation in it. However, because its energy levels are equally spaced,

one cannot address individually the energy levels using a classical exitation. For example

if one injects energy in an attempt to go from the state 0 (ground state) to the state 1
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Figure 1.4: Qubit read out:
Like any measurement in quantum mechanics, the read-out of a qubit has a back
action. The state of the system after the measure is not, in general, the state
preceding the measure, and is actually identical to the measured state. Hence, if we
start from an arbitrary state on or inside the Bloch sphere and measure along the z-
axis, we have a certain probability to measure 0 or 1 depending on the z-component
of the Bloch vector. If we measure 0, after the measure no matter the initial state,
the system will be in |0〉. In particular, any information about the x and y axes
has been lost. This last fact, is related to the non-commutativity of the operators

associated to the measure on orthogonal axes.

(first exited state), actually all energy levels will be populated not just the first one 1.

To circumvent this issue one needs to introduce a non-linear element to get unequally

spaced levels. The anharmonicity of the system then allows to address selectively the

transition between the two lowest levels and to effectively reduce the system to an

effective two level system. This non-linear element is the Josephson junction (JJ), a

SIS junction (superconductor-insulator-superconductor). It behaves like a non-linear

and non-dissipative inductance, and is, with usual capacitance and inductance, the key

element in superconducting qubits. It is characterized by a critical current Ic delimiting

the linear and non-linear domain of operation of the JJ. This current increases with the

area of the junction. The JJ physical properties will be discussed in more details in

Chapter 2 and its fabrication in Chapter 3.

Many different kinds of superconducting circuits have been investigated over the years.

Fig 1.5 presents some of them along with the level spectrum and their characteristics.

The key difference between the designs is the amount of energy stored in each of the

component:
1Schemes exists to encode information in harmonic oscillator and build qubit out of them [39] but

they are outside the scope of this manuscript
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• charging energy EC : this is the energy stored in the capacitance

• inductive energy EL: this is the energy stored in the purely linear part of the

system inductance.

• Josephson energy EJ : this is the energy stored in the Josephson junctions. When

trying to engineer a large inductance it is usual to use Josephson junctions in

their linear regime. In such qubits EJ refers to the smaller junctions (small IC)

contribution while the large junction contribution enters EL

Thanks to their macroscopic nature, superconducting qubits can be efficiently coupled to

the outside world for manipulation and read-out. For example, the large capacitance of

the transmon qubit provides a large electric dipole that can be coupled to time-varying

electric fields. This large coupling allows one to perform fast operation of those qubits,

with π rotation in the Bloch sphere performed in typically 10 ns using pulses at the

frequency of the qubit transition between its lowest levels. It should be noted that the

operation is not only limited by the coupling strength between the qubit and the drive

tone but potentially also by the limited anharmonicity of the qubit. If the operation

is performed in a very short time, the spectral content of the pulse will be broad. If

this broadness is larger than the system anharmonicity, there is a risk to populate more

exited states of the qubit above the states 0 and 1.

Having a large coupling to the outside world is not always an advantage as it makes the

qubit more sensitive to noisy signals that can increase both its relaxation and dephasing.

In that respect, superconducting qubit, because of the versatility of their circuit design,

have achieved impressive improvement over the last decades. For example, going from

the Cooper pair box (CPB) to the transmon design has allowed to increase the dephasing

time by a factor of more than 40. The main source of decoherence in a CPB arises

from the charge noise, which is also an issue in many other setups. Charge noise is

responsible for fluctuations of the charge on the capacitance plate of the qubit. This

induces fluctuations of the transition frequency between the two levels of the qubit

resulting in the qubit dephasing. The charge noise effect is stronger when the qubit has

a large charging energy. The transmon design mitigated this effect by decreasing the

charging energy through the use of a very large capacitance as illustrated in Fig 1.5.
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Figure 1.5: Superconducting qubits:
Superconducting qubits are all based on the Josephson junction denoted symbolically
by a crossed square. One can write a generic Hamiltonian for superconducting qubit

by considering three terms:

• the energy EJ stored in the junction which depends in a cosinusoidal way on
the phase across the junction (the integral of the voltage).

• the charging energy EC associated with the circuit capacitance. By adjusting
the number of charge on the capacitor plate, one can tune the qubit energy.
This can be achieved using a gate voltage.

• the inductive energy EL which depends quadratically on the magnetic flux
enclosed the whole circuit.

By playing on those different terms on can obtain different behavior with respect to
charge and flux.

• Cooper pair box : in this design EJ and Ec are of the same order of magnitude
allowing to easily tune the system using a gate voltage. However the system
is hence very sensitive to charge noise, hence its short lifetime and coherence
[40].

• Transmon : here the JJ is shunted by a capacitor in such a way that EC � EJ .
This reduces the anharmonicity of the circuit but makes it nearly insensitive to
charge noise [41]. Transmon qubits have demonstrated the largest coherence
time. The values given here corresponds to 2D transmons [42].

• Flux qubit : flux qubits get rid of charge noise by shunting the JJ using a large
inductance (often made out of large JJ). They are however quite sensitive to
flux noise, which limits their coherence [43].

The lifetime of the qubit can also be increased through a careful geometric design,

limiting its coupling to parasitic modes or dissipative elements. A careful fabrication

process allows one to reduce the amount of dissipative elements such as resist residue in
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close proximity to the qubit.

Thanks both to its long lifetime and coherence and to the possibility of fast operation,

the transmon is, at the time being, among the qubits whose state can be manipulated

with the highest fidelity. The detailed physics of the transmon will be discussed in

Chapter 2, as its simple design and relative use of fabrication makes it very attractive

when considering complex sensing schemes such as the one described in section 1.2.2.

We have not discussed how to perform the read-out of this qubit, but we will fill this

gap in a later section as the read-out of such a qubit is actually performed using an

auxiliary bosonic mode.

1.1.1.2 Spin qubits:

When looking for two-levels system susceptible to be used as qubit, there is a candidate

much more obvious than superconducting qubits: the electronic spin. The electronic spin

is naturally a 2 levels system which is furthermore weakly coupled to its environment,

promising long coherence time. The use of the electronic spin as a resource for quantum

computation was first proposed in 1998 by D.Loss and P.DiVicenzo in [4]. Their proposal

was based on electrons trapped in quantum dots in semiconductor. We will in the

following focus on those quantum dots based spin-qubit, which are usually referred to

directly as spin-qubits even if some other platforms, such as donors in silicon [44] and

defects in diamond [45] or SiC [46] could also be considered as spin qubits.

As already mentioned, the electronic spin is weakly coupled to its environment. This

promises long coherence but hinders fast operation. Furthermore, the natural coupling

of the electronic spin is to the magnetic field, and one cannot easily generate strong and

local magnetic fields which is also an issue in term of scalability. This motivated the

search for ways to get an electrical control on the spin degree of freedom, which is one of

the goal of the work presented here. In general, two main directions have been explored

so far:

• in a multiple quantum dots circuits, modulate the exchange interaction between

the two electrons in the two dots to manipulate the electronic spin. In such a

device, the information is encoded in two of the n possible states of the circuit [17,

47, 48, 49]. This is illustrated in Fig 1.6.
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• in a single dot system, made out of a material with an intrinsically strong spin-orbit

coupling (SOC) or subject to an inhomogeneous magnetic field, use the electric

field to induce oscillation of the electron position that will lead to an effective

alternating magnetic field [50, 51, 44]. This is illustrated in Fig 1.7.

In both cases, the underlying idea is to use a charge-spin coupling mechanism to enhance

the coupling to the spin degree of freedom. This increases the speed at which the spin

state can be manipulated, but it also makes the qubit more sensitive to charge noise.

It is hence of paramount importance to ensure that the gain in spin control is more

important than the increase in charge noise sensitivity.

The first mechanism has been extensively studied in double quantum dots (DQD) sub-

ject to an external magnetic field. Those systems first attracted attention because the

exchange interaction allows to perform two-qubit gates when the information is encoded

in the electron spin. However when using the DQD state to encode information, the

control on the exchange allows to manipulate the qubit on a single axis which is not

sufficient to prepare an arbitrary state [17]. This DQD architecture is often referred to

as singlet-triplet spin qubit, as the read-out scheme allows one to discriminate between

the spin singlet and spin triplet states. To go beyond the limitation imposed by a single

axis of control, one can extend the previous architecture to a triple quatum dot where

all operation can be performed through exchange coupling [47] or rely on an inhomoge-

neous magnetic field. In the presence of an inhomogeneous field, the quantization axis is

tilted with respect to the exchange axis in the Bloch sphere (see Fig 1.6 b). Modulating

the relative strength of the exchange and inhomogeneous field allows to operate on two

non-collinear axes. That field can be obtained by polarizing the nuclear spin bath [48]

or using a micro-magnet [49].

The second mechanism has been investigated both using natural spin-orbit coupling in

InAs nanowires [50] and using inhomogeneous magnetic fields generated using micro-

magnets [51]. In InAs nanowires it turns out that the spin-orbit coupling is not the

only origin of the coupling: the electric field also modulates the g-factor. This kind of

modulation of the g-factor have also been used in Si structure lacking a strong spin-orbit

to manipulate the electronic spin [44]. One advantage of the micro-magnet approach is

that, being independent of the material properties, one is free to choose an host material
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Figure 1.6: Exchange based spin manipulation:
A double quantum structure, with two electrons, is similar to a dihydrogen molecule.
In particular the tunnel coupling between the two "atoms" gives rise, like in an hydro-
gen atom, to exchange energy which favors the spin singlet. This interaction is not
a magnetic interaction between the spins but arises from the Coulomb interaction.
This interaction decreases with decreasing coupling (t) and increasing detuning (ε)
between the two orbitals. In an inhomogeneous magnetic field however the singlet,
favored by the exchange, is in competition with | ↑↓〉 favored by the inhomogeneity.
The figure a) illustrates the different energy levels to consider and the symmetry of
the wave function for the singlet (orange line) and triplet states (dark purple line).
Figure b) summarizes the discussion in term of vectors in the Bloch sphere. Figure
c) presents the energy level diagram as a function of ε. In the absence of inhomoge-
neous magnetic field, the qubit is encoded in | ↑↓〉 and | ↓↑〉 at large ε. A rotation
around the Z axis can be performed by increasing the exchange for a given amount
of time. This operation having no phase only a single axis can be addressed. In the
presence of an inhomogeneous field the quantization axis is tilted with respect to the
z axis. By varying the relative strength of J and ∆B, one can control the direction

of the manipulation axis.

free of nuclear spins which can be beneficial to the coherence of the system, which is the

main point we will discuss in the following.
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Figure 1.7: Spin-orbit based spin manipulation:
The idea of the spin-charge coupling is here illustrated on the case of a micro-
magnet setup. The micro-magnet is engineered in such a way as to produce an
inhomogeneous field on the scale of the dot. Using gate voltages, one can then
displace the wave function inside the dot. In the center of the dot, the field is nearly
parallel to z defining the quantization axis. However on the side it has a neat x
component as illustrated in figure a. By periodically displacing the wave function
using an AC potential, the electron sees an oscillating magnetic orthogonal to its
quantization axis as illustrated in b. This field can be used to control electronic spin

on two axes by controlling its phase.

Those spin-qubits have three main error channels related to unwanted interactions be-

tween the spin and noisy background:

• in system relying on the exchange interaction, charge noise can lead to a noisy

term in the exchange term.

• in all systems, spin-orbit coupling (even weak one) couples the spin degree of

freedom to both charge noise and the phononic bath.

• in systems in which the host material contains nuclear spins, those spins generate

a random magnetic field.

Since the early experiments carried out on GaAs DQD [17], in which a decoherence time

of the order of 10ns were observed, many research efforts have focused on understanding

in details those mechanisms and mitigates their effects. For example, the gate fidelity

was increased in singlet-triplet systems by modulating the tunnel coupling (t) between

the two dots rather than the detuning (ε) as this mode of operation is far less sensitive



Quantum technologies 22

to the charge noise [52]. The issue of the nuclear spin bath has been addressed either in

a passive manner by moving to nuclear-spin free materials such as SiGe compounds[53],

or in active manner by using dynamical decoupling sequences [54, 55]. Finally, working

with holes rather than electron can prove beneficial as they can have a lower coupling

to the nuclear field bath [56].

In those systems, the read-out of the qubit state usually relies on the spin-blockade

mechanism, which involves two dots and applies to both the schemes presented above.

Starting from a situation in which each dot contains one electron, the gate voltage used

to define the dot is tuned so that it becomes favorable for both electrons to be in the

same dot. In the case of a singlet-triplet qubit, this will only happen if the qubit is in the

singlet state because of the Pauli exclusion principle. If the information is encoded in a

single spin, then the spin state of one of the dots has to be known, and the tunneling will

occur only if the electronic spins are in an anti-parallel configuration. The result of this

operation can then be read either through a current measurement by allowing the extra

electron to tunnel out, or using a charge sensing scheme. In both cases the read-out is

destructive for since there is no way to reload the "right" electron in the empty dot.

The scheme that will be presented in Chapter 4 relies on a DQD architecture but its basic

principle is closer to the SO based scheme. We will use as conductor a carbon nanotube

(CNT) whose natural spin orbit coupling is actually far too weak to provide an efficient

spin-charge conversion. To overcome that issue we will engineer an artificial spin-orbit

coupling using non-collinear ferromagnetic contacts. The spin-charge conversion will

arise from tunnel coupling between the two dots rather than a simple oscillation of

electron position but the rough idea will remain similar. One advantage of using CNT is

the naturally low concentration of nuclear spins and the possibility to move to a nuclear

spins free environment by using 12C for the growth of the CNT.

So far we have only discussed qubits and hence what could be used for the processor of

a quantum computer. But in classical computer, one also finds memory. As presented

in the beginning of this section, quantum information is more fragile than classical

information and to achieve the precision required to perform quantum computation,

it appears unavoidable to rely on error correction algorithm in the hardware. Error

correction also exist in classical computer but is reserved to system that need to preserve

their state for a very long time such as servers but not in ordinary laptops, whereas
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Figure 1.8: Artificial spin orbit coupling in a CNT based DQD:
The basic idea underlying this scheme is quite similar to the one already presented
above based on spin-orbit coupling. Once again we consider a single electron but in a
DQD. Each dot is connected to a ferromagnetic contact inducing a spin polarization
of the wave function. However as the ferromagnets magnetizations are not colinear,
neither are the quantization axes in each dot, as illustrated in a. Hence by inducing
tunneling between the two dots using an electric AC signal, the electron experiences
an oscillating magnetic field orthogonal to its quantization axis. Such a field can be

used to control the electron spin state (see b).

it appears compulsory in quantum computing. Because of that requirement, it is not

obvious to insert a memory-like part that would be different from the rest of the processor

in current "design" of quantum computers. This is because transfers to and from the

memory should not disturb the error correction operations, and usually a memory is

slow because it needs to be very well isolated in order to live long. Nonetheless the idea

of having a hardware more resilient to errors when idle remains appealing as it may

reduce the cost of error correction. This would require the possibility to either couple

or isolate the qubits from the rest of the processor in a fast manner (compared to its

lifetime and the error correction cycles). Such an operation might be envisioned in the

architecture that will be presented in 4.

In this section we have only focused on single qubit operation however a real quantum

computer requires at least two qubit operations. This coupling between two qubits can

be achieved in many ways and in the following we will focus on a single one: the use
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of an intermediate bosonic mode between the qubits. Coupling our qubit to a single

bosonic mode opens more possibilities than just coupling two qubits together, as we will

see in the following.

1.1.2 Bosonic mode interface :

Coupling a two level system to a single mode of the electromagnetic field realizes the

simplest system to study light-matter interaction. Studying such model systems was one

of the goal of the pioneering experiments carried out in cavity quantum electrodynamic.

Since then those ideas have been transposed to superconducting circuits with a lot of

success, the resulting field is known as circuit quantum electrodynamic (cQED). For

example, the strong dispersive regime that will be discussed in Chapter 2 allows to read

out in a non destructive manner the state of a transmon qubit with a high precision.

Replacing the superconducting qubit used in those circuits by a quantum dot based one

gave birth to the field of mesoscopic quantum electrodynamic (mQED). This field has

recently achieved the strong coupling [57, 58, 59], that will also be discussed in details

in Chapter 2. In the strong coupling regime, an excitation can be exchanged many

times between the qubit and the bosonic mode before it is lost. This allows to convert

information between two kind of carriers and to transfer information between distant

qubits. Those experiments are an important step towards generalizing more complex

experiment coming from the field of cQED to mQED.

The idea of using a common bosonic mode to couple two distant qubits is actually quite

general and can be applied to many different platforms. Superconducting qubits coupled

through microwave photons is obviously one [14]. But experiments trying to couple for

example NV-centers in diamond to spin-waves [60] or superconducting qubits to acoustic

waves also exist [61], and could open new possibilities for distant qubits coupling. In

mQED, interaction between distant single quantum dots (SD) (which are not used as

qubit) has also been demonstrated [62].

It should also be noted that the logic can be reversed. The microwave field of a cavity can

be used to probe a transmon state, but actually the transmon can also be used to probe

the state of the cavity photons [66]. This reverse approach is particularly interesting to

probe non classical states of light in a cavity mode. It is also possible to go further and
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Figure 1.9: Experimental realization of coupling to a bosonic mode:
Here we illustrate the variety of bosonic interfaces that can be realized in solid state

systems through some experimental realizations:

1. microwave resonators can be used to coupled any mesocopic circuits to mi-
crowave light. They are at the base of cQED and mQED [7, 14].

2. micropillars [63], microdisks[64] and photonic crystals [65] can be used to
confined infra-red or visible light and enhance the coupling of nano-structure
such as optical quantum dots to light.

3. spin wave in ferromagnetic material can be used to carry magnetic excitation
in an efficient manner and couple to magnetic systems such as NV centers
[60].

4. surface acoustic wave can be generated and confined in piezo-electric materials
and coupled to superconducting qubit (as illustrated) or quantum dots [61].

use a single qubit to couple different bosonic modes but this goes outside the scope of

this work.

The techniques developed to probe qubits in the context of information processing can

provide a very powerful tool to study other systems, such as condensed matter ones. It

is those possibilities that we will discuss in the next section.
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1.2 Sensing for mesoscopic systems :

The development of more precise measurement techniques has always favored a deeper

understanding of the laws of physics. One can, for example, think about the Foucault’s

pendulum revealing the rotation of the Earth thanks to the very long time during which

its oscillation persists. Increasing a measurement precision can usually be achieved by

two means:

• increasing the measurement time, to be able to average out more effectively the

noise.

• measuring at higher frequencies in order to reduce the sensitivity of the measure-

ment to low frequency noises

Of course, those techniques are not always applicable or without shortcomings: averaging

on longer time means we are more sensitive to very low frequency drifts and we lose the

possibility to access a system internal dynamics, while increasing the frequencies may

not be possible due to some increased system sensitivity to higher frequencies, and hence

energy.

In the field of condensed matter, one measurement is of paramount importance: the elec-

tric charge. one often needs to measure a current flowing through a system, to determine

the number of charge in a structure such as a quantum dot or the charge fluctuations in

a system. In this last case, one usually think of the system as a capacitance. Current

measurements are usually confined to low frequencies (sub-GHz) due to the constraints

on the amplification. Charge sensing on the other hand can reach higher frequencies for

example through the use of single electron transistors (RF-SET). In order to filter the

noise those system are usually coupled to resonant circuits. Building on this idea, and

on the field of cQED, we will see in the next section how superconducting microwave

cavities can be used to achieve an unprecedented sensitivity. Finally, once again borrow-

ing from cQED, we will see how the idea of using a two-level ancilla system to perform

a measurement can be transposed to condensed matter.
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1.2.1 Cavity based sensing :

Microwave cavities thanks both to their high operational frequencies and to their high

quality factor are very well suited to the study of condensed matter system. Their high

frequency of operation make them naturally less sensitive to low frequency noise. On

top of that, their high quality factor makes them extremely sensitive to any perturbation

in their environment.

Each mode of those circuits can essentially be described as an ideal LC resonator. In

order to preserve their low dissipative nature, they are usually coupled to mesoscopic

circuits in a capacitive manner [67, 9, 22]. The mesoscopic circuit response contains

both a reactive and a dissipative part, which can both be traced back to the charge

susceptibility of the system, i.e. the way the charge responds to a modulation of the

chemical potential. The reactive response (capacitive or inductive) can be detected as

a shift in the phase of the cavity transmitted signal. Recently this technique has been

used to achieve a record measurement of the charge susceptibility of a quantum dot both

in the Coulomb blockade regime and the Kondo regime [23]. Both those regimes will be

discussed in Chapter 2, but the point here is that this technique has allowed us to achieve

an order of magnitude better sensitivity than RF-SET based measurements. So far these

measurements have been limited to fixed frequency detection, but the development of

variable frequencies resonator [68, 58] may allow to overcome that limitation and allow

to probe the frequency response of mesoscopic circuits with unprecedented resolution.

The dissipative part of the mesoscopic circuit answer means it can also use the mode

either as a energy provider or dump. If the circuit pumps energy out of the mode, when

probing the cavity transmission it will appear as reduction in the transmission, which

is a signature of added dissipation. On the other hand if the circuit is driven out of

equilibrium the reverse process can occur, with the circuit transferring photons in the

resonator in a process known as photo-assisted tunneling. Compared to the situation

when no resonator is present, it also leads to an increase in the current. However,

because many other processes can allow tunneling (such as coupling to the phonon

bath), this photo-current is generally masked by a large background current which can

make its detection very challenging. This process can be strengthened by driving the

mode (i.e. injecting photons), which can be seen as a stimulated process, hence allowing

detection of the current for large drives. On the other hand directly detecting the photons
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Figure 1.10: Zero frequency charge susceptibility of the Kondo cloud:
Recently [23], microwave cavities have been used to probe the physics of the Kondo
regime in quantum dots. Using the setup presented in a), where a SD made out of a
CNT is embedded in a microwave cavity with its bottom gate capacitively coupled to
it, we were able to measure simultaneously the conductance of the dot and its charge
susceptibility. The exact coupling mechanism is discussed in chapter 2. The basic
idea is that the photonic field modulates the chemical potential of the dot, while
the phase of the cavity transmission is sensitive to the dot occupation, resulting
in a measurement of the charge susceptibility. This is illustrated in b). Figure
c) presents those results. While the conductance, in blue, exhibits the zero bias
peak characteristic of the Kondo effect, it is completely absent in the susceptibility
measurement. Because in that experiment, the cavity frequency was much lower
than all the energy scales relevant for the Kondo, this measurement is equivalent to

a zero-frequency measurement.

emitted in the cavity can be a much easier task. For example in a recent experiment

[22], photons associated with such a process have been detected in a situation where

the photo-current would have been of about 0.3 pA and hence unobservable in this

experiment. Furthermore, by reducing the losses in the dot circuits, one can reach a

regime in which the circuits behave like an amplification medium with sufficient gain to

build a MASER [19]. Even if such systems are unlikely to ever reach the performances

of conventional electronics in terms of spectral resolution, this experiment may prove

seminal in the study of the radiation field emitted by mesoscopic circuits. It has for

example been proposed that a Kondo dot coupled to a cavity and driven in and out

of the Kondo region at a high frequency (compared to the Kondo temperature) may

generate non-classical state of light [69].
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It must be pointed out that these techniques are not limited to quantum dot circuits

but can be extended for example to Majorana devices as we will see in Chapter 6. In

such system, it could allow to go further than the usual conductance measurement and

directly probe the self-adjoint property of the Majorana bound states.

Additionally to the sensing schemes discussed above, cavities can have other applica-

tions to condensed matter like problems. By providing means to couple different circuit

elements as previously discussed, they can be building blocks in quantum simulation

systems but also allow to use spin-like systems as probe for mesoscopic circuits. This

idea of using ancilla systems to perform high sensitivity measurements will be the focus

of the next section.

1.2.2 Pseudo-spin based sensing :

After discussing how the study of a cavity properties can be used to study a mesoscopic

system, we are now moving to a different kind of sensing not based on an harmonic

oscillator but on a two-level system. The idea here will be that the study of such a two

level system coupled to a system of interest can provide many insights in the properties

of the studied system. For example in [70], the authors propose to use a superconducting

qubit as a spectrometer. More recently, Rydberg atoms have been used as very sensitive

electrometer [71], but also to probe the electric field auto-correlation function [72]. To

present some of the schemes we are interested in, we will move away from the field of

cQED and discuss quickly how NV centers can be used for magnetometry.

NV centers are colored centers in diamond formed by a substitute nitrogen associated

with a lattice vacancy. They behave like a trapped molecule inside the diamond matrix.

The negatively charged NV centers can be associated with 6 electrons, whose the highest

two in energy form a spin 1 system. Due to hyperfine interaction the 0 and ±1 states are

split by ∼ 2.8 GHz, which allows to manipulate the spin state using microwave radiation.

The spin state can be initialized and read-out by optical means. Its main interest comes

from its large coherence at room temperature (T ∗2 > 10µs) which makes it very suitable

for magnetometry as we will see, and its small size that makes it a good local probe.
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Among the different sensing schemes possible, we will discuss three of them that can be

directly applied to mQED systems as we will see in the following. The three schemes

are the following :

• to probe DC magnetic field one can measure the energy splitting between the

two levels of spin ±1. This can be achieved either directly through a spectroscopy

measurement [73] or through a Ramsey fringes experiment (see Chapter 3 for more

details about this kind of measurement).

• to probe random magnetic fields, one can study the relaxation (T1) of the NV

center in presence of the noisy system [74, 75]. This experiment is sensitive to the

noise spectral power at the frequency of the transition studied (either |0〉 and |−1〉

or |0〉 and |+ 1〉).

• once again to probe random magnetic fields, one can also look at the decoherence

(T ∗2 )[75]. This experiment is sensitive to the noise at all frequencies. By using

more advanced pulse sequences (Hahn-echo, XY4, ...), one can filter out the low

frequency component to focus on higher frequencies.

The sensitivity of the first and last technique are limited by the linewidth of the tran-

sitions, which is why the large coherence of the NV center makes it interesting for such

sensing. The second technique is only sensitive to the lifetime of the system, and a larger

lifetime will allow to detect smaller deviations induced by the probed system.

All the above schemes can be adapted to mesoscopic circuits. In Chapter 5, instead of

probing the magnetic field, we will be looking at the occupation or charge susceptibility

of a single dot which is the simplest model system one can consider. The NV center will

be replaced by a superconducting qubit which will act as en effective two level system.

The coupling will not be a direct coupling but will mediated by the cavity.

In such a scheme, the mean number of electron in the dot will act as a DC magnetic field

and we can expect to shift the qubit frequency. This measurement should for example

allow to shed some light on the problem of charge screening in such structure. The fact

that the system has a finite charge susceptibility can be translated in a noise in the

dot occupation which can be probed through relaxometry and dephasing measurements

of the qubit. An added benefit of this scheme is that the qubit could also be used to
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probe the cavity state and know precisely the number of state in the cavity which is a

quantity which was never precisely measured in previous experiment on single dots [9,

23]. In addition, if the scheme used with Rydberg atoms to measure the electric field

auto-correlation can be transposed to the transmon qubit, one may be able to directly

probe the electronic auto-correlation function.





Chapter 2

Mesoscopic circuit quantum

electrodynamics

Mesoscopic circuit quantum electrodynamics is still a young field of research and because

of its hybrid nature it holds a lot of promises. First of all, the mesoscopic circuits them-

selves through their versatility in the fabrication process and their in-situ tunability,

provide access to a large class of physical situations. This point will be partially illus-

trated in section 2.1 where quantum dots circuits and transmon qubits will be discussed.

But more importantly, the ability to couple those circuits to microwave cavities gives

access to a broad range of light-matter interaction regimes offering diverse possibilities

ranging from the delicate probing of the circuits, to the coherent hybridization between

light and matter, or the probing of the trapped microwave light itself and the coupling

of distant circuits. How the microwave light trapped in a cavity can be described will

be discussed in section 2.2.1, while the different regimes one can reach in those hybrid

systems will be treated in the other sections of 2.2.

2.1 Mesoscopic circuits :

In a macroscopic conductor at room temperature, the behavior of electrons can be to

a large extent well described by considering the electron as a charged point object.

However we know from quantum mechanics that the electron presents a dual particle-

wave nature that can be evidenced through interference experiments [76]. When the size

33
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of circuits becomes smaller than the coherence length of the electronic wave function,

that dual nature cannot be ignored any longer. This phase coherence length is usually

very short but increases at low temperature reaching in some systems few µm below 1

K. Thanks to the advances in nano-lithography, the study of such small circuits boomed

in the 90’s.

Those circuits, in a sense, combine the best of two worlds: their behavior is quantum

in nature just like the one of a single atom but their properties can be engineered and

tuned over a wide range in ways impossible for an atom. In the following sections we

will focus on two classes of such circuits:

• quantum dots circuits in section 2.1.1 that will be used both as artificial atoms or

as model systems for condensed matter problems in this thesis work.

• superconducting qubits and more specifically the transmon qubit in section 2.1.2

that in this work won’t be used as a qubit but more as a delicate probe of another

part of the hybrid system in which it will be embedded.

2.1.1 Quantum dots :

Quantum dots are zero-dimensional objects in which confined electrons have a discrete

energy spectrum reminiscent of an atom. They can be built out of single molecules, car-

bon nanotubes (CNT), graphene, semi-conducting nanowires or two-dimensional elec-

tron gas (2DEG) contacted to metallic electrodes1. For 1D materials, the presence of

the contact electrode is sufficient to confine the electron gas to 0D while for 2D material

an additional electrostatic confinement is required.

The spectrum of such artificial structures can be controlled in several ways:

• the nano-lithography techniques allow to control the geometry of the circuit, al-

lowing to realize single quantum dot or multiple quantum dots. Section 2.1.1.2

will focus on the physics of single quantum dots (SD), while section 2.1.1.3 will

deal with double quantum dots (DQD) whose behavior is close to the one of an

artificial dihydrogen molecule.
1We do not consider here optical quantum dots that do not require metallic electrodes
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• the contact electrode material can be used to alter the energy spectrum. The use of

ferromagnetic materials can be used to induce a spin-polarization of the spectrum

as will be shown in chapter 4. On the other hand, superconducting contact can

induce superconducting correlations in the system which will be needed in section

6.

• the use of electrostatic potentials applied using "gate" electrodes can be used to

control in-situ the number of electrons in the quantum dot or its coupling to the

electrodes.

The coupling of the dot to electrodes allows one to probe its spectrum through transport

measurements. This technique simply consists in applying a voltage across the dot and

vary the gate voltage to change the internal configuration of the dot. Depending on the

number of levels of the dot through which the electron can flow, the current will change

allowing to infer the properties of the circuits. At low bias voltage and for well separated

energy levels, one can resolve individual level resonances using this technique.

Among the many materials previously mentioned, this thesis work will focus on the

CNTs which are of interest notably because of their ability to form contacts with a wide

range of metallic electrodes (normal metal, ferromagnetic metals, superconductors). The

following sections will hence first discuss their properties (2.1.1.1), before moving to SD

(2.1.1.2) and DQD (2.1.1.3). However, as most of the properties of those structures do

not depend, at first order, on the host material, properties coming specifically from the

CNT will be emphasized to easily separate them from the general properties.

2.1.1.1 Carbon nanotube properties :

Carbon nanotubes are composed of one or multiple concentric cylinder of graphene. For

the sake of simplicity, but also because the fabrication technique used in this thesis

favors this kind of CNT, we will focus on single wall carbon nanotube (SWCNT), i.e.

nanotube consisting of a single graphene cylinder.

CNTs inherit many basic properties from graphene such as a mainly ballistic electronic

transport and the valley degree of freedom that will be detailed later. However, folding

the graphene sheet is not without consequences. First of all, the folding imposes periodic

boundary conditions on the electronic wavefunction, which leads to a quantization of
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the circumferential momentum. The energy separation ∆band between two sub-bands

with different quantized circumferential momenta is inversely proportional to the CNT

radius. For the CNTs considered in this work whose diameter is around 1 nm, the band

gap is of the order of 0.7 eV. This implies that, at low temperature, CNT transport

properties will be well described by taking into account a single band. Consequently,

at low energy, nanotubes can be considered as one-dimensional semi-conductors with a

single ballistic conduction channel, and in all the following we will focus on this single

conduction channel case.

The quantization of the circumferential momentum also implies that the momentum

space is not a plane, as for graphene, but a set of parallel lines (we will denote k‖ the

momentum along those lines, k⊥ will be the quantized circumferential momentum). The

position, orientation and spacing of those lines depends on the angle between the folding

axis and the crystal lattice axis. In momentum space, graphene has six Dirac points at

which the conduction and valence bands touch. If the allowed momentum lines fall on

the Dirac points, the CNT will have no gap just like graphene and will be considered

metallic. On the other hand, if the lines miss the Dirac points, the CNT spectrum will be

gapped and the CNT will be referred to as a semiconducting CNT. The energy minima

of the dispersion relation will be found for the k‖ closest to the Dirac point, k‖ = 0 will

be defined at this point. This is illustrated in Fig 2.1 extracted from [3].

However, even metallic nanotubes often present a narrow gap induced by curvature

or strain in the lattice. These narrow-gap nanotubes happen to be more suitable for

electronic transport experiments, as disorder tends to localize massive electrons, found

in nanotubes with larger gap [3]. Indeed, the energy dispersion of CNTs can in general

be written as :

E(k‖) = ±
√(

~vfk‖
)2

+ ∆2
gap/4 (2.1)

This spectrum is bent close to the gap conferring an effective mass to the electron which

actually increases with the gap (which justifies the above remark). However for CNTs

with many electrons (EF � Egap), the dispersion relation can be approximated by a

linear dispersion with a constant mean momentum 〈p〉 = ±~kf , stemming from the

Dirac cones. The Fermi velocity, vf ∼ 8 × 105m.s−1 [3], is one order magnitude larger

than in other semiconductors. This high Fermi velocity increases the mean free path

and the phase relaxation length of the electrons in the nanotube, as both quantities are
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Figure 2.1: Carbon nanotube spectrum:
Graphene folding axis can be described by two numbers corresponding to its direction
in terms of the two lattice vectors of graphene. This gives rises to different disposition
of the carbon atoms referred to as: armchair, zig-zag or chiral. Depending on the
folding axis, the allowed wave vectors either fall on or miss the Dirac point leading

to metallic or semi-conducting CNTs.[3]

proportional to vf . It also explains the large band separation as an intuitive argument

gives ∆band ∼ h vF
R , with R the radius of the CNT.
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Carbon nanotubes also inherit from graphene its K-K’ degeneracy2. This degeneracy

roughly correspond to clockwise/counter-clockwise rotation around the longitudinal axis

of the nanotube and adds two differents angular momenta linked to the valley K or K’.

The valley index is a priori a good quantum number, as K-K’ intervalley scattering

would either require breaking time reversal symmetry, or rely on high energy scattering

events. Nevertheless, a mixing term ∆K−K′ is empirically relevant for understanding

usual experiments (in our experiments it was estimated roughly to be of the order of

100 MHz, cf chapter 4). The lifting of the degeneracy can for example come from short

range disorder affecting the honeycomb lattice [3].

2.1.1.2 Single quantum dots :

SDs are formed by connecting a 0D semiconducting island to metallic leads allowing

electrons to jump in and out of the island. The structure can hence be biased by

applying a voltage (VSD) on one lead and keeping the second one grounded. A gate

voltage (Vg)can usually be used to tune the chemical potential of the dot and hence

the mean number of electrons on it. As a CNT is already a 1D object, a quantum

dot can be simply created by confining the electrons along the length of the CNT. In a

semiconducting CNT quantum dot, this confinement directly comes from the metallic

electrodes deposited on top of the CNT to contact it. They induce an electrostatic

confinement of the electron through two potential barriers, that appear at the interfaces

between a semi-conducting and a metallic material. These barriers, named Schottky

barriers, appear when adjusting the two work functions of the materials, and can be

tuned with the help of the electrostatic potential of a lateral gate.

In order to discuss the physics of SDs one needs to consider mainly four energy scales:

• the single particle level spacing ∆E:

The confinement of electrons in 0D leads to the quantization of energy, like in an

atom. The energy spacing can be related to the size of the structure as it sets the

allowed values of momentum. In CNTs, which are already 1D, the confinement sets

the allowed values of k‖ and the energy spacing is simply given by ∆E = hvf/(2L)

with L the length of the CNT forming the dot. For 400nm-long carbon nanotubes,

∆E ∼ 5meV ∼ 60K.
2A state near the K point has a time-conjugate state near the K’ point.
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Figure 2.2: Single quantum dot:
A quantum dot is a zero-dimensional object (dark grey), which has discrete energy
levels, separated by ∆E. In transport experiments, it is contacted to source and
drain electrodes. Each contact i ∈ (R;L) is characterized by a tunneling rate Γi/~
and a capacitance Ci. A gate electrode is capacitively coupled to the dot via the
capacitance Cg. The gate voltage Vg enables to tune the position of the energy levels
with respect to the reservoirs chemical potential. The ability to charge the dot is
basically captured by the dot total capacitance CΣ, which is the sum of CL, CR and
Cg. Standard transport measurements are performed by applying a bias voltage
VSD to the source electrode, while the current is amplified and measured through

the drain electrode.

• the charging energy U :

Because electrons are confined in a small area, adding an extra electron to an

empty orbital of the dot will cost energy due to Coulomb interaction (which is

why this energy is sometimes referred to as the Coulomb energy). However, the

more the dot is screened by nearby metallic electrodes, the more this energy cost

decreases. This result can be recovered in a circuit representation of the dot:

adding, or bringing closer metallic electrodes, increases the total capacitance of

the island to the ground which decreases the impact of adding a charge. In our

CNT devices, this energy is of the order of 10 meV.

• the tunnel rates ΓS , ΓD:

Because the contacts between the metallic electrodes and the dots cannot be per-

fect, the electrodes, that behaves as electron reservoirs, can only exchange electrons

with the dot at a rate Γ/~. This rate of exchange can be seen as a finite lifetime

of the SDs levels. Just like in atom, this means that the levels will be broadened

by this parameter. In CNTs, this parameter is not as well controlled as in other
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systems (2DEG for example), but it can still be varied on large scale using the

gate voltage allowing to explore many different regimes in a single sample.

• the thermal energy kB T :

The thermal energy of the lead electrons can also contribute to broadening the

energy levels.

As all the experiments that will be presented in this thesis have been carried out in a

dilution fridge at a base temperature of 35 mK and an electronic temperature below

100 mK, the broadening induced by the temperature will always be much smaller than

∆E and U . We will hence not discuss its impact further but one should keep in mind

that if Γ < kB T , the temperature will become the dominant source of broadening of the

energy levels.

Depending on the relative values of ∆E, Γ and U , different phenomena can be observed

in a transport experiment. Their signatures are presented in Fig 2.3 in terms of the

differential conductance G = dI
dVSD

.

• Coulomb blockade regime:

This regime is achieved when the broadening induced by the leads is much smaller

than the charging energy (Γ � U). In this regime, the electrostatic interactions

dominate and the number of electron is well defined when no level is aligned with

the Fermi seas of the leads. This corresponds to the dark blue area in Fig 2.3 which

forms diamonds. Those diamond are outlined by areas of increased conductance

where the number of electrons in the dot can fluctuate by one.

• Kondo regime:

This regime, which is the richest from a physical point of view, corresponds to a

Γ which is still smaller than the other two energy scales, but not much smaller

than U in practice. This favors some specific virtual tunnel processes which leads,

when the electrons on the dots have a net spin, to the formation of a dynamic

many-body state involving both the electrons in the leads and the dot electrons.

The spectral density of this state is pinned at the Fermi energy and has a finite

conductance. It is responsible for the appearance of a Kondo ridge, which is a

finite conductance in the middle of a Coulomb diamond which does not disperse

in gate voltage, as displayed in Fig 2.3.
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Figure 2.3: Transport regimes in a CNT based single dot:
The electronic spectroscopy of the SD often exhibits three regimes of transport :
Coulomb blockade, Kondo and Fabry-Perot, because the value of the tunnel rate
Γ varies with the gate voltage Vg. The corresponding characteristic features in a
conductance colour plot versus gate and bias voltage are respectively : Coulomb di-
amonds, Kondo ridges and Fabry-Perot checker-board. For each regime a schematics
of the QD recalls the relevant parameter hierarchy between the level energy spacing
∆E, the Coulomb energy U and the tunneling energy Γ. The Kondo resonance
results in an effective peak in the density of states at zero-bias, whose width defines
the Kondo temperature TK . Here the thermal energy is the smallest energy scale.

Extracted from [77]

• Fabry-Perot regime:

This regime is achieved when the tunneling dominates over the charging energy.

In this case, electronic waves interfere just like in a Fabry-Perot interferometer

leading to a checker-board pattern in the differential conductance.

In the following we will focus on the Coulomb blockade and the Kondo regime that will

be of interest in chapter 5.

Coulomb blockade:

A conductance map, such as the one shown in Fig 2.3, provides a way to estimate the



Mesoscopic circuit quantum electrodynamics 42

parameters ∆E, U , Γ and to relate the macroscopic parameters (VSD, Vg) to the dot

energy profile. Such a link is essential to understand the experiments.

In the Coulomb blockade regime, because the tunneling rates are the smallest energy

scale and hence the levels are well separated, the number of charge on the dot is a good

quantum number. Using an electrostatic model of the system, we can, in a first time,

explain the shape of the Coulomb diamond in order to extract the charging energy U ,

the level spacing ∆E and understand how the Vg and VSD influence the dot. We can

then relate the shape of the Coulomb peaks, which separates the diamonds at zero bias,

to the temperature and tunneling to complete the picture.

Stability diagram: Coulomb diamonds:

In our electrostatic model, we will make the following assumptions (which defines the

constant interaction model):

• the single particle spectrum is left unmodified by the interaction. All energy levels

have an energy εi, and for two consecutive levels εi+1 − εi is equal either to 0 or

∆E depending on whether or not the levels are degenerate.

• the effect of electron-electron interaction is fully captured by the total capacitance

of the system CΣ = Cg + CS + CD, using the notations of Fig 2.2, with U = e2

2CΣ

In this model, the total energy of the system with N electrons is (we take e > 0):

E(N) =
∑
i

εi + U

(
N − Cg Vg + CL VL + CR VR

e

)2
(2.2)

The second term is electrostatic and can be computed by considering the energy stored

in each capacitor and the work done by the voltage sources.

A given charge configuration will be stable as long as transferring an electron to/from the

dot from/to one of the lead is not favorable. This condition gives a set of four inequalities

(2 for each lead) defining the Coulomb diamonds in the VSD, Vg plane as illustrated in

Fig 2.4. Those inequalities can be written in a compact form by introducing the dot
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chemical potential µ(N):

µ(N) = E(N + 1)− E(N) = εi+1 + 2U
(
N + 1/2− Cg Vg + CS VSD

e

)
(2.3)

µ(N) + e VSD > 0

−µ(N − 1)− e VSD > 0

µ(N) > 0

−µ(N − 1) > 0

(2.4)

As experimentally, we will always bias the dot by applying VSD to the source electrode

and keep the drain electrode grounded, the above inequalities are written with that

convention in mind.'

&

$

%

e
V

S
D

eVg

NN-1 N+1

I>0

I<0

D   N+1 μN = (-e)Vsd

μN = 0

I=0

I=0

N+1  S

S   N+1 
N+1  D

Figure 2.4: Charge stability diagram of a single dot for an asymmetric bias voltage
VS = VSD and VD = 0:

The blue lines correspond to the set of conditions (µ(N) = −eVSD, µ(N) = 0) (see
equation 2.4). Within a diamond delimited by these lines, the charge in the dot is
fixed, and takes an integer value labeled in green. The direction of single-electron
transfer is written in orange. It defines the sign of the resulting electronic current.

The positive and negative slopes are respectively Cg/(CΣ − CS) and −Cg/CS .

The first point of interest in the diagram of Fig 2.4 is the top corner of the Coulomb

diamond defined by µ(N) = 0 and µ(N−1) = −e VSD and marked by a black dot. At this

specific point, solving the previous equations leads to e VSD = Eadd(N) = εN+1−εN +U ,



Mesoscopic circuit quantum electrodynamics 44

which is nothing else than the energy it costs to add 1 electron to the dot when it already

contains N electrons. We can hence directly read that energy from the bias voltage.

A second point of interest is the distance ∆Vg(N) between the two corners on the VSD =

0 line. Those points are defined respectively by µ(N−1)|VSD=0 = 0 and µ(N)|VSD=0 = 0.

