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Abstract

The human sense of touch is of fundamental importance in the way we perceive our en-

vironment, move ourselves, and purposefully interact with other objects or beings. Thus,

contact forces are informative on both the realized task and the underlying intent. However,

monitoring them with force transducers is a costly, cumbersome and intrusive process. In

this thesis, we investigate the capture of haptic information from motion tracking. This is a

challenging problem, as a given motion can generally be caused by an infinity of possible

force distributions in multi-contact. In such scenarios, physics-based optimization alone may

only capture force distributions that are physically compatible with a given motion, rather than

those really applied. In contrast, machine learning techniques for the black-box modelling of

kinematically and dynamically complex structures are often prone to generalization issues.

We propose a formulation of the force distribution problem utilizing both approaches jointly

rather than separately. We thus capture the variability in the way humans instinctively regulate

contact forces while also ensuring their compatibility with the observed motion. We present

our approach on both manipulation and whole-body interaction with the environment. We

consistently back our findings with ground-truth measurements and provide extensive datasets

to encourage and serve as benchmarks for future research on this new topic.

Keywords: force sensing from vision; motion capture; humanoid robotics.

Résumé

Le sens du toucher joue un rôle fondamental dans la façon dont nous percevons notre en-

vironnement, nous déplaçons, et interagissons délibérément avec d’autres objets ou êtres

vivants. Ainsi, les forces de contact informent à la fois sur l’action réalisée et sa motivation.

Néanmoins, l’utilisation de capteurs de force traditionnels est coûteuse, lourde, et intrusive.

Dans cette thèse, nous examinons la perception haptique par la capture de mouvement. Ce

problème est difficile du fait qu’un mouvement donné peut généralement être causé par une

infinité de distributions de forces possibles, en multi-contact. Dans ce type de situations,

l’optimisation sous contraintes physiques seule ne permet que de calculer des distributions

de forces plausibles, plutôt que fidèles à celles appliquées en réalité. D’un autre côté, les

méthodes d’apprentissage de type ‘boîte noire’ pour la modélisation de structures cinéma-

tiquement et dynamiquement complexes sont sujettes à des limitations en termes de capacité

de généralisation. Nous proposons une formulation du problème de la distribution de forces

exploitant ces deux approches ensemble plutôt que séparément. Nous capturons ainsi la

variabilité dans la façon dont on contrôle instinctivement les forces de contact tout en nous

assurant de leur compatibilité avec le mouvement observé. Nous présentons notre approche

à la fois pour la manipulation et les interactions corps complet avec l’environnement. Nous

validons systématiquement nos résultats avec des mesures de référence et fournissons des

données exhausives pour encourager et évaluer les travaux futurs sur ce nouveau sujet.

Mots-clés: capture de force par vision; capture de mouvement; robotique humanoïde.
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Introduction

The recent years have let us witness impressive advances in the fields of robotics and artificial

intelligence. In October 2015, Google DeepMind’s AlphaGo became the first computer

program to defeat world-class champion Lee Sedol at go [SHM+16], a game long considered

extremely difficult for computers to win due to its large branching factor. New techniques for

large-scale machine learning are enabling robots to develop grasping skills without human

supervision [LPKQ16], and progress in actuation and balancing systems are allowing biped

robots to withstand human aggression with a stick. In parallel, augmented and virtual reality

technologies are getting more and more immersive and affordable to customers. Extrapolating

from here, one could imagine a future where self-driving cars take over the world by running

over humans too absorbed in mixed reality activities to look around when crossing the

street. Fortunately, this scenario remains (rather bad) science fiction. The winning AlphaGo

system garnered hundreds of CPUs and GPUs in parallel for a very specialized purpose,

illustrating the fact that it remains a major challenge to construct a truly general artificial

intelligence. Robots still lack sensing abilities for both themselves and the environment, e.g.,

tactile sensors enabling the perception of subtle haptic clues for dexterous manipulation, or

robust object identification and tracking from vision without relying on fiducial markers.

Stimulating the human sense of touch also remains a challenge for virtual reality systems to

achieve further immersion and embodiment.

Overall, a central theme towards action understanding and control is that of haptic

perception. Indeed, a privileged way humans interact with their environment is through

touch, i.e., the application of contact forces to move objects, themselves and others. Being

able to capture these by means of a simple and affordable setup would open a wide range

of possibilities for multiple fields of research and engineering. For instance, in robotics,

this could enable intuitive interfaces for learning from demonstration and human-robot

interaction. In neuroscience, being able to estimate the forces applied during manipulation

and reproducing them by means of haptic feedback could benefit the sensation of virtual or

robotic embodiment for virtual reality and teleoperation. In rehabilitation, monitoring forces

applied during manipulation and locomotion could help detect musculoskeletal conditions
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(a) AlphaGo playing against Lee Sedol [SHM+16]. (b) Robot arms learning grasping [LPKQ16].

(c) Boston Dynamics Atlas robot pushed with a stick. (d) Oculus Touch marker-based tracking system.

Figure 1: A few recent advances in artificial intelligence, robotics and virtual reality.

and guide movement training. In effect, force models are already being introduced in

computer vision, for action understanding and robust motion capture based on physics.

Overall, haptic perception has been shown to be crucial in the human ability to grasp

and manipulate objects [JW84]. However, traditional force sensing technologies are often

costly, cumbersome, as well as of limited accuracy under repeated use. Importantly, they

are also intrusive, in that mounting them onto objects can noticeably impact their physical

properties. Alternatively, using wearable sensors (e.g., placed at the fingertips) hinders the

natural perception of crucial properties (e.g., friction) by the human sense of touch. In both

cases, instrumenting either is a time-consuming process that induces further limitations

due to both the whole equipment needed (e.g., power supply, cabling) and its effect on

the manipulation task (e.g., limitations on the natural range of motion). Computer vision

research has resulted in multiple successful methods for monitoring motion information from

markerless observations. Thus, a challenging question is: can we also estimate contact forces

from vision? If successful, such a method would enable applications such as those discussed

before, while also tremendously benefiting their usability. The completely non-intrusive

estimation of contact forces would be particularly useful for monitoring and learning of daily

activities in the context of home and service robotics.
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However, this is an extremely challenging problem, for multiple reasons. First, before

even considering forces, the markerless tracking of human subjects (whole-body or restricted

to the hands) is itself an active topic in computer vision research. Indeed, such problems

typically involve a large number of degrees of freedom, while visual observations may

be subject to strong occlusions. In addition, the tracking method must account for, or be

robust to, sensing limitations (e.g., number of cameras, resolution) and uncertainties (e.g.,

depth sensing noise). At this stage, it is unclear whether the state of the art in markerless

visual tracking permits the accurate estimation of kinematic information (e.g., velocities

and accelerations) on unconstrained interactions (e.g., rapid motions). Second, estimating

when and where contact occurs between the human subject and the environment is not trivial

due to mutual occlusions inherent to contact situations. Third, even when the motion and

its characteristics are perfectly known, the force distribution problem is indeterminate in

multi-contact. Indeed, while the knowledge of a force distribution completely characterizes

the resulting kinematics, the converse is generally not true. Instead, in multi-contact, a

desired net force can generally be distributed in an infinity of different configurations on a

given set of contact points.

Still, spatiotemporal relationship between actor and objects can help enhance the joint

understanding of both. In this thesis, we leverage the state of the art in computer vision,

robotics and machine learning to investigate the problem of force sensing from vision (FSV).

Typically, biomechanics approaches aim at solving the force distribution problem through

inverse optimization, i.e., by searching for the criteria supposedly optimized by the central

nervous system. While theoretically sound, such approaches have so far mainly produced

models limited to very specific scenarios and grasping conditions (e.g., holding an object

still between two fingers), due to the great complexity of the human body and the limited

observability of physiological parameters without invasive surgery. Conversely, force models

for physics simulation have recently been employed as optimization priors in hand-object

markerless tracking. While helpful for this purpose, these approaches only aim at computing

force distributions that are physically plausible, rather than the actual forces being applied.

In contrast, throughout this thesis, it is a primary concern for us to demonstrate the

validity of the FSV framework we propose by consistently comparing the forces distributions

estimated by our method with ground-truth measurements acquired experimentally on real

tasks. We consider the force distribution problem both for hand-object manipulation and

whole-body interaction with the environment. The core of our approach lies in the utilization

of physics-based optimization and machine learning jointly, rather than separately. On its

own, the former may be limited to physical plausibility, rather than fidelity to real force

distribution patterns. The latter, by itself, is often subject to generalization issues, e.g., when
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it is applied to examples that differ significantly from those present in the training dataset.

By using them together, we capture the variability in the way humans naturally apply contact

forces when interacting with objects and their environment, while ensuring that the resulting

force distributions are compatible with the observed motion. The organization of this thesis

is as follows:

• In Chapter 1, we review the state of the art in motion and force sensing technologies as

well as visual tracking techniques and contact dynamics modeling.

• In Chapter 2, we introduce the topic of force sensing from vision in the context of

manipulation. First, we evaluate the performance of a state-of-the-art hand-object

tracker regarding motion and kinematics estimation. We then formulate an optimization

problem estimating the minimal forces required to achieve the observed motion, and

complement it with artificial neural networks that predict the additional forces humans

naturally apply to secure the object in the grasp.

• In Chapter 3, we extend our work to 3D (normal and tangential) manipulation forces

while accounting for time continuity and variability across object and grasp config-

urations with a new pipeline combining physics-based optimization and recurrent

neural networks in mutual interaction. To assess the performance and extensibility

of our approach, we also construct and release the first large-scale dataset on human

manipulation kinodynamics with high-precision motion and force sensors.

• In Chapter 4, we challenge the estimation of whole-body contact forces in interaction

with the environment from motion capture. We show that in such situations, forces

estimated from optimization only differ significantly from the forces applied in reality,

while conversely, force sensor measurements can be rather unreliable. We collect a

new dataset on whole-body kinodynamics using an inertial motion capture system and

external force sensors, and show that our approach can be successfully extended to

challenging multi-contact configurations.



Chapter 1

Literature Review

The observation of humans in interaction with their environment is of great interest for

multiple fields of research, such as robotics, computer vision, graphics and rehabilitation.

Such interactions can be observed and encoded in terms of motion, i.e., the relative poses

through time between one or multiple human actors and surrounding objects. From a lower-

level perspective, humans interact with their environment in a privileged way through touch,

i.e., the application of contact forces and torques onto surrounding objects, permitted by the

remarkable dexterity of the human hand. As such, the monitoring of interaction forces is

informative of both the resulting motions and the human intent. We first review the motion

and force sensing technologies and their applications (Section 1.1). We discuss the state in

the art in visual tracking (Section 1.2). We review existing kinematic and dynamic models

for human motion analysis (Section 1.4). Finally, we discuss numerical techniques used for

kinodynamic modeling (Section 1.5).

1.1 Monitoring Human Interactions With The Environment

In this section, we discuss the types of sensors used for motion and force monitoring and

illustrate their combined utilization in past works.

1.1.1 Motion Sensors

Motion capture aims at tracking the movement of target objects or subjects. It is today

commonly used to animate virtual characters or avatars in computer graphics and virtual

reality. The tracking target can be rigid (e.g., a mug), articulated (e.g., whole-body tracking),

or deformable (e.g., facial motion capture). The motion can be monitored in terms of

positions (linear, angular) or the subsequent derivatives (e.g., velocity, acceleration).
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Motion capture techniques based on vision can be placed into two categories: marker-

based or markerless. In the former, markers placed at prespecified landmarks on the tracking

target are located in space from the visual observations (e.g., by thresholding), and mapped to

the target kinematic structure [MG01, MHK06]. While marker-based methods generally yield

very precise tracking, the required instrumentation is cumbersome. Markerless approaches

aim at alleviating this issue by relying on visual observations only and were reviewed

in [Pop07] in the context of human motion analysis. A problem inherent to vision-based

systems is the possibility of mutual occlusions between multiple tracking targets (e.g., an

object hiding the hand manipulating it, and conversely) or self-occlusions between different

parts of the same target (e.g., the palm hiding some fingers). This issue can be alleviated by

using multi-camera systems to limit the amount of occlusions. Such systems also allow the

obtention of depth information by 3D reconstruction from multiple views [CBK03].

However, multi-camera systems are not very portable and require extensive calibration,

making them difficult to use in uncontrolled environments. Inspired by human binocu-

lar vision, stereo vision systems use two calibrated cameras with parallel optical axes

to seek corresponding points between view pairs and extract depth information [LK81].

Alternative methods used in consumer-grade RGB-D (color and depth) sensors include

structured light [SS03], which consists in projecting a known pattern onto the scene and

analyzing the corresponding deformations (e.g., Microsoft Kinect, Asus Xtion), and time-of-

flight [GYB04], based on the delay between the emittance of a light pulse and its reflection

by the objects of the scene (e.g., Microsoft Kinect v2, SoftKinetic DepthSense DS325).

Finally, strong occlusions can occur even when using multiple cameras, for example

when multiple tracking targets interract with each other; in tight spaces; or in uncontrolled

environments (e.g., outdoor). In such scenarios, body joint angles can be tracked using

non optical systems worn on the subject’s body. Inertial motion capture systems rely on

inertial measurement units (IMUs) placed at specified landmarks on the subject’s body (e.g.,

Perception Neuron, Xsens MVN Awinda). The joint angles are computed by sensor fusion

and integration of the IMUs’ accelerometer and gyroscope measurements [RLS09]. As such,

inertial motion capture systems are prone to positional drift. External camera systems can be

used in combination with inertial motion capture to provide absolute positioning.

1.1.2 Force Sensors

Force sensing is a key objective in understanding physical interactions between humans and

their environment. Not only can tactile feedback provide valuable insight when setting up

haptic interfaces, it is also of vital importance when monitoring manipulation tasks performed

by robots, e.g., frail object grasping. Force sensors now come up in a variety of types and
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(a) Handle instru-
mented with force
sensors [WTZL15]

(b) Force transducer mounted on
fingertip for interaction capture
and synthesis [KP06].

(c) Haptic interface to demonstrate a robotic
arm how to pour drinks based on force mea-
surements during teleoperation [RJC13].

Figure 1.1: Instrumentation examples. (a): on object, (b): on hand, (c): haptic interface.

specifications (e.g., capacitive, piezoresistive, single or multi-axis) [CHP08], with particular

requirements and applications in robotics [DMVS10, KCP15]. Common drawbacks of

mechatronic force sensing devices reside in their extensive need for calibration, accuracy and

repeatability limitations (e.g., hysteresis) and cost. Besides their sensing capabilities, another

difficulty lies in their intrusiveness. For example, consider a human subject manipulating an

object of given physical properties. In order to measure manipulation forces, sensors must be

placed at the contact locations between the object and the hand. If mounted onto the object:

• the contact locations must be chosen in advance

• the object must be modified to fit force transducers at the specified locations as well as

any additional instrumentation required (e.g., wires)

• such modifications can be cumbersome, time-consuming, and importantly affect the

physical properties of the object (e.g., shape, mass distribution)

If mounted onto the hand:

• contacts can be placed arbitrarily but additional hand tracking is required to know their

position throughout the experiment

• the force sensors can significantly impair the human haptic sense (e.g., friction percep-

tion) and limit the natural range of motion (e.g., joint angles, contact orientations)

We depict such instrumentation examples in Fig. 1.1.

A less intrusive approach could consist in covering the surface of the object with

lightweight, flexible tactile sensing surfaces, reviewed in [SCCP14]. Doing so would allow

the monitoring of manipulation forces on arbitrary contact points with minimal impact on
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the object and the hand. However, such technologies are still limited in terms of captured

dimensions (e.g., normal forces only) and precision (i.e., providing accurate measurements

of the applied forces). During our preliminary experiments, we found that commercially

available force-sensing resistors (FSR, Interlink Electronics), are better suited for contact

detection than accurate force sensing, despite extensive calibration.

An alternative to pressure sensors proposed in [MA01] consists in instrumenting fingers

with miniature LEDs and photodetectors to measure changes in fingernails coloration, that

are then correlated to the touch force applied at fingertips. Later, this technology evolved to

predict normal and shear forces, and even changes in posture, that appear to have different

blood volume patterns [MA04]. Fingernail color and surrounding skin changes were also

monitored and processed using an external camera system to estimate contact fingertip

forces in [SHM08, SHM09, GHM13, UBO+13]. Conversely, computer graphics models

were developed to simulate fingertip appearance changes based on simulated forces [AJK13].

This approach is, however, limited to fingertip contacts and requires extensive calibration for

each individual user, since nail appearances can vary between subjects and through time. It

is also limited by the necessity of having fingernails visible at all time and at high resolution,

requiring appropriately mounted miniature cameras. Still, this result illustrates that the

problem of estimating contact forces during manipulation can indeed be tackled by computer

vision.

1.1.3 Applications of Motion and Force Monitoring

Observing a scene with a single RGB-D sensor in [KA13], Kyriazis et al. showed that the

computation of interaction forces explaining the motion of visible objects could help infer

the motion of objects hidden from the camera. Hand-object grasps were classified in terms

of shape and contact configurations in multiple taxonomies [Cut89, LFNP14, FRS+16].

These taxonomies were augmented with contact force estimates in [RSR15b] to construct

a dataset on functional grasp understanding. Also in action and scene understanding, Zhu

et al. also used forces as a physical concept to model tool use [ZZCZ15] and learn human

utilities [ZJZ+16], e.g., by quantifying comfort intervals while sitting on a chair in terms of

forces exerted on body parts. Kry et al. proposed an acquisition setup combining marker-

based motion capture and force transducers to estimate hand joint compliance and synthesize

interaction animations [KP06].

Besides computer vision, grasp taxonomies were used in robot learning from demon-

stration (LfD) for the planning of in-hand manipulation actions [PPB12]. The monitoring

of contact forces is of critical importance for such dexterous actions. Towards this purpose,

Liu et al. proposed a robotic fingertip equipped with a 6-axis force-torque sensor and a
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rubber skin allowing the accurate and high-speed sensing of contact wrench and even contact

location [LNP+15]. In [RJC13], Rozo et al. introduced an LfD framework to teach a robotic

manipulator to place a ball in a box and pour a drink relying solely on force perception and

haptic feedback. In the context of whole-body motion, [EKO15] modelled ground reaction

forces (GRF) measured during human running experiments as polynomial splines to construct

a general controller for bipedal running, independent of specific hardware constraints for the

considered robot. Similarly, in graphics, the whole-body motion of a human subject was

reconstructed from GRFs measured with consumer-grade pressure sensing platforms and a

hand-tracking device in [HBL11].

Still in computer graphics, ensuring that a desired motion is physically plausible through

the application of compatible contact forces allows the generation of realistic-looking ani-

mations. In [Liu08] and [Liu09], Liu introduced an optimization framework allowing the

production of such physically plausible manipulation animations with only inputs a start-

ing grasp pose and a partial trajectory for the object. This work was later on extended

in [YL12] to animate a hand manipulating objects from the motion capture of the objects

and the subject’s wrist, without tracking the motion of the individual fingers. Hand control

strategies were also constructed in [AK13, BL14] to accomplish general actions such as

reorienting a ball in a chosen direction rather than specifying its exact trajectory. Mordatch

et al. introduced the contact-invariant optimization (CIO) method in [MTP12], enabling the

synthesis of complex animations from high-level goals only by simultaneous optimization

of contact and motion. This method was applied to dexterous manipulation in [MPT12].

In the context of visual servoing, i.e., the incorporation of visual information for robot

control [ECR92, CH06], Agravante et al. combined haptic information and vision for the

human-robot collaborative carrying of a table while preventing a ball on top from falling

off [ACB+14].

1.2 Markerless Visual Tracking

Towards the non-intrusive monitoring of contact forces, our work capitalizes on the re-

cent advances of markerless visual tracking for pose estimation and motion perception.

Public libraries enabling the robust and efficient tracking of one or multiple objects are

now routinely deployed in production or robotics research systems, e.g., ARToolKit [KB99],

ViSP [MSC05], BLORT [MPR+10]. Such methods typically rely on feature tracking [MC05]

(e.g., dots, contours, SIFT keypoints [Low04]) and can even scale to hundreds of objects in

real time [PRR15] or articulated systems [CMC07, PRR14], provided accurate visual and

kinematic models of the latter. In contrast, tracking human subjects is subject to different
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Visual observations Match to template Classification Regression

(a) Bottom-up approach for hand tracking [TYK13].

Pose θθθ

Graphic rendering Evaluate against
visual observations

Minimize
discrepancy

Optimal pose
estimate θθθ ∗

Generate new pose hypothesis

(b) Top-down approach for the tracking of two hands in interaction [OKA12].

Figure 1.2: Bottom-up and top-down pose estimation methods.

constraints, e.g., body shape and appearance variety across individuals and populations,

kinematic complexity and high dimensionality, self-occlusions between body parts. In this

section, we review the state of the art in the markerless visual tracking of human subjects,

either whole-body or restricted to the hand(s). Pose estimation methods can be classified

into mostly bottom-up, mostly top-down, or hybrid. In bottom-up approaches, given visual

observations of the subject, the first step is to identify the location of body parts in the image.

The detected body parts are then assembled into a complete pose based on considerations

such as body part proximity and temporal coherence. Conversely, in top-down approaches, a

generative process creates subject pose hypotheses that are evaluated against actual observa-

tions. Final pose estimates are obtained by solving a multi-parameter optimization problem,

e.g., the minimization of the discrepancy between the pose hypotheses rendered graphically

and the visual observations. We depict representative examples of bottom-up and top-down

pose estimation approaches in Fig. 1.2.

1.2.1 Bottom-Up Methods

Marker-based motion capture is a case of bottom-up pose identification, as body parts are

first localized in space, then matched to a target kinematic structure. In the first work on

markerless hand tracking [RK94], Rehg and Kanade extracted fingertip locations and finger

bone central axes from the observed silhouette of the hand. Recent bottom-up approaches

are typically data-driven and rely on discriminative models to learn a mapping between
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visual inputs and poses from labeled examples. Wang and Popović used a colored glove

to identify hand parts and track the hand in real time by nearest neighbor search in a

hand-pose appearance database [WP09]. Romero et al. generated a database of synthetic

hand images to track the hand without a colored glove [RKK09] and later extended this

idea to synthetic hand-object poses [RKK10]. Random decision forests (RDF) [Bre01]

were trained on synthetic data for hand tracking [KKKA11, KKKA12] and whole-body

pose estimation [SFB+11, SSK+13]. Tang et al. explored alternative RDF models and

addressed the discrepancy between synthetic data and real observations [TYK13, TCTK14].

