T. Santonen, H. A. Stockmann-]-r, M. C. Antunes, . De, and . Oliveira, Review on toxicity of stainless steel Corrosion fatigue of biomedical metallic alloys: Mechanisms and mitigation, Acta Biomaterialia, vol.83, issue.2 3, pp.937-962, 2010.

L. Savarino, M. Cadossi, E. Chiarello, N. Baldini, S. G. Fleury et al., Effect of cobalt and chromium ions on human MG-63 osteoblasts in vitro: Morphology, cytotoxicity, and oxidative stress Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses Comparative Evaluation of Metal Ions Release from Titanium and Ti-6Al-7Nb into Bio-Fluids Biocompatibility of corrosion-resistant zeolite coatings for titanium alloy biomedical implants Empirical data confirm autism symptoms related to aluminum and acetaminophen exposure, Fatigue and wear evaluation of Ti-Al-Nb alloys for biomedical applications, pp.2964-2971, 2003.

M. D. Bermúdez, F. J. Carrión, G. Martínez-nicolás, and R. López, Erosion???corrosion of stainless steels, titanium, tantalum and zirconium, Wear, vol.258, issue.1-4, pp.693-700, 2005.
DOI : 10.1016/j.wear.2004.09.023

T. Miyazaki, H. M. Kim, T. Kokubo, C. Ohtsuki, H. Kato et al., Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid, Biomaterials, vol.23, issue.3, pp.827-832, 2002.
DOI : 10.1016/S0142-9612(01)00188-0

H. Kato, T. Nakamura, S. Nishiguchi, Y. Matsusue, M. Kobayashi et al., Bonding of alkali- and heat-treated tantalum implants to bone, Journal of Biomedical Materials Research, vol.4, issue.1, p.28, 2000.
DOI : 10.1007/978-3-642-69006-8_28

T. Kokubo, H. M. Kim, and M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials, vol.24, issue.13, pp.2161-2175, 2003.
DOI : 10.1016/S0142-9612(03)00044-9

J. Black, Biologic performance of tantalum, Clinical Materials, vol.16, issue.3, pp.167-173, 1994.
DOI : 10.1016/0267-6605(94)90113-9

H. Colfen, A crystal-clear view, Nature Materials, vol.9, issue.12, pp.960-961, 2010.
DOI : 10.1021/ar50092a003

V. Sathyendra and M. Darowish, Basic Science of Bone Healing, Hand Clinics, vol.29, issue.4, pp.473-481, 2013.
DOI : 10.1016/j.hcl.2013.08.002

C. and J. T. Laurencin, Bone graft substitutes and bone regenerative engineering, 2015.

. Shieh, Antibacterial TaN-Ag coatings on titanium dental implants, Surf. Coatings Technol, vol.205, issue.5, pp.1636-1641, 2010.

K. Heydenrijk, H. J. Meijer, W. A. Van-der-reijden, G. M. Raghoebar, A. Vissink et al., Microbiota around root-form endosseous implants: a review of the literature, Int J Oral Maxillofac Implant, vol.17, issue.6, pp.829-838, 2002.

W. Kern and K. K. Schuegraf, Handbook of Thin Film Deposition Processes and Techniques " , Handbook of Thin Film Deposition Processes and Techniques, pp.11-43, 2001.

J. Espinós, Aplicaciones Tecnológicas de las Películas Delgadas

G. Savelli and G. Savelli, Etude et développement de composants thermoélectriques à base de couches minces, 2007.

R. Escobar and J. M. Albella, Preparación Y Caracterización De Recubrimientos Y Laminas Delgadas Tema 5 : Técnicas De Deposición Física (PVD) Deposición Mediante Bombardeo Catódico 'Sputtering, Inst. Cienc. Mater, 2005.

J. Nazon, Couches minces à base de nitrure de tantale multicouche pour barrières de diffusion, Univ. Montpellier II, 2008.

J. M. Albella, Mecanismos de nucleación y crecimiento de capas delgadas, Inst. Cienc. Mater, pp.101-123, 2003.

B. A. Movchan and A. V. Demshishin, Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, ! ""%! aluminium oxide and zirconium dioxide, Phys. Met. Met. (Engl. Trans.), vol.28, issue.4, pp.83-90, 1969.

J. Thornton, High Rate Thick Film Growth, Annual Review of Materials Science, vol.7, issue.1, pp.239-260, 1977.
DOI : 10.1146/annurev.ms.07.080177.001323

J. Thornton, The microstructure of sputter???deposited coatings, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.4, issue.6, p.3059, 1986.
DOI : 10.1116/1.573628

E. G. Sheikin, The pressure dependence of the deposition rate in a magnetron sputtering system, Thin Solid Films, vol.574, pp.52-59, 2015.
DOI : 10.1016/j.tsf.2014.11.043

F. Oudrhiri-hassani, L. Presmanes, A. Barnabé, and P. Tailhades, Microstructure, porosity and roughness of RF sputtered oxide thin films: Characterization and modelization, Applied Surface Science, vol.254, issue.18, pp.5796-5802, 2008.
DOI : 10.1016/j.apsusc.2008.03.149

A. Chaoumead, Y. M. Sung, and D. J. Kwak, The Effects of RF Sputtering Power and Gas Pressure on Structural and Electrical Properties of ITiO Thin Film, Advances in Condensed Matter Physics, vol.40, issue.4, 2012.
DOI : 10.1016/j.apsusc.2011.06.035

J. Tsao, C. Liu, Y. Wang, Y. Wang, and K. Chen, Controlling Ta phase in Ta/TaN bilayer by surface pre-treatment on TaN, Journal of Physics and Chemistry of Solids, vol.69, issue.2-3, pp.2-3, 2008.
DOI : 10.1016/j.jpcs.2007.11.022

N. Fréty, F. Bernard, J. Nazon, J. Sarradin, and J. C. Tedenac, Copper diffusion into silicon substrates through TaN and Ta/TaN multilayer barriers, Journal of Phase Equilibria and Diffusion, vol.308, issue.1???2, pp.590-597, 2006.
DOI : 10.1103/PhysRevB.65.245110

. Eurolnox, Manual de Diseño para Acero Inoxidable Estructural.pdf, 2002.

D. López, A. Durán, and S. Ceré, Caracterización superficial de acero inoxidable AISI 316 L en contacto con solución fisiológica simulada, Congr. CONAMET, issue.1, pp.2-5, 2004.

