
HAL Id: tel-01809000
https://theses.hal.science/tel-01809000

Submitted on 6 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contribution to an equipped approach for the design of
executable, verifiable and interoperable Domain Specific

Modelling Languages for Model Based Systems
Engineering

Blazo Nastov

To cite this version:
Blazo Nastov. Contribution to an equipped approach for the design of executable, verifiable and
interoperable Domain Specific Modelling Languages for Model Based Systems Engineering. Other
[cs.OH]. Université Montpellier, 2016. English. �NNT : 2016MONTT272�. �tel-01809000�

https://theses.hal.science/tel-01809000
https://hal.archives-ouvertes.fr

1

Délivré par l’UNIVERSITÉ DE
MONTPELLIER

Préparée au sein de l’école doctorale

Information, Structure et Systèmes I2S

et de l’unité de recherche LGI2P
de l’école des mines d’Alès

Spécialité : Informatique

Présentée par Blazo NASTOV

Soutenue le 15/11/2016 devant le jury composé de :

Mr. Eric Bonjour, Professeur, U. de Lorraine, ENSGSI Rapporteur

Mr. Benoît Combemale, MdC HdR, U.de Rennes, IRISA Rapporteur

Mr Loïc Lagadec, Professeur, ENSTA Bretagne, Lab-STICC Examinateur

Mr. Jean-Michel Bruel, Professeur, U. de Toulouse, IRIT Examinateur

Mr. Christophe Dony, Professeur, U. de Montpellier, LIRMM Co-Directeur

Mr. Vincent Chapurlat, Professeur, IMT/EMA, LGI2P Co-Directeur

Mr. François Pfister, MdC, IMT/EMA, LGI2P Encadrant

Contribution à une méthode outillée pour la

conception de langages de modélisation

métier interopérables, analysables et

prouvables pour l'Ingénierie Système basée

sur des Modèles

2

3

4

CONTENTS

Chapter I Context and Problematics .. 12

1.1 GENERAL INTRODUCTION... 13

1.2 SE CHALLENGES FOR MBSE .. 14

1.2.1 Modeling and simulation covering total system representation 16

1.2.2 Verification, Validation and Qualification of complex systems 18

1.2.3 Very large heterogeneous or autonomous Systems 19

1.2.4 Interoperability Via Integrated Architectures.. 19

1.3 MBSE AND MDE: IDENTIFICATION OF COMMON ISSUES AND POSSIBLE ALIGNMENT

 ... 20

1.4 PROBLEMATICS AND OBJECTIVES OF THIS THESIS .. 22

1.5 OUTLINE OF THE MANUSCRIPT .. 23

Chapter II State of the art ... 25

2.1 MODEL-DRIVEN ENGINEERING .. 26

2.1.1 Introduction .. 26

2.1.2 Model and Metamodel ... 26

2.1.3 Model Transformation ... 29

2.1.4 Synthesis ... 31

2.2 MODEL-BASED SYSTEMS ENGINEERING .. 31

2.2.1 Introduction .. 31

2.2.2 MBSE viewpoint representations ... 32

2.2.3 MBSE modeling languages .. 34

2.2.4 MBSE verification and validation activities .. 36

2.2.5 Synthesis ... 41

2.3 DOMAIN SPECIFIC MODELING LANGUAGES ... 42

2.3.1 Introduction .. 42

2.3.2 DSML for multi-viewpoint modeling.. 43

2.3.3 DSML for model Verification and Validation .. 46

2.3.4 Synthesis ... 53

2.4 CONCLUSION AND CONTRIBUTIONS OF THIS THESIS ... 54

2.4.1 Scientific positioning .. 55

2.4.2 Expected contribution .. 56

2.4.3 Illustrative examples .. 57

5

Chapter III Modeling based on Properties .. 59

3.1 THE CONCEPT OF “PROPERTY” ... 60

3.1.1 Modeling properties ... 62

3.1.2 System properties ... 76

3.1.3 Synthesis ... 84

3.2 PROPERTY MANAGEMENT: A DSML AND MODEL LIFECYCLE 86

3.2.1 DSML design time .. 87

3.2.2 DSML run time / Model design time .. 89

3.2.3 DSML run time / Model run time ... 92

3.2.4 Synthesis ... 93

3.3 A MULTI-VIEWPOINT MODELING BASED ON PROPERTIES ... 95

3.3.1 Composite DSML ... 96

3.3.2 Composite Model ... 103

3.3.3 Composite DSML and Model lifecycle ... 113

3.3.4 Synthesis ... 122

3.4 CONCLUSION .. 123

Chapter IV Modeling Behavior for MBSE ... 126

4.1 EVALUATING A DESIGN PATTERN FOR EXECUTABLE DSMLS 127

4.1.1 Application: executable eFFBD - xeFFBD ... 128

4.1.2 Discussion: current problems and causes ... 134

4.1.3 Proposition: improvements for the MBSE context 136

4.2 MODELING THE BEHAVIOR OF A DSML WITH A DISCRETE-EVENTS LANGUAGE .. 140

4.2.1 The eISM languages: discussion about the choice 141

4.2.2 Introduction to the eISM: a formal specification ... 142

4.2.3 Integrating the eISM and the metamodeling language EMOF 147

4.2.4 Technical issues related to the eISM .. 152

4.2.5 A formal proof mechanism for the eISM .. 154

4.2.6 Example 1: modelling the behavior of the eFFBD concept Function 157

4.2.7 Example 2: executable WaterDistrib DSML .. 159

4.3 MODELING THE BEHAVIOR OF A DSML WITH A FORMAL RULE-BASED LANGUAGE

 ... 164

4.3.1 Positioning and Problematic: DSMLs with predefined formal semantics ... 164

4.3.2 General introduction to the FRBL ... 165

4.3.3 Introduction to the syntax of the FRBL .. 167

6

4.3.4 Introduction of the semantics of the FRBL .. 171

4.3.5 Example: designing the behavior of eISM by using the FRBL 174

4.3.6 On the fly design and integration of new DE languages with EMOF 177

4.4 CONCLUSION .. 179

Chapter V Verification and Validation .. 181

5.1 INTRODUCTION: EXECUTABLE, VERIFIABLE AND INTEROPERABLE CORE 182

5.2 SIMULATION MECHANISMS ... 184

5.2.1 The blackboard design pattern .. 185

5.2.2 Execution scheduling ... 186

5.2.3 Demonstration .. 192

5.3 MECHANISM FOR FORMAL PROOF ... 196

5.3.1 Formal specification .. 196

5.3.2 Formal constraint properties ... 198

5.3.3 Model-checking tool ... 202

5.4 CONCLUSION .. 205

Conclusion and Perspectives .. 206

References ... 213

7

LIST OF FIGURES

FIGURE 1. RAISING CHALLENGES IN SYSTEMS ENGINEERING (AFIS 2012). 16

FIGURE 2. THE OMG’S METAMODELING LAYERS. .. 27

FIGURE 3. AN EXAMPLE TO ILLUSTRATE THE OMG’S METAMODELING STACK. 28

FIGURE 4. MODEL-TO-CODE TRANSFORMATION (M2C). ... 29

FIGURE 5. MODEL-TO-MODEL TRANSFORMATION (M2M). .. 30

FIGURE 6. MODEL TRANSFORMATION PROCESS. ... 31

FIGURE 7. SYSML DIAGRAM TYPES (FRIEDENTHAL ET AL. 2014). 34

FIGURE 8. AN EXAMPLE OF AN ABSTRACT SYNTAX (METAMODEL) AND A CONFORMING

MODEL. .. 43

FIGURE 9. AN EXAMPLE OF A MODEL WITH ITS STRUCTURE, A GRAPHICAL

REPRESENTATION AND A TEXTUAL REPRESENTATION... 44

FIGURE 10. A STATIC SEMANTICS PROPERTY SPECIFIED AS AN OCL CONSTRAINT. 46

FIGURE 11. THE EXECUTABLE DSML PATTERN (COMBEMALE ET AL. 2012) 49

FIGURE 12. OPERATIONAL SEMANTICS DESIGNED BY ENDOGENOUS TRANSFORMATIONS . 50

FIGURE 13. OPERATIONAL SEMANTICS DESIGNED BY ACTION LANGUAGES (KERMETA). .. 51

FIGURE 14. OPERATIONAL SEMANTICS DESIGNED BY THE STATE MACHINE A FORMAL

BEHAVIORAL MODELING LANGUAGE. ... 51

FIGURE 15. MAP OF CONCEPTUAL AND METHODOLOGICAL CONTRIBUTIONS OF CHAPTER

III. .. 60

FIGURE 16. A METAMODEL THAT SPECIFY A PART OF THE SP OF THE EFFBD LANGUAGE.
 ... 63

FIGURE 17. GRAPHICAL RP FOR THE ELEMENTS OF THE EFFBD LANGUAGE. 64

FIGURE 18. THE BP FOR THE CONCEPT FUNCTION OF EFFBD. ... 65

FIGURE 19. A CLASSIFICATION OF CONSTRAINT PROPERTIES CP. 67

FIGURE 20. THE STRUCTURE (MSP) - LEFT AND THE REPRESENTATION (MRP) - RIGHT OF

AN EFFBD MODEL. .. 72

FIGURE 21. THE BP OF THE CONCEPT ITEM OF EFFBD. .. 75

FIGURE 22. MBP FOR THE MODEL ILLUSTRATED IN FIGURE 20. 75

FIGURE 23. A CLASSIFICATION OF MODEL CONSTRAINT PROPERTIES MCP. 78

FIGURE 24. AN EFFBD MODEL FOR THE FUNCTIONAL ARCHITECTURE OF A FIRE AND

FLOOD DETECTION SYSTEM. ... 78

FIGURE 25. A CLASSIFICATION OF OBJECT CONSTRAINT PROPERTIES OCP....................... 81

FIGURE 26. DSML AND MODEL LIFECYCLE PHASES. ... 86

FIGURE 27. THE DSML DESIGN TIME PHASE. ... 87

FIGURE 28. THE DSML RUN TIME / MODEL DESIGN TIME PHASE. 90

FIGURE 29. THE DSML RUN TIME / MODEL RUN TIME PHASE .. 93

8

FIGURE 30. A DEPENDENT STRUCTURE (DS) COMPOSING SP OF THE EFFBD AND THE PBD

(DESIGNED BY THE EMF, THE EFFBD METAMODEL IS “LOADED” INTO THE PBD

METAMODEL). .. 97

FIGURE 31. COMBINING TWO GRAPHICAL RP (FOR THE PBD AND FOR THE EFFBD) INTO A

DR. .. 98

FIGURE 32. THE BP FOR THE CONCEPT COMPONENT OF PBD. ... 99

FIGURE 33. A CLASSIFICATION OF DEPENDENT CONSTRAINT PROPERTIES DCP. 102

FIGURE 34. A DEPENDENT MODEL STRUCTURE (DMS) INTEGRATING THE MSP OF AN

EFFBD MODEL, AND THE MSP OF A PBD MODEL. ... 105

FIGURE 35. A DMR OF THE DEPENDENT MODEL STRUCTURE (DMS) SHOWN IN FIGURE 34.
 ... 106

FIGURE 36. A DMB OF THE DEPENDENT MODEL STRUCTURE (DMS) SHOWN IN FIGURE 34.
 ... 108

FIGURE 37. A CLASSIFICATION OF DEPENDENT MODEL CONSTRAINT PROPERTIES DMCP

 ... 110

FIGURE 38. THE ARCHITECTURE OF A FIRE AND FLOOD SECURITY SYSTEM, COMBINING

FUNCTIONAL (LEFT) AND PHYSICAL (RIGHT) MODELS. ... 111

FIGURE 39. A CLASSIFICATION OF DEPENDENT OBJECT CONSTRAINT PROPERTIES DOCP

 ... 113

FIGURE 40. COMPOSITE DSML AND MODEL LIFECYCLE. ... 114

FIGURE 41. THE DEPENDENCIES DESIGN PHASE FOR A COMPOSITE DSML. 116

FIGURE 42. THE DEPENDENCIES DESIGN PHASE FOR A COMPOSITE MODEL. 119

FIGURE 43. THE COMPOSITE MODEL RUN TIME PHASE. .. 121

FIGURE 44. CONCEPTUALIZATION AND CONCRETIZATION OF DOMAIN KNOWLEDGE. 125

FIGURE 45. MAP OF CONCEPTUAL, METHODOLOGICAL AND TECHNICAL CONTRIBUTIONS OF

CHAPTER IV. .. 127

FIGURE 46. XEFFBD PHASE 1 – DESIGN STAGES. ... 129

FIGURE 47. AN EXECUTION OF AN EFFBD MODEL ... 133

FIGURE 48. THE SEMANTICS OF A FUNCTION AS EXECUTION RULES. 134

FIGURE 49. IMPROVING READABILITY BY ABSTRACTION. ... 137

FIGURE 50. TRANSIENT STATE MANAGEMENT. ... 138

FIGURE 51. THE COMPONENTS (MODULES) OF AN EISM MODEL. 142

FIGURE 52. AN OVERVIEW OF THE CONTROL PART (CP). .. 143

FIGURE 53. EXAMPLE OF TRANSITION T0 BETWEEN INITIAL STATE (S0) AND S1. 143

FIGURE 54. AN OVERVIEW OF THE INPUT INTERPRETER (II). .. 144

FIGURE 55. AN OVERVIEW OF THE OUTPUT INTERPRETER (OI). 146

FIGURE 56. METAMODEL OF THE EISM LANGUAGE. .. 147

FIGURE 57. A METAMODELING STACK FOR EXECUTABLE DSMLS. 148

9

FIGURE 58. THE INTEGRATION PROCESS BOUNDING A EMOF WITH EISM. 148

FIGURE 59. INTEGRATING EMOF (IN RED) WITH EISM (IN WHITE) BASED ON THE

BLACKBOARD DESIGN PATTERN (IN GRAY). .. 150

FIGURE 60. A MODEL (LEFT), A STRUCTURE (MIDDLE) AND A BEHAVIOR (RIGHT). 151

FIGURE 61. THE STRUCTURE IMPACTS THE NUMBER OF STATES IN A DISCRETE-EVENTS

BEHAVIORAL MODEL. ... 151

FIGURE 62. THE STRUCTURE IMPACTS THE SYNCHRONIZED FUNCTIONING OF BEHAVIORAL

MODELS. ... 152

FIGURE 63. MULTIPLICITY IMPACTS THE BEHAVIOR. .. 152

FIGURE 64. AN EXAMPLE OF A STATE MODEL WITH THREE STATES (SK, SL AND SJ) AND

TWO TRANSITIONS (TK AND TL). ... 155

FIGURE 65. AN EISM BEHAVIORAL MODEL DESCRIBING THE BEHAVIOR OF THE CONCEPT

FUNCTION. ... 158

FIGURE 66. AN EISM BEHAVIORAL MODEL DESCRIBING THE BEHAVIOR OF THE CONCEPT

COMPÀONENT. ... 159

FIGURE 67. A WATERDISTRIB MODEL – AN EXAMPLE OF A WATER STORAGE AND

DISTRIBUTION SYSTEM. .. 159

FIGURE 68. IMAGINED FUNCTIONING OF WATERDISTRIB. .. 160

FIGURE 69. WATERDISTRIB: A NEW DSML FOR A WATER STORAGE AND DISTRIBUTION

SYSTEMS. ... 160

FIGURE 70. EISM BEHAVIORAL MODEL ASSOCIATED TO THE CLASS VALVE. 161

FIGURE 71. EISM BEHAVIORAL MODEL ASSOCIATED TO THE CLASS CONTROLSTATION. 162

FIGURE 72. THE FORMAL UNDERLYING STRUCTURE OF THE VALVE’S EISM BEHAVIORAL

MODEL ... 163

FIGURE 73. GENERIC EVOLUTION ALGORITHM FOR DISCRETE-EVENTS MODELS

(CHAPURLAT 1994). ... 166

FIGURE 74. THE METAMODEL DESCRIBING THE FRBL RULES SHOWN IN LISTING 1. 168

FIGURE 75. THE METAMODEL DESCRIBING THE FRBL EXPRESSIONS SHOWN IN LISTING 2.
 ... 169

FIGURE 76. THE METAMODEL DESCRIBING THE FRBL VARIABLES, BINARY EXPRESSIONS

AND LITERALS SHOWN IN LISTING 3. .. 170

FIGURE 77. THE METAMODEL DESCRIBING THE FRBL NAME SHOWN IN LISTING 4. 171

FIGURE 78. ON THE FLY DESIGN AND INTEGRATION OF DE LANGUAGES WITH EMOF ... 178

FIGURE 79. INTEGRATING EMOF WITH A NEW DE LANGUAGE BASED ON THE

BLACKBOARD DESIGN PATTERN. .. 179

FIGURE 80. MAP OF CONCEPTUAL, METHODOLOGICAL AND TECHNICAL CONTRIBUTIONS OF

CHAPTER V. ... 182

FIGURE 81. AN OVERVIEW OF THE BLACKBOARD DESIGN PATTERN................................ 185

FIGURE 82. TIME SCALES TO MANAGE THE EXECUTION OF THE WATERDISTRIB MODEL

SHOWN IN FIGURE 67. .. 188

10

FIGURE 83. THE DURATION OF THE EXECUTION STEPS OF WATERDISTRIB COMPONENTS.
 ... 189

FIGURE 84. THE THREE TIME SCALES INVOLVED IN THE EXECUTION OF A RESERVOIR. ... 190

FIGURE 85. EXECUTION ALGORITHM. ... 191

FIGURE 86. A SIMPLIFIED SCENARIO SHOWING HOW THE WATERDISTRIB MODEL IS

SIMULATED. ... 193

FIGURE 87. A SIMPLIFIED SCENARIO SHOWING HOW A SYSTEM ARCHITECTURE REACTS

WHEN THE FIRE DETECTOR ENTERS IN EXTERNAL STOP STATE.............................. 195

FIGURE 88. EXAMPLE OF TEMPORAL AND A-TEMPORAL CREI PROPERTIES.................... 201

FIGURE 89. THE CREI EDITOR FOR CONSTRAINT PROPERTY MODELING. 202

FIGURE 90. THE CURRENT ARCHITECTURE OF UPSL FOR V&V BASED ON THIRD PARTY

APPROACHES. ... 202

FIGURE 91. THE NEW ARCHITECTURE OF UPSL FOR V&V. .. 203

11

LIST OF TABLES

TABLE 1. COMPARISON OF SEVERAL APPROACHES FOR THE DESIGN OF DSML. 45

TABLE 2. COMPARISON OF SEVERAL APPROACHES FOR THE DESIGN OF DSML BASED ON

THEIR ABILITY TO ALLOW PROPERTY SPECIFICATION AND VERIFICATION. 47

TABLE 3. COMPARISON OF PROPERTY MODELING LANGUAGES. 48

TABLE 4. COMPARISON OF SEVERAL APPROACHES FOR THE DESIGN OF DSML. 53

TABLE 5. A SYNTHESIS OF MODELING AND SYSTEM PROPERTIES. (A – A-TEMPORAL, T –

TEMPORAL, ML – MODELING LANGUAGE, IST. – ILLUSTRATION) 85

TABLE 6. SYNTHESIS OF THE DSML AND MODEL LIFECYCLE. .. 94

TABLE 7. SYNTHESIS OF THE COMPOSITE DSML AND MODEL LIFECYCLE. (MML–

METAMODELING LANGUAGE, CSL–CONCRETE SYNTAX LANGUAGE, BML–

BEHAVIORAL MODELING LANGUAGE, CML–CONSTRAINT MODELING LANGUAGE).123

12

CHAPTER I

CONTEXT AND PROBLEMATICS

13

1.1 General Introduction
This thesis is positioned in a twofold global context englobing system engineering (SE)

and software engineering (SoE), and studies more precisely model-based development

and its automation via dedicated, specific to a domain, modelling languages (DSML)

allowing to design, check, verify, validate and simulate models of systems or software.

On the one hand, SE is an interdisciplinary and collaborative approach for the

successful design and management of all kind of complex engineering systems.

According to (INCOSE 2010), SE provides the means for the realization of successful

systems, focusing on customer needs and required functionality early in the

development cycle, documenting requirements, and then proceeding to design synthesis

and system validation while considering the complete problem.

On the other hand, SoE is concerned more specifically with developing and maintaining

software systems that behave reliably and efficiently, are affordable to develop and

maintain, and satisfy all the requirements that customers have defined for them

(Association for Computing Machinery 2015).

A current trend in both domains, SE and SoE, suggest the development of systems

based on models. Within the SE domain, this trend is denoted as model-based system

engineering (MBSE), whereas within the SE context is denoted model-driven

engineering (MDE). Both MBSE and MDE evolve conjointly and pursue the some

common goals:

- the development of automated and cost efficient solutions (INCOSE 2007;

Combemale 2016);

- the multi-viewpoint modeling, verification and validation of systems where

different viewpoints are used by different stakeholders (ISO/IEC 2008; OMG

2015b);

However, beyond this conjoint research evolution, we can identify several specificities.

SE tackles with globally larger, more heterogeneous and more complex systems,

embedding material, physical as well as software entities; they notably deal with time in

various ways (discrete / continuous / hybrid). The MBSE approach there is globally

recent, especially for what concerns DSML execution and environments for the explicit

manipulation of models and meta-models as well.

14

SoE has introduced model-driven engineering solutions earlier in time (Schmidt 2006),

as a successor of computer-aided software engineering and now propose advanced

solutions, languages and environments for the explicit handling of models but also of

their metamodels, for model execution via executable DSML, for execution in a

multiple viewpoint (on a system) context. These advantages are not yet fully integrated

in the MBSE world.

The above quoted goals and specificities from the SE and SoE contexts define the

problematics of this thesis.

- One the one hand there is a need to study and adapt, for MBSE, the recent

advances coming from MDE on meta-modelling environments and on

executable domain specific modeling language (xDSML).

- On the other hand we believe that the preceding study and notably the expected

formalized solutions for verification and validation taking MBSE context into

account (for example for the representation of time), will also provide, by a

feedback analysis, some new contributions usable in the SoE field.

On this basis, the rest of the introduction and the chapter 2 then detail the specific

problematic and expected contributions of this thesis.

1.2 SE challenges for MBSE
Within the context of organizational and engineering sciences, Systems Engineering

(SE) is a key interdisciplinary and collaborative approach for the successful design and

management of large scale complex systems. SE is today widely tested and used in the

industry, being object of several standards such as IEEE 1220 (Doran 2006) and

ISO/IEC 15288 (ISO/IEC 2008)), supported by tools (INCOSE 2016b) and currently

applied in various domains, (e.g., transport, space, defense, health and energy). It

involves designers and architects from different domains to design a “System of

Interest” (SoI). A SoI is “the system whose life cycle is under consideration” (ISO/IEC

2008). Among other activities, for instance of project management, SE experts must be

able to:

- model a SoI considering various points of views (denoted viewpoints) by

designing and combining different models (at least one for each viewpoint),

while respecting the stakeholder’s specifications and the operational context of

the SoI lifecycle;

15

- formally prove and simulate designed models;

- test alternatives solutions;

- determine and justify architectural decision, etc;

For this, SE provides concepts and principles related to System Thinking and System

Sciences. It promotes various processes that offer adequate activities for system design,

development, evolution and verification, delivering an optimal solution of the SoI

(Doran 2006). These activities are based on models and modeling approaches. To this

end, SE is applied in a model-based (or model-driven) context, denoted Model-Based

Systems Engineering (MBSE). MBSE is the formalized application of modeling to

support system requirements, design, analysis, verification and validation activities

beginning in the conceptual design phase and continuing throughout development and

later life cycle phases (INCOSE 2007).

MBSE promotes the creation and the management of various models of a SoI, each one

focusing on a given aspect, i.e., viewpoints of a SoI (functional, logical, physical or

behavioral). A model is “a representation of an original system, i.e., a subject that

might exist or not, containing at least one, but not all subject properties” (Stachowiak

Herbert 1973). In the MBSE context, models are designed to help experts in

understanding a given SoI, as well as its behavior, and in performing various analyzes

such as performance or non-functional properties also known as ‘ilities (De Weck et al.

2012).

Based on designed models, experts make decisions about the SoI. It is thus imperative,

prior to any decision to implement model verification and validation (V&V) activities

(e.g., to justify architectural choice or to generate a test plan). The goal of the

verification is to determine the correctness of a model based on the rules defined by the

used modeling language. The goal of the validation is to argue the relevance and

accuracy of a verified model, in representing a system as expected by stakeholders,

respecting their needs and requirements. V&V activities are performed considering SoI

models, first separately, and then together. When models are put together, they provide

more complete and suitable representation of a SoI that includes models’ mutual

coherence as well as their adequacy and global fidelity to the SoI, in contrast to the

information provided by one model.

16

Nonetheless, some of the MBSE objectives are still a subject of numerous debates and

are quoted as challenges in the SE community (AFIS 2012). For example, Figure 1

gives an overview of the most significant uprising challenges in the field of SE.

Figure 1. Raising challenges in systems engineering (AFIS 2012).

We study hereafter the following:

(1) Modeling and simulation covering total system representation

(2) Verification, Validation and Qualification of complex systems

(3) Very large heterogeneous or autonomous systems: complexity management

connections of in-use systems resilience

(4) Interoperability Via Integrated Architectures

The goal is to identify the objectives and current problems of each of the above selected

SE challenges for MBSE and to contribute conceptually, methodologically and

technically by adapting recent advances coming from MDE on meta-modelling

environments and on executable domain specific modeling language (xDSML).

1.2.1 Modeling and simulation covering total system representation

When modeling a SoI, various interconnected viewpoint models are designed. Each

model is dedicated and relevant for the needs of different stakeholders involved in the

17

design process. When all the viewpoint models are put together, they form a “composite

model”, covering a more expressive, realistic and complete representation of a SoI. In a

similar way, the whole behavior of a SoI can be represented by mixing or aggregating

the behaviors described by composing viewpoint models, even though these behaviors

might be based on different functioning hypothesis (e.g., different level of details,

different objectives, etc.). The V&V analyses become in this sense more relevant when

considering composite models (e.g., a more realistic SoI simulation that coordinately

executes all viewpoint models). However, the current MBSE modeling languages

remain insufficient for the design and simulation of composite models.

For this purpose, two possible solutions can be adapted from the MDE context: General

Purpose Modeling (GPM) and Domain Specific Modeling (DSM). GPM promotes the

use of a General Purpose Modeling Language (GPML) for the modeling of different

viewpoints of a SoI. A well-known example is the OMG’s Unified Modeling Language

(UML) (OMG 2011). DSM promotes the use of a Domain Specific Modeling Language

(DSML) particularly tailored for a given problem, for the modeling of one viewpoint of

a SoI that is used to solve a given problem.

The main difference between GPML and DSML is that the prior is used to model any

SoI viewpoint for any problem, while the latter is used to model one particular SoI

viewpoint for one well-defined problem. As a consequence, on the one hand, GPML

provide generic concepts that are far from the end-user domain ontology. On the other

hand, the genericity of GPML might overwhelm the end-use with many different ways

to model an artefact. In contrary, a DSML integrates the end-used domain ontology,

easing the understanding and use. Moreover, domain models are represented with an

end-user friendly graphical or textual concrete syntax and provide a set of constraints

dedicated to a considered domain problem that can be used to verify created models.

A customization of GPML is possible by using the UML profiles, however, obtained

results remain restricted to predefined concepts and there isn’t an easy way to integrate

new concepts. This is inconvenient for the modeling needs and objectives of new

stakeholders from different domains that have recently been added in an ongoing SE

project. Namely, they would be unable to integrate their domain concepts in the current

modeling environment and would be forced to use the existing concepts.

Considering the MBSE objectives and needs, this work focuses on the adaptation of

DSML in MBSE context for modeling and simulation. A particular attention is given on

18

the semantics of DSML for “direct simulation”. By direct we mean without

transforming the models into external third party formal approach for simulation. The

goal is to equip DSML with semantics that can furthermore be used for simulation. This

kind of semantics is denoted dynamic semantics. We are considering coordinated

simulation that manages all SoI models, even if created by different DSML. Such

simulation mechanism must take into account the dynamic semantics of all DSML

involved in the modeling of a SoI.

1.2.2 Verification, Validation and Qualification of complex systems

Among other objectives, MBSE focuses on Verification and Validation (V&V) activities

during design process. Often called Early V&V activities, they are indeed crucial, prior

to the Integration, Verification, Transition and Validation (IVTV) plan and the

Qualification of a system (INCOSE 2016a), during which a SoI is implemented and

after which it can be delivered to customers.

V&V are performed considering each individual viewpoint model of a SoI, first

separately and then together, forming the previously discussed composite model. The

here-considered “Early Verification and Validation of complex systems” aims to assure

that: 1) each model respects the modeling rules defined by a metamodel (i.e., a model

must conform to a metamodel), 2) each model is correctly represented by the mean of

the representation rules defined by the concrete syntax of the used modeling language,

3) each model is well-formed, respecting the well-formedness rules defined by the static

semantics of the used modeling language, 4) each model respects the needs and

modeling objectives of stakeholders, i.e., is build taking in consideration the

stakeholders’ requirements, and 5) each model behaves correctly, i.e., its behavior

provides a realistic vision of the SoI evolution and dynamics during simulation.

For this purpose, we propose to study and adapt the MDE vision on the composition of

DSML (i.e., DSML syntax and DSML semantics) and on the correctness of a model

based on the latter, including the means for model conformity, correct representation,

simulation and formal property proof. A particular attention is given on the specification

of stakeholders’ requirements as formal properties and on the formal proof, i.e., the

verification of such properties. We focus on “direct property proof”, i.e., without

transforming the SoI’s viewpoint models into external third party formal approaches.

Properties are designed by using a property modeling language to specify additional

19

characteristics that cannot be implicitly specified by the composition of a DSML (i.e.,

its structure, representation or behavior). The property proof must be achieved based on

a model, considering also the other models of a SoI.

1.2.3 Very large heterogeneous or autonomous Systems

We focus here particularly on the modeling and model V&V of very large systems and

on early complexity management based on models.

The modeling of very large heterogeneous or autonomous system involves a huge

(possibly increasing) number of stakeholders in modeling activities. The new modeling

activities of the new stakeholders must be included to the already supported activities,

providing the means to design new viewpoint models and to interconnect these models

with the already existing ones, automatically increasing the volume of modeled

information of a SoI. In addition, the new viewpoint models must be considered during

V&V activities (i.e., simulation and formal proof).

This leads to a huge number of DSML that have to be dynamically integrated with the

already operating ones. For this purpose, we propose to study and adapt from the MDE

context, a multi-viewpoint approach that allows such dynamic integration of new

DSML and model V&V activities as previously discussed.

1.2.4 Interoperability Via Integrated Architectures

We focus here on providing the means for model interoperability considering several

interconnected viewpoint models in a composite model.

We consider two types of interoperability between modeling languages (DSML) and

between models:

- Syntactical interoperability and

- Semantical interoperability

As previously discussed, first DSMLs are created and interconnected. The

interconnection consists in designing the syntactical dependencies and the semantical

dependencies between different DSMLs, making them syntactically and semantically

interoperable. Second, in a similar way, models created by using such DSMLs can be

syntactically and semantically bound together. On the one hand, syntactically

interoperable models represent the modeling covering total system representation. They

20

represent, not only the different aspects of a SoI, but also the syntactical interactions and

dependencies between these aspects. On the other hand, semantically interoperable

models can be coordinately simulated, representing a simulation covering total system

representation, and can be used altogether as a base for formal proof. Such simulation

and proof are much more relevant and accurate that the simulation and proof based on

one model, because it takes in account all different aspects of a SoI and the semantical

interactions and dependencies between these aspects.

1.3 MBSE and MDE: Identification of common issues and

possible alignment
Several attempts to solve similar problems as the above discussed have been introduced

in the field of Software Engineering. Similarly to MBSE, Software Engineering

promote Model Driven Engineering (MDE) (Schmidt 2006) principles and practices

that are concerned with modeling and early verification and validation (V&V) needs,

activities and problems oriented to improve software development processes. MDE

focuses on software systems in contrast to MBSE that tackles with globally larger, more

heterogeneous and more complex systems, embedding material, physical as well as

software entities; they notably deal with time in various ways (discrete / continuous /

hybrid). However, the MBSE approach there is globally recent, especially for what

concerns DSML execution and environments for the explicit manipulation of models

and metamodels as well.

This thesis aims at adapting and improving MDE principles that might be of benefit for

addressing, partially or completely the SE challenges discussed in the previous Section.

For instance, within the software engineering community, the GEMOC initiative

(Combemale 2016) aims at “coordinating and disseminating the research results

regarding the support of the coordinated use of various modeling languages that will

lead to the concept of globalization of modeling languages, that is, the use of multiple

modeling languages to support the socio-technical coordination required in systems and

software engineering”. Namely, they highlight the problems of modeling and simulation

covering total system representation by various and heterogeneous DSMLs, model

V&V, i.e., coordinated simulation of models, simulation trace and analyses verification

and proof of properties, etc.

21

In the MDE context, DSMLs are specified by their syntax and semantics (Kleppe 2007).

A DSML syntax defines concepts of a domain and its relationships, denoted abstract

syntax, and the way instances of these concepts are going to be (graphically or

textually) represented, denoted concrete syntax. However, the key limitation for model

V&V in the MBSE context is that DSML semantics is often neglected or, when needed,

provided by means of transforming the DSML into third-party formalism (Chapurlat

2013).

The DSML semantics can be divided into static semantics, representing concept

meaning and behavior and structural constraints (e.g., invariants pre and post

conditions, derivations, etc.), and a dynamic semantics, specifying DSML behavior.

First, static semantics are formalized as a set of properties. Property proof is generally

achieved based on transformation mechanisms but this technique leads to information

loss, especially for composite models. Indeed, on the one hand, each of the viewpoints

models must be correctly transformed into a single formal specification. On the other

hand, achieved results must be correctly translated back and interpreted for each of the

originating viewpoint models.

The MBSE issues addressed in this work are the specification of properties and their

direct verification based on a composite model without using model transformations.

Second, dynamic semantics can be specified either as operational semantics, by using an

action language (e.g., Java) or a behavioral modeling language (e.g., Statechart), or as

translational semantics by using model transformation approaches (e.g., ATL). In both

cases, DSMLs can be used to execute models and are thus denoted executable DSMLs

or xDSMLs.

The focus of this thesis is to study operational semantics for MBSE. Operational

semantics allows the specification of behavior directly on concepts, allowing simulation

and animation, as early as possible with minimum of effort, improving system quality

and reducing time-to-market. Nevertheless, the MBSE issues addressed in this work are

(1) to provide the means for designing DSML operational semantics for the MBSE

context;

(2) to coordinately use operational semantics of different DSMLs for simulation that

is based on all interconnected models of a SoI;

22

In addition, this thesis aims at unifying the design of different parts of modeling

languages (abstract syntax, concrete syntax, static semantics and dynamic semantics)

and models based on the concept “Property”.

1.4 Problematics and Objectives of this thesis
As previously shown, in the context of MBSE or MDE, models are to be created and

managed, checked and simulated prior to any use for discussion, deliberation or

decision. Models must support stakeholders and increase their confidence during

decision making processes. Made decisions impact the development of the real system,

up until its deployment and exploitation, i.e., system’s functioning, safety, security,

induced costs, and so forth. It is thus very important to assure the quality of models

before making any decision by applying model verification and validation (V&V)

activities. So domain specific modeling languages (DSMLs) are requested for the

design and management of various models each highlighting a viewpoint of the SoI, but

also requested to apply various V&V techniques during SoI engineering process.

However, creating models that represent a SoI and reach and maintain a certain level of

quality, as imagined by different stakeholders, faces currently several ongoing issues in

the field of MBSE. This thesis contributes on the matter, focusing on two general

problems: (1) the design of modeling languages and (2) the verification and validation

of models.

The objective of this work is to develop a method for the design, verification and

validation of models that are used by stakeholders to understand a SoI, to communicate

and argue with other actors about this SoI and finally to support them and increase their

confidence during decision making processes.

The method must address the above selected SE challenges in a MBSE context by

considering, adapting and improving solutions coming from the MDE context. In

particular, it must assure the autonomy of different stakeholders involved in the process

of complex system modeling, during the process of designing, intuitively and as simple

as possible, models that contain their domain knowledge, but also to verify and validate

these models.

The work presented throughout the rest of this manuscript converges through the

proposal of a method for the design, the verification and the validation of models. To

this end, our method must first guide and assist stakeholders to design their own

23

modeling languages, particularly tailored for their domain knowledge and used to model

a particular viewpoint of the SoI, named domain specific modeling languages (DSMLs).

Second, DSML must be usable for the design of models, but also, on the one hand, for

the simulation of models, and on the other hand, for the specification and verification of

formal properties based on designed models.

The problematics and expected contributions are furthermore detailed at the end of

Chapter II, after introducing the state of the art.

1.5 Outline of the manuscript
This manuscript describes the main components of the proposed method. It is structured

as follows:

The Chapter II presents the state of the art related to the different domains covered

by our contribution. i.e., the fundamental concepts and principles, on the one hand, of

the model-driven engineering (MDE) and on the other hand, of the model based systems

engineering (MBSE). It introduces also the trend of domain specific modeling (DSM)

and domain specific modeling languages (DSML), discussing individually the

underlying components of a DSML (i.e., DSML abstract syntax, concrete syntax, static

semantics and dynamic semantics).

The Chapter III introduces the first component of the proposed method, namely, the

core concepts of our method allowing modeling, verification and validation. It consists

of a typology of properties for modeling and a formalized lifecycle for property

management. The lifecycle provides stakeholders with guidelines, i.e., several phases

and sub-phases, each one characterized by various constraints, expectations and rules to

be considered and modeled as properties for the design and V&V of DSMLs and

models.

The Chapter IV focuses on the design of executable DSMLs that allow simulation

(i.e., model execution). It evaluates a well-known state of the art approach for

executable DSMLs coming from the field of MDE, highlighting issues and possible

improvements for its effective adaptation in the field of MBSE. Based on the feedback,

Chapter IV introduces the languages of our method. These languages formalize the

means to design and manage the concepts of our method previously introduced in

Chapter III, but also they support the activities for modeling, verification and validation.

24

The Chapter V presents the operating demarche of our method for the design and

V&V of models, including a mechanism for simulation based on model execution, and

mechanisms for formal properties proof. The demarche put in use the languages

previously introduced in Chapter IV, along with several original rules that we define.

25

CHAPTER II

STATE OF THE ART

26

This chapter presents the state of the art related to the different domains covered by our

contribution. Section 0 introduces model-driven engineering fundamental concepts and

principles: model, metamodel and model transformations. Section 0 introduces the

model-based systems engineering presenting a general typology of models, the

viewpoint representations of systems and the process of verification and validation

based on models. Section 0 introduces domain specific modeling (DSM) and domain

specific modeling languages (DSML). The components of a DSML, i.e., its abstract

syntax, concrete syntax, static semantics and dynamic semantics, are individually

discussed. Finally, Section 2.4 synthetizes the previously discussed literature and

conclude, positioning the contribution of this thesis.

2.1 Model-Driven Engineering

2.1.1 Introduction

In parallel to Systems Engineering, within the field of Software Engineering, since the

early 2000s, the increasing complexity of software caused an important paradigm shift.

The goal of this attempt is to move from the object-oriented software engineering with a

basic principle “Everything is an object” towards the model-driven engineering (MDE)

(Schmidt 2006) with a basic principle “Everything is a model” where models and

model-elements are first class citizens (Greenfield & Short 2003; Bézivin 2005).

The MDE aims “to increase productivity and reduce time-to-market by enabling

development at a higher level of abstraction and by using concepts closer to the problem

domain at hand, rather than the ones offered by programming languages” (Sendall &

Kozaczynski 2003). On the one hand, MDE aims to improve software development

processes by increasing the abstraction level through models at different stages of

software systems development and by early verification and validation (V&V) activities

based on models. On the other hand it aims to increase the level of automation, from

abstraction to program deployment, using code generation techniques, eventually

transforming models into code.

2.1.2 Model and Metamodel

The move towards the model technology introduced new fundamental concepts and

relations, among which the main ones are “model” and “metamodel”.

27

The term “Model” comes from the Latin word “Modulus” meaning measure, rule,

pattern or an example to be followed.

- A model is “a representation of an original system, i.e., a subject that might

exist or not, containing at least one, but not all subject properties” (Stachowiak

Herbert 1973).

In general, models are used by experts to understand and reason about a system under

study (i.e., a system of interests - SoI), to communicate and argue with other actors

about this SoI and finally as a support that increases experts’ confidence during decision

making processes.

The core concepts of the “object-oriented” paradigm are classes and instances and its

core relationships are “inheritsFrom” between classes, and “instanceOf” between

instances and classes. The Object technology main benefits are simplicity, generality

and power of integration as a result to its two core principles, namely, an object is an

instance of a class and a class inherits from another class (Bézivin 2005).

Very differently, what is important for the MDE is that a particular viewpoint (an

aspect) of a system is “representedBy” a model that is written in the language of its

metamodel, i.e., the model “conformsTo” the metamodel (Bézivin 2005).

- A metamodel is a model that defines a language to specify conforming models,

i.e., a modeling language (OMG 2015a).

- A meta-metamodel defines a language to specify conforming metamodels, i.e.,

a metamodeling language. A well-known example is MOF (OMG 2015a).

Figure 2. The OMG’s metamodeling layers.

Meta-meta-model

Meta-model

Model

conformsTo

representedBy
System

conformsTo

M3

M1 M0

M2

28

Figure 2 illustrates the metamodeling stack and the relations between metamodeling

layers, initially proposed by the Object Management Group (OMG). An example that

illustrates the OMG’s metamodeling stack is detailed in Figure 3, showing the modeling

of the hardware aspect of a personal computer.

Figure 3. An example to illustrate the OMG’s metamodeling stack.

M3

Meta-metamodel

M2

Metamodel

M1

Model

M0

Real world

conformsTo

conformsTo

representedBy

instanceOf instanceOf

instanceOf

instanceOf
instanceOf

instanceOf

29

The M0 layer represents “real world” systems to be designed, for instance, computer

hardware. A viewpoint of this system is represented by a model that is located in the M1

layer. The model conformsTo a metamodel. The metamodel is placed in the M2 layer.

For instance, the metamodel of Figure 3 shows the classes and relationships that model

the core domain concepts and relationships of the hardware aspect of a personal

computer. Note that, a modeling language, in addition to the metamodel, is composed of

other parts that are not here-discussed (for more details, see Section 0). The metamodel

itself conformsTo a meta-metamodel. The mata-metamodel is located in the highest M3

layer. For instance, the M3 layer of Figure 3 shows a part of the metamodeling language

EMOF/Ecore (Steinberg et al. 2008) composed of EClass, EAttribute and EReference.

2.1.3 Model Transformation

One of the challenge of MDE is in transforming higher-level models to so-called

platform-specific models that can be used to generate code (Sendall & Kozaczynski

2003). So, the second most important concept of the MDE is the model transformation.

Nowadays, more than thirty transformation approaches exist in the literature. A

classification is proposed in (Kahani & R. Cordy 2015) distinguishing two major

categories, depending on the transformation result: (1) model-to-code transformations

and (2) model-to-model transformations. A third type of transformation approaches

known as code-to-model transformations are not here-considered.

Figure 4. Model-to-Code transformation (M2C).

Model-to-code (M2C) transformations (see Figure 4) also known as “code or document

generations” are used to generate code or documents from a source model. There are

two types of M2C transformations: a) visitor-based and b) template-based

transformations. The visitor-based transformation consists in providing a mechanism

that visits (parses) an internal representation of a model and produces code into a text

stream. The template-based transformation is based on templates that consist of the

Meta-model

Model

conformsTo

M2C

30

target text containing splices of metacode to access information from the source and to

perform code selection and iterative expansion.

