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Titre : Analyse par patchs des IRM : du voxel à la connaissance 

Résumé : Cette Habilitation à Diriger des Recherches présente les travaux que j'ai menés sur l'analyse 

quantitative des IRM, le diagnostic assisté par ordinateur et le monitoring cérébral. Mes contributions dans ces 

domaines sont détaillées dans 3 chapitres. Dans le premier chapitre, j’introduis le principe de notre méthode de 

segmentation par patchs ainsi que plusieurs extensions. Ensuite, j’analyse les résultats obtenus par nos méthodes 

pour plusieurs applications. Dans le deuxième chapitre, je montre comment nous avons étendu notre méthode de 

segmentation par patchs à la détection de pathologies. Les performances de cette méthode sont évaluées pour la 

détection et la prédiction de la maladie d'Alzheimer. Dans le troisième chapitre, je décris les outils que nous avons 

développés dans le but d’effectuer un monitoring cérébral. Tout d'abord, la chaine de traitement proposée pour 

l’analyse quantitative du cerveau est détaillée. Ensuite, les modèles standard proposés afin de déterminer si le 

volume d’une structure cérébrale est normal ou non sont présentés. De plus, les nouvelles connaissances médicales 

et neuroscientifiques sur le développement et le vieillissement du cerveau produites lors de leur élaboration sont 

analysées. Enfin, je décris la plate-forme volBrain en libre accès que nous avons développée. Pour conclure ce 

manuscrit, je discute des limites et des perspectives de ma recherche sur l'analyse des IRM par patchs.  

Mots clés : Imagerie médicale, Neuroimagerie, Segmentation, Aide au diagnostic, IRM, Cerveau, Maladie 

d’Alzheimer. 

 

Title: Patch-based MRI Analysis: From voxel to knowledge 

Abstract: This Habilitation thesis presents the work that I have done on quantitative MR analysis, computer-

aided diagnosis and brain monitoring. These topics are detailed in 3 chapters. In the first chapter, I introduce the 

principle of our patch-based segmentation method and their extensions. Afterwards, the results obtained by our 

patch-based segmentation method are analyzed for several applications. In the second chapter, I show how we 

have extended our patch-based segmentation framework to patch-based grading of brain structures. Then, the 

performance of our patch-based grading method to achieve Alzheimer’s disease diagnosis and prognosis is 

evaluated. In the third chapter, I describe the tools that we developed to perform brain monitoring. First, the 

pipeline proposed to perform quantitative brain analysis are detailed. Second, the construction of the standard 

models is presented. Moreover, new medical and neuroscientific knowledge on the development and the aging of 

the brain produced during their estimation are discussed. Finally, the developed open access volBrain platform is 

described. To conclude this manuscript, I discuss the limitations and the perspectives of my research about patch-

based MRI analysis.  

Keywords: Medical imaging, Neuroimaging, Patch-based segmentation, Patch-based grading, MRI, Brain, 

Computer-aided diagnosis, Brain monitoring 
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General	Introduction	

Over the past 15 years, I have been interested in problems related to medical images analysis involving image 

processing, applied mathematics, computer science, neuroimaging, neuroanatomy, neuroscience and clinical 

research. I tried to develop new tools to assist and help clinicians in their task. Moreover, I attempted to propose 

robust and accurate methods in order to have a real impact in society. This forced me to make significant efforts 

to develop, validate, distribute, disseminate and valorize all the methods developed. My research on medical image 

analysis covers different fields, from preprocessing to automatic prognosis of diseases. My work mainly focuses 

on four topics: image enhancement, quantitative MR analysis, computer-aided diagnosis and brain monitoring. 

My first major contribution to the field of medical image analysis was done during my Ph.D. with the adaptation 

of the nonlocal means denoising filter (Buades et al. 2005) to 3D MRI denoising (Coupe et al. 2006, Coupe et al. 

2008b). As shown in this manuscript, most of my following contributions have been based on this first work since 

exemplar-based methods have inspired me for a long time. Although, I have pursued my work on image 

enhancement (Wiest-Daessle et al. 2007, Coupe et al. 2008a, Wiest-Daessle et al. 2008, Coupe et al. 2009a, Coupe 

et al. 2009b, Coupe et al. 2010b, Manjon et al. 2010a, Manjon et al. 2010b, Manjon et al. 2010c, Coupe et al. 

2012c, Manjon et al. 2012, Coupe et al. 2013, Manjon et al. 2013, Guizard et al. 2015b, Manjon et al. 2015, St-

Jean et al. 2016), I decided not to include this topic in this habilitation thesis and to focus only on my recent 

research achievements. Therefore, this document will present the works carried out over the past 8 years dedicated 

to quantitative MR analysis, computer-aided diagnosis and brain monitoring. These selected topics will be detailed 

in 3 chapters. 

In the first chapter, I will introduce the principle of the patch-based segmentation (PBS) method that we introduced 

in (Coupe et al. 2010a, Coupe et al. 2011). This nonlocal patch-based approach uses expert’s manual segmentations 

as priors to segment a new case. I will highlight the link between the proposed PBS and the original nonlocal 

means denoising filter. In addition, I will explain the paradigm shift between the two frameworks, from nonlocal 

self-similarity to nonlocal inter-subject similarity. Indeed, in (Coupe et al. 2010a, Coupe et al. 2011), we were the 

first to apply nonlocal means strategy for segmentation by searching similar patches between the subject to be 

segmented and a library of training subjects. Then, I will present different extensions that we proposed such as 

multiscale framework for brain extraction (Eskildsen et al. 2012, Manjon et al. 2014), fast patch search strategy 

for near real time segmentation (Ta et al. 2014, Giraud et al. 2016), multimodal extension for lesion detection 

(Guizard et al. 2015a) or combination of fast PBS with multiple nonlinear registrations for cerebellum lobules and 

hippocampal subfields segmentation. Afterwards, I will show the results obtained by our PBS method and the 

proposed improvements for different applications. For each considered application, our PBS framework will be 

compared with state-of-the-art methods. I will show that our PBS is now considered as a state-of-the-art method 

for anatomical structure segmentation and is studied by several groups in the world (Bai et al. 2013, Wang and 

Yushkevich 2013, Wang et al. 2013b, Wolz et al. 2013, Wang et al. 2014b, Wu et al. 2014, Tong et al. 2015, Wu 

et al. 2015b). Finally, I will discuss the limitations and perspectives of our PBS. 
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In the second chapter, I will show how we have extended our patch-based segmentation framework to patch-based 

grading (PBG) of anatomical structures (Coupe et al. 2012a, Coupe et al. 2012b). The grading of the structure 

under consideration is achieved by estimating the nonlocal similarity of the subject to different training 

populations. Our PBG method estimates at each voxel a score/grade reflecting the degree/severity of the pathology 

and thus enables to perform computer-aided diagnosis. I will detail this second paradigm shift from the nonlocal 

inter-subject similarity used for segmentation to the nonlocal similarity to a population used for grading/scoring. 

Indeed, when we search for similar patches between the subject to be classified and different training populations, 

we aim to infer the class of the testing subject by finding the closest training population in the nonlocal sense. 

After a general principle description, I will present different extensions that we developed such as ensemble-based 

grading (Komlagan et al. 2014), multimodal grading (Hett et al. 2016, Hett et al. 2018) or multi-feature strategy 

(Hett et al. 2017). Then, I will present the application of our PBG method to Alzheimer’s disease (AD) diagnosis 

and prognosis. Different experiments will be detailed to validate the developed computer-aided diagnosis tools. 

Finally, I will present the prognosis performance of our method at presymptomatic phase using a long follow-up 

dataset (Coupé et al. 2015). This last experiment will enable to study anatomical alterations occurring more than 

seven years before conversion to AD. While usual volumetric approaches fail to detect anatomical modifications 

at this presymptomatic stage, I will show that our PBG is an efficient tool to detect such early signs of AD. 

In the third chapter, I will present the tools that we developed to perform brain monitoring. Brain monitoring is 

possible only when two elements are available – a tool to measure the studied parameter and a standard model to 

know when the obtained measurement is normal or not. First, I will describe the volBrain pipeline that we proposed 

to perform quantitative brain analysis (Manjon and Coupe 2016). This pipeline provides the volume of brain 

structures at different scales from tissues to structures. Moreover, the volBrain pipeline includes most of my 

previous works from denoising (Manjon et al. 2010c) to segmentation (Coupe et al. 2011, Manjon et al. 2014, 

Romero et al. 2015). Therefore, this pipeline is a good illustration of the complementary of my research topics. 

Second, I will present the standard models for anatomical brain structures that we estimated to determine when 

measurements are normal or not (Coupe et al. 2017). Thanks to the new paradigm of Big Data sharing in 

neuroimaging, we have developed standard models across the entire lifespan based on a massive number of freely 

available MRI. For the first time, we proposed a unified analysis of brain development and aging from few months 

of life to advanced ages. In addition, I will present pathological model that we have inferred across the entire 

lifespan using a similar framework (Coupé et al. 2018). These recent works show the path I have followed over 

the past years from voxelwise analysis to the production of new knowledge. Finally, I will present the proposed 

web-platform that integrates the volBrain pipeline and the developed lifespan models. This final part highlights 

the important work that I dedicated to translational research by proposing innovative ways to reduce the time 

between methodological developments and their worldwide use.  

To conclude this manuscript, I will discuss the limitations and the perspectives of my research about patch-based 

MRI analysis. Moreover, I will identify the next challenges related to brain MRI analysis and I will question the 

next evolutions of my work. Finally, I will show how the proposed solutions could be useful for upcoming 

challenge related to Big Data and Artificial Intelligence. 
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Chapter	1 Quantitative	MRI	Analysis	

Abstract: In this first chapter, we will introduce the principle of our patch-based 

segmentation (PBS) method. Inspired by the nonlocal means denoising filter, our nonlocal 

patch-based approach proposes to use expert’s manual segmentations as priors in the 

context of anatomical structure segmentation. Afterwards, we will present different 

improvements such as multiscale framework, fast patch search strategy, multi-feature 

framework or multimodal extension. These improvements address a wide range of problems 

from brain extraction to multimodal lesion detection. We will show that the proposed 

improvements drastically reduce the computational time and significantly improve 

segmentation accuracy of PBS. For each considered application, our PBS framework will 

be compared with state-of-the-art methods. Finally, we will demonstrate the competitive 

performances of the proposed PBS for different clinical applications. 
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1.1 Introduction	

Magnetic resonance (MR) imaging plays a crucial role in the detection of pathology, the study of brain 

organization, and clinical research. Every day, a vast amount of data is produced in clinical settings, preventing 

the use of manual approaches for data analysis. Consequently, the development of accurate, robust, and reliable 

segmentation techniques for the automatic extraction of anatomical structures is becoming an important challenge 

in quantitative MR analysis. In contrast to brain tissue classification where the intensity of the MR signal can be 

used to segment different tissue types, anatomical segmentation usually requires information derived from the 

manual segmentations done by experts (i.e., expert priors), since anatomical structures can be composed of several 

tissue types and distinct anatomical structures can have the same MR signal properties.  

To overcome this difficulty, several automatic methods of segmentation have been proposed, such as deformable 

models or region growing (Ghanei et al. 1998, Shen et al. 2002, Chupin et al. 2007), appearance-based models 

(Duchesne et al. 2002, Hu and Collins 2007) and atlas/template-warping techniques (Collins et al. 1995, Fischl et 

al. 2002, Rohlfing et al. 2004, Zhou and Rajapakse 2005, Heckemann et al. 2006, Hammers et al. 2007, Barnes et 

al. 2008, Gousias et al. 2008, Aljabar et al. 2009, Heckemann et al. 2010).  

Among these methods, the atlas-based method has been very successful over the last decades (Collins et al. 1995, 

Hammers et al. 2002). Indeed, this method allows easy integration of expert priors through the use of a manually 

segmented atlas. This atlas (i.e., average of many MR images with manual expert-based segmentation) is 

nonlinearly registered to the subject to be segmented. Then, the estimated deformation field is applied to the 

manual segmentation. As a result, the manual segmentation is deformed to fit the subject’s anatomy (see Figure 

1). Thanks to its robustness and simplicity, this method is still used more than 20y after its publication.  

More recently, template-warping techniques that use a library of templates (i.e., MR images with manual expert-

based segmentation) in place of a single atlas have been the subject of intensive investigation for their high 

accuracy in segmenting anatomical structures.  Barnes et al. (2008) proposed to register the most similar template 

from a library of prelabeled subjects to segment the hippocampus (HIPP) (see Figure 2). However, the use of only 

one template may result in a biased segmentation.  

 
Figure 1: Principle of Atlas-based segmentation. First, the atlas is nonlinearly registered to the subject to be segmented. Then, 
the estimated deformation field is applied to the manual segmentation of the atlas. Adapted from (Collins and Pruessner 2010). 
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Figure 2: Principle of best template segmentation. First, the most similar template is nonlinearly registered to the subject to 
be segmented. Then, the estimated deformation field is applied to the manual segmentation. Adapted from (Collins and 
Pruessner 2010). 

To avoid this problem, it is possible to use several similar templates. Pioneering work dedicated to brain 

segmentation based on multi-template framework has been proposed in (Hammers et al. 2003, Heckemann et al. 

2006). In such a method, a set of segmentations is obtained by registering several templates. Therefore, this 

requires a label fusion strategy to efficiently merge the information derived from the selected templates (see Figure 

3). Many strategies have been proposed in the past to achieve this label fusion step (Heckemann et al. 2006, 

Hammers et al. 2007, Gousias et al. 2008, Aljabar et al. 2009, Collins and Pruessner 2010, Heckemann et al. 2010, 

Lotjonen et al. 2010). Multi-template segmentation obtained very good performance and is the current state-of-

the-art approach. However, two main assumptions are made in template-warping techniques. First, constraints on 

the shapes of structures are used implicitly because of the one-to-one correspondence between the voxels of the 

image to be segmented and those of the warped templates. This restriction presents the advantage of forcing the 

resulting segmentation to have a similar shape to those of expert-labeled structures in the template library. 

However, according to the regularization used during registration, some details can be lost and local high 

variability cannot be captured. Second, label fusion techniques usually assign the same weight to all the training 

templates. This approach is sensitive to registration error, since it does not consider the relevance of each template.  

 
Figure 3: Principle of multi-template segmentation. First, the n most similar templates are nonlinearly registered to the subject 
to be segmented. Then, the estimated deformation fields are applied to the corresponding manual segmentations of the selected 
templates. Courtesy of Pr. Collins. 
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In (Coupe et al. 2010a, Coupe et al. 2011), we proposed to overcome these issues by introducing a novel patch-

based scheme with a weighted label fusion, where the weight of each sample is only driven by the similarity of 

intensity between patches (i.e., small sub-volumes of the image defined as three-dimensional cubes). In the 

proposed method, voxels with similar surrounding neighborhoods are considered to belong to the same structure 

and thus are used to estimate the final label. At those time, patch-based methods were the focus of attention of the 

computer vision community in various domains such as texture synthesis (Efros and Freeman 2001), in-painting 

(Criminisi et al. 2004), restoration (Buades et al. 2005), and single-frame super resolution (Protter et al. 2009). In 

each of these domains, patch-based methods have been the subject of intensive investigation because they exhibit 

very high performance despite their simplicity. Inspired by the nonlocal means denoising filter (Buades et al. 

2005), we proposed a nonlocal patch-based approach using expert manual segmentations as priors in the context 

of anatomical segmentation (Coupe et al. 2011). The nonlocal means filter has two interesting properties that can 

be exploited to improve segmentation. First, the natural redundancy of information contained in the image can be 

used to drastically increase the numbers of samples considered during estimation. Second, the local intensity 

context (i.e., patch) can be used to produce a robust comparison of samples. 

In this chapter, we will introduce the principle of our patch-based segmentation method. Afterwards, we will 

present different improvements such as multiscale framework (Eskildsen et al. 2012, Manjon et al. 2014), fast 

patch search strategy, multi-feature framework (Giraud et al. 2016) or multimodal extension (Guizard et al. 2015a). 

Finally, we will discuss the main results for different clinical applications where we applied PBS such as 

Alzheimer’s disease (AD) (Coupe et al. 2012a, Coupe et al. 2012b, Tong et al. 2013, Bron et al. 2015) or Multiple 

sclerosis (MS) (Guizard et al. 2015a, Planche et al. 2017). 
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1.2 Methods	

1.2.1 The	Nonlocal	Means	Estimator	

The nonlocal means filter was first introduced by Buades et al. (2005) for the purpose of image denoising. In 

nonlocal means-based approaches (Buades et al. 2005, Coupe et al. 2008b), the patch P(xi) surrounding the voxel 

xi under study is compared with all the patches P(xj) of the image Ω whatever their spatial distance to P(xi) (i.e., 

this is the meaning of the term “nonlocal”). According to the patch similarity between P(xi) and P(xj), estimated 

by the sum of squared differences (SSD) measure, each patch receives a weight w(xi, xj):  

𝑤 𝑥#, 𝑥% = 	 𝑒)	
* +, )*(+.) 0

0

10  
(Eq. 1) 

where ||.||2 is the L2-norm computed between each intensity of the elements of the patches P(xi ) and P(xj ), and h2 

is the smoothing parameter of the weighting function. Finally, all the intensities u(xj ) of the central voxels of the 

patches P(xj ) are aggregated through a weighted average using the weights w(xi , xj ). In this way, the denoised 

intensity û(xi) of the voxel xi can be efficiently estimated by: 

𝑢(𝑥#) =
𝑤(𝑥#, 𝑥%)𝑢(𝑥%)%∈4

𝑤(𝑥#, 𝑥%)%∈4
 

(Eq. 2) 

Despite its simplicity, the nonlocal means filter has been demonstrated to have excellent denoising performance. 

This filter was one of the most studied denoising filters and many improvements have been proposed since its 

introduction (see (Buades et al. 2010) for a review of these improvements). The efficiency of the nonlocal means 

filter relies on two intuitive aspects, the pattern redundancy present in an image (i.e., its self-similarity) and the 

robust detection of samples derived from the same population by using local context (i.e., patch-based 

comparison).   

First, to improve the accuracy of an estimator, it is possible to reduce the committed error by increasing the number 

of involved samples. By using an infinite number of samples derived from the same population, the error 

theoretically converges to zero. To drastically increase the number of samples used, the nonlocal means filter takes 

advantage of the redundancy of information by using all the similar voxels present over the entire image. 

Second, to ensure that the used samples are derived from the same population, the surrounding neighbor of a voxel 

can be used to robustly detect similar realizations of the same process. In the nonlocal means approach, this task 

is achieved by patch-based comparison using SSD. Two voxels with similar surrounding patches are considered 

as similar and to belong to the same population. More precisely, the nonlocal means filter performs patch 

comparison to estimate the degree of the similarity between two voxels. This way, each involved sample has a 

weight (see Eq. 1) reflecting its relevance.    

Finally, a simple weighted average (see Eq. 2) is used to aggregate the samples according to their relevance. This 

way, the resulting estimator embodies the two interesting qualities described above: to build on a large number of 

samples and to ensure that the involved samples are derived from the same population.  
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1.2.2 From	Denoising	to	Segmentation	

In (Coupe et al. 2010a, Coupe et al. 2011), we were the first to introduce the nonlocal means estimator in the 

context of segmentation by averaging labels instead of intensities. By using a training library of N subjects, whose 

segmentations of structures are known (see Figure 4), the weighted label fusion is estimated as follows:      

𝑣(𝑥#) =
𝑤(𝑥#, 𝑥6,%)𝑙(𝑥6,%)%∈4

8
69:

𝑤(𝑥#, 𝑥6,%)%∈4
8
69:

 
(Eq. 3) 

where l(xs,j ) is the label (i.e., 0 for background and 1 for structure) given by the expert to the voxel xs,j at location 

j in the training subject s. It has been shown that the nonlocal means estimator v(xi ) provides a robust estimation 

of the expected label at xi. With a label set of 0 and 1, voxels with value v(xi )≥0.5 are considered as belonging to 

the structure and the remaining voxels as background.  

As in multi-template segmentation methods, the proposed patch-based method uses expert manual segmentations 

as priors to achieve the segmentation of anatomical structures. However, our method has two main differences 

compared with template-warping methods: the scale of the considered objects and the label fusion scheme. 

First, while multi-template methods work at the level of anatomical structure, our method handles a finer scale by 

using patches. Therefore, instead of performing the fusion of nonlinearly deformed template structures, the 

proposed method achieves the labeling of each voxel individually by comparing its surrounding patch with patches 

in training subjects in which the labels of the central voxels are known. When the patch under study resembles a 

patch in the training subjects, their central voxels are considered to belong to the same structure, and this training 

patch is used to estimate the final label. By this method, several samples from each training subject can be used 

during the label fusion, enabling a drastic increase in the number of sample patches involved in the label estimation.  

Second, multi-template methods usually use a majority voting scheme to fuse the labels (Rohlfing et al. 2004, 

Heckemann et al. 2006, Aljabar et al. 2009, Collins and Pruessner 2010) that considers the relevance (or weight) 

of all the samples labeled as similar. In the proposed method, the intensity-based distances between the patch under 

study and the patches in the training subjects are used to perform a weighted label fusion based on the nonlocal 

means estimator (Buades et al. 2005). In such an approach, the intensity-based distance between patches decreases 

as the relevance of the considered sample increases.  

 
Figure 4: Overview of the patch-based segmentation method. This application of PBS to hippocampus extraction shows the 
main 2 steps of the method: the search of similar patches and the label fusion. 

Anatomical Structure Segmentation
Patch-based approach

• Advantage: state-of-the-art results in terms of segmentation accuracy
• Limitation: search for similar patches (up to 20 min)

Coupe et al., NeuroImage 2011

…

Subject to be 
segmented

Training templates with manual segmentations

Final 
segmentation

• Search for the most similar patches
• Patch-based label fusion
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In other words, by taking advantage of the redundancy of information present in the image, the patch-based 

nonlocal means scheme enables the robust use of a large number of samples during estimation. This number will 

be significantly more important than the number of training subjects, in contrast to template-based methods (i.e., 

where the number of samples is the number warped subjects). Moreover, contrary to classical majority voting 

schemes that give the same weight to all the samples, the nonlocal means scheme enables the robust distinction of 

the most similar samples according to their local context (i.e., their surrounding patches). Finally, compared to 

atlas-based or template-based methods using nonlinear registration, the nonlocal patch-based approach has the 

advantage of better handling the inter-subject variability problem. Contrary to the one-to-one correspondence 

assumed by nonlinear warping methods between the source and the target image, the nonlocal means estimator 

makes it possible to deal with one-to-many mappings, which better captures the link between subjects’ anatomies 

(see Figure 4). 

1.2.3 Patch-based	Segmentation	Framework	

To perform the patch-based label fusion step (see Eq. 3), we need first to find similar patch in the training library. 

In the proposed PBS method, the search of good patches within the library is designed to find the most similar 

patches, but is also constrained in order to avoid useless computations. Therefore, the search process uses different 

strategies. First, we constrain the segmentation with an initialization mask. Second, we consider the possibility 

that similar patches should be found in similar subjects. Then, we consider that the anatomical inter-subject 

variability in stereotaxic space is limited; thus, we can define a limited search volume around the location under 

study. This is done after preprocessing pipeline where all the subjects are linearly registered into the MNI space. 

Finally, we consider that two similar patches should have similar luminance and contrast. All these steps will be 

detailed in the following subsections. 

1.2.3.1 Initialization	Mask	

Instead of segmenting the entire image under study, we define an initialization mask around the structure of 

interest. Several strategies could be used to propose an accurate initialization, such as matching the best subject 

(Barnes et al. 2008) followed by a morphological dilation of the mask. In our case, we chose a very fast and simple 

approach that uses the union of all the expert segmentations in the training database as the initial mask.  

1.2.3.2 Selection	of	Training	Subjects		

A selection is performed at the subject level by selecting the N most similar training templates (Aljabar et al. 2009). 

In our PBS method, after linear registration of all the subjects in the MNI space, we use the sum of the squared 

difference (SSD) across the initialization mask. This strategy was chosen because SSD is sensitive to variation in 

contrast and luminance; thus, we expect to find a greater number of similar patches (in the sense of the L2-norm) 

in subjects with smaller SSDs. Afterwards, these N closest subjects in the training library are retained during the 

entire segmentation process (see Figure 5 where the three closest subjects are displayed).  
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1.2.3.3 Search	Volume	Definition	

Initially, the nonlocal means denoising filter was proposed as a weighted average of all the pixels in the image 

(Buades et al. 2005). For computational reasons, the entire image cannot be used and the number of pixels involved 

has to be reduced. As done for denoising (Buades et al. 2005, Coupe et al. 2008b), we use for segmentation a 

limited search volume Vi defined as a cube centered on the voxel xi under study. Thus, within each of the N selected 

subjects, we search for similar patches in a cubic region around the location under study (see Figure 5). This search 

volume can be viewed as the inter-subject variability of the structure of interest in the stereotaxic space. This 

variability can increase for a subject with pathology or according to the structure under consideration.  

1.2.3.4 Patch	Preselection	

Finally, as we proposed for denoising purposes (Coupe et al. 2008b), we perform a preselection of the patches to 

be compared in order to reduce the computational time. By using simple statistics such as mean or variance, it is 

possible to discard a priori the most dissimilar patches. In the proposed approach, we use luminance and contrast 

criteria to achieve the patch preselection. Based on the first and second terms of the well-known structural 

similarity measure (SSIM) (Wang et al. 2004), the preselection procedure can be written as follows: 

𝑠𝑠 =
2𝜇#𝜇6,%
𝜇#> + 𝜇6,%>

×
2𝜎#𝜎6,%
𝜎#> + 𝜎6,%>

 
(Eq. 4) 

where µ represents the means and s represents the standard deviations of the patches centered on voxel xi (voxel 

under consideration) and voxel xs,j at location j in subject s. If the value of ss is greater than a given threshold, the 

intensity distance between patches i and j is computed. This threshold value is chosen empirically to provide a 

good balance between segmentation accuracy and computational time reduction. 

To sum up, the proposed search enables only candidates within the most similar training subjects to be considered 

(SSD-based subject selection), namely, those whose locations are not too far apart in stereotaxic space (search 

volume) and whose local neighborhoods are similar to the neighborhood of the voxel under study (patch 

preselection). Hence, the introduction of outliers is limited during the nonlocal patch-based label fusion and the 

computational burden is drastically reduced. 

1.2.3.5 Local	Adaptation	of	Smoothing	Parameter		

In estimation problems using a weight function, the tuning of the decay parameter h plays a crucial role. When h 

is very low, only a few samples are taken into account. When h is very high, all samples tend to have the same 

weight and the estimation is similar to a classical average. The value of h should depend on the distance between 

the patch under consideration and the library content. In fact, when the library contains patches very similar to the 

patch under study, h needs to be decreased to drastically reduce the influence of the other patches. However, when 

no similar patches exist in the library, h has to be increased to relax the selection.  
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To achieve this local adaptation of h automatically, we propose an estimation of h(xi) based on the minimal distance 

between P(xi) and the considered patches P(xs,j ): 

ℎ> 𝑥# = min
+F,.

𝑃 𝑥# − 𝑃 𝑥6,% >
>
+ 𝜀 (Eq. 5) 

This simple automatic tuning of h parameter demonstrated good performance and robustness over a large number 

of applications (Coupe et al. 2011, Eskildsen et al. 2012, Manjon et al. 2014, Romero et al. 2015, Giraud et al. 

2016, Romero et al. 2017a). Therefore, since the search volume radius have low influence on segmentation and is 

fixed for computational reason, the patch radius is the only main parameter that the user has to provide to PBS 

method. Besides its simplicity, the very low number of hyper-parameters is one important advantage of our PBS 

method. 

1.2.3.6 Method	Overview		

Figure 5 presents an overview of the different steps used to segment one voxel xi included in the initialization 

mask. After the selection of the N most similar subjects in the training library (N = 3 in this example), the patch 

P(xi) (in green) is compared with all the patches P(xs,j) contained in the search volume Vi within the N selected 

subjects. The most similar patches P(xs,j) (in blue) to the patch P(xi) obtain the highest weights, as shown in the 

weight maps. For the 2D slice in this illustration, 12 labeled samples have significant weights in subject s1, the two 

most similar patches are in subject s2, and no similar patches are found in subject s3.  

In (Coupe et al. 2010a, Coupe et al. 2011), we showed that accurate segmentations of anatomical structures can be 

obtained using this simple patch-based label fusion framework. Compared to multi-template segmentation 

methods, the main advantages of our PBS are to be faster and more robust since we do not perform any nonlinear 

registration step that is a difficult task, subjects to failures, and that is computationally demanding. The high 

segmentation quality, the good robustness and the simple tuning of our PBS participated to its success over the 

last years. It is now well-established that PBS obtained similar or better performance than template-warping 

methods with reduced computational time and lower pipeline failures (Zandifar et al. 2017). However, despite its 

qualities, our original PBS framework had some limitations that we tried to address by proposing improvements 

and extensions.  

