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Abstract

This thesis deals with several scientific aspects inherent to the numerical simulation
of fluid-structure interaction problems involving thin deformable membranes. Two
specific cases relevant to cardiovascular biomechanics are considered: the interac-
tion of the blood flow with the aortic valve (which occurs at the macroscopic scale),
and the interaction of the red blood cells membrane with its inner and outer fluids
(which occurs at the microscopic scale). In both cases, the fluid-structure interac-
tion coupling is handled using an immersed boundary formalism, representing the
membrane by a Lagrangian mesh moving through an Eulerian fluid mesh.

When dealing with red blood cells dynamics, the membrane is considered to
be an infinitely thin and massless structure. The first question which is addressed
in the present thesis work is how to model the complex microstructure of the red
blood cells membrane. A possible way to characterize a suitable membrane model is
to simulate the optical tweezers experiment, which is a well-controlled experimental
configuration enabling to study the individual mechanics of an isolated red blood cell
in a large range of deformation. Some relevant membrane models are identified, but
the deformation characteristics measured during the optical tweezers experiment
reveal to be not selective enough to be used in a validation context. Additional
deformation measurements are proposed, which could allow a better characterization
of the red blood cell membrane mechanics.

Regarding the macroscopic configurations, an innovative numerical method is
proposed to handle numerical simulations of 3D continuum membranes, still within
the immersed boundary formalism. In this method, called immersed thick boundary
method, the membrane has a finite thickness. The accuracy and robustness of the
method are demonstrated through a variety of well-chosen test cases. Then, the
proposed method is applied to a realistic fluid-structure interaction problem, namely
the interaction of a pulsatile (blood) flow with a biomimetic aortic valve. A combined
experimental and numerical study is led, showing that the method is able to capture
the global dynamics of the valve, as well as the main features of the flow downstream
of the valve.

All the developments were performed within the YALES2BIO solver (http://
www.math.univ-montp2.fr/~yales2bio/) developed at IMAG, which is thus avail-
able for further improvements, validations and applicative studies.

Keywords: Fluid-structure interaction, Membranes, Immersed boundary method,
Blood flows, Red blood cells, Aortic valve.

iii





Résumé

Cette thèse traite plusieurs aspects scientifiques inhérents à la simulation numérique
de problèmes d’interaction fluide-structure impliquant de fines membranes déforma-
bles. Deux cas spécifiques relatifs à la biomécanique cardiovasculaire sont consid-
érés : l’interaction de l’écoulement sanguin avec la valve aortique (qui se produit à
l’échelle macroscopique), et l’interaction de la membrane des globules rouges avec
ses fluides interne et externe (qui se produit à l’échelle microscopique). Dans les
deux cas, le couplage fluide-structure est géré par l’intermédiaire d’un formalisme
de frontières immergées, en représentant la membrane par un maillage Lagrangien
se mouvant au travers d’un maillage fluide Eulérien.

Lorsque l’on traite la dynamique des globules rouges, la membrane est considérée
comme étant une structure sans masse et infiniment fine. La première question à
laquelle on s’intéresse dans cette thèse est la manière de modéliser la microstructure
complexe de la membrane des globules rouges. Un moyen possible pour caractériser
un modèle de membrane adapté est de simuler l’expérience des pinces optiques, qui
consiste en une configuration expérimentale bien controlée qui permet d’étudier la
mécanique individuelle d’un globule rouge isolé dans une large gamme de défor-
mations. Plusieurs modèles pertinents sont identifiés, mais les caractéristiques de
déformation mesurées durant l’expérience des pinces optiques se révèlent n’être pas
assez sélectives pour être utilisées dans un contexte de validation. Des mesures de
déformation additionnelles sont proposées, qui pourraient permettre une meilleure
caractérisation de la mécanique de la membrane des globules rouges.

En ce qui concerne les configurations macroscopiques, une méthode numérique
innovante est proposée afin de gérer des simulations numériques de membranes 3D
continues, en conservant le formalisme de frontières immergées. Dans cette méth-
ode, appelée méthode des frontières immergées épaisses, la membrane a une épaisseur
finie. La précision et la robustesse de la méthode sont démontrées par l’intermédiaire
d’une variété de cas tests bien choisis. La méthode proposée est ensuite appliquée à
un problème d’interaction fluide-structure réaliste, à savoir l’interaction d’un écoule-
ment (sanguin) pulsé avec une valve aortique biomimétique. Une étude combinée
expérimentale et numérique est menée, montrant que la méthode est capable de
capturer la dynamique globale de la valve, ainsi que les principales caractéristiques
de l’écoulement en aval de la valve.

Tous les développements ont été effectués dans le solveur YALES2BIO (http://
www.math.univ-montp2.fr/~yales2bio/) développé à l’IMAG, qui est donc disponible
pour toutes autres améliorations, validations et études applicatives.

Mots clefs : Interaction fluide-structure, Membranes, Méthode des frontières
immergées, Écoulements sanguins, Globules rouges, Valve aortique.
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1.3.2 Turbulence modeling . . . . . . . . . . . . . . . . . . . . . . . 18
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1.4 From YALES2 to YALES2BIO . . . . . . . . . . . . . . . . . . . . . 24
1.5 Chapters contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

This thesis attempts to treat the complex subject entitled:

Fluid-structure interaction problems...

Interactions of some movable or deformable elastic structure with an internal or

surrounding fluid flow.

...involving deformable membranes:...

The deformable elastic structures that are considered are membranes (i.e. structures

having a very small thickness).

...application to blood flows...

The fluid flows that are considered are blood flows (e.g. the circulation of the blood

in the cardiovascular system).

...at macroscopic and microscopic scales

Fluid-structure interactions are investigated at both macroscopic (blood flow inter-

acting with heart valves) and microscopic (blood cells interacting with their carrying

fluid flow) scales.
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2 CHAPTER 1. INTRODUCTION

This introductory chapter first aims at motivating the subject of this thesis.
An introduction to the cardiovascular system is first provided, before going deeper
into the blood constitution. This is a way to introduce the objects of interest of
the present thesis, that are the subject of fluid-structure interaction (FSI) problems
which involve deformable membranes:

• The aortic valve, whose the leaflets interact with the blood flow, at the macro-
scopic scale.

• The red blood cells, whose the membrane interacts with both the carrying and
internal fluids, at the microscopic scale.

The scientific challenges behind these FSI problems are explained, attempting to
highlight the interest of the numerical simulation to address these challenges. This
is followed by a short review of the different existing FSI numerical methods. Then
the YALES2 flow solver is introduced, which constitutes the basis of this thesis
work. The numerical method is briefly described, and a basic test case is presented
to illustrate the operation of the solver. Finally, the strategy employed to integrate
within the YALES2 solver the possibility to perform FSI simulations of flowing red
blood cells is presented. This is the opportunity to introduce the YALES2BIO solver,
which is strongly based on YALES2.

1.1 Motivations

1.1.1 The cardiovascular system

The blood is continuously circulating in the cardiovascular system thanks to the
heart which acts as a pump. The human heart consists of four chambers split into
two sides: the left and right sides, each having an upper chamber (atrium) and
lower chamber (ventricle) (see Fig. 1.1). The cardiovascular system can be seen
as a closed loop composed of two distinct but linked circuits: the pulmonary and
systemic circuits (see Fig. 1.1). The right side of the heart pumps the oxygen-
poor blood (parts in blue in Fig. 1.1) into the pulmonary circuit, which returns to
the left side of the heart after oxygenation to be pumped into the systemic circuit
for oxygenation of the body tissues (parts in red in Fig. 1.1). The cardiac cycle
comprises two phases:

• The systole, during which the heart contracts and ejects the blood. At rest, it
lasts in average one third of the whole cardiac cycle.

• The diastole, during which the heart relaxes and refills with blood following
systole.

The unidirectional circulation of the blood through the cardiovascular system is
ensured by the heart valves, which are all made of a very thin biological tissue
(membrane) which interacts with the blood flow, alternatively opening and closing
during the blood circulation. Figure 1.2 shows a top view of the four heart valves:
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• The tricuspid valve, which separates the right atrium from the right ventricle.

• The mitral valve, which separates the left atrium from the left ventricle.

• The aortic valve, which separates the left ventricle from the aorta.

• And the pulmonary valve, which separates the right ventricle from the pul-
monary artery.

Figure 1.1: Sketch of the cardiovascular system and human heart (image from [16]).
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Figure 1.2: Top view of the four heart valves (top, image from [133]), with schematic
representation (bottom, image from http://teachmeanatomy.info).
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The aortic valve

The aortic valve thus forms the anatomic boundary between the left ventricle and
the aorta, and is integrated in the aortic root. Figure 1.3 (top view) shows a sketch
of the aortic root structures after longitudinal opening of the root. First, it is seen
that the aortic root is composed of three almost symmetrical bulges, called sinuses
of Valsalva. Two of the sinuses give rise to the coronary arteries, which irrigate
the heart muscle. The central structures of the aortic valve are the three semilunar
leaflets: the left coronary leaflet, the right coronary leaflet, and the non-coronary
leaflet. Four layers of tissue can be identified within the valve leaflets: arterialis,
fibrosa, spongiosa, and ventricularis (see Fig. 1.3, bottom view).

At each contraction of the heart, the stroke volume contained in the left ventricle
is pumped through the aortic valve into the aorta, delivering oxygenated blood to
the rest of the body. Figure 1.4 (first column) illustrates the flow conditions through
the aortic valve (in terms of aortic pressure (AP), left ventricular pressure (LVP),
and flow rate) observed in the healthy individual.

The opening/closing mechanism of the aortic valve can be better understood
by considering the pressure conditions at both the ventricular and aortic sides of
the valve. During the diastole, the aortic pressure (typically around 80 mmHg) is
higher than the ventricular pressure (typically around 0 mmHg). There is thus a
transvalvular pressure gradient (TPG)1 of about −80 mmHg acting from the aortic
side on the aortic valve, which is tightly closed to prevent blood flowing back into the
left ventricle. During the heart contraction, the pressure in the ventricle increases
until the TPG becomes positive (the ventricular pressure becomes higher than the
aortic pressure), thus leading to the aortic valve opening. Then, both ventricular
and aortic pressures increase (typically until 120 mmHg) as the stroke volume is
driven into the aorta. Finally once the heart starts relaxing at the beginning of
the diastole, the ventricular pressure decreases and the TPG reverses again, leading
to the valve closure. It is interesting to note that if the aortic valve can resist to
negative TPG of about 80 mmHg without valve regurgitation, the TPG required to
drive the blood through the aortic valve is of the order of only few mmHg.

In some cases, the aortic valve tissue degenerates, leading to the calcification of
the valve (see Fig. 1.5). This tissue degeneration may cause either a narrowing of
the valve (stenosis) or a poor closure of the valve (insufficiency), or eventually both.
In the case of aortic valve stenosis, the reduced orifice area of the valve is charac-
terized by a higher resistance to forward flow, which results in an increase of the
systolic ventricular pressure and a slight decrease of the systolic aortic pressure (see
Fig. 1.4, second column). The systolic TPG is thus drastically increased, meaning
that the heart has to provide more energy to drive the blood flow through the aortic
valve. The narrowing of the valve orifice also induces higher velocities downstream

1The transvalvular pressure gradient is defined as being TPG=LVP−AP. Note that the quantity
which is measured in practice by medical doctors is a pressure difference, but is commonly called
pressure gradient, and is expressed in mmHg.
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Figure 1.3: Sketch of the aortic root structures after longitudinal opening of the
root (top, image from [133]) and of the valve leaflets microstructure (bottom, image
from [167]).
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of the valve, which may lead to turbulence. In the case of aortic valve insufficiency,
the valve is not able to close properly, and valve leakage is thus observed during the
diastole (see the flow rate curve in Fig. 1.4, third column). This valve leakage has
two implications: 1) because the ventricle is being filled from two sources (aorta and
left atrium), the stroke volume ejected by the heart at each contraction is increased,
thus leading to higher systolic ventricular and aortic pressures; 2) the valve is no
longer able to maintain the diastolic TPG, leading to a decreased diastolic aortic
pressure and an increased diastolic ventricular pressure.

AV
opens

AV
closes

Systole Diastole

AP

LVP

P
re

ss
u

re

High TPG

Systolic
AP ↓

Systolic
LVP ↑

Systolic
AP & LVP ↑

Diastolic
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Diastolic
LVP ↑
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volume

Time

F
lo

w
ra

te

Healthy Stenosis

Leakage

High stroke
volume

Insufficiency

Figure 1.4: Sketch of the aortic pressure (AP), left ventricular pressure (LVP), and
flow rate in the case of a healthy aortic valve (first column), aortic valve stenosis
(second column), and aortic valve regurgitation (third column).

Healthy aortic valve Calcific aortic valve

Figure 1.5: Degeneration of the aortic valve tissue, from the healthy aortic valve
(left) to the calcific aortic valve (right) (images from http://teomankilic.com).
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Aortic valve replacement

These pathologies may have dramatic implications on the life of the patient. Most
of the time, the best option is to replace the diseased valve by an artificial valve.
There are two main types of artificial valves that can be used for valve replacement,
the mechanical and tissue valves. Mechanical valves are designed to replicate the
primary function of the natural valve, which is to maintain unimpeded unidirectional
flow through the valve. They are characterized by the fact that they are made of
rigid parts interacting with the blood flow. The three main types of mechanical
valve are the caged-ball, the tilting-disk and the bileaflet valve (see Fig. 1.6). By
opposition to the mechanical valves, the tissue valves are made of three deformable
leaflets, and are thus closer to the native aortic valve anatomy. They can be either
made of a biological tissue (e.g. from a pig heart valve) or engineered tissue (e.g.
with polyurethane leaflets) (see Fig. 1.7).

Figure 1.6: Three main types of mechanical valve, from the left to the right: the
caged-ball valve, the tilting-disk valve, and the bileaflet valve (images from https:
//en.wikipedia.org).

Figure 1.7: Two main types of tissue valve: with biological tissue (left, image from
http://www.medtronic.com), and with engineered tissue (right, image from http:
//ejcts.oxfordjournals.org).

Each type of artificial valves has its own drawbacks. Mechanical valves are prone
to blood coagulation and require lifelong treatment with anticoagulants. Conversely,
tissue valves provide better hemodynamic properties, but have a limited lifespan,
lasting in average 15 years before requiring replacement.
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1.1.2 Blood description

If the blood can macroscopically be seen as a homogeneous fluid, an observation
at the microscopic scale shows that it is actually composed of cellular elements sus-
pended in a carrying fluid (see Fig 1.8, left). An illustration of the blood composition
is shown in Fig. 1.8 (right). About 55% of the total blood volume is composed of
a fluid called the plasma. This plasma fluid is mainly composed of water (around
92%) in which substances are dissolved or suspended, mostly proteins. The remain-
ing 45% of the blood are the cellular elements, composed of platelets, white blood
cells and mostly red blood cells (99% of the cellular elements).

Figure 1.8: Scanning electron microscope image of circulating human blood (left, im-
age from https://en.wikipedia.org), and illustration of the blood composition (right,
image from [16]).

The red blood cells

The red blood cells, or erythrocytes, are anucleate cells constituted by a mem-
brane enclosing an internal fluid, the cytoplasm. The cytoplasm contains water and
haemoglobin, which is the substance that carries and releases oxygen from the respi-
ratory organs to the rest of the body. At rest, red blood cells have a discocyte shape
whose average dimensions were notably measured by Evans and Fung [59] (see Fig.
1.9).

Figure 1.9: Average dimensions of the human red blood cell as reported by Evans
and Fung [59] (image from [59]).
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Figure 1.10: Time-lapse sequence of the deformation of a healthy red blood cell in
a 5 µm channel (image from [1]).

Red blood cells are subjected to high deformation when passing through the mul-
tiple vessels of the cardiovascular system, able to squeeze through capillaries having
a diameter more than twice smaller than their characteristic size (as illustrated in
Fig. 1.10). This remarkable deformability of the red blood cells has two explana-
tions: 1) their geometrical nature, with a membrane area greater than the one of
a sphere with the same volume, resulting in their deflated aspect; 2) the composite
structure of the membrane, which confers to the red blood cells very specific me-
chanical properties. As shown in Fig. 1.11, this structure is composed of a lipid
bilayer and an underlying protein network, the cytoskeleton, both linked via embed-
ded transmembrane proteins. These two structures constituting the membrane are
responsible for the complex mechanics associated to the deformation of red blood
cells:

• The lipid bilayer resists to bending deformation and is quasi-incompressible
(highly resists to area-dilatation).

• The cytoskeleton resists to shear deformation and slightly resists to area-
dilatation.

Lipid bilayer

Transmembrane
proteins

Cytoskeleton

Figure 1.11: Schematic representation of the red blood cell membrane (image from
[134]).

1.1.3 Scientific challenges

Aortic valve diseases & replacement

During the cardiac cycle, blood exerts a continuous loading on the aortic valve,
which experiences compression, stretching, and bending stresses [164]. Conversely,
the interaction of the pulsatile blood flow with the aortic valve gives rise to complex
flow structures in the vicinity of the valve (see Fig. 1.12), which could eventually
lead to transition to turbulence [176].
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Figure 1.12: Echocardiogram showing complex flow patterns (mosaic color patterns)
downstream of a prosthetic aortic valve indicating a turbulent flow (image from
https://cardiophile.org.

Assessing these complex structural and flow features could ultimately allow
to improve the understanding of the degeneration process leading to aortic valve
calcification, but also drastically help the design of artificial aortic valves. In-
deed, there are many ex vivo studies which suggest that mechanical factors such
as pressure, leaflets tension, and fluid shear stresses play an important role in the
activation of the inflammatory pathways leading to the aortic valve calcification
[9, 10, 23, 72, 130, 175, 178, 182, 183, 204]. On the other side, it is well known that
artificial valve designs should be optimized both in terms of structure and hemo-
dynamics. Mechanical features such as valve durability, pressure drops (systolic
TPG), regurgitation volumes, flow turbulence, fluid shear stresses, blood stagnation
and flow separation regions have been pointed out as being relevant indicators to
evaluate the performances of artificial aortic valves [38, 208].

Hemorheology

It has been shown that the blood is a suspension of cellular elements, mostly red
blood cells, carried by a plasma fluid. Red blood cells are responsible for the non-
Newtonian behavior of the blood, which is characterized by a shear rate dependence
of its viscosity. The hypothesis of blood Newtonian behavior is generally made
in large arteries [101], where red blood cells are very small as compared to the
characteristic size of the blood vessel. In smaller vessels and in some specific flow
configurations like in carotid bifurcation [81], arterial stenosis [192], and abdominal
aortic aneurysm [48], the non-Newtonian behavior of the blood is however suspected
to play an important role in the hemodynamics. Chien [30] showed that the shear
thinning of the blood viscosity can be mainly attributed to the shear-dependent
behavior of the red blood cells (see Fig. 1.13): at low shear rate, red blood cells
aggregate, leading to a higher apparent viscosity; at high shear rate, red blood cells
deform, leading to a lower apparent viscosity. The processes leading to the red
blood cells aggregation or deformation are governed by the interaction between the
red blood cells and their carrying plasma fluid, which thus appears to be a primary
key point for a full understanding of the blood rheology.
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Figure 1.13: Logarithmic relation between viscosity and shear rate in three types of
red blood cells suspensions. Viscosity was determined in a coaxial cylinder viscome-
ter (image from [30]).

Medical devices

There are numerous medical devices within which blood is circulating. One can
cite among others: ventricular assist devices, extracorporeal circulation and blood
analyzers. These medical devices often generate non-physiological flow conditions
which may lead to mechanical forces that can cause cell damage, such as hemoly-
sis (rupture of the red blood cell membrane). In blood analyzers for example, the
geometries within which the blood circulates are way more singular and complex
than the geometry of the blood vessels. Red blood cells are induced to pass through
abrupt narrowing, thus experiencing high velocity gradients and extensional defor-
mation (see Fig. 1.14). This points out the extreme necessity to fully control the
integrity and the deformation characteristics of the red blood cells when designing
medical devices in contact with blood. Again, this requires a complete understand-
ing of the complex interaction between the red blood cells and their carrying fluid
(which in the case of medical devices, can be a fluid other than the plasma).

Figure 1.14: Time-lapse sequence of the deformation of a healthy red blood cell
passing through an abrupt channel narrowing characteristic from blood analyzer
devices (experiment by M. Abkarian, L. Lanotte and D. Isèbe).
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Understanding fluid-structure interactions

Understanding the complex FSI problems in which the aortic valve and the red
blood cells are involved is thus of major interest. A full understanding of these FSI
problems however requires to be able to test a wide variety of flow configurations,
with detailed analysis of both structural and flow features. Meeting these require-
ments is not possible without the use of the numerical simulation. Computational
Fluid Dynamics (CFD), for example, has proven to be practical and efficient, and
appears to be a reliable tool for investigating blood flow configurations with complex
flow patterns, with eventual transitions to turbulence. FSI simulations are however
much more challenging than CFD simulations, since they require solving both the
structure and the flow, as well as their complex interaction.

1.2 Numerical methods for fluid-structure interaction

Over the last decades, many numerical methods have been developed in order to
simulate FSI problems. Hou et al. (2012) [90] classified these various approaches
into different categories (see Tab. 1.1).

References

Methods

Monolithic [93], [129], [163]

Partitioned

Conforming mesh
[5], [25], [46],
[60], [61], [71],
[191], [202], [211]

Non-conforming mesh

Immersed [150], [151], [152]
Boundary
Method
Immersed [118], [119], [195],
Domain [196], [197], [209],
Method [210]

Table 1.1: Classification of the different existing FSI numerical methods, by Hou et
al. (2012) [90].

A first classification can be done between the monolithic approach and the par-
titioned approach. The monolithic approach treats both the fluid and the solid in
the same mathematical framework. The entire problem is formed by a single sys-
tem of equations which is solved simultaneously by a unified algorithm. Even if
this approach can provide better accuracy, its main drawback is that it requires
more resources and expertise to develop and maintain such a specialized code. In
contrast, the partitioned approach treats the fluid and the solid separately, each
physical problem being solved with their respective numerical algorithm. A moti-
vation of this last approach is to integrate avalaible specialized algorithms already
validated on fluid or structural problems, thus reducing the code development time.
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Another distinction for partitioned FSI methods is based upon the treatment of
the meshes: the conforming mesh methods and the non-conforming mesh methods.
The conforming mesh methods consider the interface conditions as physical bound-
ary conditions, and require meshes to conform at the interface. The deformation and
displacements of the solid structure can thus require frequent re-meshing procedures,
which can be very time consuming when dealing with large displacements applica-
tions. Most of the recent developments in FSI methods are the non-conforming mesh
methods. In this case, the boundary location and the related interface conditions
are treated as constraints imposed on the model equations. Non-conforming meshes
can then be used, enabling to solve independently the fluid and solid equations with
their respective grids, and avoiding time consuming re-meshing. The reader is re-
ferred to the work of Fernández and Gerbeau [70] for an extensive description of
partitioned FSI algorithms in the context of blood flows, including both conforming
and non-conforming meshes.

The two most popular non-conforming mesh methods are known to be the Im-
mersed Boundary Method (IBM) and the Immersed Domain Method (IDM). When
using the IBM, the fluid equations are solved with an additional source term, the
FSI force, which mimics the action of the immersed boundary on the fluid. The FSI
force is calculated from the deformation state of the structure, updated by the sur-
rounding fluid velocity. The IBM has been developed to deal with structures that do
not occupy volumes, such as infinitely thin membranes. To represent the interaction
between a fluid and a bulk structure, the IDM was introduced. An artificial fluid is
defined, which fills the volume of the bulk structure. Then the FSI force is imposed
to every grid point in the artificial fluid domain.

Deformable membranes

Both the reduced development time provided by partitioned approaches and the
ability of non-conforming mesh methods to handle large displacements of the struc-
ture make the immersed boundary method (IBM) very attractive to simulate FSI of
deformable membranes. The IBM was originally developed by Peskin [150, 151, 152]
to simulate blood flow through the heart and heart valves, and has since been
used and adapted in a wide variety of applications, including heart valves dynamics
[21, 82, 83, 84, 85, 198] and deformable particles such as capsules, vesicles and red
blood cells [6, 7, 8, 53, 99, 107, 108, 109, 206].

Although the IBM appears to be the numerical method that offers the broadest
field of application regarding FSI of deformable membranes, other more specific
methods can be found in the literature and should be mentioned in the present
review. For heart valves simulations, one can cite the fictitious domain method
[4, 42, 43, 44, 45, 55], the operator splitting method (similar to the fictitious domain
method) implemented in the LS-DYNA commercial software [159, 184, 199, 200], and
the immersogeometric FSI methodology developed by Kamensky et al. [91, 92, 96].
Also very popular for simulating deformable particles are the boundary integral
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methods (BIM) [11, 12, 17, 20, 54, 77, 105, 149, 155, 156, 158, 190, 194, 203, 212, 213]
which provide high precision results in Stokes flows, and the particle methods which
use dissipative particle dynamics (DPD) [63, 64, 65, 66, 67, 68, 69, 148, 154] or
multiparticle collision dynamics (MPC) [125, 126, 144, 145, 146, 147] for multiscale
modeling of blood flows.

