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Résumé

Le volume des données ne cesse de croître. À tel point qu’on parle aujourd’hui de "Big
Data". La principale raison se trouve dans les progrès des outils informatique qui ont
offert une grande flexibilité pour produire, mais aussi pour stocker des quantités toujours
plus grandes.

Les méthodes d’analyse de données ont toujours été confrontées à des quantités qui
mettent en difficulté les capacités de traitement, ou qui les dépassent. Pour franchir les
verrous technologiques associés à ces questions d’analyse, la communauté peut se tourner
vers les techniques de calcul distribué. En particulier, l’extraction de motifs, qui est un
des problèmes les plus abordés en fouille de données, présente encore souvent de grandes
difficultés dans le contexte de la distribution massive et du parallélisme.

Dans cette thèse, nous abordons deux sujets majeurs liés à l’extraction de motifs : les
motifs fréquents, et les motifs informatifs (i.e., de forte entropie).

Les algorithmes d’extraction des motifs fréquents peuvent montrer de mauvaises per-
formances lors du traitement des grandes volumes des données. Ceci est particulièrement
le cas lorsque i) les données tendent à être très grandes et/ou ii) le seuil de support mi-
nimum est très faible. Dans cette thèse, nous adressons ce problème en faisant appel à
des techniques spécifiques de placement des données dans des environnements massi-
vement distribués pour améliorer la performance des algorithmes d’extraction des mo-
tifs fréquents. Nous étudions soigneusement l’impact de la combinaison d’un algorithme
d’extraction des motifs fréquents avec une stratégie particulière de placement des don-
nées. Dans un premier temps, nous montrons que le choix d’une stratégie de placement
des données dans un environnement massivement distribué, associé à un algorithme spé-
cifique d’extraction des motifs, a un très fort impact sur le processus d’extraction et peut
aller jusqu’à le rendre inopérant. Nous proposons ODPR (Optimal Data-Process relation-
ship) une solution pour l’extraction des motifs fréquents dans MapReduce. Notre méthode
permet de découvrir des motifs fréquents dans des grandes bases des données, là où les
solutions standard de la littérature ne passent pas à l’échelle. Notre proposition a été éva-
luée en utilisant des données du monde réel. Nos différents résultats illustrent la capacité
de notre approche à passer à l’échelle, même avec un support minimum très faible, ce qui
confirme l’efficacité de notre approche.

Sur la base de ce premier résultat, nous avons étendu ce travail en poussant encore un
peu les possibilités apportées par le calcul distribué. Généralement, dans un environne-
ment massivement distribué, la performance globale d’un processus est améliorée quand
on peut minimiser le nombre de "jobs" (les "aller/retours" entre les machines distribuées).
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Cela impacte le temps d’exécution, mais aussi le transfert de données, etc. Dans le cas
de l’extraction des motifs fréquents, la découverte des motifs fréquents en un seul job
simplifié serait donc préférable. Nous proposons Parallel Absolute Top Down (PATD), un
algorithme parallèle d’extraction des motifs fréquents qui minimise ces échanges. PATD
rend le processus d’extraction des motifs fréquents dans les grandes bases des données
(au moins 1 Téraoctets de données) simple et compact. Son processus d’extraction est
constitué d’un seul job, ce qui réduit considérablement le temps d’exécution, les coûts de
communication et la consommation énergétique dans une plate-forme de calcul distribué.
Faisant appel à une stratégie adaptée et efficace de partitionnement des données nommée
IBDP (Item Based Data Partitioning), PATD est capable de fouiller chaque partition des
données indépendamment, en se basant sur un seuil de support minimum absolu au lieu
d’un seuil relatif. La performance de l’algorithme PATD a été évaluée avec des données du
monde réel. Nos résultats expérimentaux suggèrent que PATD est largement plus efficace
par rapport à d’autres approches.

Malgré les réponses que les algorithmes d’extraction des motifs fréquents fournissent
concernant les données, certaines relations cachées ne peuvent pas être facilement dé-
tectées dans les données. Cela est particulièrement le cas lorsque les données sont ex-
trêmement grandes et qu’il faut faire appel à une distribution massive. Dans ce cas, une
analyse minutieuse de l’information contenue dans les motifs, mesurée grâce à l’entropie,
peut donner plus d’explications et de détails sur les corrélations et les relations entre les
données. Cependant, explorer de très grandes quantités des données pour déterminer des
motifs informatifs présente un défi majeur dans la fouille des données. Ceci est particu-
lièrement le cas lorsque la taille des motifs à découvrir devient très grande.

Dans un deuxième temps, nous adressons donc le problème de la découverte des mo-
tifs informatifs maximales de taille k (miki ou "maximally informative k-itemsets) dans
les big data. Nous proposons PHIKS (Parallel Highly Informative K-ItemSet), un algo-
rithme pour leur extraction en environnement distribué. PHIKS rend le processus d’ex-
traction de miki dans des grandes bases de données simple et efficace. Son processus
d’extraction se résume à deux jobs. Avec PHIKS, nous proposons un ensemble de tech-
niques d’optimisation pour calculer l’entropie conjointe des motifs de différentes tailles.
Ceci permet de réduire le temps d’exécution du processus d’extraction de manière si-
gnificative. PHIKS a été évalué en utilisant des données massives de monde réel. Les
résultats de nos expérimentations confirment l’efficacité de notre approche par le pas-
sage à l’échelle de notre approche sur des motifs de grande taille, à partir de très grandes
volumes données.

Titre en français

Fouille de motifs en parallèle dans des environnements massivement distri-
bués
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Abstract

Since few decades ago, the volume of data has been increasingly growing. The rapid ad-
vances that have been made in computer storage have offered a great flexibility in storing
very large amounts of data.

The processing of these massive volumes of data have opened up new challenges in
data mining. In particular, frequent itemset mining (FIM) algorithms have shown poor
performances when processing large quantities of data. This is particularly the case when
i) the data tends to be very large and/or ii) the minimum support threshold is very low.

Despite the answers that frequent itemset mining methods can provide about the data,
some hidden relationships cannot be easily driven and detected inside the data. This is
specifically the case when the data is very large and massively distributed. To this end, a
careful analysis of the informativeness of the itemsets would give more explanation about
the existing correlations and relationships inside the data. However, digging through very
large amount of data to determine a set of maximally informative itemsets (of a given size
k) presents a major challenge in data mining. This is particularly the case when the size
k of the informative itemsets to be discovered is very high.

In this thesis, first we address the problem of frequent itemset mining in big data.
We call for specific data placement techniques in massively distributed environments to
improve the performance of parallel frequent itemset mining (PFIM) algorithms. We
thoroughly study and investigate the impact of combining such a frequent itemset algo-
rithm with a specific data placement strategy. We show that an adequate placement of
the data in a massively distributed environment along with a specific frequent itemset
mining algorithm can make a mining process either inoperative or completely significant.
We propose ODPR (Optimal Data-Process Relationship) our solution for fast mining of
frequent itemsets in MapReduce. Our method allows discovering itemsets from massive
data sets, where standard solutions from the literature do not scale. Indeed, in a massively
distributed environment, the arrangement of both the data and the different processes can
make the global job either completely inoperative or very effective. Our proposal has
been evaluated using real-world data sets and the results illustrate a significant scale-up
obtained with very minimum support which confirms the effectiveness of our approach.

Generally, in a massively distributed environment (e.g., MapReduce or Spark), min-
imizing the number of jobs results in a significant performance of the process being ex-
ecuted. In the case of frequent itemset mining problem, discovering frequent itemsets
in just one simple job would be preferable. To this end, we propose a highly scalable,
parallel frequent itemset mining algorithm, namely Parallel Absolute Top Down (PATD).
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PATD algorithm renders the mining process of very large databases (up to Terabytes of
data) simple and compact. Its mining process is made up of only one parallel job, which
dramatically reduces the mining runtime, the communication cost and the energy power
consumption overhead, in a distributed computational platform. Based on a clever and ef-
ficient data partitioning strategy, namely Item Based Data Partitioning (IBDP), the PATD
algorithm mines each data partition independently, relying on an absolute minimum sup-
port instead of a relative one. PATD has been extensively evaluated using real-world data
sets. Our experimental results suggest that PATD algorithm is significantly more efficient
and scalable than alternative approaches.

The second problem which we address in this thesis is discovering maximally infor-
mative k-itemsets (miki) in big data based on joint entropy. We propose PHIKS (Parallel
Highly Informative K-ItemSet) a highly scalable, parallel miki mining algorithm that
renders the mining process of large scale databases (up to Terabytes of data) succinct
and effective. Its mining process is made up of only two efficient parallel jobs. With
PHIKS, we provide a set of significant optimizations for calculating the joint entropies of
the miki having different sizes, which drastically reduces the execution time of the mining
process. PHIKS has been extensively evaluated using massive real-world data sets. Our
experimental results confirm the effectiveness of our proposal by the significant scale-up
obtained with high itemsets length and over very large databases.

Title in English

Parallel Itemset Mining in Massively Distributed Environments

Keywords

• Pattern Mining

• Data distribution
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Résumé étendu

Introduction

Depuis quelques années, il y a eu une forte augmentation dans le volume des données
produites et stockées. Les données proviennent de plusieurs sources, telles que les réseaux
des capteurs, les réseaux sociaux, etc. Le traitement de ces données, en particulier avec des
méthodes de fouille de données, aide à comprendre, interpréter et tirer des conclusions à
propos divers phénomènes du monde réel (e.g., en science naturelle, sociale, économique
et politique, etc.).

Pour traiter des données aussi volumineuses, une solution consiste à les distribuer sur
plusieurs machines et les traiter en parallèle. En fouille de données, cette solution exige
une révision profonde des différents algorithmes, pour qu’ils deviennent capables de trai-
ter les données massives en parallèle. La fouille des données représente un ensemble de
techniques et méthodes pour analyser et explorer les données. L’extraction de motifs fré-
quents présente une variante de ces techniques. Il permet de déterminer les motifs qui se
répètent fréquemment dans la base des données. La fréquence de co-occurrence des va-
riables d’un motif présente une mesure d’information qui permet de déterminer l’utilité
d’un tel motif en se basant sur sa fréquence d’apparition dans la base des données. L’ex-
traction des motifs fréquents connaît de nombreux domaines d’applications. Par exemple,
en fouille de texte [1] (comme ce sera illustré dans les chapitres 3 et 4), une technique
d’extraction des motifs fréquent peut être utilisée pour déterminer les mots qui se ré-
pètent fréquemment dans une grande base des données. En commerce électronique, une
telle technique d’extraction des motifs fréquents peut être utilisée pour recommander des
produits comme des livres, des vêtements, etc.

Toutefois, dans certaines applications, analyser les données en se basant sur la fré-
quence de co-occurrences des variables comme une mesure d’information n’aboutit pas
forcément à des résultats pertinents. La fréquence de co-occurrences des variables n’aide
pas à capturer tous les motifs intéressants et informatifs dans la base des données. En
particulier, c’est le cas quand les données sont creuses ou qu’elles répondent à une dis-
tribution large. Dans de tels cas, d’autres mesures d’information des motifs peuvent être
prises en compte. une mesure d’information intéressante pour les motifs est l’entropie
(plus précisément l’entropie pour une variable et l’entropie conjointe pour un motif, qui
est un ensemble de variables). Le motif de taille k qui a une valeur d’entropie maximale
parmi les autres motifs (de même taille k), serait considéré comme un motif discriminant
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de taille k (miki, ou maximally informative k-itemset). Les items qui composent un tel
motif discriminant sont faiblement corrélés entre eux, mais si on les considère tous en-
semble, ces items du motif divisent les enregistrements de la base des données de manière
optimale. Les motifs discriminants ont des applications dans des domaines différents.
Par exemple, en classification, ils peuvent être utilisés pour déterminer les attributs in-
dépendants les plus pertinents dans la base d’apprentissage. Dans cet exemple, un motif
discriminant serait un motif (ensemble d’attributs indépendants ou ensemble d’items) qui
a une valeur d’entropie maximale par rapport aux autres motifs ayant la même taille k

dans la base d’apprentissage.
Avec la disponibilité des modèles de programmation performants comme MapReduce

[2] ou Spark [3], le traitement des données de masses devient une tache facile à accomplir.
Cependant, la plupart des algorithmes parallèles de la fouille des données souffrent encore
de plusieurs problèmes. En particulier, les algorithmes parallèles d’extraction des motifs
fréquents souffrent des mêmes limitations que leurs implémentation séquentielle. Ces dif-
férentes limitations sont fortement liées à la logique et aux principes de fonctionnement
de chaque algorithme. Par exemple, l’implémentation centralisée (i.e., séquentielle) de
l’algorithme Apriori [4] demande plusieurs accès au disque. Une version parallèle de cet
algorithme, avec une implémentation directe qui considère les jobs MapReduce comme
une interface remplaçant les accès au disque, présenterait les mêmes inconvénients (i.e.,
la multiplication des jobs pour valider les différentes générations d’itemsets serait un gou-
lot d’étranglement). Enfin, bien que l’algorithme FP-Growth [5], a été considéré comme
l’algorithme le plus efficace pour l’extraction des motifs fréquents, avec un très faible
support minimum et très grand volume des données, sa version parallèle PFP-Growth [6]
n’est pas capable de passer à l’échelle à cause de sa consommation en mémoire.

De la même manière, les algorithmes d’extraction des motifs discriminants n’échappent
pas à cette difficulté d’adaptation du centralisé vers le parallèle. L’extraction des miki en
parallèle n’est pas une tâche facile. Le calcul parallèle de l’entropie est coûteux en rai-
son du grande nombre d’accès au disque dont il a besoin. Par exemple, considérons une
version parallèle de l’algorithme ForwardSelection [7], pour déterminer les miki, For-
wardSelection aurait besoin de k jobs en parallèle.

En plus des problèmes de traitement liés à la découverte de motifs, dans des envi-
ronnements massivement distribués, la quantité de données transférées peut affecter la
performance globale. La conception d’algorithmes d’extraction des motifs fréquents ou
discriminants en parallèle doit alors considérer cette question, pour optimiser le coût de
communication des données dans les environnements distribués.

Dans la suite, nous présentons des exemples de problèmes qu’un algorithme parallèle
de fouille des données pourrait avoir quand il traite des grandes quantités des données. En
particulier, nous nous concentrons sur les algorithmes d’extraction des motifs fréquents
et les algorithmes d’extraction des miki.

Example 1. Considérons un support minimum très petit, supposons que nous voulons
déterminer les motifs fréquents dans une base de données D très large en utilisant une
version parallèle de l’algorithme Apriori. Le nombre de jobs MapReduce serait propor-
tionnel à la taille de motif candidat le plus long dans la base des données D. En général,



xi

dans un environnement massivement distribué, cette approche qui consiste à un scan mul-
tiple de D aboutit à une mauvaise performance. En particulier, le nombre des données
(les motifs candidats) transférées entre les mappers et les reducers serait très grand.

Maintenant, considérons une version parallèle de l’algorithme FP-Growth pour ex-
traire les motifs fréquents dans la base des données D. Avec le même support (très petit)
et une recherche exhaustive de motifs fréquents (le paramètre k prend une valeur infini),
l’algorithme souffrirait de plusieurs limitations. La taille de l’arbre FP-Tree pourrait être
très grande et donc dépasser la capacité de la mémoire. Si n’est pas le cas, la quantité des
données transférées serait très grande ce qui affecte la performance globale du processus
d’extraction des motifs fréquents.

Example 2. Dans cet exemple, supposons que nous voulons déterminer les motifs infor-
matifs maximales de taille k. Considérons une version parallèle de l’algorithme Forward-
Selection. Selon la taille k des motifs à découvrir, l’algorithme s’exécuterait en k jobs de
MapReduce, offrant une performance très pauvre. De plus, le nombre de motifs candidats
serait très grand. Donc, l’extraction parallèle des motifs informatifs maximales de taille
k tombe dans les mêmes limitations et restrictions de celles de l’extraction parallèle des
motifs fréquents.

État de L’art

Extraction Parallèle des Motifs Fréquents

Le problème d’extraction des motifs fréquents a été d’abord introduit dans [8]. Dans cette
thèse, nous adoptons les notations utilisées dans [8].

Definition 1. Soit I = {i1, i2, . . . , in} un ensemble qui contient des éléments appelés
items. Un Motif X est un ensemble d’items de I, i.e. X ⊆ I. La taille (size) de X est
le nombre d’items qu’il contient. Une transaction T est un ensemble d’items telle que
T ⊆ I et T Ó= ∅. Une transaction T supporte un item x ∈ I si x ∈ T . Une transaction

T supporte un motif X ⊆ I si elle supporte tous les item x ∈ X , i.e. X ⊆ T . Une base
des données (database) D est un ensemble des transactions. Le support d’un motif

X dans la base des données D est égal au nombre totale de transactions T ∈ D qui
contiennent X . Un motif X ⊆ I est dit fréquent (frequent) dans D si son support est
supérieur ou égal à un seuil de support minimum (MinSup). Un motif fréquent maximal
est un motif fréquent qui n’est pas inclus dans aucun autre motif fréquent.

une approche naïve pour déterminer tous les motifs fréquents dans une base des don-
nées D consiste simplement à déterminer le support (support) de toutes les combinaisons
des items dans D. Ensuite, garder seulement les items/motifs qui satisfont un seuil de sup-
port minimum (MinSup). Cependant, cette approche est très coûteuse, car elle impose
plusieurs accès à la base des données.

Example 3. considérons la base de données D qui contient 7 transactions comme illustré
par la Figure 2.1. Avec un seuil de support minimum égale à 7, il n’y a pas d’items
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FIGURE 1 – Base de données D

fréquents (par conséquent, pas de motifs fréquents). Par contre, avec un seuil de support
minimum égal à 5, il y a cinq motifs fréquents : {(B), (C), (E), (BE), (CE)}

Dans la littérature, plusieurs algorithmes ont été proposés pour résoudre le problème
d’extraction des motifs fréquents [4], [9], [5] , [10], [11], [12], [13], etc. Malgré la dif-
férence entre leurs principes et logiques, l’objectif de ces algorithmes est d’extraire des
motifs fréquents dans une base des données D en respectant un seuil de support minimum
(MinSup).

Dans ce qui suit, nous focalisons notre étude sur les algorithmes parallèles d’extraction
des motifs fréquents dans les environnements massivement distribués. En particulier, on
limite notre étude sur les approches existantes qui seront en relation avec ce travail de
thèse.

Apriori : Dans des environnements massivement distribués, une version parallèle de
l’algorithme Apriori (i.e., Apriori Parallèle) [14] a montré une performance meilleure que
sa version centralisée. Cependant, malgré le parallélisme et la disponibilité de plusieurs
ressources, Apriori souffre des mêmes limitations trouvées dans sa version centralisée.
Dans un environnement massivement distribué comme MapReduce, en utilisant Apriori,
le nombre de jobs nécessaire pour extraire les motifs fréquents est proportionnel à la
taille de motif le plus long dans la base des données. Ainsi, avec un seuil de support
minimum très petit et de très grand volume des données, la performance d’Apriori en
distribué n’est pas satisfaisante. C’est du au fait que le principe de fouille d’apriori est
basé sur la génération des motifs candidats qui doivent ensuite être testés, ce qui demande
des accès multiples à la base des données. En outre, dans un environnement massivement
distribué, Apriori demande un grand nombre de transferts de données entre les mappers
et les reducers, et particulièrement lorsque le seuil de support minimum est très petit.

SON : Contrairement à l’algorithme Apriori [4], l’algorithme SON [14], est plus adapté
à la distribution. Par exemple, en MapReduce, une version parallèle de SON consiste en
deux jobs. Dans le premier job, la base des données est divisée sous forme de partitions
des données, chaque mapper fouille une partition en se basant sur un seuil de support
minimum local et en utilisant un algorithme d’extraction des motifs fréquents spécifique
(e.g., Apriori). Les mappers envoient ces résultats (i.e., les motifs qui sont localement
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fréquents) aux reducers. Les reducers agrègent les résultats et font la somme des valeurs
de chaque clé (i.e., motif) puis écrivent les résultats dans HDFS (Hadoop distributed file
system) le système de fichiers distribué de Hadoop. Dans le deuxième job, les motifs qui
sont globalement fréquent sont distingués de ceux qui ne sont que localement fréquents.
Pour cela, SON vérifie la fréquence d’occurrence de chaque motif qui est localement
fréquent (résultat du premier job) dans l’ensemble total des données D.

En comparant la version parallèle de SON avec celle de l’algorithme Apriori, nous
remarquons une grande différence. Avec SON, la fouille des motifs fréquents se fait en
deux accès à la base des données ce qui minimise considérablement les coûts d’accès à la
base des données.

Suivant le principe et la logique de fouille de l’algorithme SON, la performance glo-
bale de sa version parallèle dépend fortement de son premier job. Par exemple, quand une
partition (i.e., mapper) contient plusieurs transactions similaires (elles partagent de nom-
breux items en commun), alors le nombre de motifs qui sont fréquents localement dans
cette partition est élevé. Dans ce cas, le temps d’exécution d’Apriori sur chaque mapper
serait élevé (les fréquents sont longs et nombreux), ce qui impacte la performance globale
de SON. En effet, pour passer au deuxième job, il faudra attendre que ce mapper très long
finisse d’extraire les itemsets localement.

CDAR : Dans la littérature sur la fouille des données, nous ne trouvons pas de version
parallèle de l’algorithme CDAR (Cluster Decomposition Association Rule Algorithm)
[13]. Pourtant, une version parallèle de cet algorithme, associée à un partitionnement
adapté, pourrait avoir une performance meilleure que d’autres alternatives comme les
versions parallèles d’apriori et SON. Le principe de fouille de CDAR ne se base pas sur
une approche de génération des motifs candidats comme Apriori par exemple. Avec un
seuil de support minimum très petit et des partitions des données homogènes, CDAR
donne de bonnes performances. C’est un point que nous étudierons dans cette thèse.

FP-Growth : PFP-Growth est une version parallèle de l’algorithme FP-Growth, propo-
sée dans [6]. PFP-Growth est considéré comme un des algorithmes parallèles d’extraction
des motifs fréquents les plus performants dans un environnement massivement distribué.
Dans son premier job, PFP-Growth détermine les items qui sont fréquents dans la base
des données, ce qui lui permet de construire la F-List (la liste des items fréquents). Dans
le deuxième job, l’algorithme construit un arbre FP-tree à partir de la F-List obtenue
dans le premier job. Cet arbre sera ensuite fouillé dans les reducers (chaque reducer étant
chargé de travailler sur une branche). Le processus de fouille de PFP-Growth se déroule
en mémoire, ce qui explique ses bonnes performances.