In [TSLP14], Tompson et al. extracted hand pose features using RDFs in combination

with convolutional neural networks (CNN) [LBBH98]. Rogez et al. recovered arm and

hand poses using support vector machines (SVM) in the context of egocentric vision with a

chest-mounted camera [RSR15a].

Bottom-up approaches are typically computationally cheap as they avoid the computation

of graphic renderings and discrepancies to the visual observations. [SFB+11] thus performed

whole-body tracking at 200 frames per second, enabling its use as a side process for real-

time applications (e.g., human-computer interaction, video gaming). Another advantage is

that bottom-up approaches can operate on a per-frame basis, without relying on temporal

coherence, while top-down approaches require manual initialization (at least) for the first

frame of the sequence. However, the quality of the pose estimation is directly contingent

on the training data and may not generalize well to previously unseen inputs, e.g., different

hand poses, occlusion cases, or hand-object interactions.

1.2.2 Top-Down Methods

Rather than discriminative, top-down methods are generative, or model-based. Using an

explicit model of the subject (e.g., 3D geometry, inertial parameters), pose hypotheses are

optimized by evaluation against the visual observations. Global optimization is generally not

possible due to the large dimensionality of the search space and the computational cost of

rendering and evaluating pose hypotheses. Instead, local search is performed in the vicinity of

an initial pose estimate, which can be initialized manually for the first frame of the sequence,

or taken as the optimal pose found at the previous frame. In an early work on model-based

whole-body tracking [GD96], Gavrila et al. decomposed the search space in a hierarchical

manner, following the kinematic tree, by searching first for the head and torso, then the

upper arms and thighs, then the forearms and lower legs. At each step, the pose of the

corresponding limbs was found by discretizing the reduced search space and maximizing a

similarity measure between visual observations given by a calibrated multi-camera setup and

the synthesized appearance of the pose hypotheses in each camera view.
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In [dLGFP11], de La Gorce et al. proposed an objective function differentiable with

respect to the hand pose and its lighting, allowing its efficient optimization using a quasi-

Newton method. Still, the 3D color rendering of a hand under different conditions of lighting

remained particularly expensive, leading to a total computation time of approximately 40 s

per frame (i.e., 0.025 fps). In addition to color, depth information has been increasingly used

in recent approaches. The iterative closest point (ICP) algorithm [BM92], used to minimized

the discrepancy between two point clouds, was adapted to whole-body tracking in [GPKT12]

and ran at 125 fps on a single-threaded CPU implementation. However, ICP alone is easily

trapped in local minima. Tagliasacchi et al. [TST+15] augmented the ICP with priors built

from a hand pose database. Both approaches achieved the tracking of a hand from depth in

real time. The signed distance function (SDF) [CL96] used previously in conjunction with

ICP for surface mapping and tracking [NIH+11] was extended by Schmidt et al. to general

articulated models [SNF14] such as the hand or the whole body.

Ballan et al. tracked two hands in interaction with an object [BTG+12] by searching for

salient points (e.g., fingernails and fingertips) using a discriminative model, in combination

with the local optimization of a differentiable cost function accounting for edges, optical flow

and collisions. Tzionas et al. extended this approach with physical simulation to improve

the realism of the hand-object pose estimates [TBS+15]. Oikonomidis et al. tracked a hand

with particle swarm optimization (PSO) [KE95] using either a multi-camera setup [OKA10]

or a single RGB-D sensor [OKA11a]. The use of stochastic optimization alone allows the

incorporation of arbitrary priors in the optimization process regardless of differentiability

constraints. The fact that two different objects cannot share the same physical space was

implemented by penalizing interpenetrations between 3D shapes in the cost function, allowing

the same framework to also track a hand in interaction with an object [OKA11b] or two

strongly interacting hands [OKA12]. Complete occlusions were also treated through physics-

based simulation [KA13]. Wang et. al proposed a contact-based sampling approach allowing

the monitoring of subtle hand-object interactions during dexterous manipulation using a

multi-camera setup [WMZ+13] and physics-based simulation.

In effect, top-down methods allow the treatment of occlusions not as a distractor, but

rather as a source of information. A major advantage resides in their ability to tackle virtually

any situation, provided the models of all the objects in the scene. However, their computa-

tional cost is generally considerable, although modern implementations (e.g., GPGPU) now

enable real-time tracking. Still, reinitializing the pose search during the sequence remains

problematic (e.g., as tracking errors accumulate through time or when the subject exits the

field of view).
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1.2.3 Hybrid Methods

Hybrid methods aim at combining the advantages of top-down and bottom-up approaches.

Discriminative methods can provide a fast and rough pose estimate to efficiently initialize a

slower but more refined search through local optimization.

In [SOT13], Sridhar et al. combined a generative method based on a Sum of Gaussians

(SoG) model, with a linear SVM classifier detecting fingertips from depth maps. The SoG

model was introduced earlier for whole-body tracking [SHG+11] to provide a differentiable

cost function for fast local optimization. The SoG model was also used in combination

with RDFs for the tracking of a hand in [SMOT15] and that of a hand manipulating an

object [SMZ+16], in real time. Qian et al. [QSW+14] combined a fingertip detector with a

generative model making use of both ICP for fast local optimization and PSO to explore the

search space more thoroughly. In the approach of Sharp et al. [SKR+15], the discriminative

model does not produce just a single good pose estimate but rather a distribution over

possible hand poses, which are then fitted to the depth observations using a variant of the

PSO algorithm. The resulting hand tracker was highly flexible with respect to camera

placement, demonstrated great robustness to tracking failure, and ran in real time on a GPU

implementation. This approach was extended in [TBC+16] with a smooth hand model and a

differentiable cost function, enabling the use of gradient-based optimization techniques in

the generative process for real-time tracking on CPU only.

Overall, hybrid methods have demonstrated promising results for the tracking of a hand

in isolation. However, the tracking of multiple hands or hand-object interactions has been

comparatively less studied. For these situations, current approaches suffer from the same

drawbacks as bottom-up methods, in particular in the presence of strong occlusions.

1.3 Model-Based Hand-Object Tracking

While computationally expensive, top-down, model-based tracking methods allow the track-

ing of arbitrary subjects and objects in a unified framework. In this section, we review

the FORTH hand-object tracking method [OKA10, OKA11a, OKA11b, OKA12, KA13],

upon which we built our framework for force sensing from vision. First, we describe the

requirements of the method (Section 1.3.1). We then summarize the hypothesize-and-test

pose estimation strategy (Section 1.3.2). Finally, we discuss the incorporation of tracking

priors in the optimization process (Section 1.3.3).
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1.3.1 Observations and Models

We consider a set of NC cameras calibrated intrinsically and extrinsically. At a given time step

i, we denote by Fi, j the frame acquired by camera j. We call multiframe Mi the set of images

captured by all cameras at time step i, i.e., Mi =
{

Fi,1, . . . ,Fi,NC

}
. We denote by S the sequence

of NS multiframes acquired through time, i.e., S = {M1, . . . ,MNS
} . In [OKA10, OKA11b],

the multiframes are acquired by 8 color cameras observing the scene at 30 fps and 1280×960

resolution. In [OKA11a, OKA12, KA13], the scene is observed with a single RGB-D sensor

providing synchronized color and depth maps at 30 fps and 640×480 resolution. Fig. 1.3a

illustrates sample color and depth frames captured by a SoftKinetic RGB-D sensor.

Hands and objects are tracked based on their 3D shape. In the case of rigid objects, a

dedicated 3D model must be provided (e.g., made available by the manufacturer or by CAD).

The pose of a rigid object is then characterized by 6 DoF, i.e., its 3D orientation and the

position p = (px, py, pz)
T of a reference point of its geometry. For numerical reasons, 3D

orientations are commonly represented by unit quaternions q = (qx,qy,qz,qw)
T among other

representations and conventions (e.g., Euler angles, orthogonal matrices, etc.). The 6-DoF

pose of a rigid object can thus be encoded by a 7-element vector:

θθθ rigid = (qx,qy,qz,qw, px, py, pz)
T ,

with ‖q‖2 = 1.
(1.1)

The hand is modeled as an articulated system of rigid bodies following [AHS03]: the

palm and three segments for each of the five fingers. We denote the finger set by F :

F = {thumb, index,middle, ring,pinky} . (1.2)

The palm is chosen as root of the kinematic tree and its global pose is encoded by 7 parameters

as in Eq. (1.1). The finger poses are then characterized by 4 parameters each, i.e., 2 DoF for

the finger base and 1 DoF for each of the two remaining joints. In total, the 26-DoF hand

model is encoded by a 27-element vector:

θθθ hand =
(

θθθ palm,
(

θθθ k
)

k∈F

)
, (1.3)

with θθθ palm the 7-parameter pose of the palm and θθθ k the 4 joint angles of finger k ∈ F .

Provided an instance of θθθ hand, the 3D pose of each segment is computed by forward kine-

matics. To each segment is associated a visual representation using a combination of the

following geometric primitives: cones, cylinders, ellipsoids and spheres, Autocollisions

between different segments of the hand and interpenetration between hands and objects
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(a) Raw color (top left) and depth (top right) are captured separately
by two cameras. From the intrinsic parameters and relative positions,
depth is registered to color (bottom left) and conversely (bottom right).

(b) Articulated 3D hand model
(top) and sphere-based collision
model (bottom) [OKA11b].

Figure 1.3: Tracking inputs and models. (a): RGB-D sensor observations, (b): hand model.

are computed using a simplified sphere-based collision model for faster computation. We

represent both models in Fig. 1.3b.

1.3.2 Pose Estimation Strategy

In this section, we describe a representative pipeline for the tracking of a hand in isolation

using a single RDB-D sensor, as performed in [OKA11a]. More complex cases are treated

with the incorporation of tracking priors in the objective function, discussed in Section 1.3.3.

We consider a color image of the hand and the corresponding depth map as acquired by

an RGB-D sensor at a given time step i. First, the area of interest is obtained by segmenting

the hand from the rest of the color image by skin color detection [AL04]. We denote by os

the 2D map of the segmented skin color. The depth of the skin-colored pixels is conserved

from the raw depth map, while the rest is set to zero. We denote by od the resulting depth

map. The segmented color and depth observations are O = (os,od).

The objective is then to find the hand pose estimate θθθ ∗ that minimizes a cost function E ,

or energy, quantifying the discrepancy between observations O and pose hypotheses θθθ :

θθθ ∗ = argmin
θθθ

{E (θθθ ,O)}. (1.4)
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(a) Left to right: raw RGB, aligned depth, segmented hand, pose estimate. (b) Hand-object tracking.

Figure 1.4: Tracking: (a) hand in isolation [OKA11a], (b) two hands and multiple ob-
jects [KA14].

The energy E is comprised of two terms: a cost E3D measuring the discrepancy between

the visual observations and the rendered 3D hand model, and a cost Ekin that quantifies the

likelihood of the hand pose hypothesis by itself, regardless of the observations:

E (θθθ ,O) = λ3D ·E3D(θθθ ,O)+λkin ·Ekin(θθθ), (1.5)

with λ3D and λkin normalization coefficients adjusted manually for the optimization process.

Given the camera intrinsic and extrinsic parameters, a hand pose hypothesis θθθ can be rendered

graphically to generate a synthetic depth map rd . The cost function E3D thus implements a

discrepancy metric between synthetic and measured depth maps, e.g., the pixel-wise absolute

difference between rd and od . Regardless of the observations, Ekin penalizes kinematically

implausible hand poses, e.g., those resulting in auto-collisions between finger segments. We

depict the pose estimation process in Fig. 1.4a.

1.3.3 Incorporating Tracking Priors

Provided perfect observations, the optimization of the visual discrepancy cost function E3D

alone could theoretically lead to the real hand pose. In reality, observations are often partially

missing (e.g., occlusions) or subject to measurement uncertainties (e.g., motion blur). To

guide the pose estimation, tracking priors are incorporated through additional terms in the

definition of the objective function E in Eq. (1.5). As reviewed in Section 1.2.2, the energy

E is minimized by PSO. This choice is motivated by the limited number of hyperparameters

to adjust manually (e.g., number of particles) and its efficiency in exploring the search space

beyond local optima. Additionally, it does not impose any constraint on the objective function

(e.g., differentiability). Thus, arbitrary priors can be incorporated in the optimization process

in a unified computational framework.
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In [OKA11a], the hand kinematic plausibility cost Ekin penalized overlapping adjacent

fingers by comparing their abduction-adduction angles (i.e., how fingers are spread apart).

This approach was also used for the tracking of two hands in interaction [OKA12]. However,

this analytical formulation did not account for every possible collision (e.g., between thumb

and pinky fingertips) and penalized certain valid poses (e.g., crossed index and middle

fingers). Instead, [OKA11b] computed hand-hand and hand-object penetration volumes

using a third-party physics engine [S+05], exploiting the flexibility of PSO with respect to

the objective function. In [KA13], the cost function was augmented with a term comparing

the observations with physics-based simulation outputs [C+13], allowing the pose recovery

of fully occluded objects based solely on the tracking of the hand and the simulation of its

effect on the objects of the scene, visible or not.

Another advantage of PSO is its parallel nature, enabling real-time implementations on

the GPU [OKA11a, OKA12]. However, the computational complexity grows geometrically

with the number of tracked subjects and objects, when accounting for them simultaneously.

On the other hand, using multiple independent trackers scales better with the number of

objects but does not account for occlusions between them. The scalability of generative

methods was addressed in [KA14] through the concept of Ensemble of Collaborative Trackers

(ECT), in which each individual trackers per object broadcast their results with each other.

Fig. 1.4b depicts the tracking of two hands in interaction with multiple objects. In this thesis,

we tracked hand-object interactions using a variant of ECT.

1.4 Modeling Contact Dynamics

In this section, we first review existing techniques for the modeling of the human body (Sec-

tion 1.4.1). We then discuss the estimation of contact dynamics for the cases of whole-body

contacts with the environment (Section 1.4.2) and hand-object interactions (Section 1.4.3).

1.4.1 Human Dynamic Model

The identification of the objective function optimized by the central nervous system in

daily activities (e.g., locomotion, manipulation) is a long-standing problem in kinesiology

research [Zat02]. In [PZ02], Prilutsky and Zatsiorsky reviewed the state of the art in the

prediction of muscle activation patterns (MAP) from optimization, i.e., the understanding of

how human efforts are regulated at the musculoskeletal level by the central nervous system

(CNS). In doing so, they noted that a major difficulty lies in the high dimensionality of the

human body, which allows 244 kinematic DoFs with approximately 630 muscles. As such, it
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is a highly redundant system, making it difficult to consider biological parameters in isolation.

In addition, the observability of such parameters (e.g., muscle forces, joint torques) may

be limited without invasive surgery, which further hinders optimization-based techniques

requiring ground-truth data.

Whole-body motion and forces are also linked through the equations of motion and the

Body Segment Inertial Parameters (BSIP), i.e., the mass, position of the center of gravity

and inertia tensor of each body segment. In an early work by Dempster [Dem55], eight

cadavers were dismembered to provide data on mass, center of gravity, density and moments

of inertia. Further measurements on cadavers were performed in [CCM+75] and compared

to body segments models based on geometric primitives such as cylinders and ellipsoids, as

done in [HJ64]. McConville et al. combined anthropomorphic measurements from 31 living

male subjects with densities measured on cadavers to construct tables linking body segment

measurements and inertial parameters [MCC+80]. Young et al. extended this approach on

46 living female subjects [YCS+83]. BSIP estimation on living subjects was also performed

by Zatsiorsky et al. using gamma-ray in [ZS83, ZSC90b, ZSC90a]. Deleva et al. adjusted

these results to alternative anthropomorphic conventions in [DL96]. Similarly, the tables of

McConville et. al and Young et al. were adjusted by Dumas et. al in [DCV07], which we use

in this thesis.

While anthropomorphic tables allow the fast computation of BSIP estimates from body

segment measurements only, an important caveat resides in the specificities of the studied

subjects, e.g., college-aged Caucasian males and females in [ZSC90b], whose results may

not directly extend to other populations. Furthermore, the resulting BSIPs generally assume

symmetry between left and right halves of the human body, which may be a rather inaccurate

assumption, e.g., when particular muscles are atrophied due to neuromuscular diseases.

Towards these issues, Jovic et al. proposed a hierarchical optimization framework for the

online estimation of both robot and human BSIPs from direct motion and force-torque

measurements [JEA+16], without further assumption. In [BV15], Bonnet and Venture used

a Microsoft Kinect RGB-D sensor for visual tracking and a Nintendo Wii Balance Board for

force-torque sensing, enabling the online estimation of BSIPs with consumer-grade sensors.

1.4.2 Whole-Body Dynamics

Whole-body motion and ground reaction forces can typically be measured accurately using

commercially available solutions, e.g. marker-based motion capture and force plates, as

reviewed in Section 1.1. Measuring muscle forces in vivo is difficult without invasive surgery.

Instead, a common approach in biomechanics research is to first use the equations of motion

to estimate joint torques through inverse dynamics [DA87], and compute muscle forces that
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minimize criteria such as metabolic energy expenditure [AP01]. However, inverse dynamics

solutions are contingent on the underlying BSIP model. The influence of BSIP estimation on

inverse dynamics was studied in [PC99, RABF06, RHCF07, WDGJ14] in the context of gait

analysis. In [MGPD15], Muller et al. estimated joint torques during overhead throwing and

reported relative distances up to 70% between BSIP obtained with three different models of

the literature. Overall, such approaches are limited by the difficulty to obtain ground-truth

data, often limited to muscle excitation patterns measured with electromyography (EMG).

Alternatively, the human motion can be studied from the perspective of sensorimotor

control optimality, reviewed in [Tod04]. A given task, e.g., taking a step foward, can generally

be executed in multiple ways due to the redundancy of the human body. Still, it is commonly

assumed that humans naturally execute movements that are optimal with respect to certain

criteria, shaped by evolution and experience [Ale84]. Prilutsky and Zatsiorsky suggested

that such criteria might be based on three major physiological cost functions: metabolic

energy expenditure, muscle fatigue, and sense of perceived effort [PZ02]. In [Mom09],

Mombaur formulated the generation of running motions as an optimal control problem, i.e.,

the computation of trajectories that respect a given set of constraint and are optimal with

respect to a chosen cost function. Conversely, in inverse optimal control, the goal is to find the

cost function that is optimized during the observed motion. In [LHP05], Liu et al. captured

motion styles (e.g., sad / happy) in terms of preferences for applying torques at some joints

rather that others to synthesize new walking and running animations. In [MTL10], Mombaur

et al. identified cost functions optimized during human locomotion from motion capture and

applied the resulting models to generate natural trajectories on a humanoid robot.

Very much related to our work, the estimation of contact dynamics was also addressed

from a computer vision perspective. In [NYFS05], Nakamura et al. performed inverse

dynamics on a detailed model of the human body to compute sensomatory information

from motion capture, e.g., stimuli perceived at the level of the organs, muscles, tendons

and ligaments. Our work was also inspired by Brubaker et al., who estimated joint torques

from inverse dynamics and motion capture by parameterizing GRFs with a spring-based

model [BSF09]. General contact configurations between the whole body and objects of

the environment were also computed by considering the human body elastic [ZJZ+16].

Zhu et al. used the resulting force estimates to learn human utilities when interacting with

their environment, e.g., quantifying preferred poses when sitting in terms of contact forces

between the body and the chair. While a major limitation to these works lies in the difficulty of

validating the force models with ground-truth measurements, they also illustrate the interest

of capturing contact dynamics for action understanding in computer vision, as illustrated in

Fig. 1.5.
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(a) Muscle tensions,
low (yellow) to high
(red) [NYFS05].

(b) External forces
and joint torques (blue
spheres) [BSF09].

(c) Contact forces when sitting from finite element
analysis with deformable body model [ZJZ+16].

Figure 1.5: Dynamics estimation from motion capture for human and action understanding.

1.4.3 Prehension and Manipulation Dynamics

Besides whole-body dynamics estimation, the case of prehension and manipulation is another

active topic of interest for kinesiology research. This interest stems from the remarkable

dexterity of the human hand. It particular, it is a complex and redundant system, such that a

given task can generally be executed using multiple force distributions. Similarly to the case

of whole-body locomotion, it is difficult to identify clear criteria supposedly optimized by the

CNS during multi-finger prehension. From experiments on thumb-index pinching [WJ84],

Westling and Johansson showed that grip control is mostly influenced by the object’s surface

condition and its mass through the safety margin ratio, defined as the proportion of applied

forces that are unnecessary to achieve the object’s observed kinematics, with respect to the

total forces applied. Cadoret and Smith precised that the influence of the surface condition is

most important regarding its friction coefficient rather that its texture [CS96].

The notion of safety margin is largely related to that of nominal and internal forces.

Humans do not manipulate objects using nominal closures (i.e., minimal grasp forces).

They tend to “over-grasp” and produce workless internal forces, i.e. firmer grasps than

mechanically required through the equations of motion. This grasping property is described

by considering finger forces as two sets formalized in [KR86, YN91]: nominal forces

responsible for the object’s motion and internal forces that cancel each other out [MS85,

MSZ94] and thus do not affect the object’s kinematics. For instance, when holding a cup

statically, nominal forces directly compensate gravity, while internal forces secure the object

in place. Humans typically apply internal forces to prevent slip [JW84, FJ02] and control

their magnitude to avoid muscle fatigue or damaging fragile objects [GZL10, PSZL12].
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When manipulating objects, excessive forces applied by a finger are naturally compensated

by others, making the problem of force sharing between fingers particularly challenging.

Thus, inverse optimization approaches for manipulation have mostly resulted in models

that rely on rather strong simplifying assumptions. The most common restriction is on the

motion’s dimensionality. e.g., static prehension [NTLZ12]. Other approaches allow limited

motion, but using a simplified grasp model in which individual fingers and hand surfaces

are grouped into functional units named virtual fingers [AIL85, IBA86]. For instance, a

hand holding a cup is seen as the thumb on one side and a virtual finger on the opposite

side, that realizes the total wrench due to the four antagonist fingers. Under this formalism,

a five-finger grasp is effectively seen as two-finger. The thumb-virtual finger model was

used in conjunction with nominal-internal force decompositions on 1D horizontal, vertical

and transversal cycles in [GLZ05], and to predict normal forces on 2D circular trajectories

in [SLZ11]. In this simplified model, given the object’s kinematics, the knowledge of one

force fully determines the other through the equations of motion. This greatly conceals the

issue of force sharing indeterminacy. since in reality, full-hand forces can compensate each

other in an infinity of different distributions that all cause the same motion.