1.3 The YALES2 flow solver

The YALES22 solver is a massively parallel unstructured finite-volume flow solver
for incompressible Navier-Stokes equations. Figure 1.15 illustrates the capacities of
the YALES2 flow solver, which has initially been developed for solving two-phase
combustion on massive complex meshes, from primary atomization to pollutant pre-
diction [139, 140, 141].

Figure 1.15: Illustration of the capacities of the YALES2 flow solver. Left image
shows a simulation of a swirl burner using a mesh of 382 millions tetrahedrons, and
right plot shows the scalability of the solver up to 32 768 processors and 21 billion
elements (images from https://www.coria-cfd.fr).

1.3.1 Numerical method

In the case of an incompressible flow and assuming a Newtonian fluid, the Navier-
Stokes equations and the mass conservation equation read:























∂−→v

∂t
+
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∇ . (−→v ⊗ −→v ) = −

−→
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ρ
+ ν∆−→v +

−→
f

ρ

−→
∇ .−→v = 0

(1.1)

where −→v is the velocity vector, p the pressure, and
−→
f a possible volumetric force. ρ

and ν are the fluid properties, respectively the density and the kinematic viscosity.
2YALES2 was developed from 2007 to 2010 by V. Moureau and is maintained since 2011 by V.
Moureau and G. Lartigue at CORIA, CNRS UMR 6614. More information can be found here:
https://www.coria-cfd.fr/index.php/YALES2.
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The projection method

A projection method [37] is used to numerically solve Eq. (1.1). One can write the
following time semi-discrete form of Eq. (1.1), considering an Euler explicit scheme:
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(1.2)

To advance both the velocity −→v n+1 and the pressure pn+1, the velocity −→v ∗ is first
advanced considering the pressure pn at the previous time step:

−→v ∗ − −→v n

∆t
= −

−→
∇ . (−→v n ⊗ −→v n) −
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(1.3)

This first estimation of the velocity −→v ∗ is then substracted to the final velocity
−→v n+1, which gives:

−→v n+1 − −→v ∗ = −∆t

−→
∇

(

pn+1 − pn
)

ρ
. (1.4)

Finally, taking the divergence of Eq. (1.4) and applying the mass conservation
constraint (∇.−→v n+1 = 0) leads to:

∆
(

pn+1 − pn
)

ρ
=

−→
∇ .−→v ∗

∆t
. (1.5)

The pressure pn+1 is thus advanced by solving the Poisson equation of Eq. (1.5),
using a Deflated Preconditioned Conjugate Gradient (DPCG) algorithm [123, 140].
The first estimation of the velocity −→v ∗ is then corrected by the calculated pressure
pn+1 (using Eq. (1.4)), yielding the final velocity −→v n+1:

−→v n+1 = −→v ∗ − ∆t

−→
∇

(

pn+1 − pn
)

ρ
. (1.6)

Time advancement

The time advancement of the velocity −→v ∗ is performed using a 4th-order Runge-
Kutta scheme in time (RK4)3 [201]. Rewritting Eq. (1.3) as:

−→v ∗ − −→v n

∆t
= f (−→v n, pn) , (1.7)

the velocity −→v ∗ is advanced such as:
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(1.8)

3Note that other time schemes are available in YALES2, such as the TFV4A scheme, but are not
presented here.
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Finite-volume spatial discretization

The finite-volume method (FVM) is used for the spatial discretization, which is
based on the integration of the equations on small polyhedral control volumes, called
dual volumes. The definition of the dual volume Vj associated to node j of an
unstructured hybrid mesh is illustrated in Fig. 1.16.

−→

Sjk

j

k

Vj

Figure 1.16: Dual volume Vj created around the node j of an unstructured hybrid
mesh by linking the centroids of the neighboring elements (red dots) and the centers
of the edges containing node j (blue dots).

The integration of a quantity φ over the dual volume Vj is expressed as:

φ
Vj

=
1

Vj

∫

Vj

φ dV. (1.9)

Integrating the momentum equation over each dual volume Vj gives:

∂−→v
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−

−→
f
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∇ .

[
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ρ
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(
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)

]

dV, (1.10)

where I is the identity matrix. Using the Green-Ostrogradski theorem, Eq. (1.10)
can be written as:

∂−→v
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ρ
=

1
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∮
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ψ.−→n dS, (1.11)

with:
ψ = − (−→v ⊗ −→v ) −

p

ρ
I + ν

(

∇−→v + ∇−→v T
)

.

Sj represents the surface bordering the dual volume Vj and −→n the vector normal to
this surface. The surface integral of the flux ψ represents a transport of momentum
towards neighboring control volumes, and illustrates the conservative nature of the
Navier-Stokes equations. The right-hand side of Eq. (1.11) is approximated as
follow:

1

Vj

∮

Sj

ψ.−→n dS =
1

Vj

∑

k↔j

ψjk .
−→
Sjk, (1.12)

where
−→
Sjk represents the non-normalized vector normal to the surface patch of the

dual volume Vj attributed to the pair (j, k), and ψjk the flux through this surface
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patch, which can be basically expressed as:

ψjk = ψ (−→vjk, pjk) =
ψ

(

−→v
Vj

, p
Vj

)

+ ψ
(

−→v
Vk

, p
Vk

)

2
. (1.13)

This expression of the flux ψjk makes the scheme second-order accurate for regular
meshes, and only first-order accurate for irregular meshes [189], potentially imply-
ing important diffusion and dispersion errors. High-order schemes enable to reduce
these numerical errors, and are thus generally less dissipative.

A fourth-order and low-dissipative spatial scheme has thus been developed within
the YALES2 flow solver. It is based on a deconvolution of the finite-volume inte-
gration [122]. Indeed, when using the FVM, the nodal values φj associated to the
quantity φ are not directly known, only their integral φ

Vj
over the control volumes

Vj are known. The development of a high-order scheme however requires writing
this nodal value φj in an accurate way. The deconvolution thus enables to write
the nodal value φj as a function of the integrated quantity φ

Vj
and its successive

derivatives, using a Taylor-series development. The nodal values φj and φk are then
used to express the value φjk associated to the surface patch of the dual volume Vj

attributed to the pair (j, k). The high-order scheme necessitates to pre-calculate the
derivatives of φ at the nodes, which increases the stencil of the spatial scheme.

1.3.2 Turbulence modeling

In fluid mechanics, the flow is generally characterized by its Reynolds number Re,
which is expressed as:

Re =
inertial forces

viscous forces
=

ρvL

µ
, (1.14)

where ρ and µ are respectively the fluid density and dynamic viscosity, v the char-
acteristic velocity, and L the characteristic length. The Reynolds number can be
seen as the ratio of the inertial forces to the viscous forces, and consequently quanti-
fies the relative importance of these two types of forces for a given flow configuration.

For large Reynolds number flows (i.e. when the inertial forces are significantly
larger than the viscous forces), turbulence may arise, leading to chaotic fluctua-
tions in the velocity/pressure fields. In turbulent flow, unsteady vortices appear at
many different scales and interact with each other. Large vortices give rise to smaller
vortices until reaching the scale of the smallest vortices, called the Kolmogorov scale.

When aiming to simulate turbulent flows, the most basic approach is to perform
Direct Numerical Simulation (DNS). The simulation is performed on a mesh which
is sufficiently fine to properly take into account the smallest scales of the flow. This
method may however require large computational resources, given that the mesh
resolution has to be smaller than the Kolmogorov scale.

An alternative approach is to perform Large Eddy Simulation (LES). This ap-
proach consists in filtering the Navier-Stokes equations, so that only the structures
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bigger than a certain length (typically, the chosen mesh resolution) are simulated.
In this case, the smallest structures are modeled using a subgrid-scale (SGS) model.
Thus, the finer the mesh, the larger the range of resolved scales, and the smallest
the contribution of the SGS model. Applying the filter operator [.] to Eq. (1.1)
leads to4:
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The nonlinear filtered advection term [−→v ⊗ −→v ] is the key point of the LES modeling.
It requires knowledge of the unfiltered velocity field, which is unknown and thus
needs to be modeled. One can consider the following splitting:

[−→v ⊗ −→v ] = [−→v ] ⊗ [−→v ] − τ r, (1.16)

where τ r is the residual-stress tensor which results from the unresolved subgrid-scale
contributions, and can be modeled thanks to the eddy-viscosity assumption:

τ r = νSGS

(

∇ [−→v ] + ∇ [−→v ]
T

)

, (1.17)

where νSGS is the subgrid-scale kinematic viscosity. Equation (1.15) thus reads:
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(1.18)

Several models were proposed over the years to represent the subgrid-scale kinematic
viscosity νSGS , and most of them share the following form:

νSGS = (C∆)2 D
(

[−→v ]
)

, (1.19)

where C is the model constant which is usually tuned (either theoretically or numer-
ically) so that the model produces the proper amount of dissipation in the simple
case of decaying isotropic turbulence. The length scale ∆ denotes the typical size
of the local cell of the mesh used to solve the filtered Navier-Stokes equations (Eq.
(1.18)), and D is a differential operator which defines the SGS model and operates
on the resolved velocity field [−→v ]. In the present thesis, the Sigma model5 [14, 142]
is used, meaning that:

D
(

[−→v ]
)

=
σ3 (σ1 − σ2) (σ2 − σ3)

σ2
1

. (1.20)

In this expression, σ1 ≥ σ2 ≥ σ3 ≥ 0 are the three singular values of the local
velocity gradient tensor, and can be efficiently computed [142]. The model constant

4It is assumed that filtering and differentiation commute.
5Other SGS models are available in the YALES2 solver, such as the Dynamic Smagorinsky model,
but are not considered in the present thesis work.
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C is chosen to be C = 1.35. The Sigma model is selected because it meets several
useful properties relevant in terms of SGS modeling, although not shared by the
other SGS models. Notably, this model results in zero SGS viscosity in a number of
canonical flows, where the structure of the velocity gradient tensor indicates that the
flow cannot be turbulent. The Sigma model has thus the property to better behave
in laminar flows than many other models. In addition, it is suitable to intermittent
flows [31].

1.3.3 Validation test case

The operation of the YALES2 flow solver is now illustrated considering a simple
2D pulsatile Poiseuille flow test case. A Newtonian fluid flows in an infinitely long
channel characterized by two parallel walls spaced by a height 2h (see Fig. 1.17).

x

y
2h

flow

Figure 1.17: Illustration of the 2D pulsatile flow configuration. A Newtonian fluid
flows in an infinitely long channel of height 2h.

Theoretical framework

In such a simple configuration, the 2-dimensional velocity and pressure fields are
expressed as:

(

vx (x, y, t)

vy (x, y, t)

)

=

(

vx (y, t)

0

)

, (1.21)

p (x, y, t) = p (x, t) . (1.22)

Equation (1.1) can thus be simplified:
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(1.23)

In the steady flow case, the temporal derivative becomes null. Assuming no-slip
boundary conditions at the walls, the streamwise velocity is given by the Poiseuille
solution:

vx (y) = vmax

(

1 −
y2

h2

)

(1.24)

where h is the half height of the channel, vmax the maximum velocity, and −h ≤

y ≤ h. The maximum velocity and the pressure gradient are linked by the following
relation:

−
∂p

∂x
=

2ρνvmax

h2
(1.25)
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In the case of a pulsatile flow due to an oscillatory pressure gradient ∂p/∂x =

Aeiωt, the analytical solution for the streamwise velocity is [143]:

vx(y, t) = R

[

i
A

ρω

(

1 −
cos (αy/h)

cos (α)

)]

(1.26)

with:

α = h

√

ω

ν
ei3π/4

YALES2 simulations

The configuration is simulated with the YALES2 flow solver using periodic bound-
ary conditions in the x direction, thus representing the infinitely long channel. In
this case, the pressure gradient ∂p/∂x becomes null, and a volumetric force fx is
used to drive the flow.

The use of periodic boundary conditions enables to have a numerical configura-
tion free from border effects, usually inherent to the classical inlet/outlet boundary
conditions. This allows to perform the simulations in a very short computational
domain, thus reducing the computational time. In this case, simulations are per-
formed in a rectangular computational domain with a height 20 times larger than
its length, which is meshed using a cartesian mesh of 5×100 elements.

The parameters and variables useful for the simulations can be defined:

• The Womersley number W0 = h
√

ω/ν.

• The Reynolds number Re = fxh3/ρν2.

• The maximum streamwise velocity vmax = fxh2/2ρν.

• The non-dimensional y coordinate ỹ = y/h.

• The non-dimensional time t̃ = t/T , with T = 2π/ω.

• The non-dimensional streamwise velocity ṽx
(

ỹ, t̃
)

= vx
(

ỹ, t̃
)

2h/νRe.

• The non-dimensional analytical streamwise velocity ṽx
an

(

ỹ, t̃
)

.

• The non-dimensional numerical streamwise velocity ṽx
num

(

ỹ, t̃
)

.

• The absolute error E
(

ỹ, t̃
)

=
∣

∣ṽx
an

(

ỹ, t̃
)

− ṽx
num

(

ỹ, t̃
)∣

∣.

• The spatial mean error Ey
(

t̃
)

=
[
∑n

i=1 E
(

ỹi, t̃
)]

/n, averaged over n nodes
within the height of the channel.

• The temporal mean error over one period Et =
[

∑k
j=1 Ey

(

t̃k

)

]

/k, averaged
over k sample times within the period.
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The steady case is first simulated imposing a constant volumetric force fx such
that the Reynolds number Re = 100. Figure 1.18 (left) shows the comparison of the
streamwise velocity profile obtained from the YALES2 simulation with the analyti-
cal solution of Eq. (1.24). Numerical and analytical velocity profiles are in excellent
agreement. The well known parabolic Poiseuille profile is accurately retrieved by
the YALES2 flow solver, as indicated by the spatial mean error Ey (displayed in
Fig. 1.18, right) which converges to a constant value Ey = 8.64 × 10−6.
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Figure 1.18: Left: Comparison of the streamwise velocity profile obtained from the
YALES2 simulation with the analytical solution of Eq. (1.24). Right: Evolution of
the spatial mean error over the simulation.

The pulsatile case is then simulated considering three different values of the
Womersley number: W0 = 1, W0 = 5 and W0 = 10. Figure 1.19 (left) shows the
comparison of the streamwise velocity profile obtained from the YALES2 simulation
with the analytical solution of Eq. (1.26). Several velocity profiles are displayed over
one period of oscillation, showing an excellent agreement between the numerical and
analytical profiles. It is seen that when the Womersley number W0 is sufficiently
low, the flow exhibits an oscillatory Poiseuille profile (see W0 = 1 in Fig. 1.19, left).
However, when the Womersley number W0 is increased, the flow profile is no longer
parabolic (see W0 = 5 and W0 = 10 in Fig. 1.19, left).

Figure 1.19 (right) shows the evolution of the temporal mean error Et, which con-
verges after a few periods. However, it is seen that the number of periods that need
to be simulated before reaching convergence drastically increases with the Womer-
sley number W0. The converged temporal mean errors Et obtained for each of the
three considered Womersley numbers W0 are displayed in Tab. 1.2.

W0 = 1 W0 = 5 W0 = 10

Et = 1.29 × 10−5 3.32 × 10−5 3.54 × 10−5

Table 1.2: Converged temporal mean errors.
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Figure 1.19: Left: Comparison of the streamwise velocity profiles obtained from the
YALES2 simulation with the analytical solution of Eq. (1.26), over one period of
oscillation. Three Womersley numbers are considered: W0 = 1 (first row), W0 = 5
(second row) and W0 = 10 (third row). Right: Evolution of the temporal mean
error over several periods of oscillation.
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1.4 From YALES2 to YALES2BIO

The YALES2BIO6 solver has been developed from the YALES2 flow solver for the
simulation of blood flows [127], and thus inherits its massively parallel capabilities
and high order finite-volume scheme for complex geometries. YALES2BIO aims at
helping the analysis of medical devices in contact with blood such as flow divert-
ers, ventricular assist devices, extracorporeal circulation, artificial heart and valves,
blood analyzers, among others. Both macroscale and microscale simulations have
been performed with YALES2BIO, such as the flow in a whole human left heart in
the work of Chnafa et al. [31, 32, 33, 34, 35, 36], the flow in an idealized cardio-
vascular device in the work of Zmijanovic et al. [215], the flow of red blood cells
within an industrial blood analyzer in the work of Gibaud et al. [78, 79, 80], and
the aggregation of red blood cells in microfluidic devices in the work of Loiseau et

al. [120].

Simulating flowing red blood cells

The YALES2BIO solver is thus able to perform FSI simulations of flowing red blood
cells, which are handled using the immersed boundary method (IBM). The IBM
has been chosen because of its ease of implementation within an existing computa-
tional code (in this case, the YALES2 flow solver), and its ability to handle large
displacements of the red blood cell membrane.

MEMBRANE
MECHANICS

SOLVER

IMMERSED
BOUNDARY

METHOD

FLOW
SOLVER
(YALES2)

Lagrangian mesh Communications Eulerian mesh

−→
F

−→
V

−→
f

−→v

1 2

34

Figure 1.20: Operation of the YALES2BIO solver. The immersed boundary method
(IBM) and an in-house membrane mechanics solver have been integrated within the
YALES2 flow solver.

Figure 1.20 illustrates the operation of the IBM, and its integration within the
YALES2 flow solver. As previously explained in section 1.2, the IBM is a non-
conforming mesh method which independently solves the fluid and solid equations
with their respective mesh discretization. The fluid equations are thus solved on a
fixed Eulerian mesh, which is handled with the YALES2 flow solver. On top of this,
a Lagrangian mesh characterized by a set of triangulated markers is immersed in the
Eulerian fluid mesh. This triangulation of Lagrangian markers is used to represent an
infinetely thin massless membrane which deforms and moves on top of the Eulerian
fluid mesh. The membrane velocity

−→
V is imposed by the surrounding fluid velocity

−→v thanks to the Dirac function δ, which enables communications between the fluid

6http://www.math.univ-montp2.fr/~yales2bio/
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and solid non-conforming meshes:

−→
V

(−→
X, t

)

=

∫

Ωf

−→v (−→x , t) δ
(

−→x −
−→
X

)

dx, (1.27)

where −→x and
−→
X respectively denote the coordinates vectors of the Eulerian fluid

nodes and Lagrangian markers, and Ωf is the volumetric fluid domain. Conversely,

a fluid volumetric force
−→
f is generated by the membrane force

−→
F resulting from the

membrane deformation, thus mimicking the action of the membrane on the fluid:

−→
f (−→x , t) =

∫

Ωs

−→
F

(−→
X, t

)

δ
(

−→x −
−→
X

)

dX, (1.28)

where Ωs is the surfacic solid domain. As seen in Fig. 1.20, the IBM steps are
performed in the following order:

(1) The membrane force
−→
F resulting from the membrane deformation is calculated

on the Lagrangian mesh.

(2) The fluid volumetric force
−→
f generated by the membrane force

−→
F is calculated

from Eq. (1.28).

(3) The fluid velocity −→v is calculated on the Eulerian mesh by solving the Navier-
Stokes equations (Eq. (1.1)) (forced by the fluid volumetric force

−→
f ).

(4) The membrane velocity
−→
V is imposed by the surrounding fluid velocity −→v

using (1.27).

The Dirac function δ used in Eqs. (1.27) and (1.28) is numerically represented by
a smooth discrete Dirac function, which is adapted for unstructured meshes using
the Reproducing Kernel Particle Method (RKPM) [128, 153, 168]. The IBM is
used in steps (2) and (4) to treat the exchanges of velocities and forces between
the fluid and solid non-conforming meshes, whereas steps (1) and (3) are performed
with independent fluid and solid solvers. If step (3) is performed by the YALES2
flow solver, step (1) however requires the implementation of an in-house membrane
mechanics solver. This solver has been implemented within the YALES2BIO solver
and is described in the next section.

Membrane mechanics solver

As illustrated in Fig. 1.21, several deformation quantities are calculated on the
triangulated Lagrangian markers: the local in-plane deformation is assessed by cal-
culating the in-plane principal stretches λ1 and λ2 on the triangular faces; and the
local curvature is assessed by calculating the mean curvature H, Gaussian curvature
K, and surface Laplacian of the curvature ∆LBH on the Lagrangian markers.
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Triangular face
(λ1, λ2)

Lagrangian marker
(H, K, ∆LBH)

Figure 1.21: Illustration of the deformation quantities calculated on the triangulated
Lagrangian markers. The in-plane principal stretches λ1 and λ2 are calculated for
each triangular face. The mean curvature H, Gaussian curvature K, and Laplacian
of the curvature ∆LBH are calculated for each Lagrangian marker.

The elastic force
−→
FE is calculated from the in-plane principal stretches λ1 and λ2,

which is widely used to represent the local resistance of the membrane cytoskeleton
to shear and area-dilatation [51, 52, 53, 57, 179, 180, 181]. This elastic force

−→
FE is

derived from the strain energy function W , following the method of Charrier et al.

[27]. In the case of a Neo-Hookean material7, the strain energy function W reads:

W =
Es

2

(

λ2
1 + λ2

2 + λ−2
1 λ−2

2 − 3
)

, (1.29)

where Es represents the in-plane shear modulus (expressed in N/m). Given that
the triangular faces of the triangulated set of Lagrangian markers remain triangular
during the membrane deformation, the state of deformation is homogeneous and the
in-plane principal stretches λ1 and λ2 are constant within each face. One considers
a triangular face f composed of three markers f1, f2 and f3. The in-plane x and
y components8 of the elastic force resulting from the deformation of the triangular
face f , and acting on the three markers f1, f2, f3, are expressed as:







FE
x|f1

FE
x|f2

FE
x|f3






= Sf

δW

δλ1







δλ1/δ Ux|f1

δλ1/δ Ux|f2

δλ1/δ Ux|f3






+ Sf

δW

δλ2







δλ2/δ Ux|f1

δλ2/δ Ux|f2

δλ2/δ Ux|f3






,







FE
y|f1

FE
y|f2

FE
y|f3






= Sf

δW

δλ1







δλ1/δ Uy|f1

δλ1/δ Uy|f2

δλ1/δ Uy|f3






+ Sf
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,

(1.30)

where Sf is the original face area, and
(

Ux|f1
, Ux|f2

, Ux|f3

)

,
(

Uy|f1
, Uy|f2

, Uy|f3

)

denote the in-plane x and y components of the displacement of markers f1, f2, f3.
Forces are then gathered at each marker by summing the contributions of the con-
nected faces.

7This Neo-Hookean expression of the strain energy function W is one possible description among
others of the membrane in-plane elasticity, and is only provided as an example.

8x and y denote the local cartesian frame associated to the plane of the triangular face f .
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The bending resistance of the membrane lipid bilayer is represented by an ad-
ditional force which is calculated from the local curvature of the membrane. This
force is derived from the bending energy Eb proposed by Helfrich [88]:

Eb =
κb

2

∫

S
(2H − c0)2 dS, (1.31)

with κb the bending modulus (expressed in N.m) and c0 a possible spontaneous
curvature. The derived bending force reads:

−→
Fb = κb

[

(2H − c0)
(

2H2 − 2K + c0H
)

+ 2∆LBH
]

−→n , (1.32)

with −→n the outward normal vector to the surface. The terms of the bending force are
calculated by local fitting of a quadratic approximation of the surface. The method
is similar to the one used by Farutin et al. [62].

Another force can be calculated to control the global area variation of the red
blood cell membrane, thus modeling the quasi-incompressibility of the lipid bilayer.
This force is derived from the global area conservation energy, which reads:

ES =
κS

2

(S − S0)2

S0
, (1.33)

with κS the area modulus (expressed in N/m), S the area of the membrane and S0

its target area (typically, the initial surface area of the membrane). The equivalent
force reads:

−→
FS = −2κS

(S − S0)

S0
H −→n . (1.34)

1.5 Chapters contents

The research contribution of the present thesis work gave rise to the writing of three
articles which have been published/submitted in different journals, and constitute
the three following chapters of this thesis. These three chapters are thus indepen-
dent and can be read separately.

Chapter 2 corresponds to an article entitled “How should the optical tweezers
experiment be used to characterize the red blood cell membrane mechanics” [170]
which has been submitted in Biomechanics and Modeling in Mechanobiology. This
chapter constitutes a numerical study in which an experiment involving red blood
cells, the optical tweezers experiment, is simulated with the YALES2BIO solver.
The general objective of this study is to provide some insights helpful for the char-
acterization of the red blood cell membrane mechanics.

