
HAL Id: tel-01810274
https://theses.hal.science/tel-01810274

Submitted on 7 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advanced machine learning techniques based on DC
programming and DCA

Vinh Thanh Ho

To cite this version:
Vinh Thanh Ho. Advanced machine learning techniques based on DC programming and DCA. Machine
Learning [cs.LG]. Université de Lorraine, 2017. English. �NNT : 2017LORR0289�. �tel-01810274�

https://theses.hal.science/tel-01810274
https://hal.archives-ouvertes.fr

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

THÈSE

en vue de l’obtention du titre de

DOCTEUR DE L’UNIVERSITÉ DE LORRAINE
(arrêté ministériel du 7 Août 2006)

Spécialité Informatique

présentée par

Ho Vinh Thanh

Titre de la thèse :

Techniques avancées

d’apprentissage automatique basées sur

la programmation DC et DCA

—

Advanced machine learning techniques based on

DC programming and DCA

soutenue le 08 décembre 2017

Composition du Jury :

Rapporteurs Akiko TAKEDA Professeur, The Institute of Statistical Mathematics
Emilio CARRIZOSA Professeur, University of Seville

Examinateurs Tao PHAM DINH Professeur, INSA de Rouen
Jérôme DARMONT Professeur, Université Lumière Lyon 2
Yann GUERMEUR Directeur de Recherche, LORIA

Invité Jean-Michel VANPEPERSTRAETE Expert Scientifique, Naval groupe
Directrice de thèse Hoai An LE THI Professeur, Université de Lorraine

Co-encadrant Ahmed ZIDNA MCF, Université de Lorraine

Thèse préparée au sein de laboratoire
d’Informatique Théorique et Appliquée (LITA)

Université de Lorraine, Metz, France

Remerciements

Je souhaite ici adresser un grand merci à toutes les personnes qui ont rendu cette thèse
possible. Cette thèse a été réalisée au sein du Laboratoire d’Informatique Théorique
et Appliquée (LITA) de l’Université de Lorraine.

Avant tout, je souhaite exprimer ma profonde gratitude à ma directrice de thèse,
Madame Hoai An LE THI, Professeur des Universités à l’Université de Lorraine, pour
m’avoir accordé la grande opportunité de démarrer ma carrière scientifique au sein du
LITA, tout en m’offrant les conditions nécessaires au bon déroulement de cette thèse
durant ces années. Sous sa direction j’ai reçu un soutien permanent, des encourage-
ments considérables et pu explorer de nouveaux axes de recherche grâce à ses immenses
connaissances dans le domaine de l’optimisation et ses applications. Madame LE THI
a bien voulu encadrer mes travaux, corriger mes articles et cette thèse ; elle m’a aidé à
surmonter les difficultés avec beaucoup de patience, d’enthousiasme et de générosité.
J’ai eu beaucoup de chance de pouvoir bénéficier de ses compétences pédagogiques
et de sa grande expérience pour envisager devenir un bon enseignant chercheur scien-
tifique dans le futur. Je la remercie très sincèrement pour tous ses conseils qui sont des
atouts importants et utiles dans mon travail de recherche scientifique ainsi que dans
ma vie personnelle. Je lui suis extrêmement reconnaissant pour tout le temps qu’elle
m’a accordé.

Je souhaite remercier mon co-encadrant, Monsieur Ahmed ZIDNA, Mâıtre de
Conférences à l’Université de Lorraine, pour son attention et pour m’avoir encouragé
durant ces années des études.

Je souhaite exprimer ma sincère gratitude à Monsieur Tao PHAM DINH, Professeur
des Universités à l’INSA de Rouen pour ses conseils pertinents et son suivi à long terme
au cours de mes travaux de recherche. Je voudrais le remercier pour nos échanges
enrichissants, pour m’avoir suggéré de nouvelles voies de recherche et fait l’honneur de
siéger au jury de ma thèse.

Je souhaite remercier Madame Akiko TAKEDA, Professeur à l’Institut de
mathématiques statistiques, et Monsieur Emilio CARRIZOSA, Professeur à
l’Université de Seville, pour avoir accepté d’être rapporteurs de ma thèse et pour
le temps précieux consacré.

Je souhaite remercier également Monsieur Jérôme DARMONT, Professeur à
l’Université Lumière Lyon 2, Monsieur Yann GUERMEUR, Directeur de Recherche au

1

2

LORIA, et Monsieur Jean-Michel VANPEPERSTRAETE, Expert scientifique dans le
Naval groupe, d’avoir bien voulu accepter d’être membres du jury de cette thèse.

Je remercie mes collègues du LITA et mes amis de Metz : Manh Cuong, Minh Thuy,
Bich Thuy, Anh Vu, Tran Thuy, Minh Tam, Hoai Minh, Duy Nhat, Phuong Anh,
Xuan Thanh, Tran Bach, Viet Anh, Dinh Chien ... pour leur soutien, et leurs encour-
agements, ainsi que pour les agréables moments passés ensemble lors de mon séjour
en France. Je voudrais remercier particulièrement Docteur Xuan Thanh VO pour son
aide et son grand soutien durant ces années. Je remercie également Madame Annie
HETET, Secrétaire du LITA, pour sa grande disponibilité et son aide très spontanée.

Enfin et surtout, je souhaite exprimer ma grande gratitude, mon amour et mon affec-
tion à ma famille qui m’a encouragé, aimé et a beaucoup pensé à moi tout au long de
ce travail de recherche.

HO Vinh Thanh

Né le 02 mars, 1991 (Viet Nam)

Tél: 07 82 67 88 96

E-mail: vinh-thanh.ho@univ-lorraine.fr

Adresse personnelle: 1 rue Châtillon, 57000 Metz, France

Adresse professionnelle: Bureau UM-AN1-027, LITA – Université de Lorraine,
3 rue Augustin Fresnel, BP 45112, 57073 Metz, France

Situation Actuelle

Depuis
octobre

2014

Doctorant au Laboratoire d’Informatique Théorique et Appliquée
(LITA EA 3097) de l’Université de Lorraine. Encadré par Prof. Hoai
An Le Thi et MCF. Ahmed Zidna

Sujet de thèse : “Techniques avancées d’apprentissage automa-
tique basées sur la programmation DC et DCA”

Experience Professionnelle

04/2014–
06/2014

Stagiaire au laboratoire LITA, UFR MIM, Université de Lorraine,
Metz, France.
Responsable de stage: Prof. Hoai An Le Thi.
Mémoire: On solving Markov decision processes in reinforce-
ment learning by DC programming and DCA.

Diplôme et Formation

2014 au
present

Doctorant en Informatique. LITA, UFR MIM, Université de Lor-
raine, Metz, France.

2013–2014 Master 2 en Mathématique, Université de Tours, France.

2009–2013 Diplôme universitaire en Mathématique et Informatique, Ecole Nor-
male Supérieure de Ho Chi Minh Ville, Viet Nam.

Publications

Refereed international journal papers

[1] Tao Pham Dinh, Vinh Thanh Ho, Hoai An Le Thi. DC programming and DCA
for Brugnano-Casulli Piecewise Linear Systems. Computers & Operations Research,
87: 196–204 (2017).

[2] Hoai An Le Thi, Vinh Thanh Ho, Tao Pham Dinh. A unified DC Programming
Framework and Efficient DCA based Approaches for Large Scale Batch Reinforcement
Learning. Submitted to the Journal of Global Optimization.

[3] Vinh Thanh Ho, Hoai An Le Thi. Online DCA for Reinforcement Learning. Sub-
mitted.

[4] Hoai An Le Thi, Vinh Thanh Ho. Online Learning based on Online DCA and
Applications to Online Binary Classification. In preparation.

[5] Hoai An Le Thi, Vinh Thanh Ho. Online DCA for Prediction with Expert Advice.
Submitted.

Refereed papers in books / Refereed international conference papers

[1] Vinh Thanh Ho, Zied Hajej, Hoai An Le Thi, Nidhal Rezg. Solving the Production
and Maintenance Optimization Problem by a Global Approach. In: Le Thi et al. (eds)
Modelling, Computation and Optimization in Information Systems and Management
Sciences. MCO 2015. Advances in Intelligent Systems and Computing, vol 360, pp.
307–318, Springer, 2015.

[2] Vinh Thanh Ho, Hoai An Le Thi, Dinh Chien Bui. Online DC Optimization for
Online Binary Linear Classification. In: Nguyen et al. (eds) Intelligent Information
and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science, vol 9622,
pp. 661–670, Springer, 2016.

[3] Vinh Thanh Ho, Hoai An Le Thi. Solving an Infinite-Horizon Discounted Markov
Decision Process by DC Programming and DCA. In: Nguyen et al. (eds) Advanced
Computational Methods for Knowledge Engineering. ICCSAMA 2016. Advances in
Intelligent Systems and Computing, vol 453, pp. 43-55, Springer, 2016.

5

6 Publications

[4] Vinh Thanh Ho, Hoai An Le Thi, Ahmed Zidna. A DCA Approach for the Stochas-
tic Shortest Path Problem in Vehicle Routing. Accepted by IESM 2017: 7th Interna-
tional Conference on Industrial Engineering and Systems Management.

[5] Vinh Thanh Ho, Hoai An Le Thi. Online DCA for Reinforcement Learning. Sub-
mitted to ALT 2018: 29th International Conference on Algorithmic Learning Theory.

Communications in national / International conferences

[1] Vinh Thanh Ho, Hoai An Le Thi, Tao Pham Dinh. DC Programming and DCA
for Brugnano-Casulli Piecewise Linear Systems. Presentation in the 27th European
Conference on Operational Research, Glasgow, UK, July 12 - 15, 2015.

Contents

Résumé 21

Introduction générale 23

1 Preliminary 29

1.1 DC programming and DCA . 29

1.1.1 Fundamental convex analysis 29

1.1.2 DC optimization . 32

1.1.3 DC Algorithm (DCA) . 34

1.2 Online DC programming and Online DCA 37

1.2.1 Online DC optimization . 37

1.2.2 Online DCA . 38

1.2.3 ODCA: a proposed Online DCA based scheme 38

1.2.4 Analysis of ODCA . 39

I Online learning 41

2 Online Learning and Applications to Online Binary Linear
Classification1 43

2.1 Introduction . 44

2.1.1 Background and related works 44

2.1.2 Our contributions . 45

7

8 Contents

2.2 Online DC programming and Online DCA for Online learning 46

2.2.1 An introduction to Online DC programming and Online DCA
for Online learning . 46

2.2.2 Online gradient descent: special version of Online DCA 47

2.2.3 ODCA: a proposed Online DCA based scheme 50

2.2.4 Analysis of ODCA . 50

2.3 Online DCA for Online Binary Linear Classification problems 54

2.3.1 First piecewise linear function 55

2.3.2 Second piecewise linear function 60

2.3.3 Sigmoid function . 62

2.4 Numerical Experiments . 67

2.5 Conclusion . 70

3 Online DCA for Prediction with Expert Advice 73

3.1 Introduction . 74

3.1.1 Background and related works 74

3.1.2 Our contributions . 75

3.2 Prediction with Expert Advice . 75

3.3 Solution methods based on Online DC programming and Online DCA . 76

3.3.1 ODCA-SG and ODCA-ESG: ODCA schemes for Prediction with
Expert Advice . 76

3.3.2 Analysis of ODCA-SG and ODCA-ESG 78

3.4 Online DCA for prediction with expert advice 80

3.5 Numerical experiments . 87

3.6 Conclusions . 92

II Reinforcement learning 93

4 Reinforcement Learning: Introduction and Related Works 95

Contents 9

4.1 Background and related works . 96

4.2 Motivation . 100

5 A unified DC programming framework and efficient DCA based ap-
proaches for large scale batch Reinforcement Learning1 101

5.1 Our contributions . 102

5.2 Optimization formulations of the empirical OBR via linear function ap-
proximation . 103

5.2.1 `p-norm formulation (p ≥ 1) . 104

5.2.2 `∞-norm formulation . 105

5.2.3 New formulation: concave minimization under linear constraints 106

5.3 Solution methods by DC programming and DCA 108

5.3.1 DCA for solving the `1-norm problem (5.7) 108

5.3.2 DCA for solving the `2-norm problem (5.8) 110

5.3.3 DCA for solving the `∞-norm problem (5.10) 112

5.3.4 DCA applied on the new concave minimization formulation (5.14)113

5.3.5 Performance analysis on different DCA based algorithms 114

5.3.6 Starting points for DCA . 115

5.4 Numerical experiments . 115

5.4.1 Description of Garnet and Gridworld problems 116

5.4.2 Set up experiments . 117

5.4.3 Experiment 1: Comparison between DCA based algorithms . . . 118

5.4.3.1 Comparative results of the six versions of DCA 118

5.4.3.2 Effect of starting points on our four DCA algorithms . 124

5.4.4 Experiment 2: Comparison with LSPI, FQI 124

5.4.4.1 Garnet problems . 124

5.4.4.2 Gridworld problems 126

5.5 Conclusions . 128

10 Contents

6 Online DCA for Reinforcement Learning1 129

6.1 Our contributions . 130

6.2 Optimization formulations . 130

6.3 Solution methods by Online DC programming and Online DCA 131

6.3.1 Online DCA for solving the `2-norm problem (6.2) 131

6.3.2 Alternating Online DCA versions 135

6.4 Numerical experiments . 137

6.4.1 Descriptions of mountain car and pole balancing problems . . . 137

6.4.2 Set up experiments . 138

6.4.3 Computational results . 139

6.5 Conclusions . 142

7 Applications to Stochastic Shortest Path problems: DCA Approaches
via Cardinality Minimization and Reinforcement Learning1 143

7.1 Introduction . 144

7.1.1 An optimization formulation of PT model-based SSP problems . 144

7.1.2 Related works . 145

7.1.2.1 Cardinality minimization reformulation 145

7.1.2.2 MDP reformulation . 146

7.1.3 Our contributions . 147

7.2 DCA Approaches for the reformulations of PT model-based SSP problems147

7.2.1 The first reformulation: cardinality problem (7.2) 147

7.2.2 The second reformulation: Batch RL problem 150

7.3 Numerical experiments . 152

7.3.1 Experiment 1: Card-DCA for the cardinality problem 152

7.3.2 Experiment 2: Comparison between DCA approaches 155

7.4 Conclusions . 157

8 Conclusions 159

Contents 11

Conclusions 159

12 Contents

List of Figures

3.1 The number of mistakes of all five algorithms with respect to the best
value of parameters in the validation procedure on five notable datasets 91

5.1 Average results of TA and CPU in seconds obtained by the six versions of
DCA on 50 runs (corresponding to 10 different Garnet(NS = 100,NA =
5,NB = 5) problems and 5 transition sample datasets for each Garnet)
with different numbers of transition samples N 122

5.2 Average results of TA and CPU in seconds obtained by `1-DCA, `2-
DCA, cc-DCA and LSPI, FQI on 500 runs (corresponding to 50 different
Garnet(100,5,5) problems and 10 transition sample datasets for each
Garnet) with different numbers of transition samples N 125

5.3 Average results of TA and CPU in seconds obtained by `1-DCA, `2-DCA,
cc-DCA and LSPI, FQI on 100 runs (corresponding to 10 different Grid-
world problems and 10 transition sample datasets for each Gridworld)
with different numbers of transition samples N 126

6.1 Procedure 1: compute θt+1 in the alternating version of ODCA 136

6.2 Average/standard deviation number of steps of two ODCA based al-
gorithms and their alternating version in the number of episodes over
50 runs in mountain car problems. Each bar represents the value of
standard deviation number of steps divided by 8. The lower the curve,
the better the performance. 139

6.3 Average/standard deviation number of steps of AODCA1 and Q-
learning, SARSA in the number of episodes over 100 runs in mountain
car problems. The lower the curve, the better the performance. 140

6.4 Average/standard deviation number of steps of AODCA1 and Q-
learning, SARSA in the number of episodes over 100 runs in pole bal-
ancing problems. The upper the curve, the better the performance. . . 141

7.1 A road network with 123 road links and 65 intersections [19] 153

13

14 List of Figures

List of Tables

2.1 Datasets used in our experiments . 67

2.2 Average mistake rate (upper row) and its standard deviation (lower
row) obtained by ODCA-PiL1, ODCA-PiL2, ODCA-Sig and Percep-
tron, ROMMA, ALMA, OGD, PA. Bold (resp. underlining) values in-
dicate the first best (resp. second best) results. 68

2.3 Average CPU time (in seconds) (upper row) and its standard devi-
ation (lower row) obtained by ODCA-PiL1, ODCA-PiL2, ODCA-Sig
and Perceptron, ROMMA, ALMA, OGD, PA. Bold values indicate the
best results. 69

3.1 Time complexity of comparative algorithms with T and d be the number
of rounds and the number of experts respectively. 87

3.2 Datasets used in our experiments. 88

3.3 The best value of τ for ODCA-SG and ODCA-ESG during the param-
eter validation (τ < 0.5) . 89

3.4 Average percentage of regret (%regret in %) (upper row) defined as
(3.15) and its standard deviation (lower row) obtained by ODCA-SG,
ODCA-ESG, OGD, NEG and WM. Bold (resp. underlining) values
indicate the first best (resp. second best) results. 90

3.5 Average CPU time (in seconds) obtained by ODCA-SG, ODCA-ESG,
OGD, NEG and WM. Bold values indicate the best results. 90

5.1 Summary of all comparative algorithms 116

5.2 Average results of TA, stdA, Iter and CPU in seconds obtained by the six
versions of DCA on 50 runs (corresponding to 10 different Garnet(NS =
100,NA = 5,NB = 5) problems and 5 transition sample datasets for each
Garnet) with different numbers of transition samples N . Bold values
indicate the best results. 119

15

16 List of Tables

5.3 Average results of TA, stdA, Iter and CPU in seconds obtained by the six
versions of DCA on 25 runs (corresponding to 5 different Garnet(NS ,5,5)
problems (NS ∈ {225, 324}) and 5 transition sample datasets for each
Garnet) with different numbers of transition samples N . Bold values
indicate the best results. 120

5.4 Average results of TA, stdA, Iter, CPU in seconds and OBR obtained by
`1-DCA and DCA1 (resp. `2-DCA and DCA2) on 20 runs (corresponding
to 10 Garnet(400,5,5) problems and 2 transition sample datasets for each
Garnet) with different numbers of transition samples N . Bold values
indicate the best results in the same `1-norm (resp. `2-norm) problem. . 121

5.5 Comparative results of the proposed starting point θ(1) and the zero
starting point θ(2) for our algorithms `1-DCA, `2-DCA, `∞-DCA and
cc-DCA in terms of TA on 50 runs (corresponding to 10 different Gar-
net(100,5,5) problems and 5 transition sample datasets for each Garnet)
with different numbers of transition samples N . Bold values indicate
the best results in each algorithm. 124

5.6 Average results of TA, stdA and CPU in seconds obtained by `1-DCA, `2-
DCA, cc-DCA and LSPI, FQI on 500 runs (corresponding to 50 different
Garnet(100,5,5) problems and 10 transition sample datasets for each
Garnet) with different numbers of transition samples N . Bold values
indicate the best results. 125

5.7 Average results of TA, stdA and CPU in seconds obtained by `1-DCA,
`2-DCA, cc-DCA and LSPI, FQI on 100 runs (corresponding to 10 dif-
ferent Gridworld problems and 10 transition sample datasets for each
Gridworld) with different numbers of transition samples N . Bold values
indicate the best results. 127

6.1 Average/standard deviation number of steps at the last episode and
CPU time (in seconds) of two ODCA based algorithms and their al-
ternating version over 50 runs in mountain car problems. Bold values
indicate the best results. 139

6.2 Average/standard deviation number of steps at the last episode and
CPU time (in seconds) of AODCA1 and Q-learning, SARSA over 100
runs in mountain car problems. Bold values indicate the best results. . 140

6.3 Total number of steps of all episodes and CPU time (in seconds) and the
ratio of CPU time to the total number of steps (denoted by CPU/step)
of AODCA1 and Q-learning, SARSA over 100 runs in pole balancing
problems. 140

List of Tables 17

7.1 Accuracy (%) of Card-DCA and `1-norm algorithm (`1), reweighted-`1

algrorithm (re-`1) on 100 runs with the different deadline coefficients κ
and random distributions . 154

7.2 CPU time (in seconds) of enumeration method, Card-DCA, `1 and re-`1

on 100 runs with different random distributions in case κ = 1.2 155

7.3 Accuracy (%) of RL-DCA and Card-DCA on 100 (o,d) pairs with the
different grids n × n, the different number of samples on each link S,
the different deadline parameters β. Bold values are the best results. . 157

7.4 CPU time (in seconds) of RL-DCA and Card-DCA on 100 (o,d) pairs
with the different grids n× n, the different number of samples on each
link S, the different deadline parameters β. Bold values are the best
results. 157

Abbreviations and Notations

Throughout the dissertation, we use uppercase letters to denote matrices, and
lowercase letters for vectors or scalars. Vectors are also regarded as matrices with
one column. Some of the abbreviations and notations used in the dissertation are
summarized as follows.

DC Difference of Convex functions
DCA DC Algorithm
OBLC Online Binary Linear Classification
RL Reinforcement Learning
MDP Markov Decision Process
DP Dynamic Programming
Batch RL Batch Reinforcement Learning
OBR Optimal Bellman Residual
SSP Stochastic Shortest Path

R set of real numbers
Rn set of real column vectors of size n

R set of extended real numbers, R = R ∪ {±∞}
‖ · ‖p `p-norm (0 < p <∞), ‖x‖p = (

∑n
i=1 |xi|p)1/p, x ∈ Rn

‖ · ‖ Euclidean norm (or `2-norm), ‖x‖ = (
∑n

i=1 |xi|2)1/2, x ∈ Rn

‖ · ‖∞ `∞-norm, ‖x‖∞ = maxi=1,...,n |xi|, x ∈ Rn

〈·, ·〉 scalar product, 〈x, y〉 =
∑n

i=1 xi.yi, x, y ∈ Rn

χC(·) indicator function of a set C, χC(x) = 0 if x ∈ C, +∞ otherwise
co{C} convex hull of a set of points C
ProjC(x) projection of a vector x onto a set C
dom f effective domain of a function f
∇f(x) gradient of a function f at x
∂f(x) subdifferential of a function f at x
P(X) probability of a random variable X

19

Résumé

Dans cette thèse, nous développons certaines techniques avancées d’apprentissage au-
tomatique dans le cadre de l’apprentissage en ligne et de l’apprentissage par renforce-
ment (“reinforcement learning” en anglais – RL). L’épine dorsale de nos approches est
la programmation DC (Difference of Convex functions) et DCA (DC Algorithm), et
leur version en ligne, qui sont reconnues comme de outils puissants d’optimisation non
convexe, non différentiable.

Cette thèse se compose de deux parties : la première partie étudie certaines techniques
d’apprentissage automatique en mode en ligne et la deuxième partie concerne le RL en
mode batch et mode en ligne. La première partie comprend deux chapitres correspon-
dant à la classification en ligne (chapitre 2) et la prédiction avec des conseils d’experts
(chapitre 3). Ces deux chapitres mentionnent une approche unifiée d’approximation
DC pour différents problèmes d’optimisation en ligne dont les fonctions objectives sont
des fonctions de perte 0-1. Nous étudions comment développer des algorithmes DCA
en ligne efficaces en termes d’aspects théoriques et computationnels.

La deuxième partie se compose de quatre chapitres (chapitres 4, 5, 6, 7). Après une
brève introduction du RL et ses travaux connexes au chapitre 4, le chapitre 5 vise à
fournir des techniques efficaces du RL en mode batch basées sur la programmation
DC et DCA. Nous considérons quatre différentes formulations d’optimisation DC en
RL pour lesquelles des algorithmes correspondants basés sur DCA sont développés.
Nous traitons les problèmes clés de DCA et montrons l’efficacité de ces algorithmes
au moyen de diverses expériences. En poursuivant cette étude, au chapitre 6, nous
développons les techniques du RL basées sur DCA en mode en ligne et proposons
leurs versions alternatives. Comme application, nous abordons le problème du plus
court chemin stochastique (“stochastic shortest path” en anglais – SSP) au chapitre
7. Nous étudions une classe particulière de problèmes de SSP qui peut être reformulée
comme une formulation de minimisation de cardinalité et une formulation du RL. La
première formulation implique la norme zéro et les variables binaires. Nous proposons
un algorithme basé sur DCA en exploitant une approche d’approximation DC de la
norme zéro et une technique de pénalité exacte pour les variables binaires. Pour la
deuxième formulation, nous utilisons un algorithme batch RL basé sur DCA. Tous les
algorithmes proposés sont testés sur des réseaux routiers artificiels.

21

22 Résumé

Abstract

In this dissertation, we develop some advanced machine learning techniques in the
framework of online learning and reinforcement learning (RL). The backbones of our
approaches are DC (Difference of Convex functions) programming and DCA (DC Algo-
rithm), and their online version that are best known as powerful nonsmooth, nonconvex
optimization tools.

This dissertation is composed of two parts: the first part studies some online machine
learning techniques and the second part concerns RL in both batch and online modes.
The first part includes two chapters corresponding to online classification (Chapter 2)
and prediction with expert advice (Chapter 3). These two chapters mention a unified
DC approximation approach to different online learning algorithms where the observed
objective functions are 0-1 loss functions. We thoroughly study how to develop efficient
online DCA algorithms in terms of theoretical and computational aspects.

The second part consists of four chapters (Chapters 4, 5, 6, 7). After a brief intro-
duction of RL and its related works in Chapter 4, Chapter 5 aims to provide effective
RL techniques in batch mode based on DC programming and DCA. In particular,
we first consider four different DC optimization formulations for which corresponding
attractive DCA-based algorithms are developed, then carefully address the key issues
of DCA, and finally, show the computational efficiency of these algorithms through
various experiments. Continuing this study, in Chapter 6 we develop DCA-based RL
techniques in online mode and propose their alternating versions. As an application,
we tackle the stochastic shortest path (SSP) problem in Chapter 7. Especially, a par-
ticular class of SSP problems can be reformulated in two directions as a cardinality
minimization formulation and an RL formulation. Firstly, the cardinality formulation
involves the zero-norm in objective and the binary variables. We propose a DCA-based
algorithm by exploiting a DC approximation approach for the zero-norm and an exact
penalty technique for the binary variables. Secondly, we make use of the aforemen-
tioned DCA-based batch RL algorithm. All proposed algorithms are tested on some
artificial road networks.

Introduction générale

Cadre général et motivations

Au cours de ces dernières années, l’explosion quantitative des données a obligé les
chercheurs à avoir de nouvelles visions pour analyser et explorer des données, ce qui est
généralement mentionné comme un sujet de Big data. Dans ce contexte, l’inconvénient
de l’utilisation d’approches classiques a été mis en évidence. Ainsi, il est nécessaire
de recourir aux techniques avancées adaptées au Big data. À la question de “quelles
sont les tendances clé des techniques dans Big data?”, le développement des tech-
niques innovantes d’apprentissage automatique (“machine learning” en anglais) est
une réponse.

Dans cette thèse, nous nous concentrons sur deux challenges en apprentissage automa-
tique dans le contexte du Big data: l’apprentissage automatique pour une grande
quantité de données en mode en ligne et en mode batch. En fonction de la disponi-
bilité des données, les techniques d’apprentissage automatique peuvent être considérées
en mode batch ou en mode en ligne. En particulier, pour le mode batch, les tech-
niques génèrent des modèles en apprenant sur l’ensemble des données d’apprentissage
en une fois. L’apprentissage automatique en mode en ligne (appelé apprentissage
en ligne, “online learning” en anglais) met à jour le modèle au fur et à mesure en
fonction des nouvelles données. Pour une nouvelle donnée d’entrée à chaque itération,
l’apprentissage en ligne effectue une prédiction en utilisant le modèle actuel, puis vérifie
la qualité de sa prédiction qui est utilisée pour mettre à jour le modèle pour l’itération
suivante. L’apprentissage en ligne joue un rôle important dans des multiples con-
textes : quand les données sont disponibles progressivement, ou les prédictions doivent
être données en temps réel, ou l’apprenant doit s’adapter dynamiquement aux nou-
veaux types de données, ou il est irréalisable d’apprendre sur l’ensemble des données.
Jusqu’alors, la conception d’algorithmes efficaces d’apprentissage en ligne a été influ-
encée par l’optimisation convexe en ligne. Cependant, dans la plupart d’applications,
la fonction de perte utilisée pour évaluer les prédictions ou le domaine des prédictions
est non convexe. Le désavantage des approches d’optimisation convexe en ligne a été
indiqué dans la littérature. Ainsi, il est indispensable de recourir à l’optimisation
non convexe en ligne pour développer des algorithmes d’apprentissage en ligne effi-
caces. La difficulté de cette fonction de perte peut être surmontée en utilisant son
approximation DC (Difference of Convex functions). Le problème résultant est encore
difficile en raison de sa non convexité. Mais il peut être surmonté par des techniques

23

24 Introduction générale

basées sur la version en ligne de l’optimisation DC. Comme une contribution de cette
thèse, nous développons les versions “en ligne” de DCA (DC Algorithm) standard pour
les méthodes d’apprentissage (classification, prédiction) en ligne. La convergence des
méthodes en ligne a été rigoureusement étudiée.

Parmi les principales catégories de techniques d’apprentissage automatique, nous nous
intéressons à l’apprentissage par renforcement (“reinforcement learning” en anglais)
en mode en ligne et en mode batch. L’apprentissage par renforcement est concerné
par une classe de problèmes dans lesquels un agent doit apprendre un comportement
décisionnel basé sur la rétroaction de récompense par les interactions avec un envi-
ronnement dynamique. Les problèmes d’optimisation considérés en apprentissage par
renforcement deviennent difficiles parce que leurs fonctions objectives sont des fonc-
tions non convexes et non différentiables, plus précisément elles sont DC. Cependant,
en exploitant les propriétés intéressantes de ces problèmes, ils peuvent être résolus
efficacement par des techniques en ligne/batch basées sur DCA.

Sur le plan algorithmique, la thèse a proposé une approche unifiée, fondée sur
la programmation DC et DCA, et leurs versions en ligne, des outils puissants
d’optimisation non convexe qui connaissent un grand succès, au cours de trois
dernières décennies, dans la modélisation et la résolution de nombreux problèmes
d’application dans divers domaines de sciences appliquées, en particulier en apprentis-
sage automatique et fouille de données (“data mining” en anglais) (voir par example
[28, 54, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 73, 74, 75, 79, 94, 95, 96, 97, 130]
et la liste des références dans [56]). De nombreuses expérimentations numériques sur
différents types de données dans divers domaines (biologie, transport, physique . . .)
réalisées dans cette thèse ont prouvé l’efficacité, la scalabilité, la rapidité des algo-
rithmes proposés et leur supériorité par rapport aux méthodes standards.

La programmation DC et DCA considèrent le problème DC de la forme

α = inf{f(x) := g(x)− h(x) : x ∈ Rn} (Pdc),

où g et h sont des fonctions convexes définies sur Rn et à valeurs dans R ∪ {+∞},
semi-continues inférieurement et propres. La fonction f est appelée fonction DC avec
les composantes DC g et h, et g−h est une décomposition DC de f . DCA est basé sur
la dualité DC et des conditions d’optimalité locale. La construction de DCA implique
les composantes DC g et h et non la fonction DC f elle-même. Chaque fonction
DC admet une infinité des décompositions DC qui influencent considérablement sur
la qualité (la rapidité, l’efficacité, la globalité de la solution obtenue . . .) de DCA.
Ainsi, au point de vue algorithmique, la recherche d’une “bonne” décomposition DC
et d’un “bon” point initial est très importante dans le développement de DCA pour
la résolution d’un programme DC.

L’utilisation de la programmation DC et DCA dans cette thèse est justifiée par de
multiple arguments [97]:

— La programmation DC et DCA fournissent un cadre très riche pour les
problèmes d’apprentissage automatique et fouille de données: l’apprentissage

Introduction générale 25

automatique et fouille de données constituent une mine des programmes DC
dont la résolution appropriée devrait recourir à la programmation DC et DCA.
En effet la liste indicative (non exhaustive) des références dans [56] témoigne
de la vitalité la puissance et la percée de cette approche dans la communauté
d’apprentissage automatique et fouille de données.

— DCA est une philosophie plutôt qu’un algorithme. Pour chaque problème, nous
pouvons concevoir une famille d’algorithmes basés sur DCA. La flexibilité de
DCA sur le choix des décomposition DC peut offrir des schémas DCA plus
performants que des méthodes standard.

— L’analyse convexe fournit des outils puissants pour prouver la convergence
de DCA dans un cadre général. Ainsi tous les algorithmes basés sur DCA
bénéficient (au moins) des propriétés de convergence générales du schéma DCA
générique qui ont été démontrées.

— DCA est une méthode efficace, rapide et scalable pour la programmation non
convexe. A notre connaissance, DCA est l’un des rares algorithmes de la pro-
grammation non convexe, non différentiable qui peut résoudre des programmes
DC de très grande dimension. La programmation DC et DCA ont été appliqués
avec succès pour la modélisation DC et la résolution de nombreux et divers
problèmes d’optimisation non convexes dans différents domaines des sciences
appliquées, en particulier en apprentissage automatique et fouille de données
(voir la liste des références dans [56]).

Il est important de noter qu’avec les techniques de reformulation en programmation
DC et les décompositions DC appropriées, on peut retrouver la plupart des algorithmes
existants en programmation convexe/non convexe comme cas particuliers de DCA. En
particulier, pour la communauté d’apprentissage automatique et fouille de données,
les méthodes très connus comme Expectation–Maximisation (EM) [30], Succesive Lin-
ear Approximation (SLA) [16], ConCave–Convex Procedure (CCCP) [131], Iterative
Shrinkage–Thresholding Algorithms (ISTA) [25] sont des versions spéciales de DCA.

Nos contributions

Les principales contributions de la thèse consistent à développer les techniques avancées
d’apprentissage automatique en utilisant l’approche d’optimisation. Nous étudions
une approche basée sur la programmation DC et DCA, et leurs versions en ligne pour
résoudre les problèmes d’apprentissage en ligne et, en particulier, d’apprentissage par
renforcement. Tout au long de la thèse, les questions clés de DCA ont été étudiées
: quelle est la bonne décomposition DC, quelle est la méthode de solution efficace
pour les sous-problèmes convexes dans le schéma DCA et quel est le bon point initial.
Aborder ces questions dépend fortement des structures spéciales de chaque problème
d’optimisation considéré, ce qui est exploité dans la plupart de nos travaux dans les
chapitres 2, 3, 5, 6. De plus, les chapitres 2 et 3 incluent les contributions à l’étude
d’une version en ligne de DCA en termes d’aspects théoriques et computationnels. Les
principales réalisations de la thèse sont décrites en détail comme suit.

26 Introduction générale

Tout d’abord, nous nous concentrons dans le chapitre 2 sur le développement de tech-
niques d’apprentissage en ligne. L’apprentissage en ligne peut être décrit comme le
processus consistant à prévoir une séquence d’échantillons basée sur la connaissance de
la correction aux échantillons précédents et autres informations disponibles. La qualité
des prédictions est évaluée par une fonction de perte, qui est souvent non convexe et/ou
non différentiable. Dans nos travaux, nous étudions l’approche DC et nous proposons
une version en ligne de DCA, appelée Online DCA, pour résoudre les problèmes en
ligne correspondants. Au cas où chaque sous-problème convexe d’Online DCA ne peut
pas être résolu explicitement ou n’est pas facile à résoudre, nous proposons un schéma
particulier basé sur Online DCA, nommé ODCA, où chaque sous-problème est résolu
en approximant par une itération de la méthode de sous-gradient classique. Nous
analysons les propriétés de l’ODCA en termes de regret (c’est-à-dire la différence entre
la perte cumulative subie et la plus petite perte cumulative tout au long du proces-
sus d’apprentissage). Nous indiquons également que les variantes de l’algorithme de
gradient en ligne sont une version spéciale d’Online DCA. Comme application, nous
considérons la classification en ligne où, à chaque itération, l’apprenant doit donner le
classificateur à prédire l’étiquette correspondant à l’instance à venir basé sur l’étiquette
correcte révélée plus tard et les classificateurs précédents. Dans ce cas, la qualité du
classificateur est souvent mesurée par la fonction de perte 0-1 qui renvoie 1 si l’étiquette
prédite est la même que l’étiquette correcte et 0 autrement. En effet, cette fonction
est non convexe et non différentiable, mais elle peut être approximée par des fonctions
DC. Dans nos travaux, nous proposons trois différentes fonctions d’approximation DC,
y compris deux formes de fonction polyhédrale et une forme de fonction sigmöıde. En
utilisant l’ODCA pour résoudre les problèmes d’optimisation résultant, nous proposons
trois algorithmes en ligne correspondants et analysons le regret de chaque algorithme
basé sur principaux résultats de l’analyse d’ODCA mentionnée ci-dessus. Les résultats
de l’expérience sur une variété de ensembles de données de classification montrent
l’efficacité de nos algorithmes proposés par rapport aux algorithmes de classification
en ligne existants.

Le chapitre 3 concerne une autre classe de techniques d’apprentissage en ligne, à savoir
la prédiction avec des conseils d’experts (“prediction with expert advice” en anglais).
Le paradigme de la prédiction avec les conseils d’experts est introduit comme modèle
d’apprentissage en ligne. Il se caractérise par la prise d’une prédiction repose sur la
base des prédictions des experts via le vecteur de poids attribué aux experts. De même
que le chapitre 2, quand la fonction de perte évaluant la qualité de la prédiction est non
convexe et/ou non différentiable, nous pouvons étudier les approches d’approximation
DC. En fait, le vecteur de poids appartient souvent à un ensemble particulier (par
exemple, simplexe des probabilités), et donc nous proposons deux schémas en ligne
en particulier basés sur ODCA, nommés ODCA-SG et DCA-ESG, où chaque sous-
problème est résolu en approximant par une itération de la méthode de sous-gradient
projeté et la méthode de sous-gradient exponentié, respectivement. Nous analysons
également les deux schémas en termes de regret. Nous développons les techniques
de prédiction avec des conseils d’experts pour résoudre les problèmes de classification
en ligne où les experts sont représentés par les algorithmes de classification en ligne
bien connus. Avec une fonction d’approximation DC, nous obtenons deux algorithmes

Introduction générale 27

en ligne basés sur ODCA-SG, DCA-ESG, et analysons la borne de regret pour ces
algorithmes. La performance des algorithmes proposés est vérifiée en comparant de
trois algorithmes standards existants sur différents ensembles de données benchmark.

Les chapitres 4, 5, 6 se concentrent sur l’étude des techniques d’apprentissage par
renforcement en mode batch et en mode en ligne. Le chapitre 4 présente brièvement
l’apprentissage par renforcement et ses travaux connexes. L’apprentissage par ren-
forcement vise à estimer la politique optimale dans un environnement dynamique qui
est généralement formulé comme un processus de décision markovien (“Markov de-
cision process” en anglais) avec un modèle incomplet. Il est bien connu que nous
pouvons aborder cette tâche par le problème de trouver le zéro du soi-disant résidu
optimal de Bellman (“optimal Bellman residual” en anglais), un concept classique de
programmation dynamique. Il existe quelques travaux dans la littérature suivant cette
direction, sachant qu’il résulte à un problème d’optimisation non convexe qui est très
difficile à résoudre exactement. Dans le chapitre 5, nous considérons quatre formula-
tions d’optimisation de ce problème qui minimisent le `p-norm du résidu optimal de
Bellman avec p ∈ {1, 2,+∞} pour développer les techniques d’apprentissage par ren-
forcement en mode batch (c’est-à-dire un ensemble fixe d’expériences d’apprentissage
est donné a priori) en utilisant l’approximation linéaire de la fonction de valeur. Ils sont
formulés comme programmes DC pour lesquels quatre schémas DCAs sont développés.
En exploitant la structure spéciale du résidu optimal de Bellman empirique avec ap-
proximation linéaire, nous abordons les questions clés de DCA, en particulier la ef-
fet des décompositions DC, l’efficacité des méthodes de solution pour résoudre le
sous-problème convexe résultant, et la recherche de bons points initiaux, lors de la
conception des quatre algorithmes basés sur DCA. Expériences numériques sur deux
benchmarks des problèmes de processus de décision markovien – le problème de Gar-
net et Gridworld – montrent l’efficacité de nos approche en comparaison avec deux
algorithmes existants basés sur DCA et deux algorithmes d’apprentissage par ren-
forcement. En poursuivant ces travaux, le chapitre 6 vise à développer des techniques
d’apprentissage par renforcement en mode en ligne via une formule d’optimisation de
`p-norm (p = 2). Nous proposons un algorithme en ligne basé sur DCA (ODCA) qui a
la propriété de stabilité en ligne. Nous indiquons qu’une classe d’algorithmes de gra-
dient en RL est un cas particulier de notre schéma ODCA. Nous suggérons également
une version alternative d’ODCA pour exploiter la connaissance des échantillons. Les
résultats numériques sur deux problèmes benchmark – le problème de Mountain car
et Pole balancing – indiquent l’efficacité de nos approches en comparaison avec deux
algorithmes standard d’apprentissage par renforcement.

Dans le chapitre 7, nous utilisons la technique d’apprentissage par renforcement basée
sur DCA pour aborder un des problèmes classiques dans le domaine de tournées de
véhicules qui est le problème du plus court chemin stochastique (“stochastic short-
est path” en anglais). Nos travaux concernent ce problème pour un seul véhicule
indépendant sur un réseau routier en utilisant le critère basé sur le modèle de prob-
abilité à queue. En particulier, ce problème du plus court chemin stochastique vise
à rechercher un chemin optimal qui maximise la probabilité d’arriver à la destina-
tion avant un délai donné. Il existe deux approches qui formulent ce problème, re-
spectivement, comme une formulation de minimisation de cardinalité (la cardinalité

28 Introduction générale

d’un vecteur est le nombre d’éléments non nuls dans ce vecteur) et une formulation
de l’apprentissage par renforcement. Pour la première approche, il existe une dou-
ble difficulté: le terme de cardinalité et les variables binaires. Certains algorithmes
ont récemment été proposés en approximant le terme de cardinalité, cependant, sans
traiter les variables binaires. Ainsi, dans ce travail, nous étudions une approche
d’approximation DC pour le terme de cardinalité, et employons une technique de
pénalité exacte pour les variables binaires. La formulation d’optimisation résultante
peut être exprimée sous la forme d’un programme DC pour lequel l’algorithme basé
sur DCA, nommé Card-DCA, est proposé. Les résultats de l’expérience montrent
l’efficacité de Card-DCA en termes de qualité et rapidité par rapport aux algorithmes
existants. Au regard de la formulation de l’apprentissage par renforcement, nous tenons
compte du problème d’optimisation de `1-norm dans lequel l’ensemble d’échantillons
donné est défini en fonction des données de temps de déplacement sur le réseau
routier. Nous donc proposons un algorithme basé sur DCA, nommé RL-DCA, pour
les problèmes du plus court chemin stochastique. Plusieurs expériences numériques
sur les réseaux routiers artificiels sont menées afin de comparer deux approches DCA
pour ces problèmes, en particulier les algorithmes Card-DCA et RL-DCA.

Organisation de la Thèse

La thèse est composée de huit chapitres. Le premier chapitre décrit brièvement les con-
cepts fondamentaux et les principaux résultats de l’analyse convexe, la programmation
DC et DCA, et sa version en ligne, ce qui fournit la base théorique et algorithmique
pour les chapitres suivants. Les six chapitres suivants sont divisés en deux parties. La
première partie, y compris les chapitres 2 et 3, concerne les techniques d’apprentissage
en ligne. Plus précisément, dans le chapitre 2, nous présentons l’approche basée sur
Online DCA pour les problèmes d’apprentissage en ligne et développons des tech-
niques en ligne correspondantes pour une classe de problèmes de classification en
ligne. En poursuivant cette direction, le chapitre 3 se concentre sur la conception
d’une autre technique d’apprentissage en ligne, à savoir la prédiction avec des con-
seils d’experts. La deuxième partie (chapitres 4, 5, 6, 7) concerne en particulier les
techniques d’apprentissage par renforcement. Sa brève introduction et ses travaux con-
nexes sont présentés au chapitre 4. Les techniques d’apprentissage par renforcement
basées sur DCA en mode batch et en mode en ligne sont développées respectivement
au chapitre 5 et au chapitre 6. Dans le chapitre 7, nous considérons une classe de
problèmes du plus court chemin stochastique via des approches DCA. Les conclusions
et les perspectives de nos travaux sont données au chapitre 8.

Chapter 1

Preliminary

This chapter summarizes some basic concepts and results that will be the groundwork
of the dissertation.

1.1 DC programming and DCA

DC programming and DCA, which constitute the backbone of nonconvex programming
and global optimization, were introduced by Pham Dinh Tao in their preliminary
form in 1985 [93]. Important developments and improvements on both theoretical and
computational aspects have been completed since 1994 throughout the joint works of Le
Thi Hoai An and Pham Dinh Tao. In this section, we present some basic properties of
convex analysis and DC optimization and DC Algorithm that computational methods
of this dissertation are based on. The materials of this section are extracted from
[55, 65, 66, 95].

Throughout this section, X denotes the Euclidean space Rn and R = R∪{±∞} is the
set of extended real numbers.

1.1.1 Fundamental convex analysis

First, let us recall briefly some notions and results in convex analysis related to the
dissertation (refer to the references [15, 95, 101] for more details).

A subset C of X is said to be convex if (1 − λ)x + λy ∈ C whenever x, y ∈ C and
λ ∈ [0, 1].

Let f be a function whose values are in R and whose domain is a subset S of X. The
set

{(x, t) : x ∈ S, t ∈ R, f(x) ≤ t}
is called the epigraph of f and is denoted by epif .

29

30 Chapter 1. Preliminary

We define f to be a convex function on S if epif is convex set in X × R. This is
equivalent to that S is convex and

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y), ∀x, y ∈ S, ∀λ ∈ [0, 1].