Malgré ses avantages, avec un seuil de support minimum très petit et de grands vo-
lumes des données, PFP-Growth ne passe pas à l’échelle. Ce comportement de PFP-
Growth sera mieux illustré par nos expérimentations dans les chapitres 3 et 4. La raison
de cette limitation de PFP-Growth est justement liée au fait qu’il travaille en mémoire, ce
qui rend les performances dépendantes des capacités mémoire de la machine.
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FIGURE 2 – Base des Données Binaire D′

Features Documents
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

A 1 1 1 1 1 0 0 0 0 0
B 0 1 0 0 1 1 0 1 0 1
C 1 0 0 1 0 1 1 0 1 0
D 1 0 1 1 1 1 1 1 1 1
E 1 1 1 1 1 1 1 1 1 1

TABLE 1 – Features in The Documents

Extraction Parallèle des Motifs Informatifs

Dans un environnement massivement distribué et avec très grand volume des données, la
découverte des motifs informatifs maximales de taille k (miki) est un défi conséquent. Les
approches conventionnelles, qui ont été proposées pour les environnements centralisés,
doivent être soigneusement adaptées quand on veut les paralléliser. Malheureusement,
dans la littérature, on ne trouve pas de solutions pour l’extraction de miki en parallèle.
Ainsi, dans cette section, nous limitons notre discussion à l’algorithme ForwardSelection
[7].

Definition 2. Soit F = {f1, f2, . . . , fn} un ensemble qui contient des variables, éga-
lement appelées features. Un motif X est un ensemble de variable issues de F , i.e.,
X ⊆ F . La taille d’un motif X est égale au nombre de variables qu’il contient. Une
transaction T est un ensemble d’éléments tels que T ⊆ F et T Ó= ∅. Une base de

données D est un ensemble de transactions.

Definition 3. Dans une base de données D, l’entropie [15] d’une variable i mesure
la quantité attendue d’information nécessaire pour spécifier l’état d’incertitude ou de
désordre de la variable i dans D. Soit i une variable dans D, et P (i = n) la probabilité
que i prenne la valeur n dans D (nous considérons le cas des données catégoriques i.e.,
la valeur est ’1’ si l’objet contient la variable et ’0’ sinon). L’entropie de la variable i est
donnée par

H(i) = −(P (i = 0)log(P (i = 0)) + P (i = 1)log(P (i = 1)))
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où le logarithme est en base 2.

Definition 4. La projection binaire d’un motif X dans une transaction T (proj(X, T ))
est un ensemble de taille |X| où chaque item (i.e., variable) de X est remplacé par ’1’ s’il
apparaît dans T et ’0’ sinon. Le comptage de projection de X dans la base de données D
est l’ensemble des projections de X dans chaque transaction de D, où chaque projection
est associée avec son nombre d’occurrences dans D.

Example 4. Considérons le Tableau 2.1. La projection de (B, C, D) dans d1 est (0, 1, 1).
Les projections de (D, E) dans la base de données de Tableau 2.1 sont (1, 1) avec 9
occurrences et (0, 1) avec une seule occurrence.

Definition 5. Soient un motif X = {x1, x2, . . . , xk} et un tuple de valeurs binaires
B = {b1, b2, . . . , bk} ∈ {0 1}k. L’entropie conjointe de X est définie comme suit :

H(X) = −
∑

B∈{0,1}|k|

J × log(J)

où J= P (x1 = b1, . . . , xk = bk) est la probabilité conjointe de X = {x1, x2, . . . , xk}.

Étant donnée une base de données D, l’entropie conjointe H(X) d’un motif X dans
D est proportionnelle à sa taille k. i.e., l’augmentation de la taille de X implique une
augmentation dans sa valeur d’entropie conjointe H(X). Une augmentation de la valeur
de H(X), l’entropie du motif X , correspond à une augmentation de l’information qu’il
contient. Pour simplifier, dans la suite, nous utiliserons le terme entropie pour désigner
l’entropie conjointe d’un motif X .

Example 5. Considérons la base de données du Tableau 2.1. L’entropie conjointe de
(D, E) est H(D, E) = − 9

10
log( 9

10
) − 1

10
log( 1

10
) = 0.468. Les quantités 9

10
et 1

10
repré-

sentent (respectivement) les probabilités jointes des projections (1, 1) and (0, 1) (respec-
tivement) dans la base de données.

Definition 6. Soit un ensemble F = {f1, f2, . . . , fn} de variables, un motif X ⊆ F
de taille k est un motif informatif maximal de taille k (ou maximally informative k-
itemsetmiki) si, pour tout motif Y ⊆ F de taille k, H(Y ) ≤ H(X). Ainsi, un motif infor-
matif maximal de taille k est un motif qui a la plus grande valeur d’entropie conjointe.

Definition 7. Étant donnée une base de données D qui contient un ensemble de n va-
riables F = {f1, f2, . . . , fn}. Soit k un entier naturel, le problème de la découverte du
miki dans D consiste à déterminer un sous ensemble F ′ ⊆ F de taille k, i.e., |F ′| = k,
ayant la plus grande valeur d’entropie conjointe dans D, i.e., ∀F ′′ ⊆ F ∧ |F ′′| =
k, H(F ′′) ≤ H(F ′).
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Parallel ForwardSelection Algorithm : L’algorithme ForwardSelection utilise une ap-
proche par niveaux (du type "générer-élaguer" où des candidats de taille j +1 sont propo-
sés à partir des motifs de taille j) pour déterminer les miki de taille k. Ainsi, une version
parallèle de cet algorithme aurait besoin de k jobs pour s’exécuter (un job par génération
de candidat). Avec très grand volume des données et une grande valeur de k, la perfor-
mance de ForwardSelection serait alors mauvaise. Comme pour l’extraction de motifs
fréquents, cela s’explique par les accès multiples à la base des données, par la génération
des miki candidats et par la phase de comparaison des valeurs des entropies à chaque étape
(par exemple dans un reducer qui se chargerait de récolter et valider les résultats locaux).
En outre, une version parallèle de ForwardSelection souffrirait d’autres limitations. En
particulier, le taux des données échangées entre les mappers et les reducers serait très
grand ce qui impacte la performance globale de processus d’extraction des miki.

Split A B C D
S1 1 0 1 0

1 0 1 0
1 0 0 0
1 1 0 0
1 1 1 0

S2 0 0 1 0
0 0 0 0
0 0 0 1

TABLE 2 – Partitions des Données

Example 6. Considérons la base des données D′ illustrée par la Figure 2.5. Supposons
que nous voulons déterminer les miki de taille k égale à 2 en utilisant une version pa-
rallèle de ForwardSelection. Supposons que la base des données D′ est divisée en deux
partitions (splits) comme illustré par le Tableau 2.2. Chaque partition des données (res-
pectivement S1 et S2) est traitée par un mapper (respectivement m1 and m2). Dans le
premier job, chaque mapper traite sa partition des données et envoie chaque item comme
clé et sa projection (i.e., combinaison des ’0’ et ’1’) comme valeur. Par exemple, m1 en-
voie (A, 1) 5 fois au reducer. m2 envoie (A, 0) 3 fois au reducer (ici, on peut utiliser une
simple optimisation qui consiste à envoyer seulement les items qui apparaissent dans les
transactions, avec projections des ’1’). Puis, le reducer prend en charge le calcul des en-
tropies des items et détermine l’item qui a l’entropie la plus forte. Dans un deuxième job,
l’item avec l’entropie la plus forte est combiné avec chaque item restant dans la base des
données pour construire des miki candidats de taille k égale à 2. Ensuite, la même proces-
sus est lancé pour déterminer le miki de taille 2. Dans cet exemple, le résultat de premier
job sera {C} (H(C) = 1) et le résultat du second job sera {C A} (H(CA) = 1.905). Ce
processus d’extraction des miki continue jusqu’à la détermination des miki de taille k.
Dans un environnement MapReduce, ce processus utiliserait donc k jobs, ce qui le ren-
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drait très coûteux, en particulier quand k tend vers de grandes valeurs et que le volume
des données est grand.

Contributions

L’objectif de cette thèse est de développer des nouvelles techniques pour l’extraction pa-
rallèle des motifs fréquents et miki dans des environnements massivement distribués. Nos
contributions sont comme suivantes.

Optimisation de la relation données-processus pour accélérer l’extraction des motifs
fréquents. Dans ce travail, nous étudions l’efficacité et l’influence d’un processus pa-
rallèle d’extraction des motifs fréquents avec des stratégies spécifique de placement des
données dans MapReduce. En étudiant différent scénarios, nous proposons ODPR (Op-
timal Data-Process Relationship), notre solution pour l’extraction rapide des motifs fré-
quents dans MapReduce. Notre méthode, permet la découverte des motifs fréquents dans
les données massives, tandis que les autres approches dans la littérature ne passent pas
à l’échelle. En effet, dans un environnement massivement distribué, l’organisation des
données avec des différents une combinaison mal étudiée d’un placement des données
particulier et d’un processus spécifique pour l’extraction des motifs fréquents pourrait
rendre le processus d’extraction très peu performant.

Partitionnement des données pour accélérer l’extraction des motifs fréquents. Dans
ce travail, nous proposons PATD (Parallel Absolute Top Down), un algorithme parallèle
pour l’extraction des motifs fréquents. PATD rend le processus d’extraction des motifs
fréquents dans les données massives (au moins 1 Téraoctet de données) simple et com-
pact. PATD fouille une telle base des données en un seul job, ce qui réduit significative-
ment le temps d’exécution, le coût de communication des données et la consommation
énergétique dans les plates-formes de calcul distribué. En se basant sur une méthode de
partitionnement des données nommée IBDP (Item Based Data Partitioning), PATD fouille
chaque partition des données d’une façon indépendante en utilisant une seuil de support
minimum absolu à la place d’un support minimum relatif.

Extraction rapide des miki dans des données massivement distribuées. Dans ce tra-
vail, nous étudions le problème de l’extraction des miki en parallèle, en se basant sur le
calcul d’entropie. Nous proposons PHIKS (Parallel Highly Informative K-ItemSet), un
algorithme parallèle pour l’extraction des miki. Avec PHIKS, nous fournissons plusieurs
techniques d’optimisations de calcul de l’entropie, pour améliorer l’extraction des miki.
Ces différents techniques réduisent considérablement les temps d’exécution, les taux de
communication des données, et la consommation énergétique dans les plates-formes de
calcul distribué.
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Pour toutes ces contributions, nos méthodes ont été testées sur des données massives
issues du monde réel. Ces données brutes représente parfois plus d’un Téra-octet de texte à
analyser (aucune image). En distribuant ces données de manière massive pour les analyser,
nous montrons que :

• les méthodes de l’état de l’art ne passent pas à l’échelle (et quand l’état de l’art ne
propose aucune méthode, nous comparons nos approches à une implémentation en
parallèle directe des méthodes centralisées).

• nos approches permettent des gains considérables en temps de réponse, en commu-
nications et en consommation d’énergie.
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International Conference on, pages 359–368, Nov 2015.

• Saber Salah, Reza Akbarinia, and Florent Masseglia. Data Partitioning for Fast Mi-
ning of Frequent Itemsets in Massively Distributed Environments. In DEXA’2015 :
26th International Conference on Database and Expert Systems Applications, Va-
lencia, Spain, September 2015.

• Saber Salah, Reza Akbarinia, and Florent Masseglia. Optimizing the Data-Process
Relationship for Fast Mining of Frequent Itemsets in MapReduce. In MLDM’2015 :
International Conference on Machine Learning and Data Mining, volume 9166 of
LNCS, pages 217–231, Hamburg, Germany, July 2015.

Organisation de la Thèse

La suite de cette thèse est organisé ainsi :

• Dans le chapitre 2, nous étudions l’état de l’art. Ce chapitre est divisé en trois sec-
tions : Dans la Section 2.1, nous étudions les techniques utilisées dans la littérature
pour la découverte et l’exploration des connaissances dans les environements cen-
tralisés. En particulier, nous focalisons notre étude sur deux sujets : l’extraction des
motifs fréquents et l’extraction des motifs informatifs maximaux de taille k. Dans
la Section 2.2, nous introduisons les techniques et les méthodes récentes qui ont été
proposées pour traiter les données massives. Dans la Section 2.3, nous étudions les
approches parallèles qui ont été proposées dans la littérature pour l’extraction des
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motifs fréquents ce qui sera le sujet des chapitres 3 et 4. Enfin, la découverte des
motifs informatifs maximales de taille k sera le thème de chapitre 5.

• Dans le chapitre 3, nous étudions le problème d’extraction des motifs fréquents
dans des bases des données de grands volumes et proposons notre contribution pour
ce sujet. Dans la Section 3.2, nous proposons P2S notre algorithme parallèle pour
l’extraction des motifs fréquents. Dans la Section 3.3, nous évaluons l’efficacité
de notre approche en utilisant des données massives de monde réel. Finalement,
dans la Section 3.4, nous concluons cette partie du travail et nous discutons des
améliorations potentielles.

• Dans le chapitre 4, nous adressons le problème d’extraction des motifs fréquents.
Dans la Section 4.2, nous proposons l’algorithme PATD (Parallel Absolute Top
Down) et nous expliquons son principe de fonctionnement. Dans la Section 4.3,
nous présentons des expérimentations permettant d’évaluer notre approche en uti-
lisant des données massives du monde réel. Finalement, dans la Section 4.4, nous
résumons et concluons cette partie de notre travail.

• Dans le chapitre 5, nous étudions le problème d’extraction des motifs informatifs
de taille k dans les données massives. Dans la Section 5.3, nous proposons PHIKS
(Parallel Highly Informative K-ItemSet), notre algorithme parallèle pour l’extrac-
tion des miki. Dans la Section 5.4, nous validons notre approche en utilisant des
données massives du monde réel. Dans la Section 5.5, nous concluons cette partie
de notre travail.

Conclusion

Dans cette thèse, nous avons abordé deux problème principaux : l’extraction parallèle
des motifs fréquents et l’extraction parallèle des motifs informatifs maximales de taille
k. Dans ce chapitre, nous avons discuté les problèmes reliés au processus d’extractions
des motifs fréquents et des miki, en étudiant les approches proposées dans l’état de l’art.
Les avantages et les limitations de ces processus d’extraction des motifs sont reliés par-
ticulièrement aux accès multiples à la base des données et la capacité de la mémoire.
Typiquement, ces différents limitations présentent un défi majeur quand le volume des
données est grand et que le support minimum est très petit ou que les motifs à découvrir
sont de grande taille.
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Chapter 1

Introduction

1.1 Context

Since few decades ago, there has been a high increase in the volumes of data. For instance,
the web log data from social media sites such as Twitter produce over one hundred ter-
abytes of raw data daily [16]. The data comes from everywhere such as sensor networks
[17], social networks [18], etc. The storage of these large amounts of data is less chal-
lenging than their processing. The data can be distributed and stored in more than one
commodity machine. Then, processing these data is carried out in parallel.

Data mining [19], [20] wrappers a set of methods and techniques that allow for an-
alyzing and exploring these data. Frequent itemset mining (FIM for short) presents a
variant of these techniques with the aim to determine the itemsets (or, features, patterns,
or terms) that frequently co-occur together in the data. The co-occurrence frequency is a
measure of informativeness (i.e., interestingness) that helps to measure the utility of the
itemsets based on their number of co-occurrences in the data.

FIM has a large range of applications in various domains. For instance, in text mining
[1], as it will better illustrated in chapter 3 and chapter 4 of this thesis, FIM can be used
to determine the co-occurrence number of words in a very large database. In e-commerce
[21], FIM can be used to recommend products such as books, clothing, etc.

In the literature, there have been several different proposed approaches for mining
frequent itemsets [22], [5] , [10], [11], [23], etc.

However, for some specific application domains, the co-occurrence frequency mea-
sure fails to capture and determine all interesting or informative itemsets in the data. This
is particularly the case when the data is sparse and calling for large-scale distribution.
To this end, other informativeness measures should be taken into account. One of these
interesting measures is the joint entropy of the itemsets. In particular, the itemsets with
the maximum joint entropy would be informative. i.e., the items that constitute such an
informative itemset have a weak relationship between each other, but together maximally
shatter the data. The informative itemsets based on joint entropy measure are of significant
use in various domains. For instance, in classification [24], among all available features
(i.e., independent attributes), we always prefer a small subset of features (featureset or

1
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itemset) that contains highly relevant items to the classification task. A maximally infor-
mative k-itemset (miki for short) is the informative itemset of size k that has maximum
joint entropy.

Recently, with the availability of powerful programming models such as MapReduce
[2] or Spark [3], the processing of massive amounts of data has become handy. However,
most of the parallel data mining algorithms still suffer from several drawbacks.

Parallel frequent itemset mining (PFIM for short) algorithms have brought the same
limitations as in their sequential implementations. These limitations have been primar-
ily related to their core mining principle. For instance, the centralized (i.e., sequential)
implementation of the popular Apriori [4] algorithm for mining the frequent itemsets,
requires high disc access. Likewise, a parallel version of the Apriori algorithm would
require multiple scans of the database, thus a multiple parallel jobs. Although FP-Growth
[5] algorithm has been considered as one of the most powerful algorithms for mining fre-
quent itemsets, with very low minimum support and very large amount of data, its parallel
version, PFP-Growth [6] cannot scale due to memory issues.

Similarly, the parallel mining of the itemsets based on the joint entropy as an informa-
tiveness measure, does not escape the rule from suffering from various drawbacks as for
the frequent itemset mining. Mining the miki in parallel is not trivial. This is because the
parallel computation of the joint entropy is costly due to the high access to the disc. For
instance, a parallel version of the popular ForwardSelection [7] algorithm would require
several parallel jobs to determine the miki.

In addition to the regular issues that a parallel data mining algorithm may have when
processing massive amounts of data, in massively distributed environments, the quantity
of transferred data may impact the whole mining process. Thus, a careful parallel design
of these algorithms should be taken into account.

Lets illustrate the potential issues and problems that may happen for a parallel mining
algorithm when processing very large amounts of data by using the following examples.

Example 7. Suppose we are given a very low minimum support, and we want to determine
the frequent itemsets in a very large database D using a parallel version of the popular
Apriori algorithm. The required number of the MapReduce jobs would be proportional
to the size of the most lengthy candidate itemset. In a massively distributed environment,
this would result in a very poor performance since the transferred data (e.g., candidate
itemsets) between the mappers and the reducers would be very high. Consider a parallel
version of FP-Growth for mining the database D. With very low minimum support and
an exhaustive search of the frequent itemsets (i.e., the parameter k set to infinity), the
algorithm would suffer from various limitations. First, the FP-Tree may not fit into the
memory. Second, if it is not the case, the transferred data would be very high which would
highly impact the mining process.

Example 8. Suppose we want to determine the maximally informative k-itemsets in par-
allel. Consider a parallel version of the popular ForwardSelection algorithm. Depending
on the size k of the miki to be discovered, the algorithm would perform k MapReduce
jobs. This would result in a very poor performance. Beside the multiple database scans,
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the number of itemset candidates would be very high. Thus, the parallel mining of miki
falls in the same limitations and restrictions of those of the parallel mining of frequent
itemsets.

1.1.1 Contributions

The objective of this thesis is to develop new techniques for parallel mining of frequent
itemsets and miki in massively distributed environments. Our main contributions are as
follows.

Optimizing the Data-Process Relationship for Fast Mining of Frequent Itemsets in
MapReduce. In this work, we study the effectiveness and leverage of specific data
placement strategies for improving the parallel frequent itemset mining (PFIM) perfor-
mance in MapReduce. By offering a clever data placement and an optimal organization
of the extraction algorithms, we show that the itemset discovery effectiveness does not
only depend on the deployed algorithms. We propose ODPR (Optimal Data-Process Re-
lationship), a solution for fast mining of frequent itemsets in MapReduce. Our method
allows discovering itemsets from massive data sets, where standard solutions from the
literature do not scale. Indeed, in a massively distributed environment, the arrangement
of both the data and the different processes can make the global job either completely
inoperative or very effective. Our proposal has been evaluated using real-world data sets
and the results illustrate a significant scale-up obtained with very low MinSup, which
confirms the effectiveness of our approach.

Data Partitioning for Fast Mining of Frequent Itemsets in Massively Distributed
Environments. In this work, we propose a highly scalable, parallel frequent itemset
mining (PFIM) algorithm, namely Parallel Absolute Top Down (PATD). PATD algorithm
renders the mining process of very large databases (up to Terabytes of data) simple and
compact. Its mining process is made up of only one parallel job, which dramatically
reduces the mining runtime, the communication cost and the energy power consump-
tion overhead, in a distributed computational platform. Based on a clever and efficient
data partitioning strategy, namely Item Based Data Partitioning (IBDP), PATD algorithm
mines each data partition independently, relying on an absolute minimum support instead
of a relative one. PATD has been extensively evaluated using real-world data sets. Our ex-
perimental results suggest that PATD algorithm is significantly more efficient and scalable
than alternative approaches.

Fast Parallel Mining of Maximally Informative k-Itemsets in Big Data. In this work,
we address the problem of parallel mining of maximally informative k-itemsets (miki)
based on joint entropy. We propose PHIKS (Parallel Highly Informative K-ItemSet) a
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highly scalable, parallel miki mining algorithm. With PHIKS, we provide a set of signifi-
cant optimizations for calculating the joint entropies of miki having different sizes, which
drastically reduces the execution time, the communication cost and the energy consump-
tion, in a distributed computational platform. PHIKS has been extensively evaluated using
massive real-world data sets. Our experimental results confirm the effectiveness of our
proposal by the significant scale-up obtained with high itemsets length and over very large
databases.

1.1.2 Publications

• Saber Salah, Reza Akbarinia, and Florent Masseglia. A Highly Scalable Parallel
Algorithm for Maximally Informative k-Itemset Mining. In KAIS: International
Journal on Knowledge and Information Systems (accepted)

• Saber Salah, Reza Akbarinia, and Florent Masseglia. Fast Parallel Mining of Max-
imally Informative k-itemsets in Big Data. In Data Mining (ICDM), 2015 IEEE
International Conference on, pages 359–368, Nov 2015.

• Saber Salah, Reza Akbarinia, and Florent Masseglia. Data Partitioning for Fast
Mining of Frequent Itemsets in Massively Distributed Environments. In DEXA’2015:
26th International Conference on Database and Expert Systems Applications, pages
303–318, Valencia, Spain, September 2015.

• Saber Salah, Reza Akbarinia, and Florent Masseglia. Optimizing the Data-Process
Relationship for Fast Mining of Frequent Itemsets in MapReduce. In MLDM’2015:
International Conference on Machine Learning and Data Mining, volume 9166 of
LNCS, pages 217–231, Hamburg, Germany, July 2015.

1.1.3 Road Map

The rest of the thesis is organized as follows.
In chapter 2, we review the state of the art. It is divided into three main sections:

In Section 2.1, we give a general overview on the main knowledge discovery techniques
in centralized environment. In particular, we deal with two techniques: frequent itemset
mining, maximally informative k-itemset. In Section 2.2, we introduce the cutting-edge
solutions and techniques that have been used to process massive amounts of data. In
Section 2.3, we deal with the basics, recently used parallel techniques for discovering
knowledge from large databases. Specifically, we focus on three problems: Parallel fre-
quent itemset mining, which will be the subject of chapter 3 and chapter 4. Parallel mining
of maximally informative k-itemset, which will be the focus of chapter 5.

