
HAL Id: tel-01807667
https://theses.hal.science/tel-01807667

Submitted on 5 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local Search, data structures and Monte Carlo Search
for Multi-Objective Combinatorial Optimization

Problems
Marek Cornu

To cite this version:
Marek Cornu. Local Search, data structures and Monte Carlo Search for Multi-Objective Combinato-
rial Optimization Problems. Other [cs.OH]. Université Paris sciences et lettres, 2017. English. �NNT :
2017PSLED043�. �tel-01807667�

https://theses.hal.science/tel-01807667
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres
PSL Research University

Préparée à l’Université Paris-Dauphine

Local Search, data structures and Monte Carlo Search
for Multi-Objective Combinatorial Optimization Problems

École doctorale de Dauphine – ED 543

Spécialité Informatique

Soutenue par Marek CORNU
le 18/12/2017

Dirigée par Tristan CAZENAVE

COMPOSITION DU JURY :

Tristan CAZENAVE
Professeur à l’Université Paris-Dauphine
Directeur de thèse

Daniel VANDERPOOTEN
Professeur à l’Université Paris-Dauphine
Co-Directeur de thèse

Xavier GANDIBLEUX
Professeur à l’Université de Nantes
Rapporteur

Laetitia JOURDAN
Professeur à l’Université de Lille 1
Rapporteure

Thibaut LUST
Lecturer au National College of Ireland
Membre du jury

Frédéric SAUBION
Professeur à l’Université d’Angers
Président du jury

Abbreviations

2PIPLS/D 2-Phase Iterated Pareto Local Search with Decomposition

2PPLS 2-Phase Pareto Local Search

A-MDW Adaptive Maximally Dispersed set of Weights

A-NMCS Aggregation-based Nested Monte Carlo Search

AP Assignment Problem

C-LK Chained Lin-Kernighan

FSP Flowshop Scheduling Problem

ILS Iterated Local Search

IPLS Iterated Pareto Local Search

KP 0-1 Knapsack Problem

LS Local Search

MCTS Monte Carlo Tree Search

MDW Maximally Dispersed set of Weights

MO Multi-Objective

MOCO Multi-Objective Combinatorial Optimization

MOFRMP Multi-Objective French Regions Mapping Problem

MoMad Multi-Objective Memetic Algorithm based on Decomposition

NMCS Nested Monte Carlo Search

PD-TPLS Pareto Double Two-Phase Local Search

PLS Pareto Local Search

PLS-VND Pareto Local Search with Variable Neighborhood Descent

P-PLS Partitioned Pareto Local Search

QAP Quadratic Assignment Problem

SO Single-Objective

TSP symmetric Traveling Salesman Problem

VND Variable Neighborhood Descent

Remerciements

À mes deux encadrants,

merci à Tristan Cazenave et Daniel Vanderpooten d’avoir accepté de diriger ma thèse. Leurs enseignements
ont été précieux pour moi et cette thèse m’a permis d’apprendre une quantité incroyable de choses dont je
suis persuadé qu’elles me seront essentielles pour l’avenir. Je les remercie de la bienveillance dont ils ont fait
preuve à mon égard ainsi que l’autonomie qu’ils m’ont laissée dans mon travail. Au travers de leur proposition
de stage de M2, je les remercie de m’avoir introduit dans cet univers qu’est la recherche en informatique dont
j’ignorais tout, ainsi que de m’avoir fait rencontré des gens aussi passionants que passionnés. Je remercie
Tristan d’avoir accepté de jouer le rôle de directeur officiel avec l’administratif que cela induit, et Daniel
d’avoir organisé notre classe "optimisation multi-objectif" à Wuppertal qui fut un bon souvenir.

Aux membres du jury,

je remercie chaleureusement Xavier Gandibleux et Laetitia Jourdan qui ont accepté d’être rapporteurs de
ma thèse, ainsi que Thibaut Lust et Frédéric Saubion, qui ont accepté d’être examinateurs. Je remercie tous
les membres du jury pour leur relecture de ma thèse, d’autant plus que je les sais être des personnes très
demandées dans leur travail.

Aux enseignants et chercheurs de Dauphine et d’ailleurs,

je remercie Anne Epaulard pour son aide sur le problème des régions. Merci à toute l’équipe du LAMSADE,
en particulier Cristina Bazgan et Lucie Galand qui étaient du voyage à Wuppertal, ainsi que l’équipe multi-
objectif de l’Université de Wuppertal pour leur accueil chaleureux : Britta, Kathrin, Kerstin et Michael. Je
remercie aussi les enseignants que j’ai pu avoir durant mes études à Dauphine. En particulier, je remercie
Attila Raksanyi de m’avoir donné une sorte de seconde chance pour mon premier contrôle de Java. Je remercie
aussi Marie-Jo Bellosta me m’avoir orienté vers un parcours de recherche.

À mes amis lamsadiens,

aux petits jeunes : Amin, Anne, Céline, Diana, George, Mehdi ; aux nouveaux docteurs : Alexandre, Amine,
Meriem, Youcef ; aux vieux docteurs : Abdallah, Amine, Dalal, Edouard, Lydia, Nat, Rafael, Raja ; à Cédric,
Khalil, Pedro, Yassine et tous les autres thésards du labo, merci pour l’ambiance géniale qui reigne dans les
trois bureaux de thésards.

Merci à Fabien de couver sous son aile les petits thésards que nous sommes. Merci à Ian et Thomas de la
bonne humeur dont ils font toujours preuve. Merci à mon co-bureau Justin pour son humour.

Merci à Marcel et Tom pour les discussions politiques passionnantes qu’on a pu avoir ensemble.

Je remercie Anaëlle, Florian, Lyes, Olivier, Renaud, Sami et Satya pour toutes ces journées et soirées passées
ensemble. Merci à Renaud pour ses différentes invitations dans les Pyrénées ou en Allemagne, qui furent de
très bons moments de détente. Merci à Anaëlle, pour la touche de jeunesse et de féminité qu’elle a apportée
dans ce groupe de brutes. Je remercie Satya avec qui j’ai pu passer des moments privilégiés. Je lui suis
reconnaissant pour ses conseils, sa gentillesse et l’avenance dont il a toujours su faire preuve.

À mes amis non lamsadiens,

merci à Brice B., Brice L., Charlotte, Christophe, Doris, Fabien, Fabiola, Florine, Hit, Laetitia, Louis, Maud,
Nathalie, Pauline Ald., Pauline Ali. et ... Pauline G. pour tous ces moments passés ensemble.

Merci à Bastien pour toutes les soirées passées à refaire le monde, toujours un verre à la main et toujours
prêt à faire n’importe quoi, quel que soit le lieu, allant du pub irlandais jusqu’aux plages malaisiennes en
passant par les ruelles nocturnes parisiennes et scéennes.

À ma belle-famille,

merci à mes beaux-parents de m’avoir permis de squater leurs apparts pendant toutes ces années.

À ma famille,

je remercie mes parents et mon frère, pour le soutien, la patience et la compréhension dont ils ont fait preuve
depuis le tout début de cette aventure. Je suis bien conscient que ces dernières années n’ont pas été évidentes
pour eux non plus. Je remercie aussi mes parents pour tout ce qu’ils ont fait pour mon frère et moi afin que
nous ne manquions jamais de rien.

Merci à mes grands-parents ; mes oncles et tantes, mes cousins et cousines ; à ma belle soeur et mon parrain,
ainsi qu’aux amis de la famille.

Je n’oublie pas non plus les petits : Bouboule, Jean-Joseph, Léon, Mitard, Nono, Patrick, Shamu, Tamtam,
Tiburcin et Valentine.

Et enfin à Céline,

qui partage ma vie depuis plus de neuf ans déjà. Tout d’abord, merci de supporter mon sale caractère. Je ne
peux qu’être admiratif de la tolérance absolue dont tu as fait preuve façe à mon rythme de vie infernal que
tu as subi ces dernières années. Merci pour le soutien que tu m’a apporté pendant mes si nombreux moments
de doute et de stress. Merci de me connaître si bien et d’avoir su quand il fallait que je lâche prise. Merci
pour tous les moments passés ensemble et qui ont su me faire oublier la thèse quelques instants.

Contents

Introduction 1

1 Fundamental concepts of MOCO 5

1.1 Fundamental concepts and techniques . 6

1.2 Complexity, intractability and examples of MOCO problems 10

2 Methods in MOCO 13

2.1 MO quality indicators . 15

2.2 MO meta-heuristics . 18

2.3 MO Traveling Salesman Problem: state-of-the-art . 38

2.4 Archives: state-of-the-art . 43

3 New archives 47

3.1 AVL-Archive . 48

3.2 NDR*-Archive . 66

3.3 Experiments . 77

3.4 Conclusion . 89

4 New optimization methods 91

4.1 Single-objective optimizers: improvements for MOCO . 92

4.2 Adaptive Maximally Dispersed set of Weights . 93

4.3 Partitioned Pareto Local Search . 101

4.4 2-Phase Iterated Pareto Local Search with Decomposition . 109

4.5 Preservation of a good distribution of points in the objective space 113

4.6 Conclusion . 115

5 Application of 2PIPLS/D to MOTSP 117

5.1 MOTSP benchmarks and experimental design . 118

5.2 Implementation of 2PIPLS/D to address MOTSP . 121

CONTENTS

5.3 Empirical evidence of global convexity on MOTSP . 123

5.4 Parameter setting of 2PIPLS/D . 126

5.5 Comparison of 2PIPLS/D with state-of-the-art methods . 137

5.6 Conclusion . 154

6 Application of 2PIPLS/D to MOFRMP 155

6.1 Presentation of MOFRMP . 156

6.2 Implementation of 2PIPLS/D to address MOFRMP . 161

6.3 Study of global convexity on MOFRMP . 163

6.4 Experiments . 164

6.5 Conclusion . 169

Conclusion 171

References 173

Introduction

Nowadays, companies and even people are frequently faced with problems of discrete nature, called combina-
torial optimization problems. A combinatorial problem involves managing (selecting a subset of or ordering)
a finite set of elements while respecting a number of constraints. These elements are the elementary compo-
nents of the solutions of the problem. The quality of a solution of the problem is evaluated by an objective
(also called criterion) value. When two solutions are compared, either one solution is better than the other
given this objective, or both have the same objective value. The aim of Combinatorial Optimization is to
find one (or even several) of the best solutions of the problem.
Combinatorial optimization problems are numerous in today’s lives and appear in various situations. A
simple example of such problems would be the packing of your bag before vacations. This situation forces
you to select carefully the most useful stuffs for your trip, knowing that your bag has a limited place. Another
situation regularly experienced by anyone is to find the shortest path for moving from a location to another,
regardless of the mean of transport; problem generally solved by geolocation systems (Galileo, GPS, ...)
embedded in some portable devices, or even solved by web applications. Companies are also confronted
to combinatorial optimization problems specific to their field of activity. For example, an airline company
faces each day the problem of combining schedules of thousands of flight attendants, in order to operate all
the daily flights with a minimum cost. Telecommunications companies (Orange, AT&T, ...) are extensively
confronted to different combinatorial optimization problems. Among them, an important issue is related to
the design of a telecommunication network: how to connect a number of homes of a village or a city block to
Internet with high-speed access minimizing the total length of the cables used? Another example concerns
the service of any delivery company (La Poste, Fedex, ...), which has to deliver packages to a set of customers
by using a fleet of transport vehicles. The problem arising each day is to deliver packages while minimizing
either the total fuel consumed or the total distance covered by all vehicles through their traveling from the
warehouses to the consumers.
There are many different methods to optimize combinatorial problems but we can categorize them into
two main classes : exact methods and approximation methods. Exact methods aim at finding an optimal
(i.e. best) solution of the problem, while the purpose of approximation methods is to find a sub-optimal
(i.e. approximate) solution of good quality. There are two sub-classes of approximation methods: the ap-
proximation methods with performance guarantee and the heuristics. The approximation methods with
performance guarantee provide a sub-optimal solution guaranteed to be optimal at a given precision. A
heuristic does not provide any guarantee on the quality of the solution generated. In addition to the qual-
ity, a key aspect of all these methods is to provide a solution in a time said to be reasonable. In general,
guaranteeing the quality of a solution takes extra time compared to a method not providing any guarantee,
and proving that a solution is optimal takes even more extra time. Therefore, each one of these three classes
of methods is useful depending on the difficulty of finding an optimal solution for the addressed problem.
Globally, the difficulty of the instance of a problem depends on two main axes: the number of elements
composing the instance (called the size of the instance) and the type of constraints involved. Concerning
problems said to be easy, like the Shortest Path Problem or the telecommunication network design problem
previously cited, exact methods generally provide an optimal solution in a reasonable time, even for large-size
instances. On the other hand, for problems similar to the first given example, called Packing Problems, it

1

2

may be difficult for an exact method to find a solution in a reasonable time and it might be advisable to
use instead an approximation method with performance guarantee to reduce the execution time for finding
a good quality solution. Finally, concerning the presented problem faced by the delivery companies, called
the Vehicle Routing Problem, it is considered as a hard problem, and even for small instances, an exact
method will have great difficulties to find an optimal solution. Optimizing an instance of such a problem
with an approximation method with performance guarantee is realistic up to a certain size, but for large-size
instances only heuristics are able to find good quality solutions in a reasonable time.

Such hard problems like the Vehicle Routing Problem belong to the class of NP-hard problems [Garey and
Johnson, 1979]. A conjecture widely accepted nowadays states that the time necessary to find an optimal
solution of a NP-hard problem is, in the worse case, exponential in the size of the instance, making a proof
of optimality infeasible in practice or even a good performance difficult to guarantee as the size of real-
world instances is often too large. Meta-heuristics, which are heuristics proposing a general framework to
optimize different problems, are extensively used for such NP-hard problems [Dréo et al., 2003,Gendreau
and Potvin, 2005]. There is a wide range of different meta-heuristics for combinatorial problems, among
others: evolutionary algorithms [Goldberg, 1989,Bäck et al., 1997], local search methods [Kirkpatrick et al.,
1983,Glover, 1989,Feo and Resende, 1995,Hoos and Stützle, 2004], nature-inspired meta-heuristics [Dorigo
et al., 2006,Kennedy and Eberhart, 1997], Monte Carlo Search methods [Ginsberg, 2001,Gelly and Silver,
2007,Browne et al., 2012].

At this point, we have considered the optimization of a single objective. On the other hand, solutions of
combinatorial problems may be evaluated on several objectives, often conflicting. Conflicts between objectives
generally lead to the following fundamental difference with single-objective optimization: two solutions can
have different objective values, representing different trade-offs of the objectives, and consequently none is
better than the other. Optimizing together several objectives of a combinatorial problem gave rise to the
domain of Multi-Objective Combinatorial Optimization (MOCO).

A classical example of conflicting objectives concerns routing problems like the Shortest Path Problem or
the Vehicle Routing Problem previously presented. For such problems, several objectives can be considered:
the travel time, the ecological footprint and naturally the travel cost depending on the mean of transport
chosen. We can easily see that a number of these objectives are generally conflicting, like the travel time
versus the travel cost or the ecological footprint. However, as a topical example, it can be interesting for
an environment-conscious company (or even a person) to select a route optimizing both travel time and its
ecological footprint. Considering such an extra ecological-oriented objective would benefit the company by
promoting its environment-consciousness for attracting more customers. Concerning the scheduling problem
faced by the airplane company, in addition to the cost minimization, we could consider as second objective the
well-being of flight attendants, by taking into account their preferences of working days. Although potentially
conflicting with a minimization of costs, optimizing as well the well-being of employees would potentially
reduce social movements and also improve the brand image of the company. Another example of conflicting
objectives appears in a common problem faced in finance. It consists in choosing a portfolio out of a given set
of investment proposals while optimizing two conflicting objectives: the expected value of portfolio returns to
maximize, and the risk inherent to portfolio returns to minimize. More generally, MOCO presents numerous
real world applications in finance, transportation, medicine and telecommunication [Ehrgott, 2009], routing
problems and telecommunications [Gabrel and Vanderpooten, 2002, Martins and Ribeiro, 2006, Madakat
et al., 2013,Zavala et al., 2014], structural design problems [Clímaco and Pascoal, 2012].

As we saw, MOCO is often a valuable alternative for decision makers compared to single-objective combi-
natorial optimization, as it covers different points of view existing for a problem. In contrast, MOCO is
confronted to computational issues when multiple and conflicting objectives are considered. More particu-
larly, most MO problems are theoreticlly difficult, in the sense that their decision version is knowing to be
NP-hard, even if the underlying single-objective version is polynomially solvable, i.e. easy.

As for single-objective optimization, MOCO methods are classified into exact methods, approximation meth-

INTRODUCTION 3

ods with performance guarantee and (meta-)heuristics. In addition to this methodology classification, three
main approaches exist in MOCO and each one is more or less demanding for the decision maker [Deb et al.,
2016]. The first one is the interactive approach, which iteratively interacts with the decision maker by asking
him/her preferences through the selection, classification or ranking of different solutions suggested by the
method in order to guide the search, and to finally obtain a solution that suits him/her [Roy, 1985,Vander-
pooten and Vincke, 1989]. The second one is the a priori approach which aims at first asking the preferences
of the decision maker among all objectives, then focus the optimization process given these guidelines. At
the end, the method produces a single or a small set of solutions. These two types of approaches often
aggregate the objectives into a single one such that the problem can then be solved as a single-objective
problem. A wide variety of aggregations can be found in the literature, from weighted sum or weighted
Tchebychev [Belhoul et al., 2014] to more complex ones able to model complex decision maker’s preferences
as the Choquet integral [Galand et al., 2010, Lust and Rolland, 2013]. The third one is the a posteriori
approach, for which the preferences of the decision maker are not known a priori, i.e. before the optimization
process of the problem. This approach is strongly attached to the notion of Pareto dominance: a solution
dominates another solution if it is equal or better on all objectives and strictly better on at least one ob-
jective. Considering this notion, the decision maker would not be interested in dominated solutions, and
consequently the aim of an a posteriori approach is to find the whole set of solutions not dominated by any
other solution, called the efficient set. Despite the fact that in practice we search for a reduced efficient set,
i.e. an efficient set such that only a single solution is memorized among equivalent ones, the set may be ex-
tremely large, particularly in the case of multiple and conflicting objectives. Thus, even for moderately-sized
problems, it is usually computationally prohibitive to identify an exact reduced efficient set. In particular,
several MOCO problems are intractable, in the sense that the number of points can be exponential in the
size of the instance [Ehrgott, 2006]. That is why, in addition to the inherent difficulty of MO problems pre-
viously mentioned, exact methods finding an exact reduced efficient set are generally used for easy problems
or small instances of harder problems. On the other hand, given a predefined tolerance in the dominance
relation, approximation methods with performance guarantee will be able to find an approximation of the
efficient set hence exact methods become impracticable. These approximation methods seem to be efficient
in theory [Papadimitriou and Yannakakis, 2000] as in practice for certain problems [Bazgan et al., 2009a].
Finally, meta-heuristics do not provide any guarantee of performance on the quality of the approximation set
found, but due to their practical effectiveness, they are currently massively used to optimize (large instances
of) hard problems. Indeed, single-objective meta-heuristics have been adapted to MOCO, such as MO Evo-
lutionary Algorithms [Coello et al., 2007], MO local search [Ulungu and Teghem, 1992,Hansen, 1997,Talbi
et al., 2001, Paquete et al., 2004, Vianna and Arroyo, 2004], MO nature-inspired meta-heuristics [Barán
and Schaerer, 2003, López-Ibáñez and Stützle, 2012,Xue et al., 2013], and more recently MO Monte Carlo
Search [Wang and Sebag, 2012]. Once (an approximation of) the efficient set has been found, the decision
maker chooses the solution which fits the best to his/her preferences using Multiple Criteria Decision Aid
method [Greco et al., 2005].

Scope of the thesis

In this thesis, we are interested in designing data structures and meta-heuristics for finding approximation
of efficient set of MOCO problems. The main point of the thesis is to propose new and efficient (in terms
of time and quality) methods, independent of the addressed problem as far as possible, and scalable both
in the size and in the number of objectives of the instance. Indeed, we did not limit ourselves to the bi-
objective case, and have considered problems with up to 5 objectives. Moreover, the proposed tools are
modular, in the sense that they can be used independently from each other. Due to recent successes of local
search on hard MOCO problems [Li and Landa-Silva, 2009,Ke et al., 2014,Lust and Tuyttens, 2014], we are
particularly concerned by introducing new tools for MO local search, Single-Objective (SO) optimizers and
data structures. As a secondary axis, considering recent development of efficient Monte Carlo Search methods

4

on many SO optimization problems [Browne et al., 2012, Edelkamp et al., 2016], we are also interested in
the combination of Monte Carlo Search methods with MO local search.

Outline of the thesis

Chapter 1 recalls fundamental definitions and notions of MOCO. Chapter 2 exposes an overview of methods
for optimizing MOCO problems, focusing on meta-heuristics. The chapter also presents a literature review of
methods on MO symmetric Traveling Salesman Problem (MOTSP), focusing on meta-heuristics and exposes
the state-of-the-art of archives, which are sets of mutually non-dominated solutions. Chapter 3 deals with
the new proposed archives: AVL-Archive for bi-objective optimization problems and NDR*-Archive for the
general case. The experimental results on artificial and MOTSP benchmarks are presented. Chapter 4
introduces the new tools proposed to optimize MOCO problems: a new MO meta-heuristic called 2-Phase
Iterated Pareto Local Search with Decomposition (2PIPLS/D), embedding Adaptive Maximally Dispersed
set of Weights (A-MDW) for generating an initial population, Partitioned Pareto Local Search (P-PLS) as a
speed-up technique for PLS, and some modifications on SO optimizers to improve their efficiency on MOCO
problems. Chapter 5 is devoted to the application of 2PIPLS/D to MOTSP on a benchmark of bi-objective
and tri-objective instances, and proposes an empirical evidence of global convexity on MOTSP. Finally,
Chapter 6 introduces the MO version of the French Regions Mapping Problem and shows the application of
2PIPLS/D to this new five-objective problem.

Chapter 1

Fundamental concepts of MOCO

This chapter first recalls the formal definition of a MOCO problem, then basic
notions like dominance relations, the concept of non-dominance, ideal and nadir
points and (non-)supported solutions. Basic techniques are also discussed such
as aggregation functions and weighting vector generation. Finally, some classical
MOCO problems are introduced.

5

6 CHAPTER 1. FUNDAMENTAL CONCEPTS OF MOCO

Introduction

In a MOCO problem, several objectives are taken into account, which often leads to obtain incomparable
solutions representing different possible trade-offs between objectives. Section 1.1 first recalls the formal
definition of a MOCO problem, then introduces important notions and techniques of MOCO. Section 1.2
presents a number of classical theoretical MOCO problems.

1.1 Fundamental concepts and techniques

1.1.1 Problem setting

Let E be a finite set of q elements E := {e1, ...eq}, defining a combinatorial structure. Let cj : E → R,
j = 1, ..., p, be the p cost functions that map each element of E with a vector of p costs, and c = (c1, ...cp)
be the multi-objective cost function.

Considering the minimization version, a MOCO problem is defined as:

{
min f(x) = (f1(x), ..., fp(x))
subject to x ∈ X

(1.1)

where X ⊂ 2E = {0, 1}q is the feasible set and the p potentially conflicting objective functions fj : X → R
mapping solutions to R, for j = 1, ..., p.

Given a feasible solution x ∈ X, an objective function can take several functional forms: usually additive,
i.e. fj (x) =

∑
e∈x

cj (e), sometimes bottleneck, i.e. fj (x) = max
e∈x

cj (e), or even more complex non linear forms.

The vector function f = (f1, ..., fp) hence maps solutions to points in the objective space Z ⊂ Rp. Let
Y := f(X) ⊂ Z be the set of all feasible points.

1.1.2 Dominance relations

Points in the objective space are compared using the concept of Pareto dominance. For any points z, z′ ∈ Z,
we define the following relations:

• z weakly dominates z′, denoted by z 5 z′, iff. zj ≤ z′j for each j = 1, ..., p

• z strictly dominates z′, denoted by z < z′, iff. zj < z′j for each j = 1, ..., p

• z dominates z′, denoted by z ≤ z′, iff. zj ≤ z′j for each j = 1, ..., p and there exists i ∈ {1, ..., p} such
that zi < z′i

• z and z′ are incomparable, denoted by z ‖ z′, iff. z � z′ and z′ � z

We can introduce a tolerance in the above dominance relations by defining an approximate dominance
relation. This can be relevant if small differences between objective values are judged non significant. For
any points z, z′ ∈ Z and given a tolerance ε > 0, we define the following relations:

• z ε-dominates z′, denoted by z 5ε z′, iff. zj ≤ (1 + ε)z′j for each j = 1, ..., p

• z and z′ are ε-incomparable, denoted by z ‖ε z′, iff. z �ε z′ and z′ �ε z

1.1. FUNDAMENTAL CONCEPTS AND TECHNIQUES 7

In addition, these original definitions are propagated in the decision space as follows, for any x, x′ ∈ X :

• x weakly dominates x′, denoted by x 5 x′, iff. f(x) 5 f(x′)

• x strictly dominates x′, denoted by x < x′, iff. f(x) < f(x′)

• x dominates x′, denoted by x ≤ x′, iff. f(x) ≤ f(x′)

• x ε-dominates x′, denoted by x 5ε x′, iff. f(x) 5ε f(x′)

• x and x′ are ε-incomparable, denoted by x ‖ε x′, iff. f(x) �ε f(x′) and f(x′) �ε f(x)

1.1.3 Non-dominance and efficiency

A point z ∈ Y is called non-dominated if and only if there is no other point z′ ∈ Y such that z′ ≤ z. In other
words, a non-dominated point is a point such that no improvement on any objective is possible without
sacrificing on at least another objective. A feasible solution x ∈ X is called efficient if its image in the
objective space is non-dominated.

The set of all non-dominated points Ynd ⊆ Y is called the non-dominated set (or Pareto front). The set of
all efficient solutions Xe ⊆ X is called the efficient set.

Given a tolerance ε > 0, a set of points Ỹnd ⊂ Y is called an ε-approximation of the non-dominated set Ynd
if any point z ∈ Ynd is ε-dominated by at least one point z′ ∈ Ỹnd [Papadimitriou and Yannakakis, 2000]:
∀z ∈ Ynd,∃z′ ∈ Ỹnd : z′ 5ε z.

1.1.4 Ideal and nadir points

Let z∗ = (z∗1 , ..., z∗p) ∈ Z be the ideal point, which has the best values for each objective:

z∗j = min
x∈X

fj (x) for j = 1, ..., p

Let η = (η1, ..., ηp) ∈ Z be the nadir point, which has the worst values for each objective on the non-dominated
set:

ηj = max
x∈Xe

fj (x) for j = 1, ..., p

Let X ′ ⊂ X be a subset of incomparable solutions.

The local ideal point z∗(X ′) ∈ Z of X ′ is the point with the best objective values among all solutions
belonging to X ′:

z∗j (X ′) = min
x∈X′
{fj(x)}, j = 1, ..., p

The local nadir point η(X ′) ∈ Z of X ′ is the point with the worst objective values among all solutions
belonging to X ′:

η(X ′) = max
x∈X′
{fj(x)}, j = 1, ..., p

Approximations of these extreme points can be introduced.

An approximate local ideal point z̃∗(X ′) ∈ Z of X ′ is a point which weakly dominates z∗(X ′), i.e. such that
z̃∗(X ′) 5 z∗(X ′).

8 CHAPTER 1. FUNDAMENTAL CONCEPTS OF MOCO

An approximate local nadir point η̃(X ′) ∈ Z of X ′ is a point which is weakly dominated by η(X ′), i.e. such
that η(X ′) 5 η̃(X ′).

Naturally, both z∗(X ′) and z̃∗(X ′) weakly dominate all solutions from X ′, and all solutions from X ′ weakly
dominate both η(X ′) and η̃(X ′).

A Minimum Bounding Box (MBB) of a set of spatial objects (resp. points) in Z is a hyper-rectangle of
minimum hypervolume including all the objects (resp. points). It is uniquely defined by a pair of local ideal
and nadir points.

1.1.5 Aggregation functions

An aggregation function aims at aggregating the objectives of a MOCO problem so that the resulting problem
is a single-objective problem. Two aggregation functions are used in this document: the weighted sum and
the weighted augmented Tchebychev functions, detailed below.

1.1.5.1 Weighted sum

Let λ = (λ1, ..., λp) ∈ Rp such that λj ≥ 0 for j = 1, ..., p, be a weighting vector (called weight). The weighted
sum problem is given by:

minλf(x) =
p∑
j=1

λjfj(x)

subject to x ∈ X
(1.2)

The resulting aggregated problem is a single-objective instance of the original MOCO problem.

1.1.5.2 Weighted augmented Tchebychev

Let λ = (λ1, ..., λp) ≥ 0 be a weight. The weighted augmented Tchebychev problem is given by:

minwat(x, λ, z∗) = max
j=1,...,p

λj(fj(x)− z∗j) + ε
p∑
j=1

λj(fj(x)− z∗j)

subject to x ∈ X
(1.3)

where ε > 0 is a fixed small positive real.

The weighted Tchebychev problem is a weighted augmented Tchebychev problem with ε = 0.

1.1.6 Supported and non-supported solutions

Supported efficient solutions are optimal solutions of a weighted sum problem for some vector λ > 0 [Geof-
frion, 1967]. Let conv(Y) be the convex hull of the set of all feasible points. The images in the objective
space of the supported efficient solutions correspond to the supported non-dominated points, which are non-
dominated points located on conv(Y).

The set of all supported efficient solutions is called the supported efficient set, and the set of all supported
non-dominated points is called the supported non-dominated set.

We can make a distinction between supported efficient solutions:

1.1. FUNDAMENTAL CONCEPTS AND TECHNIQUES 9

• Extreme supported efficient solutions, whose image in the objective space, called extreme supported
non-dominated points, are non-dominated points located on the vertex set of conv(Y).

• Non-extreme supported efficient solutions, whose image in the objective space, called non-extreme
supported non-dominated points, are not located on the vertex set of conv(Y).

•

•

•

◦
◦

◦

◦

◦

◦

◦

f1

f2

◦

◦

◦

•
◦

◦

◦

◦

◦

◦

f1

f2

◦

◦

◦

◦
◦

•

◦

◦

•

◦

f1

f2

Figure 1.1 – Extreme supported non-dominated points (left part), a non-extreme supported non-dominated
point (middle part), non-supported non-dominated points (right part). The gray area represents the convex
hull of the set of all feasible points conv(Y).

Non-supported efficient solutions are efficient solutions that are not optimal solutions for any weighted sum
problem with λ > 0. The image in Y of the non-supported efficient solutions are the non-supported non-
dominated points, located in the interior of conv(Y).

Figure 1.1 summarizes the different types of non-dominated points.

By taking into consideration these different types of solutions, a distinction can be made between weighted
sum and weighted augmented Tchebychev functions. Indeed, in contrast with weighted sum, optimizing a
weighted augmented Tchebychev function with the appropriate weight allows us to find any efficient solution
(not only a supported one) at the expense of a harder problem to solve.

1.1.7 Weight space and generation of weights

A closed subset Λ ⊂ Rp is called a d-dimensional simplex in Rp (d ≤ p) if Λ is the convex hull of d+1 affinely
independent points λ1, ..., λd+1 ∈ Rp. More formally:

Λ = {λ ∈ Rp : λ =
d+1∑
j=1

wjλ
j , wj ∈ [0, 1],

d+1∑
j=1

wj = 1}

Any point of a simplex can be expressed as a linear combination of the vertices of the simplex. We note
Λ = 4(λ1, ..., λd+1) to indicate that λ1, ..., λd+1 are the vertices of Λ.

Let

Λ0 := {λ ∈ Rp : λj ≥ 0, j = 1, ..., p,
p∑
j=1

λj = 1}

10 CHAPTER 1. FUNDAMENTAL CONCEPTS OF MOCO

be a (p-1)-dimensional simplex in Rp, called the normalized weight space (or simply the weight space). Λ0
contains all the positive weights normalized to unity. Generally, any weight generated for optimizing a given
aggregation function will belong to the normalized weight space Λ0.

•

•

•

•

•

•

•

•
•

•

•
•

•

•
••

•

•

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

(1
2 ,

1
2 , 0)

(0, 1
2 ,

1
2)

(1
2 , 0,

1
2)

Figure 1.2 – Set of 15 weights (black dots) generated in Λ0 by MDW with D = 4 and p = 3. Some vectors
are indicated as examples.

A method often used to create weights into Λ0 is the Maximally Dispersed set of Weights (MDW) [Steuer,
1986] which produces a number of equally dispersed weights into Λ0 (see Figure 1.2). Given a parameter
D ∈ N∗controlling the number of weights generated, MDW provides the set of weights given by:

MDW(D) := {λ = (λ1, ..., λp) : λ ∈ Λ0, λj = d

D , d ∈ {0, ..., D}, j = 1, ..., p}

such that min
λa,λb∈Λ0 : λa 6=λb

p∑
j=1

∣∣∣λaj − λbj∣∣∣ = 2
D

(1.4)

where |MDW(D)| =
(
D + p− 1
p− 1

)
.

1.2 Complexity, intractability and examples of MOCO problems

The difficulty to generate the efficient set comes essentially from two main issues:

• the complexity of the addressed problem;

• the potentially extremely large number of non-dominated points.

Concerning the complexity of a problem, we will simply oppose problems for which the decision version is
polynomially solvable in time given the size of the instance; and problems with a NP-hard decision version,
for which a conjecture widely accepted states that the problem is, in the worst case, exponentially solvable
in time given the size of the instance.

Concerning the second issue, a situation often encountered is that the addressed problem is intractable,
meaning that the number of non-dominated points can be exponential in the size of the instance.

We can list some classical MOCO problems, among others: MO Minimum Spanning Tree, MO (Quadratic)
Assignment Problem, MO (Multidimensional) Knapsack Problem, MO symmetric / asymmetric Traveling
Salesman Problem. Let us detail three of them:

1.2. COMPLEXITY, INTRACTABILITY AND EXAMPLES OF MOCO PROBLEMS 11

MO Assignment Problem In MO Assignment Problem (MOAP), n agents have to be assigned to n
machines. Each couple (agent,machine) has a cost vector. Any agent can be assigned to any machine.
It is required to assign exactly one agent to each machine and exactly one machine to each agent while
minimizing the total cost. More formally, the combinatorial structure of MOAP is represented by a complete
bipartite graph G = (V,E) with V the set of vertices, divided into two disjoint sets A = {a1, ..., an} and
M = {m1, ...,mn}, both of size n; and E = {(ak,ml) : k, l = 1, ..., n} be the set of edges. MOAP is defined
by (1.1), where fj (x) =

∑
e∈x

cj (e) for j = 1, ..., p and X represents the set of all perfect matchings on G.

While the decision version of AP is polynomially solvable, the decision version of MOAP is NP-hard [Ehrgott,
2006].

MO 0-1 Knapsack Problem The MO 0-1 Knapsack Problem (MOKP) consists in inserting n items into
a knapsack with a limited integer capacity W > 0. Each item k has a positive integer weight wk and p
positive integer profits vk1 , ..., vkp , k = 1, ..., n. A feasible solution is represented by a vector x = (x1, ..., xn)
of variables xk ∈ {0, 1}, such that xk = 1 if x contains item k and 0 otherwise, while satisfying the capacity
constraint

n∑
k=1

wkxk ≤W . MOKP is defined by (1.1), where fj(x) =
n∑
k=1

vkj xk is the value of a feasible solution

x ∈ X on the j-th objective, j = 1, ..., p. Decision versions of both KP and MOKP are NP-hard [Ehrgott,
2006].

MO symmetric Traveling Salesman Problem In symmetric Traveling Salesman Problem (TSP), a
traveling salesman has to visit a set of cities without passing more than once through each city and returns
to the starting city. A single cost value is associated to each edge between two cities. The goal is to find a
tour such that the total cost is minimized.

In MO symmetric Traveling Salesman Problem (MOTSP), a cost vector is associated to each edge between
two cities, and the traveling salesman has to minimize all the total costs. More formally, we define MOTSP
as follows. Given a complete graph G = (V,E) with V = {v1, ..., vn} the set of n nodes and E = {e1, ...eq}
corresponding to the set of edges such that q = n(n−1)

2 , the MOTSP is defined by (1.1), where fj (x) =∑
e∈x

cj (e) for j = 1, ..., p and X represents the set of Hamiltonian cycles on G. The decision version of TSP

is NP-hard. MOTSP is intractable and its decision version is also NP-hard [Ehrgott, 2006].

Chapter 2

Methods in MOCO

This chapter proposes an overview of the different methods existing in MOCO,
by focusing on meta-heuristics. First, the notion of quality indicator for a set of
points is introduced and indicators used for our futur experiments are detailed.
Then, different classes of meta-heuristics are presented among which local search
and Monte Carlo Search are extensively described. In particular, we intend to
propose a clear categorization of the different MO local search methods. Finally,
literature reviews are proposed concerning optimization methods for MOTSP and
archives, which are sets of incomparable solutions.

13

14 CHAPTER 2. METHODS IN MOCO

Introduction

There are many different general methods to deal with MOCO problems, categorized into two classes:
exact methods and approximation methods. An exact method aims at finding the whole non-dominated set
and providing one corresponding efficient solution for each point found. Numerous different general exact
methods exist, like MO Branch-and-bound [Sourd and Spanjaard, 2008, Cerqueus et al., 2017, Przybylski
and Gandibleux, 2017], MO Dynamic Programming [Bazgan et al., 2009b], ε-constraint [Haimes et al.,
1971,Florios and Mavrotas, 2014], two-phase methods [Ulungu and Teghem, 1995,Przybylski et al., 2010b]
and recently, search region-based method [Lacour, 2014,Klamroth et al., 2015,Dächert et al., 2017].

Approximation methods aim at finding an approximation of the non-dominated set and memorizing a single
solution for each point found. There are two types of approximation methods: those with performance
guarantee and those without any performance guarantee, called heuristics. Approximation methods with
performance guarantee (also called approximation methods with a priori guarantee) are methods introducing
a tolerance in the dominance relation, in general the usual dominance relation ≤ is replaced by the epsilon
dominance 5ε with a predefined ε. By relaxing the dominance relation, such methods are able to find a
good approximation of the efficient set in a reasonable time, when exact methods become impracticable.
These approximation methods with performance guarantee seem to be efficient in theory [Papadimitriou and
Yannakakis, 2000] as in practice for certain problems (see for example [Bazgan et al., 2009a,Lacour, 2014]).

Both exact methods and approximation methods with performance guarantee are used on problems like MO
Shortest Path Problem, MO Assignment Problem, MO 0-1 Knapsack Problem, MO Minimum Spanning Tree
problem and others. But for harder problems like MOTSP, MO Multidimensional 0-1 Knapsack Problem
or MO Quadratic Assignment Problem and many others, it is difficult in practice to obtain a valuable
guarantee on the quality of the generated solutions in a reasonable time (see for example [Lust and Teghem,
2012,Florios and Mavrotas, 2014]).

Optimization
methods

Exact methods Approximation methods

Heuristics
Approximation methods

with performance guarantee

Problem-specific
heuristics

Meta-heuristics

Figure 2.1 – A taxonomy of MOCO optimization methods.

To handle this difficulty, researchers have been interested in developing heuristics. Heuristics are subdivided
into two sub-categories: problem-specific heuristics and meta-heuristics (see Figure 2.1 summarizing the
different types of optimization methods). A meta-heuristic is a general heuristic method able to optimize
different combinatorial problems using the same framework. The process of any meta-heuristic is based on two
conflicting notions: intensification and diversification of the search. Intensification (also called exploitation)
aims at intensifying the search towards promising regions of the search space, while the goal of diversification

2.1. MO QUALITY INDICATORS 15

is to explore as much as possible the search space in order to find new promising regions. In meta-heuristics,
randomness is extensively used to provide a certain degree of diversity to the search. A crucial dilemma
of meta-heuristics consists in distributing the available computational resources between intensification and
diversification.

While meta-heuristics do not provide any guarantee on the quality of the solutions found, they have the
advantage of being computationally efficient, general, and relatively simple in implementation. Indeed, they
are currently massively used to optimize problems for which exact and approximation methods with perfor-
mance guarantee are impracticable. Because meta-heuristics only produce approximations of the efficient
set, it is necessary to be able to evaluate the quality of any approximation in order to compare different
meta-heuristics.

Section 2.1 presents three among the most popular quality indicators used to evaluate the quality of approx-
imation sets generated by the meta-heuristics. Section 2.2 describes several meta-heuristics used in MOCO.
Then, Section 2.3 proposes a literature review of methods for MOTSP, focusing on meta-heuristics. Finally,
Section 2.4 discusses about the different data structures published these last few years for managing a set of
incomparable solutions, called archives.

2.1 MO quality indicators

In single-objective optimization, it is quite easy to measure the quality of a solution since it is to be compared
with a unique value. It is a more difficult task in the MO case, because MO outputs are represented by sets
of trade-off solutions, incomparable in terms of Pareto dominance. Consequently, we use several indicators,
called quality indicators, to measure the quality of an approximation of the non-dominated set.

This section presents three of the most used quality indicators to compare approximation sets in MOCO:
the hypervolume difference indicator IH− [Zitzler, 1999], the ε indicator Iε [Zitzler et al., 2003] and the R2
indicator IR2 [Hansen and Jaszkiewicz, 1998]. We use only the unary version of these indicators as they
measure the quality of a single set, by contrast with the binary version measuring the difference of quality
of a couple of sets.

The computation of these indicators implies to know the exact non-dominated set Ynd, which is generally
unknown for a given instance of the addressed problem. Thus we approximate it by merging all the approx-
imations generated during the experimental phase and keeping only the non-dominated points, forming the
approximation of the non-dominated set Ỹnd. Let z̃∗ ∈ Z be the approximate ideal point defined as the ideal
point computed on Ỹnd.

2.1.1 Hypervolume difference indicator

Given an approximation set A and a reference point z̄ ∈ Z which is weakly dominated by every point of A, the
hypervolume value of A with regard to z̄ measures the hypervolume of the region of the objective space which
is weakly dominated by A and weakly dominates z̄. More formally, the hypervolume indicator IH is an unary
quality indicator such that IH (A, z̄) =

∫
Z dom(A, z̄)dz where dom(A, z̄) = {z ∈ Z : ∃z′ ∈ A : z′ 5 z 5 z̄}.

In the present work we use the hypervolume difference indicator I−H [Zitzler, 1999] (to be minimized). Given
an approximation set A and the reference point z̄, the indicator value is defined as:

I−H(A, Ỹnd, z̄) = IH(Ỹnd, z̄)− IH(A, z̄)

I−H(A, Ỹnd, z̄) defines the hypervolume of the subspace that is weakly dominated by Ỹnd but not by A (see
Figure 2.2). In contrast to the original hypervolume indicator, the lower I−H (A), the better the quality of A

16 CHAPTER 2. METHODS IN MOCO

is. The computation of hypervolume is time consuming, particularly when the sets are large and the number
of objectives is high. Therefore, we utilize two publicly available and efficient algorithms, each one being the
best known method for computing hypervolume for a particular range of p. For p ≤ 4, we use the algorithm
of Fonseca et al. [Fonseca et al., 2006, Beume et al., 2009]1. For p ≥ 5, we use instead the Walking Fish
Group algorithm [While et al., 2012]2.

z̄

•

•

•

•

•
•

•

•

f1

f2

Figure 2.2 – Hypervolume difference I−H (gray area) between the approximation of the efficient set Ỹnd (black
dots) and an approximation set A (red dots) given a reference point z̄.

Before using I−H , a normalization is necessary in order to allow the different objectives to contribute equally
to indicator value. A standard linear normalization procedure will apply the following transformation:

z
′
j ←

zj−zminj

zmaxj −zminj
+ 1 for j = 1, ..., p (2.1)

where zmin = (zmin1 , ..., zminp) ∈ Z and zmax = (zmax1 , ..., zmaxp) ∈ Z, such that zminj and zmaxj are respectively
the estimated minimum and maximum values that the jth objective can take, for each j = 1, ..., p. The
computation of zminj and zmaxj is based on the values of the points of all provided approximation sets.
Note that without the +1 in (2.1), extreme points will not contribute to the hypervolume value. After
normalization, the coordinates of points fall in the range [1, 2].

As advised by Fonseca et al. [Fonseca et al., 2006, Beume et al., 2009] in their hypervolume computation
algorithm, we use z̄ = zmax + 0.1 × (zmax − zmin) as the reference point for computing the hypervolume.
After the normalization step, z̄ = (2.1, ..., 2.1).

2.1.2 Epsilon indicator

Given an approximation set A and the approximation of the non-dominated set Ỹnd, the ε indicator Iε [Zitzler
et al., 2003] (to be minimized) gives the smallest factor ε∗ ≥ 0 by which A is worse than Ỹnd with respect to
all objectives, defined as:

Iε(A, Ỹnd) = inf
ε∈R
{∀z′ ∈ Ỹnd, ∃z ∈ A : zj 5ε z′j}

The lower Iε(A, Ỹnd), the better the approximation set A comparing to Ỹnd.
1http://iridia.ulb.ac.be/∼manuel/hypervolume
2http://www.wfg.csse.uwa.edu.au/hypervolume/index.html#data

http://iridia.ulb.ac.be/~manuel/hypervolume
http://www.wfg.csse.uwa.edu.au/hypervolume/index.html#data

2.1. MO QUALITY INDICATORS 17

2.1.3 R2 indicator

Given an approximation set A and a set of weights Λ, the R2 indicator IR2 [Hansen and Jaszkiewicz, 1998]
(to be minimized) value of A is defined as:

IR2(A,Λ, Ỹnd, z̃∗) =

∑
λ∈Λ

(
min
x∈A

wat(x, λ, z̃∗)− min
x∈Ỹnd

wat(x, λ, z̃∗)
)

|Λ|

where wat is the weighted augmented Tchebychev function defined in (1.3). The lower IR2(A,Λ, Ỹnd, z̃∗),
the better the approximation set A is comparing to Ỹnd. As indicated in [Fonseca et al., 2005], the set Λ
is defined using the MDW method with a parameter D which should be sufficiently large to cover well Ỹnd.
Figure (2.3) illustrates IR2.

λ1

λ2

λ3

λ4

λ5

z̃∗

•

•

•

•

•
•

•

•

f1

f2

Figure 2.3 – Representation in Z of the set of weights Λ used to compute the IR2 value of an approximation
set A (red dots), given the approximation of the efficient set Ỹnd (black dots) and the approximation of the
ideal point z̃∗ (p = 2).

In order to have a number of weights proportional to the size of Ỹnd, we set D := arg inf{(D
′+p−1

p−1) ≥
1
10 |Ỹnd| : D′ ∈ N}. As suggested by Fonseca et al. [Fonseca et al., 2005], normalization is not mandatory for
this indicator.

For all presented indicators, the value of the approximation of the non-dominated set Ỹnd is 0.

2.1.4 Mann-Whitney statistical test

In order to statistically compare the results of the different algorithms which will be tested in this document,
the Mann-Whitney non-parametric statistical test [Mann and Whitney, 1947] is applied. For a specific
indicator on a given instance, this test assesses whether two algorithms are comparable. If the Mann-
Whitney test is satisfied, it means there is no statistical difference between the values of the quality indicator
obtained by the two algorithms. Otherwise mean values are simply compared.

As three hypotheses are tested simultaneously (one for each indicator I−H , Iε, IR2) given an instance, the
levels of risk of the tests have been adjusted with the Holm sequential rejective method (see [Holm, 1979]
for more details). The starting level of risk of the Mann-Whitney test is fixed to 1%.

18 CHAPTER 2. METHODS IN MOCO

2.2 MO meta-heuristics

We can categorize the meta-heuristics into four main classes which are of particular interest in this thesis:
nature-inspired meta-heuristics [Barán and Schaerer, 2003,López-Ibáñez and Stützle, 2012,Xue et al., 2013],
MO evolutionary algorithms [Coello et al., 2007], MO local search [Ulungu and Teghem, 1992, Hansen,
1997,Talbi et al., 2001,Paquete et al., 2004,Vianna and Arroyo, 2004,Drugan and Thierens, 2010], and MO
Monte Carlo Search [Wang and Sebag, 2012]. Most of the presented meta-heuristics are said population-based,
as they manages simultaneously a set of solutions (called a population) instead of a single solution.

In general, a meta-heuristic maintains a number of archives. An archive is a set of incomparable solutions.
In particular, the global archive is the best-so-far approximation of the efficient set, i.e. the archive of all
incomparable solutions found so far by the meta-heuristic.

This section focuses on meta-heuristics introducing important notions or having inspired the new methods
presented in this document. The level of detail allowed for a method depends both on its recency and its
relevance with respect to this thesis. We refer the reader to [Ehrgott and Gandibleux, 2004, Ehrgott and
Gandibleux, 2008,Talbi, 2009] for overviews of MO meta-heuristics.

2.2.1 Nature-inspired meta-heuristics

Ant Colony Optimization (ACO) [Dorigo et al., 2006] is a population-based constructive meta-heuristic, as
it iteratively constructs a solution. It is inspired by the natural behavior of real ants which communicate
indirectly by means of trails of a chemical substance called pheromone. For optimizing an addressed combi-
natorial problem, an ACO method controls a number of agents called (artificial) ants whose object consists
in generating new solutions by following a stochastic construction policy. Each ant starts with an empty
solution and then iteratively adds elementary components to the current partial solution until a complete
solution is created. The policy uses two types of information: the pheromone information reflecting the
experience accumulated by previous ants; and the heuristic information, depending on the addressed prob-
lem. The construction policy is called a learning policy in the sense that the pheromone information it uses
is regularly updated in function of the solutions found by the ants (this mechanism is called reinforcement
learning).

Multi-Objective ACO (MOACO) [Barán and Schaerer, 2003] is an extension of ACO for optimizing MOCO
problems and works similarly as single-objective ACO. Generally, MOACO methods are aggregation-based
in the sense that they use aggregation functions to generate new solutions (see [López-Ibáñez and Stützle,
2012] for example). MOACO methods have been applied to different MOCO problems, like MOKP [Alaya
et al., 2007], MOTSP [López-Ibáñez and Stützle, 2012], MO Vehicle Routing with Time Windows [Barán
and Schaerer, 2003] and large-scale MO Shortest Path [Ghoseiri and Nadjari, 2010].

Another nature-inspired meta-heuristic is the Particle Swarm Optimization (PSO) [Kennedy and Eberhart,
1997], which originally mimics the behavior of a swarm of particles or animals, like bird flocks or fish schools.
Instead of constructing new solutions, PSO explicitly maintains a population and iteratively improves the
current solutions, called the particles (see [Kennedy, 2011] for more details on PSO). PSO has recently been
adapted to MOCO [Xue et al., 2013] but, to our knowledge, is not considered as a leading general method
in MOCO.

As rightly pointed out by Sörensen [Sörensen, 2015], many meta-heuristics based on a metaphor of some
natural or physical process have emerged in recent years and propose diverse approaches for optimizing a
problem. Like Sörensen, we believe that a great majority of these meta-heuristics are only specific variants
of existing ones. None of these methods will be developed.

2.2. MO META-HEURISTICS 19

2.2.2 Evolutionary Algorithms

Evolutionary Algorithm (EA) -see [Bäck et al., 1997] for a survey of EA- is a fundamental class of population-
based meta-heuristic. In an EA, a solution is called an individual. The population of an EA is involved into
an evolution process by iteratively generating and eliminating individuals, given a fitness function evaluating
the generated individuals. Each iteration of a basic EA is composed of three main steps:

1. Selection of parents: a number of individuals (the parents) are selected among individuals from the
population.

2. Combination of parents: the parents are combined in order to generate new individuals (called children
or offspring) with a good fitness score. The children are inserted into the population.

3. Update of population: a subset of the current population is selected to compose the next population.

There are many different categories of EA, the main one is the Genetic algorithms (GA) [Goldberg, 1989,
Holland, 1992] which emulate the principles of natural evolution. In a GA, several parents (often two) are
combined through a crossover operator which creates a number of feasible solutions (often a single or two)
by combining the elements composing the parents. Then a mutation operator is applied to each generated
child, slightly modifying the individual in order to diversify the search. These operators are called genetic
operators and are problem-specific.

Another interesting and more recent category of EA is Estimation of Distribution Algorithms (EDA) [Lar-
rañaga and Lozano, 2001]. Instead of using crossover and mutation operators, an EDA samples an explicit
probabilistic model (like Bayesian networks) built from a selected subset of the current population.

The adaptation of EA for MOCO problems (MOEA) is quite natural. In general, a MOEA manages two
populations:

• a global archive, which is the archive of all incomparable solutions found so far;

• a smaller population containing good quality solutions according to the fitness function used and well-
distributed in the objective-space. This population is generally essential for generating the offspring
at the current iteration.

Depending on the MOEA, different fitness functions are used to compare individuals during parent selection
and population update steps. Indeed, the fitness function can be an aggregation function [Murata and
Ishibuchi, 1995,Zhang and Li, 2007], or dominance-based [Deb et al., 2000,Zitzler et al., 2001], or even more
complex like quality indicator-based [Zitzler and Künzli, 2004]. During the parent selection step, a number
of parents are selected from the second population in order to maintain a certain degree of diversity during
the combination process.

The research field of MOEA is very active: see [Schwarz and Ocenasek, 2001,Pelikan et al., 2006] for typical
Multi-objective EDA (MOEDA) and [Coello et al., 2007, Zhou et al., 2011] for surveys on MOEA. But in
this thesis, we are particularly interested in algorithms following the notion of decomposition [Murata et al.,
2001,Zhang and Li, 2007].

Decomposition method

Murata et al. [Murata et al., 2001] introduced the concept of cellular structure for MO Genetic Algorithms.
This concept has been generalized and renamed Decomposition by Zhang and Li [Zhang and Li, 2007]
with their MOEA based on Decomposition (MOEA/D) method. MOEA/D is an aggregation-based MOEA

20 CHAPTER 2. METHODS IN MOCO

as it decomposes a MOCO problem into a fixed number of K aggregation functions and optimizes them
simultaneously in a collaborative way. Each function is defined by a weight λ giving a unique search direction,
and maintains a best-so-far solution (called an incumbent) according to the corresponding chosen aggregation
function F (·, λ) (e.g. λf(·), wat(·, λ, z∗) or others) for the entire duration of the run. The weights defining
the directions are well-dispersed in the weight space as they are generated through MDW.

Algorithme 1 : MOEA/D
Input : stopping criterion, number of sub-problems K, weight neighborhood size T
Output : global archive Xall

1 Xall ← ∅
2 (λ1, ..., λK)←MDW(κ) such that K = (κ+p−1

p−1)
3 for k ← 1, ...,K do
4 N(λk)← T nearest neighbors of λk from (λ1, ..., λK)
5 (x1, ..., xK)←Initialization(K)
6 repeat
7 for k ← 1, ...,K do
8 λi, λj ←RandomSelection(N(λk))
9 x̂k ←Crossover(xi, xj)

10 x̂k ←Mutation(x̂k)
11 x̂k ←Improvement(x̂k)
12 for l← 1, ...,K do
13 if F (x̂k, λl) < F (xl, λl) then
14 xl ← x̂k

15 Add(x̂k, Xall)

16 until stopping criterion is met;

Let λk ∈ Rp be a weight, xk ∈ X be the incumbent related to F (·, λk), and πk = (λk, xk) be a pair denoting
the kth sub-problem, for k = 1, ...,K. The neighborhood of the kth sub-problem consists of all the sub-
problems with a weight among the T nearest neighbors of λk, where T is a fixed parameter. Collaboration
between sub-problems is performed by optimizing neighboring sub-problems of πk to generate new solutions
for πk, for k = 1, ...,K. The major motivation of MOEA/D is that collaboration between close sub-problems
should improve the global optimization process.

Algorithm 1 details MOEA/D. The method maintains two populations: the global archive Xall and the set
of incumbents (x1, ..., xK). First, sub-problems and corresponding neighborhoods are generated (lines 2-5).
Weights are generated via MDW, and the incumbents are initialized randomly or with a problem-specific
heuristic. Then, starts the iterative phase (lines 6-16). At a given iteration, each sub-problem πk is considered
for optimization (lines 8-11), for k = 1, ...,K. Two neighboring sub-problems of πk are randomly selected
and their corresponding incumbents are recombined. The resulting offspring is mutated then improved with
a problem-specific improvement heuristic, like local search (see next Section 2.2.3) for example. Because
mutation may generate an unfeasible offspring, a repair heuristic may be called before improvement (or
replace simply it) in order to make feasible the offspring. The improved generated individual will replace
any worse incumbent xl on the aggregated problem F (·, λl), for each l = 1, ...,K (lines 12-14).

The Add procedure (Algorithm 2) is a crucial method shared by all MOCO optimization methods. It aims
at presenting a new candidate solution (first parameter) to an archive (second parameter) and updating
accordingly the archive. It returns true if and only if the candidate is accepted. If this candidate is weakly

2.2. MO META-HEURISTICS 21

Algorithme 2 : Add

Input : solution x, archive X
Output : boolean

1 if @x′ ∈ X : f (x′) 5 f (x) then
2 Xdom ← {x′′ ∈ X : f (x) ≤ f (x′′)}
3 X ← X \Xdom

4 X ← X ∪ {x}
5 return true
6 else
7 return false

dominated by any solution in the archive, the candidate is rejected; otherwise the candidate is accepted: all
solutions dominated by the candidate are removed from the archive, then the candidate is inserted. Instead
of the usual dominance relation ≤, one can use the ε dominance 5ε given a predefined ε. Different algorithms
with different theoretical guarantee and practical efficiency exist for processing the Add procedure (see Section
2.4 for existing algorithms and Chapter 3 for new algorithms).

A similar procedure is commonly used, the AddAll procedure. It consists in presenting one by one each
solution of a solution set (first parameter) to an archive (second parameter) and updating accordingly the
archive. It returns the updated archive.

Despite its simplicity, MOEA/D generally obtains better results on MOCO problems than the most widely
used MOEA called NSGAII (see [Li and Zhang, 2009]) and has been regularly improved (see [Chen et al.,
2009,Zhao et al., 2012]); in particular, a recent modification proposes an adaptive adjustment of the weights
in order to better fit to the shape of complex non-dominated sets [Qi et al., 2014]. MOEA/D has been
applied to different MOCO problems but does not produce sufficiently good results to be considered as a
state-of-the-art MOCO optimization method [Chang et al., 2008,Ke et al., 2013]. By contrast, our concern
about MOEA/D is its ability to obtain a well-diversified population thanks to the sub-problems mechanism.

2.2.3 Local search

Local search (LS) is a fundamental optimization methodology and is nowadays a key component of many
state-of-the-art meta-heuristics for optimizing MOCO. Local search algorithms aim at iteratively modifying
a solution (or a set of solutions) in order to improve it. In this section, we first introduce basic notions of
LS, then present some well-known LS methods, and finally focus on LS methods used in this thesis.

2.2.3.1 Basic notions of LS

Let d : (X, X) → N+ be a distance measure between two feasible solutions. For any k ≥ 1, we define a
k-neighborhood structure Nk : X → 2X such that Nk (x) = {x′ ∈ X : d(x, x′) = k}. Changing from x ∈ X
to one of its neighbors x′ ∈ Nk (x) is called a neighborhood move.

Given a (single-objective or MO) combinatorial problem, a fitness function F : X → R to be minimized
and a neighborhood structure Nk, a local search descent explores, at each step, the neighborhood of the
current solution x ∈ X so as to find a neighbor x′ ∈ Nk (x) such that F (x′) < F (x). There exist two main
exploration neighborhood strategies of the neighborhood structure Nk from the current solution:

22 CHAPTER 2. METHODS IN MOCO

• either the exploration of the neighborhood is stopped at the first neighbor improving the fitness (first
improvement strategy);

• or the neighborhood is completely explored (best improvement or complete exploration strategy).

At the end, a LS descent stops in a local optimum w.r.t.Nk, for which no improving neighbor can be found.

A Variable Neighborhood Descent (VND) [Brimberg et al., 2000] is a LS descent which explores different
neighborhood structures in a deterministic order. We consider the simplest form of VND which explores a
limited number of neighborhood Nj of increasing size j = 1, 2, ..., k (s.t. initially j = 1). Globally, the idea of
VND is to explore like LS descent the neighborhood of the current solution with the neighborhood of smallest
possible size while an improving solution is found. Once we are stuck into a local optimum according to the
current neighborhood structure, we increase its size to escape from the local optimum. More precisely, at
each step of the descent, once a neighborhood Nj has been explored from a current solution x ∈ X:

• if an improving neighbor x′ ∈ Nj(x) has been found, then VND switches to x′ and reset j to 1.

• otherwise, VND increases the size j of the neighborhood. If j exceeds k, then the method terminates.

Upon termination, the current solution is locally optimal w.r.t. all neighborhoods Nj , j = 1, ..., k. The key
idea of the VND presented above is to prioritize the search of an improvement into the smallest possible
neighborhood.

Stochastic local search (SLS) [Hoos and Stützle, 2004] is a general concept of local search algorithm restarting
the local search descent by use of a stochastic process.
A perturbation move (also called kick), is a technique with the aim of escaping from a local optimum. Let
x ∈ X be a local optimum according to Nk (k ≥ 1). A perturbation consists in applying a random move
from x in a larger size neighborhood Nl (l > k). The perturbation neighborhood size l has to be sufficiently
large to lead to a different attraction basin than the one induced by Nk from x.

X

F (X)

•

◦

•

◦

•

perturbation

descent

perturbation

descen
t

Figure 2.4 – An example of ILS run minimizing a fitness function F : X → R on the feasible set X.

An Iterated Local Search (ILS) algorithm [Lourenço et al., 2003] is a SLS. It builds a sequence of locally
optimal solutions by iteratively applying a perturbation to the current locally optimal solution and restarting
a local search descent from this modified solution. Figure 2.4 illustrates the mechanism of ILS.

Let us now present a number of important LS meta-heuristics and their adaptation to MOCO.

2.2. MO META-HEURISTICS 23

2.2.3.2 Simulated Annealing

Simulated Annealing (SA) [Kirkpatrick et al., 1983] is a meta-heuristic inspired from a technique consisting
in cooling a material down at a controlled rate, altering its physical properties and making it more resistant
at the end of the process. Given a fitness to optimize and a neighborhood function, SA originally manages
a single solution. At each iteration, the method randomly selects a neighbor of the current solution, then
decides to move to the neighbor by following a stochastic acceptance rule (generally the Metropolis-Hastings
rule [Hastings, 1970]). This rule encourages the quality improvement between the current solution and the
neighbor, and makes acceptance of a worse neighbor harder over time with a mechanism called temperature
cooling.

Different MO versions of SA have emerged. To our knowledge, all versions use an aggregation function as
fitness function, the weighted-sum in a great majority of cases. As MO methods, they manage an archive.
The main difference between the versions comes from the choice of the weight(s) used for aggregating the
objectives and providing direction(s) to the search.

Ulungu and Teghem’s MOSA [Ulungu and Teghem, 1992] and Serafini’s MOSA [Serafini, 1994] follow the
same scheme than the original SA. In order to approximate an efficient set, both methods are applied several
times with different weights. By contrast, PSA [Czyzżak and Jaszkiewicz, 1998] and EMOSA [Li and Landa-
Silva, 2011] are population-based methods as they manage simultaneously a number of weights and their
respective incumbents.