The function f is strictly convex if the inequality above holds strictly whenever x and
y are distinct in S and 0 < λ < 1.

The effective domain of a convex function f on S, denoted by domf , is the projection
on X of the epigraph of f

domf = {x ∈ X : ∃t ∈ R, (x, t) ∈ epif} = {x ∈ X : f(x) < +∞}

and obviously, it is convex.

The convex function f is called proper if domf 6= ∅ and f(x) > −∞ for all x ∈ S.

The function f is said to be lower semi-continuous at a point x of S if

f(x) ≤ lim inf
y→x

f(y).

Denote by Γ0(X) the set of all proper lower semi-continuous convex functions on X.

Let ρ be a nonnegative number and C be a convex subset of X. One says that a
function θ : C → R ∪ {+∞} is ρ–convex if

θ[λx+ (1− λ)y] ≤ λθ(x) + (1− λ)θ(y)− λ(1− λ)

2
ρ‖x− y‖2

for all x, y ∈ C and λ ∈ (0, 1). It amounts to say that θ − (ρ/2)‖ · ‖2 is convex on C.
The modulus of strong convexity of θ on C, denoted by ρ(θ, C) or ρ(θ) if C = X, is
given by

ρ(θ, C) = sup{ρ ≥ 0 : θ − (ρ/2)‖ · ‖2 is convex on C}.
One says that θ is strongly convex on C if ρ(θ, C) > 0.

A vector y is said to be a subgradient of a convex function f at a point x0 if

f(x) ≥ f(x0) + 〈x− x0, y〉, ∀x ∈ X.

The set of all subgradients of f at x0 is called the subdifferential of f at x0 and is
denoted by ∂f(x0). If ∂f(x) is not empty, f is said to be subdifferentiable at x.

For ε > 0, a vector y is said to be an ε–subgradient of a convex function f at a point
x0 if

f(x) ≥ (f(x0)− ε) + 〈x− x0, y〉, ∀x ∈ X.
The set of all ε–subgradients of f at x0 is called the ε–subdifferential of f at x0 and is
denoted by ∂εf(x0).

Let us describe two basic notations as follows.

dom ∂f = {x ∈ X : ∂f(x) 6= ∅} and range ∂f(x) = ∪{∂f(x) : x ∈ dom ∂f}.

Chapter 1. Preliminary 31

Proposition 1.1. Let f be a proper convex function. Then

1. ∂εf(x) is a closed convex set, for any x ∈ X and ε ≥ 0.

2. ri(domf) ⊂ dom ∂f ⊂ domf
where ri(domf) stands for the relative interior of domf .

3. If f has a unique subgradient at x, then f is differentiable at x, and ∂f(x) =
{∇f(x)}.

4. x0 ∈ argmin{f(x) : x ∈ X} if and only if 0 ∈ ∂f(x0).

Conjugates of convex functions

The conjugate of a function f : X → R is the function f ∗ : X → R, defined by

f ∗(y) = sup
x∈X
{〈x, y〉 − f(x)}.

Proposition 1.2. Let f ∈ Γ0(X). Then we have

1. f ∗ ∈ Γ0(X) and f ∗∗ = f .

2. f(x) + f ∗(y) ≥ 〈x, y〉, for any x, y ∈ X.
Equality holds if and only if y ∈ ∂f(x)⇔ x ∈ ∂f ∗(y).

3. y ∈ ∂εf(x)⇐⇒ x ∈ ∂εf ∗(y)⇐⇒ f(x) + f ∗(y) ≤ 〈x, y〉+ ε, for all ε > 0.

Polyhedral Functions

A polyhedral set is a closed convex set that is of form

C = {x ∈ X : 〈x, bi〉 ≤ βi, ∀i = 1, . . . ,m}

where bi ∈ X and βi ∈ R for all i = 1, . . . ,m.

A function f ∈ Γ0(X) is said to be polyhedral if

f(x) = max{〈ai, x〉 − αi : i = 1, . . . , k}+ χC(x), ∀x ∈ X (1.1)

where ai ∈ X, αi ∈ R for all i = 1, . . . , k and C is a nonempty polyhedral set. It is
clear that dom f = C.

Proposition 1.3. Let f be a polyhedral convex function, and x ∈ domf . Then we
have

1. f is subdifferentiable at x, and ∂f(x) is a polyhedral convex set. In particular,
if f is defined by (1.1) with C = X then

∂f(x) = co{ai : i ∈ I(x)}

where I(x) = {i ∈ {1, . . . , k} : 〈ai, x〉 − αi = f(x)}.

32 Chapter 1. Preliminary

2. The conjugate f ∗ is a polyhedral convex function. Moreover, if C = X then

domf ∗ = co{ai : i = 1, . . . , k},

f ∗(y) = inf

{
k∑
i=1

λiαi

∣∣∣ k∑
i=1

λiai = y,

k∑
i=1

λi = 1, λi ≥ 0,∀i = 1, . . . , k

}
.

In particular,
f ∗(ai) = αi, ∀i = 1, . . . , k.

Difference of Convex (DC) functions

A function f is called DC function on X if it is of the form

f(x) = g(x)− h(x), x ∈ X

where g and h belong to Γ0(X). One says that g − h is a DC decomposition of f and
the functions g, h are its DC components. If g and h are in addition finite on all points
of X then one says that f = g−h is finite DC function on X. The set of DC functions
(resp. finite DC functions) on X is denoted by DC(X) (resp. DCf (X)).

Remark 1.1. Give a DC function f whose DC decomposition is f = g − h. Then
for every θ ∈ Γ0(X) finite on the whole X, f = (g + θ) − (h + θ) is another DC
decomposition of f . Thus, a DC function f has finitely many DC decompositions.

1.1.2 DC optimization

DC program

In the sequel, we use the convention +∞− (+∞) = +∞.

For g, h ∈ Γ0(X), a standard DC program is of the form

(P) α = inf{f(x) = g(x)− h(x) : x ∈ X}

and its dual counterpart

(D) α∗ = inf{h∗(y)− g∗(y) : y ∈ X}.

There is a perfect symmetry between primal and dual programs (P) and (D): the dual
program to (D) is exactly (P), moreover, α = α∗.

Remark 1.2. Let C be a nonempty closed convex set. Then, the constrained problem

inf{f(x) = g(x)− h(x) : x ∈ C}

can be transformed into an unconstrained DC program by using the indicator function
χC, i.e.,

inf{f(x) = φ(x)− h(x) : x ∈ X}
where φ := g + χC belongs to Γ0(X).

Chapter 1. Preliminary 33

We will always keep the following assumption that is deduced from the finiteness of α

dom g ⊂ domh and domh∗ ⊂ dom g∗. (1.2)

Polyhedral DC program

In the problem (P), if one of the DC components g and h is polyhedral function, we
call (P) a polyhedral DC program. This is an important class of DC optimization. It
is often encountered in practice and has worthy properties.

Consider the problem (P) where h is a polyhedral convex function given by

h(x) = max{〈ai, x〉 − αi : i = 1, . . . , k}.

By Proposition 1.3, the dual problem (D) can be expressed as follows.

α∗ = inf{h∗(y)− g∗(y) : y ∈ X}
= inf{h∗(y)− g∗(y) : y ∈ co{ai : i = 1, . . . , k}}
= inf{αi − g∗(ai) : i = 1, . . . , k}.

Note that, if g is polyhedral convex and h is not, then by considering the dual problem
(D), we have the similar formulation as above since g∗ is polyhedral.

Optimality conditions for DC optimization

A point x∗ is said to be a local minimizer of g−h if x∗ ∈ dom g∩domh (so, (g−h)(x∗)
is finite) and there is a neighborhood U of x∗ such that

g(x)− h(x) ≥ g(x∗)− h(x∗), ∀x ∈ U. (1.3)

A point x∗ is said to be a critical point of g−h if it verifies the generalized Kuhn–Tucker
condition

∂g(x∗) ∩ ∂h(x∗) 6= ∅. (1.4)

Let P and D denote the solution sets of problems (P) and (D) respectively, and let

P` = {x∗ ∈ X : ∂h(x∗) ⊂ ∂g(x∗)}, D` = {y∗ ∈ X : ∂g∗(y∗) ⊂ ∂h∗(y∗)}.

In the following, we present some fundamental results on DC programming [65].

Theorem 1.1. i) Global optimality condition: x ∈ P if and only if

∂εh(x) ⊂ ∂εg(x), ∀ε > 0.

ii) Transportation of global minimizers: ∪{∂h(x) : x ∈ P} ⊂ D ⊂ domh∗.
The first inclusion becomes equality if g∗ is subdifferentiable in D. In this case,
D ⊂ (dom ∂g∗ ∩ dom ∂h∗).

34 Chapter 1. Preliminary

iii) Necessary local optimality: if x∗ is a local minimizer of g − h, then x∗ ∈ P`.
iv) Sufficient local optimality: Let x∗ be a critical point of g−h and y∗ ∈ ∂g(x∗)∩

∂h(x∗). Let U be a neighborhood of x∗ such that (U ∩ dom g) ⊂ dom ∂h. If for
any x ∈ U ∩dom g, there is y ∈ ∂h(x) such that h∗(y)−g∗(y) ≥ h∗(y∗)−g∗(y∗),
then x∗ is a local minimizer of g − h. More precisely,

g(x)− h(x) ≥ g(x∗)− h(x∗), ∀x ∈ U ∩ dom g.

v) Transportation of local minimizers: Let x∗ ∈ dom ∂h be a local minimizer of
g − h. Let y∗ ∈ ∂h(x∗) and a neighborhood U of x∗ such that g(x) − h(x) ≥
g(x∗)− h(x∗), ∀x ∈ U ∩ dom g. If

y∗ ∈ int(dom g∗) and ∂g∗(y∗) ⊂ U

then y∗ is a local minimizer of h∗ − g∗.

Remark 1.3. a) By the symmetry of the DC duality, these results have their cor-
responding dual part. For example, if y is a local minimizer of h∗ − g∗, then
y ∈ D`.

b) The properties ii), v) and their dual parts indicate that there is no gap between
the problems (P) and (D). They show that globally/locally solving the primal
problem (P) implies globally/locally solving the dual problem (D) and vice–versa.
Thus, it is useful if one of them is easier to solve than the other.

c) The necessary local optimality condition ∂h∗(x∗) ⊂ ∂g∗(x∗) is also sufficient for
many important classes programs, for example [66], if h is polyhedral convex,
or when f is locally convex at x∗, i.e. there exists a convex neighborhood U of
x∗ such that f is finite and convex on U . We know that a polyhedral convex
function is almost everywhere differentiable, that is to say, it is differentiable
everywhere except on a set of measure zero. Thus, if h is a polyhedral convex
function, then a critical point of g − h is almost always a local solution to (P).

d) If f is actually convex on X, we call (P) a “false” DC program. In addition, if
ri(dom g)∩ ri(domh) 6= ∅ and x0 ∈ dom g such that g is continuous at x0, then
0 ∈ ∂f(x0) ⇔ ∂h(x0) ⊂ ∂g(x0) [66]. Thus, in this case, the local optimality
is also sufficient for the global optimality. Consequently, if in addition h is
differentiable, a critical point is also a global solution.

1.1.3 DC Algorithm (DCA)

The DCA consists in the construction of the two sequences {xk} and {yk} (candidates
for being primal and dual solutions, respectively) which are easy to calculate and
satisfy the following properties:

i) The sequences (g − h)(xk) and (h∗ − g∗)(yk) are decreasing.

ii) Their corresponding limits x∞ and y∞ either satisfy the local optimality condi-
tion (x∞, y∞) ∈ P`×D` or are critical points of g−h and h∗− g∗, respectively.

Chapter 1. Preliminary 35

From a given initial point x0 ∈ dom g, the DCA generates these sequences by the
scheme

yk ∈ ∂h(xk) = arg min{h∗(y)− 〈y, xk〉 : y ∈ X}, (1.5a)

xk+1 ∈ ∂g∗(yk) = arg min{g(x)− 〈x, yk〉 : x ∈ X}. (1.5b)

The interpretation of the above scheme is simple. At iteration k of DCA, one replaces
the second component h in the primal DC program by its affine minorant

hk(x) = h(xk) + 〈x− xk, yk〉, (1.6)

where yk ∈ ∂h(xk). Then the original DC program is reduced to the convex program

(Pk) αk = inf{fk(x) := g(x)− hk(x) : x ∈ X}

that is equivalent to (1.5b). It is easy to see that fk is a majorant of f which is exact
at xk i.e. fk(x

k) = f(xk). Similarly, by replacing g∗ with its affine minorant

g∗k(y) = g∗(yk−1) + 〈y − yk−1, xk〉 (1.7)

where xk ∈ ∂g∗(yk−1), it leads to the convex program

(Dk) inf{h∗(y)− g∗k(y) : y ∈ X}

whose solution set is ∂h(xk).

Well definiteness of DCA

DCA is well defined if one can construct two sequences {xk} and {yk} as described
above from an arbitrary initial point. The following lemma is the necessary and suffi-
cient condition for this property.

Lemma 1.1 ([65]). The sequences {xk} and {yk} in DCA are well defined if and only
if

dom ∂g ⊂ dom ∂h and dom ∂h∗ ⊂ dom ∂g∗.

Since for ϕ ∈ Γ0(X) one has ri(domϕ) ⊂ dom ∂ϕ ⊂ domϕ (Proposition 1.1). More-
over, under the assumptions dom g ⊂ domh, domh∗ ⊂ dom g∗, one can say that DCA
in general is well defined.

Convergence properties of DCA

Complete convergence of DCA is given in the following results [65].

Theorem 1.2. Suppose that the sequences {xk} and {yk} are generated by DCA. Then
we have

i) The sequences {g(xk)− h(xk)} and {h∗(yk)− g∗(yk)} are decreasing and

• g(xk+1)−h(xk+1) = g(xk)−h(xk) if and only if {xk, xk+1} ⊂ ∂g∗(yk)∩∂h∗(yk)
and [ρ(h) + ρ(g)]‖xk+1 − xk‖ = 0.

36 Chapter 1. Preliminary

• h∗(yk+1) − g∗(yk+1) = h∗(yk) − g∗(yk) if and only if {yk, yk+1} ⊂ ∂g(xk) ∩
∂h(xk) and [ρ(h∗) + ρ(g∗)]‖yk+1 − yk‖ = 0.

DCA terminates at the kth iteration if either of the above equalities holds.

ii) If ρ(h) + ρ(g) > 0 (resp. ρ(h∗) + ρ(g∗) > 0), then the sequence {‖xk+1 − xk‖2}
(resp. {‖yk+1 − yk‖2}) converges.

iii) If the optimal value α is finite and the sequences {xk} and {yk} are bounded,
then every limit point x∞ (resp. y∞) of the sequence {xk} (resp. {yk}) is a
critical point of g − h (resp. h∗ − g∗).

iv) DCA has a linear convergence for general DC program.

v) In polyhedral DC programs, the sequences {xk} and {yk} contain finitely many
elements and DCA has a finite convergence.

vi) If DCA converges to a point x∗ that admits a convex neighborhood in which the
objective function f is finite and convex (i.e. the function f is locally convex at
x∗) and if the second DC component h is differentiable at x∗, then x∗ is a local
minimizer to the problem (P).

Remark 1.4. a) Finding yk, xk+1 based on the scheme 1.5 amounts to solving the
problems (Dk) and (Pk). Thus, DCA works by reducing a DC program to a
sequence of convex programs which can be solved efficiently.

b) In practice, the calculation of the subgradient of the function h at a point x is
usually easy if we know its explicit expression. But, the explicit expression of
the conjugate of a given function g is unknown, so calculating xk+1 is done by
solving the convex problem (Pk). For the large-scale setting, the solutions to
the problem (Pk) should be either in an explicit form or achieved by efficient
algorithms with inexpensive computations.

c) When h is a polyhedral function, the calculation of the subdifferential ∂h(xk) is
explicit by Proposition 1.3. With a fixed choice of subgradients of h, the sequence
{yk} is discrete i.e. it has only finitely many different elements. This leads to
finite convergence of DCA.

d) DCA’s distinctive feature relies upon the fact that DCA deals with the convex
DC components g and h but not with the DC function f itself. Moreover,
a DC function f has infinitely many DC decompositions which have crucial
implications for the qualities (e.g. convergence speed, robustness, efficiency,
globality of computed solutions) of DCA. For a given DC program, the choice
of optimal DC decompositions is still open. Of course, this depends strongly on
the very specific structure of the problem being considered.

e) Similarly to the effect of DC decompositions on DCA, searching the good initial
points for DCA is also an open question to be studied.

Chapter 1. Preliminary 37

1.2 Online DC programming and Online DCA

Online DC programming and Online DCA is seen as an online version of DC pro-
gramming and DCA. While DC programming aims to search a point to minimize a
DC function, in Online DC programming, the DC programming problems are solved
iteratively as an online process. In recent years, the more and more emergence of the
online process of nonconvex, nonsmooth optimization problems in various domains of
applied sciences, specially in machine learning, motivates us to develop a novel ap-
proach based on Online DC programming and Online DCA. In this section, we present
some notations and fundamental definitions relating to the Online DC programming
and Online DCA framework.

Throughout this section, T denotes the total number of steps in online process, t
denotes the step index and X denotes the Euclidean space Rn.

1.2.1 Online DC optimization

Online DC programming

Online DC programming consists of a feasible set X and a sequence of the function
{ft}t=1,...,T where each ft : X → R is a DC function whose DC decomposition is gt−ht
where gt and ht ∈ Γ0(X). For simplicity, instead of X we consider the feasible set is a
nonempty, bounded, closed, convex subset of X, denoted by S. In this case, an Online
DC programming problem can be described as follows. At the step t, one tries to find
the best feasible point in S, denoted wt, by solving a DC program of form

inf{Ft(w) := Gt(w)−Ht(w) : w ∈ S} (1.8)

where the functions Ft, Gt and Ht depend on previous DC functions fi, gi and hi,
i = 1, . . . , t− 1, respectively. Then, one observes a new DC function ft for that step.

The ultimate goal is to generate the sequence {wt}t=1,...,T that minimizes the cumula-
tive objective value until step T , defined as

T∑
t=1

ft(w
t). (1.9)

Minimizing (1.9) depends on the update rule to generate the sequence of {wt}t=1,...,T ,
more precisely what DC optimization problem is considered at each step. In this work,
we propose the following update rule

wt+1 ∈ arg min
w∈S

Ft(w), t = 1, . . . , T, (1.10)

where the objective function

Ft(w) :=
t∑

i=t0

fi(w) +R(w),

38 Chapter 1. Preliminary

the function R : S → R is a convex regularization function, and t0 ∈ {1, t}.

Obviously, Ft is a DC function. Provided that at the step t, a DC decomposition of
Ft is defined as

Ft = Gt −Ht,

where the function Gt(w) =
t∑

i=t0

gi(w) +R(w) and Ht(w) =
t∑

i=t0

hi(w).

1.2.2 Online DCA

Recall that for solving a DC program, DCA has the quite simple principle: at each iter-
ation k, DCA approximates the concave part −h by its affine majorization (by choosing
a subgradient of h at xk) and minimizes the resulting convex function. Founded on
the idea of DCA, we derive an online version of standard DCA, which is called Online
DCA. In particular, at the step t, one replaces the second DC component ht of DC
loss function ft by its affine minorization (corresponding to taking zt ∈ ∂ht(wt)) and
then updates the point wt+1 for the next step t+ 1 by solving the convex subproblem
(1.11).

Online DCA

Initialization: let w1 be an initial point in S
for t = 1, 2, . . . , T do

Compute zt ∈ ∂ht(wt).
Compute wt+1, an optimal solution to the convex program

min

{
Gt(w)−

t∑
i=t0

〈zi, w〉 : w ∈ S

}
. (1.11)

end for

1.2.3 ODCA: a proposed Online DCA based scheme

In Online DCA scheme, at each step, we need to solve the convex subproblem (1.11).
However, in some practice problems, (1.11) cannot be solved explicitly or is solved
with expensive computaions. Thus, we propose a particular Online DCA based scheme
where each convex subproblem (1.11) is solved by approximating by one iteration of
subgradient methods (see e.g. [111] for more details about subgradient methods).
Particularly, at the step t, considering t0 = t and R(w) = 0, the subproblem (1.11)
becomes

min
{
gt(w)− 〈zt, w〉 : w ∈ S

}
, (1.12)

Chapter 1. Preliminary 39

where zt ∈ ∂ht(wt).

Approximating (1.11) by one iteration of the subgradient methods at the point wt with
the step size of ηt, we derive the following update rule

wt+1 = Ψ(ηt, w
t, st), (1.13)

where st ∈ (∂gt(w
t) − zt) and Ψ is the appropriate operator of subgradient methods

(for instance the projection operator ProjS(·) of the point wt − ηtst corresponding to
the projected subgradient method).

Thus, a particular Online DCA based scheme (ODCA) applied to the Online DC
programming problem (1.10) can be described as follows.

ODCA: Online DCA-Subgradient scheme

Initialization: let w1 be an initial point in S, {ηt} be the sequence of step
sizes.
for t = 1, 2, . . . , T do

1. Compute zt ∈ ∂ht(wt).
2. Compute st ∈ (∂gt(w

t)− zt).
3. Compute wt+1 using (1.13).

end for

1.2.4 Analysis of ODCA

In this section, we will present the fundamental concepts that are used to study the
analysis of the ODCA based algorithms in the next chapters. First of all, we restate
the ultimate goal mentioned previously as a performance metric of the series of points
obtained by the algorithm in comparison with the best fixed point in terms of the
cumulative objective value in hindsight, which is called a regret of the algorithm.

Definition 1.1 ([45, 134]). Assume that the sequence of the points {w1, w2, . . . , wT}
is generated by an algorithm A. Formally, the regret of A until step T is defined as

RegretTA :=
T∑
t=1

ft(w
t)−min

w∈S

T∑
t=1

ft(w). (1.14)

We aim to show that the average regret of ODCA tends to zeros when T tends to
infinity, that is to say, the performance of ODCA (1.9) is as good as that of the
best fixed point in hindsight on the average. To attain that interesting property, we
first indicate the regret bound of ODCA as a function of T . In fact, the analysis
of ODCA depends largely on the update rule (1.13). Therefore, the different ODCA
based algorithms lead to the different regret bounds, which will be stated in more
detail in next chapters.

40 Chapter 1. Preliminary

Remark 1.5. It would be interesting to note that if the sequence of points {wt}t=1,...,T

is generated by the ODCA algorithms, then it is easy to obtain the following property:

T∑
t=1

ft(w) ≤
T∑
t=1

fCt (w), ∀w ∈ S, (1.15)

and, specially,
T∑
t=1

ft(w
t) =

T∑
t=1

fCt (wt), (1.16)

where fCt (w) = gt(w)− (ht(w
t) + 〈zt, w − wt〉) , t = 1, . . . , T , is a convex majorization

of ft(w). From this fact, we can observe that by exploiting online convex algorithms
to give the upper bound for the cumulative objective value corresponding to the convex
loss function fCt , we will derive the upper bound for (1.9) with respect to the DC loss
functions {ft}t=1,...,T , which is described in [46].

Another definition, namely online stability, is one of many quantities for any online
algorithm [103, 104]. The online stability condition means that on the average, the
difference between consecutive points generated by the online algorithm is eventually
small.

Definition 1.2 ([104]). Assume that the sequence of the points {w1, w2, . . . , wT , wT+1}
is generated by an algorithm A. The (cumulative) online stability of A is defined as

STA :=
T∑
t=1

‖wt − wt+1‖. (1.17)

An algorithm A is called to be online stable if STA = o(T) – that is,

lim
T→∞

1

T

T∑
t=1

‖wt − wt+1‖ = 0. (1.18)

Part I

Online learning

41

Chapter 2

Online Learning and Applications
to Online Binary Linear
Classification1

Abstract: This chapter concerns an approach based on an online version of DC (Difference of
Convex functions) programming and DCA (DC Algorithm) for developing machine learning
techniques in online mode (called online learning for short). Online learning is a class of
techniques at the interface between machine learning and online optimization since its main
goal is to minimize the cumulative loss between the predicted answer and the correct one
along its learning process. There exist many efficient online learning techniques developed
based on online convex optimization approaches. However, their disadvantages have recently
been highlighted when facing the nonconvex answer domain or/and the nonconvex, nonsmooth
loss function in most applications. In this chapter, we consider Online DC programming for
online learning, propose an online version of DCA, called Online DCA, and indicate that
Online DCA covers some variants of online gradient descent. In addition, we design a par-
ticular Online DCA based scheme, named ODCA, and study its analysis in terms of regret
bound. As an application, we intensively investigate an Online DCA approach for the prob-
lems in the topic of online binary linear classification. Exploiting different DC approximation
functions, we develop three corresponding ODCA based algorithms and analyze their regret
bounds. Numerical experiments on a variety of benchmark datasets show the efficiency of our
proposed algorithms in comparison with the state-of-the-art online classification algorithms.

1. The material of this chapter is developed from the following work:
[1]. Vinh Thanh Ho, Hoai An Le Thi, Dinh Chien Bui. Online DC Optimization for Online Binary
Linear Classification. In: Nguyen et al. (eds) Intelligent Information and Database Systems. ACIIDS
2016. Lecture Notes in Computer Science, vol 9622, pp. 661–670, Springer, 2016.

43

44 Online Learning and Applications to Online Binary Linear Classification

2.1 Introduction

2.1.1 Background and related works

In recent years, it is neccessary to study many innovative techniques for treating the
problems with an immense amount of data. Among certain techniques, developing
machine learning techniques in online mode (online learning for short (OL)) occupies
an important place. Online learning can be seen as the process of predicting an answer
to the sequential arrival of questions based on the knowledge of the correct answers
corresponding to previous questions and possibly other available information [109].
Formally, at the step t, the learner receives a question relevant to an input data,
described as a vector xt. Then he makes a prediction in order to answer that question.
In fact, his prediction is constructed based on a hypothesis, ht : X → Y , where X
and Y are the space of questions and possible answers respectively. After that, he
gets the correct answer to the question, cast as a vector yt ∈ Y . To assess the quality
of his prediction, he suffers a loss between the predicted answer and the correct one,
defined by `t(h

t, (xt, yt)), where the loss function `t is used to update the hypothesis
for the answer to the new question at the next step. The main goal for the learner is
to generate the sequence of hypotheses which minimizes the cumulative suffered loss
along its learning process.

Online learning plays a significant role in multiple contexts: when the data samples
are available over time, the predictions must be made in real time, the learner is
required to dynamically adapt to new data patterns, or even learning over the entire
data at once is impossible in the computational aspect. Online learning has a wide
range of applications such as online advertisement placement, online web ranking,
online email categorization, prediction of stock prices and currency exchange, real-
time recommendation [108, 109].

Due to its goal, online learning is seen as a general class of techniques at the interface
between machine learning and online optimization. Up until now, most of the effective
online learning algorithms have been derived from online convex optimization (see e.g.
[108, 109, 134] for more details). The paragidm of online convex optimization was
introduced by Zinkevich [110, 134], where the prediction domain and the loss function
are convex. In online convex optimization, there exists a common update rule to select
the hypothesis at each step: Follow-the-Leader (FTL) [49] or/and its regularization
form (RFTL) [108, 110]. In FTL, the learner chooses the hypothesis that has the min-
imum cumulative loss function over all past steps, whereas RFTL makes a stability
for the predictions of online learning algorithms. From these, many effective online
convex algorithms were proposed such as online gradient descent (with lazy/greedy
projections) [134], exponentiated gradient [4, 51, 50], p-norm [40]. However, the dif-
ficulties in online learning are that loss functions to assess the predictions are often
nonsmooth, nonconvex (for example, 0-1 loss function returning 1 if the prediction is
correct and 0 otherwise) or the domain of predictions is not convex. Hence solving the
corresponding optimization problem becomes more intractable. Encountering the dif-
ficulty as just mentioned above, the disadvantage of using online convex optimization

Online Learning and Applications to Online Binary Linear Classification 45

approaches has been highlighted recently. Thus, it is essential to resort to nonconvex
optimization in online mode to overcome the difficulties, which is the main purpose
of our works in this chapter. There exist several challenges that should be addressed
when solving the online learning problems: what optimization models in online mode
for these problems, how to design simple, efficient online learning techniques, what
convergence properties of these techniques, etc.

Recently, several related works have been studied for the problems in online learning
with nonconvex loss functions (see e.g. [33, 37, 132]). In [33], the authors proposed
a nonconvex online algorithm for Support Vector Machine problems with ramp loss
function based on the concave-convex procedure. [37] presented an online algorithm for
nonconvex Neyman-Pearson classification problems using gradient method. However,
the analysis of the online algorithms in both of them in terms of the bounds of regret
have been not indicated yet, where the regret is defined by the difference between
the cumulative loss suffered and the possibly smallest cumulative loss along its run.
With a formal regret bound, an algorithm for online bandit learning problems with
nonconvex loss function (where only the suffered loss is available) was proposed in
[132]. However, algorithms for general online learning problems in full information
setting (i.e. where the knowledge of loss function is used) with theoretical guarantees
have been not investigated yet. This motivates us to develop a nonconvex optimization
approach to fill up the family of online algorithms for such online learning problems.
The main algorithmic methodologies of this chapter are DC (Difference of Convex
functions) programming and DCA (DC Algorithm) and their online version, which are
well-known as powerful nonsmooth, nonconvex optimization tools. DC programming
and DCA were introduced by Pham Dinh Tao in a preliminary form in 1985 and
extensively developed since 1994 by Le Thi Hoai An and Pham Dinh Tao (see [66, 95,
96] and the references therein). DCA has been successfully applied to many (smooth
or nonsmooth) large-scale nonconvex programs in various domains of applied sciences,
in particular in machine learning, for which they provide quite often a global solution
and are proved to be more robust and efficient than the standard methods (see the list
of references in [56]).

2.1.2 Our contributions

This chapter focuses on solving a class of problems in online learning by an optimization
approach based on the online version of DC programming and DCA. Our contributions
are multiple.

Firstly, we present Online DC programming for online learning problems where the
loss function to assess the quality of predictions at each step is a DC function. Then,
we develop an online version of DCA, namely Online DCA, with a generalized update
rule. And next, we propose a particular Online DCA based scheme, namely ODCA,
where the convex subproblem is solved by approximating by one iteration of the classic
subgradient method.

Secondly, we thoroughly analyze the regret bounds for the proposed ODCA algorithm

46 Online Learning and Applications to Online Binary Linear Classification

under some appropriate conditions for DC functions. Depending on the special prop-
erties of DC functions, the regret of ODCA grows sublinearly in the number of steps.
Moreover, we are able to achieve a better regret bound, specifically logarithmic regret.

Thirdly, as an application, we focus on developing online learning techniques for solving
the problems in an interesting topic of online classification, specifically online binary
linear classification (OBLC). In this topic, instance becomes available in a sequential
order and is used to update the linear classifier incrementally so as to predict the
corresponding binary label for future instance. The loss function to assess the linear
classifier at each step is usually 0-1 loss function, as defined above. In this chapter,
we propose three DC approximation functions for this loss function, develop three
corresponding ODCA based algorithms for solving these problems. Moreover, we also
show that these proposed algorithms archive a logarithmic regret and as a result, the
bounds of mistakes by predicting false labels are also given.

Finally, with the aim of evaluating the efficiency of our proposed online algorithms for
solving the problems in OBLC, we conduct several numerical experiments on a variety
of benchmark datasets in comparison with many state-of-the-art online algorithms.

The rest of the chapter is organized as follows. In Section 2.2, we first introduce
Online DC programming and Online DCA for online learning, then indicate that online
gradient descent algorithms are special cases of Online DCA and finally, show the
formal regret bounds for a particular ODCA scheme. How to solve the OBLC problems
by ODCA is described in Section 2.3. Section 2.4 reports the numerical results on
several test problems which is followed by some conclusions in Section 2.5.

2.2 Online DC programming and Online DCA for

Online learning

2.2.1 An introduction to Online DC programming and Online
DCA for Online learning

Throughout this chapter, we will formally describe Online DC programming and On-
line DCA in the context of online learning, which is similar to Section 1.2.1. We further
assume that T is the number of steps and the set of hypotheses, denoted by S, is closed
convex in Rn. In this context, an Online DC programming problem involves the set of
hypotheses S and a sequence of loss functions {ft}t=1,...,T where each real-value func-
tion ft : S → R is a DC function. In particular, at step t, when a question is incoming,
the learner must choose a hypothesis vector wt ∈ S to predict an answer. The vector
wt is computed as an optimal solution to a DC program, which depends mainly on
previous loss functions fi and previous hypothesis vectors wi, i = 1, . . . , t − 1. Then
he observes a new DC function ft to assess the quality of wt. Finally he suffers a loss
between the predicted answer and the correct one, defined by ft(w

t). The main goal of
the Online DC programming problem is to generate the sequence of {wt}t=1,...,T that

Online Learning and Applications to Online Binary Linear Classification 47

minimizes the cumulative suffered loss

T∑
t=1

ft(w
t). (2.1)

As Section 1.2.1, in this chapter, we consider the generalized update rule as follows.

wt+1 ∈ arg min
w∈S

Ft(w), t = 1, . . . , T, (2.2)

where the objective function

Ft(w) :=
t∑

i=t0

fi(w) +R(w),

the function R : S → R is a convex regularization function, and t0 ∈ {1, t}. It is
worth noting that the update rule (2.2) covers existing update rules in online convex
optimization such as FTL, RFTL mentioned in Section 2.1. However, (2.2) is difficult
due to the nonconvexity of Ft. Let us assume that for i = 1, . . . , T , a DC decomposition
of fi is gi−hi. It is evident to show that Ft is a DC function with a DC decomposition
defined as

Ft = Gt −Ht,

where the function Gt(w) =
t∑

i=t0

gi(w) +R(w) and Ht(w) =
t∑

i=t0

hi(w).

Thus, we derive the online version of DCA, namely Online DCA, which is summarized
as follows.

Online DCA

Initialization: let w1 be an initial point in S.
for t = 1, 2, . . . , T do

1. Compute zt ∈ ∂ht(wt).
2. Compute

wt+1 ∈ arg min

{
t∑

i=t0

gi(w) +R(w)−
t∑

i=t0

〈zi, w〉 : w ∈ S

}
. (2.3)

end for

2.2.2 Online gradient descent: special version of Online DCA

In this section, we will show that some variants of online gradient descent for online
convex programming are special cases of Online DCA. First of all, in online convex
programming, the loss function at the step t, denoted by g̃t, is convex. In such a case,

48 Online Learning and Applications to Online Binary Linear Classification

the online gradient descent algorithm with greedy projection and with lazy projection,
named OGD and OGD-L respectively, are described as follows [134].

OGD: Online Gradient Descent with Greedy projection

Initialization: let w1 be an initial point in S, {ηt} be the sequence of step sizes
for t = 1, 2, . . . , T do

1. Compute s̃t ∈ ∂g̃t(wt).
2. Compute wt+1 by the update rule

wt+1 = ProjS(wt − ηts̃t). (2.4)

end for

OGD-L: Online Gradient Descent with Lazy projection

Initialization: let w1 be an initial point in S, {ηt} be the sequence of step sizes,
y1 = 0 ∈ Rn

for t = 1, 2, . . . , T do
1. Compute s̃t ∈ ∂g̃t(wt).
2. Compute wt+1 by the update rule

yt+1 = yt − ηts̃t, (2.5)

wt+1 = ProjS(yt+1). (2.6)

end for

Now, we are going to indicate that in some cases of DC functions, the corresponding
Online DCA algorithm is exactly the same as the versions of online gradient descent
algorithm, which is presented in Propositions 2.1, 2.2.

Proposition 2.1. Assume that R = 0, t0 = t and at the step t, there exists a positive
number ρt such that ρt

2
‖·‖2− g̃t is convex on S. Then, OGD is a special case of Online

DCA.

Proof. At the step t, we derive the following DC decomposition of g̃t:

g̃t(w) = gt(w)− ht(w),

where gt(w) = ρt
2
‖w‖2 and ht(w) = ρt

2
‖w‖2 − g̃t(w). Thus, solving the subproblem

(2.3) in Online DCA amounts to solving the problem

min
{ρt

2
‖w‖2 −

〈
ρtw

t − s̃t, w
〉

: w ∈ S
}
.

It can be equivalently reformulated to

min

{∥∥∥∥w − (wt − 1

ρt
s̃t
)∥∥∥∥2

: w ∈ S

}
.

Online Learning and Applications to Online Binary Linear Classification 49

Thus, we deduce that

wt+1 = ProjS

(
wt − 1

ρt
s̃t
)
,

where ProjS(x) is the projection of x on S. It is exactly the same as the update rule
(2.4) in OGD with step size of 1/ρt. The proof is complete.

Remark 2.1. With the same assumptions in Proposition 2.1 but t0 = 1 and S = Rn,
we also indicate that OGD is a special case of Online DCA. In particular, (2.3) would
be

min

{
t∑
i=1

ρi
2
‖w‖2 −

t∑
i=1

〈
ρiw

i − s̃i, w
〉

: w ∈ Rn

}
or, equivalently,

min


∥∥∥∥∥w − 1

ρ(t)

t∑
i=1

(
ρiw

i − s̃i
)∥∥∥∥∥

2

: w ∈ Rn

 ,

where ρ(t) :=
t∑
i=1

ρi, ∀t. Thus, we obtain the following update rule

wt+1 =
1

ρ(t)

t∑
i=1

(
ρiw

i − s̃i
)

=
1

ρ(t)

[(
ρtw

t − s̃t
)

+ ρ(t−1)wt
]

= wt − 1

ρ(t)
s̃t.

Proposition 2.2. Assume that t0 = 1, R(w) = 1
2η
‖w‖2

2 (η > 0) and at the step t,

the loss function is linear i.e. ft(w) = 〈w, s̃t〉 where s̃t ∈ ∂g̃t(wt). Then OGD-L is a
special case of Online DCA.

Proof. We can see that DC components of ft are gt(w) = 〈w, s̃t〉 and ht(w) = 0.
According to Online DCA, (2.3) can be reformulated as

min

{
1

2η
‖w‖2 +

〈
t∑
i=1

s̃i, w

〉
: w ∈ S

}
or, equivalently,

min


∥∥∥∥∥w + η

t∑
i=1

s̃i

∥∥∥∥∥
2

: w ∈ S

 .

Thus, we have
yt+1 = yt − ηs̃t, wt+1 = ProjS

(
yt+1

)
. (2.7)

This update rule is the same as (2.5)–(2.6) in the algorithm OGD-L with step size of
η. The proof is complete.

Next, we are going to present a particular Online DCA based scheme which is very
efficient in practice problems.

50 Online Learning and Applications to Online Binary Linear Classification

2.2.3 ODCA: a proposed Online DCA based scheme

According to Section 1.2.3, we propose a particular scheme based on Online DCA where
the covex subproblem (2.3) is solved by approximating by one iteration of subgradient
method (see e.g. [111] for the definition). In particular, applying one iteration of the
projected subgradient method at the point wt with step size of ηt, we derive from
(1.13) the following update rule:

wt+1 = ProjS(wt − ηtst), (2.8)

where the vector st ∈ ∂gt(w
t) − zt. Thus, a particular Online DCA based scheme

(ODCA) applied to (2.2) can be described as follows.

ODCA: Online DCA-projected Subgradient scheme

Initialization: let w1 be an initial point, {ηt} be the sequence of step sizes
for t = 1, 2, . . . , T do

1. Compute zt ∈ ∂ht(wt).
2. Compute st ∈ (∂gt(w

t)− zt).
3. Compute wt+1 ∈ S by the update rule

wt+1 = ProjS(wt − ηtst). (2.9)

end for

Remark 2.2. It is worth noting that in the Online DCA scheme, the problem (1.12)
can be solved approximating by k iterations of subgradient method at each step. In such
a case, the quality of the solution wt+1 to the problem (1.12) may be improved, however
one possible disadvantage is the expensive computation time. This chapter will address
the case of one iteration. Studying the effect of the number of iterations of subgradient
method on the efficiency of ODCA algorithms will be a part of future works.

2.2.4 Analysis of ODCA

In this section, we will present the regret of the sequence {wt} generated by ODCA.
Recall the regret of the algorithm A is defined by

RegretTA :=
T∑
t=1

ft(w
t)−min

w∈S

T∑
t=1

ft(w). (2.10)

First we make four necessary assumptions below and then we indicate the regret bound
of ODCA, which is stated in Theorem 2.1 and Theorem 2.2.

Assumption 2.1. There exists a vector u∗ ∈ S such that for t = 1, . . . , T ,

u∗ ∈ arg min
w∈S

ft(w). (2.11)

Online Learning and Applications to Online Binary Linear Classification 51

Assumption 2.2. There exists a positive parameter α such that at the step t,

α

2
‖u∗ − wt‖2 ≤ gt(w

t)− gt(u∗)− 〈zt, wt − u∗〉. (2.12)

Assumption 2.3. There exists a nonnegative parameter β such that at the step t,

ht(u
∗)− ht(wt)− 〈zt, u∗ − wt〉 ≤

β

2
‖u∗ − wt‖2. (2.13)

Assumption 2.4. There exists a positive parameter γ such that at the step t,

gt(w
t)− gt(u∗) ≤ 〈rt, wt − u∗〉 −

γ

2
‖u∗ − wt‖2. (2.14)

where rt ∈ ∂gt(wt).

Suppose that L and D are respectively positive upper bounds of the sequence
{st}t=1,...,T and {wt − u∗}t=1,...,T that is

max
t∈{1,2,...,T}

‖st‖ ≤ L and max
t∈{1,2,...,T}

‖wt − u∗‖ ≤ D. (2.15)

Let us define the convex function

gt(w) := gt(w)− 〈zt, w〉

for t = 1, 2, . . . , T .

Theorem 2.1. Suppose that ODCA generates the sequence {wt}t=1,...,T and Assump-
tions 2.1, 2.2, 2.3 are verified. Then, we have

RegretTODCA ≤
3DL(α + β)

√
T

2α
.

Proof. From the definition of RegretTA (2.10), we have

RegretTODCA =
T∑
t=1

ft(w
t)−min

w∈S

T∑
t=1

ft(w) ≤
T∑
t=1

[
ft(w

t)−min
w∈S

ft(w)

]
. (2.16)

It derives from Assumption 2.1 that

ft(w
t)−min

w∈S
ft(w)

= ft(w
t)− ft(u∗)

= [gt(w
t)− gt(u∗)] + [ht(u

∗)− ht(wt)]
= [gt(w

t)− gt(u∗)] + [ht(u
∗)− ht(wt)− 〈zt, u∗ − wt〉]. (2.17)

From (2.16), (2.17) and Assumptions 2.2, 2.3, we obtain

RegretTODCA ≤
(

1 +
β

α

) T∑
t=1

[gt(w
t)− gt(u∗)]. (2.18)

52 Online Learning and Applications to Online Binary Linear Classification

Since st ∈ ∂gt(wt), it follows

RegretTODCA ≤
(

1 +
β

α

) T∑
t=1

〈st, wt − u∗〉. (2.19)

Similarly to the proof of Theorem 3.1 in [45], we find an upper bound of 〈st, wt − u∗〉,
t ∈ {1, . . . , T}. In particular, by the definition of the sequence {wt}t=1,...,T as (2.8), we
have

‖wt+1 − u∗‖2 ≤ ‖(wt − ηtst)− u∗‖2

= ‖(wt − u∗)− ηtst‖2

= ‖wt − u∗‖2 − 2ηt〈st, wt − u∗〉+ η2
t ‖st‖2.

Thus,

〈st, wt − u∗〉 ≤ ‖w
t − u∗‖2 − ‖wt+1 − u∗‖2

2ηt
+
ηt
2
‖st‖2. (2.20)

It derives that

RegretTODCA ≤
(

1 +
β

α

){ T∑
t=1

[
‖wt − u∗‖2

(
1

2ηt
− 1

2ηt−1

)]
+
L2

2

T∑
t=1

ηt

}

≤
(

1 +
β

α

)[
D2

2

T∑
t=1

(
1

ηt
− 1

ηt−1

)
+
L2

2

T∑
t=1

ηt

]

≤
(

1 +
β

α

)(
D2

2ηT
− D2

2η0

+
L2

2

T∑
t=1

ηt

)
.

Let us define
1

η0

:= 0 and ηt =
D

L
√
t

for all t = 1, . . . , T . Then, we have

RegretTODCA ≤
(

1 +
β

α

)[
DL
√
T

2
+
DL

2

(
2
√
T − 1

)]
≤ 3DL(α + β)

√
T

2α
.

The proof is complete.

From Theorem 2.1, we can say that RegretTODCA grows sublinearly with the number of
steps T , i.e. lim

T→+∞
RegretTODCA/T = 0. However we can achieve a better regret bound,

specifically logarithmic regret – O(log(T)) if Assumption 2.4 is also verified, which is
stated in the following theorem.

Theorem 2.2. Suppose that ODCA generates the sequence {wt}t=1,...,T and Assump-
tions 2.1, 2.2, 2.3 and 2.4 are verified. Then, we have

RegretTODCA ≤
L2(α + β) (1 + log(T))

2αγ
.

Online Learning and Applications to Online Binary Linear Classification 53

Proof. From (2.18) in Theorem 2.1 and Assumption 2.4, we derive that

RegretTODCA ≤
(

1 +
β

α

) T∑
t=1

[
〈st, wt − u∗〉 − γ

2
‖u∗ − wt‖2

]
. (2.21)

Similarly to the proof of Theorem 3.3 in [45], let us define
1

η0

:= 0 and ηt =
1

γt
for all

t = 1, . . . , T . From (2.20) and (2.21), we have

RegretTODCA ≤
(

1 +
β

α

){ T∑
t=1

[
‖wt − u∗‖2

(
1

2ηt
− 1

2ηt−1

− γ

2

)
︸ ︷︷ ︸

=0

]
+
L2

2

T∑
t=1

ηt

}

≤
(

1 +
β

α

)
L2

2γ

T∑
t=1

1

t

≤ L2(α + β) (1 + log(T))

2αγ
.