Model-to-model (M2M) transformations (see Figure 5) are used to transform a source

model into a target model. Both, source and target may be instance of the same

metamodel, denoted “endogenous transformations” or different metamodel, denoted

“exogenous transformations”. According to (Czarnecki & Helsen 2003), there are 5

types of M2M transformations: a) direct-manipulation, b) relational, c) graph-

transformation-based, d) structure-driven and e) hybrid approaches. The direct-

manipulation transformations offer an internal model representation and an API to

manipulate it, but consist mostly in implementing transformation rules and scheduling

from scratch. The relational transformations are declarative rules based on

mathematical relations that consist to specify the source and target element type of a

relation using constraints. The graph-based transformations are grounded on the graph

grammars, discussed in the next. The structure-driven transformations ease the work of

users that are only concerned with the design of transformation rules, by providing

scheduling and application strategy. The hybrid approach combines different

approaches from the previous categories.

Figure 5. Model-to-Model transformation (M2M).

Within the context of MDE, model transformations are considered as an integral part of

the SoI. Following the based MDE “everything a model” principle, model

transformations are also considered as models, denoted “transformation models”.

Similarly to “classical” models, transformation models conform to transformation

metamodels (see Figure 6). The transformation models conform to a metamodeling

language (e.g., MOF) (Bézivin et al. 2006).

Transformation models can also be modified and extended via transformations denoted

Higher-Order Transformations (HOT). A HOT is a model transformation taking as

Meta-model

Model

conformsTo

M2M

Meta-model

Model

conformsTo

31

input a model transformation and producing as output a model transformation (Bézivin

et al. 2006).

Figure 6. Model transformation process.

2.1.4 Synthesis

MDE promote the use of models during the development processes at different levels,

from higher problem and functionalities related level, to lower platform and

implementation related level to automatize the development and the V&V. Models are

used by stakeholders to understand and reason about the modeled system, to

communicate and argue with other actors about this system and finally to support them

and increase their confidence during decision making processes. It is thus very

important prior to any decision to verify created models ensuring that they are well-

formed and correctly build.

Models are written in the language of their (conforms to) metamodel and are used to

represent a particular viewpoint (an aspect) of a system. So, the two core relationships

of the MDE are: the conformity relation (i.e., a model conforms to its metamodel) and

the represented by relation (i.e., an aspect of a system is represented by a model).

2.2 Model-Based Systems Engineering

2.2.1 Introduction

As introduced in Chapter I, within the field of organizational and engineering sciences,

the Model-Based Systems Engineering (MBSE) is the formalized application of

modeling to support system requirements, design, analysis, verification and validation

Meta-model

Source Model

conformsTo

M2M

Meta-model

Target Model

conformsTo

Meta-meta-
model

Transformation
Meta-model

conformsTo conformsToconformsTo

conformsTo

32

activities beginning in the conceptual design phase and continuing throughout

development and later life cycle phases (INCOSE 2007).

MBSE promotes concepts, methods and techniques for creating and managing various

systems models of different viewpoints of a SoI for the purpose of stakeholders, and for

reaching and improving the quality of models helping then stakeholders all along design

processes to make and justify decisions with a higher level of confidence, reducing as

much as possible the uncertainty. Indeed, these decisions impact downstream phases of

SoI development until its realization and deployment in terms of functioning, safety,

security, induced costs and so on.

2.2.2 MBSE viewpoint representations

Following the general system theory and principles (Le Moigne 1999), the modeling of

a SoI is carried out through three interdependent viewpoints: (1) functional, (2)

structural and (3) behavioral.

· Functional: describes what the system must do in its environment. It is used to

respond to the following questions: “What is the SoI for? What is the purpose of

the SoI? The SoI missions and objectives?”

· Structural: represents the SoI structure. It is used to respond to the question

“What is this SoI made of? The used resources? How is it structured to fulfill its

mission (in its moving environment)?”

· Behavioral: describes the way SoI have to, or must, behaves. It responds to the

following questions: “What does the dynamic of the SoI operates so that it

evolves in time, for instance from one state to another, the conditions to be

satisfied so that SoI reaches a certain state, etc.”.

The above general system theory has been adapted and standardized by ISO (ISO/IEC

2008) considering the SE principles and the iterative nature of the SE processes

(INCOSE 2010), into six viewpoints (1) system, (2) requirements (3) functional,(4)

logical, (5) physical and (6) organic:

· System viewpoint represents the SoI main characteristics and its frontier with its

operational environment. Among other characteristics, the system view define

the SoI mission, its purpose and objectives, its functioning mode and various

operational scenarios that show how does the SoI evolve when confronted to

various situations. The system view defines also the SoI various operational

33

contexts. Each context specifies the SoI’s expected services that correspond to

its mission, and services that are requested by the SoI to fulfill this mission.

Requested services are provided by interfaced systems from SoI’s environment.

So, global SoI’s input and output flows and physical links are also defined in

this view, specifying the SoI’s frontier.

· Requirements viewpoint defines all stakeholders and SoI requirements. It allows

first understanding stakeholder’s expectations, constraints and roles, and second

guiding design process.

· Functional viewpoint defines the SoI’s functional architecture, specifying SoI’s

functions and their sub-functions. A function defines a transformation of input

flows into output flows performed by a SoI to achieve its mission (INCOSE

2016a). It shows how do functions are dynamically arranged, their execution

sequencing and how conditions for control or data-flow are taken into

consideration to satisfy the requirements baseline. By the principle of iterative

design, such functional architecture may evolve considering next architectures.

· Logical viewpoint defines different solutions of SoI’s logical architecture, i.e.,

variations of arrangements of functions and their sub-functions highlighted in

functional architecture and their interfaces (internal and external) (ISO/IEC

2008). In other words, a logical view shows how do the SoI’s functions can be

logically associated for instance by regrouping their input and output flows to

optimize their future allocation to physical components, or by considering

requested modularity.

· Physical viewpoint allows representing various solutions of physical

architecture i.e. arrangement of physical elements (SoI’ elements and physical

interfaces) which provides a possible design solution for a product, service, or

enterprise, and is intended to satisfy one of the proposed logical architectures

and respecting system requirements (ISO/IEC 2008).

· Organic viewpoint defines the organic architecture that is similar and thus often

confused with the physical architecture. The organic architecture highlights

technical and configured components representing the final product put in

operational context.

Let us note that some of the above discussed viewpoints implicitly define the behavior

of a SoI. Namely, the Functional and Logical viewpoints characterize both a static

34

description of SoI’s functions and a dynamic description of functions execution (e.g.,

sequences, synchronization, parallelism and flows control of a SoI). The Physical and

Organic viewpoints are both static representations of how SoI elements are selected and

interconnected, and dynamic representations of how each component evolves,

supporting and executing SoI’s functions.

Similarly, the System viewpoint highlights various operational contexts in which a SoI

dynamically interact with other systems, highlighting also its behavior when confronted

to the environment (e.g., operational scenarios) and its configurations and functioning

mode sequences.

2.2.3 MBSE modeling languages

Within the context of MBSE, there are currently various modeling languages that cover

one or several of the MBSE viewpoint representations discussed above.

Figure 7. SysML diagram types (Friedenthal et al. 2014).

One of the most commonly used and well-known is the Systems Modeling Language

(SysML) (OMG 2015b). SysML integrated several modeling languages, denoted as

diagrams, for modeling the physical and behavioral architectures of a system as well as

the systems requirements (see Figure 7). For intstance, the Block Definition Diagram is

used to model the structure of a system through physical blocks and interfaces. The

Activity or State Machine Diagrams are used to describe the behavior of a system. The

activity diagram models the flow of data and control between activities, whereas the

state machine diagram describes the states of a system and transitions between states

35

that are fired in response to events. Unfortunately, the initial SysML neglects the

functional architecture, even though some research works propose to modify the activity

diagram to support a flow of matter of energy (Friedenthal et al. 2014). For more details

on SysML diagrams see (OMG 2015b).

Alternatively to SysML, other well-known MBSE modeling languages are:

- The Enhanced Functional Flow Block Diagram (eFFBD) (INCOSE 2010) is a

functional-modeling language for the design of functional and behavioral

viewpoints of complex, distributed, hierarchical, concurrent and communicating

systems. The eFFBD is not targeted for modeling the physical viewpoints.

- In contrary, the Physical Block Diagram (PBD) (Long 2007) is a block-

modeling language that provides systems engineers with a block-and-line

diagram representing the physical components of a system or system segment

and links that connect components through interfaces, offering a detailed view

of an architectural composition.

- The FCCS (French acronym of GRAphe Fonctionnel de Commande Etape-

Transition – GRAFCET) (IEC 1992) is a behavioral language for describing

sequential automatisms such as Control Part of Manufacturing Systems.

Especially, it allows parallelism description and it is a programming language

available on many Programmable Logical Controllers of the market. The FCCS

is not adapted for modeling the physical viewpoint of a system.

- The Petri Net (place/transition net) (Murata 1989) is a behavioral language for

describing distributed systems. Petri nets have formal definition of their

execution semantics, with a well-developed mathematical theory for process

analysis. They are today widely used in various areas such as Systems

engineering, Concurrent programming or Discrete process control, particularly

for verification and validation purposes and are the subject of various works,

e.g., for the verification of eFFBD models as proposed in (Seidner 2009).

- The Interpreted Sequential Machine (ISM) (Vandermeulen 1996) is a formal

language based on discrete-event hypothesis for modeling and verifying the

behavior of systems and their interactions with the environment. The ISM is not

adapted for modeling the functional and physical viewpoints.

- The continuous models (CM) (Lee 2003) specified by a set of mathematical

equation (i.g., continuous or differential equations) that define the behavior of

36

systems and their interactions with the environment. Continuous models allow

modeling the behavior of a system based on continuous hypothesis. However,

they are not adequate for modeling the physical viewpoints.

- The Operational Mode Analysis Grid (OMAG) (Chapurlat & Daclin 2013) is an

approach that guides designers in exploring and reasoning, checking and then

arguing the consistency of the operating modes of a system. The goal is to help

designers to build system’s functional architecture by linking operating modes,

allowed configurations and operational scenarios. The OMAG is not adapted for

modeling the physical viewpoint of a system.

So, the above introduced languages are used to model different SoI architectures. As

previously discussed, some of the SoI architectures are suited for the structural

description of a SoI (e.g., the components that build up the system, the interfaces of the

system, the system flows, etc.) others are suited for the behavioral description (e.g., the

functions of the system, the interactions of the system with the environment, etc.).

2.2.4 MBSE verification and validation activities

Designed models are finally used by stakeholders during decision making processes to

understand a SoI and argue various architectural choices. These decisions impact on the

whole SoI, i.e., its functioning, induced cost, safety, security and of course SoI

engineering processes. It is thus very important, prior to any decision, to assure that

used models are complete, correct and relevant. According to (Chapurlat 2008), model’s

completeness, correctness and relevance are defined as follows:

Model completeness: a model is complete if it is self-sufficient and contains all

necessary information for stakeholder’s objectives, i.e., to demonstrate or deny

information that a stakeholder wants to highlight and analyze concerning the SoI.

However, achieving model completeness (i.e., a model that covers all characteristics of

a given reality that is, in our case, a SoI) is impossible by definition. Namely, models

are an abstraction of a subject and should only contain characteristics that are relevant

for a given study (see the definition of a model in Section 2.1.2). Therefore, modeling

languages and covered viewpoint representations must act as a filter, excluding concepts

that are non-relevant for the conducted study, including only the relevant ones. In such a

way, the unnecessary information should be filtered away, simplifying the

representation and easing the understanding by presenting to stakeholders only relevant

37

informations for a given study. The model completeness can be analyzed by considering

the boundaries of the conducted study, information that is possessed by domain experts.

Model correctness: the correctness of a model is expressed through model’s (1)

consistency, (2) conformity to a metamodel, the (3) respect to well-formedness rules and

the (4) correct concrete (graphical or textual) representation.

- A model is consistent if it does not contain any ambiguous or contradictory

information, i.e., information that based on this model is true and false at the

same time, leading to non-decidability. The consistency of a model is above all

partially assured by the conformity to a metamodel that restricts model designers

to concepts and relationships introduced in the used modeling language. In

addition, models must be checked taking into account the modeling language

well-formedness rules (discussed below). A model should also become

consistent with the other viewpoints models of the same SoI. This means that

there is not a contradiction between different viewpoint models and that the

information that is correct considering one model should stay correct

considering the other models of the same SoI.

- A model conforms to a metamodel if it respects the metamodeling rules imposed

by the DSML (i.e., by its abstract syntax). For more details on the conformity

relationship, see Section 2.1.2. An example of this relationship is illustrated in

Figure 2.

- A model must respect well-formedness rules that are defined by the semantics of

the used modeling language. For more details on semantics and well-formedness

rules, see Section 2.3.2.

- A model is correctly represented, graphically of textually, if the representation

of this model respects the rules imposed by a concrete syntax. For more details

on concrete syntaxes, see Section 2.3.2.

Model relevance: determines how accurately and correctly a model represents a

viewpoint of a SoI, just as imagined by stakeholders. For this purpose, models must first

be complete and correct, and moreover, models must respect rules that represent the

domain knowledge and needs of different stakeholders, i.e., the functional and non-

functional requirements.

Model completeness, correctness and relevance are managed by implementing model

verification and model validation (model V&V) activities:

38

· Model verification: it aims to demonstrate that a model is correctly build, well-

formed and correctly represented, taking into account the modeling rules

defined into a metamodel, the well-formedness rules defined through the

modeling language semantics and the representational rules defined as a

concrete syntax.

· Model validation: it aims to demonstrate that a model is the right one and is

trustworthy, giving an accurate representation of SoI in a viewpoint, considering

this representation as sufficient respecting the stakeholders and systems

requirements.

In the MBSE context, model V&V activities should consider all viewpoint

representations of a SoI, taken first separately, but also pieced together providing a

more complete and suitable representation. The goal is then to demonstrate the mutual

coherence throughout all viewpoint representations of a SoI, as well as their adequacy

and global fidelity to the SoI to support the designers’ objectives with an assured level

of confidence (Blazo Nastov et al. 2016b).

In the past 20 years, within the field of SE, a lot of approaches and frameworks have

been developed for verification and validation (V&V) of safety and critical systems.

The MBSE focuses particularly on early V&V based on models that take place during

the system design processes. According to (Chapurlat 2008), MBSE approaches for

V&V are based on one of the four V&V strategies: (1) Model expertise, (2) Guided

modelling, (3) Simulation and (4) Formal proof.

Model expertise: this strategy involves domain V&V specialists that have experience in

the evaluation and the appraisal of models relative to their domain of expertise. V&V

experts might rely on other techniques such as simulation or formal proof. This is an

efficient method for determining the quality of a given model but is relatively

expensive, particularly in a multidisciplinary context requiring multiple V&V specialist

with the required domain expertise.

Guided modeling: this strategy consists in guiding stakeholders based on patterns,

boilerplates or feedbacks. We distinguish then: (1) pattern-based approaches, (2)

boilerplate-based approaches and (3) feedback-based approaches.

- The pattern-based approaches promote the use of modeling patterns, hints and

frameworks for guiding experts during a design process. The goal of pattern-

39

based approaches is to eliminate structural design errors by proposing possible

solutions to a problem based on modeling patterns, considered to be good

practices. For instance, an approach for pattern implementation for systems

engineering, based on a functional architectural patterns, is proposed in (Pfister

et al. 2012). This approach is formalized as a metamodel and is used for the

management, application and cataloging of patterns specific to the field of

systems engineering. A model-driven framework for guided design space

exploration is proposed in (Hegedüs et al. 2015). This framework aims at

searching, based on hints (i.e., selection criteria), through various models

representing different design candidates to support activities like configuration

design of critical systems or automated maintenance of IT systems.

- The boilerplate-based approaches introduce template models that contain

crucial, already validated information of a given domain. The goal of

boilerplate-based approaches is to ease the work of designers by providing a

solid starting point basis with pre-verified information. For instance the

European CESAR project (CESAR 2012) proposes boilerplates-based

requirement specification language for the design of requirement models.

Another example is proposed in (Stålhane et al. 2011) where an approach for

system safety analysis based on requirements is proposed. Similarly to the

CESAR project, in this approach, the safety requirements are designed on top of

boilerplate models, specifically tailored for safety analyses. The EARS (Mavin

et al. 2009) approach (Easy Approach to Requirements Syntax) introduces

boilerplates for state-transition-based behavior requirements, limiting non-desired

system behavior as early as possible.

- The feedback-based approaches promote the reuse of models and examples that

are considered to be, at least, verified and validated, or, at best, standardized in a

given domain. The goal of feedback-based approaches is to share the domain

experience (problems, causes, and possible solutions) with designers of the same

domain that attempt to solve similar problems. Whether it is intended to solve a

problem or to abstract a general solution, a mechanism to process the examples

and to obtain information or knowledge from them, is needed. The choice of this

mechanism depends on the problem’s nature, on how general the solution is

expected to be and also on how much information about the solution is known

40

beforehand. For instance, in (Faunes Carvallo 2013), it is proposed to improve

the automation in the model-driven engineering, based on examples.

Simulation: this strategy consists in observing the simulated behavior of a SoI. The

simulation has numerous benefits. It is generally cheaper, safer, faster and more ethical

than conducting experiments on real-world systems. Simulations can become more

realistic if required by increasing the number parameters taken into account and the

model hypothesis (discrete-events, continuous or hybrid). There are currently many

tools for simulation. Among the most effective and well-known are: Ptolemy, Simulink

and Modelica. Ptolemy (Lee 2003) is a modeling and simulation environment for the

design of concurrent, real-time and embedded systems, based on assembly of concurrent

components. The key underlying principle in the project is the use of well-defined

models of computation that govern the interaction between components. Simulink

(Mathworks 2014) is a programming environment for modeling, simulating and

analyzing multi-domain dynamic systems, offering integration with the rest of the

MATLAB environment. Simulink is widely used in automatic control and digital signal

processing for multi-domain simulation and Model-Based Design. Modelica (Hilding

Elmqvist 1997) is an object-oriented, declarative, multi-domain modeling language for

modeling and simulation of complex systems. The Modelica Association develops a

free Modelica language “OpenModelica” and a free Modelica Standard Library that

contains about 1360 generic model components and 1280 functions in various domains.

Formal proof: consists in the use of formal methods, languages and tools. Formal

methods are mathematically based methods for the specification, development and

verification of systems. They leverage the use of formal languages that have solid

mathematical semantics. As a result, formal system specifications are unambiguous and

can be used to perform mathematical analysis, contributing to the reliability and

robustness of a design. Formal methods are based on two different approaches for

formal verification: (1) model-checking or (2) theorem proving.

- Model-checking is an approach to verify (to check) if a given specification of a

system (in the context of this work a system specification defines one or several

of the SoI viewpoints introduced in Section 2.2.2) respects some properties

(Bérard et al. 2013). It consists first in specifying the system through a formal

specification and then the requirements to be verified as formal properties.

Second, specified properties are verified based on a systematically exhaustive

41

exploration of the system specification, i.e., by exploring all possible states of

this specification. Well-known tool-supported solutions that allow model-

checking are SPIN (Holzmann 1997) and UPPAAL (Larsen et al. 1997).

- Theorem proving is a technique for formal verification that consists in

generating a collection of mathematical proof obligations from a system

specification. These obligations imply conformance of the system to its

specification. They can be formally proven by using a theorem prover. Well-

known tool-supported approaches that allow formal proof are: the B-method

(Abrial 2005), VDM (Alagar & Periyasamy 2011), Coq (Bertot 2006), Isabelle

(Nipkow et al. 2002), etc.

For more details on the state of the art of formal methods see the following survey paper

(Woodcock et al. 2009).

2.2.5 Synthesis

During the early system development phase, the MBSE promotes concepts, methods

and techniques that allow stakeholders to create and use models. These models support

stakeholders in understanding a SoI and in communicating and arguing with other

stakeholders about this SoI, before making any decision.

Nowadays, there are two major issues in the context of MBSE, the first is related to the

design of models that can effectively cover and represent different viewpoints of a SoI,

whereas the second is related to the Verification and Validation (V&V) of these models.

For the purpose of modeling, the general system theory promotes three viewpoints: (1)

functional, (2) structural and (3) behavioral. This theory is furthermore adapted within

the context of MBSE, promoting six viewpoints: (1) system viewpoint, (2) requirements

viewpoint, (3) functional viewpoint, (4) logical viewpoint, (5) physical viewpoint and (6)

organic viewpoint. Modeling languages (e.g., SysML, eFFBD, PBD, etc.) are then used

to cover each of these viewpoints. However, prior decision-making processes,

stakeholders must, on the one hand, verify models, i.e., to demonstrate that they are

correctly build, well-formed and correctly represented, and on the other hand, to

validate model, i.e., to demonstrate that they are the right ones and are trustworthy,

representing sufficiently accurately a viewpoint of a SoI, considering also the domain

knowledge of stakeholders. V&V activities must take into account each of the SoI

models, first separately, and after pieced together with the other models of the same SoI,

42

providing a more complete and suitable representation of it. Model V&V activities are

based on the following strategies: (1) Model expertise, (2) Guided modelling, (3)

Simulation and (4) Formal methods.

So, (1) the design of viewpoint models stress the need for modeling languages that are

particularly tailored and adapted to a given viewpoints, and (2) achieving a sufficient

level of model quality through V&V analyses stresses up the need to adapt and suite the

used modeling languages for V&V along with various techniques and tools.

2.3 Domain Specific Modeling Languages

2.3.1 Introduction

As mentioned before, models play a dominant role within the problematic of this work.

Models are created by using a modeling language and conform to a metamodel that is

embedded in this modeling language (see Section 2.1.2). There are two main paradigms

for modeling: 1) General-Purpose Modeling (GPM) and 2) Domain-Specific Modeling

(DSM). GPM promotes the use of a General Purpose Modeling Language (GPML) for

the modeling of different viewpoints of a SoI. A well-known example is the OMG’s

Unified Modeling Language (UML). DSM promotes the use of a Domain Specific

Modeling Language (DSML) particularly tailored for a given problem, for the modeling

of one viewpoint of a SoI that is used to solve a given problem. The main difference

between GPML and DSML is that the prior is used to model any SoI viewpoint for any

problem, while the latter is used to model one particular SoI viewpoint for one well-

defined problem. As a consequence, on the one hand, GPML provide generic concepts

that are far from the end-user domain ontology. On the other hand, the genericity of

GPML might overwhelm the end-use with many different ways to model an artefact. In

contrary, a DSML integrates the end-used domain ontology, easing the understanding

and use. Moreover, domain models are represented with an end-user friendly graphical

or textual concrete syntax (discussed below) and provide constraints dedicated to a

considered domain problem that can be used to verify created models (discussed

below).

Considering the MBSE issues discussed in the previous Section, the focus here is on

designing and managing DSMLs for multi-viewpoint modeling (discussed in Section

2.3.2), and on extending DSML along with different techniques and tools for the

purpose of model Verification and Validation (discussed in Section 2.3.3).

43

2.3.2 DSML for multi-viewpoint modeling

The first issue related to the design of models that can effectively cover and represent

different aspects of a SoI, stresses the design, use and management of DSMLs.

Generally, the design of a DSML consists in creating 1) an abstract syntax and 2) a

concrete syntax.

Abstract syntax: the original meaning of the term abstract syntax comes from natural

language, where it means the hidden, underlying, unifying structure of a number of

sentences (Chomsky 1965). Generally, the abstract syntax is hidden, presented as in-

memory form that obtains a concrete form when shown on a screen for the purpose of

language users (Kleppe 2007). Its concrete form may vary, depending on the associated

concrete syntax (detailed below). In the field of MDE, an abstract syntax is given by a

metamodel (see Section 2.1.2) representing, through a graph of classes, the concepts of

a domain and their relationships. Metamodels are created by using metamodeling

languages such as the standard MOF (OMG 2015a). MOF is tool-supported for instance

as Ecore in the Eclipse Modeling Framework (EMF) (Steinberg et al. 2008).

Figure 8. An example of an abstract syntax (metamodel) and a conforming model.

Figure 8 shows an example of an abstract syntax in the form of a metamodel created by

the metamodeling language MOF and a conforming model. The metamodel is

composed of three classes: World, Person and Automobile. The class World is

composed of persons and automobiles. Each person might have one or several

automobiles and each automobile might be possessed by one person at most. The

conforming model shows the world “Earth” with the person Christophe and the

automobile C4 (possesses by Christophe) in it.

Concrete syntax: a Concrete syntax defines the textual or graphical representation of a

model. The graphical representation of metamodels is indeed well-known and similar to

World: Earth
Person: Christophe

Automobile: C5

Conforming Model

conforms

Abstract syntax (metamodel)

has

44

the one of UML class diagram (see M2 layer of Figure 3). Models (instances of a

metamodel) however, have also an abstract syntax (i.e., AST) and a concrete syntax so

they can be understood by engineers (see M1 layer of Figure 3). The information that

defines the representation of models is their concrete syntax. This information defines

how to represent, not the classes and their relationships, but the instances of classes and

the instances of relationships. Depending on the nature of a concrete syntax that might

be graphical of textual, editors support either textual or graphical notations. For

instance, Figure 9 shows a model composed of its AST and two representations, a

graphical and a textual.

Figure 9. An example of a model with its structure, a graphical representation and a

textual representation.

There are currently several tool-supported solutions for the design of graphical and

textual concrete syntaxes, such as Diagraph (Pfister et al. 2014) and Sirius (Juliot &

Benois 2010) for graphical concrete syntaxes or xText (Bettini 2013) for textual

concrete syntaxes.

Composability: following the theory and principles of multi-viewpoint modeling,

various interconnected models are designed for a given SoI as suggested in Section

1.2.1 and Section 2.2.2, which when put together, form a “composite model”, covering

a more expressive, realistic and complete representation of a SoI. The design of such

interconnected models is possible only if the used DSMLs are syntactically

interconnected. This consists in defining the dependencies between the abstract syntaxes

of each DSML, but also between their concrete syntaxes. Examples of such syntactical

dependencies are shown in Section 3.3.1 and are illustrated in Figure 30 and Figure 31.

Model structure

Graphical representation

Christophe

C5
Earth

World: Earth
Person: Christophe

Automobile: C5

has

Textual representation

45

Examples of syntactical interconnection between models is shown in Section 3.3.2 and

illustrated in Figure 34 and Figure 35.

There are currently different methods / approaches for the design of DSML. Among the

more relevant for the purpose of this work are: Kermeta (Fleurey 2006), Eclipse

Modeling Framework – EMF (Steinberg et al. 2008), GEMOC studio (Combemale

2016), Sirius (Juliot & Benois 2010) and Diagraph (Pfister et al. 2014). Table 1

compares these methods / approaches based on the following criteria: 1) does the given

method / approach provides the means for the design of abstract syntaxes; 2) does the

given method / approach provides the means for the design of concrete syntaxes; 3)

does the given method / approach provides the means for composing abstract syntaxes

of different DSML; 4) does the given method / approach provides the means for

composing concrete syntaxes of different DSML; 5) is the given method / approach

tool-equipped.

Table 1. Comparison of several approaches for the design of DSML.

Methods /

Approaches

Design of

abstarct

syntaxes

Design of

concrete

syntaxes

Composability of

abstarct syntaxes

Composability of

concrete syntaxes

Is tool-

equipped

Kermeta Yes No Yes No Yes

EMF Yes No Yes No Yes

GEMOC studio Yes Yes Yes Yes Yes

Sirius Yes Yes Yes Yes Yes

Diagraph Yes Yes Yes Yes Yes

So, Kermeta and EMF focus on the design and composition of abstract syntaxes and

semantics (e.g., executable semantics), neglecting the design and composition of

graphical and textual concrete syntaxes. For this purpose, Sirius and Diagraph are layers

on top of the EMF that focus primarily on the design and composition of graphical

concrete syntaxes. Finally, GEMOC studio relies on EMF and Sirius for the design and

composition of abstract syntaxes and graphical concrete syntaxes.

46

2.3.3 DSML for model Verification and Validation

The second issue related to model V&V, stresses the need for extending or adapting

designed DSMLs for the purposes of simulation (i.e., model execution) and formal

proof (i.e., verification of formal properties). To this end, along with its syntax (abstract

and concrete), a DSML must include semantics. According to (Combemale et al. 2009),

the DSML semantics can be divided into: static semantics, representing concept

meaning (abstract and concrete syntaxes) and behavior independent structural

constraints (pre and post conditions, invariants, etc.), and dynamic semantics, dealing

with the way models behave.

Static semantics: the whole domain knowledge cannot be captured by an abstract and a

concrete syntax. For instance, considering the abstract syntax shown in Figure 8, the

following information “only major persons (age>18) can have an automobile” cannot be

defined with a metamodeling language. For this purpose, static semantics define such

restrictions and additional information for the syntax or the behavior (the dynamic

semantics) here-referred as “static semantics properties” or simply “properties”.

Properties are specified by using a “property modeling language” such as OCL (OMG

2014), TOCL (Ziemann & Gogolla 2003), LTL (Pnueli 1977), etc. The used property

modeling language determines the type of properties that can be designed (e.g.,

temporal or a-temporal). In addition, an adequate model-checking tool is needed to

check if the designed models respect the specified properties. For instance, the OCL

interpreter can be used to verify the model illustrated in Figure 9 respects the OCL

property illustrated in Figure 10.

Figure 10. A static semantics property specified as an OCL constraint.

Considering composability: following the theory and principles of multi-viewpoint

modeling, properties should also be specified and verified based on composite models

as suggested in Section 1.2.1 and Section 2.2.2. This is only possible if the syntaxes of

considered DSML are already interconnected. Examples of such properties are

illustrated in Section 3.3.1.

The methods / approaches discussed above (i.e., Kermeta, EMF, GEMOC studio, Sirius

and Diagraph) integrate also one or several property modeling languages for the

context Person inv:

self.has->size() > 0 implies self.age > 18

47

specification and verification of properties. Table 2 compares these methods based on

the following criteria: 1) does the given method / approach provides the means for the

design of static semantics; 2) who is/are the proposed property modeling language(s) for

the specification of properties; 3) is the verification of properties achieved directly on

models or by transformation to other third party approaches; 4) is composability as

described above possible; 5) is the given method / approach tool-equipped.

Table 2. Comparison of several approaches for the design of DSML based on their

ability to allow property specification and verification.

Methods /

Approaches

Design of

static

semantics

Property

modeling

language

Direct

verification
Composability

Is tool-

equipped

Kermeta Yes OCL Yes Yes Yes

EMF Yes OCL Yes Yes Yes

GEMOC studio Yes OCL Yes Yes Yes

Sirius Yes OCL Yes Yes Yes

Diagraph Yes OCL Yes Yes Yes

xDSML design

pattern
Yes OCL / LTL

Yes for OCL

No for LTL

Yes for OCL

No for LTL

Yes for OCL

No for LTL

Before discussing Table 2, we compare the following property modeling languages

based on the types of properties they allow specifying: OCL (OMG 2014), TOCL

(Ziemann & Gogolla 2003), LTL (Pnueli 1977). We consider four types of properties:

those that concern the structure of a DSML (i.e., the abstract syntax) denoted Structural

properties; those that concern the behavior of a DSML (i.e., the dynamic semantics)

denoted Behavioral properties; and those that include or not a temporal dimension

denoted respectively Temporal or A-temporal properties (e.g., temporal properties are

important for simulation and should be verified each step of the simulation or at specific

time step). The results of the comparison are shown in Table 3.

48

Table 3. Comparison of property modeling languages.

Properties OCL TOCL LTL

Structural Yes No No

Behavioral No Yes Yes

Temporal No Yes Yes

A-

temporal
Yes No No

So, all methods allow the design and verification of static semantics based on OCL with

exception to the xDSML design pattern (discussed hereafter) that allow the specification

of LTL properties. However, OCL can only be used for the specification of a-temporal

properties and structural properties. Other types of properties such as temporal

properties or behavioral properties are out of the scope of these methods / approaches

(with exception of the xDSML design pattern).

Dynamic semantics: the second information that cannot be captured by an abstract

syntax or a concrete syntax is the behavior. For this purpose, a DSML must define

dynamic semantics, also known as “executable semantics”. Dynamic semantics is

generally neglected from the specification of a DSML. However, for the purpose of

model dynamic V&V, it is mandatory, becoming a crucial point in the specification of a

DSML. DSML that include dynamic semantics are denoted executable DSMLs or

xDSML. xDSMLs can be used to execute designed models allowing simulation as a

way for model V&V. There are currently several ways to design xDSMLs. For instance,

a design pattern for xDSMLs is proposed in (Combemale et al. 2012), allowing a state-

based execution. This approach is synthetized in Figure 11 as a composition of five

metamodels related to each other.

- The Doman Definition MetaModel (DDMM) defines the structural part of a

DSML (i.e., the abstract syntax), composed of domain classes and references.

The behavioral part, i.e., the execution-related information, is spread across the

other four parts.

- The State Definition MetaModel (SDMM) defines a set of states for a set of

preselected domain classes from the DDMM, denoted “evolving classes”. Each

49

state represents the possible result in which instances of evolving classes can

evolve during execution. Consequently the classe’s behavior is represented as a

successive change of states provoked by stimuli.

- The different types of stimuli (events) and their relationship with domain classes

are defined in the Event Definition MetaModel (EDMM) package. Two types of

stimuli are distinguished: exogenous stimuli, this type of stimuli are injected by

the environment (e.g., an interaction is requested by the user), and endogenous

stimuli, this type of stimuli are produced internally by another evolving concept.

- The relationship between the state model defined in the SDMM package and its

reaction provoked by stimuli from the EDMM package is defined in the fourth

Semantics package. The semantics package defines when stimuli are sent and the

consequent reaction. It either be defined as operational semantics or as

translational semantics (discussed below).

- Last but not least is the Trace Management MetaModel (TM3) package. TM3

provides monitoring mechanism for model execution trace.

Figure 11. The executable DSML Pattern (Combemale et al. 2012)

An xDSML metamodel is then naturally equipped to support state-based execution,

containing the classes’ states, triggering events and a trace mechanism. The real

behavior however (i.e., the mechanism that defined when transitions are fired and the

produced reaction) is defined in the Semantics package.

It is also possible to design executable DSML without necessarily following this design

pattern. However, in this case the metamodel of the DSML contain only structure-

related information (similarly to the DDMM), excluding any execution-related

MetaModel

(M2)

MetaMetaModel

(M3)

Action Language or

Model Transformation

Metamodeling Language

(e.g. MOF)

SDMM
States Definition

MetaModel

EDMM
Events Definition

MetaModel

DDMM
Domain Definition

MetaModel

TM3
Trace management

MetaModel

Semantics

Semantics Mapping

<<conforms to>><<conforms to>>

<<merge>>

<<merge>>
<<trigerredBy>>

<<import>>
<<changes>>

<<merge>>

50

information (e.g., states, transitions, trace mechanism, etc.). The dynamic semantics of

such DSML must implicitly define the execution related information and the way this

information is computed. This way of building xDSML is for instance discussed in

(Muller et al. 2005), proposing the design of xDSML based on “execution weaving”

using the executable-metamodeling language Kermeta. Dynamic semantics that is

directly provided to a DSML is denoted operational semantics. In contrary, dynamic

semantics might be provided by other third-party executable approaches, based on

transformations. For instance, the approach proposed in (Rivera & Vallecillo 2007) is

targeting the Maude formal environment for model execution.

Operational semantics describes the behavior of a DSML and is used to execute (i.e., to

interpret) models using the virtual machine of the language that is used to define the

operational semantics. There are three different techniques to define operational

semantics: 1) by an endogenous transformation, 2) by an action language and 3) by a

formal behavioral modeling language.

Endogenous transformation is a declarative and rule-based technique for specifying

transformations rules between concepts of the same metamodel, as discussed in Section

2.1.3. For instance, Figure 12 shows the behavior of the process of aging of the concept

Person from Figure 8. There are currently several frameworks based on endogenous

transformations, applied in a MDE/MBSE context such as (Markovic & Baar 2008) or

(Hausmann 2005).

Figure 12. Operational semantics designed by endogenous transformations

Action language such as Java or Kermeta can be used to design operational semantics as

a set of operations, methods or functions (depending on the used technique). Figure 13

illustrates the aging process of a person designed by the action language Kermeta. There

are currently several frameworks equipped with an action language and applied in a

MDE/MBSE context such as EMF (Steinberg et al. 2008), the Kermeta framework

(Fleurey 2006), etc. The EPROVIDE framework (Sadilek & Wachsmuth 2009) allows

MA

Christophe: Person
age:=55

Christophe: Person
age:=56

MA
transformation

Rule Birthday:

age:=age+1

51

the specification of operational semantics for a DSML and is not related to a single

technology, allowing a choice between Java, Prolog, ASM or QVT.

Figure 13. Operational semantics designed by action languages (Kermeta).

Formal behavioral modeling language such as Statecharts (Harel 1987), Petri Nets

(Murata 1989), or Finite Automata (Kohavi & Jha 2009) when integrated with a

metamodeling language, can be used to express operational semantics for a DSML.

Instead of operations, in this case operational semantics is defined through behavior

models. So rather than programming, a behavior is, in this case, modeled. Figure 14

shows an example of operational semantics designed by the Finite Automata language.

The designed automata-like behavioral model defines the aging process of a person.

Among the principle effective and currently used solutions based on formal behavioral

modeling are: Real-Time UML (Douglass 2002), Scheidgen’s approach for human

comprehensible specifications of operational semantics (Scheidgen & Fischer 2007) and

xMOF (Mayerhofer et al. 2013).

Figure 14. Operational semantics designed by the State machine a formal behavioral

modeling language.

Translational semantics. Apart from the realm of modeling languages, there are several

tool-equipped environments based on automata-like formalisms: StateMate (Harel &

Naamad 1996), UPPAAL (Larsen et al. 1997), the finite state model of computation of

Ptolemy (Lee 2003) or the Stateflow module in The MathWorks Simulink framework

(Mathworks 2014). They provide graphical editor for simulation and animation

@aspect "true"

class Person{
attribute age : Integer

operation birthday() : Void is do

age := age + 1
end

…

end

S1

Event : Birthday

Effect: age:=age+1

52

purposes, active states, fireable transitions and simulation trace. However, there is a gap

between these approaches and the realm of modeling languages. This gap can be

bridged by using model transformation techniques, as discussed in Section 2.1.3. So the

dynamic semantics of a DSML are provided by a target approach that is usually formal

and tool-equipped allowing various simulation but also property proof. This type of

transformation is also called exogenous transformations, i.e., transformations between

models expressed in different languages (Mens & Van Gorp 2006) and can be specified

by using a graph transformations technique (Rozenberg & Ehrig 1997).

Composability: following the theory and principles of multi-viewpoint modeling,

various interconnected models are designed for a given SoI as suggested above, which

when put together, form a “composite model”, covering a more expressive, realistic and

complete representation of a SoI. In a similar way, the whole behavior of a SoI can be

represented by mixing or aggregating the behaviors described by composing viewpoint

models, even though these behaviors might be based on different functioning hypothesis

(e.g., different level of details, different objectives, etc.). The V&V analyses become in

this sense more relevant when considering composite models (e.g., a more realistic SoI

simulation that coordinately executes all viewpoint models). This consists in

interconnecting the dynamic semantics of designed DSMLs and in using these

semantics simultaneously to execute composite models. However, the current MBSE

modeling languages remain insufficient for the design and simulation of composite

models.

Table 2 compares same of the methods for the design of xDSML discussed above based

on the nature of the used behavioral language (action language or formal behavioral

modeling language) and the ability to compose various dynamic semantics. In addition,

we classify behavioral modeling languages into three categories (discrete-events,

continuous or hybrid). The composability characteristics when using behavioral

modeling language is divided into three categories: 1) when composing behavioral

models of same type (e.g., only discrete-events) that are create by the same behavioral

modeling language; 2) when composing behavioral models of same type that are create

by different behavioral modeling languages (e.g., state machine and petri-net behavioral

models); 3) when composing behavioral models of different types (e.g., discrete-events

and continuous) that are create by different behavioral modeling languages.

53

Table 4. Comparison of several approaches for the design of DSML.

Methods / Approaches

Action language Modeling language

Is
 t

o
o

l-
e

q
u

ip
p

e
d

Y
es

/N
o

C
o

m
p

o
sa

b
il

it
y

Y
es

/N
o

Type Composability

d
is

cr
et

co
n

ti
n

o
u

s

h
yb

ri
d

sa
m

e
ty

p
e

a
n

d
 la

n
.

sa
m

e
ty

p
e

d
if

.

la
n

.
d

if
. t

yp
e

a
n

d

la
n

.

Kermeta Yes Yes No / / / / / / Yes

EMF Yes Yes No / / / / / / Yes

GEMOC studio Yes Yes Yes Yes No No Yes No No Yes

xMOF No / Yes Yes No No Yes No No Yes

fUML No / Yes Yes No No Yes No No Yes

xDSML design pattern Yes Yes ? Yes No No Yes No No Yes

So, Kermeta and EMF relay on action languages for the design of xDSML, allowing

also composability. xMod and fUML relay on discrete-events behavioral modeling

languages, allowing composability. GEMOC studio and the xDSML design pattern

allow both action languages and behavioral modeling languages.

2.3.4 Synthesis

Considering the first problematics of this work (introduced in Section 0) related to the

design of models we focus on the design, use and management of DSMLs. For this

purpose a DSML is defined by an abstract syntax that define the domain concepts and

relationships through a set of classes and references, and a concrete syntax that defines

the representation of the DSML (i.e., the representation of models created by a DSML).

Considering the second problematic of this work (also introduced in Section 0) related

to model V&V analyses, we focus on the design of V&V suitable DSML. The lack of

semantics from the DSML specification is, according to (Chapurlat 2013), the main

limitation preventing the deployment of successful model V&V strategy. Namely, in

addition to an abstract syntax and a concrete syntax, a DSML must also integrate

semantics. Semantics define the domain knowledge that cannot be implicated by an

abstract syntax and a concrete syntax, i.e., a set of constraints and additional

54

information concerning the structure or the behavior, named static semantics, and the

behavior, named dynamic semantics.

Dynamic semantics can either be directly defined for a DSML, denoted operational

semantics, or provided by third party formalisms thought transformations, denoted

translational semantics.

The main benefit of the approaches based on translational semantics is the reuse of

appropriate formal tool-supported target space usually based on Automata-like

formalisms. This allows them, on the one hand, an easy access to V&V processes (i.e.,

model simulation and animation, simulation trace, property verification, etc.), but on the

other hand, the analysis results are only available in the target spaces, so they should

always be interpreted back to the source space, to compare the result based on the

source model. The relevance between source and target models should be demonstrated

to assure that the behavior defined by the target model corresponds to the one of the

source model. In addition, a good knowledge and expertise in the chosen target domain

and in transformation languages and tools is required.

In contrast, since the domain space is well-known to designers, it is easier to define the

domain behavior directly on a given DSML, rather than using third party formalisms.

This is the purpose of operational semantics, allowing model simulation and animation,

as early as possible with minimum effort improving system quality and reducing time-

to-market. Operational semantics are preferable for prototyping in particular for simple

behavior that can be expressed through discrete states.

2.4 Conclusion and Contributions of this thesis
The objective of this work is to develop a method for the design, verification and

validation of models that are used by stakeholders to understand a SoI, to communicate

and argue with other actors about this SoI and finally to support them and increase their

confidence during decision making processes.

The method must address four SE challenges introduced in Chapter I. In particular, it

must assure the autonomy of different stakeholders involved in the process of complex

system modeling, during the process of designing, intuitively and as simple as possible,

models that contain their domain knowledge, but also to verify and validate these

models. A critical analysis of the relevant literature concerning the design, the

verification and the validation of models is previously presented.