First, although the computational time is drastically reduced compared to frameworks based on multiple nonlinear 

registrations, the original PBS method was too slow for large structure segmentation such as brain or for processing 

large database. Therefore, we proposed multiresolution propagation (Eskildsen et al. 2012, Manjon et al. 2014) 

and ultrafast patch search (Ta et al. 2014, Giraud et al. 2016).  

Second, for structures with low contrast boundaries, the high degree of freedom of PBS may lead to suboptimal 

results. To overcome this limitation, we proposed several regularization strategies to improve segmentation quality 

using level-set model (Hu et al. 2014), patchwise aggregation (Manjon et al. 2014) or by combining PBS and 

multiple nonlinear registrations strategies (Hu et al. 2014, Romero et al. 2017a, Zandifar et al. 2017).  
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Finally, brain structures boundaries are not always visible on the same MRI modality. Therefore, for some specific 

structures such as white matter lesions (Guizard et al. 2015a), hippocampus subfields (Romero et al. 2016) or sub-

thalamic nucleus (Haegelen et al. 2013), we proposed to take advantage of the complementary of MRI modalities. 

Some of these improvements will be presented in the next section. We will show that our original PBS can be 

optimized to propose near real time segmentation framework and to significantly improve its segmentation quality. 

  

 

Figure 5: Overview of the different steps involved in achieving PBS of one voxel xi included in the initialization mask. The 
patch P(xi ) (in green) is compared with all the patches P(xs,j ) contained in the search volume Vi within the N selected subjects 
(N = 3 in this example). The weight maps show that the highest weights are obtained by the most similar patches P(xs,j ) (in 
blue) to the patch P(xi ). After the nonlocal means fusion of the expert-based labels ys,j, the resulting estimation is v(xi ) = 0.994. 
Thus, the final label is L(xi ) = 1. 
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1.3 Extensions	

Since its introduction in (Coupe et al. 2010a, Coupe et al. 2011), PBS has been the focus of many attentions. This 

method is now considered as a state-of-the-art method in the field of anatomical structure segmentation. Over the 

last years, we proposed several strategies to improve its segmentation quality such as using dictionary learning 

and sparse coding (Tong et al. 2013), patchwise aggregation (Romero et al. 2015), multiscale strategy (Eskildsen 

et al. 2012, Manjon et al. 2014), multi-feature comparison (Giraud et al. 2016) or multimodal extension (Guizard 

et al. 2015a, Romero et al. 2016, Romero et al. 2017b). Moreover, we showed that higher segmentation accuracy 

can be obtained by combining PBS with active appearance model (Hu et al. 2014) and/or nonlinear registration 

(Hu et al. 2014, Romero et al. 2017a). Finally, we proposed a very fast implementation by adapting the PatchMatch 

algorithm (Barnes et al. 2009) to PBS problem (Ta et al. 2014, Giraud et al. 2016). In this section, we will present 

only few of them that we consider as major contributions.  

1.3.1 Multiresolution	Propagation	Framework	

As previously mentioned, the original PBS is not well-suited for large structure such as brain in terms of 

computational time and segmentation regularity. Indeed, PBS method cannot be directly applied to brain 

extraction, because false positives are likely to occur as extra-cerebral tissue since non brain tissue may resemble 

to brain at the patch scale. Moreover, the computational complexity is high and this becomes a significant problem 

for large structures. Therefore, in (Eskildsen et al. 2012), we presented the adaptation of our PBS approach to 

perform brain extraction by proposing to apply the PBS within a multiresolution propagation approach. 

To obtain optimal performance for brain extraction, the patch size needs to be large compared to the patch sizes 

used to segment smaller structures such as the hippocampus. For example, a small patch in the dura may look like 

gray matter in a T1-weighted (T1w) MRI. Thus, a large patch size, including more structural information, is needed 

to avoid inclusion of extra-cerebral tissue, such as dura or fat. This is computationally impractical at the stereotaxic 

resolution. Therefore, we suggest integrating the patch-based segmentation within a multiresolution propagation 

framework, which provides the opportunity to effectively have spatially large patch sizes while still being 

computationally practical.  

The multiresolution propagation framework enables propagation of segmentation across scales thanks to a 

pyramidal approach by using the resulting segmentation at the previous scale to initialize the segmentation at the 

current scale. The library images, labels, initialization mask, and target image at the stereotaxic resolution are all 

resampled to a lower resolution, before performing the patch-based segmentation. The nonlocal means estimator 

at the previous resolution is propagated to a higher resolution using interpolation (see Figure 6). The nonlocal 

means estimator function v(xi ) (see Eq. 3) can be considered as the confidence level of which label to assign the 

voxel. Values close to 0 are likely background, while values close to 1 are likely object. We define a confidence 

level α to assign labels to the voxels at each scale. Voxels with v(xi )<α are labelled background, and voxels with 

v(xi )>(1−α) are labelled structure. Segmentation of these two sets of voxels is considered final, and they are 

excluded from further processing. Voxels with v(xi) in the range [α; 1−α] are propagated and processed at a higher 

resolution.  
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Figure 6: The multiresolution propagation segmentation process (row 1-3) compared to a single resolution approach (row 4). 
Column 1: Initialization mask. Column 2: Nonlocal means (NLM) estimator map. Column 3: Segmentation by thresholding the 
NLM estimator and adding the intersection mask. Processing times are accumulated time from initialization. Notice the 
inclusion of dura in the single resolution approach. 

This procedure is repeated until the resolution of the stereotaxic space is reached. In this manner, the initialization 

mask of each resolution step is limited to the voxels with uncertain segmentation at the previous step. At the 

stereotaxic resolution, final segmentation is done by thresholding the estimator v(xi) at 0.5 as in the original PBS. 

The proposed multiresolution framework greatly reduces the computational cost as assessed in Figure 6. In 

addition, it is interesting to note that the proposed multiscale method enables to improve the segmentation accuracy 

and to limit introduction of outliers. This aspect will be discussed in the results section. 
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1.3.2 Fast	Search	based	on	PatchMatch	Algorithm	

Beside multiresolution strategy, PBS method can be accelerated by improving the search of similar patches.  In 

(Ta et al. 2014, Giraud et al. 2016), we introduced a new Optimized PAtchMatch for Label fusion (OPAL) to 

address this issue. Originally, the PatchMatch (PM) (Barnes et al. 2009) algorithm was introduced to efficiently 

find patch correspondences between two 2D images. For each patch within the first image, an approximate nearest 

neighbor (ANN) is found within the second image. The algorithm is based on a cooperative and randomized 

strategy resulting in very low computation time and enabling near real-time processing. In (Giraud et al. 2016), 

we investigated the use of the PM for patch-based anatomical structures segmentation using multi-template 

training library. Thanks to our Optimized PM algorithm, OPAL can produce segmentations in a drastically reduced 

computation time compared to original PBS method.  

1.3.2.1 PatchMatch	Algorithm	

The original PM algorithm (Barnes et al. 2009) is a fast and efficient approach that computes patch 

correspondences (matches) between two 2D images (e.g. S and T). The key point of this method is that good 

matches can be propagated to the adjacent patches within an image. This propagation, combined with random 

matches, leads to a very fast convergence with limited computational burden. The core of the algorithm is based 

on three steps: initialization, propagation, and random search (see Figure 7). The initialization consists in randomly 

associating each patch of S with a corresponding patch in T, to obtain an initial ANN field. The two following 

steps are then performed iteratively to improve the ANN field. The propagation step uses the assumption that when 

a patch P(xi ) ∈ S matches well with a patch P(xj ) ∈ T, then the adjacent patches of P(xi ) ∈  S should match well 

with the adjacent patches of P(xj ) ∈ T. Next, the random search step consists of a random sampling around the 

current ANN to escape from local minima. 

1.3.2.2 Optimized	PatchMatch	for	Label	Fusion	

In contrast to (Barnes et al. 2009) where two 2D images are considered, OPAL finds the patch correspondences 

between the subject to be segmented and a training library of 3D templates. One advantage of the PM algorithm 

is that its complexity only depends on the size of image S to process and not on the size of the compared image T, 

(i.e., the size of the training library in the OPAL case). This important fact enables OPAL to consider the entire 

training library without any template preselection step at constant complexity in time. Moreover, for each patch in 

the subject to be segmented, OPAL computes the best k-ANN matches and not only one match as done in (Barnes 

et al. 2009). The OPAL algorithm is explained in detail in the Figure 7 that proposes a schematic overview. To 

clearly illustrate our Optimized PatchMatch (OPM) key steps, only three training templates are considered, two 

iterations are performed and 3D MRI volumes are displayed in 2D. 



 

18 

   
Constrained Initialization Propagation Step  

Iteration #1 
 

Constrained Random Search 
Iteration #1 

   
Propagation Step  

Iteration #2 
Constrained Random Search 

Iteration #2 
Multiple Optimized PM 

 

Figure 7: Optimized PatchMatch (OPM) main steps. In this figure, the representation of OPM steps focuses on the blue patch 
in S. Green, pink, purple and orange colors represent the adjacent patches of the blue patch. During the constrained 
initialization, patches of the subject S are matched (full lines) to a random patch of the library within an initialization search 
window (three are displayed). The propagation step, is represented for iteration #1 and #2. The shifted correspondences of 
recently processed adjacent patches are tested for improvement (dotted lines). Constrained random search for iteration #1 and 
#2 are represented for the blue patch. Random tests are performed within a decaying search window around the current best 
match, within the current best template. Finally, the result of multiple independent ANN searches by OPM is illustrated.  

1.3.2.3 Constrained	Initialization	

In the original paper of PM (Barnes et al. 2009), the initialization consists in assigning, for each patch of S, a 

random correspondence which can be located everywhere in T. In the case of multi-template method based on 3D 

MRI, the natural extension of this initialization step is to assign, for each patch of the 3D image of the subject to 

segment a random patch correspondence in the template library. However, as we deal with linearly registered MRI 

volumes, we proposed to constrain the random initial position to be within a fixed search window centered around 

the current voxel position. Then, for each voxel in the subject to be segmented, a template index is assigned using 

i.i.d. random variable. Consequently, each patch in the subject to be segmented is associated to a unique random 

match among all templates of the training library (see Figure 7). This constraint has two advantages. First, it 

improves the matching convergence, making good use of the linear registration between training templates and 

the subject. Second, limiting the initialization to a fixed window prevents the algorithm from finding similar 
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Figure 1: Optimized PatchMatch (OPM) main steps. In this figure, the representation of

OPM steps focuses on the blue patch in S. Green, pink, purple and orange colors represent

the adjacent patches of the blue patch. During the constrained initialization (CI) (a), patches

of the subject S are matched (full lines) to a random patch of the library within an initialization

search window (three are displayed). The propagation step (PS), is represented for iteration

#1 and #2 in (b) and (d), respectively. The shifted correspondences of recently processed

adjacent patches are tested for improvement (dotted lines). Constrained random search (CRS)

for iteration #1 and #2 are represented for the blue patch, in (c) and (e), respectively. Random

tests are performed within a decaying search window around the current best match, within

the current best template. In (f), the result of multiple independent ANN searches by OPM

is illustrated. See text for more details.

9

(a) CI (b) PS for iteration #1 (c) CRS for iteration #1

(d) PS for iteration #2 (e) CRS for iteration #2 (f) multiple OPM

Figure 1: Optimized PatchMatch (OPM) main steps. In this figure, the representation of

OPM steps focuses on the blue patch in S. Green, pink, purple and orange colors represent

the adjacent patches of the blue patch. During the constrained initialization (CI) (a), patches

of the subject S are matched (full lines) to a random patch of the library within an initialization

search window (three are displayed). The propagation step (PS), is represented for iteration

#1 and #2 in (b) and (d), respectively. The shifted correspondences of recently processed

adjacent patches are tested for improvement (dotted lines). Constrained random search (CRS)

for iteration #1 and #2 are represented for the blue patch, in (c) and (e), respectively. Random

tests are performed within a decaying search window around the current best match, within

the current best template. In (f), the result of multiple independent ANN searches by OPM

is illustrated. See text for more details.

9

(a) CI (b) PS for iteration #1 (c) CRS for iteration #1

(d) PS for iteration #2 (e) CRS for iteration #2 (f) multiple OPM

Figure 1: Optimized PatchMatch (OPM) main steps. In this figure, the representation of

OPM steps focuses on the blue patch in S. Green, pink, purple and orange colors represent

the adjacent patches of the blue patch. During the constrained initialization (CI) (a), patches

of the subject S are matched (full lines) to a random patch of the library within an initialization

search window (three are displayed). The propagation step (PS), is represented for iteration

#1 and #2 in (b) and (d), respectively. The shifted correspondences of recently processed

adjacent patches are tested for improvement (dotted lines). Constrained random search (CRS)

for iteration #1 and #2 are represented for the blue patch, in (c) and (e), respectively. Random

tests are performed within a decaying search window around the current best match, within

the current best template. In (f), the result of multiple independent ANN searches by OPM

is illustrated. See text for more details.

9

(a) CI (b) PS for iteration #1 (c) CRS for iteration #1

(d) PS for iteration #2 (e) CRS for iteration #2 (f) multiple OPM

Figure 1: Optimized PatchMatch (OPM) main steps. In this figure, the representation of

OPM steps focuses on the blue patch in S. Green, pink, purple and orange colors represent

the adjacent patches of the blue patch. During the constrained initialization (CI) (a), patches

of the subject S are matched (full lines) to a random patch of the library within an initialization

search window (three are displayed). The propagation step (PS), is represented for iteration

#1 and #2 in (b) and (d), respectively. The shifted correspondences of recently processed

adjacent patches are tested for improvement (dotted lines). Constrained random search (CRS)

for iteration #1 and #2 are represented for the blue patch, in (c) and (e), respectively. Random

tests are performed within a decaying search window around the current best match, within

the current best template. In (f), the result of multiple independent ANN searches by OPM

is illustrated. See text for more details.

9

(a) CI (b) PS for iteration #1 (c) CRS for iteration #1

(d) PS for iteration #2 (e) CRS for iteration #2 (f) multiple OPM

Figure 1: Optimized PatchMatch (OPM) main steps. In this figure, the representation of

OPM steps focuses on the blue patch in S. Green, pink, purple and orange colors represent

the adjacent patches of the blue patch. During the constrained initialization (CI) (a), patches

of the subject S are matched (full lines) to a random patch of the library within an initialization

search window (three are displayed). The propagation step (PS), is represented for iteration

#1 and #2 in (b) and (d), respectively. The shifted correspondences of recently processed

adjacent patches are tested for improvement (dotted lines). Constrained random search (CRS)

for iteration #1 and #2 are represented for the blue patch, in (c) and (e), respectively. Random

tests are performed within a decaying search window around the current best match, within

the current best template. In (f), the result of multiple independent ANN searches by OPM

is illustrated. See text for more details.

9

(a) CI (b) PS for iteration #1 (c) CRS for iteration #1

(d) PS for iteration #2 (e) CRS for iteration #2 (f) multiple OPM

Figure 1: Optimized PatchMatch (OPM) main steps. In this figure, the representation of

OPM steps focuses on the blue patch in S. Green, pink, purple and orange colors represent

the adjacent patches of the blue patch. During the constrained initialization (CI) (a), patches

of the subject S are matched (full lines) to a random patch of the library within an initialization

search window (three are displayed). The propagation step (PS), is represented for iteration

#1 and #2 in (b) and (d), respectively. The shifted correspondences of recently processed

adjacent patches are tested for improvement (dotted lines). Constrained random search (CRS)

for iteration #1 and #2 are represented for the blue patch, in (c) and (e), respectively. Random

tests are performed within a decaying search window around the current best match, within

the current best template. In (f), the result of multiple independent ANN searches by OPM

is illustrated. See text for more details.

9



 

19 

patches in terms of intensity (low SSD) that are spatially far, leading to potential segmentation errors. As a 

consequence, our constrained initialization reinforces spatial proximity between voxels in the subject to be 

segmented and their matches in the training library and makes the algorithm converge faster. As in the original 

PM algorithm, after this constrained initialization, propagation and random search steps are performed iteratively 

to improve the patch correspondence. 

1.3.2.4 Propagation	Step		

The propagation step of our optimized PM is the simple 3D extension of the one proposed in (Barnes et al. 2009). 

For each patch, an ANN improvement is performed by testing if the shifted ANN of its 6 directly adjacent patches 

provides a better match. Figure 7 illustrates this step, where the blue dotted lines correspond to the test of shifted 

adjacent neighbors in training library, to improve the current blue patch correspondence. In the example showed 

in Figure 7, the best match for the blue patch moves from the template T1 to T2 at iteration #1 and from T2 to T1 at 

iteration #2. The propagation step is a core stage of the OPAL algorithm since it allows a patch correspondence to 

move over all the templates in the training library. Thus, the ANN of the current voxel can move from one template 

to another one, since the ANN of the adjacent voxels are not necessarily in the same template.  

1.3.2.5 Constrained	Random	Search 	

In the original PM algorithm, the random search step is performed on all dimensions. In contrast to the original 

method, OPAL deals with a library of images. Therefore, we modify the random search step to take into account 

this aspect. In order to ensure spatial consistency, OPAL performs the random search only in the current template 

containing the current best patch correspondence within a decaying search window. The process stops when the 

window is reduced to a single voxel. The decaying search window size is empirically defined as the size of the 

initialization window. Figure 7 presents examples of such fixed template random search where the decaying search 

windows are represented in dotted blue lines. 

1.3.2.6 Multiple	PM	and	Parallel	Computation		

Finally, contrary to (Barnes et al. 2009) that only estimates the best match with PM, OPAL computes k-ANN 

matches. These ANNs are then used to perform the PBS as described in previous section. In the literature, an 

extension of the original PM algorithm to k-ANN case has been proposed in (Barnes et al. 2010). The suggested 

strategy is to build a stack of the best visited matches. At each new tested match, the distance is compared to the 

one of the worst ANN among the stack. If there is an improvement in terms of SSD, the worst ANN is replaced 

by the new match. However, to parallelize such an approach, the current image must be split into several parts. 

Since PM uses propagation of good matches between adjacent patches, any split would lead to boundary issues. 

Therefore, in OPAL, we decided to implement the k-ANN search through k independent OPM, denoted as k-OPM. 

This leads to a more efficient and simple multi-threading. Consequently, each thread can run an OPM without any 

dependencies to the other ones. Figure 7 illustrates the result of the multiple OPM steps with k = 3. One can note 

that k independent OPM can lead to the same ANN for a given voxel. The redundancy of the same ANN in the 

ANN map is not an issue, since each contribution is weighted during the patch-based label fusion step (see Eq. 3). 
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With OPAL, PBS method can achieve structure segmentation (e.g., hippocampus) in less than 2s with a standard 

computer as we will present it in the results section.  

1.3.3 Multiscale	and	Multifeature	Framework	

Due to the high computational cost of previously published multi-template methods, most were designed in a 

monoscale and monofeature context. Thanks to the computational efficiency of OPAL, we proposed a new 

framework to simultaneously perform multiscale and multifeature analysis with late aggregation of estimators 

(Giraud et al. 2016). Figure 8 illustrates the proposed multifeature and multiscale framework. 

1.3.3.1 Multiscale	Estimators	

As previously mentioned with our multiresolution propagation framework for brain extraction, the structure 

analysis highly depends on the size of the patch in PBS method. The patch size needs to be large enough to capture 

the local geometry and to prevent discontinuities in the segmentation. However, using very large neighborhoods 

may reduce the probability of finding similar patches in the library. Although the optimal patch size can be 

determined by experiments for a given dataset, multiscale approaches may significantly improve segmentation 

accuracy. In (Eskildsen et al. 2012), the idea was to perform multiresolution propagation to reduce computational 

time and to limit false positive during the segmentation of large structures. In (Giraud et al. 2016), by taking 

advantage of the OPAL speed, we proposed a different multiscale strategy where fully independent multiscale 

searches are performed with patches of different size at the highest resolution. This multiscale framework is not 

necessary designed for large structures but for improving segmentation accuracy and to limit the impact of patch 

size choice on segmentation accuracy. While in (Eskildsen et al. 2012) we proposed a multiresolution propagation 

of label confidence, in (Giraud et al. 2016) we proposed a fusion of estimator maps where multiscale refers to the 

simultaneous use of patches of different sizes, and where the images are considered with their initial resolution 

(see Figure 8). 

1.3.3.2 Multifeature	Estimators	

Similarly, the search for similar patches by OPAL can also be carried out independently on different features 

(edges, textures, etc.). In (Giraud et al. 2016), we showed that using the gradient norm in addition to the original 

MRI intensities increases the segmentation accuracy. Therefore, we proposed to apply OPAL at different scales 

for each considered feature (see Figure 8). The resulting estimator maps are then merged a posteriori using late 

fusion approach (i.e., a simple average in our case). The fusion of all the maps obtained through the independent 

searches improves the diversity of the selected patches and produce better segmentation quality, as shown in the 

results section. 
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Figure 8: Fusion of multifeature and multiscale label estimator maps. Our method is applied with different patch sizes, on 
different features independently. At the end, all the estimator maps are fused to provide the final segmentation.  

1.3.4 Multimodal	Extension	

Over the past years, we also investigated the use of multimodal framework to take advantage of information 

derived from different MRI modalities (Haegelen et al. 2013, Guizard et al. 2015a, Romero et al. 2016, Romero 

et al. 2017b). Contrary to the original patch-based segmentation method (Coupe et al. 2011) using a single contrast 

library (e.g., only T1w MRI), we proposed an adaptation of the PBS method to take advantage of multi-contrast 

images. In Multiple Sclerosis (MS) for instance, multi-contrast manual and automatic segmentation methods have 

shown to improve the identification of MS lesions. In addition, for hippocampus subfields segmentation, the use 

of multi-contrast information is also crucial to improve subfields borders detection. Therefore, in (Guizard et al. 

2015a) and (Romero et al. 2016, Romero et al. 2017b), we adapted the nonlocal means weighting function (see 

Eq. 1) for various contrasts (m) as follows: 

  𝑤J 𝑥#, 𝑥6,% = 	 𝑒
)

KL M, NKL(MF,.) 0
0

ℎ𝑚
2𝑚∈𝑀

 
 

(Eq. 6) 

Here m represents the different MRI modalities. The smoothing parameter hm is estimated for each considered 

contrast independently (i.e., the per contrast minimum distance as defined in Eq. 5). Moreover, the L2-norm 

distance is estimated between patches of the same modality. This simple extension of the weight estimation enables 

to take advantage of the additional information derived from different MRI sequences. Therefore, wM is the 

multimodal weight estimated over the M available modalities. For instance, the commonly modalities used in MS 

lesion segmentation are T1w, T2w or FLAIR while for hippocampus subfields segmentation T1w and T2w are 

usually used. Finally, the use of the minimal distance for the automatic tuning of hm enables to automatically 

homogenize the importance of each modality intendedly of their intensity range or contrast. 

 

use of both multi-scale and multi-feature should improve segmentation accuracy.

Leveraging the computational e�ciency of OPAL, we propose to investigate a

new framework to simultaneously perform multi-scale and multi-feature analysis

with late aggregation of estimators. Figure 3 illustrates the whole OPAL method300

and the late fusion of multi-feature and multi-scale label estimator maps.

Figure 3: OPAL method. Fusion of multi-feature and multi-scale label estimator maps. The

algorithm is applied with Ns di↵erent patch sizes, on Nf di↵erent features, so N = Ns⇥Nf

estimator maps are computed and merged to provide the final segmentation. See text for

more details.

2.3.1. Multi-scale Estimators

In patch-based methods, the structure description highly depends on the size

of the patch. The patch size needs to be large enough to capture the local ge-

ometry and to prevent discontinuities in the segmentation. However, using very305

large neighborhoods may reduce the probability of finding similar patches in

the library. Although the optimal patch size can be determined by experiments

for a given dataset, multi-scale approaches may significantly improve segmen-

tation accuracy as shown in recent multi-scale label fusion approaches [26, 27].

In these papers, the ANN search consists in finding the candidate minimizing310

the distance for every scale at the same time. Therefore, such a strategy se-

lects a consensual candidate providing the best similarity on average over all the

considered scales. In contrast to these previous works, we propose to perform

15
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1.3.5 Combination	of	PBS,	Nonlinear	Registration	and	Error	Correction	

Finally, we also investigated the combination of PBS and multiple nonlinear registrations framework (Fonov et al. 

2012, Hu et al. 2014, Romero et al. 2017a, Zandifar et al. 2017). The main idea is to take benefit from the high 

flexibility of PBS to capture local geometry and to take advantage from implicit shape priors provided by multi-

template warping methods (Collins and Pruessner 2010). To integrate global shape constraints into the 

segmentation and increase the local structure fitting, we developed several fully automatic segmentation methods 

that combined multi-template warping method and patch-based technique into a general two-stages segmentation 

framework. In the first-stage segmentation, the multi-template warping is used to capture the statistical 

characteristics of shape and intensity information in the training data. Although the multi-template warping method 

take into account local geometry, its ability to recover fine details at structure borders is limited by the 

regularization of the nonlinear registration. Thus, there is often some “blurring” of the structure shape. This issue 

can be addressed by using PBS technique, which is employed as a second-stage segmentation to locally refine the 

segmentation resulting from the first-stage segmentation. In (Hu et al. 2014), we proposed to perform a 

segmentation based on multi-template warping and then to refine this segmentation thanks to the original PBS. In 

(Romero et al. 2017a), we proposed first to nonlinearly register all the training templates to the subject under study 

and then to apply OPAL over this subject-specific training library. Finally, in (Zandifar et al. 2017), we proposed 

to combine PBS (Coupe et al. 2011), multi-template warping (Collins and Pruessner 2010) and systematic error 

correction based on machine learning (Wang et al. 2011). In (Wang et al. 2011), the authors presented a method 

that learns the pattern of mismatch between automatic segmentation labels and their corresponding manual 

segmentations. This correction method uses a classification technique in which the classifier is trained by a set of 

automatically segmentation and their corresponding manual segmentation. For new test image, the method corrects 

the mislabeled segmentation using the learned pattern. Both intensity and neighborhood information are used as 

features to train an AdaBoost learner (Freund and Schapire 1995). In (Romero et al. 2017b), we proposed a more 

efficient error correction based on neural network. At present, our last pipelines are all based on the combination 

of OPAL (Giraud et al. 2016), multi-template warping (Heckemann et al. 2006, Collins and Pruessner 2010) and 

systematic error correction (Wang et al. 2011). According to our experience, this 3-stage approach enables fast 

and accurate segmentation.  
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1.4 Results	

In this section, we will present main results obtained on different structures and for several clinical applications. 

First, we will compare PBS with the proposed improvements for hippocampus (HIPP) segmentation, a key 

structure involved in many neurological pathologies (Coupe et al. 2011, Tong et al. 2013, Giraud et al. 2016). 

Second, we will propose a comparison of our brain extraction based on multiresolution propagation PBS with 

state-of-the-art methods (Eskildsen et al. 2012, Manjon et al. 2014). Then, we will present results obtained with 

the combination of PBS and nonlinear registration for cerebellum lobules and HIPP subfields segmentation 

(Romero et al. 2016, Romero et al. 2017a, Romero et al. 2017b). Finally, we will show the interest of the proposed 

multimodal framework in the context of MS lesions segmentation (Guizard et al. 2015a). 

1.4.1 Hippocampus	Segmentation	

In (Giraud et al. 2016), we compared several methods to segment the hippocampi of healthy subjects. The HIPP 

plays an important role in human memory and orientation. Moreover, HIPP dysfunction is involved in a variety of 

diseases, including Alzheimer’s Disease (Jack et al. 2000), post-traumatic stress disorder (Bremner et al. 1995), 

major depression (Bremner et al. 2000), schizophrenia (Tanskanen et al. 2005, Buss et al. 2007), and epilepsy 

(Bernasconi et al. 2003). This structure is especially difficult to segment because of its small size, high variability, 

low contrast, and discontinuous boundaries in MR images (Chupin et al. 2007, Siadat et al. 2007). Finally, the 

HIPP is composed of several tissue types, which prevents the use of simple intensity-based techniques. 