The proof is complete.

Remark 2.3. (Comments about Assumptions 2.1–2.4)

First of all, Assumption 2.1 can be replaced by the following assumption – that is, there
exists a vector u∗ such that

u∗ ∈ arg min
w∈S

T∑
t=1

ft(w).

In this case, the inequality (2.18) is guaranteed and we still yield the same regret bound.
In practice problems, Assumption 2.1 is verified more easily.

Next, Assumption 2.2 can be deduced from the inequality

µ

2
‖u∗ − wt‖2 ≤ ft(w

t)− ft(u∗)

where µ > β and β is defined in Assumption 2.3. Indeed, we have

gt(w
t)− gt(u∗) = ft(w

t)− ft(u∗)−
[
ht(u

∗)− ht(wt)− 〈zt, u∗ − wt〉
]

≥ α

2
‖u∗ − wt‖2,

α = µ−β > 0. Moreover, it is easy to verify Assumption 2.3 if ht is differentiable with
β-Lipschitz gradient on S. Meanwhile, Assumption 2.4 is satisfied if gt is γ-convex on
S (γ > 0) i.e. gt − (γ/2)‖ · ‖2 is convex (see e.g. [95]).

In the sequel, we are going to present how to employ ODCA for solving the problems
in the topic of online classification, specifically online binary linear classification.

54 Online Learning and Applications to Online Binary Linear Classification

2.3 Online DCA for Online Binary Linear Classifi-

cation problems

In this section, we focus on handling the problems in the topic of online binary linear
classification (OBLC) where the set of instances is X = Rn, the set of linear classifiers
is S = Rn and the set of binary labels is Y = {−1, 1}. Formally, at the step t, after
receiving an instance xt ∈ X , the learner will find a linear classifier wt ∈ S and then
predict the corresponding binary label pt = pt(w

t) ∈ Y where the function pt is defined
by

pt(w) := sign(〈w, xt〉) =

{
1 if 〈w, xt〉 ≥ 0,
−1 otherwise.

(2.22)

After that, the correct label yt ∈ Y is revealed. In such a case, the quality of pre-
dictions is assessed by a loss function, specifically 0-1 loss function, which measures
the difference between the predicted label and the correct one. The 0-1 loss function,
denoted by `t, is defined as

`t(pt(w), yt) := 1{pt(w)6=yt}(w) = 1{yt〈w,xt〉≤0}(w) =

{
1 if yt〈w, xt〉 ≤ 0,
0 otherwise,

(2.23)

where 1X is the indicator function of X. Obviously, this loss function is nonconvex,
nonsmooth.

There exist many online classification algorithms with different approaches such as
Perceptron [91, 102, 121], Approximate Maximal Margin Classification Algorithm
(ALMA) [39], Relaxed Online Maximum Margin Algorithm (ROMMA) [76], Passive-
Aggressive learning algorithms (PA) [29] and their variants. Hoi et al. [47] conducted
a library of scalable and efficient online learning algorithms for large-scale online clas-
sification tasks. As the first works, [46] developed an online classification technique
based on an online version of DCA where a DC function was explored to approximate
the nonconvex, nonsmooth 0-1 loss function. Our works will thoroughly study more
efficient OBLC algorithms with formal regret bounds.

First of all, we propose three different DC approximation functions ft on S instead of
the 0-1 loss function `t. Let us denote byMA the set of steps where the prediction of
the algorithm A may be wrong in the sense that ft(w

t) > 0. If a step t /∈MA, then we
observe the function ft(w) = 0, ∀w ∈ Rn. Otherwise, we define the DC approximation
function ft satisfying the following condition

ft(w
t) ≥ `t(pt, yt). (2.24)

In particular, we suggest three DC functions: two piecewise linear functions (as in e.g.
[46]) similar to ramp loss [27, 28] and one sigmoid function (see e.g. [83]). In the
following, we will present how to design online algorithms based on ODCA for these
functions.

Online Learning and Applications to Online Binary Linear Classification 55

2.3.1 First piecewise linear function

At step t, we observe the function f
(1)
t : Rn → [0, 1] defined as follows [46]:

f
(1)
t (w) := max

{
0,min

{
τ2t

τ1t

,
−yt〈w, xt〉

τ1t

}}
(2.25)

where τ2t, τ1t are two positive parameters. It is evident that if τ2t = τ1t, then for any
w ∈ Rn, 0 ≤ f

(1)
t (w) ≤ `t(w) ≤ 1 and f

(1)
t (w) → `t(w) as τ1t → 0. Moreover, DC

components of f
(1)
t are

g
(1)
t (w) = max

{
0,
−yt〈w, xt〉

τ1t

}
and h

(1)
t (w) = max

{
0,
−τ2t − yt〈w, xt〉

τ1t

}
.

Remark that we have to choose the parameters τ1t, τ2t such that (2.24) is satisfied.
However, it is never true if there exists a step t such that yt〈wt, xt〉 = 0 since `t(pt, yt) =

1 and f
(1)
t (wt) = 0. In such a case, we investigate another DC function, namely f

(2)
t ,

defined by

f
(2)
t (w) := max

{
0,min

{
1,
τ1t − yt〈w, xt〉

τ1t

}}
, (2.26)

and its DC decomposition is

f
(2)
t (w) = g

(2)
t (w)− g(1)

t (w),

where

g
(2)
t (w) = max

{
0,
τ1t − yt〈w, xt〉

τ1t

}
.

Obviously, we have f
(2)
t (wt) = 1 = `t(pt, yt).

For these DC functions, let us define the set

MPiL1 := {t ∈ {1, . . . , T} : f
(1)
t (wt) > 0 or yt〈wt, xt〉 = 0}

= {t ∈ {1, . . . , T} : yt〈wt, xt〉 ≤ 0} (2.27)

and the set
NPiL1 := {t ∈MPiL1 : yt〈wt, xt〉 < 0}.

According to the ODCA algorithm, at step t, we compute first the vector zt ∈ ∂h(1)
t (wt)

(resp. zt ∈ ∂g(1)
t (wt)), then the vector st ∈ (∂g

(1)
t (wt)− zt) (resp. st ∈ (∂g

(2)
t (wt)− zt))

when t ∈ NPiL1 (resp. t ∈MPiL1 \ NPiL1) and then the vector wt+1 using (2.8).

� Compute ∂g
(1)
t , ∂h

(1)
t and ∂g

(2)
t : by the definition of g

(1)
t , g

(2)
t and h

(1)
t , we have

∂g
(1)
t (w) =


{0} if yt〈w, xt〉 > 0,[
−ytxt
τ1t

, 0

]
if yt〈w, xt〉 = 0,{

−ytxt
τ1t

}
if yt〈w, xt〉 < 0,

(2.28)

56 Online Learning and Applications to Online Binary Linear Classification

∂h
(1)
t (w) =


{0} if yt〈w, xt〉 > −τ2t,[
−ytxt
τ1t

, 0

]
if yt〈w, xt〉 = −τ2t,{

−ytxt
τ1t

}
if yt〈w, xt〉 < −τ2t,

(2.29)

and

∂g
(2)
t (w) =


{0} if yt〈w, xt〉 > τ1t,[
−ytxt
τ1t

, 0

]
if yt〈w, xt〉 = τ1t,{

−ytxt
τ1t

}
if yt〈w, xt〉 < τ1t.

(2.30)

Here [a, b] is the line segment between a and b. When t ∈ NPiL1, we choose zt ∈
∂h

(1)
t (wt), rt ∈ ∂g(1)

t (wt) and st = rt − zt ∈ (∂g
(1)
t (wt)− zt) as follows:

rt =
−ytxt
τ1t

, zt =

{ −ytxt
τ1t

if yt〈wt, xt〉 < −τ2t,

0 if − τ2t ≤ yt〈wt, xt〉 < 0,

and

st =

{
0 if yt〈wt, xt〉 < −τ2t,
−ytxt
τ1t

if − τ2t ≤ yt〈wt, xt〉 < 0.

Similarly, when t ∈MPiL1 \ NPiL1, we have

rt =
−ytxt
τ1t

, zt = 0 and st =
−ytxt
τ1t

.

� Choose the parameters τ1t, τ2t: in order to satisfy (2.24), for any t ∈ MPiL1, we
propose the following choices

τ1t =

{
min{τ1,−yt〈wt, xt〉} if t ∈ NPiL1,
τ1 if t ∈MPiL1 \ NPiL1,

where τ1 is a positive tuning parameter, and

τ2t = −yt〈wt, xt〉. (2.31)

� Choose the learning rate ηt: we consider the constant learning rate that is ηt = η
for all t. In this case, the prediction labels defined as (2.22) and the set MPiL1 is
completely independent of the value of η (see [109] for more details). Consequently,
we can choose ηt = 1 for all t.

Finally, ODCA with the first piecewise linear function is given by Algorithm 2.1
(ODCA-PiL1).

Online Learning and Applications to Online Binary Linear Classification 57

Algorithm 2.1 ODCA with first piecewise linear function (ODCA-PiL1)

Initialization: let τ1 be a positive number, w1 be an initial point
for t = 1, 2, . . . , T do

if −τ1 ≤ yt〈wt, xt〉 < 0 then

wt+1 = wt − xt
〈wt, xt〉

.

else if yt〈wt, xt〉 = 0 or yt〈wt, xt〉 < −τ1 then

wt+1 = wt +
ytxt
τ1

.

else
wt+1 = wt.

end if
end for

According to the analysis of ODCA in Section 2.2.4, we archive the logarithmic regret of
the ODCA-PiL1 algorithm as stated in Theorem 2.2 for this nonconvex piecewise linear
function. In order to get this result, we need to indicate that all four Assumptions 2.1–
2.4 are satisfied for two cases: t ∈MPiL1\NPiL1 and t ∈ NPiL1 as the following lemmas.
Throughout these lemmas, we further assume that at the step t ∈ MPiL1, xt 6= 0.
When xt = 0, the algorithm makes no update, which still holds for the update step
in Algorithm 2.1 (corresponding to wt+1 = wt). We also assume that there exists a
vector u∗ ∈ Rn such that for all t = 1, . . . , T ,

yt〈u∗, xt〉 ≥ 2τ1. (2.32)

Lemma 2.1. For the DC function (2.25) and step t ∈ NPiL1, there exist the parameters
α, γ and the vector u∗ such that Assumptions 2.1, 2.2, 2.4 are satisfied. Moreover,
Assumption 2.3 is satisfied for all β ≥ 0.

Proof. As for t ∈ NPiL1, from (2.32), it is easy to check that Assumption 2.1 is satisfied.
Moreover, it is worth noting that u∗ 6= wt for all t = 1, . . . , T . Indeed, assume the
contrary that is u∗ = wt for some t ∈ NPiL1, so yt〈u∗, xt〉 < 0 contradicting (2.32).

Now, we will show that Assumptions 2.2–2.4 can be satisfied. In particular, as for
Assumption 2.2, let us define the function g

(1)
t := g

(1)
t − 〈zt, ·〉 and we have

g
(1)
t (wt)− g(1)

t (u∗) = −yt〈w
t, xt〉
τ1t

> 0.

Thus, the inequality (2.12) is satisfied with α ≤ min
t∈NPiL1

−2yt〈wt, xt〉
τ1t‖u∗ − wt‖2

.

Regarding Assumption 2.3, from (2.31) and the definition of h
(1)
t , we have that for any

t ∈ NPiL1 and β ≥ 0,

h
(1)
t (u∗)− h(1)

t (wt)− 〈zt, u∗ − wt〉 = 0 ≤ β

2
‖u∗ − wt‖2.

58 Online Learning and Applications to Online Binary Linear Classification

Concerning Assumption 2.4, we have that for any t ∈ NPiL1,

g
(1)
t (u∗)− g(1)

t (wt)− 〈rt, u∗ − wt〉 =
yt〈wt, xt〉

τ1t

− 〈−ytxt
τ1t

, u∗ − wt〉

=
yt〈u∗, xt〉

τ1t

> 0.

Thus, the inequality (2.14) is satisfied with γ ≤ min
t∈NPiL1

2yt〈u∗, xt〉
τ1t‖u∗ − wt‖2

. The proof is

complete.

Lemma 2.2. For step t ∈MPiL1\NPiL1 and the loss function (2.26), Assumptions 2.1,
2.2, 2.4 are satisfied with the suitable parameters α, γ and vector u∗. Moreover, As-
sumption 2.3 is satisfied for all β ≥ 0.

Proof. In case t ∈ MPiL1 \ NPiL1 (that is yt〈wt, xt〉 = 0), we can readily verify As-
sumption 2.1 by (2.32). We can see that if t ∈ MPiL1 \ NPiL1, then u∗ 6= wt, since
yt〈wt, xt〉 = 0 while yt〈u∗, xt〉 ≥ 2τ1 > 0.

We are going to show that Assumptions 2.2–2.4 are also satisfied. In particular, as for
Assumption 2.2, let us define the function g

(2)
t := g

(2)
t − 〈zt, ·〉 for t ∈ MPiL1 \ NPiL1

and we have

g
(2)
t (wt)− g(2)

t (u∗) = 1 ≥ α

2
‖u∗ − wt‖2,

where α ≤ min
t∈MPiL1\NPiL1

2

‖u∗ − wt‖2
.

Regarding Assumption 2.3, we have that for any t ∈MPiL1 \ NPiL1 and β ≥ 0,

g
(1)
t (u∗)− g(1)

t (wt)− 〈zt, u∗ − wt〉 = 0 ≤ β

2
‖u∗ − wt‖2.

Concerning Assumption 2.4, we have that for any t ∈MPiL1 \ NPiL1,

g
(2)
t (u∗)− g(2)

t (wt)− 〈rt, u∗ − wt〉 = −1− 〈−ytxt
τ1t

, u∗ − wt〉

=
yt〈u∗, xt〉

τ1t

− 1

≥ γ

2
‖u∗ − wt‖2,

where γ ≤ min
t∈MPiL1\NPiL1

2

‖u∗ − wt‖2
.

The proof is complete.

Consequently, we derive the following corollary for the regret bound of the ODCA-PiL1
algorithm (whose proof is straightforward with the choice β = α).

Online Learning and Applications to Online Binary Linear Classification 59

Corollary 2.1. Assume that ODCA-PiL1 generates the sequence {wt}t=1,...,T . Then,
we have

RegretTODCA-PiL1 ≤
L2 (1 + log(T))

γ
(2.33)

where L is defined as (2.15) and the positive parameter

γ ≤ min
t∈MPiL1

2 min {τ1t, ψ(yt〈u∗, xt〉)}
τ1t‖u∗ − wt‖2

,

the real-value function ψ(x) = x if x > 0, +∞ otherwise.

The following theorem provides a bound on the number of prediction mistakes (which
is called a mistake bound, for short) for the ODCA-PiL1 algorithm, which is defined
as the bound on the number of steps where pt 6= yt.

Theorem 2.3. For any w ∈ Rn, the number of prediction mistakes made by ODCA-
PiL1 has an upper bound that is the root, x1, of the equation

x− aPiL1 − bPiL1 (1 + log(x)) = 0

where aPiL1 =
∑

t∈NPiL1

f
(1)
t (w) +

∑
t∈MPiL1\NPiL1

f
(2)
t (w), bPiL1 = L2/γPiL1, x1 ≥ bPiL1, the

positive parameter γPiL1 ≤ min {γ, L2}.

Proof. From the inequality (2.24), Corollary 2.1 and the definition of γPiL1, we derive
that for any w ∈ Rn,

|MPiL1| ≤
∑

t∈NPiL1

f
(1)
t (wt) +

∑
t∈MPiL1\NPiL1

f
(2)
t (wt)

≤
∑

t∈NPiL1

f
(1)
t (w) +

∑
t∈MPiL1\NPiL1

f
(2)
t (w) +

L2 (1 + log(|MPiL1|))
γPiL1

(2.34)

where |MPiL1| is the number of steps of the set MPiL1.

Using the definition of aPiL1 and bPiL1, it is evident that aPiL1 ≥ 0, bPiL1 ≥ 1 and the
inequality (2.34) can be rewritten as follows.

|MPiL1| ≤ aPiL1 + bPiL1 (1 + log(|MPiL1|)) .

The real function rPiL1 : (0,+∞)→ R, rPiL1(x) = x−aPiL1−bPiL1 (1 + log(x)) is strictly
convex on (0,+∞). Since lim

x→0+
rPiL1(x) = lim

x→+∞
rPiL1(x) = +∞ and rPiL1(bPiL1) ≤ 0,

the equation rPiL1(x) = 0 has two roots x1, x2 such that 0 < x2 ≤ bPiL1 ≤ x1. The
proof is complete.

60 Online Learning and Applications to Online Binary Linear Classification

2.3.2 Second piecewise linear function

In this section, we propose another DC approximation function which is also of form
of piecewise linear function. Specifically, at step t, we observe the function f

(3)
t : Rn →

[0, 1] defined as follows:

f
(3)
t (w) :=

 max

{
0,min

{
1 +

τ2t

τ1t

, 1− yt〈w, xt〉
τ1t

}}
if yt〈wt, xt〉 ≥ −τ2t,

1 otherwise,
(2.35)

where τ2t, τ1t are two positive parameters. Obviously, (2.24) is always true for the

function f
(3)
t . The set MPiL2 is defined by

MPiL2 := {t ∈ {1, . . . , T} : f
(3)
t (wt) > 0}

= {t ∈ {1, . . . , T} : yt〈wt, xt〉 < τ1t} (2.36)

and the set
NPiL2 := {t ∈ {1, . . . , T} : −τ2t ≤ yt〈wt, xt〉 < τ1t}.

For t ∈MPiL2, f
(3)
t is a DC function whose DC decomposition is

f
(3)
t (w) = g

(3)
t (w)− h(3)

t (w), w ∈ Rn,

where

g
(3)
t (w) :=

{
g

(2)
t (w) if t ∈ NPiL2,

1 if t ∈MPiL2 \ NPiL2,

and

h
(3)
t (w) :=

{
h

(1)
t (w) if t ∈ NPiL2,

0 if t ∈MPiL2 \ NPiL2.

Applying ODCA with this loss function leads us at step t ∈ NPiL2 to compute zt ∈
∂h

(3)
t (wt), st ∈ (∂g

(3)
t (wt)− zt) and wt+1 based on (2.8).

� Compute ∂g
(3)
t , ∂h

(3)
t : from (2.29) and (2.30), for t ∈ MPiL2, we choose zt ∈

∂h
(3)
t (wt), rt ∈ ∂g(3)

t (wt) and st = rt − zt ∈ (∂g
(3)
t (wt)− zt) as follows: zt = 0,

rt =

{ −ytxt
τ1t

if t ∈ NPiL2,

0 if t ∈MPiL2 \ NPiL2,

and

st =

{ −ytxt
τ1t

if t ∈ NPiL2,

0 if t ∈MPiL2 \ NPiL2.

� Choose the parameters τ1t, τ2t and learning rate ηt: we propose the following choice:
τ1t = τ1‖xt‖, τ2t = τ2‖xt‖ and ηt = C/

√
t for all t where τ1, τ2 and C are positive

tuning parameters.

Online Learning and Applications to Online Binary Linear Classification 61

ODCA applied to OBLC problems with this second piecewise linear loss function can
be summarized in Algorithm 2.2 (ODCA-PiL2).

Algorithm 2.2 ODCA with second piecewise linear function (ODCA-PiL2)

Initialization: let w1 be an initial point, {ηt} be a sequence of learning rates,
and {τ1t}, {τ2t} be a sequence of positive parameters mentioned above
for t = 1, 2, . . . , T do

if −τ2t ≤ yt〈wt, xt〉 < τ1t then

wt+1 = wt + ηt
ytxt
τ1t

.

else
wt+1 = wt.

end if
end for

In the following, we analyze the regret bound of the ODCA-PiL2 algorithm thanks to
the analysis of ODCA in both cases t ∈ NPiL2 and t ∈MPiL2 \ NPiL2, as the following
lemma. Before stating, we assume that xt 6= 0,∀t and there exists a vector u∗ ∈ Rn

such that for all t = 1, . . . , T ,

yt〈u∗, xt〉 ≥ 2τ, (2.37)

where τ = maxt=1,...,T τ1t.

Lemma 2.3. For the loss function (2.35) and step t ∈ MPiL2, the conditions (i)-(iv)
are satisfied with the suitable parameters α, γ and vector u∗. Moreover, the condition
(iii) is satisfied for all β ≥ 0.

Proof. Similarly to Lemma 2.1 and Lemma 2.2, it is easy to check that u∗ ∈
arg minw∈Rn f

(3)
t (w) for all t ∈ MPiL2 and if t ∈ NPiL2, then u∗ 6= wt, since

yt〈wt, xt〉 < τ1t while yt〈u∗, xt〉 ≥ 2τ1t.

We will show that Assumptions 2.2–2.4 are satisfied for both cases t ∈ NPiL2 and
t ∈MPiL2 \ NPiL2. Let us define the function g

(3)
t := g

(3)
t − 〈zt, ·〉.

• As for t ∈ NPiL2, we have

g
(3)
t (wt)− g(3)

t (u∗) =
τ1t − yt〈wt, xt〉

τ1t

≥ α

2
‖u∗ − wt‖2,

where α ≤ min
t∈NPiL2

2(τ1t − yt〈wt, xt〉)
τ1t‖u∗ − wt‖2

. Thus, Assumption 2.2 is satisfied.

Regarding Assumption 2.3, we have that for β ≥ 0,

h
(1)
t (u∗)− h(1)

t (wt)− 〈zt, u∗ − wt〉 = 0 ≤ β

2
‖u∗ − wt‖2.

62 Online Learning and Applications to Online Binary Linear Classification

Concerning Assumption 2.4, we have

g
(3)
t (u∗)− g(3)

t (wt)− 〈rt, u∗ − wt〉 = g
(2)
t (u∗)− g(2)

t (wt)− 〈rt, u∗ − wt〉

=
yt〈wt, xt〉

τ1t

− 1 + 〈ytxt
τ1t

, u∗ − wt〉

=
yt〈u∗, xt〉

τ1t

− 1 ≥ 1.

With γ ≤ min
t∈NPiL2

2

‖u∗ − wt‖2
, Assumption 2.4 is verified.

• As for t ∈MPiL2\NPiL2, it is evident to notice that Assumptions 2.2–2.4 are satisfied
for all α > 0, β ≥ 0, γ > 0.

The proof is complete.

As a result of Lemma 2.3, the regret bound of the ODCA-PiL2 algorithm is stated as
the following corollary.

Corollary 2.2. Assume that ODCA-PiL2 generates the sequence {wt}t=1,...,T . Then,
we have

RegretTODCA-PiL2 ≤
L2 (1 + log(T))

γ

where the positive parameter γ ≤ min
t∈NPiL2

2

‖u∗ − wt‖2
and L is defined as (2.15).

We also archive the mistake bound for the ODCA-PiL2 algorithm as the following
theorem.

Theorem 2.4. For any w ∈ Rn, the number of prediction mistakes made by ODCA-
PiL2 has an upper bound that is the root, x1, of the equation

x− aPiL2 − bPiL2 (1 + log(x)) = 0

where aPiL2 =
∑

t∈MPiL2

f
(3)
t (w), bPiL2 = L2/γPiL2, x1 ≥ bPiL2 and the positive parameter

γPiL2 ≤ min {γ, L2}.

Proof. This theorem is proven similarly to Theorem 2.3 but remark that from (2.23)
and (2.36), the number of prediction mistakes is bounded from above by |MPiL2|.

2.3.3 Sigmoid function

We here consider a loss function which takes a form of sigmoid function [83]. In
particular, at step t, we observe the following loss function:

f
(4)
t (w) := max {1− tanh(δt), 1− tanh(κtyt〈w, xt〉)} (2.38)

Online Learning and Applications to Online Binary Linear Classification 63

where δt, κt is positive parameters, the increasing function tanh : R→ [−1, 1] is defined
by

tanh(s) =
es − e−s

es + e−s
.

It is straightforward to see that (2.24) is satisfied for the sequence {f (4)
t }t=1,...,T . Since

f
(4)
t (wt) > 0 at all steps, we have to update wt at all steps, which seems to be expensive

in terms of rapidity. In order to alleviate this trouble, we propose a threshold ε ∈ [0, 1)
to define the set MSig as follows.

MSig := {t ∈ {1, . . . , T} : 1− tanh(κtyt〈wt, xt〉) > ε}.

In the case t /∈ MSig i.e. 1− tanh(κtyt〈wt, xt〉) ≤ ε < 1, we obtain yt〈wt, xt〉 > 0 that
is to say `t(pt, yt) = 0. Thus, the condition (2.24) can be satisfied with the observed

loss function f
(4)
t = 0.

When t ∈MSig, we see that f
(4)
t (w) is DC and its DC decomposition is

f
(4)
t (w) = g

(4)
t (w)− h(4)

t (w)

where

h
(4)
t (w) :=

2e−4κtyt〈w,xt〉

e−2κtyt〈w,xt〉 + 1
,

g
(4)
t (w) := max

{
1− tanh(δt) + h

(4)
t (w), ct(w)

}
,

and the function ct : Rn → R is defined by

ct(w) := 2e−2κtyt〈w,xt〉.

It is evident that g
(4)
t and h

(4)
t are convex, positive functions on Rn.

With the sigmoid function (2.38), ODCA consists of, at the step t, first calculating the

vector st ∈ (∂g
(4)
t − ∂h

(4)
t)(wt) and then computing the prediction vector wt+1 as the

update rule (2.8).

� Compute ∂g
(4)
t , ∂h

(4)
t : the functions ct and h

(4)
t are differentiable and we have

∂ct(w) = {∇ct(w)} = {−2κtytxtct(w)} ,

∂h
(4)
t (w) = {∇h(4)

t (w)} =

{
−4κtytxte

−2κtyt〈w,xt〉(2e2κtyt〈w,xt〉 + 1)

(e2κtyt〈w,xt〉 + 1)2

}
,

and

∂g
(4)
t (w) =


{∇ct(w)} if δt > κtyt〈w, xt〉,[
∇ct(w),∇h(4)

t (w)
]

if δt = κtyt〈w, xt〉,
{∇h(4)

t (w)} if δt < κtyt〈w, xt〉.

64 Online Learning and Applications to Online Binary Linear Classification

Thus, for t ∈ MSig, we choose zt ∈ ∂h
(4)
t (wt), rt ∈ ∂g

(4)
t (wt) and st = rt − zt ∈

(∂g
(4)
t (wt)− zt) as follows:

zt = ∇h(4)
t (wt) = −2κtytxtct(w

t)mt,

rt =

{
∇ct(wt) if δt > κtyt〈wt, xt〉,
∇h(4)

t (wt) if δt ≤ κtyt〈wt, xt〉,

where mt =
2e2κtyt〈wt,xt〉 + 1

(e2κtyt〈wt,xt〉 + 1)2
, and

st =

 −
4κtytxte

2κtyt〈wt,xt〉

(e2κtyt〈wt,xt〉 + 1)
2 if δt > κtyt〈wt, xt〉,

0 if δt ≤ κtyt〈wt, xt〉.

� Choose the parameters δt, κt, ε and learning rate ηt: we propose the following choice:
for all t, κt = κ/‖xt‖ and ηt = C/

√
t where κ, C are positive tuning parameters, ε is

a tuning threshold in [0, 1) and the positive number

δt = κtyt〈wt, xt〉 − ln(mt)/2. (2.39)

Since mt ∈ (0, 1), then δt > κtyt〈wt, xt〉.

Finally, ODCA applied to OBLC problems with the loss function (2.38) is described
in Algorithm 2.3 (ODCA-Sig).

Algorithm 2.3 ODCA with sigmoid function (ODCA-Sig)

Initialization: let w1 be an initial point, {ηt} be a sequence of learning rates, {κt},
ε be the parameters mentioned above,
for t = 1, 2, . . . , T do

if 1− tanh(κtyt〈wt, xt〉) > ε then

wt+1 = wt + ηt
4κtytxte

2κtyt〈wt,xt〉

(e2κtyt〈wt,xt〉 + 1)
2 .

else
wt+1 = wt.

end if
end for

We are going to present the regret bound of the ODCA-Sig algorithm. First, we
indicate in Lemma 2.4 that Assumptions 2.1–2.4 can be satisfied for the proposed
loss function (2.38). Then, we can archive the logarithmic regret as presented in
Corollary 2.3. Finally, the mistake bound of the ODCA-Sig algorithm is stated in
Theorem 2.5.

Before showing Lemma 2.4, we assume that xt 6= 0 ∀t and there exists a vector u∗ ∈ Rn

such that for all t = 1, . . . , T ,
κtyt〈u∗, xt〉 ≥ δ, (2.40)

where δ = maxt=1,...,T δt.

Online Learning and Applications to Online Binary Linear Classification 65

Lemma 2.4. For the loss function (2.38) and t ∈ MSig, there exist the parameters
α > 0, β ≥ 0, γ > 0 and vector u∗ such that Assumptions 2.1–2.4 are satisfied.

Proof. From (2.40), we derive that f
(4)
t (w) ≥ 1 − tanh(δt) = f

(4)
t (u∗) for all w ∈ Rn

which means u∗ ∈ arg minw∈Rn f
(4)
t (w). We also notice that u∗ 6= wt for all t ∈ MSig

since f
(4)
t (wt) > 1− tanh(δt).

Let us define for t ∈MSig the function

g
(4)
t (w) := g

(4)
t (w)− 〈zt, w〉

= max
{

1− tanh(δt) + h
(4)
t (w), ct(w)

}
+ 2ct(w

t)mtκtyt〈w, xt〉.

As for Assumption 2.2, we have

g
(4)
t (wt)− g(4)

t (u∗)

= ct(w
t)− ct(u∗) + 2ct(w

t)mtκtyt〈wt − u∗, xt〉

= ct(w
t)

[
1− ct(u

∗ − wt)
2

− 2mtκtyt〈u∗ − wt, xt〉
]

= ct(w
t)
[
1− e−2κtyt〈u∗−wt,xt〉 − 2mtκtyt〈u∗ − wt, xt〉

]
.

Due to (2.39), it is easy to prove that g
(4)
t (wt)− g(4)

t (u∗) > 0. By setting

α ≤ min
t∈MSig

ct(w
t)− ct(u∗) + 2ct(w

t)mtκtyt〈wt − u∗, xt〉
‖u∗ − wt‖2

, (2.41)

we derive that this assumption is verified.

Concerning Assumption 2.3, since h
(4)
t is convex and differentiable we have

h
(4)
t (u∗)− h(4)

t (wt)− 〈zt, u∗ − wt〉
≤ 〈∇h(4)

t (u∗)−∇h(4)
t (wt), u∗ − wt〉

≤ ‖∇h(4)
t (u∗)−∇h(4)

t (wt)‖.‖u∗ − wt‖,
and ‖∇h(4)

t (u∗)−∇h(4)
t (wt)‖

= 8κt‖xt‖
∣∣∣∣ct(u∗)[ct(−u∗) + 1]

[ct(−u∗) + 2]2
− ct(w

t)[ct(−wt) + 1]

[ct(−wt) + 2]2

∣∣∣∣
≤ κt‖xt‖

2

∣∣[ct(u∗) + 2][ct(−wt) + 2]2 − [ct(w
t) + 2][ct(−u∗) + 2]2

∣∣
≤ κt‖xt‖

[
|ct(u∗ − 2wt)− ct(wt − 2u∗)|+ 4|ct(u∗ − wt)− ct(wt − u∗)|

+2|ct(u∗)− ct(wt)|+ |ct(−2wt)− ct(−2u∗)|+ 2|ct(−wt)− ct(−u∗)|
]
.

For any x, y ∈ Rn, we have

ct(x)− ct(y) = ct(x) [1− ct(y − x)/2]

= ct(x)
(
1− e−2κtyt〈y−x,xt〉

)
≤ 2ct(x)κtyt〈y − x, xt〉
≤ 2ct(x)κt‖xt‖‖y − x‖.

66 Online Learning and Applications to Online Binary Linear Classification

Thus, we readily derive that

|ct(x)− ct(y)| ≤ 2 max{ct(x), ct(y)}κt‖xt‖‖y − x‖.
Let us define

Kt = 2e2κt(|〈u∗−wt,xt〉|+max{|〈u∗,xt〉|,|〈wt,xt〉|}).

It follows that

h
(4)
t (u∗)− h(4)

t (wt)− 〈zt, u∗ − wt〉 ≤ 26κ2
t‖xt‖2Kt‖u∗ − wt‖2.

Consequently, Assumption 2.3 is satisfied with

β ≥ max
t∈MSig

26κ2
t‖xt‖2Kt. (2.42)

Finally, regarding Assumption 2.4, we have

g
(4)
t (u∗)− g(4)

t (wt)− 〈rt, u∗ − wt〉
= ct(u

∗)− ct(wt)− 〈∇ct(wt), u∗ − wt〉
= ct(u

∗)− ct(wt) + 2ct(w
t)κtyt〈u∗ − wt, xt〉

= ct(w
t)

[
ct(u

∗ − wt)
2

− 1 + 2κtyt〈u∗ − wt, xt〉
]

= ct(w
t)
[
e−2κtyt〈u∗−wt,xt〉 − 1 + 2κtyt〈u∗ − wt, xt〉

]
.

Obviously, e−2κtyt〈u∗−wt,xt〉 + 2κtyt〈u∗ − wt, xt〉 > 1. If

γ ≤ min
t∈MSig

ct(u
∗)− ct(wt) + 2ct(w

t)κtyt〈u∗ − wt, xt〉
‖u∗ − wt‖2

, (2.43)

then this assumption is verified.

The proof is complete.

Corollary 2.3. Assume that ODCA-Sig generates the sequence {wt}t=1,...,T . Then,
we have

RegretTODCA-Sig ≤
L2(α + β) (1 + log(T))

2αγ
.

where the parameters α, β, γ, L are defined as (2.41), (2.42), (2.43), (2.15), respec-
tively.

Theorem 2.5. For any w ∈ Rn, the number of prediction mistakes made by ODCA-
Sig has an upper bound that is the root, x1, of the equation

x− aSig − bSig (1 + log(x)) = 0

where aSig =
∑

t∈MSig

f
(4)
t (w), bSig = L2(α + β)/(2αγSig), x1 ≥ bSig and the positive

parameter γSig ≤ min {γ, L2(α + β)/2α}.

Remark 2.4. (Time complexity)

All three proposed ODCA algorithms have the same time complexity of O(nT) where
T is the total number of steps (more exactly, the total number of instances) and n is
the number of features.

Online Learning and Applications to Online Binary Linear Classification 67

2.4 Numerical Experiments

In the numerical experiments, we study the performance of the proposed Online
DCA algorithms ODCA-PiL1, ODCA-PiL2, ODCA-Sig for OBLC problems and
compare them with five state-of-the-art first-order learning algorithms: Perceptron
[91, 102, 121], Online Gradient Descent (OGD) [134], Relaxed Online Maximum Mar-
gin Algorithm (ROMMA) [76], Approximate Maximal Margin Classification Algorithm
(ALMA) [39], Passive-Aggressive learning algorithms (PA) [29] which are summarized
in the paper [47]. We tested on a variety of benchmark datasets from UCI Machine
Learning Repository 2 and LIBSVM website 3. The datasets used in our experiments
cover many areas (e.g. social sciences, biology, physics) and are shown in Table 2.1.

Table 2.1 – Datasets used in our experiments

Dataset Name # Instances (T) # Features (n)
D1 a8a 32561 123
D2 cod-rna 271617 8
D3 colon-cancer 62 2000
D4 covtype 581012 54
D5 diabetes 768 8
D6 ijcnn1 141691 22
D7 magic04 19020 10
D8 splice 3175 60
D9 svmguide1 7089 4
D10 w7a 49749 300

� Set up experiments: All experiments were implemented in MATLAB R2013b and
performed on a PC Intel(R) Xeon(R) CPU E5-2630 v2, @ 2.60GHz of 32GB RAM. The
open source MATLAB package for the state-of-the-art algorithms is available in [47].
The initial point of all algorithms is 0 ∈ Rn. We are interested in the following criteria
to evaluate the effectiveness of the proposed algorithms: the mistake rate (defined as
the ratio of the number of mistakes to the number of instances T) and the CPU time (in
seconds). For a fair comparison, we follow a so-called validation procedure as described
in [47] so as to choose the best parameters for different algorithms. In particular, we
first perform each algorithm by running over one random permutation of the dataset
with the different parameter values and then take the value corresponding to the
smallest mistake rate. The ranges of parameters for the state-of-the-art algorithms are
completely described in [47] while as for our algorithms, the best parameters τ1, τ2, C, κ
and ε are searched from the range of {2−4, 2−3, . . . , 24}, {1, 3, . . . , 9}, {2−4, 2−3, . . . , 24},
{0.1, 0.2, . . . , 1} and {0, 0.1, . . . , 0.9}, respectively. After the validation procedure, each
algorithm is conducted over 20 runs of different random permutations for each dataset
with the best parameters chosen. The average results and their standard deviation
over these 20 runs of all algorithms are reported in Table 2.2 and Table 2.3.

2. http://www.ics.uci.edu/~mlearn/MLRepository.html

3. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

68
O

n
lin

e
L

earn
in

g
an

d
A

p
p
lication

s
to

O
n
lin

e
B

in
ary

L
in

ear
C

lassifi
cation

Table 2.2 – Average mistake rate (upper row) and its standard deviation (lower row) obtained by ODCA-PiL1, ODCA-PiL2,
ODCA-Sig and Perceptron, ROMMA, ALMA, OGD, PA. Bold (resp. underlining) values indicate the first best (resp. second best)
results.

Dataset ODCA-PiL1 ODCA-PiL2 ODCA-Sig Perceptron ROMMA ALMA OGD PA

D1 0.2088 0.1575 0.1574 0.2100 0.2249 0.1581 0.1577 0.2108
0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002

D2 0.1739 0.1176 0.1149 0.1749 0.1517 0.1994 0.1657 0.2074
0.001 0.001 0.000 0.001 0.065 0.001 0.000 0.001

D3 0.3088 0.2379 0.2379 0.3137 0.3771 0.4435 0.3032 0.2637
0.039 0.046 0.050 0.043 0.086 0.056 0.060 0.041

D4 0.4697 0.4237 0.4231 0.4697 0.4804 0.4839 0.4676 0.4835
0.001 0.001 0.000 0.001 0.011 0.001 0.001 0.000

D5 0.3194 0.2615 0.2621 0.3265 0.3072 0.2655 0.2586 0.3346
0.015 0.008 0.007 0.013 0.015 0.010 0.007 0.016

D6 0.1045 0.0705 0.0740 0.1062 0.1008 0.0699 0.0767 0.1023
0.024 0.001 0.018 0.000 0.001 0.001 0.001 0.001

D7 0.3593 0.2786 0.2775 0.3645 0.3365 0.3636 0.3557 0.3835
0.007 0.002 0.001 0.002 0.034 0.003 0.003 0.003

D8 0.2969 0.2329 0.2150 0.2732 0.2684 0.2283 0.2168 0.2617
0.056 0.006 0.003 0.004 0.009 0.006 0.004 0.007

D9 0.2492 0.2723 0.2026 0.2560 0.3037 0.2564 0.2466 0.3130
0.007 0.116 0.002 0.004 0.032 0.004 0.010 0.005

D10 0.1147 0.1005 0.1005 0.1151 0.1094 0.1028 0.1037 0.1051
0.012 0.000 0.000 0.000 0.001 0.001 0.001 0.000

O
n
lin

e
L

earn
in

g
an

d
A

p
p
lication

s
to

O
n
lin

e
B

in
ary

L
in

ear
C

lassifi
cation

69

Table 2.3 – Average CPU time (in seconds) (upper row) and its standard deviation (lower row) obtained by ODCA-PiL1, ODCA-
PiL2, ODCA-Sig and Perceptron, ROMMA, ALMA, OGD, PA. Bold values indicate the best results.

Dataset ODCA-PiL1 ODCA-PiL2 ODCA-Sig Perceptron ROMMA ALMA OGD PA

D1 1.113 1.569 1.571 1.084 1.169 1.309 1.527 1.254
0.007 0.020 0.027 0.014 0.017 0.016 0.021 0.016

D2 8.088 11.91 11.79 7.807 8.160 9.494 11.09 9.582
0.057 0.060 0.057 0.042 0.243 0.111 0.048 0.045

D3 0.003 0.005 0.004 0.003 0.004 0.004 0.003 0.004
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D4 22.72 33.28 33.68 22.07 24.36 25.63 29.51 26.80
1.665 2.467 2.435 1.760 1.903 1.942 2.194 2.039

D5 0.028 0.041 0.042 0.028 0.029 0.034 0.041 0.034
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D6 5.024 7.062 7.097 4.873 5.070 5.919 6.982 5.444
0.045 0.046 0.053 0.019 0.025 0.044 0.038 0.028

D7 0.706 1.024 1.036 0.687 0.730 0.817 0.960 0.848
0.003 0.004 0.003 0.002 0.010 0.002 0.002 0.002

D8 0.121 0.184 0.178 0.117 0.124 0.138 0.167 0.143
0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.001

D9 0.255 0.360 0.373 0.248 0.269 0.295 0.348 0.301
0.001 0.007 0.001 0.003 0.003 0.001 0.001 0.001

D10 2.403 3.096 3.111 2.365 2.430 2.709 3.115 2.487
0.086 0.121 0.113 0.092 0.065 0.089 0.079 0.050

70 Online Learning and Applications to Online Binary Linear Classification

Comments on computational results

i) In terms of the mistake rate: from Table 2.2, we observe that ODCA-Sig is the
best algorithm, ODCA-PiL2 is the second and ODCA-PiL1 is slightly more effi-
cient than the existing algorithms. In particular, ODCA-Sig is the first best on
8/10 datasets – the gain varies from 1e-4 to 0.2056 – especially, very efficient for
the large datasets D2 (271617 instances) and D4 (581012 instances). The sec-
ond is ODCA-PiL2 which outperforms the existing algorithms on 8/10 datasets
(2 for the first best and 6 for the second best) – the gain varies 2e-4 to 0.2056.
In addition, the mistake rate of ODCA-PiL2 is comparable to that of ODCA-
Sig on 8/10 datasets with the difference from 0 to 0.0035. OGD and ROMMA
come next and are fairly better than ODCA-PiL1 – the gain varies from 0.0037
to 0.028 and from 0.0021 to 0.0801, respectively. As for ODCA-PiL1, it is
slightly more efficient than the existing algorithms Perceptron, ALMA, PA on
9/10, 5/10, 6/10 datasets – the gain varies from 4e-4 to 0.0071, from 0.0043 to
0.1347, from 0.002 to 0.0638 respectively.

ii) Concerning CPU time: all algorithms run very fast and can be classified as fol-
lows: Perceptron and ODCA-PiL1 are the fastest algorithms, three algorithms
ROMMA, ALMA and PA come next and finally, ODCA-Sig, ODCA-PiL2 and
OGD. More specifically, Perceptron runs the fastest on all 10 datasets while
ODCA-PiL1 is comparable with Perceptron – the ratio of gain of Perceptron
versus ODCA-PiL1 varies from 1 to 1.036 times. As for ODCA-Sig and ODCA-
PiL2, although they are the slowest, their CPU time is fairly small and accept-
able on all datasets – the ratio of gain of Perceptron versus ODCA-Sig (resp.
ODCA-PiL2) varies from 1.315 to 1.526 (resp. from 1.309 to 1.666) times.

In summary, these orders of the algorithms in terms of the quality and the rapidity
can state the fact that the better results the algorithm reaches, the more CPU time it
needs. Among the comparative algorithms in these experiments, ODCA-Sig could be
the algorithm which realizes the best trade-off between these two criteria.

2.5 Conclusion

In this chapter, we have intensively investigated an approach based on Online DC pro-
gramming for the problems in online learning where the loss function at each online
step is nonconvex and/or nonsmooth. We have developed an online version of DCA
(Online DCA) and indicated that Online DCA covers some variants of well-known
online gradient descent algorithm. Moreover, we have proposed a particular Online
DCA based scheme (ODCA) where we have employed subgradient method with one
iteration to treat each convex subproblem. We have analyzed the formal regret bound
of ODCA, specially the logarithmic regret O(log(T)). As an application, we have
considered a class of problems in the topic of online binary linear classification. In
particular, we have proposed three different DC approximation functions (which are of
the form of piecewise linear, sigmoid functions) and have developed the corresponding

Online Learning and Applications to Online Binary Linear Classification 71

ODCA based schemes (ODCA-PiLs, ODCA-Sig). These algorithms enjoy the logarith-
mic regret and their prediction mistake bounds are also given. Moreover, numerical
experiments on various benchmark datasets have proved the efficiency of our three
proposed algorithms when comparing with the five state-of-the-art online classifica-
tion algorithms. It turns out that ODCA-Sig realizes the best trade-off between the
quality and the rapidity.

Chapter 3

Online DCA for Prediction with
Expert Advice

Abstract: In this chapter, we are interested in developing an important class of online learning
techniques, namely prediction with expert advice. It is characterized by the fact that, at each
online step, making a prediction rests on the basis of experts’ predictions. One common dif-
ficulty is that the loss function to assess the quality of the prediction at each step is often 0-1
(where 0-1 loss function returns 1 if the prediction is correct and 0 otherwise), more gener-
ally, nonconvex and nonsmooth. Thus, our works investigate a DC approximation approach
to overcome this difficulty. We propose two particular schemes based on Online DCA, named
ODCA-SG and ODCA-ESG. Specifically, each convex subproblem in two schemes is solved
by approximating by one iteration of projected subgradient method and exponentiated subgra-
dient method, respectively. We thoroughly study the analysis of ODCA-SG and ODCA-ESG
schemes in terms of regret. In particular, ODCA-SG enjoys the logarithmic regret whereas
ODCA-ESG yields the sublinear regret. As an application, we develop the techniques of pre-
diction with expert advice for solving a class of online classification problems in which the
experts are represented by the well-known online classification algorithms. Proposing DC ap-
proximation functions for 0-1 loss function, we derive two corresponding online algorithms
based on ODCA-SG and ODCA-ESG. The performance of the proposed algorithms is verified
on various benchmark classification datasets by comparing with two online convex algorithms
and a well-known algorithm, namely weighted majority.