In chapter 3, we deal with the problem of frequent itemset mining in large databases.
In Section 3.2, we propose our solution Parallel Two Steps (P2S) algorithm and we thor-
oughly depict its core mining process. In Section 3.3, we asses the efficiency of our
proposed approach by carrying out extensive experiments with very large real-world data
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sets. Finally, in Section 3.4, we summarize our work and we discuss potential further
improvements.

In chapter 4, we address the problem of frequent itemset mining in very large databases.
In Section 4.2, we propose our algorithm Parallel Absolute Top Down (PATD) and we
thoroughly explain its mining principle. In Section 4.3, we validate our proposal through
extensive, different experiments using very large real-world data sets. Eventually, in Sec-
tion 4.4, we conclude our work.

In chapter 5, we deal with the problem of mining maximally k-itemsets in big data. In
Section 5.3, we propose our PHIKS algorithm for miki parallel discovery. We thoroughly
detail its mining principle. In Section 5.4, we validate our approach by carrying out
various, extensive experiments using very massive real-world data sets. Finally, in Section
5.5, we summarize our work.





Chapter 2

State Of The Art

In this chapter, we introduce the basics and the necessary background of this thesis. First,
we present the general concept of knowledge discovery (KD) [25]. In particular, we in-
troduce the problem of the frequent itemset mining (FIM) and we discuss the main recent,
existing techniques and methods that have been proposed to solve them. In addition, we
address the problem of mining maximally informative k-itemsets (miki) and we discuss
the different approaches and techniques that have been proposed to handle them.

Second, we investigate and detail the different working processes of the recent, exist-
ing parallel and distributed mining algorithms. In particular, we address the problem of
parallel mining of frequent itemsets and maximally informative k-itemsets in massively
distributed environments.

2.1 Knowledge Discovery

Knowledge discovery [25] is the whole process of identifying new, potentially useful
patterns in the data. Data mining (DM) [19], [20] presents a core step of a knowledge
discovery process. It wrappers a set of techniques and methods that allow extracting new
knowledge from the data.

In this Section, we discuss the state of the art of these different techniques. In par-
ticular, we present the problem of mining frequent itemsets and maximally informative
k-itemsets and we discuss the main methods and techniques that have been proposed in
the literature to solve them.

2.1.1 Frequent Itemset Mining

The problem of frequent itemset mining (FIM for short) was first introduced in [8]. In
this thesis, we adopt the notations used in [8].

Definition 8. Let I = {i1, i2, . . . , in} be a set of literals called items. An Itemset X is
a set of items from I, i.e. X ⊆ I. The size of the itemset X is the number of items

in it. A transaction T is a set of elements such that T ⊆ I and T Ó= ∅. A transaction

7
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T supports the item x ∈ I if x ∈ T . A transaction T supports the itemset X ⊆ I if
it supports any item x ∈ X , i.e. X ⊆ T . A database D is a set of transactions. The
support of the itemset X in the database D is the number of transactions T ∈ D that
contain X . An itemset X ⊆ I is frequent in D if its support is equal or higher than a
given MinSup threshold. A maximal frequent itemset is a frequent itemset that has
no frequent superset.

Figure 2.1 – Database D

A naive approach to determine all frequent itemsets in a database D simply con-
sists of determining the support of all items combinations in D. Then, retain only the
items/itemsets that satisfy a given minimum support MinSup. However, this approach is
very expensive, since it results in a high number of I/O disc access (i.e., database scans).

Example 9. Let us consider a database D with 7 transactions as shown in Figure 2.1.
With a minimum support of 7, there will be no frequent items (and no frequent itemsets).
With a minimum support of 5, there will be 5 frequents itemsets: {(B), (C), (E), (BE), (CE)}

In the literature there have been various proposed algorithms to solve the problem
of frequent itemset mining [22], [5], [10], [11], [23], etc. Despite their different logic
and working principles, the main purpose of these algorithms is to extract all frequent
itemsets from a database D with a minimum support MinSup specified as a parameter.
In the following, we discuss the main frequent itemset mining algorithms that have been
proposed in the literature.

Apriori Algorithm: Apriori algorithm was first introduced in [4]. Its main motivation
was to reduce the I/O disc access when mining frequent itemsets. To this end, Apriori
algorithm relies on an anti-monotonicity criterion. i.e., if an item/itemset is not frequent,
then all of its super-sets cannot be frequent. To extract the frequent itemsets, Apriori scans
the database D and determines a candidate list C1 of frequent items of size one, then the
algorithm filters C1 and keeps only the items that satisfy the minimum support and stores
them in a list L1. From L1, the algorithm generates candidate itemsets of size two in a list
say C2 and that by combining all pair of frequent items of size one in L1. Then, Apriori
scans D and determines all itemsets in C2 that satisfy the minimum support, the result
is stored in a list L2. The mining process of Apriori is carried out until there is no more
candidate itemsets in D to be checked.
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Figure 2.2 – Frequent itemset mining using Apriori

Despite the anti-monotonicity property, Apriori has shown several drawbacks. This
is particularly the case when the minimum support is very low (which implies a huge
number of frequent itemset candidates). In this case, Apriori algorithm would perform
multiple database scans until determining the count of the most lengthy itemset in the
database. This behaviour of Apriori algorithm would result in a poor performance. The
performance of Apriori algorithm is proportional to its number of itemset candidates to
be checked against the database.

Example 10. Figure 2.2 shows a working example of Apriori algorithm over the database
D of Figure 2.1. In this example, an itemset is frequent, if it occurs at least 4 times in the
database D. After the first database scan, we have three frequent items ({B}, {C}, {D}) in
L1. An itemset candidate generation step is carried out to build the candidate itemsets of
size two ({B, C}, {B, E}, {C, E}) in C2. From C2 a list of frequent itemsets of size two L2 is
returned by filtering the itemset candidates in C2 based on their support count. Then, from
the list L2, An itemset candidate step generation is executed to determine the candidate
itemsets of size three ({B, C, E}) in C3. Finally, a last database scan is performed to
filter C3 and keeps only the frequent itemsets of size three in L3. Since, there is no more
candidate itemsets, the algorithm stops.

In example 10, with a support of 4, Apriori performs 3 database scans in total to
determine all frequent itemsets of size 3. With a low minimum support, there would
be more frequent itemsets in D which implies more database scans. For example, if
there are 104 frequent items, then Apriori algorithm will need to generate more than 107
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candidate itemsets of size 2 and the supports of all of these candidates would be checked
in D. Thus, the overall performance of Apriori algorithm is highly impacted when the
minimum support is low (i.e., high number of candidate itemsets).

SON Algorithm: This algorithm firstly was introduced in [9], to extract the set of fre-
quent itemsets in two steps. The mining principle of SON is drawn from the fact that the
set of all global frequent itemsets (i.e., all frequent itemsets in D) is included in the union
of the set of all local frequent itemsets. To determine the set of frequent itemsets (i.e.,
global frequent itemsets), SON proceeds by performing a mining process in two phases
as following.
Phase 1: Divide the input database D into n data partitions, D = {P1, P2, . . . , Pn} in
a way that each Pi in D fits into the available memory. Then, mine each data partition
Pi in the memory based on a local minimum support LMinSup (i.e., the local minimum
support is computed based on the number of transactions in Pi and the given global mini-
mum support GMinSup) and a specific FIM algorithm (e.g., Apriori algorithm or one of
its improvements). Thus, SON algorithm first phase is devoted to determine a list of local
frequent itemsets LFI .
Phase 2: This phase proceeds by filtering the local frequent itemsets in LFI list based
on the global minimum support GMinSup. This step is carried out to validate the global
frequency of the set of local frequent itemsets. SON algorithm scans the whole database
D and checks the frequency of each local frequent itemset in LFI . Then, it returns a list
of global frequent itemsets (GFI) which is a subset of LFI i.e., GFI ⊆ LFI .

Since it performs two database scans, SON has shown better performance than Apriori
algorithm. However, the main limitation of this algorithm is its first mining phase. i.e., in
the case when a data partition contains a high number of local frequent itemsets, in this
case, the performance of the second phase would be impacted too.

Eclat Algorithm: To avoid the I/O disc access in mining frequent itemsets, Eclat al-
gorithm [12] consists of performing a mining process in the memory without accessing
the disc. The algorithm proceeds by storing a list of transactions identifiers (tid) in the
memory for each item in the database. To determine the support of an itemset X of any
size k, Eclat intersects the tids of all items in X . To traverse the tids, it uses different
techniques such as top down, bottom up and hybrid techniques.

Despite its efficiency (i.e., speed up) in counting the support of the itemsets, the main
bottleneck of Eclat algorithm is the size of the tids. When the size of the transaction
identifiers is very large, then, they cannot fit into the memory.

Cluster Decomposition Association Rule Algorithm: Cluster Decomposition Asso-
ciation Rule (CDAR for short) [13] algorithm uses a simple, yet efficient principle for
mining frequent itemsets. It performs the mining process in two steps as follow.



2.1 Knowledge Discovery 11

Step 1: CDAR divides the database D into |P | = n data partitions D = {P1, P2, . . . , Pn}.
Each data partition Pi in D only holds the transactions whose length is i, where the length
of a transaction is the number of items in it.

Step 2: CDAR starts mining the data partitions according to the transaction lengths
in decreasing order. A transaction in each data partition accounts for an itemset. If a
transaction T is frequent in a data partition Pi+1 then, it will be stored in a list L of
frequent itemsets, otherwise, CDAR stores T in a temporary data structure Tmp. Then,
after checking the frequency of T in Pi+1, CDAR generates the i-length subsets of all T in
Tmp and adds them to the data partition Pi. The same mining process is carried out until
visiting all partitions Pi ⊂ D. Before counting the support of a transaction T , CDAR
checks its inclusion in L, and if it is included, then CDAR does not consider T , as it is
already in L which means it is frequent.

Figure 2.3 – Frequent itemset mining using CDAR

Example 11. Given a database D as shown in Figure 2.1, in this example, we consider an
itemset to be frequent, if it occurs at least 2 times in D. Figure 2.3 illustrates the mining
process of CDAR. The algorithm scans the database D and creates the data partitions
(i.e., clusters or groups of transactions). In this example we have 3 different data parti-
tions P4, P3 and P2. Each one of these data partitions holds a set of transactions having
the same length. CDAR starts mining the data partition having the most lengthy transac-
tion, which is in this example P4. The itemset (i.e., transaction) {A, B, C, E} is frequent
because it appears two times in P4. Thus, {A, B, C, E} is stored in a list L4. on the other
side, the itemset {B, C, D, E} is not frequent it occurs once in P4. Hence, the itemset {B,
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C, D, E} is added to the temporary data structure Tmp and its decomposition to subsets
of size 3 is added to P ′

3. Since the itemset {B, C, E} is a subset of {A, B, C, E} which is
already frequent in L4, CDAR does not consider {B, C, E} when counting the supports of
the itemsets of size 3. The algorithm determines {C, D, E} as a frequent itemset in P ′

3 and
stored it in L3. The itemsets {B, C, D}, {B, D, E} and {A, B, D} are not frequent, however,
since the itemsets {B, C, D} and {B, D, E} are already included in the itemset {B, C, D, E}
in Tmp, CDAR adds only {A, B, D} to Tmp. Then, the algorithm generates the subsets
of size two of each itemset in Tmp and adds them to P ′

2. In this example, the itemsets {B,
E}, {B, C}, {C, D}, {C, E}, {D, E} and {A, B} are already in L3 ∪ L4, then CDAR does
not consider their support count. Finally, the algorithm determines the itemset {B, D} as
a frequent itemset. The algorithm stops because there is no more data partitions to visit.

Figure 2.4 – Frequent itemset mining using FP-Growth

FP-Growth Algorithm: FP-Growth (Frequent Pattern Growth) algorithm [5] has been
considered as the most powerful technique in mining frequent itemsets. The popular-
ity that FP-Growth algorithm has gained is related to its none-candidate generation fea-
ture. Unlike previously mentioned techniques, FP-Growth algorithm does not rely on any
itemset candidate generation approach. To determine the frequent itemsets, FP-Growth
accesses the database two times i.e., to filter out the none-frequent items and compress
the whole database in an FP-Tree structure. Once the FP-Tree is built, the algorithm uses
a recursive divide and conquer approach to mine the frequent itemsets from the FP-Tree.
Thus, FP-Growth algorithm performs two database scans. The following describes each
pass over the database.

Pass 1: Same as Apriori algorithm, FP-Growth’s first pass over the database D is
devoted to determine the support count of each item in D. The algorithm retains only the
frequent items in a list L. Then, FP-Growth sorts L in a descending order according to
the support counts of the items.

Pass 2: The algorithm creates the root of the tree, labeled with “null”, then scans the
database D. The items in each transaction are processed in L order (i.e., sorted according
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to descending support count), and a branch is created for each transaction. Each node
in the FP-Tree accounts for an item in L and each node is associated with a counter (i.e.,
support count initialized to 1). If a transaction shared a common prefix with another
transaction, then the support count of each visited node is incremented by 1. To facil-
itate the FP-Tree traversal, an item header table is built so that each item points to its
occurrences in the tree via a chain of node-links.

Mining FP-Tree: The FP-Tree is mined as follows. Start from each frequent item
(i.e., pattern) of size 1 (as an initial suffix pattern), construct its conditional pattern base
(a “sub-database,” which consists of the set of prefix paths in the FP-Tree co-occurring
with the suffix pattern), then construct its (conditional) FP-Tree, and perform the mining
recursively on the tree. The pattern growth is achieved by the concatenation of the suffix
pattern with the frequent patterns generated from a conditional FP-tree.

Example 12. Let us consider the database D shown in Figure 2.1. In this example, we
consider an itemset to be frequent, if it occurs at least 2 times in D. After the first pass over
the database D, FP-Growth returns the list L of frequent items, in this example, we have
L = {{A : 3}, {B : 6}, {C : 5}, {D : 3}, {E : 6}}. Then, it sorts the list L of frequent
items in descending order according to their support counts. Hence, the list L becomes
L = {{E : 6}, {B : 6}, {C : 5}, {D : 3}, {A : 3}}. Then, by scanning the database D,
an FP-Tree is constructed according to the order of items in L. The left part of Figure 2.4
shows a header table that contains the information about each node in the constructed
FP-Tree (right part of Figure 2.4) of our example. To mine the constructed FP-Tree, we
consider the last item in L {A}. The item {A} occurs in two FP-Tree branches (Right side
of Figure 2.4). The occurrences of {A} can easily be found by its chain of node links. The
paths formed by these branches are < {E}, {B}, {C}, {A}: 2 > and < {B}, {D}, {A}: 1
>. Considering the item {A} as a suffix, its corresponding two prefix paths are < {E},
{B}, {C}: 2 > and < {B}, {D}: 1 > which form its conditional pattern base. Using this
conditional pattern base as a transaction database, FP-Growth builds an {A}-conditional
FP-Tree which contains only a single path < {E}, {B}, {C}: 2 >. Here the item {D} is
not included because its support count is 1 (not frequent). The single path < {E}, {B},
{C}: 2 > generates all frequent itemsets that involves the item {A} ({A, B, C, E}: 2, {A,
B ,C}: 2, {A, B, E}: 2, {A, C, E}: 2, {A, B}: 3, {A, C}: 2, {A, E}: 2). Likewise, the item
{D} occurs in 3 FP-Tree branches. The paths formed by these 3 branches are < {E}, {C},
{D}: 1 >, < {E}, {B}, {C}, {D}: 1 > and < {B}, {D}: 1 >. Considering the item {D} as a
suffix, then its corresponding prefix paths are < {E}, {C}: 1 >, < {E}, {B}, {C}: 1 > and <
{B}: 1 > which form its conditional pattern base. FP-Growth builds an {D}-conditional
FP-Tree which contains two paths < {E}, {C}: 2 > and <{B}: 2 >. From these two paths,
FP-Growth generates all frequent itemsets involving the item {D} ({C, D, E}: 2, {B, D}:
2). Same for th item {C}, its {C}-conditional FP-Tree contains two paths < {E}: 5 > and
<{B}: 4 >, FP-Growth generates the frequent itemsets involving the item {C}, ({C, E}: 5,
{B, C}: 4). For the item {B}, its {B}-conditional FP-Tree contains a single path < {E}: 5
>, thus the frequent itemset involves {B} is ({B, E}: 5). The item {E} does not have any
prefix, then the algorithm stops.
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Features Documents
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

A 1 1 1 1 1 0 0 0 0 0
B 0 1 0 0 1 1 0 1 0 1
C 1 0 0 1 0 1 1 0 1 0
D 1 0 1 1 1 1 1 1 1 1
E 1 1 1 1 1 1 1 1 1 1

Table 2.1 – Features in The Documents

In the literature, there are many alternatives and extensions to the FP-growth approach,
including depth-first generation of frequent itemsets [26], H-Mine [27]. Authors of [28]
explore a hyper-structure mining of frequent patterns; building alternative trees; explor-
ing top-down and bottom-up traversal of such trees in pattern-growth mining by Liu et
al. (2002, 2003) and an array-based implementation of prefix-tree-structure for efficient
pattern growth mining [29].

Generally, using very low minimum support results in a high number of frequent item-
sets. Therefore, the number of rules generated from the set of frequent itemsets are very
large and they are hard to be interpreted and analyzed by an expert. To overcome this
problem, such a solution stands for mining only the closed frequent itemsets (CFI in
short) [30]. The set of closed frequent itemsets presents a generator to all other frequent
itemsets. In the literature, there have been several approaches [31], [32], [33], [34], pro-
posed to mine the closed frequent itemsets. Existing algorithms for mining CFI flag out
good performance when the input dataset is small or the support threshold is high. How-
ever, when the size of the database grows or the support threshold turns to be low, both
memory usage and communication costs become hard to bear

2.1.2 Maximally Informative K-Itemsets Mining

The co-occurrence frequency of the itemsets (or featureset) in the database does not give
much information about the hidden correlations between the itemsets. For instance, an
itemset say {A, B} can be frequent, but the items (or features) inside {A, B} can be re-
dundant, thus, if we know {A}, we may not need {B}. Therefore, beside the frequency
criterion of the itemsets as a measure of informativeness or interestingness, other mea-
sures have been proposed such as the joint entropy. In the following discussion, we
address the problem of maximally informative k-itemsets (i.e., miki) mining. First, we
introduce the basic definitions and notations of the miki problem that will be used in the
rest of this thesis. Second, we discuss the main existing methods and techniques that have
been proposed in the literature to extract miki.

The following definitions introduce the basic requirements for mining maximally in-
formative k-itemsets [7].
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Definition 9. Let F = {f1, f2, . . . , fn} be a set of literals called features. An itemset

X is a set of features from F , i.e., X ⊆ F . The size or length of the itemset X is the
number of features in it. A transaction T is a set of elements such that T ⊆ F and
T Ó= ∅. A database D is a set of transactions.

Definition 10. The entropy [15] of a feature i in a database D measures the expected
amount of information needed to specify the state of uncertainty or disorder for the feature
i in D. Let i be a feature in D, and P (i = n) be the probability that i has value n in D
(we consider categorical data, where the value will be ’1’ if the object has the feature and
’0’ otherwise). The entropy of the feature i is given by

H(i) = −(P (i = 0)log(P (i = 0)) + P (i = 1)log(P (i = 1)))

where the logarithm base is 2.

Definition 11. The binary projection, or projection of an itemset X in a transaction T

(proj(X, T )) is the set of size |X| where each item (i.e., feature) of X is replaced by ’1’ if
it occurs in T and by ’0’ otherwise. The projection counting of X in a database D is the
set of projections of X in each transaction of D, where each projection is associated with
its number of occurrences in D.

Example 13. Let us consider Table 2.1. The projection of (B, C, D) in d1 is (0, 1, 1). The
projections of (D, E) on the database of Table 2.1 are (1, 1) with nine occurrences and
(0, 1) with one occurrence.

Definition 12. Given an itemset X = {x1, x2, . . . , xk} and a tuple of binary values
B = {b1, b2, . . . , bk} ∈ {0 1}k. The joint entropy of X is defined as:

H(X) = −
∑

B∈{0,1}|k|

J × log(J)

Where J= P (x1 = b1, . . . , xk = bk) is the joint probability of X = {x1, x2, . . . , xk}.

Given a database D, the joint entropy H(X) of an itemset X in D is proportional to
its size k i.e., the increase in the size of X implies an increase in its joint entropy H(X).
The higher the value of H(X), the more information the itemset X provides in D. For
simplicity, we use the term entropy of an itemset X to denote its joint entropy.

Example 14. Let us consider the database of Table 2.1. The joint entropy of (D, E) is
given by H(D, E) = − 9

10
log( 9

10
) − 1

10
log( 1

10
) = 0.468. Where the quantities 9

10
and 1

10

respectively represent the joint probabilities of the projection values (1, 1) and (0, 1) in
the database.

Definition 13. Given a set F = {f1, f2, . . . , fn} of features, an itemset X ⊆ F of length k

is a maximally informative k-itemset, if for all itemsets Y ⊆ F of size k, H(Y ) ≤ H(X).
Hence, a maximally informative k-itemset is the itemset of size k with the highest joint
entropy value.
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The problem of mining maximally informative k-itemsets presents a variant of itemset
mining, it relies on the joint entropy measure for assessing the informativeness brought
by an itemset.

Definition 14. Given a database D which consists of a set of n attributes (features)
F = {f1, f2, . . . , fn}. Given a number k, the problem of miki mining is to return a
subset F ′ ⊆ F with size k, i.e., |F ′| = k, having the highest joint entropy in D, i.e.,
∀F ′′ ⊆ F ∧ |F ′′| = k, H(F ′′) ≤ H(F ′).

Example 15. In this application, we would like to retrieve documents from Table 2.1,
in which the columns d1, d10 are documents, and the attributes A, B, C, D, E are some
features (items, keywords) in the documents. The value “1” means that the feature occurs
in the document, and “0” not. It is easy to observe that the itemset (D, E) is frequent,
because features D and E occur together in almost every document. However, it provides
little help for document retrieval. In other words, given a document dx in our data set,
one might look for the occurrence of the itemset (D, E) and, depending on whether it
occurs or not, she will not be able to decide which document it is. By contrast, the itemset
(A, B, C) is infrequent, as its member features rarely or never appear together in the data.
And it is troublesome to summarize the value patterns of the itemset (A, B, C). Providing
it with the values < 1, 0, 0 > we could find the corresponding document O3; similarly,
given the values < 0, 1, 1 > we will have the corresponding document O6. Although
(A, B, C) is infrequent, it contains lots of useful information which is hard to summarize.
By looking at the values of each feature in the itemset (A, B, C), it is much easier to decide
exactly which document they belong to. (A, B, C) is a maximally informative itemset of
size k = 3.

In data mining literature, several endeavors have been made to explore informative
itemsets (or featuresets, or set of attributes) in databases [35] [36] [37] [7]. Different mea-
sures of itemset informativeness (e.g., frequency of itemset co-occurrence in the database
etc.) have been used to identify and distinguish informative itemsets from non-informative
ones. For instance, by considering the itemsets co-occurrence, several conclusions can be
drawn to explain interesting, hidden relationships between different itemsets in the data.