The HIPP dataset used for validation consists of T1w MR images of 80 subjects randomly extracted from a group 

of 152 young, healthy individuals acquired on a 1.5T MRI scanner in the context of the International Consortium 

for Brain Mapping (ICBM) project (Mazziotta et al. 1995). The MR images were manually segmented by an expert 

directly into the stereotaxic space. For each subject, the HIPP label was manually defined using the protocol 

described by Pruessner et al. (2000). The resulting segmentations obtained an intraclass reliability coefficient 

(ICC) of 0.900 for inter-rater reliability (4 raters) and 0.925 for intra-rater reliability (5 repeats). In the following, 

for each dataset, a leave-one-out procedure was performed. The kappa index (Dice coefficient or similarity index) 

(Zijdenbos et al. 1994) was then computed by comparing the expert segmentations with those obtained with our 

methods. For two binary segmentations A and B, the kappa index was computed as:  

×
+

=
BA
BA

BA
!2

),(k  
(Eq. 7) 

As usual in quantitative MR analysis, manual segmentation is considered the gold standard (Pruessner et al. 2000) 

and thus used as reference.  
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Table 1: Comparison of different approaches in terms of segmentation accuracy and computation time for hippocampus 
segmentation. The compared methods are: our original PBS (Coupe et al. 2011), a multi-template wrapping method based on 
multiple nonlinear registrations (Collins and Pruessner 2010), our PBS using sparse coding and dictionary learning to improve 
weight estimation (Tong et al. 2013) and our PBS based on optimized PatchMatch called OPAL (Giraud et al. 2016). * indicate 
significantly better results at p<0.01 compared to dictionary learning. 

Methods DICE Computational  time 
PBS (Coupe et al. 2011) 88.2 662s (x700) 

Multi-template warping (Collins and Pruessner 2010) 88.6 3974s (x4300) 

Sparse coding (Tong et al. 2013) 88.7 5587s (x6000) 

Dictionary learning (Tong et al. 2013) 89.0 943s (x1000) 

OPAL (Giraud et al. 2016) 89.9* 0.92s 

Table 1 presents a comparison of our original PBS with different improvements that we proposed over the past 

years and a multi-template warping used as reference. Compared to the original PBS (Coupe et al. 2011), OPAL 

improves segmentation accuracy by 1.7 percentage points (pp) thanks to multiscale and multifeature framework 

while being 700× faster thanks to the optimized PatchMatch search. Compared to the most accurate method on 

this dataset based on our patch-based dictionary learning (Tong et al. 2013), OPAL obtained higher Dice 

coefficients with a p-value inferior to 10−12 (obtained from a paired t-test on the OPAL and Dictionary learning 

sets of Dice coefficients) for a computation times 1000× faster. These results show the significant improvement 

of segmentation quality obtained when using multiscale and multifeature PBS. 

1.4.2 Brain	Extraction:	BEaST	

In (Eskildsen et al. 2012), we compared our multiresolution propagation framework for brain extraction (called 

BEaST) with two state-of-the-art methods – BET based on deformable model (Smith 2002) and VBM8 based on 

tissue classification (http://dbm.neuro.uni-jena.de/vbm/download). To validate these methods, we performed a 

Leave-One-Out Cross Validation (LOOCV) using three datasets: the NIH-funded MRI study of normal brain 

development (termed here the NIH Pediatric Database, or NIHPD) (Evans and Group 2006) (age: 5–18y), the 

International Consortium for Brain Mapping (ICBM) database (Mazziotta et al. 1995) (age: 18–43y), and the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (Mueller et al. 2005) (age: 55–91y). The NIHPD 

and ICBM databases consisted of healthy subjects, while the ADNI database, in addition to cognitive normal (CN) 

subjects, contained scans of subjects with AD and mild cognitive impairment (MCI). This way, almost the entire 

human life span was covered and subjects with atrophic anatomy were included.  

Table 2 presents the comparison of BET, VBM8 and our multiresolution PBS segmentation method. BET yielded 

very high DICE for ICBM and NIHPD, while the results are more mixed on ADNI. VBM8 provided slightly lower 

DICE on ICBM and NIHPD. On the ADNI dataset, VBM8 provided on average DICE values larger than those 

obtained by BET and is more consistent in its segmentation. Our multiresolution PBS yielded consistently and 

significantly higher DICE on all datasets. 
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Table 2: Comparison of different approaches in terms of DICE for brain segmentation. The compared methods are: the 
Multiresolution PBS (Eskildsen et al. 2012), BET (Smith 2002) and VBM8. * indicate significantly better results at p<0.01. 

Methods ICBM NIHPD ADNI 

BEaST (Eskildsen et al. 2012) 99.0* 98.1* 98.5* 

BET (Smith 2002) 97.5 97.5 94.4 

VBM8 96.7 97.2 96.3 

Figure 9 shows typical examples of brain masks obtained by BET, VBM8 and our multiresolution PBS on the five 

different groups tested here (NIHPD, ICBM, ADNI-CN, ADNI-MCI, ADNI-AD). On NIHPD and ICBM data, 

BET behaved quite well with only minor segmentation errors, such as inclusion of the transverse sinus and part of 

the eye sockets. On ADNI data, more serious errors were found using BET. These include inclusion of dura and 

marrow of the skull while gyri are often cut off in atrophic brains. VBM8 had a tendency to perform over-

segmentations on all groups and sometimes included dura proximate to the brain, carotid arteries, ocular fat / 

muscle, and parts of the eyes. On the positive side, VBM8 rarely removes part of the brain due to the consistent 

over-segmentation. BEaST generally provided a more consistent and robust segmentation without serious errors. 

 

 

Figure 9: Typical results using BET, VBM8 and our multiresolution PBS called BEaST on the five test groups. The figure 
shows sagittal slices and 3D renderings of the segmentations. Blue voxels are overlapping voxels in the segmentation compared 
to the gold standard. Green voxels are false positives and red voxels are false negatives. 
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1.4.3 Lobules	and	Subfields	Segmentation	

1.4.3.1 Cerebellum	Lobules	Segmentation:	CERES	

In (Romero et al. 2017a), we have introduced a new pipeline for cerebellum lobule segmentation that was based 

on an adaptation of OPAL (Ta et al. 2014, Giraud et al. 2016) called CERES. The human cerebellum is a 

neuroanatomical structure within the human brain located below the cerebrum and connected to the brainstem 

through the cerebellar peduncles. Although it represents a small percentage of the total intracranial volume, about 

10%, it plays a key role in motor coordination and learning. Cerebellar anatomy consists of a white matter tree 

structure located behind the pons. It is divided into two hemispheres (left and right), with each white matter branch 

surrounded by a layer of grey matter that creates folds called foliations (see Figure 10). These grey matter folds 

are denominated cerebellum lobules. The size, position and number of (visible) lobules is highly variable between 

subjects which makes the segmentation process challenging.  

The proposed method CERES is based on OPAL that has been adapted to segment the cerebellum anatomy using 

a library of nonlinearly registered cases instead of using only an affine registration as in the original PBS method. 

CERES was compared with 3 state-of-the-art methods: SUIT a single atlas method (Diedrichsen 2006), MAGeT 

a multi-template method (Chakravarty et al. 2013, Park et al. 2014) and RASCAL a multi-template method 

combined with PBS (Weier et al. 2014). These methods were compared using high resolution MR images from 5 

healthy volunteers (2 males, 3 females, aged 29–57). These high resolution MR images were manually segmented 

by two expert raters that allowed for both inter- and intra-rater comparisons of segmentations to validate the 

consistency of the manual segmentation protocol as defined in (Park et al. 2014). The cerebellum was manually 

segmented into 26 structures: White matter and Lobules I-IV, V, VI, Crus II, VIIB, VIIIA, VIIIA, and X 

considering left and right hemispheres.  

Table 3: Mean and standard deviation for DICE coefficient values for SUIT a single atlas method (Diedrichsen 2006), MAGeT 
a multi-template method (Chakravarty et al. 2013), RASCAL a multi-template method with PBS refinement (Weier et al. 2014) 
and the proposed CERES (Romero et al. 2017a). Best results are marked in bold (significant differences (p<0.05) are marked 
with * for SUIT, † for MAGeT and ‡ for RASCAL comparison). 

Structure SUIT 
(Diedrichsen 2006) 

MAGeT 
(Chakravarty et al. 2013) 

RASCAL 
(Weier et al. 2014) 

CERES 
(Romero et al. 2017a) 

Lobule I-IV 0.7435 ± 0.0880 0.8055 ± 0.0964 0.7703 ± 0.1107 0.7898 ± 0.1021 * 

Lobule V 0.6598 ± 0.1026 0.7429 ± 0.1369 0.6730 ± 0.1560 0.7561 ± 0.1332 *‡ 

Lobule VI 0.7800 ± 0.0543 0.8762 ± 0.0365 0.7994 ± 0.0523 0.8695 ± 0.0316 *‡ 

Lobule Crus II 0.7430 ± 0.0631 0.7787 ± 0.0678 0.7300 ± 0.0667 0.8096 ± 0.0569 *‡ 

Lobule VIIB 0.5701 ± 0.1572 0.6013 ± 0.1476 0.5761 ± 0.1137 0.6850 ± 0.1205 *‡ 

Lobule VIIIA 0.7134 ± 0.0996 0.7330 ± 0.0928 0.6701 ± 0.1426 0.7926 ± 0.0759 *†‡ 

Lobule VIIIB 0.7721 ± 0.0596 0.8012 ± 0.0607 0.7654 ± 0.0931 0.8533 ± 0.0390 *†‡ 

Lobule X 0.6955 ± 0.0512 0.7721 ± 0.0475 0.7275 ± 0.0680 0.7548 ± 0.0469 * 

Average 0.7097 ± 0.0689 0.7639 ± 0.0792  0.7140 ± 0.0487 0.7888 ± 0.0409 *‡ 
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Figure 10: Examples of manual, SUIT, MAGeT, RASCAL and CERES segmentation over the cases with the best, median and 
worst DICE for CERES. Corresponding DICE is provided for each segmentation.  

 

In Table 3, DICE coefficient values for the different compared methods are shown. CERES provided the best 

results overall (MAGeT results were better for lobule I-IV, Vi and X although differences were not significant). 

In Figure 10, some examples from the different methods are shown. Note how SUIT tends to produce 

oversegmentation and always fills the fissures between lobules. Also note the irregular boundary between lobules 

I-IV (red) and V (yellow) produced by RASCAL in all three cases. Moreover, in the worst case, it can be seen that 

lobule VIIIA (purple) in MAGeT and RASCAL segmentations is barely visible. Finally, one of the main 

advantages of our method is its efficiency as it produces competitive results in terms of accuracy with a reduced 

computational time. The slowest method in the comparison was MAGeT (approximately 4 hours per case) due to 

the need of performing many nonlinear registrations. RASCAL takes around 110 minutes to provide the 

segmentation result. Finally, SUIT and CERES require around 5 minutes to produce the segmentation.  

To conclude this section, it is important to note that CERES2 (CERES augmented with an error correction step) 

won the MICCAI 2017 international challenge ENIGMA on automatic cerebellum parcellation (Carass et al. 

2018). During this challenge, nine methods were evaluated on 2 datasets, an adult dataset and a pediatric dataset. 

CERES2 significantly outperformed all the other methods including last Deep Learning (DL) framework. Table 4 

presents a comparison on the pediatric dataset of CERES2 with the second and the third ranked methods, both 

based on DL strategies. The pediatric dataset is composed of 20 training images and 10 testing images. Mean 

DICE is provided across four hierarchies (Coarse, Lobe, Vermis, Lobule) of labeling and also the combination of 

all 28 labels (Consolidated). The method proposed in (Dolz et al. 2018) is a Fully Convolutional Network (FCN) 

based on 13 layers. DeepNet (Fonov and Collins 2018) is based on a U-Net architecture of 10 layers (Ronneberger 

et al. 2015). These results demonstrate that the proposed PBS method is still very competitive (significantly better 

at p<0.0001 for almost all the hierarchies) compared to the last DL frameworks. 
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Table 4: Mean DICE coefficient values obtained during the ENIGMA challenge (Carass et al. 2018) on the  pediatric dataset 
for FCN a fully convolutional network (Dolz et al. 2018), DeepNet based on U-Net architecture (Fonov and Collins 2018) and 
our CERES2 method (Romero et al. 2017a). Best results are marked in bold and significant differences (p<0.0001) are marked 
with * for FCN and ‡ for DeepNet comparison. 

Hierarchy FCN 
(Dolz et al. 2018) 

DeepNet 
(Fonov and Collins 2018) 

CERES2 
(Romero et al. 2017a) 

Coarse 0.9326 0.8859 0.9348 ‡ 

Lobe 0.8859 0.8827 0.9033 *‡ 

Vermis 0.8491 0.8427 0.8763 *‡ 

Lobule 0.8776 0.8808 0.9043 *‡ 

Consolidated 0.8828 0.8815 0.9043 *‡ 

1.4.3.2 Multimodal	Hippocampal	Subfields	Segmentation:	HIPS	

In (Romero et al. 2016, Romero et al. 2017b), we introduced a new multimodal pipeline for hippocampal subfields 

segmentation called HIPS. The current hippocampal subfields definition is mainly based on the wotk of Lorente 

de No (1934). Starting from the upper end at the hippocampal sulcus, we find the dentate gyrus (DG) followed by 

the Cornu Ammonis (CA) which is subdivided in four consecutive parts (CA4 to CA1) and the Subiculum at the 

bottom end. The CA is also structured in six layers called stratum. These layers are the Stratum oriens (SO), 

Stratum pyramidale (SP), Stratum lucidum (SLU), Stratum radiatum (SR), Stratum lacunosum (SL) and the 

Stratum molecuare (SM). Currently, subfield segmentation protocols have been developed based on high 

resolution in-vivo MRI. In (Winterburn et al. 2013), the authors presented a new in-vivo high resolution atlas to 

divide the hippocampus in five different subregions: CA1, CA2-3, CA4/DG, Stratum and Subiculum as shown in 

Figure 11. Latter in (Kulaga-Yoskovitz et al. 2015), the authors developed another segmentation protocol 

consisting of three structures: CA1-3, CA4/DG and Subiculum as shown in Figure 11. However, there is still little 

consensus between the different HIPP subfield protocols as shown in (Yushkevich et al. 2015a) where 21 

delineation protocols were compared. 

The proposed HIPS method enables subfields segmentation according to the Winterburn and Kulaga-Yoskovitz 

protocols. This method uses a multimodal version of OPAL (Giraud et al. 2016) to produce fast and accurate 

segmentations in combination with nonlinear registration to build subject’s specific library and involving a 

systematic error correction scheme. As explained at the end of the previous section, the use of this 3-stage 

framework is our current pipeline strategy to produce fast high quality segmentation. Due to its high resolution 

training libraries, HIPS can work with high resolution (0.5 mm3) T1w and T2w images. However, during our 

validation, we showed that the proposed approach performs well on monomodal T1w and T2w and when using 

standard resolution images up-sampled using our nonlocal super resolution methods (Manjon et al. 2010b, Coupe 

et al. 2013). Finally, a new neural network-based error correction was proposed to minimize systematic 

segmentation errors at post-processing (see original paper for details). To validate our approach, we compared 

HIPS with other recent methods applied to hippocampus subfield segmentation on two datasets. For the 

Winterburn dataset, we compared HIPS with MAGeT (Pipitone et al. 2014) and for the Kulaga-Yoskovitz dataset 

we compared HIPS with ASHS a multi-template method including error correction (Yushkevich et al. 2015b) and 

SurfPatch combining surface-based and patch-based strategies (Caldairou et al. 2016).  
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Figure 11: Examples from Winterburn and Kulaga-Yoskovitz datasets showing T1w, T2w and manual segmentations. 

The Winterbrun dataset contains 5 subjects with high resolution T1w and T2w images and their corresponding 

manual segmentations. The high resolution images are publicly available at the CoBrALab website 

(http://cobralab.ca/atlases). These MR images were taken from 5 healthy volunteers (2 males, 3 females, aged 29–

57). High resolution T1w and T2w images were acquired at an isotropic resolution of 0.6 mm3. The hippocampi 

and each of their subfields were segmented manually by an expert rater including 5 labels (CA1, CA2/3, CA4/DG, 

(SR/SL/SM), and subiculum). For more details about the labeling protocol see the original paper (Winterburn et 

al. 2013). The Kulaga-Yoskovitz dataset includes 25 subjects from a public repository 

(http://www.nitrc.org/projects/mni-hisub25) (31 ± 7 years, 12 males, 13 females) with manually-drawn labels 

dividing the HIPP in three parts (CA1-3, DG-CA4 and Subiculum). MRI dataset consist of an isotropic T1w (0.6 

mm3) and anisotropic 2D T2w images (0.4 × 0.4 × 2 mm3).  

Table 5: Mean DICE in the native space for each structure. Segmentation performed by MAGeT (a multi-template method) 
and HIPS at 0.9mm3 on the Winterburn dataset. Best results are in bold. We used the results provided in the native space from 
the corresponding publication. 

Structure MAGeT 
(Pipitone et al. 2014) 

HIPS 
(Romero et al. 2016) 

Average 0.5260 0.6610 

CA1 0.5630 0.6700 

CA2/CA3 0.4120 0.5220 

CA4/DG 0.6470 0.7630 

SR/SL/SM 0.4280 0.5990 

Subiculum 0.5800 0.7220 

Hippocampus 0.8160 0.8760 
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Table 6: Mean DICE in the native space for each structure. Segmentation performed by ASHS (Yushkevich et al. 2015b), 
SurfPatch (Caldairou et al. 2016), HIPS and human rater (intra-rater and inter-rater) on the Kulaga-Yoskovitz dataset. Best 
results (for automatic segmentation) are in bold. 

Structure ASHS SurfPatch HIPS Inter-rater Intra-rater 

Average 0.8513 0.8503 0.8744  0.8833 0.9113 

CA1-3 0.8736 ± 0.0197 0.8743 ± 0.0247 0.9030 ± 0.0138 0.8760 ± 0.048 0.9290 ± 0.010 

CA4\DG 0.8254 ± 0.0345 0.8271 ± 0.0285 0.8497 ± 0.0332 0.9030 ± 0.036 0.9000 ± 0.019 

Subiculum 0.8548 ± 0.0243 0.8495 ± 0.0245 0.8705 ± 0.0212 0.8710 ± 0.053 0.9050 ± 0.016 

For the comparison, we used the results provided in the native space from the corresponding publication. Table 5 

shows results for MAGeT and HIPS on the Winterburn dataset while Table 6 shows results for ASHS, SurfPatch 

and HIPS on the Kulaga-Yoskovitz dataset. For a fair comparison between considered methods, all the DICE 

coefficients for HIPS have been calculated using the segmentations in native space (using the corresponding 

inverse affine registration). We showed that HIPS outperforms other state-of-the-art methods in term of 

segmentation accuracy achieving an overall DICE of 0.661 for the Winterburn dataset while MAGeT (Pipitone et 

al. 2014) obtained a DICE of 0.5260, and an overall DICE of 0.8744 for Kulaga-Yoskovitz while ASHS 

(Yushkevich et al. 2015b) obtained 0.8513 and SurfPatch (Caldairou et al. 2016) obtained 0.8503. HIPS is also 

faster than the other methods taking an average execution time under 20 minutes compared to several hours 

required by both other methods. Finally, Figure 12 presents results obtained with HIPS on both considered datasets. 

We can see that results produced by HIPS are very similar to manual segmentations. Despite low contrast between 

subfield, HIPS is able to accurately estimate boundaries.   

 

Kulaga-Yoshcovitz Protocol	 Winterburn Protocol 

	  

Figure 12: Results obtained with HIPS on the Winterburn and Kulaga-Yoskovitz datasets. 
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1.4.4 Multimodal	Lesion	Segmentation	

In (Guizard et al. 2015a), we proposed a new multimodal PBS method to segment MS lesions. MS is a chronic, 

inflammatory demyelinating disease, which mainly affects the white matter of the central nervous system but may 

also affect the cortex. The disease presents itself with a wide range of clinical manifestations, usually beginning 

with a relapsing remitting (RRMS) phase. RRMS is characterized by attacks of worsening neurologic function 

(relapses) that are followed by partial or full recovery (remissions). Relapses are directly related to an underlying 

inflammation of the central nervous system, which affects the myelin of the axons and consequently leads to focal 

“MS lesions”. Because MRI is sensitive to inflammatory and demyelinating changes, it is often used to monitor, 

identify and quantify MS lesions that are hyperintense on T2w MRI and may become hypointense on T1w images. 

Lesion counts are often used to assess the disease burden and track disease progression as new lesions are related 

to current disease activity. Both counts are used to assess the efficacy of new therapies. In the method proposed in 

(Guizard et al. 2015a), we focused on lesions commonly called “T2-lesions” (those that are hyperintense on T2w 

images) and did not consider other sub-types of lesions (i.e., gadolinium enhancing “active lesions”, “black holes” 

and cortical lesions). MS lesions in MR images are extremely difficult to identify because of inter-subject 

anatomical variability, lesion location, size and shape. Manual segmentation of MS lesions is still recognized as 

the gold standard in MS, but it is time consuming and subjects to important intra- and inter-expert variability. 

The method proposed in (Guizard et al. 2015a) uses a multimodal PBS to be able to segment MS lesions. During 

our experiment, we used T2w and FLAIR images only. Our method was validated using the dataset provided by 

the international MICCAI 2008 challenge (Styner et al. 2008). From the MS challenge website, 20 training MR 

datasets with ground truth manual lesion segmentations and 23 testing cases could be downloaded. While lesions 

masks for the 23 testing cases are not available for download, an automated system is available to evaluate the 

output of a given segmentation algorithm. At the time of paper writing in 2014, our segmentation results on the 

testing MICCAI challenge dataset were submitted online and compared with other published techniques including 

i) LesionTOADS (Shiee et al. 2010), ii) the winner of the MICCAI challenge (Souplet et al. 2008), iii) a supervised 

technique proposed in (Geremia et al. 2011) and iv) the method proposing the best score when our method was 

evaluated (Tomas-Fernandez and Warfield 2011). In this manuscript, I decided to update these results by adding 

the last available results based on DL methods – a Fully Convolutional Neural Network (FCN) presented in 

(Brosch et al. 2016) and the cascade of Convolutional Neural Network  (CNN) presented in (Valverde et al. 2017).  

Table 7: Results on the multimodal MICCAI Challenge dataset. Bold results were the best results at the time of the publication 
of our method (Guizard et al. 2015a). Cascade of CNN results (Valverde et al. 2017) have been added as the best results 
available at the time of habilitation thesis writing.   

Method Score 

Lesion TOADS (Shiee et al. 2010) 79.96 

EM classification (Souplet et al. 2008) 80.00 

Random Forest (Geremia et al. 2011) 82.07 

FCN (Brosch et al. 2016) 84.07 

Outliers detection (Tomas-Fernandez and Warfield 2011) 84.46 

Proposed PBS (Guizard et al. 2015a) (T2w + FLAIR) 86.11 

Cascade of CNN (Valverde et al. 2017) (T1w + FLAIR) 86.70 

Cascade of CNN (Valverde et al. 2017) (T1w + T2w + FLAIR) 87.12 
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The organizers combined different metrics to produce a score between 0 and 100, where 100 is a perfect score and 

90 is the typical score of an independent rater (Styner et al. 2008). The MICCAI challenge website provides a 

results archive, allowing us to compare the performance of our method with other groups. The results are 

summarized in Table 7. At the time of paper writing, our method held the best result with an overall average 

summary score of 86.1 (note that 90 corresponds to a segmentation accuracy reaching human expert inter-rater 

variability). Compared to the FCN approach presented in (Brosch et al. 2016) – published one year after our work 

– our PBS is quite competitive (84.07 vs. 86.11). Finally, two years later, the results obtained with our PBS method 

using 2 modalities are still competitive compared to the last advanced DL method based on a cascade of CNN. 

Indeed, our method obtained 86.11 vs. 86.70 for cascade of CNN when using the same number of modalities, and 

86.11 vs. 87.12 when cascade of CNN is trained on 3 modalities. Whereas many methods require at least 3 MRI 

contrasts (T1w, T2w, PDw or FLAIR) (Souplet et al. 2008, Geremia et al. 2011), and others require even-more 

contrasts (FLAIR, diffusion tensor imaging, fractional anisotropy and mean diffusivity, ...) (Morra et al. 2008), we 

use only two modalities (T2W and FLAIR). This dual-contrast method presents multiple advantages like 

decreasing the risk of corruption due to image artifacts, reducing the financial cost and increasing patient comfort.  

Figure 13 shows segmentation results obtained with our multimodal PBS method using T1w, T2w and FLAIR 

MRI on a RRMS case from a clinical study. 

 

Figure 13: Segmentation results for one RRMS cases at different axial positions. The figure shows axial for T2w, FLAIR and 
T1w, the automatic segmentation obtained with our PBS method. The overlapping voxels (TP) with the manual segmentation 
are represented in green, while the false positives (FP) are yellow and the false negatives (FN) are red. 
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1.5 Discussion	

In this first chapter, we presented our patch-based segmentation framework and some extensions that we proposed 

over the past years. After our pioneering works in (Coupe et al. 2010a, Coupe et al. 2011) for hippocampus 

segmentation, our PBS method has been the focus of many attention since the proposed method has demonstrated 

high accuracy in many applications despite its simplicity.  

In (Eskildsen et al. 2012), we proposed a new brain extraction method, called BEaST, based on PBS segmentation 

embedded within a multiresolution framework. The accuracy of the method is higher than BET (Smith 2002), 

VBM8 and similar to a multi-template method based on multiple nonlinear registrations called MAPS (Leung et 

al. 2011), while being much faster and requiring a smaller library of expert priors. Using all baseline ADNI1 

dataset, the study demonstrated that PBS segmentation is robust to pathology and consistent if the right priors are 

available. In (Manjon et al. 2014), we presented an improved version of BEaST for intracranial cavity extraction 

called NICE. The proposed improvements enabled to increase segmentation quality and reduce the computational 

load at the same time (the proposed method is able to work in approximately 4 minutes). NICE is now integrated 

in our online volBrain platform as described in Chapter 3. 

In (Romero et al. 2015), we have presented an accurate and fast PBS segmentation method, called NABS, for 

segmenting cerebral and cerebellar hemispheres and brainstem. We did not present NABS in this chapter but the 

main methodological novelties over other similar methods are the use of a multi-label block-wise label fusion 

strategy specifically designed to deal with the classification of large brain structure. We have shown that NABS 

method was able to accurately segment brain structures in healthy subjects across a wide range of ages. As 

explained later in Chapter 3, we have also provided quantitative comparisons against the ADisc method (Zhao et 

al. 2010), which represents the state-of-the-art for brain hemisphere segmentation. This comparison demonstrated 

the competitive performance of NABS. NABS is also included in our online volBrain platform. 

In (Guizard et al. 2015a), we proposed a new method to detect MS lesions using a training library containing T2w 

and FLAIR images along with manual T2w lesion masks. This adaptation of our PBS segmentation method to MS 

lesions identification with a new multi-contrast measure has proven to be highly competitive in our internal 

validation and in an independent comparison. Our method provides segmentation quality near inter-rater variability 

for MS lesion segmentation. This remains competitive compared to last deep learning methods (Brosch et al. 2016, 

Valverde et al. 2017). Finally, we integrated it into our pipeline called lesionBrain freely available via our onle 

volBrain platform.  

In (Ta et al. 2014, Giraud et al. 2016), we proposed a novel PBS method based on an optimized PatchMatch label 

fusion. Thanks to the low computational burden of this method, we investigated the potential of a new multi-

feature and multi-scale framework with late estimator aggregation. The validation of our approach on hippocampus 

segmentation applied to two different datasets shows that the proposed method produces competitive results 

compared to state-of-the-art approaches. Indeed, OPAL obtained the highest median Dice coefficient with a 

drastically reduced computation time. In addition, OPAL reaches the inter-expert reliability on both datasets. 

Therefore, OPAL provides automatic segmentations equivalent in terms of Dice coefficient to inter-expert 

segmentations in less than 2s of processing for the segmentation step.  
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In (Romero et al. 2017a), OPAL has been extended to perform cerebellum lobules segmentation. We have 

presented a new pipeline called CERES that works in a fully automatic manner and that is able to provide accurate 

results in a low computation time. We showed that CERES produces state-of-the-art results outperforming current 

cerebellum segmentation methods such as SUIT an atlas-based method (Patenaude et al. 2011), MAGeT a multi-

template method (Park et al. 2014) and RASCAL a PBS method (Weier et al. 2014). In terms of accuracy, CERES 

obtained the best results for most of the labels. More interestingly, CERES almost reaches intra-rater accuracy for 

the whole cerebellum segmentation (CERES = 0.9377 vs. human = 0.941). From the efficiency point of view, 

CERES was found to produce the best segmentation results in a very short time (5 minutes per case). Moreover, 

CERES2 (including the error correction step proposed for HIPS) won the international MICCAI challenge 

ENIGMA in 2017 with significantly better performance than several fully convolutional network methods  (Carass 

et al. 2018). Finally, we have integrated CERES as a part of our online volBrain platform.  

Similarly, in (Romero et al. 2016, Romero et al. 2017b), we applied the CERES framework to hippocampus 

subfields segmentation by extending it to multimodal case. Moreover, we added a correction error step based on 

machine learning in a way similar to (Wang et al. 2011). The proposed framework HIPS yielded to very 

competitive approach. As previously mentioned, we are now using a 3-stage framework: 1) construction of a 

subject specific training library by using precomputed non-linear registration, 2) fast PBS using OPAL and 3) error 

correction based on machine learning. We are currently integrating HIPS in our online volBrain platform.  