In particular, EMOSA proposes a very similar framework as MOEA/D, the main differences come from the
fact that genetic operators are replaced by SA and weights may be replaced by similar ones under certain
conditions, in order to diversify the search directions during the run. EMOSA has been compared to Ulungu
and Teghem’s MOSA, Serafini’s MOSA and PSA and obtains better results on the MOKP and MOTSP
tested instances.

2.2.3.3 Tabu Search

Tabu Search (TS) [Glover, 1989] is a meta-heuristic that escapes from local optima by forbidding (moves
to) solutions recently visited. These moves or solutions are memorized into a memory structure called tabu
list. Given a fitness to optimize and a neighborhood function, TS originally manages a single solution. At
each iteration, the best non-tabu neighbor of the current solution is selected, then the tabu list is updated
with the move/solution, finally the method moves to the neighbor. Different data structures can be used to
memorize information in the tabu list. If the addressed problem instance has a large decision space and fast
look-ups are required, one can use a hash table with Zobrist [Zobrist, 1970] or Woodruff and Zemel [Woodruff
and Zemel, 1993] hashing functions.

Concerning the adaptation of TS to MOCO, different methods propose a general framework: MOTS
[Gandibleux et al., 1997, Hansen, 1997], TAMOCO [Hansen, 2000] and MOTAS [Loukil et al., 2005]. To
our knowledge, all versions use the (augmented) weighted Tchebychev function as fitness function and apply
a number of TS runs with different weights.

2.2.3.4 Greedy Randomized Adaptive Search Procedure

Greedy Randomized Adaptive Search Procedure (GRASP) [Feo and Resende, 1989] is an iterative meta-
heuristic combining two algorithmic aspects. Let F : X → R be a fitness optimized by GRASP. At each
iteration, GRASP first constructs an initial solution through a randomized constructive procedure, then
conducts from this solution a local search descent using a neighborhood function, finally updates the best-
so-far solution given F . At each step of the construction procedure, an element is selected uniformly at
random from a candidate list, then added to the partial solution.

24 CHAPTER 2. METHODS IN MOCO

About the adaptation to MOCO, the research field of MO GRASP is pretty active and proposes different
frameworks. To our knowledge, the first adaptation of GRASP to MOCO is proposed by Gandibleux et
al. [Gandibleux et al., 1998b]. Recently, in [Martí et al., 2015], the authors made a survey and a classification
of MO GRASP. A large majority follow the same scheme as the original GRASP and use the weighted-sum
as fitness function. Like in SA, a number of MO GRASP (such as [Vianna and Arroyo, 2004]) first generate
several weights, then optimize the related aggregation functions with GRASP. Other MO GRASP algorithms
(such as [Li and Landa-Silva, 2009]) are population-based as they manage simultaneously a number of weights,
optimize the related aggregation functions and memorize their respective incumbents.

2.2.3.5 Pareto Local Search

Pareto Local Search (PLS) [Talbi et al., 2001, Paquete et al., 2004] is the MO extension of LS descent.
Given a neighborhood function Nk, PLS is an iterative population-based meta-heuristic starting from a set
of solutions X. At each iteration, a number of unexplored solutions are selected from X then extracted and
transferred into a temporary set, finally for each selected solution x ∈ X, Nk(x) is explored such that all
neighbors not dominated by any solution found so far are accepted and inserted into X. PLS stops once
all solutions from X have been visited and is stuck in a locally efficient set with respect to Nk, i.e. a set of
solutions such that all neighbors are weakly dominated by at least one solution found so far.

Two similar versions of PLS have emerged: the so-called Talbi et al. PLS [Talbi et al., 2001] and Paquete
et al. PLS [Paquete et al., 2004]. Note that related approaches to Paquete et al. PLS can be originally
found in [Hamacher and Ruhe, 1994, Andersen et al., 1996] for the bi-objective Spanning Tree Problem
only, in [Gandibleux et al., 2001] where only a single iteration is performed and employed for bi-objective
Permutation Scheduling and 0-1 Knapsack Problems, and finally in [Ehrgott and Gandibleux, 2004], where
a more general framework is detailed. In [Liefooghe et al., 2012], the authors propose a common framework
and identify two important components in PLS:

• the selection strategy, defining how many solutions are selected (then extracted) from X

• the exploration neighborhood strategy, defining how the neighborhood Nk(x) of a selected solution x is
explored (as in single-objective LS descent)

Two selection strategies have been proposed: either a single solution is extracted fromX (Paquete et al. PLS),
or all solutions from X are extracted (Talbi et al. PLS).

Algorithme 3 : PLS

Input : neighborhood structure Nk, boolean first-dominating, set of solutions to explore X, global
archive Xall

Output : Xall

1 Xall ←AddAll(X, Xall)
2 while X 6= ∅ do
3 Xnew ←PLS-iteration(Nk, first-dominating, X, Xall)
4 X ← Xnew

5 return Xall

There is no major differences in terms of quality of approximation obtained by these two different strategies,
as experimentally shown by [Liefooghe et al., 2012] on MOTSP and MO Permutation Flowshop Scheduling
Problem, and by [Lust and Teghem, 2010] on bi-objective TSP. Anyway, it is important to remark that
any solution stored in the temporary set at a given iteration is still explored even if a newly generated

2.2. MO META-HEURISTICS 25

solution dominates it. We say that solutions stored in the temporary set are protected. Consequently, in
Paquete et al. PLS, only the currently explored solution is protected, thus any other dominated solution is
immediately deleted and thus, never explored. On the other hand, Talbi et al. PLS enables to protect much
more solutions. Therefore, if we add the option to Talbi et al. PLS not to explore dominated solutions stored
in the temporary set, as we will propose later in Section 4.3, then we can consider that Talbi et al. PLS is
more general than Paquete et al. PLS.

For all these reasons, and to have a unique coherent framework, we consider only the Talbi et al. PLS,
consisting in selecting all solutions from X at each iteration.

Algorithme 4 : PLS-iteration [vanilla]

Input : neighborhood structure N·, boolean first-dominating, set of solutions to explore X, global
archive Xall

Output : archive of new solutions Xnew

1 Xnew ← ∅
2 foreach x ∈ X do
3 foreach x′ ∈ N· (x) do
4 if f (x) � f (x′) then
5 if Add(x′, Xall) then
6 Add(x′, Xnew)

7 if first-dominating and f (x′) ≤ f (x) then
8 break

9 return Xnew

Concerning the exploration neighborhood strategy, both [Liefooghe et al., 2012] and [Drugan and Thierens,
2012] propose two interesting strategies to explore Nk(x) of a current solution x:

• either the exploration of Nk(x) is stopped at the first neighbor dominating x (first dominating neighbor
strategy);

• or Nk(x) is completely explored (complete exploration strategy).

Note that two other exploration strategies have been proposed in [Liefooghe et al., 2012] and [Drugan and
Thierens, 2012] but Drugan and Thierens [Drugan and Thierens, 2012] proved that these strategies stop
prematurely, thus we do not consider them.

These two studies have concluded that the first dominating neighbor strategy is more efficient than the
complete exploration strategy when the computational resources (time or number of iterations) are limited.

Algorithm 3 describes PLS and Algorithm 4 details the core of a PLS iteration. PLS takes as input parameters
a neighborhood structure Nk, a boolean first-dominating fixed to true if and only if the first dominating
neighbor strategy is chosen, a set of solutions X to explore; finally the global archive Xall, memorizing all
incomparable solutions found so far. PLS returns Xall.

At each iteration (Algorithm 4), PLS explores the neighborhood of each solution x ∈ X, and retains in an
auxiliary archive Xnew all the mutually incomparable neighbors of x not weakly dominated by any solution
memorized in Xall. If the first dominating neighbor strategy is activated, and once a current solution x is
dominated by its neighbor, then the neighborhood exploration of x stops. Finally (cf. Algorithm 3), solutions
from Xnew are transferred into X.

PLS continues this process until no more new non-weakly dominated neighbors have been found.

26 CHAPTER 2. METHODS IN MOCO

Algorithme 5 : PLS-iteration [with local archive]

Input : neighborhood structure N·, boolean first-dominating, set of solutions to explore X, global
archive Xall

Output : archive of new solutions Xnew

1 Xnew ← ∅
2 foreach x ∈ X do
3 X local ← ∅
4 foreach x′ ∈ N· (x) do
5 if f (x) � f (x′) then
6 Add(x′, X local)
7 if first-dominating and f (x′) ≤ f (x) then
8 break

9 foreach x′′ ∈ X local do
10 if Add(x′′, Xall) then
11 Add(x′, Xnew)

12 return Xnew

Some remarks can be made on this algorithm. First, the use of the auxiliary setXnew prevents the exploration
of the neighborhood of an already visited solution. Second, the generated solutions (thus the final set Xall)
do not depend on the order according to which the solutions of X are examined. Finally, passing Xall as
input parameter allows PLS to consider as global archive an external archive from a higher level method
using PLS as a component.

In [Jaszkiewicz and Lust, 2016], the authors propose to slightly modify the original PLS by using an additional
archive, called here local archive (Algorithm 3 using Algorithm 5 at each iteration). In fact, instead of directly
presenting each generated solution to the global archive Xall (which can be computationally costly as Xall

might be large), they use a local archive X local (generally much smaller) which memorizes only the mutually
incomparable neighbors of the current solution x. Like in the original version, if the first dominating neighbor
strategy is activated, and once a current solution x is dominated by its neighbor, then the neighborhood
exploration of x is stopped. Then, all solutions from X local are presented to the auxiliary set Xnew.

It is important to note that both sub-versions of PLS (with or without local archive) generate the same
solutions and thus provide the same final set Xall.

PLS has been applied to different problems like MOTSP [Paquete et al., 2004,Liefooghe et al., 2012,Dubois-
Lacoste et al., 2012], MO Flowshop Scheduling Problem (MOFSP) [Liefooghe et al., 2012], MO Quadratic
Assignment Problem (MOQAP) [Paquete and Stützle, 2009a]. In [Dubois-Lacoste et al., 2015], the authors
propose additional algorithmic components for PLS in order to enhance its anytime behavior.

In [Lust and Tuyttens, 2014], the authors propose a PLS applying the concept of VND (Algorithm 6), and
we call it PLS-VND. PLS-VND has the same parameters than PLS except that it uses a number k ≥ 1
of distinct neighborhood structures N1, ...,Nk. Globally, the idea of PLS-VND is to explore like PLS the
neighborhood of the current set with the neighborhood structure of smallest possible size while new solutions
are found. Once we are stuck into a locally efficient set with respect to the current neighborhood structure,
we increase its size to escape from the attraction basin.

2.2. MO META-HEURISTICS 27

Algorithme 6 : PLS-VND
Input : set of neighborhood structures (N1, ...,Nk), boolean first-dominating, set of solutions to explore

X, global archive Xall

Output : Xall

1 Xall ←AddAll(X, Xall)
2 j ← 1
3 while j ≤ k do
4 while X 6= ∅ do
5 Xnew ←PLS-iteration(Nj, first-dominating, X, Xall)
6 foreach x ∈ X do j(x) = j;
7 if Xnew 6= ∅ then
8 j ← 1
9 X ← Xnew

10 j ← j + 1
11 X ← {x ∈ Xall : j(x) < j}
12 return Xall

More precisely, a label j(x) ≥ 1 is associated to each x ∈ Xall and gives the maximal size of the neighborhood
that has been explored from x. This label avoids to explore the neighborhood of a solution if it has already
been explored before. Let j be the neighborhood structure size currently considered, initially set to 1.
At each iteration of PLS-VND, the neighborhood of each solution from X is explored using Nj , and Xall is
updated with all newly found solutions memorized into Xnew (lines 5-6). Then:

• If some new solutions are effectively found (Xnew 6= ∅), then we aim at exploring their neighborhood.
Besides, a solution locally optimal for Nj is not necessarily locally optimal for Ni, i < j. Thus we reset
the neighborhood structure to N1, set the current set X to Xnew, and continue the exploration with
X (lines 7-9).

• Otherwise Xnew = ∅, so all solutions from Xall are locally optimal according to Nj . Thus the neigh-
borhood structure size j currently considered is increased (line 10) and X is set with all solutions from
Xall for which the neighborhood has not already been explored with Nj ,Nj+1, ...,Nk (line 11).

PLS-VND stops once the neighborhood of all solutions from Xall has been explored with N1, ...,Nk. Obvi-
ously, PLS-VND is a generalization of PLS such that PLS corresponds to PLS-VND with a single neighbor-
hood structure. It is quite recent and to our knowledge, it has only been applied to the MO Set Covering
Problem by Lust and Tuyttens [Lust and Tuyttens, 2014].

The generation process of the initial set of solutions to explore is crucial for PLS. Indeed, as experimentally
shown in [Lust and Teghem, 2010] and [Dubois-Lacoste et al., 2011a], with an initial set of poor quality,
such as a number of randomly generated solutions (like in [Paquete et al., 2004, Drugan and Thierens,
2010,Liefooghe et al., 2012] among others), PLS converges slowly towards the non-dominated set and provides
poor results. The next section discusses about a crucial notion to improve PLS.

2.2.3.6 2-Phase Pareto Local Search

Originally, the exact 2-phase method [Ulungu and Teghem, 1995,Przybylski et al., 2010b] is an exact algo-
rithm with the following principle: phase one finds the extreme supported non-dominated points, and phase

28 CHAPTER 2. METHODS IN MOCO

two the non-extreme and non-supported ones.

The key idea of the first phase is that any supported non-dominated point can be found by solving a weighted
sum problem with an appropriate weight. Thus the first phase consists in generating a number of appropriate
weights then solving the related weighted sum problems with a single-objective exact solver. When the single-
objective version of the addressed MOCO is polynomially solvable, like Assignment Problem or Shortest Path
Problem for example, this task becomes easy. The solver optimizing each weighted sum problem is problem-
dependent, contrary to the weight generation procedure. Initially designed for the bi-objective case [Cohon,
1978, Aneja and Nair, 1979], different methods to generate the extreme supported non-dominated points
are proposed nowadays [Przybylski et al., 2010a,Özpeynirci and Köksalan, 2010,Bökler and Mutzel, 2015].
Except in the bi-objective case, all these methods remain complex to implement and difficult to use in
practice.

The second phase is problem-dependent and computationally harder because single-objective exact solvers
are no longer sufficient to find non-supported non-dominated points, without adding additional constraints
to the original problem, like, for example, the ε-constraint [Haimes et al., 1971] method does.

Originally based on their previous work [Gandibleux et al., 1998a], Gandibleux et al. [Gandibleux et al., 2001]
have been the first, to our knowledge, to propose a hybrid 2-phase method mixing exact and approximation
methodologies for bi-objective problems. In particular, the 2-phase framework they proposed first finds
either the exact or an approximation of a reduced supported efficient solution set by following the dichotomic
scheme [Cohon, 1978,Aneja and Nair, 1979], then applies in second phase a memetic algorithm employing a
single iteration of PLS. They tested their method on bi-objective Permutation Scheduling and 0-1 Knapsack
Problems.

2-Phase PLS is a heuristic adaptation of the exact 2-phase method and introduced by two different groups of
authors: Lust and Teghem [Lust and Teghem, 2010] with 2PPLS (“2-Phase PLS”), and Dubois et al. [Dubois-
Lacoste et al., 2011a] with TP+PLS (“Two-Phase PLS”) Both methods globally follow the same scheme:

• The first phase generates a number of well-diversified weights, then optimize the corresponding weighted
sum problems through an effective single-objective problem-specific heuristic, in order to quickly ap-
proximate the non-dominated supported set. The diversification of the weights (in the weight space) is
fundamental as it allows the generation of an approximation covering well the non-dominated set. In
such a case, we say that the generated points are well dispersed along the non-dominated set. Besides,
the efficiency of the selected solver (often problem-specific) is mandatory to generate good quality
points towards the non-dominated set.

• The second phase refines the approximation of the non-dominated set with PLS(-VND).

In 2-Phase PLS, the first phase uses much simpler weight generation procedures than in the exact case.
Originally, [Lust and Teghem, 2010] uses an approximation version of the dichotomic scheme [Cohon, 1978,
Aneja and Nair, 1979] for the bi-objective case, but nowadays MDW is preferred as it works for any number
of objectives.

In [Lust and Teghem, 2010] and [Dubois-Lacoste et al., 2011a], the authors show that the speed convergence
and the quality result of PLS is greatly improved by initializing the starting set of PLS with such a good
quality approximation of the non-dominated supported set. 2-Phase PLS rapidly became state-of-the-art
methods on different and hard MOCO problems such as MOTSP [Lust and Teghem, 2010], MO Multi-
dimensional KP [Lust and Teghem, 2012], MO Flowshop Scheduling Problem (MOFSP) [Dubois-Lacoste
et al., 2011a], MO Set Covering Problem [Lust and Tuyttens, 2014]. The anytime behavior of TP+PLS is
studied in [Dubois-Lacoste et al., 2014].

2.2. MO META-HEURISTICS 29

Algorithme 7 : 2-Phase PLS
Input : weight generation strategy, SO optimizer, set of neighborhood structures (N1, ...,Nk), boolean

first-dominating
Output : global archive Xall

// Phase 1:
1 Xinit ←Initialization(weight generation strategy, SO optimizer)
2 Xall ← ∅

// Phase 2:
3 Xall ←PLS-VND((N1, ...,Nk), first-dominating, Xinit, Xall)
4 return Xall

Algorithm 7 describes the general framework of 2-Phase PLS. The method takes as input parameters: a
weight generation strategy (generally MDW) to generate the weights during the first phase, a single-objective
solver to optimize the weighted-sum problems produced by the first phase, a set of neighborhood structures
(N1, ...,Nk) and finally the usual possibility of first-dominating strategy for PLS(-VND).

2.2.3.7 Iterated Pareto Local Search

A large disadvantage of PLS(-VND) (and 2-Phase PLS) is that it always ends up by being stuck into a locally
efficient set. To prevent this drawback and allow PLS(-VND) to escape from a locally efficient set, ILS for
MOCO called Iterated PLS (IPLS) [Drugan and Thierens, 2010] have been developed. At each iteration,
IPLS first forms a new set of perturbed solutions from the best-so-far approximation set, then performs
PLS(-VND) from this set.

Algorithme 8 : IPLS
Input : stopping criterion, set of neighborhood structures (N1, ...,Nk), boolean first-dominating,

boolean independent-pls
Output : global archive Xall

1 Xinit ←Initialization()
2 Xall ← ∅
3 Xall ←PLS-VND((N1, ...,Nk), first-dominating, Xinit, Xall)
4 repeat
5 Xselect ←SubsetSelection(Xall)
6 Xperturb ←SubsetPerturbation(Xselect)
7 if independent-pls then
8 Xnew ←PLS-VND((N1, ...,Nk), first-dominating, Xperturb, ∅)
9 else

10 Xnew ←PLS-VND((N1, ...,Nk), first-dominating, Xperturb, Xall)

11 Xall ←AddAll(Xnew, Xall)
12 until stopping criterion is met;
13 return Xall

We propose a general framework of IPLS depicted in Algorithm 8. IPLS has the same parameters as PLS-
VND with the addition of a stopping criterion (a maximum time or number of iterations for example) and
a boolean independent-pls set to true if and only if PLS-VND is in independent mod.
First, IPLS builds an initial set of solutions Xinit. PLS-VND is applied on Xinit and initializes the global
archive Xall. Then at each iteration:

30 CHAPTER 2. METHODS IN MOCO

• a subset Xselect of solutions is selected from Xall;

• a number of solutions from Xselect are perturbed (with for example, genetic operators or LS perturba-
tion moves), then inserted into the set Xperturb;

• a PLS-VND is conducted from Xperturb, and Xall is updated with all newly generated solutions mem-
orized in Xnew. In addition to the first dominating strategy, PLS-VND offers the possibility to be in
independent mod or not. If independent mod is activated, PLS-VND ignores the global archive Xall

by not passing it as input parameter (line 8). Otherwise, Xall is passed as input parameter. When
independent mod is activated, PLS-VND explores a largest portion of the decision space, at the cost
of a greater computational effort than if independent mod is deactivated.

IPLS stops once the stopping criterion is met and finally returns Xall.

To our knowledge, Drugan and Thierens [Drugan and Thierens, 2010, Drugan and Thierens, 2012] first
propose an IPLS and test different versions of the method on MOQAP. In their IPLS, the initialization
consists in running several PLS from randomly generated solutions; at each iteration, a single solution is
selected then perturbed with mutation and crossover; they use PLS in independent mod and test it with and
without first dominating strategy.

2.2.4 Hybrid meta-heuristics

A hybrid meta-heuristic is a method combining different algorithmic components coming from different meta-
heuristics. By combining the qualities of different meta-heuristics, superior results are generally obtained
compared to the original methods from which they are based on. Maybe the most popular hybridization
scheme consists in combining genetic operators with local search, introducing the concept of memetic algo-
rithms [Moscato, 1989]. Hybrid meta-heuristics is a large field of research and we refer the reader to [Ehrgott
and Gandibleux, 2008] about the multiple hybrid meta-heuristics developed for MOCO.

Due to recent successes of local search on hard MOCO problems [Dubois-Lacoste et al., 2013, Ke et al.,
2014,Lust and Tuyttens, 2014], we are particularly concerned in hybridization implying local search only. In
particular, the Multi-Objective Memetic Algorithm based on Decomposition (MoMad) [Ke et al., 2014] de-
veloped quite recently obtains remarkable results on some classical MOCO problems. The method combines
the principle of Decomposition of MOEA/D with PLS. As a decomposition method, MoMad decomposes
a MOCO problem into a fixed number of weighted sum problems and optimizes them simultaneously in a
collaborative way. At each iteration, the newly generated solutions form a starting set for PLS.

Algorithm 9 describes MoMad. The method takes as input parameters a stopping criterion, a single-objective
solver used during initialization, a decomposition parameter controlling the number of weights generated by
MDW during initialization, and a neighborhood structure for PLS.

The initialization of MoMad (cf. Algorithm 10) is similar to the initialization of MOEA/D: a number of
weights is produced with MDW and to each weight λ is assigned an incumbent x ∈ X created through the
optimization of the weighted sum problem λf(·) by the single-objective optimizer. Each pair (λ, x) is inserted
into the set of all sub-problems Π, and the global archive Xall is updated with all generated incumbents. The
initialization returns Π and Xall. Then (cf. Algorithm 9), the current starting set of PLS Xpls is initialized
with Xall.

Each iteration of the main loop is composed of two steps:

2.2. MO META-HEURISTICS 31

Algorithme 9 : MoMad
Input : stopping criterion, single-objective optimizer, decomposition parameter D, neighborhood

structure Nk
Output : global archive Xall

1 (Π, Xall)←Initialization(single-objective optimizer, D)
2 Xpls ← Xall

3 repeat
// PLS step:

4 Xall ←PLS(Nk, false, Xpls, Xall)
5 Xpls ← ∅

// perturbation step:
6 foreach (λ, x) ∈ Π do
7 x′ ←Perturbation(x)
8 x′′ ←LocalSearchDescent(λf(·), x′)
9 UpdateSubProblems(x′′, Π)

10 if Add(x′′, Xall) then
11 Add(x′′, Xpls)

12 until stopping criterion is met;
13 return Xall

Algorithme 10 : Initialization (MoMad)
Input : single-objective optimizer, decomposition parameter D
Output : set of sub-problems Π, global archive Xall

1 Xall ← ∅
2 Λ←MDW(D)
3 Π← ∅
4 foreach λ ∈ Λ do
5 x←Solve(λf(·), single-objective optimizer)
6 Π← Π

⋃
(λ, x)

7 Add(x, Xall)

8 return (Π, Xall)

• PLS step (lines 4-5 of Algorithm 9): a PLS is conducted from Xpls. During this PLS, the incumbents
of Π are updated with the newly generated solutions in the following way: a new solution x′ replaces
at most one single incumbent of a sub-problem π = (λ, x) ∈ Π if λf(x′) < λf(x). After PLS, Xpls is
reset.

• Perturbation step (lines 6-11 of Algorithm 9): for each sub-problem π = (λ, x) ∈ Π, the incumbent is
first perturbed, then a local search descent optimizing λf(·) is applied from the perturbed solution.
The optimized solution updates Π, Xpls and Xall. This perturbation step aims at generating a new
starting set Xpls for the PLS run of the next iteration.

Although not defined as such by the authors [Ke et al., 2014], it is interesting to see that MoMad is an IPLS
and falls indeed in the framework we have introduced in the previous section.

To our knowledge, MoMad is one of the most competitive meta-heuristics as it is the current state-of-the-art
method for bi-objective TSP and MO Multidimensional KP [Ke et al., 2014].

32 CHAPTER 2. METHODS IN MOCO

2.2.5 Monte Carlo Search

This section presents Monte Carlo Search. We first discuss about basic notions of Monte Carlo Search, then
present a key Monte Carlo Search method and its MO version, and finally make a focus on the method used
in this thesis. Exceptionally, we consider in this section only, that objective(s) have to be maximized, in
order to be consistent with some important formulas presented below.

2.2.5.1 Basic notions of Monte Carlo Search

Monte Carlo Search is a class of stochastic search algorithms for optimizing sequential problems, i.e. problems
that can be represented as tree of sequential decisions. Over the last few years, Monte Carlo Search had
a profound impact on many different domains of Artificial Intelligence, particularly on single/multi-player
games on combinatorial or even continuous decision spaces. In addition, the Monte Carlo Search research
community is particularly active and we refer the reader to the essential survey work of Browne et al. [Browne
et al., 2012] on this domain.

From this thesis perspective, we are only concerned by single-player combinatorial problems with perfect
information and non-stochastic transition model. Such a problem can be expressed by:

• A set of states S ⊂ 2E = {0, 1}q. A state s ∈ S corresponds to a partial feasible solution of the
addressed problem. We note s0 ∈ S the initial state such that s0 = {}, and Sterm ⊂ S the set of all
terminal states. A terminal state respecting the constraints of the addressed problem corresponds to a
feasible solution x ∈ X.
For example, for KP, a state could be a feasible knapsack containing some items. Concerning AP, a
state could be a feasible assignment of some people to some machines, and a path for TSP.

• A set of actions A. An action a ∈ A is an operation on a state s ∈ S adding and/or removing some
elements e ∈ E from s.
For example, an action for KP could be the operation of adding or removing a number of items from a
knapsack. Concerning AP, an action could be the act of (un)assigning a number of people to machines;
and for TSP, the insertion/deletion of a valid edge in a path.

• A transition function t : S ×A→ S. Given a state s ∈ S and an action a ∈ A, the transition function
applies a on s, leading to a new state.

• A reward function F : X → R to maximize.

The search space of a sequential combinatorial problem can be represented as a tree or a directed acyclic
graph, whose nodes correspond to states and directed edges to actions leading to subsequent states. The
root represents the initial state, and leaves of the tree correspond to terminal states. The exploration of the
tree is performed by the transition function t. This type of tree is called a game tree.

Solving such a sequential problem consists in finding, through the exploration of the game tree, the sequence
of actions starting from the initial state s0 and leading to a terminal state (i.e. a feasible solution) x∗ ∈ X
optimizing F . Therefore, the aim of a method optimizing such a problem is to iteratively select an action
from a current state to finally reach the optimal solution x∗.

Let a random simulation be a sequence of actions selected via a (possibly biased) stochastic process called
policy. A random simulation begins from any state and leads to a terminal state (i.e. a feasible solution).
The reward associated to a random simulation is the fitness value of the terminal state reached at the end
of the simulation.

2.2. MO META-HEURISTICS 33

Monte Carlo Search is based on the fundamental work [Abramson, 1990] which demonstrates that the average
reward obtained by performing many random simulations with a uniform distribution from a given state
(resp. action) evaluates well this state (resp. action). In other words, performing many random simulations
is a good indicator for measuring the ability of this state (resp. action) to lead to the optimal solution x∗.

Since this preliminary work, several Monte Carlo Search methods with many different versions have been
proposed and still follow the same idea of guiding the search through random simulations, although random
simulations currently employed generally follow more complex policies than uniform distribution.

Besides, these methods mainly differ on two major aspects:

• The random simulation policy. Different random policies are available and the choice mainly depends
on the Monte Carlo Search method applied and the problem addressed. As examples of simple sampling
strategies, one can consider uniform sampling, Boltzmann sampling [Landau and Lifshitz, 1980], epsilon
greedy strategy [Sutton and Barto, 1998] and many others. Naturally, the use of problem-specific
heuristics generally enhances sampling results (see [Cazenave, 2016] for example).

• The online management of collected data. The idea is to use the data provided by the simulations to
improve the simulation process for the next iterations through online reinforcement learning techniques.

x

x x x

x x x x

x

(1) Selection following the child node selection
policy UCB.

x

x x x

x x x x

x x

(2) Expansion.

x

x x x

x x x x

x x

x

(3) Simulation following a random simulation
policy.

x

x x x

x x x x

x x

x

+F(x)

+F(x)

+F(x)

+F(x)

(4) Back-propagation.

Figure 2.5 – One iteration of the UCT approach.

34 CHAPTER 2. METHODS IN MOCO

2.2.5.2 Monte Carlo Tree Search

Single-objective case

Monte Carlo Tree Search (MCTS) [Coulom, 2006] is a crucial Monte Carlo Search framework. We describe the
most popular method in the MCTS family, called Upper Confidence bounds applied to Trees (UCT) [Kocsis
and Szepesvàri, 2006]. UCT iteratively builds a partial game tree in an asymmetric manner, associating to
each node some statistics collected from random simulations. These statistics are used in return to guide
the construction of the tree and reinforce the accuracy of gathered statistics. More precisely, each iteration
of UCT consists in four steps [Chaslot et al., 2008] (cf. Figure 2.5):

1. Selection: starting from the root, a child node selection policy called Upper Confidence Bound (UCB)
[Auer et al., 2002] is recursively applied to select from the current node the next child node to visit,
and this way descends through the tree until the most urgent expandable node is reached. A node is
expandable if it represents a non-terminal state and has still unvisited children. From a given node s,
the selected action is the following:

arg max
a∈A(s)

{∑
F (s, a)
N(s, a) + c×

√
lnN(s)
N(s, a)

}

where A(s) is the set of actions available from s,
∑
F (s, a) is the sum of rewards of random simulations

obtained by choosing action a from s (in other words:
∑
F (s, a) is the sum of all rewards of terminal

states attained by random simulations through the selection of action a from s). N(s, a) represents
the number of times the action a was chosen from state s, N(s) counts how many times the node s
was visited in the tree, and c > 0 is a constant to be defined. This formula enables a trade-off between
intensification, represented by the first term, and exploration, represented by the second term. The
larger c is, the more promoted the exploration will be.

2. Expansion: a node is added to expand the tree.

3. Simulation: a random simulation is run from the new node according to a random simulation policy.
Let x ∈ X be the newly generated solution.

4. Back-propagation: the simulation reward F (x) is back-propagated through each selected node s to
update its statistics: F (x) is added to the sum of rewards

∑
F (s, a) related to s, and the counter N(s)

is incremented.

UCT stops when a given stopping criterion is reached. The other MCTS algorithms mainly differ from UCT
by using different child node selection policy and back-propagation mechanisms. A number of improvements
have been developed for MCTS approaches these last years [Browne et al., 2012], like Progressive Widening
[Coulom, 2007] or (Generalized) Rapid Action Value Estimate [Gelly and Silver, 2007, Cazenave, 2015].
Algorithms following the MCTS framework have been successfully applied to many domains, including single
player games or problems [Schadd et al., 2008], General Game Playing [Finnsson and Björnsson, 2008], two-
player games such as Hex [Arneson et al., 2010], and naturally Go [Coulom, 2006], for which the now famous
AlphaGo program [Silver et al., 2016] became the first program to beat a professional Go player.

Multi-objective case

The use of MCTS for MO optimization is quite recent. Let us assume in this section that the reward
function to maximize is multi-dimensional: F : X −→ Rp. Except in [Wu et al., 2013] and [Wang and
Sebag, 2013], the few works published have made a focus on a specific domain of MO optimization: MO

2.2. MO META-HEURISTICS 35

Online Reinforcement Learning (MOORL) [Perez et al., 2013]. The general idea of MOORL consists in
controlling an agent in an unknown environment in which the agent has to discover step by step which
actions should be performed in order to optimize a number of objectives. Naturally, computational resources
allocated do not allow the agent to explore the whole environment. A MOORL problem can be modeled
as the sequential decision problem defined in previous section with the following difference: the transition
function t is generally stochastic: the state returned by the function partly depends on randomness, so that
applying the same action from the same state twice may lead to a different state;

The great difference between MOORL problems with classical problems of Operations Research we consider
(like MOTSP, MOKP, MOQAP, MOFSP, etc.) is that, in addition to the uncertainty induced by the
transition function, the problem is not known in advance but locally discovered by the agent while performing
actions. Given these features, the algorithms optimizing MOORL are highly general methods and a focus is
made on their adaptability to any problem through online reinforcement learning techniques.

An example of MOORL problem is the MO Physical TSP (MOPTSP), a real-time game in which the player
must drive a ship in a continuous 2D space in order to visit a series of way-points scattered around the world.
The path that is steered may contains obstacles to avoid, but unknown in advance. The three objectives to
optimize are the time spent and the fuel consumed by the ship, but also the damages caused by obstacles to
the ship.

MCTS algorithms developed for MO optimization can be separated into two distinct categories.

The first category of works concerns single-objective MCTS algorithms applied to MO problems. In [Powley
et al., 2013], the authors apply a single-objective MCTS method to MOPTSP for finding a single solution
through optimization of a weighted-sum aggregation with a single fixed weight.

In [Wu et al., 2013], the authors propose a single-objective UCT method specifically designed for the MO
Flexible Job-shop Scheduling Problem and combine it with single-objective LS. While the objectives are
never optimized simultaneously, potentially efficient solutions are still memorized during the whole run.
The method obtains similar results than competitors on very small instances containing less than five non-
dominated points.

The second category of works consists in real adaptations of MCTS to MOCO for finding the efficient set. To
our knowledge, only two groups of authors have proposed such adaptations, differing from single-objective
MCTS in two main aspects:

• an archive is now systematically maintained in order to memorize the best so far efficient set approxi-
mation found.

• as a random sampling now returns a vector reward instead of a scalar reward, the selection and back-
propagation steps have to be adapted accordingly, as well as the statistics related to each node.

An initial attempt at adapting MCTS to MOCO was addressed in [Wang and Sebag, 2012, Wang and
Sebag, 2013]. Unfortunately, as suggested by the authors themselves, the two proposed methods were
computationally prohibitive, and did not obtain convincing results (see [Perez et al., 2013]).

In the meantime, Perez et al. proposed an interesting adaptation of MCTS to MOCO into two studies [Perez
et al., 2013,Perez et al., 2015], and we call it MOMCTS. They globally use the same scheme as UCT while
including some differences. The main idea of the method is to evaluate a state by using the hypervolume
indicator. First, each node of the partial tree built by the method contains an archive. Hence a random
simulation generates a new solution x ∈ X, it is back-propagated in the tree and presented to the archive
of each encountered node. If x is accepted in the archive of the current node, the back-propagation of x

36 CHAPTER 2. METHODS IN MOCO

continues, otherwise it is stopped. This new back-propagation mechanism induces a slightly modified UCB
formula for the selection step from a state s :

arg max
a∈A(s)

{
IH(Z(s), z)
N(s, a) + c×

√
lnN(s)
N(s, a)

}

where Z(s) is the image in the objective space of the archive stored in the state s, and z is a predefined
reference point (not indicated in the paper, probably the null vector).

This way, the root node memorizes the best-so-far approximation of the efficient set, and each node of the tree
has an estimate of the quality of the solutions reachable from there. To our knowledge, MOMCTS has been
tested on MOORL problems only: a small game called Deep Sea Treasure, on MOPTSP and a very similar
bi-objective game, the Puddle Driver. MOMCTS found better results than the well-known MOEA called
NSGAII [Deb et al., 2000] (which is, to our knowledge, far for being a state-of-the-art MOEA nowadays).

As suggested by the authors in [Perez et al., 2013], MOMCTS is not intended to compete with state-of-
the-art methods on classical Operations Research problems, but rather to propose an efficient method for
MOORL research field only.

2.2.5.3 Nested Monte Carlo Search

An efficient Monte Carlo Search algorithm for single-player combinatorial problems is Nested Monte Carlo
Search (NMCS) [Cazenave, 2009]. The principle of NMCS is different from the principle of MCTS. It still
uses a lot of random simulations in order to find a good sequence of actions, but instead of building a partial
game tree and collecting statistics from simulations, it memorizes the best sequence of actions found so far
and follows it. It tries every possible actions from each traversed state and uses nested levels of search.
Trying all possible actions enables NMCS to diversify the search, while memorizing the best sequence of
actions enables it to intensify the search.

Algorithme 11 : NMCS
Input : level, starting state sstart
Output : best sequence of actions seqbest, best solution xbest

1 s← sstart
2 if level = 0 then
3 return RandomSimulation(s)

4 i← 1
5 repeat
6 foreach a ∈ Actions(s) do
7 s←PerformAction(a, s)
8 (seq, x)←NMCS(level − 1, s)
9 s←UnperformAction(a, s)

10 if F (x) is better than F (xbest) then
11 xbest ← x
12 seqbest ← seq

13 abest ←seqbest[i++]
14 s←PerformAction(abest, s)
15 until IsTerminal(s);
16 return (seqbest, xbest)

2.2. MO META-HEURISTICS 37

x

x xx

x
x x

x

x
x

x

x x2

x
x1

x3
seq1

seq2

seq3

(a) F (x3) is the best
⇒ set seq3 as best seq.

x

x x

xx x

x x
x x

x4

x

x x
x5

x3
x6

seq4

seq5

seq3
seq6

(b) F (x5) is the best
⇒ set seq5 as best seq.

x

x x

x

x x x

x x x x

x5x7
x x

x8
x9

seq7 seq5

seq8
seq9

(c) F (x5) is still the best
⇒ keep seq5 as best seq.

Figure 2.6 – Illustration of three iterations of a NMCS of level 1. Filled nodes and bold edges correspond
to the part of the best sequence already performed. The remaining part of the currently memorized best
sequence is indicated with double red strokes.

NMCS is detailed by Algorithm 11. The method is recursive and takes as input parameters a level of
recursion level and a starting state sstart (initially s0). It returns the best sequence of actions found so far
seqbest and the related solution xbest.

The principle of NMCS is to use different levels of search. At level zero it performs a random simulation (lines
2-3). At greater levels (lines 4-16), it performs an iterative and more informed search. At each iteration, it
generates all the available actions from the current state s, and for each action performed, it calls a level− 1
search (lines 6-9). The nested search returns the best sequence of actions seq it found and the related
solution x. As the simulations are stochastic, it is not guaranteed that a nested search will always improve
on previous searches. In order not to lose the actions of the best sequence found by a previous search, NMCS
memorizes the best sequence (lines 10-12). If none of the actions improve on the best sequence, the action
of the best sequence is played; otherwise the best sequence is updated with the newly found sequence and
the best action from the current state s is played (lines 13-14).

Figure 2.6 describes how a NMCS of level 1 uses random simulations to iteratively select the action to
perform.

NMCS has been successfully applied on a number of different combinatorial problems. It has found world
records on difficult problems [Kinny, 2012,Eliahou et al., 2013], has been applied to puzzles [Cazenave, 2009],
software engineering [Poulding and Feldt, 2014] and transportation problems, such as the Bus Regulation
Problem [Cazenave et al., 2009], and the Traveling Salesman with Time Windows Problem [Rimmel et al.,
2011]. A combination with beam search has even been developed [Cazenave, 2012].

A related algorithm is Nested Rollout Policy Adaptation (NRPA) [Rosin, 2011] that learns a random sim-
ulation policy online using nested levels of learning. NRPA has found world records on difficult puzzles
and has been applied to combinatorial problems such as the Traveling Salesman with Time Windows Prob-
lem [Cazenave and Teytaud, 2012, Edelkamp et al., 2013] and the Multiple Sequence Alignment Prob-
lem [Edelkamp and Tang, 2015]. Finally, Edelkamp and Greulich [Edelkamp and Greulich, 2014] used
NRPA for MOPTSP and optimize a single objective.

To our knowledge, neither NMCS or NRPA have been adapted to MOCO.

38 CHAPTER 2. METHODS IN MOCO

2.3 MO Traveling Salesman Problem: state-of-the-art

This section first recalls some important techniques used for single-objective symmetric Traveling Salesman
Problem (TSP), then reports a non-exhaustive literature review of optimization methods for MOTSP focused
on meta-heuristics approaches.

2.3.1 Basic LS techniques for TSP

TSP is probably the most studied NP-hard single-objective combinatorial problem. We refer the reader
to [Gutin and Punnen, 2006] for an analysis of various methods for TSP and [Rego et al., 2011] for a survey
of meta-heuristics and recent advances on TSP. We are interested here in ILS for TSP.

Figure 2.7 – An example of a 2-exchange move applied on a tour.

Let Nk be a k-neighborhood structure. For a number of optimization problems, all feasible solutions contain
the same number of elementary components from E, and Nk is called a k-exchange neighborhood structure.
This is true for TSP, where a solution x ∈ X, which represents a Hamiltonian cycle (also called a tour) in a
complete graph of n cities, is composed of n edges. In this context, let x′ ∈ X be another feasible solution,
then x′ ∈ Nk(x) if x′ is an Hamiltonian cycle obtained from x by exchanging k edges.

The most elementary neighborhood structure for TSP is the so-called 2-exchange neighborhood (Figure 2.7).
A LS descent using a k-exchange neighborhood structure is called a k-opt.

A number of speed-up techniques for k-opt have been designed (see [Helsgaun, 2000,Helsgaun, 2009,Blazin-
skas and Misevicius, 2011] for details on the subject) and among them, two are essential: candidate edge
list [Johnson and McGeoch, 1997] and don’t look bits [Bentley, 1992].

The candidate edge list technique consists in associating to each city a fixed-size list of candidate edges,
generally the l best edges incident to the city minimizing the cost function of the addressed TSP instance.
The list is limited to a reasonable size, compromise between quality and running time.

η1 η2

η5

η6

η4

η5

η6

η3

e1

e3

e2

f1
f2

f3

Figure 2.8 – Example of a 3-opt move applied on a tour.

2.3. MO TRAVELING SALESMAN PROBLEM: STATE-OF-THE-ART 39

In general, a k-opt (cf. Figure 2.8) works as follows. Let x ∈ X be the current tour. At each iteration of a
k-opt, all cities are successively considered as starting cities for k-exchange moves. From a starting city η1,
a k-opt move attempts to find two sets of edges Eout = {e1, e2, ..., ek} (out-edges) and Ein = {f1, f2, ..., fk}
(in-edges) such that, if the edges of Eout are deleted from x and replaced by the edges of Ein, the result is
a better tour. Eout and Ein are initially empty and iteratively constructed. At each step i, a pair of edges
(ei, fi) are added to Eout and Ein respectively, such that ei = (η2i−1, η2i) and fi = (η2i, η2i+1) share a city,
as well as fi and ei+1, and fi belongs to the candidate list of city ηi+1. At the end, the last in-edge fk is
chosen by default so as to be incident to the starting city, thus fk may not be a candidate edge and is called
the close-up edge. This way, the edge sequence (e1, f1, e2, f2, ..., ek, fk) constitutes a close chain of adjoining
edges. Note that the choice of the in-edges is restricted at each step so as to obtain a (valid) new tour.
During an iteration of a k-opt, the don’t look bits technique consists in ignoring as starting city a city η1
which previously failed to find an improving move, and such that its city neighbors in the current tour have
not changed since that time. In general, this technique greatly speeds-up a k-opt.

Figure 2.9 – An example of a double bridge move applied on a tour.

Concerning the perturbation move made during an ILS, the double bridge move [Martin et al., 1991] (Figure
2.9) is one of the most popular. Given a tour to perturb, this move first gives a direction to the tour,
then cuts the current tour at four appropriately chosen edges into four sub-tours and reconnects these in a
different order to yield a new starting tour without changing the direction.
Probably the most utilized and efficient method for TSP is an ILS called Lin-Kernighan [Lin and Kernighan,
1973]. This method uses the VND concept and the double-bridge move as perturbation move. Nowadays,
two improved versions are generally used in the literature: Chained Lin-Kernighan (C-LK) [Applegate et al.,
2003] designed by Applegate, Cook and Rohe, and the Lin-Kernighan implementation of Helsgaun (LKH)
[Helsgaun, 2000].
Instead of perturbing the current solution to escape from the attraction basin of a local optimum, the
technique of data perturbation (also called noising method) [Charon and Hudry, 1993, Codenotti et al.,
1996,Charon and Hudry, 2002] suggests to modify input data by adding a random noise to the cost function
of the addressed instance. This way, one hopes that the next LS descent will direct its search towards a
different local optimum.

2.3.2 Literature review for MOTSP

This section presents a number of meta-heuristics and a single exact approach for MOTSP. Some methods
are more detailed than others due to their significance for the optimization methods proposed later in the
document. In particular, we start with out-of-date yet interesting methods and finish with the current best
methods on MOTSP.

• To our knowledge, Jaszkiewicz is the first author having published approximations of non-dominated
sets of bi-objective TSP instances. In [Jaszkiewicz, 2002], he proposed an improved version of the

40 CHAPTER 2. METHODS IN MOCO

MO Genetic local search (MOGLS) initially proposed by Ishibushi and Murata [Ishibuchi and Murata,
1996, Ishibuchi and Murata, 1998], who applied it on MOFSP.
In particular, the authors use the concept of locked edges [Jaszkiewicz, 1999], consisting in forbidding
the use of frequent edges in order to speed-up the optimization process.

• Jaszkiewicz and Zielniewicz have experimented on bi-objective instances the Pareto Memetic Algorithm
(PMA) [Jaszkiewicz and Zielniewicz, 2006] and found better results than MOGLS.

• Kumar and Singh [Kumar and Singh, 2007] introduce a memetic algorithm and find comparable results
to MOGLS and PD-TPLS (presented below in paragraph Two-Phase Local Search) on bi-objective
instances.

• The Evolutionary MO Simulated Annealing Algorithm (EMOSA) [Li and Landa-Silva, 2011] of Li and
Landa-Silva (rapidly described in Section 2.2.3.2) is compared with other MOSA-like algorithms and
obtains better results on all tested bi-objective and tri-objective TSP instances (of sizes from 50 to 100).
However, the SA used to optimize each considered weighted sum problem uses a simple 2-exchange
neighborhood, without any LS speed-up techniques, making EMOSA irremediably non-competitive
compared to the best current methods on MOTSP.

• Various MO Ant Colony Optimization (MOACO) algorithms have been proposed in recent years (see
[Cheng et al., 2012, García-Martínez et al., 2007] among others). López-Ibáñez and Stützle [López-
Ibáñez and Stützle, 2012] propose a framework that suffices to describe most MOACO algorithms
proposed so far. The authors tested different optimized configurations of this framework on Euclidean
bi-objective TSP, and found better MOACO algorithms than those available in the literature. However,
like EMOSA, results of MOACO are not comparable to the best current methods on MOTSP.

• MOEA/D-ACO [Ke et al., 2013] combines MOEA/D with a MOACO algorithm. Like EMOSA and
MOACO, results of MOEA/D-ACO are not comparable to the best current methods on MOTSP.

Let us now present particularly interesting works concerning MOTSP.

AUGMECON2

Recently, Florios and Mavrotas [Florios and Mavrotas, 2014] proposed an ε-constraint method called AUG-
MECON2 for solving exactly MOTSP. To our knowledge, they provided the exact non-dominated sets of 16
bi-objective instances of size 100, a single bi-objective instance of size 150 and a single tri-objective instance
of size 15. Although AUGMECON2 provides the guarantee of finding the non-dominated set in theory, the
method has huge limitations in practice.
First, while current best meta-heuristics obtain quite good results on bi-objective instances of size 100 within
running times around several seconds, at most a minute, AUGMECON2 finds in average in 30 hours the
non-dominated set of such instances (on similar computers). In addition, the method scales badly with the
instance size: it takes several days for finding the non-dominated set of a bi-objective instance of size 150.
According to the authors, this instance pushed to its limits AUGMECON2. Finally, the method does not
scale at all with the number of objectives as the largest tri-objective instance handle by AUGMECON2 was
a 15 cities instance solved in 5 hours.
The authors concluded that the generation of the exact non-dominated set for tri-objective TSP, even of
small size (20–30 cities), is rather an utopian task and the use of approximate algorithms seems to be the
only choice.
AUGMECON2 corresponds to a great step of exact methods for bi-objective TSP. By contrast, it highlights
the difficulty of exact methods to scale well with both the instance size and the number of objectives, and
strengthens the idea of the usefulness of meta-heuristics for such a hard problem.

2.3. MO TRAVELING SALESMAN PROBLEM: STATE-OF-THE-ART 41

Two-Phase Local Search

Paquete and Stützle introduce in [Paquete and Stützle, 2003] the concept of Two-Phase Local Search (TPLS),
later generalized in [Paquete and Stützle, 2009b].

TPLS first generates a sequence of weights with MDW, sorted such that the first weight considers a single
objective, and successive weights differ only by ± 1

D in any two objectives, where D is the parameter of MDW
controlling the number of weights generated. Then TPLS iterates on the sequence of weights and optimizes
the weighted sum problem corresponding to each weight with an ILS, starting from the best solution found
at the preceding iteration. The first starting solution is greedily generated at random.

Double TPLS (D-TPLS) runs TPLS p times such that the first weight considers a different objective each
time.

Pareto Double TPLS (PD-TPLS) consists in two phases. The first phase runs D-TPLS, and the second
phase conducts a single iteration of PLS from the solutions generated by D-TPLS.

The ILS optimizing the weighted sum problems uses a 3-opt with the speed-up techniques previously intro-
duced. During the second phase of PD-TPLS, the single iteration of PLS uses the same candidate lists and
neighborhood structures as ILS.

PD-TPLS has been tested on bi-objective TSP instances of sizes from 100 to 500 and finds better results
than MOGLS [Paquete and Stützle, 2003]. Contrary to PD-TPLS, D-TPLS has been tested on tri-objective
instances of sizes from 100 to 300 and finds better results than MOGLS [Paquete and Stützle, 2009b]. As
indicated by the authors, PD-TPLS has not been used for p = 3 as the single PLS iteration conducted in
the second phase generated to much solutions.

In [Dubois-Lacoste et al., 2011b], Dubois-Lacoste et al. analyze and improve the anytime behavior of TPLS.

2PPLS

While 2PPLS [Lust and Teghem, 2010] is no longer the best heuristic for MOTSP, it is probably the most
important as their authors proposed several interesting and highly efficient speed-up techniques for MOTSP.
As previously indicated in Section 2.2.3.6, 2PPLS introduces the concept of 2-Phase PLS. Originally designed
for the bi-objective case only, 2PPLS introduces an approximation version of the dichotomic scheme [Cohon,
1978,Aneja and Nair, 1979] to approximate the supported efficient set in the first phase. The solver used to
optimize the different weighted sum problems is chained Lin–Kernighan (C-LK) [Applegate et al., 2003].

For the second phase, PLS uses a 2-exchange neighborhood structure, and originally PLS did not use candi-
date edge lists, making the convergence of PLS extremely slow. The authors thus propose to speed-up PLS
by adapting the concept of candidate edge list for the MO case. In fact, memorizing into the candidate edge
list of each city the l best edges is no longer possible in MOCO, as this technique assumes a total order of
the edges given a cost function c, while such an order is absent in MOCO. On the other hand, they found
that the set of all edges present in at least one solution of the global archive at the end of the first phase,
and the set of all edges used in at least one solution of the global archive at the end of the second phase are
very similar.

In consequence, they decided to insert into the candidate edge lists of PLS the set of all edges present in at
least one solution of the global archive at the end of the first phase. 2PPLS with this speed-up technique is
called 2PPLS-SpeedP1 [Lust and Jaszkiewicz, 2010]. Experiments showed that 2PPLS-SpeedP1 obtains in
average an approximation of slightly worse quality compared to 2PPLS but with a much faster convergence,
particularly when the instance size grows.

In addition to the candidate edge list for PLS, the authors proposed an adaptation of don’t look bits for
PLS. However, contrary to the single-objective case, even though this technique reduces the running time of

42 CHAPTER 2. METHODS IN MOCO

PLS, it also drastically reduces the results quality and this proposition of don’t look bits for MOTSP does
not seem to be viable for now.

In order to reduce the convergence time of PLS and produce a better quality approximation, the authors
propose to generate an even better quality starting set during phase one. The authors stated that while the
dichotomic scheme has already found many supported efficient solutions, the improvement of the starting
set can only be done by generating non-supported efficient solutions. To do so, after the dichotomic scheme
and before PLS, they generate a number of weights with MDW, then optimize each related weighted sum
problem with C-LK after having perturbed it with data perturbation. They tested this technique on small-
size instances (n = 100, 200) and found good results, but surprisingly, the authors do not go further with data
perturbation in their next study on MOTSP [Lust and Jaszkiewicz, 2010], maybe due to the high number of
parameters needed (3) while data perturbation is just a component among others of a more general method.

To conclude on 2PPLS, experiments conducted in [Lust and Teghem, 2010] and [Lust and Jaszkiewicz, 2010]
show that 2PPLS and its variants outperform MOGLS and PMA on tested bi-objective instances of sizes
from 100 to 1000.

MoMad

MoMad [Ke et al., 2014] has already been described in Section 2.2.4. Like 2PPLS-SpeedP1, MoMad uses
Chained Lin-Kernighan as solver for initialization; and both PLS and the LS descent of the main loop use
a 2-opt with candidate lists containing all edges of the solutions accepted in the global archive. MoMad
has been tested on bi-objective instances of sizes from 200 to 1000 and experiments showed that MoMad
outperforms 2PPLS-SpeedP1 on tested instances.

Perturbed Decomposition Algorithm

Perturbed Decomposition Algorithm (PDA) [Cornu et al., 2017] is an enhanced version of MoMad we have
recently proposed to tackle MOTSP. At main loop, PDA optimizes the sub-problems with a 3-opt ILS
run (instead of a 2-opt LS descent), and memorizes all incomparable local optima produced by C-LK (at
initialization) and ILS (at main loop). PDA introduces data perturbation into the decomposition framework:
the sub-problems are data perturbed at initialization and the sub-problem providing the lowest number of
solutions accepted in the global archive is re-data perturbed in order to diversify the search. PDA has been
compared to MoMad and PD-TPLS on a benchmark of bi-objective instances of sizes from 100 to 1000, and
tri-objective instances of sizes from 30 to 300. PDA obtained better results than its competitors. Therefore,
PDA is the current best heuristic for bi-objective and tri-objective TSP.

In consequence, MoMad is the best heuristic for bi-objective TSP proposed by other authors, and (PD-)TPLS
is the best heuristic for tri-objective TSP proposed by other authors.

Recent works published during the drafting process

The research field of MOTSP optimization is pretty dynamic, and very recently two interesting works have
been published. We do not have taken them into account as they have been published during the drafting
process of this thesis. Lust and Jaszkiewicz [Jaszkiewicz and Lust, 2017] propose and improved version of
2PPLS by better controlling the number of runs of ILS in order to re-launch PLS and obtain better results.
The method obtains results at least comparable to MoMad.

In [Jaszkiewicz, 2017], Jaszkiewicz proposes a version of PLS able to tackle efficiently the many-objective
case.

2.4. ARCHIVES: STATE-OF-THE-ART 43

2.4 Archives: state-of-the-art

In MO optimization problems, archives are used to store incomparable solutions. There exists two main
scenarios:

• the offline scenario: a whole set of solutions known in advance is presented to an initially empty
archive.

• the online scenario: an unknown number of solutions are presented one by one to an archive.

Specific algorithms have been developed for each scenario. The offline scenario is intensively studied (see
[Kung et al., 1975] for a discussion and some theoretical results on the subject) and many different algorithms
have been developed, particularly these few years [Zhang et al., 2016]. This scenario occurs in two main
situations: when proceeding to the non-dominated sorting [Goldberg, 1989] of a solution set and when
computing the hypervolume of a solution set. In both situations, an efficient algorithm for archiving is
crucial for good performance.
Given a set of points in the objective space, Non-Dominated Sorting [Goldberg, 1989] aims at assigning a
rank to each point such that the lower rank, of better quality the point. It consists in partitioning a given set
of solutions into several archives. This process is iterative and manages a current set of solutions, initialized
with the initial solution set. At each iteration i, all points not dominated are extracted from the current set
and constitute the front of solutions of rank i. The process stops when the current solution set is empty.
Non-dominated sorting is often used in a number of MOEA, in order to select solutions during the parent
selection and population update steps (cf Section 2.2.2). We refer the reader to [Zhang et al., 2016] for a
survey on algorithms for non-dominated sorting.
Concerning the use of archives for hypervolume computation of a set of solutions, dedicated algorithms
partition the archive into sub-archives in smaller dimensions. We refer the reader to [Fonseca et al., 2006]
and [While et al., 2012] for more details.
We are only concerned by the online scenario. In practice, this scenario occurs when an archive is employed
within a MO optimization method, which regularly presents a newly generated solution to the archive
throughout the run. In fact, the computational cost required to maintain an archive may become an
important part of the total computational cost of a number of MOCO methods, such as search regions-
based [Klamroth et al., 2015], MO dynamic programming [Bazgan et al., 2009a] or PLS. The rest of this
section is dedicated to a non-exhaustive literature review of the most popular or efficient archives for the
online scenario. In particular, we make a focus on algorithms which inspired us for the design of a number
of components of the archives we propose. We refer the reader to [Altwaijry and Menai, 2012] for a quite
recent survey on archives.

2.4.1 Linear list

The simplest data structure for managing an archive is the linear list. In this structure, a candidate solution
is compared to all solutions except if a solution weakly dominates the candidate; in this case the candidate
is rejected. Otherwise, all the dominated solutions of the list are removed and the candidate is inserted.
Whether the candidate is accepted or rejected, the complexity in terms of number of dominance comparisons
is in O(p×s), where s is the size of the archive. Although not competitive at all compared to the best current
archives [Jaszkiewicz and Lust, 2016], the linear list is probably the most used algorithm for managing a set
of incomparable solutions. As examples among many others, [Bazgan et al., 2009a] and [Li et al., 2014] use
a linear list as archive, while they are considered as state-of-the-art methods on their respective domains.
In [Bentley et al., 1993], the authors propose a simple yet efficient speed-up technique when using a linear
list called Move-to-Front:

44 CHAPTER 2. METHODS IN MOCO

• if the candidate solution is accepted, then insert it in front of the list;

• otherwise, push in front of the list the solution dominating the candidate.

This technique does not improve the worst case complexity but experiments show that it greatly reduces the
overall running time.

2.4.2 Sorted list

A sorted list uses the fact that in the bi-objective case, if incomparable solutions are sorted in increasing
order of their coordinates on one objective, they are also sorted in decreasing order of their coordinates
on the other objective. A sorted list works as follows. The solutions are maintained sorted in increasing
order on the first (or the second) objective. When a candidate solution is presented to the list, a binary
search using the sorting objective is performed to determine where to place the candidate. During the binary
search, if a solution selected for the dichotomy decision weakly dominates the candidate, then the candidate
is immediately rejected.

Once the candidate is placed, all the solutions at its left have a better value on the sorting objective while
all the solutions at its right have a worse value. Therefore, if the preceding solution weakly dominates the
candidate, then the candidate is rejected. Otherwise, the candidate is accepted; and any succeeding solution
with a worse value than the candidate on the non-sorting objective is removed.

To have a constant time access to the solutions of the list during the binary search, the sorted list is
implemented as a dynamic array. Therefore, once a solution is removed from the list, all the succeeding
solutions are shifted to the left. Note that if only one solution is dominated, then the candidate simply
replaces it and the succeeding solutions are not shifted; in this case, the complexity in time is in O(p× log2 s),
where s is the size of the archive. Otherwise, if the candidate is accepted and dominates more than one
solution, the complexity in time is in O(p× s). But on average, as recalled in [Jaszkiewicz and Lust, 2016],
experiments show that the behavior of the sorted list is much better than the simple list since the worst-case
scenario rarely occurs.

2.4.3 Quad-tree

Originally, a Quad-tree [Finkel and Bentley, 1974] is a tree-based data structure for indexing points in
a multi-dimensional space. In [Habenicht, 1983], Quad-tree has been adapted as archive, then further
developed in [Sun and Steuer, 1996] and [Mostaghim and Teich, 2005]. This data structure is based on the
following observation: given a point z ∈ Z, the p-dimensional multi-objective space can be partitioned into
2p regions with z as reference point, called orthants of z, such that all points in the same orthant have the
same relative positioning with respect to z. In a Quad-tree, solutions are located in both internal and leaf
nodes and each node η has at most 2p − 2 children. Each child of η is the root of a subtree memorizing all
points localized in an orthant of the image z = f(x) of the solution x ∈ X stored in η. As a Quad-tree is
an archive, the orthants dominating z and dominated by z can not exist. A Quad-tree can thus be seen as
a hierarchy of orthants and this organization of data allows to guide efficiently the exploration of the tree.
Figure 2.10 illustrates a Quad-tree in the bi-objective case.

Different versions of Quad-tree have been developed. We are particularly interested by the implementation
proposed in [Tricoire, 2012], working as follows. When a candidate solution is presented to the Quad-tree,
a first procedure explores the tree in order to check if the candidate is weakly dominated by a solution. If
the candidate is accepted, then a second procedure identifies the nodes dominated by the candidate and
extract any subtree whose root is dominated. Finally, a third procedure inserts the candidate and reinsert
non-dominated parts of previously extracted sub-trees.

2.4. ARCHIVES: STATE-OF-THE-ART 45

•a

•c
•e

•b

•d

a

b c

d e

Figure 2.10 – A Quad-tree in the bi-objective case.

•
•
•

•
•
•

•

•

RA

B

a1 a2
R

A B

a1 a2

Figure 2.11 – A ND-Tree in the bi-objective case.

Quad-tree is efficient for checking if a candidate solution is weakly dominated or not, and inserting a new
solution is computationally cheap. By contrast, once a solution of the Quad-tree is dominated, re-insertions
are generally needed, while they are costly operations.

2.4.4 ND-Tree

Recently, Jaszkiewicz and Lust [Jaszkiewicz and Lust, 2016] proposed a new tree-based archive called ND-
Tree. A ND-Tree stores the solutions in leaf nodes only. Each leaf node stores in a linear list a number of
solutions neighbors in the objective space. Each (internal or leaf) node maintains approximate local ideal and
nadir points, which define a bounding box including all the images (in the objective space) of the solutions
stored in the subtree. The originality of the ND-tree comes from the use of basic properties of local ideal
and nadir points to efficiently avoid searching many branches in the tree.
Figure 2.11 illustrates a ND-Tree in the bi-objective case.
A ND-Tree works as follows. When a candidate solution is presented to the ND-Tree, a first procedure
explores the tree to check if the candidate is weakly dominated by any solution. If yes, the candidate is
rejected. Otherwise, the candidate is accepted and dominated sub-trees and solutions are removed. Then a
second procedure inserts it in a suitable leaf.
More precisely, the first procedure explores the tree using Depth First Search (DFS) starting from the
root. For each traversed node, only four cases are possible (see [Jaszkiewicz and Lust, 2016] for proofs):

• If the approximate local nadir point weakly dominates the candidate, then all solutions contained in
the node weakly dominate the candidate, therefore it is rejected.