Mining itemsets based on the co-occurrence frequency (e.g., frequent itemset mining)
measure does not capture all dependencies and hidden relationships in the database, espe-
cially when the data is sparse [37]. Therefore, other measures must be taken into account.
Low and high entropy measures of itemsets informativeness were proposed [37]. The au-
thors of [37] have proposed the use of a tree based structure without specifying a length k

of the informative itemsets to be discovered. However, as the authors of [37] mentioned,
such an approach results in a very large output.

Beyond using a regular co-occurrence frequency measure to identify the itemsets in-
formativeness, the authors of [38] have proposed an efficient technique that is more gen-
eral. The main motivation is to get better insight and understanding of the data by figuring
out other hidden relationships between the itemsets (i.e., the inner correlation between the
itemsets themselves), in particular when determining the itemsets’ rules. To this end, the
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authors of [38] did not focus only on the analysis of the positive implications between the
itemsets in the data (i.e., implications between supported itemsets), but also they take into
account the negative implications. To determine the significance of such itemsets implica-
tions, the authors of [38] have used a classic statistical chi-squared measure to efficiently
figure out the interestingness of such itemsets rules.

Generally, in the itemset mining problem there is a trade-off between the itemset in-
formativeness and the pattern explosion (i.e., number of itemsets to be computed). Thus,
some itemset informativeness measures (e.g., the co-occurrence frequency measure with
very low minimum support) would allow for a potential high number of useless patterns
(i.e., itemsets), and others would highly limit the number of patterns. The authors of [39]
proposed an efficient approach that goes over regular used itemset informativeness mea-
sures, by developing a general framework of statistical models allowing the scoring of the
itemsets in order to determine their informativeness. In particular, in [39], the initial focus
is on the exponential models to score the itemsets. However these models are inefficient
in terms of execution time, thus, the authors propose to use decomposable models. On
the whole, the techniques proposed in [39] and [38] are mainly dedicated to mining in
centralized environments, while our techniques are dedicated to parallel data mining in
distributed environments.

The authors of [7] suggest to use a heuristic approach to extract informative itemsets
of length k based on maximum joint entropy. Such maximally informative itemsets of
size k is called miki. This approach captures the itemsets that have high joint entropies.
An itemset is a miki if all of its constructing items shatter the data maximally. The items
within a miki are not excluding, and do not depend on each other. [7] proposes a bunch of
algorithms to extract miki. A brute force approach consists of performing an exhaustive
search over the database to determine all miki of different sizes. However, this approach
is not feasible due to the large number of itemsets to be determined, which results in
multiple database scans. Another algorithm proposed in [7] namely ForwardSelection,
consists of fixing a parameter k that denotes the size of the miki to be discovered. This
algorithm proceeds by determining a top n miki of size 1 having highest joint entropies,
then, the algorithm determines the combinations of 1-miki of size 2 and returns the top n

most informative itemsets. The process continues until it returns the top n miki of size k.
Example 16 illustrates the mining process of this algorithm:

Example 16. Given the binary database D′ as shown in Figure 2.5. D′ contains 4 items
and 8 transactions. Suppose that we want to determine the miki of size k = 3 using
ForwardSelection algorithm.

The algorithm starts by determining the entropies of each item in D′ as follow:
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Figure 2.5 – Binary Database D′
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The item {C} has the highest entropy, thus {C} presents a seed. From this item seed,
ForwardSelection generates the miki candidates of size two ({C A}, {C B}, {C D}). A scan
to the database D′ is performed to determine the entropy of each miki candidates of size
two. Here, we have:
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The itemset {C A} has the highest entropy, thus the miki of size 2 in D′ is {C A}. For
k = 3, {C A} presents a seed to construct the miki candidates of size 3 ({C A B}, {C A
D}). The same procedure is carried out to determine the miki of size 3 by scanning the
database D′ and determine the entropy of each miki candidate ({C A B}, {C A D}).
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Since the itemset {C A B} has the highest entropy, thus, {C A B} is a miki of size 3.

Although ForwardSelection algorithm accounts for a simple and efficient method to
determine the miki of size k, it has major drawbacks. When the size k of the itemset to be
discovered tends to be very high, there would be a high number of database scans which
impacts the overall performance of the algorithm.

The problem of extracting informative itemsets was not only proposed for mining
static databases. There have been also interesting works in extracting informative item-
sets in data streams [40] [41]. The authors of [42] proposed an efficient method for
discovering maximally informative itemsets (i.e., highly informative itemsets) from data
streams based on sliding window.

Extracting informative itemsets has a prominent role in feature selection [43]. Various
techniques and methods have been proposed in the literature to solve the problem of
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selecting relevant features to be used in classification [24] tasks. These methods fall into
two different categories, namely Filter and Wrapper methods [44]. Filter methods serve
to pre-process the data before being used for a learning purpose. They aim to determine
a small set of relevant features. However, these methods capture only the correlations
between each feature (i.e., independent variable, attribute or item) and the target class
(i.e., predictor). They do not take into account the inter correlation between the selected
features (i.e., if the features are inter correlated then they are redundant). In the other hand,
to determine an optimal set of relevant features, wrapper methods perform a feature’s
set search that maximizes an objective function (i.e., classifier performance). However,
these methods yield in heavy computations (i.e., selecting each time a set of features and
evaluate an objective function). To solve this problem, Embedded [43] methods have been
proposed. The main goal is to incorporate the wrapper methods in the learning process.

2.2 Parallel and Distributed Computing

In this Section, we introduce the MapReduce programming model and we detail its work-
ing principle and its basic architecture.

2.2.1 MapReduce

Figure 2.6 – MapReduce Architecture
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What is MapReduce ? MapReduce [2] is a parallel framework for large scale data
processing. It has gained increasing popularity, as shown by the tremendous success of
Hadoop [45], an open-source implementation. Hadoop enables resilient, distributed pro-
cessing of massive unstructured data sets across commodity computer clusters (i.e., set
of commodity machines), in which each node of the cluster includes its own storage.
MapReduce serves two essential functions:

• map(): The map function is applied to process the input data. Generally the in-
put data is in the form of file or directory and is stored in the Hadoop file system
(HDFS). The input file is passed to the mapper function line by line. The mapper
processes the data and creates several small chunks of data

• reduce(): The Reducer function is applied to process the data that comes from the
mapper. After processing, it produces a new set of output, which will be stored in
the HDFS.

MapReduce Architecture Figure 2.6 illustrates the architecture of MapReduce. The
user sends its program to the master node. The master node assigns map and reduce tasks
to the workers. The data is divided into data splits (i.e., in a hadoop file system). Each
map worker reads and executes a map task on its data split and writes the results on its
disc (local write). After the execution of all map tasks, each map worker sends its results
in the form of (key, value) pairs to the reduce workers. Between the map and the reduce
phases, a sorting process is carried out where each key is associated with its list of values.
Finally, the reducers perform their computing logic and output the final results to a hadoop
distributed filesystem (i.e., HDFS).

Example 17. As an example, suppose we want to count the number of times every word
appears in a novel. We can split the task among some people, so each takes a page, writes
a word on a separate sheet of paper and takes a new page until they’re finished. This is
the map aspect of MapReduce. And if a person leaves, another person takes his place.
This exemplifies MapReduce’s fault-tolerant element.

When all pages are processed, users sort their single-word pages into some boxes,
which represent the first letter of each word. Each user takes a box and sorts each word
in the stack alphabetically. The number of pages with the same word is an example of the
reduce aspect of MapReduce.

2.3 Knowledge Discovery and Distributed Computing

With the explosive growth of data, a centralized knowledge discovery process becomes
unable to process large volumes of data. The distribution of the computation over sev-
eral machines has solved the problem. i.e., the data is located in different commodity
machines, and the computation process is distributed over these shared data and being
executed in parallel.
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In this Section, first we focus our study on the main parallel frequent itemset mining
(PFIM for short) algorithms that have been used in the literature. Second, we discuss the
problem of the parallel discovery of maximally informative k-itemsets.

2.3.1 Parallel Frequent Itemset Mining

In data mining literature, there have been several endeavours to improve the parallel dis-
covery of frequent itemsets. In the following, we present the major methods and tech-
niques that have been proposed in the literature.

Parallel Apriori Algorithm: In a massively distributed environment, the parallel ver-
sion of Apriori (i.e., Parallel Apriori) algorithm [14] has shown better performance than
its sequential one. Although the parallelism setting and the availability of high number
of resources, Apriori algorithm has brought regular issues and limitations as shown in its
sequential implementation. In a massively distributed environment such as MapReduce,
using Apriori algorithm, the number of jobs required to extract the frequent itemsets is
proportional to the size of the lengthy itemset. Hence, with very small minimum sup-
port and large amount of data, the performance of Parallel Apriori is very poor. This
is, because, the inner working process of Apriori algorithm is based on a candidate gen-
eration and testing approach which results in a high disc I/O access. In addition, in a
massively distributed environment, Apriori algorithm allows for a high data communica-
tion between the mappers and the reducers, this is particularly the case when the minimum
support tends to be very small.

Parallel SON Algorithm: Based on its mining principle, unlike Apriori algorithm [4],
SON algorithm is more flexible and suitable to be parallelized in a massively distributed
environment. For instance, in MapReduce, a parallel version of SON algorithm [14] is
represented by two jobs. At the first job, each data partition (i.e., data split) is given to
a mapper to be mined based on a local minimum support and a specific FIM algorithm
(e.g., Apriori). Then each mapper emits its mining results (i.e., local frequent itemset as
a key and its occurrence number in the data partition as a value). The reducer aggregates
the results and sums up the values of each key and writes the final result to the Hadoop
distributed file system (HDFS). At the second MapReduce job, a filtering step is carried
out to check the global frequency of all local frequent itemsets of the first MapReduce
job. To this end, the count of each local frequent itemset is determined by scanning the
database D.

Comparing to the Parallel Apriori algorithm, the main advantage of the parallel SON
is the low cost in terms of the database scan. In addition, in a massively distributed
environment such as MapReduce, generally, less number of jobs is more adequate and
natural than multiple jobs. This makes SON algorithm more suitable to the parallelism
and results in a lower data communication cost compared to Parallel Apriori algorithm.

Regarding the core mining process of the Parallel SON algorithm, its overall perfor-
mance highly depends on its first MapReduce job. For instance, when a data partition (i.e.,
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mapper) holds a high number of similar transactions, then the number of generated local
frequent itemsets by that data partition is high. i.e., the runtime process of the mapper is
high which in turns would affect the overall mining process.

Parallel Eclat Algorithm: Parallel Eclat algorithm [12] has brought same regular is-
sues and limitations of its sequential implementation. In particular, the high number of
frequent items implies a high number of transaction identifiers to be stored. This can
yields in a memory issue, i.e., the list of the transaction identifiers cannot fit into the
available memory.

Parallel CDAR Algorithm: In the data mining literature, there have been no proposed
parallel version of CDAR algorithm [13]. However, a parallel approach would have better
performances than other existing alternatives such as Parallel Apriori and Parallel SON
algorithms. The main reason is that CDAR is not a candidate-based generation algorithm
such as Apriori. Interestingly, with a very low minimum support and homogeneous data
partitions, CDAR would give good performances.

Parallel FP-Growth Algorithm: Parallel FP-Growth (PFP-Growth for short) algorithm
[6] has been successfully applied to efficiently extract the frequent itemsets from large
databases. Its high performance in terms of processing time comes as the result of its core
mining principle. At its first MapReduce job, PFP-Growth performs a simple counting
process to determine a list of frequent items. The second MapReduce job is dedicated to
construct an FP-tree to be mined later at the reducer phase. The mining process is carried
out in the memory which explains the high performance runtime of PFP-Growth.

Although, PFP-Growth has been considered as a highly efficient mining technique,
with very small minimum support, large amount of data and a top k (top k itemsets to be
returned by the algorithm) equals to infinity, it does not scale. This behaviour of PFP-
Growth will be better illustrated by our different experiments in chapters 3, 4. The main
reason behind the limitations of PFP-Growth algorithm is the memory constraint.

PARMA Algorithm: Parallel PARMA algorithm [46] has shown better performances
than PFP-Growth algorithm. However, PARMA does not determine the exhaustive list
of frequent itemsets, instead the algorithm approximates them. To this end, despite the
scalability and the high performance of its runtime process, in this thesis, we exclude this
algorithm from being compared to our approaches.

To represent the frequent itemsets in a condensed schema that contains only the re-
leavant and no redundunt itemsets, several parallel algorithms have been proposed. Some
early efforts tried to speed up the mining algorithms by running them in parallel [47],
using frameworks such as MapReduce [48] that allow to make powerful computing and
storage units on top of ordinary machines. In [49], Wang et al. propose an approach for
mining closed itemsets using MapReduce, but it suffers from the lack of scalability.
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Many research efforts [50, 51] have been introduced to design parallel algorithms ca-
pable of working under multiple threads under a shared memory environment. Unfortu-
nately, these approaches do not address the major problem of heavy memory requirement
when processing large scale databases. To overcome the latter, MapReduce platform was
designed to enable and facilitate the ability to distribute processing of large scale datasets
on large computing clusters. In [52], the authors propose a parallel FP-Growth algorithm
in MapReduce, which achieves quasi-linear speedups. However, the method presented so
far suffers from either excessive amounts of data that need to be transferred and sorted
and a high demand for main-memory at cluster nodes.

Moreover, having a large amount of transactional data, finding correlation between
them highlights the necessity of discovering a condensed representations of items. Since
the introduction of CFI in [30], numerous algorithms for mining it were proposed [53, 54].
In fact, these algorithms tried to reduce the problem of finding frequent itemsets to the
problem of mining CFIs by limiting the search space to only CFIs rather than the the
whole powerset lattice. Furthermore, they have good performance whenever the size of
dataset is small or the support threshold is high. However, as far as the size of the datasets
becomes large, both memory use and communication cost are unacceptable. Thus, paral-
lel solutions are of a compelling need. But, research works on parallel mining of CFI are
few. In [49] introduce a new algorithm based on the parallel FP-Growth algorithm PFP

[52] that divides an entire mining task into independent parallel subtasks and achieves
quasi-linear speedups. The algorithm mines CFI in four MapReduce jobs and introduces
a redundancy filtering approach to deal with the problem of generating redundant item-
sets. However, experiments on algorithm were on a small-scale dataset.

2.3.2 Parallel Maximally Informative K-Itemsets Mining

In a massively distributed environment and with very large volumes of data, the discov-
ery of the maximally informative k-itemsets is very challenging. The conventional and
sequential proposed approaches should be carefully designed to be parallelized. Unfortu-
nately, in the literature, there has been no solutions for the problem of parallel discovery
of maximally informative k-itemsets in massively distributed environments. In this Sec-
tion, we limit our discussion to the popular ForwardSelection algorithm [7]. We depict a
straightforward parallel solution for it.

Parallel ForwardSelection Algorithm: In a massively distributed environments, with
large amount of data, extracting the miki of different sizes is not trivial. Since, ForwardS-
election algorithm uses a level-wise approach to determine the miki of size k, its parallel
version would perform several k jobs. Therefore, with very large volumes of data and
very high size of the miki to be extracted, ForwardSelection algorithm would give a poor
performance. This is due to the high disc I/O access, the candidate approach principle
and the comparison step at the reducer phase to emit the miki having higher joint entropy.
In fact, this is not only lead to a poor performance in terms of execution time but also
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in terms of data communication cost. i.e., with a high miki size, the quantity of the data
being transferred between the mappers and the reducers would be very high.

Split A B C D
S1 1 0 1 0

1 0 1 0
1 0 0 0
1 1 0 0
1 1 1 0

S2 0 0 1 0
0 0 0 0
0 0 0 1

Table 2.2 – Data Splits

Example 18. Consider the database D′ as shown in Figure 2.5. We want to determine
the miki of size k equals to 2 in parallel, by using a parallel version of ForwardSelection
algorithm. Suppose that the database D′ is divided into two data splits as shown in
Table 2.2. Each data split (respectively S1 and S2) is processed by a dedicated mapper
(respectively m1 and m2). At a first MapReduce job, each mapper proceeds by emitting
each itemset of size one as a key and its corresponding projection (i.e., combination of
the ’0s’ and ’1s’) as a value. For instance, the mapper m1 would emit (A, 1) 5 times
to the reducer. m2 would emit (A, 0) 3 times to the reducer (here a simple optimization
can be used consists of emitting only the itemsets that appears in the transactions i.e.,
having ’1s’ projections). Then, the reducer is in charge of computing the joint entropy of
each itemset and emitting the itemset with the highest value of joint entropy. At a second
MapReduce job, the itemset with highest joint entropy is combined to each item in each
split to generate the candidate miki list of size 2. After the candidate generation step,
the joint entropy of each miki candidate of size two is computed similarly as in the first
MapReduce job. For instance, in our example the first MapReduce job would return the
item {C} as a miki of size one (H(C) = 1). The second MapReduce job would return the
itemset {C A} as a miki of size two (H(CA) = 1.905) as it has the higher value of joint
entropy. This should continue until reaching the miki with size k, i.e., using k MapReduce
jobs. However, performing k MapReduce jobs does not lead to good performance results,
particularly when k is not small, and when the database is very big.

2.4 Conclusion

In this chapter, we have discussed the state of the art about parallel solutions for itemset
mining. The main limitations of the existing parallel solutions are the multiple scan of
the database and the memory related issues. Basically, these different limitations become
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more challenging when the data set is very large and / or the minimum support is very
small or the size k of a miki is very high.

In this thesis, we address the problem of mining itemsets in parallel. In particular,
we handle the problem of parallel mining of frequent itemsets and maximally informative
k-itemsets. We carry out extensive theoretical and practical studies and proposed various
solutions validated with real-world very large data sets.





Chapter 3

Data Placement for Fast Mining of
Frequent Itemset

In this chapter, we address the problem of frequent itemset mining (FIM) in very large
databases. Despite crucial recent advances, the problem of frequent itemset mining is
still facing major challenges. This is particularly the case when: (i) the mining process
must be massively distributed and; (ii) the minimum support (MinSup) is very low. In this
chapter, we study the effectiveness and leverage of specific data placement strategies for
improving parallel frequent itemset mining (PFIM) performance in MapReduce, a highly
distributed computation framework. By offering a clever data placement and an optimal
organization of the extraction algorithms, we show that the itemset discovery effective-
ness does not only depend on the deployed algorithms. We propose ODPR (Optimal
Data-Process Relationship), a solution for fast mining of frequent itemsets in MapRe-
duce. Our method allows discovering itemsets from massive data sets, where standard
solutions from the literature do not scale. Indeed, in a massively distributed environment,
the arrangement of both the data and the different processes can make the global job either
completely inoperative or very effective. Our proposal is thoroughly explained in Section
3.2. We evaluate our proposed approach with real-world massive data sets to show its
effectiveness.

3.1 Motivation and Overview of the Proposal

With the availability of inexpensive storage and the progress that has been made in data
capture technology, several organizations have set up very large databases, known as Big
Data. This includes different data types, such as business or scientific data [55], and the
trend in data proliferation is expected to grow, in particular with the progress in network-
ing technology. The manipulation and processing of these massive data have opened up
new challenges in data mining [14]. In particular, frequent itemset mining (FIM) algo-
rithms have shown several flaws and deficiencies when processing large amounts of data.
The problem of mining huge amounts of data is mainly related to the memory restrictions

27
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as well as the principles and logic behind FIM algorithms themselves [56].
In order to overcome the above issues and restrictions in mining large databases, sev-

eral efficient solutions have been proposed. The most significant solution required to
rebuild and design FIM algorithms in a parallel manner relying on a specific program-
ming model such as MapReduce [57]. MapReduce is one of the most popular solutions
for big data processing [58], in particular due to its automatic management of parallel
execution in clusters of commodity machines. Initially proposed in [2], it has gained in-
creasing popularity, as shown by the tremendous success of Hadoop [59], an open-source
implementation.

The idea behind MapReduce is simple and elegant. Given an input file, and two map
and reduce functions, each MapReduce job is executed in two main phases. In the first
phase, called map, the input data is divided into a set of splits, and each split is processed
by a map task in a given worker node. These tasks apply the map function on every
key-value pair of their split and generate a set of intermediate pairs. In the second phase,
called reduce, all the values of each intermediate key are grouped and assigned to a reduce
task. Reduce tasks are also assigned to worker machines and apply the reduce function
on the created groups to produce the final results.

Although MapReduce refers as an efficient setting for FIM implementations, most of
parallel frequent itemset mining (PFIM) algorithms have brought same regular issues and
challenges of their sequential implementations. For instance, invoking such best PFIM
algorithm with very low minimum support(MinSup) could exceed available memory.
Unfortunately, dealing with massive data sets (up to Terabytes of data) implies working
with very low supports since data variety lowers item frequencies. Furthermore, if we
consider a FIM algorithm which relies on a candidate generation principle, its parallel
version would remain carrying the same issues as in its sequential one. Therefore, cover-
ing the problem of FIM algorithms does not only involve the distribution of computations
over data, but also should take into account other factors.

Interestingly and to the best of our knowledge, there has been no focus on studying
data placement strategies for improving PFIM algorithms in MapReduce. However, as
we highlight in this work, the data placement strategies have significant impacts on PFIM
performance. In this work, we identify, investigate and elucidate the fundamental role
of using such efficient strategies for improving PFIM in MapReduce. In particular, we
take advantage of two data placement strategies: Random Transaction Data Placement
(RTDP) and Similar Transaction Data Placement (STDP). In the context of RTDP, we use
a random placement of data on a distributed computational environment without any data
constraints, to be consumed by a particular PFIM algorithm. However, in STDP, we use
a similarity-based placement for distributing the data around the nodes in the distributed
environment. By leveraging the data placement strategies, we propose ODPR (Optimal
Data-Process Relationship) as explained in Section 3.2, a new solution for optimizing the
global extraction process. Our solution takes advantage of the best combination of data
placement techniques and the extraction algorithm.

We have evaluated the performance of our solution through experiments over ClueWeb
and Wikipedia data sets (the whole set of Wikipedia articles in English). Our results show
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that a careful management of the parallel processes along with adequate data placement,
can dramatically improve the performance and make a big difference between an inoper-
ative and a successful extraction.

3.2 Optimal Data-Process Relationship

Let us now introduce our PFIM architecture, called Parallel Two Steps (P2S), which is
designed for data mining in MapReduce. From the mining point of view, P2S is inspired
from SON [60] algorithm. The main reason behind opting SON as a reference to P2S
is that a parallel version of the former algorithm does not require costly overhead be-
tween mappers and reducers. However, as illustrated by our experiments in Section 3.3, a
straightforward implementation of SON in MapReduce would not be the best solution for
our research problem. Therefore, with P2S, we propose new solutions for PFIM mining,
within the "two steps" architecture.