In addition to the extensions that we proposed, several groups proposed key contributions to improve PBS 

framework. In (Wang et al. 2013a), the authors proposed a new voting scheme to improve segmentation accuracy.  

In (Asman and Landman 2013), the authors developed a novel statistical label fusion algorithm based on an 

expectation-maximization algorithm. This enables to reduce the need for large atlas sets. In (Bai et al. 2013), the  

authors proposed a Bayesian framework to better describe PBS. Similarly, in (Wu et al. 2014), the authors proposed 

a generative probabilistic model in order to enforce the labeling consistency. In (Wang et al. 2014b), the authors 

adapted PBS to infant brain segmentation that is a challenging problem due to low contrast.  Similarly, in (Liu et 

al. 2016), PBS is adapted to segment brain of premature neonates. In (Cordier et al. 2016a), PBS is successfully 

extended to tumor segmentation. In (Wu et al. 2015b), the authors proposed to hierarchically improve the label 

fusion accuracy by dynamically changing the patch size to improve segmentation accuracy. In (Bai et al. 2015), 

the authors proposed to use augmented features such as gradient and contextual information. Similar idea has been 

applied in (Wachinger et al. 2017a) using a large range of local descriptors. Finally, in (Cordier et al. 2016b), 

patch-based framework has been used to perform multimodal image synthesis of pathological cases. 

Moreover, our PBS strategy has been applied in variety of clinical settings. We used PBS to study Parkinson’s 

disease (Haegelen et al. 2013), multiple sclerosis (Moroso et al. 2017, Planche et al. 2017), glaucoma (Tellouck et 

al. 2016), schizophrenia  (Huhtaniska et al. 2017) and Alzheimer’s disease (see Chapter 2). Other groups extended 

our PBS to other modalities such as CT (Liao et al. 2013, Wang et al. 2014a) or ultrasound (Yang et al. 2015), but 

also to other organs such as heart (Bai et al. 2013, Bai et al. 2015, Zhuang and Shen 2016), prostate (Liao et al. 

2013) or knee (Wang et al. 2013b, Shan et al. 2014). Finally, PBS method has been successfully applied to the 

problem of abdominal multi-organs segmentation (Wolz et al. 2013, Tong et al. 2015). For each of these 

applications, PBS demonstrated high robustness and efficiency compared to state-of-the-art methods. 
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Nowadays, PBS strategy is considered as a state-of-the-art method and remains competitive compared to last 

advanced machine learning methods such as DL for anatomical structure segmentation. In fact, despite the great 

success of DL in computer vision, recent brain MRI segmentation methods based on CNN (Wachinger et al. 2017b) 

did not outperform PBS methods proposed several years ago. For instance, whole brain segmentation based on 

CNN (Wachinger et al. 2017b) did not perform better than PBS proposed in (Wang and Yushkevich 2013). 

Moreover, as previously discussed, fully convolutional networks (Dolz et al. 2018, Fonov and Collins 2018) 

performed worse than CERES2 during the MICCAI 2017 international challenge ENIGMA (Carass et al. 2018).  

So far, one of the main issues of using DL in medical imaging is” the limited number of training scans with manual 

segmentations” (Wachinger et al. 2017b) while DL approaches required a huge number of training examples. One 

way to overcome this limitation is to use patch-wise DL. By splitting one training image in thousands of patches, 

the training library size is drastically increased. This is well-adapted to MS lesion segmentation since multiple 

occurrences of the target object appear in a single image. Consequently,  this explains why patch-wise cascade of 

CNN presented in (Valverde et al. 2017) is currently one of the best method for this application and outperforms 

our PBS. It has to be noted that there is a growing trend to use patchwise CNN (Ghafoorian et al. 2017, Guerrero 

et al. 2018) or FCN (Xu et al. 2017, Li et al. 2018) for white matter hyper intensities. This is assessed by the large 

majority of DL-based methods proposed during the last MS MICCAI challenge1. 

For anatomical structure segmentation, where few occurrences of the same object are present in a single image, 

such DL strategy is less efficient which explains the results obtained in (Wachinger et al. 2017b, Dolz et al. 2018, 

Fonov and Collins 2018). Nevertheless, as we studied in (Eskildsen et al. 2012, Giraud et al. 2016), one way to 

increase the training library size is to propagate manual segmentations over a large number of unlabeled scans by 

using automatic segmentation methods (Wolz et al. 2010). Indeed, as presented in Chapter 3, it is now possible to 

get access to a large number of non-labeled MRI scans thanks to open access databases. We plan to investigate 

this strategy in the future in order to address one of the current limitations of using DL for medical images. 

 

 

 

 

 

 

 

                                                             

 
1 https://portal.fli-iam.irisa.fr/msseg-challenge/overview  
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Chapter	2 Computer-Aided	Diagnosis	

Abstract: In this second chapter, we will present the adaptation of our patch-based 

segmentation framework to patch-based grading (PBG) of anatomical structures. The 

grading of the structure under consideration is achieved by estimating the nonlocal 

similarity of the subject to different training populations. Our PBG method estimates at each 

voxel a score reflecting the degree of the pathology and thus enables to perform computer-

aided diagnosis. After a general principle description, we will detail different extensions 

such as ensemble-based grading, multimodal grading or multi-feature strategy. Then, we 

will apply our PBG method to hippocampal grading and whole gray matter grading for 

Alzheimer’s disease diagnosis. Different experiments will be proposed to validate the 

developed computer-aided diagnosis tools. We will show that our PBG framework and its 

extensions have competitive performance compared to recent state-of-the-art methods. 

Moreover, we will investigate the interest of performing multimodal hippocampal subfields 

grading. Finally, we will present the prognosis performance of our method at 

presymptomatic phase using a long follow-up dataset. 
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2.1 Introduction	

Over the past decade, computer-aided diagnosis (CAD) was a rapidly growing field of research. This field aims at 

developing new image analysis techniques to assist the clinicians to interpret images. Usually based on automatic 

pipeline involving preprocessing, feature extraction and feature classification; CAD can be dedicated to pathology 

detection or to predict its evolution. For some tasks, such as the simultaneous comparison of a large number of 

images or the detection of subtle anatomical changes caused by diseases, computer is now an essential tool.   

Our works dedicated to CAD over the past five years were mainly focused on Alzheimer’s disease (AD) detection 

and prediction (Coupe et al. 2012a, Coupe et al. 2012b, Eskildsen et al. 2013, Komlagan et al. 2014, Coupé et al. 

2015, Eskildsen et al. 2015, Hett et al. 2016). AD is the most common form of dementia affecting the elderly and 

the prevalence of AD increases with age. Moreover, it is the fourth leading cause of death among adults in high-

income countries. Although numerous drug-modifying clinical trials for AD have been conducted, so far none has 

been effective (Karran and Hardy 2014). Two hypotheses could explain this lack of efficiency:  

- First, therapy was implemented too late after irreversible brain damage occurred  (Cummings et al. 2007, 

Callaway 2012). In fact, when cognitive function alterations are important enough to be used for 

diagnosis, the pathological burden is already high and therefore the brain damages are pronounced (see 

Figure 14 on the left). This highlights the need to identify the disease earlier.  

- Second, the therapeutic strategy is not appropriate and thus this requires a better understanding of disease 

pathological mechanisms.  

In both cases, finding very early biomarkers of prodromal AD, characteristic of the presymptomatic phase (before 

memory loss and cognitive decline) of the disease, is therefore crucial. The development of such biomarkers can 

make easier the design of clinical trials and thus accelerate the development of new therapies. 

 

 

Figure 14: Left: the different stages of pathology progression, from presymptomatic phase of the cognitively normal subject to 
dementia of the patient with AD. Right: typical brain alterations caused by AD (e.g., atrophy of hippocampus and entorhinal 
cortex, and lateral ventricles enlargement). 
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Research from diverse scientific disciplines has focused on the identification of the earliest prodromal signs and 

risk factors for AD (Ballard et al. 2011). Many potential biomarkers have already been studied in depth with the 

goal of achieving this task (Jack et al. 2013). For example, the presence of amyloid -β, a hallmark of AD, seems 

to occur in the very early course of the pathology, long before the typical clinical, behavioral, and social criteria 

of dementia are fully met (Frisoni et al. 2010). Amyloid-β presence can be studied using cerebrospinal fluid (CSF) 

markers or positron emission tomography (PET). The possibility to directly detect amyloid during life is very 

interesting in establishing an early diagnosis of AD – see Figure 15, where amyloid-based markers are the earliest 

ones). However, so far, the results found are heterogeneous, and therefore, the links between amyloid-β burden 

and cognitive deficits are still unknown (Aizenstein et al. 2008, Chetelat et al. 2010, Villemagne et al. 2011, 

Kantarci et al. 2012, Lehmann et al. 2013, Jung et al. 2016). Biomarkers based on MRI are also increasingly under 

investigation because they are considered sensitive to the progression of AD at the predementia stage and 

correlated with cognitive decline (Frisoni et al. 2010). Usually, these imaging biomarkers are used to detect 

abnormal patterns of atrophy caused by AD on key structures in the brain.  

The structures in the medial temporal lobe (MTL) are being studied because of their strong involvement in the 

pathogenesis of AD (Braak and Braak 1991). Recent MRI studies have also contributed to a better understanding 

the structural changes underlying AD cognitive impairment by demonstrating the association of cognitive 

difficulties with reductions in hippocampal volume (de Jong et al. 2008). Accordingly, histopathological 

investigations (Braak and Braak 1991) suggest that AD begins with the formation of neurofibrillary tangles in the 

MTL, particularly the entorhinal cortex (ENTCOR), a structure of the parahippocampal cortex. This formation 

then continues in the hippocampus (HIPP) and from there expands to other structures throughout the neocortex 

(see Figure 14 on the right). Therefore, using MTL structure atrophy as early imaging biomarkers is considered a 

promising way to follow the progression of AD (Frisoni et al. 2010), especially since changes in these structures 

are closely related to modifications in the subject’s cognitive performance.  

 

 
Figure 15: Hypothetical model of Alzheimer’s disease biomarkers proposed by Jack et al. (2013). Progression of different 
biomarkers during the evolution of the  pathology. 
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However, the automatic extraction of these MTL structures is challenging, especially in the case of the ENTCOR 

(Du et al. 2001). Moreover, the inter-subject variability of brain anatomy tends to limit the performance of AD 

detection methods that use only volumetric approaches (Wolz et al. 2011b, Coupe et al. 2012a). These two aspects 

limit the ability of volume-based imaging biomarkers that use MTL structures to characterize the earliest stages of 

AD as well as to develop efficient prevention or early intervention strategies. 

To overcome limitations of volume-based imaging biomarkers, we proposed a new patch-based grading (PBG) 

method providing a better characterization of structure atrophy (Coupe et al. 2012a, Coupe et al. 2012b). Our PBG 

method estimates at each voxel a score reflecting the degree of the pathology. The grading of the structure under 

consideration is achieved by estimating the nonlocal similarity of the subject to different training populations (see 

Figure 16). Because it uses a nonlocal framework, our PBG framework addresses the problem of inter-subject 

variability nicely by enabling a one-to-many mapping between the subject’s anatomy and those of the training 

templates. Moreover, by employing the patch-based comparison principle, our PBG is able to detect subtle changes 

caused by the disease. 

In this chapter, we will introduce first the principle of our PBG method. Afterwards, we will present its application 

to hippocampus as well as its extension to whole gray matter (GM) grading (Komlagan et al. 2014) and to 

multimodal grading based on MRI and diffusion MRI (Hett et al. 2016, Hett et al. 2018). Moreover, we will discuss 

the classification results obtained with our PBG for different stage of the pathology. First, we will present AD 

diagnosis performance of our PBG compared to usual biomarkers. Second, we will show AD prognosis accuracy 

of our PBG at early stage of AD (i.e., on subjects with MCI few years before AD diagnosis). To this end, we will 

compare its performance with recent DL methods. Finally, we will study the ability of our PBG to detect subjects 

with high risk to develop AD at the presymptomatic stage (i.e., on cognitively normal subjects without clinical 

symptoms who will develop AD several years later).  
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2.2 Methods	

2.2.1 From	Segmentation	to	Grading	

In (Coupe et al. 2012a, Coupe et al. 2012b), we proposed to extend our PBS method to efficiently aggregate clinical 

status – such as Cognitively Normal (CN) or AD – to estimate the proximity in the nonlocal means sense of each 

voxel compared to both populations constituting the training library (see Figure 16). To achieve this goal, we 

introduce the new concept of PBG that reflects the similarity of the patch surrounding the voxel under study with 

all the patches present in both training populations. In this way, the neighborhood information is used to robustly 

drive the search of anatomical patterns that are specific to a given subset of the training library. When the training 

populations include data from subsets of subjects in different clinical states, this approach provides an estimation 

of the grade (i.e., degree of closeness to one group or another) for each voxel: 

𝑔(𝑥#) =
𝑤(𝑥#, 𝑥6,%)𝑝6%∈4

8
69:

𝑤(𝑥#, 𝑥6,%)%∈4
8
69:

 
(Eq. 8) 

where ps is the clinical status of the training subject s. In our case, ps=-1 was used for AD status and ps=1 for CN 

status. A negative grading value (respectively, a positive grading value) g(xi) indicates that the neighborhood 

surrounding xi is more characteristic of AD than CN (respectively, of CN than AD). The absolute value |g(xi)| 

provides the confidence given to the grade estimation. When |g(xi)| is close to zero, the method indicates that the 

patch under study is similarly present in both populations and thus is not specific to one of the compared 

populations and provides little discriminatory information. When |g(xi)| is close to 1, the method detects a high 

proximity of the patch under study with the patches present in one of the training populations and not in the other. 

It has to be noted that other variables can be used in place of ps such as patient’s age to perform automatic age 

estimation or clinical scores to perform score prediction. In (Coupé et al. 2015), we showed that patch-based 

estimation of the Mini Mental State Evaluation (MMSE) (Folstein et al. 1975) provided more relevant information 

than binary pathological status ps.  

Finally, for each subject, an average grading value is computed over all voxels in the estimated segmentation of 

the structure of interest. Since the grading and the segmentation involve the same patch comparison step, the 

structures are extracted at the same time that their grade is estimated. Once all the subjects are processed using our 

PBG, the final step consisted in subject classification based on the extracted features (see Figure 17). During our 

works on CAD, we used different classifiers such as Linear Discriminant Analysis (LDA), Support Vector 

Machine (SVM) or Random Forest. 
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Figure 16: Global overview of the proposed patch-based grading. For each patch of the subject under study a comparison is 
performed with all the patches in the training subjects of both populations CN and AD (some examples of similar patches are 
displayed). Purple arrows symbolize the similarity between anatomical patterns. Dark purple indicates high anatomical 
patterns similarity and light purple indicates low similarity. For the anatomical pattern under study in this example more 
similar anatomical patterns are found in AD population and their weights (similarities) are higher. In the grading map, when 
the voxel color is blue, this indicates that the anatomical pattern surrounding this voxel is more similar to anatomical patterns 
found in the CN training subjects and thus that the local anatomy is closer to anatomies of healthy subjects (i.e. CN-like 
anatomical pattern). When the voxel color is green, this indicates that the anatomical pattern is equally similar to anatomical 
pattern found in the CN and the AD training subjects. Finally, when the voxel color is red, this indicates that the local anatomy 
contains alterations typical of the AD population (i.e. AD-like anatomical pattern) and thus the presence of neurodegeneration.  

 

The grading concept relies on the same assumptions used by the nonlocal PBS, but it also performs an additive 

one. In fact, in grading, we consider that, in average, the patches extracted from an MRI of a new patient with AD 

will be more similar (in the nonlocal means sense) to patches extracted from training MRI of patients with AD 

than to patches extracted from training MRI of healthy subjects. To be usable, this approach has to be applied on 

a disease that has an impact on the patient’s anatomy that is somehow detectable in MRI, where MRI needs only 

be sensitive to the change (MRI does not need to be specific). In addition, the grading study can be limited to key 

structures we know to be impacted by the particular disease. As a consequence, in our first studies on AD, we 

decided to apply grading on ENTCOR and HIPP two structures impacted early in the disease progression (Coupe 

et al. 2012a, Coupe et al. 2012b). However, this concept can be applied to other structures and modalities, and can 

be used to detect other diseases. In (Komlagan et al. 2014), we proposed to perform PBG over the whole GM. In 

(Hett et al. 2016), we applied our PBG to diffusion MRI. Finally, in (Hett et al. 2018), we proposed a multimodal 

PBG method based on MRI and diffusion MRI to better characterize HIPP subfields alterations. These extensions 

will be described in the next section. 
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Figure 17: Example of our PBG prognosis workflow. First, PBG is used to estimate the grading maps of the test subject (an 
MCI subject in this example) using the training AD and CN subjects. The grade is estimated over the considered structure of 
interest, the HIPP in this example. Then, a classifier is trained using the HIPP grading values obtained on training AD and 
CN subjects. Finally, the test MCI subject is classified to obtain the final prognosis (i.e., stable or progressive). 

2.3 Extensions	

2.3.1 Whole	Gray	Matter	Grading		

In (Komlagan et al. 2014), we proposed to extend our PBG to the entire gray matter (GM). Indeed, the a priori 

definition of a region of interest may discard other possible informative anatomical regions. The choice between 

i) the noise reduction by using restricted areas that we know to be impacted by AD (knowledge-driven strategy) 

and ii) the use of all available information (data-driven strategy) is still an open question. Therefore, to investigate 

data-driven strategy, in (Komlagan et al. 2014), we proposed to grade the whole GM and to automatically perform 

structure selection. Moreover, to be more robust to intensity normalization discrepancies between MRI, 

probabilities were used in place of intensities during patch comparison. Finally, we presented an ensemble learning 

method to efficiently fuse the obtained grading values. Since the scoring/grading value, assigned to each voxel of 

the GM, estimates the proximity to AD and CN, it can be viewed as the posterior probability of a weak classifier. 

Combined together, these weak classifiers form an ensemble that can be used to classify subjects (Liu et al. 2012). 

As noticed in (Frisoni et al. 2010), it appears that AD-related brain alterations are mainly a region-by-region 

process. Hence, we proposed to create sub-ensembles of these weak classifiers using an atlas. Each of these sub-

ensembles corresponds to an anatomical structure. At the end, to discard brain areas that may not be related to AD, 

we proposed to select the most relevant anatomical sub-ensembles using a Sparse Logistic Regression (SLR). The 

framework of the proposed method is summarized in Figure 18 and detailed in the following. 
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Figure 18: Anatomically constrained weak classifier fusion for whole GM grading. First, whole GM grading is estimated for 
all MCI subjects (progressive MCI and stable MCI) using CN and AD training library. Then, the Automatic Anatomical 
Labeling atlas is used to fuse local weak classifiers into anatomical sub-ensembles. For each sub-ensemble, the effect of age 
is corrected using the training CN. Afterwards, the training MCI images are used to perform sub-ensemble selection using a 
SLR. Finally, SVM classifier is trained using the selected sub-ensembles. At the end, the test MCI image is classified to obtained 
the final prognosis.  

First, the grading method is applied to all the MCI subjects – progressive MCI (pMCI) and stable MCI (sMCI) – 

to obtain GM maps. In the proposed method, the grade of each GM voxel is calculated using probability of GM 

tissue instead of voxel intensities too be more robust to multi-site MR image acquisition. Second, the grading 

values obtained over the whole GM are fused into anatomical sub-ensembles to form intermediate classifiers. After 

the grading step, the dimensionality of the weak classifiers space is too high to be directly used for classification. 

A straightforward solution is to fuse all the weak classifiers into a global classifier (Liu et al. 2012). However, this 

may lead to a sub-optimal result since local relevant information may be lost in a high level global fusion. 

Additionally, as noticed in (Frisoni et al. 2010), AD affects specific regions of the brain in a typical progressive 

manner. Therefore, we proposed to group the weak classifiers into anatomical sub-ensembles using an atlas-based 

strategy. The sub-ensembles were constructed by an un-weighted vote of the weak classifiers included in each 

anatomical area. In (Komlagan et al. 2014), the whole GM was divided into the 116 segmented anatomical regions 

corresponding to the Automatic Anatomical Labeling atlas (Tzourio-Mazoyer et al. 2002). Thus, the grades are 

averaged within each anatomical structure and their mean values considered as grading values of the 116 

anatomical structures.  

4

Fig. 1. Overview of the proposed method.

intensities. The resulting grading value indicates if the considered anatomical
pattern is typical of AD (AD-like) or CN (CN-like) populations. Such values
can be viewed as the posterior probabilities of a weak classifier. In the proposed
method, the grade of each GM voxel is calculated using probability of GM tis-
sue instead of voxel intensities. By using GM tissue probability, our method is
more robust to multi-site MR image acquisition. In addition, in our approach
the grading is performed on the whole GM, and not only in the hippocampal
area. This prevents discarding any relevant information that could be found in
other brain regions.

2.4 Weak Classifier Fusion into Anatomical Sub-ensembles

After the grading step, the dimensionality of the weak classifiers space is too
high to be directly used for classification. A straightforward solution is to fuse
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Third, SLR feature selection was applied to select and weight the most relevant intermediate classifiers. As shown 

in (Jack et al. 2013), anatomical regions may not be similarly impacted by the progression from MCI stage to the 

moderate stage of AD. Therefore, using all the intermediate classifiers could be suboptimal since none impacted 

structures could be included. Moreover, beyond classification efficiency reasons and for clinical considerations, it 

could also be interesting to know the most impacted brain regions. In (Komlagan et al. 2014), we automatically 

selected the most relevant anatomical sub-ensembles by using SLR. During our experiments, the structures 

selected with the highest weights were the middle temporal lobe, the left hippocampus and the middle cingulum. 

Finally, the selected intermediate classifiers were used to train a global linear SVM classifier.  

2.3.2 Multimodal	Grading	of	Hippocampal	Subfields	

PBG method presented in previous sections was firstly designed to capture structural alterations in T1w MRI. 

Although anatomical MRI is a valuable imaging technique to measure structural modifications, such modality is 

not able to capture microstructural degradation. The microstructural modifications caused by AD are considered 

to occur before the atrophy measured by anatomical MRI. Therefore, diffusion MRI appears as a good potential 

candidate to detect the earliest sign of AD. Consequently, we recently proposed to apply our PBG on Diffusion 

Tensor Imaging (DTI) to detect microstructural modifications (Hett et al., 2016). In a first study, we showed the 

efficiency of HIPP grading based on mean diffusivity (MD) to improve the classification of the early stages of 

AD. Afterwards, we investigated the use of multimodal PBG (MPBG) on hippocampus subfields (Hett et al. 2018). 

As mentioned in Chapter 1, the hippocampus has been one of the most studied structures for automatic detection 

of AD. However, this structure is complex and not homogeneous. HIPP is subdivided into several subfields each 

one having distinct characteristics. Several MRI studies demonstrated that subfields are impacted differently 

according to AD stages (Apostolova et al. 2006, Kerchner et al. 2010, Kerchner et al. 2012, La Joie et al. 2013). 

These results indicate that analysis of HIPP alterations at finer scale could provide better tool to study AD 

progression. Therefore, in (Hett et al. 2018), we proposed an innovative MPBG framework to fuse PBG extracted 

from different MRI modalities (i.e., T1w MRI and diffusion MRI) and we decided to apply this MPBG framework 

over hippocampal subfields obtained with HIPS (see Figure 19). This multimodal fusion strategy is detailed in the 

following.  

First, for each modality a training library is built with CN and AD subjects. Then, a grading map is estimated for 

each considered modality. A straightforward strategy would be to average the obtained grading maps. However, 

the quality of the grading estimation is not the same for all the modalities all the locations. Thus, the grading value 

for a modality should be weighted according to the confidence of the local grading value. In (Hett et al. 2018), we 

proposed an novel framework to fuse several grading maps obtained from M different modalities. Our fusion 

strategy is based on the fact that estimated grading maps from different modalities may not have the same 

relevance, but more importantly all local weak classifiers in these maps do not have the same quality. Hence, at 

each location, we propose to combine weak classifiers derived from each modality according to a confidence 

criterion. Therefore, the grading value of a grading map of the modality m, denoted gm, at voxel xi, is weighted by 

𝛼T 𝑥# = 𝑤T(𝑥#, 𝑥6,%)+F,. 	that reflects the confidence of gm as shown in (Sutour et al. 2014). Thus, each grading 

map provides a weak classifier at each voxel location that is weighted with its degree of confidence 𝛼T 𝑥# .  
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Figure 19: Multimodal PBG on hippocampal subfields. At left, the input data with both modalities: T1w images registered into 
the MNI space and MD maps registered to the T1w images. At the middle and from top to bottom: hippocampal subfields 
segmentation on T1w image and multimodal grading are computed. At right, features of the considered subfield biomarkers 
for the 4 studied groups AD, early MCI, late MCI and AD. From top to bottom, the features are the volumes, the multimodal 
grading values and the MD values.  

At the end, the final grading value gM resulting from our adaptive fusion strategy is given by: 

𝑔J(𝑥#) =
𝛼T 𝑥# 𝑔T(𝑥#)T∈U

𝛼T 𝑥#T∈U
 

(Eq. 9) 

The proposed fusion framework is spatially adaptive and take advantage of having access to a local degree of 

confidence 𝛼T 𝑥#  for each grading map m. In our previous works on multimodal segmentation (Guizard et al. 

2015a), we used multimodal weight wM (see Eq. 6) that estimates similarity over all the modalities at the same 

time. Here, the grading maps are estimated independently for each modality and fused a posteriori according to a 

local confidence criterion.   

2.3.3 Multifeature	Grading	

As details in previous the chapter on PBS, we demonstrated that using edge detection filters can improve patch-

based segmentation (Giraud et al. 2016). This result highlights that patches comparison can be improved by 

estimating patterns similarity on derivative features. Moreover, it is has been recently showed that HIPP texture 

plays a crucial role for the detection of early stages of AD (Sørensen et al. 2017). Therefore, in (Hett et al. 2017), 

we proposed to perform patch-based grading on multiple texture maps obtained with Gabor filters. Gabor filters 

were designed to detect salient features at specific resolution and direction. These filters were widely used for 

texture classification (Manjunath and Ma 1996). Consequently, the proposed strategy aims at the same time to 

improve the comparison of patches and to capture HIPP texture modifications (see Figure 20). This method is 

detailed in the following. 

|T | = 76

K = 160
5⇥5⇥5
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Figure 20: Proposed multifeature PBG framework.: from left to right, the T1w input data, the texture maps for different 
directions of Gabor filters, the intermediate texture-based grading maps for each direction, the final fused grading map and 
the histogram of weak classifiers.  

First, the texture maps are estimated using 3D Gabor filters. In the proposed pipeline, the preprocessed MRI of the 

subject under study is filtered with a bank of Gabor filters to obtain multiple texture maps. It has to be noted that 

all the training library is also filtered with the same filters bank. Second, we applied our fast PBG based on OPAL 

on each texture maps to obtained multiple texture-based grading maps. Afterwards, we used the locally adaptive 

fusion scheme presented in previous subsection for MPBG (see Eq. 9) to fuse the multiple texture-based grading 

maps. Finally, we performed weak classifiers aggregation. In our initial works (Coupe et al. 2012a, Coupe et al. 

2012b, Komlagan et al. 2014), the weak classifiers aggregation was performed using a simple averaging as 

explained previously. While using a strategy based on averaging enables to be robust to noise, this may remove 

relevant information on weak classifiers distribution. In (Hett et al. 2017), we proposed to approximate weak 

classifiers distributions using  histograms. Consequently, we classified histogram bins with a SVM instead of 

classifying mean grading value over the segmentation mask (see Figure 20).  
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2.4 Results	

In this section, we will present the main results obtained by our PBG for automatic AD diagnosis (Coupe et al. 

2012a), AD prognosis at MCI stage (Coupe et al. 2012b, Eskildsen et al. 2013, Eskildsen et al. 2015, Hett et al. 

2018) and at presymptomatic stage (Coupé et al. 2015). First, we will show the performance obtained by HIPP 

grading compared to HIPP volume – currently considered as the gold standard MRI-based biomarker for AD. 

Then, we will compare our PBG framework and the proposed extensions with usual biomarkers, but also with 

recent state-of-the-art methods. Finally, we will evaluate the performance of our PBG for predicting AD at 

presymptomatic stage using a population-based database with a very long follow-up.  

2.4.1 Automatic	AD	Diagnosis	

Hippocampal atrophy has long been recognized as an early feature of the degenerative process in AD (Ball et al. 

1985). Reductions in hippocampal volume appear to correspond to early memory decline (De Leon et al. 1989). 