• Otherwise, if the candidate dominates the approximate local ideal of the node, then all solutions
contained in the node are dominated by the candidate. Therefore the subtree rooted at the node is
removed and the candidate is accepted.

46 CHAPTER 2. METHODS IN MOCO

• Otherwise, if the approximate local ideal weakly dominates the candidate, or the candidate weakly
dominates the local nadir, this means that the candidate is potentially weakly dominated or dominates
a solution contained in the subtree. In this case:

– If the node is a leaf, then the candidate is compared to each solution of the node. If a solu-
tion weakly dominates the candidate, then the candidate is rejected. Otherwise, any solution
dominated by the candidate is removed.

– Otherwise, the procedure is called from each child node. If the candidate is rejected by a child
node, then it is rejected, otherwise it is accepted.

• Otherwise (the node is internal), the candidate is incomparable with both the approximate local ideal
and nadir points. Therefore, the candidate is incomparable with all solutions stored in this subtree,
and the current node is not explored.

Any empty node is removed from the tree during this first procedure.

Once the candidate is accepted, the second procedure aims at inserting the candidate in a suitable leaf of
the tree. To do so, the tree is browsed by following a unique top-down path starting from the root and ending
to a leaf. For each internal node traversed, the descent continues in the child node η for which the candidate
is the closest from the center of its bounding box. When a leaf is reached, the solution is inserted, and the
approximate local ideal and nadir of the leaf and of its ascendants are updated such that the corresponding
bounding boxes contain the new solution.

Only a limited number of solutions is allowed in a single leaf node. If a leaf becomes overfilled after the
insertion of a new solution, then it is split into l (l ≥ 2) new leaves. The solutions contained in the split node
are then redistributed to every new leaves, such that each leave contains at least one solution and, solutions
neighbors in the objective space tend to be inserted in the same node. Then, the split node becomes an
internal node with the l new leaves as children.

Note that the local and nadir points maintained by each node are approximated because they are updated
only when a solution is inserted, but not when a solution is removed, which is less computationally costly.

In [Jaszkiewicz and Lust, 2016], the authors do not evaluate the worst case complexity of ND-tree. However
they experimentally show that ND-Tree outperforms previous state-of-the-art structures, i.e. linear list,
Quad-tree and the algorithm presented in [Drozdik et al., 2015] on different artificial benchmarks up to 6
objectives, and is equivalent to sorted list on bi-objective instances.

To our knowledge, ND-Tree is the current best archive for the online scenario.

Chapter 3

New archives

This chapter introduces two new archives offering efficient and original features: AVL-Archive specialized
for bi-objective space, and NDR*-Archive for any-objective spaces. Both structures are self-balancing trees
and benefit from self-adjusting versions, especially designed if a presumption of temporal and spatial locality
exists between the solutions presented to the archive. In experiments, the archives we propose are compared
with the best known archives of the literature on a large benchmark of instances simulating the generation
of points of a MO meta-heuristic, and inside a PLS for MOTSP up to 5 objectives.

47

48 CHAPTER 3. NEW ARCHIVES

Introduction

The current best known archives, the sorted list for the bi-objective case and ND-Tree have shown good
results on last studies on the online scenario (previously introduced in Section 2.4). However, we claim that
both archives suffer from two crucial drawbacks: they are unbalanced tree structures, which can lead to
nasty worst case scenario; and they do not take advantage of a principle often present when storing data
in an online environment: the temporal and spatial locality. Temporal locality refers to the reuse of specific
data within a relatively small time duration, while spatial locality refers to the use of data elements within
relatively close storage locations1.

The two data structures proposed in the present section have been designed to overcome the drawbacks of
the sorted list and ND-Tree. With this aim, two objectives have been considered:

1. Minimization of the number of dominance comparisons necessary to check the acceptance/rejection of
a candidate solution. For this purpose, self-balancing trees are used.

2. Minimization of the computational cost necessary to maintain the properties of the structures, in
particular the balance property previously stated.

In general, an archive with strong properties constraining its structure will induce an onerous structure
maintenance but a low number of dominance comparisons. On the contrary, a weakly constrained structure
will tend to a high number of dominance comparisons. Therefore, both objectives are conflicting.

The general idea is to favor the first objective, while constraining the budget of the structure maintenance.
The first proposed data structure is a self-balancing binary search tree confined to the bi-objective case, called
AVL-Archive. The second proposed data structure is a self-balancing k-ary search tree, called NDR*-Archive.

For both data structures, two different versions are presented: the vanilla version and the self-adjusting
version. The vanilla versions of both AVL-Archive and NDR*-Archive are general and suitable for any MO
optimization task. The self-adjusting versions are especially designed if a presumption of temporal and spatial
locality exists between the points generated by the MO optimization method. This is the case of PLS, a
method we are particularly interested in, because of two main reasons:

• A solution and its neighbors found by PLS are generally close to each other in the objective space.

• The neighborhood of a solution is completely explored before considering the exploration of the neighbor-
hood of another solution.

This chapter is organized as follows. Sections 3.1 and 3.2 detail the design of the proposed data structures
and their self-adjusting versions. Section 3.3 is devoted to experiments: the vanilla version of the proposed
archives are tested on a large artificial benchmark and their self-adjusting versions are applied within PLS
on MOTSP.

3.1 AVL-Archive

An AVL-tree [Adelson-Velskii, 1962] is a self-height-balancing binary search tree used for storing and managing
a number of elements indexed with a scalar key on a single comparison dimension. This tree is characterized
by the three following properties:

1https://en.wikipedia.org/wiki/Locality_of_reference

https://en.wikipedia.org/wiki/Locality_of_reference

3.1. AVL-ARCHIVE 49

B As an indexing structure, the tree handles the following operations: searching, inserting and removing a
single element.

B As a binary search tree:

• any node of the tree has at most two children and each node contains a unique indexed element;

• given a node η of the tree and x the element stored in η: any element stored in the left subtree of η has
a smaller key value than x; any element stored in the right subtree of η has a larger key value than x.

B As a self-balancing structure:

• any node η maintains an attribute called balance factor, which is the difference between the height of
the right and the left subtrees of η;

• the tree is maintained balanced, meaning that the balance factor of any node is maintained in {−1, 0, 1}.
This property directly implies that the height of an AVL-tree is maintained to O(log2 s), where s is
the number of nodes in the tree.
To remain balanced, an AVL-tree re-balances any subtree unbalanced after inserting or removing a
single node. Since the balance factor of any node is maintained in {−1, 0, 1}, when a subtree is
unbalanced, the balance factor of its root is -2 or 2, and it is re-balanced through an operation called
rotation.

A rotation is a reorganization of the nodes of a subtree such that parts of the left/right-
side of the subtree are transferred to the other side. At the end of a rotation, the root
of the subtree has changed and the subtree is balanced.

In [Adelson-Velskii, 1962], the authors distinguish only four possible cases of imbalance of a subtree and
propose a unique rotation for each case. Once a node η is inserted or removed, we check if its parent node
is balanced and apply a rotation if it does not. When performed, a rotation may propagate the imbalance
upward in the tree, thus several rotations might be necessary until the complete tree is balanced.

This section introduces AVL-Archive, the new archive we propose for the bi-objective case and based on
AVL-tree. In the remaining of this section, we assume the objective space is bi-dimensional, i.e. p = 2.

3.1.1 Design of AVL-Archive

Like AVL-tree, AVL-Archive is a self-height-balancing binary search tree using four different rotations to
stay balanced. By contrast, an AVL-Archive is especially designed for archiving. Second, it uses interesting
properties exclusive to the bi-objective case to store incomparable solutions and efficiently remove dominated
solutions. Third, it may happen that complete subtrees are removed; the archive must then be able to re-
balance subtrees related to an imbalance factor with an absolute value larger than 2, which is not the case
of AVL-tree. Let us now describe more precisely how an AVL-Archive works.

Each node η of an AVL-Archive (cf. Figure 3.1) is associated with:

• a solution x(η) ∈ X. In the following, for the sake of simplicity, we say that a solution x (resp. weakly)
dominates a node η if f(x) (resp. weakly) dominates f(x(η));

50 CHAPTER 3. NEW ARCHIVES

η

p(η)

l(η) r(η)

h(η)

β(η)

Θ(η)

Figure 3.1 – Illustration of a node η with its attributes in an AVL-Archive.

• its parent node p(η)

• its two children: the left child l(η) and the right child r(η);

• the subtree Θ(η) rooted at η;

• its height h(η) (also noted h(Θ(η))), equal to the size of the path from η to the most distant leaf of
Θ(η);

• its balance factor β(η), corresponding to the difference between the height of its right subtree and the
height of its left subtree:

β(η) = h(r(η))− h(l(η))

Let |β(η)| be called the absolute balance factor.

Given these notations, the left (resp. right) subtree of a node η is denoted Θ(l(η)) (resp. Θ(r(η))).

Definition 3.1.1. A node η is said to be balanced if |β(η)| ≤ 1. A tree is said to be balanced iff. each of its
node is balanced.

The structural organization of AVL-Archive is defined by the two following fundamental properties.

Property 3.1.1. Any subtree of an AVL-Archive is a binary search tree using the first objective as com-
parison dimension. More formally, for any node η, for any node ηl ∈ Θ(l(η)), we have f1(x(ηl)) < f1(x(η));
and for any node ηr ∈ Θ(r(η)), we have f1(x(η)) < f1(x(ηr)).

The next proposition is complementary to Property 3.1.1.

Proposition 3.1.1. Let η be a node. For any node ηl ∈ Θ(l(η)), we have f2(x(ηl)) > f2(x(η)); and for any
node ηr ∈ Θ(r(η)), we have f2(x(η)) > f2(x(ηr)).

Proof. By Property 3.1.1, we have f1(x(ηl)) < f1(x(η)). Since x is incomparable with any solution of the
archive and p = 2, we have f2(x(ηl)) > f2(x(η)). The proof is similar for Θ(r(η)).

3.1. AVL-ARCHIVE 51

Property 3.1.1 and Proposition 3.1.1 combined indicate that for any node η of the tree:

• solutions in the left subtree of η have a smaller value than x(η) in the first objective and a larger value
than x(η) in the second objective.

• solutions in the right subtree of η have a larger value than x(η) in the first objective and a smaller
value than x(η) in the second objective.

Property 3.1.2. Any subtree of an AVL-Archive is maintained balanced in height. More formally, for any
node η, |β(η)| ≤ 1.

Proposition 3.1.2. The height of an AVL-Archive is maintained to O(log2 s), where s is the number of
nodes in the tree.

Proof. Obvious from Property 3.1.2.

An AVL-Archive works as follows. When a candidate solution x ∈ X is presented to the archive, a dichotomic
search is performed from the root of the tree. If the candidate is weakly dominated by a node, then it is
rejected. Otherwise, if the candidate dominates a node, then the candidate replaces the solution of the
node, dominated subtrees are removed through a procedure called pruning, and the candidate is accepted.
Otherwise the candidate is incomparable with any solution of the archive, thus it is inserted in a new leaf
node and is accepted.
In both cases where the candidate is accepted, node insertions and node removals may unbalance affected
subtrees. The imbalance of a subtree is detected when its root has an absolute balance factor greater than
or equal to 2. Such subtrees are re-balanced using rotations from their root. Because a rotation performed
from a node may propagate the imbalance upward in the tree, several rotations might be necessary until the
complete tree is balanced (as in AVL-tree).

3.1.1.1 General algorithm of AVL-Archive

Let us now describe more precisely the AVL-Archive algorithm. The Add procedure is the core of an AVL-
Archive. It is described with a diagram in Figure 3.2 and detailed in pseudo-code by Algorithm 12. This
procedure takes as parameter a calling node η and a candidate solution x ∈ X. It is initially called from the
root of the tree. It returns true iff. x is not weakly dominated by any solution in the archive.
First, x is compared to the solution of the current node η:

• If x is weakly dominated by x(η) (lines 1-2), then the candidate x is rejected.

• Otherwise, if x dominates x(η) (lines 3-18), then x replaces it. A number of nodes in the current subtree
may be dominated and thus have to be removed. We call this process pruning. First, both left and right
subtrees of η are disconnected from η (lines 6 and 12). Second, they are independently pruned via the
LeftPruning and RightPruning procedures (lines 7 and 13). Third, if the subtrees become unbalanced,
they are (independently) re-balanced with rotations via the ReBalanceAfterDelete procedure (lines 9 and
15). As both subtrees have been previously disconnected from η, the re-balancing procedure does not operate
upward their respective root. Fourth, both subtrees are reconnected to η (lines 10 and 16), then the whole
tree is re-balanced by calling ReBalanceAfterDelete procedure from η (lines 17-18). Finally the candidate
is accepted.

52 CHAPTER 3. NEW ARCHIVES

Apply a dichotomic search from the
root until reaching the first node η s.t. :
• either x is weakly dominated by x(η)
• or x dominates x(η)
• or η is a leaf.

Is x
weakly

dominated
by x(η)?

yes

Does x
dominate
x(η)?

no

• Create a new leaf node with
x as solution and η as parent
• Re-balance the whole tree
from η

no

• Replacement: x(η)← x
• Disconnect Θ(l(η)) and Θ(r(η)) from η
• Pruning: remove dominated nodes
from Θ(l(η)) and Θ(r(η))
• Re-balance Θ(l(η)) and Θ(r(η))
• Reconnect Θ(l(η)) and Θ(r(η)) to η
• Re-balance the whole tree from η

yes

Figure 3.2 – The Add procedure of an AVL-Archive with a candidate solution x ∈ X.

3.1. AVL-ARCHIVE 53

Algorithme 12 : Add
Input : calling node η, candidate solution x
Output : boolean

1 if f(x(η)) 5 f(x) then
2 return false
3 else if f(x) ≤ f(x(η)) then
4 x(η)← x
5 if η has a left child then
6 p(l(η)) = none
7 uη ← LeftPruning(l(η), l(η), x)
8 if a node has been deleted from Θ(l(η)) then
9 lη ← ReBalanceAfterDelete(uη)

10 l(η)← lη; p(lη)← η

11 if η has a right child then
12 p(r(η)) = none
13 uη ← RightPruning(r(η), r(η), x)
14 if a node has been deleted from Θ(r(η)) then
15 rη ← ReBalanceAfterDelete(uη)
16 r(η)← rη; p(rη)← η

17 if a node has been deleted from Θ(l(η)) or Θ(r(η)) then
18 root←ReBalanceAfterDelete(η)

19 else if f1(x) < f1(x(η)) then
20 if η has a left child then
21 return Add(l(η), x)
22 else
23 l(η)← new node(x, η)
24 ReBalanceAfterInsert(η)

25 else
26 if η has a right child then
27 return Add(r(η), x)
28 else
29 r(η)← new node(x, η)
30 ReBalanceAfterInsert(η)

31 return true

54 CHAPTER 3. NEW ARCHIVES

• Otherwise (lines 19-30), x and x(η) are incomparable:

– If f1(x) < f1(x(η)), the Add procedure is recalled from the left child of η.
– Otherwise, the Add procedure is recalled from the right child of η .

In both cases, if there is no child, x is inserted in a new node and the whole tree is re-balanced
by calling the ReBalanceAfterInsert procedure from its parent, which performs a number of
rotations, then the candidate is accepted.

3.1.1.2 Pruning process

Let us assume that during the dichotomic search of the Add procedure, a node η is found such that the
candidate solution x dominates η. Therefore, x(η) is replaced by x, then Θ(l(η)) and Θ(r(η)) are disconnected
from η. This triggers the pruning process which aims at removing dominated nodes in Θ(l(η)) and Θ(r(η))
by starting independently from l(η) and r(η).

Proposition 3.1.3. Let x ∈ X be a candidate solution, η a node, x = x(η), ηl ∈ Θ(l(η)), xl = x(ηl),
ηr ∈ Θ(r(η)) and xr = x(ηr) such that f(x) ≤ f(x).

(1) (i) If f1(x) ≤ f1(xl), then f(x) ≤ f(xl) and f(x) ≤ f(x′) for any solution x′ in Θ(r(ηl))

(ii) Otherwise, f(x) � f(xl) and f(x) � f(x′′) for any solution x′′ in Θ(l(ηl)).

(2) (i) If f2(x) ≤ f2(xr), then f(x) ≤ f(xr) and f(x) ≤ f(x′) for any solution x′ in Θ(l(ηr)).

(ii) Otherwise, f(x) � f(xr) and f(x) � f(x′′) for any solution x′′ in Θ(r(ηr)).

Proof. (1) (i) From Proposition 3.1.1, we have f2(x) < f2(xl) which involves f2(x) < f2(xl) and thus
f(x) ≤ f(xl) since f1(x) ≤ f1(xl). Moreover, since x′ is in the right subtree of ηl we have f1(xl) ≤ f1(x′),
which gives f1(x) ≤ f1(x′) since f1(x) ≤ f1(xl). Finally, since x′ is in the left subtree of η, we have
f2(x) < f2(x′), which gives f2(x) ≤ f2(x′) since f(x) ≤ f(x). It follows that f(x) ≤ f(x′).

(1) (ii) we have f1(xl) < f1(x) which involves f1(x′′) < f1(x) since x′′ is in the left subtree of ηl, thus
f(x) � f(xl) and f(x) � f(x′′).

The proof is similar for (2).

Proposition 3.1.3 is fundamental for the pruning process. It states that when x dominates η, then if a node
ηl (resp. ηr) in the left (resp. right) subtree of η:

• is dominated by x, then both ηl (resp. ηr) and its whole right (resp. left) subtree are dominated, and
thus can be removed.

• is not dominated by x, then x does not dominate any node in the left (resp. right) subtree of ηl (resp. ηr).

The pruning process is implemented by the LeftPruning and RightPruning procedures. These procedures
are symmetrical as the LeftPruning aims at pruning the left subtree of η and is initially called from l(η),
while the RightPruning aims at pruning the right subtree of η and is initially called from r(η).

Let us only describe the LeftPruning procedure, depicted with a diagram in Figure 3.4 and in pseudo-code
by Algorithm 13. Figure 3.3 illustrates an example of execution of the LeftPruning procedure on a subtree
of an AVL-Archive. The LeftPruning procedure is recursive and takes as input parameters a calling node
ηl ∈ Θ(l(η)), the deepest node of the subtree to re-balance uη ∈ Θ(l(η)) and the candidate solution x.

3.1. AVL-ARCHIVE 55

80,80 η

90,110 150,5080 ≤ 90 l(η) r(η)

70,130 95,105uη80 > 70

40,160 85,11580 ≤ 85

75,125 88,112

(a) During pruning of Θ(l(η)).

80,80 η

150,5070,130 uη

40,160 75,125

(b) After pruning of Θ(l(η)).

Figure 3.3 – Example of execution of the LeftPruning procedure. The node η is s.t. x(η) has just been
replaced by a candidate solution x ∈ X s.t. f(x) = (80, 80), and Θ(l(η)) and Θ(r(η)) have just been dis-
connected from η. Then, LeftPruning procedure is started from l(η) and follows a unique top-down path
(indicated in bold edges) until reaching a leaf node. The procedure finally returns the node uη which is
the deepest node to re-balance. The symmetrical process is performed in Θ(r(η)) via the RightPruning
procedure but is not detailed.

56 CHAPTER 3. NEW ARCHIVES

Does x
dominate
x(ηl)?

Does ηl
has a left
child?

Does ηl
has a right

child?

yes no

• uη ← p(ηl)
• delete Θ(ηl)

no no

ηl ← r(ηl)

yes
• uη ← p(ηl)
• delete ηl & Θ(r(ηl))
• reconnect p(ηl) with l(ηl)
• ηl ← l(ηl)

yes

Figure 3.4 – The LeftPruning procedure of an AVL-Archive called from a node ηl ∈ Θ(l(η)) with a candidate
solution x ∈ X.

Algorithme 13 : LeftPruning
Input : calling node ηl, deepest node to re-balance uη, candidate solution x
Output : the deepest node to re-balance

1 if f1(x) ≤ f1(x(ηl)) then
// x dominates both x(ηl) & Θ(r(ηl))

2 uη ← p(ηl)
3 if ηl has a left child then
4 replace ηl by l(ηl) as child of p(ηl)
5 delete ηl and Θ(r(ηl))
6 return LeftPruning(l(ηl), uη, x)
7 else
8 delete Θ(ηl)
9 return uη

10 else
// x does not dominate both x(ηl) & Θ(l(ηl))

11 if ηl has a right child then
12 return LeftPruning(r(ηl), uη, x)

13 else
14 return uη

3.1. AVL-ARCHIVE 57

It returns the deepest node to re-balance. It uses the result pointed out by Proposition 3.1.3 to remove
efficiently from Θ(l(η)) all nodes dominated by x.

More precisely, the procedure explores Θ(l(η)) by following a single top-down path from the root of the
subtree to a leaf node. Given Proposition 3.1.3, at each current node ηl ∈ Θ(l(η)), only two cases are
possible:

• If f1(x) ≤ f1(x(ηl)), then x dominates ηl and all nodes in Θ(r(ηl)), thus they are removed

– if ηl has a left child, then the subtree is recomposed by replacing ηl by l(ηl) as child of p(ηl), and
the search continues down in Θ(l(ηl));

– otherwise, the search stops.

In both cases, the currently deepest node to re-balance is p(ηl) as the right subtree of ηl has

just been removed and thus can cause an imbalance from p(ηl).

• Otherwise, x does not dominate ηl and any node in Θ(l(ηl)), thus:

– if ηl has a right child, then the search continues in Θ(r(ηl));
– otherwise, the search stops.

To summarize, at the end of the left and right pruning processes (independently performed), both left and
right subtrees of η have been emptied of all dominated nodes and for each subtree, the deepest node to
re-balance has been detected. All that remains to do is to re-balance both subtrees from their respective
detected nodes (if necessary), then reconnect the subtrees to η, and finally re-balance the whole tree from η
(if necessary).

3.1.1.3 Re-balancing process

The re-balancing process is called by the Add procedure in two distinct cases:

• once a new leaf node is inserted;

• once a node/subtree is deleted.

In any case, the deepest node affected by the modification is detected and re-balanced with a rotation if
necessary. Because a rotation may propagate the imbalance on the ancestors of the node only (cf. [Adelson-
Velskii, 1962, Knuth, 1998]), the tree is traveled up from this node and all imbalanced ancestors are re-
balanced with rotations.

Next, the four different rotations introduced in [Adelson-Velskii, 1962] are detailed. There are four different
types of rotations: simple left, simple right, double left-right and double right-left.

Definition 3.1.2. Let η be a node and ρ its right child. A simple left rotation rooted at η consists in
ascending ρ such that η becomes the left child of ρ, and the left child of ρ becomes the right child of η. The
new root of the subtree affected by the rotation is ρ.

Figure 3.5 illustrates a simple left rotation.

Definition 3.1.3. Let η be a node and λ its left child. A simple right rotation rooted at η consists in
ascending λ such that η becomes the right child of λ, and the right child of λ becomes the left child of η.
The new root of the subtree affected by the rotation is λ.

58 CHAPTER 3. NEW ARCHIVES

η β(η) = ∆,∆ ≥ 2

λ |β(λ)| ≤ 1 ρ β(ρ) ∈ {0, 1}

Lλ Rλ

Lρ Rρ

(a) An unbalanced subtree rooted at η.
Subtrees Θ(λ), Lρ and Rρ are balanced.
A left rotation rooted at η is performed.

ρ β(ρ) ∈ {−1, 0}

η β(η) ∈{∆-2,∆-1}

λ |β(λ)| ≤ 1

Lλ Rλ
Rρ

Lρ

(b) The final balanced tree rooted at ρ.

Figure 3.5 – Illustration of a simple left rotation.

Definition 3.1.4. Let η be a node, ρ its right child and µ the left child of ρ. A double left-right rotation
rooted at η is a two-step rotation. First, it consists in applying a right rotation rooted at ρ, then a left
rotation rooted at η. The new root of the subtree affected by the rotation is µ.

Figure 3.6 illustrates a double left-right rotation.

Definition 3.1.5. Let η be a node, λ its left child and µ the right child of λ. A double right-left rotation
rooted at η is a two-step rotation. First, it consists in applying a left rotation rooted at λ, then a right
rotation rooted at η. The new root of the subtree affected by the rotation is µ.

Algorithm 14 depicts a regular rotation rooted at a node η. The procedure performs a simple or a double
rotation, if necessary, and returns the root of the affected subtree and a boolean indicating if a rotation has
effectively been performed or not. It uses the LeftRotation and RightRotation procedures (the pseudo-
code of these procedures is straightforward and thus not given), which proceed to a simple left and right
rotation, respectively, update the height and balance attributes, and return the root of the affected subtree.

The general situation faced by an AVL-Archive when a node is unbalanced, is introduced by the following
proposition and illustrated by Figure 3.7.

Proposition 3.1.4. Let Θ be a subtree and η its root, λ = l(η) and ρ = r(η). The node η is unbalanced
s.t. β(η) = ∆ where |∆| ≥ 2. Let us assume that the rest of Θ is balanced: |β(λ)| ≤ 1, |β(ρ)| ≤ 1 and the
subtrees Lλ = Θ(l(λ)), Rλ = Θ(r(λ)), Lρ = Θ(l(ρ)) and Rρ = Θ(r(ρ)) are balanced.

1. If ∆ ≥ 2 and β(ρ) ∈ {0, 1}, then after a simple left rotation rooted at η, the root of Θ is ρ, |β(ρ)| ≤ 1,
β(η) < ∆ and the height of Θ is unchanged or has strictly decreased.

2. If ∆ ≤ −2 and β(λ) ∈ {−1, 0}, then after a simple right rotation rooted at η, the root of Θ is λ,
|β(λ)| ≤ 1, β(η) > ∆ and the height of Θ is unchanged or has strictly decreased.

3. Let µ be the root of Lρ.
If ∆ ≥ 2 and β(ρ) = −1, then after a double left-right rotation rooted at η, the root of Θ is µ,
|β(µ)| ≤ 1, |β(ρ)| ≤ 1, β(η) < ∆, and the height of Θ has strictly decreased.

3.1. AVL-ARCHIVE 59

η β(η) = ∆,∆ ≥ 2

λ |β(λ)| ≤ 1 ρ β(ρ) = −1

µ |β(µ)| ≤ 1

Lλ Rλ

Rρ

Lµ Rµ

(a) An unbalanced subtree rooted at η.
Subtrees Θ(λ), Lµ, Rµ and Rρ are balanced.
A right rotation rooted at ρ is performed.

η

λ µ

ρ

Lλ Rλ

Lµ

Rµ Rρ

(b) The temporary tree.
A left rotation rooted at η is performed.

µ β(µ) ∈ {0, 1}

η β(η) ∈{∆-3,∆-2} ρ β(ρ) ∈{0,1}

Lµ Rµ Rρ

λ |β(λ)| ≤ 1

Lλ Rλ

(c) The final balanced tree rooted at µ.

Figure 3.6 – Illustration of a double left-right rotation.

η β(η) = ∆, |∆| ≥ 2

λ |β(λ)| ≤ 1 ρ |β(ρ)| ≤ 1

Lλ Rλ Lρ Rρ

Figure 3.7 – Illustration of the general situation faced when a node η is unbalanced.

60 CHAPTER 3. NEW ARCHIVES

Algorithme 14 : Rotation
Input : calling node η
Output : root of the subtree, boolean

1 update h(η) and β(η)
2 if β(η) ≥ 2 then

// Left rotation:
3 if β(r(η)) = −1 then
4 RightRotation(r(η))
5 return (LeftRotation(η), true)
6 else if β(η) ≤ −2 then

// Right rotation:
7 if β(l(η)) = 1 then
8 LeftRotation(l(η))
9 return RightRotation(η), true)

10 else
// No rotation performed:

11 return (η, false)

4. Let µ be the root of Rλ.
If ∆ ≤ −2 and β(λ) = 1, then after a double right-left rotation rooted at η, the root of Θ is µ,
|β(µ)| ≤ 1, |β(λ)| ≤ 1, β(η) > ∆ and the height of Θ has strictly decreased.

In any case (1)-(4), after the rotation:

(I) If ∆ = 2, then Θ is balanced, i.e. Property 3.1.2 is satisfied.

(II) the archive is still a binary search tree, i.e. Property 3.1.1 is still satisfied.

Proof. (1) The proof is illustrated by Figure 3.5. Let δ ∈ {0, 1} such that h(Rρ) = h(Lρ) + δ.

Before the rotation, the height of Θ is determined by the right subtree since the balance factor of the root
is positive. Thus the height of Θ is equal to h(Rρ) + 2.

After the rotation, the height of Θ is equal to h(Lρ)+2 = h(Rρ)+2−δ, so the height of Θ has decreased or is
unchanged. We have β(η) = h(Lρ)−h(λ) = h(Lρ)−(h(Lρ)+δ+1−∆) = ∆−1−δ, so β(η) ∈ {∆−2,∆−1}.
We have β(ρ) = h(Rρ)− h(η) = δ − 1, so β(ρ) ∈ {−1, 0}.

(2) This case is symmetrical to (1).

(3) The proof is illustrated by Figure 3.6. Let µ = l(ρ), Lµ = Θ(l(µ)), Rµ = Θ(r(µ)), max :=
max{h(Lµ);h(Rµ)} and min = min{h(Lµ);h(Rµ)}.

Before the rotation, the height of Θ is equal to max+ 3. There is no assumption on the balance factor of µ,
so (max −min) ∈ {0, 1}. We have h(µ) = max + 1 and given that β(ρ) = −1, h(Rρ) = h(µ) − 1 = max.
Given that β(η) = ∆, we have h(λ) = h(ρ)−∆ = max+ 2−∆ thus h(λ) ≤ max since ∆ ≥ 2.

After the rotation, the height of Θ is equal to max + 2 < max + 3, so the height of Θ has decreased. Two
cases appear:

3.1. AVL-ARCHIVE 61

• If we assume that h(Lµ) = max, then h(Rµ) = min and β(ρ) = h(Rρ) − h(Rµ) = max −min since
h(Rρ) = max, so β(ρ) ∈ {0, 1}. We have also β(η) = h(Lµ)−h(λ) = ∆− 2 since h(λ) = max+ 2−∆.
Moreover, β(µ) = h(ρ)−h(η) = (max+1)−(max+1) = 0 since h(η) = 1+max{h(Lµ);h(λ)} = max+1
because h(λ) ≤ max.

• Otherwise, if h(Lµ) = min, then h(Rµ) = max and β(ρ) = max − max = 0 since h(Rρ) = max.
We have also β(η) = h(Lµ) − h(λ) = min − max − 2 + ∆ since h(λ) = max + 2 − ∆, so β(η) ∈
{∆ − 3,∆ − 2}. Moreover, β(µ) = h(ρ) − h(η) = (max + 1) − (1 + max{h(Lµ);h(λ)}) ∈ {0, 1} since
max{h(Lµ);h(λ)} ∈ {min,max} because h(λ) ≤ max.

So β(η) ∈ {∆− 3,∆− 2} and β(µ) ∈ {0, 1} in both cases.

(4) This case is symmetrical to (3).

(I) Obvious from proofs of (1) and (3). See [Adelson-Velskii, 1962] for another proof.

(II) Obvious from Definitions 3.1.2, 3.1.3, 3.1.4 and 3.1.5.

Proposition 3.1.4 distinguishes four distinct cases of imbalance, and to each case is assigned a specific rotation.

Let us first consider the insertion case, in which a new node ηnew is inserted in the tree after a candidate
solution incomparable with all the solutions of the archive has been accepted. This case is already supported
by the original AVL-tree algorithm [Adelson-Velskii, 1962] and the pseudo-code is depicted in Algorithm
15:ReBalanceAfterInsert. This method travels up the tree starting from the parent node η = p(ηnew) and
searches the first unbalanced descendant of ηnew. As the absolute balance factor of any node is maintained
inferior or equal to 1, the absolute balance factor of such a node is 2. A single rotation rooted at this node is
then performed and re-balances the whole affected subtree, given Proposition 3.1.4. Given [Adelson-Velskii,
1962], the insertion of a new node unbalances at most one descendant, thus the search stops once such a
descendant has been re-balanced. Moreover, the search can be prematurely stopped if the balance factor of
the current visited descendant is null.

Algorithme 15 : ReBalanceAfterInsert
Input : parent η of newly inserted node
Output : ∅

1 rotated←false
2 repeat
3 (%, rotated)←Rotation(η)
4 η ← p(%)
5 until η = none or β(η) = 0 or rotated;

Now consider the deletion case. As previously suggested in Section 3.1.1.2, when a candidate solution
dominates a node η:

• Both left and right subtrees of the dominated node Θ(l(η)) and Θ(r(η)) are first disconnected to η,
then pruned, and the deepest node to re-balance of each subtree is identified. For each subtree: if

62 CHAPTER 3. NEW ARCHIVES

one node at least has been removed, then the deepest node to re-balance uη and any of its ascendants
might be unbalanced; thus a re-balancing procedure is called from uη.

• Once these subtrees have been reconnected to η, if one node at least has been removed from one of
the subtrees, then η and any of its ascendants might be unbalanced; thus a re-balancing procedure is
called from η.

Because whole subtrees can be removed during the pruning process, the absolute balance factor of a number
of nodes may exceed 2. To our knowledge, such serious imbalance has not been taken into account by the
original re-balancing procedure of AVL-tree, thus we generalized it.

The generalized re-balancing procedure works as follows. Let η be the node to re-balance. Given
Proposition 3.1.4 and as illustrated by Figures 3.5 and 3.6, applying a rotation on η pushes down the imbalance
by descending η and strictly improving its absolute balance factor but kept unbalanced if |β(η))| > 2, and
such that the rest of the nodes are still balanced. From this observation, we propose the concept of rotation
chain, which consists in performing successive rotations on the same node η until |β(η)| ≤ 1.

Algorithme 16 : RotationChain
Input : calling node η
Output : new root of the subtree

1 (%, ·)←Rotation(η)
2 while |β(η)| ≥ 2 do
3 Rotation(η)

4 return %

Algorithm 16 presents a rotation chain starting from a node η. First, the root % of the subtree after the first
rotation is memorized as it is the root of the subtree once the rotation chain is finished. Then, the imbalance
is iteratively pushed down. The method returns the new subtree root %. Note that if η is initially balanced,
the subtree is unchanged.

Proposition 3.1.5. Let Θ(η) be a tree rooted at η such that |β(η)| = ∆, ∆ ≥ 2 and both Θ(l(η)) and
Θ(r(η)) are balanced. If a rotation chain is performed from η, then Θ(η) is balanced after applying at most
∆− 1 rotations (i.e. Property 3.1.2 is satisfied).

Proof. This result is a direct consequence of Proposition 3.1.4. As a rotation strictly improves the absolute
balance factor of η of at least 1, then a rotation chain always terminates after at most ∆ − 1 rotations so
that |β(η)| ≤ 1 and the whole tree is balanced.

Algorithme 17 : ReBalanceAfterDelete
Input : calling node η
Output : root of the subtree

1 repeat
2 %←RotationChain(η)
3 η ← p(%)
4 until η = none;
5 return η

Algorithm 17:ReBalanceAfterDelete implements the generalized re-balancing procedure starting from a
node η. The procedure travels up the tree from η and applies a rotation chain to each ascendant. Any

3.1. AVL-ARCHIVE 63

ascendant can be unbalanced after a deletion, thus the search cannot be prematurely stopped (as in the
insertion case) until reaching the root of the tree.

Figure 3.8 illustrates an example of the insertion of a candidate solution into an AVL-Archive.

Proposition 3.1.6. The complexity in time of the Add procedure is in O(log2
2 s), where s is the number of

nodes in the AVL-Archive.

Proof. Given that an AVL-Archive is a balanced binary search tree, its height is in O(log2 s). Let x be the
candidate solution presented to the archive.

First, a dichotomic search is performed from the root to a node η. For each traversed node, constant time
operations are performed.

• If x(η) weakly dominates x, then the procedure is stopped. Therefore in this case, the complexity is in
O(log2 s).

• Otherwise, if x is incomparable with all traversed node, then a new node is created with x as solution.
During the re-balancing process, the tree is traveled up from η and at most one rotation is performed, which
is a constant time operation. Thus in this case, the complexity is in O(log2 s).

• Otherwise, x dominates x(η). Both left and right subtrees of η are pruned. During the pruning process, a
single path is followed and for each traversed node, the operations are made in constant time, including the
deletion operation. So the pruning process is also in O(log2 s).

Concerning the re-balancing process, let us consider the worst case, which consists in re-balancing a tree
formed by a path of O(log2 s) nodes. Now assume that the deepest node to re-balance uη is the last node,
i.e. the unique leaf of the tree. The re-balancing process consists in traveling up the tree from uη to the
root, and thus traversing O(log2 s) nodes. For each traversed node: a rotation chain is applied, performing
at most ∆−1 rotations, where ∆ ∈ O(log2 s) is the balance factor of the starting node of the rotation chain.
Thus the re-balancing process is in O(log2

2 s).

3.1.2 Self-adjusting version

The Self-Adjusting version of an AVL-Archive, called SAAVLA, has a number of additional features compared
to the vanilla version.

First, in addition to its usual attributes, a node η is associated with the local ideal z∗(η) of the subtree
rooted at η defined such that:

z∗j (η) = min{fj(x(η′)) : η′ ∈ Θ(η)} for j = 1, 2

In fact, z∗1(η) (resp. z∗2(η)) is the first (resp. second) objective value of the solution contained in the left-most
(resp. right-most) node of Θ(η). The local ideal z∗(η) is updated online and we do not mention these updates
in pseudo-code as they are trivial. Indeed, each time a leaf is created or deleted:

• if this leaf is a left child: the first objective value of its associated solution is propagated upward and
is used to update z∗1(η′), for each one of its ascendant η′.

• if this leaf is a right child: the second objective value of its associated solution is propagated upward
and is used to update z∗2(η′), for each one of its ascendant η′.

64 CHAPTER 3. NEW ARCHIVES

(110, 38) ?

150,50 (110, 38) ≤ (150, 50)

125,75 110 ≤ 125 175,25 38 > 25

112,90 110 ≤ 112 140,60 160,40 38 ≤ 40 190,10

105,85 120,80 145,55 155,45 170,30 180,20 195,5

185,15

(a) x dominates the solution in the root ⇒ x replaces the solution contained in the root; both left and right subtrees
are pruned s.t. all dominated nodes are removed. The subtree rooted at (190, 10) is not explored, and only 6

comparisons are necessary to remove 8 nodes.

110,38 β = 3

105,85 β = 0 175,25 β = 2

170,30 190,10

180,20 195,5

185,15

(b) The subtree rooted at (175, 25) is unbalanced ⇒ a
double left-right rotation is performed.

110,38 β = 2

105,85 β = 0 180,20 β = 0

175,25 190,10

170,30 185,15 195,5

185,15

(c) The subtree rooted at (110, 38) is unbalanced ⇒ a
simple left rotation is performed.

180,20 β = −1

110,38 190,10

105,85 175,25 185,15 195,5

170,30

(d) The final balanced tree.

Figure 3.8 – Example of insertion of a candidate x ∈ X s.t. f(x) = (110, 38) into an AVL-Archive.

3.1. AVL-ARCHIVE 65

z4

z2 z6

z1 z3 z5 z7

(a) The archive
(stored points are indicated in nodes).

f1

f2

◦z
1

•z
2

◦z
3

•z
4

◦z
5

•z
6

◦z
7

�

(z1
1 , z

7
2)

�

(z1
1 , z

3
2)

�

(z5
1 , z

7
2)

(b) View in the objective space of the archive. Points are
indicated with circles and local ideals are indicated with
squares. An internal point and its associated local ideal

are linked by a dashed line.

Figure 3.9 – Example of a SAAVLA

Note that these updates are done in O(log2(s)), where s is the size of the archive.

Figure 3.9 illustrates an example of a SAAVLA.

A SAAVLA maintains a so-called cache node, which is:

• either the node which has rejected the last candidate solution;

• or the parent of the new node containing the last candidate.

When a new candidate solution is presented to the archive, instead of performing a dichotomic search from
the root, it starts from the cache node. The general idea is that if a locality assumption holds, then two
consecutive candidates will probably be either accepted or rejected in the same subtree. Starting from the
cache node prioritizes the previously explored subtree.

However, an issue occurs with this mechanism. Let η be the cache node and x ∈ X be the current candidate
solution. Thus the search starts from the cache node, but it may happen that x is weakly dominated or even
dominates a node outside the subtree rooted at the cache node.

Next we introduce important notions to address this issue.

Definition 3.1.6. A relevant subtree Θ(η) w.r.t. a solution x ∈ X is a subtree such that:

1. x can not dominate any node outside the subtree;

2. and if a node outside the subtree weakly dominates x, then a node inside the subtree also weakly
dominates x for sure.

A relevant subtree corresponds to a subtree from which a dichotomic search can be effectively started, because
the acceptance/rejection process is not influenced by nodes outside the relevant subtree. Let us now present
some propositions supervising the notion of relevant subtree.

Proposition 3.1.7. Let η, η′ be two nodes. η′ ∈ Θ(η) iff. z∗(η) 5 f(x(η′)).

66 CHAPTER 3. NEW ARCHIVES

Proof. Obvious from the combination of Property 3.1.1 and Proposition 3.1.1.

Proposition 3.1.8. Let x ∈ X be a candidate solution external to the archive and η be a node. If
z∗(η) 5 f(x), then ∀η′ /∈ Θ(η), f(x) � f(x(η′)).

Proof. Let us assume that the proposition is incorrect. So there is a node η′ /∈ Θ(η) such that f(x) ≤ f(x(η′)),
thus z∗(η) ≤ f(x(η′) since z∗(η) 5 f(x). This is contradictory with the fact that η′ /∈ Θ(η) given Proposition
3.1.7.

Proposition 3.1.9. Let x ∈ X be a candidate solution external to the archive and η be a node. If
z∗(η) 5 f(x) and ∃η′ /∈ Θ(η) s.t. f(x(η′)) 5 f(x), then ∃η′′ ∈ Θ(η) s.t. f(x(η′′)) 5 f(x).

Proof. Let zL ∈ Y be the point stored in the left-most point of Θ(η), i.e. st. z∗1(η) = zL1 , and zR ∈ Y the
point stored in the right-most node of Θ(η), i.e. st. z∗2(η) = zR2 .

(i) If f2(x(η′)) < zR2 , thus zR1 < f1(x(η′)) since f(x(η′)) ‖ zR. Moreover, zR1 < f1(x) since f(x(η′)) 5 f(x).
Thus zR 5 f(x) since zR2 = z∗2(η) 6 f2(x).

(ii) Otherwise, f1(x(η′)) < zL1 since η′ /∈ Θ(η). The remaining of the proof is similar to (i) and we finally
obtain that zL 5 f(x).

Instead of starting immediately a dichotomic search from the cache node, we travel up the tree until reaching
an ascendant η of the cache node (including itself) such that z∗(η) 5 f(x). In this case, given Propositions
3.1.8 and 3.1.9, we are located in a so-called relevant subtree w.r.t. x, thus a dichotomic search is started
from η.

Algorithme 18 : SAAVLA::Add
Input : candidate solution x
Output : boolean

1 η ← CacheNode()
2 while p(η) 6= ∅ do
3 if z∗(η) 5 f(x) then
4 return Add(η, x)

5 η ← p(η)
6 return Add(η, x)

Algorithm 18 describes the revised Add procedure of SAAVLA. First we search for the relevant subtree
w.r.t. the candidate solution x. Once this node is found, we proceed to the vanilla version of the Add
procedure.

3.2 NDR*-Archive

A R*-tree [Guttman, 1984,Beckmann et al., 1990] is a spacial indexing tree data structure used for indexing
spatial objects (like hyper-rectangles, hyper-spheres or more complex objects) in a multi-dimensional space.
This data structure is extensively based on the notion of MBB. First, by ease of simplicity and to avoid costly
geometrical computations, each object stored in a R*-tree is instead represented by its own MBB, i.e. the
MBB completely covering its particular shape. Second, a R*-tree can be seen as a hierarchy of MBBs, such
that:

3.2. NDR*-ARCHIVE 67

o1

o6

o2

o3

o4

o5

o7

RA

B

R

A B

o1, o2, o5, o6 o3, o4, o7

Figure 3.10 – Example of R*-tree in two-dimensional space containing seven spatial objects distributed into
two leaves A and B, themselves contained in the root node R.

• A leaf node contains a list of objects. All the objects stored in the R*-tree are partitioned among
the leaves, such that nearby objects tend to be in the same leaf node. To a leaf is attached a MBB
including all the objects stored by this leaf.

• An internal node contains a list of child nodes. In the same way as a leaf, to an internal node is
attached a MBB including all the MBB of its children.

Figure 3.10 shows a R*-tree. As a spatial indexing data structure, a R*-tree aims at providing fast answers
to online queries such as searching, inserting or removing a number of indexed objects.

Since all the objects contained in a node lie within the attached MBB, a query that does not intersect the
MBB cannot intersect any of the contained objects. This way, when a query is performed, a Depth First
Search (DFS) is executed from the root of the tree and explores only the children whose MBB is concerned
by the query.

A R*-tree has two main additional properties. First, it is a balanced k-ary tree, meaning that at any time, all
leaves are at the same depth. Second, the nodes have a fixed minimum and a fixed maximum children/objects
list size. The data structure is managed such that three main criteria are minimized: the total hypervolume,
the margin (corresponding to the sum of the length of the edges) of the MBBs, and the overlap between the
MBBs.

When an internal node (resp. leaf) is overfilled after the insertion of a new object, two strategies are suc-
cessively considered. The first one, called extraction strategy, is to extract from the children (resp. list) of
the overfilled node a number of nodes (resp. objects) and reinsert them like regular new objects. The idea
behind this strategy is that the extracted objects might be re-inserted in a more suitable node of the tree.
The second one, called splitting strategy, aims at splitting the overfilled node into two new nodes. Globally,
the splitting strategy is used on a node when the extraction strategy has failed.

Once a node is underfilled, it is removed from the tree and its children/objects are reinserted.

R*-trees do not guarantee good worst-case performance, but generally perform well with real-world data
[Hwang et al., 2003].

Unfortunately, we found that adapting directly the R*-tree structure for archiving task provides extremely
poor results compared to the state-of-the-art archive ND-Tree. This first failure led us to the idea of
combining these two structures into a new one attempting to retain the strengths of both structures and
trying to lessen their weaknesses. We call this new archive NDR*-Archive.

68 CHAPTER 3. NEW ARCHIVES

3.2.1 Design of NDR*-Archive

The NDR*-Archive combines features of ND-tree and R*-tree. Each one of these two data structures has its
own strengths and weaknesses:

• ND-tree has been specially designed for archiving, as outlined in Section 2.4.4. On the other hand, it
is not a balanced tree, allowing a low structure maintenance cost.

• R*-tree has not been designed for archiving. On the other hand, it is a balanced tree at the expense of
a high structure maintenance cost. Another drawback of a R*-tree is that it is complex to implement,
in particular because it is itself an upgrade of R-tree [Guttman, 1984] to which several new features
have been added.

NDR*-Archive is, globally, a simplified and modified, archiving-adapted R*-tree using the theoretical prop-
erties of ND-tree (reviewed in Section 2.4.4) to manage efficiently a set of incomparable points, but including
also new features.

NDR*-Archive works as follows. Each node η maintains:

• an approximate local ideal ideal(η) and nadir nadir(η) points, defining a bounding box including all
the points stored in the subtree;

• a list of its children children(η) if it is internal, and a list of solutions solutions(η) if it is a leaf.

Let an object be either a node or a solution. Like R*-tree, the nodes have a fixed minimum and a fixed
maximum children/solutions list size. The process of NDR*-Archive is driven by two main procedures: the
Add solution procedure and the Restructure tree procedure.

3.2.1.1 The Add solution procedure

Algorithme 19 : Add
Input : candidate solution x
Output : boolean

1 dominated←CheckDominance(root, x)
2 if dominated then
3 return false
4 Nin ← ∅; Xin ← {x}
5 Prune(root, x, Nin, Xin)
6 foreach ηin ∈ Nin do
7 ReInsert(root, ηin, prevDepth(ηin)− 1, 0)

8 foreach xin ∈ Xin do
9 ReInsert(root, xin,leafDepth()− 1, 0)

10 return true

The Add solution procedure is the core of NDR*-Archive. It is described with a diagram in Figure 3.11 and
detailed in pseudo-code by Algorithm 19: Add. This procedure is activated when a new candidate solution
x is presented to the archive. It works as follows:

(1) First, one checks if x is dominated by exploring the archive in DFS starting from the root (Algorithm
20: CheckDominance). For each node met, if x is not weakly dominated by the local ideal, then x is not

3.2. NDR*-ARCHIVE 69

(1) Check dominance:
explore the archive in DFS

while x is not weakly dominated.

Is x
weakly

dominated?

yes
(2) Prune:

explore the archive in
DFS, remove nodes and
solutions dominated by x

& memorize x.

no

Is there any
underfilled

node?

Memorize children nodes and
solutions of underfilled nodes
& remove underfilled nodes.

yes

(3) Reinsert:
Select a memorized object

& reinsert it at its previous tree
depth in a node η minimizing
the hypervolume enlargement.

no

Start the
Restructure tree
procedure from η.

Is there any
memorized object

to reinsert?

no
yes

Figure 3.11 – The Add solution procedure of NDR*-Archive with a candidate solution x.

70 CHAPTER 3. NEW ARCHIVES

Algorithme 20 : CheckDominance
Input : calling node η, candidate solution x
Output : boolean

1 if ideal(η) � x then
2 return false
3 if nadir(η) 5 x then
4 return true
5 if η is internal then
6 foreach cη ∈ children(η) do
7 if CheckDominance(cη, x) then
8 return true

9 else // η is a leaf
10 foreach x′ ∈ solutions(η) do
11 if f(x′) 5 f(x) then
12 return true

13 return false

dominated by any point in the subtree; otherwise, if the local nadir does not weakly dominate x, then the
search continues down in the subtree while x is not proved to be dominated. Note that this procedure just
checks if x is dominated, so it makes only one-sided comparisons between x and the objects of the tree.

(2) If x is accepted, then no solution in the archive weakly dominates x. In this case, the tree is pruned by
removing dominated nodes and solutions through the exploration of the archive in DFS starting from the
root (Algorithm 21: Prune).

More precisely, for each node met, if x does not weakly dominates the local nadir, then x does not dominate
any point in the subtree; otherwise, if the local ideal is weakly dominated by x then all the points in the
subtree are dominated by x, so the node is removed. Otherwise, the search continues down in the subtree
and any dominated object or empty node is removed. If a node is underfilled after the deletion of some of
its children/solutions, then its children/solutions are memorized in a list (called the memorized objects for
the rest of this section), then the node is removed.

When a child node cη is removed, the UpdateIdealNadir(η, {cη},−) procedure is called from its parent η.

The procedure UpdateIdealNadir(ηsrc, Nmodif , option) updates the approximate local ideal and local nadir
of the node ηsrc considering the deletion of (option = −), the inclusion of (option = +) or the reset with
(option = ∗) the set of nodes Nmodif . The procedure also updates accordingly the local ideal and local
nadir of the ascendants of ηsrc. In order to reduce the maintenance cost, this procedure is not called when
a solution is removed.

(3) When all dominated objects have been removed, then the candidate solution and the memorized objects
are (re)inserted in the tree (Algorithm 22:ReInsert).

Let the hypervolume of a node be the hypervolume of the bounding box defined by its approximate local
ideal and local nadir points.

To reinsert each memorized object, the tree is explored by following a simple top-down path starting at
the root; for each node met, the child for which the insertion of the object minimizes the hypervolume
enlargement is selected. Then, the procedure is recursively called from this child. If the object is a solution,
then it is (re)inserted in a leaf; otherwise, if the object is a node, then it is reinserted at the same tree depth

3.2. NDR*-ARCHIVE 71

Algorithme 21 : Prune
Input : calling node η, candidate solution x, list of nodes to reinsert Nin, list of solutions to reinsert Xin

Output : boolean
1 if x � nadir(η) then
2 return false
3 if x 5 ideal(η) then
4 return true
5 if η is internal then
6 foreach cη ∈ children(η) do
7 if Prune(cη, x, Nin, Xin) then
8 children(η)← children(η) \ {cη}
9 UpdateIdealNadir(η, {cη}, -)

10 delete cη

11 if η is underfilled then
12 Nin ← Nin + children(η)
13 children(η)← ∅
14 else // η is a leaf
15 foreach x′ ∈ solutions(η) do
16 if f(x) ≤ f(x′) then
17 solutions(η)← solutions(η) \ {x′}
18 delete x′

19 if η is underfilled then
20 Xin ← Xin + solutions(η)
21 solutions(η)← ∅

22 return (η is empty)

Algorithme 22 : ReInsert
Input : calling node η, node/solution to reinsert ω, reinsertion depth rδ, current depth δ
Output : ∅

1 if δ < rδ then
2 cη∗ ← arg min{Hypervolume(cη + ω)− Hypervolume(cη) : cη ∈ children(η)}
3 ReInsert(cη∗, ω, δ + 1)
4 else // δ = rδ
5 if η is internal then
6 children(η)← children(η) + ω
7 else // η is a leaf ⇒ ω is a solution
8 solutions(η)← solutions(η) + ω

9 UpdateIdealNadir(η, {ω}, +)
10 RestructureTree(η)

72 CHAPTER 3. NEW ARCHIVES

Is η
overfilled?

no

• Split into two subsets the
children/solutions of η by
minimizing a given split fitness.
• Move the objects of the second
subset from η to a new node η′.

yes

Is η
the root?

Ascend the root:
create a new root and
insert into it η and η′.

yes• Insert η′ into parent(η).
• Set η ← parent(η).

no

Figure 3.12 – The Restructure tree procedure of NDR*-Archive called from a node η.

than before its memorization (in order to preserve the structure of the tree). At the end, the approximate
local ideal and local nadir of the parent node are updated. Note that the minimization of the hypervolume at
each level of the tree is crucial in the sense that it corresponds to a minimization of the dead space between
the MBBs of the nodes; and reducing this dead space helps reducing the height of the tree. Finally, the
Restructure tree procedure is activated to re-structure the tree from the parent node.

3.2.1.2 Restructure tree procedure

Algorithme 23 : RestructureTree
Input : calling node η
Output : ∅

1 if η is overfilled then
2 η′ ←Split(η)
3 if η 6= root then
4 pη ← parent(η)
5 children(pη)← children(pη) + η′

6 RestructureTree(pη)
7 else // η = root ⇒ ascend root
8 root←new node()
9 children(root)← η + η′

10 UpdateIdealNadir(root, η + η′, *)

The Restructure tree procedure is described with a diagram in Figure 3.12 and detailed in pseudo-code by
Algorithm 23: RestructureTree. Let η be the node from which the procedure is called. If η is overfilled,

3.2. NDR*-ARCHIVE 73

then it is split. The split procedure is a key component of NDR*-Archive. It aims at partitioning into two
subsets the children/solutions of a node.

R*-tree split manages MBBs of spatial objects while ND-tree split manages points. On the other hand,
NDR*-Archive faces both cases: it has to split internal nodes, such that children are nodes represented by
their bounding boxes; and it also has to split leaves, containing points. Two different splits are considered
for each case. The main difference between the internal node splits and the leaf splits is the split fitness to
optimize.

Algorithme 24 : Split (I1)
Input : calling internal node η
Output : new node η′

1 max,min←maximum, minimum storage capacity of children(η)
2 SplitFitness(·, ··)← lex {Overlap(·, ··), Hypervolume(·) + Hypervolume(··)}

// Compute the best partition:
3 (N∗1 , N∗2)← ∅
4 for j = 1, ..., p do
5 foreach optimum ∈ {ideal(η), nadir(η)} do
6 (cη1, ..., cηmax+1)←Sort children(η) in ascending order by the j-th objective value of their optimum
7 for k = min, ...,max−min+ 1 do
8 N1 ← (cη1, ..., cηk)
9 N2 ← (cηk+1, ..., cηmax+1)

10 (N∗1 , N∗2)← arg min{SplitFitness(N∗1 , N∗2); SplitFitness(N1, N2)}

// Update η:
11 η′ ←new node()
12 children(η)← N∗1 ; UpdateIdealNadir(η, N∗1 , *)
13 children(η′)← N∗2 ; UpdateIdealNadir(η′, N∗2 , *)
14 return η′

The first internal node split (Algorithm 24: Split (I1)) we proposed, called split I1 , is a simplified
version of the R*-tree split. Globally, given an internal node to split, the idea is to select a partition of its
children depending on a splitting objective which minimizes the overlap between the two resulting subsets.

More precisely, let η be the internal node to split. The computation of the best partition of the children of
η iterates both on: (i) the objectives (j = 1, ..., p) considered alternately for sorting the children of η; (ii)
the local optima of any child node (ideal, nadir) used as sorting key. The split axis is the current objective
selected for sorting.

Let j ∈ {1, ..., p} be the index of the current split axis, and optimum ∈ {ideal, nadir} the current optimum.
First, the children are sorted by their optimum’s j-th objective value. Any partition such that both subsets
contain only consecutive children given the current sorting, and is neither underfilled nor overfilled is consid-
ered. We look for the partition minimizing the overlap between the bounding boxes of its two subsets; ties
are resolved by choosing the partition such that the hypervolume sum of the bounding boxes of its subsets
is minimum.

Note that minimizing the overlap is of prime importance because it has a deep impact on the number of
paths to be traversed when a solution is presented to the archive.

74 CHAPTER 3. NEW ARCHIVES

The first leaf node split we designed, called split L1 , works similarly than the split I1 by choosing the
axis and the corresponding partition minimizing a given fitness; except for two differences: the objective
values of the solutions are considered for sorting, and the fitness used to evaluate a partition is the distance
between the center of its two subsets (to maximize), instead of the overlap. We still search for minimizing
the hypervolume in case of tie. We found that using either the Manhattan or the Euclidean distance provides
similar results. Globally, the idea behind this split is to maximize the gap between the two resulting subsets.

Algorithme 25 : Split (L2)
Input : calling leaf node η
Output : new node η′

1 max←maximum storage capacity of solutions(η)
// Compute the best partition:

2 (x1, x2)← arg max{Distance(x, x′) : x, x′ ∈ solutions(η)}
3 solutions(η)← solutions(η) \ {x1, x2}
4 X1 ← {x1} ; X2 ← {x2}
5 while solutions(η) 6= ∅ and

∣∣∣X1
∣∣∣ < max and

∣∣∣X2
∣∣∣ < max do

6 x← arg min{min{Distance(x′, center(X1)); Distance(x′, center(X2))} : x′ ∈ solutions(η)}
7 solutions(η)← solutions(η) \ {x}
8 if Distance(x, center(X1) < Distance(x, center(X2)} then
9 X1 ← X1 + x

10 else
11 X2 ← X2 + x

12 if
∣∣∣X1

∣∣∣ < max then
13 X1 ← X1 + solutions(η)
14 else
15 X2 ← X2 + solutions(η)

// Update η:
16 η′ ←new node()
17 solutions(η)← X1; UpdateIdealNadir(η, X1, *)
18 solutions(η′)← X2; UpdateIdealNadir(η′, X2, *)
19 return η′

The second internal node split, called split I2 , is mainly based from the split used by R-trees. Contrary
to I1, it considers all the objectives at the same time and try to minimize the total hypervolume of the new
partition.

More precisely, it first selects the pair of child nodes such that the dead space between their MBBs is maximal,
each one is extracted from the split node and inserted in two different subsets. Then, while the split node
has a child and the two subsets are not overfilled, the child node minimizing the hypervolume enlargement
through its insertion in any of the two subsets is selected. This node is extracted from the list of children of
the split node and inserted in the best subset. Finally, if a subset is full, the remaining children of the split
node are inserted in the other subset.

The second leaf node split, called split L2 , works in a similar way as split I2 except that the fitness
used is the (Euclidean) distance between a point and the center of a subset (to minimize). Indeed, using the

3.2. NDR*-ARCHIVE 75

hypervolume enlargement as fitness did not provide good results for this leaf split. Algorithm 25 describes
split L2. Globally, this split has some similarities with the split used in ND-Tree.

Independently to the split used, once the best partition has been found, the nodes of the second group are
extracted (from the split node η) to a new node η′.

Finally, the same restructure tree procedure is restarted from the parent of η. Note that if the overfilled node
η is the root of the archive (cf. lines 7-10 of Algorithm 23), the root is ascended, meaning that a new root is
created and takes as children the old root and the new node created by the split. This mechanism increases
by one the height of the tree.

This last step concludes the description of the NDR*-Archive. Figure 3.13 illustrates an example of insertion
of a non-dominated candidate solution in a NDR*-Archive.

3.2.2 Self-adjusting version

Algorithme 26 : Add: modifications for self-adjustment.
// Replace the instruction line 1 in Algorithm 19 by the following
// instructions to implement a self-adjusted NDR∗-Archive:

1 η ← cacheNode(root)
2 repeat
3 dominated ← CheckDominance(η, x)
4 η ← parent(η)
5 until dominated or η =none;

The proposed upgrade for self-adjustment of NDR*-Archive is general and goes beyond the archiving case.
Indeed, it enables any R-like tree to use locality assumption, even for regular indexing tasks. Two main
features characterize this upgrade:

1. We memorize the so-called cache node, from which the last candidate solution has been either inserted or
rejected. Then, when a new candidate solution is presented to the archive, we start the CheckDominance
procedure from the cache node instead of the root of the archive. When the subtree has been explored
and the candidate solution not rejected, then the CheckDominance procedure is called from the parent
of the cache node. This process continues until the candidate is rejected or the root is reached. Note
that we forbid a subtree to be explored twice. Algorithm 26 indicates the instructions replacing the
first instruction of the Add procedure (Algorithm 19):

dominated← CheckDominance(root,x)

to handle self-adjustment, where root is the root of the archive and x is the current candidate solution.

2. When the candidate is either inserted or rejected, all the nodes and the single solution (in a potential
leaf) on the insertion/rejection path are then positioned in first position.

We call this archive SANDRA, standing for Self-Adjusting NDR*-Archive. As shown by our experiments
reported in the next section, these simple modifications lead to substantial computational time improvements.

Figure 3.14 describes two use case examples of SANDRA.

76 CHAPTER 3. NEW ARCHIVES

•
•
•

••
•
•

••

RA

B

a1 a2

b1

b2

R

A B

a1 a2 b2b1

(a) Step 1: The new solution is inserted into the leaf a2 by calling ReInsert from the root node R.

•
•
•

••

•
•

••

RA

B

a1

a2

a′2

b1

b2

R

A B

a1 a2 a′2 b2b1

(b) Step 2: After the insertion, the leaf a2 is overfilled, so it is split by calling Split from a2. A new node a′
2

containing two solutions is created and inserted into A.

•
•
•

••

•
•

••

RAa1
a2

B
a′2
A′

b1

b2

R

A′A B

a1 a2 a′2 b2b1

(c) Step 3: After the split of a2, A is overfilled. So A is split and a new node A′ containing a′
2 is created and inserted

into R.

•
•
•

••

•
•

••

QRAa1
a2

B

a′2 R′

A′

b1
b2

Q

R R′

A′A
B

a1 a2
a′2

b2b1

(d) Step 4: After the split of A, R is overfilled. So R is ascended: it is split and a new node R′ containing B is
created. A new root Q is created and both R and R′ are inserted into Q.

Figure 3.13 – Example of insertion of a new candidate solution x in a NDR*-Archive in the bi-objective case.
We assume that x has already been checked for non dominance; and that internal and leaf nodes can contain
at most two elements and at least one element.