The principle of P2S is drawn from the following observation. Dividing a database D
into n partitions p1, p2, ..., pn, where ∪pi = D, i = 1...n

GFI ⊆ ∪LFI (3.1)

where GFI denotes global frequent itemsets and LFI refers to local frequent item-
sets. This particular design allows it to be easily parallelized in two steps as follow:

Job 1: Each mapper takes a data split, and performs particular FIM algorithm.
Then, it emits a list of local frequent itemsets to the reducer

Job 2: Takes an entire database D as input, and filters the global frequent itemsets
from the list of local frequent itemsets. Then, it writes the final results to the reducer.

P2S thus divides the mining process into two steps and uses the dividing principle
mentioned above. As one may observe from its pseudo-code, given by Algorithm 1, P2S
is very well suited for MapReduce.

The first MapReduce job of P2S consists of applying specific FIM algorithm at each
mapper based on a local minimum support (localMinSup), where the latter is computed
at each mapper based on MinSup δ percentage and the number of transactions of the split
being processed. At this stage of P2S, the job execution performance mainly depends on
a particular data placement strategy (i.e., RTDP or STDP). This step is done only once
and the resulting placement remains the same whatever the new parameters given to the
mining process (e.g., MinSup δ, local FIM algorithm, etc.). Then P2S determines a
list of local frequent itemsets LFI . This list includes the local results of all data splits
found by all mappers. The second step of P2S aims to deduce a global frequent itemset
GFI . This step is carried out relying on a second MapReduce job. In order to deduce
a GFI list, P2S filters the LFI list by performing a global test of each local frequent
itemset. At this step, each mapper reads once the list of local frequent itemset stored in
Hadoop Distributed Cache. Then, each mapper takes a transaction at a time and checks
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Algorithm 1: P2S
Input: Database D and MinSup δ

Output: Frequent Itemsets
1 //Map Task 1
2 map( key:Null : K1, value = Whole Data Split: V1 )
3 - Determine a local MinSup ls from V1 based on δ

4 - Perform a complete FIM algorithm on V1 using ls

5 emit (key: local frequent itemset, value: Null)

6 //Reduce Task 1
7 reduce( key:local frequent itemset, list(values) )
8 emit (key,Null)

9 //Map Task 2
10 Read the list of local frequent itemsets from Hadoop Distributed Cache LFI once
11 map( key:line offset : K1, value = Database Line: V1 )
12 if an itemseti ∈ LFI and i ⊆ V1 then
13 key ← i

14 emit (key:i, value: 1)

15 //Reduce Task 2
16 reduce( key:i, list(values) )
17 sum ← 0 while values.hasNext() do
18 sum+ = values.next().get()

19 if sum >= δ then
20 emit (key:i, value: Null)

the inclusion of its itemsets in the list of the local frequent itemset. Thus, at this map
phase of P2S algorithm, each mapper emits all local frequent itemsets with their complete
occurrences in the whole database (i.e., key: itemset, value: 1). The reducer of the second
P2S step, simply computes the sum of the count values of each key (i.e., local frequent
itemset) by iterating over the value list of each key. Then, the reducer compares the
number of occurrences of each local frequent itemset to MinSup δ, if it is greater or
equal to δ, then, the local frequent itemset is considered as a global frequent itemset and
it will be written to the Hadoop distributed file system. Otherwise, the reducer discards
the key (i.e., local frequent itemset).

Theoretically, based on the inner design principles of P2S algorithm, different data
placements would have significant impacts on its performance behavior. In particular, the
performance of P2S algorithm at its first MapReduce job, and specifically at the mapper
phase, strongly depends on RTDP or STDP used techniques. That is due to the sensitivity
of the FIM algorithm being used at the mappers towards its input data.

The goal of this work is to provide the best combination of both data placement and
local algorithm choice in the proposed architecture. In Section 3.2.1, we develop two data
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placement strategies and explain more their role in the overall performances.

3.2.1 Data Placement Strategies

The performance of PFIM algorithms in MapReduce may strongly depend on the distri-
bution of the data among the workers. In order to illustrate this issue, consider an example
of a PFIM algorithm which is based on a candidate generation approach. Suppose that
most of the workload including candidate generation is being done on the mappers. In
this case, the data split or partition that holds most lengthy frequent itemsets would take
more execution time. In the worst case, the job given to that specific mapper would not
complete, making the global extraction process impossible. Thus, despite the fairly auto-
matic data distribution by Hadoop, the computation would depend on the design logic of
PFIM algorithm in MapReduce.

Actually, in general, FIM algorithms are highly susceptible to the data sets nature.
Consider, for instance, the Apriori algorithm. If the itemsets to be extracted are very long,
it will be difficult for this algorithm to perform the extraction. And in case of very long
itemsets, it is even impossible. This is due to the fact that Apriori has to enumerate each
subset of each itemset. The longer the final itemset, the larger the number of subsets (ac-
tually, the number of subsets grows exponentially). Now let us consider Job 1, mentioned
above. If a mapper happens to contain a subset of D that will lead to lengthy local fre-
quent itemsets, then it will be the bottleneck of the whole process and might even not be
able to complete. Such a case would compromise the global process.

On the other hand, let us consider the same mapper, containing itemsets with the same
size, and apply the CDAR algorithm to it. Then CDAR would rapidly converge since it is
best suited for long itemsets. Actually, the working principle of CDAR is to first extract
the longest patterns and try to find frequent subsets that have not been discovered yet.
Intuitively, grouping similar transactions on mappers, and applying methods that perform
best for long itemsets seems to be the best choice. This is why a placement strategy, along
with the most appropriate algorithm, should dramatically improve the performances of the
whole process.

From the observations above, we claim that optimal performances depend on a par-
ticular care of massive distribution requirements and characteristics, calling for particular
data placement strategies. Therefore, in order to boost up the efficiency of some data
sensitive PFIM algorithms, P2S uses different data placement strategies such as Similar
Transaction Data Placement (STDP) and Random Transaction Data Placement (RTDP),
as presented in the rest of this Section.

RTDP Strategy: RTDP technique merely refers to a random process for choosing bunch
of transactions from a database D. Thus, using RTDP strategy, the database is divided into
n data partitions p1, p2, ..., pn where ∪pi = D, i = 1...n. This data placement strategy
does not rely on any constraint for placing such bunch of transactions in same partition p.
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TID Transaction
T1 a, b, c
T2 a, b, d
T3 e, f, g
T4 d, e, f

Table 3.1 – Database D

STDP Strategy: Unlike RTDP data placement strategy, STDP relies on the principle of
similarity between chosen transactions. Each bucket of similar transactions is mapped to
the same partition p. Therefore, the database D is split into n partitions and ∪pi = D,
i = 1...n.

In STDP, each data split would be more homogeneous, unlike the case of using RTDP.
More precisely, by creating partitions that contain similar transactions, we increase the
chance that each partition will contain frequent local itemset of high length.

3.2.2 Data Partitioning

In STDP, data partitioning using similarities is a complex problem. A clustering algo-
rithm may seem appropriate for this task. However, we propose a graph data partitioning
mechanism that will allow a fast execution of this step, thanks to existing efficient algo-
rithms for graphs partitioning such as Min-Cut [61]. In the following, we describe how
transaction data can be transformed into graph data for doing such partitioning.

• First, for each unique item in D, we determine the list of transactions L that contain
it. Let D′ be the set of all transaction lists L.

• Second, we present D′ as a graph G = (V, E), where V denotes a set of vertices
and E is a set of edges. Each transaction T ∈ D refers to a vertex vi ∈ G where
i = 1...n. The weight w of an edge that connects a pair of vertices p = (vi, vj) in
G equals to the number of common items between the transactions representing vi

and vj .

• Then, after building the graph G, a Min-Cut algorithm is applied in order to partition
D′.

In the above approach, the similarity of two transactions is considered as the number
of their common items, i.e., the size of their intersection. In order to illustrate our graph
partitioning technique, let us consider a simple example as follows.

Example 19. Let us consider D, the database from Table 3.1. We start by mapping each
item in D to its transactions holder. As illustrated in the table of Figure 3.2.2, T1 and T2

have 2 common items, likewise, T3 and T4 have 2 common items, while the intersection
of T2 and T3 is one. The intersection of transactions in D′ refers to the weight of their
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TID Transaction
T1 a, b, c
T2 a, b, e
T3 e, f, g
T4 d, e, f

Figure 3.1 – Transactions of a database (left) & Graph representation of the database
(right)

edges. In order to partition D′, we first build a graph G from D′ as shown in Figure
3.2.2. Then, the algorithm Min-Cut finds a minimum cut in G (red line in Figure 3.2.2),
which refers to the minimum capacity in G. In our example, we created two partitions:
Partition1 =< T1, T2 > and Partition2 =< T3, T4 >.

We have used a particular graph partitioning tool namely PaToH [62] in order to gen-
erate data partitions. The reason behind opting for PatoH lies in its set of configurable
properties, e.g., the number of partitions and the partition load balance factor.

Based on the architecture of P2S and the data placement strategies we have developed
and efficiently designed two FIM mining algorithms. Namely Parallel Two Steps CDAR
(P2SC) and Parallel Two Steps Apriori (P2SA) depending on the itemset mining algo-
rithm implemented for itemset mining on the mapper, in the first step of P2S. These two
algorithms are highly data-sensitive PFIM algorithms.

For instance, if we consider P2SC as a P2S algorithm with STDP strategy, its per-
formance would not be the same as we feed it with RTDP. Because relying on STDP,
each split of data fed to such a mapper holds similar transactions, thus, there is less gen-
eration of transaction subsets. These expectations correspond to the intuition given in
Section 3.2.1. The impact of different data placement strategies will be better observed
and illustrated through out experimental results as shown in Section 3.3.

As shown by our experimental results in Section 3.3, P2S has given the best perfor-
mance when instantiated with CDAR along with STDP strategy.

3.3 Experiments

To assess the performance of our proposed mining approach and investigate the impact of
different data placement strategies, we have done an extensive experimental evaluation.
In Section 3.3.1, we depict our experimental setup, and in Section 3.3.2, we investigate
and discuss the results of our experiments.

3.3.1 Experimental Setup

We implemented our P2S principle and data placement strategies on top of Hadoop-
MapReduce, using Java programming language. As mining algorithms on the mappers,
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we implemented Apriori as well as CDAR. For comparison with PFP-Growth [6], we
adopted the default implementation provided in the Mahout [63] machine learning library
(Version 0.7). We denote by P2Sx-R and P2Sx-S the use of our P2S principle with STDP
(P2Sx-S) or RTDP (P2Sx-R) strategy for data placement, where local frequent itemsets
are extracted by means of the ’x’ algorithm. For instance, P2SA-S means that P2S is exe-
cuted on data arranged according to STDP strategy, with Apriori executed on the mappers
for extracting local frequent itemsets. MR-Apriori is the straightforward implementation
of Apriori in MapReduce (one job for each length of candidates, and database scans for
support counting are replaced by MapReduce jobs). PApriori does not use any particular
data placement strategy. To this end, we just opted to test the algorithm with a RTDP
data placement strategy for a comparison sake. Eventually, the instance of P2S archi-
tecture with Apriori exploited for local frequent itemset mining on the mappers and data
arranged according to the RTDP strategy has to be considered as a straightforward imple-
mentation of SON. Therefore, we consider this version of P2S being the original version
of SON in our experiments.

We carry out all our experiments based on the Grid5000 [64] platform, which is a
platform for large scale data processing. We have used a cluster of 16 and 48 machines
respectively for Wikipedia and ClueWeb data set experiments. Each machine is equipped
with Linux operating system, 64 Gigabytes of main memory, Intel Xeon X3440 4 core
CPUs, and 320 Gigabytes SATA II hard disk.

To better evaluate the performance of ODPR and the impact of data placement strate-
gies, we used two real-world data sets. The first one is the 2014 English Wikipedia articles
[65] having a total size of 49 Gigabytes, and composed of 5 millions articles. The second
one is a sample of ClueWeb English data set [66] with size of 240 Gigabytes and having
228 millions articles. For each data set we performed a data cleaning task, by removing
all English stop words from all articles and obtained a data set where each article accounts
for a transaction (where items are the corresponding words in the article) to each invoked
PFIM algorithm in our experiments.

We performed our experiments by varying the MinSup parameter value for each al-
gorithm along with particular data placement strategy. We evaluate each algorithm based
on its response time, in particular, when MinSup is very low.
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3.3.2 Performance Results
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Figure 3.2 – All Algorithms Executed on the Whole Set of Wikipedia Articles in English

Figures 3.2 and 3.3 report our results on the whole set of Wikipedia articles in English.
Figures 3.2 gives a complete view on algorithms performances for a support varying from
0.12% to 0.01%. We see that MR-Apriori runtime grows exponentially, and gets quickly
very high compared to other presented PFIM algorithms. In particular, this exponential
runtime growth reaches its highest value with 0.04% threshold. Below this threshold, MR-
Apriori needs more resources (e.g., memory) than what exists in our tested machines,
so it is impossible to extract frequent patterns with this algorithm. Another interesting
observation is that P2SA-S, i.e., the two step algorithm that use Apriori as a local mining
solution, is worse that MR-Apriori. This is an important result, since it confirms that a
bad choice of data-process relationship compromises a complete analytics process and
makes it inoperative. Let us now consider the set of four algorithms that scale. The
less effective are PFP-Growth and P2SA-R. It is interesting to see that two very different
algorithmic schemes (PFPGrowth is based on the pattern tree principle and P2SA-R is
a two steps principle with Apriori as a local mining solution with no specific care to
data placement) have similar performances. The main difference being that PFP-Growth
exceeds the available memory below 0.02%. Eventually, P2SC-R and ODPR give the best
performances, with an advantage for ODPR.

Figure 3.3 focuses on the differences between the three algorithms that scale in Figure
3.2. The first observation is that P2SA-R is not able to provide results below 0.008%.
Regarding the algorithms based on the principle of P2S, we can observe a very good
performance for ODPR thanks to its optimization between data and process relationship.
These results illustrate the advantage of using a two steps principle where an adequate
data placement favors similarity between transactions, and the local mining algorithm
does better on long frequent itemsets.
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Figure 3.3 – A Focus on Algorithms that Scale on Wikipedia Articles in English

In Figure 3.4, similar experiments have been conducted on the ClueWeb data set. We
observe that the same order between all algorithms is kept, compared to Figures 3.2 and
3.3. There are two bunches of algorithms. One, made of P2SA-S and MR-Apriori which
cannot reasonably applied to this data set, whatever the minimum support. In the other
bunch, we see that PFP-Growth suffers from the same limitations as could be observed on
the Wikipedia data set in Figure 3.2, and it follows a behavior that is very similar to that
of P2SA-R, until it becomes impossible to execute.
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Figure 3.4 – Experiments on ClueWeb Data Set

On the other hand, P2SC-R and ODPR are the two best solutions, while ODPR is
the optimal combination of data placement and algorithm choice for local extraction,
providing the best relationship between data and process.
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3.4 Conclusion

We have identified the impact of the relationship between data placement and process or-
ganization in a massively distributed environment such as MapReduce for frequent item-
set mining. This relationship has not been investigated before this work, despite crucial
consequences on the extraction time responses allowing the discovery to be done with
very low minimum support. Such ability to use very low threshold is mandatory when
dealing with Big Data and particularly hundreds of Gigabytes like we have done in our
experiments. Our results show that a careful management of processes, along with ade-
quate data placement, may dramatically improve performances and make the difference
between an inoperative and a successful extraction.

This work opens interesting research avenues for PFIM in massively distributed envi-
ronments. In general, we would like to deeply investigate a larger number of algorithms
and the impact of data placement on them. More specifically, there are two main factors
we want to study. Firstly, we need to better identify what algorithms can be implemented
in MapReduce while avoiding to execute a large number of jobs (because the larger the
number of jobs, the worse the response time). Secondly, we want to explore data place-
ment alternatives to the ones proposed in this thesis.





Chapter 4

Data Partitioning for Fast Mining of
Frequent Itemset

In this chapter, we address the problem of mining frequent itemset (FIM) in massively
distributed environments. Frequent itemset mining is one of the fundamental cornerstones
in data mining. While, the problem of FIM has been thoroughly studied, few of both
standard and improved solutions scale. This is mainly the case when i) the amount of data
tends to be very large and/or ii) the minimum support threshold is very low. We propose
a highly scalable, parallel frequent itemset mining algorithm, namely Parallel Absolute
Top Down (PATD). PATD algorithm renders the mining process of very large databases
(up to Terabytes of data) simple and compact. Its mining process is made up of only one
parallel job, which dramatically reduces the mining runtime, the communication cost and
the energy power consumption overhead, in a distributed computational platform. Based
on a clever and efficient data partitioning strategy, namely Item Based Data Partitioning
(IBDP), PATD algorithm mines each data partition independently, relying on an absolute
minimum support instead of a relative one.

All the details about our PATD algorithm and IBDP data partitioning strategy are given
in Section 4.2. In Section 4.3, we evaluate our proposal by carrying out extensive various
experiments. Our experimental results suggest that PATD algorithm is significantly more
efficient and scalable than alternative approaches.

4.1 Motivation and Overview of the Proposal

Since a few decades, the amount of data in the world and our lives seems ever-increasing.
Nowadays, we are completely overwhelmed with data, it comes from different sources,
such as social networks, sensors, etc. With the availability of inexpensive storage and
the progress that has been made in data capture technology, several organizations have
set up very large databases, known as Big Data [67]. The processing of this massive
amount of data, helps to leverage and uncover hidden relationships, and brings up new,
and useful information. Itemsets are one of these tackled levers and consist in frequent

39
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correlations of features. Their discovery is known as Frequent itemset mining (FIM for
short), and presents an essential and fundamental role in many domains. In business and
e-commerce, for instance, FIM techniques can be applied to recommend new items, such
as books and different other products. In science and engineering, FIM can be used to
analyze such different scientific parameters (e.g., based on their regularities). Finally, FIM
methods can help to perform other data mining tasks such as text mining [1], for instance,
and, as it will be better illustrated by our experiments in Section 4.3, FIM can be used to
figure out frequent co-occurrences of words in a very large-scale text database. However,
the manipulation and processing of large-scale databases have opened up new challenges
in data mining [68]. First, the data is no longer located in one computer, instead, it is
distributed over several machines. Thus, a parallel and efficient design of FIM algorithms
must be taken into account. Second, parallel frequent itemset mining (PFIM for short)
algorithms should scale with very large data and therefore very low MinSup threshold.
Fortunately, with the availability of powerful programming models, such as MapReduce
[2] or Spark [3], the parallelism of most FIM algorithms can be elegantly achieved. They
have gained increasing popularity, as shown by the tremendous success of Hadoop [45],
an open-source implementation. Despite the robust parallelism setting that these solutions
offer, PFIM algorithms remain holding major crucial challenges. With very low MinSup,
and very large data, as will be illustrated by our experiments, most of standard PFIM
algorithms do not scale. Hence, the problem of mining large-scale databases does not
only depend on the parallelism design of FIM algorithms. In fact, PFIM algorithms have
brought the same regular issues and challenges of their sequential implementations. For
instance, given best FIM algorithm X and its parallel version X ′. Consider a very low
MinSup δ and a database D. If X runs out of memory in a local mode, then, with a
large database D′, X ′ might also exceed available memory in a distributed mode. Thus,
the parallelism, all alone, does not guarantee a successful and exhaustive mining of large-
scale databases and, to improve PFIM algorithms in MapReduce, other issues should
be taken into account. Our claim is that the data placement is one of these issues. We
investigate an efficient combination between a mining process (i.e., a PFIM algorithm)
and an efficient placement of data, and study its impact on the global mining process. We
have designed and developed a powerful data partitioning technique, namely Item Based
Data Partitioning (IBDP for short). One of the drawbacks of existing PFIM algorithms is
to settle for a disjoint placement. IBDP allows, for a given item i to be placed in more
than one mapper if necessary. Taking the advantages from this clever data partitioning
strategy, we have designed and developed a MapReduce based PFIM algorithm, namely
Parallel Absolute Top Down Algorithm (PATD for short), which is capable to mine a very
large-scale database in just one simple and fast MapReduce job. We have evaluated the
performance of PATD through extensive experiments over two massive data sets (up to
one Terabyte and half a billion Web pages). Our results show that PATD scales very well
on large databases with very low minimum support, compared to other PFIM alternative
algorithms.
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4.2 Parallel Absolute Top Down Algorithm

As briefly mentioned in Section 4.1, using an efficient data placement technique, could
significantly improve the performance of PFIM algorithms in MapReduce. This is par-
ticularly the case, when the logic and the principle of a parallel mining process is highly
sensitive to its data. For instance, let consider the case when most of the workload of a
PFIM algorithm is being performed on the mappers. In this case, the way the data is ex-
posed to the mappers, could contribute to the efficiency and the performance of the whole
mining process (i.e., invoked PFIM algorithm).

In this context, we point out to the data placement, as a custom placement of database
transactions in MapReduce. To this end, we use different data partitioning methods. We
illustrate the impact of data placement techniques on the performance of PFIM algo-
rithms, by considering particular PFIM algorithms which are based on two MapReduce
jobs schema (2-Jobs schema for short).

In this Section, first, we investigate the impact of partitioning data (i.e., impact of
data placement) on 2-Jobs schema. Second, we introduce our IBDP method for data
partitioning, and then we detail its working logic and principle. Finally, we introduce
PATD algorithm and elucidate its design and core mining process in MapReduce.

4.2.1 Impact of Partitioning Data on 2-Jobs Schema

Performing a mining process in two steps was first proposed in [9] and it was designated
for centralized environments. SON [9] algorithm divides a mining process as follows:

� Step 1: Divide the input database D into n data chunks (i.e., data splits), where
D = {P1, P2, . . . , Pn}. Then, mine each data chunk (Pi) in the memory, based on a
local minimum support (LMinSup), and a specific FIM algorithm. Thus, the first
step of SON algorithm is to determine a list of local frequent itemsets (LFI).

� Step 2: From previous step result, proceed by filtering the local frequent itemsets in
LFI list, based on a global minimum support GMinSup. This may be done with
a scan on D and checking the frequency of each itemset is LFI . The main idea is
that any frequent itemset on D will be frequent on at least one chunk Pi and will
be found in LFI . Then, return a list of global frequent itemsets (GFI) which is a
subset of LFI (GFI ⊆ LFI).