N. Fujii, H. Kusakari, and T. Maeda, A Histological Study on Tissue Responses to Titanium Implantation in Rat Maxilla: The Process of Epithelial Regeneration and Bone Reaction, Journal of Periodontology, vol.16, issue.4, pp.485-495, 1998.
DOI : 10.1034/j.1600-0501.1992.030403.x

T. R. Rautray, R. Narayanan, and K. H. Kim, Ion implantation of titanium based biomaterials, Progress in Materials Science, vol.56, issue.8, pp.1137-1177, 2011.
DOI : 10.1016/j.pmatsci.2011.03.002

URL : http://www.dem.uminho.pt/People/fsamuel/project2010/refbib_Fatih/[3].pdf

C. Cui, H. Liu, Y. Li, J. Sun, R. Wang et al., Fabrication and biocompatibility of nano-TiO2/titanium alloys biomaterials, Materials Letters, vol.59, issue.24-25, pp.24-25, 2005.
DOI : 10.1016/j.matlet.2005.05.037

D. Bernoulli, U. Müller, M. Schwarzenberger, R. Hauert, and R. Spolenak, Magnetron sputter deposited tantalum and tantalum nitride thin films: An analysis of phase, hardness and composition, Thin Solid Films, vol.548, pp.157-161, 2013.
DOI : 10.1016/j.tsf.2013.09.055

L. Liu, Y. Wang, and H. Gong, Annealing effects of tantalum films on Si and SiO2/Si substrates in various vacuums, Journal of Applied Physics, vol.54, issue.1, pp.416-420, 2001.
DOI : 10.1016/S0167-9317(96)00054-8

R. Hübner, M. Hecker, N. Mattern, V. Hoffmann, K. Wetzig et al., Structure and thermal stability of graded Ta???TaN diffusion barriers between Cu and SiO2, Thin Solid Films, vol.437, issue.1-2, pp.248-256, 2003.
DOI : 10.1016/S0040-6090(03)00664-3

M. Grosser and U. Schmid, The impact of sputter conditions on the microstructure and on the resistivity of tantalum thin films, Thin Solid Films, vol.517, issue.16, pp.4493-4496, 2009.
DOI : 10.1016/j.tsf.2008.12.009

R. Hoogeveen, M. Moske, H. Geisler, and K. Samwer, Texture and phase transformation of sputter-deposited metastable Ta films and Ta/Cu multilayers, Thin Solid Films, vol.275, issue.12, pp.203-206, 1996.
DOI : 10.1016/B978-0-444-82312-0.50101-8

M. Stavrev, D. Fischer, C. Wenzel, K. Drescher, and N. Mattern, Crystallographic and morphological characterization of reactively sputtered Ta, TaN and TaNO thin films, Thin Solid Films, vol.307, issue.1-2, pp.79-88, 1997.
DOI : 10.1016/S0040-6090(97)00319-2

L. Gladczuk, A. Patel, J. D. Demaree, and M. Sosnowski, Sputter deposition of bcc tantalum films with TaN underlayers for protection of steel, Thin Solid Films, vol.476, issue.2, pp.295-302, 2005.
DOI : 10.1016/j.tsf.2004.10.020

L. Gladczuk, A. Patel, C. S. Paur, and M. Sosnowski, Tantalum films for protective coatings of steel, Thin Solid Films, vol.467, issue.1-2, pp.150-157, 2004.
DOI : 10.1016/j.tsf.2004.04.041

M. Zhang, Y. F. Zhang, P. D. Rack, M. K. Miller, and T. G. Nieh, Nanocrystalline tetragonal tantalum thin films, Scripta Materialia, vol.57, issue.11, pp.1032-1035, 2007.
DOI : 10.1016/j.scriptamat.2007.07.041

L. A. Clevenger, A. Mutscheller, J. M. Harper, C. Cabral, and K. Barmak, The relationship between deposition conditions, the beta to alpha phase transformation, and stress relaxation in tantalum thin films, Journal of Applied Physics, vol.2, issue.10, p.4918, 1992.
DOI : 10.1116/1.572727

H. Matsuno, A. Yokoyama, F. Watari, M. Uo, and T. Kawasaki, Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium, Biomaterials, vol.22, issue.11, pp.1253-1262, 2001.
DOI : 10.1016/S0142-9612(00)00275-1

C. Wang, F. Wang, and Y. Han, The structure, bond strength and apatite-inducing ability of micro-arc oxidized tantalum and their response to annealing, Applied Surface Science, vol.361, pp.190-198, 2016.
DOI : 10.1016/j.apsusc.2015.11.133

C. F. Almeida-alves, A. Cavaleiro, and S. Carvalho, Bioactivity response of Ta 1-x O x coatings deposited by reactive DC magnetron sputtering, Materials Science and Engineering: C, vol.58, pp.110-118, 2016.
DOI : 10.1016/j.msec.2015.08.017

X. Li, L. Wang, X. Yu, Y. Feng, C. Wang et al., Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation, Materials Science and Engineering: C, vol.33, issue.5, pp.2987-2994, 2013.
DOI : 10.1016/j.msec.2013.03.027

H. O. Pierson, Handbook of Refractory Carbides and Nitrides, Handb. Refract. Carbides Nitrides, pp.8-16, 1996.
DOI : 10.1016/b978-081551392-6.50017-9

B. Laetitia, Etude de la stabilité thermique d'un matériau skutterudite et développement de barrières de diffusion pour applications thermoélectrique, 2014.

J. Lin and C. Lee, Growth of Tantalum Nitride Films on Si by Radio Frequency Reactive Sputtering of Ta in N[sub 2]/Ar Gas Mixtures: Effect of Bias, Journal of The Electrochemical Society, vol.147, issue.2, p.713, 2000.
DOI : 10.1149/1.1393257

T. Mashimo, S. Tashiro, T. Toya, M. Nishida, H. Yamazaki et al., Synthesis of the B1-type tantalum nitride by shock compression, Journal of Materials Science, vol.60, issue.13, pp.3439-3443, 1993.
DOI : 10.1007/BF01159819

C. S. Shin, D. Gall, Y. W. Kim, P. Desjardins, I. Petrov et al., Epitaxial NaCl structure ??-TaNx(001): Electronic transport properties, elastic modulus, and hardness versus N/Ta ratio, Journal of Applied Physics, vol.10, issue.6
DOI : 10.1103/PhysRevB.1.327

S. K. Kim and B. C. Cha, Deposition of tantalum nitride thin films by D.C. magnetron sputtering, Thin Solid Films, vol.475, issue.1-2, pp.202-207, 2005.
DOI : 10.1016/j.tsf.2004.08.059

X. Liu, G. J. Ma, G. Sun, Y. P. Duan, and S. H. Liu, Effect of deposition and annealing temperature on mechanical properties of TaN film, Applied Surface Science, vol.258, issue.3, pp.1033-1037, 2011.
DOI : 10.1016/j.apsusc.2011.08.116

M. Grosser, M. Münch, H. Seidel, C. Bienert, A. Roosen et al., The impact of substrate properties and thermal annealing on tantalum nitride thin films, Applied Surface Science, vol.258, issue.7, pp.2894-2900, 2012.
DOI : 10.1016/j.apsusc.2011.11.003

Y. Leng, H. Sun, P. Yang, J. Chen, J. Wang et al., Biomedical properties of tantalum nitride films synthesized by reactive magnetron sputtering, Thin Solid Films, vol.398, issue.399, pp.398-399, 2001.
DOI : 10.1016/S0040-6090(01)01448-1