3.3. EXPERIMENTS 77

R

A

B C

b1 b2 c1

1

2 3

4

5 6

(a) The tree and the rejection path related to a candidate
dominated by node b2.

R

A

B C

b1b2 c1

(b) The resulting ajusted tree in order to have the path
R−A−B − b2 in first position.

R

A

B C

b1b2 c1
1

2

3

4

5

6

7

8

(c) The tree and the insertion path related to an
accepted candidate.

R

A

BC

b1b2c1

(d) The resulting ajusted tree in order to have the path
R−A− C − c1 in first position.

Figure 3.14 – Illustration of the self-adjusting feature of SANDRA with an example of a rejection of a
candidate (first row) followed by an acceptation of another candidate (second row). The numbers close to
the nodes indicate the exploration order of the nodes.

3.3 Experiments

AVL-Archive, NDR*-Archive and their self-adjusting versions (SAAVLA, SANDRA) are experimentally com-
pared to the current best known archives: ND-Tree [Jaszkiewicz and Lust, 2016] (for any number of objectives
p) and sorted list (for p = 2 only). In particular:

1. AVL-Archive, NDR*-Archive, ND-Tree and sorted list are compared on a benchmark of several artificial
sets simulating the generation of points during the run of a meta-heuristic;

2. AVL-Archive, SAAVLA, NDR*-Archive, SANDRA, ND-Tree and sorted list are applied within PLS
on MOTSP.

All experiments presented were performed on a 3.4 GHz computer with 16Gb of volatile memory (RAM)
on a Linux OS. All algorithms are written in C/C++. We use the C/C++ ND-Tree implementation of
Jaszkiewicz and Lust and a slightly improved version of the sorted list they implemented. The linear list has
been implemented with the Move-to-Front heuristic [Bentley et al., 1993].

78 CHAPTER 3. NEW ARCHIVES

Splits Cchildmax Csolutionmax Rmin

I1+L1 p+ 6

20
45%I1+L2 p+ 1

I2+L1 p+ 6 30%
I2+L2 p+ 2 25%

Table 3.1 – Good parameter settings for NDR*-Archive with different split combinations.

3.3.1 Artificial sets

Given p objectives to minimize, an artificial set is composed of Nnd non-dominated points, and Ndom =
bφdom ×Nndc dominated points, where φdom ≥ 0. Let us now describe how an artificial set of points is
created. Any point y = (y1, ..., yp) ∈ Np is generated uniformly at random in {0, ..., R}p inside a hyperball

of center (R, ..., R) and radius R, such that
p∑
j=1

(R − yj)2 ≤ R2 . The idea is to obtain points near the

corresponding hypersphere and not near the point (0, ..., 0). In order to control the dispersion of the points
generated, the constraint

p∑
j=1

(R− yj)2 ≥ (1− ε)×R2 is added, where ε ∈ [0, 1]. With a small ε, we obtain

a dense set of points close to the hull of the hypersphere; while a large ε generates a scattered set of points.

This way of generating a set of points proposed in [Jaszkiewicz and Lust, 2016] simulates well the behavior
of a multi-objective heuristic. Unfortunately, with this methodology, we can not control a fundamental
parameter: the proportion of dominated points φdom, computed as the number of dominated points divided
by the number of non-dominated points. As we will see later, the archiving time greatly depends on this
parameter. We proceed in two steps to generate in the hyperball, a set of points with Nnd non-dominated
points and Ndom dominated points.

During the first step, we successively generate points uniformly at random in the hyperball and present each
one to an archive, until Nnd incomparable points are finally obtained.

The second step produces the dominated points. To do so, we successively generate points uniformly at
random in the hyperball and each one is accepted only if it is dominated by a point in the archive. We
stop when Ndom dominated points have been produced. Contrary to the first step, this second step is
computationally expensive in the sense that it is relatively similar to the approximation with Monte Carlo
sampling of the hypervolume indicator value [Zitzler, 1999] of the archive obtained in the first step. Thus,
we speed-up the second step using a kd-tree [Bentley, 1975] we have modified to be dynamic and able to
handle uniform sampling. The resulting list of solutions can then be presented to an archive.

To summarize, given that the hyperball radius is set toR = 1000000, an artificial set is defined by: the number
of objectives p, the parameter ε controlling the dispersion of the points, the number of non-dominated points
Nnd, and a proportion of dominated points φdom controlling the number of dominated points (in function of
the number of non-dominated points).

3.3.2 Split and parameter setting of NDR*-Archive

NDR*-Archive has three parameters:

• the maximum storage capacities of the list of children of internal nodes Cchildmax and of the list of solutions
of leaf nodes Csolutionmax

3.3. EXPERIMENTS 79

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2 4 6 8 10 12 14 16 18 20

N
o
rm

a
liz

e
d

 t
im

e

Max capacity of child list

Rmin=20%
Rmin=30%
Rmin=40%
Rmin=50%

 1

 1.2

 1.4

 1.6

 1.8

 10 20 30 40 50 60 70 80 90 100

N
o
rm

a
liz

e
d

 t
im

e

Max capacity of solution list

Rmin=20%
Rmin=30%
Rmin=40%
Rmin=50%

Figure 3.15 – Influence of the parameters Cchildmax (left), Csolutionmax (right) and Rmin on the computational time
of NDR*-Archive with I1 + L1 splits (p = 4, Ndom = 30000, φdom = 10, ε = 15%).

 1

 1.1

 1.2

 1.3

 1.4

 2 3 4 5

N
o
rm

a
liz

e
d

 t
im

e

Number of objectives

I1+L1
I1+L2
I2+L1
I2+L2

Figure 3.16 – Evolution of the running time of different combinations of splits in function of the number of
objectives.

• the rate Rmin ∈ [0, 1] controlling the minimum storage capacity of both child and solution lists such
that Cchildmin =

⌊
Rmin × Cchildmax

⌋
and Csolutionmin =

⌊
Rmin × Csolutionmax

⌋
, where Cchildmin (resp. Csolutionmin) is the

minimum storage capacity of child (resp. solution) list.

Four different splits have been proposed for NDR*-Archive. A good parameter setting has been found for
each one of the four possible combinations of splits I1+L1, I1+L2, I2+L1 and I2+L2. The chosen parameter
settings are indicated in Table 3.1 and Figure 3.15 shows the influence of different parameter settings for
NDR*-Archive with the split combination I1+L1. Globally, the split I1 needs a high Rmin while I2 needs
a low Rmin; and L1 works better when Cchildmax is large, whereas L2 seems to favor a low Cchildmax . For all
combinations and number of objectives, a Csolutionmax set to 20 obtains good results.

For each number of objectives p = 2, 3, 4, 5, we tested the different combinations of splits (with their previ-
ously proposed settings) by comparing them on a benchmark of artificial sets with intermediate parameter
values: a spread of points ε = 15%, Nnd = 30000 non-dominated points and a proportion of dominated
points set to φdom = 10. Results are indicated in Figure 3.16. The split L1 seems to be particularly efficient
and the best combination of splits appears to be I1+L1.

80 CHAPTER 3. NEW ARCHIVES

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

0 1 10 100 1000

N
o
rm

a
liz

e
d

 t
im

e

Proportion of dominated points

AVL-Archive
NDR*-Archive

ND-Tree
sorted list

(a) p = 2

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

0 1 10 100 1000

N
o
rm

a
liz

e
d

 t
im

e

Proportion of dominated points

ND-Tree vs NDR*-Archive

(b) p = 3

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

0 1 10 100 1000

N
o
rm

a
liz

e
d

 t
im

e

Proportion of dominated points

ND-Tree vs NDR*-Archive

(c) p = 4

 1

 1.2

 1.4

 1.6

 1.8

0 1 10 100 1000

N
o
rm

a
liz

e
d

 t
im

e

Proportion of dominated points

ND-Tree vs NDR*-Archive

(d) p = 5

Figure 3.17 – Computational time comparison between the different archives in function of the proportion
of dominated points φdom for p = 2, 3, 4, 5 (Nnd = 10000, ε = 25%).

3.3.3 Experiments on artificial sets

The benchmark of artificial sets we propose for comparing AVL-Archive, NDR*-Archive, ND-Tree and sorted
list is composed of 1600 (= 80× 20) instances of 80 different types where each instance contains between 10
thousands and 50 million points. Each type is defined by the following instance parameters:

• number of objectives p = 2, 3, 4, 5

• dispersion of points ε = 5%, 25%

• number of non-dominated points Nnd = 10000, 50000

• number of dominated points Ndom = bφdom ×Nndc where φdom = 0, 1, 10, 100, 1000

For each type of instance (i.e. for each combination of instance parameters), 20 different instances are
randomly generated.

The case φdom = 0, i.e. when there is no dominated points, generally does not occur in a real-world ap-
plication, but it allows us to compare how efficient in time are the building mechanisms of the different
archives. Note that the upper bound of the interval proposed for φdom is still realistic since, as we will see
later when running a meta-heuristic, the number of generated dominated points is generally much larger
than the number of non-dominated points.

3.3. EXPERIMENTS 81

Results are presented in Tables 3.2, 3.3, 3.4 and 3.5. The different archives (second columns) are compared
in terms of number of comparisons (third column) and computational time (fourth column) in function of
the proportion of dominated points (first column). The number of comparisons (third column) indicates the
average number of dominance comparisons made between a candidate and the solutions/nodes of an archive
so as to accept or reject the candidate. Figure 3.17 shows a computational time comparison between the
different archives in function of the proportion of dominated points, for any number of objectives.

For p = 2, AVL-Archive outperforms all the other archives and NDR*-Archive performs better than ND-
Tree, particularly when the number of dominated points is a hundred times or more larger than the number
of non-dominated points; in this case, NDR*-Archive is often at least twice faster than ND-Tree. The sorted
list remains slower than AVL-Archive, even when φdom is high. NDR*-Archive and particularly ND-Tree,
are outperformed by the sorted list and AVL-Archive in terms of average number of dominance comparisons.

For p ∈ {3, 4}, NDR*-Archive performs better than ND-Tree, especially when φdom grows. Globally, when
there is as many dominated points than non-dominated points, NDR*-Archive is 27% faster in average than
ND-Tree, while NDR*-Archive is at least twice faster than ND-Tree when φdom = 1000.

For p = 5, NDR*-Archive remains better than ND-Tree, and particularly when φdom is high, but a stagnation
in terms of performance improvement is observed. Indeed, in average NDR*-Archive is approximately 50%
faster than ND-Tree.

This stagnation can be explained by the following analysis. When a candidate is presented to NDR*-Archive,
the tree is explored a first time and comparisons are oriented to check if the candidate is dominated. If it is
not dominated, the tree is explored a second time and comparisons are made with the sole aim to remove
dominated nodes or solutions. We say that NDR*-Archive makes one-sided comparisons. Thus, with such
a separation of processes, some parts of the tree will be explored twice if the candidate is finally accepted.
On the other hand, computationally light comparisons are made if the candidate is dominated. This is one
of the new features we introduced. On the contrary, ND-Tree makes complete comparisons for checking if
the candidate is either dominated or dominating, during the same exploration of the tree. Yet, for fixed
Nnd, φdom and ε, the number of accepted candidates tends to increase considerably when p grows (see Figure
3.18(a) as illustration). Consequently, the number of dominance comparisons induced by accepted candidates
increases much more for NDR*-Archive than for ND-Tree. Figure 3.18(b) illustrates this trend by indicating
the number of comparisons made by NDR*-Archive and ND-Tree for rejected and accepted candidates, in
function of the number of objectives p. In order to prevent this issue, a modification of NDR*-Archive would
be to explore only once the tree, like ND-Tree. However, this would make more expensive the checking of
dominated candidate. We expect the same trend for PLS (Section 3.3.4).

Despite all that, NDR*-Archive remains more efficient than ND-Tree, even when all candidates are non-
dominated (φdom = 0), and particularly for p ≤ 4. This efficiency is due to the following reasons:

1. Comparisons made by NDR*-Archive are one-sided and thus low-cost, contrary to ND-Tree.

2. According to Section 3.3.2, the splits I1 and L1 used by the NDR*-Archive are more efficient than the
other splits generally used in other structures.

3. The dynamic structure of NDR*-Archive allows it to replace previously removed parts of the tree to
re-balance it (in other words, the archive can fill the holes), which is a mechanism absent in ND-Tree,
making NDR*-Archive more compact than ND-Tree. Indeed, an interesting quality criterion measuring
the compactness of structures used in the indexing structure research field is the storage utilization of
nodes computed at the end of the candidate insertions. The storage utilization of a tree is measured
by computing the ratio between the current number of child nodes and solutions stored in the tree,
and the total number of available slots of child nodes or solutions. Globally, the storage utilization of
NDR*-Archive is around 50% while for ND-Tree it is around 30%.

82 CHAPTER 3. NEW ARCHIVES

φdom Archive Number of Time
comparisons (ms)

0

AVL-Archive 12 2
NDR*-Archive 73 +500% 16 +558%

ND-Tree 101 +735% 23 +858%
Sorted list 12 64 +2,558%

1

AVL-Archive 9 4
NDR*-Archive 43 +405% 19 +390%

ND-Tree 70 +711% 26 +579%
Sorted list 9 64 +1,584%

10

AVL-Archive 6 9
NDR*-Archive 19 +242% 35 +278%

ND-Tree 44 +677% 55 +502%
Sorted list 6 73 +689%

100

AVL-Archive 5 67
Sorted list 5 146 +117%

NDR*-Archive 15 +189% 176 +162%
ND-Tree 40 +697% 347 +417%

1000

AVL-Archive 5 629
Sorted list 5 923 +47%

NDR*-Archive 14 +176% 1,506 +140%
ND-Tree 40 +706% 3,241 +416%

(a) ε = 5%, Nnd = 10000

φdom Archive Number of Time
comparisons (ms)

0

AVL-Archive 15 19
NDR*-Archive 86 +493% 107 +474%

ND-Tree 125 +763% 145 +682%
Sorted list 15 1,523 +8,090%

1

AVL-Archive 10 25
NDR*-Archive 50 +412% 128 +405%

ND-Tree 82 +739% 167 +559%
Sorted list 10 1,522 +5,892%

10

AVL-Archive 6 63
NDR*-Archive 21 +250% 232 +270%

ND-Tree 48 +710% 343 +447%
Sorted list 6 1,569 +2,398%

100

AVL-Archive 5 356
NDR*-Archive 15 +191% 931 +161%

ND-Tree 41 +713% 1,761 +394%
Sorted list 5 1,950 +447%

1000

AVL-Archive 5 3,217
Sorted list 5 5,845 +82%

NDR*-Archive 14 +183% 8,120 +152%
ND-Tree 41 +721% 16,454 +411%

(b) ε = 5%, Nnd = 50000

φdom Archive Number of Time
comparisons (ms)

0

AVL-Archive 12 3
NDR*-Archive 73 +501% 16 +486%

ND-Tree 99 +719% 23 +714%
Sorted list 12 62 +2,129%

1

AVL-Archive 8 4
NDR*-Archive 42 +448% 19 +428%

ND-Tree 65 +749% 25 +606%
Sorted list 8 63 +1,650%

10

AVL-Archive 4 8
NDR*-Archive 16 +316% 29 +282%

ND-Tree 35 +803% 46 +508%
Sorted list 4 68 +800%

100

AVL-Archive 3 46
Sorted list 3 115 +152%

NDR*-Archive 11 +263% 128 +180%
ND-Tree 31 +879% 251 +448%

1000

AVL-Archive 3 414
Sorted list 3 582 +41%

NDR*-Archive 11 +251% 1,072 +159%
ND-Tree 30 +891% 2,318 +460%

(c) ε = 25%, Nnd = 10000

φdom Archive Number of Time
comparisons (ms)

0

AVL-Archive 15 19
NDR*-Archive 86 +493% 114 +502%

ND-Tree 125 +762% 141 +642%
Sorted list 15 1,516 +7,881%

1

AVL-Archive 9 21
NDR*-Archive 48 +451% 124 +501%

ND-Tree 77 +782% 154 +648%
Sorted list 9 1,521 +7,282%

10

AVL-Archive 4 47
NDR*-Archive 18 +329% 189 +306%

ND-Tree 38 +830% 272 +483%
Sorted list 4 1,555 +3,237%

100

AVL-Archive 3 252
NDR*-Archive 12 +272% 718 +185%

ND-Tree 31 +889% 1,306 +419%
Sorted list 3 1,803 +617%

1000

AVL-Archive 3 2,079
Sorted list 3 4,135 +99%

NDR*-Archive 11 +259% 5,617 +170%
ND-Tree 31 +912% 11,524 +454%

(d) ε = 25%, Nnd = 50000

Table 3.2 – Performance of archives for p = 2.

3.3. EXPERIMENTS 83

φdom Archive Number of Time
comparisons (ms)

0 NDR*-Archive 111 +12% 32
ND-Tree 99 43 +33%

1 NDR*-Archive 78 46
ND-Tree 82 +5% 63 +36%

10 NDR*-Archive 48 140
ND-Tree 70 +46% 241 +72%

100 NDR*-Archive 37 1,003
ND-Tree 68 +83% 2,200 +120%

1000 NDR*-Archive 33 9,744
ND-Tree 70 +110% 25,690 +164%

(a) ε = 5%, Nnd = 10000

φdom Archive Number of Time
comparisons (ms)

0 NDR*-Archive 112 +12% 40
ND-Tree 101 47 +18%

1 NDR*-Archive 67 47
ND-Tree 68 59 +25%

10 NDR*-Archive 31 92
ND-Tree 43 +41% 154 +67%

100 NDR*-Archive 23 523
ND-Tree 40 +78% 1,198 +129%

1000 NDR*-Archive 21 4,417
ND-Tree 42 +102% 12,064 +173%

(b) ε = 5%, Nnd = 50000

φdom Archive Number of Time
comparisons (ms)

0 NDR*-Archive 160 +12% 279
ND-Tree 142 328 +17%

1 NDR*-Archive 102 351
ND-Tree 103 435 +24%

10 NDR*-Archive 50 906
ND-Tree 75 +49% 1477 +63%

100 NDR*-Archive 37 6,176
ND-Tree 72 +94% 13,823 +124%

1000 NDR*-Archive 34 57,559
ND-Tree 73 +113% 146,893 +155%

(c) ε = 25%, Nnd = 10000

φdom Archive Number of Time
comparisons (ms)

0 NDR*-Archive 159 +12% 274
ND-Tree 142 319 +17%

1 NDR*-Archive 90 297
ND-Tree 88 371 +25%

10 NDR*-Archive 35 510
ND-Tree 49 +40% 886 +74%

100 NDR*-Archive 23 2,549
ND-Tree 43 +87% 6,248 +145%

1000 NDR*-Archive 22 23,170
ND-Tree 44 +103% 62,815 +171%

(d) ε = 25%, Nnd = 50000

Table 3.3 – Performance of archives for p = 3.

φdom Archive Number of Time
comparisons (ms)

0 NDR*-Archive 169 50
ND-Tree 145 -14% 65 +30%

1 NDR*-Archive 143 86
ND-Tree 131 109 +27%

10 NDR*-Archive 127 461
ND-Tree 141 +11% 659 +43%

100 NDR*-Archive 129 4,288
ND-Tree 173 +34% 8,087 +89%

1000 NDR*-Archive 112 42,338
ND-Tree 192 +72% 104,332 +146%

(a) ε = 5%, Nnd = 10000

φdom Archive Number of Time
comparisons (ms)

0 NDR*-Archive 295 +23% 472
ND-Tree 239 554 +18%

1 NDR*-Archive 227 737
ND-Tree 214 928 +26%

10 NDR*-Archive 190 3,649
ND-Tree 223 +18% 5,833 +60%

100 NDR*-Archive 196 41,979
ND-Tree 262 +33% 78,857 +88%

1000 NDR*-Archive 25 434,130
ND-Tree 24 908,101 +109%

(b) ε = 5%, Nnd = 50000

φdom Archive Number of Time
comparisons (ms)

0 NDR*-Archive 181 +19% 62
ND-Tree 152 72 +15%

1 NDR*-Archive 126 79
ND-Tree 123 102 +30%

10 NDR*-Archive 82 231
ND-Tree 103 +26% 397 +71%

100 NDR*-Archive 79 1,908
ND-Tree 114 +45% 4,071 +113%

1000 NDR*-Archive 84 22,351
ND-Tree 127 +51% 52,605 +135%

(c) ε = 25%, Nnd = 10000

φdom Archive Number of Time
comparisons (ms)

0 NDR*-Archive 293 +20% 511
ND-Tree 244 575 +12%

1 NDR*-Archive 188 639
ND-Tree 177 772 +21%

10 NDR*-Archive 100 1,599
ND-Tree 124 +24% 2,603 +63%

100 NDR*-Archive 89 11,585
ND-Tree 127 +42% 24,626 +113%

1000 NDR*-Archive 9 148,460
ND-Tree 11 +27% 329,107 +122%

(d) ε = 25%, Nnd = 50000

Table 3.4 – Performance of archives for p = 4.

84 CHAPTER 3. NEW ARCHIVES

φdom Archive Number of Time
comparisons (s)

0 NDR*-Archive 207 +10% 0.07
ND-Tree 188 0.08 +29%

1 NDR*-Archive 180 0.12
ND-Tree 166 0.14 +23%

10 NDR*-Archive 212 +20% 0.80
ND-Tree 177 0.94 +18%

100 NDR*-Archive 305 +26% 12
ND-Tree 242 15 +20%

1000 NDR*-Archive 290 153
ND-Tree 290 220 +43%

(a) ε = 5%, Nnd = 10000

φdom Archive Number of Time
comparisons (s)

0 NDR*-Archive 436 +30% 0.73
ND-Tree 335 0.83 +14%

1 NDR*-Archive 352 +17% 1.23
ND-Tree 302 1.45 +18%

10 NDR*-Archive 416 +21% 9.10
ND-Tree 344 11.47 +26%

100 NDR*-Archive 588 +26% 169
ND-Tree 467 204 +17%

1000 NDR*-Archive 46 200
ND-Tree 49 275 +37%

(b) ε = 5%, Nnd = 50000

φdom Archive Number of Time
comparisons (s)

0 NDR*-Archive 240 +12% 0.07
ND-Tree 214 0.09 +29%

1 NDR*-Archive 201 0.11
ND-Tree 205 0.16 +40%

10 NDR*-Archive 183 0.58
ND-Tree 222 +21% 0.95 +64%

100 NDR*-Archive 255 9
ND-Tree 305 +20% 17 +84%

1000 NDR*-Archive 319 149
ND-Tree 367 +15% 271 +81%

(c) ε = 25%, Nnd = 10000

φdom Archive Number of Time
comparisons (s)

0 NDR*-Archive 469 +28% 0.74
ND-Tree 367 0.86 +17%

1 NDR*-Archive 351 +12% 1.1
ND-Tree 313 1.4 +27%

10 NDR*-Archive 242 5
ND-Tree 288 +19% 8 +67%

100 NDR*-Archive 306 70
ND-Tree 357 +17% 123 +77%

1000 NDR*-Archive 38 1,245
ND-Tree 36 1,887 +52%

(d) ε = 25%, Nnd = 50000

Table 3.5 – Performance of archives for p = 5.

Note that the RAM utilization of both structures is, in average over all tested instances, linear in the number
of solutions stored.

3.3.4 Experiments on PLS

The second bench of experiments tests the use of archives inside PLS, applied to MOTSP. As previously
noted in Section 2.2.3.5, the quality of the starting solution set is of prime importance for the convergence
speed of PLS. Thus, instead of producing a starting set of solutions randomly generated, we follow the 2PPLS
framework (Algorithm 7) which is standard nowadays:

• We first generate an initial approximation of the efficient set by solving a number of single-objective
TSP through a linear aggregation of the objectives and a pre-defined set of weights using MDW [Steuer,
1986]. Each single-objective TSP is optimized using the chained Lin-Kernighan heuristic [Applegate
et al., 2003]. Then we start PLS from this initial set of solutions.

• The neighborhood used in PLS is a 2-opt with complete exploration strategy and candidate lists, such
that an edge is candidate only if it composes a solution of the starting set of PLS.

Let us first introduce the MOTSP instances considered, then describe the experimental methodology and
the different archives tested.

3.3. EXPERIMENTS 85

 10

 20

 30

 40

 50

 2 3 4 5

%
 o

f
a
cc

e
p

te
d

 c
a
n

d
id

a
te

s

Number of objectives

(a) Evolution of the proportion
of accepted candidates.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 3 4 5

N
b

.
o
f

co
m

p
a
ri

so
n

s
(n

o
rm

a
liz

e
d

)

Number of objectives

NDR*-Archive - rejected candidates
NDR*-Archive - accepted candidates

ND-Tree - rejected candidates
ND-Tree - accepted candidates

(b) Evolution of the number of dominance comparisons
in NDR*-Archive and ND-Tree.

Figure 3.18 – Evolution of the proportion of accepted candidates (a) and number of dominance comparisons
in NDR*-Archive and ND-Tree (b) in function of the number of objectives (Nnd = 10000, φdom = 10,
ε = 5%).

3.3.4.1 Benchmark instances

The benchmark is composed of 240 (= 3× 4× 20) MOTSP instances of 3 different sizes n for each number
of objectives p = 2, ..., 5. Each instance has been generated with the same construction processes as in the
literature ([Reinelt, 1991,Lust and Jaszkiewicz, 2010]):

• An instance is composed of p single-objective Euclidean instances

• For each objective, the coordinates of each city are integers that are uniformly and independently
generated in the range [0; 3163], and the costs between the edges correspond to the Euclidean distance
between two cities on the plane.

For each combination of size and number of objectives, 20 instances are randomly generated.

Note that the size of the instances has been substantially reduced according to the number of objectives
because the number of incomparable points generally increase significantly with a growing number of objec-
tives.

3.3.4.2 Experimental methodology and results

As indicated in Section 2.2.3.5, two sub-versions of PLS have been proposed:

• the original version (without local archive);

• the version with local archive.

We propose to compare these two sub-versions, as to our knowledge, it has never been done and might be
interesting as we will see. We also intend to compare different combinations of archives. We considered as
local archives the sorted list for p = 2, and the simple list with Move-to-Front heuristic (denoted List-MF)
for p ≥ 3.

As main archives, we compared:

86 CHAPTER 3. NEW ARCHIVES

n |Xall| φdom Archive Local archive Number of PLS time
comparisons (s)

100 1730 494

SAAVLA - 4.0 +62% 0.13
AVL-Archive - 5.0 +106% 0.13
AVL-Archive Sorted list 2.5 0.14 +14%
SAAVLA Sorted list 2.5 0.14 +15%
Sorted list Sorted list 2.5 0.14 +15%
Sorted list - 4.8 +96% 0.15 +16%
SAAVLA AVL-Archive 2.4 0.15 +20%
SANDRA - 5.5 +123% 0.15 +21%

AVL-Archive AVL-Archive 2.5 0.15 +22%
SANDRA Sorted list 3.3 +33% 0.16 +23%

NDR*-Archive Sorted list 4.1 +66% 0.16 +24%
ND-Tree Sorted list 5.8 +138% 0.16 +30%

NDR*-Archive - 23.4 +855% 0.20 +63%
ND-Tree - 43.7 +1,682% 0.31 +148%

500 33504 5262

SAAVLA - 3.8 +86% 29
SAAVLA AVL-Archive 2.0 30

AVL-Archive AVL-Archive 2.1 30
AVL-Archive Sorted list 2.1 31
SANDRA Sorted list 2.3 +10% 31
SAAVLA Sorted list 2.1 31

NDR*-Archive Sorted list 2.6 +26% 31
Sorted list Sorted list 2.1 32 +11%
ND-Tree Sorted list 4.0 +97% 32 +12%

AVL-Archive - 7.0 +244% 33 +14%
SANDRA - 4.6 +125% 33 +16%
Sorted list - 6.7 +229% 38 +30%

NDR*-Archive - 34.3 +1,577% 53 +84%
ND-Tree - 88.6 +4,232% 95 +229%

1000 113696 17105

SAAVLA AVL-Archive 2 311
SAAVLA - 3.8 +88% 312

AVL-Archive AVL-Archive 2 316
SANDRA Sorted list 2.1 326

AVL-Archive Sorted list 2.1 326
SAAVLA Sorted list 2 330

NDR*-Archive Sorted list 2.3 +17% 329
ND-Tree Sorted list 3.3 +67% 342 +10%
Sorted list Sorted list 2.1 353 +13%
SANDRA - 4.5 +124% 359 +15%

AVL-Archive - 7.9 +296% 375 +20%
Sorted list - 7.6 +282% 435 +40%

NDR*-Archive - 37.7 +1,790% 614 +97%
ND-Tree - 111 +5,467% 1,303 +319%

Table 3.6 – Comparison between the different archive types on PLS with p = 2.

3.3. EXPERIMENTS 87

n |Xall| φdom Archive Local archive Number of PLS time
comparisons (s)

50 93590 677

SANDRA - 14.9 18
SANDRA List-MF 27.3 +84% 30 +67%

NDR*-Archive List-MF 34.4 +132% 32 +77%
NDR*-Archive - 73.9 +397% 35 +93%

ND-Tree List-MF 53.1 +257% 43 +140%
ND-Tree - 168.1 +1,031% 84 +366%

75 374393 1303

SANDRA - 13.9 136
SANDRA List-MF 26.7 +92% 227 +67%

NDR*-Archive List-MF 33.2 +139% 241 +77%
NDR*-Archive - 83.0 +497% 293 +116%

ND-Tree List-MF 56.5 +307% 335 +147%
ND-Tree - 236.7 +1,603% 809 +496%

100 817820 1955

SANDRA - 12.7 432
SANDRA List-MF 24.0 +89% 687 +59%

NDR*-Archive List-MF 29.5 +132% 726 +68%
NDR*-Archive - 86.3 +579% 973 +125%

ND-Tree List-MF 52.1 +310% 1058 +145%
ND-Tree - 273.2 +2,049% 3297 +662%

Table 3.7 – Comparison between the different archive types on PLS with p = 3.

• only for p = 2: AVL-Archive, SAAVLA (self-adjusting version of AVL-Archive), the sorted list;

• for p ≥ 2: NDR*-Archive, SANDRA (self-adjusting version of NDR*-Archive), ND-Tree.

Results are shown in Tables 3.6 (p = 2), 3.7 (p = 3), 3.8 (p = 4), and 3.9 (p = 5). The first column of each
table shows the instance size n, the second column indicates the average size of the final approximation set
Xall found, the third column indicates the proportion of dominated points φdom, computed as the average
number of dominated solutions presented to the archive divided by the number of (potentially) non-dominated
points |Xall|, the fourth column indicates the main archive used, next are displayed: the local archive used,
the number of dominance comparisons, finally the execution time of PLS.

Overall, for p = 2, results are pretty homogeneous in terms of computational time and number of comparisons
when a local archive is used. More precisely, better performance are obtained by using a local archive, except
for SAAVLA which performs similarly with or without it.

Globally, AVL-Archive and SAAVLA performs slightly better than the sorted list (with local archive), the
latter being around 10-15% slower. Given these results, we tested AVL-Archive as main and local archive,
and found better results than using the sorted list as local archive.

Finally, NDR*-Archive and SANDRA obtain slightly better results than ND-Tree with local archive, and
similar or better results than the sorted list with local archive. ND-tree without local archive is completely
outperformed by the other archives.

For p ∈ {3, 4}, SANDRA without local archive is clearly the most effective combination, followed by SANDRA
with local archive and NDR*-Archive also with local archive. As usual, ND-Tree without local archive is
outperformed by any other archive, and its version with local archive is approximately 150% slower than
SANDRA. Concerning the number of comparisons, SANDRA with or without local archive outperforms the
other archives.

For p = 5, SANDRA is still better than the other archives, but slightly better performance is obtained by
using a local archive. The second best archive is still NDR*-Archive (with local archive). ND-Tree with local

88 CHAPTER 3. NEW ARCHIVES

n |Xall| φdom Archive Local archive Number of PLS time
comparisons (s)

20 50369 193

SANDRA - 60 9
SANDRA List-MF 67 +11% 12 +30%

NDR*-Archive List-MF 102 +69% 15 +64%
NDR*-Archive - 169 +180% 18 +97%

ND-Tree List-MF 139 +130% 19 +112%
ND-Tree - 266 +342% 31 +239%

25 187127 311

SANDRA - 64 60
SANDRA List-MF 73 +14% 79 +32%

NDR*-Archive List-MF 119 +86% 105 +76%
ND-Tree List-MF 168 +163% 138 +131%

NDR*-Archive - 222 +246% 143 +141%
ND-Tree - 370 +477% 251 +322%

30 446172 432

SANDRA - 63 205
SANDRA List-MF 78 +20% 280 +36%

NDR*-Archive List-MF 132 +89% 389 +90%
ND-Tree List-MF 190 +162% 505 +146%

NDR*-Archive - 261 +253% 575 +180%
ND-Tree - 446 +488% 989 +383%

Table 3.8 – Comparison between the different archive types on PLS with p = 4.

n |Xall| φdom Archive Local archive Number of PLS time
comparisons (s)

10 1790 57

SANDRA - 87 +26% 0.11
SANDRA List-MF 70 0.12

NDR*-Archive List-MF 87 +25% 0.12
NDR*-Archive - 138 +99% 0.14 +22%

ND-Tree List-MF 111 +59% 0.18 +58%
ND-Tree - 198 +185% 0.26 +132%

15 81523 150

SANDRA List-MF 188 36
SANDRA - 260 +38% 41 +14%

NDR*-Archive List-MF 291 +55% 45 +26%
ND-Tree List-MF 307 +64% 52 +46%

NDR*-Archive - 547 +192% 76 +112%
ND-Tree - 596 +218% 95 +164%

20 480987 242

SANDRA List-MF 236 505
SANDRA - 307 +30% 539

NDR*-Archive List-MF 404 +71% 662 +31%
ND-Tree List-MF 438 +85% 710 +41%

NDR*-Archive - 774 +227% 1041 +106%
ND-Tree - 899 +280% 1360 +170%

Table 3.9 – Comparison between the different archive types on PLS with p = 5.

3.4. CONCLUSION 89

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2 3 4 5

N
o
rm

a
liz

e
d

 t
im

e

Number of objectives

SANDRA
SANDRA+la
NDR*-A+la
ND-Tree+la

Figure 3.19 – Evolution of the computational time of NDR*-Archive and ND-Tree for PLS in function of the
number of objectives (“la” stands for local archive).

archive is approximately 50% slower than SANDRA. The number of comparisons is still at the advantage of
SANDRA.

Figure 3.19 summarizes the results by comparing the computational time of SANDRA, and NDR*-archive
and ND-Tree with local archive in function of p.

3.4 Conclusion

We proposed two new archives, AVL-Archive specialized in the bi-objective case, and NDR*-Archive for the
general case. Both structures are self-balancing trees and have two versions: a general version suited for
any multi-objective optimization task; and a self-adjusting version, especially designed if a presumption of
temporal and spatial locality exists between the solutions presented to the archive.

These archives have been experimentally tested and compared to other known state-of-the-art archives on a
large benchmark of instances simulating the generation of points of a MO meta-heuristic, and inside a PLS
for MOTSP up to 5 objectives.

AVL-Archive outperforms all the other archives in the bi-objective case on the artificial benchmark tested
and its self-adjusting version performs slightly better than the sorted list when used in PLS.

NDR*-Archive performs better than competitors in the general case, particularly when p ≤ 4 and the
number of dominated points is larger than the number of non-dominated points. The self-adjusting version
of NDR*-Archive (SANDRA) is much more effective than competitors when used in PLS, especially for
p = 3, 4.

We hope that these two archives and their self-adjusting versions could be useful for future meta-heuristics,
particularly those using PLS, MO dynamic programming or search zones-based methods.

Concerning the perspectives of NDR*-Archive, one could keep sorted the children of an internal node (or
the solutions of a leaf) using their Hilbert key like in [Kamel and Faloutsos, 1993] (or any key provided by a
space-filling curve, like the Peano curve). Like AVL-Archive which uses specific properties of the bi-objective
case, it might be interesting to use the specific properties of objective spaces of fixed dimensions p = 3, 4
highlighted and practically applied in [Fonseca et al., 2006] and [Guerreiro et al., 2012]. More researches
seem necessary to improve the efficiency of NDR*-Archive for p ≥ 5. For example, a new split or even a
new procedure detecting efficiently if a candidate and the solutions in the archive are incomparable could be
necessary to obtain better results.

90 CHAPTER 3. NEW ARCHIVES

One possible improvement of AVL-Archive is to use splay moves [Sleator and Tarjan, 1985] to rearrange the
tree so that the cache node is placed at the root of the tree. However, this modification could make the tree
not balanced anymore.

Chapter 4

New optimization methods

This chapter proposes a number of new optimization methods and improvements of existing methods to
tackle more efficiently MOCO problems. First are suggested some modifications of SO optimizers to improve
their performance on MOCO problems. Based on these suggestions, Aggregation-based NMCS (A-NMCS) is
a new version of NMCS especially designed for MOCO. Second, a more adaptive and generalized version of
MDW called Adaptive MDW (A-MDW) is presented. Third, we introduce Partitioned Pareto Local Search
(P-PLS) which aims at speeding-up PLS-VND. Then, we propose a new MO meta-heuristic called 2-Phase
Iterated Pareto Local Search with Decomposition (2PIPLS/D). Finally, a new system based on the ε-archive
concept is presented.

91

92 CHAPTER 4. NEW OPTIMIZATION METHODS

Introduction

First, Section 4.1 suggests a number of improvements for SO optimizers and a new version of NMCS adapted
to MOCO, Aggregation-based Nested Monte Carlo Search (A-NMCS). Second, Section 4.2 proposes Adap-
tive Maximally Dispersed set of Weights (A-MDW), a more adaptive and generalized version of MDW.
Third, Section 4.3 introduces Partitioned Pareto Local Search (P-PLS), a method consisting in reducing
the computational overhead of PLS. Then, Section 4.4 proposes 2-Phase Iterated Pareto Local Search with
Decomposition (2PIPLS/D), a MO meta-heuristic based on the concepts of 2-Phase PLS, Decomposition
methods and IPLS and combining A-MDW, P-PLS and the suggested improvements for SO optimizers.
Section 4.5 presents a methodology to bound the size of the generated approximation set while guaranteeing
a good distribution in the objective space of the points generated. Finally, we summarize the chapter.

4.1 Single-objective optimizers: improvements for MOCO

We saw that state-of-the-art MOmeta-heuristics presented in Section 2.2 often optimize aggregation functions
during their optimization process. We are particularly interested by weighted sum aggregations, as SO
optimizers are directly able to solve the related problem. Indeed, efficient domain-specific SO optimizers
which have already proved their reliability are generally available, even for hard problems. This section
suggests some simple modifications on SO optimizers to greatly improve their ability for finding efficient
solutions of MOCO problem instances. There are three main suggestions:

1. The first suggestion is to systematically start/guide the search of the SO optimizer from an already found
solution, if this option is made available by the SO optimizer or even simple modifications in implementation
can make it possible. In fact, this option is often either available or implementable: naturally in local search
methods (see [Paquete and Stützle, 2003] for example), but also in construction methods, like Monte Carlo
Search methods as we will see later in this section. The aim is to start/guide the search process from a good
quality solution instead of a randomly greedily generated one.

2. The second suggestion proposes the application of data perturbation on the cost function of the addressed
weighted-sum problem. In fact, by optimizing weighted sum problems, the SO optimizer tends to focus its
search toward supported solutions. Applying data perturbation on the cost function modifies the search
direction of the SO optimizer, and potentially directs the search on any type of solutions (either supported
or non-supported).

As previously indicated in Section 2.2.3, data perturbation has been introduced in MOCO optimization
in [Lust and Teghem, 2010] for bi-objective TSP, but has not been reused after this paper, probably because
it requires setting 3 parameters. We propose a simpler version of data perturbation (initially introduced in
our work [Cornu et al., 2017]) which needs a single parameter.

Given a weight λ ∈ Λ0 and a small real δ > 0 controlling the maximum variation of the noise called data
perturbation coefficient, data perturbation generates from the MO cost function c : E → Rp the new SO
aggregated and perturbed cost function cλ,δ : E → R such that:

cλ,δ(e) = ν×
p∑
j=1

λjcj(e) , ∀e ∈ E

where ν ∼ U(1− δ, 1 + δ) is a real number taken from a uniform distribution in the range [1− δ, 1 + δ]. The
higher δ, the larger the perturbation is. Once perturbation has been performed, the SO optimizer solves the

4.2. ADAPTIVE MAXIMALLY DISPERSED SET OF WEIGHTS 93

data perturbed weighted sum problem λf δ(·) derived from cλ,δ. Naturally, λf δ(·) with δ = 0 corresponds to
a classical (non-data perturbed) weighted sum problem: λf0(·) = λf(·), therefore λf δ(·) is a generalization
of λf(·).

3. The last suggestion is, to our knowledge, a novel proposition (initially introduced in our work [Cornu
et al., 2017]) which consists in memorizing all relevant generated solutions in an archive during the whole
run of a SO optimizer, instead of returning the best found solution for the addressed weighted-sum problem.
The idea behind this suggestion is that, in general a SO optimizer finds several different solutions during its
optimization process. While these solutions might be of lowest quality than the best found solution for the
addressed weighted-sum problem, they could be efficient for the MOCO problem. This suggestion involves
minor (and non-problem specific) modifications on the SO optimizer, by contrast it enables a much larger
exploration of the search space of the MOCO problem. As an example, if the SO optimizer is an ILS, then
the idea is to memorize in an archive all local optima obtained after each LS descent phase.

4.1.1 Aggregation-based Nested Monte Carlo Search

Let us introduce a new version of NMCS called Aggregation-based Nested Monte Carlo Search (A-NMCS)
implementing the three suggestions presented above for SO optimizers. A-NMCS is described in pseudo-code
by Algorithm 27 and works like NMCS with three differences (indicated with red color):

1. It optimizes a data perturbed weighted sum problem λf δ(·), δ ≥ 0.

2. The first call of A-NMCS can take as input parameter a sequence of actions seqbest and its related
solution xbest. This allows the highest level of A-NMCS to follow, from the very beginning of the
search, a sequence previously found by another run of A-NMCS, typically optimizing another but very
similar data perturbed weighted sum problem, such that the starting sequence it provides is of good
quality for both problems.

3. A global archive Xall is maintained and any new solution generated by random simulations is presented
to Xall.

4.2 Adaptive Maximally Dispersed set of Weights

This section presents a new initialization procedure for any MO meta-heuristic, aiming at generating a
starting approximation of the efficient set. It uses a concept extensively used in initialization phases of a
number of meta-heuristics described in Section 2.2, in particular in the first phase of 2-phase PLS methods
(2PPLS and TP+PLS) or during the initialization of methods based on decomposition (MOEA/D and
MoMad): first a number of weights are generated, then the corresponding weighted sum problems are solved
with a SO optimizer, and the generated solutions are memorized in an archive. While an efficient and
problem-specific SO optimizer is mandatory to generate good quality points towards the non-dominated set,
the diversification of the weights in the weight space is fundamental as it allows to generate points in the
objective space well dispersed along the non-dominated set. We are interested in the second point.

The new method we introduce, called Adaptive Maximally Dispersed set of Weights (A-MDW), proposes to
generalize MDW and make it more adaptive.

94 CHAPTER 4. NEW OPTIMIZATION METHODS

Algorithme 27 : A-NMCS

Input : level, data perturbed weighted sum problem λf δ(·), starting state sstart, best sequence of
actions seqbest, best solution xbest

Output : seqbest, xbest, global archive Xall

1 s← sstart
2 if level = 0 then
3 (seqbest, xbest)←RandomSimulation(s)
4 return (seqbest, xbest, {xbest})
5 Xall ← ∅
6 i← 1
7 repeat
8 foreach a ∈ Actions(s) do
9 s←PerformAction(a, s)

10 (seq, x,X)←A-NMCS(level − 1, λf δ(·), s, none, none) // Like in (vanilla) NMCS, the best
seq. and the best sol. are not given to lower levels.

11 s←UnperformAction(a, s)
12 Xall ← AddAll(X, Xall)
13 if λf δ(x) < λf δ(xbest) then
14 xbest ← x
15 seqbest ← seq

16 abest ←seqbest[i++]
17 s←PerformAction(abest, s)
18 until IsTerminal(s);
19 return (seqbest, xbest, Xall)

4.2.1 Motivations

MDW is largely used in the MO meta-heuristic research field as it is a simple and easily implementable
method which generates well dispersed weights in the weight space. Unfortunately, MDW has two main
drawbacks:

1. The parameter D, controlling the number of weights generated, has to be fixed. The value of this
parameter is difficult to set because it depends on the instance characteristics of the addressed problem,
like the number of objectives, the instance size and more complex features depending on the instance
treated. In general, the user will set experimentally a D value for each tested instance of the addressed
problem, which is a time-consuming offline task and mostly can not be the best setting.

2. A number of weights generated by MDW contain a 0 to some of their components, and thus do not
evaluate the related objectives. This phenomenon is exacerbated as the number of objectives grows.

A-MDW circumvents the two issues of MDW depicted above by:

1. Replacing the original parameter D by a positive real α called the minimum acceptance rate threshold.
The idea is to iteratively generate equally dispersed weights like in MDW with an increasing parameter
number D = 1, 2, ... controlling the number and the compactness of the generated weights, and stop
once the solver does not generate enough new non-dominated solutions so that continuing to optimize
weighted sum problems is no longer efficient.

4.2. ADAPTIVE MAXIMALLY DISPERSED SET OF WEIGHTS 95

•

•

•

•

•

•

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

(1
2 ,

1
2 , 0)

(0, 1
2 ,

1
2)

(1
2 , 0,

1
2)

Figure 4.1 – Edgewise Simplex subdivision of Λ0 with b = 2 (p = 3).

2. Contrary to MDW which generates the weights only from Λ0, A-MDW can generate the weights from
any simplex and thus generating weights with component values larger than or equal to ε ≥ 0.

4.2.2 Simplex subdivision

A-MDW uses as routine the Edgewise Simplex Subdivision of Gonçalves et al. [Gonçalves et al., 2006]
to generate its weights. Given a (p-1)-dimensional simplex Λ, the method subdivides Λ into bp−1 (p-1)-
dimensional simplices with same volume and shape characteristics. The so-called base b ≥ 0 is the integer
number by which an edge of the simplex is subdivided. Next we describe the procedure with any b, but we
will use it only with b = 2. The method works as follows: given Λ, each edge of the simplex is cut in b parts;
then Λ is subdivided into bp−1 smaller simplices, such that each pair of smaller simplices is either disjoint or
meets along a common face [Edelsbrunner and Grayson, 2000]. The decomposition process is independent
of the input simplex. Figure 4.1 describes the subdivision of Λ0 with b = 2 and for p = 3, where 23−1 = 4
new simplices are generated.

Algorithm 28 shows how the method works to subdivide a simplex Λ with any base b in a p-dimensional space.
It returns the list LΛ of new simplices resulting of the subdivision of Λ. Although concise, the algorithm may
seem pretty hard to understand at first sight, thus we propose an illustrated example in Figure 4.2 detailing
the subdivision of a simplex with b = 2 in a tri-dimensional space (p = 3).

We assume that Λ = 4(λ1, ..., λp), where λj ∈ Rp,j = 1, ..., p are vertices of Λ. The algorithm builds the
bp−1 new simplices one at a time (loop iterating on s, line 3).

Let λ̄s,1, ..., λ̄s,p ∈ Rp be the future vertices of the sth simplex to build (line 4), s ∈ {1, ..., bp−1}. The
fundamental principle of the algorithm is that the vertices λ̄s,j are built simultaneously (lines 5-14) such that
the value assigned to each λ̄s,j is a unique linear combination of b vertices of Λ, j = 1, ...p:

λ̄s,j =

b−1∑
i=0

λκ(s,i,j)

b
, j = 1, ...p

where κ(s, i, j) ∈ {1, ...p} is a so-called color, i.e. an index identifying a vertex of Λ. The values taken
by κ(s, i, j), i = 0, ..., b − 1, j = 1, ...p follow a so-called color scheme. A color scheme is a b × p matrix
K(s) = [κ(s, i, j)] such that each cell κ(s, i, j) ∈ {1, ...p} (i = 0, ..., b− 1, j = 1, ...p) is a color, and built such
that the colors are of increasing value and the columns are pairwise different in such a way that from column
j − 1 to column j, only one color is always increased by one.

A color scheme K(s) is created row-by-row starting from κ(s, 0, 1) = 1. To find out if the next entry will be
kept or increased by one, it is necessary to represent the integer number (s− 1) in base b with p− 1 digits:
xp−2...x0 (line 5). The values of the digits xp−j , j = 2, ..., p determine which row i of column j − 1 will be

96 CHAPTER 4. NEW OPTIMIZATION METHODS

+ + +

/2= /2= /2=

λ1 λ2 λ3

λ3 λ3 λ3

x1 = 0 x0 = 0

λ̄1,1 λ̄1,2 λ̄1,3

i = 0, 1

j = 2, 3

(a) 1st new simplex: s = 1⇒ (s− 1)10 = 010 = 002.

+ + +

/2= /2= /2=

λ1 λ2 λ2

λ2 λ2 λ3

x1 = 0

x0 = 1

λ̄2,1 λ̄2,2 λ̄2,3

i = 0, 1

j = 2, 3

(b) 2nd new simplex: s = 2⇒ (s− 1)10 = 110 = 012.

+ + +

/2= /2= /2=

λ1 λ1 λ2

λ2 λ3 λ3

x1 = 1

x0 = 0

λ̄3,1 λ̄3,2 λ̄3,3

i = 0, 1

j = 2, 3

(c) 3nd new simplex: s = 3⇒ (s− 1)10 = 210 = 102.

+ + +

/2= /2= /2=

λ1 λ1 λ1

λ1 λ2 λ3
x1 = 1 x0 = 1

λ̄4,1 λ̄4,2 λ̄4,3

i = 0, 1

j = 2, 3

(d) 4th new simplex: s = 4⇒ (s− 1)10 = 310 = 112.

•

•

•

•

•

•

λ2 = λ̄2,2

λ1 = λ̄4,1

λ3 = λ̄1,3

λ̄1,1 = λ̄3,2 = λ̄4,3

λ̄2,1 = λ̄3,1 = λ̄4,2

λ̄1,2 = λ̄2,3 = λ̄3,3

(e) The resulting subdivided simplex with the new
simplices.

Figure 4.2 – Illustration of the subdivision of a simplex with a base b = 2 and p = 3.

4.2. ADAPTIVE MAXIMALLY DISPERSED SET OF WEIGHTS 97

Algorithme 28 : SimplexSubdivision
Input : simplex to subdivide Λ, base b
Output : list of new simplices LΛ

1 Let Λ = 4(λ1, ..., λp)
2 LΛ← ∅
3 for s← 1, ..., bp−1 do
4 λ̄s,1, ..., λ̄s,p ← −→0
5 xp−2...x0 ← convert (s− 1) to base b
6 k ← 1
7 for i← 0, ..., b− 1 do
8 λ̄s,1 ← λ̄s,1 + λk

9 for j ← 2, ..., p do
10 if xp−j = i then
11 k ← k + 1
12 λ̄s,j ← λ̄s,j + λk

// normalization:
13 for j ← 1, ..., p do
14 λ̄s,j ← λ̄s,j/b

15 LΛ← LΛ ∪4(λ̄s,1, ..., λ̄s,p)
// returns the simplex resulting from the subdivision of Λ:

16 return LΛ

increased by one to generate the column j (lines 10-11); and such that the following row starts with the last
color in the preceding row, that is κ(s, i, 1) = κ(s, i− 1, p):

K(s) =

κ(s, 0, 1) = 1 κ(s, 0, 2) . . . κ(s, 0, p)

κ(s, 1, 1) = κ(s, 0, p) κ(s, 1, 2) . . . κ(s, 1, p)
.

κ(s, b− 1, 1) = κ(s, b− 2, p) κ(s, b− 1, 2) . . . κ(s, b− 1, p) = p

Finally, the jth column of K(s) defines the colors κ(s, i, j), i = 0, ..., b− 1 used to build λ̄s,j .

4.2.3 Design of A-MDW

The Edgewise Simplex Subdivision (with a base b = 2) is important for A-MDW as the vertices of the
simplices correspond to weights if the input simplex is included in the weight space Λ0. In addition, one can
subdivide the simplex Λ, then all the newly generated simplices, etc. and repeat the process several times.
We call this process an iterative simplex subdivision. As the Edgewise Simplex Subdivision is independent
of the input simplex, one can start an iterative simplex subdivision from any simplex. We are particularly
interested in starting an iterative simplex subdivision from a so-called ε-restricted weight space:

Λε := {λ ∈ Rp : λj ≥ ε, j = 1, ..., p,
p∑
j=1

λj = 1}, ε ≥ 0

By definition, Λε ⊆ Λ0 for any ε ≥ 0, and Λ0 = Λε with ε = 0. If ε > 0, then any weight λ generated by
an iterative simplex subdivision starting from Λε has strictly positive values in each objective. Figure 4.3
illustrates an ε-restricted weight space in the weight space.

98 CHAPTER 4. NEW OPTIMIZATION METHODS

•

•

•
•

•

•
ε

ε

ε

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

Figure 4.3 – An ε-restricted weight space in p = 3 s.t.
Λε = 4((1− 2ε, ε, ε), (ε, 1− 2ε, ε), (ε, ε, 1− 2ε)), ε > 0.

Let us now introduce the generalized MDW formula:

MDW(D, ε) := {λ = (λ1, ..., λp) : λ ∈ Λε, λj = ε+ d

D · (1− p · ε), d ∈ {0, ..., D}, j = 1, ..., p}

such that min
λa,λb∈Λε : λa 6=λb

p∑
j=1

∣∣∣λaj − λbj∣∣∣ = 2
D · (1− p · ε)

0 ≤ ε < 1
p

(4.1)

We can see that if ε = 0, then MDW(D, ε) = MDW(D).

Proposition 4.2.1. Applying an iterative simplex subdivision starting from Λε with base b = 2 and I
iterations, generates the same set of weights as MDW(2I−1, ε).

Proof. By construction, the set of weights provided by MDW(2I−1, ε) is equivalent to the set of weights
generated by an Edgewise Simplex Subdivision with b = 2I−1 starting from Λε [Edelsbrunner and Grayson,
2000,Gonçalves et al., 2006], which is itself equivalent to an iterative simplex subdivision with b = 2 and I
iterations.

Given a fixed ε ∈ [0; 1
p [and a number of iterations, Proposition 4.2.1 indicates that the weights generated

by an iterative simplex subdivision are equally dispersed and follow the same scheme of dispersion as the
generalized MDW.

The successive generation of weights provided by an iterative simplex subdivision is illustrated by Figure
4.4. Next we present in detail how our method A-MDW works.

A-MDW consists in applying an iterative simplex subdivision initially started from an ε-restricted weight
space, with base b = 2 and ε ∈ [0; 1

p [. At each iteration, the current simplices are subdivided, which
generates a number of new weights. For each weight, the corresponding weighted sum problem is optimized
and resulting solutions are stored in an archive. By construction, the new weights generated at a given
iteration are built such that the minimum distance between all the weights generated so far decreases, which
provides a set of weights more and more compact in the weight space. This leads to the generation in
the objective space of an approximation of the non-dominated set of increasing quality through successive
improvements. However, the improvement of quality induced by each iteration naturally tends to reduces
when the number of iterations grows. Therefore, it is necessary to regularly use an indicator which evaluates
the ability of the optimizer to improve the quality of the current approximation. As soon as the optimizer
does not improve sufficiently the indicator value, then the procedure is stopped. Concerning the indicator
to use, quality indicators, such as hypervolume or epsilon indicators, seem to be tools of choice for this task.
Unfortunately, these indicators induce strong computational overhead and thus can not be used in practice.

4.2. ADAPTIVE MAXIMALLY DISPERSED SET OF WEIGHTS 99

•

•

•

(a) 1st iteration.

•

•

•

•

•

•

(b) 2nd iteration.

•

•

•

•

•

•
•

•
•

•

•
•

•

•
•

(c) 3rd iteration.

Figure 4.4 – View in the weight space of weights generated by successive iterations of an iterative simplex
subdivision (p = 3, ε = 0).

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6

N
u

m
b

e
r

o
f

n
e
w

 w
e

ig
h

ts

Iteration

p=2
p=3
p=4
p=5

Figure 4.5 – Number of new weights generated by A-MDW in function of the number of objectives p and the
total number of iterations (y-axis in log-scale). The formula computing the number of new weights generated
at the Ith iteration in a p-dimensional weight space is

(
2I−1+p−1
p−1

)
−
(

2I−2+p−1
p−1

)
, I ≥ 2.

Instead, we propose a simple yet efficient method which consists in collecting statistics about the total
number of solutions generated by the optimizer and the total number of solutions accepted when presented
to the archive. Once the percentage of accepted solutions reaches the minimum acceptance rate threshold
α ∈ [0; 1] given as input parameter, then the optimizer is considered as inefficient, thus the process is
stopped. We might be tempted to check it out between two iterations of the iterative simplex subdivision
process only, unfortunately this option is not appropriate. Indeed, the total number of weights generated
grows exponentially fast in function of both the number of iterations and the number of objectives, as it
is equal to

(
2I−1+p−1
p−1

)
, where I is the number of iterations performed. Consequently, the number of new

weights generated at each iteration, and thus the number of weighted sum problems to optimize, also increases
exponentially. Figure 4.5 illustrates this behavior for p = 2, ..., 5 during 6 iterations of A-MDW.

Instead, it seems more appropriate to check if the percentage of accepted solutions reaches the threshold α
each time a weighted sum problem has been optimized. By considering this option, the procedure can be
stopped during any iteration while a number of new weighted sum problems will not be optimized. Therefore,
at each iteration, it is necessary to sort the new weights so as to prioritize the optimization of weighted sum
problems the most promising to provide a maximum of new solutions accepted in the archive (and thus
currently non-dominated). We thus propose to order the weights given the efficiency of the simplex they
belong to. The efficiency of a simplex corresponds to the sum of the number of accepted solutions provided
by the optimization of the weighted sum problems corresponding to the vertices of the simplex.

100 CHAPTER 4. NEW OPTIMIZATION METHODS

Initialization:
• main archive: Xall ← ∅
• generated weights: Lλall ← ∅
• current simplices: LΛ← {Λε}

Next weights: memorize in
Lλnew and Lλall all weights
(i.e. vertices) of simplices

from LΛ not already
present in Lλall

Is there
any λ ∈ Lλnew to

optimize?

Optimize λf(·)
starting from the

best solution of Xall

& update Xall

yes

Is the
acceptance rate

smaller than the min.
threshold?

yes

no

Sort simplices by
decreasing order of
their efficiency

no

Subdivision:
• subdivide all
simplices from LΛ
• reset LΛ with
all new simplices

Figure 4.6 – The A-MDW procedure.

4.3. PARTITIONED PARETO LOCAL SEARCH 101

A-MDW is described in pseudo-code by Algorithm 29 and in diagram by Figure 4.6. It takes as input param-
eters a SO optimizer, a minimum acceptance rate threshold α ∈ [0; 1], and a small real ε ∈ [0; 1

p [(typically
ε ≤ 10−3) for defining the input ε-restricted weight space from which the iterative simplex subdivision starts.
The method returns the list Lλall of all weights generated and an archive Xall of all incomparable solutions
generated. It maintains the list of current simplices LΛ (to be subdivided at the next iteration), initialized
with the ε-restricted weight space Λε.

The main loop works as follows. First, any vertex of all simplices memorized in LΛ which has not already been
considered is inserted in Lλall and Lλnew, the set of new weights. For each new weight, the corresponding
weighted sum problem is optimized with the SO optimizer. We assume that the optimizer may provide
several different solutions in output and is able to take a solution in input. Then the statistics concerning
the sum ηaccept of solutions accepted in the global archive Xall and the total sum ηtotal of solutions generated
by the optimizer are updated. If the rate ηaccept

ηtotal
has reached the minimum acceptance rate threshold α, then

the method stops and returns the set of all weights Lλall and the archive Xall.

Once all new weights have been considered, then the simplices stored in LΛ are sorted given their efficiency.
Finally, the simplices stored in LΛ are subdivided, then LΛ is reset with the new simplices. And the same
process can continue.

4.3 Partitioned Pareto Local Search

This section presents a new iterative method based on PLS-VND called Partitioned Pareto Local Search
(P-PLS). P-PLS consists in partitioning the archive to explore into a number of sub-archives, and building
for each one a restricted neighborhood structure used by PLS-VND. The partitioning is made only once at
initialization, and each sub-archive is made such that its solutions are neighbors in the objective space and
its initial size is limited to a maximum number of solutions (defined by the user). Figure 4.7 illustrates the
partitioning of an archive in a tri-objective space.

At each iteration of P-PLS, for each sub-archive, we extract the regularities found in the decision space
between its solutions and build a model from these regularities. Typically, the model may consist in a
statistical model or more simply a pool of rules on the elements composing the solutions. For example,
it might be interesting to detect if the same element is present in all solutions of a sub-archive, or on the
contrary, if some elements are completely absent from the sub-archive. The model is used to build a so-called
neighborhood restriction structure. A neighborhood restriction structure is a function R : N 7−→ N which
modifies a neighborhood structure N by reducing the search space of N in order to direct the search of
new solutions in a restricted but promising part of the neighborhood of a solution, and thus speeding-up
PLS-VND with a minimal reduction of quality of the generated approximation. For instance, if we keep the
example of the component present in all solutions of a sub-archive, it may be judicious to forbid or at least
to avoid new solutions without this component.

PLS-VND is then conducted from the archive to explore (corresponding to the union of the sub-archives).
During a PLS-VND run, the new solutions inherit the neighborhood restriction structure from their so-
called parent solution. A solution x parent of another solution x′ is a solution from which a LS move has
been performed and has led to the creation of x′. Once PLS-VND is terminated, the archive to explore
has been updated with new solutions, but not sub-archives, thus they are updated accordingly. Then the
neighborhood restriction structure of each sub-archiveXP is widened. A widening phase consists in rebuilding
a neighborhood restriction structure by considering in addition to XP , the solutions of sub-archives close
to XP in the objective space. A widening phase aims at enlarging the neighborhood restriction structure
and therefore increasing the search space exploration. Sub-archives used to build a neighborhood restriction
structure are called its sources. Figure 4.8 illustrates an example of widening phases centered on a sub-
archive.