Because the chemical potential is zero, electron can freely flow through the quantum

dot at those points, which leads to a finite conductance, i.e. a peak in the measured

conductance, hence their name of Coulomb peaks. Computing ∆Vg(N) using the above

results yields:

∆Vg(N) = 1
eCg/CΣ

(εN+1 − εN + U) (2.5)

The ratio αg = Cg/CΣ, often referred to as the gate lever-arm, is an important parameter

as it allows to interpret a gate voltage in terms of an effective chemical potential change

on the dot. From the above calculation, we see that it can be measured by comparing

the width of the Coulomb diamond to its height. Finally the measure of the slope of

the diamond allows to recover the last unknown capacitances as the slopes are given by

Cg/(CΣ − CS) and −Cg/CS .

In the plots presented in Fig 2.3, one can notice that the Coulomb diamonds are not

of equal width. Three narrow diamonds are followed by a large one. This feature is

actually specific to CNT based devices. In CNTs, each energy level is generally four times

degenerate. This comes from the combination of the spin-degeneracy (at zero magnetic

field), and the valley degeneracy already mentioned in section 2.1.1.1. This means than

when adding electrons to a SD made out of a CNT, starting from a completely full level,

one has to pay :

• ∆E + U to add the first electron

• U for each of the next three as the level is degenerate

• ∆E + U for the fifth and so on

This unequal spacing of the energy levels explain the grouping by four observed in the

conductance pattern.

To go further and determine the value of the tunneling, we cannot use any longer only

electrostatic arguments and we will introduce the Anderson Hamiltonian to describe the

system.
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Conductance of a Coulomb peak for kB T � Γ:

Close to a Coulomb peak the charge of the dot is not well defined anymore and can

fluctuate on a time scale typically given by the tunnel rates. This gives rise both to a

finite conductance and a finite charge susceptibility of the system. To compute those

quantities close to zero bias, we will use a simple model. As all the other energy scales are

very large, we will consider a single orbital of the dot, so that we can use the Anderson

model [78]. For simplicity, we disregard the spin degree of freedom so that the dot can

either empty (N=0) or occupied by one electron. Therefore the Coulomb interaction

does not come into play. Finally we assume that the tunnel couplings between the dot

and the leads does not depend on the wave-vector k of the electrons in the leads.

H = εd d̂
†d̂︸ ︷︷ ︸

Ĥdot

+
∑

a∈{S,D}

∑
k

εa,k ĉ
†
a,k ĉa,k︸ ︷︷ ︸

Ĥleads

+
∑

a∈{S,D}

∑
k

ta ĉ
†
a,kd̂+ t∗a d̂

†ĉa,k︸ ︷︷ ︸
Ĥtunnel

(2.6)

In this Hamiltonian, d† (resp c†a,k) creates an electron in the dot (resp in the lead a with

a momentum k).

One method to derive the conductance of the system is based on the master equation.

Even though it describes only the sequential tunneling limit (Γ� kB T ) and is therefore

limited to temperatures larger than the tunnel rates in principle, we will present its

derivation, as we will use similar derivations numerous times in this work. To establish

it, we will compute the evolution of the density matrix up to second order in the tunnel

constant (ta) and trace on the state of the leads. We will work in the interaction

representation which is defined as follow:

Ĥint(t) = ei(Ĥdot+Ĥleads)tĤtunnele
−i(Ĥdot+Ĥleads)t (2.7)

ρ̃(t) = ei(Ĥdot+Ĥleads)tρe−i(Ĥdot+Ĥleads)t (2.8)

ĉa,k(t) = e−i εa,kt/~ĉa,k (2.9)

d̂(t) = e−i εdt/~ĉa,k (2.10)

i~
dρ̃

dt
=
[
Ĥint, ρ̃

]
(2.11)

with ρ the density matrix of the system in Schrodinger representation.
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We can integrate formally equation 2.11:

ρ̃(t) = ρ̃(t0) + 1
i ~

∫ t

t0

[
Ĥtunnel(t′), ρ̃(t′)

]
dt′ (2.12)

and re-inject the result in the same equation to get a second order equation in the

tunneling [79].

dρ̃

dt
= 1
i ~

[
Ĥtunnel(t), ρ̃(t0)

]
︸ ︷︷ ︸

=0 ρ is factorized at t0

− 1
~2

∫ t−t0

0

[
Ĥtunnel(t),

[
Ĥtunnel(t− τ), ρ̃(t− τ)

]]
dτ (2.13)

In this equation we can eliminate the first order term by considering an initial state in

which the density matrix is factorized.

We can now take the partial trace on the state of the leads. However if the two systems

become entangled there is no easy way to perform that computation. We would hence

like to neglect any correlations between the dot and the leads and assume that the

density matrix can be factored into a product of the dot and the leads density matrices

at all times. Can we do it ? Correlations between the dot and the leads build up

because of the tunneling (ta), and we are interested in a perturbative regime in which

ta is small. However as time grows, so should the correlations which would prevent any

perturbative treatment at it would fail at long time. Nonetheless, we can perform such

an approximation because the bath itself has a finite coherence time, a finite memory.

The electronic correlations in the leads are essentially short lived (~/kB T < 1ns), so our

perturbative treatment will remain valid as long as ta/(kBT )� 1. This approximation is

known as the decorrelation approximation. In addition, based on a similar argument, we

will neglect any correlation between the two leads, such that 〈ĉ†a,k ĉa′,k〉 is zero if a 6= a′.

Those approximations, and the fact that the leads are at equilibrium, imply that the

only mean values involving the leads operators that are non-zero are 〈ĉ†a,k ĉa,k〉 = f(εa,k)

and 〈ca,kc†a,k〉 = 1 − f(εa,k) = f(−εa,k), with f(ε) the Fermi distribution. Under those

hypotheses we get:
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d Tr(ρ̃)leads
dt

=− 1
~2

∫ t−t0

0
Tr
([
Ĥtunnel(t),

[
Ĥtunnel(t− τ), ρ̃(t− τ)

])]
dτ (2.14)

=− 1
~2

∫ t−t0

0

∑
a,k

ei(εd−εk,a)τ/~|ta|2Tr
([
ĉ†a,k d̂,

[
d̂† ĉa,k, ρ̃(t− τ)

]])
+

e−i(εd−εa,k)τ/~|ta|2Tr
([
d̂† ĉa,k,

[
ĉ†a,k d̂, ρ̃(t− τ)

]])
dτ (2.15)

At this stage we will have a convolution product which is cumbersome to treat. But,

because the density matrix evolves only because of the tunneling and because the cor-

relations of the bath dies quickly selecting a short time window, we can approximate

ρ̃(t − τ) by ρ̃(t) as the difference is of order ta/(kBT ). Furthermore, such a treatment

can only be valid when we are interested in times long compared to the correlation time

of the bath. We can hence simplify the computation by considering that the duration

t− t0 is infinite. Furthermore, we will replace the discrete sum over the wave-vectors by

an integral over energy (with a constant density of state ν) and, assume that the tunnel

barrier does not depend on energy which is a very reasonable approximation for CNTs,

leading to:

dTr(ρ̃)leads
dt

= − π

~2

∑
a,k

δ(εd − εa,k)|ta|2Tr
([
ĉ†a,k d̂,

[
d̂† ĉa,k, ρ̃(t)

]]
+
[
d̂† ĉa,k,

[
ĉ†a,k d̂, ρ̃(t)

]])
(2.16)

= π ν

~2

∑
a

|ta|2f(εd + e Va)
(
2d̂†ρ̃(t)d̂− d̂d̂†ρ̃− ρ̃d̂d̂†

)
+ f(−(εd + e Va))

(
2d̂†ρ̃(t)d̂− d̂d̂†ρ̃− ρ̃d̂d̂†

)
(2.17)

By projecting on the empty and occupied state of the orbital, we obtain a master equa-

tion for the probability for the dot to be empty (P0) or occupied (P1). We could have

derived the same set of equation from probabilistic consideration and obtained the rates

using the Fermi golden rule Γ±a = 2π ν
~2 |ta|2f(±(εd + e Va)):

dP0
dt

=
∑

a∈{S,D}
Γ−a P1 − Γ+

a P0 (2.18)

dP1
dt

=
∑

a∈{S,D}
Γ+
a P0 − Γ−a P1 (2.19)
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The above approximations lead to an evolution of the density matrix controlled by

the Γs and in which the typical time for the leads is given by the temperature. It is

hence common to rephrase the above validity condition under the form Γ = π ν
~2 |t|2 �

kB T . This formulation is more correct when considering the approximation ρ̃(t− τ) =

ρ̃(t) as densely packed levels would induce a non-negligible evolution. However in the

decorrelation approximation it is really ta that matters.

Using those equation we can then compute the mean occupation of the dot, using the

conservation of the probabilities, and the current through a simple balance performed

either on the source or drain contact (P0 + P1 = 1 and
dP0/1
dt

= 0).

P0 =
∑
a Γ−a∑

a Γ−a + Γ+
a

P1 =
∑
a Γ+

a∑
a Γ−a + Γ+

a
(2.20)

I = e

~

(
Γ+
S P0 − Γ−S P1

)
= e

~
Γ+
SΓ−D − Γ+

DΓ−S∑
a Γ−a + Γ+

a
(2.21)

In this regime the only energy scale leading to a broadening of the features is the thermal

energy, the mean occupation n of the dot is given by P1 and is equal to:

n = N + f(εd) = N + 1
2 −

1
2 tanh

(
εd

2kbT

)
(2.22)

For our case of interest where VS = VSD and VD = 0, we get the following the current :

I = e

h

ΓSΓD
ΓS + ΓD

(f (εd + eVSD)− f (εd)) (2.23)

In the low bias regime VSD � kB T , the current through the dot writes I = GV with

the low-bias conductance :

G = e2

h

ΓSΓD
ΓS + ΓD

1

4kBT cosh2
(

εd
2kBT

) (2.24)

This corresponds to a symmetric peak centered on εd = 0. Its maximum is a fraction of

the conductance quantum GQ = e2

h
, which is equal to 1

16
Γ
kBT

for symmetric tunneling
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energies Γ = ΓL + ΓR. The Full Width at Half Maximum (FWHM) in energy units is

4kBT arccosh
(√

2
)
≈ 3.5 kBT .

In practice, our experiments are mostly in the regime kBT . Γ. Equation 2.24 for the

conductance remains interesting in that it can give an upper bound for the electron

temperature. However this motivates a more detailed treatment of this model as, given

that the lifetime of an electron in the dot is limited by Γ, we would expect to find Γ in

the linewidth of the level.

Conductance of a Coulomb peak for kB T � Γ:

The approach we will present now aims at taking into account the fact the tunneling

can be a coherent process when kB T < Γ. The systematic approach to derive the

properties of the system would be to use Green’s functions. We will however use a less

general method based on Heisenberg picture for the sake of simplicity.

We start by deriving the evolution of the dot and leads operators in the Heisenberg

picture:

d ĉa,k
dt

= i

~
[
Ĥ, ĉa,k

]
(2.25)

= −iεa,k
~
ĉa,k(t)− i

t∗a
~
d(t) (2.26)

d d̂

dt
= −i

εd
~

+ i
∑

a∈{S,D}

∑
k

ta
~
ĉa,k(t)

 (2.27)

At this stage we can formally integrate the equation on ĉa,k(t) and re-inject it in the

equation of d(t).

ĉa,k(t) =e−i εa,k(t−t0)/~ ĉa,k(t0)− i t
∗
a

~

∫ t

t0
e−i εa,k(t−τ)/~ d̂(τ) dτ (2.28)

d d̂

dt
=− i ε̃d

~
d̂(t) + i

∑
a∈{S,D}

∑
k

ta
~
e−i εa,k(t−t0)/~ĉa,k(t0)

−
∑

a∈{S,D}

∑
k

|ta|2

~2

∫ t

t0
e−i εa,k(t−τ)/~ d(τ) dτ (2.29)



Mesoscopic circuit quantum electrodynamics 50

To simplify this expression further, we will express d(t) at zeroth order in tunneling and

re-inject the result under the time integral. By integrating formally, the time evolution

of d(t) dropping the tunneling we get d(t) = e−i εd (t−t0)/~d(t0). We are now left to

compute A =
∑
a∈{S,D}

∑
k
|ta|2
~2
∫ t
t0
e−i εa,k(t−τ)/~ d̂(τ) dτ

In order to do so, we introduce a regularization in the exponential (describing the fact

that in the distant past the dot and the leads have not interacted) and we perform the

change of variable u = t− τ , we also note δk = (εa,k − εd − i 0+)/~. We express d̂(t− u)

as a function of d(t) such that A becomes:

A =
∑

a∈{S,D}

∑
k

|ta|2

~2

∫ t−t0

0
e−i εa,ku/~ d̂(t− u) du (2.30)

= d̂(t)
∑

a∈{S,D}

∑
k

|ta|2

~2

∫ t−t0

0
e−i δkudu (2.31)

= d̂(t)
∑

a∈{S,D}

∑
k

|ta|2

~2

(
1− e−i δk(t−t0)

i δk

)
(2.32)

Next we need to perform the summation on k. To do so, we will assume a constant

density of state and large (infinite) and symmetric bandwidth3 , such that
∑
k →

∫∞
−∞ ρdε

and we relabel εk in ε (and hence δk in δ). Furthermore we finally set the time t0 to 0

which allows to simplify the expression of A:

A = d̂(t)
∑

a∈{S,D}

∫ ∞
−∞

ρ
|ta|2

~
dδ

1− e−iδ t

i δ
= d̂(t)

∑
a∈{S,D}

π ρ
|ta|2

~
= d̂(t)ΓS + ΓD

2 (2.33)

We can now integrate formally the equation to obtain d̂(t), to which A gives a finite

lifetime. To get slightly more compact equation we will write Γ = ΓS + ΓD.
3If the density of state was not symmetric, A would contribute an imaginary term depending on εd,

however this term would be slowly varying for a smooth density of state and would only renormalize εd.
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d d̂

dt
= −i ε̃d

~
d̂(t)− Γ

2 d̂(t) + i
∑

a∈{S,D}

∑
k

ta
~
e−i εa,kt/~ ĉa,k(0) (2.34)

d̂(t) =
∫ t

0
e−(i εd/~+ Γ

2 )(t−τ) ∑
a∈{S,D}

∑
k

ta
~
e−i εk τ/~ ĉa,k(0)dτ + e−(i εd/~+ Γ

2 )(t)d̂(0) (2.35)

The expression we obtain is non-perturbative in |ta| which may seem surprising. What is

actually hidden in that derivation is that we have resummed all the processes involving

|ta| to second order. This is equivalent to computing the self-energy to second order in

the Green’s function formalism.

As before we will compute the static properties, i.e. the long time limit. This means

that when computing mean values, we will discard all terms involving a decreasing

exponential in time. To simplify the notations we will drop the t0 argument of the c

operators and remember that it corresponds to a time where the dot did not yet interact

with the leads. Hence we can compute the lead mean values based on equilibrium

properties, in particular 〈c†εcε〉 = f(ε) and we can use Wick’s theorem. Under this

hypothesis we get:
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d̂(t) =
∑

a∈{S,D}

∑
k

ta
~

e−i εk t/~

i(εd − εk)/~ + Γ/2 ĉa,k (2.36)

n(t) =
∑

a′,a∈{S,D}

∑
k,k′

|ta|2

~2
ei(εk−εk′ )t/~

(i(εd − εk)/~ + Γ/2) (−i(εd − εk′)/~ + Γ/2) ĉ
†
a,k ĉa′,k′

(2.37)

〈n(t)〉 =
∫ dε
π ~

Γ/2
(ε− εd)2/~2 + (Γ/2)2 f(ε) (2.38)

〈n(t)n(t− τ)〉 = 〈d†(t)d(t)d†(t− τ)d(t− τ)〉

=
∑

a1,a2,a3,a4∈{S,D}

∑
k1,k2,k3,k4

t∗a1 ta2 t
∗
a3 ta4

~4 〈ĉ†a1,k1
ĉa2,k2 ĉ

†
a3,k3

ĉa4,k4〉

ei(εk1−εk2 )t/~ei(εk3−εk4 )(t−τ)/~∏
k∈{k1,k3}

∏
k′∈{k2,k4} (i(εd − εk)/~ + Γ/2) (−i(εd − εk′)/~ + Γ/2)

(2.39)

=
∫ ∫

dεdε′
Γ2

4π2 ~2
f(ε)f(ε′) + f(ε)f(−ε′) e−i(ε′−ε)τ/~∏

ξ∈{ε,ε′} ((εd − ξ)2/~2 + Γ2/4) (2.40)

(2.41)

We recover as expected a Lorentzian shape in energy for our level with a lifetime Γ. And

we can also compute the charge correlation directly. This quantity will be of interest

when coupling the system to a cavity and in chapter 5. The differential conductance
∂I
∂Vsd

corresponds, at zero bias, to the transmission through this orbital state, and can

be considered as a Breit-Wigner resonance across the quantum dot with a finite lifetime

Γ and transition rates in and out ΓS , ΓD:

G = e2

h

4ΓSΓD
Γ2 + 4ε2d

(2.42)

The maximum conductance is a fraction of the conductance quantum, which is set by

the asymmetry between source and drain tunnel energies. In the fully symmetric case,

the conductance reaches e
2

h
. For degenerate levels where interactions come into play,

Coulomb peaks qualitatively have the same features : Gmax ∼
e2

h
and FWHM ∼ Γ.

The conductance cannot be calculated exactly by analytical methods in this many-

body situation. Numerous theoretical approaches are currently used to treat many-

body problems approximately. In practice, experimental Coulomb peaks are often fit
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by a Lorentzian, knowing that height and width are renormalized by interactions. The

Lorentzian shape assumption is convenient, and it is a rather good approximation, if

the peaks are well separated, which is an hypothesis in our single non-degenerate level

approximation.

However when the tunneling rates becomes similar to the charging energy, this approxi-

mation cannot remain valid and new physical processes can appear such as cotunneling

and Kondo physics. Both processes lead to unexpected charge transfers through the dot

in areas where the charging energy should prevent it. Quantum mechanics allows short-

lived virtual states associated with non-energy conserving transitions whose lifetime is

related to the energy conservation violation by Heisenberg relations : ∆E∆t ≥ ~/2. In

the case of a dot, tunneling leads to the temporary addition of an electron to the dot

which costs U . If the tunneling rates are large enough, the electron can exit the dot,

which leads to a neat current. This process is however weak and cannot explain the high

conductance (G ∼ e2/h) observed on a Kondo ridge, which we will briefly discuss in the

next paragraph.

Kondo regime:

The Kondo effect is not specific to quantum dots circuits. It was first observed in

1930’s in metal containing dilute magnetic impurities [80], as an increase of the resis-

tance when the temperature decreases below a critical temperature (∼ 10 K). This fact

was puzzling as all the scattering phenomena (electron-electron, electron-phonon) are

suppressed when the temperature decreases. It is only in the 1960’s that a theoreti-

cal explanation was proposed by Kondo [81]. He related the increase in resistance to

an anti-ferromagnetic interaction between the magnetic impurities and the conduction

electrons leading to the formation of a localized many-body state around the magnetic

impurity. The conduction electrons being involved in those states were not anymore

available to carry a current hence leading to the observed increase in resistance.

The same kind of phenomenon can be uncovered in any system in which an isolated

spin is coupled to a fermionic reservoir. In particular in quantum dots, when the last

available orbital hosts a single electron, and the chemical potential is tuned in a Coulomb

diamond, we do have a single spin 1/2 coupled to fermionic reservoirs through the tunnel

coupling. The advantage of quantum dots is, once again, their tunability which allows

to explore situations not accessible in bulk materials and make them interesting model
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systems to study condensed matter problems. One can also consider more exotic systems

such as Kondo related to spin 1 [82], or to a pseudo-spin related to an orbital degeneracy

[83]. In the following, we will give a brief description of how one can relate the Anderson

model to the Kondo problem.

Anderson Hamiltonian and the Kondo problem:

In order to describe the Kondo physics, we will now include the spin degree of freedom

in the Anderson Hamiltonian and the charging energy. We will index the spin using σ

and we introduce n =
∑
σ d̂
†
σd̂σ the total number of electron on the dot (0, 1, 2 in this

case). We will note the energy associated to each occupation En with n the occupation.

We consider a situation without magnetic field such that the spin states are degenerate

and with spin independent barriers . The Hamiltonian reads:

H =
∑
σ

εd d̂
†
σd̂σ + U

2 n(n− 1) +
∑

a∈{S,D}

∑
k,σ

εa,k ĉ
†
a,k,σ ĉa,k,σ+

∑
a∈{S,D}

∑
k,σ

εa,kta,k ĉ
†
a,k,σd̂σ + t∗a,k d̂

†
σ ĉa,k,σ (2.43)

We consider a situation in which εd is tuned in such a way that 〈n〉 = 1. Specifically, we

focus on E1 = εd = −U/2. In this case, the closest states in energy (empty or doubly

occupied) are both distant of U/2 (E0 = E2 = 0). However, as mentioned in the above

discussion about co-tunneling, transitions involving virtual states exist. Those come in

two flavors: one inducing spin-flips (presented in Fig 2.5) and the other conserving the

spin of the electron on the dot.

In order to describe that system, it is interesting to derive an effective Hamiltonian,

limited to the single occupation subspace at it is the most relevant here, and treat the

impact of the other dot occupancy in a perturbative manner. Schrieffer and Wolf [84]

proposed a general method to derive such Hamiltonians based on a canonical transfor-

mation Heff = eiSHe−iS . The matrix S is chosen hermitic (to make the transformation

unitary) and such as to cancel the first order terms in the tunneling when expanding

the transformation using the Baker–Campbell–Hausdorff formula. The transformation

is then truncated to second order in the tunneling to obtain the effective Hamiltonian.

Applying this method to the Anderson Hamiltonian yields :
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Figure 2.5: Spin-flip processes leading to the Kondo cloud formation:
Starting from a dot singly occupied, two processes can lead to a spin flip through
two tunneling events. First (depicted in yellow), an extra electron can enter the dot
leading to a virtual state with an energy higher by U compared to the initial state.
The electron that was on the dot first can then exit. In the second process (depicted
in pink), the electron in the dot, first, leaves the dot and is replaced by an electron
from a lead. Are depicted here only the process involving both leads and inducing
a spin-flip, however equivalent processes involving a single lead and/or no spin-flip
exist but only spin-flip processes contribute to the anti-ferromagnetic interaction

which results in the Kondo effect.

Heff = Hd +Hleads +Hscattering (2.44)

with :

Hscattering =
∑

aa′∈{S,D}
Ja,a′

(−→̂
s a,a′ .

−→̂
S

)
+

∑
kk′,aa′,σ

Waa′ ĉ
†
a,k,σ ĉa′,k′,σ (2.45)

This Hamiltonian involves the dot spin 1
2
−→̂
S and the local spin density of itinerant

electron
−→̂
s a,a′ =

∑
k,k′,σ,σ′ c

†
a,k,σ

−→̂
σ σσ′

2 ca′,k′,σ′ . Both its terms come from second-order

tunneling involving empty and doubly-occupied virtual states, as illustrated by the ex-

pressions for the scattering energies :

Ja,a′ = 2
(

tata′

E2 − E1
+ tata′

E0 − E1

)
= 2Utata′

(εd + U) (−εd)
> 0 (2.46)
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and

Wa,a′ = −1
2

(
tata′

E2 − E1
+ tata′

E1 − E0

)
= (2εd + U) tata′

2 (εd + U) (−εd)
> 0 (2.47)

However the two terms account for different scattering processes depending on whether

or not they induce a spin flip. The first term of (2.45) is called the Kondo Hamiltonian

and expresses an anti-ferromagnetic spin-spin interaction between the dot spin and the

local spin density of itinerant electron. It involves joint dot and lead electron spin-

flips, while the second term is independent of spin and acts as a potential scattering.

At εd = −U/2, only the anti-ferromagnetic term survives and we are left a single spin

coupled to leads. The coupling term favors the emergence of a singlet state at low

temperature which, because it is delocalized across both leads, can very efficiently carry

a current.

Current flowing through the device is related to tunneling rates between reservoirs, which

can be calculated perturbatively with respect to Hscattering. To first order in Hscattering,

the tunneling amplitude is given by the standard co-tunneling formula. However, when

computing the tunneling amplitude to second order in Hscattering (fourth order in tun-

neling matrix elements), the spin-flip scattering term causes a divergence below a certain

energy kBTK = De
−1
π (U + εd) (−εd)

ΓU , defining the Kondo temperature TK . In this last

expression, D is the bandwidth on which the DOS is assumed constant. Since we do

not know D, we cannot predict a priori the Kondo temperature of our system. This

low-energy divergence is caused by the spin-flip scattering term.

This temperature is the only relevant energy scale to the Kondo physics and dictates

the width of Kondo ridge with respect to bias voltage, its behavior in temperature and

also at what energy scale charge fluctuations are susceptible to appear. The divergence

encountered in the computation of the conductance is actually quite general and prevents

one from treating the Kondo in a perturbative manner most of the time. However

numerical techniques, based on the renormalisation group developed by Wilson [85],

allow to properly take into account all energy scales and computes both the conductance

and the charge susceptibility of the Kondo cloud.
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2.1.1.3 Double quantum dots :

A double quantum dot (DQD) consists in two quantum dots tunnel coupled to each

other. They are usually in series with the leads to which they are contacted, meaning

that one lead is contacted to one dot and the other lead to the second dot[86], even if

one finds cases where each dot is contacted to both leads [87] or to different drains [88].

In the following, we will focus only on the usual series version and label our dots either

L or R (see Fig. 2.6 c).

Each dot chemical potential can be tuned using a local gate voltage Vg(L/R) and is

characterized by its coupling to its lead ΓL/R and its on-site charging energy UL/R.

To describe the coupling between the two dots we need to introduce two additional

parameters :

• Um: the mutual charging energy describing the Coulomb interaction between elec-

trons trapped in different dots.

• t: the tunneling between the two dots which will hybridize the orbitals to form an

artificial molecule.

When each dot can be considered in the Coulomb blockade regime and when the tun-

neling between the dots is negligible, one can determine the charge stability diagram

as a function of the gate voltage using electrostatic arguments similar to the one used

for the single dot case. This yields a honey-comb pattern as presented in Fig 2.6. In

each cell, the number of electron in each dot is fixed and no current can flow through

the device. On the lines separating two stable areas, one level of one dot is aligned

with the Fermi seas of the leads (at small bias) which allows current to flow through co-

tunneling processes. In such a situation, the current is limited by the coupling between

the resonant level and the (far/near) lead. The asymmetry in conductance between the

horizontal and vertical lines allows to estimate the asymmetry between the tunnel cou-

plings. Finally, close to the area where four areas should join, one can notice a splitting

related to the mutual charging preventing to the states (N, M) and (N+1, M+1) to be

degenerate. The two resulting corners are distant of Um and are called triple points

because, at the lowest point in the diagram, the states (N, M), (N+1, M), (N, M+1)

(respectively (N+1, M+1), (N+1, M), (N, M+1) for the other point) are degenerate in
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energy allowing energy conserving processes to carry current. As a consequence, it is at

the triple points that one observes the highest conductance at low bias. When working

close to the triple points area, we will prefer, to the natural gate voltage axes, the axes

εΣ and εδ defined, respectively, along the line joining the triple points and orthogonal

to it as illustrated in Fig. 2.6b.'
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Figure 2.6: Double quantum dot stability diagram:
a) Experimental double dot stability diagram measured by tunnel spectroscopy. The
stable charge numbers are indicated in blue, the triple points and co-tunneling lines
discussed in the main text in green. b) Zoom on the triple point area illustrating
the impact of the tunneling and defining the axes εδ and εΣ used to describe the
charge qubit. c) Schematic of the DQD levels in the area of the triple points in the

coherent regime.

When the tunneling t becomes larger than the thermal energy, one cannot neglect any-

more its impact. In this regime called coherent regime, the tunneling will hybridize the

orbitals of the single dots to give rise to molecular orbitals. This effect will be stronger
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the closer in energy the single dot orbitals are. Hence, the area of the triple points

will be the more strongly modified. The co-tunneling lines will actually bend and their

splitting will become E = Um +
√
ε2δ + t2 in the εΣ direction. If we focus only on the

area between the triple points, the total number of charge in the DQD is frozen. The

hybridization, resulting from the tunneling, leads to the formation of molecular bond-

ing (B) and anti-bonding (AB) orbitals in the DQD, with an energy splitting
√
ε2δ + t2.

Those two states can be used as qubit, coding the logical 0 in the bonding orbital and

the 1 in the anti-bonding orbital.

This qubit, often referred to as charge qubit, can be manipulated using the gate voltage

used to control the DQD. For a t in the GHz range, applying a resonant modulation

on the εδ axis allows two-axis manipulation of the qubit by varying the phase of the

micro-wave signal. Its state can then be read either through DC current measurement,

or charge sensing.

However, in all experimental realizations of such qubits, the observed coherence time

T ∗2 was always of the order of few ns (GaAS [89, 90, 91]; Si [92], CNTs [13]). In all

these experiments, which differ by their host material and device implementation, the

common limiting factor is the charge noise. The charge noise arises from local electronic

jumps between defects leading to uncontrolled fluctuations of the gate potential and

hence of the parameter εd at low frequency. The charge noise spectrum is in 1/f with

an associated density of about 10−4e/
√
Hz at 1 Hz in most materials. To improve the

coherence time, one can try to find a sweet spot at which the first order contribution of

the noise vanishes. In the charge qubit, it corresponds εδ = 0. However, the previous

values were obtained at this point showing that the charge noise impact is still very large

and make qubits with low coherence of those systems.

2.1.2 Superconducting circuits :

Superconducting circuits built on non-dissipative elements such as capacitance, induc-

tance and Josephson junction (JJ) can be used to realize many functions such as high-

quality resonators (that will be discussed in section 2.2.1), parametric amplifiers (JPA

[93, 94], JPC[95]), and qubits. The goal of this section is to introduce the Josephson

junction (JJ) and the transmon qubit which will be used in chapter 5 as probe.
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2.1.2.1 Josephson junction :

The JJ is a superconducting-insulator-superconducting junction with a thin enough

insulating layer as to allow Cooper pair to tunnel through it. The tunneling of Cooper

pair gives rise to a supercurrent depending on the superconducting phase difference

(φ(t)) across the junction [96] :

I = I0 sin(φ(t)) (2.48)

where I0 is the junction Josephson current. In the presence of a voltage V across the

junction the phase evolves according to:

~
dφ

dt
= 2 e V (2.49)

Taking the derivative of equation 2.48 and using 2.49 we get the equation for the AC

Josephson effect and deduce the inductance of the junction from Faraday’s law (V =

L İ):

İ = 2 e V I0
~

cos(φ) (2.50)

LJ = φ0
2π I0 cos(φ) (2.51)

with φ0 = e/h the magnetic flux quantum.

This non-linear inductance is the key element needed to build anharmonic oscillators

out of superconducting circuits. One should also note that because of its shape, the JJ

also possesses an intrinsic capacitance.

One last very interesting property from the experimental point of view is the existence of

a simple relation between the room temperature resistance of the JJ and its Josephson

current. This relation, derived in 1963 by V. Ambegaokar and A. Baratoff [97], can be

written as follows for a junction with two identical superconductors:
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I0 = π∆
2Rn

(2.52)

with ∆ the superconductor gap in V, and Rn the junction resistance in the normal state.

This relation allows, through a simple measurement at room temperature, to determine

the inductance of the junction. With this value, one can predict the frequency of the

qubits we will build using it. It is also a key ingredient in tuning the fabrication process

parameters, that will be presented in 3.

2.1.2.2 Transmon qubit :

The transmon qubit is a superconducting qubit whose design derive from the Cooper

pair box (CPB). It was first introduced in 2007 in [41]. Some of its general properties

have already been discussed in chapter 1 (see Fig 1.5), here we will go in more details

and provide the required background to the discussions of chapter 5.

The main drawback of the CPB that the transmon design overcomes is its large sensi-

tivity to charge noise. Both designs share the same Hamiltonian but operate in different

regimes :

H = 4EC(n̂− ng)2 − EJ cos
(
φ̂
)

(2.53)

with EC = e2/2C the charging energy of the system determined by its total capacitance

C to the ground, n̂ is the number of Cooper-pair operator while ng is a charge offset that

can be tuned using a gate voltage in the CPB. The Josephson energy, EJ , is directly

linked to the Josephson current of the JJ EJ = I0 φ0/2π and φ is the phase across the

junction.

In order to reduce the sensitivity to charge noise, the transmon design abandons the

charge offset tuning and reduces the charging energy by increasing the system capaci-

tance such that EC � EJ . The impact of varying this ratio on the first levels energy

dispersion is recalled in Fig 2.7.

The flattening of the dispersion relation with respect to the charge number means that

charge fluctuations does not induce anymore fluctuations in the qubit energy hence
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Figure 2.7: Charge qubit dispersion as a function of EJ/EC :
The energies of the lowest 5 levels of the charge qubit Hamiltonian 2.53, in units
of the charging energy EC . For low EJ/EC ratio, we are in the Cooper pair box
regime, and the energies are parabolic functions of the offset charge ng, with avoided
crossings. As the ratio of EJ/EC is increased the levels become exponentially flatter,

as we enter the transmon regime. Figure reproduced from [41].

preventing decoherence. This problem can be treated in a fully analytic fashion by

decomposing the system on the charge states using Mathieu’s functions. This allows

to compute the full spectra presented in Fig. 2.7 [98]. This treatment allows to show

that the charge sensitivity decreases in an exponential fashion with the ratio EJ/EC .

The cost to pay, to benefit from this reduced sensitivity to charge noise, is a reduced

system anharmonicity. The anharmonicity can be deduced from the analytic treatment

but, this treatment is cumbersome and yields results that are not straightforward to

discuss, because of the special functions it involves. In the following, we will prefer a

perturbative treatment that gives very good results in the transmon regime EC � EJ ,

and will make further discussion easier.

In the large Josephson energy limit, phase fluctuation are energetically unfavorable.

This allows to consider a development of the cosine term of equation 2.53 to the lowest

non-linear order to describe the transmon. Rewriting n̂ = −i
(
EJ

8EC

)1/4 1√
2

(b̂− b̂†) and

φ̂ =
(8EC
EJ

)1/4 1√
2

(b̂+ b̂†), the Hamiltonian then takes the form of a Duffing oscillator:

Ĥ =
√

8EJ EC(b̂†b̂+ 1/2)− EJ −
EC
12

(
b̂† + b̂

)4
(2.54)
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where b is the annihilation operator for the harmonic oscillator diagonalizing the quadratic

part of the Hamiltonian.

Using perturbation theory and considering only the quartic terms of the form (b†b)2,

one can compute the energy of the nth level of the transmon (En) and from here deduce

the transition frequencies (ωn,n+1) and the anharmonicity of the qubit (α):

En = −EJ +
√

8EJ EC (n+ 1/2)− EC
12

(
6n2 + 6n+ 3

)
(2.55)

~ωn,n+1 = En+1 − En =
√

8EJ EC − (n+ 1)EC (2.56)

α = ωn+1,n+2 − ωn,n+1 = −EC/~ (2.57)

From this, we see that the anharmonicity of the qubit only decreases linearly with respect

to EC , while the charge noise sensitivity decreases in an exponential fashion. This

difference of scaling allows to choose parameters in which the charge noise contribution

will not be dominant while retaining a sufficient anharmonicity to allow single transition

addressing.

The transmon qubit, because of its size, has a naturally large electric dipole that can

be coupled to an electric field to manipulate its state. One can model this coupling by

adding in the Hamiltonian an AC electric potential V (t) = V0 cos(ω t) coupled to the

electric charge degree of freedom:

Ĥ =
√

8EJ EC(b̂†b̂+ 1/2)− EJ −
EC
12

(
b̂† + b̂

)4
+ 2β e n̂ V0 cos(ω t) (2.58)

with β the ratio between the coupling capacitance and the total capacitance of the

transmon.

In the limit EJ � EC , we can approximate n̂ using the raising and lowering operator

of the transmon (q̂ and q̂†) (rather than the harmonic oscillator ones) and compute the

coupling between the field and two transmon levels:
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gi,j =
√

2e V0
~
β

(
EJ

8EC

)1/4
〈i|q̂ − q̂†|j〉 (2.59)

gi,i+1 = e V0
~
β
√

2(i+ 1)
(
EJ

8EC

)1/4
(2.60)

The coupling term we find is transverse which means it allows to drive transitions be-

tween levels of the transmon, using a resonant signal. Looking at the transmon as a

qubit, whose state is encoded in the lowest levels, this is equivalent to a coupling in the

xy plane whose axis is actually controlled by the phase of the external drive. We hence

have two orthogonal manipulation axes allowing arbitrary control of the qubit state.

Furthermore, from the expression of the coupling, one can notice that single processes

cannot induce transition between the state 0 and 2. However two photon processes can

induce such transition, involving photons with a pulsation ωi,i+2
2 , and we will use them

when characterizing our transmons in chapter 5.

So far we have not discussed the transmon relaxation and coherence time. As will be

discussed in 2.2.3 the coupling to a cavity limits the lifetime of an atom, and it can be

the main channel relaxation of a transmon. It will actually be the situation we will be

most interested in chapter 5. The coherence on the other hand, while being ultimately

limited by the relaxation, is quite sensitive to any noise affecting the flux across the

junction. This is why we will have to magnetically shield our samples as explained in

3. It is also why we will not use flux tunable transmons which are intrinsically more

sensitive to flux noise. In those transmon, the JJ is replaced by a SQUID (two JJ in

parallel), which allows to tune the Josephson energy and hence the qubit frequency.

However the tuning range (∼ 1GHz) is too limited to be of interest in the experiments

presented in chapter 5, which is why we will not use them given their potentially shorter

coherence times.

Now that all the mesoscopic circuits, that will be used in this work have been pre-

sented, we will move to the description of the microwave resonator and their coupling

to mesoscopic circuits that we will use in our hybrid devices.
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2.2 Hybrid systems :

As already pointed out in chapter 1, microwave cavities can be used as extremely sen-

sitively probes of quantum systems, thanks to their combined high frequency and high

finesse. They have been first used in the field of cavity QED and coupled to Rydberg

atoms. Microwave radiation are centimeter scale waves which, compared to the size of

an atom, even in a Rydberg’s state, justify perfectly the dipole approximation. The

coupling can hence be written as:

Hdip = −−→D.−→E (2.61)

with −→D the atom electric dipole and −→E the electric field which is considered uniform on

the scale of the atom.

However in circuit QED architecture things are not that simple due to the screening

of the electric field by metallic electrodes. For those circuits, the confinement of the

electric field to scale much smaller than the wavelength can have a large impact on the

physical properties probed by the microwave light. The description of this coupling will

be the subject of section 2.2.2, following the theoretical model used to describe micro-

wave cavities presented in 2.2.1. We will then distinguish two broad families of hybrid

systems:

• one in which the mesoscopic circuit can be seen as closed system and behave like

an atom with a discrete set of levels.

• one in which the mesoscopic circuit is open, in that its coupling to the fermionic

leads cannot be ignored. Such circuits can model condensed matter phenomena.

The different regimes that can be reached in the case of atom like circuits will presented in

section 2.2.3. In this section we will see how the relative strength of the coupling between

the atom and the cavity, the dissipation and the energy mismatch between the atomic

transitions and the cavity frequency can lead to very different physical phenomena. In

section 2.2.4, we will focus on the type of information that can be retrieved from cavity

transmission in the case of open circuits.
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2.2.1 Microwave cavities :

The most straightforward way to design a cavity consists in having two mirrors facing

each other. The resulting system will then have quantized energy modes defined by the

length of the cavity. The width of those levels will then be related to the lifetime of the

trapped photons. These photons can either escape the cavity, because the reflectivity of

the mirrors is not perfect for example, or be absorbed by defects (either in the mirrors

or in the propagation medium). This kind of setup finds its origin in the optical domain

with the Fabry-Perot cavity.

Going from the optical domain to the microwave domain, one can build a cavity on

chip by interrupting the transmission line, which serves as propagation medium, in two

points as illustrated in Fig 2.8 for the case of a coplanar waveguide (CPW). In the CPW

case, the resulting capacitance between the two sides of the central conductor acts as a

mirror in the microwave domain. In such a configuration, the allowed wavelength are

multiple of the half-wavelength and the lowest mode electric field is concentrated in the

areas close to the capacitances.

Looking at this design from an electronic viewpoint, we can model this cavity as a dis-

tributed LC resonator. Such a model allows to extract key parameters of the resonator

from easily computed or simulated parameters (see 3 for a discussion on those compu-

tations). For example, if we consider only the first harmonic of the resonator, we can

relate the electric potential associated with quantum fluctuations in the ground state to

the total capacitance and inductance. Starting from the Hamiltonian of an LC resonator

of pulsation ωc =
√

1/(LC), expressed in term of flux and charge:

Ĥ = φ̂2

2L + q̂2

2C (2.62)

One can directly derive the charge operator and deduce from it a voltage operator V̂ :

V̂ = q̂

C
=

√√√√~ω2
c

2

√
L

C

(
â+ â†

)
= VZPF

(
â+ â†

)
(2.63)
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Figure 2.8: Schematic layout and equivalent lumped circuit representation of a
CPW cavity:

The mode depicted here, in pink, is the second harmonic of the cavity. A qubit is
placed in the CPW gap and is hence capacitively coupled to the center conductor at a
maximum of the voltage standing wave, yielding a strong electric dipole interaction
between the qubit and a single photon in the cavity. Input and output signals,
travelling in 50 Ω transmission lines, are coupled to the resonator, via the capacitive
gaps in the center line, which allow measurements of the amplitude and phase of the

signal transmitted by the cavity. Source [99]

Following [100], we can relate the total capacitance and inductance used in the previous

calculation to the inductance Ll and capacitance Cl per unit length that can be computed

for a CPW, giving VZPF :

Zc =
√
Ll
Cl

= π

2

√
L

C
(2.64)

VZPF =

√
~ω2

c Zc
π

(2.65)

As we will see in section 2.2.2, the relevant coupling between a cavity and a circuit

is electric by nature. So the larger the pre-factor found in V̂ the larger the coupling

between our systems is likely to be. We see here that one way to increase the coupling

between our systems would then be to use high-inductance resonators. Those can be

distributed as in [58] or made out lumped inductance and capacitance [101].
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The circuit model can be used to compute the coupling between the resonator and the

mesoscopic circuits, and it gives results that agrees well with experiments for transmon

qubits. However for quantum dots circuits, one has to be very careful in the modeling

of the system in term of circuits, which is why we will mostly avoid it in the following

discussion.

As before, we will focus only on the first harmonic, as all other modes will be high

enough in energy to have a negligible impact. Under this hypothesis the cavity can

be modeled by a single harmonic oscillator. In order to observe the phenomena which

will be described in section 2.2.3, such as the vacuum Rabi splitting, the mode needs

to be in the ground state or at least to contain very few excitations (~ω � kBT ).

Bringing an oscillator in its ground state can be challenging if its resonance is at low

frequency. However microwave light can reach quantum regime at temperature routinely

achievable with commercial dilution refrigerator, since 7GHz ∼ 30µeV ∼ 300mK. So

in the following, we will mostly disregard thermal excitations in the microwave field.

Starting from the Hamiltonian of an harmonic oscillator, one can describe the interaction

of the system with propagating modes at the ports of the cavity and also the dissipation,

by modeling each one as a bath of harmonic oscillator using the Caldeira-Legget model

first introduced in [102]. In the following, we will focus on transmission measurements,

so we consider two ports 1 and 2 connected to the outside world and a port L describing

internal dissipation. The starting Hamiltonian is the following:

Ĥ = ~ωc â†â+
∑

m∈{1,2,L}

∑
µ

~ωm,µ b̂†m,µb̂m,µ+

∑
m∈{in,out,L}

∑
µ

~ (â+ â†)(gm,µ b̂m,µ + g∗m,µ b̂
†
m,µ) (2.66)

Using a similar technique to the one used to derive the single dot dynamics in the

coherent regime, presented in 2.1.1.2, one can derive an equation of motion for a (see

also supplementary materials of [103]). The approximations involved in this calculation

are the following:

• the product between the coupling to each bath and its correlation time is small

allowing to perform the Markov approximation
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• as a consequence the bathes are supposed uncorrelated

• the density of state of the modes in the bathes and their couplings are assumed

constant.

This allows to write:

d

dt
â(t) = −i ωcâ(t)− κ

2 â(t)−
∑

m∈{1,2,L}

∑
µ

gme
−i ωm,µ(t−t0)b̂m,µ(t0) (2.67)

with t0 a time in the distant past at which the bathes have not interacted with the cavity

yet, and κ = κ1 + κ2 + κL with κm = 2π ρm |gm|2 where ρm is the density of states in

the bath m.