In computer vision and haptics, Mohammadi et al. computed forces between the hand

and deformable objects by finite element analysis [MBSP16]. Rogez et al. showed that

manipulation forces play a crucial role in hand-object interaction understanding[RSR15b],

and noted the challenge of obtaining the ground-truth contact points and forces humans use

instinctively, which we address in our work.

1.5 Numerical Techniques

In this section, we discuss the techniques used throughout this thesis for numerical differenti-

ation (Section 1.5.1), physics-based optimization (Section 1.5.2), and time-series modeling

(Section 1.5.3).

1.5.1 Numerical Differentiation

Through the Newton-Euler equations, contact forces applied during manipulation determine

the resulting kinematics in terms of linear and rotational velocity and acceleration. These

quantities are not directly provided by common positional tracking techniques, such as the

markerless visual tracking approach of [KA14], that instead capture linear and rotational

positions. Mathematically, velocities and accelerations can directly be computed from the

first and second-order derivatives, respectively, of the tracked positions. In practice, this
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is a delicate process due to tracking noise and sensing uncertainties. In such situations,

straightforward finite difference leads to exploding velocities and accelerations. On the other

hand, smoothing techniques may attenuate acceleration spikes occuring during manipulation.

A common approach for the numerical differentiation of noisy signals consists in finding

a smooth approximation of the original signal. e.g., spline interpolation with a least-square

criterion [ID04]. However, such approximations are constructed based on the observation

of the whole signal, or at least a large portion of it. Instead, the well-known Gaussian

smoothing in image processing can be implemented as a finite impulse response filter,

making it suitable for real-time applications. Still, in the context of motion capture, while

the visual acquisitions themselves (e.g., depth sensing) may be subject to Gaussian noise,

the errors do not necessarily follow the same statistical properties (e.g., pose estimation

errors can accumulate through time, rather than be uncorrelated). From the field of control

engineering, Fliess and Sira-Ramírez introduced an algebraic framework for parameter

identification in linear systems [FSR03]. This framework laid the foundation for the recent

theory of model-free control [FJ09] as well as a new class of derivative estimators for

noisy signals, independent of the noise statistical properties, termed algebraic numerical

differentiators [MJF09].

In the original work of Mboup et al. [MJF09], the goal is to identify the n-th order

derivative of a noisy signal x. With N ≥ n, we consider its N-th order truncated Taylor

expansion:

xN(t) =
N

∑
i=0

x(i)(0)
t i

i!
, (1.6)

which is such that dN+1

dtN+1 xN(t) = 0. Moving into the frequency domain, Eq (1.6) becomes:

sN+1x̂N(s) = sN+1
N

∑
i=0

x(i)(0)
1

si+1 =
N

∑
i=0

sN−ix(i)(0),

= sNx(0)+ · · ·+ sN−nx(n)(0)+ · · ·+ x(N)(0).

(1.7)

The target derivative x(n)(0) is estimated by considering the terms
(

sN−ix(i)(0)
)

i 6=n
as unde-

sired perturbations that are to be “annihilated” using a linear differential operator Π and a

complex-valued function ρ such that:

Πx̂N = ρ(s)x(n)(0). (1.8)
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Mboup et al. proposed candidate Π and ρ operators that, moving back Eq. (1.8) into the

time-domain, can be implemented as finite impulse response filters. This work was further

extended to multidimensional signals, over possibly irregular sampling grids [RMR11a,

RMR11b]. We produced an open-source implementation of these works through the course

of this thesis 1.

1.5.2 Physics-Based Optimization

Optimization methods play a key part in many physics-inspired problems. In the context of

rigid body dynamics, the Newton-Euler equations dictate that the net force FFF and torque

τττ exerted on a body of mass m and inertia tensor Jq are linked to its linear acceleration a,

rotational velocity ωωω , and rotational acceleration ααα by:

{
FFF = ma

τττ = Jq ·ααα +ωωω × (Jq ·ωωω)
. (1.9)

Each contact force Fc
i can be decomposed along normal ni and tangential ti vectors as:

Fc
i = fini + g̃iti. (1.10)

Orienting ni and ti such that fi ≥ 0 and g̃i ≥ 0 and denoting by µ the friction coefficient at

contact i, the Coulomb friction model takes the following simple form:

g̃i ≤ µ fi. (1.11)

In the case of dynamic friction, i.e., when the relative tangential velocity ṽi between the two

surfaces in contact is non-zero, Eq. (1.11) becomes an equality and ti is parallel to ṽi.

In the context of dynamics simulation (see Fig. 1.6b), Baraff formulated Eq. (1.9) as

equality constraints of a linear program (LP) to compute contact forces preventing interpen-

etration between rigid bodies [Bar89]. In [Bar91], Eq. (1.11) was incorporated as a linear

inequality in the LP to model dynamic friction in conjunction with physics-based simulation.

The case of static friction is more complex, since the direction of ti is not known a priori in

the 2D tangential plane. Instead, it is described by two orthogonal vectors tx
i and t

y
i , which

we depict in Fig. 1.6a :

Fc
i = fini +git

x
i +hit

y
i . (1.12)

1https://github.com/ph4m/eand
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(a) 3D normal-tangential force decomposition. (b) Rigid body dynamics simulation [Bar91].

Figure 1.6: Coulomb friction model and dynamics simulation with quadratic programming.

In that case, the Coulomb friction constraint becomes:

∥∥gktx
k +hkt

y
k

∥∥
2 ≤ µk fk, (1.13)

which Baraff addressed using quadratic programming (QP) with a discretized friction cone.

Cone constraints such as that of Eq. (1.13) were later addressed without linear approximations

by means of second-order cone programming (SOCP) [LVBL98, BW07].

1.5.3 Neural Networks for Time Series Modeling

The recent successes of deep learning applications for whole-body control, manipulation

and monitoring of human activities [MLA+15, LLS15, ZZCZ15, KS16], suggest that data-

driven approaches can successfully account for model or perception uncertainties while

avoiding the need for arbitrary constraints and hand-engineering [BCV13]. At the heart

of these approaches lies the notion of artificial neural networks (ANNs), that take a scalar-

valued vector as input and typically passes it through linear transformations and nonlinear

activation functions (e.g., hyperbolic tangent). In the context of supervised learning, i.e.,

when both inputs and expected outputs are available, interconnection weights are updated by

backpropagation, i.e., gradient descent with respect to a chosen cost function (e.g., squared

prediction error).

In the recent review of [LBH15], LeCun et al. report that the recent advances in parallel

programming on GPUs made it easier and faster for researchers to train large neural network

models. Deep learning methods thus consist in the multi-layered stacking of simple modules.

A popular architecture in image processing is that of the convolutional neural network

(CNN) [LBBH98], designed to process multidimensional data (e.g., 2D images, 3D videos).
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(a) Unrolled recurrent neural network. (b) Long short-term memory cell state.

Figure 1.7: RNN and LSTM graphic visualization [Ola15].

In this thesis, we capture the sequential nature of contact dynamics using recurrent neural

networks (RNN) [Elm90]. In essence, RNNs are networks of neurons that maintain an

internal state, updated with each input. Graphically, RNNs can be visualized as networks

with loops that allow information to persist through time, as illustrated in Fig. 1.7a. Long

short-term memory (LSTM) networks [HS97] implement an explicit memory mechanism and

have demonstrated better performance at handling long-term dependencies than regular RNNs

on multiple applications, such as machine translation [CVMG+14] or even in conjunction

with CNNs for image captioning [VTBE15]. We subsequently use LSTMs to model contact

dynamics as a particular type of time series.





Chapter 2

Towards Force Sensing From Vision:

Observing Hand-Object Interactions to

Infer Manipulation Forces

2.1 Introduction

Reliably capturing and reproducing human haptic interaction with surrounding objects by

means of a cheap and simple set-up (e.g., a single RGB-D camera) would open considerable

possibilities in computer vision, robotics, graphics, and rehabilitation. Computer vision

research has resulted in several successful methods for capturing motion information. A

challenging question is: to what extent can vision also capture haptic interaction? The latter

is key for learning and understanding tasks, such as holding an object, pushing a chair or

table, as well as enabling its reproduction from either virtual characters or physical (e.g.,

robotic) embodiments.

Contact forces are usually measured by means of haptic technologies such as force

transducers. The main drawback of such technologies is that they are obtrusive. Computer

vision techniques would therefore be an ideal alternative to circumvent this issue. Yet, is it

possible to estimate forces from visual observation? There is evidence that haptic perception

can be induced through illusion and substitution dominated by vision, e.g. [LCK+00]. We

aim at exploring computer vision to infer the forces exerted by humans on surrounding

objects. In particular, we consider hand-object grasping and manipulation. The problem is

extremely complex. Indeed, establishing that a hand-object contact has occurred is difficult

because of occlusions and tracking inaccuracies. Nevertheless, the detection of events like

an object being lifted or discontinuities in body motion may provide useful hints towards
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Figure 2.1: Using a single RGB-D camera, we track markerless hand-object manipulation
tasks and estimate with high accuracy contact forces that are applied by human grasping
throughout the motion.

disambiguating discrete events. Additionally, even if contact positions can be determined

efficiently, the estimation of the applied forces is still challenging because of the inherent

multiplicity of solutions.

We demonstrate that, by solely using computer vision, it is possible to compute interaction

forces occurring in hand-object manipulation scenarios where object properties such as shape,

contact friction, mass and inertia are known, along with the geometry of the human hand.

First, we monitor both the hand and the object motions by using model-based 3D tracking

(other visual tracking techniques can also be used if they meet performance requirements).

From the tracking data, we estimate hand-object contact points through proximity detection.

Algebraic filtering computes the object’s kinematics, i.e. velocity and acceleration. Contact

force distributions explaining the kinematic observations are then resolved using conic

optimization. When manipulating objects, humans typically apply more (internal) forces

than the (nominal) forces required from the Newton-Euler dynamics. Thus, we improve our

estimation method by using neural networks to learn the amount and distribution of these

internal forces among the fingers in contact. The experimental results obtained on datasets

annotated with ground-truth measurements show the potential of the proposed method to

infer hand-object contact forces that are both physically realistic and in agreement with

the actual forces exerted by humans during grasping. To the best of our knowledge, this is
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the first time that this problem is addressed and solved based solely on markerless visual

observations.

2.2 Force Sensing From Vision

We consider a rigid body of mass m and inertia matrix J relative to the center of mass

G. For a given element e of the environment (e.g. human hand, table), let µe denote the

corresponding Coulomb friction coefficient between the object and e. In this work, we

assume these quantities known, e.g., obtained from the object’s CAD model or existing

identification techniques [SL01]. Interestingly, it has been shown that aspects of such

information (e.g., mass distribution) can also be estimated by visual means [MB13]. We

then consider a scenario where the object is grasped and manipulated by a human hand, with

possible contacts with the environment. We observe the scene with a single RGB-D camera

that we suppose calibrated intrinsically and extrinsically so that the direction of the gravity

vector is known. Our goal is to estimate the interaction forces between the object and the

user’s hand, and between the object and the environment when such contacts occur. We

address the problem of force sensing from vision (FSV) in four steps, as follows:

1. We track the object and the hand and perform, for each time step, vision-based

proximity or collision detection to identify contacting fingers and corresponding

contact points (Section 2.2.1).

2. Let θθθ i = (pG,q) be the estimated 6-DoF object pose at instant i, with pG the 3D

position of the center of mass and q the object’s orientation, encoded by a quaternion.

Based on the sequence of pose estimates (θθθ i)i∈[0,N], we estimate for each frame the

body’s first and second-order kinematics, i.e. translational (resp. rotational) velocity vi

(resp. ωωω i) and acceleration ai (resp. ααα i) (Section 2.2.2).

3. We compute a (nominal) force distribution explaining the object’s state computed at

step 2 following the Newton-Euler’s laws of motion and Coulomb’s friction model,

using the contact points identified at step 1 (Section 2.2.4).

4. We learn and reproduce how humans naturally distribute among the fingers in contact

(Section 2.2.6).

Each of these subproblems presents a number of challenges. First, the observation of

manipulation tasks may be subject to mutual occlusions between the hand and the object.

To overcome this issue, we address step 1 by means of model-based tracking as inspired
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by [KA14]. Second, the limited camera acquisition frequency along with tracking errors

can make the differentiation process of step 2 unstable. We tackle this issue by estimating

derivatives using algebraic filtering derived from [MJF09]. Algebraic filtering was chosen

for the sake of robustness, as it relies on no statistical assumption on the signal’s noise.

We then address step 3 by computing minimal force closure distributions as solutions of

a second-order cone program (SOCP). Finally, step 4 stems from the fact that in contrast

with [SHM08] where multiple photodetectors monitor each fingernail’s blood flow individu-

ally, such microscopic features cannot be observed by a single RGB-D camera observing

the whole scene. The object may indeed be grasped with more or less intensity without this

being visible at a macroscopic scale. We tackle this statical indeterminacy with machine

learning on usual human grasping practices.

2.2.1 Hand-Object Tracking

Our approach requires a good 3D pose estimate of the manipulated object together with that of

the user’s hand. To achieve this, we rely on a variant of the method proposed in [KA14] that

is tailored to our needs. In [KA14], the model-based hand-object 3D tracking is formulated as

an optimization problem, which seeks out the 3D object(s) pose and hand configuration that

minimizes the discrepancy between hypotheses and actual observations. The optimization

problem is solved based on PSO [ESK01].

Since this method estimates the generalized pose of a hand interacting with an object,

it is straightforward to compute the 3D positions of the estimated fingertips in relation to

the object’s surface (i.e., contact points). Still, in our implementation of [KA14], we have

incorporated one important modification. The original 3D hand-object tracking framework

provides solutions that are compatible with visual observations and are physically plausible

in the sense that the hand and the object do not share the same physical space (i.e., the

hand does not penetrate the modeled volume of the object). However, occluded fingers may

have different poses that respect the above constraints, making the estimation of contact

points an under-constrained problem. To overcome this issue, we assume that contact points

do not change significantly when they cannot be observed. Time and space coherency is

thus enforced by penalizing solutions in which hidden contact points are far from their last

observed position.

2.2.2 Numerical Differentiation for Kinematics

In theory, velocity and acceleration can be estimated by numerical differentiation of poses

obtained from tracking. However, this process is highly dependent on two factors: (a) the
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acquisition frequency of the RGB-D frames, and (b) the quality of the motion tracking.

First, even a perfect tracking would result in poor velocity and acceleration estimates if

performed over time steps far apart from each other, also depending on the way the hand

moves. However, this is not a freely controllable parameter, as most commercial RGB-D

cameras offer acquisition frame-rates capped between 30 and 60 fps. We present our results

on a 30 fps SoftKinetic DepthSense 325 camera. Second, acceleration profiles occurring

in manipulation tasks are naturally spiky (see for example Fig. 2.5). Therefore, numerical

differentiation is challenging in that while the number of samples used for each derivative

estimate must be sufficient to alleviate tracking errors, it must also be kept minimal to discern

the sudden variations that acceleration profiles are subject to.

As an alternative to existing numerical differentiation methods, algebraic parameter

estimation approaches [FSR03] led to a new class of derivative estimators called algebraic

numerical differentiators [MJF09]. The tracking errors resulting from the employed model-

based tracking framework seem to follow a Gaussian distribution, yet they are not independent

of one another, which rules out the white noise formalism. Subsequently, and in order to

keep the kinematics estimation process unbiased by the use of a particular tracking method,

we implement the so-called minimal (κ,µ) algebraic numerical differentiators, which do not

assume prior knowledge of the signal errors’ statistical properties.

2.2.3 From Kinematics to Dynamics

We suppose the manipulated object subject to nd non-contact forces (Fd
k )k∈[1,nd ] applied at

points (Pd
k )k∈{1,...,nd} (e.g., gravitation, electromagnetism). We consider them fully known

based on the object’s properties. We seek to estimate nc contact forces (Fc
k)k∈[1,nc] applied at

contact points with the hand or the environment (Pc
k)k∈[1,nc] that are obtained from tracking

(Section 2.2.1). Using the object’s kinematics as estimated in Section 2.2.2, its motion is

governed by Newton-Euler equations. Therefore, the resulting net force FFF c and torque τττc

due to the contact forces are such that:

{
FFF c = ma−FFF d

τττc = Jq ·ααα +ωωω × (Jq ·ωωω)− τττd,
(2.1)

with FFF d and τττd the net force and torque due to non-contact forces, and Jq the inertia matrix

at orientation q.

The contact forces are subject to friction, which we model using Coulomb’s law. Let nk

be the unit contact normal oriented inwards the object at contact point Pc
k. Let then tx

k and t
y
k

be two unit vectors orthogonal to each other and to the normal nk, thus defining the tangent
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plane. Each contact force Fc
k is decomposed as follows:

Fc
k = fknk +gktx

k +hkt
y
k, (2.2)

With µk the friction coefficient at Pc
k, Coulomb’s law reads:

∥∥gktx
k +hkt

y
k

∥∥
2 ≤ µk fk, (2.3)

which is a strict equality in the case of dynamic friction.

2.2.4 Nominal Forces From Cone Programming

We address the estimation of the minimal contact forces responsible for the observed motion

(i.e., nominal forces) as a second-order cone program (SOCP) [LVBL98, BV04, BW07]:

min C (x) =
1
2

xT Px+ rT x

s.t.





∥∥A jx+b j

∥∥
2 ≤ cT

j x+d j, j = 1, . . . ,m

Ex ≤ f

Gx = h.

(2.4)

As we track the object and the user’s hand, we can determine, at each timeframe, newly

established and broken contacts, and also those that remain still and those that slide. There-

fore, we are explicitly considering static and kinetic (i.e. dynamic) friction in the constraints

formulation. With nc,s and nc,k the respective numbers of friction forces and nc their sum, we

construct the optimization vector as follows:

x = ( f1,g1,h1, . . . , fnc,s ,gnc,s ,hnc,s ,

fnc,s+1, fnc,s+2, . . . , fnc,s+nc,k
)T

(2.5)

x is a vector of 3nc,s +nc,k elements. The SOCP formulation in Eq. (2.4) then allows the

direct handling of Coulomb static friction as cone inequality constraints by defining, for each

contact point j = 1, . . . ,nc,s, matrices A j, b j, c j and d j such that:

A jx+b j =

(
g j

h j

)
and cT

j x+d j =
(

µ j f j

)
. (2.6)

Moreover, having each normal vector nk oriented inwards the object, we formulate nc linear

inequality constraints such that fk ≥ 0. This is done by defining E as a nc × (3nc,s + nc,k)
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matrix and f as a nc-element vector such that, for each contact point j = 1, . . . ,nc,s +nc,k:

E jx =
(
− f j

)
and f j =

(
0
)
, (2.7)

with E j and f j the j-th rows of E and f, respectively.

Equality constraints ensuring that the resulting contact force distribution explains the

observed kinematics stem from Newton-Euler’s equations, as combining Eq. (2.1) with

contact force expressions from Eq. (2.2) directly yields six linear equations in x. G and h are

thus of respective size 6× (3nc,s +nc,k) and 6×1, with rows 1 to 3 accounting for net force

constraints, and rows 4 to 6 for net moment constraints.

As stated earlier in Section 2.2, there exists an infinity of possible force distributions for

a given kinematics and set of contact points. We use the (squared) L2 norm of the contact

force distribution (i.e., the sum of squares of the individual components) as an indicator of

the intensity of the grasp. We thus complete the SOCP with the following cost function:

CL2(x) = ∑
k∈F

[
f 2
k +g2

k +h2
k

]
= ∑

k∈F

‖Fc
k‖

2
2 , (2.8)

where F is the set of contacting fingers. The objective function CL2 allows to search for the

optimal grasp in the L2 sense, although other cost functions can be tested. Numerically, we

formulate and solve the SOCP using the CVXOPT library for convex optimization [ADV13].

2.2.5 Reproducing Human Grasping Forces

Humans do not manipulate objects using nominal closures (i.e. minimal grasp forces).

They tend to “over-grasp” and produce workless internal forces, i.e. firmer grasps than

mechanically required. This human grasp property is described by considering finger forces

as two sets [KR86, YN91]: nominal forces responsible for the object’s motion, and internal

forces that secure the object through a firm grip but do not affect the object’s kinematics

as they cancel each other out [MS85, MSZ94]. Studies showed that humans apply internal

forces to prevent slip [JW84, FJ02] and control their magnitude to avoid muscle fatigue

or damaging fragile objects [GZL10, PSZL12]. We extend the formulation of the SOCP

to address such decompositions and construct a dataset on how humans apply internal

forces when manipulating objects, extracted from tactile sensor measurements during real

experiments.
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Each finger force Fk is decomposed into a nominal component F
(n)
k and an internal

component F
(i)
k :

Fk = F
(n)
k +F

(i)
k

with





F
(n)
k = f

(n)
k nk +g

(n)
k tx

k +h
(n)
k t

y
k

F
(i)
k = f

(i)
k nk +g

(i)
k tx

k +h
(i)
k t

y
k.

(2.9)

Although both forces are decomposed along the same contact frame (nk, t
x
k, t

y
k) as in Eq. (2.2),

note that nothing constraints F
(n)
k and F

(i)
k to be colinear. We subsequently redefine the

optimization vector x by considering the nominal and internal components individually rather

than their sum as in Eq. (2.5):

x = ( f
(n)
1 ,g

(n)
1 ,h

(n)
1 , f

(i)
1 ,g

(i)
1 ,h

(i)
1 , . . . , f

(n)
nc,s ,g

(n)
nc,s ,h

(n)
nc,s , f

(i)
nc,s ,g

(i)
nc,s ,h

(i)
nc,s ,

fnc,s+1, fnc,s+2, . . . , fnc,s+nc,k
)T

(2.10)

By definition, nominal forces are responsible for the object’s motion through the Newton-

Euler equations while internal forces are neutral regarding its state of equilibrium:





∑
k∈F

F
(n)
k = FFF c, ∑

k∈F

−−→
GPk ×F

(n)
k = τττc

∑
k∈F

F
(i)
k = 0, ∑

k∈F

−−→
GPk ×F

(i)
k = 0.