55

The work presented throughout the rest of this manuscript converges through the

proposal of a method for the design, the verification and the validation of models. To

this end, our method must first guide and assist stakeholders to design their own

modeling languages, particularly tailored for their domain knowledge and used to model

a particular viewpoint of the SoI, named domain specific modeling languages (DSMLs).

Second, DSML must be usable for the design of models, but also, on the one hand, for

the simulation of models, and on the other hand, for the specification and verification of

formal properties based on designed models.

The scientific positioning of this approach is discussed in the next section, considering

the context of this work presented in Chapter I and the relevant literature presented in

this chapter.

2.4.1 Scientific positioning

The method that we propose is intended for stakeholders that take part in a project of

complex systems engineering, particularly in the upstream processes of system

specification and modeling. Motivated by the current rising challenges in systems

engineering that were identified by the AFIS (AFIS 2012) and discussed in Chapter I,

this method aims to contribute in the following:

· To provide architects and engineers with the means for modeling, checking and

simulating covering total system representation as requested in large and

heterogeneous systems engineering processes.

· To improve model V&V respecting the MBSE principles.

Similar challenges, related to systems modeling and early verification and validation

based on models to improve the software development processes, have been studies in

the field of Software Engineering for Complex and Cyber-physical systems. A good

example is the ongoing GEMOC initiative (Combemale 2016). The goals of this

initiative are “to coordinate and disseminate the research results regarding the support of

the coordinated use of various modeling languages that will lead to the concept of

globalization of modeling languages, that is, the use of multiple modeling languages to

support the socio-technical coordination required in systems and software engineering”.

In other words, they highlight the problems of modeling and simulation covering total

system representation by various and heterogeneous DSMLs, coordinated simulation of

models, simulation trace, verification of properties, etc.

56

Our method is intended for the systems engineering community. As a starting

hypothesis, we consider that systems engineering stakeholders are much less competent

with programming and behavioral coordination languages, or with omniscient

debugging, then software engineering stakeholders. Our goal is to assist and guide

systems engineering stakeholders to design their own DSML and to relate them with the

DSMLs of other stakeholders, to create models that can be simulated and animated

considering also the models of other stakeholders, but in addition, to specify and verify

properties considering either one viewpoint model or all viewpoint models of a SoI.

2.4.2 Expected contribution

The contributions of this thesis are here-after discussed from three different

perspectives, i.e., from conceptual perspective, methodological perspective and

technical perspective.

The conceptual contribution of this thesis is a metamodeling language that allows the

design and integration of DSMLs suitable used to model, verify and validate different

complementary viewpoints of a SoI. Such DSMLs are composed of:

· Heterogeneous and Dependent abstract syntaxes: abstract syntaxes that capture

all concepts and relationships of different and heterogeneous viewpoints of a SoI

through metamodels, but also the dependencies between different metamodels,

providing an overall composite abstract syntax that covers the whole SoI.

· Heterogeneous and Dependent concrete syntaxes: concrete syntaxes that define

the representation of concepts and relationships of a given viewpoint, but also

concept dependencies between different viewpoints, providing a complex multi-

viewpoints SoI representation that allows the navigation from one SoI viewpoint

to another.

· Heterogeneous and Dependent property specifications: property specifications

that contain properties for each individual viewpoint, but also properties that

cover the dependencies between viewpoints.

· Heterogeneous and Dependent operational semantics: operational semantics

that define the behavior of a viewpoint DSML, but also the behavioral

dependencies with other viewpoint DSMLs.

The methodological contribution of this thesis is presented in a form of an approach

that allows modeling a SoI, considering different viewpoints for different stakeholders,

57

by different DSMLs. These stakeholders are provided with the means first to create

DSMLs and second to specify the dependencies (syntactically and semantically)

between different DSMLs. Such DSML can be used to create models for different

viewpoints of a SoI, but also to specify the dependencies between different viewpoints.

Our approach should allow:

· The simulation of different viewpoints – a synchronized model execution,

considering the operational semantics from all DSML that are used to model

different SoI viewpoints and a new execution mechanism that integrate the

blackboard design pattern and several rules that we introduce.

· The formal proof of different viewpoints – a formal verification of properties

based on the SoI models, first considering each model individually and then

together with the other models of the SoI.

Considering the technical contribution of this work we propose a complete

implementation of the approach within the Eclipse environment through several

deployable plugins.

2.4.3 Illustrative examples

Throughout the rest of the manuscript, we illustrate our contributions based on three

case study examples:

· The first is a DSML denoted WaterDistrib for modeling water storage and

distribution systems. This DSML is used to demonstrate the design of

operational semantics using a behavioral modeling language, allowing experts to

observe the changing water level in a water tank. Briefly, this DSML introduce

the following concepts: a water tank, a water-source that is connected to the tank

with pipes and a control station. A house is supplied with water by the mean of

the tank. There are valves on each of the pipes, controlled (opened or closed) by

a control station, based on the water request and the water level inside the tank.

· The second is the Interpreted Sequential Machine (ISM) (Vandermeulen 1996).

ISM is a formal language based on discrete-event hypothesis for modeling and

verifying the behavior of systems and their interactions with the environment, in

particular, it allows describing sequential automatisms such as Control Part of

Manufacturing Systems. This DSML contains a predefined formal semantics

and is used to demonstrate the design of operational semantics using our formal

58

rule-based language. The idea is to rewrite the predefined formal semantics with

slide changes using the rule-based language and to use them for simulation.

· The third is composed of two languages from the MBSE community: eFFBD

(Enhanced Functional Flow Block Diagram) (INCOSE 2010) and PBD

(Physical Block Diagram) (Long 2007). eFFBD is a functional-modeling

language for the design of functional and behavioral aspects of complex,

distributed, hierarchical, concurrent and communicating systems. PBD is a

block-modeling language that is complementary to eFFBD. It provides systems

engineers with a block-and-line diagram representing the physical components

of a system or system segment and links that connect components through

interfaces, offering a detailed view of an architectural composition. The goals of

this final case study are to demonstrate the specification of syntactical as well as

semantical dependencies between different DSMLs and how these dependencies

are considered during simulation and property proof.

59

CHAPTER III

MODELING BASED ON PROPERTIES

60

This chapter presents a part of the conceptual and the methodological contributions of

this work. A map of Chapter’s outline with respect to the type of contributions is shown

in Figure 15.

Figure 15. Map of conceptual and methodological contributions of Chapter III.

It is structured as follows. First, Section 3 introduces the core concept “Property” along

with a property typology. Section 3.2 describes a formalized lifecycle for property

management. The lifecycle provides stakeholders with guidelines, i.e., several phases

and sub-phases, each one characterized by various constraints, expectations and rules to

be considered and modeled as properties for the design and V&V of DSMLs and

models. Section 3.3 introduces our vision on the multi-viewpoint modeling (i.e.,

modeling of a system considering simultaneously multiple viewpoints) based on the

concept of property along with a modified version of the lifecycle for property

management. Finally, Section 3.4 concludes this chapter.

3.1 The concept of “Property”
A property is defined as follows:

Abstract
syntax

Concrete
syntax

“modeled as”

Static
semantics

Dynamic
semantics

Properties

Lifecycle
(for property management)

“structured into”

“includes”

Conceptual

contribution

(Section 3.1)

General concepts

introduced in

Chapter II

Modeling
Properties

System
Properties

“managed by”

Methodological

contribution

(Section 3.2) DSML and Model
Lifecycle

Composite DSML and
Model Lifecycle

Dependency
Properties

“managed by”

Conceptual and

Methodological

contribution

(Section 3.3)

61

Definition 1: A property is a provable or evaluable (i.e. quantifiable or

qualifiable) characteristic of an artefact [that is 1) a system S, or 2) a model M of

S built for achieving a design objective] that translates all or part of stakeholder

expectations to be satisfied by this artefact (Chapurlat 2013).

Depending on whether properties are used for the design of modeling artefacts or for the

specification of requirements (defined in the next), they are structured into modeling

properties and system properties.

Modeling properties are defined as follows:

Definition 2: A modeling property expresses the characteristic of a modeling

artifact. It is used to conceptualize domain knowledge through modeling

languages but also to concretize this domain knowledge through models.

The purpose of modeling properties is to support and answer some of the stakeholders’

questions about the model of a future system. This allows verification of both model

and SoI (see Section 0 for more details on verification).

System properties are defined as follows:

Definition 3: A system property expresses a part of the requirements that can

furthermore be checked based on a modeling artefact that is defined by modeling

properties.

The terms “requirements”, “system requirements” and “stakeholder requirements” are

standardized by (ISO/IEC 2008) as follows:

Definition 4: A requirement is a statement that identifies an operational,

functional or design characteristic or constraint (of a product or process), which

is unambiguous, testable or measurable, and moreover necessary for product or

process acceptability.

Definition 5: A stakeholder requirement is a requirement for a system that can

provide the services needed by users and other stakeholders within a defined

environment.

Definition 6: A system requirement is a statement that transforms the

stakeholder's user-oriented view of desired capabilities into a technical view of a

solution that meets the user’s operational needs. System requirements are

specified by designers, either based on existing standards, best practices, or

62

induced by technological choices or existing technical solutions, e.g., COTS

(Maiden & Ncube 1998).

A requirement must be clear, unambiguous and well-defined prior to any use then prior

to any translation of corresponding system properties. These properties are then used to

assume a part of validation of SoI models (see Section 0 for more details on validation).

3.1.1 Modeling properties

Modeling properties are structured into two categories:

1) Modeling properties used to conceptualize domain knowledge through modeling

languages (DSMLs)

2) Modeling properties used to concretize domain knowledge through a model

(created by using a DSML that conceptualize domain knowledge)

The modeling properties used to conceptualize domain knowledge are classified into:

- Structural properties (SP)

- Representational properties (RP)

- Behavioral properties (BP) and

- Constraint properties (CP)

Structural properties (SP) are defined as follows:

Definition 7: A structural property expresses characteristics about the structure

of a domain, conceptualizing domain knowledge through a set of concepts

denoted domain concepts, and relations that bound together these concepts. The

set of SP defines the abstract syntax of a DSML.

A domain concept is defined by a set of common characteristics and specifies various

representatives from a given domain knowledge, e.g., a Function or a Flow as shown in

the next illsutrative example. These representatives are called in the next domain

objects, e.g., the functions ‘close the door’ or ‘empty the store’.

There are different techniques to formalize structural properties, e.g., by a metamodel,

by an ontology, etc. This work, for the design of structural properties focuses on

metamodels. Metamodels are designed by a metamodeling language such as for

example the OMG’s standard MOF (OMG 2015a) (see Section 2.1.2 for more details).

63

To illustrate, we show in Figure 16 a metamodel that represents a part of the structural

properties of the eFFBD language (INCOSE 2010) introduced in Section 2.4.3. Among

the core concepts of the eFFBD are Function, Item Flow and Resource Flow, a set of

typed attributes detailing each of these concepts (e.g., quality and quantity of a

Resource, purpose of a function) and a set of relationships between them (e.g., a

relationship inputs between Item and Function). They are formalized through classes

and various relationships (references, compositions and inheritances) as shown in

Figure 16.

Figure 16. A metamodel that specify a part of the SP of the eFFBD language.

Structural properties are formally defined as !" #= $%"&, '()*, where:

- %"& #= {+-./|+-./ 0 %12 +-./ 3 % , 4 0 5} is a set of domain concepts and C is

a set of classes. Domain concept can either be simple, modeled by a single

classes (+-./ 0 %) or more complex, modeled by several classes (+-./ 3 %). For

instance, considering the example discussed above (see Figure 16), the core

concept Function is modeled by one class (i.e., the class Function), whereas the

concept Resource Flow is modeled by several classes (i.e., Resource Flow

Provider, Resource Flow Consumer and Resource). Details about the formal

specification of classes and class related information (e.g., mutable and

immutable attributes, class attributes, etc.) are available at (Weisemöller &

Schürr 2008) and (OMG 2015a).

- '() #= $!, &, .6-7* is a set of relationships between classes where:

o ! 0 % defines the source class

o & 0 % defines the target class

o .6-7 0 {897:797;+7<,< +>?->@4.4>;8, 84;A794.7;+78} defines the

relationship type. Details about the formal specification of different types

64

of relationships are available at (Weisemöller & Schürr 2008) and (OMG

2015a).

Representational properties (RP) are defined as follows:

Definition 8: A representational property expresses characteristics about the

representation of domain concepts and relations. The set of RP defines the

concrete syntax of a DSML.

Representational properties are formalized by a concrete syntax language. There are two

categories of concrete syntax languages, one for the design of graphical concrete

syntaxes (e.g., Diagraph (Pfister et al. 2014) or Obeo Designer (Juliot & Benois 2010)),

and the other for the design of textual concrete syntaxes (e.g., xText (Bettini 2013)).

Section 2.3.2 provides more details on this topic.

To illustrate, Figure 17 shows the graphical representational properties for the

metamodel (structural properties) illustrated in Figure 16.

Figure 17. Graphical RP for the elements of the eFFBD language.

For instance, the graphical representation of the concept Function is defined as a blue

rectangular form. An eFFBD model is graphically represented based on these graphical

representational properties as shown in Figure 20. Note that the graphical

representational properties shown in Figure 17 are only schematized and must

furthermore be formalized by an adequate concrete syntax language. For instance, the

Diagraph approach can be used to formalize these representational properties.

Representational properties are formally defined as '" #= $.6-7, 'B, CD*, where:

- .6-7 0 {8E9F-A4+FG<,< .7H.IFG8} defines the representation type.

- 'B #= {94/|94/ 0 %), 4 0 5} is the set of representational information that define

the concrete representation of domain concepts and relationships. CL is a

concrete syntax language used to formalize the representational information.

- CDJ 'B K !" associates the representational information to structural properties,

i.e., to a domain concept or a relation.

Behavioral properties (BP) are defined as follows:

Function ItemResource Functional Flow Resource Flow Item Flow

65

Definition 9: A behavioral property expresses characteristics about the behavior

of domain concepts. The set of BP defines the dynamic semantics of a DSML.

There are different techniques to design and formalize behavioral properties (e.g., by

using action languages, behavioral modeling languages, formal languages, etc.), as

discussed in Section 0. A particular interest is here-given on behavioral modeling

languages, or simply behavioral languages. Behavioral languages are based on different

functioning hypotheses: discrete-events, continuous or hybrid hypotheses, as proposed

in Section 0. Chapter IV for example, introduces the behavioral language extended

interpreted sequential machine (eISM) and demonstrates the design of discrete-events

behavioral models using eISM. As illustration, Figure 18 shows an example of a

discrete-events behavioral model (a finite stat machine model) that specifies the

behavior of the concept Function as follows.

Figure 18. The BP for the concept Function of eFFBD.

A function defines an input/output transformation. The transformation is first possible

(Authorized), i.e., the function can start but waits for Items (and eventually Resources).

The real transformation of energy, material and / or data (Execution) starts when the

requested Items and Resources are provided. As a result, several output Items and

Resources are provided (Finished). Due to external events (i.e., in case of dysfunction

of the component on which a function has been allocated) a function can suspend or

even abort execution (Suspended, Aborted). This example is furthermore detailed and

formalized as an eISM model in Chapter IV.

Note that for the purpose of simulation (i.e., model execution) the behavioral models of

different domain concepts must be coordinately used. This leverages the need for a

synchronization mechanism allowing data and event exchanges between different

behavioral models. Chapter IV introduces such mechanism for coordinated simulation

based on the blackboard design pattern.

Behavioral properties are formally defined as L" #= $.6-7, LM, CN*, where:

Sleep

Authorised Execution Suspended

Aborted
Finished

StartFunction

ExecuteFunction
ResumeFunction

SuspendFunction

AbortFunction

EndFunctionEndFunction

66

- .6-7 0 {8O4@+97.7 P 7Q7;.@<,< +>;.4;>I@<,< A6R94O<, S} defines the behavior

type.

- LM #= {R9/|R9/ 0 L), 4 0 5} is a behavioral model formalized through a set of

rules R9/ by using a behavioral language BL.

- CNJ LM K %"& associates a behavioral model to a domain concept.

Constraint properties (CP) are defined as follows:

Definition 10: A constraint property expresses complementary characteristics

that cannot be implicitly defined by a DSML. The set of CP defines the static

semantics of a DSML.

For instance: “all persons (instances of a class Person) that have less than 18 years are

minors, whereas the others are majors” is a classical constraint property that cannot be

implicitly defined by a class Person.

Depending on which part of a DSML is concerned, constraint properties are classified

into:

- structural constraint properties (SCP),

- representational constraint properties (RCP) and

- behavioral constraint properties (BCP)

Structural constraint properties (SCP) are defined as follows:

Definition 11: A structural constraint property expresses complementary

characteristics that cannot be implicitly defined by the domain structure (see

Definition 7) of a DSML.

In this sense, representational constraint properties (RCP) are defined as follows:

Definition 12: A representational constraint property expresses complementary

characteristics that cannot be implicitly defined by the representation (see

Definition 8) of a DSML.

Similarly, behavioral constraint properties (BCP) are defined as follows:

Definition 13: A behavioral constraint property expresses complementary

characteristics that cannot be implicitly defined by the behavior (see Definition

9) of a DSML (i.e., the behavior of concepts that form the structure of a DSML).

67

Illustartions for structural, representational and behavioral properties are proposed

hereafter (see CP1-CP7).

Constraint properties are formalized by a constraint language. Different constraint

languages can be used for the design of different constraint properties, i.e., structural,

representational or behavioral. Some constraint languages such as the UPSL-SE

(Chapurlat 2013) can be used for the design of multiple types of constraint properties

(e.g., structural and behavioral).

The different types of constraint properties must be specified by using an adequate

constraint language that is compatible with the DSML’s structure, representation or

behavior. For instance, if the behavior of a DSML concept is designed by a finite state

machine model as shown in Figure 18, constraint languages such as the object

constraint language (OCL) (OMG 2014) are not compatible and cannot be used. In

contrary, if the behavior is designed by an action language as a set of operations for

domain concepts, then the OCL can be used for the specification of behavioral

constraint properties such as pre-condition, post-condition, body, etc.

In addition, a formal proof mechanism is requested to verify different types of

constraints. Chapter V introduces such mechanism.

Language constraint properties (structural, representational and behavioral) are

moreover classified into a-temporal and temporal. An overview is shown in Figure 19.

Figure 19. A classification of constraint properties CP.

A-temporal structural constraint properties (ASCP) are defined as follows:

Definition 14: An a-temporal structural constraint property is a structural

constraint property (see Definition 11) that does not take into account a temporal

A-temporal SCP

(ASCP)
A-temporal RCP

(ARCP)

Constraint Properties (CP)

Structural Constraints
Properties (SCP)

Representational Constraints
Properties (RCP)

Temporal SCP

(TSCP)
Temporal RCP

(TRCP)

A-temporal BCP

(ABCP)

Behavioral Constraints
Properties (BCP)

Temporal BCP

(TBCP)

68

dimension (is not time or execution related). ASCP are specified based on a

domain structure (see Definition 7) and are verified based on the structure of a

conforming model (see Definition 20).

To illustrate, we specify the following A-temporal SCP based on the metamodel shown

in Figure 16:

CP1: “If a Function has at least one input resource flow

then it must also have at least one output resource flow”

The above quoted property must be furthermore formalized by an adequate constraint

language before being verified. The verification process takes place as soon as a model

is designed. The feedback of the verification process is either positive (i.e., the model

respects the property) or negative (i.e., the model violates the property and thus must be

revisited for corrections).

Temporal structural constraint properties (TSCP) are defined as follows:

Definition 15: A temporal structural constraint property is a structural

constraint property (see Definition 11) that takes into account a temporal

dimension (is time or execution related). TSCP are specified based on a domain

structure (see Definition 7) and are verified based on the structure of a

conforming model (see Definition 20) during model execution (in contrary to

ASCP that are verified before model execution).

To demonstrate, we specify the following Temporal SCP based on the metamodel

illustrated in Figure 16:

CP2: “The quantity of Resources must always

(i.e., each execution step) be positive or nul”

The above quoted property must be formalized by an adequate constraint language

before being verified. The verification process takes place as soon as a model is

designed and executed. A feedback is provided after or during the model execution. For

this type of properties, a model-checker must be integrated with a simulator, as for

instance proposed by UPPAL (Larsen et al. 1997).

A-temporal representational constraint properties (ARCP) are defined as follows:

Definition 16: An a-temporal representational constraint property is a

representational constraint property (see Definition 12) that does not take into

69

account a temporal dimension (is not time or execution related). ARCP are

specified based on the representation of domain concepts and relations (see

Definition 8) and are verified based on the representation of a conforming model

(see Definition 21).

To illustrate, we specify the following A-temporal RCP based on the concrete syntax

illustrated in Figure 17:

CP3: “Functions connected with at least three Resources must

be graphically represented in a red color”

The above quoted property must be formalized by an adequate constraint language

before being verified. The verification process takes place as soon as a model is

designed and represented. The feedback of the verification process is either positive

(i.e., the model respects the property) or negative (i.e., the model violates the property

and thus must be revisited for corrections).

Temporal representational constraint properties (TRCP) are defined as follows:

Definition 17: A temporal representational constraint property is a

representational constraint property (see Definition 12) that takes into account a

temporal dimension (is time or execution related). TRCP are specified based on

the representation of domain concepts and relations (see Definition 8) and are

verified based on the representation of a conforming model (see Definition 21)

during model execution (in contrary to ARCP that are verified before model

execution).

To illustrate, we specify the following Temporal RCP based on the concrete syntax

illustrated in Figure 17:

CP4: “Items must change color each three execution steps”

The above quoted property must be formalized by an adequate constraint language

before being verified. The verification process takes place as soon as a designed model

is executed. A feedback is provided after or during the model execution. For this type of

properties, a model-checker must be integrated with a simulator.

A-temporal behavioral constraint properties (ABCP) are defined as follows:

Definition 18: An a-temporal behavioral constraint property is a behavioral

constraint property (see Definition 13) that does not take into account a temporal

70

dimension (is not time or execution related). ABCP are specified and checked

based on the behavior of domain concepts (see Definition 9) of a DSML, before

creating or simulating models.

ABCP are used to verify the well-formedness of the behavior. In order to do so, the

behavior must respect:

- The hypotheses of the used behavioral language: the behavioral language

imposes several hypotheses that designed behavioral models must respect. For

instance:

CP5: “A finite state machine model must have

an initial state (otherwise the model is false)”

A behavioral model must verify all hypotheses imposed by the used behavioral

modeling language before being used for the purpose of simulation.

- Alternative or Stakeholders’ hypotheses: sometimes stakeholders impose, in

addition to the hypotheses of a behavioral language, several other hypotheses.

For instance:

CP6: “A finite state machine model is invalid if it

possesses a state without an outgoing transition”

The above quoted constraint can locally be applied on preselected finite state

machine models. The verification process takes place as soon as a behavioral

model is designed, before being used for the purpose of simulation.

Temporal behavioral constraint properties (TBCP) are defined as follows:

Definition 19: A temporal behavioral constraint property is a behavioral

constraint property (see Definition 13) that takes into account a temporal

dimension (is time or execution related). TBCP are specified based on the

behavior of domain concepts (see Definition 9) of a DSML and checked based

on the model behavior (see Definition 22) during model execution (in contrast to

ABCP that are checked before execution).

For instance:

CP7: “A finite state machine model must enter in a specific

state (i.e., state n) after 10 execution steps”

71

The above quoted property must be formalized by an adequate constraint language

before being verified. The verification process takes place as soon as a designed model

is executed. A feedback is provided after or during the model execution. For this type of

properties, a model-checker must be integrated with a simulator.

Constraint properties are formally defined as %" #= $!%, '%, L%*, where SC is the set of

structural constraint properties, RC is the set of representational constraint properties

and BC is the set of behavioral constraint properties.

Structural constraint properties are formally defined as !% #= $.6-7, !%", CTUV*, where:

- .6-7 0 {8.7?->9FG<,< F P .7?->9FG<} defines the type of the structural

constraint property.

- !%" #= {@+-/|@+-/ 0 %), 4 0 5} is the structural constraint property formalized

through formal rules @+-/ by using a constraint language CL.

- CTUVJ !%" K !" associates a structural constraint property to a domain concept

or relationship.

Representational constraint properties are formally defined as '% #= $.6-7, '%", CDUV*,
where:

- .6-7 0 {8.7?->9FG<,< F P .7?->9FG<} defines the type of the structural

constraint property.

- '%" #= {9+-/|9+-/ 0 %), 4 0 5} is the representational constraint property

formalized through formal rules 9+-/ by using a constraint language CL.

- CDUVJ !%" K '" associates a representational constraint property to the

representation of a domain concept or relationship.

Behavioral constraint properties are formally defined as L% #= $.6-7, L%", CNUV* ,

where:

- .6-7 0 {8.7?->9FG<,< F P .7?->9FG<} defines the type of the behavioral

constraint property.

- L%" #= {R+-/|R+-/ 0 %), 4 0 5} is the behavioral constraint property specified

as formal rules R+-/ by using a behavioral constraint language CL.

- CNUVJ L%" K L" associates a behavioral constraint property to a behavioral

model.

72

A DSML is formalized as a 4-uplet composed of modeling properties that conceptualize

domain knowledge. Among modeling properties that concretize domain knowledge are:

structural properties (SP), representational properties (RP), behavioral properties (BP)

and constraint properties (CP). A DSML is then formally defined as follows:

W!M) #= $!", '", L", %"*
The modeling properties used to concretize domain knowledge through a model are

classified into:

- Model structural properties (MSP)

- Model representational properties (MRP) and

- Model behavioral properties (MBP)

Modem structural properties (MSP) are defined as follows:

Definition 20: A model structural property expresses characteristics about the

structure of a domain. It concretizes domain knowledge through a set of domain

objects and links that are instances of domain concept and relations (see

Definition 7). Objects and links concretize by an adequate value the

characteristics of concepts and relations.

Model structural properties are formalized by using a DSML, i.e., more specifically, the

metamodel (i.e., the abstract syntax defined through the SP) of a DSML. The resulting

structure must conform to the metamodel of the used DSML (see Section 2.1.2 for more

details).

Figure 20. The structure (MSP) - left and the representation (MRP) - right of an eFFBD

model.

To illustrate, the left side of Figure 20 shows model structural properties forming the

structure of an eFFBD model. The model is composed of four objects, i.e., F1 instance

Function:F1

Item:I1

Item:I2

Item:I3

itemInputs

input/output

itemOutputs

itemInputs

Function:F1F

Item:I2

Item:I1

Item:I3FF

2

Ite

F1.itemInputs[I1,I2] I3.output[F1]
F1.itemOutputs[I3]

I2.input[F1]

I1.input[F1]

73

of the concept Function and I1, I2 and I3, instances of the concept Item, and six links

between these concepts, instances of the references: input, output, itemInput and

itemOutput.

Model structural properties are formally defined as M!" #= $X,)*, where:

- X #= {>RY/|>RY/14;@.F;+7X:1%"&, 4 0 5} is the set of domain objects i.e.

instances of domain concepts defined by the DSML’s SP. InstanceOf is the

relation of instantiation discussed in Section 2.1.2.

-) #= ZG4;[/\G4;[/14;@.F;+7X:1'()1] '()^ .6-71 0{897:797;+7<,< +>?->@4.4>;8}, 4 0 5 _ is the set of links between

objects that define the organization of objects in a model. Two types of links can

be designed:

o Reference links that are instances of the relation Reference. They are

used to connect objects.

o Composition links that are instances of the relation Composition used to

embed objects (one object can contain other objects).

Model representational properties (MRP) are defined as follows:

Definition 21: A model representational property expresses characteristics

about the representation of domain objects and links. MRP are used to

parametrize the concrete syntax information (see Definition 8) for a given object

or link, specifying the representation of this object or relation in an editor.

Model representational properties are formalized by using a DSML, i.e., more

specifically, the concrete syntax (i.e., the RP) of a DSML. Depending on the nature of a

concrete syntax (graphical or textual), MRP provide a graphical or a textual

representation of the structure of a model, forming a graphical or textual image inside

an editor (see Section 2.3.2 for more details).

To illustrate, Figure 20 shows the graphical representation of the previously discussed

eFFBD model. Note that the representational information RI that defines the concrete

syntax illustrated in Figure 17, is parametrized for each object shown in Figure 20, i.e.,

the function F1 is graphically represented by a blue rectangular form with a given

position and size, all items (I1, I2 and I3) are graphically represented by green circular

forms, each one having different position but the same size and the links between

objects are represented by green arcs.

74

Model representational properties are formally defined as M'" #= $94, "'B, CVD/*
where:

- 94 0 'B is a representational information about domain concepts or relations

formalized by a concrete syntax language CL (the formal definition of RI is

provided above).

- "'B #= {-94/|4 0 5, 4 = |4;@.F;+7@`CD`94aa|} is the set of different

parametrizations prii for a given representational information ri based on

different domain objects or links. The total number of parametrizations is equal

to the number of objects or relations, instances of the domain concept or

relations for which ri defines the representation. For instance, the

representational information about the concept Item (shown in Figure 17) is

parametrized three times for each object instance of Item (I1, I2 and I3) shown

in Figure 20.

- CVbcJ 'B × X K "'B is the function that parametrizes the representational

information ri by associating it with a domain object. Note that: d> 0
X, >14;@.F;+7X:`CD`94aa, a representational information can be parametrized

only by an object that is an instance of the domain concept for which ri defines

the representation.

- CVbeJ 'B ×) K "'B is the function that parametrizes the representational

information ri by associating it with links. Note that: a representational

information can be parametrized only by a link that is an instance of the domain

relation for which ri defines the representation.

Model behavioral properties (MBP) are defined as follows:

Definition 22: A model behavioral property expresses characteristics about the

behavior of domain objects. MBP are used to parametrize a behavioral model

(that define the behavior of a domain concept c, see Definition 9) for an object

(this object must be an instance of the domain concept c). The set of MBP

defines the necessary information to execute the structure of a model.

Model behavioral properties are formalized by using a DSML, i.e., more specifically,

the dynamic semantics (i.e., the BP) of a DSML. Before illustrating model behavioral

properties, let’s first introduce the behavior of the eFFBD Item concept shown in Figure

21. Items are transformed by functions during functions’ execution. They are initially

75

not ready for transformation (State: Not ready). To precede transformation, items must

be prepared, eventually reaching the requested quality and quantity, becoming ready

(State: Ready) and the transformation can begin. During transformation, the quality and

quantity of items changes and consequently items’ state changes to the initial (Not

ready) state. The behavior of the objects forming the model illustrated in Figure 20 is

formalized by the MBP shown in Figure 22.

Figure 21. The BP of the concept Item of eFFBD.

The corresponding behavioral models (i.e., the state machine illustrate in Figure 18 for

the concept Function and the state machine shown in Figure 21 for the concept Item) are

parameterized for each object (i.e., for function F1, item I1, item I2 and item I3) as

shown in Figure 22.

Figure 22. MBP for the model illustrated in Figure 20.

For the purpose of simulation (i.e., model execution) behavioral models must be

coordinately executed (i.e., the parametrized behavioral model of F1 must be

coordinated with the parametrized behavioral models of I1, I2 and I3), as discussed

previously in Chapter II. This leverages the need for a synchronization mechanism

Not ready

Ready

Prepare

Transform

Sleep

Authorised Execution Suspended

Aborted
Finished

StartFunction

ExecuteFunction
ResumeFunction

SuspendFunction

AbortFunction

EndFunctionEndFunction

Function:F1

Not ready

Ready

Prepare

Transform

Item:I1

Not ready

Ready

Prepare

Transform

Item:I2

Not ready

Ready

Prepare

Transform

Item:I3

76

allowing data and event exchanges between different behavioral models. Chapter IV

introduces such mechanism for coordinated simulation based on the blackboard design

pattern.

Model behavioral properties are formally defined as ML" #= $R?, "LM, CVb* where:

- R? 0 LM is a behavioral model formalized through a set of rules by using a

behavioral language BL (the formal definition of BM is provided above).

- "LM #= {-R?/|4 0 5, 4 = |4;@.F;+7`CN`R?aa|} is the set of different

parametrizations -R?/ of bm based on domain objects. The total number of

parametrizations is equal to the number of objects, instances of the domain

concept for which bm defines the behavior.

- CVbJ LM × X K "LM is the functions that parametrizes the behavioral model

bm by associating it with a domain object. Note that:

d> 0 X, >14;@.F;+7X:1`CN`R?aa, a behavioral model can be parametrized only

by an object that is an instance of the domain concept for which bm defines the

behavior.

3.1.2 System properties

Second, system properties that express parts of system or stakeholders requirements

(see Definition 3) are used to concretize domain knowledge through a set of constraint

properties focusing on a SoI model then respecting DSML properties defined above.

The verification of system properties tends towards a certain level of model validity (see

Section 0 for model validation).

The constraint properties that concretize system properties are structured into:

- Model constraint properties (MCP) and

- Object constraint properties (OCP)

Model constraint properties (MCP) are defined as follows:

Definition 23: A model constraint property is a constraint property (see

Definition 10) that is particularly tailored for and verified for one or more

models that are selected by stakeholders.

Let’s remind that a CP is defined for a DSML (e.g., the eFFBD DSML) and should be

verified by any model created by this DSML (e.g., any eFFBD model). CP can thus be

considered as “general” constraints. In contrary, a MCP is also defined for a DSML

77

(e.g., the eFFBD DSML), but it should be verified only by several preselected models

created by this DSML (e.g., several preselected eFFBD models). MCP can thus be

considered as more “specific” constraints in comparison to CP. For instance, the

functional architectures (eFFBD models) used in the automotive industry might have

some common requirements. These requirements apply only to the functional

architectures of different automobiles and do not apply to the functional architectures of

other systems.

Similarly to CP, MCP are classified into:

- model structural constraint properties (MSCP),

- model representational constraint properties (MRCP) and

- model behavioral constraint properties (MBCP)

Model structural constraint properties (MSCP) are defined as follows:

Definition 24: A model structural constraint property is a SCP (see Definition

11) that is particularly tailored for and is verified based on the structure of

selected models (see Definition 20).

In this sense, model representational constraint properties (MRCP) are defined as

follows:

Definition 25: A model representational constraint property is a RCP (see

Definition 12) that is particularly tailored for and is verified based on the

representation of selected models (see Definition 21).

Similarly, model behavioral constraint properties (MBCP) are defined as follows:

Definition 26: A model behavioral constraint property is a BCP (see Definition

13) that is particularly tailored for and is verified based on the behavior used to

execute selected models (see Definition 22).

Model constraint properties are also formalized by a constraint language. Different

constraint languages can be used for the design of different model constraint properties,

i.e., structural, representational or behavioral.

MSCP, MRCP and MBCP are moreover classified into a-temporal and temporal:

- A-temporal model structural constraint properties (AMSCP)

- Temporal model structural constraint properties (TMSCP)

- A-temporal model representational constraint properties (AMRCP)

78

- Temporal model representational constraint properties (TMRCP)

- A-temporal model behavioral constraint properties (AMBCP) and

- Temporal model behavioral constraint properties (AMBCP)

Figure 23. A classification of model constraint properties MCP.

An overview is shown in Figure 23. Definitions about the above quoted types of MCP

are not provided since they correspond to the definitions of a-temporal and temporal

SCP, BCP and BCP (see Definition 14 – Definition 19).

Figure 24. An eFFBD model for the functional architecture of a fire and flood detection

system.

To illustrate several of the above quoted types of model constraint properties, let’s first

introduce the functional architecture of a fire and flood detection system through an

A-temporal MSCP

(AMSCP)
A-temporal MRCP

(AMRCP)

Model Constraint Properties (MCP)

Model Structural Constraints
Properties (MSCP)

Model Representational
Constraints Properties (MRCP)

Temporal MSCP

(TMSCP)
Temporal MRCP

(TMRCP)

A-temporal MBCP

(AMBCP)

Model Behavioral Constraints
Properties (MBCP)

Temporal MBCP

(TMBCP)

79

eFFBD model shown in Figure 24. For the rest of MCP that are not here illustrated,

readers are encouraged to revisit CP1 – CP7 to get a general idea about the purpose of

each type of property.

The functional architecture of our fire and flood detection system is composed of four

main functions that operate non-stop (in an infinite Loop construct: LP) and in parallel

(in a parallel construct: AND). Chapter IV provides details on the constructions in a

functional architecture (AND, OR, Loop, Iterative, etc.). The Detecting Fire and the

Detecting Flood functions provide information about a possible fire or flood threat to

the Assessing Thread function. The latter, based on the received information, sends a

report of the situation or triggers an alarm request, to the Warn Surveillance Center

function that finally acknowledges the situations for further actions.

For the functional architecture shown in Figure 24, the following AMSCP can be

specified considering the domain structure of the eFFBD DSML:

CP8: “All functions must be performed infinitely (without an end) and in parallel”

(i.e., any Function must be included in an eFFBD construct named

Loop (LP) without loop exit condition and these LP constructs

 must be placed in a parallelism construct AND)

The above quoted property must be formalized by an adequate constraint language

before being verified. The verification process takes place locally (i.e., only for the

functional architecture of a fire and flood detection system) and do not apply to other

eFFBD models. The feedback of the verification process is either positive (i.e., all

functions are performed infinitely (without an end) and in parallel) or negative (i.e., the

model violates the property and thus must be revisited for corrections).

CP8 can be complemented by the following TMBCP considering the behavior of the

concept function shown in Figure 18:

CP9: “After starting normal functioning (i.e., after the behavioral models of all functions

are in an execution state) functions must never (each execution step) finish execution

(i.e., the behavioral models of all functions must never enter finished state)”

The verification process takes place as soon as the eFFBD model shown in Figure 24 is

executed. A feedback is provided after or during the execution. For this type of

properties, a model-checker must be integrated with a simulator.

80

Model constraint properties are formally defined as M%" #= $M!%,M'%,ML%*, where:

- MSC is the set of model structural constraint properties,

- MRC is the set of model representational constraint properties, and

- MBC is the set of model behavioral constraint properties.

The formal specification of MSC is the very similar to SC with exception to the Cb

function. M!% #= $.6-7, !%", CTUV, Cb*, where (see the formal specification of SC for

.6-7, !%", CTUV):

- CbJM!% K M>O7G@ is the function that allow stakeholders to preselect the

models that must check the model constraint property where Models = {Modeli /

i10 5} is the set of all models designed by using a DSML.

In this sense, the formal specification of MRC is the very similar to RC with exception

to the Cb function (defined above): M'% #= $.6-7, '%", CDUV, Cb*.
The formal specification of MBC is the very similar to BC with exception to the Cb

function (defined above): ML% #= $.6-7, L%", CNUV, Cb*.
Object constraint properties (OCP) are defined as follows:

Definition 27: An object constraint property is a constraint property (see

Definition 10) that is particularly tailored for selected objects (in contrast to

MCP that are tailored for a selected model).

Let’s reconsider the above discussed example of the functional architectures for the

automotive industry. Within such context, an OCP can be used to specify a requirement

about the engines of a specific car brand, or about the engine of one of the cars of that

brand. So, OCP can be considered as more “specific” constraints in comparison to the

MCP.

Similarly to MCP, object constraint properties are classified into:

- object structural constraint properties (OSCP),

- object representational constraint properties (ORCP) and

- object behavioral constraint properties (OBCP)

Object structural constraint properties (OSCP) are defined as follows:

81

Definition 28: An object structural constraint property is a SCP (see Definition

11) that is particularly tailored for and is verified based on the structure of

preselected objects in a model.

In this sense, object representational constraint properties (ORCP) are defined as

follows:

Definition 29: An object representational constraint property is a RCP (see

Definition 12) that is particularly tailored for and is verified by the

representation of selected objects in a model.

Similarly, object behavioral constraint properties (OBCP) are defined as follows:

Definition 30: An object behavioral constraint property is a BCP (see

Definition 13) that is particularly tailored for and is verified by the parametrized

behavior model used to describe and simulate object behavior in a model.

Object constraint properties are also formalized by a constraint language. Different

constraint languages can be used for the design of different object constraint properties,

i.e., structural, representational or behavioral.

OSCP, ORCP and PBCP are moreover classified into a-temporal and temporal:

- A-temporal object structural constraint properties (AOSCP)

- Temporal object structural constraint properties (TOSCP)

- A-temporal object representational constraint properties (AORCP)

- Temporal object representational constraint properties (TORCP)

- A-temporal object behavioral constraint properties (AOBCP) and

- Temporal object behavioral constraint properties (AOBCP)

Figure 25. A classification of object constraint properties OCP.

A-temporal OSCP

(AOSCP)
A-temporal ORCP

(AORCP)

Object Constraint Properties (OCP)

Object Structural Constraints
Properties (OSCP)

Object Representational
Constraints Properties (ORCP)

Temporal OSCP

(TOSCP)
Temporal ORCP

(TORCP)

A-temporal OBCP

(AOBCP)

Object Behavioral Constraints
Properties (OBCP)

Temporal OBCP

(TOBCP)

82

An overview is shown in Figure 25. Definitions about the above quoted types of OCP

are not provided since they correspond to the definitions of a-temporal and temporal

SCP, BCP and BCP (see Definition 14 – Definition 19).

Several of the above quoted types of object constraint properties are illustrated based on

the eFFBD model shown in Figure 24. For the rest of MCP that are not here illustrated,

readers are encouraged to revisit CP1 – CP7 to get a general idea about the purpose of

each type of property. First, the following TOSCP can be specified, considering the

domain structure of the eFFBD DSML:

CP10: “After detecting fire of flood, an acknowledgment

about the situation must be provided within 1second”

The above quoted property must be formalized by an adequate constraint language

before being verified. This property concerns the following objects shown in Figure 24:

Detecting Fire, Detecting Flood, Warn Surveillance Center, Fire Detected, Flood

Detected and Acknowledgement. The verification process takes place locally

considering the above quoted objects and do not apply to other objects of the same

model. Second, the following TOBCP can be specified, considering the behavioral

model for the concept function shown in Figure 18:

CP11: “The execution frequency of the fire detecting

and flood detecting functions must be less that 100ms”

The verification process takes place as soon as the eFFBD model shown in Figure 24 is

executed, based on the parametrizations of the behavioral model of functions (shown in

Figure 18) for the objects fire detecting and flood detecting. A feedback is provided

after or during the execution. For this type of properties, a model-checker must be

integrated with a simulator.

Object constraint properties are formally defined as X%" #= $X!%, X'%, XL%*, where:

- OSC is the set of object structural constraint properties,

- ORC is the set of object representational constraint properties, and,

- OBC is the set of object behavioral constraint properties.

The formal specification of OSC is the very similar to SC with exception to the CcT
function. X!% #= $.6-7, !%", CTUV, CcT*, where (see the formal specification of SC for

.6-7, !%", CTUV):

83

- CcTJ X!% K X is the function that associates an object structural constraint

property to objects that belong to the structures of a model.

In the same sense, the formal specification of ORC is the very similar to RC with

exception to the CcD function. X'% #= $.6-7, '%", CDUV, CcD* , where (see the formal

specification of RC for .6-7, '%", CDUV):

- CcDJ X'% K M'" is the function that associates an object representational

constraint property to the representation of objects that belong to the

representation of a model.

The formal specification of OBC is the very similar to BC with exception to the CcN

function. XL% #= $.6-7, L%", CNUV, CcN*, where (see the formal specification of BC for

.6-7, L%", CNUV):

- CbNJML% K "LM is the function that associates an object behavioral constraint

property to the parametrizations of a behavioral model based on objects that

belong to a model .

