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Introduction Générale

Cette thèse est consacrée à l’étude de la géométrie de divers types d’ensembles dans le
contexte d’espaces de Banach, ainsi qu’à des propriétés analytiques de certaines classes
de fonctions associées à de tels ensembles et qui sont définies sur les espaces de Banach
correspondants. Les propriétés géométriques de ces ensembles varient suivant les espaces
de Banach considérés, de sorte qu’en général les résultats fondamentaux nécessitent des
hypothèses appropriées sur l’espace de Banach lui-même. Pour cette raison, ce travail
est divisé en deux parties: La première est relative à certaines études géométriques des
ensembles convexes dans des espaces de Banach (Géométrie convexe), et la seconde à
de nouvelles caractéristiques, dans les espaces de Hilbert, de la géométrie des ensembles
prox-réguliers dont la projection métrique est différentiable sur des couronnes ouvertes
spécifiques (Géométrie non convexe). Dans cette introduction générale nous présentons
quelques unes de nos contributions dans les deux sujets ci-dessus, qui sont contenu en
[10], [12], [29], [30].

Partie I: Géométrie Convexe

La première partie de la thèse considère le problème de détermination de fonctions à
partir du sous-différentiel de Moreau-Rockafellar. Rappelons que, étant donné un espace
localement convexe (X, θ), une fonction f : X → R (où R := R∪{−∞,+∞}) et un point
x ∈ X, le sous-différentiel de f en x est donné par

∂f(x) =

{

{x∗ ∈ X∗ : f(x) + 〈x∗, y − x〉 ≤ f(y), ∀y ∈ X} si f(x) ∈ R

∅ autrement,
(1)

où X∗ désigne le dual topologique de (X, θ). Dans les années 60, J.J. Moreau [23] (dans
le contexte des espaces de Hilbert) et ensuite R. T. Rockafellar [28] (dans le cas d’espaces
de Banach) ont démontré le résultat célèbre suivant d’intégration des fonction convexes:

Théorème 1 (Moreau-Rockafellar) Soit X un espace de Banach et soit un couple de
fonctions f, g : X → R∞ (où R∞ := R ∪ {+∞}) qui sont convexes, propres et semi-

1



2 INTRODUCTION GÉNÉRALE

continues inférieurement. Si l’on a

∂f(x) ⊆ ∂g(x), ∀x ∈ X,

alors les fonctions f et g coïncident à une constante additive près, c’est-à-dire, il existe
une constante c ∈ R telle que f = g + c.

Suite à cette contribution, à partir de la seconde moitié des années 80 plusieurs études ont
été réalisées en vue de généraliser ce théorème, soit en relaxant l’hypothèse de convexité,
soit en remplaçant X par un espace localement convexe général, soit en utilisant d’autres
notions de sous-différentiels en présence de non-convexité. On renvoie aux articles [1], [3],
[11], [21], [33]–[35] pour plus d’information à propos du développement de la théorie de
détermination/intégration d’une fonction à partir de son sous-différentiel.

Une de ces contributions est constituée de l’article de R. Correa, Y. García et A. Hantoute
[9], où les auteurs établissent diverses formules d’intégration pour une large sous-famille
de fonctions (pas nécessairement convexes), qui a été introduite par J. Benoist et J.-B.
Hiriart-Urruty dans [18]: Les fonctions épi-pointées. Pour un espace de Banach X, une
fonction f : X → R∞ est dite être épi-pointée quand

int(dom f ∗) 6= ∅,
où f ∗ désigne la conjuguée (de Legendre-Fenchel) de f . Le concept de fonction épi-pointée
a été au début définie à partir d’une notion de “coercivité”. La définition précédente est
sa caractérisation la plus connue et probablement la plus utilisée.

Le résultat principal de [9] peut être énoncé comme suit:

Théorème 2 (Correa-García-Hantoute, 2012) Soit X un espace de Banach qui a la pro-
priété de Radon-Nikodým, et soit f : X → R∞ une fonction épi-pointée et semi-continue
inférieurement. Pour toute autre fonction g : X → R telle que

∂f(x) ⊆ ∂g(x), ∀x ∈ X,

il existe une constante c ∈ R telle que

co f = (co g)�σdom f∗ + c,

où co f désigne l’enveloppe convexe fermée de f , � désigne l’opération d’inf-convolution
de Moreau, et σdom f∗ est la fonction d’appuie de dom f ∗.

Rappelons qu’un espace de Banach X a la propriété de Radon-Nikodým (RNP) si pour
tout sous-ensemble K convexe, fermé et borné de X, l’égalité

K = co(str-exp(K)), (2)

a lieu, où str-exp(K) désigne l’ensemble des points fortement-exposés de K. Un point
x ∈ K est dit être fortement-exposé s’il existe une forme linéaire continue x∗ ∈ X∗ telle
que
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(a) 〈x∗, x〉 = σK(x
∗) > 〈x∗, y〉, pour tout y ∈ K \ {x}; et

(b) Pour toute suite (xn) de K,

〈x∗, xn〉 → σK(x
∗) =⇒ ‖x− xn‖ → 0.

Historiquement, la propriété RNP a été introduite comme une propriété reliée à des
mesures à valeurs vectorielles et à l’existence de leurs dérivées, au sens du théorème clas-
sique de Radon-Nikodým. Cependant, plusieurs caractérisations de cette propriété ont
été établies (dont celle ci-dessus), donnant des interprétations géométriques très claires
qui ont permis le développement de cette théorie au niveau de l’Analyse Fonctionnelle et
de la Géométrie des Espaces de Banach. Pour plus de détails, le lecteur peut consulter le
livre de R. Bourgin [2], ou celui de J. Diestel et J.-J. Uhl [13].

L’observation principale de Correa, García et Hantoute dans leur article [9] qui a conduit
au théorème 2 ci-dessus est la suivante: Quand un espace de BanachX a la propriété RNP,
alors pour toute fonction f : X → R∞ qui est épi-pointée et semi-continue inférieurement,
il existe un ensemble D dense dans int(dom f ∗) tel que

∂f ∗(x∗) = (∂f)−1(x∗) pour tout x∗ ∈ D. (3)

Malheureusement, l’équation (3) devient trop forte quand les espaces ne jouissent pas de
la propriété RNP. Le premier objectif du premier chapitre de cette thèse consiste à relaxer
(3) et à obtenir une formule d’intégration analogue à celle du Théorème 2 dans le contexte
des espaces localement convexes.

Chapitre 1: Formule d’Intégration

Rappelons que, étant donné un espace (de Hausdorff) localement convexe (X, θ) et son
dual topologique X∗, il existe plusieurs topologies (de Hausdorff) localement convexes
reliées à la dualité 〈X,X∗〉. Dans ce que suit, on désignera par w(X,X∗) (ou simplement,
par w) la topologie faible sur X induite par X∗, et par w∗(X∗, X) (ou simplement, par
w∗) la topologie faible-étoile sur X∗ induite par X.

On désignera également par τ(X,X∗) la topologie de Mackey sur X induite par X∗.
Rappelons que τ(X,X∗) est la topologie localement convexe la plus fine surX qui préserve
la dualité 〈X,X∗〉, c’est-a-dire, qui satisfait (X, τ(X,X∗))∗ = X∗. Elle est définie par la
convergence uniforme sur les ensembles w∗-compacts de X∗: Une suite généralisé (xi)i∈I
de X τ(X,X∗)-converge vers un point x ∈ X si et seulement si pour tout ensemble
K ⊆ X∗ w∗-compact, on a

sup
x∗∈K

|〈x∗, x− xi〉| → 0.

De façon similaire, on notera τ(X∗, X) la topologie de Mackey surX∗ induite parX. C’est
la topologie localement convexe la plus fine sur X∗ qui préserve la dualité 〈X,X∗〉. Elle est
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définie par la convergence uniforme sur les ensembles w-compacts de X. Finalement, on
désignera par β(X∗, X) la topologie forte sur X∗ induite par X, c’est-à-dire la topologie
sur X∗ de la convergence uniforme sur les ensembles bornés de X. Rappelons que les
ensembles bornés pour n’importe quelle topologie localement convexe entre w(X,X∗) et
τ(X,X∗) sont les mêmes, et donc il n’y pas d’ambiguïté en ne spécifiant pas la topologie
quand on parle d’ensembles bornés.

En général, la topologie β(X∗, X) est plus fine que τ(X∗, X), donc elle ne préserve pas
nécessairement la dualité 〈X,X∗〉. On désignera par X∗∗, l’espace bidual topologique
de X, à savoir, X∗∗ := (X∗, β(X∗, X))∗. De la même façon, on peut définir sur X∗ les
topologies faible w(X∗, X∗∗) et de Mackey τ(X∗, X∗∗) induites sur X∗ par X∗∗. Pour
plus d’information sur ces structures topologiques, on renvoie le lecteur au livre de H.
Schaefer et M. Wolff [31]. Le diagramme suivant résume les relations entre les différentes
topologies ci-dessus sur X∗:

w∗(X∗, X) ⊆ τ(X∗, X)
︸ ︷︷ ︸

dualité 〈X,X∗〉

et w(X∗, X∗∗) ⊆ β(X∗, X) ⊆ τ(X∗, X∗∗)
︸ ︷︷ ︸

dualité 〈X∗,X∗∗〉

. (4)

Désormais, on posera R∞ := R ∪ {+∞}, R := R ∪ {−∞,+∞}, et par τ0 on désignera la
topologie usuelle de R (et ses extensions naturelles à R∞ et R). Aussi, suivant la notation
originale de Moreau [24], on désignera par Γ0(X, θ) l’ensemble de toutes les fonctions
f : X → R∞ qui sont convexes, propres, et θ-semi-continues inférieurement. On sait que

Γ0(X,w) = Γ0(X, θ) = Γ0(X, τ(X,X
∗)),

donc, on écrira simplement Γ0(X) au lieu de Γ0(X, θ). En même temps, on écrira Γ0(X
∗)

au lieu de Γ0(X
∗, β(X∗, X)). Finalement, pour une fonction f : X → R∞, on notera

Cont[f, θ] l’ensemble des points où f est finie et θ-continue. On sait que, pour une
fonction f ∈ Γ0(X), si Cont[f, θ] 6= ∅, alors

Cont[f, θ] = intθ(dom f).

La première contribution du Chapitre 1 est constituée de diverses propriétés du sous-
différentiel d’une fonction f de Γ0(X), quand Cont[f, θ] n’est pas vide.

Rappelons qu’ une multi-application M : X⇒X∗ est dite monotone si

〈x∗ − y∗, x− y〉 ≥ 0, ∀(x, x∗), (y, y∗) ∈ gphM,

où gphM désigne le graphe de M dans X × X∗. Par ailleurs, M est dite monotone
maximale si pour toute outre multi-application monotone M ′ telle que gphM ⊆ gphM ′,
on a M =M ′.

Rappelons aussi que, étant donné x ∈ domM , M est dite
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(a) θ-w∗-semi-continue extérieurement en x si pour toute suite généralisé (xi, x
∗
i ) dans

gphM telle que xi
θ−→ x et telle que x∗i

w∗

−→ x∗ ∈ X∗, on a x∗ ∈M(x).

(b) θ-w∗-semi-continue supérieurement en x si pour tout ensemble w∗-ouvert W de X∗

contenant M(x), il existe un θ-voisinage U de x telle que M(U) ⊆ W .

Proposition 3 Soit (X, θ) un espace localement convexe et soit f ∈ Γ0(X) telle que
Cont[f, τ(X,X∗)] 6= ∅. Alors,

(a) ∂f est une multi-application monotone maximale.

(b) Pour tout x ∈ Cont[f, τ(X,X∗)], ∂f est τ(X,X∗)-w∗-semi-continue extérieurement
en x.

Dans le contexte des espaces topologiques généraux, les semi-continuités extérieure et
supérieure ne sont pas reliées. Par contre, pour des espaces localement convexes, la
semi-continuité supérieure implique la semi-continuité extérieure. Aussi, à condition qu’il
existe un voisinage de x tel que son image soit précompacte, la semi-continuité extérieure
implique la supérieure.

On a redécouvert (dans [10]) les résultats de la Proposition 3. Ces résultats peuvent être
trouvés dans [24, Ch. 11-12].

Avec l’objectif de généraliser le théorème 2 au contexte des espaces localement convexes,
il nous faut introduire une nouvelle notion de fonctions épi-pointées:

Définition 4 (Fonction τ -épi-pointée) Soit (X, θ) un espace localement convexe et soit τ
une topologie localement convexe sur X∗ plus fine que w∗(X∗, X). On dit qu’une fonction
f : X → R est τ -épi-pointée si Cont[f ∗, τ ] n’est pas vide.

Malheureusement, en dehors du contexte des espaces de Banach avec la propriété RNP,
la semi-continuité inférieure n’est pas suffisante pour établir une formule d’intégration à
partir du sous-différentiel, comme illustré dans la proposition suivante:

Proposition 5 Soit X un espace de Banach ne vérifiant pas la propriété RNP. Alors,
il existe une fonction f : X → R∞ épi-pointée et semi-continue inférieurement telle que
∂f(x) = ∅ pour tout point x ∈ X.

Compte tenu de cette situation, on va remplacer l’hypothèse de semi-continuité inférieure
par une nouvelle classe de fonctions qui satisfont un affaiblissement de l’équation (3): Les
fonctions “Subdifferential Dense Primal Determined”:

Définition 6 (Fonctions SDPD) Soit (X, θ) un espace localement convexe. On dit qu’une
fonction f : X → R∞ est Subdifferential Dense Primal Determined (SDPD) si elle est
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τ(X∗, X∗∗)-épi-pointée et si l’ensemble des x∗ ∈ Cont[f, τ(X∗, X∗∗)] satisfaisant l’équation

∂f ∗(x∗) = cow
∗∗ [

(∂f)−1(x∗)
]

(5)

est τ(X∗, X∗∗)-dense dans Cont[f ∗, τ(X∗, X∗∗)].

Dans cette définition, on utilise la topologie de Mackey τ(X∗, X∗∗) pour trois raisons:
La première est que, entre toutes les topologies présentées ci-dessus, celle-ci est la plus
fine sur X∗, donc il y a plus de fonctions τ(X∗, X∗∗)-épi-pointées; la deuxième est que
dans le contexte des espaces de Banach, τ(X∗, X∗∗) coïncide avec la topologie induite
par la norme duale de X∗; et finalement, la troisième est que la Proposition 3 garantit
que le sous-différentiel d’une fonction conjuguée f ∗ est semi-continue extérieurement sur
Cont[f ∗, τ(X∗, X∗∗)]. Par contre, il y a une difficulté avec ce choix: la τ(X∗, X∗∗)-densité
des points qui doivent vérifier l’équation (5) est plus difficile à obtenir.

Avec ces deux notions (τ -épi-pointée et SDPD) on peut énoncer le théorème principal du
Chapitre 1:

Théorème 7 Soit (X, θ) un espace localement convexe, et soit f : X → R∞ une fonction
SDPD. Pour n’importe quelle fonction g : X → R∞ satisfaisant la condition

∂f(x) ⊆ ∂g(x), ∀x ∈ X,

il existe une constante c ∈ R telle que

co f = (co g)�σdom f∗ + c.

Si de plus dom g∗ ⊆ dom f ∗, alors co f et co g coïncident à une constante additive près.

La proposition suivante montre que notre théorème récupère le théorème 2 et en même
temps, il peut être appliqué dans des plus généraux.

Proposition 8 Les assertions suivantes ont lieu:

(a) Soit X un espace de Banach avec la RNP. Alors, toute fonction norme-épi-pointée
et norme-semi-continue inférieurement définie sur X est SDPD.

(b) Soit X un espace localement convexe semi-réflexif. Alors, toute fonction τ(X∗, X)-
épi-pointée et w-semi-continue inférieurement définie sur X est SDPD.

Une question naturelle est de savoir si le théorème 7 récupère la formule d’intégration
de Moreau-Rockafellar pour les fonctions épi-pointées, c’est-à-dire si toute fonction f ∈
Γ0(X) qui est τ(X∗, X∗∗)-épi-pointée, est aussi SDPD. Une première observation est que
l’équation (5) peut être décomposée en deux parties: une dépendant seulement de la
fonction elle-même, et l’autre dépendant totalement de la conjuguée de cette fonction (ou
de façon équivalente, de l’enveloppe convexe fermée de la fonction):
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Proposition 9 Pour une fonction f : X → R et une forme linaire continue x∗ ∈ X∗,
l’équation (5) est satisfaite par f si et seulement si les conditions suivantes en x∗ ont lieu:

(i) X ∩ ∂f ∗(x∗) = co [(∂f)−1(x∗)].

(ii) ∂f ∗(x∗) = X ∩ ∂f ∗(x∗)
w∗∗

.

En particulier, une fonction f qui est τ(X∗, X∗∗)-épi-pointée est SDPD quand il existe
un ensemble τ(X∗, X∗∗)-dense D de Cont[f ∗, τ(X∗, X∗∗)] tel que f satisfait (i) et (ii) en
tout point x∗ ∈ D.

Motivé par cette proposition, on définit la classe des espaces localement convexes où le
théorème 7 peut être appliqué à toutes les fonctions de Γ0(X) qui sont τ(X∗, X∗∗)-épi-
pointées: On les appelle espaces SDPD.

Définition 10 (Espaces SDPD) On dit qu’un espace localement convexe X est un espace
SDPD si pour toute fonction f ∈ Γ0(X) telle que Cont[f ∗, τ(X∗, X∗∗)] n’est pas vide, il
existe un sous-ensemble τ(X∗, X∗∗)-dense D de Cont[f ∗, τ(X∗, X∗∗)] tel que

∂f ∗(x∗) = X ∩ ∂f ∗(x∗)
w∗∗

, (6)

en tout point x∗ ∈ D.

Il est évident que, d’aprés la proposition 8, tous les espaces de Banach jouissant de la
propriété RNP et tous les espaces localement convexes semi-réflexifs sont des espaces
SDPD. On cloture le résumé du Chapitre 1 avec la question suivante: Quand est-ce qu’un
espace de Banach est SDPD? Comme première réponse, on a établi la proposition suivante.

Proposition 11 Soit X un espace localement convexe, soit f ∈ Γ0(X) une fonction
τ(X∗, X∗∗)-épi-pointée, et soit x∗ ∈ Cont[f ∗, τ(X∗, X∗∗)]. On a l’équivalene:

∂f ∗(x∗) = X ∩ ∂f ∗(x∗)
w∗∗

⇐⇒ (f ∗)′(x∗, ·) est w∗-semi-continue inférieurement.

En particulier, X est un espace SDPD si et seulement si pour toute fonction f ∈ Γ0(X)
l’ensemble

D = {x∗ ∈ int (dom f ∗, τ(X∗, X∗∗)) : (f ∗)′(x∗, ·) est w∗-semi-continue inférieurement}
est τ(X∗, X∗∗)-dense dans Cont[f ∗, τ(X∗, X∗∗)].

Les Chapitres 2 et 3 sont consacrés à caractériser les espaces de Banach qui sont SDPD.

Chapitre 2: Propriétés Smooth-like

Dans le contexte des espaces de Banach, la proposition 11 précédente peut être écrite
comme suit: Un espace de Banach X est un espace SDPD si et seulement si pour toute
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fonction f ∈ Γ0(X) l’ensemble

D = {x∗ ∈ int (dom f ∗) : (f ∗)′(x∗, ·) est w∗-semi-continue inférieurement}
est dense dans int(dom f ∗). Cette caractérisation est très similaire à la définition des
espaces w∗-Asplund. Rappelons que pour un espace de Banach X on dit que

(a) X est un espace d’Asplund si pour toute fonction f de Γ0(X) l’ensemble

D(f) := {x ∈ int(dom f) : f est Fréchet-différentiable en x}
est dense dans int(dom f).

(b) X∗ est un espace w∗-Asplund si pour toute fonction f de Γ0(X
∗, w∗) l’ensemble

D(f) := {x∗ ∈ int(dom f) : f est Fréchet-différentiable en x∗}
est dense dans int(dom f).

Rappelons que l’application ∗ : Γ0(X) → Γ0(X
∗, w∗) est une bijection, donc Γ0(X

∗, w∗)
coïncide avec l’ensemble des fonctions conjuguées de fonctions de Γ0(X). Alors, il est
clair que la définition des espaces w∗-Asplund est semblable à celle des espaces SDPD,
remplaçant la w∗-semi-continuité inférieure par la Fréchet-différentiabilité. De plus, on
sait que les espaces d’Asplund et les espaces w∗-Asplund sont en dualité avec des espaces
qui ont la propriété RNP:

(a) X est un espace d’Asplund si et seulement si X∗ a la propriété RNP (voir [32]).

(b) X a la propriété RNP si et seulement si X∗ est un espace w∗-Asplund (voir [6]).

Motivé par cette théorie, on introduit la notion de propriétés Smooth-like, qui sont une
généralisation de la Fréchet-différentiabilité et qui, comme on le verra plus loin, recouvre
aussi l’équation (6).

Avant de définir les propriétés smooth-like, on a besoin de formaliser la notion de propriété
qui nous intéresse dans le contexte des espaces de Banach. Une propriété des espaces de
Banach (P) sera considérée comme une famille de fonctions {PX : D(X) → {0, 1}}, qui
est indexée par la classe d’espaces de Banach et où chaque domaine D(X) dépend de
l’espace-indice X.

Intuitivement, la famille des fonctions {PX} est telle que pour chaque z ∈ D(X), PX(z) =
1 veut dire que la propriété (P) est satisfaite en z. Alors, pour bien définir une propriété
(P) on a besoin de spécifier pour chaque espace X: 1) le domaine D(X) de PX ; et 2)
qu’est-ce PX(z) = 1 veut dire, normalement à travers la définition de l’équivalence

PX(z) = 1 ⇐⇒ (P) est satisfaite en z.

Présentons une famille de propriétés qui généralise la Fréchet-différentiabilité des fonctions
convexes et w∗-semi-continues inférieurement: Les propriétés ”convexes w∗-smooth-like”.
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Définition 12 (Propriétés convexes w∗-smooth-like) Une propriété (P) d’ espaces de
Banach est dite être ”convexe w∗-smooth-like” si pour chaque espace X, D(X) :=
Γ0(X

∗, w∗)×X∗ et la fonction PX satisfait les conditions suivantes:

(i) PX est locale: Pour toute paire de fonctions f, g ∈ Γ0(X,w
∗) et pour chaque sous-

ensemble ouvert U ⊆ X∗, on a

f
∣
∣
U
= g

∣
∣
U

=⇒ PX(f, ·)
∣
∣
U
= PX(f, ·)

∣
∣
U
.

(ii) PX est w∗-transitive: Pour tout autre espace de Banach Y et tout opérateur linaire
borné et injectif T : Y → X avec image fermée, on a

PX(f ◦ T ∗, x∗) = PY (f, T ∗x∗)

pour toute fonction f ∈ Γ0(Y
∗, w∗) et tout point x∗ ∈ X∗ (où T ∗ dénote l’opérateur

adjoint de T ).

(iii) PX est ensemble-consistante: Pour chaque ensemble fermé et borné K de X on
a

(iii.a) ∀x∗ ∈ X∗, ∀t > 0, PX(σK , x∗) = P(σK , tx
∗).

(iii.b) ∀x ∈ X, PX(σK+x, ·) = PX(σK , ·).

(iv) PX est épigraphique: Pour chaque fonction f ∈ Γ0(X) et chaque point x∗ ∈ X∗,
on a

PX(f ∗, x∗) = PX×R(σepi f , (x
∗,−1)).

Pour simplifier la notation, on écrira P(·, ·), omettant l’indice. Aussi, dans le cas d’une
fonction d’appui σK (où K est un ensemble convexe et fermé de X), on écrira quelques
fois P(K, ·) à la place de P(σK , ·).

Finalement, pour une fonction f ∈ Γ0(X
∗, w∗), on posera

P [f ] := {x∗ ∈ dom f : P(f, x∗) = 1},

et pour f = σK on écrira de même P [K] à la place de P [σK ].

Définition 13 (espaces (P)-w∗-structuraux) Soit (P) une propriété convexe w∗-smooth-
like. Un espace de Banach X est dit être:

(a) (P)-w∗-structural si pour toute fonction f ∈ Γ0(X
∗, w∗), l’ensemble P [f ] est dense

dans int(dom f).

(b) (P)-géométrique si pour tout ensemble convexe, fermé et borné K de X, P [K] est
dense dans X∗.
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Il est évident que la Fréchet-différentiabilité est une propriété convexe w∗-smooth-like, et
que pour un espace de Banach X, son dual X∗ est un espace w∗-Asplund si et seulement
si X est w∗-structural au sens de la Fréchet-différentiabilité. Dans le Chapitre 2, on
définit aussi une version primale de ce type de propriétés, c’est-à-dire, dans la ligne de
généralisation des espaces d’Asplund. Mais, pour l’étude des espaces SDPD, les propriétés
convexes w∗-smooth-like sont les plus pertinentes. Pour cette raison, on se limite ici à
présenter seulement le développement des propriétés de la définition 12.

Les propositions suivantes montrent que les propriétés convexes w∗-smooth-like possèdent
beaucoup de caractérisations en termes de différentes familles de fonctions, et jouissent
aussi de certaines stabilités. Tout ce qui suit a été motivé par les réductions qu’on peut
trouver dans la littérature pour les espaces w∗-Asplund. On renvoie le lecteur au livre de
R. R. Phelps [25] qui contient une étude détaillée de ce type de caractérisations, ainsi que
des résultats de stabilité pour les espaces d’Asplund et les espaces w∗-Asplund.

Proposition 14 Soit (P) une propriété convexe w∗-smooth-like et soit X un espace de
Banach. Les assertions suivantes sont équivalentes:

(a) Pour toute fonction f ∈ Γ0(X
∗, w∗) avec int(dom f) 6= ∅, on a int(dom f)∩P [f ] 6= ∅.

(b) X est (P)-w∗-structural.

(c) Pour toute fonction f : X∗ → R∞ qui est convexe, propre, w∗-semi-continue in-
férieurement et continue, l’ensemble P [f ] est dense dans int(dom f).

(d) Pour toute fonction f ∈ Γ0(X
∗, w∗) finie sur X∗, P [f ] est dense dans X∗.

Théorème 15 Soit (P) une propriété convexe w∗-smooth-like, et soit X un espace de
Banach. Les assertions suivantes sont équivalentes:

(a) Pour tout ensemble K ⊆ X convexe et fermé avec int(dom σK) 6= ∅, on a P [σK ] ∩
int(dom σK) 6= ∅.

(b) Pour tout ensemble K ⊆ X convexe et fermé, P [σK ] est dense dans int(dom σK).

(c) X est (P)-géométrique.

(d) Pour chaque norme équivalente p sur X∗, l’ensemble P [p] est dense dans X∗.

Proposition 16 Soit (P) une propriété convexe w∗-smooth-like. Un espace de Banach
est (P)-structural si et seulement si X × R est (P)-géométrique.

Proposition 17 Soit (P) une propriété convexe w∗-smooth-like, et soient X, Y deux
espaces de Banach avec un opérateur linaire borné T : Y → X, qui est injectif et d’image
fermée. Les assertions suivantes ont lieu:
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(a) X est (P)-géométrique =⇒ Y est (P)-géométrique.

(b) X est (P)-w∗-structural =⇒ Y est (P)-w∗-structural.

En particulier, les classes des espaces (P)-w∗-structuraux et des espaces (P)-géométriques
sont stables pour les sous-espaces fermés et pour les isomorphismes.

En ce qui concerne les espaces w∗-Asplund, la caractérisation la plus importante pour
nous est la suivante: Étant donné un espace de Banach X, son dual X∗ est un espace
w∗-Asplund si et seulement si toute norme duale équivalente sur X∗ a un point de Fréchet-
différentiabilité. Dans le cas des propriétés convexes w∗-smooth-like, on a obtenu le même
résultat pour les espaces de Banach séparables, en utilisant une hypothèse supplémentaire:
La règle de w∗-somme.

Définition 18 (w∗-Sum rule) Soit (P) une propriété convexe w∗-smooth-like. On dit que
(P) a la règle de w∗-somme si pour tout espace de Banach X et toute paire de fonctions
f, g ∈ Γ0(X

∗, w∗) on a

PX(f + g, ·) = min{PX(f, ·),PX(g, ·)}. (7)

Pour utiliser la règle de w∗-somme, quelques résultats préliminaires sont nécessaires: On a
besoin de couvrir un espace par “rotation de cônes”. Les deux propositions suivantes mon-
trent qu’on peut le faire pour des espaces séparables et pour les espaces duaux d’espaces
séparables (qui ne sont pas nécessairement séparables).

Proposition 19 Soit X un espace séparable et soit C une cône ouvert de X. Alors il
existe une famille dénombrable d’isomorphismes {Tn : X → X | n ∈ N} tels que

⋃

n∈N

T−1
n (C) = X \ {0}.

Proposition 20 Soit X un espace séparable et soit C un cône ouvert de l’espace dual
X∗. Alors, il existe une famille dénombrable d’isomorphismes {Tn : X → X | n ∈ N} tels
que

⋃

n∈N

(T ∗
n)

−1(C) = X∗ \ {0}.

En utilisant la proposition précédente, on peut déduire le théorème suivant, qui est notre
dernière réduction pour les propriétés convexes w∗-smooth-like.

Théorème 21 Soit X un espace de Banach séparable et soit (P) une propriété convexe
w∗-smooth-like avec la règle de w∗-somme. Alors, X est (P)-géométrique si et seulement
si pour toute norme équivalente p sur X, il existe une forme linaire continue x∗ ∈ X∗\{0}
telle que

PX(p∗, x∗) = 1,
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où p∗ désigne la norme duale sur X∗ associée à p.

Chapitre 3: La propriété de Radon-Nikodým de faces

Dans leur article [4], A. K. Chakrabarty, P. Shunmunagaraj et C. Zălinescu ont étudié
diverses propriétés de continuité du sous-différentiel et du ε-sous-différentiel des fonctions
convexes. Leur travail rassemble beaucoup de contributions dans la même ligne, comme
[8], [15], [16] et [17]. Alors, [4] est en même temps un survey et une généralisation des
contributions précédemment mentionnées.

Dans [4], l’équation qui nous intéresse, c’est-à-dire, l’équation (6), est caractérisée en
termes d’une notion appelée Hausdorff-semi-continuité supérieure.

Définition 22 Soit (T, τ) un espace topologique, (Z, θ) un espace localement convexe,
M : T ⇒Z une multi-application et t0 un point de T . On dit que M est τ -θ Hausdorff-
semi-continue supérieurement (τ -θ-H-scs, pour simplifier) en t0 si

∀V ∈ NZ(0), ∃U ∈ NT (t0) tel que M(U) ⊆M(t0) + V.

Le résultat de [4] qu’on utilisera est le suivant:

Théorème 23 ([4, Proposition 5.2]) Soit f ∈ Γ0(X
∗, w∗) et soit x∗ ∈ int(dom f). On a

l’équivalence

∂f(x∗) = X ∩ ∂f(x∗)w
∗∗

⇐⇒ ðf(0, ·) est τ‖·‖-w H-scs en x∗.

où ðf : R+ ×X∗ ⇒X est la multi-application définie par

ðf(ε, x∗) := X ∩ ∂εf(x∗).

Maintenant, on présente un des résultats principaux du Chapitre 3: Les espaces SDPD
sont des espaces (P)-w∗-structuraux par rapport à une propriété convexe w∗-smooth-like:

Théorème 24 Soit (P) la propriété d’espace de Banach définie comme suit: Pour chaque
espace de Banach X, le domaine de PX est D(X) := Γ0(X

∗, w∗)×X∗, et PX est définie
par l’équivalence

PX(f, x∗) = 1 ⇐⇒ x∗ ∈ int(dom f ∗) et ∂f(x∗) = X ∩ ∂f(x∗)w
∗∗

. (8)

Alors, la propriété (P) est convexe w∗-smooth-like et donc, d’aprés l’équivalence (8), être
un espace SDPD revient à être un espace (P)-w∗-structural.
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Maintenant, on va donner une caractérisation des espaces SDPD via les “faces exposées”. Il
y a beaucoup de définitions des faces d’un ensemble dans la littérature, mais on va adopter
la convention que, dans un espace de Banach X, une face F d’un ensemble K ⊆ X est un
sous-ensemble exposé de K, c’est-à-dire, il existe une forme linaire continue x∗ ∈ X∗ \{0}
telle que

F = {x ∈ K : 〈x∗, x〉 = σK(x
∗)}.

Dans ce cas, on écrira F := F [K, x∗] pour éviter toute ambiguïté, quand cela parait
nécessaire.

Définition 25 (Face θ-exposée) Soit K ⊆ X un ensemble convexe et fermé, et soit F une
face de K. Soit aussi θ une topologie localement convexe entre w(X,X∗) et τ‖·‖ (où τ‖·‖
désigne la topologie sur X induite par la norme ‖ · ‖). On dit que F est une face θ-exposée
de K par une fonctionnelle x∗ ∈ X∗ \ {0} si F = F [K, x∗] et pour tout θ-voisinage V de
0, il existe α > 0 tel que

S(K, x∗, α) ⊆ F + V,

où S(K, x∗, α) := {x ∈ K : 〈x∗, x〉 > σK(x
∗) − α} est la tranche de K induite par x∗

et α. Dans ce cas, on dit que x∗ θ-expose F . L’ensemble des fonctionnelles de X∗ qui
θ-exposent une face de K, sera noté E[K, θ].

Définition 26 (Propriété de Radon-Nikodým de faces) Un espace de Banach X a la
propriété de Radon-Nikodým de faces (ou est FRNP, par acronyme en Anglais ”Faces
Radon-Nikodým Property), si pour tout ensemble K de X qui est convexe, fermé et borné,
E[K,w] est dense dans X∗.

Proposition 27 Soit (P) la propriété convexe w∗-smooth-like considérée dans le théorème
24. Pour tout espace de Banach X et tout ensemble K convexe, fermé et borné de X, on
a PX [K] = E[K,w].

Alors, un espace a la FRNP si et seulement si il est (P)-géométrique.

À partir de ce qui a été déjà obtenu, on déduit le corollaire suivant:

Corollaire 28 Si un espace de Banach X a la propriété FRNP, alors tout ensemble K
convexe, fermé et borné de X peut être récupéré comme l’enveloppe convexe fermée de ses
faces w-exposées, c’est-à-dire

K = co




⋃

x∗∈E[K,w]

F [K, x∗]



 .

Suite au théorème 23, on a étudié aussi une version forte des espaces SDPD et de la FRNP,
basée sur la propriété des espaces de Banach (sP), définie comme suit: Pour chaque espace
de Banach X, le domaine de sPX est D(X) := Γ0(X

∗, w∗) × X∗ et la fonction sPX est
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donnée par l’équivalence

sPX(f, x∗) = 1 ⇐⇒ x∗ ∈ int(dom f) et ðf(0, ·) est τ‖·‖-τ‖·‖ H-scs en x∗. (9)

Proposition 29 La propriété (sP) est une propriété convexe w∗-smooth-like. De plus,
la propriété (sP) vérifie la règle de w∗-somme.

Définition 30 Étant donné un espace de Banach X, on dit:

1. X est un espace strong-SDPD s’il est (sP)-w∗-structural.

2. X a la strong-FRNP s’il est (sP)-géométrique.

Pour la propriété (sP) on peut obtenir un résultat similaire au Corolaire 28, mais plus
fort, compte tenu du fait que (sP) a la règle de w∗-somme:

Proposition 31 Si un espace de Banach X a la strong-FRNP, alors tout ensemble K
convexe, fermé et borné de X peut être récupéré comme l’enveloppe convexe fermée de ses
faces τ‖·‖-exposées, c’est-à-dire

K = co




⋃

x∗∈E[K,τ‖·‖]

F [K, x∗]



 .

De plus, si X est séparable, la condition ci-dessus est aussi suffisante.

Dans la dernière partie du Chapitre 3, on compare les propriétés suivantes: La RNP, la
strong-FRNP et la FRNP. La proposition suivante résume nos résultats.

Proposition 32 Soit X un espace de Banach. Les implications suivantes ont lieu:

X a la RNP =⇒ X a la strong-FRNP =⇒ X a la FRNP.

De plus, si X possède une copie de c0, alors X n’a pas la propriété FRNP.

Maintenant, nous ne savons pas si la FRNP est équivalente ou non à la RNP. Cette
question est encore ouverte. On espère pouvoir y répondre dans le futur.

Partie II: Géométrie Non-convexe

La deuxième partie de la thèse correspond à l’étude de la différentiabilité de la projection
métrique sur des sous-ensembles des espaces de Hilbert. Ce problème est motivé par
trois travaux différents: L’article de 1973 de R. B. Holmes [19]; l’article de 1982 de S.
Fitzpatrick et R. R. Phelps [14]; et l’article de 1984 de J.-B. Poly et G. Raby [27].
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Les deux premiers articles ci-dessus cités ont examiné la différentiabilité de la projection
métrique PK , quand K est un corps convexe (i.e. intK 6= ∅) d’un espace de Hilbert X
(doté de la norme hilbertienne ‖ · ‖ associée au produit scalaire 〈·, ·〉). Ces deux articles,
[19] et [14], ont établi des résultats qui relient la différentiabilité de PK à la lissité de
la frontière de K, bdK, au sens de variétés différentiables. Rappelons les théorèmes
principaux de ces articles:

Théorème 33 (Holmes, 1973) Soit X un espace de Hilbert, K un corps convexe de X
et x0 ∈ bdK. Supposons que bdK soit une sous-variété de X en x0 de classe Cp+1 (avec
p ≥ 1). Définissons le rayon normal ouvert de K en x0 comme l’ensemble

Rayx0(K) := {x0 + tn̂(x0) : t > 0},

où n̂(x0) désigne le vecteur normal extérieur de K en x0. Alors, il existe un voisinage W
de Rayx0(K) tel que dK soit de classe Cp+1 sur W et PK de classe Cp sur W .

La contribution fondamentale de [14] (Théorème 34 ci-dessous) est d’avoir pu identifier la
condition à ajouter dans l’énoncé du théorème précédent pour aboutir à une caractérisa-
tion pour que PK soit de classe Cp sur un voisinage du rayon ouvert ci-dessus. Le résultat
peut être énoncé sous la forme d’équivalence suivante:

Théorème 34 (Fitzpatrick-Phelps, 1982) Soit X un espace de Hilbert et K un corps
convexe de X. Alors, bdK est une sous-variété de classe Cp+1 (avec p ≥ 1) de X si et
seulement si PK est de classe Cp sur X \ K et, pour tout x ∈ X \ K, la restriction de
DPK(x) à l’hyperplan

H[x] := {z ∈ X : 〈z, x− PK(x)〉 = 0}

est inversible.

De façon indépendante, le troisième article [27] a étudié la différentiabilité de la projection
métrique PM quand l’ensembleM est lui-même une sous-variété de classe Cp+1 d’un espace
euclidien de dimension finie.

Théorème 35 (Poly-Raby, 1984) Soit M un sous-ensemble d’un espace euclidien X de
dimension finie, et soit m0 ∈ M . L’ensemble M est une sous-variété de X en m0 de
classe Cp+1 (avec p ≥ 1) si et seulement si la fonction distance carré d2M(·) est de classe
Cp+1 dans un voisinage de m0.

On remarque que ces trois théorèmes considèrent des ensembles qui sont au moins des
sous-variétés de classe C2. En fait, en dehors de cette classe, il y a beaucoup de contre-
exemples même en dimension finie (voir, par exemple, [20] et [14]).

La contribution de cette seconde partie de la thèse est de relaxer les hypothèses de ces
théorèmes: Pour les théorèmes 33 et 34, on remplace l’hypothèse de convexité par une
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autre plus générale: la prox-régularité. La projection métrique sur un ensemble prox-
régulier étant bien définie (comme application) “proche” de cet ensemble. On a établi,
pour des ensembles prox-réguliers, des résultats similaires aux théorèmes 34 et 35. Ces
résultats sont obtenus sous des formes quantifiées faisant intervenir les constantes de prox-
régularité des ensembles. Pour ce qui concerne le théorème 35, on étend (partiellement)
le résultat aux espaces de Hilbert de dimension arbitraire (finie ou infinie) et on donne
un voisinage quantifié où la projection métrique est différentiable.

Chapitre 4: Sous-variétés et prox-régularité

Ce chapitre est pour une bonne partie un résumé de tous les éléments qui sont nécessaires
pour développer notre contribution dans le chapitre 5. Les rappels nécessaires concernent:
Les sous-variétés d’un espace de Hilbert, la théorie du calcul proximal, et finalement les
ensembles prox-réguliers. Nous ne donnerons dans le résumé ici que les définitions et
propositions qui sont fondamentales pour comprendre les théorèmes que nous énonçons
ci-dessous du chapitre 5.

Dans ce qui suit, X sera toujours un espace de Hilbert avec ‖ · ‖ sa norme euclidienne et
〈·, ·〉 son produit scalaire, et p sera toujours un entier supérieur ou égal à 1.

Les premières notions à rappeler sont celles de sous-variétés et d’espaces tangents.

Définition 36 (Sous-variétés de classe Cp) Un sous-ensemble M de X est dit être une
Cp-sous-variété en un point m0 ∈ M ou une sous-variété en m0 ∈ M de classe Cp s’il
existe un voisinage ouvert U de m0, un sous-espace fermé Z de X (qui s’appelle l’espace
modèle) et une application ϕ : U → ϕ(U) ⊆ X tels que

1. ϕ est un Cp-difféomorphisme, c’est-à-dire, ϕ(U) est un sous-ensemble ouvert de X,
ϕ : U → ϕ(U) est bijective, et ϕ, ϕ−1 sont toutes deux de classe Cp.

2. ϕ(m0) = 0 et ϕ(M ∩ U) = Z ∩ ϕ(U).

On dit simplement que M est une Cp-sous-variété de X s’il est une Cp-sous-variété en
tout point m de M , avec le même espace modèle Z.

Définition 37 (Espace tangent) Soit M ⊆ X une sous-variété en un point m0 ∈ M de
classe Cp. On définit l’espace tangent de M en m0 comme l’ensemble

Tm0M := {h ∈ X : ∃γ :]− 1, 1[→M, C1-courbe avec γ(0) = m0 et γ′(0) = h}.

La prochaine proposition nous permet de représenter les sous-variétés localement comme
le graphe d’une application différentiable.
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Proposition 38 Soit M un sous-ensemble de X et m0 ∈ M . Alors M est une sous-
variété en m0 de classe Cp si et seulement s’il existe un sous-espace fermé Z de X, un
voisinage ouvert U de m0 dans X, un voisinage ouvert V de 0 dans Z et une application
θ : V → Z⊥ de classe Cp tels que θ(0) = 0, Dθ(0) = 0 et

M ∩ U =
(
L−1(gph θ) +m0

)
∩ U,

où L : X → Z × Z⊥ est l’isomorphisme canonique donné par L(x) = (πZ(x), πZ⊥(x)),
avec πZ et πZ⊥ les projections parallèles associées à la décomposition X = Z ⊕Z⊥. Dans
ce cas, on a Z = Tm0M .

Dans le cadre convexe, on sait que pour tout ensemble convexe fermé, la projection
métrique existe toujours et elle est unique. En dehors de ce contexte, c’est nécessaire
de mieux formaliser ce que l’on entend par “projection métrique”. Dans ce qui suit, pour
un ensemble non-vide S de X, on désignera par dS(·) (ou d(·;S) si besoin est) la fonction
distance de S, c’est-à-dire, pour x ∈ X

dS(x) := inf{‖x− s‖ : s ∈ S}.

Définition 39 (Projection métrique) Soit S un ensemble non-vide de X et soit x ∈ X
un point fixé. On dit qu’un point s de S est une projection de x sur S si

‖x− s‖ = dS(x).

L’ensemble de toutes les projections de x sur S sera notée (comme il est usuel) ProjS(x)
ou Proj(x;S). Si ProjS(x) est un singleton, alors son unique point s’appelle la projection
métrique de x sur S et elle est notée PS(x).

Via la définition 39, on peut introduire l’un des outils sur lesquels est basée notre con-
tribution: Le cône normal proximal. Cet outil est l’une des notions fondamentales de la
théorie du calcul proximal. Quand l’on est en dehors du contexte convexe, on a besoin
d’une notion appropriée de cône normal. Bien qu’il y ait plusieurs concepts de cônes
normaux dans la théorie de l’analyse variationnelle, le mieux quand on travaille avec les
projections est le cône normal proximal, qui est défini avec cet objectif. Ici, on ne fait
que rappeler cette notion, et on renvoie le lecteur au livre de Clarke, Ledyaev, Stern et
Wolenski [5] pour les diverses propriétés et plus de détails.

Définition 40 (Cône normal proximal) Soit S un sous-ensemble non-vide de X et s̄ ∈ S.
On dit qu’un vecteur ζ ∈ X est un vecteur normal proximal de S en s̄ s’il existe t > 0 tel
que

s̄ ∈ ProjS(s̄+ tζ).

L’ensemble de tous les vecteurs normaux proximaux de S en s̄ s’appelle le cône normal
proximal de S en s̄, et il est désigné par NP (S; s̄).

A partir du cône normal proximal, on définit la notion de rayon normal, qui a été utilisé
dans le théorème 33: Pour un ensemble fermé S de X, un point x ∈ bdS et un réel λ > 0,
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quand le cône normal proximal de S en x est de la forme

NP (S; x) = {tν : t > 0},

pour un certain vecteur ν avec ‖ν‖ = 1, on définit le rayon normal ouvert de S en x et le
rayon normal ouvert λ-tronqué de S en x comme les ensembles

Rayx(S) := {x+ tν : t ∈ ]0,+∞[ } (10)

Rayx,λ(S) := {x+ tν : t ∈ ]0, λ[ } (11)

respectivement. Nous verrons plus loin que notre extension du théorème 33 fait intervenir,
au lieu du rayon normal ouvert, le rayon normal ouvert tronqué avec un réel λ > 0
approprié.

Maintenant, on présente la dernière notion fondamentale dont nous avons besoin: Les
ensembles prox-réguliers. Avant de donner la définition, on veut fixer certaines notations.
Pour un point x ∈ X et un réel α > 0, on note par BX(x, α) la boule ouverte centrée
en x et de rayon α, et par BX [x, α] la boule fermée de mêmes paramètres. Aussi, on
écrit BX pour désigner la boule unitaire fermée de X centrée à l’origine, c’est-à-dire,
BX := BX [0, 1].

Définition 41 (Ensemble prox-régulier) Étant donnés un réel étendu r ∈ ]0,+∞] et un
réel α > 0, on dit qu’un ensemble fermé S de X est (r, α)-prox-régulier en x0 ∈ S si pour
tout x ∈ S ∩ BX(x0, α) et tout ζ ∈ NP (S; x) ∩ BX , on a

x ∈ ProjS(x+ tζ), pour tout réel t ∈ [0, r]. (12)

On dit que S est r-prox-régulier en x0 s’il est (r, α)-prox-régulier en x0 pour un certain
α > 0, et on dit simplement que S est prox-régulier en x0, s’il est r-prox-régulier en x0
pour un réel étendu r ∈ ]0,+∞].

Par conséquence, on dit que S est r-prox-régulier (resp. prox-régulier) s’il est r-prox-
régulier (resp. prox-régulier) en tout point x ∈ S.

Il est évident à partir de la définition que si S est (r, α)-prox-régulier en x0, alors il est
aussi (r′, α′)-prox-régulier en x0, pour tout r′ ∈ ]0, r] et tout α′ ∈ ]0, α].

Il y a beaucoup de travaux à propos des ensembles prox-réguliers, mais on renvoie le
lecteur au survey très approfondi et détaillé de G. Colombo et L. Thibault [7] sur le sujet.

Dans la thèse [22] de M. Mazade il y a des caractérisations quantifiées de la prox-régularité
locale. Ces caractérisations ont été motivées par le célèbre article de R. A. Poliquin, R.
T. Rockafellar et L. Thibault [26], de l’année 2000. Nous rappelons ci-dessous les versions
dans [22], qui vont nous permettre d’avoir des résultats en termes de voisinages quantifiés
des rayons normaux. Ces résultats sont basés sur deux ensembles apparaissant dans [22].
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Pour r ∈ ]0,+∞] et α > 0, on considère les élargissements locaux suivants de S en un
point x0 ∈ S:

RS(x0, r, α) :=
{
x+ tv : x ∈ S ∩ BX(x0, α), t ∈ [0, r[, v ∈ NP (S; x) ∩ BX

}
, (13)

WS(x0, r, α) := {u ∈ X : ProjS(u) ∩BX(x0, α) 6= ∅, dS(u) < r} . (14)

On résume les résultats provenant de [22] dans le théorème suivant:

Théorème 42 (Voir [22], 2011) Soit S un ensemble fermé de X, x0 ∈ S, r ∈ ]0,+∞] et
α > 0. Les assertions suivantes sont équivalentes:

(i) S est (r, α)-prox-régulier en x0;

(ii) L’ensemble WS(x0, r, α) est ouvert et PS est bien définie et localement Lipschitz-
continue en WS(x0, r, α);

(iii) L’ensemble WS(x0, r, α) est ouvert et dS est continument différentiable sur WS(x0, r, α)\
S, avec ∇dS(u) = u−PS(u)

dS(u)
pour tout point u ∈ WS(x0, r, α);

(iv) Pour chaque point x ∈ S ∩B(x0, α) et chaque ζ ∈ NP (S; x) on a

〈ζ, x′ − x〉 ≤ ‖ζ‖
2r

‖x′ − x‖2 pour tout x′ ∈ S.

En plus, si S est (r, α)-prox-régulier en x0, alors les ensembles RS(x0, r, α) et
WS(x0, r, α) coïncident, et pour chaque γ ∈ ]0, 1[ l’application PS(·) est Lipschitz-
continue sur WS(x0, γr, α) avec (1− γ)−1 comme constante de Lipschitz.

Finalement, on présente la notion de corps fermé, qui remplace celui de corps convexe
dans notre contexte.

Définition 43 (Corps fermé) Un ensemble S de X est dit être corps fermé (relatif à X)
autour de x0 ∈ S s’il existe un voisinage ouvert U de x0 tel que U ∩ S = U ∩

(
intS

)
et

U ∩ intS est connexe.

Si U = X, c’est-à-dire, S = intS et intS est connexe, on dit simplement que S est un
corps fermé (relatif à X).

Rappelons qu’un ensemble S de X est dit être épi-Lipschitzien en x0 ∈ S dans la direction
h ∈ X \ {0} s’il existe un voisinage U de x0, un sous-espace supplémentaire topologique
Z de Rh, et une fonction f : Z → R Lipschitz-continue tels que, écrivant X = Z ⊕ Rh,
on a

U ∩ S = {z + rh ∈ U : (z, r) ∈ epi f}. (15)

La proposition suivante montre que les ensembles avec une frontière Cp+1-lisse (au sens
que cette frontière est une sous-variété de classe Cp+1) sont prox-réguliers et aussi sont
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représentables comme graphe/épigraphe d’une fonction Lipschitzienne. Cette proposition
ne se trouve pas dans la thèse de façon explicite, mais on l’énonce ici pour montrer que la
prox-régularité et la propriété épi-Lipschitz sont en fait des conditions nécessaires, quand
on a des frontières de classe C2 ou plus.

Proposition 44 Les assertions suivantes ont lieu:

(a) Soit M ⊆ X une sous-variété en m0 ∈ M de classe C2. Alors, M est prox-régulier
en m0 et

NP (M ;m0) = (Tm0M)⊥.

(b) Soit S ⊆ X un corps fermé autour de x0 ∈ bdS. Supposons que bdS soit une
sous-variéte en x0 de classe C2. Alors, S est prox-régulier et épi-Lipschitzien en x0
et il existe un vecteur ν ∈ X avec ‖ν‖ = 1 tel que

NP (S; x0) = {tν : t > 0}.

Chapitre 5: Différentiabilité de la projection métrique

Ici on résume les résultats principaux de la seconde partie de la thèse.

Théorème 45 Soit S ⊆ X un corps fermé autour de x0 ∈ bdS, et soit un entier p ≥ 1.
Supposons qu’il existe r ∈ ]0,+∞] et α > 0 tels que BX(x0, α)∩bdS soit une sous-variété
de classe Cp+1 et que S soit r-prox-régulier en x0. Alors, il existe un voisinage V de
Rayx0,r(S) tel que

• dS est de classe Cp+1 en V ;

• PS est de classe Cp en V .

En plus, si S est (r, α)-prox-régulier en x0, alors

dS est de classe Cp+1 sur WS(x0, r, α) \ S.

PS est de classe Cp sur WS(x0, r, α) \ S.

Pour un ensemble S de X et un point x ∈ X tel que PS(x) existe, on définit l’hyperplan
H[x] comme

H[x] := {z ∈ X : 〈z, x− PS(x)〉 = 0}.

Théorème 46 Soit S un corps fermé de X et soit x0 ∈ bdS. Supposons que S soit
r-prox-régulier et épi-Lipschitzien en x0. Alors, les assertions suivantes sont équivalentes:

(i) bdS est une sous-variété en x0 de classe Cp+1;
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(ii) Il existe α > 0 tel que PS soit de classe Cp sur WS(x0, r, α) \ S et pour chaque u ∈
WS(x0, r, α) \ S, la restriction de DPS(u) à H[u] est inversible comme application
de H[u] dans H[u];

(iii) il exite un voisinage U de x0 tel que PS soit de classe Cp sur U \ S et tel que, pour
tout u ∈ U \ S, DPS(u) soit surjective de H[u] dans H[u].

Les théorèmes 45 et 46 sont des extensions significatives des théorèmes 33 et 34, respec-
tivement. Notons que ces théorèmes donnent en plus une quantification en termes de la
constante de prox-régularité. Aussi, dans le théorème 46, les hypothèses de prox-régularité
et de la propriété épi-Lipschitz sont en même temps nécessaires.

Au niveau des sous-variétés, on a obtenu un résultat similaire au théorème 45, qui
généralise et quantifie la nécessité du théorème 35.

Théorème 47 Soit M un ensemble fermé de X qui est une sous-variété en m0 ∈ M de
classe Cp+1, avec p ≥ 1. Si M est r-prox-régulier en m0, alors il existe α > 0 tel que

• d2M(·) est de classe Cp+1 sur WM(m0, r, α);

• PM est de classe Cp sur WM(m0, r, α).

Le problème fondamental en connexion avec ce dernier théorème est sa réciproque. On
est arrivé à une réciproque partielle, qui est basée sur un renforcement du concept de
sous-variété de classe Cp+1.

Rappelons maintenant la notion de locale uniforme continuité. Soit E et F deux espaces de
Banach et U un sous-ensemble ouvert de E. On écrira Ck,0loc (U ;F ) (avec k ≥ 0) l’ensemble
de toutes les applications f : U → F qui sont de classe Ck et telles que la k-ième dérivée est
localement uniformément continue: pour chaque u ∈ U il existe δ0 > 0 avec BX(u, δ0) ⊆ U
tel que Dkf soit uniformément continu sur BX(u, δ0), c’est-à-dire,

∀ε > 0, ∃δ > 0, ∀u, u′ ∈ BX(u0, δ0), ‖u− u′‖ ≤ δ⇒‖Dkf(u)−Dkf(u′)‖ ≤ ε.

En même temps, on désignera par Ck,1loc (U ;F ) l’ensemble de toutes les applications f : U →
F qui sont de classe Ck et telles que la k-ième dérivée est localement Lipschitz continue.

D’après la Proposition 38 un ensemble M de X est une sous-variété en m0 ∈M de classe
Cp s’il existe un sous-espace vectoriel fermé Z de X, un voisinage U de m0 dans X, un
voisinage VZ de 0 dans Z, et une application θ : VZ → Z⊥ tels que

(i) θ est de classe Cp;

(ii) θ(0) = 0 et Dθ(0) = 0; et

(iii) M ∩U = (L−1(gph θ) +m0)∩U , où L : X → Z ×Z⊥ est l’isomorphisme canonique
donné par L(x) = (πZ(x), πZ⊥(x)) (avec πZ , πZ⊥ les projections parallèles associées



22 INTRODUCTION GÉNÉRALE

à la décomposition X = Z ⊕ Z⊥).

Maintenant, on introduit deux renforcements de la notion de sous-variétés: Si en plus,
Dpθ est localement uniformément continue autour de 0, on dira que M est une Cp,0-sous-
variété en m0, et si Dpθ est localement Lipschitz continue autour de 0, on dira que M est
une Cp,1-sous-variété en m0. On a l’impression que ces notions doivent être connues dans
la littérature, mais malheureusement on n’a pas trouvé de références.

Lemme 48 Soient X, Y et Z trois espaces de Hilbert et soit U un voisinage ouvert de
0 dans X. Considérons une application continue T : U → L(Y ;Z) (où L(Y ;Z) désigne
l’espace des opérateurs linaires continus de Y dans Z) et un entier p ≥ 1. Définissons
l’application g : U × Y → Z donnée par

g(u, y) := T (u)y.

Alors, T est de classe Cp, quand g est de classe Cp, et il existe un voisinage V de 0 dans Y
tel que la famille {Dpg(·, v)}v∈V est localement equi-uniformément continue, c’est-à-dire,
pour chaque u0 ∈ U , il existe δ0 > 0 avec BX(u0, δ0) ⊆ U , tel que pour chaque ε > 0

∃δ > 0, ∀u, u′ ∈ BX(u0, δ0), ‖u− u′‖ ≤ δ ⇒ sup
v∈V

‖Dpg(u, v)−Dpg(u′, v)‖ ≤ ε. (16)

En plus, si g
∣
∣
V

∈ Cp,0loc (U × V ;Z) (respectivement, g
∣
∣
V

∈ Cp,1(U × V ;Z)), alors T ∈
Cp,0loc (U ;L(Y ;Z)) (respectivement T ∈ Cp,1(U ;L(Y ;Z))).

Avec ce lemme fondamental, on a obtenu une réciproque partielle du théorème 47. On
caractérise les Cp,0-sous-variétés et les Cp,1-sous-variétés en termes de la différentiabilité
de la fonction distance carré.

Théorème 49 Soit M un sous-ensemble fermé de X et soit m0 ∈ M . Les assertions
suivantes ont lieu:

(a) M est une Cp+1,0-sous-variété en m0 si et seulement si il existe un voisinage U de
m0 tel que

(a.i) d2M(·) est de classe Cp+1,0 sur U ;

(a.ii) PM est bien définie sur U et elle appartient à Cp,0loc (U ;X).

(b) M est une Cp+1,1-sous-variété en m0 si et seulement si il existe un voisinage U de
m0 tel que

(b.i) d2M(·) est de classe Cp+1,1 sur U ;

(b.ii) PM est bien définie sur U et elle appartient à Cp,1loc (U ;X).

Ce qui reste est de savoir si l’on peut trouver une réciproque du théorème 47 pour les
Cp+1-sous-variétés sans aucune condition de continuité uniforme de la dernière dérivée de



23

la fonction distance carré. Une possibilité est de vérifier si toute fonction distance carré
d2M(·) satisfait la condition d’equi-continuité uniforme du Lemme 48. Il est aussi possible
que la stratégie soit différente pour montrer la suffisance dans le théorème 47. Cette
question est ouverte.
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Introduction of Part I

The problem with integration of lower semicontinuous convex functions in terms of their
Fenchel subdifferential, was started and solved by Moreau [33] in Hilbert spaces. The
problem was then studied by Rockafellar [38] in the 60’s: He proved that every two
proper lower semicontinuous convex functions f, g defined over a Banach space X with
values in R ∪ {+∞} satisfying

∂f(x) ⊆ ∂g(x), ∀x ∈ X,

are in fact equal up to an additive constant. Motivated by this result, some generalizations
to nonconvex cases have been made by, among others, Benoist, Burachik, Correa, Dani-
ilidis, Jofré, Martinez-Legaz, Poliquin, Rocco, Thibault, Zagrodny and Zlateva involving
the Fenchel subdifferential and other kinds of subdifferentials as well (see, for example [3],
[12], [19], [31], [46]–[48]). The literature on the subject is vast. In particular, in the article
of R. Correa, Y. Garcia and A. Hantoute [17], they accomplished many integration results
for a particular family of nonconvex functions introduced by Benoist and Hiriart-Urruty
in [30]: the ones which are epi-pointed. A function f defined over a Banach space X
with values in R ∪ {+∞} is epi-pointed if the effective domain of its Legendre-Fenchel
conjugate f ∗ has nonempty interior.