The superposition of mode from the bathes can be seen as a mode propagating towards

the cavity. By defining bm,in = 1√
2π

∑
µ e
−i ωm,µ(t−t0)bm,µ(t0), we can rewrite equation

2.67 as:

d

dt
â(t) = −i ωcâ(t)− κ

2 â−
∑
m

√
κmb̂m,in(t) (2.68)

It is important to notice that bm,in does not have the same dimensionality as bm,µ, as it

does not represent a photon but a photon flux. Given that the cavity is leaky, we expect

some outgoing photon flux too. To compute it, we can choose an initial condition far in

the future (t1) and define b̂m,out = 1√
2π

∑
µ e
−i ωm,µ(t−t1)b̂m,µ(t1). By doing so one port

at a time and computing the difference between the evolution of a we obtain in each

case, we can deduce the output field:

b̂m,out(t) = b̂m,in(t) +
√
κmâ(t) (2.69)

The whole cavity dynamics can hence be described in a simpler fashion, as sketched in

Fig. 2.9, by considering two modes at each port: one input mode and one output mode,

which is why this description of a cavity is referred to as input-output formalism.

In the following we will mostly be interested in the cavity transmission from port 1,

at which there is an input field, to port 2, where there is none. For a cavity without
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Figure 2.9: Input-output formalism:
A single mode cavity associated to an operator â is coupled to two ports: 1 and 2.
To each port we can associate an in going and out going mode describing the photon
flux and a coupling constant κ1/2. The internal losses of the cavity can be described

by a third port with only an outgoing mode and coupling κL.

any embedded circuit, we can easily compute the mean transmission in the frequency

domain by performing a Fourier transform on the mean value of equation 2.68.

i ω 〈â〉 = −i ωc 〈â〉 −
κ

2 〈â〉 −
√
κ1〈b̂1,in〉 (2.70)

⇒S21 = 〈b̂2,out〉
〈b̂1,in〉

=
√
κ1 κ2

i(ωc − ω) + κ/2 (2.71)

We recover the expected Lorentzian line shape for a Fabry-Perot cavity. We can notice

that, by measuring the spectral response of the cavity as a function of the input signal

pulsation, we can determine both the central frequency and the linewidth, which appear

in (2.71). However in order to determine fully the coupling parameters of the three

ports, a transmission measurement is not sufficient and one also needs to look at the

reflection properties.

Finally, one can note that in transmission, contrary to what happens in reflection, the

phase shift when going from low to high excitation frequencies is always π no matter the

ratio between the different couplings. However in this thesis work, it will happen to find

lower phase shifts and non-Lorentzian line shape for the transmission of the cavity. To

explain those phenomena, we will have to consider the existence of parasitic transmission
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channels that can interfere with the cavity mode. In the presence of a single parasitic

mode with a small transmission
√
Tei ζ , we can sum the contributions of the cavity and

the mode to the transmission (coupled temporal modes theory [104]). The transmission

hence reads:

S21 ' −i
√
Tei ζ +

√
κ1 κ2

i(ωc − ω) + κ/2 (2.72)

Depending on its transmission and relative phase, one can observe the signatures pre-

sented in Fig 2.10. However a single mode model does not explain the data that will

be presented in chapter 4, which suggest that multiple channels exist in this setup. But

from a single transmission measurement, we do not have sufficient data to actually fully

characterize all those modes which will hinder the analyze of those data. In addition,

those modes can couple to our circuits in uncontrolled way and it is hence very desir-

able to eliminate them. The experimental origin of those parasitic modes and how to

eliminate them will be discussed chapter 3.

2.2.2 Coupling mechanisms :

With a clear description of the cavity physics in place, we now move to the description

of the coupling between the cavity and the mesoscopic circuits embedded in it. We will

start with the case of the transmon qubit as it is simpler to treat than quantum dot

circuits.

The transmon qubit, apart from its rather small anharmonicity, is very similar to an

atom. In particular, when subject to an external electric field, the charge density will

be modified and an electric dipole will appear. However, one key difference is that, in

the case of an atom, the boundary conditions imposed on the electric field are very far

from the atom (on the mirrors basically) compared to its size. This allows to consider

the electric field homogeneous and leads to the well-known dipolar Hamiltonian Hdip =

−
−→
d .
−→
E . For a transmon, on the contrary, the ground plane is very close. However,

because we are only coupling the microwave light to macroscopic superconconducting

state, the electric potential can be considered rather homogeneous inside the metallic

islands while having sharp variations at its edges. This situation allows to use a circuit

model, as we have already done to describe the transmon, and to derive the coupling
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Figure 2.10: Fano line shape for a single parasitic mode:
The transmission of the cavity is normalized and the transmission of the parasitic
(T ) is given in unit of the cavity transmission. We observe that a parasitic mode
can induce asymmetric resonances and reduced phase shift across the resonance

of the transmon qubit to the cavity in term of capacitance ratio, as already exposed in

2.1.2.2 when considering the coupling to an electric field.

When moving to quantum dot circuits (see Fig. 2.11), the size based argument does

not change (it actually should be even more relevant). However the presence of non-

superconducting elements requires a more detailed description of the electrons behavior.

To do so, one can write the coupling in the following formal manner involving a scalar

photonic pseudo-potential (cf [105] for a full derivation):
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Figure 2.11: Electric coupling between a mesoscopic circuit and a cavity:
This sketch depicts a mesoscocpic circuit based on a nanoconductor (black) con-
tacted to reservoirs (blue) and whose properties can be controlled by local gate
voltages (green). The cavity (purple) has protrusions which shapes the electric po-
tential over the circuit. The electric field strength is encoded in yellow tones, with

darker yellow area being associated to higher field.

He−ph = −e
∫
d3r Ψ̂†(−→r )Ψ̂(−→r )︸ ︷︷ ︸

tunneling electron density

V⊥(−→r )(â+ â†)︸ ︷︷ ︸
photonic pseudo-potential

(2.73)

where the field operator Ψ̂(−→r ) includes all tunneling charges in the circuit and â is

the single cavity mode annihilation operator. The field screening related to the gate

and contact electrodes can lead to a strong spatial dependence of the scalar photonic

pseudo-potential V⊥(−→r ) over the circuit length.

This coupling Hamiltonian 2.73 is valid under two assumptions:

• the plasmon dynamics in the electrodes and their biasing circuit is much faster

than the tunneling dynamics in the mesoscopic circuit and the dynamics of the

cavity. This means that the plasmons rebalance immediately the charge locally

after tunneling events, and that the currents which screen the excess charge induced

by tunneling do not need to be treated explicitly. It is this approximation that

allows to consider only the tunneling electrons in the coupling and forget any direct
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coupling to the plasmons. This hypothesis is however not valid if, for example, the

circuit exhibits dynamical Coulomb blockade [106].

• there is no closed loop in the electronic circuit, disregarding Aharonov-Bohm-like

effect, and consequently disregarding coupling mechanisms relying on the magnetic

flux.

To gain further insight on the impact of the coupling on the circuit, we will consider

a situation in which the tunneling is weak enough so that we can decompose the field

Ψ̂(−→r ) onto the local states describing the different circuit elements.

Ψ̂(−→r ) =
∑
i,o

φi,o(−→r )ci,o (2.74)

where i indexes the circuit element being considered (lead electrode, dot) and o indexes

the state (a given wave-vector in a lead, a particular orbital in a quantum dot), which

can be described by an annihilation operator ci,o and an associated wavefunction density

φi,o.

Using the decomposition of the tunneling density on the orbitals of the nanocircuit, the

coupling Hamiltonian reads :

He−ph = hint(â+ â†) (2.75)

with :

hint =
∑
i,o

gi,oĉ
†
i,oĉi,o +

∑
oj 6=o′i′

(
γi,o,i′,o′ ĉ

†
i,oĉi′,o′ + h.c.

)
(2.76)

and :

~gi,o = −e
∫
d3r|φi,o(−→r )|2V⊥(−→r ) (2.77)

γi,o,i′,o′ = −e
∫
d3rφ∗i,o(−→r )φi′,o′(−→r )V⊥(−→r ) (2.78)

Two different coupling mechanisms appear as illustrated on Fig 2.12 both in the case of

a single and double quantum dot:
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• The term gi,o couples the photons to the charge on an orbital n̂i,o = ĉ†i,oĉi,o. Look-

ing at the full Hamiltonian, we can interpret it as a modulation of the energy level

εi,on̂i,o.

• The term γi,o,i′,o′ describes a modulation of the tunnel coupling term between two

orbitals to,i,o′,i′ ĉ†i,oĉi′,o′ . It is much smaller than the modulation of the energy levels

as it is proportional to the tunnel matrix elements between two different orbitals.'
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Figure 2.12: Cavity induced modulations of quantum dot circuits properties:
The electric field of cavity photons can modulate two kinds of properties of quantum

dots:

• the chemical potential of electrons sitting either in a quantum dot or in a lead
electrode.

• the tunnel coupling between different elements.

It should be noted that the second type on modulation is in general much weaker
and can most of the time be ignored.

In the following we will focus on the energy modulation term and forget about the

tunneling renormalization. The first thing we can remark is that, for an homogeneous

modulation, the field will not lead to any ’real’ coupling as the state of the circuit will

not be modified by a global change of the energy of all its component. We will hence

need to engineer the proper asymmetry in the energy modulation to get a coupling.

As mentioned previously, the above formalism is not appropriate to describe any kind of

magnetic coupling between the circuit and the cavity. We will not discuss those couplings

because they are in practice much weaker than electric couplings. Although many ad-

vances have been made in increasing the coupling strength in such hybrid systems [101],

the magnetic coupling to a single spin remains elusive.
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We will now focus on two limits of mesoscopic circuits: closed or atomic systems and

open systems and describe how we will engineer the coupling in both cases and describe

the resulting regimes depending on the coupling strength and dissipation in the system.

2.2.3 Atomic limit :

We have shown in section 2.1.1.3, that a DQD can be used as qubit by encoding in-

formation in its B/AB states. Following the work done in cQED on superconducting

qubit, we would like to be able to read-out the state of such a qubit using the cavity and

manipulate it using fields injected in the cavity. For that purpose, we need a transverse

coupling to the cavity field which can be obtained for instance if the cavity modulates

the detuning ε between the left and right orbitals. Furthermore, we want to keep our

electrons inside the DQD so we should avoid strong modulation of the leads energies.

To achieve this, one needs to strongly confine the electric potential on one of the two

dots. How we can do that in practice will be discussed in chapter 4 as the proposed

spin-qubit will use the exact same kind of coupling.

Both the transmon and DQD can behave as qubits, in which case the full Hamiltonian

of the system can be mapped on the Jaynes-Cuming Hamiltonian, under the hypothesis

that the rotating wave approximation (RWA) is valid :

H = ~
ωq
2 σ̂z + ~ωc â†â+ ~ g

(
σ̂+â+ â†σ̂−

)
(2.79)

where ωq is the qubit frequency, ωc the cavity frequency, g the coupling between the

qubit and the cavity, and σ± the raising and lowering operators of the qubit (going from

|g〉 to |e〉 and respectively). The levels are considered are depicted on Fig 2.13 b.

Disregarding dissipation for a time, we can identify two distinct regimes of this Hamil-

tonian (without breaking any assumption we made):

• the resonant regime : ∆qc = ωq − ωc � g.

In this regime, the atom and the cavity states are fully hybridized and we can

identify doublets of conserved total excitations in the system. This is depicted in

Fig 2.13 c.
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Figure 2.13: Non-dissipative qubit-cavity system spectrum:

a) Sketch of a qubit (grey) coupled to the cavity field (pink) with coupling
strength g (turquoise blue)

b) Level diagrams (in pulsation unit) of bare qubit (grey) and bare cavity (pink)
coupled by g

c) Energy level diagrams (in pulsation unit) in the resonant regime (∆qc = 0). In
this regime, the atom and photon states are fully hybridized and the spectrum
can be described in terms of subspaces of constant excitation numbers.

d) Energy level diagrams (in pulsation unit) in the dispersive regime (∆q[a)]c �
g). In this regime, the states are weakly hybridized and the main effect of the
coupling is to renormalize the spectrum of the cavity based on the atom state
(and reciprocally).

Uncoupled states are recalled with dashed lines and grey/pink labels on the sides.
Dressed states are represented with plain lines and labeled in blue

• the dispersive regime : ∆qc � g.

In this regime, the energy mismatch is too large to allow energy exchanges between

the atom and the photonic field. However, virtual transitions renormalize the en-

ergy states leading to a photon number dependent qubit frequency and conversely

an atom state dependent cavity frequency. This is depicted in Fig 2.13 d.

Relaxation and dephasing in both systems will broaden the levels as we see them by
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spectroscopy. As a consequence, the effect of the coupling as described above will be

hidden if decoherence rates are larger than the coupling, as basically both systems will

relax faster than they interact.

2.2.3.1 Strong coupling regime:

In the case of the resonant regime, when the coupling is larger than the losses in both

the atom and the cavity, we reach the so-called strong coupling regime. In this regime,

an excitation can be exchanged several times between the atom and the cavity before

being lost. This has a quite striking signature in the spectrum of the cavity: the cavity

transmission peak is split in two peaks distant of ∼ 2 g, in the single-photon limit.

We can recover this result by diagonilizing the system Hamiltonian in the absence of

dissipation. We can also go further and compute the cavity transmission using the input

output formalism, as presented below.

We start from the Jaynes-Cumming Hamiltonian but we now add dissipation to the

cavity (κ) along with a classical drive (εin) and dissipation and dephasing to the qubit

(γ,Γφ). The evolution of the operator mean values is given by the Ehrenfest equations:

d

dt
〈a〉 = −i ωc 〈a〉 −

κ

2 〈a〉 − i εin − i g 〈σ−〉 (2.80)

d

dt
〈σ−〉 = −i ωq 〈σ−〉 −

(
γ

2 + Γφ
)
/2〈σ−〉+ i g 〈a σz〉 (2.81)

d

dt
〈σz〉 = −γ (〈σz〉+ 1)− 4 i gIm

(
〈a†σ−〉

)
(2.82)

At this stage, we can either use the semi-classical approximation and write 〈a σz〉 ∼

〈a〉〈σz〉 or compute the evolution of 〈a σz〉 and truncate later as there is no fully analytic

treatment of this problem. The semi-classical approximation does not consider the

correlation between the atom state and the photonic field and is hence valid when the

photonic fields contains a large number of photons (> 10). However in order to probe

the strong coupling regime, one needs to use a low number of photons as otherwise the

field saturates the atom (〈σz〉 ∼ 0) which leads to the disappearance of the splitting

(this can be seen as induced transparency in a sense). Those a priori incompatible
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approximations yield nonetheless correct insights for the cavity transmission spectrum,

which can be validated using numerical methods which are free of that approximation.

S21 = 〈bout〉
εin

= −i

i∆cd + κ/2 + i g2 〈σz〉
∆qd − iΓ2/2

(2.83)

where we introduced ∆cd = ωc − ωd and ∆qd = ωq − ωd, with ωd the pulsation of the

field used to probe the cavity and Γ2 = γ/2 + Γφ.

If the cavity is probed with a very low power, such that the mean number of photon

is small, the states which will contribute more strongly to the transmission will be

the lowest doublet corresponding to a single excitation in the system, as described in

Fig 2.13 c. In this situation, we can consider to a good approximation that the atom

remains in its ground state and that 〈σz〉 = −1. We expect to find nonetheless two lines

as both hybrid states have a finite weight on the |g, 1〉 state. Before plotting the full

dependency of the transmission, we can compare the transmission at resonance and the

bare transmission to identify a key quantity: the cooperativity.

lim∆qd→∞ |S21|
∣∣
∆qd=0

|S21|

∣∣∣
∆cd=0

= 1 + 4 g2

κΓ2
(2.84)

The cooperativity C = 4 g2

κΓ2
can be used to distinguish between what can be called a

coherent regime (C > 1) and an incoherent one (C < 1). In Fig 2.14, we plot the cavity

transmission as a function of the probe frequency and the cavity-atom detuning and the

position of the maximum transmission. We also plot a cut at zero detuning between the

atom and the cavity.

The color plots in Fig 2.14 display the expected anti-crossing expected for the strong

coupling regime. We can also quickly check, on the line plots, that the cooperativity does

give us the reduction of the transmission at resonance: it is particularly easy for C = 1.

One should, however, be careful when associating the strong coupling regime to the split

resonance. The visibility of the splitting is not only controlled by the cooperativity but

also by the ratio Γ2/κ as illustrated in Fig 2.15.

The width of the hybrid states is controlled both by the atom and by the cavity, hence,

if one is much wider than the other, the cooperativity can be large but the states will
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Figure 2.14: Cavity transmission around the strong coupling regime:
The first line presents the cavity transmission as a function of the detuning between
the qubit and cavity (x axis) and the detuning between the probe field and the
cavity for different values of C (and Γ2/κ = 4). The second line plots the points
at which the transmission is maximal. The third line presents a cut of the cavity
transmission at ∆cq = 0. For cooperativity larger than unity, we observe a splitting

of the transmission typical of the strong coupling regime.

still be wider than the splitting of 2 g. This leads to the kind of S shaped distortion

of the cavity transmission that we see in the position of the maximum in Fig 2.15 for

Γ2/κ = 4. That situation of a bad atom coupled to a good cavity is unusual nowadays

in cQED but we will encounter it in chapter 4.

The strong coupling can be interesting to swap an excitation between the photonic field

and the atom, however it is not adapted to read out the qubit (or the photonic) state in

a non-destructive manner. In order to do so we need to forbid direct energy exchange

between the two systems, which can be done by increasing the detuning between the

cavity and the atom. We will now present how to describe this regime that will be of

paramount importance when describing experiments involving the transmon qubit.

2.2.3.2 Dispersive regime :

The dispersive regime is defined by g � |∆dc|, such that the two systems cannot exchange

energy in a direct manner. Simply looking at the equation 2.83 derived in the previous
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Figure 2.15: Impact of the atom linewidth on cavity transmission in the strong
coupling regime:

The plots are similar to the ones of Fig 2.14. Here, they have been obtained for a
cooperativity of 1 and a varying Γ2/κ ratio. We notice that as this ratio increase,
we go from a situation in which we can resolve two peaks to a situation in which the

transmission merely presents an S shape.

section, and that is also valid here, we can notice that the cavity frequency shift induced

by the atom depends on the atom state and can hence be used to read the state of the

atom. In order to get a more precise description and in particular to see if there is any

reverse effect of the photons on the atom, we will derive an approximate Hamiltonian

for the system.

As we did in section 2.1.1.2, the idea here is to eliminate the first order processes that

do not conserve energy and keep only the second order ones. As before we can get the

effective Hamiltonian using the Schrieffer-Wolf transformation. The unitary operator to

use here is:

U = e

g

∆qc
(â σ̂+−â† σ̂−)

(2.85)
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And the effective Hamiltonian at second order in g/∆qc is :

Heff = ~
(
ωc + g2

∆qc
σ̂z

)
â†â+ ~

2

(
ωq + g2

∆qc

)
σ̂z (2.86)

Written this way, we can see that the atom state will shift the resonance frequency of

the cavity by χ = g2

∆qc
as we had already inferred. If we want a strong measurement

(i.e. projective measure) of the qubit state, we need the pull induced by the atom

state to lead to two well separated transmission peaks in the cavity signal. We hence

need 2χ > κ. This condition defines the "strong dispersive regime". As one can see this

condition is harder than the one associated with the strong coupling regime as g

∆qc
� 1.

This regime will not be reached with quantum dots circuits in this work, it is however

the usual regime for the transmon qubit.

As explained in section 2.1.2.2, the transmon is not a real two level system but an

anharmonic oscillator. And it turns out that when computing χ, we must not only

consider the contribution of the transition between the states 0 and 1 but also the

transition between the states 1 and 2. This leads to a renormalisation of χ:

χtransmon = χ01 −
χ12
2 ' −g

2

∆
α

∆− α (2.87)

where ∆ is the detuning between the cavity and the first transition and α is the transmon

anharmonicity.

The interesting thing about equation 2.86 is that we can use it to look at the back action

of the photons in the cavity on the atom spectrum. In order to do so it is simpler to

rewrite it like follows:

Heff = ~ωc a†a+ ~
2

(
ωq + g2

∆qc
+ g2

∆qc
a†a

)
σz (2.88)

Written like this, we see that each photon in the cavity causes a shift of the qubit

frequency by an amount of χ. This is the situation illustrated in Fig 2.13 d. If χ is

larger than Γ2 and κ, it means that we will be able to resolve a spectroscopic line for

each number of photon in the cavity at illustrated in Fig 2.16. The weight (area) of

each peak is related to the probability of finding the associated number of photon in
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the cavity. For a coherent state, that distribution is Poissonian allowing to determine

precisely the mean number of photon in the cavity [66]. In this regime, often referred to

as photon number resolved, one can also perform operations on the qubit conditioned

on the number of photons in the cavity by sending a pulse at the proper frequency [107].'
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Figure 2.16: Strong dispersive and photon number resolved regime:
The zoom on the left peak depicts what can be observed in the spectroscopy of a
qubit in the photon number resolved regime. Rather than a single peak correspond-
ing to the qubit transition we observe a peak for each possible number of photon
in the cavity. The area of the peak n is proportional to the probability to find n
photons in the cavity. The zoom on the right peak, which corresponds to the cav-
ity spectroscopy, displays two sub-peaks which appear at well separated frequencies
corresponding to the two possible states of the qubit. By probing the cavity trans-
mision at one of those frequencies, one can perform an efficient read-out of the qubit

state. Figure adapted from [66].

Another interest of the method we used to obtain equation 2.86 is that it can also

be applied when taking into account the bath modeling the cavity decay. We start

again from the Jaynes-Cumming Hamiltonian and add a single Caldeira-Legget bath as

introduced in equation 2.66:
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Ĥ = ~
ωq
2 σ̂z + ~ωc â†â+ ~ g

(
σ̂+â+ â†σ̂−

)
+
∑
µ

~ωµ b̂†µb̂µ+ (2.89)

∑
µ

~ (â+ â†)(gµ b̂µ + g∗µ b̂
†
µ) (2.90)

To deduce the impact of the cavity loss on the qubit, we may use the same Schrieffer-

Wolf transformation (or adiabatic elimination) and additionally project the resulting

Hamiltonian in the subspace where the cavity is empty. We absorb the qubit frequency

renormalisation and write ω̃q the renormalized frequency. The resulting effective Hamil-

tonian is:

Ĥeff = ~
2 ω̃q σz +

∑
µ

~ωµ b†µbµ +
∑
µ

~
g

∆qc
(gµ bµ + gµ

∗b†µ)σx (2.91)

Using the same method as presented to derive the evolution of the cavity in section

2.2.1, we can compute the induced decay of the qubit. We find that the population of

the qubit decay with a rate:

Γp = g2

∆2
qc

κ (2.92)

This rate can be identified with the decay rate of an atom in cavity as predicted by the

Purcell effect. It can also be interpreted as the decay of the residual photonic part of

the qubit dressed states.

For dots circuits, the coupling will be small enough and the natural lifetime also to allow

us to neglect this term. However for the transmon, it can be large and we will engineer

our system such that it is the main decay channel. The reasons behind this choice will

be explained in chapter 5.

2.2.4 Open systems :

In this section, we will focus on single dots as open quantum system. Contrary to their

closed counterpart, we cannot, here, think in terms of coupling the microwave light to

a discrete transition as such transitions in SD are in the THz range. In our system, the

microwave light can only induce modulation of three different chemical potentials: the



Mesoscopic circuit quantum electrodynamics 85

one of the dot and the ones of each lead. As already mentioned, a global modulation of

the chemical potential will not have any effect on the system, we are then left with two

possible coupling schemes:

• induce asymmetric oscillations of the chemical potential of the leads. This would

be in a sense similar to a measure of differential conductance but carried out at

high frequency.

• induce symmetric oscillations of the leads chemical potential with respect to the

dot one. This can be achieved either by modulating the leads chemical potential,

or more directly by inducing modulation only of the dot chemical potential.

The general form of the coupling Hamiltonian is hence:

He−ph = ~ (gn̂qd + gsn̂s + gdn̂d) (â+ â†) (2.93)

Let us introduce the symmetric and anti-symmetric part of n̂s, n̂d : n̂± = n̂s ± n̂d.

Charge conservation imposes that n̂+ + n̂qd is constant. Omitting this constant term in

the coupling Hamiltonian, the coupling Hamiltonian can be rewritten as :

He−ph = ~ (gqdn̂qd + g−n̂−) (â+ â†) (2.94)

where gqd = g − gs+gd
2 and g− = gs−gd

2 .

In order to derive the cavity response, we will once again adopt a semi-classical point of

view and use 〈â(t)〉 = āe−i ωd t. The equation of the evolution of ā can then be written :

− i ωd ā = −i ωc ā−
κ

2 ā− i (gqdn̂qd(t) + g−n̂−(t)) ei ωd t (2.95)

To go further we need the dynamics of the quantum dot circuit. If we can assume the

modulations induced by the cavity to remain small compared to all other energy scales

in the system, we can express it in term of the charge susceptibility of the system to the

perturbation of a chemical potential (χ(t) = −iθ(t)〈[n̂(t), n̂(0)]〉):

〈n̂i(t)〉 = 〈n̂〉0 + 1
~

∑
j∈{qd,−}

∫
dt′χi,j(t− t′)gj

(
āe−iωdt

′ + ā∗eiωdt
′) (2.96)
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Injecting this formula, in the previous equation for the evolution of the cavity field, gives

a result similar to equation 2.83 in which it was the qubit charge susceptibility that was

involved :

ā = −i εin
i(ωc − ωd) + κ

2 + i
∑
i,j gi gj χi,j(ωd)

(2.97)

From this equation, we can see that the shift in frequency and change in width of the

cavity will encode the real and imaginary part of the sum of four different susceptibilities

in the case of a single dot. This is not ideal as it may be hard to trace each signal back

to its original cause. It is why in all experiment the coupling will be engineered in such

a way as to eliminate any coupling to n−, leaving only the dot susceptibility χqd,qd in

the response.

We can compute the charge susceptibility of a single dot in the Coulomb blockade regime

starting from equation 2.40, which gives the spectral density Snn(ω):

Snn(ω) = 〈n(t)n(t− τ)〉 − 〈n〉2 (2.98)

=
∫ ∞
−∞

dτei ω τ
∫ ∫

dεdε′
Γ2

4π2 ~2
f(ε)f(−ε′) e−i(ε′−ε)τ/~∏

ξ∈{ε,ε′} ((εd − ξ)2/~2 + Γ2/4) (2.99)

=
∫
dω′

Γ2

2π
f(~(ω′ − ω))f(−~ω′)

((ω′ − εd/~)2 + Γ2/4) ((ω′ − εd/~− ω)2 + Γ2/4) (2.100)

We can then use the fluctuation-dissipation theorem to compute the imaginary part of

susceptibility:

Imχ(ω) = 1− e−β ~ω

2 ~ Snn(ω) (2.101)

= 1
~

∫
dω′

2π
Γ2
(
f(~ω′)− f(~(ω′ − ω))

)
((ω′ − εd/~)2 + Γ2/4) ((ω′ − ω − εd/~)2 + Γ2/4) (2.102)

Finally, we can use the Kramers–Kronig relations4 to compute the real part which gives

the final result:
4Re(χ)(ω) = 1

π
P
∫∞
−∞

Im(χ)(ω′)
ω′ − ω dω′ and Im(χ)(ω) = 1

π
P
∫∞
−∞

Re(χ)(ω′)
ω′ − ω dω′
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χ(ω) = 1
~

∫
dω′

π ω

f(~ω′)− f(~(ω′ − ω))
(ω′ − εd/~− iΓ/2) (ω′ − ω − εd/~ + iΓ/2) (2.103)

We find that the charge susceptibility only depends on the tunnel coupling to the leads

which can be determined through transport measurement. Hence, if we know precisely

the number of photons in the cavity, we can use this result to determine the electron-

photon coupling strength.

In the Coulomb blockade regime, the conductance and the charge susceptibility give

equivalent information on the quantum dot properties, but it is not always so. For

example in the case of the Kondo regime described in section 2.1.1.2, a finite conductance

exists only because the electrons tunnel through a virtual state. One should not be able

to observe such a state, which means that the number of electron in the dot should appear

frozen. The system charge susceptibility should vanish. The corresponding experiment

was carried out in the lab and indeed revealed that absence of charge susceptibility of

the Kondo cloud, whereas it displays a finite conductance [23].

Now that the theoretical basis needed to describe the experiments presented in this thesis

have been introduced, we will focus on the sample design, fabrication and measurement

in the next chapter.
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The goal of this chapter is to present the different techniques involved in designing,

fabricating and measuring the samples under study in this work. The order of the

following sections reflects a kind of idealized work flow, even if in practice due to time

constraints, previously unknown issues or not yet developed techniques, it has not really

been the work flow of this thesis, save close to its end.

3.1 Sample design :

When considering a new experiment, involving a new kind of sample, the first step is

to design the sample. This step is obviously crucial as it will impact all further work.

In particular when working in the microwave domain, one should pay special attention

to the sample layout to avoid parasitic microwave modes that can lead to Fano shaped

cavity transmission spectrum as discussed in chapter 2, or degrade the properties of

the mesoscopic circuits we want to study. As all circuit parts have to interact properly

89
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together, it is not easy to design each component in a completely separated manner, so

that the following presentation may seem a bit artificial.

3.1.1 Substrate choice :

The first choice to be made is the choice of the substrate as it will influence largely the

properties of the microwave related parts of the device, through its dielectric constant .

The constraints on this choice are the following:

• it should have low losses in the microwave frequency range, as otherwise our cavity

will have high internal losses which will limit the quality factor.

• it should be insulating as otherwise we are likely to observe leaks between the gate

used to tune the dot circuits.

• it should induce a low charge noise in the devices to preserve coherence, which

means it should have a low number of charge trapping defects.

The superconducting community is mostly using, nowadays, either sapphire or high-

resistivity silicon from which the natural oxide layer has been removed. We cannot use

high-resistivity silicon without oxide as we would have short between our DC gates.

Sapphire on the other hand is an insulator but e-beam fabrication processes on it tend

to be more complex and there is little experience in the lab about those processes. As a

compromise, we will be using thermal silicon oxide (500 nm) on high-resistivity silicon

(10kΩ.cm) even if we know that the silicon oxide layer will contain charge trapping

defects.

3.1.2 Cavity design :

The cavities used in this work are made out of coplanar wave guide (CPW) as already

mentioned in chapter 2. Fig 3.1 presents the profile of a CPW:

The aspect ratio of the CPW s/w will influence two properties of the cavity: first

the impedance of the resonator and second the losses related to surface defects [108].

As explained in the section 2.2, the higher the impedance the higher the coupling we
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Figure 3.1: Coplanar waveguide profile:
A CPW profile is mainly characterized by the width w of the central conductor and
the gap s between it and the ground planes. The smaller the gap the more strongly
the field is confined close to the surface, increasing losses related to surface defects as
well as decreasing the importance of the substrate bottom layer. The thickness t of
the metallic layer is usually negligible compared to the substrate thickness (h1 +h2),
and we will model it as a bi-dimensional sheet, save when determining the impedance

of the CPW.

can expect between the photons and our nano-circuit. However in a CPW geometry,

it is actually hard to reach characteristic impedances higher than 200Ω while keeping

reasonable dimensions. As the feeding and collecting CPWs need to be 50Ω to avoid

parasitic reflections going from them to the coaxial cables in the fridge, we will use a

50Ω CPW also for the cavity, for the sake of simplicity.

When increasing the gap of the CPW, the electric field between the central conductor

and the ground plane diminishes in magnitude and becomes less vertically confined.

Both those facts lead to a smaller coupling to dissipative defects such as resist residue.

Given the large number of steps in the fabrication process, many resist residues are likely

to be left behind so increasing the gap seems appealing, if we can properly engineer the

coupling to not suffer from the reduced electric field. We will discuss that second point

later.

The impact of surface defects is hard to model, however looking at the literature [108],

it appears sensible to target a gap of the order of 30µm, which leaves us with the

determination of the central conductor width in order to get the proper impedance.

Analytic formula exists to relate the impedance of a CPW to its dimension but only for
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a single layer of underlying dielectrics. While it is possible to experimentally determine

an effective dielectric constant for the stack, that value is sensitive to the CPW gap

width as it depends on the penetration of the electric field in the different layers. The

CPW for the cavity has a fixed width along its length, however it is not the case of the

feeding and collection CPWs. Those CPWs match the dimensions of the cavity CPW

at one end. At their other end, to avoid any parasitic reflections, they must be close

to the dimensions of the CPW to which they will be micro-bonded when the sample

is mounted in the sample holder. The gap of the CPW of the sample holder is close

to the thickness of the oxide layer, which means that when designing a CPW on the

sample with similar dimensions the electric field will reach into the silicon layer. On

the contrary at the cavity end, the gap is much smaller and the electric field is strongly

confined in the oxide layer. The fact that the confinement of the field varies prevent us

to use an effective electric constant. To circumvent this difficulty, we used finite element

modeling solvers to determine the aspect ratio of the CPW giving a constant impedance.

In this thesis work, we used HFSS, to perform simulations on such slices and also full 3D

modeling of the samples. For slices, the thickness of the metallic layer (∼ 100− 150nm)

is taken into account while in 3D models it is approximated by a 2D plane. Fig 3.2

shows the computed gap of the CPW needed to preserve an impedance of 50Ω with a

gap width varying linearly from 5 to 400 µm.'
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Figure 3.2: 50Ω CPW aspect ratio:
The width of the central conductor is optimized as a function of the CPW gap to
have a 50 Ω CPW on our substrates. The simulation are carried out using HFSS.
The vertical lines corresponds to the cavity gap (30 µm) and the bonding pad gap

(280 µm)
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Once the aspect ratio is fixed, we can choose the cavity length to get the proper frequency.

The frequency choice depends on the cavity role in the setup and on the experimental

constraints on the detection chain and sample holder as will be discussed in section 3.3.1.

Those constraints led us to work in the 6 to 8 GHz band. From the previous determi-

nation of the impedance, we can extract an effective dielectric constant corresponding

to the CPW line and link the frequency fc to the length L of the cavity :

L = c fc
2√εeff

(3.1)

In theory, we should take into account the kinetic inductance of the superconductor to get

the exact value off the resonance frequency. The kinetic inductance of a superconducting

wire is given by [109]:

LK = µ0 λL
l

A
(3.2)

with λL the London penetration length, l the length of the superconductor and A the

cross-section of the wire.

In the case of niobium that we will be using, the London penetration length is about

400 Å [110] for T � Tc. Combined with the typical dimensions of the cavity CPW, this

gives:

L

LK
∼ 1000 (3.3)

which explains why we can get nearly quantitative result from HFSS simulations even

neglecting the kinetic inductance.

Once the cavity designed, we can, using HFSS, analyze the electromagnetic eigen-modes

in order to validate the frequency of the resonator. The system can have several eigen

modes but we can identify the CPW mode by looking at the mode field geometry. We

can also look at other unwanted modes that may appear but we will come back to that

in section 3.1.5.



Experimental techniques 94

At this stage, we need to adjust the coupling of the cavity to the feeding and collecting

lines used to carry out the transmission measurements we will be interested in. The

main concern driving these choices are the following :

• if the coupling to the external lines is very strong, the cavity will have a very

large linewidth and will not be very sensitive (as the linewidth set the minimal

detectable susceptibility).

• if the internal losses are very large compared to the coupling to the outgoing line,

the signal to noise ratio will be very low as most of the photons which interacted

with the system will never be detected.

• similarly if the input line is more coupled than the outgoing line the photons will

exit by the wrong end of the cavity and the measured signal will be weak.

We would hence like to have the following hierarchy between the different couplings:

κin � κloss . κout (3.4)

The fact that κin is very low is in practice not an issue as we have a lot of margin on

the input power we can apply.

The coupling rates are directly related to the capacitances between the central conductor

of the CPW cavity and the central conductors of external CPWs. Those can either be a

simple cut in the central conductor or inter-digitated capacitances. Using HFSS, one can

simulate the scattering matrix of the sample (ie transmission and reflection coefficients

between both ports as a function of the frequency) which allows to extract separately all

the previously mentioned rates, using a Lorentzian model such as the one presented in

section 2.2.1. This allows to choose the proper length for the inter-digitated capacitances

at input and output as illustrated in Fig 3.3. Of course, the extracted κloss only reflects

the radiation losses and the losses related to the natural losses of the substrate and is

hence, in general, widely underestimated. However, it can be estimated from previous

experiment carried out in the lab on samples with smaller gaps to be of the order of

500kHz to 1 MHz.
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Figure 3.3: Port coupling function of the capacitance fingers length:
The left picture explicit the dimensions used in the simulation for the output port of
the cavity. The plot on the right displays the extracted coupling rates for different
lengths of the capacitor fingers. The simulation data points can be fitted to a quartic

model (orange) with very good agreement.

3.1.3 Transmon design :

Because the transmon is very well modeled in term of electric lumped elements and

because in the transmon design the capacitance of the Josephson junction (JJ) can be

neglected compared to the geometrical capacitance, it can be very well simulated using

HFSS, simply including discrete lumped linear inductance. For the transmon presented

in this thesis work, the design is inspired from work in the IBM group [42] in which losses

are reduced by replacing the inter-digitated capacitance by a large planar capacitance.

To determine the parameters of the transmon, such as its capacitance, coupling and

the value of the JJ inductance, we need to get the right qubit frequency, we proceed as

follow. We determine the frequencies of the system eigen modes as a function of the JJ

inductance. We can identify the modes by looking at the geometry of the field. When

the transmon and the cavity are nearly resonant, we will observe an anti-crossing as

illustrated in Fig 3.4. The distance between the two branches give directly the coupling

between the modes. The capacitance can be extracted either directly from the transmon

frequency (ie neglecting the inductive behavior of the other part of the circuit) or by

fitting the frequency dependence on the JJ inductance. Usually both methods agree

rather well.
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Figure 3.4: Transmon properties simulations:
By simulating the eigenmodes of the design for varying values of the transmon
inductance, we get its dispersion from which we can extract the target value of the
JJ inductance and the transmon capacitance as discussed in the main text. For large
value of the inductance (1/

√
L small), the transmon mode is the blue one and the

cavity mode the orange one. The green one is a parasitic mode.

3.1.4 Dot coupling :

The first attempts made in the lab to couple quantum dots circuits to a microwave cavity

relied on either simply placing the QD circuit close to the CPW central conductor or

using a DC gate capacitively coupled to the central conductor. To maximize the coupling

this was done at an anti-node of the electric field. This is illustrated in Fig 3.5 a and b.

Both techniques are, however, not ideal. In the first case, the asymmetry in the couplings

to the different circuit elements is small leading to a small modulationof the dot chemical

potential. In the second case, the gate coupled to the cavity has a large capacitance to

the ground and so we can expect a non-negligible AC potential drop between the CPW

and the electrode. In order to avoid those issues, we are now using a floating top gate

galvanically connected to the central conductor resonator. This prevents the electric

potential drops related to capacitive coupling and also lead to a larger inhomogeneity as

one dot is directly below the electrode while other dots/electrodes only have a capacitive

coupling. Those "optimizations" were made only based on rough assumptions as the

appropriate numerical simulation tools were not available at the time. However, the

results that were obtained using the different geometries (capacitive [13] g ∼ 3 − 10
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MHz, galvanic [21] g ∼ 40 − 50MHz) show that we have been moving in the right

direction.'

&

$

%

R
es

o
n

a
to

r DC lines 1 µm
D

S

Vg1

Vgt

Vg2

SWNT

VgRes

Double quantum dot

20 µm

a) b)

c)

Figure 3.5: Dot-cavity coupling geometries:
The geometries presented here are the ones that been used in the group in the last

years. Other groups use geometries similar to c nowadays.

a) The first attempt to couple a quantum dot circuit to a CPW simply consisted
in placing the QD close by the central conductor of the CPW.

b) An improved design used a top gate capacitively coupled to the central con-
ductor. This improves the asymmetry but the electric potential drop between
the central conductor and the gate limits the coupling. Furthermore, the other
electrodes are not shielded from the cavity field. [13]

c) The design used for the samples presented in chapter 4, also relies on a top
gate but which is galvanically connected to the central conductor and left
floating in DC. This design maximizes the collection of the resonator potential
by eliminating the capacitance and improves a bit the shielding by partially
closing the ground plane around the top gate.

We cannot hope to get a stronger electric potential than by using a galvanic connection

(for a given resonator impedance). So in order to increase the coupling, we are left with

no other direction than to improve the screening of the part of the circuit that should

not be coupled. Using HFSS, we have studied the impact of prolonging the ground plane

of the CPW as close as possible to quantum dots circuits. All electrodes are modeled

as perfect conductor with negligible thickness. The hope here is that the protrusions

of the ground plane may be able to shield efficiently the electric field. Some results of

that study are presented in Fig 3.6 on a single dot geometry. In this case, we have no

experimental data on which to base an estimate of the absolute coupling we can hope to
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reach using such a shielding, because the galvanic coupling scheme has not been tested

with SD. However, comparing the maximal potential on the central gate, it appears that

this "trick" could allow to increase the coupling by about 30%. In addition, the leads

appear less influenced in the presence of shielding which should reduce parasitic effects.'
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Figure 3.6: Single dot screening:

a), b) Simulation of the electric field (x component) both in un-shielded geometry
(a) and a shielded one (b). The grey regions delineate the location of the
metallic electrodes. The colorscale is the same in both cases but is clipped for
large value to help the reader identify the differences in the geometry of the
field. In the presence of shielding, the field in the vicinity of the contacts is
reduced.

c) Plot of the electric potential (integral of the field) along the dashed line of
figure a. The origin of the potential is taken on the left of the plot which is
not perfectly accurate as we can see from the non-zero value for large x. One
can notice that the potential appears higher in the shielded case (by about
30%) and that the contacts are also slightly less affected.

Because of the vast difference in scale between the resonator and the quantum dots
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circuits, performing those simulations requires some care. In particular, one cannot

simply rely on the automatic meshing of the structure to obtain an accurate description,

as the small structure tend to be overlooked. The mesh must be manually refined in

those areas. In HFSS, this was done by dividing the substrate in different parts and

imposing different meshing constraints on each area.

A final point we can consider in designing the dot circuit is the geometry of the control

lines. Two parameters can enter the discussion:

• the need to filter the DC signal used for bias and gate voltages in order to reduce

the noise and lower the electronic temperature.

• the necessity to sometimes add an AC electric signal to the DC part used to tune

the dot. This AC component can for example be used to perform qubit rotation

or fast tuning of the system properties.

Both problems are complex and have not been studied in details in this work. The

filtering has always been done off-chip and will be discussed in 3.3.2, however following

[57], adding on chip filters may prove beneficial. The AC/DC mixing has been done on

chip at one time but was moved off-chip to avoid issue with the filtering circuit, and its

properties has never been studied using numerical simulation.

Now that all parts have been designed in more or less separated ways, we will discuss

how to optimize the sample geometry.

3.1.5 Chip optimization :

Our main concern in this section will be to eliminate or at least push to high frequencies

the modes other than the fundamental mode of the CPW cavity. We have already

mentioned two motivations to do so:

• those modes can lead to a parasitic transmission leading a Fano shaped resonance

that hinders the proper exploitation of the data.

• the coupling of those parasitic modes to our mesoscopic circuits can lead to reduced

coherence and more noisy behaviors.
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There are two main kinds of parasitic modes:

• CPW modes can exist in the input and output lines of the cavity or in the DC

lines of the dot circuit.

• slot line modes in which two ground planes oscillates in phase opposition.

The first modes can be pushed to higher frequencies by minimizing the length of the

lines, but this usually means to use longer bonding wires which also has drawbacks.

As a consequence, we mostly focus on making sure those modes were above the cavity

frequency and associated with weak fields in the area of the transmon and dot.

The slot line modes are harder to eliminate only through the chip design as CPW nat-

urally support such modes. In order to avoid having too many such modes on chip,

it is important to minimize the number of ground plane discontinuity as any such dis-

continuity can allow oscillations between the two parts. In our sample we cannot have

less than one discontinuity because of the dot circuit connection to the cavity always

introduce one. Furthermore, the two ground planes of our CPW are disconnected and

the long DC lines, embedded in the ground planes, are CPWs and can support slot line

modes. Those modes can be pushed to higher frequencies by connecting the two ground

planes. For simple CPW cavity, the field of the slot line mode is concentrated in the

center of the design as illustrated in 3.7, and connecting the ground planes in this area

is effective to push this mode to higher frequencies as discussed in [111].

Connecting the ground planes can be done either using nano-fabrication techniques to

make bridges or using wire-bonding. Nano-fabricated bridges allow for shorter and hence

less inductive connections than wire-bond and are more effective to suppress the slot-line

modes. However, as the fabrication techniques required to make such bridges are not

mastered in the lab, we used superconducting wire-bonds.