A Model is formalized as a 5-uplet composed of modeling and system properties that

concretize domain knowledge. Among the modeling properties that concretize domain

knowledge are:

- model structural properties (MSP),

- model representational properties (MRP) and

- model behavioral properties (MBP)

The system properties that concretize domain knowledge are formalized through

constraint properties that are verified based on preselected models, denoted

- model constraint properties (MCP)

or preselected objects in a model, denoted

- object constraint properties (OCP).

A Model is then formally defined as follows:

M>O7G #= $M!",M'",ML",M%", X%"*

84

3.1.3 Synthesis

A synthesis of the typology of modeling and system properties is given in Table 5

recalling these properties are structured into two categories 1) properties that

conceptualize domain knowledge, and 2) properties that concretize domain knowledge.

The first category of properties concerns the conceptual language (DSML) level,

involving solely modeling properties. At DSML level the following modeling properties

can be specified: structural (SP) that conceptualize the domain structure through

concepts and relations, representational (RP) that conceptualize the representation of

domain concepts and relations, behavioral (BP) that conceptualize the behavior of

domain concepts and constraint properties (CP) that define additional information that

cannot be implicitly defined by SP, RP or BP. Depending on whether CP are defined for

the SP, RP or BP, we define structural constraints (SCP), behavioral constraints (BCP)

and representational constraints (RCP). In addition, all types of CP are time or

execution dependent or independent, restructuring them furthermore into temporal and

a-temporal SCP, RCP and BCP, i.e., ASCP, TSCP, ARCP, TRCP, ABCP and TBCP.

The second category of properties (i.e., properties that concretize domain knowledge)

concerns the model and object levels. At model level, both modeling and system

properties are specified. At this stage modeling properties are structured into: model

structural properties (MSP) that define the structure of a model, model representational

properties (MRP) that define the representation of a model and model behavioral

properties (MBP) that are used to parametrize behavioral models for the objects in a

model for the purpose of model execution. System properties (i.e., the systems’

requirements and the stakeholders’ requirements) are specified through constraint

properties at model level as model constraint properties (MCP) and at object level as

object constraint properties (OCP). MCP and OCP are defined based on the structure

(SP), representation (RP) or behavior (BP) of a DSML. However in constraint to CP

that are verified based on any model, MCP and OCP are verified locally based on

preselected models and preselected objects in a model. Depending on whether they are

defined for the SP, RP or BP, we define model and object structural constraints (MSCP

and OSCP), model and object representational constraints (MRCP and ORCP) and

model and object behavioral constraints (MBCP and OBCP). In addition, all types of

MCP and OCP are time or execution dependent or independent, restructuring them

furthermore into temporal and a-temporal.

85

Table 5. A synthesis of modeling and system properties. (A – a-temporal, T – temporal, ML – modeling language, Ist. – illustration)

 Purpose Level Classification Def. A T ML Ist.

M
o
d
el

in
g
 p

ro
p
er

ti
es

C
o
n
ce

p
tu

a
li

zi
n
g
 d

o
m

a
in

kn
o
w

le
d
g
e

D
S
M

L
 l

ev
el

SP Definition 7 x Metamodeling language Figure 16

RP Definition 8 x Concrete syntax language Figure 17

BP Definition 9 x Behavioral language Figure 18

CP

SCP
ASCP

Definition 10 –

Definition 19
x x Constraint modeling language CP1 – CP7

TSCP

RCP
ARCP

TRCP

BCP
ABCP

TBCP

C
o
n
cr

et
iz

in
g
 d

o
m

a
in

 k
n
o
w

le
d
g
e

Model level

MSP Definition 20 x Abstract syntax (SP) Figure 20

MRP Definition 21 x Concrete syntax (RP) Figure 20

MBP Definition 22 x Dynamic semantics (BP) Figure 21

S
ys

te
m

 p
ro

p
er

ti
es

 MCP

MSCP
AMSCP

Definition 23 -

Definition 26
x x Constraint modeling language CP8, CP9

TMSCP

MRCP
AMRCP

TMRCP

MBCP
AMBCP

TMBCP

Object level OCP

OSCP
AOSCP

Definition 27 -

Definition 30
x x Constraint modeling language CP10, CP11

TOSCP

ORCP
AORCP

TORCP

OBCP
AOBCP

TOBCP

86

3.2 Property management: a DSML and Model lifecycle
The management of different type of properties is defined through a formalized

lifecycle denoted “DSML and model lifecycle”. The lifecycle is composed of several

phases and sub-phases. Each phase highlights the types of properties that need to be

designed, the languages that need to be used and the V&V analyses that need to be

performed.

Figure 26. DSML and Model lifecycle phases.

DSML and model lifecycle is illustrated in Figure 26 composed of two major phases:

(1) “DSML design time” and (2) “DSML run time”. In phase (1) DSML designers

conceptualize domain knowledge by creating and verifying a DSML before putting it in

use for the concretization of domain knowledge by model designers and users in phase

(2). The phase (2) is decomposed into two sub-phases: (2.1) “Model design time”, for

the design and verification of models and (2.2) “Model run time”, for model simulation,

animation, and verification.

(2.1) Model design time

(2.2) Model runtime

well-formed

model?

Not valid model or

model versioning

requested?

y

n

n

y

well-formed

DSML?

y

n

Not valid DSML or

DSML versioning

requested?

y

n

(2) DSML run time

(1) DSML design time

 87

3.2.1 DSML design time

During the phase of DSML design time, a DSML is formalizes as a 4-uplet of modeling

properties that conceptualize domain knowledge, denoted:

W!M) #= $!", '", L", %"*
Each set of modeling properties formalize different part of a DSML (see Section 0 for

more details on the parts of a DSML):

- Structural properties (SP) formalize the DSML’s abstract syntax

- Representational properties (RP) formalize the DSML’s concrete syntax

- Behavioral properties (BP) formalize the DSML’s dynamic semantics

- Constraint properties (CP) formalize the DSML’s static semantics

Figure 27. The DSML design time phase.

Figure 27 shows the DSML design time phase composed of four phases that are

performed in parallel:

- DSML abstract syntax design

DSML concrete

syntax design

Design SP

well-

formed

SP?y

n

DSML abstract

syntax design

DSML dynamic

semantics design

Domain
knowledge

Abstract
syntax

Concrete
syntax

Dynamic
semantics

DSML static

semantics design

Static
semantics

Syntactical
verification

Design RP

well-

formed

RP?y

n

Syntactical
verification

Design BP

well-

formed

BP?y

n

Syntactical
verification

Design CP

well-

formed

CP?y

n

Syntactical
verification

Verify ABCP

ABCP

88

- DSML concrete syntax design

- DSML dynamic semantics design

- DSML static semantics design

During the phase of DSML abstract syntax design, a metamodeling language is used to

formalize an abstract syntax based on the stakeholders’ domain knowledge. The goal is

to conceptualize the concepts of a domain and the relations that bound together the

concepts, forming the set of structural properties SP through a metamodel. This phase is

finalized by a syntactical verification to ensure the well-formedness of the designed

abstract syntax. A well-formed abstract syntax respects the rules imposed by the used

metamodeling language, i.e., conforms to the meta-metamodel of the used

metamodeling language.

In parallel, the phases of DSML concrete syntax design and DSML dynamic semantics

design take place based on the stakeholders’ domain knowledge and on the abstract

syntax that is in phase of design and thus partially provided (considering only the

concepts and relations that are already defined). The goal is to formalize, on the one

hand, the representations of domain concepts and relations, forming the set of

representational properties RP by using a concrete syntax language, and on the other

hand, the behavior of domain concepts, forming the set of behavioral properties BP by

using a behavioral language. Finally, it must be verified that:

- The concrete syntax is well-formed: a concrete syntax must be syntactically

verified to ensure that it respects the rules imposed by the used concrete syntax

language. For instance, if the concrete syntax is defined by a model (i.e., a

concrete syntax model), then this model should conform to the metamodel of the

used concrete syntax language as proposed by the Diagraph approach (Pfister et

al. 2014).

- The dynamic semantics is well-formed: the behavior is defined as a set of

behavioral models. Each behavioral model must be:

1. Syntactically verified to ensure the respect of syntax imposed by the used

behavioral language, i.e., behavioral models must conform to the

metamodel of the behavioral language. For instance, eISM behavioral

models must conform to the eISM metamodel (discussed in Chapter IV).

 89

2. Verify the behavioral language hypotheses (discussed above) defined

through the ABCP.

3. Verify the alternative “stakeholders’ hypotheses” (discussed above) also

defined through the ABCP.

Finally, during the phase of DSML static semantics design, a constraint modeling

language is used to formalize a static semantics based on the stakeholders’ domain

knowledge, and on the abstract syntax, concrete syntax and dynamic semantics that are

in phase of design and thus partially provided. The goal is to formalize additional

information that cannot be implicitly defined by the abstract syntax, concrete syntax or

dynamic semantics, forming the set of constraint properties CP. This phase is finalized

by a syntactical verification to ensure the well-formedness of the designed static

semantics. A well-formed static semantics is composed of constraint properties that

respect the rules imposed by the used constraint modeling language.

The result of the DSML design time phase is a well-formed DSML composed of:

- Well-formed abstract syntax

- Well-formed concrete syntax

- Well-formed dynamic semantics

- Well-formed static semantics

Such DSML is then provided as input to the second phase of “DSML rune time”.

3.2.2 DSML run time / Model design time

During the first sub-phase of “Model design time”, model designers use DSMLs to

create models. A model is formalized as a 5-uplet of modeling and system properties

that concretize domain knowledge, denoted:

M>O7G #= $M!",M'",ML",M%", X%"*
The modeling properties formalize different part of a Model through the following sets

of properties:

- Model structural properties (MSP) formalize the model’s structure

- Model representational properties (MRP) formalize the model’s representation

- Model behavioral properties (MBP) formalize the model’s behavior

90

Figure 28. The DSML run time / Model design time phase.

well-

formed

MRP?

Design of the Model

representation

Design of the Model

structure

well-

formed

MBP?

Design of the Model

behavior

Domain
knowledge

Model
structure

Model
representation

Model
behavior

well-

formed

MCP?

Design of Model

Constraints

Model
constraints

well-

formed

OCP?

Design of Object

Constraints

Object
constraints

well-

formed

MSP?

Design MSP

y

n

Syntactical
verification

Verify ASCP

Design MRP

y

n

Syntactical
verification

Verify ARCP

Design MBP

y

n

Syntactical
verification

Static
semantics

Design MCP

y

n

Syntactical
verification

Design OCP

y

n

Syntactical
verification

Abstract
syntax

Concrete
syntax

Dynamic
semantics

 91

The system properties formalize stakeholders’ and systems’ requirements through two

sets of constraint properties:

- Model constraint properties (MCP), verified locally based on selecting models

- Object constraint properties (OCP), verified locally based on selecting objects

Figure 28 shows the DSML run time / Model design time phase composed of five

phases, among which the following three are performed in parallel:

- Design of model structure

- Design of model representation

- Design of model behavior

Followed by two phases that are also performed in parallel:

- Design of model constraints

- Design of object constraints

During the first three parallel phases, the previously designed and well-formed DSML is

used to design a model composed of a structure, a representation and behavior based on

the stakeholders’ domain knowledge, and on the DSML’s abstract syntax, concrete

syntax and dynamic semantics. The resulting model must furthermore be verified for

well-formedness. The verification process consists in verifying the well-formedness of

the model’s structure, representation and behavior.

A model is well-formed if:

- The model’s structure is well-formed. For this purpose two verification

processes are performed:

1. A syntactical verification: the model’s structure must conform to the

metamodel, i.e., to respect the rules imposed by the structural properties

SP. Section 2.1.2 provides more details on the conformity relation.

2. Verification of ASCP: the model’s structure must be checked by a model

checker or interpreter to determine if it respects the ASCP.

- The model’s representation is well-formed:

1. A syntactical verification: the model’s representation must respect the

rules imposed by the representational information (RI) of a concrete

syntax.

92

2. Verification of ARCP: the model’s structure must be checked by a model

checker or interpreter to determine if it respects the ARCP.

- The model’s behavior is well-formed:

1. A syntactical verification: the behavior of a model is correctly

parametrized considering the BP.

During the following two parallel phases: design of model / object constraint properties,

system properties are formalized using a constraint modeling language based on the

stakeholders’ knowledge, the designed model (its structure, representation and

behavior) and the used DSML (its abstract syntax, concrete syntax and dynamic

semantics). MCP and OCP complement the static semantics by constraint properties

and are verified locally based on preselected models or objects (see Section 3.1.2 for

more details). This phase is finalized by a syntactical verification to ensure the well-

formedness of the designed MCP and OCP, i.e., to ensure that they respect the rules

imposed by the used constraint modeling language.

The result of the Model design time sub-phase is a well-formed model composed of:

- Well-formed structure

- Well-formed representation

- Well-formed behavior

- Well-formed model constraints

- Well-formed object constraints

Such model is then provided as input to the second sub-phase of “Model rune time”

illustrated in Figure 29.

3.2.3 DSML run time / Model run time

During this sub-phase, models are executed, animated and used as a base for formal

proof, to assure that they represent as accurately as possible a SoI.

Before preceding any V&V analyses, models must verify the AMCP as well as the

AOCP (of course, if any of these properties are applied to the considered model or the

objects contained in this model). For instance, the AMSCP CP8: “All functions must be

performed infinitely (without an end) and in parallel” must be verified by the functional

architecture of the fire and flood detection system illustrated in Figure 24. A verification

mechanism is furthermore proposed in Chapter V.

 93

The V&V analyses consist here of simulation (i.e., model execution), model animation

and formal properties proof based on models (i.e., verification of the requirements):

- The model execution is based on a gradual computation of the execution rules

specified by the behavioral properties (i.e., the parameterized behavioral models

MBP).

- The model animation is a result to the systematic visualization of changes (i.e.,

systematic modification of MRP) driven by the model execution according to the

DSML’s RP.

- Formal proof consists of formal verification of the temporal constraint properties

(TSCP, TMSCP, TOSCP, TRCP, TMRCP, TORCP, TBCP, TMBCP and

TMBCP).

Figure 29. The DSML run time / Model run time phase

3.2.4 Synthesis

The whole DSML and model lifecycle is synthetized in Table 6. The figure highlights

for each phases and sub-phased of the lifecycle the properties that need to be modeled,

Apply MBP on MSP
(an execution step)

stop?
y

n

Verify
TCP

Verify
TMCP

Update MRP considering RP
(a model animation step)

Verify
TOCP

Simulation

Animation

Formal

proof

Verify
AMCP

Verify
AOCP

The verification

result is positive
y

n

94

the expected V&V analyses considering the designed properties and the expected results

of these V&V analyses.

Table 6. Synthesis of the DSML and model lifecycle.

Phase Properties V&V analyses V&V result

DSML

design

time

SP Syntactical analysis of SP
Well-formed

abstract syntax

W
ell-fo

rm
ed

 D
S

M
L

RP Syntactical analysis of RP
Well-formed

concrete syntax

BP
Syntactical analysis of BP:

Verification of ABCP

Well-formed

dynamic semantics

CP Syntactical analysis of CP
Well-formed static

semantics

DSML

run

time

Model

design

time

MSP
Syntactical analysis of MSP:

Verification of ASCP

Well-formed model

structure

W
ell-fo

rm
ed

 m
o

d
el

MRP
Syntactical analysis of MRP;

Verification of ARCP

Well-formed model

representation

MBP Syntactical analysis of MBP;
Well-formed model

behavior

MCP Syntactical analysis of MCP
Well-formed model

constraints

OCP Syntactical analysis of OCP
Well-formed object

constraints

Model

run

time

Verification of AMCP and AOCP;

Simulation; Animation;

Verification of TCP, TMCP and

TOCP

Valid (as much as possible)

model

During the phase of DSML design time a DSML is designed based on four different

types of properties: structural properties (SP), representational properties (RP),

behavioral properties (BP) and constraint properties (CP). Before proceeding to the next

phase, each of the properties must be verified for well-formedness, mainly based on a

syntactical analysis, except for the BP that must also verify the ABCP (i.e., the

behavioral language hypotheses and stakeholders’ hypotheses).

 95

As a result, a well-formed DSML is used to design model during the DSML run time /

Model design time (sub) phase. A model is designed based on the model structural

properties (MSP), model representation properties (MRP) and model behavioral

properties (MBP), along with model and object constraint properties (MCP and OCP)

that aim at formalizing stakeholders’ and systems’ requirements. Before proceeding to

the next phase, each of the model properties must be verified for well-formedness. This

includes syntactical verification of all model’s properties, but also a verification of the

previously specified a-temporal structural and representational constraint properties

based on the model’s structure and representation. As a result, a well-formed model is

provided and used in the next sub-phase of Model run time. During the Model run time,

a model is first verified considering the AMCP and AOCP, before being used for

simulation and animation. Temporal properties (TCP, TMCP and TOCP) are verified

during simulation. The goal of this phase is to validate models as much as possible,

allowing stakeholders to detect and eliminate design errors and mistakes early during

the phase of design and to support them to make decisions with confidence.

3.3 A multi-viewpoint modeling based on properties
This section presents a multi-viewpoint modeling based on the typology of properties

introduced in Section 3 and the DSML and model lifecycle introduced in 3.2. The key

concepts of the multi-viewpoint modeling are composite DSML (discussed in Section

3.3.1) and a composite Model (discussed in Section 3.3.2). Section 3.3.3 introduces a

modified version of the DSML and model lifecycle for the design and management of

composite DSML and composite model, denoted composite DSML and Model lifecycle.

This work does not take into consideration entirely the model interoperability

problematic as difined for instance in (Tolk & Muguira 2003). The latter involves

problems related for instance with the syntaxical or semantical compatibility between

domain concepts and relations from different DSMLs. For the purpose of our work, we

consider first that the modeling needs of each viewpoint are covered by using a unique

DSML. Second, semantic ambiguities (e.g. domain concepts with same name, different

names but same meaning, or different cardinamlity constraints) between these DSML

are out of the scope of our work and are considered as clarified (e.g., there is no possible

confusion between domain concepts from eFFBD and PBD).

So, a composite DSML is defined as follows:

96

Definition 31: A composite DSML is composed of several heterogeneous

DSMLs, each one covering the modeling of a viewpoint (e.g., requirements,

functional, logical, physical, etc.) of a system of interest (SoI).

Composite DSMLs are used to design multi-viewpoint SoI models called composite

models.

Definition 32: A composite model is composed of several models that are

conform to different DSMLs that take part in a composite DSML, allowing a

more expressive, realistic and complete representation of a SoI.

3.3.1 Composite DSML

A composite DSML is formally defined as:

+>?-W!M) #= $W!, W', WL, %", W%"*
Where:

- DS is a composite structure, here-denoted dependent structure, putting in

relation different abstract syntaxes from each composing DSML;

- DR is a composite representation, here-denoted dependent representation,

putting in relation different concrete syntaxes from each composing DSML;

- DB is a composite behavior, here-denoted dependent behavior, putting in

relation different dynamic semantics from each composing DSML;

- CP is the set of constraints properties (see Definition 10) that are specified based

on one of the composing abstract syntaxes, concrete syntaxes or dynamic

semantics.

- DCP is the set of dependent constraint properties that are specified based on the

dependencies of the abstract syntaxes, concrete syntaxes or dynamic semantics.

A dependent structure (DS) is defined as follows:

Definition 33: A dependent structure of a composite DSML (see Definition 31)

is the composition of several abstract syntaxes (see Definition 7) that belong to

the composing DSMLs.

The composition process aims at relating structurally several abstract syntaxes, creating

an overall composite abstract syntax, i.e., a dependent structure. The abstract syntaxes

are defined by the DSMLs’ structural properties (SP), as proposed above. So, the

 97

composition process consists in defining structural dependency properties (SDP,

formalized in the next) between Structural Properties (SP) from each of the composing

DSMLs.

Structural properties (SP) and structural dependency properties (SDP) can be formalized

by a metamodeling language such as for example the OMG’s standard MOF (OMG

2015a) (see Section 2.1.2 for more details).

Figure 30 illustrates a metamodel that contains:

- the SP of the eFFBD language (note that, for the sake of simplicity, only the

concept Function of the eFFBD language is shown in the figure)

- the SP of the PBD language: Component, Interface, Link and Context

- the SDP that bound together the PBD and the eFFBD: the relations functions and

performs between the concepts Function and Component.

The physical components of a system perform one or more functions and functions are

allocated to a component. The input, output, and triggers flows of allocated functions

are themselves allocated to a Link devoted then to carry out these flows from external

source (Context) or from an existing Component.

Figure 30. A dependent structure (DS) composing SP of the eFFBD and the PBD

(designed by the EMF, the eFFBD metamodel is “loaded” into the PBD metamodel).

A dependent structure (DS) of a composite DSML is then formally defined asJ
W! #= $%!", %!W*, where:

- CSP = {SPi / SPi is the set of structural properties from ith composing DSML

that take part in a composite DSML}. The formal definition of SPi is shown in

Section 3.1.1.

98

- CSD = {(SPi, SPj, SDP) / "iÎ|CSP|, "jÎ|CSP|, i<>j } defines the structural

dependencies between two structural properties of each DSML composing the

composite DSML, where:

i. !"/ is the first set of structural properties

ii. !"f is the second set of structural properties

iii. !W" is the set of structural properties that define the dependencies

between SPi and SPj, denoted “structural dependency properties”.

The formal definition of a structural property is shown in Section

3.1.1.

A dependent representation (DR) is defined as follows:

Definition 34: A dependent representation of a composite DSML (see

Definition 31) is the composition of several concrete syntaxes (see Definition 8)

that belong to the composing DSMLs.

The composition process aims at relating several concrete syntaxes creating an overall

navigable composite concrete syntax, i.e., a dependent representation. The concrete

syntaxes are defined by the DSMLs’ representational properties (RP), as proposed

above. So, the composition process consists in defining representational dependency

properties (RDP, formalized in the next) between Representational Properties (RP) from

each of the composing DSMLs.

To illustrate, Figure 31 shows the graphical representation of the PBD language and the

eFFBD language (see also Figure 17 for the RP of the eFFBD) as well as the

dependency between these two representations. Note that the representations are only

schematized and must furthermore be formalized by an adequate concrete syntax

language that supports multi-view representation, such as Diagraph (Pfister et al. 2014)

or Obeo Designer (Juliot & Benois 2010).

Figure 31. Combining two graphical RP (for the PBD and for the eFFBD) into a DR.

A dependent representation (DR) of a composite DSML is formally defined as:

Function Component Interface LinkNavigation

Function Component

RP of eFFBD RP of PBD

Dependencies between the

RP of eFFBD and PBD

 99

W' #= $%'", %'W*, where:

- CRP = {RPi / RPi is the set of representational properties from ith composing

DSML that take part in a composite DSML}. The formal definition of RPi is

shown in Section 3.1.1.

- CRD = {(RPi, RPj, RDP) / "iÎ|CRP|, "jÎ|CRP|, i<>j } defines the

representational dependencies between two representational properties of each

DSML composing the composite DSML, where:

i. '"/ is the first set of representational properties

ii. '"f is the second set of representational properties

iii. 'W" is the set of representational properties that define the

dependencies between RPi and RPj, denoted “representational

dependency properties”. The formal definition of a representational

property is shown in Section 3.1.1.

A dependent behavior (DB) is defined as follows:

Definition 35: A dependent behavior of a composite DSML (see Definition 31)

is a composition of several dynamic semantics (see Definition 9) that belong to

the composing DSMLs.

The composition process aims at relating several dynamic semantics (e.g., by including

the specification of data and event exchanges) creating an overall centralized composite

dynamic semantics, i.e., a dependent behavior. The dynamic semantics are defined by

the DSMLs’ Behavioral Properties (BP), as proposed above. So, the composition

process consists in defining behavioral dependency properties (BDP, formalized in the

next) between Behavioral Properties (RP) from each of the composing DSMLs.

The illustration consists in integrating the behavior of the concept Function of the

eFFBD shown in Figure 18 and the behavior of the concept Component of the PBD

described hereafter and shown in Figure 32 as a 5-state discrete-events model.

Figure 32. The BP for the concept Component of PBD.

NA

A P

ES

SS

Activate

Deactivate

StartProducing

StopProducing

InternalBreakdown

ResumeProduction

ExternalBreakdown

ResumeProduction

100

Components are initially non-active (NA:S1) waiting for the initial signal to prepare for

production (A:S2). When the signal arrives they start producing (P:S3) by performing

their functions (i.e., functions from the functional viewpoint should start execution),

until they receive, either a stop signal, which put them in the previous state, or an

internal or an external breakdown signal, which immediately makes them stop

producing and puts them in maintenance states (SS:S4 or ES:S5), suspending also the

execution of their functions (i.e., functions from the functional viewpoint enter

suspended state).

For the purpose of simulation (i.e., model execution) the behavioral models of the

concepts Function and Component must be coordinately used. This leverages the need

for a synchronization mechanism allowing data and event exchanges between different

behavioral models. Chapter IV introduces such mechanism for coordinated simulation

based on the blackboard design pattern.

A dependent behavior (DB) of a composite DSML is formally defined as:

WL #= $%L", %LW*, where:

- CBP = {BPi / BPi is the set of behavioral properties from ith composing DSML

that take part in a composite DSML}. The formal definition of BPi is shown in

Section 3.1.1.

- CBD = {(BPi, BPj, BDP) / "iÎ|CBP|, "jÎ|CBP|, i<>j } defines the behavioral

dependencies between two behavioral properties of each DSML composing the

composite DSML, where:

iv. L"/ is the first set of behavioral properties

v. L"f is the second set of behavioral properties

vi. LW" is the set of behavioral properties that define the dependencies

between BPi and BPj, denoted “behavioral dependency properties”.

The formal definition of a behavioral property is shown in Section

3.1.1.

Constraint properties (CP) are introduced and formally defined in Section 3.1.1.

Dependent constraint properties (DCP) are defined as follows:

Definition 36: A dependent constraint property is a constraint property (see

Definition 10) that expresses complementary characteristics that cannot be

 101

implicitly defined by the dependencies in a composite DSML (see Definition

31).

Depending on the concerned type of dependencies, dependent constraint properties are

classified into:

- dependent structural constraint properties (DSCP),

- dependent representational constraint properties (DRCP) and

- dependent behavioral constraint properties (DBCP)

Dependent structural constraint properties (DSCP) are defined as follows:

Definition 37: A dependent structural constraint property is a structural

constraint property (see Definition 11) that expresses complementary

characteristics that cannot be implicitly defined by the structural dependencies

(SDP) in a dependent structure (see Definition 33) of a composite DSML (see

Definition 31).

In this sense, dependent representational constraint properties (DRCP) are defined as

follows:

Definition 38: A dependent representational constraint property is a

representational constraint property (see Definition 12) that expresses

complementary characteristics that cannot be implicitly defined by the

representational dependencies (RDP) in a dependent representation (see

Definition 34) of a composite DSML (see Definition 31).

Similarly, dependent behavioral constraint properties (DBCP) are defined as

follows:

Definition 39: A dependent behavioral constraint property is a behavioral

constraint property (see Definition 13) that expresses complementary

characteristics that cannot be implicitly defined by the behavioral dependencies

in a dependent behavior (see Definition 35) of a composite DSML (see

Definition 31).

Dependent constraint properties are formalized by a constraint language. Different

constraint languages can be used for the design of different dependent constraint

properties, i.e., structural, representational or behavioral.

102

DSCP, DRCP and DBCP are moreover classified into a-temporal and temporal:

- A-temporal dependent structural constraint properties (ADSCP)

- Temporal dependent structural constraint properties (TDSCP)

- A-temporal dependent representational constraint properties (ADRCP)

- Temporal dependent representational constraint properties (TDRCP)

- A-temporal dependent behavioral constraint properties (ADBCP) and

- Temporal dependent behavioral constraint properties (ADBCP)

An overview is shown in Figure 33.

Figure 33. A classification of dependent constraint properties DCP.

Definitions about the above quoted types of DCP are not provided since they

correspond to the definitions of a-temporal and temporal SCP, BCP and BCP (see

Definition 14 – Definition 19).

To illustrate the DCP, a ADSCP and a TDBCP are proposed hereafter.

The ADSCP is based on the structural dependencies between the SP of the eFFBD and

the PBD shown in Figure 30:

CP12: “If a component C has a mission function,

then this function is allocated and performed by C”

The above quoted property must be furthermore formalized by an adequate constraint

language before being verified. The verification process takes place as soon as a

composite model is designed. The feedback of the verification process is either positive

(i.e., the model respects the property) or negative (i.e., the model violates the property

and thus must be revisited for corrections).

A-temporal DSCP

(ADSCP)
A-temporal DRCP

(ADRCP)

Dependent Constraint Properties (DCP)

Dependent Structural
Constraints Properties (DSCP)

Dependent Representational
Constraints Properties (DRCP)

Temporal DSCP

(TDSCP)
Temporal DRCP

(TDRCP)

A-temporal DBCP

(ADBCP)

Dependent Behavioral
Constraints Properties (DBCP)

Temporal DBCP

(TDBCP)

 103

The TDBCP is based on the behavioral dependencies between the BP of the eFFBD and

the PBD:

CP13: “It is always true (each execution step) that if a component is in

a breakdown state, its functions must suspend execution

(i.e., must enter suspended state the next execution step)”

The above quoted property must be formalized by an adequate constraint language

before being verified. The verification process takes place as soon as a composite model

is executed. A feedback is provided after or during the model execution. For this type of

properties, a model-checker must be integrated with a simulator.

Dependent constraint properties are formally defined as:

W%" #= $W!%, W'%, WL%*, where

- DSC is the set of dependent structural constraint properties,

- DRC is the set of dependent representational constraint properties and,

- DBC is the set of dependent behavioral constraint properties.

The formal specification of DSC, DRC and DBC is the very similar respectively to SC,

RC and BC (see Section 3.1.1) with exception to the CTUV, CDUV and CNUV functions:

- CTUVJ !%" K W!" associates a dependent structural constraint property to a

structural dependency between different viewpoint structures.

- CDUVJ !%" K W'" associates a dependent representational constraint property to

a representational dependency between different viewpoint representations.

- CNUVJ L%" K WL" associates a dependent behavioral constraint property to a

behavioral dependency between dependent behaviors.

3.3.2 Composite Model

A composite Model (see Definition 32) is formally defined as:

+>?-M>O7G #= $WM!,WM', WML,M%", X%", WM%",WX%"*
Where:

- DMS is a composite model structure, here-denoted dependent model structure

putting in relation different structures from each composing model;

104

- DMR is a composite model representation, here-denoted dependent model

representation putting in relation different parametrized representations from

each composing model;

- DMB is a composite model behavior, here-denoted dependent model behavior

putting in relation different parametrized behavioral models from each

composing model;

- MCP and OCP are sets of Model Constraint Properties (see Definition 23) and

Object Constraint Properties (see Definition 27) that are specified based on one

of the composing models.

- DMCP and DOCP are sets of Dependent Model Constraint Properties (see

Definition 23) and Dependent Object Constraint Properties that are specified

based on the dependencies between model structures, representations and

behaviors.

A dependent model structure (DMS) is defined as follows:

Definition 40: A dependent model structure of a composite model (see

Definition 32) is the composition of several model structures (see Definition 20)

that belong to the composing models.

The composition process aims at relating structurally several model structures, creating

an overall composite model structure, i.e., a dependent model structure. The model

structures are defined by the model structural properties (MSP), as proposed above. So,

the composition process consists in defining model structural dependency properties

(MSDP, formalized in the next) between Model Structural Properties (MSP) from each

of the composing models.

For illustrative purpose, a dependent model structure is shown in Figure 34, integrating

the MSP of the eFFBD model shown in Figure 20 with the MSP of a PBD model. The

MSP of the eFFBD model is shown on the left side of the figure, the MSP of the PBD is

shown on the right side of the figure and dependencies are shown in the middle.

 105

Figure 34. A dependent model structure (DMS) integrating the MSP of an eFFBD

model, and the MSP of a PBD model.

A dependent model structure (DMS) of a composite model is formally defined as:

WM! #= $%M!", %M!W*, where:

- CMSP = {MSPi / MSPi is the set of model structural properties from ith

composing model that take part in a composite model}. The formal definition of

MSPi is shown in Section 3.1.1.

- CMSD = {(MSPi, MSPj, MSDP) / "iÎ|CMSP|, "jÎ|CMSP|, i<>j } defines the

model structural dependencies between two model structural properties of each

composing model that take part in the composite model, where:

i. M!"/ is the first set of model structural properties

ii. M!"f is the second set of model structural properties

iii. M!W" is the set of model structural properties that define the

dependencies between MSPi and MSPj, denoted “model structural

dependency properties”. The formal definition of a model

structural property is shown in Section 3.1.1.

A dependent model representation (DMR) is defined as follows:

Definition 41: A dependent model representation of a composite model (see

Definition 32) is the composition of several model representations (see

Definition 21) that belong to the composing models.

Function:F1

Item:I1

Item:I2

Item:I3

itemInputs

input/output

itemOutputs

itemInputs

Component:C1

Component:C2

Interface:I1

Interface:I2

Link:L1

target

requires

requires

source

Co
performs

functions

C

F1

Cfunctions

mission

MSP of an eFFBD

model MSDP
MSP of a PBD

model

106

The composition process aims at relating representationally several model

representations, creating an overall navigable composite model rerepsentation, i.e., a

dependent model rerepsentation. The model representations are defined by the model

representational properties (MRP), as proposed above. So, the composition process

consists in defining model representational dependency properties (MRDP, formalized

in the next) between Model Representatinal Properties (MRP) from each of the

composing models.

An example is shown in Figure 35 representing graphically the DMS shown in Figure

34, respecting the DRP shown in Figure 31. Navigation is possible from one viewpoint

to another as shown in the figure.

Figure 35. A DMR of the dependent model structure (DMS) shown in Figure 34.

A dependent model representation (DMR) is formally defined as:

WM' #= $%M'", %M'W*, where:

- CMRP = {MRPi / MRPi is the set of model representational properties from ith

composing model that takes part in a composite model}. The formal definition

of MRPi is shown in Section 3.1.1.

- CMRD = {(MRPi, MRPj, MRDP) / "iÎ|CMRP|, "jÎ|CMRP|, i<>j } defines the

model representational dependencies between two model representational

properties of each composing model that takes part in the composite model,

where:

i. M'"/ is the first set of model representational properties

ii. M!"f is the second set of model representational properties

iii. M'W" is the set of model representational properties that define

the dependencies between MRPi and MRPj, denoted “model

Function:F1Fu

Item:I2

Item:I1

Item:I3FuFu

2

Item

Component:

C1

Component:

C2

Interface:I1

Interface:I2

Navigation

Functional viewpoint Physical viewpoint

Link:L1

 107

representational dependency properties”. The formal definition

of a model representional property is shown in Section 3.1.1.

A dependent model behavior (DMB) is defined as follows:

Definition 42: A dependent model behavior of a composite model (see

Definition 32) is the composition of several model behaviors (see Definition 22)

that belong to the composing models.

The composition process aims at relating behaviorally several model behaviors, creating

an overall composite model behavior, i.e., a dependent model behavior. The model

behaviors are defined by the model behavioral properties (MBP), as proposed above.

So, the composition process consists in defining model behavioral dependency

properties (MBDP, formalized in the next) between Model Behavioral Properties (MBP)

from each of the composing models.

As illustration, Figure 36 shows the DMB of the model shown in Figure 34, integrating

the MBP of an eFFBD model (shown in Figure 22) and the MBP of a PBD model. The

corresponding behavioral models:

- the state machine illustrate in Figure 18 for the concept Function,

- the state machine shown in Figure 21 for the concept Item and

- the state machine illustrated in Figure 32 for the concept Component

are parameterized for each object (i.e., for the function F1, the item I1, the item I2, the

item I3, the component C1 and the component C2) as shown in Figure 36.

As previously discussed, for the purpose of simulation (i.e., model execution)

behavioral models must be coordinately executed (i.e., the parametrized behavioral

model of F1 must be coordinated with the parametrized behavioral models of I1, I2 and

I3 from the same model, but also with the parametrized behavioral model of C1 from

the PBD model). This leverages the need for a synchronization mechanism allowing

data and event exchanges between different behavioral models. Chapter IV introduces

such mechanism for coordinated simulation based on the blackboard design pattern.

108

Figure 36. A DMB of the dependent model structure (DMS) shown in Figure 34.

A dependent model behavior (DMB) is formally defined as:

WML #= $%ML", %MLW*, where:

- CMBP = {MBPi / MBPi is the set of model behavioral properties from ith

composing model that take part in a composite model}. The formal definition of

MBPi is shown in Section 3.1.1.

- CMBD = {(MBPi, MBPj, MBDP) / "iÎ|CMBP|, "jÎ|CMBP|, i<>j } defines the

model behavioral dependencies between two model behavioral properties of

each composing model that take part in the composite model, where:

iv. ML"/ is the first set of model behavioral properties

Sleep

Authorised Execution Suspended

Aborted
Finished

StartFunction

ExecuteFunction
ResumeFunction

SuspendFunction

AbortFunction

EndFunctionEndFunction

Function:F1

Not ready

Ready

Prepare

Transform

Item:I1

Not ready

Ready

Prepare

Transform

Item:I2

Not ready

Ready

Prepare

Transform

Item:I3

tion:F

NA

A P

ES

SS

Activate

Deactivate

StartProducing

StopProducing

InternalBreakdown

ResumeProduction

ExternalBreakdown

ResumeProduction

NA

A P

ES

SS

Activate

Deactivate

StartProducing

StopProducing

InternalBreakdown

ResumeProduction

ExternalBreakdown

ResumeProduction

Component:C1

Component:C2

M
B

P
 o

f
a
n

 e
F

F
B

D
 m

o
d
el

M
B

P
 o

f
a
n

 P
B

D
 m

o
d
el

t:C1

MDBP

onent:

 109

v. ML"f is the second set of model behavioral properties

vi. MLW" is the set of model behavioral properties that define the

dependencies between MBPi and MBPj, denoted “model behavioral

dependency properties”. The formal definition of a model

behavioral property is shown in Section 3.1.1.

Model constraint properties (MCP) and object constraint properties (OCP) are

introduced and formally defined in Section 3.1.2.

Dependent model constraint properties (DMCP) are defined as follows:

Definition 43: A dependent model constraint property is a model constraint

property (see Definition 23) that expresses complementary characteristics that

are verified locally based on the dependencies in a composite model (see

Definition 32).

Dependent model constraint properties are classified into:

- dependent model structural constraint properties (DMSCP),

- dependent model representational constraint properties (DMRCP) and

- dependent model behavioral constraint properties (DMBCP)

Dependent model structural constraint properties (DMSCP) are defined as follows:

Definition 44: A dependent model structural constraint property is a model

structural constraint property (see Definition 24) that expresses complementary

characteristics that are verified locally based on the model structural

dependencies (MSDP) in a dependent model structure (see Definition 40).

In this sense, dependent model representational constraint properties (DMRCP) are

defined as follows:

Definition 45: A dependent model representational constraint property is a

model representational constraint property (see Definition 25) that expresses

complementary characteristics that are verified locally based on the model

representational dependencies (MRDP) in a dependent model representation (see

Definition 41).

Similarly, dependent model behavioral constraint properties (DMBCP) are defined as

follows:

110

Definition 46: A dependent model behavioral constraint property is a model

behavioral constraint property (see Definition 26) that expresses complementary

characteristics that are verified locally based on the model behavioral

dependencies (MBDP) in a dependent model behavior (see Definition 42).

Dependent model constraint properties are formalized by a constraint language.

Different constraint languages can be used for the design of different dependent model

constraint properties, i.e., structural, representational or behavioral.

DMSCP, DMRCP and DMBCP are moreover classified into a-temporal and temporal:

- A-temporal dependent model structural constraint properties (ADMSCP)

- Temporal dependent model structural constraint properties (TDMSCP)

- A-temporal dependent model representational constraint properties (ADMRCP)

- Temporal dependent model representational constraint properties (TDMRCP)

- A-temporal dependent model behavioral constraint properties (ADMBCP) and

- Temporal dependent model behavioral constraint properties (ADMBCP)

Figure 37. A classification of dependent model constraint properties DMCP

An overview is shown in Figure 37. Definitions about the above quoted types of DMCP

are not provided since they correspond to the definitions of a-temporal and temporal

SCP, BCP and BCP (see Definition 14 – Definition 19).

For illustrative purpose, the functional architecture of a fire and flood detection system

shown in Figure 24 is integrated with a physical architecture specified through a PBD

model. The integrated architecture is shown in Figure 38.

A-temporal DMSCP

(ADMSCP)
A-temporal DMRCP

(ADMRCP)

Dependent Model Constraint Properties (DMCP)

Dependent Model Structural
Constraints Properties (DMSCP)

Dependent Model Representational
Constraints Properties (DMRCP)

Temporal DMSCP

(TDMSCP)
Temporal DMRCP

(TDMRCP)

A-temporal DMBCP

(ADMBCP)

Dependent Model Behavioral
Constraints Properties (DMBCP)

Temporal DMBCP

(TDMBCP)

 111

Figure 38. The architecture of a fire and flood security system, combining functional

(left) and physical (right) models.

The physical architecture is composed of four main components: Flood Detector, Fire

Detector, AI Unit and a Surveillance Center. Each of these components performs one

function from the eFFBD model which is its mission function (e.g., the Flood Detector

component performs the Flood Detecting function which is its mission function).

Based on the architecture, the following ADMSCP can be specified, considering the

metamodel shown in Figure 30:

CP14: “Each component performs one

function which is its mission function”

The above quoted property must be furthermore formalized by a constraint modeling

language. The verification process takes place locally for the functional and physical

architecture shown in Figure 38. CP14 is not verified on any other model.

Dependent object constraint properties (DOCP) are defined as follows:

Definition 47: A dependent object constraint property is an object constraint

property (see Definition 27) that expresses complementary characteristics

verified locally based on particular objects that take part in the dependencies of a

composite model (see Definition 32).

Similarly to DMCP, dependent object constraint properties are classified into:

112

- dependent object structural constraint properties (DOSCP),

- dependent object representational constraint properties (DORCP) and

- dependent object behavioral constraint properties (DOBCP)

Dependent object structural constraint properties (DOSCP) are defined as follows:

Definition 48: A dependent object structural constraint property is an object

structural constraint property (see Definition 28) that expresses complementary

characteristics verified locally based on particular objects that take part in the

structural dependencies (MSDP) in a dependent model structure (see Definition

40).

In this sense, dependent object representational constraint properties (DORCP) are

defined as follows:

Definition 49: A dependent object representational constraint property is an

object representational constraint property (see Definition 29) that expresses

complementary characteristics verified locally based on the representation of

particular objects that take part in the representational dependencies (MRDP) in

a dependent model representation (see Definition 41).

Similarly, dependent object behavioral constraint properties (DOBCP) are defined as

follows:

Definition 50: A dependent object behavioral constraint property is an object

behavioral constraint property (see Definition 30) that expresses complementary

characteristics verified locally based on the behavior of particular objects that

take part in the behavioral dependencies (MBDP) in a dependent model behavior

(see Definition 42).

Dependent object constraint properties are formalized by a constraint language.

Different constraint languages can be used for the design of different dependent object

constraint properties, i.e., structural, representational or behavioral.

DOSCP, DORCP and DOBCP are moreover classified into a-temporal and temporal:

- A-temporal dependent object structural constraint properties (ADOSCP)

- Temporal dependent object structural constraint properties (TDOSCP)

- A-temporal dependent object representational constraint properties (ADORCP)

- Temporal dependent object representational constraint properties (TDORCP)

 113

- A-temporal dependent object behavioral constraint properties (ADOBCP) and

- Temporal dependent object behavioral constraint properties (ADOBCP)

An overview is shown in Figure 39. Definitions about the above quoted types of DOCP

are not provided since they correspond to the definitions of a-temporal and temporal

SCP, BCP and BCP (see Definition 14 – Definition 19).

