
HAL Id: tel-01807927
https://theses.hal.science/tel-01807927

Submitted on 5 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Circuit and system fault tolerance techniques
Imran Wali

To cite this version:
Imran Wali. Circuit and system fault tolerance techniques. Electronics. Université Montpellier, 2016.
English. �NNT : 2016MONTT313�. �tel-01807927�

https://theses.hal.science/tel-01807927
https://hal.archives-ouvertes.fr

Délivré par l’Université de Montpellier

Préparée au sein de l’école doctorale I2S
Et de l’unité de recherche LIRMM

Spécialité: SYAM

Présentée par Imran WALI

Circuit and System

Fault Tolerance Techniques

Soutenue le 30 Mars 2016, devant le jury composé de:

M. Fabrice MONTEIRO, Professeur, Université de Lorraine Rapporteur

Mme. Lirida NAVINER, Professeur, Telecom ParisTech Rapporteur

M. Matteo SONZA REORDA, Professeur, Politecnico di Torino Examinateur

M. Alberto BOSIO, MCF HDR, Université de Montpellier Examinateur

M. Arnaud VIRAZEL, MCF HDR, Université de Montpellier Directeur de thèse

M. Patrick GIRARD, DR CNRS, LIRMM CoDirecteur de thèse

Acknowledgements

First and foremost, I would like to thank my Lord, the Almighty, for being close and responsive

throughout the course of my thesis. Only due to His countless gifts of sense, intellect, patience,

health, family and many more, I could complete this task.

I would like to express my deepest gratitude to my thesis director, Prof. Arnaud Virazel. With

his encouraging and supporting attitude, meeting him has always been a work-stress reliever for

me. His profound guidance and invaluable advises helped keeping my research well directed and

my progress on schedule while maintaining my autonomy.

My sincere thanks also goes to my co-director, Prof Patrick Girard, for his immense knowledge,

motivation and support throughout the research. Also for his thought-provoking ideas and helpful

criticism in improving the quality of this manuscript and other publications. I also appreciate Prof.

Alberto Bosio’s insightful comments and advises which helped me solve various problems during

my research.

My grateful thanks are also extended to Prof. Matteo Sonza Reorda for his generous support

and effort to actively maintain the collaborative partnership, LAFISI, and his valuable and

constructive suggestions that helped me enrich my ideas.

I am also thankful to him for carefully reviewing my work at different stages of my thesis.

I would like to thank the rest of my thesis committee members, Prof. Lirida Naviner and Prof.

Fabrice Monteiro for reviewing this manuscript and providing positive feedback.

I would also like to acknowledge all my master students who provided me an opportunity

to enrich my understanding through sharing my knowledge about the subject and also for their

valuable contribution to my work. I wish to acknowledge the support received form my friends at

LIRMM for the various discussions and brain storming sessions. Also for making the last three

years memorable.

Finally, none of this would have been possible without the love and patience of my family.

Their constant support and strength has aided and encouraged me throughout this endeavor.

Abstract

Semiconductor is one of the most reliable inventions when engineered and used with longevity

in mind. However, the increasing demand of fast and highly featured products has drastically

changed the reliability realm in the recent years. The means of improving the reliability of

nano-metric technology circuits encompass techniques that tackle reliability issues at the level

of technology, design and manufacturing. Absolutely necessary but these techniques are almost

inevitably imperfect. Therefore, it becomes essential to reduce the consequence of the "remaining"

faults using fault tolerance techniques.

This thesis focuses on improving and developing new low-power fault tolerance techniques that

combine the attractive features of different types of redundancies to tackle permanent and transient

faults and addresses the problem of error detection and confinement in modern microprocessor

cores. Our case study implementation results show that a power saving of up to 20% can be

achieved in comparison with fault tolerance techniques that use only one type of redundancy, and

offer lifetime reliability improvement.

With the objective to further improve the efficiency in terms of cost and fault tolerance ca-

pability we present a design space exploration and an efficient cost-reliability trade-off analysis

methodology to selectively harden logic circuits using hybrid fault tolerant techniques. The

outcome of the two studies establish that hybrid fault tolerant approaches provide a good foun-

dation for building low-power reliable circuits and systems from future technologies, and our

experimental results set a good starting point for further innovative research in this area.

List of Acronyms

TMR Triple Modular Redundancy . xii

DMR Dual Modular Redundancy . 31

DVS Dynamic Voltage Scaling . 29

DFS Dynamic Frequency Scaling . 29

HyFT Hybrid Fault Tolerant . xiii

PHyFT Pipelined Hybrid Fault Tolerant . 51

HyTFT Hybrid Transient Fault Tolerant . xii

HyTPFT Hybrid Transient and Permanent Fault Tolerant . xii

BL Baseline . xii

PaS Pair-and-A-Spare . xv

FD Fault-Detection . 28

CL Combinational Logic . xii

FF Flip-Flops . 12

viii

SET Single Event Transient . 1

SEU Single Event Upset .1

ID Instruction Decode . 64

IF Instruction Fetch . 64

EXE Execution. .64

MEM Memory . 64

WB Write-back . 64

STA Static Timing Analysis . 45

RTL Register Transfer Level . 67

HyFT-1a Original HyFT . xiii

HyFT-1b Hybrid Fault Tolerant (HyFT) Architecture with short DC . xiii

HyFT-2a Hybrid Fault Tolerant (HyFT) Architecture with CLK enclosed DC xiii

HyFT-2b Hybrid Fault Tolerant (HyFT) Architecture with DC across CLK edge xiii

ATPG Automatic Test Pattern Generator . 88

CMOS Complementary Metal-Oxide-Semiconductor . 9

SER Soft Error Rate . 1

SDF Standard Delay Format . 38

VCD Value Change Dump. .38

ix

DOR Dynamic OR . xv

FSM Finite State Machine . xvii

PaS Pair-and-A-Spare . xv

SoC System on Chip . 20

MTF Multiple Transient Fault

MET Multiple Event Transient

SPRA Signal Probability Reliability Analysis

MEPP Multiple Event Probability Propagation

BDD Binary Decision Diagram . 102

VF Vulnerability Factor

SEE Single Event Effect .1

FPGA Field-Programmable Gate Array. .120

PVT Process, Voltage and Temperature . 7

Table of contents

List of figures xv

List of tables xix

Introduction 1

1 Context and Motivation 5

1.1 Semiconductor Technology Evolution . 5

1.2 Reliability threats in nano-metric technologies 7

1.2.1 Variability . 7

1.2.2 Manufacturing Defects . 8

1.2.3 Wear-out . 8

1.2.4 Interference . 8

1.3 Errors in Integrated Circuits . 9

1.3.1 Soft Errors . 9

1.3.2 Hard Errors . 12

1.3.3 Timing Errors . 13

1.4 Reliability Improvement Approaches . 13

1.4.1 Fault Avoidance . 13

1.4.2 Fault Removal . 14

1.4.3 Fault Tolerance . 14

1.4.4 Fault Evasion . 15

1.5 Research Objectives . 16

2 Fault Tolerant Architectures and Assessment Techniques 19

2.1 Fault-Tolerance Techniques . 20

2.1.1 Concurrent Error Detection . 20

2.1.2 Error Recovery . 26

xii Table of contents

2.2 Fault tolerant Architectures . 28

2.2.1 Pair-and-A-Spare . 28

2.2.2 Razor . 28

2.2.3 STEM . 29

2.2.4 CPipe . 30

2.2.5 TMR . 30

2.2.6 DARA-TMR . 31

2.2.7 Hybrid Fault-Tolerant Architecture . 32

2.3 Robustness Assessment Techniques . 35

2.3.1 Axiomatic Methods . 35

2.3.2 Empirical Methods . 37

2.3.3 A Gate-Level Fault Injection Framework 38

2.4 Experimental Comparative Study . 42

2.4.1 Experimental Methodology . 42

2.4.2 Comparative Analysis . 43

2.5 Summary . 48

3 Pipelined Hybrid Fault Tolerant Architecture 51

3.1 Error Propagation in Pipelined Circuits . 51

3.1.1 Linear Pipeline . 52

3.1.2 Nonlinear Pipeline . 53

3.1.3 Pipeline with Memory Interface . 53

3.2 Extension of HyFT Architecture to Pipelined Structures 54

3.2.1 Basic Pipeline Cascading . 54

3.2.2 Stage/Combinational Logic (CL) Classification and Partitioning 56

3.2.3 Dealing with Error Propagation in Nonlinear Pipeline 59

3.2.4 Error detection in Pipeline stages with memory interface 59

3.3 Case Study: Fault Tolerant Microprocessor . 63

3.3.1 Baseline (BL) Microprocessor . 64

3.3.2 Hybrid Transient Fault Tolerant (HyTFT) Microprocessor 65

3.3.3 Hybrid Transient and Permanent Fault Tolerant (HyTPFT) Microprocessor 66

3.3.4 Triple Modular Redundancy (TMR)-b Microprocessor 67

3.3.5 TMR-w Microprocessor . 67

3.3.6 Experimental Results . 67

3.3.7 Discussion . 78

3.4 Summary . 78

Table of contents xiii

4 Design Space Exploration and Optimization of HyFT Architecture 81

4.1 Limitations of Hybrid Fault Tolerant (HyFT) Architecture 81

4.1.1 Contamination delay constraints . 81

4.1.2 Asymmetric clock duty-cycle . 82

4.2 Design and Timing Optimization . 82

4.2.1 Original HyFT (HyFT-1a) Architecture 83

4.2.2 Hybrid Fault Tolerant (HyFT) Architecture with short DC (HyFT-1b) . . 83

4.2.3 Hybrid Fault Tolerant (HyFT) Architecture with CLK enclosed DC

(HyFT-2a) . 83

4.2.4 Hybrid Fault Tolerant (HyFT) Architecture with DC across CLK edge

(HyFT-2b) . 85

4.3 Experimental Assessment of Improvements . 86

4.3.1 Experimental Setup . 86

4.3.2 Experimental Results . 92

4.3.3 Discussion . 97

4.4 Impact of circuit size on the evaluated metrics 98

4.5 Summary . 99

5 Selective Hybrid Fault Tolerance 101

5.1 Previous work . 102

5.2 A low-cost output susceptibility analysis . 104

5.2.1 Results . 106

5.3 Validation of the approach . 107

5.3.1 Fault injection based output susceptibility analysis 107

5.3.2 Discussion . 108

5.4 Selective HyTFT Architecture . 108

5.4.1 A low-cost HyTFT architectural reliability estimation 110

5.5 Experimental Validation and Results . 112

5.5.1 Experimental Setup . 112

5.5.2 Experimental Results . 115

5.5.3 Discussion . 116

5.6 Summary . 116

Conclusion 119

Scientific Contributions 123

xiv Table of contents

References 125

Appendix A HyFT Control Logic 133

Appendix B Workload Program 137

Appendix C CL extraction 139

List of figures

1.1 Feature size and operating voltage scaling trend over years [22] 6

1.2 Transistor count and clock frequency scaling trend over years [77] 6

1.3 Single Event Effect Mechanism [9] . 10

1.4 Reliability improvement approaches across fault-failure life cycle [17] 14

1.5 Error occurrences in combinational logic and storage elements 16

2.1 Duplication with Comparison . 21

2.2 Duplication with Comparison in sequential logic circuits 22

2.3 An static comparator with Error Latching mechanism moved upstream 23

2.4 Pseudo-dynamic Comparator [93] . 24

2.5 4-input Dynamic OR (DOR) gate [93] . 25

2.6 Error detection architecture using the pseudo-dynamic comparator [93] 25

2.7 General architecture of Error Detection with Codes [63] 26

2.8 Examples of Rollback recovery schemes . 27

2.9 Principle of Pair-and-A-Spare (PaS) redundancy 29

2.10 RAZOR Architecture [29] . 29

2.11 STEM Architecture [5] . 30

2.12 CPipe Architecture [89] . 31

2.13 Triple Modular Redundancy . 31

2.14 DARA-TMR [108] . 32

2.15 HyFT Architecture and associated timing constraints 33

2.16 Error detection and correction in HyFT Architecture 36

2.17 Fault Injection Flow . 38

2.18 Timeline illustration of Fault Injection Campaigns 41

2.19 Impact of CL blocks size on area and power overheads 45

3.1 Example transient error propagation in Linear Pipeline 52

3.2 Example transient error propagation in Nonlinear Pipeline 54

xvi List of figures

3.3 Example transient error propagation in Pipeline with Memory Interface 55

3.4 Pipelined HyFT Architecture . 56

3.5 False error flagging . 57

3.6 Additional logic to prevent false error flagging 57

3.7 False error flagging problem solved . 58

3.8 CL Classification and Partitioning . 58

3.9 Error detection and reconfiguration scheme in non-linear pipeline 60

3.10 HyFT hardening of pipeline stage with asynchronous non-concurrent read-write

access memory. 61

3.11 HyFT hardening of pipeline stage with synchronous simultaneous read-write

access memory. 63

3.12 Baseline Microprocessor . 65

3.13 HyTFT Microprocessor . 65

3.14 HyTPFT Microprocessor . 67

3.15 TMR-b and TMR-w Microprocessor . 68

3.16 Area overhead results summary . 72

3.17 Power overhead results summary . 74

3.18 Transient fault injection results . 75

3.19 Permanent fault injection results . 76

3.20 Timing fault injection results . 76

4.1 Comparison-window Generation Circuits and delays 84

4.2 Comparison-window Timing Simulation Graph 85

4.3 Modified Hybrid Fault Tolerant (HyFT) . 86

4.4 HyFT-1b Control Logic submodule1 . 89

4.5 HyFT-1b Control Logic submodule1 simulation 89

4.6 HyFT-2a Control Logic submodule1 . 90

4.7 HyFT-2a Control Logic submodule1 simulation 90

4.8 HyFT-2b Control Logic submodule1 . 91

4.9 HyFT-2b Control Logic submodule1 simulation 91

4.10 Spatial distribution of Fail-silent faults . 95

4.11 Design metrics improvement summary . 98

4.12 Impact of circuit size on evaluated metrics . 99

5.1 Application of the output susceptibility analysis on an example circuit 106

5.2 Output susceptibility analysis results (of CL block extracted form b05) 106

List of figures xvii

5.3 Output failure distribution . 108

5.4 Comparison of output susceptibility results (of CL block extracted form b05) . . 109

5.5 Selective HyTFT Architecture . 109

5.6 Cumulative weight calculation of an example circuit 112

5.7 Selective HyTFT cost versus soft-error (of CL block extracted form b05) 117

A.1 HyFT Control Logic . 133

A.2 HyFT Control Logic submodule1 . 135

A.3 HyFT Control Logic submodule1 simulation 135

A.4 HyFT Control Logic submodule2 Finite State Machine (FSM) 136

List of tables

2.1 Fault injection parameters . 39

2.2 Fault injection parameters . 43

2.3 Average Area and Power estimation results . 44

2.4 Transient fault injection results summary . 46

2.5 Transient fault injection results . 46

2.6 Permanent fault injection results . 47

2.7 Summary of comparison of different related fault-tolerant architectures 50

3.1 Truth table . 57

3.2 Area and power results of write-transparency dual-port memory 62

3.3 Baseline microprocessor specifications . 64

3.4 Fault injection parameters . 68

3.5 Area overhead results . 70

3.6 Power overhead results . 73

4.1 Contamination delay constraints for CL synthesis 87

4.2 CL Synthesis Results . 88

4.3 Area Savings . 92

4.4 Power Savings . 93

4.5 Fault injection parameters . 94

4.6 Fault Injection Results . 96

5.1 Summary of selected previous work in the area of selective hardening 103

5.2 Fault Injection Parameters for output susceptibility analysis 107

5.3 Area, power and reliability estimates of Selective HyTFT variants 113

A.1 HyFT submodule1 control signals . 134

A.2 HyFT submodule2 control signals . 136

xx List of tables

C.1 An example of CL Extraction . 140

Introduction

Technology scaling allows realization of more and more complex system on a single chip. This

high level of integration leads to increased current and power densities and causes early device

and interconnect wear-out. It leads to shifts in electrical characteristics of circuit elements or

renders them permanently damaged. Moreover, a high integration density makes these complex

systems difficult to test and some test-escaped manufacturing defects are encountered as errors

only during infield operation. In addition, there are failures not caused by wear-out nor escaped

manufacturing defects, but due to increased susceptibility of transistors to high energy particles

from atmosphere or from within the packaging. Devices operating at reduced supply voltages

are more prone to charge related phenomenon caused by high-energy particle strikes referred to

as Single Event Effect (SEE). They experience particle-induced voltage transients called Single

Event Transient (SET) or particle-induced bit-flips in memory elements also known as Single

Event Upset (SEU).

High-performance microprocessors being at the forefront of technology are becoming in-

creasingly vulnerable to hard and soft errors due to their growing complexity, high operating

frequencies and fragility of future Very Large Scale Integration (VLSI) technology nodes. SEE

in CL are playing important role in increasing Soft Error Rate (SER), which was historically

considered as a cause of particle strikes in memory elements. In addition, it is estimated that the

susceptibility of CL circuits to SET nearly doubles as the technology scales from 45nm to 16nm.

Hence, it is inevitable for the industry to prevent reliability from becoming a bottleneck for the

development of high-performance and low-power microprocessors.

The means of improving the reliability of nano-metric technology circuits encompass tech-

niques that tackle reliability issues at the level of technology, design and manufacturing. Ab-

solutely necessary but these techniques are almost inevitably imperfect. Therefore, it becomes

essential to reduce the consequence of the "remaining" faults using fault tolerance techniques.

These techniques employ information, timing and hardware redundancies to guarantee correct

operations despite the presence of faults.

2 Introduction

Various solutions using fault tolerant techniques for robustness improvement can be found in

the literature, but a very few can address tolerance to both transient and permanent faults. These

techniques generally rely on slow recovery mechanisms, thus are not suitable for highly interactive

applications. For example, the method presented in [62] has little area overhead but runs Built-In

Self-Test (BIST) during periodic time intervals to detect the presence of permanent faults and

uses deep rollbacks that have a severe impact on performance. Fault-tolerant architectures like

Razor [29], CPipe [89] and STEM [5] incorporate power saving and performance enhancement

mechanisms like Dynamic Frequency Scaling (DFS) and Dynamic Voltage Scaling (DVS) to

operate circuits beyond their worst-case limits. These architectures generally target timing errors

and are not effective to deal with permanent faults. For instance, Razor only deals with timing

faults and CPipe duplicates CL blocks in the pipeline to detect and correct transient and timing

errors and can also detect permanent faults, but it does not offer provision for their correction.

Besides fault tolerance capability, power consumption is also a rising concern in the industry.

In fact, as fault-tolerance becomes necessary in mass products, limiting power consumption of

these techniques is one of the key factors in digital design. The classical fault tolerance techniques

like TMR can effectively handle transient and permanent fault but cannot respect the low-power

consumption demands.

Pipelining is a key technique to increase throughput in modern microprocessors by improving

the resource utilization. But the complexity of interactions between pipeline stages make error

detection and correction a major hurdle in designing high-performance reliable processing cores.

To the best of our knowledge, none of the fault tolerance techniques in the literature address the

problem of error detection and confinement in non-linear pipelined circuits nor in pipelines with

memory interfaces.

Selecting the ideal trade-off between reliability and cost associated with a fault tolerant

architecture generally involves an extensive design space exploration. Employing state-of-the-art

reliability estimation methods makes this exploration unscalable with the design complexity.

This thesis focuses on improving and developing new low-power fault tolerance techniques

that combine the attractive features of different types of redundancies for robustness improvement

of future technology-scalable digital circuits and systems against transient and permanent faults.

It addresses the problem of error correction in CL parts of complex pipeline circuits. Furthermore,

it develops a fault tolerance capability assessment framework and low-cost reliability estimation

techniques for use in cost-reliability trade-off analysis. Overall, this thesis establishes that hybrid

fault tolerant approaches provide a good foundation for building low-power reliable circuits and

systems from future technologies, and our experimental results set a good starting point for further

innovative research in this area.

The following of this manuscript is divided in five chapters:

Introduction 3

• Chapter 1 details the context and motivation of our research. It starts with a discussion of

the trends in semiconductor technology scaling and their impact on the reliability of nano-

metric technology circuits. Later in Chapter 1 we briefly discuss the different approaches to

improve their reliability and finally we end the discussion by presenting the objectives of

our work.

• Chapter 2 covers the state-of-the-art in the field of fault tolerant architectures and robustness

assessment techniques. It discusses some basic concepts of error detection and correction,

followed by an overview of a set of state-of-the-art fault tolerant architectures, with a special

focus on a hybrid fault tolerant architecture. In Section 2.3 we first develop the context by

discussing some state-of-the-art methods employed for robustness assessment of circuits

and systems and then present a gate-level fault injection framework for fault tolerance

capability assessment of digital circuits. The last part of Chapter 2 presents an experimental

study that quantitatively compare different fault tolerant architectures on the basis of their

area, power, performance and their fault tolerance capability.

• In Chapter 3 we present a hybrid fault tolerant architecture for reliability improvement

of complex pipelined circuits. We start the discussion by highlighting some issues that

hinder error detection and correction in complex pipelined circuits. Then we discuss the

extension of hybrid fault tolerant architecture discussed in Chapter 2 to make it solve the

aforementioned problems. An experimental case study of the application of the developed

fault tolerant architecture and other state-of-the-art solutions on a pipelined microprocessor

is presented and finally with a comparative analysis we conclude the chapter.

• Chapter 4 consist of a design space exploration study aimed to optimize the cost and fault

tolerance capability of the proposed hybrid fault tolerant architecture. We experimentally

assess three proposed design improvements and present the results. The chapter is concluded

by identifying the best candidate.

• Chapter 5 develops the principles of a low-cost reliability estimation method and a selective

hybrid fault tolerant architecture. It starts with an overview of previous work in the area

of selective hardening. In the subsequent sections we propose an efficient susceptibility

analysis method to identify the most vulnerable circuit nodes for hardening and use it yo se-

lectively harden some benchmark circuits. Also based on the susceptibility analysis method

we also present a low-cost reliability estimation technique for fault tolerant architectures

that use logic replication. In Section 5.5 we present the experimental result that compare the

merits of circuits hardened to different extents and validate the hypothesis of the low-cost

reliability estimation methods.

4 Introduction

The Conclusion section summarizes the contributions of this work and presents some future

perspectives.

Chapter 1

Context and Motivation

1.1 Semiconductor Technology Evolution

The steady growth of the global semiconductor industry over the past four decades has been driven

by the demand for enhancing performance and functionality at reduced cost. This growth has been

primarily facilitated by the continuous evaluation of semiconductor manufacturing technology.

Transistors are scaled in each successive technology generation to increase their speed, improve

packing density [2], decrease their power consumption and reduce cost. Thus, semiconductor

technology scaling optimizes circuit performance and power consumption and allows realization

of more and more complex system.

In November 1971, Intel introduced the world’s first single-chip microprocessor, the Intel 4004.

It had 2,300 transistors, ran at a clock speed of up to 740 KHz, and delivered 60,000 instructions

per second while dissipating 0.5 watts. The following four decades witnessed exponential growth

in compute power, a trend that has enabled applications as diverse as climate modeling, protein

folding, electronic games and autonomous soft landings on extraterrestrial bodies.

Today’s microprocessor chips employ billions of transistors, include multiple processor cores

on a single silicon die, run at clock speeds measured in gigahertz, and deliver more than 4 million

times the performance of the original 4004 [22]. The plots of Figures 1.1 and 1.2 show the trend

of some technologic advancements in microprocessors in the past four decades. In 2015, Oracle

presented the processor with over 10 billion transistors on the die, the most denser microprocessor

in terms of transistor count. The major contributions to this massive advancement in semiconductor

technology come from the field of lithography, advanced materials in manufacturing [70] and

Electronic Design Automation (EDA) tools.

To reduce power dissipation of semiconductor devices, the supply voltage Vdd is also scaled,

because dynamic power is proportional to the square of Vdd while leakage power is proportional

6 Context and Motivation

Intel 4004

Intel 8086

Pentium Pro

IBM POWER4

IBM POWER7

0.1

1

10

100

0.01

0.1

1

10

100

1965 1975 1985 1995 2005 2015 2025

T
y

p
ic

a
l

O
p

e
ra

ti
n

g
 V

o
lt

a
g

e
 (

V
)

 M
in

im
u

m
 F

e
a

tu
re

 S
iz

e
 (

µ
m

)

Year

Minimum Feature Size (μm) Typical Operating Voltage (V)

Fig. 1.1: Feature size and operating voltage scaling trend over years [22]

Intel 4004

Intel 8088

Intel 80486

AMD K7

AMD K10

18-core Xeon Haswell-E5

-4000

-2000

0

2000

4000

6000

8000

10000

1

10

100

1000

10000

100000

1000000

10000000

100000000

1965 1975 1985 1995 2005 2015 2025

F
e

rq
u

e
n

cy
 (

M
H

z)

T
ra

n
si

st
o

r
C

o
u

n
t

(T
h

o
u

sa
n

d
s)

Year

Transistor Count (Thousands) Frequency (MHz)

Fig. 1.2: Transistor count and clock frequency scaling trend over years [77]

to Vdd. However, voltage scaling only started in the late 80s because the industry had settled on

5V supplies in the early 70s to be compatible with bipolar Transistor-Transistor Logic (TTL) [21].

As power dissipation became unsustainable, this standard finally collapsed. Vdd was scaled within

few years, first to 3.3V then to 2.5V, etc. In 2011, supply voltage of high-performance ICs was at

0.9V and predicted to be reduced to 0.66V in 2021 [46].

In Figure 1.2 we can see that in year 2005, the frequency scaling process reached the power

wall limit at about 3 GHz. In fact, higher switching activity of transistors leads to higher power

consumption. Even though these small transistors do not consume much, hundred millions of

them are switching at the same time in less than five hundred millimeter square IC. This results in

significant power density that must be limited to avoid breakdown of physical materials.

1.2 Reliability threats in nano-metric technologies 7

The manufacturing cost has also played an important role in the evolution of semiconductor

technology. Building smaller physical structures demand more sophisticated thus expensive

equipment. But this initial investment makes little difference in per wafer cost in view of the sheer

production size of new high performance, enhanced featured and low-powered integrated circuits,

that always remain in high demand.

1.2 Reliability threats in nano-metric technologies

While offering many advantages technological trends into the nanometer regime have lead to a

host of reliability issues. The sources that affect the reliability of modern circuits and systems

are wide spread including manufacturing process variations, manufacturing defects, wear-out and

interference. In the following sections we discuss how these reliability impairment sources evolve

with technology scaling.

1.2.1 Variability

Variability of transistor characteristics due to variations in Process, Voltage and Temperature (PVT)

have always been an issue in integrated circuit design [105]. PVT variations prevent the circuit

from functioning correctly even though each individual transistor behaves correctly [71]. As

device scaling enters into the nano-metric regime the effect of PVT variations are becoming

more and more pronounced. Manufacturing process variations are increased due to the lack of

precise control on the fabrication processes at small-feature technologies. They causes deviation

of transistor characteristics and the resulting wide distribution leads to lower parametric yield [11].

Supply voltage scaling brings it close to or even below the transistor threshold voltage (Vth) to

achieve significant gains in energy efficiency. Once the supply voltage is lower than Vth the delay

shows an exponential dependence on the supply voltage, and therefore the magnitude of supply

voltage shifts can have a significant impact on circuit delay [16, 82]. Scaling also gives rise to

chip power densities and inadequate heat sinking cause hot spots to appear. These fluctuations of

ambient temperatures alter the timing characteristics of circuits [51].

A conventional approach to deal with the problem of variability is to introduce large voltage

and frequency guard-bands which considerably impact the power consumption and performance,

cannot respond to rapid environmental changes [23] and implies a sharp increase in chip cost.

Effectively dealing with variability to maintain or improve the high performance and energy

efficient systems while satisfying the historical standards for reliability is becoming increasingly

challenging with the scaling of technology [80].

8 Context and Motivation

1.2.2 Manufacturing Defects

Semiconductor manufacturing process may induce permanent defects in a chip during one or more

of hundreds of process steps involving implantation, etching, deposition, polarization, cleaning and

lithography [46] due to imperfections. The device miniaturization is making advanced technology

devices nodes increasing vulnerable to these manufacturing irregularities. It is important that

the testing be thorough as possible to uncover defective chips before they are shipped out [73].

However, according to past microprocessor data, the die size remains relatively constant [44],

whereas the number of transistors per chip double every 2 to 3 years. This means that defect

densities continues to increase. Moreover technology scaling and increasing complexity give

rise to defects more subtle and difficult to detect [81, 84]. All these factors when combined with

aggressive time-to-market objectives cause test escapes and raise reliability concerns.

1.2.3 Wear-out

As we have seen in Figure 1.1, the area scaling has had an exponential rate but the supply

voltage (Vdd) scaling has been quite slow. The two main reasons for slow Vdd scaling are to

keep up with the competitive frequency growth and to retain the basic noise immunity and cell

stability [88]. Hence the dissimilar area and supply voltage scaling rates result in high power

densities and elevated temperatures. The four well known wear-out failure mechanisms namely

Time-Dependent Dielectric Breakdown (TDDB), Electromigration, Thermal Cycling and stress

migration are all adversely affected by increase in temperature. These age-related hard errors that

appear in-field after a certain period of use are major factors impairing the life-time reliability

of modern microprocessors [87] used in data centers and space equipment. These applications

demand high throughput and better lifetime reliability. However, these wear-out failures limit

their useful lifetime and performance.

1.2.4 Interference

Beyond manufacturing defects and wear-out related permanent faults, integrated systems of

recent years are more susceptible to temporary effects like transient or intermittent faults. These

effects may be due to electromagnetic influences, alpha-particle radiation or cosmic radiations.

They are the major portion of digital system malfunctions, and have been found to account for

more than 90% of the total maintenance expense [79]. Smaller geometries increase coupling

capacitances amount interconnects and current densities and cause problems of crosstalk. In

addition threshold for noise sensitivity also shrinks with (Vdd) scaling and make new technology

1.3 Errors in Integrated Circuits 9

nodes more susceptible to transient faults due to high energy particle from environment or from

within the packaging.

1.3 Errors in Integrated Circuits

A fault, when active, is the cause of an error. An error is that part of the system’s state that may

cause a subsequent failure, and a failure occurs when an error reaches the service interface and

alters the service [7]. An error in integrated circuit can be classified according to its temporal

characteristics [52], the product life-cycle stage of its induction, its severity etc. In the following

subsections however we classify errors on the basis of their underlying faults, as this classification

forms the basis of techniques to tolerate them.

1.3.1 Soft Errors

Soft errors are a growing concern of the reliability of circuits and systems fabricated in advanced

in Complementary Metal-Oxide-Semiconductor (CMOS) technologies. They are defined as events

in which data is corrupted, but the device itself is not permanently damaged [69]. Soft errors are a

subset of SEE, which are caused by high energy neutrons from cosmic rays or by alpha particles

that are generated from impurities in packaging materials, when such particles strike sensitive

region in microelectronic device.

When a particle strikes a microelectronic device, the most sensitive regions are usually reverse-

biased p/n junctions. The high field present in a reverse-biased junction depletion region can

very efficiently collect the particle-induced charge through drift processes, leading to a transient

current at the junction contact. Strikes near a depletion region can also result in significant

transient currents as carriers diffuse into the vicinity of the depletion region field where they can

be efficiently collected. Even for direct strikes, diffusion plays a role as carriers generated beyond

the depletion region can diffuse back toward the junction.

Shortly following the discovery of SEU, researchers at IBM used numerical device simulators

to compute the response of reverse-biased p/n junctions to alpha-particle strikes [43, 42]. An

important insight gained from these early charge-collection simulations was the existence of a

transient disturbance in the junction electrostatic potential, which was termed the “field funnel”.

Charge generated along the particle track can locally collapse the junction electric field due to the

highly conductive nature of the charge track and separation of charge by the depletion region field,

as shown in Figure 1.3a [9]. This funneling effect can increase charge collection at the struck

node by extending the junction electric field away from the junction and deep into the substrate,

10 Context and Motivation

!"# !"#

$####%&'(#
)#*#

+,!!-./!0#1-0/&!#

)/',2/&!#1-0/&!2#

3&
!
#415

67#

!"
#"

!"
#"

!"
#"

!"
#"

!"
#"

!"
#"

8/!#9#:;<#

8&,4#9#:=<#

8>>#

*?@#

+,!!-.#6&..-6A&!#

)/',2/&!# 6B510-#

6&..-6A&!#

(a)

!
"
#$
%
&&
'
(
)#
#

*+,'#

!"#-(.')##

/&0,1)#$23&4'#

$055'670(#

8+9%.+0(#$23&4'#

$055'670(#:;<(.=#

>%(('5#

$&'370(#

:?<@1.=#

>%(('5#

$055'670(#

:@A<B@AC(.=#

(b)

Fig. 1.3: Single Event Effect Mechanism [9]

such that charge deposited some distance from the junction can be collected through the efficient

drift process [25] .

1.3.1.1 A brief history and nomenclature

In 1975, the first ever conclusively investigated encounters of soft errors in microelectronic devices,

were found to be caused due to high-energy neutrons striking the active (sensitive) regions of

memory cells [12]. Historically, soft errors have been of primary concern for memories because

of their high active region per unit area than that of CL circuits and the fact that a particle strike in

the sensitive nodes of memory cells immediately results in a soft error provided that it infuses

sufficient amount of charge to flip the stored value [60], [110] resulting in a SEU, a terminology

that was born in the context of memories [111].

However, in the 1980s, few studies addressed another emerging single-event related issue that

is, soft errors due to single-events in combinational logic [35], [24], [61]. Hence, the terminology

of SEU got a broader context. But the adaptation led to two different interpretations. One circuit-

level definition of SEU found in [48], [64], [109] and [36] states that an SEU is a high-energy

particle-induced disturbance in a logic circuit node causing a voltage transient that may propagate

through the CL stages and eventually be latched by a sequential element [48]. Thus treats SEU

as a direct cause of particle strike in CL elements and the voltage transient that propagates

through the CL network as its direct effect, which can lead to a soft error. Whereas a system

level interpretation that can be found in [25], [86] and [38] considers SEU as soft error in storage

elements and defines it as: “Radiation-induced errors in microelectronic circuits caused when

1.3 Errors in Integrated Circuits 11

charged particles (usually from the radiation belts or from cosmic rays) lose energy by ionizing

the medium through which they pass, leaving behind a wake of electron-hole pairs” [1]. This

definition of SEU is in accordance with the one traditionally used in the context of memories and

considers SEUs as soft errors in storage elements caused by the voltage transient that propagates

through CL from the point of single-event till that storage element.