Chapter 3 corresponds to an article entitled “Validation of an immersed thick
boundary method for simulating fluid-structure interactions of deformable mem-
branes” [168] which has been published in the Journal of Computational Physics.
This chapter seeks to extend the features of the YALES2BIO solver to FSI simula-
tions of 3D continuum membranes having a finite thickness, keeping the IBM for-
malism implemented in the YALES2BIO solver and presented in section 1.4. This
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innovative method, called immersed thick boundary method (ITBM), is described
and extensively validated in this chapter.

Chapter 4 corresponds to an article entitled “A combined experimental and
numerical study of a polymeric aortic valve model” [171] which has been submit-
ted in Cardiovascular Engineering and Technology. The contents presented in this
chapter result from a collaboration with the Helmholtz Institute (Aachen Univer-
sity, Germany) which aimed at investigating, both experimentally and numerically,
the complex FSI problem involved when the blood flows out of the left ventricle,
passing through the aortic valve. The experiment performed at the Helmholtz Insti-
tute is simulated using the YALES2BIO solver, and especially the immersed thick
boundary method (ITBM) presented in the previous chapter.
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Preliminary remarks

This chapter corresponds to an article entitled “How should the optical tweezers
experiment be used to characterize the red blood cell membrane mechanics” [170]
which has been submitted in Biomechanics and Modeling in Mechanobiology. In
this chapter, the well known optical tweezers experiment, designed to investigate the
complex mechanical behavior of red blood cells, is simulated using the YALES2BIO
solver. The YALES2BIO numerical method is thus briefly reminded in section 2.2,
before presenting the computational setup and results. This chapter raises rele-
vant questions about the ability of the optical tweezers experiment to characterize
and validate a suitable mechanical model of the red blood cell membrane. It also
attempts to answer these questions, giving possible tracks of improvements of the
optical tweezers experimental setup.

29
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2.1 Introduction

Blood is a complex substance consisting in a suspension of platelets, white blood
cells and red blood cells (RBCs) in a Newtonian fluid, the plasma. The RBCs, which
typically represent 40-45% of the whole blood volume, are composed of a membrane
enclosing an internal fluid, the cytoplasm. The RBC membrane is a composite struc-
ture composed of a lipid bilayer and a two-dimensional elastic cytoskeleton, both
linked through temporary tethering sites thanks to transmembrane proteins embed-
ded in the lipid bilayer. This complex structure confers to the RBC membrane very
specific mechanical properties: the cytoskeleton provides a resistance to shear sol-
licitations and slightly resists to area-dilatation, while the lipid bilayer provides to
the membrane its bending stiffness and quasi-incompressibility. The RBCs have a
biconcave discocyte shape at rest with a remarkable deformability, because of the
excess of surface area enclosing the inner volume. RBCs are thus able to undergo
very large deformation preserving their area, squeezing through capillaries with in-
ner diameter less than 3 µm, although the average large diameter of a RBC is about
8 µm. As mentioned by Mohandas and Gallagher [135], the normal RBC can deform
with linear extensions of up to 250%, but a 3% to 4% increase in surface area results
in cell lysis.

So far, there is no universal model to describe the mechanical behavior of the
RBC membrane. The local elasticity of the RBC membrane is generally described
using either continuum models [62, 100, 111, 173] or molecular models [28, 40, 64,
67, 114, 154], which can be complemented with other global models to treat the
quasi-incompressibility of the lipid bilayer [64, 154]. Detailed experimental investi-
gations of the RBC mechanics are nonetheless needed in order to: 1) characterize
and validate a numerical model of the RBC membrane; 2) once validated, determine
the mechanical parameters of the model.

To gain insight into the mechanical behavior of RBCs, experimental techniques
were developed for measurements of the RBC membrane properties [2]. Micropipette
aspiration [58] and optical tweezers [89, 131] are the most popular ones, and were
notably used to determine the shear modulus of the RBC membrane. The optical
tweezers experiment by Mills et al. [131] provides a useful means for the analysis
of the single cell mechanics under a variety of well-controlled stress states, where
stretching of an isolated RBC is generated by means of attached silica microbeads
and optical trap. Using a continuum model of the RBC membrane based on the
Yeoh constitutive law [207] to solve the deformation of the RBC subjected to opti-
cal stretching, they successfully matched the force-extension data obtained from the
experiment, and were able to extract the shear modulus of the RBC membrane.

A recent work of Dimitrakopoulos [49] showed that large differences of shear
modulus reported in various studies may be explained based on the different mem-
brane models used to fit the experimental data. He demonstrated that when using
a continuum description of the RBC membrane, the only constitutive law able to
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match well the wide variety of experimental data avalaible in the literature is the
Skalak law, specifically developed by Skalak et al. to represent the in-plane elastic-
ity of the RBC membrane [174]. Based on this finding, he stated that Mills et al.

[131] found the shear modulus that represents the Yeoh law, but not the true shear
modulus of the RBC membrane.

As a consequence, the numerical results of Mills et al. [131] were successfully
matched to the force-extension data obtained from optical tweezers using the Yeoh
law, whereas a proper modeling of the RBC membrane should rather rely on the
Skalak law. This reveals the simplistic nature of these experimental data, which was
also pointed out by Dimitrakopoulos [49]. Despite this observation, optical tweezers
data continue to be used as a way to validate numerical models of the RBC mem-
brane [28, 40, 62, 64, 67, 100, 111, 114, 154, 173], notably to probe the accuracy of
solvers dedicated to the study of the RBC dynamics under flow. However, a proper
validation test case needs to be selective to discriminate between appropriate and
inappropriate models. There is a suspiscion that computing optical tweezers exper-
iment does not constitute a true validation test case.

The present paper constitutes a numerical study which first aims at highlighting
the limitations of the optical tweezers experiment for characterizating the mechan-
ics of the RBC membrane. The optical tweezers experiment by Mills et al. [131]
is simulated using a numerical method dedicated to the simulation of the dynamics
of RBCs under flow. After a brief description of this numerical method, an easy-
to-implement computational setup is presented and validated against the numerical
results of Mills et al. [131]. Then, different membrane continuum models are in-
vestigated, based on various combinations of strain, area conservation and bending
energies. Detailed analysis of the shape of the stretched RBC are carried out in or-
der to identify which kind of additional experimental data could be helpful to better
characterize the mechanics of the RBC membrane.

2.2 Numerical method

The present numerical method is very similar to the one developed by Mendez et al.

[128] and Sigüenza et al. [168] for fluid-structure interactions (FSI) of deformable
membranes, and is based on the immersed boundary method (IBM) introduced
by Peskin [152]. Two independent meshes are considered to discretize the RBC
membrane and the fluid. The RBC membrane is discretized by a moving Lagrangian
mesh, and the fluid is discretized by a fixed Eulerian unstructured mesh. The
different steps of the present method are the following:

(1) The membrane force
−→
F is calculated on the Lagrangian mesh, which depends

on the membrane deformation and on the models used to represent the mem-
brane rheology.

(2) The forces exerted by the membrane on the fluid are represented by the fluid
volumetric force

−→
f , calculated on the Eulerian mesh by regularizing the mem-
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brane force
−→
F such as

−→
f (−→x , t) =

∫

Ωs

−→
F

(−→
X, t

)

δ
(

−→x −
−→
X

)

dX,

where −→x and
−→
X respectively denote the coordinates vectors of the Eulerian

fluid nodes and Lagrangian nodes, Ωs denotes the solid domain defining the
RBC membrane, and δ is the well known Dirac function.

(3) The fluid velocity −→v is calculated on the Eulerian mesh by solving the Navier-
Stokes equations (forced by the source term

−→
f ).

(4) The membrane velocity
−→
V is calculated on the Lagrangian mesh by interpo-

lating the fluid velocity −→v such as

−→
V

(−→
X, t

)

=

∫

Ωf

−→v (−→x , t) δ
(

−→x −
−→
X

)

dx,

where Ωf denotes the fluid domain.

The Dirac function δ used in the procedures of regularization and interpolation
of steps (2) and (4) is numerically represented by a smooth dicrete Dirac function,
which is adapted to unstructured meshes using the Reproducing Kernel Particle
Method [128, 153, 168]. Interpolation of the fluid velocity on the membrane La-
grangian mesh leads to small mass conservation errors. A specific algorithm has
been developed to perfectly conserve the volume of the RBC during the calculations
[128, 168].

2.2.1 Membrane forces computation

In the present method, the RBC membrane is considered to be infinitely thin, and
is represented by a triangulated surface. The membrane force is derived from a
combination of strain, area conservation and bending energies. Resistances to shear
and area-dilatation are modeled thanks to a hyperelastic strain energy function W ,
which is written as a function of the local in-plane principal values of strain λ1 and
λ2, following the method of Charrier et al. [27, 52, 57, 180]. Several hyperelastic
models are investigated in the present study:

• The Neo-Hookean law,

WNH =
Es

2

(

λ2
1 + λ2

2 + λ−2
1 λ−2

2 − 3
)

, (2.1)

where Es stands for the membrane in-plane shear modulus.

• The Yeoh law,

WY E =
Es

2

(

λ2
1 + λ2

2 + λ−2
1 λ−2

2 − 3
)

+ C3

(

λ2
1 + λ2

2 + λ−2
1 λ−2

2 − 3
)3

, (2.2)

which is an extension of the previous Neo-Hookean model, with the addition of a
non-linear term driven by the non-linear modulus C3.
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• The law introduced by Skalak et al. [174] for red blood cells,

WSK =
Es

4

[

(

λ2
1 + λ2

2 − 2
)2

+ 2
(

λ2
1 + λ2

2 − λ2
1λ2

2 − 1
)

]

+
Ea

4

(

λ2
1λ2

2 − 1
)2

, (2.3)

where shear resistance and area dilatation resistance are separately taken into ac-
count through the shear modulus Es and the area-dilatation modulus Ea, respec-
tively. It can also be written with the ratio of the area dilatation modulus to the
shear modulus, C = Ea/Es,

WSK =
Es

4

[

(

λ2
1 + λ2

2 − 2
)2

+ 2
(

λ2
1 + λ2

2 − λ2
1λ2

2 − 1
)

+ C
(

λ2
1λ2

2 − 1
)2

]

. (2.4)

Although the Skalak law can be used to control area variations of the RBC
membrane, another approach consists in using a global area conservation energy:

ES =
κS

2

(S − S0)2

S0
, (2.5)

with κS the area modulus, S the area of the membrane and S0 its target area. This
energy is actually already used in other formulations based on discrete approaches
[64, 154] or in shape predictions by energy minimization [115, 116]. Conveniently,
the force applied by the membrane on the fluid, associated to the energy term ES

can be expressed explicitly:

−→
FS = −2κS

(S − S0)

S0
H −→n , (2.6)

with H the mean curvature and −→n the outward normal vector to the surface.

In addition, the bending resistance of the membrane can be represented using
the bending energy Eb, proposed by Helfrich [88]:

Eb =
κb

2

∫

S
(2H − c0)2 dS, (2.7)

with κb = 2.0 × 10−19 N.m [115, 116] the bending modulus, and c0 a possible
spontaneous curvature (which is set to zero in the present study). The bending
force applied by the membrane on the fluid reads:

−→
Fb = κb

[

(2H − c0)
(

2H2 − 2K + c0H
)

+ 2∆LBH
]

−→n , (2.8)

where ∆LB denotes the surface Laplacian operator [214] (also called the Laplace-
Beltrami operator) and K is the local Gaussian curvature of the surface. The terms
of the bending force are calculated by local fitting of a quadratic approximation of
the surface. The method is similar to the one used by Farutin et al. [62]. Table 2.1
summarizes the three energies introduced, with the associated parameters. Every
combination of these energies (W , ES , Eb) can be used to model the RBC membrane.
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W ES Eb

NH: Es (N/m)

κS (N/m) κb (N.m)
YE:

Es (N/m)

C3 (N/m)

SK:
Es (N/m)

C

Table 2.1: Different energies available to model the RBC membrane and associated
notations of mechanical moduli.

2.2.2 Navier-Stokes equations solver

The fluid inside and outside the RBC is supposed to be incompressible and New-
tonian. The YALES2BIO flow solver is used [34, 128, 168, 215] to solve the forced
Navier-Stokes equations over the Eulerian unstructured mesh by using a projection
method [37]. The momentum conservation equations reads:

∂−→v

∂t
+

−→
∇ . (−→v ⊗ −→v ) = −

−→
∇p

ρ
+ ν∆−→v +

−→
f

ρ
, (2.9)

where −→v and p are the velocity vector and the pressure, ρ the density and ν the
kinematic viscosity. For an incompressible fluid, the mass conservation equation
becomes:

−→
∇ .−→v = 0 (2.10)

The fluid velocity is advanced using a 4th-order centred scheme in space and a 4th-
order Runge-Kutta scheme in time. A divergence-free velocity field is obtained at
the end of the time-step by solving a Poisson equation for pressure and correcting
the predicted velocity. A Deflated Preconditioned Conjugate Gradient (DPCG) al-
gorithm is used to solve this Poisson equation [123, 140].

The YALES2BIO solver was validated in several test cases where reference data
(either experimental, analytical or numerical) are available. This is described in
previous publications, where the reader can also find additional implementation
details [124, 128, 168, 169, 215].

2.3 Optical tweezers modeling

The purpose of this section is to establish a computational setup allowing the com-
putation of the optical tweezers experiment by Mills et al. [131]. The computational
setup presented in this section is built heavily on the one developed by Dao et al.

[41], which has also been used in [131] to simulate the optical tweezers experiment.
Figure 2.1(a) illustrates the experimental setup used in [131] to perform the stretch-
ing of the RBC. Two silica microbeads, of diameter 4.12 µm, are attached to the cell
at diametrically opposite points. The left bead is anchored to the surface of a glass
slide while the right bead is trapped by a laser beam. The trapped bead remaining
at rest, moving the slide and attached left bead stretches the cell. Then, the axial
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diameter DA (in the direction of the stretching), and the transverse diameter DT

(orthogonal to the stretching direction) are measured on the stretched RBC.

2.3.1 Computational setup

The analytical model of the RBC biconcave shape proposed by Evans and Fung [59]
is used to define the RBC geometry:

z = ±0.5R0

[

1 −
x2 + y2

R2
0

]



A1 + A2
x2 + y2

R2
0

+ A3

(

x2 + y2

R2
0

)2


 (2.11)

where R0 = 3.91 µm is the average RBC radius, A1 = 0.207161, A2 = 2.002558, and
A3 = −1.122762.

(a) Experimental setup

x

y

DA

DT

bead fixed on

the glass slide

glass slide moves

with attached bead

bead held in

optical trap

(b) Computational setup

dc F−F

DA

DT

mean positions of

the loaded edges

Figure 2.1: (a) Illustration of the experimental setup of [131]. The axial (DA) and
transverse (DT ) diameters of the stretched RBC are measured. (b) Computational
setup used to simulate the optical tweezers experiment. A stretching force F is
applied over the two circular edges delimitating the contact areas between the RBC
and the beads, with a contact size dc = 2 µm.

Rather than explicitly solving the contact between the beads and the RBC (as
Dao et al. [41] and Mills et al. [131]), most of the works simulating the optical
tweezers experiment consider pure Neumann loading conditions to simulate the RBC
stretching, applying a constant stretching force F over a certain percentage of nodes
at the extremities of the RBC [28, 62, 67, 100, 111, 173]. The drawback of this
approach was nonetheless pointed out by Klöppel and Wall [100]: the rigidity of the
beads is not properly taken into account, leading to a larger axial diameter (DA),
and thus a higher estimation of the in-plane shear modulus. An alternative use of
Neumann loading conditions which mimics the beads rigidity is introduced, within
a three-step strategy:
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• The contact areas between the beads and the RBC are properly defined fol-
lowing the procedure of Dao et al. [41]. As shown in Fig. 2.1(b), these
contact areas are defined by intersecting the surface of the RBC with two op-
posite planes perpendicular to the stretching direction. The position of these
planes is chosen such that the contact size between the beads and the RBC is
dc = 2 µm [41].

• Rather than applying the stretching force F over all the nodes of the contact
areas, the force is applied only on the nodes located on the edges delimiting
the contact areas (see Fig. 2.1(b)).

• Instead of evaluating the axial diameter (DA) as the distance between the ex-
tremities of the stretched RBC, the axial diameter is determined by calculating
the mean position of each loaded edge, which are deformed during the RBC
stretching (as sketched in Fig. 2.1(b)).

Consistently with the numerical framework described in section 2.2, the compu-
tation of the RBC stretching consists in solving a transient fluid-structure interaction
problem until stabilization of the shape. The RBC is immersed in a fluid box ex-
tended from −4R0 to 4R0 in the x direction (direction of the stretching), from −2R0

to 2R0 in the y direction (direction orthogonal to the stretching), and from −R0 to
R0 in the z direction (direction perpendicular to the plane of the RBC). The fluid
mesh is composed of 881 992 tetrahedral elements, with a constant mesh resolution
of R0/12.5. The RBC membrane is composed of 6 434 nodes, with a constant mesh
resolution of R0/25.

The stretching force is applied on the RBC membrane as an external force, with
a time-dependent ramp ranging from 0 to the desired value of F . This external force
is seen by the fluid which starts moving, and deforms the RBC. After a transient
phase, the mechanical forces inside the membrane and the applied external force
balance, and a steady deformation is obtained. The choice of the fluid properties
and the size of the computational domain may affect the transient phase, but have no
influence on the steady deformation of the RBC and calculated axial and transverse
diameters. Only the final stabilized shapes are postprocessed.

2.3.2 Validation

With the aim to validate the present computational setup, the optical tweezers ex-
periment by Mills et al. [131] is simulated, and the present simulations are compared
with the numerical simulations performed in [131]. Two cases are simulated, corre-
sponding to different modeling of the in-plane elasticity of the membrane. These two
cases are summarized in Tab. 2.2. For both cases, only the local in-plane elasticity
is considered. The membrane is assumed to follow the Neo-Hookean law (Eq. (2.1))
in case 1, and the Yeoh law (Eq. (2.2)) in case 2.
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W ES Eb

Case 1 NH: Es = 7.3 µN/m X X

Case 2 YE:
Es = 7.3 µN/m

X X
C3 = Es/30

Table 2.2: Cases simulated with the present computational setup and compared
with the results of Mills et al. [131].

Figure 2.2 shows both axial (DA) and transverse (DT ) diameters of the RBC
stretched by optical tweezers, as a function of the applied force, for cases 1 and
2. As the cell is more and more elongated when increasing the stretching force, it
is seen that the axial diameter DA increases. The elongation of the cell leads to
its contraction in the orthogonal direction, resulting in a decrease of the transverse
diameter DT .
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Figure 2.2: Axial (DA) and transverse (DT ) diameters of the RBC stretched by
optical tweezers. Comparison with the experimental and numerical data from Mills
et al. [131]. (a) The RBC membrane is assumed to follow the Neo-Hookean law,
corresponding to case 1. (b) The RBC membrane is assumed to follow the Yeoh
law, corresponding to case 2.

When using pure Neumann loading conditions to simulate the RBC stretching
[28, 62, 67, 100, 111, 173], the rigidity of the beads used in the optical tweezers
experiment is neglected, which is known to strongly influence the deformation of
the stretched RBC, especially the estimation of the axial diameter (DA) [100]. The
present results however show that it is possible to mimic the beads rigidity using a
customized computational setup based on pure Neumann loading conditions, which
is seen to faithfully reproduce the numerical results obtained by Mills et al. [131],
who explicitly solved the contact between the beads and the RBC.
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As pointed out by Mills et al. [131], comparison of the numerical results of
case 1 with the experimental data shows that the Neo-Hookean law is not adapted
to describe the behavior of the RBC membrane. Indeed, experimental trends are
well captured over the range of 0-88 pN. However, the model deviates gradually for
loadings higher than 88 pN, showing a strain-softening behavior under large defor-
mation [13]. Conversely, the Yeoh law provides accurate predictions of diameters
over the entire range of experimental data. The strain-hardening behavior of RBCs
under large deformation is thus well transcribed by the model. Regarding the me-
chanical response of the stretched RBC in terms of axial and transverse diameters,
the membrane modeling corresponding to case 2 provides a good description of the
membrane mechanical behavior.

Figure 2.3 shows the deformation of the RBC for different values of the stretching
force F , which ranges from 0 to 193 pN. A detailed analysis of the shape of the RBC
shows that as the cell is elongated when increasing the force, a large fold is appearing,
as also observed in the numerical simulations of Mills et al. [131]. Occurence of such
a folding is however not investigated in the experiment.

0 pN

67 pN

130 pN

193 pN

Case 1 Case 2

Figure 2.3: Visualization of the red blood cell deformation over the entire range of
stretching force, for both cases 1 and 2. Only half of the cell is displayed.

In order to investigate the influence of the mesh resolution, two meshes were
constructed from the mesh used in Fig. 2.2: a coarse mesh whose resolution is twice
coarser than the reference mesh resolution, and a fine mesh whose resolution is twice
finer than the reference mesh resolution. Axial (DA) and transverse (DT ) diameters
obtained from these three meshes are compared in Tab. 2.3 with the diameters
obtained from numerical simulations of Mills et al. [131] for the largest loading
F = 193 pN. The mesh resolution has almost no influence on the prediction of the
axial diameter, and only few influence on the prediction of the transverse diameter.
This proves that the reference mesh is sufficiently refined, and can thus be used in
the remainder of this study.
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Mills simulation Coarse mesh Reference mesh Fine mesh

DA (µm) 16.14 15.92 15.93 15.93

DT (µm) 4.90 4.94 4.81 4.72

Table 2.3: Influence of the mesh resolution for case 2, at the maximum imposed
force of 193 pN.

2.4 Influence of the membrane modeling

The present computational setup is now used to investigate different continuum
models of the RBC membrane. With the present numerical method, the different
mechanical properties of the RBC membrane can be modeled by a combination of
strain, area conservation and bending energies. Four new cases are summarized in
Tab. 2.4.

W ES Eb

Case 3 YE:
Es = 7.3 µN/m

X κb = 2.0 × 10−19 N.m
C3 = Es/30

Case 4 SK:
Es = 3.65 µN/m

X κb = 2.0 × 10−19 N.m
C = 0.5

Case 5 SK:
Es = 3.65 µN/m

X κb = 2.0 × 10−19 N.m
C = 100

Case 6 SK:
Es = 3.65 µN/m

κS = 1.0 103 µN/m κb = 2.0 × 10−19 N.m
C = 0.5

Table 2.4: Summary of different continuum models of the RBC membrane investi-
gated by means of optical tweezers simulations (see Tab. 2.2 for cases 1 and 2).

Note that the bending stiffness of the lipid bilayer was neglected in cases 1 and
2, but is accounted for in the others. Using the Yeoh law (Eq. (2.2)) to describe the
local in-plane elasticity of the RBC membrane was seen to provide a good agreement
with the optical tweezers experiment (see Fig. 2.2(b)). Case 3 thus appears to be
a first obvious candidate to model the mechanics of the RBC membrane. As stated
by Dimitrakopoulos [49], the RBC membrane should rather be modeled by the
Skalak law instead of the Yeoh law. Cases 4 and 5 are thus introduced, with two
different values of the ratio C (low value in case 4, and high value in case 5). Note
however that when using the Skalak law to model the local in-plane elasticity of
the RBC membrane, a high value of C should be considered to restrain the area
variations of the RBC membrane, thus modeling the quasi-incompressibility of the
lipid bilayer. Consequently, case 4 does not constitute a potential candidate to
model the mechanics of the RBC membrane, but is only introduced to investigate
the influence of the ratio C on the mechanical response of the RBC subjected to
optical stretching. Finally, case 6 proposes a hybrid modeling of the RBC membrane,
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dissociating the cytoskeleton and the lipid bilayer: the Skalak law with low ratio
C is used to model the local in-plane elasticity of the cytoskeleton, allowing local
area changes of the cytoskeleton; on top of this, the global area conservation energy
is used to model the reorganisation of the quasi-incompressible lipid bilayer, sliding
along the cytoskeleton. It is noticed that a twice smaller shear modulus Es is
considered when using the Skalak law in cases 4, 5, and 6, as compared to case 3.
In the following, it will be shown that this reduction of the shear modulus Es is
required to have a good comparison with the optical tweezers experiment, which is
consistent with the analysis of Dimitrakopoulos [49].