Figure 39. A classification of dependent object constraint properties DOCP

As illustration, the following TDOSCP is proposed, considering the metamodel shown

in Figure 30 and the model shown in Figure 34:

CP15: “It is always true (every execution step) that if the AI unit is

alerted of an ongoing threat, it must send a report to the surveillance center,

even if this threat appears not to be an incident”

The verification process takes place as soon as the functional and physical architecture

shown in Figure 38 is executed. A feedback is provided after or during the execution. It

is important to note that this property can be locally applied to selected AI Unit and

Surveillance Center components and to the Detecting Fire and Detecting Flood

functions and do not apply to other components or functions of the same model. For this

type of properties, a model-checker must be integrated with a simulator.

3.3.3 Composite DSML and Model lifecycle

The composite DSML and model lifecycle is a modified version of the DSML and

model lifecycle (see Section 3.2) for the design and management of composite DSMLs

and models based on properties (see Section 3). It is illustrated in Figure 40 composed

of two major phases: (1) “Composite DSML design time” and (2) “Composite DSML

run time”.

A-temporal DOSCP

(ADOSCP)
A-temporal DMRCP

(ADORCP)

Dependent Object Constraint Properties (DOCP)

Dependent Object Structural
Constraints Properties (DOSCP)

Dependent Object Representational
Constraints Properties (DORCP)

Temporal DMSCP

(TDOSCP)
Temporal DMRCP

(TDORCP)

A-temporal DMBCP

(ADOBCP)

Dependent Object Behavioral
Constraints Properties (DOBCP)

Temporal DMBCP

(TDOBCP)

114

Figure 40. Composite DSML and model lifecycle.

3.3.3.1 Composite DSML design time

The phase of Composite DSML design time splits into two sub-phases: (1.1)

Composing DSMLs design and (1.2) Dependencies design.

During the first sub-phase, DSML designers conceptualize their domain knowledge by

creating and verifying various DSMLs for different viewpoints denoted “composing

DSMLs”. This process is schematized in Figure 27 and detailed in Section 3.2.1.

The second sub-phase consists in designing the dependencies between composing

DSMLs:

- The structural dependencies between abstract syntaxes formalized as structural

dependency properties (SDP) (see Definition 33)

- The representational dependencies between concrete syntaxes formalized as

representational dependency properties (RDP) (see Definition 34)

well-formed

composite DSML?

n

y

(1.1) Composing DSMLs design

(1.2) Dependencies design

(1) Composite DSML design time

well-formed

composite model?
n

y

(2.1) Composite Model design time

(2.2) Composite Model run time

n

y

(2.1.1) Composing
models design

(2.1.2)
dependencies

design

(2) Composite DSML run time

n

y

Not valid composite

model or model

versioning requested?

Not valid composite

DSML or DSML

versioning requested?

 115

- The behavioral dependencies between dynamic semantics formalized as

behavioral dependency properties (BDP) (see Definition 35)

- The dependent constraint properties (DCP) (see Definition 36)

Figure 41 shows the Dependency design phase composed of four phases that are

performed in parallel:

- Structural dependency design

- Representational dependency design

- Behavioral dependency design

- Dependent constraints design

During the phase of Structural dependency design, a metamodeling language is used to

formalize the structural dependencies between the abstract syntaxes that belong to the

composing DSMLs in a composite DSML. The goal is to conceptualize the concepts

and the relations that define the dependencies between two abstract syntaxes, forming

the set of structural dependency properties SDP through a metamodel. This phase is

finalized by a syntactical verification to ensure the well-formedness of the designed

SDP, i.e., the respect to the rules imposed by the used metamodeling language

(conformity to the meta-metamodel of the used metamodeling language).

In parallel, the phases of Representational dependency design and Behavioral

dependency design take place based on:

- the stakeholders’ domain knowledge,

- the structural dependencies that are in phase of design and thus partially

provided (considering only the concepts and relations that are already defined),

- the concrete syntaxes and the dynamic semantics that belong to the composing

DSMLs in a composite DSML.

116

Figure 41. The dependencies design phase for a composite DSML.

The goal is to formalize, on the one hand, the representational dependencies of different

concrete syntaxes, forming the set of representational dependency properties RDP by

using a concrete syntax language, and on the other hand, the behavioral dependencies of

different dynamic semantics, forming the set of behavioral dependency properties BDP

by using a behavioral language. The designed dependencies must be syntactically

verified to ensure:

- the well-formedness of the RDP, i.e., the respect to the rules imposed by the

used concrete syntax language.

- the well-formedness of the BDP, i.e., the respect to the rules imposed by the

used behavioral language.:

Finally, during the phase of Dependent constraints design, a constraint modeling

language is used to formalize the dependent constraint properties (see Definition 36)

that complement the static semantics. The goal is to formalize additional information

that cannot be implicitly defined by the structural, representational and behavioral

Representational

dependencies design

Design SDP

well-

formed

SDP?y

n

Structural

dependencies design

Behavioral

dependencies design

Domain
knowledge

Structural
dependencies

Concrete
syntax

Dynamic
semantics

Dependent

constraints design

Static
semantics

Syntactical
verification

Design RDP

well-

formed

RDP?y

n

Syntactical
verification

well-

formed

BDP?

Design DCP

well-

formed

DCP?y

n

Syntactical
verification

Abstract
syntaxes

Concrete
syntaxes

Dynamic
semantics

Representational
dependencies

Behavioral
dependencies

Design BDP

y

n

Syntactical
verification

 117

dependencies, forming the set of DCP. This phase is finalized by a syntactical

verification to ensure the well-formedness of the designed DCP, i.e., the respect to the

rules imposed by the used constraint modeling language.

The results of the Dependency design phase are:

- Well-formed structural dependencies

- Well-formed representational dependencies

- Well-formed behavioral dependencies

- Well-formed dependent constraint properties

Thanks to the dependencies, the composing DSML can be integrated into a composite

DSML that is furthermore provided as input to the second phase of “Composite DSML

run time” for the design of composite models.

3.3.3.2 Composite DSML run time

The Composite DSML run time phase is decomposed into two sub-phases: (2.1)

“Composite Model design time”, for the design and verification of composite models

and (2.2) “Composite Model run time”, for V&V analyses based on models.

The Composite Model design time splits into (2.1.1) Composing models design and

(2.1.2) Dependencies design.

During the phase (2.1.1), various models are created and verified by using the

composing DSMLs of the composite DSML. The models, here-denoted “composing

models”, represent different viewpoints of a SoI. The process of designing and verifying

models is schematized in Figure 28 and detailed in Section 3.2.2.

The phase (2.1.2) “Dependency design” consists in designing the dependencies between

composing models:

- The structural dependencies between the structures of different models are

formalized as model structural dependency properties (MSDP) (see Definition

40)

- The representational dependencies between the representations of different

models are formalized as model representational dependency properties (MRDP)

(see Definition 41)

118

- The behavioral dependencies between the behaviors of different models are

formalized as model behavioral dependency properties (MBDP) (see Definition

42)

But also at designing the dependent model constraint properties (DMCP) (see Definition

43) and the dependent object constraint properties (DOCP) (see Definition 47)

Figure 42 shows the Dependency design phase composed of five phases, among which

the following three are performed in parallel:

- Model structural dependencies design

- Model representational dependencies design

- Model behavioral dependencies design

Followed by two phases that are also performed in parallel:

- Design of dependent model constraints

- Design of dependent object constraints

During the first three parallel phases, the previously designed and well-formed

dependencies between the composing DSML (i.e., the structural dependencies (SDP),

the representational dependencies (RDP) and the behavioral dependencies (BDP)) are

used to design and parametrize the dependencies between composing models in a

composite model, i.e., model’s structural dependencies (MSDP), model’s

representational dependencies (MRDP) and model’s behavioral dependencies (MBDP).

The designed dependencies must furthermore be verified for well-formedness. The well-

formedness verification of model’s structural dependencies consists in:

- A syntactical verification: conformity to the metamodel, i.e., to the SDP.

- Verification of ADSCP: the model’s structural dependencies must be checked by

a model checker or interpreter to determine if they respect the ADSCP.

 119

Figure 42. The dependencies design phase for a composite model.

well-

formed

MRDP?

Domain
knowledge

Model
structure

Model
representation

well-

formed

DMCP?
Dependent model

constraints

well-

formed

DOCP?

Dependents object
constraints

Abstract
syntaxes

Concrete
syntaxes

Dynamic
semantics

well-

formed

MSDP?

Design MSDP

y

n

Syntactical
verification

Verify ADSCP

Design MRDP

y

n

Syntactical
verification

Verify ADRCP

Static
semantics

(DCP)

Design DMCP

y

n

Syntactical
verification

Design DOCP

y

n

Syntactical
verification

Structural
depends.

(SDP)

Model
structures

Represe.
depends.
(RDP)

Behavioral
depends.
(BDP)

Model
reps.

Model
behaviors

Model structural

dependencies design

Model representational

dependencies design

Model behavioral

dependencies design

well-

formed

MBDP?

Design MBDP

y

n

Syntactical
verification

Verify ADBCP

Model structural
dependencies

Model
representational
dependencies

Model
behavioral

dependencies

Design of dependent

model constraints
Design of dependent

object constraints

120

The well-formedness verification of model’s representational dependencies consists in:

- A syntactical verification: the model’s representation dependencies must respect

the rules imposed by the representational dependencies (RDP).

- Verification of ADRCP: the model’s representational dependencies must be

checked by a model checker or interpreter to determine if they respect the

ADRCP.

The well-formedness verification of model’s behavioral dependencies consists in:

- A syntactical verification: the model’s behavioral dependencies must respect the

rules imposed by the behavioral dependencies (BDP) (i.e., must be correctly

parametrized).

- Verification of ADBCP: the model’s behavioral dependencies must be checked

by a model checker or interpreter to determine if they respect the ADBCP.

Thanks to the dependencies, the composing models can be integrated into a composite

more that is first used for the design of “dependent model / object constraint properties”

and then is provided as input to the last phase of “Composite Model run time” for V&V

analyses.

As illustrated in Figure 42, during the following two parallel phases: design of

dependent model / object constraint properties, system properties are formalized using a

constraint modeling language based on the stakeholders’ knowledge, the designed

composite model (its structure, representation and behavior) and the used composite

DSML. DMCP and DOCP complement the static semantics by constraint properties and

are verified locally based on preselected models or objects (see Section 3.1.2 for more

details). This phase is finalized by a syntactical verification to ensure the well-

formedness of the designed DMCP and DOCP, i.e., to ensure that they respect the rules

imposed by the used constraint modeling language.

The result of the sub-phase (2.1) ‘Composite Model design time” is a well-formed

composite model composed of:

- Well-formed structure that integrates the structures of several composing models

- Well-formed representation that integrates the representations of several

composing models

- Well-formed behavior that integrates the behaviors of several composing models

 121

- Well-formed model constraints

- Well-formed object constraints

Such composite model is then provided as input to the sub-phase (2.2) “Composite

Model rune time” illustrated in Figure 43.

Figure 43. The Composite Model run time phase.

During this sub-phase, composite models are executed, animated and used as a base for

formal proof, to assure that they represent as accurately as possible a SoI, i.e., to

validate them.

Apply DMB on DMS
(an execution step)

stop?
y

n

Verify TCP for each
composing model

Update DMR
(a model animation step)

Verify AMCP for each
composing model

Verify AOCP for each
composing model

The verification

result is positive
y

n

Verify ADMCP based
on the composite model

Verify ADOCP based on
the composite model

The verification

result is positive

n

y

Verify TMCP for each
composing model

Verify TOCP for each
composing model

Verify TDCP based on
the composite model

Verify TDMCP based
on the composite model

Verify TDOCP based on
the composite model

122

First, each composing model must verify the AMCP as well as the AOCP (of course, if

any of these properties are applied to the considered model or the objects contained in

this model). For instance, the AMSCP CP8: “All functions must be performed infinitely

(without an end) and in parallel” must be verified by the functional architecture of the

fire and flood detection system illustrated in Figure 38. Next, the composite model is

used to verify the ADMCP and the ADOCP. For instance, the ADMSCP CP14: “Each

component performs one function which is its mission function” must be verified based

on the dependencies between the functional and physical architecture of the fire and

flood detection system illustrated in Figure 38

The following V&V analyses consist of simulation (i.e., model execution), model

animation and verification of temporal constraint properties:

- The model execution is based on a gradual computation of the execution rules

specified by the dependent model behavior (Chapter IV provides details on the

simulation mechanism).

- The model animation is a result to the systematic visualization of changes (i.e.,

systematic modification of MRP) driven by the model execution according to the

DMR (see Definition 41).

- Formal proof consists in verifying all temporal constraint properties for all

composing models first separately (i.e., verifying the TSCP, TMSCP, TOSCP,

TRCP, TMRCP, TORCP, TBCP, TMBCP and TMBCP) and regrouped together

(i.e., the TDSCP, TDMSCP, TDOSCP, TDRCP, TDMRCP, TDORCP, TDBCP,

TDMBCP and TDMBCP).

3.3.4 Synthesis

The complete modeling of a SoI (i.e., modeling that covers every aspect of that SoI) can

be achieved by integrating various heterogeneous DSML into a composite DSML.

Composite DSMLs can then be used for the design of multi-viewpoint SoI models

called composite models, i.e., an integration of several heterogeneous models that

conform to different DSMLs from a composite DSML, allowing a more expressive,

realistic and complete representation of a SoI.

The design and management of composite DSMLs and models is based on a lifecycle,

denoted “composite DSML and model lifecycle”. Table 7 synthetizes the phases and

sub-phases of the composite DSML and model lifecycle. It highlight the properties that

 123

need to be modeled, the expected V&V analyses considering the designed properties,

the languages used to model properties and the expected results of these V&V analyses

for each phase and sub-phased.

Table 7. Synthesis of the composite DSML and model lifecycle. (MML–metamodeling

language, CSL–concrete syntax language, BML–behavioral modeling language, CML–

constraint modeling language).

Phase Properties V&V analyses Languages

V&V

result

C
o

m
p

o
si

te
 D

S
M

L
 d

es
ig

n

ti
m

e

C
o

m
p

o
si

n
g

D
S

M
L

s
d

es
ig

n

CSP For each SP: syntactical analysis MML W
ell-fo

rm
ed

 co
m

p
o

site

D
S

M
L

CRP For each RP: syntactical analysis CSL

CBP
For each BP: syntactical analysis,

verification of ABCP
BML

CP Syntactical analysis of CP CML

D
ep

en
d

en
ci

es
 d

es
ig

n
 SDP Syntactical analysis of SDP MML

RDP Syntactical analysis of RPP CSL

BDP Syntactical analysis of BDP BML

DCP Syntactical analysis of DCP CML

C
o

m
p

o
si

te
 D

S
M

L
 r

u
n

 t
im

e

C
o

m
p

o
si

te
 M

o
d

el
 d

es
ig

n
 t

im
e

C
o

m
p

o
si

n
g

 M
o

d
el

s

d
es

ig
n

DMS
For each MSP: syntactical analysis,

verification of ASCP
CSP

W
ell-fo

rm
ed

 co
m

p
o

site m
o

d
el

DMR
For each MRP: syntactical analysis,

verification of ARCP
CRP

DMB For each MBP: syntactical analysis CBP

MCP Syntactical analysis of MCP CML

OCP Syntactical analysis of OCP CML

D
ep

en
d

en
ci

es
 d

es
ig

n

MSDP
Syntactical analysis of MSDP,

Verification of ADSCP
SDP

MRDP
Syntactical analysis of MRDP,

Verification of ADRCP
RDP

MBDP
Syntactical analysis of MBDP,

Verification of ADBCP
MDP

DMCP Syntactical analysis of DMCP CML

DOCP Syntactical analysis of DOCP CML

Composite

Model

run

time

Verification of AMCP and AOCP,

Verification of ADMCP and ADOCP

Simulation, Animation,

Verification of TCP, TMCP and TOCP,

Verification of TDCP, TDMCP and

TDOCP

V
a

lid
 (a

s m
u

ch

a
s p

o
ssib

le)

co
m

p
o

site m
o

d
el

3.4 Conclusion
The modeling of complex systems is divided into the modeling of different viewpoints,

based on the stakeholders’ domain knowledge. For this purpose, stakeholders must first

conceptualize their domain knowledge in a form of modeling language (i.e., DSML)

through different types of modeling properties, a design process that involves different

type of language. We distinguish:

124

- Structural properties (SP) and dependencies between structural properties (DSP)

designed by a metamodeling language;

- Representational properties (RP) and dependencies between representational

properties (DRP) designed by a concrete syntax language;

- Behavioral properties (BP) and dependencies between behavioral properties

(DBP) designed by a behavioral modeling language;

- Constraint properties (CP) and dependency constraint properties (DCP) designed

by a constraint modeling language;

Stakeholders can then use such DSMLs to concretize their domain knowledge. More

specifically, they use:

- The SP and the DSP to design the structure of a model as model structural

properties (MSP) and the model structural dependencies (MSDP)

- The RP and the DRP to design the representation of a model as model

representational properties (MRP) and the model representational dependencies

(MRDP)

- The BP and the DBP to parametrize the behavior for a model as model

behavioral properties (MBP) and the model behavioral dependencies (MBDP)

Furthermore, system properties express the requirements of systems or stakeholders

based on a modeling artefact that is defined by modeling properties. We distinguish two

types of system properties: model constraint properties (MCP), object constraint

properties (OCP), dependency model constraint properties (DMCP) and dependency

object constraint properties (DOCP).

The design process is illustrated in Figure 44.

The management of different type of properties is defined through a formalized

lifecycle denoted “composite DSML and model lifecycle”. The lifecycle is composed of

several phases and sub-phases. Each phase highlights which of the above quoted

properties need to be designed and the V&V analyses that need to be performed.

 125

Figure 44. Conceptualization and concretization of domain knowledge.

Languages for domain knowledge conceptualization

Composite DSML (domain knowledge conceptualization)

Metamodeling
language MML

Constraint modeling
language CML

Behavioral modeling
language BML

Concrete syntax
language CSL

Composite Model (domain knowledge concretization)

SP
metamodelSP

metamodelSP
metamodel

Comp

SP
SP

delSP

RP
concrete syntaxRP

concrete syntaxRP
concrete syntax

DSML (doma

RP
RP

RP

BP
dynamic semanticsBP

dynamic semanticsBP
dynamic semantics

nowledge conce

BP
BP

BP
CP

DCP

CP
CP

MSP
model structureMSP

model structureMSP
model structure

MS
MSP

MSP

MRP
model

representation
MRP
model

representation
MRP
model

representation

MR
MRP

MBP
model behaviorMBP

model behaviorMBP
model behavior

MB
MBP

MBP

MCP
MCP

MCP
DMCP

OCP
OCP

OCP
DOCP

126

CHAPTER IV

MODELING BEHAVIOR FOR MBSE

 127

This chapter presents a part of the conceptual, methodological and technical

contributions of this work. It is focused on the design of dynamic semantics (i.e., the

Behavioral properties (BP) introduced in Chapter III) for executable DSML for MBSE.

A map of Chapter’s outline with respect to the type of contributions is shown in Figure

45.

Figure 45. Map of conceptual, methodological and technical contributions of Chapter

IV.

Chapter IV is structured as described in the next. Section 4 presents an evaluation of an

intuitive approach for the design of executable DSMLs, based on the eFFBD language.

The goal is to highlight issues and possible improvements of the selected approach for

the context of MBSE. As a result to the feedback of the evaluation, we propose two

approaches for the design of executable DSMLs discussed in Section 4.2 and 4.3.

4.1 Evaluating a design pattern for executable DSMLs
This section focuses on the design of dynamic semantics for a DSML by MBSE experts.

The accent is placed particularly on assisting and automating the process as much as

possible, allowing stakeholders to design dynamic semantics with minimal effort.

Similar claims have been made in (Combemale et al. 2012). They propose a design

pattern that guides experts for the design of executable DSML, denoted xDSML.

Briefly, an xDSML is a DSML that integrates dynamic semantics (i.e., referred as

Design pattern for
executable DSMLs

“application on”

Executable eFFBD
xeFFBD

Modeling DSML behavior
(BP) with eISM

“feedback”

“
ta

ke in
to

 a
cco

u
n

t”

Conceptual contribution

(Section 4.1)

Introduced initially in

Chapter II

Issues
(for MBSE)

Improvements
(for MBSE)

Conceptual, Methodological

and Technical contribution

(Section 4.2)

Modeling DSML behavior
(BP) with FRBL

Conceptual, Methodological

and Technical contribution

(Section 4.3)

“
ta

ke
 i

n
to

 a
cc

o
u

n
t”

128

executable semantics by the authors). For more details, the approach is illustrated and

detailed in Chapter II.

The goal of this section is to evaluate the application of the approach in the field of

MBSE. Therefore, Section 4.1.1 discussed the application of the approach on the

eFFBD (see Section 2.4.3) in attempt to design an executable version, denoted xeFFBD.

A discussion is then raised in Section 4.1.2 emphasizing the applicability within the

field of MBSE, highlighting current problems, and Section 4.1.3 proposed possible

improvements for the MBSE context.

4.1.1 Application: executable eFFBD - xeFFBD

The expected result is an executable eFFBD with integrated operational semantics that

can be used to directly execute eFFBD models, without transforming them into a third-

party approach as initially proposed by (Seidner 2009).

Let’s first, recall that the design pattern for xDSML proposed in (Combemale et al.

2012) promotes two major phases:

- Phase 1: The design of a metamodel that contains the domain concepts and

relations (DDMM), but also execution related information for concepts in a form

of state model scattered across the SDMM that defines the concepts’ states and

the EDMM that defines the concepts’ transitions between states.

- Phase 2: The design of execution-related information that describe when do

state models evolve from one state to another and the results of their evolution

of terms of changes of data in the model.

So first, during phase 1 domain concepts and relationships of the eFFBD are defined

into the domain metamodel, denoted xeFFBD DDMM illustrated in Figure 46.

To reduce complexity and to ease understanding we propose to split the eFFBD DDMM

into three packages xeFFBD Diagram, xeFFBD Construct and xeFFBD Flow. The

xeFFBD DDMM package is obtained by merging them using the “merge” package

operator defined by the MOF (MOF, 2014). Before presenting other concepts, let us

first precise the core elements of eFFBD which are Function, Resource and Item.

Functions describe what a system must do. They transforms one or more input Items in

one or more output Items respecting transformation rules, possibly under control of

triggers. Resource is something (data, material or energy e.g. human operator,

 129

consumable, plans, etc.) that is requested and utilized or consumed during an

inputs/outputs transformation. Requested resources are considered as independent from

transformation goal and they are requested for function execution that modifies them.

Item is something (data, material or energy) that is requested and transformed by

function in order to provide another(s) distinct Item(s). Taking into account its type, an

Item can be consumed or can remain available during certain time duration after which

its value becomes obsolete and unusable. These core elements are characterized by

temporal attributes e.g. minimal and maximal time of execution, life time, etc.

Figure 46. xeFFBD Phase 1 – design stages.

xeFFBD Diagram illustrated in Figure 46 is the core package describing a eFFBD

diagram as a quadruplet of begin and end operators, main branch and set of

input/output objects carried by flows. Begin and end describe starting and finishing

xeFFBD Diagram

xeFFBD Construct

xeFFBD DDMM

xeFFBD SDMM

xeFFBD EDMM xeFFBD TM3

<<import>>

xeFFBD Flow

<<merge>>

Flow

130

points in a diagram. The branch is composed of various control constructions named

eFFBD Constructs described in the next. Two sorts of input/output objects are then

available: items and resources respectively carried out by item flows and resource flows

as detailed below. Last a diagram is temporized element, having started and finished

execution time.

xeFFBD Construct package illustrated in Figure 46 represents different constructions

recurring into a eFFBD Diagram. These constructions allows engineer to describe how

functions are chained and how their execution is controlled in different manners

introducing possibility to describe function parallelism, sequence, exclusion, and

choices. A construct can either be 1) a function control construct composed of a set of

functions (eventually one unique function) put in sequence, or 2) an operator control

construction containing minimum one branch beginning on a begin operator and ending

on an end operator, Four types of operator control construction are introduced: AND,

OR, Iteration and Loop. A fifth one, named replication construction, is not considered

at this moment. AND and OR constructions contain minimum two branches and they

represent respectively parallel and exclusive execution of branches. Iteration and Loop

constructions represent two possibilities of repetitive execution of one branch differing

in the stop condition. Iteration fixes a number of iterations, while loop stops on a

Boolean condition. Constructions are temporized elements having started and finished

execution time.

xeFFBD Flow package illustrated in Figure 46 describes what are the three types of

flows that can be handled in an eFFBD: functional flow, item flow and resource flow. A

functional flow describes the order in which functions are executed (related to the

primitive relation successor/predecessor between two functions). It is represented by the

functional flow class connecting functional flow connectable elements which are either

operators or functions. A Resource Flow describes requested Resources of a function

that consumes them and restores them after execution, modifying eventually some of

resource characteristics such as its quality and quantity levels. For this a Resource Flow

is characterized by two attributes: quantity and quality. Quantity attribute indicates the

requested amount of resource, consumed as an input by a function in order to execute it

(requested quantity), and provided as an output after execution of related functions

(provided quantity). Quality attribute indicates the level of resource quality, requested

as an input in order to execute related functions (requested quality), and restituted after

 131

function execution as an output altering then eventually the level of quality of the

resource (provided quality) i.e. mixing for instance its availability and its efficiency.

Item flow relates Item with function by input or output relationships. These

relationships describe items that are needed and consumed as inputs for function

execution and items that are provided as output after execution. Provided items are a

result from transformation of inputs flows and eventually under the help or the control

of resource flows. Note that there is a special kind of triggering items and resources that

can trigger function execution, controlling then function start and/or stop conditions.

Functional and resource flow have attributes (comment, condition and quantity, etc.), so

they are represented in the metamodel using the class-association pattern, while item

flow is represented using associations.

Once a DDMM is defined, the second design stage consists in defining the SDMM

package, here-denoted xeFFBD SDMM. This package contains the possible states of

selected domain concepts, denoted evolving concepts because instances of these

concepts will become able to evolve during model execution. In the case of the eFFBD

language, we have chosen the following concepts: Construct, Function, Item and

Resource. The eFFBD SDMM package is illustrated in Figure 46. For instance, the

concept Function contains six states: Sleep, Authorized, Execution, Finished,

Suspended and Aborted. We interpret the states as follows. The input/output

transformation described by a Function, is first possible (Authorized) i.e. the function

can start but wait for Items (and eventually Resources) before being able to make the

real transformation of energy, material and / or data (Execution) providing then the

outputs items and resources (Finished). Due to external events, a function can be

suspended and even aborted (Suspended, Aborted) in case of dysfunction of the

component on which the function has been allocated. Note that, this is our interpretation

of the functions’ possible states. Depending on the level of detail that need to be

captured by the states of a concept, it is plausible to specify them differently, adding

details by adding additional states, removing details by removing states or even

redefining them completely by new states. In some cases, it is event impossible to

capture all state of a concept. For instance, Items and Resources are continuously

transformed during the execution of a Function and the number of requested states to

describe these evolutions can increase considerably, becoming sometimes infinite. For

132

such cases, we stress the need of a continuous behavioral model instead of a discrete-

event model. For more details on this discussion see the next section.

The third design stage consists in defining the requested events for transition firing in

the xeFFBD EDMM package. We defined three types of events: construct event,

function event and item event as illustrated in Figure 46. Each of these events provokes

a transition firing, consequently changing the state of an instance of an evolving

concept.

The last design phase consists in defining a monitoring mechanism into a package

denoted TM3. The design pattern proposes a generic trace mechanism that is here-

reused and illustrated in Figure 46.

The phase 2 consists in specifying the execution semantics (into the package Semantics)

for the previously defined xeFFBD metamodel that despite the execution-related

information (states defined in the SDMM and transitions defined in the EDMM) is yet

unexcitable. The goal is to define how and when transitions are fired, provoking state

changes, and the consequent result of the state changes. For the design of this package,

we use in a first stage a property-driven approach proposed in (Combemale et al. 2008).

This approach describes how to define formally execution rules as formal properties,

and how to formally verify these rules. The properties can be of three types: structural

properties, temporal properties and quantitative properties. They can either be applied

once during an execution, denoted existential properties, or all the time, denoted

universal properties.

To sum up, the model execution relies on state models spread across the metamodel of a

DSML (DDMM, EDMM and SDMM) and on rules defined as formal properties in the

Semantics package. For instance, based on the state model of a Function, if the event

StartFunction is applied on an instance of Function that is in the state Sleep, a transition

is fired changing its state into Authorized.

As illustration, Figure 47 shows the execution of a simple eFFBD model. The

functioning of lower level embedded constructs is controlled (i.e., started and finished)

by higher level embedding constructs, taking also into account the connections between

functions defined as functional flows. This model is composed of a starting point

(entering arrow), an ending point (exiting arrow) and a main branch. A sequence is

placed inside the main branch, containing three functions: F1, F2 and F3. Note that, for

 133

the sake of simplicity, input and output object flows are neglected. The execution occurs

as detailed hereafter. Each Construct controls the execution of Branches and Constructs

it contains. So, the diagram starts the main branch which starts the sequence. Since this

sequence contains functions, it must control their execution as follows. First, it starts the

beginning function (F1), and awaits F1 to end execution, to start the following F2

function. This process repeats until the ending function, in this case F3, ends execution,

which marks that the sequence has finish execution. The main branch then ends the

execution of the sequence, before finishing its own execution. The diagram finally ends

the execution of the main branch, which marks the end of the execution of the diagram

and the eFFBD model.

Figure 47. An execution of an eFFBD model

The execution rules of the concept Function are here-after formally defined using the

previously property-driven approach proposed in (Combemale et al. 2008). An

input/output transformation described by the Function is first possible, i.e., the function

can start but has to wait for Items and eventually Resources (Figure 48, Eq.1) before

being able to make the real transformation of energy, material and / or data (Figure 48,

Eq.2) providing then the outputs items and resources and finishing its execution

respecting minimal and maximal execution time (Figure 48, Eq.3). Note that, as

previously discussed the execution of Functions is controlled by their containing

Sequence. Therefore, the execution rules that are used to start and end the execution of

functions take part in the execution rules of the Sequence construct. In addition, due to

external events, a function can become temporarily suspended, can resume its execution

or can abort execution (Suspended, Aborted). These external events can be then shared

with other domain concepts from other modeling languages. For instance, the function

behavior can depend from the component behavior that performs this function. So, the

F1

(Function)

F2

(Function)

F3

(Function)

a Branch

a Sequence

StartConstruct

(sleep®execution)
EndConstruct

(finished ®sleep)

FinishConstruct

(execution® finished)

StartFunction

(sleep®authorized)
EndFunction

(finished ®sleep)

time

F1 duration F3 durationF2 duration

134

event Suspended can be a common event shared between eFFBD and a PBD

(executable Physical Block Diagram).

Figure 48. The semantics of a Function as execution rules.

4.1.2 Discussion: current problems and causes

The discussed design pattern for xDSML proposes an effective and relevant solution

that guides and assists experts for the specification of dynamic semantics for a DSML.

The application of this design pattern to the field of the MBSE rises however several

issues that seem crucial and remain partially or completely uncovered. They are

discussed in the next, highlighting possible conceptual, methodological and technical

improvements that might aid to complement this approach for the needs of the MBSE

context.

Issue 1: state notion and formalization. After all domain concepts and relationships are

identified and defined inside a DDMM, first, a sequence of states for all evolving

concepts has to be defined inside a SDMM following Discrete Events Systems theory

where a concept may evolve into one of a number of different states. Second, transitions

between states and events that trigger transition firing are defined inside the EDMM,

together with execution rules and a semantics mapping mechanism into the Semantics

package.

However, all behaviors are not based on discrete-event hypothesis, as previously

discussed. Namely, some concepts (such as the Item and Resource concepts from the

eFFBD) have much more detailed behaviors characterized by a continuum of different

 For f Î Function

(Eq. 1)

{ (f.state==authorised) AND

(" i Î f.itemInputs,(i.state==present)) AND

(" j Î f. resourceFlowInputs, (

(j.requestedQuantity >= j.sourceResource.availableQuantity) AND

(j.requestedQuality == j.sourceResource.quality))))

implies executeFunction(f) }

(Eq. 2)

{ (f.state==execution) implies (

(" i Î f. itemInputs, (consumeItem(i))) AND

(" j Î f. resourceFlowInputs, (j.sourceResource.availableQuantity -= j.requestedQuantity)) }

(Eq. 3)
{ ((f.state==execution) AND ((internalTime - f.startedTime) >= minimalTime) AND

((internalTime - f.startedTime) <= maximalTime)) implies (finishFunction(f)) }

(Eq. 4)

{ (f.state==finished) implies (

(" i Î f. itemOutputs, (provideItem(i))) AND

(" j Î f. resourceFlowOutputs, (j.targetResource.availableQuantity += j.providedQuantity)))}

 135

states that they might evolve into. In such case, the behavior should ideally be specified

by a continuous model. For example, a continuous model for the concept Resource can

be specified by a differential equation that describes how the value of the resource

changes in function to time.

 Issue 2: improved readability. The discrete-events models that describe the behavior of

concepts are scattered across the SDMM, the EDMM and the package Semantics.

Namely, the SDMM contains the possible states, the EDMM defines the transitions

between states and the package Semantics defines when and how transitions are fired

provoking state-changes.

Unfortunately, the readability of such behavior is limited for MBSE experts. Indeed, the

classical graphical notation of a state-machine model composed of circles for states and

links for transitions between states is more accessible and readable.

Issue 3: transient states detection and management. Considered approach defines

temporal properties using the temporal OCL (TOCL) (Ziemann & Gogolla 2003).

Temporal properties are examined taking into account a unique temporal dimension

(discrete or continuous) that is used for event synchronization and transitions firing.

However, when modeling critical, parallel or distributed systems, it is very important to

manage the stability of models every time they evolve. A behavioral model is “stable” if

succeeding an evolution, taking into account the same inputs, the model cannot evolve

in another state. Otherwise, the model is “unstable” and its current state is named

“transient” state, as defined in the case of Sequential Function Chart (IEC 1999).

Issue 4: mechanism for formal proof. The question here concerns concepts and

techniques to formalize and verify execution rules described as properties. Namely, the

execution rules are specified as formal properties using the TOCL. A mechanism for

formal verification is then proposed based on the TINA (time petri-net analyzer) model-

checker. Unfortunately, this technique requires transforming the concepts’ behavioral

models (i.e., the states and transitions from the SDMM and the EDMM along with the

properties from the Semantics package) into petri-nets models, facing the classical

issues related to transformation approaches discussed in Chapter II.

Issue 5: designing dependencies in modeling languages – a way for model

interoperability. In the context of MBSE, a SoI is modeled by using various models

(relevant for one or more objectives) each one representing a viewpoint of a SoI (e.g.,

136

requirements, functional, physical, behavioral, etc.) as discussed in Chapter II. These

models must be coherent, first separately and then considering the other models of the

same SoI. Therefore, the used DSMLs must define their dependencies (as proposed in

Chapter III), allowing the interoperation between viewpoint models.

Unfortunately, models interoperability is out of the scope of the studies approach. For

this purpose, different DSMLs must integrate structural dependencies between their

DDMM, and also behavioral dependencies between their SDMM, EDMM and

Semantics.

4.1.3 Proposition: improvements for the MBSE context

The application of the xDSML design pattern in the field of the MBSE raised five issues

that seem crucial and remain partially or completely uncovered. We propose in this

section, for each of the above discussed issues a possible improvement relevant for the

MBSE context.

Improvement 1: state notion and formalization. The specification of a continuous

behavior by a finite number of states (i.e., by a discrete-events model) might sometimes

become limited for V&V due to lack of details that need to be modeled. For example, a

discrete-events model for the eFFBD concept Resource can be specified by a two-state

state machine model (sufficient and insufficient) of which one of the states describes that

the resource is sufficient and can be transformed and the other describes that the

resource is insufficient and cannot be transformed. In such scenario, details about the

Resource’s quality or the quantity are neglected.

To address this issue, we adopt the symbolic representation of states by variables

introduced initially by the automata theory, as proposed by (Vandermeulen 1996) for

the Interpreted Sequential Machine (ISM). This allows increasing the level of details by

combining discrete-events models and variables, denoted “symbolic variables” or “state

variables”. For instance, in the case of the Resource, the behavior can be defined by a

two-state model (with states: sufficient and insufficient) and two additional symbolic

variables representing resources’ quality and quantity. For this purpose, the discrete-

event models, along with the specification of states and transitions must also integrate

additional component for the specification of symbolic variables. In the case of the ISM,

this component is denoted data part (Vandermeulen 1996).

 137

Figure 49. Improving readability by abstraction.

Improvement 2: improved readability. To improve readability of the discrete-events

models for the, we propose first to abstract the behavior by using for example the

graphical notation of the finite state machine model, as proposed above. For instance,

the two-state behavior of the eFFBD concept Resource is illustrated in Figure 49 (A).

This allows making the connection between a concept of a DDMM, its states from a

SDMM and different events from an EDMM that cause the state change. Nonetheless,

the event firing is preconditioned by the execution rules from the machine.

Furthermore, we propose to refine transitions by associating to each one a pair of

<condition,event> as shown by Figure 49 (B). The condition (True by default) is a

Boolean function computed on various variables: states variables proposed in

Improvement 1, attributes of any domain concept from the local DDMM or external

variables corresponding to other domain concepts from another DDMM. Moreover, we

classify conditions and events into inter and intra.

- Intra conditions/events are based on information from the current model.

- Inter conditions/events are based on information from one or several other

models from the same SoI whose behavior interacts with the behavior of studied

model.

Inter conditions/events are the foundation stone of the behavioral interoperability

invoked by above discussed Issue 5.

The event is similar to the stimuli, proposed in the approach. In addition, we adopt two

rules from the discrete event modeling theory:

1) Two events cannot be simultaneous so it is always possible to distinguish them.

2) There exists a default event e always occurring.

A Transition can then be fired when receiving an event, if and only if its condition

evaluates to true.

Consume(A)

InsufficientSufficient
Supply

(B)

InsufficientSufficient

event: Consume

cond: quantity > requestedQuantity

event: Supply

cond: true

138

Improvement 3: transient states detection and management. Stability management

consists in checking the stability of a behavioral model every time the model evolves.

Managing models stability involves a transient state detection algorithm that manages

two time scales, as proposed by the Ptolemy approach (Lee 2003):

- An external time scale

- An internal time scale

Both time scales are modeled by two independent logical clocks. The internal time scale

is reinitialized every time the model evolves and incremented while the model is in

transient state, every time calculating its future state, eventually reaching its stability.

As illustration, Figure 50 shows the outcomes of the models’ execution with and

without stability management.

Figure 50. Transient state management.

The figure is interpreted as follows. The initial states of the models are respectively A0

and B0. According to the scenario (a0,T0), at time T0, the a0 event fires the transition

between A0 and A1, changing the current state of the first model into A1. During the

second time unit (considering the firing condition b0=­A1) the transition b0 is fired,

changing the current state of the second state model into B1. Since a1=­B1, the

transition b0 is fired during the third time unit, changing the current state of the first

state model into A2. So as a result the state models are in states A2 and B1 at the end of

the third time unit as shown in the top right side of Figure 50. However, with stability

management, this whole evolution is done in one single time unit as shown in the

bottom right side of Figure 50.

Firing Conditions

• b0 = ­A1

• a1 = ­B1

Scenario = (a0,T0)

T0 T1
T2

a0 b0b0
a1

A0®A1
B0®B1

A1®A2

A0 A1 A2A1A0 21

a0 a1

a2a3

B0 B10 1

b0

b1

A0

B0

A1

T0 T1
T2

a0 b0b a1a
A0®A1 B0®B1

A1®A2

Result
(T3, A2, B1)

Result
(T1, A2, B1)

Without stability management

With stability management

 139

We propose furthermore in Chapter V an algorithm for transient state detection and

management. Briefly, the functioning of this algorithm is described as follows. Values

of each variables appearing in a conditions and occurring events are read and then

frozen in external time. State models evolve taking into account these values in an

internal scale allowing then to detect transient states and to reach the stable state. The

external time depends from environment evolution scale and can be seen as a physical

scale time defined as a set of moment ordered by taking into account Time Unit

duration. It is initialized when a simulation starts. The internal time is however a logical

scale time as defined in Discrete Event Simulation theory. It is initialized at each

moment defined in external time and there are no common temporal dimensions

between internal and external scales.

Improvement 4: mechanism for formal proof. The goal here is to provide a mechanism

for formal proof allowing a direct verification of the behavior instead of transforming it

into third-party formalism such the TINA model-checker. For this purpose, we stress

the need of formalism for the design of behavior that allows formal proof. For example,

behavioral models designed by the previously discussed ISM (Vandermeulen 1996)

have formal underlying structure that supports symbolic model checking. In

(Vandermeulen et al. 1995) the authors describe how can ISM models be formally

verified based on the temporal boolean difference.

In addition, it will be interesting to formalize system requirements as properties and to

formally verify them. For this purpose, despite the above discussed issue of direct

verification, it is equally important to adopt a strategy for requirement formalization.

Such strategy must bridge the gap between the informal languages used first to specify

requirements and the semi-formal and formal languages that provide verification

mechanism, as proposed in (Chapurlat 2013). The goal of this work is to define an

appropriate and tooled property modeling and proof approach inspired by the above

quoted research results.

Improvement 5: designing dependencies in modeling languages – a way for model

interoperability. In the context of MBSE, a SoI is modeled by using various models

each one representing a viewpoint of a SoI as discussed in Chapter II. These models

must be coherent, first separately and then considering the other models of the same

SoI. Therefore, as stated as working hypothesis in Chapter III, stakeholders have

140

defined dependencies between DSMLs that are used in each viewpoint, allowing then a

partial interoperability between viewpoint models. So, this notion of model

interoperability is here-considered limited to:

- Structural interoperability: models are structurally bound together (see

Definition 33 and Definition 40).

- Behavioral interoperability: models are behaviorally bound together considering

data from other models during model execution (see Definition 35 and

Definition 42).

Both structural and behavioral interoperability must furthermore be taken into account

by:

- a simulation mechanism for a coordinate simulation of all behavioral models

from all domain models

- a proof mechanism for a formal verification of properties considering all models

of a SoI (as opposed to verification that takes into account only one model)

4.2 Modeling the behavior of a DSML with a Discrete-Events

Language
This section introduces a discrete-events language in a form of a DSML for the

modeling of discrete-events behaviors. The DSML is an extended version of the

Interpreted Sequential Machine (Vandermeulen 1996), denoted eISM. The goal is to use

it for the design of behavior (dynamic semantics / executional semantics) for a DSML.

Indeed, we are inspired by the idea of designing discrete-events models for concepts of

the DDMM (denoted evolving concepts) as discussed in Section 4. However, instead of

scattering the discrete-events models across several loosely coupled modules (SDMM,

EDMM and the package Semantics) we propose to associate them directly to the

domain concepts.

Following the discussions of Section 4.1.2 and Section 4.1.3, we argument first the

choice of the eISM in Section 4.2.1. Then in Section 4.2.2 we introduce and formally

define the eISM. In Section 4.2.3 we illustrate the integration process between eISM

and the metamodeling language EMOF. We discuss several technical issues related to

the eSIM in Section 4.2.4. In Section 4.2.5 we propose a formal proof mechanism for

eISM and in Section 4.2.6 and 4.2.7 we show illustrate based on two examples.