While sensitive, hippocampal degeneration is involved in other dementias, such as vascular dementia (Gainotti et 

al. 2004), and is known to be part of non-pathological brain aging (Driscoll et al. 2003). Thus, volumetric 

measurements of the HIPP are limited in their ability to predict the progression of AD (Chupin et al. 2009, Wolz 

et al. 2011b, Clerx et al. 2013). Evidence suggests that the nature of degeneration in the HIPP and surrounding 

structures, such as the ENTCOR and parahippocampal gyrus, is different in AD compared to other dementias and 

different from the changes occurring during normal aging (Devanand et al. 2012). In (Coupe et al. 2012a, Coupe 

et al. 2012b), we investigated the use of HIPP grading and its surrounding structures in the medial temporal lobe 

to perform automatic AD diagnosis.  

Data used in the main majority of our works dedicated to CAD were obtained from the ADNI database 

(adni.loni.ucla.edu). The ADNI was launched in 2003 by the National Institute on Aging, the National Institute of 

Biomedical Imaging and Bioengineering, the Food and Drug Administration, private pharmaceutical companies, 

and nonprofit organizations as a $60 million, five-year public–private partnership. The primary goal of the ADNI 

has been to test whether serial MRI, PET, other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of MCI and early AD. Determination of sensitive and 

specific markers of very early AD progression is intended to aid researchers and clinicians in developing new 

treatments and monitoring their effectiveness, as well as lessen the time and cost of clinical trials.  

In this section, the following results were obtained on the 834 baseline scans at 1.5T of the ADNI1 database. The 

scans were divided into four populations, with an MCI subject considered progressive if he or she converted to 

AD as of July 2011. This population construction resulted in the four groups composing our dataset: 231 CN, 

238 sable MCI (sMCI), 167 progressive MCI (pMCI), and 198 AD. The four constructed groups are the same as 

those used in (Wolz et al. 2011b). Demographic details of the dataset can be found in Table 8. 
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Table 8: Demographic details of the ADNI1 dataset used in our experiments. 
Group Population size % Male Age ± SD MMSE ± SD 

CN 231 52% 76.0 ± 5.0 29.1 ± 0.9 

sMCI 238 67% 74.9 ± 7.7 27.2 ± 2.5 

pMCI 167 60% 74.5 ± 7.2 26.4 ± 2.0 

AD 198 50% 75.6 ± 7.7 22.8 ± 2.9 

Left upper part of Table 9 presents the classification accuracy for AD vs. CN obtained by the proposed imaging 

biomarkers using LDA as classifier. First, these results show that grading-based biomarkers outperform volume-

based biomarkers. Moreover, we can see that ENTCOR-based biomarkers are less efficient than HIPP-based 

biomarkers. This result was unexpected given that the EC is believed to be affected before the HC in the evolution 

of the pathology (Frisoni et al. 2010) and thus should be more useful for AD diagnosis. The high intersubject 

variability related to EC seems to adversely affect the usefulness of this biomarker for the detection of AD. Finally, 

the combination of HIPP and ENTCOR did not really change results from those obtained with the use of HIPP 

grade only. In order to estimate if the difference between the classification accuracy of biomarkers was significant, 

we compared the classification results of grading and structure volumes. By using a confidence interval at 95%, 

all the biomarkers have significantly different accuracy. This result demonstrates the competitive performance of 

HIPP patch-based grading compared to HIPP volume – considered as the current MRI-based gold standard 

biomarkers for AD. 

Left lower part of Table 9 presents a comparison of our PBG with state-of-the-art methods such as HIPP volume, 

cortical thickness measurements (CTH) and tensor-based methods (TBM) features (Wolz et al. 2011b) evaluayed 

on the same populations. For AD vs. CN, the results obtained with our PBG were similar (91% compared to 89%) 

to those from the combination of the four methods reported in (Wolz et al. 2011b). Our PBG obtained better results 

than HIPP volume (Lotjonen et al. 2011), manifold-based learning (Wolz et al. 2011a), CTH (Lerch and Evans 

2005), and method based on TBM features (Koikkalainen et al. 2011), although the results from TBM and our 

PBG were close. The results obtained for HIPP volumes using our PBS (Coupe et al. 2011) and multi-template 

nonlinear warping (Lotjonen et al. 2011) were also similar (83% compared to 81%). These findings indicate that 

the both approaches provide similar segmentation accuracies while PBS is much faster especially when using 

OPAL.   

2.4.2 Automatic	AD	Prognosis	at	MCI	Stage	

2.4.2.1 Monomodal	Hippocampal	Grading	

From a clinical perspective, the ability to predict AD (i.e., identifying pMCI vs. sMCI) is more crucial than being 

able to detect AD (i.e., AD vs. CN). However, prediction is more challenging because the anatomical changes to 

be identified are subtler at the prodromal phase of the disease and the heterogeneous MCI group includes a mix of 

individuals, some who will convert to AD and others who will not. As done in previous section, in (Coupe et al. 

2012b) we studied the performance of our PBG for AD prediction compared to usual biomarkers on the same 

populations (Wolz et al. 2011b). The classification results obtained during the comparison are reported in the right 

part of Table 9. 
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Table 9: Comparison of classification results on ADNI1 between our PBG and methods studied in (Wolz et al. 2011b). Results 
shown are obtained using 100 x Leave-N-Out CV. The presented results are the classification accuracy (acc) in %, the 
sensitivity (sen) in % and the specificity (spe) in %.  Best result for each comparison is in bold and underline. 

Method AD vs. CN 
acc%/sen%/spe% 

pMCI vs. sMCI 
acc%/sen%/spe% 

PBG (Coupe et al. 2012b)   

HIPP Volume (based on PBS) 83 / 80 / 85 66 / 65 / 67 

ENTCOR Volume (based on PBS) 73 / 71 / 75 63 / 63 / 63 
HIPP Grading 90 / 86 / 93 74 / 73 / 74 
HIPP-ENTCOR Volume 80 / 80 / 81 67 / 66 / 68 

HIPP-ENTCOR Grading 91 / 87 / 94 73 / 72 / 74 

Multi-Method (Wolz et al. 2011b)   

HIPP Volume (based on nonlinear registration) 81 / 81 / 79 65 / 63 / 67 
Manifold-based Learning 85 / 87 / 83 65 / 64 / 66 
Cortical Thickness 81 / 89 / 71 56 / 63 / 45 
Tensor-based method 87 / 90 / 84 64 / 65 / 62 
All combined 89 / 93 / 85 68 / 67 / 69 

This comparison shows that results obtained by our PBG were clearly better than those from all the methods 

compared in (Wolz et al. 2011b) as well as their combination (74% compared to 68%). This outcome highlights 

the potential of our PBG for AD prediction by enabling the detection of subtle anatomical changes caused by AD 

at the early stages of the pathology. Although the prediction rate obtained is not yet suitable for clinical use, the 

recent progress of MRI-based biomarkers on this challenging classification problem is encouraging. Before PBG 

publication, the highest success rate was only around 56% on the ADNI database using advanced VBM-like 

analysis (Davatzikos et al. 2011). It is also encouraging to note that the improvements brought by our PBG were 

not obtained at the expense of computational complexity since PBG requires only linear registration and its 

computational time is few seconds per subject using OPAL implementation. 

2.4.2.2 Monomodal	Grading	Extensions	

Since its introduction, PBG has been intensively studied and several improvements have been proposed. First, in 

(Tong et al. 2014), the patch comparison was achieved using multiple instance learning (MIL). Second, in (Liu et 

al. 2012, Tong et al. 2017a), the weights were estimated using a sparse-based minimization and the grading is 

extended to the entire brain. Finally, as already mentioned, we proposed multifeature grading using texture maps 

(Hett et al. 2017) and whole GM grading using ensemble grading (Komlagan et al. 2014). Table 10 presents the 

comparison of all these patch-based grading strategies. Moreover, in this manuscript I decided to add a recent DL 

method (Suk et al. 2017). First, we compared our different HIPP grading methods (Coupe et al. 2012b, Hett et al. 

2017) with other grading methods focused on HIPP (see the upper part of Table 10). This comparison shows that 

our multifeature grading provides the best results among HIPP grading methods and that the original HIPP grading 

is still competitive for sMCI vs. pMCI several years after its publication compared to MIL (Tong et al. 2014) 

grading or recent sparse-based grading (Tong et al. 2017a). These results also demonstrate that texture maps 

provide valuable information especially for AD vs. CN.  
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Table 10: Comparison with state-of-the-art methods on the ADNI1 dataset. All the results are expressed in accuracy. The 
underlined names are the methods that we proposed. The best results are in bold and underlined. 

Method Registration Features AD vs. CN 
ACC in % 

sMCI vs. pMCI 
ACC in % 

 

Hippocampus 

Original Grading (Coupe et al. 2012b) Affine Intensity 88.0 71.0 

MIL Grading (Tong et al. 2014) Affine Intensity 89.0 70.0 

Sparse-based Grading (Tong et al. 2017a) Affine Intensity - 66.0 

Sparse-based Grading (Tong et al. 2017a) Non-linear Intensity - 69.0 

Multifeature Grading (Hett et al. 2017) Affine Texture 91.3 71.1 
 

Whole brain  

Ensemble Grading (Komlagan et al. 2014) Nonlinear GM map - 75.6 

Sparse-based Grading (Tong et al. 2017a) Affine Intensity - 67.0 

Sparse-based Grading (Tong et al. 2017a) Non-linear Intensity - 75.0 

Sparse Ensemble Grading (Liu et al. 2012) Non-linear GM map 90.8 - 

Deep Ensemble Learning (Suk et al. 2017) Non-linear GM map 91.0 74.8 

At the lower part of Table 10, we compare the performance of our GM ensemble grading method based on the 

whole GM (Komlagan et al. 2014) with methods using also the whole brain. Results show that our whole GM 

grading provides the best result for sMCI vs. pMCI, better results than a last advanced DL method (Suk et al. 

2017). In addition, for AD vs. CN, we can note that our multifeature HIPP grading method based on a simple 

affine registration obtained similar results than more complicated methods using whole brain and requiring 

nonlinear registration (Liu et al. 2012, Suk et al. 2017). Finally, for sMCI vs. pMCI, the use of the whole brain 

provides better results indicating that relevant information is present outside the HIPP. 

2.4.2.3 Multimodal	Hippocampal	Grading	

As previously mentioned, beside anatomical MRI, the use of diffusion MRI has been proposed to detect the first 

signs of microstructure alterations caused by AD. Several studies used DTI to detect modifications of diffusion 

parameters into the whole white matter (O'Dwyer et al. 2012, Dyrba et al. 2015). Others studies showed 

modifications of diffusion parameters into specific structures such as corpus callosum (Nir et al. 2013, Wang et al. 

2015), fornix (Liu et al. 2011), cingulum (Nir et al. 2013) and hippocampus (Rose et al. 2008). More advanced 

diffusion MRI studies using have been proposed to extract features describing axonal fibers alterations (Liu et al. 

2011, Wee et al. 2012, Prasad et al. 2015). Finally, it has been shown that HIPP mean diffusivity (MD) is correlated 

to pathology progression and thus could be used as an efficient biomarker of AD (Müller et al. 2005, Fellgiebel et 

al. 2006, Fellgiebel and Yakushev 2011). Consequently, in (Hett et al. 2018), we proposed to study HIPP 

alterations occurring at different stages of impairment severity using structural MRI and diffusion MRI modalities. 

Data used in (Hett et al. 2018) were obtained from the ADNI2 dataset that provides anatomical MRI and diffusion 

MRI scans (see Table 11). This dataset includes AD, CN and MCI divided into 2 stages:  early MCI (eMCI) and 

late MCI (lMCI). To evaluate the performance our multimodal patch-based grading, we first compared it with 

several biomarkers over the whole HIPP. 



 

52 

Table 11: Description of the multimodal (structural MRI + diffusion MRI) ADNI2 dataset used in (Hett et al. 2018) 

Group Population size Gender (F/M) Age ± SD 

CN 52 29/23 72.6 ± 5.9 

eMCI 65 39/26 73.0 ± 7.7 

lMCI 34 21/13 73.5 ± 6.6 

AD 38 20/18 73.8 ± 8.7 

Results of this comparison are represented in Table 12. First, for CN vs. AD, our PBG on T1w was the modality 

given the best results with an AUC of 93.1%. The performance of PBG based on T1w could be explained by the 

higher resolution of T1w compared to DTI allowing to better capture structure alterations. On the other hand, these 

results show that PBG based on MD was the best for the eMCI vs. lMCI with an AUC of 66.7%. Therefore, at 

early stages of AD, microstructural information provided by DTI seems to be useful. Finally, our novel multimodal 

PBG provided the best results for eMCI vs. lMCI with an AUC of 66.7% and the second best result for AD vs. CN 

with an AUC 92.2%. This demonstrates the interest of using MPBG in distinguishing the different MCI stages.  

2.4.2.4 Multimodal	Hippocampal	Subfield	Grading	

Although majority of proposed biomarkers to detect AD are based on the whole HIPP, this structure is complex 

and not homogeneous. Different HIPP subfields segmentation protocols have been proposed (Yushkevich et al. 

2015a). However, as already mentioned in Chapter 2, HIPP can mainly be divided into the subiculum, the cornu 

ammonis (CA1/2/3/4), and the dentrate gyrus (DG) (Winterburn et al. 2013). The CA1 subfield is the biggest area 

in the hippocampus. It is composed by different layers called the stratum radiatum (SR), the stratum lacunosum 

(SL), the stratum molecular (SM) and the stratum pyramidale (SP). Several MRI studies demonstrated that 

subfields are impacted differently according to AD stages. In (La Joie et al. 2013), the authors showed that the 

CA1 is the most impacted subfield in advanced AD. In (Apostolova et al. 2006), the authors showed that CA1 and 

subiculum are more impacted than the others subfields in late MCI and advanced AD stages. A study based on 

ultra-high resolution MRI at 7T showed that CA1SR-L-M atrophy appears when CA1SP or global HIPP atrophy 

are not detectable yet  that demonstrates the specific atrophy of CA1SR-L-M in first stage of AD (Kerchner et al. 

2012). Moreover, a study based on animal model showed that the earliest affected hippocampal region is the 

subiculum (Trujillo-Estrada et al. 2014). Therefore, in (Hett et al. 2018), we proposed to perform AD prognosis 

based on MPBG of hippocampal subfields. The hippocampal subfields were segmented with our PBS method 

called HIPS described in the previous chapter (Romero et al. 2017b).  

Table 12: Comparison of the considered hippocampal biomarkers on the multimodal ADNI2 dataset. Results shown are 
obtained using Leave-One-Out CV and a LDA as classifier. The presented results are the Area Under the curve (AUC) in %. 
Best result for each comparison is in bold and underline. 

Method AD vs. CN 
AUC% 

eMCI vs. lMCI 
AUC% 

HIPP Volume 86.7 55.2 
HIPP MD 83.0 49.2 
HIPP T1w Grading (Coupe et al. 2012b) 93.1 64.9 
HIPP MD Grading (Hett et al. 2016) 89.5 66.7 
HIPP MPBG (Hett et al. 2018) 92.2 66.7 
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Figure 21 shows the classification results for CN vs. AD (A) and eMCI vs. lMCI (B). For CN vs. AD, the subfield 

providing the most discriminant volume was the CA1SR-L-M with an AUC of 86.0%. Moreover, the subfield 

providing the most discriminant mean MD was the subiculum with an AUC of 88.1%. Mean MD of subiculum 

was the only non-grading biomarker performing better results than whole hippocampus volume – considered as 

the current gold standard. The subfields providing the most discriminant MPBG were the CA1SP, CA1SR-L-M 

and the subiculum with an AUC of 91.7%. All the MPBG subfields biomarkers performed better than global HIPP 

volume (see horizontal red dotted line in Figure 21.A). However, for CN vs. AD, none of the MPBG subfield 

biomarkers outperformed MPBG estimated over the whole HIPP (horizontal bleu dotted line) that obtained an 

AUC of 92.2% (see Table 12). It seems that for advanced AD stages, when brain alterations are important, finer 

analysis at subfield scale does not bring any additional information. 

On the other hand, for eMCI vs. lMCI comparison, the subiculum provides the best results for all considered 

biomarkers (i.e., volume, mean MD ad MPBG), better than global volume or global MPBG estimated over the 

whole HIPP (HIPP MPBG obtained 66.7%, see Table 12). As shown in Figure 21.B, subiculum obtains an AUC 

of 66.0% for the volume, 63.0% for mean MD, and 72.0% for MPBG. Interestingly, all three biomarkers 

demonstrate the efficiency of the subiculum in distinguishing between early and late stages of MCI.  

To sum up, our volumetric study showed that CA1SR-L-M presents the strongest atrophy at the advanced stage of 

AD. However, for the early stages of the pathology, our comparison showed that the subiculum is clearly the most 

discriminant structure. It is important to note that these results are line with previous studies that analyzed 

hippocampal subfield alteration caused by AD.  

First, at advanced stages of AD, several studies showed that the CA1 and the subiculum were the two subfields 

impacted by the strongest atrophy (Apostolova et al. 2006, La Joie et al. 2013, Carlesimo et al. 2015). Furthermore, 

studies using ultra-high field at 7T indicated that CA1SR-L-M is the subfield impacted by the most significant 

atrophy at an advanced stage of the pathology (Kerchner et al. 2010, Kerchner et al. 2012).  

Second, at early stages of AD, studies based on animal model demonstrated that subiculum is the earliest 

hippocampal region affected by AD (Trujillo-Estrada et al. 2014). Moreover, as already mentioned, post-mortem 

studies showed that the hippocampal degeneration in early stages of AD is not uniform. After ENTCOR alterations, 

the pathology spreads to the subiculum, CA1SR-L-M, CA2-3 and finally the CA4 and DG subfields (Braak and 

Braak 1997, Braak et al. 2006). These observations are consistent with our results obtained using two different 

MRI modalities and three different types of biomarker. 
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Figure 21:  Comparison of multimodal biomarkers over hippocampal subfields in term of AUC. Results of subfields are grouped 
by biomarker (i.e., volume, mean MD and MPBG). Moreover, two comparisons are proposed, A: CN versus AD and B: eMCI 
versus lMCI. Finally, horizontal dotted lines represent results obtained over the entire HIPP for volume in red and MPBG in 
bleu. 

2.4.3 AD	prognosis	at	presymptomatic	stage	

While structural imaging markers based on MRI are considered sensitive enough to detect very early stage of 

disease (Frisoni et al. 2010, Cuingnet et al. 2011, Braskie and Thompson 2014), the current model assumes that 

their modification occurs after the apparition of the first symptoms (Frisoni et al. 2010, Jack et al. 2013) (see Figure 

15). This assumption mainly comes from observations based on MRI-based studies were used datasets had a 

relatively short follow-up period before diagnosis (around 3-5 years). However, it is now well admitted that 

pathological changes to the brain occur decades before the first symptoms appear in AD. Thus, efforts to identify 

subjects in the prodromal phase of AD have recently shifted to the presymptomatic phase of the disease. In this 

context, it is highly desirable to use population-based cohorts that include healthy elderly with longer follow-up. 

In addition, population-based cohorts give us the opportunity to avoid the potentially biased selection associated 

with recruitment in memory clinics and enable the study of imaging and neuropsychological parameters at the 

presymptomatic stage (silent phase) of the disease.  
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In (Coupé et al. 2015), we proposed to evaluate MRI-based imaging biomarkers on a dataset from a population-

based cohorts of healthy elderly subjects with long follow-up (12 years) to study imaging and neuropsychological 

parameters over the course of the presymptomatic phase of AD. During the 12 years follow-up period, some 

subjects will convert to AD after enrollment into the study (7 years on average). This long follow-up enables to 

track evidence of neurodegeneration at least 7 years before clinical diagnosis using MRI.   

In this work, we used subjects from the Bordeaux site of the Three-City (Bdx-3C) dataset, a prospective 

population-based cohort designed to assess the risk of dementia and cognitive decline due to vascular risk factors 

(3C-Study-Group 2003). In this longitudinal dataset, neuropsychological tests were performed by trained 

psychologists at baseline and at 2, 4, 7, 10 and 12 years. MRI scans were acquired at baseline and at 4 and 9 years. 

The neuropsychological evaluation consisted of several tests performed at each follow-up, always including the 

MMSE (Folstein et al. 1975) to evaluate global cognitive function. During follow-up, subjects suspected of 

dementia were seen at home by a neurologist who established a preliminary diagnosis. After that, definitive 

diagnosis was made by a panel of independent neurologists to obtain a consensus on the diagnosis (McKhann et 

al. 1984). 

In the Bdx-3C study, 663 subjects have a baseline MRI scan. By using baseline scans of all the CN subjects who 

remain free of dementia during 12 years, we built a stable CN (sCN) group while subjects who converted to AD 

during the last 3 follow-ups were used to build the converter CN (cCN) group. We do not use CN subjects who 

converted at 2-year and 4-year follow-up in order to build a homogeneous group composed of subjects far from 

conversion. Therefore, Bdx-3C dataset was divided into two groups of 309 sCN and 37 cCN. Demographic details 

of both Bdx-3C groups are provided in Table 13. We found statistical difference between sCN and cCN groups 

for age (p=0.0001) but not for gender (p=0.17). At baseline, no statistical difference was observed between groups 

for a global cognitive scale (i.e., MMSE) using generalized linear model. This indicates that cCN subjects are in a 

silent phase.  

We estimated the mean time before AD diagnosis for the cCN group at 103 months (i.e., 8.6y) using the baseline 

MRI and the follow-up exams where AD diagnosis was established. However, low frequency of follow-up exams 

might introduce a bias by overestimating this duration. Therefore, we also computed an estimated average time 

before conversion to compensate for this bias. To do that, we used the average time between the closest follow-up 

exam before AD diagnosis and the follow-up exam when AD diagnosis was established. Using this procedure, the 

mean time before the estimated conversion to AD was 84 months (i.e., 7y).  Finally, we used AD and CN groups 

of ADNI1 dataset as training library (see Table 8) to perform HIPP grading of the sCN and cCN groups from Bdx-

3C data.  

Table 13: Demographic details of the stable CN and converter CN of the Bdx-3C dataset used as testing images. 

Group Population size % Male Age (SD) MMSE (SD) 

Stable CN (Bdx-3C) 309 41% 72.7 (3.9) 28.4 (1.2) 

Converter CN (Bdx-3C) 37 30% 75.4 (3.9) 27.9 (1.4) 
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Figure 22: Examples of hippocampal grading maps obtained on the Bdx-3C dataset for a sCN subject and a cCN subject 7.5 
years before conversion to AD. The blue-purple hippocampal grading map of the sCN subject indicates that a majority of CN-
like anatomical patterns in this subject has been detected. The green areas in the hippocampal grading map of the cCN subject 
indicate the hippocampal structural patterns of this subject are equally similar to the anatomy of AD and CN of the ADNI1 
training subjects. Finally, red regions indicate that AD-like anatomical patterns have been found in this cCN subject 7.5 years 
before conversion to AD. 

First, we proposed visual assessment. Figure 22 shows typical examples of hippocampal grading maps for age-

matched sCN and cCN subjects. The hippocampal grading map of the sCN subject (mainly blue-purple color) 

indicates that the majority of the anatomical patterns of the subject are highly similar to anatomical patterns found 

in the ADNI1 CN training subjects. For the cCN subject, a number of red focal regions appear, indicating that 

these hippocampal regions exhibit high structural similarity with the pathological pattern of ADNI1 AD training 

subjects. This indicates that in these areas, AD-like anatomical patterns were found in this cCN subject and thus 

that signs of neurodegeneration were detected 7.5 years before conversion to AD. Second, to study the AD 

prognostic detection accuracy at presymptomatic stage (i.e. 7y before conversion or 8.6y before diagnosis) of 

several biomarkers. The considered biomarkers were HIPP grade, HIPP volume, MMSE and patch-based MMSE 

estimation. Recently, several studies investigated age prediction (Franke et al. 2012) and clinical scores prediction 

(Stonnington et al. 2010, Zhang et al. 2012) using MRI content. The interest of such image-based approaches is 

growing for early pathology detection and longitudinal follow-up. As previously explained, the proposed PBG 

framework can be adapted to other problems than clinical status estimation. Instead of using clinical status of 

ADNI1 training subjects as input to estimate clinical status of Bdx-3C subjects, MMSE scores of ADNI1 training 

subjects can be used to perform a patch-based MMSE estimation. 

Table 14 shows the classification performance obtained with a LOOCV using a LDA as classifier. HIPP grading 

obtained the highest classification accuracy (72.5%), followed by patch-based MMSE estimation (68.8%), HIPP 

volume (58.1%) and the MMSE (56.9%). Therefore, HIPP grading provided a gain of 14.4 percentage point (pp) 

in term of prognosis accuracy. In addition, HIPP grade obtained the best sensitivity and specificity with a gain of 

10.9 pp for sensitivity and of 14.9 pp for specificity. According to the McNemar’s test, only classification based 

on imaging biomarkers performed significantly (p≤0.05) better than a random classifier. The HIPP volume was 

marginally significant (p=0.04) while HIPP grading and patch-based MMSE estimation were highly significant 

(p<0.0001). The patch-based MMSE clearly improves prognosis accuracy compared to clinical MMSE scores with 

a gain of 11.9 pp in terms of ACC and 21.2 pp in terms of AUC. The patch-based MMSE AUC is similar to values 

obtained with hippocampal grading while ACC is slightly lower.  
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Table 14: Classification results based on LDA classifier with values adjusted for age difference. A leave-one-out cross-
validation procedure was used. Results are reported for ACC=Accuracy, SEN=Sensitivity, SPE=Specificity, p-value of the 
McNemar’s test, AUC=Area under the ROC curve and CI=95% Confidence Interval. * Classification performance estimated 
as significantly better than random classifier using the McNemar’s test. The best results are in bold font. These results are 
obtained on cCN at 7y before conversion to AD and at 8.6y before AD diagnosis. 

cCN (37) vs. sCN (309) 

 ACC % SEN % SPE % McNemar’s test AUC [95% CI] 

MMSE scores 56.9 46.0 58.3 0.08 52.0 [40.4-61.6] 

Hippocampal volume 58.1 54.0 58.6 0.04* 64.6 [54.4-72.3] 

Patch-based MMSE estimation 68.8 59.5 69.9 p<0.0001* 73.2 [63.8-81.5] 

Hippocampal grading 72.5 64.9 73.5 p<0.0001* 73.0 [63.6-81.3] 
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2.5 Discussion	

In this second chapter, we presented our PBG framework and the proposed extensions. Based on our PBG method, 

we developed computer-aided diagnosis tools that we applied to AD diagnosis and prognosis. During our 

experiments, we showed that the proposed PBG framework obtained high prognosis accuracy even at 

presymptomatic phase. Recent, independent studies on the ADNI1 dataset confirmed our results and showed that 

PBG provides higher AD prognosis accuracy than state-of-the-art methods (Tong et al. 2014, Tong et al. 2017a). 

In (Coupe et al. 2012a, Coupe et al. 2012b), we showed that PBG grading biomarkers provides competitive results 

for early detection of AD on the ADNI1 dataset compared to conventional methods such as HIPP volume, CTH, 

and method based on Tensor-Based Morphometry features. The comparison of PBG biomarkers in the context of 

early detection demonstrated the high potential of the proposed framework for this key clinical problem. Although 

the obtained prediction rate of 74% is not yet suitable for clinical use, the recent progress of MRI-based biomarkers 

on this challenging classification problem is encouraging. Moreover, the simplicity of the PBG framework results 

in a robust pipeline; the processing failure rate was less than 1.7% at the linear registration step — a much lower 

failure rate in great contrast to the 13% obtained for the CTH method presented in (Wolz et al. 2011b). Finally, in 

(Eskildsen et al. 2015) we showed the advantage of combining CTH and grading features for AD prediction. We 

demonstrated the complementary of cortical and hippocampal biomarkers to improve classification accuracy at 

MCI stage.  

In (Komlagan et al. 2014), we proposed to extent HIPP grading to the whole gray matter using ensemble-based 

framework and an automatic selection of relevant anatomical areas. Compared to HIPP grading, we improved the 

accuracy of our PBG using this strategy (see Table 10).  It is interesting to note that directly using all the anatomical 

sub-ensembles (i.e., without SLR-based anatomical areas selection) provided worst results than using only HIPP 

grading. However, when selecting the most relevant anatomical sub-ensembles an important increase is observed. 

This indicates that areas other than hippocampus seem to be impacted at MCI stage. Thus, automatic a posteriori 

selection of these areas instead of using predefined ROIs leads to higher accuracy. As shown in Table 10, our 

ensemble-based grading achieved better prognosis accuracy than other state-of-the-art methods validated on the 

same ADNI1 database. So far, our ensemble-based grading method remains very competitive compared to recently 

proposed methods based on deep learning (Suk et al. 2017).  

In (Hett et al. 2017), we investigated the potential of using texture information based on Gabor filters to improve 

patch- based grading method performance. We compared our new texture-based grading biomarker with state-of- 

the-art approaches and we showed the high potential of the proposed method for AD diagnosis (see Table 10). 