The most interesting result in this line is the following: If X is a Banach space with
the Radon-Nikodým property (RNP, for short), then for each epi-pointed and lower-
semicontinuous function f : X → R ∪ {+∞} and any function g : X → R ∪ {+∞} we
have that

∂f(x) ⊆ ∂g(x), ∀x ∈ X ⇒ ∃c ∈ R, co f = co g�σdomf∗ + c,

where co f denotes the closed convex envelope of f , σdomf∗ is the support function of
the effective domain of f ∗, domf ∗, and � is the classic Moreau inf-convolution. The
main observation that allowed the authors to derive this integration formula is the fol-
lowing: whenever X is a Banach space having the RNP and f is an epi-pointed lower
semicontinuous function, then the set

D1 := {x∗ ∈ int(dom f ∗) : ∂f ∗(x∗) = (∂f)−1(x∗)}

is dense in int(dom f ∗), where the subdifferential of f ∗ is defined as a set-valued mapping
from X∗ into X∗∗, which is usually written as ∂f ∗ : X∗ ⇒X∗∗.
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The Radon-Nikodým property was introduced as first as a vector-valued measure pro-
perty: A Banach space X is said to have the RNP if for every measure space (Ω,Σ, µ)
with µ being a countable-additive measure over the σ-algebra Σ, and every vector measure
m : Σ → X which is absolutely µ-continuous, there exists a Bochner µ-integrable function
f : Ω → X such that

m(E) =

∫

E

f(ω)dµ(ω), ∀E ∈ Σ.

This subject is deeply developed in the books [9] and [21]. Nowadays, Radon-Nikodým
property is likely to be presented according to some of its many geometrical characteri-
zations. Here, we present it in terms of convex closed hulls of strongly-exposed points (see
Definitions 2.2.9 and 2.2.10 in Chapter 2): We will say that a Banach space X has the
RNP if and only if every closed convex bounded set K of X coincides with the closed
convex hull of its strongly-exposed points.

In Chapter 1 we generalize the result of Correa-García-Hantoute, replacing the Banach
space by a general (Hausdorff) locally convex space (X, θ). For this we introduce a new
notion of epi-pointedness, depending on the topology used in the dual space X∗, and
replace the RNP hypothesis with a special property of the function itself, namely to be
Subdifferential Dense Primal Determined (SDPD, for short). The main idea of these
functions is to replace the condition ∂f ∗(x∗) = (∂f)−1(x∗) by

∂f ∗(x∗) = cow
∗∗ [

(∂f)−1(x∗)
]
,

which, under suitable notions of density and epi-pointedness, will be enough to ensure
the desired integration formula (for more details, see 1.3.7 in Chapter 1). The obtained
integration formula is a generalization of Correa-Garcia-Hantoute integration theorem.
Indeed, as we observe in Proposition 1.3.13, in a Banach space with the RNP, every epi-
pointed lower semicontinuous function is SDPD. Nevertheless, outside the RNP setting,
lower semicontinuity is not enough to guarantee SDPD (see Proposition 1.3.6).

A natural question arises: How can we assure that SDPD condition is satisfied by a large
family of epi-pointed functions? This question is what leads Chapters 2 and 3. We realize
that a minimal expected condition over the space is that SDPD condition be satisfied in
the convex setting, and so we introduce the notion of SDPD spaces: A Banach space X
is said to be SDPD if and only if every epi-pointed convex lower-semicontinuous function
defined on X is an SDPD function.

SDPD spaces are very similar to Banach spaces with a w∗-Asplund dual space. Recall
that a Banach space X (resp. a dual space X∗) is said to be an Asplund space (resp. w∗-
Asplund space) if for every real-valued convex continuous (resp. w∗-lower semicontinuous)
function f over X (resp. X∗) is Fréchet-differentiable in a dense set of X (resp. X∗).
These spaces are in duality with the RNP, namely:

1. A Banach space X is an Asplund space if and only if its dual X∗ has the RNP. (see
Theorem 2.2.13).
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2. A Banach space X has the RNP if and only if its dual X∗ is a w∗-Asplund space
(see Theorem 2.2.15).

Even though the definitions of the RNP and Asplund spaces consider a wide family of
sets or functions, many reductions have been made. In fact, it is known that X∗ is a w∗-
Asplund space if and only if every equivalent dual norm on X∗ is Fréchet-differentiable at
some point. Analogously, X is an Asplund space if and only if the same differentiability
condition holds for every equivalent norm on X.

Chapter 2 is devoted to generalize these kinds of theorems to more general properties of
Banach spaces. Assume that we have a property (P) over the class of Banach spaces of
the following form:

A Banach space X has the property (P) if for every real-valued convex continuous
function f over X, there exists a dense set D such that f satisfies certain condition

PX(f, x) at every x ∈ D.

In the case of Asplund property, the condition PX(f, x) is f to be Fréchet-differentiable
at x. We will show that, under certain regularity conditions of (P), the reductions known
for Asplund property are still valid, that means, we will obtain theorems of the form
“A Banach space X has the property (P) if and only if every equivalent norm p over X
satisfies PX(p, x) at every point x in a dense set D”.

The Banach space properties that have this regularity condition (which will be formally
defined later) are called convex smooth-like properties. As for Asplund property, we will
also define their weak-star version in the dual space, called convex w∗-smooth-like prop-
erties. Finally, we will show that both, convex smooth-like and convex w∗-smooth-like
properties, have a dual (or predual) geometrical interpretation, namely, that they are in
duality with some property of the convex w∗-closed (resp. closed) sets of the dual space
(resp. predual space).

In Chapter 3, we show that SDPD property is in fact a convex w∗-smooth-like property
and we provide its geometrical interpretation: what we call the Faces Radon-Nikodým
property (FRNP).

We also introduce a stronger version of the FRNP and we connect it with the notion of
strong subdifferentiability, which has been widely studied in the literature (see, e.g., [27],
[29] and the references therein). At the end of Chapter 3, we study the natural question
on this theory: Whether or not the FRNP and the RNP are equivalent. We provide
several partial results in this line but the question remains open.
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Chapter 1

Integration Formulas for Epi-pointed

Functions in Locally Convex Spaces

In what follows, we will write R := R ∪ {−∞,+∞} and R∞ := R ∪ {+∞}. Also, τ0 will
denote the usual topology in R (and its natural extension to R∞ and R). For a topological
space (T, τ) and a point t0 ∈ T , we will denote by NT (t0, τ) (or simply by NT (t0), N (t0, τ)
or N (t0) if there is no confusion) the set of all neighborhoods of t in (T, τ). Sometimes it
will be useful to say that an element V ∈ NT (t0, τ) is a τ -neighborhood of t0.

We will say that a subset B ⊂ NT (t0, τ) is a fundamental system (or neighborhood basis)
of NT (t0, τ) if

∀U ∈ NT (t0, τ), ∃V ∈ B such that V ⊆ U.

If (S, θ) is another topological space, we will denote by τ × θ the product topology over
T × S. Also, if T0 is a nonempty set of T , we will denote by τ

∣
∣
S

the induced topology on

S by τ . Sometimes, if there is no confusion, we will write (T0, τ) instead of
(

T0, τ
∣
∣
T0

)

to

denote the topological subspace of (T, τ) given by T0.

For a subset A ⊆ T , we denote by intτ A, clτ A and bdτ A (or simply intA, clA and bdA,
if there is no confusion), the interior, closure and boundary of A, respectively. Sometimes,
we will write A

τ
(or simply A) instead clτ A to denote the closure of A, and write int(A, τ)

instead intτ (A) to denote te interior of A.

For a metric space (M, d) we denote by τd the topology induced by d on M . Analogously,
for a normed vector space (E, ‖ · ‖) we denote by τ‖·‖ the topology induced by ‖ · ‖ on E.

For a subset S of a topological vector space (X, θ), we will write coS and coθ(S) to denote
the convex hull and θ-closed convex hull of S, respectively. If there is no confusion, we
may omit the topology and simply write coS to denote the closed convex hull of S.
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1.1 Locally Convex Spaces

In this section we briefly summarize the fundamental notions and topology properties on
Real Locally Convex Spaces. In what follows, θ will be a locally convex topology over the
real vector space X, and whenever we say a topology is locally convex, we will assume
that it is also a Hausdorff topology.

Let X be a real vector space and let us denote by X ′ its algebraic dual space, that is, the
real vector space of all linear functionals defined over X. In this section we will study
the subset of all θ-continuous linear functionals over X when we endow X with a locally
convex topology θ. These objects are one of the foundations of convex analysis, mainly
provided by their strong applications via the celebrated Hahn-Banach theorems.

Lemma 1.1.1 Let (X, θ) be a locally convex space and let f : X → R be a sublinear
functional. The following assertions are equivalent:

(a) f is θ-τ0-continuous.

(b) f is θ-τ0-continuous at 0.

(c) f is uniformly θ-τ0-continuous.

(d) f−1
(
]− 1, 1[

)
is a θ-open neighborhood of 0.

(e) There exists a θ-τ0-continuous seminorm ρ such that |f | ≤ ρ.

Furthermore, if f is linear, then it is θ-τ0-continuous if and only if its kernel Ker(f) is a
θ-closed subspace of X.

In what follows, we will write (X, θ)∗ (or simply X∗) the topological dual space of (X, θ),
that is, the subset of X ′ given by all θ-continuous linear functionals over X. Also, we will
denote by w(X,X∗) (or simply w), and w∗(X∗, X) (or simply w∗) the weak topology on
X induced by X∗ and the weak-star topology on X∗ induced by X, respectively.

It is known that for a locally convex space (X, θ), w(X,X∗) ⊆ θ and that

1. (X,w(X,X∗))∗ = X∗ and w(X,X∗) is the coarsest locally convex topology on X
enjoying this property.

2. (X∗, w∗(X∗, X))∗ = X and w∗(X∗, X) is the coarsest locally convex topology on X∗

enjoying this property.

Depending on which locally convex topology we endow X with, the dual space X∗ may
change. To specify which dual we are working with, we need the notion of dualities.
For a subspace Y of the algebraic dual X ′, we say that X and Y are in duality if there
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exists a locally convex topology θ(Y ) such that (X, θ(Y ))∗ = Y . In such a case, we will
write 〈X, Y 〉 to denote this duality (with duality product 〈·, ·〉 : Y × X → R given by
〈y, x〉 = y(x)).

Note that this notion is not topological: Indeed, X and Y are in duality if and only if the
weak topology w(X, Y ) is Hausdorff, that is, if and only if

∀x ∈ X \ {0}, ∃y ∈ Y \ {0} such that 〈y, x〉 6= 0. (1.1)

Thus, the notation 〈X, Y 〉 is not ambiguous. This objects are called dualities because of
the dual relations given by the weak and weak-star topologies. Observe also that X and
Y can interchange the roles of primal and dual space, indistinctly. Thus, we won’t make
a difference between de duality 〈X, Y 〉 and the duality 〈Y,X〉.

Proposition 1.1.2 Let (X, θ) be a locally convex space and let C be a θ-closed convex
subset of X. Then, C is w-closed.

In particular, for every subset S of X, we have that

coθ(S) = cow(S).

By the latter proposition, if (X, θ) is a locally convex space and S ⊆ X, we can write coS
to denote the closed convex hull of S, regardless which topology we are using (in between
w(X,X∗) and θ).

Another important feature of convex sets in locally convex spaces is that, whenever they
are compact, they can be constructed only from their extreme points : These are the Krein-
Milman Theorem and Milman Theorem, that we present below. Due to the complexity
of their proves and also since both are well-known theorems, we will limit ourself only to
present them, referring the reader to [23, Ch. 3] for further information.

Definition 1.1.3 (Extreme point) Let X be a real vector space. For a subset S (not
necessarily convex) of X, a point x̄ ∈ S is said to be an extreme point of S if

∀x1, x2 ∈ S, x̄ ∈ [x1, x2]⇒x1 = x2 = x̄.

where [x1, x2] := {tx1 + (1 − t)x2 : t ∈ [0, 1]}. We denote by ext(S) the set of extreme
points of S.

Note that the notion of extreme points is completely algebraic but it has topological
implications, just like convexity.

Theorem 1.1.4 (Krein-Milman) Let (X, θ) be a locally convex space and K be a convex
θ-compact subset of X. We have that
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(a) ext(K) 6= ∅.

(b) K = co(ext(K)).

Proof. See [23, Theorem 3.65].

Theorem 1.1.5 (Milman) Let (X, θ) be a locally convex space and K be a convex θ-
compact subset of X. Then, for every subset S ⊆ K such that K = co(S), we have
that

ext(K) ⊆ clS.

In particular, ext(K) ⊆ ext(clS).

Proof. See [23, Theorem 3.66].

Definition 1.1.6 Let (X, θ) be a locally convex space and let S be a subset of X. We
define the polar set of S with respect to the duality 〈X,X∗〉 as the set

So := {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 1, ∀x ∈ S}.

We also define the bipolar set of S with respect to the duality 〈X,X∗〉, as the polar set
of So with respect to the duality 〈X,X∗〉, that is,

Soo := {x ∈ X : 〈x∗, x〉 ≤ 1, ∀x∗ ∈ So}.

If we have three vector spaces X, Y and Z, and two dualities 〈X, Y 〉 and 〈X,Z〉, the
notation of the polar set So, for some set S ⊆ X, is ambiguous. In such a case, we will
specify respect to which duality we are taking the polar set.

Theorem 1.1.7 (Bipolar theorem) Let (X, θ) be a locally convex space, X∗ be its dual
space and S be a subset of X. We have that

Soo = co(S ∪ {0}).

Analogously, if S ⊆ X∗, then Soo = cow
∗
(S ∪ {0}), where the bipolar set of S is taken

with respect to the duality 〈X,X∗〉.

Theorem 1.1.8 (Alaoglu-Bourbaki) Let (X, θ) be a locally convex space, X∗ be its dual
space. For any V ∈ NX(0, θ), we have that V o is w∗-compact.

Proof. See [23, Theorem 3.37]

We will now introduce some other natural locally convex topologies that can be con-
structed from the duality 〈X,X∗〉.
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Definition 1.1.9 Let (X, θ) be a locally convex space. We define

(a) The Mackey topology on X induced by X∗, denoted by τ(X,X∗), as the locally con-
vex topology induced by the family of seminorms {pK : K w∗-compact subset of X∗},
where, for each K w∗-compact subset of X∗, pK : X → R+ is given by

pK(x) := sup{|〈x∗, x〉| : x∗ ∈ K}.

(b) The Mackey topology on X∗ induced by X, denoted by τ(X∗, X), as the locally con-
vex topology induced by the family of seminorms {pK : K w-compact subset of X},
where, for each K w-compact subset of X, pK : X∗ → R+ is given by

pK(x
∗) := sup{|〈x∗, x〉| : x ∈ K}.

Remark 1.1.10 Let us note that the Mackey topology τ(X,X∗) is a locally convex
topology on X: Indeed, τ(X,X∗) is induced by seminorms and, since every singleton in
X∗ is w∗-compact, it is also Hausdorff.

Observe also that the associated convergence to the topology τ(X,X∗) corresponds to the
uniform convergence on w∗-compact sets, that is, a net (xα)α∈Λ ⊆ X τ(X,X∗)-converges
to a point x ∈ X if and only if

sup
x∗∈K

〈x∗, xα − x〉 → 0, ∀K w∗-compact set of X∗.

The same remarks can be done for the Mackey topology τ(X∗, X) on X∗, replacing (X, θ)
and (X∗, w∗) by (X∗, w∗) and (X,w), respectively.

Proposition 1.1.11 Let (X, θ) be a locally vector space and let X∗ be its dual space. The
followings hold:

(a) (X, τ(X,X∗))∗ = X∗, and τ(X,X∗) is the finest locally convex topology on X en-
joying this property.

(b) (X∗, τ(X∗, X))∗ = X, and τ(X∗, X) is the finest locally convex topology on X∗

enjoying this property.

Proposition 1.1.12 Let (X, θ) be a locally convex space, let X∗ be its dual space and let
S be a subset of X. Then, S is θ-bounded if and only if S is w(X,X∗)-bounded.

In particular, the family of w(X,X∗)-bounded sets and the family of τ(X,X∗)-bounded
sets coincide.

Proof. By definition of bounded sets it is not hard to see that for two locally convex
topologies θ1 and θ2 on X satisfying θ1 ⊆ θ2 (that is, θ2 is finer than θ1), we have that
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every θ2-bounded set is also θ1-bounded. Thus, to prove this proposition, it is enough to
show that if S is w(X,X∗)-bounded, then it is τ(X,X∗)-bounded.

Assume that S is w(X,X∗)-bounded and fix V ∈ NX(0, τ(X,X
∗)). Without lose of

generality, we may assume that V is closed and absolutely convex, and so V = Ko for
some K w∗-compact, absolutely convex subset of X∗. Note that V = p−1([0, 1]), where
p : X → R+ is the seminorm given by

p(x) = sup
x∗∈K

|〈x∗, x〉| = sup
x∗∈K

〈x∗, x〉,

where the second equality follows from the symmetry of K. Let us denote by X0 the
quotient space X/Ker(p) and let π0 : X → X0 be the quotient map. Define the functional
‖ · ‖0 : X0 → R+ given by ‖[x]‖0 = p(x) (where [x] denotes the equivalent class of x, for
all x ∈ X). It is not hard to see that ‖ · ‖0 is a norm on X0.

Let us endow X0 with the topology τ‖·‖0 and denote X∗
0 as the associated dual space. We

will prove that π0(S) is bounded in (X0, ‖ · ‖0). First note that for every φ ∈ X∗
0 , the

functional φ ◦ π0 ∈ X∗: Indeed, it is enough to note that |φ ◦ π0| ≤ ‖φ‖0∗p, where ‖ · ‖0∗
is the dual norm on X∗

0 associated to ‖ · ‖0. Then, since S is w(X,X∗)-bounded, there
exists λ > 0 such that S ⊆ λUφ, where Uφ = {x ∈ X : |φ ◦ π0(x)| < 1}. Then,

π0(S) ⊆ λπ0(Uφ) = {[x] ∈ X0 : |φ([x])| < 1}.
This entails, by the arbitrariness of φ, that π0(S) is w(X0, X

∗
0 )-bounded. Then, applying

the Principle of Uniform Boundedness (see, e.g., [16, Ch. 3 - §14]) to π0(S) (as a subset
of X∗∗

0 ), we conclude that there exists M > 0 such that

sup{‖[x]‖0 : [x] ∈ π0(S)} ≤M.

This yields that for every x ∈ S, p(x) = ‖[x]‖0 ≤ M and so, S ⊆ MV . This proves that
S is τ(X,X∗)-bounded, as we wanted to show.

Definition 1.1.13 Let (X, θ) be a locally convex space. We define the Strong topology
on X∗ induced by X, denoted by β(X∗, X) (or simply β, if there is no confusion), as the
locally convex topology induced by the family of seminorms {pB : B θ-bounded set of X},
where, for each B θ-bounded subset of X, pB : X∗ → R is given by

pB(x
∗) = sup

x∈B
|〈x∗, x〉|.

We define the bidual space of (X, θ), (X, θ)∗∗ (or simply X∗∗, if there is no confusion),
as the dual space (X∗, β(X,X∗))∗.

Note that, since the bounded sets for the topologies w(X,X∗), θ and τ(X,X∗) coincide,
the definition of the strong topology β(X∗, X) and the bidual space X∗∗ is not ambiguous.

Also, in general, τ(X∗, X) ( β(X∗, X): Indeed, it is enough to consider a non-reflexive
Banach space (X, ‖ · ‖) and note that the topology β(X∗, X) coincides with the topology
τ‖·‖∗ , where ‖ · ‖∗ is the dual norm on X∗.
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Finally, note that we can endow X∗ with new topologies induced by the bidual space X∗∗:
Namely, the weak topology w(X∗, X∗∗) and the Mackey topology τ(X∗, X∗∗). We have
then the following order of topologies on the dual space X∗:

w∗(X∗, X) ⊆ τ(X∗, X)
︸ ︷︷ ︸

duality 〈X,X∗〉

and w(X∗, X∗∗) ⊆ β(X∗, X) ⊆ τ(X∗, X∗∗)
︸ ︷︷ ︸

duality 〈X∗,X∗∗〉

. (1.2)

We can iterate this process to construct the third dual X3∗, the forth dual X4∗, and so on.
Nevertheless, we won’t need to do so. We will work only until the bidual X∗∗, endowed
with the weak-star topology w∗(X∗, X∗∗) or the Mackey topology τ(X∗, X∗∗). We will
denote the weak-star topology on X∗∗ by w∗∗, in order to remark that it corresponds to
a bidual topology.

1.2 Some Fundamentals of Convex Analysis

In this section we present the fundaments convex analysis, that is, the fundamental prop-
erties of convex functionals defined over a locally convex space (X, θ). This presentation
is based, historically speaking, on the fundamental contributions of J. J. Moreau which
are contained in [34]. We also refer the reader to the books [5], [36], [39] and [51], for
other approaches. Here, we adopt the conventions and (+∞) · 0 = (−∞) · 0 = 0. Recall
that we say that the sum a+ b is well defined for two elements a, b ∈ R if it is not of the
form (+∞) + (−∞) or (−∞) + (+∞). Also, we will use the conventions inf ∅ = +∞ and
sup ∅ = −∞.

In what follows, for a topological space (T, τ) a function f : T → R we will denote by f
τ

or by clτ f the closure of f , that is,

clτ f := sup
{
g : T → R : g τ -lower semicontinuous, g ≤ f

}
.

If there is no confusion, we will write simply f or cl f . Recall that a function f : T → R is
τ -lower semicontinuous (τ -lsc, for short), if its epigraph epi f is (τ × τ0)-closed in T ×R.
Since the supremum of τ -lsc functions is also τ -lsc, we have that clτ f is the largest τ -lsc
function satisfying clτ f ≤ f .

Also, for a function f : T → R we denote its (effective) domain and its epigraph as the
sets

dom f := {t ∈ T : f(t) < +∞} and epi f := {(t, r) ∈ T × R : f(t) ≤ r}.

1.2.1 Convex lower semicontinuous functions

Definition 1.2.1 Let f : X → R be a extended real-valued function. We say that f is
convex if epi f is a convex subset of X × R.
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Whenever f : X → R is proper, it is not hard to verify that f is convex if and only if

∀x, y ∈ X, ∀t ∈ [0, 1], f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), (1.3)

which is the classic definition of convexity for real-valued functions.

Example 1.2.2 (Convex Functions) We present some examples of convex functions that
will be useful in what follows:

(a) Every sublinear function is convex. In particular, seminorms and Minkowski func-
tionals are convex, where the Minkowski functional associated to an absorbing con-
vex set C of a vector space X is given by

ρC : X → [0,+∞[

x 7→ ρC(x) := inf{λ > 0 : x ∈ λC}.

(b) Indicator function: For a subset S ⊆ X we define the indicator function of S as the
function IS : X → R∞ given by

IS(x) :=

{

0 if x ∈ S

+∞ if x /∈ S.

We have that S is a convex set if and only if IS is a convex function.

(c) Let {fi : i ∈ I} be a family of extended real-valued functions over X. If all functions
fi are convex, then supi∈I fi is also convex.

(d) Inf-Convolution: Let f, g : X → R∞ be two proper functions. We define the
(Moreau) inf-convolution of f and g as the extended real-valued function

f�g : X → R

x 7→ (f�g)(x) := inf{f(y) + g(x− y) : y ∈ X}.
Clearly, f�g = g�f . Also, if f and g are both convex, then f�g is convex.

(e) Support functional : Let (X, θ) be a locally convex space with dual space X∗, and
let K be a subset of X∗. We define the support functional of K as the extended
real-valued function σK : X → R given by

σK(x) := sup{〈x∗, x〉 : x∗ ∈ K}.
Regardless the structure of K, σK is always sublinear (and therefore, convex). Fur-
thermore,

σK = σclw∗ (K) = σcow∗
(K).

Note that support functionals also can be defined over X∗ for subsets of X (du-
ality 〈X,X∗〉), over X∗∗ for subsets of X∗, or over X∗ for subsets of X∗∗ (duality
〈X∗, X∗∗〉). We will always use the notation σK , and will specify over which space
is defined, if necessary.



1.2. SOME FUNDAMENTALS OF CONVEX ANALYSIS 43

Observe that the seminorms pK used in Definition 1.1.9(a) are in fact support functions.
Indeed, for K ⊆ X∗ w∗-compact, we have that

pK(·) := sup{|〈x∗, ·〉| : x∗ ∈ K} = σcow∗
(K∪(−K)).

Therefore, the Mackey topology τ(X,X∗) is the induced locally convex topology given by
the family of support functionals σK , where K is an absolutely convex w∗-compact subset
of X∗.

Following the notation introduced in [34], we define the following families if functions:

Γ(X, θ) :=
{
f : X → R : fconvex and θ-lsc

}
(1.4)

Γ0(X, θ) :=
{
f : X → R : fconvex, proper and θ-lsc

}
(1.5)

We will also denote by ω and ω the constant functions ω ≡ ∞ and ω ≡ −∞. We will use
this notation regardless the space over which they are defined.

Definition 1.2.3 (Closed convex hull of functions) Let (X, θ) be a locally convex space
and let f : X → R be any extended real-valued function. We define the θ-closed convex
hull of f as the function

coθ f = sup{g : X → R : g ∈ Γ(X, θ), g ≤ f}.

Clearly, by Example 1.2.2, it is clear that coθ f ∈ Γ(X, θ).

The following proposition characterizes the convex closed hull of a function in terms of
the convex closed hull of its epigraph.

Proposition 1.2.4 Let (X, θ) be a locally convex space and let f : X → R be any extended
real-valued function. We have that

coθ f(x) = inf
{
r ∈ R : (x, r) ∈ coθ×τ0(epi f)

}

In particular, coθ f is the (unique) function in Γ(X, θ) satisfying epi
(
coθ f

)
= coθ×τ0(epi f).

Remark 1.2.5 By Proposition 1.1.2, we know that the family of (θ × τ0)-closed convex
sets of X×R coincides with the family of (w×τ0)-closed convex sets of X×R. Therefore,
using Proposition 1.2.4, we have that for every extended real-valued function f : X → R,

cow f = coθ f = coτ(X,X
∗) f.

This yields also that Γ(X,w) = Γ(X, θ) = Γ(X, τ(X,X∗)) and that Γ0(X,w) = Γ0(X, θ) =
Γ0(X, τ(X,X

∗)). In what follows, for any locally convex topology θ′ inducing the same
duality 〈X,X∗〉, we will denote by co f the θ′-closed convex hull of f and by Γ(X) (resp.
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Γ0(X)) the set of all extended real-valued convex θ′-lsc (resp. convex proper θ′-lsc) func-
tions over X.

Applying the latter observations in the case of dual spaces X∗ we introduce the following
simpler notation: We will write Γ(X∗) and Γ0(X

∗) to denote the families Γ(X∗, β(X∗, X∗∗))
and Γ0(X

∗, β(X∗, X∗∗)), respectively. If θ′ is a locally convex topology on X∗ with
w∗ ⊆ θ′ ⊆ τ(X∗, X), we will write Γ(X∗, w∗) and Γ0(X

∗, w∗) instead of Γ(X∗, θ′) and
Γ0(X

∗, θ′).

Remark 1.2.6 Noting that for every set K of (X, θ) we can write coK = coK
θ
, we

easily deduce from Proposition 1.2.4 that for every convex function f : X → R, we have
that

co f = f
θ
.

Thus, for convex functions f : X → R we can simply write f to denote its closure with
respect to any locally convex topology in between w(X,X∗) and τ(X,X∗).

Proposition 1.2.7 Let f : X → R be a proper convex function. Fix x0 ∈ dom f . The
following assertions are equivalent:

(a) f is θ-τ0-continuous at x0.

(b) f is bounded above in a θ-neighborhood of x0.

(c) f is θ-Lipschitz-continuous near x0, that is, there exists a θ-continuous seminorm
ρ : X → R+, a neighborhood U ∈ NX(x0, θ), and a constant K > 0 such that

|f(x)− f(y)| ≤ Kρ(x− y), ∀x, y ∈ U. (1.6)

(d) f is θ-τ0-continuous at each point of int(dom f) and x0 ∈ int(dom f).

In what follows, for a proper function f : X → R∞ we will denote

Cont[f, θ] := {x ∈ dom f : f is θ-τ0-continuous at x}. (1.7)

If there is no confusion, then we will simply write Cont[f ]. The latter proposition shows
that if f is convex, then

Cont[f, θ] = intθ(dom f).

Nevertheless, even if f is convex, Cont[f, θ] can be empty even if int(dom f) is not:
Consider for example an infinite-dimensional Banach space X and its dual space X∗

endowed with the w∗-topology. Then, the Minkowski functional ρBX∗ : X → R+ is a
seminorm which is not w∗-continuous, since ρ−1

B∗
X
([0, 1]) = BX∗ , which is known to not to

be a w∗-neighborhood of 0 (and then ρBX∗ cannot be w∗-continuous by Lemma 1.1.1).
Noting that int(dom ρBX∗ ) = X∗, this proves our claim.
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Corollary 1.2.8 Let (X, θ) be a locally convex space and f : X → R∞ be a proper convex
function. Then, Cont[f, θ] is nonempty if and only if int(θ×τ0)(epi f) is nonempty.

Definition 1.2.9 (Legendre-Fenchel Conjugate) Let (X, θ) be a locally convex space and
f : X → R be an extended real-valued function. We define the (Legendre-Fenchel) conju-
gate of f as the extended real-valued function f ∗ : X∗ → R given by

f ∗(x∗) := sup{〈x∗, x〉 − f(x) : x ∈ X} = sup{〈x∗, x〉 − f(x) : x ∈ dom f}.
Analogously, we define the biconjugate of f as the extended real-valued function f ∗∗ :
X∗∗ → R given by f ∗∗ = (f ∗)∗.

Note that, by construction, f ∗ ∈ Γ(X∗, w∗) and f ∗∗ ∈ Γ(X∗∗, w∗∗).

Proposition 1.2.10 Let (X, θ) be a locally convex space and f, g : X → R be two extended
real-valued functions. The following assertions hold:

(a) f ∗ ∈ Γ0(X
∗, w∗) ∪ {ω, ω}. In particular, if f 6= ω and if there exist x∗ ∈ X∗ and

c ∈ R such that f ≥ x∗ + c, then f ∗ is proper.

(b) f(x) + f ∗(x∗) ≥ 〈x∗, x〉, for every x ∈ X and every x∗ ∈ X∗.

(c) If f ≤ g, then f ∗ ≥ g∗.

(d) f ∗∗
∣
∣
X
≤ co f ≤ clθ f ≤ f . In particular, f ∗ = (clθ f)

∗ = (co f)∗ = (f ∗∗
∣
∣
X
)∗.

(e) If co f is proper, then

f ∗∗
∣
∣
X
= sup{x∗ + c : x∗ ∈ X∗, c ∈ R such that x∗ + c ≤ f} = co f.

Particularly, if f ∈ Γ0(X), then f ∗∗
∣
∣
X
= f .

(f) For every h ∈ Γ0(X
∗) we have that

(
h∗

∣
∣
X

)∗
= h ⇐⇒ h is w∗-lsc.

Proposition 1.2.11 Let (X, θ) be a locally convex space. The following assertions hold:

(a) For a subset S ⊆ X we have that

(IS)
∗ = σS and (IS)

∗∗ = (σS)
∗ = Icow∗∗

(S).

(b) For two proper extended real-valued functions f, g : X → R, we have that

(f�g)∗ = f ∗ + g∗.

Moreover if co(f�g) is proper, then

(f ∗ + g∗)∗
∣
∣
X
= (co f)�(co g).
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(c) For two functions f, g ∈ Γ0(X) such that Cont[f, θ] ∩ dom g is nonempty, we have
that

(f + g)∗ = f ∗
�g∗.

Proof. Statement (a) is straight-forward following Definition 1.2.9. See [51, Corollary
2.3.5] for (b), and [51, Theorem 2.8.3] for (c).

1.2.2 Moreau-Rockafellar Subdifferential

Before starting with the (Moreau-Rockafellar) subdifferential of an extended real-valued
function, we need to recall the notion of Set-valued operators.

Definition 1.2.12 Let T and S two nonempty sets. We say M is a set-valued operator
from T into S, which is denoted by M : T ⇒S, if for every t ∈ T , M(t) is a (possible
empty) subset of S.

For a set-valued operator M : T ⇒S, we denote its (effective) domain and its graph as
the sets

domM := {t ∈ T : M(t) 6= ∅} and gphM := {(t, s) ∈ T × S : s ∈M(t)}.

We will usually identify the set-valued operator M with its graph gphM , that is, we will
simply write (t, s) ∈ M to denote the inclusion s ∈ M(t). Also, for a second set-valued
operator R : T ⇒S we will write M ⊆ R if gphM ⊆ R (or equivalently, if for every t ∈ T ,
M(t) ⊆ R(t)).

Finally, we denote by M−1 : S⇒T the inverse set-valued operator associated to M , that
is, the set-valued operator given by M−1(s) := {t ∈ T : s ∈M(t)}.

When we work with subdifferentials (as we will see below during this section), we need
some notion of continuity of set-valued operators. Here, we will present only two: Outer
semicontinuity and Upper semicontinuity. For others notions of continuity, we refer the
reader to [2].

Definition 1.2.13 (Outer-semicontinuity) Let (T, τ), (S, σ) be two Hausdorff topological
spaces. A set-valued operator M : T ⇒S is τ -σ-outer semicontinuous (τ -σ-osc, for short)
at a point t0 ∈ T if for each net (ti, si) ∈ M which is τ × σ-convergent in T × S with
ti → t0, we have that

lim
i
si ∈M(t0).

Definition 1.2.14 (Upper-semicontinuity) Let (T, τ), (S, σ) be two Hausdorff topologi-
cal spaces. A set-valued operator M : T ⇒S is τ -σ-upper semicontinuous (τ -σ-usc, for
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short) at a point t0 ∈ T if for every σ-open set U ⊆ S containing M(t0), there exists a
neighborhood V ∈ NT (t0, τ) such that

M(V ) ⊆ U.

If there is no confusion, we will simply say that M is osc (or usc) at some point, without
writing the topologies involved. In general, outer semicontinuity and upper semicontinuity
are not related, that is, no one implies the other. Nevertheless, under some qualification
conditions, they are equivalent. The following propositions can be found in [2, Ch. 6 -
§3].

Recall that a topological space (S, σ) is said to be regular if for every σ-closed set A ⊆ S
and every point s ∈ S \A, there exists two σ-open sets U and V such that A ⊆ U , s ⊆ V
and U ∩ V = ∅.

Proposition 1.2.15 Let (T, τ), (S, σ) be two Hausdorff topological spaces, M : T ⇒S be
a set-valued operator and t0 ∈ T . If (S, σ) is regular and M(t0) is σ-closed, then

M is usc at t0 =⇒ M is osc at t0.

Proposition 1.2.16 Let (T, τ), (S, σ) be two Hausdorff topological spaces, M : T ⇒S be
a set-valued operator and t0 ∈ T . Assume that there exists a neighborhood W0 ∈ NT (t0, τ)
such that cl(M(W0)) is σ-compact. Then,

M is osc at t0 =⇒ M is usc at t0.

Now, let us get back to the locally convex space setting. We present the Moreau subdif-
ferential of a function, which was introduced by Moreau and Rockafellar in the decade of
1960. The Moreau subdifferential is a set-valued operator that generalizes the notion of
derivatives for convex functions. Even though it was first introduced for convex functions,
we will defined it for general (not necessarily convex) ones, since we will use it in section
1.3 in the nonconvex case.

Definition 1.2.17 (Moreau-Rockafellar Subdifferential) Let (X, θ) be a locally convex
space and f : X → R∞ be a proper extended real-valued function. For a point x0 ∈ dom f
we define the (Moreau-Rockafellar) subdifferential of f at x0, denoted by ∂f(x0), as the
set of all functionals x∗ ∈ X∗ satisfying

〈x∗, y − x0〉+ f(x0) ≤ f(y), ∀y ∈ X. (1.8)

Setting ∂f(x) := ∅ for all x ∈ X \ dom f , the induced set-valued operator ∂f : X⇒X∗ is
called the subdifferential of f .

Note that equation (1.8) holds for all y ∈ X if and only if it holds for all y ∈ dom f . The
following propositions present the basic properties of the Moreau subdifferential. In what
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follows, we will always assume that X is endowed with a locally convex topology θ and
that X∗ denotes the dual space of (X, θ).

Proposition 1.2.18 Let f : X → R∞ be a proper function, x ∈ dom f and x∗ ∈ X∗.
Then,

(a) x∗ ∈ ∂f(x)⇔〈x∗, x〉 ≥ f(x) + f ∗(x∗)⇔〈x∗, x〉 = f(x) + f ∗(x∗).

(b) ∂f(x) is a (possible empty) convex w∗-closed subset of X∗.

(c) If ∂f(x) 6= ∅, then co f(x) = f(x) and ∂(co f)(x) = ∂f(x).

(d) If f ∈ Γ0(X), then x∗ ∈ ∂f(x)⇔x ∈ ∂f ∗(x∗).

(e) (Fermat rule) A point x ∈ X is a global minimum of f (i.e., x ∈ argmin f) if and
only if 0 ∈ ∂f(x).

Example 1.2.19 Let A be a convex closed set of (X, θ). The subdifferential of the
indicator function IA is given by

∂IA(x) =

{

{x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0, ∀y ∈ A} if x ∈ A.

∅ otherwise.

When x ∈ A, the set ∂IA(x) is clearly a convex w∗-closed cone of X∗ and it is commonly
known as the normal cone of A at x, also denoted as NA(x).

Now, letK be a nomepty convex w∗-closed set ofX∗. Noting that (σK)∗ = IK , Proposition
1.2.18(a) entails that the subdifferential of σK is given by

∂σK(x) = {x∗ ∈ K : 〈x∗, x〉 = σK(x
∗)}. (1.9)

This equation will play a fundamental role in Chapter 3.

Proposition 1.2.20 Let f : X → R∞ be a proper convex function and x ∈ dom f . If
x ∈ Cont[f, θ], then ∂f(x) is nonempty.

Proposition 1.2.21 Let f : X → R∞ be a proper convex function and let x ∈ Cont[f, θ].
Then, ∂f is locally w∗-bounded near x, which means that there exists a θ-neighborhood
U of zero such that ∂f(x + U) is w∗-bounded. Even more, U can be chosen such that
∂f(x + U) is contained in an absolutely convex (convex and balanced) w∗-compact set of
X∗.

Proof. In this proof, the topological notation will refer to the θ topology for X. Since f is
continuous at x, there exists a convex symmetric neighborhood U of zero such that, f is
Lipschitz continuous on x+2U with constant γ > 0. Then, for z ∈ x+U and z∗ ∈ ∂f(z)
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we have that for all h ∈ U ,

|〈z∗, h〉| = max(〈z∗, h〉, 〈z∗,−h〉) ≤ max(|f(z + h)− f(z)|, |f(z − h)− f(z)|) ≤ γρ2U(h).

Then, because ρ2U and |〈z∗, ·〉| are positively homogeneous,

z∗ ∈ B = {x∗ ∈ X∗ | |〈x∗, h〉| ≤ γρ2U(h), ∀h ∈ X},

and so ∂f(x + U) ⊆ B. It is easy to verify that B = (2γ−1U)
o and so, by the Alaoglu-

Bourbaki theorem, B is w∗-compact. From the construction, B is also absolutely convex,
and so the proof is finished.

Proposition 1.2.22 Let f, g : X → R∞ be two proper functions. Then,

(a) For every λ > 0 and every x ∈ X, ∂(λf)(x) = λ∂f(x).

(b) For all x ∈ X, ∂f(x) + ∂g(x) ⊆ ∂(f + g)(x).

(c) If f, g ∈ Γ0(X) and Cont[f, θ] ∩ dom g 6= ∅, then ∂f(x) + ∂g(x) = ∂(f + g)(x).

(d) For x ∈ X and x1, x2 ∈ X satisfying x = x1 + x2, then

(f�g)(x) = f(x1) + g(x2) =⇒ ∂(f�g)(x) = ∂f(x1) ∩ ∂g(x2).

Conversely, if ∂f(x1)∩∂g(x2) 6= ∅, then the inf-convolution at x verifies (f�g)(x) =
f(x1) + g(x2).

Proof. Properties (a) and (b) are straight-forward from Definition 1.2.17. See [51, Theo-
rem 2.8.3] for (c), and [51, Corollary 2.4.7] for (d).

Definition 1.2.23 Let (X, θ) be a locally convex space, f : X → R∞ be a proper extended
real-valued function and ε ≥ 0. For a point x0 ∈ dom f we define the ε-subdifferential of
f at x0, denoted by ∂εf(x0), as the set of all functionals x∗ ∈ X∗ satisfying

〈x∗, y − x0〉+ f(x0) ≤ f(y) + ε, ∀y ∈ X. (1.10)

Setting ∂εf(x) := ∅ for all x ∈ X \ dom f , the induced set-valued operator ∂εf : X⇒X∗

is called the ε-subdifferential of f .

From the latter definition, it is clear that of ε = 0, ∂0f = ∂f . Also, the following
proposition provides some basic properties of the ε-subdifferential.

Proposition 1.2.24 Let f : X → R∞ be a proper extended real-valued function, x ∈
dom f , x∗ ∈ X∗ and ε > 0. We have that
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(a) ∂f(x) =
⋂

δ>0

∂δf(x) and ∂εf(x) =
⋂

δ>ε

f(x).

(b) x∗ ∈ ∂εf(x)⇔ f(x) + f ∗(x∗) ≤ ε+ 〈x∗, x〉⇒x∗ ∈ ∂εf
∗(x∗).

(c) ∂εf(x) is convex w∗-closed set of X∗.

(d) If f ∈ Γ0(X), then ∂εf(x) is nonempty and

x∗ ∈ ∂εf(x) ⇐⇒ x ∈ ∂εf
∗(x∗).

(e) If f ∈ Γ0(X) and x ∈ Cont[f, θ], then ∂εf(x) is w∗-compact.

(f) (Fermat Rule) x is an ε-minimum of f (i.e., f(x) ≤ infX f + ε) if and only if
0 ∈ ∂εf(x).

The relationship between the differentiability of a convex function and the subdifferential
can be formulated in locally convex spaces in terms of the directional derivative. We will
return on this subject in Chapter 3.

Definition 1.2.25 (Directional derivative) Let f : X → R∞ a proper extended real-valued
function and let x ∈ dom f . We say that f is directionally differentiable at x if for every
h ∈ X the limit

f ′(x;h) := lim
tց0

f(x+ th)− f(x)

t

exists in R. The extended real-valued function f ′(x; ·) : X → R is called the directional
derivative of f at x.

Proposition 1.2.26 Let s : X → R∞ be a proper sublinear function. Then, for each
x ∈ X we have that

∂s(x) = {x∗ ∈ X∗ : x∗ ∈ ∂s(0) and 〈x∗, x〉 = s(x)}.

Moreover, if s ∈ Γ0(X) then for each x ∈ X we have that

s(x) = sup{〈x∗, x〉 : x∗ ∈ ∂s(0)} = σ∂s(0)(x).

Proposition 1.2.27 Let f : X → R∞ be a proper convex function and let x ∈ dom f .
Then,

(a) f is directionally differentiable at x and f ′(x; ·) is sublinear. Moreover, f ′(x; ·)
verifies

f ′(x;h) = inf
t>0

f(x+ th)− f(x)

t
, ∀h ∈ X.
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(b) We always have ∂f(x) = ∂(f ′(x; ·))(0). Also, ∂f(x) 6= ∅ if and only if f ′(x; ·) is lsc
at 0. In such a case,

f ′(x; ·)(h) = sup{〈x∗, h〉 : x∗ ∈ ∂f(x)} = σ∂f(x)(h), ∀h ∈ X.

Moreover, if x ∈ Cont[f, θ], then f ′(x; ·) is finite, θ-τ0-continuous and it coincides
with σ∂f(x).

1.3 Integration Formulas and SDPD spaces

We are now able to present the principal results of this chapter (presented in the In-
troduction of Part I), namely, the integration formula for nonconvex functions using the
Moreau-Rockafellar subdifferential in the locally convex space setting. To do so, we will
introduce a suitable notion of epi-pointedness and we will show some results concerning
the subdifferential of continuous functions, which are known to be true in the Banach
space setting but they seem to be new in our context.

1.3.1 Preliminary results on continuous functions

For any function f ∈ Γ0(X, θ), the θ-continuity points play a fundamental role. We
already saw in Propositions 1.2.20, 1.2.21 and 1.2.27, that if x ∈ Cont[f, θ], then ∂f(x) is
nonempty and w∗-compact and

f ′(x; u) = max{〈x∗, u〉 : x∗ ∈ ∂f(x)}, ∀u ∈ X. (1.11)

Also, by Proposition 1.2.7, if Cont[f, θ] is nonempty, then Cont[f, θ] = intθ(dom f). In
view of sections 1.3.2 and 1.3.3, we will study here some results on θ-continuity and
subdifferentiability that are well-known in the Banach space setting.

Recall that a set-valued operator M : X⇒X∗ is monotone provided that

〈x∗1 − x∗2, x1 − x2〉 ≥ 0, ∀(x1, x∗1), (x2, x∗2) ∈M. (1.12)

When in addition there is no different set-valued monotone operator whose graph contains
gphM , one says that M is maximal monotone.

Lemma 1.3.1 Let f ∈ Γ0(X, θ) with D = Cont[f, θ] 6= ∅. Then, for each x ∈ dom f
θ

we
have that

f(x) = lim inf
D∋y→x

f(y).
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Proof. In this proof, the topological notation will refer to the θ topology for X. We know
that for x ∈ dom f ,

f(x) = lim inf
y→x

f(y) = lim inf
dom f∋y→x

f(y).

On the other hand, since Cont[f ] is nonempty, the epigraph of f has nonempty interior
in the θ × τ0 topology, and so

epi f = int(epi f).

Let us consider f
∣
∣
D
. It is direct that int(epi f) ⊆ epi f

∣
∣
D
⊆ epi f , thus epi f

∣
∣
D
= epi f .

So, there exists a net (xi, ri)i∈I ⊆ epi f
∣
∣
D

such that (xi, ri) → (x, f(x)). Thus,

f(x) = lim inf
dom f∋y→x

f(y) ≤ lim inf
D∋y→x

f(y) ≤ lim inf
i∈I

f(xi) ≤ lim inf
i∈I

ri = f(x),

and so f(x) = lim inf
D∋y→x

f(y).

The next lemma is related to maximal monotone operators. The result is well-known
when (X, θ) is a Banach space, and it was proved in general locally convex spaces by
Moreau [34]. We rediscovered it in [18].

Lemma 1.3.2 Let f ∈ Γ0(X, θ) with Cont[f, θ] 6= ∅. Then ∂f is a maximal monotone
operator.

Proof. We follow the proof in [36, Theorem 2.25], where f is assumed to be continuous
in all of X and X is a Banach space. Let (y, y∗) ∈ X × X∗ such that y∗ /∈ ∂f(y). In
order to prove that ∂f is maximal monotone, it is sufficient to show that there exists some
(x, x∗) ∈ ∂f such that

〈x∗ − y∗, x− y〉 < 0.

Without loss of generality, we can suppose that (y, y∗) = (0, 0). If not, we can replace f
with the function g ∈ Γ0(X, θ) given by g(x) = f(x+ y)− 〈y∗, y〉 and it is easily verified
that

∂g(x) = ∂f(x+ y)− y∗, ∀x ∈ X.

Since 0 /∈ ∂f(0), we know that 0 is not a global minimum of f . Then, there exists
x ∈ dom f such that f(x) < f(0). This and Lemma 1.3.1 guarantee that there exists
x1 ∈ Cont[f ] such that f(x1) < f(0). Consider now the function h : [0, 1] ⊂ R → R given
by h(t) = f(tx1). For λ ∈ (0, 1) we have that

h′(λ; 1) = lim
tց0

h(λ+ t)− h(λ)

t

= lim
tց0

f(λx1 + tx1)− f(λx1)

t
= f ′(λx1; x1).
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Then, because h(1) = f(x1) < f(0) = h(0), there exists some t1 ∈ (0, 1) such that
h′(t1; 1) < 0. Fixing x = t1x1 and noting that x ∈ int(dom f) = Cont[f ], we have that

max{〈x∗, x〉 | x∗ ∈ ∂f(x)} = t1f
′(x; x1) < 0,

and hence there is an x∗ ∈ ∂f(x) such that 〈x∗, x〉 ≤ t1f
′(x; x1) < 0, which completes the

proof.

The last interesting property of the subdifferential of a proper convex function f is its
outer-semicontinuity at continuity points of f .

Proposition 1.3.3 Let f : X → R∞ be a proper convex function with Cont[f, τ(X,X∗)] 6=
∅. Then ∂f is τ(X,X∗)-w∗-outer semicontinuous at each point of Cont[f, τ(X,X∗)].

Proof. In this proof, the topological notation will refer to the Mackey topology τ(X,X∗)
for X and the w∗-topology for X∗. Fix x ∈ Cont[f ] and let (xi, x

∗
i )i∈I ⊆ ∂f be a

convergent net with limit (x, x∗) ∈ X × X∗. Applying Proposition 1.2.21, there exists
an open neighborhood V of x such that ∂f(V ) is contained in an absolutely convex w∗-
compact set K of X∗. Thus, there exists an i0 ∈ I such that for all i ≥ i0, xi ∈ V , and so
(x∗i )i≥i0 ⊆ K. Now, fix y ∈ X. We have that

〈x∗i , y − xi〉 = 〈x∗i , y − x〉+ 〈x∗i , x− xi〉 ≤ 〈x∗i , y − x〉+ sup
z∗∈K

〈z∗, x− xi〉.

It is clear that 〈x∗i , y − x〉 → 〈x∗, y − x〉. Also, since (xi − x)i≥i0 is convergent to zero,
by definition of the Mackey topology (see Remark 1.1.10), it converges to zero uniformly
over absolutely convex w∗-compact sets of X∗. In particular, we have that

lim
i≥i0

sup
z∗∈K

〈z∗, xi − x〉 = 0.

Then, provided f is continuous at x, we have that

0 ≤ f(y)− f(xi)− 〈x∗i , y − xi〉 → f(y)− f(x)− 〈x∗, y − x〉,

and so f(x) + 〈x∗, y − x〉 ≤ f(y). Since y is arbitrary, x∗ ∈ ∂f(x). This finishes the
proof.

Remark 1.3.4 The above Proposition replaces the well-known norm-w∗-upper semicon-
tinuity property of ∂f , when X is a Banach space (see, e.g., [36, Proposition 2.5]). In
fact, combining Propositions 1.2.21 and 1.3.3 we can derive that ∂f is also τ(X,X∗)-w∗-
upper semicontinuous at each point of Cont[f, τ(X,X∗)], since ∂f meets the hypothesis
of Proposition 1.2.16. Even though we won’t use it directly, this last result is worth
mentioning, since upper-semicontinuity has been an extremely useful property of the sub-
differential in the development of convex analysis. Here, the use of Mackey topology
τ(X,X∗) is fundamental.
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This property can also be found in [34], and we also rediscovered it in [18]. Moreau
proved directly the upper-semicontinuity, while we proved first the outer-semicontinuity
and derived the upper-semicontinuity by the local w∗-compactness of the subdifferential.

1.3.2 Main Results: SDPD functions and Integration Theorem

The first concept we need is an appropriate extension of the notion of epi-pointedness:

Definition 1.3.5 (τ -epi-pointedness) Let τ be a locally convex topology on X∗ finer than
the w∗-topology. A function over X with values in R∞ is said to be τ -epi-pointed if the
set of τ -continuity points of its conjugate is nonempty.

Outside the RNP setting, epi-pointedness and lower semicontinuity are not enough to
ensure the nonemptyness of the subdifferential, and therefore it is not possible to perform
any type of integration as we want to, having only these hypothesis.

Proposition 1.3.6 Let X be a Banach space which lacks the RNP. Then there exists
an epi-pointed lower semicontinuous function f : X → R∞ such that ∂f(x) = ∅, for all
x ∈ X.

Proof. Since X is a space lacking the RNP, then, X × R also lacks the RNP. Applying
[9, Theorem 3.7.8], there exists an equivalent norm p over X × R and a closed set D ⊆
int

(
B(X×R,p)

)
(where B(X×R,p) denotes the unit ball in X × R given by p), such that

B(X×R,p) = co(D).

Let us consider the set E = {(x, λ) : ∃α ≤ λ, (x, α) ∈ D}. Evidently, E is the epigraph
of the function

f : X → R∞

x 7→ inf{t ∈ R : (x, t) ∈ E}.
We claim that f is the function that we are looking for. First, we show the epi-pointedness.
Note that, since co(D) = B(X×R,p), we have

co(E) = {(x, λ) : ∃α ≤ λ, p(x, α) ≤ 1},
and so co f is given by

co f(x) = inf{t ∈ R : p(x, t) ≤ 1}.
Then we have that

f ∗(x∗) = sup
x∈X

{〈x∗, x〉 − inf{t ∈ R : p(x, t) ≤ 1}}

= sup
(x,t)∈X×R

{

〈x∗, x〉 −
(

t+ IB(X×R,p)
(x, t)

)}

= p∗(x
∗,−1),
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where p∗ denotes the dual norm on X∗ × R induced by p. We see that f ∗ is continuous
and real-valued, which proves that f is epi-pointed. Let us suppose now, by contradiction,
that f is not lower semicontinuous. Then, there exists a sequence (xn) ∈ dom f converging
to some point x ∈ X such that

t̄ = lim inf f(xn) < f(x).

We may assume that (f(xn)) is converging to t̄. Since (xn) ⊂ dom f , we have that
(xn, f(xn)) ⊂ D and (x, t̄) = lim(xn, f(xn)) ∈ D. Then we have that

f(x) = inf{t ∈ R : ∃α ≤ t, (x, α) ∈ D} ≤ t̄ < f(x),

which is clearly a contradiction. It only remains to verify the emptyness of ∂f(x), for
x ∈ dom f . Let x ∈ dom f . Since (x, f(x)) ∈ D, (x, co f(x)) ∈ S(X×R,p) (where S(X×R,p)

denotes the unit sphere in X × R given by p) and D ∩ S(X×R,p) = ∅, we have that
co f(x) < f(x), and so ∂f(x) = ∅.

The next definition provides the sufficient conditions needed to perform integration of a
function using the same techniques applied in [17], as it will be shown in Theorem 1.3.12.

Definition 1.3.7 (SDPD function) We say that a function f : X → R∞ is Subdiffer-
ential Dense Primal Determined (SDPD) if it is τ(X∗, X∗∗)-epi-pointed and the set of
functionals
x∗ ∈ Cont[f ∗, τ(X∗, X∗∗)] which satisfy the equality

∂f ∗(x∗) = cow
∗∗ [

(∂f)−1(x∗)
]

(1.13)

is τ(X∗, X∗∗)-dense in Cont[f ∗, τ(X∗, X∗∗)].

The choice of the Mackey topology is crucial for three reasons: First, we have more epi-
pointed functions; Second, in the Banach spaces setting, the Mackey topology τ(X∗, X∗∗)
coincides with the norm topology in X∗; And finally, the subdifferential of any conjugate
function is τ(X∗, X∗∗)-w∗∗-outer semicontinuous at each point of τ(X∗, X∗∗)-continuity,
according to Proposition 1.3.3. This final property will be a key to prove the integration
theorem. The problem with this choice is that the density of the functionals which satisfy
equality (1.13) is harder: We will need the equation to hold at more points.

Lemma 1.3.8 Let f, h ∈ Γ0(X, θ), both having at least one point of τ(X,X∗)-continuity
and satisfying the following two conditions:

1. D := Cont[f, τ(X,X∗)] = Cont[h, τ(X,X∗)].

2. ∂f(x) ⊆ ∂h(x), for all x ∈ D.

Then f and h are equal up to an additive constant.
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Proof. In this proof, the topological notation will refer to the Mackey topology τ(X,X∗)
for X. Without loss of generality, we may suppose that 0 ∈ D. Fix then x ∈ D and define
the functions ϕf , ϕh : R → R∞ given by

ϕf (t) = f(tx) and ϕh(t) = h(tx).

It is clear that ϕf , ϕh ∈ Γ0(R) and that both are continuous in [0, 1]. Defining the linear
continuous operator A : R → X given by A(t) = tx, we have that ϕf = f ◦ A and
ϕh = h ◦ A. Since 0 ∈ D, the subdifferential chain rule holds and then for all t ∈ [0, 1],

∂ϕf (t) = 〈∂f(tx), x〉 ⊆ 〈∂h(tx), x〉 = ∂ϕh(t).

Then, again because of the continuity of ϕf and ϕh, the subdifferential sum rule holds
and then, for all t ∈ R,

∂
(
ϕf + I[0,1]

)
(t) = ∂ϕf (t) + ∂I[0,1](t)

⊆ ∂ϕh(t) + ∂I[0,1](t)

= ∂
(
ϕh + I[0,1]

)
(t).

Thus, by the classical results of integration in real analysis, we conclude that ϕf and ϕh
are equal in the interval [0, 1] up to an additive constant. In particular,

f(x)− f(0) = ϕf (1)− ϕf (0) = ϕh(1)− ϕh(0) = h(x)− h(0).

Fixing c = f(0) − h(0), we have f(x) = h(x) + c for all x ∈ D. To finish the proof,
consider x ∈ D

(
= dom f = domh

)
. Applying Lemma 1.3.2 we obtain

f(x) = lim inf
y→x

f(y)

= lim inf
D∋y→x

f(y) = lim inf
D∋y→x

h(x) + c

= lim inf
y→x

h(y) + c = h(x) + c.

Noting that the equality is trivial at points x ∈ X \D, the proof is concluded.

Lemma 1.3.9 Let f, g ∈ Γ0(X, θ) and V ⊆ Cont[f, τ(X,X∗)] ∩ Cont[g, τ(X,X∗)] be a
nonempty τ(X,X∗)-open set. If there exists a τ(X,X∗)-dense subset D ⊆ V for which

∂f(x) ⊆ ∂g(x), for all x ∈ D,

then ∂f(x) ⊆ ∂g(x), for all x ∈ V .

Proof. In this proof, the topological notation will refer to the Mackey topology τ(X,X∗)
for X. Let us suppose that there exist x ∈ V and x∗ ∈ X∗ such that x∗ ∈ ∂f(x) \ ∂g(x).
Since ∂g(x) is w∗-closed and nonempty, we can apply the separation theorem with the
w∗-topology on X∗ to obtain z ∈ X \ {0} and α ∈ R such that

〈x∗, z〉 < α < 〈u∗, z〉, for all u∗ ∈ ∂g(x).
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Consider then the w∗-open set W = {u∗ ∈ X∗ : 〈u∗, z〉 > α}, which contains ∂g(x), and
the sequence (zn) ⊆ X given by

zn = x− 1

n
z.

Without loss of generality, we may assume that (zn) ⊆ V . We will show first that there
exists an n0 ∈ N such that ∂g(zn0) ⊆ W . If not, we choose z∗n ∈ ∂g(zn)\W for each n ∈ N.
Since ∂g is locally w∗-bounded in V (see Proposition 1.2.21), it is direct that {z∗n : n ∈ N}
is a w∗-bounded set, and so (z∗n) has a w∗-convergent subnet (z∗ϕ(i))i∈I . Since (zn) converges
to x, so does (zϕ(i))i∈I . Thus, from the τ(X,X∗)-w∗-outer semicontinuity of ∂g at x (see
Proposition 1.3.3), we have that

w∗- lim z∗ϕ(i) ∈ ∂g(x) ⊆ W,

which is clearly a contradiction. Fix then y = zn0 such that ∂g(y) ⊆ W . Because of
the density of D, there exists a net (yi) ⊆ D converging to y and a net (y∗i ) ⊆ X∗ with
y∗i ∈ ∂f(yi). By Proposition 1.2.21 again, we can assume that (y∗i )i∈I is included in a w∗-
compact set of X∗. In particular, (y∗i )i∈I has a w∗-convergent subnet, that we will continue
denoting by (y∗i )i∈I . We have then (yi, y

∗
i ) ∈ ∂f ∩ ∂g and since both subdifferentials are

τ(X,X∗)-w∗-outer semicontinuous at y, we deduce

y∗ = w∗- lim y∗i ∈ ∂f(y) ∩ ∂g(y).

Then, y∗ ∈ W and

〈x∗ − y∗, x− y〉 = 1

n0

〈x∗ − y∗, z〉 < 0,

which is a contradiction with the monotonicity of ∂f .

Lemma 1.3.10 Let (T, τ) be a Hausdorff topological space, f : T → R∞ be a proper
function and V ⊆ dom f be a τ -open set. If there exists a τ -dense subset D ⊆ V for
which

lim sup
D∋s→t

f(s) = f(t), ∀t ∈ V,

then f is τ -upper semicontinuous in V .

Proof. Let us fix t̄ ∈ V and a net (ti)i∈I ⊆ T converging to t̄. Without loss of generality,
(ti)i∈I ⊆ V . Then, for each i ∈ I, there exists a net (ti,j)j∈J(i) ⊆ D converging to ti with

lim sup
j

f(ti,j) = f(ti).