102 CHAPTER 4. NEW OPTIMIZATION METHODS

Algorithme 29 : A-MDW
Input : SO optimizer SO-Optimizer, min. acceptance rate threshold α, real ε
Output : list of generated weights Lλall, global archive Xall

// Initialization:
1 ηtotal, ηaccept ← 0
2 Naccept : Rp −→ N // maps to each weight (corresponding to a weighted sum pb. optimized),

the number of solutions accepted in the archive
3 Lλall ← ∅
4 Xall ← ∅
5 LΛ← {Λε}
6 while true do
7 Lλnew ← ∅

// Next weights:
8 foreach Λ = 4(λ1, ..., λp) ∈ LΛ do
9 for j ← 1, ..., p do

10 if λj /∈ Lλall then
11 Lλall ← Lλall ∪ {λj}
12 Lλnew ← Lλnew ∪ {λj}

// Optimize weighted sum problems:
13 foreach λ ∈ Lλnew do

// Optimize λf(·):
14 x← arg min{λf(x) : x ∈ Xall}
15 X ←SO-Optimizer(λf(·), x)
16 Xall ←AddAll(X, Xall)

// Update statistics:
17 ηtotal ← ηtotal + |X|
18 Naccept[λ]← |{x ∈ X : x has been accepted in Xall}|
19 ηaccept ← ηaccept +Naccept[λ]

// Is the acceptance rate has reached the min. threshold?
20 if ηaccept < α× ηtotal then
21 return (Lλall, Xall)

// Sort simplices:
22 sort LΛ in decreasing order s.t. each simplex Λ = 4(λ1, ..., λp) ∈ LΛ has the following sorting key:

key(Λ) =
p∑
j=1

Naccept[λj]

23 LΛnext ← ∅
// Subdivide simplices:

24 foreach Λ ∈ LΛ do
25 LΛnext ← LΛnext∪ SimplexSubdivision(Λ, 2)

26 LΛ← LΛnext

4.3. PARTITIONED PARETO LOCAL SEARCH 103

Figure 4.7 – View in a tri-objective space of the partitioning of an archive into 32 sub-archives (tri-objective
TSP instance).

Figure 4.8 – Illustration of two widening phases related to a sub-archive (tri-objective TSP instance). The
figure distinguishes the sub-archive of interest (in red), its source (in blue) and all the other sub-archives (in
gray).

As it induces a computational overhead, we expect from widening of a neighborhood restriction structure that
it leads to an improvement of the quality of the corresponding sub-archive during the next PLS-VND run. If
no improvement of quality has been noted on a given sub-archive after a PLS-VND run, then this indicates
that the extra informations gathered on solutions from new sources was useless for PLS-VND to find new
solutions. Therefore, no more widening will be performed from its corresponding neighborhood restriction
structure and thus no solutions belonging to this sub-archive will be explored anymore. Consequently, the
widening of a given neighborhood restriction structure is performed only if its corresponding sub-archive has
generated at least one new non-dominated solution during the previous PLS-VND run.

Once the widened neighborhood restriction structure has been built for each sub-archive, PLS-VND is
conducted again from the archive to explore. During this new run, the (restricted) neighborhood of any new
solution (i.e. newly generated since the previous run) is completely explored; while for old solutions, only
newly accessible parts of the (restricted) neighborhood are explored.

This process of alternating PLS-VND with a widening phase at each iteration continues until a PLS-VND
run does not generate any new non-dominated solution.

The notion of widening is related to the concept of progressive enlargement of neighborhood implemented
in VND, and to the concept of progressive widening [Coulom, 2007] of MCTS, which consists in initially
restricting the search of MCTS to the most promising actions only, and accept an increasing number of
actions over time.

P-PLS is based on a fundamental assumption and a key observation:

1. P-PLS assumes the existence of global convexity. The concept of global convexity, introduced for
MOCO in [Borges and Hansen, 2002], is not convexity in the strict sense, but may be used to denote
the empirical observation that:

104 CHAPTER 4. NEW OPTIMIZATION METHODS

• efficient solutions of a MOCO problem instance are often concentrated in a small part of the
decision space;
• solutions neighbors in the objective space tend to be also neighbors in the decision space.

In theory, global convexity and related notions such as connectedness of efficient solutions [Ehrgott
and Klamroth, 1997] does not hold in general for a majority of classical MOCO problems [Ehrgott and
Klamroth, 1997,Gorski et al., 2006]. By contrast, in practice, meta-heuristics extensively exploit this
assumption with great success. For example, local search methods typically explore the search space
close to current solutions, therefore local search is naturally favored by a concentration of efficient solu-
tions; MO Estimation of Distribution Algorithms [Pelikan et al., 2006] build a statistical model which
detects regularities of solutions of a population and produce new comparable solutions, MO Genetic
Algorithms like Decomposition based methods [Zhang and Li, 2007] apply crossover on solutions close
in the objective space to produce new similar solutions in the decision space, etc.
Assuming the existence of global convexity tends to legitimate the general idea of P-PLS. Indeed, as
the solutions from a sub-archive are neighbors in the objective space, they are globally similar in the
decision space by global convexity assumption, therefore the regularities extracted from this population
might potentially be strong and thus useful for the efficiency of the search space reduction.

2. We observe in the literature that PLS is generally used with small neighborhood structures. As
examples:

• state-of-the-art methods for MOTSP use 2-opt [Lust and Teghem, 2010, Ke et al., 2014, Cornu
et al., 2017];
• for MO Multidimensional KP, a popular neighborhood move consists in removing a certain per-
centage of objects from the knapsack, then replace them by other objects. The percentage corre-
sponds to the size of the neighborhood. The current best method for this problem uses a small
(as admitted by the authors) neighborhood size of 2% [Ke et al., 2014];
• concerning MOQAP (see [Drugan and Thierens, 2010,Dubois-Lacoste et al., 2015] as examples),
the neighborhood move generally used consists in swapping the position of two facilities;
• similar observations can be made for the MO set covering problem [Lust and Tuyttens, 2014], and
the MO Flow-Shop Scheduling Problem [Dubois-Lacoste et al., 2013].

As pointed out in [Ke et al., 2014] and [Lust and Tuyttens, 2014] among other studies, large neigh-
borhood size induces strong computational overheads, thus only small neighborhood structures are
employed. By contrast, it is well known that increasing the size of a neighborhood drastically increases
the quality of results.
In P-PLS the computational resources saved by the search space reduction can be reallocated to explore
neighborhood of larger size.

P-PLS is described in diagram by Figure 4.9 and detailed in pseudo-code by Algorithm 30. P-PLS takes
the same input parameters as PLS-VND, with a small modification: we assume that the starting set X (to
explore) is an archive. As usual, Xall denotes the global archive. The other input parameters correspond
to the set of neighborhood structures (N1, ...,Nk) used by PLS-VND and two boolean defining the different
possible search strategies of PLS-VND: the first dominating exploration strategy already mentioned (pa-
rameter first-dominating), and the possibility of avoiding the exploration of the neighborhood of dominated
solutions (parameter explore-dominated) which is a new feature (initially introduced in our work [Cornu
et al., 2017]) we propose for PLS-VND and which will be discussed later. A last input parameter is the
maximum authorized initial size σ of a sub-archive. P-PLS returns the global archive Xall.

P-PLS manages a partition LP implemented as a set of parts. A part P ∈ LP is a tuple composed of:

4.3. PARTITIONED PARETO LOCAL SEARCH 105

Initialize partition:
• partition X into local archives
• build a number of parts P s.t.:
− X(P) is a sub-archive
− LS(P)← {P} is a set of sources
− R(P) is a neighborhood restriction
structure built from LS(P)

& insert P into the set of parts LP .

• run PLS-VND from archive X
with restricted neighborhood structs.
• let Xnew be the set of all newly
generated solutions

Is Xnew = ∅?
yes

Update partition:
• update X(P), ∀P ∈ LP
• for each active part P ∈ LP :
− enlarge LS(P) with nearby parts
− widen R(P) accordingly

no

Figure 4.9 – The P-PLS procedure.

Algorithme 30 : P-PLS
Input : set of neighborhood structures (N1, ...,Nk), boolean first-dominating, boolean

explore-dominated, maximum initial size of part σ, starting archive (to explore) X, global
archive Xall

Output : Xall

1 LP ←InitializePartition(σ, 1, X)
2 repeat
3 Xall ←PLS-VND((N1, ...,Nk), first-dominating, explore-dominated, X, Xall)
4 Xnew ← {x ∈ X : x has been generated at current iteration}
5 LP ← UpdatePartition(LP , Xnew)
6 until Xnew = ∅;
7 return Xall

106 CHAPTER 4. NEW OPTIMIZATION METHODS

• a sub-archive X(P) which is a subset of X;

• a set of parts called sources LS(P) ⊂ LP ; initially, the only source is P itself (LS(P) = {P} at first
call of PLS-VND);

• a neighborhood restriction structure R(P) built from the solutions of the sub-archives of the sources
LS(P).

such that X =
⋃

P∈LP
X(P). Each solution x ∈ X belongs to a unique sub-archive, and to any x is attached

an attribute P (x) indicating the part to which x is associated. This will allow to apply to the neighborhood
of x the relevant neighborhood restriction structure during PLS-VND.

P-PLS starts by partitioning the archive to explore X and creates the parts of the partition by calling the
InitializePartition procedure (Algorithm 31). At each iteration of the main loop of P-PLS (Algorithm
30), first PLS-VND (Algorithm 32) is conducted from X, then the UpdatePartition procedure (Algorithm
34) is called: it updates sub-archives with the set of new solutions Xnew found at this iteration and widens
neighborhood restriction structures. P-PLS stops once Xnew is empty and returns the global archive Xall.

Algorithme 31 : InitializePartition

Input : maximum initial size of part σ, index of split objective j, archive X
Output : set of partition LP

1 if |X| > σ then
2 sort X given the split objective j so that X = {x1, ..., x|X|}
3 X1 ← {x1, ..., xb|X|/2c}
4 X2 ← {xb|X|/2c+1, ..., x|X|}
5 LP1 ←InitializePartition(σ, (j mod p) + 1, X1)
6 LP2 ←InitializePartition(σ, (j mod p) + 1, X2)
7 return LP1

⋃
LP2

8 else
// |X| ≤ σ ⇒ Creation of a new part:

9 P ←new Part
10 X(P)← X
11 LS(P)← {P}
12 R(P)← BuildRestriction(X)
13 foreach x ∈ X(P) do
14 P (x)← P

15 return P

The InitializePartition procedure (Algorithm 31) is a recursive method which shares the same parti-
tioning process as a k-d tree [Bentley, 1975]. Each call consists in splitting the input archive in two subsets
of equal size by considering the values of solutions on a single objective. The method cycles over the split
objectives. As soon as the size of the input archive is lower than or equal to the maximum authorized size
of a part σ (passed in input), then a new part P is created: the sub-archive X(P) corresponds to the input
archive, the set of sources LS(P) is initialized with P itself, the neighborhood restriction structure R(P) is
then built from X(P). Finally, each solution of X(P) is associated to P . When the procedure terminates,
the whole set of parts LP is returned.

Concerning PLS-VND, we propose a novel option to the original method presented in Section 2.2.3.5. In
addition to the first dominating exploration strategy, we add the possibility not to explore the neighborhood

4.3. PARTITIONED PARETO LOCAL SEARCH 107

Algorithme 32 : PLS-VND [generalized]
Input : set of neighborhood structures (N1, ...,Nk), boolean first-dominating, boolean

explore-dominated, set of solutions to explore X, global archive Xall

Output : Xall

1 Xall ←AddAll(X, Xall)
2 j ← 1
3 while j ≤ k do
4 while X 6= ∅ do
5 Xnew ←PLS-iteration(Nj, first-dominating, explore-dominated, X, Xall)
6 foreach x ∈ X do j(x) = j;
7 if Xnew 6= ∅ then
8 j ← 1
9 X ← Xnew

10 j ← j + 1
11 X ← {x ∈ Xall : j(x) < j}
12 return Xall

of dominated solutions. Indeed, as previously indicated, as the PLS-VND uses a temporary archive to store
the solutions to explore, thus they are protected from a removal from the global archive Xall.

Algorithme 33 : PLS-iteration [generalized vanilla]
Input : neighborhood structure Nj , boolean first-dominating, boolean explore-dominated, set of

solutions to explore X, global archive Xall

Output : archive of new solutions Xnew

1 Xnew ← ∅
2 foreach x ∈ X do
3 if explore-dominated or x ∈ Xall then
4 foreach x′ ∈ R(P (x)) ◦ Nj (x) do
5 if f (x) � f (x′) then
6 if Add(x′, Xall) then
7 Add(x′, Xnew)
8 P (x′)← P (x)
9 if first-dominating and f (x′) ≤ f (x) then

10 break

11 return Xnew

Algorithms 32 and 33 present the new version of PLS-VND with two simple modifications (highlighted in
pseudo-code with red color) compared to the original version, consisting in:

1. The introduction of the input parameter explore-dominated, set to true if the exploration of the neigh-
borhood of dominated solutions is permitted. Thus if explore-dominated is set to true, then it corre-
sponds to the original version of PLS-VND. From now on, if explore-dominated is set to false, then
before exploring a solution x ∈ X, we check if x still belongs to Xall. If not, then x is dominated
by a solution newly accepted in Xall and thus the exploration is not performed (line 3 of Algorithm

108 CHAPTER 4. NEW OPTIMIZATION METHODS

33). Checking the presence of x in Xall is made in constant time by associating to each solution a flag
turned off once another solution dominates it in the global archive.

2. The inclusion of P-PLS features: instead of exploring the whole neighborhood Nj (x) of a solution x,
we first apply to Nj (x) the neighborhood restriction structure R(P (x)) of the part associated to x
(line 4 of Algorithm 33). Once a new solution x′ has been accepted in Xall, then we assign as part of
x′ the part of x (line 8 of Algorithm 33).

Algorithme 34 : UpdatePartition

Input : set of parts LP , archive of new solutions Xnew

Output : LP

// Remove dominated solutions from archives of parts:
1 foreach P ∈ LP do
2 X(P)← X(P) \ {x ∈ X(P) : ∃x′ ∈ Xnew, f(x′) ≤ f(x)}

// Add new solutions into appropriate archives of parts:
3 LPa ← ∅
4 foreach x ∈ Xnew do
5 Add(x, X(P (x)))
6 LPa ← LPa + P (x)

// Enlarge the set of sources of active parts with nearby parts:
7 foreach P ∈ LPa do
8 LSext ← LP \ LS(P)
9 sort parts from LSext in increasing order of their distance with P

10 keep in LSext only the 2p−1 closest partition from P
11 LS(P)← LS(P) + LSext

// Widen accordingly the neighborhood restriction structure of active parts:
12 foreach P ∈ LPa do
13 X ←

⋃
S∈LS(P)

X(S)

14 R(P)← BuildRestriction(X)

15 return LP

Algorithm 34 describes the UpdatePartition procedure. It takes as input parameters the set of all parts
LP and the set of new solutions Xnew found by PLS-VND at current iteration.

First, sub-archives are updated with new solutions, thus dominated solutions from sub-archives are removed,
and new solutions from Xnew are added into relevant sub-archives (lines 1-6). A set of parts LPa collects all
active parts. A part is said to be active if at least one new solution has been inserted in its sub-archive.

Then, the set of sources of any active part is enlarged with nearby parts (lines 7-11). For a given active
part, the idea is to add as sources the parts all around the current set of sources of the part. We define the
distance between two parts as the Euclidean distance between the center of their respective sub-archives,
where the center of a set of points is the average point of its local ideal and its local nadir. For each active
part P , we add as new sources of P the 2p−1 closest parts from P .

Finally, the restriction structure of each active part is widened according to its new set of sources (lines
12-14).

Note that the set of active parts computed at each iteration of P-PLS by the UpdatePartition procedure is of
non-increasing size. Indeed, once a part does not generate any solution at a given iteration, its neighborhood

4.4. 2-PHASE ITERATED PARETO LOCAL SEARCH WITH DECOMPOSITION 109

restriction structure will not be widen, and thus none of its solutions will generate any new solution at the
next PLS-VND iterations.

A related comment concerns PLS-VND. As mentioned, a new solution generated by PLS-VND inherits its
part from its parent. Naturally, this algorithmic choice can lead to the situation where a new solution is
actually closer from another part. This situation appears in Figure 4.8, for some solutions at southeast of the
part of interest. In practice, this occurs marginally. Moreover, a first algorithmic choice had been instead to
associate to any new solution the part from which the solution is the closer from the center of its sub-archive.
This enabled to obtain more compact parts. Unfortunately, this also reactivated non-active parts through
the UpdatePartition procedure and thus increased considerably the computational time of P-PLS for no
great improvement of quality.

4.4 2-Phase Iterated Pareto Local Search with Decomposition

The new meta-heuristic we propose, 2-Phase Iterated Pareto Local Search with Decomposition (2PIPLS/D),
combines the concepts of three successful methodologies: 2-Phase PLS (Section 2.2.3.6), Decomposition
methods (Section 2.2.2) and IPLS (Section 2.2.3.7); and also implements the new features previously intro-
duced in this section: the suggestions of improvement for SO optimizers, A-MDW and P-PLS. 2PIPLS/D is
a 2-phase method.

The first phase consists in generating an initial high quality approximation of the efficient set. First,
A-MDW is utilized, then P-PLS is conducted from the initial approximation set.

The second phase aims at iteratively refining the approximation set. As a Decomposition method, 2PI-
PLS/D keeps in memory all the weights generated in the first phase, and maintains for each weight λ ∈ Λ0
a so-called incumbent x ∈ X, which is the best solution for the weighted-sum problem λf(·) found so far. A
so-called sub-problem (λ, x) is a pair composed of a weight λ ∈ Λ0 and the associated incumbent x ∈ X. As
2PIPLS/D is an IPLS, the second phase alternates PLS-VND run with a global perturbation step generating
new starting solutions for next PLS-VND run.

The global perturbation step consists in first choosing a number of sub-problems. For each selected sub-
problem, the incumbent is perturbed and the related weighted-sum problem is data perturbed, then op-
timized. As the set of incumbents corresponds to an approximation of the supported efficient set, it is
generally much smaller than the best-so-far approximation set and is composed of solutions present all along
the best-so-far approximation set. Therefore, the perturbation mechanism allows us to generate new solutions
dispersed all along the best-so-far approximation set.

Any run of PLS-VND (both in first and second phases) uses the neighborhood restriction structures built
by P-PLS at first phase. The SO optimizer used by A-MDW and during the global perturbation step
naturally implements the suggestions we have proposed: it memorizes all generated (or useful) solutions and
it starts/guides its optimization from a starting solution.

In Decomposition algorithms like MOEA/D or MoMad, each sub-problem provides a unique search direction.
We claim that focusing optimization on the same directions during the entire duration of the run may neglect
other attractive areas of the search space. This is the reason why in 2PIPLS/D, the weighted-sum problems
optimized during second phase are data perturbed in order to produce a stochastic change to the sub-problem
search direction (as initially done in our work [Cornu et al., 2017]).

2PIPLS/D is described in pseudo-code by Algorithm 35 and with a diagram by Figure 4.10. It takes as
input parameters a stopping criterion given by the user (a maximum time or number of iterations), a SO
optimizer, a perturbation operator to perturb incumbents, a minimum acceptance rate threshold α ∈ [0; 1]
for A-MDW, a maximum initial size σ > 0 of part for P-PLS, a set of neighborhood structures for PLS-VND,

110 CHAPTER 4. NEW OPTIMIZATION METHODS

Initialization: generate a first
efficient set approximation Xall

and a set of equally dispersed
weights Lλall with A-MDW

Initial Pareto Local Search:
run P-PLS from Xall

Initialize sub-problems: generate
a set of sub-problems Π by pairing

each weight from Lλall with
the best solution of λf(·) from Xall

Global perturbation step:
• select a subset of sub-problems Πselect ⊆ Π
• for each (λ, x) from Πselect, perturb x then
apply the SO optimizer on λδf(·) starting
from the perturbed solution x

Pareto Local Search: run PLS-VND
from the archive Xperturb of new solutions

found by global perturbation step

Update sub-problems: update
incumbent of each sub-problem
with solutions from Xperturb

Is Xnew = ∅
or stopping

criterion met?

no

yes

Phase 1

Phase 2

Figure 4.10 – The 2PIPLS/D procedure.

4.4. 2-PHASE ITERATED PARETO LOCAL SEARCH WITH DECOMPOSITION 111

Algorithme 35 : 2PIPLS/D
Input : stopping criterion, SO optimizer SO-Optimizer, perturbation operator Perturb-Operator,

min. acceptance rate threshold α, maximum initial size of part σ, set of neighborhood structures
(N1, ...,Nk), boolean first-dominating, boolean explore-dominated, boolean independent-pls, data
perturbation coefficient δ

Output : global archive Xall

// Phase 1:
// Initialization:

1 (Lλall, Xall)←A-MDW(SO-Optimizer, α, 10-3)
// Initial Pareto Local Search:

2 Xall ←P-PLS((N1, ...,Nk), first-dominating, explore-dominated, σ, Xall, Xall)
3 Π←InitializeSubProblems(Lλall, Xall)

// Phase 2:
4 repeat

// Global perturbation step:
5 Xperturb ← ∅
6 Πselect ←SelectSubProblems(Π)
7 foreach (λ, x) ∈ Πselect do
8 x′ ←Perturb-Operator(x)
9 X ←SO-Optimizer(λf δ(·), x′)

10 Xperturb ←AddAll(X, Xperturb)

// Pareto Local Search step:
11 if independent-pls then

// PLS-VND in independent mod:
12 Xpls ←PLS-VND((N1, ...,Nk), first-dominating, explore-dominated, Xperturb, ∅)
13 Xall ←AddAll(Xpls, Xall)
14 else

// PLS-VND in dependent mod:
15 Xperturb ← {x ∈ Xperturb : @x′ ∈ Xall, f(x′) 5 f(x)}
16 Xall ←PLS-VND((N1, ...,Nk), first-dominating, explore-dominated, Xperturb, Xall)

17 Xnew ← {x′′ ∈ Xall : x′′ has been found at current iteration}
18 Π←UpdateSubProblems(Π, Xnew)
19 until Xnew = ∅ or stopping criterion is met;
20 return Xall

Algorithme 36 : InitializeSubProblems

Input : set of weights Lλall, global archive Xall

Output : set of sub-problems Π
1 Π← ∅
2 foreach λ ∈ Lλall do
3 x← arg min{λf(x′) : x′ ∈ Xall}
4 Π← Π + (λ, x)
5 return Π

112 CHAPTER 4. NEW OPTIMIZATION METHODS

three parameters corresponding to the different possible exploration strategies and mods of PLS-VND, and
the data perturbation coefficient δ ≥ 0.

During the first phase, A-MDW is run from a restricted weight space Λε with ε ∈ [0; 1
p [(typically ε ≤ 10−3)

and generates a set of equally dispersed weights Lλall and a global archive Xall. Then, P-PLS is conducted
from Xall, generating a set of neighborhood restriction structures and enriching the global archive Xall.
Finally, the set of sub-problems Π is initialized (Algorithm 36) such that each sub-problem (λ, x) ∈ Π is
composed of a weight λ ∈ Lλall to which is associated an incumbent x ∈ Xall.

Algorithme 37 : SelectSubProblems
Input : set of sub-problems Π
Output : subset of selected sub-problems Πselect

1 Xse ← {x ∈ X : (·, x) ∈ Π}
2 Πselect ← ∅
3 foreach x ∈ Xse do
4 λ← select uniform {λ ∈ Λ0 : (λ, x) ∈ Π}
5 Πselect ← Πselect + (λ, x)
6 return Πselect

Let us now describe the second phase. At each iteration:

1. Firstly, a global perturbation step is performed:
• A subset of the sub-problems Πselect is selected from Π (Algorithm 37). A-MDW may generate a
large number of weights, so that a single solution may be the incumbent of several sub-problems. The
aim is to optimize a single data perturbed weighted sum problem for each unique incumbent. Thus,
for each unique incumbent x ∈ X, a weight λ ∈ Λ0 is selected uniformly at random from the set of
sub-problems Π such that (λ, x) is a sub-problem.
• For each selected sub-problem (λ, x) ∈ Πselect, the incumbent is perturbed providing a new solution
x′ ∈ X, then the weighted-sum problem is data perturbed with the coefficient δ ≥ 0 and the SO
optimizer is used to optimize λf δ(·) starting from x′. The archive Xperturb memorizes all incomparable
solutions generated by the SO optimizer at current iteration.

2. Secondly, PLS-VND (Algorithm 32 using neighborhood restriction structures) is performed fromXperturb.
In addition to the first dominating exploration strategy (first-dominating parameter) and the option
consisting in exploring or not the neighborhood of dominated solutions (explore-dominated parameter),
2PIPLS/D gives the possibility to use PLS-VND in independent mod (independent-pls parameter). In
independent mod, PLS-VND is run from Xperturb from scratch in such a way that Xall is completely
ignored and any solution from Xall can thus be rediscovered during the process. To our knowledge, this
mod is used by all known proposed implementations of IPLS [Drugan and Thierens, 2010,Drugan and
Thierens, 2012,Inja et al., 2014]. In dependent mod, Xall is considered, thus any solution from Xperturb

weakly dominated by a solution from Xall is removed, then PLS-VND is conducted from Xperturb with
Xall as global archive. To our knowledge, this mod is only used by MoMad [Ke et al., 2014]. At the
expense of a much higher computational resources need, PLS-VND in independent mod has a superior
exploration power than PLS-VND in dependent mod.
After PLS-VND, the incumbents of sub-problems are updated with new solutions from Xall found at
current iteration (Algorithm 38).

2PIPLS/D stops as soon as either no new solution has been accepted in the global archive Xall at the current
iteration, or the stopping criterion given by the user is met.

4.5. PRESERVATION OF A GOOD DISTRIBUTION OF POINTS IN THE OBJECTIVE SPACE 113

Algorithme 38 : UpdateSubProblems

Input : set of sub-problems Π, new archive Xnew

Output : Π
1 foreach (λ, x) ∈ Π do
2 x← arg min{λf(x′) : x′ ∈ Xnew

⋃
{x}}

3 return Π

Figure 4.11 shows the main steps of a single iteration of 2PIPLS/D, and in particular illustrates the difference
between the two PLS-VND mods.

4.5 Preservation of a good distribution of points in the objective space

In addition to the difficulty for finding a good quality approximation of the non-dominated set, meta-
heuristics have to provide a set of points well-distributed along the non-dominated set. An issue arises when
the addressed problem is intractable, making impossible the memorization of all the non-dominated points
for some instances of the problem.

In order to maintain a set of well-distributed points in the objective space and bound the size of this set
during the optimization process, Laumanns et al. [Laumanns et al., 2002] have introduced the concept of
ε-archive. They propose to place a hyper-grid that discretizes the objective space into regions called boxes.
A box can contain at most one point. An ε-archive takes as parameter a tolerance ε > 0, which controls the
dispersion of the points and implicitly determines the maximal size of the approximation. The larger ε, the
larger the dispersion of the points and the smaller the size of the approximation will be. Guarantees on the
good distribution of points in the ε-archive and on the bound on its size are given in [Laumanns et al., 2002].

We propose a modified version of the original ε-archive. The aim of the proposed ε-archive is not to maintain
an ε approximation of the non-dominated set, but rather to bound the size of the archive while guaranteeing
a good distribution of the points of the approximation in the objective space.

Let ε > 0 be a fixed tolerance parameter. Let z = (z1, ..., zp) ∈ Z be a point and box(z) = (box1(z), ...,boxp(z))
the vector of the box z belongs to, such that boxj(z) =

⌊
log zj

log(1+ε)

⌋
is the coordinate of the box on the j-th

objective, for j = 1, ..., p.

Let z ∈ Z be a point. The local ideal point z∗ ∈ Z related to z is the point sharing the same box as z and
dominating all the points in this box, i.e. z∗ is such that for any z′ ∈ Z : if box(z′) = box(z), then z∗ 5 z′.

Let z, z∗ ∈ Z be two points such that z∗ is the local ideal point of z. Let

D(z, z∗) := lex

 max
j=1,...,p

{zj − z∗j};
p∑
j=1

(zj − z∗j)

be the distance between z and z∗.

When an ε-archive is used instead of a regular unbounded archive, the following procedure replaces the
original Add procedure (Algorithm 2). When a solution x ∈ X s.t. z = f(x) ∈ Y enters the ε-archive X:

• if there exists x′ ∈ X st. z′ = f(x′) : box(z′) < box(z), then x is not added to X;

• otherwise, if there exists x′ ∈ X st. z′ = f(x′) : box(z) < box(z′), then x is added to X and x′ is
removed from X;

114 CHAPTER 4. NEW OPTIMIZATION METHODS

f1

f2

�

�
�

�
�

�

�

�

�

•

•

•

•

(a) Global perturbation step (1/2):
Application of perturbation moves
on incumbents of selected sub-pbs.

f1

f2

�

�
�

�
�

�

�

�

�

•

•
•

•
•

•

•
•

•

•

•

•

(b) Global perturbation step (2/2):
Optimization of data perturbed weighted sum

problems of selected sub-pbs starting
from perturbed incumbents.

f1

f2

•

•
•

•
•
•

•
•

(c) Pareto Local Search step (first option):
Set of starting solutions of PLS-VND run

in independent mod.

f1

f2

�

�
�

�
�

�

�

�

�

•

•

•

(d) Pareto Local Search step (second option):
Set of starting solutions of PLS-VND run

in dependent mod.

Figure 4.11 – Main steps of a 2PIPLS/D iteration. Newly generated solutions are represented by bullets
while the other solutions are represented by squares. Starting solutions of PLS-VND are circled.

4.6. CONCLUSION 115

1 +
ε

(1 +
ε) 2

(1 +
ε) 3

(1 +
ε) 4

1 + ε

(1 + ε)2

(1 + ε)3

(1 + ε)4

•z
∗

•z

•z
′

f1

f2

Figure 4.12 – Hyper-grid of an ε-archive represented in the objective space. z, z′ ∈ Y share the same box.

• otherwise, if there exists x′ ∈ X st. z′ = f(x′) : box(z) = box(z′), then:

– If D(z, z∗) < D(z′, z∗) where z∗ ∈ Z is the local ideal point related to z, then x is added to X and
x′ is removed from X

– Otherwise, x is not added to X

• otherwise, z is added to X.

Figure 4.12 illustrates an hyper-grid of an ε-archive in a bi-objective space.

4.6 Conclusion

We proposed in this chapter a number of improvements of existing methods and new optimization methods
to tackle more efficiently MOCO problems.
First we suggested three modifications of SO solvers to improve their ability to find efficient solutions in
MOCO problems: systematically starting/guiding the search from an already found solution, memorizing
the solutions generated during the optimization process and enable the data perturbation of a weighted
sum problem. Based on these specifications, we proposed a new version of NMCS, called Aggregation-based
Nested Monte Carlo Search (A-NMCS) better suited for MOCO than vanilla NMCS.
Second, we presented a new method generalizing the concept of MDW called Adaptive MDW (A-MDW) and
making it more adaptive such that the method continues generating weights until the SO solver optimizing
the related weighted sum problems is no longer efficient.
Third, we introduced Partitioned Pareto Local Search (P-PLS), which aims at speeding-up PLS-VND
through the partitioning of the set of solutions to explore, and a smart restriction of the PLS-VND neigh-
borhood structure based on the presumption of global convexity on the addressed problem.
Then, we proposed a new MOmeta-heuristic called 2-Phase Iterated Pareto Local Search with Decomposition
(2PIPLS/D) based on three successful methodologies: 2-Phase meta-heuristics, Decomposition methods and
IPLS, and combining A-MDW, P-PLS, as well as the suggested modifications for SO solvers.
Finally, a new system based on the ε-archive concept is presented, allowing to bound the size of an archive
while guaranteeing a good distribution of the points in the objective space.

Chapter 5

Application of 2PIPLS/D to MOTSP

In this chapter, we apply 2PIPLS/D to MOTSP. We first detail the implemen-
tation of the different algorithmic components of 2PIPLS/D, then propose an
empirical evidence of global convexity on MOTSP in order to legitimate the use
of the P-PLS partitioning. After a sensitivity analysis of 2PIPLS/D on its param-
eters, we propose a final parameter setting. Finally, we compare the method with
the best known algorithms on a large benchmark of bi-objective and tri-objective
instances.

117

118 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

Introduction

This chapter proposes the application of 2-Phase Iterated Pareto Local Search with Decomposition (2PI-
PLS/D) to MOTSP. Section 5.1 first presents the benchmarks of bi-objective and tri-objective instances
used for the experiments, then Section 5.2 describes how 2PIPLS/D has been implemented for MOTSP, in
particular it details the SO optimizer(s) and the perturbation move selected, the PLS-VND neighborhood
structure utilized and the neighborhood restriction structure used in P-PLS. Then Section 5.3 proposes an
empirical evidence of existence of global convexity on MOTSP, in order to justify the use of P-PLS (as it is
suggested in Section 4.3). After a sensitivity analysis of 2PIPLS/D on its parameters, a good final parameter
setting is proposed in Section 5.4. A comparison of 2PIPLS/D with state-of-the-art methods on MOTSP is
made in Section 5.5. Finally, we summarize the chapter and propose a number of perspectives concerning
MOTSP.

5.1 MOTSP benchmarks and experimental design

5.1.1 Types of instances

The MOTSP instances used in our experiments either come directly from the literature or have been generated
with exactly the same process as in the literature. They are of different types:

• Euclidean instances: an instance is composed of p single-objective Euclidean instances. For each
objective, the costs between the edges correspond to the Euclidean distance between two cities in a
plane.
Most of Euclidean instances comes from the TSPLIB1 library [Reinelt, 1991] or have been generated
with the same process as in TSPLIB. More precisely, on each objective, the coordinates of each city
are integers that are uniformly and independently generated in the range [0,3163]. These instances are
denoted as Krolak/Felts/Nelson (abbreviated as “kro”) instances. Other instances have been produced
by the DIMACS instance generator2.

• Clustered instances: an instance is composed of p single-objective clustered instances. For each
objective, the cities are randomly clustered in a plane, and the costs between the edges correspond to
the Euclidean distances.
All clustered instances have been produced with the DIMACS instance generator, such that any in-
stance of size strictly lower than 100 is composed of 12 clusters, and any instance of size greater than
or equal to 100 is composed of 25 clusters.

• Random instances: the costs between the edges are randomly generated from a uniform distribution.
All random instances have been produced with the DIMACS instance generator, such that each com-
ponent of the cost vector assigned to an edge (between two cities) is chosen as an integer value taken
from a uniform distribution in the range [0,4473]. This range was chosen in order to have a range
similar to the one of the kro instances (note that

⌊√
2× 31632 + 0.5

⌋
= 4473).

• Mixed instances (only for the bi-objective case): the first cost corresponds to the Euclidean distance
between two cities in a plane and the second cost is randomly generated from a uniform distribution.

1https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
2http://dimacs.rutgers.edu/Challenges/TSP/

https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

5.1. MOTSP BENCHMARKS AND EXPERIMENTAL DESIGN 119

5.1.2 Benchmarks of MOTSP instances

Two different benchmarks are utilized. The learning benchmark is first used to make an empirical evidence
of the global convexity on MOTSP (Section 5.3), then to propose a good parameter setting for 2PIPLS/D
(Section 5.4). The test benchmark is employed for the comparison of 2PIPLS/D with its competitors (Section
5.5).

Learning benchmark

The learning benchmark is composed of 80 bi-objective and tri-objective instances of different sizes and
types:

• 10 bi-objective Euclidean instances of size 100, and 10 of size 500;

• 10 bi-objective random instances of size 100, and 10 of size 500;

• 10 tri-objective Euclidean instances of size 100, and 10 of size 500;

• 10 tri-objective random instances of size 100, and 10 of size 500.

Euclidean instances have been generated with the same process as kro instances mentioned above, and
random instances have been produced with the DIMACS instance generator.

Test benchmark

The benchmark used for the comparison between 2PIPLS/D and its competitors on MOTSP is described in
Table 5.1 and is composed of 55 instances: 30 bi-objective instances with a size ranging from 100 to 1000,
and 25 tri-objective instances with a size ranging from 50 to 500 such that:

• 40 instances come from the literature [Jaszkiewicz, 2002, Paquete and Stützle, 2003, Paquete et al.,
2004,Angel et al., 2004, Lust and Teghem, 2010, Lust and Jaszkiewicz, 2010] (30 bi-objective, 10 tri-
objective). The Euclidean kro instances come either from the TSPLIB library or have been generated
by Lust and Teghem3 [Lust and Jaszkiewicz, 2010]. The rest of instances has been produced with the
DIMACS instance generator.

• 15 additional tri-objective instances we have generated with the same process as kro instances or with
the DIMACS instance generator.

5.1.3 Experimental design

For all bi-objective instances and small-size (n < 100) tri-objective instances, the sets of points of all tested
methods (i.e. 2PIPLS/D and its competitors) are managed as regular unbounded archives (i.e. with a
tolerance for dominance relations ε = 0%).
For tri-objective instances with n ≥ 100, the size of the non-dominated sets is very large, in consequence the
archives of all tested methods are managed as ε-archives with the technique preserving a good distribution
of the points described in Section 4.5, with a tolerance ε = 1%. Note that the computational cost of the log
function is negligible because the required log values are precomputed and stored in a look-up table before
the beginning of each instance optimization.
All experiments were performed on a 3.4 GHz computer with 16Gb of volatile memory (RAM) on a Linux
OS.

3http://www-desir.lip6.fr/~lustt/Research.html#Main

120 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

Type Quantity Size (n) Source Composition Name

Euclidean 17

100
TSPLIB library 2 Euclidean SO instances

kroAB100, kroAC100,
kroAD100, kroBC100,
kroBD100, kroCD100

DIMACS generator 2 Euclidean SO instances euclidAB100, euclidCD100,
euclidEF100

200 TSPLIB library 2 Euclidean SO instances kroAB200

300 DIMACS generator 2 Euclidean SO instances euclidAB300
[Lust and Jaszkiewicz, 2010] 2 Euclidean SO instances kroAB300

400 [Lust and Jaszkiewicz, 2010] 2 Euclidean SO instances kroAB400

500 DIMACS generator 2 Euclidean SO instances euclidAB500
[Lust and Jaszkiewicz, 2010] 2 Euclidean SO instances kroAB500

750 [Lust and Jaszkiewicz, 2010] 2 Euclidean SO instances kroAB750
1000 [Lust and Jaszkiewicz, 2010] 2 Euclidean SO instances kroAB1000

clustered 3
100 DIMACS generator 2 clustered SO instances clusteredAB100
300 DIMACS generator 2 clustered SO instances clusteredAB300
500 DIMACS generator 2 clustered SO instances clusteredAB500

random 5
100 DIMACS generator 2 random SO instances rdAB100, rdCD100, rdEF100
300 DIMACS generator 2 random SO instances rdAB300
500 DIMACS generator 2 random SO instances rdAB500

mixed 5

100 DIMACS generator 1 random + mixedGG100, mixedHH100,
1 Euclidean instances mixedII100

300 DIMACS generator 1 random + mixedAB3001 Euclidean instances

500 DIMACS generator 1 random + mixedAB5001 Euclidean instances

(a) Bi-objective instances (p = 2).

Type Quantity Size (n) Source Composition Name

Euclidean 12

50 Personal generator (new) 3 new Euclidean SO instances euclidA-3-50, euclidB-3-50,
euclidC-3-50

100 TSPLIB library 3 Euclidean SO instances kroABC100
DIMACS generator 3 Euclidean SO instances euclidABC100, euclidDEF100

300
DIMACS generator 3 Euclidean SO instances euclidABC300, euclidDEF300

Personal generator (new) 2 Euclidean + euclidG-3-3001 new Euclidean SO instances

500 DIMACS generator 3 Euclidean SO instances euclidABC500, euclidDEF500
Personal generator (new) 3 new Euclidean SO instances euclidG-3-500

clustered 4

50 DIMACS generator (new) 3 new clustered SO instances clusteredA-3-50

100 DIMACS generator (new) clusteredAB100 + clusteredABC1001 new clustered SO instances

300 DIMACS generator (new) clusteredAB300 clusteredABC3001 new clustered SO instances

500 DIMACS generator (new) clusteredAB500 clusteredABC5001 new clustered SO instances

random 9

50 DIMACS generator (new) 3 new random SO instances rdA-3-50, rdB-3-50, rdC-3-50

100 DIMACS generator 3 random SO instances rdABC100
DIMACS generator (new) 3 new random SO instances rdD-3-100

300 DIMACS generator 3 random SO instances rdABC300
DIMACS generator (new) 3 new random SO instances rdD-3-300

500 DIMACS generator 3 random SO instances rdABC500
DIMACS generator (new) 3 new random SO instances rdD-3-500

(b) Tri-objective instances (p = 3).

Table 5.1 – MOTSP test benchmark.

5.2. IMPLEMENTATION OF 2PIPLS/D TO ADDRESS MOTSP 121

5.2 Implementation of 2PIPLS/D to address MOTSP

2PIPLS/D is written in C/C++. Different algorithmic components of 2PIPLS/D have to be chosen and im-
plemented for the addressed problem: the SO optimizer, the perturbation move, the neighborhood structure
used by PLS-VND and the neighborhood restriction structure utilized in P-PLS.

5.2.1 SO optimizer

Concerning the SO optimizers, we compare two different methods: the local search-based method Chained
Lin-Kernighan [Applegate et al., 2003] (C-LK), and the Monte Carlo Search-based method NMCS (Section
2.2.5.3) and A-NMCS (Section 4.1.1), its version especially designed for MOCO. C-LK is the solver used
in the last three best methods on bi-objective TSP (2PPLS [Lust and Teghem, 2010], MoMad [Ke et al.,
2014] and PDA [Cornu et al., 2017]). As in the literature, we use the C-LK implementation of the Concorde
package4. As suggested in Section 4.1, we have implemented a modified version of C-LK so that it memorizes
all incomparable locally minimum solutions generated. We call this version improved C-LK, while the non-
modified version is called vanilla C-LK.
On the other hand, NMCS has never been adapted to this problem. We chose NMCS because it has been
successfully applied to a number of difficult SO problems (as mentioned in Section 2.2.5.3). Consequently,
it appears to us interesting to analyze the performance of 2PIPLS/D when using such a promising method
which is NMCS (and A-NMCS) with a problem-dependent and efficient ILS method such as C-LK. The idea
is also to gauge the dependence of 2PIPLS/D on the SO optimizer used.

Note that we have also tested two other SO optimizers: the Helsgaun implementation of Lin-Kernighan, called
LKH [Helsgaun, 2000]; and the Genetic Algorithm using Edge Assembly Crossover (GA-EAX) [Nagata and
Kobayashi, 2013]. Internal tests have shown that C-LK and LKH provide globally similar performance, as
already observed in [Lust and Teghem, 2010] while GA-EAX provided surprisingly poor results. For these
reasons, we do not consider these two solvers in the rest of this document.

Implementation of (A-)NMCS for MOTSP

In our implementation of (A-)NMCS, the construction of a sequence consists in building a tour by iteratively
adding an edge to a path. More precisely, a starting city is first selected at initialization of (A-)NMCS,
such that all generated sequences will share this city as starting city. By ease of simplicity, we select as
starting city the first city of the addressed instance. A partial sequence represents a path, and technically it
corresponds to a pair composed of:

• a current city, initialized with the starting city;

• and an ordered list of actions, where an action consists first in the insertion of a valid edge present in
the candidate edge list of the current city, then the change of current city to the newly introduced city.
A valid edge consists in an edge whose insertion does not forbid the partial sequence to finally be a
valid tour.

The concept of candidate edge list used in (A-)NMCS is exactly the same as in local search, so as it consists
in a fixed-size set of elite edges computed for each city. Let cλ,δ(e) (to be minimized) be the aggregated
and perturbed cost function of an edge e ∈ E, where λ ∈ Λ0 is a weight and δ ≥ 0 is a data perturbation
coefficient (see Section 4.1) and such that λf δ(·) is the fitness minimized by (A-)NMCS. Let cel(χ) be the

4http://www.tsp.gatech.edu/concorde

http://www.tsp.gatech.edu/concorde

122 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

candidate edge list associated with the city χ, such that cel(χ) contains the s best edges incident to χ given
cλ,δ(e). Let the normalized cost ĉλ,δ(e, χ) ∈ [0, 1] of an edge e ∈ E from χ be defined as:

ĉλ,δ(e, χ) = cλ,δ(e)− cλ,δmin(χ)
cλ,δmax(χ)− cλ,δmin(χ)

where e is incident to a city χ, and cλ,δmin(χ) (resp. cλ,δmax(χ)) is the minimum (resp. maximum) cost among
all edges incident to χ, defined as:

{
cλ,δmin(χ) = min{cλ,δ(e′) : e′ ∈ cel(χ)}
cλ,δmax(χ) = max{cλ,δ(e′) : e′ ∈ cel(χ)}

During a random simulation (level of recursion equal to 0), an edge e ∈ cel(χ) incident to the current city χ
of a partial sequence seq is randomly selected with the following Boltzmann distribution formula:

P(e | seq) = e−β×ĉ
λ,δ(e,χ)∑

e′∈cel(χ)\χ(seq)
e−β×ĉλ,δ(e′,χ)

where χ(seq) is the set of cities present in the partial sequence seq (i.e. already selected in previous actions
and thus invalid for selection) and β ≥ 0 is a parameter to be fixed. This formula encourages the selection
of low-cost edges in a random way, such that the higher β is, the higher the probability of the smallest-cost
edges to be selected. If β = 0, then the selection consists in a uniform random selection. The normalization
of the cost of the edges allows for setting the same β value for all cities.
At a given level of recursion greater than or equal to 1, (A-)NMCS tries all available actions among these
allowed by the candidate edge list of the current city.
At a given step of selection of an action (at any level of recursion), if no edge from the candidate edge list
of the current city is valid, then the edge with the smallest cost is selected.
This implementation of (A-)NMCS has 3 parameters to be fixed: the usual level of recursion level, the size of
the candidate edge list s and the Boltzmann parameter β. We have tested different configurations of values
on the learning benchmark presented above, and we obtain best results with the following configuration:
level = 1, s = 10, β = 20. Note that we have chosen a small level of recursion because higher levels of
(A-)NMCS provided far too large execution times compared to C-LK runs. Indeed, recent versions of Lin
Kernighan have a complexity of O(nκ), where κ & 2 [Helsgaun, 2000], while (A-)NMCS has a complexity of
O(n1+level).

5.2.2 Perturbation move

The perturbation move used at perturbation step (second phase of 2PIPLS/D) selected is the double bridge
move (see Section 2.3.1) as it is simple, efficient and the most used in the literature. We use the implemen-
tation of Paquete5.

5.2.3 Neighborhood structures of PLS-VND

The neighborhood structures used by PLS-VND are usual k-exchange neighborhoods. We consider as maxi-
mum neighborhood structure size k ∈ {2, 3} for PLS-VND. Obviously, PLS-VND with k = 2 corresponds to
PLS.

5http://www.sls-book.net/implementations.html

http://www.sls-book.net/implementations.html

5.3. EMPIRICAL EVIDENCE OF GLOBAL CONVEXITY ON MOTSP 123

5.2.4 Implementation of the neighborhood restriction structure of P-PLS

The neighborhood restriction structure employed in each part of P-PLS uses the combination of two preex-
isting techniques in a dynamic way: the candidate edge list (presented in Section 2.3.1) and the locked edges
(Section 2.3.2). For a given part:

• the candidate edge lists contain only the edges present in at least one solution in the archives of the
sources of this part (they can be considered as the union of edges of solutions of the sources).

• the locked edges is the set of edges present in all solutions in the archives of the sources of this part
(they can be considered as the intersection of edges of solutions of the sources).

As indicated in Section 4.3, the neighborhood restriction function of an active part is built after the en-
largement of the set of sources (Algorithm 34). The construction of the neighborhood restriction structure
consists in building the candidate edge lists and identifying the locked edges. During PLS-VND, a move
from a given solution will consist in exchanging a number of non-locked edges of the solution only for edges
contained in a candidate edge list (with the exception of the close-up edge).

When P-PLS is running, the neighborhood restriction function of each active part is re-built at each iteration.
As the size of the archives of the parts tends to increase when the number of iterations grows, the size of the
candidate edge lists of an active part also tends to increase, while the set of locked edges of an active part
tends to decrease. Note that both techniques have already been employed: the candidate edge list used in
2PPLS is used in a static way, as it consists in the edges present in at least one solution of the initial set
found in the first phase, then used in PLS during the second phase. In MoMad, the candidate edge list is
used in a more dynamic way as it consists in the edges present in at least one solution of the global archive, in
such a way that the candidate edge list tends to increase at each new call of PLS. The locked edges technique
has been introduced in MOCO in [Jaszkiewicz, 1999] and used by [Jaszkiewicz and Zielniewicz, 2006], such
that locked edges are used in a static way in a path relinking procedure. The originality of our neighborhood
restriction structure lies in the combination of these two techniques, the utilization of locked edges in a
dynamic way, and obviously the embedding of such a structure in the partitioning system of P-PLS.

Technically, a matrix of all edges is memorized in each part, therefore the partitioning of P-PLS is volatile
memory consuming, as the RAM needed is O(|Xall|

σ × n(n−1)
2), where

∣∣∣Xall

∣∣∣ is the size of the global archive
Xall just before the P-PLS partitioning, σ is the user-set parameter equal to the maximum authorized initial
size of a part, and n(n−1)

2 is the number of edges of the addressed MOTSP instance. The smaller σ, the
higher RAM needed by P-PLS.

5.3 Empirical evidence of global convexity on MOTSP

The aim of this section is to empirically verify the existence of global convexity on MOTSP. To do so, we
first check if efficient solutions in the decision space are concentrated in a small fraction of the decision space.
Secondly, we check if efficient solutions which are neighbors in the objective space tend to be also neighbors
in the decision space.

We check these assumptions on the learning benchmark previously introduced. To find the efficient set of
the instances of this benchmark, we run the exact method AUGMECON2 [Florios and Mavrotas, 2014]
(introduced in Section 2.3.2) on the bi-objective instances of size 100. As suggested by the authors and in
Section 2.3.2, AUGMECON2 is unable to find the efficient set of instances of larger size or larger number
of objectives, thus we run 2PIPLS/D (using C-LK as SO optimizer) on each instance during several hours
with different seeds in order to obtain an approximation of the efficient set.

124 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

Proportion of Order of magnitude of
efficient edges non-dominated set size

p = 2 n = 100 10.5% 103

n = 500 2.5% 104

p = 3 n = 100 22% 105

n = 500 7.5% 106

Table 5.2 – Average proportion of edges used in (potentially) efficient solutions and order of magnitude of
size of non-dominated sets in function of the number of objectives and the size of instances.

Let the notion of (potentially) efficient solutions encompassing either efficient solutions or approximate
efficient solutions.

5.3.1 Concentration of (potentially) efficient solutions in the decision space

To show how much (potentially) efficient solutions are concentrated in the decision space, we are interested in
the proportion of edges (which are the basic elements composing solutions of MOTSP) used in (potentially)
efficient solutions. Let an efficient edge be an edge present in at least one (potentially) efficient solution of
an instance.

The first column of Table 5.2 shows that the (potentially) efficient solutions contain a small fraction of
the edges of an instance: from 2.5% (in average) for bi-objective instances of size 500 to 22% (in average)
for tri-objective instances of size 100. When considering all instances of the test benchmark, only 11% (in
average) of the edges are efficient.

Tri-objective instances have a proportion of efficient edges twice to triple larger than bi-objective instances,
which is directly explained by the increase of the size of the non-dominated sets from the bi-objective to the
tri-objective case, as indicated by the second column of Table 5.2.

The efficient edges are of very good quality. Let rank(e | χ) be the rank of an edge e ∈ E given the city χ,
which is the Non-Dominated Sorting rank (cf. Section 2.4) of the edge e incident to χ, computed with respect
to all edges incident to χ and such that the edges are compared through the MO cost function c : E −→ Rp.
Let

rank(e) = min{rank(e | χ1), rank(e | χ2)}

be the rank of the edge e ∈ E incident to both cities χ1 and χ2. Therefore, the rank of an edge e ∈ E is its
best rank given its two incident cities, and measures the quality of e. The lower the rank of an edge is, of
better quality the edge.

From this formulation of the quality of an edge, we have made an interesting observation concerning the
distribution of ranks of efficient edges, illustrated in Figure 5.1. Indeed, the rank of efficient edges is low,
and in average on all instances of the benchmark, 96% of efficient edges are of rank lower than or
equal to 2, while only 19% of all edges are of rank lower than or equal to 2.

This distribution of ranks of edges leads to a rather neat distinction between efficient edges and the other
edges visible in the MO cost space, as illustrated in Figure 5.2. Similar snapshots are obtained in the

5.3. EMPIRICAL EVIDENCE OF GLOBAL CONVEXITY ON MOTSP 125

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

p=2
n=100

p=2
n=500

p=3
n=100

p=3
n=500

%
 o

f
e

d
g

e
s

rank=1
rank=2
rank=3
rank≥4

(a) Distribution of ranks of efficient edges.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

p=2
n=100

p=2
n=500

p=3
n=100

p=3
n=500

%
 o

f
e

d
g

e
s

rank=1
rank=2
rank=3
rank≥4

(b) Distribution of ranks of all edges.

Figure 5.1 – Distribution of ranks of efficient edges vs. all edges, in function of the number of objectives and
the size of instances.

c 2

c1

(a) Euclidean instance.

c 2

c1

(b) Random instance.

Figure 5.2 – Representation in the MO cost space of the edges composing (potentially) efficient solutions
(represented by squares) and the other edges (represented by bullets) in bi-objective instances of size 100.

126 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
g

.
d

is
ta

n
ce

 b
e

tw
e

e
n

 s
o
lu

ti
o
n

s

Distance between points

n=100 - Euclidean
n=100 - random

n=500 - Euclidean
n=500 - random

(a) p = 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
g

.
d

is
ta

n
ce

 b
e

tw
e

e
n

 s
o
lu

ti
o
n

s

Distance between points

n=100 - Euclidean
n=100 - random

n=500 - Euclidean
n=500 - random

(b) p = 3

Figure 5.3 – Average distance between (potentially) efficient solutions in function of the distances between
their images (points) in the objective space.

tri-objective case.

5.3.2 Are (potentially) efficient solutions neighbors in the objective space also neigh-
bors in the decision space?

To check if (potentially) efficient solutions which are neighbors in the objective space tend also to be neighbors
in the decision space, we computed the Spearman correlation between:

• the distances of (potentially) efficient solutions (which are tours of MOTSP) in the decision space

• and the distances of their images in the objective space.

The Spearman correlation assesses how well the relationship between two series of data can be described
using a monotonic function. The Spearman correlation coefficient can take values between -1 and 1, such
that a value of -1 indicates that data series are completely negatively correlated, while +1 indicates that
data series are completely positively correlated.

Let X̃e be the (potentially) efficient set of a given instance. For each (potentially) efficient solution x ∈ X̃e,
let f(xk) s.t. xk ∈ X̃e, is the k-th nearest neighbor of f(x) given the Euclidean distance; for each xk ∈ X̃e, we
computed the Hamming distance between x and xk. After averaging and normalizing these distances over all
(potentially) efficient solutions and instances of each type, we obtain Figure 5.3. The Spearman correlation
computed for each curve is strictly greater than 0.9999. Moreover, given a significance level of 1%, the p-
value related to each Spearman correlation scores is lower than 10-5, meaning that the Spearman correlation
scores are statistically significant. This means that the distances of solutions and the distances of
their images in the objective space are almost perfectly positively correlated.

From these empirical observations, we can conclude that the assumption of global convexity on MOTSP we
have made is legitimate, which corroborate the observation made in [Borges and Hansen, 2002].

5.4 Parameter setting of 2PIPLS/D

2PIPLS/D has several parameters to set which are listed in Table 5.3. A preselection of alternative values
and a selection of the default value for each parameter have been made on the basis of internal tests.

5.4. PARAMETER SETTING OF 2PIPLS/D 127

1. As SO optimizer (used by A-MDW and during each perturbation phase of second phase) we propose
vanilla C-LK, improved C-LK, (vanilla) NMCS and A-NMCS. We select both the improved C-LK and
A-NMCS as default SO optimizers.

2. A-MDW (cf. Section 4.2) is controlled by the minimum acceptance rate threshold α. A-MDW stops
as soon as the efficiency of the SO optimizer (i.e. the sum of solutions accepted in the global archive
divided by the sum of incomparable solutions generated by each run of the SO optimizer) goes below α.
The lowest α is, more consuming A-MDW will be in terms of computational resources. The preselected
range of α goes from 5% to 95% and the default value is 25%.

3. Data perturbation (cf. Section 4.1) is controlled by the coefficient δ. The highest δ is, a more important
perturbation will be applied to TSP cost matrices. The preselected range of δ goes from 0% (no data
perturbation) to 20% (in general, bad results are obtain with higher values). We select a pretty low
default value of data perturbation: δ = 5%.

4. The maximum initial size σ of a part of P-PLS (cf. Section 4.3) corresponds to the maximum authorized
initial size of a part at initialization of P-PLS. The preselected range of σ goes from 50 solutions to
no partitioning (σ = +∞). The lower bound of the range is limited by the RAM of our machine. The
default selected value is σ = 100.

5. The pre-selected maximum neighborhood structure sizes for PLS-VND are k = 2 and k = 3, and both
are selected by default.

6. Concerning PLS-VND (cf. Algorithm 32 of Section 4.3), we propose to activate by default all strategies:
the independent-pls strategy, meaning that at each iteration of the second phase, PLS-VND is started
with an empty global archive; the first-dominating strategy, forcing PLS-VND to quit the exploration
of a solution as soon as a neighbor dominates it; and the explore-dominated strategy which enables
PLS-VND to explore a solution even if it is dominated by a solution in the global archive.

Parameter Module of 2PIPLS/D concerned Selected range of values Default values

SO optimizer - {vanilla C-LK, improved C-LK, {improved C-LK,
NMCS, A-NMCS} A-NMCS}

perturbation move perturbation step (phase 2) - Double bridge move
acceptance rate threshold α A-MDW {5%, 25%, 50%, 75%, 95%} 25%

data perturbation coefficient δ SO optimizer (phase 2) {0%, 5%, 10%, 20%} 5%
maximum initial size σ of part P-PLS {50, 100, 200, 400,+∞} 100

maximum neighborhood PLS-VND {2, 3} {2, 3}structure size k
independent-pls PLS-VND {no, yes} yes
first-dominating PLS-VND {no, yes} yes

explore-dominated PLS-VND {no, yes} yes

tolerance for dominance relations ε - -
{

0% if p = 2 or n < 100
1% otherwise

archive - -
{
SAAVLA if p = 2
SANDRA otherwise

Table 5.3 – Parameters of 2PIPLS/D, their respective selected range of values and default values.

We perform a sensitivity analysis of 2PIPLS/D on its parameters. In particular, we aim at comparing
the relative importance of the different algorithmic components of 2PIPLS/D and finally propose a good
parameter setting. Given the large number of parameters, we have tested each parameter separately from
the other parameters, except for the independent-pls and first-dominating exploration strategies, which have
been combined because they are strongly related.

128 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

We use the learning benchmark (Section 5.1.2) to perform this sensitivity analysis. On each instance of the
benchmark, 2PIPLS/D is run given each alternative value with each possible default combination of values.
For example, when the acceptance rate threshold α of A-MDW has been tested, we have run 2PIPLS/D
20 times on each instance: α ∈ {5%, 25%, 50%, 75%, 95%} × SO optimizer∈{improved C-LK, A-NMCS} ×
k ∈ {2, 3} and the rest of parameters are set to their default values.

The running time of 2PIPLS/D is restricted to high limits: 30 seconds for (p = 2, n = 100) instances, half
an hour for (p = 2, n = 500) and (p = 3, n = 100) instances, and 2 hours for (p = 3, n = 500) instances,
then the I−H , Iε and IR2 values of each generated set are computed. In the following, we generally display
only the 2PIPLS/D results with C-LK as SO optimizer and k = 3 as PLS-VND maximum neighborhood
structure size, because similar conclusions can be drawn when A-NMCS or k = 2 are used instead. For the
sake of clarity, only I−H scores are displayed, knowing that same conclusions can be drawn with the other
quality indicators. In order to improve the readability of graphics, we have normalized the I−H scores by
simply dividing each I−H value by the maximum I−H value found on each type of instance.

5.4.1 Sensitivity analysis of 2PIPLS/D on SO optimizer versions

We compare separately the 2PIPLS/D results with the vanilla version of C-LK vs. the improved version
of C-LK illustrated by Figure 5.4, and the vanilla version of NMCS vs. A-NMCS depicted in Figure 5.5.
In both cases, we generally observe a pretty large improvement of the enhanced versions (Improved C-LK,
A-NMCS) compared to vanilla version, which attests that memorizing the solutions found during the SO
optimizer run is meaningful.

5.4.2 Sensitivity analysis of 2PIPLS/D on A-MDW setting

The influence of the minimum acceptance rate threshold α of A-MDW on the performance of 2PIPLS/D
is exposed in Figure 5.6. The lower α is, the more weighted sum problems are solved by A-MDW, and
as observed, the later the first phase (A-MDW + P-PLS) of 2PIPLS/D finishes but of better quality the
set generated by first phase. Besides, when the number of iterations at second phase grows, this quality
difference disappears on small-size instances (n = 100), while it is often maintained on large-size instances
(n = 500). This observation reinforces the conclusions of the literature [Lust and Teghem, 2010,Paquete and
Stützle, 2009b], showing the great importance of initializing PLS-VND with a large number of well-dispersed
weighted-sum problems. Globally, good results are obtained when α ≤ 50%, independently from the running
time, the type, size or number of objectives of the addressed instance.

5.4.3 Sensitivity analysis of 2PIPLS/D on data perturbation setting

The influence of the data perturbation coefficient δ on the results of 2PIPLS/D is illustrated in Figure
5.7. Globally, the presence of data perturbation (i.e. when δ > 0) seems to have a negligible effect (either
positive or negative) on the performance of 2PIPLS/D compared to the absence of data perturbation (δ = 0),
except on small-size (n = 100) Euclidean bi-objective instances. On the other hand, a low data perturbation
coefficient, i.e. δ ≤ 5% seems to work better on any type of instance compared to larger values.

5.4.4 Sensitivity analysis of 2PIPLS/D on P-PLS setting

The influence of the maximum initial size σ of parts of P-PLS on the results of 2PIPLS/D are shown in Figure
5.8. It is interesting to see that the activation of the partitioning (σ < +∞) improves the anytime behavior
of 2PIPLS/D. Firstly, as expected, the partitioning enables to reduce the time of PLS-VND, particularly on
large-size instances (n = 500), to the extent that on tri-objective instances of size 500, P-PLS is not even

5.4. PARAMETER SETTING OF 2PIPLS/D 129

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=2 - n=100

Vanilla C-LK
Improved C-LK

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=2 - n=500

Vanilla C-LK
Improved C-LK

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=3 - n=100

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=3 - n=500

Vanilla C-LK
Improved C-LK

Figure 5.4 – Comparison in terms of normalized I−H (median values, to be minimized) between 2PIPLS/D
with Vanilla C-LK and 2PIPLS/D with Improved C-LK.

finished when the allocated time is exceeded. Secondly, at a given arbitrary running time, the quality of the
generated set is better when the partitioning is activated compared to when it is not, in a great majority of
cases. On the other hand, it seems that σ ≤ 100 works well on most instances, with an exception concerning
bi-objective Euclidean instances of size 500, where a too small value of σ (i.e. σ = 50) seems to reduce the
quality of the generated set. To summarize, σ = 100 obtains the best overall results.

Table 5.4 gathers some key additional information about the impact of the partitioning on the average size
of the candidate edge lists managed by PLS-VND and the number of solutions examined by PLS-VND. We
recall that each part built by P-PLS has its own candidate edge list associated to each city. First, we can see
that the average size of candidate edge lists when the partitioning is activated (σ < +∞) ranges from 1.3 up
to 2.6 and is globally stable when the size or the number of objectives grows; while when the partitioning
is deactivated (σ = +∞), the average size of candidate edge lists ranges from 5.3 up to 18.9 and grows
considerably when the size or the number of objectives grows. Indeed, the partitioning reduces from 78%
(when σ = 400) up to 85% (when σ = 50) the size of candidate edge lists. As the size of the candidate
edge lists is drastically reduced when partitioning is activated, then the number of solutions examined by
PLS-VND is dramatically reduced: from 96.9% (when σ = 400) up to 99.4% (when σ = 50)! Despite this
large reduction of exploration of the decision space, Figure 5.8 highlights that the partitioning does not lead
to a reduction of the quality of the sets generated if σ is not too small (i.e. σ ≥ 100) regardless of the type,
size or number of objectives of the tested instances.