In order to avoid ambiguity we use the system level interpretation of SEU throughout this

manuscript irrespective of the abstraction level at which the issue is being discussed or resolved.

We also use the terminology of SET to refer to the single-event induced transient voltage pulses

generated in and propagating through CL stages as used unambiguously by many literary works

[10, 32, 26].

In the late 1990s a new research interest towards developing techniques to limit SER due to

SEE in CL emerged. This drive was in the wake of diminishing impact of the natural redundancies

of CL circuits to prevent SET to result in soft errors and the perception that memory soft error

situation was controllable with advanced technologies and effective error detection and correction

techniques.

Lidén et al. in 1994 experimentally estimated that only 2% of bit flips in memory elements also

known as SEU were caused by particle-induced transients or SET generated in and propagated

through CL. The rest were due to direct particle strike in latches. Their experiments involved

using a 1 µm CMOS process at 5MHz [53]. Since then physical gate-length has downscaled

up to 50 times, supply voltages have dropped to 0.9 V and operating frequency has shown a

thousand fold increase [46]. This massive change in technology has resulted in greater sensitivity

of memory elements to high-energy particle, but the effects are more pronounced on CL networks

[86]. A more recent work uses a probability model to estimate that the susceptibility to CL circuits

to SET nearly doubles as the technology scales from 45 nm to 16 nm [94].

1.3.1.2 Increasing soft error rate in logic circuits

Early evidences of the problem of SEU in memories as discussed in the previous subsection,

gathered prompt attention of the research community. However, in CL the concern of SET

emerged much later but the inevitable drive of CMOS device scaling played a significant role

in increasing soft errors due to SEE in CL circuits and raised certain new reliability issues. The

major reason being the diminishing critical charge of future technology nodes, necessary to

generate SET in CL, which is the result of reducing supply voltages levels [86] and error margins.

Besides the adverse impact on CL node susceptibility to particle strikes, the technology scaling

also lessened the impact of natural barriers posed by CL to SET propagation. There are three

inherent properties of CL networks that have prevented SET from resulting into soft errors:

12 Context and Motivation

Electrical Masking: The electrical characteristics of the transversed gates may cause the SET

pulse duration and amplitude to be attenuated. If a pulse looses strength while propagating through

a sensitized path or completely disappear before reaching a memory element, then the SET is

referred to be electrically masked [58].

Latching-window Masking: Consider a SET pulse that gets a sensitized path and reaches a

Flip-Flops (FF) input with amplitude enough to be considered a valid logic level, but misses the

latching-window of the FF. This SET pulse will not affect the stored data due to the latching-

window masking effect [37].

Logical Masking: For a SET to propagate through CL and result in a soft error it is necessary

that the path from the point of SEE generation to a memory element, should be functionally

sensitized during the time of SEE propagation [37]. For example, as incorrect logic value at one

input of an OR gate somewhere in the path, does not produce an error at its output if another of its

inputs is at logic level 1. This depends on the input vector being applied at the time of the SEE

propagation.

As technology scales these factors are diminishing. Electrical masking is supposed to decrease

because the smaller transistor are faster thus have less attenuation effect on a SET. High operating

frequencies mean that there are more latching-windows per unit time thereby increasing the

probability of a SET being latched. Among the three masking effects logical masking seems least

affected by the technology trends [86]. As a result research attention drawn towards developing

techniques to limit SER in CL is becoming comparable to effort made in protecting state elements.

1.3.2 Hard Errors

Hard errors are caused by permanent silicon defects, which either exist due to manufacturing

processes imperfections as discussed in Section 1.2.2 or are caused by in-field wear-out phe-

nomenon as discussed in Section 1.2.3. The rapid development of silicon process has provided

steady increase in processor performance and capabilities for the past three decades. However,

the growth in the number of transistor per core, increases the chance of having more hard errors

in a given core. In addition these high performance microprocessors mostly operate at higher

clock frequencies and voltage, thus experience accelerated aging due to temperature and voltage

stress [18]. Furthermore, the increasing complexity in connectivity between different stages of

high-performance processing cores, to support advanced features (like hazard detection, branch

prediction, data forwarding etc) and also having a large number of stages, makes error confinement

a challenge [99].

1.4 Reliability Improvement Approaches 13

Some well-known failure mechanisms such as time dependent dielectric breakdown (TDDB)

in the gate oxides and electromigration (EM) on interconnects have increasing adverse effects due

to shrinking feature size. On the other hand, degradation of device parameters over the circuit’s

lifetime has emerged as a major threat to system reliability. In particular, circuit wearout resulting

from negative bias temperature instability (NBTI) and random telegraph noise (RTN) that cause

electrical parameter shift (e.g., transistor threshold voltage increase) is of particular concern with

technology scaling and it is shown that they could result in significant performance degradation of

the circuit over its service life [59].

1.3.3 Timing Errors

Unlike hard and soft errors, components that suffer from timing error still provide correct logic

outputs. However, they have higher delays between input and output signal establishments. Faults

induced by the drift in the electrical characteristic of circuit elements caused by PVT variability,

manufacturing defects and aging are responsible for this type of errors. With the continuous

downscaling of transistor feature size, there is an increasing uncertainty for the timing behavior of

today’s ICs, often manifesting themselves as infrequent timing errors on speed-paths, i.e., critical

or near-critical paths [59].

1.4 Reliability Improvement Approaches

In order to achieve reliability goals, reliability practices must begin early in the design process

and must be well integrated into the overall product development cycle. Steps must be taken at

design time, implementation time as well as during execution time. Similarly, achieving system

reliability requires understanding reliability needs at each level of the design. With the increasing

complexity of systems interactions, interfaces and stress profiles it is becoming more and more

important to understand when, what and where to use and how to create a balance of reliability

improvement efforts on each design level and development cycle to meet the overall system

reliability targets. Heimerdinger et al. in [40] characterize the reliability improvement practices

according to their chronology in the product development and life cycle as follows.

1.4.1 Fault Avoidance

Fault avoidance uses various tools and techniques to specify, design and manufacture systems in

such a manner that introduction of faults is minimized [85] by targeting the source mechanisms

that cause the failure as shown in Figure 1.4. Use of formal methods to express specification may

14 Context and Motivation

!"#$%&'($)*"+,)&!"#$%&-.(/0"+,)&

-,1."1(+& 2)+)*"1(+& 3*(4"5"1(+&!"#$%&' ()#*+' ,$$"$' ()-*#$&'

6%"1,&!"#$%&'($)*"+,)& 78+"9/,&!"#$%&'($)*"+,)&

Fig. 1.4: Reliability improvement approaches across fault-failure life cycle [17]

reduce their analogousness and avoid faults during specification phase [78]. A typical example of

fault avoidance at design phase is employing transistor resizing within critical gate to decrease

the vulnerability to soft errors [109]. Fault avoidance may also include technology mitigation

techniques that implicate modifications of conventional manufacturing processes, like modern

chips designs use Silicon-On-Insulator (SOI) technology that provides many advantages including

significantly reduced susceptibility to soft errors due to the smaller volume for charge collection

[39]. Besides these, used of radiation hardened components is another example of fault avoidance

at design phase. Whereas fault avoidance during manufacturing involves adaptation of suitable

standards of quality, for instance, ensuring the cleanroom standards.

1.4.2 Fault Removal

Fault removal refers to a wide spectrum of approaches aimed at detecting and eliminating existing

faults during specification and design, and remove faulty components during production and

operational phases. Fault removal uses various methods including formal verification, design rule

checking, signal integrity analysis, static timing analysis etc. during sign-off to locate faults in

specification or design enabling the necessary changes to be made before tape-out. Burn-in is

one of the fault removal techniques that weeds out defective chips after manufacturing time, so

that chips actually used in systems have very low failure rate. Chips also typically include Design

For Test (DFT) structures such as scan chains, online and offline tests etc to aid in fault removal

during their operational life [85].

1.4.3 Fault Tolerance

In spite of the best efforts to avoid or remove them, there are bound to be faults in any operational

system. Once a fault has been generated it can be prevented from activating an error using static

1.4 Reliability Improvement Approaches 15

fault tolerant techniques (refer Figure 1.4) such as masking. Alternately, errors can be detected

and recovered using dynamic fault tolerance techniques like Error-Correction Code (ECC) [17].

Fault tolerance aims at guaranteeing the service provided by the product despite the presence or

appearance of faults [40].

There are various approaches to achieve fault tolerance in a system, but what they have in

common is the use of certain amount of redundancy. John von Neumann in 1950’s pioneered the

idea of using redundancy to improve the reliability of systems in his work titled as "Probabilistic

logic and synthesis of reliable organisms from unreliable components" [68]. According to the

classification of redundancy done by Avižienis in [6], there are two basic types; spacial and

temporal redundancies.

Spacial Redundancy: Refers to redundant components, functions or data units used either to

verify original execution or to replace the defective or erroneous ones [27]. Spacial redundancy is

further classified into hardware, software and information redundancy, depending on the type of

redundant resources added to the system.

Temporal Redundancy: In temporal redundancy a computation or data transmission is repeated

to compare with the original one [27]. Spacial redundancy impacts the system size and power in

terms of area for extra hardware resources to hold and execute extra software and information.

In some application it may be desirable to spend extra time rather than extra space to tolerate

faults. Therefore, temporal redundancy generally has overhead in terms of performance in order

recompute data using the same hardware resources.

Hybrid Redundancy: Hybrid redundancy approaches combine the spacial and temporal redun-

dancies to optimize the use of redundant resources. Faults appear in system from time to time,

the use of temporal resources to detect errors could be of an adverse impact on the throughput

of the system. Similarly occupying hardware resources for redundant computations can have an

overhead on power consumption. Hybrid redundancy makes efficient use of spacial and temporal

resources to optimize the impact on area, power and performance. A simple example of fault

tolerant architecture that uses hybrid redundancy is given in Section 2.2.1.

1.4.4 Fault Evasion

It is possible to observe the behavior of a system and use this information to take action to

compensate for faults before they occur [40]. During the operational life of a product situations

like perturbations coming from the non-operational environment can induce faults. To avoid such

16 Context and Motivation

situations external environment is monitored to detect these dangerous conditions and adequate

shielding action are taken to protect faults from appearing. An example is the use of on-chip

temperature sensors for power management to avoid wearout related faults [15, 31].

1.5 Research Objectives

The work in this thesis aims to improve the transient, permanent and timing error reliability of

future technology circuits and modern microprocessor systems for their use in high-reliability

applications. It places a special emphasis on the issue of error detection and confinement in

complex pipeline circuits and addresses the reliability concerns arising from the Combinational

Logic (CL) parts of logic circuits, a problem illustrated symbolically with the help of Figure 1.5. It

shows the share and types of problems arising from sequential logic and CL parts of digital circuit.

As discussed in Section 1.3.1.2, CL networks are becoming increasingly susceptible to SEEs. In

addition, pronounced variability and power densities either causes the electrical characteristics of

these node to change, resulting in timing errors or become permanently damaged giving rise to

hard errors. As a result, the research attention drawn towards developing techniques to limit SER

in CL is becoming comparable to effort made in protecting state elements.

≈50%

D Q

 Q’

D Q

 Q’

≈50%

SET

Combinational Logic
Storage

Elements

Soft Errors

D Q

Timing
Faults

Permanent
Fault

Fig. 1.5: Error occurrences in combinational logic and storage elements

• As the first step towards achieving this global objective, the thesis aims to perform an

in-depth analysis of spacial, temporal and hybrid redundancy approached existing in the

state-of-the-art and classifying them with respect to their area, power and performance

overheads, and fault tolerance capabilities.

• It aims to develop an effective hybrid fault tolerant approach that can be applied to complex

pipeline circuits.

1.5 Research Objectives 17

• To compare and identify the shortcomings of the developed technique by its application and

the application of state-of-the-art techniques to a specific core architecture.

• It also aims to lay down the framework for the quantitative comparative analysis of different

fault tolerant architectures specially in terms of their fault tolerance capability.

• As a final objective, It intends to optimize the developed technique for cost-reliability and

provide the means to selectively use the technique to be able to control the cost-reliability

trade-off.

Chapter 2

Fault Tolerant Architectures and

Assessment Techniques

In order to prevent reliability from becoming a bottleneck for the development of high-performance,

low-power systems, design architects must address the concern of reliability through the use of

fault-tolerant architectures. These architectures are commonly used to tolerate on-line faults, i.e.

faults that appear during the normal functioning of the system, irrespective of their transient or

permanent nature [50]. They use redundancy to tolerate faults in Combinational Logic (CL) and

storage elements. These techniques as generally classified by the employed type of redundancy

discussed in Section 1.4.3.

In this chapter we will first discuss some error detection and correction techniques generally

employed in fault-tolerant architectures. In the second section of this chapter we will discuss some

relevant fault-tolerant architectures. Among these architectures we will discuss a Hybrid Fault

Tolerant (HyFT) architecture in detail because it serves as the starting point of the work in this

thesis. In Section 2.3 we will briefly overview the robustness assessment techniques with special

focus on a simulation based fault injection framework developed and used throughout the course

of this thesis for fault tolerance capability assessment of different fault tolerant architectures.

Later we will present an experimental study to compare different architectures on the basis of

their implementation cost, performance and most importantly the fault tolerance capability and

finally in the last section we will summarize the results of the experimental study and conclude

the discussion.

20 Fault Tolerant Architectures and Assessment Techniques

2.1 Fault-Tolerance Techniques

Circuit-level fault-tolerance techniques are generally based on any one or a group of redundancies

discussed in Section 1.4.3. These techniques change the original circuit by adding logic for

error detection and correction or error masking. At system-level (for example microprocessor,

System on Chip (SoC) etc.) these circuit-level fault tolerance techniques are generally categorized

as hardware-based techniques because they mostly rely on hardware replication and additional

hardware modules to protect system against faults. Moreover software-based fault-tolerance

techniques are also widely implemented at system-level because of their non-intrusiveness,

high flexibility, low development time and cost [50]. However, software-based fault tolerance

techniques cannot achieve full system protection because of their inability to handle all the possible

control flow errors. In this section we focus on some circuit-level fault-tolerance techniques

commonly used as building block of fault-tolerant architectures.

2.1.1 Concurrent Error Detection

Exhaustive testing has been long ruled out because of the increasing complexity of chips. Thus

most but not all manufacturing defects can be detected during testing. The manufacturing faults

that escape testing can appear infield anytime. Similarly, the moment of transient fault occurrence

are not predictable. Also the failures caused due to aging effects on digital circuits cannot be

precisely forcasted. Thus the errors caused by these faults have to be detected during normal

operation. Error detection during normal operation is called concurrent error detection or on-line

detection [38].

2.1.1.1 Duplication with Comparison

Duplication with comparison is a commonly used, simple to implement error detection technique

based on hardware redundancy. It uses two identical copies of a circuit to compare their outputs

and flags error if there is an inequality in the results computed by the two copies as shown in

Figure 2.1. One of the reasons of its popularity is its simple implementation, and also its ability

to detect a wide variety of faults, which include permanent, transient and timing faults. An

important design decision for schemes that use duplication with comparison is the placement of

the comparator.

2.1 Fault-Tolerance Techniques 21

Module

copy 2

Module

copy 1

==? Error Input

Output

Fig. 2.1: Duplication with Comparison

Theoretically, any sequential circuit can be transformed into a pipelined circuit by grouping

together all the FFs with same sequential depth1 as individual pipeline registers. Although the

resulting pipeline may contain a large number of feedback and feed-forward signals but essentially

functions as a pipelined circuit [57]. Consider a sequential circuit with FFs having sequential

depth not more than 2. Such a sequential circuit can be transformed into a single stage of a

pipeline, by grouping all the FFs with sequential depth of 1 as input register and all the FFs with

sequential depth of 2 as output register. If this circuit is to be added with a duplication with

comparison based error detection capability, after duplicating the CL blocks, a common way of

placing comparator is to insert it after the pipeline register as shown in Figure 2.2a. The block

labeled as ‘==?’ represents a static comparator and the clouds represent CL blocks.

Any discrepancy in CL1 of CL2 will cause erroneous data to be latched in one of the register

and the comparator will signal error for at least one cycle without a need of latching the error

signal. With this placement not only the errors latched in the output registers due to Single Event

Transient (SET)s caused in the CL blocks are detected, but also the Single Event Upset (SEU)s

due to direct high-energy particle strikes in the output register FFs are detected and indicated

by a stable error signal. This scheme can also detect timing unless faults in both the CL copies

manifest themselves the same way at the outputs of CL. Furthermore, the power dissipation in

the comparator’s OR-tree will be low because it will undergo at most one transition per input

per cycle. However this technique requires duplication of not only the CL but also of the output

register.

A commonly used comparator placement is to insert it before the pipeline register as shown in

Figure 2.2b. Although this scheme does not require the duplication of pipeline register, it has a

few inherent drawbacks. Since the comparator compares during the entire cycle, the time when

the CL outputs are unstable due to the difference in circuit path lengths, the OR-tree experiences a

increased switching activity thus higher power consumption.

1A flip-flop has a sequential dept of dseq if its output is dependent on primary inputs and at least one flip-flop of

depth dseq-1. For example, if the output of a FF can be controlled by only primary inputs (and a clock pulse) it has

sequential depth of 1

22 Fault Tolerant Architectures and Assessment Techniques

In
p

u
t

R
e

g
is

te
r

O
u
tp

u
t

R
e
g
is

te
r

1

==? Error

Input

Output CL1

CL2

O
u
tp

u
t

R
e
g
is

te
r

2

(a) Comparator placed after output register

In
p

u
t

R
e

g
is

te
r

O
u
tp

u
t

R
e
g
is

te
r

==? Error

Input

Output CL1

CL2

Error Latch

(b) Comparator placed before output register

In
p

u
t

R
e

g
is

te
r

O
u
tp

u
t

R
e
g
is

te
r

==? Error

Input

Output CL1

CL2

Error Latch

(c) Comparator placed across output register

Fig. 2.2: Duplication with Comparison in sequential logic circuits

Another possibility of comparator placement is to insert it across the output register as shown

in Figure 2.2c. This scheme is similar to the architecture shown in Figure 2.2b except that,

since in this case the comparator gets one synchronous input from the output register, half of the

comparator inputs do not experience high activity during the CL outputs are unstable. Secondly,

as the comparator gets to compare the output of the register is also marginally protects it against

SEUs, which occur due to direct particle strikes in it.

In both the cases of Figure 2.2b and 2.2c the comparator output is an unstable signal which

perturbs during the time CL outputs are unstable and needs a latching mechanism if a stable error

signal is required. This in turn raises another question of, when to latch the error signal? If the

error signal is latched with the clock edge, i.e. at the same time as data is latched in the register, a

transient glitch or a delayed transition due to a timing fault may get latched in the output register

but can possibly escape getting latched in error FF. These glitch escapes can happen because of

the additional path it has to traverse in the coparator OR-tree before it can reach the error FF or

can get electrically masked by the logic in OR-tree.

One solution to this problem is to move the error latching mechanism upstream in the OR-tree.

This will not only reduce the difference in the lengths of paths a glitch or a delayed transition

has to travel before reaching the FFs in the output register and the error latching mechanism but

2.1 Fault-Tolerance Techniques 23

…
…
. …
…
.

…….

B0

A1

B1

A2

B2

A3

B3

AN

BN

Error

A0

Error latching

Layer

XOR

 Layer

0

OR

 Tree

…
…
.

…
…
.

Fig. 2.3: An static comparator with Error Latching mechanism moved upstream

also blocks the unwanted signal perturbations from causing excessive power dissipation in the

OR-tree. But even if the error latching mechanism is moved all the way up till the XOR gates as

shown in Figure 2.3, the architecture will not meet the power consumption of the first scheme (of

Figure 2.2a) because the XOR gates will still experience the unwanted activity and the increased

number of FFs to latch error cause higher power consumption due to constant activity of clock

network. Alternatively, a latching mechanism at the end of the OR-tree can be used with a delayed

clock to latch the error. This clock offset should match the delay of the OR-tree to prevent any

glitches from escaping detection. But due to process variations it is difficult to match and could

not guarantee zero glitch escapes. On top of that the switching activity in the OR-tree will still be

there.

To address some of the problems due to static comparator used in duplication with comparison,

the work in [93] proposes a circuit-level implementation of a special comparator discussed in the

following subsection.

Pseudo-dynamic Comparator: The main idea is to use an error latching mechanism upstream

in the OR-tree. Secondly, instead of depending on a capture edge to latch the error signal it

uses a user defined comparison-window for detection of permanent, transient and timing errors.

Furthermore it reduces the power consumption in the error latching layer by the use of DOR gates

shown in Figure 2.4.

24 Fault Tolerant Architectures and Assessment Techniques

…
…
.

…
…
.

…….

B0

A1

B1

A2

B2

A3

B3

AN

BN

Error

A0

…
…
.

…
…
.

B0

A1

B1

A2

B2

A3

B3

A0

DC
CompReset

D
O

R

D
O

R

D
O

R

XOR

 Layer

0

OR Tree

BN-3

AN-2

BN-2

AN-1

BN-1

AN-3

Error latching

Layer

Fig. 2.4: Pseudo-dynamic Comparator [93]

Figure 2.5 shows the structure of the 4-input DOR gate. The dynamic logic part, which

is controlled by CompReset and DC signals forms an OR gate and the keeper acts as an error

latching mechanism. During the pre-charge phase, reset is at logic-0. Input capacitance of the

inverter is pre-charged to VDD, which puts the Error signal at logic-0. During the evaluation phase

CompReset and DC are both at VDD. If atleast one of the inputs (Ci) turns to logic-1, the discharge

will occur. Consequently, Error switches to logic-1. Note that once the discharge happens, Error

will remain at logic-1 until the next pre-charge phase. Besides, the keeper must be weak enough

so that its input can be pulled down to logic-0 by the driving transistors.

Figure 2.6 present the complete error detection architecture using the pseudo-dynamic com-

parator represented by the block labeled as ‘==?*’. It places the pseudo-dynamic comparator

across the output register in order to protect it against SEUs that are generated in it. The Com-

pReset and DC and the control logic that generates them is not show for clarity. Experimental

results in [93] show that the new comparator exhibits better glitch and delayed transition detection

2.1 Fault-Tolerance Techniques 25

C0 C1 C2 C3

CompReset

CompReset

DC

Error

VDD

GND

Inverter

Keeper VDD Dynamic Logic

Fig. 2.5: 4-input DOR gate [93]

In
p

u
t

R
e

g
is

te
r

O
u
tp

u
t

R
e
g
is

te
r

==?* Error

Input

Output CL1

CL2

Fig. 2.6: Error detection architecture using the pseudo-dynamic comparator [93]

capability due to its error latching layer moved upstream in the OR-tree and with the use of

dynamic logic it offers about 30% reduction in power compared with a static comparator, while

having negligible area overhead in comparison with a static comparator.

2.1.1.2 Error Detecting Codes

Another widely used techniques of error detection in digital circuits is the use of error detecting

codes. Error detecting codes introduce redundancy in information representation to detect possible

errors in that representation [54]. Consider a logic circuit that performs a function f on the n-bit

input data i and produces a m-bit output f (i) as shown in Figure 2.7. Using error detecting

codes to improve the data integrity of this logic block generally involves implementing a block

which predicts some special characteristic C(i) of the output f (i) for every input sequence i. A

checker circuit first computes this characteristic C′(f (i)) of output from the output itself and

finally compares it with the predicted characteristic C(i) to check for any data anomalies.

26 Fault Tolerant Architectures and Assessment Techniques

logic function

(f)

Input

(i)

n

Output

Characteristic

Predictor

Output

f(i)

m

Checker

==?

Compaction

k
Error

k

Predicted

characteristic

C(i)

Computed

characteristic

C’(f(i))

Fig. 2.7: General architecture of Error Detection with Codes [63]

Error detecting codes have been widely used to protect memories against SEUs and permanent

faults [74]. The main reason of their widespread use in memories is that their regular structure

allows efficient incorporation [28]. Use of error detecting codes to detect errors in logic circuit

has been preliminarily based on the idea of reducing the implementation overhead of duplication

with comparison. However reducing area overhead below the cost of duplication for random logic

require redesigning the original circuits or compromising on fault coverage [38].

2.1.2 Error Recovery

Following an error detection an error recovery mechanism restores the error-free state of the

system or prevents faults from being activated again or both [54]. Error recovery mechanism

generally take two forms discussed in following subsections.

2.1.2.1 Rollback Error Recovery

In rollback recovery scheme errors are recovered by repeating the operation(s). Architectures

based on rollback recovery generally use spatial redundancy to detect errors and correct them with

temporal redundancy. Hardware and software use check-pointing to periodically or occasionally

save system state, which is used to bring the system back to an error free state in case of error

detection. These rollbacks can be as long as upto several thousands of cycles [62] or can be just

one cycle deep [92].

An example of a single cycle deep rollback recovery scheme is shown in Figure 2.8a in which

a concurrent error detection mechanism checks for errors at the end of each cycle and if it detects

an error the instruction re-executes during the next cycle. Figure 2.8b shows an example of a

much deeper rollback recovery scheme. After each computation, which takes several cycles an

2.1 Fault-Tolerance Techniques 27

error detection mechanism checks for errors. If no error is detected, system state (which can

include the contents of pipeline register, control registers and memory update information etc.) is

stored as checkpoint data. In case an error is detected the previous saved checkpoint data is used

to restore system error-free state and the effected computation is repeated.

A fine-grained rollback recovery schemes demands frequent error checks and checkpoint

updates, thus incur high energy cost. However the amount of check-pointing data to be stored is

minimal and are generally less intrusive. Coarse-grained rollback recovery schemes on the other

hand generally rely on software intrusive recovery sequences and check-pointing procedures, and

demand significant storage to store check-pointing data specially if memory updates are involved.

Besides implementation cost, coarse-grained recovery schemes can have significant performance

overhead particularly in high error rate environments [107].

inst1 Inst2* inst2 inst3

Re-computation

Cycle

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Concurrent Error Detections

Fault

Occurance

Time

(a) Fine-grained rollback recovery scheme

Computation 1 E
rr

o
r

D
e
te

c
ti

o
n

Computation 2 S
to

re

C
h

e
c

k
p

o
in

t

E
rr

o
r

D
e

te
c

ti
o

n

Computation 2 R
e

s
to

re

C
h

e
c

k
p

o
in

t

Fault

Occurance

Time

(b) Coarse-grained rollback recovery scheme

Fig. 2.8: Examples of Rollback recovery schemes

2.1.2.2 Forward Error Recovery

In forward error recovery techniques whenever an error is detected, the correction is made ahead

of time such that corrected data is available at or before the time when it is normally needed. Error

28 Fault Tolerant Architectures and Assessment Techniques

masking is a typical example of forward error recovery scheme, where the recovery mechanism

act as soon as an error is detected unlike rollback recovery in which the system steps back in

time to recompute. Forward error recovery schemes are efficient to be used in tight deadline

applications as they do not rely on re-computations [90].

Forward error recovery schemes generally uses spacial redundancy for both error detection

and correction. Significant amount of hardware resource is dedicated all the time whether there

are errors or not. On the other hand, rollback recovery schemes make use of temporal resources

only when they are needed thus have better allocation of redundant resources [66].

2.2 Fault tolerant Architectures

Several fault-tolerant architectures have been proposed in the literature in the past to address the

circuit reliability concerns. A few of these relevant solutions include; Partial-TMR, Full-TMR,

DARA-TMR [108, 107], PaS [47], CPipe [89], STEM [5] and Razor [29], which are discussed in

following subsections. We select this set of architectures because it includes a representative of

each class of the broad spectrum of fault tolerant architectures available in the literature.

2.2.1 Pair-and-A-Spare

Pair-and-A-Spare (PaS) Redundancy was first introduced in [47] as an approach that combines

Duplication with Comparison and standby-sparing. Figure 2.9 illustrated the principle of PaS

redundancy. In this scheme each module copy is coupled with a Fault-Detection (FD) unit to

detect hardware anomalies within the scope of individual module. A comparator is used to detect

inequalities in the results from two active modules. In the case of inequality a switch decides

which one of the two active modules is faulty by analyzing the reports from FD units and replaces

it with a spare one [27]. This scheme was intended to prevent hardware faults from causing

system failures. The scheme fundamentally lacks protection against transient faults and it incurs a

large hardware overhead to accomplish the identification of faulty modules.

2.2.2 Razor

Razor is a well known solution to achieve timing error resilience by using the technique called

timing speculation presented in [29]. The principle idea behind this architecture is to employ

temporally separated double-sampling of input data using Razor FFs, shown in Figure 2.10a,

placed on critical paths. The main FF takes input sample on the rising edge of the clock, while a

time-shifted clock (clk-del) to the shadow latch is used to take a second sample. By comparing the

2.2 Fault tolerant Architectures 29

!"#$%&'('

)*'

!"#$%&'+'

)*'

!"#$%&','

)*'

,
-.
"
-+
'/
0
1.
23
'

445'

6$.7$.'897$.'

:;<&&=*1>?;<&&'

@
@
A'

Fig. 2.9: Principle of PaS redundancy

CL B

RAZOR FF

Shadow

Latch

Main

FF

0

1

CL A

Error

clk

clk_del

D Q

(a) RAZOR FF

inst1 inst2 inst3

inst1 inst2 Inst3*

Cycle 1 Cycle 2 Cycle 3 Cycle 4

clk

clk_del

D

Q

Error

Timing fault in CL A

(b) Example timing diagram of error correction

Fig. 2.10: RAZOR Architecture [29]

data of the main FF and the shadow latch, an error signal is generated. The timing diagram of how

the architecture detects timing errors is shown in Figure 2.10b. In this example a timing fault in

CL A causes the data to arrive late enough that the main FF captures wrong data but the shadow

always latches the input data correctly. The error is signaled by the XOR gate which propagates

through the OR-tree for correction action to be taken. Error recovery in Razor is possible either

by clock-gating or by rollback recovery. Razor also uses Dynamic Voltage Scaling (DVS) scheme

to optimize the energy vs. error rate trade-off.

2.2.3 STEM

STEM cell architecture takes Razor a step further by incorporating capability to deal with transient

faults as well. STEM cell architecture presented in [5] incorporates power saving and performance

enhancement mechanisms like Dynamic Frequency Scaling (DFS) to operate circuits beyond their

30 Fault Tolerant Architectures and Assessment Techniques

worst-case limits. Similar to Razor FFs, a STEM cells (shown in Figure 2.11) replace the FF on

the circuit critical paths, but instead of taking two temporally separated samples, A STEM cell

takes three samples using two delayed clocks. Mismatches are detected by the comparators and

the error signals is used to select a sample which is most likely to be correct for rollback.

!"#

$%&'#!())#

##

&**+*#

!",-#

##

##

!"#

./#

./#

.0#

12345#!",0#

!",/#

./#

.0#

.-#

"12345#

"6789#

Fig. 2.11: STEM Architecture [5]

2.2.4 CPipe

The CPipe or Conjoined Pipeline architecture proposed in [89] uses spatial and temporal redun-

dancy to detect and recover from timing and transient errors. It duplicates CL blocks and the

FFs as well to from two pipelines interlinked together as shown in Figure 2.12. The primary or

leading pipeline is overclocked to speedup execution while the replicated of shadow pipeline has

sufficient speed margin to be free from timing errors. Comparators placed across the leading

pipeline register in somewhat similar way as the scheme of Figure 2.2c, detects any metastable

state of leading pipeline register and SETs reaching the registers during the latching window.

The error recovery is achieved by stalling the pipelines and using data from the shadow pipeline

registers for rollback and it takes 3 cycles to complete.

2.2.5 TMR

TMR is one of the most popular fault tolerant architectures. One of the very first use of TMR

in computing systems can be found in [55]. In a basic TMR scheme called Partial-TMR and

shown in Figure 2.13a, we have three implementation of same logic function and their outputs

are voted by a voter circuit. This architecture can tolerate all the single-faults occurring in the

CL block but faults in voter or pipeline registers cause the system to fail. Full-TMR on the other

hand, triplicates the entire circuit including the FFs and can tolerate all single-faults in any part

2.2 Fault tolerant Architectures 31

!!
"
!#
!$
%&
'
(%
)
'
!

!!

*!
#!
$
%&
'
(%
)
'
!!

!!

*!
#!
$
%&
'
(%
)
'
!

!!

"
!#
!$
%&
'
(%
)
'
!

"+,-./!

*.0%1!

*',-%)0!

*.0%1!

223! 223!

*4(.15!

"4(.15!

677.7! 677.7!

*.,-"$!

87.9!

#.0%1!

87.9!

"#*.0%1!

:.!

#.0%1!

:.!

"#*.0%1!

Fig. 2.12: CPipe Architecture [89]

of the circuit except voter and the signals to the input pipeline register, which may result in

common-mode failure.

!!

"#$!

"#%! !!

&!

'(
)
*
+!
,
-
.
/0
+-
1!
!

2
*
+)
*
+!
,
-
.
/0
+-
1!

"#3!

(a) Partial-TMR

!!

"#
$
%
&!
'
(
)
*+
&(
,!
!

!!

"#
$
%
&!
'
(
)
*+
&(
,!
!

!!

"#
$
%
&!
'
(
)
*+
&(
,!
!

!!
-
%
&$
%
&!
'
(
)
*+
&(
,!
!

!!

-
%
&$
%
&!
'
(
)
*+
&(
,!
!

!!

-
%
&$
%
&!
'
(
)
*+
&(
,!
!

./0!

./1!

./2!

3!

(b) Full-TMR

Fig. 2.13: Triple Modular Redundancy

2.2.6 DARA-TMR

DARA-TMR triplicates entire pipeline but uses only two pipeline copies to run identical process

threads in Dual Modular Redundancy (DMR) mode. The third pipeline copy is disabled using

power gating and is only engaged for diagnosis purposes in case of very frequent errors reported

by the detection circuitry. Figure 2.14 shows a simplified representation of DARA-TMR scheme.

Once the defective pipeline is identified the system returns back to DMR redundancy mode

32 Fault Tolerant Architectures and Assessment Techniques

by putting the defected pipeline in off mode. The error recovery follows the same mechanism

as pipeline branch misprediction, making use of architectural components for error recovery.