(2.11)

Equation (2.11) provides a new set of constraints that we integrate into the SOCP of

Section 2.2.4. Ensuring that the resulting distribution still obeys Coulomb’s law of friction,

we finally compute the distribution of nominal and internal forces that best match the tactile

sensor measurements ( f̃k)k∈F , using a new objective function:

Cd, f̃k
(x) = ∑

k∈F

[∥∥∥F
(n)
k

∥∥∥
2

2
+
(

f
(n)
k + f

(i)
k − f̃k

)2
]
. (2.12)

The reason why we do not directly identify internal forces as the differences between the

measurements f̃k and the minimal forces resulting from the initial SOCP of Section 2.2.4 is

that possible sensor measurement errors may lead them not to compensate each other. By

integrating their computation into the SOCP, we ensure that the resulting internal forces f
(i)
k

bridge the gap between f
(n)
k and measurements f̃k without perturbing the object’s observed

kinematics. We illustrate the decomposition process in Fig. 2.2(a).
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x
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Figure 2.2: (a) Measurements from tactile sensors are used to estimate nominal and internal
force decompositions from vision. (b) Full contact forces are reconstructed by combining
ANN internal force predictions with an SOCP ensuring physical plausibility.

2.2.6 Learning Internal Force Distributions

Recent studies attempted to build mathematical models correlating grasp forces to kinematic

data, yet limited to cyclic movement patterns and two-finger grasps [GLZ05, SLZ11], hence

concealing the issue of static indeterminacy, i.e., the fact that in multi-contact, the knowledge

of the motion does not suffice to completely characterize the underlying force distribution.

In contrast, our approach learns how humans apply internal forces using artificial neural

networks (ANN). We first construct an experimental dataset by having human operators

manipulate an instrumented box (see Section 2.3) over tasks such as pick-and-place, lift and

release, rotations, and unguided compositions of these. Experiments were conducted over a

pool of six participants: three female (two right-handed, one left-handed), and three male

(all right-handed) operators using their preferred hand on different contact and object mass

configurations. Executing 160 manipulation experiments of approximately 10 s duration,

we perform motion tracking and record the tactile sensor measurements to compute the

best-matching decompositions
(

f
(n)
k , f

(i)
k

)
following the SOCP of Section 2.2.5.

The next step is to learn the variations of internal forces f
(i)
k with motion and grasping

features. We select the learning parameters as those that directly impact the force distri-
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butions through the Newton-Euler equations. Contact forces vary with the object’s mass

and acceleration, or more accurately including the contribution of gravity. We thus consider

the target net contact force, which can be computed from the object’s kinematics and the

gravity vector g alone: FFF c = m · (a−g). We can consider this dependence as twofold: on

the magnitude of FFF c itself, and on the relative orientation of FFF c with the contact normals,

as in [GLZ05]:

p1 = ‖FFF c‖2 (2.13)

p2,k = nk ·uFFF c
, with uFFF c

=
FFF c

‖FFF c‖2
. (2.14)

Similarly, we consider the case of rotational kinematics through the magnitude of the net

contact torque τττc of Eq. (2.1) and the individual torques each finger is able to generate:

p3 = ‖τττc‖2 (2.15)

p4,k =
(−−→

GPk ×nk

)
·uτττc , with uτττc =

τττc

‖τττc‖2
. (2.16)

Finally, we learn internal forces as a function of kinematics and grasp parameters(
p1,(p2,k)k∈F , p3,(p4,k)k∈F

)
using two ANNs: a first network, ANNL2 , estimates the

amount of internal forces applied, quantified as the L2 norm of their distribution, while

a second network, ANNcontrib., jointly estimates the relative contribution of each finger in the

grasp’s intensity. The outputs of ANNcontrib. are percentages constructed as the individual

forces normalized with the overall L2 norm. Note that, as that similar motions can stem from

different force distributions, using a single ANN would mean linking similar inputs to highly

varying individual forces. Yet, we observed that different grasp intensities still tend to be

similarly shared among fingers, hence two ANNs to account for natural intensity variance but

consistent decompositions. From the entire collected measurements, we only use as learning

data those where the net forces computed from the observed kinematics and by summing up

the tactile sensor measurements are within a specified threshold from each other. This allows

us to avoid samples where visual tracking or tactile sensor measurements are unreliable, i.e.,

not compatible with each other with respect to the equations of motion. In our experiments,

setting this threshold to 1.5N yields a final dataset of 8200 samples, which we partition into

training and validation datasets to construct and assess different ANN configurations by

cross-validation. Performing numerical resolution with the neuralnet package for statistical

analysis software R [FGS12, R C14], we choose ANNL2 and ANNcontrib. with logistic neu-

rons trained with resilient backpropagation and two hidden layers, with respectively 6 and 8

neurons in the first hidden layer, and 7 and 13 neurons in the second.
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(a) CAD view: AHRS (upper plate) and five force sensors (cuboids)
repositionable to assess different contact configurations (cylinders).

(b) Sensor configuration example
(green) and other locations (holes).

Figure 2.3: Instrumented device for quantitative and qualitative evaluation.

Central Gaussian Algebraic
Trans. acc. Avg. −0.029 −0.022 −0.024
[m · s−2] St.d. 1.686 1.627 0.904

Rot. vel. Avg. 0.084 0.070 0.052

[rad · s−1] St.d. 1.559 1.294 1.241

Table 2.1: Kinematics estimation errors (average and standard deviation) for central finite
difference, Gaussian filtering, and algebraic filtering.

2.3 Experiments

In order to assess our approach, we perform manipulation experiments on a rectangular

cuboid of dimensions 171mm×111mm×60mm. The simplified shape of this ground-truth

object is chosen to meet sensing instrumentation constraints and offer several grasping

possibilities. We instrument the box with two types of sensors. The first is an Xsens MTi-

300 attitude and heading reference system (AHRS) motion sensor measuring reference

rotational velocities and translational accelerations. Its purpose is to validate the numerical

differentiation of tracking data by algebraic filtering, see Section 2.2.2. The second consists

of five Honeywell FSG020WNPB piezoresistive one-axis force sensors that can be positioned

at different predefined grasp spots on the box. We depict the instrumented device in Fig. 2.3.

We evaluate the contact forces estimated from the SOCP in Section 2.2.4 with the force

sensor measurements in terms of: (i) normal forces per finger, (ii) resulting net force, and

(iii) sum of squares. We summarize the validation protocol in Fig. 2.4.
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Figure 2.4: Validation protocol.

2.3.1 Kinematics From Vision vs AHRS

We assess the validity of our approach by executing motions emphasizing each of the

three coordinates of both translation accelerations and rotational velocities, and comparing

the kinematics estimated from vision to measurements from the Xsens MTi-300 AHRS.

Statistical analysis of the estimation errors shows that algebraic numerical differentiation is

well suited for kinematics estimation (see Table 2.1). Though on translational acceleration, its

average error is slightly higher than with Gaussian filtering, its variance is also considerably

lower. Its performance on rotational kinematics is also the best of all three tested approaches.

We illustrate the results of the six-axis experiments in Fig. 2.5.

2.3.2 Nominal Forces From Vision-Based Kinematics

We now validate our vision-based force estimation framework using normal force sensors

placed at pre-specified positions over the instrumented box. As a first validation step,

contact points obtained from vision were compared to the expected contact points based

on the sensors’ locations and resulted in estimation errors of mean −1.55mm and standard

deviation 6.13mm. Furthermore, we assessed the sensitivity of FSV to these uncertainties

by comparing the force distributions obtained using either the contact points from vision or

the tactile sensor positions. We found that FSV is relatively robust to such estimation errors,

resulting in force uncertainties of mean 0.216N and standard deviation 1.548N. Therefore,
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Figure 2.5: Comparison between vision-based kinematics and AHRS-embedded accelerome-
ter and gyroscope.

we rely solely on vision-based kinematics and contact points for the rest of this work. When

performing experiments, we also observed that the force applied by the pinky finger was

consistently below the sensitivity threshold of our force sensors, hence we present our results

on four-finger experiments. Still, as the force distribution problem introduced in Section 2.2

becomes statically indeterminate from three fingers, using four fingers maintains some high

indeterminacy in the force distribution problem, and thus preserves the generality of our

results. We represent the force sensor measurements along with FSV’s outputs in Fig. 2.6.

As mentioned in Section 2.2.4, the comparison of the normal components from vision and

from tactile sensors shows that the latter’s measurements are overall greater. This illustrates

the fact that humans seize objects harder than the required force closure, in contrast with the

L2-optimal grasp estimated from vision, which is visible in the sum of squares plot. Still,

the resulting net forces are matching well, which demonstrates that FSV can successfully

capture the object’s motion characteristics and compute a force distribution that physically

explains the observed kinematics.

2.3.3 Reconstructing Full Contact Force Distributions

By recording new manipulation experiments, we extract the kinematics and grasping pa-

rameters described in Section 2.2.6 over time
(

p1,(p2,k)k∈F , p3,(p4,k)k∈F

)
and use the

trained ANNs to predict the internal forces the human operator most likely apply throughout

the experiment,
(

f̃
(i)
k

)
k∈F

. We finally construct the full contact force distributions using
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Figure 2.6: Contact forces from vision based on L2 criterion are individually lower than
tactile sensor measurements but result in the same net force.

a variant of the SOCP described in Section 2.2.5. For this new purpose, we formulate an

objective function that aims at reconstructing full contact forces by minimization of, on one

hand, the nominal components in isolation, and on the other hand, the discrepancy between

optimal internal components and ANN predictions
(

f̃
(i)
k

)
k∈F

:

C
r, f̃ (i)

k

(x) = ∑
k∈F

[∥∥∥F
(n)
k

∥∥∥
2

2
+

(
f
(i)
k − f̃

(i)
k

)2
]
. (2.17)

We illustrate the final estimation process in Fig. 2.2(b). By feeding the ANN internal force

predictions into the SOCP, we ensure that the final internal forces
(

F
(i)
k

)
k∈F

are not only

consistent with natural grasping patterns but also physically correct and do not impact the

object’s observed kinematics through the resulting net force, as shown in Fig. 2.7.

2.3.4 Robustness Analysis

We investigate the robustness of our approach to features that do not appear in the training

dataset. To this end, we train another instance of the ANNs described in Section 2.2.6, not

over the entire dataset but on a partial subset relative to a single operator, on a single grasp

pose, and a single mass configuration. We then evaluate the resulting ANNs on datasets

obtained with another user, another grasp, and/or a 10% mass increase. We report the relative
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Figure 2.7: Artificial neural networks used in conjunction with cone programming success-
fully predict force distributions that both explain the observed motion and follow natural
human force distribution patterns.

errors with respect to the tactile sensor measurements in Table 2.2 along with reference

results from fully-trained ANNs.

First, it appears that ANNs trained over a single operator may be generalized to other

users with no significant performance decrease, which suggests that humans tend to apply

internal forces following similar patterns. Second, reasonable changes in mass do not seem

to significantly impact the estimation accuracy either. This is allowed by the fact that in

our problem formulation, mass is not a training variable by itself but is implicitly taken into

account through the product FFF c = m · (a−g). Under this formalism, manipulating a heavy

object with a given kinematics is analogous to manipulating a lighter object with a higher

acceleration. Therefore, the ANNs may accomodate mass changes provided that they were

trained over a sufficient variety of kinematics. In the end, ANNs seem most sensitive to

grasp pose changes. This may be explained by the fact that placing fingers differently may

substantially change their synergies. Still, the performance decrease remains reasonable

while force distributions, by construction, still explain the observed motion. Eventually, the

main sensitivity to grasp poses is comforted by the fact that also changing user and mass

does not decrease the estimation accuracy further.

2.4 Grasp Recovery by Force Optimization

As an application example, we now show that FSV can be used, along with grasp taxonomies,

as an implicit force model to reconstruct physically realistic manipulation sequences from

possibly incomplete visual observation and inaccurate visual tracking pose estimates.
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Part. training Full training

U
se

r

M
as

s

G
ra

sp Avg. St.d. Avg. St.d.
[%] [%] [%] [%]

© © © 10.7 12.4 9.71 12.0
× © © 10.9 12.3 10.3 11.8
© × © 10.8 11.3 10.4 12.4
© © × 14.6 14.5 10.9 11.3
× × × 14.9 14.8 9.94 12.6

Table 2.2: Relative force estimation errors based on the exhaustivity of the training dataset.
© and × indicate features that respectively appear or not in the partial training dataset.

2.4.1 Initializing Reference Grasps

Manipulating an object with static contact points, we monitor the scene using a single RGB-D

sensor and track the object and the hand jointly. Two common issues commonly arose during

our experiments. First, tracking a manipulation scene sometimes led to mutual confusion,

i.e., the object was mistaken for the hand, or conversely. Second, in some situations, self-

occlusions produced physical incoherent hand-object poses despite visual consistency from

the camera’s point-of-view. We illustrate such mis-tracking examples in Fig. 2.8. In order

to identify the real grasp being applied, we propose to optimize the force distribution in the

vicinity of the hand pose estimate from tracking, taken as an initial guess rather than an

absolute reference.

As described in Section 1.3.1, we represent the hand pose as a 27-parameter vector

H =
(

θθθ palm,θθθF
)

, with θθθ palm a 7-parameter vector encoding the palm pose (3D position and

quaternion) and θθθF a 20-parameter vector encoding the finger poses (4 joint angles for each

of the five fingers). With no prior knowledge on the instant the tracker loses the target, we

initialize the pose search when contact occurs. This instant may be accurately obtained from

the tracking of the object alone, i.e., without relying on the accuracy of the hand tracking

and collision detection. Indeed, from the perspective of physics-based optimization, it can

be implicitly defined as the moment at which the observed object kinematics cannot be

explained by contacts with the environment alone, i.e., when the SOCP has no solution. We

denote by H̃ =
(

θ̃θθ
palm

, θ̃θθ
F
)

such an initial hand pose from tracking.

The grasp taxonomy of [FbSRK09] describes a set of 17 grasp poses categorized by

function and geometry (e.g., power grasp, large diameter). From it, we select a subset P

of NP grasp poses suitable to manipulate the object. In our experiments, we chose three

grasps compatible with the instrumented device, e.g., firmly securing it from opposite sides

or dexterously manipulating it from the corner, as illustrated in Fig. 2.9. We characterize
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(a) Input color image. (b) Hand-object pose estimates. (c) Synthesized back and side views.

(d) Real thumb mistaken for thumb and index. (e) Lost tracking: hand-object interpenetration.

Figure 2.8: (a) Visible by the camera, (b) palm and thumb are successfully recognized. (c)
However, the occluded finger poses are physically impossible as none hold the object. The
accumulation of tracking errors can lead to (d) implausible and even (e) impossible poses.

each reference pose of the taxonomy P ∈ P by their finger poses θθθF ,P. We finally initialise

our search space with reference hand poses HP specified as the union of the palm pose from

tracking with finger configurations from the grasp taxonomy:

∀P ∈ P, HP =
(

θ̃θθ
palm

,θθθF ,P
)

(2.18)

We thus define an initial set of primitive hand poses
(
HP

)
P∈P

.

2.4.2 Generating New Grasp Poses

With σσσ a 27-element vector of standard deviations for the hand pose parameters, we now

construct new grasp candidates H̃P through Gaussian random sampling N (·,σσσ) in the

vicinity of each primitive hand pose HP:

∀P ∈ P, H̃P = N (HP,σσσ) (2.19)

For each sampled grasp candidate H̃P, we compute the 3D hand pose by forward kinematics.

We then check for interpenetrations between the hand and the object using the SWIFT++

library for collision detection [EL01]. For each primitive composing the hand model, we

consider that a contact occurs when it is within a chosen threshold to the object (in our
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Figure 2.9: Reference grasps from left to right: large diameter, precision sphere and tripod.

experiments: 5 mm). If, for any primitive, penetration exceeds this threshold, the current

grasp pose candidate H̃P is discarded from future consideration and a new one is sampled

following Eq. (2.19).

Next, we ensure that the resulting contact points allow the manipulation of the object

following the tracked object trajectory. We do so by formulating the SOCP of Section 2.2.4

with the contact locations estimated from collision detection and ensuring that, for each time

step, with contacts fixed at the estimated locations, there exists a nominal force distribution(
F
(n)
k

)
k∈F

explaining the observed object kinematics through the equations of motion. If the

grasp is not physically able to cause the desired motion, the grasp pose candidate is discarded.

If it is, we predict the internal forces
(

F
(i)
k

)
k∈F

humans are most likely to apply throughout

the motion with the neural networks of Section 2.2.6. Finally, we denote by (Fk)k∈F
the

complete force distribution obtained by combining nominal and internal components in

the FSV framework. Finally, we quantify the grasp intensity throughout the manipulation

sequence by computing the L2 norm of the total distribution, averaged over the duration of

the experiment (NS samples):

w
(

H̃P
)
=

1
NS

NS

∑
j=1

√
∑

k∈F

‖Fk‖
2
2. (2.20)
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In addition, we introduce an indicator d
H̃

on the discrepancy between the initial hand pose

from tracking H̃ and the grasp candidate H̃P, e.g., the L2 distance :

d
H̃

(
H̃P

)
=

∥∥∥H̃P − H̃

∥∥∥
2
. (2.21)

Finally, we consider a weighted cost function C
H̃

combining w and d
H̃

:

C
H̃

(
H̃P

)
= w

(
H̃P

)
+α ·d

H̃

(
H̃P

)
. (2.22)

The weight α can be tuned to favor either the grasping energy along the observed trajectory

or the fidelity with respect to the pose estimate from tracking. We subsequently present

results for different values of α .

2.4.3 Results

In order to assess the validity of our approach, we consider a manipulation experiment

involving a box being rapidly moved in arbitrary directions, both in translation and in

rotation. Due to mutual occlusions between the hand and the object, at the beginning of the

sequence, the pose estimates from model-based tracking match the observable features but are

not physically plausible (see Fig. 2.8(a-c)). Throughout the rapid motion, the accumulation

of tracking uncertainties results in completely wrong pose estimates (see Fig. 2.8(d-e)).

Using the numerical differentiation framework introduced in Section 2.2.2, we rely on

the good estimation of the box pose to compute its kinematics over time. As described

in Section 2.4.1, we combine grasp taxonomies and tracking data to initialize the search

space. Following Section 2.4.2, we generate pose hypotheses by Gaussian sampling in the

vicinity of the reference hand poses and verify their feasibility regarding interpenetrations

and compatibility with the motion. In our experiments, we sampled 792 grasp candidates

that were valid with respect to collision constraints in 10min of computation time (Intel i7-

4700MQ processor, single-threaded implementation). Rather than sampling the configuration

space and checking for collisions, a possibly more efficient approach could be to sample the

contact space, as explored in [WMZ+13]. We finally fed each grasp candidate into the FSV

framework, yielding 493 grasp poses that were able to achieve the observed motion.

For each valid pose, we computed the grasp intensity w and discrepancy d
H̃

costs of

Eqs. (2.20) and (2.21). Finally, we combined these values into the weighted cost C
H̃

of

Eq. (2.22) for different values of the normalization factor α . We depict the resulting optimal

grasps in Fig. 2.10. As expected, minimizing the grasp intensity in priority (i.e., α small)

yields grasps that are possibly far from the initial guess. Convertly, favorizing poses that are
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(a) α = 0,w = 188.46 (b) α = 1 ·103,w = 236.86 (c) α = 2 ·103,w = 311.80 (d) α = 3 ·103,w = 349.19

Figure 2.10: Each column represents the optimal solution yielded by our algorithm for
increasing values of parameter α . The two first rows show the grasp candidate at the
beginning of the experiment (front and back views). The third row corresponds to the
same instant as the frame depicted in Fig. 2.8a. We can thus reconstruct various physically
plausible grasps, that become closer to the initial observations as we increase α .

close to the tracking hypothesis (i.e., α big) allows the recovery of physically realistic grasps

that match the actual observations despite inaccurate tracking data.

2.5 Summary and Discussion

Our work establishes that a single RGB-D camera can be used to capture interaction forces

occurring in rigid object manipulation by a human hand without the need for visual markers

or dedicated force sensing devices. Force sensing from vision is a novel and important

contribution since it circumvents the intrusive instrumentation of object, environment and

hands. Its exploitation can expand to the robotics field for daily on-line human activities

monitoring, serving various purposes such as imitation learning.

Our method is validated with several experiments based on ground truth data and is

able to estimate fairly accurately the force distributions applied during actual manipulation

experiments. Although we confirmed that tracking noise is well mitigated by algebraic

filtering, which produces truthful pose derivative estimates, guessing the hand-object contact
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points under strong occlusions remains a challenging, open problem in computer vision. We

achieved this by using a state-of-the-art model-based tracking method under the somewhat

practical assumption that occluded fingers remain at their last observed position until they

are visible again. While this assumption is fairly valid in numerous interesting cases, it is

not true when considering tasks such as dexterous manipulation with finger repositioning

or sliding. Still, this limitation does not call into question the force estimation framework

per se, and could be alleviated by extending the markerless tracking method to multi-camera

inputs, which would remain non-intrusive and keep an edge over tactile sensors regarding

usability and cost.

With respect to computational performance, SOCP and internal force predictions are

performed in real-time, and only hand-object tracking is computationally expensive. Given

the recent developments on GPGPU implementations of hand-object tracking [KA14], our

framework could be employed in real-time applications. This, combined with our reliance on

a single camera, makes FSV suitable for daily observation and learning. Still, our approach

is generic enough to accommodate any advance to the topic of 3D hand tracking and could

be seamlessly extended to other methods, for instance when non real-time performance and a

heavier setup are possible. Conversely, our framework could also be used as an implicit force

model for physics-based tracking and motion editing, as human-like forces could augment the

pose search with biomechanical considerations such as muscle fatigue or energy expenditure.

We demonstrated such a use case to reconstruct physically plausible grasps in the presence

of strong occlusions, which could also be incorporated in the tracking itself for interactive,

physics-based correction.