Realistic wire bonds can be added to HFSS simulations, to determine their impact and

how many bonds are required to push the parasitic modes high enough in frequency

(typically > 10 GHz). However as those simulation are time-consuming, we tend to

simulate many bonds at once rather than adding them in an incremental fashion. Fig

3.7 presents the same design both with and without wire-bonds and the frequencies of

the main parasitic modes.
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Figure 3.7: Bonds impact on slot line modes:
The left picture presents the electric field magnitude for the CPW mode.
The bonds can be seen as semi-transparent arches. The right picture
presents the electric field magnitude for the first slot line mode in the ab-
sence of bonds (bonds strongly reduce the field intensity). The impact of
the bonds on the three first modes of the design (the cavity mode and two
slot line modes) is summarized below (all frequencies are given in GHz):

Cavity First slot line mode Second slot line mode
Without bonds 7.45 8.92 9.72
With bonds 7.47 9.72 12.2

Once the design of the sample is completed, it is time to move to the fabrication process.

3.2 Sample fabrication :

Because of the hybrid nature of the sample we are interested in, the fabrication process

can prove tricky as otherwise perfectly mastered techniques can prove incompatible with

previously fabricated elements. We will illustrate the fabrication on a sample used in

chapter 5, as only those samples incorporate a transmon. A typical sample design is

presented in figure 3.8

After giving a brief overview of the clean-room techniques used, we will describe the

fabrication of each elements of our sample and point out what incompatibilities between

the processes force us to choose a particular order of fabrication.

All samples have been fabricated in the ENS clean room. And the detailed recipes of

the processes can be found in annex A.
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Figure 3.8: Sample layout:
The large view features a sample after adding the micro-bonds. The two insets focus
on the dot part of the circuit on which the fine structure used to contact the CNT
can be seen and on the transmon part of the circuit. One can also see the input and
output capacitances of the microwave cavity. The marks that one can see on the
transmon are the marks left by the probe station tips used to check the resistance

of the transmon JJ.

3.2.1 Fabrication techniques :

In order to fabricate our samples, we need to be able to:

• define patterns in order to expose or protect different areas of the sample. This is

done by lithography.

• deposit metallic layers, such as the ones of the cavity, the transmon or the contacts

on the CNT.

• etch materials to define trenches 3.2.2 or pillars 3.2.4

Lithography : The principle of nano-lithography is presented in Fig 3.9. First an

electro (or photo) sensitive resist is deposited on the substrate. The deposition is done
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using spin-coating to guarantee an homogeneous and reproducible coating of the sample.

The resist is then selectively degraded using an electron-beam (UV light). The degraded

resist can then be removed using a developer and hence exposing the substrate. The

remaining resist acts as a mask protecting the underlying substrate. This allows to coat

with a metallic layer, or to etch, only the exposed areas. The protective resist layer can

be then removed at a later step (lift-off step in the case of a metallic deposition, cleaning

for an etching).

Such a lithography, in which the insulated areas are removed by the developing step,

is qualified of positive. One can also perform negative lithography in which only the

exposed areas will remain. In this work we will only use positive lithography.

No matter the type of lithography, in order to obtain the proper pattern without having

resist residue at the bottom of the trenches, one to needs to adjust the exposition

(amount of electron/UV light per unit of area) and the development time. This tuning

requires to perform a number of blank lithographies (known as dose tests). To get more

meaningful results, one should test close to reality patterns and when possible perform

the metallic deposition. Using realistic patterns is crucial, as two structures can influence

each other. This is particularly relevant in electronic lithography, in which proximity

effect can lead to strong over-estimation of the proper exposure doses in some cases.

The choice of using electronic or optic lithography depends mostly on the resolution in

the lithographed patterns one requires and on the alignment with respect to pre-existing

structures. Using electronic lithography, we routinely achieve re-alignment within 10 nm

and structures with a width of about 100 nm. On the other hand, optical lithography

allows re-alignment within 1µm and a resolution of about 1µm. Optical lithography is

much faster than its electronic counterpart and is hence preferred for large structures.

However, it requires a mask, which in order to properly align on structure patterned

using electronic lithography (100µm fields distant by several mm), need to be patterned

using the same scanning electronic microscope (SEM). This lithography takes a lot of

time, and has a rather low success rate. Furthermore the need for this mask limits

the evolution of the design (due to the constraint of making new masks) and so it was

sometimes preferred to do all lithography using the SEM. In the future the use of a laser

masker could allow to combine the flexibility of the electronic process to the speed of

the optical process for the large structures.
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Figure 3.9: Lithography principle:

a and b To obtain a reproducible layer of resist with an homogeneous thickness, the
resist is spin-coated on the sample.

c The resist is then insulated according to the pattern to write, using either
accelerated electrons or UV light.

d The insulated resist is then removed using a dedicated chemical. Alternatively
the resist that has not been insulated can be removed, the lithography is then
considered negative (the previous process is qualified of positive) and is not
described here.

e One can then deposit a thin metallic layer using either a Joule or e-beam
evaporator. The metallic layer should be thinner than the resist as otherwise
one will not be able to remove the metal deposited on top of the resist in the
next step.

e’ Alternatively one can use the resist as a protection layer and etch selectively
the desired part of the substrate. The etching can be performed either using
an etching solution or reactive plasma.

f and f’ After the metallic deposition or the etching, the residual resist is removed
during the lift-off step, leaving either metallic mesas or trenches.

Electronic lithography was performed on Polymethyl methacrylate (PMMA). The thick-

ness of the coating was reduced by diluting it with anisole for one critical step, but

otherwise undiluted PMMA 950 was used (giving a thickness of about 450 nm for the

spinning parameters used). It is indeed preferable to use a layer thickness comparable
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to the smallest characteristic size of the pattern in order to avoid collapsing of the re-

sist related to a too deep and narrow trench. Development is performed using methyl

isobutyl ketone (MIBK) diluted in isopropanol (IPA). The removal of the resist can be

done in acetone.

Optical lithography were performed on AZ5214 coating which can be removed in acetone

and developed in AZ 726 MIF.

Metallic coating :

All metallic layer deposition have been performed in an ultra high vacuum (UHV)

electron-gun machine whose base pressure is around 5.10−10mbar. Such low pressures

ensure ballistic trajectories of the atoms after evaporation and very clean metallic thin

films. This machine has two chambers: one load-lock allowing fast cycling of the samples

and the main evaporation chamber.

Electron gun evaporation is performed by focusing a beam of accelerated electrons on a

crucible containing metal ingots. The current is increased until the metal temperature

exceeds the sublimation point, thus creating a jet of metallic atoms. The evaporation

rate and total thickness are monitored using a mechanical quartz resonator, whose fre-

quency is extremely sensitive to the amount of metal deposited on top. As mentioned

above, in order to ensure the quality of the evaporated film, it is crucial for the evapora-

tion to be done in high vacuum. This can prove challenging for metals such as Niobium

whose sublimation temperature is about 3000 ◦C. The UHV system, we used, is fitted

with cryogenic panels which can be filled with liquid nitrogen. Under those conditions

Nb can be evaporated at 10Å/s at about 1e−8mbar. At different stages (JJ fabrication

3.2.3, dot top gate deposition 3.2.4), we will need to oxidize an aluminum layer to get an

isolating layer of alumina. This is done under a pure oxygen atmosphere in the load-lock

of the evaporator to avoid exposing the metals, in their crucible, to the oxygen.

Etching:

Etchings processes are crucial for creating mesas or holes on substrates, cleaning

substrates, removing intermediate auxiliary metal layers, or defining clean patterns on

chips entirely covered with metals such as niobium. One can use chemical wet etching
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solution such as KOH to remove aluminum, or reactive ion etching (RIE), that consists

in a dry chemical and/or physical etching using plasmas.

Dry etching is used in two steps of the fabrication process (see 3.2.2 and 3.2.4). Dry

etching is preferred in those cases over wet etching, because we are interested in strongly

directional etching whereas wet etching is a nearly isotropic process.

Dry etching steps are done in a reactive ion etching machine (Corial 200R), allowing to

use SF6, CHF3, O2 and Ar as etching agents.

3.2.2 Cavity fabrication :

As described in 3.1.1, our samples are fabricated on 500µm thick high-resistivity silicon

substrate with a top layer of 500 nm of SiO2. We work on 10×10 mm pieces obtained

by dicing a wafer. In order to protect the wafer during the dicing operation, the wafer

is coated with a protective layer of resist which is removed at the very beginning of

the fabrication process. On each chip, we will pattern two cavities. We proceed in this

way as it allows more homogeneous resist coating than working with 5×10mm samples.

However it means we will have to split each sample in two at the end of the fabrication

process.

Before patterning the cavity, the first step in the fabrication consists in patterning

alignment marks that will be used in all further steps and pre-contacts. Because we will

need to re-align very precisely on the areas in which the dots circuit fine structure will

be defined, this step is realized in electronic lithography. In addition to the alignment

marks in the vicinity of the dot circuit(s), we also pattern large scale alignment marks

and numbers to identify the sample. After the development, we deposit a thin layer of

titanium (5nm), which plays the role of sticking layer, then 45 nm of gold. Gold gives a

large contrast in SEM imaging which will facilitate the alignment in the following steps

and additionally will not oxidize hence ensuring a good contact between the niobium

used for the large structure and the small scale contacts of the CNT. The use of those pre-

contacts is mandatory as the niobium oxidizes which prevents a direct contact between

it and the contacts of the CNT, which are realized at a later stage.

The cavities of the first samples were made using aluminum (Al). However, the experi-

ment presented in chapter 4 requires to apply an external magnetic field to unveil some
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of the system properties. Even though this field is in the plane of the cavity it still affects

the superconductor. The low critical field of Al prevented us to go to fields higher than

15 mT as the quality factor of the cavity was decreasing too much at higher field. This

motivated the use of niobium which has a higher critical field.

However as previously mentioned niobium has a high sublimation temperature which

makes its deposition on resist mask tricky as the resist is baked by the radiation. This

is why we use an etching process to fabricate our samples. Given how delicate both the

CNTs and the JJs are, we cannot perform the etch with them already on the substrate

which is why we pattern the cavity first. The fabrication begins with the deposition of

a 150 nm (or 100 nm) thick film of niobium on the whole sample. We then spin-coat

resist and pattern in it the cavity, the ground plane opening in which the transmon will

sit, and the DC line of the dot circuits. This step can be done using either optical or

electronic lithography to expose the parts corresponding to the gap of the CPW. The

niobium film is then etched using an SF6 based RIE etching. The etching is monitored

by reflectometry on the niobium surface.

Once the etch is complete, the residual resist is removed in acetone. This step can prove

tricky as the resist usually hardens during the etching. In extreme cases the sample

needs to be scrubbed with clean room paper to remove large patches of resist. The final

step in the cleaning always consist in a low power O2 plasma etching to remove the

smallest resist residue. This step can be carried out for more than 10 minutes without

causing any degradation of the resonator quality factor.

With the resonator complete, we can move to the fabrication of the mesoscopic circuits.

When both a transmon qubit and a CNT dot circuit need to be fabricated, it is not

obvious which should be made first. In both cases, we would prefer to avoid any unnec-

essary exposure to resist to avoid the deposition of more residues. We will first present

the fabrication of the transmon qubit but both route have been explored.

3.2.3 Transmon fabrication :

The fabrication of a transmon qubit requires to make a JJ as discussed in section 2.1.2.2,

which requires to deposit two superconducting layers separated by a thin insulator. This
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can be done either in two lithography steps or in a single one. We will prefer the single

step process as it is easier and already known in the lab.

This process, illustrated in Fig 3.10, relies on two-angle evaporation of aluminum and on

a free standing bridge of resist (Dolan bridge) to provide a shadow mask. The sample is

mounted in the evaporator in such a way that the bridge is aligned with the rotational

axis of the sample holder. First a layer of aluminum is evaporated and then partially

oxidized to form alumina that will serve as the insulator in the junction. The second

evaporation is performed at an angle in order to have a partial covering of the first layer

on one side of the bridge by the second coming from the other side. This leads a small

overlap between the metallic layers on each side of the bridge, whose size depends on

the evaporation angle and the bridge width.

In practice, the bridge is made using three layers of resist: two layers of MMA-MAA

which is a light copolymer and a top layer of PMMA. The transmon is lithographed in

an opening of the CPW ground plane and a thin bridge of PMMA, between the two

protrusions of the capacitor plates, is not insulated . The following development step is

quite critical as the developer will attack the insulated PMMA and copolymer but also

the little insulated copolymer further away from the main pattern. This will lead to the

formation of a free standing bridge of PMMA. The development time should be long

enough so that no copolymer remains below the bridge which will prevent the formation

of the junction. On the other hand if it is too long, the copolymer will recess too far

away and the bridge will break, in which case the junction will be shorted.

After the development, the sample is placed in the UHV system. Because this system is

not fitted with a plasma cleaner allowing to remove the resist residues, we let the sample

under vacuum for at least 14 hours (a night) under vacuum before proceeding with the

metal deposition. The presence of resist residues can have a drastic effect on the JJ as

between a sample left overnight and one evaporated right away, we observed a factor of

2 in the critical current.

During the first evaporation, performed at 0◦ (displayed -4◦), 30 nm of aluminum are

deposited. The sample is then taken back to the load-lock and oxidized during 5 minutes

under a pressure of 5 mbar of O2. At the end of this step, the load-lock is re-pumped and

the samples sent back to main chamber for a second evaporation of 30 nm of aluminum
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Figure 3.10: Josephson junction fabrication:
One common technique to fabricate JJ relies on shadow mask evaporation. First one
deposits two layers of resist, choosing for the bottom layer a resist more sensitive
to the exposition/development. During the lithography, two trenches are patterned
in such a way that the development will remove the bottom layer of resist under
the border area between the two trenches (see color code in a). This lead to the
formation of a bridge. One then performs two metallic depositions of aluminum
at different angles and an oxidation step in between. This leads to the situation
illustrated in b, where the active part of the JJ is on the right of the bridge. Figure

c is an SEM image of a typical junction fabricated during this work.

but at -40◦ (displayed 324◦) this time. The angle chosen here is constrained by several

factors:

• a too small angle is sensitive to errors, and will lead to small overlaps whose areas

are not very reproducible
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• a too large angle will lead to the deposition of the aluminum against the wall of

copolymer. In such a situation, the lift-off step can actually tear off the metallic

layer which is of course to be avoided.

Once the lift-off step is completed, the transmon is complete and the junction resistance

can be measured. The JJ resistance can be related to the critical current using equation

(2.52), which fixes the qubit frequency. This quantity is inversely proportional to the JJ

area and its value can be used to finely tune the fabrication process to get the targeted

value. Before fabricating a transmon, many junctions have been fabricated in order to

finely tune the lithography dose, the development time and the oxidation parameters.

As the JJs are quite sensitive objects and can easily be destroyed by electrostatic chocs,

the protection circuit presented in Fig 3.11 a) was used. The relation between the

resistance of the junction and the inverse of its surface (deduced from SEM imaging

after the measurement) presented in Fig 3.11 b) is linear and can be used to determine

the target value when making a qubit. However as the exact size of the junction depends

on the lithography parameters it is usually reasonable to perform additional tests on the

target design to check the area. The typical size of the junctions used in our transmons

is about 1 µm2.

The presented fabrication technique works well but has one pitfall. Because the oxide

layer formed during the oxidation step is not stoechiometric (alumina stoechiometry is

Al2O3), the oxide layer ages, i.e. it thickness evolves with time. This leads to a change

in the junction critical current. In our process we have routinely observed changes by a

factor of 2 in the junction resistance. This has to be taken into account when designing

the junction. Under ambient condition this aging takes about a week. If the sample is

baked (for example because the transmon was made before the dot circuit), the aging

stops after the first baking and reach similar values as the one obtained after one week

under ambient conditions. So it does not impact the processing order.

3.2.4 Dots fabrication :

As we are mainly interested in the low energy spectrum of the CNTs, we need high quality

CNTs with a low number of defects. This imposes to growth the CNT by CVD (Chemical

Vapours Deposition) as commercially available CNTs spend a lot of time in sonic bathes
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Figure 3.11: Room-temperature JJ characterization:

a) Circuit used to measure the room temperature resistance of the junction.
The junction is tested in a probe station. Before the probe station tips make
contact with it, the test line are grounded. During the test, the switches are
commuted and a DC bias is applied through a voltage divider. The voltage
on the output resistance is amplified and then measured. The second voltage
divider protects the sample from any input voltage drift of the amplifier.

b) JJ resistance as a function of the inverse of its surface. Those two quantities
are linearly linked.

which are known to induce defects altering the low-energy spectrum. However this

growth is strongly incompatible with the realization of high quality microwave resonator

because of two consequences of the growth:

• first the high temperature involved in the growth process (' 900 ◦C), can induce

migration in the substrate leading to increased losses in the microwave domain.

• second during the growth, which is done in presence of methane, in addition to

the growth of the CNT amorphous carbon is deposited on the substrate. This

amorphous carbon will also increase the losses.

Previous attempts in the lab to perform the growth on the cavity substrate have shown

that the total losses induced by the growth limits the cavity factor to about 40.

To circumvent those issues, a dry transfer technique of the CNTs was developped by

J.J.Viennot [112]. This technique relies on the use of an auxiliary 1 cm2 quartz chip
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on which the CNT’s are grown before being transferred on the sample substrate as

illustrated in Fig 3.12'
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Figure 3.12: Stamping principle :
The CNTs are first grown on a quartz substrate on which mesas have been patterned
as illustrated in the zoom on the left of the figure. The CNTs are then stamped
by pressing the mesas on the sample chip on which the cavity has already been
patterned. CNTs and carbonated materials are transferred only in a limited area
around the contact area, if the quartz is free of parasitic mesas and the two chips

are well parallel.

3.2.4.1 Stamps fabrication :

In order to transfer carbonated materials only in the area of interest and avoid to transfer

more dissipative amorphous carbon than necessary, we pattern mesas on the quartz

substrate before the growth. Patterning those mesas is a three step process:

• first we lithograph small pairs of openings (5 × 12 µm2 each) in a double layer

of PMMA. Those will become the mesas that will use as stamps. Because quartz

is an insulator, the top layer of resist need to be coated with a 15 nm layer of

aluminum to avoid charge accumulation. This layer is etched in KOH before the

development.

• second a layer of 250 nm of nickel is deposited using the electron beam evaporator.

Because nickel does not stick very well on quartz, the development step must be

followed by a one minute long low power oxygen plasma to remove all resist residue

from the bottom of the trenches.
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• after the lift-off, the sample is etched in a CHF3 and O2 plasma. The nickel plays

the role of protective mask. Because it is etched much more slowly than SiO2 and

because the RIE gives a directional etching we can get mesas high of 4 µm. The

residual nickel is then removed using a wet etching (iron-perchlorure).

The above process differs from the one presented in [112] which uses aluminum as a

masking layer. Nickel has the advantage to withstand better the etching process allowing

to use thinner layer. This leads to less frequent maintenance on the UHV system, while

getting higher mesas which makes the stamping procedure less sensitive to small angles

between the sample and the quartz stamp.

Because we will stamp the CNT’s after the cavity fabrication, we have to pay a lot of

attention to the presence of unwanted mesas. If such defects are present, they will touch

the top of the niobium layer and prevent the mesas in the proper place to touch the

silicon dioxide surface 150 nm below. Those spurious mesas can be eliminated at three

steps. First by protecting the edges of the quartz during the evaporation (and any other

areas that may not be covered by resist), one reduces efficiently the number of defects on

the edges which are among the most problematic. In our fabrication process this is done

using mechanical masks made out of tungsten. Next, thoroughly cleaning the quartz

after the lift-off of the nickel layer, one avoids that residual nickel or dust serve as mask

during the etching. Second after the etching, one can mechanically remove any spurious

mesas. Both steps can be done using a needle under a binocular lens. This technique

allows to remove even large spurious mesas, and it has been seen that the metal of the

needle that can get transferred on the quartz does not alter the CNT’s growth.

Once the mesas patterned on the quartz, the next step consists in growing the CNTs as

described in the next section.

3.2.4.2 Carbon nanotube growth :

The nanotubes are grown using a CVD growth process in a home made oven. The

growth is activated by an iron based catalyst prepared in solution1. Before deposition,

the catalyst solution is sonicated for 1 hour in order to break apart any clusters, then

left to decant for 45 min. Two drops of solution, taken from the top of the solution,
139 mg Fe(NO3)3− 9H2O, 7.9mg MoO2 and 32 mg of Al2O3 nanoparticles, diluted in 30 ml of IPA
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are then deposited on the quartz and immediately dried using a nitrogen flow. This

method works most of the time but does not allow a fine control on the concentration

of deposited catalyst, which can however play a critical role. A too low concentration

will not lead to any CNT growth, whereas a high concentration leads to the formation

of bundles of nanotubes. Using catalyst nano-particles obtained by evaporation, may

lead to a more reproducible deposition but attempts with palladium, which is known to

catalyze CNT growth, proved to be inconclusive and no evaporator in the clean room

could evaporate a sufficiently thin layer of iron.

The standard growth procedure is a methane-dihydrogen based process carried out at

900◦C. It was optimized to produce single wall CNTs, but has no preferential direction.

CNTs growing in between the two mesas are of particular interest since they can be

placed close to the cavity. Following the work presented in [113], we tried to reduce

the flows of methane and dihydrogen (CH4 from 1140 sccm to 100 sccm, H2 flux from

200 sscm to 50 sscm) and increase the growth temperature. We observed directional

growths, as shown in 3.13, but TEM imaging done by J. Palomo showed that most

CNTs were double walls CNTs, which cannot be used in our experiments. This process

was actually even more sensitive to catalyst concentration and the above results were

obtained only deposing catalyst on the edge of the quartz.'
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Figure 3.13: Directional growth of CNTs:
Using a variant of the growth recipe previously used in the lab, in which the gas flows
are reduced to reach a laminar flow in the oven, directional CNTs have been obtained.
However further characterizations using transmission electron microscopy evidenced
a pre-dominance of double wall CNTs which are not suitable for the envisioned

experiments.

To avoid damaging the CNTs, the mesas are not imaged after the growth but directly

stamped as described in next section.
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3.2.4.3 Stamping and localization :

The stamping operation is performed using the same optical masker (MJB4) used for

optical lithography. The quartz is glued on a glass which is used as a mask. In [112],

the quartz was glued using a drop of PMMA. In recent processes, we have replaced the

PMMA in favor of double sided tape, which provides a flatter surface and is still plastic

enough to tolerate minor flatness issues. Furthermore it yields much more reproducible

results.

Depending on the samples, either a single area (samples of chapter 5) or two (samples of

chapter 4) were stamped at a time. Stamping one area at a time is much more tolerant

with respect to alignment and flatness issues. When stamping two areas at once, it

happened multiple times that only the mesas of one area touched. At first, we preferred

stamping two areas at once to avoid a contact between the edge of the quartz and the

sample chip, as this would deposited dust on the middle of the cavity. However, with

high mesas close to the quartz corner it turned out not to be a problem and so we

stamped one area at a time.

During the stamping, the quartz substrate is lowered progressively towards to the silicon

sample. First the mesas are aligned with the opening of the ground plane, in which the

quantum dot circuit will be patterned. As the two chips are brought closer together,

the alignment can be improved and usually the mesas are slightly deported towards the

protrusion of the CPW central conductor as illustrated in 3.14. When the mesas touch

the silicon dioxide, interference pattern can be observed inside the mesa corresponding

to the compression of the tape directly above the mesas. The pressure is then increased

till the interference color stops changing (and potentially even a bit more after that) or

till the quart mesas start breaking into pieces. In this case, the quartz chip must be

brought back up quickly to avoid depositing to many quartz pieces.

After the stamping steps, the CNTs must be localized in order to pattern the electrodes

on top it. This is done using the SEM at a low acceleration voltage (2 kV). The image

are positioned with respect to the gold crosses in the four corners of the area, to allow

later re-alignment. To limit the damages done to the CNTs the number of image per

CNT is kept to a minimum with a 100×100 µm2 scan corresponding to the full area and

then non overlapping zoomed images.
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Figure 3.14: CNTs localization:
Once stamped, CNTs needs to be localized in order to be contacted. The localization
step is done in a SEM at low acceleration voltage. First the write field of the SEM
is aligned on the four crosses that can be seen in the left picture. The full field
(100 × 100µm) is then imaged once (left image). This allows to check whether the
stamping left any marks on the substrate (their absence usually means that there
was no contact) and to localize the largest pieces of quartz that one will try to avoid
when designing the electrodes. More detailed images (10× 10µm or 5× 5µm), such
as the one shown of the right, are then acquired. During that step, the same area is

never scanned more than once to avoid damaging the CNTs.

3.2.4.4 Electrode deposition :

Once the CNTs are localized, we can pattern the circuits on top of it. For the circuits

presented in this thesis, this always implies two lithography steps: one to pattern the

grids and one to pattern contacts. For both types of samples (chapters 4, 5), the gates

electrodes are made using a stack of alumina, aluminum and palladium. The alumina

layer is formed in three successive depositions of 1.5 nm each, followed by a 10 minutes

oxidation step (1 mbar of O2). We then deposited 40 nm of aluminum and 20 nm of

palladium. The contacts of samples presented in chapter 4 are made out of a palladium

nickel alloy. For magnetic reasons explained in 4, those electrodes must be thin and

narrow, which is why we used a diluted PMMA giving a coating of about 250 nm. The

electrodes are about 170 nm wide and formed of about 30 nm of alloy covered by 5 nm

of palladium. For the samples presented in 5, the contacts are made out of titanium

and gold (5 nm/45 nm). Originally those contacts were made out of palladium, but

we found that those were torn off when lifting resist used in the transmon process. As

the experiment we have in mind requires contacts with a low-transparency we moved to

Ti/Au. During the second lithography step, we also deposit patches to contact the gate
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electrodes to the gold pre-contacts. This is necessary as even if the gates are deposited

on top of the pre-contacts the alumina layer prevents a good contact to form.

Following each metallic deposition, one must be careful during the lift-off process to

remove all unwanted metallic patches that may short the resonator.

On the whole the fabrication of those samples is very delicate and requires a lot of fine

adjustments, in particular in the lithography process. Furthermore statistically only one

dot circuit out of 2 is connected (which does not presume of the quality of the low-energy

spectrum). As a consequence, a lot of samples have been fabricated with only a fraction

being completed and an even smaller number being connected and finally measured.

3.3 Measurements :

This section will focus on the practical details involved in characterizing the samples

whose fabrication has just been presented. First we will describe the mounting of the

sample and how we can eliminate 3D box modes, which will echo the discussion about

the parasitic modes in 3.1.5. The next section will focus on the fridge and fridge wiring

that allow not only to cool the sample itself but also the radiation reaching the cavity and

the electrodes. Finally the last two sections, will focus on the measurement techniques

used to characterize the samples.

3.3.1 Sample mounting :

As mentioned at the beginning of section 3.2.2, our samples are fabricated by pair on

10×10 substrates and need to be split before being mounted. This is done using a

cleaving machine with a diamond tip, with a high rate of success (during this thesis only

3 half chip were accidentally broken). The sample is then glued (using PMMA) and

micro-bonded to a printed circuit board (PCB) as illustrated in Fig 3.15.

The PCB board is fitted with SMA connectors whose pins are soldered on both faces, in

such a way as to provide a continuous contact between the pins and the ground planes.

This avoids parasitic reflections. The DC pins are soldered on the back face of the PCB.

We use a multi-layer PCB that was designed by A. Denis and L. Contamin, in which the

DC lines are on a different layer than the microwave CPW lines and are isolated from
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Figure 3.15: Micro-bonded sample:
Samples are glued, using PMMA, on a copper protrusion of the sample holder en-
suring its proper thermalization. They are then micro-bonded to a multi-layer PCB
board. The microwave line are on the lower layer and connected to the outside
world using soldered SMA connectors. DC lines are on an intermediate layer and
are brought from the back through a filtering circuit. Finally the top layer is a
ground plane (connected to all other ground planes through via holes) which allows
to put a copper cover on top of it, hence enclosing the sample in a small box. To
ensure the electric contact between the cover and the PCB, a thin indium foil is used
from which two pieces can be seen. When micro-bonding, the micro-wave parts are
connected first, then one adds the wire bonds playing the role of air bridges and fi-
nally the DC lines are connected. It should be noted that the DC lines are grounded

during this operation.

them by a ground plane layer in between. This allows to reduce cross-talk between the

lines. Furthermore all lines are buried and the top layer is a ground plane. This is of

paramount importance as it allows to put a cover on top of the sample, which is then

enclosed in a box of 1cm×5mm×5mm2, which does not allow any 3D box mode below

9 GHz. We want to eliminate such modes as just like 2D modes they can create Fano

resonances and couple in unwanted way to our circuits. Using this cover we measure

perfectly lorentzian transmissions for our cavities with a background isolation of about

40 dB. However this improvement is recent and the experiment presented in chapter

4 has been done with an older PCB which did not allow to enclose the sample and

presented many modes as low as 4 GHz.

On Fig 3.15, one can also observe that we use multiple wire bond to connect the central

conductors of the CPW and to define the ground plane. This is done to counter balance

the natural inductance of the wire bonds. One can also observe the bonds connecting

the two ground planes discussed in 3.1.5, whose goal is to push to higher frequencies the

slot line modes in which the ground planes oscillate which respect to one another.
2The presence of many via holes between the different layer of the PCB effectively prevents the field

to extend into the dielectric
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3.3.2 Fridge wiring and operation :

All experiments presented in this work, have been carried out in a wet dilution cryostat

with a base temperature of 35 mK. The wiring of the cryostat has been carried out by

J. Viennot [114] and was left untouched given how little room remains.

We recall it in Fig 3.16 to discuss how it may impact our measurements and for future

discussion of what may need to be improved in the future.

For AC and DC wiring, the key idea is to prevent the transmission of 300 K noise down to

the sample. For the DC lines, this is achieved by thermalizing the lines at two stages (4

K and 35 mK) and by filtering the microwave noise using homemade filters (Manganese

wires in Eccosorb MF 117) and the low frequency noise using low pass π-RC filters with

a cutting frequency of 1 MHz on a PCB board at the back of the sample holder. In

addition all gate lines are filtered at room temperature using again low pass π-RC filters

with cutting frequencies at either 1 kHz or 0.1 kHz.

The thermalization of the microwave lines is more complex and different for input and

output lines. For input lines, we find at each stage of the fridge (4 K, 1.5 K, 100 mK

and 35 mK) both a clamp thermalizing the outer conductor of the microwave cable and

thermalized attenuator whose role is to ensure that the noise after the attenuators is

dominated by thermal noise at the temperature of the stage. Additionally low-pass filters

are used to filter out components at frequencies higher than 20 GHz. For the output

line, we isolate the system from the noise of the amplifier at 4 K using two circulators.

The cable used between the amplifier and the 35 mK plate is made of NbTi, which is

superconducting when the fridge is running, providing enough thermal isolation between

the 4 K and the 35 mK that no clamping is required.

Only two changes have been introduced with respect to the original setup for the ex-

periment presented in chapter 5. First, because the transmon is sensitive to magnetic

noise, the sample has been covered with a magnetic shield made out of multiple layers of

Metglas R© amorphous Co-based alloy 2714A glued using white stycast. Second, because

we need to send both AC and DC signals on the gate of the SD that we will use, and

because previous experiments relying on on-chip bias-tee proved disappointing, we used

a commercial bias-tee mounter on top of the sample holder. To preserve the filtering of

the DC line, we connect the bias-tee to one output of the filtering PCB.
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Figure 3.16: Schematic of the dilution fridge wiring

As discussed in 3.1.4, in the future we may want to incorporate on chip microwave filters

to reduce the noise on the DC lines. Furthermore, the measurement carried out on the

transmon qubit hint at the presence of residual thermal photons in the cavity. As those
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are damageable to the transmon properties, we may want to add additional filters on

the microwave lines.

3.3.3 DC measurements :

The DC measurements carried on the dot circuits are limited to current measurement.

Once again to reduce noise, the bias circuit relies on a voltage divider setup (with a

division factor of 1000 (1 MΩ/1 kΩ)). We used as voltage source a Yokogawa GS200

for the bias voltage line and one for each gate line. The current from the sample is then

converted to a voltage using a commercial trans-impedance amplifier (Femto LCA-400k-

10M) with a gain of 107 and a bandwidth of 400 kHz. The output voltage is measured

using a Keithley 2000.

Usually to study such nano-circuits, one prefers to measure the differential conductance

using a low-frequency modulation of the bias voltage and using a frequency locked mea-

sure (using a lock-in amplifier). This was not done in this work because, for yet unknown

reasons, the fridge wiring appears to work poorly with such measurements, even if all

cut-off frequencies are much higher than the one used in the detection. This is mostly

damageable to experiments that will be presented in chapter 5 in which the conductance

needs to be measured to characterize the system. For experiments presented in chapter

4 this is much less bothering, since at the working point of the experiment the sample

has no conductance.

3.3.4 AC measurements :

Most of the measurements carried out in this work focused on measuring the cavity

transmission and how it depends on the system control parameters such as the dot

circuits gate voltages, the externally applied magnetic field or the frequency or power

of an applied microwave tone. After discussing how such measurements were performed

with a continuous wave excitation of the cavity, we will move to time domain experiments

that are key in characterizing qubits.
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3.3.4.1 Continuous measurements :

The general principle of the cavity transmission measurement can be described as follow:

• a microwave tone at the probe frequency is sent down the fridge and into the

cavity.

• the output signal is then amplified inside the fridge using a low-noise amplifier (see

Fig 3.16) and further amplified and filtered at room temperature.

• finally the signal is down-converted in frequency before being measured. That

down conversion must of course preserve the phase of the signal.

Over the course of my thesis, four different setups have been used. They are presented

in Fig 3.17 (not necessarily in chronological order).

The setup A is in sense the simplest one. It relies on a vector network analyzer (VNA) to

perform both the generation of the probe signal and analysis of the transmitted signal.

The VNA handles internally both the down-conversion and the measurement. Among

the four setups, this one has the largest range in term of input signal power and is very

well adapted to perform fast frequency characterization of the cavity transmission (much

faster than what has been achieved with the other setups). This proved instrumental for

the measurements under magnetic field presented in chapter 4. The applied magnetic

field shifts the cavity frequency, which needs to be determined for each value of the field.

The setup B was the one existing when I started my work. It relies on a low frequency

modulation (kHz) of the probe signal created using a double balanced mixer. A mixer

uses a diode ring to realize a multiplication operation between a high-frequency and

high-power reference signal (LO) and a low frequency signal (IF). The output signal is

present at the RF port of the mixer and contains two frequencies: the sum of the input

frequencies and their difference. The output signal is then down converted once again

using mixers by multiplying the LO and RF signal. In this scheme, an IQ mixer is used

to extract both quadrature of the signal at low frequency. To achieve this, an IQ mixer

contains two mixers and a π/2 phase shifter. Both the LO and RF signals are split in

two, one part is sent to one mixer and gives the I component, while in the other arm,

the RF signal is phase shifted before the mixing operation which gives the Q part of
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Figure 3.17: Microwave measure setups:
The four setups used to probe the cavity during this work are presented here. For
each of them the amplification at the output of the fridge is the same and has been
depicted only in case a, in the other cases simply replace the VNA by the depicted
circuit. Note that the schematics do not always include all filters and attenuators.

A Simplest setup as the VNA handle both the signal generation and detection
internally.

B Oldest setup, it relies on a kHz modulation of the probe tone coupled to an
IQ demodulation and lock-in amplifiers to perform the detection.

C This setup relies on two microwaves sources, one used to probe the cavity and
the other to down convert the signal usually in the megahertz range.

D Only setup adapted to time domain measurements, it generates the probe tone
using a single-side band mixer driven by an arbitrary waveform generator (al-
lowing for short pulses). The detection relies on a digitizer whose acquisition
can be triggered.
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the signal. Finally lock-in amplifiers, working at the modulation frequency, are used to

measure the amplitude of each component. The main drawback of this design is that the

signal sent into the cavity is not spectrally pure, which could produce inter-modulations.

The third setup, setup C, was suggested to us by Vlad Manucharyan. Its main advantage

is that it allows to work with a spectrally pure probe tone. In order to do so, it requires

two microwave sources sharing a common phase reference (typically at 10 MHz) and

generating signals at two frequencies whose difference corresponds to the frequency at

which the detection is to be carried out. The signal of one source is used unmodified

to probe the cavity, while the signal of the other source is used to perform the down

conversion using a simple mixer. The resulting low frequency signal (in the MHz or 10

MHz range typically) carries both amplitude and phase information and can be analyzed

using a high frequency lock-in to which a reference frequency is provided by mixing the

two microwave signals. Using this setup, one can choose the demodulation frequency.

As already discussed, to reduce the sensitivity to low frequency noise it is interesting to

use higher frequencies, however we were in that case limited by the lock-in capabilities

at 2 MHz (SR 7280).

Finally the setup D was realized to perform time domain experiments as the detection

scheme of none of the other allows them. It generates the probe signal by driving a single

sideband mixer with an arbitrary waveform generator (AWG) and a microwave source.

The single sideband mixer is a mixer specifically designed to output only one frequency

(either sum or difference of LO and IF). The suppression of the second sideband is not

perfect, neither is the isolation with respect to the LO, which means that our probe signal

is no longer spectrally pure. However, as we will work with much higher frequencies

(20 MHz), the leaking signals will be far from the cavity frequency when probing it

transmission. The demodulation is performed using the LO signal, which gives a low

frequency signal at the AWG generator frequency. This signal is then digitalized using

a digitizer (ADQ14 from SP devices) and the extraction of the amplitude and phase

is performed on the control computer. The advantage of this setup is that, using the

AWG generator, we can generate short excitations and trigger the digitizer to acquire

the signal only when pertinent allowing to do time resolved experiments. To properly

trigger the digitizer one must first measure the propagation time of the signal inside the

cables. This can be done, for example, by looking at the digitizer trace as a function of

the delay in the triggering.
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In order to determine the frequency of our qubits, we can also perform spectroscopy

measurements involving a second microwave tone. When this second tone is at resonance

with the qubit, it will drive its state away from 〈σz〉 = −1, which will show in the cavity

transmission as shown in equation 2.83 which is recalled below:

S21 = 〈a〉
εin

= −i

i∆cd + κ/2 + i g2 〈σz〉
∆qd − iΓ2/2

(3.5)

When performing such measurements, the power of the second tone is crucial. If it is

too low it will have no impact on the qubit, on the other hand if it is too high, it will

make the qubit appear wider in frequency that it really is.

The width of the spectroscopy peak can also be increased by the photons present inside

the cavity. Indeed in the weak dispersive regime (see section 2.2.3.2) the peaks corre-

sponding to each photon number will be merged together and will give a wider peak.

When a peak is wider, it also tends to be smaller making its detection more delicate.

This is why it is often preferable to perform spectroscopy by separating temporally the

qubit excitation and the cavity probing. However this can be done only if the qubit

lifetime is not much smaller than the cavity rise time as otherwise the qubit will have

relaxed before we probed the cavity state. This is why in practice one usually starts

with continuous wave measurements. Using similar methods we can also measure the

cavity-qubit dispersive shift in the strong dispersive regime by driving the qubit out of

〈σz〉 = −1 and measuring the cavity transmission that presents in that case two peaks,

whose weight match the probability to find the qubit in each state.

Once we know the frequency of our qubit we can manipulate its state in time resolved

measurements as presented in the next section.

3.3.4.2 Time resolved measurements :

The first challenge in time domain experiments performed with a system whose lifetime

is not much longer than the cavity lifetime is the measurement. Because of the finite

coupling to the input/output line, it takes a finite time for photons to actually enter the

cavity and then start leaking out. If the system relaxes in a non-negligible fashion during

that time the contrast of the measurement will be strongly reduced. To counter-balance
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that effect one can start feeding the cavity before the end of the manipulation on the

qubit. Furthermore the qubit can relax during the measurement itself. Hence one must

find a compromise between the measurement time and the number of repetition allowing

to perform the measurements.

The first quantity, we typically measured in time resolved experiment, is the frequency

at which we can induce oscillations between the two states of the qubit. This frequency,

known as the Rabi frequency, is measured using the pulse sequence presented in Fig 3.18
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Figure 3.18: Rabi pulse sequence :
Figure a presents the sequence of pulses played by the AWG when measuring Rabi
oscillations. First the qubit (here a transmon qubit) is driven for a time τ , then the
qubit population is measured through the cavity transmission. The trigger starting
the data acquisition is delayed compared to the beginning of the cavity feeding to
account for the propagation and the finite bandwidth of the cavity. Figure b is a
typical measurement of Rabi chevrons. The x axis is the time τ , the y axis the
frequency of the manipulation tone and the color code maps the cavity transmission

and hence the qubit population.

In a Rabi experiment, the qubit is driven by a pulse of frequency fd and of duration τ

then its state is inferred from the cavity transmission. We then wait for both the cavity

and the qubit to relax before starting over. The sequence is then repeated many times

for each value of fd and τ . Plotting the probability of finding the qubit in the exited

state as a function of fd and τ we obtain chevrons like pattern, whose tip is centered

on the qubit frequency. From the periodicity of the oscillation we can deduce the Rabi

frequency.

We can further characterize our qubit by measuring its relaxation time and dephasing

time using the pulses sequences presented in Fig 3.19.
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Figure 3.19: T1 measurement and Ramsey sequence:
To measure the relaxation time of qubit, one usually uses the pulse sequence pre-
sented in figure a). First the qubit is driven from 0 to 1 (π pulse) and the population
is measured some time τ later. The relaxation is typically exponential and charac-
terized by the relaxation time T1 as illustrated in figure b). The dephasing time on
the other hand can be deduced from the decay of the Ramsey fringes. The pulse se-
quence used in such an experiment is presented in figure c). First the qubit is driven
into the equatorial plane (π/2 pulse) then after a time τ a second similar pulse is
applied. Because the manipulation pulse is chosen to be off-resonant, the qubit state
precesses in the frame rotating at the manipulation frequency, which leads to the
observed oscillations (figure d). The decay of the oscillation is controlled by the

dephasing time.

To measure the relaxation time, we first apply a π pulse on the qubit driving it from

its ground state to its exited state and we then vary the time we wait before measuring

its state, as illustrated in Fig 3.19 a. Plotting 〈σz〉 against the waiting time, we obtain

a decreasing curve that we can fit to an exponential in the simple case of the transmon

(Fig 3.19 b).

To measure the dephasing time, we perform a Ramsey fringes experiment. First we

choose a drive frequency slightly detuned from the qubit frequency, such that in the



Experimental techniques 128

frame rotating at the drive frequency the qubit state precesses at difference of the fre-

quencies around the z-axis. Then the sequence consists in two π/2 pulses followed by the

measurement of 〈σz〉 (Fig 3.19 c). The first pulse prepares the qubit on |+X〉. During

the waiting time, the state will precess in a deterministic fashion due to the frequency

mismatch and in a random fashion due to the noise to which the qubit is subject. When

the second pulse is applied it will have a varying impact depending on the accumulated

phase. In the absence of relaxation and dephasing, we expect oscillations at the fre-

quency mismatch. In the presence of dephasing, will get damped oscillation as shown

in Fig 3.19 d. From those, we can extract the dephasing time, and the qubit frequency

with greater precision.

3.4 Computer interface:

Running all the measurements presented in the above section requires the instruments to

be interfaced to a computer given the large amount of data they require. Before the work

done during this thesis, the interfacing and the on fly data visualization was done using

Labview. This solution was problematic for visualizing large data and also required to

often create new programs for specific measurements that were only marginally different

from existing measurements.

During my internship in the lab I developed a simple data visualization software in

Python, that outperformed the existing Labview visualization software. Even though,

this program could use many improvements, it proved very useful, and convinced the lab

that using Python for running the experiments was a viable option. The data acquisition

software went through several phases during my thesis, as I became aware of new tools

and learned more about proper software design following the development of other open

source projects. This software have been used for the experiments carried out in the lab

since Fall 2013.

In the last years, Python driven experiment control systems have boomed. The Mar-

tinis group system, LabRad, which started in 2007, uses Python and other languages

to implement a distributed acquisition, processing and storing data system. More re-

cently, projects like Qudi [115], focused on quantum optics, and QCoDeS, supported by

Microsoft in Copenhagen, Delft and Sydney have been made public. Using them was,



Experimental techniques 129

at the start, not an option either because they did not exist yet or because of the com-

plexity in setting them up (LabRad). Furthermore, coming from a Labview background,

a graphical interface was more appealing to the people in the lab than a script based

system.

After a brief presentation of the key ideas underlying the current state of the data

acquisition software (the reader is free to consult the documentation for more details), I

will discuss a bit a yet unfinished work on improving the interfacing with the hardware.

And, finally, describe what may be future perspective for this work.

3.4.1 Ecpy: experiment control in python

The data acquisition software, named Ecpy, is designed to be flexible and extensible. It

focuses only on data acquisition and does not deal at all with live data plotting. This

is because live plotting of increasing amount of data can cause memory issues and also

leads to unexpected crashes as GUI components are not always extremely stable, which

is why it should not be the responsibility of the program in charge of handling the data

acquisition. For the same reasons, the measurement execution is isolated from the main

GUI component and cannot be altered in a live fashion (although it can be paused,

resumed and stopped).