 141

4.2.1 The eISM languages: discussion about the choice

The ISM initially introduced in (Vandermeulen 1996) is a formal language based on

discrete-event hypothesis for modeling and verifying the behavior of systems and their

interactions with the environment. According to the authors, the ISM has the following

advantages in comparison to other discrete events modeling languages:

· First, it operates with typed input/output data (primitive types, e.g., Boolean,

Integer, Real, Character or compound type) and complex expressions built using

internal typed data.

· Second, it separates classical state/transition specification, here-denoted Control

Part (CP), from data specification, here-denoted Data Part (DP).

· Third, ISM has formal underlying structure, based on the Linear Temporal Logic

(LTL) abstracted in the form of Elementary Valid Formulas (EVF).

The first advantage makes the ISM applicable in the MBSE context. Namely, concepts

from the DDMM of a DSML can be naturally used as a source of data. The separation

of the state/transition specification (CP) from the data specification (DP) allows

replacing some states that are normally added into the CP, as “symbolic” variables in

the DP, limiting the combinatorial explosion of the number of states. This is helpful for

continuous behaviors as previously discussed for the eFFBD Resource concept (see

Improvement 1 in Section 4.1.3). The graphical notation of ISM models can address the

previously discussed readability issue (see Improvement 2 in Section 4.1.3). The ISM

formal underlying structure allows formal verification based on model checking

techniques and tools (e.g. STEP, MEC, TINA or UPPAAL) by reusing the EVFs

without any transformation as for instance discussed in Issue 4 (Section 4.1.2). For

example, in (Vandermeulen et al. 1995) the EVF are reused as a source to the Temporal

Boolean Difference (TBD) method (discussed here-after). This method calculates the

sensitivity of the present to the future evolution of ISM models.

Nevertheless, the initial version of ISM is not suited to address the Issue 3 (the detection

of transient states and stability management) and the Issue 5 (model interoperability in

terms of behavioral dependencies between DSMLs and synchronized execution of

multiple ISM models) discussed in Section 4.1.2. Therefore, we propose an extended

version of the ISM, denoted eISM, along with synchronization rules and mechanisms,

allowing:

142

- Stability management and transient state detection

- Synchronized execution of multiple ISM models based on the blackboard

communication pattern

In addition to the above quoted limitations, the mechanism for formal proof of ISM

takes into account one ISM model, even though in a DSML there are multiple

behavioral models that should be considered simultaneously by the formal proof

mechanism. This problem becomes even more complicated when relating several

DSML, because the formal proof mechanism must handle multiple sets of behavioral

models, each one specifying he behavior of a composing DSML.

4.2.2 Introduction to the eISM: a formal specification

An eISM is composed of four interconnected parts called: Input Interpreter (II), Output

Interpreter (OI), Control Part (CP) and Data Part (DP) as illustrated in Figure 51.

Figure 51. The components (modules) of an eISM model.

The CP is a graph of states and transitions. The DP holds the model data. The II

interprets input data (gathered into the set I) available in the Blackboard (BB) and model

data from the DP. Interpreted data takes part in the firing conditions that are associated

with each transition of the CP, consequentially taking part in the CP’s evolution. The

OI is an interface that interprets the evolution of the CP by updating the values of the

output data (gathered into the set O) and the values of the model data from the DP.

An eISM model is formalized as a 6-uplet ghij k $B, X, %", W", BB, XB, * where:

a) I is the set of input data available from the BB. Each input ii is defined by a

current value cvaluei, a domain definition Ii and a type Ii’, such as Ii l Ii’.

b) O is the set of output data that is sent to the BB by the OI. Each output oi is

defined by a current value cvaluei, a domain definition Oi and a type Oi’, such as

Oi l Oi’.

Control Part
(CP)

Data Part
(DP)

Input
Interpreter

(II)

Output
Interpreter

(OI)

C

In
pu

t D
at

a
(I

)

O
ut

pu
t D

at
a

(O
)

at
a

(O
O

ut
pu

t

 143

Figure 52. An overview of the Control Part (CP).

c) The CP (Control Part) illustrated in Figure 52, is defined as a graph of states

related by labeled transitions and formally defined as a 5-uplet %" k
$!, m, &, n, o* where: ! = {@p, � , @q} is a set of states, m = {rp, � , rq} is a set of

state propositional variables, & = s&p, � , &tu is a set of transitions, n =
svp, � , vtu is a set of firing condition propositional variables and o =
swp, � , wtu is a set of update propositional variables. Transitions are given in

the following form &/ = xyr/, vfz, `r~ , wea� , as illustrated in Figure 53. By

hypothesis, there is a unique state si that is active each moment of the evolution.

When the state si is active (otherwise inactive), the propositional variable

associated to that state i.e., si = True (False otherwise). In addition, firing

condition propositional variables, ej 01 E, evaluate to True if an only if the

corresponding firing condition function ej computed by II returns True. A

transition &/ can be fired, if and only if, the transition’s firing condition

propositional variable ei evaluates to true and the source state of the transition &/
is an active state, by the transition function � defined as:

�J m × n K m
yr/ , vfz K r~

Firing a transition activates the output function � defined as:

�J m × n K o
yr/, vfz K we

 As a consequence to these two functions, the source state of transition &/ is deactivated,

its target state is activated and the corresponding update propositional variable we 0 o is

set to True.

Figure 53. Example of Transition T0 between initial state (s0) and s1.

E
II

S S U
OI

TE S

s1ss0
e0/u0

144

d) The DP (Data Part) holds the model data that is used to specify transitions’

firing condition functions E and update functions U. It is formally defined by a

2-uplet W" k $)W, BW* where:)Wis a set of language data directly derived from

the corresponding DSML concept (denoted + 0 %"&) and BW = {4Op, � , 4O�} is

a set of internal (to the eISM model) data, explicitly needed for the description

of firing condition and update functions. The variables from the ID set are

defined by a current value cvalue, a domain definition DP and a type ID’ such

that ID 1l1ID’.

Figure 54. An overview of the Input Interpreter (II).

The LD set if derived directly from a domain concept c, i.e., from its attributes defined

by the set A and relations defined by the set REL.

)W k $��, '��ND��, %��NUcb, B��, B'��N/D��, B%��N/Ucb*
where:

- AV is the set of variables directly derived from the attributes of the concept c,

formally defined as:1dF.. 0 ��, F.. 0 �.

- '��ND�� are nbref sets of variables derived from the references (i.e.,

relationships of type reference) of the concept c. nbref is the number of

references of the concept c. This is formally defined as:

;R97: #= |'()|1F;O1d9 0 '(), 9^ .6-7 = 897:797;+78 . Each set '�/ 0
'��ND�� , d4 0 ��^ ^ ;R97:�, |'�/| 0 �GR^ ^ IR� might contain minimum lb and

maximum up number of variables (lb is the lower bound multiplicity and up is

the upper bound multiplicity of the reference).

- %��NUcb are nbcom sets of variables derived from the compositions (i.e.,

relationships of type composition) of the concept c. nbcom is the number of

compositions of the concept c, formally defined as follows: ;R+>?
#= |'()|1F;O1d9 0 '(), 9^ .6-7 = 8+>?->@4.4>;8 . Each set might contain

minimum lb and maximum up number of variables (lb is the lower bound

I
LD ELD
ID

EDP
LD
IDP CP

 145

multiplicity and up is the upper bound multiplicity of the reference), formally

defined as follows: %�/ 0 '��NUcb, d4 0 ��^ ^ ;R+>?�, |%�/| 0 �GR^ ^ IR�.
- IAV (Inherited Attribute Variables) is a set of variables derived from the

attributes of the more generic concepts of c, formally defined as: Let IA be the

set of inherited attributes of c: dF.. 0 B��, F.. 0 B�.

- B'��N/D�� are nbiref sets of variables derived from the references (i.e.,

relationships of type reference) of the more generic concepts of c. Let IREF be

the set of inherited references: nbiref is the number of inherited references of the

concept c ;R497: #= |B'(�|. Each set might contain minimum lb and maximum

up number of variables (lb is the lower bound multiplicity and up is the upper

bound multiplicity of the reference):

B'�/ 0 B'��N/D��, d4 0 ��^ ^ ;R497:�, |'�/| 0 �GR^ ^ IR�.
- B%��N/Ucb are nbicom sets of variables derived from the compositions (i.e.,

relationships of type composition) of the more generic concepts of c. Let ICOM

be the set of inherited compositions: nbicom is the number of inherited

compositions of the concept c ;R4+>? #= |B%XM| . Each set B%�/ 0
B%��N/Ucb, d4 0 ��^ ^ ;R4+>?�, |%�/| 0 �GR^ ^ IR� might contain minimum lb and

maximum up number of variables (lb is the lower bound multiplicity and up is

the upper bound multiplicity of the reference).

e) The II (Inputs Interpreter) illustrated in Figure 54, reads data (input data from

the BB and model data from the DP) and based on it, evaluates the firing

condition propositional variables that are associated with transitions of the CP. It

is formally defined as 5-uplet BB k $B,)W, BW, (, n* where (= s7p, � , 7�u is a

set of firing condition functions and n = {vp, � , v�} is a set of firing condition

propositional variables. Firing condition functions are composed of a Boolean

expression part (evaluated using input and model data) and a requested events

part (evaluated using only input data), formally defined as: d7/ 0 (, 7/ =
{+>;O/ , 7Q7;./}. The firing condition function evaluates to True, if both parts

compute to True, False if at least one computes to False. This is formally

defined as:

7/J B �)W � BW K {�,�}
7/y4Op, � , 4O|�|, GOp, � , GO|��|, 4Op, � , 4O|��|z = `�|�a

146

Every firing condition propositional variable is associated with a firing condition

function. This is formally defined as:

d4 0 ��, ^ ^ , H�, 7/y4Op, � , 4O|�|, GOp, � , GO|��|, 4Op, � , 4O|��|z = �1
� `v/ = &9I7a

Figure 55. An overview of the Output Interpreter (OI).

f) The OI (Outputs Interpreter) associates the update propositional variables with

the corresponding update functions and evaluate these update functions. As a

result, the model data from the DP and on the output data that is send to the BB,

are both modified (updated). The OI is illustrated in Figure 55 and is formally

defined as a 6-uplet XB k $)W, BW, B, X, o, �* where o = swp, � , wtu is a set of

update propositional variables and � = sIp, � , Itu is a set of updates. Each

update might be associated with three types of update functions:

1) update functions for output data, formally defined as:

I/fJ B �)W � BW K X
I/fy4Op, � , 4O|�|, GOp, � , GO|��|, 4Op, � , 4O|��|z = y>p, � , >|�|z

2) update functions for language data, formally defined as:

I/fJ B �)W � BW K)W
I/fy4Op, � , 4O|�|, GOp, � , GO|��|, 4Op, � , 4O|��|z = yGOp, � , GO|��|z

3) update functions for internal data, formally defined as:

I/fJ B �)W � BW K BW
I/fy4Op, � , 4O|�|, GOp, � , GO|��|, 4Op, � , 4O|��|z = y4Op, � , 4O|��|z

When an update propositional variable w/ is set to true, the corresponding update is

activated, evaluating simultaneously all associated update functions.

A metamodel of the eISM language that contains all concepts discussed above, is

illustrated in Figure 56.

U
O

UUCP

LDLD
IDID

I
CPCP

DP

O
LDLD

IDDP IDDPDP
LD

 147

Figure 56. Metamodel of the eISM language.

4.2.3 Integrating the eISM and the metamodeling language EMOF

There are two possible way to relate the domain consents specified by the DDMM and

their behavior specified as an eISM behavioral model:

1) By interfaces

2) By integrating eISM with the metamodeling language used to design the

DDMM

In the first case, eISM behavioral modes don’t have a direct access to the concepts’

data. Therefore, the data part of eISM models must either be manually updated or by the

means of transformations. In contrary, in the second case, eISM behavioral modes have

direct access to the concepts’ data. The relations between the concepts and eISM

behavioral models are defined at M3 meta-meta layer as described below.

148

Figure 57. A metamodeling stack for executable DSMLs.

We focus here on the integration of eISM with the metamodeling language EMOF.

EMOF is the EMF (Steinberg et al. 2008) version of the initially introduced MOF

(OMG 2015a)). The goal is to design a M3 metamodeling layer that can be used for the

creation of executable DSMLs as illustrated in Figure 57.

Figure 58. The integration process bounding a EMOF with eISM.

The process that allows the integration between EMOF and eISM (illustrated in Figure

58) is inspired by (Muller et al. 2005). It is composed of four steps:

- Step 1: model the eISM language

- Step 2: download EMOF to M2 layer

- Step 3: specify the dependencies between eISM and EMOF

- Step 4: promote the result at the M3 layer

The first step of modeling the eISM language is discussed above and illustrated in

Figure 56. The second step consists in recovering the meta-metamodel of EMOF at M2

layer. This is a technical issue that is solved by the import option of EMF. The third step

consists in establishing the relationships between EMOF and eISM. Note that, to

address the previously discussed Issue 5 (model interoperability in terms of behavioral

dependencies and synchronized execution of ISM models) the integration between

EMOF and eISM is established following the blackboard design pattern, proposed in

(Engelmore & Morgan 1988). Chapter V provides more details on the blackboard

DDMM
(domain concepts)

Dynamic semantics
(eISM models)

Model

« conforms » « conforms »

« conforms » « executes »

M3

M2

M1

Metamodeling
language: EMOF

Discrete-Events
language: eISM

EMOF

eISM

«conforms» «conforms»

M3

M2 EMOF

«conforms»

DDMM

«
p

ro
m

o
ti

o
n

»

Blackboard
design pattern

«conforms»

eISMEMOF Blackboard
design pattern

Dynamic semantics
(eISM models)

«conforms»

 149

design pattern and on the synchronized execution of eISM models. Finally the resulting

metamodel is promoted to the M3 layer, replacing the initial EMOF.

The resulting “executable” meta-metamodel is shown in Figure 59, integrating EMOF

(in red) with eISM (in white) based on the blackboard design pattern (in gray). Note that

already defined DSMLs that conform to the original EMOF remain fully compatible

with this new executable version.

So, the communication between different types of behavioral models (among which are

eISM behavioral models) is assured by the blackboard communication pattern that

establishes the means for data of event exchange (see Chapter V for more details).

However, two behavioral models can communicate if they have information about each

other (i.e., the sender behavioral model must have information about the behavioral

model that receives the message). For this purpose, the corresponding concepts of the

behavioral models (defined by the bi-directional reference behavioralmodel/concept

between EClass and Behavioral Moedl in Figure 59) must be structural bound together

by a reference of a composition.

For example, a simple case scenario is illustrated in Figure 60 representing a telephone

communication between two persons. When two persons make a call (1), the behavioral

model of the caller should send an event to the behavioral model of the call receiver. If

the latter respond (2), an event is send back to the caller and a communication is

established (3).

150

Figure 59. Integrating EMOF (in red) with eISM (in white) based on the blackboard

design pattern (in gray).

 151

A simplified domain structure (DDMM) is illustrated in the middle of Figure 60,

composed of the Person concept and a bidirectional reference that highlights the caller

and the call receiver. This reference is crucial for the behavioral communication, in this

call a telephone call between two persons. The behavioral model from the right side of

the Figure 60, contains information about the caller object and the receiver object. For

instance, if the person a calls the person b, then the behavioral model of the person a

have information about the receiver of the call in its DP, and as a result sends a message

to the behavioral model of the person b.

Figure 60. A model (left), a structure (middle) and a behavior (right).

So, the domain structure of a language DDMM (i.e., domain concepts, concepts’

attributes and relationships between concepts) is in close relationship with its behavior

and might sometimes directly influence the behavioral specification. For instance in the

case of eISM, this includes the introduction of new states, transitions, firing conditions

and update functions, modifying the control part (CP), input interpreter (II) and output

interpreter (OI).

Figure 61. The structure impacts the number of states in a discrete-events behavioral

model.

For instance in Figure 61, the presence of the reference playOn influence the presence

of a new state playing into the behavior of a Person. This furthermore impacts on the II

as a consequence to the need of firing conditions and on the OI as a consequence to the

need of update functions.

(1) calls

(2) responds

(3) communication

callingidle

responding communicating

Person: a Person: b

playingidle

152

Figure 62. The structure impacts the synchronized functioning of behavioral models.

The structure might also influence the synchronized functioning of different behavioral

models. For instance the example illustrated in Figure 62 shows the influence of a bi-

directional reference on the behavior of its source concept (Person) and its target

concept (XboxONE). In this case, if a person (instance of the class Person) plays on an

Xbox One (instance of the class XboxOne), the console should be running (i.e. the

person is in playing state and the XboxOne is in running state). Another example is the

controlled execution of Functions in the eFFBD language. In this case, the execution of

function is controlled by the container sequence, as discussed in Section 4.1.1 (see

Figure 47). The container function must start the execution of composing functions and

wait until all composing functions finish execution.

Figure 63. Multiplicity impacts the behavior.

Multiplicities might also impact on the behavior. For instance, in Figure 63 another

“console playing” example is illustrated, where, depending on the number of persons

that play on the same Xbox One, the console should be respectively in idle,

runningForOne or runningForTwo state.

4.2.4 Technical issues related to the eISM

In addition to the integration process discussed in Section 4.2.3, the following technical

issues still remain, preventing the design and management of eISM models:

- Technical issue 1: an editor for eISM does not exist

- Technical issue 2: the EMOF’s editor (class/relation diagram) is not suited for

eISM models

playingidle runningidle

playingidle runingForOneidle runingForOne

 153

- Technical issue 3: the EMF code generator (genmodel) is not suited for eISM

model (i.e., does not generated code for eISM models)

To address the first technical issue, we have designed an eISM graphical editor by using

the Obeo Designer approach (Juliot & Benois 2010). For instance, this editor is used to

design an eISM model for the eFFBD concept Function, as illustrated in Section 4.2.6

by Figure 65. The choice of the Obeo Designer approach is justified by the following

points:

1) Obeo Designer is easy to use, not requiring significant tool-related knowledge;

2) supports a multi-viewpoint graphical representation;

3) is integrated into the EMF and is compliant with the EMOF;

4) has a tool-supported release that is open source, currently available for

download, maintained and regularly updated.

The second issue is about the management of eISM models (i.e., their design and their

association with domain concepts modeled by classes) by using the graphical EMOF

editor (i.e., the EMF’s class/relation diagram). Namely, first eISM models must be

created and graphically represented in the EMOF editor. Second, eISM models must be

association with domain concepts and such associations must also be graphically

represented.

We have addressed this issue by extending the initial EMOF editor, including the above

quoted features. As illustration, the EMOF editor shown in Figure 69, illustrates several

classes related to each other by references and compositions, but also, related to red-

oval forms that represent eISM models. A double-click on these red-ovals opens the

eISM editor, discussed in Technical issue 1, and allows designing an eISM model.

The third technical issue is about the EMF’s code generation mechanism represented by

a so-called genmodel. The genmodel allows generating Java interfaces and

implementation classes for all the classes shown in an EMOF editor, plus a factory and

package implementation class. However, the genmodel is not suited to generate code for

the eISM models shown in the EMOF editor. At this point, eISM models are designed

and graphically represented in the eISM editor, but they lack the necessary Java code

(similarly to the EMOF classes and relations before the code generation). For instance,

let’s consider the eISM model for the eFFBD concept Function, illustrated in Section

154

4.2.6 by Figure 65. For this model, we need one instance of the class eISM (see Figure

56), six instances of the class State (see Figure 56) for each of the states and so on.

We have addressed this issue by extending the initial genmodel to generate (in addition

to the Java interfaces and implementation classes for all the classes shown in an EMOF

editor) the necessary Java code for all the eISM models shown in an EMOF editor.

4.2.5 A formal proof mechanism for the eISM

The formal proof mechanism proposed in this section allows formal verification of

properties based on eISM behavioral models. The goal is on the one hand to verify the

well-formedness of eISM behavioral models before using them for the purpose of

simulation, and on the other hand, to verify properties during simulation. The

verification must be performed taking eISM models separately but also together with

other eISM models (from the same DSML or other DSML from the same modeling

environment).

A verification process consists in general of: 1) a formal specification, on which the

verification process is conducted, 2) formal properties that are verified on the formal

specification during the verification process and 3) a tool for verification, i.e., a model-

checking tool.

1) Formal specification

The underlying structure of an eISM behavioral model is based on the Linear Temporal

Logic (LTL), defined by a set of Elementary Valid Formulas (EVF) that are initially

introduced in (Larnac et al. 1995) as follows.

EVF are inferred from the PC’s transitions combined with LTL operators. Let &/ =
x`r/, v/a, yrf , w/z� a transition between states si and sj, associated to an ej firing condition

propositional variable and to a ui update propositional variable (see Figure 53). Ti infers

as an EVF of the following form:

(��`&/a #= �yr/ � v/ � ¡rf � w/z
Its interpretation stands as follows: “it is always true (¨ operator) that if si is the current

state (and therefore si is true) and ej is true, then the next state (¡ operator) will be sj (sj

will be true), and the current output propositional variable ui becomes true”. The list of

 155

all the EVFs gives a symbolic and equivalent description of the behavior of an eISM

model.

Similarly, a Unified Valid Formula (UVF) is computed by taking EVFs into

consideration. Briefly, the concept of Temporal Event (Et,) describes possible effects of

an eISM model evolution. Et can either be a future state (Et=¡si), a future state within

n-time steps (Et=¡
n
si), a future output propositional variable (Et=¡ui), or a future

output propositional variable within n-future steps (Et=¡
n
ui). A Unified Valid Formula

(UVF) defines then conditions that must be satisfied for the occurrence of a temporal

event Et:

���`(�a #= � yrV � vtz
`V,ta�r��v����

Its interpretation stands as follows: “next temporal event Et (respectively state Sj or

update function ui) is reachable if and only if at least one of the proposed conditions is

verified”. So the calculation of UVFs consists in manipulating the set of EVFs.

Figure 64. An example of a state model with three states (Sk, Sl and Sj) and two

transitions (Tk and Tl).

For instance, let’s consider the following EVF formulas, derived from the Figure 64

state model:

`�a1(��`&~a #= �yr~ � v~ � ¡rf � w~z
`�a1(��`&ea #= �yre � ve � ¡rf � wez

The UVF(Et) when Et = ¡sj is then noted:

���`(�a #= `r~ � v~a `re � vea
whose interpretation is: “sj will be active in the next step (¡sj is true), either if `r~ �
v~a is true or if `re � vea is true”.

2) Formal properties

sjssk
ek/uk el/ul slj

el/ll u// l

156

Chapter III introduces different types of properties, among which are the constraint

properties (CP, see Definition 10). This section focuses particularly on the following

constraint properties:

- A-temporal behavioral constraint properties (ABCP), see Definition 18

- A-temporal dependent behavioral constraint properties (ADBCP), see Definition

39

- Temporal behavioral constraint properties (TBCP), see Definition 19

- Temporal dependent behavioral constraint properties (TDBCP), see Definition

39

Namely, the A(D)BCP are used to verify the well-formedness of the behavior models

before being used for the purpose of simulation, specifying:

- The hypotheses of the used behavioral language: the behavioral language

imposes several hypotheses that designed behavioral models must respect.

- Alternative or Stakeholders’ hypotheses: sometimes stakeholders impose, in

addition to the hypotheses of a behavioral language, several other hypotheses.

The T(D)BCP are used to verify the eISM models during simulation. For this purpose, a

model checked must be integrated with a simulator, as proposed for instance by

UPPAAL. For instance, the following property must be verified every execution step by

all eISM behavioral models:

“at a given time step, there is one and only one current state”.

Both temporal and a-temporal properties must be formalized by using the LTL. For

instance, the above quoted property is specified by the following LTL formula:

"p #= �yr/ � ¬rfz, d4, Y 0 {�, ^ ^ , |!.F.7@|}, 4 ¡ Y
3) Tool

An adequate model checking tool is under construction considering the Rozier’s survey

on formal verification techniques of LTL symbolic model checking (Rozier 2011).

As an example of LTL formulas checking mechanisms for the ISM, (Larnac et al. 1995;

Vandermeulen et al. 1995; Vandermeulen 1996) propose the Temporal Boolean

Difference (TBD) mechanism inspired by (Kohavi & Jha 2009).

 157

The TBD mechanism is applied on a UVF with respect to a current state or a firing

condition propositional variable, composing them into a Derived Valid Formula (DVF):

W��`(�, Ha #= ¢���
`(�a

¢H = ���`(�|Ha£���`(�|¬Ha

The result of an evaluation of W��`(�, Ha can either be:

i. False – UVF(Et) is independent of x. In other words, the change of value of x

has no influence over the occurrence of Et.

ii. Not False – in this case, we obtain a LTL formula which expresses the

sensitivity of UVF(Et) with respect to the changes of x.

In summary, the proof mechanism proposed above aims at “direct” verification of LTL

properties based on the elementary valid formulas (EVF) abstracted from eISM models,

without transforming the eISM models into third-party formalisms. An adequate model

checking tool is under construction. The model-checker must be able to consider

multiple eISM models abstracted through EVFs for the verification of “dependency”

properties. We aim at integrating this model-checker with a simulator for the

verification of temporal properties.

4.2.6 Example 1: modelling the behavior of the eFFBD concept Function

We show in this section the design of the behavior of the eFFBD concept Function by

using the eISM language.

The behavior of the eFFBD concept function is described in Section 4.1.1 as a six-state

behavioral model composed of the following states: Sleep, Authorized, Execution,

Finished, Suspended and Aborted.

The corresponding eISM behavioral model is illustrated in Figure 65 and is described as

follows. A Function is initially in the Sleep state, waiting for a request to start execution

(start event). When the request arrives, the Function enter Authorized state, meaning

that that input/output transformation is possible depending on the availability of all

input Items and Resources as well as the state of the Components on which the Function

is allocated (condition : c1). When the previous condition is satisfied, the update

transformingInputs is activated (i.e. the real transformation of energy, material and / or

data happens) and the Functions enters Execution state. The transformation least a

certain time period (condition: c2), before producing outputs (update:

158

providingOutputs) forcing the Function into Finished state. In case of dysfunction of the

component on which the function has been allocated (suspended event), a function is

Suspended and eventually Aborted, assuming the component does not reply on time

(condition: c5).

Figure 65. An eISM behavioral model describing the behavior of the concept Function.

To complete the behavior of the concept Function, we propose in the next, to model the

behavior of the concept Component of the PBD language, based on eISM. This

behavior is initially introduced in Section 3.3 and illustrated in Figure 32 as a a five-

state behavioral model.

The corresponding eISM behavioral model is illustrated in Figure 66 and is described as

follows. A component is initially non-active (NA) waiting for energy (activate event) to

get prepared for a state. When the signal is received, the update activating is activated

and the component enters activates state (A). It starts producing, when the start signal is

received, activating the update producing (i.e. the component performs its function) and

it enters producing state (P). Components perform their functions until they receive,

either a stop signal, which put them in the previous state (update stopping is activated),

or a breakdown signal (update emergency is activated), which immediately makes them

stop producing and puts them in waiting states (SS or ES) depending on the signal

nature (internal default or external default). Additionally, a component provides its

performing functions with its current state (see the notify update), allowing them to take

 159

the component’s current state into account inside their behavioral model (see Function’s

conditions).

Figure 66. An eISM behavioral model describing the behavior of the concept

Compàonent.

4.2.7 Example 2: executable WaterDistrib DSML

In this section we demonstrate a from-scratch design of an executable DSML for

modeling water storage and distribution systems, denoted WaterDistrib (initially

introduced in Section 2.4.3).

Figure 67. a WaterDistrib model – an example of a water storage and distribution

system.

A model created by WaterDistrib is illustrated in Figure 67. It is composed of a water

tank, a water-source that is connected to the tank with pipes and a control station. A

house is supplied with water thanks to the tank. There are valves on each of the pipes,

controlled (opened or closed) by a control station, based on the water request and the

water consumer
water
well

water level

valves

water tank

control station

160

water level inside the tank. The goal of this case study is to observe the changing water

level in the tank based on the consumers demand.

Figure 68. Imagined functioning of WaterDistrib.

The imagined functioning of this system is illustrated in Figure 68 as described in the

next. Note that, the purpose of this schema is to illustrate the exchange of information

i.e., data or signals (events) between different components. The control station monitors

the water level inside the tank. It responds to a water request from the house, based on

the tank’s current water level and the tank’s allowed minimal or maximal water level.

As a result, the control station sends Open or Close signals (events) to valves, changing

their state that consequently impacts on the volume of water flow they provide, through

pipes, to the tank. Finally, the water level of the tank varies depending on the incoming

and outgoing water flow.

Figure 69. WaterDistrib: a new DSML for a water storage and distribution systems.

The metamodel of WaterDistrib is illustrated in Figure 69 composed of three principle

components: WaterTank, Valve and ControlStation. We design hereafter the behavior of

each concept by eISM behavioral models, considering the previously imagined

functioning.

Control station

Water
tank

Open

Close Co

Op

Event

Data

Ev

Da

Water

flow

station

flow

Valve

Water
consumer

Open

ClCloseCloseValve

Da

Ev

Da

Water

request

tank

ter ter

nk

 161

Figure 70. eISM behavioral model associated to the class Valve.

The behavior of the concept Valve is composed of four states: Closed, Opening, Opened

and Closing as illustrated in Figure 70.

Table 1. Valve’s updates

Update Language Data

closed waterFlow=0

opening waterFlow+=increasingRate

opened waterFlow=maxWaterFlow

closing waterFlow-=decreasingRate

A valve is initially Closed, not providing any water flow (update closed is activated, see

Table 1), awaiting a request to open itself. When the open request arrives, the update

opening is activated (see table 1) and the valve enters Opening state. Once the valve’s

water flow reaches its maximum value, the update open is activated (see Table 1) and

the valve enters Opened state. Now the valve awaits a request to close itself. When the

close request arrives, the update closing is activated (see Table 1) and the valve enters

Closing state. As soon as the valve’s water flow reaches 0, the update closed is activated

and the valve enters its initial Closed state.

 The behavior of the concept ControlStation is composed of three states: Mode1, Mode2

and Mode3 as illustrated in Figure 71.

162

Figure 71. eISM behavioral model associated to the class ControlStation.

A control station is initially in the Mode1 state, filling the tank (update filling is

activated, see Table 2) awaiting water request. When the request arrives and if there is a

sufficient water level in the tank, the filling-empting update is activated (see Table 2)

and the control station enters Mode2 state. If the tank is empting faster than filling,

when its current water level reaches the critical min level, or if a “Stop Water Providing

Request” is received, the control station enters again Mode1 state, activating the filling

update.

Table 2. Control Station’s updates

Update Output Data

filling

Outputs.set(waterTank.inputValve, Open)

Outputs.set(waterTank.outputValve, Close)

filling-empting

Outputs.set(waterTank.inputValve, Open)

Outputs.set(waterTank.outputValve, Open)

awaiting

Outputs.set(waterTank.inputValve, Close)

Outputs.set(waterTank.outputValve, Close)

For the sake of simplicity, the case when the tank is filling faster than empting is not

modeled in Figure 71. When the station is in Mode1 state, if a water request has not yet

arrived and the tank reaches its critical max level, the awaiting update is activated (see

Table 2). The control station enters Mode3 state, waiting for a water request. The

 163

request arrival activates the filling-empting update and the control station enters Mode2

state.

The eISM behavioral model associated to the class Water Tank should be a continuous

behavioral models. However, at the current stage of this research, continuous behavioral

models are out of the scope. Therefore, it is represented by a one-state eISM model that

has two, always active, update functions. The function that increases the tank’s water

level based on on the incoming water flow:

- waterLevel+=Inputs.get(inputValve,waterLevel)

and the function that decreases the tank’s water level based on on the outgoing water

flow:

- waterLevel-=Inputs.get(outputValue,waterLevel)

Additionally, the tank provides information to the control station about its current,

minimal allowed and maximal allowed water level by the following update functions:

- Outputs.set(controlStation,waterLevel)

- Outputs.set(controlStation,maxWaterLevel) and

- Outputs.set(controlStation,minWaterLevel)

The next phase consists to formally verify for well-formedness of previously designed

eISM behavioral models. For this purpose, their formal underlying structure is

developed and exploited.

Figure 72. The formal underlying structure of the Valve’s eISM behavioral model

Figure 72 illustrates the formal underlying structure of the Valve’s eISM behavioral

Firing condition functions and

firing condition propositional variables

{waterFlow==0, open}: e1

{waterFlow>maxWaterFlow, /}: e2

{waterFlow==maxWaterFlow, close}: e3

{waterFlow<0, /}: e4

States/Updates and state/update

propositional variables

Closed: s1 Opening: s2

Opened: s3 Closing: s4

opening: u1 opened: u2

closing: u3 closed: u4

Elementary Valid Formulas Unified Valid Formulas

164

model. At the upper side of the figure the states, updates and firing conditions are

specified, along with their corresponding propositional variables. Using these variables

allows the specification of EVFs that are furthermore used for the specification of the

UVFs. In the same way, one can specify the formal underlying structure of any eISM

model.

Concerning formal properties, let’s consider the transition exclusion hypothesis: “at any

given time step, for the current active state (which must be unique), there is one and

only one output transition that can be fired”. In other word, all firing condition of output

transitions of any state from the PC, are to be exclusive, modelled as:

d!/ 0 !, (T¤ = s7f¥d&~ 0 ->@.`!/a, -97y��(`&~a = !/ � 7fzu ¦£f§p�U¨D�©�ª¤«
7f = �­

Finally, an adequate model-checker should be used to verify this property on the formal

specification.

4.3 Modeling the behavior of a DSML with a formal rule-based

language
This section proposes a Formal Rule-Based Language (FRBL) to ease and assist the

design of dynamic semantics as much as possible for discrete-events (DE) languages

with pre-defined semantics such as eISM. A discussion about the positioning and

problematic is proposed in Section 4.3.1. Introduction to the FRBL, its syntax and

semantics are proposed in Section 4.3.2, 4.3.3 and 4.3.4. An example is shown in

Section 4.3.5. and Section 4.3.6 introduces an approach for “on the fly design and

integration” of new discrete-events languages with the EMOF.

4.3.1 Positioning and Problematic: DSMLs with predefined formal
semantics

We have previously shown how to model the dynamic semantics of a DSML by a set of

discrete-events behavioral models designed by using the discrete-events language eISM.

Following the design is the execution of models created by a DSML, using the eISM

behavioral models. The eISM behavioral models are executed based on the dynamic

semantics of the eISM language. Namely, the eISM language has a syntax (abstract and

concrete) but also a semantics (static and dynamic). For instance, its abstract syntax is

shown in Figure 56 and its concrete syntax is illustrated for the examples shown in

 165

Figure 65, Figure 70 and Figure 71. The semantics of eISM is implicitly but partially

defined by the formal specification introduced in Section 4.2.2. Nonetheless, such

formal specification can only be used to understand the functioning of eISM models.

For the execution of eISM models, an adequate implementation of the formal

specification is needed, for instance, designed by using the action language Kermeta, as

discussed in Chapter II.

Similarly to eISM, there are various other languages with formal predefined semantics,

e.g., PetriNets, Statechart, Finite State Machine, FCCS, etc. Some of them have even

various semantics that might be considered valid and usable. In this section, a particular

attention is given on making such languages executable, by easing and assisting the

design process of dynamic semantics as much as possible. For this purpose, we aim at

reusing the formal pre-defined semantics, rather than completely rewriting and

rethinking it. This idea is inspired by the boilerplate-based approaches (see Chapter II)

where models are built on the top of templates that contain crucial, already validated

information, providing a solid basis. We argue that this can considerably reduce the

needed efforts and time for the design of dynamic semantics for DSML with formal pre-

defined semantics, such as eISM, Statechart, FCCS, etc.

4.3.2 General introduction to the FRBL

This section introduces the Formal Rule-Based Language (FRBL). FRBL is used for the

design of dynamic semantics of DSMLs with formal pre-defined semantics through

formal expressions, denoted rules, mixed with classical control flow (conditional,

iterative, rule calls, etc.). The goal of FRBL is to assist and ease the design of dynamic

semantics for a particular category of DSMLs that have formal pre-defined semantics

based on discrete-events (DE) hypothesis. For this purpose, FRBL is based on two

principles, mentioned above and detailed hereafter:

- Reuse of the predefined formal semantics of DE languages

- Design based on templates

According to (Chapurlat 1994), the evolution of any DE model can be generalized based

on three phases, illustrated in Figure 73:

- Phase 1 - Reading Inputs (RI)

- Phase 2 - Calculating Future State(s) (CFS)

166

- Phase 3 - Writing Outputs (WO)

Figure 73. Generic evolution algorithm for discrete-events models (Chapurlat 1994).

During phase 1, DE models must read the requested inputs, forming the necessary data

to evolve. Inputs are provided by an external source, for instance, by the environment.

Next, DE models must calculate their future state based on the dynamic semantics of the

DE language that is used to create them (e.g., the future state of PetriNets models

determined by the number of tokens in places, is calculated based on the dynamic

semantics of the PetriNets language). During this process, the data provided by the

inputs is potentially changed. Finally, the data is provided back to the external source

through the writing outputs phase.

Based on the above presented generalization of DE behaviors, the FRBL language

proposes a generic template that can be reused for any DE language based on three main

rules for each one of the above quoted phases: 1) Reading Inputs Rule, 2) Calculating

Future State Rule and 3) Writing Outputs Rule.

To furthermore ease the process of dynamic semantics design, designers need to

consider the formal pre-defined semantics of the DE language they are designing, to

complete the template, creating a fully functional dynamic semantics that can be used

for DE models execution.

The syntax of the FRBL is designed to be similar to formal semantics, easing the reuse

of the pre-defined formal semantics of DE languages.

y
Next evolution step?

n

(1) Reading Inputs (RI)

(2) Calculating Future State (CFS)

(3) Writing Outputs (WO)

T=0

T=T+1

T evolution cycles (execution steps)

 167

We propose in the next, the syntax (abstract and concrete) and the dynamic semantics of

the FRBL. The syntax is designed in a form of xText grammar (similar to EBNF) by the

xText approach (Bettini 2013). To ease readability, we show in parallel to the EBNF

rules, the corresponding abstract syntax through a metamodel. The dynamic semantics

are designed in the form of transformations to Java code (i.e., Java code generator) that

can be executed on the JVM (Java Virtual Machine).

4.3.3 Introduction to the syntax of the FRBL

This section presents the syntax of the FRBL language as an xText grammar, specified

throughout Listing 1 – Listing 4.

Listing 1 is shown below. It is described as follows.

Behavior: rules+=Rule*;

Rule:
 '[rule' name=Name ('parameters:' parameters+=VarDeclaration*)?

 ('output' returnType=(VARTYPE|SET))? ']'
 (expressions+=Expression)*
 '[/rule]';

Listing 1. xText grammar for FRBL rules.

A Behavior consists of an arbitrary number (*) of Rules.

Each Rule is marked by the tags “[rule]” that contains a “rule declaration”, and

“[/rule]”. A “rule declaration” is composed of a name (i.e., the name of the rule) and

optionally (?) of a “set of parameters” and a “return type”. The “set of parameters” is

preceded by the keyword “parameters” and it contains an arbitrary number of

parameters, each one being a Variable Declaration (defined below). The “return type”

is preceded by the keyword “output” and can either be a VARTYPE of SET (defined

below). Inside the tags is a set of Expressions that define the body of the rule.

The above quoted description of Listing 1 is also modeled by the metamodel shown in

Figure 74.

168

Figure 74. The metamodel describing the FRBL rules shown in Listing 1.

Listing 2 is shown below. It is described as follows.

Expression: ArithmeticExp | VarExp | CondExp | SetExp;

ArithmeticExp: value=Literal (RHS=BinaryExp)?;

VarExp: VarDeclaration | VarAssignment;

CondExp: '[if' condition= ArithmeticExp ']' (ifBody+=Expression)* '[/if]';

SetExp: '[forall' var=Name 'in' set=Name ']' (setBody+=Expression)* '[/forall]';

Listing 2. xText grammar for FRBL expressions.

There are four types of Expressions:

- Arithmetic Expressions

- Variable Expressions,

- Conditional Expressions

- Set Expressions

An Arithmetic Expression is composed of a Literal and an optional (?) right hand side

that when defined, makes the Arithmetic Expression a Binary Expression (defined

below).

A Variable Expression can either be a Variable Declaration or a Variable Assignment

(both defined below).

A Conditional Expression is marked with the tags “[if]” that contains an “if condition”

,and “[/if]”. The “if condition” is an Arithmetic Expression that can evaluate to 0,

meaning that the condition is false, or any other number, meaning the condition is true.

Inside the tags is a set of Expressions that define the body of the conditional expression.

These expressions are evaluated only if the “if condition” is true.

 169

A Set Expression is marked with the tags “[forall]” that contains a “set declaration”,

and “[/forall]”. The “set declaration” is composed of an iterative variable over a set,

both identified by a Name (defined below). Inside the tags is a set of Expressions that

define the body of the set expression. These expressions are evaluated every time the

variable iterates over the set.

The above quoted description of Listing 2 is also modeled by the metamodel shown in

Figure 75.

Figure 75. The metamodel describing the FRBL expressions shown in Listing 2.

Listing 3 is shown below. It is described as follows.

VarDeclaration: type=(VARTYPE|SET|ID) name=ID (':' defaultValue=Literal)?;

VarAssignment: varName=Name ':=' arithmeticExp=ArithmeticExp;

BinaryExp:
 OP=('+'|'-'|'*'|'/'|'<'|'>'|'>='|'<='|'='|'!='|'and'|'or') ae=ArithmeticExp;

Literal:
 (output = 'output')?
 numericalValue=Number |
 nameValue=Name;

Listing 3. The xText grammar for Variables, Binary Expressions and Literals.

A Variable Declaration is composed of a type that can either be a VARTYPE, a SET

(defined below) or a unique identifier (ID), a variable name that must be unique (ID)

and an optional (?) default value defined by a Literal.

A Variable Assignment is composed of the name of a variable, followed by the

assignment keyword “:=” and an Arithmetic Expression.

170

A Binary Expression specifies the optional right hand side of an Arithmetic Expression

(defined above). It is composed of a binary operator followed by another Arithmetic

Expression. Note that for the sake of simplicity, Logical Expressions are specified as

Arithmetic Expressions and thus among the binary operators are the comparative

operators (>; <; >=; <=; =; !=) and the logical operators (and; or).

A Literal specified a numerical value (Number) or a name value (Name) (defined

above). Optionally, the literal might be the result (i.e., the output) of a rule if preceded

by the keyword “output”.

The above quoted description of Listing 3 is also modeled by the metamodel shown in

Figure 76.

Figure 76. The metamodel describing the FRBL Variables, Binary expressions and

Literals shown in Listing 3.

Listing 4 is shown below. It is described as follows.

A Name is either a simple STRING or a “navigable entity”. A “navigable entity” is

composed of a unique identifier (ID) and an arbitrary number (*) of Navigations.

A Navigation is composed of a connector followed by a unique identifier (ID) and

optionally a Predicate. A connector might either be “.” (used when navigating to an

element) or “->” (used when navigating to a set of elements).

A Predicate is composed of an opening parenthesis “(” and a closing parenthesis “)”

that regroup one or several parameters specified by unique identifiers (ID) and

separated by the separator “,”.

 171

A Number is either a whole number (INT) or a decimal number specified as two whole

numbers separated by a “.” separator.

Name:
STRING |
(name=ID navigations+=Navigation*);

Navigation: connector=('.'|'->') name=ID (predicat=Predicat)?;

Predicat: leftP='(' (parameter=ID)? (',' additionalParameters+=ID)* rightP=')';

Number hidden():
 INT ('.' INT)?;

terminal VARTYPE: 'Integer'|'Float'|'String'|'Boolean';
terminal SET: 'Set' '<' VARTYPE '>';
terminal INT returns ecore::EInt: ('0'..'9')+;
terminal STRING:

'"' ('\\' ./*('b'|'t'|'n'|'f'|'r'|'u'|'"'|"'"|'\\')*/| !('\\'|'"'))* '"'? |
"'" ('\\' ./*('b'|'t'|'n'|'f'|'r'|'u'|'"'|"'"|'\\')*/| !('\\'|"'"))* "'"?;

Listing 4. The xText grammar for Name, Number and Terminals.