In a massively distributed environment, the main bottleneck of such 2-Jobs schema
PFIM algorithm is its first execution phase, where an FIM algorithm has to be executed
on the chunks. The choice of this algorithm is crucial. Relying on SON mining principle,
we have implemented a parallel version of CDAR [69] and Apriori [8] algorithms on
MapReduce, namely, Parallel Two Round CDAR (P2RC) and Parallel Two Round Apriori
(P2RA) respectively. Each version makes use of CDAR or Apriori on the chunks in the
first phase. P2RC divides the mining process into two MapReduce jobs as follows:
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� Job 1: In the first phase, the principle of CDAR (see [69] for more details) is
adapted to a distributed environment. A global minimum support GMinSup ∆ is
passed to each mapper. The latter deduces a local minimum support LMinSup

δ from ∆ and its input data split (i.e., number of transaction in the input split).
Then, each mapper divides its input data split (S) into n data partitions, S =
{S1, S2, . . . , Sn}. Each partition Si in S holds only transactions that have length
i, where the length of a transaction is the number of items in it. Then, the mapper
starts mining the data partitions Si...Sn according to transaction lengths in decreas-
ing order. A transaction in each partition accounts for an itemset. If a transaction
T is frequent (Support(T ) ≥ δ) in partition Si+1, then it will be stored in a list
of frequent itemsets L. Otherwise, T will be stored in a temporary data structure
Temp. After checking the frequency of all transactions T in Si+1, the process con-
tinues by generating i subsets of all T in Temp and adds the i generated subsets to
partition Si. The same mining process is carried out until visiting all partitions Si

in S. Before counting the Support of a transaction T , an inclusion test of T in L

is performed. If the test returns true, T will be not considered, as it is already in
L which means frequent. Each mapper emits all its local frequent itemsets to the
reducer. The reducer writes all local frequent itemsets to the distributed file system.

� Job 2: Each mapper takes a data split S and a list of local frequent itemsets LFI .
Each mapper determines the inclusion of LFI elements in each transaction of S. If
there is an inclusion, then the mapper emits the itemset as a key and one as value
(key: itemset, value: 1). A global minimum support GMinSup ∆ is passed to the
reducer. The reducer simply iterates over the values of each received key, and sums
them up in variable sum. If (sum ≥ ∆), then the itemset under consideration is
globally frequent.

As illustrated above, the main workload of P2RC algorithm is done on the mappers inde-
pendently. intuitively, the mapper that holds more homogeneous data (i.e., homogeneous
transactions) will be faster. Actually, by referring to the mining principle of CDAR, a
mapper that holds homogeneous transactions (i.e., similar transactions) allows for more
itemset inclusions which in turn results in less subsets generation. Thus, placing each
bucket of similar transactions (non-overlapping data partitions) on the mappers would im-
prove the performance of P2RC algorithm. This data placement technique can be achieved
by means of different data partitioning methods.

In contrast, the partitioning of data based on transaction similarities (STDP for short:
Similar Transaction Data Partitioning), logically would not improve the performance of
Parallel Two Round Apriori (P2RA), instead it should lower it. In this case, each mapper
would hold a partition of data (i.e., data split) of similar transactions which allows for
a high number of frequent itemsets in each mapper. This results in a higher number of
itemset candidates generation. Interestingly, using a simple Random Transaction Data
Partitioning (RTDP for short) to randomly place data on the mappers, should give the
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best performance of P2RA. Our experiments given in Section 4.3 clearly illustrate this
intuition.

P2RC performs two MapReduce jobs to determine all frequent itemsets. Thus, PFIM
algorithms that depend on SON process design duplicate the mining results. Also, at
their first mining step (i.e., first MapReduce job), 2-Jobs schema PFIM algorithms output
itemsets that are locally frequent, and there is no guarantee to be globally frequent. Hence,
these algorithms amplify the number of transferred data (i.e., itemsets) between mappers
and reducers.

To cover the above-mentioned issues, our major challenge is to limit the mining pro-
cess to one simple job. This would guarantee low data communications, less energy power
consumption, and a fast mining process. In a distributed computational environment, we
take the full advantage of the available massive storage space, CPU(s), etc.

4.2.2 IBDP: An Overlapping Data Partitioning Strategy

Our claim is that duplicating the data on the mappers allows for a better accuracy in the
first job and therefore leads to less infrequent itemsets (meaning less communications
and fast processing). Consider a data placement with a high overlap, with for instance
10 partitions, each holding 50% of the database. Obviously, there will be less globally
infrequent itemsets in the first job (in other words, if an itemset is frequent on a mapper,
then it is highly likely to be frequent on the whole database). Unfortunately, such an
approach is not realistic. First, we still need a second job to filter the local frequent
itemsets and check their global frequency. Furthermore, such a thoughtless placement
is absolutely not plausible, given the massive data sets we are dealing with. However,
we take advantage of this duplication opportunity and propose IBDP, an efficient strategy
for partitioning the data over all mappers, with an optimal amount of duplicated data,
allowing for an exhaustive mining in just one MapReduce job. The goal of IBDP is
to replace part of the mining process by a clever placement strategy and optimal data
duplication.

The main idea of IBDP is to consider the different groups of frequent itemsets that
are usually extracted. Let us consider a minimum threshold ∆ and X , a frequent itemset
according to ∆ on D. Let SX be the subset of D restricted to the transactions supporting
X . The first expectation is to have |SX | ≪ |D| since we are working with very low
minimum thresholds. The second expectation is that X can be extracted from SX with
∆ as a minimum threshold. The goal of IBDP is a follows: for each frequent itemset X ,
build SX the subset from which the extraction of X can be done in one job. Fortunately,
itemsets usually share a lot of items between each other. For instance, with Wikipedia
articles, there will be a group of itemsets related to the Olympic games, another group
of itemsets related to Algorithms, etc. IBDP exploits these affinities between itemsets.
It divides the search space by building subsets of D that correspond to these groups of
itemsets, optimizing the size of duplicated data.

More precisely, given a database of transactions D, and its representation in the form
of a set S of n non-overlapping data partitions S = {S1, S2, . . . , Sn}. Each one of these
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non-overlapping data partitions (i.e.,
⋂n

i=1 Si = ∅), holds a set of similar transactions (the
union of all elements in S is D,

⋃n
i=1 Si = D). For each non-overlapping data partition

Si in S, we extract a "centroid". The centroid of Si contains the different items, and
their number of occurrences, in Si. Only the items having a maximum number of occur-
rences over the whole set of partitions, are kept for each centroid. Once the centroids are
built, IBDP simply intercepts each centroid of Si with each transaction in D. If a trans-
action in D shares an item with a centroid of Si, then the intersection of this transaction
and the centroid will be placed in an overlapping data partition called S ′

i. If we have
n non-overlapping data partitions (i.e., n centroids), IBDP generates n overlapping data
partitions and distributes them on the mappers.

The core working process of IBDP data partitioning and its parallel design on MapRe-
duce, are given in Algorithm 2, while its principle is illustrated by Example 20.

Algorithm 2: IBDP

1 //Job1
Input: Non-overlapping data partitions S = {S1, S2, . . . , Sn} of a database D
Output: Centroids

2 //Map Task 1
3 map( key: Split Name: K1, value = Transaction (Text Line): V1 )
4 - Tokenize V1, to separate all items
5 emit (key: Item, value: Split Name)

6 //Reduce Task 1
7 reduce( key: Item, list(values) )
8 while values.hasNext() do
9 emit (key:(Split Name) values.next (Item))

10 //Job2
Input: Database D
Output: Overlapping Data Partitions

11 //Map Task 2
12 - Read previous job1 result once in a (key, values) data structure (DS), where key:

SplitName and values: Items
13 map( key: Null: K1, value = Transaction (Text Line): V1 )
14 for SplitName in DS do if Items.Item ∩V1 Ó= ∅ then
15 emit (key: SplitName, value: V1)

16

17 //Reduce Task 2
18 reduce( key: SplitName, list(values) )
19 while values.hasNext() do
20 emit (key: (SplitName), values.next: (Transaction))
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� Job 1 Centroids: Each mapper takes a transaction (line of text) from non-overlapping
data partitions as a value, S = {S1, S2, . . . , Sn}, and the name of the split being pro-
cessed as a key. Then, it tokenizes each transaction (value) to determine different
items, and emits each item as a key coupled with its split name as a value. After
mappers execution, the reducer aggregates over the keys (items), and emits each
key (item) coupled with its different value (split name) in the list of values (split
names).

� Job 2 Overlapping Partitions: The format of the MapReduce output is set to "Mul-
tiFileOutput" in the driver class. In this case, the keys will denote the name of
each overlapping data partition output (we override the "generateFileNameForKey-
Value" function in MapReduce to return a string as a key). In the map function,
first, we store (once) the previous MapReduce job (Centroids) in a (key, value) data
structure (e.g.MultiHashMap, etc.). The key in the used data structure is the split
name, and the value is a list of items. Then, each mapper takes a transaction (line of
text) from the database D, and for each key in the used data structure, if there is an
intersection between the values(list of items) and the transaction being processed,
then the mapper emits the key as the split name (in the used data structure) and
value as the transaction of D. The reducer simply aggregates over the keys (split
names) and writes each transaction of D to an overlapping data partition file.

Example 20. Figure 4.1 shows a transaction database D with 5 transactions. In this
example, we have two non-overlapping data partitions at step (1) and thus two centroids
at step (2). The centroids are filtered in order to keep only the items having the maxi-
mum number of occurrences (3). IBDP intercepts each one of these two centroids with all
transactions in D. This results in two overlapping data partitions in (4) where the inter-
sections only are kept in (5). Finally, the maximal frequent itemsets are extracted in (6).
Redundancy is used for the counting process of different itemsets. For instance, transac-
tion efg is duplicated in both partitions in (5) where the upper version participates to the
frequency counting of a and the lower version participates to the frequency counting of
fg.

4.2.3 1-Job Schema: Complete Approach

We take the full advantage from IBDP data partitioning strategy and propose a pow-
erful and robust 1-Job Schema PFIM algorithm namely PATD. PATD algorithm limits
the mining process of very large database to one simple MapReduce job and exploits
the natural design of MapReduce framework. Given a set of overlapping data partitions
(S = {S1, S2, . . . , Sm}) of a database D and an absolute minimum support AMinSup

∆, the PATD algorithm mines each overlapping data partition Si independently. At each
mapper mi, i = 1, ..., n, PATD performs CDAR algorithm on Si. The mining process is
based on the same AMinSup ∆ for all mappers, i.e., each overlapping data partition Si
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Figure 4.1 – Data Partitioning Process: (1) partitions of similar transactions are built;
(2) centroids are extracted; (3) and filtered; (4) transaction are placed and filtered ; (5)
to keep only the intersection of original transactions and centroids; (6) local frequent
itemsets are also globally frequent.

is mined based on ∆. The mining process is carried out in parallel on all mappers. The
mining result (i.e., frequent itemsets) of each mapper mi is sent to the reducer. The latter
receives each frequent itemsets as its key and null as its value. The reducer aggregates
over the keys (frequent itemsets) and writes the final result to a distributed file system.

The main activities of mappers and reducers in PATD algorithm are as follows:

� Mapper: Each mapper is given a Si, i = 1...m overlapping data partition, and a
global minimum support (i.e., AMinSup). The latter performs CDAR algorithm
on Si. Then, it emits each frequent itemset as a key and null for its value, to the
reducer.

� Reducer: The reducer simply aggregates over the keys (frequent itemsets received
from all mappers) and writes the final result to a distributed file system.

As illustrated in the mappers and reducers logic, PATD performs the mining process in
one simple and efficient MapReduce job. These properties of PATD are drawn from the
use of the robust data partitioning strategy IBDP. In fact, IBDP data partitioning strategy
covers most of the mining complexities in PATD.

Example 21. Lets take the example of Figure 4.1. Given an absolute minimum support
∆ = 2 (i.e., an itemset is considered frequent, if it appears at least in two transactions
in D). Following PATD mining principle, each mapper is given an overlapping data
partition Si as a value. In our example, we have two overlapping data partitions (5).
We consider two mappers m1 and m2, each one of theses mappers performs a complete
CDAR with ∆ = 2. In Figure 4.1 (5) from bottom-up : mapper m1 mines first overlapping
data partition and returns {fg} as a frequent itemset. Alike, mapper m2 mines second
overlapping data partition and returns {{ac}, {bc}}. All the results are sent to the reducer,
the reducer aggregates over the keys (frequent itemsets) and outputs the final result to a
distributed file system.



4.3 Experiments 47

4.2.4 Proof of Correctness

To prove the correctness of PATD algorithm, it is sufficient to prove that if an itemset x

is frequent, then it is frequent in at least one of the partitions produced by IBDP. Since,
each partition is locally mined by one mapper, then x will be found as frequent by one of
the mappers. Thus, the correctness proof is done by the following lemma.

Lemma 1. Given a database D = {T1, T2, . . . , Tn}, and an absolute minimum support
∆, then ∀ itemset x in D we have: SupportD(x) ≥ ∆ ⇔ ∃ P \ SupportP(x) ≥ ∆ where
P denotes one of the data partitions obtained by performing IBDP on D.

Proof.
We first prove that if SupportD(x) ≥ ∆ then ∃ P \ SupportP(x) ≥ ∆.
Let denote by X , the set of all unique items of D. The intersection of all transactions
{T1, T2, . . . , Tn} with X is D. Thus, in this particular case, SupportD(x) ≥ ∆ ⇒
∃ D \ SupportD(x) ≥ ∆. If the set of unique items X is partitioned into k parti-
tions, then the intersection of each one of these k partitions with all {T1, T2, . . . , Tn}
in D, would result in a new data partition P . Let denote by Π = {P1, P2, . . . , Pk},
the set of all these new data partitions. For any given itemset x in D, its total occur-
rence will be in one partition of Π, because, all items in X are shared among these
partitions in Π. Therefore, SupportD(x) ≥ ∆ ⇒ ∃ IP \ SupportIP

(x) ≥ ∆

Next, we prove the inverse, i.e. if ∃ P \ SupportP(x) ≥ ∆ then SupportD(x) ≥
∆.
This is done simply by using the fact that each partition P is a subset of D. Hence,
if the support of x in P is higher than ∆, then this will be the case in D. Thus, we
have: if ∃ P \ SupportP(x) ≥ ∆ ⇒ SupportD(x) ≥ ∆.

Therefore, we conclude that: SupportD(x) ≥ ∆ ⇔ ∃ P \ SupportP(x) ≥ ∆.

4.3 Experiments

To assess the performance of PATD algorithm, we have carried out extensive experimental
evaluations. In Section 4.3.1, we depict our experimental setup, and in Section 4.3.2 we
investigate and discuss the results of our different experiments.

4.3.1 Experimental Setup

We implemented PATD, and all other presented algorithms on top of Hadoop-MapReduce,
using Java programming language version 1.7 and Hadoop version 1.0.3. For comparing
PATD performance with other PFIM alternatives, we implemented two bunches of algo-
rithms. First, we followed SON algorithm design and implemented Parallel Two Round
Apriori (P2RA) and Parallel Two Round CDAR (P2RC). These two PFIM algorithms are
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based on random transaction data partitioning (RTDP) and similar transaction data parti-
tioning (STDP), respectively. Second, we designed and implemented a parallel version of
standard Apriori [8] algorithm, namely Parallel Apriori (PA). For comparison with PFP-
Growth [6], we adopted the default implementation provided in the Mahout [63] machine
learning library (Version 0.7).

We carried out all our experiments based on the Grid5000 [64] platform, which is a
platform for large-scale data processing. We have used a cluster of 16 and 48 machines
respectively for Wikipedia and ClueWeb data set experiments. Each machine is equipped
with Linux operating system, 64 Gigabytes of main memory, Intel Xeon X3440 4 core
CPUs, and 320 Gigabytes SATA hard disk.

To better evaluate the performance of PATD algorithm, we used two real-world data
sets. The first one is the 2014 English Wikipedia articles [65] having a total size of 49
Gigabytes, and composed of 5 million articles. The second one is a sample of ClueWeb
English data set [66] with size of one Terabyte and having 632 million articles. For each
data set, we performed a data cleaning task. We removed all English stop words from all
articles, we obtained data sets where each article represents a transaction (items are the
corresponding words in the article) to each invoked PFIM algorithm in our experiments.

In our experiments, we vary the MinSup parameter value for each PFIM algorithm.
We evaluate each algorithm based on its response time, its total amount of transferred
data, and its energy power consumption. In particular, we consider these three different
measurements, when the MinSup is very low.
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Figure 4.2 – Runtime and Scalability on English Wikipedia Data Set
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Figure 4.3 – Runtime and Scalability on ClueWeb Data Set
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(a) English Wikipedia data set
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(b) ClueWeb data set

Figure 4.4 – Data communication
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Figure 4.5 – Energy Consumption

4.3.2 Runtime and Scalability

Figures 4.2 and 4.3 give a complete view of our experiments on both English Wikipedia
and ClueWeb data sets. Figures 4.2(a) and 4.2(b) report our experimental results on the
whole English Wikipedia data set. Figure 4.2(a) gives an entire view on algorithms perfor-
mances for a minimum support varying from 0.12% to 0.01%. We see that PA algorithm
runtime grows exponentially, and gets quickly very high compared to other presented
PFIM algorithms. This exponential run-time reaches its highest value with 0.04% thresh-
old. Below this threshold, PA needs more resources (e.g. memory) than what exists in our
tested machines, thus, it is impossible to extract frequent itemsets with this algorithm. An-
other interesting observation is that P2RA performance tends to be close to PFP-Growth
until a minimum support of 0.02%. P2RA algorithm continues scaling with 0.01% while
PFP-Growth does not. Although, P2RC scales with low minimum support values, PATD
outperforms this algorithm in terms of running time. In particular, with a minimum sup-
port of 0.01%, PATD algorithm outperforms all other presented. This difference in the
performance is better illustrated in Figure 4.2(b).

Figure 4.2(b) focuses on the differences between the four algorithms that scale in
Figure 4.2(a). Although P2RC continues to scale with 0.002%, it is outperformed by
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PATD in terms of running time. With 0.002% threshold, we observe a big difference in
the response time between PATD and P2RC. This very good performance of PATD is due
to its clever and simple mining principle, and its simple MapReduce job property that
allows a low mining time.

In Figures 4.3(a) and 4.3(b), similar experiments have been conducted on the ClueWeb
data set. We observe that the same order between all algorithms is kept, compared to
Figures 4.2(a) and 4.2(b). There are three bunches of algorithms. One, made of PA which
cannot reasonably applied to this data set, whatever the minimum support. In the second
bunch, we see that PFP-Growth suffers from the same limitations as could be observed
on the Wikipedia data set in Figure 4.2(a), and it follows a behavior that is very similar to
that of P2RA, until it becomes impossible to execute. P2RA continues scaling until stops
executing with a minimum support of 0.0001%. In the third bunch of algorithms, we see
P2RC and PATD scale until 0.00008%. We decreased the minimum support parameter,
and we zoom on these two algorithms. As shown in Figure 4.3(b), we observe a very good
performance of PATD compared to P2RC. The P2RC algorithm becomes inoperative with
a minimum support below 0.00006%, while PATD continues scaling very well. This big
difference in the performance behavior between PATD and all other presented algorithms,
shows the high capability of PATD in terms of scaling and response time. With both,
Gigabytes and Terabytes of data, PATD gives a very good and significant performance.
Whatever, the data size, the number of transactions, and the minimum support, PATD
scales and achieves very good results.

4.3.3 Data Communication and Energy Consumption

Let’s now study the amount of data transferred over the network for executing different
PFIM algorithms. Figure 4.4(a) shows the transferred data (in mega bytes) of each pre-
sented algorithm on Wikipedia data set. We observe in this figure that PA has the highest
peak, this is simply due to its several round of MapReduce executions. In other hand, we
see that P2RA, P2RC and PFP-Growth represent smaller peaks. Among all the presented
algorithms in Figure 4.4(a), we clearly distinguish PATD algorithm. We can see that
whatever the used MinSup, PATD does not allow much data transfer compared to other
algorithms. This is because PATD does not rely on chains of jobs like other presented al-
ternatives. In addition, contrary to other PFIM algorithms, PATD limits the mappers from
emitting non frequent itemsets. Therefore, PATD algorithm does not allow the transmis-
sion of useless data (itemsets).

In Figure 4.4(b), we report the results of the same experiment on ClueWeb data set.
We observe that PATD algorithm always has the lowest peak in terms of transferred data
comparing to other algorithms.

We also measured the energy consumption of the compared algorithms during their
execution. For measuring the power consumption, we used the Grid5000 tools that mea-
sure the power consumption of the nodes during a job execution. Figure 4.5 shows the
total amount of the power consumption of each presented PFIM algorithm. We observe
in Figure 4.5, that the consumption increases when decreasing the minimum support for
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each algorithm. We see that PATD still gives a lower consumption comparing to other
algorithms. Taking the advantage from its parallel design, PATD allows a high parallel
computational execution. This, impacts the mining runtime to be fast, which is in turn,
allows for a fast convergence of the algorithm and thus, a less consumption of the energy.
PATD also transfers less data over the network, and this is another reason for its lower
energy consumption.

4.4 Conclusion

We proposed a reliable and efficient MapReduce based parallel frequent itemset algo-
rithm, namely PATD, that has shown significantly efficient in terms of; i) runtime and
scalability; i) low data communication; and low energy consumption. PATD algorithm
takes the advantage of an efficient data partitioning technique namely IBDP. IBDP data
partitioning strategy allows for an optimized data placement on MapReduce. This place-
ment technique has not been investigated before this work. It allows PATD algorithm to
exhaustively and quickly mine very large databases. Such ability to use very low min-
imum supports is mandatory when dealing with Big Data and particularly hundreds of
Gigabytes like what we have done in our experiments. Our results show that PATD algo-
rithm dramatically outperforms other existing PFIM alternatives, and makes the difference
between an inoperative and a successful extraction.



Chapter 5

Fast Parallel Mining of Maximally
Informative K-Itemsets

In this chapter, we address the problem of mining maximally informative k-itemsets (miki)
in big data. The discovery of informative itemsets is a fundamental building block in
data analytics and information retrieval. While the problem has been widely studied,
only few solutions scale. This is particularly the case when i) the data set is massive,
calling for large-scale distribution, and/or ii) the length K of the informative itemset to be
discovered is high. We propose PHIKS (Parallel Highly Informative K-itemSets) a highly
scalable, parallel miki mining algorithm. PHIKS renders the mining process of large scale
databases (up to Terabytes of data) succinct and effective. Its mining process is made up
of only two compact, yet efficient parallel jobs. PHIKS uses a clever heuristic approach to
efficiently estimates the joint entropies of miki having different sizes with very low upper
bound error rate, which dramatically reduces the runtime process.

The miki problem is formally defined in Section 2.1.2 of chapter 2. We introduce our
PHIKS algorithm in details, in Section 5.3. In Section 5.4, we evaluate our proposal with
very large real-world data sets. Our different experimental results confirm the effective-
ness of our proposal by the significant scale-up obtained with high featuresets length and
hundreds of millions of objects.

5.1 Motivation and Overview of the Proposal

Featureset, or itemset, mining [70] is one of the fundamental building bricks for exploring
informative patterns in databases. Features might be, for instance, the words occurring
in a document, the score given by a user to a movie on a social network, or the char-
acteristics of plants (growth, genotype, humidity, biomass, etc.) in a scientific study in
agronomic. A large number of contributions in the literature has been proposed for item-
set mining, exploring various measures according to the chosen relevance criteria. The
most studied measure is probably the number of co-occurrences of a set of features, also
known as frequent itemsets [35]. However, frequency does not give relevant results for a

53
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various range of applications, including information retrieval [71], since it does not give a
complete overview of the hidden correlations between the itemsets in the database. This
is particularly the case when the database is sparse [37]. Using other criteria to assess
the informativeness of an itemset could result in discovering interesting new patterns that
were not previously known. To this end, information theory [15] gives us strong supports
for measuring the informativeness of itemsets. One of the most popular measures is the
joint entropy [15] of an itemset. An itemset X that has higher joint entropy brings up
more information about the objects in the database.