Fix ε > 0 and consider the set of indexes Λ given by the tuples (i, j,W ) such that

1. j ∈ J(i) and W is an open set with t̄ ∈ W ⊆ V .

2. ti,j ∈ W .
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3. f(ti,j) ≥ f(ti)− ε.

Consider the following preorder in Λ: (i1, j1,W1) ≺ (i2, j2,W2) if i1 ≤ i2 and W1 ⊇ W2,
in the case that i1 6= i2, or if j1 ≤ j2 and W1 ⊇ W2, in the case that i1 = i2.

We claim that the net (tα)α∈Λ, where t(i,j,W ) := ti,j for each (i, j,W ) ∈ Λ, converges to t̄.
Let W be an open set with t̄ ∈ W ⊆ V . Since ti → t̄, there exists i0 ∈ I such that, for
each i ≥ i0, ti ∈ W . In particular, ti0 ∈ W and, since W is an open set, we have that
W ∈ N (ti0). Then, provided

lim sup
j∈J(i0)

f(ti0,j) = f(ti0),

there exists j0 ∈ J(i0) such that ti0,j0 ∈ W and f(ti0,j0) ≥ f(ti0)− ε. Let α0 = (i0, j0,W )
which, by construction, belongs to Λ. For each α = (i′, j′,W ′) ∈ Λ such that α0 ≺ α,
we get that tα ∈ W ′ ⊆ W , and so, the net (tα)α∈Λ is eventually in W . Since W is an
arbitrary open neighborhood of t̄, we conclude that (tα)α∈Λ converges to t̄, as we claimed.
In particular, we have that

lim sup
α

f(tα) ≤ lim sup
D∋t→t̄

f(t) = f(t̄).

Also, noting that lim sup
α

f(tα) ≥ lim sup
i

f(ti)− ε we deduce

lim sup
i

f(ti)− ε ≤ f(t̄).

Thus, because ε is arbitrary, we conclude that lim sup
i

f(ti) ≤ f(t̄), which finishes the

proof.

Note that Lemma 1.3.10 remains true if we replace upper semicontinuity by lower semi-
continuity (and lim sup by lim inf): Just apply the same proof to −f instead of f . Thus,
it also remains true if we replace upper semicontinuity by continuity (and lim sup by lim).

Proposition 1.3.11 Let f : X → R∞ be an SDPD function and g : X → R∞ be any
function satisfying

∂f(x) ⊆ ∂g(x), ∀x ∈ X.

Then, Cont[f ∗, τ(X∗, X∗∗)] ⊆ Cont[g∗, τ(X∗, X∗∗)].

Proof. Endow X∗ with the Mackey topology τ(X∗, X∗∗). Since f is SDPD, there exists
a dense subset D ⊆ Cont[f ∗] such that the equality (1.13) holds for each x∗ ∈ D. In
particular, we have that for each x∗ ∈ D

∂f ∗(x∗) ⊆ cow
∗∗ [

(∂f)−1(x∗)
]
⊆ cow

∗∗ [
(∂g)−1(x∗)

]
⊆ ∂g∗(x∗).
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Fix z∗ ∈ Cont[f ∗] and let (z∗α) ⊆ D be a net converging to z∗. Consider (zα) ⊆ X such
that zα ∈ X ∩ ∂f ∗(z∗α). Since f ∗ is continuous at z∗, we can assume that (zα) is bounded
(see Proposition 1.2.21) and so there exist z∗∗ ∈ X∗∗ and a subnet (zϕ(i))i∈I such that
zϕ(i)⇀

w∗∗
z∗∗. Since zϕ(i) ∈ X ∩ ∂g∗(z∗ϕ(i)) we have that for all y∗ ∈ X∗

〈zϕ(i), y∗ − z∗ϕ(i)〉+ g∗(z∗ϕ(i)) ≤ g∗(y∗).

Define K = {−zϕ(i), zϕ(i) : i ∈ I}, which is a bounded set. Since (zϕ(i)) w
∗∗-converges to

z∗∗ and (z∗ϕ(i)) converges to z∗, we have that

〈zϕ(i), y∗ − z∗〉 → 〈z∗∗, y∗ − z∗〉

|〈zϕ(i), z∗ − z∗ϕ(i)〉| ≤ sup
z∈K

〈z, z∗ − z∗α〉 → 0.

Thus, we deduce

〈zϕ(i), y∗ − z∗ϕ(i)〉 = 〈zϕ(i), y∗ − z∗〉+ 〈zϕ(i), z∗ − zϕ(i)〉 → 〈z∗∗, y∗ − z∗〉.

Finally, we have that

〈z∗∗, y∗ − z∗〉+ g∗(z∗) ≤ 〈z∗∗, y∗ − z∗〉+ lim inf
i

g∗(z∗ϕ(i))

= lim inf
i

〈zϕ(i), y∗ − z∗ϕ(i)〉+ lim inf
i

g∗(z∗ϕ(i))

≤ lim inf
i

[〈zϕ(i), y∗ − z∗ϕ(i)〉+ g∗(z∗ϕ(i))]

≤ g∗(y∗).

Then z∗∗ ∈ ∂g∗(z∗) and so, z∗ ∈ dom ∂g∗ ⊆ dom g∗. Furthermore, evaluating the last
inequality in y∗ = z∗, we deduce that lim infi g

∗(z∗ϕ(i)) = g∗(z∗), and so there exists a
second subnet (z∗ψ(j))j∈J such that g∗(z∗ψ(j)) → g∗(z∗). Since (z∗α) was an arbitrary net in
D converging to z∗, we have that

lim
D∋y∗→z∗

g∗(y∗) = g∗(z∗).

The conclusion follows directly from Lemma 1.3.10.

We can now state and prove our integration theorem.

Theorem 1.3.12 Let f : X → R∞ be an SDPD function and g : X → R∞ be any
function satisfying the following condition:

∂f(x) ⊆ ∂g(x), ∀x ∈ X.

Then there exists a constant c ∈ R such that

co f = (co g)�σdom f∗ + c.

If, in addition, dom g∗ ⊆ dom f ∗, then co f and co g are equal up to an additive constant.
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Proof. In this proof, the topological notation will refer to the Mackey topology τ(X∗, X∗∗)
for X∗. Without loss of generality, we may assume g ∈ Γ0(X, θ) (due to the trivial
inclusion ∂g ⊆ ∂(co g)). Because of the inclusion ∂f(X) ⊆ dom f ∗, it is clear that

∂f(x) ⊆ ∂g(x) ∩ dom f ∗, ∀x ∈ X.

Applying Proposition 1.2.22, we have that for all x ∈ X with ∂f(x) 6= ∅,

∂f(x) ⊆ ∂g(x) ∩ ∂σdom f∗(0) = ∂(g�σdom f∗)(x).

Defining h = g�σdom f∗ , the inclusion ∂f(x) ⊆ ∂h(x) holds for all x ∈ X, and so
Cont[f ∗] ⊆ Cont[h∗] (see Proposition 1.3.11). On the other hand, since int(dom f ∗) =
int

(
dom f ∗

)
, the equality h∗ = g∗ + Idom f∗ provides the inclusion

Cont[h∗] = Cont[g∗] ∩ Cont[f ∗] ⊆ Cont[f ∗],

which implies that Cont[f ∗] = Cont[h∗]. Let D be the dense subset of Cont[f ∗] given in
the definition of SDPD functions. We have that for all x∗ ∈ D,

∂f ∗(x∗) = cow
∗∗ [

(∂f)−1(x∗)
]
⊆ cow

∗∗ [
(∂h)−1(x∗)

]
⊆ ∂h∗(x∗),

and so, applying Lemma 1.3.9, we have that ∂f ∗(x∗) ⊆ ∂h∗(x∗), for all x∗ ∈ Cont[f ∗].
Now, all the hypotheses of Lemma 1.3.8 hold and so there exists a constant c ∈ R such
that f ∗ = h∗ − c. Finally,

co f = f ∗∗
∣
∣
X
= h∗∗

∣
∣
X
+ c = g�σdom f∗ + c,

which finishes the first part of the proof. For the second part, note that if dom g∗ ⊆
dom f ∗, then

h∗ = g∗ + Idom f∗ = g∗,

and so h∗∗
∣
∣
X

= g∗∗
∣
∣
X

= g, according to the fact that g∗ is proper. The conclusion is
direct.

1.3.3 Examples and SDPD spaces

This section gives some examples of certain classes of functions that are SDPD, and shows
that the integrability property has a component that can be written as a property from
the space where these functions are defined.

The first class involves the spaces with the Radon-Nikodým property (Radon-Nikodým
spaces). Recall that a Banach space X is known to have the Radon-Nikodým property
(RNP, for short) if and only if each norm-epi-pointed function f : X → R∞ satisfies that
its conjugate f ∗ : X∗ → R∞ is Fréchet-differentiable in a dense set of Cont[f ∗].
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Proposition 1.3.13 Let X be a Banach space with the RNP. Then every norm-epi-
pointed and norm-lsc function on X is SDPD.

Proof. Let f : X → R be a norm-epi-pointed and norm-lsc function. In [17, Proposition
6], it is proved that if f ∗ is Fréchet-differentiable at x∗ ∈ X∗, then

∂f ∗(x∗) = (∂f)−1(x∗).

In particular, f satisfies the equation (1.13) at each functional x∗ ∈ X∗ where f ∗ is
Fréchet-differentiable. Thus f is SDPD, since the set of point of Fréchet-differentiability
of f ∗ is a dense subset of int(dom f ∗) and that the Mackey topology τ(X∗, X∗∗) on X∗

coincides with the norm topology on X∗.

Recall that, for a nonempty set K ⊆ X, ext[K] denotes the set of extreme points of K,
and for two points x, y ∈ X, [x, y] denotes the convex segment between x and y, that is,

[x, y] = {tx+ (1− t)y : t ∈ [0, 1]}.

Recall also that a locally convex space X is semi-reflexive if (X∗, β(X∗, X))∗ = X, or
equivalently, if the topologies τ(X∗, X) and β(X∗, X) coincide in X∗.

We will show in Proposition 1.3.15 below that, in semi-reflexive spaces, w-lower semicon-
tinuity is a sufficient condition to get SDPD function. To do so, we will need the following
known lemma (which can be found in [5, Lemma 2.7.1]):

Lemma 1.3.14 Let (X, θ) be a locally convex space and let C be a nonempty convex set
of X. Let x∗ ∈ X∗ be such that σC(x∗) ∈ R and consider the hyperplane

H = {x ∈ X : 〈x∗, x〉 = σC(x
∗)}.

Then, the set of extreme points ext(C ∩H) is included in ext(C).

Proof. Let x ∈ ext(C ∩H) and suppose that there exists two points x1, x2 ∈ C such that
x = 1

2
(x1 + x2). We have that since x ∈ H, we have that

σC(x
∗) = 〈x∗, x〉 = 1

2
〈x∗, x1〉+ 1

2
〈x∗, x2〉,

and so, since 〈x∗, x1〉 ≤ σC(x
∗) and 〈x∗, x2〉 ≤ σC(x

∗), necessarily 〈x∗, x1〉 = 〈x∗, x2〉 =
σC(x

∗).

Thus, x1, x2 ∈ C ∩ H and since x ∈ ext(C ∩ H) we conclude that x1 = x2 = x. This
entails that x ∈ ext(C), which proves the desire inclusion.

Proposition 1.3.15 Let X be a semi-reflexive locally convex space. Then every τ(X∗, X)-
epi-pointed and w-lower semicontinuous function on X is SDPD.
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Proof. In this proof, the topological notation will refer to the w-topology for X and
the Mackey topology due to the primal, τ(X∗, X), for X∗. Because X is semi-reflexive,
τ(X∗, X) is the same as the Mackey topology over X∗ due to the bidual. Also, at each
functional x∗ ∈ Cont[f ∗], the subdifferential ∂f ∗(x∗) is a nonempty convex w-compact
subset of X. Thus, by the Krein-Milman theorem (see Theorem 1.1.4) for each x∗ ∈
Cont[f ∗],

∂f ∗(x∗) = co [ext[∂f ∗(x∗)]] .

Therefore, it is sufficient to prove that for any functional x∗ ∈ Cont[f ∗],

ext(∂f ∗(x∗)) ⊆ (∂f)−1(x∗). (1.14)

Let us consider then a functional x∗ ∈ Cont[f ∗] and the function σepi f ( = (Ico(epi f))
∗) on

X∗ × R (endowed with the product topology τ(X∗, X)× τ0). For α > 0 we have that

σepi f (x
∗,−α) = sup {〈x∗, x〉 − αf(x) | x ∈ dom f}

= α sup
{
〈α−1x∗, x〉 − f(x) | x ∈ dom f

}

= αf ∗(α−1x∗).

Then, because f ∗ is continuous at x∗, σepi f is continuous at (x∗,−1). In particular, for
each ε > 0, ∂εσepi f (x∗,−1) is a nonempty, convex and w× τ0-compact set. Let us now fix
an ε > 0 and define the set

C := ∂εσepi f (x
∗,−1).

Because ∂σepi f (x∗,−1) ⊆ C we have that ∂σC(x∗,−1) ≡ ∂σepi f (x
∗,−1). Also,

C = {(x, λ) ∈ X × R | 〈x∗, x〉 − λ ≥ σepi f (x
∗,−1) + Ico(epi f)(x, λ)− ε}

= co(epi f) ∩ {(x, λ) ∈ X × R | 〈x∗, x〉 − λ ≥ σepi f (x
∗,−1)− ε}.

Since ext[co(epi f)] ∩ C ⊆ C, by Lemma 1.3.14, we have that

ext [∂σepi f (x
∗,−1)] ⊆ ext[co(epi f)] ∩ C ⊆ ext(C).

Consider now the set

H = co(epi f) ∩ {(x, λ) ∈ X × R | 〈x∗, x〉 − λ = σepi f (x
∗,−1)− ε}.

It is clear that co(H∪[C∩epi f ]) ⊆ C. For the reverse inclusion, let us consider (x, λ) ∈ C.
Because C ⊆ co(epi f), there exists a net (xi, λi)i∈Λ in co(epi f) converging to (x, λ). We
have two cases: First, 〈x∗, x〉 − λ = σepi f (x

∗,−1) − ε which means that (x, λ) ∈ H ⊆
co(H ∪ [C ∩ epi f ]). Second, 〈x∗, x〉 − λ > σepi f (x

∗,−1) − ε. In such a case, there exists
i0 ∈ Λ, such that,

〈x∗, xi〉 − λi > σepi f (x
∗,−1)− ε, ∀i ≥ i0.

In particular, (xi, λi)i≥i0 is contained in C ∩ co(epi f). Note that, for each i ≥ i0, we can
find (x1i , λ

1
i ), (x

2
i , λ

2
i ) ∈ co(epi f) and ti ∈ [0, 1] such that
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• (x1i , λ
1
i ) ∈ co(C ∩ epi f), which implies that 〈x∗, x1i 〉 − λ1i ≥ σepi f (x

1
i , λ

1
i )− ε.

• (x2i , λ
2
i ) ∈ co(epi f \ C), which implies that 〈x∗, x2i 〉 − λ2i ≤ σepi f (x

2
i , λ

2
i )− ε.

• (xi, λi) = ti(x
1
i , λ

1
i ) + (1− ti)(x

2
i , λ

2
i ).

Then, it is direct from the first two conditions that we can choose a point (x3i , λ
3
i ) ∈

[(x1i , λ
1
i ), (x

2
i , λ

2
i )] ∩H, and because (xi, λi) ∈ C for all i ≥ i0, we know that

(xi, λi) ∈ [(x1i , λ
1
i ), (x

3
i , λ

3
i )] ⊆ co(H ∪ [C ∩ epi f ]).

Finally, (x, λ) ∈ co(H∪ [C∩epi f ]), concluding that co(H∪ [C∩epi f ]) = C. Applying the
Milman theorem (see [23, Theorem 3.66]), provided that H and C∩epi f are w×τ0-closed
(and thus their union) and the trivial fact that ∂σepi f (x∗,−1) ∩H = ∅, we have that

ext [∂σepi f (x
∗,−1)] ⊆ epi f. (1.15)

To conclude, let us recall three known facts:

(i) (x, λ) ∈ ∂σepi f (x
∗,−1) =⇒ λ = co f(x).

(ii) x ∈ ∂f ∗(x∗) if and only if (x, co f(x)) ∈ ∂σepi f (x
∗,−1).

(iii) x ∈ (∂f)−1(x∗) if and only if x ∈ ∂f ∗(x∗) and f(x) = co f(x).

Take now x ∈ ext(∂f ∗(x∗)). We have that (x, co f(x)) ∈ ext[∂σepi f (x
∗,−1)]. If not, due

to (i), there would be two distinct points (x1, co f(x1)), (x2, co f(x2)) in ∂σepi f (x
∗,−1)

and a real number t ∈ (0, 1) such that

(x, co f(x)) = t(x1, co f(x1)) + (1− t)(x2, co f(x2)).

In particular, x1 6= x2 and x = tx1+(1−t)x2, and because of (ii), x1, x2 ∈ ∂f ∗(x∗), which is
a contradiction. Then, applying the inclusion (1.15), we have that (x, co f(x)) ∈ epi f and
so co f(x) = f(x). Finally, because of (iii), x ∈ (∂f)−1(x∗) , which proves the inclusion
(1.14), finishing the proof.

What do the semi-reflexive spaces and the normed spaces with the Radon-Nikodým prop-
erty have in common that allow the previous functions to be SDPD? It is not easy to give
an answer, but clearly it is related to the subdifferential of the conjugate functions. The
following small characterization helps us to understand this situation better:

Proposition 1.3.16 For a function f : X → R, a functional x∗ ∈ X∗ satisfies the
equality (1.13) if and only if the following two conditions hold:

(i) X ∩ ∂f ∗(x∗) = co [(∂f)−1(x∗)].
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(ii) ∂f ∗(x∗) = X ∩ ∂f ∗(x∗)
w∗∗

.

In particular, a τ(X∗, X∗∗)-epi-pointed function is SDPD whenever there exists a τ(X∗, X∗∗)-
dense subset D of Cont[f ∗, τ(X∗, X∗∗)] such that every x∗ ∈ D satisfies (i) and (ii).

Proof. The second part of the proposition is direct, so we will show only the first equiva-
lence:

⇐) Assuming (i) and (ii), it is direct that

cow
∗∗

[(∂f)−1(x∗)] = co[(∂f)−1(x∗)]
w∗∗

(i)
= X ∩ ∂f ∗(x∗)

w∗∗

(ii)
= ∂f ∗(x∗).

⇒) Suppose now that x∗ ∈ X∗ satisfies (1.13). Then

X ∩ ∂f ∗(x∗) = X ∩ cow
∗∗

[(∂f)−1(x∗)]

= cow[(∂f)−1(x∗)]

= co[(∂f)−1(x∗)],

so (i) holds. Finally, noting again that

cow
∗∗

[(∂f)−1(x∗)] = co[(∂f)−1(x∗)]
w∗∗

,

the statement (ii) is concluded, according to (1.13) and to (i).

So, the necessary condition that doesn’t depend on the function f but entirely on the
conjugate is that the equation

∂f ∗(x∗) = X ∩ ∂f ∗(x∗)
w∗∗

(1.16)

must hold in a τ(X∗, X∗∗)-dense set of functionals. Motivated by this observation, we
introduce the following definition:

Definition 1.3.17 (SDPD space) We say that a locally convex space X is an SDPD
space if for every function f ∗ ∈ Γ0(X

∗, w∗) with Cont[f ∗, τ(X∗, X∗∗)] nonempty, there
exists a τ(X∗, X∗∗)-dense subset D of Cont[f ∗, τ(X∗, X∗∗)], such that for each x∗ ∈ D,
the equation (1.16) holds.

Note that in an SDPD space, each τ(X∗, X∗∗)-epi-pointed function in Γ0(X) is an SDPD
function, since for each f ∈ Γ0(X) we have that

X ∩ ∂f ∗(x∗) = (∂f)−1(x∗), ∀x∗ ∈ X∗,
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and so the condition (i) in Proposition 1.3.16 always holds. In fact, this is a characteri-
zation: The locally convex space X is an SDPD space if and only if each τ(X∗, X∗∗)-epi-
pointed function in Γ0(X) is an SDPD function.

Now, we establish a second characterization of SDPD spaces as an RNP-like property:

Proposition 1.3.18 Let X be a locally convex space, f ∈ Γ0(X) be a τ(X∗, X∗∗)-epi-
pointed function and x∗ ∈ Cont [f ∗, τ(X∗, X∗∗)]. We have that

∂f ∗(x∗) = X ∩ ∂f ∗(x∗)
w∗∗

⇐⇒ (f ∗)′(x∗, ·) is w∗-lsc.

In particular, X is an SDPD space if and only if for each function f ∈ Γ0(X), the set

D = {x∗ ∈ int (dom f ∗, τ(X∗, X∗∗)) : (f ∗)′(x∗, ·) is w∗-lsc.}

is τ(X∗, X∗∗)-dense in dom f ∗.

Proof. The second part of the proposition is direct from the first part, so we only need
to prove that one. Assume then that f ∈ Γ(X) and x∗ ∈ Cont [f ∗, τ(X∗, X∗∗)]. On one
hand, we know (see comments before equation (1.11)) that

(f ∗)′(x∗, u∗) = sup{〈x∗∗, u∗〉 : x∗∗ ∈ ∂f ∗(x∗)}, ∀u∗ ∈ X∗.

On the other hand, Considering the duality 〈X,X∗〉 and using Proposition 1.2.27, we
have that

(f ∗)′(x∗, ·)w
∗

(u∗) = sup{〈x, u∗〉 : x ∈ X ∩ ∂f ∗(x∗)}, ∀u∗ ∈ X∗.

Therefore,

(f ∗)′(x∗, ·) = (f ∗)′(x∗, ·)w
∗

⇐⇒ σ∂f∗(x∗) = σX∩∂f∗(x∗)

⇐⇒ cow
∗∗

[∂f ∗(x∗)] = cow
∗∗

[X ∩ ∂f ∗(x∗)]

⇐⇒ ∂f ∗(x∗) = X ∩ ∂f ∗(x∗)
w∗∗

,

which finishes the proof.

From the definition of SDPD spaces follows this direct corollary:

Corollary 1.3.19 Suppose that X is an SDPD space. Let f : X → R∞ be a τ(X∗, X∗∗)-
epi-pointed function and define the sets

D1 =
{

x ∈ Cont[f ∗, τ(X∗, X∗∗)] | ∂f ∗(x∗) = X ∩ ∂f ∗(x∗)
w∗∗}

.

D2 =
{
x ∈ Cont[f ∗, τ(X∗, X∗∗)] | X ∩ ∂f ∗(x∗) = co

[
(∂f)−1(x∗)

]}
.

Then f is SDPD if and only if D2 ∩D1 is τ(X∗, X∗∗)-dense in D1.



66 CHAPTER 1. INTEGRATION FORMULAS IN LOCALLY CONVEX SPACES



Chapter 2

Convex smooth-like and w∗-smooth-like

properties in Banach spaces

The aim of this chapter and the following one is to study SDPD spaces in the Banach
space setting. As we have seen in Proposition 1.3.18, SDPD property can be regarded as a
sort of “smoothness property”. This chapter is devoted to formalize this idea introducing
the notion of convex smooth-like properties and convex w∗-smooth-like properties.

The development of those concepts have been done under the light of Asplund spaces
theory, widely developed in the literature. For that reason, we give a quick summary
of Fréchet-differentiability of convex functions and Asplund spaces in Sections 2.1 and
2.2, respectively. We will lead the reader to Theorems 2.2.13 and 2.2.15, which fully
established one the most important results in this theory: The duality with the Radon-
Nikodým Property.

Our contribution is contained in Section 2.3, and it will be fundamental to follow what is
developed in Chapter 3.

Notation

In the following, X will be a real Banach space, with dual X∗ and bidual X∗∗. We will
write ‖ · ‖ to denote the norm of X, X∗ and X∗∗ indifferently, and τ‖·‖ to denote the
topology induced by it. Also, we will write w, w∗ and w∗∗ to denote the weak-topology on
X and on X∗, the weak-star topology on X∗, and the weak-star topology on X∗∗ (given
by X∗), respectively.

Recalling that for any normed space X, τ‖·‖ coincides with the Mackey topology τ(X,X∗),
the notation Γ0(X) will always stand for Γ0(X, ‖ · ‖) (see equation (1.5) and Remark
1.2.5).

67
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Whenever we consider an equivalent norm p on X, it will be useful to denote by p∗ the
associated dual norm on X∗, that is

p∗(x
∗) := sup{〈x∗, x〉 : x ∈ X with p(x) ≤ 1}. (2.1)

We will also write ‖ · ‖∗ instead of ‖ · ‖, whenever it is convenient. Also, we will write
B(X,p) and S(X,p) to denote the unit ball and the unit sphere with respect to p, respectively
(and the analogous notation in X∗ for the norm p∗). If the norm is not specified, we will
assume that we are using the initial norm ‖ · ‖.

Recall that an equivalent norm q on the dual space X∗ is a dual norm (that is, q = p∗ for
some equivalent norm p on X) if and only if it is w∗-lower semicontinuous.

In order to reduce notation, for any two Banach spaces X and Y , any subset U of X and
any mapping ϕ : U ⊆ X → Y , we will say that ϕ is F-differentiable at a point u ∈ U if
it is Fréchet-differentiable at u. Analogously, we will say that ϕ is G-differentiable at a
point u if it is Gâteaux-differentiable at u.

Also, we will consider the convention that N is the set of all positive integers, that is,
0 /∈ N.

The rest of the notation is either classic (see, e.g., [16],[5] or [36]) or has been already
presented in the Introduction of Part I and in Chapter 1.

2.1 Differentiability of Convex Functions and Support

functionals

In view of our study of smooth-like properties of convex functions in Section 2.3, we will
recall diverse results related to some useful properties, in the thesis, of convex functions.
The present section is devoted to differentiability properties of convex functions defined
over a Banach space. We first state the following lemma (see, e.g., [36, Proposition 3.3]).

Lemma 2.1.1 Let X be a Banach space and f ∈ Γ0(X). Then, int(dom f) = Cont[f ].

By this lemma, we know that for every function f ∈ Γ0(X) and every point x ∈
int(dom f), we have that f ′(x; ·) is real-valued and continuous. Thus, if f ′(x; ·) is also
linear, then by definition we have that f is G-differentiable at x with ∇f(x) = f ′(x; ·).
Furthermore, applying Proposition 1.2.27 we can state the following proposition:

Proposition 2.1.2 Let f ∈ Γ0(X) and x ∈ int(dom f). The following assertions are
equivalent:

(a) f ′(x; ·) is linear.
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(b) f is G-differentiable at x.

(c) The subdifferential ∂f(x) is a singleton.

(d) There exists a unique functional x∗ ∈ X∗ satisfying 〈x∗, h〉 ≤ f ′(x;h), for all h ∈ X.

In such a case, ∂f(x) = {∇f(x)}.

It is known (see, e.g., [36, Proposition 1.23 and Exercice 1.24]) that the G-differentiability
and F-differentiability of a function f ∈ Γ0(X) at a point x ∈ int(dom f) can be charac-
terized without using the gradient ∇f(x), as follows.

Proposition 2.1.3 Let f ∈ Γ0(X) and x ∈ int(dom f). Then,

(a) f is G-differentiable at x if and only if for every h ∈ X,

lim
tց0

f(x+ th) + f(x− th)− 2f(x)

t
= 0.

(b) f is F-differentiable at x if and only if δ > 0 such that

lim
h→0

f(x+ th) + f(x− th)− 2f(x)

‖h‖ = 0. (2.2)

From this characterization, it is possible to show that the set of points where a function
f ∈ Γ0(X) is a Gδ-subset of int(dom f) (see, e.g., [36, Proposition 1.25]).

Corollary 2.1.4 Let f ∈ Γ0(X). The set G = {x ∈ dom f : f is F-differentiable at x}
is a Gδ (possible empty) subset of int(dom f).

The following theorem (see, e.g., [36, Ch. 2]) characterizes the F-differentiability in terms
of the subdifferential of the function.

Theorem 2.1.5 (Asplund-Rockafellar) Let f ∈ Γ0(X) and x ∈ int(dom f). We have
that f is F-differentiable at x if and only if ∂f : X⇒X∗ is single-valued and τ‖·‖-τ‖·‖-usc
at x.

Concerning conjugate functions in the Banach space setting, the subdifferential has a very
interesting behavior related to support functionals. In the following sections as well as in
chapter 3, we will use this properties, so we will present them now.

Recall that for a nonempty closed convex set K, a nonzero functional x∗ ∈ X∗ is called
support functional of K if x∗ attains its supremum in K at some point, that is, if there
exists x ∈ K such that 〈x∗, x〉 = σK(x

∗), where σK is the support function of the set K
(see Example 1.2.2). In such a case, x is called a support point of K, since it is supported
by x∗. We will denote by S(K) the set of support functionals of K.
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We will show that the set of support functionals of a convex closed set K is dense in
the cone of linear functionals that are bounded above on K. To do so, we will need a
classic theorem called the Brønsted-Rocafellar variational principle [11]. It can be derived
from the fundamental Ekeland variational principle and such a proof can be found, for
example, in [36, Theorem 3.17].

Theorem 2.1.6 (Brønsted-Rockafellar) Let f ∈ Γ0(X). Then, given any point x0 ∈
dom f , any two constants ε, λ > 0 and any linear functional x∗0 ∈ ∂εf(x0), there exists
x ∈ dom f and x∗ ∈ X∗ such that

(a) x∗ ∈ ∂f(x).

(b) ‖x− x0‖ ≤ ε/λ.

(c) ‖x∗ − x∗0‖ ≤ λ.

In particular, dom ∂f is dense in dom f .

Noting that x∗ is a support functional of K if and only if X ∩ ∂σK(x∗) 6= ∅, we can write

S(K) = {x∗ ∈ dom σK : X ∩ ∂σK(x∗) 6= ∅}. (2.3)

Therefore, this notion can be extended to all functions in Γ0(X
∗, w∗). In what follows, we

will say that a linear functional x∗ ∈ X∗ supports a function f ∈ Γ0(X) if X∩∂f ∗(x∗) 6= ∅,
and we will denote the set of support functionals of f as S(f).

Proposition 2.1.7 Let f ∈ Γ0(X).Then the set of support functionals of f

S(f) = {x∗ ∈ dom f ∗ : X ∩ ∂f ∗(x) 6= ∅}

is dense in dom f ∗.

Proof. Fix f ∈ Γ0(X), x∗0 ∈ dom f ∗ and ε > 0. Since ∂εf ∗(x∗0) = X ∩ ∂εf ∗(x∗0)
w∗∗

and
∂εf

∗(x∗0) 6= ∅, we can choose a point x0 ∈ X ∩ ∂εf ∗(x0). Using Proposition 1.2.24 (parts
(b) and (d)), we get that x0 ∈ dom f and x∗0 ∈ ∂εf(x0).

Applying Theorem 2.1.6 with λ = ε, we get that there exists (x, x∗) ∈ ∂f such that
‖x − x0‖ ≤ 1 and ‖x∗ − x∗0‖ ≤ ε. In particular, using Proposition 1.2.18, we get that
x ∈ ∂f ∗(x∗), and so x∗ ∈ S(f). Thus, BX∗(x∗0, ε)∩S(f) 6= ∅, which proves the density by
arbitrariness of ε.

Theorem 2.1.8 (Bishop-Phelps) Let K be a nonempty closed convex set of a Banach
space X. Then,

(a) The set of support points of K is dense in bdK.
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(b) The set of support functionals of K, denoted by S(K), is dense in the cone of all
those functionals which are bounded above on K.

Proof. Part (b) follows directly from Proposition 2.1.7 applied to f = IK . For part (a),
suppose that x0 ∈ bdK and fix ε ∈ ]0, 1[. Choose x1 ∈ X \K with ‖x1 − x0‖ ≤ ε. Using
the Hahn-Banach separation theorem, there exists x∗0 ∈ SX∗ such that σK(x∗0) < 〈x∗0, x1〉.
Thus, for all x ∈ K we can write

〈x∗0, x〉 < 〈x∗0, x1〉 ≤ 〈x∗0, x1 − x0〉+ 〈x∗0, x0〉 ≤ 〈x∗0, x0〉+ ε.

Therefore, 〈x∗0, x− x0〉 ≤ IK(x)− IK(x0) + ε, which entails that x∗ ∈ ∂εIK(x0). Applying
Theorem 2.1.6 with f = IK and λ =

√
ε, there exists x ∈ dom f = K and x∗ ∈ ∂f(x)

such that
‖x0 − x‖ ≤ √

ε and ‖x∗ − x∗0‖ ≤ √
ε < 1.

Since x∗0 ∈ SX∗ , this yields ‖x∗‖ > 0, and so x ∈ bdK, since for every y ∈ int(K), we
easily verify that ∂f(y) = {0}. Since ε > 0 is arbitrary, the proof is complete.

Finally, for a function f ∈ Γ0(X) is such that its conjugate f ∗ is F-differentiable at
some point x∗ ∈ dom f ∗, then the differentiability point x∗ is a support functional of the
function f , as the following proposition states. This proposition can be found in [24,
Lemma 3] and also in [13, Corollary 3.3.4].

Proposition 2.1.9 Let X be a Banach space and f ∈ Γ0(X). If the conjugate function
f ∗ is F-differentiable at a point x∗ ∈ dom f ∗, then ∇f ∗(x∗) ∈ X.

2.2 Asplund spaces and Radon-Nikodým Property

In addition to the properties of differentiability fo convex functions recalled in the previous
section, the present one is focused on some properties of Asplund (resp. Radon-Nikodým)
spaces which will be use later. These properties are our main motivation for the theory
developed in section 2.3.

2.2.1 Asplund Spaces

Definition 2.2.1 (Asplund space) A Banach space X is said to be an Asplund space if
for every function f ∈ Γ0(X), the set

D(f) := {x ∈ dom f : f is F-differentiable at x} (2.4)

is dense in int(dom f).
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In what follows, for a function f ∈ Γ0(X) we will keep the notation D(f) to denote the
set of points of dom f at which f is F-differentiable. Observe that, according to Corollary
2.1.4, the set D(f) is in fact a Gδ-dense set of int(dom f), whenever it is dense.

Example 2.2.2 (Asplund spaces) Some classic examples in the literature (see, e.g., [9],
[21] or [36]) are the followings:

(a) Every reflexive Banach space is an Asplund space.

(b) As stated in Theorem 2.2.6, a separable Banach space is an Asplund space if and
only if its dual is separable. So, c0 is an Asplund space, but ℓ1 isn’t.

(c) A Banach space X is said to be weakly compactly generated (WCG, for short) if
there exists a w-compact subset K of X such that X = span(K). It is known that
whenever a Banach space has a WCG dual, then it is an Asplund space (see, e.g.,
[36, Theorem 2.43]).

(d) L1[0, 1] is not an Asplund space.

�

As we will see later in the following section, Asplund property (that is, to be an Asplund
space) has a dual geometrical interpretation. First, we introduce here a first glance of
what this duality is about. To do so, we need to introduce the notion of slice.

Definition 2.2.3 (Slices) Let X be a Banach space and C be a nonempty subset of X.
For a functional x∗ ∈ X∗ \ {0} and a real α > 0, we define the slice of C induced by x∗

and α as the set

S(C, x∗, α) := {x ∈ C : 〈x∗, x〉 > σC(x
∗)− α}. (2.5)

If C is a subset of the dual space X∗ and x ∈ X \ {0}, the slice S(C, x, α) is called the
w∗-slice of C induced by x and α, to emphasize that it is given by a functional of the
primal space.

Clearly, the slices (resp. w∗-slices) are relatively open subsets of C and they are nonempty
whenever σC(x∗) < +∞ (resp. σC(x) < +∞). We also can define the notion of closed
slice of C induced by x∗ and α as the set

S(C, x∗, α) := {x ∈ X : 〈x∗, x〉 ≥ σC(x
∗)− α}. (2.6)

If C is closed and convex in X, we easily see that

x ∈ S(C, x∗, α) ⇐⇒ 〈x∗, x〉 ≥ σC(x
∗) + IC(x)− α ⇐⇒ x ∈ ∂ασC(x

∗). (2.7)

We also can define the closed w∗-slices, and derive the analogous to equation 2.7 when
the set C is w∗-closed and convex in X∗. Equation 2.7 and its dual form are often used
in the text.
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The next Theorem 2.2.5 involving the reductions of Asplund spaces to other families of
functions is well-known. Since this theorem is the main motivation of our contribution in
this chapter, we provide a proof of its content as well as the justification of the following
lemma involved in the arguments therein. The proof of Lemma 2.2.4 can be found in [36,
Lemma 2.18 and Theorem 2.30], while the proof of Theorem 2.2.5 is more disperse: It
can be derived mixing up different propositions contained in the books [9], [21] and [36].

Lemma 2.2.4 A Banach space X is an Asplund space if and only if for every nonempty
bounded subset K of X∗ and for every ε > 0, there exists a w∗-slice S(K, x, α) with
diameter less than ε.

Proof. Let us start with the necessity: Reasoning by absurd, suppose that there exists a
nonempty bounded subset K of X∗ and a real ε > 0 such that every w∗-slice of K has
diameter strictly larger than ε.

To arrive at a contradiction, we will show that σK , which is continuous and real-valued
due to the boundedness of K, is nowhere Fréchet-differentiable. SinceK is not a singleton,
it is clear that σK is not F-differentiable at 0. Fix then x ∈ X \ {0} and, for each n ∈ N

choose x∗n, y
∗
n ∈ S(K, x, ε/3n) such that ‖x∗n − y∗n‖ > ε. We then know, that there exists

xn ∈ SX such that 〈x∗n − y∗n, xn〉 > ε.

Thus, we can write

σK(x+
1
n
xn) + σK(x− 1

n
xn)− 2σK(x) ≥ 〈x∗n, x+ 1

n
xn〉+ 〈y∗n, x+ 1

n
xn〉 − 2σK(x)

≥ 〈x∗n − y∗n,
1
n
xn〉 − 2ε

3n

> ε
n
− 2ε

3n
= ε

3n
,

where the second inequality follows from the facts that σK(x) ≤ 〈x∗n, x〉 + ε/3n and
σK(x) ≤ 〈y∗n, x〉 + ε/3n, due to the inclusion S(K, x, ε/3n) ⊆ ∂ε/3nσK(x) for all n ∈ N,
and by Proposition 1.2.24(b). Dividing the latter inequality by 1

n
, we get that σK cannot

be F-differentiable at x, according to Proposition 2.1.3. The proof of the necessity is then
finished, since x is an arbitrary point of X \ {0}.

To prove the sufficiency, fix f ∈ Γ0(X) with int(dom f) 6= ∅. By Propositions 1.2.20, we
know that W := int(dom ∂f) coincides with int(dom f). We will show that there exists a
Gδ-dense subset G of W on which ∂f is a singleton and it is norm-norm-usc.

For each n ∈ N, define the setGn as all points x ∈ W such that there exists a neighborhood
V ∈ NX(x) with diam(∂f(V )) < 1

n
. It is not hard to realize that the set G =

⋂

n∈NGn is
the collection of all points x ∈ W such that ∂f(x) is a singleton and ∂f is norm-norm-usc
at x. Thus, to prove our claim we only need to show that Gn is dense in W , since by
construction is already open.

Fix n ∈ N, x0 ∈ W and an open neighborhood U ∈ NX(x0) with U ⊆ W . By Proposition
1.2.21, we may assume that ∂f(U) is bounded. By hypothesis, there exists z ∈ X and
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α > 0 such that

diam(S(∂f(U), z, α)) = diam{x∗ ∈ ∂f(U) : 〈x∗, z〉 > σ∂f(U)(z)− α} < 1

n
.

Let us denote S := S(∂f(U), z, α). Since S is nonempty, there exists x1 ∈ U and x∗ ∈
∂f(x1) such that x∗ ∈ S. Fix r > 0 small enough such that x2 := x1 + rz ∈ U . We will
show that ∂f(x2) ⊆ {x∗ ∈ X∗ : 〈x∗, z〉 > σ∂f(U)(z)−α} =: Q. Indeed, fixing y∗ ∈ ∂f(x2)
we have by monotonicity that

0 ≤ 〈y∗ − x∗, x2 − x1〉 = r〈y∗ − x∗, z〉,

which yields σ∂f(U)(z) − α < 〈x∗, z〉 ≤ 〈y∗, z〉. Thus, the inclusion ∂f(x2) ⊆ Q holds.
Using the w∗-openness of Q and the fact that ∂f is norm-w∗-usc at x2, we get that
there exists a neighborhood V ∈ NX(x2) with V ⊆ U such that ∂f(V ) ⊆ Q, thus
∂f(V ) ⊆ ∂f(U) ∩ {x∗ ∈ X∗ : 〈x∗, z〉 > σ∂f(U)(z)− α} = S, and so x2 ∈ Gn.

Since x and U are arbitrary, we conclude that Gn is dense, which allows us to conclude
that G is a Gδ-dense subset of W . Using proposition 2.1.5, we get that G ⊆ D(f), and
so D(f) is dense in W = int(dom f). The proof is now complete.

Theorem 2.2.5 Let X be a Banach space. The following assertions are equivalent:

(a) X is an Asplund space.

(b) For every function f ∈ Γ0(X) with int(dom f) 6= ∅, the set D(f) is nonempty.

(c) For every continuous function f ∈ Γ0(X), D(f) is dense in int(dom f).

(d) For every real-valued convex continuous function f : X → R, the set D(f) is dense
in X.

(e) For every w∗-compact set K in X∗, the set D(σK) is dense in X.

(f) For every equivalent norm p on X, the set D(p) is dense in X.

(g) For every equivalent norm p on X, p is F-differentiable at some point of X \ {0}.

Proof. The implications (a)⇒(b) and (c)⇒(d)⇒(e)⇒(f)⇒(g) are direct. To show that
(b)⇒(c) simply argue by absurd: Assume that (b) holds and that there exists a proper
continuous convex function f : X → R∞ such that D(f) is not dense in int(dom f). Then,
there exists a convex open set U ⊆ dom f , on which f is not F-differentiable at any point
u ∈ U . Finally consider g := f + IU , which belongs to Γ0(X) and also satisfies that
D(g) = ∅, which contradicts (b). Thus, the implication (b)⇒(c) holds.

To prove (g)⇒(a), assume that (a) doesn’t hold. Then, by Lemma 2.2.4 there exists a
bounded set K of X∗ and a real ε > 0, such that all w∗-slices of K have diameter greater
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than ε. Consider now the set

B = cow
∗ (

BX∗ + cow
∗

(K ∪ (−K))
)
.

Noting that σB = ‖ · ‖+max{σK , σ−K}, it is not hard to see that for each x ∈ X \ {0}
and each α > 0,

S(B, x, α) ⊇ x∗ + S(K, x, α) or S(B, x, α) ⊇ x∗ + S(−K, x, α),

where x∗ ∈ SX∗ is such that 〈x∗, x〉 = ‖x‖. We conclude that all slices of B also have diam-
eter greater than ε. By construction, it is clear that B is w∗-closed, and so its Minkowski
functional ρB is an equivalent norm on X∗ which is w∗-lower semicontinuous. Thus, B is
the unit ball of an equivalent dual norm and hence p := σB is an equivalent norm on X.
Then, by hypothesis, there exist a point x ∈ X \ {0} such that p is F-differentiable at x.
According to Proposition 1.2.26, we have that ∇p(x) ∈ B. Furthermore, it is clear that
for each α > 0, we have the inclusions

∇p(x) ∈ S(B, x, α) ⊆ S(B, x, α) = ∂αp(x).

Thus, for every n ∈ N we can choose x∗n ∈ S(B, x, 1/n) such that ‖x∗n − ∇p(x)‖ ≥ ε/2.
Using Brønsted-Rockafellar variational principle for each n ∈ N, there exist xn ∈ X and
y∗n ∈ B such that y∗n ∈ ∂p(xn) and

‖xn − x‖ ≤ 1√
n

and ‖y∗n − x∗n‖ ≤ 1√
n
.

Since ∂p is norm-norm-usc at x, there exists n0 ∈ N such that ‖y∗n−∇p(x)‖ ≤ ε/8 for all
n ≥ n0. Choosing n large enough, we may suppose that 1/

√
n < ε/8 and so,

ε/2 ≤ ‖x∗n −∇p(x)‖ ≤ ‖x∗n − y∗n‖+ ‖y∗n −∇p(x)‖ ≤ ε/4,

which is a contradiction. This proves that (g)⇒(a), finishing the proof.

There is a well-known characterization of separable Asplund spaces in terms of their dual
spaces (already used in Example 2.2.2(b)). The proof is not easy, but we refer the reader
to [36, Theorem 2.19].

Theorem 2.2.6 Let X be a separable Banach space. Then, X is an Asplund space if and
only if X∗ is separable.

Next proposition establishes the stability of Asplund spaces for closed subspaces. This
property is by no means trivial and partially allows us to derive the next Theorem 2.2.8.
Here we follow the proof in [36, Proposition 2.33].

Proposition 2.2.7 Every closed subspace of an Asplund space is also an Asplund space.
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Proof. Let X be an Asplund space, and consider a closed subspace M of X. Reasoning
by absurd, assume that M is not an Asplund space, and so, in view of Lemma 2.2.4, there
exists a bounded subset K of M∗ = X∗/M⊥ and a real ε > 0, such that

∀x ∈ X, ∀α > 0 diam(S(K, x, α)) ≥ 2ε.

Without loss of generality, we may assume that K is w∗-compact and convex, just re-
placing K by cow

∗
(K) and noting that for all x ∈ X and all α > 0, S(K, x, α) ⊆

S(cow
∗
(K), x, α). Let π : X∗ →M∗ the quotient map, which is known to be of norm one,

an open mapping and w∗-w∗-continuous. In particular, π(BX∗) is a neighborhood of 0 in
M∗.

Now, since K is bounded, there exists λ > 0 such that π(λBX∗) contains K. Let us denote
C := (λBX∗) ∩ π−1(A). Clearly, C is w∗-compact in X∗, convex and π(C) = K. Using
Zorn’s Lemma, there exists a minimal set C0 (under inclusion) enjoying these last three
properties. Since X is an Asplund space, by Lemma 2.2.4 there exist x ∈ X \ {0} and
α > 0 such that diam(S(C0, x, α)) < ε. To simplify notation, denote S := S(C0, x, α).

Since S is relatively w∗-open in C0 and it is a slice, it is not hard to see that C0 \ S is
w∗-compact and convex, and so K0 := π(C0 \ S) is w∗-compact and convex. Also, by
minimality of C0, we have that K0 ( K. Now, for any two points y∗1, y

∗
2 ∈ K \ K0, we

have that there exist x∗1, x
∗
2 ∈ S such that π(x∗i ) = y∗i for i = 1, 2. Then,

‖y∗1 − y∗2‖ = ‖π(x∗1 − x∗2)‖ ≤ ‖x∗1 − x∗2‖ ≤ ε.

Thus, choosing x∗ ∈ K0 and using the Hahn-Banach separation theorem for the w∗-
topology, there exists x′ ∈M and α′ > 0 such that

〈x∗, x′〉 > α′ ≥ 〈x∗, y〉, ∀y ∈ K \K0.

Thus S(K, x′, α′) separates x∗ and K \K0. Since S(K, x′, α′) ∩ (K \K0) = ∅ and K =
(K \K0) ∪K0, this yields the inclusion S(K, x′, α′) ⊆ K0, and so

diam(S(K, x′, α′)) ≤ ε,

leading to a contradiction. The proof is then complete.

We finish this section by presenting a final characterization of Asplund spaces that is
known as separable reduction: To know whether a Banach space is an Asplund space,
it is enough to check it for its separable subspaces. The reader can find the proof of
the sufficiency of the following theorem in [36, Theorem 2.14], while the necessity comes
directly from Proposition 2.2.7 above.

Theorem 2.2.8 (Separable Reduction of Asplund Spaces) Let X be a Banach space.
Then, X is an Asplund space if and only if every separable closed subspace of X is an
Asplund space.
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2.2.2 The RNP and Stegall’s Theorem

Definition 2.2.9 (Exposed and Strongly-Exposed points) Let X be a Banach space and
K be a closed convex set of X. A point x0 ∈ K is said to be

(a) exposed, if there exists a functional x∗ ∈ X∗ \ {0} such that

〈x∗, x0〉 = σK(x
∗) > 〈x∗, y〉, ∀y ∈ K \ {x0}.

In such a case, we say that the functional x∗ exposes x0 in K. We will denote by
exp(K) the set of exposed points of K.

(b) strongly-exposed, if there exists a functional x∗ ∈ X∗ \ {0} such that x∗ exposes x0
in K and also for every sequence (xn) ∈ K we have that

〈x∗, xn〉 → σK(x
∗) =⇒ ‖x0 − xn‖ → 0.

In such a case, we say that x∗ strongly exposes x0 in K. We will denote by
str-exp(K) the set of strongly-exposed points of K.

Analogously, for a convex w∗-closed subset K of X∗, a point x∗0 ∈ K is said to be w∗-
exposed (respectively, w∗-strongly-exposed) if there exists a functional x ∈ X \ {0} which
exposes (resp. strongly exposes) x∗0 in K.

In such a case, we say that x w∗-exposes (resp. w∗-strongly exposes) x∗0 in K to emphasize
that the exposing functional belongs to the primal space X.

Definition 2.2.10 (Radon-Nikodým Property) A Banach space X has the Radon-Nikodým
property (RNP) if every closed convex bounded subset K of X coincides with the closed
convex hull of its strongly-exposed points.

Example 2.2.11 (Spaces with the RNP) Classic examples (see, e.g., [9] and [21]) are the
following ones:

(a) All reflexive spaces have the RNP.

(b) ℓ1 has the RNP. c0 and ℓ∞ lack it.

(c) L1[0, 1] lacks the RNP.

Next proposition establishes the first link between Asplund spaces and the RNP via
slices of small diameter. The necessity of Proposition 2.2.12 is based on the following
observation: For a closed convex bounded set K, it is not hard to prove from the definition
of strongly-exposed points that, whenever x ∈ str-exp(K) and it is strongly-exposed by
x∗ ∈ X∗, then the slices S(K, x∗, α) can be (for some α > 0 small enough) of diameter
arbitrarily small. The sufficiency is more delicate: we refer the reader to [9, Theorem
3.5.4] or [23, Theorem 11.3] for its proof.
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Proposition 2.2.12 A Banach space X has the RNP if and only if for every nonempty
bounded subset K of X and every ε > 0, there exists a slice S(K, x∗, α) of K with diameter
less than ε.

We finally present one of the most celebrated results about the Radon-Nikodým property:
Its duality with Asplund spaces. This theorem was first proved by C. Stegall in 1978 (see
[45]), based on an earlier contribution of himself ([44]). The proof now can be found in
several books, as [23, Theorem 11.8], [36, Ch. 5] or [9, Proposition 5.7.2].

Theorem 2.2.13 (Stegall, 1978) A Banach space X is an Asplund space if and only if
X∗ has the RNP.

2.2.3 w∗-Asplund spaces and Collier’s Theorem

A natural question concerning Stegall’s theorem is whether the RNP in the primal space
implies that the dual is an Asplund space. Intuitively, this shouldn’t be so, since the primal
space X only gives enough information about conjugate functions, but doesn’t describe
all functions in Γ0(X). Form this observation is natural to introduce a “weak-star version”
of Asplund spaces.

Definition 2.2.14 (w∗-Asplund spaces) Let X be a Banach space. We say that the dual
space X∗ is a w∗-Asplund space if for every function f ∈ Γ0(X

∗, w∗), the set D(f) of
points where f is Fréchet-differentiable is dense in int(dom f).

In 1976, J. Collier (see [14]) characterized the Banach spaces with the RNP as those
whose dual is a w∗-Asplund space. This contribution completed the framework of duality
between Asplund spaces and RNP spaces: When the primal space has the RNP we can
only assure the Fréchet-differentiability of conjugate functions. We refer the reader to [14]
for the original proof and to [9, Theorem 5.7.4] for an alternative one.

Theorem 2.2.15 (Collier, 1976) A Banach space X has the RNP if and only if its dual
space X∗ is a w∗-Asplund space.

The next known Theorem 2.2.18 gives various characterizations of w∗-Asplund spaces.
Because of their importance in the development of this chapter (besides Theorem 2.2.5),
we provide a proof of the theorem. The proof below will involve the aforementioned
Collier’s theorem. In a first step the two following known lemmas are needed. Both
lemmas are hard to find in their present form, but can be retrieved by using different
proposition of the books [9], [21] or [36]. We establish their proof for completeness and
convenience of the reader.

Lemma 2.2.16 Let K be a nonempty closed convex bounded set of X, x0 ∈ K and
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x∗0 ∈ X∗ \ {0}. The following assertions are equivalent:

(a) x∗0 strongly exposes x0 in K.

(b) x∗0 w
∗-strongly exposes x0 in K

w∗∗

(as a subset of X∗∗).

(c) σK is F-differentiable at x∗0 with ∇σK(x∗0) = x0.

Proof. Let us prove first (c)⇒(a). Assume then that σK is F-differentiable at x∗0 with
∇σK(x∗0) = x0, and choose a sequence (xn) ⊆ K such that 〈x∗0, xn〉 → σK(x

∗
0). It is

not hard to realize that there exists a sequence (εn) ⊆ ]0,+∞[ converging to 0 such
that xn ∈ ∂εnσK(x

∗
0), and so, x∗0 ∈ ∂εnIK(xn). For each n ∈ N, applying the Brønsted-

Rockafellar variational principle (see Theorem 2.1.6) with λ =
√
εn, we find a sequence

(y∗n, yn) ∈ ∂σK such that

‖yn − xn‖ ≤ √
εn and ‖y∗n − x∗0‖ ≤ √

εn.

In particular, y∗n → x∗0. Using Proposition 2.1.5, we get that yn → x0 and so

‖xn − x0‖ ≤ ‖yn − xn‖+ ‖yn − x0‖ → 0.

Since (xn) is an arbitrary sequence, it follows that x∗0 strongly exposes x0 in K.

Let us prove now (a)⇒(b). Fix ε > 0. Since x∗0 strongly exposes x0, it is not hard to
deduce that there exists α > 0 such that

S(K, x∗0, α) ⊆ ∂ασK(x
∗
0) ⊆ BX(x0, ε) ∩K.

Now, let x∗∗ ∈ S
(

K
w∗∗

, x∗0, α
)

. Then, there exists a net (xi)i∈I included in ∂ασK(x∗0) such

that xi⇀w∗∗
x∗∗. In particular, for each x∗ ∈ SX∗ we have that

〈x∗, x∗∗ − x0〉 = lim
i∈I

〈x∗, xi − x0〉 ≤ ε.

Thus, x∗∗ ∈ BX∗∗(x0, ε) ∩Kw∗∗

, and so we get

S
(

K
w∗∗

, x∗0, α
)

⊆ BX∗∗(x0, ε) ∩Kw∗∗

.

Since ε is arbitrary, we conclude that the slices induced by x∗0 form a neighborhood basis

of x0 for the strong topology relative to K
w∗∗

. This entails that x0 is w∗-strongly exposed
by x∗0 in K

w∗∗

, proving the desired implication.

It only rests to show that (b)⇒(c). Since x0 is w∗-strongly exposed in K
w∗∗

by x∗0, we

have in particular that ∂σK(x∗0) = {x0}. Now, since K
w∗∗

is bounded, we have that σK
is continuous and so, according to Proposition 2.1.5, to prove that σK is F-differentiable
at x∗0 is enough to show that ∂σK is norm-norm-usc at x∗0. Fix then a sequence (x∗n) in
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X∗ converging to x∗0 and for each n ∈ N, choose x∗∗n ∈ ∂σK(x
∗
n). We then have that

x∗∗n ∈ K
w∗∗

and that 〈x∗∗n , x∗n〉 = σK(x
∗
n). Thus, we can write

|〈x∗∗n − x0, x
∗
0〉| = |〈x∗∗n − x0, x

∗
0 − x∗n〉+ 〈x∗∗n , x∗n〉 − 〈x0, x∗n〉|

≤ ‖x∗∗n − x0‖‖x∗0 − x∗n‖+ σK(x
∗
n)− 〈x0, x∗n〉|

−→ 0,

since the sequence (‖x∗∗n − x0‖) is bounded, along with σK(x
∗
n) → σK(x

∗
0) = 〈x∗0, x0〉 and

〈x0, x∗n〉 → 〈x0, x∗0〉. This yields that 〈x∗∗n , x∗0〉 → 〈x0, x∗0〉 = σK(x
∗
0), and since x∗0 w

∗-

strongly exposes x0 in K
w∗∗

, we deduce that x∗∗n → x0. We then conclude that ∂σK is
norm-norm-usc at x∗0, finishing the proof.

Lemma 2.2.17 A Banach space X has the RNP if and only if for every equivalent norm
p on X, str-exp

(
B(X,p)

)
6= ∅.

Proof. Since the necessity is direct, we only need to prove the sufficiency. Reasoning by
absurd, assume that X lacks the RNP. Then, according to Proposition 2.2.12, there exists
a nonempty bounded set K and a real ε > 0 such that K has all slices with diameter
grater than ε. Following the same construction than in the proof of Theorem 2.2.5, we
get that the set

B = co (BX∗ + co(K ∪ (−K)))

has all its slices with diameter greater than ε. This entails that str-exp(B) = ∅, which
is a contradiction since the Minkowski functional ρB is an equivalent norm on X and
B(X,ρ) = B.

Theorem 2.2.18 Let X be a Banach space. The following assertions are equivalent:

(a) X∗ is a w∗-Asplund space.

(b) For every function f ∈ Γ0(X
∗, w∗) with int(dom f) 6= ∅, the set D(f) is nonempty.

(c) For every continuous function f ∈ Γ0(X
∗, w∗), D(f) is dense in int(dom f).

(d) For every convex real-valued w∗-lower semicontinuous function f : X∗ → R, the set
D(f) is dense in X∗.

(e) For every nonempty bounded subset K of X, the set D(σK) is dense in X∗.

(f) For every equivalent norm p on X, the set D(p∗) is dense in X∗, where p∗ is the
dual norm on X∗ induced by p.

(g) For every equivalent norm p on X, the dual norm p∗ is F-differentiable at some
point of X∗ \ {0}.
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Proof. As in Theorem 2.2.5, we only need to prove (g)⇒(a). Using Lemma 2.2.16, the
hypothesis implies that for every equivalent norm p onX, its unit ball B(X,p) has a strongly
exposed point. Thus, according to Lemma 2.2.17, this yields that X has the RNP. The
conclusion follows by Collier’s theorem.

2.3 General smooth-like properties for convex functions

In this section and the next one which are our contribution in this chapter, we will study
the “smooth-like” properties in the convex analysis framework. Usually, when we find
smooth properties of convex functions defined over a Banach space X, it is possible to
find equivalent interpretations of them as geometrical properties of convex sets of its dual
space (or predual space). To do such interpretation, we present a general strategy to
reduct this kind of properties.

The first step is to formalize the idea of what a property of Banach spaces is: A property
(P) of Banach spaces will be understood as a family of binary functions {PX : D(X) →
{0, 1}} indexed by the class of Banach spaces for which the domain D(X) of each function
depends on the index space X.

The intuition of the family of functions {PX} is that for z ∈ D(X), PX(z) = 1 means
that the property (P) holds at z. So, in order to define a property (P) we need to specify
for each Banach space X 1) the domain D(X) of PX ; and 2) what PX(z) = 1 means,
usually by the equivalence

PX(z) = 1 ⇐⇒ (P) holds at z.

Here, we will be concerned with properties of the convex smooth-like type as defined in
the next subsections. This type of properties are motivated by Asplund spaces and their
geometrical interpretation with the RNP (see Theorem 2.2.13).

2.3.1 Convex smooth-like properties

Definition 2.3.1 A property (P) of Banach spaces is a convex smooth-like property if
for each Banach space X, D(X) = Γ0(X)×X and the function PX satisfy the following
conditions:

(i) PX is local: For each pair of two functions f, g ∈ Γ0(X) and for each open set
U ⊆ X we have that

f
∣
∣
U
= g

∣
∣
U
⇒PX(f, ·)

∣
∣
U
= PX(g, ·)

∣
∣
U
.
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(ii) PX is transitive: For each other Banach space Y such that there exists an onto
bounded linear operator T : X → Y , we have that for all f ∈ Γ0(Y )

PX(f ◦ T, x) = PY (f, Tx), ∀x ∈ X.

(iii) PX is set-consistent: For every w∗-closed convex set K of X∗ we have that

(iii.a) ∀x ∈ X, ∀t > 0, PX(σK , x) = P(σK , tx).

(iii.b) ∀x∗ ∈ X∗, PX(σK+x∗ , ·) = PX(σK , ·).