There are four terminals: VARTYPE, SET, INT and STRING. VARTYPE is for the

declaration of types. SET is for the declaration of a SET. INT is for the specification of

whole numbers. STRING is for the specification of string values. A string value must be

framed into simple or double quotes.

The above quoted description of Listing 4 is also modeled by the metamodel shown in

Figure 77.

Figure 77. The metamodel describing the FRBL Name shown in Listing 4.

4.3.4 Introduction of the semantics of the FRBL

This section presents the dynamic semantics of the FRBL language as a code generator

that allows the transformation of FRBL code (represented as a FRBL model) into Java

code. The generated Java code is based on the EMF library and can be executed on the

JVM (Java Virtual Machine). Note that, in the field of programming languages, such

code generators are commonly referred as compilers (e.g., C compilers allow the

transformation of C code to Assembler code).

172

The xText approach provides a code generation facility based on xTend (Bettini 2013)

that can be used to generate Java code. In this section we propose a part of the code

generator for the FRBL language, written in xTend.

Listing 5 shows the FRBLGenerator class that contains the implementation of the

FRBL code generator. The doGenerate method is called from the builder infrastructure

whenever a FRBL model has changed. This method calls the generateFile that opens a

Java file (or creates a new one if the file does not exist) and writes the Java code that is

returned by the compile method in this file. The compile method takes on parameter the

changed FRBL model and iterates the objects contained in this FRBL model, selecting

all Rules. The compileRule method is then called for each Rule.

class FRBLGenerator implements IGenerator {

override void doGenerate(Resource resource, IFileSystemAccess fsa) {
 fsa.generateFile(

getFileName()+'.java',
resource.complie)

}

def CharSequence complie(Resource resource)'''
 «FOR r:resource.allContents.toIterable.filter(Rule)»
 «r.compileRule»
 «ENDFOR»

'''

Listing 5. An extraction of the code-generation template defined by the FRBLGenerator

class.

The method compileRule is illustrated in Listing 6. It returns, for each Rule, a skeleton

of a Java method composed of a name, return type, parameters and a body. The

method’s body is generated based on the compileExpression method that is called for all

expressions of a Rule (see also Listing 1 and Figure 74).

def compileRule(Rule rule)'''
public «IF rule.returnType!=null»«rule.returnType»«ELSE»void«ENDIF»
«rule.name»(«rule.parameters.compileParameters»){

 «FOR e:rule.expressions»
 «e.compileExpression»
 «ENDFOR»
 }
'''
Listing 6. The compileRule method, extracted from the code-generation template.

The method compileExpression dispatch the method call based on the type of the

expression, as shown in Listing 7.

 173

def compileExpression(Expression e)'''
 «IF e instanceof ArithmeticExp»«(e as ArithmeticExp).compileArithmeticExp
»«ENDIF»
 «IF e instanceof VarExp »«(e as VarExp).compileVarExp»«ENDIF»
 «IF e instanceof CondExp»«(e as CondExp).compileCondExp»«ENDIF»
 «IF e instanceof SetExp»«(e as SetExp).compileSetExp»«ENDIF»

'''

Listing 7. The compileExpression method, extracted from the code-generation template

For instance, the method compileCondExp is called if the expression is indeed a

Conditional Expression. In this case, a Java if-then statement is generated, as illustrated

in Listing 8.

def compileCondExp(CondExp condExp)'''
 if(«condExp.condition.compileArithmeticExp»){
 «FOR e : condExp.ifBody»

«e.compileExpression»
 «ENDFOR»
 }

'''

Listing 8. The compileCondExp method, extracted from the code-generation template.

The method compileCondExp is called is the expression is indeed a Set Expression. In

this case, a Java for statement is generated, as illustrated in Listing 9.

def compileSetExp(SetExp setExp)'''
«"for(EObject " + setExp.^var.name + " : this.eContents())
{
 if(" + setExp.^var.name + " instanceof EClass && ((EClass) " +

setExp.^var.name + ").getName().equals(\"" + setExp.set.name + "\"))
 {"»

 «FOR e : setExp.setBody»
«e.compileExpression»

«ENDFOR»
 }
 }

'''

Listing 9. The compileSetExp method, extracted from the code-generation template.

For instance, Listing 10 shows the FRBL rule “ReadingInputs” and the resulting Java

code (i.e., the result of the code generation process). Note that the Java code is based on

the EMF library.

174

FRBL Rule:
[rule ReadingInputs]
 [forall input in Input]
 input.getReadInputsFrom().read(input)
 [/forall]
[/rule]

Resulting Java code (compatible with the EML library):
public void ReadingInputs(){
 for(EObject input : this.eContents())

{
 if(input instanceof EClass &&

((EClass) input).getName().equals("Input"))
{

 ((Input)input).getReadInputsFrom().read((Input)input);
 }
 }
}

Listing 10. An FRBL rule and the resulting Java code.

4.3.5 Example: designing the behavior of eISM by using the FRBL

Before designing the dynamic semantics of the eISM language, let’s first introduce the

generic template for DE behaviors (discussed in Section 4.3.2 and illustrated in Figure

73) that is automatically generated.

[rule ReadingInputs]
 [forall input in Input]
 //read inputs from the blackboard
 input.getReadInputsFrom().read(input)
 [/forall]
[/rule]

[rule CalculatingFutureState]
 //Complete this rule based on the formal pre-defined semantics
[/rule]

[rule WritingOutputs]
 [forall output in Output]
 //write outputs into the blackboard
 output.getWritingOutputsInto().write(output)
 [/forall]
[/rule]

Listing 11. Template for DE behaviors based on three rules.

The template is shown in Listing 11 composed of three general rules that every DE

language must implement:

- Rule 1: reading inputs

- Rule 2: calculating future state

- Rule 3: writing outputs

 175

There rules are managed by the Controller of the blackboard design pattern for

synchronized model execution. Chapter V provides details for the synchronized

execution and the handling of these rules. See also Figure 59 for the structure of the

blackboard design pattern, i.e., the relations of the input and output concepts with the

blackboard concepts. Note that the methods read(Input i) and write(Output o) are

defined based on the blackboard design pattern for the blackboard concept.

These three rules must furthermore be completed based on the formal pre-defined

behavior of the considered DE language. For instance, in our case, we consider the

formal semantics of eISM discussed in Section 4.2.2. Based on these semantics, Listing

12 shows how the templated can be completed introducing several auxiliary Rules:

- WriteInputInDataPart (contained in the main ReadingInputs rule)

- ReadOutputFromDataPart (contained in the main WritingInputs rule)

- EvaluateFiringConditionPropositionalVariables, FireTransitions and Evaluate

Updates (contained in the main CalculatingFutureState rule)

[rule ReadingInputs]
 [forall input in Input]
 //read inputs from the blackboard
 input.getReadInputsFrom().read(input)
 //write inputs into the data part
 WriteInputInDataPart(input)
 [/forall]
[/rule]

[rule CalculatingFutureState] //Calculatinf future state for eISM models
 EvaluateFiringConditionPropositionalVariables()
 FireTransitions()
 EvaluateUpdates()
[/rule]

[rule WritingOutputs]
 [forall output in Output]

//load outputs from the data part before writing
 output:=ReadOutputFromDataPart(output)
 //write outputs into the blackboard
 output.getWritingOutputsInto().write(output)
 [/forall]
[/rule]

Listing 12. Completing the template for the eISM language.

The auxiliary rules are show in Listing 13, based on the eISM metamodel shown in

Figure 59.

176

[rule WriteInputInDataPart parameters: Input i]
getDP().getLanguageData().add(i)

[/rule]

[rule ReadOutputFromDataPart parameters: Output o output: Output]
Integer index := getDP().getLanguageData().indexOf(o)

 output getDP().getLanguageData().get(index)
[/rule]

[rule EvaluateFiringConditionPropositionalVariables]
 [forall fcf in FiringConditionFunction]
 Boolean expVal := eval(fcf.getBooleanExpression(),

getDP().getLanguageData(),
getDP().getInternalData())

 Boolean eventVal := eval(fcf.getRequestedEvents(),
getDP().getLanguageData())

 fcf.setActivates(expVal and eventVal)
 [/forall]
[/rule]

[rule FireTransitions]
 [forall t in Transition]
 [if t.getSource().isCurrent()=true and t.getFiringCondition()=true]
 t.getSource().setCurrent(false)
 t.getTarget().setCurrent(true)
 t.getUpdatePropVar.setVal(true)
 [/if]
 [/forall]
[/rule]

[rule EvaluateUpdates]
 [forall uv in UpdatePropVar]
 [if uv.getVal()=true]

[forall fld in uv.getActivates().getUpdateFctForLanguageData()]
 eval(fld)
 [/forall]

[forall fid in uv.getActivates().getUpdateFctForInternalData()]
 eval(fid)
 [/forall]

[forall fod in uv.getActivates().getUpdateFctForOutputData()]
 eval(fod)
 [/forall]
 [/if]
 [/forall]
[/rule]

Listing 13. The auxiliary rules for eISM.

The WriteInputInDataPart rule is used to write the inputs provided through the

blackboard in the data part. The ReadOutputFromDataPart rule is used to load the data

from the data part (that has potentially changed after calculating the future state) and to

write it in the blackboard. The EvaluateFiringConditionPropositionalVariables rule

evaluates the firing condition propositional variables based on the data contained in the

data part. The FireTransitions rule fires transitions, deactivating the source state and

activating the target state of transitions. It activates also the update variables. Note that

there is at most one transition that can be fired, otherwise the model violated the

 177

deterministic functioning hypothesis. Finally, the EvaluateUpdates rule evaluates the

update functions associated to the activated update.

Note that the firing conditions and the update functions are specified as a String. These

strings represent model level code defined by the designer (i.e., written using an opaque

action language). According to (Combemale et al. 2013), such model level code can be

written by using scripting languages allowing dynamic invocation, as they demonstrate

by using the Groovy language. The Groovy language is an object-oriented programming

language for the Java platform (Koenig et al. 2007). Fortunately, the FRBL code

generator discussed in Section 4.3.4 generates Java code and thus FRBL can be

integrated with Groovy for the evaluation of such String expressions.

Finally, the generated Java code is fully compatible with the EMF library that is

generated from the metamodel illustrated in Figure 59. Therefore, they must be

integrated before the promotion to the M3 layer illustrated in Figure 58.

4.3.6 On the fly design and integration of new DE languages with EMOF

Within the MBSE context, stakeholders must create their own DSML for modeling a

viewpoint of a SoI (see Section 2.2.2 for more details). Achieving then model V&V

requires DSML with semantics (static and dynamic) for simulation and formal proof.

We have stressed the need of discrete-events (DE) languages for modeling the behavior

(dynamic semantics) of DSML, introducing the eISM language in Section 4.2.

However, a real consensus about the use of one language for the design of DSML

dynamic semantics does not currently exists and different approaches propose the use of

different languages.

This section proposes an approach for “on the fly design and integration” of DE

languages with EMOF. Executable DSMLs can then be designed based on EMOF (for

the DSML abstract syntax) and on the newly designed DE language (for the DSML

dynamic semantics). In such a way, stakeholders can design their own DE language for

the design of dynamic semantics.

For this purpose, we propose an approach based on the FRBL and the EMOF. The

approach is illustrated in Figure 78 as an extension of the initial EMOF-eISM

integration process illustrated in Figure 58. It is composed of five steps:

- Step 1: design the abstract syntax of the DE language by using EMOF

178

- Step 2: design the dynamic semantics of the DE language by using FRBL

- Step 3: download the meta-metamodel to the M2 layer

- Step 4: specify the dependencies between the new DE language and EMOF

- Step 5: promote the result at the M3 layer

Figure 78. On the fly design and integration of DE languages with EMOF

During step 1 and 2, a DE language can be design by using EMOF (for the DE language

abstract syntax) and FRBL (for the DE language dynamic semantics). This is for

instance illustrated in Figure 56 for the eISM abstract syntax and in Listing 12 and

Listing 13 for the eISM dynamic semantics.

The third step consists in recovering (downloading) the meta-metamodel at M2 layer.

The fourth step consists in establishing the relationships between the downloaded meta-

metamodel and the new DE language. Note that, to address the issue of model

interoperability in terms of behavioral dependencies and synchronized execution of DE

models, the integration process is established following the blackboard design pattern.

The generated Java code from the FRBL dynamic semantics must be integrated with the

generated Java code of the meta-metamodel by using the EMF. Chapter V provides

more details on the blackboard design pattern and on the synchronized execution

algorithm.

«conforms»

«conforms»

M3

M2 EMOF

«conforms»

DDMM

«promotion»

Blackboard
design pattern

«conforms»

EMOF Blackboard
design pattern

Dynamic semantics
(DE models)

«conforms»

Abstract
syntax

Dynamic
semantics

New DE language

FRBL

«conforms»

DE languages (including
the new DE language)

M3

M2

FRBL

EMOF Blackboard
design pattern

DE languages

DE languages

«
d

o
w

n
lo

a
d
»

 179

Finally the resulting metamodel is promoted to the M3 layer, replacing the previous

meta-metamodel.

This process must be repeated for each newly added DE language. For instance, Figure

79 shows the result of the above process applied on the meta-metamodel shown in

Figure 59 that contains only one DE language, i.e., the eISM. The result is a meta-

metamodel that contains the new DE language along with the eISM. Note that, in

addition to this process, new graphical editors must be designed for the design and

management of “new DE” models, as discussed for the eISM language in Section 4.2.4.

Figure 79. Integrating EMOF with a new DE language based on the blackboard design

pattern.

The meta-metamodel with multiple DE languages allows the design of DSML dynamic

semantics based on multiple DE languages, denoted mixed dynamic semantics. A mixed

dynamic semantics includes behavioral models designed by different behavioral

languages. The synchronization between different behavioral models (e.g.,

synchronization between Statechart models and eISM models) is guaranteed by the

blackboard design pattern and the synchronization rules, introduced in Chapter V.

4.4 Conclusion
This chapter focuses on modeling behavior for MBSE, i.e., on the design of executable

DSMLs that allow simulation (i.e., model execution). It evaluates first a well-known

design pattern for executable DSML for its effective adaptation in the field of MBSE.

The goal is to create an executable version of a well-known language to MBSE experts,

i.e., an executable eFFBD (enhanced Functional Flow Block Diagram), denoted

xeFFBD. This application example allows us to highlight several issues, as well as

possible improvements for the effective adaptation of this design pattern in the field of

MBSE. Based on the feedback, Chapter IV introduces two languages that can be used to

design the behavior of a DSML.

180

The first language is an extended version of the Interpreted Sequential Machine denoted

(eISM). eISM is a behavioral language based on discrete-events hypotheses. In

comparison to other discrete-events languages eISM has several advantages: it operates

with typed input/output data and complex expressions build using types data, it

separates classical state/transition specification from data specification, allowing the

specification of some states using variables and it has formal underlying structure. For

the design of executable DSMLs, eISM is integrated with the metamodeling language

EMOF, creating an executable metamodeling language. In such a way, the behavior of a

DSML is specified as a set of discrete-events behavioral models, each one associated to

different domain concepts of the DSML abstract syntax.

The second language is a formal rule based language denoted FRBL. The goal of FRBL

is to ease and assist the design of the behavior of a DSML that have formal pre-defined

semantics based on the one hand, on the reuse of the DSML’s predefined formal

semantics and on the other hand, based on a generic template. The behavior of a DSML

is finally specified as a set of formal rules, among which the following three rules are

considered as main rules defined by the generic template: 1) read inputs, 2) calculate

future state and 3) write outputs. The syntax and the semantics of FRBL and designed

using the xText approach.

 181

CHAPTER V

VERIFICATION AND VALIDATION

182

This chapter presents the last part of the conceptual, methodological and technical

contributions of this work, i.e., an approach for system modeling and V&V denoted

“xviCore”. A map of Chapter’s outline with respect to the type of contributions is

shown in Figure 80.

Figure 80. Map of conceptual, methodological and technical contributions of Chapter V.

xviCore promotes mechanisms for simulation based on model execution, and

mechanisms for formal properties proof. The chapter is structured as follows. Section 5

introduces xviCore. Section 5.2 proposes xviCore’s mechanism for coordinated

simulation based on the blackboard design pattern and the use of dynamic semantics for

model execution. Section 5.3 introduces xviCore’s mechanisms for formal proof based

on the CREI property modeling language for the specification of all types of properties

and on adequate model-checking tools for properties proof. Finally Section 5.4

concludes the contribution.

5.1 Introduction: executable, verifiable and interoperable Core
We have issued several working hypotheses and choices in the previous chapters.

First, as previously discussed, DSML semantics is often neglected or, when needed,

provided by means of translating the DSML into third-party formalisms (Nastov Blazo

2014). This is, from our perspective, a limitation for the V&V of models in the context

of MBSE. A discussion on this topic is proposed in Chapter II.

executable verifiable and
interoperable Core (xviCore)

“composed of”

Metamodeling
language

Mechanism for simulation

Conceptual contribution

(Section 5.1)

Chapter III

Conceptual, Methodological

and Technical contribution

(Section 5.2)

Mechanism for formal
proof

Methodological and Technical

contribution (Section 5.3)

Concrete syntax
language

Constraint
modeling language

Constraint
modeling language

“composed of”

“composed of”

“composed of”

“based on”

“based on”

 183

Second, as proposed in Chapter III, both DSML syntax (abstract and concrete) and

DSML semantics (static and dynamic) can be formalized as a set of properties following

the DSML and model lifecycle. Property proof and model simulation are then

classically achieved based on transformation mechanisms (Mahfouz et al. 2013). This

technique leads to information loss, especially when considering a composite model

(i.e., an integration of several viewpoint models). Indeed, on the one hand, each of the

viewpoint models must be correctly transformed into a single formal specification. On

the other hand, achieved results must be correctly translated back and interpreted for

each of the originating viewpoint models.

Third, in Chapter IV we propose two languages for designing the behavior of a DSML:

eISM and FRBL, along with a process for their integration with the metamodeling

language EMOF. The resulting executable metamodeling language is used to specify

DSML abstract syntaxes and DSML dynamic semantics.

However, the modeling based on properties introduces in Chapter IV, highlights, in

addition to a metamodeling language (MML) and a behavioral modeling language

(BML), the need for a concrete syntax language (CSL) and a constraint modeling

language (CML), allowing then the design of all parts of a DSML (see Chapter II), i.e.,

DSML abstract syntax, DSML concrete syntax, DSML static semantics and DSML

dynamic semantics, and different types of dependencies, i.e., structural, representational

and behavioral.

This chapter introduces eXecutable, Verifiable and Interoperable Core (xviCore) a

method that integrates a MML, a CSL, a BML and a CML, for the design of executable,

verifiable and interoperable DSMLs (xviDSMLs). The design process of xviCore is that

of the composite DSML and model lifecycle introduced in Chapter III. An xviDSML is

a composing DSML in a composite DSML that is composed of:

iii. Abstract syntaxes define through metamodels the core concepts and attributes

that specify a particular SoI viewpoint as well as the relationships that bound

together these concepts.

iv. Concrete syntaxes define the graphical or textual representation of concepts.

This information is later used to represent graphically or textually the instances

of concepts in an editor. For this work we consider only concrete syntaxes (see

Chapter II for more details).

184

v. Static semantics define constraint properties, i.e., restrictions and additional

information on the syntaxes or the behavior (the dynamic semantics) that cannot

be implicated.

vi. Dynamic semantics (behavioral specifications) define the behavior of DSML

through behavioral models. Can be specified by using different techniques

discussed in Chapter IV.

vii. Dependencies define the relationships between syntaxes (abstract and concrete)

specifying how different DSML are structurally and graphically bound together,

and the relationships between the semantics (static and dynamic) specifying how

different DSML are behaviorally bound together, but also constraint properties

based on the dependencies.

Additionally, to put in use the semantics of an xviDSML, we propose in Section 5.2 a

mechanism for simulation and in Section 5.3 a mechanism for formal proof.

5.2 Simulation mechanisms
Prior to simulation is the specification of behavior. Two different techniques for the

design of DSML behavior are proposed in Chapter IV, by using a formal behavioral

modeling language based on discrete-event hypothesis and by using a formal rule-based

language. The first technique promotes the eISM language for the design of discrete-

events behavioral models to specify the behavior of DSML concepts. Let’s remember

that this choice is here considered as an example and the behavioral DSML (i.e., eISM)

can be chosen differently, e.g., by using classical States Machine, Temporised or

Temporal Petri Nets or even FCCS. The choice of eISM is justified in Chapter IV. The

second technique promotes FRBL to ease and assist the design of dynamic semantics as

much as possible for discrete-events (DE) languages with pre-defined semantics.

The process of simulation consists in using the DSML behavior (dynamic semantics) to

execute models created by a DSML. In our case, the behavior is defined by a set of

behavioral models, for instance based on discrete-events eISM models. These

behavioral models requires mechanisms for synchronization and centralized data and

events exchanges. So, each step of the execution (execution step), all behavioral models

from one DSML (or several composing DSMLs when considering composite DSML)

must be synchronously executed based on a data that is derived from the domain model.

 185

The data changes in the process, consequently changing the characteristics of the

domain model. Stakeholders observe these changes and judge about the relevance of the

model vis-à-vis the expected reality.

We propose a solution of the concurrent execution of behavioral models and centralized

data and events exchanges by applying the blackboard design pattern proposed by

(Engelmore & Morgan 1988) and on new hereafter introduced synchronization rules.

5.2.1 The blackboard design pattern

The blackboard design pattern is illustrated in Figure 81. It is a behavioral pattern

“affecting when and how programs react and perform”.

Figure 81. An overview of the blackboard design pattern.

A “blackboard” is a shared and structured memory that establishes relationships

between independent modules called “autonomous processes” where each process is

individually able to solve a sub-problem. Processes can solve a “global problem” when

they are put together, reading and writing data in the blackboard that is iteratively

updated. Each process has a set of triggering conditions that have to be satisfied by

particular kinds of events, sent by a controller.

The processes synchronization is handled by a controller that monitors the data stored

into the blackboard and decides which autonomous processes to prioritize. The

controller reacts to global changes in the blackboard resulting from external inputs or

previously executed processes. Processes can be simultaneously executed, having a

concurrent access to the relevant blackboard data. This may potentially produce a

situation of deadlock (if two or more processes are each waiting for the other to finish,

and thus neither ever does) (Lalanda 1997).

Our solution based on the blackboard design pattern is composed of three main

components:

Blackboard

Process-1 Process-2 Process-N

Control

186

- a shared and structured memory denoted Blackboard;

- behavioral models that represent the concurrent processes;

- a controller that schedules the execution of behavioral models;

The Blackboard is a common and time dependent base of information where behavioral

models write their output data (O) and read their input data (I), enabling information

exchange. It is formally defined as a 5-uplet BB k$AT,LT,V,S,R* where: AT is the set of

variables specifying the time of adding. LT is the set of “lifetime” variables, indicating

the remaining time before updating messages from the blackboard. V is the set of

“variables carried out by the messages. S is the set of “sender” variables specifying the

behavioral model that sent the message and R={R1,..,Rk} is the set of “receivers”

variables indicating the behavioral models that read the message.

Behavioral models are designed as proposed in Chapter IV by using a behavioral

modeling language.

Controller is used to schedule the execution of all behavioral models from one DSML

(or several composing DSMLs when considering composite DSML). The execution

scheduling process is based on:

- a multiscale time

- a reconciliation rule

- a cadence rule

- (optional) stability management

- an execution scheduling algorithm

They are introduced and formally defined in the next section.

Note that, although, only discrete-events behavioral models are currently experimented,

the following rules are envisioned so that continuous behavioral models can also be

integrated and evolve interchangeably.

5.2.2 Execution scheduling

Multiscale time: managing the behavior of several DSMLs at once, represented through

several behavioral models, requires two time scales, as for instance proposed by the

Ptolemy approach (Lee 2003) or for the synchronization and stability management of

FCCS proposed in (Chapurlat 1994). One of the time scales must be related to the

environment, denoted “environmental” or “global” time. The global time is identical for

 187

all behavioral models (i.e., for all parametrized behavioral models) and is used by the

Controller for synchronization. Behavioral models are executed by the Controller based

on this time scale. The other time scale is unique to each behavioral model, denoted

“model” time. The model time is used to monitor the execution steps of different

behavioral models, i.e., the time through which a behavioral model evolves, from

reading inputs to writing outputs. Both time scales are logical times scales, i.e., they

define an ordered relationship between instants that can be referenced in logical time

units (LTU) without any relation with a real time scale e.g. hour, mn, s, or ms.

For instance, the behavior of the WaterDistrib DSML shown in Figure 69 is composed

of three eISM behavioral models, one for the concept Valve (see Figure 70), one for the

concept Control station (see Figure 71) and one for the concept Reservoir. To manage

the execution of these behavioral models we need:

- A model time scale for each parametrization of the Valve eISM model (for

instance, one for the input valve and one for the output valve)

- A model time scale for each parametrization of the Control Station eISM model

- A model time scale for each parametrization of the Reservoir eISM model

- A global time scale to synchronize the behavioral models

The execution of the WaterDistrib model shown in Figure 67 can then be managed by

one global time scale and four model time scales: one for the parametrization of the

Valve eISM model for the input valve instance, one for the parametrization of the Valve

eISM model for the output valve instance, one for the parametrization of the Control

Station eISM model for the control station instance and one for the parametrization of

the Reservoir eISM model for the reservoir instance. This is illustrated in Figure 82.

Global time scale

gt1gt0 gt2 gt3 gt4 gt5 gt6

Model time scale for

the input valve

mt1mt0 mt2 mt3 mt4 mt5 mt6

mt1mt0 mt2 mt3 mt4 mt5 mt6

Model time scale for

the output valve

Model time scale for

the control station

Model time scale for

the reservoir

mt1mt0 mt2 mt3 mt4 mt5 mt6

mt1mt0 mt2 mt3 mt4 mt5 mt6

188

Figure 82. Time scales to manage the execution of the WaterDistrib model shown in

Figure 67.

As previously quoted, the global time scale is used by the controller to synchronize

behavioral models, i.e., to determine the time instants on the global time scale when

models are executed. For instance, some behavioral models are executed each global

time instants, while other are executed each three time instants. For this purpose, the

controller calculates the time instants for model synchronization based on two rules: the

reconciliation rule and the cadence rule.

Reconciliation rule: aims to establish synchronization points between discrete-events

models based on logical time scales and continuous behavioral models based on

physical time scales, then to mix and make comparable various instants. Note that the

physical time scale can moreover be put in correspondence with the real time scale. For

instance, 1 physical time unit (PTU) corresponds to 7s. We introduce here a

reconciliation function denoted ω and formally defined as follows:

®J5� K 5
`7-p, � , 7-�a K 9 = ®`7-p, � , 7-�a = G+?`7-p, ^ ^ , 7-�a

Where:

a) epi (estimation parameter) define the duration of one execution step (from

reading inputs to writing outputs) in physical time units (PTU) of a discrete-

event model. Estimation parameters are defined by a current value cvalueep, a

domain definition Ep and a type 5, such that (V l 15.

b) r (reconciliation parameter) is calculated by the reconciliation function ω and

used by the Controller for synchronization. The reconciliation parameter has a

current value cvaluer, a domain definition R and a type 5, such as ' l 15. r is

computed by using lcm which is a least common multiple function.

c) n is the number of behavioral models that define the behavior of a DSML.

For example, let the reaction time of a valve be 1ms, the reaction time of the Control

Station be also 1ms, and the reaction time of the reservoir be 2ms. Let 1PTU be 1ms.

The estimation parameters of the valve eISM model and the control station eISM

models are equal to 1 (ep1=ep2=1) and the estimation parameter of the reservoir is equal

 189

to 2 (ep3=2). The reconciliation parameter r of the controller is then computed by using

the reconciliation function ω. In this case, 9 = G+?y7-p, 7-¯,7-°z = G+?`�,�,�a = �.

Cadence rule: the reconciliation rule suggests that the duration of execution steps of

different behavioral models, measured on the global time scale, is different. At a given

time stamp, the execution step of one behavioral model might start, while of another

might still be in progress. The cadence rule aims to identity the duration of execution

steps of different behavioral models, according to the global time scale. We introduce

here a cadence function, denoted τ and formally defined as follows:

±J 5 × 5 K 5
d4 0 ��^ ^ ;�`7-/, 9a K +-/ = 7-/

9

Where:

a) cpi (cadence parameter) define the duration of an execution step for each

discrete-event model. Cadence parameters are computed by the cadence function

τ, taking into account the controller’s reconciliation parameter r and the

estimation parameter epi of considered (ith) behavioral model. Each cadence

parameters have a current value cvaluecdi, a domain definition Ci and a type 5,

such as %/ l 15.

For example, the cadence parameters of the valve eISM model and the control station

eISM models are equal to 1 (cp1=cp2=1/1=1), meaning that the execution steps of Valve

and Control Station eISM model occur and least for a time unit. The cadence parameter

of the reservoir eISM model is equal to 2 (cp3=2/1=2), meaning that the execution steps

of Reservoir eISM model occur and least for two time unit. This is shown in Figure 83.

Figure 83. The duration of the execution steps of WaterDistrib components.

gt1gt0 gt2 gt3 gt4 gt5 gt6

Execution steps
of Valves

Execution steps
of Control Stations

Execution steps
of Reservoirs

190

Stability management: is already discussed in Chapter IV (Section 4.1.3). Let’s recall

that a behavioral model is “stable” if succeeding an evolution cycle, taking into account

the same inputs, the model cannot evolve in another state. Otherwise, the model is

“unstable” and its current state is named “transient” state, as defined in the case of

Sequential Function Chart (IEC 1999). Stability management consists in checking the

stability of a behavioral model every evolution cycle.

Figure 84. The three time scales involved in the execution of a reservoir.

Managing models stability involves a transient state detection algorithm that, in addition

to the model time scale, introduces a third “stability-management” time scale that is

reinitialized every time the model evolves and incremented while the model is in

transient state, every time calculating its future state, eventually reaching its stability. In

contrary, the model time scale is unique for each behavioral model and is initialized

with the global time scale and incremented every evolution cycle of its corresponding

model. In other words, it indicates, how many times this model evolved based on

duration that is measured on the global time scale. Moreover, one time unit of the model

time scale is equal to cdi (cadence parameter) time units of the global time scale.

For example, Figure 84 shows the three time scales for the execution of a reservoir.

Execution scheduling: the controller synchronizes behavioral models, i.e., it organizes

each execution steps of all behavioral models during an execution of a domain model.

The execution scheduling is based on the generic evolution algorithm shown in Figure

mt1mt0 mt2 mt3 mt4 mt5 mt6

Model time scale for

the reservoir

gt1gt0 gt2 gt3 gt4 gt5 gt6

Global time scale

smt1smt0 smt2 smt3 smt4 smt5 smt6

Stability-management

time scale reinitialized

after the first execution step

smt1smt0 smt2 smt3 smt4 smt5 smt6

Stability-management

time scale reinitialized

after the second execution step

smt1smt0 smt2 smt3 smt4 smt5 smt6

Stability-management

time scale reinitialized

after the third execution step

 191

73 that consists in reading inputs (RI), calculating future state (CFS) and writing outputs

(WO).

Let us remind you that behavioral models are related to a domain concept and they are

used to compute data provided by instances of domain concepts. The execution

scheduling process splits into two main phases: (1) preparation and (2) execution.

a) Preparation begins by computing the reconciliation parameter r of the

controller, using the reconciliation function ω. Next, the cadence parameter cpi

of each behavioral model is calculated, using the cadence function τ. Then the

synchronization process begins, initializing the global time scale, so behavioral

models can start their evolution steps.

b) Execution begins when preparation is finished. Each behavioral model manages

simultaneously the execution of several instances of the corresponding domain

concept. Each execution consists of reading inputs (RI) from the blackboard,

computing future state (CFE) considering stability management and writing

outputs (WO) into the blackboard. The controller monitors the duration of all

executions according to the global time scale, the reconciliation parameter and

the cadence parameters. For each execution, it transmits a current state, data

provided from an instance and the time unites of the model time scale. The

execution algorithm is illustrated in Figure 85.

The execution scheduling is illustrated in the next section based on two examples.

Figure 85. Execution algorithm.

Initialise internal clock: Ti := 0

Write external outputs
of the system model

Ti := Ti+1

Read inputs from
other state models

For each state model

Y

Bounded Te?

Y

Read external inputs of the
system model (set of state models)

Te := Te+1

Analyse resulting execution
path and expected properties

is state model stable?

is stability reacheable?

Compute next state

Write outputs in
internal time

192

5.2.3 Demonstration

Two examples are shown in this section to illustrate the execution scheduling, the prior

showing the execution of a WaterDistrib model, i.e., a model designed by the

WaterDistrib DSML, and the latter showing the coordinated execution of a eFFBD and

a PBD models designed by eFFBD and PBD.

Example 1: WaterDistrib model execution. During the phase DSML run time / Model

run time, behavioral models are used to execute models. The execution of a

WaterDistrib model is schematized in Figure 86 where a simplified scenario is

illustrated, showing how the WaterDistrib model reacts to a water request.

The whole process splits into two phases: (1) preparation and (2) execution.

1) Preparation: during this phase, first, the reconciliation parameter r of the

controller is computed, using the reconciliation function ω. In this case,

9 = G+?y7-p, 7-¯,7-°z = G+?`�,�,�a = � . Next, the cadence parameters cp1,

cp2 and cp3 are computed using the cadence function τ. In this case, +-p = +-¯ =
��� = �, meaning that the execution steps of Valve and Control Station eISM

model occur and least for a time unit. The cadence parameter of the reservoir

eISM model is equal to 2 (cp3=2/1=2), meaning that the execution steps of

Reservoir eISM model occur and least for two time unit, as shown in Figure 83.

Then the synchronization process starts, initializing the global time scale, and

behavioral models can start their evolution cycles. In the example shown in

Figure 86, there is one instance of both ControlStation and WaterTank concepts,

i.e., cs and wt, and two instances of the Valve concept, i.e., input valve vIn and

output valve vOut. We denote: Control eISM model to describe the use of

ControlStation eISM model for the execution of cs instance and I or O Valve

eISM model to describe the use of Valve eISM model for the execution of vIn

and vOut instances. All eISM behavioral models read inputs (RE) from the

blackboard, computing future state (CFE) considering stability management and

writing outputs (WO) into the blackboard.

2) Execution: during this phase, the experiment consists to manually add, just

before time x, a Water Request message for the cs component in the blackboard

(see the table of Figure 86). The Control eISM model reads inputs at time x, and

enters in Mode2 state, after calculating its future state, short after reading inputs.

193

F
igure 86. A

 sim
plified scenario show

ing how
 the W

aterD
istrib m

odel is sim
ulated.

B
la

c
k

b
o
a
r
d LT 1 1 / / / 1 1

V WaterReq Open / / / StopReq Close

S User cs / / / User cs

R {cs} {vIn, vOut} / / / {cs} {vOut}

vIn and vOut

waterFlow

Closed

Opening

Opened

Closing

cs

Mod1 (filling)

Mod2 (fil.-emp.)

Mod3 (awaiting)

Global time scale
x+1x x+2 x+3 x+4 x+5 x+6 x+7 x+8

wt

waterLevel 10 9,5

0 / 0 0 / 0 0,5 / 1 1 / 2 1 / 2 1 / 2 1 / 2 1 / 1 1 / 0,5

water consumer
water
well

water level

water tank

control station

Valver: vIn

waterFlow=0

maxWaterFlow=1

increasingRate=0,5

decreasingRate=0,5

Valve: vOut

waterFlow=0

maxWaterFlow=2

increasingRate=1

decreasingRate=1

Water Tank: wt

waterLevel=10

maxWaterLevel=10

minWaterLevel=5

Control Station: cs

10 7,5 5,5 6

194

This activates the filling-empting update (see Figure 86), writing the Open

message as an output into the blackboard at time x+1 (see the blackboard table

of Figure 86). The IValve and OValve eISM models read then this message, at

time x+1 and enter Opening state short after. At this point of time (x+3), both

input and output valves (vIn and vOut) provide water flow to the water tank (wt)

causing change in the water level inside this water tank. At a given point in time,

the consumer had enough water and sends the stop water providing request

(StopReq). For this, we manually add the StopReq message in the blackboard

just before time x+5 (see the table of Figure 86). The Control eISM model reads

this message, at time x+5 and after calculating future state, activates the filling

update (see Figure 86), writing the Close message as outputs into the blackboard

at time x+6 (see the table of Figure 86). The OValve eISM model reads then this

message at time x+6 and enters Closing state short after. At this point of time

(x+7), the water tank starts increasing its water level.

Example 2: coordinated execution of eFFBD and PBD models. This example,

illustrated in Figure 87, shows the behavior of the architecture of a fire and flood

security system through a coordinated execution of architecture’s functional and

physical viewpoint models. The scenario here consists in stressing the architecture’s

physical viewpoint model by sending a breakdown signal, putting one of the

components (i.e., the fire detector component) into a non-functional breakdown state.

The goal is to observe the reactions and the side-effects of the model and of the

dependent viewpoint models (i.e., in this case the functional model) under such critical

circumstances.

The whole process splits into two phases: (1) preparation and (2) execution.

- Preparation: during this phase, first, the reconciliation parameter r of the

controller is computed, using the reconciliation function ω. In this case,

9 = G+?`7-p, 7-¯a = G+?`�,�a = �. Next, the cadence parameters cp1 and cp2

are computed using the cadence function τ. In this case, +-p = +-¯ = ��� = �,

meaning that for both (Function and Component) eISM models, evolution cycles

(an execution) occur and least for a time unit. Then the synchronization process

starts, initializing the global time scale, and behavioral models can start their

evolution cycles. In the example shown in Figure 87, there is one instance of

 195

both Function and Component concepts, i.e., Detecting Fire and Fire Detector.

We denote: Detecting Fire eISM model to describe the use of Function eISM

model for the execution of Detecting Fire instance and Fire Detector eISM

model to describe the use of Component eISM model for the execution of Fire

Detector instance. Both models read inputs (RI) from the blackboard, computing

future state (CFE) considering stability management and writing outputs (WO)

into the blackboard.

Figure 87. A simplified scenario showing how a system architecture reacts when the

Fire Detector enters in External Stop state

- Execution: during this phase, the experiment consists to manually add, at time x,

an External Breakdown message for the Fire Detector component in the

blackboard (see the table of Figure 87). The Fire Detector eISM model reads

inputs at time x, and enters in External Stop state, after calculating its future

Detecting Fire

Execution

Suspended

Fire Detector

Producing

External Stop

Global time scale
x+1x x+2 x+3 x+4 x+5

B
la

ck
b

o
a

rd

LT 1 1 / / / /

V
ExternalBreak

down

SuspendFunct

ion
/

ResumeProd

uction

ResumeFunc

tion
/

S User Fire Detector / User
Fire

Detector
/

R
{Fire

Detector}

{Detecting

Fire}
/

{Fire

Detector}

{Detecting

Fire}
/

Component:

Fire Detector
Function:

Detecting Fire

196

state, short after reading inputs. This activates notify update (see Figure 66),

writing the Suspend Function message as outputs into the blackboard at time

x+1 (see the table of Figure 87). The Detecting Fire eISM model reads then this

message, at time x+1 and enters Suspended state short after. At this point of

time, the behavioral property IBC1 is respected and the Fire Detector component

and its performing function Detecting Fire are not working (ES and Suspended

states). To get the system back on running, the message Resume Production is

manually added for the Fire Detector in the blackboard, at time x+3 (see the

table of Figure 87). The Fire Detector eISM model reads this message, at time

x+3 and after calculating future state, activates again the notify update, writing

the Resume Function message as outputs into the blackboard at time x+4 (see

the table of Figure 87). The Detecting Fire eISM model reads then this message

at time x+4 and enters Execution state short after. At this point of time, the

system is back in normal and the Fire Detector component and its performing

function Detecting Fire, are working (Producing and Execution states).

5.3 Mechanism for formal proof
The mechanism for formal proof proposed here put in use the static semantics of a

DSML. The static semantics are composed of different types of constraint properties, as

proposed in Chapter III.

Generally, a formal verification process is based on 1) a formal specification, used as an

underlying structure on which 2) formal constraint properties are verified by 3) an

adequate model-checking tool. The goal is to check if the formal specification respects

the formal properties.

Similarly, the formal proof mechanism proposed in this section is grounded on a formal

specification defined as a set of structural, representational and behavioral properties (as

proposed in Chapter III), different types of formal constraint properties and an adequate

model-checking tool. We discuss below each of these parts individually.

5.3.1 Formal specification

Within the context of MBSE, the formal specification required for a verification process

is extracted from the DSML’s abstract syntax, concrete syntax and dynamic semantics

as a set of structural, representational and behavioral properties that are here-denoted

 197

formal structural, representational and behavioral specifications. For instance, abstract

syntaxes can be defined as metamodels that naturally have an underlying structure based

on an oriented graph that can be used for formal verification. Dynamic semantics

designed by the formal behavioral modeling language eISM has a formal underlying

structure based on a set of elementary valid formals (EVF), as previously discussed in

Chapter IV.

In some cases, the formal structural, representational or behavioral specifications are not

directly verified considering the DSML’s constraint properties, but rather transformed

into the formal specification of a third party formal approach before being verified. In

such cases, the use of transformation techniques is leveraged, mapping the source

DSML specification (i.e., the DSML’s abstract syntax, concrete syntax or dynamic

semantics) to an adequate target specification of a formal model (e.g., the Networked

Timed Automata model in the case of UPPAAL tools (Larsen et al. 1997) for the

DSML’s dynamic semantics, or to the COGITAN library (Chein et al. 2009) for the

DSML’s abstract syntax).

However, we argue in Chapter II that transformation approaches have several

limitations. On the other hand, the analysis results are only available in the target

spaces, so they should always be interpreted back to the source space, to compare the

result based on the source model. The relevance between source and target models

should be demonstrated to assure that the behavior defined by the target model

corresponds to the one of the source model. In addition, a good knowledge and

expertise in the chosen target domain and in transformation languages and tools is

required.

This work leverages a strategy for “direct verification”, i.e., a verification of the formal

DSML’s specifications without transforming them into adequate third-party

specifications. It focuses particularly on the verification of the structural specification

(the abstract syntax) and the behavior specification (the dynamic semantics) of a

DSML. The verification of the representation specification (the concrete syntax) is

currently out of the scope.

For the above state purpose, the formal structural specification is here-limited to an

EMOF metamodel form designed by the EMF approach (Steinberg et al. 2008), leaving

other approaches out of the scope. The extensibility of xviCore for on the fly design and

198

integration of new behavioral modeling language (see Chapter IV) doesn’t permit the

use of one specific type of behavioral specification (e.g., behavioral specification based

only on eISM models), as for the structural specification which is limited to EMOF

metamodels. Hence, for the purpose of formal proof, it is mandatory to use a behavioral

modeling language with formal underlying structure (such as for instance eISM) that

allow direct verification without transforming into third party approaches.

5.3.2 Formal constraint properties

The information that cannot be implicitly defined by a formal specification must be

explicitly defined as formal constraint properties by using a constraint modeling

language and verified by an adequate model-checking tool.

Chapter III introduces several types of constraint properties as a particular type of the

overall modeling and system properties. In general, all types of constraint properties are

specified for the structural specification, denoted structural constraint properties, for the

representational specification denoted representational constraint properties or for the

behavioral specification denoted behavioral constraint properties. We focus here on the

specification and the verification of structural and behavioral properties.