We study the problem of Maximally Informative k-Itemsets (miki for short) discovery
in massive data sets, where informativeness is expressed by means of joint entropy and k

is the size of the itemset [72, 7, 42]. Miki are itemsets of interest that better explain the
correlations and relationships in the data. Example 15 gives an illustration of miki and its
potential for real world applications such as information retrieval.

Miki mining is a key problem in data analytics with high potential impact on various
tasks such as supervised learning [24], unsupervised learning [73] or information retrieval
[71], to cite a few. A typical application is the discovery of discriminative sets of features,
based on joint entropy [15], which allows distinguishing between different categories of
objects. Unfortunately, it is very difficult to maintain good results, in terms of both re-
sponse time and quality, when the number of objects becomes very large. Indeed, with
massive amounts of data, computing the joint entropies of all itemsets in parallel is a very
challenging task for many reasons. First, the data is no longer located in one computer,
instead, it is distributed over several machines. Second, the number of iterations of par-
allel jobs would be linear to k (i.e., the number of features in the itemset to be extracted
[7]), which needs multiple database scans and in turn violates the parallel execution of
the mining process. We believe that an efficient miki mining solution should scale up
with the increase in the size of the itemsets, calling for cutting edge parallel algorithms
and high performance evaluation of an itemset’s joint entropy in massively distributed
environments.

We propose a deep combination of both information theory and massive distribution
by taking advantage of parallel programming frameworks such as MapReduce [74] or
Spark [75]. To the best of our knowledge, there has been no prior work on parallel infor-
mative itemsets discovery based on joint entropy. We designed and developed an efficient
parallel algorithm, namely Parallel Highly Informative K-itemSet (PHIKS in short), that
renders the discovery of miki from a very large database (up to Terabytes of data) sim-
ple and effective. It performs the mining of miki in two parallel jobs. PHIKS cleverly
exploits available data at each mapper to efficiently calculate the joint entropies of miki
candidates. For more efficiency, we provide PHIKS with optimizations that allow for very
significant improvements of the whole process of miki mining. The first technique esti-
mates the upper bound of a given set of candidates and allows for a dramatic reduction
of data communications, by filtering unpromising itemsets without having to perform any
additional scan over the data. The second technique reduces significantly the number of
scans over the input database of each mapper, i.e., only one scan per step, by incremen-
tally computing the joint entropy of candidate features. This reduces drastically the work
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that should be done by the mappers, and thereby the total execution time.
PHIKS has been extensively evaluated using massive real-world data sets. Our ex-

perimental results show that PHIKS significantly outperforms alternative approaches, and
confirm the effectiveness of our proposal over large databases containing for example one
Terabyte of data.

The rest of this chapter is structured as follows. Section 5.2 gives the necessary back-
ground. In Section 5.3, we propose our PHIKS algorithm, and depict its whole core
mining process. Section 5.4 reports on our experimental validation over real-world data
sets. Section 5.5 concludes.

5.2 Background

In this Section, we detail the miki discovery in a centralized environment.

5.2.1 Miki Discovery in a Centralized Environment

In [7], an effective approach is proposed for miki discovery in a centralized environment.
Their ForwardSelection heuristic uses a "generating-pruning" approach, which is similar
to the principle of Apriori [35]. i1, the feature having the highest entropy is selected as a
seed. Then, i1 is combined with all the remaining features, in order to build candidates.
In other words, there will be |F −1| candidates (i.e., (i1, i2), (i1, i3), . . . , (i1, i|F−1|)). The
entropy of each candidate is given by a scan over the database, and the candidate having
the highest entropy, say (i1, i2), is kept. A set of |F − 2| candidates of size 3 is generated
(i.e., (i1, i2, i3), (i1, i2, i4), . . . , (i1, i2, i|F−2|)) and their entropy is given by a new scan
over the database. This process is repeated until the size of the extracted itemset is k.

5.3 PHIKS Algorithm

In a massively distributed environment, a possible naive approach for miki mining would
be a straightforward implementation of ForwardSelection [7] (see Section 5.2.1). How-
ever, given the "generating-pruning" principle of this heuristic, it is not suited for environ-
ments like Spark [75] or MapReduce [74] and would lead to very bad performances. The
main reason is that each scan over the data set is done through a distributed job (ı.e., there
will be k jobs, one for each generation of candidates that must be tested over the database).
Our experiments, in Section 5.4, give an illustration of the catastrophic response times of
ForwardSelection in a straightforward implementation on MapReduce (the worst, for all
of our settings). This is not surprising since most algorithms designed for a centralized
itemset mining do not perform well in massively distributed environments in a direct im-
plementation [76], [77], [78], and miki don’t escape that rule.

Such an inadequacy calls for new distributed algorithmic principles. To the best of our
knowledge, there is no previous work on distributed mining of miki. However, we may
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build on top of cutting edge studies in frequent itemset mining, while considering the very
demanding characteristics of miki.

Interestingly, in the case of frequent itemsets in MapReduce, a mere algorithm con-
sisting of two jobs outperforms most existing solutions [79] by using the principle of SON
[80], a divide and conquer algorithm. Unfortunately, despite its similarities with frequent
itemset mining, the discovery of miki is much more challenging. Indeed, the number of
occurrences of an itemset X in a database D is additive and can be easily distributed (the
global number of occurrences of X is simply the sum of its local numbers of occurrences
on subsets of D). Entropy is much more combinatorial since it is based on the the pro-
jection counting of X in D and calls for efficient algorithmic advances, deeply combined
with the principles of distributed environments.

5.3.1 Distributed Projection Counting

Before presenting the details of our contribution, we need to provide tools for computing
the projection of an itemset X on a database D, when D is divided into subsets on different
splits, in a distributed environment, and entropy has to be encoded in the key-value format.
We have to count, for each projection p of X , its number of occurrences on D. This can
be solved with an association of the itemset as a key and the projection as a value. On
a split, for each projection of an itemset X , X is sent to the reducer as the key coupled
with its projection. The reducer then counts the number of occurrences, on all the splits,
of each (key:value) couple and is therefore able to calculate the entropy of each itemset.
Communications may be optimized by avoiding to emit a key : val couple when the
projection does not appear in the transaction and is only made of ’0’ (on the reducer, the
number of times that a projection p of X does not appear in D is determined by subtracting
the number projections of X in D from |D|).

Example 22. Let us consider D, the database of Table 2.1, and the itemset X = (D, E).
Let us consider that D is divided into two splits S1 = {d1..d5} and S2 = {d6..d10}. With
one simple MapReduce job, it is possible to calculate the entropy of X . The algorithm
of a mapper would be the following: for each document d, emit a couple (key : val)
where key = X and val = proj(X, d). The first mapper (corresponding to S1) will emit
the following couples: ((D, E) : (1, 1)) 4 times and ((D, E) : (0, 1)) once. The second
mapper will emit ((D, E) : (1, 1)) 5 times. The reducers will do the sum and the final
result will be ((D, E) : (1, 1)) occurs 9 times and (((D, E) : (0, 1)) once.

5.3.2 Discovering miki in Two Rounds

Our heuristic will use at most two MapReduce jobs in order to discover the k-itemset
having the highest entropy. The goal of the first job is to extract locally, on the distributed
subsets of D, a set of candidate itemsets that are likely to have a high global entropy. To
that end, we apply the principle of ForwardSelection locally, on each mapper, and grow an
itemset by adding a new feature at each step. After the last scan, for each candidate itemset
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Split A B C D E
S1 0 0 1 0 0

0 1 0 0 0
1 0 1 0 0
1 1 0 0 0
0 1 1 0 1
1 0 0 0 0

S2 0 0 0 0 1
0 1 0 1 1
1 0 0 0 1
1 1 0 1 1
0 1 0 0 0
1 0 0 1 1

Table 5.1 – Local Vs. Global Entropy

X of size k we have the projection counting of X on the local data set. A straightforward
approach would be to emit the candidate itemset having the highest local entropy. We
denote by local entropy, the entropy of an itemset in a subset of the database that is read
by a mapper (i.e., by considering only the projections of X in the mapper). Then the
reducers would collect the local miki and we would check their global entropy (i.e., the
entropy of the itemset X in the entire database D) by means of a second MapReduce job.
Unfortunately, this approach would not be correct, since an itemset might have the highest
global entropy, while actually not having the highest entropy in each subset. Example 23
gives a possible case where a global miki does not appear as a local miki on any subset of
the database.

Example 23. Let us consider D, the database given by Table 5.1, which is divided into
two splits of six transactions. The global miki of size 3 in this database is (A, B, E). More
precisely, the entropy of (A, B, E) on D is given by − 1

12
× log( 1

12
) × 4 − 2

12
× log( 2

12
) ×

4 = 2.92. However, if we consider each split individually, (A, B, E) always has a lower
entropy compared to at least one different itemset. For instance, on the split S1, the
projections of (A, B, E) are (0, 0, 0), (0, 1, 0), (1, 1, 0) and (0, 1, 1) with one occurrence
each, and (1, 0, 0) with two occurrences. Therefore the entropy of (A, B, E) on S1 is 2.25
(i.e., −1

6
×log(1

6
)×4− 2

6
×log(2

6
) = 2.25). On the other hand, the projections of (A, B, C)

on S1 are (0, 0, 1), (0, 1, 0), (1, 0, 1), (1, 1, 0), (0, 1, 1) and (1, 0, 0) with one occurrence
each, and the entropy of (A, B, C) on S1 is 2.58 (i.e., −1

6
× log(1

6
) × 6 = 2.58). This

is similar on S2 where the entropy of (A, B, E) is 2.25 and the entropy of (A, B, D) is
2.58. However, (A, B, C) and (A, B, D) both have a global entropy of 2.62 on D, which
is lower than 2.92, the global entropy of (A, B, E) on D.

Since it is possible that a global miki is never found as a local miki, we need to con-
sider a larger number of candidate itemsets. This can be done by exploiting the set of
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candidates that are built in the very last step of ForwardSelection. This step aims to cal-
culate the projection counting of F − k candidates and then compute their local entropy.
Instead of only emitting the itemset having the larger entropy, we will emit, for each can-
didate X , the projection counting of X on the split, as explained in Section 5.3.1. The
reducers will then be provided with, for each local candidate Xi (1 ≤ i ≤ m, where m

is the number of mappers, or splits), the projection counting of X on a subset of D. The
main idea is that the itemset having the highest entropy is highly likely to be in that set of
candidates. For instance, in the database given by Table 5.1 and k = 3, the global miki is
(A, B, E), while the local miki are (A, B, C) on S1 and (A, B, D) on S2. However, with
the technique described above, the itemset (A, B, E) will be a local candidate, and will
be sent to the reducers with the whole set of projections encountered so far in the splits.
The reducer will then calculate its global entropy, compare it to the entropy of the other
itemsets, and (A, B, E) will eventually be selected as the miki on this database.

Unfortunately, it is possible that X has not been generated as a candidate itemset on
the entire set of splits (consider a biased data distribution, where a split contains some
features with high entropies, and these features have low entropies on the other splits).
Therefore, we have two possible cases at this step:

1. X is a candidate itemset on all the splits and we are able to calculate its exact
projection counting on D, by means of the technique given in Section 5.3.1.

2. There is (at least) one split where X has not been generated as a candidate and we
are not able to calculate its exact projection counting on D.

The first case does not need more discussion, since we have collected all the neces-
sary information for calculating the entropy of X on D. The second case is more difficult
since X might be the miki but we cannot be sure, due to lack of information about its local
entropy on (at least) one split. Therefore, we need to check the entropy of X on D with
a second MapReduce job intended to calculate its exact projection counting. The goal of
this second round is to check that no local candidate has been ignored at the global scale.
At the end of this round, we have the entropy of all the promising candidate itemsets
and we are able to pick the one with the highest entropy. This is the architecture of our
approach, the raw version of which (without optimization) is called Simple-PHIKS. So
far, we have designed a distributed architecture and a miki extraction algorithm that, in
our experiments reported in Section 5.4 outperforms ForwardSelection by several orders
of magnitude. However, by exploiting and improving some concepts of information the-
ory, we may significantly optimize this algorithm and further accelerate its execution at
different parts of the architecture, as explained in the following sections.

5.3.3 Candidate Reduction Using Entropy Upper Bound

One of the shortcomings of the basic version of our two rounds approach is that the num-
ber of candidate itemsets, which should be processed in the second job, may be high for
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large databases as it will be illustrated by our experiments in Section 5.4. This is partic-
ularly the case when the features are not uniformly distributed in the splits of mappers.
These candidate itemsets are sent partially by the mappers (i.e., not by all of them), thus
we cannot compute their total entropy in the corresponding reducer. This is why, in the
basic version of our approach, we compute their entropy in the second job by reading
again the database.

Here, we propose an efficient technique for significantly reducing the number of can-
didates. The main idea is to compute an upper bound for the entropy of the partially
sent itemsets, and discard them if they have no chance to be a global miki. For this, we
exploit the available information about the miki candidates sent by the mappers to the
corresponding reducer.

Let us describe formally our approach. Let X be a partially sent itemset, and m

be a mapper that has not sent X and its projection frequencies to the reducer R that
is responsible for computing the entropy of X . In the reducer R, the frequency of X

projections for a part of the database is missing, i.e., in the split of m. We call these
frequencies as missing frequencies. We compute an upper bound for the entropy of X by
estimating its missing frequencies. This is done in two steps. Firstly, finding the biggest
subset of X , say Y , for which all frequencies are available and secondly, distributing the
frequencies of Y among the projections of X in such a way that the entropy of X be the
maximum.

Step 1: The idea behind the first step is that the frequencies of the projections of an
itemset X can be derived from the projections of its subsets. For example, suppose
two itemsets X = {A, B, C, D} and Y = {A, B}, then the frequency of the projection
p = (1, 1) of Y is equal to the sum of the following projections in X: p1 = (1, 1, 0, 0),
p2 = (1, 1, 0, 1), p3 = (1, 1, 1, 0) and p4 = (1, 1, 1, 1). The reason is that in all these
four projections, the features A and B exist, thus the number of times that p occurs in the
database is equal to the total number of times that the four projections p1 to p4 occur. This
is stated by the following lemma.

Lemma 2. Let the itemset Y be a subset of the itemset X , i.e., Y ⊆ X . Then, the
frequency of any projection p of Y is equal to the sum of the frequencies of all projections
of X which involve p.

Proof. The proof can be easily done as in the above discussion.

In Step 1, among the available subsets of itemset X , i.e., those for which we have all
projection frequencies, we choose the one that has the highest size. The reason is that its
intersection with X is the highest, thus our estimated upper bound about the entropy of
X will be closer to the real one.

Step 2: let Y be the biggest available subset of X in reducer R. After choosing Y , we
distribute the frequency of each projection p of Y among the projections of X that are
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derived from p. There may be many ways to distribute the frequencies. For instance, in
the example of Step 1, if the frequency of p is 6, then the number of combinations for
distributing 6 among the four projections p1 to p4 is equal to the solutions which can be
found for the following equation: x1 + x2 + x3 + x4 = 6 when xi ≥ 0. In general, the
number of ways for distributing a frequency f among n projections is equal to the number
of solutions for the following equation:

x1 + x2 + ... + xn = f for xi ≥ 0

Obviously, when f is higher than n, there is a lot of solutions for this equation. Among
all these solutions, we choose a solution that maximizes the entropy of X . The following
lemma shows how to choose such a solution.

Lemma 3. Let D be a database, and X be an itemset. Then, the entropy of X over D is
the maximum if the possible projections of X over D have the same frequency.

Proof. The proof is done by implying the fact that in the entropy definition (see
Definition 10), the maximum entropy is for the case where all possible combinations have
the same probability. Since, the probability is proportional to the frequency, then the
maximum entropy is obtained in the case where the frequencies are the same. �

The above lemma proposes that for finding an upper bound for the entropy of X (i.e.,
finding its maximal possible entropy), we should distribute equally (or almost equally)
the frequency of each projection in Y among the derived projections in X . Let f be the
frequency of a projection in Y and n be the number of its derived projections, if (f modulo
n) = 0 then we distribute equally the frequency, otherwise we first distribute the quotient
among the projections, and then the rest randomly.

After computing the upper bound for entropy of X , we compare it with the maximum
entropy of the itemsets for which we have received all projections (so we know their real
entropy), and discard X if its upper bound is less than the maximum found entropy until
now.

5.3.4 Prefix/Suffix

When calculating the local miki on a mapper, at each step we consider a set of candidates
having size j that share a prefix of size j − 1. For instance, with the database of Table 5.1
and the subset of split S1, the corresponding mapper will extract (A, B) as the miki of size
2. Then, it will build 3 candidates: (A, B, C), (A, B, D) and (A, B, E). A straightforward
approach for calculating the joint entropy of these candidates would be to calculate their
projection counting by means of an exhaustive scan over the data of S1 (i.e., read the
first transaction of S1, compare it to each candidate in order to find their projections,
and move to the next transaction). However, these candidates share a prefix of size 2:
(A, B). Therefore, we store the candidates in a structure that contains the prefix itemset,
of size j − 1, and the set of |F − j| suffix features. Then, for a transaction T , we only
need to i) calculate proj(p, T ) where p is the prefix and ii) for each suffix feature f ,
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find the projection of f on T , append proj(f, T ) to proj(p, T ) and emit the result. Let
us illustrate this principle with the example above (i.e., first transaction of S1 in Table
5.1). The structure is as follows: {prefix=(A, B):suffixes=C, D, E}. With this structure,
instead of comparing (A, B, C), (A, B, D) and (A, B, E) to the transaction and find their
respective projections, we calculate the projection of (A, B), their prefix, i.e., (0, 0), and
the projection of each suffix, i.e., (1), (0) and (0) for C, D, and E respectively. Each
suffix projection is then added to the prefix projection and emitted. In our case, we build
three projections: (0, 0, 1), (0, 0, 0) and (0, 0, 0), and the mapper will emit ((A, B, C) :
(0, 0, 1)), ((A, B, D) : (0, 0, 0)) and ((A, B, E) : (0, 0, 0)).

5.3.5 Incremental Entropy Computation in Mappers

In the basic version of our two rounds approach, each mapper performs many scans over
its split to compute the entropy of candidates and finally find the local miki. Given k as
the size of the requested itemset, in each step j of the k steps in the local miki algorithm,
the mapper uses the itemset of size j − 1 discovered so far, and builds |F | − j candidate
itemsets before selecting the one having the highest entropy. For calculating each joint
entropy, a scan of the input split is needed in order to compute the frequency (and thus
the probability) of projections. Let |F | be the number of features in the database, then the
number of scans done by each mapper is O(k ∗ |F |). Although the input split is kept in
memory, this high number of scans over the split is responsible for the main part of the
time taken by the mappers.

In this Section, we propose an efficient approach to significantly reduce the number of
scans. Our approach that incrementally computes the joint entropies, needs to do in each
step just one scan of the input split. Thus, the number of scans done by this approach is
O(k).

To incrementally compute the entropy, our approach takes advantage of the following
lemma.

Lemma 4. Let X be an itemset, and suppose we make an itemset Y by adding a new
feature i to X , i.e., Y = X + {i}. Then, for each projection p in X two projections
p1 = p.0, and p2 = p.1 are generated in Y , and the sum of the frequency of p1 and p2 is
equal to that of p, i.e., f(p) = f(p1) + f(p2).

proof. The projections of Y can be divided into two groups: 1) those that represent
transactions containing i; 2) those representing the transactions that do not involve i. For
each projection p1 in the first group, there is a projection p2 in the second group, such that
p1 and p2 differ only in one bit, i.e., the bit that represents the feature i. If we remove this
bit from p1 or p2, then we obtain a projection in X , say p, that represents all transactions
that are represented by p1 or p2. Thus, for each project p in X , there are two projections
p1 and p2 in Y generated from p by adding one additional bit, and the frequency of p is
equal to the sum of the frequencies of p1 and p2. �

Our incremental approach for miki computing proceeds as follows. Let X be the miki
in step j . Initially, we set X = {}, with a null projection whose frequency is equal to n,
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i.e., the size of the database. Then, in each step j (1 ≤ j ≤ k), we do as follows. For each
remaining feature i ∈ F − X , we create a hash map hi,j containing all projections of the
itemset X + {i}, and we initiate the frequency of each projection to zero. Then, we scan
the set of transactions in the input split of the mapper. For each transaction t, we obtain a
set S that is the intersection of t and F −X , i.e., S = t∩(F −X). For each feature i ∈ S,
we obtain the projection of t over X + {i}, say p2, and increment by one the frequency
of the projection p2 in the hash map hi,j . After scanning all transactions of the split,
we obtain the frequency of all projections ending with 1. For computing the projections
ending with 0, we use Lemma 4 as follows. Let p.0 be a projection ending with 0, we find
the projection p.1 (i.e., the projection that differs only in the last bit), and set the frequency
of p.0 equal to the frequency of p minus that of p.1, i.e., f(p.0) = f(p) − f(p.1). By this
way, we compute the frequency of projections ending with 0.

After computing the frequencies, we can compute the entropy of itemset X + {i}, for
each feature i ∈ F − X . At the end of each step, we add to X the feature i whose joint
entropy with X is the highest. We keep the hash map of the selected itemset, and remove
all other hash maps including that of the previous step. Then, we go to the next step until
finishing step k. Notice that to obtain the frequency of p in step j, we use the hash map
of the previous step, i.e., Hi,j−1, this is why, at each step we keep the hash map of the
selected miki.

Let us now prove the correctness of our approach using the following Theorem.

Theorem 5. Given a database D, and a value k as the size of requested miki. Then,
our incremental approach computes correctly the entropy of the candidate itemsets in all
steps.

proof. To prove the correctness of our approach, it is sufficient to show that in each
step the projection frequencies of X + {i} are computed correctly. We show this by
induction on the number of steps, i.e., j for 1 ≤ j ≤ k.

Base. In the first step, the itemset X + {i} = {i} because initially X = {}. There
are two projections for {i} : p1 = (0) and p2 = (1). The frequency of p2 is equal to the
number of transactions containing i. Thus during the scan of the split, we correctly set
the frequency of p2. Since there is no other projection for i, the frequency of p1 is equal
to n − f(p2), where n is the size of the database. This frequency is found correctly by our
approach. Thus, for step j = 1 our approach finds correctly the projection frequencies of
X + {i}.