73

74 Online DCA for Prediction with Expert Advice

3.1 Introduction

3.1.1 Background and related works

Online learning is a general class of techniques at the interface between machine learn-
ing and online optimization [43, 48]. As an important topic in online learning, pre-
diction with expert advice establishes the foundations to the theory of prediction of
individual sequences [23, 24]. From the late 1980s, the framework of prediction with ex-
pert advice was first introduced as a model of online learning by DeSantis, Markowsky,
and Wegman; Littlestone and Warmuth [31, 78]. It is characterized by the fact that
an online learner will directly take advice from a group of given experts. In partic-
ular, at each step, after receiving a question, the experts give their answers to that
question. On their advice, the learner will predict the corresponding answer. After
that, the correct answer is revealed. The quality of predictions is assessed by a loss
function between the predicted answer and the correct one. The learner and each
expert suffer corresponding losses. The goal for the learner is to make a sequence of
predicted answers such that the cumulative regret with respect to each expert (that is
the difference between the cumulative loss of the learner and that of the expert) is as
small as possible.

In the literature, [78] proposed a well-known algorithm, namely weighted majority
(WM), to handle the problems in prediction with expert advice. Its prediction’s prin-
ciple is quite simple: all weights of experts are initially set to 1 and at each step, if any
expert has the false prediction, then his weight is reduced. In fact, there are different
prediction ways which result in the different online learning algorithms. For example,
the framework of prediction with expert advice rests on the weighted average predic-
tion strategy [24, 133]. In the past decades, such problems with different approaches
have been exploited by many researchers (see e.g. [23, 24, 31, 36, 44, 124]).

Another class of techniques of prediction with expert advice is derived from the online
convex optimization approach. Many effective online convex algorithms were devel-
oped such as online gradient descent algorithm (with lazy/greedy projections) [134],
exponentiated gradient algorithm [4, 51, 50]. However, there is one common difficulty
in many problems in prediction with expert advice: the prediction domain or the loss
function is not convex. Although two convexification techniques, described in [109],
allow to overcome this difficulty, the disadvantage of online convex optimization ap-
proach has recently been highlighted. There exist several challenges that should be
addressed when solving such problems: what optimization models for these problems,
how to design simple, efficient prediction techniques, what convergence properties of
these techniques, etc. These motivate us to investigate a new approach for such prob-
lems based on DC (Difference of Convex functions) and DCA (DC Algorithm), which
are well-known as powerful nonconvex, nonsmooth optimization tools.

Our works develop the techniques of prediction with expert advice for solving the
problems in the topic of online binary linear classification (OBLC) where each expert
is represented by an OBCL algorithm. In OBLC, instance becomes available in a

Online DCA for Prediction with Expert Advice 75

sequential order. For the incoming new instance, the learner must predict the corre-
sponding binary label and then the correct label is revealed. The knowledge of the
correct label and the loss function to assess the predicted label is used to make the
prediction better for future instance. There exist many online classification algorithms
with different ways to make the prediction and to define the loss functions such as
perceptron [91, 102, 121], relaxed online maximum margin algorithm (ROMMA) [76],
approximate maximal margin classification algorithm (ALMA) [39], passive-aggressive
learning algorithms (PA) [29], online gradient descent (OGD) [134] and their variants.

3.1.2 Our contributions

In this chapter, our contributions are multiple. Firstly, we present Online DC program-
ming for prediction with expert advice where Online DCA can be applied. Secondly,
we propose two particular Online DCA based schemes, namely ODCA-SG and ODCA-
ESG, where each convex subproblem is solved by approximating by one iteration of
projected subgradient method and exponentiated subgradient method, respectively.
Thirdly, we study the analysis of these schemes in terms of regret (that is the differ-
ence between the cumulative suffered loss and the possibly smallest cumulative loss
along the learning process). Specifically, the ODCA-SG scheme enjoys the logarith-
mic regret whereas the ODCA-ESG scheme yields the sublinear regret. Fourthly, we
propose specific DC approximation functions for the 0-1 loss function and derive two
corresponding online algorithms based on ODCA-SG and ODCA-ESG for solving the
problems in OBLC. Finally, in order to evaluate the efficiency of our approach, we
conduct some numerical experiments on many benchmark classification datasets and
compare with two state-of-the-art online convex algorithms and the well-known WM
algorithm.

The rest of the chapter is organized as follows. In Section 3.2, we describe a class
of problems in prediction with expert advice and present Online DC programming
for these problems where Online DCA can be applied. In Section 3.3, we propose
two particular Online DCA based schemes and show the analysis of these schemes
in terms of regret. How to develop the techniques of prediction with expert advice
based on Online DCA for solving the problems in OBLC is shown in Section 3.4.
Section 3.5 reports the numerical results on several test problems which is followed by
some conclusions in Section 3.6.

3.2 Prediction with Expert Advice

In this section, we formally describe the prediction with expert advice for solving the
problems in OBLC [109]. In particular, at the step t, the learner receives an instance
with n features, denoted by xt ∈ Rn. He predicts a corresponding binary label, denoted
by pt ∈ {0, 1}, based on the advice of d given experts, denoted by {ki}i=1,...,d. The
function ki : Rn → {0, 1} corresponds to the ith linear classifier, denoted by ui ∈ Rn,

76 Online DCA for Prediction with Expert Advice

where

ki(x) := 1〈ui,x〉≥0(x) =

{
1 if 〈ui, x〉 ≥ 0,
0 otherwise.

In addition, the experts’ advice is cast as a vector vt = (p̃i,t)i=1,...,d ∈ {0, 1}
d where its

ith element
p̃i,t := ki(xt), i = 1, . . . , d.

Let us define the set of weight vectors

S :=

{
w ∈ Rd :

d∑
i=1

w[i] = 1 and w[i] ≥ 0, i = 1, . . . , d

}
where w[i] is the weight assigned to the ith expert. Remark that S is the probability
simplex in Rd.

At the step t, based on the experts’ advice vt and the updated weight vector wt ∈ S,
the prediction label is chosen as pt = pt(w

t) where the function pt(w) = 1〈w,vt〉≥ρ(w)
and ρ is a positive index. After predicting the label pt, the correct label, denoted by yt,
is revealed. The predictions of the learner are qualified by the loss function, denoted
by `t, defined as follows.

`t(pt(w), yt) := 1{pt(w)6=yt}(w) =

{
1 if pt(w) 6= yt,
0 otherwise.

(3.1)

Recall that the learner’s goal is to make a sequence of weight vectors {wt} so as to
minimize the cumulative regret with respect to all d experts, defined by

Regretd :=
T∑
t=1

`t(pt, yt)− min
i=1,...,d

T∑
t=1

`t(p̃i,t, yt). (3.2)

It is worth noting that Regretd ≤
∑T

t=1 `t(pt(w
t), yt) − min

w∈S

∑T
t=1 `t(pt(w), yt). Obvi-

ously, the difficulty is that the 0-1 loss function `t is nonsmooth, nonconvex. Thus, in
order to alleviate the difficulty, we suggest DC approximation functions for this loss
function. In this case, we are able to deal with the resulting optimization problems
by Online DC programming and Online DCA. In the next section, we are going to
present how to develop the Online DCA based schemes and study the analysis of these
schemes in terms of regret.

3.3 Solution methods based on Online DC pro-

gramming and Online DCA

3.3.1 ODCA-SG and ODCA-ESG: ODCA schemes for Pre-
diction with Expert Advice

Recall that at step t, we have a DC function, denoted by ft, whose DC decomposition
is gt − ht and the set of predictions S is the nonempty probability simplex in the

Online DCA for Prediction with Expert Advice 77

Euclidean space Rd. According to the Online DCA scheme in Section 1.2.2, at each
step, we need to solve a convex subproblem (1.11). In this chapter, we propose two
particular Online DCA based schemes in which (1.11) is solved by approximating by
one iteration of projected subgradient method and exponentiated subgradient method
respectively [22, 50, 111].

Applying one iteration of the projected subgradient method at the point wt with
constant step size of η, we have the following update rule.

wt+1 = ProjS(wt − ηst), (3.3)

where st ∈ (∂gt(w
t)− zt). Thus, the ODCA-SG scheme is described as follows.

ODCA-SG: Online DCA-projected SubGradient scheme

Initialization: let w1 be an initial point, η be the constant step size
for t = 1, 2, . . . , T do

1. Compute zt ∈ ∂ht(wt).
2. Compute st ∈ (∂gt(w

t)− zt).
3. Compute wt+1 ∈ S using (3.3).

end for

Similarly, for exponentiated subgradient method, we derive the following update rule

wt+1[i] =
wt[i]e−ηs

t[i]

d∑
j=1

wt[j]e−ηst[j]
, i = 1, . . . , d, (3.4)

and the corresponding ODCA-ESG scheme is summarized as follows.

ODCA-ESG: Online DCA-Exponentiated SubGradient scheme

Initialization: let w1 be an initial point, η be the constant step size
for t = 1, 2, . . . , T do

1. Compute zt ∈ ∂ht(wt).
2. Compute st ∈ (∂gt(w

t)− zt).
3. Compute wt+1 ∈ S using (3.4).

end for

Before going in detail to design the Online DCA algorithms for prediction with expert
advice, we present the analysis of ODCA-SG and ODCA-ESG in terms of regret.

78 Online DCA for Prediction with Expert Advice

3.3.2 Analysis of ODCA-SG and ODCA-ESG

We concentrate on analyzing the regret bound of ODCA-SG and ODCA-ESG. Recall
that the regret of an algorithm A until step T is defined as (1.14):

RegretTA =
T∑
t=1

ft(w
t)−min

w∈S

T∑
t=1

ft(w),

where the sequence {w1, w2, . . . , wT} is generated by the algorithm A.

In order to archive the regret bound of ODCA-SG and ODCA-ESG, we will work on
four necessary assumptions about three parameters α > 0, β ≥ 0, γ > 0 and a vector
u∗ ∈ S which are similar to Assumptions 2.1–2.4 in the Section 2.2.4.

Suppose that L, U and D are respectively positive upper bounds of the sequence
{st}t=1,...,T in `2-norm, `∞-norm and {wt − u∗}t=1,...,T in `2-norm that is

max
t∈{1,...,T}

‖st‖2 ≤ L, sup
t∈{1,...,T}

‖st‖∞ ≤ U and sup
t∈{1,...,T}

‖wt − u∗‖2 ≤ D. (3.5)

Under these assumptions, the results of the regret bound of ODCA-SG can be achieved
similarly in the analysis of ODCA in Section 2.2.4 (Theorems 2.1, 2.2), which is stated
as the following theorems for ODCA-SG.

Theorem 3.1. Assume that ODCA-SG generates the sequence {wt}t=1,...,T where As-
sumptions 2.1–2.3 are verified. Then, we have

RegretTODCA-SG ≤
3DL(α + β)

√
T

2α
.

Theorem 3.2. Assume that ODCA-SG generates the sequence {wt}t=1,...,T where As-
sumptions 2.1–2.4 are verified. Then, we have

RegretTODCA-SG ≤
L2(α + β) (1 + log(T))

2αγ
.

Next, the regret bound of ODCA-ESG can be archived as stated in Theorem 3.3.

Theorem 3.3. Assume that ODCA-ESG generates the sequence {wt}t=1,...,T where
Assumptions 2.1–2.3 are satisfied and w1[i] = 1/d, i = 1, . . . , d. Then, we have

RegretTODCA-ESG ≤
(α + β)U

√
2 log(d)T

α
.

Proof. From the fact that Assumptions 2.1–2.3 are verified, we have

RegretTODCA-ESG ≤
(

1 +
β

α

) T∑
t=1

〈st, wt − u∗〉.

Online DCA for Prediction with Expert Advice 79

For the update rule (3.4), we need to find the upper bound of the sequence
{〈st, wt − u∗〉}t=1,...,T . To obtain that, we use the proof technique of Lemma 2 in
[22]. In particular, let

D(a‖b) =
∑
i

a[i] log(a[i]/b[i])

be the Kullback-Leibler distance between any two real vectors a and b belonging to
the probability simplex S. We have

D(u∗‖wt)−D(u∗‖wt+1)

=
∑
i

u∗[i] log(wt+1[i]/wt[i])

=
∑
i

u∗[i]
(
−ηst[i]

)
−
∑
i

u∗[i] log

(∑
j

wt[j]e−ηs
t[j]

)

= −η〈st, u∗〉 − log

(∑
j

wt[j]e−ηs
t[j]+η〈st,wt〉−η〈st,wt〉

)

= −η〈st, u∗〉+ η〈st, wt〉 − log

(∑
j

wt[j]e−ηs
t[j]+η〈st,wt〉

)

= η〈st, wt − u∗〉 − log

(∑
j

wt[j]e−ηs
t[j]+η〈st,wt〉

)

≥ η〈st, wt − u∗〉 − η2U2

2
.

The last inequality is obtained by the result of Lemma 12 in [22] and the fact that the
expectation E[st[j]] = 〈st, wt〉. Thus, we yields

〈st, wt − u∗〉 ≤ D(u∗‖wt)−D(u∗‖wt+1)

η
+
ηU2

2
.

Summing up over t, we get

RegretTODCA-ESG ≤
(

1 +
β

α

)[
D(u∗‖w1)−D(u∗‖wt+1)

η
+
ηU2T

2

]
.

Since D(a‖b) ≥ 0 for any a, b ∈ S and if b[i] = 1/d for i = 1, . . . , T then D(a‖b) ≤
log(d), for all a ∈ S, we derive that

RegretTODCA-ESG ≤
(

1 +
β

α

)[
log(d)

η
+
ηU2T

2

]
.

Let us define η :=

√
2 log(d)

U
√
T

, it concludes the proof.

In the next section, we will present how to design two algorithms based ODCA-SG
and ODCA-ESG for solving a class of OBLC problems and provide a bound on the
number of prediction mistakes (called a mistake bound, for short) for these algorithms
based on the regret bound.

80 Online DCA for Prediction with Expert Advice

3.4 Online DCA for prediction with expert advice

Recall that the loss function `t defined by (3.1) is nonsmooth and nonconvex. At each
step, we propose a DC approximation function ft on S instead of the loss function `t.
Let us denote byM the set of steps where the prediction of the algorithm may be false
in the sense that ft(w

t) > 0. If a step t /∈M, then we observe the function ft(w) = 0,
∀w ∈ Rn. Otherwise, we define the DC function ft satisfying the following condition

ft(w
t) ≥ `t(pt(w

t), yt). (3.6)

In this chapter, we suggest appropriate DC functions with the form of piecewise linear
function. It is noticeable that if yt = 0, then

`t(pt(w
t), yt) = pt(w

t) = 1〈w,vt〉≥ρ(w
t)

since pt(w
t) ∈ Y . Otherwise,

`t(pt(w
t), yt) = 1− pt(wt) = 1〈w,vt〉<ρ(w

t).

Thus, there are two cases yt = 1 and yt = 0 corresponding to different DC functions.
Let define τ1t, τ2t, τ3t be the positive parameters and less than ρ for all t.

� Case 1 (yt = 1): `t(w) = 1〈w,vt〉<ρ(w).

A natural DC function would be defined as

f
(1)
t : S → [0, 1]

w 7→ f
(1)
t (w) := max

{
0,min

{
1,
ρ− 〈w, vt〉
ρ− τ1t

}}
.

(3.7)

Remark 3.1. It is easy to check that for w ∈ S, we have 0 ≤ f
(1)
t (w) ≤ `t(w) ≤ 1

and f
(1)
t (w)→ `t(w) as τ1t → ρ.

A DC decomposition of f
(1)
t is proposed as follows

f
(1)
t = g

(1)
t − h

(1)
t

where

g
(1)
t (w) = max

{
0,
ρ− 〈w, vt〉
ρ− τ1t

}
, h

(1)
t (w) = max

{
0,
τ1t − 〈w, vt〉
ρ− τ1t

}
.

For this DC function and t ∈ {1, . . . , T}, we define that t ∈M if and only if f
(1)
t (wt) >

0 (which is equivalent to 〈wt, vt〉 < ρ). For simplifying the presentation, throughout
the chapter, we will restrict to the case t ∈M.

According to the ODCA-SG scheme (resp. ODCA-ESG scheme), we compute first the

vector zt ∈ ∂h(1)
t (wt), st ∈ (∂g

(1)
t (wt)− zt) and then the vector wt+1 using (3.3) (resp.

(3.4)).

Online DCA for Prediction with Expert Advice 81

� Compute ∂g
(1)
t , ∂h

(1)
t : by the definition of g

(1)
t and h

(1)
t , we have

∂g
(1)
t (w) =



{
−vt
ρ− τ1t

}
if 〈w, vt〉 < ρ,[

−vt
ρ− τ1t

, 0

]
if 〈w, vt〉 = ρ,

{0} if 〈w, vt〉 > ρ,

and

∂h
(1)
t (w) =



{
−vt
ρ− τ1t

}
if 〈w, vt〉 < τ1t,[

−vt
ρ− τ1t

, 0

]
if 〈w, vt〉 = τ1t,

{0} if 〈w, vt〉 > τ1t.

Here [a, b] is the line segment between a and b. We choose zt ∈ ∂h(1)
t (wt), rt ∈ ∂g(1)

t (wt)

and st = rt − zt ∈ (∂g
(1)
t (wt)− zt) as follows:

rt =
−vt
ρ− τ1t

, zt =


−vt
ρ− τ1t

if 〈wt, vt〉 < τ1t,

0 if τ1t ≤ 〈wt, vt〉 < ρ,

and

st =

 0 if 〈wt, vt〉 < τ1t,
−vt
ρ− τ1t

if τ1t ≤ 〈wt, vt〉 < ρ.

• Choose the parameter τ1t: in order to satisfy (3.6), we propose the following choices

τ1t = max{〈wt, vt〉, τ1}, t = 1, . . . , T, (3.8)

where τ1 < ρ is a positive tuning parameter.

� Case 2 (yt = 0): `t(w) = 1〈w,vt〉≥ρ(w).

We adopt a loss function as follows

f
(2)
t : S → [0, 1]

w 7→ f
(2)
t (w) := max

{
0,min

{
1,
〈w, vt〉 − ρ
ρ− τ2t

}}
.

(3.9)

Remark 3.2. It is evident that for any w ∈ S, we have 0 ≤ f
(2)
t (w) ≤ `t(w) ≤ 1 and

f
(2)
t (w)→ `t(w) as τ2t → ρ.

It is easy to see that f
(2)
t is a DC function with the following DC components g

(2)
t and

h
(2)
t :

g
(2)
t (w) = max

{
0,
〈w, vt〉 − ρ
ρ− τ2t

}
, h

(2)
t (w) = max

{
0,
〈w, vt〉 − 2ρ+ τ2t

ρ− τ2t

}
.

82 Online DCA for Prediction with Expert Advice

Remark that we have to choose the parameters τ2t such that (3.6) holds true. However,
it is never true if there exists a step t such that 〈wt, vt〉 = ρ, since `t(pt, yt) = 1 and

f
(2)
t (wt) = 0. In such a case, we investigate another DC function, namely f

(3)
t , defined

by

f
(3)
t (w) := max

{
0,min

{
1,
〈w, vt〉 − τ3t

ρ− τ3t

}}
, (3.10)

and its DC decomposition is

f
(3)
t (w) = g

(3)
t (w)− h(3)

t (w),

where

g
(3)
t (w) = max

{
0,
〈w, vt〉 − τ3t

ρ− τ3t

}
, h

(3)
t (w) = max

{
0,
〈w, vt〉 − ρ
ρ− τ3t

}
.

Obviously, we have f
(3)
t (wt) = 1 = `t(pt, yt). For both DC functions, we define that

the step t belongs to M if and only if 〈wt, vt〉 ≥ ρ.

� Compute ∂g
(2)
t , ∂h

(2)
t : we have

∂g
(2)
t (w) =



{
vt

ρ− τ2t

}
if 〈w, vt〉 > ρ,[

vt
ρ− τ2t

, 0

]
if 〈w, vt〉 = ρ,

{0} if 〈w, vt〉 < ρ,

and

∂h
(2)
t (w) =



{
vt

ρ− τ2t

}
if 〈w, vt〉 > 2ρ− τ2t,[

vt
ρ− τ2t

, 0

]
if 〈w, vt〉 = 2ρ− τ2t,

{0} if 〈w, vt〉 < 2ρ− τ2t.

Thus, we choose st = rt − zt ∈ (∂g
(2)
t − ∂h

(2)
t)(wt) as follows:

rt =
vt

ρ− τ2t

, zt =

{ vt
ρ− τ2t

if 〈wt, vt〉 > 2ρ− τ2t,

0 if ρ < 〈wt, vt〉 ≤ 2ρ− τ2t,

and

st =

 0 if 〈wt, vt〉 > 2ρ− τ2t,
−vt
ρ− τ2t

if ρ < 〈wt, vt〉 ≤ 2ρ− τ2t.

• Choose the parameter τ2t: in order to satisfy (3.6), we propose the following choices

τ2t = max{2ρ− 〈wt, vt〉, τ2}, t = 1, . . . , T,

where τ2 < ρ is a positive tuning parameter.

Online DCA for Prediction with Expert Advice 83

It is similar for the case 〈wt, vt〉 = ρ.

� Compute ∂g
(3)
t , ∂h

(3)
t : similarly, we have

rt =
vt

ρ− τ3t

, zt = 0 and st =
vt

ρ− τ3t

.

• Choose the parameter τ3t: we choose τ3t = τ3 where τ3 < ρ is a positive tuning
parameter.

Finally, from two ODCA-SG and ODCA-ESG schemes, Online DCA applied to pre-
diction with expert advice is given by Algorithm 3.1 (ODCA-SG) and Algorithm 3.2
(ODCA-ESG) as follows.

Algorithm 3.1 ODCA-SG for prediction with expert advice (ODCA-SG)

Initialization: let w1 be an initial point, η be the constant step size,
τ1, τ2, τ3 be positive numbers less than ρ.
for t = 1, 2, . . . , T do

if yt = pt(w
t) then

wt+1 = wt

else
if τ1 ≤ 〈wt, vt〉 < ρ or ρ < 〈wt, vt〉 ≤ 2ρ− τ2 then

st =
−vt

ρ− 〈wt, vt〉
else if 〈wt, vt〉 = ρ then

st =
vt

ρ− τ3
else
st = 0

end if
wt+1 = ProjS(wt − ηst)

end if
end for

Thanks to the analysis of both ODCA-SG and ODCA-ESG schemes in Section 3.3.2,
we archive the logarithmic regret of the ODCA-SG algorithm and sublinear regret of
the ODCA-ESG algorithm as stated in Theorem 3.2 and Theorem 3.3 for DC functions.
In order to get this result, we need to indicate that all four Assumptions 2.1–2.4 are
satisfied as in Lemma 3.1 and Lemma 3.2. Throughout the lemmas, we further assume
that at each step t ∈M,

τ1t = 〈wt, vt〉 (resp. τ2t = 2ρ− 〈wt, vt〉) and vt 6= 0. (3.11)

When vt = 0 ∈ Yd or τ1t > 〈wt, vt〉 (resp. τ2t > 2ρ−〈wt, vt〉) (which means τ1 > 〈wt, vt〉
(resp. τ2 > 2ρ − 〈wt, vt〉)), the algorithm makes no update, which still holds true for
the update step in both algorithms (corresponding to st = 0).

84 Online DCA for Prediction with Expert Advice

Algorithm 3.2 ODCA-ESG for prediction with expert advice (ODCA-ESG)

Initialize: let w1 be an initial point, η be the constant step size,
τ1, τ2, τ3 be positive numbers less than ρ.
for t = 1, 2, . . . , T do

if yt = pt(w
t) then

wt+1 = wt

else
if τ1 ≤ 〈wt, vt〉 < ρ or ρ < 〈wt, vt〉 ≤ 2ρ− τ2 then

st =
−vt

ρ− 〈wt, vt〉
else if 〈wt, vt〉 = ρ then

st =
vt

ρ− τ3
else
st = 0

end if
for i = 1, 2, . . . , d do

wt+1[i] =
wt[i]e−ηs

t[i]

d∑
j=1

wt[j]e−ηst[j]

end for
end if

end for

We also assume that there exists a vector u∗ ∈ S such that for all t = 1, . . . , T ,∑
i∈It u

∗[i] > ρ if yt = 1,∑
i∈It u

∗[i] < ρ if yt = 0 and 〈wt, vt〉 > ρ,∑
i∈It u

∗[i] < τ3t otherwise,
(3.12)

where the set It := {i ∈ {1, . . . , T} : vt[i] = 1}.

Lemma 3.1. For the DC function (3.7) and step t ∈M with yt = 1, there exist α, γ
and u∗ such that Assumptions 2.1, 2.2, 2.4 are verified. Moreover, Assumption 2.3 is
satisfied for all β ≥ 0.

Proof. For each t ∈M, since vt 6= 0, the set It is not empty. From (3.12), it is easy to

check that u∗ ∈ arg minw∈S f
(1)
t (w) and thus, Assumption 2.1 is satisfied. It is worth

noting that u∗ 6= wt for all t. Indeed, assume the contrary that is some step t such
that u∗ = wt, since t ∈M then 〈u∗, vt〉 < ρ which contradicts (3.12) that 〈u∗, vt〉 ≥ ρ.

Now, we will show that Assumptions 2.2–2.4 can be satisfied.

• As for Assumption 2.2, let us define the function g
(1)
t := g

(1)
t − 〈zt, ·〉. From (3.11)

and the definition of g
(1)
t , we derive that

g
(1)
t (wt)− g(1)

t (u∗) =
ρ− 〈wt, vt〉
ρ− τ1t

= 1 > 0.

Online DCA for Prediction with Expert Advice 85

Thus, there exists α > 0 such that the condition (ii) is satisfied, in paricular, α ≤
min
t∈M

2

‖u∗ − wt‖2
2

.

• Assumption 2.3 is satisfied for any β ≥ 0. In particular, we have

h
(1)
t (u∗)− h(1)

t (wt)− 〈zt, u∗ − wt〉 = 0 ≤ β

2
‖u∗ − wt‖2

2.

• Concerning Assumption 2.4, we have that for any t ∈M,

g
(1)
t (u∗)− g(1)

t (wt)− 〈rt, u∗ − wt〉 = −ρ− 〈w
t, vt〉

ρ− τ1t

− 〈 −vt
ρ− τ1t

, u∗ − wt〉

=
〈u∗, vt〉 − ρ
ρ− τ1t

≥ γ

2
‖u∗ − wt‖2

2,

where γ ≤ min
t∈M

2(〈u∗, vt〉 − ρ)

(ρ− τ1t)‖u∗ − wt‖2
2

. The proof is complete.

Lemma 3.2. For the DC functions (3.9), (3.10) and step t ∈ M with yt = 0, As-
sumptions 2.1,2.2 and 2.4 are satisfied with the suitable parameters α, γ and vector
u∗. Moreover, Assumption 2.3 is satisfied for all β ≥ 0.

Proof. We readily derive from (3.12) that f
(2)
t (u∗) = 0 (f

(3)
t (u∗) = 0 when 〈wt, vt〉 = ρ).

Thus, Assumption 2.1 for both functions is satisfied and u∗ 6= wt for all t. Similarly

to Lemma 3.1, as for the function (3.9) (resp. (3.10)), if α ≤ min
t∈M

2

‖u∗ − wt‖2
2

, β ≥ 0,

γ ≤ min
t∈M

2(ρ− 〈vt, u∗〉)
(ρ− τ2t)‖u∗ − wt‖2

2

(resp. γ ≤ min
t∈M

2(τ3t − 〈vt, u∗〉)
(ρ− τ3t)‖u∗ − wt‖2

2

when 〈wt, vt〉 = ρ),

then Assumptions 2.2–2.4 are satisfied, which concludes the proof.

Consequently, we derive the following corollaries for the regret bound of the ODCA-SG
and ODCA-ESG algorithm.

Corollary 3.1. Assume that ODCA-SG generates the sequence {wt}t=1,...,T . Then,
we have

RegretTODCA-SG ≤
L2 (1 + log(T))

γ

where L is defined as (3.5), the positive parameter

γ ≤ min
t∈M

{
2

‖u∗ − wt‖2
2

min

{
κ(τ3t − 〈vt, u∗〉)

ρ− τ3t

,
κ(ρ− 〈vt, u∗〉)

ρ− τ2t

,
κ(〈u∗, vt〉 − ρ)

ρ− τ1t

}}
,

(3.13)
and the real function κ(x) = x if x > 0, +∞ otherwise.

86 Online DCA for Prediction with Expert Advice

Corollary 3.2. Assume that ODCA-ESG generates the sequence {wt}t=1,...,T where
w1[i] = 1/d, i = 1, . . . , d. Then, we have

RegretTODCA-ESG ≤ 2U
√

2 log(d)T .

where U is defined as (3.5).

The following theorems provide a mistake bound for the ODCA-SG/ODCA-ESG al-
gorithm that is the bound on the number of steps at which pt 6= yt. Before stating the
theorems, at the step t ∈M, we define the function

ft(w) :=


f

(1)
t (w) if yt = 1,

f
(2)
t (w) if yt = 0, 〈wt, vt〉 > ρ,

f
(3)
t (w) if yt = 0, 〈wt, vt〉 = ρ.

Theorem 3.4. For w ∈ S, the number of prediction mistakes made by ODCA-SG has
an upper bound that is the root, x1, of the equation

x− a− b (1 + log(x)) = 0

where a :=
∑
t∈M

ft(w), b := L2/γSG, x1 ≥ b, the positive parameter γSG ≤ min {γ, L2}.

Proof. From the inequality (3.6), Corollary 3.1 and the definition of γSG, we derive
that for any w ∈ S,

|M| ≤
∑
t∈M

ft(w
t) ≤

∑
t∈M

ft(w) +
L2 (1 + log(|M|))

γSG

,

where |M| is the number of steps of the set M.

Using the definition of a and b, it is evident that a ≥ 0, b ≥ 1 and the inequality (3.14)
can be rewritten as follows.

|M| ≤ a+ b (1 + log(|M|)) .

The real function r : (0,+∞)→ R, r(x) = x− a− b (1 + log(x)) is strictly convex on
(0,+∞). Since lim

x→0+
r(x) = lim

x→+∞
r(x) = +∞ and r(b) ≤ 0, the equation r(x) = 0 has

two roots x1, x2 such that 0 < x2 ≤ b ≤ x1. The proof is complete.

Theorem 3.5. For any w ∈ S, the number of prediction mistakes made by ODCA-

ESG is upper bounded by
(
c+
√
c2 + 4a

)2

/4 where c := 2U
√

2 log(d).

Proof. From the inequality (3.6), Corollary 3.2, we get that for any w ∈ S,

|M| ≤
∑
t∈M

ft(w
t) ≤

∑
t∈M

ft(w) + 2U
√

2 log(d)|M|. (3.14)

Online DCA for Prediction with Expert Advice 87

Using the definition of a and c, it is evident that a, c ≥ 0 and the inequality (3.14) can
be rewritten as follows.

|M| ≤ a+ c
√
|M|.

It leads to the bound

|M| ≤

(
c+
√
c2 + 4a

)2

4
.

which concludes the proof.

Remark 3.3. (Comparison with some existing algorithms: Time complexity)

We consider three existing algorithms for prediction with expert advice: a well-known
WM algorithm [78] and two online convex algorithms, namely online gradient descent
with greedy projection (OGD) [134] and normalized exponentiated gradient (NEG)
[4, 51, 50]. In these online convex algorithms, at the step t, the 0-1 function is ap-
proximated by hinge loss function f cvt [109] which is defined as f cvt (w) = 2|〈w, vt〉− yt|
if t ∈M, 0 otherwise.

From the work of [125], the complexity of the projection algorithm ProjS(x) in Rd is
O(d log d) with d be the number of given experts. Thus, we derive the complexity of
all comparative algorithms given in Table 3.1. In view of the fact that the number
of experts is small in comparison with T (for example, d = 5 as in the following
experiments), the computation-time complexity of our Online DCA based algorithms
is the same as that of other algorithms – the worst-case complexity of O(T).

Table 3.1 – Time complexity of comparative algorithms with T and d be the number
of rounds and the number of experts respectively.

ODCA-SG ODCA-ESG OGD NEG WM

O(Td log d) O(Td) O(Td log d) O(Td) O(Td)

3.5 Numerical experiments

With the aim of evaluating the performance of our proposed algorithms, we conduct
online binary classification tasks with expert advice. In order to construct the group
of experts, we used five well-known online classification algorithms (d = 5) mentioned
in Section 3.1: Perceptron [91, 102, 121], ROMMA [76], ALMA [39], PA [29] and OGD
[134]. As mentioned previously, we compare our algorithms, namely ODCA-SG and
ODCA-ESG, with the WM algorithm and two online convex algorithms, namely OGD
and NEG. We tested on a variety of benchmark datasets from UCI Machine Learning
Repository 1 and LIBSVM website 2. The datasets used in our experiments cover many
areas (e.g. social sciences, biology, physics, life sciences), which is shown in Table 3.2.

1. http://www.ics.uci.edu/~mlearn/MLRepository.html

2. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

88 Online DCA for Prediction with Expert Advice

Table 3.2 – Datasets used in our experiments.

Dataset Name # Instances # Features (n)
D1 a8a 32561 123
D2 cod-rna 271617 8
D3 colon-cancer 62 2000
D4 covtype 581012 54
D5 diabetes 768 8
D6 german.number 1000 24
D7 ionosphere 351 34
D8 madelon 1549 500
D9 mushrooms 8124 112
D10 spambase 4601 57
D11 svmguide1 7089 4

� Set up experiments: All algorithms were implemented in Visual C++ version 11.0
and run on a PC Intel(R) Core(TM) i5-3470 CPU 3.20GHz of 8GB RAM. All ex-
perts are the first-order learning algorithms for large-scale online classification tasks
as surveyed in [47] and implemented in MATLAB R2013b. The open source MAT-
LAB package for the expert algorithms is available in [47]. In our experiment, each
dataset is randomly divided into two sets as follows. A so-called training set including
20% of the whole data is used by the system of experts to learn linear classifiers ui
(i = 1, . . . , d), while a so-called test set consisting of the remaining dataset is adopted
by all algorithms to make the predictions. The initial prediction vector w1 ∈ S is
set to (1/d, . . . , 1/d)>. The positive index ρ is set to 0.5. The projection algorithm
ProjS(·) is described in [125]. We are interested in the following criteria to evaluate the
effectiveness of the proposed algorithms: the percentage of regret (denoted by %regret
in %) and CPU time (in seconds). Specifically, the %regret is computed as

%regret =
Regretd

T
.100. (3.15)

where Regretd is defined as (3.2) and T is the number of steps (corresponding to the
number of instances in the test set). This value means the distance between the num-
ber of mistakes of the algorithm and that of the best expert. The smaller the %regret
is, the better the algorithm would be. For a fair comparison, we follow a so-called
validation procedure on the test set which is described as in [47] so as to choose the
best parameters for different algorithms. In particular, we first perform each algorithm
by running over one random permutation of the dataset with the different parameter
values and then take the value corresponding to the smallest mistake rate. The ranges
of parameters for the expert algorithms and existing algorithms are completely de-
scribed in [47] while as for our algorithms, the parameters τ1, τ2, τ3, η are chosen as
follows. The parameters τ1, τ2, τ3 are set to the same positive tuning parameter τ
for all t (τ < ρ) and the constant step size η for ODCA-SG (resp. ODCA-ESG) is
η = C/

√
T (resp. η = C

√
log(d)/

√
T) where τ and C are searched from the range of

{0.00, 0.02, . . . , 0.48} and {2−4, 2−3, . . . , 24} respectively. The best values of τ of our
algorithms on each dataset are shown in Table 3.3. After the validation procedure,

Online DCA for Prediction with Expert Advice 89

Table 3.3 – The best value of τ for ODCA-SG and ODCA-ESG during the parameter
validation (τ < 0.5)

Data ODCA-SG ODCA-ESG
a8a 0.40 0.40
cod-rna 0.48 0.48
colon-cancer 0.48 0.48
covtype 0.38 0.38
diabetes 0.48 0.48
german.number 0.00 0.40
ionosphere 0.40 0.26
madelon 0.14 0.22
mushrooms 0.40 0.18
spambase 0.48 0.48
svmguide1 0.38 0.38

each algorithm is conducted over 20 runs of different random permutations for each
test set with the best parameters chosen. The average results and their standard de-
viation over these 20 runs of all algorithms are reported in Table 3.4 and Table 3.5.
Figure 3.1 shows the number of mistakes of all algorithms along online process in the
validation procedure on several notable datasets.

Comments on numerical results:

We observe from the numerical results of all algorithms that:

• In terms of %regret, ODCA-SG and ODCA-ESG are the most efficient. In particular,
ODCA-SG is the best with the first best on 9/11 datasets and the second best on 1/11
datasets – the gain varies from 0.003% to 8.977% – especially, for the large datasets D2
(271617 instances) and D4 (581012 instances) (see Table 3.4). The second is ODCA-
ESG which outperforms the existing algorithms on 9/11 datasets (6 for the first best
and 3 for the second best) – the gain varies 0.005% to 8.415%. However, the %regret
of ODCA-ESG is fairly comparable to that of ODCA-SG on 8/11 datasets with the
difference from 0% to 0.076%. In addition, the values of %regret of our algorithms
are actually small and stable (with the small standard deviation) on most datasets.
In fact, there are several datasets (e.g. D2, D5, D9, D10) on which ODCA-SG and
ODCA-ESG provided the negative value of %regret. That is to say, our algorithms can
make predictions even better than the best experts. Additionally, Figure 3.1 indicates
that the number of mistakes of our algorithms is less than that of other algorithms
along the online process, particularly in large datasets.

• Concerning CPU time: all algorithms run very fast. From Table 3.5, their CPU
time values are comparable on most datasets. However, for the large datasets (D2 and
D4), the rapidity of the algorithms can be classified as follows: ODCA-ESG and NEG
are the fastest algorithms, the algorithm ODCA-SG comes next and finally, OGD and
WM – the ratio of gain of the fastest ODCA-ESG versus the slowest WM is up to
1.143 times. This can be easily explained by the time complexity of all algorithms as

90 Online DCA for Prediction with Expert Advice

Table 3.4 – Average percentage of regret (%regret in %) (upper row) defined as (3.15)
and its standard deviation (lower row) obtained by ODCA-SG, ODCA-ESG, OGD,
NEG and WM. Bold (resp. underlining) values indicate the first best (resp. second
best) results.

Dataset ODCA-SG ODCA-ESG OGD NEG WM

D1 0.010 0.013 0.865 0.847 0.083
0.014 0.016 0.095 0.085 0.019

D2 -0.084 -0.084 0.711 0.079 -0.079
0.000 0.000 0.033 0.014 0.003

D3 0.000 0.000 3.500 2.200 0.000
.000 0.000 3.514 3.516 0.000

D4 0.000 0.562 5.960 2.652 8.977
0.001 2.446 0.054 0.028 0.024

D5 -1.140 -1.140 -1.140 -1.116 0.098
0.000 0.000 0.000 0.232 0.567

D6 0.869 0.268 1.063 1.000 0.744
0.756 0.782 0.862 0.746 0.341

D7 1.263 1.281 1.708 1.548 0.765
0.931 0.715 1.117 0.909 0.304

D8 0.153 0.452 0.823 0.791 1.105
0.364 0.660 0.839 0.903 0.556

D9 -0.012 0.064 0.030 0.036 0.014
0.012 0.059 0.036 0.042 0.022

D10 -0.217 -0.217 7.311 2.017 0.073
0.000 0.000 0.540 0.320 0.038

D11 0.007 0.007 5.820 2.527 0.040
0.014 0.014 0.359 0.203 0.017

Table 3.5 – Average CPU time (in seconds) obtained by ODCA-SG, ODCA-ESG,
OGD, NEG and WM. Bold values indicate the best results.

Dataset ODCA-SG ODCA-ESG OGD NEG WM

D1 0.019 0.019 0.019 0.018 0.018
D2 0.039 0.036 0.040 0.037 0.041
D3 0.001 0.000 0.001 0.000 0.001
D4 0.194 0.175 0.200 0.190 0.200
D5 0.000 0.000 0.000 0.000 0.000
D6 0.000 0.000 0.000 0.000 0.000
D7 0.000 0.000 0.000 0.000 0.000
D8 0.003 0.003 0.003 0.003 0.003
D9 0.004 0.004 0.004 0.004 0.004
D10 0.001 0.001 0.002 0.002 0.001
D11 0.001 0.001 0.001 0.001 0.001

Online DCA for Prediction with Expert Advice 91

0 0.4 0.8 1.2 1.6 2 2.4

x 10
4

0

1000

2000

3000

4000

5000

Number of instances

N
um

be
r

of
 m

is
ta

ke
s

ODCA−SG
ODCA−ESG
OGD
NEG
WM

(a) D1: a8a

0 0.4 0.8 1.2 1.6 2

x 10
5

0

0.5

1

1.5

2

2.5

3
x 10

4

Number of instances

N
um

be
r

of
 m

is
ta

ke
s

ODCA−SG
ODCA−ESG
OGD
NEG
WM

(b) D2: cod-rna

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

0

0.5

1

1.5

2

2.5
x 10

5

Number of instances

N
um

be
r

of
 m

is
ta

ke
s

ODCA−SG
ODCA−ESG
OGD
NEG
WM

(c) D4: covtype

0 40 80 120 160 200 240 290
0

10

20

30

40

50

60

Number of instances

N
um

be
r

of
 m

is
ta

ke
s

ODCA−SG
ODCA−ESG
OGD
NEG
WM

(d) D7: ionosphere

0 600 1200 1800 2400 3000 3700
0

200

400

600

800

1000

1200

1400

Number of instances

N
um

be
r

of
 m

is
ta

ke
s

ODCA−SG
ODCA−ESG
OGD
NEG
WM

(e) D10: spambase

Figure 3.1 – The number of mistakes of all five algorithms with respect to the best
value of parameters in the validation procedure on five notable datasets

92 Online DCA for Prediction with Expert Advice

discussed in Remark 3.3 and the fact that the learner only updates the predictions when
one makes a false mistake on the previous round. Therefore, the more the algorithm
makes the good predictions, the faster it would be.

• As for the value of τ , from Table 3.3, the best value for ODCA-SG and ODCA-ESG
is almost near to ρ (ρ = 0.5) in the procedure of parameter validation. This is an
interesting illustration for the particular property of the DC function as noticed in
Remark 3.1 and Remark 3.2.

In summary, our Online DCA based algorithms work well in terms of the quality and
the rapidity on these test problems. Specially, ODCA-SG seems to be preferred since
it realizes the best trade-off between these two criteria.

3.6 Conclusions

In this chapter, we have intensively investigated an Online DC programming and On-
line DCA approach for developing a class of online learning techniques, namely predic-
tion with expert advice. In particular, we have exploited DC approximation functions
for the nonsmooth, nonconvex 0-1 loss function on each online step. The resulting
optimization problems are solved by Online DCA. Solving each convex subproblem in
Online DCA by approximating by one iteration of two variants of subgradient method,
we have developed two particular Online DCA based schemes, namely ODCA-SG and
ODCA-ESG. We have studied the analysis of both schemes in terms of regret, which
enjoys the sublinear/logarithmic regret. As an application, we have derived two algo-
rithms based on ODCA-SG and ODCA-ESG for OBLC. Numerical results on various
benchmark classification datasets show the efficiency of our approach when comparing
with the well-known existing algorithms.

Part II

Reinforcement learning

93

Chapter 4

Reinforcement Learning:
Introduction and Related Works

Abstract: In this chapter, we briefly introduce reinforcement learning which is a general class
of machine learning techniques for dealing with sequential decision problems. The goal of
reinforcement learning is to estimate the optimal learning policy in a dynamic environment
typically formulated as a Markov decision process (with an incomplete model). It is well-
known that one can tackle this task through the problem of finding the zero of the so-called
optimal Bellman residual, a classical concept of dynamic programming. The background of
reinforcement learning and its related works which we concern in this dissertation are also
presented.

95

96 Reinforcement Learning: Introduction and Related Works

Reinforcement learning (RL) is a general class of machine learning techniques where
an agent must learn behavior through trial-and-error interactions with a dynamic en-
vironment which is typically modeled as a Markov Decision Process (MDP). RL is an
intersection of many active research subfields including machine learning, statistical
learning, behavior optimization, robotics, etc (see e.g. [127]). Currently, the appli-
cations of RL are very wide in various areas such as manufacturing, management,
transportation.

The goal of RL is to estimate the optimal policy of an MDP without knowing its
complete model. From the last two decades, the power of RL in dealing with the
curse of dimensionality and the curse of modeling on large-scale and complex problems
of dynamic optimization, in particular the MDP problem and its variants, has been
more and more confirmed by various works. This success of RL is due to its strong
mathematical tools in the principles of Dynamic Programming (DP). This dissertation
contributes to enrich these tools by investigating a unified DC (Difference of Convex
functions) programming framework and efficient DCA based approach for solving the
problems of RL, in particular, in batch mode (i.e. a fixed set of learning experience is
given a priori) or online mode (i.e. the learning experience is collected piece-by-piece
through the interaction with the environment).