A. S. Greenwald, S. D. Boden, V. M. Goldberg, Y. Khan, C. T. Laurencin et al., Bone-Graft Substitutes: Facts, Fictions, and Applications, The Journal of Bone and Joint Surgery-American Volume, vol.83, pp.98-103, 2001.
DOI : 10.2106/00004623-200100022-00007

E. C. Hench, Biomaterials, Science, vol.208, issue.4446, 1982.
DOI : 10.1126/science.6246576

L. L. Hench, Bioceramics, Journal of the American Ceramic Society, vol.3, issue.1, pp.1705-1728, 1998.
DOI : 10.1056/NEJM199102283240901

J. Black, Biological Performance of Materials: Fundamentals of Biocompatibility, 1999.

J. F. Osborn and H. Newesely, Dental Implants, 1980.

R. Baron, Anatomy and Biology of Bone Matrix and Cellular Elements, 2003.

S. F. , L. J. Buddy, and H. Allan, Biomaterials Science: An introduction to materials in medicine, 1996.

K. Anselme, Osteoblast adhesion on biomaterials, Biomaterials, vol.21, issue.7, pp.667-681, 2000.
DOI : 10.1016/S0142-9612(99)00242-2

L. Vroman and L. Adams, Identification of rapid changes at plasma-solid interfaces, Journal of Biomedical Materials Research, vol.19, issue.1, pp.43-67, 1969.
DOI : 10.6028/jres.067A.040

K. K. Chittur, FTIR/ATR for protein adsorption to biomaterial surfaces, Biomaterials, vol.19, issue.4-5, pp.357-369, 1998.
DOI : 10.1016/S0142-9612(97)00223-8

C. A. Van, B. P. Ducheyne, and T. Kokubo, Bone-bonding Biomateri-als, 1992.

L. G. Raisz, Physiology and pathophysiology of bone remodeling, Clin. Chem, vol.45, pp.1353-1358, 1999.

M. O. Agerbaek, E. F. Eriksen, J. Kragstrup, L. Mosekilde, and F. Melsen, A reconstruction of the remodelling cycle in normal human cortical iliac bone, Bone and Mineral, vol.12, issue.2, pp.101-112, 1991.
DOI : 10.1016/0169-6009(91)90039-3

R. Z. Legeros, Calcium phosphates in oral biology and medicine, 1991.

J. C. Elliott, Structure and chemistry of the apatites and other calcium orthophosphates, 1994.

S. V. Dorozhkin, A review on the dissolution models of calcium apatites, Progress in Crystal Growth and Characterization of Materials, vol.44, issue.1, pp.45-61, 2002.
DOI : 10.1016/S0960-8974(02)00004-9

F. Abbona, H. E. Madsen, and R. Boistelle, The initial phases of calcium and magnesium phosphates precipitated from solutions of high to medium concentrations, Journal of Crystal Growth, vol.74, issue.3, pp.581-590, 1986.
DOI : 10.1016/0022-0248(86)90205-8

T. Feenstra, Formation of calcium phosphates in moderately supersaturated solutions, The Journal of Physical Chemistry, vol.83, issue.4, pp.0-4, 1979.
DOI : 10.1021/j100467a010

M. J. Van-kemenade and P. L. De-bruyn, A kinetic study of precipitation from supersaturated calcium phosphate solutions, Journal of Colloid and Interface Science, vol.118, issue.2, pp.564-585, 1987.
DOI : 10.1016/0021-9797(87)90490-5

K. De-groot, Bioceramics of Calcium Phosphate, Boca Raton FL, 1983.

J. J. Lee, L. Rouhfar, and O. R. Beirne, Survival of hydroxyapatite-coated implants: A meta-analytic review, Journal of Oral and Maxillofacial Surgery, vol.58, issue.12, pp.1372-1379, 2000.
DOI : 10.1053/joms.2000.18269

A. Jokstad, U. Braegger, J. B. Brunski, A. B. Carr, I. Naert et al., Quality of dental implants*, International Dental Journal, vol.72, issue.12, pp.409-443, 2003.
DOI : 10.1902/jop.2001.72.10.1372

L. G. Ellies, D. G. Nelson, and J. D. Featherstone, Crystallographic changes in calcium phosphates during plasma-spraying, Biomaterials, vol.13, issue.5, pp.313-316, 1992.
DOI : 10.1016/0142-9612(92)90055-S

J. Weng, Q. Liu, J. G. Wolke, D. Zhang, and K. Groot, The role of amorphous phase in nucleating bone-like apatite on plasma-sprayed hydroxyapatite coatings in simulated body fluid, Journal of Materials Science Letters, vol.16, issue.4, pp.335-337, 1997.
DOI : 10.1023/A:1018529924527

S. Ha, R. Reber, K. Eckert, M. Petitmermet, J. Mayer et al., Chemical and Morphological Changes of Vacuum-Plasma-Sprayed Hydroxyapatite Coatings during Immersion in Simulated Physiological Solutions, Journal of the American Ceramic Society, vol.27, issue.1, pp.81-88, 2005.
DOI : 10.1180/mono-4.17

C. M. Lopatin, V. B. Pizziconi, and T. L. Alford, Crystallization kinetics of sol-gel derived hydroxyapatite thin films, Journal of Materials Science: Materials in Medicine, vol.12, issue.9, pp.767-773, 2001.
DOI : 10.1023/A:1017908515442

R. Viitala, M. Jokinen, T. Peltola, K. Gunnelius, and J. B. Rosenholm, Surface properties of in vitro bioactive and non-bioactive sol???gel derived materials, Biomaterials, vol.23, issue.15, pp.3073-3086, 2002.
DOI : 10.1016/S0142-9612(02)00017-0

H. M. Kim, Y. Kim, S. J. Park, C. Rey, H. Lee et al., Thin film of low-crystalline calcium phosphate apatite formed at low temperature, Biomaterials, vol.21, issue.11, pp.1129-1134, 2000.
DOI : 10.1016/S0142-9612(99)00265-3

F. Li, Q. L. Feng, F. Z. Cui, H. D. Li, and H. Schubert, A simple biomimetic method for calcium phosphate coating, Surface and Coatings Technology, vol.154, issue.1, pp.88-93, 2002.
DOI : 10.1016/S0257-8972(01)01710-8

T. P. Niesen and M. R. De-guire, Deposition of Ceramic Thin Films at

W. Q. Yan, T. Nakamura, K. Kawanabe, S. Nishigochi, M. Oka et al., Apatite layer-coated titanium for use as bone bonding implants, Biomaterials, vol.18, issue.17, pp.1185-1190, 1997.
DOI : 10.1016/S0142-9612(97)00057-4

H. B. Wen, J. G. Wolke, J. R. De-wijn, W. Q. Liu, F. Z. Cui et al., Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments, Biomaterials, vol.18, issue.22, pp.1471-1478, 1997.
DOI : 10.1016/S0142-9612(97)82297-1

M. T. Pham, M. F. Maitz, W. Matz, H. Reuther, E. Richter et al., Promoted hydroxyapatite nucleation on titanium ion-implanted with sodium, Thin Solid Films, vol.379, issue.1-2, pp.50-56, 2000.
DOI : 10.1016/S0040-6090(00)01553-4