It is extensible because one cannot, ever, hope to provide all the capabilities a user

may need. To achieve this goal, it is designed around the notion of plugins where each

plugin provides some specific capabilities such as the description and compilation to

hardware compatible representations of pulse sequences. In order to add new plugins or

add capabilities to an existing plugin one does not need to edit directly the sources of the

application but can simply create an additional Python package that the application will

load at start-up. This also allows to split the applications in smaller more manageable

packages rather than dealing with a gigantic project. Of course such an architecture

has a cost in term of complexity but I believe it is nonetheless a better choice in a long

term vision. As a consequence, the basic application does not know how to talk to any

instrument but simply installing the ecpy_hqc_legacy package allows to access all the

currently used tasks and instruments driver in the HQC lab at the time being.
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It is flexible in the way in which it represents a measurement as it allows to combine

different actions in any hierarchical way needed to describe the experiment and allows

tasks to do computations on the values provided by others as input, allowing a great

flexibility inside the GUI. The tree can include logical tasks such as loops, and conditions.

Furthermore even if the tree is executed in an essentially sequential manner, one can

very simply execute different tasks in parallel if needed and synchronize when necessary.

Contrary to what is attempted in other packages, the user is responsible for choosing the

data that should be saved, as in complex measurements this can be a complex problem.

Fig 3.20 shows a screenshot of the main window when used to edit a measurement.'
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Figure 3.20: Ecpy main window:
This is the main window of the application which can be used to edit and run

measures. It features three main panels that can be freely re-ordered:

• A log panel in which the application will display messages about the performed
actions and potential errors (even if most of them are reported through pop-up
windows).

• A queue of completed, running(only one at a time), or waiting measures.
Those can be re-ordered and re-edited while not running. The running mea-
sure can be paused, stopped and resumed.

• A panel dedicated to the edition of measures with a tree editor on the left
featuring the structure of the measure in term of tasks and allowing to modify
it using drag and drop, and more specialized editors on the right.

Finally, because a lack of those can be a main issue in that kind of software, the code

is thoroughly tested to avoid regressions when changed are made (coverage > 95%) and

inline documented. In addition, the documentation (http://ecpy.readthedocs.io/

http://ecpy.readthedocs.io/en/latest/
http://ecpy.readthedocs.io/en/latest/
http://ecpy.readthedocs.io/en/latest/
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en/latest/) attempts to cover how to use the application and all the possible ways to

extend it. Finally to ease the installation, it is packaged using conda (to use with the

Anaconda distribution) and easily installable on both Python 2 and 3. In order to know

more one can read the docs or get in touch on Github (https://github.com/Ecpy/

ecpy)

3.4.2 I3py: instrument interfacing in python

One key point in handling the computer interfacing of an experiment is the proper

interfacing of the dedicated hardware (VNA, AWG, DC sources, microwave sources, etc

...). While the problem appears simple at first, it quickly becomes nightmarish to handle

the different modes incompatibilities, the limits on the different parameters and to do so

in a manner that avoids to duplicate too much code (this is a source for bugs and hinder

code maintenance). Overcoming those difficulties is not easy as hardware components

are full of "exceptional" behaviors. Furthermore, in order to easily swap similar hardware

in an experiment, one needs them to have similar interfaces. Designing such interfaces

can prove complicated while retaining access to the full capabilities of the hardware.

Quite quickly this appeared to be an issue with the initial design of the hardware

interfacing in the first version of the data acquisition program. I spend quite some

time trying to improve this design, which led to several draft implementations. In

particular, one attempt at establishing a collaboration between several developers on

Github was quite motivating but failed due to a lack of time/interest from the other

involved parties. The current implementation can be found under the I3py project

https://github.com/Ecpy/i3py. It is nearly complete but lack proper documentation

and use on concrete hardware.

The key ideas behind this project are the following:

• reduce as much as possible the code needed to write a driver while providing a lot

of flexibility to handle corner cases.

• allow to organize a driver in a hierarchical fashion using sub-systems

• easily handle instruments with multiple channels

http://ecpy.readthedocs.io/en/latest/
http://ecpy.readthedocs.io/en/latest/
http://ecpy.readthedocs.io/en/latest/
https://github.com/Ecpy/ecpy
https://github.com/Ecpy/ecpy
https://github.com/Ecpy/i3py
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• avoid unnecessary communication with the instrument by properly caching the

instrument state

• allow to discover the capabilities of an instrument without the need to communicate

with it (as much as possible), in such a way that building a GUI, providing a remote

interface or performing automatic tests can be automated

This last requirement stems from the fact that a most desired feature is the possibility

to integrate Ecpy with a front panel for the instrument.

I truly hope to be able to achieve before leaving the lab and possibly during my post-doc.

3.4.3 Future directions

Such a project cannot ever reach an end, and the number of future features that could

be added is large. I will only discuss four points here that have already surfaced in the

lab.

The first, and most ambitious one, is to provide a remote interface both to the hardware

and for data storing in such a fashion that multiple programs can use a single resource.

The two main applications are

• providing update about the hardware state during a measurement to an hypothet-

ical control panel

• feeding new data to a plotting program. While the need for such a protocol is not

needed for simple text based files, it becomes mandatory for binary storage (such

as HDF5) that cannot be opened by two programs at the same time.

This would represent a very large amount of work, which is why the Quantum circuits

group, which also uses Ecpy and involved me in the candidature, attempted to hire a

computer science engineer through a partnership with the INRIA.

The second and third consist in two improvements to Ecpy. The first would consist in

adding a plugin tracking some global variables related to an experiment (such as the

qubit frequency) and allow to parametrize measurements with respect to them. This

feature has already been discussed in the lab and has a clear roadmap. The other would
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the possibility to create templates, representing an often done sequence of tasks in an

experiment, which could be directly embedded inside a measurement to simplify it.

Finally, a rejuvenation of the plotting program written at the beginning of my thesis

would be desirable.

Of course, trying to develop a versatile software with proper testing takes time and

requires an effort from the people participating. Even if it is not physics, given the

complexity of recent experiments, it is not possible to completely skip such developments.
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Chapter 1 has motivated the interest in encoding quantum information in spin qubits

and of coupling qubits to microwave cavities, which is at the core of the experiment

presented in this chapter. To reach the strong coupling regime, we need the coupling

between the cavity and the spin to be larger than the losses in either system. The

natural magnetic coupling is very weak (∼ 10Hz) compared to the cavity lifetime, and

enhancing the magnetic field of a cavity to overcome this is very challenging. On the

other hand, inducing a charge-spin hybridization to enable a coupling to the cavity

electric field must be done very carefully as any such hybridization will make the spin

qubit sensitive to charge noise. The key challenge is hence to increase the coupling while

preserving the coherence of the electronic spin.

135
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As mentioned in chapter 1, the spin-qubit we used is unusual as, while relying on a DQD

architecture like exchange based spin qubits, its basic principle is closer to a spin-orbit

based scheme. After a more detailed presentation of the system from a theoretical point

of view in 4.1, I will describe in section 4.2 the samples used in this experiment and

how they were tuned in the regime of interest. The work presented in the following

section 4.3 will closely follow the article [21] which describes the main results. I will

then move to some additional results about the influence of the double dot occupation

on the spectrum of the system, in section 4.4, and conclude with some perspective about

this experiment in section 4.5.

4.1 Principle of the ferro-magnetic spin qubit:

The spin-qubit architecture developed in this work, was first introduced in [20] and has

been designed from the start to be embedded in a microwave cavity. The key idea, of

the spin-charge coupling, is to engineer a spin-orbit like interaction limited to the two

sites of a double quantum dot, such that oscillations of the charge between the two sites

induce a spin precession. The coupling to the cavity arises then from interaction between

the large electric dipole of the double quantum dot and the electric field of the cavity.

By combining those two ingredients one can hope to achieve a spin-photon coupling.

Those ideas are sketched in Fig 4.1, that were already presented in chapter 1.

However, such qualitative arguments do not give any clue about the decoherence mech-

anisms that will affect the spin as a result of its hybridization to the charge. Indeed,

if the spin dephasing coming from the charge noise contribution increases faster than

the coupling, one will end up with something quite similar to charge qubits which, up

to recent results [57, 58], have a dephasing rate much larger than their coupling. To

pinpoint the link between the charge qubit properties and the spin-qubit ones, we will

need to introduce a more detailed description of the system. This will be done in section

4.1.2, just after discussing the origin of the spectrum polarization by the ferromagnetic

contact.
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Figure 4.1: Artificial spin orbit coupling in a CNT based DQD:
We consider a single electron with spin −→s in a DQD. We represents its charge
probability density |ψ|2 in green. Each dot is connected to a ferromagnetic contact,
whose magnetization is noted −→M . This induces a spin polarization of the wave
function. However, as the ferromagnets magnetization are not colinear, neither are
the quantification axes in each dot, as illustrated in a. Hence by inducing tunneling
between the two dots using an electric AC signal, at frequency νc, the electron
experiences an AC magnetic field orthogonal to its quantization axis (−→BAC

eff,⊥) that
can be used to control the electron spin state (see b). The quantification axis is
defined by the effective field induced by the ferromagnets −→BDC

eff and the externally
applied DC field Bext

4.1.1 Ferromagnetic contact induced Zeeman splitting:

The first, and most obvious, mechanism through which a ferromagnet is susceptible to

induce a polarization of the spectrum of a nearby quantum dot is through the stray

fields it generates.

In addition, just like superconductivity can be induced by proximity effect, a ferromag-

netic interface can induce a spin polarization in a conductor to which it is connected.

In a non interacting picture, one can use the scattering matrix formalism to compute

the spectrum of a confined portion of coherent conductor connected to a ferromagnet

via a barrier with transmission (tσlead) and reflection (rσlead) probabilities which are spin

dependent, as depicted in Fig 4.2.
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Figure 4.2: Principle of the confinement-induced exchange field:
When tunnel coupling a coherent conductor to a ferromagnetic lead, a spin-
dependent interfacial phase shift ϕσ appears for electron reflecting the ferromagnetic
interface. This combines with the phase η acquired by the electronic wavefunction
when propagating through the coherent conductor over a length L and create a spin
dependent quantification condition which gives rise to a spin polarized spectrum.

The spin dependence of the spectrum in the dot can arise from both the transmission

probability and the phase of the reflection coefficient. If the transmission probability

is spin dependent, and non-zero, it means that the electronic wave-function is "leak-

ing" into the ferromagnet (through an evanescent part). The wave-function is hence

hybridized to the first atomic layers of the ferromagnetic lead, which naturally leads

to spin polarization of the total quantum state. This mechanism can be referred to as

tunneling exchange field. Its strength strongly depends on the amplitude of the trans-

mission probability and vanishes for a totally reflecting barrier (tlead = 0). It has been

observed in quantum dot spin valves [116, 117] and studied as a function of lead coupling

Γlead ∝ |tlead|2 on a Kondo resonance [118].

However, a spin dependent phase at the reflection can also induce a similar polarization

of the spectrum. Such a spin-dependent phase can arise from a spin dependent barrier

potential landscape, as it could happen for a connection to a ferromagnetic insulator

for example. In the non-interacting picture considered here, this confinement-induced

exchange field yields an effective Zeeman splitting [119]:

2δ = Eex = ~ vF
2L (ϕ↑ − ϕ↓) (4.1)
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where vF is the Fermi velocity, L is the length of the dot and φ↑(↓) is a spin-dependent

interfacial phase shift.

Gate voltages can in principle be used to tune the coupling between the dot and the

ferromagnetic lead, which means that it should be possible to control the exchange field

using gate voltages.

In the perspective of making a long lived qubit, the first and last mechanism are more

interesting than the second as the finite tlead in the second one is likely to strongly limit

the lifetime. However in our experiments, we will not be able to actually pinpoint the

physical origin of the induced Zeeman splitting, although it is likely the third mechanism

which is dominant.

4.1.2 System properties:

As we aim at implementing a long-lived two level system, the double quantum dot will

be tuned in between the triple points where transitions to the leads are forbidden for

both dots (see chapter 2). In this regime of parameter, the total number of electron in

the structure is fixed and only internal transitions between the molecular orbitals can

occur. We will hence describe the system by taking into account a single orbital in each

dot. Those two orbitals are subject to a Zeeman field along different axes (δL, δR) and

tunnel coupled (t) as illustrated in Fig 4.3. We will denote by θ the angle between the

two axes. For the sake of clarity, we will introduce the valley degree of freedom present

in CNT, only later, to properly describe the experimental results presented in section

4.3.

The system Hamiltonian, for a single electron in the structure, can then be written:

HSQB = ε τz + t τx + δL σz
1 + τz

2 + δR (σz cos (θ) + σx sin (θ)) 1− τz
2 (4.2)

with τ acting on the orbital degree of freedom (τz = |L〉〈L| − |R〉〈R|, with L and R the

left and right orbitals), and σ acting on the spin degree of freedom for which the axis

is chosen to be the left dot quantification axis. This Hamiltonian is similar to the one

presented in [120].
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Figure 4.3: Spin qubit level schematic:
Simplistic scheme of a double quantum dot connected to non-collinear ferromagnets.
Interface exchange fields induce effective Zeeman splittings in both dots with tilted
quantification axes and different magnitudes (δL, δR). The coherent delocalization
of the charge probability density |ψ|2 is controlled via the inter-dot detuning ε which
can tuned in DC, using the gates Vg1 and Vg2, and modulated in AC by the cavity

field.

Diagonalizing this Hamiltonian allows us to study the spectrum of the spin qubit. Fur-

thermore, we can compute its coupling to the cavity: the cavity field induces oscillations

of ε which implies that the coupling is proportional to |〈i|τz|j〉|2. Finally, we can extract

the sensitivity of the qubit to charge noise at first order by computing the derivative of

the transition frequency fij with respect to ε.

From there the goal, is to find a compromise between the coupling and the dephasing

due to charge noise, while preserving the system anharmonicity. In order to obtain

sufficiently mixed states the different energy scales cannot be too different. In Fig 4.4,

we present the spectrum, and the coupling and dephasing of the three transitions from

the ground state for parameters close to the ones we will use in section 4.3.1.

Looking at Fig 4.4, one can follow two paths to get a low dephasing while keeping a finite

coupling. One can either work in the large ε limit where the 0 and 1 states becomes

asymptotically parallel with respect to ε and hence insensitive to charge noise. This

transition is interesting as it is a nearly pure spin transition. Furthermore, its coupling

can easily be turned off by increasing ε while leaving the transition frequency nearly

unchanged. Such an operation scheme could allow to use this device both as a qubit

and a quantum register. The other course consist at working very close to ε = 0 but
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Figure 4.4: Spin qubit properties:

a) Spectrum of the spin qubit for parameters similar to the one used in Fig. 4.10.

b) Coupling between the ground state and the exited state. At zero detuning
the 01 transition is the more strongly coupled but its coupling decreases quite
quickly with the detuning as apposed to the 02 transition.

c) Charge noise induced dephasing rate for each transition. All transitions have
a sweet spot at zero detuning and the 01 transition has an asymptotic sweet
spot at large detuning but also a vanishing coupling.

d) Zoom of the sweet spot for the charge noise induced dephasing. One can notice
that all transitions are not equal with respect to charge noise suppression at
zero detuning and in particular the 02 transition has an increased coherence
compared to the other two.

on the 0 → 2 transitions. Naively one could think it is a pure charge transition but

actually at ε = 0, the mixing is maximal and it can be associated with a strong spin-flip

(cf 4.3.1). One can notice that it has a much stronger coupling and a "very sweet spot"

with respect to charge noise, which is why it is the transition whose signature will be

dominant in section 4.3. However it lacks the possibility to use the system as a register

as one cannot go to large detuning to protect the state without largely modulating the

transition frequency and going through an anti-crossing.

4.2 Sample:

The experimental results that are presented in this chapter have been all obtained on

a single sample, but the main ones concerning the spin-photon coupling have all been

reproduced on another one (not shown here). The case of that sample will not be dis-

cussed as the results were very similar at first and because a power breakdown destroyed

it before more results could be obtained. This section will focus on the peculiarities in

the design and fabrication of the devices and on the first measurement required to tune
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the system into the right range of parameters. The spin-photon coupling will be the

subject of the next section.

4.2.1 Geometry and fabrication:

The main specificity, as far as the fabrication of those devices is concerned, is the deposi-

tion of the ferro-magnetic contacts. We require to have two ferromagnetic contacts with

a controlled magnetization orientation and which forms not too transparent contacts on

CNTs. In theory, we can work with opaque contacts as already explained in the previous

section. However transport is the only method we have to control at room temperature

the quality of the sample and given that the fabrication is not extremely reliable such

tests allow to save a lot of time.

PdNi alloy can form good contacts with CNT’s[116, 117] and thin films magnetization di-

rection can be systematically controlled by the shape of the electrode. Indeed, Chauleau

et al. [121] have shown that for thin Pd0.2Ni0.8 layer (30 nm), electrodes narrower than

500nm systematically present a transverse magnetisation, see Fig. 4.5.'
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Figure 4.5: MFM images of PdNi nanostructures:
Each structure was patterned in a 30nm thick film. (a) 150nm-wide and (b) 450nm-
wide nanostrip. (c) nanoring with 500nm width and 5µm diameter. Source: [121]

The alternating dark and light regions of magnetic force microscopy (MFM) images show

magnetic domains of opposite orientation demonstrating a magnetization perpendicular

to the axis of the electrode. For 150 nm wide electrodes, the strip presents clear magnetic

domains with orientation orthogonal to the longitudinal direction that minimizes the
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magnetostatic energy. Taking advantage of this knowledge, we can therefore define the

magnetization direction of our electrodes at the lithography step. Fig. 4.6 shows a

topography (AFM) and magnetic map (MFM) of a CNT-based double quantum dot

connected to non collinear PdNi electrodes, similar to the ones shown in Fig. 4.5. In

this case the ferromagnetic contacts were tilted with an angle θ = π/4 with respect to

each other. This angle was chosen because previous experiment carried out with an

angle of π/6 did not exhibit any spin-photon coupling.'
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Figure 4.6: Spin-qubit sample:

a Optical micrograph image of the studied sample zoomed into the area of the
DQD. One can recognize the stamp marks left by the quartz mesas as well as
the six electrodes deposited on the CNT.

b Atomic force microscopy image of the sample on which the CNT appears in
false colors.

c Magnetic force microscopy image of the sample. The magnetization of the
source and drain electrodes appear in the checker board pattern, in which black
and white area correspond to the North and South poles of the magnetization.

On the MFM image, one can notice that the magnetic domains can be quite small. In

practice, this causes no issue for the contact induced spin-polarization as the domains

remain much larger than the CNTs diameter (∼ 1 nm), however it means that the net

stray fields are going to be very small and are not likely to be the main phenomenon

involved in the polarization of the spectrum.

Previous experiments carried out in the group had demonstrated that on such samples

side gates were not effective in tuning the system properties, which is why we chose

a geometry using only top gates to define our DQD. As shown in Fig. 4.6, our DQD

circuit is composed of the two ferromagnetic contacts and of four top gates. Among those

four top gates three are connected to DC voltage sources and used to tune the DQD
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properties. The fourth one is only connected to the central conductor of the resonator.

As discussed in chapter 3, this allows to maximize the coupling to the microwave photons.

This gate is as far as possible of the "center" of the DQD to maximize the asymmetry of

the field. At this point, it is worth mentioning that our systems are far less controlled

than DQD in GaAs for example:

• the top gate allow to tune the chemical potential in the dots but the tunnel barrier

between the dots is mainly controlled by disorder.

• the location of the dots remains uncertain as is their filling. Contrary to what

can be done in GaAs it is impossible to drive the system at charge neutrality and

work with a single electron in the DQD (although this has been demonstrated is

ultra-clean CNT devices [122])

• the disorder and defects distort the honeycomb pattern one expects to find in a

DQD. As a consequence, this pattern appears only in small gate voltage ranges.

Finally it should be mentioned that two such DQD were embedded in the same cavity.

4.2.2 Sample tuning:

After cooling down the sample, we need to tune the gate voltage so that the sample

behaves in the proper fashion. Given the experiments we are interested in, the sample

should have the following properties once properly tuned:

• it should display the honeycomb pattern specific to a DQD, similar to Fig. 2.6.

• its conductance on the triple points should be very low (G ' 10−6 − 10−5 S), as

otherwise the coupling to the leads will be too strong and the qubit will not be

very coherent.

• we should be able to bring the internal transitions in the area of the triple points

into resonance with the cavity. We also need a low dephasing rate, as we hope to

observe the strong coupling regime.

During that tuning step, we used only two top gates (Vg1 and Vg2) to explore the stability

diagram, Vgt was tuned later on but had a limited impact in the studied sample. As
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always, we can measure both the current and the cavity response. As discussed in

chapter 2.2, the cavity response is mainly dominated by the susceptibilities of internal

transitions (χn,m between levels n and m) and can be described, in the semi-classical

regime, by :

S21 = −i
i∆cd + κ/2 + i

∑
n,mn<m χn,m (〈|m〉〈m|〉 − 〈|n〉〈n|〉) (4.3)

with χn,m =
g2
n,m

∆n,m − iΓ2,n,m/2

In most cases, we can get a qualitative understanding of the signal by considering a single

transition with a dispersion similar to the one of a DQD ∆ =
√
ε2 + 4 t2 − ωd. In the

regime of weak coupling, we can map the phase response to the real part of the system

susceptibility and the amplitude response to the imaginary part. Fig 4.7 illustrates the

typical answer one can expect.'
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Figure 4.7: DQD charge susceptibility for t = 3.1 GHz and ω = 6.7 GHz:
The imaginary part of the susceptibility displays two peaks matching the resonance
condition ωcav =

√
4 t2 + ε2. In between those two peaks the transition frequency

for the qubit is smaller than the cavity frequency which gives a negative real part
which will lead to a positive phase shift. If the dephasing rate was much larger, we
would not resolve the two peaks in the imaginary part. On the other hand if 2 t was
larger than the cavity frequency we would not observe a sign change in the real part

.

The susceptibility remains finite and detectable only close to the degeneracy line (ε = 0),

on a scale of the order of 2 t. As we are interested in cases where the system can be

brought into resonance, it means that we should have 2 t < ωcav = 6.73GHz ∼ 25µV.
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This implies that we will need to perform quite detailed gate scan to resolve those

features. To avoid losing too much time by performing very detailed maps of the whole

stability diagram, it is usually relevant to first do a coarse mapping using a large bias

voltage (∼ 500µV) which will broaden all transport signatures. This allows to identify

areas fulfilling the first two conditions. Those can then be mapped more in details to

identify areas fulfilling the last criterion.

As shown in Fig. 4.7, the cavity response shape allows to quite quickly identify resonant

areas as they will display a sign change in the phase response. Furthermore, a qualitative

difference in the shape of the response exists depending on the dephasing rates: at

low dephasing rates one can resolve the two dips in the transmission matching the

two conditions of resonance between the DQD transition and the cavity. The typical

experimental signature one can expect is presented in Fig. 4.8.'
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Figure 4.8: Spin qubit in the triple points area:
The current measurement, presented in the left panel, only shows the two triple
points and one co-tunneling lines. The phase and amplitude response are on the
other hand richer. We can see the other set of co-tunneling lines because of the
finite charge susceptibility of the system in those areas and in between the triple
points the response of the internal transitions. The fact that we resolve very well the
two dips in the amplitude suggest a rather low dephasing. Please note that in the
following ε will not denote the detuning measured as the distance to the degeneracy
line but merely one gate voltage as indicated in the amplitude measurement. This
does not change the interpretation of the results however. The sample conductance

and cavity transmission are measured simultaneously.

In theory, one can calibrate the gate voltage action in term of energy, which would allow

to determine the lowest frequency of the internal transition and give an estimate of

the dephasing. In practice, this is very hard as the full calibration requires a regular

cell of the honeycomb pattern and the possibility to observe the usual broadening of
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the triple points into triangles when the bias voltage in increased [86]. However in

our samples the disorder usually prevents one to observe a full cell of the honeycomb

(this will be illustrated in section 4.4) and because we are interested in areas with a

very low conductance the triangle measurement is usually challenging. One could think

of performing the calibration in another area, however this does not work well as the

properties of the DQD change between different areas.

This lack of calibration prevents a quantitative study of the system susceptibility. How-

ever even if such a calibration was possible, such measurements would not allow to

discriminate between a simple charge qubit and our spin qubit as the expected response

are, in the range of parameters explored here, quite similar. How to go further and

unveil the spin-photon coupling is the topic of the next section.

4.3 Coherent spin-photon interface:

So far the data presented could perfectly have been obtained on a simple, rather coherent,

charge qubit. To go further, we would like to prove that the state coupled to the cavity

are actually hybrid spin-charge states. To do so we will first apply an external magnetic

field. In order to preserve the cavity high finesse, the magnetic field will be applied in

plane as indicated in Fig. 4.6. If our transition are spin-full, we should observe that

they actually disperse not only with respect the gate voltage but also with respect to

this field. This will actually allow us to fine tune our system in a sweet spot for the

charge noise at which it is at resonance with the cavity. For those parameters, we will

be close to the strong coupling regime, which will allow us to extract the spin-photon

coupling strength and the coherence of our qubit. Finally, as the spectrum is strongly

controlled by the behavior of the ferromagnetic contacts we will look for a signature of

their impact in the hysteresis of the system.

4.3.1 Levels dispersion:

The usual way to map the dispersion of the energy levels of a qubit consists in performing

a spectroscopy as described in section 3.3.4.1. However so far such measurements have

never been very conclusive on this system, as discussed later. Here we will rely on the

measurement of the cavity transmission versus the applied gate voltage and magnetic
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field. As we have seen in Fig. 4.7, when a transition becomes resonant with the cavity it

leads to an increase in the dissipation and hence a dip in the transmission which allows

to identify the resonance condition location. We can hence map the dispersion of the

transition at the frequency of the cavity in the magnetic field (Bext)-gate voltage (ε)

plane. Such a map is presented in Fig. 4.9.'
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Figure 4.9: Spin qubit dispersion as a function of ε and Bext:
The map of the cavity transmission displays three dips corresponding to three tran-
sitions brought into resonance with the cavity. Those three transitions disperse both
with respect to the gate voltage and the magnetic field. In addition the phase con-
trast increases at finite field for the two main transitions, which can be related to

an increase in the coupling or a reduce decoherence.

When a magnetic field is applied, the resonances, we observed at B = 0 T, split. We can

identify three distinct transitions, that can be brought into resonance with the cavity

as indicated by the black arrows in Fig. 4.9. The third one is much fainter which may

indicate a weaker coupling or larger dephasing rate. All three transitions disperse both

with respect to the gate voltage and the magnetic field, which suggest that they are

related to mixed charge-spin transitions. Furthermore, for the two main transitions, the

phase contrast increases at finite field which may be due to an increase in the coupling

or decrease in the dephasing.

To conclude about the origin of the increased contrast at finite magnetic field, we will

use a model similar to the one presented in section 4.1.2 to reproduce those results. We

cannot use the exact same model because such a model can only reproduce one of the

two main transitions. To actually have both transitions we need to take into account

the valley degree of freedom of the CNT. We assume that there can be a small disorder

induced valley mixing which we include in the usual way with a phenomenological pa-

rameter ∆KK′ . We furthermore use different induced Zeeman splittings between the left

and right dots (and between the valleys): δL,K , δL,K′ , δR,K , δR,K′ . We also introduce
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a phenomenological orbital Lande factor αorb and phenomenological electronic Lande

factors αL(R)
spin , which are distinct in the left and right dots. The spectrum we obtain

is similar to the one presented in Fig. 4.4, but each level is doubled, with a different

dispersion in magnetic field for each level of the doublet. We will refer to the levels as

0, 0′, 1, 1′, 2, 2′, 3, 3′, following the notations of Fig. 4.4.

Another phenomenon, that we need to model, is the behavior of the ferromagnetic con-

tacts in the applied magnetic field. At zero magnetic field the magnetization direction

is controlled by magneto-strictive effects, at high magnetic field we expect the magneti-

zation to align with the external field. No detailed experimental studies of the behavior

of those thin magnetic stripes have been carried out describing how one goes from one

situation to the other, so we have used phenomenological models. First we tried to

model those electrodes as mono-domain easy-axis magnet obeying the Stoner-Wohlfarth

equation which describes the switching of the magnetization of such magnets. However,

we did not get a very good agreement between our data and the calculations. We then

turned to an empirical exponential alignment law that gave better results. The typical

field on which the magnetization align with the external field is noted B0. The angle

between the field direction and the magnetizations of the left and right electrodes at zero

field are noted θ0
L(R). We considered that the external field only affects the orientation

of the induced Zeeman term but not its strength.

For each values of ε and Bext, we have first numerically diagonalized the Hamiltonian to

get the eigenenergies and eigenvectors. The eigenvectors are then used to compute the

coupling to the cavity modeled as a modulation of the detuning between the left and

right dot. The dephasing is deduced from the derivatives of the transition frequencies.

To get reasonable result even on the sweet spots we compute both first and second order

contribution of charge noise to dephasing and combine them by computing the square

root of the sum of each term squared. This combination is an ansatz, which has the

proper limit behavior and avoids to underestimate the charge noise contribution on a

sweet spot. We also assumed a constant relaxation rate Γ1. Having computed, the

frequencies, couplings and dephasing rates we can deduce the cavity response. Because

in our case, we found ∆K,K′ to be much smaller than the temperature, we considered

the two lower states to be occupied. Using the following parameters, we reproduced

quite accurately our experimental results as shown in Fig. 4.10.
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ωcav = 6735 MHz t = 2380 MHz δL,K = 3135 MHz

δL,K′ = 3095 MHz δR,K = 3145 MHz δR,K′ = 3100 MHz

αLspinµB = 2700 MHz/T αLspinµB = 1300 MHz/T αorbµB = 300 MHz/T

∆K,K′ = 45 MHz Γ1 = 1 MHz B0 = 1.5 T

θ0
L = -0.17 rad θ0

R = θ0
L + π/4
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Figure 4.10: Spin qubit dispersion theoretical model:
Diagonalizing the full Hamiltonian of our spin qubit, we can reproduce the data
presented in Fig. 4.9. A weak asymetry between the contact induced Zeeman fields is
required but this is not surprising. More surprising is the need for an effective Lande
factors and a small intervalley coupling. The valley coupling can arise from disorder
and given the fact that on a large scale our DQD spectrum is quite irregular we could
have expected a larger inter-valley coupling. The Lande factor renormalization may
be induced by the ferromagnetic contacts but we do not have enough control on the

system to investigate this further.

The overall agreement we get is good for the two main transitions which corresponds to

0→ 1 and 0′ → 1′, while the third one 0′ → 1 is predicted at a slightly higher field than

observed which we can impute to our model of the ferromagnetic electrodes. Looking

at the dephasing rate, we can identify a sweet line for the charge noise as indicated by

the green dots which explain the increase of the phase contrast in that area.

Finally, from the eigenvectors, we can identify the nature of the transition between levels

i and j. To do so, we decompose the σy operator associated to the degree of freedom of
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interest (the spin) on the four possible combination of the other two degree of freedom

(charge and valley so LK, LK’, RK, RK’). We then consider the following quantity:

Cijspin =
∑

u∈{LK,LK′,RK,RK′
|〈i|σuy |j〉|2 (4.4)

This quantity is bounded between 0 (identical state) and 1(opposite state). We can use

similar definitions for the charge and valley degree of freedom. Using this characteriza-

tion, we find that the two main transitions are mainly valley conserving (30%), while

having a neat spin flip component (75%) and a 50 % charge flip. The third transition

is closer to a valley flip transition which may explain its larger dephasing as the valley

degree of freedom is expected to be less coherent than the spin one.

Going to higher fields may allow to align the ferromagnetic contacts magnetization

and recover a simple charge qubit whose characterization may allow to access the bare

coupling and charge noise induced dephasing. However the magnetic field range for

such measurements is limited by the degradation of the quality factor of the cavity in

presence of the magnetic field. On the range chosen here, the quality factor is divided by

2 between zero field and the highest field, as illustrated in Fig. 4.16. At higher fields, the

degradation is much faster which prevents such a characterization. On the practical side,

the resonance frequency is also affected by the magnetic field and vary by about 10 MHz

in such a measurement, as illustrated in Fig. 4.16. This is more than ten times the cavity

linewidth, which means that the resonance frequency needs to be determined for each

field and the probing tone frequency adjusted accordingly as otherwise we would quickly

lose the signal. To avoid creating artifacts, this determination of the cavity frequency

is carried out at large detuning such that the dot circuit does not affect the cavity. In

the data presented above, we plot the difference between the measured signal and the

amplitude and phase measured at resonance during this calibration measurement for

each field.

We will now focus on the area in which the system appears to be the most coherent

and in which we reach a phase contrast of more than 50◦. Such a large phase contrast

should be related to strong distortion of the cavity transmission, from which we may

learn more directly about the dephasing rate and the coupling.
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4.3.2 Approaching the strong coupling:

We now work at fixed ε = 50µeV which is the value at which we get the largest phase

contrast at finite field and measure the cavity transmission as function of the probe

frequency and the applied external magnetic field. In Fig. 4.11, we present the raw

measurement with an absolute frequency axis. The impact of the external magnetic

field on the cavity resonance is quite striking and mask any information.'
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Figure 4.11: Cavity transmission vs B:
The frequency shift induced by the magnetic field on the cavity frequency are much
larger than the cavity linewidth and prevent the direct observation of the impact of

the coupling to the dot.

However, as we did for the B-Vg maps, we can determine the cavity resonance frequency

at each field when the dot circuit is far detuned (ε ' 1mV). We can then plot the same

data but this time centering each column around the cavity resonance frequency. The

result is presented in Fig. 4.12.

We observe four strong distortions of the cavity transmission which results from the

hybridisation between the cavity and the dot circuit levels. Those correspond to the four

main dips we identified in 4.9 and associated to two transitions symmetric in magnetic

field. At first, those distortions look like anti-crossings. However looking at the cuts, we

never resolve two peaks but we see a weak peak in the middle which is reminiscent of

the situation presented in section 2.2.3.1 when one has a cooperativity larger than one

but a dephasing of the atom stronger then the coupling. In this section, we discussed
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Figure 4.12: Cavity transmission vs B: re-centered:
The raw measurement of the cavity transmission did not allow to identify the signa-
ture of the interaction between the cavity and the spin qubit. Centering each cavity
transmission trace around the cavity frequency measured when the qubit is detuned,
we clearly observe two near-anticrossings for each of the two main transitions. We
cannot talk here about anti-crossings as we do not resolve two peaks, however the
cavity transmission is strongly distorted. The black arrow indicates the area on

which the following analysis will focus.

how to model this regime very close to the strong coupling regime and we will now use

those results to extract both our spin-photon coupling strength and the coherence of our

qubit.

We will focus on the resonance at -67 mT, but the exact same treatment can be

done on the other resonance. First, we can estimate the cooperativity C by compar-

ing the transmission amplitude when the system is detuned and when it is tuned as

Adetuned/Atuned = 1 + C. To identify the field at which the dot circuit is perfectly

tuned, we look at the cavity resonance frequency and search for the point at which it is

not modified when tuning the system. Indeed, if the cavity frequency is unmodified, it

means that the response of the dot circuit is purely imaginary which according to 2.83

can only occur when the detuning between the dot circuit and the cavity is zero. This

simple comparison yields a cooperativity of about 2, which means that our interface is

coherent.



Coherent spin-photon coupling in a cQED architecture 154

To go further and extract separately the coupling and the dephasing rate, we can fit the

transmission using the following formula derived in chapter 2:

S21 = α

i∆cd − i κ/2−
g2

∆qd − iΓ2/2

− i
√
Te−ζ (4.5)

One can clearly see on Fig. 4.13 that the transmission is not symmetric but displays a

Fano lineshape. The induced distortion is strong enough to prevent a simple Lorentzian

fit, which is why we include the term i
√
Te−ζ . First, we can determine all the cavity

parameters (α, κ, ωcav, T, ζ) by fitting the transmission at large detuning. We are then

left with three parameters for the dot circuit. In theory, they can all be extracted from

a single fit, the broadening of the resonance, its shifting and the change in amplitude

should be enough to determine the three unknowns. However, in practice the data are

too noisy to make such a fit reliable. To circumvent that issue, we fitted multiple traces

at different cavity-qubit detuning assuming a constant coupling and dephasing. This is

an approximation as the coupling and dephasing depends on the applied field, but it

allowed us to precisely pinpoint a trace with a detuning (14 kHz) much smaller than

the dephasing (MHz range). We could then only focus on that trace and perform the fit

with a zero detuning, as illustrated in Fig. 4.13. This procedure yields a coupling g =

2π 1.3MHz and a dephasing rate of Γ∗2 = 5MHz. Importantly, this gives a cooperativity

of 2.3 which agrees well with the comparison of the transmitted amplitudes.

.

As mentioned earlier, we cannot fit at the same time the transmitted amplitude and

phase. This makes in particular the determination of the parasitic mode parameters

(T, ζ) a bit uncertain. However, whereas the Fano line shape is important to obtain a

quantitative fit of the resonances both tuned and detuned, letting T to zero does not give

markedly different cooperativies and decoherence rates (in this case one has to correct

for the background of the data)

A similar analysis, on the neighboring transition at – 43 mT, yields C ' 3.3. However

this does not come from a weaker decoherence but rather a higher coupling.

Those results allow us to give a lower bound for the spin decoherence time in carbon

nanotubes T ∗2 > 60 ns (T ∗2 = 2/Γ∗2). This is already almost one order of magnitude larger
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Figure 4.13: Cavity transmission fitting:
The orange curve corresponds to the cavity transmission when the qubit is far de-
tuned, while the green one corresponds to the situation in which the qubit is tuned.
By comparing the maximum transmission we can estimate the cooperativity of the
system which reaches about 2 in this case. We can also go further and extract
independently g and Γ2 by fitting the curves as explained in the main text. The
fits allows to disentangle the two quantities as they exploit the extra information

encoded in the broadening of the cavity resonance.

than the previous measurements in CNTs based charge DQD [123], but we believe that

it could be improved further by optimizing the spin-charge hybridization.

So far, we have not made a direct proof of the impact of the ferromagnetic contacts on

the system, apart from the fact that according to previous experiments we cannot have

such a low decoherence rate in a charge qubit. In the next section, we will address that

question by studying the hysteretic behavior of our sample.

4.3.3 Hysteretic behavior:

The magnetization of ferromagnetic materials with an easy axis of magnetization usu-

ally presents a hysteretic behavior when subject to an external magnetic field. This

comes from the competition between the anisotropy energy of the ferromagnets and the

interaction with the external field:
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• at high positive field the magnetization is aligned with the external field

• when the field is decreased, the magnetization rotates towards the easy axis.

• when the field change sign, the anisotropy energy and the interaction are now

competing: the anisotropy prevents a rotation of the magnetization while the

interaction favors a magnetization reversal.

• when the field overcomes the anisotropy the magnetization flips. This happens at

−HC

The reverse cycle leads to the same kind of behavior but with a reversal at +HC .

In the case of our system, we have two such magnets however and we can expect to see

two switchings. The expected behavior is depicted in Fig. 4.14.

Because our electrodes are not single-domain magnets, we cannot really model the en-

ergy of the ferromagnet as a simple double well function only of the angle between the

magnetization and the easy-axis. The existence of multiple domains gives the system

many more degree of freedom which leads in general to the existence of low energy paths

allowing the reversal of a particular domain. The existence of those low energy paths

can mask the existence of the hysteresis if the magnetic field is varied slowly, as thermal

energy will be sufficient to allow the magnetization reversal before HC is reached. In

particular, we cannot observe the hysteresis on the large B-Vg maps because those were

too long to acquire. We will hence only focus on line scan in the following.

The first signal, in which we can hope to observe a hysteretic signature, is the current

flowing through the device. Indeed, the geometry of our device is close to a spin valve,

which means that we should observe an increase in the sample resistance when the

contacts magnetization are "anti-aligned". This results from the fact that we will inject

mainly electrons with spin "up" while we can only receive electron with spin "down". As

our electrodes are non-collinear, the effect will not be huge, as the spin filtering will never

be perfect ("up" and "down" not being defined with respect to the same axis). Fig. 4.15

a) presents a measurement of the current flowing through the device on a triple point.

We observe a decrease in the current for an external field of about 10 mT, which we can

attribute to the switching of the first electrode, most likely the one whose magnetization
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Figure 4.14: Hysteresis measurement principle:
Starting from a very strong negative magnetic field, the field is first reduced towards
zero. At first both electrodes magnetizations are aligned with the magnetic field,
as the field decreases both electrode magnetizations rotates towards the easy axis.
Going to positive fields, at first the magnetization remains unchanged as the mag-
netization switching is protected by a high energy barrier. Then a first electrode
switch. At a higher field the second switches too. The differences between the fields
at which the switching occurs can be related either to the internal properties of the
electrode or the misalignement of one electrode with respect to the field. Going
the other way round, the switching will now occur at negative fields. This lack of

symmetry gives rise to the hysteretic signal.

is aligned with external field. There is no second jump but rather a smooth recovery

and at high field we get the same decreasing behavior1

Knowing that the ferromagnetic contacts do impact the system through a current mea-

surement is interesting, but a stronger indication would come from a direct hysteresis of

the cavity signal that we could related to the spin qubit spectrum. Fig. 4.15 b) presents

a measurement very similar to the one presented in a but on the transmitted phase. As

for all other measurements carried out on the cavity signal the probe tone is adjusted at
1This decreasing behavior is not understood but may be related to magneto-Coulomb effect [124].

This effect can convert a magnetic field change in a gate voltage change, and could detune the system
from the initial working point. The existence of magneto-Coulomb in the device does not however void
our previous results as alone it cannot explain the increased coherence of the device.
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Figure 4.15: Current and phase hysteresis:

a) Current hysteresis measured on a triple point, the blue(orange) curve corre-
sponds to increasing(decreasing) magnetic field. One can clearly see a sharp
reduction of the conductance around zero field followed by a plateau and then
a slow decrease. This sharp switching can be associated to the switching of
one electrode magnetization. No second switching can be clearly identified
but it may due to the fact that one electrode is not aligned with the field.
Finally the slow decrease may be due to magneto-Coulomb effect as discussed
in the footnote.

b) Phase shift hysteresis measured in the area studied so far, around ε = 0.
The phase shift is as before measured with respect to a reference acquired at
resonance for each field. Here too we observe a clear hysteresis in the signal.

c) Magneto-current ∆Mσ and magneto-phase ∆Mφ as defined in the main text.
Both responses evolves on the same scale of magnetic field, which strongly
suggests that they are governed by the same underlying mechanisms.

each field to match the cavity frequency. We observe also in this signal a net hysteretic

component.

In order to compare more easily those two responses, we plot in Fig 4.15 c) the magneto-

conductance ∆Mσ and the magneto-phase shift ∆Mφ defined as follows:

∆Mσ = Iforward − Ibackward
Iforward + Ibackward

∆Mφ = ∆φforward −∆φbackward
|∆φforward|+ |∆φbackward|

(4.6)

The absolute values in the definitions of ∆Mφ are required as contrary to the current

the phase shift takes both signs.

Up to the absolute scale both signals are very similar: the s shape characteristic of a

magneto-conductance measurement appears in both on the same characteristic magnetic

field. The sharp peaks appearing in the magneto-phase shift simply marks the position

of the resonance between the cavity and the spin qubit levels, which is why they do not
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appear in the current. Overall, the combination of those two measurements appears to

show that the spectrum is genuinely affected by the ferromagnets.

There is however one thing that needs to be checked here before concluding. We have

seen that the cavity is affected by the external magnetic field and phenomena such as

vortex trapping can induce hysteretic behavior in superconductors subject to a magnetic

field. We must hence check that the signature in the cavity hysteresis cannot explain

the hysteresis in the phase signal we observed. Fig. 4.16 presents the cavity frequency,

linewidth and phase slope as measured during the acquisition of the magneto-phase shift

data but at a point at which the qubit is far detuned. Along the raw data, the equivalent

magnetic dependence of each quantity is also plotted.'
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Figure 4.16: Cavity hysteresis:
The cavity also displays an hysteretic behavior, which may find its origin in vor-
tices trapped in the superconductor. To evidence it, we plot the magneto-frequency
∆Mfc, magneto-linewidth ∆Mκ and magneto-phase slope ∆M

dφ

dfprobe
. The slope of

the phase versus the probe frequency around the resonance, whose hysteresis could
explain the previous observations, is hysteretic but much less that the phase shift
and cannot explain alone the observed signal that hence does encode an hysteresis

in the spin-qubit susceptibility.