Towards estimating contact forces from vision, we tackled the issue of static indetermi-

nacy by applying machine learning techniques to internal forces. Rather than predicting new

force distributions based on past observations, an alternative approach would be to formulate

the evolution of the full contact forces following various objects and grasp taxonomies as an

inverse optimal control problem. If invariants are found, they could be used to refine the cost

function, which could result in more reliable contact forces than the nominal distributions

computed by minimization of the grasp’s L2-norm. Extending the ground truth force measure-

ment setup with embedded three-axis or force-torque miniature sensors would also benefit

both learning and optimal control approaches. Further work could also address the case of

surface contact models in place of point contacts (as the fingertip is deforming), namely

for dexterous manipulations, or make use of synergy properties of the hand for bimanual

tasks. Finally, combining our approach with visual SLAM or automated camera calibration

methods would allow it to be deployed in unknown, varying environments, e.g. on mobile

robots.
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Chapter 3

Hand-Object Contact Force Estimation

From Markerless Visual Tracking

3.1 Introduction

Touch (i.e. physical contact) is of fundamental importance in the way we naturally interact

with objects and in our perception of their physical and functional properties. Human

manipulation remains little understood at the level of the underlying interaction forces, which

are traditionally measured using force transducers. The latter are costly, cumbersome, and

intrusive on both the object and the human haptic sense. Moreover, if mounted onto the hand,

they often hinder or reduce the range of possible motions. Recent work has showed how the

latter could be inferred from vision [GKD09, ZZCZ15, YYFA16]. Moreover advances in

markerless visual tracking opened up the possibility for monitoring hand-object motions in a

non-intrusive fashion. Computer vision techniques would therefore be an ideal substitute for

current force sensing technologies.

This is an extremely challenging perspective. Indeed, tracking a hand interacting with

an object is difficult due to strong mutual occlusions. Moreover, even when a manipulation

trajectory is fully known, the force estimation problem is ill-posed or indeterminate in

multi-contact. Indeed, given the physical properties of the object, there generally exists an

infinity of force distributions resulting in the same motion (e.g. using different grip strengths–

i.e. internal workless forces). While it is possible to compute physically plausible force

distributions, capturing the real forces being applied is an open problem explored in multiple

fields (see Section 1.4). In particular, kinesiology research has resulted in successful attempts

at modeling grip forces by inverse optimization, e.g., during static prehension [NTLZ12]

or two-finger circular motion [SLZ11]. Although these scenarios are of limited scope, this
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suggests that it may be possible to construct a general model on human grasping, provided a

rich dataset on manipulation kinodynamics (motion and forces).

In our work, we show that physics-based optimization can be used in conjunction with

learning to capture manipulation forces from non-intrusive visual observation, on a setup as

simple as a single RGB-D camera.

• We construct the first large-scale dataset on human manipulation kinodynamics, con-

taining 3.2 hours of high-frequency measurements for 193 different object-grasp

configurations (Section 3.2).

• We propose a force estimation framework that relies simultaneously on a recurrent

neural network to predict forces that are consistent with the way humans naturally

manipulate objects, and on a second-order cone program guaranteeing the physical

correctness of the final force distribution (Section 3.3).

• We thoroughly validate our approach on ground-truth measurements (Section 3.4) and

show that it can seamlessly be extended to visual tracking (Section 3.5).

Due to instrumentation constraints, our dataset is dedicated to constant contacts on prismatic

grasps, i.e., with the thumb in direct opposition to the antagonist fingers. We discuss

these limitations and show that the dual optimization-learning framework can still address

scenarios beyond the focus of our study (Section 3.6). Finally, we discuss thoroughly

the current limitations, possible extensions and applications of our work (Section 3.7). A

preliminary version of this research, focusing on estimating normal forces from vision, was

presented in Chapter 2 and appeared in [PKQA15b]. Our current study extends the latter idea

and includes: an improved formulation of the optimization and learning models accounting

for individual normal and tangential components, time-coherent manipulation forces, as well

as algorithmic descriptions and extensive validation experiments that have not been presented

before. To foster the research in this new topic, we make the manipulation kinodynamics

dataset publicly available1.

3.2 Manipulation Kinodynamics Dataset

Over the last years, the release of public datasets has massively benefitted the research in fields

related to this work, such as object recognition and scene understanding [KAJS11, LBF14],

whole-body and hand tracking [SPSS12, TSLP14], and robotic grasping [SDN08, ÇWS+15].

In contrast, datasets viewing human manipulation not only from the angle of vision but also

1https://github.com/jrl-umi3218/ManipulationKinodynamics.
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(a) AHRS base, thickness lay-
ers, sensor plates for repositionable
transducers (four sizes).

(b) 3D force transducers, sup-
port caps of various frictional
characteristics, AHRS.

(c) Assembled instrumented device. The
cables are tied to the subject’s elbow to min-
imize force perturbations.

(d) 3D-printed box-shaped device with
extra mass.

(e) Bottle-shaped device. (f) Mug-shaped device for non-prismatic,
spherical grasp.

Figure 3.1: We collect the manipulation kinodynamics dataset using dedicated instrumented
devices of adjustable shape, friction, mass distribution and contact configuration (a-c).
Additionally, we construct devices based on everyday objects, instrumented so as to allow
intuitive interactions (d-f).

of touch have been more scarce so far. A notable example is the interaction capture technique

of [KP06] for joint compliance estimation in graphics and synthesis of interaction animations.

In this section, we introduce a new, extensive dataset dedicated to the kinodynamics of human

manipulation.

3.2.1 Experimental Setup

Our objective is to construct a general force model capable of capturing the whole range of

manipulation forces that are commonly applied during daily activities. The manipulation

kinodynamics dataset was thus collected for diversity and genericity, regarding both the

objects being manipulated and the way they are grasped. While using real objects may

initially seem ideal, instrumenting them with force and motion sensors is impractical and

makes it difficult and lengthy to collect a diverse dataset. Additionally, physical properties of

arbitrary objects (e.g., inertia matrices) are seldom publicly available and must therefore be

manually identified [SL01, BSPK02]. Finally, the instrumentation may result in measured

forces that substantially differ from those that would have been applied on the original

objects.
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We address these caveats with dedicated instrumented devices, pictured in Fig. 3.1,

composed of two symmetric parts for the thumb and the antagonist fingers. Each half

consists of a base serving as support for an attitude and heading reference system (AHRS,

Xsens MTi-300), and a sensor plate on which 3D precision force transducers (Tec Gihan

USL06-H5-50N) can be positioned by 8 mm steps on the surface. Thickness layers can

be inserted in between to increase the grasp width by 5 mm increments, bringing the total

grasp width range between 46 mm and 86 mm. The force transducers are fitted with support

caps of different surface textures: PET, sand paper of grit 40 (coarse), 150 (fine) and 320

(extra fine). The mass distribution can be adjusted with balancing weights inside and on the

surface of the instrumented device. We 3D-print four sets of instrumented modules, with

sensor plates of dimensions 80×152, 56×152, 80×96 and 56×96 mm2. This setup allows

the efficient collection of force and kinematics measurements under diverse grasp poses,

friction conditions and mass distributions, obtained from the CAD models of the individual

components.

Still, instrumentation constraints make it difficult to collect ground-truth measurements

for arbitrary object shapes and grasps [FRS+16], which we consider essential to also prove

the validity of any force prediction approach. Indeed, it would require a significantly heavier

experimental setup to allow the individual adjustment of degrees of freedom such as local

curvatures and finger repositioning. Note that these limits only apply to the dataset and not

to the force estimation framework itself, which can still produce physically correct force

distributions for such scenarios, although possibly different from the real forces being applied.

We discuss these limitations and apply our algorithm to manipulation scenarios beyond the

explicit scope of our study in Section 3.6.

3.2.2 The Dataset

Eleven right-handed volunteers, three females and eight males, took part as subjects in our

experiments. Each subject was instructed to perform series of up to eight manipulation

sequences as follows. For each series, the subject is given an instrumented box of randomly

picked shape, thickness and surface texture as described in Section 3.2.1. The initial object

configuration is completed by mounting the AHRS either at the top or at the bottom of the

instrumented device, and at random with an additional 400 g mass inside. The subject is

then instructed to perform manipulation tasks on eight variations of the initial configuration.

Before each trial, the force transducers are placed on the box according to the subject’s

preferred grasp pose and their signals are adjusted following the manufacturer’s recommended

acquisition and calibration procedure. Each trial consists in the subject grasping the object

and manipulating it for approximately 60 s. Every 10 s, in order to ensure the diversity
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of the kinematics and forces present in the final dataset, the subject is given randomly

picked instructions on speed, direction and task (e.g., slow forward pouring motion, fast left

and right oscillations). After each trial, a 50 g balancing weight is attached to a randomly

picked side, excluding sensor plates. Throughout the eight trials, we measure the effect of

mass variations between 0 g and 350 g or 400 g and 750 g with the additional internal mass,

arranged differently across series. Finally, the subject can interrupt the series whenever the

object becomes uncomfortable to manipulate.

Overall, we collect motion and force measurements for 3.2 hours of manipulation ex-

periments under 193 conditions of motion, friction, mass distribution and grasp. For each

experiment, we provide: the global orientation q, rotational velocity ωωω and translational

acceleration a measured by the AHRS at 400 Hz; 3D force measurements expressed in the

reference frame of the object Robj., subsampled from 500 Hz to 400 Hz to match the AHRS;

the physical properties of the object: mass m, inertia matrix J about the center of mass G; and

the grasp parameters: for each finger k ∈ F , the friction coefficient µk at contact point Pc
k,

and Rk =
(
nk, t

x
k, t

y
k

)
a local right-handed reference frame with nk the normal to the surface

oriented from the finger to the object. Friction coefficients are estimated by instructing the

subjects to press and pull the force transducers until slipping and computing the maximum

ratio between tangential and normal forces through the Coulomb model:

∥∥gktx
k +hkt

y
k

∥∥
2 ≤ µk fk, (3.1)

with ( fk,gk,hk) the local decomposition of contact force Fk:

Fk = fknk +gktx
k +hkt

y
k. (3.2)

3.2.3 Equations of Motion and Synchronization

Let FFF c and τττc be the net force and torque due to individual contact forces, and FFF d and τττd

be the net force and torque due to non-contact forces (e.g., gravitation); the Newton-Euler

equations of motion at the center of mass are:

{
FFF c = ma−FFF d

τττc = Jq ·ααα +ωωω × (Jq ·ωωω)− τττd,
(3.3)

with Jq the inertia matrix at orientation q and ααα the rotational acceleration of the object,

obtained by numerical differentiation of the AHRS rotational velocity measurements ωωω . The

left hand side elements correspond to the contributions of the force transducer measure-

ments while the right hand side elements can be computed from the object properties and



58 Hand-Object Contact Force Estimation From Markerless Visual Tracking

AHRS kinematics measurements. This allows us to synchronize the kinematic and dynamic

measurements temporally while also accounting for sensor uncertainties.

First, the two signals can be synchronized temporally by computing the cross-correlation

between the sequences of net forces obtained either from the AHRS or from the force

transducers. Second, both the AHRS and the force transducers are subject to measurement

errors, resulting in discrepancies in the resulting net force and torque. The specified AHRS

maximum acceleration measurement error is of ±0.3 m · s−2. For an object of mass 500 g,

this amounts to net force errors up to ±0.15 N. In contrast, non-linearity and hysteresis can

cause measurement errors up to ±1 N per force transducer, i.e. ±5 N at most on the net

force. In practice, the average net force discrepancy between AHRS and force transducers

throughout the whole dataset is 0.33 N. For each experiment, we compute the average net

force ∆FFF c and torque ∆τττc discrepancies between AHRS and force transducers. We align

their values by computing the minimal offsets (∆Fk)k∈F
that result in ∆FFF c and ∆τττc:

min
{
CFFF c +Cτττc +Cvar

}
, (3.4)

with force-torque discrepancy and variation cost functions:





CFFF c ((∆Fk)k) =

∥∥∥∥∥∆FFF c − ∑
k∈F

[∆Fk]

∥∥∥∥∥

2

2

Cτττc ((∆Fk)k) =

∥∥∥∥∥∆τττc − ∑
k∈F

[−−→
GPk ×∆Fk

]∥∥∥∥∥

2

2

Cvar ((∆Fk)k) = ∑
k∈F

‖∆Fk‖
2
2

(3.5)

In practice, it is preferrable to normalize CFFF c and Cτττc , e.g., with the initial discrepancies

∆FFF c and ∆τττc respectively. We solve the optimization problem using sequential least squares

programming and correct the force transducer measurements with the resulting offsets.

3.3 Force Model

Based on the Newton-Euler equations, the net contact force FFF c and torque τττc are completely

determined by the object’s motion and physical properties. However, given FFF c and τττc can

generally be achieved by an infinity of different force distributions. Our force model addresses

these two aspects by combining physics-based optimization and learning to reconstruct force

distributions that are both physically plausible and similar to actual human grasping.
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3.3.1 Physics-Based Optimization for Manipulation

In this section, we formulate the Newton-Euler equations and Coulomb model as con-

straints of an optimization problem allowing the extraction of force distributions compat-

ible with a given motion. We integrate these constraints in a second-order cone program

(SOCP) [LVBL98, BV04, BW07] of the form:

min C (x) =
1
2

xT Px+ rT x

s.t.





∥∥A jx+b j

∥∥
2 ≤ cT

j x+d j, j = 1, . . . ,m

Ex ≤ f

Gx = h.

(3.6)

We express conditions of physical plausibility using the local decompositions of Eq. (3.2) as

15 optimization parameters:

x = ( f1,g1,h1, . . . , f5,g5,h5)
T (3.7)

Positivity. Recall that for each finger k, we choose the contact normal nk oriented inwards

the object. With this convention, the normal components fk are non-negative:

fk ≥ 0, k = 1, . . . ,5. (3.8)

This can be rewritten in Eq. (3.6) with linear inequality matrices E and f of respective sizes

5×15 and 5×1, with:

E(i, j) =

{
−1 if j = 3(i−1)+1

0 else

f(i,1) = 0.

(3.9)

Friction. The Coulomb model of Eq. (3.1) can be written as five cone constraints, i.e., one

per finger. For each finger k, the cone constraint matrices Ak, bk, ck, dk, are of respective

sizes 2×15, 2×1, 15×1 and 1×1, such that:

Akx+bk =

(
gk

hk

)
and cT

k x+dk = (µk fk) . (3.10)
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Their elements are defined as follows:

Ak(i, j) =

{
1 if j = 3(k−1)+1+ i

0 otherwise

bk(i,1) = 0

ck(i,1) =

{
µk if i = 3(k−1)+1

0 otherwise

dk(1,1) = 0.

(3.11)

Equations of motion. Recall from Eq. (3.3) that the net contact force FFF c and torque τττc can

be determined from kinematic quantities only. The individual finger forces are such that:





FFF c = ∑
k∈F

Fk

τττc = ∑
k∈F

[−−→
GPk ×Fk

]
.

(3.12)

We express the Newton-Euler equations in the global reference frame Rglobal = (v1,v2,v3).

The equality constraint matrices G and h are of respective sizes 6×15 and 6×1 with:

∀i = 1, . . . ,3; ∀ j = 1, . . . ,15; ∀k = 1, . . . ,5;

G(i, j) =





nk ·vi if j = 3(k−1)+1

tx
k ·vi if j = 3(k−1)+2

t
y
k ·vi if j = 3(k−1)+3

0 otherwise

h(i,1) =FFF c ·vi

G(i+3, j) =





[−−→
GPk ×nk

]
·vi if j=3(k−1)+1

[−−→
GPk × tx

k

]
·vi if j=3(k−1)+2

[−−→
GPk × t

y
k

]
·vi if j=3(k−1)+3

0 otherwise

h(i+3,1) = τττc ·vi

(3.13)
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Cost function. Physically plausible force distributions can be computed with a cost function

depending only on the optimization variables, e.g. minimal (squared) L2 norm [PKQA15b]:

CL2(x) = ∑
k∈F

[
fk

2+gk
2+hk

2]= ∑
k∈F

‖Fk‖
2
2 . (3.14)

Yet, the resulting forces can significantly differ from those humans really apply (see Fig. 3.2).

Instead, we consider a cost minimizing the discrepancy with given target forces F̃k:

C
F̃k
(x) = ∑

k∈F

∥∥∥Fk − F̃k

∥∥∥
2

2
(3.15)

In the following, we use C
F̃k

to correct force transducer measurements and neural network

prediction uncertainties.

3.3.2 Learning Features

The criteria that are optimized by the central nervous system in hand-object manipulation are

still unknown (see Section 1.4.3). A major obstacle to their identification is a dependency on

musculoskeletal parameters that can be difficult to measure precisely [EMHvdB07]. Rather

than explicitly considering such low-level parameters, the force model we propose in this

work relies on an artificial neural network that predicts manipulation forces from high-level

kinematic features. Based on the dataset presented in Section 3.2, we group the available

parameters into three categories:

• Object and grasp parameters: location of the center of mass G in Robj., mass m, inertia

matrix J, contact point locations Pk and friction coefficients µk.

• Kinematic parameters: appearing in Eq. (3.3) are the object’s orientation q in Rglobal,

rotational velocity ωωω , rotational acceleration ααα and translational acceleration a. The

quantities q,ωωω,a are directly measured by the AHRS. ααα is obtained by simple numeri-

cal differentiation of ωωω . Alternatively to the AHRS, these kinematic parameters can

also be estimated from visual tracking, through double differentiation of the object’s

pose through time (see Section 3.5.2).

• Force transducer measurements F̃k.

To alleviate sensing uncertainties, we extract physically plausible force distributions Fk in

the vicinity of the possibly inaccurate measurements F̃k, as depicted in Fig. 3.3.

The objective is then to learn the extracted force distributions Fk based on input parame-

ters that depend only on the grasp, the object and its kinematics. We select these input features
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Figure 3.2: Force distributions computed only by physics-based optimization are guaranteed
to result in the observed motion (net force and torque) but can significantly differ from the
real distributions at the finger level.
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rot. vel. ωωω ,
trans. acc. a
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SOCP: extract physically plausible 3D forces Fk in the vicinity of F̃k:
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∥∥∥
2

2

}

Figure 3.3: For each experiment, we extract force distributions compatible with the observed
motion in the vicinity of the transducer measurements.

based on their contribution to the Newton-Euler equations of motion. A first approach could

be to take the raw parameters listed above. However, their influence is often determined not

individually but rather in interaction with other parameters. From Eq. (3.12), the positions of

the center of mass G and contact points Pk are meaningful not on their own but in relation to

each other as
−−→
GPk. Similarly, from Eq. (3.3), we summarize the contributions of m, a, J, q,

ωωω , ααα into the target net contact force FFF c and torque τττc.

Recall that FFF c and τττc are expressed in Rglobal. Since the dataset focuses on static grasps,

for each experiment, the contact points are constant in any frame attached to the object. We

account for translational and rotational invariances by projecting FFF c, τττc and
−−→
GPk on Robj..

Thus, the input features stemming from the Newton-Euler equations are:

∀(k,v) ∈ F ×Robj.,





pFFF c
v = FFF c ·v

pτττc
v = τττc ·v

pPk
v =

−−→
GPk ·v

. (3.16)

In addition, we consider the average friction coefficient:

pµ = 〈µk〉k∈F
(3.17)
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(b) KDN-VF-F: two-stage thumb-virtual finger network.

Figure 3.4: Two RNN architectures learning the manipulation forces at each fingertip based
on the current kinematics and past forces.

We regroup these parameters, derived from the grasp-object properties and kinematics, into a

22-element vector K:

K =
(

pFFF c
v , pτττc

v , pPk
v , pµ

)
(k,v)∈F×Robj.

(3.18)

Similarly, we denote by D the 15-element vector of the force distribution expressed in the

local frame:

D = (Fk ·v)(k,v)∈F×Robj.
(3.19)

Note that attaching the frame to a chosen finger also helps preserve invariances througout

objects and experiments. Using the thumb contact space Rth.=
(
tx
0, t

y
0,n0

)
with t

y
0 towards

the palm, all four antagonist fingers share the same coordinate along n0, hence reducing K to

19 elements.

3.3.3 Neural Network Modelling

Given an object-grasp configuration, the goal of our work is to obtain an accurate estimate of

the force distribution applied to achieve an observed motion, e.g. by reconstructing a force
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distribution function F such that:

D = F(K) (3.20)

In [PKQA15b], we approximated such a function with an MLP learning internal forces. Yet,

our previous formulation has two important limitations:

• Similar tasks can be achieved with different force distributions, i.e., multiple values

of D can be associated to the same value of K. As such, different distributions would

tend to be averaged albeit equally valid.

• In Eq. (3.20), consecutive force distributions are independent through time. Instead,

since contact is never broken, we should expect that the force distribution Di at

timestamp i depends not only on the corresponding task parameters Ki but also on the

past.

Therefore, we adopt the following alternative formulation:

Di = F
(

Ki,Di−1,
(
K j,D j−1

)
j=1,i−1

)
(3.21)

Through the dependency on past kinodynamics, the first limitation is also mitigated since

forces are distinguished based on Ki trajectories rather than single samples.

We capture the sequential nature of manipulation kinodynamics using recurrent neural

networks (RNN) [Elm90], with long short term memory (LSTM) neurons [HS97] that allow

for better learning of long-term dependencies. In this work, we investigate four kinodynamics

network (KDN) architectures. The first model we propose, KDN-FH-F, directly predicts full

hand forces Di from the current kinematics Ki and previous distribution Di−1 using a single

RNN:

Di = KDN-FH-F(Ki,Di−1). (3.22)

Alternatively, we propose a two-stage network inspired by the virtual finger model, KDN-

VF-F. A first RNN estimates thumb forces D
(th.)
i based on parameters reducing the full grasp

to a thumb and virtual finger:

D
(th.)
i = KDN-VF-F(th.-VF)

(
K

(th.-VF)
i ,D

(th.)
i−1

)
. (3.23)
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We associate the virtual finger with the centroid of the antagonist fingers Fant. and their

average friction coefficient:

K
(th.-VF)
i =

(
pFFF c

v , pτττc
v , pPth.

v , pµth. , pPant.
v , pµant.

)
v∈Rth.

with





pPant.
v =

〈
pPk

v

〉
k∈Fant.

pµant. = 〈µk〉k∈Fant.

(3.24)

We compute the total wrench due to the antagonist fingers based on the contribution of the

estimated thumb force Fth.:

∀v ∈ Rth.,





pFFF ant.
v = (FFF c −Fth.) ·v

pτττant.
v =

(
τττc −

(−−−→
GPth. ×Fth.

))
·v

(3.25)

The second stage of the network learns the resulting distribution D
(ant.)
i over the antagonist

fingers:

D
(ant.)
i = KDN-VF-F(ant.)

(
K

(ant.)
i ,D

(ant.)
i−1

)

with K
(ant.)
i =

(
pFFF ant.

v , pτττant.
v , pPk

v , pµant.