4.1 Background and related works

An MDP [7, 9, 99] can be described by the 5-tuple < S,A,R,P , γ > where S is a
state space, A is an action space, R : S × A → R is a reward function on state-
action transitions, P : S × A × S → [0, 1] is a state transition probability function
in which P(s′|s, a) represents the probability of transition from s ∈ S to s′ ∈ S upon
taking action a ∈ A and γ ∈ (0, 1) is a discount factor. To avoid the complication of
systems having continuous state spaces and continuous action spaces, a finite MDP
is often considered, i.e. the state space and the action space are finite, specifically
S = {si}i=1,...,NS ,A = {ai}i=1,...,NA . A policy π of an MDP is called deterministic
stationary if it specifies the same action each time a state is visited, i.e. π is a mapping
from S to A (for short, π ∈ AS) where π(s) is the action the agent takes in the state
s. Broadly, the aim of the agent learning in this environment is to maximize the
cumulative reward it receives (which can be the total reward, the average reward, or
the total discounted reward).

RL methods [118] are employed to address MDPs without knowledge of the perfect
dynamic (a model of P orR). Hence, value functions are usually used in RL to measure
how good is each state and/or action, and an RL agent may include one or more of
three components: the policy (agent’s behavior), the value function (which can be the
state value function and/or the state-action value function), and the model (agent’s
representation of the environment). Generally, RL techniques can be divided into
three categories: the value-based approach estimates first the optimal value function
(which is the maximum value achievable under any policy) and then determines an
optimal policy with relative easiness, the policy-based approach directly searches for

Reinforcement Learning: Introduction and Related Works 97

the optimal policy, and the model-based approach builds a model of the environment.
For an overview and a tutorial survey on RL, refer to [13, 17, 42, 113, 118, 119].

In this work we focus on RL using the value function based approach to address
the above finite MDP in an infinite time horizon, discounted reward setting. More
precisely, given a fixed set of samples generated from state transitions in a finite MDP,
the goal is to search for an optimal policy π∗ that maximizes a discounted, infinite-
horizon optimality criterion (see e.g. [113, 118]):

π∗ ∈ arg max
π∈AS

Eπ
[
∞∑
t=0

γtR(st, π(st))

]
,

where Eπ[·] is the expectation given that the agent follows the policy π. Instead of
directly finding π∗ over the space AS , we estimate its quality via the state-action value
function Qπ, viewed as a link between that criterion and π.

For a given policy π, the state-action value function under policy π is defined as
Qπ : S ×A → R,

Qπ(s, a) := Eπ
[
∞∑
t=0

γtR(st, π(st))

∣∣∣∣∣ s0 = s, a0 = a

]
. (4.1)

The optimal state-action value function, denoted by Q∗, is given by

Q∗(s, a) := max
{
Qπ(s, a) : π ∈ AS

}
. (4.2)

When Q∗ is obtained, the optimal policy is computed as

π∗(s) = arg max {Q∗(s, a) : a ∈ A} .

Given a function Q ∈ RS×A, a policy π ∈ AS satisfying

π(s) ∈ arg max
a∈A

Q(s, a),∀s ∈ S

is said to be greedy with respect to Q. Specially, π∗ is greedy with respect to Q∗, say
Q∗ = Qπ∗ .

RL methods are employed to solve two basic problems: the prediction problem and
the control problem. The goal of the prediction problem is to compute the value
function for an arbitrary given policy (or evaluate the given policy), while the control
problem aims to estimate the optimal value function (or optimal policy) directly. In
both problems, most of the RL techniques often improve the policy in different ways
to realize the best trade-off between exploitation and exploration [118] (for example,
ε-greedy methods [126], softmax methods [80]). Our works concern RL techniques for
control problems with ε-greedy method.

To deal with large state and action spaces in MDPs, RL methods with function approx-
imation techniques have been intensively studied in the literature, a comprehensible

98 Reinforcement Learning: Introduction and Related Works

survey on these techniques is given in [17, 127, 129]. In the framework of the value
function based approach, several value function approximation algorithms using dif-
ferent function approximators were proposed. These RL algorithms either determine
(incrementally) a value for each state through satisfaction of the Bellman equation
(e.g. approximate Q-learning [115, 118, 120, 126], approximate SARSA algorithms
[114, 117], adaptive learning) or minimize directly a norm of empirical Bellman resid-
ual/Optimal Bellman residual (the direct Bellman residual minimization approach,
e.g. [3, 5, 38, 81, 86, 98, 106, 107, 113]).

When an approximate function is used to learn a value function, tight performance
bounds on greedy policies are needed to get good resulting control. Bellman Residual
minimization (used at the first time in the work of Schweitzer and Seidman in 1985
[107] for computing approximate state value functions assuming the full knowledge of
a finite MDP) is an efficient approach in RL which can meet such requirement (see
e.g. [81, 86, 128]). In fact, a common practice of RL applications is to minimize the
Bellman residual and then use the corresponding greedy policy.

The Bellman operator is a widely used concept in DP. In RL, the Bellman operator is
defined on the set of state value functions and/or the set of state-action value functions.
As we focus on state-action value functions, all notations presented here concern only
state-action value functions (similar notations exist for state value functions). The
Bellman operator on state-action functions is defined by Bπ : RS×A → RS×A,

BπQ(s, a) = R(s, a) + γ
∑
s′∈S

P(s′|s, a)Q(s′, π(s′)), ∀(s, a) ∈ S ×A,

and the Optimal Bellman operator on state-action functions is defined by (see e.g.
[128]) B∗ : RS×A → RS×A,

B∗Q(s, a) = R(s, a) + γ
∑
s′∈S

P(s′|s, a) max
a′∈A

Q(s′, a′), ∀(s, a) ∈ S ×A.

The concepts of Bellman Residual (BR) and Optimal Bellman Residual (OBR) arise
from the standard results of the theory of DP that are, for any policy π the value
function Qπ is the unique solution of the Bellman equation Q = BπQ, and the optimal
value function Q∗ is the unique solution of the Bellman equation Q = B∗Q. The BR
is then defined by BπQ − Q while the OBR is B∗Q − Q (see e.g. [128]). Thus, to
find the zero of BR (resp. OBR), the idea of minimizing a norm (`∞/`p, p ≥ 1) of
BR (resp. OBR) is natural. Moreover, as mentioned in [128], there is a very natural
correspondence between Temporal Difference (TD) errors in TD approach [116] and
the BR measures, and similarly, the individual components of the BR across the state-
action function Q are very closely related to what Q-learning [126] tries to reduce
toward zero. In the earlier step of RL, the `∞-norm and `2-norm were often used, and
later, the weighted `p-norm was investigated.

BR minimization approach is intensively studied in RL literature on both theoretical
and algorithmic point of views (e.g. [3, 5, 38, 81, 86, 106, 107, 113, 128]). Tight

Reinforcement Learning: Introduction and Related Works 99

performance bounds on greedy policies were proved in [128] for `∞-norm and in e.g. [81,
86] for `p-norm and weighted `p-norm. On the algorithmic level, works in this direction
can be divided into two groups. The first (OBR-based approach) minimizes directly
a norm of OBR while the second (BR-based approach) works by alternating between
the evaluation of the policy through BR minimization and the policy improvement. In
fact, the function OBR is more complex than BR due to the max operator over the
space A, and, as indicated in [113], minimizing a norm of the empirical OBR over the
space of approximation functions is difficult, even in the case of linear approximation,
since the resulting optimization problems are nonconvex, nonsmooth and thus solving
them by global approaches is very hard in large-scale settings. Hence, the OBR-
based approach was less worked than the BR-based approach, there exist some local
optimization techniques, for example, neural networks for `2-norm of OBR, although
global convergence is not guaranteed.

In the literature, Baird [5] proposed residual algorithms which can be regarded as a
weighted average of a direct algorithm with a residual gradient algorithm. The update
step in the direct algorithm is the same as the TD(0) algorithm, whereas the residual
gradient algorithm updates the weight in gradient descent on the `2-norm of BR and
OBR. Direct algorithms run fast but unstably, while residual gradient algorithms enjoy
guaranteed convergence to a local optimum but slow. This residual algorithm takes
advantage of the benefits of both direct and residual gradient algorithms in terms of
convergence and its speed when using function approximator. Moreover, Geist and
Pietquin [38] have indicated that the RL methods via value-function approximation
can be divided into three main approaches: bootstrapping, residual and projected
fixed-point. Among them, residual approaches with gradient descent, the closest to
our works, are represented in more detail for both BR and OBR in the state-action
value function as the main works in [5]. However, as indicated in [38], the computation
of the gradient of sampled OBR functions is not straightforward since these functions
are nonsmooth and nonconvex in the function-approximation space. Our works focus
on developing RL techniques in both batch mode and online mode by addressing the
different norms of empirical OBR via value-function linear approximation. Actually,
most works in RL are considered in online mode since the sample is collected via
the exploitation and exploration procedure with the environment after each step of
updating the policy, meanwhile in batch mode, the set of samples is given a priori (see
e.g. [32, 52, 53]). Thus, for simplicity, in the rest of this part, we mention the RL
problems as those in online mode, and abbreviate the RL problems in batch mode by
Batch RL.

In the context of Batch RL, there are some popular algorithms to deal with these
problems such as Fitted Q-Iteration (FQI) [32, 122], Least Square Policy Iteration
(LSPI) [113, 52, 122] which are developed from the standard algorithms of DP such
as Approximate Value Iteration (AVI) [8, 105], Approximate Policy Iteration (API)
[13, 113] respectively. These Batch RL algorithms are achieved by combining RL and
DP methods with approximated function. While FQI can be seen as approximate
value iteration for the state-action value functions, LSPI combines state-action value
function approximation with linear representation and approximate policy iteration.

100 Reinforcement Learning: Introduction and Related Works

4.2 Motivation

It is worth remembering that the problem of minimizing a norm of the empirical
OBR is nonconvex, nonsmooth. In the literature, there are the rare algorithms for
nonconvex, nonsmooth programming framework. One of them is DC (Difference of
Convex functions) programming and DCA (DC Algorithm) (see [66, 93, 95, 96, 97]
and the references in [56]) which are powerful, nonsmooth, nonconvex optimization
tools. In this dissertation, we will tackle this resulting nonconvex problem by DC
programming and DCA. Moreover, our work is also motivated by the fact that DCA
has been successfully applied to many (smooth or nonsmooth) large-scale nonconvex
programs in various domains of applied sciences, in particular in machine learning (see
the list of references in [56]). As for the RL problems, the Online DC programming
and Online DCA based approach is also investigated recently.

Recall briefly that DCA aims to solve a standard DC program that consists of mini-
mizing a DC function f = g − h (with g and h being convex functions) over a convex
set or on the whole space. Here g − h is called a DC decomposition of f , while the
convex functions g and h are DC components of f . The main idea of DCA is ap-
proximating the second DC component h by its affine minorant and then solving the
resulting convex subproblem at each iteration. The construction of DCA is relied on
the convex DC components g and h but not the DC function f itself. Hence, for a
DC program, each DC decomposition corresponds to a different version of DCA. Since
a DC function f has an infinite number of DC decompositions which have crucial
impacts on the qualities (speed of convergence, robustness, efficiency, globality of com-
puted solutions,. . .) of DCA, the search for a “good”DC decomposition is vital from
the algorithmic point of views and is the most important key issue while designing
DCA for a practical problem. Furthermore, how to efficiently solve convex subprob-
lems in DCA is a crucial question as well (evidently the form of convex subproblems
depends on the DC decomposition). In fact, although convex programming has been
studied for about a century, an increasing amount of effort has been put recently into
developing fast and scalable algorithms to deal with large-scale problems. Moreover,
as DCA is a local approach, finding a good starting point is also an important matter
to be studied.

In the next chapters, we will present how to develop efficient DCA based algorithms
for large-scale Batch RL problems and design Online DCA based algorithms for RL
problems with online mode.

Chapter 5

A unified DC programming
framework and efficient DCA based
approaches for large scale batch
Reinforcement Learning1

Abstract: In this chapter, we investigate a powerful nonconvex optimization approach based on
DC (Difference of Convex functions) programming and DCA (DC Algorithm) for reinforce-
ment learning problems in batch mode (Batch RL) (i.e., a fixed set of learning experience is
given a priori). These problems can be tackled through the problem of finding the zero of the
so-called Optimal Bellman Residual. However, there exist so far a few works in the literature
following this direction, knowing that it usually leads to a nonconvex optimization problem
which is very hard to solve exactly. In this chapter we consider four optimization formula-
tions of this problem that are the minimization of the `p-norm with p ∈ {1, 2,+∞} of optimal
Bellman residual and the new concave minimization to design these large-scale problems us-
ing linear value-function approximation. They are all formulated as DC programs for which
four attractive DCA schemes are developed. Exploiting the special structure of the empiri-
cal optimal Bellman residual with linear value-function approximation we carefully address
the key issues of DCA, namely the effect of DC decompositions, the efficiency of solution
methods for the resulting convex subproblem, and the search for good starting points, when
designing the four DCA based algorithms. Numerical experiments on various examples of
the two benchmarks of Markov decision process problems - Garnet and Gridworld problems,
show the efficiency of our approaches in comparison with two existing DCA based algorithms
and two state-of-the-art reinforcement learning algorithms.

1. The material of this chapter is based on the following work:
[1]. Hoai An Le Thi, Vinh Thanh Ho, Tao Pham Dinh. A unified DC Programming Framework and
Efficient DCA based Approaches for Large Scale Batch Reinforcement Learning. Submitted to the
Journal of Global Optimization.

101

102
A unified DC programming framework and efficient DCA based approaches

for large scale batch Reinforcement Learning

5.1 Our contributions

In this chapter, we investigate a unified DC (Difference of Convex functions) program-
ming based approach in the context of Batch Reinforcement Learning (Batch RL),
i.e. a fixed set of learning experience is given a priori. In particular, as mentioned
in Chapter 4, we address the problem of finding the zero of the empirical Optimal
Bellman Residual (OBR) via linear approximation under the different norms.

DC programming and DCA were studied in [98] for minimizing the `p-norm of the
empirical OBR via linear approximation (p ≥ 1), in which two DCA schemes, namely
DCA1 and DCA2, were developed for the case p = 1 and p = 2 respectively. However,
interesting perspectives leaved by the authors of [98] are the choice of DC decomposi-
tions and the solution methods for convex subproblems. In this work, these key issues
of DC programming and DCA are addressed in deeper ways to design new DCA based
algorithms (for the same optimization problems considered in [98]) which are much
more efficient than the DCA1 and DCA2 on both quality and rapidity. That is one
among several contributions of this work.

Our contributions are multiple.

Firstly, we investigate more attractive DCA based algorithms for minimizing the `p-
norm of the empirical OBR in case p = 1 and p = 2. Exploiting the effect of DC de-
composition and the special structure of the resulting convex subproblems, we propose
two DCA schemes, named `1-DCA and `2-DCA in case p = 1 and p = 2 respectively,
which require solving one linear program (`1-DCA) and one convex quadratic program
(`2-DCA) at each iteration. It turns out that our algorithm `1-DCA (resp. `2-DCA)
outperforms DCA1 (resp. DCA2) proposed in [98] in terms of both quality and ra-
pidity. For medium MDPs having 100 states, the ratio of gain in terms of rapidity of
`1-DCA versus DCA1 (resp. `2-DCA versus DCA2) is up to 11.5 (resp. 4.17) times,
while the ratio of gain in terms of quality of `1-DCA versus DCA1 (resp. `2-DCA
versus DCA2) is up to 70.2% (resp. 84%). Further, the gain increases considerably
when the number of states increases.

Secondly, we consider the `∞-norm of the empirical OBR and develop a DCA scheme
(`∞-DCA) for solving this problem. The `∞-DCA enjoys interesting convergence prop-
erties thanks to the fact that both DC components are polyhedral convex functions,
and it requires also one linear program at each iteration. Numerical experiments show
that the `∞-DCA is slightly better than the existing DCA1 and DCA2 – the ratio of
gain in terms of quality is up to 40.1%.

Thirdly, we propose a new formulation of the OBR without using the `∞/`p-norm.
We consider the problem as finding the zero of a function (the empirical OBR) which
has a very special structure and highlight various possible formulations, the link be-
tween them and finally introduce a constrained optimization problem enjoying several
advantages. This new formulation is in fact a concave minimization problem under
linear constraints (which can also be interpreted as minimizing the restricted `1-norm
of the empirical OBR under a polytope). Fortunately, the addition of constraints

A unified DC programming framework and efficient DCA based approaches
for large scale batch Reinforcement Learning 103

does not make the new problem more difficult than the above formulations which
are unconstrained minimization problems. On contrary, the new DCA (named cc-
DCA), consisting of solving at each iteration one linear program (whose the number
of constraints is, interestingly, smaller than that in linear subproblems of `1-DCA and
`∞-DCA), is more efficient than the existing DCA1 and DCA2 in terms of both quality
and rapidity. The ratio of gain is up to 131 times on rapidity and 68.3% on quality.

Throughout the chapter, we carefully studied the key issues of DCA, namely the effect
of DC decompositions, the efficiency of solution methods for the resulting convex sub-
problem, and the search for good starting points, when developing the four DCA based
algorithms. We are particularly interested in specific DC programs, called polyhedral
DC programs, where either g or h is polyhedral convex (i.e. the maximum of a finite
family of affine functions), because that DC programs have interesting optimality and
convergence properties. More precisely, we exploit the special structure of each objec-
tive function in an efficient way to propose a suitable DC decomposition. The `1-norm,
`∞-norm and concave formulations of OBR are polyhedral DC programs where both
DC components are polyhedral convex functions. The corresponding DCA enjoys, not
only the finite convergence property, but also the local optimality of solutions. Fur-
thermore, we study in a deep way the solution methods for the convex subproblems
in DCA by deriving benefit from the specific structure of the convex subproblem in
each DCA scheme. Actually, our techniques reduce to solving one linear program in
`1-DCA, `∞-DCA, and cc-DCA, and one convex quadratic program in `2-DCA. Thus,
these problems can be efficiently solved by standard softwares. On another hand, we
investigate an efficient strategy for finding good starting points for all our DCA based
algorithms.

Finally, we provide several numerical experiments of the proposed algorithms on two
benchmarks - the stationary Garnet problem and the Gridworld problem, compared
with two existing DCA schemes and two state-of-the-art RL algorithms.

The rest of the chapter is organized as follows. Different optimization formulations of
the empirical OBR are described in Section 5.2. Section 5.3 first presents a short intro-
duction of DC programming and DCA and then shows how to apply DC programming
and DCA to these optimization problems. Section 5.4 reports the numerical results on
several test problems. Finally, Section 5.5 concludes the chapter.

5.2 Optimization formulations of the empirical

OBR via linear function approximation

Linear function approximators are the most commonly used in function approxima-
tion techniques (for instance, SARSA, Q-learning, and Least-Squares Policy Iteration
LSPI). A tutorial on linear function approximators for DP and RL was recently given
in [41]. The basic idea is that, the full set of states is projected into a lower dimensional
space where the value function is represented as a linear function.

104
A unified DC programming framework and efficient DCA based approaches

for large scale batch Reinforcement Learning

Given a basic function vector φ(·) = (φ1(·), φ2(·)..., φd(·))> ∈ Rd where φi : S × A →
R, i = 1, . . . , d are basic functions on S × A. Then the linear approximation of the
function Q, denoted by Qθ, is characterized by the weight vector θ ∈ Rd according to
the relation

Qθ(s, a) := 〈θ, φ(s, a)〉,∀(s, a) ∈ S ×A.

Let F denote the space of approximation functions, say

F :=
{
Qθ(s, a) = 〈θ, φ(s, a)〉|θ ∈ Rd

}
.

5.2.1 `p-norm formulation (p ≥ 1)

The `p-norm (p ≥ 1) of OBR with the probability distribution µ is defined as (see e.g.
[86])

Jp,µ(Q) := ||B∗Q−Q||p,µ, where ||Q||p,µ :=

 ∑
(s,a)∈S×A

µ(s, a)|Q(s, a)|p
 1

p

.

Performance bounds of a policy greedy with respect to the state value function V in
terms of the `p-norm (1 ≤ p ≤ ∞) of its OBR were given in [86], a similar result was
stated later in [98] when p ≥ 1 for the state-action value function Q. It is well known
that Q∗ is the optimal solution to Jp,µ and, obviously, if the minimum value of Jp,µ is
near zero, the corresponding greedy policy is close to the optimal policy.

With the linear approximation, the `p-norm (p ≥ 1) of the empirical OBR over the
space of linear approximation functions F is

Jp,µ(Qθ) = ||B∗Qθ −Qθ||p,µ. (5.1)

In batch mode (Batch RL), estimating the optimal state-action value function rests
on a fixed set of transition samples, i.e. the so-called sampling-based version of Jp,µ in
[86] is used. Specifically, one first selects N samples (Si, Ai, S

′
i)i=1,...,N , then considers

a nonbiased estimation of B∗Q(Si, Ai) :

B̂∗Q(Si, Ai) = R(Si, Ai) + γmax
a′∈A

Q(S ′i, a
′) (5.2)

and finally minimizes the empirical `p-norm of OBR [86, 98]:

Jp,µN (Q) := ||B̂∗Q−Q||p,µN , (5.3)

where µN is the empirical distribution given by µN(s, a) = 1
N

∑N
i=1 1{(Si,Ai)=(s,a)}(s, a)

and 1X is the indicator function of X, i.e. 1X(x) = 1 if x ∈ X, 0 otherwise.

The bound error between the minimized Jp,µ and Jp,µN in terms of µN and the ca-
pacity (the complexity) measure of the approximation function space (the Vapnik

A unified DC programming framework and efficient DCA based approaches
for large scale batch Reinforcement Learning 105

consistency) was established in Statistical learning theory [123]. In particular, the
Vapnik-consistency of (5.1) with respect to µN was deduced in [98] from the results of
Theorem 5.3 of [123].

Using this sampling-based technique with linear approximation operator, we have to
minimize the empirical `p-norm (p ≥ 1) of the empirical OBR that is(

N∑
i=1

∣∣∣B̂∗Qθ(Si, Ai)−Qθ(Si, Ai)
∣∣∣p) 1

p

.

Finally the `p-norm formulation of the empirical OBR via linear approximation takes
the form

min
θ∈Rd

{
Fp,µN (θ) :=

(
N∑
i=1

∣∣∣∣R(Si, Ai) + γmax
a′∈A

〈θ, φ(S ′i, a
′)〉 − 〈θ, φ(Si, Ai)〉

∣∣∣∣p
)}

. (5.4)

Let fi, for i = 1, . . . , N , denote the real function on Rd defined as

fi(θ) := R(Si, Ai) + γmax
a′∈A

〈θ, φ(S ′i, a
′)〉 − 〈θ, φ(Si, Ai)〉. (5.5)

Clearly, fi is the maximal function of a finite family of affine functions and can be
expressed as (remember that A is a finite space having NA elements)

fi(θ) := max
j=1,...,NA

{
〈A(i,j), θ〉+ b(i)

}
, (5.6)

where A(i,j) := γφ(S ′i, aj)− φ(Si, Ai), b(i) := R(Si, Ai), j = 1, . . . , NA.

Specifically, the `1-norm optimization formulation is expressed as follows

min

{
F1(θ) =

N∑
i=1

|fi(θ)| : θ ∈ Rd

}
, (5.7)

and the `2-norm optimization formulation takes the form

min

{
F2(θ) :=

N∑
i=1

[fi(θ)]
2 : θ ∈ Rd

}
. (5.8)

As each fi is a polyhedral convex function, it is obvious that F1 and F2 are DC
functions. In [98], the authors highlighted one DC formulation for each of above DC
programs (5.7), (5.8) and proposed two DCA schemes for solving them. In Section 5.3,
we will propose more attractive DCA based algorithms for these same problems.

5.2.2 `∞-norm formulation

With the aim of intensively studying DCA based approaches for the empirical OBR,
we consider the `∞-norm formulation of OBR, which is defined by

J∞(Q) = ||B∗Q−Q||∞, (5.9)

106
A unified DC programming framework and efficient DCA based approaches

for large scale batch Reinforcement Learning

where ||Q||∞ = max(s,a)∈S×A |Q(s, a)|. Evidently, the optimal state-action value func-
tion Q∗ is the optimal solution to (5.9).

Similarly to `p-norm, after collecting N transition samples (Si, Ai, S
′
i) and approxi-

mating the state-action value function Q ∈ RS×A by the weight vector θ ∈ Rd on the
space F , we obtain the `∞-norm optimization formulation of the empirical OBR on F
as follows

min
θ∈Rd

{
F∞(θ) := max

i=1,...,N

∣∣∣B̂∗Qθ(Si, Ai)−Qθ(Si, Ai)
∣∣∣ = max

i=1,...,N
|fi(θ)|

}
. (5.10)

It is worth noting that the `∞-norm in Q is “equivalent” to the `p-norm on the finite
state-action space S ×A in the sense that for all Q ∈ RS×A, we have

C
1
p ||Q||∞ ≤ ||Q||µ,p ≤ ||Q||∞,

where C = min{µ(s, a) : µ(s, a) > 0,∀(s, a) ∈ S×A}. Thus, the bound of (5.1) can be
derived from the value of (5.9) and moreover the Vapnik-consistency for the `∞-norm
problem (5.9) can be guaranteed.

We will see later in Section 5.3 that (5.10) is also nonconvex, nonsmooth but a DC
program.

5.2.3 New formulation: concave minimization under linear
constraints

Recall that the main goal of MDP problems is to find the optimal state-action value
function Q∗ such that B∗Q∗(s, a)−Q∗(s, a) = 0 for all (s, a) ∈ S ×A, which implies∑

(s,a)

[B∗Q∗(s, a)−Q∗(s, a)] = 0.

We are then suggested to consider the following optimization problem:

0 = min
Q∈RS×A

m(Q) := −
∑
(s,a)

[B∗Q(s, a)−Q(s, a)] : B∗Q(s, a)−Q(s, a) ≤ 0, ∀(s, a)

 .

(5.11)

The following result (whose proof is straightforward) justifies our formulation.

Proposition 5.1. The optimal state-action value function Q∗ is a unique optimal
solution to (5.11) with the optimal objective value being zero.

After collecting N transition samples (Si, Ai, S
′
i) and approximating the state-action

value function Q ∈ RS×A by the weight vector θ ∈ Rd on the space of approximation
function F , the problem (5.11) becomes

0 = min
θ∈Rd

{
Fcc(θ) := −

N∑
i=1

fi(θ) : fi(θ) ≤ 0,∀i = 1, . . . , N

}
. (5.12)

A unified DC programming framework and efficient DCA based approaches
for large scale batch Reinforcement Learning 107

This problem can be equivalently reformulated as

0 = min
θ∈Rd

{
Fcc(θ) := −

N∑
i=1

fi(θ) : f+
i (θ) ≤ 0,∀i = 1, . . . , N

}
, (5.13)

where f+
i is the function defined by f+

i (θ) := max {0, fi(θ)} .

As each fi is a polyhedral convex function, the function Fcc is concave, and the prob-
lems (5.12) and (5.13) are concave minimization problems under polyhedral convex
constraints (as will be seen later, they are in fact polyhedral DC programs). Obvi-
ously, the exact penalty holds for (5.13) (see [70]), i.e. there exists the parameter
τ0 > 0 such that for all τ ≥ τ0, the problem (5.13) is equivalent to

0 = min
θ∈Rd

{
−

N∑
i=1

fi(θ) + τf+
max(θ)

}
,

where fmax is the function defined by fmax(θ):= max{fi(θ) : i = 1, . . . , N}.

In this work we focus on the problem (5.12) because it enjoys several advantages for
DCA as will be shown in the next section. Let us denote Cθ the feasible set of (5.12).
According to (5.6) we have

Cθ :=

{
θ ∈ Rd : max

j=1,...,NA

{
〈A(i,j), θ〉+ b(i)

}
≤ 0, ∀i = 1, . . . , N

}
=

{
θ ∈ Rd : 〈A(i,j), θ〉+ b(i) ≤ 0, ∀i = 1, . . . , N, ∀j = 1, . . . , NA

}
.

Cθ is so a polyhedral convex set defined by N.NA linear constraints, and (5.12) can
be now expressed as

0 = min

{
Fcc(θ) := −

N∑
i=1

fi(θ) : 〈A(i,j), θ〉+ b(i) ≤ 0, ∀i = 1, . . . , N, ∀j = 1, . . . , NA

}
(5.14)

which is a concave minimization problem under linear constraints.

Remark 5.1. As |fi(θ)| = −fi(θ) for all θ ∈ Cθ, we have F1(θ) = Fcc(θ) for all
θ ∈ Cθ. Hence, the formulation (5.12) can be viewed as the `1-norm formulation
restricted under Cθ, in case µ is the uniform distribution.

From Remark 5.1 and Theorem 2 in [98], we have the Vapnik-consistency for the
formulation (5.12) as showing the following lemma.

Lemma 5.1. Let F =
{
Qθ ∈ F : ||Qθ||∞ ≤ ||R||∞

1−γ , B
∗Qθ −Qθ ≤ 0

}
, η ∈ (0, 1) and

consider the finite deterministic MDP, with probability at least 1− η, we have:

∀Qθ ∈ F ,
1

NS .NA
m(Qθ) ≤

1

N
Fcc(θ) +

2||R||∞
1− γ

√
ε(N),

where ε(N) =
h
(
ln
(

2N
h

)
+ 1
)

+ ln
(

4
η

)
N

and h = 2NA(d+ 1).

108
A unified DC programming framework and efficient DCA based approaches

for large scale batch Reinforcement Learning

Proof. Based on the Vapnik-consistency for the formulation (5.1) from Theorem 2 in
[98], this lemma is obtained in case p = 1, µ is the uniform distribution over the
whole state-action space S ×A and µN is the empirical distribution with respect to N
transition samples.

Remark 5.2. The problem (5.12) is actually a concave minimization with linear con-
straints for which the use of DCA is worthy. In fact, DCA applied on linear constrained
concave minimization, with the natural DC decomposition, consists of solving one lin-
ear program at each iteration, and has finite convergence property. We will show in
Section 5.3.5 that (5.12) is more advantageous than the previous formulations and the
corresponding DCA based algorithm is very efficient in terms of rapidity.

We are going to present DC programming and DCA for solving the above problems
(5.7), (5.8), (5.10) and (5.12).

5.3 Solution methods by DC programming and

DCA

5.3.1 DCA for solving the `1-norm problem (5.7)

Remember that the problem (5.7) has the form

min

{
F1(θ) =

N∑
i=1

|fi(θ)| : θ ∈ Rd

}
, where fi(θ) := max

j=1,...,NA
〈θ,A(i,j)〉+ b(i).

As mentioned previously, the function fi is polyhedral convex. By taking full advantage
of this nice property, we construct a DC decomposition of |fi| as follows:

|fi| = 2f+
i − fi,

where f+
i := max{0, fi} is polyhedral convex too. Let G1 and H1 be the functions

defined by

G1(θ) :=
N∑
i=1

2f+
i (θ) and H1(θ) :=

N∑
i=1

fi(θ), (5.15)

they are both polyhedral convex functions. Clearly,

F1(θ) = G1(θ)−H1(θ),

therefore the problem (5.7) can be now written in the form

min
{
G1(θ)−H1(θ) : θ ∈ Rd

}
, (5.16)

which is a polyhedral DC program where both DC components are polyhedral convex.

A unified DC programming framework and efficient DCA based approaches
for large scale batch Reinforcement Learning 109

According to the generic DCA scheme, DCA applied on (5.16) consists of, at each
iteration k, computing one subgradient wk ∈ ∂H1(θk), and then solving the following
convex program:

min

{
N∑
i=1

2f+
i (θ)− 〈wk, θ〉 : θ ∈ Rd

}
. (5.17)

Thanks to the polyhedral convexity of fi defined by (5.5), we can reformulate the last
problem as a linear program of the form

min
N∑
i=1

2ti − 〈wk, θ〉,

s.t. θ ∈ Rd,
ti ≥ 0,∀i = 1, . . . , N,
ti ≥ 〈A(i,j), θ〉+ b(i),∀i = 1, . . . , N, ∀j = 1, . . . , NA.

(5.18)

Compute ∂H1: by the definition of H1 and according to the rule of computing the
subdifferential of a function being the maximum of a finite family of convex functions
[101] we have

∂H1(θ) =
N∑
i=1

∂fi(θ) =
N∑
i=1

∂

[
max

j=1,...,NA
〈A(i,j), θ〉+ b(i)

]

=
N∑
i=1

co
{
A(i,ji) : ji ∈ Ii(θ)},

Ii(θ) = argmax j=1,...,NA
〈A(i,j), θ 〉. (5.19)

In particular, we can choose wk ∈ ∂H1(θk) as follows: for i = 1, . . . , N , let ji ∈ Ii(θk),
then

wk =
N∑
i=1

A(i,ji). (5.20)

Define t = (t1, . . . , tN)> ∈ RN . DCA applied to (5.7) can be summarized in Algo-
rithm 5.1 (`1-DCA) below.

Algorithm 5.1 DCA for solving (5.16) (`1-DCA)

Initialization: Let ε be a sufficiently small positive number. Let θ0 ∈ Rd. Set k = 0.
repeat

1. Compute wk ∈ ∂H1(θk) using (5.20).
2. Solve the linear program (5.18) to obtain (θk+1, tk+1).
3. k = k + 1.

until |F1(θk)− F1(θk−1)| ≤ ε(|F1(θk−1)|+ 1) or ||θk − θk−1||2 ≤ ε(1 + ||θk−1||2).

According to the convergence properties of DCA for polyhedral DC programs in Sec-
tion 1.1, we deduce the following interesting convergence properties of `1-DCA.

110
A unified DC programming framework and efficient DCA based approaches

for large scale batch Reinforcement Learning

Theorem 5.1. Convergence properties of `1-DCA
i) `1-DCA generates the sequence {θk} such that the sequence {F1(θk)} is decreasing.
ii) The sequence {θk} converges to a critical point θ∗ of (5.16) after a finite number
of iterations.
iii) θ∗ is almost always a local minimizer to (5.16). In particular, if Ii(θ

∗) is a singleton
for all i = 1, ..., N , then θ∗ is a local minimizer to (5.16).

Proof. (i) and (ii) are, respectively, direct consequences of the convergence properties
of general DC programs and polyhedral DC programs.
(iii) Since H1 is a polyhedral convex function, the necessary local optimality condition
∂H1(θ∗) ⊂ ∂G1(θ∗) is also sufficient. This inclusion holds when H1 is differentiable at
θ∗. As a polyhedral convex function is almost always differentiable, we deduce that
θ∗ is almost always a local minimizer to (5.16). In particular, from the computation
of ∂H1 we see that if Ii(θ

∗) is a singleton for all i = 1, ..., N then H1 is differentiable.
The proof is then complete.

Remark 5.3. Our `1-DCA algorithm is much more advantageous than DCA1 in [98]:
`1-DCA solves one linear program at each iteration while DCA1 uses the iterative
subgradient method to deal with nonsmooth convex subproblems.

5.3.2 DCA for solving the `2-norm problem (5.8)

Recall that the `2-norm problem (5.8) is of the form:

min
θ∈Rd

{
F2(θ) :=

N∑
i=1

[fi(θ)]
2

}
.

Similarly, we thoroughly exploit the convexity of the function fi to design DCA. For
each i = 1, . . . , N , with ai ∈ dom ∂fi and bi ∈ ∂fi(ai), we define the affine minorization
of fi as follows

li(θ) = fi(ai) + 〈θ − ai, bi〉.
Let l−(θ) = max{0,−l(θ)}. For θ ∈ Rd, we have fi(θ) =

[
fi(θ) + l−i (θ)

]
− l−i (θ), which

implies

[fi(θ)]
2 = 2

{[
fi(θ) + l−i (θ)

]2
+
[
l−i (θ)

]2}− [fi(θ) + 2l−i (θ)
]2
.

Hence, we derive the following DC decomposition of F2:

F2(θ) = G2(θ)−H2(θ), (5.21)

where

G2(θ) =
N∑
i=1

2
{[
fi(θ) + l−i (θ)

]2
+
[
l−i (θ)

]2}
, H2(θ) =

N∑
i=1

[
fi(θ) + 2l−i (θ)

]2
. (5.22)

It is evident that fi + l−i and l−i are nonnegative and convex on Rd, so are G2 and H2.
Hence (5.8) is a DC program of the form

min{G2(θ)−H2(θ) : θ ∈ Rd}. (5.23)

A unified DC programming framework and efficient DCA based approaches
for large scale batch Reinforcement Learning 111

Applying DCA on (5.23) leads us to compute two sequences {wk} and {θk} such that
wk ∈ ∂H2(θk) and θk+1 solves the following convex program of the form (Pk)

min

{
N∑
i=1

2
{[
fi(θ) + l−i (θ)

]2
+
[
l−i (θ)

]2}− 〈wk, θ〉 : θ ∈ Rd

}
.

The last problem can be reformulated as

min

{
N∑
i=1

(2τ 2
i) +

N∑
i=1

(2t2i)− 〈wk, θ〉 :
ti ≥ l−i (θ),∀i = 1, . . . , N,
τi ≥ ti + fi(θ), ∀i = 1, . . . , N

}
which is in fact a quadratic program of the form

min
N∑
i=1

(2τ 2
i) +

N∑
i=1

(2t2i)− 〈wk, θ〉,

s.t. θ ∈ Rd,
ti ≥ 0, ∀i = 1, . . . , N,
ti ≥ −li(θ),∀i = 1, . . . , N,
τi ≥ ti + 〈θ,A(i,j)〉+ b(i),∀i = 1, . . . , N, ∀j = 1, . . . , NA.

(5.24)

Compute ∂H2 : from the definition of H2 and l−i , we have

∂H2(θ) =
N∑
i=1

∂
[
fi(θ) + 2l−i (θ)

]2
,

and for i = 1, . . . , N,

∂l−i (θ) =


{0} if li(θ) > 0,[
0,−bi

]
if li(θ) = 0,

{−bi} if li(θ) < 0.

Here [0,−bi] is the line segment between 0 and −bi. Hence, we can take a subgradient
wk ∈ ∂H2(θk) as follows

wk = 2
N∑
i=1

[
fi(θ

k) + 2l−i (θk)
] [

A(i,ji) − bi.1{li(θ)<0}(θ
k)
]
, (5.25)

where ji ∈ Ii(θk), ∀i = 1, . . . , N and Ii(θ) is defined in (5.19).

Define τ = (τ1, . . . , τN)> ∈ RN . Finally, DCA applied to (5.23) can be described as
Algorithm 5.2 (`2-DCA).

As direct consequences of convergence properties of DCA in Section 1.1, we have

Theorem 5.2. Convergence properties of `2-DCA

i) `2-DCA generates the sequence {θk} such that the sequence {F2(θk)} is decreasing.

ii) If the optimal value of problem (5.23) is finite then the sequence {θk} converges to
θ∗ that is a critical point of (5.23).

112
A unified DC programming framework and efficient DCA based approaches

for large scale batch Reinforcement Learning

Algorithm 5.2 DCA for solving (5.23) (`2-DCA)

Initialization: Let ε be a sufficiently small positive number. Let θ0 ∈ Rd. Set k = 0.
repeat

1. Compute wk ∈ ∂H2(θk) using (5.25).
2. Solve the quadratic program (5.24) to obtain (θk+1, τ k+1, tk+1).
3. k = k + 1.

until |F2(θk)− F2(θk−1)| ≤ ε(|F2(θk−1)|+ 1) or ||θk − θk−1||2 ≤ ε(1 + ||θk−1||2).

Remark 5.4. The DC decomposition (5.21)-(5.22) enjoys several advantages: firstly,
the affine minorization li of fi is easily computed, therefore the DC components G2

and H2 are defined in a simple way. Such a DC decomposition is possible thanks
to the convexity of fi. Secondly, the function li can be updated at each iteration to
better approximate fi, which means we can use a local DC decomposition of F2 at each
iteration. In our numerical experiments (Section 5.4), ai and bi are updated during
iterations as follows: at iteration k of `2-DCA, we take ai = θk and bi = A(i,ji),
where ji ∈ Ii(θ

k), ∀i = 1, . . . , N and Ii is defined as (5.19). Thirdly, the resulting
convex subproblem is reformulated as a quadratic program that can be solved by standard
softwares. Such a reformulation is feasible by dint of the polyhedral convexity of fi.
We thus see a good exploitation of the properties of fi in the construction of DC
decomposition and of the corresponding DCA. By the way, from a numerical point
of view, our `2-DCA algorithm is more efficient than DCA2 in [98] which uses the
subgradient method to solve nonsmooth convex subproblems.

5.3.3 DCA for solving the `∞-norm problem (5.10)

The `∞-norm problem (5.10) is written as follows.

min

{
F∞(θ) = max

i=1,...,N
|fi(θ)| : θ ∈ Rd

}
.

For θ ∈ Rd and i = 1, . . . , N , we have

|fi(θ)| = 2f+
i (θ)− fi(θ) =

(
2f+

i (θ) +
N∑

j=1,j 6=i

fj(θ)

)
−

(
N∑
j=1

fj(θ)

)
.

Let

G3(θ) := max
i=1,...,N

(
2f+

i (θ) +
N∑

j=1,j 6=i

fj(θ)

)
.

Then G3 is convex and therefore we get the following DC formulation of (5.10):

min{F∞(θ) := G3(θ)−H1(θ) : θ ∈ Rd}, (5.26)

where both DC components are polyhedral convex. Hence, the problem (5.10) is a
polyhedral DC program. Similarly, DCA applied to (5.26) consists of, at each iteration

A unified DC programming framework and efficient DCA based approaches
for large scale batch Reinforcement Learning 113

k, first calculating a subgradient wk ∈ ∂H1(θk) and then solving the following convex
program:

min
θ∈Rd

{
max

i=1,...,N

(
2f+

i (θ) +
N∑

j=1,j 6=i

fj(θ)

)
− 〈wk, θ〉

}
. (5.27)

The problem (5.27) can be equivalently reformulated as the next linear program:

min t̂− 〈wk, θ〉,
s.t. θ ∈ Rd,

N∑
j=1,j 6=i

tj − t̂ ≤ 0,∀i = 1, . . . , N,

2ti +
N∑

j=1,j 6=i
tj − t̂ ≤ 0,∀i = 1, . . . , N,

〈θ,A(i,j)〉+ b(i) ≤ ti,∀i = 1, . . . , N, ∀j = 1, . . . , NA.

(5.28)

Finally, DCA applied to (5.26) is described in Algorithm 5.3 (`∞-DCA) below.

Algorithm 5.3 DCA for solving (5.26) (`∞-DCA)

Initialization: Let ε be a sufficiently small positive number. Let θ0 ∈ Rd. Set k = 0.
repeat

1. Compute wk ∈ ∂H1(θk) using (5.20).
2. Solve the linear program (5.28) to obtain (θk+1, t̂k+1, tk+1).
3. k = k + 1.

until |F∞(θk)− F∞(θk−1)| ≤ ε(|F∞(θk−1)|+ 1) or ||θk − θk−1||2 ≤ ε(1 + ||θk−1||2).

Similarly to Theorem 5.1, we have

Theorem 5.3. Convergence properties of `∞-DCA
i) `∞-DCA generates the sequence {θk} such that the sequence {F∞(θk)} is decreasing.
ii) The sequence {θk} converges to a critical point θ∗ of (5.26) after a finite number
of iterations.
iii) θ∗ is almost always a local minimizer to (5.26). In particular, if Ii(θ

∗) is a singleton
for all i = 1, ..., N , then θ∗ is a local minimizer to (5.26).

5.3.4 DCA applied on the new concave minimization formu-
lation (5.14)

As (5.14) is a concave minimization problem with linear constraints, the following DC
formulation is the most natural

min{Fcc(θ) := χCθ(θ)−H1(θ) : θ ∈ Rd}, (5.29)

Obviously, the problem (5.29) is a polyhedral DC program where both DC components
are polyhedral convex functions.

114
A unified DC programming framework and efficient DCA based approaches

for large scale batch Reinforcement Learning

DCA applied to (5.29) consists in computing two sequences {wk} and {θk} such that

wk ∈ ∂H1(θk), θk+1 ∈ argmin
{
χCθ(θ)− 〈wk, θ〉 : θ ∈ Rd

}
⇔ θk+1 ∈ argmin

{
−〈wk, θ〉 : 〈A(i,j), θ〉+ b(i) ≤ 0, i = 1, . . . , N, j = 1, . . . , NA

}
.(5.30)

Algorithm 5.4 DCA for solving (5.29) (cc-DCA)

Initialization: Let ε be a sufficiently small positive number. Let θ0 ∈ Rd. Set k = 0.
repeat

1. Compute wk ∈ ∂H1(θk) using (5.20).
2. Solve the linear program (5.30) to obtain θk+1.
3. k = k + 1.

until |Fcc(θ
k)− Fcc(θ

k−1)| ≤ ε(|Fcc(θ
k−1)|+ 1) or ||θk − θk−1||2 ≤ ε(1 + ||θk−1||2).

As (5.29) is a polyhedral DC program where both DC components are polyhedral
convex, we have

Theorem 5.4. Convergence properties of cc-DCA
i) cc-DCA generates the sequence {θk} such that the sequence {Fcc(θk)} is decreasing.
ii) The sequence {θk} converges to a critical point θ∗ of (5.29) after a finite number
of iterations.
iii) θ∗ is almost always a local minimizer to (5.29). In particular, if Ii(θ

∗) is a singleton
for all i = 1, ..., N , then θ∗ is a local minimizer to (5.29).

Remark 5.5. Similarly to the `1-norm problem, our DC formulations for the `∞-
norm and the concave minimization problems have the same advantages: both DC
components are convex polyhedral, consequently the three algorithms `1-DCA, `∞-DCA
and cc-DCA enjoy the same interesting convergence properties.

5.3.5 Performance analysis on different DCA based algo-
rithms

For the same `1-norm (resp. `2-norm) problem, our proposed algorithm `1-DCA (resp.
`2-DCA) is more efficient than DCA1 (resp. DCA2) developed in [98] (see remarks 5.3
and 5.4 above). These advantages show once again the great effect of DC decompo-
sitions as well as the one of solution methods for convex subproblems in DCA. Here
the convexity and the polyhedral structure of fi are the key for designing `1-DCA and
`2-DCA.