P. Li, I. Kangasniemi, K. De-groot, and T. Kokubo, Bonelike Hydroxyapatite Induction by a Gel-Derived Titania on a Titanium Substrate, Journal of the American Ceramic Society, vol.4, issue.5, pp.1307-1312, 1994.
DOI : 10.2109/jcersj1950.95.1098_150

S. D. Cook, K. Thomas, J. F. Kay, and M. Jarcho, Hydroxyapatite-Coated Titanium for Orthopedic Implant Applications, Clinical Orthopaedics and Related Research, vol.&NA;, issue.232, pp.225-243, 1988.
DOI : 10.1097/00003086-198807000-00030

T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro, Solutions able to reproducein vivo surface-structure changes in bioactive glass-ceramic A-W3, Journal of Biomedical Materials Research, vol.226, issue.39, pp.721-734, 1990.
DOI : 10.1002/jbm.820240607

T. Kokubo, S. Ito, Z. T. Huang, T. Hayashi, S. Sakka et al., Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W, Journal of Biomedical Materials Research, vol.80, issue.39, pp.331-374, 1990.
DOI : 10.1016/B978-0-12-119201-3.50014-7

P. Ducheyne and Q. Qiu, Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function, Biomaterials, vol.20, issue.23-24, pp.23-24, 1999.
DOI : 10.1016/S0142-9612(99)00181-7

J. G. Wolke, K. D. Groot, and J. A. Jansen, Dissolution and adhesion behaviour of radio-frequency magnetron-sputtered Ca-P coatings, Journal of Materials Science, vol.33, issue.13, pp.3371-3376, 1998.
DOI : 10.1023/A:1013245632321

P. A. Campbell, Vacuum plasma sprayed hydroxyapatite coatings on titanium alloy substrates: Surface characterization and observation of dissolution processes using atomic force microscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.2, p.1167, 1996.
DOI : 10.1116/1.588422

E. Chang, W. J. Chang, B. C. Wang, and C. Y. Yang, Plasma spraying of zirconia-reinforced hydroxyapatite composite coatings on titanium: part II: dissolution behaviour in simulated body fluid and bonding degradation, Journal of Materials Science Materials in Medicine, vol.8, issue.4, pp.201-211, 1997.
DOI : 10.1023/A:1018535606393

J. G. Wolke, J. P. Van-der-waerden, K. D. Groot, and J. A. Jansen, Stability of radiofrequency magnetron sputtered calcium phosphate coatings under cyclically loaded conditions, Biomaterials, vol.18, issue.6, pp.483-488, 1997.
DOI : 10.1016/S0142-9612(96)00164-0

URL : http://repository.ubn.ru.nl/bitstream/2066/24920/1/24920___.PDF

F. Barrere, P. Layrolle, C. A. Van-blitterswijk, and K. De-groot, Biomimetic calcium phosphate coatings on Ti6Al4V: a crystal growth study of octacalcium phosphate and inhibition by Mg2+ and HCO3???, Bone, vol.25, issue.2, pp.107-111, 1999.
DOI : 10.1016/S8756-3282(99)00145-3

E. Y. Kawachi, C. Bertran, and L. T. Kubota, Interface potential of calcium phosphate in simulated body fluid, Biomaterials, vol.19, issue.24, pp.2329-2362, 1998.
DOI : 10.1016/S0142-9612(98)00148-3

J. L. Ong, G. N. Raikar, and T. M. Smoot, Properties of calcium phosphate coatings before and after exposure to simulated biological fluid, Biomaterials, vol.18, issue.19, pp.1271-1275, 1997.
DOI : 10.1016/S0142-9612(97)00074-4

K. Hata, T. Kokubo, T. Nakamura, and T. Yamamuro, Growth of a Bonelike Apatite Layer on a Substrate by a Biomimetic Process, Journal of the American Ceramic Society, vol.81, issue.4, pp.1049-1053, 1995.
DOI : 10.6028/jres.081A.017

G. J. Soler-illia and P. Innocenzi, Mesoporous Hybrid Thin Films: The Physics and Chemistry Beneath, Chemistry - A European Journal, vol.124, issue.45, pp.4478-4494, 2006.
DOI : 10.1016/j.crci.2003.12.016

C. Brinker and G. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Advanced Materials, vol.3, issue.10, p.912, 1990.

L. L. Hench and J. K. West, The sol-gel process, Chemical Reviews, vol.90, issue.1, pp.33-72, 1990.
DOI : 10.1021/cr00099a003

G. Cao, Nanostructures and Nanomaterials -Synthesis, Properties and Applications, 2004.
DOI : 10.1142/7885

URL : https://www.worldscientific.com/doi/pdf/10.1142/9789814340571_fmatter

M. C. Ammons, L. S. Ward, S. T. Fisher, R. D. Wolcott, and G. A. James, In vitro susceptibility of established biofilms composed of a clinical wound isolate of Pseudomonas aeruginosa treated with lactoferrin and xylitol, International Journal of Antimicrobial Agents, vol.33, issue.3, pp.230-236, 2016.
DOI : 10.1016/j.ijantimicag.2008.08.013

D. Lebeaux, A. Chauhan, O. Rendueles, and C. Beloin, From in vitro to in vivo Models of Bacterial Biofilm-Related Infections, Pathogens, vol.59, issue.1, pp.288-356, 2013.
DOI : 10.1111/j.1574-695X.2010.00686.x

URL : https://hal.archives-ouvertes.fr/pasteur-01385428

T. A. Schildhauer, B. Robie, G. Muhr, and M. Ko, Bacterial Adherence to Tantalum Versus Commonly Used Orthopedic Metallic Implant Materials, Journal of Orthopaedic Trauma, vol.20, issue.7, pp.476-484, 2006.
DOI : 10.1097/00005131-200608000-00005

E. M. Jaryszak, E. M. Sampson, and P. J. Antonelli, Biofilm formation by Pseudomonas aeruginosa on ossicular reconstruction prostheses, American Journal of Otolaryngology, vol.30, issue.6, pp.367-70, 2009.
DOI : 10.1016/j.amjoto.2008.07.007

V. K. Truong, S. Rundell, R. Lapovok, Y. Estrin, J. Y. Wang et al., Effect of ultrafine-grained titanium surfaces on adhesion of bacteria, Applied Microbiology and Biotechnology, vol.60, issue.5, pp.925-937, 2009.
DOI : 10.1007/s00253-009-1944-5

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford et al., Bacterial Retention on Superhydrophobic Titanium Surfaces Fabricated by Femtosecond Laser Ablation, Langmuir, vol.27, issue.6, pp.3012-3019, 2011.
DOI : 10.1021/la104607g

K. Mediaswanti, V. K. Truong, J. Hasan, E. P. Ivanova, F. Malherbe et al., Influence of Titanium Alloying Element Substrata on Bacterial Adhesion, Advanced Materials Research, vol.535, issue.537, pp.535-537, 2012.
DOI : 10.4028/www.scientific.net/AMR.535-537.992