)
(k,v)∈Fant.×Rth.

(3.26)

We depict KDN-FH-F and KDN-VF-F in Fig. 3.4.

In order to further address the fact that the same motion can be due to different yet equally

valid force distributions, we introduce alternative versions of KDN-FH-F and KDN-VF-F that

associate current kinematics Ki and past forces Di−1 to force variations ∆Di. In doing so, we

explicitly associate the same output to two sequences that differ by a constant internal force

distribution. We denote these alternative architectures by KDN-FH-∆ and KDN-VF-∆. Full

manipulation forces are then reconstructed by sequentially adding predicted force variations.

As such, these architectures are prone to drift and may require additional control.

3.4 Experiments

We train the four architectures KDN-FH-F, KDN-FH-∆, KDN-VF-F, KDN-VF-∆ on the

manipulation kinodynamics dataset of Section 3.2. Note that its sampling rate (400 Hz) far

exceeds the frame rate of off-the-shelf RGB-D sensors such as Microsoft Kinect (30 fps) and

Asus Xtion (60 fps). In order to be compatible with vision-based kinematics (Section 3.5),

we down-sample the dataset to 60 Hz and split it for training (60 %), validation (20 %) and
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(b) Closed-loop: force predictions are corrected between time steps.

Figure 3.5: Open-loop and closed-loop force generation processes.

testing (20 %). In KDN-FH-F and KDN-FH-∆, the RNN contains two hidden-layers of size

256. In KDN-VF-F and KDN-VF-∆, each RNN stage contains a single hidden-layer of size

256. The networks are implemented and trained within the Torch7 framework [CKF11]

using stochastic gradient descent with a mean square error criterion and dropout [SHK+14]

to avoid overfitting.

3.4.1 Force Reconstruction Model

From Eq. (3.21), each force distribution Di is computed from the corresponding kinematics

Ki and the distribution at the previous time step Di−1. Due to this sequential process,

the predicted forces may drift away from the transducer measurements throughout the

experiment. We assess the influence of the experiment duration in Section 3.4.2. Similarly,

the predicted sequence also depends on the choice of the initial force distribution D0, which

we address in Section 3.4.3. In this section, we discuss the reconstruction of physically

plausible manipulation forces from KDN predictions and present our results on full-length

experiments with ground-truth initialization. Manipulation forces are obtained by projecting

the components of Di onto the local reference frame following Eq. (3.19). Since the Newton-

Euler and Coulomb laws are not explicitly enforced by the RNNs, the raw predictions are

not guaranteed to result in the observed motion. We depict the open-loop prediction process

in Fig. 3.5a. Using the SOCP described in Fig. 3.3 with the KDN outputs instead of the

force transducer measurements, the sequence of raw predictions can be post-processed to

yield physically plausible force distributions in their vicinity. Another important point is

that the training sequences are physically coherent. Thus, repeatedly feeding incompatible

kinematics and forces into the KDN may result in growing prediction errors. We tackle this
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Table 3.1: Force Estimation Errors on Full-Length Manipulation Sequences

Open-loop Post-processed Closed-loop

KDN-FH-F 0.49(4.14) 0.44(4.07) 0.16(3.54)

KDN-FH-∆ −43.67(156.72) 0.60(4.74) 0.50(11.03)

KDN-VF-F 0.29(3.19) 0.29(3.13) 0.12(2.60)

KDN-VF-∆ 1145.06(3984.86) 3.54(11.80) 2.32(6.60)

issue by integrating the SOCP in closed-loop with the KDN such that force predictions are

consistently corrected between time steps. We depict the closed-loop prediction process in

Fig. 3.5b.

We compute the estimation errors (average and standard deviation) for the four network

architectures using open-loop prediction, offline post-processing or closed-loop prediction

and report the results in Table 3.1. In general, post-processing and closed-loop prediction

perform better than open-loop prediction. This is especially the case for the networks

estimating force variations ∆Di, as these tend to be rather unstable and prone to drift. For

instance, in Fig. 3.6, the open-loop predictions rapidly drift away from the net force and torque

producing the target kinematics. Additionally, the individual normal forces become negative,

which would mean that fingertips pull rather than press on the contact surface. Offline post-

processing looks for physically valid forces in the vicinity of negative raw predictions, finally

yielding distributions of minimal norm. In contrast, closed-loop prediction can help the

network recover from incorrect predictions and maintain human-like grasping forces. Overall,

the networks predicting force distributions generally perform better than those estimating

force variations. For those, post-processing does not appear to significantly improve the

open-loop estimations, which shows that these RNNs are rather successful at capturing

the relationship between kinematics and underlying forces. Finally, the better accuracy

of KDN-VF-F indicates that the virtual finger model can be a useful tool to decouple the

static indeterminacy stemming from the thumb and antagonist fingers. Still, the two-stage

architecture makes KDN-VF-∆ more prone to drift since thumb force predictions cannot be

corrected alone before computing the antagonist forces.

3.4.2 Force Drift Over Time

Due to the infinity of force distributions compatible with a given motion, the force predictions

are likely to deviate from the transducer measurements over time. We quantify this effect

by splitting the experiments into sub-sequences of maximum duration 1, 2, 4, 8, 16, 32 s

(resp. 60, 120, 240, 480, 960, 1920 samples) and computing the resulting estimation errors
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Figure 3.6: Open-loop, post-processed and closed-loop force predictions for KDN-VF-∆
(normal components). In this example, the open-loop estimation drifts away from physically
plausible solutions (negative normal forces). Compatibility with the observed motion is
enforced through offline post-processing or closed-loop control at each time step.
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for the four architectures with ground-truth initialization and offline post-processing or

closed-loop prediction. For completeness, we reproduce the estimation errors over the full

length sequences (average duration 60.1 s, standard deviation 3.8 s). We report the results in

Table 3.2.

In line with the observations made on the full-length experiments, KDN-VF-∆ is the

worst-performing network for every sequence duration, whereas KDN-VF-F is consistently

best-performing or closely behind. This indicates again that decoupling thumb and antagonist

redundancies is a viable strategy, yet more unstable in the presence of force variation

uncertainties. We also observed that KDN-FH-∆ yields better results than its full force

counterpart KDN-FH-F on the 1 s sequence duration and 2 s to a lesser extent. Recall that the

∆Di networks were introduced to accommodate the possibility of having the same motion

caused by an infinity of force distributions. It appears here that KDN-FH-∆ is better at

matching the real force variations on short sequences. Still, the applicability of this result

on real manipulation tasks is limited due to the two following aspects. First, for sequence

lengths greater than 2 s, the accumulation of ∆Di prediction errors becomes predominant.

Second, the accuracy of the predicted force sequence is contingent on its initialization on

the real forces being applied as measured by force transducers, which, ultimately, the force

estimation framework aims at completely circumventing.

3.4.3 Force Sequence Initialization

Manipulation forces are sequentially computed based on an initial distribution that can be

adjusted freely. We assess the force variability following non ground-truth initialization

for sequences of maximum duration 4.0, 8.0, 16.0 and 32.0 s. Each sequence is initialized

as follows. Using the average and standard deviation µµµ,σσσ of each finger force throughout

the manipulation kinodynamics dataset, we pick a random sample D̃0 following the normal

distribution N (µµµ,σσσ). We then correct D̃0 using the SOCP of Section 3.3.1. Thus, we ensure

that the resulting distribution D0 is compatible with the initial kinematics K0. We report the

force estimation errors for random and ground-truth initialization in Table 3.3.

Expectedly, ground-truth initialization yields better force estimates overall. Still, for

each architecture, the performance difference decreases with the sequence duration. Indeed,

even when starting from the same distribution, the predicted sequence is likely to deviate

from the transducer measurements due to the infinity of force variations producing the same

motion. This mitigates the importance of the force initialization over time. In the case of the

best-performing network, KDN-VF-F (closed-loop), the difference is actually minor even

starting from 8.0 s sequences. Finally, note that for any initial force distribution, the resulting

sequence is constructed to be physically plausible given the observed motion and compatible
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Table 3.2: Force Estimation Drift Through Time

1.0 s 2.0 s 4.0 s 8.0 s 16.0 s 32.0 s Full length

KDN-FH-F, post-processed −0.21(2.06) −0.21(2.43) −0.13(2.86) −0.04(3.22) 0.07(3.54) 0.19(3.76) 0.44(4.07)

KDN-FH-F, closed-loop −0.13(2.20) −0.12(2.47) −0.07(2.80) 0.00(3.07) 0.06(3.24) 0.08(3.33) 0.16(3.54)

KDN-FH-∆, post-processed 0.00(1.80) 0.15(2.42) 0.36(3.22) 0.56(3.89) 0.68(4.34) 0.56(4.62) 0.60(4.74)

KDN-FH-∆, closed-loop 0.02(1.87) 0.11(2.48) 0.27(3.44) 0.45(5.14) 0.58(7.39) 0.57(9.32) 0.50(11.03)

KDN-VF-F, post-processed 0.07(2.09) 0.13(2.51) 0.20(2.82) 0.25(2.99) 0.27(3.07) 0.28(3.11) 0.29(3.13)

KDN-VF-F, closed-loop 0.02(1.86) 0.04(2.16) 0.07(2.38) 0.10(2.50) 0.11(2.56) 0.12(2.58) 0.12(2.60)

KDN-VF-∆, post-processed 0.43(2.93) 0.87(4.47) 1.64(7.11) 2.37(9.33) 2.90(10.61) 2.94(11.13) 3.54(11.80)

KDN-VF-∆, closed-loop 0.41(2.47) 0.76(3.45) 1.24(4.74) 1.69(5.69) 1.99(6.17) 2.15(6.43) 2.32(6.60)
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Table 3.3: Influence of Force Prediction Initialization
4.0 s 8.0 s 16.0 s 32.0 s

Reference Random Reference Random Reference Random Reference Random

KDN-FH-F, PP −0.13(2.86) −0.00(3.42) −0.04(3.22) 0.12(3.60) 0.07(3.54) 0.21(3.76) 0.19(3.76) 0.19(3.80)

KDN-FH-F, CL −0.07(2.80) 0.09(3.36) 0.00(3.07) 0.10(3.43) 0.06(3.24) 0.09(3.42) 0.08(3.33) 0.06(3.36)

KDN-FH-∆, PP 0.36(3.22) 0.34(3.72) 0.56(3.89) 0.52(4.25) 0.68(4.34) 0.64(4.49) 0.56(4.62) 0.52(4.73)

KDN-FH-∆, CL 0.27(3.44) 0.37(4.08) 0.45(5.14) 0.53(5.75) 0.58(7.39) 0.63(7.35) 0.57(9.32) 0.56(9.59)

KDN-VF-F, PP 0.20(2.82) 0.22(3.01) 0.25(2.99) 0.27(3.08) 0.27(3.07) 0.28(3.13) 0.28(3.11) 0.29(3.14)

KDN-VF-F, CL 0.07(2.38) 0.12(2.61) 0.10(2.50) 0.12(2.63) 0.11(2.56) 0.13(2.63) 0.12(2.58) 0.13(2.63)

KDN-VF-∆, PP 1.64(7.11) 1.79(7.55) 2.37(9.33) 2.37(9.50) 2.90(10.61) 2.70(10.32) 2.94(11.13) 2.99(11.10)

KDN-VF-∆, CL 1.24(4.74) 1.27(5.11) 1.69(5.69) 1.75(5.86) 1.99(6.17) 2.06(6.29) 2.15(6.43) 2.18(6.47)
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with the forces a human could likely apply, based on the manipulation kinodynamics dataset.

This allows the generation of force sequences following different profiles for the same motion

(e.g., light or strong starting grasp). This method can also be used to reinitialize the prediction

model when the resulting distributions are unreliable, as it may happen in the presence of

motion tracking discontinuities.

3.5 Force Sensing From Vision

In the previous sections, we showed that the finger forces applied during manipulation can

be inferred based on the kinematics of the object, as measured by a high-performance AHRS.

Now, we propose to estimate the object’s kinematics from markerless visual tracking, thus

circumventing the need for any instrumentation whatsoever.

3.5.1 Model-Based Tracking

Along with the physical properties of the manipulated object, the force estimation framework

requires its kinematics and the location of the contact points over which forces are distributed.

Object kinematics and contact points can be attained by means of tracking the hand and the

manipulated object in 3D. Given such a successful 3D tracking, the kinematics can readily

be computed from the motion of the object, and the contact points by reasoning about the

proximity of the object and the fingers of the hand. Achieving hand-object tracking at the

level of accuracy and robustness that is required for visual force estimation is a challenging

task. We recorded experiments for quantitative evaluation using a SoftKinetic DepthSense

325 sensor. In the recorded sequences, the motion of the hand-object compound was such

that a wide range of linear and angular velocities was explored. In practice, such motions

frequently induce high levels of motion blur and strong (in some cases, complete) occlusions.

There is also considerable noise in the depth measurements provided by the sensor which, in

some cases, is systematic (e.g. slanted surface artifacts).

We used the 3D hand-object tracking method of [KA14]. This choice was derived from

our experience in [PKQA15b] which showed the efficacy and flexibility of the Ensemble of

Collaborative Trackers (ECT) when dealing with more than a single object or hand. Through

extensive quantitative experiments, we found that ECT yields accurate object kinematics

estimates, as we discuss in Section 3.5.2. The accuracy of the force estimates depends mostly

on that of the contact points. Indicatively, simulating a Gaussian noise of standard deviation

5 mm (resp. 10 mm) on the true contact points yields force reconstruction errors of zero

mean (same net forces) and 0.87 N (resp. 1.54 N) standard deviation. In our preliminary
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(a) Dataset obj. (b) Box. (c) Bottle. (d) Mug.

Figure 3.7: The hand and the object are tracked as a rigid compound.

experiments, the average contact point estimation error was greater than 20 mm. It should be

noted that tracking the object alone fails due to the object occlusions by the manipulating

hand not being accounted for. To deal with this problem, we capitalize on the observation

that in the scenarios we are interested in, the hand achieves a firm grasp that changes only

slightly when moving the object around. Under this assumption, as soon as the hand grasps

the object, the hand and the object can be viewed as a single rigid compound. Thus, in a

first step, we track hand-object interaction with [KA14]. We then select a frame where the

mutual hand-object occlusions are minimal. For that particular frame, we execute anew

the optimization step by incorporating an extra term in the objective function that favors

a hand pose where the fingertips touch the object at the known contact points. This leads

to a hand-object configuration that is most compatible to observations, while respecting

the contact point soft constraints. To arrive at this configuration, both the configuration

of the hand and the object are revised. This configuration is then considered as a rigid

compound which is used to track the whole sequence anew. The first tracking pass involves

the optimization of 34 parameters per frame, 27 for the hand and 7 for the object. The second

pass corresponds to 7 parameters only: the rigid transform of the compound.

3.5.2 Kinematics Estimation From Visual Tracking

With the camera calibrated intrinsically and extrinsically such that the gravity vector is

known, we record and process 12 tracking experiments using the following objects. First,

the instrumented device used in Section 3.2, in a configuration that does not appear in

the manipulation kinodynamics dataset (mass 279 g). Second, three objects used in daily

activities, 3D-printed and equipped with AHRS and force transducers for ground truth:
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Table 3.4: Kinematics Estimation Errors from Tracking

Central Gaussian Algebraic

Trans. acc. [m · s−2] 0.31(25.36) −0.02(2.92) −0.05(3.03)

Rot. vel. [rad · s−1] 0.14(446.45) −0.05(30.94) 0.01(31.76)

Force [N] 1.18(8.94) 0.01(0.72) 0.01(0.75)

a cuboid box (856 g), a small bottle (453 g), and a mug (174 g). We use the latter as an

application of the force model on non-prismatic grasps in Section 3.6.2. We depict sample

tracking results in Fig. 3.7.

Given the pose of the object throughout the experiment, we estimate its first and second-

order kinematics by numerical differentiation. This process is rather delicate as noise in the

estimated trajectory generates spikes in its derivatives, i.e. velocity and acceleration, therefore

forces. The effects of noise can usually be mitigated by smoothing the original signal over

several samples or using appropriate filters, e.g. Gaussian. However, force profiles occurring

in manipulation tasks are naturally spiky (see Fig. 3.6), as simply moving and stopping an

object yields successive acceleration vectors in opposite directions. Therefore, smoothing

the trajectory of the object comes at the expense of the ability to discern sudden variations in

acceleration profiles, which is crucial.

As an alternative to classical numerical differentiation methods, we investigate the use

of algebraic numerical differentiators [FSR03, MJF09] which do not assume any statistical

properties on the signal’s noise. We compare the kinematics estimates to the AHRS measure-

ments on translational acceleration and rotational velocity. In order to quantify the effect on

force estimation, we also compute the decomposition of the force transducer measurements

on AHRS and vision-based kinematics. Denoting by Ts = 1/60s the time period between

frames, we find an optimal Gaussian kernel of standard deviation σ = 3Ts truncated at ±4σ .

Similarly, the (κ,µ) algebraic numerical differentiator performs best as a filter of half width

4Ts with parameters κ = µ = 0.5. We report the resulting kinematics estimation errors in

Table 3.4.

On typical tracking sequences, smoothing techniques appear necessary to compute

reliable kinematics estimates. Both the Gaussian and algebraic filters yield reasonable force

discrepancies despite possible tracking uncertainties and discontinuities. Overall, while the

Gaussian filter seems to perform slightly better than the algebraic filter, the latter also requires

significantly less samples per estimate. This allows for a shorter lag for real time applications

while also better capturing high frequency force variations, at the cost of a slightly larger

sensitivity to tracking noise.
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3.5.3 Force Prediction From Vision-Based Kinematics

Using a single camera, we track manipulation experiments and estimate the object’s kinemat-

ics with algebraic filtering. In Section 3.4, although the four network architectures are trained

on AHRS data, the object’s kinematics is used as an input without consideration of the way

it is measured. Thus, the trained networks can seamlessly generate force sequences from

vision-based kinematics. In order to be completely independent of ground-truth sensing, we

use the random initialization process described in Section 3.4.3. We compute the resulting

estimation errors with respect to ground-truth force transducer measurements, along with,

for reference, force predictions derived from the AHRS kinematics, none of these being used

in the vision-based estimation process. We report our results in Table 3.5.

Under the same initialization conditions, forces computed from vision are comparable to

forces computed from AHRS measurements. The decrease in accuracy is most noticeable on

networks estimating force variations ∆Di due to a higher tendency to drift, as discussed in

Section 3.4, but also additional uncertainties from visual tracking. We depict an example of

forces estimated from vision in Fig. 3.8. Tracking discontinuities (e.g., lost hand-object pose),

following second-order differentiation, are perceived by the force estimation framework as

acceleration spikes and result in sudden fingertip force variations. These errors accumulate

in the case of ∆Di networks since each prediction is directly relative to the preceding

sample. When erroneous kinematics can be identified, their impact can be mitigated by

reinitializing the prediction process based on the last reliable sample. However, while doing

so is straightforward when AHRS measurements are available, it is difficult from the tracked

kinematics alone, since acceleration spikes are not necessarily due to discontinuities but

can also stem from actual sudden motions. Overall, KDN-VF-F appears the most resilient

architecture to visual tracking uncertainties.

3.6 Discussion

3.6.1 Visual Tracking Assumptions

In Section 3.5.1, we suppose the contact points known and use them to compute a static

grasp throughout the motion. Note that our force estimation framework itself is independent

of the tracking method employed as long as reliable motion and contact information can

be provided. The difficulty for us was to collect ground-truth measurements to validate

our approach. Therefore, we forced the positioning of the fingertips at desired locations

for both the real objects and the visual tracking system. Indeed, to allow arbitrary finger

placement, the experimental apparatus should be covered with an array of high-precision 3D
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Figure 3.8: Force estimates from AHRS measurements and visual tracking with closed-loop
KDN-VF-F and random initialization.

force transducers (that are not available in the required dimensions), or alternatively with
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Table 3.5: Force Estimation Errors From Visual Tracking

Kinematics AHRS AHRS Vision

Initialization ground truth random random

KDN-FH-F, PP −1.10(2.95) −1.12(2.95) −1.18(3.11)

KDN-FH-F, CL −1.37(3.12) −1.37(3.13) −1.25(3.61)

KDN-FH-∆, PP 0.72(3.38) 0.85(3.42) 0.94(3.39)

KDN-FH-∆, CL 1.21(5.80) 2.27(11.86) 3.50(17.28)

KDN-VF-F, PP 0.18(2.64) 0.14(2.68) 0.15(2.69)

KDN-VF-F, CL −0.01(2.20) 0.02(2.27) −0.04(2.30)

KDN-VF-∆, PP 5.40(27.61) 5.16(23.06) 5.94(24.54)

KDN-VF-∆, CL 2.20(16.31) 3.87(19.99) 7.37(25.15)

dedicated force sensing surfaces [SCCP14], generally limited in accuracy and range (e.g.,

normal forces only).

Our force estimation framework can readily challenge in-hand manipulation scenarios

with more sophisticated tracking systems (e.g., multi-camera). Again, assessing such tasks is

limited by the difficulty of measuring the actual forces without obstructing the subject’s haptic

sense, which we consider essential in our demonstration. In effect, the tracking method

we describe does not introduce any constraint besides those relative to the ground-truth

instrumentation, while making it possible to monitor manipulation forces using a single

off-the-shelf depth sensor.

3.6.2 Beyond Prismatic Grasps

For the sake of completeness, we evaluate the force estimation framework on a non-prismatic

grasp. We construct a mug-shaped instrumented device, pictured in Fig. 3.7d, and arrange the

force transducers on a circle, with the contact normals pointing towards the center. We then

compute force distributions from visual tracking and AHRS measurements using the model

trained on prismatic grasps. We depict the resulting predictions in Fig. 3.9. We observe

the following. First, by considering the hand and the object as a single rigid compound,

we are able to track the mug fairly accurately using a single depth sensor, despite it being

essentially rotationally symmetric, except for a handle that is easily occluded. Second, in

general, the RNN predictions do not follow the subtle force variations along the normal nk

and tangential directions tx
k as closely as the tangential directions t

y
k. Indeed, recall from

Section 3.3.2 that the individual t
y
k per finger are defined, uniformly, as oriented towards the
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palm. This property is preserved in the case of the mug. However, while for prismatic grasps

the nk are collinear with each other and perpendicular to the tx
k, couplings appear between and

among each set in the case of the mug. Still, although RNN predictions and force transducer

measurements can quite differ, the SOCP ensures that the final distributions are physically

plausible based solely on the observed kinematics and the object-grasp properties, regardless

of the RNN training dataset.