(iv) PX is epigraphical: For each function f ∈ Γ0(X) and each x ∈ X,

PX(f, x) = PX×R(σepi f∗ , (x,−1)).

In the case of convex smooth-like properties, PX(f, x) = 1 means that f satisfy the
property (P) at x. For reducing notation, whenever there is no confusion we will omit the
Banach space index, writing simply P(·, ·). Also, in the case of a support function σK
(where K is a w∗-closed convex set of the dual space), we will sometimes write P(K, ·)
instead of P(σK , ·).

Finally, for a function f ∈ Γ0(X), we will denote by P [f ] := {x ∈ dom f : P(f, x) = 1}.
Consistently, if f = σK , then we will sometimes write P [K] instead of P [σK ].

Definition 2.3.2 ((P)-structural spaces) Let (P) be a convex smooth-like property. A
Banach space X is said to be

1. (P)-structural if for each f ∈ Γ0(X), P [f ] is dense in int(dom f).

2. (P)-w∗-geometrical if for each w∗-compact convex set K ⊆ X∗, P [K] is dense in
X.

Lemma 2.3.3 ([36, Lemma 2.31]) Let X be a Banach space, f ∈ Γ0(X) and x0 ∈
int(dom f). Then, there exist a neighborhood U ∈ NX(x0) and a convex Lipschitz-
continuous function f̃ : X → R such that

f̃
∣
∣
U
= f

∣
∣
U
.

Proof. According to Proposition 1.2.21, there exist M > 0 and U ∈ NX(x0) included in
int(dom f) such that ∂f(U) ⊆MBX∗ . Define

f̃ := f�(M ‖ · ‖).
It is clear that f̃ ≤ f , and that it is convex. By continuity on U , we know that for every
u ∈ U there exists u∗ ∈ ∂f(u). Since ‖u∗‖ ≤M by construction, we can write

f(u) ≤ f(x) + 〈u∗, u− x〉 ≤ f(x) +M‖u− x‖, ∀x ∈ X,



2.3. GENERAL SMOOTH-LIKE PROPERTIES FOR CONVEX FUNCTIONS 83

which entails that f̃(u) = f(u) for all u ∈ U . It only rests to prove that f̃ is Lipschitz-
continuous. Fix then u, v ∈ X. By definition of the inf-convolution, for every ε > 0, there
exists y ∈ dom f such that

f̃(u) > f(y) +M‖u− y‖ − ε.

Since f̃(v) ≤ f(y) +M‖v − y‖, this yields

f̃(v)− f̃(u) ≤M‖v − y‖ −M‖u− y‖+ ε ≤M‖v − u‖+ ε

By arbitrariness of ε, u and v, we deduce that f̃ is M -Lipschitz on X. The proof is now
complete.

Proposition 2.3.4 Let X be a Banach space. The following assertions are equivalent:

(a) For each f ∈ Γ0(X) with int(dom f) 6= ∅, int(dom f) ∩ P [f ] 6= ∅.

(b) X is (P)-structural.

(c) For each continuous proper convex function f : X → R∞, P [f ] is dense in int(dom f).

(d) For each real-valued function f ∈ Γ0(X), P [f ] is dense in X.

Proof. The implications (b)⇒(c)⇒(d) are obvious. For (a)⇒(b) assume that (a) holds
but X is not (P)-structural. Then, there exists a function f ∈ Γ0(X) and a nonempty
open set U ⊆ int(dom f), such that

P(f, u) = 0, ∀u ∈ U.

Take x ∈ U and ε > 0 small enough such that B = BX [x, ε] ⊆ U and consider f̃ = f + IB
which is a function in Γ0(X) with int(dom f̃) = int(B). Now, since

f̃
∣
∣
int(B)

= f
∣
∣
int(B)

and int(B) ⊆ U , we get, since (P) is local, that P(f̃ , z) = P(f, z) = 0 for each z ∈ int(B).
Thus, int(dom f̃) ∩ P [f̃ ] = ∅ which is a contradiction.

Now, for (d)⇒(a), let f ∈ Γ0(X) with int(dom f) 6= ∅ and x ∈ int(dom f). Applying
Lemma 2.3.3, we know that there exists a convex Lipschitz-continuous function f̃ : X → R

and an open neighborhood U of x such that f̃
∣
∣
U
= f

∣
∣
U
. In particular, f is real-valued

in U and so U ⊆ int(dom f). Since f̃ is real-valued, P [f̃ ] is dense in X and then, there
exists z ∈ U such that P(f̃ , z) = 1. Finally, since (P) is local, P(f, z) = 1, finishing the
proof.

To get similar characterizations for (P)-w∗-geometrical Banach spaces, we will need to
establish some lemmas.
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Lemma 2.3.5 ([9, Lemma 2.3.6]) Let K be a nonempty bounded set of X. For every
x∗ ∈ X∗ \ {0} and every α > 0, there exists ε > 0 small enough such that

S
(
K, y∗, α

2

)
⊆ S(K, x∗, α), ∀y∗ ∈ BX∗ [x∗, ε].

Proof. Define M := sup{‖x‖ : x ∈ K} and choose ε ∈
]
0, α

4M

[
, with the convention

α
4M

= +∞ if M = 0. Fix any functional y∗ ∈ BX∗ [x∗, ε]. Now, for z ∈ S
(
K, y∗, α

2

)
we

can write

〈x∗, z〉 ≥ 〈y∗, z〉 − |〈x∗ − y∗, z〉| ≥ σK(y
∗)− α

2
− εM

≥ sup
x∈K

{〈x∗, x〉 − |〈x∗ − y∗, x〉|} − α

2
− εM

≥ σK(x
∗)− α

2
− 2εM

> σK(x
∗)− α.

Thus, z ∈ S(K, x∗, α), which finishes the proof.

Lemma 2.3.6 Let K be a w∗-closed convex set of X∗ with σK : X → R∞ its support
function. Assume that int(dom σK) 6= ∅ and let x ∈ int(dom σK) with x 6= 0. Then, there
exists an equivalent norm p on X, a point x∗0 ∈ X∗ and an open neighborhood U of x such
that

σK+x∗0
(u) = p(u), ∀u ∈ U.

Proof. Let η = σK(x). Let us assume that η > 0 and define K1 = ∂η/2σK(x) ⊆ X∗. By
Lemma 2.3.5, there exists an open convex neighborhood U1 of x such that S

(
K, u, η

4

)
⊆ K1

for all u ∈ U1. This entails that for every u ∈ U1,

σK(u) = sup
{
〈z∗, u〉 : z∗ ∈ S

(
K, u, η

4

)}
≤ σK1(u),

and so, since σK1 ≤ σK , we get that σK
∣
∣
U1

= σK1

∣
∣
U1

. Also, the latter relation provides
that ∂σK(u) = ∂σK1(u), for all u ∈ U1.

Define now K2 = cow
∗
[K1∪ (−K1)]. It is clear that σK2 = max{σK1 , σ−K1} and therefore,

since 〈z∗, x〉 ≥ η − η
2
= η

2
for all z∗ ∈ K1, we have that

σ−K1(x) = sup
z∗∈K1

〈−z∗, x〉 ≤ −η
2
<
η

2
≤ σK1(x).

Thus, σ−K1(x) < σK1(x) and, by continuity, there exists a neighborhood U2 of x included
in U1 such that σ−K1

∣
∣
U2
< σK1

∣
∣
U2

. In particular, we get that σK2

∣
∣
U2

= σK1

∣
∣
U2

. Finally,

define the set B = η
2‖x‖

BX∗ and consider the set K3 = cow
∗
[K2 ∪B]. Again, we have that

σB(x) =
η

2‖x‖‖x‖ =
η

2
< η = σK2(x),
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and so, by continuity, there exists a neighborhood U3 of x included in U2 such that
σK3

∣
∣
U3

= σK2

∣
∣
U3

. Let U = U3 and p = σK3 . It is clear by the construction of K3 that

p is an equivalent norm on X and K3 = B(X∗,p∗). Moreover, σK
∣
∣
U

= p
∣
∣
U

and so, the
conclusion holds with x∗0 = 0.

If η ≤ 0, we can choose x∗0 ∈ X∗ such that 〈x∗0, x〉 > −η, and repeat the previous procedure
with K + x∗0 instead of K, which finishes the proof.

Theorem 2.3.7 The following assertions are equivalent:

(a) For each w∗-closed convex set K ⊆ X∗ with int(dom σK) 6= ∅,

P [σK ] ∩ int(dom σK) 6= ∅.

(b) For each w∗-closed convex set K ⊆ X∗, P [σK ] is dense in int(dom σK).

(c) X is (P)-w∗-geometrical.

(d) For each equivalent norm p on X, P [p] is dense in X.

Proof. (b)⇒(c)⇒(d) are obvious. For (d)⇒(a), assume that (d) holds and that there ex-
ists a w∗-closed convex setK ⊆ X∗ with int(dom σK) 6= ∅ such that P [σK ]∩int(dom σK) =
∅. Choose x ∈ int(dom σK). Applying Lemma 2.3.6, we get that there exists x∗0 ∈ X∗,
an equivalent norm p on X and an open neighborhood U of x, which we can assume
contained in int(dom σK), such that

σK+x∗0

∣
∣
U
= p

∣
∣
U
.

Since (P) is local, P(σK+x∗0
, u) = P(p, u) for all u ∈ U and, since (P) is set-consistent, we

conclude that
P(p, u) = P(σK , u) = 0, ∀u ∈ U,

which is clearly a contradiction, according to the density of P [p] in X.

To prove (a)⇒(b), assume that (a) holds and there exists a w∗-closed convex set K ⊆ X∗

and an open set U ⊆ int(dom σK) such that P [σK ] ∩ U = ∅. Choose x ∈ U with x 6= 0
and δ ∈

]
0, 1

2
‖x‖

[
small enough such that x+ δBX ⊆ U \ {0} and define

C = cone(x+ δBX) := R+ (x+ δBX) .

Since ‖u‖ ≥ 1
2
‖x‖ > 0, it is not hard to see that C is a closed convex set and that

P(σK , z) = 0 for all z ∈ int(C) (since (P) is set-consistent). Let us consider the function
σ = σK + IC . Since IC is a sublinear lsc function, we get σ is also a sublinear lsc function.
By Proposition 1.2.26, σ = σK′ , where K ′ := ∂σ(0) is a w∗-closed convex set of X∗. Thus,
we can write

σK(z) = σK′(z), ∀z ∈ int(C)
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and so, since (P) is local, we get that P(σK′ , z) = 0 for all z ∈ int(C). Noting that
dom σK′ = C, we conclude that P [σK′ ]∩ int(dom σK′) = ∅, which is a contradiction. The
proof is now complete.

Now, we would like to link Proposition 2.3.4 and Theorem 2.3.7. To do so, we will use
the fact that (P) is epigraphical and the following simple lemma:

Lemma 2.3.8 Let θ be a (Hausdorff) locally convex topology on X coarser than τ‖·‖. For
a function f ∈ Γ0(X, θ) we have that

(a) int(dom σepi f∗) =]0,+∞[·(int(dom f)× {−1}).

(b) int(dom f) = {x ∈ X : (x,−1) ∈ int(dom σepi f∗)}.

where the interior is considered for the topology τ‖·‖ and the conjugate f ∗ is taken with
respect to the duality 〈X, (X, θ)∗〉.

Proof. Note first that (b) is directly deduced from (a). Now, to prove (a), let us show
both inclusions:

• Fix (x, s) ∈ int(dom σepi f∗). Since σepi f∗(x′, s′) = +∞ whenever s′ > 0, it is easy to
deduce that s < 0. Thus, denoting x̄ := |s|−1x, we have (x̄,−1) ∈ int(dom σepi f∗).
Also, there exists a neighborhood U ∈ NX(x̄) such that for all u ∈ U , (u,−1) ∈
int(dom σepi f∗). We then conclude that, for each u ∈ U

+∞ > σepi f∗(u,−1) = sup
(y∗,r)∈epi f∗

{〈y∗, u〉 − r} = sup
y∗∈dom f∗

{〈y∗, u〉 − f ∗(y∗)} = f(u).

This yields U ⊆ dom f , and so (x̄,−1) ∈ int(dom f) × {−1}, proving that (x, s) ∈
]0,+∞[·(int(dom f)× {−1}). We conclude that

int(dom σepi f∗) ⊆]0,+∞[·(int(dom f)× {−1}),

proving our first inclusion.

• To prove the reverse inclusion, it is enough to show that int(dom f) × {−1} ⊆
dom σepi f∗ , since dom σepi f∗ is a cone and that ]0,+∞[·(int(dom f) × {−1}) is an
open set in X ×R. Fix then x ∈ int(dom f). Fixing ε > 0, we know by Proposition
1.2.24 that there exists x∗ ∈ ∂εf(x), where the subdifferential is taken with respect
to the duality 〈X, (X, θ)∗〉. Thus, according again to Proposition 1.2.24, we deduce
that

sup
(y∗,r)∈epi f

{〈y∗, x〉 − r} = f ∗∗(x) = f(x) ≤ 〈x∗, x〉 − f ∗(x∗) + ε.

This yields to σepi f∗(x,−1) < +∞, showing that (x,−1) ∈ dom σepi f∗ and finishing
the proof.
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Proposition 2.3.9 A Banach space X is (P)-structural if and only if X ×R is (P)-w∗-
geometrical.

Proof. Le us show first the sufficiency. Assume that X × R is (P)-w∗-geometrical and
let f ∈ Γ0(X) with int(dom f) 6= ∅. By Lemma 2.3.8(a), we know that int(dom σepi f∗)
is nonempty. As X × R is (P)-w∗-structural, equivalence (a)⇔(c) in Theorem 2.3.7
ensures that P [epi f ∗] ∩ int(dom σepi f∗) 6= ∅. Since the second component of all points
in int(dom σepi f∗) are negative by Lemma 2.3.8(a) again and since (P) is set-consistent,
there exists x ∈ X such that

(x,−1) ∈ P [epi f ∗] ∩ int(dom σepi f∗).

By Lemma 2.3.8.(b), we get that x ∈ int(dom f) and, since (P) is epigraphical, P(f, x) =
1. The conclusion follows from the equivalence (a)⇔(b) in Proposition 2.3.4.

Assume now that X is (P)-structural and let p be an equivalent norm over X × R.
Consider the function ϕ : X∗ → R∞ given by

ϕ(x∗) = inf{t : p∗(x
∗, t) ≤ 1}.

It is easy to see that epiϕ = B(X∗×R,p∗) + L where L = {(0, t) : t ≥ 0}. Since B(X∗×R,p∗)

is w∗-compact and convex and L is w∗-closed and convex, we get that epiϕ is w∗-closed
and convex. Thus, there exists f ∈ Γ0(X) such that f ∗ = ϕ. Note also that

∀(x, λ) ∈ X×]−∞, 0[, σepiϕ(x, λ) = σB(X∗×R,p∗)
(x, λ)+σL(x, λ) = σB(X∗×R,p∗)

(x, λ), (2.8)

so int(dom f) 6= ∅ by Lemma 2.3.8, and hence P [epi f ∗] is dense in int(dom f) by the (P)-
structural property of X. Using that (P) is epigraphical and set-consistent and applying
Lemma 2.3.8, we can conclude that P [epiϕ] is dense in int(dom σepiϕ) = X×]−∞, 0[.

Further, according to equation (2.8) and since (P) is local, we get that P [B(X∗×R,p∗)] is
dense in X×]−∞, 0[. To conclude, consider the automorphism T : X×R → X×R given
by T (x, t) = (x,−t), and repeat the same argument for the equivalent norm p ◦ T over
X × R. We then get that P [p ◦ T ] is dense in X×]−∞, 0[. Now, since (P) is transitive,

∀(x, t) ∈ X × R, P(p ◦ T, (x, t)) = P(p, T (x, t)).

In particular, since p is the support function of B(X∗×R,p∗), we have that P [B(X∗×R,p∗)] =
P [p] and therefore P [B(X∗×R,p∗)] is dense in T

(
X×]−∞, 0[

)
= X×]0,∞[. We deduce that

P [B(X∗×R,p∗)] is dense in X ×R, proving that X ×R is (P)-w∗-geometrical (according to
equivalence (b)⇔(d) in Theorem 2.3.7).

The following proposition establishes the natural stability results for (P)-structural and
(P)-w∗-geometrical spaces, due to transitivity.

Proposition 2.3.10 Let X, Y be two Banach spaces with an onto bounded linear operator
T : X → Y . Then,
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1. X is (P)-w∗-geometrical ⇒ Y is (P)-w∗-geometrical.

2. X is (P)-structural ⇒ Y is (P)-structural.

In particular, the classes of (P)-structural and (P)-w∗-geometrical Banach spaces are
closed for quotients (of closed subspaces) and isomorphisms.

Proof. We only need to prove the first implication. Indeed, from T we can construct
an onto bounded linear operator T̃ : X × R → Y × R given by T̃ (x, t) = (Tx, t). So,
assuming that X is (P)-structural we would have, by Proposition 2.3.9, that X×R is (P)-
w∗-geometrical and therefore, that Y × R is also (P)-w∗-geometrical. Finally, applying
Proposition 2.3.9 again, we would get that Y is (P)-structural.

Let us prove then the first statement. Assume that X is (P)-w∗-geometrical and let
KY ∗ be a w∗-closed convex set of Y with int(dom σKY ∗ ) 6= ∅. We need to prove that
P [KY ∗ ] ∩ int(dom σKY ∗ ) is nonempty. Consider the set KX∗ = T ∗(KY ∗), which is a w∗-
closed convex set of X∗. Note that for all x ∈ X,

σKX∗ (x) = sup
y∗∈KY ∗

〈x, T ∗y∗〉 = sup
y∗∈KY ∗

〈Tx, y∗〉 = σKY ∗ (Tx),

which implies that dom σKX∗ = T−1(dom σKY ∗ ) and, since T is open, it ensues that
T (int(dom σKX∗ )) = int(dom σKY ∗ ). In particular, int(dom σKX∗ ) 6= ∅ and therefore there
exists x ∈ int(dom σKX∗ ) with P(KX∗ , x) = 1. Since (P) is transitive,

P(KY ∗ , Tx) = P(σKY ∗ ◦ T, x) = P(σKX∗ , x) = P(KX∗ , x),

and so we conclude that Tx ∈ P [KY ∗ ] ∩ int(dom σKY ∗ ), finishing the proof.

To finish the study of convex smooth-like properties, we would like to make a last reduc-
tion: An equivalence between (P)-structurality and the nonemptyness of PX [p], for each
equivalent norm p on X. This idea is motivated by characterization (g) of Asplund spaces
given in Theorem 2.2.5.

Since this equivalence would imply that (P)-structural spaces and (P)-w∗-geometrical
spaces coincide, it is clear that it is a difficult goal. Nevertheless, we present a partial
result: In the case that X is a separable Banach space, then (P)-w∗-geometrical spaces
can be characterized by the nonemptyness of PX [p] for each equivalent norm p on X,
whenever the convex smooth-like property (P) fulfills an extra condition, that we call the
sum rule.

Definition 2.3.11 (Sum rule) Let (P) be a convex smooth-like property of Banach spaces.
We say that (P) has the sum rule if for any Banach space X and any pair of functions
f, g ∈ Γ0(X),

PX(f + g, ·) = min{PX(f, ·),PX(g, ·)}. (2.9)
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Now, to prove our desired reduction, we need first the following fundamental result about
open cones in separable Banach spaces:

Proposition 2.3.12 Let X be a separable Banach space. For every open cone C in X,
there exists a countable family of isomorphisms {Tn : X → X | n ∈ N}, such that

⋃

n∈N

T−1
n (C) ⊇ X \ {0}.

Proof. Let X be a separable Banach space and C be an open cone. Fix x0 ∈ SX ∩C and
let x∗0 ∈ SX∗ such that 〈x∗0, x0〉 = 1. Denote Z0 := Ker(x∗0). Since C is open, there exist
δ > 0 such that x0 + δBZ0 ⊆ C. Define C0 := cone(x0 + δBZ0).

Now, let {xn : n ∈ N} a dense set of SX and {x∗n : n ∈ N} be a subset of SX∗ such that
〈x∗n, xn〉 = 1 for all n ∈ N. Denote Zn = Ker(x∗n). For each n ∈ N, let us define the set

Kn := cone
(
BX

(
xn,

1
3

))
∩ (xn + Zn) = cone

(
BX

(
xn,

1
3

))
∩ {x ∈ X : 〈x∗n, x〉 = 1}.

Since 〈x∗n, x〉 > 0 for all x ∈ BX

[
xn,

1
3

]
and cone

(
BX

(
xn,

1
3

))
⊆ cone

(
BX

[
xn,

1
3

])
, it is

not hard to see that 〈x∗n, x〉 > 0 for all x ∈ cone
(
BX

(
xn,

1
3

))
\ {0}. Thus, we deduce that

for each n ∈ N

cone(Kn) = cone
(
BX

(
xn,

1
3

))
.

Clearly, we also have that Kn is bounded. Indeed, if x ∈ Kn, then there exists λ > 0 such
that λx ∈ BX(xn,

1
3
) and so

λ = 〈x∗n, λx〉 ≥ inf
{
〈x∗n, y〉 : y ∈ BX

(
xn,

1
3

)}
≥ 2

3
.

This yields the inequality

‖x‖ = λ−1‖λx− xn + xn‖ ≤ 3
2
(‖λx− xn‖+ ‖xn‖) ≤ 2,

proving our claim. Thus, for each n ∈ N we can choose αn > 0 such that

Kn ⊆ xn + αnBZn
,

and define the set Cn = cone(xn + αnBZn
). By construction, we have that

SX ⊆
⋃

n∈N

BX(xn,
1
3
) ⊆

⋃

n∈N

Cn \ {0},

and so, since each Cn is a cone, we deduce that X \{0} ⊆ ⋃

n∈NCn \{0}. Now, fix n ∈ N.
Since Zn and Z0 are both hyperplanes, they are isomorphic. Thus, we can choose an
isomorphism Sn : Zn → Z0 such that

Sn(αnBZn
) ⊆ δBZ0 .
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Define then the isomorphism Tn : X → X given by Tn(xn) = x0 and Tn
∣
∣
Zn

= Sn. It is not
hard to see that, by construction

Tn(Cn) = coneTn(xn + αnBZn
) ⊆ cone(x0 + δBZ0) = C0.

Repeating this construction for each n ∈ N we deduce that

X \ {0} =
⋃

n∈N

Cn \ {0} ⊆
⋃

n∈N

T−1
n (C0 \ {0}) ⊆

⋃

n∈N

T−1
n (C),

which finishes the proof.

Remark 2.3.13 The latter proposition allows us to cover the whole space by “rotating”
and “widening” any cone with nonempty interior. This idea is a generalization of the fact
that any separable space can be covered (without considering 0, of course) with countable
many open half-spaces, which are those induced by any separating countable family of
functionals of the dual.

Theorem 2.3.14 Let X be a separable Banach space and let (P) be a convex smooth-like
property following the sum rule. Then, X is (P)-w∗-geometrical if and only if for every
equivalent norm p on X, there exists a nonzero point x ∈ X such that PX(p, x) = 1.

Proof. Since the necessity is direct, we only need to prove the sufficiency. Reasoning by
contradiction, suppose that X is not (P)-w∗-geometrical, that is (by Theorem 2.3.7(d)),
there exists an equivalent norm p on X and an open subset U of X such that for all u ∈ U ,
PX(p, u) = 0.

Consider then the set C = int(cone(U)), which is an open cone in X. By set-consistency
of (P) (see Definition 2.3.1(iii)), we know that for every u ∈ C, PX(p, u) = 0. Also,
by Proposition 2.3.12, there exists a countable family {Tn : n ∈ N} of linear onto
automorphisms, such that

⋃

n∈N

T−1
n (C) ⊇ X \ {0}.

Consider then the function ρ : X → R+ given by

ρ(x) =
∞∑

n=0

2−n‖Tn‖−1(p ◦ Tn)(x),

where T0 = idX . Clearly, we have that ρ is a norm on X. Also, since p is an equivalent
norm on X, there exist two constants K1, K2 > 0 such that p(·) ≤ K1 ‖ · ‖ and ‖ · ‖ ≤
K2p(·). This entails that

p(x) ≤ ρ(x) ≤
∞∑

n=0

2−n‖Tn‖−1K1‖Tnx‖ ≤
∞∑

n=0

2−nK1‖x‖ ≤ 2K1K2p(x).
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Therefore, ρ is an equivalent norm on X. Now, fix x ∈ X \ {0}. By construction, there
exists n ∈ N such that Tn(x) ∈ C, and so by transitivity and set-consistency of (P) (see
Definition 2.3.1(ii)-(iii)), and using that p ◦ Tn is positively homogeneous, we see that

PX(2−n‖Tn‖−1(p ◦ Tn), x) = PX(p ◦ Tn, x) = PX(p, Tn(x)) = 0.

Consider then the function ρ−n : X → R+ given by ρ−n(y) =
∑∞

k 6=n 2
−k‖Tk‖−1(p ◦ Tk)(y).

Clearly, ρ−n ∈ Γ0(X) and also ρ = ρ−n + 2−n‖Tn‖−1(p ◦ Tn). Finally, by sum rule, we
deduce that

PX(ρ, x) = min{PX(ρ−n, x),PX(2−n‖Tn‖−1(p ◦ Tn), x)} = 0.

Since x is arbitrary, we conclude that ρ is an equivalent norm satisfying that PX(ρ, x) = 0
for all x ∈ X \ {0}, which contradicts our hypothesis. The proof is then complete.

2.3.2 Convex w∗-smooth-like properties

In this subsection, motivated by the notion of w∗-Asplund spaces, we will study the case
when the smooth-like property holds for the conjugate functions. This case appears when
there is a geometric property for the convex sets of the primal. Even though the results
and proofs are practically the same as the ones of the latter section, we present this case
separately for the sake of order and also since there are some additional delicate details
concerning the conjugate notion.

Definition 2.3.15 (w∗-smooth-like properties) A property (P) of Banach spaces is a
convex w∗-smooth-like property if for each Banach space X, D(X) = Γ0(X

∗, w∗) × X∗

and the function PX satisfy the following conditions:

(i) PX is local: For each pair of two functions f, g ∈ Γ0(X
∗, w∗) and for each open set

U ⊆ X∗ we have that

f
∣
∣
U
= g

∣
∣
U
⇒PX(g, ·)

∣
∣
U
= PX(f, ·)

∣
∣
U
.

(ii) PX is w∗-transitive: For each other Banach space Y such that there exists an one-
to-one bounded linear operator T : Y → X with closed range, we have that for all
f ∈ Γ0(Y

∗, w∗)
PX(f ◦ T ∗, x∗) = PY (f, T ∗x∗), ∀x∗ ∈ X∗.

(iii) PX is set-consistent: For every closed convex set K of X we have that

(iii.a) ∀x∗ ∈ X∗, ∀t > 0, PX(σK , x∗) = P(σK , tx
∗).

(iii.b) ∀x ∈ X, PX(σK+x, ·) = PX(σK , ·).
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(iv) PX is epigraphical: For each function f ∗ ∈ Γ0(X
∗, w∗) (where f is the function in

Γ0(X) for which f ∗ is its conjugate) and each x∗ ∈ X∗,

PX(f ∗, x∗) = PX×R(σepi f , (x
∗,−1)).

Again, for reducing notation we will write simply P(·, ·), omitting the index. Also, in the
case of a support function σK (where K is a closed convex set of X), we will sometimes
write P(K, ·) instead of P(σK , ·).

Finally, for a function f ∈ Γ0(X
∗, w∗), we will denote by P [f ] := {x∗ ∈ dom f :

P(f, x∗) = 1}. Consistently, if f = σK , then we will write sometimes P [K] instead
of P [σK ].

Definition 2.3.16 ((P)-w∗-structural spaces) Let (P) be a convex smooth-like property.
A Banach space X is said to be

1. (P)-w∗-structural if for each f ∈ Γ0(X
∗, w∗), P [f ] is dense in int(dom f).

2. (P)-geometrical if for each closed convex bounded set K ⊆ X, P [K] is dense in
X∗.

Lemma 2.3.17 Let X be a Banach space, f ∈ Γ0(X
∗, w∗) and x∗0 ∈ int(dom f). Then,

there exist an open neighborhood U ∈ NX∗(x∗0) and a convex Lipschitz-continuous function
f̃ ∈ Γ0(X

∗, w∗) such that
f
∣
∣
U
= f̃

∣
∣
U
.

Proof. As in proof of Lemma 2.3.3, we know that there exists M > 0 large enough and
U ∈ NX∗(x∗0) such that the function

f̃ := f�(M ‖ · ‖∗)

is convex, M -Lipschitz and it coincides with f in U . Thus, we only need to prove that f̃
is w∗-lower semicontinuous. Denote g := f ∗

∣
∣
X

, that is, the unique function in Γ0(X) such
that g∗ = f . Since M can be considered arbitrarily large, we may assume that

(
int(dom IMBX

)
)
∩ dom g = BX(0,M) ∩ dom g 6= ∅,

and so, the function IMBX
is continuous at some point of dom(IMBX

)∩ dom g. By Propo-
sition 1.2.11(c), we deduce

(IMBX
+ g)∗ = (IMBX

)∗�g∗ = f̃ ,

where the second equality follows from the straight forward relation (IMBX
)∗ = M ‖ · ‖∗.

This yields the inclusion f̃ ∈ Γ0(X
∗, w∗), finishing the proof.

Proposition 2.3.18 The following assertions are equivalent:
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(a) For each f ∈ Γ0(X
∗, w∗) with int(dom f) 6= ∅, P [f ] ∩ int(dom f) 6= ∅.

(b) X is (P)-w∗-structural.

(c) For each w∗-lsc continuous proper convex function f : X∗ → R∞, P [f ] is dense in
int(dom f).

(d) For each real-valued function f ∈ Γ0(X
∗, w∗), P [f ] is dense in X.

Proof. The implications (b)⇒(c)⇒(d) are obvious. The implication (a)⇒(b) is analogous
to the proof of the implication (a)⇒(b) in Proposition 2.3.4, using the fact that if B ⊆ X∗

is a w∗-closed convex set then IB ∈ Γ0(X
∗, w∗), and also the fact that for any two functions

f, g ∈ Γ0(X
∗, w∗), the sum f + g also belongs to Γ0(X

∗, w∗).

To prove the implication (d)⇒(a), assume that (d) holds and let f ∈ Γ0(X
∗, w∗) with

int(dom f) 6= ∅. Choose any x∗ ∈ int(dom f). Lemma 2.3.17 ensues that there exist an
open neighborhood U ∈ NX∗(x∗) and a Lipschitz-continuous function f̃ ∈ Γ0(X

∗, w∗)
such that f

∣
∣
U
= f̃

∣
∣
U
. The rest of proof follows exactly as in Proposition 2.3.4.

Lemma 2.3.19 Let K be a closed convex set of X with int(dom σK) 6= ∅ and x∗ ∈
int(dom σK) with x∗ 6= 0. Then, there exists an equivalent norm p on X, a point x0 ∈ X
and an open neighborhood U of x∗ such that

σK+x0(u
∗) = p∗(u

∗), ∀u∗ ∈ U.

Proof. The proof is exactly the same as the proof of Lemma 2.3.6, considering for the
case η = σK(x

∗) > 0 the following sets: K1 = X ∩ ∂η/2σK(x
∗), K2 = co[K1 ∪ (−K1)],

B = η
2‖x∗‖∗

BX and K3 = co[B ∪K2].

Theorem 2.3.20 The following assertions are equivalent:

(a) For each closed convex set K ⊆ X with int(dom σK) 6= ∅, P [σK ]∩ int(dom σK) 6= ∅.

(b) For each closed convex set K ⊆ X, P [σK ] is dense in int(dom σK).

(c) X is (P)-geometrical.

(d) For each equivalent norm p on X, P [p] is dense in X∗.

Proof. The proofs of the equivalences are analogous to the proofs of the equivalences in
Theorem 2.3.7, using Proposition 1.2.26 for the locally convex topology θ = w∗ on X∗,
and noting that for any w∗-compact convex set B of X∗ not containing 0, the set

C = cone(B)

is a w∗-closed convex cone.
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Proposition 2.3.21 A Banach space X is (P)-w∗-structural if and only if X × R is
(P)-geometrical.

Proof. Using Lemma 2.3.8 with θ = w∗ in X∗, we can prove, analogously as in proof of
Proposition 2.3.9, the sufficiency of the equivalence.

Let us prove the necessity. Assume that X is (P)-w∗-structural and fix an equivalent
norm p on X × R. As in Proposition 2.3.9, we can define the function ϕ : X → R

given by ϕ(x) := inf{t : p(x, t) ≤ 1}, and derive that epiϕ = B(X,p) + L, where
L = {(0, t) : t ≥ 0}. This yields that ϕ ∈ Γ0(X). Noting also that

σepiϕ
∣
∣
X∗×]−∞,0[

= σB(X×R,p)

∣
∣
X∗×]−∞,0[

= p∗
∣
∣
X∗×]−∞,0[

we get by Lemma 2.3.8 (applied with θ = w∗ inX∗) that int(domϕ) 6= ∅, and hence P [ϕ] is
dense in int(domϕ) by the (P)-w∗-structural property of X. Using that P is epigraphical
and set consistent, we deduce that P [epiϕ] is dense in int(dom σepiϕ) = X∗×] − ∞, 0[.
Again, we conclude that P [p] is dense in X∗×]−∞, 0[, using the fact that

and that (P) is local. Now, consider the isomorphism T : X × R → X × R given by
T (x, t) = (x,−t). It is not hard to realize that T ∗(x∗, s) = (x∗,−s) for all (x∗, s) ∈ X×R.
Since q∗ := p∗ ◦ T ∗ is an equivalent dual norm on X∗ ×R, we get by the same arguments
as above that P [q∗] is dense in X∗×]−∞, 0[. Finally, since T is one-to-one and of closed
range, we can use the w∗-transitivity of (P) to deduce that

∀(x∗, s) ∈ X∗ × R, P(p∗, T
∗(x∗, s)) = P(p∗ ◦ T ∗, (x∗, s)) = P(q∗, (x

∗, t)).

Noting that T ∗ (X∗×]0,+∞[) = X∗×] − ∞, 0[, we conclude that P [p∗] is also dense in
X∗×]0,+∞[. Since p is arbitrary, the conclusion follows by Proposition 2.3.18.

Proposition 2.3.22 Let X, Y be two Banach spaces with an one-to-one bounded linear
operator T : Y → X with closed range. Then,

(a) X is (P)-geometrical ⇒ Y is (P)-geometrical.

(b) X is (P)-w∗-structural ⇒ Y is (P)-w∗-structural.

In particular, the classes of (P)-w∗-structural and (P)-geometrical are closed for closed
subspaces and isomorphisms.

Proof. As in proof of Proposition 2.3.10, we only need to prove the first implication.
Assume then that X is (P)-geometrical and let KY be a closed convex set of Y with
int(dom σKY

) 6= ∅. Let KX = T (KY ), which is a closed convex set of X, since T is
one-to-one with closed range. Now, for each x∗ ∈ X∗,

σKY
(T ∗x∗) = sup

y∈KY

〈T ∗x∗, y〉 = sup
y∈KY

〈x∗, T y〉 = σKX
(x∗),
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and so, dom σKX
= (T ∗)−1(dom σKY

) and T ∗(int(dom σKX
)) = int(dom σKY

), according
to the fact that T ∗ is an open map. The rest of the proof follows exactly as the proof of
Proposition 2.3.10, using w∗-transitivity instead of transitivity.

We finish this subsection by presenting the dual version of the reduction given in Theorem
2.3.14 in the separable case. It is worth pointing out that here the hypothesis will be the
separability of the primal space with a possible nonseparable dual. In this case, we still
can provide a covering of the dual space by “rotating” and “widening” countable many
times any open cone. Nevertheless, the proof is more delicate. In fact, as the reader can
see, Proposition 2.3.24 below requires some additional arguments, since the isomorphisms
involved in the rotations are also adjoint operators.

Definition 2.3.23 (w∗-Sum rule) Let (P) be a convex w∗-smooth-like property of Banach
spaces. We say that (P) has the w∗-sum rule if for any Banach space X and any pair of
functions f, g ∈ Γ0(X

∗, w∗),

PX(f + g, ·) = min{PX(f, ·),PX(g, ·)}. (2.10)

Proposition 2.3.24 Let X be a separable Banach space. For every open cone C of the
dual space X∗, there exists a countable family of isomorphisms {Tn : X → X : n ∈ N}
such that

⋃

n∈N

(T ∗
n)

−1(C) ⊇ X∗ \ {0}.

Proof. Let C be an open cone of X∗ and choose x∗0 ∈ SX∗∩C such that x∗0 attains its norm
at some point x0 ∈ SX . Choose δ ∈ ]0, 1/3[ small enough such that BX∗ [x∗0, δ] ⊆ C and
define C0 := cone(BX∗ [x∗0, δ]). Since BX∗ [x∗0, δ] is w∗-compact and does not contains zero,
we have that C0 is w∗-closed, and so, defining CX,0 := X∩(C0)

o, we get that (CX,0)o = C0.
Also, noting that C0 \ {0} = ]0,+∞[·BX∗ [x∗0, δ], we deduce that C0 \ {0} ⊆ C.

Let Z0 := Ker(x∗0) and consider the set K = CX,0∩(Z0+x0). We claim that K is bounded:
Indeed, if K is not bounded, there exists a direction z ∈ Z0 such that

{x0 + tz : t > 0} ⊆ K.

Fix x∗ ∈ X∗ such that 〈x∗, z〉 = 1. Since x0 ∈ int(C0), there exists λ > 0 small enough
such that x∗0 + λx∗ ∈ int(C0). Thus, for each t > 0 we would have

〈λx∗ + x∗0, x0 + tz〉 = λt+ 〈λx∗ + x∗0, x0 + tz〉 < 1,

which clearly is not possible. Thus, K has to be bounded as we claimed. Therefore, there
exists α > 0 such that αBZ0 ⊇ K. Also, as we did in proof of Proposition 2.3.12, we have
that CX,0 = cone(K). Define the closed cone DX,0 := cone(x0+αBZ0) and D0 := (DX,0)

o.
Since CX,0 = cone(K) ⊆ DX,0, we deduce that D0 ⊆ C0.
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Now, consider a dense subset {xn : n ∈ N} of SX , and a subset {x∗n : n ∈ N} of SX∗

such that 〈x∗n, xn〉 = 1. For each n ∈ N, we will denote Zn = Ker(x∗n). For each n ∈ N, it
is clear that xn + 1

4
BZn

⊆ BX

(
xn,

1
3

)
, and consider the sets CX,n = cone(BX

(
xn,

1
3

)
) and

DX,n = cone
(
xn +

1
4
BZn

)
. Denoting Cn := (CX,n)

o and Dn := (DX,n)
o, it is not hard to

see that Cn ⊆ Dn, since DX,n ⊆ CX,n by construction.

We claim that
⋃
Cn = X∗ \ {0}. Indeed, fix x∗ ∈ SX∗ and choose n ∈ N such that

〈x∗, xn〉 < −2
3
. Thus, for every x ∈ BX

(
xn,

1
3

)
we have that

〈x∗, x〉 = 〈x∗, x− xn〉+ 〈x∗, xn〉 < ‖x− xn‖ − 2
3
≤ −1

3
.

Thus, x∗ ∈
[
cone

(
BX

(
xn,

1
3

))]o
= Cn. By arbitrariness of x∗, we deduce that SX∗ ⊆

⋃
Cn, which proves our claim, since the sets Cn are cones.

Since Z0 and Zn are both closed hyperplanes of X, they are isomorphic. Thus, we can
choose an isomorphism Sn : Z0 → Zn such that

Sn(αBZ0) ⊆ 1
4
BZn

.

Define then the isomorphism Tn : X → X given by Tn(x0) = xn and Tn
∣
∣
Z0

= Sn. It is not
hard to see that, by construction

Tn(CX,0) ⊆ Tn(DX,0) = cone(Tn(x0 + αBZ0)) ⊆ cone
(
xn +

1
4
BZn

)
= DX,n,

which entails the inclusion Dn = (DX,n)
o ⊆ (Tn(CX,0))

o = (T ∗
n)

−1(C0). Finally, we can
write

X∗ \ {0} =
⋃

n∈N

Cn \ {0} ⊆
⋃

n∈N

Dn \ {0} ⊆
⋃

n∈N

(T ∗
n)

−1(C0 \ {0}) ⊆
⋃

n∈N

(T ∗
n)

−1(C),

which finishes the proof.

Theorem 2.3.25 Let X be a separable Banach space, and let (P) be a convex w∗-smooth-
like property fulfilling the w∗-sum rule. Then, X is (P)-geometrical if and only if for
every equivalent norm p on X, there exists a nonzero linear functional x∗ ∈ X∗ such that
PX(p∗, x∗) = 1.

Proof. As in the proof of Theorem 2.3.14, let us suppose that there exists an equivalent
norm p on X and an open set U ⊆ X∗ such that PX(p∗, u∗) = 0, for all u ∈ U . By set
consistency of (P), we know that PX(p∗, x∗) = 0 for all x∗ ∈ C :=]0,+∞[·U , where the
latter set is an open cone.

Using Proposition 2.3.24, there exists a countable family of isomorphisms {Tn : X →
X | n ∈ N} such that

X∗ \ {0} ⊆
⋃

n∈N

(T ∗
n)

−1(C).
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Consider then the function ρ∗ : X∗ → R+ given by

ρ∗(x
∗) :=

∞∑

n=0

2−n‖T ∗
n‖−1(p∗ ◦ T ∗

n)(x
∗),

where T ∗
0 = idX∗ , and the operators norm ‖ · ‖ in L(X∗;X∗) is taken with respect to the

norm p∗. Noting that for every x∗ ∈ X∗ we can write

p∗(x
∗) ≤ ρ∗(x

∗) ≤
∞∑

n=0

2−np∗(x
∗) = 2p∗(x

∗),

we have that ρ∗ is an equivalent norm on X∗. To prove then that it is an equivalent
dual norm, it is enough to show that ρ∗ is w∗-lower semicontinuous. To do so, according
to the sublinearity of ρ∗ and Propositions 1.2.26 and 1.2.27, it is enough to show that
B(X∗,ρ∗) = {x∗ ∈ X∗ : ρ∗(x

∗) ≤ 1} is w∗-closed.

Let (x∗λ)λ∈Λ be a net in B(X∗,ρ∗) w
∗-converging to some point x∗ ∈ X∗ and let ε > 0. Since

ρ∗ ≤
∑∞

n=0 2
−np∗ and recalling that B(X∗,ρ∗) ⊆ 2B(X∗,p∗), there exists n ∈ N such that

∞∑

k>n

2−k‖T ∗
k ‖−1(p∗ ◦ T ∗

k )(y
∗) ≤ ε, ∀y∗ ∈ clw∗(B(X∗,ρ∗)).

In particular, this inequality holds for every x∗λ and for the limit point x∗. Defining
ρ∗,n :=

∑n
k=0 2

−k‖T ∗
k ‖−1(p∗ ◦ T ∗

k ), we have that ρ∗,n ∈ Γ0(X
∗, w∗) (since it is a finite sum

of w∗-lsc functions) and so, its level sets are w∗-closed. Thus, since ρ∗,n(x∗λ) ≤ ρ∗(xλ∗) ≤ 1
for all λ ∈ Λ and x∗λ⇀

w∗
x∗, we get that ρ∗,n(x∗) ≤ 1. Finally, we deduce that

ρ∗(x
∗) ≤ ρ∗,n(x

∗) + ε ≤ 1 + ε.

Since ε is arbitrary, we deduce that ρ∗(x∗) ≤ 1, which proves that B(X∗,ρ∗) is w∗-closed,
entailing the w∗-lower semicontinuity of ρ∗.

The rest of the proof follows exactly as in Theorem 2.3.14, using the w∗-transitivity of
(P) and noting that, by the same reasoning as above, for each n ∈ N, the function
ρ∗,−n :=

∑

k 6=n 2
−k‖T ∗

k ‖−1(p∗ ◦ T ∗
k ) belongs to Γ0(X

∗, w∗) as well.

2.4 Some Examples and Final comments

As we have shown, convex smooth-like and w∗-smooth-like properties have remarkable
stability behaviors which rely only on very natural characteristics. Even though they are
motivated by Asplund and w∗-Asplund spaces (and therefore, by Fréchet-differentiability),
these are not the only examples of such a type of properties.
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Another family of spaces that can be fitted in this framework are Gâteaux Differentiable
spaces (GDS): A Banach space is said to be GDS, if for every function f ∈ Γ0(X) with
int(dom f) 6= ∅, the set

{x ∈ int(dom f) : f is G-differentiable at x}

is dense in int(dom f). It is intuitive that defining the property (P) by setting D(X) =
Γ0(X)×X and

PX(f, x) = 1 ⇐⇒ f is G-differentiable at x,

then (P) is a convex smooth-like property and the family GD spaces are the (P)-structural
spaces. These family of spaces is beautifully developed in [36, Ch. 6]. As final comments
of this chapter, we consider β-differentiability spaces, where β is any bornology of Banach
spaces. The differentiability with respect to a bornology can be tracked back to the
seminal work of J. Borwein and D. Preiss [4], and it is nicely developed in [36, Ch. 4
and Ch. 6]. We will prove that these spaces are in fact (βP)-structural spaces for some
convex smooth-like property (βP), associated to the bornology β.

Definition 2.4.1 (Bornology) Let X be a Banach space. A bornology β on X is a family
of bounded subsets of X such that

(a) For each λ ∈ R and each B ∈ β, λB ∈ β.

(b) For each B ∈ β and each B′ ⊆ B, we have that B′ ∈ β.

(c) For each pair B1, B2 ∈ β, we have that B1 ∪ B2 ∈ β.

(d) β is a cover of X, that is, X =
⋃

B∈β B.

There are alternative notions of bornologies, which do not ask stability by scalar multi-
plication, nor boundedness. Nevertheless, to our purpose this notion is the most suitable
one.

Definition 2.4.2 (β-Differentiability) Let X be a Banach space and β be a bornology on
X. We say that a function f : X → R∞ is β-differentiable at a point x ∈ dom f if it is
Gâteaux-differentiable at x and the limit defining ∇f(x) exists β-uniformly, that is,

sup
h∈B

∣
∣
∣
∣

f(x+ th)− f(x)

t
−∇f(x)h

∣
∣
∣
∣

tց0−−→ 0, ∀B ∈ β.

Definition 2.4.3 (General Banach Bornology) A general Banach bornology β := {β(X)}
is a family of collections of sets indexed by the class of Banach spaces, such that β(X) is
a bornology on every Banach space X and such that

(a) For every two Banach spaces X and Y and any continuous surjective linear operator
T : X → Y , we have T (β(X)) = β(Y ).
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(b) For every Banach space X and every closed subspace Z of X, we have that β(Z) ⊆
β(X).

General bornologies are in fact the ones that are used in the classic literature. For example,
we have the Gâteaux-bornology given by the collection of all finite subsets of X, the
Hadamard-bornology given by the precompact subsets of X, and the Fréchet-bornology
given by all bounded sets of X.

Definition 2.4.4 ((βP) property) Let β be a general Banach bornology. We define the
Banach space property (βP) as follows: For each Banach space X, D(X) := Γ0(X)×X
and the function βPX is given by

βPX(f, x) = 1 ⇐⇒ x ∈ int(dom f) and f is β(X)-differentiable at x.

Theorem 2.4.5 For every general Banach bornology β, the property (βP) is a convex
smooth-like property fulfilling the sum rule.

Proof. It is direct that (βP) is local. Let us prove that it is also transitive. Let X
and Y be two Banach spaces, T : X → Y be a continuous surjective linear operator,
and f ∈ Γ0(Y ) such that int(dom f) is nonempty. Denoting g := f ◦ T , it is clear that
int(dom g) = T−1(int(dom f)), and so, for every x /∈ int(dom g),

βPX(g, x) = 0 = βPY (g, Tx).

Applying a very simple chain rule, we also know that

x ∈ int(dom g) and g is G-differentiable at x

⇔
Tx ∈ int(dom f) and f is G-differentiable at Tx, (2.11)

and in such a case, ∇g(x) = T ∗(∇f(Tx)) = ∇f(Tx) ◦ T . Now, let us fix x ∈ int dom g
such that g is G-differentiable at x. Then, for each B ∈ β(X) we can write

sup
h∈B

∣
∣
∣
∣

g(x+ th)− g(x)

t
−∇g(x)h

∣
∣
∣
∣
= sup

h∈B

∣
∣
∣
∣

f(Tx+ tTh)− f(Tx)

t
−∇f(Tx)Th

∣
∣
∣
∣

= sup
h∈T (B)

∣
∣
∣
∣

f(Tx+ th)− f(Tx)

t
−∇f(Tx)h

∣
∣
∣
∣
.

Then, using that β(Y ) = T (β(X)), we conclude by the preceding equality and by equi-
valence (2.11), that

x ∈ int(dom g) and g is β(X)-Diff. at x

⇔
Tx ∈ int(dom f) and f is β(Y )-Diff. at Tx,
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which entails the transitivity of (βP). Let us continue with set-consistency. Fix a
nonempty w∗-closed convex subset K of X∗ and a point x∗ ∈ X∗. The sublinearity
of σK yields directly the condition (iii.a) of Definition 2.3.1. Also, since we can write

σK+x∗(x) = σK(x) + 〈x∗, x〉 and ∂σK+x∗(x) = ∂σK(x) + x∗,

for all x ∈ X, we easily deduce that int(dom σK+x∗) = int(dom σK), that the points of
Gâteaux-differentiability of σK+x∗ and σK coincide and that if x ∈ int(dom σK) is such a
point, then ∇σK+x∗(x) = ∇σK(x) + x∗. Then, we deduce that for any B ∈ β(X)

sup
h∈B

∣
∣
∣
∣

σK+x∗(x+ th)− σK+x∗(x)

t
−∇σK+x∗(x)h

∣
∣
∣
∣
= sup

h∈B

∣
∣
∣
∣

σK(x+ th)− σK(x)

t
−∇σK(x)h

∣
∣
∣
∣
,

which combined with the above observations, yields condition (iii.b) of Definition 2.3.1,
proving the set-consistency of (βP). To conclude that (βP) is a convex smooth-like
property, it only rests to prove that it is epigraphical. Fix then f ∈ Γ0(X) and recall by
Lemma 2.3.8 that

int(dom σepi f∗) =]0,+∞[·(int(dom f)× {−1}).

So, for each x /∈ int(dom f) we already have that βPX(f, x) = βPX×R(σepi f∗ , (x,−1)).
Now, assume that x ∈ int(dom f). Since

∂f(x) = {x∗ ∈ X∗ : f(x) + f ∗(x∗) = 〈x∗, x〉}
= {x∗ ∈ X∗ : σepi f∗(x,−1) = 〈x∗, x〉 − f ∗(x∗)}
= {x∗ ∈ X∗ : (x∗, f ∗(x∗)) ∈ ∂σepi f∗(x,−1)}

It is easy to see that f is G-differentiable at x if and only if σepi f∗ is G-differentiable at
(x,−1). Thus, we only need to prove that, under the assumption of Gâteaux-differentiability

βPX(f, x) = 1 ⇐⇒ βPX×R(σepi f∗ , (x,−1)) = 1. (2.12)

Suppose first that σepi f∗ is β(X×R)-differentiable at (x,−1) . Fix B ∈ β(X) and consider
δ > 0 small enough such that for every t ∈]0, δ[, x + th ∈ int(dom f) (such a δ exists,
given that B is bounded). Since ∂f(x+ th) 6= ∅ for each h ∈ B and each t ∈ ]0, δ[, we get
that f(x+ th) = σepi f∗(x+ th,−1) and so, denoting σ := σepi f∗ , for each t ∈ ]0, δ[ we can
write

sup
h∈B

∣
∣
∣
∣

f(x+ th)− f(x)

t
−∇f(x)h

∣
∣
∣
∣
= sup

h∈B

∣
∣
∣
∣

σ(x+ th,−1)− σ(x,−1)

t
−∇σ(x,−1)(h, 0)

∣
∣
∣
∣
,

which entails the β(X)-differentiability of f at x, since the term of the right-hand side
converges to 0 as t ց 0. This proves the sufficiency in the equivalence (2.12). Now,
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suppose that f is β(X)-differentiable at x, and fix B ∈ β(X×R). Now for each (h, s) ∈ B
and each t > 0, denote λ := |1 − ts|−1t. It is not hard to deduce that for t > 0 small
enough

σ(x+ th, ts− 1)− σ(x,−1)

t
=

|1− ts|σ(x+ λ(h+ sx),−1)− σ(x,−1)

t

=
f(x+ λ(h+ sx))− f(x)

λ
+

|ts− 1| − 1

t
f(x)

=
f(x+ λ(h+ sx))− f(x)

λ
− sf(x).

The latter equality tells us

∇σ(x,−1)(h, s) = ∇f(x)(h+ sx)− sf(x).

Finally, define the operator T : X×R → X given by T (h, s) = h+sx. Clearly T is linear,
continuous and surjective. Thus, β(X) = T (β(X ×R)). Combining these three elements,
we get that for t > 0 small enough

sup
(h,s)∈B

∣
∣
∣
∣

σ(x+ th, ts− 1)− σ(x,−1)

t
−∇σ(x,−1)(h, s)

∣
∣
∣
∣

= sup
(h,s)∈B

∣
∣
∣
∣

f(x+ λ(h+ sx))− f(x)

λ
−∇f(x)(h+ sx)

∣
∣
∣
∣

= sup
h′∈T (B)

∣
∣
∣
∣

f(x+ λh′)− f(x)

λ
−∇f(x)h′

∣
∣
∣
∣
.

Noting that λց 0 as tց 0, we deduce that the last term of this equality converges to 0
as tց 0 (provided T (B) ∈ β(X)), which entails that

lim
tց0

sup
(h,s)∈B

∣
∣
∣
∣

σ(x+ th, ts− 1)− σ(x,−1)

t
−∇σ(x,−1)(h, s)

∣
∣
∣
∣
= 0.

This proves that σ is β(X×R)-differentiable at (x,−1), which proves the necessity in the
equivalence 2.12. Thus, (βP) is epigraphical, which proves that it is a convex smooth-like
property.

Now, let us check that (βP) fulfills the sum rule. Fix f, g ∈ Γ0(X) and x ∈ X. Since
dom(f + g) = dom f ∩ dom g, it is not hard to see that int(dom(f + g)) coincides with
int(dom f) ∩ int(dom g) and so

βPX(f + g, x) = min{βPX(f, x), βPX(f, x)} (2.13)

for each x /∈ int(dom(f + g)). Thus, without loss of generality, we may assume that
int(dom(f + g)) 6= ∅. Fix x ∈ int(dom(f + g)). Applying Proposition 1.2.22, we know
that ∂(f + g)(x) = ∂f(x) + ∂g(x), and so if one of the functions is not G-differentiable
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at x, then βP(f + g, x) = 0 and so equation 2.13 holds at x. Now, if both functions are
G-differentiable at x we have that for each B ∈ β(X),

lim sup
tց0

sup
h∈B

∣
∣
∣
∣

(f + g)(x+ th)− (f + g)(x)

t
−∇(f + g)(x)h

∣
∣
∣
∣

≤ lim sup
tց0

sup
h∈B

∣
∣
∣
∣

f(x+ th)− f(x)

t
−∇f(x)h

∣
∣
∣
∣
+ lim sup

tց0
sup
h∈B

∣
∣
∣
∣

g(x+ th)− g(x)

t
−∇g(x)h

∣
∣
∣
∣
.

Thus, if both functions are β(X)-differentiable at x, then f + g also is β(X)-differentiable
at x. Finally, assume that f + g and one of the functions, let us say f , are β(X)-
differentiable at x. To conclude that equation (2.13) always holds, it is enough to show
that in this case g must also be β(X)-differentiable at x.

Clearly g has to be G-differentiable at x since it was already established that this was a
necessary condition in order to have the β(X)-differentiability of f + g at x. Moreover,
∇g(x) = ∇(f + g)(x) − ∇f(x). Thus, denoting γ := f + g, for each B ∈ β(X) we can
write

lim sup
tց0

sup
h∈B

∣
∣
∣
∣

g(x+ th)− g(x)

t
−∇g(x)h

∣
∣
∣
∣

≤ lim sup
tց0

sup
h∈B

∣
∣
∣
∣

f(x+ th)− f(x)

t
−∇f(x)h

∣
∣
∣
∣
+ lim sup

tց0
sup
h∈B

∣
∣
∣
∣

γ(x+ th)− γ(x)

t
−∇γ(x)h

∣
∣
∣
∣
,

and so g is also β(X)-differentiable at x. This finishes the proof.

All those examples of convex smooth-like properties have an extra feature in common:
the families of structural and w∗-geometrical spaces are equivalent. This is provided by
proving that

X is a β-differentiability space⇒X × R is a β-differentiability space.

The proof is given for GD spaces, based on penalty functions (see [36, Proposition 6.5]),
proposed by M. Fabian and using the ideas of A. Ioffe, as commented at the end of [36,
Ch. 6].

We would like to introduce this implication as a characteristic of smooth-like properties,
but we encounter a problem: Convex smooth-like and w∗-smooth-like properties are in-
troduced to study SDPD Banach spaces (see Definition 1.3.17 in Chapter 1 and Chapter
3 below), but we still don’t know if SDPD spaces are stable by product, even when one
of them is finite-dimensional. These problems remain open.



Chapter 3

The Faces Radon-Nikodým Property

In this chapter, we come back to the study of the last part of Chapter 1, namely, the study
of SDPD spaces. Noting that for a Banach space X the Mackey topology τ(X∗, X∗∗) in
the dual space coincides with the topology of the dual norm and according to Lemma
2.1.1, the definition of SDPD spaces (Definition 1.3.17) can be redefined as follows: A
Banach space X is an SDPD space if for every function f ∈ Γ0(X

∗, w∗) there exists a
dense subset D of int(dom f) such that

∂f(x∗) = X ∩ ∂f(x∗)w
∗∗

, (3.1)

for all x∗ ∈ D. Our aim in this chapter is to study SDPD spaces according to the tools
developed in Chapter 2, trying to answer the following fundamental question: Does the
class of SDPD spaces coincides or not with the class of w∗-Asplund spaces?

3.1 Characterizations of SDPD equation

In this section, we will summarize the known characterizations of equation (3.1). Recall
that in Proposition 1.3.18 we already showed that for every function f ∈ Γ0(X

∗, w∗) and
every x∗ ∈ int(dom f)

∂f(x∗) = X ∩ ∂f(x∗)w
∗∗

⇐⇒ f ′(x∗, ·) is w∗-lsc.

Clearly, in order to have equation (3.1) for f ∈ Γ0(X
∗, w∗) at x∗ ∈ int(dom f) it is

necessary that X ∩ ∂f(x∗) 6= ∅. A natural first question is if this is also sufficient. The
answer is negative, as the following example shows:

Example 3.1.1 Fix X = ℓ1 and denote by ei the ith canonic vector of ℓ1. Consider the

103
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two sequences (xn) and (yn) in ℓ1 defined as follows: x1 = y1 = e1 and for n > 0






xn := 1
n
e1 + en.

yn := 1
n
e1 − en.

Let K := co{xn, yn : n ∈ N}. We will show that 0 ∈ exp(K) (as a subset of X),
but 0 /∈ ext(clw∗∗(K)) (as a subset of X∗∗). If our claim holds true, then there exists a
functional ϕ ∈ X∗ = ℓ∞ such that X ∩ ∂σK(ϕ) = {0} but {0} ( ∂σK(ϕ), since otherwise
Lemma 1.3.14 would yield to the inclusion ϕ ∈ ext(clw∗∗(K)). After proving this, we
would have shown that σK and ϕ don’t verify equation (3.1), even though ϕ is a support
functional of K.

Recalling that X∗ = ℓ∞, let us fix ϕ := −e1. For each n ∈ N, we have that ϕ(xn) =
ϕ(−yn) = −1/n < 0. Thus, ϕ(x) ≤ 0 for each x ∈ K. Also, since 1

n
e1 =

1
2
xn + 1

2
yn ∈ K,

we know that 0 ∈ K and so σK(ϕ) = 0 = ϕ(0).

Let us prove first that ϕ exposes 0 in K. Suppose that this is not the case, that is, there
exists z ∈ K \ {0} such that ϕ(z) = 0. We know that there exists a sequence of convex
combinations (zn) converging to z given by

zn =
kn∑

i=1

αni x
i + βni y

i, with αni , β
n
i ≥ 0 and

kn∑

i=1

αni + βni = 1.

Fix j ∈ N, and consider the real sequence (znj )n∈N given by the jth coordinate of each zn.
Looking at the definitions of xn, yn and zn we deduce that

znj =

{

αnj − βnj if j ≤ kn

0 otherwise.