However, according to our comparison and as we showed it in (Komlagan et al. 2014), whole brain methods enable 

a better classification of sMCI vs. pMCI. Hence, in further works, we will investigate the extension of our texture-

based grading framework to whole brain analysis.   
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In (Hett et al. 2016, Hett et al. 2018), we studied the capabilities of MPBG by combining MRI and DTI-based 

grading. We showed that MD grading can be useful at the earliest stages of AD and that multimodal grading 

yielded to the most stable results and thus it can a good biomarker candidate (see Table 12). Moreover, in (Hett et 

al. 2018), we investigated the use of hippocampal subfields MPBG to better distinguish AD stages. In this study, 

the comparison based on MD, volume and MPBG biomarkers showed that the subiculum is the most discriminant 

structure in the earliest stage of AD. Moreover, we showed that the CA1SR-L-M presented the strongest atrophy 

in the advanced stage of AD. These results are in accordance with previous literature (Apostolova et al. 2006, 

Kerchner et al. 2010, Kerchner et al. 2012, La Joie et al. 2013, Trujillo-Estrada et al. 2014). 

In (Coupé et al. 2015), we presented a study to assess the predictive value of HIPP grading on incident dementia 

in cognitively intact patients more than 7 years before conversion. We showed that using HIPP grading for early 

prognosis exhibited higher classification accuracy than HIPP volume with a gain of 14pp. This result on the Bdx-

3C population is in line with our result obtained on the ADNI1 dataset with subjects who converted to AD in 18 

months on average. In (Coupe et al. 2012b), we obtained 74% of ACC using HIPP grade and 66% of ACC using 

HIPP volume on the ADNI1 dataset. These results support the hypothesis that, although hippocampal volume has 

been found to be an efficient imaging biomarker on subjects close to AD diagnosis (Wolz et al. 2011b, Ewers et 

al. 2012), hippocampal volume loss is not sufficiently sensitive to enable automatic classification at a very early 

preclinical stage. The use of more sophisticated measures, such as our PBG, appears to be crucial for the 

identification of AD at presymptomatic phase. From a pathophysiological point of view, the performance of the 

HIPP grading supports the hypothesis of HIPP anatomical alterations 7 years before conversion to AD. Taken 

together these results are consistent with the idea that clinical AD is preceded by a long asymptomatic phase, 

which is characterized by progressive functional, metabolic and anatomical brain alterations.  

In addition, in (Coupé et al. 2015), we performed patch-based MMSE estimation using our HIPP grading 

framework. Recently, a whole brain extension of this strategy has been successfully used for age estimation and 

clinical scores estimation (e.g., ADAS) (Wu et al. 2016a). This independent study shows that our patch-based 

framework can be generalized to any attributes of the training subjects. Finally, we recently proposed on 

longitudinal version of our PBG in (Sanroma et al. 2017). In this work, the grading is estimated between two time 

points using the longitudinal subject self-similarity. 

So far, we used PBG grading mainly for AD diagnosis and prognosis. However, a recent independent study applied 

whole brain grading to differential diagnosis between AD, vascular dementia (VaD), dementia with Lewy bodies 

(DLB) and frontotemporal dementia (FTD) (Koikkalainen et al. 2016). The authors showed that, compared to 

volume, TBM, VBM and Manifold learning features (Wolz et al. 2011b), PBG was the most competitive biomarker 

to detect AD and FTD. More importantly, PBG was the best feature to differentiate AD vs. FTD, AD vs. DLB and 

FTD vs. DLB. These results indicate that PBG can help to distinguish different types of dementia which is a crucial 

clinical question. These results have been recently confirmed in (Tong et al. 2017b), where PBG demonstrated 

very competitive results for 5-class differential diagnosis of AD, FTD, DLB, VaD and SMC (i.e., subjects with 

memory complaints who did not meet the criteria for MCI). For our part, we plan to apply PBG to multiple sclerosis 

to predict pathology evolution at the earliest stages of the pathology.  
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Chapter	3 Towards	Brain	Monitoring	

Abstract: In this last chapter, we will present the tools developed to perform brain 

monitoring. Such monitoring is possible only when two elements are available – a tool to 

measure the studied parameter and a standard model to know when the obtained 

measurement is normal or not. First, we will describe the volBrain pipeline, the tool that we 

proposed to perform automatic quantitative brain analysis. This pipeline provides the 

volume of anatomical brain structures in a fast and robust manner and thus it enables to 

process very large databases. Second, we will present the standard models for anatomical 

brain structures that we estimated to determine when structure volumes are normal or not. 

Thanks to the new paradigm of Big Data sharing in neuroimaging, we developed standard 

models across the entire lifespan based on a massive number of freely available MRI. 

Finally, we will present the proposed open access web-platform that integrates the volBrain 

pipeline and our lifespan models. This service is accessible through our volBrain web-

platform as a software as a service. To conclude, we will discuss about the platform usage 

after 3 years of experience.  
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3.1 Introduction	

Every day in hospitals over the world, we measure physiological parameters to monitor body development, to 

detect abnormalities or to establish a diagnostic. This monitoring is possible only when two elements are combined. 

First, we need a tool to measure the studied parameters (e.g., blood pressure or heart rate). This tool has to be 

convenient, standardized and easily accessible. Second, we need a standard model to know when the obtained 

measurement is normal or not compared to reference cases. While for many physiological parameters such 

normative values exist, they do not exist for volume of brain structures (see Figure 23). Recently, to overcome 

these two limitations, we proposed to develop measurement tools and their corresponding standard models.  

First, we needed efficient tools to perform quantitative brain analysis enable to process the massive number MRI 

produced every day. To move from qualitative to quantitative analysis, we had to develop fast, robust, accurate 

and scalable methods to automatically extract useful information from medical images. The main challenge was 

to propose accurate pipelines enable to process a large number of MRI in a reasonable time and with a low failure 

rate. Therefore, we developed new fast and robust pipelines for brain segmentation based on our PBS framework 

(Manjon and Coupe 2016).  

Second, to determine when measurements are normal or not compared to reference cases, we needed standard 

models. In the literature, brain development has been studied previously but only over restricted periods (e.g., 

childhood or old age) and using a restricted number of scans (usually several hundreds). Thanks to the new 

paradigm of Big Data sharing in neuroimaging, we have been able to develop standard models for brain monitoring 

using a massive number of freely available MRI. Therefore, we proposed standard models to study human brain 

trajectory from few months of life to advanced ages (Coupe et al. 2017). We proposed also an AD model based on 

the same strategy (Coupé et al. 2018). 

 
Figure 23 : Example of usual physiological monitoring. While for many physiological parameters measurement tools and 
normative values exist, they do not exist for volume of brain structures. 
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Finally, we integrated our tools and models into a web platform in full open access. Most of developed pipelines 

for MR image analysis are software packages that need to be installed and configured. Installation and 

configuration steps can be complicated and require experimented people and computational resources. To limit 

the need for infrastructure, installation of software on grid computing has gained in popularity. Unfortunately, 

these platforms are not all open access and are difficult to use for non-experts. Moreover, most of the available 

platforms offer almost the same tools (e.g., FSL or/and Freesurfer) what yields to redundant services. Therefore, 

we proposed our original tools and the corresponding standard models in full open access as Software as a Service 

(SaaS) through the volBrain platform.  

In this chapter, we will present these three contributions and the obtained results. First, we will detail the proposed 

pipeline to perform brain segmentation in an accurate and robust manner compared to state-of-the-art methods. 

Second, we will present how we estimated standard values across the entire lifespan. Moreover, we will detail the 

pathological models based on AD population that we used to estimate the point of divergence between normal and 

pathological brains across the entire lifespan. Finally, we will describe the volBrain web-platform and the 

encouraging results obtained by this system after 3 years of experiences. The several integrated pipelines will be 

briefly detailed. 
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3.2 Methods	

Automated and reliable quantitative MRI-based brain image analysis has a huge potential to objectively help in 

the diagnosis and follow-up of many neurological diseases. Specifically, MRI brain structure volumetry is being 

increasingly used to understand the nature and evolution of those diseases. Over the past decades, manual 

segmentation has been the method of choice to accurately analyze specific brain structures. However, this task is 

tedious and time consuming, limiting its use in clinical practice. To make easier this quantification process, many 

automatic tools have been proposed. Consequently, the brain segmentation problem one of the most intensively 

studied topics over the past years. Moreover, the recent massive increase of neuroimaging data to process have 

motivated the development of innovative approaches able to address challenges related to this new "Big Data" 

paradigm (Van Horn and Toga 2014). Therefore, efficient, automatic, robust and reliable methods for automatic 

brain analysis will play a major role in the near future.   

Several software tools have been developed to automatically estimate brain structure volumes using different 

strategies. For example, the SPM software (Ashburner 2012) is a widely used tool to analyze global GM or WM 

alterations. Voxel-Based Morphometry (VBM) toolbox (an extension of SPM) has also been used to measure local 

GM atrophy (Ashburner and Friston 2000). To perform more specific volume measurements over anatomical 

structures, tools like the FSL package (Jenkinson et al. 2012) or Freesurfer (Fischl 2012) have been developed. 

FSL is a comprehensive library of analysis tools for functional MRI, anatomical MRI and DTI brain imaging data. 

One of these tools, called FIRST (Patenaude et al. 2011), is able to automatically segment subcortical brain 

structures. Similarly, the Freesurfer pipeline can be used for volumetric segmentation, cortical surface 

reconstruction and cortical parcellation. Freesurfer has been used in numerous studies despite its high 

computational burden.  

3.2.1 The	volBrain	Pipeline	

In (Manjon and Coupe 2016), we proposed a new software pipeline for volumetric brain analysis. This pipeline 

provides automatically volumetric brain information of different anatomical structures. In the following, the 

different parts of the volBrain pipeline will be described and a comparison with state-of-the-art methods will be 

presented. The volBrain pipeline proposes segmentations at different scales:  

• Intracranial cavity extraction 

• WM, GM and Cerebrospinal Fluid (CSF) tissue classification. 

• Cerebrum, cerebellum and brainstem segmentation (separating left from right cerebrum and cerebellum). 

• Lateral ventricles and subcortical GM structures segmentation (putamen, caudate, pallidum, thalamus, 
hippocampus, amygdala and accumbens). 

After several preprocessing steps (denoising, inhomogeneity correction and registration into the MNI space), all 

the segmentations with the exception of tissue volumes are based on different adaptations of our PBS framework 

(see the pipeline steps on Figure 24).  
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Figure 24: The volBrain processing pipeline. In the first row, the preprocessing is presented. It consists in a non-local noise 
reduction filter (Manjon et al. 2010c), inhomogeneity correction (Tustison et al. 2010), MNI space affine registration (Avants 
et al. 2011), intensity normalization and ICC extraction (Manjon et al. 2014). In the second row, the result of the global tissue 
estimation (GM, WM and CSF) is shown. In the third row, the result of the macrostructures and subcortical structures 
segmentation is presented. 

3.2.1.1 Intracranial	Cavity	Extraction	

After preprocessing, the first step of our pipeline is the intracranial cavity (ICC) extraction. As previously 

mentioned in Chapter 1 during the BEaST description, PBS can be used for brain segmentation. In the volBrain 

pipeline, we integrated our intracranial cavity extraction called NICE (Manjon et al. 2014) that is an evolution of 

the BEaST technique enabling faster and more accurate results and that segment ICC instead of brain. In NICE, 

we extended BEaST definition by including all external CSF (thus covering total CSF of ICC) and therefore 

selecting most of the intracranial cavity volume. We have not included other intracranial tissues in our mask 

definition such as dura, exterior blood vessels or veins because they are normally of no interest for brain analysis. 

This mask definition has been used to estimate the Total Intracranial Volume (TIV) in many methods such as 

SPM8 or VBM8 methods in order to normalize brain tissue volumes. In (Manjon et al. 2014), we showed that 

NICE provides significantly better results than VBM8 and BEaST. Moreover, we demonstrated that NICE has a 

better reproducibility than these two methods. Finally, NICE performs intracranial cavity extraction in less than 5 

minutes. 
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3.2.1.2 Tissue	Classification	

Once ICC extraction is done, volBrain pipeline classifies the main intracranial tissues (i.e., WM, GM and CSF). 

Classical approaches to estimate tissue classification are based on mixture of Gaussians algorithm (Wells et al. 

1996), fuzzy C-means clustering (Ahmed et al. 2002) or Markov Random Field (MRF) models (Scherrer et al. 

2009). Moreover, a common feature of those methods is the use of a priori information in the form of spatial 

probability maps (e.g. SPM). All these methods assign at each voxel a membership degree or probability to belong 

to specific tissue rather than calculate the actual amount of each tissue within each voxel. For this reason, some 

authors used the concept of partial volume coefficients (PVC) to represent the actual amount of every tissue within 

each voxel. Therefore, we used PVC-based tissue classification in the volBrain pipeline (Manjón et al. 2010). This 

method combines a MRF model and non-local means filtering to reduce random noise in PVC estimation. 

3.2.1.3 Hemisphere	Segmentation	

Although, the global amount of WM, GM and CSF within the ICC may be an interesting biomarker for quantitative 

brain analysis, diseases may present local alterations instead of global ones. In addition, the assessment of brain 

structure asymmetries may be also interesting to study normal/abnormal brain development and to detect 

alterations due to some neurological diseases. Therefore, segmentation of structures such us cerebrum, cerebellum, 

brainstem and brain hemispheres might be important to assess brain asymmetry. Several automatic strategies have 

been developed for hemisphere segmentation (Prima et al. 2002, Mangin et al. 2004, Zhao et al. 2010). Recently, 

we presented a novel and competitive approach called NABS (Romero et al. 2015) that is based on our PBS 

method. This method demonstrated competitive performance compared to state-of-the-art methods. Moreover, 

NABS provides left/right hemispheres, left/right cerebellum and brainstem segmentation in less than 1 minute. 

Therefore, we used NABS in our volBrain pipeline. 

3.2.1.4 Structure	Segmentation	

Finally, it may be also interesting to measure local volumes at a finer scale since many pathologies affect specific 

areas of the brain. For instance, the hippocampal volume and the lateral ventricles volume have been shown to be 

early biomarkers of Alzheimer disease as discussed in Chapter 2. To segment subcortical nuclei, several automatic 

methods have been proposed using deformable models or atlas/template-warping techniques (Collins et al. 1995). 

As explained in Chapter 1, multi-atlas label fusion segmentation techniques have gained popularity recently 

because they can combine multiple atlas information to minimize mislabeling from inaccurate affine or non-linear 

registration (Heckemann et al. 2006, Collins and Pruessner 2010, Lotjonen et al. 2010). However, we showed that 

our PBS framework provides state-of-the-art results in a drastically reduced computational. Therefore, the 

volBrain pipeline integrated a multi-scale version of our PBS framework.  

All these steps were combined to create the volBrain pipeline. This pipeline was completed with an automatic 

report generation. The proposed framework is able to produce accurate segmentation for all considered structures 

in less than 15 minutes (see Results section of this chapter). Finally, to propose a tool robust, the training library 

of manually labeled templates was constructed using 50 subjects covering a wide range of age and including 
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pathological cases (see (Manjon and Coupe 2016) for details). This point is crucial to build reference models and 

pathological models across the entire lifespan using the same tool. We will demonstrate the robustness of our 

approach in the following. Once the volBrain pipeline finished, we used it to develop reference models across the 

entire the lifespan. 

3.2.2 Lifespan	Models	

The study of normal brain maturation and age-related brain atrophy is crucial to better understand normal brain 

development and a large variety of neurological disorders. With the rise of the population age, it is becoming 

increasingly important to understand the cognitive changes that accompany aging, both normal and pathologic. 

Moreover, analyzing brain maturation and senescence during the entire lifespan may help to better understand the 

undergoing process on normal brain development and aging. Finally, the development of reference lifespan models 

is essential for performing brain monitoring that is the main goal of the proposed volBrain web-platform.  

Despite the large number of studies dedicated to brain trajectory analysis, an important disagreement remains 

between existing results. An extensive review of these inconstancies can be found in Walhovd et al. (2016). This 

lack of consensus on brain development and aging prevents us to better understand these highly complex and 

multi-factor phenomena. The significant divergence between existing results is due to many factors: 

• First, the use of restricted life periods (e.g., childhood (Brain Development Cooperative 2012), 

adolescence (Lenroot and Giedd 2010, Vijayakumar et al. 2016), adulthood (Ziegler et al. 2012), etc.) 

makes difficult the comparison of results. Moreover, it prevents global understanding of brain 

modification across the entire lifespan. Up to now, no study covered the entire lifespan including babies 

with few months of life to elderly older than 90. 

• Second, the use of a limited number of scans may produce unstable results limiting the reproducibility 

and accuracy of estimations. The large majority of previous studies used less than 100 subjects (Walhovd 

et al. 2011), some studies used several hundreds of subjects (Giedd and Rapoport 2010, Brain 

Development Cooperative 2012, Ziegler et al. 2012, Mills et al. 2016) and very few studies used more 

than 1000 subjects (Fjell et al. 2013, Potvin et al. 2016). 

• In addition, the use of non-harmonized acquisition protocols, segmentation tools, labelling protocols 

(Walhovd et al. 2016) and volumetric measurements such as absolute volume (Brain Development 

Cooperative 2012), normalized volumes using intracranial volume (Good et al. 2002, Mills et al. 2016), 

GM volume (Ziegler et al. 2012) or z-scores (Ostby et al. 2009, Walhovd et al. 2011), lead to a great 

discrepancy in reported results (Walhovd et al. 2011). Consequently, this heterogeneity makes difficult 

the definition of normative values (Potvin et al. 2016) stressing the need of using harmonized protocols 

over large samples covering the entire lifespan. 

• Finally, the use of an exigent quality control in the whole measurement process plays a major role in the 

quality of the final estimated brain models. This step is often underconsidered, while the model estimation 

greatly depends on a careful quality control (Ducharme et al. 2016).  
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In (Coupe et al. 2017), to build our reference lifespan models, we have addressed these limiting factors. First, 

thanks to the new paradigm of Big Data sharing in neuroimaging (Poldrack and Gorgolewski 2014), we have been 

able to use a very high number of samples (N=3296) covering the largest lifespan period never studied (from few 

months to advanced ages). Moreover, all the considered MRI scans were processed using the same processing, our 

volBrain pipeline. To get insight on brain maturation and aging at global (i.e., absolute volume) and brain scale 

(i.e., normalized volume), we have extensively analyzed our results using absolute volumes and relative volumes 

(normalized by Total Intracranial Volume, TIV=ICC). Moreover, to prevent the estimated models to be affected 

by wrongly processed images, we have performed a demanding three stages quality control. Finally, to be able to 

present a unified analysis of brain development and brain aging at the same time, we investigated hybrid models. 

Contrary to previous studies based on linear or low order polynomial models, we considered models enable to 

capture fast growth and complex degenerative processes. This is achieved by combining cumulative exponential 

function – to model rapid growth with saturation related to brain maturation – and low order polynomial function 

– used to model volume decrease caused by aging. Putting all these elements together, we have been able to show 

for the first time a global picture of brain trajectory across the entire lifespan.  

3.2.2.1 Data	Description	

To build our reference models, we used 3D T1w MRI obtained from nine freely available databases covering the 

entire lifespan (Coupe et al. 2017). The summary of used databases is detailed in Table 15. 

Table 15: Dataset description used for the reference models. This table provides the name of the dataset, the MR acquisition 
configuration, the number of considered image before and after QC, the gender proportion after QC and the average mean, 
standard deviation in parentheses and the interval in brackets. 

DATASET Acquisition Before 
QC 

After 
QC 

Gender  
after QC 

Age in years  
after QC 

C-MIND  1 site with 3T MR scanner 266 236 F = 129 
M =107 

8.44 (4.35) 
[0.74-18.86] 

NDAR  10 sites with 1.5T and 3T 
MR scanner 

612 382 F = 174 
M = 208  

12.39 (5.94) 
[1.08-49.92] 

ABIDE  20 sites with 3T MR 
scanner 

528 492 F = 84 
M = 408  

17.53 (7.83) 
[6.50-52.20] 

ICBM  1 sites with 1.5T MR 
scanner 

308 294 F = 142 
M = 152  

33.75 (14.32) 
[18-80] 

IXI  3 sites with 1.5T and 3T 
MR scanner 

588 573 F = 321 
M = 252 

49.52 (16.70) 
[20.0- 86.2] 

OASIS  1 sites with 1.5T MR 
scanner 

315 298 F = 187 
M = 111  

45.34 (23.82) 
[18 - 94] 

AIBL 2 sites with 1.5T and 3T 
MR scanners 

236 233 F = 121 
M =112  

72.24 (6.73) 
[60 - 89] 

ADNI 1 51 sites with 1.5T MR 
scanner 

228 223 F = 108 
M = 115 

75.96 (5.03) 
[60 – 90] 

ADNI 2  14 sites with 3T MR 
scanners 

215 213 F = 113 
M = 100  

74.16 (6.39) 
 [56.3 - 89] 

Total 103 sites with 1.5T and 3T 
scanners 

3296 2944 F =1379 (47%) 
M = 1565 (53%)  

39.65 (26.62) 
[0.74 - 94] 
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The used images have been acquired on 1.5T and 3T over 103 sites. All the considered subjects are normal controls. 

After quality control, 2944 MRI were kept from the 3296 considered subjects. The gender proportion of these 

selected subjects is 47% of female. The covered age starts from 9 months to 94 years. Figure 25 shows the age 

distribution of the used subjects after quality. At least three different datasets are used for all the considered periods 

except for extreme ages (i.e., [0-4] year and [90-94] year) where only 2 datasets are available. Moreover, more 

than 50 subjects by 5-years interval are used at the exception of the last [90-94] interval.  

As recently shown, the quality control (QC) of image processing pipeline has a critical impact on trajectory results 

(Ducharme et al. 2016). Therefore, to build our reference models, we decided to use a demanding multi-stage QC 

procedure for a careful selection of involved subjects. First, a visual assessment of input image quality was done 

for all considered subjects. This assessment was performed by checking screen shots of one sagittal, one coronal 

and one axial slice in middle of the 3D volume. This step led to remove 219 subjects from the 3296 considered 

subjects in our study (6.6%). Next, a visual assessment of the image processing quality for all remaining subjects 

was performed using volBrain reports (see Figure 33). All the volBrain pipeline steps (full head coverage including 

cerebellum, registration to MNI space, TIV extraction, tissue classification, subcortical structure segmentation, 

etc.) were carefully checked.  This step led to remove 83 subjects from our study (2.5%). Finally, a last control 

was performed by individually checking all outliers detected using estimated trajectories. A volume was 

considered as outlier when its value was higher/lower than 2 standard deviations of the estimated model. For each 

detected outlier, the segmentation map was opened and displayed over the MRI using a 3D viewer (Yushkevich 

et al. 2006). A careful inspection was performed over the 3D volume. In case of segmentation failure, the subject 

was removed from the study. This last QC step led to remove 50 subjects (1.5%). Therefore, 2944 of the 3296 

considered subjects were kept after our QC procedure. 

 

 

Figure 25: Age distribution of the used MRI after the quality control. Left: Age distribution for all the considered subjects. 
Right: Age distribution for child younger than 10 years old. Legend indicates the database color and the number of image after 
quality control. 
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In the following, we will also present our last work on pathological lifespan model dedicated to AD (Coupé et al. 

2018). This study aimed at comparing normal and pathological trajectories of brain atrophy during AD progression 

across the entire lifespan to better understand pathology progression. In this work, we assumed that the 

neurodegenerative process is slow and progressive. Consequently, to build our lifespan pathological models we 

combined AD and MCI (from 55y to 96y) with healthy/asymptomatic subjects younger than them (from 9 months 

to 55y). The proposed approach can be viewed as a conservative lifespan model of AD since CN are used as young 

asymptomatic AD subjects. The summary of used databases to estimate our pathological models is presented in 

Table 16. Different models were estimated based on four different groups to generate CN, AD/MCI, AD and MCI 

trajectories.  

• For CN trajectories, we used the N=2944 subjects from 9 months to 94y of the cognitively normal dataset 

described previously (see Table 15). 

• For the AD/MCI trajectories, we used N=3262 samples. We mixed AD patients, MCI patients considered 

being at an early stage of AD (see Table 16), and young CN considered as presymptomatic subjects. We 

used 426 AD patients (from 55y to 96y), 959 MCI patients (from 55y to 92y) of the AD/MCI dataset (see 

Table 16) and all the CN younger than 55y (i.e., 1877 samples) described in Table 15. 

• For the AD trajectories, we used N=2303 samples. We mixed AD patients with young CN. More 

precisely, we used 426 AD patients (from 55y to 96y) of the AD/MCI datasets and all the CN younger 

than 55y (i.e., 1877 samples). 

• For the MCI trajectories, we used N=2836 samples. We mixed 959 MCI patients (from 55y to 92y) of the 

AD/MCI datasets with all the CN younger than 55y (i.e., 1877 samples) 

All the MRI of AD and MCI patients and CN subjects followed the same processing and quality control than 

previously described. Therefore, at the end, 4714 MRI processed with the same tool were used during our 

pathological model study. 

Table 16: Dataset description used for the AD models. This table provides the name of the dataset, the MR acquisition 
configuration, the number of considered image before and after quality control, the gender proportion after quality control 
and the average mean, standard deviation in parentheses and the interval in brackets. 

DATASET Before 
QC 

After 
QC 

AD stage 

(MCI /AD) 

after QC 

Gender  
after QC 

Age in years  
after QC 

OASIS  98 95 50 / 45 F = 56 

M = 39  

76.58 (7.18) 

[62 - 96] 

AIBL 112 106 59 / 47 F = 58 

M =48  

74.15 (7.80) 

[55 - 93] 
ADNI 1 587 568 385 / 183 F = 225 

M = 343 

75.04 (7.41) 

[55 – 91] 

ADNI 2  621 616 465 / 151 F = 270 

M = 346  

72.56 (7.64) 

 [55 - 90] 
Total 1418 1385 959 / 426 F = 609 (44%) 

M = 776 (56%) 

73.7 (7.84) 

[55 - 96] 
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3.2.2.2 Statistical	Analysis	

In order to determine the best general models for each structure, several models were tested from the simplest to 

the most complex. A model was kept as a potential candidate only when F-statistic based on ANOVA for model 

vs. constant model is significant (p<0.05) and when all its coefficients were significant using t-statistic (p<0.05). 

At the end of the selection procedure, we used the Bayesian Information Criterion (BIC) to select the best model 

among models being significant compared to constant model and having all coefficients significant.  BIC provides 

a measure of the trade-off between bias and variance and thus select the model explaining most the data with 

minimum parameters. Afterwards, this general model type is applied on female and male separately to estimate 

gender specific reference models. At the end, to study trajectory difference in terms of volume and shape between 

both female and male, 𝛽#𝑆𝑒𝑥 +	𝛽%𝑆𝑒𝑥. 𝐴𝑔𝑒 interactions are tested over the selected general model.  All the reported 

parameters (t-statistic, F-statistic, BIC and R2) were internally estimated by Matlabã using default parameters. 

The following models were considered as potential candidates: 

1. Linear model 

𝑉𝑜𝑙 = 𝛽\ +	𝛽:𝐴𝑔𝑒 + 	𝜀 (Eq. 10) 

2. Quadratic model 

𝑉𝑜𝑙 = 𝛽\ +	𝛽:𝐴𝑔𝑒 + 𝛽>𝐴𝑔𝑒> + 	𝜀 (Eq. 11) 

3. Cubic model 

𝑉𝑜𝑙 = 𝛽\ +	𝛽:𝐴𝑔𝑒 + 𝛽>𝐴𝑔𝑒> +	𝛽]𝐴𝑔𝑒] + 	𝜀 (Eq. 12) 

4. Linear hybrid model: exponential cumulative distribution for growth with linear model for aging 

𝑉𝑜𝑙 = 𝛽^. 1 − 𝑒)`ab cd + 𝛽\ +	𝛽:𝐴𝑔𝑒 + 	𝜀 (Eq. 13) 

5. Quadratic hybrid model: exponential cumulative distribution for growth with quadratic model for aging 

𝑉𝑜𝑙 = 𝛽^. 1 − 𝑒)`ab cd + 𝛽\ +	𝛽:𝐴𝑔𝑒 + 𝛽>𝐴𝑔𝑒> + 	𝜀 (Eq. 14) 

6. Cubic hybrid model: exponential cumulative distribution for growth with cubic model for aging 

𝑉𝑜𝑙 = 𝛽^. 1 − 𝑒)`ab cd + 𝛽\ +	𝛽:𝐴𝑔𝑒 + 𝛽>𝐴𝑔𝑒> +	𝛽]𝐴𝑔𝑒] + 	𝜀 (Eq. 15) 

In the literature, structure trajectories have been mainly modeled using low order polynomial function (see 

(Walhovd et al. 2011) for review). However, to follow structure trajectories across the entire lifespan, we propose 

to consider hybrid models able to track rapid growth during childhood and to capture complex volume decrease 

from adulthood to elderly. In the past, fast growth modelling occurring during childhood has been achieved using 

Poisson curve (Lebel et al. 2012) or Gompertz-like function (Makropoulos et al. 2016). Here, we propose to 

combine a cumulative exponential function in place of Gompertz-like function, and to combine it with low order 

polynomial function. At the end, our hybrid models can model fast growth process and complex volume decreases 

at the same time. 
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3.3 Results	

3.3.1 Performance	of	the	volBrain	Pipeline	

In this subsection, some experimental results are shown to highlight the accuracy and reproducibility of the 

proposed volBrain pipeline. Since volBrain provides results at different scales both accuracy and reproducibility 

at several scales will be commented. Specifically, we will comment the results for intracranial cavity extraction 

(NICE), macrostructure segmentation (NABS) and subcortical structure segmentation. Note that the tissue 

classification is not included in this evaluation since it is based on our particular way to compute PVCs. Therefore, 

there is no a direct comparison with methods like SPM or VBM.  