H. Koseki, A. Yonekura, T. Shida, I. Yoda, H. Horiuchi et al., Early Staphylococcal Biofilm Formation on Solid Orthopaedic Implant Materials: In Vitro Study, PLoS ONE, vol.38, issue.10, 2014.
DOI : 10.1371/journal.pone.0107588.t002

URL : https://doi.org/10.1371/journal.pone.0107588

Y. Zhang, Y. Zheng, Y. Li, L. Wang, Y. Bai et al., Tantalum Nitride-Decorated Titanium with Enhanced Resistance to Microbiologically Induced Corrosion and Mechanical Property for Dental Application, PLOS ONE, vol.4, issue.6, 2015.
DOI : 10.1371/journal.pone.0130774.s001

URL : https://doi.org/10.1371/journal.pone.0130774

T. Strateva and I. Mitov, Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections, Annals of Microbiology, vol.38, issue.4, pp.717-732, 2011.
DOI : 10.1021/bi991019l

R. A. Weinstein, R. Gaynes, J. R. Edwards, and N. N. System, Overview of Nosocomial Infections Caused by Gram-Negative Bacilli, Clinical Infectious Diseases, vol.25, issue.10, pp.848-854, 2005.
DOI : 10.1086/502306

URL : https://academic.oup.com/cid/article-pdf/41/6/848/5928026/41-6-848.pdf

A. Y. Peleg and D. C. Hooper, Hospital-Acquired Infections Due to Gram-Negative Bacteria, New England Journal of Medicine, vol.362, issue.19, pp.1804-1817, 2010.
DOI : 10.1056/NEJMra0904124

A. Fernandes and M. Dias, The Microbiological Profiles of Infected Prosthetic Implants with an Emphasis on the Organisms which Form Biofilms, JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH, vol.7, issue.2, pp.219-223, 2013.
DOI : 10.7860/JCDR/2013/4533.2732

W. Zimmerli and C. Moser, Pathogenesis and treatment concepts of orthopaedic biofilm infections, FEMS Immunology & Medical Microbiology, vol.135, issue.2, pp.158-168, 2012.
DOI : 10.1056/NEJMra040181

URL : https://academic.oup.com/femspd/article-pdf/65/2/158/19281184/65-2-158.pdf

E. Karunakaran, J. Mukherjee, B. Ramalingam, and C. A. Biggs, ???Biofilmology???: a multidisciplinary review of the study of microbial biofilms, Applied Microbiology and Biotechnology, vol.39, issue.6, pp.1869-1881, 2011.
DOI : 10.1046/j.1365-2958.2001.02337.x

T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, vol.27, issue.15, pp.2907-2915, 2006.
DOI : 10.1016/j.biomaterials.2006.01.017

S. P. Naik, S. Yamakita, M. Ogura, and T. Okubo, Studies on mesoporous silica films synthesized using F127, a triblock co-polymer, Microporous and Mesoporous Materials, vol.75, issue.1-2, pp.51-59, 2004.
DOI : 10.1016/j.micromeso.2004.06.028

A. Gutiérrez, Formación de Biopelículas sobre superficies usadas en implantes óseos, Instituto Venezolano de Investigaciones Científicas, 2016.

D. A. Shirley, High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Physical Review B, vol.26, issue.12, pp.4709-4714, 1972.
DOI : 10.1103/PhysRevLett.26.1108

URL : https://cloudfront.escholarship.org/dist/prd/content/qt8rx4x7ns/qt8rx4x7ns.pdf

J. H. Scofield, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, Journal of Electron Spectroscopy and Related Phenomena, vol.8, issue.2, pp.129-137, 1976.
DOI : 10.1016/0368-2048(76)80015-1

T. Riekkinen, J. Molarius, T. Laurila, A. Nurmela, I. Suni et al., Reactive sputter deposition and properties of TaxN thin films, Microelectronic Engineering, vol.64, issue.1-4, pp.1-4, 2002.
DOI : 10.1016/S0167-9317(02)00801-8

H. Oettel and R. Wiedemann, Residual stresses in PVD hard coatings, Surface and Coatings Technology, vol.76, issue.77, pp.265-273, 1995.
DOI : 10.1016/0257-8972(95)02581-2

P. B. Barna and M. Adamik, Fundamental structure forming phenomena of polycrystalline films and the structure zone models, Thin Solid Films, vol.317, issue.1-2, pp.27-33, 1998.
DOI : 10.1016/S0040-6090(97)00503-8

X. Liu, G. J. Ma, G. Sun, Y. P. Duan, and S. H. Liu, Effect of deposition and annealing temperature on mechanical properties of TaN film, Applied Surface Science, vol.258, issue.3, pp.1033-1037, 2011.
DOI : 10.1016/j.apsusc.2011.08.116

T. Laurila, K. Zeng, J. K. Kivilahti, J. Molarius, and I. Suni, Chemical stability of Ta diffusion barrier between Cu and Si, Thin Solid Films, vol.373, issue.1-2, pp.64-67, 2000.
DOI : 10.1016/S0040-6090(00)01102-0

S. Myers, J. Lin, R. M. Souza, W. D. Sproul, and J. J. Moore, The ?? to ?? phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputtering, Surface and Coatings Technology, vol.214, pp.38-45, 2013.
DOI : 10.1016/j.surfcoat.2012.10.061

S. Tsukimoto, M. Moriyama, and M. Murakami, Microstructure of amorphous tantalum nitride thin films, Thin Solid Films, vol.460, issue.1-2, pp.222-226, 2004.
DOI : 10.1016/j.tsf.2004.01.073

C. Shin, Y. Kim, N. Hellgren, D. Gall, I. Petrov et al., Epitaxial growth of metastable ??-TaN layers on MgO(001) using low-energy, high-flux ion irradiation during ultrahigh vacuum reactive magnetron sputtering, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.20, issue.6, p.2007, 2002.
DOI : 10.1116/1.1513639

M. Benegra, D. G. Lamas, M. E. Fernández-de-rapp, N. Mingolo, .. O. Kunrath et al., Residual stresses in titanium nitride thin films deposited by direct current and pulsed direct current unbalanced magnetron sputtering, Thin Solid Films, vol.494, issue.1-2, pp.146-150, 2006.
DOI : 10.1016/j.tsf.2005.08.214

J. Huang, C. Ho, and G. Yu, Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si(100) and stainless steel substrates, Materials Chemistry and Physics, vol.102, issue.1, pp.31-38, 2007.
DOI : 10.1016/j.matchemphys.2006.10.007

H. B. Nie, S. Y. Xu, S. J. Wang, L. P. You, Z. Yang et al., Structural and electrical properties of tantalum nitride thin films fabricated by using reactive radio-frequency magnetron sputtering, Applied Physics A Materials Science & Processing, vol.73, issue.2, pp.229-236, 2001.
DOI : 10.1007/s003390000691