130 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=2 - n=100

NMCS
A-NMCS

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=2 - n=500

NMCS
A-NMCS

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=3 - n=100

NMCS
A-NMCS

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=3 - n=500

NMCS
A-NMCS

Figure 5.5 – Comparison in terms of normalized I−H (median values, to be minimized) between 2PIPLS/D
with NMCS and 2PIPLS/D with A-NMCS.

no partitioning
σ = 400 σ = 200 σ = 100 σ = 50(σ = +∞)

Average size
p = 2 n = 100 5.3 2.6 2.1 1.8 1.6

of PLS-VND’s n = 500 7.2 1.8 1.6 1.4 1.3
candidate

p = 3 n = 100 11.0 2.6 2.2 2.0 1.8
edge lists n = 500 18.9 2.4 2.1 1.9 1.6

Average decrease rate of PLS-VND’s
- -78% -81% -83% -85%candidate edge lists size

compared to no partitioning
Average decrease rate of nb. of

- -96.9% -98.1% -98.9% -99.4%solutions examined by PLS-VND
compared to no partitioning

Table 5.4 – Impact of P-PLS partitioning on the average size of the candidate edge lists managed by PLS-
VND and the number of solutions examined by PLS-VND.

5.4. PARAMETER SETTING OF 2PIPLS/D 131

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35

n
or

m
al

iz
ed

I H

-

Time (s)

p=2 - n=100 - Euclidean

α=5%
α=25%
α=50%
α=75%
α=95%

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35

n
or

m
al

iz
ed

I H

-

Time (s)

p=2 - n=100 - random

α=5%
α=25%
α=50%
α=75%
α=95%

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 500 1000 1500 2000

n
o
rm

a
liz

e
d

I H

-

Time (s)

p=2 - n=500 - Euclidean

α=5%
α=25%
α=50%
α=75%
α=95%

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 500 1000 1500 2000

n
or

m
al

iz
ed

I H

-

Time (s)

p=2 - n=500 - random

α=5%
α=25%
α=50%
α=75%
α=95%

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 500 1000 1500 2000

n
or

m
al

iz
ed

I H

-

Time (s)

p=3 - n=100 - Euclidean

α=5%
α=25%
α=50%
α=75%
α=95%

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 0 500 1000 1500 2000

n
or

m
al

iz
ed

I H

-

Time (s)

p=3 - n=100 - random

α=5%
α=25%
α=50%
α=75%
α=95%

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

n
o
rm

a
liz

e
d

I H

-

Time (s)

p=3 - n=500 - Euclidean

α=5%
α=25%
α=50%
α=75%
α=95%

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 2000 3000 4000 5000 6000 7000 8000

n
or

m
al

iz
ed

I H

-

Time (s)

p=3 - n=500 - random

α=5%
α=25%
α=50%
α=75%
α=95%

Figure 5.6 – Influence of the minimum acceptance rate threshold α of A-MDW on 2PIPLS/D performance
in terms of normalized I−H (median values, to be minimized) in function of the running time. Curves start
at the end of the first phase (A-MDW+P-PLS) of 2PIPLS/D.

132 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=2 - n=100

δ=0%
δ=5%

δ=10%
δ=20%

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=2 - n=500

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=3 - n=100

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=3 - n=500

Figure 5.7 – Influence of the data perturbation coefficient δ on 2PIPLS/D performance in terms of normalized
I−H (median values, to be minimized).

5.4.5 Sensitivity analysis of 2PIPLS/D on PLS-VND setting

We analyze the sensitivity of 2PIPLS/D performance first on the neighborhood structure size of PLS-VND,
then on the choice of dependent vs independent PLS-VND, and finally on the different possible combinations
of PLS-VND exploration strategies.

Maximum neighborhood structure size of PLS-VND

The comparison between the two alternatives of maximum neighborhood structure sizes (k = 2 or k = 3) is
illustrated by Figure 5.9. The performance difference between the two neighborhood structure sizes is often
significant for bi-objective instances, while it is generally negligible for tri-objective instances. In both cases,
PLS-VND (k = 2) tends to catch up PLS-VND (k = 3) when the number of iterations grows, and this trend
is much faster in the tri-objective case.

This reduction of efficiency of PLS-VND (k = 3) compared to PLS-VND (k = 2) when the number of objec-
tives grows can be explained by the fact that PLS-VND is highly sensitive to the number of objectives (as
often recalled in the literature - see [Jaszkiewicz, 2017] for example). By extension, a larger neighborhood
structure is even more sensitive to an increase of the number of objectives. On the other hand, the opti-
mization of weighted sum problems -what does the perturbation step of 2PIPLS/D- is much less sensitive
from an increase of the number of objectives than PLS-VND. Consequently, the global idea is that when the
number of objectives grows, the efficiency of PLS-VND decreases to the benefit of the perturbation phase. In
addition, it turns out that PLS-VND (k = 2) consumes much less computational resources than PLS-VND

5.4. PARAMETER SETTING OF 2PIPLS/D 133

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 12 14 16 18 20 22 24 26 28 30 32

n
or

m
al

iz
ed

I H

-

Time (s)

p=2 - n=100 - Euclidean

σ=50
σ=100
σ=200
σ=400
σ=∞

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 12 14 16 18 20 22 24 26 28 30 32

n
or

m
al

iz
ed

I H

-

Time (s)

p=2 - n=100 - random

σ=50
σ=100
σ=200
σ=400
σ=∞

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 600 800 1000 1200 1400 1600 1800 2000

n
or

m
al

iz
ed

I H

-

Time (s)

p=2 - n=500 - Euclidean

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 600 800 1000 1200 1400 1600 1800 2000

n
or

m
al

iz
ed

I H

-

Time (s)

p=2 - n=500 - random

 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1
 1.01

 0 1000 2000 3000

n
or

m
al

iz
ed

I H

-

Time (s)

p=3 - n=100 - Euclidean

σ=50
σ=100
σ=200
σ=400
σ=∞

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 0 1000 2000 3000

n
or

m
al

iz
ed

I H

-

Time (s)

p=3 - n=100 - random

σ=50
σ=100
σ=200
σ=400
σ=∞

 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1
 1.01

 2000 3000 4000 5000 6000 7000 8000

n
or

m
al

iz
ed

I H

-

Time (s)

p=3 - n=500 - Euclidean

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3000 4000 5000 6000 7000 8000

n
or

m
al

iz
ed

I H

-

Time (s)

p=3 - n=500 - random

Figure 5.8 – Influence of the maximum initial size σ of part of P-PLS on 2PIPLS/D performance in terms
of normalized I−H (median values, to be minimized) in function of the running time. Curves start at the end
of the first phase (A-MDW+P-PLS) of 2PIPLS/D.

134 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 12 14 16 18 20 22 24 26 28 30 32

n
or

m
al

iz
ed

I H

-

Time (s)

p=2 - n=100 - Euclidean

k=2
k=3

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 12 14 16 18 20 22 24 26 28 30

n
or

m
al

iz
ed

I H

-

Time (s)

p=2 - n=100 - random

k=2
k=3

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 600 800 1000 1200 1400 1600 1800

n
or

m
al

iz
ed

I H

-

Time (s)

p=2 - n=500 - Euclidean

k=2
k=3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 600 800 1000 1200 1400 1600 1800

n
or

m
al

iz
ed

I H

-

Time (s)

p=2 - n=500 - random

k=2
k=3

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 0 500 1000 1500 2000

n
or

m
al

iz
ed

I H

-

Time (s)

p=3 - n=100 - Euclidean

k=2
k=3

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 500 1000 1500 2000

n
or

m
al

iz
ed

I H

-

Time (s)

p=3 - n=100 - random

k=2
k=3

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 2000 3000 4000 5000 6000 7000 8000

n
or

m
al

iz
ed

I H

-

Time (s)

p=3 - n=500 - Euclidean

k=2
k=3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2000 3000 4000 5000 6000 7000 8000

n
or

m
al

iz
ed

I H

-

Time (s)

p=3 - n=500 - random

k=2
k=3

Figure 5.9 – Influence of the PLS-VND maximum neighborhood structure size k on 2PIPLS/D performance
in terms of normalized I−H (median values, to be minimized) in function of the running time. Curves start
at the end of the first phase (A-MDW+P-PLS) of 2PIPLS/D.

5.4. PARAMETER SETTING OF 2PIPLS/D 135

PLS-VND k = 3 PLS-VND k = 2 Average
reduction

Proportion of PLS-VND’s
p = 2 n = 100 25.5% 8.5%

-70%execution time n = 500 23.5% 7%
compared to 2PIPLS/D’s

p = 3 n = 100 22.5% 6.5%
total execution time n = 500 22.5% 6%

Table 5.5 – Comparison between PLS-VND (k = 2) and PLS-VND (k = 3) in terms of execution time (in
proportion of 2PIPLS/D’s total execution time) .

dependent independent Average
PLS-VND PLS-VND increase

PLS-VND’s execution time
p = 2 n = 100 2.5% 25.5%

+717%in proportion of n = 500 2.5% 23.5%
2PIPLS/D’s

p = 3 n = 100 1% 22.5%
total execution time n = 500 5.5% 22.5%

Table 5.6 – Comparison between dependent PLS-VND and independent PLS-VND in terms of execution
time.

(k = 3), -70% in average over all types of instances, as indicated in Table 5.5. This saving allows 2PIPLS/D
with PLS-VND (k = 2) to reallocate more computational resources on the perturbation step, and thus on
weighted-sum optimizations.

Dependent vs. independent PLS-VND

The comparison between 2PIPLS/D with dependent PLS-VND and 2PIPLS/D with independent PLS-VND
is depicted in Figure 5.10. There is no neat performance difference between the two alternatives, except on
bi-objective Euclidean instances, where independent PLS-VND obtains better results.

It is interesting to note that these two alternatives induce drastically different allocations of computational
resources during a run of 2PIPLS/D. Indeed, as independent PLS-VND takes as parameter an empty global
archive, each independent PLS-VND consumes much more computational resources than a run of dependent
PLS-VND, +717% in average over all types of instances, as suggested in Table 5.6.

Exploration strategies of PLS-VND

Figure 5.11 displays the performance of 2PIPLS/D with the four combinations of exploration strategies of
PLS-VND. We can see that the selection of a given combination of exploration strategies does not influence
the performance of 2PIPLS/D, with the exception of the (First dominating+Explore dominated) combination
which outperforms the other combinations on small-size (n = 100) bi-objective Euclidean instances.

5.4.6 Final parameter setting of 2PIPLS/D

In consequence of the different analysis previously made in this section, we propose two final parameter
settings of 2PIPLS/D (summarized in Table 5.7), diverging only on the SO optimizer used: the first version
of 2PIPLS/D uses improved C-LK and the second uses A-NMCS. Table 5.7 also displays a ranking of the
parameters in function of their influence on 2PIPLS/D performance.

136 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=2 - n=100

Dependent PLS-VND
Independent PLS-VND

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=2 - n=500

Dependent PLS-VND
Independent PLS-VND

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=3 - n=100

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=3 - n=500

Figure 5.10 – Comparison in terms of normalized I−H (median values, to be minimized) between 2PIPLS/D
with dependent PLS-VND and 2PIPLS/D with independent PLS-VND.

Parameter Module concerned
Parameter rank in function

Final selected value(s)of its influence on
2PIPLS/D performance

SO optimizer - 1 {improved C-LK, A-NMCS}
perturbation move perturbation step (phase 2) - Double bridge move

acceptance rate threshold α A-MDW 2 50%
data perturbation coefficient δ SO optimizer (phase 2) 5 5%
maximum initial size σ of part P-PLS 3 100

maximum neighborhood PLS-VND 4 3structure size k
independent-pls PLS-VND 6 yes
first-dominating PLS-VND 6 yes

explore-dominated PLS-VND 6 yes

tolerance for dominance relations ε - -
{

0% if p = 2 or n < 100
1% otherwise

archive - -
{
SAAVLA if p = 2
SANDRA otherwise

Table 5.7 – The two final 2PIPLS/D parameter settings: 2PIPLS/D with (improved) C-LK and 2PIPLS/D
with A-NMCS & a ranking of the parameters in function of their influence on 2PIPLS/D performance.

In the rest of this chapter, C-LK denotes the improved version of C-LK.

5.5. COMPARISON OF 2PIPLS/D WITH STATE-OF-THE-ART METHODS 137

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=2 - n=100

No First dominating & Explore dominated
No First dominating & Ignore dominated

First dominating & Explore dominated
First dominating & Ignore dominated

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=2 - n=500

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=3 - n=100

 0

 0.2

 0.4

 0.6

 0.8

 1

Euclidean random

n
o
rm

a
liz

e
d

I H

-

p=3 - n=500

Figure 5.11 – Comparison in terms of normalized I−H (median values, to be minimized) between 2PIPLS/D
with four different combinations of exploration strategies.

5.5 Comparison of 2PIPLS/D with state-of-the-art methods

2PIPLS/D will now be compared to the best known methods of the literature. To do so, 2PIPLS/D follows
the parameter setting described in Table 5.7 such that two versions of 2PIPLS/D are considered:

• 2PIPLS/D with C-LK as SO optimizer;

• and 2PIPLS/D with A-NMCS as SO optimizer.

The running time of 2PIPLS/D will be limited to the minimum running time between all its competitors.
Let us first present the selected competitors and a number of additional implementation information, then
describe the results of our experiments.

5.5.1 Selection of competitors

The competitors we have chosen have already been described in Section 2.3.2 when we made a literature
review for MOTSP. As the most advanced exact method of the literature, we selected AUGMECON2 [Florios
and Mavrotas, 2014]. Given its limitations already mentioned, we have run AUGMECON2 only on bi-
objective instances of size 100. We use the executable implemented by the authors and available online6.

6https://sites.google.com/site/kflorios/motsp

https://sites.google.com/site/kflorios/motsp

138 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

As the best known meta-heuristic for bi-objective TSP not proposed by us, MoMad [Ke et al., 2014] is
selected to run on bi-objective and tri-objective instances. As proposed in [Ke et al., 2014], the
maximum number of iterations for PLS is set to 10. During the decomposition phase, MoMad uses the
MDW method to generate its set of weights. For bi-objective instances, the number of sub-problems is set
to min (n, 600) as suggested in [Ke et al., 2014]. As done in [Cornu et al., 2017], we fixed the number of sub-
problems to (50+3−1

3−1) = 1326 for (tri-objective) instances of size 50, and (60+3−1
3−1) = 1891 for (tri-objective)

instances of size greater than or equal to 100. The number of iterations is fixed to 500 for all bi-objective
instances and for tri-objective instances of size n < 100. For larger-sized tri-objective instances (n ≥ 100),
the number of iterations is fixed to 1000. MoMad is implemented in C/C++.

As the best known meta-heuristic for tri-objective TSP not proposed by us, PD-TPLS [Paquete and Stützle,
2009b] is selected to run on tri-objective instances. PD-TPLS also uses MDW to generate its set of
weights, and we set the number of weights to (150+3−1

3−1) = 11476 for all instances, in order to avoid the
clustering effect described in [Paquete and Stützle, 2009b]. For each generated weight, PD-TPLS optimizes
the corresponding weighted sum problem by calling C-LK as suggested in [Paquete and Stützle, 2009b] as
future works, instead of the 3-opt first improvement used in the original method. Internal tests have shown
that PD-TPLS using C-LK gives better results. PD-TPLS is implemented in C/C++.

As the best known meta-heuristic for MOTSP, PDA [Cornu et al., 2017] is selected to run on bi-objective
and tri-objective instances. PDA also uses MDW and uses the same number of sub-problems as MoMad.
The running time of PDA is limited to the minimum running time between MoMad and PD-TPLS. PDA is
implemented in C/C++.

5.5.2 Experimental results

2PIPLS/D, PDA, MoMad and PD-TPLS (resp. AUGMECON2) have been run 20 (resp. 1) times on the
MOTSP test benchmark presented in Section 5.1. Tables 5.8 to 5.14 collect key information about the
performance of the different methods. More precisely, the tables report for each method:

• the average value of Iε, I−H , and IR2 over all runs;

• the average coverage -i.e. the proportion of (potentially) efficient solutions in a given approximation-
over all runs, and the coverage of the union of the runs;

• the average number of solutions examined;

• the average running time;

• the average RAM utilized;

• the average size of the final approximation set Xall generated;

• the size of the (exact when p = 2 and n = 100, approximated otherwise) non-dominated set Ỹnd. When
the (exact) non-dominated set is not known, we recall that its approximation is built by merging the
final approximation sets provided by all the methods.

Figures 5.12 to 5.19 detail the Iε, I−H , and IR2 performance of the approximation sets produced by 2PIPLS/D
(with C-LK), PDA, MoMad and PD-TPLS.

Globally, 2PIPLS/D with C-LK obtains good results. Concerning bi-objective instances of size less than or
equal to 100, when the 20 runs of the method are merged together, at least 99% of the (approximate) non-
dominated points are found (i.e. coverage is greater than or equal to 99%). In particular, 2PIPLS/D is the
only meta-heuristic which was able to find the (exact) non-dominated set of some instances (7

5.5. COMPARISON OF 2PIPLS/D WITH STATE-OF-THE-ART METHODS 139

Instance Algorithm Iε I−H IR2 Coverage Nb. of exam. Time RAM ∣∣∣Xall

∣∣∣ |Ỹnd|(%) (10-5) (10-1) (%) sol. (106) (s) (GB)

kroAB100

2PIPLS/D (C-LK) 0.12 0.23 1.91 97→100 7 11 < 1 3,288

3,332
PDA 0.20 2.06 11.50 82→ 98 2 11 < 1 3,015

2PIPLS/D (A-NMCS) 0.34 9.55 58.30 77→ 98 16 11 < 1 3,146
MoMad 0.39 17.40 97.90 47→ 66 3 11 < 1 2,569

AUGMECON2 0 0 0 100 - 72h < 4 3,332

kroAC100

2PIPLS/D (C-LK) 0.14 0.17 0.77 98→100 6 11 < 1 2,433

2,458
PDA 0.18 1.60 11.40 84→ 98 2 11 < 1 2,263

2PIPLS/D (A-NMCS) 0.32 5.01 24.30 78→ 99.5 13 11 < 1 2,288
MoMad 0.40 14.30 68.50 52→ 71 2 11 < 1 2,062

AUGMECON2 0 0 0 100 - 40h < 4 2,458

kroAD100

2PIPLS/D (C-LK) 0.09 0.14 0.75 97→100 5 10 < 1 2,314

2,351
PDA 0.16 1.84 8.10 83→ 98 2 10 < 1 2,145

2PIPLS/D (A-NMCS) 0.35 8.71 37.30 74→ 99.1 11 10 < 1 2,197
MoMad 0.35 17.40 66.40 49→ 67 2 10 < 1 1,889

AUGMECON2 0 0 0 100 - 26h < 4 2,351

kroBC100

2PIPLS/D (C-LK) 0.08 0.09 0.21 98→100 6 11 < 1 2,723

2,752
PDA 0.14 1.55 5.58 83→ 98 2 11 < 1 2,538

2PIPLS/D (A-NMCS) 0.21 5.78 14.80 83→ 99.7 15 11 < 1 2,625
MoMad 0.28 12.20 46.50 47→ 68 2 11 < 1 2,205

AUGMECON2 0 0 0 100 - 41h < 4 2,752

kroBD100

2PIPLS/D (C-LK) 0.11 0.18 1.48 97→100 6 11 < 1 2,632

2,657
PDA 0.16 1.96 7.16 81→ 98 2 11 < 1 2,396

2PIPLS/D (A-NMCS) 0.28 10.30 33.10 72→ 98 12 11 < 1 2,454
MoMad 0.43 14.40 67.90 50→ 69 2 11 < 1 2,004

AUGMECON2 0 0 0 100 - 35h < 4 2,657

kroCD100

2PIPLS/D (C-LK) 0.10 0.13 0.77 98→100 5 10 < 1 2,028

2,044
PDA 0.19 1.69 6.91 86→ 99 1 10 < 1 1,907

2PIPLS/D (A-NMCS) 0.40 8.13 35.20 78→ 99 10 10 < 1 1,892
MoMad 0.41 15.10 65.70 56→ 74 2 10 < 1 1,742

AUGMECON2 0 0 0 100 - 21h < 4 2,044

euclidAB100

2PIPLS/D (C-LK) 0.11 0.21 1.64 97→99.9 5 10 < 1 1,787

1,812
PDA 0.21 3.03 12.30 79→ 97 1 10 < 1 1,612

2PIPLS/D (A-NMCS) 0.33 9.44 37.80 74→ 99 12 10 < 1 1,697
MoMad 0.36 19.60 85.60 48→ 67 2 10 < 1 1,400

AUGMECON2 0 0 0 100 - 22h < 4 1,812

euclidCD100

2PIPLS/D (C-LK) 0.12 0.37 1.24 96→100 5 11 < 1 2,225

2,268
PDA 0.20 2.97 12.00 79→ 98 2 11 < 1 2,008

2PIPLS/D (A-NMCS) 0.33 11.60 53.70 71→ 98 18 11 < 1 2,130
MoMad 0.42 23.30 96.70 45→ 63 2 11 < 1 1,683

AUGMECON2 0 0 0 100 - 36h < 4 2,268

euclidEF100

2PIPLS/D (C-LK) 0.14 0.50 2.67 97→99.9 5 11 < 1 2,488

2,530
PDA 0.22 2.71 9.96 84→ 99 2 11 < 1 2,319

2PIPLS/D (A-NMCS) 0.32 8.13 39.50 80→ 99 12 11 < 1 2,373
MoMad 0.48 24.00 102.00 49→ 70 2 11 < 1 1,967

AUGMECON2 0 0 0 100 - 28h < 4 2,530

ClusterAB100

2PIPLS/D (C-LK) 0.12 0.49 1.82 95→99.8 12 14 < 1 2,981

3,036
PDA 0.16 2.01 7.21 82→ 97 2 14 < 1 2,762

2PIPLS/D (A-NMCS) 0.29 5.78 16.20 77→ 98 3 14 < 1 2,850
MoMad 0.39 15.90 51.90 51→ 70 34 15 < 1 2,454

AUGMECON2 0 0 0 100 - 28h < 4 3,036

Table 5.8 – Comparison between 2PIPLS/D, PDA, MoMad and AUGMECON2 performance on Euclidean
and clustered bi-objective instances of size 100.

140 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

Instance Algorithm Iε I−H IR2 Coverage Nb. of exam. Time RAM ∣∣∣Xall

∣∣∣ |Ỹnd|(%) (10-4) (%) sol. (106) (s) (GB)

rdAB100

2PIPLS/D (C-LK) 0.39 0.25 1.53 74→99.2 1 12 < 1 1,469

1,707
PDA 0.63 1.14 4.90 46→ 93 1 12 < 1 1,161

MoMad 2.20 8.53 44.30 10→ 18 1 12 < 1 641
2PIPLS/D (A-NMCS) 3.70 14.10 52.50 06→ 51 19 12 < 1 1,121

AUGMECON2 0 0 0 100 - 18h < 4 1,707

rdCD100

2PIPLS/D (C-LK) 0.37 0.22 1.28 78→99.5 1 11 < 1 1,620

1,850
PDA 0.69 1.18 5.24 48→ 93 1 11 < 1 1,258

MoMad 2.23 7.54 43.20 9→ 16 1 11 < 1 660
2PIPLS/D (A-NMCS) 4.05 12.90 42.90 10→ 56 18 11 < 1 1,182

AUGMECON2 0 0 0 100 - 21h < 4 1,850

rdEF100

2PIPLS/D (C-LK) 0.42 0.41 1.77 69→99 2 12 < 1 1,596

1,882
PDA 0.75 1.53 6.68 40→ 90 1 12 < 1 1,221

MoMad 2.48 8.74 46.20 9→ 15 1 12 < 1 664
2PIPLS/D (A-NMCS) 4.70 17.20 66.10 4→ 32 21 12 < 1 1,152

AUGMECON2 0 0 0 100 - 24h < 4 1,882

mixedGG100

2PIPLS/D (C-LK) 0.28 0.16 0.40 87→99.8 3 11 < 1 1,714

1,848
PDA 0.46 0.64 1.38 66→ 96 1 11 < 1 1,461

MoMad 1.52 5.14 21.80 25→ 41 1 11 < 1 983
2PIPLS/D (A-NMCS) 2.49 5.72 11.00 48→ 79 18 11 < 1 1,441

AUGMECON2 0 0 0 100 - 20h < 4 1,848

mixedHH100

2PIPLS/D (C-LK) 0.35 0.24 0.65 83→99.2 4 12 < 1 1,920

2,108
PDA 0.55 0.81 2.42 65→ 96 1 12 < 1 1,698

MoMad 1.19 4.40 21.30 28→ 42 1 12 < 1 1,200
2PIPLS/D (A-NMCS) 2.74 5.42 14.50 49→ 83 16 12 < 1 1,692

AUGMECON2 0 0 0 100 - 19h < 4 2,108

mixedII100

2PIPLS/D (C-LK) 0.33 0.11 0.71 89→99.8 4 12 < 1 1,768

1,883
PDA 0.45 0.62 3.28 64→ 97 1 12 < 1 1,499

MoMad 1.33 4.86 23.80 25→ 38 1 12 < 1 1,019
2PIPLS/D (A-NMCS) 3.46 6.25 15.80 43→ 85 20 12 < 1 1,518

AUGMECON2 0 0 0 100 - 22h < 4 1,883

Table 5.9 – Comparison between 2PIPLS/D, PDA, MoMad and AUGMECON2 performance on random and
mixed bi-objective instances of size 100.

5.5. COMPARISON OF 2PIPLS/D WITH STATE-OF-THE-ART METHODS 141

Instance Algorithm Iε I−H IR2 Coverage Nb. of exam. Time RAM ∣∣∣Xall

∣∣∣ |Ỹnd|(%) (10-4) (%) sol. (106) (s) (GB)

kroAB200

2PIPLS/D (C-LK) 0.06 0.02 0.37 93→99.9 17 59 < 1 8,703

8,915PDA 0.12 0.15 1.51 71→ 95 16 59 < 1 7,880
MoMad 0.35 0.97 9.70 33→ 47 17 59 < 1 6,649

2PIPLS/D (A-NMCS) 0.45 3.62 39.90 15→ 65 30 59 < 1 7,856

kroAB300

2PIPLS/D (C-LK) 0.09 0.09 0.57 86→99 38 169 < 1 18,569

19,032PDA 0.09 0.15 2.06 60→ 94 70 169 < 1 16,963
MoMad 0.18 0.63 7.53 23→ 34 69 169 < 1 14,880

2PIPLS/D (A-NMCS) 0.76 9.74 134 1→ 10 87 169 < 1 17,171

euclidAB300

2PIPLS/D (C-LK) 0.07 0.08 1.33 79→99 46 164 < 1 17,779

18,523PDA 0.08 0.20 3.32 57→ 94 67 164 < 1 16,334
MoMad 0.13 0.72 10.40 25→ 34 63 164 < 1 14,436

2PIPLS/D (A-NMCS) 0.70 9.98 147 1→ 14 95 164 < 1 16,516

ClusterAB300

2PIPLS/D (C-LK) 0.09 0.05 1.00 84→99 58 209 < 1 21,124

21,617PDA 0.20 0.39 3.62 42→ 85 203 209 < 1 18,488
MoMad 0.62 3.42 21 11→ 19 113 209 < 1 15,931

2PIPLS/D (A-NMCS) 1.18 9.11 115 1→ 11 121 209 < 1 18,661

kroAB400

2PIPLS/D (C-LK) 0.08 0.10 2.05 68→96 75 346 < 1 28,677

30,505PDA 0.11 0.28 5.11 37→ 80 178 346 1.6 25,027
MoMad 0.21 0.82 12.10 11→ 17 152 346 1.5 21,793

2PIPLS/D (A-NMCS) 1.04 12.30 231 0→ 0 107 346 < 1 26,539

kroAB500

2PIPLS/D (C-LK) 0.06 0.15 4.63 45→93 157 632 < 1 43,372

46,144PDA 0.11 0.39 11.00 17→ 65 430 632 2.6 37,863
MoMad 0.22 0.83 18.50 6→ 9 339 632 2.5 33,436

2PIPLS/D (A-NMCS) 1.05 13.60 323 0→ 0 231 633 < 1 37,707

euclidAB500

2PIPLS/D (C-LK) 0.08 0.16 3.59 58→96 161 605 < 1 42,528

44,989PDA 0.09 0.38 9.82 24→ 77 392 606 2.6 37,984
MoMad 0.12 0.78 19.30 08→ 12 338 605 2.5 34,148

2PIPLS/D (A-NMCS) 0.97 13.80 348 0→ 0 257 605 < 1 38,378

ClusterAB500

2PIPLS/D (C-LK) 0.16 0.11 4.62 68→97 124 677 1.3 52,148

54,415PDA 0.13 0.22 4.93 32→ 79 577 678 2.6 45,706
MoMad 0.71 0.86 15.60 8→ 12 440 677 2.5 40,936

2PIPLS/D (A-NMCS) 1.46 12.90 417 0→ 0 247 678 < 1 45,295

kroAB750

2PIPLS/D (C-LK) 0.10 0.21 8.02 30→87 260 1,417 2.3 78,341

84,807PDA 0.12 0.55 21.2 4→ 33 1,462 1,417 6.1 66,365
MoMad 0.16 0.86 30.40 1→ 02 1,151 1,417 6.0 60,415

2PIPLS/D (A-NMCS) 1.52 16.90 629 0→ 0 831 1,418 1.3 77,438

kroAB1000

2PIPLS/D (C-LK) 0.09 0.32 10.50 14→67 365 2,465 5.8 120,607

128,282PDA 0.16 0.79 35.10 1→ 10 3,264 2,466 10.3 105,174
MoMad 0.26 1.06 44.90 0→ 0 2,663 2,465 10.2 98,476

2PIPLS/D (A-NMCS) 2.03 19.00 941 0→ 0 1,218 2,468 1.9 120,008

Table 5.10 – Comparison between 2PIPLS/D, PDA and MoMad performance on large-size Euclidean and
clustered bi-objective instances.

142 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

 0
 0.0005

 0.001
 0.0015

 0.002
 0.0025

 0.003
 0.0035

 0.004
 0.0045

 0.005
 0.0055

2PIPLS/D
(C-LK)

PDA MoMad

I ε

p=2 - n=100 - Euclidean

 0

 5x10-5

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

2PIPLS/D
(C-LK)

PDA MoMad

I H
-

p=2 - n=100 - Euclidean

 0

 2

 4

 6

 8

 10

 12

2PIPLS/D
(C-LK)

PDA MoMad

I R
2

p=2 - n=100 - Euclidean

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

2PIPLS/D
(C-LK)

PDA MoMad

I ε

p=2 - n=100 - clustered

 0

 2x10-5

 4x10-5
 6x10-5
 8x10-5

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

2PIPLS/D
(C-LK)

PDA MoMad

I H
-

p=2 - n=100 - clustered

 0

 1

 2

 3

 4

 5

 6

 7

2PIPLS/D
(C-LK)

PDA MoMad

I R
2

p=2 - n=100 - clustered

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

2PIPLS/D
(C-LK)

PDA MoMad

I ε

p=2 - n=100 - random

 0
 0.0001
 0.0002
 0.0003
 0.0004
 0.0005
 0.0006
 0.0007
 0.0008
 0.0009

 0.001

2PIPLS/D
(C-LK)

PDA MoMad

I H
-

p=2 - n=100 - random

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

2PIPLS/D
(C-LK)

PDA MoMad

I R
2

p=2 - n=100 - random

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

2PIPLS/D
(C-LK)

PDA MoMad

I ε

p=2 - n=100 - mixed

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

2PIPLS/D
(C-LK)

PDA MoMad

I H
-

p=2 - n=100 - mixed

 0

 5

 10

 15

 20

 25

 30

2PIPLS/D
(C-LK)

PDA MoMad

I R
2

p=2 - n=100 - mixed

Figure 5.12 – Iε (left), I−H (middle) and IR2 (right) performance comparison between 2PIPLS/D (with C-LK
optimizer), PDA, and MoMad on bi-objective instances of size 100.

5.5. COMPARISON OF 2PIPLS/D WITH STATE-OF-THE-ART METHODS 143

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

2PIPLS/D
(C-LK)

PDA MoMad

I ε

p=2 - n=300 - Euclidean

 0

 1x10-5

 2x10-5

 3x10-5

 4x10-5

 5x10-5

 6x10-5

 7x10-5

 8x10-5

2PIPLS/D
(C-LK)

PDA MoMad

I H
-

p=2 - n=300 - Euclidean

 0

 2

 4

 6

 8

 10

 12

2PIPLS/D
(C-LK)

PDA MoMad

I R
2

p=2 - n=300 - Euclidean

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

2PIPLS/D
(C-LK)

PDA MoMad

I ε

p=2 - n=300 - clustered

 0

 5x10-5

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

2PIPLS/D
(C-LK)

PDA MoMad

I H
-

p=2 - n=300 - clustered

 0

 5

 10

 15

 20

 25

2PIPLS/D
(C-LK)

PDA MoMad

I R
2

p=2 - n=300 - clustered

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

2PIPLS/D
(C-LK)

PDA MoMad

I ε

p=2 - n=300 - random

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 0.0006

2PIPLS/D
(C-LK)

PDA MoMad

I H
-

p=2 - n=300 - random

 20

 30

 40

 50

 60

 70

 80

 90

2PIPLS/D
(C-LK)

PDA MoMad

I R
2

p=2 - n=300 - random

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

2PIPLS/D
(C-LK)

PDA MoMad

I ε

p=2 - n=300 - mixed

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

2PIPLS/D
(C-LK)

PDA MoMad

I H
-

p=2 - n=300 - mixed

 5

 10

 15

 20

 25

 30

 35

 40

2PIPLS/D
(C-LK)

PDA MoMad

I R
2

p=2 - n=300 - mixed

Figure 5.13 – Iε (left), I−H (middle) and IR2 (right) performance comparison between 2PIPLS/D (with C-LK
optimizer), PDA, and MoMad on bi-objective instances of size 300.

144 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0.0022

2PIPLS/D
(C-LK)

PDA MoMad

I ε

p=2 - n=500 - Euclidean

 0

 1x10-5

 2x10-5
 3x10-5
 4x10-5

 5x10-5
 6x10-5
 7x10-5

 8x10-5
 9x10-5

2PIPLS/D
(C-LK)

PDA MoMad

I H
-

p=2 - n=500 - Euclidean

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

2PIPLS/D
(C-LK)

PDA MoMad

I R
2

p=2 - n=500 - Euclidean

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

2PIPLS/D
(C-LK)

PDA MoMad

I ε

p=2 - n=500 - clustered

 0
 1x10-5
 2x10-5
 3x10-5
 4x10-5
 5x10-5
 6x10-5
 7x10-5
 8x10-5
 9x10-5
 0.0001

2PIPLS/D
(C-LK)

PDA MoMad

I H
-

p=2 - n=500 - clustered

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

2PIPLS/D
(C-LK)

PDA MoMad

I R
2

p=2 - n=500 - clustered

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

2PIPLS/D
(C-LK)

PDA MoMad

I ε

p=2 - n=500 - random

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

2PIPLS/D
(C-LK)

PDA MoMad

I H
-

p=2 - n=500 - random

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

2PIPLS/D
(C-LK)

PDA MoMad

I R
2

p=2 - n=500 - random

 0.005
 0.006
 0.007
 0.008
 0.009

 0.01
 0.011
 0.012
 0.013
 0.014
 0.015
 0.016

2PIPLS/D
(C-LK)

PDA MoMad

I ε

p=2 - n=500 - mixed

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016

0.00018

0.00020

0.00022

2PIPLS/D
(C-LK)

PDA MoMad

I H
-

p=2 - n=500 - mixed

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

2PIPLS/D
(C-LK)

PDA MoMad

I R
2

p=2 - n=500 - mixed

Figure 5.14 – Iε (left), I−H (middle) and IR2 (right) performance comparison between 2PIPLS/D (with C-LK
optimizer), PDA, and MoMad on bi-objective instances of size 500.

5.5. COMPARISON OF 2PIPLS/D WITH STATE-OF-THE-ART METHODS 145

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

2PIPLS/D
(C-LK)

PDA MoMad

I ε

p=2 - n=200 - Euclidean

 0
 1x10-5
 2x10-5
 3x10-5
 4x10-5
 5x10-5
 6x10-5
 7x10-5
 8x10-5
 9x10-5
 0.0001

 0.00011

2PIPLS/D
(C-LK)

PDA MoMad

I H
-

p=2 - n=200 - Euclidean

 0

 2

 4

 6

 8

 10

 12

2PIPLS/D
(C-LK)

PDA MoMad

I R
2

p=2 - n=200 - Euclidean

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

2PIPLS/D
(C-LK)

PDA MoMad

I ε

p=2 - n=400 - Euclidean

 0

 1x10-5

 2x10-5
 3x10-5
 4x10-5

 5x10-5
 6x10-5
 7x10-5

 8x10-5
 9x10-5

2PIPLS/D
(C-LK)

PDA MoMad

I H
-

p=2 - n=400 - Euclidean

 0

 2

 4

 6

 8

 10

 12

 14

2PIPLS/D
(C-LK)

PDA MoMad

I R
2

p=2 - n=400 - Euclidean

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

2PIPLS/D
(C-LK)

PDA MoMad

I ε

p=2 - n=750 - Euclidean

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

2PIPLS/D
(C-LK)

PDA MoMad

I H
-

p=2 - n=750 - Euclidean

 5

 10

 15

 20

 25

 30

 35

2PIPLS/D
(C-LK)

PDA MoMad

I R
2

p=2 - n=750 - Euclidean

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

2PIPLS/D
(C-LK)

PDA MoMad

I ε

p=2 - n=1000 - Euclidean

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

0.00010

0.00011

2PIPLS/D
(C-LK)

PDA MoMad

I H
-

p=2 - n=1000 - Euclidean

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

2PIPLS/D
(C-LK)

PDA MoMad

I R
2

p=2 - n=1000 - Euclidean

Figure 5.15 – Iε (left), I−H (middle) and IR2 (right) performance comparison between 2PIPLS/D (with C-LK
optimizer), PDA, and MoMad on bi-objective Euclidean instances of size 200, 400, 750 and 1000.

146 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

Instance Algorithm Iε I−H IR2 Coverage Nb. of exam. Time RAM ∣∣∣Xall

∣∣∣ |Ỹnd|(%) (10-4) (%) sol. (106) (s) (GB)

mixedAB300

2PIPLS/D (C-LK) 0.68 0.58 8.34 46→81 28 185 < 1 9,636

12,490PDA 1.00 1.31 16.90 24→ 58 33 185 < 1 7,477
MoMad 2.56 2.56 38.10 7→ 12 28 185 < 1 5,786

2PIPLS/D (A-NMCS) 13 17.60 232 1→ 7 134 185 < 1 8,865

rdAB300

2PIPLS/D (C-LK) 0.87 1.67 30.30 3→35 9 205 < 1 4,769

9,168PDA 1.30 3.21 51.10 0→ 7 13 205 < 1 3,231
MoMad 3.45 5.60 83.40 0→ 0 10 205 < 1 2,079

2PIPLS/D (A-NMCS) 14.10 32.60 546 0→ 0 126 205 < 1 4,481

mixedAB500

2PIPLS/D (C-LK) 0.76 0.72 20.10 29→70 67 721 < 1 21,976

26,526PDA 1.17 1.44 38.80 10→ 40 182 721 2.6 16,692
MoMad 1.49 2.00 56.20 3→ 4 145 721 2.5 14,008

2PIPLS/D (A-NMCS) 16.90 20.90 544 0→ 0 323 722 < 1 21,115

rdAB500

2PIPLS/D (C-LK) 1.22 1.54 57.30 1→13 27 750 < 1 7,660

12,155PDA 1.81 2.93 108 0→ 0 38 750 2.6 4,822
MoMad 2.90 4.11 139 0→ 0 30 750 2.5 3,518

2PIPLS/D (A-NMCS) 22.30 38.80 1400 0→ 0 269 751 < 1 9,316

Table 5.11 – Comparison between 2PIPLS/D, PDA and MoMad performance on mixed and random bi-
objective instances of size 300 and 500.

 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014
 0.016
 0.018

 0.02
 0.022

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I ε

p=3 - n=50 - Euclidean

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I H
-

p=3 - n=50 - Euclidean

 0

 5

 10

 15

 20

 25

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I R
2

p=3 - n=50 - Euclidean

 0

 0.005

 0.01

 0.015

 0.02

 0.025

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I ε

p=3 - n=50 - clustered

 0
 0.0002
 0.0004
 0.0006
 0.0008

 0.001
 0.0012
 0.0014
 0.0016
 0.0018

 0.002

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I H
-

p=3 - n=50 - clustered

 0

 5

 10

 15

 20

 25

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I R
2

p=3 - n=50 - clustered

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I ε

p=3 - n=50 - random

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I H
-

p=3 - n=50 - random

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I R
2

p=3 - n=50 - random

Figure 5.16 – Iε (left), I−H (middle) and IR2 (right) performance comparison between 2PIPLS/D (with C-LK
optimizer), PDA, MoMad and PD-TPLS on tri-objective instances of size 50.

5.5. COMPARISON OF 2PIPLS/D WITH STATE-OF-THE-ART METHODS 147

Instance Algorithm Iε I−H IR2 Coverage Nb. of exam. Time RAM ∣∣∣Xall

∣∣∣ |Ỹnd|(%) (10-3) (%) sol. (106) (s) (GB)

euclidA-3-50

2PIPLS/D (C-LK) 0.37 < 0.01 0.03 99→99.9 392 228 < 1 102,165

103,439
2PIPLS/D (A-NMCS) 0.37 < 0.01 0.05 99→99.9 647 231 < 1 102,595

PDA 0.55 0.02 0.17 91→ 98 73 224 < 1 96,292
MoMad 0.79 0.11 1.37 81→ 90 83 224 < 1 91,192
PD-TPLS 1.80 2.01 21.70 15→ 16 897 738 < 1 25,290

euclidB-3-50

2PIPLS/D (C-LK) 0.34 < 0.01 0.04 98→ 99.8 325 236 < 1 126,201

128,273
2PIPLS/D (A-NMCS) 0.37 < 0.01 0.06 99→99.9 549 232 < 1 126,724

PDA 0.50 0.04 0.43 85→ 97 87 228 < 1 113,181
MoMad 0.69 0.16 2.20 73→ 83 99 228 < 1 106,154
PD-TPLS 1.97 2.08 20.30 12→ 13 920 751 < 1 27,493

euclidC-3-50

2PIPLS/D (C-LK) 0.39 < 0.01 0.02 98→ 99.8 436 262 < 1 126,996

128,616
2PIPLS/D (A-NMCS) 0.43 < 0.01 0.03 99→100 668 262 < 1 127,628

PDA 0.50 0.03 0.28 88→ 98 89 258 < 1 116,378
MoMad 0.64 0.12 1.45 77→ 87 107 258 < 1 109,375
PD-TPLS 2.13 1.84 19.50 15→ 16 916 721 < 1 31,783

clusterA-3-50

2PIPLS/D (A-NMCS) 0.30 < 0.01 0.02 99→100 829 298 < 1 109,861

110,447
2PIPLS/D (C-LK) 0.34 < 0.01 0.03 99→ 99.9 543 301 < 1 109,622

PDA 0.52 0.02 0.16 92→ 98 78 295 < 1 103,497
MoMad 0.67 0.06 0.65 87→ 92 100 327 < 1 100,917
PD-TPLS 2.33 1.93 23.90 14→ 15 1,076 418 < 1 26,867

kroABC100

2PIPLS/D (C-LK) 1.02 1.68 37.30 16→ 27 295 801 < 1 16,884

103,540
2PIPLS/D (A-NMCS) 1.13 1.77 40.50 15→ 32 672 801 < 1 16,797

PDA 1.18 1.85 39.30 12→46 43 801 < 1 16,127
MoMad 1.34 2.33 50.40 11→ 21 69 810 < 1 15,608
PD-TPLS 2.14 2.30 50.00 11→ 17 2,219 933 < 1 13,982

euclidABC100

2PIPLS/D (C-LK) 1.03 2.35 46.10 8→ 14 310 776 < 1 13,246

164,003
2PIPLS/D (A-NMCS) 1.14 2.48 49.80 8→ 16 501 776 < 1 13,179

PDA 1.15 2.49 48.20 7→22 30 784 < 1 12,687
MoMad 1.35 3.10 58.70 5→ 10 53 784 < 1 12,196
PD-TPLS 2.65 3.09 59.50 5→ 8 2,455 982 < 1 11,124

euclidDEF100

2PIPLS/D (C-LK) 1.03 1.79 35.30 15→ 28 327 774 < 1 14,243

93,030
PDA 1.16 1.96 37.00 12→46 34 774 < 1 13,580

2PIPLS/D (A-NMCS) 1.16 1.95 40.10 14→ 34 537 774 < 1 14,170
MoMad 1.34 2.61 48.10 10→ 22 58 782 < 1 13,016
PD-TPLS 1.95 2.59 49.20 10→ 18 2,472 1,007 < 1 11,906

ClusterABC100

2PIPLS/D (C-LK) 1.09 1.40 29.90 15→ 34 157 895 < 1 17,466

109,313
2PIPLS/D (A-NMCS) 1.17 1.49 31.00 15→ 32 621 895 < 1 17,487

PDA 1.23 1.63 33.20 11→44 43 905 < 1 16,343
MoMad 1.47 2.17 42.40 10→ 19 78 905 < 1 15,933
PD-TPLS 2.41 2.02 44.20 10→ 15 2,366 1,439 < 1 14,088

Table 5.12 – Comparison between 2PIPLS/D, PDA, MoMad and PD-TPLS performance on Euclidean and
clustered tri-objective instances of size 50 and 100.

148 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

Instance Algorithm Iε I−H IR2 Coverage Nb. of exam. Time RAM ∣∣∣Xall

∣∣∣ |Ỹnd|(%) (10-3) (%) sol. (106) (s) (GB)

euclidABC300

2PIPLS/D (C-LK) 1.12 1.75 106 2→25 293 2,640 < 1 20,929

456,433
PDA 1.22 1.91 114 1→ 18 197 2,668 3.0 20,347

PD-TPLS 2.35 2.23 126 2→ 22 7,052 2,667 < 1 18,146
MoMad 2.15 3.56 188 0→ 1 399 3,092 2.9 18,451

2PIPLS/D (A-NMCS) 2.05 5.22 350 0→ 1 573 2,640 < 1 20,204

euclidDEF300

2PIPLS/D (C-LK) 1.15 1.66 93.60 2→29 318 2,715 < 1 21,670

415,231
PDA 1.29 1.96 109 1→ 19 212 2,716 3.0 20,938

PD-TPLS 2.37 2.17 119 2→ 27 7,467 2,743 < 1 18,711
MoMad 2.18 3.53 187 1→ 1 404 2,971 2.9 19,224

2PIPLS/D (A-NMCS) 2.06 5.12 340 0→ 2 514 2,715 < 1 20,990

euclidG-3-300

2PIPLS/D (C-LK) 1.15 1.75 102 2→27 559 2,861 < 1 27,163

552,917
PDA 1.31 2.07 116 1→ 19 261 2,862 3.0 25,933

PD-TPLS 2.44 2.44 133 2→ 25 7,338 2,890 < 1 22,753
MoMad 2.14 3.80 199 1→ 1 492 3,191 2.9 23,557

2PIPLS/D (A-NMCS) 2.06 5.26 354 0→ 2 745 2,862 1.0 26,423

ClusterABC300

2PIPLS/D (C-LK) 1.26 1.50 89.90 2→23 579 3,577 1.0 32,460

657,700
PDA 2.13 1.97 104 1→ 14 367 3,614 3.0 30,791

PD-TPLS 3.18 2.28 120 2→ 21 7,788 3,633 < 1 26,297
MoMad 3.96 3.94 185 0→ 1 730 3,614 2.9 28,064

2PIPLS/D (A-NMCS) 2.41 3.97 268 0→ 2 899 3,577 1.0 31,480

euclidABC500

2PIPLS/D (C-LK) 1.30 1.57 150 1→ 27 668 5,805 2.0 32,974

523,721
PDA 2.39 2.11 182 1→ 13 604 5,807 7.8 30,330

PD-TPLS 2.96 2.65 226 2→36 12,352 5,805 < 1 23,381
MoMad 4.10 5.48 444 0→ 1 865 5,980 7.7 19,872

2PIPLS/D (A-NMCS) 2.65 7.36 838 0→ 0 1,380 5,805 2.0 30,491

euclidDEF500

2PIPLS/D (C-LK) 1.24 1.48 143 1→ 26 641 5,894 1.4 23,791

390,954
PDA 2.10 1.90 174 1→ 12 455 5,896 7.8 22,226

PD-TPLS 2.84 2.22 201 2→40 12,149 6,295 < 1 18,418
MoMad 4.12 4.58 384 0→ 1 763 5,613 7.7 16,727

2PIPLS/D (A-NMCS) 2.41 7.17 823 0→ 0 1,028 5,894 2.0 22,324

euclidG-3-500

2PIPLS/D (C-LK) 1.26 1.68 170 1→ 20 692 5,360 2.0 32,802

606,916
PDA 2.14 2.17 194 0→ 9 598 5,362 7.8 30,545

PD-TPLS 2.91 2.64 236 2→30 12,180 5,360 < 1 23,749
MoMad 4.07 5.45 448 0→ 0 894 6,454 7.7 20,400

2PIPLS/D (A-NMCS) 2.58 7.26 835 0→ 0 1,387 5,360 2.0 30,739

ClusterABC500

2PIPLS/D (C-LK) 1.22 1.02 114 2→ 29 826 6,849 2.0 43,685

657,038
PDA 4.71 2.22 158 1→ 11 857 6,524 7.8 37,840

PD-TPLS 4.28 2.48 198 2→37 12,004 6,522 < 1 28,053
2PIPLS/D (A-NMCS) 3.11 5.19 635 0→ 0 1,648 6,849 2.0 41,059

MoMad 7.43 5.26 348 0→ 0 1,451 9,068 7.7 28,890

Table 5.13 – Comparison between 2PIPLS/D, PDA, MoMad and PD-TPLS performance on Euclidean and
clustered tri-objective instances of size 300 and 500.

5.5. COMPARISON OF 2PIPLS/D WITH STATE-OF-THE-ART METHODS 149

Instance Algorithm Iε I−H IR2 Coverage Nb. of exam. Time RAM ∣∣∣Xall

∣∣∣ |Ỹnd|(%) (10-3) (%) sol. (106) (s) (GB)

rdA-3-50

2PIPLS/D (C-LK) 0.89 0.02 0.30 88→ 97 303 212 < 1 103,095

114,490
2PIPLS/D (A-NMCS) 1.08 0.05 0.40 91→99.5 384 212 < 1 106,163

PDA 1.08 0.16 2.31 56→ 92 67 210 < 1 74,105
MoMad 1.85 1.16 14.40 27→ 46 75 210 < 1 53,634
PD-TPLS 2.83 2.73 41.40 8→ 9 1,058 784 < 1 22,293

rdB-3-50

2PIPLS/D (C-LK) 0.88 0.02 0.35 88→ 97 375 198 < 1 76,640

84,992
2PIPLS/D (A-NMCS) 1.38 0.08 0.57 92→99.8 431 198 < 1 79,554

PDA 1.20 0.14 1.91 63→ 94 52 197 < 1 58,846
MoMad 2.14 1.22 16.30 27→ 47 54 197 < 1 39,589
PD-TPLS 3.01 2.89 46.70 8→ 9 1,047 943 < 1 17,478

rdC-3-50

2PIPLS/D (C-LK) 0.80 0.02 0.34 88→ 97 320 197 < 1 93,044

102,866
2PIPLS/D (A-NMCS) 1.00 0.05 0.67 92→99.7 428 197 < 1 96,437

PDA 1.19 0.14 2.06 60→ 93 61 194 < 1 69,584
MoMad 1.96 1.03 16.20 29→ 50 67 194 < 1 49,902
PD-TPLS 3.32 2.57 47.00 8→ 9 1,023 889 < 1 20,651

rdABC100

2PIPLS/D (C-LK) 1.20 0.97 32.90 13→ 29 223 883 < 1 38,274

287,363
PDA 1.52 1.13 35.20 10→ 42 65 891 < 1 34,334

2PIPLS/D (A-NMCS) 3.09 2.03 58.80 9→50 1,420 884 < 1 35,409
PD-TPLS 3.54 2.31 73.80 4→ 10 1,951 892 < 1 22,667
MoMad 3.90 2.81 73.60 4→ 11 119 979 < 1 26,218

rdD-3-100

2PIPLS/D (C-LK) 1.14 1.20 41.80 7→ 16 167 899 < 1 39,702

562,801
PDA 1.67 1.37 45.2 5→ 24 74 899 < 1 35,255

2PIPLS/D (A-NMCS) 3.10 2.21 67.60 5→25 1,213 900 < 1 37,246
PD-TPLS 3.53 2.51 80.10 2→ 5 1,926 909 < 1 24,382
MoMad 3.73 2.93 81.90 2→ 6 131 986 < 1 27,867

rdABC300

2PIPLS/D (C-LK) 2.42 1.15 128 1→27 523 3,193 1.6 76,193

1,588,953
PDA 4.34 1.46 139 1→ 20 578 3,225 3 68,526

PD-TPLS 7.48 2.37 190 1→ 14 5,948 3,225 < 1 49,981
MoMad 14.00 4.52 294 0→ 1 958 4,083 2.9 50,365

2PIPLS/D (A-NMCS) 17.80 7.19 671 0→ 0 1,262 3,206 1.1 67,884

rdD-3-300

2PIPLS/D (C-LK) 2.60 1.18 129 1→27 532 3,047 1.6 72,931

1,518,306
PDA 7.09 1.69 145 1→ 10 554 3,046 3 63,916

PD-TPLS 7.34 2.47 190 1→ 15 6,041 3,076 < 1 47,112
MoMad 14.00 4.78 294 0→ 1 892 4,021 2.9 47,777

2PIPLS/D (A-NMCS) 18.80 7.45 720 0→ 0 1,356 3,059 1.1 64,628

rdABC500

2PIPLS/D (C-LK) 4.70 1.03 179 2→36 1,249 5,956 3.4 87,682

1,248,086
PDA 14.90 1.96 197 1→ 25 1,205 5,957 7.8 71,506

PD-TPLS 10.40 2.63 288 1→ 20 10,229 5,955 < 1 43,666
MoMad 26.50 6.31 519 0→ 1 1,507 8,039 7.7 39,534

2PIPLS/D (A-NMCS) 27.40 10.10 1700 0→ 0 989 6,008 2.1 76,483

rdD-3-500

2PIPLS/D (C-LK) 4.98 1.05 184 1→26 1,316 6,322 3.4 87,142

1,507,910
PDA 14.80 2.12 206 1→ 17 1,163 6,322 7.8 70,890

PD-TPLS 11.00 2.64 297 1→ 14 10,087 6,320 < 1 43,813
MoMad 28.20 6.22 525 0→ 0 1,461 8,076 7.7 40,200

2PIPLS/D (A-NMCS) 26.40 10.30 1760 0→ 0 1,662 6,376 2.1 75,691

Table 5.14 – Comparison between 2PIPLS/D, PDA, MoMad and PD-TPLS performance on random tri-
objective instances.

150 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

 0.008
 0.01

 0.012
 0.014
 0.016
 0.018

 0.02
 0.022
 0.024
 0.026
 0.028

 0.03

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I ε

p=3 - n=100 - Euclidean

 0.0016

 0.0018

 0.002

 0.0022

 0.0024

 0.0026

 0.0028

 0.003

 0.0032

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I H
-

p=3 - n=100 - Euclidean

 30

 35

 40

 45

 50

 55

 60

 65

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I R
2

p=3 - n=100 - Euclidean

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0.026

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I ε

p=3 - n=100 - clustered

 0.0013

 0.0014

 0.0015

 0.0016

 0.0017

 0.0018

 0.0019

 0.002

 0.0021

 0.0022

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I H
-

p=3 - n=100 - clustered

 28

 30

 32

 34

 36

 38

 40

 42

 44

 46

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I R
2

p=3 - n=100 - clustered

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I ε

p=3 - n=100 - random

 0.0008
 0.001

 0.0012
 0.0014
 0.0016
 0.0018

 0.002
 0.0022
 0.0024
 0.0026
 0.0028

 0.003

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I H
-

p=3 - n=100 - random

 30

 40

 50

 60

 70

 80

 90

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I R
2

p=3 - n=100 - random

Figure 5.17 – Iε (left), I−H (middle) and IR2 (right) performance comparison between 2PIPLS/D (with C-LK
optimizer), PDA, MoMad and PD-TPLS on tri-objective instances of size 100.

bi-objective instances of size 100 over 16). For comparison, AUGMECON2 is an exact method and therefore
finds the (exact) non-dominated set of all bi-objectives instances of size 100 in slightly less than 30 hours in
average, while 2PIPLS/D finds at least 99% of the non-dominated points in less than 4 minutes in average.

Over all quality indicators and all tested instances, 2PIPLS/D (with C-LK) outperforms both
MoMad and PD-TPLS. Indeed, 2PIPLS/D (with C-LK) has a strictly better average performance than
both MoMad and PD-TPLS and the Mann-Whitney test (cf. Section 2.1.4) confirms that 2PIPLS/D is
strictly better than both MoMad and PD-TPLS. In a great majority of cases, for a given quality indicator
on a given instance, the worst run of 2PIPLS/D (with C-LK) is better than the best run of MoMad or
PD-TPLS. Moreover, the worst Iε average value of 2PIPLS/D over all tested instances is (slightly less than)
5%, meaning that 2PIPLS/D is able to provide for all tested instances an ε-approximation of very good
quality. In comparison, the best competitor (PD-TPLS) proposes a worst Iε average value of 11%.

Over all quality indicators and tested instances, 2PIPLS/D (with C-LK) outperforms PDA,
except for 3 instances (over 55). Indeed, the Mann-Whitney test indicates that 2PIPLS/D is strictly
better than PDA over all instances except on: kroAB300 over Iε, ClusterAB500 over Iε and IR2 and kroAB750
over Iε, for which 2PIPLS/D and PDA are considered as equivalent.

Besides, 2PIPLS/D with A-NMCS provides very poor performance, except on tri-objective instances of size
lower than or equal to 100 (Tables 5.12 and 5.14). In particular, its performance worsen when the size
of the instance grows. This confirms the fact that construction-based heuristics are generally not efficient
on large-size MOTSP instances. Indeed, the same observation can be made for Ant Colony Optimization
solver [López-Ibáñez and Stützle, 2012]. This also shows the major influence of the SO optimizer on

5.5. COMPARISON OF 2PIPLS/D WITH STATE-OF-THE-ART METHODS 151

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I ε

p=3 - n=300 - Euclidean

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I H
-

p=3 - n=300 - Euclidean

 80

 100

 120

 140

 160

 180

 200

 220

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I R
2

p=3 - n=300 - Euclidean

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I ε

p=3 - n=300 - clustered

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I H
-

p=3 - n=300 - clustered

 80
 90

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I R
2

p=3 - n=300 - clustered

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I ε

p=3 - n=300 - random

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I H
-

p=3 - n=300 - random

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I R
2

p=3 - n=300 - random

Figure 5.18 – Iε (left), I−H (middle) and IR2 (right) performance comparison between 2PIPLS/D (with C-LK
optimizer), PDA, MoMad and PD-TPLS on tri-objective instances of size 300.

the performance of 2PIPLS/D.

It is interesting to see that all meta-heuristics (2PIPLS/D, PDA, MoMad, PD-TPLS) obtains much better
results on non-random instances compared to random ones. As examples:

• On the bi-objective Euclidean instance kroAB500 (Table 5.10), 2PIPLS/D (with C-LK) obtains an
average Iε value of 0.06%, and MoMad 0.22%; on the other hand, on the bi-objective random instance
rdAB500 (Table 5.11), 2PIPLS/D (with C-LK) obtains an average Iε value of 1.22%, and MoMad
2.90%.

• On the tri-objective Euclidean instance euclidABC500 (Table 5.13), 2PIPLS/D (with C-LK) obtains
an average Iε value of 1.3%, and MoMad 4.1%; on the other hand, on the tri-objective random instance
rdABC500 (Table 5.14), 2PIPLS/D (with C-LK) obtains an average Iε value of 4.7%, and MoMad
26.5%.

This effect can be explained by the fact that C-LK (which is the solver used by all the meta-heuristics
except 2PIPLS/D with A-NMCS) is particularly efficient on instances where the triangular inequality holds
(Euclidean and clustered instances), but has difficulties on instances where the inequality does not hold
(which is the case on random instances).

Note that the size of the approximate non-dominated set Ỹnd strongly grows with the instance size n and the
number of objectives p, reaching at least 1.1 million points for tri-objective random instances of size at least
300 (Table 5.14). For tri-objective instances of size n ≥ 100, the approximation sets found by the methods

152 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I ε

p=3 - n=500 - Euclidean

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I H
-

p=3 - n=500 - Euclidean

 100

 150

 200

 250

 300

 350

 400

 450

 500

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I R
2

p=3 - n=500 - Euclidean

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I ε

p=3 - n=500 - clustered

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I H
-

p=3 - n=500 - clustered

 100

 150

 200

 250

 300

 350

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I R
2

p=3 - n=500 - clustered

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I ε

p=3 - n=500 - random

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I H
-

p=3 - n=500 - random

 150

 200

 250

 300

 350

 400

 450

 500

 550

2PIPLS/D
(C-LK)

PDA MoMad PD-TPLS

I R
2

p=3 - n=500 - random

Figure 5.19 – Iε (left), I−H (middle) and IR2 (right) performance comparison between 2PIPLS/D (with C-LK
optimizer), PDA, MoMad and PD-TPLS on tri-objective instances of size 500.

are much smaller than Ỹnd. This is due to the use of ε-archive with ε = 1%, which bounds the size of the
approximation while preserving a good distribution of the points in the objective space. Indeed, results of
2PIPLS/D (with C-LK) are still of good quality. One can consider the instance rdD-3-500 (Table 5.14), for
which 2PIPLS/D (with C-LK) has its worst Iε results. On this instance, the approximations generated by
2PIPLS/D (with C-LK) is worse than Ỹnd by only a factor of 4.98% (in average), indicating that 2PIPLS/D
(with C-LK) generates well dispersed approximation sets over Ỹnd.

Figure 5.20 highlights the number of solutions examined by 2PIPLS/D (with C-LK), PDA, MoMad and PD-
TPLS. First, it is important to indicate that PLS-VND provides more than 99% of the solutions examined by
2PIPLS/D, the rest being provided by the SO optimizer. On bi-objective instances, 2PIPLS/D (with C-LK)
examines much less solutions than its competitors, and the gap grows significantly as the instance size grows.
This observation is particularly interesting as 2PIPLS/D uses a 3-exchange as PLS-VND neighborhood, while
its competitors only use a 2-exchange neighborhood in their PLS and obtain worse results, which shows the
efficiency of the partitioning system of P-PLS.