3.3.1.1 Intracranial	Cavity	Extraction	

NICE results for ICC extraction accuracy were presented in its corresponding paper (Manjon et al. 2014). To 

summarize, NICE was compared with BEaST and VBM8 and it was found to be significantly better. NICE 

obtained the best DICE coefficient (0.9911) compared to BEaST (0.9880) and VBM8 (0.9762). Moreover, an 

independent test was also performed using the SVE website (see http://sve.bmap.ucla.edu/archivel/) were NICE 

ranked first. Regarding the reproducibility, NICE was found to be the most reproducible method followed by 

VBM8 and finally BEaST. More details can be found the original paper (Manjon et al. 2014).  

3.3.1.2 Hemisphere	Segmentation	

NABS method was also evaluated in its corresponding paper for hemisphere segmentation (Romero et al. 2015). 

First, NABS was compared with ADISC (Zhao et al. 2010) and it obtained a significantly better DICE coefficient 

(0.9962 vs. 0.9868 for ADISC). NABS method was also compared to ADISC method using an application 

consisting on estimating brain asymmetries on AD cases. We showed that NABS method was able to better predict 

the patient status. Again, further details can be found in the original paper (Romero et al. 2015).  

3.3.1.3 Structure	Segmentation	

Finally, we propose experiments to measure both accuracy and reproducibility of the proposed subcortical 

segmentation method and a comparison with state-of-the-art approaches.  

• Accuracy	

First, a leave-two-out cross validation procedure was performed for the 50 subjects of the volBrain training library. 

DICE value was then computed by comparing the manual segmentations with the segmentations obtained with 

our method. The proposed method was also compared with two publically available software packages for 

subcortical brain structures labeling (Freesurfer (Fischl 2012) and FSL-FIRST (Jenkinson et al. 2012). Both 

methods were run on the CBRAIN platform with their default parameters. As can be noted on Table 17, the 

volBrain pipeline obtained the best DICE coefficients for all the considered structures.  
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Table 17:  Mean Dice coefficient of the different subcortical structures over the 50 cases of template library. Average represents 
the average dice without including lateral ventricles. Best results are in bold. * indicates statistically significant differences 
between volBrain and Freesurfer (p<0.05). † indicates statistically significant differences between volBrain and FIRST.  

Structure volBrain Freesurfer FIRST 

Lat. Ventricles 0.9836 ± 0.0111 * 0.8315 ± 0.0589 --- 

Caudate 0.9427 ± 0.0196 *† 0.8195 ± 0.0418 0.8366 ± 0.0706 

Putamen 0.9442 ± 0.0226 *† 0.8162 ± 0.0396 0.8775 ± 0.0192 

Thalamus 0.9476 ± 0.0196 *† 0.8157 ± 0.0247 0.8144 ± 0.0322 

Pallidum 0.8914 ± 0.0403 *† 0.7454 ± 0.0906 0.7851 ± 0.0575 

Hippocampus 0.9533 ± 0.0092 *† 0.7886 ± 0.0254 0.8429 ± 0.0303 

Amygdala 0.8795 ± 0.0559 *† 0.5844 ± 0.1092 0.5895 ± 0.0962 

Accumbens 0.8362 ± 0.0572 *† 0.5589 ± 0.0697 0.6483 ± 0.0916 

Average 0.9136 ± 0.0555 *† 0.7327 ± 0.1132 0.7706 ± 0.1087 
 

Moreover, the improvement was statistically significant for all the structures and for the two methods compared. 

The volBrain pipeline obtained an average dice coefficient (without including lateral ventricles) of 0.9136 while 

Freesurfer obtained 0.7327 and FIRST obtained 0.7706. A visual comparison of one sample case is showed Figure 

26 were the labeling of the three different methods are presented with 3D representation (note that FIRST does not 

segment lateral ventricles and therefore they are not included in the comparative). On one hand, Freesurfer method 

produced a rough segmentation of the different structures with significant errors. On the other hand, FIRST 

performed better and produced smoother surfaces on the different structures. However, FIRST method seems to 

over segment most of the structures.  

We are aware that the presented accuracy results are slightly biased in favor to volBrain due to the use of the same 

label definition for training and validation. However, there are minimal differences on our label definition 

compared to FIRST or Freesurfer labels with the exception of lateral ventricles (we did not include choroid plexus) 

and HIPP (we used EADC protocol). Besides, it has been recently shown that Freesurfer and FIRST overestimate 

most of subcortical structures by using a joint DTI-MRI analysis (Næss-Schmidt et al. 2016) that matches with 

our findings. In summary, the large differences found among the compared methods provide evidences of the high 

quality of the proposed pipeline. Moreover, it is important to note that volBrain is one of the first software 

following the harmonized EADC protocol for HIPP segmentation. This is especially important given that fact that 

EADC protocol is the new consensus protocol for HIPP analysis dedicated to AD (Frisoni et al. 2015).        
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Figure 26: Visual example of the segmentation results (Axial, sagittal and coronal views and 3D representation of segmented 
subcortical structures). First row: volBrain results. Second row: Freesurfer results. Third row: FIRST results. Note that FIRST 
output does not include lateral ventricles. 
 

• Reproducibility	

Second, we investigated the reproducibility of our volBrain pipeline. To measure the reproducibility of the 

different methods compared, we used the reproducibility dataset of the brain segmentation testing protocol website 

(https://sites.google.com/site/brainseg/). This dataset consists of a test-retest set of 20 subjects scanned twice in 

the same scanner and with the same sequence. To measure the reproducibility of the two repeated sets, we used 

the Percent Volume Difference (PVD) (Morey et al. 2010). The three compared methods were run on this dataset 

but the comparison was done only on a subset of 18 subjects since FIRST did not produce valid results for two of 

the 20 cases. Since PVD measurement does not distribute normally, we represent the results using the median and 

the interquartile interval, and we used the Wilcoxon rank test to measure the statistical significance of the 

differences between methods. Results of this comparison are summarized on Table 18. As can be noted, volBrain 

was more reproducible in general compared to Freesurfer and FIRST (although the differences were not 

statistically significant overall). Regarding to the volume estimation, volBrain was found to be significantly more 

reproducible than Freesurfer for putamen (p<0.05) while FIRST was significantly better than volBrain and 

Freesurfer for the pallidum.  
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Table 18:  Median of PVD on the reproducibility dataset and corresponding interquartile interval (shown in brackets). Best 
results are in bold. * indicates statistically significant differences between volBrain and Freesurfer (p<0.05). † indicates 
statistically significant differences between volBrain and FIRST. Overall represents the mean PVD of all structures excluding 
lateral ventricles to enable direct global comparison of the three methods. 

• Computational	Time	

The proposed method takes around 12 minutes in average to complete the whole pipeline, this included 30 seconds 

for denoising, 2 minutes to perform registration into MNI space, 3 minutes for inhomogeneity correction, 5 seconds 

for intensity normalization, 2 minutes to do brain extraction, 5 seconds to perform tissue classification, 2 minutes 

for NABS and 3 minutes for structures labeling. Freesurfer normally takes around 15 hours to perform the complete 

analysis (which includes also surface extraction). FIRST running time is approximately 10 minutes (only for the 

subcortical structure segmentation). 

3.3.2 Analysis	of	Lifespan	Reference	Models	

Once the volBrain pipeline validated, we used it to process a massive number of MRI to build reference models. 

In this subsection, we will analyze the estimated models and the new produced neuroscientific knowledge. We 

will present results in absolute volumes and relative volumes in % of Total Intracranial Volume (i.e., ICC). 

3.3.2.1 Global	Gray	Matter	and	White	Matter	Trajectories	

At the global scale (i.e., absolute volumes in native space), we observed an increase of WM volume until 30-40y 

followed by a volume decrease (see Figure 27). The WM growth at early ages is faster than the senescence at late 

ages. This is assessed by the selected hybrid model (p<0.001) combining an exponential cumulative distribution 

model for growth and a cubic model for aging (see Eq. 15). On the other hand, although the same model is selected 

for GM (p<0.0001), its trajectory is more complex. We can observe a 4-stage trajectory composed of a fast growth 

until 8-10y followed by a fast decrease until 40ys, then a plateau and finally an accelerated aging-related decrease 

visible around 80ys.  

At the brain scale, when using normalized volumes in % to the TIV, the main difference is found for the GM 

trajectory. Indeed, we observed a decrease of GM all along the lifespan (see Figure 28) following a cubic model 

(p<0.0001). The decrease of normalized volumes also follows a complex shape with 3 stages composed of a rapid 

decrease from 0 to 20y, a plateau from 40 to 80y and a rapid decrease after 80y. It is interesting to note that despite 

the normalization, the WM growth remains very fast at the brain scale for early age since a hybrid model using an 

exponential cumulative distribution model for growth has been selected.  

Structure volBrain Freesurfer FIRST 

Lat. Ventricles 
Caudate 
Putamen 
Thalamus 
Pallidum 
Hippocampus 
Amygdala 
Accumbens 

4.95 [7.42] 
0.53 [1.22] 

0.69 [1.76] * 
0.82 [1.04] 
1.60 [1.92] 
1.41 [2.97] 
3.38 [2.06] 

2.65 [22.81] 

5.06 [4.85] 
1.39 [2.47] 
2.23 [2.90] 
0.93 [0.66] 
3.18 [3.72] 
1.73 [1.74] 
4.13 [5.23] 
2.68 [2.48] 

-- 
1.19 [1.20] 
1.20 [1.23] 
0.98 [1.67] 

0.92 [0.96] † 
2.15 [3.20] 
3.94 [3.63] 
4.26 [6.92] 

Overall 1.59 2.33 2.09 
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Finally, at global and brain scales, we observe that WM have almost an inverted U-shape model although an 

asymmetry exists with a faster volume increase related to maturation than volume decrease caused by aging.   

3.3.2.2 Deep	Gray	Matter	Structure	Trajectories		

3.3.2.2.1 Thalamus,	Accumbens,	Caudate,	Putamen	and	Globus	Pallidus	Trajectories	

At global scale, we observed that thalamus, accumbens, caudate and putamen follow similar trajectories with fast 

growth until 10-12y followed by a volume decrease. All selected hybrid models combine an exponential 

cumulative distribution for growth followed by low polynomial order for volume loss during aging, cubic for 

caudate (p<0.0001) and putamen (p<0.0001), quadratic for thalamus (p<0.0001) and linear for accumbens 

(p<0.0001). On the other hand, globus pallidus volume decreases from birth all along lifespan. Unexpected slight 

increases of caudate and putamen volumes are visible after 80y.  

At the brain scale, we observed that thalamus, accumbens, caudate, putamen and globus pallidus show a volume 

decrease across the entire lifespan. First, thalamus and accumbens exhibit almost monotonous decrease although 

cubic models have been selected (both with p<0.0001). Second, caudate and putamen present similar slowdown 

decreases after 50y. The similar trajectories of the caudate and putamen are consistent with their shared nature as 

dorsal striatal structures (Paxinos and Mai 2004). The model selected for these structures is cubic for caudate 

(p<0.0001) and quadratic for putamen (p<0.0001). Finally, globus pallidus follows a cubic model (p<0.0001). 

3.3.2.2.2 Amygdala	and	Hippocampus	Trajectories	

At the global scale, amygdala volume shows a slight increase until 18y-20y followed by a long plateau that ends 

around 70y, followed by an age-related atrophy. The selected hybrid model combines a volume increase following 

an exponential cumulative distribution and a volume decrease following cubic model (p<0.0001). The 

hippocampus trajectory presents a fast volume increase until 8y-10y followed by a slow volume increase until 

40y-50y before an atrophic period. Here, the selected hybrid model mixes a volume increase following an 

exponential cumulative distribution and then an inverted U-shape volume decrease (p<0.0001).  

At the brain scale, amygdala volume trajectory follows a cubic model (p<0.0001) with a plateau until 70y followed 

by an atrophy. This result seems to indicate that absolute increase of amygdala volume during childhood is mainly 

related to brain growth. Moreover, using relative volume, HIPP exhibits a very specific inverted U-shape trajectory 

compared to other analyzed subcortical structures. In our study, the HIPP was the only structure showing volume 

increase until the middle period of human life. To better investigate this point, we performed a complementary 

analysis between 18y and 70y. We found that the impact of age on absolute HIPP volume is significant (p<0.0001) 

and that the selected model is an inverted U-shape trajectory over this restricted period. According to our results, 

the hippocampal maturation stops around 50y. 
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Figure 27: Volume trajectories based on absolute volume in cm3 for brain tissues and subcortical structures across the entire 
lifespan. These volume trajectories are estimated according to the age on 2944 subjects from 9 months to 94 years. General 
model is in black, female model is in magenta and male model is in blue. Dots color represents the different datasets used in 
this study. 

3.3.2.3 Sexual	Dimorphism	

At the global scale, we observe that males have bigger volumes than females for all considered structures (sex 

interaction with p<0.0001) with the exception of accumbens. Moreover, the peaks of maturation appear 1-3 years 

earlier in females for most of the structures considered. Finally, increased atrophy rates for males after 80y is 

assessed by CSF trajectory, which is the only brain compartment showing significant age*sex (p<0.0001).  

At the brain scale, almost all gender volume differences vanish, except for caudate (p=0.05) and thalamus (p=0.05) 

with marginal significance, and for accumbens (p=0.02) all in favor of females. Visually, we can observe bigger 

relative HIPP volume for female (almost significant p=0.07) (see Figure 28). Finally, for global GM, caudate, 

thalamus, globus pallidus and amygdala, trajectories of females seem to indicate a better resistance to the 

accelerated age-related atrophy occurring after 80y. To investigate this point, we studied sex and sex*age 

interaction using all subjects with age > 70 years (i.e., 637 subjects composed of 292 males and 345 females). 

Models estimated using all the subjects are applied over this considered restricted period to evaluate sex and 

sex*age interactions. We found that using normalized volumes, almost all studied structures show significant sex 

and sex*age interaction after 70y with the exception of WM and amygdala.  
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Figure 28: Trajectories based on relative volumes (% total intracranial volume) for brain tissues and subcortical structures 
across the entire lifespan. These volume trajectories are estimated according to the age on 2944 subjects from 9 months to 94 
years. General model is in black, female model is in magenta and male model is in blue. Dots color represents the different 
datasets used in this study. 

With our volBrain pipeline and our reference lifespan models, we have the two required elements to perform brain 

monitoring – a measurement tools and a range of reference (see Figure 23). It is the main realization of all the 

work described in Chapter 1 and 3. This illustrates the coherence and evolution of my work over the last 8 years. 

In the next subsection, we will compare our reference models with pathological models to demonstrate the 

usefulness of brain monitoring and to show how Big Data in neuroimaging can produce new medical knowledge. 

3.3.3 Timeline	of	Brain	Alterations	in	Alzheimer’s	Disease	

Brain imaging studies have shown that progressive cerebral atrophy characterized the development of AD. The 

key question is – how long before the diagnosis of AD the neurodegenerative process started? To answer this 

question, in (Coupé et al. 2018), we proposed an innovative way by inferring brain structure volume trajectories 

across the entire lifespan using massive number of MRI using. As previously described, three pathological models 

were investigated – an AD model composed of 2303 samples, an MCI model composed of 2836 samples and an 

AD/MCI model composed of 3262 samples. 
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Figure 29: Trajectories based on relative volumes (% total intracranial volume) for brain cortical and subcortical structures 
across the entire lifespan. These volume trajectories are estimated according to the age of subjects. CN model (N=2944) is in 
black and AD/MCI model (N=3262) is in red. The prediction bounds are estimated with a confidence level at 95%. 

Figure 29 presents trajectories of all considered structures for AD/MCI and CN groups. This figure shows that 

HIPP and amygdala models present marked divergences between AD/MCI and CN, but also indicates that this 

divergence increases with age. Moreover, the divergence of control and pathological models for these structures 

occurs early around 40-45y. Lateral ventricles also exhibit early divergence – starting around 42y –between both 

models, however the distance between models decreases at advanced ages. Similarly, the thalamus presents an 

early but weak divergence that decreases at advanced ages. Pathological models of caudate and accumbens nuclei 

exhibit accelerated volume decreases from 50-60y. However, confidence intervals for these structures overlap 

again after 85y (see Table 19). For WM and GM, AD/MCI models present an early accelerated aging compared 

to CN models around 45y. However, after 80y, CN models of brain tissues show an accelerated volume decreases. 

Consequently, confidence intervals of pathological and normal models for WM and GM overlap after 85 years 

(see Table 19). Finally, normal and pathological models for globus pallidus and putamen present similar trends. 

Table 19 shows the age ranges where the confidence interval of the 3 predicted pathological models (i.e., AD, 

MCI and AD/MCI) do not overlap with the confidence interval of the control models.  
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Table 19: Age range in years where confidence intervals of the predicted pathological models do not overlap with the predicted 
control models. The prediction bounds are estimated with a confidence level at 95%. Three model comparisons are presented 
CN (N=2944) vs. AD/MCI (N=3262), CN (N=2944) vs. AD (N=2303) and CN (N=2944) vs. MCI (N=2836). 

 CN vs. AD/MCI  
 

CN vs. AD 
 

CN vs. MCI 

White Matter [47.6 - 85.8] [46.9 – 89.9] [53.7 - 82.3] 

Gray Matter [45.0 – 85.6] [46.2 – 86.4] [58.3 – 86.7] 

Lateral Ventricles [42.0 – 93.2] >38.6 [45.1 – 89.2] 

Caudate [62.7 - 84.1] [68.8 - 82.8] [70.3 - 84.7] 

Putamen N/A N/A N/A 

Thalamus [42.8 – 89.1] [41.7 – 89.6] [45.5 – 86.7] 

Globus Pallidus N/A N/A N/A 

Hippocampus  >39.0 >37.1 >42.4 

Amygdala >43.8 >40.2 >49.3 

Accumbens [48.1 – 85.6] [46.0 – 88.0] [52.6 – 82.3] 

First, only HIPP and amygdala trajectories present non-overlapping confidence intervals after trajectory 

divergence for all the studied pathological modes (i.e., AD/MCI, AD and MCI). This is also valid for lateral 

ventricles but only when using the AD model. For all other considered structures, predicted confidence intervals 

overlap again at advanced ages around 80-90y. 

Second, HIPP is the first impacted deep gray structure with a trajectory divergence at 39y when using the AD/MCI 

group, 37y when using the AD group and 42y for the MCI group. The second structure impacted is the lateral 

ventricles with a divergence point at 42y when using AD/MCI group, 39y for AD group and 45y for MCI group. 

Afterwards, thalamus trajectory divergence from control at 43y when using AD/MCI group, 42y for AD group 

and 45y for MCI group. Amygdala trajectory divergence occurs then at 44y when using AD/MCI group, 41y when 

using AD group and 49y for MCI group. Impact on global GM and WM volume is observed later, with trajectories 

diverging at 45y and 48y respectively for the AD/MCI group, at 46y and 47y respectively for the AD group and 

at 58y and 54y respectively for the MCI group. Finally, accumbens and caudate trajectories diverge slightly later, 

but in a similar age range. Putamen and globus pallidus are the only deep gray matter structures for which 

trajectories do not diverge from CN across the entire lifespan. 

To further analyze trajectories of well-known AD biomarkers, we propose an additional analysis focusing on the 

HIPP, the lateral ventricles and the amygdala. Figure 30 presents the trajectories of these structures for CN, AD 

and MCI models. Moreover, relative rate of change and abnormality percentages are provided. First, divergence 

points for the AD models compared to the CN models are earlier than for the MCI models (see Table 19 for exact 

time). As expected, MCI trajectories are between AD and CN ones. Second, when using relative rate of change, 

amygdala and lateral ventricles exhibit a more pronounced relative change compared to HIPP. The maximum 

relative changes for AD models for these structures are -3.6%/y for amygdala at 96y, -2.1%/y for HIPP at 96y and 

3.4%/y at 42y for lateral ventricles. Contrary to HIPP and amygdala, which show an increasing relative change 

with age, lateral ventricles exhibit enlargement following an inverted U-shape.  
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Figure 30: Hippocampus, lateral ventricles and amygdala trajectories for CN, AD and MCI models. The relative volumes (% 
total intracranial volume) are displayed according to the age in years across the entire lifespan. The prediction bounds are 
estimated with a confidence level at 95%. Relative rate of change is based on the first derivative of the model divided by the 
model and provided in % per year. Finally, percentage of abnormality is estimated as the difference between CN model and 
AD or MCI models divided by CN model. The model for CN group (N=2944) is displayed in black, the model for MCI group 
(N=2836) is displayed in yellow and the model for AD group (N=2303) is displayed in red.  

 

When considering abnormality percentage, an earlier abnormality increase is observed for HIPP than for lateral 

ventricles and amygdala. This abnormality reaches a maximum of 32% for the AD model at 96y. Abnormality 

appears later in life for lateral ventricles and amygdala and follows very different patterns for both. The lateral 

ventricles abnormality trajectory follows an inverted U-shape with a maximum of 47% at 63y for the AD model. 

The amygdala abnormality trajectory is similar to the HIPP abnormality. Amygdala reaches 40% of abnormality 

at 96y for the AD model. Therefore, while HIPP abnormality starts first, amygdala presents a greater abnormality 

at advanced ages. Moreover, the abnormality observed in lateral ventricles is also important but its maximum is 

reached at 65y. Afterwards, percentage of abnormality of lateral ventricles decreases to end at 19% at 96y for the 

AD model. Therefore, at late ages, the lateral ventricles show lower abnormalities than those of the HIPP and the 

amygdala at the same age.  
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3.3.4 The	volBrain	Web-platform:	3	years	of	experience	

Once the volBrain pipeline was finished and the reference lifespan models built, we integrated them into a fully 

open access web platform – the volBrain platform (http://volbrain.upv.es). In this subsection, we will briefly 

present the volBrain platform and its usage after 3 years of experience. 

Most of the developed pipelines for MR image analysis are packages that need to be downloaded, installed and 

configured. Installation step can be complicated and thus may require an experimented person not always available 

in a research laboratory or clinical context. In addition, users have to be trained to use the software and 

computational resources have to be allocated to run it. These requirements can make complex the use of these 

packages, especially the most recent and sophisticated ones since they usually require advanced hardware 

configuration. Furthermore, multiplatform versions and support has to be deployed to the community of users. We 

have tried to overcome all these problems by deploying our volBrain pipeline through a web interface providing 

not only access to the software but also sharing the computational resources of our institutions. Thus, using the 

volBrain pipeline does not require any installation, configuration or training. The volBrain platform works 

remotely through a web interface based on a SaaS (Software as a Service) model to automatically provide a report 

containing volumetric information.  

The volBrain pipeline is executed on dedicated clusters. The system has been designed to deal with up to 14 

concurrent volBrain jobs and has a theoretical limit of 1200 processed cases per day. To get access to the system, 

the user has to register by providing personal information such as email, name and institution name. The web 

server (see Figure 31) accepts requests (jobs) from users who submit a single anonymized compressed MRI in 

Nifti file format via a web interface (see Figure 32). Then, the web server dispatches the computational load among 

the available machines called workers. This job dispatching is done by using a queuing system based on a job 

manager (technical details can be found in (Manjon and Coupe 2016)).  

 

Figure 31: The volBrain platform architecture. 

5 Architecture

Dans cette partie nous nous intéresserons à l’architecture globale de volBrain, au début (version
Legacy) et à la fin du stage.

5.1 Architecture de volBrain Legacy

Figure 1 – Ancienne architecture de la plate-forme

5.1.1 Présentation des entités

— Web Server : serveur Xampp (distribution Apache) tournant sous Windows 7. Le site qui y est
déployé utilise de l’Ajax (Javascript), HTML/CSS et PHP

— Files storage : Network Attached Storage (NAS), serveur de stockage de fichiers, les résultats et les
images y sont stockés

— Base de données : base de données MySQL contenant l’ensemble des données utilisateurs mais aussi
les caractéristiques et le statut des di↵érents workers

— Workers : ensemble de 7 machines tournant sous Windows Server 2012 R2 Datacenter. Un service
PHP (Process Manager) se charge de récupérer les images à traiter et de lancer les traitements sur
les pipelines MATLAB 7.8 associés

— Job Dispatcher : service PHP tournant sur la même machine que le Web Server, ce dernier est en
charge d’a↵ecter les jobs référencés dans la base de données aux workers disponibles

— SMTP : Simple Mail Transfer Protocol, serveur en charge de l’envoi des mails de notifications, il
est utilisé par le Job Dispatcher lorsque ce dernier met à jour les statuts des jobs et par le Web

Server lorsqu’un utilisateur s’inscrit

5.1.2 Problèmes liés

Actuellement, trois entités ont accès en écriture à la base de données et deux au NAS. La multiplica-
tion des accès par di↵érentes entités pose des problèmes de sécurisation. En e↵et, des mesures di↵érentes
sont alors à prendre au niveau de chacune des entités. De plus, le Web Server est l’une des entités ayant
accès en écriture à la base de données et au NAS. Ce dernier étant accessible par les utilisateurs, toute
attaque réussie sur ce dernier rendrait disponible à l’attaquant le NAS et la base de données.

6
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Figure 32: The volBrain website. 

The outputs produced by the volBrain platform consists in report sent to the user by email using a SMPT server. 

This report summarizes the volumes and asymmetry ratios estimated from the submitted cases. If the user provides 

the sex and age of the uploaded subject, we compared the estimated volume to our reference models by providing 

normal bounds in the report. Furthermore, the user can download the resulting Nifti files containing the 

segmentations at different scales (in native or MNI space) in his user area directly from the volBrain website. 

Figure 33 shows an example of a report produced by the volBrain platform. Screenshots for each step of the 

pipeline are included for quality control purpose.     

 

Figure 33: Example of volBrain pdf report. 
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The volBrain web platform has been launch officially the 28th Match 2015 after 6 months of beta testing. At the 

day of writing this manuscript, the system had already more than 1800 registered users working in 800 different 

institutions all around the world. Moreover, our system has automatically processed more than 70.000 subjects 

with a failure rate around 2%. Figure 34 shows a world map of the distribution of the volBrain users. Thanks to 

our fully open access philosophy, we can see that people all around the world are using our platform. At present, 

we have only one computational site with 7 servers in Spain. However, we are currently moving to a more modular 

architecture based on Docker technology (https://www.docker.com) to prepare the deployment of a second site at 

the LaBRI UMR 5800 of the University of Bordeaux. We have just installed the new servers in France. We are 

now working to manage both sites efficiently and synchronously. 

Since its introduction, we added new pipelines to the volBrain platform. First, our cerebellum lobule segmentation 

method CERES (Romero et al. 2017a) presented in Chapter 2 is already proposed through our web-platform and 

account for 15000 jobs on the 70.000. Moreover, a new pipeline for white matter hyperintensity segmentation 

called lesionBrain (Guizard et al. 2015a) has been launch one week ago and already processed 500 cases. Finally, 

our hippocampus subfields segmentation method HIPS (Romero et al. 2016) is under integration.  

 

 
Figure 34:Distribution of volBrain users around the world in January 2018. 
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3.4 Discussion	

In this third chapter, we presented the tools that we developed to preform brain monitoring. First, we detailed the 

volBrain pipeline mainly based on our PBS framework introduced in Chapter 1. Then, we explained our lifespan 

model construction based on massive MRI processing. Moreover, we presented our pathological model showing 

the timeline of brain atrophy in AD. Finally, we described the full open access web-platform that we developed to 

make our brain monitoring tools worldwide available. Therefore, in this chapter we dealt with two very important 

aspects of my research – doing translational research by sharing developed tools and producing new knowledge 

for medicine and neuroscience. We will discuss these both aspect in the following. 

In (Manjon and Coupe 2016), we showed that the volBrain pipeline is able to provide state-of-the-art results at 

different levels (intracranial cavity, brain macro-structures and subcortical structures) in a very efficient manner. 