Among the four proposed DC formulations, those for the `1-norm, the `∞-norm and
the concave minimization are similar: they have the same second DC component H1

and both DC components are polyhedral convex. Consequently the three resulting
`1-DCA, `∞-DCA and cc-DCA have the same convergence properties (almost always
converge to local solutions after a finite number of iterations) and they require solving
one linear program at each iteration. Hence, in terms of complexity, we can say that

A unified DC programming framework and efficient DCA based approaches
for large scale batch Reinforcement Learning 115

these three algorithms are more efficient than `2-DCA which consists in solving itera-
tively one convex quadratic program. Note also that `2-DCA does not have the finite
convergence property as `1-DCA, `∞-DCA and cc-DCA. Meanwhile, the DC decom-
position (5.23) and the use of local DC decompositions in `2-DCA (see Remark 5.4)
are quite interesting, which can result in higher quality of solutions. This observation
is confirmed by numerical results in our experiments.

Since the three DC programs of the `1-norm, the `∞-norm and the concave minimiza-
tion problems share the same DC component H1, the complexity of the resulting DCAs
differs from one of others by the complexity of linear subproblems. In this sense, cc-
DCA is more advantageous than `1-DCA and `∞-DCA. In fact, the linear program in
cc-DCA has the smallest size with d variables, NA.N constraints; the one in `1-DCA
comes next with d + N variables, (NA + 1).N constraints and finally, the one in `∞-
DCA has largest size with d+N + 1 variables, (NA+ 2).N constraints. Thus, cc-DCA
should be the fastest, `1-DCA is the next and the last is `∞-DCA.

5.3.6 Starting points for DCA

Finding a good starting point is an important issue when designing DCA. For
this purpose we convexify the concave function Fcc by ignoring the difficult term
maxa′∈A 〈θ, φ(S ′i, a

′)〉 in each fi and then consider the convex problem

min

{
Fcv(θ) :=

N∑
i=1

Qθ(Si, Ai) : fi(θ) ≤ 0,∀i = 1, . . . , N

}
(5.31)

which can be reformulated as a linear program. When (5.31) admits an optimal so-
lution, we take it as starting point for DCA. Instead, in case (5.31) has no optimal
solution, we choose a feasible solution.

5.4 Numerical experiments

In the numerical experiments, we study the performance of the proposed DCA al-
gorithms `1-DCA, `2-DCA, `∞-DCA, cc-DCA and compare them with two existing
DCA algorithms DCA1, DCA2 [98], and two standard RL algorithms named Fitted
Q-Iteration (FQI) [32] and Least Square Policy Iteration (LSPI) [52]. Table 5.1 sum-
marizes the comparative algorithms.

Our experiment is composed of two parts. In the first experiment we study the effi-
ciency of the six DCA based algorithms: the four proposed DCA and the two existing
DCA1, DCA2 [98] on the Garnet problem [14] which has been tested in [98]. For a fair
comparison we use the same procedure to generate Garnet instances as in [98]. We
also study the effect of starting points on the proposed DCAs.

116
A unified DC programming framework and efficient DCA based approaches

for large scale batch Reinforcement Learning

Table 5.1 – Summary of all comparative algorithms

Algorithm Considered problem Reference

`1-DCA `1-norm (5.7) our proposal
`2-DCA `2-norm (5.8) our proposal
`∞-DCA `∞-norm (5.10) our proposal
cc-DCA concave (5.12) our proposal
DCA1 `1-norm (5.7) [98]
DCA2 `2-norm (5.8) [98]
FQI - [32]
LSPI - [52]

In the second experiment we compare notable DCA algorithms (`1-DCA, `2-DCA,
and cc-DCA) with the FQI, LSPI algorithms on Garnet problems and the Gridworld
problem [1, 92, 118].

5.4.1 Description of Garnet and Gridworld problems

Let us first present the two problems concerning our computational experiments: Gar-
net and Gridworld.

� Garnet: Stationary Garnet problems, a class of randomly constructed finite MDP
(the state space S and the action space A are finite), were introduced in [14]. The
typical features of a stationary Garnet problem, denoted by Garnet(NS ,NA,NB), are
three parameters: the number of states NS , the number of actions NA and the num-
ber of next states NB for each state-action pair. We consider here a particular type
of Garnet, given in [98], which is a topological structure relative to real dynamical
systems. In this Garnet, the state space is considered as S = {si}i=1,...,NS where each

state si = (s
(j)
i)j=1,...,m is an m-tuple (m = 2) and each component s

(j)
i is chosen out

of all integer numbers between 1 and xi (xi = K, ∀i = 1, . . . , NS). Thus, the number
of states is NS =

∏m
i=1 xi = K2. All parameters of Garnet problems are set similarly

as in [98]. Specifically, for each state-action pair (s, a), the next states are randomly
chosen via the multivariate normal distribution Nm(s, Im) where Im is the identity
matrix of size m. The transition probability of going to each next state is generated
by dividing the interval [0, 1] at (NB − 1) random points. The reward for each state-
action pair is generated uniformly between −1 and 1. The discount factor γ is set
to 0.95. All algorithms use the exact tabular representation and thus, the number of
basis functions is d = NS .NA. For each Garnet problem with the transition proba-
bility function and the reward function generated as above, the optimal policy π∗ is
obtained by the policy iteration algorithm (see, e.g., [118]). We test on NG different
Garnet(NS , NA, NB) problems {Gp}1≤p≤NG and, for each Garnet Gp, construct Ndata

datasets {Dp,q}1≤q≤Ndata of N transition samples (Si, Ai, S
′
i)i=1,...,N drawn uniformly

and independently.

� Gridworld: We use a 100 × 100 Gridworld with sparse rewards as described in

A unified DC programming framework and efficient DCA based approaches
for large scale batch Reinforcement Learning 117

[1, 92, 118]. A cell of the grid corresponds to a state and thus the number of states
is NS = 104. At each state, there are four possible actions: North, South, East,
and West (thus, NA = 4), which make an agent move one cell in the corresponding
direction on the grid with some probability p, or in each of three unintended directions
with probability 1−p

3
. If the agent gets out of the grid, its place will be unchanged.

We divide the grid into non-overlapping regions of 10 × 10 cells, called macrocells,
and thus the number of macrocells is Nreg = 100. For each i ∈ {1, . . . , Nreg} and
j ∈ {1, . . . , NA}, φi+Nreg(j−1)(s, a) = 1 if the state s resides in the ith macrocell and
the action a coincides with aj, 0 otherwise. In this case, the number of basis functions
is d = Nreg.NA. The reward function is given by R = w>φ, where the weight w ∈ Rd

is generated randomly as follows: for i ∈ {1, . . . , d}, wi = 0 with probability of 0.9 and
wi is sampled uniformly from [0, 1] with probability of 0.1. Finally, w is renormalized
such that

∑
i=1,...,dwi = 1. Instances with fewer than two nonzero entries in w are not

interesting and discarded. The discounted factor γ and the probability p are set to
0.99 and 0.7, respectively. For each Gridworld problem, we also obtain the optimal
policy π∗ by the policy iteration algorithm (see, e.g., [118]). We run on NG Gridworlds
{Grp}1≤p≤NG and, for each Grp, build Ndata datasets {Dp,q}1≤q≤Ndata of N transition
samples (Si, Ai, S

′
i)i=1,...,N generated uniformly and independently.

5.4.2 Set up experiments

All experiments were implemented in MATLAB R2013b and performed on a PC In-
tel(R) Xeon(R) CPU E5-2630 v2, @ 2.60GHz of 32GB RAM. The software CPLEX
12.6 was used for solving linear and/or convex quadratic programs. The functions
lsqlin and mldivide in MATLAB were utilized for solving constrained linear least-
squares problems in FQI and the system of equations in LSPI, respectively.

The stopping criteria of all DCA based algorithms considered are either

||θk − θk−1||2 ≤ ε(1 + ||θk−1||2)

or
|F (θk)− F (θk−1)| ≤ ε(|F (θk−1)|+ 1)

or the CPU time exceeds 1000 seconds for `1-norm/`∞-norm/concave problems and
2000 seconds for `2-norm problems. The default tolerance is ε = 10−4.

The stopping criteria of the subgradient method for solving convex subproblems in
DCA1 and DCA2 are either ‖sk‖2 ≤ ε (sk is a subgradient of the objective function
at θk) or the number of iterations does not exceed M . A small value of M implies
a premature stopping of subgradient algorithm, in such a case DCA1 and DCA2 are
not stable in the sense that the sequence of objective function values may not be
decreasing, and then the obtained solution may be worse. When M is large, the
subgradient method runs very slowly. By compromising, we set M to 100.

We are interested in the following criteria to evaluate the effectiveness of the proposed
algorithms: the error performance and its standard deviation (denoted by TA and stdA

118
A unified DC programming framework and efficient DCA based approaches

for large scale batch Reinforcement Learning

respectively), the number of iterations (denoted by Iter), the CPU time (in seconds)
and the value of OBR (for `p-norm problems with p = 1 and p = 2). TA and stdA are
defined in [98] as follows.

TA =
1

NG.Ndata

NG∑
p=1

Ndata∑
q=1

T p,qA , T p,qA =
Eρ[V π∗ − V πp,qA]

Eρ[|V π∗|]
,

where ρ is the uniform distribution over S and the policy πp,qA is greedy with respect
to the output Qθ of the algorithm A and V π is the state value function under policy
π.

stdA =
1

NG

NG∑
p=1

[
1

Ndata

Ndata∑
q=1

(
T p,qA −

1

Ndata

Ndata∑
k=1

T p,kA

)2
] 1

2

.

The value of OBR for `p-norm problems (p = 1 and p = 2) is given by

OBR =

(
1

N

N∑
i=1

|fi(θ)|p
)1/p

.

5.4.3 Experiment 1: Comparison between DCA based algo-
rithms

5.4.3.1 Comparative results of the six versions of DCA

Two purposes of our experiments in this part are to, first, give a comparison of six
versions of DCA and, second, compare carefully between `1-DCA (resp. `2-DCA) and
DCA1 (resp. DCA2).

For the first purpose, we test our four DCA schemes (`1-DCA, `2-DCA, cc-DCA,
`∞-DCA) and two existing ones (DCA1, DCA2) on 10 Garnet(100,5,5) problems
{Gp}1≤p≤10 and 5 sample datasets {Dp,q}1≤q≤5 for each Garnet Gp as described in
Section 5.4.1. The starting point of DCA1, DCA2 is set to zero as in [98]. The average
results of TA, stdA, Iter and CPU obtained by the algorithms on 50 different runs
corresponding to 50 pairs of (Gp, D

p,q) with different values of N (N ∈ {500, 800,
1000, 1300, 1500, 1800, 2000, 2300, 2500}) are shown in Table 5.2. In Fig. 5.1 we
plot the same results concerning TA and CPU time. We also test the algorithms on 5
different Garnet(NS , 5, 5) problems (NS ∈ {225, 324}) and 5 datasets of N transition
samples for each Garnet with different values of N (N ∈ {4000, 5000, 6000, 7000}).
The comparative results are given in Table 5.3.

For the second purpose, we perform four algorithms `1-DCA, `2-DCA and DCA1,
DCA2 on 10 different Garnet(400,5,5) problems and 2 transition sample datasets for
each Garnet with the same tolerance ε = 10−6 and the same starting point as proposed
in Section 5.3.6. The average results of TA, stdA, Iter, CPU and OBR obtained by the
algorithms with different numbers of transition samples N (N ∈ {5000, 6000, 7000,
8000}) are reported in Table 5.4.

A unified DC programming framework and efficient DCA based approaches
for large scale batch Reinforcement Learning 119

Table 5.2 – Average results of TA, stdA, Iter and CPU in seconds obtained by the
six versions of DCA on 50 runs (corresponding to 10 different Garnet(NS = 100,NA =
5,NB = 5) problems and 5 transition sample datasets for each Garnet) with different
numbers of transition samples N . Bold values indicate the best results.

N `1-DCA `2-DCA `∞-DCA cc-DCA DCA1 DCA2

500 TA 0.474 0.758 0.639 0.562 0.481 0.536
stdA 0.06 0.09 0.10 0.07 0.06 0.06
CPU 0.84 10.8 14.4 0.65 7.58 8.72

Iter 7.10 17.3 4.78 6.98 6.30 5.86
800 TA 0.286 0.425 0.425 0.391 0.416 0.485

stdA 0.05 0.09 0.08 0.07 0.05 0.07
CPU 1.57 14.7 38.7 1.01 16.2 16.1

Iter 5.78 14.6 3.66 5.72 7.40 5.92
1000 TA 0.221 0.275 0.409 0.288 0.393 0.458

stdA 0.05 0.07 0.07 0.07 0.05 0.08
CPU 3.06 16.6 27.7 1.27 20.4 20.9

Iter 5.26 12.5 3.98 4.64 7.60 5.68
1300 TA 0.152 0.190 0.321 0.192 0.383 0.450

stdA 0.03 0.05 0.05 0.04 0.06 0.08
CPU 4.21 23.6 32.4 1.80 17.8 45.8

Iter 4.68 10.9 3.56 4.08 7.64 5.84
1500 TA 0.141 0.150 0.287 0.173 0.386 0.428

stdA 0.03 0.04 0.06 0.04 0.06 0.07
CPU 5.78 27.2 43.9 1.36 16.1 50.6

Iter 4.18 10.5 3.50 4.10 7.22 6.24
1800 TA 0.136 0.112 0.310 0.177 0.356 0.444

stdA 0.03 0.03 0.09 0.04 0.04 0.09
CPU 7.33 41.9 92.9 1.79 48.3 108

Iter 5.08 9.90 3.82 3.80 7.58 5.82
2000 TA 0.126 0.103 0.294 0.173 0.369 0.432

stdA 0.03 0.02 0.06 0.04 0.06 0.08
CPU 9.11 34.9 129 1.90 61.5 117

Iter 5.34 9.82 3.26 3.48 8.18 6.06
2300 TA 0.125 0.084 0.275 0.155 0.358 0.411

stdA 0.03 0.02 0.07 0.03 0.06 0.07
CPU 5.69 35.0 201 2.25 65.5 146

Iter 5.06 9.50 3.58 3.26 8.00 5.92
2500 TA 0.112 0.069 0.259 0.137 0.376 0.433

stdA 0.03 0.02 0.07 0.04 0.06 0.08
CPU 6.07 51.7 269 2.44 50.4 165

Iter 5.12 9.36 4.08 2.86 7.48 6.38

120
A unified DC programming framework and efficient DCA based approaches

for large scale batch Reinforcement Learning

Table 5.3 – Average results of TA, stdA, Iter and CPU in seconds obtained by the
six versions of DCA on 25 runs (corresponding to 5 different Garnet(NS ,5,5) problems
(NS ∈ {225, 324}) and 5 transition sample datasets for each Garnet) with different
numbers of transition samples N . Bold values indicate the best results.

Garnet N `1-DCA `2-DCA `∞-DCA cc-DCA DCA1 DCA2

(NS , NA, NB)

(225,5,5) 4000 TA 0.225 0.162 0.572 0.360 0.369 0.370
stdA 0.03 0.03 0.09 0.04 0.03 0.05
CPU 38.0 77.8 793 9.57 216 361

Iter 9.84 9.36 3.64 4.76 9.88 9.24
5000 TA 0.208 0.145 0.640 0.328 0.354 0.359

stdA 0.02 0.03 0.08 0.05 0.03 0.06
CPU 20.1 126 1175 8.49 250 374

Iter 10.4 9.00 2.84 4.48 10.0 8.44
6000 TA 0.188 0.145 0.632 0.307 0.360 0.328

stdA 0.03 0.03 0.13 0.04 0.04 0.06
CPU 22.4 199 1136 9.40 204 505

Iter 8.84 9.28 2.00 3.76 9.84 8.92
7000 TA 0.197 0.135 0.614 0.308 0.352 0.336

stdA 0.03 0.02 0.10 0.05 0.03 0.07
CPU 27.5 143 1765 11.3 298 585

Iter 8.68 9.16 2.00 3.64 9.40 8.72

(324,5,5) 4000 TA 0.271 0.181 0.697 0.425 0.353 0.325
stdA 0.03 0.02 0.12 0.04 0.04 0.04
CPU 65.2 153 773 10.0 753 1307

Iter 11.2 13.4 4.44 6.80 12.0 9.6
5000 TA 0.249 0.148 0.654 0.397 0.355 0.346

stdA 0.04 0.03 0.07 0.05 0.03 0.06
CPU 93.9 231 994 10.9 748 1259

Iter 10.3 12.4 3.04 5.48 10.6 8.52
6000 TA 0.241 0.121 0.730 0.384 0.345 0.295

stdA 0.03 0.02 0.08 0.04 0.04 0.04
CPU 116 210 1150 11.0 789 1377

Iter 9.48 11.3 2.00 4.44 10.2 9.60
7000 TA 0.234 0.106 0.712 0.368 0.358 0.300

stdA 0.03 0.02 0.07 0.04 0.03 0.05
CPU 133 300 1830 12.3 842 1428

Iter 9.96 11.0 2.00 4.08 9.44 10.0

A unified DC programming framework and efficient DCA based approaches
for large scale batch Reinforcement Learning 121

Table 5.4 – Average results of TA, stdA, Iter, CPU in seconds and OBR obtained by
`1-DCA and DCA1 (resp. `2-DCA and DCA2) on 20 runs (corresponding to 10 Gar-
net(400,5,5) problems and 2 transition sample datasets for each Garnet) with different
numbers of transition samples N . Bold values indicate the best results in the same
`1-norm (resp. `2-norm) problem.

N `1-DCA DCA1 `2-DCA DCA2

5000 TA 0.294 0.459 0.217 0.404
stdA 0.02 0.02 0.02 0.03
CPU 100 400 155 1813

Iter 13.8 12.6 15.6 11.6
OBR 0.070 0.118 0.211 0.318

6000 TA 0.294 0.480 0.175 0.398
stdA 0.02 0.02 0.01 0.02
CPU 172 395 261 1902

Iter 14.9 10.8 16.4 11.1
OBR 0.073 0.129 0.205 0.299

7000 TA 0.298 0.480 0.145 0.400
stdA 0.02 0.02 0.01 0.02
CPU 236 378 406 1741

Iter 12.6 8.60 15.6 13.7
OBR 0.073 0.132 0.215 0.292

8000 TA 0.280 0.488 0.139 0.395
stdA 0.02 0.03 0.01 0.03
CPU 319 431 541 1901

Iter 12.6 8.75 15.0 13.1
OBR 0.074 0.138 0.220 0.304

122
A unified DC programming framework and efficient DCA based approaches

for large scale batch Reinforcement Learning

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Number of transition samples N

T
A

ℓ1-DCA
DCA1

cc-DCA
ℓ2-DCA
DCA2

ℓ∞-DCA

(a) Error performance TA

500 1000 1500 2000 2500
0

50

100

150

200

250

300

Number of transition samples N

C
P
U

(s
)

(b) CPU time

Figure 5.1 – Average results of TA and CPU in seconds obtained by the six versions
of DCA on 50 runs (corresponding to 10 different Garnet(NS = 100,NA = 5,NB = 5)
problems and 5 transition sample datasets for each Garnet) with different numbers of
transition samples N .

Comments on computational results:

a) Comparison between the six versions of DCA

i) In terms of the quality of solutions:

• For the medium Garnet problems (NS = 100) in Table 5.2, `1-DCA and `2-
DCA are the two best algorithms, cc-DCA is the third, `∞-DCA is the next
and DCA1, DCA2 are the worst. In particular, `1-DCA is the best in 5/9 cases
(when N ≤ 1500) while `2-DCA is the best in other four cases. The ratio of gain
on TA of `1-DCA versus cc-DCA, `∞-DCA, DCA1, DCA2 and `2-DCA varies
from 15.6% to 27.1%, from 25.8% to 57.1%, from 1.45% to 70.2%, from 11.5%
to 74.1% and from 6% to 37.4%, respectively. As for `2-DCA, it outperforms
cc-DCA, `∞-DCA, DCA1 in 7/9 cases (except when N = 500 and N = 800)
and DCA2 in 8/9 cases (except when N = 500) – the gain versus cc-DCA,
`∞-DCA, DCA1, DCA2 varies from 1.04% to 49.6%, from 32.7% to 73.3%, from
30% to 81.6%, from 12.3% to 84%, respectively. cc-DCA is more efficient than
DCA1, DCA2 in 8/9 cases (except when N = 500) and `∞-DCA in all cases –
the gain versus DCA1, DCA2, `∞-DCA varies from 6.01% to 63.5%, from 19.3%
to 68.3%, from 8% to 47.1%, respectively. Finally, `∞-DCA also outperforms
DCA1 (resp. DCA2) in 6/9 cases (resp. 8/9 cases) – the gain varies from 13.9%
to 31.1% (resp. from 10.6% to 40.1%).

• For the larger Garnet problems (NS ∈ {225, 324} and N ≥ 4000) in Table 5.3,
the quality of the algorithms is classified in the following order: `2-DCA, `1-
DCA, cc-DCA, DCA1, DCA2, `∞-DCA. Particularly, `2-DCA gives the best TA
in all cases – the ratio of gain versus `1-DCA, cc-DCA, `∞-DCA, DCA1, DCA2

varies from 22.8% to 54.7%, from 52.7% to 71.1%, from 71.6% to 85.1%, from
48.7% to 70.3%, from 44.3% to 64.6%, respectively. As for `1-DCA, the gain

A unified DC programming framework and efficient DCA based approaches
for large scale batch Reinforcement Learning 123

on TA versus cc-DCA, `∞-DCA, DCA1, DCA2 varies from 36% to 38.7%, from
60.6% to 70.2%, from 23.2% to 47.7%, from 16.6% to 42.6%, respectively. The
TA of cc-DCA is better than that of both DCA1 and DCA2 in 4/8 cases with
the ratio of gain from 2.43% to 14.7% and larger in other four cases with the
ratio of loss from 2.71% to 23.5%. `∞-DCA seems to be inefficient in these large
problems.

ii) Concerning CPU time:

cc-DCA is the fastest algorithm, `1-DCA and `2-DCA come next, and then
DCA1, DCA2 and finally `∞-DCA. For the medium Garnet problems with NS =
100 (see Table 5.2), the ratio of gain of cc-DCA versus `1-DCA, `2-DCA, `∞-
DCA varies, respectively, from 1.29 to 4.79, from 13.1 to 23.4, from 18 to 110.2
times. The gain is more important versus DCA1 (resp. DCA2): it varies from
9.88 to 32.3 (resp. from 13.4 to 67.6) times. `1-DCA is also fast – the gain versus
DCA1 varies from 2.78 to 11.5 times. Not surprisingly, DCA2, `2-DCA and `∞-
DCA consume much more time due to the complexity of convex subproblems,
but `2-DCA runs faster than DCA2 and `∞-DCA in most cases – the gain of `2-
DCA versus DCA2 varies from 1.09 to 4.17 times in 8/9 cases (when N ≥ 800).
For the larger Garnet problems with NS ∈ {225, 324} (see Table 5.3), the ratio
of gain of cc-DCA is larger – the gain versus `1-DCA, `2-DCA, `∞-DCA, DCA1,
DCA2 varies, respectively, from 2.36 to 10.8, from 8.13 to 24.3, from 82.8 to
156.1, from 21.7 to 75.3, from 37.7 to 131 times. As for `1-DCA, the gain versus
`2-DCA, `∞-DCA, DCA1, DCA2 varies, respectively, from 1.81 to 8.88, from
9.91 to 64.1, from 5.68 to 12.4, from 9.5 to 22.5 times. `2-DCA runs faster than
`∞-DCA, DCA1, DCA2 with the ratio of gain from 4.3 to 12.3, from 1.02 to
4.92, from 2.53 to 8.54 times respectively. Finally, DCA1, `∞-DCA, DCA2 run
slowly and sometimes exceed the maximum CPU time.

b) `1-DCA versus DCA1 (Table 5.4)

i) Regarding the quality of solutions: `1-DCA is much more efficient than DCA1

for all Garnet problems in terms of both TA and stdA. The ratio of gain on TA
varies from 35.9% to 42.6%. Moreover, the OBR of `1-DCA is always smaller
than that of DCA1.

ii) As for CPU time: `1-DCA runs faster than DCA1 in all considered Garnet
problems – the ratio of gain varies from 1.35 to 4 times.

c) `2-DCA versus DCA2 (Table 5.4)

i) `2-DCA enhances TA and OBR more significantly than DCA2 in all cases. Par-
ticularly, the ratio of gain on TA of `2-DCA versus DCA2 varies from 46.2% to
64.8%.

ii) The CPU time of DCA2 usually exceeds the maximum time (2000 seconds)
while that of `2-DCA is about 155 seconds (when N = 5000) – the gain varies
from 3.51 to 11.7 times.

In summary, we can say that for these medium Garnet problems, `1-DCA could be the
algorithm realizing the best trade-off between the quality and the rapidity while `2-
DCA could be the best choice when considering the larger (in terms of the state space

124
A unified DC programming framework and efficient DCA based approaches

for large scale batch Reinforcement Learning

and sample datasets) Garnet problems. Moreover, our DCA algorithm `1-DCA (resp.
`2-DCA) is more efficient than the existing one DCA1 (resp. DCA2) in all criteria.

5.4.3.2 Effect of starting points on our four DCA algorithms

In this experiment, we study the effect of our starting point θ(1) (as in Section 5.3.6)
and the zero starting point θ(2) on our algorithms `1-DCA, `2-DCA, `∞-DCA and cc-
DCA in terms of the error performance TA on 10 different Garnet(100,5,5) problems
and 5 transition sample datasets for each Garnet (N ∈ {200, 400, 600, 800, 1000}).
The comparative results are shown in Table 5.5.

Table 5.5 – Comparative results of the proposed starting point θ(1) and the zero
starting point θ(2) for our algorithms `1-DCA, `2-DCA, `∞-DCA and cc-DCA in terms
of TA on 50 runs (corresponding to 10 different Garnet(100,5,5) problems and 5 tran-
sition sample datasets for each Garnet) with different numbers of transition samples
N . Bold values indicate the best results in each algorithm.

N `1-DCA `2-DCA `∞-DCA cc-DCA
θ(1) θ(2) θ(1) θ(2) θ(1) θ(2) θ(1) θ(2)

200 0.847 0.862 0.972 0.990 0.864 0.877 0.850 0.859
400 0.576 0.627 0.837 0.860 0.747 0.816 0.648 0.734
600 0.408 0.537 0.607 0.640 0.587 0.741 0.508 0.783
800 0.286 0.513 0.443 0.459 0.425 0.694 0.391 0.812
1000 0.221 0.487 0.269 0.300 0.409 0.740 0.288 0.832

From Table 5.5 we see that, for all the algorithms, the starting point θ(1) is more
efficient than θ(2) in all cases – the ratio of gain on TA of `1-DCA, `2-DCA, `∞-DCA,
cc-DCA varies from 1.74% to 54.6%, from 1.81% to 10.3%, from 1.48% to 44.7%, from
1.04% to 65.3%, respectively. This is an illustration of the effectiveness of our proposed
starting point.

5.4.4 Experiment 2: Comparison with LSPI, FQI

5.4.4.1 Garnet problems

This experiment aims to make a comparison between our notable DCA algorithms
`1-DCA, cc-DCA, `2-DCA and the standard RL algorithms FQI, LSPI on Garnet
problems. We test the algorithms on 50 different Garnet(100,5,5) problems and 10
datasets of N transition samples for each Garnet (N ∈ {500, 1000, 1500, 2000, 2500}).
The comparative results of these algorithms in terms of TA, stdA and CPU are pre-
sented in Table 5.6. In Fig. 5.2 we plot the same results concerning TA and CPU
time.

A unified DC programming framework and efficient DCA based approaches
for large scale batch Reinforcement Learning 125

Table 5.6 – Average results of TA, stdA and CPU in seconds obtained by `1-DCA,
`2-DCA, cc-DCA and LSPI, FQI on 500 runs (corresponding to 50 different Gar-
net(100,5,5) problems and 10 transition sample datasets for each Garnet) with different
numbers of transition samples N . Bold values indicate the best results.

N `1-DCA `2-DCA cc-DCA FQI LSPI

500 TA 0.492 0.762 0.578 1.007 0.478
stdA 0.07 0.09 0.09 0.00 0.08
CPU 0.89 10.5 0.58 4.10 22.9

1000 TA 0.233 0.288 0.301 0.210 0.211
stdA 0.05 0.07 0.06 0.05 0.05
CPU 3.04 16.5 1.38 11.4 40.3

1500 TA 0.139 0.146 0.173 0.126 0.127
stdA 0.03 0.04 0.05 0.04 0.04
CPU 6.26 25.9 1.32 22.3 44.6

2000 TA 0.130 0.100 0.166 0.085 0.085
stdA 0.03 0.03 0.04 0.02 0.03
CPU 10.5 44.3 1.89 37.0 45.0

2500 TA 0.122 0.081 0.148 0.069 0.069
stdA 0.03 0.02 0.04 0.02 0.02
CPU 5.63 48.5 2.48 31.7 58.0

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Number of transition samples N

T
A

ℓ1-DCA
cc-DCA
ℓ2-DCA
FQI
LSPI

(a) Error performance TA

500 1000 1500 2000 2500
0

10

20

30

40

50

60

Number of transition samples N

C
P
U

(s
)

(b) CPU time

Figure 5.2 – Average results of TA and CPU in seconds obtained by `1-DCA, `2-DCA,
cc-DCA and LSPI, FQI on 500 runs (corresponding to 50 different Garnet(100,5,5)
problems and 10 transition sample datasets for each Garnet) with different numbers
of transition samples N .

126
A unified DC programming framework and efficient DCA based approaches

for large scale batch Reinforcement Learning

Comments on numerical results

For medium Garnet problems (Table 5.6 and Fig. 5.2), LSPI and FQI give the best
error performance TA, except for the case N = 500 where FQI completely fails to
find a good solution and its TA is the largest versus all algorithms. Meanwhile, to
reach these results LSPI and FQI need much more CPU time than our DCAs. The TA
furnished by `1-DCA is close to the ones of LSPI but `1-DCA is much faster than LSPI.
The ratio of gain varies from 4.3 to 25.7 times. Similarly, `1-DCA is faster than FQI,
from 3.5 to 5.6 times. As for `2-DCA and cc-DCA, their error performances TA are
comparable with `1-DCA. More precisely, `2-DCA gives the smaller TA when N = 2000
and N = 2500 and the slightly larger TA in other three cases, but it consumes more
time than `1-DCA (from 4.1 to 11.8 times). The TA given by cc-DCA is slightly larger
than that of `1-DCA but it is faster from 1.5 to 5.5 times. Thus, not surprisingly,
cc-DCA is the fastest algorithm, in particular, the ratio of gain versus LSPI (resp.
FQI) varies from 23.4 to 39.4 (resp. from 7 to 19.6) times.
In summary, `1-DCA could be the algorithm realizing the best trade-off between the
quality and the rapidity.

5.4.4.2 Gridworld problems

In this experiment, we study the performance of `1-DCA, `2-DCA, cc-DCA in com-
paring with LSPI, FQI on 10 different Gridworld problems and 10 random datasets of
N transition samples for each Gridworld (N ∈ {900, 1100,. . ., 2100}) as described in
Section 5.4.1. The comparative results in terms of TA, stdA and CPU time are reported
in Table 5.7 and Fig. 5.3.

900 1300 1700 2100

0.5

0.6

0.7

0.8

Number of transition samples N

T
A

(a) Error performance TA

900 1300 1700 2100
0

20

40

60

80

100

Number of transition samples N

C
P
U

(s
)

ℓ1-DCA
cc-DCA
ℓ2-DCA
FQI
LSPI

(b) CPU time

Figure 5.3 – Average results of TA and CPU in seconds obtained by `1-DCA, `2-
DCA, cc-DCA and LSPI, FQI on 100 runs (corresponding to 10 different Gridworld
problems and 10 transition sample datasets for each Gridworld) with different numbers
of transition samples N .

A unified DC programming framework and efficient DCA based approaches
for large scale batch Reinforcement Learning 127

Table 5.7 – Average results of TA, stdA and CPU in seconds obtained by `1-DCA,
`2-DCA, cc-DCA and LSPI, FQI on 100 runs (corresponding to 10 different Gridworld
problems and 10 transition sample datasets for each Gridworld) with different numbers
of transition samples N . Bold values indicate the best results.

N `1-DCA cc-DCA `2-DCA FQI LSPI

900 TA 0.820 0.826 0.629 0.691 0.702
stdA 0.02 0.02 0.06 0.06 0.07
CPU 0.75 0.69 5.34 8.94 86.9

1100 TA 0.820 0.829 0.610 0.695 0.705
stdA 0.02 0.01 0.06 0.07 0.06
CPU 0.98 0.78 7.50 11.0 83.3

1300 TA 0.814 0.827 0.587 0.688 0.690
stdA 0.02 0.01 0.05 0.06 0.06
CPU 1.31 0.90 9.94 12.9 79.2

1500 TA 0.810 0.826 0.577 0.712 0.710
stdA 0.03 0.00 0.04 0.06 0.06
CPU 1.77 1.01 11.1 14.8 69.1

1700 TA 0.812 0.825 0.569 0.711 0.708
stdA 0.02 0.00 0.04 0.06 0.07
CPU 1.65 1.12 13.4 16.6 57.1

1900 TA 0.818 0.825 0.561 0.710 0.724
stdA 0.02 0.00 0.03 0.06 0.06
CPU 1.93 1.33 14.9 18.4 51.3

2100 TA 0.815 0.825 0.556 0.716 0.720
stdA 0.02 0.00 0.02 0.06 0.07
CPU 2.24 1.44 17.8 20.3 48.1

128
A unified DC programming framework and efficient DCA based approaches

for large scale batch Reinforcement Learning

Comments on numerical results (Table 5.7 and Fig. 5.3)

In terms of quality, `2-DCA gives the best error performance TA in all cases, LSPI and
FQI come next, and afterward `1-DCA, then cc-DCA. In particular, the gain on TA
of `2-DCA versus LSPI (resp. FQI) varies from 10.3% to 22.7% (resp. from 8.97%
to 22.3%). As for the rapidity, cc-DCA is always the fastest algorithm, especially the
ratio of gain versus LSPI (resp. FQI) varies from 33.4 to 125.9 (resp. from 12.96
to 14.8) times. In all cases, LSPI consumes much more time than other algorithms.
Among three DCA based algorithms `2-DCA is the slowest, meanwhile it is faster than
LSPI (resp. FQI) from 2.7 to 16.27 (resp. from 1.14 to 1.67) times. In sum, we can
say that for these Gridworld problems `2-DCA is the most efficient algorithm which
realizes the best trade-off between the quality and the rapidity.

5.5 Conclusions

We have intensively investigated DC programming and DCA for Batch RL by finding
the zero of the empirical Optimal Bellman Residual via linear approximation. Besides
the existing `p-norm formulations of OBR (p ∈ {1, 2}) we have considered the `∞-
norm, and also proposed the new concave minimization formulation without using the
`p-norm of OBR. These optimization formulations are reformulated as DC programs for
which four DCA schemes have been developed. Exploiting the special structure of the
considered problems we have carefully addressed the two key issues of DCA – the nice
effect of DC decompositions and the solution methods of resulting convex subproblems
so as to design efficient DCA based algorithms. It turns out that, for the same `1-
norm (resp. `2-norm) formulation, the proposed `1-DCA (resp. `2-DCA) is much more
efficient than the existing DCA1 (resp. DCA2) on both quality and rapidity. Among
the four proposed DCA, the cc-DCA (corresponding to the new concave formulation) is
the fastest, and the three `1-DCA, cc-DCA and `∞-DCA enjoy interesting convergence
properties of polyhedral DC programs while `2-DCA is of good quality thanks to the
update of DC decompositions during the algorithm. Comparing with the two standard
approaches for Batch RL, `1-DCA (resp. `2-DCA) realizes the best trade-off between
the quality and the rapidity for Garnet problems (resp. Gridworld problems).

Chapter 6

Online DCA for Reinforcement
Learning1

Abstract: This chapter focuses on developing reinforcement learning (RL) techniques in on-
line mode via the optimal Bellman residual (OBR) minimization approach. Based upon the
transition sample collected from the interaction at each step, an agent tries to improve the
policy via the state-action value function Q by optimizing the sampled OBR functions with
`p-norm (p ≥ 1). In fact, each `p-norm optimization formulation of OBR is a DC (Dif-
ference of Convex functions) program. In this chapter, we investigate Online DCA (DC
Algorithm) for solving the `2-norm formulations of OBR via value-function linear approx-
imation. Exploiting an appropriate DC decomposition, we develop a corresponding Online
DCA based algorithm which enjoys the online stability property. We also indicate that the
well-known residual gradient algorithm for RL is a special case of our Online DCA algo-
rithm. We propose an alternating version of this algorithm where the value function at each
step is alternatively updated. Numerical experiments on two benchmarks – mountain car and
pole balancing problems – show the effectiveness of our approaches in comparison with some
standard RL algorithms (Q-learning, SARSA).

1. The material of this chapter is based on the following work:
[1]. Vinh Thanh Ho, Hoai An Le Thi. Online DCA for Reinforcement Learning. Submitted to ALT
2018: 29th International Conference on Algorithmic Learning Theory.

129

130 Online DCA for Reinforcement Learning

6.1 Our contributions

We develop RL techniques in online mode based on Online DC programming and
Online DCA by addressing the `p-norm of empirical OBR via value-function linear
approximation. Firstly, we consider an `2-norm optimization formulation of OBR for
which Online DC programming is investigated. Exploiting an appropriate DC de-
composition for DC function at each step, we develop the corresponding Online DCA
based algorithm, which enjoys the online stability property. Secondly, we suggest an
alternating version of our algorithm where the update rule of value function is com-
puted alternatively. Finally, we provide several numerical experiments of the proposed
algorithms on two benchmarks – mountain car problems and pole balancing problems
– in comparison with two well-known RL algorithms, namely Q-learning and SARSA.

The rest of the chapter is organized as follows. Optimization formulations of the
empirical OBR is described in Section 6.2. Section 6.3 first presents an introduction of
Online DC programming and Online DCA and then shows how to investigate Online
DC programming and Online DCA for RL. Section 6.4 reports the numerical results
on several test problems which is followed by some conclusions in Section 6.5.

6.2 Optimization formulations

Similarly to Section 5.2, we briefly restate the optimization formulation of `p-norm
(p ≥ 1) of OBR, in particular when p = 2. Given a basic function vector φ(·) =
(φ1(·), φ2(·), ..., φd(·))> ∈ Rd where φi : S ×A → R, i = 1, . . . , d are basic functions on
S×A. Then the linear approximation of the function Q, denoted by Qθ, is characterized
by the weight vector θ ∈ Rd according to the relation

Qθ(s, a) := 〈θ, φ(s, a)〉,∀(s, a) ∈ S ×A.

Let F denote the space of approximation functions, say

F :=
{
Qθ(s, a) = 〈θ, φ(s, a)〉|θ ∈ Rd

}
.

The `p-norm (p ≥ 1) of OBR with the probability distribution µ is defined as (see e.g.
[86])

Jp,µ(Q) := ||B∗Q−Q||p,µ, where ||Q||p,µ :=

 ∑
(s,a)∈S×A

µ(s, a)|Q(s, a)|p
 1

p

.

Thus, with the linear approximation, the `p-norm (p ≥ 1) of the empirical OBR over
the space of linear approximation functions F is

Jp,µ(Qθ) = ||B∗Qθ −Qθ||p,µ.

Online DCA for Reinforcement Learning 131

In RL, estimating the optimal state-action value function at each step is based on the
transition sample through the interaction with the environment. Specifically, at the
step t, one first collects a sample (St, At, S

′
t, rt) via ε-greedy strategy, then considers a

nonbiased estimation of B∗Q(St, At) :

B̂∗Q(St, At) = rt + γmax
a′∈A

Q(S ′t, a
′)

Finally, at the final step T , one minimize the corresponding empirical `p-norm of OBR:

Jp,T (Q) :=
[∑T

t=1

(
B̂∗Q(St, At)−Q(St, At)

)p]1/p

.

Using this sampling-based technique with linear approximation operator, we have to
minimize the empirical `p-norm (p ≥ 1) of the empirical OBR that is(

T∑
t=1

∣∣∣B̂∗Qθ(St, At)−Qθ(St, At)
∣∣∣p) 1

p

and finally the `p-norm formulation of the empirical OBR via linear approximation
takes the form

min
θ∈Rd

{
Fp,T (θ) :=

(
T∑
t=1

∣∣∣∣rt + γmax
a′∈A

〈θ, φ(S ′t, a
′)〉 − 〈θ, φ(St, At)〉

∣∣∣∣p
)}

. (6.1)

Let pt denote the real-value function on Rd defined as

pt(θ) := rt + γmax
a′∈A

〈θ, φ(S ′t, a
′)〉 − 〈θ, φ(St, At)〉.

Clearly, pt is the maximal function of a finite family of affine functions, expressed as

pt(θ) = max
j=1,...,NA

{
〈A(t,j), θ〉+ b(t)

}
where A(t,j) := γφ(S ′t, aj)− φ(St, At), b(t) := rt, j = 1, . . . , NA.

In this chapter, we consider the `2-norm optimization formulation at the final step T
taking the form

min

{
F2,T (θ) :=

T∑
t=1

[pt(θ)]
2 : θ ∈ Rd

}
. (6.2)

As each pt is a polyhedral convex function, F2,T is a DC function.

6.3 Solution methods by Online DC programming

and Online DCA

6.3.1 Online DCA for solving the `2-norm problem (6.2)

Recall that the `2-norm problem (6.2) at final step T is of the form:

min

{
F2,T (θ) :=

T∑
t=1

[pt(θ)]
2 : θ ∈ Rd

}
.

132 Online DCA for Reinforcement Learning

According to Online DC programming, at the step t, we have the DC function

ft(θ) = [pt(θ)]
2 .

Taking at ∈ dom ∂pt, bt ∈ ∂pt(at), we define the affine minorization of the polyhedral
convex function pt as follows

lt(θ) = pt(at) + 〈θ − at, bt〉.

Let l−(θ) := max{0,−l(θ)}. For θ ∈ Rd, we have

pt(θ) =
[
pt(θ) + l−t (θ)

]
− l−t (θ),

which implies that
ft(θ) = gt(θ)− ht(θ),

where
gt(θ) = 2

{[
pt(θ) + l−t (θ)

]2
+
[
l−t (θ)

]2}
and

ht(θ) =
[
pt(θ) + 2l−t (θ)

]2
.

It is evident that pt + l−t and l−t are nonnegative and convex on Rd, so are gt and ht.

According to a particular Online DCA based scheme in Section 1.2.3, at the step t, we
solve the subproblem (1.11) by approximating by one iteration of subgradient method.
Thus, θt+1 will be updated as

θt+1 = θt − ηt
2
vt (6.3)

where ηt is a step size, the vector vt ∈ (∂gt(θ
t)− zt), zt ∈ ∂ht(θt).

� Compute ∂ht(θ): from the definition of ht and l−t , we have

∂ht(θ) = ∂
[
pt(θ) + 2l−t (θ)

]2 ⊃ 2
[
pt(θ) + 2l−t (θ)

] [
∂pt(θ) + 2∂(l−t)(θ)

]
,

∂l−t (θ) =


{0} if lt(θ) > 0,[
0,−bt

]
if lt(θ) = 0,

{−bt} if lt(θ) < 0,

and

∂pt(θ) = ∂

[
max

j=1,...,NA
〈A(t,j), θ〉+ b(t)

]
= co

{
A(t,jt) : jt ∈ It(θ)},

It(θ) = argmax j=1,...,NA
〈A(t,j), θ 〉. (6.4)

Hence, we can take a subgradient zt ∈ ∂ht(θt) as the following procedure.

+ Let jt be an index in It(θ
t) defined by (6.4), then bt = A(t,jt).

+ Let jt be an index in It(at), then bt = A(t,jt).

Online DCA for Reinforcement Learning 133

+ Let τ1,t be a real number in [−1, 0]. We choose c1,t ∈ ∂(l−t)(θt) as

c1,t =


{0} if lt(θ

t) > 0,

{τ1,tbt} if lt(θ
t) = 0,

{−bt} if lt(θ
t) < 0.

+ zt is computed by

zt = 2
[
pt(θ

t) + 2l−t (θt)
]

[bt + 2c1,t] . (6.5)

� Compute ∂gt(θ): from the definition of gt, we have

∂gt(θ) = 2∂
{[
pt(θ) + l−t (θ)

]2
+
[
l−t (θ)

]2}
⊃ 4

[
pt(θ) + l−t (θ)

] [
∂pt(θ) + ∂(l−t)(θ)

]
+ 4l−t (θ)∂(l−t)(θ).

Similarly, we can take a subgradient ut ∈ ∂gt(θt) as the following procedure.

+ Let τ2,t be a real number in [−1, 0]. We choose c2,t ∈ ∂(l−t)(θt) as

c2,t =


{0} if lt(θ

t) > 0,

{τ2,tbt} if lt(θ
t) = 0,

{−bt} if lt(θ
t) < 0.

+ ut is computed by

ut = 4
[
pt(θ

t) + l−t (θt)
]

[bt + c2,t] + 4l−t (θt)c2,t. (6.6)

From (6.5) and (6.6), vt ∈ (∂gt(θ
t)− zt) is chosen as

vt = ut − zt

= 4
[
pt(θ

t) + l−t (θt)
]

[bt + c2,t] + 4l−t (θt)c2,t − 2
[
pt(θ

t) + 2l−t (θt)
]

[bt + 2c1,t]

=

{
2pt(θ

t)bt if lt(θ
t) 6= 0

2pt(θ
t)
[
bt + 2(τ2,t − τ1,t)bt

]
if lt(θ

t) = 0
(6.7)

= 2
[
〈A(t,jt), θt〉+ b(t)

] [
A(t,jt) + 2δtA

(t,jt)1〈A(t,jt),θ〉+b(t)=0(θt)
]
, (6.8)

where δt = τ2,t − τ1,t ∈ [−1, 1].