On tri-objective instances, 2PIPLS/D (with C-LK) does not examine less solutions than PDA and MoMad,
however the number of solutions examined by 2PIPLS/D increases slower than for its competitors when the
instance size grows. On the other hand, it is interesting to note that while PD-TPLS runs a single iteration
of PLS with a 3-opt, it already examines much more solutions than the other methods. This is due to the fact
that the candidate edge list used by PD-TPLS is not adapted, contrary to the one used by 2PIPLS/D. This
remark points out the difficulty of designing an efficient PLS using a neighborhood larger than 2-exchange
neighborhood for MOTSP.

5.5. COMPARISON OF 2PIPLS/D WITH STATE-OF-THE-ART METHODS 153

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

100 300 500 750 1000

N
b

.
o
f

e
x
a
m

in
e

d
 s

o
lu

ti
o
n

s
(x

1
0

6
)

Instance size

2PIPLS/D (C-LK)
PDA

MoMad

(a) p = 2

 0

 2000

 4000

 6000

 8000

 10000

 12000

50 100 300 500

N
b

.
o
f

e
x
a
m

in
e

d
 s

o
lu

ti
o
n

s
(x

1
0

6
)

Instance size

2PIPLS/D (C-LK)
PDA

MoMad
PD-TPLS

(b) p = 3

Figure 5.20 – Comparison of number of examined solutions between 2PIPLS/D (with C-LK) and its com-
petitors.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

100 300 500 750 1000

R
A

M
 (

G
B

)
u

se
d

 b
y
 p

a
rt

it
io

n
in

g

Instance size

Vanilla RAM management
Lazy RAM management

(a) p = 2

 0

 1

 2

 3

 4

 5

 6

50 100 300 500

R
A

M
 (

G
B

)
u

se
d

 b
y
 p

a
rt

it
io

n
in

g

Instance size

Vanilla RAM management
Lazy RAM management

(b) p = 3

Figure 5.21 – Comparison of RAM utilization of partitioning between vanilla RAM management and lazy
RAM management.

154 CHAPTER 5. APPLICATION OF 2PIPLS/D TO MOTSP

A final comment can be made on RAM usage of 2PIPLS/D. Despite the fact that the partitioning brought
by P-PLS is intended to increase drastically the RAM usage compared to no partitioning (as mentioned
in Section 5.2.4), 2PIPLS/D generally consumes twice less RAM than its competitors. This is due to
a trick we propose, the so-called lazy RAM management, which consists in loading on memory only the
edges effectively used during PLS-VND. Figure 5.21 shows the differences in terms of RAM consumption of
partitioning, between vanilla RAM management and lazy RAM management.

5.6 Conclusion

In this chapter, we first proposed an implementation of the different components of 2PIPLS/D, in particular
we proposed to use C-LK and A-NMCS as SO optimizers, and suggested an implementation of the neigh-
borhood restriction structure for P-PLS. Then, we presented an empirical evidence of global convexity on
MOTSP in order to legitimate the use of the P-PLS partitioning system. We found that (potentially) efficient
solutions are effectively concentrated in decision space and that (potentially) efficient solutions neighbors in
the objective space tend to be also neighbors in the decision space. After a sensitivity analysis of 2PIPLS/D
on its parameters, we ranked the different parameters in function of their influence on the performance of the
method. We found that 2PIPLS/D is sensitive to the number of weighted-sum problems solved at initializa-
tion during A-MDW, and the maximum authorized size of a part at P-PLS initialization. In particular, we
have noted that P-PLS reduces drastically the number of solutions examined by PLS-VND (-98% in average
over the instances tested) thanks to its partitioning system. In addition, memorizing the solutions during
the run of a SO solver appears to be highly effective, for both C-LK and A-NMCS. In addition, 2PIPLS/D
seems moderately sensitive to the maximum neighborhood structure size.

On the other hand, 2PIPLS/D seems not to be particularly sensitive to data perturbation and to the different
exploration strategies and mods used by PLS-VND. Finally, we compared 2 versions of 2PIPLS/D (either
with improved C-LK or A-NMCS) to the best current methods on a large benchmark of bi-objective and
tri-objective instances.

2PIPLS/D (with C-LK) obtains good results and found the exact non-dominated set of 7 bi-objective in-
stances of size 100 over 20 runs, so that 2PIPLS/D is, to our knowledge, the first meta-heuristic able to
find non-dominated set of MOTSP instances of such size. 2PIPLS/D (with C-LK) outperforms MoMad and
PD-TPLS on all tested instances; 2PIPLS/D also outperforms PDA on 95% of the tested instances and has
equivalent performance on the 5% remaining instances.

Finally, 2PIPLS/D with C-LK outperforms in a great majority of cases 2PIPLS/D with A-NMCS, which
strengthens the fact that 2PIPLS/D performance highly depends on the efficiency of the SO solver.

Concerning perspectives, it could be interesting to implement neighborhood structures for PLS-VND of larger
size than 3-exchange, or even better, to propose variable k-exchange moves like in Lin-Kernighan. However,
we can enumerate two main limitations about this perspective. Firstly, as already mentioned in Section 2.3,
the techniques which made LS-based methods so powerful on TSP, like don’t-look-bits or candidate edge
lists, are not as far as efficient in MOTSP. Secondly, it seems that the global perturbation step of 2PIPLS/D
is sufficiently efficient to compensate a small PLS-VND neighborhood structure size.

A second perspective is the application of 2PIPLS/D on larger instances, both in terms of sizes and number of
objectives. According to us, the main limitation concerning this proposal is that 2PIPLS/D, like any method
based on the 2-phase PLS framework, are highly sensitive to the SO optimizer employed to (re-)start PLS.
However, Lin-Kernighan-based SO optimizers seems to be the best option we currently have, but are not
so efficient on instances in which the triangular inequality does not hold. Therefore, we expect difficulties
for this type of methods on random instances, like bi-objective or tri-objective of size 1000, or on large-scale
four-objective instances.

Chapter 6

Application of 2PIPLS/D to MOFRMP

This chapter introduces a new five-objective real-world problem called MO French
Regions Mapping Problem (MOFRMP). It is related to the recent territorial re-
form of French regions which resulted in the reassignment of departments to new
larger regions. The aim of this problem is to find a map (i.e. an assignment of
departments to regions) optimizing five objectives, which evaluate the strength
of interactions between the departments assigned to the same region, as well as
the economical and demographic weights of each region. We propose to apply
2PIPLS/D to this problem. We first present an implementation of 2PIPLS/D,
then we study the existence of global convexity on MOFRMP. After a sensitiv-
ity analysis on its parameters, we compare several versions of 2PIPLS/D with
different parameter settings and discuss about the results.

155

156 CHAPTER 6. APPLICATION OF 2PIPLS/D TO MOFRMP

(a) The regions of Metropolitan France and their
respective capital.

(b) The departments of Metropolitan France.

Figure 6.1 – Two complementary maps of Metropolitan France (excluding Corsica island) illustrating the 12
regions, their respective capital and departments.

Introduction

This chapter introduces the MO French Regions Mapping Problem (MOFRMP), a new five-objective real-
world problem falling within the scope of the recent territorial reform of French regions which resulted in
the reassignment of departments to new larger regions. Firstly, Section 6.1 presents MOFRMP, then Section
6.2 proposes an implementation of 2PIPLS/D and Section 6.3 studies the global convexity on the problem.
Computational experiments are performed on Section 6.4, and the results are discussed in Section 6.4.2.
Finally, we summarize the chapter and propose some perspectives concerning MOFRMP.

6.1 Presentation of MOFRMP

Metropolitan France is the part of France located in Europe. It is composed of 96 administrative divisions,
called departments. Each department belongs to a higher-level administrative division called region.

In January 1st, 2016, a new administrative map of Metropolitan France has taken effect (the so-called current
map), grouping departments into larger regions and reducing the number of regions from 22 down to 13.
Figure 6.1 illustrates the 12 regions (excluding Corsica island), their respective capital and departments, and
Table 6.1 lists them.

This historical territorial reform takes place within a larger process called decentralization, consisting in
transferring administrative powers from the French State to local entities distinct from it, making the regions
more autonomous from Paris1 and registered in the French Constitution since 20032.

1http://www.vie-publique.fr/decouverte-institutions/institutions/collectivites-territoriales/principes-collectivites-
territoriales/qu-est-ce-que-decentralisation.html

2http://www.assemblee-nationale.fr/connaissance/constitution.asp

http://www.vie-publique.fr/decouverte-institutions/institutions/collectivites-territoriales/principes-collectivites-territoriales/qu-est-ce-que-decentralisation.html
http://www.vie-publique.fr/decouverte-institutions/institutions/collectivites-territoriales/principes-collectivites-territoriales/qu-est-ce-que-decentralisation.html
http://www.assemblee-nationale.fr/connaissance/constitution.asp

6.1. PRESENTATION OF MOFRMP 157

Region Capital Departments

Provence-Alpes-Côte d’Azur Marseille (13) Alpes (04), Hautes-Alpes (05), Alpes-Maritimes (06),
Bouches-du-Rhône (13), Var (83), Vaucluse (84)

Bourgogne-Franche-Comté Dijon (21)
Côte-d’Or (21), Doubs (25), Jura (39), Nièvre (58),
Haute-Saône (70), Saône-et-Loire (71), Yonne (89),
Territoire-de-Belfort (90)

Occitanie Toulouse (31)

Ariège (9), Aude (11), Aveyron (12), Gard (30),
Haute-Garonne (31), Gers (32), Hérault (34), Lot (46),
Lozère (48), Hautes-Pyrénées (65), Pyrénées-Orientales (66),
Tarn (81), Tarn-et-Garonne (82)

Nouvelle-Aquitaine Bordeaux (33)

Charente (16), Charente-Maritime (17), Corrèze (19),
Creuse (23), Dordogne (24), Gironde (33), Landes (40),
Lot-et-Garonne (47), Pyrénées-Atlantiques (64),
Deux-Sèvres (79), Vienne (86), Haute-Vienne (87)

Bretagne Rennes (35) Côtes (22), Finistère (29), Ille-et-Vilaine (35), Morbihan (56)

Pays de la Loire Nantes (44) Loire-Atlantique (44), Maine-et-Loire (49), Mayenne (53),
Sarthe (72), Vendée (85)

Centre-Val de Loire Orléans (45) Cher (18), Eure-et-Loir (28), Indre (36), Indre-et-Loire (37),
Loir-et-Cher (41), Loiret (45)

Hauts-de-France Lille (59) Aisne (02), Nord (59), Oise (60), Pas-de-Calais (62), Somme (80)

Grand Est Starsbourg (67)
Ardennes (08), Aube (10), Marne (51), Haute-Marne (52),
Meurthe-et-Moselle (54), Meuse (55), Moselle (57),
Bas-Rhin (67), Haut-Rhin (68), Vosges (88)

Auvergne-Rhône-Alpes Lyon (69)
Ain (01), Allier (03), Ardèche (07), Cantal (15), Drôme (26),
Isère (38), Loire (42), Haute-Loire (43),
Puy-de-Dôme (63), Rhône (69), Savoie (73), Haute-Savoie (74)

Île-de-France Paris (75)
Paris (75), Seine-et-Marne (77), Yvelines (78), Essonne (91),
Hauts-de-Seine (92), Seine-Saint-Denis (93),
Val-de-Marne (94), Val-d’Oise (95)

Normandie Rouen (76) Calvados (14), Eure (27), Manche (50), Orne (61),
Seine-Maritime (76)

Table 6.1 – The 12 regions of Metropolitan France (excluding Corsica island) with their respective capital
and departments.

158 CHAPTER 6. APPLICATION OF 2PIPLS/D TO MOFRMP

Officially, two main reasons drive this regrouping of the departments into larger regions34:

1. Reducing the administrative complexity and thus the surcharge in terms of operating cost, the so-
called “millefeuille administratif” in French, for both, French and foreign, individuals and companies,
by making economies of scale and simplify the administrative procedures.

2. Increasing the exposure, the attractiveness and competitiveness of the French regions within both
European and international spheres by increasing their economical power.

However, it has been recognized5 that some departments are attracted to regions other than their current
region of assignment. The current map of regions can therefore be potentially improved. But further research
is needed to address this problem.
This is why from 2016 to 2019, departments attracted by another region than their current region of as-
signment have the possibility to launch a procedure to change to another region if both regions give their
support6.
The different criteria that assess the attraction of a department to a given region are complex and of
multiple natures: economic, financial, social, cultural, environmental, but we will only consider here the
criteria proposed by a recent economic analysis of this problem [Amabile et al., 2015]7 published in French
by France Stratégie and initiated by A. Amabile (France Stratégie), C. Bernard (France Stratégie) and
A. Épaulard (France Stratégie and Laboratoire d’Économie de Dauphine) and implemented by T. Cazenave.
France Stratégie8 is an institution attached to the government, whose objective is to contribute to determine
the main orientations for the future of the nation and the medium-term and long-term objectives of its
economic, social, cultural and environmental development, as well as the preparation of reforms.
This analysis identified 5 objectives (or criteria) divided in two groups, to evaluate the assignment of de-
partments to a given region. The first group of objectives (the so-called travel times to regional capitals,
inter-departmental commuting intensities, inter-departmental shareholding intensities objectives, described
below) proposes to assign to the same region, departments that have strong economic links in order to ensure
a greater regional economic coherence. The second group of objectives (the so-called regional GDP weights,
regional population weights objectives, described below) aims at building regions whose economic and de-
mographic roles are not too heterogeneous, to ensure that each region has sufficient resources to carry out
economic development policies and to cope with the fixed costs of regional administration.
From this analysis, we introduce the subsequent new MOCO problem, called MO French Regional Map-
ping Problem (MOFRMP). It consists in building a so-called map (of regions), i.e. an assignment of each
department of Metropolitan France (except Corsica island -departments 2A and 2B- forming the Corsican
Territorial Community) to a region, such that two constraints are satisfied:

• the constraint of fixed capitals: the departments containing a regional capital are fixed (departments
13, 21, 31, 33, 35, 44, 45, 59, 67, 69, 75, 76);

• and the constraint of regional continuity: a region forms a block of departments such that there is
no discontinuity of the regional territory (in other words: there is no departments isolated from their
regional capital).

3https://www.interieur.gouv.fr/Archives/Archives-sous-sites/Reforme-des-collectivites-territoriales/La-reforme/Questions-
les-plus-frequentes

4http://www.gouvernement.fr/action/la-reforme-territoriale
5http://www.strategie.gouv.fr/publications/reforme-territoriale-coherence-economique-regionale
6http://www.strategie.gouv.fr/point-de-vue/repenser-decoupage-regional
7http://www.strategie.gouv.fr/point-de-vue/repenser-decoupage-regional,
http://www.strategie.gouv.fr/publications/une-evaluation-de-coherence-economique-interne-regions,
http://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/atoms/files/dt_2015-01_rrgions_cbae_rev_selda_final.pdf
8http://www.strategie.gouv.fr/

https://www.interieur.gouv.fr/Archives/Archives-sous-sites/Reforme-des-collectivites-territoriales/La-reforme/Questions-les-plus-frequentes
https://www.interieur.gouv.fr/Archives/Archives-sous-sites/Reforme-des-collectivites-territoriales/La-reforme/Questions-les-plus-frequentes
http://www.gouvernement.fr/action/la-reforme-territoriale
http://www.strategie.gouv.fr/publications/reforme-territoriale-coherence-economique-regionale
http://www.strategie.gouv.fr/point-de-vue/repenser-decoupage-regional
http://www.strategie.gouv.fr/point-de-vue/repenser-decoupage-regional
http://www.strategie.gouv.fr/publications/une-evaluation-de-coherence-economique-interne-regions
http://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/atoms/files/dt_2015-01_rrgions_cbae_rev_selda_final.pdf
http://www.strategie.gouv.fr/

6.1. PRESENTATION OF MOFRMP 159

while optimizing the 5 objectives previously mentioned: (1) travel times to regional capitals, (2) inter-
departmental commuting intensities, (3) inter-departmental shareholding intensities, (4) regional GDP weights,
(5) regional population weights.
More formally, a feasible solution (a map) is represented by a vector x = (r(1), ..., r(19), r(21), ..., r(95)) ∈ X,
where r(i) ∈ R represents the assignment of department i to the region r(i) (identified by the code of
the department containing its capital), where R = {13, 21, 31, 33, 35, 44, 45, 59, 67, 69, 75, 76} is the set of
departments containing a regional capital (|R| = 12), for each i ∈ D where D = {1, ..., 19, 21, ..., 95} is the
set of departments (|D| = 94), while satisfying:

• the constraint of fixed capitals: r(j) = j for each department j ∈ R;

• and the constraint of regional continuity: for any department d1 ∈ D such that r(d1) = j, there is a
path of departments (d1, ..., dK , j) such that for each k = 1, ...,K, r(dk) = j and departments dk and
dk+1 are adjacent (assuming dK+1 = j).

MOFRMP is defined by (1.1) with p = 5 and such that X is the set of maps:

{
min f(x) = (f1(x), ..., f5(x))
subject to x ∈ X

where the objective function f is composed of the five following single-objective functions:
1) The sum of travel times to regional capitals (to be minimized):
For each region, the time to travel by car from a department to its regional capital is considered as an
indication of the ability of local government to get information about demand, preferences and production
costs for goods and services that are provided by the local government. A higher travel time between a
department and the regional capital reduces the informational advantage of the local government. This loss
of efficiency is supposed to be quadratic with travel time. For each region is computed the population9-
weighted average of the squared travel time from the capital of the department to the regional capital. After
summing over all regions, we obtain the following formula:

f1(x) =
∑
r∈R

∑
d∈Dr(x)

popd × (timed,r)2

where Dr(x) is the set of departments assigned to the region r ∈ R in the map x, popd is the population of
department d ∈ D, timed,r is the average time to travel from the department d to the capital of the region
r.
2) The sum of inter-departmental commuting intensities (to be minimized):
This objective uses an indicator10 proposed in [Amabile et al., 2015] which measures the intensity of com-
muting between two departments of the same region. The indicator value ranges from 0.0 to 1.0 (lower is
better), such that a value of 1.0 means no people travel between the two departments. For each region,
the second objective is computed as the average indicator value over all ordered pairs of departments of the
region. The aim is to favor the grouping in the same region of departments between which these commuting
links are strong. After summing over all regions, we obtain the following formula:

f2(x) =
∑
r∈R

∑
d∈Dr(x)

∑
d′∈Dr(x) : d′>d

comd,d′

|Dr(x)| (|Dr(x)| − 1) /2

9based on the Insee 2011 database on demography
10based on the Insee 2010 database on commuting

160 CHAPTER 6. APPLICATION OF 2PIPLS/D TO MOFRMP

where comd,d′ is the intensity indicator value of commuting between departments d and d′.
3) The sum of inter-departmental shareholding intensities (to be minimized):
This objective uses an indicator11 proposed in [Amabile et al., 2015] which measures the intensity of financial
exchanges between two departments of the same region, measured by the shareholding of a department in
the companies of another department. The indicator value ranges from 0.0 to 1.0 (lower is better), such that
a value of 1.0 means no shareholder link between two departments. More the shareholders of a department
control a high percentage of jobs in the other department, the lower the indicator will be. For each region,
the third objective is computed as the average indicator value over all ordered pairs of departments of the
region. The aim is to favor the grouping in the same region of departments between which these financial
links are strong. After summing over all regions, we obtain the following formula:

f3(x) =
∑
r∈R

∑
d∈Dr(x)

∑
d′∈Dr(x) : d′>d

find,d′

|Dr(x)| (|Dr(x)| − 1) /2

where find,d′ is the intensity indicator value of shareholding between department d and department d′.
4) The sum of regional GDP weights (to be minimized):
This objective uses an economic indicator12 proposed in [Amabile et al., 2015] which measures the GDP
weight of a department. The indicator value of a department consists in the standardized GDP score of the
department. For each region, the fourth objective considers the inverse squared sum of indicator value over
all departments. The aim of this objective is to build regions whose economic roles are not too heterogeneous.
After summing over all regions, we obtain the following formula:

f4(x) =
∑
r∈R

 1∑
d∈Dr(x)

gdpd

2

where gdpd is the GDP score of the department d.
5) The sum of regional population weights (to be minimized):
This objective uses a demographic indicator13 proposed in [Amabile et al., 2015] which measures the popu-
lation weight of a department. The indicator value of a department consists in the standardized population
score of the department. For each region, the fifth objective considers the inverse squared sum of indicator
value over all departments. The aim of this objective is to build regions whose demographic roles are not
too heterogeneous. After summing over all regions, we obtain the following formula:

f5(x) =
∑
r∈R

 1∑
d∈Dr(x)

popd

2

where popd is the population score of the department d.
An important remark can be made on [Cazenave et al., 2016]. In this paper, Cazenave, Bernard and Épaulard
propose to optimize the so-called original FRMP, which follows another formulation of the FRMP than the
one we present. While the constraints of the problem are exactly the same, the problem is considered as
a single objective problem such that the function to optimize is a weighted sum of the objectives, and the
authors solve the problem with different weights. Furthermore, the objectives of the problem are different
as the authors consider only the four following objectives:

11based on the Diane database: www.bvdinfo.com/fr-fr/our-products/company-information/national/diane
12based on the Insee 2005 database on GDP
13based on the Insee 2011 database on demography

http://www.bvdinfo.com/fr-fr/our-products/company-information/national/diane

6.2. IMPLEMENTATION OF 2PIPLS/D TO ADDRESS MOFRMP 161

• the three first objectives we consider: (1) travel times to regional capitals, (2) inter-departmental
commuting intensities and (3) inter-departmental shareholding intensities;

• the fourth objective, called political preferences heterogeneity, is different from the ones we consider
and consists in minimizing the heterogeneity of political preferences (computed with the results of
presidential elections) between the departments assigned to the same region.

In our MO formulation, we do not consider this additional objective (the political preferences) because after
some discussions with A. Épaulard, it appears to us that this objective was probably not consistent with the
problem.
On the contrary, according to us, the two last objectives we consider in MOFRMP (and not considered in
the original FRMP), the (4) regional GDP weights and (5) regional population weights, are essential. In fact,
a region is responsible for economic development policies and essential public services -mainly transports,
education, employment- and has to cope with the fixed costs of administration. So a region has important
financial needs. Taxes levied to the population (local taxes and property tax among others) and companies
(property tax) allow to finance a part of the needs14. Therefore it appears important to consider the (5)
population weights as an objective, in order to build regions with a demographic disparity as low as possible.
Furthermore, in the draft finance bill for 201715, the State-financed Regional Operating Fund (Dotation
Globale de Fonctionnement, in French) must disappear and be replaced by the transfer of a fraction of the
Value-added tax (VAT - TVA in French). Given that VAT is globally proportional to the GDP, the (4)
GDP weights objective seems also important to be optimized, in order to obtain regions with economic roles
not too heterogeneous. Finally, it is important to know that France suffers from massive unemployment for
many years now, its reduction becoming a National priority for the successive governments. The regions
are therefore in competition to attract companies, and in order to encourage them to establish at home,
the regions are investing considerable sums of money through regional investment funds (e.g. Normandie
Participations16 for the Normandie region) to provide companies with an access to substantial financial or
material support for business development.
Consequently, it appear to us that regions with GDP and population disparities as low as possible, and thus
a low disparity in terms of income between the regions, could make the competition as fair as possible to
reduce unemployment and keep good public services in all regions in an homogeneous way; making essential
to consider the (4) regional GDP weights and the (5) regional population weights objectives in MOFRMP.

6.2 Implementation of 2PIPLS/D to address MOFRMP

As a component-wise method, 2PIPLS/D contains several algorithmic components to implement for MOFRMP:
the elementary LS move, the neighborhood structure utilized by PLS-VND, the neighborhood restriction
structure used in P-PLS, the perturbation move and the SO optimizer. Given the high number of objectives
of the problem, the non-dominated set is certainly extremely large, consequently the archives of 2PIPLS/D
are managed as ε-archives with SANDRA and a tolerance for dominance relations ε = 1% is used. Let us
present more precisely the implementation of 2PIPLS/D.

6.2.1 Local Search-oriented components

The most essential algorithmic component is the elementary LS move, the so-called k-department move.
It consists, from a given feasible map, to select k departments and for each department, choosing a target

14https://www.collectivites-locales.gouv.fr/files/files/statistiques/brochures/bpr_2016.pdf
15http://www.caissedesdepotsdesterritoires.fr/cs/ContentServer?pagename=Localtis/LOCActu/ArticleActualite
&jid=1250271788545&cid=1250271787054&nl=1
16https://adnormandie.fr/normandie-participations/

https://www.collectivites-locales.gouv.fr/files/files/statistiques/brochures/bpr_2016.pdf
http://www.caissedesdepotsdesterritoires.fr/cs/ContentServer?pagename=Localtis/LOCActu/ArticleActualite
http://&jid=1250271788545&cid=1250271787054&nl=1
https://adnormandie.fr/normandie-participations/

162 CHAPTER 6. APPLICATION OF 2PIPLS/D TO MOFRMP

region different from the region it belongs to, such that the modified map is still feasible. The parameter k
is called the size of the move.

The neighborhood structure for PLS-VND is a k-department neighborhood and we consider different
maximum neighborhood structure sizes k = 1, 2, 3. Obviously, PLS-VND with k = 1 corresponds to PLS.

The neighborhood restriction structure, employed in the parts of P-PLS, consists in computing for each
part the set of locked departments, i.e. the set of departments assigned to the same region in all solutions
in the archives of the sources of this part, and forbidding during PLS-VND the reassignment of any locked
department.

Concerning the perturbation move used at perturbation step (second phase), internal tests have shown
that using a 10-department move obtains stable and good results.

6.2.2 SO optimizer

The SO optimizer is used in A-MDW and during the perturbation step (second phase). A selection of 3 SO
optimizers has been made.

Iterated Local Search (ILS)

We have implemented an ILS with Variable Neighborhood Descent (VND) and able to memorize all incom-
parable locally minimum solutions generated (as suggested in Section 4.1). Except the starting solution, ILS
has three input parameters whose values have been set through internal tests: a number of iterations set
to 100, a VND using k-department neighborhood with a maximum neighborhood structure size of 2, and a
10-department move as perturbation move.

A-NMCS

Cazenave has implemented an NMCS optimizing a weighted sum of MOFRMP objectives. We have converted
it into A-NMCS by:

• memorizing all incomparable generated maps;

• managing the optimization of a data perturbed weighted sum problem;

• taking an initial map and its associated sequence as input parameters at the highest nested level.

In A-NMCS, the construction of a sequence consists in building a map by iteratively assigning a department
to a region. More precisely, let a feasible partial map be a map such that a number of departments are
not yet assigned to a region, but such that the constraint of fixed capitals is satisfied and the constraint of
regional continuity can still be satisfied if the partial map is completed. An action consists in assigning to a
region the department with the lowest code among all unassigned departments, while the obtained map is
still feasible. Therefore, a (partial) sequence consists in an ordered list of assignments.

At a level of recursion greater than or equal to 1, A-NMCS tries all available actions. In random simulations,
actions are selected uniformly at random. We found that A-NMCS with a level of recursion equal to 1
provides poor results, while A-NMCS of level 3 conducts very long runs, thus we choose level 2.

Iterative Deepening A* (IDA*)

IDA* [Korf, 1985] is an exact solver based on the Branch-and-Bound methodology using a problem-specific
admissible heuristic to bound search sub-spaces. Cazenave has implemented an IDA* for the studies [Amabile

6.3. STUDY OF GLOBAL CONVEXITY ON MOFRMP 163

et al., 2015,Cazenave et al., 2016]17(in French). This method is able to optimize a weighted sum of all the six
objectives previously described: the five objectives of MOFRMP, and the political preferences heterogeneity
objective.

It has been employed to solve the original FRMP (previously introduced). Efficient admissible heuristics
have been found and enable IDA* to solve any tested weighted sum aggregation of the four objectives of
the original FRMP in few seconds. On the other hand, the admissible heuristics for the two remaining
objectives (both considered in MOFRMP): the (4) regional GDP weights and the (5) regional population
weights objectives, have not already been tested.

6.3 Study of global convexity on MOFRMP

As no exact method has been implemented for MOFRMP, we do not know its efficient set. We have merged
all approximation sets generated during experiments and internal tests to produce an approximation of the
efficient set. The study presented in this section is based on this approximation set. Let the (potentially)
efficient solutions be the solutions of this approximation set. Note that this work might be biased by the
efficiency of 2PIPLS/D on this problem, despite the large number of 2PIPLS/D runs and settings tested.

The aim of this section is to empirically study global convexity on MOFRMP. Firstly, we check if (potentially)
efficient solutions which are neighbors in the objective space tend to be also neighbors in the decision space.
Secondly, we analyze the concentration of (potentially) efficient solutions in the decision space.

Are (potentially) efficient solutions neighbors in the objective space also neighbors in
the decision space?

To check if (potentially) efficient solutions which are neighbors in the objective space tend also to be neighbors
in the decision space, we follow the same process as in Section 5.3.2 for MOTSP and compute the Spearman
correlation between the distances of (potentially) efficient solutions in the decision space, and the distances
of their images in the objective space. We obtain a Spearman correlation value equal to 0.989202. Given a
significance level of 1%, the p-value related to the Spearman correlation score is lower than 10-5, meaning that
the Spearman correlation score is statistically significant. This means that the distances of solutions and
the distances of their images in the objective space are almost perfectly positively correlated.

Concentration of (potentially) efficient solutions in the decision space

The assignment of a department d ∈ D to a region r ∈ R represents the basic element composing the
solutions of MOFRMP. We have computed the proportion of all possible assignments (department, region)
of MOFRMP used in (potentially) efficient solutions, in order to see how much they are concentrated in
the decision space. In fact, the (potentially) efficient solutions contain 52% of all possible assignments (in
average each department is assigned to 6.2 regions over 12). This corresponds to a large fraction of all possible
assignments, in comparison of the 11% of edges used in average on MOTSP instances tested in Section 5.3.1.
Thus we can say that the (potentially) efficient solutions are not particularly concentrated in
the decision space. As a consequence, the intersection between solutions (i.e. the number of departments
in D \ R assigned to the same region in all these solutions) neighbors in the objective space decreases
exponentially fast as the distance (in the objective space) grows, as illustrated in Figure 6.2. In particular,

17http://www.strategie.gouv.fr/point-de-vue/repenser-decoupage-regional,
http://www.strategie.gouv.fr/publications/une-evaluation-de-coherence-economique-interne-regions,
http://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/atoms/files/dt_2015-01_rrgions_cbae_rev_selda_final.pdf

http://www.strategie.gouv.fr/point-de-vue/repenser-decoupage-regional
http://www.strategie.gouv.fr/publications/une-evaluation-de-coherence-economique-interne-regions
http://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/atoms/files/dt_2015-01_rrgions_cbae_rev_selda_final.pdf

164 CHAPTER 6. APPLICATION OF 2PIPLS/D TO MOFRMP

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700 800 900 1000

%
 o

f
co

m
m

o
n

 d
e

p
a
rt

m
e
n

ts

Cluster size

Figure 6.2 – Average size of intersection (in terms of % of departments in D \ R) between solutions in the
same cluster in function of the cluster size, where a cluster is a set of solutions neighbors in the objective
space.

the intersection goes below the 40% between 100 solutions and below 24% between 1000 solutions. Therefore,
it is expected that the partitioning system of P-PLS may not be so useful and not as efficient as in MOTSP.

6.4 Experiments

In this section, we first analyze the influence of the parameters on the performance of 2PIPLS/D, then we
discuss about the results.

6.4.1 Sensitivity analysis of 2PIPLS/D on its parameters

We carried out a sensitivity analysis of 2PIPLS/D on its parameters. Table 6.2 lists the parameters and their
respective range of values, preselected after a number of internal tests. We will focus here only on the most
important results. Each version of 2PIPLS/D with a given combination of parameter values has been run 10
times and the I−H , Iε and IR2 values of each approximation set has been computed. For the sake of clarity,
only I−H scores are displayed, knowing that same conclusions can be drawn with the other quality indicators.
Except when IDA* is employed as SO solver, the running time of 2PIPLS/D is limited to 3 hours. Note that
we have tested internally 2PIPLS/D with a running time of 6 hours and results do not change significantly.

Parameter Module of 2PIPLS/D concerned Selected range of values Final value
SO optimizer - {IDA*,ILS,A-NMCS} ILS

perturbation move perturbation step (phase 2) - 10-department move
min. acceptance rate threshold α A-MDW {5%, 25%, 50%} 25%
data perturbation coefficient δ SO optimizer (phase 2) {0%, 5%} 0%
maximum initial size of a part σ P-PLS {5, 50,+∞} 5

maximum neighborhood PLS-VND {1, 2, 3} 2structure size k
independent-pls PLS-VND {no, yes} yes
first-dominating PLS-VND {no, yes} yes

explore-dominated PLS-VND {no, yes} yes
tolerance for dominance relations ε - - 1%

archive - - SANDRA

Table 6.2 – Parameters of 2PIPLS/D, their respective selected range of values and final values.

6.4. EXPERIMENTS 165

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 4000 6000 8000 10000

I H
-

Time (s)

ILS (k=2)
A-NMCS (k=2)

(a) Comparison between 2PIPLS/D with ILS (and k = 2)
vs. 2PIPLS/D with A-NMCS (and k = 2).

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 4000 6000 8000 10000

I H
-

Time (s)

δ=0% (ILS,k=1)
δ=5% (ILS,k=1)
δ=0% (ILS,k=2)
δ=5% (ILS,k=2)

(b) Comparison between 2PIPLS/D with data
perturbation (δ = 5% and k = 1, 2) vs. 2PIPLS/D
without data perturbation (δ = 0% and k = 1, 2).

Figure 6.3 – Influence of the SO solver used and the presence of data perturbation on 2PIPLS/D performance
in terms of I−H (median values, to be minimized) in function of the running time. Curves start at the end of
the first phase (A-MDW+P-PLS) of 2PIPLS/D.

First of all, running 2PIPLS/D with IDA* as SO optimizer achieved poor performance. While
each IDA* run was limited to 1 hour, not a single run found any efficient solution. 2PIPLS/D remained
stuck at A-MDW and we stopped 2PIPLS/D after a whole day of execution. Therefore, we will not consider
anymore IDA* in the rest of this chapter.

Secondly, like in MOTSP (see Section 5.4.2), an acceptance rate threshold α of A-MDW set to 25% provides
good results, whatever the SO optimizer used (either ILS or A-NMCS) in 2PIPLS/D.

Thirdly, like in MOTSP (see Section 5.4.5), we found that any combination of exploration strategies of PLS-
VND (without/with first-dominating strategy and ignore/explore-dominated strategy) provide very similar
results. Their influence on 2PIPLS/D is therefore negligible and we activate both strategies.

The comparison between 2PIPLS/D with ILS (and a maximum neighborhood structure size k = 2) and
2PIPLS/D with A-NMCS (and k = 2) is illustrated in Figure 6.3(a). While a single run of ILS is 15 times
faster (in average) than an A-NMCS run, 2PIPLS/D with ILS outperforms 2PIPLS/D with A-
NMCS. Similar results are obtained with k = 1. As a consequence, the remaining results will only consider
2PIPLS/D with ILS as SO solver.

Figure 6.3(b) shows the performance of 2PIPLS/D with data perturbation (δ = 5%, k = 1, 2) and without
(δ = 0%, k = 1, 2). It seems that the presence of data perturbation has a negative impact on 2PIPLS/D
performance, either for k = 1 or k = 2. This highlights the fact that optimizing a perturbed
weighted-sum problem is quite hazardous. Indeed, as mentioned in [Cornu et al., 2017], there is no
guarantee that the optimal solution of a data perturbed weighted sum problem is efficient for the addressed
MO problem. Therefore, solving a perturbed weighted sum problem may not produce any efficient solution,
contrary to a non-perturbed weighted-sum problem which is therefore safer to optimize. Typically, on
MOTSP, C-LK is so efficient that it generally finds in a single run the optimal solution of a non-perturbed
weighted sum problem on small-size Euclidean instances. In consequence, C-LK quickly finds a large portion
of the supported solutions of such instances. Because supported solutions are generally far fewer than non-
supported solutions, data perturbation is welcome in such instances (as seen in Section 5.4.3) because it
brings the ability to C-LK (or any other SO solver) to find non-supported solutions, and thus restores the
utility of C-LK. On the other hand, our ILS is not as efficient on MOFRMP as C-LK on small-size Euclidean
instances. Consequently, it seems safer to optimize non-perturbed weighted-sum problems.

As expected, the partitioning system of P-PLS is not as efficient as for MOTSP, as shown in Figure 6.4(a),

166 CHAPTER 6. APPLICATION OF 2PIPLS/D TO MOFRMP

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 6000 8000 10000

I H
-

Time (s)

σ=5 (ILS,k=2)
σ=50 (ILS,k=2)
σ=∞ (ILS,k=2)

(a) Comparison between different versions of 2PIPLS/D
(with ILS and k = 2) with alternative values of maximum

initial size of a part σ of P-PLS.

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 6000 8000 10000
I H

-

Time (s)

k=1 (ILS)
k=2 (ILS)
k=3 (ILS)

(b) Comparison between different versions of 2PIPLS/D
(with ILS) with alternative values of PLS-VND

maximum neighborhood structure size k.

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0.012

 0.013

 0.014

 0.015

 6000 8000 10000

I H
-

Time (s)

Dependent PLS-VND (ILS,k=2)
Independent PLS-VND (ILS,k=2)

(c) Comparison between 2PIPLS/D with dependent PLS-VND vs. 2PIPLS/D with independent PLS-VND.

Figure 6.4 – Influence of the maximum initial size of a part σ of P-PLS, the PLS-VNDmaximum neighborhood
structure size k, and the (In)dependence of PLS-VND on 2PIPLS/D performance in terms of I−H (median
values, to be minimized) in function of the running time. Curves start at the end of the first phase (A-
MDW+P-PLS) of 2PIPLS/D.

6.4. EXPERIMENTS 167

Figure 6.5 – One of the (potentially) efficient maps the least distant from the current map.

even though 2PIPLS/D with σ = 5 finds better results than no partitioning (σ = +∞).
Concerning the maximum neighborhood structure size k used in PLS-VND, Figure 6.4(b) shows that k = 2
is the best alternative given the total execution time imposed (3 hours for each run), as k = 1 finds poorer
results while k = 3 is too time consuming.
Finally, in Figure 6.4(c), we can see that using PLS-VND in Dependent mod stops improving very early
(from 2 hours of running time). This shows the utility to rediscover the search space with PLS-VND with a
different starting set of solutions each time, like the PLS-VND in Independent mod does.

6.4.2 Discussion about the results

After merging and filtering all solutions generated by the different 2PIPLS/D runs, we found 248,794 (po-
tentially) efficient maps.
Before attempting to propose a map as an alternative to the current map (Figure 6.1) among the (potentially)
efficient maps, it seems important to indicate that all the (potentially) efficient maps have at least 18
departments assigned to a region different from their current region of assignment. Figure 6.5 illustrates a
map with 18 assignments of departments different from the current map and dominating it.
Knowing this, it seems difficult to propose any of these (potentially) efficient maps as an alternative. Indeed,
it is very likely that any decision-maker will reject any of these alternative maps since the political and
structural changes induced by a reassignment of at least 18 departments (over 82) are probably unacceptable
in real life. Therefore, instead of suggesting an alternative map, we propose to identify which departments
are more attracted to other regions than the one they are assigned to in the current map. To do that, we
will use the (potentially) efficient maps found.
Since the decision-makers are members of the government, or at least their closest advisers in the state
apparatus, we do not have access to their preferences concerning the relative importance between the ob-
jectives. Besides, in order to avoid making any compromise between the objectives, we decided to consider
only the (potentially) efficient maps which dominate the current map, which are 4913 -representing 2% of
all (potentially) efficient maps-.
From this reduced set of maps, we compute the so-called membership score of each department, where the
membership score of a department d ∈ D is the number of solutions of the reduced set in which d is assigned

168 CHAPTER 6. APPLICATION OF 2PIPLS/D TO MOFRMP

Figure 6.6 – Map of membership scores of departments.

Department Membership score Current region of assignment Most attractive region

Gard (30) 10% Occitanie (31) Provence-Alpes-Côte d’Azur (13)
Haute-Marne (52) 11% Grand Est (67) Bourgogne-Franche-Comté (21)
Deux-Sèvres (79) 13% Nouvelle-Aquitaine (33) Pays de la Loire (44)

Marne (51) 14% Grand Est (67) Bourgogne-Franche-Comté (21)
Essonne (91) 15% Île-de-France (75) Centre-Val de Loire (45)
Aube (10) 16% Grand Est (67) Bourgogne-Franche-Comté (21)

Val-d’Oise (95) 16% Île-de-France (75) Normandie (76)
Mayenne (53) 16% Pays de la Loire (44) Bretagne (35)
Oise (60) 17% Hauts-de-France (59) Normandie (76)

Cantal (15) 18% Auvergne-Rhône-Alpes (69) Occitanie (31)

Table 6.3 – The top 10 departments with the lowest membership score (i.e. the departments the most
attracted to other regions than their current region of assignment).

to its current region of assignment .The membership score of a department d ∈ D ranges from 0% to 100%,
where 0% indicates that d has no membership towards its current region of assignment and thus is completely
attracted to other regions, while 100% indicates that d is always assigned to its current region and thus is
absolutely not attracted by another region. We obtain the map in Figure 6.6 and Table 6.3 lists the top 10
departments with the lowest membership score and the region to which they are the most attracted.

Given the multiple knowledge (economic, financial, political, administrative and many others) necessary to
master the question of the need (or not) of the re-assignment of a department to another region than its
current region of assignment, it is difficult for us to know if the membership score is a consistent evaluation
for such a question. Anyway, it is interesting to note that a large number of departments currently assigned
to the region Grand Est (67) have a very low membership score. Besides, politicians regularly suggest1819

to reduce the size of this region.
18http://france3-regions.francetvinfo.fr/grand-est/francois-fillon-nouvelle-reforme-territoriale-1143001.html
19[http://www.dna.fr/social/2017/04/29/medef-alsace-la-nouvelle-region-est-trop-grande||http://www.dna.fr/social/2017/04/29/medef-

alsace-la-nouvelle-region-est-trop-grande]

http://france3-regions.francetvinfo.fr/grand-est/francois-fillon-nouvelle-reforme-territoriale-1143001.html
[http://www.dna.fr/social/2017/04/29/medef-alsace-la-nouvelle-region-est-trop-grande||http://www.dna.fr/social/2017/04/29/medef-alsace-la-nouvelle-region-est-trop-grande]
[http://www.dna.fr/social/2017/04/29/medef-alsace-la-nouvelle-region-est-trop-grande||http://www.dna.fr/social/2017/04/29/medef-alsace-la-nouvelle-region-est-trop-grande]

6.5. CONCLUSION 169

6.5 Conclusion

In this chapter, we are interested in the recent territorial reform of French regions which resulted in the
reassignment of departments to new larger regions. Starting by the observation that some departments are
attracted to other regions than their current region of assignment, the aim of this chapter was to attempt
to identify such departments through the optimization of a new many-objective real-world problem called
MOFRMP. The problem consists in finding alternative maps optimizing five objectives based on economical
and financial indicators measuring the strength of interactions between the departments assigned to the
same region, as well as the economical and demographic weights of each region. We applied 2PIPLS/D to
this problem and tested ILS and A-NMCS as SO solvers. We found that 2PIPLS/D with ILS outperforms
2PIPLS/D with A-NMCS. An approximation of the efficient set has been generated with the different runs
of 2PIPLS/D. However, we found that the (potentially) efficient maps found have far more departments
of difference with the current map, making unrealistic to propose them as alternative of the current map.
Instead, we built an indicator based on the found approximation set which aims at identifying the departments
the most attracted by other regions than the current they are assigned to. In particular, we found that Gard
(30), Haute-Marne (52) and Deux-Sèvres (79) are particularly attracted to other regions.

MOFRMP raises an important question: could the current map of regions be improved? The work proposed
in this chapter corresponds only to a preliminary answer to this question. We believe that a new formulation
of MOFRMP is necessary for obtaining realistic alternative maps. Firstly it seems to us important not to
restrict this problem to economic and financial criteria only. As examples, the cultural exchanges between
departments could be considered, or the global intensity of movements of people between the departments,
not only commuting. Secondly, it is imperative to obtain the preferences of the decision-makers about the
relative importance of the different criteria considered. Thirdly, we think that any alternative map has
to propose a very limited number of reassignments of departments compared to the current map. If the
maximum number of reassignments is limited to 3 or 4 for example, the problem becomes quite easy and it
seems that no optimization method is needed. Indeed, in this case, a simple enumeration of the solutions
is necessary, finally a filtering to keep only efficient solutions, then applying a Multiple Criteria Decision
Aid method with the preferences of the decision-makers previously retrieved. On the other hand, if a higher
number of reassignments is accepted (i.e. 5 or higher), the number of feasible solutions seems too large for
enumeration. In this case, a MO optimization method is necessary and 2PIPLS/D could be adapted to this
new formulation of MOFRMP.

Conclusion

Falling in the scope of Multi-Objective Combinatorial Optimization (MOCO), this thesis proposed a number
of new approximation methods and data structures for large-scale MOCO problems. Firstly, the contributions
of the thesis are summarized, then a number of perspectives are suggested.

Contributions

1. We proposed two new archives: AVL-Archive for the bi-objective case and NDR*-Archive for any
number of objectives; as well as their self-adjusting versions using the concepts of temporal and spa-
tial locality, and thus especially designed for Pareto Local Search (PLS): Self-Adjusting AVL-Archive
(SAAVLA) and Self-Adjusting NDR*-Archive (SANDRA). We compared these archives to state-of-the-
art archives and we obtain better results than competitors on all tested instances, making AVL-Archive,
NDR*-Archive and their self-adjusting versions the most efficient archives up to 5 objectives.

2. We presented a new method generalizing the concept of Maximally Dispersed Weights called Adaptive
MDW (A-MDW) and making it more adaptive such that the method continues generating weights
until the SO solver optimizing the related weighted sum problems is no longer efficient.

3. We introduced Partitioned Pareto Local Search (P-PLS), which aims at speeding-up PLS-VND through
the partitioning of the set of solutions to explore, and a smart restriction of the PLS-VND neighborhood
structure based on the presumption of global convexity on the addressed problem.

4. We suggested some modifications for any SO optimizer to improve its ability to find efficient solutions
in MOCO problems, in particular memorizing the solutions generated during the optimization process.
Based on these specifications, we proposed a new version of Nested Monte Carlo Search (NMCS), called
Aggregation-based NMCS (A-NMCS) better suited for MOCO than vanilla NMCS.

5. We presented a new component-wise meta-heuristic called 2-Phase Iterated Pareto Local Search with
Decomposition (2PIPLS/D). During the first phase, A-MDW is used as initialization method and
P-PLS builds a partition for speeding-up PLS-VND. At each iteration of the second phase, a set of
solutions is first generated through the optimization of several well-dispersed data perturbed weighted-
sum problems, then PLS-VND is conducted from this set. 2PIPLS/D handles different mods and
exploration strategies for PLS-VND, and embeds an ε-archive system which enable a good distribution
in the objective space of the generated points and bounds the size of the approximation.

6. We implemented 2PIPLS/D for the MO symmetric Traveling Salesman Problem (MOTSP). 2PIPLS/D
has been compared with state-of-the-art methods on large scale bi-objective and tri-objective TSP
instances. Computational experiments show that 2PIPLS/D outperforms competitors on all tested
instances, except for 5% of the instances where our own previous method PDA and 2PIPLS/D perform
similarly. P-PLS provides surprisingly good performance as it reduces the number of explored solutions
by 98% in average, compared to no partitioning. In the continuation of the work of Borges and Hansen
[Borges and Hansen, 2002], we have experimentally confirmed the assumption of global convexity on

171

172

MOTSP on a number of bi-objective and tri-objective instances. In the continuation of the work
of [Lust and Jaszkiewicz, 2010], we found that edges present in efficient solutions are of good quality
compared to the other edges.

7. We implemented 2PIPLS/D for a new real-world problem related to the recent territorial reform of
French regions, and called the French Regions Mapping Problem (MOFRMP), for which we proposed a
MO formulation with 5 objectives. We have detected a number of departments of Metropolitan France
more attracted by other regions than the current they belong to.

8. For both MOTSP and MOFRMP, 2PIPLS/D with the Monte Carlo Search-based method A-NMCS as
SO solver is outperformed in most cases by 2PIPLS/D with a Local Search-based method.

Short-term and Middle-term perspectives

2PIPLS/D could be tested on other MOCO problems like MO asymmetric TSP, MO Minimum Spanning
Tree, MO (Multidimensional) 0-1 Knapsack or MO (Quadratic) Assignment Problems. We are particularly
interested in analyzing the behavior of the partitioning system of P-PLS on instances with negatively cor-
related objectives, making much more difficult the optimization of Local Search techniques, because it has
an impact on the level of clustering of the solutions on these instances ([Paquete and Stützle, 2009a,Verel
et al., 2011]).

Concerning PLS-VND in independent mod, it could be interesting to implement a MO tabu mechanism
[Hansen, 1997] in order not to re-explore solutions already explored in previous runs.

Long-term perspectives: beyond PLS ?

Within the 2PIPLS/D framework, instead of employing PLS(-VND), it could be interesting to use an exact
combinatorial optimization method. In fact, the partitioning method introduced in P-PLS is independent
from the concept of PLS (it has indeed be designed as completely distinct from PLS). Therefore, the idea is
to run a MO Branch and Bound or a MO Dynamic Programming algorithm (for example) from the reduced
search space provided by the partitioning method. Note that the new archives we have proposed would be
of high interest if a MO Dynamic Programming is used. For example, on MOTSP, one could use a MO
version of the Branch Decomposition-based Dynamic Programming method of Cook and Seymour [Cook
and Seymour, 2003]. For MOKP, the method employed could be the MO Dynamic Program of Bazgan et
al. [Bazgan et al., 2009b]. We believe that this search direction is promising given the large reduction of the
search space provided by the partitioning system experienced on MOTSP.

References

[Abramson, 1990] Abramson, B. (1990). Expected-outcome: A general model of static evaluation. IEEE
Trans. Pattern Anal. Mach. Intell., 12(2):182–193.

[Adelson-Velskii, 1962] Adelson-Velskii, G. (1962). Landis.". An algorithm for the organization of informa-
tion, Proceedings of the USSR Academy of Sciences, 146:263–266.

[Alaya et al., 2007] Alaya, I., Solnon, C., and Ghedira, K. (2007). Ant colony optimization for multi-objective
optimization problems. In Tools with Artificial Intelligence, 2007. ICTAI 2007. 19th IEEE International
Conference on, volume 1, pages 450–457. IEEE.

[Altwaijry and Menai, 2012] Altwaijry, N. and Menai, M. E. B. (2012). Data structures in multi-objective
evolutionary algorithms. Journal of Computer Science and Technology, 27(6):1197.

[Amabile et al., 2015] Amabile, A., Bernard, C., and Epaulard, A. (2015). Une évaluation de la cohérence
économique interne des régions. Technical report, France Stratégie, Document de travail.

[Andersen et al., 1996] Andersen, K. A., Jörnsten, K., and Lind, M. (1996). On bicriterion minimal spanning
trees: An approximation. Computers & Operations Research, 23(12):1171–1182.

[Aneja and Nair, 1979] Aneja, Y. P. and Nair, K. P. K. (1979). Bicriteria transportation problem. Manage-
ment Science, 25(1):73–78.

[Angel et al., 2004] Angel, E., Bampis, E., and Gourves, L. (2004). A dynasearch neighborhood for the
bicriteria traveling salesman problem. In Metaheuristics for Multiobjective Optimisation, pages 153–176.
Springer.

[Applegate et al., 2003] Applegate, D., Cook, W., and Rohe, A. (2003). Chained lin-kernighan for large
traveling salesman problems. INFORMS Journal on Computing, 15(1):82–92.

[Arneson et al., 2010] Arneson, B., Hayward, R. B., and Henderson, P. (2010). Monte carlo tree search in
hex. Computational Intelligence and AI in Games, IEEE Transactions on, 2(4):251–258.

[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2-3):235–256.

[Bäck et al., 1997] Bäck, T., Fogel, D. B., and Michalewicz, Z. (1997). Handbook of evolutionary computa-
tion. New York: Oxford.

[Barán and Schaerer, 2003] Barán, B. and Schaerer, M. (2003). A multiobjective ant colony system for
vehicle routing problem with time windows. In Applied informatics, pages 97–102.

[Bazgan et al., 2009a] Bazgan, C., Hugot, H., and Vanderpooten, D. (2009a). Implementing an efficient fptas
for the 0–1 multi-objective knapsack problem. European Journal of Operational Research, 198(1):47–56.

173

174 REFERENCES

[Bazgan et al., 2009b] Bazgan, C., Hugot, H., and Vanderpooten, D. (2009b). Solving efficiently the 0–1
multi-objective knapsack problem. Computers & Operations Research, 36(1):260–279.

[Beckmann et al., 1990] Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. (1990). The r*-tree: an
efficient and robust access method for points and rectangles. In ACM SIGMOD Record, volume 19, pages
322–331. Acm.

[Belhoul et al., 2014] Belhoul, L., Galand, L., and Vanderpooten, D. (2014). An efficient procedure for
finding best compromise solutions to the multi-objective assignment problem. Computers & Operations
Research, 49:97–106.

[Bentley, 1992] Bentley, J. J. (1992). Fast algorithms for geometric traveling salesman problems. ORSA
Journal on computing, 4(4):387–411.

[Bentley, 1975] Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517.

[Bentley et al., 1993] Bentley, J. L., Clarkson, K. L., and Levine, D. B. (1993). Fast linear expected-time
algorithms for computing maxima and convex hulls. Algorithmica, 9(2):168–183.

[Beume et al., 2009] Beume, N., Fonseca, C. M., López-Ibáñez, M., Paquete, L., and Vahrenhold, J. (2009).
On the complexity of computing the hypervolume indicator. IEEE Transactions on Evolutionary Compu-
tation, 13(5):1075–1082.

[Blazinskas and Misevicius, 2011] Blazinskas, A. and Misevicius, A. (2011). Combining 2-opt, 3-opt and 4-
opt with k-swap-kick perturbations for the traveling salesman problem. In 17th International Conference
on Information and Software Technologies, pages 27–29.

[Bökler and Mutzel, 2015] Bökler, F. and Mutzel, P. (2015). Output-sensitive algorithms for enumerating the
extreme nondominated points of multiobjective combinatorial optimization problems. In Algorithms-ESA
2015, pages 288–299. Springer.

[Borges and Hansen, 2002] Borges, P. C. and Hansen, M. P. (2002). A study of global convexity for a multiple
objective travelling salesman problem. In Essays and surveys in metaheuristics, pages 129–150. Springer.

[Brimberg et al., 2000] Brimberg, J., Hansen, P., Mladenović, N., and Taillard, E. D. (2000). Improve-
ments and comparison of heuristics for solving the uncapacitated multisource weber problem. Operations
Research, 48(3):444–460.

[Browne et al., 2012] Browne, C., Powley, E. J., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012). A survey of monte carlo tree search
methods. IEEE Trans. Comput. Intellig. and AI in Games, 4(1):1–43.

[Cazenave, 2009] Cazenave, T. (2009). Nested monte-carlo search. In IJCAI, pages 456–461.

[Cazenave, 2012] Cazenave, T. (2012). Monte carlo beam search. IEEE Transactions on Computational
Intelligence and AI in Games, 4(1):68–72.

[Cazenave, 2015] Cazenave, T. (2015). Generalized rapid action value estimation. In IJCAI, pages 754–760.

[Cazenave, 2016] Cazenave, T. (2016). Nested rollout policy adaptation with selective policies. In Computer
Games, pages 44–56. Springer.

[Cazenave et al., 2009] Cazenave, T., Balbo, F., and Pinson, S. (2009). Monte-Carlo bus regulation. In
ITSC, pages 340–345, St. Louis.

REFERENCES 175

[Cazenave et al., 2016] Cazenave, T., Bernard, C., and Epaulard, A. (2016). Optimizing french regions. In
JFPDA, Journées Francophones sur la Planification, la Décision et l’Apprentissage pour la conduite de
systèmes.

[Cazenave and Teytaud, 2012] Cazenave, T. and Teytaud, F. (2012). Application of the nested rollout policy
adaptation algorithm to the traveling salesman problem with time windows. In LION, volume 7219 of
Lecture Notes in Computer Science, pages 42–54. Springer.

[Cerqueus et al., 2017] Cerqueus, A., Gandibleux, X., Przybylski, A., and Saubion, F. (2017). On branching
heuristics for the bi-objective 0/1 unidimensional knapsack problem. Journal of Heuristics, 23(5):285–319.

[Chang et al., 2008] Chang, P. C., Chen, S. H., Zhang, Q., and Lin, J. L. (2008). Moea/d for flowshop
scheduling problems. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Compu-
tational Intelligence). IEEE Congress on, pages 1433–1438. IEEE.

[Charon and Hudry, 1993] Charon, I. and Hudry, O. (1993). The noising method: a new method for combi-
natorial optimization. Operations Research Letters, 14(3):133–137.

[Charon and Hudry, 2002] Charon, I. and Hudry, O. (2002). The noising methods: a survey. In Essays and
surveys in metaheuristics, pages 245–261. Springer.

[Chaslot et al., 2008] Chaslot, G., Bakkes, S., Szita, I., and Spronck, P. (2008). Monte-carlo tree search: A
new framework for game ai. In AIIDE.

[Chen et al., 2009] Chen, C.-M., Chen, Y.-p., and Zhang, Q. (2009). Enhancing moea/d with guided muta-
tion and priority update for multi-objective optimization. In Evolutionary Computation, 2009. CEC’09.
IEEE Congress on, pages 209–216. IEEE.

[Cheng et al., 2012] Cheng, J., Zhang, G., Li, Z., and Li, Y. (2012). Multi-objective ant colony optimization
based on decomposition for bi-objective traveling salesman problems. Soft Computing, 16(4):597–614.

[Clímaco and Pascoal, 2012] Clímaco, J. C. and Pascoal, M. (2012). Multicriteria path and tree problems:
discussion on exact algorithms and applications. International Transactions in Operational Research,
19(1-2):63–98.

[Codenotti et al., 1996] Codenotti, B., Manzini, G., Margara, L., and Resta, G. (1996). Perturbation: An
efficient technique for the solution of very large instances of the euclidean TSP. INFORMS Journal on
Computing, 8(2):125–133.

[Coello et al., 2007] Coello, C. A. C., Lamont, G. B., and Van Veldhuizen, D. A. (2007). Evolutionary
algorithms for solving multi-objective problems, volume 5. Springer.

[Cohon, 1978] Cohon, J. L. (1978). Multiobjective programming and planning. Academic Press, New York.

[Cook and Seymour, 2003] Cook, W. and Seymour, P. (2003). Tour merging via branch-decomposition.
INFORMS Journal on Computing, 15(3):233–248.

[Cornu et al., 2017] Cornu, M., Cazenave, T., and Vanderpooten, D. (2017). Perturbed decomposition al-
gorithm applied to the multi-objective traveling salesman problem. Computers & Operations Research,
79:314–330.

[Coulom, 2006] Coulom, R. (2006). Efficient selectivity and back-up operators in monte-carlo tree search.
In Computers and Games 2006, Volume 4630 of LNCS, pages 72–83, Torino, Italy. Springer.

[Coulom, 2007] Coulom, R. (2007). Computing elo ratings of move patterns in the game of go. In Computer
games workshop.

176 REFERENCES

[Czyzżak and Jaszkiewicz, 1998] Czyzżak, P. and Jaszkiewicz, A. (1998). Pareto simulated annealing - a
metaheuristic technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria De-
cision Analysis, 7(1):34–47.

[Dächert et al., 2017] Dächert, K., Klamroth, K., Lacour, R., and Vanderpooten, D. (2017). Efficient com-
putation of the search region in multi-objective optimization. European Journal of Operational Research,
260(3):841–855.

[Deb et al., 2000] Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000). A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimisation: Nsga-ii. In PPSN, pages 849–858.

[Deb et al., 2016] Deb, K., Sindhya, K., and Hakanen, J. (2016). Multi-objective optimization. In Decision
Sciences: Theory and Practice, pages 145–184. CRC Press.

[Dorigo et al., 2006] Dorigo, M., Birattari, M., and Stutzle, T. (2006). Ant colony optimization. IEEE
computational intelligence magazine, 1(4):28–39.

[Dréo et al., 2003] Dréo, J., Pétrowski, A., Siarry, P., and Taillard, E. (2003). Métaheuristiques pour
l’optimisation difficile. Eyrolles.

[Drozdik et al., 2015] Drozdik, M., Akimoto, Y., Aguirre, H., and Tanaka, K. (2015). Computational cost
reduction of nondominated sorting using the m-front. IEEE Transactions on Evolutionary Computation,
19(5):659–678.

[Drugan and Thierens, 2010] Drugan, M. and Thierens, D. (2010). Path-guided mutation for stochastic
pareto local search algorithms. In Parallel Problem Solving from Nature XI, pages 485–495. Springer.

[Drugan and Thierens, 2012] Drugan, M. M. and Thierens, D. (2012). Stochastic pareto local search: Pareto
neighbourhood exploration and perturbation strategies. Journal of Heuristics, 18(5):727–766.

[Dubois-Lacoste et al., 2011a] Dubois-Lacoste, J., López-Ibáñez, M., and Stützle, T. (2011a). A hybrid
tp+ pls algorithm for bi-objective flow-shop scheduling problems. Computers & Operations Research,
38(8):1219–1236.

[Dubois-Lacoste et al., 2011b] Dubois-Lacoste, J., López-Ibáñez, M., and Stützle, T. (2011b). Improving the
anytime behavior of two-phase local search. Annals of mathematics and artificial intelligence, 61(2):125–
154.

[Dubois-Lacoste et al., 2012] Dubois-Lacoste, J., López-Ibáñez, M., and Stützle, T. (2012). Pareto local
search algorithms for anytime bi-objective optimization. In European Conference on Evolutionary Com-
putation in Combinatorial Optimization, pages 206–217. Springer.

[Dubois-Lacoste et al., 2013] Dubois-Lacoste, J., López-Ibánez, M., and Stützle, T. (2013). Combining two
search paradigms for multi-objective optimization: Two-phase and pareto local search. In Hybrid Meta-
heuristics, pages 97–117. Springer.

[Dubois-Lacoste et al., 2015] Dubois-Lacoste, J., López-Ibáñez, M., and Stützle, T. (2015). Anytime pareto
local search. European journal of operational research, 243(2):369–385.

[Dubois-Lacoste et al., 2014] Dubois-Lacoste, J., Stützle, T., Birattari, M., and López-Ibáñez, M. (2014).
Anytime Local Search for Multi-Objective Combinatorial Optimization: Design, Analysis and Automatic
Configuration. PhD thesis, Citeseer.

[Edelkamp et al., 2013] Edelkamp, S., Gath, M., Cazenave, T., and Teytaud, F. (2013). Algorithm and
knowledge engineering for the tsptw problem. In Computational Intelligence in Scheduling (SCIS), 2013
IEEE Symposium on, pages 44–51. IEEE.