DARA-TMR treats permanent fault occurrence as a very rare phenomenon and undergo a lengthy

reconfiguration mechanism to isolate them [108].

In

p
u

t
R

e
g

is
te

r

In
p

u
t

R
e

g
is

te
r

In
p

u
t

R
e

g
is

te
r

O
u

tp
u

t
R

e
g

is
te

r

O
u

tp
u

t
R

e
g

is
te

r

O
u

tp
u

t
R

e
g

is
te

r

CL2

CL3

CL1

==? ==?

==? ==? Err

Err

Err

Err

Fig. 2.14: DARA-TMR [108]

2.2.7 Hybrid Fault-Tolerant Architecture

HyFT architecture employs information redundancy (as duplication with comparison) for error de-

tection , timing redundancy (in the form of re-computation/rollback) for transient and timing error

correction and hardware redundancy (to support reconfiguration) for permanent error correction

[102]. As shown in the simplified representation in Figure 2.15a, the HyFT architecture employs

triplication of CL blocks. A set of multiplexer and demultiplexer is used to select two primary CL

copies and to put the third CL copy in standby mode during normal operation. HyFT architecture

is driven by a control logic module that generates the necessary control signals. The details of

the HyFT control logic is provided in Appendix A. HyFT architecture uses the pseudo-dynamic

comparator [93] for error detection to achieve better glitch detection capability and to reduce the

power consumption as discussed in Section 2.1.1.1.

The HyFT architecture uses a concurrent error detection mechanism. A pseudo-dynamic

comparator compares the outputs of two active CL copies. It can be seen in Figure 2.15a that

the comparator is placed across the output register such that it gets to compare the output of the

output register Sout, which is a synchronous signal with the output of the secondary running copy

Aout, which is an asynchronous signal. As discussed in Section 2.1.1.1, this orientation of the

pseudo-dynamic comparator also offers marginal protection against the errors due to faults in the

2.2 Fault tolerant Architectures 33

Err Control

Logic

In
p

u
t

R
e

g
is

te
r

(w
it

h
 s

h
a

d
o

w
 l

a
tc

h
)

CL3

CL2

CL1

Reconfigure

Rollback DC

O
u

tp
u

t
R

e
g

is
te

r

==?*

Sout

A
o

u
t

C
L2

o
u

t
C

L1
o

u
t

C
L3

o
u

t

C
L i

n

(a) Hybrid Fault Tolerant Architecture

DC

CLK

!""#$

CLin

CL2out

!"%

Aout

$!%&

'!

Sout

!&

Comparison window

(b) Timing constraints imposed on CL synthesis by

pseudo-dynamic comparator

Fig. 2.15: HyFT Architecture and associated timing constraints

output register and allows it to remain off the critical path. Thus, it does not impact the temporal

performance of the circuit [103, 95].

The error recovery scheme uses stage-level granularity reconfigurations and single-cycle deep

rollbacks. The shadow latches incorporated in pipeline registers keep one clock cycle preceding

state of the pipeline register FFs. The comparison takes place after every clock cycle. Thus, error

detection can invoke a reconfiguration and a rollback cycle, confining the error and preventing it

from effecting the computation in the following cycles.

The comparison takes place only during brief intervals of time referred to as comparison-

window, represented in Figure 2.15b as regions shaded in red color. The timing of comparison-

window is defined by the high phase of a delayed clock signal DC, which is generated from CLK

using a delay element. These brief comparisons allow keeping the switching activity in OR-tree of

the comparator to a minimum, offering a 30% power reduction compared with a static comparator.

The functioning of the pseudo-dynamic comparator requires specific timing constraints to be

applied during synthesis of CL blocks, as defined below.

Timing Constraints: In typical pipeline circuits the contamination delay of CL should respect

hold-time of the pipeline register latches. However in the HyFT architecture, as CL also feeds to

the pseudo-dynamic comparator, CL outputs need to remain stable during the comparison. And

34 Fault Tolerant Architectures and Assessment Techniques

since the comparison takes place just after a clock edge, any short paths in the CL can cause

the input signals of the comparator to start changing before the lapse of the comparison-window.

Thus the CL copies have to be synthesized with minimum delay constraints governed by:

tcd > δ t− tccq− tcdm− tcm (2.1)

where:

tcd = CL contamination delay

δ t = the amount of time between CLK capture edge and the lapse of the

comparison-window (as shown in Figure 2.15b)

tccq = FF clk-to-output delay

tcdm = demultiplexer contamination delay

tcm = multiplexer contamination delay

In Figure 2.15b, with the help of a timing diagram we explain the associated timing constraints.

Besides CLK and DC the timing diagram shows the signals at the two inputs of the comparator

labeled as Aout and Sout also indicated in Figure 2.15a. The remaining two signals are the inputs

of CL labeled as CLin and the outputs of CL labeled as CLout. The grey shaded regions in Figure

2.15b represent the allowed margins of the corresponding signals. The timing allowance for the

start of the comparison-window depends on the clk-to-output delay of the output register. This

implies that the comparison should not begin until the output of the output register stabilizes.

Whereas the end of the comparison window should not extend beyond the point when the outputs

of CL block start to change. Conversely, the inputs of the comparator should not begin to change

before the lapse of comparison-window.

In Figure 2.16 we explain the error detection and correction principle of HyFT Architecture

shown in Figure 2.15a, with the help of three different fault scenarios among many other possible

cases. Figure 2.16a is a timing diagram of system response to an occurrence of a permanent fault,

Figure 2.16b shows the response in case of a SET occurrence and Figure 2.16c is in case of a

timing fault. It can be noticed that either Aout or Sout can be affected by an error depending on

the fault location. In both the cases the comparator detects the inequality and flags Err signal.

In Figure 2.16, this is represented by a comparison window marked with an inequality (6=) sign,

which compares a correct result with a faulty one represented by an asterisk (*) sign. The Err

signal remains active for two cycles until the system returns back to normal operation after a

reconfiguration and a recompilation cycle.

Besides these three, many other fault scenarios are possible. For instance in case of permanent

or timing fault it is possible that the system may not be able to isolate the fault by undergoing

just one reconfiguration and a recompilation cycle. Since it is not possible to determine which of

2.3 Robustness Assessment Techniques 35

the two working copies of CL in a stage exhibits a permanent fault, the reconfiguration choice is

irrespective of that. There is 50% chance that the first reconfiguration eliminates the fault. In this

case another error detection triggers a pair of reconfiguration and re-computation cycles, which

will definitely be able to select two CL copies that provide good results. Thus the error recovery

penalty in this case will be four cycles instead of two.

2.3 Robustness Assessment Techniques

Unlike area/power overheads and temporal performance degradation of any fault tolerant architec-

ture, robustness improvement and error recovery overhead are two important design merits, which

cannot be assessed using standard circuit analysis methods and tools. The methods to assess these

design merits can generaly be divided into two groups.

2.3.1 Axiomatic Methods

2.3.1.1 Analytic Methods

Analytic assessment of robustness requires abstract mathematical or logical models to specify

the behavior of the design and the fault environment. It is then necessary to determine how well

the fault tolerant mechanism works by producing analytic solution of the models [3]. Accurate

analytic modeling of complex systems is extremely difficult since the models can get very large in

practice, and the simplifying assumptions made in order to make analysis tractable reduces the

usefulness of the results.

2.3.1.2 Simulation based

Simulation emerges as a reasonable solution to the problem of tractability versus usefulness in

analytic methods of robustness assessment. It involves preparing a stochastic model of the fault

tolerant system and the environment. Then simulating it over some relevant period of time and

using the data gathered to characterize the model’s behavior. Simulations allows speeding up fault

occurrences to analyze the system response in terms of fault-tolerance capability and performance.

Simulation-based fault injection environments need less time and effort to implement and offer

better controllability and observability.

36 Fault Tolerant Architectures and Assessment Techniques

=

≠

=

=

inst1
 inst2*
 inst3
 inst2

inst1
 inst2

inst3
 inst2

inst2
inst3

inst1
 inst2
 inst3
 inst2

Inst2*
inst1

Cycle 1
 Cycle 2
 Cycle 3
 Cycle 4

Permanent fault in CL1

CLK

CL3out

Aout

Sout

CL2out

CL1out

Err

(a) Permanent Fault in CL1

=

≠

=

=

inst1
 inst2
 inst3
 inst2

inst1

inst3
 inst2

inst2
inst3

inst1
 inst2*
 inst3
 inst2

inst2

inst2*

inst1

Cycle 1
 Cycle 2
 Cycle 3
 Cycle 4

Transient fault in CL2

CLK

CL3out

Aout

Sout

CL2out

CL1out

Err

(b) Transient Fault in CL2

=

≠

=

=

inst1
 inst2*
 inst3
 inst2

inst1
 inst2

inst3
 inst2

inst2
inst3

inst1
 inst2
 inst3
 inst2

Inst2*
inst1

Cycle 1
 Cycle 2
 Cycle 3
 Cycle 4
CLK

CL3out

Aout

Sout

CL2out

CL1out

Err

Timing fault in CL1

(c) Timing Fault in CL1

Fig. 2.16: Error detection and correction in HyFT Architecture

2.3 Robustness Assessment Techniques 37

2.3.1.3 Verification based

Formal verification techniques have been used in industry not only to ensure the correctness

of hardware designs, but also to identify inherent robustness shortcomings in fault tolerant

architectures for digital circuits. One of the earliest use of automated formal reasoning to verify

fault tolerance of digital circuits in literature dates back to 1986 in [19], where Petri nets were used

to validate the fault tolerance of a processor architecture. This work defines formal verification as

“A vehicle for hierarchically structuring the verification process so that only few claims need to be

proven and only a controllable amount of critical assumptions need to be generated”. A modern

interpretation and use of formal verification in robustness analysis of digital circuits can be found

in [33]. This work addresses the problem of large state space and longer observation time needed

in simulation based approaches for robustness assessment with the use of formal techniques such

as boolean SATisfiablity (SAT)-based bounded sequential equivalence checking.

Besides these contributions many others have shown that, formal approaches to prove fault

tolerance are relatively complete with respect to the whole input space in comparison with

simulation based approaches. But still these methods do not scale well with the increasing

complexity of digital electronic systems and suffer from run time limitations [3].

2.3.2 Empirical Methods

2.3.2.1 Field Experience based

Field experience based robustness methods rely on data collected form field to assess the robustness

of designs. Generally a long history of field data in needed to make expert judgments about the

reliability.

2.3.2.2 Fault Injection based

Besides analysis and field-experience based robustness assessment methods whose accuracy and

applicability are significantly restricted, fault injection has emerged as a particularly attractive

and viable solution for complex fault tolerant systems [49]. It allows speeding up fault occur-

rences to analyze the system response in terms of fault-tolerance capability and performance.

Simulation-based fault injection environments need less time and effort to implement and offer

better controllability and observability.

38 Fault Tolerant Architectures and Assessment Techniques

 !
Synthesized

Design

 !

Mutated

SDF (.sdf)

 !Fault Injection
Test bench

 !
Fault Injection

Logfile

(.txt)

Gate-level"

logic Simulator
 !Cell Library

!!
Fault Site

Extraction

!!
Assign Random

fault site and time
 !Fault Site

List (.txt)

 !
Fault List

(.txt)

!

Original

SDF (.sdf)

!!
Fault Injection

Campaign

SDF

Mutant

Fault Injection
Fault list Generation

 !
Activity File

(.vcd)

!

Original

SDF (.sdf)

!!
Analysis and

Classification

 !
Fault Injection

Report

(.txt)

Fault Classification

Fig. 2.17: Fault Injection Flow

2.3.3 A Gate-Level Fault Injection Framework

To assess and compare the fault-tolerance capability of the Fault Tolerant architecture, we devised

a simulation-based gate-level fault-injection framework. Gate-level simulation provides a suitable

paradigm to perform fault-injection experiments because unlike micro architectural-level simula-

tion, it offers high fidelity to model most of the physical defects and transient faults, and is much

faster than transistor-level simulation. This fully automated fault-injection framework uses a flow

shown in Figure 2.17. The flow is partitioned into three sections, each explained in the following

subsections.

2.3.3.1 Fault list generation

In the fault list generation part a parsing script extracts an exhaustive fault site list from either

Standard Delay Format (SDF) file or form Value Change Dump (VCD) file depending on the

type of faults. Transient and permanent fault sites are extracted form the VCD file and the timing

fault sites are extracted from the SDF file. The choice of using the VCD and SDF files for fault

site extraction is based on the fact that the extracted sites are good gate-level representations of

fault location and are easily interpreted by the gate-level logic-simulator used for fault injection.

Another script randomly selects fault sites from the exhaustive fault site list with a possibility of

constraining the fault locations to be in the specified design modules. It also associates timings

2.3 Robustness Assessment Techniques 39

Table 2.1: Fault injection parameters

Input Parameter Description

Fault model To specify to generate either permanent (stuck-at), transient (temporary stuck-at) or tim-

ing (interconnect delay) fault.

No. of injections Specifies the number of faults in the list to be generated.

Injection time range Specifies the range to constrain the random injection time generation process. Mainly

used to ensure that none of the faults are injected during circuit initialization nor at the

time too close to the end of the simulation.

Injection duration range Used for transient faults to specify the pulse width of injected transient fault.

Timing error range Specifies the range of additional random delay values to be used for timing errors.

Fault Location constraint Constraints the fault list generation process to produce a faults list according to specified

module(s).

Simulation duration Gives the time of each fault simulation.

Injection type Indicates whether single of multiple fault injections per simulation

with each selected fault site in a constrained-random fashion. The input parameters it uses to

control the fault injection are listed in Table 2.1 with their description.

2.3.3.2 Fault injection

In the fault injection part of the flow the fault injection script recursively runs gate-level simulations

in logic simulator and inject faults according to the fault list by controlling it through simulator

commands. A test bench generates the required data to be logged for analysis. Depending on the

type of design under test, either cycle-by-cycle information is stored during simulations or just the

final computed result is logged. The test bench also monitors Err signal and this information is

also logged. The SDF mutant script injects timing faults in the SDF file to be used of simulations

which involve timing faults. The fault injection campaign script generates a fault injection report.

Based on the possibilities offered by gate-level simulation to inject faults, we model permanent

faults as stuck-at faults, SETs as temporary stuck-at faults and timing faults as interconnect delay

faults. These fault models and their implications on the fault injection mechanism are discussed

in the following subsections.

Permanent fault injection: We use standard stuck-at fault model to represent permanent faults.

However instead of arbitrarily imposing stuck-at-0 or stuck-at-1 on the circuit nodes, we base this

decision on the logic state of that node at the time of injection, i.e. if it were at logic-level 0 at

the time of injection, a stuck-at-1 is forced and vice versa. This modification results in a large

number of faults to manifest themselves as errors. A permanent fault is defined by fault location

(l) and fault injection time (t). Figure 2.18a shows a timeline illustration of a permanent fault

injection campaign. As shown, a fault injection campaign consist of a number of fault simulations

specified at the fault list generation step. Each simulation is started and proceeded till time t. At

40 Fault Tolerant Architectures and Assessment Techniques

this time the logic value at the injection location l is read and an inverted logic is forced on l. The

simulation is resumed till the end of the workload and the collected information is logged into the

fault injection logfile.

Transient fault injection: Transient faults are modeled as temporary stuck-at faults, which

represent SETs as digital pulses using three parameters, fault location (l), fault injection time (t)

and pulse duration (d). As shown in Figure 2.18b transient faults are injected in the same way as

permanent except that the forced logic value on l is released after time d form the time it is forced

i.e. t. At the end of each simulation the information gathered is saved in the fault injection logfile.

Timing fault injection: Timing fault injection uses SDF mutation technique, which models

timing fault as an interconnect delay fault. In this technique the original SDF file generated by

the synthesis tool is mutated such that the delay of a specific interconnect (l) is increased by an

amount ∆t. As shown in Figure 2.18c at the beginning of each simulation the original SDF file

(sdf1) is mutated based on l and ∆t. This mutated SDF file (sdf2) is used for gate-level simulation

instead of the original one. Once the workload is finished running and the necessary information

is logged and the mutated SDF file is deleted.

2.3.3.3 Fault analysis and classification

An analysis of the fault-injection report allows us to classify the injected faults into five categories

based on the outcomes.

• Silent Faults: Faults that had no effect on the execution of the workload are classified

as Silent. The workload terminates normally with no error detection, the result is correct

and the contents of pipeline registers and other memory elements are the same as those of

golden run.

• Latent Faults: Faults are classified as latent if the workload terminates normally, the result

is correct, but the contents of pipeline registers, register-file or other memory elements are

not the same as those of golden run. These stored errors can effect the computation at any

later time moment when the workload makes use of data at the corrupt memory locations

for computation. These types of faults effects are considered critical because they may

result in erroneous computation without detection.

• Fail-silent Faults: The workload terminates normally with no error detection and the result

computed is wrong. These faults are the most critical as the result computed are wrong

without any error indication.

2.3 Robustness Assessment Techniques 41

Simul # 1
 Simul # N

Workload Simulation

t!

Simul # 3
Simul # 2
 ...

"#$%&#'!!"#$%"&'((#(&

Permanent

Fault

Permanent Fault-Injection

Simulation Campaign

Time

(a) Permanent Fault Injection Campaign

Workload Simulation

t%

Monitor Global Error

SET

d%

Simul # 1
 Simul # N
Simul # 3
Simul # 2
 ...

Time

Transient Fault-Injection

Simulation Campaign

(b) Transient Fault Injection Campaign

Workload Simulation

Monitor Global Error

Timing
Fault

sdf 2

modify

sdf 1 by

adding

∆t on l

delete

sdf 2

Simul # 1
 Simul # N
Simul # 3
Simul # 2
 ...

Timing Fault-Injection

Simulation Campaign

Time

(c) Timing Fault Injection Campaign

Fig. 2.18: Timeline illustration of Fault Injection Campaigns

42 Fault Tolerant Architectures and Assessment Techniques

• Corrected Faults: The workload terminates normally with at least one error detected, the

result is correct and the content of pipeline registers and register-file are the same as that of

the golden run.

• Unclassifiable: Some injected faults result in setup or hold violations and cause unknown

logic value X to propagate. These X-propagations are due to limitation of gate-level

simulation but in real circuits setup and hold violations may cause a faulty value to be stored

in memory elements and this anomaly can be detected by the detection mechanism. Thus,

in actual silicon test case these fault will either fall into corrected or silent fault categories,

which are non-critical from the robustness point of view. Since using gate-level simulation

we cannot make a distinction among them, we put them into the unclassifiable category.

Among these five categories of faults, we consider Latent and Fail-silent faults to be critical in our

analysis of fault tolerant capability. These critical faults are the ones that escape the detection and

lead to a failure. The ratio of the number of these critical faults w.r.t the number of total injected

faults gives a figure of merit to compare the fault tolerant capability of different architectures.

2.4 Experimental Comparative Study

Many studies in literature like [62], [89] and [108], provide evaluation results within the scope

of the architecture proposed therein. However, it is essential that these similar schemes be

comprehensively compared using identical set of experiments and conditions in order to have a

meaningful contrast. In this section, we present a comprehensive experimental comparative study

of three fault-tolerant architectures with similar fault-tolerance capability in the context of spatial

and temporal characteristics of faults and the architectural cost merits, which include area and

power consumption. These architectures include partial-TMR and full-TMR [50] and the HyFT

[92, 91].

2.4.1 Experimental Methodology

Experiments are performed to compare the merits of HyFT architectures with partial-TMR and

full-TMR architectures. Each architecture is applied to a few of the ITC’99 benchmark circuits and

are synthesized using NanGate 45nm Open Cell Library [67]. The area figures are obtained from

the synthesized designs and power estimates are obtained by taking into account the switching

activity generated by back-annotated gate-level simulations. The workload for simulation is a

set of patterns optimized for stuck-at fault detection. The reason for using such a workload is

to obtain switching activity distributed in all parts of the circuit. The performance overhead is

2.4 Experimental Comparative Study 43

Table 2.2: Fault injection parameters

(a) Common parameters

Parameter Transient faults Permanent faults

Fault model Temporary Stuck-at Stuck-at

Injection duration range 0.25 ns - 1.25 ns (Constrained random) -

Workload Stuck-at fault detection patterns

Fault location constraint Allover the architecture (Random)

Injection type Single fault

(b) Individual parameters

Benchmark
No. of injections Simulation duration Injection time range

Transient faults Permanent faults (per injection) (Constrained random)

b01 6088 6088 240ns 45ns - 200ns

b02 5245 5245 140ns 45ns - 100ns

b03 25630 25630 340ns 45ns - 300ns

b05 25248 25248 1020ns 45ns - 980ns

b06 9601 9601 220ns 45ns - 180ns

b08 20771 20771 550ns 45ns - 510ns

evaluated in two different aspects. Firstly, in terms of temporal performance degradation, which

is basically the additional delay in the data-path due to the fault-tolerant architecture (e.g., voter

delay in TMR), and secondly in terms of error recovery penalty under a certain fault rate.

The fault-tolerance capability of the three schemes is estimated by performing transient

and permanent fault injections in the combinational logic parts of the circuits, by using a gate-

level simulation based fault-injection framework discussed in Section 2.3.3. The fault injection

parameters used for this experiment are listed in Table 2.2.

During the fault injection campaign a fault-injection report is generated which contains the

cycle-by-cycle outcome of each simulation. At the end of fault-injection campaign the fault-

injection report is analyzed to classify the faults according to the fault effects into silent, corrected

and fail-silent fault. The ratio of the number of fail-silent faults to the number of total injected

faults gives us a figure to compare the fault tolerance capability of the four different schemes.

2.4.2 Comparative Analysis

2.4.2.1 Area and Power Overhead

Table 2.3 gives the average area and power for the BL circuits and the fault-tolerant implementa-

tions based on the results of their application on six ITC’99 benchmark circuits in column 2 and 4.

In column 3 and 4 it gives their associated percentage overheads of area and power with the BL

circuits as reference. The most obvious area and power overhead figures are those of Full-TMR.

As it is based on triplicating the CL blocks and also the FF, it occupies a little more than three

44 Fault Tolerant Architectures and Assessment Techniques

times the area and consumes a few microwatts over the three times the power consumed by BL

implementations. This extra area and power is due to the voter in the Full-TMR scheme.

Table 2.3: Average Area and Power estimation results

Avg. Area Avg. Area Avg. Power Avg. Power

(µm2) Overhead (%) (µW) Overhead (%)

BL 1231.00 - 351.50 -

Partial-TMR 3141.59 155.02 971.66 173.32

Full-TMR 3781.32 206.93 1077.74 206.09

HyFT 3739.43 213.24 859.67 157.36

The average percentage of area overhead values in Table 2.3 show that the partial-TMR imple-

mentation consumes less in terms of area that is about 155%. The most expensive architectures in

terms of area is HyFT, with an average overhead of around 213%.

As far as the power consumption is concerned, HyFT architecture is most efficient based on

the average power overhead figure of about 157% in Table 2.3. partial-TMR stands at 173%,

making full-TMR the least power efficient scheme. This high power consumption of full-TMR is

accounted to the triplication of FF. On the other hand HyFT saves power by having one CL copy

in stand-by all the time.

The graphs in Figure 2.19 show the percentage increase in area (Figure 2.19a) and power

(Figure 2.19b) of the BL circuits to implement the three considered fault-tolerant architectures.

Note that the benchmark circuits are arranged in ascending order of their size from left to right

on X-axis to illustrate the impact of the size of CL block on the area and power overheads. The

dotted lines in Figure 2.19 represent the average percentage figures of area and power overheads

for the corresponding fault-tolerant architecture implementation.

An important observation that can be made in the graphs of Figure 2.19 is that, the area and

power overheads of both partial and full-TMR are relatively independent of the size of CL block

to which they are applied. However, these overheads for HyFT change with different sizes of

benchmarks such that the area and power overheads of HyFT decrease with the larger benchmarks.

This observation also gives an idea of the anticipated impact on the area and power overheads

for CL blocks larger than the benchmarks considered in this study. Although the average area

overhead of HyFT is higher than other considered fault-tolerant architectures but with large CL

blocks we can expect it to decrease. Whereas the power overhead of HyFT, which is already the

minimum, tends to further reduce with larger CL blocks.

2.4 Experimental Comparative Study 45

154.74% 153.95%

159.75%

149.31%

155.43% 156.98%

206.74% 206.72% 207.05%

206.29% 206.80%

207.95%

238.52%

228.50%

212.52%

203.12%
200.97%

195.83%

Avg: 155.03%

Avg: 206.93%
Avg: 213.25%

130.00%

150.00%

170.00%

190.00%

210.00%

230.00%

250.00%

b02 b01 b06 b08 b03 b05

A
re

a
 O

v
e

rh
e

a
d

 (
%

)

Benchmarks

(arranged in ascending order of their area from left to write)

Partial-TMR Full-TMR HyFT Average

(a) Area overhead

167.47%
163.40%

177.10%

174.29%

179.09%

178.61%

206.08%

202.73%

206.26%

204.62%

210.84%

206.02% 205.26%

169.39%

144.53%

151.81%

137.13%

136.06%

Avg: 173.33%

Avg: 206.09%

Avg: 157.36%

120.00%

130.00%

140.00%

150.00%

160.00%

170.00%

180.00%

190.00%

200.00%

210.00%

220.00%

b02 b01 b06 b08 b03 b05

P
o

w
e

r
O

v
e

rh
e

a
d

 (
%

)

Benchmarks
(arranged in ascending order of their area from left to right)

Partial-TMR Full-TMR HyFT Average

(b) Power overhead

Fig. 2.19: Impact of CL blocks size on area and power overheads

2.4.2.2 Performance

The first evaluated measure of performance is the temporal performance degradation. In partial-

TMR and full-TMR, it is defined by the delay of voter circuit in the data-path. In case of HyFT it

is due to the delay of shadow latch multiplexers in input register responsible for rollback and the

reconfiguration multiplexer and demultiplexer. The comparator being outside the critical path does

not contribute to the temporal performance degradation. Using Static Timing Analysis (STA) the

temporal performance degradation for partial-TMR and full-TMR was estimated to be 0.73% for

a 100MHz operation. The same for HyFT was found to be 9.7% without any design optimization.

46 Fault Tolerant Architectures and Assessment Techniques

Table 2.4: Transient fault injection results summary

Avg. % of Avg. % of Avg. % of

Silent faults Corrected faults Fail-silent faults

BL 92.51% 0.00% 7.49%

Partial-TMR 99.97% 0.00% 0.03%

Full-TMR 100% 0.00% 0.00%

HyFT 92.46% 7.26% 0.28%

Table 2.5: Transient fault injection results

Percentage of Fail-silent faults (%)

BL Partial-TMR Full-TMR HyFT

b01 7.49 0.00 0.00 0.37

b02 8.11 0.11 0.00 0.28

b03 8.18 0.03 0.00 0.26

b05 7.11 0.02 0.00 0.21

b06 7.07 0.04 0.00 0.33

b08 7.45 0.05 0.00 0.33

Average 7.56% 0.03% 0.00% 0.28%

The figures that can give us a measure of the second considered performance aspect, i.e. the

error recovery penalty, can be interpreted from the transient fault injection results presented in

Table 2.4. These results are obtained by injecting transient faults at an average rate of 250K

faults/second. It can be observed in Table 2.4 that for partial-TMR and full-TMR the percentage

of corrected faults is zero. This is because TMR is an error masking technique rather than an error

detection and correction one and does not indicate the presence of error. With no provision of

identifying the corrected faults, they are kept within the category of silent faults in our analysis. It

also indicates that the error recovery penalty for TMR is zero as it corrects errors by masking them

instead of undergoing a reconfiguration and re-computation cycle. It can also be seen in Table

2.4 that HyFT corrected on average 7.26% of injected faults. For each detected and corrected

SET the HyFT undergoes a recovery phase that takes 2 additional cycles [14]. According to these

figures, HyFT spends around 14.52% of total computation time on recovering from potentially

erroneous states.

2.4.2.3 Fault Tolerance Capability

Quantitative analysis To compare the fault-tolerance capability of different architectures we

analyze them in terms of the percentage of faults that resulted in a fail-silent outcome among the

total number of injected faults. Table 2.5 gives the transient fault-injection experiment results.

2.4 Experimental Comparative Study 47

Table 2.6: Permanent fault injection results

Percentage of Fail-silent faults (%)

BL Partial-TMR Full-TMR HyFT

b01 98.37 2.37 0.00 0.15

b02 96.28 2.03 0.00 0.06

b03 98.15 1.38 0.00 0.06

b05 97.84 0.50 0.00 0.08

b06 97.23 0.66 0.00 0.13

b08 98.03 2.34 0.00 0.07

Average 98.03% 1.36% 0.00% 0.08%

Table 2.5 shows that the incorporation of each fault-tolerant architecture into the BL circuit

reduces the percentage of fail-silent faults to a different extent. The average percentage of fail-

silent faults that was originally 7.56% in BL is brought down to 0.03% by partial-TMR. A through

analysis of the fault-injection report revealed that these 0.03% faults were among those which

were injected at the inputs of CL blocks and affected all the three TMR copies in the same way,

thus resulted in a common-mode failure. Full-TMR on the other hand did not encounter this

problem because of it construction and turned out to be the most effective by tolerating the effects

of all the injected transient faults. In case of HyFT 0.28% of injected faults escaped detection

and affected the results. With further investigation we found out that these fail-silent outcomes

were not linked to a specific location as in case of partial-TMR, but escaped detection due to their

specific timing characteristics. Static timing analysis showed that these 0.28% fail-silent faults

were among those that were injected at a time such that their effects appeared at the inputs of

register during the clock setup-hold window. Since in HyFT the comparison-window does not

overlap the setup-hold window, these transient faults managed to affect the data during captured

but escaped detection by missing the comparison-window. This problem of non-overlapping

setup-hold window and comparison-window is analyzed in Chapter 4 and an improved version of

HyFT architecture is proposed that solves the problem.

Similar observations can be made from the permanent fault injection results shown in Table

2.6. An average 1.36% of faults injected in partial-TMR result in fail-silent outcome, mainly

due to the common-mode effect. Full-TMR shows nearly complete tolerance against permanent

faults and in HyFT 0.08% faults escaped detection mainly due to the setup-hold window and

comparison-window separation.

Qualitative analysis Some aspects of fault-tolerance capability that have an implication on

the lifetime reliability of the circuit cannot be inferred from the fault injection experiment result

discussed in the previous subsection. Therefore, we analyze them qualitatively here.

48 Fault Tolerant Architectures and Assessment Techniques

When a circuit enters into the wear-out phase of it’s lifetime, most of the wear-out mechanisms

show early symptoms as increasing signal propagation latency prior to inducing permanent device

failures [24]. The ability of the HyFT architectures to detect these early symptoms and act upon

by causing reconfigurations reduces the aging effects on the system by distributing the stress on

two of the three CL copies. The capability of selective sparing helps reduce the rate of failures

and increase the life span of circuit parts that embed such fault-tolerant architecture. Another

qualitative aspect of fault-tolerance capability is fault accumulation effect that distinguishes

both considered versions of TMR from HyFT. TMR is an error masking architecture that does

not indicate the presence of error, instead just corrects them until only one computational copy

exhibits an error. When faults accumulate due to wear-out and multiple copies start getting

affected, TMR fails to correct them and the lack of any provision of indicating error ends up in

fail-silent outcomes. Whereas HyFT is able to correct errors until two faulty copies manifest the

effect of fault at the output in a same way at the same time, which is very less likely. In all other

possible scenarios HyFT, if cannot correct can at least indicate the presence of error and continue

fail-safe operation.

2.5 Summary

Table 2.7 gives a summary of comparison of the architectures discussed in Section 2.2, also listed

in column 2 of the table. Columns 3, 4 and 5 specify the type of fault that these architectures have

the capability to detect and correct. Column 6 and 7 identify which of these architectures have or

can possibly incorporate power conservation and performance improvement features of DVS and

DFS. The architectural components that each scheme replicates is given in column 8. Columns 9,

10 and 11 give some figures of area, power and error recovery overheads respectively, associated

with some of these architectures. Finally the last column determines which of these schemes also

improve the lifetime reliability of the circuit.

We classified these architectures in two categories, those which provide protection against

permanent, transient and timing faults as Full Protection solutions and those, which can handle a

subset of these types of faults as Partial Protection solutions. Partial-TMR, Full-TMR, DARA-

TMR and HyFT architectures fall in the first category. On the other hand, Razor is intended to

detect and correct timing errors, and STEM and CPipe architectures are capable to deal with

transient and timing faults, thus are considered partial protection solutions. However, some of

these partial protection techniques have features like DVS and DFS, as can be seen in columns 6

and 7, which is not the case with full protection schemes considered here. On the other side, the

2.5 Summary 49

HyFT architecture, due to its unique error detection and micro-rollback capability, becomes an

ideal candidate for the application of these performance and power optimization techniques.

Now if we focus our attention to the overheads associated with each of the architectures

that offer protection against all the three type of faults, we can observe that HyFT incurs area

overhead more that Partial-TMR and Full-TMR. Although there is no experimental data available

about area cost of DARA-TMR in literature but it would be certainly more than HyFT because it

uses CL and FF triplication, whereas HyFT triplicates CL only. In addition, DARA-TMR uses

three times more comparators than HyFT. It can be observed in Table 2.7 that HyFT saves a

significant amount of power in comparison with Partial-TMR and Full-TMR. The error recovery

overhead for Partial-TMR and Full-TMR is zero because TMR is an error masking technique

instead of an error detection and correction scheme. As its name suggests, DARA-TMR is

also based on TMR but treats permanent fault occurrence as a very rare phenomenon and does

not offer a fast reconfiguration mechanism. On the other hand, HyFT incurs an error recovery

penalty of either 2 or 4 cycles to mitigate any type of fault. Although the partial protection

schemes considered here have slightly lower error recovery penalties, they cannot be compared

with that of HyFT because of the difference in their fault-tolerance capability. Among the eight

fault-tolerant architectures considered in this comparison, HyFT is the only one that offers a

life-time reliability improvement by selectively sparing the weakest CL block as discussed in

Section 2.4.2.3. From this comparison it can be inferred that the HyFT architecture offers a fault

tolerant capability almost equivalent to Full-TMR structures but with additional benefits of power

saving and lifetime reliability improvement and also provides the opportunity to apply power

conservation and performance enhancement techniques like DVS and DFS.