2.4.1 Comparison of axial and transverse diameters

Figure 2.4 shows the numerical predictions of the axial and transverse diameters
for the different modeling cases introduced in Tab. 2.4. All cases provide a good
comparison with the experimental results of Mills et al. [131]. Cases 5 and 6 are in
a slightly better agreement with the experiment, especially regarding the transverse
diameter (DT ) in the higher range of imposed stretching force. However, differences
between all the modeling cases are contained within the experimental error bars. It
is interesting to note that increasing the resistance to area-dilatation of the RBC
membrane between case 4 and case 5 (by increasing the ratio C) has very few
influence on the predictions of the axial and transverse diameters, which was also
observed in previous works [169, 173]. In addition, restraining the area variation of
the RBC membrane either locally (in case 5) or globally (in case 6) leads to almost
identical predictions of the axial (DA) and transverse (DT ) diameters.
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Figure 2.4: Comparison of the axial (DA) and transverse (DT ) diameters of the
RBC stretched by optical tweezers for the different modeling cases introduced in
Tab. 2.4.

2.4.2 Characterization of the RBC shape

The deformation of the stretched RBC at different stretching forces is displayed in
Fig. 2.5. First, it is seen that the shapes obtained in case 3 differ from the ones
obtained in case 2 (see Fig. 2.3), which also uses the Yeoh law to model the local
in-plane elasticity of the RBC membrane. The large fold which appears during the
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RBC stretching in case 2 is restrained in case 3 by the bending stiffness of the lipid
bilayer, modeled by the bending energy (neglected in case 2). The fold is however
still visible during the stretching, but much smoother. In case 4, when switching
the hyperelastic model to the Skalak law, the RBC tends to lose its biconcave shape
with increasing stretching. This phenomenon is even more pronounced and faster in
case 5, when the area-dilatation resistance is increased, leading to a more rounded
shape at maximum stretching. Finally, case 6 exhibits a very similar behavior of
case 5, with a faster transition from the biconcave to the rounded shape (see shapes
at F = 67 pN in Fig. 2.5), and a more circular shape at maximum stretching.

In the light of these observations, it appears relevant to introduce two additional
lengths measured on the deformed RBC: the in-plane length LP , defined as being
the height in the direction perpendicular to the plane of the RBC (see Fig. 2.5); the
folding length LF , also aligned with the direction perpendicular to the plane of the
RBC, but evaluated at the fold location (see Fig. 2.5). As shown in Fig. 2.6(a), the
discrimination between the different modeling cases is more obvious when analysing
the evolution of the in-plane (LP ) and folding (LF ) lengths than the classical analysis
made on the axial (DA) and transverse (DT ) diameters (in Fig. 2.4). Previous
observations of Fig. 2.5 can be highlighted: in case 3, the in-plane (LP ) and folding
(LF ) lengths show parallel evolutions, meaning that the RBC keeps its biconcave
shape for the whole range of stretching force; in case 4, lengths get closer with
increasing stretching force, showing that the RBC progressively loses its biconcave
shape when subjected to stretching; in cases 5 and 6, a transition from a biconcave
folded shape to a rounded shape occurs when the two lengths become identical (for
F = 109 pN in case 5, and F = 88 pN in case 6), and the shape of the RBC becomes
more and more circular as the lengths increase with the stretching force.

0 pN

67 pN

130 pN

193 pN

Case 3 Case 4 Case 5 Case 6

LP

LF

Figure 2.5: Visualization of the red blood cell deformation over the entire range of
stretching force, for the different modeling cases introduced in Tab. 2.4. Only half
of the cell is displayed.



42 CHAPTER 2. RED BLOOD CELLS MODELING
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Figure 2.6: (a) Evolution of the in-plane (LP ) and folding (LF ) lengths as a function
of the imposed stretching force F . (b) Global area variation of the red blood cell
membrane for the different modeling cases introduced in Tab. 2.4.

2.4.3 Area variations

The ability of the quasi-incompressible lipid bilayer to restrain area variations during
the RBC deformation is an important mechanical feature of the RBC membrane
[135]. Figure 2.6(b) shows the evolution of the global area variation of the RBC
membrane during stretching for the different modeling cases introduced in Tab. 2.4.
In case 3, the area increase reaches 28%, since the Yeoh law is not designed to
restrain area variations of the RBC membrane. Using the Skalak law in case 4
enables to restrain the area variation to a maximum value of 12%. Area variations
are even more restrained when increasing the resistance to area-dilatation in cases
5 (0.3%) and 6 (0.4%).

Case 5 Case 6

Local area variation (%) Local area variation (%)

−4 3 −39 64

Figure 2.7: Comparison of the local area variations of the red blood cell membrane
at the maximum stretching force F = 193 pN for the modeling approaches of cases
5 and 6.

Figure 2.7 shows the local area variation of the RBC membrane for modeling
cases 5 and 6. In case 5, the use of the Skalak law with high ratio C allows very small
local area variations of the RBC membrane. In case 6, the quasi-incompressibility of
the lipid bilayer is independently modeled using the global area conservation energy,
whereas the Skalak law with lower ratio C is used to model the own area-dilatation
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resistance of the cytoskeleton. This results in higher local area variations, which
correspond to the deformation of the cytoskeleton. In both cases, the maximum local
area variations are obtained at the extremities of the cell, near to the bead/RBC
contact areas. These regions of high stretching may thus be the locations where
the RBC is the most prone to lysis. Note that variation of cytoskeleton area was
measured by Disher et al. [50] in a micropipette aspiration experiment, but the
authors are not aware of similar measurements in optical tweezers experiment.

2.5 Discussion

In the present paper, the optical tweezers experiment by Mills et al. [131] is simu-
lated using a numerical method dedicated to the simulation of the dynamics of RBCs
under flow. A computational setup for simulating the RBC stretching is presented,
which is seen to perfectly reproduce the numerical results obtained by Mills et al.

[131]. Influence of the RBC membrane modeling is then investigated, introducing
different continuum models to describe the membrane mechanics.

Comparison of the numerical results with the force-extension data provided by
the experiment (i.e. the axial (DA) and transverse (DT ) diameters of the stretched
RBC) shows that all modeling approaches are able to reproduce the mechanical re-
sponse of the RBC subjected to optical stretching (see Fig. 2.4). An adjustment
of the shear modulus Es is however required depending if the RBC membrane is
described using the Yeoh law or the Skalak law (Es is twice smaller when using the
Skalak law). It is also seen that some of these models allow non-physiological area
variations of the RBC membrane during stretching (see Fig. 2.6(b)), especially the
Yeoh law which was considered in previous works as a suitable model of the RBC
membrane [131, 185]. Consistently with the findings of Dimitrakopoulos [49], this
indicates that the Yeoh law should not be used to describe the mechanical behavior
of the RBC membrane. This also indicates that the single analysis of the axial (DA)
and transverse (DT ) diameters of the stretched RBC is not a sufficient indicator
for characterizing the mechanics the RBC membrane, and cannot be used alone to
validate numerical models of the RBC membrane.

Detailed analysis of the shape of the stretched RBC reveal different behaviors
among the investigated models (see Fig. 2.5). A transition of the RBC shape from
a biconcave folded shape to a rounded shape is observed when restraining the area
variations of the RBC membrane, either locally or globally. This observation may
be due to the fact that the RBC tends to lose its biconcave shape when subjected
to optical stretching, to prevent area variations of the RBC membrane. Note that
such ellipsoidal shapes were also reported in previous numerical studies [62, 100, 114].

This transition from a biconcave folded shape to a rounded shape can be char-
acterized by introducing two additional lengths measured in the direction perpen-
dicular to the plane of the RBC: the in-plane length LP , and the folding length
LF (see Fig. 2.6(a)). Experimental measurements of such lengths could thus be
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of prime interest to make the optical tweezers experimental setup more helpful to
characterize the mechanics of the RBC membrane.

More sophisticated measurements of the shape of the stretched RBC must how-
ever be performed with reasonable experimental uncertainties. One of the main
source of uncertainty is expected to come from the contact areas between the beads
and the RBC, which may vary from one experiment to the other. In the present
computational setup, these contact areas are defined by the contact size dc which
is initially chosen to be dc = 2 µm, as in the computations of Mills et al. [131].
Figure 2.8(a) shows the influence of this contact size on the numerical predictions
of the axial (DA) and transverse (DT ) diameters of the stretched RBC (using the
modeling case 5), when the contact size is successively set to dc = 1 µm, dc = 2 µm
and dc = 3 µm.
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Figure 2.8: Influence of the bead-RBC contact area for the modeling case 5. (a)
Axial (DA) and transverse (DT ) diameters. (b) In-plane (LP ) and folding (LF )
lengths.

It is seen that the contact size strongly influences the prediction of the axial di-
ameter (DA), showing a more rigid behavior with increasing dc, but has no influence
on the prediction of the transverse diameter (DT ). This may explain the large and
increasing error bars obtained by Mills et al. [131] in the experimental measurements
of the axial diameter (DA), as compared to the smaller and monotonous error bars
obtained for the transverse diameter (DT ). Figure 2.8(b) shows that the contact size
has only a little influence on the predictions of the in-plane (LP ) and folding (LF )
lengths, which means that comparison between computed and measured values of
these quantities would be robust to the uncertainties related to the bead/RBC con-
tact areas. The authors hope that these findings will arouse an interest for updated
optical tweezers experiments.
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Preliminary remarks

This chapter corresponds to an article entitled “Validation of an immersed thick
boundary method for simulating fluid-structure interactions of deformable mem-
branes” [168] which has been published in the Journal of Computational Physics,
and seeks to extend the features of the YALES2BIO solver to FSI simulations of
3D continuum membranes. Indeed, the membrane mechanics solver introduced in
section 1.4 is especially dedicated for solving the red blood cell membrane mechan-
ics, attempting to model its complex microscructure (detailed in section 1.1.2). It
notably uses segregated numerical models to take into account the different mechan-
ical properties of the red blood cell membrane, dissociating for example its in-plane
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elasticity (coming from the cytoskeleton) to its bending resistance (coming from the
lipid bilayer). Such a strategy is however not adapted when modeling 3D continuum
membranes, for which all the mechanical effects are coupled and should be taken
into account in one single numerical model. A limitation of the IBM is however that
it is originally restricted to infinitely thin membranes, making difficult the represen-
tation of the bending stiffness. The basic idea is here to flout this limitation, and
see how the method performs when the membrane is explicitely represented as a 3D
continuum having a finite thickness. Still, the IBM formalism used to communicate
between the fluid and solid non-conforming meshes, using the smooth discrete Dirac
function, remains identical. The main distinction with the original IBM is that
instead of having a triangulated set of Lagrangian markers which represents an in-
finitely thin membrane, the set of Lagrangian markers defines a 3-dimensional mesh
on which the membrane force is solved using the classical finite element method
(FEM). A great advantage of this approach is that it does not require to implement
a specialized membrane mechanics solver, since the FEM is very common and is
implemented in many existing solid mechanics solvers. In this case, the membrane
mechanics is solved using the open source LMGC901 solver, which is coupled with
the YALES2BIO solver, and operates in a reversed way. Indeed, solid mechanics
solvers generally solve the displacement of a structure in response to an imposed
loading or boundary displacement. In the present IBM framework, the displace-
ment of the whole membrane is prescribed by the surrounding fluid flow, and the
solid mechanics solver is used to compute the membrane force relative to this dis-
placement. Adaptation of the IBM framework in the context of 3D structures would
be classified as being an immersed domain method (IDM). However, the present ap-
proach should rather be considered to be in between the IBM and the IDM, since it
attempts to deal with the particular case where the 3D structure is a thin membrane,
which raises some relevant questions:

• How robust and accurate is the method when dealing with very thin mem-
branes?

• Does the flexural rigidity of the membrane can be properly taken into account
with reasonable mesh resolutions?

• Does the membrane can still be considered as a massless structure despite of
its finite thickness?

The present method, referred to as the immersed thick boundary method (ITBM), is
described and extensively validated in this chapter. The method is fully described in
section 3.2, where the different steps of the IBM are reminded. The smooth discrete
Dirac function used to communicate between the fluid and solid non-conforming
meshes is notably widely detailed in section 3.2.2, since it constitutes a primary key
point in the coupling between the LMGC90 solver and the YALES2BIO solver. A
possible application to the simulation of the blood flow through the aortic valve is
briefly presented at the end of the chapter, and is further investigated in chapter 4.

1https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user/wikis/home
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3.1 Introduction

Solving the fluid-structure interaction (FSI) problem involved when a membrane is
deformed by a flow is a scientific challenge which has been tackled for several decades,
due to its wide range of applications. When dealing with numerical simulation of
flow-induced deformation of membranes, the state of the art is extremely varied. Dif-
ferent communities work on the topic, focusing on various applications. A large part
of these applications are considering deformable particles such as capsules, vesicles
or cells. All these systems are constituted by a liquid droplet enclosed by a very thin
structure (its thickness is much smaller than the size of the object). This structure
can be a polymer structure for capsules, a phospholipid bilayer for vesicles, or a more
complex biological membrane in the case of red blood cells [132]. Due to their small
size, computations of flows of these deformable particles are often based on boundary
integral methods (BIM) [155]. This method can be used for low Reynolds number
flows, when the flow is well described by the Stokes equations. The BIM is a very
popular technique to compute flows of capsules [11, 12, 54, 105, 158, 194, 203], vesi-
cles [17, 20, 77, 190, 213] and red blood cells [149, 156, 212], because of its precision
and its relatively moderate computational cost (only the membranes and boundaries
need to be discretized). When the flow is governed by the Navier-Stokes equations,
methods with the fluid grid following the deformation of the interface, based on the
Arbitrary Lagrangian-Eulerian (ALE) formalism are developed [22, 73, 100]. How-
ever, they are not the most popular, as they involve frequent remeshing. Authors
generally prefer one-fluid formalisms, where the fluid equations are solved every-
where, over a fixed Eulerian grid. The membrane location is computed by advecting
either a function as the level-set function or a second Lagrangian grid following the
membrane displacement. One can cite the advected-field approach [15, 18], level-set
methods [39, 103, 121, 165] and immersed boundary or immersed interface methods
[7, 99, 107, 109, 110, 112, 152, 195].

The immersed boundary method (IBM) was originally developed by Peskin et

al. [150] and has since been extensively studied and applied to a wide variety of
FSI problems. In a previous work, Mendez et al. [128] used the IBM to study fluid-
structure interaction of deformable particles in flows at arbitrary Reynolds numbers,
in the context of complex geometries often encountered when dealing with medical
artificial devices. Since this work was only considering the 2D resolution, the main
purpose of the present work is to extend it to 3D. The IBM being originally developed
to deal with zero volume structures, a membrane-like structure with an infinitely
thin thickness can be considered, neglecting the bending stiffness of the membrane.
Although suitable when modeling very thin capsules under flow [6, 53], this approach
reaches its limitations when considering membranes having a significant bending
rigidity. To capture bending effects, an additional model based on the Helfrich energy
[88] can be introduced (also used by Mendez et al. [128]), and has been notably used
to model flowing capsules and red blood cells [8, 206]. Another approach is the one
introduced by Le and Tan [107], where the IBM is combined with a thin-shell model
to simulate the deformation of liquid capsules under flow [107, 108, 109].
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In the present work, another approach to simulate flowing deformable mem-
branes in the context of the IBM is proposed, the immersed thick boundary method
(ITBM). This approach is inspired from the extended immersed boundary method
(EIBM), introduced by Wang and Liu [195], and later adapted to the immersed finite
element method (IFEM) [119, 209]. Instead of the volumeless immersed boundary,
a submerged solid which occupies a finite volume within the fluid domain is consid-
ered. This approach constitutes an alternative to the one consisting in combining
the IBM with a thin shell model. Indeed, rather than representing implicitly the
thickness of the membrane using a thin shell model (as Dupont et al. [56]), the
thickness is represented in an explicit manner, modeling the membrane as a 3D con-
tinuum using the classical finite-element method. A full description of the ITBM
is done in section 3.2. The use of a classical finite-element framework in the IBM
is not generally employed for thin membranes. As a consequence, the present work
presents an extensive validation work in section 3.3, in order to thoroughly determine
the real limitations of such an approach. The case of very thin membranes will be
treated with particular attention. Note that the present approach is not limited to
closed membranes. Both closed membranes and open membranes can be simulated
using the ITBM, and an application to the flow through a tri-leaflet aortic valve is
presented in section 3.4.

3.2 Numerical method

In the IBM framework, two independent meshes are considered to discretize the
solid domain Ωs and the fluid domain Ωf . The solid is discretized by a moving
Lagrangian mesh, and the fluid is discretized by a fixed Eulerian mesh, which can
be either structured or unstructured (Fig. 3.1). The different steps of the IBM are
the following, as introduced by Peskin [152]:

(1) Knowing the displacement
−→
Um of each solid node, the mechanical force

−→
Fm

resulting from the membrane deformation is calculated.

(2) The mechanical force
−→
Fm is regularized on the fluid mesh, giving the volumetric

force
−→
fj on each fluid node.

(3) The Navier-Stokes equations (forced by the regularized mechanical forces) are
solved on the fluid mesh, yielding the velocity of the fluid −→vj on each fluid node.

(4) The velocity of the membrane
−→
Vm on each solid node is interpolated from the −→vj

field, enabling to deduce the new position
−−→
Xm from the position at the previous

timestep
−−→
Xm

previous, such as
−−→
Xm =

−−→
Xm

previous+∆t
−→
Vm. The displacement is then

updated
−→
Um =

−−→
Xm −

−−→
X0

m, where
−−→
X0

m stands for the initial stress-free position,
also referred to as the reference position.

In the present study, step (1) is performed by the LMGC90 solid mechanics solver
[157], while steps (2)-(4) are performed by the YALES2BIO numerical tool [34, 128,
215], based on a massively parallel unstructured finite volume flow solver for the
incompressible Navier-Stokes equations [140]. Note however that steps (2) and (4)
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could be handled by a dedicated coupling program, in the case where modifications
in the fluid solver cannot be easily performed. YALES2BIO being an in-house solver,
this option was not considered further.

The main distinction between the IBM and the ITBM is that instead of having
a cluster of solid nodes spread over a surface, the cluster defines a volume mesh (see
Fig. 3.1). The different steps of the ITBM are detailed below.

Ωs

Ωf

Figure 3.1: Schematic representation of the discretized problem in 2D.

3.2.1 Computation of the mechanical force

When considering immersed volumetric objects, as this is the case with the EIBM
[195], the actual structural force to regularize is commonly composed of the internal
mechanical force

−→
Fm resulting from the static deformation of the structure, and the

inertial force M
−→
Üm resulting from the dynamics of the structure, the mass matrix

M being written as:

M = (ρs − ρ) V, (3.1)

where ρs and ρ stand for the solid and fluid densities, respectively, and V the vol-
ume matrix. When regularizing the structural force, the inertial force should thus
be neglected as long as the fluid-to-solid density ratio is close to unity (ρs ≃ ρ). This
assumption is even more true when the solid phase is a very thin membrane (V ≃ 0).

The mechanical force
−→
Fm is calculated over the three-dimensional mesh repre-

senting the solid domain, thanks to the classical finite-element method. Let σ be the
cauchy stress tensor, and ǫ the Eulerian-Almansi strain tensor. Using the virtual
works principle, it is possible to identify:

−→
Fm.

−→
Um =

∫

Ωs

σ : ǫ dΩ. (3.2)

By using the transformation between the current and the reference configuration of
the domain Ω0

s, the total Lagrangian formulation of the previous equation gives:

−→
Fm.

−→
Um =

∫

Ω0
s

S : E dΩ0, (3.3)
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where S is the 2nd Piola-Kirchhoff stress tensor, and E is the Green-Lagrangian
strain tensor, which reads:

E =
1

2
(C − I) , (3.4)

with C = F
T
F the Right Cauchy-Green deformation tensor, and F = I + ∇

−→
Um the

deformation gradient tensor. The right-hand side of Eq. (3.3) can be rewritten as
the scalar product of the equivalent vector forms of S and E:

−→
Fm.

−→
Um =

∫

Ω0
s

−→
S .

−→
E dΩ0. (3.5)

Introducing the gradient matrix B which contains the spatial derivatives of the shape
functions, Eq. (3.5) becomes:

−→
Fm.

−→
Um =

∫

Ω0
s

−→
S . B

−→
Um dΩ0. (3.6)

Eliminating
−→
Um on both sides and discretizing the domain as a sum of elements

Ω0
s = ∪ Ω0

el, one finally obtains:

−→
Fm =

∑

Ω0

el

[

∫

Ω0

el

−→
S . B dΩ0

]

. (3.7)

e

H
H

element nodes

interpolation nodes

Prismatic linear element Hexahedral quadratic element

Figure 3.2: Left: Prismatic linear element where linear shape functions are defined
between two element nodes. Right: Hexahedral quadratic element. Interpolation
nodes are needed to define the quadratic shape functions.

In the present work, both prismatic linear elements (see Fig. 3.2, left) and
hexahedral quadratic elements (see Fig. 3.2, right) are tested. In the case of linear
elements, the linear shape function is defined between two elements nodes. And in
the case of quadratic elements, an interpolation node between two element nodes
is needed to define the quadratic shape function. The effective resolution H of the
elements is introduced, as being the biggest distance between two nodes (between
two element nodes in the case of linear elements, and between one element node and
one interpolation node in the case of quadratic elements). Note that in the case of
linear elements, the effective resolution H is equal to the element resolution, and to
half of the element resolution in the case of quadratic elements. If the membrane
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thickness e is smaller than the element resolution (as this is the case in Fig. 3.2),
the membrane is meshed only with one element in the thickness. But if the element
resolution is smaller than the membrane thicknes e, the number of elements in the
thickness is greater than one.

Constitutive laws

The LMGC90 computational code features a wide library of constitutive laws. Only
a few of them are used in the present work:

• The compressible Saint-Venant Kirchoff law

S =
2Gν

1 − 2ν
Tr (E) I + 2GE, (3.8)

where G and ν are the shear modulus and the Poisson coefficient, respectively.

• The compressible Neo-Hookean law, as introduced by Simo and Pister [172]























S = 2
∂W

∂C

W =
G

2
(I1 − 3) − G ln J +

Gν

1 − 2ν
(ln J)2

(3.9)

where W is the strain energy density function. J = detF = λ1λ2λ3 is the Jacobian
of the transformation, expressed as the product of the principal stretches λi and I1

is the first invariant of the Right Cauchy-Green deformation tensor C, which reads:

I1 = λ2
1 + λ2

2 + λ2
3. (3.10)

• The quasi-incompressible Yeoh law























S = 2
∂W

∂C

W = C1

(

Ī1 − 3
)

+ C2

(

Ī1 − 3
)2

+ C3

(

Ī1 − 3
)3

+
G (1 + ν)

3 (1 − 2ν)
(ln J)2

(3.11)

where Ci are material constants and Ī1 is the first invariant of the isochoric Right
Cauchy-Green deformation tensor C̄, such as Ī1 = J−2/3I1. The quantity 2C1 can
be interpreted to be the shear modulus G, and when C2 and C3 are chosen to be
C2 = C3 = 0, this leads to the quasi-incompressible Neo-Hookean law.

3.2.2 Forces regularization

The force per unit volume applied on the fluid by the membrane is computed from
the mechanical forces on the solid nodes, through the process of force regularization:

−→
fj =

M
∑

m=1

[

−→
Fm × w

(

||−→xj −
−−→
Xm||

h

)]

, (3.12)
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where w is a discrete Dirac function allowing to regularize the mechanical force at
the neighboring fluid nodes from the mechanical force at the solid node location
(Fig. 3.3).

solid node m

fluid node j

dVj

4h

Figure 3.3: Schematic representation of the procedure to compute the window func-
tion w.

When using a regular Cartesian mesh of constant mesh size h, the discrete Dirac
function w can be easily defined as the product of one-dimensional delta functions:

w

(

||−→xj −
−−→
Xm||

h

)

= D

(

xj − Xm

h

)

D

(

yj − Ym

h

)

D

(

zj − Zm

h

)

. (3.13)

The cosine representation is often used, as introduced by Peskin [152]:

D(r) =



















1

4h

[

1 + cos

(

πr

2

)]

if |r| < 2

0 if |r| ≥ 2

(3.14)

When using unstructured meshes, the Cartesian version of w cannot be used. Adap-
tation of the immersed boundary formalism to unstructured meshes relies on the
Reproducing Kernel Particle Method [117, 128, 153]. The intensity and the point
of application of the force to regularize have to be ensured by the chosen discrete
Dirac function w. To this respect, it proves useful to introduce the moments of the
window function w at the location of the solid node m:

ma,b,c(
−−→
Xm) =

J
∑

j=1

[

(

xj − Xm

h

)a (

yj − Ym

h

)b (

zj − Zm

h

)c

×w

(

||−→xj −
−−→
Xm||

h

)

dVj

]

.