URL : http://arxiv.org/pdf/cond-mat/0305683

G. Ma, G. Lin, S. Gong, X. Liu, G. Sun et al., Mechanical and corrosive characteristics of Ta/TaN multilayer coatings, Vacuum, vol.89, issue.1, pp.244-248, 2013.
DOI : 10.1016/j.vacuum.2012.05.024

R. Behrisch, Sputtering by Particle Bombardment, 1991.

W. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo et al., by UPS and Electrochemical Methods, The Journal of Physical Chemistry B, vol.107, issue.8, pp.1798-1803, 2003.
DOI : 10.1021/jp027593f

M. Zier, S. Oswald, R. Reiche, and K. Wetzig, XPS and ARXPS investigations of ultra thin TaN films deposited on SiO2 and Si, Applied Surface Science, vol.252, issue.1, pp.234-239, 2005.
DOI : 10.1016/j.apsusc.2005.02.025

P. Lamour, P. Fioux, A. Ponche, M. Nardin, M. F. Vallat et al., thin films, Surface and Interface Analysis, vol.11, issue.9, pp.1430-1437, 2008.
DOI : 10.1016/S0026-2714(02)00088-4

URL : https://hal.archives-ouvertes.fr/hal-01618401

T. Li, B. Lwo, N. Pu, S. Yu, and C. Kao, The effects of nitrogen partial pressure on the properties of the TaNx films deposited by reactive magnetron sputtering, Surface and Coatings Technology, vol.201, issue.3-4, pp.3-4, 2006.
DOI : 10.1016/j.surfcoat.2006.01.013

M. Zier, S. Oswald, R. Reiche, M. Kozlowska, and K. Wetzig, Interface formation and reactions at Ta???Si and Ta???SiO2 interfaces studied by XPS and ARXPS, Journal of Electron Spectroscopy and Related Phenomena, vol.137, issue.140, pp.229-233, 2004.
DOI : 10.1016/j.elspec.2004.02.060

K. M. Latt, Y. Lee, S. Li, T. Osipowicz, and H. Seng, The impact of layer thickness of IMP-deposited tantalum nitride films on integrity of Cu/TaN/SiO2/Si multilayer structure, Materials Science and Engineering: B, vol.84, issue.3, pp.217-223, 2001.
DOI : 10.1016/S0921-5107(01)00618-3

H. Demiryont, J. R. Sites, and K. Geib, Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion-beam sputtering, Applied Optics, vol.24, issue.4, p.490, 1985.
DOI : 10.1364/AO.24.000490

D. M. Gordin, D. Busardo, A. Cimpean, C. Vasilescu, D. Höche et al., Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications, Materials Science and Engineering: C, vol.33, issue.7, pp.4173-4182, 2013.
DOI : 10.1016/j.msec.2013.06.008

URL : https://hal.archives-ouvertes.fr/hal-00865160

K. Valleti, A. Subrahmanyam, S. Joshi, R. Phani, M. Passacantando et al., N phase, Journal of Physics D: Applied Physics, vol.41, issue.4, p.45409, 2008.
DOI : 10.1088/0022-3727/41/4/045409

X. Zhao, N. P. Magtoto, and J. Kelber, Chemical vapor deposition of tantalum nitride with tert-butylimino tris(diethylamino) tantalum and atomic hydrogen, Thin Solid Films, vol.478, issue.1-2, pp.188-195, 2005.
DOI : 10.1016/j.tsf.2004.10.042

S. Badrinarayanan and S. Sinha, ???ion beams with niobium and tantalum metals, Journal of Applied Physics, vol.21, issue.3, p.1141, 1991.
DOI : 10.1016/0368-2048(76)80015-1

A. Leyland and A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear, vol.246, issue.1-2, pp.1-11, 2000.
DOI : 10.1016/S0043-1648(00)00488-9

D. V. Shtansky, N. A. Gloushankova, I. A. Bashkova, M. A. Kharitonova, T. G. Moizhess et al., Ta-doped multifunctional bioactive nanostructured films, Surface and Coatings Technology, vol.202, issue.15, pp.3615-3624, 2008.
DOI : 10.1016/j.surfcoat.2008.01.003

S. Tanaka, N. Nishiyama, Y. Oku, Y. Egashira, and K. Ueyama, Nano-Architectural Silica Thin Films with Two-Dimensionally Connected Cagelike Pores Synthesized from Vapor Phase, Journal of the American Chemical Society, vol.126, issue.15, pp.4854-4858, 2004.
DOI : 10.1021/ja039267z

D. Grosso, A. R. Balkenende, P. A. Albouy, A. Ayral, H. Amenitsch et al., Two-Dimensional Hexagonal Mesoporous Silica Thin Films Prepared from Block Copolymers:?? Detailed Characterization and Formation Mechanism, Chemistry of Materials, vol.13, issue.5, pp.1848-1856, 2001.
DOI : 10.1021/cm001225b

T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios, Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics, Journal of Biomedical Materials Research, vol.108, issue.3, pp.475-483, 2000.
DOI : 10.1002/1097-4636(20000905)51:3<475::AID-JBM23>3.0.CO;2-9

Y. E. Greish and P. W. Brown, Characterization of bioactive glass-reinforced HAP-polymer composites, Journal of Biomedical Materials Research, vol.53, issue.4, pp.687-694, 2000.
DOI : 10.1177/00220345740530062101

S. Rhee and J. Tanaka, Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid, Biomaterials, vol.20, issue.22, p.pp
DOI : 10.1016/S0142-9612(99)00118-0

P. Habibovic, F. Barrere, C. A. Blitterswijk, K. Groot, and P. Layrolle, Biomimetic Hydroxyapatite Coating on Metal Implants, Journal of the American Ceramic Society, vol.5, issue.5, pp.517-522, 2002.
DOI : 10.1177/00220345810600091401

URL : https://ris.utwente.nl/ws/files/6566497/Habibovic02biomimetic.pdf

A. C. Tas and S. B. Bhaduri, Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10?? simulated body fluid, Journal of Materials Research, vol.207, issue.09, pp.2742-2749, 2004.
DOI : 10.1159/issn.0077-0892

S. P. Vinodhini, R. Manonmani, B. Venkatachalapathy, and T. M. Sridhar, ???HAP composite layer for biomedical applications, RSC Advances, vol.58, issue.67, pp.62344-62355, 2016.
DOI : 10.1002/maco.200603979

J. Mahamid, B. Aichmayer, E. Shimoni, R. Ziblat, C. Li et al., Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays, Proceedings of the National Academy of Sciences, vol.225, issue.Pt 2, pp.6316-6337, 2010.
DOI : 10.1111/j.1365-2818.2007.01732.x

URL : http://www.pnas.org/content/107/14/6316.full.pdf

E. Beniash, R. A. Metzler, R. S. Lam, and P. U. Gilbert, Transient amorphous calcium phosphate in forming enamel, Journal of Structural Biology, vol.166, issue.2
DOI : 10.1016/j.jsb.2009.02.001