5
0

F
au

lt
T

o
leran

t
A

rch
itectu

res
an

d
A

ssessm
en

t
T

ech
n

iq
u

es

Table 2.7: Summary of comparison of different related fault-tolerant architectures

Permanent Transient Timing
Hardware Area Power

Error Lifetime

fault fault fault DFS DVS
redundancy overhead overhead

recovery reliability

tolerance tolerance tolerance overhead improvement

P
a
rt

ia
l PaS[47] ✓ CL×3 No data in [47] No data in [47] No data in [47]

Razor [29] ✓ ✓ FF×2 1%-3% 3.1% 1 cycle

STEM [5] ✓ ✓ ✓ FF×3 14%-15% No data in [5] 1 or 3 cycles

CPipe [89] ✓ ✓ ✓ CL×2, FF×2 No data in [89] No data in [89] 1 cycle

F
u

ll

Partial-TMR ✓ ✓ ✓ CL×3 155% 173% 0 cycles

Full-TMR ✓ ✓ ✓ CL×3, FF×3 207% 206% 0 cycles

DARA-TMR

[108, 107]
✓ ✓ ✓ CL×3, FF×3

No data in [107,

108]

No data in [107,

108]

No data in [107,

108]

HyFT ✓ ✓ ✓ Feasible Feasible CL×3, FF×2 213% 157% 2 or 4 cycles ✓

Chapter 3

Pipelined Hybrid Fault Tolerant

Architecture

In computer systems, pipelining is defined as “an implementation technique whereby multiple

instructions are overlapped in execution; it takes advantages of parallelism that exists among

actions needed to execute an instruction” [41]. Pipelining is one of the key methods used to

increase the throughput of digital systems such as microprocessors by splitting up each instruction

into a sequence of steps so that different steps can be executed concurrently in parallel, rather than

processing each instruction one at a time.

We start this chapter with a discussion on how errors can propagate in complex pipeline

structures focusing on the specific pipeline properties that make error detection and correction

difficult. We will extend the capabilities of HyFT architecture with some architectural modification

that allow it to address these problems of error confinement, while doing that, we will formulate

the principles of the new Pipelined Hybrid Fault Tolerant (PHyFT) architecture. We will also

present the details of a comprehensive case study carried out to prove the effectiveness of PHyFT

architecture to improve the robustness of practical pipeline structures and to compare it with other

state-of-the-art techniques. Eventually, we will present the experimental results obtained form the

case study and will conclude the chapter.

3.1 Error Propagation in Pipelined Circuits

Similar to stand-alone logic circuits, pipeline architecture may also suffer from transient, perma-

nent and timing errors. Furthermore, in these structures, there are error propagations between

pipeline stages which require special error detection and re-computation schemes for error correc-

52 Pipelined Hybrid Fault Tolerant Architecture

Stage A

CL

P
ip

e
lin

e
 R

e
g
is

te
r

Stage B

CL

P
ip

e
lin

e
 R

e
g
is

te
r

A

P

ip
e
lin

e
 R

e
g
is

te
r

B

Stage C

CL

P
ip

e
lin

e
 R

e
g
is

te
r

C

Stage A Stage B Stage C

CLK

OA OB OC

(a) Linear Pipeline

Transient Fault

in Stage A CL

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 CLK

OA Inst1 Inst2* inst3

OB inst1 Inst2* inst3

OC inst1 Inst2* inst3

Error appears

at output

(b) Time plot of transient error propagation in Linear Pipeline

Fig. 3.1: Example transient error propagation in Linear Pipeline

tion. In the following subsections we focus on a few types of pipelines and see what implications

they have on the error propagating through them.

3.1.1 Linear Pipeline

A pipeline in its simplest form, in which the entire datapath traverse successively through each

pipeline register without any signals bypassing any of the pipeline registers is called a linear

pipeline. Figure 3.1a illustrates an example of a three stage linear pipeline. The graph of

Figure 3.1b shows the timing plot of outputs of each of the three pipeline stages, namely OA, OB

and OC in case of a transient fault occurrence in the CL block of Stage A during Cycle 1. The

executions in red with an asterisk represent erroneous instructions.

In this example, we can see that at the beginning of Cycle 2, the fault is captured by the Pipeline

Register A and remains active as error at the output of Stage A while Stage B is executing the first

instruction. At the next clock edge, the error appears at the output of Stage B. Consequently, the

error appears at the pipeline output during Cycle 4. Eventually, the pipeline returns to normal

operation at the fifth period when errors have reached the final register. In this example, we

consider transient faults. A similar propagation behavior could be observed in case of hard

permanent or a permanent delay fault except that in these two cases all the subsequent instructions

would be effected by error because of the persistent nature of the faults.

3.1 Error Propagation in Pipelined Circuits 53

We saw that the error latency depends on the number of stages the error traverses before

becoming observable. In deep pipeline (with a greater number of dependent steps), and an error

detection mechanism at the output of the long chain a deep rollback-recovery would be needed to

tolerate the error effects. These deep rollbacks have a significant impact on circuit performance

specially in high error rate environments and are considered an overkill solution for error recovery.

3.1.2 Nonlinear Pipeline

The presence of feedback and feed-forward signals give a pipeline its nonlinear nature. These

"loosely-bounded" signals between stages are commonly found in microprocessor pipelines for

functions like register write-back, program counter iterations, branch addressing, datapath control

signaling etc. Furthermore, the number of these signals increase if the microprocessor also incor-

porates advanced features like hazard detection and data-forwarding [97]. These advanced features

are intended to improve performance by increasing hardware resource utilization. However, they

change the error propagation behavior of the pipeline.

Figure 3.1b gives an example of error propagation in a nonlinear pipeline shown in Figure 3.2a.

Note that a feedback connection is shown that transverse form Stage B to Stage A. Consider

a case in which a transient fault occurring in Stage A during Cycle 1 causes erroneous data to

be captured in Pipeline Register A, represented by inst2* label during Cycle 2. This error not

only effects the computation in Stage B, but it also propagates back to Stage A CL through the

feedback connection. Thus both the pipeline registers hold erroneous data at the next capture

edge, represented by inst3* and inst2* labels during Cycle 3 in Figure 3.2b. Finally, during Cycle

4 and Cycle5 the error manifests at the output.

Here we saw that in non-linear pipelines the error effects may not remain confined within the

faulty stage during one clock period but can propagate to other stages through pipeline feedback

and feed-forward connection. This property of nonlinear pipelines makes error detection and

making reconfiguration decisions a non trivial task.

3.1.3 Pipeline with Memory Interface

Memories in datapaths also change the error propagation dynamics of the pipeline. Figure 3.3a

shows an example of pipeline containing an asynchronous memory and Figure 3.3b demonstrates

the behavior of this pipeline in presence of a transient fault. This example considers a case in

which a memory write instruction represented by inst2(Wr) label stores data in memory during

Cycle 3 and a read instruction reads the same data at during Cycle 5 represented by inst4(Rd) label.

Furthermore, it assumes a transient fault corrupts the data to be stored in memory in Cycle 2 and

54 Pipelined Hybrid Fault Tolerant Architecture

Stage A

CL

P
ip

e
lin

e
 R

e
g
is

te
r

Stage B

CL

P
ip

e
lin

e
 R

e
g
is

te
r

A

P
ip

e
lin

e
 R

e
g
is

te
r

B

Stage C

CL

P
ip

e
lin

e
 R

e
g
is

te
r

C

Stage A Stage B Stage C

CLK

OA OB OC

(a) Nonlinear Pipeline

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 CLK

OA Inst1 Inst2* Inst3*

OB Inst1 Inst2* Inst3*

OC Inst1 Inst2* Inst3*

Error appears

at output

Transient Fault

in Stage A CL

(b) Time plot of transient error propagation in Nonlinear Pipeline

Fig. 3.2: Example transient error propagation in Nonlinear Pipeline

during Cycle 3 the erroneous data becomes latent inside the memory and remains there until the

read instruction reads the data and it appears at the output during Cycle 6.

Memories in datapath make error detection difficult because of their inherent nature of making

error latent inside them, if a data or address anomaly occurred during write operation. No matter

how deep the rollback-recovery scheme, it cannot ensure to have a checkpoint to return back

in execution where the write operation can be repeated to tolerant the error latent in memory

unless intelligent checkpointing schemes are employed. Although these advanced checkpointing

schemes are effective in increasing the robustness of pipelines with memories, they remain a

burden on performance of such systems.

3.2 Extension of HyFT Architecture to Pipelined Structures

3.2.1 Basic Pipeline Cascading

In this section with the help of a simple example, we explain some necessary considerations

and work through the problem of extending HyFT architecture to make it applicable to simple

pipelined circuits.

In Section 2.2.7, we discussed the non-pipelined implementation of HyFT architecture for

stand-alone circuits. Now consider two such hardened stages cascaded together to form a two-

3.2 Extension of HyFT Architecture to Pipelined Structures 55

Stage A

CL

P
ip

e
lin

e
 R

e
g
is

te
r

Stage B

CL

P
ip

e
lin

e
 R

e
g
is

te
r

A

P
ip

e
lin

e
 R

e
g
is

te
r

B

Stage C

CL

P
ip

e
lin

e
 R

e
g
is

te
r

C

Stage A Stage B Stage C

CLK

A
sy

n
ch

ro
n

o
u

s

M
e

m
o

ry

OA OB OC

(a) Pipeline with Memory Interface

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 CLK

OA Inst1 Inst2 (Wr)* Inst3

OB Inst1 Inst2 (Wr)* Inst3

OC Inst1 Inst2 (Wr) Inst3 Inst4 (Rd)*

Inst4 (Rd)

Inst4 (Rd)*

Error becomes

Latent

Error

Reappears

Error appears

at output
Transient Fault

in Stage A CL

(b) Time plot of transient error propagation in Pipeline with

Memory Interface

Fig. 3.3: Example transient error propagation in Pipeline with Memory Interface

stage pipeline. In order to maintain synchronization, both the stages in thus formed pipeline

should rollback in chorus when needed. This means that rollback is a centralized functionality of

the entire pipeline and can be handled by a single rollback signal generated by the control logic.

Unlike rollback, reconfiguration remains a distributed functionality because the reconfiguration

state of each stage should be maintained individually according to the error profile of that stage.

In order to incorporate a centralized rollback and distributed reconfiguration functionalities, the

new control logic for PHyFT architecture is constructed to have a block that manages centralized

functionalities like rollback and generating global error (Err_global) signal and distributed blocks

for handling distributed functionalities like reconfiguration and delayed clock generation. The

resulting structure of control logic is shown in Figure 3.4.

In the non-pipelined implementation of HyFT architecture shown in Figure 2.15a, the pseudo-

dynamic comparator is placed across a register without any roll-back capability. Since the output

register always holds a copy of data computed by the second running Combinational Logic (CL)

block, the pseudo-dynamic comparator flagged error only when there are inequalities in the two

data due to an error. In the case of cascaded stages as shown in Figure 3.4, the pipeline registers

having pseudo-dynamic comparator across them also incorporate rollback capability. This gives

rise to a problem of false error flagging during rollbacks. The problem is graphically illustrated in

56 Pipelined Hybrid Fault Tolerant Architecture

= =

Distributed

Control

Logic

In
p

u
t

R
e

g
is

te
r

CL

A3

CL

A2

CL

A1

Reconfigure_A

O
u
tp

u
t

R
e
g
is

te
r

CL

B3

CL

B2

CL

B1

Rollback

Reconfigure_B

Distributed

Control

Logic

Central

 Control

Logic

Err_B Err_A

Err_global Control Logic

DC_B DC_A

S
ta

g
e
 A

 O
u
tp

u
t

R
e
g
is

te
r

S
ta

g
e
 B

 I
n
p

u
t

R
e
g
is

te
r

Stage A Stage B

.

.

AO_A AO_B

S
O

_
A

S
O

_
B

Fig. 3.4: Pipelined HyFT Architecture

Figure 3.5. It shows a case in which a SET in stage A causes an erroneous value to be captured

in the sandwiched register. The error is detected and flagged by Err_A during Cycle 2. At the

beginning of Cycle 3 a rollback occurs in all three pipeline registers. Notice that this causes an

unintended situation in which the pseudo-dynamic comparator across the output register compares

the corrupted value corresponding to inst3 with the value corresponding to inst1. This flags a false

error during Cycle 3. This conversely trigger another rollback at the beginning of Cycle 4 and the

system enters an endless loop of rollbacks and false error flags.

The problem of false error flagging is solved by disabling the comparison in all the error free

stages for one cycle that follows error detection in one of the stages. The disabling of comparison

is realized by inserting additional logic, shown in Figure 3.6, in the distributed control logic

blocks. This additional logic masks the delayed clock signal (DC_B) if the Err_global signal is

asserted but the Err_B is not, as shown in the truth table given in Table 3.1. With this correction

in place, the timing graph for transient error correction is shown in Figure 3.7. Notice that the

disabled comparison-window of Stage B is represented by a non-shaded dotted line box.

3.2.2 Stage/CL Classification and Partitioning

Formulation of a stage-level error detection and recovery scheme for a complex pipeline needs to

consider the presence of feedback and feed-forward signals and memories because these pipeline

attributes have an impact on the error propagation behavior of the processor as seen in Section

3.1. In the next section we discuss the implications of this considerations on the design of the

3.2 Extension of HyFT Architecture to Pipelined Structures 57

False Error Flag

=

=

=

≠

≠

Cycle 1
 Cycle 2
 Cycle 3
 Cycle 4
 Cycle 5
 Cycle 6
clk

AO_B

SO_B

AO_A

SO_A

Err_A

Err_B

=

inst1
 inst2
 inst2
Inst3*
 Inst3*
 inst2

inst1
 inst2
 inst1
 inst2
 inst1
 inst2

≠

≠

≠

≠

≠

=

inst2
 inst3*
 inst2
 inst3*
 inst2

inst2
 inst3
 inst3
inst4
 inst4

inst3*

inst3

False Error Flag
 False Error Flag

False Error Flag

Fig. 3.5: False error flagging

DC_B

Err_B

Err_global

DC_Bʼ

Fig. 3.6: Additional logic to prevent false error

flagging

Table 3.1: Truth table

Inputs Output Comment

DC_B Err_B Err_global DC_B’

1 0 0 1

1 0 1 0 DC masked

1 1 0 1

1 1 1 1

PHyFT architecture. But first, in order to simplify this discussion we give following definitions

that classify the pipeline stages on the bases of aforementioned characteristics:

• Bounded stages: We classify the pipeline stages containing CL blocks that have all their

inputs and outputs bounded by a single pair of consecutive pipeline registers as shown in

Figure 3.8a, as bounded stages. A pipeline entirely made up of bounded stages forms a

linear pipeline. These type of pipelines have a simple error propagation behavior as seen in

Section 3.1.1, because an error in one stage remains confined in that stage for one clock

period time and can be detected with an error detection mechanism placed at stage level

granularity.

• Loosely-Bounded stages: The stages containing CL blocks that either generate or receive

pipeline feedback or feed-forward signals are classified as loosely-bounded stages. We

further divide them in two classes:

– Influencing stages: The stages with CL blocks that supply feedback or feed-forward

signals to CL blocks in other stages of the pipeline are classified as influencing stages.

58 Pipelined Hybrid Fault Tolerant Architecture

=

=

=

=

=

=

=

Cycle 1
 Cycle 2
 Cycle 3
 Cycle 4
 Cycle 5
 Cycle 6
clk

AO_B

SO_B

AO_A

SO_A

Err_A

Err_B

=

inst1
 inst2
 inst2
Inst3*
 Inst3
 inst4

inst1
 inst2
 inst1
 inst2
 inst3
 inst4

≠

≠

=

inst2
 inst3*
 inst2
 inst3
 inst4

inst2
 inst3
 inst3
inst4
 inst4

inst5

inst3

Comparison Disabled

Fig. 3.7: False error flagging problem solved

!"!"!"!"!"!"!"!"" !"!"!"!"!"!"!"!""

%% %%

P
ip

e
lin

e
 R

e
g

is
te

r

Bounded

CL

P
ip

e
lin

e
 R

e
g

is
te

r

(a) Bounded CL

!! !! !!

P
ip

e
lin

e
 R

e
g

is
te

r

Influenced

CL

Influencing

CL

!"!"!"!"!"!"!"!"" !"!"!"!"!"!"!"!""

P
ip

e
lin

e
 R

e
g

is
te

r

P
ip

e
lin

e
 R

e
g

is
te

r

(b) Loosely-bounded CL

!! !!

P
ip

e
lin

e
 R

e
g

is
te

r

Unbounded

CL

!!

M
e

m
o

ry

!"!"!"!"!"!"!"!"" !"!"!"!"!"!"!"!""

P
ip

e
lin

e
 R

e
g

is
te

r

(c) Unbounded CL

Fig. 3.8: CL Classification and Partitioning

An example of influencing stage is given in Figure 3.8b. These CL blocks not just

feed signals to the following pipeline register but also to other stages.

– Influenced stages: We refer stages with CL blocks that receive feedback or feed-

forward signals form CL blocks in other stages as influenced stages. Which means

that these CL blocks besides getting inputs from their preceding pipeline register also

get input signals from other stages. Figure 3.8b shows an example of influenced stage.

• Unbounded stages: This class of stages holds those with memory interface. The presence

of memory interfaces in a pipeline stages make them venerable to latent faults, even if the

memories are hardened using error detection and correction codes.

Implication of this classification on the implementation of the error detection and recovery

scheme are discussed in next subsections.

3.2 Extension of HyFT Architecture to Pipelined Structures 59

3.2.3 Dealing with Error Propagation in Nonlinear Pipeline

Error manifestation due to faults in bounded and influenced stages remain confined within the stage

itself during one clock period because of the absence of feedback or feed-forward connections

that generate from these stages. Thus, error detection mechanism at the output of these stages is

solely sufficient to detect these errors. Whereas in case of an influencing stage the fault effects

may or may not remain confined in that stage during one clock cycle, because of the asynchronous

feedback and feed-forward signals to other influenced stages. Figure 3.9 shows a hardened version

of the non-linear pipeline of Figure 3.2 using PHyFT architecture. Stage B of the pipeline is an

influencing stage indicated by the orange shaded region surrounding it. To be able to detect errors,

which are due to faults in Stage B and have manifested themselves at the output of Stage A, the

PHyFT Architecture duplicates the feedback and feed-forward signals represented by the pair of

orange dotted lines in Figure 3.9. If there were only a single set of feedback and feed-forward

signals, an error propagating through them would affect both running copies of CL block in the

influenced stage in the similar way and may result in a common-mode failure.

The stage-level reconfiguration framework for recovering from permanent faults presented

here is also based on the classification of CL discussed in Section 3.2.2. Let us assume that an

error is detected at the output of Stage A. This error can be the result of fault occurring in itself or

this error may have propagated to it through the pipeline feedback paths from Stage B. In such

case, the PHyFT architecture cannot identify which stage is actually faulty, thus all the suspected

stages (which includes Stage A and Stage B) undergo a reconfiguration. In PHyFT this is achieve

by ORing the error signals of Stage A and Stage B and using this signal as the error input of the

Stage B centralized and distributed control logic blocks as shown in control logic block of Figure

3.9. To generalize this principle of PHyFT we can say that the newly derived error signal for

each influencing stage in the pipeline will be logical OR of the error signals of all the stages it

influences.

3.2.4 Error detection in Pipeline stages with memory interface

Memories generally take a large amount of silicon area, which makes it impractical to duplicate

or triplicate them in order to improve system reliability. On the other hand their regular structure

makes error detection and correction codes like Parity and Hamming much feasible. These

methods have been in use to efficiently and effectively protect them against SEUs and permanent

faults. But that is not enough to ensure the reliability of overall system if an unprotected CL

driving the memory inputs and/or if an unprotected CL processes its outputs before being fed to

the next pipeline register. In such cases, data anomalies during write operations are especially

60 Pipelined Hybrid Fault Tolerant Architecture

!!!!

==?*

Stage A
 Stage B
 Stage C

Stage A

CL3

Stage A

CL2

Stage A

CL1

Stage B

CL1

Stage B

CL3

Stage B

CL2

!!

==?*

Stage C

CL1

Stage C

CL3

Stage C

CL2

==?*

!!

"#$%&#'(%)*!
+,-%&,.!
/,0#1!

"#$%&#'(%)*!
+,-%&,.!
/,0#1!

"#$%&#'(%)*!
+,-%&,.!
/,0#1!

Reconfigure_A
 Reconfigure_B
 Reconfigure_C

R
o

llb
a

c
k

+)-%&2.!
+,-%&,.!
/,0#1!

E
rr

_
A

E
rr

_
B

E
rr

_
C

D
C

_
A

D
C

_
B

D
C

_
C

E
rr

_
A

^B

Err_global

Control Logic

3 4$)(*,5*6-27#1!+,782&2%,&! 9 :-;()-1#-0!+/! < :-;()-1)*!+/!==>?! 4#8).#-)!@))*'21A!B#0-2.!

Fig. 3.9: Error detection and reconfiguration scheme in non-linear pipeline

difficult to detect because during write operations there is no data at the output to compare and

detect errors and such situations give rise to the number of latent faults which are even more

difficult to detect once they reappear, due to common mode effects. In the following subsections

we will see what solutions the PHyFT architecture offers to improve the robustness of pipelines

with memories.

3.2.4.1 Pipeline Stages with non-concurrent read-write access memories

Dual port memories have been previously used as a means of communication between copies of

redundant CPU [8]. In our architecture we propose a similar use of dual-port memory. In addition

3.2 Extension of HyFT Architecture to Pipelined Structures 61

!
"
#
$%
&

'(&

))*+&

,--"-&."/$-"0&&

1"23(&

&&

4/
5
#
$&
6
,
2
37
$,
-&
&

89
3$
:
&7
:
;
'
"
9
&0
;
$(
:
<&

.1=&

&

.1>&

&

.1%&

&

6,("/?2#-,&

&&

6"00@;(A&

B
#
$5
#
$&
6
,
2
37
$,
-&

C
#
;
0D
!
"
-$
E&
F
-3
$,
D

G
-;
/
75
;
-,
/
$&
H
,
I
"
-J
&

!3/K&

!3/%&

L&

!"#$K&

Fig. 3.10: HyFT hardening of pipeline stage with asynchronous non-concurrent read-write access

memory.

to that, memories are described in VHDL to have write-transparency property. This property

makes the memory latch to be transparent during write operations which means that if a memory

location is being updated as a result of a write operation, the data that is being written into the

memory location appears on the data output bus as well [8]. The use of dual-port write transparent

memory allows propagating any error occurring in one of the two working copies of CL driving

the memory, to the following pipeline register where they can be detected by the comparator. Read

operations are by nature transparent so there is no need to take them into special consideration.

An example of the use of dual-port write-transparent memory can be seen in Figure 3.10. The two

input ports of the memory, which are labeled as Pin0 and Pin1 are supplied with memory data and

control signals from the two running CL copies. The two output ports labeled as Pout0 and Pout1

feed the pipeline register and the pseudo-dynamic comparator respectively. However, the address

bus comes directly from the preceding pipeline register and is assumed to be error-free because in

the scope of this thesis we do not deal with the errors caused due to faults occurring in memory

elements.

To evaluate the cost in terms of area, power and performance of the implementing write-

transparency property and adding a port to a memory, we synthesized VHDL instances of a small

memory block of 512 bytes using 45nm technology [67], with and without the write-transparency

and dual-port features. The resulting area, average power and access time estimates are given in

Table 3.2. The estimates show that the area overhead associated with these additional features is

3.94% of the original memory with a average power overhead of 13.9%. However, through STA

we found that there is no impact of these additional features on the access time of the memory.

One limitation associated with this memory modification is that it can only tolerate errors

on data and partially on the control buses of the memory. Anomalies on address bus can not be

62 Pipelined Hybrid Fault Tolerant Architecture

Table 3.2: Area and power results of write-transparency dual-port memory

Memory
Area Avg. Power Access time

absolute (µm2) %. increase absolute (mW) %. increase absolute (ns)

Baseline 16461 - 0.244 - 1.12

Dual-port write-transparent 17110 3.94% 0.278 13.9% 1.12

detected because there is no possible way to make memory transparent for address data. Further-

more, it is important to note here that, since a transparent write operation can not concurrently

coexist with a read operation, the applicability of this approach is only limited to memories

without simultaneous read-write operations. Therefore, in the following subsection we detail the

architectural modifications to be able to detect error in pipeline stages with concurrent read-write

memories regardless of the error location.

3.2.4.2 Pipeline Stages with simultaneous read-write access memory

For the memories that do not allow write-transparency feature, we propose a simple solution to

the problem of detecting errors at the memory inputs. It involves placing an additional set of

pipeline register and a pseudo-dynamic comparator on the input ports of the memory. The scheme

is illustrated by the example implementation in Figure 3.11, were a simultaneous read-write

access synchronous memory is protected against error due to fault arising in the CL blocks that

drive its inputs. The additional pipeline register is placed on the memory input coming from the

first running CL block and the pseudo-dynamic comparator is anchored on to the signals from

secondary running CL copy. These additional components are shaded in grey color in Figure 3.11

for easy identification. At each capture edge the additional pipeline register stores the data at the

inputs of the memory and during the comparison-window the pseudo-dynamic comparator check

for any inequalities in the stored data and the one generated by the secondary running copy. In the

case of mismatch the pseudo-dynamic comparator reports error to the centralized control logic,

which in turn initiates a rollback and the memory operation is repeated. Notice that there is no

need of having a shadow latch array with the additional pipeline register because the additional

register does not play any roll in the pipeline data path and thus does not need to rollback.

Unlike the previous solution, this method is based on detecting error right at the input of

memory blocks instead of relying on comparison of data propagated through the memory. It can

also detect error on the address bus of the memory.

3.3 Case Study: Fault Tolerant Microprocessor 63

!
""
#
$
%

&
'(

)
*+
,
-
.
/
)
0%
".
,
1
2

3
"'
+.
%,
44
.
00
%5

.
(
/
"6
%

7
8
#
7
%

&
8
#
7
%

9:#7%

;;<=%

!
""
#
7
%

%>6?@%:/-+"/*%A/B'4%

%%

C-
D
)
+%
E
.
B
'0
+.
"%
%

F3
'+
G
%0
G
,
1
/
3
%*
,
+4
G
H%

:AI%

%

:AJ%

%

:AK%

%

E.4/-LB)".%

%%

E/**M,4N%

8
)
+D
)
+%
E
.
B
'0
+.
"%

%%

O
'D
.
*'
-
.
%E
.
B
'0
+.
"%

;;<=%

:AI%

%

:AJ%

%

:AK%

%

E.4/-LB)".%

9:#$%

Stage A
 Stage B

Fig. 3.11: HyFT hardening of pipeline stage with synchronous simultaneous read-write access

memory.

3.3 Case Study: Fault Tolerant Microprocessor

The PHyFT architecture was implemented on a MIPS microprocessor with the objective to assess

it with respect to area, power and performance overheads and its fault-tolerant capability and

to compare it with a classical TMR scheme with bit-wise voter (TMR-b) and a TMR scheme

that uses word-wise voter (TMR-w). Area estimations were obtained for five different versions

of the microprocessor namely Baseline (BL), Hybrid Transient Fault Tolerant (HyTFT), Hybrid

Transient and Permanent Fault Tolerant (HyTPFT), TMR-b and TMR-w by synthesizing them

with a 45nm technology library [67]. A simple workload program (provided in Appendix A)

that uses add-shift method to multiply two operands was used to obtain switching activity for

each microprocessor version and using this activity, estimates of average power consumption

were obtained. The fault-injection framework discussed in Section 2.3.3 was employed to

comprehensively evaluate the fault-tolerant capability of the microprocessors against transient,

permanent faults and timing faults. Details of the five different versions of microprocessor are

given in subsequent subsections.

64 Pipelined Hybrid Fault Tolerant Architecture

Table 3.3: Baseline microprocessor specifications

Parameter Value

Data bus width 32-Bits

CPU register size 32-Bits

No. CPU registers 32

Max. data memory 16384 MB

Max. instruction memory 16384 MB

Clock frequency 100 MHz

No. of logic cells 110995

No. of flipflops 7380

3.3.1 BL Microprocessor

The microprocessor used as our case-study platform is a 5-stage MIPS processor. It incorporates

hazard-detection and data-forwarding mechanisms. The microprocessor was developed as an

academic learning exercise without considering any fault-tolerance capability. Some definite

specifications of the baseline microprocessor are given in Table 3.3.

A simplified block diagram of the BL microprocessor is shown in Figure 3.12. The datapath

is divided into five pipeline stages namely; Instruction Fetch (IF) stage, Instruction Decode (ID)

stage, Execution (EXE) stage, Memory (MEM) stage and Write-back (WB) stage with their

corresponding CL blocks, separated by five pipeline registers labeled as 1 . The microprocessor

incorporates three memory blocks, which include the asynchronous instruction memory labeled

as 2 , synchronous read-write access register-file with simultaneous read-write access labeled as

3 and synchronous data memory labeled as 4 .

All the signals shown in Figure 3.12 are multiple bits signals and single bit signals like clock

and other control signals are not shown for simplicity. There are some feedback signals like next

instruction address signals labeled as 5 , branch address signals labeled as 6 , wirte-back signals

labeled as 7 and data-forwarding signals labeled as 8 . The datapath control logic is included in

ID CL, which generates more feedback and feed-forward signals not shown in Figure 3.12 for the

sake of simplicity.

It can also be noticed that the CL blocks are surrounded by regions of different colors. These

colored regions represent the type of each CL according to the classification given in Section

3.2.2. The CL blocks surrounded by regions shaded in blue are classified as influenced, as they

receive feedback signals from other influencing stages. For example, IF stage gets branch address

signals from ID stage. This makes the IF stage an influenced stage and ID stage an Influencing

stage represented by the orange shaded region around it. At the same time the ID stage is also

an influenced stage because if recieves Write-back signals from the WB stage. EXE and MEM

stages are also influenced by WB stage. Furthermore the MEM and WB stages are unbounded

3.3 Case Study: Fault Tolerant Microprocessor 65

!  ""

""

!  ""

""

!  ""

""

!  ""

""

!  ""

"" #  ""

$  ""

%  ""

&  ""
'  "" (  ""

)  ""

! *+,-.+/-"0-1+23-42""
# 526/7849/9:2";/234:7<9/"=->946"
% ;/?:-/7+/1"@A"

% B6/7849/9:2"0-1+23-4"C+.-""
$ 526/7849/9:2"DE3E"=->946"
& ;/?:-/7-F"@A"

( "G4+3-HIE7J"B+1/E.2"
) DE3E"C94KE4F+/1"B+1/E."

& L-M3";/234:7<9/"5FF4-22"B+1/E."
' N4E/78"5FF4-22"B+1/E."
( O/I9:/F-F"@A"

;D"
@A"

PQP"
@A"

=P="
@A"

GN"
@A"

;C"
@A"

;/234:7<9/"C-378"R;CS"
B3E1-"

;/234:7<9/"D-79F-"R;DS"
B3E1-" PM-7:<9/"RPQPS"B3E1-" =->946"R=P=S"B3E1-"

G4+3-HNE7J"RGNS"
B3E1-"

Fig. 3.12: Baseline Microprocessor

stages, because they generate signals that go to the asynchronous data memory and synchronous

register-file respectively.

3.3.2 HyTFT Microprocessor

In Section 2.2.7 we discussed the duplication and comparison based HyTFT architecture capable

of tolerating the effects of transient faults and detecting permanent and timing errors in stand-alone

circuits. Later in Section 3.2 we formulated the principles of PHyFT architecture to extend the

usability of HyFT architecture to complex pipeline circuits. Utilizing these principles we realized

the HyTFT microprocessor, represented by a simplified block diagram in Figure 3.13.

!  ""

""

!  ""

""

!  ""

""

!  ""

""

!  ""

""

##$%" ##$%"
##$%"##$%"

&  ""

'  ""

(  "")  ""

*  ""
+  ""

+  ""

'  ""

,  ""

,  ""

-."
/01"

-."
/02"

343"
/01"

343"
/02"

535"
/01"

535"
/02"

67"
/02"

67"
/01"

-8"
/02"

-8"
/01"

! 9:;<=:><"?<@:AB<CA""
& ->ABCDEFG>"5<HGCI"
J "9A<DKGLKI>MH:E"/GH;MCMBGC"
"

) NI>EOCG>GDA".DM=LC<MK"?<@:AB<CA"8:=<""
( .DM=L;GCB"PAI>EOCG>GDA".MBM"5<HGCI"
* ->QD<>E:>@"/0"

' "6C:B<LRMES"N:@>M=A"
, .MBM"8GCTMCK:>@"N:@>M="
11  U>RGD>K<K"/0"

* V<WB"->ABCDEFG>"PKKC<AA"N:@>M="
+ 7CM>EO"PKKC<AA"N:@>M="
* ->QD<>E<K"/0"

->ABCDEFG>"8<BEO"X-8Y"
NBM@<"

->ABCDEFG>".<EGK<"X-.Y"
NBM@<" 3W<EDFG>"X343Y"NBM@<" 5<HGCI"X535Y"NBM@<"

6C:B<"7MES"X67Y"
NBM@<"

##$%"

%"

##$%"

!  ""

""

Fig. 3.13: HyTFT Microprocessor

66 Pipelined Hybrid Fault Tolerant Architecture

It can be noticed that not only the CL blocks in each stage, but also the pipeline feedback

signals are duplicated. The feedback connection duplication allows the detection of errors that

propagate through these feedback connection from influencing stages to influenced stages as

distinguished by orange and blue shaded regions respectively in Figure 3.13.

A practical utilization of a dual-port write transparent memory can be seen in the MEM stage

of the HyTFT microprocessor. The block labeled as 6 represents the asynchronous data memory

with two ports and incorporated write transparency property. Any transient, permanent or timing

faults occurring in the unbounded MEM stage that could potentially become latent in memory

can be detected by the following pseudo-dynamic comparator.

As discussed in Section 3.2.4, in order to detect errors on the synchronous memory interface

we placed an additional set of pipeline register and a pseudo-dynamic comparator on the signals

that go from the unbounded WB stage to the synchronous register-file, the block labeled as 5 .

Unlike the asynchronous data memory and the synchronous register-file, the asynchronous

instruction memory gets its inputs from a pipeline register and not form a CL block. Since the

context of this thesis does not encompasses the problem of SEUs caused due to faults in flip-flops,

we do not employ any special technique to protect the asynchronous instruction memory from

such problems.