Without loss of generality, let us assume that kn ≥ j for each n ∈ N. Fixing ε > 0, there
exists n0 ∈ N such that for every n ≥ n0 we have the inequality

kn∑

i=1

αi + βi
i

= |ϕ(zn)| ≤ ε

2j
.

This yields that αi + βi ≤ ε/2 and so, αj ≤ ε/2 and βj ≤ ε/2. Then, for each n ≥ n0 we
can write

|znj | = |αj − βj| ≤ ε.

Since ε is arbitrary, this entails that znj → 0 and so,

zj = 〈ej, z〉 = lim
n→∞

〈ej, zn〉 = lim
n→∞

znj = 0.

Repeating this process for each j ∈ N, we deduce that z = 0, which is a contradiction.
Thus, ϕ exposes 0 in K.
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To finish our example, we only need to prove that 0 /∈ ext(clw∗∗ K). Note first that 1
n
e1

converges to 0 and, since BX∗∗ is w∗∗-compact, we also know that the sequence (en)n∈N has
a subnet (uα)α∈Λ w

∗∗-converging to some point u∗∗ ∈ BX∗∗ . If we consider the functional
1 ∈ ℓ∞ given by the constant sequence 1n = 1, we easily see that u∗∗ 6= 0, since

〈1, u∗∗〉 = lim
α
〈1, uα〉 = 1.

Let us denote for each α ∈ Λ the integer nα ∈ N such that uα = enα
. If we consider the

nets (xα) and (yα) given by

xα =
1

nα
e1 + uα and yα =

1

nα
e1 − uα,

it is not hard to see that xα⇀w∗∗
u∗∗ and yα⇀w∗∗ −u∗∗, and so u∗∗ and −u∗∗ belong to

clw∗∗(K). Thus, since 0 = 1
2
u∗∗ + 1

2
(−u∗∗), we deduce that 0 is not an extreme point of

clw∗∗(K), which finishes the proof.

�

In their paper of 2007 [13], Chakrabarty, Shunmunagaraj and Zălinescu studied several
continuity properties of the subdifferential and ε-subdifferential of convex functions. Their
work gather some other contributions in the same line, as [15], [27], [29] and [28], and it
provides a survey as well as a generalization of those contributions.

In that paper, equation (3.1) was characterized in terms of a notion called Hausdorff-upper
semicontinuity.

Definition 3.1.2 Let (T, τ) be a topological space, (Z, θ) be a locally convex space, M :
T ⇒Z be a set-valued operator between them and t0 ∈ T . We say that M is τ -θ Hausdorff-
upper semicontinuous ( τ -θ H-usc, for short) at t0 if

∀V ∈ NZ(0), ∃U ∈ NT (t0) such that M(U) ⊆M(t0) + V.

Note that, if (Z, θ) is a normed space, that is, there exists a norm ‖ · ‖ on Z such that
θ = τ‖·‖, then M is τ -τ‖·‖ H-usc at t0 if for every ε > 0 there exists U ∈ NT (t0) such that

M(U) ⊆M(t0) + BZ(0, ε)(= {z ∈ Z : dM(t0)(z) < ε}).

Note also that Hausdorff-upper semicontinuity is weaker than usual upper-semicontinuity
(see Definition 1.2.14).

Definition 3.1.3 For a function f ∈ Γ0(X
∗, w∗), we define the set-valued operator ðf :

R+ ×X∗ ⇒X given by
ðf(ε, x∗) := X ∩ ∂εf(x∗).
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In [13], the set-valued operator ðf was denoted as SXf , but we prefer this new notation
which gives the idea of a truncated ε-subdifferential. Note also that, endowing X∗ with
the w∗-topology, ðf(ε, x∗) coincides with the ε-subdifferential of f at x∗ with respect to
the duality 〈X,X∗〉. In the next two propositions, we recall some results in [13] that we
will need in the other sections.

Proposition 3.1.4 ([13, Proposition 5.1]) Let θ be a locally convex topology on X in
between w(X,X∗) and τ‖·‖, and let f ∈ Γ0(X

∗, w∗) and x∗ ∈ int(dom f). The following
assertions are equivalent:

(a) ðf(·, x∗) : R+ ⇒X is τ0-θ H-usc at 0.

(b) ðf(0, ·) : X∗ ⇒X is τ‖·‖-θ H-usc at x∗.

(c) ðf is (τ0 × τ‖·‖)-θ H-usc at (0, x∗).

Theorem 3.1.5 ([13, Proposition 5.2]) Let f ∈ Γ0(X
∗, w∗) and let x∗ ∈ int(dom f). We

have that
∂f(x∗) = X ∩ ∂f(x∗)w

∗∗

⇐⇒ ðf(0, ·) is τ‖·‖-w H-usc at x∗.

3.2 Geometrical interpretation of SDPD spaces: the

FRNP

Let us consider the property (P) as follows: For a Banach space X, the domain of PX is
D(X) = Γ0(X

∗, w∗)×X∗ and PX is given by the equivalence

PX(f, x∗) = 1 ⇐⇒ x∗ ∈ int(dom f ∗) and ∂f(x∗) = X ∩ ∂f(x∗)w
∗∗

. (3.2)

We will show that (P) is a convex w∗-smooth-like property and thus, to be an SDPD
space will be exactly to be a (P)-w∗-structural space. To do so, we will work with the
characterization of Theorem 3.1.5 and we will prove that Hausdorff-upper semicontinuity
satisfies the requirements of a convex w∗-smooth-like property.

In what follows, θ will be a locally convex topology on X between w(X,X∗) and τ‖·‖.

Lemma 3.2.1 Let f, g ∈ Γ0(X
∗, w∗) and U ⊆ X∗ be an open set. If f and g coincide in

U , then for every u∗ ∈ U

ðf(0, ·) is τ‖·‖-θ H-usc at u∗ ⇐⇒ ðg(0, ·) is τ‖·‖-θ H-usc at u∗.

Proof. Note that, since f
∣
∣
U
= g

∣
∣
U
, we also have that for each u∗ ∈ U , ∂f(u∗) = ∂g(u∗)

and therefore ðf(0, u∗) = ðg(0, u∗). Choose u∗ ∈ U and suppose that ðf(0, ·) is τ‖·‖-θ
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H-usc at u∗. Let V ∈ N (0, θ). There exists U ′ ∈ N (u∗, τ‖·‖∗) such that

ðf(0, U ′) ⊆ ðf(0, u∗) + V.

Define U ′′ = U ′ ∩ U , which is also a neighborhood of u∗. Then,

ðg(0, U ′′) = ðf(0, U ′′) ⊆ ðf(0, u∗) + V = ðg(0, u∗) + V.

Since V is an arbitrary element of NX(0, θ), we conclude that g has to be τ‖·‖-θ H-usc at
u∗. The equivalence follows from the symmetry of f and g in the previous reasoning.

Lemma 3.2.2 Let σ ∈ Γ0(X
∗, w∗) be a sublinear function, x∗ ∈ int(dom σ). Then

ðσ(0, ·) is τ‖·‖-θ H-usc at x∗ =⇒ ðσ(0, ·) is τ‖·‖-θ H-usc at tx∗, ∀t > 0.

Also, if σ = σK with K ⊆ X being a closed convex set, then for each x ∈ X

ðσK(0, ·) is τ‖·‖-θ H-usc at x∗ =⇒ ðσK+x(0, ·) is τ‖·‖-θ H-usc at x∗.

Proof. For the first implication, let t > 0 and suppose that there exists an open neigh-
borhood V ∈ N (0, θ) such that

∀U ∈ N (tx∗), ðσ(0, U) 6⊆ ðσ(0, tx∗) + V.

Then, we can construct a net (x∗U)U∈N (tx∗) such that x∗U → tx∗ and

∀U ∈ N (tx∗), ∃xU ∈ X, xU ∈ ðσ(0, x∗U) \ (ðσ(0, tx∗) + V ) .

Recalling that σ is sublinear, we get that for each z∗ ∈ X∗, ∂σ(z∗) = ∂σ(tz∗) and therefore
ðσ(0, z∗) = ð(0, tz∗). Then, since the net (t−1x∗U)U∈N (tx∗) converges to x∗ and ðσ(0, ·) is
τ‖·‖-θ H-usc at x∗, there exists U0 ∈ N (tx∗) such that

∀U ∈ N (tx∗) with U ⊆ U0, ðσ(0, t
−1x∗U) ⊆ ðσ(0, x∗) + V = ðσ(0, tx∗) + V.

In particular, xU0 ∈ ðσ(0, x∗U0
) = ð(0, t−1x∗U0

) ⊆ ðσ(0, tx∗) + V , which is a contradiction.

To prove the second implication, note that for each x ∈ X and each ε ≥ 0, ∂εσK+x(z
∗) =

∂εσK(z
∗) + x for all z∗ ∈ X∗. Therefore,

ðσK+x(ε, z
∗) = ðσK(ε, z

∗) + x, ∀(ε, z∗) ∈ R+ ×X∗.

Now, if ðσK(0, ·) is τ‖·‖-θ H-usc at x∗, then, by Proposition 3.1.4, we get that ðσK(·, x∗)
is τ0-θ H-usc at 0. Let V ∈ N (0, θ). There exists ε > 0 such that

ðσK(ε, x
∗) ⊆ ðσK(0, x

∗) + V.

Thus,

ðσK+x(ε, x
∗) = ðσK(ε, x

∗) + x ⊆ ðσK(0, x
∗) + x+ V = ðσK+x(0, x

∗) + V.

We conclude that σK+x(·, x∗) is τ0-θ H-usc at 0 and, applying again Proposition 3.1.4, the
proof is completed.
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Lemma 3.2.3 Let f ∈ Γ0(X) with int(dom f ∗) 6= ∅ and x∗ ∈ int(dom f ∗). Then

ðf ∗(0, ·) is τ‖·‖-θ H-usc at x∗ ⇐⇒ ðσepi f (0, ·) is (τ‖·‖ × τ0)-(θ × τ0) H-usc at (x∗,−1).

Proof. Let us show first the necessity. Suppose that ðσepi f (0, ·) is (τ‖·‖ × τ0)-(θ × τ0)
H-usc at (x∗,−1). Then, for each V ∈ NX(0, θ) there exists ε > 0 such that for U =
(x∗,−1) + ε(BX∗ × [−1, 1]) we have that

ðσepi f (0, U) ⊆ ðσepi f (0, (x
∗,−1)) + V × R.

In particular, for each z∗ ∈ x∗ + εBX∗ , ðσepi f (0, (z∗,−1)) ⊆ ðσepi f (0, (x
∗,−1)) + V × R.

Noting that

ðσepi f (0, (z
∗,−1)) = {(z, f(z)) ∈ epi f : z ∈ ðf ∗(0, z∗)}, (3.3)

we conclude that ðf ∗(0, z∗) ⊆ ðf ∗(0, x∗) + V for each z∗ ∈ x∗ + εBX∗ . Thus, ðf ∗(0, ·) is
τ‖·‖-θ H-usc at x∗.

For the sufficiency, suppose that ðf ∗(0, ·) is τ‖·‖-θ H-usc at x∗. Let V ∈ N (0, θ) and δ > 0.
Since θ is finer than the weak topology, we can assume without losing generality that

V ⊆
{
x ∈ X : |〈x∗, x〉| ≤ δ

2

}
.

By hypothesis, there exists ε1 > 0 such that ðf ∗(0, x∗ + ε2BX∗) ⊆ ðf ∗(0, x∗) + V . Also,
since ∂f ∗ is bounded near x∗ we can apply Lemma 2.3.5 to find ε2 > 0 such that

∀z∗ ∈ x∗ + ε2BX∗ , ðf ∗(0, z∗) ⊆ ∂δ/2f
∗(x∗).

Define ε = min{ε1, ε2, δ}. Then, for z∗ ∈ x∗ + εBX∗ and z ∈ ðf ∗(0, z∗), there exists
x ∈ ðf ∗(0, x∗) such that z − x ∈ V , and so, since x∗ ∈ ∂f(x) and x∗ ∈ ∂δ/2f(z) (since
f ∈ Γ0(X)), we have that

−δ < −δ
2
≤ 〈x∗, z − x〉 ≤ f(z)− f(x) ≤ 〈x∗, z − x〉+ δ

2
≤ δ.

Thus, we have that (z, f(z)) ∈ (x, f(x)) + V× ]− δ, δ[⊆ ðσepi f (0, (x
∗,−1)) + V× ]− δ, δ[,

where the last inclusion is due to the fact that x ∈ ðf ∗(0, x∗) and the equality (3.3), which
is valid for all z∗ ∈ X∗. Using again equality (3.3), we can write

∀z∗ ∈ x∗ + εBX∗ , ðσepi f (0, (z
∗,−1)) ⊆ ðσepi f (0, (x

∗,−1)) + V×]− δ, δ[.

Now, take η ∈ ]0, 1[ small enough such that
]

1

1 + η
,

1

1− η

[

· (x∗ + ηBX∗) ⊆ x∗ + εBX∗ ,

and define U = (x∗+ηBX∗)×]−1−η,−1+η[. For (z∗, t) ∈ U , we have that 1
|t|

∈
]

1
1+η

, 1
1−η

[

,

and so |t|−1z∗ ∈ x∗ + εBX∗ . Then,

ðσepi f (0, (z
∗, t)) = ðσepi f (0, (|t|−1z∗,−1)) ⊆ ðσepi f (0, (x

∗,−1)) + V×]− δ, δ[,
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and so, we have that ðσepi f (0, U) ⊆ ðσepi f (0, (x
∗,−1))+V×]− δ, δ[. Since the sets of the

form V×] − δ, δ[ are a base of neighborhoods of 0 for the topology τ × τ0, we conclude
that ðσepi f (0, ·) is (τ‖·‖ × τ0)-(θ × τ0) H-usc at (x∗,−1).

Lemma 3.2.4 Let Y be a Banach space such that there exists T : Y → X an one-to-
one bounded linear operator with closed range. Let θY be a locally convex topology on Y

between the weak and the norm topologies. If T is θY -θ-continuous and θY -
(

θ
∣
∣
T (Y )

)

-open,

then, for every function f ∈ Γ0(Y
∗, w∗) and every functional y∗ ∈ Y ∗,

ð(f ◦ T ∗)(0, ·) is τ‖·‖-θ H-usc at x∗ ⇐⇒ ðf(0, ·) is τ‖·‖-θY H-usc at T ∗y∗.

Proof. Fix f ∈ Γ0(Y
∗, w∗) and y∗ ∈ Y ∗. Note that, by the classical chain rule of the

subdifferential, for each z∗ ∈ X

∂(f ◦ T ∗)(z∗) = T ∗∗[∂f(T ∗z∗)],

and therefore ð(f ◦ T ∗)(0, z∗) = T [ðf(0, T ∗z∗)], according to the fact that for each set
A ⊂ Y ∗∗, we have that T (Y ∩ A) = X ∩ T ∗∗(A). Indeed, since T ∗∗

∣
∣
Y
= T , we have that

T (Y ∩ A) ⊆ X ∩ T ∗∗(A). For the other inclusion, let x ∈ X ∩ T ∗∗(A) and y∗∗ ∈ A such

that T ∗∗(y∗∗) = x. Since the range of T ∗∗ is T (Y )
w∗∗

, we have that x ∈ T (Y )
w∗∗

, and so
there exists a net (xλ)λ∈Λ ⊆ T (Y ) such that xλ⇀x. But, since T (Y ) is convex and closed,
it is also w-closed. Then, x ∈ T (Y ) and so, by injectivity of T ∗∗, y∗∗ ∈ Y . Therefore,
x ∈ T (Y ∩ A).

This latter equality will be the key tool for the proof.

Assume first that ðf(0, ·) is τ‖·‖-θY H-usc at T ∗x∗ and let W ∈ NX(0, θ). Since T−1(W ) ∈
NY (0, θY ), there exists U ⊆ NY ∗(T ∗x∗) such that

ðf(0, U) ⊆ ðf(0, T ∗x∗) + T−1(W ).

Therefore,

ð(f◦T ∗)(0, (T ∗)−1(U)) = T [ðf(0, U)] ⊆ T [ðf(0, T ∗x∗)]+T [T−1(W )] ⊆ ð(f◦T ∗)(0, x∗)+W,

where the first equality is provided by the fact that T ∗ is onto (and so T ∗[(T ∗)−1(U)] =
U). By the arbitrariness of W and the fact that T ∗ is an open map, we conclude that
∂(f ◦ T ∗)(0, ·) is τ‖·‖-θ H-usc at x∗.

Assume now that ð(f ◦ T ∗)(0, ·) is τ‖·‖-θ H-usc at x∗ and let V ∈ NY (0, θY ). We can
assume, without losing generality, that V is open and so, that T (V ) is a θ

∣
∣
T (Y )

-open set

of T (Y ). Then, there exists an open set W ∈ NX(0, θ) such that W ∩ T (Y ) = T (V ) and
so, there also exists U ⊆ NX∗(x∗) such that

ð(f ◦ T ∗)(0, U) ⊆ ð(f ◦ T ∗)(0, x∗) +W.
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Thus, we have that T [ðf(0, T ∗(U))] ⊆ T [ðf(0, T ∗x∗)] +W . But, since T [ðf(0, T ∗(U))] ⊆
T (Y ),

T [ðf(0, T ∗(U))] ⊆ T (Y ) ∩ (T [ðf(0, T ∗x∗)] +W ) = T [ðf(0, T ∗x∗) + V ].

Finally, since T is one-to-one, ðf(0, T ∗(U)) ⊆ ðf(0, T ∗x∗)+V , and also, since T ∗ is onto,
T ∗(U) ∈ NY ∗(T ∗x∗). Since V is an arbitrary element of NY (0, θY ), we conclude that
ðf(0, ·) is τ‖·‖-θ H-usc at T ∗x∗. This finishes the proof.

We can now establish that (P) is a convex w∗-smooth-like property.

Theorem 3.2.5 The property (P) is a convex w∗-smooth-like property, and so, in view
of the equivalence (3.2), to be an SDPD space is to be (P)-w∗-structural.

Proof. If we consider θ = w, Theorem 3.1.5 and Lemmas 3.2.1, 3.2.2 and 3.2.3 show that
(P) is local, set-consistent and epigraphical, respectively. Thus, it only rests to prove that
(P) is w∗-transitive.

For this, let X, Y be two Banach spaces such that there exists T : Y → X an one-to-one
bounded linear operator. By Lemma 3.2.4, we only need to prove that T is w-w

∣
∣
T (Y )

-open,
since it is known that it is w-w-continuous. Let then W be a w-open set of Y . Without
losing generality, we may assume that 0 ∈ W and

W = {y ∈ Y : |〈y∗i , y〉| ≤ εi, ∀i ∈ {1, . . . , n}},

where n ∈ N, y∗1, . . . , y
∗
n ∈ Y ∗ and ε1, . . . , εn > 0. Since T is one-to-one and has closed

range, T ∗ is onto and so there exist x∗1, . . . , x
∗
n ∈ X∗ such that T ∗(x∗i ) = y∗i , for all

i ∈ {1, . . . , n}. Then, we can write

W = {y ∈ Y : |〈T ∗x∗i , y〉| ≤ εi, ∀i ∈ {1, . . . , n}}
= {y ∈ Y : |〈x∗i , T y〉| ≤ εi, ∀i ∈ {1, . . . , n}}.

Let V = {x ∈ X : |〈x∗i , x〉| ≤ εi, ∀i ∈ {1, . . . , n}}. It is clear that W = T−1(V ) =
T−1(V ∩T (Y )), and since T is a bijection between Y and T (Y ), we conclude that T (W ) =
V ∩ T (Y ) ∈ w

∣
∣
T (Y )

, finishing the proof.

Now we will give a characterization of SDPD spaces via “exposed faces”. Even though
there are several definitions in the literature of what a face of a set is, we will adopt the
convention that, in a Banach space X, a face F of a set K ⊆ X is an exposed subset,
namely, there exists a functional x∗ ∈ X∗ such that

F = {x ∈ K : 〈x∗, x〉 = σK(x
∗)}.

In such a case, we will write F = F [K, x∗] to avoid ambiguity whenever is needed.
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Definition 3.2.6 (θ-exposed Faces) Let K ⊆ X be a closed convex set, F be a face of K
and θ be locally convex topology on X between the w(X,X∗) and τ‖·‖ topologies. We will
say that F is θ-exposed by x∗ ∈ X∗ if F = F [K, x∗] and for each θ-neighborhood V of 0,
there exists α > 0 such that

S(K, x∗, α) ⊂ F + V.

The set of θ-exposing functionals x∗ ∈ X∗, namely those which θ-expose a face of K, will
be denoted by E[K, θ].

Definition 3.2.7 (Faces Radon-Nikodým Property) A Banach space X is said to have the
Faces Radon-Nikodým property (FRNP, for short) if for each closed convex bounded
set K of X, E[K,w] is dense in X∗.

Proposition 3.2.8 For a convex closed set K of X, PX [K] = E[K,w], and so, to have
the FRNP is to be (P)-geometrical.

Proof. Let K be a closed convex set of X. Note that for any x∗ ∈ dom σK and any α > 0,
we have that F [K, x∗] = ðσK(0, x

∗) and also

S(K, x∗, α) =
⋃

δ<α

ðσK(δ, x
∗).

Therefore, for any V ∈ N (0, w) we have that

S(K, x∗, α) ⊆ F [K, x∗] + V ⇐⇒
⋃

δ<α

ðσK(δ, x
∗) ⊆ ð(0, x∗) + V

⇐⇒ ðσK((0, α), x
∗) ⊆ ðσK(0, x

∗) + V.

Thus, x∗ ∈ E[K,w] if and only if ðσK(·, x∗) is τ0-w H-usc at 0. The conclusion follows
from Proposition 3.1.4.

Example 3.2.9 The unit ball of L1[0, 1] with the usual norm satisfies E[BL1[0,1], w] is
dense in X∗.

Proof. It is known (see [50]) that (L1[0, 1])∗ = L∞[0, 1] and that (L1[0, 1])∗∗ = M[0, 1],
where M[0, 1] stands for the space of all bounded finite measures over the Borel σ-algebra,
B[0, 1], which vanish at each λ-null set (where λ is the Lebesgue measure in [0, 1]). Even
more, the bidual norm of ‖ · ‖1 (which we will denote simply by ‖ · ‖) over M[0, 1] is given
by

‖m‖ = |m|([0, 1]),
where |m| stands for the total variation of m. Therefore, for E ∈ B[0, 1] with λ(E) > 0,
we have that

∂ ‖ · ‖∞(1E) = {m ∈ BM[0,1] : 〈m,1E〉 = ‖1E‖∞}
= {m ∈ M[0, 1] : m(E) = |m|([0, 1]) = 1},
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where 1E is the indicator function of E, in the sense of measure theory: Namely,

∀t ∈ [0, 1], 1E(t) =

{

1 if t ∈ E

0 if t /∈ E.

We will prove that ξ([0, 1]) ⊆ E
[
BL∞[0,1], w

]
, where ξ([0, 1]) is the set of simple functions

over [0, 1], which is known to be dense in L∞[0, 1]. Let first choose E ∈ B[0, 1] with
λ(E) > 0 and fix m ∈ ∂ ‖ · ‖∞(1E). It is known (see [50, Theorem 1.12]) that m =
m+ −m− and |m| = m+ +m−, where m+ and m− are the positive and negative parts of
m, respectively. Then, we can write

1 = |m|([0, 1]) = m+([0, 1]) +m−([0, 1])

≥ m+(E) +m−([0, 1])

≥ m(E) +m−([0, 1]) = 1 +m−([0, 1]).

Therefore, m− ≡ 0 and so, m is positive. Also, we get that m vanishes on [0, 1] \ E.
In particular, identifying L1(E) and M(E) as subspaces of L1[0, 1] and M[0, 1], we have
that m ∈ M(E) = (L1(E))∗∗. Now, by Goldstine’s theorem, there exists a net (fα)α∈A in
L1(E) with ‖fα‖1 ≤ 1 for each α ∈ A, such that

fα⇀
w∗∗

m.

Let us consider separately the nets (f+
α ) and (f−

α ). Since ‖f+
α ‖1, ‖f−

α ‖1 ≤ ‖fα‖ we have,
by Alaoglu’s theorem, that there exist m1,m2 ∈ BM(E) and two subnets (f+

γ )γ∈Γ, (f
−
γ )γ∈Γ

of (f+
α ) and (f−

α ) respectively (which we can index by the same directed set Γ just taking
them sequentially), such that

f+
γ ⇀

w∗∗

m1 and f−
γ ⇀

w∗∗

m2.

Since fγ⇀w∗∗
m, it is clear that m = m1−m2 ≤ m1, and so m1(E) = 1. Then, m2(E) = 0

and sincem2 is positive, m2 ≡ 0. We conclude then thatm = m1 and therefore f+
γ ⇀

w∗∗
m.

Let us consider then the net (gγ)γ∈A given by

gγ =
1

‖f+
γ ‖1

f+
γ .

Since ‖f+
γ ‖1 =

∫

E
f+
γ dλ → m(E) = 1, we have that gγ⇀w∗∗

m. It is directly verifiable
that ‖gγ‖1 =

∫

E
gγ = 1 for each γ ∈ A, and therefore, (gγ)γ∈A ⊆ L1(E) ∩ ∂ ‖ · ‖∞(1E) ⊆

L1[0, 1] ∩ ∂ ‖ · ‖∞(1E). We conclude that

∂ ‖ · ‖∞(1E) = L1[0, 1] ∩ ∂ ‖ · ‖∞(1E)
w∗∗

,

and so 1E ∈ E
[
BL1[0,1], w

]
, according to Proposition 3.2.8. Symmetrically, we can prove

that −1E ∈ E
[
BL1[0,1], w

]
.

Choose now f ∈ ξ([0, 1]) with ‖f‖∞ = 1 and fix m ∈ ∂ ‖ · ‖∞(f). Note that

|m|([0, 1]) =
∫

fdm =

∫

fdm+ −
∫

fdm− ≤
∫

f+dm+ +

∫

f−dm− ≤ |m|([0, 1]),
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and therefore m+[f < 0] = m−[f > 0] = 0. Defining the sets

E+ = {t : f(t) = 1} and E− = {t : f(t) = −1},

we claim that m+ vanishes in [0, 1]\E+ and m− vanishes in [0, 1]\E−. Indeed, if the claim
doesn’t hold, we can assume without losing generality that there exists F ⊆ [0, 1] \ E+

such that m+(F ) > 0. Let δ = ‖f+
∣
∣
F
‖∞ < 1 (provided that f is a simple function). Then

∫

f+dm+ =

∫

F

f+dm+ +

∫

[0,1]\F

f+dm+ ≤ δm+(F ) +m+([0, 1] \ F ) < m+([0, 1]),

and since
∫
f−dm− ≤ m−([0, 1]), we would conclude that

∫

fdm ≤
∫

f+dm+ +

∫

f−dm− < m+([0, 1]) +m−([0, 1]) = |m|([0, 1]),

which is a contradiction. Therefore the claim holds and so m+ ∈ M(E+) and m− ∈
M(E−). As we already proved, we can construct two nets (g+α )α∈A and (g−α )α∈A (that, up
subnets, we can assume to be indexed by the same directed set) such that

1. g+α is positive, it vanishes in [0, 1] \ E+ and
∫

E+

g+α dλ = ‖g+α ‖1 = m+(E+) = m+([0, 1]).

2. g−α is positive, it vanishes in [0, 1] \ E− and
∫

E−

g−α dλ = ‖g−α ‖1 = m−(E−) = m−([0, 1]).

3. g+α ⇀
w∗∗

m+ and g−α ⇀
w∗∗

m−.

Then, defining gα = g+α − g−α for each α ∈ A, we conclude that gα⇀w∗∗
m and

‖gα‖1 =
∫

E+

g+α dλ+

∫

E+

g−α dλ = m+([0, 1]) +m−([0, 1]) = |m|([0, 1]) = 1, ∀α ∈ A.

Finally, noting that
∫

fgαdλ =

∫

E+

fg+α dλ−
∫

E+

fg−α dλ =

∫

E+

g+α dλ+

∫

E+

g−α dλ = 1 = ‖f‖∞,

we have that (gα) ⊆ L1[0, 1] ∩ ∂ ‖ · ‖∞(f), and thus, since m is an arbitrary element of
∂ ‖ · ‖∞(f),

∂ ‖ · ‖∞(f) = L1[0, 1] ∩ ∂ ‖ · ‖∞(f)
w∗∗

,

which finishes the proof, according to Proposition 3.2.8.
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Proposition 3.2.10 The Banach space X has the FRNP if and only if for every K ⊆ X
nonempty convex bounded closed set, every x∗ ∈ X∗ and every α > 0 there exists z∗ ∈
E[K,w] such that

F [K, z∗] ⊆ S(K, x∗, α).

Proof.

⇒) Let K be a nonempty convex bounded closed set of X, x∗ ∈ X∗ and α > 0. By
Lemma 2.3.5, there exists ε > 0, such that for each y∗ ∈ x∗ + εBX∗ ,

S(K, y∗, α
2
) ⊆ S(K, x∗, α).

Since X has the FRNP, there exists z∗ ∈ E[K,w] ∩ (x∗ + εBX∗). Thus,

F [K, z∗] = X ∩ ∂σK(z∗) ⊆ S(K, z∗, α
2
) ⊆ S(K, x∗, α),

which proves the implication.

⇐) Let K1 be a convex closed set with int(dom σK1) 6= ∅. We want to show, according
to Theorem 2.3.20, that E[K1, w] ∩ int(dom σK1) is nonempty. To do so, choose
x∗ ∈ int(dom σK1) and define K2 = ðσK1(1, x

∗). Since x∗ ∈ int(dom σK1), K2 is
bounded, and so, there exists z∗ ∈ E[K2, w] such that

F [K2, z
∗] ⊆ S(K2, x

∗, 1
2
) = S(K1, x

∗, 1
2
),

where the last equality comes from the observation that

S(K2, x
∗, 1

2
) = K2 ∩ S(K1, x

∗, 1
2
),

according to the inclusion K2 ⊆ K1. To simplify notation, let Ki = Ki
w∗∗

(for
i = 1, 2). We claim that ∂σK2(z

∗) = ∂σK1(z
∗). To prove this, note first that for

all z∗∗1 ∈ K1 \ K2, 〈z∗∗1 , z∗〉 < σK2(z
∗). If not, choose any z∗∗2 ∈ σK2(z

∗). Since
〈z∗∗1 , x∗〉 < σK1(x

∗)− 1 and 〈z∗∗2 , x∗〉 ≥ σK1(x
∗)− 1

2
, there exists t ∈ (0, 1) such that

〈z∗∗, x∗〉 = σK1(x
∗)− 3

4
, where z∗∗ = tz∗∗1 + (1− t)z∗∗2 . Then, z∗∗ ∈ K2 and

〈z∗∗, z∗〉 = t〈z∗∗1 , x∗〉+ (1− t)〈z∗∗2 , x∗〉 = tσK1(z
∗) + (1− t)σK2(z

∗) ≥ σK2(z
∗).

This implies that z∗∗ ∈ ∂σK2(z
∗), which is a contradiction since

∂σK2(z
∗) = F [K2, z∗]

w∗∗

⊆ ∂1/2σK1(x
∗).

Now, suppose that there exists z∗∗ ∈ ∂σK1(z
∗) \ ∂K2(z

∗). Then

〈z∗∗, z∗〉 = σK1(z
∗) ≥ σK2(z

∗),

and so, since z∗∗ /∈ ∂σK2(z
∗), we have that z∗∗ ∈ K1 \K2. But in this case we have

shown that 〈z∗∗, z∗〉 < σK2(z
∗), which is a contradiction.
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Therefore, ∂σK1(z
∗) ⊆ ∂σK2(z

∗). Now, there are two possibilities: ∂σK1(z
∗) =

∂σK2(z
∗) as we claimed, or ∂σK1(z

∗) = ∅. But ∂σK1(z
∗) can not be empty, since

if it were so, z∗ would be unbounded in K1 and there would exist z∗∗ ∈ K1 \ K2

with 〈z∗∗, z∗〉 > σK2(z
∗) which is, as we know, a contradiction. Then, ∂σK1(z

∗) =
∂σK2(z

∗), as we claimed. Even more, since ∂σK1(z
∗) is nonempty and bounded,

z∗ ∈ int(dom σK1) (see comments before Exercise 2.29 in [36, pp. 29-30]).

The claimed equality leads to the following: there exists ε > 0 such that ∂εσK1(z
∗) ⊆

K2. If not, we could construct a net (z∗∗δ )δ>0 such that z∗∗δ ∈ ∂δσK1(z
∗) \ K2 for

each δ > 0. Let z∗∗ ∈ K1 the w∗-limit of (z∗∗δ ) as δ ց 0 (which exists since
z∗ ∈ int(dom σK1) and therefore, ∂δσK1(z

∗) is w∗-compact for each δ > 0). It is
clear that

z∗∗ ∈ ∂σK1(z
∗) = ∂σK2(z

∗) ⊆ ∂1/2σK1(x
∗),

but, since z∗∗δ /∈ K2, we get that 〈z∗∗δ , x∗〉 < σK1(x
∗) − 1. Then, σK1(x

∗) − 1
2
≤

〈z∗∗, x∗〉 ≤ σK1(x
∗)− 1, which is not possible.

Thus, there exists ε > 0 such that ∂δσK1(z
∗) = ∂δσK2(z

∗) for each δ ≤ ε, and
so, since ðσK2(·, z∗) is τ0-w H-usc at z∗, we conclude that ðσK1(·, z∗) is also τ0-w
H-usc at z∗. By Proposition 3.2.8 and Proposition 3.1.4, we conclude that z∗ ∈
E[K1, w] ∩ int(dom σK1), which finishes the proof.

Corollary 3.2.11 If X has the FRNP, then every convex bounded closed set K of X is
the closed convex hull of its weakly exposed faces, namely,

K = co




⋃

x∗∈E[K,w]

F [K, x∗]



 .

3.3 Strong subdifferentiability

In what follows, we will study the relation between a stronger version of the FRNP and
a notion that has been around the literature for a while, namely, the strong subdiffer-
entiability. This notion is a natural weakening of Fréchet-differentiability: We allow the
subdifferential not to be a singleton but we keep the uniform convergence in the following
sense:

Definition 3.3.1 (Strong Subdifferentiability) A function f ∈ Γ0(X) is said to be strongly
subdifferentiable (SSD) at a point x ∈ dom f if the limit

f ′(x;h) = lim
tց0+

f(x+ th)− f(x)

t
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exists uniformly with respect to h ∈ SX .

Remark 3.3.2 Strong subdifferentiability differs from Fréchet-differentiability. Indeed,
note that any continuous sublinear function is SSD at the origin. This can be easily
deduce from the latter definition, using Propositions 1.2.26 and 1.2.27.

The strong subdifferentiability has been introduced in renorming theory (see, e.g., [20, pp.
88]), and it has been studied in relation with Fréchet-differentiable renormings, Asplund
spaces, polyhedral spaces, proximinality and its relation with Hausdorff-upper semiconti-
nuity (see [13], [15], [27]–[29]). Here, we will summarize the most relevant results about
SSD.

Proposition 3.3.3 ([13, Theorem 5.13]) Let f ∈ Γ0(X
∗, w∗) and let x∗ ∈ int(dom f).

Then
f is SSD at x∗ ⇐⇒ ðf(0, ·) is τ‖·‖-τ‖·‖ H-usc at x∗.

Theorem 3.3.4 (Godefroy, Montesinos and Zizler, [29, Theorem 1]) Any separable Ba-
nach space with nonseparable dual admits an equivalent norm that is nowhere SSD except
at the origin.

Theorem 3.3.5 (Godefroy, Montesinos and Zizler, [29, Theorem 2]) If X is a Banach
space admitting an equivalent SSD norm (that is, SSD at every point of X), then X is an
Asplund space.

An interesting example related to strong-subdifferentiability is the notion of polyhedral
spaces, namely, Banach spaces for which their unit ball is a “polyhedron”. Many notions
of polyhedrality in infinite-dimensional spaces have been introduced in order to properly
define a polyhedral space. We refer the reader to the work of R. Durier and P. L. Papini
[22], in which the authors compare the different definitions of polyhedral space. Here, we
present two of them: Quasi-Polyhedrality and Polyhedral norm according to Klee.

Definition 3.3.6 (Polyhedral and Quasi-Polyhedral spaces) Let X be a Banach space.
We say that

(a) A function f ∈ Γ0(X) is quasi-polyhedral at x ∈ dom f if there exists a neighborhood
V ∈ NX(x) such that

∂f(y) ⊆ ∂f(x), ∀y ∈ V.

X is said to be a Quasi-Polyhedral space if its norm is quasi-polyhedral at each point
of SX .

(b) The norm of X is polyhedral (according to Klee) if for every finite subspace Z of X,
the set Z ∩BX is a polyhedron. In such a case, we say that X is a polyhedral space.

The next proposition contains the structural properties of polyhedral and quasi-polyhedral
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spaces that we are interested in. The first one can be found in [22] (and the references
therein). The second one is due to V. Fonf [25].

Proposition 3.3.7 Let X be a Banach space. Then,

(a) If X is quasi-polyhedral, then it is polyhedral.

(b) If X is polyhedral, then it contains a subspace isomorphic to c0.

We finish this section with the following result which connects quasi-polyhedrality with
strong subdifferentiability (which was stated for quasi-polyhedral norms in [27, Lemma
3.3]).

Corollary 3.3.8 Let f ∈ Γ0(X
∗, w∗) and x∗ ∈ dom f . If f is quasi-polyhedral at x∗, then

f is SSD at x∗.

Proof. Since f is quasi-polyhedral at x∗, then there exists a neighborhood U of x∗ such
that

∂f(U) ⊆ ∂f(x∗).

Then, for every neighborhood V in NX(0), we have that

ðf(0, y) ⊆ ðf(0, x) ⊆ ðf(0, x) + V, ∀y ∈ U.

By Proposition 3.3.3 and the equivalences of Proposition 3.1.4, the conclusion follows.

3.4 Strong-FRNP

Taking Theorem 3.1.5 into account, let us consider the following natural strong version of
property (P) described in section 3.2, which we will denote as the property (sP), defined
as follows: For each Banach space X, the domain of sPX is D(X) = Γ0(X

∗, w∗)×X∗ and
sPX is given by

sPX(f, x∗) = 1 ⇐⇒ x∗ ∈ int(dom f ∗) and ðf(0, ·) is τ‖·‖-τ‖·‖ H-usc at x∗. (3.4)

By Theorem 3.1.5, (sP) =⇒ (P).

Proposition 3.4.1 The property (sP) is a convex w∗-smooth-like property.

Proof. If we consider θ = τ‖·‖, Lemmas 3.2.1, 3.2.2 and 3.2.3 show that (sP) is local,
set-consistent and epigraphical, respectively. Also, Lemma 3.2.4 proves that (sP) is w∗-
transitive since for any two Banach spaces X and Y and any one-to-one bounded linear
operator T : Y → X, we have that T is τ‖·‖-τ‖·‖

∣
∣
T (Y )

-open, according to the Banach open
mapping theorem.
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So, coming back to Definition 1.3.17 and its adaptation to Banach spaces given at the
beginning of this chapter, we naturally define strong-SDPD spaces and the strong-FRNP
as follows:

Definition 3.4.2 A Banach space X is said

1. to be a strong-SDPD space if it is (sP)-w∗-structural.

2. to have the strong-FRNP if it is (sP)-geometrical.

As in the proof of Proposition 3.2.8, we can show that for a closed convex set K ⊆ X,
sP [K] = E[K, τ‖·‖], and so, we can use the results on [13] (see Proposition 3.1.4 and
Proposition 3.3.3 above and [13, Theorem 5.13]) to characterize the strong-FRNP as
follows:

Proposition 3.4.3 The following assertions are equivalent:

(a) For each convex closed set K of X, σK is SSD in a dense set of int(dom σK).

(b) X has the strong-FRNP.

(c) For every function f ∈ Γ0(X
∗, w∗), there exists a dense set D of int(dom f) such

that for each x∗ ∈ D and each sequence (x∗n, xn) ∈ gph(ðf(0, ·)) such that x∗n → x∗,
we have that

d(xn, ðf(0, x
∗)) → 0.

Example 3.4.4 The unit ball of X = c0 with the usual norm satisfies E[Bc0 , τ‖·‖] is dense
in X∗ = ℓ1.

Proof. Recall that for a sequence (xn) ⊆ R the support of (xn) is the set

supp[(xn)] := {n ∈ N : xn 6= 0}. (3.5)

Also recall that c00 stands for the vector space given by all the real-valued sequences with
finite support, which is known to be dense in ℓ1. Now, it is known (see [36, Example
14.b]) that for each x∗ = (x∗n) ∈ ℓ1,

∂‖ · ‖1(x∗) = {x∗∗ = (x∗∗n ) ∈ ℓ∞ : ∀n ∈ supp[x∗], x∗∗n = sgn(x∗n)}
=

∏

n∈N

An,

where An = {sgn(x∗n)} if n ∈ supp[x∗] and An = [−1, 1], otherwise. In particular, it is
clear that x∗ is a support functional of Bc0 if and only if x∗ ∈ c00, and in such a case,
x∗ ∈ E[Bc0 , w]. We claim that in fact c00 = E[Bc0 , τ‖·‖]. Fix x∗ ∈ c00 with ‖x∗‖1 = 1, and
define

δ = min
k∈supp[x∗]

|x∗k|,
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so clearly δ > 0. Fix ε ∈ (0, δ) and x ∈ c0 ∩ ∂δε ‖ · ‖1(x∗). Let z ∈ c0 given by

zn =

{

sgn(x∗n) if n ∈ supp[x∗]

xn if n ∈ N \ supp[x∗].

It is clear that z ∈ c0 ∩ ∂ ‖ · ‖1(x∗). Note also that for each n ∈ supp[x∗], x∗n · (zn − xn) =
|x∗n||zn−xn|: Indeed, if zn = 1, then zn−xn ∈ [0, 2], and if zn = −1, then zn−xn ∈ [−2, 0].
Thus, we have that

δε ≥
∑

n∈supp[x∗]

x∗n(zn − xn) =
∑

n∈supp[x∗]

|x∗n||zn − xn| ≥
∑

n∈supp[x∗]

δ|zn − xn| ≥ δ‖z − x‖∞.

Then, d(x, c0 ∩ ∂ ‖ · ‖1(x∗)) ≤ ‖z − x‖∞ ≤ ε. Then, for each ε ∈ (0, δ),

ð ‖ · ‖1(δε, x∗) ⊆ ð ‖ · ‖1(0, x∗) + εBc0 ,

and so x∗ ∈ E[Bc0 , τ‖·‖].

A simpler proof of Example 3.4.4 follows just noting that the norm ‖ · ‖1 of ℓ1 is quasi-
polyhedral at each point x∗ ∈ c00, and so applying Proposition 3.3.8.

By small modifications in their proofs (just replace the weak topology by the strong
topology and E[K,w] by E[K, τ‖·‖]), Proposition 3.2.10 and Corollary 3.2.11 remain true
if we replace the FRNP by the strong-FRNP and E[K,w] by E[K, τ‖·‖] in both statements.

Observe that property (sP) satisfies the w∗-sum rule. Indeed, the w∗-sum rule follows
immediately from the next lemma, which is simply a direct application of Proposition
1.2.27.

Lemma 3.4.5 Let f, g ∈ Γ0(X) and let x ∈ int(dom(f + g)). The function f + g is SSD
at x if and only if both functions f and g are SSD at x.

Proof. Since x ∈ int(dom(f + g)) = int(dom f) ∩ int(dom g), we know that for every
y ∈ dom(f+g) we can write ∂(f+g)(y) = ∂f(y)+∂g(y). In particular, using Proposition
1.2.27(b), we have that (f + g)′(x; ·) = f ′(x; ·) + g′(x; ·), which allows us to write

lim sup
tց0

sup
h∈BX

(
(f + g)(x+ th)− (f + g)(x)

t
− (f + g)′(x;h)

)

≤ lim sup
tց0

sup
h∈BX

(
f(x+ th)− f(x)

t
− f ′(x;h)

)

+ lim sup
tց0

sup
h∈BX

(
g(x+ th)− g(x)

t
− g′(x;h)

)

.

This yields the sufficiency of our statement. To prove the necessity, assume that g is not
SSD at x. We need to show that f + g is not SSD at x. Since g is not SSD, then there
exist ε > 0, a sequence (tn) ⊆ ]0,+∞[ converging to 0 and a sequence (hn) ⊆ BX such
that

g(x+ tnhn)− g(x)

t
− g′(x;hn) > ε, ∀n ∈ N.
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Then, using that (f + g)′(x; ·) = f ′(x; ·) + g′(x; ·) and Proposition 1.2.27(a), we can write
for all n ∈ N

(f + g)(x+ tnhn)− (f + g)(x)

tn
− (f + g)′(x;hn) ≥

g(x+ tnhn)− g(x)

t
− g′(x;hn) > ε,

and so, we get that

lim sup
tց0

sup
h∈BX

(f + g)(x+ th)− (f + g)(x)

t
− (f + g)′(x;h) > ε.

This finishes the proof.

Now, applying Theorem 2.3.25 we can state the following improvement of Corollary 3.2.11:

Corollary 3.4.6 If X has the strong-FRNP, then every convex bounded closed set K of
X is the closed convex hull of its weakly exposed faces, namely,

K = co




⋃

x∗∈E[K,w]

F [K, x∗]



 .

Moreover, if X is separable, then the converse also holds true.

3.5 Relations between the RNP and the FRNP

Proposition 3.5.1 Consider the following assertions:

(i) X has the RNP.

(ii) X has the strong-FRNP.

(iii) X has the FRNP.

Then, (i)⇒(ii)⇒(iii).

Proof. Clearly, for a function f ∈ Γ0(X
∗, w∗) and a point x∗ ∈ Int[dom f ],

f is F-differentiable at x∗ ⇒ f is SSD at x∗ ⇒ f ′(x∗; ·) is w∗-lsc,

where the last implication comes from the fact that if ðf(0, ·) is τ‖·‖-τ‖·‖ H-usc at x∗, then
is τ‖·‖-w H-usc at x∗ and an easy application of Theorem 3.1.5. Then, if we replace f by
any support function, the implications are direct.

The latter proposition presents the natural inclusions concerning RNP-like properties:
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RNP spaces ⊆ strong-FRNP spaces ⊆ FRNP spaces ⊆ Banach spaces.

In the following, we will present some necessary conditions to have the FRNP or the
strong-FRNP. In fact, we will show that not every Banach space has the FRNP, showing
that the last inclusion is strict. We will close this chapter with a brief discussion about
the main open question of this part of the thesis: Is the RNP equivalent or not with the
FRNP or with the strong-FRNP?

3.5.1 Banach spaces without the FRNP/strong-FRNP

Lemma 3.5.2 Let X be a Banach space with separable dual X∗. Then, for each equivalent
norm p of X and each countable dense set {x∗i }i∈N of B(X∗,p∗) the function ρ : X∗∗ → R+

given by

ρ(x∗∗) = p∗∗(x
∗∗) +

(
∞∑

i=1

2−i〈x∗i , x∗∗〉2
) 1

2

is an equivalent rotund bidual norm of X∗∗.

Proof. Clearly ρ is an equivalent norm of X∗∗. Thus, in order to conclude, it is sufficient
to show that

(
ρ
∣
∣
X

)∗∗
= ρ.

Consider the functions r, rn : X∗∗ → R+ given by

r(x∗∗) =

(
∞∑

i=1

2−i〈x∗i , x∗∗〉2
) 1

2

, and rn(x
∗∗) =

(
n∑

i=1

2−i〈x∗i , x∗∗〉2
) 1

2

.

It is clear that supn rn = r and that for each n ∈ N, (rn
∣
∣
X
)∗∗ = rn. Now, fix x∗∗ ∈ X∗∗ and

δ > 0. By construction, there exists n0 ∈ N such that r(x∗∗) ≤ rn0(x
∗∗) + δ. Therefore,

we can write

r(x∗∗) ≤ rn0(x
∗∗) + δ =

(

lim inf
X∋x

w∗∗−−→x∗∗

rn0(x)

)

+ δ

≤
(

lim inf
X∋x

w∗∗−−→x∗∗

r(x)

)

+ δ =
(
r
∣
∣
X

)∗∗
(x∗∗) + δ.

Since δ and x∗∗ are arbitrary, we conclude that r ≤
(
r
∣
∣
X

)∗∗
, and so, since the other

inequality always holds, we deduce that r =
(
r
∣
∣
X

)∗∗
. Now, since p and r

∣
∣
X

are both
continuous, by Proposition 1.2.11(c) we have that

(p+ r
∣
∣
X
)∗ = p∗�(r

∣
∣
X
)∗,

and so, ρ = p∗∗ + r = (p+ r
∣
∣
X
)∗∗, which finishes the proof.
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Recall that an equivalent norm p on X is said to be rough if there exists ε > 0 such that

lim sup
p(h)→0

p(x+ h) + p(x− h)− 2p(x)

p(x)
≥ ε, ∀x ∈ X. (3.6)

By Proposition 2.1.3, is easy to see that a rough norm is nowhere Fréchet-differentiable.

Theorem 3.5.3 Let X be a Banach space satisfying

(a) X∗ is separable.

(b) There exists K a nonempty convex, closed and bounded set of X such that every
relatively w-open set W of K has diameter diam(W ) > ε, for some ε > 0.

Then there exists an equivalent norm p on X, such that the dual norm p∗ is Gâteaux-
differentiable at every nonzero point and nowhere Fréchet-differentiable.

Proof. Let K̃ = K
w∗∗

⊆ X∗∗. It is easy to see that, if W is a relatively w∗∗-open set of
K̃, then W ∩K is nonempty, and therefore W ∩K is a relatively w-open set of K. Then,
by (b) we get

diam(W ) ≥ diam(W ∩K) > ε.

Let C = BX +K + (−K) and C̃ = BX∗∗ + K̃ + (−K̃). Let p∗∗ the norm in X∗∗ such that
B(X∗∗,p∗∗) = C̃. Since C̃ is w∗∗-compact, p∗∗ is the dual norm of some equivalent norm p∗
on X∗. Let {x∗i : i ∈ N} a dense set of B(X∗,p∗), and define the function ρ : X∗∗ → R+

given by

ρ(x∗∗) = p∗∗(x
∗∗) +

(
∞∑

i=1

2−i〈x∗i , x∗∗〉2
) 1

2

.

In the proof of [20, Theorem III.1.9] it is shown that ρ is also a dual norm, and its predual
norm is Gâteaux-differentiable at each nonzero point but which also is rough (and so,
nowhere Fréchet-differentiable). Also, by Lemma 3.5.2, the predual norm of ρ is also a
dual norm in X∗, and therefore, the proof is finished.

Remark 3.5.4 The construction of the set C = BX + (K) + (−K) shows that if there is
a set K which satisfies the condition (b) of Theorem 3.5.3, then there exists an equivalent
norm p over X such that B(X,p) also satisfies the same condition. It is known (see, e.g.,
[32, Theorem 3.1 and Corollary 3.2]), that condition (b) is equivalent to say that X lacks
the Convex Point of Continuity Property (CPCP).

Recall that X has the (Convex) Point of Continuity Property if for every set C (convex)
bounded and w-closed, there exists x ∈ C such that the identity mapping id : (C,w) →
(C, τ‖·‖) is continuous at x.

Corollary 3.5.5 Let X be a Banach space with separable dual. If X has the strong-
FRNP, then it has the CPCP.
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Proof. Let us suppose that X lacks the CPCP. By Theorem 3.5.3, there exists an equiv-
alent norm p on X such that the dual norm p∗ on X∗ is Gâteaux-differentiable at each
nonzero point and nowhere Frechét-differentiable.

Let x∗ ∈ S(X∗,p∗) with the Gâteaux derivative DGp∗(x
∗) = 〈x, ·〉 for some x ∈ S(X,p) (such

a point exists, by Proposition 2.1.7). It is clear that F [B(X,p), x
∗] = {x}. Then x is an

exposed point of B(X,p), exposed by x∗. But, since x is not strongly-exposed (otherwise,
p∗ would be Fréchet-differentiable at x∗), there exists a sequence (xn) ⊆ B(X,p) and ε > 0
such that

〈x∗, xn〉 → 〈x∗, x〉, and p(x− xn) ≥ ε.

Then, for each α > 0, there exists n ∈ N such xn ∈ S(B(X,p), x
∗, α) and so,

S(B(X,p), x
∗, α) 6⊆ x+

ε

2
B(X,p) = F [B(X,p), x

∗] +
ε

2
B(X,p).

Since α is arbitrary, we get that F [B(X,p), x
∗] is not a strong-exposed face. Since x∗

is an arbitrary support functional of B(X,p), we get that E[B(X,p), τ‖·‖] = ∅, which is a
contradiction.

Now we will show that every Banach space containing an isomorphic copy of c0 lacks the
FRNP. To do so, we will use a theorem due to P. Morris [35], concerning to disappearance
of extreme points:

Theorem 3.5.6 (Morris, 1983) Let X be a separable Banach space containing an iso-
morphic copy of c0. Then X is isomorphic to a Banach space Y endowed with a rotund
norm ‖ · ‖Y such that

ext
[
B(Y )

]
∩ ext

[
B(Y ∗∗)

]
= ∅.

Proposition 3.5.7 Let X be a Banach space admitting a rotund equivalent norm p on
X such that

ext
[
B(X,p)

]
∩ ext

[
B(X∗∗,p∗∗)

]
= ∅.

Then, X lacks the FRNP.

Proof. Let x∗ be a support functional of B(X,p). Since p is rotund, x∗ attains its norm at
only one point x ∈ B(X,p) and so, ðp∗(0, x∗) is the singleton {x}. If x∗ ∈ E[B(X,p), w], then

∂p∗(x
∗) = X ∩ ∂p∗(x∗)

w∗∗

= {x}.

Thus, x ∈ exp
[
B(X∗∗,p∗∗)

]
⊆ ext

[
B(X∗∗,p∗∗)

]
, which is clearly a contradiction. Since x∗

is an arbitrary support functional of B(X,p)), E[B(X,p), w] has to be empty, finishing the
proof.

Corollary 3.5.8 If X contains a copy of c0, then X lacks the FRNP.
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Proof. Let Z be a closed subspace of X isomorphic to c0. By Theorem 3.5.6, Z is also iso-
morphic to a Banach space Y having an equivalent rotund norm satisfying the conditions
of Proposition 3.5.7. Thus, Y lacks the FRNP.

Now, since the property (P) used to define the FRNP (see Proposition 3.2.8) is a convex
w∗-smooth-like property, Proposition 2.3.22 shows that Z lacks the FRNP, and therefore
so does X.

Since every polyhedral space contains a copy of c0 (see Proposition 3.3.7), we can state
the following corollary:

Corollary 3.5.9 If a Banach space X admits an equivalent polyhedral norm, then it lacks
the FRNP.

This last corollary is rather contradictory: Every quasi-polyhedral norm p satisfies that
E[B(X,p), τ‖·‖] is dense in X∗, but the very existence of such a norm entails that the space
is polyhedral and hence it lacks the FRNP.

3.5.2 Final Comments

It is not hard to see, due to the technology developed in Chapter 2 and Section 3.2 that, if
we observe strong subdifferentiability in the primal space it induces a convex smooth-like
property (SSD): For each Banach space X, D(X) := Γ0(X)×X and

SSDX(f, x) = 1 ⇐⇒ x ∈ int(dom f) and f is SSD at x. (3.7)

Due to Theorem 3.3.4, we can write the following equivalence:

X is separable and (SSD)-structural⇔X is separable and Asplund⇔X∗ is separable,

but in the same paper where this theorem was presented (see [29]), Godefroy, Montesinos
and Zizler asked whether or not this equivalence holds for nonseparable spaces. Since
Asplund spaces are separable reducible (see Theorem 2.2.8), this question is equivalent to
ask if (SSD)-structural spaces are stable for subspaces.

Stability for subspaces (resp. quotients) and for products (even with finite spaces) present
somehow the difficulty of the convex smooth-like (resp. w∗-smooth-like) setting. We
already encountered the same problem when we compared the RNP with the strong-
FRNP and with the FRNP. Moreover, for these properties it seems to be even harder to
prove equivalences, since we do not know the answer even in the separable setting.

These questions of stability seem to be in the heart of the classic theory of Banach spaces,
and they are by no means easy questions. We definitely would like to come back to them
in the future, and we think that it is a question of great interest.
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Introduction of Part II

In his 1973 fundamental paper [17], R. B. Holmes showed that, whenever we have a closed
convex set K in a Hilbert space X such that

(i) K has nonempty relative interior (namely, the interior ofK as a subset of Y = aff(K)
is nonempty), and

(ii) the boundary of K as a subset of Y , bdK, is a Cp+1-submanifold at a point x0 ∈
bdK, where p is a positive integer,

then the metric projection PK is a mapping of class Cp in an open neighborhood W of
the open normal ray

Rayx0(K) := {x0 + tν : t > 0},

where ν denotes the unit exterior normal vector ofK at x0. The main steps of his approach
to arrive to this theorem were:

1. It is enough to prove the theorem for convex bodies (namely, where K has nonempty
interior), since under (i), restricting to the case 0 ∈ K (after suitable translation)
we can write

PK =
(
PK

∣
∣
Y

)
◦ ΠY ,

where ΠY denotes the orthogonal projection to Y (which is a continuous linear
mapping and therefore of class C∞);

2. The smoothness of bdK at x0 can be translated as the smoothness of the Minkowski
functional ρK (independently of which translation is used to ensure that 0 is an
interior point of K); furthermore, the equality ν = ‖∇ρK(x0)‖−1∇ρK(x0) holds
true;

3. The distance function dK is of class C1 in X \K; and finally,

4. For any point x ∈ Rayx0(K) and a suitable choice of neighborhoods U and V of x
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and x0 respectively, the mapping

F : U × V → X

(u, v) 7→ u− v − dK(u)
∇ρK(v)

‖∇ρK(v)‖

is well defined, of class C1, and for every (u, v) ∈ U × V , one has

F (u, v) = 0 ⇐⇒ v = PK(u).

With all these features, Holmes concluded his theorem through an application of the
well-known Implicit Function Theorem.

After Holmes’ contribution, in 1982, S. Fitzpatrick and R. R. Phelps continued in [16] the
study of smoothness of the metric projection onto convex bodies. They observed that,
whenever a convex body K had Cp+1-smooth boundary, then for every x ∈ X \ K the
differential DPK(x) is a surjective mapping from X onto H[x] where

H[x] := {h ∈ X : 〈h, x− PK(x)〉 = 0},

and it is invertible as a mapping from H[x] onto H[x]. This behavior of DPK(x) was
implicitly obtained as a corollary in Holmes’ proof. Using this necessary condition and
also the equivalence between the smoothness of bdK and the smoothness of ρK , they
were able to prove that a convex body K has Cp+1-smooth boundary if and only if the
metric projection PK is of class Cp on X \K and for each x ∈ X \K, DPK(x) is invertible
as a mapping from H[x] to H[x].

In the same paper, they also give two counterexamples: The first consist in an example
of a convex closed set C1 for which its metric projection PK is of class C1 on X \ C1 but
bdC1 fails to be even a C1-submanifold. Here is the invertibility of DPC1(·) what fails.
The second one, is a convex set C2 with boundary C1,1 for which its metric projection PC2

is nowhere Fréchet-differentiable on X \C2. Here is the Cp+1-smoothness of the boundary
what doesn’t hold. With those two results, they gave a very complete framework of the
smoothness of the metric projection in the convex case.

Some other contributions have been made concerning to the differentiability properties of
the metric projection on the convex setting, such as [18], on which J. Kruskal provided an
example of a closed convex set in R3 such that its metric projection fails to have one-side
directional derivative at infinitely many points, and [22], on which D. Noll explored other
notions of differentiability for the metric projections onto convex sets.

Parallel, in 1984, J.-B. Poly and G. Raby studied the smoothness of the metric projection
PM onto a Cp+1-submanifold M of a finite-dimensional space Rn. They proved that a
closed set M ⊆ Rn is a Cp+1-submanifold at a point m0 ∈ M if and only if the square of
the distance function d2M(·) is of class Cp+1 near m0. Their strategy consists in regard M
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near m0 as the graph of a mapping θ whose differential Dθ can be expressed in terms of
the metric projection PM , which is well-defined near m0 due to the local compactness of
M .

Following the way opened by the strategy of Holmes, the aim of this second part of the
thesis is to study, under the same hypotheses (i)-(ii), similar local results dropping the
hypothesis of convexity and replacing it with prox-regularity, and, as Fitzpatrick and
Phelps did, to provide a converse of this extension. We work with a family of sets called
closed bodies which suitably extends the notion of convex body, used in the classic theory.
Finally, through this work, we integrate the study of the case when the set onto which
we are projecting is a submanifold itself, mixing up our results with those obtained by
Poly and Raby. In order to do so, our key observation is that we can locally translate the
smoothness of the boundary of a set to the smoothness of a suitable real-valued function
(not necessarily unique) and therefore, compensate the loss of the Minkowski functional.