REFERENCES 177

[Edelkamp et al., 2016] Edelkamp, S., Gath, M., Greulich, C., Humann, M., Herzog, O., and Lawo, M.
(2016). Monte-carlo tree search for logistics. In Commercial Transport, pages 427–440. Springer.

[Edelkamp and Greulich, 2014] Edelkamp, S. and Greulich, C. (2014). Solving physical traveling salesman
problems with policy adaptation. In Computational Intelligence and Games (CIG), 2014 IEEE Conference
on, pages 1–8. IEEE.

[Edelkamp and Tang, 2015] Edelkamp, S. and Tang, Z. (2015). Monte-carlo tree search for the multiple
sequence alignment problem. In Eighth Annual Symposium on Combinatorial Search.

[Edelsbrunner and Grayson, 2000] Edelsbrunner, H. and Grayson, D. R. (2000). Edgewise subdivision of a
simplex. Discrete & Computational Geometry, 24(4):707–719.

[Ehrgott, 2006] Ehrgott, M. (2006). Multicriteria optimization. Springer Science & Business Media.

[Ehrgott, 2009] Ehrgott, M. (2009). Multiobjective (combinatorial) optimisation-some thoughts on applica-
tions. In Multiobjective Programming and Goal Programming, pages 267–282. Springer.

[Ehrgott and Gandibleux, 2004] Ehrgott, M. and Gandibleux, X. (2004). Approximative solution methods
for multiobjective combinatorial optimization. Top, 12(1):1–63.

[Ehrgott and Gandibleux, 2008] Ehrgott, M. and Gandibleux, X. (2008). Hybrid metaheuristics for multi-
objective combinatorial optimization. In Hybrid metaheuristics, pages 221–259. Springer.

[Ehrgott and Klamroth, 1997] Ehrgott, M. and Klamroth, K. (1997). Connectedness of efficient solutions in
multiple criteria combinatorial optimization. European Journal of Operational Research, 97(1):159–166.

[Eliahou et al., 2013] Eliahou, S., Fonlupt, C., Fromentin, J., Marion-Poty, V., Robilliard, D., and Teytaud,
F. (2013). Investigating monte-carlo methods on the weak schur problem. Springer.

[Feo and Resende, 1989] Feo, T. A. and Resende, M. G. (1989). A probabilistic heuristic for a computation-
ally difficult set covering problem. Operations research letters, 8(2):67–71.

[Feo and Resende, 1995] Feo, T. A. and Resende, M. G. (1995). Greedy randomized adaptive search proce-
dures. Journal of global optimization, 6(2):109–133.

[Finkel and Bentley, 1974] Finkel, R. A. and Bentley, J. L. (1974). Quad trees a data structure for retrieval
on composite keys. Acta informatica, 4(1):1–9.

[Finnsson and Björnsson, 2008] Finnsson, H. and Björnsson, Y. (2008). Simulation-based approach to gen-
eral game playing. In AAAI, volume 8, pages 259–264.

[Florios and Mavrotas, 2014] Florios, K. and Mavrotas, G. (2014). Generation of the exact pareto set in
multi-objective traveling salesman and set covering problems. Applied Mathematics and Computation,
237:1–19.

[Fonseca et al., 2005] Fonseca, C. M., Knowles, J. D., Thiele, L., and Zitzler, E. (2005). A tutorial on the
performance assessment of stochastic multiobjective optimizers. In Third International Conference on
Evolutionary Multi-Criterion Optimization (EMO 2005), volume 216, page 240.

[Fonseca et al., 2006] Fonseca, C. M., Paquete, L., and López-Ibánez, M. (2006). An improved dimension-
sweep algorithm for the hypervolume indicator. In Congress on Evolutionary Computation, pages 1157–
1163. IEEE.

[Gabrel and Vanderpooten, 2002] Gabrel, V. and Vanderpooten, D. (2002). Enumeration and interactive
selection of efficient paths in a multiple criteria graph for scheduling an earth observing satellite. European
Journal of Operational Research, 139(3):533–542.

178 REFERENCES

[Galand et al., 2010] Galand, L., Perny, P., and Spanjaard, O. (2010). Choquet-based optimisation in
multiobjective shortest path and spanning tree problems. European Journal of Operational Research,
204(2):303–315.

[Gandibleux et al., 1997] Gandibleux, X., Mezdaoui, N., and Fréville, A. (1997). A tabu search procedure
to solve multiobjective combinatorial optimization problems. In Advances in multiple objective and goal
programming, pages 291–300. Springer.

[Gandibleux et al., 1998a] Gandibleux, X., Morita, H., and Katoh, N. (1998a). A genetic algorithm for 0-1
multiobjective knapsack problem. In NACA98.

[Gandibleux et al., 2001] Gandibleux, X., Morita, H., and Katoh, N. (2001). The supported solutions used
as a genetic information in a population heuristics. In EMO, pages 429–442. Springer.

[Gandibleux et al., 1998b] Gandibleux, X., Vancoppenolle, D., and Tuyttens, D. (1998b). A first making
use of grasp for solving moco problems. Technical report, University of Valenciennes, France.

[García-Martínez et al., 2007] García-Martínez, C., Cordón, O., and Herrera, F. (2007). A taxonomy and
an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP.
European Journal of Operational Research, 180(1):116–148.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). A guide to the theory of np-
completeness. WH Freemann, New York, 70.

[Gelly and Silver, 2007] Gelly, S. and Silver, D. (2007). Combining online and offline knowledge in uct. In
Proceedings of the 24th international conference on Machine learning, pages 273–280. ACM.

[Gendreau and Potvin, 2005] Gendreau, M. and Potvin, J.-Y. (2005). Metaheuristics in combinatorial opti-
mization. Annals of Operations Research, 140(1):189–213.

[Geoffrion, 1967] Geoffrion, A. M. (1967). Proper efficiency and the theory of vector maximization. Technical
report, DTIC Document.

[Ghoseiri and Nadjari, 2010] Ghoseiri, K. and Nadjari, B. (2010). An ant colony optimization algorithm for
the bi-objective shortest path problem. Applied Soft Computing, 10(4):1237–1246.

[Ginsberg, 2001] Ginsberg, M. L. (2001). Gib: Imperfect information in a computationally challenging game.
Journal of Artificial Intelligence Research, 14:303–358.

[Glover, 1989] Glover, F. (1989). Tabu search-part i. ORSA Journal on computing, 1(3):190–206.

[Goldberg, 1989] Goldberg, D. E. (1989). Genetic algorithms in search optimization and machine learning,
volume 412. Addison-wesley Reading Menlo Park.

[Gonçalves et al., 2006] Gonçalves, E. N., Palhares, R. M., Takahashi, R. H. C., and Mesquita, R. C. (2006).
Algorithm 860: Simples - an extension of freudenthal’s simplex subdivision. ACM Transactions on Math-
ematical Software (TOMS), 32(4):609–621.

[Gorski et al., 2006] Gorski, J., Klamroth, K., and Ruzika, S. (2006). Connectedness of efficient solutions in
multiple objective combinatorial optimization. Inst. für Angewandte Mathematik.

[Greco et al., 2005] Greco, S., Figueira, J., and Ehrgott, M. (2005). Multiple criteria decision analysis.
Springer’s International series.

[Guerreiro et al., 2012] Guerreiro, A. P., Fonseca, C. M., and Emmerich, M. T. (2012). A fast dimension-
sweep algorithm for the hypervolume indicator in four dimensions. In CCCG, pages 77–82.

REFERENCES 179

[Gutin and Punnen, 2006] Gutin, G. and Punnen, A. P. (2006). The traveling salesman problem and its
variations, volume 12. Springer Science & Business Media.

[Guttman, 1984] Guttman, A. (1984). R-trees: a dynamic index structure for spatial searching, volume 14.
ACM.

[Habenicht, 1983] Habenicht, W. (1983). Quad trees, a datastructure for discrete vector optimization prob-
lems. In Essays and Surveys on Multiple Criteria Decision Making, pages 136–145. Springer.

[Haimes et al., 1971] Haimes, Y. Y., Ladson, L., and Wismer, D. A. (1971). Bicriterion formulation of
problems of integrated system identification and system optimization. IEEE Transactions on Systems
Man and Cybernetics, (3):296.

[Hamacher and Ruhe, 1994] Hamacher, H. W. and Ruhe, G. (1994). On spanning tree problems with multiple
objectives. Annals of Operations Research, 52(4):209–230.

[Hansen, 1997] Hansen, M. P. (1997). Tabu search for multiobjective optimization: Mots. In Proceedings of
the 13th International Conference on Multiple Criteria Decision Making, pages 574–586. Citeseer.

[Hansen, 2000] Hansen, M. P. (2000). Use of substitute scalarizing functions to guide a local search based
heuristic: The case of motsp. Journal of heuristics, 6(3):419–431.

[Hansen and Jaszkiewicz, 1998] Hansen, M. P. and Jaszkiewicz, A. (1998). Evaluating the quality of approx-
imations to the non-dominated set. IMM, Department of Mathematical Modelling, Technical University
of Denmark.

[Hastings, 1970] Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their
applications. Biometrika, 57(1):97–109.

[Helsgaun, 2000] Helsgaun, K. (2000). An effective implementation of the lin–kernighan traveling salesman
heuristic. European Journal of Operational Research, 126(1):106–130.

[Helsgaun, 2009] Helsgaun, K. (2009). General k-opt submoves for the lin–kernighan tsp heuristic. Mathe-
matical Programming Computation, 1(2):119–163.

[Holland, 1992] Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. MIT press.

[Holm, 1979] Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian journal
of statistics, pages 65–70.

[Hoos and Stützle, 2004] Hoos, H. H. and Stützle, T. (2004). Stochastic local search: Foundations and
applications. Elsevier.

[Hwang et al., 2003] Hwang, S., Kwon, K., Cha, S. K., and Lee, B. S. (2003). Performance evaluation of
main-memory r-tree variants. In International Symposium on Spatial and Temporal Databases, pages
10–27. Springer.

[Inja et al., 2014] Inja, M., Kooijman, C., de Waard, M., Roijers, D. M., and Whiteson, S. (2014). Queued
pareto local search for multi-objective optimization. In International Conference on Parallel Problem
Solving from Nature, pages 589–599. Springer.

[Ishibuchi and Murata, 1996] Ishibuchi, H. and Murata, T. (1996). Multi-objective genetic local search
algorithm. In Evolutionary Computation, 1996., Proceedings of IEEE International Conference on, pages
119–124. IEEE.

180 REFERENCES

[Ishibuchi and Murata, 1998] Ishibuchi, H. and Murata, T. (1998). A multi-objective genetic local search
algorithm and its application to flowshop scheduling. Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, 28(3):392–403.

[Jaszkiewicz, 1999] Jaszkiewicz, A. (1999). Improving performance of genetic local search by changing local
search space topology. Foundations of Computing and Decision Sciences, 24(2):77–84.

[Jaszkiewicz, 2002] Jaszkiewicz, A. (2002). Genetic local search for multi-objective combinatorial optimiza-
tion. European Journal of Operational Research, 137(1):50–71.

[Jaszkiewicz, 2017] Jaszkiewicz, A. (2017). Many-objective pareto local search. arXiv preprint
arXiv:1707.07899.

[Jaszkiewicz and Lust, 2016] Jaszkiewicz, A. and Lust, T. (2016). Nd-tree: a fast online algorithm for
updating a pareto archive and its application in many-objective pareto local search. arXiv.

[Jaszkiewicz and Lust, 2017] Jaszkiewicz, A. and Lust, T. (2017). Proper balance between search towards
and along pareto front: biobjective tsp case study. Annals of Operations Research, pages 1–20.

[Jaszkiewicz and Zielniewicz, 2006] Jaszkiewicz, A. and Zielniewicz, P. (2006). Efficient adaptation of the
pareto memetic algorithm to the multiple objective travelling salesperson problem. In Proceedings of the
7th International Conference devoted to Multi-Objective Programming and Goal Programming.

[Johnson and McGeoch, 1997] Johnson, D. S. and McGeoch, L. A. (1997). The traveling salesman problem:
A case study in local optimization. Local search in combinatorial optimization, 1:215–310.

[Kamel and Faloutsos, 1993] Kamel, I. and Faloutsos, C. (1993). Hilbert r-tree: An improved r-tree using
fractals. Technical report.

[Ke et al., 2013] Ke, L., Zhang, Q., and Battiti, R. (2013). Moea/d-aco: A multiobjective evolutionary
algorithm using decomposition and antcolony. IEEE Transactions on Cybernetics, 43(6):1845–1859.

[Ke et al., 2014] Ke, L., Zhang, Q., and Battiti, R. (2014). A simple yet efficient multiobjective combi-
natorial optimization method using decompostion and pareto local search. IEEE Trans on Cybernetics,
44(10):1808–1820.

[Kennedy, 2011] Kennedy, J. (2011). Particle swarm optimization. In Encyclopedia of machine learning,
pages 760–766. Springer.

[Kennedy and Eberhart, 1997] Kennedy, J. and Eberhart, R. C. (1997). A discrete binary version of the
particle swarm algorithm. In Systems, Man, and Cybernetics, 1997. Computational Cybernetics and
Simulation., 1997 IEEE International Conference on, volume 5, pages 4104–4108. IEEE.

[Kinny, 2012] Kinny, D. (2012). A new approach to the snake-in-the-box problem. In ECAI, volume 242,
pages 462–467.

[Kirkpatrick et al., 1983] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. science, 220(4598):671–680.

[Klamroth et al., 2015] Klamroth, K., Lacour, R., and Vanderpooten, D. (2015). On the representation of
the search region in multi-objective optimization. European Journal of Operational Research, 245(3):767–
778.

[Knuth, 1998] Knuth, D. E. (1998). The art of computer programming: sorting and searching, volume 3.
Pearson Education.

REFERENCES 181

[Kocsis and Szepesvàri, 2006] Kocsis, L. and Szepesvàri, C. (2006). Bandit based monte-carlo planning. In
ECML, volume 4212 of Lecture Notes in Computer Science, pages 282–293. Springer.

[Korf, 1985] Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search. Artificial
intelligence, 27(1):97–109.

[Kumar and Singh, 2007] Kumar, R. and Singh, P. (2007). Pareto evolutionary algorithm hybridized with
local search for biobjective TSP. pages 361–398.

[Kung et al., 1975] Kung, H.-T., Luccio, F., and Preparata, F. P. (1975). On finding the maxima of a set of
vectors. Journal of the ACM (JACM), 22(4):469–476.

[Lacour, 2014] Lacour, R. (2014). Exact and approximate solving approaches in multi-objective combinatorial
optimization, application to the minimum weight spanning tree problem. PhD thesis, Université Paris
Dauphine-Paris IX.

[Landau and Lifshitz, 1980] Landau, L. and Lifshitz, E. (1980). Statistical physics, vol. 5. Course of theo-
retical physics, 30.

[Larrañaga and Lozano, 2001] Larrañaga, P. and Lozano, J. A. (2001). Estimation of distribution algorithms:
A new tool for evolutionary computation, volume 2. Springer Science & Business Media.

[Laumanns et al., 2002] Laumanns, M., Thiele, L., Deb, K., and Zitzler, E. (2002). Combining convergence
and diversity in evolutionary multiobjective optimization. Evolutionary computation, 10(3):263–282.

[Li and Landa-Silva, 2009] Li, H. and Landa-Silva, D. (2009). An elitist grasp metaheuristic for the multi-
objective quadratic assignment problem. In International Conference on Evolutionary Multi-Criterion
Optimization, pages 481–494. Springer.

[Li and Landa-Silva, 2011] Li, H. and Landa-Silva, D. (2011). An adaptive evolutionary multi-objective
approach based on simulated annealing. Evolutionary Computation, 19(4):561–595.

[Li and Zhang, 2009] Li, H. and Zhang, Q. (2009). Multiobjective optimization problems with complicated
pareto sets, moea/d and nsga-ii. IEEE Transactions on Evolutionary Computation, 13(2):284–302.

[Li et al., 2014] Li, K., Deb, K., Zhang, Q., and Kwong, S. (2014). Efficient non-domination level update ap-
proach for steady-state evolutionary multiobjective optimization. Department of Electtrical and Computer
Engineering, Michigan State University, East Lansing, USA, Tech. Rep. COIN Report, (2014014).

[Liefooghe et al., 2012] Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., and Talbi, E.-G. (2012).
On dominance-based multiobjective local search: design, implementation and experimental analysis on
scheduling and traveling salesman problems. Journal of Heuristics, 18(2):317–352.

[Lin and Kernighan, 1973] Lin, S. and Kernighan, B. W. (1973). An effective heuristic algorithm for the
traveling-salesman problem. Operations research, 21(2):498–516.

[López-Ibáñez and Stützle, 2012] López-Ibáñez, M. and Stützle, T. (2012). The automatic design of multi-
objective ant colony optimization algorithms. IEEE Trans. Evolutionary Computation, 16(6):861–875.

[Loukil et al., 2005] Loukil, T., Teghem, J., and Tuyttens, D. (2005). Solving multi-objective production
scheduling problems using metaheuristics. European journal of operational research, 161(1):42–61.

[Lourenço et al., 2003] Lourenço, H. R., Martin, O. C., and Stützle, T. (2003). Iterated local search. Springer.

[Lust and Jaszkiewicz, 2010] Lust, T. and Jaszkiewicz, A. (2010). Speed-up techniques for solving large-scale
biobjective TSP. Computers & Operations Research, 37(3):521–533.

182 REFERENCES

[Lust and Rolland, 2013] Lust, T. and Rolland, A. (2013). Choquet optimal set in biobjective combinatorial
optimization. Computers & Operations Research, 40(10):2260–2269.

[Lust and Teghem, 2010] Lust, T. and Teghem, J. (2010). Two-phase pareto local search for the biobjective
traveling salesman problem. Journal of Heuristics, 16(3):475–510.

[Lust and Teghem, 2012] Lust, T. and Teghem, J. (2012). The multiobjective multidimensional knapsack
problem: a survey and a new approach. International Transactions in Operational Research, 19(4):495–
520.

[Lust and Tuyttens, 2014] Lust, T. and Tuyttens, D. (2014). Variable and large neighborhood search to
solve the multiobjective set covering problem. Journal of Heuristics, 20(2):165–188.

[Madakat et al., 2013] Madakat, D., Morio, J., and Vanderpooten, D. (2013). Biobjective planning of an
active debris removal mission. Acta Astronautica, 84:182–188.

[Mann and Whitney, 1947] Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random
variables is stochastically larger than the other. The annals of mathematical statistics, pages 50–60.

[Martí et al., 2015] Martí, R., Campos, V., Resende, M. G., and Duarte, A. (2015). Multiobjective grasp
with path relinking. European Journal of Operational Research, 240(1):54–71.

[Martin et al., 1991] Martin, O., Otto, S. W., and Felten, E. W. (1991). Large-step markov chains for the
traveling salesman problem. 5:299–326.

[Martins and Ribeiro, 2006] Martins, S. L. and Ribeiro, C. C. (2006). Metaheuristics and applications to
optimization problems in telecommunications. In Handbook of optimization in telecommunications, pages
103–128. Springer.

[Moscato, 1989] Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts:
Towards memetic algorithms. Caltech concurrent computation program, C3P Report, 826:1989.

[Mostaghim and Teich, 2005] Mostaghim, S. and Teich, J. (2005). Quad-trees: A data structure for stor-
ing pareto sets in multiobjective evolutionary algorithms with elitism. In Evolutionary Multiobjective
Optimization, pages 81–104. Springer.

[Murata and Ishibuchi, 1995] Murata, T. and Ishibuchi, H. (1995). Moga: Multi-objective genetic algo-
rithms. In Evolutionary Computation, 1995., IEEE International Conference on, volume 1, page 289.
IEEE.

[Murata et al., 2001] Murata, T., Ishibuchi, H., and Gen, M. (2001). Specification of genetic search directions
in cellular multi-objective genetic algorithms. In Evolutionary multi-criterion optimization, pages 82–95.
Springer.

[Nagata and Kobayashi, 2013] Nagata, Y. and Kobayashi, S. (2013). A powerful genetic algorithm using edge
assembly crossover for the traveling salesman problem. INFORMS Journal on Computing, 25(2):346–363.

[Özpeynirci and Köksalan, 2010] Özpeynirci, Ö. and Köksalan, M. (2010). An exact algorithm for finding
extreme supported nondominated points of multiobjective mixed integer programs. Management Science,
56(12):2302–2315.

[Papadimitriou and Yannakakis, 2000] Papadimitriou, C. H. and Yannakakis, M. (2000). On the approx-
imability of trade-offs and optimal access of web sources. In Foundations of Computer Science, 2000.
Proceedings. 41st Annual Symposium on, pages 86–92. IEEE.

REFERENCES 183

[Paquete et al., 2004] Paquete, L., Chiarandini, M., and Stützle, T. (2004). Pareto local optimum sets in
the biobjective traveling salesman problem: An experimental study. In Metaheuristics for Multiobjective
Optimisation, pages 177–199. Springer.

[Paquete and Stützle, 2003] Paquete, L. and Stützle, T. (2003). A two-phase local search for the biobjective
traveling salesman problem. In Evolutionary Multi-Criterion Optimization, pages 479–493. Springer.

[Paquete and Stützle, 2009a] Paquete, L. and Stützle, T. (2009a). Clusters of non-dominated solutions in
multiobjective combinatorial optimization: An experimental analysis. In Multiobjective Programming and
Goal Programming, pages 69–77. Springer.

[Paquete and Stützle, 2009b] Paquete, L. and Stützle, T. (2009b). Design and analysis of stochastic local
search for the multiobjective traveling salesman problem. Computers & Operations Research, 36(9):2619–
2631.

[Pelikan et al., 2006] Pelikan, M., Sastry, K., and Goldberg, D. E. (2006). Multiobjective estimation of
distribution algorithms. In Scalable optimization via probabilistic modeling, pages 223–248. Springer.

[Perez et al., 2015] Perez, D., Mostaghim, S., Samothrakis, S., and Lucas, S. M. (2015). Multiobjective
monte carlo tree search for real-time games. IEEE Transactions on Computational Intelligence and AI in
Games, 7(4):347–360.

[Perez et al., 2013] Perez, D., Samothrakis, S., and Lucas, S. (2013). Online and offline learning in multi-
objective monte carlo tree search. In Computational Intelligence in Games (CIG), 2013 IEEE Conference
on, pages 1–8. IEEE.

[Poulding and Feldt, 2014] Poulding, S. and Feldt, R. (2014). Generating structured test data with spe-
cific properties using nested monte-carlo search. In Proceedings of the 2014 conference on Genetic and
evolutionary computation, pages 1279–1286. ACM.

[Powley et al., 2013] Powley, E. J., Whitehouse, D., and Cowling, P. I. (2013). Monte carlo tree search with
macro-actions and heuristic route planning for the multiobjective physical travelling salesman problem.
In Computational Intelligence in Games (CIG), 2013 IEEE Conference on, pages 1–8. IEEE.

[Przybylski and Gandibleux, 2017] Przybylski, A. and Gandibleux, X. (2017). Multi-objective branch and
bound. European Journal of Operational Research, 260(3):856–872.

[Przybylski et al., 2010a] Przybylski, A., Gandibleux, X., and Ehrgott, M. (2010a). A recursive algorithm
for finding all nondominated extreme points in the outcome set of a multiobjective integer programme.
INFORMS Journal on Computing, 22(3):371–386.

[Przybylski et al., 2010b] Przybylski, A., Gandibleux, X., and Ehrgott, M. (2010b). A two phase method for
multi-objective integer programming and its application to the assignment problem with three objectives.
Discrete Optimization, 7(3):149–165.

[Qi et al., 2014] Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., and Wu, J. (2014). Moea/d with adaptive weight
adjustment. Evolutionary computation, 22(2):231–264.

[Rego et al., 2011] Rego, C., Gamboa, D., Glover, F., and Osterman, C. (2011). Traveling salesman prob-
lem heuristics: leading methods, implementations and latest advances. European Journal of Operational
Research, 211(3):427–441.

[Reinelt, 1991] Reinelt, G. (1991). TSPLIB - a traveling salesman problem library. ORSA journal on
computing, 3(4):376–384.

184 REFERENCES

[Rimmel et al., 2011] Rimmel, A., Teytaud, F., and Cazenave, T. (2011). Optimization of the nested monte-
carlo algorithm on the traveling salesman problem with time windows. In Applications of Evolutionary
Computation, pages 501–510. Springer.

[Rosin, 2011] Rosin, C. D. (2011). Nested rollout policy adaptation for monte carlo tree search. In IJCAI,
pages 649–654.

[Roy, 1985] Roy, B. (1985). Méthodologie multicritère d" aide à la décision. Economica.

[Schadd et al., 2008] Schadd, M. P. D., Winands, M. H. M., van den Herik, H. J., Chaslot, G., and Uiterwijk,
J. W. H. M. (2008). Single-player monte-carlo tree search. In Computers and Games, pages 1–12.

[Schwarz and Ocenasek, 2001] Schwarz, J. and Ocenasek, J. (2001). Multiobjective bayesian optimization
algorithm for combinatorial problems: Theory and practice. Neural Network World, 11(5):423–442.

[Serafini, 1994] Serafini, P. (1994). Simulated annealing for multi objective optimization problems. In Mul-
tiple criteria decision making, pages 283–292. Springer.

[Silver et al., 2016] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J.,
Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, D.
(2016). Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484–489.

[Sleator and Tarjan, 1985] Sleator, D. D. and Tarjan, R. E. (1985). Self-adjusting binary search trees. Jour-
nal of the ACM (JACM), 32(3):652–686.

[Sörensen, 2015] Sörensen, K. (2015). Metaheuristics-the metaphor exposed. International Transactions in
Operational Research, 22(1):3–18.

[Sourd and Spanjaard, 2008] Sourd, F. and Spanjaard, O. (2008). A multiobjective branch-and-bound frame-
work: Application to the biobjective spanning tree problem. INFORMS Journal on Computing, 20(3):472–
484.

[Steuer, 1986] Steuer, R. E. (1986). Multiple criteria optimization: theory, computation, and applications.
Wiley.

[Sun and Steuer, 1996] Sun, M. and Steuer, R. E. (1996). Quad-trees and linear lists for identifying non-
dominated criterion vectors. INFORMS Journal on Computing, 8(4):367–375.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction,
volume 1. MIT press Cambridge.

[Talbi, 2009] Talbi, E.-G. (2009). Metaheuristics: from design to implementation, volume 74. John Wiley &
Sons.

[Talbi et al., 2001] Talbi, E.-G., Rahoual, M., Mabed, M. H., and Dhaenens, C. (2001). A hybrid evolution-
ary approach for multicriteria optimization problems: Application to the flow shop. In EMO, volume 1,
pages 416–428. Springer.

[Tricoire, 2012] Tricoire, F. (2012). Multi-directional local search. Computers & operations research,
39(12):3089–3101.

[Ulungu and Teghem, 1995] Ulungu, E. and Teghem, J. (1995). The two phases method: An efficient proce-
dure to solve bi-objective combinatorial optimization problems. Foundations of Computing and Decision
Sciences, 20(2):149–165.

REFERENCES 185

[Ulungu and Teghem, 1992] Ulungu, E. L. and Teghem, J. (1992). Heuristic for multiobjective combinatorial
optimization problems with simulated annealing. In EURO XII conference.

[Vanderpooten and Vincke, 1989] Vanderpooten, D. and Vincke, P. (1989). Description and analysis of some
representative interactive multicriteria procedures. Mathematical and computer modelling, 12(10-11):1221–
1238.

[Verel et al., 2011] Verel, S., Liefooghe, A., Jourdan, L., and Dhaenens, C. (2011). Analyzing the effect of
objective correlation on the efficient set of mnk-landscapes. pages 116–130.

[Vianna and Arroyo, 2004] Vianna, D. S. and Arroyo, J. E. C. (2004). A grasp algorithm for the multi-
objective knapsack problem. In Computer Science Society, 2004. SCCC 2004. 24th International Confer-
ence of the Chilean, pages 69–75. IEEE.

[Wang and Sebag, 2012] Wang, W. and Sebag, M. (2012). Multi-objective monte-carlo tree search. In ACML,
pages 507–522.

[Wang and Sebag, 2013] Wang, W. and Sebag, M. (2013). Hypervolume indicator and dominance reward
based multi-objective monte-carlo tree search. Machine Learning, 92(2-3):403–429.

[While et al., 2012] While, L., Bradstreet, L., and Barone, L. (2012). A fast way of calculating exact hyper-
volumes. IEEE Transactions on Evolutionary Computation, 16(1):86–95.

[Woodruff and Zemel, 1993] Woodruff, D. L. and Zemel, E. (1993). Hashing vectors for tabu search. Annals
of Operations Research, 41(2):123–137.

[Wu et al., 2013] Wu, T.-Y., Wu, I.-C., and Liang, C.-C. (2013). Multi-objective flexible job shop scheduling
problem based on monte-carlo tree search. In Technologies and Applications of Artificial Intelligence
(TAAI), 2013 Conference on, pages 73–78. IEEE.

[Xue et al., 2013] Xue, B., Zhang, M., and Browne, W. N. (2013). Particle swarm optimization for feature
selection in classification: A multi-objective approach. IEEE transactions on cybernetics, 43(6):1656–1671.

[Zavala et al., 2014] Zavala, G. R., Nebro, A. J., Luna, F., and Coello, C. A. C. (2014). A survey of multi-
objective metaheuristics applied to structural optimization. Structural and Multidisciplinary Optimization,
49(4):537–558.

[Zhang and Li, 2007] Zhang, Q. and Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based
on decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712–731.

[Zhang et al., 2016] Zhang, X., Tian, Y., Cheng, R., and Jin, Y. (2016). Empirical analysis of a tree-based
efficient non-dominated sorting approach for many-objective optimization. In Computational Intelligence
(SSCI), 2016 IEEE Symposium Series on, pages 1–8. IEEE.

[Zhao et al., 2012] Zhao, S.-Z., Suganthan, P. N., and Zhang, Q. (2012). Decomposition-based multiobjective
evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Transactions on Evolutionary
Computation, 16(3):442–446.

[Zhou et al., 2011] Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., and Zhang, Q. (2011). Multi-
objective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation,
1(1):32–49.

[Zitzler, 1999] Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications. Shaker Verlag.

186 REFERENCES

[Zitzler and Künzli, 2004] Zitzler, E. and Künzli, S. (2004). Indicator-based selection in multiobjective
search. In International Conference on Parallel Problem Solving from Nature, pages 832–842. Springer.

[Zitzler et al., 2001] Zitzler, E., Laumanns, M., Thiele, L., et al. (2001). Spea2: Improving the strength
pareto evolutionary algorithm.

[Zitzler et al., 2003] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and Da Fonseca, V. G. (2003).
Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on
Evolutionary Computation, 7(2):117–132.

[Zobrist, 1970] Zobrist, A. L. (1970). A new hashing method with application for game playing. ICCA
journal, 13(2):69–73.

Recherche Locale, structures de données et
Recherche Monte-Carlo pour les problèmes
d'optimisation combinatoire Multi-Objectif

Résumé en français

Introduction

Les solutions de certains problèmes combinatoires peuvent être évaluées sur plusieurs
objectifs, souvent contradictoires. Les con�its entre les objectifs conduisent généralement
à la di�érence fondamentale suivante avec l'optimisation mono-objectif : deux solutions
peuvent avoir des valeurs d'objectifs di�érentes, représentant des compromis di�érents des
objectifs, et par conséquent, aucune n'est meilleure que l'autre. L'optimisation conjointe
de plusieurs objectifs au sein d'un problème combinatoire a donné naissance au domaine
de l'optimisation combinatoire multi-objectif (MOCO).

Un exemple classique d'objectifs con�ictuels concerne des problèmes tels que le problème
du plus court chemin ou le problème de tournée de véhicule. Pour de tels problèmes, plu-
sieurs objectifs peuvent être envisagés : le temps de parcours, l'empreinte écologique et
naturellement le coût du trajet en fonction du moyen de transport choisi. Nous pouvons
facilement constater qu'un certain nombre de ces objectifs sont généralement contradic-
toires, comme le temps de déplacement par rapport au coût du trajet ou à l'empreinte
écologique. Cependant, à titre d'exemple, il peut être intéressant pour une entreprise sou-
cieuse de l'environnement (ou même une personne) de choisir un itinéraire optimisant à
la fois le temps de parcours et son empreinte écologique. Considérer un tel objectif éco-
logique supplémentaire serait béné�que pour l'entreprise en promouvant son respect de
l'environnement, et ce a�n attirer plus de clients. Concernant le problème d'ordonnan-
cement rencontré par toute compagnie aérienne, outre la minimisation des coûts, nous
pourrions considérer comme deuxième objectif le bien-être du personnel de bord, en te-
nant compte de leurs préférences de jours de travail. Bien que potentiellement en con�it
avec une minimisation des coûts, l'optimisation prenant en aussi compte le bien-être des
employés pourrait potentiellement réduire le nombre de mouvements sociaux mais égale-
ment améliorer l'image de marque de l'entreprise. Un autre exemple d'objectifs contradic-
toires apparaît dans un problème rencontré en �nance, consistant à choisir un portefeuille
parmi un ensemble de propositions d'investissement tout en optimisant deux objectifs
contradictoires : la valeur attendue des rendements du portefeuille à maximiser, et le
risque inhérent aux rendements du portefeuille à minimiser. Plus généralement, MOCO
présente de nombreuses applications dans les domaines de la �nance, du transport, de la
médecine et des télécommunications, des problèmes de routage et des télécommunications
et des problèmes de conception structurelle.

MOCO est une alternative intéressante pour les décideurs par rapport à l'optimisation
combinatoire mono-objectif, car elle couvre di�érents points de vue existants pour un

même problème. En revanche, MOCO est confronté à des problèmes computationnels
lorsque de multiples objectifs contradictoires sont considérés. D'ailleurs, la plupart des
problèmes MO sont théoriquement di�ciles, dans le sens où leur version de décision est
NP-di�cile, même si la version mono-objectif sous-jacente peut être résolue en temps
polynomial.

Les méthodes MOCO sont classées en méthodes exactes, méthodes d'approximation avec
garantie de performance et (méta-)heuristique. En plus de cette classi�cation, trois ap-
proches principales existent dans MOCO et chacune est plus ou moins exigeante pour
le décideur. La première est l'approche interactive, qui interagit itérativement avec le
décideur en lui demandant ses préférences à travers la sélection ou la classi�cation des
di�érentes solutions suggérées par la méthode a�n de guider e�cacement la recherche, et
d'obtenir �nalement une solution qui lui convient. La seconde est l'approche a priori qui
vise à d'abord interroger le décideur sur ses préférences puis à guider le processus d'opti-
misation en fonction de ces préférences. À la �n, la méthode produit un unique ou un petit
ensemble de solutions. Ces deux types d'approches agrègent souvent les objectifs en un
seul, de sorte que le problème peut alors être résolu comme problème mono-objectif. Une
grande variété de fonctions d'agrégation existe dans la littérature, de la somme pondérée
ou de l'agrégation Tchebychev pondérée, à des méthodes plus complexes capables de mo-
déliser les préférences complexes du décideur comme l'intégrale de Choquet. Le troisième
est l'approche a posteriori, pour laquelle les préférences du décideur ne sont pas connues
a priori, c'est-à-dire non connues avant le processus d'optimisation. Cette approche est
fortement reliée à la notion de dominance de Pareto : une solution domine une autre
solution si elle est égale ou meilleure sur tous les objectifs et strictement meilleure sur au
moins un objectif. En considérant cette notion de dominance de Pareto, le décideur ne
serait pas intéressé par des solutions dominées et, par conséquent, le but d'une approche
a posteriori est de trouver l'ensemble des solutions qui ne sont dominées par aucune autre
solution, appelée ensemble des solutions e�caces (ou plus simplement ensemble e�cace).
Malgré le fait que dans la pratique nous recherchons un ensemble e�cace réduit, c'est-à-
dire un ensemble e�cace de sorte qu'une seule solution est mémorisée parmi toutes les
solutions équivalentes, l'ensemble peut être extrêmement grand, en particulier dans le
cas où plusieurs objectifs con�ictuels sont considérés. Ainsi, même pour des problèmes
de taille modérée, il est généralement prohibitif d'identi�er un ensemble e�cace réduit.
En particulier, plusieurs problèmes MOCO sont intractables, en ce sens que le nombre
de points peut être exponentiel dans la taille de l'instance. C'est pourquoi, en plus de la
di�culté inhérente des problèmes MO précédemment mentionnée, les méthodes exactes
permettant de trouver un ensemble e�cace réduit sont généralement utilisées pour des
problèmes faciles, ou des problèmes plus di�ciles de petite taille. D'autre part, étant
donné une tolérance prédé�nie dans la relation de dominance, les méthodes d'approxi-
mation avec garantie de performance seront capables de trouver une approximation de
l'ensemble e�cace dès le moment où les méthodes exactes deviennent impraticables. Ces
méthodes d'approximation semblent être e�caces en théorie comme en pratique pour
certains problèmes. En�n, les méta-heuristiques ne fournissent aucune garantie de per-
formance sur la qualité de l'ensemble d'approximations trouvé, mais en raison de leur
e�cacité pratique, elles sont actuellement massivement utilisées pour optimiser des pro-
blèmes di�ciles de grandes tailles, là où les méthodes d'approximation avec garantie de

performance sont dépassées. Les méta-heuristiques mono-objectif ont en fait été adaptées
à MOCO, comme les algorithmes évolutionaires MO, la recherche locale MO, les méta-
heuristiques MO inspirées de la nature, et plus récemment la recherche Monte-Carlo MO.
Une fois que l'ensemble e�cace a été trouvé (ou une approximation), le décideur choisit
la solution qui correspond au mieux à ses préférences en utilisant une méthode d'aide à
la décision multi-crière.

Cadre de la thèse

Dans cette thèse, nous nous intéressons à la conception de structures de données et
de méta-heuristiques pour trouver l'approximation d'un ensemble e�cace de problèmes
MOCO. Le point principal de la thèse est de proposer des méthodes nouvelles et e�caces
(en termes de temps et de qualité d'approximation), indépendantes autant que possible
du problème traité, et scalables tant dans la taille que dans le nombre d'objectifs de l'ins-
tance. En e�et, nous ne nous sommes pas limités au cas bi-objectif et avons considéré des
problèmes avec jusqu'à 5 objectifs. De plus, les méthodes proposées sont modulaires, en
le sens où elles peuvent être utilisés indépendamment les unes des autres. En raison des
récents succès de la recherche locale sur des problèmes MOCO durs, nous sommes parti-
culièrement intéressés par l'introduction de nouveaux algorithmes pour la recherche locale
MO, les méthodes d'optimisation mono-objectif et les structures de données. Comme axe
secondaire, compte tenu de l'émergence récente de méthodes de recherche de Monte-Carlo
e�caces sur de nombreux problèmes d'optimisation mono-objectif, nous nous intéressons
également à la combinaison des méthodes de recherche Monte-Carlo avec la recherche
locale MO.

Plan de la thèse

Le chapitre 1 rappelle les dé�nitions et notions MOCO fondamentales. Le chapitre 2 pré-
sente une vue d'ensemble des méthodes d'optimisation des problèmes MOCO, en mettant
l'accent sur les méta-heuristiques. Le chapitre présente également l'Etat de l'art des mé-
thodes sur le Problème du Voyageur de Commerce MO (MOTSP), en mettant l'accent
sur les méta-heuristiques, puis expose l'Etat de l'art des archives, qui sont des structures
de données gérant un ensemble de solutions incomparables. Le chapitre 3 traite des nou-
velles archives proposées : l'AVL-Archive pour les problèmes d'optimisation bi-objectif et
la NDR*-Archive pour le cas général. Les résultats expérimentaux sur les benchmarks
arti�ciels et sur le MOTSP sont présentés. Le chapitre 4 introduit les nouvelles mé-
thodes proposées pour optimiser les problèmes MOCO : une nouvelle méta-heuristique
MO appelée 2 Phase Iterated Pareto Local Search with Decomposition (2PIPLS/D), in-
tégrant l'Adaptive Maximally Dispersed set of Weights (A-MDW) qui permet de générer
une population initiale de solutions, la Partitioned Pareto Local Search (P-PLS) comme
technique d'accélération pour la PLS, et quelques modi�cations sur les méthodes mono-
objectif a�n améliorer leur e�cacité sur les problèmes MOCO. Le chapitre 5 est consacré

à l'application de 2PIPLS/D au MOTSP sur un benchmark d'instances bi-objectif et tri-
objectif, et propose une preuve empirique de la convexité globale pour le MOTSP. En�n,
le chapitre 6 introduit la version MO du problème de cartographie des régions françaises
et montre l'application de 2PIPLS/D à ce nouveau problème à cinq objectifs.

1 Concepts fondamentaux de MOCO : Résumé

Ce chapitre rappelle d'abord la dé�nition formelle d'un problème MOCO, puis les notions
de base telles que les relations de dominance, le concept de non-dominance, les points idéal
et nadir et les solutions (non) supportées. Des techniques fondamentales sont également
introduites, telles que les fonctions d'agrégation et la génération de poids. En�n, certains
problèmes MOCO classiques sont introduits.

2 Méthodes de MOCO : Résumé

Ce chapitre propose une vue d'ensemble des di�érentes méthodes existant dans MOCO,
en mettant l'accent sur les méta-heuristiques. Tout d'abord, la notion d'indicateur de
qualité pour un ensemble de points est introduite, et les indicateurs utilisés pour nos
futures expériences sont détaillés. Ensuite, di�érentes classes de méta-heuristiques sont
présentées parmi lesquelles la recherche locale et la recherche Monte-Carlo sont largement
décrites. En particulier, nous proposons une catégorisation claire des di�érentes méthodes
de recherche locale MO. En�n, est réalisé un état de l'art des méthodes d'optimisation
pour le MOTSP ainsi que sur les archives.

3 Nouvelles archives : Résumé

Nous avons proposé deux nouvelles archives, l'AVL-Archive spécialisée dans le cas bi-
objectif, et la NDR *-Archive pour le cas général. Les deux structures sont auto-équilibrées
et ont deux versions : une version générale adaptée à toute tâche d'optimisation MO ; et
une version adaptative, spécialement conçue si une présomption de localisation temporelle
et spatiale existe entre les solutions présentées à l'archive.

Ces archives ont été testées expérimentalement et comparées aux archives de l'état de l'art
sur un grand nombre d'instances simulant la génération de points d'une méta-heuristique
MO, et embarquées à l'intérieur de la recherche locale Pareto (PLS) appliquée au MOTSP
avec jusque 5 objectifs.

L'AVL-Archive surpasse toutes les autres archives dans le cas bi-objectif et sa version
adaptative fonctionne légèrement mieux que la liste triée lorsqu'elles est utilisée au sein
de la PLS.

NDR * -Archive fonctionne mieux que les concurrents dans le cas général, en particulier
lorsque 4 objectifs ou moins sont considérés et que le nombre de points dominés est plus
grand que le nombre de points non dominés. La version adaptative de NDR*-Archive
est beaucoup plus e�cace que ses concurrents lorsqu'elle est embarquée dans la PLS, en
particulier quand 3 ou 4 objectifs sont considérés.

Nous espérons que ces deux archives et leurs versions adaptatives pourront être utiles pour
de futures méta-heuristiques, en particulier celles qui utilisent PLS, la programmation
dynamique MO ou les méthodes basées sur les zones de recherche.

Concernant les perspectives de la NDR*-Archive, on pourrait trier les �ls d'un n÷ud in-
terne en utilisant leur clé de Hilbert (ou n'importe quelle clé provenant d'une courbe de
remplissage, comme la courbe de Peano). Comme l'AVL-Archive qui utilise des propriétés
spéci�ques au cas bi-objectif, il pourrait être intéressant d'utiliser les propriétés spéci�ques
des espaces de dimensions �xes de tailles 3, 4 ou 5. D'autres recherches semblent néces-
saires pour améliorer l'e�cacité de NDR*-Archive dans le cas où 5 objectifs ou plus sont
considérés.

Une amélioration possible de l'AVL-Archive est d'utiliser les mouvements de type splay
pour réorganiser l'arborescence, a�n que le n÷ud en cache soit placé à la racine de l'arbre.
Cependant, cette modi�cation pourrait rendre l'arbre déséquilibré.

4 Nouvelles méthodes d'optimisation : Résumé

Nous avons proposé dans ce chapitre un certain nombre d'améliorations de méthodes
existantes et de nouvelles méthodes d'optimisation pour s'attaquer plus e�cacement aux
problèmes MOCO.

Nous avons tout d'abord suggéré trois modi�cations des méthodes d'optimisation mono-
objectif pour améliorer leur capacité à trouver des solutions e�caces dans les problèmes
MOCO : démarrer/guider systématiquement la recherche à partir d'une solution déjà
trouvée, mémoriser les solutions générées pendant le processus d'optimisation et activer
la perturbation des données. Sur la base de ces spéci�cations, nous avons proposé une nou-
velle version de Nested Monte-Carlo Search (NMCS), appelée A-NMCS, mieux adaptée
au MOCO que la version originale de NMCS.

Deuxièmement, nous avons présenté une nouvelle méthode généralisant l'algorithme Maxi-
mally Dispersed set of Weights, appelé A-MDW et le rendant plus adaptatif de sorte que
la méthode continue de générer des poids jusqu'à ce que la méthode optimisant les pro-
blèmes de somme pondérée associés ne soit plus e�cace.

Troisièmement, nous avons introduit la recherche locale Pareto partitionnée (P-PLS), qui
vise à accélérer la recherche local Pareto avec descente variable (PLS-VND) à travers le
partitionnement de l'ensemble de solutions à explorer, et une restriction intelligente de la

structure de voisinage de PLS-VND basée sur la présomption de convexité globale sur le
problème traité.

Ensuite, nous avons proposé une nouvelle méta-heuristique MO appelée 2-Phase Ite-
rated Pareto Local Search (2PIPLS/D) basée sur trois concepts importants : les méta-
heuristiques à 2 phases, les méthodes de décomposition et la recherche locale Pareto itérée,
et combinant A-MDW, P-PLS, ainsi que les modi�cations suggérées pour les méthodes
d'optimisation mono-objectif.

En�n, un nouveau système basé sur le concept d'ε-archive est présenté, permettant de
limiter la taille d'une archive tout en garantissant une bonne répartition des points dans
l'espace objectif.

5 Application de 2PIPLS/D au MOTSP : Résumé

Dans ce chapitre, nous avons d'abord proposé une implémentation des di�érents compo-
sants algorithmiques de 2PIPLS/D, en particulier nous avons proposé d'utiliser le Chained
Lin Kernighan (C-LK) et l'A-NMCS comme méthodes d'optimisation mono-objectif, et
suggéré une implémentation de la structure de restriction de voisinage de P-PLS. En-
suite, nous avons présenté une preuve empirique de convexité globale sur le MOTSP a�n
de légitimer l'utilisation du système de partitionnement de P-PLS. Nous avons constaté
que les solutions (potentiellement) e�caces sont e�ectivement concentrées dans l'espace
de décision et que les solutions (potentiellement) e�caces dans l'espace des objectif ont
tendance à être également voisines dans l'espace de décision. Après une analyse de sen-
sibilité de 2PIPLS/D sur ses paramètres, nous avons classé les di�érents paramètres en
fonction de leur in�uence sur la performance de nôtre méthode. Nous avons constaté que
2PIPLS/D est sensible au nombre de problèmes de somme pondérée optimisés lors de
l'initialisation avec A-MDW, mais aussi à la taille maximale autorisée d'une partie (de la
partition générée) lors de l'initialisation de P-PLS. En particulier, nous avons noté que la
P-PLS réduit drastiquement le nombre de solutions examinées par PLS-VND (-98% en
moyenne sur les instances testées) grâce à son système de partitionnement. En outre, la
mémorisation des solutions au cours de l'exécution d'une méthode mono-objectif semble
être très e�cace, à la fois pour C-LK et A-NMCS.

D'un autre côté, 2PIPLS/D ne semble pas particulièrement sensible à la perturbation des
données, à la taille maximale de la structure du voisinage et aux di�érentes stratégies
et modes d'exploration utilisés par PLS-VND. En�n, nous avons comparé 2 versions de
2PIPLS/D (soit avec C-LK amélioré ou bien avec A-NMCS) avec les meilleures méthodes
actuelles sur un grand nombre d'instances bi-objectif et tri-objectif.

2PIPLS/D (avec C-LK) obtient de bons résultats et trouve l'ensemble non-dominé de
7 instances bi-objectif de taille 100 en 20 runs, de sorte que 2PIPLS/D est, à notre
connaissance, la première méta-heuristique capable de trouver un ensemble non-dominé

d'instances MOTSP d'une telle taille. 2PIPLS/D (avec C-LK) surpasse MoMad et PD-
TPLS sur toutes les instances testées ; 2PIPLS/D surpasse également PDA sur 95% des
instances testées et a des performances équivalentes pour les 5% d'instances restantes.

En�n, 2PIPLS/D avec C-LK surpasse dans une grande majorité des cas 2PIPLS/D avec
A-NMCS, ce qui renforce le fait que les performances 2PIPLS/D dépendent fortement de
l'e�cacité de la méthode mono-objectif utilisée.

Concernant les perspectives, il pourrait être intéressant de mettre en place des struc-
tures de voisinage (dans PLS-VND) avec une plus grande taille que le 3-exchange, ou
mieux encore, de proposer des mouvements de type variable k-exchange comme dans
Lin-Kernighan. Cependant, nous avons deux principales limitations à propos de cette
perspective. Tout d'abord, les techniques qui ont rendu les méthodes de recherche locale
si puissantes pour le TSP, comme les don't look bits ou les listes de candidats, ne sont
pas aussi e�caces pour le MOTSP. Deuxièmement, il semble que l'étape de perturba-
tion globale de 2PIPLS/D soit su�samment e�cace pour compenser une petite taille de
structure de voisinage de PLS-VND.

Une deuxième perspective est l'application de 2PIPLS/D sur des instances plus impor-
tantes, à la fois en termes de tailles et de nombre d'objectifs. Selon nous, la principale
limitation concernant cette proposition est que 2PIPLS/D, comme toute méthode basée
sur le framework de la PLS à deux phases, sont très sensibles à la méthode d'optimisation
mono-objectif utilisée pour (ré)démarrer la PLS. En e�et, les méthodes d'optimisation
mono-objectif basées sur l'algorithme de Lin-Kernighan semblent être la meilleure option
que nous ayons actuellement, mais ne sont pas si e�caces sur les instances dans lesquelles
il n'y a pas d'inégalité triangulaire. Par conséquent, des di�cultés sont attendons pour
ce type de méthodes sur des instances aléatoires, bi-objectif ou tri-objectif de taille 1000,
ou sur des instances de grandes tailles considérant 4 objectifs ou plus.

6 Application de 2PIPLS/D au MOFRMP : Résumé

Dans ce chapitre, nous nous intéressons à la récente réforme territoriale des régions fran-
çaises qui s'est traduite par l'a�ectation des départements à de nouvelles régions plus
grandes. A partir de l'observation que certains départements sont plus attirés par d'autres
régions que leur région d'a�ectation actuelle, le but de ce chapitre était de tenter d'identi-
�er ces départements en optimisant un nouveau problème multi-objectif appelé Problème
de Cartographie des Régions Françaises MO (MOFRMP). Le problème consiste à trouver
des cartes alternatives en optimisant cinq objectifs, basés sur des indicateurs économiques
et �nanciers mesurant la force des interactions entre les départements a�ectés à une même
région, ainsi que les poids économiques et démographiques de chaque région. Nous avons
appliqué 2PIPLS/D à ce problème et testé la recherche locale itérée (ILS) et A-NMCS
comme méthodes d'optimisation mono-objectif. Nous avons constaté que 2PIPLS/D avec
ILS surpasse 2PIPLS/D avec A-NMCS. Une approximation de l'ensemble e�cace a été
générée avec les di�érentes exécutions de 2PIPLS/D. Cependant, nous avons trouvé que

les cartes (potentiellement) e�caces trouvées ont beaucoup trop de départements de dif-
férence avec la carte actuelle, ce qui rend irréaliste de les proposer comme alternative à la
carte actuelle. Au lieu de cela, nous avons construit un indicateur basé sur l'approxima-
tion des solutions e�caces trouvées, qui vise à identi�er les départements les plus attirés
par d'autres régions que leur région courante à laquelle ils appartiennent. En particulier,
nous avons constaté que le Gard (30), la Haute-Marne (52) et les Deux-Sèvres (79) sont
particulièrement attirés par d'autres régions.

Le MOFRMP soulève une question importante : la carte actuelle des régions pourrait-elle
être améliorée ? Le travail proposé dans ce chapitre correspond seulement à une réponse
préliminaire à cette question. Nous pensons qu'une nouvelle formulation du MOFRMP
est nécessaire pour obtenir des cartes alternatives réalistes. Premièrement, il nous semble
important de ne pas limiter ce problème aux seuls critères économiques et �nanciers.
A titre d'exemple, les échanges culturels entre départements pourraient être envisagés,
ou l'intensité globale des mouvements de personnes entre les départements, et pas seule-
ment les trajets domicile-travail. Deuxièmement, il est impératif d'obtenir les préférences
des décideurs quant à l'importance relative des di�érents critères considérés. Troisième-
ment, nous pensons que toute carte alternative doit proposer un nombre très limité de
réa�ectations de départements par rapport à la carte actuelle. Si le nombre maximum
de réa�ectations est limité à 3 ou 4 par exemple, le problème devient assez facile et il
semble qu'une méthode d'optimisation ne soit pas nécessaire. En e�et, dans ce cas, une
simple énumération des solutions est su�sante, puis un �ltrage pour ne garder que les
solutions e�caces, et en�n l'utilisation d'une méthode d'aide à la décision multi-critère
en considérant les préférences des décideurs préalablement obtenues. En revanche, si un
nombre plus élevé de réa�ectations est accepté (c'est-à-dire 5 ou plus), le nombre de
solutions réalisables semble trop important pour une simple énumération. Dans ce cas,
une méthode d'optimisation MO est nécessaire et 2PIPLS/D pourrait être adapté à cette
nouvelle formulation du MOFRMP.

Conclusion

S'inscrivant dans le cadre de l'optimisation combinatoire multi-objectif (MOCO), cette
thèse a proposé un certain nombre de nouvelles méthodes d'approximation et de structures
de données pour les problèmes de MOCO de grande taille. Tout d'abord, les contributions
de la thèse sont résumées, puis un certain nombre de perspectives sont suggérées.

Contributions

1. Nous avons proposé deux nouvelles archives : l'AVL-Archive pour le cas bi-objectif
et la NDR *-Archive pour un nombre quelconque d'objectifs ; ainsi que leurs ver-
sions adaptatives utilisant les concepts de localisation temporelle et spatiale, et
donc spécialement conçues pour la PLS. Nous avons comparé ces archives aux

meilleures archives connues et nous obtenons de meilleurs résultats que les concur-
rents, faisant de l'AVL-Archive et de la NDR * -Archive et leurs versions adapta-
tives, les archives les plus e�caces jusqu'à 5 objectifs.

2. Nous avons présenté une nouvelle méthode généralisant le concept de MDW en
le rendant plus adaptatif de sorte que la méthode continue de générer des poids
jusqu'à ce que la méthode d'optimisation mono-objectif optimisant les problèmes
de somme pondérée associés ne soit plus e�cace.

3. Nous avons introduit la recherche locale Pareto partitonnée (P-PLS), qui vise à
accélérer PLS-VND au travers d'un partitionnement de l'ensemble de solutions à
explorer, et une restriction intelligente de la structure de voisinage de PLS-VND
basée sur la présomption de convexité globale sur le problème traité.

4. Nous avons suggéré quelques modi�cations pour tout optimiseur mono-objectifs
a�n d'améliorer sa capacité à trouver des solutions e�caces dans les problèmes
MOCO, en particulier en mémorisant les solutions générées au cours du processus
d'optimisation. Sur la base de ces spéci�cations, nous avons proposé une nouvelle
version de NMCS, appelée A-NMCS, mieux adaptée aux problèmes MOCO que
NMCS.

5. Nous avons présenté une nouvelle méta-heuristique appelée 2PIPLS/D. Au cours
de la première phase, A-MDW est utilisé comme méthode d'initialisation et P-PLS
construit une partition pour accélérer PLS-VND. A chaque itération de la seconde
phase, un ensemble de solutions est tout d'abord généré par l'optimisation de plu-
sieurs problèmes de somme pondérée perturbés, puis PLS-VND est lancé à partir
de cet ensemble. 2PIPLS/D gère di�érents modes et stratégies d'exploration pour
PLS-VND, et intègre un système d'ε-archive qui permet une bonne distribution
dans l'espace des objectifs des points générés et limite la taille de l'approximation.

6. Nous avons implémenté 2PIPLS/D pour le MOTSP. La méthode a été comparée
aux méthodes de l'Etat de l'art sur des instances du TSP à deux objectifs et
trois objectifs. Les résultats expérimentaux montrent que 2PIPLS/D surpasse ses
concurrents sur toutes les instances testées, à l'exception de 5% d'entre elles où
notre propre méthode PDA proposée dans un pécédent article et 2PIPLS/D ont
des performances similaires. P-PLS fournit une performance étonnamment bonne
car il réduit le nombre de solutions explorées de 98% en moyenne, comparé à une
absence de partitionnement. Dans la continuation des travaux de Borges et Hansen,
nous avons con�rmé expérimentalement l'hypothèse de convexité globale pour le
MOTSP sur un certain nombre d'instances bi-objectif et tri-objectif. Dans la suite
des travaux de Lust et Teghem, nous avons constaté que les arêtes présentes dans
les solutions e�caces sont de bonne qualité par rapport aux autres arêtes.

7. Nous avons implémenté 2PIPLS/D pour un nouveau problème lié à la récente
réforme territoriale des régions françaises, le FRMP, pour lequel nous avons proposé
une formulation MO avec 5 objectifs. Nous avons détecté un certain nombre de
départements plus attirés par une région que leur région à laquelle ils appartiennent
actuellement.

8. Pour le MOTSP comme pour le MOFRMP, 2PIPLS/D avec A-NMCS est surpassé
dans la plupart des cas par 2PIPLS/D avec une méthode basée sur la recherche
locale.

Perspectives à court et moyen termes

2PIPLS/D pourrait être testé sur d'autres problèmes MOCO. Le comportement du sys-
tème de partitionnement de P-PLS sur des instances avec des objectifs corrélés négative-
ment nous intéresse particulièrement. Car cela rend beaucoup plus di�cile l'optimisation
par les di�érentes méthodes de recherche locale dû à l'impact sur le niveau de clusterisa-
tion des solutions de telles instances.

En ce qui concerne PLS-VND en mode indépendant, il pourrait être intéressant de mettre
en place un mécanisme tabu a�n de ne pas réexaminer les solutions déjà explorées lors
des runs précédents.

Perspectives à long terme

Concernant 2PIPLS/D, au lieu d'utiliser PLS(-VND), il pourrait être intéressant d'utiliser
une méthode d'optimisation combinatoire exacte. En fait, la méthode de partitionnement
introduite dans P-PLS est indépendante du concept de PLS (elle a en e�et été initialement
conçue comme telle). Par conséquent, l'idée consiste à exécuter un algorithme de Branch
et Bound MO ou un algorithme de programmation dynamique MO (par exemple) à
partir de l'espace de recherche réduit fourni par le système de partitionnement. Notez
que les nouvelles archives que nous avons proposées seraient d'un grand intérêt si une
méthode de programmation dynamique MO est utilisée. Par exemple, pour le MOTSP,
on pourrait utiliser une version MO de la méthode de programmation dynamique basée
sur la branch-decomposition de Cook et Seymour. Pour le MO 0-1 Knapsack Problem, la
méthode utilisée pourrait être la méthode de Programmation Dynamique MO de Bazgan
et al.. Nous croyons que cette direction de recherche est prometteuse étant donnée la
grande réduction de l'espace de recherche permise par le système de partitionnement
obtenue sur le MOTSP.

Résumé

De nombreux problèmes d’optimisation com-
binatoire considèrent plusieurs objectifs, sou-
vent conflictuels. Cette thèse s’intéresse à
l’utilisation de méthodes de recherche locale,
de structures de données et de recherche
Monte-Carlo pour la recherche de l’ensemble
des solutions efficaces de tels problèmes,
représentant l’ensemble des meilleurs com-
promis pouvant être réalisés en considération
de tous les objectifs.
Nous proposons une nouvelle méthode
d’approximation appelée 2-Phase Iterated
Pareto Local Search based on Decompo-
sition (2PIPLS/D) combinant les concepts
de recherche locale Pareto (PLS) et de
décomposition. La PLS est une de-
scente de recherche locale adaptée au multi-
objectif, et la décomposition consiste en
la subdivision du problème multi-objectif en
plusieurs problèmes mono-objectif. Deux
méthodes d’optimisation mono-objectif sont
considérées: la recherche locale itérée et
la recherche Monte-Carlo imbriquée. Deux
modules principaux sont intégrés à 2PI-
PLS/D. Le premier généralise et améliore une
méthode existante et génère un ensemble
initial de solutions. Le second réduit effi-
cacement l’espace de recherche et permet
d’accélérer la PLS sans négliger la qualité de
l’approximation générée. Nous introduisons
aussi deux nouvelles structures de données
gérant dynamiquement un ensemble de solu-
tions incomparables, la première est spécial-
isée pour le cas bi-objectif et la seconde pour
le cas général.
2PIPLS/D est appliquée au Problème du
Voyageur de Commerce bi-objectif et tri-
objectif et surpasse ses concurrents sur les
instances testées. Ensuite, 2PIPLS/D est ap-
pliquée à un nouveau problème avec cinq ob-
jectifs en lien avec la récente réforme territori-
ale d’agrandissement des régions françaises.

Mots Clés

Optimisation combinatoire multi-objectif
Méta-heuristique
Recherche locale
Structures de données
Décomposition
Recherche Monte-Carlo
Problème du Voyageur de Commerce

Abstract

Many Combinatorial Optimization problems
consider several, often conflicting, objectives.
This thesis deals with Local Search, data
structures and Monte Carlo Search methods
for finding the set of efficient solutions of such
problems, which is the set of all best possible
trade-offs given all the objectives.
We propose a new approximation method
called 2-Phase Iterated Pareto Local Search
based on Decomposition (2PIPLS/D) combin-
ing the notions of Pareto Local Search (PLS)
and Decomposition. PLS is a local search
descent adapted to Multi-Objective spaces,
and Decomposition consists in the subdivi-
sion of the Multi-Objective problem into a
number of Single-Objective problems. Two
Single-Objective methods are considered: It-
erated Local Search and Nested Monte Carlo
Search. Two main components are embed-
ded within the 2PIPLS/D framework. The
first one generalizes and improves an exist-
ing method generating an initial set of solu-
tions. The second one reduces efficiently the
search space and accelerates PLS without
notable impact on the quality of the gener-
ated approximation. We also introduce two
new data structures for dynamically manag-
ing a set of incomparable solutions. The first
one is specialized for the bi-objective case,
while the second one is general.
2PIPLS/D is applied to the bi-objective and
tri-objective Traveling Salesman Problem and
outperforms its competitors on tested in-
stances. Then, 2PIPLS/D is instantiated on a
new five-objective problem related to the re-
cent territorial reform of French regions which
resulted in the reassignment of departments
to new larger regions.

Keywords

Multi-objective combinatorial optimization
Meta-heuristic
Local search
Data structures
Decomposition
Monte Carlo search
Traveling Salesman Problem