3.3.3 HyTPFT Microprocessor

Starting with the BL microprocessor, the Hybrid Transient and Permanent Fault Tolerant (HyTPFT)

microprocessor was realized by triplicating CL blocks, duplicating feedback and feed-forward

signals, inserting reconfiguration switches, modifying pipeline registers to incorporate rollback

capability and by adding pseudo-dynamic comparators and acHyTPFT control logic blocks. An

architectural overview of the resulting structure is shown in Figure 3.14. Clouds represent CL

between pipeline registers. Three different memories are embedded in the microprocessor struc-

ture which are instruction memory, register-file and data memory. It can be seen that the data

memory has two ports and thanks to its write transparency, any fault in the MEM stage CL block

can be detected by the following comparator as elaborated in Section 3.2.4. It can also be noticed

in Figure 3.14 that an additional set of pipeline register and comparator is placed after the WB

stage. These additional components are there to detect errors on write-back signals feeding the

simultaneous read-write access synchronous register file memory as we saw in Section 3.2.4.2.

3.3 Case Study: Fault Tolerant Microprocessor 67

!  ""

""

!  ""

""

!  ""

""

!  ""

""

!  ""

""

!  ""

""

 
 
 
 
 
  
 
 
 
 

 

IF

CL3

IF

CL2

IF

CL1

ID

CL3

ID

CL2

ID

CL1

EXE

CL3

EXE

CL2

EXE

CL1

WB

CL3

WB

CL2

WB

CL1

MEM

CL3

MEM

CL2

MEM

CL1

 
 

 

 

 

 

 

 

 

==?*
 ==?*
 ==?*
==?*

Instruction Fetch (IF)
Stage

Instruction Decode (ID)
Stage
 Execution (EXE) Stage
 Memory (MEM) Stage

Write-Back (WB) Stage

==?*

! #$%&'$(&")&*$+,&-+""
. /(+,-0123("4&53-6"
7 8&50'2%'&9&-"
: "#+&0;3<;6(=5$1">35%=-=,3-"
"

: 40'2%'&9&-"
? @6(1A-3(30+"80='<-&=;")&*$+,&-+"B$'&""
C 80='<%3-,"D+6(1A-3(30+"8=,="4&53-6"
E /(F0&(1$(*">G"

H "I-$,&<J=1K"@$*(='+"
L 8=,="B3-M=-;$(*"@$*(='"
NN  O(J30(;&;">G"
"

E P&9,"/(+,-0123("D;;-&++"@$*(='"
Q R-=(1A"D;;-&++"@$*(='"
E /(F0&(1&;">G"
"SSTU"

Fig. 3.14: HyTPFT Microprocessor

3.3.4 TMR-b Microprocessor

The TMR-b microprocessor is realized by triplicating the CL blocks in each stage of the pipeline

and using a bit-wise voter that selects one CL output, which has at least one common equivalent,

to be feed to the next pipeline register. The resulting scheme is represented by the simplified block

diagram of Figure 3.15. In this way, each stage is dealt within its scope irrespective of its type

(i.e. bounded, influencing, influenced or unbounded). In case of unbounded stages, since the voter

masks all the types of error before they can potentially be stored in the memory, there is no need

to use special memories to detect errors at the input of the memories.

3.3.5 TMR-w Microprocessor

The TMR-w microprocessor also has the same architecture as of TMR-b, shown in Figure 3.15.

The only difference is the type of voter used. TMR-w microprocessor uses a word-wise voter that

makes the voting decision based on the equivalence of entire words instead of individual bits. The

word-wise voter has an additional output error which turns to logic-1 if the vote is impossible (i.e.

no equivalent couple of input words exists).

3.3.6 Experimental Results

Experimental results in terms of area, power, fault tolerant capability and performance were

obtained by first preparing Register Transfer Level (RTL) models of the five microprocessors

68 Pipelined Hybrid Fault Tolerant Architecture

 

 

 

 

 

 

Instruction Fetch (IF)
Stage

Instruction Decode (ID)
Stage
 Execution (EXE) Stage
 Memory (MEM) Stage

Write-Back (WB)
Stage

! "#$%&#'%()%*#+,%-+((
. /'+,-0123'(4%53-6(
7 4893-#,6(:3,%-+(

7 ;6'1<-3'30+()%*#+,%-+(=#&%((
> ?08&@$3-,(A+6'1<-3'30+(?8,8(4%53-6(

B (C-#,%@D81E(;#*'8&+(
F ?8,8(=3-G8-H#'*(;#*'8&(

I J%K,(/'+,-0123'(AHH-%++(;#*'8&(
L M-8'1<(AHH-%++(;#*'8&(

!  ((

((

!  ((

((

!  ((!  ((

((

!  ((

((((

 

:(:(:(

:(

IF

CL3

IF

CL2

IF

CL1

ID

CL2

ID

CL3

ID

CL1

EXE

CL3

EXE

CL2

EXE

CL1

WB

CL2

WB

CL3

WB

CL1

MEM

CL3

MEM

CL2

MEM

CL1

:(:(

Fig. 3.15: TMR-b and TMR-w Microprocessor

Table 3.4: Fault injection parameters

Parameter Transient faults Permanent fault Timing fault

Fault model Temporary Stuck-at Stuck-at Interconnect-delay

Injection duration range 0.25 ns - 1.25 ns (Constrained random) - -

Timing error range - - 2 ns - 6 ns (Constrained random)

No. of injections 10,000

Simulation duration 510 ns (per injection)

Workload Add-shift multiplication program (Provided in Appendix A)

Fault location constraint CL blocks (Constrained random)

Injection time range 50 ns - 420 ns (Constrained random)

Injection type Single fault

version discussed in previous subsections. These models were then synthesized hierarchically

using Synopsys® Design Compiler with a 45nm technology library [67]. The area estimates were

obtained from the synthesized gate-level design models and the average power estimates were

obtained from back-annotated gate-level simulations of workload program (Provided in Appendix

A) that multiply two 16-bit operands using shift-add method. The fault injection framework

discussed in Section 2.3.3 was used to perform transient, permanent and timing fault injection

experiments with parameters given in Table 4.5a. Fault tolerance capability and performance

overhead results were deduced from the fault injection results.

3.3.6.1 Area Overhead

The area overhead figures obtained for the five microprocessors are given in Table 3.5 along with

the individual share of each component making up the microprocessor. The first column lists

3.3 Case Study: Fault Tolerant Microprocessor 69

these design components and the subsequent columns give the absolute value of area and also the

percentage share of each component in comparison with the corresponding component in the BL

microprocessor. Most of the components show obvious amounts of increase when compared with

BL for example, the CL blocks of HyTFT microprocessor are twice as large as those of the BL.

The rest of the microprocessor versions employ triplication and thus, their CL blocks consume

three times in comparison with BL.

Besides the CL blocks HyFT microprocessors have memories that consume 102% area of that

of BL. This increased area is accounted to the dual-port write-transparency feature of the data

memory in HyFT microprocessors. This area share is 100% for the two TMR microprocessors

because they do not employ these features in their data memory. The HyFT microprocessors not

only incorporate shadow latch arrays in their pipeline register but also use an additional pipeline

register for error detection at the inputs of the synchronous simultaneous read-write access register

file memory, therefore the area occupied by their pipeline registers is estimated to be 216% with

respect to the pipeline registers in BL, TMR-b and TMR-w microprocessors.

7
0

P
ip

elin
ed

H
y

b
rid

F
au

lt
T

o
leran

t
A

rch
itectu

re

Table 3.5: Area overhead results

BL HyTFT HyTPFT TMR-b TMR-w

A
re

a
(µ

m
2
)

A
re

a
(µ

m
2
)

%
.

o
f

B
L

(%
)

A
re

a
(µ

m
2
)

%
.

o
f

B
L

(%
)

A
re

a
(µ

m
2
)

%
.

o
f

B
L

(%
)

A
re

a
(µ

m
2
)

%
.

o
f

B
L

(%
)

Memory 26400 27039 102 27039 102 26333 100 26333 100

Pipeline Registers 2573 5548 216 5547 216 2574 100 2574 100

IF CL Blocks 4490 8980 200 13470 300 13470 300 13470 300

ID CL Blocks 6764 13528 200 20291 300 20291 300 20291 300

EXE CL Blocks 7434 14868 200 22203 300 22203 300 22203 300

MEM CL Blocks 1210 2420 200 3630 300 3630 300 3630 300

WB CL Blocks 1397 2794 200 4190 300 4190 300 4190 300

HyTFT Ctrl. Logic - 237 - - - - - - -

HyTPFT Ctrl. Logic - - - 727 - - - - -

Pseudo-dyn. Comparator - 273 - 272 - - - - -

Voter-b - - - - - 1538 - - -

Voter-w - - - - - - - 3065 -

HyTPFT Mux. & Demux. - - - 4758 - - - - -

Total 50268 µm2 75686 µm2 151% 102127 µm2 203% 94229 µm2 187% 95756 µm2 190%

3.3 Case Study: Fault Tolerant Microprocessor 71

Table 3.5 also gives the area occupied by some components that are associated with one

architecture only. Among these, an important figure to be compared between the four fault tolerant

microprocessors is the area of their error detection hardware. We can see that the area of the

pseudo-dynamic comparators is only 273 µm2, which is significantly less than the area of bit-wise

voters and word-wise voters, which are 1538 µm2 and 3065 µm2 respectively.

The last row of Table 3.5 gives the total area figures and their percentage with respect to the

total area of the BL microprocessor. According to these figures the most efficient candidate in

terms of area is the HyTFT microprocessor. But its fault tolerance capability is limited to transient

faults only. TMR-b and TMR-w microprocessors have area that is 187% and 190% of the BL

microprocessors respectively. The most area consuming candidate is HyTPFT microprocessor

which stands at 203% of the area of our reference microprocessor.

Figure 3.16 gives a summary of overhead cost in terms of area. The height of each bar

represent the total area of each microprocessor version. In each bar different colored regions

represent the area occupied by individual components of the microprocessor. On the top, the total

area in µm2 is reported. The area overhead of HyTPFT microprocessor is 103% with respect to

the BL microprocessor. This area is less than three times, since only the CL parts are triplicated

in comparison with the basic approach [27], triplicating the entire microprocessor structure

(including the memory). The TMR microprocessor versions incur lesser area overhead of 87%

and 90% respectively for TMR-b and TMR-w. In comparison with HyTPFT this reduction is

mainly due to the absence of reconfiguration multiplexers and demultiplexers and rollback shadow

latches.

3.3.6.2 Power Overhead

Table 3.6 shows the power consumption results with a similar emplacement of area figures as in

Table 3.5. Starting with the power consumption of memory, we see that the HyFT microprocessor

versions consume slightly over than the memories in BL and TMR microprocessors, which is

due to the write-transparency and secondary additional port of data memory. The HyFT pipeline

registers, which on one hand occupy 216% area, consume 328% of power with respect of BL

pipeline registers. This difference of increase rate is due to the fact that, incorporating shadow

latches increase the switching activity in pipeline register with a larger ratio than the increase in

area. Therefore we see a significant increase in power consumption of pipeline registers in HyFT

microprocessors.

The power consumption in the TMR microprocessors CL blocks is close to three times of

that of BL microprocessor. But in the case of HyTFT and HyTPFT this figure is slightly more

that twice of that of BL CL blocks. The power consumption in HyFT CL blocks is due to the

72 Pipelined Hybrid Fault Tolerant Architecture

(a) 1.02(a) 1.02(a) (a) (a)

(b)
2.16(b) 2.16(b)

(b) (b)
(c)

2(c)
3(c)

3(c) 3(c) (d)

2(d)

3(d)

3(d) 3(d)

(e)

2(e)

3(e)

3(e) 3(e)

(f)

2(f)

3(f)

3(f) 3(f)

(g)

2(g)

3(g)
3(g) 3(g)

k=5.6(j)

(j)

(j)

(h)

(i)

(m)

l=11.2(j)

0

20000

40000

60000

80000

100000

120000

BL HyTFT HyTPFT TMR-b TMR -w

A
re

a
 (

µ
m

2
)

(m) HyTPFT MUX and Demux

(l) Voters-w

(k) Voters-b

(j) Pseudo-dynamic Comparators

(i)HyTPFT Control Logic

(h)HyTFT Control Logic

(g) WB CL Blocks

(f) MEM CL Blocks

(e) EX CL Blocks

(d) ID CL Blocks

(c) IF CL Blocks

(b) Pipeline Registers

(a) Memory

50268

75686

102127

94229
95756

(n)

(o)

50.6%

of (o)

or

106.5%

of (n)

103.2%

of (o)

or

217.3%

of (n)

87.4%

of (o)

or

184.2%

of (n)

90.5%

of (o)

or

190.6%

of (n)

(p)

8.4%

of (p)

Fig. 3.16: Area overhead results summary

static and dynamic components of power in the two active CL blocks per stage plus the static

component of power consumption of the stand-by CL block in each stage. The table shows that the

pseudo-dynamic comparators consume significantly lower than the TMR-b and TMR-w voters.

Figure 3.17 gives the summary of estimations of average power consumption for different

versions of the microprocessor. In each bar different shaded regions represent the power con-

sumption share of different components of microprocessors. On the top the total average power in

mW dissipated by each microprocessor version is reported. The power consumption overhead of

HyTPFT microprocessor is 105% with respect to BL. This power is 11.6% and 11.8% less than

that consumed by the TMR-b and TMR-w versions respectively.

3
.3

C
ase

S
tu

d
y

:
F

au
lt

T
o

leran
t

M
icro

p
ro

cesso
r

7
3

Table 3.6: Power overhead results

BL HyTFT HyTPFT TMR-b TMR-w

A
v
g
.

P
o
w

er
(m

W
)

A
v
g
.

P
o
w

er
(m

W
)

%
.

o
f

B
L

(%
)

A
v
g
.

P
o
w

er
(m

W
)

%
.

o
f

B
L

(%
)

A
v
g
.

P
o
w

er
(m

W
)

%
.

o
f

B
L

(%
)

A
v
g
.

P
o
w

er
(m

W
)

%
.

o
f

B
L

(%
)

Memory 1.319 1.329 101 1.329 101 1.324 100 1.324 100

Pipeline Registers 0.306 1.005 328 1.005 328 0.316 103 0.316 103

IF CL Blocks 1.382 2.719 197 2.935 212 4.145 300 4.145 300

ID CL Blocks 0.958 1.880 196 2.077 217 2.873 300 2.883 301

EXE CL Blocks 0.463 0.944 204 1.117 241 1.410 305 1.410 305

MEM CL Blocks 0.077 0.152 197 0.200 260 0.230 299 0.230 299

WB CL Blocks 0.192 0.422 220 0.449 234 0.579 302 0.582 303

HyTFT Ctrl. Logic - 0.355 - - - - - - -

HyTPFT Ctrl. Logic - - - 0.376 - - - - -

Pseudo-dyn. Comparator - 0.026 - 0.026 - - - - -

Voter-b - - - - - 0.037 - - -

Voter-w - - - - - - - 0.040 -

HyTPFT Mux. & Demux. - - - 0.117 - - - - -

Total 4.697 mW 8.832 mW 188% 9.631 mW 205% 10.900 mW 232% 10.921 mW 233%

74 Pipelined Hybrid Fault Tolerant Architecture

(a) 1.01(a) 1.01(a) (a) (a)

(b)
3.28(b) 3.28(b)

(b) (b)

(c)

1.96(c) 2.12(c) 3(c) 3(c)
(d)

1.96(d)
2.16(d)

3(d) 3(d)

(e)

2.04(e)

2.41(e)

3(e) 3(e)

(f)

1.97(f)

2.59(f)

3(f) 3(f)

(g)

2.19(g)

2.34(g)

3(g) 3(g)

(h)

i=1.05(h)

(j)

(j)

k=1.42(j) l=1.54(j)

(m)

0.000

2.000

4.000

6.000

8.000

10.000

12.000

BL HyTFT HyTPFT TMR-b TMR-w

A
v

e
ra

g
e

 P
o

w
e

r
(m

W
)

(m) HyTMFT Mux and Demux

(l) Voters-w

(k) Voters-b

(j) Pseudo-dynamic Comparators

(i) HyTPFT Control Logic

(h) HyTFT Control Logic

(g) WB CL Blocks

(f) MEM CL Blocks

(e) EX CL Blocks

(d) ID CL Blocks

(c) IF CL Blocks

(b) Pipeline Registers

(a) Memory

4.70

8.83

9.631

10.901 10.922

(n)

(o)

88.0%

of (o)

or

122.4%

of (n)

105.0%

of (o)

or

146.0%

of (n)

132.0%

of (o)

or

183.6%

of (n)

132.5%

of (o)

or

184.2%

of (n)

(p)

11.6%

of (p)

Fig. 3.17: Power overhead results summary

3.3.6.3 Fault Tolerant Capability

The results of fault tolerance capability, the key merit for comparison of the four considered

fault tolerant architectures, are presented in this section. Figures 3.18, 3.19 and 3.20 show the

transient, permanent and timing fault-injection results respectively for the five different versions

of microprocessor. The bar charts in these figures represent the population distribution of injected

faults according to the categories discussed in Section 3.3.6.3 on the basis of their outcome. The

bars of each color represent a fault class and the their height represent the number of faults found

to fall in that fault category on a logarithmic scale. On the top of each bar, the percentage share of

the number of faults in the corresponding fault class in the total of 10,000 injected faults is given.

The table attached at the bottom of the bar chart gives the exact number of faults found to fall in

each category.

Now if we focus on the transient fault injection results shown in Figure 3.18, we can see that in

the case of BL microprocessor out of 10,000 injected transient faults 112 and 105 faults resulted in

failt-silent and latent outcomes respectively which collectively makes 2.17% of the total injected

faults. These faults critically affected the computation of BL microprocessor. Whereas 0.3% of

the faults could not be classified and 97.53 % of the injected faults had no effect on the program

3.3 Case Study: Fault Tolerant Microprocessor 75

!"# $%&'&# $%&('&# &)*+,# &)*+-#

./0123#'45036# 789:# 7;<=# 7<:># ?;@;;;# 7789#

A2B131CD/21B#'45036# :;# =<# :8# ;# 7#

EFCC1G31B#'45036# ;# 7:=# 8<8# ;# ;#

&/D1+F53#'45036# ;# ;# ;# ;# ;#

'4/0+./0123#'45036# ??<# ;# ;# ;# ?7#

"43123#'45036# ?;9# ;# ;# ;# ?9#

78H9:I# 7;H<=I# 7<H:>I# ?;;I# 77H89I#

;H:;I#
;H=<I# ;H:8I#

;H;7I#

7H:=I#
8H<8I#

?H?<I#

;H?7I#

?H;9I#

;H?9I#

?#

?;#

?;;#

?;;;#

?;;;;#

!
"
#$
"
%$
&
'
(
)
*
+,
)
-$
.
(
/
0-
*
$

Fig. 3.18: Transient fault injection results

execution nor on the results. This percentage drops down to 90.24% and 92.36% in the case of

HyTFT and HyTPFT microprocessors respectively but this drop is compensated by the rise in

corrected faults to 9.34% and 7.27% in HyTFT and HyTPFT microprocessors respectively, as

both the categories represent faults that do not cause an incorrect operation nor erroneous result.

Unlike BL microprocessor, HyTFT and HyTPFT microprocessors did not undergo any critical

failures. However, because of the absence of a discretely observable error flag that can be captured

on periodic intervals equivalent to the time period of operation, in TMR-b and TMR-w voters, it

is impossible to distinguish between the silent and corrected faults. Thus both of these type of

faults are kept in the category of silent faults. An important observation that can be made from

the results of TMR-w microprocessor is the presence of 0.19% and 0.15% of fail-silent and latent

faults respectively. This suggests that among the four fault tolerant microprocessors TMR-w is

least effective in dealing with transient faults.

The severity of the impact of permanent faults on the baseline microprocessor is evident from

the high number of faults falling into the category of fail-silent and latent as shown in graph

of Figure 3.19. HyTPFT and TMR-b seem to have dealt well with the situations of permanent

faults by having none of the faults falling in the category of critical faults. The incorporation of

TMR-w architecture in the BL microprocessor seems to have reduced the number of critical failure

76 Pipelined Hybrid Fault Tolerant Architecture

!"# $%&'&# $%&('&# &)*+,# &)*+-#

./0123#'45036# 789:# 779;# <=7># 98?888# ;<=:#

@2A131BC/21A#'45036# 9=# 9;# 79# 8# 9:#

DEBB1F31A#'45036# 8# 8# G:G9# 8# 8#

&/C1+E53#'45036# 8# HH=7# 8# 8# 8#

'4/0+./0123#'45036# =9><# 8# 8# 8# 7H9#

"43123#'45036# 9H>H# 8# 8# 8# 7G:#

78I9:J# 77I9;J#

<=I7>J#

988J# ;<I=:J#

8I9=J#
8I9;J# 8I79J#

8I9:J#

G:IG9J#
HHI=7J#

=9I><J#

7IH9J#

9HI>HJ#

7IG:J#

9#

98#

988#

9888#

98888#

!
"
#$
"
%$
&
'
(
)
'
*
'
*
+$
,
-
.
/+
0
$

Fig. 3.19: Permanent fault injection results

!"# $%&'&# $%&('&# &)*+,# &)*+-#

./0123#'45036# 789:# 787;# 77:9# <=>===# 778;#

?2@131AB/21@#'45036# <=# C# D# =# <#

EFAA1G31@#'45036# =# 8;# 9=# =# =#

&/B1+F53#'45036# =# <D# =# =# =#

'4/0+./0123#'45036# 8=# =# =# =# 7#

"43123#'45036# D8# =# =# =# H#

78I9:J# 78I7;J# 77I:9J# <==J# 77I8;J#

=I<=J#

=I=CJ#

=I=DJ#

=I=<J#

=I8;J#
=I9=J#

=I<DJ#

=I8=J#

=I=7J#

=ID8J#

=I=HJ#

<#

<=#

<==#

<===#

<====#

!
"
#$
"
%$
&
'(

')
*
$+
,
-
./
0$

Fig. 3.20: Timing fault injection results

3.3 Case Study: Fault Tolerant Microprocessor 77

occurrences from 79.71% collectively to only 5.24% but still does not protect against permanent

faults as fully as the HyTPFT and TMR-b microprocessors. As per its intended purpose, the

HyTPFT microprocessor successfully detected 53.51% of the injected permanent faults, which

makes the entire set of observable faults because all the rest were either masked and never showed

up or resulted in an unclassifiable outcome. None of the injected permanent faults in HyTFT

microprocessor escaped detection to cause either fail-silent or latent errors. This suggests that

HyTFT microprocessor maintained fail-safe operation throughout the fault injection campaign.

The timing fault population distribution shown in Figure 3.20 shows a similar trend as for

permanent faults but with lesser degree of effect on the computation. The BL microprocessor

encountered 80 and 30 fail-silent and latent errors respectively, which is more or less the number

of faults detected and/or corrected by HyTFT and HyTPFT microprocessor respectively. Since

the timing faults injected were of permanent nature, the HyTFT repeatedly tried to recover form

13 time-out faults. However, TMR-w ended up in 13 critical outcomes.

From the results of three types of fault injection campaigns, we saw that the only architecture,

which never resulted in an outcome that cannot be classified in TMR-b. As discussed in Section ,

these unclassifiable outcomes are due to the X-propagation that results because of setup or hold

violations. The reason of not having any unclassifiable outcomes in TMR-b is associated with the

property of TMR-b voter that it can mask these X-propagations and preventing it from spreading

throughout the execution. However the small number of unclassifiable faults outcomes in other

microprocessor versions does not have any impact on the conclusion that can be drawn from these

results because X-propagations occur only in simulations. In real silicon implementation a setup

or hold violation will result in either a correct computed value or a wrong one. In case a correct

value is stored, there will be no impact on the execution nor on the data. Thus will result in silent

outcome. But if the violation cause wrong data to be stored, the error detection and recovery

mechanism in HyTFT and HyTPFT can deal with it and the fault will result in a corrected fault

category.

3.3.6.4 Performance Degradation

There are two aspects in which the performance overhead of fault tolerant architecture can be

assessed:

• Temporal performance degradation

• Error recovery overhead

The additional components inserted in the BL data-path to implement the HyTPFT architecture,

which include reconfiguration multiplexers and demultiplexers and a level of multiplexers in the

78 Pipelined Hybrid Fault Tolerant Architecture

pipeline registers for rollback capability, are accounted for the temporal performance degradation.

Conversely, in the TMR schemes the voter circuit in the data-path is responsible for reducing

circuit speed. STA showed that for HyTPFT microprocessor temporal performance degradation is

3.8%. This figure is obtained by comparing critical path delays of CL blocks with the maximum

delay of aforementioned additional HyTPFT circuit components. In the same way the percentage

of temporal performance degradation were obtained for TMR-b and TMR-w and were found to

be 0.9% and 8.5% respectively. These figures show that the HyTPFT architecture incurs less

temporal performance degradation then TMR-w but is more costly in comparison with TMR-b.

Performance overhead due to error recovery can be comprehensively measured by performing

multiple faults injection campaign and observing the impact on performance due to different

error rates. However our single fault injection experiments show that all the errors in HyTPFT

microprocessor due injected SETs, 51.8% of the errors due to permanent faults and 77.1% of

errors due to delay faults were recovered in a time equivalent to 2 clock cycles. The remaining

errors due to permanent and delay faults were mitigated with a penalty of 4 cycles. On the

other hand, TMR microprocessor versions have zero error recovery penalties, as TMR is an error

masking scheme rather than an error detection and correction architecture.

3.3.7 Discussion

From the experimental results presented in this section we can infer that the PHyFT architecture

offers a method to improve the robustness of CL parts of complex nonlinear pipeline processor

cores, with little impact on performance and quite modest amount of overhead in terms of area

with respect to TMR. Both the HyTFT and HyTPFT microprocessors subjected to a fault injection

campaign of 30,000 faults in their CL parts sustained correct of fail-safe operation and offer

similar fault tolerance capability as TMR-b scheme with the added advantage of 11.6% power

saving.

3.4 Summary

In this chapter we have seen some issues in modern complex pipeline circuits that make error

detection and confinement a difficult task. We briefly overviewed some state-of-the-art solutions

to these problems and their limitations. In the second part of the chapter we went through the

steps to develop a Pipelined Hybrid Fault Tolerant architecture based on the Hybrid Fault Tolerant

architecture for stand-alone circuits by proposing solutions to the hurdles faced in doing so. In

the last section of this chapter we showed how we practically applied the principles of PHyFT

architecture formulated in preceding sections, on a case study instance of MIPS architecture

3.4 Summary 79

microprocessor. Finally we discussed the experiments performed to assess and compare PHyFT

architecture with other solutions found in literature.

Chapter 4

Design Space Exploration and

Optimization of HyFT Architecture

The case study outcomes in the previous chapter showed that the HyFT architecture can effectively

tolerate errors due to transient, permanent and timing faults in the CL parts of complex pipeline

circuits with an 11.6% average power saving compared with the TMR architecture. However, it is

identified that there is further room for improvement in its efficiency in terms of area, power and

performance, by optimizing the comparison-window timing. Furthermore, its applicability can

also be improved by adapting it to work with symmetric (50%) duty-cycle clock.

In this chapter we will first analyze some properties of HyFT architecture, which limit its

area and power saving, performance (in terms error recovery overhead) and applicability. Later,

we will discuss some design and timing optimizations and based on these modifications we will

describe four experimental design variants of HyFT architecture. We will analyze the impact

of these modifications on the considered design merits. We will also verify that the proposed

modifications do not have an adverse impact on the fault tolerance capability. Finally, based on

the experimental results we will define the best candidate among the four design variants.

4.1 Limitations of HyFT Architecture

4.1.1 Contamination delay constraints

In Section 2.2.7 we studied the timing constraints needed to be imposed while synthesizing the

CL blocks to be hardened with HyFT architecture. We saw that to prevent the asynchronous input

of the pseudo-dynamic comparator from starting to change before the lapse of the comparison-

82 Design Space Exploration and Optimization of HyFT Architecture

window it is necessary to make sure that there are no paths short enough to violate the condition

of Equation 5.1.

Commercial synthesis tools generally provide provision to apply minimum delay constraints

to avoid hold-time violations. These constraints are less stringent than those needed for HyFT CL

synthesis. Synthesis tools use techniques like buffer insertion, circuitous routing, gate or wire

re-sizing [83], [106] to increase the delay of short paths in the circuit. When these tools are used

for tighter minimum delay constraints to considerably alter the path-delay distribution, as in the

case of HyFT architecture, the resulting circuits cost significantly higher in terms of silicon space

and power.

4.1.2 Asymmetric clock duty-cycle

In designs that use both, negative and positive edge triggered flip-flops, a symmetric clock duty-

cycle is important to ensure easy timing closure. Even for designs that use just one polarity of

clock to capture data, an asymmetric clock duty-cycle reduces the maximum clock frequency of

operation because as the pulse becomes narrower the bandwidth of the signal spectrum increases.

Furthermore, the high frequency components present in non-50% duty-cycle signal increase clock

induced noise and interference.

As we have seen that HyFT architecture rely on an asymmetric clock duty-cycle to generate

necessary control signals, which limits its applicability to circuits that work on both, positive

and negative edges and those used for high performance applications. Thus, by removing the

dependency of HyFT control signal generation on the system clock duty-cycle we can improve its

applicability.

4.2 Design and Timing Optimization

The optimization efforts are aimed at reducing the area and power overhead due the minimum

contamination delay requirements applied to the CL blocks. As shown in Equation 5.1, these

timing requirements can be eased by reducing δ t, which can be achieved by shortening and/or

moving the comparison-window closer to the CLK edge. To study the impact of comparison-

window timing on the four design metrics, i.e. area, power, fault tolerance capability and error

recovery overhead, we selected two design parameters to be controlled, which include:

• Comparison-window position (with reference to CLK edge)

• Comparison-window width

4.2 Design and Timing Optimization 83

Controlling these parameters we obtain four HyFT design variants including the original scheme

(i.e. without any optimization). These HyFT design variants are detailed in the following

subsections.

4.2.1 Original HyFT (HyFT-1a) Architecture

This is the original HyFT architecture which is designed without considering any timing optimiza-

tion. We use this scheme as our reference to access the improvements. As discussed in Section

2.2.7, it uses a simple delay buffer (shown in Figure 4.1a) to generate DC from CLK signal as

represented by the timing diagram in Figure 4.1b. The start and the end of the comparison-window

are delayed by an amount of time equal to the delay of the buffer (dbuf), from the rising and

falling edges of CLK respectively. Since the DC pulse width depends on the CLK duty-cycle, it is

less controllable and also imposes limits on the CLK pulse width. SPICE-like simulation graph

obtained from Synopsys®’s Nanosim tool for DC and CLK signals in HyFT-1a architecture is

shown in Figure 4.2a.

4.2.2 Hybrid Fault Tolerant (HyFT) Architecture with short DC (HyFT-1b)

The second experimental design variant uses a DC pulse narrower than the one used in HyFT-1a

as shown in Figure 4.1d. It uses a circuit shown in Figure 4.1c to generate comparison-window

that ends with the falling edge of the CLK. The start of the comparison-window is delayed by

an amount of time equal to the delay of the buffer and the delay of the ‘AND’ gate (dbuf +dand).

While the end of the comparison-window is delayed from the falling edge of CLK by time equal

to the delay of ‘AND’ gate (dand) only. The SPICE-like simulation plot of DC generation in

HyFT-1b is shown in Figure 4.2b.

4.2.3 Hybrid Fault Tolerant (HyFT) Architecture with CLK enclosed DC

(HyFT-2a)

In HyFT-1a and HyFT-1b architectures the pseudo-dynamic comparator gets a synchronous input

form the output registers as shown in Figure 2.15a. It implies that the comparison should not start

until the FF outputs are stable. In other words, the FF clk-to-output delay imposes a limit while

moving the comparison-window close to the CLK as shown in Figure 2.15b. To go beyond this

limit, placement of the comparator at RT-level needs to be changed, such that the comparator

now compares the output of two CL copies directly from the multiplexer, as shown in Figure

4.3. In this orientation the comparator gets to compare two signals that are both asynchronous

84 Design Space Exploration and Optimization of HyFT Architecture

CLK
 CLK

DC

dbuf

(a)

DC

CLK
 !

!

!

dbuf
 dbuf

(b)

CLK
 CLK

DC

dbuf

dand

(c)

DC

CLK
 !

!

!

dbuf + dand
 dand

(d)

CLK
 CLK

DC

dinv

dand

(e)

dand

DC

CLK
 !

!

!

dinv + dand

(f)

CLK
 CLK

DC

dbuf

dnor

(g)

DC

CLK
 !

!

!

dbuf + dnor

dbuf

(h)

Fig. 4.1: Comparison-window Generation Circuits and delays

and allows it to use a comparison-window similar to one shown in Figure 4.1f. The circuit used

for DC pulse generation is shown in Figure 4.1e. It can be seen in Figure 4.1f, the start of the

comparison-window is delayed from the rising edge of CLK by an amount of time equivalent to

the delay of the ‘AND’ gate (dand) and the end of comparison-window is also delayed from the

rising edge of CLK but by an amount equal to the cumulative delay of the inverter and the ‘AND’

gate (dinv +dand). The SPICE-like simulation graph of DC pulse in HyFT-2a is shown in Figure

4.1f. This scheme significantly reduces the amount of minimum required contamination delay as

δ t is now reduced.

4.2 Design and Timing Optimization 85

(a) HyFT-1a (b) HyFT-1b

(c) HyFT-2a (d) HyFT-2b

Fig. 4.2: Comparison-window Timing Simulation Graph

4.2.4 Hybrid Fault Tolerant (HyFT) Architecture with DC across CLK

edge (HyFT-2b)

This experimental design variant of HyFT is obtained by moving the comparison-window across

the CLK capture edge as shown in Figure 4.2d. As in case of HyFT-2a, in this scheme also the

comparator is placed before the pipeline register and gets its both inputs from the two running CL

copies as shown in Figure 4.3. This scheme uses a 50% duty-cycle CLK with the logic circuit of

Figure 4.1g, to generate DC. It can be seen in Figure 4.1h that the start of the comparison-window

is a response of the falling edge of the CLK delayed by an amount of time equivalent to the delay

of buffer (dbuf) and the end of comparison-window is also delayed form the falling edge of the

CLK signal but with a delay equal to the cumulative delay of the buffer and the ‘NOR’ gate

(dbuf +dnor). The amount of δ t for this variant is very minimal as it can be seen in the SPICE-like

simulation graph of Figure 4.2d. When used with very narrow comparison-window completely

renders the requirement of applying any minimum delay constraints because in that case the

reconfiguration demultiplexer and multiplexer contribute sufficient contamination delay to satisfy

the overall delay requirement.