We do observe that the cavity presents an hysteretic behavior. However looking at the

magneto phase slope, the hysteresis in the signal barely reaches 10 % while the signal

observed for phase shift signal on the spin qubit is more than 50 %. As a consequence

the hysteresis of the cavity cannot explain the observed hysteresis in the behavior of
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the spin qubit, and our previous conclusion holds: the ferromagnetic contacts genuinely

influence the system spectrum.

In this section we have focused on the demonstration of the coherence of our spin interface

and validated its basic principle. The cooperativity and decoherence rates achieved place

our system at the strong coupling threshold. Owing to the general principle used here,

this method could be applied to many host materials for spin quantum bits. However,

we are far from having explored in details the possibility of our devices.

4.4 Impact of the occupation parity:

So far our model has focused on a single electron picture, but the total number of

electrons in our structure is unknown. Changing the parity of the total number of

electrons in the dots should drastically change the spectrum by moving from a single

electron picture to a singlet-triplet like system. We investigate in details these features

in this section.

In order to study the impact of the occupation parity on the system spectrum , we per-

formed cavity transmission measurements with respect to the external applied magnetic

field and the gate voltage similarly to what was done in 4.3.1. We cannot know the

number of electrons, however we know that by moving from one set of triple points to

the next the parity of this number changes. In the following sections, we will present

measurements performed on four adjacent areas along the axis set by one of the gate

and another area along the other gate axis. The four areas are presented in Fig. 4.17.

The previously studied area is not shown here. On a larger map it would appear as the

second area on the right hand side of area 1.

In the following, we will refer to odd and even areas. This denomination comes from

the fact that our single electron model can describe the so-called odd area.

4.4.1 Odd areas:

The dispersion maps associated with area 1 and 3, identified as odds by comparison to

the model, are presented in Fig. 4.18.
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Figure 4.17: Gate-gate map of the cavity transmission in the area of the parity
study:

The four areas indicated are the four main area in which the impact of the parity
was studied. Area 1 and 3 will be identified as odd area and 2 and 4 as even area.'
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Figure 4.18: Parity study: odd areas

Area 1 This area is very similar to the area discussed in the previous section except
that we do not resolve the transitions from the two valleys and that we see
an additional transition with an unexpected dispersion: it requires a higher
detuning to be resonant at higher field as opposed to all the other observed
transitions.

Area 3 This area is similar to the previous one but with a different asymmetry with
respect to ε = 0, which can be attributed to a reversed asymmetry in the
Zeeman terms between the two dots.

Those areas remain quite similar to the data described above and a change in the asym-

metry of the model parameters can explain the inverted dependence in ε. However, one
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feature that remain unexplained is the line found at higher field whose dispersion is un-

expected as it requires a higher detuning to be resonant at higher field, which means that

the two levels are moving closer together when the field increases. This is unexpected

and may be related to a change in the interface with the ferromagnetic contacts.

The fifth area that has not been presented in Fig. 4.17, has a quite different dispersion

which is presented along simulations in Fig. 4.19. The stability diagram deformations

could be misleading about the parity but the simulation and the map of a neighboring

area quite similar to area 4 suggest that is indeed an odd area.'
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Figure 4.19: Parity study: fifth area
This third odd area displays a very different dispersion with respect to the external
filed and the gate voltage. We can explain it using our single electron model by
introducing an orbital Lande factor about 30 times larger than the one used to fit
the previous data. This change is quite surprising and once again would require a

more detailed investigation.

The parameters used to reproduce the experimental data are given below. The most

striking change is the very strong increase in the orbital Lande factor.

ωcav = 6735 MHz t = 2590 MHz δL,K = 2900 MHz

δL,K′ = 3040 MHz δR,K = 2900 MHz δR,K′ = 3040 MHz

αLspinµB = 1500 MHz/T αLspinµB = 1500 MHz/T αorbµB = 10000 MHz/T

∆K,K′ = 150 MHz Γ1 = 1 MHz B0 = 1.5 T

θ0
L = -0.17 rad θ0

R = θ0
L + π/4

This is not understood and would require a more detailed and careful analysis than this

sample actually allowed.
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4.4.2 Even areas:

While the features of two of the three odd areas are quite close to the previously presented

results, the maps of the even areas, shown in Fig. 4.20, look completely different.'
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Figure 4.20: Parity study: even areas

Area 2 This area presents a very distinct and surprising feature: three visible dips
in the transmitted amplitude signaling three resonant level at zero field. The
phase signal does not change sign in between the two main crossings, showing
that the level crossing in the middle has a very small susceptibility outside of
the resonance condition.

Area 4 This area display many more levels than seen usually with very different dis-
persion with respect to the magnetic field, with two transition that disperse
very little, two transitions for which the resonance condition is associated to
increasing detuning and one which requires decreasing detuning similarly to
what we observed in the odd regime.

This spectrum is very rich and our models did not manage to reproduce those data.

The first thing, one can notice about area 2, is the presence of three visible dips in

the transmission at zero magnetic field. If there is indeed no masked fourth dip and

that each dip corresponds to one level at resonance, it is a striking signature of an even

number of electron as in the odd case it is impossible for a transition to cross a single

time the cavity frequency. Area 4 has no such clear signature of its even nature but

present a large number of transitions with dispersion unlike the ones presents in the odd

case such as line either not dispersing in magnetic field or requiring a larger detuning

to be resonant when the field is increased rather than a smaller one. Once again, this

reminds us of some properties of a singlet triplet spectrum in which the singlet and the
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triplet of spin -1 get closer in energy when the field in increased or the singlet and the

triplet of spin 0 which do not disperse in magnetic field. Finally, one can notice that

those areas are not as coherent or as coupled as the odd areas presented in section 4.3.

To model this system we need to consider many more levels than in the one electron

picture, because, contrary to the usual case in which the spin is the only degree of

freedom to consider to build the singlet, here we have both the spin and valley which

yields six singlet state for the situation in which one dot is doubly occupied. The total

number of state is then 22. This does not only make the computation more cumbersome

but also make the spectrum more complex to explore and even more sensitive than

before to small changes in the parameters.

This model was actually derived and studied but never yielded results which matched

the experimental data as well as the ones for the single electron case. The reason for

this remains unclear. However the fact that all parameters appear to be able to change

quite a lot between two neighboring areas, associated to the fact that we do not have a

separate determination of the model parameters, is de facto one of the main issue when

trying to model those data.

The parity study then remains an open topic and would benefit from improvement in

the setups, such as the possibility to perform a microwave spectroscopy that would give

more constraints about the level dispersion.

4.5 Perspectives:

The system presented in this chapter is very rich and the present work has only begun to

explore its possibilities. So far we have demonstrated an hybrid coupling to the spin that

is five orders of magnitude larger than the natural magnetic coupling and a dephasing

rate much lower than what one would expect in a charge qubit. We have also shown

that the parity of the number of electrons in the device strongly affects its spectrum.

One interesting comparison point missing so far is a comparison between the bare prop-

erties of the charge qubit and the properties of our spin qubit. In particular, a direct

comparison of the coupling and dephasing in both cases would allow to say for sure

whether or not this scheme suppress more efficiently charge noise than it reduces the
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coupling to the cavity. From our previous experiments and from the literature, in such

systems, the coupling can range from 20 to 50 MHz while the dephasing can go from

450 MHz to 3 GHz, which does not really allow us to conclude.

In the next sections, I will discuss some key improvements which may be beneficial to

the study of this system.

4.5.1 Microwave spectroscopy:

In the lab, microwave spectroscopy of our devices remains a challenge. At first, the

sample holder and the sample geometry were suspected to be the main issue. As exposed

in chapter 3, we are now using a multilayer PCB which allows to enclose the sample

is a small box and eliminate all parasitic modes below 9 GHz, however at the time at

which the experiments presented here were carried out, this PCB did not exist yet and

numerous mode existed as low as 4 GHz. In addition, because of the geometry of the

sample, the DC wire bonds had to cross above the cavity as illustrated in Fig. 4.21,

which made them likely to couple to 3D modes. As the coupling of the device transition

to microwave light is very sensitive to the field geometry, the 3D modes, whose geometry

is not controlled, are likely to couple to the device in different fashions. This may blur

the spectroscopy.

To resolve the issue caused by the long wire bonds, the geometry presented in Fig. 4.22,

in which the dot is on the same side of the cavity as the DC contacts, was designed.

However, this design suffered a slightly Fano transmission, even in the sample holder in

which the box modes were absent. The origin of the parasitic mode was understood only

later when we started to use HFSS to design our samples. As illustrated in Fig. 4.22,

the sample support a slotline mode on the whole distance between the bonding pads.

This mode can be expected to have a low quality factor and as it sits at only 500 MHz

above the cpw mode it can contribute the parasitic transmission involved in the Fano.

Given the geometry of the CPW it is not easy to add bonds in the middle of the cavity

where they would most efficiently suppress this parasitic mode.

As a consequence no sample was ever measured in a truly optimal situation. However

numerous attempts have been made to perform a spectroscopy: attempting to tune the

excitation power, trying to work close to resonance with the cavity in an area in which
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Figure 4.21: Spin-qubit sample bonding:
The geometry of the sample discussed in this section required to proceed to long
bonding to connect the DC gates. Those long wires could have easily coupled to box
modes which may not be coupled to the device in the same way as the cavity and

drive different transitions.'
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Figure 4.22: Spin-qubit U-shaped cavity design:
In this design, the DC bonding pads that have been removed for the simulation are
all on the same side (opposite to the cavity bonding pads and allow for short DC
bonds. The CPW mode is found at 6.52 GHz, while the slot line mode is found at 7
GHz. The slot line mode field is weaker (the color scales start at 0 for both and stop
at 1011 V/m and 5 1010 V/m for the CPW mode and slot line mode respectively.

the frequency of the qubit is more or less known, etc. None gave any result worth

discussing here and this in turn prevented a time domain study of the system which

may have a provided a more direct measurement of the coherence time of the spin in

our device.

Currently this experiment is in pause, waiting for more improvement in the fabrication

process that should make it more reliable as so far the number of good sample is rather

low compared to the number of sample fabricated. But when restarting it, the first step
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will be to re-design a cavity in which the parasitic modes are less problematic while

allowing to have the DC bonding pads close by the pads on the PCB.

4.5.2 Increasing the coupling, reducing the noise:

One key development from which this experiment could benefit is the optimization of

the coupling of the dot transition to the cavity field. HFSS simulations could prove

instrumental in improving the design. We have done some simulations in that direction.

We simulated two designs: one very similar to the one of the experiment we carried out

and another in which the ground plane was prolonged and finally used to screen the dot

from the field radiated by the gate. The simulation corresponding to both geometries

are presented in Fig. 4.24.

One can notice in Fig. 4.24 c that the potential reached is higher in the shielded case but

also stronger in the area of the second gate starting from the right. However its value

around the two left most gates is nearly unchanged. This means that, if the dots are

properly localized towards the most distant gates, shielding can increase the coupling to

the charge. By comparing the peak values of the computed potential, it appears that

we can expect a 75% increase compared to the unshielded case.

Of course reducing the charge noise impact on the device would also be a key improve-

ment. Adding on-chip microwave filters on the DC lines, similar to what was done in

[57], would probably be one of the first possible improvements. Another one would be

to find a way to reduce the charging energy of the device similarly to what was done

in [59]. In this experiment, the two dots are connected in a symmetric fashion to the

cavity which provides a large capacitance between the two dots and strongly reduces the

charging energy. The coupling is achieved through a modulation of the tunnel coupling

between the dots, engineered by the use of a superconducting contact between the two

dots. The electrode pattern used there is not directly applicable as it leads to a symmet-

ric coupling. So we would need either to find another way to decrease the device charging

energy, following in a sense the path leading from the CPB to the transmon qubit, or

use the same coupling scheme and add a superconducting contact to our geometry.
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Figure 4.23: Impact of shielding on a DQD:

a), b) We plot the field along the y direction with the same color scale in both
cases a) unshielded b) shielded. In the shielded case, the field appears to be
stronger.

c) By integrating the computed field, we compute the electrical potential along
the dashed line. The blue line correspond to figure a and the orange one to
figure b. The black line indicates the position of the gates and contacts.

4.5.3 Ultra-clean nanotubes:

One strongly limiting factor in that experiment is the limited control we have on the

CNTs spectrum which is dominated by disorder. The use of suspended CNTs transferred

at the very end of the process and hence not exposed to any chemical process may prove

to be instrumental in getting a more detailed understanding of our system. Such devices
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have been made in other groups and displayed a remarkable tunability [122, 125]. In

particular if we could, as is done in other quantum dot architectures, control the tunnel

rate using electrostatic potentials we may be able to control the induced Zeeman splitting

using an electric knob.

This perspective is very attractive and the development of this kind of CNT transfer

is actively pursued in the lab. With that application in mind, during my thesis, I

participated in trying to optimize the growth recipe to get a directional growth as

presented in chapter 3. Furthermore, as this kind of transfer of the CNT on the metallic

electrodes require very clean electrode surfaces, we designed a vacuum transfer chamber,

shown in Fig 4.24, that may allow in the, hopefully, near future to work with ultra-clean

carbon nanotubes.'
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Figure 4.24: Ultra-clean CNTs transfer chamber:

The transfer chamber consists of a main chamber in which the sample holder with
the chip on which to transfer the CNT can be mounted and electrically connected. A
Ar ion canon which can be used to remove adsorbed materials from the contacts and
hence improve their transparency. A waiting chamber allows to isolate the CNTs
during the plasma cleaning and a manipulation arm can be used to position the
forks on which the CNTs are grown. At the tip of this arm, Attocube positioning

modules can be used for the last part of the transfer procedure.
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The previous chapter focused on a usual theme of quantum information processing:

the realization and characterization of a qubit. In this chapter, the goal will be notably

different since we will attempt to use quantum information processing techniques, namely

a qubit, to probe a condensed matter model system.

This idea is not new in the context of mesoscopic circuits. However previous experiments

focused on using a resonant circuit [126, 127] or equivalently a cavity [23] to access the

internal dynamics of mesoscopic circuits. In other cases, a Josephson junction was also

used as a quantum detector [128, 129]. Here, we propose something different and, closer

in its spirit, to magnetometry using an NV center as already explained in chapter 1.

The central idea here will be to couple a single quantum dot, that will play the role of

model system under study, to a superconducting qubit, that will play the role of probe.

In the following we will focus on the case of a transmon qubit coupled to the SD via a

microwave cavity, but it is not the only coupling one can envision. This setup presents

also the interest to add a very delicate photon probe to a system in which previously

the accurate determination of the photon number in the cavity, while crucial, could

not be performed. As hinted in chapter 1, it could also be used to probe the photon

field statistic, which may be influenced by the dot. The first section will focus on the

theoretical description of the system and try to give some ideas about what we can

expect. The second one will be dedicated to the experimental side on which so far the

results are slim, mainly due to fabrication issues.

5.1 Theoretical description:

By combining, a single dot, a transmon qubit and a microwave cavity we obtain a

system which is potentially very rich. We cannot hope to treat all regimes here, so we

will focus on the simple case in which the cavity is not externally driven, the SD is not

voltage biased and only the dot chemical potential is modulated. In such a situation, the

SD will act as a source of electric noise for the transmon. One natural approximation

would be to treat the transmon qubit as a two-level system. However, as discussed in

chapter 2, the transmon qubit is not a real two-level system but an anharmonic oscillator.

Furthermore, we know that in the Coulomb blockade regime, which will be the easier
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regime to describe for the SD, the SD occupation will fluctuate on a time-scale given

by Γ, the coupling to the leads. The spectral distribution of this noise will also be of

width Γ as shown in chapter 2. We can expect the transmon to be most sensitive when

the SD fluctuations will be close to its fundamental frequency so Γ ∼ ωt. Consequently,

since the transmon anharmonicity α� ωt, the SD is likely to excite many levels of the

transmon which means that we cannot treat it as a simple two level system, but as a

full anharmonic oscillator.

We will be interested in two main impacts of the dot on the transmon:

• the possible change in frequency of the transmon induced by the dot.

• the impact of the dot on the lifetime of the transmon

To treat this problem, we will start by deriving an effective Hamiltonian for the SD and

the transmon by eliminating the cavity. This will make the dot-transmon interaction

appear as an instantaneous interaction while it is not. This may yield incorrect results in

certain cases. In particular, we will not discuss the transmon dephasing but focus only

on the relaxation. The basic idea behind this restriction is that cavity photons induces

a frequency shift of the transmon and that the phase accumulated by the transmon will

depend on the interaction time.

Next to gain some insight about what may happen for reasonable values of the param-

eters, we will treat the transmon as a two level system and the dot in the sequential

regime. Finally, we will use a more general approach to overcome some of the limitations

of the sequential tunneling treatment.

5.1.1 System effective Hamiltonian:

We start from the following very general Hamiltonian :

Ĥ =Ĥcavity + Ĥtransmon + Ĥdot + Ĥcontacts + Ĥtunnel + Ĥbath+

Ĥcavity<−>bath + Ĥcavity<−>transmon + Ĥcavity<−>dot (5.1)
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with :

Ĥcavity = ~ωcavâ† â (5.2)

Ĥtransmon = ~ωt q̂†q̂ − ~
α

12(q̂† + q̂)4 (5.3)

Ĥdot = ε n̂+ U

2 n̂ (n̂− 1) (5.4)

Ĥcontacts =
∑

a=L,R

∑
k,σ

ξk,σ ĉ
†
a,k,σ ĉa,k,σ (5.5)

Ĥtunnel =
∑

a=L,R

∑
k,v,σ

(
ta ĉa,k,σd̂

†
v,σ + h.c.

)
(5.6)

Ĥbath =
∑
µ

~ωµb̂†µb̂µ (5.7)

Ĥcavity<−>bath = ~
∑
µ

(
gµ b̂µ + g∗µ b̂

†
µ

) (
â+ â†

)
(5.8)

Ĥcavity<−>transmon = 2 i β e V0
(
q̂† − q̂

) (
â† + â

)
(5.9)

Ĥcavity<−>dot = ~ gdot n̂
(
â+ â†

)
(5.10)

with ~ωt =
√

8EJ EC and α = EC .

We consider the transmon as an anharmonic oscillator in the large EJ/EC limit. We keep

the most generic possible form for the dot Hamiltonian considering spin and valley of

degree of freedom. The total number n of electrons in teh dot is defined as
∑
v,σ d

†
v,σdv,σ.

We do not consider the coupling of the photons to the contacts, which is dominated by

gate coupling with most recent mQED designs. We use the following notations :

• the anharmonicity of the transmon is α, such that ω01 − ω02/2 = α/2

• the energy of the kth level is :

Ek = ~ωk = cst+ ~ k (ωt − α
2 (k + 1))

• the transition frequency between the first two levels ω01 is given by :

~ω01 = ωt − α(k + 1).

• the coupling between the cavity and the first two levels is given by :

gtra = g01 = e V0
~ β

√
ωt
4α and the coupling between levels k and k+1 is given by

gk−>k+1 =
√
k + 1 gtra

In order to derive an effective Hamiltonian from which direct interactions with the

cavity have been removed, we will use a Schrieffer-Wolff transformation (or adiabatic
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elimination) as done in chapter 2 and project H in the subspace empty of photons. This

seems reasonable at first as we consider an undriven cavity, but we should keep in mind

that if the dot is close to the qubit frequency it will also be close to the cavity one

and may emit photons in the cavity that could lead to small corrections. The detailed

derivation of the effective Hamiltonian is presented in appendix B. The final result is:

Ĥ =
(
ε− U

2

)
n̂+

(
U

2 − ~
g2
dot

ωcav

)
n̂2

+
∑
j

~
(
ωj + g2

tra

−j/2
∆ + α (j − 1)

)
|j〉〈j|

+ ~ gtra gdot n
∑
j

√
j + 1

( 1
∆ + α j

+ 1
ωcav

)
τ̂1
y,j

+
∑

a=L,R

∑
k,σ

ξk,σ ĉ
†
a,k,σ ĉa,k,σ +

∑
a=L,R

∑
k,v,σ

(
ta ĉa,k,σd̂

†
v,σ + h.c.

)

+
∑
µ

~ωµb̂†µb̂µ +
∑
µ

gµ (b̂µ + b̂†µ)

∑
j

gtra

√
j + 1

∆ + α j
τ̂1
y,j

 (5.11)

5.1.2 Dot induced static frequency shift:

The first impact of the dot, we can evaluate, is the shift induced on the transmon

frequency per electron in the dot. When tuning the SD in the middle of Coulomb valley,

we expect the number of electron on the dot to be completely frozen. In such a case

we can consider n to be a constant, and the transmon to be in its ground state. The

transmon part of the Hamiltonian can be reduced to :

Ĥtra = ~
(
ω0 + g2

cav

∆

)
|0〉〈0|+ ~

(
ω1 + 2 g2

cav

∆ + α

)
|1〉〈1|+ i ~

gtra gdot n̂

∆ (|1〉〈0| − |0〉〈1|)

(5.12)

= ~
ω̃01
2 σ̂z + gtra gdot n

∆ σ̂y (5.13)

= ~
ω̃01
2

(
1 + 4 g2

transmon g
2
dot

ω̃012 ∆2 n̂2
)
σ̃z (5.14)
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For the reasonable values, gdot = 50MHz, gtransmon = 300MHz, ∆ = 1GHz, ωq =

6.5GHz, we get a shift for a single excess electron :

2 g2
transmon g

2
dot

ω̃01 ∆2 ' 40kHz (5.15)

For a good qubit we can hope to see it for n large enough directly in the spectroscopy.

But we should also see it in the Ramsey fringes which should give a better resolution.

Such a measurement may seem quite trivial but may actually answer some quite deep

questions about charge screening in quantum dot circuits. Indeed, we expect the deep

electrons of the dot to be less sensitive to the electric field of the cavity than the ones

occupying the last available orbitals. Hence the number n that enter the coupling to the

cavity may be the number of electrons on this orbital. However this is far from obvious

and if one could measure the shift per electron on a large number of consecutive Coulomb

valleys, it may teach us more about how charge screening works in such structures.

5.1.3 Sequential tunneling approach:

In this section, we will use a rather naive approach. We will treat the tunneling to second

order, like we did in chapter 2. This description is limited to the sequential tunneling

regime Γ� kB T and as a consequence is rarely valid in practice. Furthermore to make

the calculations lighter, we will approximate the transmon as a perfect two level system.

Once again this is likely to give quantitatively incorrect results, but it is a good way to

get some first intuitions.

We will only consider two different dot occupations (and write ε̃d the energy of the

occupied state), we however keep track of the total number of electron for the dot-qubit

coupling term (n0). By restraining the dot to only two possible occupations, we need

to introduce a new d operator allowing to go from the occupied to the empty state.

We could account for level degeneracy at a later stage by multiplying the electronic

transitions rate by the degeneracy of the target level.

The Hamiltonian we consider is hence the following, in which we have kept only the

leading order in the coupling and considered the re-normalized transmon frequency ω̃q
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and dot energy ε̃d:

Ĥ = ~ ω̃q
2 τ̂z + ε̃d n̂+ ~

gt gdot
∆ τ̂y (n̂+ n0) +Hbath +Hleads︸ ︷︷ ︸
free evolution

+Htunnel + ~ gtransmon
∆

∑
µ

(
gµ bµ + g∗µ b

†
µ

)
τ̂y︸ ︷︷ ︸

V

(5.16)

We can derive a master equation for this system like we did in chapter 2 (both for the

sequential tunneling regime and for the cavity photons). We assume as previously the

bathes to be Markovian bathes and perfectly uncorrelated. As this derivation is very

similar to the ones presented in chapter 2, it is not detailed here. The final result for

the evolution of the density matrix of the system is:

dρ

dt
=− i

~

[~ ω̃q
2 τ̂z + ε̃d n̂+ ~

gt gdot
∆ τ̂y (n̂+ n0), ρ

]
− g2

t κ

2 ∆2 (τ̂+ τ̂− ρ+ ρ τ̂+ τ̂− − 2 τ̂− ρ τ̂+)

+ Γ f(+ε̃d)
(
d̂† ρ d̂− 1

2 d̂ d̂
† ρ− 1

2ρ d̂ d̂
†
)

+ Γ f(−ε̃d)
(
d̂ ρ d̂† − 1

2 d̂
† d̂ ρ− 1

2ρ d̂
† d̂

)
(5.17)

with as previously Γ =
∑
a∈{S,D} Γa =

∑
a∈{S,D}

2π ν
~2 |ta|2, κ the cavity linewidth.

From this, we can derive the system of equations describing the system evolution. This

system has analytic solutions, but those are impractical as the system does not have

special symmetry. As there is no time dependence in the system we can solve the

problem numerically by a simple matrix exponentiation.

In the next subsection, we will present numerical results on the impact of the coupling

of the dot and the tunnel coupling to the leads on the relaxation of the transmon. We

will work in the degenerate case at ε̃d = 0. All the results will be plotted as a function

of 2Γ. The qubit and cavity parameters are set to :

ω̃q = 2π 6.5GHz κ = 2π 1MHz

gt = 2π 300MHz ∆ = 2π 1GHz



Probing a single dot dynamics using a transmon qubit 178

5.1.3.1 Population evolution :

We study the evolution of the population in the exited qubit state. For each set of

parameters we fit the evolution to an exponential decay and extract the relaxation time

(T1), the residual population at equilibrium, and the deviation from exponential behavior

(measured as the χ2 of the fit, i.e. the quadratic distance between the fitted data and

the fit). Fig. 5.1 displays the results for T1 and the residual population. The data for

χ2 are not displayed as it always smaller than 4.10−5, which means that the decay is

purely exponential.'
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Figure 5.1: Transmon relaxation and equilibrium exited population:
The left plot displays the relaxation time of the transmon qubit as a function of
the coupling of the dot to the cavity and the tunneling rates. The dot appears to
have a measurable effect as soon as the coupling is larger than 50 MHz when 2 Γ
matches the transmon frequency. The right plot displays the population found in
the exited state at the end of the decay. We can notice that, as the relaxation time
gets shorter, it grows larger (up to 0.4). If such a large population can build up in
the exited state, the other levels of the transmon are likely to start playing a role,

which will motivate a more detailed treatment in the following section.
Note: The tunneling rate axis is logarithmic but the image is not distorted to reflect
it. As a consequence, inside a decade, all samples have the same size which make

their spacing incorrect.

In Fig.5.1, for accessible couplings and if the Gamma’s are close enough to the qubit

frequency, we observe a reduction of T1 by a factor of 2 or more in some cases. In the

same parameters area, we see a residual population. This residual population could be

probed directly in the cavity transmission, as it should appear as a second transmission

peak shifted by the dispersive shift. For the largest coupling, the residual population

reaches 40%, which, if we take into account the large bandwidth nature of the dot,

should actually populate higher levels of the transmon.
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These first results appear encouraging, but they should be treated with caution. As

the electronic temperature is around 2 GHz, most of them have actually been obtained

outside the strict regime of validity of the sequential tunneling treatment (Γ < kB T ).

This means that we have assumed that the electronic reservoirs are actually destroy-

ing electronic correlations much faster than they can and this can impact our results.

Furthermore, as mentioned in section 5.1.3.1, higher levels of the transmon are likely to

play a role and should be considered.

We will try to address both concerns in the next section in which we will treat the dot

as a environment for the qubit. This will require some additional hypothesis on the

interaction between those two systems but relax all constraints on the dot properties

and in particular could allow us to treat the Kondo regime.

5.1.4 Single dot as an effective bath:

To overcome the validity issue of the sequential tunneling treatment used in the previous

section, we will now ignore the details of the dot dynamics and treat the dot occupation

as a random variable and use a master equation treatment to derive the qubit dynamics.

The detailed derivation of the master equation for the transmon is presented in appendix

C. The final result is the following:

d

dt
ρ̃(t) = +

∑
j

g2
tra

j + 1
(∆ + α j)2κD(τ−,j)ρ̃

−
∑
j

g̃2
j

(
i
n̄2

ωj

[
τ̃1

+,j τ̃
1
−,l − τ̃1

−,j τ̃
1
+,j , ρ̃]

]
− Snn(ωj)D(τ̂1

−,j)− Snn(−ωj)D(τ̂1
+,j)

+ i

2π

(
P
(

1
η ωj − ω

)∫
Snn(ω)dω

[
τ̂1

+,j τ̂
1
−,j , ρ

]
−

P
(

1
η ωj + ω

)∫
Snn(ω)dω

[
τ̂1
−,j τ̂

1
+,j , ρ

])

where τ+,j = |j+1〉〈j| and τ−,j = |j〉〈j+1|. The dot contribution has been split between

the contribution of the average value n̄ and the contributions of the noise spectral density



Probing a single dot dynamics using a transmon qubit 180

Snn(ω) =
∫∞
−∞ dte

i ω t〈(n̂(t) − n̄)(n̂(0) − n̄)〉. D is the super-operator associated with a

collapse operator in the Linblad form D(τ̂) ρ = τ̂ ρ̃τ̂ † − 1
2
(
ρ̃τ̂ †τ̂ + τ̂ †τ̂ ρ̃

)
and P

( 1
ω

)
is

the Cauchy principal value.

The expression we obtain is reminiscent of the one derived in [103] for the population

evolution of a two-level system. The bath of the system induces transitions towards the

excited states with a rate depending on the negative part of the spectral density, which

corresponds to emission noise, while it absorbs energy at a rate given by the spectral

density at positive frequency.

Furthermore, we see that in addition to the frequency re-normalization related to the

static dot population, we have a second contribution coming from the spectral den-

sity. Using the fluctuation-dissipation theorem we can relate the spectral density to the

imaginary part of the susceptibility as mentioned in chapter 2. In the high temperature

regime, Snn is simply proportional to Im(χ), which means, given the link between the

real and imaginary part of χ stemming from the Kramers-Kronig relations1, that the

frequency re-normalization is linked to the real part of the susceptibility.

One key interest of this method is that it is not limited to the Coulomb blockade regime

but can be applied to any regime in which we can compute the spectral density. It could

for example be used in the Kondo regime in which the spectral density can be computed

using re-normalization group techniques.

In chapter 2, we explicitly derived Snn(ω) (cf equation (2.100)) in the case of the Coulomb

blockade regime in the absence of interaction. We will now use this result to get the

transmon evolution. As we are interested in finite temperature effects which will be

responsible for populating the transmon states, we will adopt an all numerical scheme.

First we will evaluate the spectral density at the transmon frequencies and compute

the Cauchy principal values at the same frequency. Then, as we have once again a

time-independent evolution, we will compute the evolution of the system through the

exponentiation of the matrix of the linear set of equations.

In the following studies we will use the following set of parameters :

ω01 = 2π 6.5GHz α = 2π 300MHz gtra = 2π 300MHz

ωcav = 2π 7500GHz gdot = 2π 150MHz kB T = 2π 2GHz(100mK)

1Re(χ)(ω) = 1
π
P
∫∞
−∞

Im(χ)(ω′)
ω′ − ω dω′ and Im(χ)(ω) = 1

π
P
∫∞
−∞

Re(χ)(ω′)
ω′ − ω dω′
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Those parameters corresponds to reasonable values for the transmon and a rather good

coupling of the dot to the cavity.

As previously, all the quantities discussed in the three following sections are extracted

by fitting the simulation results to usual functions (exponential decay for the relaxation,

decaying cosine for the ramsey fringes). In all cases the fit quality is excellent (as

measured by χ2) and will not be discussed in greater details.

5.1.4.1 Transmon levels:

One of the surprising prediction of the sequential model is the large residual population

that the dot could create as shown by the predictions for T1. If that prediction was to

be trusted, we should expect to see multiple levels of the transmon populated. As a

consequence, the first study we can conduct is the required number of transmon levels

to consider to describe the system accurately. To do so we first compute the tunnel rate

leading to the largest response at ω̃01 and then compute the transmon dynamics in a T1

measurement experiment for different number of levels considered in the transmon.'
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Figure 5.2: Transmon levels study:
When treating the transmon as an anharmonic oscillator we need to truncate the
Hilbert space to get a finite dimension system to solve. In order to determine the
proper truncation, we plot the residual population in the first exited state of the
transmon (left) and the maximal population in the second exited state (right) during
a T1 measurement. The dot is tuned to have the maximal impact on the transmon.
Both quantities are plotted as a function of the number of levels considered in the
transmon and of the electronic temperature. For temperature smaller than 200 mK
(4 GHz), the number of levels we consider does not appear to matter, as shown by

the uniform result function of the number of levels.

In Fig. 5.2, we plot the residual population in the first exited state and the maximal

population in the second one during a T1 measurement as a function of the temperature

and of the number of levels we consider in the transmon. Both quantities show that as

long as the electronic temperature remains smaller than the transmon first transition
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frequency, the higher levels of the transmon do not play a role in the dynamic. Based

on those results we will consider only three levels in all the following as we will focus on

kB T = 2 GHz which is a reasonable value for our electronic temperature.

Looking back, this discrepancy between the two models is not as surprising as it may

seem. The sequential tunneling approximation relies on the fact that the temperature of

the fermionic baths is high enough to destroy all correlation between tunneling events.

As a consequence the "noise temperature" will be impacted by this hypothesis and can

be higher than the temperature set for the leads, which explain the high temperature ex-

perienced by the transmon when we use the sequential tunneling approximation outside

of its range of validity.

5.1.4.2 Transmon relaxation:

In the sequential tunneling approximation, we have studied the transmon relaxation as

a function of the tunneling rate and the coupling of the dot to the cavity. Here, we

will focus on the tunneling rate and the dot level detuning. We will hence look at the

transmon dynamics on the whole Coulomb peak and not only at the exact center of of

it as before. We chose to proceed in this way because, outside of its strict regime of

validity, the sequential tunneling underestimates the width of the Coulomb peak, while

the current approach is correct, in the absence of interactions, for all tunnel rates. Fig.

5.3 displays the result obtained for Γ ∼ ω01. The detuning is expressed in unit of Γ as

the Coulomb peak width is related to Γ at large Gamma’s.

The overall shape of the plot for the transmon lifetime and the population remaining in

the excited state appears rather similar. In both cases, the impact of the dot is maximal

for Γ ' ω̃01 and decreases away from ε̃d = 0. However in practice, the relaxation time is

likely to prove a more reliable quantity as the residual population is always quite small

(max ∼ 2.5%) and would be challenging to measure accurately. This residual population

is much smaller than in the sequential tunneling approach which is more in phase with

the electronic temperature (2 GHz) being small compared to the transmon frequency

(6.5 GHz)

As we go to larger tunnel rate the impact of the dot decreases as illustrated in Fig. 5.4

in which the transmon relaxation time is plotted as a function of Γ at ε̃d = 0.
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Figure 5.3: Transmon relaxation:
The left plot displays the relaxation time of the transmon qubit as a function of the
detuning ε̃d of the dot level with respect to the leads Fermi seas and the tunneling
rate, the right plot the population in the first exited state at the end of the measure.
The dot appears to have a stronger effect close to ε̃d = 0 and for Γ ' ω01. The
residual population follows the same dependence as the relaxation time. In addition,
it is much smaller than in the sequential tunneling approach which is more in phase
with the electronic temperature (2 GHz) being small compared to the transmon

frequency (6.5 GHz).'
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Figure 5.4: Transmon relaxation at ε̃d = 0:
Here we study the dependence of the relaxation time of the tunneling rate when the
dot is at resonance (ε̃d = 0). Given the simulation parameters, the Purcell limited
lifetime is 1.76 µs, which means that up to 50-60 GHz the lifetime is reduced by more
than 100 ns. Such reduction of the lifetime should be detectable since we should be

able to access the Purcell limit at large ε̃d.

This plot exhibits the strong impact of the dot around Γ = ω̃01 and allows us to estimate

that for such parameters we could hope to study situations in which Γ < 50 GHz. This

agrees with the sequential tunneling results as far as the relaxation time is concerned.

5.1.4.3 Kondo regime:

As mentioned earlier, one of the advantage of this approach is that it can also be used

to treat other regime such as the Kondo regime. Through a collaboration with professor

Mahn-Soo Choi, we compute the charge spectral density of a dot in the Kondo regime
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at zero temperature, using numerical renormalization group techniques (NRG). Using

those results, we deduced the transmon dynamics, for the same dot cavity coupling

and transmon properties as before. Some preliminary results concerning the transmon

lifetime are presented in Fig. 5.5.'
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Figure 5.5: Lifetime in the presence of a Kondo dot:

a) Lifetime of the transmon as a function of the Kondo temperature. The blue
curve corresponds to U = 500 GHz and a variable Γ , the orange one to a
fixed Γ (100 GHz) and variable charging energy U.

b) Same plot than in figure a but in function of Γ

c) Same plot than in figure a but in function of U

The transmon parameters are the same as before which means that the expected lifetime

is 1.76 µs. Hence the first interesting result is that we can expect to see a response from

the system. This in itself is non-trivial since one expects the charge dynamics to be

frozen in the Kondo regime , as discussed in 2.2.4 [23]. Furthermore, we studied two sets

of parameters (fixing either U (blue curve) or Γ (orange curve)) which leads to the same

Kondo temperature, and unexpectedly we find different responses for the same Kondo

temperature. Usually in the Kondo problem the Kondo temperature is the only relevant

energy scale, which it does not appear to be the case here. This is surprising and will

investigated in more details, however one should note that for the parameters used we

are not deep in the Kondo regime as we do not have Γ� U .

Those results should be considered with great care since the NRG results may not be

quantitative at this early stage of the work. However they suggest that Kondo regime

may be very interesting to probe using such techniques.
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So far we have only looked at the most basic properties of this hybrid system. We focused

on the equilibrium case which already proves to be rich and motivated our experimental

work. Three interests have been identified so far:

• the possibility to calibrate in-situ the number of photon and hence determine the

coupling between the cavity photons and the quantum dot circuit with accuracy.

• the study of the charge screening in quantum dot circuits through the shift of the

transmon frequency.

• the possibility to perform relaxometry measurement to access the spectral density

of the dot occupation at the transmon frequency. Such measurements could prove

instrumental in the study of the charge dynamic of the Kondo cloud.

This project however still requires more work, in particular, in the case of the Kondo

regime. The interplay with the cavity and possibilities to drive the dot out-of-equilibrium

either through a bias voltage or through fast gating remain unexplored. Finally, one of

the next step should be to reconsider the derivation of the effective Hamiltonian which

leads to an instantaneous interaction while it is in practice a delayed one, as it would

allow to study the impact of the dot on the transmon dephasing.

5.2 Sample fabrication and characterization:

At the beginning of this project, the sample fabrication appeared quite straightforward

as we mastered the fabrication of each component separately and there was no obvious

incompatibilities in the processes involved. However, it turned out to be more challenging

than we expected as will be exposed in section 5.2.2. This explains why so far we have

not performed any measurement on a sample with both a working transmon and a

working SD. In the following sections, I will first briefly recall the design of the sample

that was already partially discussed in chapter 3. Next, I will discuss the main issues we

encountered in the fabrication of the sample. Finally I will present results obtained for

a transmon embedded in a cavity with a SD that was not connected, and show that the

parameter used in the previous section are at least for the transmon part within reach.
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5.2.1 Sample design:

The design of this experiment sample has been the first one on which we used HFSS to

guide our decisions. We tried to improve on several aspect over the previous ones:

• in the experiments presented in chapter 4, the cavity input and output ports were

symmetric which means that we lost half of the signal. In further experiments,

we made those ports asymmetric (output port more coupled) but it was the first

time we could finely calibrate the asymmetry. We targeted a 1/10 ratio between

κin/κout.

• in previous experiments, the external quality factor was much higher than the

measured quality for a complete sample. This, in addition of lowering the output

signal, means that our process increases the internal losses. To mitigate this, we

reduced the external quality factor and changed the aspect ratio of the CPW as

described in section 3.1.2.

• To get a coupling to the SD as large as possible, we chose to use the same scheme

as the one used in chapter 4 with a top gate galvanically connected to the central

conductor. To increase further the field we also prolonged the ground plane very

close to the SD as discusses in section 3.1.4.

• finally we moved towards a straight cavity that allows us to add many bonds

between the ground planes to efficiently suppress parasitic microwave modes (see

discussion in section 3.1.5).

In the previous study we assumed that the only source of relaxation for the transmon

was the emission of photons in the cavity. This is in principle not true. However as the

dot influences the transmon through the cavity, we can expect a larger change if the

cavity induced relaxation dominates the transmon relaxation. This is why we targeted

values of the transmon coupling, detuning from the cavity and cavity linewidth such as

to get a Purcell limited lifetime of few micro-seconds that we can hope to be dominated

by photon emission.

5.2.2 Sample fabrication:

During the fabrication process we faced two main issues:
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• a lack of reproducibility of the SD gate electrodes fabrication

• an apparent incompatibility in fabricating the transmon after the dot

The origin of the first issue, that was also observed on other samples in the group,

remains mysterious as it manifested itself in what appear to be a random fashion.

At first we decided to fabricate the SD first and the transmon second for the following

reasons:

• it avoided to expose the transmon to resist and high temperature which could

degrade its properties

• it allowed to stamp in the same conditions as for other samples, which means we

did not need to worry about MMA/MAA residue in the area of stamping

• it allowed to test the SD before completing the sample

Following what was done in other experiments in the group for normal contacts on CNTs,

we made the contacts out of Pd at first. However it turned out that Pd does not stick

enough on the substrate and that the lift-off of the transmon lithography pealed it off.

Either completely, or very little but enough to prevent the contact with the CNT. Both

cases are illustrated in Fig. 5.6.'
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Figure 5.6: Contacts tearing off:
Electronic microscope image of the observed tearing off of the contact electrode
after the transmon lithography. On the left image, the electrodes are still close to
the sample, while on the right image they are completely torn off. In this second

case the issue is also visible using an optical microscope.

Further attempt with Ti/Au based contacts did not produce any sample even if the

reasons behind those failures have not been identified yet.
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Given the recent progress made in the lab in the direction of ultra-clean nanotube

fabrication 4.5.3, we may consider adapting such a scheme to this experiment.

5.2.3 Sample characterization:

The data presented in this section have all been obtained on a single sample in which the

SD was not properly connected to its contacts. The characterization of the transmon

demonstrates nonetheless that we can reach the targeted properties for the transmon.

This sample did not reach the photon number resolved regime discussed in chapter 2,

but one with only a transmon did and allowed to identify some defects in the filtering

of our lines (as residual photons in the cavity).

5.2.3.1 Transmon characterization:

The first step in characterizing the transmon consists in performing its spectroscopy

to extract its frequency and its anharmonicity. At low spectroscopic power, we expect

a single line at the transmon first transition frequency. When we increase the power,

additional lines can appear related to multi-photons processes. We are in particular

interested in the two-photons transitions between the ground state of the transmon and

the second excited level as it will allow us to extract the anharmonicity of the qubit since

ω02 = ω01 +ω12 = 2ω01−α. Fig. 5.7 displays a typical spectroscopy of the transmon for

different powers. Those data have been obtained using a continuous wave measurement

scheme, which implies that the transmon line is broadened by the photons in the cavity.

Once we have a rough estimate of its frequency, we can perform pulsed experiments,

in which the cavity is empty of photons during the spectroscopic pulses, to narrow the

linewidth and improve the accuracy of the transmon frequency determination.

From those data and additional ones taken with a pulsed excitation we can extract the

transmon frequencies when it is dressed by the cavity:

ω̃01 = ω01 −
g2
tra/2
∆ = 2π 4.431GHz (5.18)

ω̃02/2 = ω01 − α/2−
g2
tra/2

∆ + α
= 2π 4.22GHz (5.19)
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Figure 5.7: Transmon spectroscopy:
Two-tone spectroscopy of the transmon for varying power of the spectroscopic field.
The cavity transmission decreases when the ground state of the transmon is de-
populated. We can observe two main lines: the one at higher frequency corresponds
to the transition between the ground and first exited state (ω̃01), the second one
corresponds to the two-photons transition between the ground and second exited

state. The third line may be related to higher order processes.

Once the frequency of the dressed transmon is known we can perform manipulations

in a time-resolved manner. We start by performing a Rabi experiment as described in

chapter 3. The main goal of this experiment is to calibrate the pulses used to transfer

the population from the ground to the exited state (π pulse) and to put the transmon

in a superposition of its ground and first exited state (π/2 pulse). Both those pulses are

crucial in the following steps of the characterization. Fig. 5.8 displays the typical result

of such a measurement.

As discussed in chapter 2, the cavity transmission can be related to the qubit popula-

tion. A high transmission value means that the qubit is in its ground state while a low

transmission means it is excited. The chevron patterns observed are characteristic of

Rabi oscillations. When the drive is tuned to the qubit frequency, the qubit is driven

on its x axis, while when it is off-resonant it is driven with respect to a tilted axis in the

xz plane resulting in faster oscillation but of a lesser amplitude. The π pulse time can

be identified at the time required to reach the first minimum.