This part is mainly based on the joint work with R. Correa and L. Thibault [12], and
the work in progress with L. THibault [28]. The main motivation for this research came
from the huge advances made in Proximal Analysis and from the 2000’s paper by Poliquin,
Rockafellar and Thibault [24], which allows us to replace the continuous differentiability of
the distance function to convex bodies, with another suitable one related to prox-regular
sets. Also we want to mention Mazade Ph. D. Thesis [19], in which local prox-regularity
was profoundly studied in a quantified sense, and Shapiro’s paper [29] and Canino’s paper
[7], on which the directional differentiability of the metric projection was independently
studied in the nonconvex framework, under the notions of O(2)-convexity and p-convexity,
respectively. Nowadays, it is known that these two notions coincide with the notion of
prox-regularity.

This part is organized as follows: Below this introduction, we present the basic notation
we will use in through this part. After, Chapter 4 summarizes the theory of differential
submanifolds (section 4.1), Proximal and Clarke’s nonsmooth calculus(section 4.2), and
the notions of epi-Lispchitzianity and prox-regularity of sets (section 4.3). All that content
is known and had been extracted mainly from [3], [9]–[11], [23], [30]. Even though many of
the notions and propositions presented are still valid in larger contexts (Uniformly Convex
spaces or Banach spaces), we will restrict ourself to present the theory in the infinite-
dimensional Hilbert setting. The chapter ends with section 4.4, on where we pose some
useful variational properties of sets with smooth boundary (or which are submanifolds
themselves), some of them in terms of prox-regularity and epi-Lipschitzianity. We remark
Proposition 4.4.4, which will allows us to represent these sets locally as the epigraph of
suitable functions, and Theorem 4.4.6, which is the direct extension of Poly and Raby’s
theorem in the infinite-dimensional setting.

Chapter 5 is the core of this work. In section 5.1 we present our main results extend-
ing Holmes’ Theorem. We show in Theorem 5.1.6 that whenever a closed body has
Cp+1-smooth boundary, then its metric projection is of class Cp in a suitable quantified
neighborhood of the set (section 5.1.1). We also prove in Theorem 5.1.10 the same results
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for submanifolds (section 5.1.2). In section 5.2, we follow the strategy of Fitzpatrick and
Phelps, studying the behavior of the derivative of the metric projection when it exists
and proving in Theorem 5.2.11 the converse of Theorem 5.1.6 and obtaining a full char-
acterization of nonconvex bodies with smooth boundary in terms of the smoothness of
their metric projections ( section 5.2.2). We finish this work with a partial converse of
Theorem 5.1.10 following the strategy of Poly and Raby (section 5.2.3).

Notation of Part II

In the following (Chapters 4 and 5), X will always stand for a real Hilbert space with inner
product 〈·, ·〉, and ‖ · ‖X (or simply ‖ · ‖ if there is no confusion) will be its Hilbert norm.
Using Riesz’s representation Theorem, we will identify the dual space of X with X itself.
For a point x ∈ X we will denote by NX(x) (or simply by N (x) if there is no confusion)
the set of all neighborhoods of x for the norm-topology. By BX [x, α] and BX(x, α) we
mean the closed and open ball centered in x with radius α > 0, respectively. We will also
write BX and SX to denote the unit ball BX [0, 1] and the unit sphere BX [0, 1] \BX(0, 1),
respectively.

We will also write R := R ∪ {−∞,+∞} and R∞ = R ∪ {+∞}. In the following, p will
stand for an integer larger or equal to 1. We will recall this assumption whenever is
needed. For two points x, y ∈ X we will write

[x, y] := {tx+ (1− t)y : t ∈ [0, 1]}.

For two closed subspaces Y, Z of X such that X can be written as the direct sum of Y and
Z (which is denoted by X = Y ⊕ Z), we will denote by πY,Z and πZ,Y (or simply πY and
πZ if there is no confusion) the parallel projections associated to such a decomposition.
In the case that X = Y × Z, we will write πY and πZ instead of πY×{0} and πZ×{0},
respectively.

For a closed subspace Z of X, we will denote by Z⊥ its orthogonal subspace, that is,

Z⊥ = {x ∈ X : 〈x, z〉 = 0, ∀z ∈ Z}.
It is known that Z⊥ is a closed subspace of X and that we can write X = Z ⊕ Z⊥. For
Z, we will also use the notation ΠZ to denote its orthogonal projection, namely, ΠZ(x) is
the only point of Z such that

‖x− ΠZ(x)‖ = inf{‖x− z‖ : z ∈ Z}.
It is known that ΠZ ≡ πZ,Z⊥ .

For another Hilbert space Y , we will denote by L(X;Y ) the space of all bounded linear
operators from X into Y , endowed with the operator norm which is given by

‖T‖L(X;Y ) = sup
x∈SX

‖Tx‖Y .
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If Y = X, we will simply write L(X). We will denote by idX the identity map from X
to X, which is an operator in L(X). Finally, for an operator T ∈ L(X;Y ) we will denote
by T ∗ its adjoint operator, that is, the only operator in L(Y ;X) satisfying

〈y, Tx〉 = 〈T ∗y, x〉, ∀(x, y) ∈ X × Y.

We say that an operator T ∈ L(X) is self-adjoint (or symmetric) if T ∗ = T . We also will
write KerT and ImT to denote the kernel and the image of T . Indistinctly, we will also
write TX instead of ImT .

Recall that a linear operator T ∈ L(X) is an orthogonal projection (i.e., T = ΠZ for some
closed subspace Z of X) if and only if it is idempotent (i.e., T ◦ T = T ) and symmetric.
We refer the reader to [20, Ch. 11] for the proof of this fact in the finite-dimensional
setting, which remains exactly the same for arbitrary Hilbert spaces.

For a mapping F : U ⊂ X → Y and V ⊆ U , we will write F
∣
∣
V

the restriction of F to V .
We will also write gphF to denote its graph. If Y = R we will write epiF , hypoF , epis F
and hypos F to denote its epigraph, hypograph, strict epigraph and strict hypograph,
respectively, that is,

epiF := {(u, r) ∈ U × R : F (u) ≤ r},
hypoF := {(u, r) ∈ U × R : F (u) ≥ r},
epis F := {(u, r) ∈ U × R : F (u) < r},

hypos F := {(u, r) ∈ U × R : F (u) > r}.

For a set S ⊆ X we will write intS, clS and bdS to denote the interior, the closure and
the boundary of S, respectively. If U is a subset of X containing S, we will write intU S,
clU S and bdU S to denote the interior, the closure and the boundary of S relative to U ,
respectively. We will also use S and S

U
instead of clS and clU S, indistinctly.

For a mapping F : U ⊆ X → Y (with U a nonempty open set) we will say that F is
G-differentiable (resp. F-differentiable) at x ∈ U if it is Gâteaux-differentiable (resp.
Fréchet-differentiable) at x. We will denote by DGF (x) the Gâteaux-derivative (G-
derivative, for short) of F at x and by DFF (x) or simply DF (x) the Fréchet-derivative
(F-derivative, for short) of F at x.

In the special case that Y = R, we will denote by ∇F (x) the gradient of F at x, that is,
the unique element of X such that

DGF (x) = 〈∇F (x), ·〉.

For an integer p ≥ 1, if F is p-times F-differentiable, then we will denote by DpF (x) its
pth F-derivative. Let us recall the little o notation of differentiability. The mapping F is
F-differentiable at x if and only if we can write

F (x+ h) = F (x) + Ah+ o(h)
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for some A ∈ L(X;Y ), where o(h) is a mapping from X to Y satisfying ‖h‖−1o(h) → 0
as h→ 0. In such a case, A coincides with DF (x).

Analogously, the mapping F is G-differentiable at x if and only if for every h ∈ X we can
write

F (x+ th) = F (x) + tAh+ o(t)

for some A ∈ L(X;Y ), where o(t) is a function from ]0,+∞[ to Y satisfying t−1o(t) → 0
when tց 0.

Recall that F is said to be of class Cp (resp. Cp,1) near x, if there exists a neighborhood
U ∈ NX(x) such that F is p-times F-differentiable at each u ∈ U and the pth derivative
DpF (·) is continuous (resp. locally Lipschitz-continuous) on U .

As introduced in the Part I, for a function f : X → R∞, we will denote by dom f and
∂f(x) its effective domain and its (convex) subdifferential. Also, for a subset S of X, IS
denotes the indicator function of S, that is

IS : X → R∞, x 7→ IS(x) =

{

0 x ∈ S

+∞ x /∈ S.



Chapter 4

Hilbertian manifolds and Prox-regular

sets

In this chapter we will give a small overview of some results concerning differential man-
ifolds modeled over an infinite-dimensional Hilbert space and its relationship with the
theory of prox-regular sets. This summary is focused on the results that we will use in
the study of smoothness of the metric projection onto nonconvex sets, and therefore, we
will skip many classical results of the theory of infinite-dimensional differential manifolds.

4.1 Hilbertian Cp-submanifolds

Definition 4.1.1 (Cp-submanifolds) A subset M of X is said to be a (Hilbertian) Cp-
submanifold at a point m0 ∈ M if there exists an open neighborhood U ∈ NX(m0), a
closed subspace Z of X (called the model space) and a mapping ϕ : U → ϕ(U) ⊆ X such
that

1. ϕ is a Cp-diffeomorphism, that is, ϕ(U) is an open set of X, ϕ : U → ϕ(U) is
bijective and ϕ, ϕ−1 are both mappings of class Cp.

2. ϕ(m0) = 0 and ϕ(M ∩ U) = Z ∩ ϕ(U).

We simply say that M is a Cp-submanifold if it is so at each point m ∈M with the same
model space Z.

From the definition, it is clear that if M is a Cp-submanifold at m0, then it is so at any
point in a neighborhood of m0 relative to M . Also, the pair (U, ϕ) and the model space
Z need not to be unique in order to represent the submanifold M at the point m0. In
fact, the possible pairs (U, ϕ) are called local charts at m0 and each one describes M as
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a submanifold at m0. Furthermore, when we have two local charts (U1, ϕ1) and (U2, ϕ2)
with two different model spaces Z1 and Z2 we get that both model spaces are isomorphic.
Indeed, consider the mapping ϕ2 ◦ ϕ−1

1 : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2). By chain rule, we
have that D(ϕ2 ◦ ϕ−1

1 )(0) = Dϕ2(m0) ◦ (Dϕ1)
−1(0), and also it is not hard to prove that

D(ϕ2 ◦ ϕ−1
1 )(0)Z1 ⊆ Z2.

Exchanging the roles of ϕ1 and ϕ2, we get that D(ϕ1 ◦ ϕ−1
2 )(0)Z2 ⊆ Z1, and since

D(ϕ1 ◦ ϕ−1
2 )(0) = (D(ϕ2 ◦ ϕ−1

1 )(0))−1,

we conclude that Z1 and Z2 are isomorphic, as we claimed, where a linear isomorphism
is given by D(ϕ2 ◦ ϕ−1

1 )(0)
∣
∣
Z1

.

When we have that M is a submanifold at each point, we can choose a family A =
{(Ui, ϕi) : i ∈ I} of local charts with the same model space Z such that

1. {Ui : i ∈ I} is an open cover of M .

2. Whenever Ui ∩ Uj 6= ∅, the map ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj) is a Cp-

diffeomorphism.

These types of families over a submanifold are called atlases and describe completely the
differential and topological structure of M . We won’t use them in the development of this
work, but atlases play a fundamental role in differential manifolds theory. We refer the
reader to [1, Chapter 3] for further information.

We will now introduce the notion of Tangent (vector) space associated to a submanifold.
Recall that a C1-curve γ on a set M ⊆ X is a differentiable function from an open interval
I ⊂ R with values in M .

Definition 4.1.2 (Tangent space) Let M ⊆ X be a Cp-submanifold at a point m0 ∈ M .
We define the Tangent (vector) space of M at m0 as the set

Tm0M :=
{
h ∈ X : ∃γ : ]− 1, 1[→M, C1-curve with γ(0) = m0 and γ′(0) = h

}
.

It is direct from the definition that Tm0M is a closed subspace of X and that for every
local chart (U, ϕ) at m0 with model space Z, we have that

Dϕ−1(0)Z = Tm0M. (4.1)

Indeed, if h ∈ Tm0M , there exists a C1-curve γ : ] − 1, 1[→ M such that γ(0) = m0 and
γ′(0) = h. We may suppose that the curve is contained in U and so, we have that the
mapping γ̃ : ]− 1, 1[→ Z given by γ̃(t) = ϕ ◦ γ(t) is a C1-curve in Z. Then,

h = γ′(0) = (Dϕ(m0))
−1 ◦ γ̃′(0) = Dϕ−1(0) ◦ γ̃′(0) ∈ Dϕ−1(0)Z.
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For the other inclusion, fix z ∈ Z and consider the mapping γ : ]− 1, 1[→M given by

γ(t) = ϕ−1(tεz),

where ε > 0 is small enough such that the open segment (−εz, εz) ⊂ ϕ(U). Clearly, γ is
a C1-curve and γ(0) = m0. Therefore, γ′(0) = εDϕ−1(0)z ∈ Tm0M . Finally, since Tm0M
is a vector space, we get that Dϕ−1(0)z ∈ Tm0M , which proves (4.1).

Example 4.1.3 Let Z be a subspace of X and Y be another Hilbert space. Then,

(a) Every open set V of Z is a C∞-submanifold of X. It is enough to consider the local
chart given by (U, idX), where U is any open set of X with U ∩ Z = V .

(b) (Immersion Theorem; see [1, Theorem 3.5.8]) Let V be an open subset of Z and
r : V → X be a Cp-embedding, that is,

(i) r is an injective mapping of class Cp;

(ii) at each v ∈ V , Dr(v) is injective with closed range; and

(iii) r is a homeomorphism between V and r(V ).

Then, r(V ) is a Cp-submanifold with model space Z and for every v ∈ V , Tr(v)r(V ) =
Dr(v)Z.

(c) Let U be an open set of X and f : U → Y be a function of class Cp. Then gph f is
a Cp-submanifold of X × Y and, for every u ∈ U , the Tangent space T(u,f(u))(gph f)
coincides with gphDf(u), and so is isomorphic to X. To prove this, it is enough
to apply the Immersion Theorem to the Cp-embedding r : U → X × Y given by
r(u) = (u, f(u)).

(d) If M ⊆ X is a Cp-submanifold and ϕ : X → Y is a Cp-diffeomorphism, then
ϕ(M) is a Cp-submanifold of Y . In such a case, for each m ∈ M we have that
Tϕ(M)ϕ(m) = Dϕ(m)TmM .

The first proposition we will show is that every Cp-submanifold can be represented as the
graph of a Cp-mapping.

Proposition 4.1.4 Let M be a subset of X and m0 ∈M . Then, M is a Cp-submanifold
at m0 if and only if there exist a closed subspace Z, two open neighborhoods U ∈ NX(m0)
and V ∈ NZ(0), and a mapping θ : V → Z⊥ of class Cp such that θ(0) = 0, Dθ(0) = 0
and

M ∩ U = (L−1(gph θ) +m0) ∩ U,

where L : X → Z × Z⊥ is the canonic isomorphism given by L(x) = (πZ(x), πZ⊥(x)). In
such a case, Z = Tm0M .
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Proof. Let us prove first the sufficiency. By Example 4.1.3.(c), we have that gph θ is a
Cp-submanifold of Z×Z⊥ with model space Z. Noting that the mapping ϕ : Z×Z⊥ → X
given by ϕ(·) = L−1(·) +m0, is a C∞-diffeomorphism, we have, using Example 4.1.3.(d),
that L−1(gph θ)+m0 is a Cp-submanifold. Finally, noting thatm0 ∈ (L−1(gph θ)+m0)∩U ,
the conclusion follows. Furthermore, we can write

Tm0M = Dϕ(0)T(0,0)(gph θ) = L−1(Z × {0}) = Z,

And so, the second part of the proposition also holds.

Now, let us prove the necessity. Since M is a Cp-submanifold at m0, there exist an
open neighborhood W ∈ NX(m0), a closed subspace Z of X and a Cp-diffeomorphism
ϕ : W → ϕ(W ) ⊆ X such that ϕ(m0) = 0 and that ϕ(W ∩M) = ϕ(W ) ∩ Z. Replacing
ϕ by Dϕ−1(0) ◦ ϕ if necessary and using equation (4.1), we may and do assume that
Z = Tm0M .

Consider now the function φ : ϕ(W ) ∩ Z → Z given by φ(z) = πZ(ϕ
−1(z) −m0). Since

Dφ(0) = Dϕ−1(0)
∣
∣
Z

is an isomorphism from Z to Z, we get by the Local Inverse Function
Theorem, that there exists an open neighborhood O ∈ NZ(0) such that φ : O → φ(O) is
a Cp-diffeomorphism.

Choose δ > 0 small enough such that BX(0, δ) ⊆ W and Z ∩ BX(0, δ) ⊆ O and fix
U := ϕ−1(BX(0, δ)) and V := φ(Z ∩BX(0, δ)). We have that

ϕ(M ∩ U) = Z ∩ ϕ(U) = Z ∩BX(0, δ) = φ−1(V ). (4.2)

Define now θ : V → Z⊥ as θ := πZ⊥(ϕ−1 ◦ φ−1(·)−m0)
∣
∣
V
. Clearly, θ(0) = 0 and

Dθ(0) = πZ⊥ ◦Dϕ−1(0) ◦Dφ−1(0) = 0,

since Dϕ−1(0) ◦Dφ−1(0)Z = Z. Also, for every m ∈ U ∩M we can write

L(m−m0) = (πZ(ϕ
−1 ◦ φ−1(v)−m0), πZ⊥(ϕ−1 ◦ φ−1(v)−m0)) = (v, θ(v)),

where v := φ◦ϕ(m) (which is in V , by equation (4.2)). Therefore, U ∩M ⊆ (L−1(gph θ)+
m0)∩U . For the other inclusion, take v ∈ V such that L−1(v, θ(v)) +m0 ∈ U . Again, by
equation 4.2, we get that there exists m ∈M ∩ U such that v := φ ◦ ϕ(m). Therefore,

L−1(v, θ(v)) = φ ◦ φ−1(v) + θ(v) = ϕ−1 ◦ φ−1(v)−m0 = m−m0.

Thus, L−1(v, θ(v)) + m0 ∈ M ∩ U , finishing the proof of the equivalence. The proof is
then complete.

The next proposition provides conditions assuming that the level sets of a function of
class Cp are Cp-submanifolds. This proposition will be very useful when we will study the
smoothness of the distance function to a set.
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Proposition 4.1.5 Let U0 be an open set of X, a point x̄ ∈ U0, a Banach space Y and
a mapping g : U0 → Y of class Cp. If Dg(ū) is surjective, then for ȳ := g(ū), the set
M = {x ∈ U0 : g(x) = ȳ} is a Cp-submanifold at ū, with TūM = Ker(Dg(ū)).

Proof. Without loss of generality, we may assume that ȳ = 0. Let us denote X2 =
Ker(Dg(x̄)), X1 = X⊥

2 and by πX1 and πX2 the associated parallel projections. By the
Local Submersion theorem (see [1, Theorem 2.5.12]), there exists an open neighborhood
U ⊆ U0 of x̄ in X, an open neighborhood V of (g(x̄), πX2(x̄)) in Y × X2, and a Cp-
diffeomorphism ψ : V → U such that

g ◦ ψ(v1, v2) = v1, ∀(v1, v2) ∈ V.

Since the bounded linear operator A0 : X1 → Y given by A0(x1) = Dg(x̄)x1 is bijective,
hence an isomorphism between X1 and Y according to the Closed Graph Theorem, the
mapping j : X1⊕X2 → Y ×X2 given by j(x1+x2) = (A0(x1), x2) is also an isomorphism.
Define jV : j−1(V ) → V as the bijective restriction of j to j−1(V ), and consider the
Cp-diffeomorphism ϕ := j−1

V ◦ ψ−1 from U onto j−1(V ). Then, we can write

x ∈ ϕ(U ∩M)⇔ψ ◦ jV (x) ∈ U and g ◦ ψ ◦ jV (x) = 0

⇔ψ ◦ jV (x) ∈ U and g ◦ ψ(A0(πX1(x)), πX2(x)) = 0

⇔ψ ◦ jV (x) ∈ U and A0(πX1(x)) = 0

⇔ψ ◦ jV (x) ∈ U and πX1(x) = 0

⇔x ∈ ϕ(U) ∩X2,

which means that M is a Cp-submanifold at x̄ with model space X2. Finally, we know
that Tx̄M = Dϕ−1(ϕ(x̄))X2. Noting that

Dg(x̄) ◦Dϕ−1(ϕ(x̄)) = D(g ◦ ϕ−1)(ϕ(x)) = A0 ◦ πX1 = Dg(x̄),

we get that Tx̄M ⊆ KerDg(x̄). On the other hand, we know that Dg(x̄) = πY ◦Dψ−1(x̄)
and so, if x ∈ KerDg(x̄), then Dψ−1(x̄)x ∈ X2. We conclude that

Dϕ(x̄)KerDg(x̄) = J−1
V ◦Dψ−1(x̄)KerDg(x̄) ⊆ X2,

which means that Tx̄M = Dϕ(x̄)−1X2 ⊇ KerDg(x̄), finishing the proof.

To close this section, we will introduce the notion of differentiable mappings between
submanifolds. Even though there are several ways to define the differentiability of such
mappings, we will follow the one introduced in [4, Ch. 9 - Section 3].

Definition 4.1.6 (Differentiable mappings) Let Y be another Hilbert space, M be a Cp-
submanifold of X, N be a Cp-submanifold of Y and f :M → N be a continuous mapping
(with respect to the relative topologies on M and N). We say that f is differentiable at a
point m ∈ M (resp. of class Ck near m, with 1 ≤ k ≤ p) if there exists U ∈ NX(m) and
a mapping f̂ : U → Y such that
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(a) f̂ is differentiable at m (resp. of class Ck near m); and

(b) f̂
∣
∣
U∩M

= f
∣
∣
U∩M

.

If f is differentiable at each point of M (resp. of class Ck near each point of M), we
simply say that f is differentiable (resp. of class Ck).

When f : M → N is a differentiable mapping between submanifolds, the derivative of f
at m ∈M , called the Tangent (linear) mapping of f at m, is given by

Tmf := Df̂(m)
∣
∣
TmM

.

This definition doesn’t depend on the extension f̂ chosen and also we have that Tmf(TmM)
is included in Tf(m)N . Indeed, let f̂ be such an extension and consider h ∈ TmM . By
Definition 4.1.2, there exists a C1-curve γ : ] − 1, 1[→ M with γ(0) = m and γ′(0) = h.
Now, we have that f ◦ γ = f̂ ◦ γ and it is a C1-curve in N with f ◦ γ(0) = f(m). Then,
by chain rule, we have that

(f ◦ γ)′(0) = Df̂(m)γ′(0) = Df̂(m)h.

Then, the restriction of Df̂(m) to TmM is unique, not depending on the extension chosen,
and Tmf : TmM → Tf(m)N is the unique continuous linear mapping such that Tmf ◦
γ′(0) = (f ◦ γ)′(0) for every C1-curve γ : ]− 1, 1[→M with γ(0) = m.

We will state two results concerning differentiable mappings that can be found in [4, Ch.
9 - Section 3], namely, the chain rule and the Local Inverse Theorem:

Proposition 4.1.7 (Chain rule) Let M1,M2 and M3 be three Cp-submanifolds of three
Hilbert spaces X1, X2 and X3, respectively. Let also f : M1 → M2 and g : M2 → M3 be
two continuous mappings. If f is differentiable at m1 ∈ M1 (resp. of class Ck near m1,
with 1 ≤ k ≤ p) and g is differentiable at f(m1) ∈ M2 (resp. of class Ck near f(m1)),
then g ◦ f is differentiable at m1 (resp. of class Ck near m1) with

Tm1(g ◦ f) = Tf(m1)g ◦ Tm1f.

Proof. It is enough to consider, according to Definition 4.1.6, two extensions f̂ and ĝ of
f and g, respectively, and apply the classical chain rule between Banach spaces.

Theorem 4.1.8 (Local Inverse Theorem) Let M and N be two Cp-submanifolds of two
Hilbert spaces X and Y respectively, and consider a mapping f : M → N which is of
class Ck (with 1 ≤ k ≤ p) near m ∈ M . If Tmf is bijective, then f is a local Ck-
diffeomorphism between M and N near m, that is, there exists a neighborhood U ∈ NX(m)
and a neighborhood V ∈ NY (f(m)) such that the function f

∣
∣
U
: U → V is bijective and

f
∣
∣
U
,
(
f
∣
∣
U

)−1
are both of class Ck.
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4.2 Proximal calculus and Prox-regular sets

In Hilbert spaces, the geometry of many sets can be described using proximal normal
vectors. These normal vectors are defined starting from the notion of nearest points,
which are known to always exists for convex closed sets. In this section we will give
a quick overview of the theory of Proximal Calculus and its relationship with the well-
known Clarke’s theory for nonsmooth calculus (namely, his Tangent cone, Normal cone
and subdifferential). We will also introduce the notion of Prox-regular sets and we will
describe some of their properties. Most of the results of this sections can be found in the
books [3], [10] and [23].

4.2.1 Proximal Normal Cone and Proximal Subdifferential

First, let us recall the notions of nearest points and metric projections. In the following,
for a nonempty subset S of X, we will denote by dS(·) (or d(·;S)) the distance function
to S, that is, for x ∈ X

dS(x) := inf{‖x− s‖ : s ∈ S}.

Definition 4.2.1 (Metric Projection) Let S be a nonempty subset of X and x ∈ X be a
fixed point. We say that a point s ∈ S is a nearest point or a projection of x onto S if

‖x− s‖ = dS(x).

The set of all projections of x onto S is denoted by ProjS(x) or Proj(x;S). If ProjS(x)
is a singleton, then the unique nearest point of x onto S is called the metric projection of
x onto S and it is denoted by PS(x).

It is a classic result that if S is closed and convex, then for every x ∈ X, the metric
projection of x onto S exists (and is unique), and so the mapping PS : X → S is well-
defined. If we drop the hypothesis of convexity, the set ProjS(x) can have many points
or even be empty.

Geometrically speaking, we can interpret the set ProjS(x) as the collection of all points
of the set S where it is tangent to the ball centered in x with radius dS(x), and so

s ∈ ProjS(x) ⇐⇒ s ∈ S ∩ BX [x, ‖x− s‖] and S ∩ BX(x, ‖x− s‖) = ∅. (4.3)

Proposition 4.2.2 (See [10, Proposition 1.3]) Let S be a nonempty subset of X, and let
x ∈ X, s ∈ S. The following assertions are equivalent:

(i) s ∈ ProjS(x);

(ii) For all t ∈ [0, 1], s ∈ ProjS(s+ t(x− s));
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(iii) For all t ∈ [0, 1], dS(s+ t(x− s)) = t‖x− s‖;

(iv) For all s′ ∈ S, 〈x− s, s′ − s〉 ≤ 1
2
‖s′ − s‖2.

In such a case, we have that for every t ∈ ]0, 1[, ProjS(s+ t(x− s)) = {s}.

Definition 4.2.3 (Proximal normal cone) Let S be a nonempty subset of X and s̄ ∈ S.
We say that ζ ∈ X is a proximal normal vector to S at s̄ if there exists t > 0 such that

s̄ ∈ ProjS(s̄+ tζ).

The set of all proximal normal vectors to S at s̄ is called the Proximal Normal Cone of S
at s̄ and is denoted by NP (S; s̄).

By convention, NP (S; x) = ∅ whenever x /∈ S, and so NP (S; ·) defines a multifunction
from X into X. Also, it is clear that if s ∈ intS, then NP (S; s̄) = {0}. Intuitively,
NP (S; s̄) is the set of all the directions of perpendicular departure from S at the point s̄.
Also, we have the equality

NP (S; s̄) = {ζ ∈ X : ∃t > 0, dS(s̄+ tζ) = t‖ζ‖}.

Here we will introduce the notions of open normal ray and λ-truncated open normal ray.
They will be used mainly in Chapter 5 in order to state the generalizations of Holmes’
Theorem and its converse.

Definition 4.2.4 (Open Normal Ray) Let S be a closed set of X, x ∈ bdS and λ > 0.
If the proximal normal cone of S at x is of the form

NP (S; x) = {tν : t ∈ R+},

for some unit vector ν ∈ SX , we define the open normal ray of S at x and the λ-truncated
open normal ray of S at x as the sets

Rayx(S) := {x+ tν : t ∈ ]0,+∞[ } (4.4)

Rayx,λ(S) := {x+ tν : t ∈ ]0, λ[ } (4.5)

respectively.

Motivated by characterization (iv) of ProjS(·), it is reasonable to expect similar variational
inequalities to describe the proximal normal cone. We also expect the proximal normality
to be a local property. These conditions are contained in the following proposition.

Proposition 4.2.5 (See [10, Proposition 1.5]) Let S be a nonempty subset of X, δ > 0
and let s ∈ S and ζ ∈ X. The following assertions are equivalent:

(i) ζ ∈ NP (S; s).



4.2. PROXIMAL CALCULUS AND PROX-REGULAR SETS 147

(ii) There exists σ ≥ 0 depending on ζ and s such that

〈ζ, s′ − s〉 ≤ σ‖s′ − s‖2, ∀s′ ∈ S.

(iii) There exists σ ≥ 0 depending on ζ, s and δ such that

〈ζ, s′ − s〉 ≤ σ‖s′ − s‖2, ∀s′ ∈ BX(s, δ) ∩ S.

In particular, for any δ > 0, NP (S; s) = NP (BX(s, δ) ∩ S, s).

The above characterization happens to be very useful when we want to obtain properties
of the Proximal normal cone. From it, we can derive the following corollary.

Corollary 4.2.6 Let S be a nonempty subset of X and let x ∈ S. We have that NP (S; x)
is convex.

Unfortunately, even though we have convexity, the proximal normal cone is not necessarily
neither open nor closed. Proposition 4.2.5 also entails the following property of invariance
under isomorphisms, which will be very useful in the development of Chapter 5.

Proposition 4.2.7 Let Y be a Hilbert space, S ′ be a nonempty subset of Y and A : X →
Y be a bijective continuous linear mapping. For every x ∈ A−1(S ′) we have that

NP (A−1(S ′); x) = A∗NP (S ′;A(x)) = {A∗ζ : ζ ∈ NP (S ′;A(x))}. (4.6)

Proof. To simplify notation, set S := A−1(S ′). Let ξ ∈ NP (S; x). We have that there
exists σ > 0 such that

〈ξ, x′ − x〉 ≤ σ‖x′ − x‖2, ∀x′ ∈ S.

Then, recalling that (A∗)−1 = (A−1)∗ for all y ∈ S ′ we can write

〈(A∗)−1ξ, y − A(x)〉 = 〈(A−1)∗ξ, y − A(x)〉
= 〈ξ, A−1(y)− x〉
≤ σ‖A−1(y)− x‖2 ≤ σ‖A−1‖2‖y − A(x)‖2.

Then, by Proposition 4.2.5, we get that (A∗)−1ξ ∈ NP (S ′;A(x)), concluding thatNP (S; x)
is contained in A∗NP (S ′;A(x)). The reverse inclusion follows by symmetry, replacing A
by A−1.

As usual, these geometric objects defined for sets can be extended to functions. This
motivates the next definition.

Definition 4.2.8 (Proximal subdifferential) Let f : X → R∞ be a proper function, and
let x ∈ dom f . A vector ζ ∈ X is called a proximal subgradient of f at x if

(ζ,−1) ∈ NP (epi f ; (x, f(x))).
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The set of all these proximal subgradients is called the proximal subdifferential of f at x,
denoted by ∂Pf(x).

By convention, we will set ∂Pf(x) = ∅, whenever x /∈ dom f , and so ∂Pf(·) defines a
multifunction from X into X. Also, it is not hard to see that, for a nonempty set S ⊆ X

∂P IS(x) = NP (S; x), ∀x ∈ X,

where IS is the indicator function of S (see Introduction of Part II). We also can prove the
Fermat’s rule for the proximal subdifferential, namely, if a proper function f : X → R∞

attains a local minimum at x ∈ dom f , then 0 ∈ ∂Pf(x). Indeed, since x is a local
minimum of f , there exists a neighborhood U ∈ NX(x) such that,

∀x′ ∈ U, f(x) ≤ f(x′).

Therefore, for every (x′, r′) ∈ epi f ∩ (U × R), we have that

〈(0,−1), (x′, r′)− (x, f(x))〉 = f(x)− r′ ≤ f(x)− f(x′) ≤ 0 = 0‖(x′, r′)− (x, f(x))‖2.

Therefore, by Proposition 4.2.5, we get that (0,−1) ∈ NP (epi f, (x, f(x))), proving our
claim. To avoid pathological situations, we will restrict our study to nonempty closed
sets and so, in the functional context, to lower semicontinuous functions (since they are
characterized by the closedness of their epigraphs).

Proposition 4.2.9 (See See [10, Ch. 1 - Theorem 2.5]) Let f : X → R∞ be a proper
lower semicontinuous function and let x ∈ dom f . A vector ζ ∈ X belongs to ∂Pf(x) if
and only if there exists two positive numbers σ and η such that

f(y) ≥ f(x) + 〈ζ, y − x〉 − σ‖y − x‖2, ∀y ∈ BX(x, η) (4.7)

Observe that Proposition 4.2.9 entails that whenever the function f is γ-Lipschitz con-
tinuous near x (with γ > 0), each element ζ ∈ ∂Pf(x) has norm ‖ζ‖ ≤ γ. Indeed, from
equation (4.7), for each δ ∈]0, η[ we can write

γ ≥ |f(y)− f(x)|
‖y − x‖ ≥ sup

y∈BX(x,δ)\{x}

〈

ζ,
y − x

‖y − x‖

〉

− σ‖y − x‖ ≥ ‖ζ‖ − σδ,

which, by arbitrariness of δ, proves our claim.

Another implication of this variational characterization, is the behavior of ∂Pf when f is
differentiable in some sense, which we describe in the following corollary.

Corollary 4.2.10 (See [10, Corollary 2.6]) Let f : X → R∞ be a proper lower semicon-
tinuous function, U be an open set of X and let x ∈ U . We have that

(a) If f is G-differentiable at x, then ∂Pf(x) ⊆ {∇Gf(x)}.
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(b) If f is of class C2 at x, then ∂Pf(x) = {∇f(x)}.

If f is of class C1 at x, we still could get that ∂Pf(x) is empty, as we can see in [10, Ch.
1 - Exercise 1.7].

We end this section establishing a useful relation between the Proximal subdifferential of
the distance function and the enlargements of sets. For λ > 0 and a nonempty subset S
of X let us define the λ-enlargement of S as the set

Sλ := {x ∈ X : dS(x) ≤ λ} (= d−1
S ([0, λ])). (4.8)

The proof of the next proposition is mainly contained in [5].

Proposition 4.2.11 Let S a nonempty subset of X. The following hold:

(a) For x ∈ clS we have that

∂PdS(x) = NP (clS; x) ∩ BX .

(b) For x /∈ clS, fixing λ := dS(x), we have that

∂PdS(x) = NP (Sλ; x) ∩ SX .

4.2.2 Clarke’s Normal Cone and Normal regularity

The Proximal Normal Cone is not the unique way to extend the normal cone to the
nonconvex setting. In the literature, we can find several notions, as for example the
Fréchet Normal Cone or the Limiting Normal Cone (see, e.g. [21], [23]). In this section,
we will focus on the Clarke Normal Cone, which is defined from the Clarke Tangent Cone.
These two objects were introduced by Clarke after defining a new subdifferential to work
with outside the convex setting. Instead of the historical development, we will follow a
much modern approach based on the lecture’s notes of L. Thibault (see [30]).

Let us recall first that the notion of Peano-Painlevé-Kuratowski limits of sets. Let (T, τ)
and (S, σ) be two Hausdorff topological spaces, M : T ⇒S be a multifunction, t0 ∈ T
and T0 ⊆ T such that t0 ∈ cl(T0). We define the Peano-Painlevé-Kuratowski inferior and
superior limits of M at t0 relative to T0 as

Liminf
T0∋t→t0

M(t) := {s ∈ S : ∀W ∈ NS(s), ∃V ∈ NT (t0), ∀t ∈ V ∩ T0, M(t) ∩W 6= ∅}.

Limsup
T0∋t→t0

M(t) := {s ∈ S : ∀W ∈ NS(s), ∀V ∈ NT (t0), ∃t ∈ V ∩ T0, M(t) ∩W 6= ∅}.

In general, Liminf
T0∋t→t0

M(t) ⊂ Limsup
T0∋t→t0

M(t). If the other inclusion also holds, the common set

is called the Peano-Painlevé-Kuratowski limit of M at t0 relative to T0, and it is denoted
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by Lim
T0∋t→t0

M(t). We refer the reader to [23, Section 1.3] for further information on these

notions.

Definition 4.2.12 (Clarke Tangent and Normal Cones) Let S be a nonempty set of X
and x0 be a point in S. We define the Clarke Tangent Cone of S at x0 as the set

TC(S; x0) := Liminf
S∋u→x0; t↓0

1
t
(S − u),

where, in the definition of inferior limit, S × R+, (x0, 0) ∈ S × R+, S× ]0,+∞[ and
(u, t)⇒ 1

t
(S− u) play the role of the topological space T , the limit point t0, the set T0 and

the multifunction M , respectively.

We also define the Clarke Normal Cone of S at x0, denoted by NC(S; x0), as the negative
polar set of the Clarke Tangent Cone, that is,

NC(S; x0) :=
[
TC(S; x0)

]o
= {ζ ∈ X : 〈ζ, h〉 ≤ 0, ∀h ∈ TC(S; x0)}.

The Clarke tangent and normal cones enjoy several nice properties that make them a pow-
erful tool in nonconvex optimization and variational analysis. We give a quick overview
of some of those properties, concentrating us in those which we will use.

The next proposition can be easily derived from Definition 4.2.12.

Proposition 4.2.13 (Sequential characterization of Clarke tangent cone) Let S be a
nonempty set of X and let x0, h ∈ X. The following assertions are equivalent:

(i) h ∈ TC(S; x0).

(ii) For any sequence (xn) ⊂ S converging to x0 and any sequence (tn) ⊆ ]0,+∞[
converging to 0, there exists a sequence (hn) ⊆ X converging to h such that

xn + tnhn ∈ S, for all n ∈ N (or for all n large enough).

(iii) For any sequence (xn) ⊂ S converging to x0 and any sequence (tn) ⊆ ]0,+∞[
converging to 0, there exist an increasing function ψ : N → N and a sequence
(hn) ⊆ X converging to h such that

xψ(n) + tψ(n)hn ∈ S, for all n ∈ N.

Next proposition surveys some useful properties of the Clarke tangent and normal cones.
It is difficult to find it in its present form, but all results can be derived from what is
contained in [3, Ch. 4], [10, Ch. 2] and [23, Ch. 5].

Proposition 4.2.14 Let S be a nonempty set and let x0 ∈ S. We have that
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(a) TC(S; x0) and NC(S; x0) are convex closed cones and so

TC(S; x) =
[
NC(S; x)

]o
.

(b) The Clarke tangent and normal cones of S at x0 are local, that is, for any neigh-
borhood U ∈ NX(x0) we have that

TC(S ∩ U ; x0) = TC(S; x0) and NC(S ∩ U ; x0) = NC(S; x0).

Furthermore, for any other set S ′ such that S ∩ U ⊆ S ′ ∩ U ⊆ cl(S) ∩ U , we have
that

TC(S ′; x0) = TC(S; x0) and NC(S ′; x0) = NC(S; x0).

(c) If Y is another Hilbert space, U ⊆ X is an open neighborhood of x0, ϕ : U →
ϕ(U) ⊆ Y is a C1-diffeomorphism, and S ′ ⊆ ϕ(U) is such that U ∩ S = ϕ−1(S ′),
then

TC(S; x0) = TC(ϕ−1(S ′); x0) = Dϕ(x0)
−1

(
TC(S ′, ϕ(x0))

)
. (4.9)

NC(S; x0) = NC(ϕ−1(S ′); x0) = Dϕ(x0)
∗
(
NC(S ′, ϕ(x0))

)
. (4.10)

(d) If in addition x0 ∈ bdS, the equality

TC(bdS; x0) = TC(S; x0) ∩ TC(Sc ∪ {x0}; x0)

always hods.

As we did with the Proximal normal cone, the Clarke normal cone induces a subdifferential
notion, which is called the Clarke subdifferential or the generalized subgradient and it was
introduced by F. H. Clarke in 1975 in order to generalize the convex subdifferential to
Lipschitz functions (see [8], [9]).

Definition 4.2.15 (Clarke subdifferential) Let f : X → R∞ be a proper function and let
x ∈ dom f . The Clarke subdifferential of f at x is defined as

∂Cf(x) :=
{
ζ ∈ X : (ζ,−1) ∈ NC(epi f ; (x, f(x)))

}
.

By convention, we will set ∂Cf(x) = ∅ whenever x /∈ dom f . Thus, ∂f(·) defines a multi-
function from X onto X. We will know describe some properties of Clarke subdifferential,
restricting us only to those we will use.

Proposition 4.2.16 Let f : X → R∞ be a proper function and let x ∈ dom f . We have
that

(a) ∂Cf(x) is a convex closed set (possibly empty).
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(b) If x is a local minimum of f , then 0 ∈ ∂Cf(x).

(c) If f is F-differentiable at x, then ∇f(x) ∈ ∂Cf(x). If in addition f is of class C1 at
x, then ∂Cf(x) = {∇f(x)}.

(d) If f = IS for some subset S of X, then

∂CIS(x) = NC(S; x).

When the function f is Lipschitz-continuous near x, the Clarke subdifferential has further
properties and it is strongly related with the so called Clarke directional derivative.

Definition 4.2.17 (Clarke directional derivative) Let f : X → R∞ a proper function
and let x ∈ dom f . If f is Lipschitz-continuous near x, we define the Clarke directional
derivative of f at x as the function f o(x; ·) : X → R∞ given by

f o(x; v) := lim sup
x′→x; t↓0

f(x′ + tv)− f(x′)

t
.

Proposition 4.2.18 Let f : X → R∞ be a proper function and let x ∈ dom f . If f is
Lipschitz-continuous near x with Lipschitz-constant γ > 0, then

(a) f o(x; ·) is well-defined, sublinear and γ-Lipschitz on X. Furthermore,

TC(epi f ; (x, f(x))) = epi f o(x; ·).

(b) ∂Cf(x) is nonempty and w∗-compact and for all ξ ∈ ∂Cf(x), ‖ξ‖ ≤ γ.

(c) For every ξ ∈ X, ξ ∈ ∂Cf(x) if and only if 〈ξ, v〉 ≤ f o(x; v) for all v ∈ X.
Furthermore,

f o(x; v) = max{〈ξ, v〉 : ξ ∈ ∂Cf(x)}.

Observe that the proof of the latter proposition entails that, when f is Lipschitz-continuous
near x, we can write the equality

NC(epi f ; (x, f(x))) = R+ [∂Cf(x)× {−1}] , (4.11)

which in particular, ensures that there are no horizontal normal directions to the epigraph
of f at the point (x, f(x)), that is, whenever (ξ, s) ∈ NC(epi f ; (x, f(x))) \ {(0, 0)}, then
necessarily s < 0.

Before establishing the relationship between the Clarke normal cone and the Proximal
normal cone, we will introduce a third concept of normal cone, which is related to the so
called Bouligand tangent cone or contingent cone.
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Definition 4.2.19 (Bouligand tangent and normal cones) Let S be a nonempty subset
of X and let x0 ∈ S. We define the Bouligand tangent cone of S at x0 as the set

TB(S; x0) := Limsup
tց0

1
t
(S − x0) ,

where, in the definition of superior limit, R+, 0 ∈ R+, ]0,+∞[ and t⇒ 1
t
(S − x0) play

the role of the topological space T , the limit point t0, the set T0 and the multifunction M ,
respectively.

We also define the Bouligand Normal Cone of S at x0, denoted by NB(S; x0), as the
negative polar set of the Bouligand tangent cone.

The Bouligand tangent cone of S at x0 can be equivalently defined as the set of all
directions d ∈ X for which there exist a sequence (dn) ⊆ X converging to d and a
sequence (tn) ⊆ ]0,+∞[ converging to 0 such that

x0 + tndn ∈ S, ∀n ∈ N. (4.12)

Some properties that are not hard to verify are contained in the following proposition,
which we will leave without proof. We refer the reader to [3] and the references therein
for more details.

Proposition 4.2.20 Let S be a nonempty subset of X, and let x0 ∈ S.

(a) TB(S; x0) is a closed cone (but not necessarily convex);

(b) The Bouligand tangent and normal cones are local, namely, they satisfy the relations
of Proposition 4.2.14.(b), established for the Clarke tangent and normal cones.

(c) The Bouligand tangent cone is isotone, that is, for every subset S ′ of X containing
S, we get that

TB(S; x0) ⊆ TB(S ′, x0).

An important difference between Bouligand and Clarke tangent cones, is that the Clarke
tangent cone is neither isotone nor antitone, that is, the inclusion S ⊂ S ′ with x ∈ S does
not imply either TC(S; x) ⊂ TC(S ′; x) (isotony) or TC(S; x) ⊃ TC(S ′; x) (antitony).

The relations in the general case between the Proximal normal cone, the Clarke cones and
the Bouligand cones are summarized in the following proposition.

Proposition 4.2.21 Let S be a nonempty subset of X and let x0 ∈ S. We have that

(a) TC(S; x0) ⊆ TB(S; x0). Furthermore, if S is convex, then

TC(S; x0) = TB(S; x0) = cl (R+(S − x0)) .
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(b) NP (S; x0) ⊆ NB(S; x0) ⊆ NC(S; x0). Furthermore, if S is convex, then

NP (S; x0) = NC(S; x0) = {x ∈ X : 〈x, u− x0〉 ≤ 0, ∀u ∈ S}.

From Definitions 4.2.8 and 4.2.15, we can state the same inclusion of part (b) of the latter
proposition for the Proximal and Clarke subdifferentials, namely, for a proper function
f : X → R∞,

∂Pf(x) ⊆ ∂Cf(x), ∀x ∈ X.

Likewise, if f is convex, then all subdifferentials coincide, since in such a case we can write

∂f(x) = {ζ ∈ X : f(x) + 〈ζ, y − x〉 ≤ r, ∀(y, r) ∈ epi f}.

This motivates the following definition:

Definition 4.2.22 A nonempty subset S of X is said to be

1. Tangentially regular at x ∈ S, if TC(S; x) = TB(S; x).

2. Normally regular at x ∈ S if NP (S; x) = NC(S; x).

Analogously, a proper function f : X → R∞ is said to be Tangentially regular (resp.
Normally regular) at x ∈ dom f if its epigraph is Tangentially regular (resp. Normally
regular) at (x, f(x)).

Evidently, every convex set is both tangentially regular and normally regular at each of
its points. Nevertheless, there are more regular sets (or functions) than the convex ones.
Also it is worth pointing out that none of those two regularities implies the other one.

Proposition 4.2.23 Let f : X → R∞ be a proper function and let x ∈ dom f . Assume
that f is Lipschitz-continuous near x. Then, f is tangentially regular at x if and only if the
(classical) directional derivative f ′(x; ·) exists and it coincides with the Clarke directional
derivative f o(x; ·).

In particular, if f is of class C1 at x, then f is tangentially regular at x. If in addition f
is of class C2 at x, then it is also normally regular at x.

4.3 Epi-Lipschitz and Prox-regular Sets

This section is devoted to give a summary on two types of special sets, namely, the
epi-Lispchitz sets and the prox-regular sets. Epi-Lipschitz sets where first introduced
by Rockafellar in 1979 (see [26]) for the finite-dimensional case. The history of prox-
regular sets is more complex, but we can trace back their first appearance to 1959, in the
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celebrated paper of Federer (see [14]), where they were introduced as sets with positive
reach.

Definition 4.3.1 (Epi-Lipschitz set) Let S be a nonempty subset of X and let x0 ∈ S
and h ∈ X \ {0}. We say that S is epi-Lipschitz at x0 in the direction h if there exists
a complement subspace Z of Rh, an open neighborhood W ∈ NX(x0) and a Lipschitz
function f : Z → R such that

S ∩W = {z + th ∈ W : (z, t) ∈ Z × R, f(z) ≤ t} = L(epi f) ∩W, (4.13)

where, writing X = Z ⊕ Rh, L : Z × R → X is the canonic isomorphism given by
L(z, t) = z + th. We simply say that S is epi-Lipschitz at x0 if there exists a nonzero
direction h ∈ X \ {0} for which S is epi-Lipschitz at x0 in the direction h.

Note that the name epi-Lipschitz comes from the fact that the set S is locally isomorphic to
the epigraph of a Lipschitz function. In 1979, Rockafellar characterized them (in the finite-
dimensional case) in terms of the Clarke tangent cone (see [26]). Roughly speaking, he
proved that a subset S of Rn is epi-Lipschitz at a point x0 if and only if int(TC(S; x0)) 6= ∅.
Moreover, the directions on which S is epi-Lipschitz at x0 are precisely the nonzero ones
belonging to int(TC(S; x0)). This approach still holds for the infinite-dimensional case,
replacing int(TC(S; x0)) by what is called the interior tangent cone of S at x0.

Definition 4.3.2 (Interior tangent cone) Let S be a nonempty subset of X and let x0 ∈ S.
We define the interior tangent cone of S at x0, denoted by I(S; x0), as the set of all
directions h ∈ X for which there exist ε > 0 and two neighborhoods U ∈ NX(x0) and
V ∈ NX(h) such that

(U ∩ S)+ ]0, ε[V ⊆ S.

Remark 4.3.3 When introduced, the interior tangent cone I(S; x0) was called by Clarke
and Rockafellar thehypertangent cone. The elements belonging to I(S; x0) were called
hypertangent vectors. See, e.g., [9, Ch. 2] and [27].

Next proposition summarizes basic properties of the interior tangent cone. The proof is
contained in [30], but, for the sake of completeness, we will include it here. Recall that
an open cone C is an open set for which

λC ⊆ C, ∀λ > 0.

Proposition 4.3.4 Let S ⊆ X and x ∈ S. The following hold:

(a) h ∈ I(S; x) if and only if for any sequence (tn) ⊂ ]0,+∞[ converging to 0, any
sequence (xn) ⊂ S converging to x, and any sequence (hn) ⊂ X converging to h, we
have

xn + tnhn ∈ S, (for n large enough).

(b) I(S; x) ⊆ TC(S; x) and I(S; x) + TC(S; x) = I(S; x).
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(c) I(S; x) is an open convex cone, and whenever I(S; x) 6= ∅ we have

TC(S; x) = cl(I(S; x)) and I(S; x) = int
(
TC(S; x)

)
.

Proof.

(a) The necessity is direct, and so, we only need to prove the sufficiency. Reasoning by
contraposition, fix h /∈ I(S; x). Then, for every n ∈ N, we have that

((
BX

(
x, 1

n

)
∩ S

)
+

]
0, 1

n

[
BX

(
h, 1

n

))
∩ Sc 6= ∅.

Then, for every n ∈ N we can choose xn ∈ BX

(
x, 1

n

)
∩ S, tn ∈

]
0, 1

n

[
and hn ∈

BX

(
h, 1

n

)
such that xn + tnhn /∈ S. Since, by construction, xn → x, tn → 0 and

hn → h, we get that the condition of the right of the equivalence doesn’t hold for
h. Therefore, by contraposition, the sufficiency is proved.

(b) The inclusion I(S; x) ⊆ TC(S, x) holds trivially (use part (a) and Proposition
4.2.13). Now, fix h ∈ I(S; x) and h′ ∈ TC(S; x). We want to prove that d :=
h+ h′ ∈ I(S; x). Fix (xn) ⊂ S converging to x, (tn) ⊂ ]0,+∞[ converging to 0 and
(dn) ⊂ X converging to d. We know that there exists a sequence (h′n) ⊂ X con-
verging to h′ such that xn + tnh

′
n ∈ S for n large enough. Consider yn := xn + tnh

′
n

and hn := dn − h′n. Clearly, yn → x, hn → h and yn ∈ S for n large enough, which
yields, according to the inclusion h ∈ I(S; x), that

xn + tndn = (xn + tnh
′
n) + tn(dn − h′n) = yn + tnhn ∈ S,

for all n large enough. Using part (a), we conclude that h ∈ I(S; x), as we wanted
to.

(c) The fact that I(S; x) is an open cone follows from the definition. Also, by part (b),
we have that I(S; x) + I(S; x) ⊆ I(S; x), which yields the convexity of I(S; x).

On the other hand, assuming that I(S; x) 6= ∅, we can choose h′ ∈ I(S; x) and
by (b) we have that for every h ∈ TC(S; x), the point h + 1

n
h′ ∈ I(S; x). Then,

TC(S; x) = cl(I(S; x)). Since both sets are convex, this equality also guarantees
that I(S; x) = int(TC(S; x)), finishing the proof.

Note that in finite dimension the equality I(S; x) = int(TC(S; x)) always holds, but, in
the infinite-dimensional setting, I(S; x) can be empty even if int(TC(S; x)) isn’t (see [26,
Theorem 2 and Counterexample 1]). Nevertheless, if S is convex, then the equality

I(S; x) =]0,+∞[(intS − x)

holds, regardless the dimension of X.
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For the next theorem, recall that a set S is said to be closed near a point x ∈ S if there
exists an open neighborhood U ∈ NX(x) such that S ∩ U is closed, relatively to U . Next
theorem can be found in the finite-dimensional setting in [26, Theorem 3]. The proof in
the general case remains exactly the same.

Theorem 4.3.5 Let S ⊆ X, x0 ∈ S and h ∈ X \ {0}. Assume that S is closed near x0.
The set S is epi-Lipschitz at x0 in the direction h if and only if h ∈ I(S; x0).

In particular, S is epi-Lipschitz at x0 if and only if I(S; x0) 6= ∅.

Proposition 4.3.6 Let S be a closed set of X and let x0 ∈ bdS. If S is epi-Lipschitz at
x0 then

{0} ( NC(S; x0),

that is, there exists a nonzero vector ξ such that R+{ξ} ⊂ NC(S; x0).

We finish the introduction of epi-Lipschitz sets establishing a formula for the interior
tangent cone of the complement of a set. This proposition can be found in [27] or, more
recently, in [13].

Proposition 4.3.7 Let S be a nonempty set of X and let x0 ∈ S ∩ bdS. Then, the
equality

I(Sc ∪ {x0}; x0) = −I(S; x0)
always holds, thus S is epi-Lipschitz at x0 in the direction h ∈ X \ {0} if and only if
Sc ∪ {x0} is epi-Lipschitz in the opposite direction −h. So,

TC(Sc ∪ {x0}; x0) = −TC(S; x0),

whenever S is epi-Lipschitz at x0.

Combining the latter proposition with Proposition 4.2.14(d), we can establish the follow-
ing direct corollary:

Corollary 4.3.8 Let S be a nonempty set of X which is epi-Lipschitz at x0 ∈ S ∩ bdS.
Then,

TC(bdS; x0) = TC(S; x0) ∩ (−TC(S; x0)),
which yields in particular that TC(bdS; x0) is a closed subspace of X.

Now, we will turn to the notion of prox-regular sets. The definitions and development
included in this part are based mostly on Mazade’s Thesis (see [19]), the fundamental
work of Poliquin, Rockafellar and Thibault (see [24]) and the nice survey on prox-regular
sets of Colombo and Thibault (see [11]). Since the proofs of the propositions in this part
are quite technical and require several lemmas, we will omit them, referring the reader to
the latter indicated references.
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Even though prox-regularity can be defined for general sets, we prefer to settle it only of
closed sets, since the definition is based on the existence of projections and therefore it
only make sense for closed (or locally closed) sets.

Definition 4.3.9 (Prox-regular set) Given an extended real r ∈ ]0,+∞] and a real α > 0,
we say that a closed set S of X is (r, α)-prox-regular at x0 ∈ S if for every x ∈ S ∩
BX(x0, α) and every ζ ∈ NP (S; x) ∩ BX we have that

x ∈ ProjS(x+ tζ), for every real t ∈ [0, r]. (4.14)

We say that S is r-prox-regular at x0 ∈ S if it is (r, α)-prox-regular at x0 for some
α > 0 and we simply say that S is prox-regular at x0 if there exists r > 0 such that S is
r-prox-regular at x0.

Consequently, we say that S is r-prox-regular (resp. prox-regular) if it is r-prox-regular
(resp. prox-regular) at every point x ∈ S.

It is clear that if S is (r, α)-prox-regular at x0, then it is also (r′, α′)-prox-regular at x0
for every α′ ∈ ]0, α] and every r′ ∈ ]0, r].

In the paper [24], Poliquin, Rockafellar and Thibault studied the local prox-regularity of
a set S. We summarize their results (those that we will need) in the following theorem:

Theorem 4.3.10 (PRT, 2000) Let S be a closed set of X and x0 ∈ S. The following
assertions are equivalent:

(i) S is prox-regular at x0;

(ii) There exists O ∈ NX(x0) such that PS is well defined and locally Lipschitz continu-
ous in O;

(iii) There exist two real constants σ ≥ 0, δ > 0 such that for every x ∈ S ∩ BX(x0, δ)
and every ζ ∈ NP (S; x) ∩ BX , one has

〈ζ, y − x〉 ≤ σ

2
‖y − x‖2, ∀y ∈ S ∩BX(x0, δ);

(iv) There exists O ∈ NX(x0) such that dS is continuously differentiable in O \ S.

Moreover, if S is prox-regular at x0, then S is tangentially and normally regular at x0
and there exists a neighborhood O ∈ NX(x0) for which PS is well defined in O, dS is
Fréchet-differentiable in O \ S and its gradient is given by

∇dS(u) =
u− PS(u)

dS(u)
, ∀u ∈ O \ S. (4.15)
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In the Ph.D thesis [19] of M. Mazade, quantified versions are provided for the characteri-
zations of local prox-regularity given in the PRT theorem. To do so, for r ∈ ]0,+∞] and
α > 0 the following local enlargements of the set S at a point x0 ∈ S are introduced:

RS(x0, r, α) :=
{
x+ tv : x ∈ S ∩BX(x0, α), t ∈ [0, r[, v ∈ NP (S; x) ∩ BX

}
, (4.16)

WS(x0, r, α) := {u ∈ X : ProjS(u) ∩BX(x0, α) 6= ∅, dS(u) < r} . (4.17)

We summarize the results in [19] that we will use in the following theorem (see [19,
Theorem 2.3.3 and Theorem 2.3.4]):

Theorem 4.3.11 ([19]) Let S be a closed set of X, x0 ∈ S, r ∈ (0,+∞] and α > 0. The
following assertions are equivalent:

(i) S is (r, α)-prox-regular at x0;

(ii) The set WS(x0, r, α) is open and PS is well-defined and locally Lipschitz continuous
on WS(x0, r, α);

(iii) The set WS(x0, r, α) is open and dS is continuously differentiable on WS(x0, r, α)\S
with ∇dS(u) = u−PS(u)

dS(u)
for all u ∈ WS(x0, r, α) \ S;

(iv) For any x ∈ S ∩B(x0, α) and ζ ∈ NP (S; x) one has

〈ζ, x′ − x〉 ≤ ‖ζ‖
2r

‖x′ − x‖2 for all x′ ∈ S.

Moreover, if S is (r, α)-prox-regular at x0, then RS(x0, r, α) and WS(x0, r, α) coincide,
and also, for each γ ∈ ]0, 1[, PS(·) is Lipschitz continuous on WS(x0, γr, α) with Lipschitz
constant (1− γ)−1.

It is known (see, e.g., [11]) that S is prox-regular if and only if there exists a continuous
function ρ : S → (0,+∞] (that we will call prox-regularity function) such that for every
x ∈ S and every ζ ∈ NP (S; x) ∩ BX one has

x ∈ ProjS(x+ tζ), for every real t ∈ [0, ρ(x)].

It is also known (see, e.g., [11, Chapter 3, Propositions 4 and 11]) that whenever S is
ρ(·)-prox-regular, the enlargement of S

Uρ(·)(S) := {u ∈ X : ∃y ∈ ProjS(u) with dS(u) < ρ(y)}

is an open set, PS is well-defined on Uρ(·)(S) and d2S(·) is of class C1 on Uρ(·)(S).

An interesting property of prox-regular sets is the directional differentiability of the metric
projection. This property was developed for convex sets by Zarantonello [31] and later
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established for prox-regular sets, independently by Canino [7] and Shapiro [29]. Here we
state the result as in [11, Theorem 26].