86 Design Space Exploration and Optimization of HyFT Architecture

!!"#$

%&&'&$(')*&'+$$

,'-./$

$$

0)
1
2
*$
3
%
-
.4
*%
&$
$

56
.*
7
$4
7
8
9
'
6
$+
8
*/
7
:$

(,;$

$

(,<$

$

(,=$

$

3%/')>.-2&%$

$$

3'++?8/@$ 9/$

A
2
*1
2
*$
3
%
-
.4
*%
&$

Fig. 4.3: Modified Hybrid Fault Tolerant (HyFT)

4.3 Experimental Assessment of Improvements

The four design variants discussed in previous subsections undergo a comparative experimental

study in order to assess and compare their design merits. These merits include area, power, fault

tolerance capability and error recovery overhead. This study gives us an idea about how the design

merits change with comparison-window timing and comparator placement. The results of the

comparative study allow us to select the best candidate.

4.3.1 Experimental Setup

Experiments are performed on a few of ITC’99 benchmark circuits [20] by hardening them with

each of the four HyFT design variants and then assessing them for their design merits. The

experimental methodology used can be broken down into the following steps:

4.3.1.1 CL Extraction

The first step in the experimental assessment is similar to the one explained in Section 2.4.1, in

which we extract the CL from the original benchmark circuits. The step is also explained using an

example in Appendix C.

4.3.1.2 CL Synthesis

In this step of the experimental assessment, the extracted CL blocks are synthesized using

appropriate contamination delay constraints governed by the Equation 5.1, corresponding to

4.3 Experimental Assessment of Improvements 87

Table 4.1: Contamination delay constraints for CL synthesis

HyFT design δ t δ t− tccq− tcdm− tcm tcd

variant (ns) (ns) (ns)

HyFT-1a 1.2229 0.9976 1.00

HyFT-1b 1.0983 0.8730 0.88

HyFT-2a 0.5493 0.3240 0.33

HyFT-2b 0.2082 -0.0171 0.00

each HyFT design variant. As discussed in Section 4.2, δ t is the design parameter that can be

controlled to ease the contamination delay constraints. From the SPICE-like simulation graphs

shown in Figure 4.2 we extract the value of δ t for each HyFT design variant, which are mentioned

in the second column of Table 4.1. The third column gives the lower limit of contamination

delay constraints obtained by substituting the values of minimum clock-to-output delay of the FFs

(tccq) to be 80 ps, minimum demultiplexer delay (tcdm) to be 65.6 ps and minimum multiplexer

delay (tcm) to be 79.7 ps in Equation 5.1. These values are obtained from the technology library

data and performing STA. The last column specifies the contamination delay constraints actually

applied during the synthesis of CL blocks. It can be noticed in Table 4.1 that as we move the

comparision-window back towards the CLK capture edge, it significantly reduces the minimum

contamination delay requirements. Eventually, in the case of HyFT-2b the clock-to-output delay

(tccq) of the flip-flops, the delay of reconfiguration demultiplexer (tcdm) and multiplexer (tcm)

contribute enough that there is no need of applying any contamination delay constraints while

synthesizing CL to be hardened using HyFT-2b architecture.

After synthesizing the CL blocks with contamination delay constraints corresponding to

each of the HyFT design variant, we obtain area estimates which are given in Table 4.2. The

first column lists the considered ITC benchmark circuits. The remaining columns are grouped

according to the concerned HyFT variant. Since HyFT-1a serves as our reference the second

column lists only the absolute area of CL blocks synthesized with corresponding contamination

delay. While the other groups of columns, besides giving absolute area in µm2 also gives the

percentage area reduction with reference to the HyFT-1a CL blocks. From Table 4.1 and Table 4.2

we can deduce that with a 12% (from 1.00 ns to 0.88 ns), 67% (from 1.00 ns to 0.33 ns) and 100%

(from 1.00 ns to 0 ns) reduction of contamination delay constraints there is a 11.3%, 82.1% and

90.3% reduction in CL area respectively. Although all the benchmark circuits show a significant

gain in terms of area by easing the contamination delay but larger circuits seem to gain relatively

less. The reason being that the larger circuits generally have a smaller percentage of very short

paths, thus easing contamination delay has a less significant impact on their area.

88 Design Space Exploration and Optimization of HyFT Architecture

Table 4.2: CL Synthesis Results

BL CL HyFT-1a CL HyFT-1b CL HyFT-2a CL HyFT-2b CL

Area Area Area Reduction Area Reduction Area Reduction

(µm2) (µm2) (µm2) (%) (µm2) (%) (µm2) (%)

b01 22.1 271.3 240.5 11.37 48.4 82.16 22.1 91.86

b02 14.9 210.4 186.7 11.25 35.9 82.93 14.9 92.92

b03 78.2 1052.8 923.5 12.28 162.8 84.54 78.2 92.57

b05 333.0 1863.3 1673.1 10.20 426.1 77.13 333.0 82.13

b06 33.2 471.3 416.8 11.57 71.5 84.82 33.2 92.95

b08 88.8 842.4 750.4 10.92 159.6 81.05 88.8 89.45

average - - - 11.268% - 82.106% - 90.314%

4.3.1.3 Workload Generation

For power estimation and fault injection experiments the workloads used are Automatic Test

Pattern Generator (ATPG) generated patterns optimized to detect stuck-at faults in the BL version

of the CL blocks. The patterns contained in a .dat file are applied to the synthesized netlist by

a test-bench also generated by the ATPG tool, in a gate-level simulation environment with back

annotated delay information.

4.3.1.4 RTL Description

As we have seen in Section 4.2, the first considered HyFT design variant is in fact identical to the

HyFT scheme discussed in Section 2.4.1. So, the RTL modules are reused to construct HyFT-1a

circuits. The other three design variants bare two types of differences from HyFT-1a in their RTL

descriptions. These differences are the comparator placement and the comparison-window timing.

The former difference is easily made at RTL in the top-level wrapper modules of HyFT-2a and

HyFT-2b architectures. The latter difference requires modifications to the control logic modules

of HyFT-1b, HyFT-2a and HyFT-2b architectures. We have already seen a glimpse of these

modifications in Section 4.2, where we discussed the comparison-window generator circuits. The

remaining RTL components to these architectures are similar to those of HyFT. In this subsection

we provide the details of the modified control logic modules to generate appropriate control

signals for HyFT-1b, HyFT-2a and HyFT-2b architectures.

As architectures HyFT-1a, HyFT-1b and HyFT-2a are all driven by an asymmetric duty-cycle

clock , they use a similar control logic submudule1 with the only difference of their comparison-

window generation components. Figure 4.4 shows the submodule1 in the control logic of the

HyFT-1b architecture. The labels on each logic element is its reference and the symbol on the top

of each element represent its delay. These delays are critical and essential to be constrained during

4.3 Experimental Assessment of Improvements 89

the synthesis because a complete control of these delays is essential for the proper functionality of

the HyFT architecture.

DC

dinv1

CLKRegin

dbuf1

dand1

dor1
dbuf2

CLK

dand2

CRegin

Err

RESET

CompReset

dinv2

dnand

D Q

 Q
 _

buf1

and1

buf2 inv1

or1

and2

ff1

inv2

nand

or2

dor2

Fig. 4.4: HyFT-1b Control Logic submodule1

HyFT-1b control logic submudule1 is not much different from that of HyFT-1a. The only

difference is the addition of an AND gate to end the comparison-window with the falling edge of

the CLK. In Figure 4.4, buf1, buf2 and and1 form the comparison-window generation circuit also

shown in Figure 4.1c. The simulation graph in Figure 4.5 shows the generated control signals

with appropriate timing in the case of an error detection.

Similarly, circuit shown in Figure 4.6 and the simulation graph shown in Figure 4.7 represent

the contol logic submodule and its timing characteristics respectively for the HyFT-2a scheme. It

Fig. 4.5: HyFT-1b Control Logic submodule1 simulation

90 Design Space Exploration and Optimization of HyFT Architecture

DC

dinv2

CLKRegin

dinv1

dand1

dor1
dbuf2

CLK

dand2

CRegin

Err

RESET

CompReset

dinv3

dnand

D Q

 Q
 _

inv1

and1

buf2 inv2

or1

and2

ff1

inv3

nand

or2

dor2

Fig. 4.6: HyFT-2a Control Logic submodule1

Fig. 4.7: HyFT-2a Control Logic submodule1 simulation

can be noticed that the submodules of Figure 4.4 and 4.6 only differ in their DC pulse generation

circuit.

The control logic submodule1 shown in Figure 4.8 undergoes some significant modifications

to allow the comparison-window overlap the setup-hold window. Its functionality is explained by

the timing simulation graph of Figure 4.9.

4.3.1.5 Constrained Hierarchical Synthesis

The last step in the experimental setup is constrained hierarchical synthesis of the entire designs.

A bottom-up synthesis approach is applied for the synthesis starting from the most time critical

components like the control logic till the top-level HyFT wrappers. Comprehensive synthesis

4.3 Experimental Assessment of Improvements 91

dinv1

DC

CLKRegin

dbuf1

dnor

dnand
dbuf2

CLK

dand

CRegin
Err

RESET

dinv2

CompReset

dinv3

dor2

D Q

 Q
 _

D Q

dor1

buf1

nor

buf2 inv1

nand

and

ff1

ff2

inv2

inv3

or2

or1

 Q

Fig. 4.8: HyFT-2b Control Logic submodule1

Fig. 4.9: HyFT-2b Control Logic submodule1 simulation

92 Design Space Exploration and Optimization of HyFT Architecture

Table 4.3: Area Savings

HyFT-1a HyFT-1b HyFT-2a HyFT-2b

Area Area Saving Area Saving Area Saving

(µm2) (µm2) (%) (µm2) (%) (µm2) (%)

b01 1404.2 1176.2 16.23 613.9 56.28 627.0 55.35

b02 1066.7 884.7 17.06 510.2 52.17 530.4 50.27

b03 4942.8 3782.2 23.48 1787.2 63.84 1429.7 71.07

b05 8549.0 6634.3 22.40 3385.6 60.40 2720.6 68.18

b06 2263.7 1739.9 23.14 836.6 63.04 610.2 73.04

b08 4154.9 3217.8 22.55 1710.4 58.83 1195.4 71.23

average - - 20.81% - 59.09% - 64.86%

scripts are used to make sure that appropriate timing constraints are applied. Special attention

is given to the synthesis of submodule1 of the control logic as its timing is essential for proper

operation.

4.3.2 Experimental Results

4.3.2.1 Area and Power Estimation

The area figures for the hardened circuits are estimated from the synthesized designs obtained

using method discussed in Subsection 4.3.1.5. Each synthesized design contains a version of the

six benchmark circuits, hardened by each of the HyFT design variant discussed in Section 4.2.

The area estimates are presented in Table 4.3. The first column lists the considered benchmark

circuits. The second, third, fifth and seventh columns give the absolute values of area occupied

by each of the four HyFT design variants in µm2. Where as the fourth, sixth and eighth columns

give the percentage area savings in case of HyFT-1b, HyFT-2a and HyFT-2b respectively with

reference to HyFT-1a architecture. The last row of the Table 4.3 gives the average area savings.

It can be seen in Table 4.3 that HyFT-1b saves on average 20.8% area. By further moving the

comparison-window towards the CLK capture edge, the gain increases drastically as in the case of

HyFT-2a and HyFT-2b architectures the percentage of average area saving reach to about 60%.

The power estimates are obtained by exercising the synthesized circuits with the workload

generated as discussed in Subsection 4.3.1.4. Note that same workload is used with all the hardened

version of each benchmark to have a fair comparison. The switching activity information from

the back-annotated gate-level simulation is used in power estimation tool to obtain the power

estimates. These estimates are presented in Table 4.4, which uses the same structure as of Table

4.3. Power savings show a similar trend as area savings. The average power savings are 6.11%,

4.3 Experimental Assessment of Improvements 93

Table 4.4: Power Savings

HyFT-1a HyFT-1b HyFT-2a HyFT-2b

Area Power Saving Power Saving Power Saving

(µm2) (mW) (%) (mW) (%) (mW) (%)

b01 318.7 300.0 5.84 178.5 43.98 164.0 48.55

b02 205.4 203.8 0.75 146.7 28.54 136.6 33.46

b03 954.4 873.2 8.51 432.0 54.74 346.6 63.68

b05 1856.6 1706.2 8.10 799.0 56.93 742.2 60.02

b06 441.9 407.3 7.85 206.8 53.21 174.5 60.50

b08 877.3 828.2 5.60 433.4 50.60 356.6 59.35

average - - 6.11% - 48.00% - 54.26%

48.0% and 54.3% for HyFT-1b, HyFT-2a and HyFT-2b respectively with HyFT-1a architecture

as reference.

The area and power results show that easing the contamination delay constraints on the CL

synthesis not only saves significant amount of area but also power. We can also deduce from

the results that in terms of area and power the best candidate is HyFT-2b as it is the one with

least lenient or even no contamination delay constraints at all. However the impact of HyFT-2a

architecture on fault tolerance capability and performance is discussed in next subsection before

the all rounder candidate can be selected.

4.3.2.2 Fault Tolerance Capability Assessment

The fault tolerance capability assessment framework detailed in Section 2.3.3 is employed to

assess and compare the robustness improvements associated with each of the HyFT design variant.

Synthesized circuits are subjected to fault injection campaign with fault injection parameters

given in Table 4.5. Table 4.5a lists the parameters common to fault injection campaigns run on

all the benchmark circuits, while Table 4.5b gives the parameters associated with fault injection

campaigns involving to each individual benchmark circuit. An important parameter mentioned

in Table 4.5a is the fault location and as specified, the locations for fault injection as chosen

randomly all over the circuits but not only in the CL blocks. This means that the faults are also

injected in the reconfiguration multiplexer and demultiplexer, pipeline registers, HyFT control

logic and in the pseudo-dynamic comparator.

We recall from Section 2.3.3 that the fault injection reports are used to classify the injected

faults on the basis of their impact on the circuit output. Table 4.6 gives the distribution of injected

faults among three categories namely Silent, Corrected and Fail-silent (as discussed in Section

3.3.6.3) and their percentages in the total injected faults for each of the HyFT design variant

hardened version of each benchmark circuit. The third column of Table 4.6 gives the total number

94 Design Space Exploration and Optimization of HyFT Architecture

Table 4.5: Fault injection parameters

(a) Common parameters

Parameter Value

Fault model Temporary Stuck-at

Injection duration range 0.25 ns - 1.25 ns (Constrained random)

Workload Stuck-at fault detection patterns

Fault location constraint Allover the architecture (Random)

Injection type Single fault

(b) Individual parameters

Benchmark No. of injections
Simulation duration Injection time range

(per injection) (Constrained random)

b01 6088 240ns 45ns - 200ns

b02 5245 140ns 45ns - 100ns

b03 25630 340ns 45ns - 300ns

b05 25248 1020ns 45ns - 980ns

b06 9601 220ns 45ns - 180ns

b08 20771 550ns 45ns - 510ns

of injected faults in each benchmark circuit implementation. All the subsequent columns are

grouped according to the associated HyFT variant, for example, forth, fifth and sixth columns give

the number and percentages of faults with Silent, Corrected and Fail-silent outcomes respectively

for HyFT-1a implementations of each benchmark circuit. Similarly the remaining three groups of

columns give the same information for HyFT-1b, HyFT-2a and HyFT-2b architectures. Moreover,

the last row gives the average percentages of faults that fall into the corresponding category.

Fault injection results in Table 4.6 show that on average 0.62% of total injected faults in

HyFT-1a resulted in a fail-silent operation. Whereas, these percentages for HyFT-1b, HyFT-2a

and HyFT-2b are 0.6%, 0.83% and 0.5%, respectively. This shows that HyFT-2a is the least

effective against SETs. The reason for this robustness degradation in HyFT-2a can be explained

with the help of the graph shown in Figure 4.10 that shows the average distribution of Fail-silent

faults in different parts of the circuits protected by each HyFT design variant. The distribution

associated with HyFT-2a architecture shows that four out of eight circuit regions remain relatively

vulnerable. The input register with 59 Fail-silent faults, the CL copies with 22 Fail-silent faults,

the HyFT-2a control logic with 14 Fail-silent faults and output register with 13 Fail-silent faults.

This shows that HyFT-2a not only loses the marginal protection against SETs in the output register

by having its comparator moved before the output register, but also misses detection of a significant

number of faults injected in the CL blocks because of non-overlapping comparison-window and

setup-hold window as shown in Figure 4.1f. Although, the HyFT-2b architecture also has no

protection against SEUs due to direct strikes in the output registers, its ability to detect transients

4.3 Experimental Assessment of Improvements 95

which occur close to the CLK capture edge gives it an advantage that makes it the most effective

technique in terms of fault tolerance capability.

!"#$%&

'()*+%(,&
-(.$/& 01& 2$/& 03.#4,4%3,& 0%,5&13)*6&

7$%#$%&

'()*+%(,&

'(+%&38&%9(&

6*,6$*%&

:;<=>?4& @@& ?& @A& ?& B& B& C& D&

:;<=>?E& DF& ?& AF& ?& @& G& ?F& A&

:;<=>A4& CH& G& AA& G& A& ?D& ?@& G&

:;<=>AE& @F& G& ?& F& F& G& ?D& @&

F&

?F&

AF&

@F&

DF&

CF&

BF&

GF&

!
"
#$
"
%$
&
'
()
*+
()
,
-
.$
&
'
/
).
+
$

Fig. 4.10: Spatial distribution of Fail-silent faults

9
6

D
esig

n
S

p
ace

E
x

p
lo

ratio
n

an
d

O
p

tim
izatio

n
o

f
H

y
F

T
A

rch
itectu

re

Table 4.6: Fault Injection Results

HyFT-1a HyFT-1b HyFT-2a HyFT-2b

Tot
al

Sile
nt

C
or

re
ct

ed

Fai
l-s

ile
nt

Sile
nt

C
or

re
ct

ed

Fai
l-s

ile
nt

Sile
nt

C
or

re
ct

ed

Fai
l-s

ile
nt

Sile
nt

C
or

re
ct

ed

Fai
l-s

ile
nt

b01
#. of Faults 6088 5605 433 50 4713 338 50 2527 78 57 2589 80 49

%. of Faults - 92.07% 7.11% 0.82% 93.64% 5.54% 0.81% 97.78% 1.29% 0.93% 97.88% 1.31% 0.81%

b02
#. of Faults 5245 4784 427 34 3987 330 34 2352 96 62 2532 57 19

%. of Faults - 91.21% 8.14% 0.65% 93.07% 6.29% 0.65% 97.00% 1.82% 1.18% 98.56% 1.08% 0.36%

b03
#. of Faults 25630 23581 1918 131 18243 1232 137 8690 347 230 7058 246 110

%. of Faults - 92.01% 7.48% 0.51% 94.66% 4.81% 0.54% 97.75% 1.35% 0.90% 98.61% 0.96% 0.43%

b05
#. of Faults 25248 23259 1876 113 18236 1255 102 9550 297 151 7683 257 95

%. of Faults - 92.12% 7.43% 0.45% 94.63% 4.97% 0.40% 98.21% 1.18% 0.60% 98.61% 1.02% 0.38%

b06
#. of Faults 9601 8857 683 61 6871 449 59 3376 110 63 2456 74 58

%. of Faults - 92.25% 7.11% 0.64% 94.70% 4.68% 0.62% 98.21% 1.14% 0.65% 98.63% 0.77% 0.60%

b08
#. of Faults 20771 19163 1469 139 14892 1068 125 8161 241 149 5724 167 85

%. of Faults - 92.26% 7.07% 0.67% 94.25% 5.15% 0.60% 98.13% 1.16% 0.72% 98.79% 0.80% 0.41%

Avg.
#. of Faults 15431 14208 1134 88 14567 779 85 15117 195 119 15215 147 69

%. of Faults - 91.99% 7.39% 0.62% 94.16% 5.24% 0.60% 97.85% 1.32% 0.83% 98.51% 0.99% 0.50%

4.3 Experimental Assessment of Improvements 97

4.3.2.3 Performance Evaluation

The performance of the HyFT architecture can be interpreted in three aspects. First, the temporal

overhead due to the delay added in the data path by the fault-tolerant architecture components.

This aspect of performance remains the same for all the four HyFT variants because they all use

the same components, which add a similar amount of delay to the data path. The second merit

of performance is the error recovery penalty, i.e. the time needed to recover from a single error.

Since all four variants take either 2 or 4 cycles to recover depending on the type and location of

fault (as discussed in Section 2.2.7), even this aspect is irrelevant while comparing them. The

third and the most important aspect of performance that differs among all the four variants is

due to the effectiveness to target the transients that are most likely to result in an error. With

this effectiveness, the performance can be improved by avoiding spending time to recover from

conditions that are not even erroneous.

The figures that can give us a measure of this aspect of the performance overhead can be

interpreted from the fault injection results presented in Table 4.6. It can be observed in Table 4.6

that HyFT-1a corrected on average 7.39% of injected faults. For each detected and corrected SET

the HyFT undergoes a recovery phase that takes 2 additional cycles. According to these figures,

HyFT-1a spends around 14.78% of the total computation time on recovering from potentially

erroneous states. On the other side, HyFT-1b spends only 1.98% of the time in the recovery phase.

Besides this, HyFT-2b also resulted in less fail-silent conditions. This clearly shows that the

effectiveness to target only the fatal transient faults reduces the computation time and thus saves

energy.

4.3.3 Discussion

Figure 4.11 graphically shows the way the four design metrics improve or degrade with each

design modification. Each line graph corresponds to one of the four considered design metrics

represented as a percentage in comparison with the corresponding metric of the initial design

(HyFT-1a). Area, power and performance show very clear trends of improvement with each

optimized design. Since the design evolution in moving from HyFT-1a to HyFT-2b causes the

timing constraints to be relaxed, the improvements in terms of area and power are quite evident.

Similarly, the performance improvement achieved with HyFT-2b signifies the advantage of having

the comparison-window placed across the capture edge. The fault tolerant capability measured in

terms of average number of fail-silent faults also shows an overall improvement with an exception

in case of HyFT-2a. As discussed in subsection 4.3.2.2, the drop in robustness measure in the

HyFT-2a variant is due to the lack of protection against SEUs caused by direct particle strikes in

98 Design Space Exploration and Optimization of HyFT Architecture

20.81%

59.09%
64.86%

6.11%

48.00%

54.26%

0.00%
3.97%

-34.74%

21.25%

31.35%

82.83%
87.07%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

HyFT-1a HyFT-1b HyFT-2a HyFT-2b

Average Area Reduction

Average Power Saving

Average reduction in # of Fail

Silent Faults

Average Performance Overhead

Reduction

Fig. 4.11: Design metrics improvement summary

the output register but more pronounced because of the lack of ability to compare the outputs for

inequalities at the most crucial time, i.e. during the CLK capture edge.

4.4 Impact of circuit size on the evaluated metrics

In this section we discuss how the evaluated metrics change with the size of the circuit to which

the optimized HyFT architectures are applied. To illustrate this relationship we show in Figure

4.12 the percentage improvement of the evaluated metrics of the HyFT-2b design for each of

the considered benchmarks arranged in the ascending order of their size from left to right. The

graph shows an overall increasing trend for average area and power reduction. The proposed

optimizations seem more effective for larger circuits in terms of area and power improvements

because the area that is saved is due to the application of relaxed constraints on the CL blocks.

Therefore, the larger the CL block, the larger the improvement in terms of area and power when

compared with the initial HyFT architecture. Performance on the other hand shows a relatively

regular trend for different sizes of circuits. We can expect that this design merit will remain

constant when assessing the improvements for circuits of different sizes. On the other side, the

fault tolerance capability improvement shows an irregular trend and seems not to depend on the

circuit size.

4.5 Summary 99

!!"#!$%

&#"'($%
&)"*#$% &)"'&$%

+,"),$%

(,"!!$%

+'"!'$% !-"#!$%

+#"+,$%
+'"'*$%

(("#!$%

)"*+$%

!"!&$%

#-"'-$%

)+"'+$%)!"+-$%

,("&,$% ,#"-!$%

,-"+-$% ,-"),$%

,+"!)$% ,!"+#$%

'"''$%

)'"''$%

*'"''$%

#'"''$%

('"''$%

!'"''$%

+'"''$%

&'"''$%

,'"''$%

-'"''$%

)''"''$%

!"#$!"%$!"&$!"'$!"($!")$

./01%203456789%

:8;0/%<1=79>%

203456789%79%?%8@%A17B%<7B096%

A14B6C%

:0/@8/D1950%E=0/F013%

203456789%

Fig. 4.12: Impact of circuit size on evaluated metrics

4.5 Summary

In this chapter we presented a design space exploration study aimed to optimize the HyFT

architecture. A few limitations of HyFT architecture were also discussed. The prime design

parameters were identified and controlled to limit these drawbacks. Three new design variants were

obtained and their effect on the four important design merits were analyzed. The experimental

results showed that the proposed optimizations save significant amounts of area and power

by easing the synthesis constraints that were imposed by the initial design. Reducing surface

intrinsically reduces the possibility of fault occurrence and the ability to act against only the

potentially fatal SETs reduces the number of Fail-silent faults and improves the performance.

Chapter 5

Selective Hybrid Fault Tolerance

From the safety point of view, selecting the ideal trade-off between reliability improvement and

cost associated with a fault tolerant architecture employed for hardening, mainly depends on the

level of criticality of the application, the environment radiation levels and the technology used.

It is important to create a balance that best suits the design cost-budget and the acceptable error

rate constraint [72]. Selective hardening is a technique that creates this balance by allowing the

design to move between the two edge-cases of no-hardening and fully hardened, and optimize it

by selecting the most vulnerable circuit parts to be hardened. Selecting only the most vulnerable

circuit parts for hardening and leaving others unprotected can provide improvement in error rate

at an acceptable area and power overheads [75].

In this chapter we introduce an efficient cost (in terms of area and power) versus reliability

improvement trade-off analysis methodology for CL circuits, which helps taking this key design

decision. Based on this analysis we also propose a selective hardening technique using the Hybrid

Transient Fault Tolerant (HyTFT) architecture. The selective hardening involves reducing the

number of outputs to be compared for error detection. Reducing the comparison point not only

reduces the size of the comparator but also significantly reduces the size of the duplicated CL copy

since only the logic cones responsible for generating the selected outputs need to be synthesized

to create the duplicated copy.

This chapter is organized such that, we first briefly review some selective hardening techniques

from the literature in Section 5.1. In the subsequent section we discuss a low-cost method

for identifying the most venerable outputs nodes of a logic circuit and validate the results by

comparing them with those obtained from an accurate fault injection based method. In Section

5.4 we present the selective HyTFT architecture and a low-cost method to estimate its fault

tolerance capability. In Section 5.5 we present the experimental results obtained by using the

low-cost reliability estimation method to study the cost-reliability trade-off of a Selective HyTFT

102 Selective Hybrid Fault Tolerance

implementation and we also validate them. Finally, we conclude the discussion with some

perspectives in Section 5.6.

5.1 Previous work

Selective hardening is done in two steps. First the most vulnerable circuit parts are identified on

the basis of their contribution to the overall circuit error rate. Second, a fault tolerance architecture

is applied on the selected circuit parts [112]. Most of the approaches of selective hardening in

the literature focus in improving the vulnerability analysis methodology and use existing fault

tolerant architectures for hardening. Thus, are better classified on the basis of the former criteria.

Table 5.1 give a summary of a few techniques used for selective hardening.

The three masking effects discussed in Section 1.3.1.2 that inherently prevent transient pulses

from getting latched in FFs are generally employed in the circuit element vulnerability estimations.

The use of accurate models that consider all three masking effects is impractical because of the

immense amount of computational effort needed to simulate or to solve these models. Therefore,

some techniques like [30], [65] and [14] rely on approximate abstract models while considering

all three masking effects, whereas others like [72], [76], [56] and [112] resort to only one or two

of them to identify circuit elements with highest impact on soft error rate.

One of the techniques that only take into account the effects of logical masking is proposed by

Pagliarini et al. in [72]. It determines the a subset of standard cells when hardened, the circuit can

meet the user defined reliability target in a power-effective manner. The vulnerability analysis

is based on an algorithm in which reliability probability is attributed to each signal, then by

propagating these signals probabilities through the logic block till the CL outputs, it reaches to

an expression of the overall circuit reliability. Based on the extent of reliability contribution of

each cell to theis circuit’s reliability expression it ranks the cells. The work by Polian et al. in

[76] also uses error probabilities of gates to estimate its contribution to the circuit soft error rate.

But unlike [72], instead of propagating gate error probabilities, it expresses the circuit error rate

as a conditional probability that an error at the gate output also have an observable effect on the

circuit output. The gate observability metric is expressed as the detection probability of stuck-at

fault on the output of that gate. This technique offer a scalable alternative to Binary Decision

Diagram (BDD) based methods for soft error estimation. They use probabilistic models to account

for possible unbalance in input values.

5
.1

P
rev

io
u

s
w

o
rk

1
0

3

Table 5.1: Summary of selected previous work in the area of selective hardening

Masking effects considered Circuit
Targeted

faults

Fault tolerance Vulnerability Analysis & Ranking

Logical
Latching-

Electrical
element of technique

Method Error
Computational

window interest Employed effort

Pagliarini et al. [72] ✓
standard

cells
MTFs Cell TMR SPRA[34] 5 - 30% [45] low

Polian et al. [76] ✓ gates SETs - Probabilistic - low

Maniatakos et al. [56] ✓
1 FFs SEUs -

Partial

simulation

based fault

injection

1.4% high

Bottoni et al. [14] ✓
1

✓ FFs
SEUs &

permanent
FF TMR

Simulation

based fault

injection

4.4% high

Fazeli et al. [30] ✓ ✓ ✓ FFs METs - MEPP[4] 2.5% low

Mohanram et al. [65] ✓ ✓ ✓ gates SEUs

CL partial

duplication with

comparison

Probabilistic

& heuristic
- -

1 Workload-specific logical masking

104 Selective Hybrid Fault Tolerance

The work by Maniatakos et al. in [56] focuses on identifying the most vulnerable parts of

microprocessor for harden. The work takes into account the logical masking effects impact

particular to the workload used. Bottoni et al. in [14] propose a fault injection vulnerability

analysis method which inherently takes into account the workload specific logical masking and

latching window masking. The computation effort for the method proposed is high because

involves simulation based fault injection. Among the techniques which consider the impact of

all three masking effects for identifying the soft spots in circuits some prominent pieces of work

include by Fazeli et al. in [30] in which they use probabilistic models the three masking effects.

Where as the work by Mohanram et al. in [65] besides using probabilistic models, uses a novel

heuristic model to meet the reliability and cost trade-off for the proposed partial duplication

architecture.

5.2 A low-cost output susceptibility analysis

The output susceptibility analysis methodology is based on the fact that not all the outputs of a

CL block have the same susceptibility to SET effects and hypothesizes that their susceptibility is

a function of the number of nodes in its fan-in logic cone. It exploits the structural properties of

the output fan-in cone to get their relative susceptibility estimates. The outputs are ranked on the

basis of their relative susceptibility and the best candidates are selected for error detection. The

number of output candidates selected, defines the reliability improvement and cost trade-off and

the vulnerability-aware selection allows us to optimize it.

As seen in Section 5.1, techniques in previous work mostly consider logical masking to select

the most vulnerable circuit nodes for hardening. A few approaches also consider the impact of

electrical and latching-window masking effects in the susceptibility analysis. In our approach,

the impact of these factors is not taken into account mainly to reduce the computational costs

associated with these methods and secondly to investigate the possibilities of improving the

efficacy of our approximate method to be used with large complex designs.

Algorithm 1 shows the pseudo-code of the proposed method. The algorithm starts by reading

the pre-place-and-route netlist of the design. Then it forms groups Fj of all fan-in cells for each

CL output Oj. Once the groups are formed the weight Wj of each fan-in cone is calculated by

adding together the weights of all the cells in the corresponding fan-in cone group. According to

the hypothesis that forms the basis of this method, cell weight is the number of inputs and outputs

of that cell. Ranks are assigned to each output on the basis of their fan-in cone weight using a sort

function shown in line 15 of Algorithm 1.

5.2 A low-cost output susceptibility analysis 105

1 read(netlist);

2 ✴✴ ●"♦✉♣ ❛❧❧ ❢❛♥✲✐♥ ❝♦♥❡ ❝❡❧❧. /♦❣❡/❤❡" ❢♦" ❡❛❝❤ ♦✉/♣✉/ ♥♦❞❡

3 foreach Oj do

4 Fj ← Oj.get_fanin();

5 end

6 ✴✴ ●❡/ ✇❡✐❣❤/ ♦❢ ❢❛♥✐♥ ❝♦♥❡ ♦❢ ❡❛❝❤ ♦✉/♣✉/

7 foreach Oj do

8 foreach Ci do

9 if Ci ∈ Fj then

10 Wj ← Wj + Ci.get_pins();

11 end

12 end

13 end

14 ✴✴ ❙♦"/ ♦✉/♣✉/. ♦♥ /❤❡ ❜❛.✐. ♦❢ /❤❡✐" ❢❛♥✐♥ ❝♦♥❡ ✇❡✐❣❤/

15 sort(Oj,Fj,Wj);

Algorithm 1: Output susceptibility analysis

The algorithm is further explained by its application to a simple example circuit shown in

Figure 5.1. The shaded regions mark the boundaries of the two output fan-in cones. The weight

parameter (Wi) is given on the top of each gate. The fan-in cones weight (Sj) given on the right of

corresponding output is found to be 14 and 12 for O1 and O2 respectively. According to these

figures we can infer that the output O1 is more susceptible to SETs than output O2 . In other

words, having a SET detection mechanism placed on O1 can improve the reliability of the circuit

more than having it placed on O2.

A Tcl script implements the susceptibility analysis algorithm, which is used with Synopsys®

Design Compiler to perform the necessary operations. An experiment is performed by applying

the proposed low-cost output susceptibility analysis method to a circuit obtained by extracting CL

from an ITC’99 benchmark circuit (i.e. b05). We obtain the output susceptibility figures illustrated

graphically by the red colored plot of Figure 5.2. It represents the normalized distribution of the

output fan-in cone weight (Sj) with the output arranged on the horizontal axis. The trend of the

graph suggests that there is a certain number of outputs driven by a notably large fan-in cones

than the rest of the outputs. Presumably, these outputs should have a higher contribution to the

circuit soft error rate.