URL : http://europepmc.org/articles/pmc2731811?pdf=render

F. Barrére, C. A. Van-blitterswijk, K. De-groot, and P. Layrolle, Nucleation of biomimetic Ca???P coatings on Ti6Al4V from a SBF??5 solution: influence of magnesium, Biomaterials, vol.23, issue.10, pp.2211-2220, 2002.
DOI : 10.1016/S0142-9612(01)00354-4

Y. Xie, X. Liu, P. K. Chu, and C. Ding, Nucleation and growth of calcium???phosphate on Ca-implanted titanium surface, Surface Science, vol.600, issue.3, pp.651-656, 2006.
DOI : 10.1016/j.susc.2005.11.016

Y. Liu, J. P. Li, E. B. Hunziker, and K. De-groot, Incorporation of growth factors into medical devices via biomimetic coatings, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.20, issue.3-4, pp.233-281, 2006.
DOI : 10.1002/(SICI)1097-4636(199805)40:2<301::AID-JBM15>3.0.CO;2-O

K. Yamashita, N. Oikawa, and T. Umegaki, Acceleration and Deceleration of Bone-Like Crystal Growth on Ceramic Hydroxyapatite by Electric Poling, Chemistry of Materials, vol.8, issue.12, pp.2697-2700, 1996.
DOI : 10.1021/cm9602858

A. Dey, P. H. Bomans, F. A. Müller, J. Will, P. M. Frederik et al., The role of prenucleation clusters in surface-induced calcium phosphate crystallization, Nature Materials, vol.5, issue.12, pp.1010-1014, 2010.
DOI : 10.1002/jemt.20591

X. Zhao, L. Yang, Y. Zuo, and J. Xiong, Hydroxyapatite Coatings on Titanium Prepared by Electrodeposition in a Modified Simulated Body Fluid, Chinese Journal of Chemical Engineering, vol.17, issue.4, pp.667-671, 2009.
DOI : 10.1016/S1004-9541(08)60261-X

M. H. Chi, H. K. Tsou, C. J. Chung, and J. L. He, Biomimetic hydroxyapatite grown on biomedical polymer coated with titanium dioxide interlayer to assist osteocompatible performance, Thin Solid Films, pp.98-102, 2013.
DOI : 10.1016/j.tsf.2013.06.063

D. Gopi, J. Indira, and L. Kavitha, A comparative study on the direct and pulsed current electrodeposition of hydroxyapatite coatings on surgical grade stainless steel, Surface and Coatings Technology, vol.206, issue.11-12, pp.11-12, 2012.
DOI : 10.1016/j.surfcoat.2011.12.011

X. Liu, R. K. Fu, R. W. Poon, P. Chen, P. K. Chu et al., Biomimetic growth of apatite on hydrogen-implanted silicon, Biomaterials, vol.25, issue.25, pp.5575-5581, 2004.
DOI : 10.1016/j.biomaterials.2004.01.015

M. Palard, E. Champion, and S. Foucaud, Synthesis of silicated hydroxyapatite Ca10(PO4)6???x(SiO4)x(OH)2???x, Journal of Solid State Chemistry, vol.181, issue.8, pp.1950-1960, 2008.
DOI : 10.1016/j.jssc.2008.04.027

URL : https://hal.archives-ouvertes.fr/hal-00356929

A. Bigi, E. Boanini, C. Capuccini, and M. Gazzano, Strontium-substituted hydroxyapatite nanocrystals, Inorganica Chimica Acta, vol.360, issue.3, pp.1009-1016, 2007.
DOI : 10.1016/j.ica.2006.07.074

I. Mobasherpour, M. S. Heshajin, A. Kazemzadeh, and M. Zakeri, Synthesis of nanocrystalline hydroxyapatite by using precipitation method, Journal of Alloys and Compounds, vol.430, issue.1-2, pp.330-333, 2007.
DOI : 10.1016/j.jallcom.2006.05.018

G. R. Sauer and R. E. Wuthier, Fourier transform infrared characterization of mineral phases formed during induction of mineralization by collagenase-released matrix vesicles in vitro, J. Biol. Chem, vol.263, issue.27, pp.13718-13724, 1988.

S. B. and S. Maruno, Deposition of Calcium Phosphate on Titanium by Electrochemical Process in Simulated Body Fluid, Jpn. J. Appl. Phys, vol.32, issue.10B, p.1577, 1993.

L. T. Canham and C. L. Reeves, Apatite Nucleation on Low Porosity Silicon in Acellular Simulated Body Fluids, MRS Proceedings, vol.24, 1995.
DOI : 10.1016/0169-4332(93)90495-W

F. Gao and P. M. Sherwood, Photoelectron spectroscopic studies of the formation of hydroxyapatite films on titanium pretreated with etidronic acid, Surface and Interface Analysis, vol.9, issue.3, pp.742-750, 2013.
DOI : 10.1116/11.20030101

C. Battistoni, M. P. Casaletto, G. M. Ingo, S. Kaciulis, G. Mattogno et al., Surface characterization of biocompatible hydroxyapatite coatings, Surface and Interface Analysis, vol.1, issue.11, pp.773-781, 2000.
DOI : 10.1142/9789814317351_0009

B. H. Lee, Y. Kim, and K. H. Lee, XPS study of bioactive graded layer in Ti???In???Nb???Ta alloy prepared by alkali and heat treatments, Biomaterials, vol.24, issue.13, pp.2257-2266, 2003.
DOI : 10.1016/S0142-9612(03)00034-6

R. J. Chung, M. F. Hsieh, R. N. Panda, and T. S. Chin, Hydroxyapatite layers deposited from aqueous solutions on hydrophilic silicon substrate, Surface and Coatings Technology, vol.165, issue.2, pp.194-200, 2003.
DOI : 10.1016/S0257-8972(02)00731-4

H. Takadama, H. Kim, T. Kokubo, and T. Nakamura, XPS study of the process of apatite formation on bioactive Ti???6Al???4V alloy in simulated body fluid, Science and Technology of Advanced Materials, vol.95, issue.2, pp.389-396, 2001.
DOI : 10.1007/978-1-4615-5517-9_1

C. C. Chusuei, D. W. Goodman, M. J. Van-stipdonk, D. R. Justes, and E. A. Schweikert, Calcium Phosphate Phase Identification Using XPS and Time-of-Flight Cluster SIMS, Analytical Chemistry, vol.71, issue.1, pp.149-153, 1999.
DOI : 10.1021/ac9806963

M. Uchida, H. Kim, T. Kokubo, S. Fujibayashi, and T. Nakamura, Structural dependence of apatite formation on titania gels in a simulated body fluid, Journal of Biomedical Materials Research, vol.73, issue.1, pp.164-170, 2003.
DOI : 10.1006/jcis.1997.5329

H. M. Kim, T. Himeno, T. Kokubo, and T. Nakamura, Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid, Biomaterials, vol.26, issue.21, pp.4366-4373, 2005.
DOI : 10.1016/j.biomaterials.2004.11.022

G. A. Parks, The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems, Chemical Reviews, vol.65, issue.2, pp.177-198, 1965.
DOI : 10.1021/cr60234a002