Recall that for a closed set S and a point x ∈ bdS, the metric projection PS is said to be
directionally differentiable (in the sense of Gâteaux) if there exists a mapping F : X → X
(not necessarily linear) such that

PS(x+ th) = x+ tF (h) + o(t).

In such a case, F is called the directional derivative of PS at x.

Theorem 4.3.12 Assume that S is a closed prox-regular set at x ∈ bdS. We have that
there exists an open neighborhood U ∈ NX(x) such that PS is directionally differentiable
at every u ∈ U ∩ S. Moreover, the directional derivative at u coincides with the metric
projection onto TB(S; u), that is,

PS(u+ th) = PS(u) + tPTB(S;u)(h) + o(t).

Proof. See [11, Theorem 26].

4.4 Variational properties of submanifolds

In this section we expose some properties of sets which are Cp-submanifolds or which have
Cp-smooth boundary (namely, their boundary is a Cp-submanifold). Many of these results
are probably known but they are hard to find in the literature. They will form the base
of the development of Chapter 5.

We will first introduce the main object which we will work with, namely, the closed bodies.

Definition 4.4.1 (Closed body) A subset S of X will be called a closed body (relative
to X) near x0 ∈ bdS provided there exists an open connected neighborhood U of x0 such
that U ∩ S = U ∩

(
intS

)
and U ∩ intS is connected.

When U = X, that is, S = intS and intS is connected, we will say that S is a closed
body (relative to X).

Note that, in the latter definition, when S is a closed body near x0, the set S ∩ U is in
turn connected.

Proposition 4.4.2 Let S ⊆ X and x0 ∈ bdS such that x0 ∈ intS. If bdS is a Cp-
submanifold of X at x0, then Tx0(bdS) is a closed subspace of X of codimension 1; that
is, there exists a closed subspace Z of codimension 1, an open neighborhood U of x0 in X
and a Cp-diffeormorphism ϕ : U → ϕ(U) ⊂ X such that ϕ(U ∩ bdS) = Z ∩ ϕ(U).
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Proof. Let U be an open neighborhood of x0 such that M := U ∩bdS is a Cp-submanifold
of X. Without loss of generality, we may assume that U is connected and also, that there
exists a Cp-diffeomorphism ϕ : U → X and a closed subspace Z of X such that ϕ(x0) = 0
and

ϕ(U ∩M) = ϕ(U) ∩ Z.
Denote V = ϕ(U). As recalled above, we know that Tx0(bdS) = Tx0M = Dϕ−1(0)Z.
It is enough to show that Z is a subspace of codimension 1. Assume the contrary and
consider two distinct vectors v1, v2 ∈ V \ Z. Without loss of generality, we may assume
that there exists δ > 0 such that V = B(0, δ). Denoting by HZ a Hamel basis of Z, we
can distinguish two cases:

(I) The set HZ ∪ {v1, v2} is linearly independent: Then, for each t ∈ [0, 1], putting

γ(t) = tv1 + (1− t)v2 ∈ V \ Z,

the mapping γ : [0, 1] → V \ Z defines a continuous curve with γ(0) = v1 and
γ(1) = v2.

(II) The set HZ ∪ {v1, v2} is not linearly independent: Since codim[Z] ≥ 2, there ex-
ists v3 ∈ V \ Z such that both sets HZ ∪ {v1, v3} and HZ ∪ {v2, v3} are linearly
independent. Then, using the latter part, we can construct two continuous curves
γ1 : [0, 1/2] → V \ Z and γ2 : [1/2, 1] → V \ Z such that γ1(0) = v1, γ1(1/2) =
γ2(1/2) = v3 and γ2(1) = v2. Then, considering the mapping γ : [0, 1] → V \ Z
given by

γ(t) =

{

γ1(t) t ∈ [0, 1/2]

γ2(t) t ∈ (1/2, 1],

we arrive at the same conclusion as (I).

Since v1 and v2 are two arbitrary distinct points of V \Z, the existence of such a continuous
curve γ entails that V \ Z is path-connected, and therefore is connected. Then, since
ϕ−1 : V → U is continuous, we derive that U \M = ϕ−1(V \ Z) is connected too. This
is clearly a contradiction since the two open sets (intS) ∩ U and Sc ∩ U are nonempty
(according to the assumptions x0 ∈ intS and x0 ∈ bdS), and they satisfy the equality

U \M =
(
(intS) ∩ U

)
∪ (Sc ∩ U).

The proof is therefore complete.

The next proposition shows that a closed body whose boundary is a Cp-submanifold can
be represented as the epigraph of a Cp-function.

Before proving the proposition we need some features for epi-Lipschitz sets whose bound-
aries are smooth. So, suppose that S is epi-Lipschitz at x ∈ bdS and that bdS is a
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Cp-submanifold at x. We first note that TC(S; x) is a half-space. Indeed, by epi-Lipschitz
property and Corollary 4.3.8, we know that int

(
TC(S; x)

)
6= ∅ and

TC(bdS; x) = TC(S; x) ∩ −TC(S; x).

Taking an orthogonal unit vector n̂Z of Z(x) := Tx(bdS), Proposition 4.4.2 and the
equality (4.10) of Proposition 4.2.14 tell us that

NC(bdS; x) = Rn̂(x),

where n̂(x) := Dϕ(x)∗n̂Z/‖Dϕ(x)∗n̂Z‖. It ensues that

TC(S; x) ∩ −TC(S; x) = TC(bdS; x) = {h ∈ X : 〈n̂(x), h〉 = 0}.

Since the interior of the closed convex cone TC(S; x) is nonempty, it results that

either TC(S; x) = {h ∈ X : 〈n̂(x), h〉 ≤ 0} or TC(S; x) = {h ∈ X : 〈n̂(x), h〉 ≥ 0},

which confirms that TC(S; x) is a half-space. We may suppose that n̂Z is chosen so that
the second latter equality holds true. We then derive that

NC(S; x) = {−tn̂(x) : t ≥ 0}. (4.18)

The vector n̂(x) is called the unit interior normal vector of bdS at x, since it is orthogonal
to Z(x) and it “aims” to intS. It is worth noting that n̂(x) doesn’t depend on the
diffeomorphism nor the model space chosen to describe bdS as submanifold, since it is
fully determined by Z(x) and TC(S; x). In what follows, we will preserve the notation Z(x)
and n̂(x) to denote the tangent space and the unit interior normal vector, respectively.

Note that, if in addition we assume that S is normally regular at x (which is the case, for
example, when S is prox-regular at x), then

NP (S; x) = {−tn̂(x) : t ≥ 0}

and so, according to Definition 4.2.4, Rayx(S) and Rayx,λ(x) (with λ > 0) are both
well-defined.

In view of the proof of the proposition we also state the following simple lemma.

Lemma 4.4.3 Let S be a subset of X and U an open set of X.
(a) The following equalities hold:

intU(U ∩ S) = U ∩ intS, clU(U ∩ S) = U ∩ clS, bdU(U ∩ S) = U ∩ bdS.

(b) If S = intS, then

U ∩ S = clU
(
intU(U ∩ S)

)
= clU(U ∩ intS).
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Proof. The first two equalities in (a) easily follow from the openness of U and the third
is a consequence of the former equalities. Finally, if S = intS, then we see from (a) that

clU
(
intU(U ∩ S)

)
= clU(U ∩ intS) = U ∩ cl(intS) = U ∩ S.

Proposition 4.4.4 Let S ⊆ X be a closed body near x0 ∈ bdS. Assume that bdS is a
Cp-submanifold at x0 with p ≥ 1 and denote by Z(x0) := Tx0(bdS) the tangent space to
the boundary of S at x0. Then S is epi-Lipschitz at x0, and there exist a neighborhood
U0 ∈ NX(x0) and a function f : πZ(x0)(U0) ⊆ Z(x0) → R such that f is of class Cp on
πZ(x0)(U0), ∇f(πZ(x0)(x0)) = 0 and

U0 ∩ S = {z + tn̂(x0) ∈ U0 : z ∈ Z(x0), f(z) ≤ t}.

where n̂(x0) denotes the unit interior normal vector of bdS at x0. Furthermore, endowing
Z(x0)× R with the inner product

〈(z, t), (z′, t′)〉 = 〈z, z′〉+ tt′,

if in addition S is r-prox-regular at x0, then epi f is also r-prox-regular at (z0, f(z0)).

Proof. By Proposition 4.4.2, we can choose an open neighborhood U of x0, a Cp-diffeomorphism
ϕ : U → ϕ(U) ⊂ X, and a closed subspace Z of X of codimension 1 such that ϕ(x0) = 0
and

ϕ(U ∩ bdS) = Z ∩ ϕ(U).
By replacing ϕ by Dϕ−1(0) ◦ ϕ, we can choose Z = Z(x0) and Dϕ(x0) = idX . Let ν be
a unit vector of X orthogonal to Z. We have that Rν is a topological vector subspace
complement of Z in X, that is, X = Z ⊕ Rν. Noticing that Z = {x ∈ X : 〈ν, x〉 = 0},
we see that, for z + tν ∈ U with z ∈ Z and t ∈ R,

z + tν ∈ U ∩ bdS⇔〈ϕ(z + tν), ν〉 = 0.

Consider the open set W := {(z, t) ∈ Z×R : z+ tν ∈ U} in Z×R, where Z is equipped
with the induced norm, and consider also the Cp function F : W → R defined by

F (z, t) := 〈ϕ(z + tν), ν〉 , for all (z, t) ∈ W.

Write x0 = z0 + t0ν with z0 ∈ Z and t0 ∈ R, and note that F (z0, t0) = 0 and that the
derivative with respect to the second variable t at (z0, t0) satisfies

D2F (z0, t0) = 〈Dϕ(z0 + t0ν)ν, ν〉 = 〈Dϕ(x0)ν, ν〉 = ‖ν‖2 = 1.

We can apply the implicit function theorem to obtain a connected open neighborhood Q0

of z0 in Z, a real ε > 0 and a Cp function f : Q0 → ]t0 − ε, t0 + ε[ such that

U0 := {z + tν : z ∈ Q0, t ∈ ]t0 − ε, t0 + ε[ } ⊂ U
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and such that, for z ∈ Z and t ∈ R

(

z + tν ∈ U0 ∩ bdS
)

⇔
(

z + tν ∈ U0 and F (z, t) = 0
)

⇔
(

z + tν ∈ U0 and t = f(z)
)

.

The set S being a closed body near x0, shrinking Q0 and ε if necessary we may and do
suppose that U0 ∩ intS is connected and U0 ∩ S = U0 ∩

(
intS

)
. Furthermore, for any

h ∈ Z we have

〈∇f(z0), h〉 = −D2F (z0, t0)
−1 ◦D1F (z0, t0)h = −D1F (z0, t0)h = −〈Dϕ(x0)h, ν〉 = 0,

since D2F (z0, t0) = idR and Dϕ(x0)
∣
∣
Z
= idZ . Thus, ∇f(z0) = 0.

With the linear isomorphism L : Z × R → X defined by L(z, t) := z + tν, clearly
(L−1(U0))∩epis f and (L−1(U0))∩hypos f are the two connected components of L−1(U0)\
gph f . It results that U0∩L(epis f) and U0∩L(hypos f) are the two connected components
of U0\bdS. Since U0∩ intS is a connected component of U0\bdS according to the above
lemma, it ensures that either U0 ∩ intS = U0 ∩L(epis f) or U0 ∩ intS = U0 ∩L(hypos f).
Noticing that

U0 ∩ L(hyposf) = {z + tν : z ∈ Q0, t ∈ ]t0 − ε, t0 + ε[, t < f(z)}
= {z + t(−ν) : z ∈ Q0, t ∈ ]− t0 − ε,−t0 + ε[, (−f)(z) < t},

and changing ν by −ν and t0 by −t0 if necessary, we may suppose that the equality
U0∩ intS = U0∩L(epis f) holds true. By the above lemma again we derive that U0∩S =
U0 ∩ L(epi f), which also says that S is epi-Lipschitz at any point in U0 ∩ S.

Let us denote A := L−1 and endow Z × R with the canonical inner product, that is,

〈(z, r), (z′, r′)〉Z×R := 〈z, z′〉+ rr′.

Writing any x ∈ X as x = πZ(x) + πR(x)ν with πZ(x) ∈ Z and πR(x) ∈ R, the bijective
linear mapping A : X → Z ×R satisfies A(x) := (πZ(x), πR(x)) and it is an isomorphism
such that A(U0 ∩ S) = A(U0) ∩ (epi f). Since f is of class C1, at any z ∈ πZ(U0) we have
∂Cf(z) = {∇f(z)} and therefore

NC
(
epi f ; (z, f(z))

)
= {λ(∇f(z),−1) : λ ≥ 0}.

Further, taking the linear isomorphism A into account, we have for any x ∈ S ∩ U0 (see
again (4.10))

NC(S; x) = NC(U0 ∩ S; x) = A∗
(
NC(A(U0) ∩ (epi f);A(x))

)
= A∗

(
NC(epi f ;A(x))

)
,

where A∗ denotes the adjoint of A. This yields by (4.18)

{−λn̂(x0) : λ ≥ 0} = NC(S; x0) = {λA∗(∇f(z0),−1) : λ ≥ 0} = {A∗(0,−λ) : λ ≥ 0}.

Observing that A∗ = L, we get that n̂(x0) = ν, which finishes the first part of the proof.
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For the second part of the proof, assume also that S is r-prox-regular at x0. Then,
by Theorem 4.3.11 there exists δ > 0 such that for all x ∈ S ∩ BX(x0, δ) and every
ξ ∈ NP (S; x), one has

〈ξ, x′ − x〉 ≤ 1

2r
‖ξ‖‖x′ − x‖2, ∀x′ ∈ S.

By shrinking U0 if necessary, we may and do assume that U0 ⊆ B(x0, δ). Now, fix
(z, t) ∈ A(U0)∩ (epi f) and ζ ∈ NP

(
epi f ; (z, t)

)
∩BX = NP

(
epi f ; (z, t)

)
∩BX . For every

(z′, t′) ∈ A(U0) ∩ (epi f), we have, by equality (4.6) of Proposition 4.2.7, that

〈ζ, (z′, t′)− (z, t)〉 = 〈(A∗)−1A∗ζ, (z′, t′)− (z, t)〉
= 〈A∗ζ, A−1(z′, t′)− A−1(z, t)〉

≤ 1

2r
‖A∗ζ‖‖A−1

(
(z′, t′)− (z, t)

)
‖2

≤ 1

2r
‖(z′, t′)− (z, t)‖2,

where the last inequality follows from the equalities A−1 = A∗ and ‖A∗‖ = 1. Now,
consider (z′, t′) ∈ (epi f) \ A(U0). Since z′ ∈ Q0 (keep in mind that f is defined only on
Q0) and since

A(U0) = Q0×]t0 − ε, t0 + ε[

we have necessarily that t′ 6∈]t0− ε, t0+ ε[ and in fact, t′ ≥ t0+ ε > t because t′ ≥ f(z′) >
t0 − ε. Since max{t, f(z′)} < t0 + ε ≤ t′, we can define t′′ = max{t, f(z′)} and, noting
that πR(ζ) ≤ 0 and (z′, t′′) ∈ A(U0) ∩ epi f , we can write by what precedes

〈ζ, (z′, t′)− (z, t)〉 = 〈ζ, (z′, t′′)− (z, t)〉+ 〈ζ, (0, t′ − t′′)〉

≤ 〈ζ, (z′, t′′)− (z, t)〉 ≤ 1

2r
‖(z′, t′′)− (z, t)‖2

=
1

2r

(
〈z′ − z, z′ − z〉+ (t′′ − t)2

)

≤ 1

2r

(
〈z′ − z, z′ − z〉+ (t′ − t)2

)
=

1

2r
‖(z′, t′)− (z, t)‖2,

where the last inequality is due to the fact that t ≤ t′′ < t′. We then obtain that, for all
(z′, t′) ∈ epi f

〈ζ, (z′, t′)− (z, t)〉 ≤ 1

2r
‖(z′, t′)− (z, t)‖2.

Taking limits, we see that the inequality still holds for all (z′, t′) ∈ epi f . This justifies
the r-prox-regularity of epi f at (z0, f(z0)) and finishes the proof.

In 1984, Poly and Raby proved that, if X is finite-dimensional, then for every closed set
M such that it is a Cp+1-submanifold at a point m0 ∈M , we have that the function d2M(·)
is of class Cp+1 near m0 See [25, Section 1].
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To prove this, they use the finite-dimensional assumption only to ensure that ProjS(·) is
nonempty near m0 (this is provided by the local compactness of M). We show that their
proof can be directly extended to the Hilbert setting (see Theorem 4.4.6), since the local
compactness can be replaced by prox-regularity in order to guarantee the nonemptyness
of ProjS(·), as the following proposition shows.

Proposition 4.4.5 Let M be a closed set of X and let m0 ∈ M . If M is a Cp+1-
submanifold at m0, then it is prox-regular at the same point.

Proof. Consider a neighborhood U of m0, a Cp+1-diffeomorphism ϕ : U → ϕ(U) and a
closed subspace Z of X such that ϕ(m0) = 0 and ϕ(U ∩M) = ϕ(U) ∩ Z. Let us denote
S := ϕ(U) ∩ Z. Clearly, for z ∈ Z ∩ϕ(U) we have that NC(S; z) = Z⊥, so 〈ξ, z′ − z〉 = 0
for all ξ ∈ NP (S; z) ⊆ NC(S; z) and z′ ∈ S. Theorem 4.3.10(iii) tells us that S is
prox-regular at ϕ(m0) = 0.

Choose δ > 0 such that S ′ := S ∩ BX(0, δ) ⊆ ϕ(U). We can apply equality (4.10) of
Proposition 4.2.14 to get that for each m ∈M ∩ ϕ−1(BX(0, δ)) = ϕ−1(S ′)

NP (ϕ−1(S ′);m) ⊂ NC(ϕ−1(S ′);m) = Dϕ(m)∗
(
NC(S ′;ϕ(m))

)
= Dϕ(m)

(
Z⊥

)
.

Shrinking δ if necessary, we can suppose that ϕ is Lipschitz continuous on ϕ−1(BX(0, δ))
with constant γ ≥ 0 and that, for all z, z′ ∈ BX(0, δ)

‖ϕ−1(z′)− ϕ−1(z)−Dϕ−1(z)(z′ − z)‖ ≤ C‖z′ − z‖2,

for some constant C > 0. Thus, for any m,m′ ∈ ϕ−1(S ′) and ζ ∈ NP (ϕ−1(S ′);m) ∩ BX
we conclude that

〈ζ,m′ −m〉 = 〈ζ, ϕ−1(ϕ(m′))− ϕ−1(ϕ(m))〉
≤ 〈ζ,Dϕ−1(ϕ(m))(ϕ(m′)− ϕ(m))〉+ γ2C‖m′ −m‖2
= 〈(Dϕ(m)∗)−1ζ, ϕ(m′)− ϕ(m)〉+ γ2C‖m′ −m‖2
= γ2C‖m′ −m‖2,

which, by Theorem 4.3.10(iii), proves the prox-regularity of M at m0.

Theorem 4.4.6 Let M be a closed subset of a Hilbert space X and let m0 ∈ M . If M
is a Cp+1-submanifold at m0 (with p ≥ 1), then there exists a neighborhood U ∈ NX(m0)
such that

(a) d2M(·) is of class Cp+1 on U ;

(b) PM is well-defined on U and it is of class Cp therein.

Proof. Without loss of generality, we will fix m0 = 0. Assume first that M is a Cp+1-
submanifold at 0. By Proposition 4.1.4, there exist a neighborhood U ∈ NX(0), a neigh-
borhood VZ ∈ NZ(0), where Z := T0M , and a mapping θ : VZ → Z⊥ of class Cp+1 such
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that θ(0) = 0, Dθ(0) = 0 and

U ∩M = U ∩ L−1(gph θ), (4.19)

with L defined as in Proposition 4.1.4. Since M is also prox-regular at 0, according to
Proposition 4.4.5, we may and do assume by Proposition 4.2.2 that PM is well-defined on
U . Let us denote A := L−1. It is not hard to see that L and so A are both self-adjoint
operators, and so we have that for each m ∈ U ∩M ,

NC(M ;m) = A∗
[
NC(gph θ, (v, θ(v)))

]
= A

[{
(−Dθ(v)∗z2, z2) : z2 ∈ Z⊥

}]
, (4.20)

where v = πZ(m). Let us consider the mapping ϕ : VZ × Z⊥ → Z × Z⊥ given by

ϕ(v, z2) = (v −Dθ(v)∗z2, θ(v) + z2),

and note that ϕ(0) = 0. Since by construction Dϕ(0) = idZ×Z⊥ , we can apply the
Local Inverse Function Theorem and therefore there exists an open neighborhood O =
O1 × O2 ∈ NZ×Z⊥(0) included in L(U) and with O1 ⊆ VZ , such that ϕ : O → ϕ(O) is a
Cp-diffeomorphism.

Now, let δ > 0 small enough such that BX(0, 3δ) ⊆ A(ϕ(O)). For every u ∈ BX(0, δ) we
already know by equation (4.19) and the prox-regularity of M at PM(u), that there exists
v ∈ VZ such that

PM(u) = A(v, θ(v)) (4.21)

and then, by the first equality in equation (4.20) and the normal regularity of M at PM(u),

u− PM(u) ∈ NP (M,PM(u)) = NC(M,A(v, θ(v))).

Thus, the second equality in equation (4.20) furnishes some z2 ∈ Z⊥ such that

u− PM(u) = A(−Dθ(v)∗z2, z2). (4.22)

Adding the equalities (4.21) and (4.22), we obtain that

u = A(v −Dθ(v)∗z2, θ(v) + z2).

Since PM(u) ∈ BX(0, 2δ) then (A ◦ ϕ)−1(u) ∈ A ◦ ϕ)−1(BX(0, 3δ)), and so we conclude
that (v, z2) can be chosen in O. By the bijectivity of φ := A ◦ ϕ from O onto A(ϕ(O)),
we derive that (v, z2) = φ−1(u). Finally, using equation (4.21), we can write

PM(u) = A(πZ ◦ φ−1(u), θ ◦ πZ ◦ φ−1(u)),

which yields that PM is of class Cp on BX(0, δ), proving the first implication.
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Chapter 5

Smoothness of the Metric Projection

onto Nonconvex Bodies in Hilbert

spaces

This Chapter is the core of the second part of this thesis. It contains all the new results
concerning to the smoothness of the metric projection onto nonconvex sets. We present
here a quantified version of Holmes’ theorem when the set is a nonconvex body with
Cp+1-smooth boundary. By quantified, we mean that we give an specific neighborhood
where the metric projection is p times continuously differentiable, which is determined by
the prox-regularity function of the set. We also derive a similar result when the set itself
is a Cp+1-submanifold.

Finally, based on the work of Fitzpatrick and Phelps [16], we study the converse for
Holmes’ theorem outside the convex setting.

5.1 Smoothness of the metric projection onto noncon-

vex bodies

Let S be a closed subset of X. In order to extend Holmes’ theorem to the nonconvex
setting we will study the case when S satisfies

(i) S is a closed body relative to the subspace Y = aff(S);

(ii) Considering S as a subset of Y , it has a Cp+1-smooth boundary.

These hypothesis are based on the fact that the smoothness of the metric projection onto
S as a subset of X is fully determined by the smoothness of the metric projection onto S

169
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as a subset of Y . This observation is formalized in the following proposition.

Proposition 5.1.1 Let S be a closed set of X and denote Y := aff(S). Then, for every
x ∈ X we have that

ProjS(x) = ProjS(ΠY (x)),

and furthermore, defining the sets

OX = {x ∈ X : PS is well-defined and it is of class Cp near x}; and

OY =
{
y ∈ Y : PS

∣
∣
Y

is well-defined and it is of class Cp near y
}
,

we get that OX = Π−1
Y (OY ).

Proof. Choose x ∈ X. Since S ⊆ Y we can write

‖x− v‖2 = ‖x− ΠY (x)‖2 + ‖Π2
Y (x)− v‖2, ∀v ∈ S.

Therefore, we have that

ProjS(x) = argmin{‖x−v‖2 : v ∈ S} = argmin{‖ΠY (x)−v‖2 : v ∈ S} = ProjS(ΠY (x)),

which proves the first part of the theorem. Also, we get that Π−1
Y (OY ) ⊂ OX . Indeed, for

every x ∈ Π−1
Y (OY ) we have

PS(x) = PS
∣
∣
Y
◦ ΠY (x),

and therefore, the inclusion Π−1
Y (OY ) ⊂ OX is direct, provided ΠY is a continuous linear

operator, and therefore of class C∞.

On the other hand, let x ∈ OX . Noting that for every y ∈ Y and every v ∈ S we have
that ΠY (x) + y − v ∈ Y , we can write

‖x+ y − v‖2 = ‖x− ΠY (x)‖2 + ‖ΠY (x) + y − v‖2

and so, we get that PS
∣
∣
Y
(ΠY (x) + y) = PS(x+ y) for every y ∈ Y such that x+ y ∈ OX ,

or equivalently

PS
∣
∣
Y
(w) = PS(x+ w − ΠY (x)) for all w ∈ Y with x+ w − ΠY (x) ∈ OX .

By definition, it is clear that OX is an open set. Choose then a real ε > 0 such that
PS is well defined on x + BX(0, ε) and of class Cp therein. Consider the mapping ℓ :
ΠY (x) + BY (0, ε) → X defined by ℓ(w) := w + x − ΠY (x) for all w ∈ ΠY (x) + BY (0, ε).
Clearly, ℓ

(
ΠY (x)+BY (0, ε)

)
⊂ x+BX(0, ε), hence PS◦ℓ is well defined on ΠY (x)+BY (0, ε)

and of class Cp therein. Since PS
∣
∣
Y
(w) = (PS ◦ ℓ)(w) for every w ∈ ΠY (x)+BY (0, ε), the

mapping PS
∣
∣
Y

is of class Cp near ΠY (x). This tells us that ΠY (x) ∈ OY , or equivalently
x ∈ Π−1

Y (OY ). We derive that OX ⊂ Π−1
Y (OY ), which combined with the previous above

inclusion gives the equality OX = Π−1
Y (OY ).

Based on the latter proposition, the smoothness of PS (when it exists) is characterized by
the smoothness of PS

∣
∣
Y
, and so our target problem can be reduced to prove the extend

Holmes’ theorem for nonconvex bodies with Cp+1-smooth boundary (see Theorem 5.1.6).
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5.1.1 Extension of Holmes’ Theorem

We will first study the case when the set S is the epigraph of a function f . The technique
to prove Theorem 5.1.2 will be to reduce ourself to this case, helped by Proposition 4.4.4.
We recall here equations (4.16) and (4.17): for a set S, a point x0 ∈ S, an extended-real
r ∈]0,+∞] and a positive real α > 0 we define, based on Mazade’s notation (see [19]),
the sets:

RS(x0, r, α) :=
{
x+ tv : x ∈ S ∩BX(x0, α), t ∈ [0, r[, v ∈ NP (S; x) ∩ BX

}
,

WS(x0, r, α) := {u ∈ X : ProjS(u) ∩BX(x0, α) 6= ∅, dS(u) < r} .

Theorem 5.1.2 Let O0 ⊆ X be an open set and f : O0 ⊆ X → R be a function of class
Cp+1 (with p ≥ 1) near x0 ∈ X such that ∇f(x0) = 0. Assume that epi f is r-prox-regular
at (x0, f(x0)). For the constant

λ = min
{

r,
(
−2 inf

{
〈u,D2f(x0)u〉 : u ∈ BX

})−1
}

there exists an open neighborhood W of Ray(x0,f(x0)),λ(epi f) such that

(a) depi f is of class Cp+1 on W ;

(b) Pepi f is of class Cp on W .

Proof. Let us denote S = epi f , and πX : X × R → X, πR : X × R → R the parallel
projections associated to the product X × R. Also, for simplicity, we will write u =
(u1, u2) for each u ∈ X × R. According to the convention 0−1 = +∞ and noting that
infu∈BX

〈u,D2f(x0), u〉 ≤ 0, one sees that λ > 0.

Since S is r-prox-regular at v0 := (x0, f(x0)), by Theorem 4.3.11 there exists α > 0 small
enough for which, by denoting O := WS(v0, r, α), we have that O is open, πX(O) ⊆ O0

(so O ∩ S = O ∩ epi f), PS is single-valued on O, f is of class Cp+1 on πX(O), dS is
continuously differentiable in O \ S and

∇dS(v) =
v − PS(v)

dS(v)
, ∀v ∈ O \ S. (5.1)

Also, since f is of class Cp+1, for x ∈ πX(O) we have that ∂Pf(x) = {∇f(x)} (see
Proposition 4.2.10) and so, by Definition 4.2.8,

NP
(
S; (x, f(x))

)
= {t(∇f(x),−1) : t ≥ 0}. (5.2)

Since O coincides with RS(v0, r, α), we have that for each v ∈ S ∩O

PS
[(
v +NP (S; v)

)
∩O

]
= v, (5.3)

and that Rayv0,λ(S) ⊆ O. Let any u0 ∈ Rayv0,λ(S), and choose three convex neighbor-
hoods U ∈ NX×R(u0) and V, V ′ ∈ NX×R(v0) such that
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• U ⊆ O \ S, V ′ ⊆ O, V ⊂ V ′;

• (v1, f(v1)) ∈ V ′ for every v1 ∈ πX(V );

• there exists δ > 0 such that U + ({0}× ]− δ, δ[ ) ⊆ O \ S; and

• diam(πR(V
′)) < δ.

From those assumptions, we have that for each v ∈ V , (v1, f(v1)) ∈ V ′ and U − (0, v2 −
f(v1)) ⊆ O \ S. Let us define the mapping

F : U × V → X × R

(u, v) 7→ u− v − dS(u)ϕ(v),

where

ϕ(v) =
(∇f(v1),−1)

‖(∇f(v1),−1)‖ for all v ∈ V.

We claim that F (u, v) = 0 if and only if v = PS(u). For the sufficiency, let us suppose
that v = PS(u). Then, u− v ∈ NP (S; v) and by (5.2) and the definition of ϕ, there exists
t ≥ 0 such that

u = v + tϕ(v).

Thus, noting that dS(u) = ‖u− PS(u)‖ = t‖ϕ(v)‖ = t, we conclude that F (u, v) = 0. On
the other hand, to prove the necessity, let us suppose that F (u, v) = 0, so ‖u−v‖ = dS(u).
Putting v′ = (v1, f(v1)) and noting that ϕ(v′) = ϕ(v), we can write

u = v + dS(u)ϕ(v) = v′ + dS(u)ϕ(v
′) + (0, v2 − f(v1)).

Therefore, with u′ := u−(0, v2−f(v1)), we have u′−v′ ∈ NP (S; v′) and so, since v′ ∈ O∩S
and u′ ∈

(
v′ +NP (S; v′)

)
∩O, by (5.3) we get PS(u′) = v′ and

dS(u
′) = ‖u′ − v′‖ = ‖u− v‖ = dS(u).

Define the mapping

g : ]− 1, 1 + δ′[ → O \ S, given by g(t) = u−
(
0, t(v2 − f(v1))

)
,

with some δ′ > 0 for which g is well-defined. Then,

(dS ◦ g)′(t) = −DdS(g(t))
(
0, v2 − f(v1)

)
= −πR

(
g(t)− PS(g(t))

dS(g(t))

)

(v2 − f(v1)).

Noting that g(t) − PS(g(t)) ∈ NP
(
S;PS(g(t))

)
and recalling that g(t) /∈ S, by (5.2)

we obtain that πR
(
g(t)−PS(g(t))
dS(g(t))

)

< 0. Thus, sgn((dS ◦ g)′(t)) = sgn(v2 − f(v1)) for all

t ∈ ] − 1, 1 + δ′[ (where sgn(·) denotes the sign function on R \ {0}), and we get that if
v2 6= f(v1), then

(dS ◦ g)(1) 6= (dS ◦ g)(0), that is, dS(u
′) 6= dS(u),
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since dS ◦ g is strictly monotone. Since dS(u) = dS(u
′), we conclude that v2 = f(v1) and

therefore u = u′ and v = v′. In particular, PS(u) = v, which proves our claim.

We would like now to apply the Implicit Function Theorem to F at (u0, v0), so we need
to check that

D2F (u0, v0) = −idX×R − dS(u0) ·Dϕ(v0)
is an isomorphism. Let us define the mappings ϕ1 : (X × R) \ {0} → X × R and
ϕ2 : X → X × R given by

ϕ1(y) =
y

‖y‖ and ϕ2(x) = (x,−1).

We can write ϕ = ϕ1 ◦ ϕ2 ◦ ∇f ◦ πX . Recalling that for all h ∈ X × R

Dϕ1(y)h =
‖y‖h− 〈ϕ1(y), h〉y

‖y‖2

we have that

Dϕ(v0)h = Dϕ1((∇f(x0),−1)) ◦Dϕ2(∇f(x0)) ◦D2f(x0) ◦ πX(h)
= Dϕ1((0,−1))(D2f(x0)h1, 0)

= ‖(0,−1)‖−2

(

‖(0,−1)‖(D2f(x0)h1, 0)−
〈

(0,−1)

‖(0,−1)‖ , (D
2f(x0)h1, 0)

〉

(0,−1)

)

= (D2f(x0)h1, 0).

Thus, Dϕ(v0) = (D2f(x0) ◦ πX , 0). Let us then show that idX×R +dS(u0)Dϕ(v0) is bijec-
tive. We may assume that D2f(x0) 6= 0, since otherwise the bijectivity is trivial.

Surjectivity: Let us consider h ∈ X × R with h 6= 0. Since

(idX×R +dS(u0)Dϕ(v0))
∗h = idX×R(h) + dS(u0)(Dϕ(v0))

∗h,

it follows that

‖(idX×R +dS(u0)Dϕ(v0))
∗h‖2 = ‖h‖2 + 2dS(u0)〈(Dϕ(v0))∗h, h〉+ dS(u0)

2‖(Dϕ(v0))∗h‖2
= ‖h‖2 + 2dS(u0)〈h1, D2f(x0)h1〉+ dS(u0)

2‖(Dϕ(v0))∗h‖2

≥ ‖h‖2 + 2dS(u0)
〈
h1
‖h‖
, D2f(x0)

h1
‖h‖

〉

‖h‖2

≥
(

1 + 2 inf
x∈BX

{〈x,D2f(x0)x〉}dS(u0)
)

· ‖h‖2

≥
(

1− 1

λ
dS(u0)

)

· ‖h‖2, (5.4)

where the last inequality is due to the definition of λ. Since u0 ∈ Rayv0,λ(S) ⊂ WS(v0, λ, α),
we have that c = 1 − λ−1dS(u0) > 0, and so, by for example [6, Theorem 2.20], the con-
clusion follows.
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Injectivity: Let h ∈ X × R such that
(
idX×R +dS(u0)Dϕ(v0)

)
h = 0. Then necessarily

h2 = 0, provided πR (Dϕ(v0)h) = 0, and so, recalling that infx∈BX
{〈x,D2f(x0)x〉} is less

than 0, we can write

2 inf
x∈BX

{〈x,D2f(x0)x〉}‖h‖2 ≤ 〈h1, D2f(x0)h1〉 = 〈h, (D2f(x0)h1, 0)〉 = 〈h,Dϕ(x0)h〉

= dS(u0)
−1〈h, dS(u0)Dϕ(v0)h〉 = −dS(u0)−1‖h‖2,

where the last equality is due to the fact that we have supposed that h belongs to the
kernel of

(
idX×R +dS(u)Dϕ(v0)

)
. But since

−dS(u0)−1 < −λ−1 ≤ 2 inf
x∈BX

{〈x,D2f(x0)x〉},

we have that necessarily h = 0, which proves the injectivity.

Now, we can apply the Implicit Function Theorem (IFT) in the following way. Since dS
is of class C1 in U , we have that F is of class C1 in U × V . Therefore, there exist two
neighborhoods U1 ∈ N (u0) and V1 ∈ N (v0) and a mapping φ : U1 → V1 such that

(i) φ is of class C1;

(ii) For each u′ ∈ U1, F (u′, φ(u′)) = 0;

(iii) For each (u′, v′) ∈ U1 × V1, F (u′, v′) = 0 ⇒ v = φ(u′).

Then, by (ii) and (iii) we get that PS = φ in U1, and therefore, PS is of class C1 on U1,
according to (i). Now, looking at formula (5.1), we get that dS is of class C2 on U1 and
so is F on U1 × V1. We can apply recursively this argument as follows:

dS is of class C2 in U1 =⇒ F is of class C2 on U1 × V1

=⇒
IFT

∃U2 ∈ N (u0), PS is of class C2 on U2

...

=⇒ F is of class Cp on Up−1 × Vp−1

=⇒
IFT

∃Up ∈ N (u0), PS is of class Cp on Up

=⇒ dS is of class Cp+1 on Up.

Since ∇f is of class Cp, the argument ends at this iteration, since we can’t ensure that
F is of class Cp+1. The proof is finished considering W as the union of the Up obtained
by this way for each u0 ∈ Rayv0,λ(S), and noting that PS and Pepi f coincide on W since
W ⊆ O.
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Observe from the precedent proof that, for the point u0 ∈ Rayv0,λ(S) we have

DPS(u0) = −[D2F (u0, v0)]
−1 ◦D1F (u0, v0)

= −[D2F (u0, v0)]
−1 ◦

(

idX −
〈
u0 − PS(u0)

ds(u0)
, ·
〉
u0 − PS(u0)

dS(u0)

)

= −[D2F (u0, v0)]
−1 ◦ ΠX×{0}.

Also, note that −D2F (u0, v0) maps X × {0} onto X × {0}. In particular, we have that
DPS(u0) restricted to X × {0} is invertible as a function from X × {0} to X × {0}.

The following lemma will be crucial in the development below.

Lemma 5.1.3 Let U be an open set of X and f : U ⊆ X → R be a function of class Cp+1

near x0 ∈ X such that ∇f(x0) = 0. Assume that epi f is r-prox-regular at (x0, f(x0)).
Then, one has

inf
{
〈u,D2f(x0)u〉 : u ∈ BX

}
≥ −1

r
.

Proof. Let us denote O := BX×R((x0, f(x0)), α) with α > 0 small enough such that
πX(O) ⊆ U , f is of class Cp+1 at πX(O) and epi f is (r, α)-prox-regular at (x0, f(x0)).
Then, for every (x, s) ∈ O ∩ epi f , and every ξ ∈ NP (epi f ; (x, s)) = NP (epi f ; (x, s)) we
have that

〈ξ, (x′, s′)− (x, s)〉 ≤ 1

2r
‖ξ‖‖(x′, s′)− (x, s)‖2, ∀(x′, s′) ∈ epi f. (5.5)

Fix h ∈ X. Since for every x ∈ πX(O), we have that

NP
(
epi f ; (x, f(x))

)
= {t(∇f(x),−1) : t ≥ 0},

so using the equality ∇f(x0) = 0 we can write

〈h,D2f(x0)h〉 = lim
tց0

〈

th,
∇f(x0 + th)−∇f(x0)

t2

〉

= lim
tց0

〈

(
th, f(x0 + th)− f(x0)

)
,

(
∇f(x0 + th),−1

)
− (0,−1)

t2

〉

= lim
tց0

〈

(
x0 + th, f(x0 + th)

)
−

(
x0, f(x0)

)
,

(
∇f(x0 + th),−1

)

t2

〉

+ θ(t),

where θ(t) := f(x0+th)−f(x0)
t2

. Noting that

θ(t) =
f(x0 + th)− f(x0)− tDf(x0)h

t2
tց0−−→ 1

2
〈h,D2f(x0)h〉,
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and according to equation (5.5), we can write

〈h,D2f(x0)h〉 ≥ lim
tց0

− 1

2rt2
‖
(
∇f(x0 + th),−1

)
‖
∥
∥
(
th, f(x0 + th)− f(x0)

)∥
∥
2
+ θ(t)

= lim
tց0

− 1

2r
‖
(
∇f(x0 + th),−1

)
‖
∥
∥
∥
∥

(

h,
f(x0 + th)− f(x0)

t

)∥
∥
∥
∥

2

+ θ(t)

= − 1

2r
‖
(
∇f(x0),−1

)
‖
∥
∥
(
h,Df(x0)h

)∥
∥
2
+ lim

tց0
θ(t)

= − 1

2r

∥
∥
(
h,Df(x0)h

)∥
∥
2
+

1

2
〈h,D2f(x0)h〉 = − 1

2r
‖h‖2 + 1

2
〈h,D2f(x0)h〉,

where the last equality follows from the facts that Df(x0)h = 0 and ‖(h, 0)‖2 = ‖h‖2.
The conclusion follows.

Lemma 5.1.4 Let S ⊆ X be a closed body near x0 ∈ bdS. Assume that there exist
r ∈ ]0,+∞] and α > 0 such that BX(x0, α) ∩ bdS is a Cp+1-submanifold (with p ≥ 1)
and that S is r-prox-regular at x0. Then, for r′ = r/2, there exists a neighborhood V of
Rayx0,r′(S) such that

• dS is of class Cp+1 on V ;

• PS is of class Cp on V .

Furthermore, if the set S is (r, α)-prox-regular at x0, then

• dS is of class Cp+1 on WS(x0, r
′, α) \ S;

• PS is of class Cp on WS(x0, r
′, α) \ S.

Proof. Shrinking α, we may suppose that S is r-prox-regular at each point in BX(x0, α)∩
bdS. Let x̄ ∈ BX(x0, α)∩bdS. Recalling that Z(x̄) := Tx̄(bdS) and applying Proposition
4.4.4, there exist a neighborhood U ∈ NX(x̄) and a function f : πZ(x̄)(U) ⊆ Z(x̄) → R

such that, denoting z̄ := πZ(x̄)(x̄), f is of class Cp+1 in πZ(x̄)(U), ∇f(z̄) = 0,

U ∩ S = {z + tn̂(x̄) ∈ U : z ∈ Z(x̄), f(z) ≤ t},
and also, epi f is r-prox-regular at (z̄, f(z̄)); keep in mind that n̂(x̄) denotes the unit
interior normal of bdS at x̄. We may and do assume that U ⊆ BX(x0, α). By Theorem
5.1.2 and the inequality of Lemma 5.1.3, we have that Pepi f is of class Cp on a neighborhood
W of Ray(z̄,f(z̄)),r′(epi f).

Choose δ ∈ ]0, α[ small enough such that BX(x̄, δ) ⊆ U and S is (r, δ)-prox-regular at x̄.
Let L : Z(x̄)× R → X be the canonic isomorphism given by L(z, t) = z + tn̂(x̄). Noting
by (4.18) that

Rayx̄,r′(S) = {x̄− tn̂(x̄) : t ∈ ]0, r′[ }
= L

(
{(z̄, f(z̄)) + t(0,−1) : t ∈ ]0, r′[ }

)
= L

(
Ray(z̄,f(z̄)),r′(epi f)

)
,
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we have thatW ′ := W∩L−1(WS(x̄, r
′, δ)) is also an open neighborhood of Ray(z̄,f(z̄)),r′(epi f).

Since L is an isometry, we have that for each w ∈ W ′, PS(L(w)) ∈ U ∩ S and so

‖L(w)− PS(L(w))‖ = ‖w − L−1
(
PS(L(w))

)

≥ ‖w − Pepi f (w)‖ = ‖L(w)− L(Pepi f (w))‖ ≥ ‖L(w)− PS(L(w))‖.

Therefore, for each v ∈ Vx̄ := L(W ′), we have that

PS(v) = (L ◦ Pepi f ◦ L−1)(v),

hence PS is well-defined on Vx̄ and it is of class Cp on Vx̄. Further, since W can be assumed
to be open, the set Vx̄ is an open neighborhood of Rayx̄,r′(S), proving the first part of the
theorem.

The second part follows directly noting that

WS(x0, r
′, α) \ S ⊆

⋃

{Vx : x ∈ BX(x0, α) ∩ bdS},

since WS(x0, r
′, α) and RS(x0, r

′, α) coincide and since we can write

RS(x0, r
′, α) \ S =

⋃{
Rayx,r′(S) : x ∈ BX(x0, α) ∩ bdS

}
.

From the remark after Theorem 5.1.2, we see that, in the proof of the preceding lemma, for
each u0 ∈ Rayx̄,r′(S), the operator DPepi f (L

−1(u0)) restricted to Z(x̄)× {0} is invertible
as a mapping from Z(x̄)× {0} onto Z(x̄)× {0}. From this observation, we can conclude
that the operator

DPS(u0) = L ◦DPepi f (L
−1(u0)) ◦ L−1

restricted to Z(x̄) also is invertible as a mapping from Z(x̄) onto Z(x̄). This yields the
following proposition, which will be useful in the study of the converse of Theorem 5.1.6.

Proposition 5.1.5 Under the assumptions and notation of Lemma 5.1.4, for each u0 ∈
Rayx0,r′(S), the operator DPS(u0) is invertible as a mapping from Z(x0) onto Z(x0).

Furthermore, if S is (r, α)-prox-regular, then for each u ∈ WS(x0, r
′, α) \ S, the operator

DPS(u) is invertible as a mapping from Z(PS(u)) onto Z(PS(u)).

We now can proceed to state and prove the extension of Holmes’ theorem for nonconvex
bodies:

Theorem 5.1.6 Let S ⊆ X be a closed body near x0 ∈ bdS and let an integer p ≥ 1.
Assume that there exist r ∈ ]0,+∞] and α > 0 such that BX(x0, α) ∩ bdS is a Cp+1-
submanifold and that S is r-prox-regular at x0. Then there exists a neighborhood V of
Rayx0,r(S) such that
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• dS is of class Cp+1 on V ;

• PS is of class Cp on V .

Furthermore, if the set S is (r, α)-prox-regular at x0, then

• dS is of class Cp+1 on WS(x0, r, α) \ S;

• PS is of class Cp on WS(x0, r, α) \ S.

Proof. Let U be an open connected neighborhood of x0 such that U ∩ intS is connected
and U ∩ S = U ∩

(
intS

)
. Since S is r-prox-regular at x0, there exist α′ ∈ ]0, α] such that

B(x0, α
′) ⊂ U and S is (r, α′)-prox-regular at x0. We will show inductively that for every

n ∈ N, dS is of class Cp+1 on WS(x0, rn, α
′) \ S with rn :=

∑n
k=1 2

−kr. Noting that

Rayx0,r(S) ⊆ W(x0, r, α
′) \ S =

∞⋃

n=1

W(x0, rn, α
′) \ S,

and taking into account that PS(u) = (u−∇dS(u))/dS(u) for every u ∈ W(x0, r, α
′) \ S,

proving the latter assertion is enough to conclude the first part of the theorem.

The case n = 1 is contained in Lemma 5.1.4, so we only need to prove the inductive step.
Consider then n ≥ 2 and assume that dS is already of class Cp+1 on WS(x0, rn−1, α

′) \ S.
It only rests to prove that dS is of class Cp+1 near each point of

WS(x0, rn, α
′) \WS(x0, rn−1, α

′) = {u ∈ WS(x0, rn, α
′) : rn−1 ≤ dS(u) < rn}.

Fix ū ∈ WS(x0, rn, α
′)\S with rn−1 ≤ dS(ū) < rn = rn−1+2−nr. Let us denote x̄ = PS(ū)

and choose λ ∈ ]0, rn−1[ such that dS(ū)− λ < 2−nr. Note by definition of WS(x0, rn, α
′)

that x̄ ∈ B(x0, α
′).

Let us consider the set Sλ := {x ∈ X : dS(x) ≤ λ} and the point ȳ := x̄−λn̂(x̄) in bdSλ
(where we recall that n̂(x̄) denotes the unit interior normal vector of bdS at x̄, which is
well-defined since bdS is a Cp+1-submanifold at x̄). Since λ < rn−1 and x̄ ∈ B(x0, α

′), we
have that ȳ ∈ WS(x0, rn−1, α

′), and so, by hypothesis, dS is of class Cp+1 near ȳ. Choose
δ ∈ ]0, α′[ small enough such that BX(ȳ, δ) ⊂ WS(x0, rn−1, α

′) \ S. We claim that

BX(ȳ, δ) ∩ {dS < λ} = BX(ȳ, δ) ∩ int(Sλ). (5.6)

Denoting the second member by V it is clear that it contains the first member. Suppose
there is some u0 ∈ V which is not in the first member. Then dS(u0) = λ, hence u0 is a
maximizer of dS on the open set V , which yields ∇dS(u0) = 0, contradicting the equality
‖∇dS(u0)‖ = 1. The claim is then justified. This says in particular that BX(ȳ, δ) ∩
bd (Sλ) = BX(ȳ, δ) ∩ {dS = λ}. Further, dS is of class Cp+1 on B(ȳ, δ) and ∇dS(y) is
surjective from X into R since ‖∇dS(y)‖ = 1 for all y ∈ BX(ȳ, δ). The set bd(Sλ) is then
a Cp+1-submanifold of X as seen above for such a level set.
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Furthermore, for every y ∈ BX(ȳ, δ)∩bdSλ, the C1,1-property of dS near y gives ∂PdS(y) =
{∇dS(y)} and by Proposition 4.2.11 we know that

∂PdS(y) = NP (Sλ; y) ∩ SX ,

so it follows that

NP (Sλ; y) = {t∇dS(y) : t ≥ 0} = {−tn̂(PS(y)) : t ≥ 0}. (5.7)

Fix y ∈ BX(ȳ, δ) ∩ bdSλ and denote x := PS(y). Noting that λ + t < r for every
t ∈

]
0, r

2n−1

]
and recalling that S is r-prox-regular at x, we have

dS(y − tn̂(x)) = dS(x− (λ+ t)n̂(x)) = λ+ t.

Noting also that
dSλ

(u) = dS(u)− λ, ∀u ∈ X \ Sλ, (5.8)

we can write dSλ
(y − tn̂(x)) = t, and so y ∈ ProjSλ

(y − tn̂(x)) for every t ∈
]
0, r

2n−1

]
. In

particular, by (5.7), for every ζ ∈ NP (Sλ; y) ∩ BX ,

y ∈ ProjSλ
(y + tζ), ∀t ∈

]
0, r

2n−1

]
.

Since this last inclusion holds for every y ∈ Sλ ∩ BX(ȳ, δ) (the case of y ∈ int(Sλ) is
trivial since NP (Sλ; y) = 0), we conclude that Sλ is

(
r

2n−1 , δ
)
-prox-regular at ȳ according

to Definition 4.3.9.

Since BX(ȳ, δ) ⊆ WS(x0, rn−1, α
′), we have that for all y′ ∈ BX(ȳ, δ), PS(y′) ∈ U . We

derive that, for any y′ ∈ BX(ȳ, δ) ∩ {dS < λ} we have y′ ∈ PS(y
′) + BX(0, λ) with

PS(y
′) ∈ S ∩ U , thus

BX(ȳ, δ)∩{dS < λ} = BX(ȳ, δ)∩
⋃

u∈U∩S

(
u+BX(0, λ)

)
= BX(ȳ, δ)∩

⋃

u∈U∩intS

(
u+BX(0, λ)

)
,

(5.9)
where the second equality is due to the fact U ∩S = U ∩ intS. Taking any yi in the latter
set with i = 1, 2, there are xi ∈ U ∩ intS and bi ∈ BX(0, λ) such that yi = xi + bi. The
set U ∩ intS being arc-wise connected as an open connected set in the normed space X,
there exists a continuous mapping γ : [0, 1] → U ∩ intS with γ(0) = x1 and γ(1) = x2.
The mapping γ0 : [0, 1] → BX(ȳ, δ) ∩ {dS < λ} with γ0(t) = γ(t) + (1− t)b1 + tb2 is well
defined (by (5.9)) and continuous, and further γ1(0) = y1 and γ0(1) = y2. This tells us
that the set BX(ȳ, δ) ∩ int(Sλ) = BX(ȳ, δ) ∩ {dS < λ} is (arc-wise) connected.

To see that Sλ is a closed body near ȳ it remains to show that BX(ȳ, δ)∩Sλ = BX(ȳ, δ)∩
int(Sλ). The second member is obviously included in the first. Take any y′ ∈ BX(ȳ, δ)
with dS(y′) = λ. Putting v = ∇dS(y′) ∈ SX , for t > 0 small enough we have

dS(y
′ − tv) = dS(y

′)− t
(
〈∇dS(y′), v〉+ ε(t)

)
= λ− t

(
1 + ε(t)

)
,

where ε(t) → 0 as t ↓ 0, so for t > 0 small enough

y′ − tv ∈ BX(ȳ, δ) ∩ {dS < λ} = BX(ȳ, δ) ∩ int(Sλ),
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where the equality is due to (5.6). This entails that y′ ∈ BX(ȳ, δ) ∩ int(Sλ), hence the
desired equality BX(ȳ, δ)∩Sλ = BX(ȳ, δ)∩ int(Sλ) is justified. The set Sλ is then a closed
body near ȳ.

We can then apply the second part of Lemma 5.1.4 to Sλ at ȳ to get that dSλ
is of class

Cp+1 on WSλ
(ȳ, δ, 2−nr) \ Sλ. Finally, by (5.8), we conclude that dS itself is of class Cp+1

on WSλ
(ȳ, δ, 2−nr) \ Sλ and in particular, it is so near ū. The induction (and therefore

the proof of the first part of the theorem) is then completed.

The second part of the theorem follows directly from the first one, following the last
observations of the proof of Lemma 5.1.4.

The first corollary is concerned with ρ(·)-prox-regular closed bodies.

Corollary 5.1.7 Let S ⊆ X be a closed body such that bdS is a Cp+1-submanifold with
p ≥ 1. If S is ρ(·)-prox-regular, then

• dS is of class Cp+1 on Uρ(·)(S) \ S;

• PS is of class Cp on Uρ(·)(S) \ S.

Proof. Fix u ∈ U := Uρ(·)(S) \ S. Since S is ρ(·)-prox-regular, we have that there exists
y ∈ ProjS(u) such that dS(u) < ρ(y). Let us fix a real r with dS(u) < r < ρ(y). Since ρ is
continuous, there exists a neighborhood V ∈ NX(y) on which ρ(v) > r for each v ∈ S∩V .
Therefore, by properties related to Uρ(·)(S) recalled in Section 4.3 and by Theorem 4.3.11
the set S is r-prox-regular at y. Then, by Theorem 5.1.6 there exists α > 0 small enough
such that PS is well-defined on WS(y, r, α)\S and it is of class Cp on this open set. Noting
that

u ∈ (WS(y, r, α) \ S) ∩ U ⊆ U,

and that both sets WS(y, r, α) \ S and U are open, we conclude that PS is well-defined
near u and it is of class Cp near u. Since u is arbitrary, the conclusion follows.

In the case that S is a convex body, recalling that all convex closed sets are (+∞)-prox-
regular, we can recuperate Holmes’ theorem as corollary of Theorem 5.1.6:

Corollary 5.1.8 [Holmes, 1973] Let K ⊆ X be a convex body and suppose that bdK
is a Cp+1-submanifold at a point x0 ∈ bdK, with p ≥ 1. Then there exists an open
neighborhood W of Rayx0(K) such that

• dS is of class Cp+1 on W ;

• PS is of class Cp on W .
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5.1.2 Smoothness of the metric projection onto submanifolds

Based on Theorem 4.4.6, we will prove an analogous version of Theorem 5.1.6 when S is
itself a Cp+1-submanifold, instead of a nonconvex body with Cp+1-smooth boundary.

Lemma 5.1.9 Let M be a closed set of X such that M is a C1-submanifold at m0 ∈M .
If M is r-prox-regular at m0, then for every λ ∈ ]0, r[, the set

Mλ := {x ∈ X : dM(x) ≤ λ}

is a closed body near each point y0 := m0 + λv, where v ∈ NP (M ;m0) ∩ SX , and there
exists δ > 0 such that

BX(y0, δ)∩{dM < λ} = BX(y0, δ)∩ int(Mλ) and BX(y0, δ)∩Mλ = BX(y0, δ)∩ int(Mλ).

Proof. Note first that y0 ∈ Mλ and dM(y0) = λ by the r-prox-regularity of M . Since
M is a C1-submanifold at m0, there exist a closed subspace Z of X, an open convex
neighborhood U ∈ N (0) and a C1-diffeomorphism ϕ : U → ϕ(U) such that ϕ(0) = m0

and
ϕ(U ∩ Z) = ϕ(U) ∩M.

Since U ∩Z is arc-wise connected (as a convex set), we get that ϕ(U)∩M is also arc-wise
connected. Now, choose α, δ > 0 small enough such that BX(m0, α) ⊆ ϕ(U), M is (r, α)-
prox-regular at m0 and BX(y0, δ) ⊆ WM(m0, r, α). As in the proof of Theorem 5.1.6, we
have that

BX(y0, δ) ∩ {dM < λ} = BX(y0, δ) ∩ int(Mλ).

Now, since for each y ∈ BX(y0, δ) we have that PM(y) ∈ ϕ(U), we can write

BX(y0, δ) ∩ {dM < λ} = BX(y0, δ) ∩
⋃

u∈ϕ(U)∩M

(u+BX(0, λ)). (5.10)

Taking any y1, y2 ∈ BX(y0, δ) ∩ {dM < λ}, we can find m1,m2 ∈ ϕ(U) ∩M and b1, b2 ∈
BX(0, λ) such that yi = mi + bi for i = 1, 2. Since ϕ(U) ∩M is arc-wise connected, there
exists a continuous mapping γ : [0, 1] → ϕ(U)∩M with γ(0) = m1 and γ(1) = m2. Thus,
the mapping γ0 : [0, 1] → BX(y0, δ) ∩ {dM < λ} given by γ0(t) = γ(t) + (1 − t)b1 + tb2
is well-defined by (5.10), is continuous, γ0(0) = y1 and γ0(1) = y2. We get that the set
BX(y0, δ) ∩ {dM < λ} = BX(y0, δ) ∩ int(Mλ) is therefore (arc-wise) connected.

We can show that BX(y0, δ) ∩Mλ = BX(y0, δ) ∩ int(Mλ) following the same argument as
in the end of the proof of Theorem 5.1.6. The proof is now complete.

Theorem 5.1.10 Let M be a closed set of X which is a Cp+1-submanifold at m0 ∈ M
with p ≥ 1. If M is r-prox-regular at m0, then there exists α > 0 such that

• d2M(·) is of class Cp+1 on WM(m0, r, α);
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• PM is of class Cp on WM(m0, r, α).

Proof. By Theorem 4.4.6, there exists ε > 0 small enough such that d2M(·) is of class Cp+1

on BX(m0, ε). Choose then α ∈ ]0, ε[ such that M is (r, α)-prox-regular at m0 and choose
also λ ∈ ]0, r[ such that α+λ < ε. In particular, we have that WM(m0, λ, α) ⊆ BX(m0, ε).
Fix u ∈ WM(m0, r, α) \BX(m0, ε). We have that λ < dM(u) < r.

By definition of WM(m0, r, α) we can take m ∈ BX(m0, α) ∩M and ν ∈ NP (M ;m) ∩ SX
such that u = m + dM(u)ν. Put y = m + λν. Defining Mλ as in Lemma 5.1.9 we
have that y ∈ bdMλ and Mλ is a closed body near y, and for some real δ > 0 we have
BX(y, δ) ⊂ WM(m0, r, α) along with

BX(y, δ) ∩ bdMλ = BX(y, δ) ∩ {dM = λ} and BX(y, δ) ∩Mλ = BX(y, δ) ∩ int(Mλ).

Fix any y′ ∈ BX(y, δ)∩ bdMλ. By the remarks preceding the proof of Theorem 5.1.6, we
also know that bdMλ is a Cp+1-submanifold at y′, since dM is of class Cp+1 near y′ with
∇dM(y′) 6= 0. Further, by Proposition 4.2.11, we have that

{∇dM(y′)} = ∂PdM(y′) = NP (Mλ; y
′) ∩ SX ,

so setting ν ′ := ∇dM(y′), it follows that NP (Mλ; y
′) = {tν ′ : t ≥ 0}. Note that, setting

m′ := PM(y′) so we can write y′ = m′ + λν ′, and hence

dM(y′ + tν ′) = dM(m′ + (t+ λ)ν ′) = t+ λ, ∀t ∈ [0, r − λ[.

Also, noting that
dMλ

(x) = dM(x)− λ, ∀x ∈ X \Mλ, (5.11)

we conclude that dMλ
(y′ + tν ′) = t for every t ∈ [0, r − λ[. In particular, fixing r′ ∈

]dM(u)− λ, r − λ[, we have that for all y′ ∈ BX(y, δ) ∩ bdMλ and ζ ∈ NP (Mλ; y
′) ∩ BX ,

y′ ∈ ProjMλ
(y′ + tζ), ∀t ∈ [0, r′],

and so, Mλ is (r′, δ)-prox-regular at y. Applying Theorem 5.1.6 it results that, for α′ := δ,
the function dMλ

is of class Cp+1 on WMλ
(y, r′, α′) \Mλ. By equation (5.11) and since

u ∈ WMλ
(y, r′, α′) \Mλ, it ensues that dM(·) (and therefore d2M(·)) is of class Cp+1 near

u. Since the function d2M is also of class Cp+1 on BX(m0, ε), we conclude that it is of class
Cp+1 on the whole open set WM(m0, r, α).