The following steps of the characterization, detailed in appendix D, yield cavity and

transmon characteristics that are not too different from the ones used in the theoretical



Probing a single dot dynamics using a transmon qubit 190

'

&

$

%
0.0 1.25 2.5 3.75 5.0

Time (μs)

4.437

4.431

4.426

F
re

q
u

e
n

c
y
 (

G
H

z
)

1.5

2.5

3.5

C
a
v
it

y
 t

ra
n

s
m

is
s
io

n
 a

m
p

li
tu

d
e
 (

a
.u

.)

Figure 5.8: Transmon Rabi oscillation

study, save for its frequency:

α = 2π 420MHz (5.20)

ω01 = 2π 4.47GHz (5.21)

∆ = 2π 3.1GHz (5.22)

gtra = 2π 230MHz (5.23)

κ = 2π 1.4MHz (5.24)

T1 ' 2.6µs (5.25)

T ∗2 ' 1µs (5.26)

Because the qubit was far more detuned from the cavity than it should have been its

lifetime is not limited by Purcell emission in the cavity. However, the measured lifetime

is longer than the targeted value so this should not be an issue if we reach our target

values.

It should be noted that the sample on which those data have been acquired is among

the first one we made, and even though no full sample has been fabricated, we later

tested another transmon whose parameters were much closer to the ones used in the

simulation.
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5.2.3.2 Dot circuit characterization:

A mentioned at the beginning of this subsection, the dot circuit was properly connected.

Only one contact was connected. Its behavior is illustrated in Fig. 5.9.'
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Figure 5.9: Dot characterization:
Transmission of the cavity (a amplitude, b phase) as a function of the gate voltage
and bias voltage applied on the connected electrode. Because the contact is a contact,
the slopes are reversed compared to what one would expect for the gate. The
amplitude displays very thin pair of dips, while the phase displays sharp changes,

matching the dips, and residual positive shift in between the dips.

Oddly enough, the system did not behave as a simple SD but more like a kind of double

quantum dot in which the mutual charging energy would have been huge. We observe

pairs of thin dips in the transmission, that can be associated with resonances, and

matching patterns in phase, with a residual positive shift in between the dips. Knowing

that a contact shift the chemical potential in the reverse direction compared to a gate,

it looks like we are probing the area between the triple points of a double quantum dot,

save that we never reached the triple points.

As in chapter 4, we observe large phase contrasts which points to an hybridization of

the dot and the cavity. Studying the cavity transmission, as a function of the probing

frequency and the dot gate voltage, does reveal a strong distortion of the cavity spectrum.

However we do not reach the strong coupling regime.

This demonstrate that the dot was indeed coupled to the cavity. However in the area

where it is the most strongly coupled, it also induces a strong dissipation which hinders

the measurement. Because of this, we could not demonstrate any coupling between the
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Figure 5.10: Dot-cavity characterization:
Transmission of the cavity (a phase, b amplitude) as a function of the gate voltage
and cavity probe frequency. The cavity transmission appear strongly distorted in
the vicinity of the resonance with the dot. In particular the phase allows to identify

a few hundreds of kHz shift in the cavity frequency.

dot and the transmon. The reader should note however that the situation would be

different for a single dot which would not induce such a large dissipation.
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Majorana fermions, first proposed by Ettore Majorana in [130], are exotic spin-1/2

particles which are their own anti-particles. For a long time, neutrinos have been the only

candidate particle. However, recently, Majorana fermions have been predicted to exist in

condensed matter as excitations of some specific systems [131, 25, 26]. Because of their

peculiar properties they have attracted a lot of attention. They have, for example been

proposed as basic building blocks in fault tolerant quantum computation. A number of

recent experiments [27, 28, 29, 30, 31, 32] claim to have observed Majorana fermions

in semi-conducting nanowire systems. In those experiments, the main tool used to

characterize the system is the measurement of the conductance from which the system

density of state (DOS) can be deduced. However, those measurements cannot probe

whether those excitations are indeed their own anti-particles. The development of new

measurement schemes is hence essential. In this chapter, I will discuss a theoretical

work whose goal is to explore the use of microwave cavities to study system expected

to host Majorana fermions. After a general introduction, I will be following closely

the presentation of [24]. My main contribution to this project has been to develop a

numerical code which has been instrumental for this project.

6.1 Majorana fermions in condensed matter:

Majorana fermions, contrary to the other objects manipulated in this work, have not

been presented in chapter 2. The following section will fill that gap and introduce their

properties and why they are appealing in the context of quantum information. The state

of the art experiment will also be discussed. They will provide an realistic ground to

discuss the feasibility of the proposed experiments.

6.1.1 Majorana fermion properties:

In the context of condensed matter , Majorana fermions were first predicted to appear

in a p-wave superconductor modeled as a Kitaev chain [131]. We will use it as a starting

point to introduce Majorana fermions in condensed matter, before moving to more

general cases better suited to illustrate the interest they raise in the context of quantum

information processing [132].
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6.1.1.1 The spin-less Kitaev chain:

In this model, one considers a 1D chain in the tight binding model with N sites and spin-

less electrons. We will note µ the on site chemical potential and t the hoping between

neighboring sites. In addition to the tunneling term, it also includes a superconducting

pairing potential (∆). The Hamiltonian reads:

H = −µ
∑
j

ĉ†j ĉj +
N−1∑
j=1

(
−t
(
ĉ†j+1 ĉj + ĉ†j ĉj+1

)
− |∆|

(
ĉ†j+1 ĉ

†
j + ĉj ĉj+1

))
(6.1)

To go further, we can then re-write this Hamiltonian in terms of Majorana operators m̂

by remarking that we can decompose each fermionic operator in term of two Majorana

operators (which are nothing else than the "real" and "imaginary" part of the fermionic

operators) :

m̂j,1 = ĉj + ĉ†j m̂j, 2 = −i
(
ĉj − ĉ†j

)
(6.2)

with the properties :

m̂j,α = m̂†j,α {m̂i,α, m̂j,β} = 2 i δijδαβ (6.3)

The fact that a Majorana fermion is its own anti-particle simply appears here in the

self-adjoint character of the operators. In the absence of tunneling and of pairing, this

rewriting is trivial. In the non-trivial case (here µ = 0 and t = |∆| for simplicity) the

Hamiltonian takes a simple form in term of the Majorana operators:

Ĥ = −i t
N−1∑
i=1

m̂j,2 m̂j+1,1 (6.4)

In this Hamiltonian, two Majorana operators, one at each end of the wire, do not con-

tribute to the system energy. Playing the inverse trick we can rewrite this Hamiltonian

in terms of fermionic operators, but for fermions living between the chain sites. This

construction, illustrated in Fig 6.1, does not touch the two edge Majorana operators,

which can be though of as a very delocalized fermionic mode.
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Figure 6.1: Kitaev chain in the trivial and non trivial phase:
Each fermionic site is indicated by a grey circle. The two Majoranas stem from
the partition (green/blue) between the real and imaginary parts of the electronic
wavefunction. In the trivial phase (top), two Majoranas on each site are paired,
whereas in the non-trivial phase (bottom), two Majoranas from neighboring sites
are paired together. It leaves two unpaired Majorana at each extremity which forms

a delocalized fermionic mode whose occupation does not cost any energy.

As a consequence, the system has a doubly degenerate ground-state corresponding to

that delocalized fermionic mode being occupied or not. If the chain is connected to two

electrodes, electrons can consequently be transmitted at zero bias, entering on one end

and emerging directly on the other side. It is this signature that has been most widely

used so far in experiments to detect the possible existence of a possible Majorana pairs,

also referred to as a Majorana zero-mode because of this zero energy signature.

Furthermore, the Majorana fermionic mode is highly delocalized and does not couple

to local perturbations of the Hamiltonian. One can then expect a long coherence time

for the fermionic mode, because decoherence sources are, most of the time, local. Its

robustness is also enhanced by the fact that in order to go from the trivial regime (or

non-topological) to the non-trivial one (or topological) one must necessarily close the

gap. These properties make Majorana fermions very promising for quantum information

processing as they could be hardware efficient qubits.

Here, we have focused on the case µ = 0 and t = |∆|, but the topological regime,

corresponding to the existence of this delocalized fermionic mode, persists as long as

|µ| < 2 t. The Majorana fermions appear in the middle of a gap whose value depends

on µ, ∆ and t. For |µ| = 2 t, the gap closes and reopens for |µ| > 2 t but without

Majorana fermions. Majorana fermions do not only appear at the edge of the chain but

at any interface between a topological and a non-topological region. As a consequence,

one can move a Majorana along the chain by tuning the chemical potential and even
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consider merging two Majoranas together to extract information about the occupation

of the corresponding fermionic mode.

One often refers to this occupation as the parity of the Majorana pair defined by Pi ≡

1 − 2c†ici, with ci the fermionic operator built upon the two Majoranas. Considering

several pairs of Majorana, one can show that two different parity operators Pi and Pj
commute together and that the parity operators define a basis of Majorana pairs for the

degenerate ground state of the system. As a Majorana is a superposition of an electron

and a hole, the fusion of a pair of Majoranas gives either an electron or a hole, depending

of the parity Pi of the pair, which can be detected.

In practice, the Majorana fermions have a finite spatial extension with an exponential

decay, which, in this simple model, is governed by the superconducting gap |∆|. The

ground state will be truly degenerate only if the two Majoranas are far enough and

hence do not overlap. When bringing them closer together, they hybridize and the 0

or 1 fermionic occupancy is not degenerate anymore. These two states are split by an

energy 2 ε :

Hmerge = i εm̂i,1m̂i,2 = 2 ε
(
ĉ†i ĉi −

1
2

)
(6.5)

This energy splitting will be central in the detection we will discuss in section 6.2.

So far, we know that quantum information can be encoded into the parity of a Majorana

pair and that it should be protected as Majorana fermions are insensitive to local pertur-

bations. This can be seen by computing the coupling between the two Majorana (ψ1(r)

and ψ2(r)) induced by a local potential V (r):
∫
ψ1(r)V (r)ψ2(r). Such a coupling van-

ishes for well separated Majorana fermions which do not have any wave-function overlap.

Furthermore we have one mechanism to read out the parity. What we are missing is a

way to manipulate the information and preferably in a way that is also free of errors.

Such manipulations are possible, to an extent, and rely on another specific property

of the Majorana fermions that will be the topic of the next section: their non-abelian

statistics.
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6.1.1.2 Generalization and non-Abelian statistics :

Another key-feature of Majorana fermions for quantum information processing, is their

non-Abelian1 statistics which allows to manipulate the quantum state using only geo-

metric operations in the ground-state subspace. The advantage of such operations is

that they do not suffer from the imperfections of usual manipulations.

Coming back to the pairing we chose, we can notice that it is rather unusual. We

consider spin-less electrons which is equivalent to focusing on a single spin family. This

means that the superconducting pairing couples electrons with the same spin contrary

to s-wave superconductivity which couples electrons with opposite spins. This kind of

pairing corresponds to p-wave superconductivity (the orbital part of the wave-function is

anti-symmetric (p-type orbitals) rather than the spin part). One can show that Majorana

fermions emerge not only at the edge of 1D p-wave superconductor like in the Kitaev

chain, but also on defects, such as vortices in 2D p-wave superconductors. Because of

their localized nature they are also referred to as Majorana Bound States (MBSs). Their

non-Abelian statistics was first investigated theoretically in such 2D systems [133] as in

1D one cannot exchange two Majoranas without merging them.

For a set of N Majorana pairs, whose total parity is conserved, the ground state degen-

eracy is 2N−1, depending on the parity of each pair. In such a state, one can perform

two kinds of exchange (or braiding operations):

• exchange two Majoranas of the same pair. This will only produce a global phase

factor, which is not so surprising as the other pairs do not care about the "order"

of two Majoranas in a pair.

• exchange two Majoranas coming from two different pairs. Focusing on the two pairs

concerned by the exchange, we can write the quantum state in term of the parity

|n1n2〉, ni = 0 or 1. The braiding leads to transform |00〉 into 1√
2 (|00〉+ i |11〉),

which does not change the total parity.

In the second case, the new state cannot be written as eiφ |00〉, and corresponds to a

rotation on the Bloch sphere, |00〉 being the south pole and |11〉, the north pole. A direct
1A statistics is abelian when exchanging two identical particles yields only a phase factor for the

many body states. For bosons the phase factor is +1 and fermions −1
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consequence of this is that braiding operations between Majoranas of different pairs do

not commute : the order of a braiding sequence matters. Importantly, in order to stay

in the ground state manifold, the exchange should be adiabatic, i.e. slow compared to

the time scale given by the energy gap that protects the manifold. Otherwise the system

will be given enough energy to exit the ground state manifold. Using a network of 1D

wires with T-junction allows to use similar schemes on 1D wires and not only in 2D.

The key advantage of such manipulations is that, as the result depends only on geomet-

rical considerations, the speed of execution or the exact path do not matter, as long as it

is slow enough to avoid exciting states above the topological gap. This should make, in

principle, those operation much more robust to manipulation errors than time controlled

manipulations.

So far the picture looks appealing, however, in truth, it is more complicated. First, for

Majorana fermions, the protection by the gap is total only at zero temperature and not at

finite temperature. Furthermore, braiding alone does not allow to prepare an arbitrary

state and needs to be completed by more conventional manipulation techniques [132]

which are not fault-tolerant. Nonetheless, MBSs may pave the way for more robust

qubits and/or more complex quasi-particles offering topological protection for additonal

operations [134, 135]

6.1.2 Experimental realizations:

As discussed in the previous section, Majorana fermions emerge at the interface of 1D

p-wave superconductors or on defects in p-wave 2D superconductors. However, p-wave

superconductivity is not a naturally occurring phenomenon and need to be engineered.

In all the following we will focus on 1D systems.

6.1.2.1 Majorana fermions in 1D systems recipe:

In 2010, two proposals were made to induce a non trivial p-wave superconducting pairing

in 1D quantum wire [25, 26]. Both relies on three main ingredients :

• a single conduction channel with spin-orbit coupling

• a magnetic field applied perpendicularly to the spin-orbit coupling axis
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• an s-wave superconducting pairing induced by proximity effect.

The system Hamiltonian can then be written as:

H =
(
~2k2

x

2m − µ− αSOkx σy

)
τz + Ez σz + ∆ τx (6.6)

Electrons move in the 1D channel along the x direction. The magnetic field induces

a Zeeman splitting Ez in the z direction, perpendicularly to the axis of the spin orbit

splitting, with a spin-orbit constant αSO. Above σy,z are the Pauli matrices for the spin,

τx,z are those related to the Nambu (electron/hole) subspace and ∆ pairs electrons and

holes with opposite spin.

The resulting spectrum, and the impact of each term, is illustrated in Fig. 6.3:'

&

$

%

Figure 6.2: Spectrum of a 1D channel with a Rashba spin-orbit coupling, Zeeman
splitting and s-wave superconductivity pairing/

a) In the absence of external magnetic field, the spin-orbit interaction shift the
dispersion relation (grey parabola) by ±kSO along the wire axis and by ESO
on the energy axis. The two parabolas correspond two orientations of the
spin. The quantification axis is orthogonal to the wire axis.

b) A magnetic field applied along the axis of the wire competes with the quan-
tification axis of the spin-orbit. At k=0, a pure Zeeman field opens, µ = 0 is
defined as the middle of this gap.

c) Adding the superconductivity while keeping the chemical potential fixed result
in the opening of a gap at high momentum k = 2kSO.

Figure adapted from [136]

To understand the interplay between the three ingredients lets consider their effect on

the spectrum in an incremental fashion. As shown in Fig. 6.3, the spin-orbit coupling

shifts by kSO = mαSO/~2 (resp −kSO) the parabola corresponding to spin |+〉 (resp

|−〉) in the y direction. It also shifts the minimum of the parabolas by the spin-orbit

energy ESO = mα2
SO/

(
2~2). When a Zeeman field is applied perpendicularly to the
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spin-orbit coupling axis, it tilts the spin eigenvalues towards this second quantification

axis and the mixing of the spin opens a gap at zero momentum. Inside the gap, there

are two non-degenerate states with different spins. More precisely, the spin degree of

freedom is locked to the momentum.

The superconductivity opens a gap at all momenta. It is the competition between this

helical gap and the superconducting gap at zero momentum that leads to the formation

of the MBSs. At zero magnetic field, there is no helical gap and the state is trivial (Fig.

6.3 a). However as the magnetic field increases, the helical gap increases too (Fig. 6.3

b) which can lead to a gap closing at k = 0 as illustrated in Fig. 6.3 c. The gap closing

condition, separating the trivial and the non-trivial regimes, is given by:

Ez =
√

∆2 + µ2 (6.7)

'
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%

Figure 6.3: Kitaev spectrum under magnetic field:
Evolution of the spectrum when the magnetic field is increased (a to e), starting in
the trivial phase, closing the gap and reopening the gap in the non-trivial phase.
Contrary to Fig. 6.3 both the electron and hole branches are represented. Figure

taken from[136].

If the Zeeman splitting is further increased, a gap reopens but with a different nature

because the bands have been inverted (Fig. 6.3 d and e):
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∆topological = Ez −
√

∆2 + µ2 (6.8)

When considering application for quantum computation, it is this gap that provides the

protection of the states and limits the computational speed. It is also this gap that

control the localization of the MBSs.

However, this is valid only if the gaps at high momenta remain open at all intermediate

magnetic fields, which ensures that the bands become truly inverted. At zero magnetic

field, the gap is equal to the induced superconducting gap. At finite Zeeman splitting,

it is reduced by a factor depending on the ratio Ez/ESO. If this ratio is small, the high

momentum gap evolves as ∆k 6=0 ∼ ∆
(
1− 1

24
EZ
ESO

)
[136]. Therefore, even though the

spin-orbit coupling does not enter in the condition for the opening of the topological

gap, it is crucial that it is strong enough to preserve the gap at high momentum.

The change of nature of the gap cannot be deduced directly from the spectrum as it only

shows the eigenvalues of the Hamiltonian and not the topology of the subspace defined

by the eigenvectors.

MBSs appear when connecting a trivial and a non-trivial region. In such a case, the

topological gap has to close to connect the inverted and non inverted bands which leaves

a state at zero energy which is the Majorana fermion. Away from the interface between

a topological and a non topological regions, the wave-function of the Majorana decays

exponentially since the gaped phases act like insulators.

6.1.2.2 Samples and characterization :

In practice, the recipe presented in the previous section has been mostly applied to

semiconducting nanowires with a strong-spin orbit coupling (InSb [27, 31], InAs [28]),

proximized by a superconductor such as niobium titanium nitride [27] or aluminum [28,

31] and subject to an external magnetic field applied in the axis of the wire.

Such samples have then be characterized through tunnel spectroscopy by connecting

them to normal contacts used as a tunnel probes. Conductance measurements carried

out as a function of the magnetic field have revealed the appearance of a zero bias peak,

as illustrated in Fig. 6.4, that is one signature of the MBSs .
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Figure 6.4: Zero bias peak signature of Majoranas fermions:
Conductance maps as a function of the external magnetic field and the bias voltage.
At finite field a conductance peak appear at zero-bias. Figure extracted from [27]

Yet, this transport signature is not fully specific only to Majorana fermions. We list

below some alternative mechanisms that can lead to a similar signature and how they

can be ruled out:

• The Kondo effect that we discussed in chapter 2 can compete with the super-

conductivity and lead to the appearance of a zero-bias conductance peak as the

magnetic field weakens the superconductivity [137]. However, it should also dis-

appear at higher field when the Zeeman energy becomes larger than the Kondo

temperature, which can be directly related to the width of the peak.

• The superconductivity induced by proximity effect in the nanowire comes from

Andreev reflections in which an electron is reflected as a hole as the interface with

the superconductor. Multiple reflections can lead to the formation of doublet of

bound states (ABSs) which in the absence of spin-orbit or Zeeman field are spin

degenerate. When a magnetic field is applied, ABSs can split and cross on the

zero-energy axis. If the superconducting gap is suppressed at the same time the

ABSs cross, they stay close to zero bias, like Majoranas would [138].

• A zero-bias conductance peak could also appear because of a weak antilocalization

effect induced by disorder in the nanowire [139].

The first experiments principally suffer from the fact that the gap induced by the super-

conducting proximity effect in the nanowire was soft (the subgap DOS was important).
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This can be related to disorder at the interface between the nanowire and the super-

conductor. With the progress in sample fabrication, more detailed characterizations of

the magnetic field dependence, and, even, the wire length dependence, as illustrated in

Fig. 6.5, have been able to rule out a number of alternative explanations. However,

such measurements do not probe the truly specific behavior of Majorana fermions such

as their self-adjoint character, nor their non-Abelian statistics.'
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Figure 6.5: Majorana bound state oscillation in field:
Conductance maps as a function of the external magnetic field and the bias volt-
age, displaying oscillations of the supposed MBS, whose amplitude decreases when
increasing the wire length. Figure extracted from[albretch_exponential_2016]

Protocols have been proposed to braid Majoranas fermions in such 1D wires. However

they all require some kind of T-junction which are very challenging to fabricate and to

tune in the proper regime. The goal of the study that will be presented in the next

section will hence be to see if the use of the technique of cQED could provide some new

detection scheme that would give a direct signature of the self-adjoint character of MBS

with the current device geometry.

6.2 Direct cavity detection of Majorana pairs:

The self-adjoint character of MBSs, which draws so much interest, also makes them very

difficult to detect. Photons trapped in a high-finesse cavity are a priori very appealing

for probing these elusive excitations. The specific properties of the Majorana fermions

however result in a quite peculiar form of the light-matter coupling that will be discussed.

6.2.1 Majorana fermions coupling to the light:

Light, contrarily to conductance measurements, preserves the occupation number en-

coded into a pair of MBSs, as it cannot create a fermion. Unfortunately, for the same
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reason, a pair of MBSs cannot exchange energy with an electromagnetic field. As pre-

sented in the following, a pair of MBS hence has a ‘longitudinal coupling’ Hamiltonian

to the electromagnetic field because of the particle/antiparticle duality of MBSs.

The general form for the coupling Hamiltonian of a MBS pair to photons is necessarily:

Hcoupling = i βm̂1m̂2
(
â+ â†

)
(6.9)

since it is the only possible combination between the operator m̂†1,2 = m̂1,2, as m̂†1,2m̂1,2 =

1/2 [140]. As a consequence, the coupling Hamiltonian is then proportional to i m̂1m̂2 =

2c†c − 1, which commutes with the Hamiltonian 6.5 of the wire, so that there is no

transverse coupling between the MBS and the cavity.

If we represent the two MBS on a Bloch sphere (the south and north pole being the

parity), the coupling corresponds to a field in the z-direction, parallel to the quantifica-

tion axis. If we consider a coupling of the field to the chemical potential of the wire, the

electric field shakes the chemical potential of the wire but cannot induce any transitions

inside the MBS pair.

In order to get a cavity signal, one must consider transitions outwards the Majorana

doublet. One can consider different situations in which transitions towards other states

could occur:

• in a situation involving not two but four Majorana fermions, the even parity sub-

space has two states |00〉 and |11〉, the odd parity subspace has two states |01〉 and

|10〉, |n1n2〉 being the number of electrons associated to the left, right MBS. The

parity of the total number of fermions has to be conserved, due to the self-adjoint

property of MFs. However inside each parity subspace, a transverse coupling can

appear which produces a cavity signal [140].

• if the length of the nanowire is larger than the superconducting coherence length

ξ (or in the presence of disorder [141]), trivial Andreev bound states can exist at

higher energies. The coupling to microwave photons could induce transitions from

the MBS to those states or to states above the superconducting gap. Close to the

topological transition, transitions to the superconductor continuum of states are
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resonant and induce a phase and amplitude shifts that decay exponentially away

from the transition [142].

In this work we will focus on a different kind of transitions whose existence arises from

the imperfections of realistic circuits such as the ones presented in section 6.1.2.2. First,

such circuits must have a finite size to remain in the coherent regime. Therefore, MBSs

can have a spatial overlap, which naturally generates ,for a pair of MBSs, an energy

splitting 2 ε and a direct coupling β to the cavity electric field [140, 105]. The presence

of zero-energy quasiparticles in superconducting or normal metal contacts, which is

inherent to experimental setups demonstrated so far, switches on photoassisted tunnel

processes between the reservoirs and the Majorana doublet. During these transitions,

photons with frequency ε are exchanged between the cavity and the Majorana pair,

with a rate set by β. However, transitions at frequency 2ε remain forbidden regardless

of the circuit parameters. The purely longitudinal nature of β , thereby revealed, would

represent a direct signature, in the simplest setup, of the self-adjoint character of MBSs.

The above result can be easily derived in an analytic fashion, at zero temperature and

for a discrete set of levels, by considering the general Hamiltonian describing the wire

and its coupling to the cavity:

Ĥtot = Ĥwire + ~ω0â
†â+ Ĥcoup(â+ â†) (6.10)

with ω0 the cavity frequency.

As both Ĥwire and Ĥcoup are quadratic one can find a Bogoliubov transformation allow-

ing to write :

Ĥwire =
∑
a

Eaγ̂
†
aγ̂a (6.11)

Ĥcoup =
∑
a,b

Ma,bγ̂
†
aγ̂b +Na,bγ̂

†
aγ̂
†
b +N †a,bγ̂bγ̂a (6.12)

with Ea > 0 and γa Bogoliubov operators combining electron and hole excitations.
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As discussed in the previous sections, the cavity response can be described in a semi-

classical fashion in term of the system charge susceptibility. The susceptibility of the

system is then given by:

χ(t) = −i θ(t)〈
[
Ĥcoup(t), Ĥcoup(0)

]
〉 (6.13)

Because we work at zero temperature, the only contributions to the susceptibility are of

the form |Nab|2e−i/~(Ea+Eb)t as all other terms involves terms containing γa γb|0〉, with

|0〉 the fundamental state, which make them vanish. The susceptibility hence has the

following form in the frequency domain :

χ∗ '
∑
a,b

|Nab|2

2
1

ω0 − Ea − Eb + i0+ (6.14)

Importantly, Naa = 0 due to the Pauli exclusion principle. Hence, there is no transisition

between conjugated electrons and holes. This result can be extended in an analytic way

to a situation in which the level broadening is smaller than the interlevel spacing2.

One should, however, note that this does not by itself forbid signatures at ω0 = 2Ea,

as such signatures can come from degenerate states. This can for example happen with

degenerate ABSs as observed in spin-degenerate atomic contacts [8, 143]. In the case

of Majorana fermions, the degeneracy is lifted and the MBSs are formed from a non-

degenerate Bogoliubov doublet (γ̂†1, γ̂1). This means that we cannot have any cavity

signal at ω0 = 2ε and this even in the case where the MBSs are coupled to the photonic

field (ie M11 6= 0).

One of the goal of the numerical studies will be to validate that those results hold true

at finite temperature and in presence of a continuum of state providing dissipation.

6.2.2 Proximized nanowire model:

In order to properly describe the transitions between the MBS and the subgap states,

our model must not only describe accurately the spectrum of the system but also the

dissipation.
2The demonstration is presented in the supplemnetary Materials of [24]
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We start from a tight binding model of a wire with spin-orbit coupling and subject to

an external magnetic field:

Ĥwire =
∑
n

d̂†n (Ez σ̂z − µ) d̂n −
(
d̂†n (t+ Λ σ̂y) d̂n+1 + h.c.

)
(6.15)

with d̂dagn =
{
d̂dagn↑ , d̂

dag
n↓

}
and d̂dagnσ the creation operator for an electron with spin σ in

site n ∈ [1, NC ] of the chain. We denote by Ez the Zeeman field on the sites, µ the

sites chemical potential, which can be tuned with a gate voltage, t the hopping constant

between the sites, and Λ the spin-orbit constant.

Many studies of MBS coupled to cavities have reduced the impact of the superconduc-

tor to an effective pairing effect described by the term in ∆ of (6.6). However, this

describes neither the induced level broadening in the nanowire nor the dissipation. Here

we will treat the tunneling towards the superconducting contact explicitly. The Hamil-

tonian (6.15) is very similar to the ones already used to describe tunneling between a

quantum dot and leads with the addition of the pairing term for the superconductor

∆
∑
k

(
c†S,k,↑c

†
S,−k,↓ + h.c.

)
(cS,k,σ is the annihilation operator for electrons in the super-

conductor). To describe the superconductor density of states we will need, in addition

to the superconductor gap ∆, a phenomenological parameter Γb describing the broad-

ening of the BCS peaks and the sub-gap density of state. Both these imperfections

of the superconductor can originate from the externally applied magnetic field and are

relevant for all experiments carried out so far. The superconductor is supposed to be

homogeneously connected to all sites and the tunneling is described by ΓS . Further-

more, we will also consider that our wire is connected to two normal metal contacts,

one at both ends. The tunneling between the wire and the contacts will be described

by ΓN . Finally, the coupling to the cavity is described as an overall modulation of the

wire chemical potential, of amplitude g. The ensemble of the parameters is illustrated

in Fig. 6.7.

Note that the superconducting lead, chemical potential should not be affected by the

microwave field. This assumes that the sample has been designed in a careful way such

that the contacts are properly grounded.

To treat on the same footing internal nanowire transitions and tunneling to the reser-

voirs, we use a Keldysh Green’s function approach [22, 143, 144, 145, 146]. In the
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Figure 6.6: Wire model schematic:

a) Tight-binding model of our nanocircuit with NC = 5 sites (green dots). The
consecutive sites are coupled by a tunnel-hopping constant t and spin-orbit
terms Λ. All sites are tunnel coupled to the superconductor S with a rate
ΓS . The extremal sites are tunnel coupled with a rate ΓN to normal metal
contacts NL(R) with a bias voltage V . All sites are coupled to the microwave
cavity with a constant g.

b) Energetic scheme of the nanocircuit placed in the microwave cavity. The DOS
in S depends on the superconducting gap ∆ and the broadening parameter
Γb. The cavity microwave transmission bt/bin or reflection br/bin is measured,
to probe the system charge susceptibility χ.

Figure extracted from[24]

following G will refer to the Green’s functions including the effect of the cavity potential

and G to the ones which do not include it.

For each site, the retarded Green’s function Grdd is described by a 4 × 4 matrix whose

structure in the Nambu(electron/hole)/spin subspace can be found in the supplementary

material of [24]. We obtain:

Grdd(ω) = (ω −Hwire+leads/~− Σr
N − Σr

S)−1 (6.16)

where Σr
N , and Σr

S corresponds to the self-energy describing the impact of the tunneling

from the leads (see [24] for details).

The Green’ function gives us a very direct access to the system DOS by summing on

both spin species in the electron sector. In particular, the first site of the chain DOS

reflects what would be seen in a conductance measurement3. We consider relatively

short chains and choose our model parameters such that few subgap levels are visible in
3This formalism allows us to compute the conductance, but the computation is a bit more involved

than the DOS. We did both, but we preferred to focus on the DOS as we get the same information from
both.
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the DOS, similar to what has been observed in recent experiments [31, 32]. We mainly

focused on two sets of parameters whose DOSs are presented in Fig 6.7.'
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Figure 6.7: Short chains DOS:
Both plots present the DOS at one end of the nanowire as a function of ω and EZ

but for two different set of parameters.

a) case A: "long" wire with a negligible coupling to the normal contacts. Because
the wire is long, the overlap between the MBSs is negligible and the peak in
the DOS remains at zero energy.

b) case B: "short" wire with a coupling to the normal contacts similar to the
coupling to the residual subgap DOS of the superconductor. Here the wire is
short and the splitting in energy 2 ε between the two MBSs oscillate with EZ .

Figure extracted from[24]

The parameters used in each case are:

NC t/∆ Λ/∆ Γb/∆ ΓN/∆ µ/∆

Case A 20 2.5 5 0.1 0.001 6

Case B 8 5 4 0.5 0.2 5.5

Furthermore we use EZ = ∆, ΓS = 5.5∆ and kBT = 0.01∆ in both cases.

The DOS at the ends of the wire reveals the occurrence of MBS above a certain critical

field: in case A the MBSs go to zero energy and stay there while in the case B of the

very short chain, one can observe an oscillation of the energy splitting of the Majorana

doublet as a function of the magnetic field similar to what was observed in [31].

Like in previous chapters, we describe the response of the cavity in a semi-classical

fashion in term of the system charge susceptibility. We start from the expression of the

charge on site n Qn. In our formalism, this quantity can be expressed as:
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Qn(t) = ie/2Tr
(
τ̂nG

<(t, t)
)
− e (6.17)

Above the lesser Green’s function G<
ĉn,σ ,ĉ

†
n,σ

(t, t) = i〈ĉ†n,σ(t)ĉn,σ(t)〉 gives the instanta-

neous occupation of site n and τ̂n the diagonal matrix which attributes a positive sign

to electrons on site n and a negative sign to holes on site n and e > 0. The factor 1/2

accounts for the fact that by summing on both the Nambu and the spin space we count

twice each spin species.

The lesser Green’s function can be expressed in terms of the retarded and advanced

Green’s function and the lesser self-energy using the Langreth theorem [147]:

G<(t, t′) =
∫ ∫

dt1dt2G
r(t, t1)Σ<(t1, t2)Ga(t2, t′) (6.18)

Next, we can expand the retarded and advanced (superscript a) Green’s function to

first order in the impact of the cavity potential: Êac(t) = a
∑
n gnτ̂ne

−i ωRF t, where gn
describes the strength of the photonic modulation on site n. This gives:

Gr(a)(t, t′) = Gr(a)(t, t′) (6.19)

+
∫
dt2Gr(a)(t, t2)Êac(t2)Gr(a)(t2, t′)

This allows to compute the impact of the field on Q, which we can identify to the

susceptibility. The charge susceptibility of the system can then be expressed as [148] :

χ∗(ω0) = −ig2
∫
dω

4π Tr
(
S(ω)Gr(ω)Σ<(w)Ga(ω)

)
(6.20)

with S(ω) = τ̂ (Gr(ω + ω0) + Ga(ω − ω0)) τ̂ . In the previous expression the retarded

and advanced Green’s function and the lesser self-energy Σ<(w) can all be computed

from the wire and the leads Hamiltonian. The matrix τ describes the photon-particle

coupling in the Nambu⊗spin space. We considered an homogeneous modulation of the

chemical potential of the sites by the cavity electric field but we actually checked that
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the results presented in the following remains similar for a coupling strength varying

linearly along the wire.

In the following, we will mainly focus on the imaginary part of the charge susceptibility

which should naturally reveal the effects of dissipative reservoir, but first we will quickly

discuss the numerical methods used to perform those computations.

6.2.3 Numerical techniques:

The calculations necessary to access the system charge susceptibility are not overly

complex however they can be time consuming. We need two main routines to perform

those computations:

• a matrix inversion routine to compute the Green’s functions

• an integration routine to compute the charge susceptibility

We suspected from the start that we would be able to focus on short chains, and hence

a small number of sites, since the experimental data we used as reference displayed

oscillation of the energy splitting between the MBSs. For matrices as small as the ones

we have been considering (at most 80 × 80), we obtain the best performances using

full matrices, even if one could think that given their low filling factor, sparse matrices

could be more efficient. Furthermore, for the same size argument, there is not point in

dedicating more than one core of the processor to the inversion operation. This means

that we can very easily parallelize the computation of our maps, as each point can be

computed independently.

Being very familiar with the Python language, it was my first choice as it would allow

to quickly prototype the calculation. Python can leverage BLAS and LAPACK libraries

for fast linear algebra computations (through Numpy) and optimized intergration algo-

rithms through Scipy. However Python is not a "fast" language and the computation of

the susceptibility was slow. Other languages, such as Julia, may have been viable op-

tions, but I chose to stick with Python and use the Numba library [149] to speed up the

computation. Given a Python function, Numba performs a type analysis and, if it can

infer all the types and that they can all be converted to a machine friendly representa-

tion, it compiles the function down to assembly using the LLVM compiler infrastructure
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project. The resulting code can be as fast as hand-written C code in the best of cases.

Having used it previously it to perform the simulation presented in chapter 4, I was

aware of its capabilities and limitations.

The first limitation was actually that the matrices inversion routines, we needed, were

not yet supported. Given the potential huge gain in using this library, I submitted a

patch adding support for matrix inversion https://github.com/numba/numba/pull/

1651. With that added capabilities, we first implemented the computation of the DOS

and got very encouraging results: a map such as the ones presented in Fig 6.7 took less

than a minute to compute on a simple laptop.

Next, to compute the susceptibility, we need to compute an integral. As we cannot infer

the shape of the integrand, we needed to use an integrator with an adaptative step. The

Scipy library provides such integrators by wrapping the quadpack FORTRAN library,

which relies on Gauss-Kronrod quadrature formula. The first results we obtained, proved

interesting but the computation was still too slow (to be carried out on a standard

computer). The main bottleneck was the need for the integrator to call a Python-like

function rather than a C-function. At the time, Numba did not provide the ability to

make a Numba-function looks like a C-function (it does since version 0.26). The chosen

solution was to re-write the integration routine using Numba itself. The implementation

was tested to produce the same result as the original implementation and did improve

the performances4.

Using the above techniques, the figures presented in the following were obtained in some

hours on a laptop. The code was then further optimized to take advantage of multiple

cores and generalized to treat other problems such as the one of a semiconducting wire

in an helicoïdal magnetic field.

6.2.4 Self-adjoint character signature:

From the simple argument given about the MBSs coupling to light given in section 6.2.1,

we expect signatures of transitions occurring at ε and an absence of such signatures at

2ε. We will hence first look at the susceptibility as a function of the Zeeman energy and
4it was not checked since then whether the alternative solution available since Numba 0.26 was faster

or not.

https://github.com/numba/numba/pull/1651
https://github.com/numba/numba/pull/1651
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the cavity frequency. The results obtained for case A, in which ε tends towards 0 in the

topological regime, are presented in Fig. 6.8.'
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Figure 6.8: Case A: Im(χ) vs EZ and ω0:
Figure a presents the simulation results and display numerous features which are
sketched in figure b. Figure c shows line cuts taken at three different energies of
feature 1. The markers match the ones on the left of figure a). Finally figure d

describes the nature of each feature sketched on figure b).

1 This feature corresponds to a transition between the subgap DOS of the su-
perconductor and the MBS, it appears at ω0 = ε

2 This feature corresponds to a transition between the lower MBS and the lower
ABS.

3 This feature corresponds to a process involving transitions from both the MBS
and the subgap DOS towards higher levels.

4 This feature correspond to transitions between the low energy ABS and the
high energy ones.

P and Q These features, which are absent from the calculation, would correspond to
transitions between the two MBSs or two non-degenerate ABSs.

Figures extracted from[24]
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The susceptibility reveals a wealth of different features. These are sketched in Fig. 6.8b,

while the process associated to each line is depicted in Fig. 6.8d.

The feature number one is a step in the susceptibility at ω = ε, which is the energy

distance between one of the MBS and the Fermi level of the reservoirs. It is depicted in

more details for constant ω in Fig. 6.8c. As in case A, the tunneling towards the normal

reservoirs is negligible, we can attribute feature 1 to photo-assisted tunneling between

the MBS and the residual subgap DOS of the superconductor. For a well grounded

superconducting contact, such processes can only occur if the coupling of the MBS to

the light is finite (β 6= 0). In Fig. 6.8b, the red dotted line marks the position of the

ω = 2ε condition which is not associated with any special feature in Fig. 6.8a. The

simultaneous presence of a signal at ε and absence of it at 2ε occurs on a wide range of

EZ .

These features indicate that we are in presence of a non-degenerate electron-hole conju-

gated pair. Such a pair is the natural precursor of a Majorana pair. To confirm that it

indeed becomes a Majorana pair, one can couple this measurement with a measurement

of the DOS. Such a measurement, on top of providing an experimental determination

of ε, can check that ε does vanish with increasing EZ (or shows several zero-energy

crossings), which would be a signature of the spatial isolation of the two MBS formed

out of the nondegenerate electron-hole pair. By combining those measurements, one can

conclude that the MBSs are self-adjoint.

The other features correspond to photo-assisted transitions towards other states close to

the continuum and involve in the case of feature 3 also the subgap DOS of the supercon-

ductor. The exact nature of each transition has been deduced from a comparison with

the system DOS and the dependence of transitions on the model parameters. Those

transitions can be used to rule out other competing explanation. For example, feature 2

frequency-dependence on EZ can be used to rule-out the case of an isolated zero-energy

crossing of two ordinary ABSs caused by a trivial spin-degeneracy lifting. Indeed, in a

such a case, its frequency will not depend on EZ as the initial and final states have the

same dispersion with respect to EZ . This is in contrast to the Majorana case, where it

strongly depends on EZ due to the topological phase transition. Therefore, our setup

is also able to rule out the case of a trivial superconducting wire with time-reversal

symmetry-breaking impurities. The reader should keep in mind that this can already
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be checked in the DOS, as the trivial case will only display a single crossing. However,

our setup provides a second check.

We also carried out a similar study in case B as shown in Fig. 6.9. Feature 1 persists in

this case as indicated by the pink circle. Furthermore other similar steps are observed on

the edges of each conductance "bubble" as indicated by the yellow dots. Interestingly,

those steps can have a much stronger contrast than the first one. Furthermore, the

associated feature at 2ε always remains absent allowing to test the self-adjoint character

of the MBSs on a large scale of EZ .'
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Figure 6.9: Case B: Im(χ) vs EZ and ω0:
The pink circle corresponds to feature 1 of Fig. 6.8, while the features with the
yellow circles are specific to the short nanowire case, but are associated with the

same kind of process.
Figure extracted from[24]

Importantly, feature 1 should be challenging to measure but accessible. For example, in

case A, feature 1 has an amplitude of 3× 10−3g2/∆ which corresponds to about 15 kHz

for ∆ = 180µeV and a site-cavity coupling of g = 2µeV' 500MHz. In case B, for the

same parameters we have a contrast on the first step of 6.3×10−2g2/∆ which corresponds

to 340 kHz. Both cases corresponds to situation in which the residual zero-energy DOS

in the superconductor is small, about 5% (2.5%) of the maximal DOS, which is similar

to the hard-gaps reported in [150]. The experimental challenge is then two fold:

• the cavity quality factor, which is degraded by the applied external field, needs to

remain sufficiently large for the the cavity linewidth increase, induced by the wire,

to be measurable.

• the coupling between the light and the nanowire needs to be large enough.
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Recent developments in high-kinetic inductance resonator with a high-quality factor (∼

105) under in plane magnetic fields of several T and large zero-point voltage fluctuations

could allow to realize such an experiment with current state of the art experimental

techniques [151].

6.2.4.1 Fixed frequency characterization:

So far, we have focused on signals depending on the probing tone energy and hence on

the cavity frequency. While, it is experimentally possible to vary the frequency of a

resonator [68, 152], it does add to the experiment complexity. It is hence relevant to

adapt our predictions to the case of a fixed frequency cavity and use another control

parameter to characterize the nano-circuit, such as the chemical potential which can be

tuned using gate voltage. In Fig. 6.10, we show Im(χ) versus the Zeeman energy and

the chemical potential for case B, probed at a frequency ω0 = 0.15∆ which corresponds

to a frequency of 6.6 GHz for a gap of 180 µeV. Such a frequency was chosen, because

it is compatible with present microwave techniques.'
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Figure 6.10: Case B: Im(χ) vs EZ and µ:
The charge susceptibility signature display several stripes corresponding to the dis-
persion of ε with µ. Importantly, while the feature 1 at ω0 = ε remains clear, no
feature at ω0 = 2 ε appear and this no matter the parameters. The dots (pink and

yellow) corresponds to the ones of Fig. 6.9
Figure extracted from[24]

In these conditions, Im(χ) display a series of stripes corresponding to photo-assisted

tunneling which reveal the oscillation of ε as a function of EZ and µ. The yellow and
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pink points indicate the correspondence between Fig. 6.10 and Fig. 6.9. The stripes

are absent for low values of EZ , where the wire is in its trivial phase and no MBSs are

present. Once again, no particular feature is associated with the condition ω0 = 2ε shown

in red dotted lines in Fig. 6.9, whereas the condition ω0 = ε is well visible (as underlined

by the pink dashed lines). Once again, it is important to stress that, in an experiment,

the red and pink contours can be determined independently of any theory, by performing

a conductance measurement to access the DOS of the system. As a conclusion, in the

case where ω0 cannot be varied, a µ−EZ map, similar to the gate-field maps presented

in chapter 4 for the spin-qubit, gives an efficient way to characterize the light-matter

coupling in the circuit.

6.2.4.2 Voltage bias impact study:

In case B, the tunneling towards the superconducting contact and towards the normal

leads are of the same order of magnitude which prevents us to discriminate between

processes involving the superconductor and the ones involving the normal leads. To

discriminate between those processes, we will in this last section study the impact of a

bias voltage applied on both normal leads. We will see that it allows to discriminate these

processes and to further check that the MBSs are well coupled to the cavity photons.