(3.15)

For a unit point force applied at coordinates
−−→
Xm, moments calculated at

−−→
Xm are

known: the first moment m0,0,0 is 1, and the following ones are all 0.
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When using unstructured meshes, the following isotropic extension of Eqs. (3.13)-
(3.14) is naturally introduced:

w

(

||−→xj −
−−→
Xm||

h

)

= w(r) =



















1

2dim−1

1

4h

[

1 + cos

(

πr

2

)]

if |r| < 2

0 if |r| ≥ 2

(3.16)

Since the resulting regularized force
−→
fj does not meet the moment condition (ma,b,c =

0 except m0,0,0 = 1), a modified weight function for regularization is introduced:

w

(

||−→xj −
−−→
Xm||

h

)

= w

(

||−→xj −
−−→
Xm||

h

)

×

[

β0 + β1
xj − Xm

h

+ β2
yj − Ym

h
+ β3

zj − Zm

h

]

,

(3.17)

where βk are the coefficients of the polynomial correction of the original window
function. The moments of the modified window function are then given by:

ma,b,c(
−−→
Xm) =

J
∑

j=1

[

(

xj − Xm

h

)a (

yj − Ym

h

)b (

zj − Zm

h

)c

×w

(

||−→xj −
−−→
Xm||

h

)

dVj

]

.

(3.18)

By plugging the definition of w into Eq. (3.18), one easily obtains that:
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, (3.19)

where M contains the moments of the isotropic window function w (Eq. (3.16)).
The first moments of the modified window function can then be imposed to their
expected values (1, 0, 0, 0) by calculating βk such as:
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β1

β2
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= M−1













m0,0,0

m1,0,0

m0,1,0

m0,0,1













= M−1













1

0

0

0













. (3.20)

In this case, the modified window function ensures that the moment of order 0 is
equal to 1, and the moments of order 1 are equal to 0. To also impose the moments
of order 2 to 0, the original window function has to be corrected with a quadratic
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correction leading to the calculation of 10 βk coefficients [153]:

w

(

||−→xj −
−−→
Xm||

h

)

= w

(

||−→xj −
−−→
Xm||

h

)

×

[

β0 + β1
xj − Xm

h

+ β2
yj − Ym

h
+ β3

zj − Zm

h
+ β4

(

xj − Xm

h

) (

yj − Ym

h

)

+ β5

(

yj − Ym

h

) (

zj − Zm

h

)

+ β6

(

zj − Zm

h

) (

xj − Xm

h

)

+ β7

(

xj − Xm

h

)2

+ β8

(

yj − Ym

h

)2

+ β9

(

zj − Zm

h

)2
]

,

(3.21)

leading to:
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m0,0,0 m1,0,0 · · · m0,0,2

m1,0,0 m2,0,0 · · · m1,0,2

...
...

. . .
...

m0,0,2 m1,0,2 · · · m0,0,4
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. (3.22)

The coefficients βk are thus given by:
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. (3.23)

At the end, computing the regularized force as:

−→
fj =

M
∑

m=1

[

−→
Fm × w

(

||−→xj −
−−→
Xm||

h

)]

, (3.24)

allows a proper representation of the membrane force location, and moments up to
second order. Although possible in principle, the proper representation of higher
order moments is not considered in this study.
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3.2.3 Navier-Stokes equations resolution

A massively parallel unstructured finite-volume flow solver is used to solve the forced
Navier-Stokes equations over the Eulerian mesh using a projection method [37]. The
momentum conservation equations reads:

∂−→vj

∂t
+

−→
∇ . (−→vj ⊗ −→vj ) = −

−→
∇pj

ρ
+ ν∆−→vj +

−→
fj

ρ
, (3.25)

where −→vj and pj are the velocity vector and pressure on fluid node j, ρ the density
and ν the kinematic viscosity. For an incompressible flow, the mass conservation
constraint becomes:

−→
∇ .−→vj = 0. (3.26)

The fluid velocity is first advanced using a 4th-order central scheme in space and a
4th-order Runge-Kutta scheme in time. A divergence-free velocity field is obtained
at the end of the time-step by solving a Poisson equation for pressure and correcting
the predicted velocity. A Deflated Preconditioned Conjugate Gradient algorithm
is used to solve this Poisson equation. More details about the employed numerical
methods can be found in [123, 140].

3.2.4 Membrane convection

Adherence of the fluid over the membrane makes the fluid velocity continuous at the
membrane location and equal to the membrane velocity. Thus, the velocity

−→
Vm of

the solid node m is calculated by interpolating the fluid velocity at the solid nodes
location from the fluid velocity at the neighboring fluid nodes:

−→
Vm =

J
∑

j=1

[

−→vj × w

(

||−→xj −
−−→
Xm||

h

)

dVj

]

. (3.27)

This interpolation process again involves the use of the discrete Dirac function w,
which is defined in the same manner as in the forces regularization process described
in section 3.2.2.

3.2.5 Discretization

When using immersed boundary methods, authors generally recommend the use of
similar solid and fluid mesh discretizations. Numerical experiences showed that the
present method performs well when the ratio h/H between the fluid mesh resolution
and the solid effective resolution is such that 0.5 < h/H < 2. An initial ratio
h/H ≈ 1 is typically suited to start with.

3.2.6 Volume correction

The original immersed boundary method tends to suffer from a small leakage prob-
lem. Indeed, whatever the choice made for the window function, interpolation does
not conserve the divergence-free character of the carrying fluid flow [152]. This issue
is sometimes pointed out as a major drawback of the IBM [112].
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When dealing with closed membranes, this leakage problem results in a non con-
servation of the volume enclosed by the flexible membrane. In this case, the volume
can be corrected by using a Lagrange Multiplier method. This procedure is detailed
in [128] in the case of 2D particles, and is here generalized for 3D particles. Such
a correction is however not possible when dealing with open membranes. In the
present ITBM, this procedure is performed by constructing a triangulation of the
middle surface of the membrane, which however limits its use to linear prismatic
elements, but will be later adapted for quadratic hexahedral elements.

The Lagrange Multiplier method is used to find the smallest correction that
should be applied to the solid nodes location in order to ensure the conservation
of the particle volume. The membrane middle surface is composed of F triangular
elements, and M Lagrangian markers. Each face f has three markers f1, f2 and f3.
The volume enclosed by the membrane middle surface can be calculated as:

V
(

X
)

=
1

18

F
∑

f=1

[−−→
Xf1

.
(−−→
Xf2

×
−−→
Xf3

)

+
−−→
Xf2

.
(−−→
Xf3

×
−−→
Xf1

)

+

−−→
Xf3

.
(−−→
Xf1

×
−−→
Xf2

)]

.

(3.28)

At the beginning of the calculation, the volume of the particle V0 is calculated.
At the end of each time step, the coordinates of the Lagrangian markers X are
predicted, after time advancement of the solid nodes position. As already stated,
V

(

X
)

Ó= V0 since the interpolation does not conserve the divergence-free character
of the velocity field.

The aim is then to find the smallest markers displacements δX in norm, so that

V
(

Xcorr
)

= V0, where Xcorr = X + δX denotes the matrix containing the final co-
ordinates. Introducing a Lagrange multiplier Λ, the sought correction displacements
δX minimize the following cost function:

JΛ

(

δX
)

=
M
∑

m=1

[

(δXm)2 + (δYm)2 + (δZm)2
]

+ Λ
[

V
(

X + δX
)

− V0

]

. (3.29)

Zeroing the partial derivatives of JΛ with respect to the location correction (δXm,
δYm, δZm) of the Lagrangian marker m leads to:



















































2δXm + Λ
∂V

(

X + δX
)

∂δXm
= 0

2δYm + Λ
∂V

(

X + δX
)

∂δYm
= 0

2δZm + Λ
∂V

(

X + δX
)

∂δZm
= 0

(3.30)
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with:

∂V
(

X + δX
)

∂δXm
=

1

6
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f : m=f1

∂
(−−→
Xf1

+
−−→
δXf1

)

∂δXm

[(−−→
Xf2

+
−−→
δXf2

)

×
(−−→
Xf3

+
−−→
δXf3

)]

+
∑

f : m=f2

∂
(−−→
Xf2

+
−−→
δXf2

)

∂δXm

[(−−→
Xf3

+
−−→
δXf3

)

×
(−−→
Xf1

+
−−→
δXf1

)]

+
∑

f : m=f3

∂
(−−→
Xf3

+
−−→
δXf3

)

∂δXm

[(−−→
Xf1

+
−−→
δXf1

)

×
(−−→
Xf2

+
−−→
δXf2

)]



.

(3.31)

Assuming that the correction displacements are small, so that
−−→
Xm +

−−→
δXm ≈

−−→
Xm,

one obtains:
−−→
δXm = Λ −→αm, (3.32)

with:

−→αm = −
1

12





∑

f : m=f1

(−−→
Xf2

×
−−→
Xf3

)

+
∑

f : m=f2

(−−→
Xf3

×
−−→
Xf1

)

+
∑

f : m=f3

(−−→
Xf1

×
−−→
Xf2

)



.

(3.33)

When JΛ is minimum, ∂JΛ/∂Λ = 0, which means that V
(

X + δX
)

= V0.
Equations (3.28) and (3.32) thus lead to:

1

18

F
∑

f=1

[(−−→
Xf1

+ Λ −→αf1

)

.
[(−−→

Xf2
+ Λ −→αf2

)

×
(−−→
Xf3

+ Λ −→αf3

)]

+
(−−→
Xf2

+ Λ −→αf2

)

.
[(−−→

Xf3
+ Λ −→αf3

)

×
(−−→
Xf1

+ Λ −→αf1

)]

+
(−−→
Xf3

+ Λ −→αf3

)

.
[(−−→

Xf1
+ Λ −→αf1

)

×
(−−→
Xf2

+ Λ −→αf2

)]]

− V0 = 0.

(3.34)

After some algebra, the following third-order polynomial equation in Λ is obtained:
AΛ3 + BΛ2 + CΛ + D = 0, with:

A =
1

18

F
∑

f=1

[−→αf1
. (−→αf2

× −→αf3
) + −→αf2

. (−→αf3
× −→αf1

) + −→αf3
. (−→αf1

× −→αf2
)] , (3.35)

B =
1

6

F
∑

f=1

[−−→
Xf1

. (−→αf2
× −→αf3

) +
−−→
Xf2

. (−→αf3
× −→αf1

) +
−−→
Xf3

. (−→αf1
× −→αf2

)
]

, (3.36)

C =
1

6

F
∑

f=1

[

−→αf1
.
(−−→
Xf2

×
−−→
Xf3

)

+ −→αf2
.
(−−→
Xf3

×
−−→
Xf1

)

+ −→αf3
.
(−−→
Xf1

×
−−→
Xf2

)]

, (3.37)

D = V
(

X
)

− V0. (3.38)

This third-order polynomial equation is then solved numerically and Λ is computed
as the real valued root (there is always one at least) of smallest amplitude. Once Λ is
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found, the Lagrangian markers positions are updated to ensure volume conservation,
as follows:

−−→
Xm →

−−→
Xm + Λ −→αm. (3.39)

3.3 Verification and validation

This section is dedicated to the verification and the validation of the present method.
Table 3.1 summarizes the selection of the test cases considered in this respect. Test
cases of sections 3.3.1 and 3.3.2 should be considered as verification test cases,
whereas the other test cases are more challenging and are referred to as valida-
tion test cases.

Test case (section) Diagram Reference data

Non-linear bending of
an elastic plate (section

3.3.1)

Numerical results from
Sze et al. (2004) [186]

Inflation of a spherical
capsule (section 3.3.2)

Analytical solution

Capsule in a linear
shear flow (section

3.3.3)

Numerical results from
Lac et al. (2004) [104]

Red blood cell stretched
by optical tweezers

(section 3.3.4)

Experimental data from
Mills et al. (2004) [131]

Flow-induced vibration
of an elastic beam
behind a cylinder

(section 3.3.5)

Numerical results from
Turek and Hron (2006)
[187] and Turek et al.

(2010) [188]

Table 3.1: Summary of the validation test cases presented in section 3.3.

3.3.1 Non-linear bending of an elastic plate

The principle of this test case is to look at the mechanical equilibrium of a plate.
As shown in Fig. 3.4, the plate is defined by its length L, width l and thickness
e. One of its extremities is fixed, while the other is loaded by applying a force
F , normal to the initial position of the plate. The objective is to verify that the
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mechanical equilibrium obtained by the FSI computation is the same as the one
from a simple structural computation, performed with the LMGC90 solid mechan-
ics solver. Although it appears trivial, this test case is actually a good mean to verify
the operation of the coupling algorithm. Indeed, FSI and structural resolutions are
completely different insofar as the displacement of the structure

−→
Um is solved dur-

ing the structural computation, whereas in the FSI computation the displacement
is imposed by the velocity of the fluid, the only contribution of the solid mechan-
ics solver being to compute the mechanical force

−→
Fm resulting from this imposed

displacement. In this context, the errors generated by the procedures of forces regu-
larization (section 3.2.2) and membrane convection (section 3.2.4) could potentially
impact the mechanical equilibrium of the plate.

F

L
l

e

Figure 3.4: Geometrical parameters of the plate. The force F is applied over all the
surface of the plate extremity.

Structural computation

The static structural problem is first solved using the LMGC90 solid mechanics
solver, giving the mechanical equilibrium of the plate. The plate is modeled by a
Neo-Hookean material (Eq. (3.9)). The parameters used for this computation are
the same of those used in the benchmark test proposed by Sze et al. (2004) [186],
and are given in Tab. 3.2.

F L l e E ν

4 N 10 m 1 m 0.1 m 1.2 106 Pa 0

Table 3.2: Parameters of the benchmark test case proposed by Sze et al. (2004)
[186].

In order to study the influence of the finite element interpolation, both linear
hexahedral finite elements and quadratic hexahedral finite elements are compared
with the reference result of Sze et al. (2004) [186]. Figure 3.5 (left) shows the maxi-
mal displacement (in the direction of the applied force) obtained at the extremity of
the plate, for different mesh resolutions. It is seen that the chosen interpolation has
a strong influence on the final result. Indeed, the numerical solution converge much
faster when the quadratic interpolation is chosen. When using quadratic elements,
the solution reaches a constant relative difference of 0.45% with respect to the ref-
erence result. For the linear interpolation, the solution is not yet converged when
reaching the maximal number of elements, and a final relative difference of 14.15%
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is obtained. It appears that, with linear elements, flexural deformation cannot be
properly simulated without using very fine mesh resolutions. In contrast, quadratic
elements offer a better accuracy even with a coarse mesh. Regarding the relative
convergence error (see Fig. 3.5, right) calculated from the most refined computa-
tion, it is seen that the order of convergence for both the linear and the quadratic
interpolation is retrieved.
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Figure 3.5: Left: Evolution of the maximal displacement as a function of the number
of elements. Results obtained with both linear and quadratic hexahedral finite
elements are compared with the result of Sze et al. (2004) [186]. Right: Error
relative to the most refined computation.

Fluid-structure interaction computation

The next step is to perform a FSI computation, and compare the result with the one
obtained in the structural computation. A time dependent FSI problem is solved, by
immersing the plate in a fluid computational domain (Fig. 3.6, left). The fluid box
is extended from 0 to 1.15L in length, from -2l to 2l in width, and from -15e to 85e

in height. The fluid mesh is an unstructured tetrahedral mesh of 23 174 elements,
with a constant resolution of h = 0.5 m. The plate is meshed using 10 quadratic
hexahedral elements (second point in Fig. 3.5), with an effective resolution of H =

0.5 m. Note that in this case, the ratio between the fluid mesh resolution and the
thickness of the membrane is h/e = 5.

At each iteration, the external force F is added to the calculated mechanical force
−→
Fm. This external force is distributed over the solid nodes located at the extremity
of the plate. As the mechanical force, the applied external force is regularized on the
fluid grid (see section 3.2.2), resulting in a motion of the fluid. The displacement
of the plate is then calculated during the step of membrane convection (see section
3.2.4). It is thus the motion of the fluid which enables to the plate to deform and
reach the equilibrium position.

Figure 3.6 shows the deformation of the plate (left) and the time evolution of the
maximal displacement of the plate extremity from the FSI computation (right). Ap-
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plying the loading first puts the plate in motion until a steady state is finally reached.
Once the fluid is at rest, the plate reaches its mechanical equilibrium. This equilib-
rium is compared with the equilibrium given by the structural computation. The
comparison has been done for both first order and second order corrections for the
computation of the window function (see section 3.2.2), leading to the same result:
for the given rounding precision (three decimal places), the maximal displacement
given by the FSI computation is strictly the same of the one from the structural
computation. When increasing the ratio h/e up to 1000, FSI and structural com-
putations still provide identical mechanical equilibriums (not shown), showing that
the present method is able to simulate membranes having a thickness much smaller
than the fluid mesh resolution.
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Figure 3.6: Left: Visualization of the plate deformation within the fluid box. Right:
Evolution of the maximal displacement of the plate extremity. The FSI computation
is compared with the structural computation.

3.3.2 Inflation of a spherical capsule

In this section, the inflation of a spherical capsule is considered. The capsule is
defined by its internal and external radii, respectively Ri and Re (Fig. 3.7, left). An
elastic linear isotropic material is used, defined by its Young modulus E and Poisson
coefficient ν. When submitted to an internal pressure P , the capsule deforms (Fig.
3.7, right). Within the assumption of small perturbations, it is possible to derive
an analytical solution of the radial displacement of the capsule submitted to the
internal pressure P :

Ur (r) =
Ri

3

Re
3 − Ri

3

[

(1 − 2ν) r + (1 + ν)
Re

3

2r2

]

P

E
, (3.40)

with Ri < r < Re.
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Ri

Re

P

Figure 3.7: A spherical capsule of internal radius Ri and external radius Re is inflated
applying an internal pressure P .

Structural computation

As in the previous test case, the structural problem is first solved using the LMGC90
solid mechanics solver. The values of the physical parameters are given in Tab. 3.3,
where e and R denote the thickness and mean radius of the capsule, respectively.

P e R Ri Re E ν

500 Pa 0.05 m 0.5 m R − e/2 R + e/2 1.5 106 Pa 0.4

Table 3.3: Parameters chosen for the structural computation.
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Figure 3.8: Left: Evolution of the radial displacement as a function of the number
of elements. Results obtained with both linear and quadratic hexahedral finite
elements are compared with the analytical solution. Right: Relative error for both
linear and quadratic interpolations.

Here again, the influence of the finite-element interpolation is investigated. Both
linear hexahedral finite elements and quadratic hexahedral finite elements are com-
pared with the analytical solution. Figure 3.8 shows the radial displacement Ur (r)

(for r = Re) and the relative error, for different mesh resolutions. The quadratic
interpolation still shows a faster convergence, with a higher order of convergence
regarding the relative error. But errors obtained for both linear and quadratic ele-
ments are very small, even for the coarsest mesh. Indeed, the relative error range
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from 3.91% to 9.38 10−2% for the linear interpolation, and from 2.34% to 7.33
10−5% for the quadratic interpolation. It has been seen in section 3.3.1 that, when
the mesh is not well refined, flexural deformation cannot be properly simulated using
linear elements. In this case, it is demonstrated that when the deformation is purely
extensional, the linear interpolation is sufficient and provides reasonable errors.

Fluid-structure interaction computation

An equivalent FSI problem can be solved by immersing the spherical capsule in a
fluid computational domain (Fig. 3.9, left). The fluid box is extended from -4R

to 4R in all the directions. The fluid mesh is composed of 2 101 165 tetrahedral
elements, with a mesh resolution around the capsule of h = 0.025 m. The capsule
is meshed using 1536 quadratic hexahedral elements, with an effective resolution of
H = 0.025 m.

−4 −2 0 2 4
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200

400

600

x/R

P
(P

a
)

Target pressure

FSI computation

Figure 3.9: Left: Setup of the FSI computation, the capsule is immersed in a fluid
box. Right: Pressure profile along the line (−4R, 4R).

The capsule is thus surrounded by an outer fluid, and contains an inner fluid.
Rather than applying a pressure on the capsule as for the structural problem, the
capsule is inflated by imposing the analytical displacement on each solid node. This
results in a pressurization of the inner fluid, and the inner pressure can then be
compared to the target pressure applied in the structural computation (P = 500
Pa). Figure 3.9 (right) shows a pressure profile along a line which crosses the fluid
computational domain. The pressure drop between the inner and the outer fluid is
seen to be very close to the target pressure. Regarding the pressure at the center
of the capsule, the relative error is 0.11%. The regularization process detailed in
section 3.2.2 generates some oscillations near to the membrane location delimitating
the inner and the outer fluids, but does not prevent to accuratly capture the pressure
drop.
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3.3.3 Capsule in a linear shear flow

In this test case, an initially spherical capsule of mean radius a is deposited in a
linear shear flow, defined as þu = ky þex (see Fig. 3.10, left). When deposited in the
linear shear flow, the capsule begins to deform by changing orientation, and a steady
deformation is finally reached (see Fig. 3.10, right).

x

y

þu = ky þex

a

e

A

B θ

Figure 3.10: Left: The capsule is initially spherical, and deposited in a linear shear
flow. Right: A steady deformation is reached, during which a tank-treading motion
of the membrane is observed.

The orientation θ of the capsule, and the lengths A and B of the two principal
axes of the ellipsoid of inertia in the shear plane can then be calculated. The
deformation of the capsule in the shear plane is measured by the Taylor parameter:

D =
A − B

A + B
. (3.41)

Capsule parameters

Initial mean radius a

Thickness e Non-dimensional parameters

Shear modulus G
Capillary number Ca =

µka

eGPoisson coefficient ν

Flow parameters
Reynolds number Re =

ρka2

µDynamic viscosity µ

Density ρ

Shear rate k

Table 3.4: Definition of the capsule, flow, and non-dimensional parameters.

All the parameters relevant to the test case can be found in Tab. 3.4. The
capsule-based Reynolds number Re is chosen sufficiently low to satisfy the Stokes
flow assumption, and the capillary number Ca which compares the viscous force to
the membrane elastic force is successively set to 0.15; 0.3; 0.6. The membrane of
the capsule is assumed to follow the Yeoh law (Eq. (3.11)), with C1 = G/2 and
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C2 = C3 = 0 . A Poisson coefficient ν = 0.4995 is chosen to insure that the mem-
brane is quasi-incompressible. The ratio a/e between the initial mean radius of the
capsule and the thickness of the membrane is chosen to be significantly high. A ratio
a/e = 1000 is used, ensuring that the membrane is very thin compared to the size of
the capsule, and making the bending resistance of the membrane almost negligible.
All these conditions were selected to allow a proper comparison with the numerical
results reported in Lac et al. (2004) [104].

The fluid domain is extended from -16a to 16a around the spherical capsule. The
fluid mesh is composed of 1 924 682 tetrahedral elements with a mesh resolution
at the center of the fluid box of h = a/10. In order to use the volume correction
procedure (see section 3.2.6), the capsule is meshed using 2 906 linear prismatic
elements, with an effective resolution of H = a/10. Figure 3.11 shows the evolution
of the capsule deformation over the computation, for Ca = 0.6. The field displayed
on the figure corresponds to the x-coordinate of the initial (reference) position of
the membrane, introduced in section 3.2. From (a) to (e), the capsule deforms
and reach constant deformation and orientation. From (f) to (j), the well known
tank-treading behaviour of the membrane turning around the inner fluid is observed.

X0

m

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

− (a + e/2) a + e/2
x

y

Figure 3.11: Visualisation of the capsule deformation over the computation. The
x-coordinate of the initial position of the membrane nodes is displayed, enabling to
visualize the tank-treading phenomenon.

The Taylor parameter D and the capsule orientation θ/π can be calculated from
the steady deformation of the capsule. Figure 3.12 shows the evolution of both
parameters as a function of the capillary number Ca. The present results are com-
pared with the results of Lac et al. (2004) [104] where the membrane is considered
to be infinitely thin and incompressible. A satisfactory comparison is obtained for
both parameters. The relative error for the Taylor parameter D range from 0.18%
to 1.03%, and from 0.64% to 6.08% for the capsule orientation θ/π. The maximal
relative error is obtained when Ca = 0.6, and still increases when increasing the
capillary number (not shown). This is probably due to the incompressibility of the
membrane, which is not strictly insured in the present computations since using
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a quasi-incompressible model. Indeed, volume variations are still allowed, and are
seen to increase with the capillary number (not shown).
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Figure 3.12: Left: Evolution of the Taylor parameter D as a function of the capillary
number Ca. Right: Evolution of the capsule orientation θ/π. The present results
are compared with the results of Lac et al. (2004) [104].

Influence of the volume correction procedure is shown in Tab. 3.5, considering
the highest capillary number Ca = 0.6. A volume variation of 2.73% is observed
when no volume correction is performed, whereas there is almost 0% volume varia-
tion when correcting the inner volume of the capsule. The influence of this volume
correction procedure on the output parameters D and θ/π is however very small.

Volume variation (%) D θ/π

Volume correction ≈ 10−4 0.5279 0.1034

No volume correction 2.73 0.5350 0.1019

Table 3.5: Influence of the volume correction on the outputs of the simulation for
Ca = 0.6.