106 Selective Hybrid Fault Tolerance

!
"#

$
"
!"!#!

!
%#

$
%
!"!#!

!
&
#

$
&
!"!$!

$
'
!"!%!

!!
(
#

!!
)#

$
)
!"!#!

!
'
#

$
'
!"#!

!
*
#

$
*
!"!#!

#!
+
#

$
)
!"!#!

,
%
!"!&$!

,
"
!"!&%!!

&'(!)*+,-+!./+0!1-
"
2!! $+3!)*+,-+!./+0!1-

%
2!!)*+,-+!./+0!/4056*7!1-

"#
!8!-

%
2!!

Fig. 5.1: Application of the output susceptibility analysis on an example circuit

5.2.1 Results

An experiment is performed by applying the proposed low-cost output susceptibility analysis

method to a circuit obtained by extracting CL from an ITC’99 benchmark circuit (using the

method explained in Appendix C) i.e. b05. We obtain the output susceptibility figures illustrated

graphically in Figure 5.2. The graph represents the weight (Sj) distribution of the output fan-in

cones. The trend of the graph suggests that there is a certain number of outputs driven by a notably

large fan-in cones than the rest of the outputs. Presumably, these outputs should have a higher

contribution to the circuit soft error rate.

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70

Fa
n

-i
n

 c
o

n
e

 w
e

ig
h

t
(S

j)

CL outputs (Oj)

Fig. 5.2: Output susceptibility analysis results (of CL block extracted form b05)

5.3 Validation of the approach 107

5.3 Validation of the approach

The susceptibility analysis discussed in the previous section is based on the hypothesis that the

susceptibility of CL outputs to SETs is a function of the number of signal nodes in the fan-in cone

of that output. In order to test this hypothesis we compare the results of the low-cost susceptibility

analysis method with fault injection based output susceptibility results.

5.3.1 Fault injection based output susceptibility analysis

The idea behind fault injection based output susceptibility analysis is to inject faults on randomly

selected locations in an unhardened version of a CL circuit for which the output susceptibility is

desired and observe which outputs fail more often. It involves running a number of fault injection

campaigns using the fault injection framework detailed in Section 2.3.3. Running multiple fault

injection campaigns allow us to obtain multiple distribution samples of the number of failures

observed on CL outputs. The similitude among different distribution samples ensures the efficacy

of this method.

Five fault injection campaigns each comprising of 2012 simulations with single SET injection

are performed on same circuit used for the low-cost output susceptibility analysis experiment

discussed in Section 5.2.1. The fault injection parameters for these experiments are given in Table

5.2, which are common for all the campaigns. It can be seen that, SETs with random duration

within 0.25 ns and 1.25 ns are injected on locations distributed randomly within the CL block at

random times during the simulation. The workload used during fault injection consist of patterns

optimized for stuck-at fault detection for obtaining activity distributed allover the circuit and to

reduce the impact of workload-specific logical masking effect on the susceptibility of outputs.

Table 5.2: Fault Injection Parameters for output susceptibility analysis

Parameter Transient faults

Fault model Temporary Stuck-at

Injection duration range 0.25 ns - 1.25 ns (Constrained random)

Workload Stuck-at fault detection patterns

Fault location constraint Allover the CL (Random)

Injection type Single fault

No. of injections 2012

The graph of Figure 5.3 gives the distribution of average number of SEUs observed in the

output register of the circuit with the output arranged on the horizontal axis. The vertical lines

represent the standard deviation of five samples obtained from their average. Since the sample

size of our experiment is low, we show the standard deviation figures to give an idea of the

108 Selective Hybrid Fault Tolerance

-1

1

3

5

7

9

11

0 10 20 30 40 50 60 70

A
v

g
.

#
 o

f
S

E
U

s

CL output (Oj)

Fig. 5.3: Output failure distribution

confidence level, which is sufficient enough to infer that there exist a correlation between the

number of failures observed on an output node during our random fault injection campaigns and

the susceptibility of that output. The sample size can be increased by running more fault injection

campaigns if a higher confidence level is desired.

5.3.2 Discussion

Figure 5.4 shows the normalized distribution of output susceptibility obtained from the low-cost

susceptibility analysis method and the average normalized distribution of fault injection based

susceptibility on the same graph. We can see that the distribution obtained from the low-cost

approximate method bears some similarities with the accurate distribution.

The CPU runtime for the accurate fault injection based method is around 45.5 hours, which

involves five fault injection campaigns each with 2012 simulation. Whereas, the low-cost method

took only 2.7 seconds to generate the susceptibility estimates. This runtime also include the

overhead associated with the use of Synopsys® Design Compiler. A standalone implementation

of the algorithm can further reduce the runtime to make it feasible to be used with large industrial

benchmarks. Low computational effort and the degree of accuracy of the low-cost output suscep-

tibility analysis method gives good grounds to further study the short comings and improve its

accuracy.

5.4 Selective HyTFT Architecture

We recall from Chapter 2 that the Hybrid Transient Fault Tolerant (HyTFT) architecture is capable

of detecting transient, permanent and delay faults and correcting transient faults. It employs

5.4 Selective HyTFT Architecture 109

0

0.01

0.02

0.03

0.04

0.05

0.06

0 10 20 30 40 50 60 70 80

N
o

rm
a

li
ze

d
 o

u
tp

u
t

su
sc

e
p

ti
b

il
it

y

CL outputs (Oj)

By fault injection experiments By low-cost method

Fig. 5.4: Comparison of output susceptibility results (of CL block extracted form b05)

duplication and pseudo-dynamic comparison to detect faults and a single-cycle deep rollback

scheme for correction. Since the architecture relies on duplication of CL block and a pseudo-

dynamic comparator its implementation incurs an overhead of more than 100% in terms of area

and power.

A practicable way of providing the designer the freedom to control the cost and reliability

improvement of HyTFT implementation is to intelligently select a set of outputs for comparison.

It allows reducing the overhead with duplication and comparison at a cost of the fault tolerance

capability. Figure 5.5 shows a simplified scheme of selective HyTFT architecture. It can be seen

that CL2 logic block only implements a part of the logic in CL1. CL2 only contains logic cones

necessary to implement the logic function on the output pins selected of comparison. The method

discussed in Section 5.2 provides us with a low-cost means of doing this selection.

!!
!!

!!

In
p

u
t
R

e
g

is
te

r

O
u

tp
u

t
R

e
g

is
te

r

""#$! %&&'&!

()*+,!

-+,*+,!CL1

CL2

.'!

)!/!.'!

Fig. 5.5: Selective HyTFT Architecture

110 Selective Hybrid Fault Tolerance

5.4.1 A low-cost HyTFT architectural reliability estimation

One method of estimating the reliability of a fault tolerant architecture is to perform fault injection

experiments and analyze systems outcome, as we have seen in different experimental studies in this

manuscript. To reach a statistical confidence level sufficient to infer the reliability improvement

of a fault tolerant architecture, it requires a rigorous fault-injection campaign [56]. Furthermore,

if fault-injection is employed to study the trade-off between cost and reliability improvement

of various selectively hardened variants it multiplies the simulation effort as many times as the

number of intermediate variants between no-hardening and full-hardened being analyzed.

To provide an analysis method that gives a reasonably accurate estimation of the reliability

of the selective HyTFT architecture variants with minimum computational effort, we present a

simple method that employs the same hypothesis used in Section 5.2 for output susceptibility

analysis. According this methodology the ratio of cumulative weight (∑
n
j=1 Sj) of the duplicated

CL cones in CL2 to that of the CL1 gives an estimate of the reliability degradation factor from the

fully hardened edge-case.

In the output susceptibility analysis method presented in Section 5.2 we do not mind about

the fan-in cone overlaps because the analysis is meant to produce output ranking on the basis of

individual cone weight (Sj). But in the case of selective HyTFT architecture, where one or more

output cones are duplicated for comparison, the cumulative weight of the selected outputs should

be calculated by resolving the fan-in cone overlaps. In Algorithm 2 with the help of a pseudo-code

we explain how we resolves the fan-in cone overlaps. It can be seen in line 1 of the pseudo-code

that it calls Algorithm 1 to obtain a list of outputs with fan-in cone weights already assigned.

Once the individual cone weights are assigned to the outputs, Algorithm 2 begins iterating each

output Oj starting from the most susceptible one (i.e. one with highest weight) and continues in

descending order ot their weights. During each iteration of Oj, each cell (Ci) is checked if lies in

the current output fan-in cone. If it exists in that cone and is already claimed to lie in any other

output fan-in cone during previous iterations, its weight is deducted from the cumulative weight.

And, if the cell exist in the current fan-in cone but is not claimed by any previously iterated output

fan-in cone, it is marked as claimed. In this way Algorithm 2 continues till it has iterated each

output in the design.

Figure 5.6 explains how Algorithm 2 calculates the cumulative weight of outputs of an example

circuit. It can be seen that in order to calculate the cumulative weight of two outputs (S1 and S2)

the cells common to both the output fan-in cones (C5 in this example) are counted only once.

5.4 Selective HyTFT Architecture 111

1 Algorithm 1();

2 ✴✴ ❘❡#♦❧✈❡ ❢❛♥✲✐♥ ❝♦♥❡ ♦✈❡-❧❛♣# ❜② ✐♥❝❧✉❞✐♥❣ ❝♦♠♠♦♥ ❝❡❧❧# ♦♥❧② ✐♥

❢❛♥✲✐♥ ❝♦♥❡ ✇✐6❤ ❧❛-❣❡- ✇❡✐❣❤6

3 foreach Oj do

4 foreach Ci do

5 if Ci ∈ Fj then

6 if Ci /∈ claimed_cells then

7 claimed_cells← claimed_cells ∪ Ci

8 else

9 Sj ← Sj − Ci.get_pins();

10 end

11 end

12 end

13 end

Algorithm 2: Cumulative weight caluclation

5.4.1.1 Results

Table 5.3 gives the results obtained by applying the low-cost selective HyTFT reliability estimation

method to a CL block extracted from four ITC’99 benchmark circuit listed in Column 1 (ckt.).

Each row in the table represent a selective HyTFT variant starting from the no-hardening to

fully-hardened edge cases grouped together for each benchmark circuit. Column 3 (#. of output

nodes selected) gives the number outputs selected for error detection corresponding to each

variant listed in Column 2 (Selective HyTFT variant). So, for example the first row of each group

corresponds to the case in which only one output that is most susceptible is selected for error

detection and the second row of each group represents the case in which the two most susceptible

outputs are selected and so on. The suffix in the name of each variant represent the percentage

ratio of cumulative fan-in cone weight of the duplicated CL copy given in Column 4 (Cumulative

fan-in cone weight ∑
n
j=1 Sj), to that of the primary copy. This percentage is also given in Column

5 (Cumulative fan-in cone weight %). The last column gives the Vulnerability Factor (VF). VF

gives us the estimate of the unreliability of the HyTFT variant on the scale from 0 to 1. It is

obtained by the expression of Equation 5.1.

V F = 1−
∑

n
j=1 Sj

∑
No
j=1 Sj

(5.1)

112 Selective Hybrid Fault Tolerance

!"#

$"!"!#!

!%#

$%!"!#!

!&#

$&!"!$!

$'!"!%!

!!(#

!!)#

$)!"!#!

!'#

$'!"#!

!*#

$*!"!#!

#!+#

$)!"!#!

,"!"!&%!!

,%!"!&$!!

-###,.!"!&%!'!&$!!(!!$!!!"!$%!!

&)*!+,-(.-!/0-1!2/"3!! $-4!+,-(.-!/0-1!2/%3!! +,-(.-!/0-1!05167,8!2/"#!9!/%3!!

.#0#"!

%!

Fig. 5.6: Cumulative weight calculation of an example circuit

where:

VF = Vulnerability Factor

Sj = output node fan-in cone weight

n = number of output nodes selected for error detection

No = total number of primary CL block outputs

5.5 Experimental Validation and Results

The low cost vulnerability analysis method for selective HyTFT variants discussed in Section

5.4.1 provides us with fast way of analyzing the cost versus reliability improvement relationship.

In order to validate the results obtained using this method we compare them with more accurate

results obtained performing fault injection on the no-hardening version, the fully-hardened version

and a number of intermediate selective HyTFT variants which lie between them.

5.5.1 Experimental Setup

The experimental setup for the validation of the results obtained from the low-cost selective HyTFT

architecture vulnerability analysis is realized by applying the selective HyTFT architecture on the

four considered benchmark circuits to obtain four sets of HyTFT variants each containing and

the two edge-cases and a set of intermediate variants. The application involves steps described in

following subsections.

5.5 Experimental Validation and Results 113

Table 5.3: Area, power and reliability estimates of Selective HyTFT variants

CL Area CL Power
Vulnerability

ckt.

#. of output

nodes

selected

Cumulative

fan-in cone

weight Absolute Gain Absolute Gain
Soft errors

Factor

Selective

HyTFT

variant
[n] [∑

n
j=1 Sj] (%.) (µm2) (%.) (mW) (%.) (#.) (%.) [VF]

b03_0% 0 0 0 75.01 50.00 14.66 58.83 15 Ref. 1

b03_25% 1 54 25.35 93.10 37.94 17.13 51.91 12 80.00 0.75

b03_30% 2 64 30.05 97.62 34.93 17.71 50.27 11 73.33 0.70

b03_38% 4 82 38.50 101.88 32.09 19.32 45.76 11 73.33 0.62

b03_46% 6 98 46.01 107.73 28.19 20.04 43.75 10 66.67 0.54

b03_53% 8 113 53.05 111.72 25.53 21.36 40.03 10 66.67 0.47

b03_60% 10 127 59.62 115.98 22.70 23.20 34.86 9 60.00 0.40b03

b03_66% 12 141 66.20 120.23 19.86 25.05 29.68 9 60.00 0.34

b03_72% 14 153 71.83 124.49 17.02 26.76 24.87 8 53.33 0.28

b03_78% 17 167 78.40 128.48 14.36 28.53 19.90 6 40.00 0.22

b03_86% 21 183 85.92 135.93 9.40 30.50 14.36 6 40.00 0.14

b03_92% 24 195 91.55 142.04 5.32 32.13 9.78 5 33.33 0.08

b03_100% 35 213 100 150.02 1 35.62 1 4 26.67 0

b05_0% 0 0 0 392.62 50.00 119.75 52.22 134 Ref. 1

b05_40% 1 455 40.37 530.40 32.45 159.40 36.74 105 78.36 0.60

b05_51% 2 579 51.38 555.94 29.20 166.88 33.77 102 76.12 0.49

b05_62% 3 696 61.76 576.42 26.59 170.70 32.25 102 76.12 0.38

b05_70% 4 784 69.57 587.59 25.17 171.48 32.94 97 72.39 0.30

b05_74% 6 831 73.74 620.05 21.04 180.31 28.44 91 67.91 0.26

b05_80% 12 906 80.39 644.78 17.89 193.40 23.24 80 59.70 0.20

b05_84% 17 951 84.38 663.14 15.55 198.14 21.36 66 49.25 0.16

b05

b05_88% 23 992 88.02 676.97 13.79 202.90 19.47 62 46.27 0.12

b05_92% 32 1035 91.84 687.61 12.43 208.29 17.33 43 32.09 0.08

b05_96% 44 1083 96.10 711.82 9.35 220.95 12.31 31 23.13 0.04

b05_100% 72 1127 100 785.23 1 251.96 1 4 2.99 0

b06_0% 0 0 0 33.78 50.00 4.10 57.53 10 Ref. 1

b06_41% 1 47 40.87 44.16 34.64 5.48 43.27 6 60.00 0.59

b06_58% 2 67 58.26 52.67 22.04 6.26 35.22 5 50.00 0.42

b06_72% 3 83 72.17 57.99 14.17 7.04 27.13 4 40.00 0.28

b06_82% 4 94 81.74 60.38 10.62 7.22 25.24 4 40.00 0.18

b06_88% 5 101 87.83 63.04 6.69 8.44 12.65 4 40.00 0.12

b06

b06_94% 6 108 93.91 67.03 0.78 8.65 10.46 1 10.00 0.06

b06_100% 16 115 100 67.56 1 9.66 1 0 0 0

b08_0% 0 0 0 89.64 50.00 17.44 55.56 26 Ref. 1

b08_58% 1 168 57.73 132.47 26.11 27.16 30.75 24 92.31 0.42

b08_63% 2 187 64.26 137.79 23.15 27.11 30.88 23 88.46 0.36

b08_68% 3 198 68.04 142.31 20.62 28.36 27.71 19 73.08 0.32

b08_76% 6 222 76.29 151.62 15.43 31.17 20.56 17 65.38 0.24

b08_81% 8 236 81.10 155.08 13.50 32.43 17.34 15 57.69 0.19

b08

b08_87% 12 253 86.94 163.06 9.05 35.30 10.02 11 42.31 0.13

b08_92% 16 269 92.44 172.63 3.71 37.92 3.35 7 26.92 0.08

b08_100% 27 291 100 179.28 1 39.22 1 1 96.15 0

114 Selective Hybrid Fault Tolerance

5.5.1.1 CL Extraction and Reduction

We reuse the CL blocks extracted from the four benchmark circuit from the experiments discussed

in Section 2.4.1 and 4.3.1.1. But the same can be obtained by the method explained in Appendix

C.

In all the cases of duplication that we have seen in this thesis so far, all the CL copies are

similar. But, in the case of selective HyTFT architecture the secondary copy is meant to have

lesser logic than the primary copy, because it only contains the logic cones necessary to generate

signals at the output selected for error detection. Such logic reduction can be realized by simply

removing the CL outputs, which are not selected for error detection, from the input/output list

of the HDL description of the extracted CL block. A re-synthesis of this edited CL block results

in a CL block containing logic necessary for generating signals on the outputs remaining in the

input/output list of the HDL description.

The HDL description of the extracted CL block is manually edited to obtain ten new HDL

descriptions with only the required outputs remaining, each correspond to one of the intermediate

selective HyTFT variants.

5.5.1.2 CL Synthesis

The control signal timing characteristics of the selective HyTFT architecture is similar to the

HyFT_2b scheme which was found to be most effective in terms of area, power and performance

by the study in Chapter 4. Since HyFT_2b scheme nullifies the need of applying minimum delay

constraints during CL synthesis, as discussed in Section 4.3.1.2, both the primary and the set of

reduced secondary copies are synthesized without any minimum delay constraints.

5.5.1.3 Workload Generation

The workload used for fault injection and power estimation experiments performed on selective

HyTFT architecture is similar to the ones used in Section 2.4.1 and 4.3.1.1. We recall here that

the workload is ATPG generated patterns optimized for stuck-at fault detection in the BL version

of CL extracted form the four considered benchmark circuit.

5.5.1.4 RTL Description

In order maximize reuse, the architectural components for describing the ten HyTFT variants

we modified the RTL blocks used in HyFT_2b scheme. The modifications we did to reuse the

RTL models include; the size of the comparator, the control logic to exclude the reconfiguration

5.5 Experimental Validation and Results 115

state machine and associated control signals and the wrapper to reduce the nets to account for the

reduction of outputs of secondary CL copy.

5.5.1.5 Constrained Hierarchical Synthesis

We employed the same synthesis method for obtaining the selective HyTFT designs that is

discussed in Section 4.3.1.5.

5.5.2 Experimental Results

The cost results of selective HyTFT variants are presented in Column 6 (CL Area Absolute mW)

to Column 9 (CL Power Gain %.) of Table 5.3, in terms of area and power. These results

are generated by analyzing the synthesized selective HyTFT variants with Synopsys® Design

Compiler. For power estimation we used switching activity obtained by running the workload

explained in previous section. We only focus on the CL parts of selective HyTFT variants instead

of presenting the cost of entire implementation mainly because the non-CL part is relatively large

in comparison with the CL parts and does not show significant change with the varying degree

of duplication. Thus incorporating the relatively larger and fixed amounts in the presented data

would make them obscure. In order to obtain comprehensive results, experimentation on larger

circuits must be performed, but in this work with small benchmark circuits we intend to show the

efficacy and cost-efficiency of the proposed method.

It is evident from Table 5.3 that reducing the number of outputs selected for error detection

helps reducing the area and power of HyTFT variants. For instance, the selective HyTFT im-

plementation of b05 benchmark circuit that uses only one output node for error detection (i.e.

b05_40%) gains around 32.4% and 36.7% in terms of area and power, respectively.

To assess the fault tolerance capability of the selective HyTFT variants and to see how well

our low-cost vulnerability analysis results coincide with the accurate results, we subjected the

HyTFT variants to a fault injection campaigns with parameters listed in Table 5.2. A total of 442,

2333, 217 and 561 SETs are injected in each of the HyTFT variant of b03, b05, b06 and b08

benchmark circuits, respectively. The fault injection framework of [101] is used to perform the

experiments.

Column 10 (Soft error failure #.) of Table 5.3 show the outcome of the fault injection

experiments. It can be seen that with the reduction of error detection points, the number of soft

error failures shows an increase. This increase is due to the fact that the variants with lesser logic

in their secondary CL copy become more vulnerable to faults because of reduced coverage of the

116 Selective Hybrid Fault Tolerance

error detection mechanism. Column 11 (Soft error failure %.) of the table gives the percentage of

fail-silent faults with respect to the total number of faults injected.

5.5.3 Discussion

In order to compare the vulnerability factor obtained from the low-cost vulnerability analysis

method with the fault tolerance capability results in terms of number of fail-silent faults obtained

using fault injection experiments for the selective HyTFT variants we polt the two measures on the

same graph on with a normalized vertical axis shown in Figure 5.7. The horizontal axis represents

the percentage of cumulative weight of secondary CL copy to that of the primary CL copy such

that the data points in the graph represent b05_0%, b05_40%, b05_51% till b05_100% from left

to right. The straight line curve in purple represent the normalized venerability factor, where as

the green curve represent the normalized number of fail-silent fault observed with the number

marked on each data point on the graph. It can be seen that the vulnerability factor follows more

or less a similar trend as the fault injection results with a positive error for the first two smallest

HyTFT variants and a negative error for the rest of the variants.

The graph also shows in blue and red the trend of normalized area and power of the selective

Hybrid Transient Fault Tolerant (HyTFT) variants respectively with absolute values of area and

power mentioned on some data points. By analyzing the graph we can conclude that the first

two selective HyTFT variants i.e. b05_40% and b05_51% seem most feasible because for these

two cases the area and power overheads are minimum and the number of fail-silent faults are at

reasonably low value, while the remaining cases either offer similar fault tolerant capability with

increased cost (b05_62% and b05_70%) or cost too much compared to their impact on the fault

tolerance capability (b05_70% till b05_100%).

5.6 Summary

The main objectives of the work presented in this chapter are, firstly, to propose a low cost method

to analyze the cost versus reliability trade-off to avoid lengthy fault-injection campaigns at the

early design phases. Secondly to show the feasibility of applying this method to selectively harden

circuits using HyTFT architecture. We have seen in this chapter that the low-cost vulnerability

analysis method is fast and the results obtained have a error within reasonable limits when

compared with more accurate fault injection based methods. We have also shown that selective

hardening circuits with HyTFT can improve the circuit reliability at a reasonable cost. Since the

experiments are based on just one benchmark circuit and only one type of workload it is hard

to make concrete conclusions. We intend to extend the work by adding more benchmarks and

5.6 Summary 117

168

71 72 75
72

66

56 53

38
24

4 530 μm2

556 μm2

576 μm2

645 μm2

663 μm2

677 μm2

688 μm2
712 μm2

785 μm2

1

159 mW

167 mW

171 mW

198 mW
203 mW

208 mW
221 mW

252 mW

1

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

Selective HyTFT Variants

Normalized #. of soft error Normalized Area Normalized Power Vulnerability Factor

Fig. 5.7: Selective HyTFT cost versus soft-error (of CL block extracted form b05)

workloads to further explore the possibilities of using approximate methods for circuit reliability

assessment method that can aid at early phases of design.

Conclusion

Whether it be, commerce, health-care, military, communication or transport, our increasing

reliance on electronics to perform operations that demand high degree of reliability, availability

and safety, and increasing vulnerability of transistors and interconnects are posing new challenges

to the design of next generation of electronic systems. Moreover, the complexity of modern

electronic systems make error detection and confinement a difficult task. On the other hand, the

stringent low-power and high-performance demands has further shrinked the limits of industry’s

consensus about the permissible reliability enhancement overheads. In this work we present a

low-power HyFT architecture for reliability improvement of modern complex pipeline circuits

by protecting their combinational logic parts. The architecture can handle a broad spectrum of

faults with little impact on performance. Moreover, it addresses the problem of error propagation

behavior of nonlinear pipelines and error detection in pipeline stages with memory interface.

We implement the proposed architecture onto a MIPS microprocessor as case study. We also

present a gate-level fault-injection framework that offers high fidelity to model physical defects

and transient faults. Our experimental results show the effectiveness of the proposed architecture

in terms of fault-tolerant capability and power consumption.

To summarize, we state the major contributions of this work as follows:

• A comparative study based on experiments performed on four similar fault-tolerant ar-

chitectures intended to reduce errors caused due to faults in combinational logic parts of

microelectronic circuits and systems [100]. The experimental results show that the hybrid

fault tolerant approach can handle transient faults as effectively as Partial-TMR and exhibits

permanent fault tolerance capability similar to that of Full-TMR. Furthermore, it can handle

the fault accumulation effect better than TMR.

• A Pipelined HyFT architecture that offers solutions to the problem of error detection and

confinement in modern complex pipeline circuits [99]. A case-study of implementation

of a HyFT microprocessor reveled that the implementation offers similar fault tolerance

capability as TMR but with the added advantage of 11.6% power saving.

120 Conclusion

• A simulation based gate-level fault injection framework that offer high fidelity to model

transient, permanent and timing faults [96]. Comprising of a comprehensive flow starting

from fault site extraction till fault injection report analysis, it provides customizability to

suit any application and the degree of automation allows running exhaustive fault injection

campaigns without any manual intervention.

• A design space exploration study aimed at optimizing the HyFT architecture in terms

of area, power and fault tolerance capability [101]. The experimental outcomes showed

that by easing the synthesis constraints that were imposed by the initial design, one can

save significant amounts of area and power, and the improved ability of the optimized

architecture to act against only the potentially fatal SETs improves the performance.

• A selective HyTFT architecture based on a fast cost-reliability trade-off analysis methodol-

ogy [98]. This fast trade-off analysis uses a low-cost reliability estimation method that is

2,500× faster and produces results having error within acceptable limits when compared

with a fault injection based method. The selective HyTFT architecture can improve circuit

reliability at a reasonable cost.

This thesis can form a basis for various possible future work in the area of dependable circuits

and systems design, including the following:

• There is a need to enhance the usability of the gate-level simulation based fault injection

framework by restructuring its components to be able to control all the tasks form the

common command line interface. The goal of this future task is to obtain a simulation based

fault injection tool that uses the existing framework and offers a comprehensive and easy

to use user-interface. As a long term perspective, we also intend to exploit an open source

logic simulator like Verilator [104] or LIFTING [13] to provide a complete open source

fault injection and effect analysis tool.

• Field-Programmable Gate Array (FPGA) based prototyping of HyFT architecture and fault

injection to validate the fault tolerance capability results obtained from the simulation based

fault injection experiments. A major anticipated obstacle during the FPGA prototyping

phase is the implementation of HyFT control logic, which is the most time critical compo-

nent of the architecture and the pseudo-dynamic comparator because of its non-standard

logic implementation. Another major challenge that could be faced to accomplish the fault

injection would be to implement the fault injection instrumentation with time resolution

and accuracy sufficiently high to emulate the occurrence of SETs.

Conclusion 121

• We intend to extend the work in the area of low-cost circuit reliability assessment methods by

adding more benchmarks and workloads, aiming to further explore the possibilities of using

these approximate analytic methods of reliability estimation of fault tolerant architectures

at their early implementation phase. Another area of future research is to use the proposed

low-cost reliability estimation technique with heuristic methods of cost-reliability trade-off

optimization.

Scientific Contributions

Journal

[96] I. Wali, A. Virazel, A. Bosio, P. Girard, S. Pravossoudovitch, and M. Sonza Reorda. “A
Hybrid Fault-Tolerant Architecture for Highly Reliable Processing Cores”. In: Electronic
Testing (JETTA), Journal of (2015). To appear in the April 2016 issue.

International Conferences

[98] I. Wali, A. Virazel, A. Bosio, P. Girard, and M.S. Reorda. “A Low-cost Selective Hybrid
Fault Tolerant Architecture”. In: Test Symposium (ETS), 2016 21st IEEE European. To
appear in the proceedings of ETS’2016.

[99] I. Wali, A. Virazel, A. Bosio, L. Dilillo, and P. Girard. “An effective hybrid fault-tolerant
architecture for pipelined cores”. In: Test Symposium (ETS), 2015 20th IEEE European.
2015, pp. 1–6. DOI: 10.1109/ETS.2015.7138733.

[100] I. Wali, A. Virazel, A. Bosio, and P. Girard. “An Experimental Comparative Study of Fault-
Tolerant Architectures”. In: Advances in System Testing and Validation Lifecycle (VALID)
, 2015, 7th International Conference on. 2015, pp. 1–6. ISBN: 978-1-61208-441-1.

[101] I. Wali, A. Virazel, A. Bosio, P. Girard, and M.S. Reorda. “Design space exploration and
optimization of a Hybrid Fault-Tolerant Architecture”. In: On-Line Testing Symposium
(IOLTS), 2015 IEEE 21st International. 2015, pp. 89–94. DOI: 10.1109/IOLTS.2015.
7229838.

[102] I. Wali, A. Virazel, A. Bosio, L. Dilillo, P. Girard, and A. Todri. “Protecting combinational
logic in pipelined microprocessor cores against transient and permanent faults”. In: Design
and Diagnostics of Electronic Circuits Systems (DDECS), 17th International Symposium
on. Poster. 2014, pp. 223–225. DOI: 10.1109/DDECS.2014.6868794.

Seminars and Workshops

[95] I. Wali, A. Virazel, A. Bosio, L. Dilillo, and P. Girard. “A Fault-tolerant Architecture for
Pipelined Microprocessor Cores”. In: Groupement de Recherche (GdR) SoC-SiP. 2014.

[97] I. Wali, A. Virazel, A. Bosio, L. Dilillo, and P. Girard. “A Hybrid Fault-Tolerant Ar-
chitecture for Non-Linear Pipelines”. In: Journées Nationales du Réseau Doctoral en
Micro-nanoélectronique (JNRDM), 18ème. 2015.

124 Seminars and Workshops

[103] I. Wali, A. Virazel, A. Bosio, L. Dilillo, and P. Girard. “Protecting combinational logic
in pipelined microprocessor cores against transient and permanent faults”. In: South
European Test Seminar (SETS). 2014.

References

[1] United States. National Aeronautics, Space Administration. Scientific, and Technical
Information Division. NASA Thesaurus Aeronautics Vocabulary. NASA technical memo-
randum. National Aeronautics, Space Administration, Office of Management, Scientific,
and Technical Information Division, 2012. URL: http://www.sti.nasa.gov/thesvol1.pdf.

[2] M. Alam, B. Weir, and A. Silverman. “A future of function or failure? [CMOS gate
oxide scaling]”. In: Circuits and Devices Magazine, IEEE 18.2 (2002), pp. 42–48. ISSN:
8755-3996. DOI: 10.1109/101.994857.

[3] J Arlat. “Dependable Computing and Assessment of Dependability”. In: Zuverlässigkeit
und Entwurf (ZuE 2011), Reliability and Design. 2011.

[4] H. Asadi and M.B. Tahoori. “Soft Error Derating Computation in Sequential Circuits”.
In: Computer-Aided Design, 2006. ICCAD ’06. IEEE/ACM International Conference on.
2006, pp. 497–501. DOI: 10.1109/ICCAD.2006.320164.

[5] N.D.P. Avirneni and A.K. Somani. “Low Overhead Soft Error Mitigation Techniques for
High-Performance and Aggressive Designs”. In: Computers, IEEE Transactions on 61.4
(2012), pp. 488–501. ISSN: 0018-9340. DOI: 10.1109/TC.2011.31.

[6] A. Avižiens. “Fault-Tolerant Systems”. In: Computers, IEEE Transactions on C-25.12
(1976), pp. 1304–1312. ISSN: 0018-9340. DOI: 10.1109/TC.1976.1674598.

[7] A. Avižienis, J.C. Laprie, B. Randell, and University of Newcastle upon Tyne. Computing
Science. Fundamental Concepts of Dependability. Technical report series. University of
Newcastle upon Tyne, Computing Science, 2001. URL: https://books.google.fr/books?id=
cDkmGwAACAAJ.

[8] E. Balaji and P. Krishnamurthy. “Modeling ASIC memories in VHDL”. In: Design
Automation Conference, 1996, with EURO-VHDL ’96 and Exhibition, Proceedings EURO-
DAC ’96, European. 1996, pp. 502–508. DOI: 10.1109/EURDAC.1996.558250.

[9] R.C. Baumann. “Radiation-induced soft errors in advanced semiconductor technologies”.
In: Device and Materials Reliability, IEEE Transactions on 5.3 (2005), pp. 305–316. ISSN:
1530-4388. DOI: 10.1109/TDMR.2005.853449.

[10] J. Benedetto et al. “Heavy ion-induced digital single-event transients in deep submicron
Processes”. In: Nuclear Science, IEEE Transactions on 51.6 (2004), pp. 3480–3485. ISSN:
0018-9499. DOI: 10.1109/TNS.2004.839173.

[11] S. Bhunia, S. Mukhopadhyay, and K. Roy. “Process Variations and Process-Tolerant
Design”. In: VLSI Design, 2007. Held jointly with 6th International Conference on
Embedded Systems., 20th International Conference on. 2007, pp. 699–704. DOI: 10.1109/
VLSID.2007.131.

126 References

[12] D. Binder, E.C. Smith, and A.B. Holman. “Satellite Anomalies from Galactic Cosmic
Rays”. In: Nuclear Science, IEEE Transactions on 22.6 (1975), pp. 2675–2680. ISSN:
0018-9499. DOI: 10.1109/TNS.1975.4328188.