In Fig. 6.11, we plot the maps for Im(χ) as a function of EZ and ω and as a function

of EZ and µ, for case B. We use a bias voltage of V = 0.32∆.

Fig 6.11a shows clear differences with the case V = 0 presented in 6.9. First, we

can notice an additional step at lower frequency. This step, marked by a black circle,

correspond to tunneling events between the MBSs and the normal reservoirs, which

occur at ω = ε−e V . Meanwhile, the step, now associated only to the tunneling towards

the superconductor, marked in pink, persists. The persistence of the pink circle ensures

that the potential difference between the wire and the dot is indeed modulated and the

MBSs coupled to light. The separation between the black and pink circle on the EZ axis

is λV with λ ∼ e/∆(∂ε/∂EZ). Furthermore, as soon as V > ε the upper MBS state

becomes populated. This can result in two different processes:

• transitions between the upper MBS and upper Andreev bound states can con-

tribute. Those can appear at very low frequency as indicated by the green circle.
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Figure 6.11: Case B: bias study:
The plotted maps are similar to the ones presented in Fig. 6.9 and 6.10 but in the
presence of a bias voltage. Feature 1 appears doubled in this case, as marked by the
black and pink dot, corresponding to the conditions ω = ε and ω = ε − e V . The
magnetic field distance between those point is related to the energy dispersion of the
MBSs (λ ∼ e/∆(∂ε/∂EZ)). Strikingly, two new features appear, related to the fact
that the upper MBS can be populated. First, indicated by a green dot, low energy
transition between the upper MBS and ABSs can appear, second a photon emission
process, indicated by the positive values of Im(χ), and related to tunneling between

the upper MBS and the normal contact can also appear.
Figure extracted from[24]

These transitions represent another signature of the photon-MBS coupling, al-

though it is not the coupling constant β = M11 which is involved in this case but

rather N1α with α 6= 1 and Eα > ε.

• second, for V > ε + ω0, inelastic tunneling between the normal contacts and the

upper MBS leads to photon emission, characterized by Im(χ) > 0.

In Fig 6.11b, in which we plot Im(χ) vs EZ and µ, the splitting of the contributions

of feature 1 is also visible. The transition between the upper MBS and upper Andreev

states is also visible but the plot was obtained at too low bias for the photon emission

to occur.

As a conclusion, we have shown that photo-induced tunneling processes could be used to

demonstrate that a pair of MBSs is well composed of a non-degenerate pair of self-adjoint

states. The direct microwave transitions inside the Majorana subspace are forbidden in

a wide range of parameters, even in the case where the pair is directly coupled to cavity

photons. Importantly, this protocol is independent from any theory if the conductance

of the nanowire is measured simultaneously with the cavity response to determine the

DOS of the device. Such crossed measurements are routinely achieved with mesoscopic

QED devices.





Conclusion and perspectives

Summary and conclusion

In this thesis work, we have seen how the tools of cQED can be adapted to mesoscopic

circuits to reach different goals.

Chapter 4 focused on using the particular resources of mesoscopic circuits such as the

electronic spin and the possibility to tailor the spectrum of such systems using ferromag-

netic contact metals. Using those resources, we demonstrated the first coherent interface

between a single spin and microwave photons, reaching a cooperativity of about 2.

While this experiment provides new tools for quantum information processing, chapters 5

and 6 focused on how to use the tools of cQED for studying condensed matter problems.

In chapter 5, we proposed a new hybrid system involving a single dot and a transmon

both coupled to a microwave cavity and explored how this system could be used to study

a single dot circuit, which can be a condensed matter model system. The experimental

implementation encountered some difficulties, but those experiments will be carried

forward in the lab after the end of this thesis. Chapter 6 proposed to adapt the use

of a microwave cavity that already proved extremely useful in quantum dot circuits to

the case of Majoranas devices based on semiconducting nanowires. In particular, we

proposed a scheme relying on both standard transport measurements and microwave

cavity measurements that could reveal the self-adjoint character of Majorana pairs.

Perspectives

Both experiments presented in this thesis work could benefit considerably from improve-

ments in the quality of the sample and in the strength of the light matter coupling. As
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discussed in chapter 4, one key improvement would be to work with ultra-clean car-

bon nanotubes. In devices incorporating such CNTs, one could control the confinement

through electrostatic gates contrary to the situation encountered in the devices presented

in this work where disorder plays a crucial role. Such a control could in particular allow

to control the tunnel barrier between the CNT and the contacts, which would provide

an electric control over the Zeeman field induced by the ferromagnetic contacts in the

case of the spin qubit experiment and would allow to explore in a controlled manner

the different regimes accessible to a single dot in the case of the hybrid dot transmon

experiment.

In order to increase the light matter coupling, two directions should probably be ex-

plored:

• the geometry of the coupling electrodes can probably be optimized further allowing

to increase the coupling.

• coplanar waveguide cavities could be replaced with high impedance resonators [58,

101].

The work presented in this thesis also opens some interesting theoretical perspectives.

First, the current lack of understanding of the behavior of the spin-qubit presented

in chapter 4 when a even number of electrons occupies the structure calls for more

theoretical developments. Second, the properties of the system presented in chapter

5 has been only briefly studied and more work to treat the interaction between the

transmon and the dot in a non-instantaneous fashion and to study the response of the

transmon when the dot is driven out of equilibrium would be required.

Finally, recent developments in the lab may allow to fabricate CNT based Majorana

devices.



Appendix A

Sample fabrication recipes:

This appendix presents the detailed recipes used for the fabrication of the samples. When

pertinent the distinction between samples used in chapter 4 and chapter 5 is underlined.

We aim at giving practical details for following PhD students and hence refer to specific

equipment or recipes used in the ENS clean room. All metallic deposition are performed

using the Plassys UHV of the laboratory.

A.1 Stamps:

The fabrication of the quartz stamp used to transfer the CNTs on the sample is quite

independent from the main sample fabrication save for the last stages. It is usually more

productive to carry out both processes simultaneously.

A.1.1 Quartz preparation:

Start by making a reversed F on the back side so that the side on which the pillars will

be patterned can be identified by looking for a F.

A.1.1.1 Cleaning:

Clean the quartz substrate in the dedicated beakers, using the following procedure:

• 5 minutes acetone + ultrasonic waves

223



Sample fabrication 224

• 5 minutes acetone + ultrasonic waves

• 5 minutes IPA + ultrasonic waves

The maximum power can be used for the ultrasonic bath.

A.1.1.2 Resist coating:

Spin coat two layers of PMMA 550, using the 4000-4000-30 program of the spin coater

(4000 turns/s2, 4000 turns/s, 30s). Bake at 165deg C for 15 minutes (alternatively bake

for 3 minutes at 185degC).

A.1.1.3 Aluminium deposition:

Deposit of 15 nm of aluminium (5 Å/s). The evaporation can be carried out as soon

as the pressure is low enough, at this step there is no resist residue to eliminate (cf

following sections)

A.1.2 e-Lithography:

A.1.2.1 SEM:

WARNING : When loading the samples, choose a single substrate orientation with

respect to the F. This will make properly orienting the quartz for the stamping step

easier.

SEM parameters :

• aperture : 10 µm

• acceleration voltage : 20 kV

Procedure (repeat for each substrate)

• Find bottom-left corner for origin correction, and first point of angle correction.

• Go to the middle of the bottom side and do the angle correction.
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• Go to the middle of the chip, make contamination dots (zoom > 50k) to adjust

the focus and align the writefield (100×100µm). Use the manual procedure with

5 µm marks and then 1 µm marks.

• FIRST CHIP ONLY: Measure the current.

• Create new position list, D& D the mask, in properties adjust position to 0.05,

0.05, adjust exposure parameters (dose 390 µC/cm2×0.92, area 20 nm step) and

compute dwell time.

• Perform the lithography (Scan position list)

A.1.2.2 Development:

• Remove Al layer in KOH solution (small beaker 2 to 3 pastilles): about 30 s,

rinse in water and dry, check under the microscope whether or not all the Al was

removed.

• Develop 1 min 50 s to 2 min in MIBK/IPA solution (1/3) and then rinse in IPA

and dry. Check development under the microscope.

A.1.2.3 Nickel deposition:

Perform a 1 minute long oxygen etching in the RIE at low power (stripping program)

as otherwise the nickel won’t stick on the quartz.

Mount the sample on the evaporator sample holder and put the tungsten masks (pre-

viously cleaned in IPA + ultrasonic waves) under the binocular lens. One should be

extremely careful when manipulating the sample as any scratch will impend the stamp-

ing will lead to the formation of spurious pillars.

Evaporate a layer of 2500 Å of Ni (5 Å/s).

Remove any spurious Ni deposit or dust under the binocular lens using a needle tip. DO

NOT use ultrasonic wave at this step, as the Ni would be removed.
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A.1.3 Ion etching:

NB : When starting this step it is interesting to also start preparing the catalyst depo-

sition step A.1.4.1.

A.1.3.1 RIE:

Use the SiO2 (160 W) program (requires O2 and CHF3), etching last 30 minutes. Quartz

etching rate is 47.8 nm/min, Ni etching rate is 1.5 nm/min.

A.1.3.2 De-protection:

Remove the remaining Ni in an iron perchloride solution. This liquid has a dark brown

color and is better rinsed in a succession of three bath of de-ionized water (2s, 20s, 1

minute) followed by one minute in water and ultrasonic wave, before being rinsed in IPA

and dried.

Remove any spurious pillar using once again a needle tip, and remove dust in IPA.

Quickly putting the sample in and out of the solution works best to remove large dust.

A.1.4 CNT growth:

A.1.4.1 Catalyst deposition:

• Put the catalyst solution in the ultrasonic waves bath for 1 hour.

• Let the catalyst solution sediment for 1 hour.

• (Need two people) Deposit two drops of the catalyst solution (from the surface) on

the sample and dry immediately. (NB: can be done alone by having the tweezers

holding the sample leaning on a beaker).

A.1.4.2 Growth:

• Check which panel is used and swap the hose if necessary (CNT).
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• Load the samples into the quartz tube (last third).

• Switch on the computer (+ control_ four2 program), the oven, the flow meters

power supply.

• Open the Ar, H2, and CH4 bottles and check the pressure.

• Purge all the lines at the same time for 3 minutes and check the flows (Ar: , H2:

, CH4: ).

• Start heating under Ar flow, and wait for the temperature to reach 900degC (about

20 minutes).

• Perform a 8 minutes H2 flash.

• Do the growth under CH4 and H2 flows for 10 minutes.

• Start cooling down under Ar and H2 flows. DON’T FORGET TO TURN THE

HEATING OFF. (the CH4 bottle can be closed)

• Under 350degC, stop the H2 flow and open the oven. (the H2 bottle can be closed)

• About room temperature, stop everything and get the samples.

• CHECK THAT ALL THE BOTTLES ARE CLOSED

After the growth the quartz cannot be cleaned anymore so the growth should be done

just before the stamping if possible (the day before is fine).

A.2 Sample preparation:

A.2.1 Gold crosses:

The gold crosses patterned at this stage are used for all subsequent alignments.

A.2.1.1 Cleaning

• 5 min acetone + ultrasonic waves

• 5 min acetone + ultrasonic waves
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• 5 min IPA + ultrasonic waves

• stripping O2 in the RIE (program stripping) for 10 minute.

• PMMA coating (500 nm) using the 4000-4000-30 program.

• Baking at 165degC for 15 minutes

A.2.1.2 e-Lithography

NB: the resist must be scratched to allow the electron to flow, use the tip of metallic

tweezers to scratch the resist.

SEM parameters :

• aperture : 10 µm

• acceleration voltage : 20 kV

Procedure (repeat for each substrate)

• find the bottom-left corner of the sample for origin correction, and first point of

angle correction.

• go to the middle of the bottom side and do the angle correction.

• go to the middle of the chip, make contamination dots (zoom > 50k) to adjust the

focus and align the write-field (100×100µm). Use the manual procedures with 5

µm marks and then 1 µm marks.

• save write-field parameters and colon parameters, switch to 120µm aperture.

• WITHOUT moving the stage, redo the focus on the spot and adjust the beam

shift. Save the colon parameters.

• FIRST CHIP ONLY: Measure the current (DO NOT re-save the colon parameters).

• create new position list, D& D the 10µm parameters, the mask, the 120µm pa-

rameters, the mask.
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• for the masks: in properties adjust position to 0.05, 0.05, adjust exposure param-

eters (dose 390 µC/cm2×0.85, area 20 nm step) and compute the dwell time.

• scan position list

A.2.1.3 Gold deposition:

• Develop 1 min 50 s to 2 min in MIBK/IPA solution (1/3) and then rinse in IPA

and dry. Check development under the microscope.

• Evaporate a thin layer of Ti (50Å) then the gold layer (450Å).

• Put the samples in an acetone bath warmed up at 50degC, after 20 minutes lift

the majority of the gold using an eyedropper. Transfer the samples in a second

acetone bath warm it and put it 1s in the ultrasonic wave bath. Finish lifting,

rinse in IPA (30s) and dry. Check whether or not all the unwanted gold has been

lifted, if no back to the beginning. Finally perform a 5 to 10 minute O2 stripping

(RIE).

A.2.2 Cavity fabrication:

A.2.2.1 Nobium deposition:

Because niobium has a high sublimation temperature, the evaporators cryo-panels needs

to be filled with liquid nitrogen which takes about 20 minutes. Monitor the pressure of

the nitrogen tank during the filling. Once the panels are cold, evaporate 100 to 150 nm

of Nb at 10 Å/s.

A.2.2.2 Lithography:

Next, we define the niobium parts that need to be etched using either electronic or optical

lithography. The electronic lithography is similar to the ones previously presented up

to the following steps:

• we use a MMA-MAA/PMMA bilayer. First we heat the sample for 3 minutes at

185 degC and leave it to cool down for one minute before the first layer of resist,
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which is baked for 3 minutes at 185 degC. We repeat the same steps (cooling,

deposition, baking) for the second layer.

• after the angle correction, perform a third alignment step on the gold crosses

previously lithographed in the middle of the ship.

• as all structures are large, only use the 120 µm aperture.

• to speed up the process we use 200×200 µm write fields. Given the size of those

fields the alignment procedure must be carried out with great care.

After the lithography, develop the sample 45 seconds in a MIBK/IPA solution (1/3) and

then rinse it in IPA.

The optical process was mostly abandoned during this work and won’t be described in

details here.

A.2.2.3 RIE:

Perform the etching of the exposed niobium in the RIE using the dedicated recipe (SF6

based). Monitor the progress of the etching using the reflectometry measurement. At

first the etching clean the niobium surface and the reflectivity increases. At one point

the reaction chamber appears misty and the reflectivity starts dropping. Depending on

the substrate oxyde layer thickness, one can either observe a minimum of reflectivity

or a abrupt change of slope in the drop, both of which mark the end of the niobium

etching. Overetch for about 10s.

A.2.2.4 Cleaning:

Once the etching is completed, the sample need to be thoroughly cleaned to remove any

resist residues that may decrease the quality factor of the cavity. This is done through

several steps of cleaning in hot acetone (45 degC). Ultrasonic cleaning should be avoided

save if the sample is placed in protective encasing in Teflon as otherwise shocks with the

beaker may break the niobium film.

Finally the cleaning should be completed by 10 minutes of low power O2 etching in the

RIE (stripping program).
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A.3 Stamping:

A.3.1 Mask preparation:

The stamping process is performed on the clean roomMJB4 optical lithography machine.

First the quartz substrate must be glued on a glass plate. As glass plates cannot be

recycled, we use simple microscope slides.

• clean the microscope slide in IPA + ultrasonic bath for 1 minute and dry

• glue two bands of double sided tape side by side on the slide. One should be careful

to minimize the number of bubbles trapped.

• glue the quartz on the tape. A light pressure on the quartz corner is sufficient to

get it glued. One should be careful to put quartz far enough from one another to

be able to stamp using a single quartz at a time.

A.3.2 Stamping:

To minimize the impact of spurious pillar or small angles between the sample chip and

the quartz, we stamp in one area at a time.

• locate stamps on the quartz starting from the corner of the quartz chip.

• roughly align the pillars and the opening in the cavity ground plane.

• reduce the distance between the two chips by focusing alternatively on each one

and adjust the alignment as necessary.

• when the pillars come into contact of the sample chip, one can observe inter-

ference patterns inside the pillars while pressing one onto the other (purple-blue

oscillations). Keep increasing the pressure till the color disappear (one get a dark

purple). At this point one can separate the two chips again or keep increasing

the pressure. In the second case, if the pillars start breaking into pieces one must

quickly separate the two chips to avoid depositing too much quartz pieces on the

sample.
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A.3.3 Localization:

The CNTs are localized using the SEM.

• set the acceleration voltage to 2kV

• do the usual alignment steps (origin and angle corrections, and three point align-

ment on the gold crosses at the center of the sample.

• adjust the focus and stigmation on one of the "large" gold cross nearby the stamping

area. This step is crucial as poor settings will not allow to localize the CNTs. One

should see the gold roughness at a magnification of 50 000.

• align the writefield onto the four small gold crosses around the stamping area

(layer 63). In order to improve the precision one should perform "slow" scans

(point average 10, line average 2).

• take one image of the full field to localize the big chunks of quartz and then take

zoomed images (10×10 µm or 5×5 µm) that have no overlap.

A.4 Fine lithography:

A.4.1 Transmon lithography:

As mentioned in chapter 5, the transmon can be fabricated either before or after the

quantum circuits, and so far we have not identified a preferable order for those two

operations.

A.4.1.1 Resist coating:

The transmon lithography requires three layers of resist: two layers of MMA/MAA and

one top layer of PMMA. The deposition is done as follows :

• heat up the sample for 3 minutes at 185 degC and let it cool down 1 minute

• spin-coat the first layer of resist (MMA/MAA) using the 4000/4000/30 recipe of

the coating machine (see details in A.1.1.2)
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• bake for 3 minutes at 185 degC and cool down 1 minute

• proceed as previously for the next two layers (MMA/MAA and PMMA)

A.4.1.2 Lithography:

As the transmon consist both in large pads forming the geometric capacitance and

a small bridge for the JJ fabrication, we use 10µm and 120µm apertures and 20kV

acceleration voltage. The procedure is similar to the ones previously described, once

again the settings are done at 10 µm:

• perform the origin and angle correction and a three-point alignment on the central

crosses.

• do a second three point alignment using the crosses around the transmon area.

• go to the top edge at the vertical of one of the cross around the transmon opening

and do the focus on a resist crack. This focus is important for the next step and

can be done at a magnification of 80000.

• go the left part of one of the crosses and make a contamination dots in the resist.

• use those dots to align the write-field (fields of 100×100µm

• switch to 120 µm aperture, correct for the beam shift and align the write-field

• measure both currents

• prepare the lithography using the following doses: 10 µm: 1.4×390µC/cm2 120

µm: 0.85×390µC/cm2

After the lithography the samples are developed for 17 seconds in a MIBK/IPA solution

(1/3) and then rinsed in IPA.

A.4.1.3 Al deposition:

As the evaporator is not fitted with an Ar gun the samples needs to be left under vacuum

in the evaporator for several hours (8-10 hours) before proceeding with the deposition.

The deposition comports three steps:
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• deposition of a first layer of aluminum (300 Å) at 0◦ (displayed -4◦) and 10 Å/s

• oxidation for 5 minutes in the load-lock under a pressure of 5 mbar of pure O2

• deposition of a second layer of aluminum (300 Å) at -40◦ (displayed 324◦) and 10

Å/s

After the evaporation, the lift-off is performed in ho acetone and the sample subsequently

rinsed in IPA.

A.4.2 Dot lithographies:

We usually perform two lithography steps on the CNTs to define the circuits: one for

the gates and one for the contacts. They are quite similar, save when the contacts are

made out PdNi.

A.4.2.1 Resist coating:

For gates and for contacts that are not made out of PdNi, spin coat a single layer of

PMMA using the 4000/4000/30 recipe. For contacts made out of PdNi, we use a diluted

PMMA solution leading after spin-coating (same recipe) to a layer of 330 nm.

A.4.2.2 Lithography:

After the localization step A.3.3, one can design the lithography masks (one per area) by

loading the images in the SEM software (note that images should be re-centered around

0). The lithography procedure described below is done entirely at 10µm:

• perform the origin and angle correction and a three-point alignment on the central

crosses.

• measure the current

• adjust the focus by doing a contamination dot in the vicinity of the dot area

• adjust the write-field by scanning the layer 63 of the mask corresponding to the

area. Use the same procedure as in section A.3.3.
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• do the lithography with a dose of 1.25×390µC/cm2

• repeat all steps save the first two on the other areas of the sample.

The sample are developed 2 minutes in a MIBK/IPA solution (1/3) and then rinsed in

IPA.

A.4.2.3 Metal deposition:

In order to eliminate possible resist residues, the sample spend several hours (8-10 hours)

in the evaporator prior to the metallic deposition.

Gates:

• 15 Å of Al (5Å/s), 10 minutes of oxidation under 1 mbar of O2 (in the load-lock)

• Repeat previous three times in total

• 400 Å of Al (10Å/s) and 200 Å of Pd (3Å/s)

Normal contacts:

• 50 Å of Ti (3Å/s)

• 450 Å of Au (5Å/s)

Ferromagnetic contacts:

• 300 Å of PdNi (3Å/s)

• 50 Å of Pd (3Å/s)





Appendix B

Derivation of the effective

Hamiltonian for the SD-transmon

system:

This appendix is dedicated to the detailed derivation of the effective Hamiltonian used

in chapter 5. We remind the reader that we start from the following Hamiltonian:

Ĥ =Ĥcavity + Ĥtransmon + Ĥdot + Ĥcontacts + Ĥtunnel + Ĥbath+

Ĥcavity<−>bath + Ĥcavity<−>transmon + Ĥcavity<−>dot (B.1)
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with :

Ĥcavity = ~ωcavâ† â (B.2)

Ĥtransmon = ~ωt q̂†q̂ − ~
α

12(q̂† + q̂)4 (B.3)

Ĥdot = ε n̂+ U

2 n̂ (n̂− 1) (B.4)

Ĥcontacts =
∑

a=L,R

∑
k,σ

ξk,σ ĉ
†
a,k,σ ĉa,k,σ (B.5)

Ĥtunnel =
∑

a=L,R

∑
k,v,σ

(
ta ĉa,k,σd̂

†
v,σ + h.c.

)
(B.6)

Ĥbath =
∑
µ

~ωµb̂†µb̂µ (B.7)

Ĥcavity<−>bath = ~
∑
µ

(
gµ b̂µ + g∗µ b̂

†
µ

) (
â+ â†

)
(B.8)

Ĥcavity<−>transmon = 2 i β e V0
(
q̂† − q̂

) (
â† + â

)
(B.9)

Ĥcavity<−>dot = ~ gdot n̂
(
â+ â†

)
(B.10)

B.1 Closed system Hamiltonian :

In a first time, we only consider the closed system dot-cavity-transmon and forget about

the bathes for the time being. We separate the Hamiltonian as follows :

H = Hcavity +Htransmon +Hdot︸ ︷︷ ︸
H0

+Hcavity<−>transmon +Hcavity<−>dot︸ ︷︷ ︸
Ht

(B.11)

The first step consists in deriving the S operator defining the transformation. We start

from the following ansatz :

Ŝ =
∑
k

αk â |k〉〈k + 1|+ â† |k + 1〉〈k|) + βk (â† |k〉〈k + 1|+ â |k + 1〉〈k|) + i γ n̂
(
â− â†

)
= Ŝtra + Ŝdot (B.12)

As we work in the large EJ
EC

, we have replaced q by
∑
k

√
k + 1|k〉〈k + 1| with |k〉 the

eigenstates of the transmon. As a consequence the prefactor of the term in (q̂† − q̂)
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in Ht becomes gtra. To eliminate the first order coupling between the cavity and the

transmon, we then need :

Ŝtra = q̂α â
† + q̂†α â+ q̂β â+ q̂†β â

† (B.13)

with q̂α and q̂β defined as follow:

q̂α =
∑
k

gtra
√
k + 1

ωt − α (k + 1)− ωcav
|k〉〈k + 1| (B.14)

q̂β =
∑
k

gtra
√
k + 1

ωt − α (k + 1) + ωcav
|k〉〈k + 1| (B.15)

For the dot the computation gives:

Ŝdot = i
gdot
ωcav

n̂
(
â− â†

)
(B.16)

To get the effective Hamiltonian of the closed system, we then compute i[S,Ht] and

project on the vacuum of the cavity:

Ĥeff closed =
(
ε− U

2

)
n̂+

(
U

2 − ~
g2
dot

2ωcav

)
n̂2+

+
∑
k

~
(
ωk + g2

tra

2
(
k β−k − (k + 1)β+

k+1

))
|k〉〈k|

+ i~
gdot gtra

2 n̂
∑
k

√
k + 1

(
− 1
ωcav

+ β−k+1 + β+
k+1

)
(|k + 1〉〈k| − |k〉〈k + 1|)

(B.17)

with:

β±k = 1
ωt − αk ± ωcav

(B.18)
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The Hamiltonian, we obtain, contains both renormalization of the dot and transmon

energies by the cavity and a direct coupling term between the transmon and the cavity.

We could simplify it further but first we will look at the re-normalization of the bathes.

B.1.0.1 Re-normalization of the baths:

We have two such terms to re-normalize :

Ĥtunnel =
∑

a=L,R

∑
k,v,σ

(
ta ĉa,k,σd̂

†
v,σ + h.c.

)
(B.19)

Ĥcavity<−>bath = ~
∑
µ

gµ(bµ + b†µ)(â+ â†) (B.20)

As n̂ =
∑
v,σ n̂v,σ, we have [n̂, d̂v,σ]m = (−1)md̂v,σ. Using the Baker-Campbell-Hausdorff

formula, we can compute the re-normalized term :

Ĥtunnel eff = Ĥtunnel −
gdot
ωcav

(â− â†)
∑

a=L,R

∑
k,v,σ

(
ta ĉa,k,σd̂

†
v,σ − t∗a ĉ

†
a,k,σd̂v,σ

)

+ g2
dot

2ω2
cav

(
â− â†

)2 ∑
a=L,R

∑
k,v,σ

(
ta ĉa,k,σd̂

†
v,σ + t∗a ĉ

†
a,k,σd̂v,σ

)
+ i

gtra gdot
2ωcav

∑
a=L,R

∑
k,v,σ

(
ta ĉa,k,σd̂

†
v,σ − t∗a ĉ

†
a,k,σd̂v,σ

)
∑
l

√
l + 1

(
β−l+1 + β+

l+1

)
(|k + 1〉〈k|+ |k〉〈k + 1|) (B.21)

Here, we have not yet projected on the empty state of the cavity and we can see that

we can have some photo-assisted tunneling processes that may be important to describe

properly in the presence of a bias voltage. For the present treatment we will discard

them.

For the cavity bath coupling, the re-normalization leads to:

Ĥcavity<->bath-eff =
∑
µ

gµ (b̂µ + b̂†µ)
(∑

k

i gtra
√
k + 1

(
β−k+1 + β+

k+1

)
(|k + 1〉〈k| − |k〉〈k + 1|)

)
(B.22)



Derivation of the effective Hamiltonian for the SD-transmon system 241

The computation of those two terms achieves the transformation and makes in particular

appear the direct coupling of the transmon to the cavity bath. As in chapter 2, this will

describe the relaxation of the qubit through the emission of photon in the cavity but

here the results concern all the levels and not just the first exited one.

B.1.0.2 Approximations :

So far, we have used two approximations to simplify the calculations:

• the transmon approximation (ECEJ << 1) has been made to simplify the expression

of the coupling

• the cavity has been assumed to remain in its ground state and we have already

mentioned that this hypothesis may not always be verified.

We can go further by estimating some terms. We introduce ∆ = ωcav − (ωt − α), which

is, up to the dispersive shift, the detuning between the cavity and the qubit.

Off resonant corrections:

In a number of the previous expressions appear the sum of β−k and β+
k . Comparing

the magnitude of the two terms it turns out that we can neglect terms in β+
k .

β+
k

β−k
= ωt − αk − ωcav
ωt − αk + ωcav

' ∆
ω01 + ωcav

(B.23)

For reasonable values (∆ = 1.5GHz, ωcav = 7.5GHz), this ratio is of the order of 0.1

which allows us to neglect β+
k terms in the following. It should be noted that as these

terms are never isolated it will be easy to come back on that approximations if the need

arises.

Tunneling re-normalization:

The leading order in the tunneling re-normalization is in gdot
ωcav

which is, even in an
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optimistic perspective, no larger than 5 per cent. As long as we work without any

bias voltage we can hence neglect those corrections. The corrections resulting from the

transmon state will be at least 5 times smaller (as we will work in the dispersive of the

transmon) and hence can also be neglected. We will hence not consider any correction

to the tunneling.

Simplified Hamiltonian:

The use of the previously discussed approximations allows to reduce the Hamiltonian

of the system. We introduce the operators τ̂ ix,j = |j + i〉〈j| + |j〉〈j + i| and τ̂ iy,j =

i (|j + i〉〈j|+ |j〉〈j + i|):

Ĥ =
(
ε− U

2

)
n̂+

(
U

2 − ~
g2
dot

ωcav

)
n̂2

+
∑
j

~
(
ωj + g2

tra

−j/2
∆ + α (j − 1)

)
|j〉〈j|

+ ~ gtra gdot n
∑
j

√
j + 1

( 1
∆ + α j

+ 1
ωcav

)
τ̂1
y,j

+
∑

a=L,R

∑
k,σ

ξk,σ ĉ
†
a,k,σ ĉa,k,σ +

∑
a=L,R

∑
k,v,σ

(
ta ĉa,k,σd̂

†
v,σ + h.c.

)

+
∑
µ

~ωµb̂†µb̂µ +
∑
µ

gµ (b̂µ + b̂†µ)

∑
j

gtra

√
j + 1

∆ + α j
τ̂1
y,j

 (B.24)



Appendix C

Master equation for the transmon

subject to the dot noise:

This appendix is dedicated to the detailed derivation of the master equation for the

transmon dynamics in which we treated the dot as a source of electrical noise. We

start from the following Hamiltonian which describes the transmon as an anharmonic

oscillator and does not detail the dynamic of the number of electron n̂ in the dot:

Ĥ =
∑
j

~ ω̃j |j〉〈j|+
∑
µ

~ωµb̂†µb̂µ︸ ︷︷ ︸
Ĥ0

+ ~ n̂
∑
j

g̃td,j τ̂y,j︸ ︷︷ ︸
Ĥdt

+
∑
µ

gµ (b̂µ + b̂†µ)

∑
j

gtra

√
j + 1

∆ + α j
τ̂y,j


︸ ︷︷ ︸

Ĥbath

(C.1)

with ω̃j = ωj + g2
tra

−j/2
∆+α (j−1) , g̃td,j = gt gdot

√
j + 1

(
1

∆+α j + 1
ωcav

)
and τ̂y,j = i(|j +

1〉〈j| − |j〉〈j + 1|.

We will now derive the equation of evolution of the density matrix in the interaction

picture the way we did in chapter 2. We start from:

243
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i~
dρ̃

dt
=
[
Ĥdt + Ĥbath, ρ̃

]
(C.2)

We then integrate formally the above equation and re-inject the result in it. Next we

take the trace on the bathes, and use the decorrelation approximation to explicit the

partial traces. As before we assume no correlations exist between the dot and the bath

representing relaxation by emission in the cavity. The above leads to:

d

dt
Tr(ρ̃)(t) =− i n̄

[∑
j

g̃td,j τ̂
1
y,j(t), T r((ρ̃)(0)

]

−
∫ t

0

∑
j

∑
l

g̃j g̃j

(
Tr (n(t)n(t− τ) ρ̃) (τ̃y,j(t)τ̃y,l(t− τ)ρ̃− τ̃y,l(t− τ)ρ̃τ̃y,j(t))

+ Tr (n(t− τ)n(t) ρ̃) (ρ̃τ̃y,l(t− τ)τ̃y,j(t)− τ̃y,j(t)ρ̃τ̃y,l(t− τ))
)

− 1
~2

∫ ∞
0

[
Ĥbath(t),

[
Ĥbath(t− τ), T r(ρ̃)(t− τ)

]]
dτ (C.3)

As before1, we can replace ρ̃(t− τ) by ρ(t), which we simply noted ρ̃ above. We recover

the term related to the decay of the transmon as predicted by the Purcell effect and

similar terms for the impact of the dots.

The decorrelation approximation to treat the Purcell bath is perfectly justified in the

framework of the Caldeira-Legget model, as the bath is Markovian. In the case of the

dot, it is worth examining in more details the validity of this assumption. As discussed

in chapter 2, the decorrelation approximation consists in neglecting the correlations that

can appear between the system and its "bath". Those correlations appear on a time scale

set by 1/gtd here, and decay on a time scale given by the auto-correlation time of the

bath:

• in the Coulomb blockade regime, we have shown in chapter 2 that 〈n̂(t)n̂(t − τ)〉

decay on a time scale set by 1/Γ.

• in the Kondo regime, all the physical properties are governed by the Kondo tem-

perature TK
1See chapter 2 for the full explanation



Master equation for the transmon subject to the dot noise 245

As a conclusion, the previous treatment will remain valid as long as:

• gdt/Γ� 1 in the Coulomb regime. As we can expect gdt to reach at most several

hundreds of MHZ, this can possibly be false for very closed dots, but in these cases

the previous sequential treatment should be valid.

• ~ gdt/kB TK � 1 in the Kondo regime, which should always be true as Kondo

peaks with TK < 5GHz are rare.

To simplify the expression of the evolution of the density matrix, we will write explicitly

τ̂y,j(t) = i
∑
η=±1 ητ̂η,je

i η ωj t and split the n̂ in its average value n̄, which will still

depends on the dot chemical potential, and quantum fluctuations and write n̂ = n̄+ δn̂,

with 〈δn̂〉 = 0. Furthermore, as the electronic correlation decays on short time scale,

and because within the decoupling approximation it makes no sense to study the system

evolution on time scales that are not much larger than the auto-correlation time of

the bathes, we push all integrals involving them to infinity and neglect all terms which

oscillate on short time scales compared to the qubit lifetime (RWA). This select η′ = −η

and j = l. We then get:

d

dt
ρ̃(t) = +

∑
j

g2
tra

j + 1
(∆ + α j)2κ

(
τ̂−,j ρ̃(t)τ̂+,j −

1
2 (ρ̃(t)τ̂+,j τ̂−,j + τ̂+,j τ̂−,j ρ̃(t))

)

−
∑
j

∑
η

g̃2
µ,j

(∫ t

0
n̄2ei η ωj τ

[
τ̃η,j ,

[
τ̃−η,j , ρ̃

]]
+
∫ ∞

0
ei η ωj τ 〈δn̂(t)δn̂(t− τ)〉

(
τ̂η,j τ̂η′,lρ̃− τ̂η′,lρ̃τ̂η,j

)
+
∫ ∞

0
ei η ωj τ 〈δn̂(t− τ)δn̂(t)〉

(
ρ̃τ̂η′,lτ̂η,j − τ̂η,j ρ̃τ̂η′,l

))
(C.4)

In the following we will assume that the dot correlation functions are invariant un-

der time translation which will allows us re-write the previous expression in term of

Snn(ω) =
∫∞
−∞ dte

i ω t〈δn(t)δn(0)〉 (using 〈δn(t)δn(0)〉 =
∫∞
−∞

dω

2πe
−i ω tS(ω)). Comput-

ing the integrals and summing over η yields the following expression:
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d

dt
ρ̃(t) = +

∑
j

g2
tra

j + 1
(∆ + α j)2κD(τ−,j)ρ̃

−
∑
j

g̃2
j

(
i
n̄2

ωj

[
τ̃1

+,j τ̃
1
−,l − τ̃1

−,j τ̃
1
+,j , ρ̃]

]
− Snn(ωj)D(τ̂1

−,j)− Snn(−ωj)D(τ̂1
+,j)

+ i

2π

(
P
(

1
η ωj − ω

)∫
Snn(ω)dω

[
τ̂1

+,j τ̂
1
−,j , ρ

]
−

P
(

1
η ωj + ω

)∫
Snn(ω)dω

[
τ̂1
−,j τ̂

1
+,j , ρ

])

where D is the super-operator associated with a collapse operator in the Linblad form

D(τ̂) ρ = τ̂ ρ̃τ̂ † − 1
2
(
ρ̃τ̂ †τ̂ + τ̂ †τ̂ ρ̃

)
and P

( 1
ω

)
is the Cauchy principal value.



Appendix D

Characterization of the transmon:

This appendix details the characterization of the transmon beyond the spectroscopy and

Rabi oscillations measurements presented in the main text.

In theory if we knew exactly the drive power on the transmon we could infer from the

Rabi oscillations the coupling of the transmon to the electric field. However, we cannot

determine this power with sufficient precision in practice to make such an estimate

pertinent. In order to access the coupling, we will measure the dispersive shift χ induced

by the transmon state on the cavity frequency. If we had not projected the Hamiltonian,

we obtained in appendix B, on the empty state of the cavity we would have obtained a

cavity term depending on the transmon state which reads:

Hcav = ~

ωcav +
∑
j

g2
tra

∆− α
(∆ + α j) (∆− α+ α j) |j〉〈j|

 a†a (D.1)

This means that when measuring the cavity transmission spectrum we will get different

central frequencies depending on the qubit state. Such a measurement will allow us to

extract the coupling between the cavity and the transmon.

To perform this measurement, we first transfer the qubit in the exited state using a π

pulse and measure the cavity transmission at a given frequency. We then repeat this

experiment at different frequencies to obtain the cavity spectrum when the qubit is

exited. We also perform a control experiment in which the qubit is not exited. The

results of such a measurement are presented in Fig. D.1.
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Figure D.1: Dispersive shift:
Measure of the frequency shift induced by the transmon state on the cavity. The
orange curve corresponds to measurements in which a π is applied to the qubit before
measuring the cavity transmission, for the blue one no pulse is applied. The two
peaks observed for the orange curve corresponds to the two possible states of the
transmon, since it relaxes during the measurement leading to a finite probability to

find it in its ground state.

If the measurement was perfect, we would observe a single peak when the qubit has been

driven to its exited state. However, because our pulses are not optimized and mostly

because our read-out time is not short compared to the transmon lifetime, the ground

state happens to also be populated which explains the presence of two peaks. From

this measurement, we can extract the dressed cavity frequency (transmon in its ground

state) ω̃cav and the difference between the two cavity frequencies that we will note 2χ,

whose expression can be computed from (D.1).

ω̃cav = ω01 + ∆ + g2
tra

∆ = 2π 7.625GHz (D.2)

2χ = g2
tra

1
∆

2α
∆ + α

= 2π 4MHz (D.3)

From the four quantity extracted so far we can deduce the model parameters:
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α = 2 (ω̃01 − ω̃02/2) + χ ' 2π 420MHz (D.4)

ω01 = 1

1 + 3χ
2α

(
ω̃01 + χ

2

(
1 + 2 ω̃01 + ˜ωcav

α

))
= 2π 4.47GHz (D.5)

∆ = 2 ω̃01 + ω̃cav − 3ω01 = 2π 3.1GHz (D.6)

g2
tra = χ∆

α
(∆ + α)→ gtra = 2π 230MHz (D.7)

Of course here, given the small value of χ and the low quality of the data used to measure

it, those corrections are not relevant. However I give the full formulas for the benefit of

the reader.

From the cavity transmission we can also extract the linewidth κ:

κ ' 2π 1.4MHz (D.8)

Those numbers are not too far from the one used in the previous simulations with the

notable exception of the qubit bare frequency. It should be noted that the sample on

which those data have been acquired is among the first one we made, and even though

no full sample has been fabricated, we later tested another transmon whose parameters

were much closer to the ones used in the simulation.

We also checked two other important quantities on this sample:

• the transmon relaxation time T1

• the transmon decoherence time T ∗2

In our model, the lifetime of the transmon is only limited by the emission of photons

in the cavity. As a consequence, our prediction will be accurate only if this process is

the dominant decay process, as the dot influence the transmon decay through its ability

to absorb photons. To measure the decay, we use the procedure described in chapter 3

which consists in applying a π pulse on the transmon and measure the population at a

variable later time.
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Figure D.2: Transmon relaxation time:
After preparing the trasmon in its exited state using a π pulse, we measure the
cavity transmission which can be mapped to the transmon population. We observe
the usual exponential decay (growth for the cavity transmission). The orange line

is a guide to the eyes indicating the slope at the origin.

Fig. D.2 displays the result of such a measurement. We do observe the expected ex-

ponential decay of the exited state and we can extract T1 ' 2.6µs. This time need to

be compared to the Purcell decay rate given by g2
tra/∆2 κ. From the previous charac-

terization, the Purcell decay rate limits T1 to 21µs which is much larger than the time

we measure. However for the parameters we target, the Purcell limit is expected to be

much shorter (1.76 µs) in which case it should be the dominant process.

Ramsey fringes measurements are a powerful tool to determine with precision the fre-

quency of the qubit and detect the small shifts that can be induced by the dot occupation.

Furthermore, the dephasing induced by the dot, that was not studied theoretically so

far, may contain important information. For both reasons we are interested in having

T ∗2 as large as possible and ideally limited by T1

We performed some Ramsey fringes measurements on this sample, whose typical result

is illustrated in Fig. D.3. Even though the decoherence time was not as long as could

be expected (T ∗2 ' 1µs), the result is encouraging since, as previously mentioned, those

results have been obtained on an early sample which had not yet been fully optimized.
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Figure D.3: Transmon Ramsey fringes:
Ramsey fringes obtained by using a drive tone detuned by 2 MHz from the transmon

frequency.
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Résumé

Ce travail de thèse est centré au-
tour de deux aspects des technolo-
gies quantiques: le calcul quan-
tique et la mesure quantique. Il
s’appuie sur la boîte à outils de la
lumière micro-onde, développé en
électrodynamique quantique, pour
sonder des circuits mésoscopiques.
Ces circuits, fabriqués ici à base
de nanotubes de carbone, peuvent
être conçus comme des bits quan-
tiques ou comme des systèmes mod-
èles de la matière condensée, et
cette thèse explore les deux aspects.
La réalisation d’une interface spin-
photon cohérente illustre le premier.
L’expérience repose sur l’utilisation
de contacts ferro-magnétiques pour
induire un couplage spin-orbit arti-
ficiel dans une double boîte quan-
tique. Ce couplage hybride les de-
grés de liberté de charge et de spin
de l’électron. En incluant ce circuit
dans une cavité micro-onde, dont le
champ électrique peut être couplé à
la charge, nous réalisons une inter-
face spin-photon. Un second project
est centré sur l’utilisation de boites
quantiques comme systèmes mod-
èles pour l’étude de problèmes de
matière condensée. Ce projet con-
siste à coupler, via une cavité micro-
onde, un qubit supraconducteur, qui
servira de sonde peu invasive, et une
boîte quantique unique. Un tel cir-
cuit peut exhiber différents comporte-
ments dont l’effet Kondo, qui est un
effet à N-corps. Dans ce travail,
nous présentons à la fois une étude
théorique, et des travaux expérimen-
taux. Finalement une proposition
théorique pour détecter le caractère
auto-adjoint des fermions de Majo-
rana en utilisant une cavité micro-
onde, est présenté.

Mots Clés

cQED, boîte quantique, spin, nan-
otube de carbone

Abstract

This thesis work is centered around
two key aspects of quantum tech-
nologies: quantum information pro-
cessing and quantum sensing. It
builds up onto the microwave light
toolbox, developed in circuit quantum
electrodynamics, to investigate the
properties of mesosocopic circuits.
Those circuits, made out here of car-
bon nanotubes, can be designed to
act as quantum bits of information or
as condensed matter model system
and this thesis explore both aspects.
The realization of a coherent spin-
photon interface illustrates the first
one. The experiment relies on fer-
romagnetic contacts to engineer an
artificial spin-orbit coupling in a dou-
ble quantum dot. This coupling hy-
bridizes the spin and the charge de-
gree of freedom of the electron in
this circuit. By embedding this cir-
cuit into a microwave cavity, whose
electrical field can be coupled to the
charge, we realize an artificial spin-
photon interface. A second project,
started during this thesis, focuses on
using quantum dot circuits as model
systems for studying condensed mat-
ter problems. This project consists
in coupling, via a microwave cavity, a
superconducting qubit, that will serve
as a delicate probe, and single quan-
tum dot circuit. Such a circuit can dis-
play several behaviors including the
Kondo effect which is intrinsically a
many-body effect. In this work, we
present both a theoretical study of
some possible outcomes of this ex-
periment, and experimental develop-
ments. Finally, a theoretical propo-
sition to detect the self-adjoint char-
acter of Majoration fermions using a
microwave cavity, is presented.

Keywords

cQED, quantum dots, spin, carbon
nanotube
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