3.3.4 Red blood cell stretched by optical tweezers

The purpose is now to simulate the optical tweezers experiment, which consists in
stretching a red blood cell (RBC) by using the optical trap principle [131]. An il-
lustration of the experiment is given in Fig. 3.13. Two silica microbeads, each 4.12
µm in diameter, are attached to the cell at diametrically opposite points. The left
bead is anchored to the surface of a glass slide while the right bead is trapped by a
laser beam. The trapped bead remaining at rest, moving the slide and attached left
bead stretches the cell. The experiment is simulated by applying a stretching force
F to two opposite regions over the membrane in order to mimic the beads effect.
For each imposed force F , the axial diameter DA (in the direction of the stretching),
and the transverse diameter DT (orthogonal to the stretching direction) of the cell
are measured (see Fig. 3.13, right) after the equilibrium has been reached (zero
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velocity field over the whole computational domain).

−F F

DA

DT

4.12 µm

Figure 3.13: Illustration of the optical tweezers experiment. The effect of the beads
is simulated by applying a stretching force to two opposite regions over the cell
membrane, following the procedure of Mills et al. (2004) [131].

The average shape of a RBC has been determined by Evans [59], and is given
by:

z = ±0.5R0

[

1 −
x2 + y2

R2
0

]



A + B
x2 + y2

R2
0

+ C

(

x2 + y2

R2
0

)2


 (3.42)

where R0 = 3.91 µm is the average RBC radius, A = 0.207161, B = 2.002558, and
C = −1.122762. The thickness of the RBC membrane is known to be few nanometers
[113], and is here chosen to be e = 4.0 nm. As in the work of Mills et al. (2004) [131],
the complex membrane of the RBC is modeled as a three-dimensional continuum,
following the Yeoh law (Eq. (3.11)) with C1 = G/2, C2 = 0 and C3 = G/30. The
product between the membrane thickness e and the shear modulus G, also known
as the in-plane shear modulus, is chosen to be eG = 7.3µN/m. As in the previous
test case, a Poisson coefficient ν = 0.4995 is chosen to insure that the membrane is
quasi-incompressible.

The RBC is immersed in a fluid box extended from -3R0 to 3R0 in the direction
of the stretching, from -2R0 to 2R0 in the direction orthogonal to the stretching,
and from −R0 to R0 in the height of the cell. The fluid mesh is composed of 628
660 tetrahedral elements, with a constant mesh resolution of h = R0/12.5. In order
to use the volume correction procedure (see section 3.2.6), the RBC is meshed using
3 360 linear prismatic elements, with an effective resolution of H = R0/12.5. The
same procedure as the one used for the test case of section 3.3.1 is here used. As an
external force, the force F is applied on the RBC membrane. The fluid thus starts
moving, and the cell deforms. After a transient phase, the mechanical forces inside
the membrane and the applied external force balance, and a steady deformation is
obtained.

Figure 3.14 shows the deformation of the RBC for different values of the applied
force F , which ranges from 0 to 193 pN. Each stretching force thus corresponds to
one computation. Starting from the well known biconcave shape of the RBC, the
cell is more and more elongated when increasing the force, and a large fold appears.
Note that this kind of shape is also observed in the work of Mills et al. (2004) [131].
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193 pN120 pN80 pN40 pN0 pN

Figure 3.14: Visualisation of the red blood cell deformation over the entire range of
stretching force. Only half of the cell is displayed.

Figure 3.15 shows the mechanical response of a RBC stretched by optical tweez-
ers, as a function of the applied force. As the cell is more and more elongated when
increasing the stretching force, it is seen that the axial diameter DA increases. The
elongation of the cell leads to its contraction in the orthogonal direction, resulting
in a decreasing of the transverse diameter DT . The present computation accurately
captures experimental trends over the entire range of stretching force, and provides
a good prediction of the diameters.
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Figure 3.15: Axial (DA) and transverse (DT ) diameters of the RBC stretched by
optical tweezers. Comparison with the experimental data from Mills et al. (2004)
[131].

As in section 3.3.3, the volume correction has only a small impact on the outcome
of the simulation. For the maximum imposed force of 193 pN, there is no influence of
this correction on the measured axial diameter DA, whereas the transverse diameter
DT varies from 4.82 µm with correction (with ≈ 10−4 % volume variation) to 4.79
µm without correction (with 1.59% volume variation).

3.3.5 Flow-induced vibration of an elastic beam behind a cylinder

The last validation test case presented is the flow-induced vibration of an elastic
beam behind a cylinder. This situation is more challenging than the former ones,
since a periodic motion of the solid beam where inertia effects must be properly pre-
dicted is sought for. This test case was also selected because of the well-documented
results obtained by numerous research groups which used different numerical meth-
ods for the FSI numerical resolution. These methods are summarized and briefly
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described in Tab. 3.6. For more information, the reader is referred to the paper of
Turek et al. (2010) [188]. The configuration of the problem, as introduced by Turek
and Hron (2006) [187], is detailed in Fig. 3.16.

x

y

L = 2.5 m

H = 0.41 m

l = 0.35 m

h = 0.02 m
D = 0.1 m

Figure 3.16: Details of the beam-cylinder configuration.

Method Description

1 (Schäfer)

Implicit partitioned approach [166, 177] combining the
finite-volume multigrid flow solver FASTEST and the
finite-element structural solver FEAP, using an ALE for-
mulation.

2a (Rannacher) Monolithic variational formulation based on a unified
Eulerian framework ("interface capturing").

2b (Rannacher) Monolithic variational formulation based on the stan-
dard ALE approach ("interface fitting").

3 (Turek/Hron) Fully implicit monolithic ALE-FEM approach.

4 (Breuer)
Partitioned approach combining the finite-volume
scheme FASTEST-3D for the flow and the finite-element
structural solver Carat, using an ALE formulation.

5 (Krafczyk/Rank)
Explicit partitioned approach which combines the
Lattice-Boltzmann flow solver VirtualFluids (VF) and
the structural p-FEM solver AdhoC.

6 (Wall)
A strongly coupled iterative staggered scheme [102, 193]
based on an ALE formulation, Q2Q2 elements for the
fluid and an EAS formulation for the structure.

7 (Bletzinger)

Partitioned approach based on a combination of three
independent softwares: in-house codes CARAT++ and
CoMA for structural shell analysis, coupling control and
data transfer between non-matching grids, and the open
source finite volume flow solver OpenFOAM.

Table 3.6: Summary of the different methods used in [188] to simulate the present
test case.

The cylinder center is positioned at (0.2 m, 0.2 m) (measured from the left bot-
tom corner of the channel). The right bottom corner of the elastic beam is positioned
at (0.6 m, 0.19 m). Note that the setting is non-symmetric (the centerline of the
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beam is at y = 0.2 m while the centerline of the channel is y = 0.205 m), preventing
the extreme sensitivity of the results on the details of the flow computation. The
problem is initially in 2D but is here extended to 3D by slightly extruding the 2D
domain in the third direction, and imposing periodic boundary conditions on the
upper and lower walls for both the fluid and the solid. A parabolic velocity profile
is prescribed at the inlet of the channel:

v (0, y, z) = 1.5U
y (H − y)

(H/2)2 , (3.43)

where U is the bulk velocity. Two configurations were simulated, as referred to in
[187, 188]: FSI1 and FSI3. The corresponding sets of parameters are gathered in
Tab. 3.7. The elastic beam is modeled by a Saint-Venant law (Eq. (3.8)). The dis-
placement of the beam extremity, initially positioned at (0.6 m, 0.2 m), is tracked
during the computation for comparison with previous results.

FSI1 FSI3

Flow parameters

Density ρ = 1000 kg/m3 ρ = 1000 kg/m3

Dynamic viscosity µ = 1 Pa.s µ = 1 Pa.s

Inlet velocity U = 0.2 m/s U = 2 m/s

Reynolds number ρ UD/µ = 20 ρ UD/µ = 200

Beam parameters

Density ρs = 1000 kg/m3 ρs = 1000 kg/m3

Shear modulus G = 0.5 MPa G = 2 MPa

Poisson coefficient ν = 0.4 ν = 0.4

Table 3.7: Parameters of the test case, two configurations are simulated: FSI1 and
FSI3

M1 M2 M3

Fluid

Number of elements 160 707 971 069 6 582 336

Mesh resolution h 1.0 10−2 m 5.0 10−3 m 2.5 10−3 m

Solid

Number of elements 72 560 4 480

Effective resolution H 1.0 10−2 m 5.0 10−3 m 2.5 10−3 m

Table 3.8: Characteristics of the fluid and solid meshes, three meshes are considered:
M1, M2 and M3.

For each configuration, three different meshes were tested as summarized in Tab.
3.8. For each of the meshes, the fluid mesh is tetrahedric, and the mesh of the beam
is made of quadratic hexahedral elements. Concerning the fluid, the mesh resolution
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is not constant over the whole fluid domain, the resolutions provided in Tab. 3.8
correspond to the mesh size around the elastic beam.

The FSI1 configuration is first simulated, leading to a stationary displacement
of the elastic beam, consistent with [188]. Table 3.9 shows the two components of
the displacement of the tracked point located at the extremity of the beam. The
results obtained in [188] for different numerical methods are first displayed in the
table. The present results are also displayed for the different meshes which have
been tested in the study.

ux
[

×10
−5

]

(m) uy
[

×10
−4

]

(m)

2a 2.4800 7.7800

2b 2.2695 8.1556

3 2.2705 8.2088

5 2.2160 8.2010

6 2.2680 8.2310

7 2.2640 8.2800

M1 2.8547 8.9378

M2 2.6724 7.7917

M3 2.5841 8.2243

M ∞ 2.5012 8.4866

p 1.05 1.41

e∞ (%) 3.32 3.09

Table 3.9: Results for the FSI1 configuration.

From the 3 levels of mesh M1, M2 and M3 used to simulate the present test
case, it is possible to calculate the apparent spatial order p of the method. Let dx1,
dx2, dx3 be the spatial resolutions of meshes M1, M2 and M3, respectively (with
dx = h = H provided in Tab. 3.8), and r = dx1/dx2 = dx2/dx3 be the refinement
factor, the apparent spatial order p is given by [26]:

p =
1

ln(r)

∣

∣

∣

∣

ln

∣

∣

∣

∣

φ1 − φ2

φ2 − φ3

∣

∣

∣

∣

∣

∣

∣

∣

, (3.44)

where φk denotes the output variable of the simulation for the kth mesh. The
extrapolated value φ∞ can then be calculated as follows:

φ∞ =
rpφ3 − φ2

rp − 1
=

rpφ2 − φ1

rp − 1
. (3.45)

The extrapolated relative error reads:

e∞ =

∣

∣

∣

∣

φ∞ − φ3

φ∞

∣

∣

∣

∣

. (3.46)
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The extrapolated values of the 2 components of the displacement of the beam
extremity (corresponding to the infinitely refined mesh M ∞) as well as the corre-
sponding apparent spatial order p and extrapolated relative error are also summa-
rized in Tab. 3.9. Orders obtained from the output variables are greater than 1,
which is satisfactory for an immersed boundary method. One can also note that
extrapolated relative errors are small. For a better comparison, the whole results
summarized in Tab. 3.9 are displayed in Fig. 3.17. A meaningful comparison be-
tween the reference results summarized in [188] and the present results is difficult
to carry out for several reasons:

• In [188], the test case is 2D, and has been extended to 3D for the validation
of the present method.

• Equivalent values of h and H for the simulations performed in [188] are not
provided. Only the number of resolved unknowns is provided, and ranges from 11
250 (for method 2a) to 19 320 832 (for method 3), which is quite a wide range.

• It is difficult to determine if the results of the simulations performed in [188]
are well converged for all the methods summarized, given the variability of the num-
ber of resolved unknowns.
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Figure 3.17: ux and uy components of the displacement of the beam extremity.
The results obtained with the methods reported in [188] (displayed in white, and
described in Tab. 3.6) can be compared with the present results, obtained for 3
different mesh resolutions (displayed in black). The extrapolated results are also
provided (displayed in gray).

At least, one can say that the present method is able to retrieve a stationary
displacement of the beam extremity which is in good agreement with values reported
in [188]. Indeed, regarding extrapolated results displayed in Fig. 3.17, it is seen that
the present results converge to the range of results reported in [188].

The set of parameters used for the FSI3 configuration leads to a periodic dis-
placement of the beam extremity, as shown in Fig. 3.18. In this case, the mean
displacement is provided in Tab. 3.10, with the amplitude of the oscillation. Two
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frequencies can also be calculated from the oscillatory signal of ux and uy, respec-
tively fx and fy. Again, spatial orders larger than unity are obtained for all the
output variables. Extrapolated relative errors show that the present results are well
converged with respect to the frequencies, almost converged with respect to the
uy displacement, but hardly converged with respect to the ux displacement, which
needs refinement to reach convergence. This may reflect the difficulty of the method
to capture displacements tangent to the beam, coming from shear sollicitations.

Velocity (m/s)

(a)

(b)

(c)

(d)

0 5

Figure 3.18: Visualisation of the flow-induced vibration of the elastic beam over one
period of oscillation, for the FSI3 configuration. The velocity field around the beam
is also displayed.

The results of Tab. 3.10 are also displayed in Fig. 3.19, for a better comparison.
The variability of the results reported in [188] shows the extreme sensitivity of the
present configuration. This time, the number of resolved unknowns reported in
[188] ranges from 11 250 (for method 2a) to 2 480 814 (for method 5). The 3
meshes provide similar frequencies of oscillation, which are in good agreement with
the results reported in [188]. However, regarding mean values and amplitudes of
the displacement, it is seen that only meshes M2 and M3 provide a satisfactory
comparison with the results reported in [188]. One can note that the extrapolated
results are very close to the results obtained with method 5, which is the one resolving
the most of unknowns.
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Figure 3.19: Results obtained for the FSI3 configuration. The first line shows the two
components of the mean displacement, the second line the corresponding amplitudes,
and the frequencies are displayed in the third line. The results obtained with the
methods reported in [188] (displayed in white, and described in Tab. 3.6) can
be compared with the present results, obtained for 3 different mesh resolutions
(displayed in black). The extrapolated results are also provided (displayed in gray).
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ux
[

×10
−3

]

(m) uy
[

×10
−3

]

(m) fx (s−1) fy (s−1)

1 -2.91 ± 2.77 1.47 ± 35.26 11.63 4.98

2a -2.48 ± 2.24 1.27 ± 36.50 10.10 5.10

2b -2.84 ± 2.67 1.28 ± 34.61 10.84 5.42

3 -2.88 ± 2.72 1.47 ± 34.99 10.93 5.46

4 -4.54 ± 4.34 1.50 ± 42.50 10.12 5.05

5 -2.88 ± 2.71 1.48 ± 35.10 11.00 5.50

6 -2.00 ± 1.89 1.45 ± 29.00 10.60 5.30

7 -3.04 ± 2.87 1.55 ± 36.63 10.99 5.51

M1 -0.55 ± 0.49 2.11 ± 13.89 10.83 5.41

M2 -2.06 ± 1.94 1.22 ± 29.21 10.92 5.46

M3 -2.57 ± 2.41 1.39 ± 32.75 10.95 5.47

M ∞ -2.83 ± 2.63 1.43 ± 33.81 10.97 5.49

p 1.57 ± 1.62 2.39 ± 2.11 1.58 1.34

e∞ (%) 9.18 ± 8.59 2.78 ± 3.15 0.14 0.20

Table 3.10: Results for the FSI3 configuration.

The same procedure as the one described in Eq. (3.44) can be used to determine
the apparent temporal order of the method, considering 3 different time steps dt1,
dt2 and dt3 for the simulation, and using the mesh M2. The beam displacements
obtained for these 3 time steps are summarized in Tab. 3.11 with the corresponding
extrapolated values, apparent orders and extrapolated relative errors. The apparent
temporal orders obtained are around p = 1, and extrapolated relative errors are
below 1%.

ux
[

×10
−3

]

(m) uy
[

×10
−3

]

(m)

dt1 = 5.00 10−5 s -2.0489 ± 1.9274 1.1925 ± 29.1467

dt2 = 2.50 10−5 s -2.0403 ± 1.9191 1.1843 ± 29.0895

dt3 = 1.25 10−5 s -2.0363 ± 1.9150 1.1868 ± 29.0565

dt∞ -2.0326 ± 1.9110 1.1878 ± 29.0109

p 1.07 1.00 1.74 0.79

e∞ (%) 0.18 0.21 0.09 0.16

Table 3.11: Determination of the apparent temporal order.
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3.4 Application: flow through an aortic valve

In this section, an application of the method is presented to illustrate its potential.
The chosen application is the flow throught an aortic valve, which has been widely
investigated in a number of works [21, 43, 44, 45, 91, 92, 96]. Figure 3.20 (left) shows
the meshed fluid geometry used for the computation, corresponding to an idealized
geometry of the aorta. The diameter of the aorta is chosen to be D = 2 cm. The
fluid mesh is composed of 752 460 tetrahedral elements, with a constant mesh reso-
lution of h = 0.5 mm. The geometry of the aortic valve is composed of three leaflets,
and has been constructed to fit the arotic root, as displayed in Fig. 3.20 (right).
The whole aortic valve is meshed using 450 quadratic hexahedral elements, with an
effective resolution of H = 0.5 mm.

inflow

outflow

Figure 3.20: Left: Meshed geometry of the idealized aorta. Right: Meshed geom-
etry of the model of aortic valve positioned inside the aorta.
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Figure 3.21: Mean velocity prescribed as inflow. The signal corresponds to one cycle
for FI = 0.3. Snapshots at instants (a) to (j) are displayed in Fig. 3.22-3.23.
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The mean velocity prescribed as inflow is given, for 0 < t < T =
60

nbpm
:

Umean(t) =



















1

2

µRe

ρD

[

1 + sin

(

2π

FIT

(

t −
FIT

4

))]

if t ≤ FIT

0 if t > FIT

(3.47)

where nbpm stands for the number of beats per minutes and FI is a parameter
which allows to set the duration of the injection phase. Figure 3.21 shows the time
evolution of the mean velocity Umean(t). The inlet velocity profile is chosen to be
parabolic, even if this assumption is not suitable given the relatively high value of
the Womersley number (greater than 10). The parameters of the present study are
summarized in Tab. 3.12, and are inspired from the work of De Hart et al. [44]. The
leaflets of the valve are modeled by a Neo-Hookean law. The flow solver represents
the turbulent flow by Large Eddy Simulation and the Sigma model [142] is used to
model the effect of the scales which are too small to be properly discretized by the
fluid mesh.

Flow parameters

Density ρ = 1000 kg/m3

Dynamic viscosity µ = 4.0 10−3 Pa.s

Reynolds number Re = 4500

Number of beats per minute nbpm = 60

Fraction of injection FI = 0.3

Valve parameters

Shear modulus G = 3.0 104 Pa

Poisson coefficient ν = 0

Thickness of the leaflets e = 0.2 mm

Table 3.12: Parameters of the flow and the valve leaflets.

Four cycles were simulated, and different snapshots of the valve deformation over
the fourth cycle are displayed in Fig. 3.22. Labels from (a) to (j) correspond to the
ones displayed in Fig. 3.21. From (a) to (d), the inlet mean velocity is increasing,
resulting in the opening of the valve. Regarding snapshot (b) in Fig. 3.22-3.23, it
is seen that the valve inflates while the opening deformation initiates at the middle
of the valve and then spreads toward the extremities. This observation is consistent
with the work of Hsu et al. [92], where the same opening behavior was observed.
From (d) to (g), the inlet velocity is decreasing, and the valve is gradually closing
with a strong flapping of the leaflets. At the end of this phase, the inlet velocity is
zero, but one leaflet remains open. Then, the leaflet is gradually closing from (g)
to (j), and the valve is finally closed at the end of the cycle. One can notice that
for the four cycles simulated, this phenomenon does not appear every time, or when
appearing it is not always on the same leaflet (not shown). These cycle-to-cycle
variations were expected, given the value of the Reynolds number.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.22: Snapshots of the valve deformation over the fourth cycle.

(b) (d) (f) (g)

Figure 3.23: Snapshots of the instantaneous velocity vectors over the fourth cycle.
Only four snapshots out of the ten displayed in Fig. 3.22 are shown.

Figure 3.23 shows four snapshots of the instantaneous velocity vectors over the
fourth cycle. The flapping of the leaflets generates numerous of vortices downstream
of the valve, reflecting the presence of flow instabilities, also observed in [21, 44, 92].
Further flow analysis could be conducted, but is out of the scope of this work. Still,
the present simulation has proven the robustness of the ITBM, which leads to a
realistic description of a very complex flow at high Reynolds number and non-trivial
deformation of the membrane.

3.5 Conclusion

A numerical method for simulating the fluid-structure interaction problem in the
case of highly deformable membranes has been presented. The approach is based on
the immersed boundary method adapted to unstructured grids with the reproduc-
ing kernel particle method. The specificity of the approach is that the membrane
constituting the immersed boundary is in fact a thick boundary, modeled as a 3D
continuum. This enables to use a classical finite-element formulation to solve the
membrane mechanics.
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The computing accuracy of the method has been demonstrated by a number of
test cases where the results provided by the present numerical tool were confronted
to either previous numerical, analytical or experimental data. The test cases of sec-
tion 3.3 showed that both closed and open membranes can be properly simulated
with the ITBM. Simulating very thin membranes having a thickness much smaller
than the fluid mesh resolution was expected to lead to problematic issues, especially
regarding the procedures of regularization/convection (described in sections 3.2.2
and 3.2.4, respectively). The test cases of sections 3.3.3 and 3.3.4 however showed
that this is actually well managed by the present method.

The ITBM was then used to simulate the flow through a tri-leaflet aortic valve,
at a significantly high Reynolds number. The highly complex valve deformation and
flow instabilities observed in this study demonstrated the strong robustness of the
method, which however needs to be further validated on such a highly complex FSI
problem.
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Preliminary remarks

This chapter corresponds to an article entitled “A combined experimental and nu-
merical study of a polymeric aortic valve model” [171] which has been submitted in
Cardiovascular Engineering and Technology, and aims at investigating, both exper-
imentally and numerically, the complex FSI problem involved when the blood flows
through the aortic valve. This FSI problem is first investigated experimentally, es-
tablishing an experimental configuration of a polymeric model of aortic valve under
pulsatile flow conditions. This experimental configuration is then simulated using the
YALES2BIO solver, and especially the immersed thick boundary method (ITBM)
previously introduced in chapter 3. A short reminder of the numerical method is
thus provided in section 4.2.1. This combined experimental and numerical study first

81
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constitutes an excellent experimental validation, showing the ability of the ITBM to
handle FSI simulations of the blood flow through the aortic valve. It also attempts
to provide useful information that should be considered for future designs of flexible
artificial aortic valves.

4.1 Introduction

The aortic heart valve separates the left ventricle from the aorta. It is composed
of three thin deformable leaflets that open and close passively during the cardiac
cycle, preventing blood from flowing back into the left ventricle, and thus ensuring
an unidirectional blood flow through the cardiovascular system. Aortic valves may
degenerate and lead to either insufficiency or stenosis, which can cause the death of
the patient if not treated. Usually, medication is not a sufficient treatment option,
and the diseased aortic valve needs to be replaced by a prosthesis.

The two types of prostheses mainly used are mechanical heart valves (MHV)
and bio-prosthetic heart valves (BHV). MHVs are known for their durability but
often lead to thrombosis (blood coagulation) complications [95]. Composed of three
deformable leaflets, BHVs are closer to the natural aortic valve, providing better
hemodynamic properties. They are however not as durable as MHVs and need to
undergo an additional surgery after 10 to 15 years [208].

Over the last decades, a significant research effort has been carried out for the
development of artificial aortic valves, particularly BHVs [137, 138]. A key milestone
in the BHV development process is the understanding of the behavior and mechanics
of the valve, and its complex fluid-structure interaction (FSI) with the blood flow.
To this end, the leaflets kinematics and the fluid flow can be experimentally inves-
tigated on idealized in-vitro configurations, using either particle image velocimetry
(PIV) [136] or laser Doppler velocimetry (LDV) [205]. On the other side, numerical
simulation constitutes a powerful tool which provides a full access to all the details
of the flow and physical quantities of interest, such as the stresses undergone by
the leaflets. As a result, important research efforts have been made on the FSI
modeling of native and prosthetic aortic valves, either by developing dedicated FSI
models [21, 43, 44, 82, 83, 91, 92, 96] or by using commercial FSI software packages
[159, 184, 199, 200].