While we could imagine extending the force estimation framework further by training

new network architectures on arbitrary grasps, this is difficult in practice. The ground-

truth instrumentation used in the manipulation kinodynamics dataset captures 11 degrees of

freedom for the contact space (grasp width and 2D tangential position of each finger on the

tangential space). In contrast, for general grasps, the instrumentation should allow 25 degrees

of freedom (5 per finger, ignoring the transducer orientations about the normal axes). Due to

a greater contact space dimensionality, it would require significantly more experiments to

obtain a dataset that is both diverse and extensive, as well as a much heavier experimental

setup to be able to fine-tune the position and roll-pitch of each transducer independently.

3.6.3 Computational Performance

On a computer equiped with an Intel i7-4700MQ CPU (quad-core 2.40GHz) and an NVIDIA

GTX 780M GPU, we apply the KDN-VF-F closed-loop architecture on the testing dataset

(39 experiments, total duration 2470 s, 60 samples per second). We report the computation

time in Table 3.6. While at first the computation time appears greater than the dataset

duration, the decomposition per process shows that the current implementation is actually

rather sub-optimal. In fact, the three core components of our approach take only 5.29 ms

per sample. First, algebraic differentiators implemented as finite impulse response filters are

of minor impact on the computation time. Second, RNN predictions are parallelized on the

GPU using the Torch7 framework [CKF11]. Third, SOCP solving is done with the CVXOPT

library [ADV13].

In the current implementation, we construct the RNN input vectors and SOCP constraint

matrices within their respective frameworks. A typical iteration is as follows:

1. Given the current kinematics and the SOCP corrected forces Fi−1 at the previous step,

we construct the RNN input vector (Ki,Di−1).

2. The network produces a raw force prediction D
(raw)
i .

3. We assemble SOCP constraint matrices from the target kinematics and the cost function

from D
(raw)
i .
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Figure 3.9: Force estimates with non-prismatic grasp (mug).

4. We solve the SOCP and get the corrected forces Fi.
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Table 3.6: Computation Time Decomposition by Process

Total Per sample Per timestep

Experiment duration 2470.0s 16.67ms 100.00%

Computation time 3521.4s 23.76ms 142.57%

Algebraic diff. 22.3s 0.15ms 0.90%

RNN prediction 120.4s 0.81ms 4.87%

→֒ Data formatting 86.2s 0.58ms 3.49%

SOCP correction 641.8s 4.33ms 25.98%

→֒ Initialization 659.0s 4.45ms 26.68%

Lua/Python bridge 1991.7s 13.44ms 80.64%

Steps 1 and 2 are executed in Lua for Torch7, while steps 3 and 4 are executed in Python

for CVXOPT. Both being interpreted languages explains part of the overhead in preparing

the data for each process. However, the majority of the computation time is actually spent

on managing the two interpreters in succession, as represented by the Lua/Python bridge

value in Table 3.6, which measures the time elapsed between steps 2 and 3, and between

steps 4 and 1 (next iteration). Note that no calculation is performed during that time, only

spent on switching between Lua and Python contexts. For this reason, simply implementing

our method within a unified computational framework would certainly yield a tremendous

increase in performance enabling real-time use. Other possible improvements at the numerical

level include refactoring data structures to reduce redundancies and update constraint matrices

only when needed, initializing the SOCP search at the RNN predictions, and rewrite the

physical plausibility problem as a quadratic program (QP) using a discretized friction cone.

3.7 Conclusion and Future Work

Our work establishes that monitoring hand-object interaction forces at the fingertip level, a

problem that is traditionally addressed with costly, cumbersome and intrusive force transduc-

ers, can be addressed in a cheap, reliable and transparent way using vision. Based on the first

large-scale dataset on manipulation kinodynamics, the approach we present estimates force

distributions that are compatible with both physics and real human grasping patterns. While

the case of static prismatic grasps may appear restrictive, this limitation is only relative to

the instrumentation required to collect ground-truth measurements, essential to prove the

validity of the approach. Provided such an experimental setup, we expect that our method

can be seamlessly extended to arbitrary grasps. Note that, even without, the current SOCP
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(a) ‘Samurai’ sequence, overlay on registered color. (b) ‘Drill’ sequence, overlay on depth map.

Figure 3.10: Qualitative force predictions (red) with manually picked contact points (yellow)
on alternative object tracking datasets: (a) [KMB+14], (b) [IWGC+16].

formulation is independent of the dataset used to train the networks and always produces

distributions that result in the observed motion. Finally, even limited to prismatic grasps, the

estimation of 3D forces for all five fingers on arbitrary motions greatly extends the state of

the art in interaction capture. Using our approach, it is achieved with a setup as simple as a

single RGB-D camera, enabling its use for monitoring of human activities and robot learning

from demonstration in daily settings.

Our approach is readily compatible with any method providing accurate object kinematics.

For qualitative evaluation, we applied our technique to the alternative object trackers and

datasets of [KMB+14, IWGC+16] with the contact points handpicked from the visual

observations. We depict snapshots of these experiments in Fig. 3.10 and invite the reader

to refer to the supplementary material of [PKAK16] for video results2. When the situation

allows a richer setup, a multi-camera system can also be used to track the hand and the object

separately. Our future work involves alleviating the limitations induced by the ground-truth

instrumentation. In order to monitor non rigid grasps, we aim to apply the force estimation

framework in conjunction with tracking to guide the pose search as an implicit model for

grasp plausibility and realism [PKQA15a]. Additionally, the generalization to arbitrary

grasps could be addressed by considering the variability of manipulation forces with grasp

and object properties as an inverse optimal control problem. The manipulation kinodynamics

dataset could thus be used to refine the force optimization problem with physiological criteria,

e.g., grasp efficiency [ZY13]. In the long term, we plan to extend the force estimation

framework to general articulated bodies for bi-manual grasping. In Chapter 4, we extend our

approach to whole-body interactions with the environment.

2https://www.youtube.com/watch?v=NhNV3tCcbd0
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Chapter 4

Whole-Body Contact Force Sensing

From Motion Capture

4.1 Introduction

Humans purposefully interact with their environment through physical contact to manip-

ulate and move themselves or objects. The contact forces that are applied during a given

task are informative on both the resulting motion and the underlying intent. Thus, force

sensing has direct applications in research fields such as robot learning from demonstration

and control [RJC13, EKO15], physics-based animation [HBL11, ZSZ+14] and visual track-

ing [KA13, PKQA15a]. Contact forces are typically measured using force transducers that

are costly, cumbersome and of limited, varying accuracy under repeated stress [DMVS10].

In this work, we propose a method to infer human whole-body contact forces from motion

capture alone. If combined with markerless visual tracking technologies [MPA15], this

would enable the non-intrusive monitoring of contact forces in daily activities. However, the

problem is very challenging.

By means of the equations of motion for articulated rigid bodies, the knowledge of

external and internal forces uniquely determines the resulting kinematics. In contrast, the

reverse problem is generally indeterminate in multi-contact with the environment and the

knowledge of a given motion may not suffice to fully characterize the underlying force

distribution. For instance, one can stand still while applying foot forces of varying magnitude

in opposite, lateral directions. The force distribution problem in whole-body locomotion is

an active research topic in multiple fields (Section 1.4.2). In Chapters 2 and 3 we proposed a

combined optimization and learning approach for force sensing from vision in the context of

manipulation. However, these approaches do not directly extend to the case of whole-body
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multi-contact with the environment due to, in particular, the higher dimensionality of the

human body and the variety of possible contact configurations. We address it as follows:

• Akin to our data-driven approach for manipulation, we collect real measurements on

whole-body kinodynamics, in the form of 100 min of motion and force measurements

for diverse contact configurations (Section 4.2).

• We propose a force estimation framework relying jointly on a recurrent neural network

that learns how humans instinctively distribute contact forces while accounting for

varying multi-contact configurations, and a second-order cone program that guarantees

the physical plausibility of the resulting distributions with respect to the whole-body

equations of motion (Section 4.3).

• We consistently validate our approach with ground-truth measurements throughout our

work and demonstrate its accuracy on challenging scenarios (Section 4.4).

Finally, we discuss the current limitations of our work as well as possible applications

and extensions (Section 4.5). To accelerate the research on this new topic and encourage

alternative implementations, we make our datasets and algorithms publicly available 1 .

4.2 Whole-Body Kinodynamics Dataset

4.2.1 Experimental Setup

We collect kinodynamic measurements (motion and forces) on human activities using two

types of sensors in parallel. First, the human whole-body motion is tracked using a motion

capture system (Xsens MVN Awinda) consisting of 17 wireless inertial measurement units

(IMU) and batteries strapped at specified body landmarks. The choice of this motion capture

technology is motivated by our intention to collect human kinodynamic measurements in

confined and eventually outdoor environments. Vision-based systems (e.g., Vicon) are limited

by strong occlusions occurring in whole-body interactions with the environment, and difficult

to apply in uncontrolled environments on the fly (e.g., outdoor).

The motion of the subject’s body, modeled as a 23-segment skeleton, is recorded at

100 Hz. For each sample, the system provides the 6-DoF pose of each segment as well as the

corresponding linear and rotational velocity and acceleration. Contact forces at the subject’s

feet are monitored with instrumented shoes (Xsens ForceShoe), equipped with 6-DoF force-

torque sensors at the heel and toes and IMUs recording the sensor orientations. We measure

1The dataset and algorithms will be released at https://github.com/jrl-umi3218/
WholeBodyKinodynamics.
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(a) Motion capture suit, contact force (red) and torque (yellow) visualization.

(b) Shoes equipped with inertial measurement units and force-torque sensors.

Figure 4.1: Acquisition system for whole-body kinematics and contact forces.

other interaction forces with the environment using an additional 6-DoF force-torque sensor

(ATI Mini-45) held in the subject’s hand. All force-torque measurements are recorded at

100 Hz. We depict our acquisition setup in Fig. 4.1.

Being based on inertial measurements, the motion capture system is prone to drift

compared to marker-based tracking methods (e.g., Vicon). We are working on a solution to

attenuate this problem. Similarly, wearable force sensors can be of lower accuracy than force

plates due to repeated pressure and deformations. Still, a major benefit of our lightweight

setup is the efficient and continuous acquisition of kinematics and contact forces on highly-

dynamic motions through time, which is generally not possible with static force plates.

Additionally, the simultaneous monitoring of the whole-body motion and forces allows

their correction in two steps. First, low-frequency sensing inaccuracies (e.g., drift) for both



88 Whole-Body Contact Force Sensing From Motion Capture

types of sensors can be corrected in isolation, based on physical considerations described in

Section 4.2.2. Second, physical consistency between whole-body kinematics and contact

force measurements can be enforced through the equations of motion for articulated systems

of rigid bodies (see Section 4.3.1).

4.2.2 Preparing Measurements for Dynamics Analysis

The Xsens MVN Awinda system captures the motion of the subject using a 23-segment

skeleton. At each time step, the whole-body pose is encoded by 161 parameters, i.e.,

7 parameters per segment (3D position and orientation as quaternion). To facilitate the

dynamics analysis, we transform the motion capture output into a kinematic tree rooted at

the subject’s pelvis and link the 23 segments with 22 spherical joints allowing 3 rotational

degrees of freedom. In practice, we represent spherical joints with 3 chained revolute joints

for compatibility with the Unified Robot Description Format (URDF)2. Thus, the whole-body

pose is summarized, without loss, as a 73-element vector q containing the quaternion and

position of the base link in the global frame and 66 joint angles. We augment the kinematic

tree with body segment inertial parameters (i.e., mass, center of gravity, inertia tensor)

computed from the subject’s weight and measurements with the anthropomorphic tables

of Dumas et al. [DCV07]. The resulting dynamic model is implemented using the RBDyn

library for rigid body dynamics [V+13]. Corrections based on the equations of motion are

discussed in Section 4.3.1. Prior to that, motion capture and force sensing errors can be

mitigated based on the following considerations.

Recall that the whole-body tracking system employed in this work is based on inertial

measurement units. Positions and orientations are computed by sensor fusion and successive

integrations of acceleration and velocity measurements, making the pose estimation sensitive

to drift over time. As such, contact configurations cannot be directly identified based solely

on the reported body segment positions. For instance, we found that contacts between the feet

and the ground during walking could not be consistently segmented by simple thresholding on

their vertical positions. Instead, we thresholded the force sensor measurements to know when

a contact occurs. Noticeable pose estimation errors also appeared when considering contacts

others than with the ground, e.g., between the hand and the environment, as depicted in

Figs. 4.2a and 4.2b. In such cases, we manually constrained the palm to be either horizontal or

vertical. We also observed body segments in unrealistic orientations, illustrated in Figs. 4.2c

and 4.2d, due to the motion capture system not enforcing joint limits in the skeletal tracking.

We implemented them manually in our kinematic model and limited the range of the revolute

2http://wiki.ros.org/urdf
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(a) Contact with table. (b) Contact with wall. (c) Raised right foot. (d) Static stance.

Figure 4.2: Erroneous tracking examples. (a): against a table, the right hand should be
horizontal with the contact normal pointing upwards. (b): against a wall, the hand should be
vertical with the contact normal in the horizontal plane. (c): right foot flipped backwards
when raised on a foot stand. (d): foot orientation drift with subject standing still.

joints. Note that this material limitation does not affect the generality of our approach and

can be fully cirvumvented with additional visual observations, at the cost of portability and

flexibility for the experimental setup.

Finally, the force measurements are subject to noise, either from the sensors themselves

or due to interferences in the wireless transmission. We attenuate it by smoothing all signals

with a Gaussian filter of kernel σ = 0.05s. Second, a slow-varying bias can appear in the

force-torque measurements due to repeated stress and battery drain. We compute the bias

through time by averaging the signals that persist when a sensor is not in contact with the

environment, which should only be caused by the inertia of the moving parts attached to the

sensing surface (e.g., force shoe external sole).

4.2.3 Experiments and Data Collection

In a preliminary study, four male volunteers took part as subjects in our experiments. Their

weights (between 69.6 kg and 79.8 kg, plus the 3.5 kg acquisition system), heights (between

1.79 m and 1.94 m), and individual body segment lengths were measured to initialize the

motion capture skeletal tracking model and BSIPs following [DCV07]. All sensors (motion

and force-torque) were calibrated and reset between experiments following the manufacturers’

recommended acquisition procedure to reduce the effects of measurement drift and hysteresis.

The subjects were instructed to perform the following tasks:
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(a) Walking. (b) Upper body balancing. (c) Wall support. (d) Leaning on a table.

Figure 4.3: Sample poses from the whole-body kinodynamics dataset.

• Walking at different speeds (slow, normal, fast) and following different trajectories

(circular, back and forth)

• Moving the upper body while maintaining the feet static

• Taking support against a wall with the left or right hand

• Leaning on a table with the left or right hand

We illustrate these experiments in Fig. 4.3. The goal of the first task is to allow neural

networks to capture the centroidal dynamics relationship between motion and forces in

bipedal contact. The second task follows the same principle and also provides examples of

static indeterminacy, i.e., how humans apply forces that cancel each other out and do not

affect their state of equilibrium. The third and fourth tasks go further and are typical scenarios

where the straightforward minimization of multi-contact forces leads to distributions that

are physically plausible but not representative of those humans really apply, as discussed in

Section 4.3.

For each experiment, we record the 6-DoF pose of the 23 segments through time as

estimated by the motion capture suit and convert it to an equivalent 73-element vector of

generalized coordinates q. The inertial motion capture system readily provides the angular

and linear velocities and accelerations of each segment in the global frame. We construct

the whole-body velocity (resp. acceleration) vector q̇ (resp. q̈) from the angular and linear

velocities (resp. accelerations) of the base link in the global frame and from the joint
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velocities (resp. accelerations) of the children segments, computed by projecting the segment

angular velocities (resp. accelerations) onto the individual parent frames. We then perform

a preliminary correction of both the motion capture and force-torque sensor measurements

as described in Section 4.2.2. Overall, we construct a dataset of total duration 100 min

comprising synchronized motion and force-torque measurements on 51 experiments.

4.3 Force Sensing From Whole-Body Motion

4.3.1 Whole-Body Force Optimization

We consider an articulated system of rigid bodies subject to Nτττ internal joint torques τττ(i):

τττ(i) =
(

τ
(i)
1 , . . . ,τ

(i)
Nτττ

)T

(4.1)

and NF external wrenches Fk = (τττk, fk), with τττk and fk the respective external torque and force

at contact k, expressed in the global frame. Considering the (free) position and orientation of

the base link, the number of degrees of freedom is NDoF = Nτττ +6. We denote by q, q̇, q̈ the

respective generalized coordinates, velocity and acceleration of the articulated system. The

whole-body equations of motion can be expressed as:

H(q)q̈+C(q, q̇) =

[
06

τττ(i)

]
+

NF

∑
k=1

JT
k Fk, (4.2)

with:

• H(q) the NDoF ×NDoF mass matrix,

• C(q, q̇) the NDoF ×1 bias vector of the Coriolis, centrifugal forces and gravity terms,

• Jk the NDoF ×6 Jacobian matrix at contact k,

• 06 the 6×1 internal wrench directly applied at the base link (zero for floating base).

For each contact k, we denote by zk the (uniquely defined) normal vector oriented from

the environment to the body and choose two orthogonal vectors xk and yk in the tangential

plane. We can thus express the external wrench Fk in the contact space Ck:

CkFk =
(
τx

k ,τ
y
k ,τ

z
k , f x

k , f
y
k , f z

k

)T
,

with

{
τττk = τx

k xk + τ
y
k yk + τz

k zk

fk = f x
k xk + f

y
k yk + f z

k zk

.
(4.3)
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Having chosen zk oriented towards the body, the normal force component is such that:

f z
k ≥ 0. (4.4)

The Coulomb model with friction coefficient µk requires that:

∥∥ f x
k x+ f

y
k y

∥∥
2 ≤ µk f z

k . (4.5)

Eq. (4.2), (4.4) and (4.5) can be respectively incorporated as equality, linear inequality

and cone constraints of a second-order cone program (SOCP) of optimization parameters:

x =
(

τττ(i),
(

CkFk)k=1,NF

))
,

=
(

τ
(i)
1 , . . . ,τ

(i)
Nτττ
,τx

1 ,τ
y
1 ,τ

z
1, . . . , f x

NF
, f

y
NF
, f z

NF

)T

.
(4.6)

x is a vector of size Nτττ +6NF.

4.3.2 Force Correction and Reconstruction

From this formulation, it is directly possible to construct physically plausible force distribu-

tions by minimizing a cost function depending only on the optimization parameters, e.g., the

(squared) L2 norm of the internal and external wrenches:

CL2(x) = ‖x‖2
2 ,

=
∥∥∥τττ(i)

∥∥∥
2

2
+

NF

∑
k=1

‖Fk‖
2
2.

(4.7)

The resulting forces, by construction, are necessarily compatible with the observed motion.

However, in multi-contact, when there exists more than a single distribution for a given task,

there is no guarantee that the L2-optimal distribution coincides with the actual forces being

applied. As discussed in Section 1.4.2, the identification of the cost function supposedly

optimized by the human central nervous system is still an active research topic. In our work,

rather than trying to reconstruct an explicit formulation of the force distribution cost function,

we instead propose to build an implicit model relying on machine learning techniques to

capture how humans naturally distribute interaction forces in multi-contact.

Recall that due to measurement uncertainties, the preliminary correction process described

in Section 4.2.1 does not fully ensure that the force-torque measurements are physically

consistent with the motion. For this purpose, we formulate a cost function for the SOCP that
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quantifies the distance between the external wrenches to optimize Fk and target wrenches F̃k:

Cdisc(x) = ε
∥∥∥τττ(i)

∥∥∥
2

2
+

NF

∑
k=1

∥∥∥Fk − F̃k

∥∥∥
2
, (4.8)

with ε an optimization weight for the internal joint torques. With ε big, the SOCP searches for

external wrench distributions that minimize the magnitude of the joint torques. Conversely,

with ε small, we extract the force distributions that are the closest to the reference F̃k

while being physically compatible with the observed motion, regardless of the joint torques.

Experimentally, we set ε = 10−6, non-zero for numerical resolution of the SOCP with the

CVXOPT library for convex optimization [ADV13].

By taking for F̃k the force-torque sensor measurements acquired experimentally, the

resulting cost function can be used to mitigate sensing uncertainties by extracting physically

correct force distributions in the vicinity of the uncertain measurements. Alternatively, in

Section 4.3.4, we take for F̃k force-torque predictions estimated by a neural network based

on whole-body kinematic observations and correct them with the same SOCP formulation.

Fig. 4.4 illustrates how the accumulation of individual measurement errors over all force

sensors can result in a measured net force that is in considerable disagreement with physics.

In the following, we denote by ground truth the physically realistic distributions obtained by

correcting the sensor measurements with the SOCP (relative to the dynamic model).

4.3.3 Learning Features

Our goal is to construct a mapping F between a set of input features K representing the

whole-body kinematics and contact configuration, and output features D representing the

underlying dynamics, i.e., external wrenches:

D = F (K). (4.9)

For the sake of generality, we aim at modelling human force distribution patterns based

on an optimal selection of high-level features rather than a large set of hand-engineered

parameters. Akin to the case of manipulation, we select those based on their contributions on

the equations of motion. However, while the Newton-Euler equations for rigid bodies allow

the extraction of relevant parameters from a limited set of well-identified physical quantities

(see Section 3.3.2), the complete equations of motion for articulated bodies are significantly

more complex (see Eq. (4.2)).

Instead of the complete equations of motion, we consider, for feature extraction, the

Newton-Euler equations for centroidal dynamics. For each element s of the set of NS = 22
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Figure 4.4: In this sequence, the subject stays still while applying varying forces in triple
contact with the environment. The equations of motion dictate that the net contact force
should be constant (top row), which is not apparent on the force sensor measuments (red
line) due to sensing uncertainties. Forces compatible with the observed kinematics can be
computed using an SOCP (green and blue lines). The minimization of the L2 norm alone
yields forces that are physically plausible but differ significantly from the measurements.
Instead, minimizing the discrepancy to the uncertain measurements yields forces that are
realistic both physically and compared to actual distributions.

body segments S , we denote by ms its mass and Gs its CoM. In the global frame, we denote

by vs the linear velocity of Gs and Rs its orientation matrix. In the segment frame, we denote

by ωωωs and Is its local angular velocity and inertia tensor, respectively. With m the total mass
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of the articulated system and G its centroid, the linear momentum PPP and angular momentum

LLL G at G are defined by:





PPP = ∑
s∈S

msvs,

LLL G = ∑
s∈S

ms

−−→
GGs ×vs +RsIsωωωs.