At last, Online DCA applied to (6.2) can be described as Algorithm 6.1 (ODCA).

Algorithm 6.1 Online DCA for solving (6.2) (ODCA)

Initialization: let {ηt} be the sequence of step sizes, θ1 be the initial point
for t = 1, 2, . . . do

1. Choose jt ∈ It(θt) and jt ∈ It(at) using (6.4).
2. Compute vt ∈ (∂gt(θ

t)− zt) with zt ∈ ∂ht(θt) using (6.8).
3. Compute θt+1 using (6.3).

end for

The proposed ODCA algorithm enjoys an interesting property as stated Theorem 6.1.
The proof technique of this theorem rests partly on the works [104].

134 Online DCA for Reinforcement Learning

Theorem 6.1. (Online stability of ODCA)

Assume that ODCA generates the sequence {θt}t=1,...,T+1 with the step size ηt = η for
all t and the sequence {vt} is upper bounded by V , i.e. ‖vt‖ ≤ V for all t. If η = 1/

√
T ,

then the ODCA algorithm is online stable, that is to say,

lim
T→∞

1

T

T∑
t=1

‖θt − θt+1‖ = 0.

Proof. We know that the update rule (6.3) is equivalent to

θt+1 ∈ arg min
θ∈Rd

t∑
i=1

〈θ, vi〉+
1

η
‖θ‖2.

Since the function ‖ · ‖2 is a strongly convex function on Rd, we derive from (6.3.1)
that (

t∑
i=1

〈θt, vi〉+
1

η
‖θt‖2

)
−

(
t∑
i=1

〈θt+1, vi〉+
1

η
‖θt+1‖2

)
≥ 1

η
‖θt − θt+1‖2. (6.9)

Similarly to the step t− 1, we have(
t−1∑
i=1

〈θt+1, vi〉+
1

η
‖θt+1‖2

)
−

(
t−1∑
i=1

〈θt, vi〉+
1

η
‖θt‖2

)
≥ 1

η
‖θt+1 − θt‖2. (6.10)

The sum, side by side, of (6.9) and (6.10) yields

2

η
‖θt+1 − θt‖2 ≤ 〈θt − θt+1, vt〉 ≤ ‖θt+1 − θt‖‖vt‖, ∀t.

Thus, we have

STODCA =
1

T

T∑
t=1

‖θt − θt+1‖ ≤ ηV

2
,

which concludes the proof.

Remark 6.1. By choosing the suitable parameters, we see that the class of residual
gradient (RG) algorithms in [5] is a special case of ODCA. Indeed, if δt = 0 or at = θt

for all t, then

θt+1 = θt − ηt
[
〈A(t,jt), θt〉+ b(t)

]
A(t,jt),

which is exactly the same as the update step in RG algorithms, which is summarized
in Algorithm 6.2 (ODCA1).

Online DCA for Reinforcement Learning 135

Algorithm 6.2 ODCA when at = θt for all t (ODCA1)

Initialization: let {ηt} be the sequence of step sizes, θ1 be the initial point
for t = 1, 2, . . . , T do

1. Choose jt ∈ It(θt) using (6.4).
2. Compute vt ∈ (∂gt(θ

t)− zt) with zt ∈ ∂ht(θt):

vt = 2
[
〈A(t,jt), θt〉+ b(t)

]
A(t,jt).

2. Compute θt+1 using (6.3).
end for

6.3.2 Alternating Online DCA versions

To exploit the knowledge of transition sample (St, At, S
′
t, rt) for each update step (6.3),

we propose alternating versions of ODCA. Indeed, the computation of vt (6.8) can be
rewritten explicitly as

vt = 2
[
〈A(t,jt), θt〉+ b(t)

] [
A(t,jt) + 2δtA

(t,jt)1〈A(t,jt),θ〉+b(t)=0(θt)
]

(6.11)

= 2
[
〈A(t,jt), θt〉+ b(t)

] {
γφ(S ′t, ajt)− φ(St, At) +

2δt [γφ(S ′t, ajt)− φ(St, At)] 1〈A(t,jt),θ〉+b(t)=0(θt)
}
. (6.12)

When we change the transition at the step t that is (S ′t, a) 6= (St, At), the procedure to
update θt+1 can be performed alternatively in terms of φ(St, At), φ(S ′t, ajt), φ(S ′t, ajt)

as Figure 6.1. In particular, the vector θ
t+1

for the current state-action (St, At) is
used to update θt+1 for the next state-action (S ′t, a). Thus, the quality of θt+1 can be
improved.

Consequently, we derive an alternating version of ODCA (resp. ODCA1) given by
Algorithm 6.3 (AODCA) (resp. Algorithm 6.4 (AODCA1)).

Algorithm 6.3 Alternating Online DCA for solving (6.2) (AODCA)

Initialize: let {ηt} be the sequence of step sizes, θ1 be the initial point
for t = 1, 2, . . . , T do

1. Choose jt ∈ It(θt) and jt ∈ It(at) using (6.4).
2. Compute θt+1 using Procedure 1.

end for

136 Online DCA for Reinforcement Learning

1: Input: sample (St, At, S
′
t, rt), basic function φ, weight θt, indices jt, jt, and

δt ∈ [−1, 1]
2: Output: weight θt+1

3:

4: if 〈A(t,jt), θt〉+ b(t) 6= 0 then
5:

6: if (S ′t, ajt) = (St, At) then
7: θt+1 = θt − ηt

[
〈A(t,jt), θt〉+ b(t)

]
(γ − 1)φ(St, At)

8: else
9: θ

t+1
= θt + ηt

[
〈A(t,jt), θt〉+ b(t)

]
φ(St, At)

10: θt+1 = θ
t+1 − ηt

[
〈A(t,jt), θ

t+1〉+ b(t)
]
γφ(S ′t, ajt)

11: end if
12: else if ajt = ajt then
13:

14: if (S ′t, ajt) = (St, At) then
15: θt+1 = θt − ηt

[
〈A(t,jt), θt〉+ b(t)

]
(γ − 1)(1 + 2δt)φ(St, At)

16: else
17: θ

t+1
= θt + ηt

[
〈A(t,jt), θt〉+ b(t)

]
(1 + 2δt)φ(St, At)

18: θt+1 = θ
t+1 − ηt

[
〈A(t,jt), θ

t+1〉+ b(t)
]
γ(1 + 2δt)φ(S ′t, ajt)

19: end if
20: else
21:

22: if (S ′t, ajt) = (St, At) then

23: θ
t+1

= θt − ηt
[
〈A(t,jt), θt〉+ b(t)

]
(γ − 1− 2δt)φ(St, At)

24: θt+1 = θ
t+1 − ηt

[
〈A(t,jt), θ

t+1〉+ b(t)
]

2γδtφ(S ′t, ajt)

25: else if (S ′t, ajt) = (St, At) then

26: θ
t+1

= θt + ηt
[
〈A(t,jt), θt〉+ b(t)

]
(1 + 2δt(1− γ))φ(St, At)

27: θt+1 = θ
t+1 − ηt

[
〈A(t,jt), θ

t+1〉+ b(t)
]
γφ(S ′t, ajt)

28: else
29: θ

t+1
= θt + ηt

[
〈A(t,jt), θt〉+ b(t)

]
(1 + 2δt)φ(St, At)

30: θt+1 = θ
t+1 − ηt

[
〈A(t,jt), θ

t+1〉+ b(t)
]
γφ(S ′t, ajt)

31: θt+1 = θt+1 − ηt
[
〈A(t,jt), θt+1〉+ b(t)

]
2δtγφ(S ′t, ajt)

32: end if
33: end if

Figure 6.1 – Procedure 1: compute θt+1 in the alternating version of ODCA

Online DCA for Reinforcement Learning 137

Algorithm 6.4 AODCA when at = θt for all t (AODCA1)

Initialize: let {ηt} be the sequence of step sizes, θ1 be the initial point
for t = 1, 2, . . . , T do

1. Choose jt ∈ It(θt) using (6.4).
2. Compute θt+1 by the following procedure
if (S ′t, ajt) = (St, At) then
θt+1 = θt − ηt

[
〈A(t,jt), θt〉+ b(t)

]
(γ − 1)φ(St, At).

else
θ
t+1

= θt + ηt
[
〈A(t,jt), θt〉+ b(t)

]
φ(St, At).

θt+1 = θ
t+1 − ηt

[
〈A(t,jt), θ

t+1〉+ b(t)
]
γφ(S ′t, ajt).

end if
end for

6.4 Numerical experiments

In the numerical experiments, we describe the performance of the proposed online
algorithms ODCA, ODCA1 and their alternating versions AODCA, AODCA1, and
compare our notable algorithm with some standard RL algorithms: Q-learning [118,
126], SARSA [114, 117]. Our experiment consists of two well-known benchmarks:
mountain car problems [118] and pole balancing problems [6, 84] described as follows.

6.4.1 Descriptions of mountain car and pole balancing prob-
lems

� Mountain car problem: a continuous control task of driving an underpowered car
up a steep mountain road [118]. The state of the car at step t is characterized by its
position, denoted by qt, and its velocity, denoted by q̇t. The simplified physics which
the car moves according to is described in detail in [118]. In this case, the state space
is continuous and Sc = {(q, q̇) : blq ≤ q ≤ brq, blq̇ ≤ q̇ ≤ brq̇} where the left bounds
blq = −1.5, blq̇ = −0.07 and the right bounds brq = 0.45, brq̇ = 0.07. If the next
position qt+1 ≤ blq, then the next velocity q̇t+1 is set to 0. When qt+1 ≥ brq, the
goal at the top of the mountain is reached. Each episode of the task starts from “the
foot of the mountain” (i.e. q = −0.5, q̇ = 0) and ends when either the goal or the
maximum number of steps per episode is reached. The action space is A = {−1, 0, 1},
corresponding to three actions: full throttle forward, full throttle reverse and zero
throttle. The reward rt is set to 100 if the goal is reached, −1 otherwise. In our
experiment, we discretize the continuous state space Sc into a discrete state space
denoted by S. In order to convert a continuous state s ∈ Sc into S, we check which
state in S is the closest to s and return it as a state discretization of s. As for basis
functions, for each (si, aj) ∈ S ×A, i = 1, . . . , NS and j = 1, . . . , NA, we define

φ(si, aj) = (φk(si, aj))k=1,...,NS .NA (6.13)

138 Online DCA for Reinforcement Learning

where

φk(si, aj) =

{
1 if k = i+ (j − 1).NS ,
0 otherwise,

(6.14)

and thus, the number of basis functions is d = NS .NA.

� Pole balancing problem: a control task which consists in stabilizing a pole hinged
to a cart by applying forces to the cart [6, 84, 118]. In this problem, the state space
Sc = {(q, q̇, x, ẋ) ∈ R4} is continuous, where q, q̇ are respectively the vertical angle
(in radians), the angular velocity (in radians per second) of the pole, and x, ẋ are
respectively the cart position (in meters) from the center and its velocity (in meters
per second). The general physics of the cart and pole is presented in [6]. In our
experiments, each episode starts from the “zero” state (i.e. q = q̇ = x = ẋ = 0) and
ends when the pole falls (i.e. |q| > π/4) or the cart moves off the track (i.e. |x| > 4).
The action space is A = {−10,−9, . . . , 9, 10}, corresponding to the forces (in newtons)
to the cart. At step t, the reward is defined as rt = −10000 − 50|qt| − 100|xt| if the
corresponding episode is terminated, and rt = 10 − 1000x2 − 5|qt| − 10ẋt otherwise.
Similarly to mountain car problem, we also consider a discrete state space S and the
similar basis functions.

6.4.2 Set up experiments

All experiments were implemented in MATLAB R2013b and performed on a PC In-
tel(R) Xeon(R) CPU E5-2630 v2, @ 2.60GHz of 32GB RAM. All parameters for the
simulation of both above problems are set the same as in the implementation by José
Antonio Mart́ın H. and the source codes of Q-learning, SARSA are available on his
homepage 2. The initial point for all algorithms is θ1 = 0 ∈ Rd. As mentioned in
Section 4.1, we here consider the ε-greedy method to make the trade-off between ex-
ploitation and exploration. In particular, the exploration schedule is εt = ε0.ε

epi(t)

where the decay rate ε = 0.99, the initial exploration probability ε0 = 0.01 and the
function epi(t) returns the index of episode which the step t belongs to. The discount
factor for mountain car problems (resp. pole balancing problems) is γ = 0.97 (resp.
γ = 0.95). The maximum number of episodes is set to 1000. The maximum number of
steps per episode is set to 1000. The learning rate is ηt = η for all t where η is chosen
from the set {0.1, 0.2, . . . , 2} such that it gives the smallest (resp. largest) averaged
number of steps at the last episode for mountain car problems (resp. pole balancing
problems). As for the ODCA, AODCA algorithms, the value δt = −0.5 and at = θ1

for all t. For mountain car problems, the criteria to evaluate the effectiveness of the
proposed algorithms are the average number of steps at the last episode and CPU time
(in seconds), while for pole balancing problems we are interested in the total number
of steps of all episodes and the CPU time per step (in seconds).

2. https://jamh-web.appspot.com/download.htm#Reinforcement_Learning:

Online DCA for Reinforcement Learning 139

6.4.3 Computational results

Two purposes of our experiments in this chapter are to, first, give a comparison of
four algorithms: ODCA, ODCA1, AODCA, AODCA1 in mountain car problems and,
second, compare between the notable algorithms AODCA1 and Q-learning, SARSA in
both problems.

Concerning the first purpose, we tune the parameter η for each algorithm over 5
different runs and, with the best value of η, we test the algorithm over 50 runs. Fig. 6.2
shows the average number of steps of four ODCA based algorithms over 50 runs in
the number of episodes in mountain car problems. In addition, each bar in Fig. 6.2
represents the value of standard deviation number of steps over 50 runs divided by
8 (this makes the figures clearer). Table 6.1 reports the average/standard deviation
number of steps at the last episode and CPU time (in seconds) of the four algorithms.

Table 6.1 – Average/standard deviation number of steps at the last episode and CPU
time (in seconds) of two ODCA based algorithms and their alternating version over 50
runs in mountain car problems. Bold values indicate the best results.

Algorithms Number of steps at the last episode CPU
ODCA 295.4.2 ± 111.3 52.6
ODCA1 219.1 ± 54.1 42.5
AODCA 278.9 ± 90.84 43.3
AODCA1 182.3 ± 39.1 25.5

0 100 200 300 400 500 600 700 800 900 1000

Episodes

100

200

300

400

500

600

700

800

900

1000

N
um

be
r

of
 s

te
ps

ODCA
ODCA1
AODCA
AODCA1

Figure 6.2 – Average/standard deviation number of steps of two ODCA based algo-
rithms and their alternating version in the number of episodes over 50 runs in mountain
car problems. Each bar represents the value of standard deviation number of steps
divided by 8. The lower the curve, the better the performance.

140 Online DCA for Reinforcement Learning

For the second purpose, similarly, we tune the parameter over 10 different runs and run
each algorithm over 100 runs in both mountain car and pole balancing problems. The
average/standard deviation results of AODCA1 and Q-learning, SARSA over these
100 runs are reported in Fig. 6.3 and Fig. 6.4. These results at the last episode and
CPU time for mountain car problems are given in Table 6.2. Table 6.3 presents the
total number of steps of all episodes, CPU time (in seconds) and the ratio of CPU
time to the total number of steps of the three algorithms in pole balancing problems.

Table 6.2 – Average/standard deviation number of steps at the last episode and CPU
time (in seconds) of AODCA1 and Q-learning, SARSA over 100 runs in mountain car
problems. Bold values indicate the best results.

Algorithms Number of steps at the last episode CPU
SARSA 210.2 ± 54.2 24.1

Q-learning 222.1 ± 55.7 26.1
AODCA1 184.8 ± 35.0 26.8

Table 6.3 – Total number of steps of all episodes and CPU time (in seconds) and the
ratio of CPU time to the total number of steps (denoted by CPU/step) of AODCA1
and Q-learning, SARSA over 100 runs in pole balancing problems.

Algorithms Total number of steps CPU CPU/step
SARSA 637 899 26.0 4.0e-5

Q-learning 780 088 37.3 4.7e-5
AODCA1 791 213 37.9 4.7e-5

0 100 200 300 400 500 600 700 800 900 1000

Episodes

200

300

400

500

600

700

800

900

1000

N
um

be
r

of
 s

te
ps

SARSA
Q-learning
AODCA1

Figure 6.3 – Average/standard deviation number of steps of AODCA1 and Q-
learning, SARSA in the number of episodes over 100 runs in mountain car problems.
The lower the curve, the better the performance.

Online DCA for Reinforcement Learning 141

0 100 200 300 400 500 600 700 800 900 1000

Episodes

0

100

200

300

400

500

600

700

800

900

1000

1100

N
um

be
r

of
 s

te
ps

SARSA
Q-learning
AODCA1

Figure 6.4 – Average/standard deviation number of steps of AODCA1 and Q-
learning, SARSA in the number of episodes over 100 runs in pole balancing problems.
The upper the curve, the better the performance.

Comments on computational results:

Concerning mountain car problems, the smaller the number of steps, the better the
algorithm (due to the fact that one needs to drive the car such that it can move up to the
top of the mountain as soon as possible). From Fig. 6.2 and Table 6.1, we see that the
alternating versions of ODCA algorithms are more efficient than their original versions.
Among our four proposed algorithms, AODCA1 is the best in both quality of solutions
and rapidity. From Fig. 6.3 and Table 6.2, our online algorithm AODCA1 gives the
average number of steps better than SARSA, Q-learning algorithms when the number
of episodes is greater than 400, and more precisely, the policy generated by AODCA1
is more efficient, stable than SARSA and Q-learning. Although the complexity of
AODCA1 at each iteration is larger than that of SARSA and Q-learning, the CPU
time of AODCA1 is comparable with SARSA and Q-learning (see Table 6.2). This
can be explained by the fact that the number of steps obtained by AODCA1 is smaller
than SARSA and Q-learning.

For pole balancing problems, from the fact that one wants to stabilize the pole as long
as possible, it derives that the larger the number of steps, the better the algorithm.
From Fig. 6.4 and Table 6.3, we observe that AODCA1 keeps the pole balancing
longer than SARSA and Q-learning. Specifically, when the number of episodes is less
than 500, AODCA1 is the best in terms of number of steps, SARSA is the worst and
when the number of steps is greater than or equal to 500, the three algorithms are
comparable. Concerning CPU time per step, AODCA1 is fairly similar to both SARSA
and Q-learning although the complexity of AODCA1 at each step is larger. This fact
is because the number of steps of AODCA1 is the best in most cases.

142 Online DCA for Reinforcement Learning

In summary, we can say that the alternating versions of ODCA based algorithms are
more efficient than the original versions in all criteria. In addition, for both considered
problems, AODCA1 could be the algorithm realizing the best trade-off between the
quality and the rapidity.

6.5 Conclusions

We have investigated Online DC programming and Online DCA for RL in online mode
via the OBR minimization approach. Considering the `2-norm formulations of OBR,
we have developed an Online DCA based algorithm (ODCA) which enjoys the online
stability property. We have indicated that the classic residual gradient algorithm for
RL is a special case of our algorithm. To exploit the knowledge of transition samples,
we have proposed its alternating versions. Comparing with the two standard RL
algorithms (Q-learning and SARSA) on two benchmarks – mountain car and pole
balancing problems, our ODCA based approach is proven to be effective due to its
best trade-off between the quality and the rapidity. In the future, we plan to extend
our results to develop more efficient RL techniques, for example, RL with eligibility
traces.

Chapter 7

Applications to Stochastic Shortest
Path problems: DCA Approaches
via Cardinality Minimization and
Reinforcement Learning1

Abstract: The chapter concerns the Stochastic Shortest Path (SSP) problem for a single inde-
pendent vehicle on a road network using the probability tail model-based criterion. The SSP
problem aims to search an optimal path that maximizes the probability of reaching destination
before a particular deadline. There exist two different reformulations of this problem: first,
a cardinality minimization formulation (cardinality of a vector is the number of nonzero
elements in that vector) and second, an RL formulation. For the first formulation, the
maximization problem is reformulated as a cardinality minimization problem with zero-one
variables. Recently, some algorithms have been proposed by approximating the cardinality
term due to its discontinuity, however, without treating zero-one variables. In this chapter,
we develop a DC programming and DCA based approach for solving this cardinality problem.
We investigate first a DC approximation approach for the cardinality term and then an exact
penalty technique for the zero-one variables. The resulting optimization reformulation can be
expressed as a DC program for which DCA is applied. We propose a DCA based algorithm,
namely Card-DCA, for solving this SSP problem. Numerical experiments in an artificial
road network with different given deadlines show the efficiency of the proposed algorithm in
terms of both quality and rapidity when compared with the existing algorithms. For the RL
formulation, we take into account the `1-norm optimization problem in which the given set of
samples is defined based on the travel time data on the road network and hence a DCA based
algorithm, namely RL-DCA, is proposed for these SSP problems. In comparison with Card-
DCA, our proposed algorithm RL-DCA is capable of improving the probability of reaching
destination.

1. The material of this chapter is developed from the following work:
[1]. Vinh Thanh Ho, Hoai An Le Thi. A DCA Approach for the Stochastic Shortest Path Problem
in Vehicle Routing. Accepted by IESM 2017: 7th International Conference on Industrial Engineering
and Systems Management.

143

144
Applications to Stochastic Shortest Path problems: DCA Approaches via Cardinality

Minimization and Batch Reinforcement Learning

7.1 Introduction

The Stochastic Shortest Path (SSP) problem in vehicle routing on a given road net-
work is the problem of finding the optimal path in which the length of road links is
random [35, 112, 82]. As one fundamental problem in network studies, the SSP prob-
lem has attracted attention from researchers in many areas of, e.g., transportation
engineering, computer science and operations research. In this chapter, we consider
the SSP problem for a single independent vehicle where the length of road links is
represented by their travel time. In fact, the randomness of travel time is due to many
uncertain traffic conditions, e.g., the quality of vehicle, traffic jam, weather and so
on. In such a stochastic environment, there are many different criteria for an optimal
path, e.g., least expected travel [85], mean-risk model [89], path optimality index [112],
probability tail (PT) model [35, 90, 34], which are reviewed in detail in [18]. Because
of perspicuity for drivers and solving daily issues, we are interested in SSP problems
using the PT model-based criterion where the optimal path is the one that maximizes
the probability of reaching destination before a given deadline, which are known as
the arriving-on-time problems. An optimization formulation of PT model-based SSP
problems on a road network can be expressed as the following. In this chapter, we use
bold letters to denote matrices and vectors, normal letter to denote scalars.

7.1.1 An optimization formulation of PT model-based SSP
problems

A road network can be modeled as a directed graph G = (V ,Ar) where V = {1, . . . , n}
represents the set of nodes and Ar ⊆ {(v1, v2) : v1, v2 ∈ V , v1 6= v2} represents the
set of arcs with the size of m, (v1, v2) represents an arc from node v1 to node v2. As
mentioned above, the goal of the PT model-based SSP problem is to find the path x
that maximizes the probability of arriving at the destination d from the origin o not
later than a given deadline T (more precisely, T is the remaining time to deadline)
based on the distributed travel time samples w. The corresponding optimization
formulation can be written as follows [26].

max
x

P(w>x ≤ T) (7.1)

s.t. ∀v1 ∈ V :

∑
v2∈V,

(v1,v2)∈Ar

x(v1, v2)−
∑
v2∈V,

(v2,v1)∈Ar

x(v2, v1) =


1 if v1 = o,
−1 if v1 = d,
0 otherwise,

where x ∈ {0, 1}m such that its each component x(v1, v2) refers to an arc (v1, v2) ∈ Ar
and x(v1, v2) = 1 if and only if (v1, v2) is on the concerned path. This formulation is
equivalent to the following problem:

minx P(w>x > T)
s.t. Mx = b, x ∈ {0, 1}m,

Applications to Stochastic Shortest Path problems: DCA Approaches via Cardinality
Minimization and Batch Reinforcement Learning 145

where M ∈ Rn×m is a node-arc incidence matrix (see, e.g., [2] for more details), b ∈ Rn

whose elements are zero except the two elements corresponding to node o and node d,
which are 1 and −1, respectively.

7.1.2 Related works

Most related studies for solving the problem (7.2) are based on the common assump-
tions about specific distributions of travel times, correlations between travel times on
different road links, deadlines (see, e.g., [90, 77, 35, 34, 88] for more details). However,
on real road networks, these assumptions are hard to be satisfied. Without working
on these assumptions, Cao et al. [19] proposed a data-driven approach which is only
based on the travel time samples of all road links. In this chapter, to solve the problem
(7.2), we consider two reformulations of these PT model-based SSP problems based
on the data-driven approach: cardinality minimization and Markov Decision Process
(MDP). In the following, we present the related works of these two reformulations.

7.1.2.1 Cardinality minimization reformulation

By reformulating (7.2), a cardinality minimization problem with the zero-one variables
is described as follows (see [19]).

min {Card(C(x)) : x ∈ {0, 1}m, Mx = b} , (7.2)

where Card(z) is the number of nonzero elements in z, vector C(x) =(
[w>1 x− T]+, . . . , [w>Sx− T]+

)>
, {wi}i=1,...,S denotes the set of travel time samples

on all arcs with the size of S and [·]+ = max{0, ·}. There exists a double difficulty in
solving this cardinality minimization problem: how to treat, first, the cardinality term
and, second, the zero-one variables. In [19], the authors approximated the cardinality
term by `p-norm (0 < p ≤ 1) functions, the logarithmic approximation function and
their combination, and thus, proposed the so-called `1-norm algorithm and reweighted-
`1 algorithms. The `1-norm algorithm only solves one Mixed Integer Linear Program
(MILP), while the reweighted-`1 algorithms require solving successive MILPs. There
is one limitation of this work: expensive computations in solving MILPs. In [20], the
authors avoided solving MILPs by relaxing them to linear programs as well as us-
ing partial Lagrange multiplier techniques and a property of incidence matrix M to
guarantee that their obtained solutions are zero-one. Concerning the choice of good
approximation of the cardinality term, it is known that there exist approximation
functions in [68] which have been proved to be more efficient than those in [19, 20].

In the optimization and machine learning community, the cardinality minimization
problem (7.2) with the continuous variables instead of zero-one variables is known as
an `0-norm problem (see, e.g, [68]) where `0-norm is defined as Card. A variety of works
relating to `0-norm problems have been recently reviewed in the seminal work of Le
Thi et al. [68]. According to the way to treat the `0-norm, they are divided into three

146
Applications to Stochastic Shortest Path problems: DCA Approaches via Cardinality

Minimization and Batch Reinforcement Learning

main categories: convex approximation, nonconvex approximation and nonconvex ex-
act reformulation. Le Thi et al. [68] developed a unified DC (Difference of Convex
functions) approximation and DCA (DC Algorithm) based approach for the `0-norm
problem and indicated that corresponding DCA schemes cover all standard algorithms
in nonconvex approximation approaches as special versions. Although there are many
studies for solving the `0-norm problems, these problems are actually hard to solve
due to `0-norm. In this chapter, we follow the continuous DC approximation function
in [68] to tackle the discontinuous Card term.

7.1.2.2 MDP reformulation

In the literature, there are many SSP problems which are analyzed by means of the
MDP framework (see e.g. [9, 11, 12]). These SSP problems can be seen as a well-known
class of MDP problems where their different MDP formulations are considered (see [10,
21, 87, 100]). Concerning the PT model-based SSP problem, its MDP reformulation
has been proposed in [21]. In particular, the state space, denoted by S, is defined as
the set of the pair of intersections (or nodes in the graph) and time-to-deadlines:

S := {s = (v, τ) : v ∈ V , τ ∈ Γ}

where Γ is the set of time-to-deadlines. Let us assume that the set Γ is finite and denote
by NS , NΓ respectively the size of the space S, the set Γ. Thus, one has NS = n.NΓ.
The action space, denoted by A, is defined as the set of directions:

A := {ai}i=1,...,NA .

The state transition probability P(s′ = (v′, τ ′)|s = (v, τ), a) represents the distribution
of the random travel time, denoted by tv,v′ , on the road link (or arc) (v, v′) ∈ Ar by
the direction a ∈ A that takes the vehicle (or the agent) from the intersection v with
the time-to-deadline to the next intersection v′ with the remaining time-to-deadline τ ′

computed by τ ′ = τ − tv,v′ . The reward function, denoted by R, at each state-action
transition (s, a) represents the expected immediate reward received after taking the
direction a for the intersection s with the time-to-deadline τ . The discount factor is
denoted by γ.

In this chapter, we concern these SSP problems in which the full knowledge of MDP in
terms of P and R is not given in advance, and thus the aforementioned RL approach
via state-action value functions will be investigated. By setting γ to be 1 and the
immediate reward to be 1 if the action moves the vehicle from the current intersection
to the deadline before the deadline, and 0 otherwise, the optimal state-action value
function defined by (4.1) and (4.2) is exactly the same as the probability of arriving
on time defined by (7.1). In the recent work [21], the authors use Q-learning to
approximate the optimal state-action value function for discrete/continuous deadlines
via a neural network approximation where the sample at each step is chosen through
e.g. the Softmax strategy. In this chapter, we focus on estimating the probability of
arriving on time by reinforcement learning (RL) techniques in batch mode (Batch RL),
i.e. based on the given fixed set of transition samples (more precisely the travel time
samples on arcs) with discrete deadlines.

Applications to Stochastic Shortest Path problems: DCA Approaches via Cardinality
Minimization and Batch Reinforcement Learning 147

7.1.3 Our contributions

Our contributions are multiple, which can be classified into two parts corresponding
to two reformulation problems just mentioned previously. Concerning the cardinality
problem (7.2), we develop a DCA approach for solving it via two following main steps
with respect to the Card term and the zero-one variables. First, we use a DC approx-
imation of the Card term, which results in approximating the problem (7.2) to a DC
minimization problem with zero-one variables. Second, we exploit an exact penalty
technique in DC programming for treating these zero-one variables, which has been
widely studied in, e.g., [70, 69, 97]. Consequently, the resulting combinatorial opti-
mization problem is equivalently reformulated as a continuous problem of the standard
form of a DC program. Thus, a DCA based algorithm, namely Card-DCA is designed
for solving the considered SSP problem. In addition, as an illustrative experiment for
the arriving on time problem, we demonstrate the efficiency of our approach for the
problem (7.2) in terms of both the quality of obtained paths and the rapidity on a
road network in comparison with the `1-norm algorithm and the reweighted-`1 algo-
rithm. As for the Batch RL based SSP problem, we take into account the `1-norm
optimization problem in which the given samples are defined based on the travel time
data on the network and hence another DCA based algorithm, namely RL-DCA, is
proposed for these SSP problems. Several numerical experiments on the artificial road
networks are conducted in order to compare two DCA approaches for these problems,
in particular Card-DCA and RL-DCA algorithms.

The rest of the chapter is organized as follows. In Section 7.2, we present two DCA
approaches for SSP problems in which we show how to express the cardinality mini-
mization problem as well as the `1-norm optimization problem as DC programs, and
then design DCA based algorithms for the resulting optimization reformulation. Sec-
tion 7.3 reports the numerical results on artificial road networks which is followed by
some conclusions in Section 7.4.

7.2 DCA Approaches for the reformulations of PT

model-based SSP problems

7.2.1 The first reformulation: cardinality problem (7.2)

A DC formulation of the cardinality problem (7.2)

By introducing the slack variable y, the following proposition (whose proof is evident)
will justify our considered optimization formulation (7.3) whose feasible set is bounded.

Proposition 7.1. If x∗ is an optimal solution to the problem (7.2), then (x∗,y∗) is
an optimal solution to the following problem

148
Applications to Stochastic Shortest Path problems: DCA Approaches via Cardinality

Minimization and Batch Reinforcement Learning

min

Card(y) :
Mx = b, x ∈ {0, 1}m,y ≥ 0,
yi ≥ w>i x− T, ∀i = 1, . . . , S,
yi ≤ [||wi||1 − T]+, ∀i = 1, . . . , S

 , (7.3)

where y = (y1, . . . , yS) ∈ RS, y∗i = [w>i x∗−T]+, ∀i = 1, . . . , S. Conversely, if (x∗,y∗)
is an optimal solution to (7.3), then x∗ is an optimal solution to (7.2).

Note that the upper bounds for the variable y are added in (7.3) due to the fact that
for all x ∈ {0, 1}m, 0 ≤ [w>i x−T]+ ≤ [||wi||1−T]+, ∀i = 1, . . . , S. This boundedness
of the feasible set is useful for the exact penalty techniques as well as the nonconvex
exact reformulation approach for the problem (7.2) as discussed in Section 7.1.2.

In this chapter, we use a continuous DC approximation function of the Card term,
specifically the exponential concave approximation [16], which is proven to be efficient
in pratice (see, e.g., [57, 16, 68, 72]), as follows.

Card(y) ≈
S∑
i=1

rη(yi),

where the function rη(t) = 1−e−η|t| for t ∈ R and the positive approximation parameter
η. Thus, we derive the following approximate problem

α := min


S∑
i=1

rη(yi) :
Mx = b, x ∈ {0, 1}m,y ≥ 0,
yi ≥ w>i x− T, ∀i = 1, . . . , S,
yi ≤ [||wi||1 − T]+,∀i = 1, . . . , S

 . (7.4)

In fact, solving the problem (7.4) is still difficult due to zero-one variables. Using the
exact penalty techniques to treat these variables leads to an exact continuous reformu-
lation of (7.4) which is of the standard form of a DC program for which DCA is applied.
Let p : [0, 1]m → R be the penalty function defined by p(x) :=

∑m
i=1 min{xi, 1 − xi}.

The problem (7.4) can be rewritten as follows:

α = min

{
f(x,y) :=

S∑
i=1

rη(yi) : (x,y) ∈ K, p(x) ≤ 0

}
,

where

K :=

(x,y) ∈ Rm+S :
Mx = b, x ∈ [0, 1]m,y ≥ 0,
yi ≥ w>i x− T,∀i = 1, . . . , S,
yi ≤ [||wi||1 − T]+,∀i = 1, . . . , S


is the bounded polyhedral convex set defined by n + S linear constraints and up-
per/lower bound constraints. It leads to the corresponding penalized problem (τ being
the positive penalty parameter)

α(τ) := min {f(x,y) + τp(x) : (x,y) ∈ K} . (7.5)

It follows from Theorem 7 in [70] that there exists τ0 > 0 such that for all τ > τ0,
the two problems (7.4) and (7.5) are equivalent, in the sense that they have the same
optimal value and the same solution set.

Applications to Stochastic Shortest Path problems: DCA Approaches via Cardinality
Minimization and Batch Reinforcement Learning 149

Considering the problem (7.5) with a sufficiently large number τ , we use the following
DC decomposition of rη [68]:

rη(t) = g(t)− h(t), ∀t ∈ R, (7.6)

where g(t) = η|t| and h(t) = η|t|−1 + e−η|t|. Thus, a DC reformulation of the problem
(7.5) can be expressed as follows.

min
{
F (x,y) = G(x,y)−H(x,y) : (x,y) ∈ Rm+S

}
, (7.7)

where G(x,y) = χK(x,y) +
∑S

i=1 g(yi) and H(x,y) =
∑S

i=1 h(yi)− τp(x). Obviously,
(7.7) is a polyhedral DC program where the first DC component G(x,y) is polyhedral
convex.

DCA for solving the polyhedral DC program (7.7)

According to the generic DCA scheme, at each iteration k, after computing one sub-
gradient (xk,yk) ∈ ∂H(xk,yk), the calculation of (xk+1,yk+1) is reduced to solve the
following convex program

min
{
G(x,y)−

〈
(xk,yk), (x,y)

〉
: (x,y) ∈ Rm+S

}
,

which is equivalent to a linear program

min
{〈

(−xk, ηe− yk), (x,y)
〉

: (x,y) ∈ K
}
, (7.8)

where e is the vector of ones in the appropriate vector space.

Let q(y) :=
∑S

i=1 h(yi). We present how to compute a subgradient (xk,yk) ∈
∂H(xk,yk). Since yk ≥ 0, we can choose xk ∈ τ∂(−p)(xk) and yk ∈ ∂q(yk) as
follows. For i = 1, . . . ,m,

xki =


−τ if xki < 1/2,
0 if xki = 1/2,
τ if xki > 1/2,

(7.9)

and for j = 1, . . . , S,

ykj =

{
η(1− e−ηykj) if ykj > 0,
0 if ykj = 0.

(7.10)

DCA applied to (7.7) can be given by Algorithm 7.1 (Card-DCA).

Algorithm 7.1 DCA for solving the cardinality problem (7.7) (Card-DCA)

Initialization: Let (x0,y0) ∈ Rm+S, k = 0.
repeat

1. Compute (xk,yk) ∈ ∂H(xk,yk) using (7.9)-(7.10).
2. Compute (xk+1,yk+1), an optimal solution to (7.8).
3. k = k + 1.

until ||xk − xk−1|| + ||yk − yk−1|| ≤ ε(1 + ||xk−1|| + ||yk−1||) or |F (xk,yk) −
F (xk−1,yk−1)| ≤ ε(1 + F (xk−1,yk−1))

150
Applications to Stochastic Shortest Path problems: DCA Approaches via Cardinality

Minimization and Batch Reinforcement Learning

According to the convergence properties of the generic DCA scheme for polyhedral DC
programs in Section 1.1, we deduce the following convergence properties of Card-DCA.

Theorem 7.1. Convergence properties of Card-DCA

i) Card-DCA generates the sequence {(xk,yk)} containing finitely many elements such
that the sequence {F (xk,yk)} is decreasing.

ii) The sequence {(xk,yk)} converges to a critical point (x∗,y∗) of (7.7) after a finite
number of iterations.

iii) For a sufficiently large number τ , if there exists an iteration k such that xk ∈
{0, 1}m, then xl ∈ {0, 1}m for all l > k.

Proof. The properties i) and ii) are direct consequences of the convergence properties
of DCA for a polyhedral DC program. The property iii) is proved similarly as Theorem
1 in [59] and Theorem 2 in [69].

7.2.2 The second reformulation: Batch RL problem

Remember that for the MDP reformulation as described in Section 7.1.2.2, the different
optimization formulations of Optimal Bellman Residual (OBR) which were thoroughly
studied in Chapter 5 can be made use of for solving these SSP problems. In this
chapter, we concentrate on the `1-norm optimization formulation, which is briefly
presented as follows.

`1-norm optimization formulation

In batch mode, we collect N samples (Si, Ai, S
′
i, Ri)i=1,...,N where Ri is the immediate

reward received by taking the action Ai which moves the agent from the current state
Si to the next state S ′i for i = 1, . . . , N . In this case, we have the `1-norm optimization
formulation expressed as

min

{
F (θ) :=

N∑
i=1

|fi(θ)| : θ ∈ Rl

}
, (7.11)

where the real function

fi(θ) := max
j=1,...,NA

{
〈A(i,j), θ〉+ c(i)

}
,

the matrix A and the vector c are defined as

A(i,j) := γφ(S ′i, aj)− φ(Si, Ai), c(i) := Ri

for i = 1, . . . , N , j = 1, . . . , NA, φ is an l-dimensional basic function vector.

Applications to Stochastic Shortest Path problems: DCA Approaches via Cardinality
Minimization and Batch Reinforcement Learning 151

DCA for solving the `1-norm problem (7.11)

The problem (7.11) is a DC polyhedral program written in the form

min
{
G(θ)−H(θ) : θ ∈ Rl

}
, (7.12)

where two DC components defined by

G(θ) :=
N∑
i=1

2f+
i (θ) and H(θ) :=

N∑
i=1

fi(θ)

are polyhedral convex.

DCA applied to (7.11) is described as Algorithm 7.2 (RL-DCA) below.

Algorithm 7.2 DCA for solving (7.12) (RL-DCA)

Initialization: Let ε be a sufficiently small positive number. Let θ0 ∈ Rl. Set k = 0.
repeat

1. Compute wk ∈ ∂H(θk):

wk =
N∑
i=1

A(i,ji), (7.13)

where ji ∈ argmax j=1,...,NA
〈A(i,j), θk〉 for i = 1, . . . , N .

2. Solve the linear program
min

N∑
i=1

2ti − 〈wk, θ〉,

s.t. θ ∈ Rl,
ti ≥ 0,∀i = 1, . . . , N,
ti ≥ 〈A(i,j), θ〉+ c(i),∀i = 1, . . . , N, ∀j = 1, . . . , NA,

(7.14)

to obtain (θk+1, tk+1
1 , . . . , tk+1

N) ∈ Rl+N .
3. k = k + 1.

until |F (θk)− F (θk−1)| ≤ ε(|F (θk−1)|+ 1) or ||θk − θk−1|| ≤ ε(1 + ||θk−1||).

In addition, RL-DCA enjoys the following convergence properties.

Theorem 7.2. Convergence properties of RL-DCA
i) RL-DCA generates the sequence {θk} such that the sequence {F (θk)} is decreasing.
ii) The sequence {θk} converges to a critical point θ∗ of (7.12) after a finite number
of iterations.
iii) θ∗ is almost always a local minimizer to (7.12). In particular, if Ii(θ

∗) is a singleton
for all i = 1, ..., N , then θ∗ is a local minimizer to (7.12).

Remark 7.1. Comparing the RL-DCA algorithm with the Card-DCA algorithm in
terms of the complexity, we see that both algorithms require solving one linear program
at each iteration. In particular, the linear program in RL-DCA has l + N variables,

152
Applications to Stochastic Shortest Path problems: DCA Approaches via Cardinality

Minimization and Batch Reinforcement Learning

(NA + 1).N constraints, and the one in Card-DCA has m+ S variables, n+ 2m+ 3S
constraints where l is the number of the basic functions, N is the number of batch
samples, NA is the number of actions, m is the number of arcs, n is the number of
nodes, S is the number of travel time data for each link.

7.3 Numerical experiments

In this section, we study the performance of the proposed DCA algorithms RL-DCA,
Card-DCA and compare them with existing algorithms for solving these SSP problems
which will be listed in each experiment, on the arriving-on-time problem (i.e. maxi-
mizing the probability of arriving at the destination d from the origin o not later than
the deadline T) for a single vehicle on road networks.

Our experiments consist of two parts. In the first experiment, we only concern the
cardinality problem, in particular we consider the efficiency of Card-DCA in compar-
ison with two existing algorithms in [19]: `1-norm, reweighted `1-norm minimization
algorithms (we call `1, re-`1 respectively for short). The `1 algorithm replaces the
Card term by the `1-norm function and solves one MILP. The re-`1 algorithm uses the
combination of the `p-norm (0 < p < 1) and logarithmic approximation functions and
requires solving successive MILPs. In fact, the approximation in the re-`1 algorithm
is a special version of our DC approximation approach (see [68] for more details). It
has been shown in [19] that when comparing between re-`1 and `1, in most cases, re-`1

(resp. `1) is better than the other in terms of the quality of solutions (resp. the ra-
pidity). In the second experiment, we aim to compare between two DCA approaches
for these PT model-based SSP problems, in particular RL-DCA and Card-DCA on
artificial networks.

7.3.1 Experiment 1: Card-DCA for the cardinality problem

This experiment aims to make a comparison between the proposed Card-DCA algo-
rithm and the existing algorithms (`1, re-`1) for the cardinality problem, which is
implemented on a road network with 123 road links and 65 intersections of roads as
in [19], corresponding to a directed graph with 123 arcs and 65 nodes respectively
as Fig. 7.1 and the length of arcs is represented by the travel time of road links (in
seconds).

Data set: Numerical experiments are conducted on the data sets (including the train-
ing set of size S1 and test set of size S2) of travel time samples on each link generated by
some independent random distribution functions (e.g., normal, gamma and lognormal
distributions). The (o, d) pair is chosen randomly from the given set. The deadline T
is defined by T = T1 + κ(T2− T1) where κ is a deadline coefficient, T2 is the minimum
longest travel time for all paths of (o,d) and T1 is the shortest travel time with respect
to the same path (see [19] for more details).

Applications to Stochastic Shortest Path problems: DCA Approaches via Cardinality
Minimization and Batch Reinforcement Learning 153

Figure 7.1 – A road network with 123 road links and 65 intersections [19]

Set up experiments: The parameters S1, S2, κ are set as follows: S1 ∈ {100, 500,
1000}, S2 = 5000, κ ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.2}. The given set of (o,d) pairs is
{(3,7), (7,3), (1,8), (8,1), (10,2), (2,10), (1,10), (10,1), (3,10), (10,3)}. Three random
distribution functions are used with different parameters chosen randomly, specifically,
normal distribution with mean in {5, 10, 15, 20} and standard deviation in {10, 30, 50,
70}, gamma distribution with shape and scale in {1, 2, 3, 4, 5}, lognormal distribution
with mean in {5, 10, 15, 20} and variance in {10, 30, 50, 70}. This experiment is
run 100 times and performed in MATLAB R2016a on a Laptop Intel(R) Core(TM) i7-
2720QM CPU @ 2.20GHz of 4GB RAM. The software CPLEX 12.6 is used for solving
linear programs in our algorithm, and solving MILPs in the existing algorithms. Card-
DCA and re-`1 use the same zero starting point, their approximation parameter η is set
to 0.01. For re-`1, p =0.5. The default tolerance is ε = 10−4. The penalty parameter
τ will be updated at each iteration.

Comparison criteria of algorithms: We are interested in the following aspects:
accuracy (in %) and CPU time (in seconds). The accuracy of each algorithm is com-
puted on the test set by the percentage of the probability of arriving on time of the
path obtained by the algorithm relative to the maximum probability of all possible
paths by the enumeration method.