Representational properties are currently out of the scope. For more details on different

types of constraint properties, their purpose and use, readers are encouraged to see

Chapter III.

Constraint properties are defined by using a constraint modeling language (CML).

There are currently different types of CMLs (e.g., OCL, TOCL, LTL or the UPSL

framework) that are used for different purposes. For example, OCL (Object Constraint

Language) (OMG 2014) is complementary to UML and is used to express properties

that cannot be defined using the UML’s graphical notations. It is also applied in the

Eclipse / MOF environment, proposing verbose predicates specification that is based on

object-oriented notation and navigation. OCL allows the specification of a-temporal

structural properties through invariants, derivations, initializations, etc., but also the

specification of a-temporal behavioral properties, e.g., pre and post conditions, body,

etc. However, OCL can neither be used for the design of temporal (structural and

behavioral) properties, nor for behavioral properties that are not specified for

operations-like behaviors (designed by an action language). To fill this gap, the

temporal extension of OCL denoted TOCL (Ziemann & Gogolla 2003) can be used for

 199

the design of temporal properties. TOCL is a mixture of OCL with logico-temporal

operators, i.e., next, sometimes, once, eventually. Yet, similarly to OCL, TOCL is

intended for operations-like behaviors, and cannot be used for the specification of

behavioral properties when the behavior is designed by a behavioral modeling language,

such as eISM. LTL (Linear Temporal Logics) (Pnueli 1977) can be used for the design

of temporal behavioral properties for automata-like behaviors. LTL belongs in the group

of formal languages. In general, formal languages are exhaustive, tool-supported

allowing formal proofs. However, they remain difficult to use, are often considered as

time consuming and require particular set of skills, tolls and proof techniques.

On the other hand, the UPSL framework (Chapurlat 2013) seems more adapted and

finally usable to specify all types of properties. However, currently provided

verification techniques of UPSL are based on Conceptual Graphs for structural

properties and on UPPAAL (Larsen et al. 1997) for behavioral properties. This requires

transforming, on the one hand, both DSML’s structural specification into conceptual

graphs specification based on the COGITANT library (Chein et al. 2009) and DSML’s

behavioral specification into the Networked Timed Automata model of the UPPAAL

tool. On the other hand, it requires transforming both structural properties into a

COGITANT formalism and behavioral properties into TCTL (time computational tree

logic) when using UPPAAL. Properties can then be verified in these third-party

formalisms. Unfortunately, such transformations are here-considered to be limited

because obtained results are only available in these third-party formalisms, so they must

be translated back and interpreted for the initial model, making it a potential source of

information loss.

To overcome this issue, let’s first introduce the UPSL’s constraint modeling language

CREI (Cause Relation Effect and Indicators) that is initially introduced in (Lamine

2001). CREI is intended to encourage and facilitate the work of engineers that are not

specialized in formal modeling, offering the reuse of formal constraint property

modeling and proof mechanisms. CREI constraint properties are composed of a group

of causes (C) related to a group of effects (E), by a parametrized and constrained

relation (R) and evaluated considering indicators (I). CREI properties are specified

based on a formal specification given in a form of modeling variables, parameters, or

predicates, defined by the set F as follows:

200

- � = !" � L" where SP is the set of structural properties and BP is the set of

behavioral properties (see Chapter III).

CREI properties are then formally defined as follows:

" #= $97:797;+7V, %, ', (, B*
With:

- 97:797;+7V 0 !.94;E is a unique handle for property proof traceability

- % #= {Q/|Q/ 0 �, 4 0 5²F;O14 ³ +F9O`�a} is the set of causes. % can be empty

`% 0 Saand in this case the property is denoted “proper” property, composed

solely on effects.

- (#= sQf¥Qf 0 �, Y 0 5²1F;O1Y ³ +F9O`�au is the set of effects. (cannot be

empty `% ¡ Sa.
- B (optional) is a set of criteria that characterize the truthfulness of the property

`B l �a.
- ' #= $.6-7, CU , C� , C/ , &V* where:

1. .6-71 0 {84?-G47@<, 84;:GI7;+7@8} defines the relation type.

2. CUJ &~, %b, ´²µ� K {&9I7, �FG@7} constraints the interpretation of

causes, i.e., a boolean condition that must evaluate to true to interpret %.

By default CU = &9I7.

3. C�J &c , (V, ´²µ� K {&9I7, �FG@7} constraints the interpretation of

effects, i.e., a boolean condition that must evaluate to true to interpret (.

4. C/ (optional, when type=influences and CU = &9I7) is an influence factor

characterizing the link between % and (, which cannot be formalized as a

temporal or logical relation. C/ is defined as “knowing with certainty C,

we can deduce with certainty what E is” i.e., knowing the values (and

their variations) of causes defined in % allows us to deduce the values

(and the variations) of effects defined in (. C/ allows interpreting a

beneficial or harmful influence depending on its value that varies

between [-1,1], formally defined as follows:

§ C/ = �: there is no real influence between the causes and the

effects. The default value of C/ = �.

 201

§ C/ K � (beneficial influence): each variation in causes results into

a variation in effects that is considered as beneficial for the

system.

§ C/ K P�(harmful influence): each variation in causes results into

a variation in effects that is considered as harmful for the system.

5. &V = % ¶ (is the set of variables the can be interpreted as causes and as

effects at the same time.

Similarly to our classification of constraint properties, a CREI constraint property can

be either:

- Static (a-temporal): expressing the rules and consistency characteristics of the

model (see example in Figure 88) regarding its metamodel, consistency between

model (inter-view and inter-languages), and time independent requirements.

- Dynamic (i.e. temporal): it can be used to describe the behavioral expectations

(see an example in Figure 88) of the model or time-dependent requirements of

the SoI.

Figure 88. Example of temporal and a-temporal CREI properties

A complete EBNF grammar for the CREI language is proposed in (Chapurlat 2013).

Based on this grammar, we have developed an xText editor for CREI. A snapshot of the

editor is shown in Figure 89.

P1(a-temporal): If a component C has a
mission function, then this function is
allocated and performed by C

P2(temporal): If a component enters a
breakdown state (internal or external), its
functions will be unable to continue execution

Natural language CREI

Cause:

Relation: ()
Effect:

Cause:

Relation: ()
Effect:

202

Figure 89. The CREI editor for constraint property modeling.

5.3.3 Model-checking tool

The UPSL framework does not currently support an adequate model checker, since it

relies on third party approaches (i.e., UPPAAL and COGITANT). This requires the

transformation of the source formal specifications into third party specification, as well

as the constraint properties into third party constraint properties, as illustrates in Figure

90. Such V&V approaches benefit the reuse of a 3th party model checker. However, the

V&V result must be interpreted back to the source space, a process that might result

into an information loss.

Figure 90. The current architecture of UPSL for V&V based on third party approaches.

We propose in this section a new architecture for V&V for the UPSL framework that is

partially based on third party approaches. The goal is 1) to benefit from existent 3th

party model checker, rather than designing new one, 2) while obtaining a V&V result

that is directly interpretable on the formal specification without interpreting it back as

classically proposed. This new architecture is illustrated in Figure 91. It requires

Formal
specifications

Formal 3th party
specifications

Formal constraint
properties

Formal 3th party
constraint properties

3th party model
checker

V&V
results

Source space (DSML/model) Target space (3th party formal approach)

transform

transform

input

input

interpret back the V&V result

 203

transforming the formal constraint properties into a third party properties that can be

verified by a 3th party model checker based on the source formal specification. The

V&V result is directly interpretable for the source specification (i.e., it doesn’t need to

be interpreted back).

Figure 91. The new architecture of UPSL for V&V.

 The choice of the formal third-party approach is crucial. Namely, the third-party

approach must be equipped with a model-checker that can verify the 3th party constraint

properties based on the source formal specification. For example the a-temporal

structural constraint properties can be transformed into OCL properties. The OCL

interpreter can then be used for verification directly based on the formal structural

specification, i.e., the SP (structural properties) and the MSP (model structural

properties). We propose here-after several rewriting rules for the transformation of

CREI a-temporal structural constraint properties into OCL constraints.

Literals rewriting rules: CREI literals are directly rewritten into OCL. There is no need

to modify them:

· CREI Number to OCL Number (ex: 15; 2; 1.54;)

· CREI Boolean to OCL Boolean (true; flase;)

· CREI String/Char to OCL String/Char (ex: name; age ; s)

· CREI Predicate (method call) to OCL Predicate (method call, e.g., getName();

setAget(36)

Expressions rewriting rules: the structure of CREI expressions is directly rewritten into

OCL.

· Additive expression (+ | -)

o a+b

· Relational Expression (< | > | >= | <= | = | !=)

Formal
specifications

Formal constraint
properties

Formal 3th party
constraint properties

3th party model
checker

V&V
results

Source space (DSML/model) Target space (3th party formal approach)

transform

input

input

204

o a!=b

· Boolean Expression (and | or | xor)

o true or false

· Set Expression (union | intersect | difference)

o A union B

Quantifier expressions rewriting rules: the structure of CREI quantifiers expressions is

rewritten into OCL as described in the next:

Let x be a variable, X be a set (class) and expr be an expression and let everything in red

be optional:

· FOR ALL quantifier expressions rewriting rules: [d· 0 ¸1|7H-9/] is rewritten

into [eContents(X)->forAll(x : X | expr)/]

· AT LEAST ONE quantifier expressions rewriting rules: [¹· 0 ¸1|7H-9/] can be

rewritten into [eContents(X)->one(x : X | expr)/]

Combining for all and at least one:

· [d· 0 ¸1|¹º 0 »1|17H-9/] can be rewritten into [eContents(X)->forAll(x : X |

eContents(Y)->one(y : Y | expr)/]

· [¹· 0 ¸1|dº 0 »1|17H-9 /] can be rewritten into [eContents(X)->one(x : X |

eContents(Y)->forAll(y : Y | expr)/]

Relating causes and effects rule: the structure of CREI properties is composed of

causes and effects, related by a relation and a set of potential indicators. Our approach

currently supports only the implication relation (=>) that is transformed to the “implies”

OCL function, neglecting the complementary information defined by the relation R.

We propose below two examples written in a natural language, their specification in

CREI and their transformation to OCL constraints.

Example 1: “all Persons that have a car must be majors”

· CREI : [d¼ 0 ½g¾¿ÀÁ1|1¼^ ÂÃ¾¿ ÄÅ ÁÆÇÇ14?-G47@1¼^ ÃÈg Å �É1 /]
· OCL / Acceleo [eContents(Person)->forAll(p | p.cars <> null implies p.age>18/]

Example 2: “all Persons must have at least one ‘Renault’ car”

· CREI : [d¼ 0 ½g¾¿ÀÁ1|¹Â 0 ÊÃ¾1|+^ .6-7 = 8'7;FIG.81F;O1+ 0 -^ +F9@ /]

 205

· OCL: [eContents(Person)->forAll(p | eContents(Car)->one(c | c.type =

‘Renault’ and p.cars.includes(c))/]

Unfortunately, for behavioral properties (temporal and a-temporal) we are facing the

issue related with the extensibility of xviCore for promoting any behavioral modeling

language. Indeed, the possible variability of the form of the behavior designed by

different behavioral modeling language does not allow choosing one third party

approach. However, formal verification of behavioral properties (temporal and a-

temporal) can be achieved, if the used behavioral modeling language are supported by

an adequate mechanisms for model checking or proof, as discussed in Chapter IV for

the eISM language. In the case of eISM, CREI properties can be rewritten in LTL and

then verified based on the Temporal Boolean Difference (TBD). For instance, if the

behavior is designed as timed automates, CREI properties can be transformed into

computational tree logic (CTL) and the UPPAL environment can be used for formal

verification and proof.

5.4 Conclusion
This chapter introduces an approach for system modeling and V&V denoted “xviCore”.

xviCore is composed of four language: a metamodeling language, a language for

concrete syntax, a behavioral modeling language and a constraint modeling language,

along with a mechanism for simulation and a mechanism for formal property proof. The

mechanism for simulation is based on the blackboard design pattern, a multiscale time,

a reconciliation rule, a cadence rule and an execution scheduling algorithm that includes

stability management. The mechanism for formal proof introduces a new architecture

for V&V that is partially based on transformation techniques. The goal is to benefit

from existent 3th party model checker, rather than designing new one, while obtaining a

V&V result that is directly interpretable on the formal specification without interpreting

it back as proposed by classical transformation approaches.

206

CONCLUSION AND

PERSPECTIVES

 207

Summary

Within the context of MBSE (model based systems engineering) or MDE (model driven

engineering) models are first class citizens. They are to be created and managed,

checked and simulated prior to any use for discussion, deliberation or decision. Models

support stakeholders and increase their confidence during decision making processes.

The made decisions impact the development of the real system, up until its deployment

on site, its exploitation and even its dismantling. Namely, they impact on system’s

functioning, safety, security, induced costs, and so forth. It is thus very important to

assure the quality of models before making any decision by applying model verification

and validation (V&V) activities. However, this is currently an ongoing issue in both

MBSE and MDE. This thesis contributes on the matter, focusing on two general

problems:

 (1) the design of modeling languages

 (2) the verification and validation of models

To this end, we propose a new tool-equipped method allowing 1) to create dedicated

modeling languages, denoted Domain Specific Modeling Languages (DSML), 2) to

compose (syntactically and semantically) different DSMLs, and 3) to include semantics

(static and dynamic), a key-component for model V&V.

Our method is based on concepts for modeling, verification and validation, languages

that formalize the means to design and manage the concepts and operating approach that

put in use the languages for the design and V&V of models. This V&V includes a

mechanism for simulation based on model execution, and opens the way to become able

to use mechanisms for formal properties proof.

The concepts of the method consist of a typology of properties for modeling and a

formalized lifecycle for property management. The typology consists of properties that

are used to conceptualize domain knowledge, forming a modeling language, and

properties that are used to concretize domain knowledge, forming a model. Namely,

stakeholders must first conceptualize their domain knowledge through different types of

modeling properties. This is done by using a design process that involves different types

of languages. We distinguish:

208

- Structural properties (SP) and dependencies between structural properties (DSP)

designed by a metamodeling language;

- Representational properties (RP) and dependencies between representational

properties (DRP) designed by a concrete syntax language;

- Behavioral properties (BP) and dependencies between behavioral properties

(DBP) designed by a behavioral modeling language;

- Constraint properties (CP) and dependency constraint properties (DCP) designed

by a constraint modeling language;

Stakeholders can then use such DSMLs to concretize their domain knowledge. More

specifically, they use:

- The SP and the DSP to design the structure of a model as model structural

properties (MSP) and the model structural dependencies (MSDP)

- The RP and the DRP to design the representation of a model as model

representational properties (MRP) and the model representational dependencies

(MRDP)

- The BP and the DBP to parametrize the behavior for a model as model

behavioral properties (MBP) and the model behavioral dependencies (MBDP)

Furthermore, system properties express a part of the system and stakeholders

requirements of systems or stakeholders based on a modeling artefact that is defined by

a modeling artefact. We distinguish two types of system properties: model constraint

properties (MCP), object constraint properties (OCP), dependency model constraint

properties (DMCP) and dependency object constraint properties (DOCP).

The management of these different types of properties is defined through two

formalized lifecycles denoted respectively “DSML and model lifecycle” and

“composite DSML and model lifecycle”. These lifecycles are composed of several

phases and sub-phases. Each phase highlights which of the above quoted properties

need to be designed and the V&V analyses that need to be performed.

Among the different types of languages for modeling different types of properties, the

contribution of this work is based on behavioral languages for the design of DSML

behavior (i.e., dynamic semantics) for MBSE. For this purpose, we propose first an

evaluation of a well-known design pattern for executable DSML based on its effective

adaptation in the field of MBSE. This is here applied to create an executable version of

 209

a well-known language for MBSE experts, i.e., an executable eFFBD (enhanced

Functional Flow Block Diagram), denoted xeFFBD. This application example allows us

to highlight several issues, as well as possible improvements for the effective adaptation

of this design pattern in the field of MBSE. Based on the feedback, we propose two

languages that can be used to design the behavior of a DSML.

The first language is an extended version of the Interpreted Sequential Machine denoted

(eISM). eISM is a behavioral language based on discrete-events hypotheses. In

comparison to other discrete-events languages eISM has several advantages: it operates

with typed input/output data and complex expressions build using types data, it

separates classical state/transition specification from data specification, allowing the

specification of some states using variables and it has formal underlying structure. For

the design of executable DSMLs, eISM is integrated with the metamodeling language

EMOF, creating an executable metamodeling language. In such a way, the behavior of a

DSML is specified as a set of discrete-events behavioral models, each one associated to

different domain concepts of the DSML abstract syntax.

The second language is a formal rule based language denoted FRBL. The goal of FRBL

is to ease and assist the design of the behavior of a DSML that have formal pre-defined

semantics based on the one hand, on the reuse of the DSML’s predefined formal

semantics and on the other hand, based on a generic template. The behavior of a DSML

is finally specified as a set of formal rules, among which the following three rules are

considered as main rules defined by the generic template: 1) read inputs, 2) calculate

future state and 3) write outputs. The syntax and the semantics of FRBL and designed

using the xText approach.

The operating demarche of our method for the design and V&V of models includes a

mechanism for simulation based on model execution, and mechanisms for formal

properties proof. The mechanism for simulation is based on the blackboard design

pattern, a multiscale time, a reconciliation rule, a cadence rule and an execution

scheduling algorithm that includes stability management. The mechanism for formal

proof introduces a new architecture for V&V that is currently partially based on

transformation techniques. The goal is to benefit from existent 3th party model checker,

rather than designing new one, while obtaining a V&V result that is directly

210

interpretable on the formal specification without interpreting it back as proposed by

classical transformation approaches.

List of contributions

This work presents five contributions.

The first contribution “Modeling based on Properties” introduced in Chapter III,

presents a concept alignment between MDE and MBSE. It aligns the components of

DSMLs (abstract syntax, concrete syntax, static semantics and dynamic semantics) and

models considering the four selected SE challenges for MBSE introduced in Chapter I

and the SE vision on the concept property (system properties and modeling properties).

This contribution is applied on two thread examples, one demonstrating the design of

DSMLs based on the eFFBD and PBD languages, and the other demonstrating the

design of models based on one eFFBD model and one PBD model for the functional

and physical architectures of a fire and flood detection system. This contribution has

also been presented during the international symposium of INCOSE and appear in the

symposium’s proceeding (Blazo Nastov et al. 2016b) and in the INCOSE’s magazine

INSIGHT (Blazo Nastov et al. 2016a).

The second contribution presented in Section 4.2 is a new approach for modeling

dynamic semantics for executable DSMLs for MBSE. This approach responds to the 5

raised issues related to executable DSML for MBSE discussed in Section 4.1.2: (1) state

notion and formalization, (2) improved readability, (3) transient states detection and

management, (4) mechanism for formal proof and (5) designing dependencies in

modeling languages – a way for model interoperability. As a starting point, we chose

the ISM formal behavioral modeling language because it covers issue 1, issue 2 and

issue 4. We propose then an extended version (eISM) that covers also issue 3 and issue

5. As an illustrative example, in Section 4.2.7 we propose an executable version of the

WaterDistrib DSML. This contribution has been presented during two international

conferences (CSD&M’14 and ENASE’16) and appear in the conferences’ proceedings

(Nastov et al. 2015; B. Nastov et al. 2016). The first paper validates the 5 raised issues

related to executable DSML for MBSE as a result to the design of an executable version

of the eFFBD language by using an MDE approach for executable DSMLs. The second

paper validates the ISM language and the extended version of ISM as a response to

these 5 issues for the modeling of dynamic semantics for DSMLs.

 211

The third contribution “Formal Rule Based Language – FRBL” introduced in Section

4.3 is a new approach for an assisted design of dynamic semantics for a particular

category of DSMLs that have formal pre-defined semantics based on discrete-events

(DE) hypothesis, such as ISM. FRBL is based on two principles. The first principle is

the “reuse of the predefined formal semantics of DE languages”. For this purpose, the

syntax of FRBL is designed to be similar to formal semantics, easing the reuse of the

pre-defined formal semantics of DE languages. The second principle is the “design

based on templates”. The FRBL language proposes a generic template that can be

reused for any DE language based on three main rules: 1) Reading Inputs Rule, 2)

Calculating Future State Rule and 3) Writing Outputs Rule. As illustration, we design

the dynamic semantics of eISM (formalized in Section 4.2.2) using FRBL.

The fourth contribution presented in Section 5.2 introduces a mechanism based on the

Blackboard design pattern and an original execution scheduling algorithm that includes

(1) a multiscale time, (2) a reconciliation rule, (3) a cadence rule and optionally (4)

stability management, for coordinated execution of behavioral models from one or

several DSMLs allowing the execution of models created by these DSMLs. The

contribution is applied on two thread examples, on the WaterDistrib DSML allowing

the execution of WaterDistrib models and on the eFFBD / PBD DSMLs allowing

coordinated execution of eFFBD and PBD models. This contribution has been presented

during the international conferences ENASE’16 and appear in the conferences’

proceedings (B. Nastov et al. 2016).

The last contribution presented in Section 5.3 introduces a mechanism for formal proof

by property verification. The verification process is preformed directly on SoI models

without using exogenous transformations. We reuse the UPSL-SE framework for the

design of all types of properties.

Limitations and perspectives

We note hereafter the main limitations having to be studied and developed in order to

improve the proposed method.

First, model interoperability working hypothesis introduced in Chapter III (see Section

3.3) does not take consideration to semantic interoperability problematic when

designing a composite DSML. This must include detection and management of classical

212

semantic problems (e.g. same name for concepts or reversely different names for

defining a common concept or a concept shared between two view points, and so on).

Second, even if partial transformations can remain necessary and beneficial for formal

properties proof by promoting the use of existing model checkers such as UPPAL,

TINA, SPIN or other, it is today requested to study and develop proof mechanisms

adapted for instance to CREDI and FRBL modelling languages.

Third, the centralized data exchange mechanism for model execution promoted by the

chosen Black Board design pattern does not currently consider fully concurrent data

access and management (e.g. potential deadlocks on access). This problematic is studied

in various domains such as Data Bases access and management so we think that it is

necessary to give a particular attention to the existing solutions.

Fourth, FRBL language for rules modeling can be enriched by considering mechanisms

for rules prioritization and scheduling, and possibly massive parallelism execution

allowing simulation optimization.

Fifth, Continuous and Hybrid behavioral models must be considered by our method.

Last, the current tools that support the proposed method must be rapidly disseminated in

the SE community in order to test and improve all the proposed contributions.

 213

REFERENCES

Abrial, J.-R., 2005. The B-book: assigning programs to meanings, Cambridge
University Press.

AFIS, 2012. Ingénierie système: la vision AFIS pour les années 2020-2025 A. Kerbrat,
ed., AFIS (French Association for Systems Engineering) [in French]. Available at:
https://books.google.mk/books/about/Ing%25C3%25A9nierie_syst%25C3%25A8
me.html?id=hTZ6MwEACAAJ&redir_esc=y.

Alagar, V.S. & Periyasamy, K., 2011. Vienna Development Method. Specification of

Software Systems, 1996(8), pp.405–459. Available at:
http://dx.doi.org/10.1007/978-0-85729-277-3_16.

Association for Computing Machinery, 2015. Computing degrees and careers.
computingcareers.acm.org, p.Web. Available at:
http://computingcareers.acm.org/?page_id=6.

Bérard, B. et al., 2013. Systems and Software Verification: Model-Checking Techniques

and Tools, Springer. Available at:
https://books.google.fr/books?id=xJGqCAAAQBAJ&dq=systems+and+software+
verification&lr=&hl=fr&source=gbs_navlinks_s.

Bertot, Y., 2006. Coq in a Hurry, Available at: http://arxiv.org/abs/cs/0603118.

Bettini, L., 2013. Implementing Domain-Specific Languages with Xtext and Xtend,
Available at: http://www.packtpub.com/implementing-domain-specific-languages-
with-xtext-and-xtend/book.

Bézivin, J. et al., 2006. Model Transformations? Transformation Models! In
International Conference on Model Driven Engineering Languages and Systems

(MODELS 2016). Genova, Italy: Springer publishing, pp. 440–453. Available at:
http://www.springerlink.com/index/31pt5242j7745410.pdf.

Bézivin, J., 2005. On the unification power of models. Software and Systems Modeling,
4(2), pp.171–188.

CESAR, 2012. Cost-efficient methods and processes for safety relevant embedded

214

systems. Available at: http://www.cesarproject.eu/.

Chapurlat, V., 1994. CSY-R: un modèle de spécification, conception et simulation de la

commande de systèmes discrets complexes répartis. University of Montpellier II.

Chapurlat, V., 2013. UPSL-SE: A model verification framework for Systems
Engineering. Computers in Industry, 64(5), pp.581–597. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0166361513000468.

Chapurlat, V., 2008. Vérification et validation de modèles de systèmes complexes:

application à la Modélisation d’Entreprise. University of Montpellier II [HDR in
French]. Available at: https://tel.archives-ouvertes.fr/tel-00204981/en/.

Chapurlat, V. & Daclin, N., 2013. Proposition of a guide for investigating, modeling
and analyzing system operating modes: OMAG. In A. Marc et al., eds.
Proceedings of the Poster Workshop at the 2013 Complex Systems Design and

Management Conference (CSDM 2013). Paris, France, pp. 87–97. Available at:
http://ceur-ws.org/Vol-1085/09-paper.pdf.

Chein, M. et al., 2009. Graph-based knowledge representation: computational

foundations of conceptual graphs, Available at:
http://books.google.be/books?id=iz3y6WK2EMEC%5Cnhttp://books.google.com/
books?hl=en&lr=&id=iz3y6WK2EMEC&oi=fnd&pg=PA1&dq=Graph-
based+Knowledge+Representation+Computational+Foundations+of+Conceptual+
Graphs&ots=Tij6hoRdZo&sig=kcby1q3i6iMxELo_V0ezMm0Z32k.

Chomsky, N., 1965. Aspects of the Theory of Syntax,

Combemale, B. et al., 2008. A Property-driven approach to formal verification of
process models. In International Conference on Enterprise Information Systems.
Springer Verlag, pp. 286–300.

Combemale, B. et al., 2009. Essay on semantics definition in MDE: An instrumented
approach for model verification. Journal of Software, 4(9), pp.943–958.

Combemale, B. et al., 2013. Reifying concurrency for executable metamodeling. In
International Conference on Software Language Engineering. Springer, pp. 365–

384.

Combemale, B., 2016. The GEMOC Initiative: on the globalization of modeling
languages. Available at: http://gemoc.org/.

Combemale, B., Crégut, X. & Pantel, M., 2012. A Design Pattern for Executable
DSML. The 19th Asia-Pacific Software Engineering Conference (APSEC),
pp.282–287.

Czarnecki, K. & Helsen, S., 2003. Classification of Model Transformation Approaches.
In the 2nd OOPSLA Workshop on Generative Techniques in the Context of the

Model Driven Architecture. pp. 1–17. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.6773&rep=rep
1&type=pdf.

Doran, T., 2006. IEEE 1220: For practical systems engineering. Computer, 39(5),
pp.92–94.

Douglass, B.P., 2002. Real-Time UML. In the 7th International Symposium on Formal

Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT 2002), Co-

 215

sponsored by IFIP WG 2.2. Oldenburg, Germany: Springer, pp. 53–70.

Engelmore, R. & Morgan, T., 1988. Blackboard systems R. Engelmore & T. Morgan,
eds., Wesly publishing.

Faunes Carvallo, M., 2013. Improving automation in model-driven engineering using

examples. University of Montréal. Available at:
https://papyrus.bib.umontreal.ca/xmlui/handle/1866/10562.

Fleurey, F., 2006. Langage et méthode pour une ingénierie des modèles fiable.
University of Rennes I. Available at: https://tel.archives-ouvertes.fr/tel-00538288.

Friedenthal, S., Moore, A. & Steiner, R., 2014. A practical guide to SysML: The systems

modeling language, Morgan Kaufmann.

Greenfield, J. & Short, K., 2003. Software factories: assembling applications with
patterns, models, frameworks and tools. In In Companion of the 18th annual ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and

applications. John Wiley & Sons, pp. 16–27. Available at:
http://dl.acm.org/citation.cfm?id=949348.

Harel, D., 1987. Statecharts: a visual formalism for complex systems. Science of

Computer Programming, 8(3), pp.231–274.

Harel, D. & Naamad, A., 1996. The STATEMATE semantics of statecharts. ACM

Transactions on Software Engineering and Methodology, 5(4), pp.293–333.

Hausmann, J.H., 2005. Dynamic Meta Modeling – A Semantics Description Technique

for Visual Modeling Languages. University of Paderborn. Available at:
http://is.uni-paderborn.de/uploads/tx_sibibtex/Dynamic_Meta_Modeling_-
_A_Semantics_Description_Technique_for_Visual_Modeling_Languages.pdf.

Hegedüs, Á., Horváth, Á. & Varró, D., 2015. A model-driven framework for guided
design space exploration. Automated Software Engineering, 22(3), pp.399–436.
Available at: http://link.springer.com/article/10.1007/s10515-014-0163-1.

Hilding Elmqvist, 1997. Modelica — A unified object-oriented language for physical
systems modeling. Simulation Practice and Theory, 5(6), p.p32. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0928486997842577.

Holzmann, G.J., 1997. The model checker SPIN. IEEE Transactions on Software

Engineering, 23(5), pp.279–295.

IEC, 1999. IEC 60848: Specification language GRAFCET for sequential function
charts. , p.94. Available at: http://snmaicpc.chez.com/pdf_zip/MAI2/cours/norme
grafcet.pdf.

IEC, 1992. Programmable controllers: standard IEC 61131-3, IEC. Available at:
https://webstore.iec.ch/publication/4552.

INCOSE, 2016a. Guide to the Systems Engineering Body of Knowledge (SEBoK). v.

1.6. Available at:
http://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowled
ge_(SEBoK).

INCOSE, 2016b. INCOSE’s data-base for Systems Engineering tools. Available at:
https://acc.dau.mil/CommunityBrowser.aspx?id=530621.

216

INCOSE, 2010. Systems engineering handbook. A guide for system life cycle processes

and activities,

INCOSE, 2007. Systems Engineering Vision 2020. INCOSE-TP-2004. Available at:
http://www.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf.

ISO/IEC, 2008. ISO/IEC 15288 Systems and software engineering - System life cycle

processes, IEEE Standard 15288-2008. Available at:
http://www.canieti.com.mx/assets/files/828/ISO_IEC_FDIS_15288.pdf.

Juliot, E. & Benois, J., 2010. Viewpoints creation using Obeo Designer or how to build
Eclipse DSM without being an expert developer.

Kahani, N. & R. Cordy, J., 2015. Comparison and Evaluation of Model Transformation

Tools, Ontario, Canada. Available at:
http://research.cs.queensu.ca/TechReports/Reports/2015-627.pdf.

Kleppe, A.G., 2007. A language description is more than a metamodel. In the 4th

International Workshop on Software Language Engineering. Nashville, USA.
Available at: http://doc.utwente.nl/64546/.

Koenig, D. et al., 2007. Groovy in action (Vol. 1), Manning Publications.

Kohavi, Z. & Jha, N.K., 2009. Switching and Finite Automata Theory, Cambridge
University Press. Available at:
https://books.google.fr/books?id=Qv0LBAAAQBAJ.

Lalanda, P., 1997. Two complementary patterns to build multi-expert systems. Pattern

Languages of Programs, pp.1–9. Available at:
http://hillside.net/plop/plop97/Proceedings/lalanda.pdf.

Lamine, E., 2001. Définition d’un modèle de propriété et proposition d’un langage de

spécification associé : LUSP. University of Montpellier II. Available at:
http://www.theses.fr/2001MON20205.

Larnac, M. et al., 1995. Formal representation and proof of the interpreted sequential
machine model. In Computer Aided Systems Theory — EUROCAST’97. Springer,
pp. 93–107. Available at:
http://link.springer.com/chapter/10.1007%252FBFb0025037.

Larsen, K.G., Pettersson, P. & Yi, W., 1997. Uppaal in a nutshell. International Journal

on Software Tools for Technology Transfer, 1(1–2), pp.134–152.

Lee, E., 2003. Overview of the Ptolemy Project (Technical Memorandum UCB/ERL
M03/25). Electrical Engineering, pp.1–36. Available at:
http://ptolemy.eecs.berkeley.edu/conferences/97/ilp_overview.pdf.

Long, J.E., 2007. MBSE in Practice: Developing Systems with CORE.

Mahfouz, A.A., Mohammed, M.K. & Salem, F.A., 2013. Modeling, Simulation and
Dynamics Analysis Issues of Electric Motor, for Mechatronics Applications, Using
Different Approaches and Verification by MATLAB/Simulink. International

Journal of Intelligent Systems and Applications, 5(5), p.39.

Maiden, N.A. & Ncube, C., 1998. Acquiring COTS software selection requirements.
IEEE Software, 15(2), pp.46–56.

Markovic, S. & Baar, T., 2008. Semantics of OCL specified with QVT. Software and

 217

Systems Modeling, 7(4), pp.399–422.

Mathworks, 2014. Introduction to Simulink. Matlab Simulink User’s Guide R2014b,
pp.1–69.

Mavin, A. et al., 2009. Easy Approach to Requirements Syntax (EARS). In The 17th

IEEE International Requirements Engineering Conference (RE 2009). Atlanta,
USA, pp. 317–322. Available at:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5328509&isnumber=53
28460.

Mayerhofer, T. et al., 2013. xMOF: Executable DSMLs based on fUML. In In Software

Language Engineering. pp. 56–75.

Mens, T. & Van Gorp, P., 2006. A taxonomy of model transformation. Electronic Notes

in Theoretical Computer Science, 152(1–2), pp.125–142.

Le Moigne, J.-L., 1999. La modélisation des systèmes complexes Dunod, ed., Available
at: http://www.dunod.com/sciences-sociales-humaines/psychologie/psychologie-
sociale/master-et-doctorat/la-modelisation-des-systemes-complexes.

Muller, P.-A., Fleurey, F. & Jézéquel, J.-M., 2005. Weaving Executability into Object-
Oriented Meta-languages. In Model Driven Engineering Languages and Systems.
pp. 264–278. Available at:
http://www.springerlink.com/content/l60r44862137214x.

Murata, T., 1989. Petri Nets: Properties, Analysis and Applications. Proceedings of the

IEEE, 77(4), pp.541–580.

Nastov, B. et al., 2016a. A Tooled Approach for Designing Executable and Verifiable
Modeling Languages. INSIGHT the quarterly magazine of International Council of

Systems Engineering (INCOSE), 18(4), pp.31–33.

Nastov, B. et al., 2015. A verification approach from MDE applied to model based
systems engineering: XeFFBD dynamic semantics. In Complex Systems Design

and Management - Proceedings of the 5th International Conference on Complex

Systems Design and Management (CSD&M 2014). Paris, France: Springer
publishing, pp. 225–235.

Nastov, B. et al., 2016. Towards semantical DSMLs for complex or cyber-physical
systems. In Proceedings of the 11th International Conference on Evaluation of

Novel Software Approaches to Software Engineering (ENASE 2016). Rome, Italy:
Scitepress publishing.

Nastov, B. et al., 2016b. Towards V&V suitable Domain Specific Modeling
Languages for MBSE: A tooled approach. In the 26th Annual INCOSE

International Symposium (IS 2016). Edinburgh, Schotland: Wiley publishing.

Nastov Blazo, 2014. Contribution to model verification: operational semantic for
System Engineering modeling languages. In the 3th National Conference on

Software Engineering (CIEL 2014). Paris, France, pp. 88–90. Available at:
http://ciel2014.i3s.unice.fr/Ciel2014_fichiers/ActesCiel2014.pdf.

Nipkow, T., Paulson, L.C. & Wenzel, M., 2002. Isabelle/HOL: A proof assistant for

higher-order logic, Springer. Available at:
http://books.google.com/books?hl=en&lr=&id=KjLZvSUbKvQC&

218

oi=fnd&pg=PA1&dq=Isabelle+-+A+Proof+Assistant+for+Higher-
Order+Logic&ots=0_xrw6pfCJ&sig=h4nUaCdrLs0nJKXWoFhXkp2FA
Gg.

OMG, 2015a. Meta Object Facility (MOF) Specification 2.5, Available at:
http://www.omg.org/spec/MOF/2.5/.

OMG, 2014. Object Constraint Language (OCL) Specification v2.4, Available at:
http://www.omg.org/spec/OCL/2.4.

OMG, 2015b. Systems Modeling Language (SysML) Specification 1.4, Available at:
http://www.omg.org/spec/SysML/1.4.

OMG, 2011. Unified Modeling Language (UML) Specification 2.4.1, Available at:
http://www.omg.org/spec/UML/2.4.1/.

Pfister, F. et al., 2012. A proposed meta-model for formalizing systems engineering
knowledge, based on functional architectural patterns. Systems Engineering, 15(3),
pp.321–332. Available at: http://doi.wiley.com/10.1002/sys.21204.

Pfister, F., Huchard, M. & Nebut, C., 2014. A framework for concurrent design of
metamodels and diagrams towards an agile method for the synthesis of domain
specific graphical modeling languages. In Proceedings of the 16th International

Conference on Enterprise Information Systems (ICEIS 2014). SciTePress, pp. 298–

306. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-
84902356552&partnerID=tZOtx3y1.

Pnueli, A., 1977. The temporal logic of programs. 18th Annual Symposium on

Foundations of Computer Science (sfcs 1977), pp.46–57. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4567924.

Rivera, J.E. & Vallecillo, A., 2007. Adding behavioral semantics to models. In
Proceedings of the IEEE International Enterprise Distributed Object Computing

Workshop (EDOC 2007). pp. 169–180.

Rozenberg, G. & Ehrig, H., 1997. Handbook of graph grammars and computing by
graph transformation. Handbook of Graph Grammars. Available at:
http://www.ulb.tu-darmstadt.de/tocs/52752569.pdf.

Rozier, K.Y., 2011. Linear Temporal Logic Symbolic Model Checking. Computer

Science Review, 5(2), pp.163–203.

Sadilek, D.A. & Wachsmuth, G., 2009. Using grammarware languages to define
operational semantics of modelled languages. In In International Conference on

Objects, Components, Models and Patterns. Springer, pp. 348–356.

Scheidgen, M. & Fischer, J., 2007. Human comprehensible and machine processable
specifications of operational semantics. In Model Driven Architecture-Foundations

and …. Springer, pp. 157–171. Available at:
http://link.springer.com/chapter/10.1007/978-3-540-72901-3_12.

Schmidt, D.C., 2006. Model-Driven Engineering. IEEE Computer, 39(2), pp.25–31.
Available at: http://www.cs.wustl.edu/~schmidt/PDF/GEI.pdf.

Seidner, C., 2009. Vérication des EFFBDs : Model checking en Ingénierie Système.
University of Nantes. Available at: https://tel.archives-ouvertes.fr/tel-00440677.

 219

Sendall, S. & Kozaczynski, W., 2003. Model transformation: the heart and soul of
model-driven software development. IEEE Software, 20(5), pp.42–45. Available
at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1231150.

Stachowiak Herbert, 1973. Allgemeine Modelltheorie, New York: Springer-Verlag.
Available at: https://books.google.de/books?id=DK-EAAAAIAAJ.

Stålhane, T., Farfeleder, S. & Daramola, O., 2011. Safety analysis based on

requirements,

Steinberg, D. et al., 2008. EMF: eclipse modeling framework, Pearson Education.
Available at: http://portal.acm.org/citation.cfm?id=1197540.

Tolk, A. & Muguira, J., 2003. The Levels of Conceptual Interoperability Model. Fall

Simulation Interoperability Workshop, (September), pp.1–9.

Vandermeulen, E., 1996. Machine Séquentielle Interprétée: un modèle à états pour la

représentation discrète et la vérification de systèmes. University of Montpellier II.
Available at: http://www.sudoc.fr/005446457.

Vandermeulen, E. et al., 1995. The temporal boolean derivative applied to verification
of extended finite state machine. Computer and Mathematics with application,
30(2).

De Weck, O.L., Ross, A.M. & Rhodes, D.H., 2012. Investigating Relationships and
Semantic Sets amongst System Lifecycle Properties (Ilities). In The 3th

International Engineering Systems Symposium CESUN 2012. Delft, Netherlands.

Weisemöller, I. & Schürr, A., 2008. Formal definition of MOF 2.0 metamodel
components and composition. In In International Conference on Model Driven

Engineering Languages and Systems. Springer, pp. 386–400.

Woodcock, J. et al., 2009. Formal Methods: Practice and experience. ACM Computing

Surveys, 41(4), pp.1–36.

Ziemann, P. & Gogolla, M., 2003. OCL Extended with Temporal Logic. Perspectives of

System Informatics, 2890/2003, pp.617–633. Available at:
http://www.springerlink.com/content/p71n7hwfy76xvdcv/.

220

Abstract. Within the context of organizational and engineering sciences, Systems
Engineering (SE) is an interdisciplinary and collaborative approach for the design,
realization and management of large scale complex systems. Among other processes,
SE promotes modeling during all the design stages of a system; it can then be
characterized as Model Based Systems Engineering (MBSE). In parallel to SE, within
the field of software engineering for complex or cyber-physical systems the Model-
Driven Engineering (MDE) takes an important role, providing the means for systems
modeling through creation, checking and manipulation of various models.
Generally, on the one hand, modes represent a system under design (i.e., a system of
interests - SoI) based on different viewpoints (i.e., requirements, functional, physical,
performance, etc.) and on the other hand, models are used by stakeholders to verify and
validate the modeled SoI, i.e., to assure that the SoI meet stakeholders’ expectations and

requirements (for example in terms of covering the needs, operational safety, production
and use costs, etc.). This implies concepts, techniques and tools for creating and
managing various SoI models (denoted viewpoint models) for the purpose of
stakeholders, and for reaching and improving the quality of models helping then
stakeholders during decision-making processes, to make decisions faster and efficiently
with enough confidence. Indeed, these decisions impact all along the downstream
phases of system engineering and development until the realization and deployment of
the real system, its functioning, safety, security, induced costs and so on.
In this work, a particular attention is given to model verification and validation (V&V).
The goals are to assure prior to decision-making processes, first, that models are
coherent, well-formed and correctly build and represented, and second, that they are
trustworthy and relevant, representing as accurately as possible the viewpoints of a
system under design as expected by stakeholders. Such models provide stakeholders
with confidence and trust, aiding them in making, but also in arguing decisions.
Models are created by using modeling languages that are specifically tailored for a
given viewpoint of a system, denoted Domain Specific Modeling Languages (DSMLs).
The basic principles on which a DSML is based are its syntax and its semantics, but
current DSMLs have been more studied from the syntactical point than from the
semantical one that is often neglected or, when needed, provided by transforming the
DSML into external formal approaches. This is, from our perspective, a limitation for
the deployment of V&V strategies in the MBSE context. To overcome this issue, we
propose a new method denoted xviCore (executable, verifiable and interoperable core)
for the design of DSMLs that can be used to design models that respect the needs of
system architects having the required level of quality (discussed above). Our method is
conceptualized as a meta-modeling language that combines four languages for the
design of DSML syntax and semantics. xviCore includes concepts and mechanisms for
simulation (i.e., model execution) and formal proof based directly of SoI models
without transforming them to other third-party approaches as proposed by classical
approaches for modeling and V&V. In addition, xviCore relays on a formalized design
process denoted DSML and Model lifecycle. Finally, xviCore is tool-equipped as a
deployable plugin within the Eclipse Modeling Framework (EMF) environment.
This thesis reflects the description of the xviCore method. The first chapter exposes the
context and the problematic of this work. The rest of the thesis outline is highlighted in
conclusion of the first chapter.