P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga et al., The role of hydrated silica, titania, and alumina in inducing apatite on implants, Journal of Biomedical Materials Research, vol.65, issue.1, pp.7-15, 1994.
DOI : 10.1002/jbm.820280103

I. B. Leonor, A. Ito, K. Onuma, N. Kanzaki, and R. L. Reis, Atomic Force Microscopy as a Tool to Study In-Situ the In-Vitro Bioactivity of Starch Thermoplastic/Hydroxylapatite Biomaterials, Bioceramics 14, pp.55-59, 2002.
DOI : 10.4028/www.scientific.net/KEM.218-220.55

M. Manso, C. Jiménez, C. Morant, P. Herrero, and J. M. Martínez-duart, Apatite films produced by electrodeposition: characterization by TEM and AFM, Surface and Interface Analysis, vol.13, issue.170, pp.1104-1109, 2001.
DOI : 10.1557/JMR.1998.0015

B. Assenza and A. Piattelli, Nanomechanical properties of bone around cement-retained abutment implants . A minipig study, J. Osseointegration, vol.7, pp.33-39

R. Hodgskinson, J. D. Currey, and G. P. Evans, Hardness, an indicator of the mechanical competence of cancellous bone, Journal of Orthopaedic Research, vol.48, issue.5, pp.754-758, 1989.
DOI : 10.1002/jor.1100070518

P. K. Zysset, X. Edward-guo, C. Edward-hoffler, K. E. Moore, and S. A. Goldstein, Elastic modulus and hardness of cortical and trabecular bone

G. P. Evans, J. C. Behiri, J. D. Currey, and W. Bonfield, Microhardness and Young's modulus in cortical bone exhibiting a wide range of mineral volume fractions, and in a bone analogue, Journal of Materials Science: Materials in Medicine, vol.16, issue.1, pp.38-43, 1990.
DOI : 10.1007/978-94-009-3355-2_25

K. A. Gross and S. Saber-samandari, Nano-mechanical properties of hydroxyapatite coatings with a focus on the single solidified droplet, J

R. Jimbo, P. G. Coelho, M. Bryington, M. Baldassarri, N. Tovar et al., Nano Hydroxyapatite-coated Implants Improve Bone Nanomechanical Properties, Journal of Dental Research, vol.26, issue.12, pp.1172-1177, 2012.
DOI : 10.1111/j.1600-0501.2009.01775.x

URL : http://muep.mau.se/bitstream/2043/14714/2/JImbo%20et%20al%20.pdf

S. Best, B. Sim, M. Kayser, and S. Downes, The dependence of osteoblastic response on variations in the chemical composition and physical properties of hydroxyapatite, Journal of Materials Science Materials in Medicine, vol.8, issue.2, pp.97-103, 1997.
DOI : 10.1023/A:1018558816871

S. R. Radin and P. Ducheyne, The effect of calcium phosphate ceramic composition and structure onin vitro behavior. II. Precipitation, Journal of Biomedical Materials Research, vol.4, issue.1, pp.35-45, 1993.
DOI : 10.1002/jbm.820270106

S. H. Maxian, T. D. Stefano, M. C. Melican, M. L. Tiku, and J. P. Zawadsky, Bone cell behavior on Matrigel???-coated Ca/P coatings of varying crystallinities, Journal of Biomedical Materials Research, vol.10, issue.2, pp.171-179, 1998.
DOI : 10.1002/jbmr.5650100815

Y. Shin and M. Akao, Tissue Reactions to Various Percutaneous Materials with Different Surface Properties and Structures, Artificial Organs, vol.2, issue.5, pp.995-1001, 1997.
DOI : 10.1001/archsurg.1974.01350260012003

L. E. Smith, S. Smallwood, and . Macneil, A comparison of imaging methodologies for 3D tissue engineering, Microscopy Research and Technique, vol.9, issue.12, pp.1123-1133, 2010.
DOI : 10.1128/MCB.4.2.240

R. Kornu, W. J. Maloney, M. A. Kelly, and R. L. Smith, Osteoblast adhesion to orthopaedic implant alloys: Effects of cell adhesion molecules and diamond-like carbon coating, Journal of Orthopaedic Research, vol.27, issue.6, pp.871-877, 1996.
DOI : 10.1097/00003086-199408000-00032

B. Feng, J. Weng, B. C. Yang, S. X. Qu, and X. D. Zhang, Characterization of surface oxide films on titanium and adhesion of osteoblast, Biomaterials, vol.24, issue.25, pp.4663-4670, 2003.
DOI : 10.1016/S0142-9612(03)00366-1

C. J. Frandsen, K. S. Brammer, K. Noh, G. Johnston, and S. Jin, Tantalum coating on TiO2 nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts, Materials Science and Engineering: C, vol.37, issue.1, pp.332-341, 2014.
DOI : 10.1016/j.msec.2014.01.014

URL : http://europepmc.org/articles/pmc4068709?pdf=render

H. Koo, J. Xiao, and M. I. Klein, Extracellular Polysaccharides Matrix ??? An Often Forgotten Virulence Factor in Oral Biofilm Research, International Journal of Oral Science, vol.1, issue.4, pp.229-234, 2009.
DOI : 10.4248/IJOS.09086

URL : http://doi.org/10.4248/ijos.09086

I. W. Sutherland, Biofilm exopolysaccharides: a strong and sticky framework, Microbiology, vol.37, issue.1, pp.3-9, 2001.
DOI : 10.1111/j.1574-6941.1997.tb00351.x

URL : http://mic.microbiologyresearch.org/deliver/fulltext/micro/147/1/1470003a.pdf?itemId=/content/journal/micro/10.1099/00221287-147-1-3&mimeType=pdf&isFastTrackArticle=

B. Xavier, E. Martinez-garcia, and K. R. Foster, Social Evolution of Spatial Patterns in Bacterial Biofilms: When Conflict Drives Disorder, The American Naturalist, vol.174, issue.1, pp.1-12, 2009.
DOI : 10.1086/599297

M. A. Massa, C. Covarrubias, M. Bittner, I. A. Fuentevilla, P. Capetillo et al., Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles, Materials Science and Engineering: C, vol.45, pp.146-153, 2014.
DOI : 10.1016/j.msec.2014.08.057

M. V. Roldán, P. De-oña, Y. Castro, A. Durán, P. Faccendini et al., Photocatalytic and biocidal activities of novel coating systems of mesoporous and dense TiO2-anatase containing silver nanoparticles, Materials Science and Engineering: C, vol.43, pp.630-640, 2014.
DOI : 10.1016/j.msec.2014.07.053

T. Asefa and Z. Tao, Biocompatibility of Mesoporous Silica Nanoparticles, Chemical Research in Toxicology, vol.25, issue.11, pp.2265-2284, 2012.
DOI : 10.1021/tx300166u

F. Tang, L. Li, and D. Chen, Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery, Advanced Materials, vol.103, issue.12, pp.1504-1534, 2012.
DOI : 10.1093/jnci/djr400