(4.10)

With L̇LL G and ṖPP the time derivatives of the angular and linear momenta, respectively, g the

gravity vector and GFk the contact wrench at contact k transformed to G, the Newton-Euler

equations for centroidal dynamics state that:

[
L̇LL G

ṖPP

]
=

[
0

mg

]
+

NF

∑
k=1

GFk. (4.11)

We gather gravity, linear and angular momenta as a gravito-inertial wrench w(gi) [CPN16]:

w(gi) =

[
L̇LL G

ṖPP −mg

]
(4.12)

Denoting by Pk the location of contact k, Eq. (4.11) can thus be rewritten as:

w(gi) =
NF

∑
k=1

[
τττk +

−−→
GPk × fk

fk

]
. (4.13)

The left-hand side of Eq. (4.13) is a purely kinematic term that can be directly computed

from the whole-body pose and its derivatives, while the right-hand side summarizes the

contributions of each contact wrench. This representation makes it a good candidate for the

selection of optimal learning features extracting the gist of locomotory dynamics.

Recall that the whole-body motion is expressed in the world frame. To account for

translational and rotational invariances, we extract and express learning features in a reference

frame G of origin the centroid G and of orientation fixed with respect to a chosen body frame

(e.g., that of the pelvis). Thus, walking straight to the North is perceptually equivalent to

walking straight to the East. Based on Eq. (4.13), we extract as kinematics-based features:

• G w(gi) the 6-element gravito-inertial wrench expressed in G ,

• G Pk the 3D position of each contact k expressed in G .

This results in 6+3NF features for a motion involving NF contacts. In practice, the mapping

F of Eq. (4.9) may require a fixed-size input vector. Thus, the formalism adopted should
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account for varying contacts. Instead of only considering the location of the contacts G Pk,i

that are active at timestamp i, we monitor a set of Nc possible contact locations through time

and encode contact configurations using parameters δk,i such that:

δk,i =

{
1 if contact k is active at time step i,

0 otherwise.
(4.14)

In our experiments, we continuously monitor the position of the subject’s feet and hands. As

discussed in Section 4.2.2, we extract the parameters δk by thresholding on the force sensor

measurements, although this could be achieved by body and object segmentation when visual

observations are available. Overall, the complete input features at timestamp i are:

Ki =

(
G w

(gi)
i ,

(
G Pk,i,δk,i

)
k=1,Nc

)T

(4.15)

Ki is a vector of size 6+7Nc. Similarly, we define as output features the contact wrenches

(i.e., forces and torques) applied at each monitored potential contact point k, expressed in G :

Di =

((
G Fk,i

)
k=1,Nc

)T

(4.16)

For each monitored point k, the wrench G Fk,i is zero if k is not in contact with the environment.

Di is a vector of size 6Nc.

4.3.4 Neural Network Model

In Eq. (4.9), the mapping F does not account for temporal continuity. As such, consecutive

force distributions are independent of each other. Instead, we introduce a dependency on

both the current motion and the past trajectory using the following formulation:

Di = F

((
K j

)
j=1,i

)
. (4.17)

We model this time series structure using recurrent neural networks (RNN) [Elm90] with

long short-term memory neurons (LSTM) [HS97]. A simple network architecture, which

we denote by WBN-D (whole-body network, direct), thus consists in a simple RNN directly

mapping Ki to Di while keeping track of long-term dependencies to the past:

Di = WBN-D(Ki) . (4.18)
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A typical iteration at timestamp i is as follows:

1. from the whole-body motion, compute the kinematics-based input features Ki

2. feed Ki into WBN-D, get raw predicted dynamic features D
(raw)
i

3. project D
(raw)
i from G to the global frame to extract contact wrench predictions F̃k,i

We illustrate the WBN-D architecture in Fig. 4.5a. Although the RNN is expected to

implicitly capture the relationship between kinematics and forces, the raw predicted forces

are not guaranteed to fully comply with the whole-body equations of motion and friction

constraints. Therefore, we compute physically plausible solutions Fk in the vicinity of the

raw wrench predictions F̃k using the SOCP of section 4.3.1, with the complete equations of

motion of Eq. (4.2) and the discrepancy cost function of Eq. (4.8). This step can be done

offline, after the prediction of the complete raw wrench sequence from kinematics alone.

Alternatively, we propose an architecture that implements a feedback loop, WBN-F,

allowing the correction of raw wrenches between consecutive predictions:

Di = WBN-F(Ki,Di−1) . (4.19)

For prediction, the force distribution sequence is initialized with the distribution D0 of

minimal L2 norm, as described in Eq. (4.7). Such a distribution is computed from the

kinematics alone. Subsequent iterations i are then as follows:

1. fetch the previous dynamic features Di−1

2. from the current whole-body motion, compute the current kinematic features Ki

3. feed Ki,Di−1 into WBN-F, get raw predicted dynamic features D
(raw)
i

4. project D
(raw)
i from G to the global frame to extract contact wrench predictions F̃k,i

5. feed F̃k,i into an SOCP accounting for the whole-body equations of motion

6. extract physically plausible forces Fk,i in the vicinity of the raw predictions

7. project corrected forces Fk,i from the global frame to G to extract dynamic features Di

We depict the WBN-F architecture in Fig. 4.5b.
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Body kinematics, contact config. (i)

WBN-DKi D
(raw)
i

(i−1)) (i+1)

Ki+1 WBN

(a) Forces are direcly computed from the kinematics and contact configura-
tion.

Body kinematics, contact config. (i)

WBN-F
Ki

Di−1SOCP

(i−1)) (i+1)

SOCPD
(raw)
i i

Ki+1

WBN

(b) Force predictions are corrected between consecutive time steps.

Figure 4.5: Direct and feedback whole-body network architectures.

Table 4.1: Force Estimation Errors [N] on Testing Set (16 min)

Raw Corrected

Force sensors −4.58(46.1) ground truth

Min. L2 N/A 2.19(46.0)

WBN-D 0.75(38.4) 0.89(29.4)

WBN-F 1.26(48.1) 0.77(47.3)

4.4 Experiments

4.4.1 Results on Complete Dataset

For the purpose of training, validation and testing, we construct a random partitioning of the

whole-body kinodynamics dataset into three subsets of respective size 70 %, 15 % and 15 %.

We implement the WBN-D and WBD-F neural network architectures within the Torch7

framework [CKF11]. Both architectures take the kinematics features Ki as input, as well

as Di−1 for WBD-F, pass them into two LSTM hidden layers of size 256, and compose the

results with a linear layer returning the dynamics features Di. We train the networks using

mini-batch stochastic gradient descent with a standard regression criterion (mean square

error) and dropout to avoid overfitting [SHK+14]. The SOCP correction is implemented

using the CVXOPT library for convex optimization [ADV13].

In Table 4.1, we summarize the average error and standard deviation (between parenthe-

ses) between ground truth and the following force data:

• raw force sensor measurements
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• forces obtained from direct L2 norm minimization

• WBN-D outputs: raw and corrected offline

• WBN-F outputs: raw and corrected between consecutive iterations

We observe the following:

• Force-torque sensors are rather imprecise by themselves without physics-based correc-

tion (Table 4.1, first row, first column), in terms of bias (average error) and repeatibility

(standard deviation).

• On the other hand, forces computed with a direct L2 criterion also greatly differ from

actual measurements (see Fig. 4.4). Thus, physics-based optimization, by itself, is not

enough to capture the real forces being applied.

• Finally, the accuracy of all methods relying on learning and optimization is at least

comparable (MBN-F) or significantly better (MBN-D) than that of the force-torque

sensors.

Our main outcome is thus that, provided a rich dataset on human kinodynamics, the method

we propose can outperform physical force sensing both in terms of accuracy and usability.

Comparing the force prediction architectures in detail, we observe that, in the absence of

SOCP correction (first column), the WBN-D architectures performs better than WBN-F. This

is expected, since feeding past raw predictions does not bring new information to the system.

Additionally, all networks are trained on physically coherent data, i.e., input kinematics Ki

and output dynamics Di are compatible with respect to the equations of motion. However,

raw neural network predictions D
(raw)
i are not guaranteed to be compatible with Ki. This

directly impacts the WBN-F architecture, since possibly inaccurate force predictions are

repeatedly fed back into the network (see Eq. (4.18)), which does not happen for the direct

architecture WBN-D (see Eq. (4.19)). With SOCP correction (second column), we observe

significant improvement in the accuracy of WBN-D but not WBN-F. A possibility is that

the embedded SOCP correction interferes with the recurrent neural network prediction and

internal state update processes. As future work, we aim at combining convex optimization

and learning into a unified computational framework [YFW16] or guiding the neural network

training with physics-based constraints [SE16].

4.4.2 Results on Restricted Training

During walking, most of the time is spent with only one foot on the ground. In single

contact, the equations of centroidal dynamics, see Eq. (4.11), dictate that the contact wrench
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can be uniquely identified from the body kinematics. Therefore, it may not be necessary

to extensively train neural networks on such examples. Instead, the prediction accuracy

may suffer if multi-contact examples (where the difficulty resides) represent a minority

of the dataset. We assess this effect by training the previous neural network architectures

not on the whole dataset, but on two sets containing only either walking or multi-contact

examples. Both are again randomly partitioned into training (70 %), validation (15 %) and

testing (15 %) subsets. We denote by WBN-D-W and WBN-F-W the respective direct and

feedback architectures trained on walking examples only, and by WBN-D-M and WBN-F-M

the networks trained on multi-contact examples.

We apply each network type on both its own testing set and that of the other type. We

illustrate the application of WBN-D-W and WBN-D-M on a triple contact example (leaning

on a table) in Fig. 4.6 and on walking in Fig. 4.7. In both cases, the raw predictions are

corrected with the SOCP to ensure their physical compatibility with the observed motion.

As it can be expected, the architecture trained only on walking fails at capturing the actual

force distributions applied by humans in multi-contact (see Fig 4.6). In contrast, the archi-

tecture that was not extensively trained on walking accurately reconstructs contact forces

even on such scenarios (see Fig. 4.7). This confirms that physics-based optimization is a

valuable complement to recurrent neural networks for the latter to focus on multi-contact

indeterminacy.

4.5 Discussion and Future Work

Our work introduces a novel method for the inference of contact forces applied by human

subjects from their motion only. Our system estimates forces that are both physically

plausible and in agreement with ground-truth measurements, even in challenging contact

configurations where the force distribution problem is highly indeterminate. Trained on

our (public) dataset, the neural network architectures can be applied to any centroidal

representation, while the SOCP can be formulated for any articulated body. As such, our

approach can be seamlessly generalized to any whole-body tracking system. Applying our

method to markerless visual tracking would thus enable fully non-intrusive monitoring of

whole-body forces in daily activities. Still, our approach would certainly benefit from the

further collection of ground-truth force measurements on even more rich motion and contact

configurations. Another possibility could be to integrate convex optimization and learning

into a unified computational framework [YFW16]. In the long term, we also plan to apply our

framework to force-based robot learning from demonstration, on-line multi-contact motion

retargeting and knowledge-based multi-contact planning and control.
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Figure 4.6: Triple contact example. Trained on similar examples, WBN-D-M successfully
estimates the actual forces being applied. In contrast, WBN-D-W predicts physically valid
but significantly different force distributions.
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Conclusion

In this thesis, we demonstrated that the estimation of interaction contact forces, a problem

that pertains to the human sense of touch, could be addressed through the lens of vision.

In doing so, we formulated the novel problem of force sensing from motion capture, in

which the goal is to estimate the real, rather than just physically plausible, contact forces that

humans exert when interacting with their environment, based only on the observation of their

motion. This, in turn, makes it possible to circumvent the traditional approach that consists

in instrumenting objects or actors with costly, cumbersome, intrusive force transducers in

monitoring motion together with force data.

Towards force sensing from vision, we first challenged the estimation of normal forces

during manipulation. We constructed a first ground-truth acquisition prototype measuring

real normal forces applied by human subjects. Performing model-based visual tracking

using a single RGB-D sensor, we estimated the object’s kinematics by differentiating the

captured pose through time. From the Newton-Euler equations, we computed the net force

sequence explaining the observed motion and compared it to the net forces obtained by

summing up the force transducer measurements. We thus confirmed that the state of the art in

markerless hand-object tracking could indeed bridge the first gap between motion and (net)

forces. However, we observed that the actual forces measured during real experiments were

significantly greater than those obtained by straightforward physics-based optimization, a

caveat neglected by force models used only for simulation. We addressed this indeterminacy

with artificial neural networks capturing how humans naturally distribute internal forces in

addition to the nominal forces required to achieve a given motion.

We then made our approach more robust and general, in particular by suppressing the

reliance of an arbitrary cost function decomposing full force measurements into nominal

and internal components. Instead, we harnessed recent advances in machine learning and

trained recurrent neural networks on a novel, large-scale dataset on human manipulation

kinodynamics. We developed a new ground-truth acquisition setup measuring 3D contact

forces with five precision force transducers, repositionable on the object’s surface, and the

object’s kinematics with AHRS-embedded accelerometers and gyroscopes. Together with
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reconfigurable properties such as shape, friction and mass distribution, this allowed us to

gather a dataset comprising 3.2h of motion and force measurements under 193 different

object-grasp configurations. We then showed that recurrent neural networks trained on

this dataset could successfully be applied to kinematics estimated from vision. We thus

formulated a generic force estimation framework in which recurrent neural networks trained

on the manipulation kinodynamics dataset were applied to kinematics estimated from vision,

and their predictions interactively corrected between consecutive time steps by a second-order

cone program ensuring their physical consistency.

Finally, we proposed an extension of our force estimation framework from the case of

manipulation to that of whole-body contacts with the environment. Similarly, we observed

that in multi-contact, forces obtained from optimization only significantly differed from those

really applied. We collected a new database on whole-body kinodynamics using an inertial

motion capture suit in combination with force-torque sensors under the subject’s shoes and

held in-hand. In essence, the generality of our previous formulation allowed its extension

to whole-body contacts simply by transposing the SOCP from the Newton-Euler equations

for a 6-DoF rigid object to the equations of motion for a 72-DoF articulated system, while

training the RNN on the whole-body centroidal dynamics. Performing experiments both

on walking and challenging multi-contact configurations, we noted that our approach could

actually outperform physical force sensing, in particular due to the large amount of noise and

uncertainties high-capacity force-torque sensors are subject to, under repeated stress.

Although we obtained significant results towards the estimation of contact forces from

motion capture, we believe it is still a new path of research for which we are only laying the

foundations. In the case of manipulation, the quality of the force estimation is still contingent

on the accuracy of the hand-object tracking. In particular, while we were consistently

able to capture the object’s kinematics, locating the contact points with sufficient accuracy

has proven to be particularly challenging in the current PSO-based tracking framework.

Instead of sampling pose hypotheses in the configuration space, an alternative could be to

sample the contact space and optimize hand poses together with the resulting manipulation

forces. Removing the current (artificial) constraint on grasp staticity, would thus enable the

monitoring of contact forces during in-hand manipulation. Still, the acquisition of ground-

truth measurements, which we consider crucial to validate any force model, is extremely

difficult for truly arbitrary grasps and especially contact orientations. In other words, by

trying to get rid of force transducers (the goal of this thesis), we fully experience how

cumbersome they are! Still, our approach was purposely made generic to accomodate further

advances in both visual tracking and force sensing technologies. In effect, we already show

its applicability to alternative object tracking datasets. In the case of whole-body interaction,
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our approach would also benefit from the collection of a broader dataset involving even more

complex contact configurations and motions. Alternatively, we would also like to combine

our whole-body force model with kinematics estimated from markerless visual tracking.

We also identified other mid-term possible developments. First, we would like to inves-

tigate the incorporation of physics-based constraints directly in the training of the neural

networks, allowing the reconstruction of physically correct and human-like force distributions

in a unified computational framework. Conversely, the force distribution problem could

be considered again from the perspective of inverse optimal control. Using our large-scale

datasets on both manipulation and whole-body kinodynamics, we could look for invariants in

the way humans distribute forces on their environment while also regulating internal forces

and joint torques. Alternatively, our force estimation framework could also be used for robot

learning from demonstration, by providing a natural way to teach tasks using only vision

instead of heavy physical haptic interfaces. We would also like to investigate the use of FSV

not alone, but in complement of low-cost force transducers. Such a combination could be

mutually beneficial. On one hand, cheap sensors providing for instance only low-accuracy,

normal force measurements, could be corrected to be compatible with the observed motion

and also augmented with predicted tangential components. On the other hand, uncertain force

measurements could still serve as a reference for FSV. This would thus alleviate the current

biggest limitation of the current system, namely that it only predicts the force distributions

that are most likely given past observations and can be ‘deceived’ by applying forces that

significantly deviate from the norm (e.g., by gripping stronger than natural).

In the long term, we would like to consider the estimation of contact forces for manipu-

lation and whole-body interactions together, rather than separately. Instead of considering

only one rigid body or one articulated system, subject to external forces, we could instead

consider a set of multiple agents, either active (i.e., that ) or passive (i.e., objects) with

respect to the application of contact forces, each with their own dynamic model. This would

enable the consideration of interaction scenarios involving synergies between actors, e.g., for

bimanual prehension or multiple persons carrying large objects in cooperation. Alternatively,

we would also like to investigate the use of additional types of sensors, as long as these

remain minimally intrusive. In particular, physiological sensors such as electroencephalogra-

phy (EEG) headsets or surface electromyography (EMG) electrodes may provide valuable

information in discerning otherwise dynamically equivalent force distributions. Finally, in

our work, we made the assumption that the physical properties of the manipulated object

were readily available (e.g., through inertial parameter identification or CAD). Conversely,

we could explore the reverse problem, i.e., retrieve the physical properties of manipulated

objects using only visual observations on how people naturally interact with them.
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motion style with nonlinear inverse optimization. ACM Trans. on Graphics,
24(3):1071–1081, 2005.

[Liu08] C. Karen Liu. Synthesis of interactive hand manipulation. In Markus H. Gross
and Doug L. James, editors, ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 163–171, 2008.

[Liu09] C. Karen Liu. Dextrous manipulation from a grasping pose. ACM Trans. on
Graphics, 28(3):59:1–59:6, 2009.

[LK81] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique
with an application to stereo vision. In International Joint Conference on
Artificial Intelligence, volume 81, pages 674–679, 1981.

[LLS15] Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for detecting
robotic grasps. International Journal of Robotics Research, 34(4-5):705–724,
2015.

[LNP+15] Hongbin Liu, Kien Cuong Nguyen, Véronique Perdereau, Joao Bimbo, Jungh-
wan Back, Matthew Godden, Lakmal D. Seneviratne, and Kaspar Althoefer.
Finger contact sensing and the application in dexterous hand manipulation.
Autonomous Robots, 39(1):25–41, 2015.

[Low04] David G. Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

[LPKQ16] Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learning
hand-eye coordination for robotic grasping with large-scale data collection.
In International Symposium on Experimental Robotics, 2016.



116 References

[LVBL98] Miguel Sousa Lobo, Lieyen Vandenberghe, Stephen P. Boyd, and Hervé
Lebret. Applications of second-order cone programming. Linear Algebra
and its Applications, 284:193–228, 1998.

[MA01] Stephen A. Mascaro and Harry H. Asada. Photoplethysmograph fingernail
sensors for measuring finger forces without haptic obstruction. IEEE Trans.
on Robotics and Automation, 2001.

[MA04] Stephen A. Mascaro and Harry H. Asada. Measurement of finger posture
and three-axis fingertip touch force using fingernail sensors. IEEE Trans. on
Robotics and Automation, 20(1):26–35, 2004.

[MB13] Artashes Mkhitaryan and Darius Burschka. Visual estimation of object density
distribution through observation of its impulse response. In International
Conference on Computer Vision Theory and Applications, pages 586–595,
2013.

[MBSP16] Mostafa Mohammadi, Tommaso Lisini Baldi, Stefano Scheggi, and Domenico
Prattichizzo. Fingertip force estimation via inertial and magnetic sensors
in deformable object manipulation. In IEEE Haptics Symposium, pages
284–289, 2016.

[MC05] Éric Marchand and François Chaumette. Feature tracking for visual servoing
purposes. Robotics and Autonomous Systems, 52(1):53–70, 2005.

[MCC+80] John T. McConville, Charles E. Clauser, Thomas D. Churchill, Jaime Cuzzi,
and Ints Kaleps. Anthropometric relationships of body and body segment
moments of inertia. Technical report, DTIC Document, 1980.

[MG01] Thomas B. Moeslund and Erik Granum. A survey of computer vision-
based human motion capture. Computer Vision and Image Understanding,
81(3):231–268, 2001.

[MGPD15] Antoine Muller, Coralie Germain, Charles Pontonnier, and Georges Du-
mont. A comparative study of 3 body segment inertial parameters scaling
rules. Computer Methods in Biomechanics and Biomedical Engineering,
18(sup1):2010–2011, 2015.

[MHK06] Thomas B. Moeslund, Adrian Hilton, and Volker Krüger. A survey of ad-
vances in vision-based human motion capture and analysis. Computer Vision
and Image Understanding, 104(2):90–126, 2006.

[MJF09] Mamadou Mboup, Cédric Join, and Michel Fliess. Numerical differentiation
with annihilators in noisy environment. Numerical Algorithms, 50(4):439–
467, 2009.

[MLA+15] Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic, and
Emanuel V. Todorov. Interactive control of diverse complex characters with
neural networks. In Advances in Neural Information Processing Systems,
pages 3132–3140, 2015.



References 117

[Mom09] Katja Mombaur. Using optimization to create self-stable human-like running.
Robotica, 27(03):321–330, 2009.

[MPA15] Damien Michel, Kostas Panagiotakis, and Antonis A. Argyros. Tracking the
articulated motion of the human body with two rgbd cameras. Machine Vision
Applications, 26(1):41–54, 2015.

[MPR+10] Thomas Mörwald, Johann Prankl, Andreas Richtsfeld, Michael Zillich, and
Markus Vincze. Blort - the blocks world robotic vision toolbox. In ICRA
Workshop Best Practice in 3D Perception and Modeling for Mobile Manipu-
lation, 2010.
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