The proposed pipeline was compared with two well-established software packages (Freesurfer (Fischl 2012) and 

FIRST (Jenkinson et al. 2012)) for subcortical structure segmentation. The volBrain pipeline was found to 

significantly improve the accuracy (according to the used protocol) compared to both methods. Regarding to the 

reproducibility, volBrain was also found to be the more reproducible than Freesurfer and FIRST. This is an 

important issue since the higher the reproducibility the higher the chances to detect subtle variations induced by 

the disease. In addition, we found that segmentation masks obtained with FIRST were more accurate and more 

reproducible than Freesurfer ones. The results on reproducibility between Freesurfer and FIRST were less obvious 

since they were structure dependent. However, it has to be noted that FIRST failed for 2 cases of 20 (i.e., 10% of 

failure rate) while both volBrain and Freesurfer worked for all the 20 cases. Finally, the volBrain pipeline is also 

more computationally efficient than Freesurfer since it takes around 15 minutes to produce the results compared 

to several hours in the case of Freesurfer (we have to note that Freesurfer provides full brain segmentation and 

cortical thickness in this time). The volBrain pipeline and FISRT are similar in term of computational time (only 

for subcortical segmentation without lateral ventricles). We should also remark that volBrain pipeline is one of the 

few software to provide HIPP segmentation based on EADC protocol which is the new reference for AD. The 

development of volBrain was the first important step to achieve in order to perform brain monitoring. Afterwards, 

we started estimating the reference models, the second key element. 

In (Coupe et al. 2017), we proposed new reference models for anatomical brain structure based on a massive MRI 

processing carry out with the volBrain pipeline. This study presented brain volume trajectory over the entire 

lifespan using the largest age range to date (from few months of life to elderly) and one of the largest number of 

subjects (N=2944). Beyond proposing new models for brain monitoring, we also produced new knowledges able 

to help us to answer to one of the main questions in neuroscience – What are normal brain maturation and age-

related brain atrophy? Indeed, knowing when brain tissues stop to mature and when they start to degenerate are 

key questions in neurology (Sowell et al. 2003). In the past, both questions have been treated separately in the 

literature, preventing us to get a global picture of these join phenomena. In (Coupe et al. 2017), we proposed a 

unified analysis of brain development and aging at the same time, resulting in new findings as discussed in the 

following.  
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First, we showed that the absolute global GM volume followed a complex trajectory with 4 phases: 1) rapid 

increase from 0 to 8-10y, 2) rapid decrease until 40, 3) a plateau from 40-80y and 4) a rapid decrease after 80y. 

When global growth effect was corrected, normalized global GM volumes decreased all over lifespan and follow 

a complex shape with 3 phases: 1) a rapid decrease from 0 to 20y, 2) a plateau from 40 to 80y and 3) a rapid 

decrease after 80y. This decline of the normalized global GM volume is consistent with the well-known fact that 

most of the neurogenesis is a prenatal phenomenon (Stiles and Jernigan 2010). In contrast, WM presented a shape 

close to the usually described inverted U-shape (Walhovd et al. 2011) that persists after controlling for head size. 

This result indicates that during the early phase of brain development, WM expansion exceeds general growth. 

The fast simultaneous WM maturation and GM decrease at brain scale from childhood to adolescence are 

consistent with brain myelination period and cortical thinning process previously observed ex-vivo (Huttenlocher 

and Dabholkar 1997).  

Moreover, one of the most marked discrepancy in the literature is about the cortical GM trajectory over childhood 

(Walhovd et al. 2016). First studies reported an increase with maturation peak in early school age (Giedd et al. 

1999, Lenroot et al. 2007, Raznahan et al. 2011). However, mainly monotonic decrease from early childhood have 

been recently published (Ostby et al. 2009, Brain Development Cooperative 2012, Aubert-Broche et al. 2013, 

Ducharme et al. 2016, Mills et al. 2016). The first factor that could explain this pronounced divergence is the used 

volume measurement. In (Coupe et al. 2017), we showed that absolute GM volume follows a 4-stage trajectory 

with a maturation peak while normalized GM volume follows a 3-stage trajectory exhibiting a decrease all along 

the lifespan. Therefore, our results are in line with (Giedd et al. 1999, Shaw et al. 2008, Groeschel et al. 2010, 

Raznahan et al. 2011) using absolute measurement and are consistent with (Ostby et al. 2009, Mills et al. 2016) 

using normalized measurement. However, several studies reported monotonic decrease using absolute cortical GM 

volume over childhood (Sowell et al. 2003, Brain Development Cooperative 2012, Aubert-Broche et al. 2013, 

Ducharme et al. 2016, Mills et al. 2016, Walhovd et al. 2016). This result is in contradiction with studies dedicated 

to newborn period that report an increase of absolute GM over the first months of life (Groeschel et al. 2010, 

Holland et al. 2014, Makropoulos et al. 2016). The fact that several studies did not detect GM maturation peak 

using absolute measurements seems to be related to two main factors, the lack of subjects younger than 5y and the 

use of low order polynomial models. Indeed, most of the studies presenting monotonic decrease did not include 

subjects younger than 4y making difficult the detection of GM volume increase over the first years of life. 

Moreover, this implies that the model fitting was mainly driven by subjects with already mature brains (Sowell et 

al. 2003, Brain Development Cooperative 2012, Aubert-Broche et al. 2013, Ducharme et al. 2016, Mills et al. 

2016, Walhovd et al. 2016). In addition to this potential issue on the used age range, most of these studies were 

using linear, quadratic or cubic models. Low order polynomial models are not well-designed to capture complex 

shape such as fast growth with saturation before nonlinear decrease. In (Coupe et al. 2017), we tried to address 

these two limitations by using subjects younger than 4y old and by considering hybrid models able to handle 

complex brain change occurring during the first years of life. 

Furthermore, deep GM structures are the focus of a great interest due to their important role in various 

neurodegenerative diseases, and thus have been intensively studied in the past (Fjell et al. 2013). Non-linear 

trajectories of these structures have been previously described for adulthood (Ziegler et al. 2012, Fjell et al. 2013). 

More recently, studies taking advantage of the “Big Data sharing” in neuroscience started to analyze subcortical 
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structure volumes from 20y up to advanced ages to define normative values for adult lifespan (Potvin et al. 2016). 

However, the limited age range of these studies made impossible to estimate full lifespan models. In (Coupe et al. 

2017), we have addressed this important problem by considering subjects covering the entire lifespan. Moreover, 

we extensively analyzed structure trajectories using both absolute and normalized volumes. Therefore, our results 

present at the same time the structure maturation peaks occurring during childhood based on absolute volumes and 

the accelerated atrophy related to aging occurring after 80y obtained using normalized volumes. When deep GM 

structures are considered at the brain scale, their trajectories present a similar global decrease all along life, except 

for the medio-temporal regions with a late decrease for amygdala (after 70 years old) and an inverted U-shape for 

hippocampus. The understanding of the amygdalo-hippocampal complex is important in neurology since it is 

related to crucial tasks such as memory, spatial navigation or emotional behavior. Moreover, HIPP has been largely 

studied due to its use as an early biomarker in several neurodegenerative diseases such as AD (Fox et al. 1996, 

Jack et al. 1997) as already explained in Chapter 2, but also because it is the main location of adult neurogenesis 

(Eriksson et al. 1998, van Praag et al. 2002). Noteworthy, while amygdala and HIPP are often associated due to 

their respective contribution to the limbic system, it appears that they present different trajectories. This fact has 

been previously reported in recent studies (Ziegler et al. 2012, Fjell et al. 2013, Pfefferbaum et al. 2013, Potvin et 

al. 2016). The long maturation period of the hippocampus may be related to the adult neurogenesis. In fact, it has 

been shown that neurogenesis in the human hippocampus is substantial until at least the fifth decade of life 

(Spalding et al. 2013), a finding consistent with our analysis. In contrast to the HIPP, early maturation of the 

amygdala is consistent with its known function in emotional learning, which allows individuals to avoid aversive 

events and pursue rewarding experiences (Phelps and LeDoux 2005). The amygdala in humans has been shown to 

be functional early in life (Tottenham and Sheridan 2009). Our results on amygdala were in accordance with most 

of the previous studies highlighting a minor effect of aging over adulthood (Walhovd et al. 2011). 

In addition to these reference models of normal aging, we presented a study following a similar approach to analyze 

the timeline of brain atrophy in AD (Coupé et al. 2018). This recent work demonstrated the interest to perform 

brain monitoring by showing early divergence of pathological and normal model. Indeed, our lifespan analysis 

based on large-scale datasets using inferred timeline of brain atrophy in AD indicates that the HIPP is the first 

brain structure (among considered ones) to exhibits a significant volume difference between cognitively normal 

subjects and subjects who will present clinical symptoms. This difference is detectable early in life, at 39y for the 

AD/MCI model and at 37y for the AD model. The HIPP is followed by another temporal lobe region, the amygdala, 

which is different between the two groups at 44y for the AD/MCI model and at 40y for the AD model. It is 

noticeable that amygdala is undergoing larger changes proportionally to its size compared to HIPP. Finally, the 

lateral ventricles present an early enlargement at 42y for the AD/MCI model and at 39y for the AD model. 

However, lateral ventricles enlargement occurring during normal aging reduces the abnormality of this structure 

after 65y.  

Our results presenting the HIPP as the first brain region diverging in the preclinical stage of AD is in accordance 

with previous morphometric studies focused on the prodromal phase of the disease including ours as discussed in 

Chapter 2 (den Heijer et al. 2010, Miller et al. 2013, Bernard et al. 2014, Coupé et al. 2015). It is also in accordance 

with histopathological studies showing the temporal lobe as the starting point of the neurodegenerative process in 

AD (Braak and Braak 1991). In several long follow-up studies, authors observed that incident cases of AD present 
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morphometric difference in the hippocampus up to 10 years before the diagnosis (den Heijer et al. 2010, Miller et 

al. 2013, Bernard et al. 2014, Coupé et al. 2015). In our study, the youngest subjects presenting clinical symptoms 

included in the AD model are 55 years old, while the pathological trajectories diverge from normal model 18 years 

before for the AD model and 16 years before for the AD/MCI model. This result suggests that the 

neurodegeneration of the hippocampus is present several years before the onset of cognitive deficit as discussed 

in Chapter 2. Therefore, our model seems to confirm the presence of a long-lasting period of silence before the 

diagnosis of AD, as discussed in (Dubois et al. 2016). Moreover, our model indicates that the age of 40y is a 

critical period in the onset of the temporal lobe atrophy. Exposure to risk factors (such as diabetes and smoking) 

occurring at this lifetime period should be considered in future studies to evaluate their implication in the atrophy 

process (Debette et al. 2011). It worth to note that all the results about HIPP have been obtained using the EADC-

ADNI harmonized protocol. Therefore, this study is the largest analysis using this protocol to date. 

The second temporal lobe region diverging from the cognitively normal subjects according to our model is the 

amygdala, which is different from CN at 40y for the AD model and at 44y for the MCI/AD models. Atrophy of 

this structure has been repeatedly described in AD subjects, with a rate of change less important (Qiu et al. 2009) 

or similar (Poulin et al. 2011) than hippocampal one. Notably, in the transgenic mouse model of AD, the 

neurodegeneration in the amygdala even precedes that found in the hippocampus (Lin et al. 2015). In our study, 

we found that the relative rate of change and abnormality were greater for amygdala than for the HIPP at advanced 

ages. The early atrophy of the amygdala in the prodromal phase of AD is not surprising when considering the 

implication of emotion in memory. Indeed, the activity of basolateral and lateral nuclei of the amygdala is 

associated to a facilitation during the encoding phase and to an enhanced retrieval. These effects being mediated 

through the important interconnections between these structures and the HIPP (Phelps 2004). In addition, 

degradation of emotion processing ability is also observed in AD patients, as expected given the amygdala atrophy 

(Kumfor et al. 2014). Moreover, the atrophy of the amygdala is likely contributing to the olfactory deficits 

associated with AD, since the cortical nuclei of the amygdala are associated with the processing of olfactory stimuli 

(De Olmos 2004). Hyposmia has been described in AD (Tabert et al. 2005), and olfactory deficits can substantially 

precede cognitive symptoms (Djordjevic et al. 2008). However, it has to be taken into account that pathological 

alterations in AD occur also in other olfactory structures (Ohm and Braak 1987). Finally, timeline atrophy of the 

HIPP and the amygdala never overlaps across lifespan between the AD and CN models, in contrast to other deep 

gray matter structures investigated in this study. This result highlights the specificity all along life of the medial 

temporal lobe atrophy associated to the mnesic symptoms, which characterizes the disease.  

According to our results, the volume of the lateral ventricle is also an early biomarker of AD, since its trajectory 

diverges at 39y for the AD model and at 42y for the AD/MCI model. The potential of lateral ventricle volume as 

AD biomarkers has been previously mentioned over restricted periods (Nestor et al. 2008). In this study, by 

analyzing the change of lateral ventricle abnormality over time, we showed that lateral ventricle abnormality 

decreases after 65y. Therefore, the use of this biomarker is difficult for the late onset cases due to important lateral 

ventricle enlargement occurring during normal aging. However, it may be useful to discriminate cases around 65y, 

an early age at which the AD diagnosis is particularly relevant because intervention is more effective in the early 

phases of the disease (Prince et al. 2011). The importance of taking into account volume increase at advanced age 

in normal aging has been previously mentioned (Apostolova et al. 2012).  
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Finally, we decided to share our volBrain pipeline and our reference models by deploying an online web-based 

platform. The volBrain platform gives access to the whole scientific community not only to our brain monitoring 

tools but also to our own computational resources. Several platforms are available around the world. Among these 

platforms we can cite very exciting initiatives such as CBRAIN (Canada), CATI, VIP and FLI (France), NeuGrid 

(E-U) and SPINE (U.S.A). Each of these platforms follows different philosophy. CBRAIN (Sherif et al. 2015) is 

not in open access and proposes well-known tools such as FSL, Freesurfer and Minctool packages. VIP (Glatard 

et al. 2013) is an open access platform also proposing FSL and Freesurfer packages. In the future, pipelines 

developed by France Life Imaging (FLI)2 should be integrated within this platform. Another interesting platform 

is the European platform NeuGrid3. NeuGrid is open access and proposes the largest number of tools. However, 

these tools are mainly based on common tools such as FSL, Freesurfer and SPM packages. In addition, the CATI 

(Mangin et al. 2014) is the national French platform dedicated to neurodegenerative diseases. CATI is not open 

access and proposed tools mainly based on Brainvisa4. The main advantage of the CATI is to proposed a fully 

integrated service – from patient recruitment, MRI acquisition to image analysis. Moreover, CATI is built upon a 

large network of harmonized imaging facilities all around the French territory. Finally, SPINE is an original 

collaborating platform designed to accelerate scientific discovery while educating non-experts.  SPINE is based 

on crowdsourcing to obtain manual segmentation from non-experts. With volBrain, we developed a different 

paradigm by proposing an original pipeline in a fully open access as a Software-as-a-Service (SaaS). The volBrain 

analysis system works remotely through a really simple web interface and automatically produces a report. This 

report contains reference range to enable brain monitoring, as explained in this chapter. So far, other platforms do 

not provide such report system for brain monitoring. In 3 years, our volBrain platform processed around 70.000 

MRI for 1700 users all around the world. Thanks to our full open access philosophy and a very easy use (one-click 

solution), our platform grown up rapidly and is now a successful experience5. We progressively integrated news 

tools into our platform. Three years ago, at the beginning, only the volBrain pipeline was available. One year later, 

we proposed CERES through our platform for cerebellum lobules segmentation. More than 15000 MRI have been 

processed by the CERES pipeline. Currently, lesionBrain (for lesion extraction) is under beta testing and HIPS 

(for hippocampus subfields segmentation) is ready for beta testing. Recent funding will help us to deploy a second 

site at the Bordeaux University. Finally, we are currently moving our architecture to a modular and scalable 

solution based on Docker technology. 

                                                             

 
2 https://www.francelifeimaging.fr  
3 https://neugrid4you.eu  
4 http://brainvisa.info/web/index.html  
5 https://lejournal.cnrs.fr/articles/les-irm-cerebrales-ont-leur-traducteur-automatique 
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General	Discussion		

In this habilitation thesis, I presented our work on patch-based MRI analysis dedicated to quantitative MRI, 

computer-aided diagnosis and brain monitoring. I described the pathway that I followed over the past 10 years 

from voxelwise analysis to neuroscientific and medical knowledge production. Moreover, I introduced two of our 

major methodological contributions to medical image analysis – the patch-based segmentation and the patch-based 

grading. Finally, I detailed our contributions to translational research with the development of the volBrain 

platform and our last works on anatomical structure trajectory, which provided useful knowledge to better 

understand brain development and aging, as well as AD progression.  

 

• Chapter 1 

In Chapter 1, I presented our PBS method based on the nonlocal means strategy. In (Coupe et al. 2010a, Coupe et 

al. 2011), we were the first to use nonlocal means framework to perform segmentation. Moreover, I showed that 

our PBS can be used for a large range of applications from brain extraction to lesion detection. At present, PBS is 

considered as a state-of-the-art method and is studied by many groups around the world. Moreover, there exists 

an international MICCAI workshop dedicated to this topic – the Patch-MI workshop (Wu et al. 2015a, Wu et al. 

2016b, Wu et al. 2017) – that I have co-organized in the past 3 years. As explained at the end of Chapter 1, several 

studies (Wang et al. 2012, Wang et al. 2013a, Wang and Yushkevich 2013), including ours (Manjón et al. 2016, 

Romero et al. 2016, Romero et al. 2017a, Zandifar et al. 2017), showed that the current optimal PBS strategy  is 

based on a combination of three steps: i) nonlinear multi-atlas warping ii) PBS and iii) error correction involving 

machine learning methods. This pipeline is competitive for structure segmentation compared to last Deep Learning 

(DL) strategies as shown in (Wachinger et al. 2017b). In (Wachinger et al. 2017b), the proposed 3D Convolutional 

Neural Network (CNN) did not outperform a method proposed in 2012 (Wang et al. 2012) based on this 

framework. Moreover, our CERES2 method was the best ranked method in the international MICCAI challenge 

ENIGMA, better than several DL methods including Fully Convolution Network (FCN). In addition, our PBS 

framework remains competitive for MS lesion detection as shown in (Brosch et al. 2016) where FCN obtained 

worst results than our method (Guizard et al. 2015a). However, patch-wise cascade of CNN (Valverde et al. 2017) 

demonstrated improved lesion segmentation accuracy compared to our PBS. Patch-wise architecture is well-suited 

to MS lesion detection since many occurrences of the target object can appear in one training image that can 

dramatically increase the size of training samples.  

According to the recent successes of DL in computer vision, I have no doubt that DL-based methods will soon be 

a major tool for quantitative MRI analysis – reviews on DL in medical imaging can be found in (Litjens et al. 

2017, Shen et al. 2017). However, at present, one of the main issues of using DL in medical imaging is the limited 

number of training images with manual segmentations. For instance, CNN presented in (Wachinger et al. 2017b) 

for structure segmentation was tranied on the 30 MRI of the MICCAI challenge 2012 and the CNN-based lesion 

segmentation methods presented in (Brosch et al. 2016, Valverde et al. 2017) were trained on the 20 MRI of the 
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MICCAI challenge 2008. While in computer vision, very large labeled databases exist (e.g., ImageNet contains 

over 10 million of hand-annotated images (Deng et al. 2009)), in medical field the construction of such large 

dataset is very challenging. Consequently, there is an interesting debate on the choice between exemplar-based 

methods such as PBS – less demanding in training images – and learning kernel-based methods such as CNN – 

faster to segment a new case once trained (although it has to be noted that DL training step can require several 

days on GPU). Currently, I think that the method choice highly depends on the size of the training library. 

Nevertheless, when the size of training datasets will increase, CNN methods will be more efficient.  

Recent ongoing open access initiatives, such as the UKbiobank, have the ambitious goal of imaging more than 

100,000 participants (15.000 images are available so far). Moreover, there is a global trend to produce larger 

datasets. Therefore, we can expect that freely available datasets will be larger in the coming years and thus DL 

will be a tool of choice. However, the labeling of these large-scale databases will remain an issue. In my opinion, 

PBS can play an important role to address this problem. As shown in previous works, label propagation (Wolz et 

al. 2010) based on PBS can produce accurate automatic segmentations over large database using few manually 

segmented examples. Moreover, our experiments showed that these automatic segmentations can be added to 

training library to further improve the segmentation accuracy of PBS (Eskildsen et al. 2012, Giraud et al. 2016). 

Therefore, PBS could be used to label large databases and then DL could be trained on these automatic 

segmentations. Our first experiments based on this original data augmentation scheme showed promising results 

using U-Net architecture. Therefore, I am currently working on the combination of PBS and CNN in order to take 

advantage of both strategies. 

 

• Chapter 2 

In Chapter 2, I presented our PBG method as an extension of our PBS to perform patient classification. I showed 

that our PBG can be used for AD diagnosis (Coupe et al. 2012a), AD prognosis at MCI stages (Coupe et al. 2012b, 

Komlagan et al. 2014, Hett et al. 2016, Hett et al. 2017, Hett et al. 2018) but also at presymptomatic stage (Coupé 

et al. 2015). Moreover, I described our recent work on multimodal grading of hippocampal subfields as a promising 

way to better track AD progression (Hett et al. 2018). Finally, the proposed methods comparison showed that our 

extensions of PBG (Komlagan et al. 2014, Hett et al. 2017) are competitive compared to last DL-based methods 

(Suk et al. 2017). Indeed, when using similar preprocessing (i.e., nonlinear registration) and ROI (i.e., whole gray 

matter), PBG and CNN produce similar classification accuracy (Hett et al. 2017). Compared to segmentation, it is 

easier to get access to larger training datasets in computer-aided diagnosis since manual segmentations are not 

required. Nevertheless, it seems that the size of currently available datasets (e.g., around 800 subjects for the 

ADNI1 dataset) is not sufficient to fully take advantage of CNN approaches. Therefore, as mentioned for 

segmentation, there is an interesting debate to open on the capabilities of exemplar-based methods such as PBG 

and learning kernel-based methods such as CNN to detect subtle image modifications from “limited” training 

dataset. In my opinion, with current library size, exemplar-based methods are more sensitive to detect small 

changes while kernel-based method are more efficient to find general class-specific features. Consequently, further 

research would be very interesting on this aspect, in particular on the combination of the two approaches to take 

advantage of the sensitivity of PBG and the specificity of CNN.  
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As showed in Chapter 3, one way to address the problem of the training dataset size in computer-aided diagnosis 

is to combine several datasets. To make the aggregation strategy of these datasets effective, we will need to 

homogenize images quality and contrast. Therefore, preprocessing steps – such as denoising, intensity 

normalization and so on – will be crucial to successfully achieve such aggregation. As discussed in (Akkus et al. 

2017), despite their robustness, an efficient preprocessing pipeline remains very important when using DL methods 

in medical imaging. Thanks to our works dedicated to the volBrain platform, we have acquired a great expertise 

in the preprocessing of multiple large datasets. Moreover, as presented in Chapter 3, we also learned to aggregate 

multiple heterogeneous datasets when we estimated our lifespan model.  Therefore, I think that our expertise on 

low level task such as denoising, registration and intensity normalization will be really useful to build large-scale 

databases and thus to address new challenges related to DL and Big Data.    

 

• Chapter 3 

In Chapter 3, I presented our works on brain monitoring, or at least on our efforts to make it possible one day. In 

this chapter, I first described the volBrain pipeline. I showed that our software is very competitive for subcortical 

structure segmentation in terms of accuracy, reproducibility and robustness compared to state-of-the-art software 

such as Freesurfer (developed by Harvard and the M.I.T) and FIRST (developed by the University of Oxford).  

Moreover, I presented our lifespan models that revealed for the first time the brain trajectory from few months of 

life to advanced ages. In addition, I detailed our pathological model enabling to tack brain alterations caused by 

AD across the entire lifespan. Finally, I explained the fully open access philosophy of our volBrain platform and 

its translational impact. After 3 years of experiences, the volBrain platform already processed more than 70.000 

MRI for more than 800 institutions around the world. This usage statistic demonstrates the need of proposing 

online service dedicated to automatic brain analysis and brain monitoring. In addition, this great success prompts 

us to rethink its architecture by using scalable technology such as containerization (e.g., Docker). 

With the “volBrain adventure” and the emergence of very large dataset freely available, I have faced several 

challenges related to Big Data as defined by the usual 3Vs model (Volume, Variety and Velocity). My first 

challenge was to deal with large volumes of data and thus to manage their storage, their processing, their 

traceability, etc. To address this challenge, we proposed the fully automatic volBrain platform based on local 

servers hosted at the Universitat Politecnica de Valencia. At present, we are currently deploying a second site at 

the University of Bordeaux to increase our computational and storage capabilities. This will temporarily solve the 

issue of dealing with large volumes of data. However, in the future, cloud-based strategy seems a promising 

solution to enable scalable data storage and processing. The migration of volBrain to cloud-based solution will be 

facilitated by the new architecture of volBrain.  

My second challenge was to propose a fast and robust pipeline to make the processing of large databases practical 

and efficient. With our PBS framework based on OPAL, we drastically decreased multi-atlas segmentation from 

several hours to few minutes. This time can be potential reduced in the near future thanks to GPU-based methods 

such as DL. In addition to velocity, robustness is also important when processing large databases. Thanks to its 

simplicity, PBS demonstrated a good robustness with less than 2% of failure through the web platform. Despite 
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this low failure rate, one aspect that I had neglected at the beginning was the quality control (QC). When I worked 

on lifespan models, I spent a significant number of evenings to manually perform human-based QC. In my opinion, 

automatic QC of image processing pipeline is clearly under considered. Until recently, most of publications 

dedicated to brain MRI study involved several tens or hundreds of subjects and thus manual QC could be 

performed. However, when we will deal with hundreds of thousands – already 70.000 MRI processed by volBrain 

and soon 100.000 subjects available with the UKbiobank – QC based on visual inspection will be no more realistic. 

Therefore, I think that one part of my future investigations will be dedicated to automatic QC.   

The last V of the usual Big Data 3Vs model is the variety. So far, the data variety managed by the volBrain platform 

is limited. The user can optionally provide the subject’s age and gender in addition to a T1w MRI. Thanks to the 

integration of lesionBrain and HIPS pipelines, several modalities of MRI are also managed. However, in my 

opinion, this variety will still not be sufficient to take full advantage of Big Data promises. I think that in medical 

imaging one emerging and promising field is the imaging genetics (Medland et al. 2014). Imaging genetics is a 

recent field of research that aims to identify correlations between genetic variants and anatomical or functional 

brain characteristics. Therefore, imaging genetics enables to find relationships between a genotype and an imaging 

phenotype. In my opinion, this field has a great potential but requires to process large volumes of highly 

heterogeneous data (i.e., imaging and genetic) in a practical time. My long-term project would be to combine the 

volBrain platform with an existing genetic platform to perform such imaging genetics.  

Recently, two Vs have been added to the usual 3Vs Big Data model – Veracity and Value – to define the new 5Vs 

Big Data model. In medical imaging, the reliability of the used data is related to the questions of QC and 

traceability. Unlike metadata provided by freely available datasets, where veracity is usually guaranteed, metadata 

provided by users to the volBrain platform are not trusty. This is one important limitation of the fully open access 

web-based approach. One way to answer this question is to process freely available datasets by ourselves through 

the web-platform as we did in (Coupe et al. 2017, Coupé et al. 2018). Another way to address this issue is to 

directly connect the platform to a PACS. However, such strategy implies that the platform is no more open access 

and raises several security issues. The current available platforms (e.g., CATI, FLI, VIP, CBRAIN, SPINE, etc.) 

follow different ways to address the veracity problem such as using private internal database (e.g., CATI) or 

crowdsourcing (e.g., SPINE). Therefore, it will be interesting to analyze feedback from each of them and to discuss 

possible connections between these platforms. The last V is the value of these volumes of data. In (Coupe et al. 

2017, Coupé et al. 2018), we already demonstrated the high value of using large dataset. Moreover, as previously 

mentioned, large dataset will also be very useful for DL methods. It is obvious that the emergence of very large 

multimodal datasets (e.g., UKbiobank) is an invaluable opportunity for medical and neuroscientific researches. 

However, this next generation of dataset will also require tools designed to manage them such as the volBrain 

platform.    

To conclude this manuscript describing my last 8 years devoted to medical image analysis, I would like to say that 

it was a real pleasure to work in this multidisciplinary field. I had the chance to meet passionate experts from 

different domains ranging from mathematics to medicine who gave me a little of their time to explain to me the 

specific concepts that I needed for my research. I hope to continue this adventure as long as possible and I look 

forward to the next challenges related to A.I. and BigData in neuroimaging.
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