Observing the proof of Corollary 5.1.7, we can establish the following direct result from
Theorem 5.1.10:

Corollary 5.1.11 Let M be a closed set of X. Assume that M is a Cp+1-submanifold.
If M is ρ(·)-prox-regular, then

• d2M(·) is of class Cp+1 on Uρ(·)(M);

• PM is of class Cp on Uρ(·)(M).
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5.2 Converse of the extension of Holmes’ Theorem

In all this section, we will work with a closed set S. For a point x ∈ X \ S such that
PS(x) exists, we will denote

HS[x] := {h ∈ X : 〈x− PS(x), h〉 = 0}, (5.12)

namely, HS[x] corresponds to the hyperplane orthogonal to x − PS(x). If there is no
confusion, we will simply write H[x] instead of HS[x]. Here we follow the strategy of
Fitzpatrick and Phelps (see [16]).

We will need also the notion of partial derivatives. Let Y be another Hilbert space and
Z be a closed subspace of X. We say that a continuous mapping F : X → Y is partially
Gâteaux-differentiable (partially G-differentiable, for short) at a point x ∈ X with respect
to Z if there exists a continuous linear operator A ∈ L(Z;Y ) such that we can write

F (x+ th) = F (x) + tA(h) + o(t), (5.13)

for every direction h ∈ Z. In such a case, we call A the partial G-derivative of F at x
with respect to Z and we denote it by DG,ZF (x).

Analogously, we say that F : X → Y is partially Fréchet-differentiable (partially F-
differentiable, for short) at a point x ∈ X with respect to Z if there exists a continuous
linear operator A ∈ L(Z;Y ) such that we can write

F (x+ h) = F (x) + A(h) + o(h), (5.14)

for every direction h ∈ Z. In such a case, we call A the partial F-derivative of F at x
with respect to Z and we denote it by DF,ZF (x).

5.2.1 Properties of the derivatives of the metric projection

In this section, we will present some properties of the Gâteaux derivative of the metric
projection PS when it exists. They will be very useful in the development of the proof
of the converse of Theorem 5.1.6. We start with the symmetric positive property of the
Gâteaux derivative of the metric projection.

Lemma 5.2.1 Let S be a closed set of X and let x ∈ X \ S. Assume that PS(·) is
well-defined and continuous on a neighborhood of x. If DGPS(x) exists, then it coincides
with the second (Gâteaux) derivative at x of the convex function Ψ : X → R given by

Ψ(h) := 1
2
‖h‖2 − 1

2
d2S(h), ∀h ∈ X.

Consequently, DGPS(x) is a symmetric and positive operator.
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Proof. On one hand, the function Ψ is obviously continuous. On the other one, as observed
by Asplund in [2], we have that

Ψ(h) = 1
2
‖h‖2 − inf

y∈S
{1
2
‖h− y‖2}

= 1
2
‖h‖2 − 1

2
‖h‖2 − inf

s∈S
{〈h,−y〉+ 1

2
‖y‖2}

= sup
y∈S

{〈h, y〉 − 1
2
‖y‖2}.

Therefore, Ψ can be written as the supremum of affine functions, which entails its con-
vexity. Now, let U ∈ NX(x) be an open neighborhood on which PS(·) is well-defined and
continuous. Fix u ∈ U and u∗ ∈ ∂Ψ(u). We have that for all u′ ∈ U ,

〈u∗, u′ − u〉 ≤ Ψ(u′)−Ψ(u)

= 1
2
‖u′‖2 − 1

2
d2S(u

′)− 1
2
‖u‖2 + 1

2
d2S(u)

≤ 1
2
‖u′‖2 − 1

2
‖u‖2 − 1

2
‖(u′ − u) + (u− PS(u

′))‖2 + 1
2
‖u− PS(u

′)‖2
= 1

2
‖u′‖2 − 1

2
‖u‖2 − 1

2
‖u′ − u‖2 − 〈u′ − u, u− PS(u

′)〉
= 〈u′ − u, PS(u

′)〉.

Now, taking h ∈ X and replacing u′ by u + th (with t > 0 small enough) in the latter
development, we can write

〈u∗, h〉 = lim
tց0

〈u∗, th〉
t

≤ lim
tց0

〈PS(u+ th), th〉
t

= 〈PS(u), h〉.

This entails that u∗ = PS(u) and so ∂Ψ(u) = {PS(u)}, since the continuity of Ψ ensues the
nonemptyness of ∂Ψ(u). We get therefore that Ψ is G-differentiable on U with ∇Ψ(u) =
PS(u), for all u ∈ U . In particular, since PS is continuous, we get that Ψ is of class C1

with DFΨ(u) = 〈PS(u), ·〉, for all u ∈ U .

Now, since x ∈ U , we conclude that DGPS(x) is the second (Gâteaux) derivative of Ψ at
x, and so, by convexity of Ψ, we get that DGPS(x) is a symmetric and positive operator,
finishing the proof.

The following proposition shows that DGPS(x) can be regarded as a linear mapping from
H[x] into H[x], since DGPS(x) can be (left and right) composed with ΠH[x] without being
modified.

Proposition 5.2.2 Let S be a closed subset of X and fix x ∈ X \ S. Assume that PS is
well defined and continuous on a neighborhood of x. If DGPS(x) exists, then

DGPS(x) ◦ ΠH[x] = DGPS(x) = ΠH[x] ◦DGPS(x). (5.15)

In particular, DGPS(x)X ⊆ H[x].
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Proof. Fix y ∈ X. Since y − ΠH[x](y) = λ(x − PS(x)) for some λ ∈ R, it is enough, in
order to get that DGPS(x) ◦ ΠH[x] = DGPS(x), to show that DGPS(x)(x − PS(x)) = 0.
By Proposition 4.2.2, we see that PS(z) = PS(x) for every z ∈ [PS(x), x], and so

DGPS(x)(x− PS(x)) = lim
tց0

PS(x+ t(x− PS(x)))− PS(x)

t
= 0.

SinceDGPS(x) and ΠH[x] are both symmetric operators and since the compositionDGPS(x)◦
ΠH[x] is also symmetric (by the preceding development), we can write

〈ΠH[x] ◦DGPS(x)h, h
′〉 = 〈h,DGPS(x) ◦ ΠH[x]h

′〉 = 〈DGPS(x) ◦ ΠH[x]h, h
′〉,

for every h, h′ ∈ X. We conclude that DGPS(x) and ΠH[x] commute, which finishes the
proof.

Lemma 5.2.3 Let S be a closed set of X and let x ∈ X \ S. Assume that PS(x) exists
and that S is (r, α)-prox-regular at PS(x) for some α > 0 and some r ∈ ]0,+∞] with
dS(x) < r. If DGPS(x) exists, then

‖DGPS(x)‖ ≤ 1

1− r−1dS(x)
.

In particular, for any δ ∈ ]0, 1− r−1dS(x)[, we have that the operator idX −δDGPS(x) is
positive and invertible.

Proof. Without loss of generality, we may assume that r < +∞, since if the statement of
the lemma holds for every r ∈ ]0,+∞[, then the result is completed by taking r → +∞.
So, fix r ∈ ]0,+∞[.

Consider γ ∈]0, 1[ such that dS(x) < γr. We then have that x ∈ WS(PS(x), γr, α) and by
Theorem 4.3.11, we know that PS(·) is (1 − γ)−1-Lipschitz continuous in this set. Then,
we get that

‖DGPS(x)h‖ ≤ t−1 (‖PS(x+ th)− PS(x)‖+ o(t))

≤ t−1
(
(1− γ)−1‖th‖+ o(t)

) t↓0−→ (1− γ)−1‖h‖

Thus, ‖DGPS(x)‖ ≤ (1 − γ)−1. Now we can take γ ↓ r−1dS(x) and so, taking limit, we
get that

‖DGPS(x)‖ ≤ (1− r−1dS(x))
−1 =

r

r − dS(x)
.

Now, note that for each δ ∈
]

0, r−dS(x)
r

[

we get that

‖ idX −(idX −δDGPS(x))‖ = δ‖DGPS(x)‖ < 1,

and so, idX −δDGPS(x) is positive and invertible, since every operator in BL(X)(idX , 1)
enjoys the property.
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Proposition 5.2.4 Let S be a closed set of X and let x ∈ X \ S. Assume that PS(x)
exists and that S is (r, α)-prox-regular at PS(x) for some α > 0 and some r ∈ ]0,+∞]
with dS(x) < r. Then, for every y ∈ RayPS(x),r

(S) the following hold:

(a) If DGPS(x) (resp. DFPS(x)) exists, then DGPS(y) (resp. DFPS(y)) also exists.
Furthermore, if DGPS(x)

∣
∣
H[x]

is injective over H[x] (resp. surjective onto H[x]),

then DGPS(y)
∣
∣
H[y]

is also injective over H[y] = H[x] (resp. surjective onto H[y] =

H[x]).

(b) If PS(·) is of class Cp (with p ≥ 1) near x, then it is also of class Cp near y.

Proof. Without lose of generality, we may and do suppose that r < +∞. Choose γ ∈
]0, 1[ such that max{dS(x), dS(y)} < γr. We know that PS(·) is Lipschitz continuous on
WS(PS(x), γr, α) with Lipschitz constant K := (1−γ)−1. In particular, ‖DGPS(x)‖ ≤ K.
Now, choose a sequence {yi}ni=0 ⊂ [x, y] such that y0 = x, yn = y and

yi+1 = yi + ti(yi − PS(yi))

with ti ∈ R small enough such that |ti| < (1 +K)−1. Observe that, since dS(yi + ti(yi −
PS(yi))) = dS(yi+1) < γr, there exists δi > 0 small enough satisfying

yi + h+ ti(yi + h− PS(yi + h)) ∈ WS(PS(x), γr, α), ∀h ∈ BX(0, δi). (5.16)

Noting that PS(yi) = PS(x) and that ‖DGPS(yi)‖ ≤ K for all i ∈ {0, . . . , n}, it is enough
to show that both statements (a) and (b) hold replacing y by y1. The general case arrives
inductively, replacing in the ith step the roles of x and y by yi−1 and yi respectively.

Assume then that n = 1 and denote t := t1. Let us observe first that the operator
A := idX +t(idX −DGPS(x)) is invertible. Indeed, we have that

‖ idX −A‖ = |t|‖ idX −DGPS(x)‖ ≤ |t|(1 +K) < 1,

which entails that A is invertible, since all operators in BL(X)(idX , 1) are so. We will show
that DGPS(y) = DGPS(x) ◦ A−1. Fix h ∈ X, s ∈ ]0,+∞[ and denote u = A−1h. If s is
small enough such that y + sAu ∈ WS(PS(x), γr, α), we can write

y + sAu = x+ t(x− PS(x)) + su+ st(u−DGPS(x)u)

= (1 + t)(x+ su)− t(PS(x) + sDGPS(x)u).

Also, we know that PS(x + su) = PS(x) + sDGPS(x)u + o(s), and so, combining both
equalities, we get that

y + sAu = (1 + t)(x+ su)− tPS(x+ su) + o(s).

Taking s small enough, we may assume that x+ su ∈ WS(PS(x), γr, α) and, by equation
(5.16), that (x+ su) + t(x+ su−PS(x+ su)) is also included in WS(PS(x), γr, α). Thus,

PS((x+ su) + t(x+ su− PS(x+ su))) = PS(x+ su).
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Since PS(·) is Lipschitz continuous in WS(PS(x), γr, α) we can write

PS(y + sh) = PS(y + sAu) = PS(x+ su) + o(s) = PS(y) + sDGPS(x) ◦ A−1(h) + o(s),

where the last equality follows recalling that PS(y) = PS(x) and u = A−1h. Since h is
arbitrary, we conclude that DGPS(y) exists and it coincides with DGPS(x) ◦ A−1, as we
claimed. The case when PS is F-differentiable follows exactly the same proof using that
o(A−1h) = o(h).

The second part of the proof follows directly from the bijectivity of A, once we note that
A(H[x]) ⊆ H[x]. Indeed, using Lemma 5.2.2, for any h ∈ H[x] we have that

〈Ah, x− PS(x)〉 = (1 + t)〈h, x− PS(x)〉 − t〈DGPS(x)h, x− PS(x)〉
= (1 + t)〈h, x− PS(x)〉 − t〈ΠH[x] ◦DGPS(x)h, x− PS(x)〉
= 0,

and so, the latter inclusion holds.

Finally, suppose that PS(·) is of class Cp near x. It is direct that the function F (u) := (1+
t)u− tPS(u) is also of class Cp near x and DFF (x) = A. Using the Local Inverse Function
Theorem, there exists a neighborhood U ⊂ WS(PS(x), γr, α) of x and a neighborhood V
of y = F (x) also included in WS(PS(x), γr, α) such that F : U → V is invertible and F−1

is of class Cp on V . Since (by Proposition 4.2.2) PS(F (u)) = PS(u) for all u ∈ U , we get
that

PS(v) = PS ◦ F ◦ F−1(v) = PS ◦ F−1(v),

and so the conclusion follows by chain rule. The proof is complete.

Corollary 5.2.5 Let S be a closed body of X and x0 ∈ bdS. Assume that S is r-prox-
regular at x0. If bdS is a Cp+1-submanifold at x0, then there exists α > 0 such that PS(·)
is of class Cp on WS(x0, r, α) \ S and for each u ∈ WS(x0, r, α) \ S, DPS(u) restricted to
H[u] is invertible as a mapping from H[u] onto H[u].

Proof. Fix α > 0 such that S is (r, α)-prox-regular at x0 and that BX(x0, α) ∩ bdS is a
Cp+1-submanifold. Choose u ∈ WS(x0, r, α) \ S with dS(u) <

r
2
. By Theorem 5.1.6, we

know that PS is of class Cp near u. Also, noting that H[u] = TPS(u)(bdS), we get by
Proposition 5.1.5 that DPS(u) restricted to H[u] is invertible as a mapping from H[u]
onto H[u]. The rest of the proof can follow from Proposition 5.2.4.

Observe also that Proposition 5.2.4 allows us to derive Theorem 5.1.6 from Theorem 4.4.6.
We will present this parallel proof here because of its value as a different strategy.

Alternative proof of Theorem 5.1.6. Since S is r-prox-regular at x0, there exists α′ ∈]0, α]
such that BX(x0, α

′) ∩ intS is connected, BX(x0, α
′) ∩ S = BX(x0, α

′) ∩ intS and that S
is (r, α′)-prox-regular at x0. We will show that PS(·) is of class Cp on WS(x0, r, α

′) \ S,
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which is enough to derive the result (noting that Rayx0,r(S) ⊂ WS(x0, r, α
′) \ S for the

first part and considering α′ = α for the second one).

Since NP (S; x) = 0 for each x ∈ BX(x0, α
′) ∩ intS, it is not hard to see that

PS (WS(x0, r, α
′) \ S) = BX(x0, α

′) ∩ bdS.

In particular, we get that dS and dbdS (and therefore, PS and PbdS) coincide on WS(x0, r, α
′)\

S. Fix then x ∈ BX(x0, α
′) ∩ bdS. Since S is a closed body near x (take U = BX(x0, α

′)
in the definition of closed body) we know that

NP (S; x) = {−tn̂(x) : t > 0},

where x̂ denotes the interior normal vector of S at x, and so Rayx,r(S) is well-defined.
Since bdS is a Cp+1-submanifold at x, by Theorem 4.4.6, there exists an open neighbor-
hood U ∈ NX(x) contained in BX(x0, α

′) on which d2bdS(·) is of class Cp+1. In particular,
there exists u ∈ U ∩ Rayx,r(S) and a neighborhood U ′ ∈ NX(u) contained in U \ S on
which d2bdS(·) is of class Cp+1. Thus, PbdS is of class Cp on U ′ and, since PS ≡ PbdS

on U ′, we can apply Proposition 5.2.4 to conclude that PS(·) is of class Cp near each
u′ ∈ Rayx,r(S). Finally, since

WS(x0, r, α
′) \ S = RS(x0, r, α

′) \ S =
⋃

x∈BX(x0,α′)∩bdS

Rayx,r(S),

the conclusion follows.

Lemma 5.2.6 Let S be a closed set and let x ∈ X \ S. Assume that PS(x) exists,
that S is (r, α)-prox-regular at PS(x) for some r ∈ ]0,+∞] and some α > 0, and that
x ∈ WS(PS(x), r, α) \ S. If DGPS(x) exists and is surjective onto H[x], then

(a) DGPS(x) is invertible as a mapping from H[x] onto H[x].

(b) The partial G-derivative of PS at PS(x) with respect to H[x] exists and it coincides
with idH[x].

Proof. Let us denote A := DGPS(x)
∣
∣
H[x]

. Note by Proposition 5.2.2 that DGPS(x) is

surjective onto H[x] if and only if A is surjective onto H[x]. Fix h ∈ Ker(A). For every
z ∈ H[x] choose y ∈ H[x] with Ay = z. By symmetry of A(x) (see Lemma 5.2.1), we can
write

〈z, h〉 = 〈Ay, h〉 = 〈y, Ah〉 = 0.

We conclude that h = 0, which entails the injectivity of A, proving the part (a).

For (b), fix h ∈ H[x] and denote u = A−1h. By hypothesis, we know that

PS(x+ tu) = PS(x) + tDGPS(x)u+ o(t).
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Since PS is locally Lipschitz on WS(PS(x), r, α), for t > 0 small enough we can write

PS(x+ tu) = PS(PS(x+ tu)) = PS(PS(x) + tDGPS(x)u) + o(t).

Mixing both equalities and recalling that DGPS(x)u = h, we get that for t > 0 small
enough

PS(PS(x) + th) = PS(x) + th+ o(t),

which entails, by arbitrariness of h, that the partial G-derivative of PS at PS(x) with
respect to H[x] exists and it coincides with idH[x], finishing the proof.

5.2.2 Characterization of closed bodies with smooth boundary

This section is devoted to state and prove the converse of Theorem 5.1.6, providing a
full characterization of closed bodies with smooth boundary in terms of the smoothness
of their metric projections. Based on the previous section, we already know that prox-
regularity and epi-Lipschitz property are both necessary conditions for the smoothness of
the boundary of a set. Therefore, we will work assuming that our closed set S is in fact
a closed body which is both prox-regular and epi-Lipschitz at some point of its boundary
bdS.

We will start with the case when S is an epigraph itself. Consider then an open set O ⊆ X,
a Lipschitz function f : O → R with Lipschitz constant γ > 0 and a point x0 ∈ O. Set
S := epi f ⊂ X × R and assume that S is (r, α)-prox-regular at (x0, f(x0)) with α > 0
small enough such that

BX×R((x0, f(x0)), α) ∩ S = BX×R((x0, f(x0)), α) ∩ epi f.

In such a case, PS(·) is well-defined on WS((x0, f(x0)), r, α) and it coincides with Pepi f

therein. Let us fix a point (x, λ) ∈ WS((x0, f(x0)), r, α) \ S and denote

Λ1 := πX ◦ PS
Λ2 := πR ◦ PS.

We will study the relationship between the smoothness of PS at (x, λ) and the smoothness
of f at Λ1(x, λ). Recall that the Lipschitz property of f entails equality (4.11), which
guarantees that for all (x, λ) ∈ WS((x0, f(x0)), r, α) \ S, we have that

λ− Λ2(x, λ) = πR((x, λ)− PS(x, λ)) < 0. (5.17)

Lemma 5.2.7 Assume that the partial G-derivative of PS with respect to H[x, λ] exists
at PS(x, λ) and it coincides with idH[x,λ]. Then f is G-differentiable at Λ1(x, λ).

Proof. Let us denote x1 := Λ1(x, λ) and n̂ := dS(x, λ)
−1(PS(x, λ)−(x, λ)). By hypothesis,

on one hand we have that PS((x1, f(x1))+ th) = (x1, f(x1))+ th+o(t), for all h ∈ H[x, λ].
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On the other hand, since S is prox-regular at (x1, f(x1)), we have that for every (y, s) ∈
X × R,

PS((x1, f(x1)) + t(y, s)) = (x1, f(x1)) + tPTB(S;(x1,f(x1)))(y, s) + o(t).

By mixing both expansions of PS((x1, f(x1))+th), we conclude that PTB(S;(x1,f(x1)))(h) = h
for every h ∈ H[x, λ], which entails that H[x, λ] ⊆ TB(S; (x1, f(x1))). Further, since S is
both epi-Lipschitz and tangentially regular at (x1, f(x1)), we get that TB(S; (x1, f(x1)))
and epi f ′(x; ·) both coincide with TC(S; (x1, f(x1))). Then, by Corollary 4.3.8, it is easy
to deduce that this las cone is a half-space. This entails, considering the decomposition
X × R = H[x, λ]⊕ Rn̂

epi f ′(x1; ·) = TB(S; (x1, f(x1))) = {h+ sn̂ : h ∈ H[x, λ], s ≥ 0}.

Thus, the graph of f ′(x1; ·) is the closed hyperplane H[x, λ], which yields that f ′(x1; ·) is
linear and continuous. We conclude that f is G-differentiable at Λ1(x, λ), finishing the
proof.

Proposition 5.2.8 If f is G-differentiable at Λ1(x, λ), then

(a) ∇f(Λ1(x, λ)) = −x−Λ1(x,λ)
λ−Λ2(x,λ)

.

(b) The partial G-derivative of PS(·) at PS(x, λ) with respect to

T [x, λ] := {(h, s) ∈ X × R : 〈(h, s), (∇f(Λ1(x, λ)),−1)〉 = 0}

exists and it coincides with idT [x,λ].

Proof. For part (a), since f is G-differentiable at Λ1(x, λ) we have, by Corollary 4.2.10,
that ∂Pf(A1(x, λ)) ⊆ {∇f(A1(x, λ))}. Also, by equation 5.17, we know that λ−Λ2(x, λ) <
0 and so we can write

(

−x− Λ1(x, λ)

λ− Λ2(x, λ)
,−1

)

=
(x, λ)− PS(x, λ)

|πR((x, λ)− PS(x, λ))|
∈ NP (S;PS(x, λ)).

Since by construction PS(x, λ) = (Λ1(x, λ), f(Λ1(x, λ))), we deduce that

−x− Λ1(x, λ)

λ− Λ2(x, λ)
∈ ∂Pf(Λ1(x, λ)),

which proves the desired equality.

For part (b), since f is tangentially regular at Λ1(x, λ) (by the prox-regularity of S), we
can write that

TB(S;PS(x, λ)) = TC(S;PS(x, λ)) = TC(epi f ;PS(x, λ)) = epi f ′(Λ1(x, λ); ·).
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Since f is G-differentiable at Λ1(x, λ), it results that

TB(S;PS(x, λ)) = {(h, s) ∈ X × R : DGf(Λ1(x, λ))h ≤ s},

and hence T [x, λ] ⊆ TB(S;PS(x, λ)). Further, by Theorem 4.3.12, we know that PS(·) is
directionally differentiable at PS(x, λ) and that for every (h, s) ∈ X × R,

PS(PS(x, λ) + t(h, s)) = PS(x, λ) + tPTB(S;PS(x,λ))(h, s) + o(t).

This and the above inclusion T [x, λ] ⊆ TB(S;PS(x, λ)), entail that for all (h, s) ∈ T [x, λ],

PS(PS(x, λ) + t(h, s)) = PS(x, λ) + t(h, s) + o(t),

and so, the partial G-derivative of PS with respect to T [x, λ] exists and it coincides with
the identity idT [x,λ]. The proof is now complete.

Theorem 5.2.9 Assume that f is G-differentiable near x0 and that PS(·) is of class Cp
(with p ≥ 1) on an open neighborhood U of (x̄, λ̄) ∈ Ray(x0,f(x0)),r(S). Assume also that
∇f(x0) = 0 and that DPS(u) is invertible in H[u] for each u ∈ U . Then, f is of class
Cp+1 near x0.

Proof. Let us denote v̄ = (x0, f(x0)). For simplicity, we will write u = (u1, u2) for each
u ∈ X×R. Without loss of generality, we may assume that f(x0) = 0. Denote ū := (x̄, λ̄)
and n̂ = dS(ū)

−1(ū− PS(ū)), and consider the mapping

F : U → X × R

u 7→ PS(u) + 〈n̂, u− ū〉 n̂.

Clearly, F is of class Cp on U . Also, for all h ∈ X × R

DF (ū)h = DPS(ū)h+ 〈n̂, h〉n̂ = DPS(ū) ◦ ΠH[ū]h+ 〈n̂, h〉n̂,

and so DF (ū) is invertible, since DPS(ū) is invertible restricted to H[ū] and n̂ ⊥ H[ū] by
definition of H[ū]. Applying the Local Inverse Function Theorem, we get that there exist
an open neighborhood U0 of ū and an open neighborhood V of F (ū) = PS(ū) = v̄ such
that F : U0 → V is invertible and F−1 is of class Cp.

Since ∇f(x0) = 0 we have, by Proposition 5.2.8(a), that in fact n̂ = (0,−1) and H[ū] =
X × {0}. Choose then an open neighborhood VX ∈ NX(x0) such that VX × {0} ⊂ V
(which can be done since f(x0) = 0 and V is a neighborhood of (x0, f(x0))) and such
that f is G-differentiable on VX . Shrinking U0 and V if necessary, we may suppose that
U0 ⊆ W(PS(x0), r, α) \ S, and so, provided equation (5.17), u2 − πR(PS(u)) < 0 for each
u ∈ U0. Defining the mapping G : VX → U0 given by G(x) := F−1(x, 0) and using
Proposition 5.2.8(a), for every x ∈ VX we can write

∇f(x) = ∇f (πX(x, 0)) = (∇f) ◦ πX ◦ F (G(x))

= (∇f) ◦ Λ1(G(x)) = −πX ◦G(x)− Λ1 ◦G(x)
π2 ◦G(x)− Λ2 ◦G(x)

,
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where the third equality comes from the fact that

πX ◦ F (u) = πX ◦ PS(u) + 〈n̂, u− ū〉πX(n̂) = πX ◦ PS(u).

Since G, Λ1 and Λ2 are of class Cp, we conclude that ∇f is of class Cp on VX . This yields
that f is of class Cp+1 on VX , finishing the proof.

Now, after the development for the epigraph of Lipschitz functions, we can go back to our
case of study, that is, to consider that S is a closed subset of X.

Proposition 5.2.10 Let S be a closed set of X and let x ∈ X \ S. Assume that S is
(r, α)-prox-regular at PS(x) for some α > 0 and some r ∈ ]0,+∞] with dS(x) < r. Assume
also that PS is G-differentiable at x and that DGPS(x)

∣
∣
H[x]

is injective over H[x]. Then

R+{x− PS(x)} ⊆ NP (S;PS(x)) ⊆ R{x− PS(x)}.

If in addition S is epi-Lipschitz at PS(x), then

R+{x− PS(x)} = NP (S;PS(x)).

Proof. Since PS(x) exists, the inclusion R+{x − PS(x)} ⊆ NP (S;PS(x)) is direct from
the definition of proximal normal cone. Suppose that the second inclusion fails, that
is, there exists ξ ∈ NP (S;PS(x)) \ R{x − PS(x)}. By definition of proximal normal
cone, that means that there exists y ∈ WS(PS(x), r, α) \ S such that PS(y) = PS(x) and
ξ = y− PS(y) /∈ R{x− PS(x)}. The fact that NP (S;PS(x)) is convex by Corollary 4.2.6,
and the equality PS(x) = PS(y) yield that (x+ t(y − x))− PS(x) ∈ NP (S;PS(x)) for all
t ∈ [0, 1], and, since we can write

dS(x+ t(y − x)) ≤ ‖x+ t(y − x)− PS(x)‖ ≤ tdS(y) + (1− t)dS(x) < r,

we also have that x + t(y − x) ∈ WS(PS(x), r, α). By (r, α)-prox-regularity we get that
PS(x+ t(y − x)) = PS(x) for all t ∈ [0, 1]. Using Proposition 5.2.2, this entails

DGPS(x)
(
ΠH[x](y − x)

)
= DGPS(x)(y − x) = lim

t↓0

PS(x+ t(y − x))− PS(x)

t
= 0.

By injectivity of DGPS(x)
∣
∣
H[x]

, we conclude that ΠH[x](y−x) = 0. But, since y−PS(x) =
y − PS(y) /∈ R{x− PS(x)} = H[x]⊥, we know that ΠH[x](y − PS(x)) 6= 0, and so

0 = ΠH[x](y − x) = ΠH[x](y − PS(x))− ΠH[x](x− PS(x)) = ΠH[x](y − PS(x)) 6= 0,

which is a contradiction. We conclude that NP (S;PS(x)) ⊆ R{x − PS(x)} which proves
the first part of the proposition.

For the second part, assume in addition that S is epi-Lipschitz at PS(x). Then, we know
that TC(S;PS(x0)) has nonempty interior. If NP (S;PS(x0)) ) R+{x−PS(x0)}, then, by
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the first part of this proposition and the fact that NP (S;PS(x0)) is a cone, we would get
that NP (S;PS(x0)) = R{x0 − PS(x0)}.

Since S is prox-regular at PS(x0), we know thatNC(S;PS(x0)) coincides withNP (S;PS(x0)),
and so, since TC(S;PS(x0)) is a closed convex cone, we could write

TC(S;PS(x0)) =
[
NP (S;PS(x0))

]o
= {h ∈ X : 〈h, x− PS(x0)〉 = 0}.

Since the last set in the above equality has empty interior, this yields a contradiction.
Thus, NP (S;PS(x0)) coincides R+{x− PS(x0)}, which finishes the proof.

Now we can state and prove the main result of this section. It is a full characteriza-
tion of closed bodies with smooth boundary in terms of the smoothness of the metric
projection. The converse of Theorem 5.1.6 is contained in this theorem, as implication
(c)⇒(a). Observe that the local prox-regularity and the epi-Lipschitz property are posed
as hypotheses, but they are consequences of (a).

Theorem 5.2.11 Let S be a closed body of X and let x0 ∈ bdS. Assume that S is
r-prox-regular and epi-Lipschitz at x0. The following assertions are equivalent:

(a) bdS is a Cp+1-submanifold at x0.

(b) There exists α > 0 such that PS is of class Cp on WS(x0, r, α) \ S and for every
u ∈ WS(x0, r, α)\S, DPS(u) restricted to H[x] is invertible as a mapping from H[u]
onto H[u].

(c) There exists a neighborhood U of x0 such that PS is of class Cp on U \ S and for
every u ∈ U \ S, DPS(u) is surjective onto H[u].

Proof. (a)⇒(b) is contained in Theorem 5.1.6 and (b)⇒(c) is obvious, setting U =
WS(x0, r, α). Let us then prove (c)⇒(a). By the epi-Lipschitz property, we know that
there exists a nonzero vector ν ∈ NC(S; x0) small enough such that x̄ := x0 + ν ∈ U .
Since S is prox-regular at x0, we get by normal regularity that NP (S; x0) = NC(S; x0)
and so ν ∈ NP (S; x0). By shrinking the norm of ν if necessary, we may assume that
PS(x̄) = x0.

Now, since x̄ ∈ U , by Lemma 5.2.6 we get that DPS(x̄)
∣
∣
H[x̄]

is invertible and so by
Proposition 5.2.10, we get that

NC(S; x0) = NP (S; x0) = R+{x̄− PS(x̄)} = R+{ν}. (5.18)

In particular, it ensues that TC(S; x0) = {h ∈ X : 〈h, ν〉 ≤ 0} and that n̂ := −‖ν‖−1ν ∈
I(S; x0). Denote Z = {n̂}⊥ and z0 = πZ(x0). By the epi-Lipschitz property, there exist
an open neighborhood O ∈ NZ(z0), a real ε > 0 and a Lipschitz function f : O → R such
that the set

U0 = L (O× ]f(z0)− ε, f(z0) + ε[ )
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is contained in U and S ∩ U0 = L(epi f) ∩ U0, where L : Z × R → X is the canonic
isomorphism given by L(z, λ) = z + λn̂. Denote S ′ := epi f and note that L−1(x0) =
(z0, f(z0)). Since L is an isometry and PS is continuous on U0, it is easy to verify that
there exists an open neighborhood U1 ∈ NX(x0) contained in U0 such that, denoting
W := L−1(U1),

PS′

∣
∣
W

= Pepi f

∣
∣
W

= L−1 ◦ PS ◦ L
∣
∣
W
.

In particular, Pepi f is well-defined on W and it is of class Cp on W \ S ′. Also, for each
(z, λ) ∈ W \ S ′, it is clear that

DPepi f (z, λ) = L−1 ◦DPS(L(z, λ)) ◦ L

and that

HS′ [z, λ] = {(z′, λ′) ∈ X×R : 〈L−1(L(z, λ)−PS(L(z, λ))), (z′, λ′)〉 = 0} = L−1HS[L(z, λ)].

In particular, we get that DPepi f (z, λ)
∣
∣
HS′ [z,λ]

is invertible as a mapping from HS′ [z, λ]

onto itself. Also, since by Theorem 4.3.10 S ′ is prox-regular at (z0, f(z0)) and PS′ coincides
with Pepi f in W , we may suppose by shrinking W if necessary and by using Lemma 5.2.6,
that for every (z, λ) ∈ W \ S ′ the partial G-Derivative of Pepi f with respect to HS′ [z, λ]
exists at Pepi f (z, λ) and it coincides with the identity idHS′ [z,λ].

We can now apply Lemma 5.2.7 to deduce that for every (z, λ) ∈ W \S ′, the function f is
G-differentiable at Λ1(z, λ), where Λ1 := πZ◦Pepi f . We claim that Λ1(W \S ′) is a neighbor-
hood of z0. Indeed, fix α > 0 and r′ > 0 small enough such that BZ×R((z0, f(z0)), α) ⊂ W
and such that S ′ is (r′, α)-prox-regular at (z0, f(z0)).

Since f is Lipschitz continuous, we can fix α′ > 0 such that (z, f(z)) ∈ BZ×R((z0, f(z0)), α)
for each z ∈ BZ(z0, α

′). Then, for any such a z, since NP (S ′; (z, f(z))) is nontrivial
(according to the normal regularity and epi-Lipschitz property of S ′), we get that there
exists ξ ∈ NP (S ′; (z, f(z))) such that ‖(z, f(z)) + ξ − (z0, f(z0))‖ < α and (z, f(z)) =
PS′((z, f(z))+ξ). Hence, (z, f(z))+ξ ∈ BZ×R((z0, f(z0)), α)\S ′ and Λ1((z, f(z))+ξ) = z.
This entails the inclusion

Λ1(W \ S ′) ⊇ Λ1(BZ×R((z0, f(z0)), α) \ S ′) ⊇ BZ(z0, α
′),

proving our claim. It then follows that f is G-differentiable near z0. Furthermore, noting
that L∗ = L−1, we can write using Proposition 4.2.14(c)

NP (epi f ; (z0, f(x0))) = NC(epi f ∩ L−1(U0); (z0, f(x0))) = NC(L−1(S ∩ U0), (z0, f(z0)))

= L∗
[
NC(S ∩ U0; x0)

]

= L−1
[
NC(S ∩ U0; x0)

]

= L−1
[
NP (S; x0)

]
= {(πZ(ξ), 〈ξ, n̂〉) : ξ ∈ NP (S; x0)}.

So using the equality NP (S; x0) = R+{(0,−1)} due to equation (5.18), we see that

NP (epi f ; (z0, f(z0))) = R+{(−πZ(n̂),−1)} = R+{(0,−1)},
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which tells us that ∇f(z0) = 0. All the hypotheses of Theorem 5.2.9 are then fulfilled,
which guarantees that f is of class Cp+1 near z0. Finally, noting that bdS∩U0 = L(gph f)∩
U0, we conclude by Proposition 4.1.4 that bdS is a Cp+1-submanifold at x0. The proof is
now complete.

5.2.3 Partial converse of Poly-Raby’s Theorem

In the line of the development in the previous subsection leading to the smoothness of
metric projection to a closed body whose boundary is a submanifold, our aim in this final
subsection is to study the case when the set is itself a submanifold, in view of a converse
of Theorem 4.4.6.

First, let us recall that Poly and Raby proved this converse in the finite-dimensional
setting. To be more precise, they proved that, if for a closed set M in a finite-dimensional
Euclidean space there exists a neighborhood U of a point m0 ∈ M on which d2M(·) is of
class Cp+1, then M is itself a Cp+1-submanifold at m0 (see [25, Section 3]).

Unfortunately, this part of their proof cannot be directly extended to the infinite-dimen-
sional setting (at least to our knowledge). Nevertheless, their main ideas can be followed
if we assume in addition that the (p+1)-derivative of d2M(·) is uniformly continuous near
m0. We will present here this partial converse of Theorem 4.4.6 which, by Proposition
5.2.4, entails the same partial result for Theorem 5.1.10. To do so, we will need several
lemmas.

Let us introduce the notion of locally uniform continuity. Let E and F be two Banach
spaces and let U be a nonempty open set of E. We will denote by Ck,0loc (U ;F ) (with
k ≥ 0) the set of Ck-mappings f : U → F such that the kth-derivative is locally uniformly
continuous, that is, for every u0 ∈ U there exists δ0 > 0 with BX(u0, δ0) ⊆ U such that
Dkf is uniformly continuous on BX(u0, δ0), that is,

∀ε > 0, ∃δ > 0, ∀u, u′ ∈ BX(u0, δ0), ‖u− u′‖ ≤ δ⇒‖Dkf(u)−Dkf(u′)‖ ≤ ε.

Analogously, we will denote by Ck,1loc (U ;F ) the set of Ck-mappings f : U → F such that
the kth-derivative is locally Lipschitz-continuous.

Lemma 5.2.12 Let X1, X2 and X3 be three Banach spaces and let U and V be two
nonempty sets of X1 and X2, respectively. Consider two mappings f : U → V and
g : V → X3 such that f ∈ Cp,0loc (U ;X2) and g ∈ Cp,0loc (V ;X3). Then, we have that

g ◦ f ∈ Cp,0loc (U ;X3).

Proof. Let us first note that the result is direct for k = 0. We will prove the case k ≥ 1
by induction. By chain rule, we know that for each u ∈ U ,

D(g ◦ f)(u) = Dg(f(u)) ◦Df(u) = β(Dg(f(u)), Df(u)),
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where β : L(X2, X3) × L(X1, X2) is the bounded bilinear operator given by β(T1, T2) =
T2◦T1. Let us define Ψ : U → E := L(X2, X3)×L(X1, X2) given by Ψ(u) = (h(u), Df(u)),
with h := (Dg) ◦ f . We claim that Ψ is locally uniformly continuous. Indeed, since Dg(·)
and f(·) are locally uniformly continuous, we know that h(·) also is. Thus, since Df(·)
is also locally uniformly continuous, for each u0 ∈ U , there exists δ0 > 0 such that for all
ε > 0 we can find δ1, δ2 > 0 satisfying

∀u, u′ ∈ BX1(u0, δ0), ‖u− u′‖ < δ1 ⇒‖h(u)− h(u′)‖ < ε/2;

∀u, u′ ∈ BX1(u0, δ0), ‖u− u′‖ < δ2 ⇒‖Df(u)−Df(u′)‖ < ε/2.

Endowing E with the 1-norm, we have that for all u, u′ ∈ BX1(u0, δ0)

‖u− u′‖ < δ⇒‖Ψ(u)−Ψ(u′)‖ = ‖h(u)− h(u′)‖+ ‖Df(u)−Df(u′)‖ < ε.

where δ = min{δ1, δ2}. By arbitrariness of ε and u0, we conclude that Ψ is locally
uniformly continuous, as claimed. Since β is locally uniformly continuous (in fact, is of
class C∞) we conclude that D(g ◦ f)(·) = β ◦ Ψ(·) is also locally uniformly continuous,
which proves the result for k = 1.

Now, inductively, assume that for n ≥ 2 the result holds true for k ≤ n and consider
k = n + 1. It is not hard to see that Ψ ∈ Ck−1,0

loc (U ;E). Indeed, noting that, by
induction, h ∈ Ck−1,0

loc (U ;L(X2;X3)) and that Df ∈ Ck−1,0
loc (U ;L(X1;X2)) we can repli-

cate the above development, to conclude the locally uniform continuity of Dk−1Ψ(·) =
(Dk−1h(·), Dkf(·)). Then, since β ∈ Ck−1,0

loc (E;L(X1;X3)), we conclude that

D(g ◦ f)(·) = β ◦Ψ(·) ∈ Ck−1,0
loc (U ;L(X1;X3)),

which entails that g ◦ f ∈ Ck,0loc (U ;X3), finishing the proof.

Now, given two Banach spaces E and F , assume that we have a Cp-diffeomorphism Ψ :
U → V where U ⊆ E and V ⊆ F are open sets. It is not hard to see that for every v ∈ V
we can write

DΨ−1(v) =
(
DΨ(Ψ−1(v))

)−1
= J ◦DΨ ◦Ψ−1(v),

where J : Iso(E;F ) → Iso(F ;E) is the homeomorphism given by J(T ) := T−1. It is well-
known that Iso(E;F ) and Iso(F ;E) are open subsets of L(E;F ) and L(F ;E), respectively,
and that J is a C∞-mapping, and so it belongs to Cp,0loc (Iso(E;F );L(F ;E)) (see, e.g., [15,
Proposition 3.1.3 and Theorem 3.1.5]). Therefore, using Lemma 5.2.12, we get that if
Ψ ∈ Cp,0loc (U ;F ), then DΨ−1 ∈ Cp−1,0

loc (V ;L(F ;E)) and so Ψ−1 ∈ Cp,0loc (V ;E). This yields,
by changing the roles of Ψ and Ψ−1 when it is necessary, the following corollary:

Corollary 5.2.13 Let E and F be two Banach spaces and let U and V be two nonempty
open sets of E and F , respectively. If a mapping Ψ : U → V ⊂ is a Cp-diffeomorphism
(with p ≥ 1), then

Ψ ∈ Cp,0loc (U ;F ) ⇐⇒ Ψ−1 ∈ Cp,0loc (V ;E).
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Remark 5.2.14 Lemma 5.2.12 and Corollary 5.2.13 remain true if we replace the locally
uniform continuity of the pth-derivative by the local Lipschitz property.

In view of Proposition 4.1.4, we can introduce the following two stronger versions of Cp-
submanifolds, for which we will state a characterization in terms of the differentiability
of the metric projection:

Definition 5.2.15 Let X be a Hilbert space and p ≥ 1. A subset M of X is a Cp,0-
submanifold (resp. Cp,1-submanifold) at a point m0 ∈ M if there exist a closed subspace
Z, two open neighborhoods U ∈ NX(m0) and VZ ∈ NZ(0), and a mapping θ : VZ → Z⊥

such that

(i) θ belongs to Cp,0loc (V ;Z⊥) (resp. belongs to Cp,1loc (V ;Z⊥));

(ii) θ(0) = 0 and Dθ(0) = 0; and

(iii) M ∩U = (L−1(gph θ) +m0)∩U , where L : X → Z ×Z⊥ is the linear isomorphism
given by L(x) = (πZ(x), πZ⊥(x)).

The following lemma is the fundamental piece that allows us to translate the proof of
Poly and Raby into the finite-dimensional setting, for Cp+1,0-submanifolds and Cp+1,1-
submanifolds.

Lemma 5.2.16 Let X, Y and Z be three Hilbert spaces and let U ∈ NX(0) be an open
neighborhood of 0 in X. Consider a continuous mapping T : U ⊂ X → L(Y ;Z) and an
integer p ≥ 1. Define the mapping g : U × Y → Z given by

g(u, y) := T (u)y.

Then T is of class Cp, whenever g is of class Cp and there exists V ∈ NY (0) such that
the family {Dpg(·, v)}v∈V is locally equi-uniformly continuous, that is, for every u0 ∈ U ,
there exists δ0 > 0 with BX(u0, δ0) ⊆ U such that for every ε > 0, there exists δ > 0 for
which we have that

∀u, u′ ∈ BX(u0, δ0), ‖u− u′‖ ≤ δ ⇒ sup
v∈V

‖Dpg(u, v)−Dpg(u′, v)‖ ≤ ε. (5.19)

Moreover, if g
∣
∣
V

∈ Cp,0loc (U × V ;Z) (respectively, g
∣
∣
V

∈ Cp,1loc (U × V ;Z)), then T ∈
Cp,0loc (U ;L(Y ;Z)) (resp. T ∈ Cp,1loc (U ;L(Y ;Z))).

Proof. Assume that g is of class Cp and that there exists a neighborhood V ∈ NY (0)
such that the family {Dpg(·, v)}v∈V is locally equi-uniformly continuous. Without loss
of generality, we may assume that V = BY [0, η], for some η > 0. Observe that for
every k ∈ {1, . . . , p − 1}, the continuous differentiability of Dkg entails that the family
{Dkg(·, v)}v∈BY [0,η] is also locally equi-uniformly continuous.
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For every k ∈ {1, . . . , p}, let us define Gk : U → L(Xk;L(Y ;Z)) as the mapping given by

Gk(u)(x1, . . . , xk)y := Dkg(u, y)((x1, 0), . . . , (xk, 0)), ∀(x1, . . . , xk) ∈ Xk, ∀y ∈ Y.

Let us show first that Gk is continuous for every k ∈ {1, . . . , p}. To simplify notation, for
x ∈ Xk let us denote x̃ := ((x1, 0), . . . , (xk, 0)) ∈ Xk×Y k. Now, choose ε > 0 and u ∈ U .
For d ∈ X we have that

‖Gk(u+ d)−Gk(u)‖ = sup
x∈B

Xk

‖Gk(u+ d)(x)−Gk(u)(x)‖L(Y ;Z)

= sup
y∈BY

sup
x∈B

Xk

‖Gk(u+ d)(x)y −Gk(u)(x)y‖Z

= 1
η

sup
y∈BY [0,η]

sup
x∈B

Xk

‖Dkg(u+ d, y)x̃−Dkg(u, y)x̃‖Z

≤ 1
η

sup
y∈BY [0,η]

‖Dkg(u+ d, y)−Dkg(u, y)‖L(Xk;Z)

Now, by equation (5.19), we can choose δ > 0 small enough (depending on u, ε and k)
such that

sup
y∈BY [0,η]

‖Dkg(u+ d, y)−Dkg(u, y)‖L(Xk;Z) ≤ ηε, ∀d ∈ BX(0, δ). (5.20)

This yields that for every d ∈ BX(0, δ) we have that ‖Gk(u+ d)−Gk(u)‖ ≤ ε, which, by
the arbitrariness of ε and u, proves the continuity of Gk.

Now, we will prove by induction on k ∈ {1, . . . , p} that DkT = Gk. Start with k = 1. Fix
again u ∈ U and ε > 0. As we did before, we can choose δ > 0 small enough depending
on u, ε and k, such that inequality (5.20) holds for k = 1. Thus, for every d ∈ BX(0, δ)
we can write

‖T (u+ d)− T (u)−G1(u)(d)‖ =
1

η
sup

y∈BY [0,η]

‖T (u+ d)y − T (u)y −G1(u)(d)y‖Z

=
1

η
sup

y∈BY [0,η]

‖g(u+ d, y)− g(u, y)−Dg(u, y)(d, 0)‖Z

=
1

η
sup

y∈BY [0,η]

‖Dg(ξ, y)(d, 0)−Dg(u, y)(d, 0)‖Z

≤
(

1

η
sup

y∈BY [0,η]

‖Dg(ξ, y)−Dg(u, y)‖L(X;Z)

)

‖d‖ ≤ ε‖d‖,

where ξ ∈ [u, u+ d] is given by the Mean Value Theorem and the last inequality is due to
the inclusion ξ−u ∈ BX(0, δ). Since G1(u) ∈ L(X;L(Y ;Z)) and ε is arbitrary, we deduce
that DT (u) exists and it coincides with G1(u). Since u ∈ U is arbitrary, the conclusion
follows.
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Now, suppose that the result holds true for 1, . . . k − 1 with 1 < k ≤ p. We then have
that T̃ := Dk−1T exists and it coincides Gk−1. Then, for ε > 0 and u ∈ U we can choose,
as before, δ > 0 small enough such that for all d ∈ BX(0, δ)

‖T̃ (u+ d)− T̃ (u)−Gk(u)‖
= 1

η
supy∈BY [0,η] supx∈B

Xk−1
‖T̃ (u+ d)(x)y − T̃ (u)(x)−Gk(u)(x)y‖Z

= 1
η
supy∈BY [0,η] supx∈B

Xk−1
‖Dkg(ξ, y)(x̃, (d, 0))−Dkg(u, y)(x̃, (d, 0))‖Z

=
(

1
η
supy∈BY [0,η] ‖Dkg(ξ, y)−Dkg(u, y)‖L(Xk;Z)

)

‖d‖
≤ ε‖d‖,

where, again, ξ ∈ [u, u + d] is given by the Mean Value Theorem, the last inequality is
due to the inclusion ξ − u ∈ BX(0, δ), and x̃ := ((x1, 0), . . . , (xk−1, 0)) for all x ∈ Xk−1.
We deduce as before that DkT exists and it coincides with Gk. We conclude that T is of
class Cp, which finishes the first part of the proof.

Now, assume that g
∣
∣
V
∈ Cp,0loc (U × V ;Z). It is not hard to realize that the local uniform

continuity of Dpg
∣
∣
V

entails the local equi-uniform continuity of the family {Dpg(·, v)}v∈V .
Thus, DpT exists, is continuous and it coincides with Gp. Let us show then that Gp is
locally uniformly continuous.

Fix then u0 ∈ U and let δ0 > 0 small enough such that BX×Y ((u0, 0), δ0) ⊆ U × V
and such that Dp

(
g
∣
∣
V

)
is uniformly continuous on BX×Y ((u0, 0), δ0). Note that Dp

(
g
∣
∣
V

)

coincides with Dpg in BX×Y ((u0, 0), δ0). Choose ε > 0 and let δ > 0 such that for all
(u, y), (u′, y′) ∈ BX×Y ((u0, 0), δ0) we have that

‖(u′, y′)− (u, y)‖ ≤ δ =⇒ ‖Dpg(u′, y′)−Dpg(u, y)‖L(Xp;Z) ≤
δ0ε

2
.

Take any u, u′ ∈ BX(u0, δ0/2). Since ‖(x, y)‖ = (‖x‖2 + ‖y‖2)1/2 for all (x, y) ∈ X × Y ,
we get that BX(u0, δ0/2)×BY (0, δ0/2) ⊆ BX×Y ((u0, 0), δ0) and so, if ‖u−u′‖ ≤ δ we can
write

‖Gp(u)−Gp(u
′)‖ =

2

δ0
sup

y∈BY (0,δ0/2)

‖Dpg(u, y)−Dpg(u′, y)‖ ≤ ε.

Since ε is arbitrary, we deduce that Gp is uniformly continuous on BX(u0, δ0/2). Noting
that the uniform continuity of Gp near u0 holds for all u0 ∈ U , we conclude that T ∈
Cp,0loc (U ;L(Y ;Z)). The proof that DpT is locally Lipschitz whenever g

∣
∣
V
∈ Cp,1loc (U × V ;Z)

is analogous. The proof is now complete.

Theorem 5.2.17 Let M be a closed set of X and let m0 ∈M . The following holds:

(a) M is a Cp+1,0-submanifold near m0 if and only if there exists a neighborhood U ∈
N (m0) such that

(a.i) d2M(·) is of class Cp+1,0 on U ;
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(a.ii) PM is well-defined on U and it belongs to Cp,0loc (U ;X).

(b) M is a Cp+1,1-submanifold near m0 if and only if there exists a neighborhood U ∈
N (m0) such that

(b.i) d2M(·) is of class Cp+1,1 on U ;

(b.ii) PM is well-defined on U and it belongs to Cp,1loc (U ;X).

Proof. Without loss of generality, we may assume that m0 = 0. In the proof of The-
orem 4.4.6, we have that whenever M is a Cp+1-submanifold at 0, then there exists a
neighborhood U ∈ NX(0) on which we can write

PM(u) = L−1(πZ ◦ ϕ−1(u), θ ◦ πZ ◦ ϕ−1(u)).

Above Z, VZ and θ : VZ ⊆ Z → Z⊥ are the closed subspace, the neighborhood in
NZ(0) and the Cp+1-mapping given in the definition of submanifold, and the Cp-mapping
ϕ : VZ × Z⊥ → X is given by

ϕ(v, z2) := L−1(v −Dθ(v)∗z2, θ(v) + z2),

where L : X → Z × Z⊥ is the canonic isomorphism given by L(x) = (πZ(x), πZ⊥(x)),
and where the inverse of ϕ is given by the Local Inverse Function Theorem. Noting
that if θ ∈ Cp+1,0

loc (VZ ;Z
⊥) (respectively, θ ∈ Cp+1,1

loc (VZ ;Z
⊥)), then φ ∈ Cp+1,0

loc (φ−1(U);U)
(resp. φ ∈ Cp+1,1

loc (φ−1(U);U)), we get by Lemma 5.2.12 and Corollary 5.2.13 that PM ∈
Cp+1,0
loc (U ;X) (resp., using Remark 5.2.14, that PM ∈ Cp+1,1

loc (U ;X)). Thus, the necessity
in statements (a) and (b) follows.

Now, let us prove the sufficiency. Since the proofs of (a) and (b) are analogous, we will
only show part (a). Fix δ > 0 small enough such that d2M(·) ∈ Cp+1,0

loc (BX(0, 2δ);R). Since
1
2
∇(d2M)(u) = u − PM(u), we get that PM is well-defined on BX(0, 2δ) and it belongs

to Cp,0loc (BX(0, 2δ);X). Now, for x ∈ BX(0, δ), it is clear that PM(x) ∈ BX(0, 2δ) and it
verifies

PM(PM(x)) = PM(x) and PM(0) = 0.

We get then that DPM(0) ◦DPM(0) = DPM(0) and so, since DPM(0) is also symmetric
by Lemma 5.2.1, there exists a closed subspace Z of X such that DPM(0) = ΠZ (see the
Introduction of Part II).

Define the Cp-mapping Ψ : BX(0, δ) → Z × Z⊥ given by

Ψ(x) =
(
πZ(PM(x)), πZ⊥(x− PM(x))

)
.

Note that Ψ(0) = 0 and DΨ(0) = L, where L : X → Z × Z⊥ is the canonic isomorphism
given by L(h) = (πZ(h), πZ⊥(h)). Note also that, by Lemma 5.2.12, Ψ ∈ Cp,0loc (BX(0, δ);Z×
Z⊥). Since DΨ(0) is invertible, by the Local Inverse Function Theorem and by Corollary
5.2.13, there exist two open neighborhoods U ∈ NX(0) with U ⊆ BX(0, δ) and V =
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VZ × VZ⊥ ∈ NZ×Z⊥(0, 0), such that Ψ
∣
∣
U
: U → V is a Cp-diffeomorphism and

(
Ψ
∣
∣
U

)−1 ∈
Cp,0loc (V, U). For simplicity, denote Ψ

∣
∣
U

by Ψ. Define the Cp-mapping θ : VZ → Z⊥ by

θ(v1) := πZ⊥ ◦Ψ−1(v1, 0), ∀v1 ∈ VZ .

Observe that θ(0) = 0 and Dθ(0) = 0. We claim that M ∩ U = L−1(gph θ) ∩ U . Indeed,
for every u ∈ U , the obvious equality Ψ(PM(u)) = (πZ ◦Ψ(u), 0) tells us that Ψ(M ∩U) =
VZ ∩ {0} = (Z × {0}) ∩Ψ(U). Therefore, we can write

u ∈M ∩ U
⇐⇒ v := (v1, v2) = Ψ(u) ∈ VZ × {0} and Ψ−1(v) = PM(Ψ−1(v))

⇐⇒ (πZ(u), πZ⊥(u)) = (πZ ◦Ψ−1(v1, 0), πZ⊥ ◦Ψ−1(v1, 0)) = (v1, θ(v1)) ∈ gph(θ) ∩ L(U),

where the last inequality follows from the fact that

πZ(Ψ
−1(v1, 0)) = πZ ◦ PM(Ψ−1(v1, 0)) = πZ ◦ (Ψ(Ψ−1(v1, 0))) = v1.

To show that M is a Cp+1,0-submanifold at 0, we only need to show that the Cp-mapping
θ is in fact belongs to Cp+1,0

loc (VZ ;Z
⊥). To do so, fix x ∈ U and let us denote Ψ(x) =

(z1, z2) ∈ V . By the prox-regularity of M given by the fact that d2M is of class C2 on U ,
we have that x− PM(x) ∈ NP (M ;PM(x)). Then, recalling that L∗ = L−1, we can write

x− PM(x) ∈ NP (L−1(gph θ); Ψ−1(z1, 0))

= L∗
(
NP (gph θ; (z1, θ(z1)))

)
= L−1

{
(−Dθ(z1)∗ξ, ξ) : ξ ∈ Z⊥

}
,

hence L(x − PM(x)) = (−Dθ(z1)∗ξ, ξ) for some ξ ∈ Z⊥. Since by definition of L and Ψ
we have πZ⊥(L(x− PM(x))) = πZ⊥(x− PM(x)) = πZ⊥ ◦Ψ(x), it ensues that ξ = z2, and
so by the equality x− PM(x) = 1

2
∇d2M(x) = 1

2
∇d2M(Ψ−1(z1, z2)) we get that

Dθ(z1)
∗z2 = −1

2
πZ ◦ (∇d2M) ◦Ψ−1(z1, z2). (5.21)

This equality holds for every (z1, z2) ∈ V . By Lemma 5.2.12, it is direct that −1
2
πZ ◦

(∇d2M) ◦ Ψ−1 ∈ Cp,0loc (V, Z), and so the mapping g : VZ × Z⊥ → Z given by g(v, z2) :=
Dθ(v)∗z2 meets the hypothesis of Lemma 5.2.16. We conclude that

Dθ(·)∗ ∈ Cp,0loc (VZ ;L(Z⊥;Z))

which entails (noting that the adjoint map ∗ : L(Z;Z⊥) → L(Z⊥;Z) is of class C∞ and
invertible) that θ ∈ Cp+1,0

loc (VZ ;Z
⊥). The proof is now complete.
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Résumé: Ce travail est divisé en deux parties: Dans la première partie, on présente
un résultat d’intégration dans les espaces localement convexes valable pour une large
classe des fonctions non-convexes. Ceci nous permet de récupérer l’enveloppe convexe
fermée d’une fonction à partir du sous-différentiel convexe de cette fonction. Motivé par
ce résultat, on introduit la classe des espaces “Subdifferential Dense Primal Determined”
(SDPD). Ces espaces jouissent des conditions permettant d’appliquer le résultat ci-dessus.
On donne aussi une interprétation géométrique de ces espaces, appelée la Propriété Radon-
Nikodým de Faces (FRNP). Dans la seconde partie, on étudie dans le contexte d’espaces
d’Hilbert, la relation entre la lissité de la frontière d’un ensemble prox-régulier et la lissité
de sa projection métrique. On montre que si un corps fermé possède une frontière Cp+1-
lisse (avec p ≥ 1), alors sa projection métrique est de classe Cp dans le tube ouvert associé à
sa fonction de prox-régularité. On établit également une version locale du même résultat
reliant la lissité de la frontière autour d’un point à la prox-régularité en ce point. On
étudie par ailleurs le cas où l’ensemble est lui-même une Cp+1-sous-variété. Finalement,
on donne des réciproques de ces résultats.

Mots Clés: Sous-différentiel, Intégration, Propriété Radon-Nikodým de Faces, Sous-
variété, Ensemble prox-régulier, Projection métrique.

Abstract: This work is divided in two parts: In the first part, we present an integration
result in locally convex spaces for a large class of nonconvex functions which enables us to
recover the closed convex envelope of a function from its convex subdifferential. Motivated
by this, we introduce the class of Subdifferential Dense Primal Determined (SDPD) spaces,
which are those having the necessary condition which allows to use the above integration
scheme, and we study several properties of it in the context of Banach spaces. We provide
a geometric interpretation of it, called the Faces Radon-Nikodým property. In the second
part, we study, in the context of Hilbert spaces, the relation between the smoothness of
the boundary of a prox-regular set and the smoothness of its metric projection. We show
that whenever a set is a closed body with a Cp+1-smooth boundary (with p ≥ 1), then its
metric projection is of class Cp in the open tube associated to its prox-regular function. A
local version of the same result is established as well, namely, when the smoothness of the
boundary and the prox-regularity of the set are assumed only near a fixed point. We also
study the case when the set is itself a Cp+1-submanifold. Finally, we provide converses for
these results.

Key words: Subdifferential, Integration, Faces Radon-Nikodým Property, Submanifold,
Prox-regular set, Metric Projection.