[13] A. Bosio and G. Di Natale. “LIFTING: A Flexible Open-Source Fault Simulator”. In:
Asian Test Symposium, 2008. ATS ’08. 17th. 2008, pp. 35–40. DOI: 10.1109/ATS.2008.17.

[14] C. Bottoni, B. Coeffic, J.-M. Daveau, L. Naviner, and P. Roche. “Partial triplication of a
SPARC-V8 microprocessor using fault injection”. In: Circuits Systems (LASCAS), 2015
IEEE 6th Latin American Symposium on. 2015, pp. 1–4. DOI: 10.1109/LASCAS.2015.
7250415.

[15] D. Brooks and M. Martonosi. “Dynamic thermal management for high-performance mi-
croprocessors”. In: High-Performance Computer Architecture, 2001. HPCA. The Seventh
International Symposium on. 2001, pp. 171–182. DOI: 10.1109/HPCA.2001.903261.

[16] B.H. Calhoun, A. Wang, N. Verma, and A. Chandrakasan. “Sub-Threshold Design: The
Challenges of Minimizing Circuit Energy”. In: Low Power Electronics and Design, 2006.
ISLPED’06. Proceedings of the 2006 International Symposium on. 2006, pp. 366–368.
DOI: 10.1109/LPE.2006.4271869.

[17] Victor Castano and Igor Schagaev. Resilient Computer System Design. Springer Publishing
Company, Incorporated, 2015. ISBN: 3319150685, 9783319150680.

[18] Chang-Chih Chen and L. Milor. “Microprocessor Aging Analysis and Reliability Mod-
eling Due to Back-End Wearout Mechanisms”. In: Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on 23.10 (2015), pp. 2065–2076. ISSN: 1063-8210. DOI:
10.1109/TVLSI.2014.2357756.

[19] G H Chisholm, Joseph Kljaich, B T Smith, and A S Wojcik. “An approach to the ver-
ification of a fault-tolerant, computer-based reactor safety system: A case study using
automated reasoning: Volume 2, Appendixes: Interim report”. In: 1986.

[20] F. Corno, M.S. Reorda, and G. Squillero. “RT-level ITC’99 benchmarks and first ATPG
results”. In: Design Test of Computers, IEEE 17.3 (2000), pp. 44–53. ISSN: 0740-7475.
DOI: 10.1109/54.867894.

[21] Dale L. Critchlow. “Recollections on MOSFET Scaling”. In: Solid-State Circuits Society
Newsletter, IEEE 12.1 (2007), pp. 19–22. ISSN: 1098-4232. DOI: 10.1109/N-SSC.2007.
4785536.

[22] Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, and Mark Horowitz.
“CPU DB: Recording Microprocessor History”. In: Queue 10.4 (Apr. 2012), 10:10–10:27.
ISSN: 1542-7730. DOI: 10.1145/2181796.2181798. URL: http://doi.acm.org/10.1145/
2181796.2181798.

[23] S. Das et al. “RazorII: In Situ Error Detection and Correction for PVT and SER Tolerance”.
In: Solid-State Circuits, IEEE Journal of 44.1 (2009), pp. 32–48. ISSN: 0018-9200. DOI:
10.1109/JSSC.2008.2007145.

[24] S.E. Diehl-Nagle, J.E. Vinson, and E.L. Peterson. “Single Event Upset Rate Predictions
for Complex Logic Systems”. In: Nuclear Science, IEEE Transactions on 31.6 (1984),
pp. 1132–1138. ISSN: 0018-9499. DOI: 10.1109/TNS.1984.4333470.

References 127

[25] P.E. Dodd and L.W. Massengill. “Basic mechanisms and modeling of single-event upset
in digital microelectronics”. In: Nuclear Science, IEEE Transactions on 50.3 (2003),
pp. 583–602. ISSN: 0018-9499. DOI: 10.1109/TNS.2003.813129.

[26] P.E. Dodd, M.R. Shaneyfelt, J.A. Felix, and J.R. Schwank. “Production and propagation
of single-event transients in high-speed digital logic ICs”. In: Nuclear Science, IEEE
Transactions on 51.6 (2004), pp. 3278–3284. ISSN: 0018-9499. DOI: 10.1109/TNS.2004.
839172.

[27] E. Dubrova. Fault-Tolerant Design. Springer New York, 2013. ISBN: 9781461421139.
URL: https://books.google.fr/books?id=FRs_AAAAQBAJ.

[28] A. Dutta and A. Jas. “Combinational Logic Circuit Protection Using Customized Error
Detecting and Correcting Codes”. In: Quality Electronic Design, 2008. ISQED 2008. 9th
International Symposium on. 2008, pp. 68–73. DOI: 10.1109/ISQED.2008.4479700.

[29] D. Ernst et al. “Razor: a low-power pipeline based on circuit-level timing speculation”. In:
Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM International
Symposium on. 2003, pp. 7–18. DOI: 10.1109/MICRO.2003.1253179.

[30] M. Fazeli, S.N. Ahmadian, S.G. Miremadi, H. Asadi, and M.B. Tahoori. “Soft error rate
estimation of digital circuits in the presence of Multiple Event Transients (METs)”. In:
Design, Automation Test in Europe Conference Exhibition (DATE), 2011. 2011, pp. 1–6.
DOI: 10.1109/DATE.2011.5763020.

[31] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott A. Mahlke. “Maestro: Or-
chestrating Lifetime Reliability in Chip Multiprocessors.” In: HiPEAC. Ed. by Yale N.
Patt, Pierfrancesco Foglia, Evelyn Duesterwald, Paolo Faraboschi, and Xavier Martorell.
Vol. 5952. Lecture Notes in Computer Science. Springer, Feb. 24, 2010, pp. 186–200.
ISBN: 978-3-642-11514-1. URL: http://dblp.uni-trier.de/db/conf/hipeac/hipeac2010.html#
FengGAM10.

[32] V. Ferlet-Cavrois, L.W. Massengill, and P. Gouker. “Single Event Transients in Digital
CMOS-A Review”. In: Nuclear Science, IEEE Transactions on 60.3 (2013), pp. 1767–
1790. ISSN: 0018-9499. DOI: 10.1109/TNS.2013.2255624.

[33] G. Fey, A. Sulflow, S. Frehse, and R. Drechsler. “Effective Robustness Analysis Using
Bounded Model Checking Techniques”. In: Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on 30.8 (2011), pp. 1239–1252. ISSN: 0278-0070. DOI:
10.1109/TCAD.2011.2120950.

[34] D.T. Franco, M.C. Vasconcelos, L. Naviner, and J.-F. Naviner. “Reliability analysis
of logic circuits based on signal probability”. In: Electronics, Circuits and Systems,
2008. ICECS 2008. 15th IEEE International Conference on. 2008, pp. 670–673. DOI:
10.1109/ICECS.2008.4674942.

[35] Arthur L. Friedman, Bruce Lawton, Kenneth R. Hotelling, J.C. Pickel, Virgil H. Strahan,
and Keith Loree. “Single Event Upset in Combinatorial and Sequential Current Mode
Logic”. In: Nuclear Science, IEEE Transactions on 32.6 (1985), pp. 4216–4218. ISSN:
0018-9499. DOI: 10.1109/TNS.1985.4334097.

[36] R. Garg, C. Nagpal, and S.P. Khatri. “A fast, analytical estimator for the SEU-induced
pulse width in combinational designs”. In: Design Automation Conference, 2008. DAC
2008. 45th ACM/IEEE. 2008, pp. 918–923.

128 References

[37] N. George and J. Lach. “Characterization of logical masking and error propagation in
combinational circuits and effects on system vulnerability”. In: Dependable Systems
Networks (DSN), 2011 IEEE/IFIP 41st International Conference on. 2011, pp. 323–334.
DOI: 10.1109/DSN.2011.5958246.

[38] M. Goessel. New Methods of Concurrent Checking. Frontiers in Electronic Testing.
Springer, 2008. ISBN: 9781402084201. URL: https : / / books . google . fr / books ? id =
WvN8iOWu9sMC.

[39] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta, and Changhong Dai. “Impact of
CMOS process scaling and SOI on the soft error rates of logic processes”. In: VLSI
Technology, 2001. Digest of Technical Papers. 2001 Symposium on. 2001, pp. 73–74. DOI:
10.1109/VLSIT.2001.934953.

[40] Walter L Heimerdinger and Charles B Weinstock. A conceptual framework for system
fault tolerance. Tech. rep. DTIC Document, 1992.

[41] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition: A
Quantitative Approach. 5th. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2011. ISBN: 012383872X, 9780123838728.

[42] Chang-Ming Hsieh, P.C. Murley, and R.R. O’Brien. “Collection of charge from alpha-
particle tracks in silicon devices”. In: Electron Devices, IEEE Transactions on 30.6 (1983),
pp. 686–693. ISSN: 0018-9383. DOI: 10.1109/T-ED.1983.21190.

[43] C.M. Hsieh, P.C. Murley, and R.R. O’Brien. “A field-funneling effect on the collection of
alpha-particle-generated carriers in silicon devices”. In: Electron Device Letters, IEEE
2.4 (1981), pp. 103–105. ISSN: 0741-3106. DOI: 10.1109/EDL.1981.25357.

[44] Wei Huang, M.R. Stan, S. Gurumurthi, R.J. Ribando, and K. Skadron. “Interaction
of scaling trends in processor architecture and cooling”. In: Semiconductor Thermal
Measurement and Management Symposium, 2010. SEMI-THERM 2010. 26th Annual
IEEE. 2010, pp. 198–204. DOI: 10.1109/STHERM.2010.5444290.

[45] K. Iniewski. Advanced Circuits for Emerging Technologies. Wiley, 2012. ISBN: 9781118181492.
URL: https://books.google.fr/books?id=yuhbbtDFDtoC.

[46] International Technology Roadmap for Semiconductors. 2013. URL: http://www.itrs.
net / ITRS%201999- 2014%20Mtgs , %20Presentations%20&%20Links /2013ITRS/
Summary2013.htm (visited on 12/06/2015).

[47] B.W. Johnson. Design and Analysis of Fault-tolerant Digital Systems. Addison-Wesley
series in electrical and computer engineering. Addison-Wesley Publishing Company, 1989.
ISBN: 9780201075700. URL: https://books.google.fr/books?id=DOVQAAAAMAAJ.

[48] T. Karnik and P. Hazucha. “Characterization of soft errors caused by single event upsets
in CMOS processes”. In: Dependable and Secure Computing, IEEE Transactions on 1.2
(2004), pp. 128–143. ISSN: 1545-5971. DOI: 10.1109/TDSC.2004.14.

[49] M. Kooli and G. Di Natale. “A survey on simulation-based fault injection tools for complex
systems”. In: Design Technology of Integrated Systems In Nanoscale Era (DTIS), 2014
9th IEEE International Conference On. 2014, pp. 1–6. DOI: 10.1109/DTIS.2014.6850649.

[50] I. Koren and C.M. Krishna. Fault-Tolerant Systems. Elsevier Science, 2010. ISBN: 9780080492681.
URL: https://books.google.fr/books?id=o_Pjbo4Wvp8C.

References 129

[51] R. Kumar and The University of Wisconsin Madison. Temperature Adaptive and Variation
Tolerant CMOS Circuits. University of Wisconsin–Madison, 2008. ISBN: 9780549635109.
URL: https://books.google.fr/books?id=Up4SN4XcgZgC.

[52] T. Lehtonen, J. Plosila, and J. Isoaho. On Fault Tolerance Techniques Towards Nanoscale
Circuits and Systems. TUCS technical report. Turku Centre for Computer Science, 2005.
ISBN: 9789521215964. URL: https://books.google.fr/books?id=fVaUAwAACAAJ.

[53] P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson. “On latching probability of particle
induced transients in combinational networks”. In: Fault-Tolerant Computing, 1994. FTCS-
24. Digest of Papers., Twenty-Fourth International Symposium on. 1994, pp. 340–349.
DOI: 10.1109/FTCS.1994.315626.

[54] Benjamin Lussier, Raja Chatila, Felix Ingrand, Marc-olivier Killijian, and David Powell.
“On Fault Tolerance and Robustness in Autonomous Systems”. In: In proceedings of the
third IARP/IEEE-RAS/EURON joint workshop on technical challange for dependable
robots in human Environments. Citeseer. 2004.

[55] Robert E Lyons and Wouter Vanderkulk. “The use of triple-modular redundancy to
improve computer reliability”. In: IBM Journal of Research and Development 6.2 (1962),
pp. 200–209.

[56] M. Maniatakos and Y. Makris. “Workload-driven selective hardening of control state
elements in modern microprocessors”. In: VLSI Test Symposium (VTS), 2010 28th. 2010,
pp. 159–164. DOI: 10.1109/VTS.2010.5469589.

[57] M.-C.V. Marinescu and M. Rinard. “High-level automatic pipelining for sequential cir-
cuits”. In: System Synthesis, 2001. Proceedings. The 14th International Symposium on.
2001, pp. 215–220. DOI: 10.1109/ISSS.2001.156561.

[58] L.W. Massengill and P.W. Tuinenga. “Single-Event Transient Pulse Propagation in Digital
CMOS”. In: Nuclear Science, IEEE Transactions on 55.6 (2008), pp. 2861–2871. ISSN:
0018-9499. DOI: 10.1109/TNS.2008.2006749.

[59] J. Mathew, R.A. Shafik, and D.K. Pradhan. Energy-Efficient Fault-Tolerant Systems.
Springer New York, 2013. ISBN: 9781461441922. URL: https://books.google.fr/books?
id=lYmRMQEACAAJ.

[60] T.C. May and Murray H. Woods. “Alpha-particle-induced soft errors in dynamic memo-
ries”. In: Electron Devices, IEEE Transactions on 26.1 (1979), pp. 2–9. ISSN: 0018-9383.
DOI: 10.1109/T-ED.1979.19370.

[61] T.C. May, G.L. Scott, E.S. Meieran, P. Winer, and V.R. Rao. “Dynamic Fault Imaging of
VLSI Random Logic Devices”. In: Reliability Physics Symposium, 1984. 22nd Annual.
1984, pp. 95–108. DOI: 10.1109/IRPS.1984.362025.

[62] M. Mehrara, M. Attariyan, S. Shyam, K. Constantinides, V. Bertacco, and T. Austin.
“Low-Cost Protection for SER Upsets and Silicon Defects”. In: Design, Automation Test
in Europe Conference Exhibition, 2007. DATE ’07. 2007, pp. 1–6. DOI: 10.1109/DATE.
2007.364449.

[63] S. Mitra and E.J. McCluskey. “Which concurrent error detection scheme to choose ?” In:
Test Conference, 2000. Proceedings. International. 2000, pp. 985–994. DOI: 10.1109/
TEST.2000.894311.

130 References

[64] K. Mohanram. “Closed-form simulation and robustness models for SEU-tolerant design”.
In: VLSI Test Symposium, 2005. Proceedings. 23rd IEEE. 2005, pp. 327–333. DOI: 10.
1109/VTS.2005.35.

[65] K. Mohanram and N.A. Touba. “Cost-effective approach for reducing soft error failure
rate in logic circuits”. In: Test Conference, 2003. Proceedings. ITC 2003. International.
Vol. 1. 2003, pp. 893–901. DOI: 10.1109/TEST.2003.1271075.

[66] Helia Naeimi and André DeHon. “Fault-tolerant sub-lithographic design with rollback
recovery”. In: Nanotechnology 19.11 (2008), p. 115708.

[67] NanGate. NanGate 45nm Open Cell Library. 2011. URL: http://www.nangate.com/?page\
_id=2325 (visited on 11/03/2015).

[68] John von Neumann. “Probabilistic Logics and the Synthesis of Reliable Organisms from
Unreliable Components”. In: Automata Studies (1956). Ed. by C. Shannon, pp. 43–98.

[69] M. Nicolaidis. Soft Errors in Modern Electronic Systems. Frontiers in Electronic Testing.
Springer US, 2010. ISBN: 9781441969934. URL: https://books.google.fr/books?id=
WCqrOkMExu8C.

[70] Y. Nishi and R. Doering. Handbook of Semiconductor Manufacturing Technology, Second
Edition. CRC Press, 2007. ISBN: 9781420017663. URL: https://books.google.fr/books?
id=PsVVKz_hjBgC.

[71] S. Oda and D.K. Ferry. Nanoscale Silicon Devices. Taylor & Francis, 2015. ISBN:
9781482228670. URL: https://books.google.fr/books?id=LMg-rgEACAAJ.

[72] Samuel N. Pagliarini, Lirida A.de B. Naviner, and J.-F. Naviner. “Selective hardening
methodology for combinational logic”. In: Test Workshop (LATW), 2012 13th Latin
American. 2012, pp. 1–6. DOI: 10.1109/LATW.2012.6261262.

[73] Janak H. Patel. “Manufacturing Process Variations and Dependability - A Contrarian
View”. In: Dependable and Secure Nanocomputing (DSN), 2007 Workshop on. 2007.

[74] W.W. Peterson and E.J. Weldon. Error-correcting Codes. MIT Press, 1972. ISBN: 9780262160391.
URL: https://books.google.fr/books?id=5kfwlFeklx0C.

[75] I. Polian and J.P. Hayes. “Selective Hardening: Toward Cost-Effective Error Tolerance”.
In: Design Test of Computers, IEEE 28.3 (2011), pp. 54–63. ISSN: 0740-7475. DOI:
10.1109/MDT.2010.120.

[76] I. Polian, S.M. Reddy, and B. Becker. “Scalable Calculation of Logical Masking Effects
for Selective Hardening Against Soft Errors”. In: Symposium on VLSI, 2008. ISVLSI ’08.
IEEE Computer Society Annual. 2008, pp. 257–262. DOI: 10.1109/ISVLSI.2008.22.

[77] Karl Rupp. 40 Years of Microprocessor Trend Data. 2015. URL: https://www.karlrupp.net/
2015/06/40-years-of-microprocessor-trend-data/.

[78] John Rushby. Formal Methods and the Certification of Critical Systems. Tech. rep. SRI-
CSL-93-7. Also issued under the title Formal Methods and Digital Systems Validation for
Airborne Systems as NASA Contractor Report 4551, December 1993. Menlo Park, CA:
Computer Science Laboratory, SRI International, Dec. 1993.

[79] M. Sachdev. Defect Oriented Testing for CMOS Analog and Digital Circuits. Frontiers in
Electronic Testing. Springer US, 2013. ISBN: 9781475749267. URL: https://books.google.
fr/books?id=0bPaBwAAQBAJ.

References 131

[80] J. Samandari-Rad, M. Guthaus, and R. Hughey. “Confronting the Variability Issues
Affecting the Performance of Next-Generation SRAM Design to Optimize and Predict
the Speed and Yield”. In: Access, IEEE 2 (2014), pp. 577–601. ISSN: 2169-3536. DOI:
10.1109/ACCESS.2014.2323233.

[81] M. Santoro. “New methodologies for eliminating No Trouble Found, No Fault Found and
other non repeatable failures in depot settings”. In: AUTOTESTCON, 2008 IEEE. 2008,
pp. 336–340. DOI: 10.1109/AUTEST.2008.4662636.

[82] S.S. Sapatnekar. “Overcoming Variations in Nanometer-Scale Technologies”. In: Emerg-
ing and Selected Topics in Circuits and Systems, IEEE Journal on 1.1 (2011), pp. 5–18.
ISSN: 2156-3357. DOI: 10.1109/JETCAS.2011.2138250.

[83] L. Scheffer, L. Lavagno, and G. Martin. EDA for IC Implementation, Circuit Design, and
Process Technology. EDA for IC Implementation, Circuit Design, and Process Technology.
Taylor & Francis, 2006. ISBN: 9780849379246. URL: https://books.google.fr/books?id=
bHAeAQAAIAAJ.

[84] J. Segura and C.F. Hawkins. CMOS Electronics: How It Works, How It Fails. Wiley, 2004.
ISBN: 9780471476696. URL: https://books.google.fr/books?id=Vl8naJHBTDIC.

[85] P. Shivakumar and The University of Texas at Austin. Computer Sciences. Techniques to
Improve the Hard and Soft Error Reliability of Distributed Architectures. University of
Texas at Austin, 2007. ISBN: 9780549172109. URL: https://books.google.fr/books?id=
DYX5AVBYwKgC.

[86] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi. “Modeling the effect of
technology trends on the soft error rate of combinational logic”. In: Dependable Systems
and Networks, 2002. DSN 2002. Proceedings. International Conference on. 2002, pp. 389–
398. DOI: 10.1109/DSN.2002.1028924.

[87] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers. “The case for lifetime reliability-
aware microprocessors”. In: Computer Architecture, 2004. Proceedings. 31st Annual
International Symposium on. 2004, pp. 276–287. DOI: 10.1109/ISCA.2004.1310781.

[88] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers. “The impact of technology scaling on
lifetime reliability”. In: Dependable Systems and Networks, 2004 International Conference
on. 2004, pp. 177–186. DOI: 10.1109/DSN.2004.1311888.

[89] V. Subramanian and A.K. Somani. “Conjoined Pipeline: Enhancing Hardware Reliability
and Performance through Organized Pipeline Redundancy”. In: Dependable Computing,
2008. PRDC ’08. 14th IEEE Pacific Rim International Symposium on. 2008, pp. 9–16.
DOI: 10.1109/PRDC.2008.54.

[90] Anjana Suresh and S. Sabi. “Advanced Error Recovery for TMR Systems”. In: Interna-
tional Journal of Advanced Technology in Engineering and Science 2.8 (2014), pp. 408–
419. URL: http://ijates.com/images/short_pdf/1408988043_P408-419.pdf.

[91] D. A. Tran et al. “A New Hybrid Fault-Tolerant Architecture for Digital CMOS Circuits
and Systems”. In: J. Electron. Test. 30.4 (Aug. 2014), pp. 401–413. ISSN: 0923-8174. DOI:
10.1007/s10836-014-5459-3. URL: http://dx.doi.org/10.1007/s10836-014-5459-3.

[92] D.A. Tran et al. “A Hybrid Fault Tolerant Architecture for Robustness Improvement of
Digital Circuits”. In: Test Symposium (ATS), 2011 20th Asian. 2011, pp. 136–141. DOI:
10.1109/ATS.2011.89.

132 References

[93] D.A. Tran et al. “A pseudo-dynamic comparator for error detection in fault tolerant
architectures”. In: VLSI Test Symposium (VTS), 2012 IEEE 30th. 2012, pp. 50–55. DOI:
10.1109/VTS.2012.6231079.

[94] J. Velamala, R. LiVolsi, M. Torres, and Yu Cao. “Design sensitivity of Single Event
Transients in scaled logic circuits”. In: Design Automation Conference (DAC), 2011 48th
ACM/EDAC/IEEE. 2011, pp. 694–699.

[104] Duane Galbi Wilson Snyder and Paul Wasson. Introduction to Verilator. 2015. URL:
http://www.veripool.org/wiki/verilator.

[105] M. Wirnshofer. Variation-Aware Adaptive Voltage Scaling for Digital CMOS Circuits.
Springer Series in Advanced Microelectronics. Springer Netherlands, 2015. ISBN: 9789401783675.
URL: https://books.google.fr/books?id=_UUyrgEACAAJ.

[106] Pei-Ci Wu, M.D.F. Wong, I. Nedelchev, S. Bhardwaj, and V. Parkhe. “On timing closure:
Buffer insertion for hold-violation removal”. In: Design Automation Conference (DAC),
2014 51st ACM/EDAC/IEEE. 2014, pp. 1–6. DOI: 10.1145/2593069.2593171.

[107] Jun Yao, H. Shimada, and K. Kobayashi. “[2009] A Stage-Level Recovery Scheme in
Scalable Pipeline Modules for High Dependability”. In: Innovative Architecture for Future
Generation High Performance (IWIA), 2010 International Workshop on. 2010, pp. 21–29.
DOI: 10.1109/IWIA.2010.11.

[108] Jun Yao, S. Okada, M. Masuda, K. Kobayashi, and Y. Nakashima. “DARA: A Low-Cost
Reliable Architecture Based on Unhardened Devices and Its Case Study of Radiation
Stress Test”. In: Nuclear Science, IEEE Transactions on 59.6 (2012), pp. 2852–2858.
ISSN: 0018-9499. DOI: 10.1109/TNS.2012.2223715.

[109] Quming Zhou and K. Mohanram. “Gate sizing to radiation harden combinational logic”.
In: Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
25.1 (2006), pp. 155–166. ISSN: 0278-0070. DOI: 10.1109/TCAD.2005.853696.

[110] J. F. Ziegler and W. A. Lanford. “Effect of Cosmic Rays on Computer Memories”. In:
Science. Vol. 206. 4420. 1979, pp. 776–788. URL: http://www.sciencemag.org/cgi/content/
abstract/206/4420/776.

[111] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, and B. Chin. “IBM Experiments
in Soft Fails in Computer Electronics (1978&Ndash;1994)”. In: IBM J. Res. Dev. 40.1
(Jan. 1996), pp. 3–18. ISSN: 0018-8646. DOI: 10.1147/rd.401.0003. URL: http://dx.doi.
org/10.1147/rd.401.0003.

[112] C.G. Zoellin, H. Wunderlich, I. Polian, and B. Becker. “Selective Hardening in Early
Design Steps”. In: Test Symposium, 2008 13th European. 2008, pp. 185–190. DOI: 10.
1109/ETS.2008.30.

Appendix A

HyFT Control Logic

The HyFT architecture is controlled by a control logic module having two submodules as shown

in Figure A.1. The first submodule (named as submodule1) is responsible to generate time

critical control signals for the input register, which include CRegin and CLKRegin, and for the

pseudo-dynamic comparator, which include DC and CompReset. The functional description of

these control signals is given in the second column of Table A.1.

The fixed logic shown in Figure A.2 when synthesized with appropriate delay constraints

serves as submodule1. The circuit elements of submodule1 that play part in the generation of

each time critical control signal are listed in the third column of Table A.1 and the implication of

submodule1 circuit elements delays on the timing of these signals is given in the last column of

Table A.1.

CLK

Err

RESET

DC CLK

Err

RESET

CompReset

CRegin

CLKRegin

DC

CRegin

CLKRegin

RESET

CompReset

CRegin

CLKRegin

d3

d2

m2

m1

d1

submodule2

submodule1

m2

m1

d3

d2

d1

Fig. A.1: HyFT Control Logic

HyFT control logic submodule2 holds the FSM that manages the reconfigurations in HyFT

architecture by deciding which pair of CL copies to run and which one to keep in standby

mode. A simplified illustration of submodule2 is shown in Figure A.4. The label on each state

represents the active CL pair, for example, state 1-2 is the one in which CL1 and CL2 run and

134 HyFT Control Logic

Table A.1: HyFT submodule1 control signals

Control

Signal

Description Generating cir-

cuit elements (of

Figure A.2)

Timing (based on the circuit elements of

Figure A.2)

DC A periodic signal that defines the time interval

during which the pseudo-dynamic compara-

tor compares for error detection (comparison-

window) by being at logic level-1.

buf1 & buf2 • ∆(CLK ↑,DC ↑) = dbuf1 +dbuf2

• ∆(CLK ↓,DC ↓) = dbuf1 +dbuf2

CRegin This signal

indicates a

reconfigura-

tion cycle

by staying at

logic level-1.

• If CRegin is at logic

level-1 and CLKRegin

undergoes a falling

transition, the state machine

reconfigures.

• If CRegin is at logic

level-1 and CLKRegin

acquires low logic level, the

shadow latch in the input

register preserves the last

state to be used for rollback.

• If CRegin is at logic

level-1 and CLK undergoes

a rising edge, the input

register captures data from

shadow latch instead of

capturing a new input

sample.

buf2, and & ff1 • ∆(Err ↑,CRegin ↑) = dand

• ∆(CLK ↑,CRegin ↓) = dccq +dand +dbuf2

CLKRegin A periodic

signal used

to trigger re-

configuration

and rollback

depending on

the state of

CRegin.

buf2, inv1 & or1 • ∆(CLK ↓,CLKRegin ↓) = dbuf2 +dbuf2

• ∆(CLK ↓,CLKRegin ↑) = dinv1 +dor1

CompReset An active-low reset to the pseudo-dynamic

comparator. Resets the pseudo-dynamic com-

parator when the reconfiguration and recompu-

tation cycles finish.

inv2, nand, or2 &

ff1

• ∆(CLK ↑,CompReset ↓) = dnand +dor2

• ∆(CLK ↑,CompReset ↓) = dnand +dor2

135

DC

dinv1

CLKRegin

dbuf1

dor1
dbuf2

CLK

dand

CRegin

Err

RESET

CompReset

dinv2

dnand

D Q

 Q
 _

buf1

buf2 inv1

or1

and

ff1

inv2

nand

or2

dor2

Fig. A.2: HyFT Control Logic submodule1

Fig. A.3: HyFT Control Logic submodule1 simulation

CL3 stays in standby. It changes state if during that cycle an error is detected. Table A.2 gives the

value control signals generated by submodule2 FSM to control the reconfiguration multiplexer

and demultiplexer. Possible customizations of the submodule2 FSM aimed to optimize the

performance by adapting to type of targeted faults, are presented in [92].

136 HyFT Control Logic

1-2

2-3

1-3
Error

Fig. A.4: HyFT Control Logic submodule2 FSM

Table A.2: HyFT submodule2 control signals

State m1 m2 d1 d2 d3 Active CLs

1-2 0 1 1 1 0 CL1, CL2

1-2 1 0 0 1 1 CL2, CL3

1-3 0 0 1 0 1 CL1, CL3

Appendix B

Workload Program

The assembly workload program used with different versions of MIPS microprocessor, for their

power estimation and fault-injection experiments is given below:

❀ ♠✉❧$✐♣❧② ✶✻ ❜✐$+ ✉♥+✐❣♥❡❞ ♥✉♠❜❡0+ 0✶ ✯ 0✷

❀ ✐♥♣✉$

❛❞❞✐ 0✶✱ 0✵✱ ★✻ ❀ ♠✉❧$✐♣❧✐❝❛♥❞

❛❞❞✐ 0✷✱ 0✵✱ ★✹ ❀ ♠✉❧$✐♣❧✐❡0

❀ ♦✉$♣✉$

❛❞❞ 0✸✱ 0✵✱ 0✵

❀ ✐$❡0❛$✐♦♥ ❝♦✉♥$❡0

❛❞❞✐ 0✹✱ 0✵✱ ✵

❀ ❛❧❣♦0✐$❤♠ +$❛0$

✐$❡0❛$✐♦♥✿

+❧❧ 0✺✱ 0✶✱ 0✹ ❀ +❤✐❢$ ❧❡❢$ ♠✉❧$✐♣❧✐❝❛♥❞ ★✭✐$❡0❛$✐♦♥ ❝♦✉♥$❡0✮ ❛♠♦✉♥$

+0❧ 0✻✱ 0✷✱ 0✹ ❀ +❤✐❢$ 0✐❣❤$ ♠✉❧$✐♣❧✐❡0 ★✭✐$❡0❛$✐♦♥ ❝♦✉♥$❡0✮ ❛♠♦✉♥$

❛♥❞✐ 0✼✱ 0✻✱ ★✶ ❀ ♠❛+❦ ♠✉❧$✐♣❧✐❡0 0✐❣❤$♠♦+$ ❜✐$

❜❡C③ 0✼✱ ♥♦❛❞❞ ❀ ✐❢ 0✐❣❤$♠♦+$❜✐$ ✐+ ✵ ❞♦♥✬$ ❛❞❞

❛❞❞ 0✸✱ 0✸✱ 0✺ ❀ ✐❢ 0✐❣❤$♠♦+$❜✐$ ✐+ ✶ ❛❞❞

♥♦❛❞❞✿

❛❞❞✐ 0✹✱ 0✹✱ ★✶ ❀ ✐♥❝0❡♠❡♥$ ✐$❡0❛$✐♦♥ ❝♦✉♥$❡0

+❣❡✐ 0✽✱ 0✹✱ ★✶✻ ❀ +❡$ ❜✐$ ✐❢ ✐$❡0❛$✐♦♥ ✐+ ❃❂ ✶✻

❜❡C③ 0✽✱ ✐$❡0❛$✐♦♥

138 Workload Program

♥♦♣

♥♦♣

♥♦♣

❀ ✇❡ ❤❛✈❡)❡*✉❧- ✐♥)✸✦

Appendix C

CL extraction

As we have seen in Chapter 2, combinational parts are extracted from ITC’99 benchmark circuits

by removing all D flip-flops from the original netlist. For each flip-flop removed, a new primary

output (nPO) and a new primary input (nPI) are added.

An example of combinational logic extraction is detailed for circuit b01 of ITC’99 benchmark

in Table C.1. In this example, differences in the extracted netlist compared the orginal netlist are

in bold.

140 CL extraction

Table C.1: An example of CL Extraction

Original netlist Netlist of extracted CL part

module b01 (LINE1, LINE2, OUTP_REG, OVERFLW_REG, CLK);
module b01 (LINE1, LINE2, OUTP_REG, OVERFLW_REG, CLK,

nPI1, nPI2, nPI3, nPI4, nPI5, nPO1, nPO2, nPO3, nPO4, nPO5);

input LINE1, LINE2, CLK; input LINE1, LINE2, CLK;

output OUTP_REG, OVERFLW_REG; output OUTP_REG, OVERFLW_REG;

input nPI1, nPI2, nPI3, nPI4, nPI5;

output nPO1, nPO2, nPO3, nPO4, nPO5;

//Begin sequential part //Begin sequential part

dff dff_1 (STATO_REG_2_, U34, CLK); buf buf_1 (nPO1, U34);

buf buf_2 (STATO_REG_2_, nPI1);

dff dff_2 (STATO_REG_1_, U35, CLK); buf buf_3 (nPO2, U35);

buf buf_4 (STATO_REG_1_, nPI2);

dff dff_3 (STATO_REG_0_, U36, CLK); buf buf_5 (nPO3, U36);

buf buf_6 (STATO_REG_0_, nPI3);

dff dff_4 (OUTP_REG, U37, CLK); buf buf_7 (nPO4, U37);

buf buf_8 (OUTP_REG, nPI4);

dff dff_5 (OVERFLW_REG, U48, CLK); buf buf_9 (nPO5, U48);

buf buf_10 (OVERFLW_REG, nPI5);

// End sequential part //End sequential part

//Begin combinational part //Begin combinational part

....

....

....

....

//End combinational part //End combinational part

endmodule endmodule