Numerical approaches are however no substitute for experimental investigations,
but should rather be considered to be a valuable supplement when aiming at under-
standing such highly complex physical phenomena. Moreover, FSI modeling needs
to be supported by experimental data in order to establish the validity and reliabil-
ity of the numerical results. As pointed out by Kheradvar et al. [98], experimental
validations of FSI valve models mainly consider mechanical valves [3, 29, 75, 76, 87]
rather than flexible native or bioprosthetic valves, and generally focus on the opening
and forward-flow phases without considering the valve closure. Two main limitations
are highlighted by Kheradvar et al. [98]: the ability of FSI valve models to perform
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multiple cardiac cycles, and the difficulty to simulate the contact between the thin
deformable leaflets when the valve is fully closed.

The present work aims at establishing one of the foremost combined experimental
and numerical study existing to date about the dynamics of flexible aortic valves.
A physiological and well-controlled experimental in-vitro configuration of an aortic
valve under pulsatile flow conditions is set up and numerically simulated using the
FSI model previously developed by Sigüenza et al. [168]. High-speed recording of the
valve movement as well as PIV measurements are performed together to investigate,
both experimentally and numerically, the leaflet kinematics and the flow dynamics.
The opening and closure dynamics of the valve are carefully investigated, and the
flow is analyzed over multiple cardiac cycles (24 cycles) to characterize the turbulence
downstream of the valve.

4.2 Materials and Methods

4.2.1 Numerical method

The Fluid-Structure Interaction model used in the present study is based on the
immersed thick boundary method (ITBM), which is presented and extensively val-
idated in [168]. The ITBM was adapted from the original immersed boundary
method (IBM) introduced by Peskin [152] to deal with 3D membranes having a
finite thickness. The computational domain is decomposed into the solid part (i.e.
the valve) and the fluid part, which are both discretized with independent meshes.
The mechanics of the valve is solved on a Lagrangian mesh allowed to move with
the deformation, whereas the fluid motion is solved on a fixed Eulerian unstructured
mesh. The different steps of the ITBM are the following:

(1) The mechanical force
−→
F resulting from the valve deformation is calculated on

the Lagrangian mesh.

(2) The volumetric force
−→
f , which represents the force exerted by the valve on the

fluid, is calculated by regularizing the mechanical force
−→
F on the Eulerian mesh,

such as
−→
f (−→x , t) =

∫

Ωs

−→
F

(−→
X, t

)

δ
(

−→x −
−→
X

)

dX,

where −→x and
−→
X respectively denote the coordinates vectors of the Eulerian

nodes and Lagrangian nodes, Ωs denotes the solid domain defining the valve,
and δ is the well known Dirac function.

(3) The Navier-Stokes equations (forced by the regularized mechanical forces) are
solved on the Eulerian mesh, yielding the velocity of the fluid −→v .

(4) The velocity of the valve
−→
V is calculated by interpolating the fluid velocity −→v

on the Lagrangian mesh, such as

−→
V

(−→
X, t

)

=

∫

Ωf

−→v (−→x , t) δ
(

−→x −
−→
X

)

dx,
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where Ωf denotes the fluid domain.

The Dirac function δ used in the procedures of regularization and interpolation
of steps (2) and (4) is numerically represented by a smooth dicrete Dirac function,
which is adapted to unstructured meshes using the Reproducing Kernel Particle
Method (RKPM) [128, 153, 168]. Imposing the exact impermeability of the valve
leaflets treated through the IBM framework is challenging. Indeed, interpolation
procedures induce small leakage of the flow through the leaflets. Moreover, there is
no particular treatment performed to solve the contact between the flexible leaflets
during the valve closure. The present ITBM intrinsically prevents any penetration
of the leaflets, the minimum gap between the leaflets depending on the size of the
discrete Dirac function, which is typically chosen as being 4 times the fluid mesh
resolution h.

The computation of the mechanical force
−→
F is performed by the in-house LMGC90

solid mechanics solver [157], using the classical finite-element method. In the present
work, a quasi-incompressible Neo-Hookean material is used to model the valve, de-
fined by its strain energy function:

W =
G

2

(

Ī1 − 3
)

+
K

2
(ln J)2 , (4.1)

where G and K are the shear modulus and the bulk modulus, respectively. Ī1 is the
first invariant of the isochoric Right Cauchy-Green deformation tensor C̄, and J is
the Jacobian of the transformation. Provided that fluid and solid densities are of
the same order of magnitude, and that the thickness of the valve is small enough,
the inertia of the valve can be neglected.

The YALES2BIO flow solver is used solving the forced Navier-Stokes equations
over the Eulerian unstructured mesh by using a projection method [37]. The mo-
mentum conservation equations reads:

∂−→v

∂t
+

−→
∇ . (−→v ⊗ −→v ) = −

−→
∇p

ρ
+ ν∆−→v +

−→
f

ρ
, (4.2)

where −→v and p are the velocity vector and pressure, ρ the density and ν the kinematic
viscosity. For an incompressible flow, the mass conservation equation becomes:

−→
∇ .−→v = 0. (4.3)

The fluid velocity is advanced using a 4th-order centred scheme in space and a 4th-
order Runge-Kutta scheme in time. A divergence-free velocity field is obtained at
the end of the time-step by solving a Poisson equation for pressure and correcting
the predicted velocity. A Deflated Preconditioned Conjugate Gradient algorithm
is used to solve this Poisson equation. More details about the employed numerical
methods can be found in [34, 123, 140]. The flow solver represents the turbulent
flow by Large Eddy Simulation and the Sigma model [14, 142] is used to model the
effect of the scales which are too small to be properly discretized by the fluid mesh.
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The present fluid solver was validated on the benchmark of idealized cardiovascular
device proposed by the U.S. Food and Drug Administration (FDA) [215], as well as
on a variety of test cases [124, 128].

4.2.2 Experimental setup

A self-made heart valve prosthesis with a rigid frame made with PEEK material
and leaflets manufactured as thin polyurethane foil is used. The cylindrical shaped
leaflet is heat treated and mechanically closed, enabling to obtain an almost closed
design of the valve (see Fig. 4.1 (a)). This prosthesis is placed inside an aortic
anatomy, cast inside a rigid silicone model. The aortic anatomy is based on physi-
ological data, including the three sinuses of Valsalva after the calculations by Reul
et al. [160]. The aortic root diameter is 25 mm, chosen equal to the outer diameter
of the prosthesis. The ascending aorta is designed with a diameter of 31 mm.
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Figure 4.1: In-vitro pulse duplicator designed to reproduce physiological flow con-
ditions.

The silicone model with the inserted prosthesis is connected to a pulse duplica-
tor which consists of a rotatory pump (dp3, Medos Medizintechnik AG, Stolberg,
Germany), an adjustable compliance and resistance, tubing and a reservoir with a
heating unit. A sketch is shown in Fig. 4.1. Data acquisition and controlling of the
pulse duplicator is achieved by in-house written programs (LabVIEW, Austin, TX,
USA). The rotatory pump is controlled by a program which delivers a square-wave
signal, leading to an oscillatory rotation of the pump which enables to generate a
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pulsatile flow allowing fully opening and closure of the valve. As shown in Fig. 4.1,
the flow measured by an ultrasonic flow meter downstream of the aortic valve is
quasi-periodic with reduced cycle-to-cycle variations (less than 5% of variations).
One typical cycle is displayed in Fig. 4.2 (a). The experimental flow rate curve is
characteristic from the physiological flow rate observed in the aorta, with a first flow
pulse corresponding to systole, followed by a reversed flow rate, corresponding to
diastole. Compared to a physiological signal, the present signal has a short diastole,
the study focusing on the opening and closure of the valve.

(a) (b)

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

Systole Diastole

time (s)

fl
ow

ra
te

(L
/
m
in
)

0 10 20 30
0

0.5

1

strain (%)

st
re
ss

(M
P
a
)

experiment

simulation

Figure 4.2: (a) One typical cycle of the flow rate signal measured during the ex-
periment, used as inlet boundary condition of the simulation. (b) Stress-strain
relationship extracted from the uniaxial tensile test. The material parameters G
and K are determinated by fitting the simulation with the experiment.

As blood analogue fluid, a transparent solution of 56.4% glycerol and 43.6% wa-
ter by mass is used inside the flow circuit as working fluid. At 45◦C, it matches the
refractive index of the silicone model to eliminate optical distortions and it possesses
a viscosity of 3.6 mPa.s. Both the flow and the valve can be characterized by a set
of parameters summarized in Tab. 4.1.

In view of the Reynolds number Re and Womersley number W0 of the flow, the
blood flow can be assumed to be Newtonian, so that the blood analogue fluid is of
constant viscosity, corresponding to the high-shear limit values [161]. Determina-
tion of the material parameters of the leaflet is carried out by means of experimental
tensile tests and parameter identification using the LMGC90 solid mechanics solver.
First, an uniaxial tensile test is performed on a stick of polyurethane, giving the
stress-strain relationship of the material (see Fig. 4.2 (b)). Then, the experimen-
tal tensile test is simulated with the LMGC90 solid mechanics solver. A dedicated
algorithm enables to determine the material parameters which provide the best fit
between the experiment and the simulation, as shown in Fig. 4.2 (b). The quasi-
incompressible Neo-Hookean strain energy function introduced in Eq. (4.1) enables
a very good representation of the material mechanical behaviour over the range of
0-30% deformation.
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Flow parameters

Density ρ = 1100 kg/m3

Dynamic viscosity µ = 3.6 10−3 Pa.s
Heart rate nbpm = 60
Mean cardiac output Qmean = 3.48 L/min
Reynolds number Re = 1388
Womersley number W0 = 17
Valve parameters

Density ρs = 1000 kg/m3

Shear modulus G = 2.4 MPa
Bulk modulus K = 1.6 MPa
Thickness of the frame ef = 1.45 mm
Thickness of the leaflet e = 0.15 mm
Radius of the leaflet R = 12.5 mm

Table 4.1: Flow and valve parameters.

The movement of the valve leaflets is recorded from the top of the valve by a
high-speed camera (CMOS, 1280x1024, 10 bit). Furthermore, two-dimensional PIV
measurements are performed to determine the experimental flow field in the center-
plane (through the commissure of the prosthesis) of the aortic geometry behind the
prosthesis. A two-cavity Nd:Ylf laser (Pegasus, New Wave Research Inc.) operated
as light source. The laser light beam is expanded into a thin light sheet of approxi-
mately 1 mm thickness by an arrangement of lenses. The laser light illuminates the
tracer particles (diameter of 10.5 µm, Intelligent Laser Applications, Jülich, Ger-
many), seeded into the circuit and carried by the fluid, twice within a defined time
interval ∆t to obtain pair images. A Nanosense MKIII 1280x1024 CMOS High-
Speed camera (IDT, Redlake) with a 105 mm Nikon Makro Nikkor 105mm F2.8D
lens recorded the particle images. The camera was positioned at an angle of 90◦ to
the illuminated laser light plane.

For data acquisition and PIV post-processing, the software Dynamic Studio 2.3
(Dantec Dynamics A/S, Skovlunde, Denmark) is used. 24 cycles were recorded with
a time interval ∆t between the image pairs of 950 µs to obtain an optimal pixel
displacement for further analysis. The data acquisition of the particle images is
set to 100 Hz, i.e. 100 pair images are recorded per cycle. As calibration method,
a target with a mm scale which is aligned in the centerplane, is recorded. With
knowledge of the displacement of the particles and the time delay between the image
pairs, the velocity can be calculated. For the evaluation, the recorded pair images
are divided into small subareas called interrogation areas. By means of statistical
methods, i.e., adaptive correlation, the local velocity vectors for the pair images is
determined. The final interrogation area size is 32x32 pixels with an overlap of 50%.
The resolution of the resulting vector field is 0.0425x0.0425 mm2/px2. The resulting
mesh of the PIV data is 63x79 points (radial/axial).
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4.2.3 Computational setup

From the computational point of view, the geometry of interest is separated into
the solid and the fluid domains. The solid domain is composed of the polyurethane
leaflet whose geometry after manufacturing is cylindrical of radius R and thickness
e. After performing the heat treatment on the valve, the geometry of the leaflet
is closed. To reproduce this heat treatment in the numerical simulation, several
preprocessing steps are performed. First a CAD model of the open leaflet before
heat treatment is designed. The initially cylindrical geometry of the leaflet is con-
structed by introducing a shrinkage parameter r, mimicking a possible shrinkage of
the leaflet resulting from the heat treatment. The bottom of the leaflet is circular
and fits the tri-commissure frame. Then, going from the bottom to the top, the
leaflet is shrinked by using a small offset r to define the apex (see Fig. 4.3 (a), (b)).
The higher is the value of r, the more important is the shrinkage. A zero value of
r corresponds to no shrinkage of the leaflet. In this study, a value of r = 2 mm
is considered. Then a structural computation performed with the LMGC90 solver
enables to close the leaflet by imposing a normal pressure onto the outer surface of
the leaflet, thus mimicking the mechanical closure performed in the experiment (see
Figs. 4.1 (b) and 4.3 (c)). The obtained geometry is then used as the initial and
unconstrained leaflet geometry for the FSI computation.

R

r

(a) (b) (c)

Figure 4.3: Procedure used to generate the geometry of the leaflet obtained after
heat treatment. An almost cylindrical leaflet is first designed, and then closed by
performing a structural computation.

Both the aortic and the frame geometry are given by the CAD models of the
experimental setup, and are used to design the geometry of the fluid domain. The
silicone aorta and the frame are defined as rigid bodies whose borders are non-slip
wall boundary conditions of the fluid domain. The flow is generated using inlet and
outlet conditions, imposed far from the zone of interest. One typical cycle of the flow
rate signal measured during the experiment is imposed as a periodic inlet condition
(see Fig 4.2 (a)). Given the relatively high value of the Womersley number W0, the
assumption of a flat velocity profile is made to impose the inlet flow rate signal.
The inlet velocity is imposed as a Dirichlet condition normal to the inlet boundary,
whereas the outlet is defined by imposing a uniform convective velocity which in-
sures the global mass conservation. In order to avoid incoming flow at the outlet
boundary, the inlet and outlet boundaries are switched depending if the flow rate
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is positive or negative. The systole is thus imposed upstream of the valve, whereas
the diastole is imposed downstream.

M1 M2

Figure 4.4: Computational zone of interest composed of the valve solid mesh and
the aortic fluid mesh. Two levels of mesh are considered, the coarse mesh M1 and
the fine mesh M2.

The whole computational zone of interest is displayed in Fig. 4.4. Two different
levels of mesh are considered in the present study. The mesh M1 referred to as the
coarse mesh, whose fluid mesh is composed of 470 791 tetrahedral elements with a
uniform mesh resolution of 1 mm, and whose solid mesh is composed of 384 quadratic
hexahedral elements with a mesh resolution of 1 mm. The mesh M2 referred to as
the fine mesh, whose fluid mesh is composed of 3 381 583 tetrahedral elements with
a uniform mesh resolution of 0.5 mm, and whose solid mesh is composed of 1536
quadratic hexahedral elements with a mesh resolution of 0.5 mm. Note that similar
mesh resolutions are used for the fluid and the solid mesh, which is recommended
when using the ITBM. One cycle takes about 1 hour to compute on 24 Intel E5-2690
@2.6GHz processors for mesh M1, and about 10 hours on 48 processors for mesh
M2.

4.3 Results

4.3.1 Valve dynamics

Figure 4.5 (a) shows several snapshots of the valve movement recorded from the
top by the high-speed camera, extracted over different instants of the cardiac cycle
(depicted with red dots on the flow rate curve). Corresponding snapshots of the
valve deformation extracted from a typical cycle of the simulation are displayed in
Fig. 4.5 (b). The 3 leaflets are labeled to ease results presentation. The evolution of
the opening area of the valve is also provided in Fig. 4.5 (c), as well as the evolution
of the tips locations (midpoints of leaflets edges) of the 3 leaflets in Fig. 4.5 (d).
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Figure 4.5: (a) Snapshots extracted from the valve movement recording at various
instants of the cardiac cycle (depicted with red dots on the flow rate curve). (b)
Corresponding snapshots of the valve deformation extracted from a typical cycle of
the simulation. (c) Evolution of the opening area of the valve during the cardiac
cycle. (d) Evolution of the tips locations of the 3 leaflets. Solid line corresponds
to leaflet 1, dashed line to leaflet 2, and dotted line to leaflet 3. (red: experiment,
blue: simulation for the fine mesh M2).

In both the experiment and the simulation, the valve shows a strong resistance
to flexural deformation. The openings of the experimental and simulated valve are
comparable. As seen in Fig. 4.5 (d), the 3 leaflets open simultaneously at the same
opening times (between t0 and t2). After complete valve opening (after t2), the 3
leaflets of the experimental valve behave slightly differently. Leaflets 1 and 3 start
closing directly after the peak flow rate (which is reached at t3) when the flow rate
decreases, with an earlier closure for leaflet 3. Conversely, leaflet 2 reaches an equi-
librium state indicating a buckling phenomenon. Closure of the leaflet suddenly
occurs between t6 and t7, due to the unbuckling of the leaflet resulting from the
diastolic backflow.

In the simulation, the valve opening is followed by a fluttering of the leaflets tips
(between t2 and t4), as also observed in the experimental study of Moore and Dasi
[136]. All the 3 leaflets then reach an equilibrium buckled state. For the cardiac
cycle considered, leaflet 1 is the first one to close, followed by leaflet 3, and finally
leaflet 2, which closes at the same time than in the experiment (see also snapshots
of t7 in Fig. 4.5 (a), (b)).

Although the detailed dynamics of the experimental and simulated valves slightly
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differ regarding the evolution of the tips locations of the 3 leaflets, a good quanti-
tative agreement is obtained regarding the global dynamics given by the evolution
of the opening area of the valve (Fig. 4.5 (c)), even when the coarse mesh M1 is
considered. The opening area first quickly increases during valve opening, resulting
from the simultaneous opening of the leaflets. The opening section of the valve then
gradually decreases, due to the progressive closure of leaflets 1 and 3 in the experi-
ment, and due to a reduction of the opening area near the commissures of the valve
in the simulation (see instants t4 and t5 in Fig. 4.5 (b)). While a strong fluttering
of the leaflets tips is observed between t2 and t4 (in Fig. 4.5 (d)), a fluttering phe-
nomenon on the opening area evolution is still observed between t4 and t6, induced
by the commissures of the valve which fluctuate (not shown).

(a)

(b)

+ − + − + − + − + − + −

Valve
opening

Valve
fully open

Valve
closing

Figure 4.6: (a) Shape of the 3 leaflet edges observed during valve opening (t1 = 0.15
s), valve open position (t4 = 0.35 s) and valve closure (t6 = 0.80 s). Solid line
corresponds to leaflet edge 1, dashed line to leaflet edge 2, and dotted line to leaflet
edge 3. (b) Shape of the leaflet edge 1 observed during valve opening, valve fully
open and valve closure, for 3 successive cycles. (+: outer radial direction, −: inner
radial direction) (red: experiment, blue: simulation for the fine mesh M2).

The dynamic of the leaflet edges during valve opening, valve open position and
valve closure is further analyzed in Fig. 4.6. The shapes of the 3 leaflets are first
compared for a given cardiac cycle in Fig. 4.6 (a). In the experiment, the leaflets
open with 2 curvature modes with a clockwise propagating curvature. In the sim-
ulation however, the deformation of the leaflets is symmetric and composed of 3
modes of curvature. Note that such 3-mode openings were already observed in pre-
vious experimental studies performed on BHVs [74, 198]. When the valve is fully
open, the curvature of the valve is completely reversed with one unique mode of
deformation. A small dissymmetry of the experimental valve is observed whereas
the simulated valve is perfectly symmetric. During the experimental valve closure,
the leaflets recover their closed configuration again with 2 curvature modes, with
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this time a counterclockwise propagating curvature. In the simulation the leaflets
also close with 2 curvature modes but the curvature propagates either toward one
commissure or the other.

In order to see if this dynamic is reproducible on several cardiac cycles, the
shape of leaflet 1 is compared for 3 successive cycles. It is seen that the dynamic
of the experimental valve is virtually reproducible, but the simulated valve exhibits
some cycle-to-cycle variations, especially during the valve closure. There is actually
no privileged direction, from one cycle to the other, for the propagation of the
curvature when the leaflets unbuckle. We also observed that the order of closure
of the leaflets (visible in Fig. 4.5 (d)) can change from one cycle to the other (not
shown). These cycle-to-cycle variations come from the buckling of the leaflets which
is a very sensitive and unstable phenomenon. In the experiment, the dynamic of the
valve is more reproducible due to the dissymmetry of the valve which enables one
leaflet only to properly buckle (as seen in Fig. 4.5 (d)).

4.3.2 Leaflets stress distribution

Figure 4.7 shows the leaflets Von Mises stress distribution obtained from the simu-
lation during valve opening, valve fully open and valve closure. Stress patterns are
mostly located in the region where the leaflets experience high flexural deformation.
Maximum stresses are observed along the junction between leaflets and the rigid
frame, particularly in the basal region. The ideal valve design should thus minimize
regions of high curvature. In this sense, the 2-mode curvature observed during the
opening of the experimental valve (in Fig. 4.6) would minimize the stresses under-
gone by the valve leaflets compared to the 3-mode curvature observed on the sim-
ulated valve. Conversely, the reproducible counterclockwise curvature propagation
observed during the experimental valve closure would privilege regions of repeated
stresses which can lead to the fatigue rupture of the leaflets. The cycle-to-cycle
variations observed during the simulated valve closure enable a more uniform stress
repartition over the leaflets surface.

σvms (MPa)

0.2

0

Valve
opening

Valve
fully open

Valve
closing

Figure 4.7: Leaflets Von Mises stress distribution during valve opening (t1 = 0.15
s), valve open position (t4 = 0.35 s) and valve closure (t6 = 0.80 s).
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4.3.3 Flow dynamics

The two-dimensional velocity field (u, v) downstream of the valve is reconstructed
from the PIV measurements in the centerplane of the aortic geometry, where u is
the streamwise velocity component and v the transverse velocity component. The
streamwise velocity fields obtained from both the experiment and the simulation are
displayed in Fig. 4.8. Four characteristic instants of the cardiac cycle are shown:
t = 0.20 s, just before the flow rate reaches its maximum value, referred to as
Early Systole (ES); t = 0.26 s, when the flow rate is maximum, referred to as Peak
Systole (PS); t = 0.35 s, just after the flow rate reaches its maximum value and
begins to decrease, referred to as Mid-Systole (MS); t = 0.55 s, when the flow rate
is decreasing, referred to as Late Systole (LS). The color scale was chosen such that
red regions correspond to positive velocity, whereas negative velocity regions appear
in blue. The velocity fluctuations downstream of the valve are also investigated
by calculating the experimental and numerical streamwise root-mean square (RMS)
velocity fields on 24 successive cardiac cycles, as seen in Fig. 4.9. The local extrema
of the velocity RMS fields are indicated by different labels (black labels for the
experiment, and white labels for the simulation), enabling to identify different flow
features. The same labels are reported in the velocity fields of Fig. 4.8 in order to
characterize the source of these fluctuations.

At ES, a jet starts to emerge from the valve. In the experiment, the jet is widely
spread compared to the simulation, and seems to be slightly tilted towards the sinus
side of the aorta. Patterns of fluctuations are observed along the contour of the jet
(see labels 1a, 2a, 3a). In the simulation, most of the fluctuations are observed along
the leaflet (see label 1b).

At PS, the jet propagates downstream of the valve and grows broader in its shape.
Recirculation of the flow is observed along both the sinus and commissure sides of
the aorta, as indicated by the negative velocities. Coherent patterns of fluctuations
are observed at different critical locations of the jet structure: At the tip of the
leaflet (see labels 5a vs. 2b), near to the shear layers generated by the recirculation
of the jet (see labels 6a vs. 3b and 7a vs. 4b), and at the apex of the jet towards
the sinus side of the aorta (see labels 8a vs. 5b). Regarding the structure of the
jet, the flow seems to remain laminar, the fluctuations of velocity being related to
cycle-to-cycle variations in the shear layer positions and in the dynamics of coherent
structures.

At MS, the jet progresses further downstream of the valve, and the recirculation
zones get stronger near the aorta wall, both at the commissure and the sinus sides.
The flow seems to transition from laminar to turbulent along the shear layers: larger
patterns of fluctuations are indeed observed at the commissure side (see labels 11a,
12a, 13a vs. 6b, 7b) and at the sinus side of the aorta (see labels 14a, 15a vs.
8b, 9b), in the wake of the valve. Such spread patterns indicate a production of
turbulence downstream of the valve. For both the experiment and the simulation,
the maximum fluctuations are observed at the commissure side of the aorta.
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At LS, when the flow rate decreases, the jet decelerates and the recirculation
velocities decrease. The two large patterns of fluctuations observed at MS are still
identifiable at the commissure side (see labels 16a, 17a, 18a vs. 10b, 11b) and sinus
side of the aorta (see labels 19a, 20a, 21a vs. 12b). Patterns are however more
spread and start to dissipate downstream of the valve.
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Figure 4.8: (a) Fields of instantaneous streamwise velocity obtained from the exper-
iment. (b) Fields of instantaneous streamwise velocity obtained from the simulation
for the fine mesh M2. Four different instants of the cardiac cycle are depicted (ES,
PS, MS and LS).
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Figure 4.9: (a) Fields of streamwise RMS velocity obtained from the experiment.
(b) Fields of streamwise RMS velocity obtained from the simulation for the fine
mesh M2. Four different instants of the cardiac cycle are depicted (ES, PS, MS and
LS).
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Figure 4.10: Comparison of the experiment (red) and the simulations for meshes M1

(black) and M2 (blue), for 3 successive phase-averaged velocity profiles downstream
of the valve. Four different instants of the cardiac cycle are depicted (ES, PS, MS
and LS).