Descriptions of tables of results: The average accuracy and average CPU time
obtained by three algorithms Card-DCA, `1 and re-`1 on 100 runs with the different
deadline coefficients κ and random distributions are reported in Tables 7.1, 7.2. The
values in 2nd-4th columns of Table 7.1 represent the algorithms’ accuracy in case the
size of training set S1 = 100, 500, 1000, respectively. These descriptions are similar to
Table 7.2. Bold values in Tables 7.1, 7.2 are the best results in each column.

154
Applications to Stochastic Shortest Path problems: DCA Approaches via Cardinality

Minimization and Batch Reinforcement Learning

Table 7.1 – Accuracy (%) of Card-DCA and `1-norm algorithm (`1), reweighted-`1

algrorithm (re-`1) on 100 runs with the different deadline coefficients κ and random
distributions

Normal distribution
S1 = 100 S1 = 500 S1 = 1000

κ Card-DCA `1 re-`1 Card-DCA `1 re-`1 Card-DCA `1 re-`1

0.2 99.16 99.14 99.14 99.60 99.60 99.60 99.60 99.59 99.59
0.4 99.54 99.53 99.53 99.90 99.89 99.89 99.90 99.89 99.89
0.6 99.73 99.72 99.72 99.98 99.98 99.98 99.98 99.98 99.98
0.8 99.81 99.80 99.80 100 100 100 100 100 100
1.0 99.87 99.87 99.87 100 100 100 100 100 100
1.2 99.91 99.90 99.90 100 100 100 100 100 100

Gamma distribution
S1 = 100 S1 = 500 S1 = 1000

κ Card-DCA `1 re-`1 Card-DCA `1 re-`1 Card-DCA `1 re-`1

0.2 99.77 99.71 99.71 99.87 99.61 99.61 99.87 99.83 99.83
0.4 99.82 99.78 99.78 99.75 99.71 99.71 99.92 99.71 99.71
0.6 99.90 99.85 99.85 99.84 99.80 99.80 99.84 99.80 99.80
0.8 99.94 99.90 99.90 99.90 99.86 99.86 99.90 99.86 99.86
1.0 99.86 99.92 99.92 99.96 99.92 99.92 99.96 99.92 99.92
1.2 100 99.94 99.94 99.98 99.94 99.94 99.98 99.94 99.94

Lognormal distribution
S1 = 100 S1 = 500 S1 = 1000

κ Card-DCA `1 re-`1 Card-DCA `1 re-`1 Card-DCA `1 re-`1

0.2 95.98 95.89 95.89 96.48 95.66 95.66 97.84 96.99 96.99
0.4 96.43 96.21 96.22 97.01 96.32 96.32 98.18 97.41 97.41
0.6 96.88 96.65 96.67 97.50 96.80 96.80 98.51 97.72 97.72
0.8 97.32 97.06 97.07 97.74 97.15 97.15 98.05 97.99 97.99
1.0 96.82 97.30 97.31 97.37 97.48 97.48 98.19 98.24 98.24
1.2 97.28 96.47 96.48 97.63 97.28 97.28 98.38 97.91 97.91

* S1 is the size of training set on each arc. Bold values are the best results in each
column.

Applications to Stochastic Shortest Path problems: DCA Approaches via Cardinality
Minimization and Batch Reinforcement Learning 155

Table 7.2 – CPU time (in seconds) of enumeration method, Card-DCA, `1 and re-`1

on 100 runs with different random distributions in case κ = 1.2

Normal distribution
S1 = 100 S1 = 500 S1 = 1000

enumeration Card-DCA `1 re-`1 Card-DCA `1 re-`1 Card-DCA `1 re-`1

1.81 0.01 0.06 0.07 0.03 0.35 0.45 0.10 1.03 1.20

Gamma distribution
S1 = 100 S1 = 500 S1 = 1000

enumeration Card-DCA `1 re-`1 Card-DCA `1 re-`1 Card-DCA `1 re-`1

2.11 0.01 0.10 0.12 0.04 0.49 0.43 0.05 0.81 0.93

Lognormal distribution
S1 = 100 S1 = 500 S1 = 1000

enumeration Card-DCA `1 re-`1 Card-DCA `1 re-`1 Card-DCA `1 re-`1

2.16 0.04 0.22 0.37 0.14 0.57 1.21 0.72 2.14 5.21

Comments on numerical results (Tables 7.1, 7.2): we observe from experiments
that with suitable penalty parameters, our Card-DCA algorithm always furnishes the
zero-one solutions, which is an advantage when solving the continuous problems. More-
over, in terms of the accuracy, our Card-DCA algorithm is almost always better than
the existing algorithms with the different deadline coefficients and different random
distributions. The quality of our solution is very high with the accuracy of above 95%
and as for normal/gamma distribution, even above 99%, that is to say, our algorithm
usually finds the optimal path as the enumeration method. Moreover, in most cases
of our Card-DCA, the larger the training set is, the more the accuracy is improved,
however for normal/gamma distribution, the accuracy in case S1 = 500 is sufficiently
high. Regarding CPU time, Card-DCA is faster than the existing algorithms `1, re-`1,
respectively, up to 16.2, 18.6 times, which can be explained by the fact that our Card-
DCA algorithm only requires solving successive linear programs, while the existing
algorithms solve MILPs. In addition, with the good obtained accuracy, Card-DCA
runs much faster than the enumeration method up to 211 times.

7.3.2 Experiment 2: Comparison between DCA approaches

In this experiment, we make a comparison between two DCA approaches, namely RL-
DCA and Card-DCA, on an artificial road network with discrete deadlines which is
described in [21]. In particular, the road network is a grid with n × n intersections
and thus, the number of intersections (or nodes) is n = n2 and the number of links (or
arcs) is m = 2n(n− 1). At each intersection, there are four possible travel directions:
east, west, south and north (thus, NA = 4).

156
Applications to Stochastic Shortest Path problems: DCA Approaches via Cardinality

Minimization and Batch Reinforcement Learning

Data set: For each link, we randomly generate S travel time instances with mean
µ and standard deviation σ = 0.3µ where the value of µ is randomly generated with
mean of 15 and standard deviation of 3. The origin o and the destination d are chosen
from the set of intersections V . The deadline T is defined by T = βTe where β is
a deadline parameter (β > 1), Te is the least expected travel time from o to d with
the shortest path of length le. All values of travel time, deadline are rounded to the
nearest integer. In batch mode, the samples are collected from the origin o along any
path of length le based on all S travel time data. Thus, the number of batch samples
is N = S.le.

Set up experiments: The parameters n, S, β are set as follows: n ∈ {20, 30, 40},
S ∈ {200, 500}, β ∈ {1.05, 1.10, 1.15}. The number of (o,d) pairs selected is 100. The
experiment was implemented in MATLAB R2016a on a PC Intel(R) Xeon(R) CPU
E5-2630 v2, @ 2.6GHz of 32GB RAM. The software CPLEX 12.6 was used for solving
linear programs. The default tolerance is ε = 10−4. The parameters of Card-DCA
are set the same as the previous experiment. Let us define the basic function vector
φ as follows: for any state s = (v, τ) and any action a, i = 1, . . . , n, j = −1, . . . , T ,
k = 1, . . . , NA, we have the basic function φi+(j+1)n+n(k−1)(NΓ+2)(s, a) = 1 if the action
a, the node v coincide respectively ak ∈ A, i in V and the time-to-deadline τ satisfies
that τ < 0 when j = −1, τ = j when j = 0, . . . , T − 1, τ ≥ T when j = T , and 0
otherwise. Thus, the number of basic functions is l = nNA(T + 2). The starting point
for RL-DCA is a zero vector in Rd.

Comparison criteria of algorithms: In our experiment, for any (o,d) pair, we
cannot guarantee to find the path which has the maximum number of times of not
being late by enumerating all the possible paths during a reasonable time (e.g. more
than 3600 seconds). Thus, here we are interested in the following aspects: accuracy (in
%) and CPU time (in seconds). For each (o,d) pair and each value of β, we compute the
accuracy of each algorithm by the probability of arriving on time of the path obtained
by the algorithm on the data set.

Descriptions of tables of results: The average accuracy and average CPU time
obtained by two algorithms RL-DCA, Card-DCA on 100 (o,d) pairs with the different
grids n × n, the different number of samples on each link S, the different deadline
parameters β are reported in Tables 7.3, 7.4. Bold values in these tables represent the
best results.

Comments on numerical results (Tables 7.3, 7.4): for different grids n × n and
number of samples S, the probability of arriving on time of RL-DCA is always larger
than that of Card-DCA in all cases of deadline parameters β – the gain of RL-DCA
versus Card-DCA varies from 0.08% to 5.85%. The CPU time of both algorithms is
small in all data sets: less than 12 seconds – in particular, the Card-DCA is faster
than RL-DCA when n = 20, 30 and moderately comparable when n = 40. In our
experiments, we can summarize that within an acceptable time, RL-DCA gives the
better accuracy than Card-DCA.

Applications to Stochastic Shortest Path problems: DCA Approaches via Cardinality
Minimization and Batch Reinforcement Learning 157

Table 7.3 – Accuracy (%) of RL-DCA and Card-DCA on 100 (o,d) pairs with the
different grids n × n, the different number of samples on each link S, the different
deadline parameters β. Bold values are the best results.

n = 20, S = 200 n = 30, S = 200 n = 40, S = 200
β RL-DCA Card-DCA RL-DCA Card-DCA RL-DCA Card-DCA

1.05 75.23 74.78 84.29 83.34 83.19 77.34
1.10 88.85 88.59 97.14 93.60 97.22 97.14
1.15 95.46 92.70 99.50 99.0 99.64 99.243

n = 20, S = 500 n = 30, S = 500 n = 40, S = 500
β RL-DCA Card-DCA RL-DCA Card-DCA RL-DCA Card-DCA

1.05 80.69 77.43 78.88 78.03 80.48 76.38
1.10 95.66 93.05 95.65 91.82 96.45 94.04
1.15 99.20 98.11 99.32 98.13 99.38 98.65

Table 7.4 – CPU time (in seconds) of RL-DCA and Card-DCA on 100 (o,d) pairs
with the different grids n × n, the different number of samples on each link S, the
different deadline parameters β. Bold values are the best results.

n = 20, S = 200 n = 30, S = 200 n = 40, S = 200
β RL-DCA Card-DCA RL-DCA Card-DCA RL-DCA Card-DCA

1.05 1.35 0.17 3.53 1.67 9.96 10.9
1.10 1.33 0.18 3.68 1.25 10.1 9.36
1.15 1.37 0.16 3.74 0.83 10.3 6.23

n = 20, S = 500 n = 30, S = 500 n = 40, S = 500
β RL-DCA Card-DCA RL-DCA Card-DCA RL-DCA Card-DCA

1.05 3.91 0.82 5.17 5.28 11.0 11.7
1.10 4.05 0.69 5.29 4.28 11.3 9.16
1.15 4.21 0.50 5.45 2.97 11.7 6.72

7.4 Conclusions

We have studied nonconvex, nonsmooth programming approaches based on DC pro-
gramming and DCA for solving a class of SSP problems in vehicle routing for a single
independent vehicle. In fact, the considered SSP problems can be reformulated as a
cardinality optimization problem with zero-one variables and an RL problem. As for

158
Applications to Stochastic Shortest Path problems: DCA Approaches via Cardinality

Minimization and Batch Reinforcement Learning

the cardinality problem, we have used a DC approximation approach for the cardinal-
ity term. Exploiting an exact penalty technique in DC programming, we have dealt
with the zero-one variables and obtained an exact reformulation of the corresponding
approximate problem. Employing DCA for the resulting reformulation problem, we
have developed a fast, efficient DCA scheme for the considered cardinality problem.
Concerning the RL problem, we have explored the DCA based RL techniques in batch
mode for solving these SSP problems. The numerical results on artificial road networks
show that our approach for the cardinality problem is efficient in comparison with the
existing algorithms in terms of the quality and the rapidity whereas the RL techniques
can obtain the effectiveness to improve the accuracy.

Chapter 8

Conclusions

In the dissertation, we have developed the machine learning techniques in both theoret-
ical and computational aspects. The backbones of our approaches are DC (Difference
of Convex functions) and DCA (DC Algorithm), and their online version, which are
best known as powerful nonsmooth, nonconvex optimization tools. Over the last three
decades, DCA has been thoroughly studied and has enjoyed a lot of great success in a
variety of domains in applied science. Thanks to DCA, we have recently developed its
online version in the dissertation. This new version allows to encounter most of the
large-scale optimization problems nowadays.

In the first part of the dissertation, we have intensively developed online learning
(OL) techniques for a class of online problems where the loss function at each step is
nonconvex and/or nonsmooth. By the DC approach, we have proposed a specific online
version of DCA, named ODCA, where each subproblem is solved by approximating by
one iteration of classical subgradient method. We have thoroughly studied the analysis
of ODCA in the terms of regret – ODCA enjoys the sublinear/logarithmic regret. As
an application, we have considered online binary linear classification. In particular,
we have designed three corresponding ODCA based algorithms, all of which enjoy
the logarithmic regret. Through the numerical experiments on various benchmark
classification datasets, the effectiveness of our algorithms in terms of the quality and
the rapidity has been demonstrated by comparing with the five state-of-the-art online
classification algorithms.

Continuing the previous works, we have developed another class of OL techniques,
namely prediction with expert advice, where the prediction at each step is made based
on the basis of experts’ predictions. We have exploited different DC approximation
functions, which results in two particular Online DCA based schemes. Each convex
subproblem in the schemes is solved based on two variants of subgradient method.
Several analyses of both schemes in terms of regret have been studied thoroughly.
The performance of our approach in efficiency, rapidity and scalability respects has
been verified when compared with three existing standard algorithms on a variety of
benchmark datasets.

159

160 Conclusions

Next, we have been interested in reinforcement learning (RL) techniques in both online
mode and batch mode. As for batch RL, we have intensively investigated DC program-
ming and DCA for the problem of finding the zero of the empirical optimal Bellman
residual via linear approximation. We have considered four different DC optimization
formulations for which four corresponding DCA schemes have been developed. To de-
sign efficient DCA algorithms, we have carefully addressed the three key issues of DCA
by exploiting the special structure of the considered problems. It points out that, our
proposed algorithm are more efficient than the existing DCA based algorithms on both
quality and rapidity. Comparing with the two standard approaches for Batch RL, our
algorithm realizes the best trade-off between the quality and the rapidity in several
numerical experiments. Concerning RL in online mode, we have proposed a particular
online DCA based algorithm which enjoys the online stability property. Moreover, we
have suggested efficient alternating versions of the proposed online algorithm. Some
experiment results on the classic mountain car and pole balancing problems have shown
the efficiency of our approach.

As an application, we have studied DCA approaches for solving a class of stochastic
shortest path (SSP) problems in vehicle routing. These SSP problems can be expressed
as a cardinality optimization problem with binary variables as well as an RL problem.
Regarding the cardinality problem, we have employed a DC approximation approach
and an exact penalty technique in DC programming to develop a fast, efficient DCA
scheme for the resulting problem. As for the RL problem, we have explored the DCA
based RL techniques in batch mode for solving these problems. The numerical results
on artificial road networks show that our DCA approaches give the best accuracy.

In our ongoing works, it is necessary to address some following issues.

Concerning OL, it is known that OL plays a very important role among machine learn-
ing techniques for solving the problems which are encountered more and more in various
day-to-day applications. In this context, it is essential to create new, efficient tools for
the development of the novel OL techniques. Our research on the online version of DC
programming and DCA has just started but from the encouraging results, it promises
to be an effective tool. In the future, we are making progress in further development of
Online DC programming and Online DCA in theoretical and algorithmic respects. In
particular, we plan to explore the more efficient DC approximation functions, exploit
the fast and scalable solution methods for solving convex subproblems in the Online
DCA scheme, study the thorough analysis of the corresponding scheme. We continue
investigating this tool to solve a variety of problems in OL.

Regarding RL, our study on RL in batch/online mode suggests that DCA is an efficient
approach. That motivates us to develop DC programming and DCA for applications
of RL in several areas. Moreover, we intend to extend our results to develop more
efficient RL techniques, for example, RL with eligibility traces.

As for SSP problems, we plan to explore the property of incident matrix in the car-
dinality formulation to guarantee the binary property of our obtained solutions. In
addition, the first study on the way to treat the cardinality optimization problem with

Conclusions 161

binary variables based on DC programming and DCA opens up promising directions:
not only how to develop efficient DCA schemes, but also the consistency between the
approximate problem and the original problem should be investigated. On another
hand, we are able to investigate these SSP problems based on the nonconvex exact
reformulation approach for the cardinality term using the exact penalty techniques. In
regard to RL approach for these SSP problems, it will be interesting to know whether
our RL techniques can deal with this cardinality optimization problem or not. In the
scope of the dissertation, we have considered linear approximation with simple basic
function vectors, so the effect of basic functions on the performance of the proposed al-
gorithms as well as how to develop DCA for RL with different approximation functions
(e.g. neural network) should also be addressed in the future.

162 Conclusions

Bibliography

[1] Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the 21st International Conference on Machine Learning,
ICML, New York, NY, USA. ACM.

[2] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[3] Antos, A., Szepesvári, C., and Munos, R. (2008). Learning near-optimal policies
with bellman-residual minimization based fitted policy iteration and a single sample
path. Machine Learning, 71(1):89–129.

[4] Azoury, K. and Warmuth, M. (2001). Relative loss bounds for on-line density esti-
mation with the exponential family of distributions. Machine Learning, 43(3):211–
246.

[5] Baird, L. C. I. (1995). Residual algorithms: Reinforcement learning with function
approximation. In Prieditis, A. and Russell, S., editors, Machine Learning Proceed-
ings 1995, pages 30–37. Morgan Kaufmann, San Francisco (CA).

[6] Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-13(5):834–846.

[7] Bellman, R. (1957). A Markovian decision process. Indiana Univ. Math. J.,
6(4):679–684.

[8] Bellman, R. and Dreyfus, S. (1959). Functional approximation and dynamic pro-
gramming. Math. Tables and other Aids Comp, 13:247–251.

[9] Bertsekas, D. P., editor (1987). Dynamic Programming: Deterministic and Stochas-
tic Models. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[10] Bertsekas, D. P. (1995). Dynamic Programming and Optimal Control. Athena
Scientific, 1st edition.

[11] Bertsekas, D. P. and Shreve, S. E. (1978). Stochastic Optimal Control: The
Discrete Time Case. Mathematics in Science and Engineering 139. Academic Press,
1 edition.

163

164 Bibliography

[12] Bertsekas, D. P. and Tsitsiklis, J. N. (1991). An analysis of stochastic shortest
path problems. Mathematics of Operations Research, 16(3):580–595.

[13] Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming.
Athena Scientific, 1st edition.

[14] Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., and Lee, M. (2009). Natural
actor-critic algorithms. Automatica, 45(11):2471–2482.

[15] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge Univer-
sity Press, New York, NY, USA.

[16] Bradley, P. S. and Mangasarian, O. L. (1998). Feature Selection via Concave
Minimization and Support Vector Machines. In Proceedings of the Fifteenth Inter-
national Conference on Machine Learning, ICML ’98, pages 82–90, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

[17] Buşoniu, L., Babuska, R., Schutter, B. D., and Ernst, D. (2010). Reinforcement
Learning and Dynamic Programming Using Function Approximators. CRC Press,
Inc., Boca Raton, FL, USA, 1st edition.

[18] Cao, Z. (2017). Maximizing the Probability of Arriving on Time : A Stochastic
Shortest Path Problem. PhD thesis, Interdisciplinary Graduate School (IGS).

[19] Cao, Z., Guo, H., Zhang, J., Niyato, D., and Fastenrath, U. (2016a). Finding The
Shortest Path in Stochastic Vehicle Routing: A Cardinality Minimization Approach.
IEEE Transactions on Intelligent Transportation Systems, 17(6):1688–1702.

[20] Cao, Z., Guo, H., Zhang, J., Niyato, D., and Fastenrath, U. (2016b). Improving
The Efficiency of Stochastic Vehicle Routing: A Partial Lagrange Multiplier Method.
IEEE Transactions on Vehicular Technology, 65(6):3993–4005.

[21] Cao, Z., Guo, H., Zhang, J., Oliehoek, F., and Fastenrath, U. (2017). Maximizing
the Probability of Arriving on Time: A Practical Q-Learning Method. In 31th AAAI
Conference on Artificial Intelligence (AAAI), pages 4481–4487, San Francisco, Cal-
ifornia, USA.

[22] Cesa-Bianchi, N. (1999). Analysis of Two Gradient-Based Algorithms for On-Line
Regression. Journal of Computer and System Sciences, 59(3):392–411.

[23] Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D. P., Schapire, R. E., and
Warmuth, M. K. (1997). How to use expert advice. J. ACM, 44(3):427–485.

[24] Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, Learning, and Games. Cam-
bridge University Press, New York, NY, USA.

[25] Chambolle, A., Devore, R. A., Lee, N. Y., and Lucier, B. J. (1998). Nonlinear
wavelet image processing: Variational problems, compression, and noise removal
through wavelet shrinkage. IEEE Trans Image Process, 7:319–335.

Bibliography 165

[26] Cheng, J., Kosuch, S., and Lisser, A. (2012). Stochastic Shortest Path Prob-
lem with Uncertain Delays. In Proceedings of the 1st International Conference on
Operations Research and Enterprise Systems, pages 256–264.

[27] Collobert, R., Sinz, F., Weston, J., and Bottou, L. (2006a). Large scale transduc-
tive SVMs. Journal of Machine Learning Research, 7:1687–1712.

[28] Collobert, R., Sinz, F., Weston, J., and Bottou, L. (2006b). Trading convexity
for scalability. In Proceedings of the 23rd International Conference on Machine
Learning, ICML ’06, pages 201–208, New York, NY, USA. ACM.

[29] Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2006).
Online passive-aggressive algorithms. Journal of Machine Learning Research, 7:551–
585.

[30] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39:1–38.

[31] DeSantis, A., Markowsky, G., and Wegman, M. N. (1988). Learning probabilistic
prediction functions. In Proceedings of the 1st Annual Workshop on Computational
Learning Theory, COLT’88, pages 312–328, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

[32] Ernst, D., Geurts, P., and Wehenkel, L. (2005). Tree-based batch mode reinforce-
ment learning. Journal of Machine Learning Research, 6:503–556.

[33] Ertekin, S., Bottou, L., and Giles, C. L. (2011). Nonconvex Online Support Vector
Machines. IEEE Trans. Pattern Anal. Mach. Intell., 33(2):368–381.

[34] Fan, Y. Y., Kalaba, R. E., and Moore, J. E. (2005). Arriving on Time. Journal
of Optimization Theory and Applications, 127(3):497–513.

[35] Frank, H. (1969). Shortest Paths in Probabilistic Graphs. Oper. Res., 17(4):583–
599.

[36] Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119–139.

[37] Gasso, G., Pappaioannou, A., Spivak, M., and Bottou, L. (2011). Batch and on-
line learning algorithms for nonconvex neyman-pearson classification. ACM Trans.
Intell. Syst. Technol., 2(3):28:1–28:19.

[38] Geist, M. and Pietquin, O. (2013). Algorithmic Survey of Parametric Value Func-
tion Approximation. IEEE Transactions on Neural Networks and Learning Systems,
24(6):845–867.

[39] Gentile, C. (2002). A new approximate maximal margin classification algorithm.
Journal of Machine Learning Research, 2:213–242.

166 Bibliography

[40] Gentile, C. (2003). The robustness of the p-norm algorithms. Machine Learning,
53(3):265–299.

[41] Geramifard, A., Walsh, T. J., Tellex, S., Chowdhary, G., Roy, N., and How, J. P.
(2013). A tutorial on linear function approximators for dynamic programming and
reinforcement learning. Foundations and Trends R© in Machine Learning, 6(4):375–
451.

[42] Gosavi, A. (2009). Reinforcement learning: A tutorial survey and recent advances.
INFORMS J. on Computing, 21(2):178–192.

[43] Grötschel, M., Krumke, S. O., and Rambau, J., editors (2001). Online Optimiza-
tion of Large Scale Systems. Springer.

[44] Haussler, D., Kivinen, J., and Warmuth, M. (1995). Tight worst-case loss bounds
for predicting with expert advice. In Vitányi, P., editor, Computational Learning
Theory, volume 904 of Lecture Notes in Computer Science, pages 69–83. Springer
Berlin Heidelberg.

[45] Hazan, E. (2016). Introduction to online convex optimization. Foundations and
Trends in Optimization, 2(3-4):157–325.

[46] Ho, V. T., Le Thi, H. A., and Bui, D. C. (2016). Online DC optimization for
online binary linear classification. In Nguyen, T. N., Trawiński, B., Fujita, H.,
and Hong, T.-P., editors, Intelligent Information and Database Systems: 8th Asian
Conference, ACIIDS 2016, Proceedings, Part II, pages 661–670, Berlin, Heidelberg.
Springer Berlin Heidelberg.

[47] Hoi, S. C. H., Wang, J., and Zhao, P. (2014). Libol: A library for online learning
algorithms. Journal of Machine Learning Research, 15(1):495–499.

[48] Jaillet, P. and Wagner, M. R. (2014). Online Optimization - An Introduction,
chapter 6, pages 142–152. INFORMS, Maryland, USA.

[49] Kalai, A. and Vempala, S. (2005). Efficient algorithms for online decision prob-
lems. Journal of Computer and System Sciences, 71(3):291–307.

[50] Kivinen, J. and Warmuth, M. K. (1997). Exponentiated gradient versus gradient
descent for linear predictors. Information and Computation, 132(1):1–63.

[51] Kivinen, J. and Warmuth, M. K. (2001). Relative loss bounds for multidimensional
regression problems. Machine Learning, 45(3):301–329.

[52] Lagoudakis, M. G. and Parr, R. (2003). Least-squares policy iteration. Journal
of Machine Learning Research, 4:1107–1149.

[53] Lange, S., Gabel, T., and Riedmiller, M. (2012). Batch Reinforcement Learning.
In Wiering, M. and van Otterlo, M., editors, Reinforcement Learning, volume 12,
chapter 2, pages 45–73. Springer Berlin Heidelberg, Hillsdale, NJ.

Bibliography 167

[54] Le, H. M., Le Thi, H. A., and Nguyen, M. C. (2015). Sparse semi-supervised
support vector machines by DC programming and DCA. Neurocomputing, 153(Sup-
plement C):62 – 76.

[55] Le Thi, H. A. (1997). Contribution à l’optimisation non convexe et l’optimisation
globale: Théorie, algorithmes et applications. Habilitation à Diriger des Recherches,
Université de Rouen.

[56] Le Thi, H. A. (2005). DC Programming and DCA. http://www.lita.

univ-lorraine.fr/~lethi/.

[57] Le Thi, H. A., Le, H. M., Nguyen, V. V., and Pham Dinh, T. (2008). A DC
Programming Approach for Feature Selection in Support Vector Machines Learning.
Advances in Data Analysis and Classification, 2(3):259–278.

[58] Le Thi, H. A., Le, H. M., and Pham Dinh, T. (2014). New and efficient DCA based
algorithms for minimum sum-of-squares clustering. Pattern Recognition, 47(1):388–
401.

[59] Le Thi, H. A., Le, H. M., and Pham Dinh, T. (2015a). Feature selection in
machine learning: an exact penalty approach using a difference of convex function
algorithm. Machine Learning, 101(1–3):163–186.

[60] Le Thi, H. A., Le, H. M., Pham Dinh, T., and Huynh, V. N. (2013). Binary
classification via spherical separator by DC programming and DCA. Journal of
Global Optimization, 56(4):1393–1407.

[61] Le Thi, H. A. and Moeini, M. (2014). Long-Short Portfolio Optimization Under
Cardinality Constraints by Difference of Convex Functions Algorithm. Journal of
Optimization Theory and Applications, 161(1):199–224.

[62] Le Thi, H. A. and Nguyen, M. C. (2014). Self-organizing maps by difference
of convex functions optimization. Data Mining and Knowledge Discovery, 28(5-
6):1336–1365.

[63] Le Thi, H. A. and Nguyen, M. C. (2017). DCA based algorithms for feature
selection in multi-class support vector machine. Annals of Operations Research,
249(1):273–300.

[64] Le Thi, H. A., Nguyen, M. C., and Pham Dinh, T. (2014a). A DC programming
approach for finding communities in networks. Neural Computation, 26(12):2827–
2854.

[65] Le Thi, H. A. and Pham Dinh, T. (1997). Solving a Class of Linearly Constrained
Indefinite Quadratic Problems by D.C. Algorithms. Journal of Global Optimization,
11(3):253–285.

[66] Le Thi, H. A. and Pham Dinh, T. (2005). The DC (Difference of Convex Func-
tions) Programming and DCA Revisited with DC Models of Real World Nonconvex
Optimization Problems. Annals of Operation Research, 133(1-4):23–46.

168 Bibliography

[67] Le Thi, H. A. and Pham Dinh, T. (2016). DC programming and DCA: thirty
years of developments. Mathematical Programming Series B. Submitted.

[68] Le Thi, H. A., Pham Dinh, T., Le, H. M., and Vo, X. T. (2015b). DC approxima-
tion approaches for sparse optimization. European Journal of Operational Research,
244(1):26–46.

[69] Le Thi, H. A., Pham Dinh, T., and Le Dung, M. (1999). Exact Penalty in DC
Programming. Vietnam Journal of Mathematics, 27(2):169–178.

[70] Le Thi, H. A., Pham Dinh, T., and Ngai, H. V. (2012). Exact penalty and error
bounds in DC programming. Journal of Global Optimization, 52(3):509–535.

[71] Le Thi, H. A., Pham Dinh, T., and Thiao, M. (2016a). Efficient approaches for `2-
`0 regularization and applications to feature selection in svm. Applied Intelligence,
45(2):549–565.

[72] Le Thi, H. A. and Phan, D. N. (2016). DC Programming and DCA for Sparse
Optimal Scoring Problem. Neurocomputing, 186:170 –181.

[73] Le Thi, H. A. and Phan, D. N. (2017). DC programming and DCA for sparse fisher
linear discriminant analysis. Neural Computing and Applications, 28(9):2809–2822.

[74] Le Thi, H. A., Vo, X. T., and Pham Dinh, T. (2014b). Feature selection for linear
SVMs under uncertain data: Robust optimization based on difference of convex
functions algorithms. Neural Networks, 59:36–50.

[75] Le Thi, H. A., Vo, X. T., and Pham Dinh, T. (2016b). Efficient nonnegative matrix
factorization by DC programming and DCA. Neural Computation, 28(6):1163–1216.

[76] Li, Y. and Long, P. (2002). The relaxed online maximum margin algorithm.
Machine Learning, 46(1-3):361–387.

[77] Lim, Sejoon and Balakrishnan, Hari and Gifford, David and Madden, Samuel and
Rus, Daniela (2011). Stochastic Motion Planning and Applications to Traffic. The
International Journal of Robotics Research, 30(6):699–712.

[78] Littlestone, N. and Warmuth, M. (1994). The weighted majority algorithm. In-
formation and Computation, 108(2):212–261.

[79] Liu, Y. and Shen, X. (2006). Multicategory ψ-learning. Journal of the American
Statistical Association, 101:500–509.

[80] Luce, R. D. (1959). Individual Choice Behavior: A theoretical analysis. Wiley.

[81] Maillard, O. A., Munos, R., Lazaric, A., and Ghavamzadeh, M. (2010). Finite
sample analysis of Bellman residual minimization. In Sugiyama, M. and Yang, Q.,
editors, Asian Conference on Machine Learpning. JMLR: Workshop and Conference
Proceedings, volume 13, pages 309–324.

Bibliography 169

[82] Martin, J. J. (1965). Distribution of The Time Through A Directed, Acyclic
Network. Oper. Res., 13(1):46–66.

[83] Mason, L., Baxter, J., Bartlett, P., and Frean, M. (1999). Boosting algorithms
as gradient descent. In Proceedings of the 12th International Conference on Neural
Information Processing Systems, NIPS’99, pages 512–518, Cambridge, MA, USA.
MIT Press.

[84] Michie, D. and Chambers, R. A. (1968). BOXES: An experiment in adaptive
control. In Dale, E. and Michie, D., editors, Machine Intelligence. Oliver and Boyd,
Edinburgh, UK.

[85] Miller-Hooks, E. D. and Mahmassani, H. S. (2000). Least Expected Time Paths
in Stochastic, Time-Varying Transportation Networks. Transportation Science,
34(2):198–215.

[86] Munos, R. (2007). Performance Bounds in Lp norm for Approximate Value Iter-
ation. SIAM Journal on Control and Optimization.

[87] Neu, G., Gyorgy, A., and Szepesvari, C. (2012). The adversarial stochastic short-
est path problem with unknown transition probabilities. In Lawrence, N. D. and
Girolami, M., editors, Proceedings of the 15th International Conference on Artificial
Intelligence and Statistics, volume 22 of Proceedings of Machine Learning Research,
pages 805–813, La Palma, Canary Islands. PMLR.

[88] Nie, Y. M. and Wu, X. (2009). Shortest Path Problem Considering On-Time
Arrival Probability. Transportation Research Part B: Methodological, 43(6):597–
613.

[89] Nikolova, E. (2010). Approximation Algorithms for Reliable Stochastic Combina-
torial Optimization. In Serna, M., Shaltiel, R., Jansen, K., and Rolim, J., editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques: 13th International Workshop, APPROX 2010, and 14th International
Workshop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings,
pages 338–351. Springer Berlin Heidelberg, Berlin, Heidelberg.

[90] Nikolova, E., Kelner, J. A., Brand, M., and Mitzenmacher, M. (2006). Stochastic
Shortest Paths via Quasi-convex Maximization. In Azar, Y. and Erlebach, T., edi-
tors, Algorithms – ESA 2006: 14th Annual European Symposium, Zurich, Switzer-
land, September 11-13, 2006. Proceedings, pages 552–563. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

[91] Novikoff, A. B. (1963). On convergence proofs for perceptrons. In Proceedings of
the Symposium on the Mathematical Theory of Automata, volume 12, pages 615–622.

[92] Pashenkova, E., Rish, I., and Dechter, R. (1996). Value iteration and policy
iteration algorithms for markov decision problem.

170 Bibliography

[93] Pham Dinh, T. and El Bernoussi, S. (1986). Algorithms for Solving a Class of
Nonconvex Optimization Problems. Methods of Subgradients. North-Holland Math-
ematics Studies, 129:249 – 271. Fermat Days 85: Mathematics for Optimization.

[94] Pham Dinh, T., Le, H. M., Le Thi, H. A., and Lauer, F. (2014). A difference of
convex functions algorithm for switched linear regression. Automatic Control, IEEE
Transactions on, 59(8):2277–2282.

[95] Pham Dinh, T. and Le Thi, H. A. (1997). Convex analysis approach to DC
programming: theory, algorithms and applications. Acta Mathematica Vietnamica,
22(1):289–355.

[96] Pham Dinh, T. and Le Thi, H. A. (1998). DC optimization algorithms for solving
the trust region subproblem. SIAM Journal of Optimization, 8(2):476–505.

[97] Pham Dinh, T. and Le Thi, H. A. (2014). Recent Advances in DC Programming
and DCA. In Nguyen, N. T. and Le Thi, H. A., editors, Transactions on Computa-
tional Intelligence XIII, volume 8342, pages 1–37. Springer Berlin Heidelberg.

[98] Piot, B., Geist, M., and Pietquin, O. (2014). Difference of Convex Functions
Programming for Reinforcement Learning. In Advances in Neural Information Pro-
cessing Systems (NIPS 2014).

[99] Puterman, M. L., editor (1994). Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley & Sons, Inc., New York, NY, USA.

[100] Randour, M., Raskin, J.-F., and Sankur, O. (2015). Variations on the stochastic
shortest path problem. In D’Souza, D., Lal, A., and Larsen, K. G., editors, Verifica-
tion, Model Checking, and Abstract Interpretation: 16th International Conference,
VMCAI 2015, Mumbai, India, January 12-14, 2015. Proceedings, pages 1–18, Berlin,
Heidelberg. Springer Berlin Heidelberg.

[101] Rockafellar, R. T. (1970). Convex analysis. Princeton Mathematical Series.
Princeton University Press, Princeton, N. J.

[102] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):386–408.

[103] Ross, S. and Bagnell, J. A. (2011). Stability conditions for online learnability.
arXiv:1108.3154, pages 1–16.

[104] Saha, A., Jain, P., and Tewari, A. (2012). The interplay between stability and
regret in online learning. arXiv:1211.6158, pages 1–19.

[105] Samuel, A. L. (1959). Some studies in machine learning using the game of
checkers. IBM Journal of Research and Development, 3:210–229.

[106] Scherrer, B. (2010). Should one compute the Temporal Difference fix point
or minimize the Bellman residual? The unified oblique projection view. In 27th
International Conference on Machine Learning - ICML 2010, Häıfa, Israel.

Bibliography 171

[107] Schweitzer, P. and Seidmann, A. (1985). Generalized polynomial approximations
in markovian decision processes. Journal of Mathematical Analysis and Applications,
110(2):568–582.

[108] Shalev-Shwartz, S. (2007). Online Learning: Theory, Algorithms, and Applica-
tions. PhD thesis, The Hebrew University of Jerusalem.

[109] Shalev-Shwartz, S. (2012). Online learning and online convex optimization.
Found. Trends Mach. Learn., 4(2):107–194.

[110] Shalev-Shwartz, S. and Singer, Y. (2007). A primal-dual perspective of online
learning algorithms. Machine Learning, 69(2-3):115–142.

[111] Shor, N. Z. (1985). Minimization Methods for Non-Differentiable Functions.
Springer Series in Computational Mathematics 3. Springer-Verlag Berlin Heidelberg,
1 edition.

[112] Sigal, C. E., Pritsker, A. A. B., and Solberg, J. J. (1980). The Stochastic Shortest
Route Problem. Oper. Res., 28(5):1122–1129.

[113] Sigaud, O. and Buffet, O., editors (2010). Markov Decision Processes in Artificial
Intelligence. Wiley-IEEE Press.

[114] Singh, S., Jaakkola, T., Littman, M. L., and Szepesvári, C. (2000). Conver-
gence results for single-step on-policy reinforcement-learning algorithms. Machine
Learning, 38(3):287–308.

[115] Singh, S. P., Jaakkola, T., and Jordan, M. I. (1995). Reinforcement learning with
soft state aggregation. In Tesauro, G., Touretzky, D. S., and Leen, T. K., editors,
Advances in Neural Information Processing Systems 7, pages 361–368. MIT Press,
San Mateo.

[116] Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.
Machine Learning, 3(1):9–44.

[117] Sutton, R. S. (1996). Generalization in reinforcement learning: Successful ex-
amples using sparse coarse coding. In Advances in Neural Information Processing
Systems 8, pages 1038–1044. MIT Press.

[118] Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, USA.

[119] Szepesvári, C. (2010). Algorithms for Reinforcement Learning. Morgan & Clay-
pool.

[120] Szepesvári, C. and Smart, W. D. (2004). Interpolation-based Q-learning. In
Proceedings of the Twenty-first International Conference on Machine Learning,
ICML’04, pages 791–798, New York, NY, USA. ACM.

172 Bibliography

[121] Van Der Malsburg, C. (1986). Frank rosenblatt: Principles of neurodynamics:
Perceptrons and the theory of brain mechanisms. In Palm, G. and Aertsen, A.,
editors, Brain Theory, pages 245–248. Springer Berlin Heidelberg.

[122] van Otterlo, M. and Wiering, M. (2012). Reinforcement Learning and Markov
Decision Processes. In Wiering, M. and van Otterlo, M., editors, Reinforcement
Learning, volume 12, chapter 1, pages 3–42. Springer Berlin Heidelberg, Hillsdale,
NJ.

[123] Vapnik, V. N., editor (1998). Statistical learning theory. Wiley.

[124] Vovk, V. G. (1990). Aggregating strategies. In Proceedings of the 3rd Annual
Workshop on Computational Learning Theory, COLT’90, pages 371–386, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers Inc.

[125] Wang, W. and Carreira-Perpiñán, M. Á. (2013). Projection onto the probability
simplex: An efficient algorithm with a simple proof, and an application.

[126] Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, King’s
College, Cambridge, UK.

[127] Wiering, M. and van Otterlo, M., editors (2012). Reinforcement Learning: State-
of-the-Art, volume 12 of Adaptation, Learning, and Optimization. Springer-Verlag
Berlin Heidelberg, 1 edition.

[128] Williams, R. J. and Baird, L. C. I. (1993). Tight performance bounds on greedy
policies based on imperfect value functions. Technical report, College of Computer
Science, Northeastern University.

[129] Xu, X., Zuo, L., and Huang, Z. (2014). Reinforcement learning algorithms with
function approximation: Recent advances and applications. Information Sciences,
261:1–31.

[130] Yin, P., Lou, Y., He, Q., and Xin, J. (2015). Minimization of `1−2 for compressed
sensing. SIAM Journal on Scientific Computing, 37(1).

[131] Yuille, A. L. and Rangarajan, A. (2003). The concave-convex procedure (CCCP).
Neural Comput, 15:915–936.

[132] Zhang, L., Yang, T., Jin, R., and Zhou, Z.-H. (2015). Online bandit learning for
a special class of non-convex losses. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence, AAAI’15, pages 3158–3164. AAAI Press.

[133] Zhao, P., Hoi, S. C. H., and Zhuang, J. (2013). Active learning with expert ad-
vice. In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence,
UAI 2013, Bellevue, WA, USA, August 11-15, 2013.

[134] Zinkevich, M. (2003). Online convex programming and generalized infinitesimal
gradient ascent. In Fawcett, T. and Mishra, N., editors, Proceedings of the 20th
International Conference on Machine Learning (ICML-03), pages 928–936.

	Titre
	Remerciements
	Contents
	Résumé
	Abstract
	Introduction generale
	Chapter 1 Preliminary
	1.1 DC programming and DCA
	1.1.1 Fundamental convex analysis
	1.1.2 DC optimization
	1.1.3 DC Algorithm (DCA)

	1.2 Online DC programming and Online DCA
	1.2.1 Online DC optimization
	1.2.2 Online DCA
	1.2.3 ODCA: a proposed Online DCA based scheme
	1.2.4 Analysis of ODCA

	Part I Online learning
	Chapter 2 Online Learning and Applicationsto Online Binary Linear Classification
	2.1 Introduction
	2.1.1 Background and related works
	2.1.2 Our contributions

	2.2 Online DC programming and Online DCA for Online learning
	2.2.1 An introduction to Online DC programming and Online DCA for Online learning
	2.2.2 Online gradient descent: special version of Online DCA
	2.2.3 ODCA: a proposed Online DCA based scheme
	2.2.4 Analysis of ODCA

	2.3 Online DCA for Online Binary Linear Classification problems
	2.3.1 First piecewise linear function
	2.3.2 Second piecewise linear function
	2.3.3 Sigmoid function

	2.4 Numerical Experiments
	2.5 Conclusion

	Chapter 3 Online DCA for Prediction with Expert Advice
	3.1 Introduction
	3.1.1 Background and related works
	3.1.2 Our contributions

	3.2 Prediction with Expert Advice
	3.3 Solution methods based on Online DC pro-gramming and Online DCA
	3.3.1 ODCA-SG and ODCA-ESG: ODCA schemes for Pre-diction with Expert Advice
	3.3.2 Analysis of ODCA-SG and ODCA-ESG

	3.4 Online DCA for prediction with expert advice
	3.5 Numerical experiments
	3.6 Conclusions

	Part II Reinforcement learning
	Chapter 4 Reinforcement Learning : Introduction and Related Works
	4.1 Background and related works
	4.2 Motivation

	Chapter 5 A unified DC programming framework and efficient DCA based approaches for large scale batch Reinforcement Learning
	5.1 Our contributions
	5.2 Optimization formulations of the empirical OBR via linear function approximation
	5.2.1 `p-norm formulation (p - 1)
	5.2.2 `1-norm formulation
	5.2.3 New formulation: concave minimization under linear constraints

	5.3 Solution methods by DC programming andDCA
	5.3.1 DCA for solving the `1-norm problem
	5.3.2 DCA for solving the `2-norm problem
	5.3.3 DCA for solving the `1-norm problem
	5.3.4 DCA applied on the new concave minimization formulation
	5.3.5 Performance analysis on di erent DCA based algorithms
	5.3.6 Starting points for DCA

	5.4 Numerical experiments
	5.4.1 Description of Garnet and Gridworld problems
	5.4.2 Set up experiments
	5.4.3 Experiment 1: Comparison between DCA based algorithms
	5.4.3.1 Comparative results of the six versions of DCA
	5.4.3.2 E ect of starting points on our four DCA algorithms

	5.4.4 Experiment 2: Comparison with LSPI, FQI
	5.4.4.1 Garnet problems
	5.4.4.2 Gridworld problems

	5.5 Conclusions

	Chapter 6 Online DCA for Reinforcement Learning
	6.1 Our contributions
	6.2 Optimization formulations
	6.3 Solution methods by Online DC programming and Online DCA
	6.3.1 Online DCA for solving the `2-norm problem
	6.3.2 Alternating Online DCA versions

	6.4 Numerical experiments
	6.4.1 Descriptions of mountain car and pole balancing problems
	6.4.2 Set up experiments
	6.4.3 Computational results

	6.5 Conclusions

	Chapter 7 Applications to Stochastic Shortest Path problems: DCA Approaches via Cardinality Minimization and Reinforcement Learning
	7.1 Introduction
	7.1.1 An optimization formulation of PT model-based SSP problems
	7.1.2 Related works
	7.1.2.1 Cardinality minimization reformulation
	7.1.2.2 MDP reformulation

	7.1.3 Our contributions

	7.2 DCA Approaches for the reformulations of PT model-based SSP problems
	7.2.1 The first reformulation: cardinality problem
	7.2.2 The second reformulation: Batch RL problem

	7.3 Numerical experiments
	7.3.1 Experiment 1: Card-DCA for the cardinality problem
	7.3.2 Experiment 2: Comparison between DCA approaches

	7.4 Conclusions

	Chapter 8 Conclusions
	Bibliography