Induction. we assume that our approach works correctly in step j − 1, then we prove
that it will work correctly in step j. The proof can be done easily by using Lemma
4. According this lemma, for each projection p in step j − 1 there are two projections
p1 = (p.0), and p2 = (p.1) in step j. The frequency of p2 is computed correctly during
the scan of the split. We assume that the frequency of p has been correctly computed in
step j − 1. Then, Lemma 4 implies that the frequency of p1 has been also well computed
since we have f(p) = f(p1) + f(p2). �
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5.3.6 Complete Approach

Our approach depicts the core mining process of Parallel Highly Informative K-itemSet
Algorithm (PHIKS). The major steps of PHIKS algorithm for miki discovery are sum-
marized in Algorithms 3 and 4. Algorithm 3 depicts the mining process of the first
MapReduce job of PHIKS, while Algorithm 4 depicts the mining process of its second
MapReduce job.
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Algorithm 3: PHIKS: Job1
Input: n data splits S = {S1, S2, . . . , Sn} of a database D, K the size of miki
Output: A miki of Size K

1 //Mapper Class 1
2 map( key: Line Offset: K1, value = Whole Si: V1 )
3 - Fi ← the set of features in Si

4 - ∀f ∈ Fi compute H(f) on Si, using prefix/suffix
5 - n ← 1 // current size of itemsets
6 - HInFS ← max(H(f)), ∀f ∈ Fi

7 // HInFS is the itemset of size n

8 // having the highest entropy
9 while i Ó= k do

10 - n + +
11 - Cn ← BuildCandidates(HInFS, Fi\HInFS)
12 - ∀c ∈ Cp, H(ci) ← ComputeJointEntropy(c, Si)
13 - HInFS ← max(H(c)), ∀c ∈ Cn

14 // Ck contains all the candidate itemsets of size k

15 // and ∀c ∈ Ck, the joint entropy of c is in H(ci)
16 for c ∈ Ck do
17 - Pc ← projections(c, Si)
18 for p ∈ Pc do
19 - emit(key = c : value = p)

20 //Reducer Class 1
21 reduce( key: itemset c,
22 list(values): projections(c) )
23 if c has been emitted by all the mappers then
24 // We have all the projections of c on D
25 // we store its entropy in a file "complete"
26 - H(c) ← IncrJointEntropy(c,projections(c))
27 - emit(c,H(c)) in a file Complete

28 else
29 // Missing nformation. We have to estimate
30 // the upper bound of c’s joint entropy
31 // and store it in a file "Incomplete"
32 - Est ← UpperBound(c,projections(c))
33 - emit(c, Est) in a file "Incomplete"

34 close( )
35 - Cmax ← CandidateWithMaxEntropy("Complete")
36 - emit(Cmax, H(Cmax))
37 in a file "CompleteMaxFromJob1"
38 for c ∈ "Incomplete" do
39 if Est(c) > H(Cmax) then
40 // c is potentially a miki, it has
41 // to be checked over D
42 - emit(c,Null) in a file "ToBeTested"
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Algorithm 4: PHIKS: Job2
Input: Database D, K miki Size
Output: Tested miki of Size K

1 //Mapper Class 2
2 map( key: Line Offset: K1, value = Transaction: V1 )
3 - Read file ’ToBeTested’ from Job1 (once) in the mapper
4 - F ← set of itemsets in ’ToBeTested’
5 for f ∈ F do
6 - p ← projections(f , V1)
7 emit (key: f , value: p)

8 //Reducer Class 2
9 reduce( key: itemset f ,

10 list(values): projections(f ) )
11 // we have all the projections of f on D that come
12 // from all mappers
13 // we compute its joint entropy and we write the result to a file
14 // "CompleteFromJob2"
15 - H(f) ← IncrJointEntropy(f ,projections(f ))
16 - write(f , H(f)) to a file "CompleteFromJob2" in HDFS
17 // optional, we emit the result of use later, from the close() method
18 - emit (key: f , value: H(f))

19 close( )
20 // emit miki having highest joint entropy
21 - read file "CompleteMaxFromJob1"
22 - read file "CompleteFromJob2"
23 - Max ← max("CompleteMaxFromJob1",
24 "CompleteFromJob2")
25 - emit(miki,Max)
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Data Set # of Transactions # of Items Size

Amazon Reviews 34 millions 31721 34 Gigabyte
English Wikipedia 5 millions 23805 49 Gigabytes

ClueWeb 632 millions 141826 1 Terabyte

Table 5.2 – Data Sets Description

5.4 Experiments

To evaluate the performance of PHIKS, we have carried out extensive experimental tests.
In Section 5.4.1, we depict our experimental setup and its main configurations. In Section
5.4.2, we depict the different used data sets in our various experiments. Lastly, in Section
5.4.3, we thoroughly analyze and investigate our different experimental results.

5.4.1 Experimental Setup

We implemented PHIKS algorithm on top of Hadoop-MapReduce using Java program-
ming language version 1.7 and Hadoop [81] version 1.0.3. For comparison, we imple-
mented a parallel version of ForwardSelection [7] algorithm. To specify each presented
algorithm, we adopt the notations as follow. We denote by ’PFWS’ a parallel implementa-
tion of ForwardSelection algorithm, by ’Simple-PHIKS’ an implementation of our basic
two rounds algorithm without any optimization, and by ’Prefix’ an extended version of
Simple-PHIKS algorithm that uses the Prefix/Suffix method for accelerating the compu-
tations of the projection values. We denote by ’Upper-B’ a version of our algorithm that
reduces the number of candidates by estimating the joint entropies of miki based on an
upper bound joint entropy. We denote by ’Upper-B-Prefix’ an extended version of Upper-
B algorithm that employs the technique of prefix/suffix. Lastly, we denote by ’PHIKS’
an improved version of Upper-B-Prefix algorithm that uses the method of incremental
entropy for reducing the number of data split scans at each mapper.

We carried out all our experiments on the Grid5000 [64] platform, which is a platform
for large-scale data processing. In our experiments, we have used clusters of 16 and 48
nodes respectively for Amazon Reviews, Wikipedia data sets and ClueWeb data set. Each
machine is equipped with Linux operating system, 64 Gigabytes of main memory, Intel
Xeon X3440 4 core CPUs and 320 Gigabytes SATA hard disk.

In our experiments, we measured three metrics: 1) the response time of the compared
algorithms, which is the time difference between the beginning and the end of a maximally
informative k-itemsets mining process; 2) the quantity of transferred data (i.e., between
the mappers and the reducers) of each maximally informative k-itemsets mining process;
3) the energy consumption for each maximally informative k-itemsets mining process. To
this end, we used the metrology API and Ganglia infrastructure of the Grid5000 platform
that allow to measure the energy consumption of the nodes during an experiment.

Basically, in our experiments, we consider the different performance measurements
when the size k of the itemset (miki to be discovered) is high.
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5.4.2 Data Sets

To better evaluate the performance of PHIKS algorithm, we used three real-world data sets
as described in Table 5.2. The first one is the whole 2013 Amazon Reviews data set [82],
having a total size of 34 Gigabytes and composed of 35 million reviews. The second data
set is the 2014 English Wikipedia data set [65], having a total size of 49 Gigabytes and
composed of 5 million articles. The third data set is a sample of ClueWeb English data
set [66] with size of around one Terabyte and having 632 million articles. For English
Wikipedia and ClueWeb data sets, we performed a data cleaning task; we removed all
English stop words from all articles, and obtained data sets where each article represents
a transaction (features, items, or attributes are the corresponding words in the article).
Likewise, for Amazon Reviews data set, we removed all English stop words from all
reviews. Each review represents a transaction in our experiments on Amazon Reviews
data set.

5.4.3 Results

In this Section, we report the results of our experimental evaluation.

Runtime and Scalability: Figures 5.1, 5.2, and 5.3 show the results of our experiments
on Amazon Reviews, English Wikipedia and ClueWeb data sets. Figures 5.1(a) and 5.1(b)
give an overview on our experiments on the Amazon Reviews data set. Figure 5.1(a) il-
lustrates the the performance of different algorithms when varying the itemset sizes from
2 to 8. We see that the response time of ForwardSelection algorithm (PFWS) grows ex-
ponentially and gets quickly very high compared to other algorithms. Above a size k = 6
of itemsets, PFWS cannot continue scaling. This is due to the multiple database scans
that it performs to determine an itemset of size k (i.e, PFWS needs to perform k MapRe-
duce jobs). In the other hand, the performance of Simple-PHIKS algorithm is better than
PFWS; it continues scaling with higher k values. This difference in the performance be-
tween the two algorithms illustrates the significant impact of mining itemsets in the two
rounds architecture.

Moreover, by using further optimizing techniques, we clearly see the improvements in
the performance. In particular, with an itemset having size k = 8, we observe a good per-
formance behavior of Prefix comparing to Simple-PHIKS. This performance gain in the
runtime reflects the efficient usage of Prefix/Suffix technique for speeding up miki parallel
extraction. Interestingly, by estimating miki at the first MapReduce job, we record a very
good response time as shown by Upper-B algorithm. In particular, with k = 8 we see that
Upper-B algorithm roughly outperforms Simple-PHIKS by a factor of 3. By coupling the
Prefix/Suffix technique with Upper-B algorithm, we see very good improvements in the
response time, which is achieved by Upper-B-Prefix. Finally, by taking advantage of our
incremental entropy technique for reducing the number of data split scans, we record an
outstanding improvement in the response time, as shown by PHIKS algorithm.

Figure 5.1(b) highlights the difference between the algorithms that scale in Figure
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Figure 5.1 – Runtime and Scalability on Amazon Reviews Data Set
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5.1(a). Although Upper-B-Prefix continues to scale with k = 8, it is outperformed by
PHIKS algorithm. With itemsets of size k = 15, we clearly observe a big difference in
the response time between Upper-B-Prefix and PHIKS. The significant performance of
PHIKS algorithm illustrates its robust and efficient core mining process.

Figures 5.2(a) and 5.2(b) report our experiments on the English Wikipedia data set.
Figure 5.2(a) gives a complete view on the the performance of different presented algo-
rithms when varying the itemset sizes from 2 to 8. Similarly as in Figure 5.1(a), in Figure
5.2(a) we clearly see that the execution time of Forward Selection algorithm (PFWS) is
very high compared to other presented alternatives. When the itemsets size reach values
greater than k = 5, PFWS stops scaling. In the other side, we observe that Simple-PHIKS
algorithm continues scaling and gives better performance than PFWS.

Performing more optimization, we significantly speed up the miki extraction. Specif-
ically, with itemsets size k = 8, we see that the performance of Prefix is better than
Simple-PHIKS. This difference in the performance behavior between the two algorithms
explains the high impact of using Prefix/Suffix technique to speed up the whole min-
ing process of the parallel miki extraction. By going on for further optimization using
our efficient heuristic technique for estimating miki at the first MapReduce job, we get
a significant improvement in the execution time as shown by Upper-B algorithm. Par-
ticularly, with itemsets size k = 8 we clearly see that Upper-B algorithm performance
is better than Simple-PHIKS. By using Prefix/Suffix technique with Upper-B algorithm,
we record a significant improvement in the performance as shown by Upper-B-Prefix.
Eventually, based on our efficient technique of incremental entropy, we record a very
significant performance improvement as shown by PHIKS algorithm.

Figure 5.2(b) illustrates the difference between the algorithms that scale in Figure
5.2(a). Despite the scalability recorded by Upper-B-Prefix when k = 8, Upper-B-Prefix
gives very less performance compared to PHIKS algorithm. In particular, with higher
itemsets size (e.g., k = 15), we record a large difference in the execution time between
Upper-B-Prefix and PHIKS algorithms. This difference in the performance between the
two algorithms reflects the efficient and robust core mining process of PHIKS algorithm.
In Figures 5.3(a) and 5.3(b), similar experiments have been conducted on the ClueWeb
data set. We observe that the same order between all algorithms is kept compared to Fig-
ures 5.1(a), 5.1(b), 5.2(a) and 5.2(b). In particular, we see that PFWS algorithm suffers
from the same limitations as could be observed on the Amazon Reviews and Wikipedia
data sets in Figure 5.1(a) and Figure 5.2(a) . With an itemset size of k = 8, we clearly
observe a significant difference between PHIKS algorithm performance and all other pre-
sented alternatives. This difference in the performance is better illustrated in Figure
5.3(b). By increasing the size k of miki from 8 to 11, we observe a very good perfor-
mance of PHIKS algorithm. Although, Upper-B-Prefix algorithm scales with k = 11, it
is outperformed by PHIKS.

miki Candidates Pruning: Figure 5.4 gives a complete overview on the total number
of miki candidates being tested at the second MapReduce job for both Simple-PHIKS
and PHIKS algorithms. Figure 5.4(a) illustrates the number of miki candidates being
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validated at the first MapReduce job on the Wikipedia data set. By varying the parameter
size k of itemsets from 2 to 8, we observe a significant difference in the number of miki
candidates being sent by each algorithm to its second MapReduce job. With k = 8,
Simple-PHIKS algorithm sends to its second job roughly 6 times more candidates than
PHIKS. This important reduction in the number of candidates to be tested in the second
job is achieved due to our efficient technique for estimating the joint entropies of miki with
very low upper bounds. Likewise, in Figure 5.4(b), we record a very good performance
of PHIKS comparing to Simple-PHIKS. This outstanding performance of Simple-PHIKS
algorithm reflects its high capability and its effectiveness for a very fast and successful
miki extraction.

Data Communication and Energy Consumption: Figure 5.5 gives an entire view of
the quantity of transferred data (in Megabyte) over the network by each presented algo-
rithm on the three data sets. Respectively Figures 5.5(a), 5.5(b) and 5.5(c) show the per-
formance of each presented maximally informative k-itemsets mining process on Amazon
Reviews, English Wikipedia and ClueWeb data sets. In all figures, we observe that PFWS
algorithm has the highest peak. This is due to its multiple MapReduce jobs executions.
In the other hand, we see that Simple-PHIKS and Prefix algorithms have smaller peaks.
This is because Simple-PHIKS and its optimized Prefix version algorithm (for fast com-
putation of the local entropies at the mappers) rely on two MapReduce jobs whatever the
miki size to be discovered. We see that Upper-B, Upper-B-Prefix and PHIKS outperform
all other presented algorithms in terms of transferred data. This is due to the impact of
estimating the joint entropies at their first MapReduce job which reduces the number of
miki candidates (i.e., data) being tested at their second MapReduce job.

We also measured the energy consumption (in Watt) of the compared algorithms dur-
ing their execution. We used the Grid5000 [64] tools that measure the power consumption
of the nodes during a job execution. Figure 5.6 shows the total amount of the power con-
sumption of each presented maximally informative k-itemsets mining process on Amazon
Reviews, English Wikipedia and ClueWeb data sets. In Figures 5.6(a), 5.6(b) and 5.6(c)
we observe that the energy consumption increases when increasing the size k of the miki
to be discovered for each algorithm. We see that PHIKS still gives a lower consumption
comparing to other presented algorithms. This is simply due to the higher optimizations
in its core mining process. Actuelly the smaller number of candidates being tested during
the second MapReduce job of PHIKS calls for a lower number of I/O access when com-
puting the entropies. All of these different factors make PHIKS consumes less energy
compared to other presented algorithms.
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5.5 Conclusion

In this chapter, we proposed a reliable and efficient MapReduce based parallel maximally
informative k-itemset algorithm namely PHIKS that has shown significant efficiency in
terms of runtime, communication cost and energy consumption. PHIKS elegantly deter-
mines the miki in very large databases with at most two rounds. With PHIKS, we propose
a bunch of optimizing techniques that renders the miki mining process very fast. These
techniques concern the architecture at a global scale, but also the computation of entropy
on distributed nodes, at a local scale. The result is a fast and efficient discovery of miki
with high itemset size. Such ability to use high itemset size is mandatory when dealing
with Big Data and particularly one Terabyte like what we have done in our experiments.
Our results show that PHIKS algorithm outperforms other alternatives by several orders
of magnitude, and makes the difference between an inoperative and a successful miki
extraction.

As a future work, we plan to apply our technique of extracting miki to handle the
problem of text classification. By using our PHIKS approach, we strongly believe that
the extracted miki would highly discriminate the database, which is in turn would result
in high classification accuracy and fast learning process.





Chapter 6

Conclusions

In this chapter, we summarize and discuss the main contributions made in the context of
this thesis. Then, we give some research directions for future work.

6.1 Contributions

This thesis is in the context of the parallel mining of itemsets in massively distributed
environments. We have focused on the itemset discovery problem in big data, aiming to
improve and accelerate the itemset discovery processes which are of interest to various
applications that deal with big data sets. In this thesis, we have made three contributions:

6.1.1 Data Placement for Fast Mining of Frequent Itemsets

We tackled the problem of mining frequent itemsets in massively distributed environ-
ments. Our main challenge was to allow for a fast discovery of frequent itemsets in large
databases with very low minimum support.

Generally, we have showed that an optimal combination between a mining process
with an adequate data placement in a massively distributed environment, highly improves
the frequent itemsets extraction in very large databases. We have proposed our solution
ODPR (Optimal Data-Process Relationship) for fast mining of frequent itemsets in mas-
sively distributed environments. Our proposal allows for extracting the frequent itemsets
in just two simple, yet efficient MapReduce jobs. The first job is dedicated to extract a
set of local frequent itemsets at each mapper based on CDAR algorithm along with STDP
(Similar Transaction Data Placement). The second job is dedicated to validate the global
frequency of the local frequent itemsets of the first job. Our approach has been exten-
sively evaluated with very large real-world data sets and very low minimum support. The
high scalability of our solution ODPR comparing to other alternatives confirms its effec-
tiveness. We highly believe that our proposal would achieve very good performances in
other massively distributed environments such as Spark.

79
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6.1.2 Data Partitioning for Fast Mining of Frequent Itemsets

We addressed the problem of mining frequent itemsets in massively distributed environ-
ments. Our main challenge was to limit the itemset discovery to be done in just one
simple, yet very efficient job.

Generally, mining the frequent itemsets in more than one job could impact the per-
formance of the whole mining process. Although our proposal ODPR has achieved very
good performance in extracting the frequent itemsets in large databases, it accounts for
some limitations. The first job of ODPR algorithm could transfer candidate global fre-
quent itemsets (i.e., local frequent itemsets) of no use which impacts the whole mining
process. In particular, this results in a high data (i.e., local frequent itemsets) transfer
between the mappers and the reducers which in turns degrade the performance of the
second job. Thus, our main challenge is to omit the second job and perform a frequent
itemset extraction in just one job instead of two. To this end, we proposed PATD (Parallel
Absolute Top Down Algorithm). Based on a clever data partitioning technique strategy
namely IBDP (Item Based Data Partitioning), PATD mines each data partition indepen-
dently based on an absolute minimum support instead of a relative one. We have exten-
sively evaluated our PATD algorithm using very large data sets (up to one Terabyte of
data) and very low minimum support, the results confirms the efficiency and effectiveness
of our approach.

6.1.3 Fast Parallel Mining of Maximally Informative K-itemset

We addressed the problem of mining maximally informative k-itemsets in big data. Our
main challenge was to improve and accelerate the miki discovery in big data. To this
end we proposed PHIKS (Parallel Highly Informative K-ItemSet), a highly, scalable al-
gorithm that is capable to extract the miki of different sizes in just two simple, yet very
efficient jobs. In a massively distributed environment such as MapReduce, at its first job,
PHIKS determines a set of potential miki by applying a simple ForwardSelection algo-
rithm at each mapper. By using a very clever technique to estimate the joint probabilities
of the miki candidates at its first job, PHIKS reduces the computations load of its second
job. With a bunch of computational optimizations, PHIKS renders the miki discovery in
very large distastes (up to one Terabyte of data) simple and succinct. We evaluate the
effectiveness and the capabilities of PHIKS algorithm by carrying out extensive, various
experiments with very large real-world data sets. The results have shown an outstanding
performance of PHIKS comparing to other alternatives.

6.2 Directions for Future Work

With the abundant and various researches that have been carried out to improve the perfor-
mances of parallel data mining algorithms, one may wonder whether we have solved most
of the critical problems related to both frequent and maximally informative k-itemsets
mining. Particularly, with the challenges that we have been facing with big data, there
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would be several possible extensions and improvements of the work that we have achieved
in this thesis. Some future directions of research are as follows.

• Miki based classification: With very large amounts of data, performing a classifi-
cation task is not easy. This is due to the large numbers of attributes. It is likely that
several attributes are of no relevance to the classification task.

We plan to develop a new framework intended to improve any classification task by
combining two simple, yet very efficient techniques:

The first technique extends the ensemble classifier methods [83] by performing
two parallel decision steps in a massively distributed environment. The main idea
is to create several simple classifiers (e.g., Naive Bayes classifiers) locally say at
each mapper. This can be achieved by performing a simple sampling (based on
the attributes) of the data at each mapper. Thus, each mapper would have a set
of say k trained classifiers. To classify a new instance, a decision test would be
made at each mapper (first decision step). Each mapper locally classifies the new
instance based on a majority voting scheme. Then, the classified instance and its
class label are sent to the reducer. The reducer receives each classified instance with
its class label. The reducer further aggregates the results based on the class labels
and outputs the final result i.e., the classified instance (key) with its majority class
(value) (second decision step).

The second technique is to incorporate the miki with the two decision steps classi-
fication. We use the miki to improve the classification task. Since the miki highly
discriminate the database, they would significantly improve the accuracy of the
classification. Instead of using irrelevant attributes in the classification, we first ap-
ply our PHIKS algorithm to extract the relevant attributes and then use them with
our two steps decision classification technique.

• Using Spark for fast mining of frequent itemsets: Since Spark [3] supports
in-memory computations which is far faster than MapReduce, we highly believe
that considering an adequate data placement strategy along with a specific frequent
itemset mining algorithm in Spark, would improve the global mining process. For
instance, our proposed 2-jobs schema architecture P2S as described in chapter 3,
can be easily implemented in Spark.

The first job consists of determining a set of local frequent itemsets i.e., after ap-
plying a specific data placement strategy. Using a flatMap() function, each bunch
of the database transactions is loaded into the memory as an RDD (Resilient Dis-
tributed data set) object. Then, a specific FIM algorithm is applied locally on each
RDD (partition of the global data set). The results of the mappers (i.e., flatMaps)
are emitted to the reducers. A reduceByKey() function is applied to aggregate the
different results.
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The second job, consists of validating the global frequency of the local frequent
itemsets. The results (local frequent itemsets) are shared between the different
workers using an accumulator in Spark. A flatMap() function is applied on the
RDDs to count the occurrence of each local frequent itemset in the whole database.
Then, a reduceByKey() function is applied to aggregate the results received from
the mappers. The reducer sums up the results and outputs the local frequent itemsets
that are globally frequent.

Likewise, as in MapReduce, cleverly partitioning the data allows for a very fast
mining of frequent itemsets. Our proposed PATD (Parallel Absolute Top Down)
algorithm as described in chapter 4, is outstandingly capable to extract the frequent
itemsets from very large databases and with very low minimum support in short
time. Based on the Spark framework, we highly believe that the performance of
PATD algorithm would be very significant. The design and the implementation of
our proposed PATD algorithm in Spark would be very simple. The database par-
titions are loaded as RDDs to each mapper. The mapper applies CDAR algorithm
locally on its RDD (i.e., data partition) using an absolute minimum support. The re-
sults are emitted from the mapper to the reducer. The reducer receives the frequent
itemsets from each mapper and outputs the final results.
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