The experiment and the simulation results are thus qualitatively in good agree-
ment. The main flow features and patterns of fluctuations are similar (both for
the coarse mesh M1 and the fine mesh M2). However, the simulation seems to un-
derestimate the backflow induced by the recirculation of the jet compared to the
experiment. Note also that the magnitude of the fluctuations observed in the ex-
periment is much higher than in the simulation (with maximum fluctuations of 0.2
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m/s in the experiment against 0.04 m/s in the simulation, both for meshes M1 and
M2). Moreover, the patterns are much more concentrated in the simulation, and are
conversely more spread in the experiment. This difference is further commented in
the discussion section.

In order to quantitatively compare the experimental flow and the numerical flow,
phase-averaged velocity profiles are displayed in Fig. 4.10. Three successive velocity
profiles downstream of the valve are compared, referred to as profile 1 (P1) which is
located directly behind the valve, profile 2 (P2) and profile 3 (P3) which are located
further downstream of the valve (see Fig. 4.8 for the exact locations). Given the
high complexity of the flow, the experimental and numerical velocity profiles are
generally in a very satisfactory agreement, even when the coarse mesh M1 is used.
The fine mesh M2 however seems to provide a better agreement with the experi-
ment. However, few discrepancies are observed. A more pinched numerical velocity
profile is observed on P1 when the jet emerges from the valve at ES (see P1-ES).
In addition, the simulation does not show the strong backflow observed along the
commissure side of the aorta (see P2-PS and P1-MS) in the experiment. Note that
these differences are robust to the change of mesh, so that they are not the result
of an insufficient mesh resolution. These discrepancies were expected given that the
detailed dynamics (notably the buckling dynamics) of the three leaflets differ in the
experiment and in the simulation (see Fig. 4.6 (d)).

t2 = 0.20 s t3 = 0.26 s t4 = 0.35 s t5 = 0.55 s

ES PS MS LS

(a)

(b)

Figure 4.11: (a) Iso-surfaces of the instantaneous Q-criterion for the iso-value of
5000 s−2. (b) Iso-surfaces of the fluctuating kinetic energy for the iso-value of 0.08
J.m−3. Four different instants of the cardiac cycle are depicted (ES, PS, MS and
LS).

Figure 4.11 (a) shows iso-surfaces of the instantaneous Q-criterion [94] to vi-
sualize instantaneous vortical structures. Figure 4.11 (b) shows iso-surfaces of the
fluctuating kinetic energy (b), defined as FKE =

ρ

2

(

u2
rms + v2

rms + w2
rms

)

. At ES,

vortical structures (Fig. 4.11 (a)) are shed downstream of the valve commissures, at
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the tips of the rigid frame. These structures propagate between ES and MS over an
annular region in the wake of the valve. At LS, the vortical structures are smaller
and spread over the lumen of the aorta.

Figure 4.11 (b) enables to better visualize the organization of the velocity fluc-
tuations patterns, partially presented in Fig. 4.9 over the centerplane of the aortic
geometry. At ES, velocity fluctuations are related to the fluctuations of position of
the shear layers along the leaflets. On the contrary, at PS, high FKE values are
related to strong vortices shed downstream of the valve commissures. At PS, the iso-
surface of FKE demonstrates that fluctuations are much higher downstream of the
commissure than downstream of the leaflet: remarkably, the fixed part of the valve
generates more turbulence than the leaflets. Between PS and MS, the transition
from laminar to turbulent is clearly suspected by the strong increase and spreading
of the FKE level in the wake of the valve. The iso-surface of FKE is rather toroidal
at MS, showing that the turbulence region is localized in the valve wake. At LS, the
FKE iso-surface spreads over a wider volume of the aorta, as anticipated from the
Q-criterion view.

4.4 Discussion

In the present work, the complex fluid-structure interaction problem involved when
blood flows out of the left ventricle and passes through the aortic valve is inves-
tigated. Experimental investigations carried out on an in-vitro configuration of an
artificial flexible aortic valve are combined with numerical simulation performed with
a dedicated FSI model.

Investigations of the valve kinematics show that despite a similar global dynamic
observed between the experimental and simulated valves, the detailed dynamics of
the valve leaflets are significantly different, due to a symmetry breaking in the ex-
periment. This potentially leads to different leaflets stresses distribution. The char-
acterization of valve designs should thus rely on a detailed analysis of the individual
dynamic of the valve leaflets, rather than on a global analysis.

Investigations of the flow downstream of the valve reveal that the flow transi-
tions to turbulence. This transition occurs after peak systole, when the flow starts
to decelerate. Patterns of fluctuating kinetic energy are observed in the wake of the
valve, and then spread in the lumen of the aorta. The authors originally expected
a maximum level of fluctuations at the sinus side of the aorta, in the wake of the
leaflets tips. However, the present study shows that fluctuations are maximum at
the commissure side of the aorta, both in the experiment and the simulation. This
should be induced by the significant thickness of the rigid frame maintaining the
leaflets, which is seen as a backward-facing step known to generate turbulence [97].
These observations should be considered for future valve developments.
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Discrepancies are observed when analyzing the individual dynamic of the leaflets,
with a 2-mode opening observed in the experiment against a 3-mode opening ob-
served in the simulation. This symmetric 3-mode opening is expected given the
symmetry of the geometry and flow conditions of the computational setup. The
non-symmetric swirl motion observed in the experiment can be explained by the
dissymmetry observed in the experimental valve, probably induced by the manual
heat treatment performed on the leaflets to obtain the closed design of the valve.
In spite of these differences, the phase-averaged velocity fields are very similar in
the simulation and in the experiment. However, the simulation underestimates the
levels of velocity fluctuations measured in the experiment, even if it provides a good
qualitative agreement with the experiment in terms of velocity fluctuations struc-
ture. In the experiment, much higher levels of fluctuations are observed upstream
of the valve, which indicates a possible production of turbulence of the rotatory
pump which is used to generate the flow. In addition, the flow rate measured in the
experiment exhibits some cycle-to-cycle variations which are not taken into account
in the simulation (the same flow rate is imposed for all the cycles simulated). This
points out the complexity of carrying out such a combined experimental and nu-
merical study, especially in this very sensitive configuration involving fluid-structure
interaction.

The FSI model used in the present study has demonstrated its ability to compute
the flow through aortic valves, and could be used for potential clinical applications.
As pointed out by Sotiropoulos et al. [176], the location and orientation of prosthetic
valve implantation play an important role in the resulting hemodynamics, and can
affect the long-term success of valve replacement. Such a numerical tool could thus
be used to predict the procedure outcome for the patient after valve implantation,
and further improve the development of new flexible valve prostheses.

4.5 Supplementary material

4.5.1 Overall PIV-vs-CFD comparison

A more comprehensive PIV-vs-CFD comparison is provided in the present section.
Note that some figures previously shown are reproduced here for completeness.

• The fields of instantaneous streamwise velocity at both the centerplane and
the 6 mm offplane of the aortic geometry are displayed in Figs. 4.12 and 4.13,
respectively. Note that Fig. 4.12 corresponds to Fig. 4.8 of section 4.3.3.

• The fields of averaged streamwise velocity at both the centerplane and the
6 mm offplane of the aortic geometry are displayed in Figs. 4.14 and 4.15,
respectively.

• The fields of streamwise RMS velocity at both the centerplane and the 6 mm
offplane of the aortic geometry are displayed in Figs. 4.16 and 4.17, respec-
tively. Note that Fig. 4.16 corresponds to Fig. 4.9 of section 4.3.3.
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• Averaged streamwise and transverse velocity profiles are displayed in Figs. 4.18
and 4.19, respectively. Note that Fig. 4.18 corresponds to Fig. 4.10 of section
4.3.3.
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Figure 4.12: Fields of instantaneous streamwise velocity at the centerplane of the
aortic geometry. (a) Experiment; (b) Simulation (M2).
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Figure 4.13: Fields of instantaneous streamwise velocity at the 6 mm offplane of the
aortic geometry. (a) Experiment; (b) Simulation (M2).
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Figure 4.14: Fields of averaged streamwise velocity at the centerplane of the aortic
geometry. (a) Experiment; (b) Simulation (M2).
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Figure 4.15: Fields of averaged streamwise velocity at the 6 mm offplane of the
aortic geometry. (a) Experiment; (b) Simulation (M2).
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Figure 4.16: Fields of streamwise RMS velocity at the centerplane of the aortic
geometry. (a) Experiment; (b) Simulation (M2).
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Figure 4.17: Fields of streamwise RMS velocity at the 6 mm offplane of the aortic
geometry. (a) Experiment; (b) Simulation (M2).
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Figure 4.18: Averaged streamwise velocity profiles. (red: experiment, blue: simula-
tion).



4.5. SUPPLEMENTARY MATERIAL 103

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

v
m
e
a
n
(m

/
s)

P1-ES

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

P2-ES

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

P3-ES

experiment

simulation (M2)

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

v
m
e
a
n
(m

/
s)

P1-PS

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

P2-PS

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

P3-PS

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

v
m
e
a
n
(m

/
s)

P1-MS

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

P2-MS

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

P3-MS

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

arc length

v
m
e
a
n
(m

/
s)

P1-LS

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

arc length

P2-LS

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

arc length

P3-LS

Figure 4.19: Averaged transverse velocity profiles. (red: experiment, blue: simula-
tion).
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The good agreement previously obtained between the experiment and the sim-
ulation is corroborated by the present comprehensive comparison, which enables to
give more confidence to the validation. The main features of the flow are faithfully
captured by the simulation, both at the centerplane (Figs. 4.12, 4.14 and 4.16) and
at the 6 mm offplane (Figs. 4.13, 4.15 and 4.17) of the aortic geometry. Regard-
ing the averaged streamwise and transverse velocity profiles (Figs. 4.18 and 4.19,
respectively), it is seen that a less satisfactory comparison between the experiment
and the simulation is obtained for the transverse velocity, which is most probably
more sensitive to the detailed dynamics of the valve leaflets.

4.5.2 Transvalvular pressure gradient

Another quantity of interest when studying the dynamics of aortic valves is the
transval-vular pressure gradient (TPG), introduced in chapter 1 (section 1.1.1).
Pressure has thus been recorded at two locations downstream (ventricular side)
and upstream (aortic side) of the valve. The evolution of the TPG is displayed in
Fig. 4.20 (a), where the experimental measurement is compared with the numerical
prediction. Note that two shrinkage parameters (see section 4.2.3) are tested for
the simulation: r = 2 mm and r = 3 mm. The evolution of the TPG can be corre-
lated with the global dynamics of the valve, in terms of opening area (Fig. 4.20 (b)).
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Figure 4.20: (a) Evolution of the transvalvular pressure gradient (TPG). (b) Evo-
lution of the valve opening area. (red: experiment, blue: r = 2 mm, green: r = 3
mm).



4.5. SUPPLEMENTARY MATERIAL 105

It is seen that a low positive peak of TPG is reached at the beginning of the sys-
tole, when the valve is opening. Conversely, a high negative peak of TPG is reached
during the diastole, when the valve is fully closed. This observation is consistent
with the physiological dynamics of the aortic valve, described in chapter 1 (section
1.1.1): the TPG required to drive the blood through the aortic valve during systole
is of the order of only few mmHg, whereas the aortic valve undergoes a negative
TPG of about 80 mmHg during diastole. The maximum and minimum values of
the TPG are displayed in Tab. 4.2, where experimental values can be compared
with numerical values. It can first be noted that the experimental maximum and
minimum TPG values are close to physiological values. Indeed, a TPG of 5.28
mmHg is required to open the valve during systole, whereas the TPG undergone
by the valve during diastole is -93.35 mmHg. Comparing the experimental TPG
values with the numerical ones, it is seen that the simulation faithfully reproduce
the systolic TPGmax. Both tested shrinkage parameters predict the same value of
TPGmax, which is slightly lower than the experimental value. The simulation how-
ever fails to reproduce the diastolic TPGmin measured during the experiment. The
value of TPGmin predicted for the shrinkage parameter r = 2 mm is drastically
lower than the experimental value. A possible explanation for this discrepancy is
the short delay in the valve closure observed for r = 2 mm as compared to the
experiment (see Fig. 4.20 (b)). Using a shrinkage parameter r = 3 mm, the valve
this time closes slightly earlier than in the experiment, which should lead to an
overestimation of the diastolic TPGmin. Yet the predicted value of TPGmin is still
lower than the experimental value, although in better agreement than for r = 2 mm.

Experiment
Simulation (M2)

r = 2 mm r = 3 mm

TPGmax (mmHg) 5.28 4.90 4.90

TPGmin (mmHg) -93.35 -21.05 -66.52

Table 4.2: Maximum and minimum values of the TPG obtained in the experiment
and the simulation.

Valve leakage

This underestimation of the diastolic TPGmin is most probably due to a leakage of
the valve in the simulation: the flow going through the valve, the TPG is no longer
sustained by the valve, as in the case of aortic valve insufficiency (see chapter 1,
section 1.1.1). Indeed, there are two main reasons why a valve leakage is heavily
suspected:

• The poor closure of the valve observed in the simulation, meaning that the
valve leaflets never directly get into contact (see Fig. 4.21 (a)).

• The small permeability of the valve leaflets, which is inherent to the IBM
formalism.
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Figure 4.21 shows that the first option is hardly conceivable. When the valve is
supposed to be closed at t = 0.95 s (see Fig. 4.21 (a)), a small gap between the
leaflets still remains. This however does not imply that the flow goes through this
gap, and that the valve is leaking. As a matter of fact, the fluid sees the valve
through the volumetric force

−→
f which comes from the regularization of the valve

mechanical force
−→
F (see section 4.2.1). This mechanical force

−→
F is regularized on a

patch of fluid elements located at the neighboring of the valve (see Fig. 4.21 (b)), via
the smooth discrete Dirac function. One thus easily understands that when there
is an overlapping of two patches of fluid elements, corresponding to two different
leaflets, this induces a local repulsion of the valve leaflets which are not able to get
closer. As seen in (see Fig. 4.21 (b)), when the valve is closed at t = 0.95 s, the
overlapped patches of fluid elements describe a fully closed valve without any gap.

t = 0.15 s t = 0.95 s

(a)

(b)

Figure 4.21: (a) Deformation of the valve at two different instants of the cardiac
cycle (t = 0.15 s when the valve is opening, and t = 0.95 s when the valve is fully
closed). (b) Patch of fluid elements on which the mechanical force is regularized,
illustrating how the valve is seen by the fluid.

It is thus likely that porous leakage through the leaflets is the origin of the un-
derestimation of the diastolic TPGmin. Indeed, the valve may experience continuous
leakage during the whole cardiac cycle, because of the errors generated by interpo-
lation procedures of the IBM. The valve leakage is however difficult to quantify, and
is expected to increase when the valve highly resists to the flow. Given that the
valve slightly resists to forward flow during systole and highly resists to backward
flow during diastole, this would explain the large underestimation of the diastolic
TPGmin and the slight underestimation of the systolic TPGmax.
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This concluding chapter aims at highlighting the actual research contribution
of the present thesis work, and raises some relevant perspectives. The general
topic “fluid-structure interaction problems involving deformable membranes” gath-
ers many scientific aspects which have been encountered in this thesis:

• The algorithmic aspect, namely the methodology used to solve these FSI prob-
lems,

• The validation strategy used to demonstrate the reliability of the methodology
used to solve these FSI problems,

• The modeling strategy used to establish a proper mathematical representation
of the physical objects involved in these FSI problems,

• The physical aspect, the ultimate purpose being to understand the physics of
these FSI problems.

5.1 Red blood cells modeling

This thesis has first focused on a specific FSI problem, which is the interaction of
the red blood cell membrane with its inner and outer fluids. The main question
that has been raised is: how to model the complex microstructure of the red blood
cell membrane? (described in chapter 1, section 1.1.2). A major stake behind this
question is the ability to provide accurate predictions of red blood cells deformation
in a wide range of flow conditions, including the ones encountered in blood analyzers
(described in chapter 1, section 1.1.3).

107
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Establishing a suitable model of the red blood cell membrane requires to fully
characterize its complex mechanics. This can be achieved computing a well-controlled
experimental configuration for studying the red blood cell deformation characteris-
tics. By using different membrane models, analysing the discrepancies between
numerical and experimental results is a way to determine which one is the most
suitable to represent the mechanics of the red blood cell membrane. A literature
review has led to select the optical tweezers experiment, which is one of the few ex-
periments which enables to investigate the mechanical behavior of the red blood cells
in a large range of deformation. This literature review also revealed that the opti-
cal tweezers experiment is widely used to probe the accuracy of solvers dedicated to
the study of the red blood cell dynamics under flow, such as the YALES2BIO solver.

Then, the first contribution of this work has been to propose an innovative and
easy-to-implement methodology to faithfully simulate the optical tweezers experi-
ment. The idea was then to “play” with the membrane mechanics solver imple-
mented in the solver (described in chapter 1, section 1.4), testing various models of
the red blood cell membrane. The initial objective which was to establish a suitable
model of the red blood cell membrane has been partially achieved. This numeri-
cal study has indeed enabled to identify relevant membrane models, which provide
a good matching with the experimental data provided by the optical tweezers ex-
periment. However, the major contribution of this work has been to demonstrate
the simplistic nature of these experimental data, which are not selective enough to
discriminate between appropriate and inappropriate models. This shows that com-
puting the optical tweezers experiment does not constitute a true validation test
case, thus questioning the validity of (some of) the models proposed in the litera-
ture for representing the red blood cell membrane. The last contribution of this work
has been to show the interest of additional measurements, that could be performed
during the optical tweezers experiment. Such data, like for example lengths mea-
sured in the direction perpendicular to the plane of the cell, could be more selective
and would thus enable to push aside inappropriate membrane models that currently
provide a good matching with the optical tweezers experimental data.

5.2 The immersed thick boundary method

This thesis work has also enabled to substantially broaden the field of application
of the YALES2BIO solver, which was hitherto limited to the study of the dynamics
of red blood cells under flow. The basic idea has been to replace the existing mem-
brane mechanics solver (described in chapter 1, section 1.4), which was especially
dedicated to solve the complex mechanics of the red blood cell membrane, by a clas-
sical finite element solver: the LMGC90 solver. This finite element solver computes
the membrane force on a 3-dimensional Lagrangian mesh, which is handle with the
same IBM formalism as previously. The algorithmic work has thus consisted in
coupling the fluid mechanics and solid mechanics solvers, without further develop-
ments in the IBM formalism itself. The IBM being originally restricted to infinitely
thin membranes, this gave rise to a new method called immersed thick boundary
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method (ITBM). Numerous test cases have been performed to demonstrate the ro-
bustness and accuracy of the method. The main objective has been to demonstrate
how highly specialized fluid and solid solvers can be coupled to simulate a wide
variety of FSI problems involving 3D continuum membranes, using the ITBM. The
result is a numerical tool which benefits from both the high computing capacities
of the YALES2 flow solver in complex geometries, and the wide library of materials
available in the LMGC90 solid mechanics solver. Moreover, the present method has
revealed to be robust enough to handle computations at significantly high Reynolds
numbers, thus showing its potential.

Nonetheless, the present ITBM suffers from a major drawback, which is the
leakage problem inherent to the IBM formalism. Indeed, the procedures of regu-
larization/interpolation which enable communications between the non-conforming
meshes are known to generate numerical errors, which are characterized by a small
permeability of the immersed membrane. It has been seen that in the case of closed
membranes, the membrane permeability induces a loss of the volume contained
within the membrane, which can be corrected with a specific algorithm (detailed
in chapter 3, section 3.2.6). In the case of open membranes however, there is no
correction performed to compensate the membrane permeability. Still, some of the
test cases performed in chapter 3 (section 3.3), especially the one of section 3.3.5,
have shown promising results despite of this leakage problem.

Another question that should be considered is the inertia of the membrane, which
is presently neglected in the ITBM despite of the finite thickness of the membrane.
It has been explained in chapter 3 (section 3.2.1) that this assumption is valid as
long as the membrane is thin enough and that the fluid-to-solid density ratio is
close to unity. The validity of this assumption should however be quantified for a
given thickness and fluid-to-solid density ratio, in order to determine the range of
validity of this assumption. It remains that such an assumption restrains the field
of application of the present ITBM. Integrating the inertia of the membrane to the
ITBM would thus be a valuable improvement of the method.

5.2.1 Aortic valve computation

The ITBM has then been applied to a highly complex FSI problem, which is the
interaction of a pulsatile (blood) flow with the aortic valve. The resulting FSI prob-
lem is indeed very challenging to simulate, given the significantly high Reynolds
number of the flow, and the contact that occurs between the valve leaflets during
aortic valve closure. The ability of the ITBM to simulate this FSI problem has been
demonstrated comparing numerical simulations, performed with the YALES2BIO
solver, with experimental investigations carried out on an in-vitro configuration of
a polymeric model of aortic valve under pulsatile flow conditions. This combined
experimental and numerical study has led to very promising results, showing that
the ITBM is able to faithfully capture the global dynamics of the valve, as well as
the main features of the flow downstream of the valve.
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The proposed numerical method however showed some limitations in the pre-
diction of the transvalvular pressure gradient (TPG) through the valve, especially
the high diastolic TPG observed when the valve is fully closed and undergoes the
high pressure from the aorta. This limitation has been attributed to the leakage
problem inherent to the IBM formalism, which has been previously mentioned. The
development of an algorithm able to correct this valve leakage would thus be of great
interest. Indeed, such an algorithm could correct the volume swept by the valve,
knowing the flow rate and the actual fluid volume flowing through the valve opening
section.

Another issue that needs to be addressed in the near future is the solving of
the contact that occurs between the valve leaflets. The results obtained during this
thesis support the idea that the ITBM is able to handle the leaflets contact without
causing numerical issues. However, it remains unclear if this contact is accurately
solved, given that the current IBM formalism prevents the valve leaflets to get into
direct contact. In this context, the establishment of a basic test case with contact
solving would help in evaluating the ability of the ITBM to accurately solve FSI
problems where contacts between deformable membranes are involved.

5.2.2 Perspectives

Despite of the few improvements that are required within the ITBM, the YALES2BIO
solver can now be used to tackle a wide variety of FSI problems encountered with
biomedical devices.

A first obvious application is the design of artificial flexible heart valves. In-
deed, such a numerical tool is expected to bring new insights into the assessment
of the prosthetic valve performance [86], which would be a valuable help for the
improvement of heart valve designs. The ability of the ITBM to predict complex
flow features downstream of a flexible artificial valve has been demonstrated. Perfor-
mance indicators such as the flow turbulence, fluid shear stresses, blood stagnation
and flow separation regions could thus be assessed using the ITBM.

The YALES2BIO solver has also been used to compute the flow within the total
artificial heart developed by the CARMAT society1 [106], showing another relevant
application of the ITBM. This very complex device is composed of two cavities (left
and right heart) which are covered by large membranes. A pump system is used
to put into motion a working fluid (silicon oil), which induces an oscillation of the
membranes that enables the blood circulation. Figure 5.1 shows an overview of
the computation of the flow within the left cavity of the device performed with the
YALES2BIO solver, illustrating the complex interaction of the blood and working
fluid with the large membrane covering the cavity.

1http://www.carmatsa.com/fr/



5.2. THE IMMERSED THICK BOUNDARY METHOD 111

Figure 5.1: Computation of the flow within the left cavity of the total artificial heart
developed by the CARMAT society, performed with the YALES2BIO solver (from
[106]).

The applications of the present thesis work have been mainly focused on blood
flows, simulating FSI problems at the macroscopic and microscopic scales. Although
FSI problems involving deformable membranes are widely encountered in biomedi-
cal applications, they are also encountered in other areas in which the ITBM could
be used. As an example, one can cite the increasing interest in Micro-Air-Vehicles
(MAVs) that has pushed research and adaption of bio-inspired membrane wing struc-
tures (see Fig. 5.2 for examples). Recent studies show that these thin and flexible
membrane wings can improve aerodynamic flight performances [19, 162], creating
longer flow attachment and enhancing edge vortex shedding.

Figure 5.2: Typical examples of Micro-Air-Vehicles using membrane wing structures.
(left image from [47], right image from [24]).
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