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Abstract

To a great extent, the growing requirement for interoperability between di�erent
information systems required the use of Semantic Web technologies to facilitate
the data exchange. Indeed, the data in the “classical” Web are intended to be
read and understood by humans. One of the most important aims of the Semantic
Web project is to structure these data so that they can be understood by software
agents. Many data models have been developed, particularly the RDF (Resource
Description Framework) model. As suggests its name, RDF allows describing the
resources on the web. A resource defines any real world entity that can be referred
and described. It can refer to a photo, a video, a web page, a monument, an
event or a person. Thus, di�erent data providers can describe in the same way,
di�erently or with complementary information the same entity. Given the massive
growth of data published on the web, it becomes di�cult to rapidly access the
description of a given entity. From there, was developed the web of data, an
initiative of W3C (World Wide Web Consortium), which consists of structuring,
linking and sharing data described in RDF graphs. A semantic link can express
any relationship between two resources. In this thesis, we are interested in the
relations, called identity links, expressing an equivalence between two di�erent
resources describing the same entity of the real world. Formally and in the web of
data, an identity link is expressed by an owl:sameAs statement.

This thesis is part of the ANR DOREMUS1 -DOing REusable MUSical data-
project. We are interested in the catalogs of three cultural institutions, including
BNF (Bibliothèque Nationale de France), Philharmonie de Paris and Radio France,
containing detailed descriptions about music works, such as their composers, their
performances, their interpretations and the related events (concerts, recordings,
etc). However, these data are stored in di�erent formats and cannot be directly
exchanged between the three institutions. Within the framework of the DORE-
MUS project, these institutions have adopted the Semantic Web technologies with
the aim of making these data accessible to all and linked. Structuring metadata

1http://www.doremus.org/

v

http://www.doremus.org/


vi

on entities requires the use of a vocabulary that models a particular domain. The
first task in this project was to model the semantics of knowledge. We were partic-
ularly interested in classical music. The selection of an existing vocabulary was a
complicated process. Indeed, the project pays particular attention to the musical
works which constitute the main entity held by the three partners. One of the main
objectives of the DOREMUS project is to be able to express, through a model, all
the physical manifestations (recordings, partitions) of a musical work, as well as
all the events that define them (creation, publication and interpretations).

The creation of identity links is a non-trivial task and becomes particularly di�cult
considering the high heterogeneity between the descriptions of the same entity. In
this thesis, our main objective is to propose a generic data linking approach, dealing
with certain challenges, for a concrete application on DOREMUS data. Particu-
larly, we focus on three major challenges: (1) reducing the tool configuration e�ort,
(2) coping with di�erent kinds of data heterogeneities across datasets and (3) deal-
ing with datasets containing blocks of highly similar instances. Recently, many
approaches for linking data from di�erent domains have been proposed. They
implemented various linking strategies. However, some of them often require the
user intervention during the linking process to configure some parameters or to
validate or to decline some generated links. This may be a costly task for the
user who may not be an expert in the domain. Therefore, one of the research
questions that arises is how to reduce human intervention as much as possible in
the process of data linking. Moreover, the data can show various heterogeneities
that a linking tool has to deal with. The descriptions can be expressed in di�erent
natural languages, with di�erent vocabularies or with di�erent values. Indeed, the
lack of directives on how to structure and to describe resources can greatly im-
pact the complexity of the matching decision. The comparison can be complicated
due to the variations according to three dimensions: value-based, ontological and
logical. In this thesis, we analyze the most recurrent aspects of heterogeneity by
identifying a set of techniques that can be applied to them. Another challenge
is the distinction between highly similar but not equivalent resource descriptions
in the same dataset. In their presence, most of the existing tools are reduced in
e�ciency generating false positive matches. In this perspective, some approaches
have been proposed to identify a set of discriminative properties called keys. Very
often, such approaches discover a very large number of keys. The question that
arises is whether all keys can discover the same pairs of equivalent instances, or if
some are more meaningful than others. To our knowledge, no approach provides a
strategy to classify the keys generated according to their e�ectiveness to discover
the correct links. In order to ensure quality alignments, we have proposed in this
work a new data linking approach addressing the challenges described above.
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We developed Legato — a generic tool for automatic heterogeneous data linking.
Our tool is based on instance profiling to represent each resource as a textual doc-
ument of literals dealing with a variety of data heterogeneities. Legato implements
a filtering step of so-called problematic properties allowing to clean the data of
the noise likely to make the comparison task di�cult. To address the problem of
similar but distinct resources, Legato implements a key ranking algorithm called
RANKey. The e�ectiveness of Legato has been validated on di�erent datasets.
Indeed, our system has participated in OAEI (Ontology Alignment Evaluation
Initiative) 2017, where it has been successful on the data benchmark. It was the
best system on datasets of highly similar instances with a high link accuracy of
100%. In addition, the results showed that Legato produces the best alignments
in terms of accuracy thanks to its repairing strategy.





Titre en Français: Liage de Données Ouvertes et Hétérogènes -Application au
Domaine Musical-.

Résumé

Dans une large mesure, l’exigence croissante d’interopérabilité entre les di�érents
systèmes de stockage de données a nécessité l’adoption du Web Sémantique pour
faciliter l’échange d’informations. En e�et, les données qui sont stockées dans le
web “classique” de documents ont été conçues pour être lues et comprises par les
humains. Un des objectifs les plus importants du Web Sémantique est de struc-
turer ces données de manière à ce qu’elles puissent être comprises par les agents
logiciels. Pourtant, XML (eXtensible Markup Language), un langage communé-
ment utilisé, fournit une syntaxe pour créer, structurer et manipuler des données.
Cependant, XML ne permet pas de modéliser la sémantique des données produites
indépendamment les unes des autres. Pour pallier à ce problème, plusieurs mod-
èles de données ont été développés dont particulièrement le modèle RDF (Resource
Description Framework). Comme son nom l’indique, RDF permet de décrire des
ressources sur le web. Celles-ci définissent toute entité, du monde réel, concrète
ou aussi abstraite soit-elle pouvant être référée et décrite. Ces ressources peuvent
référer des photos, des vidéos, des pages web, des monuments, des événements ou
encore des personnes. Ainsi, di�érents fournisseurs de données peuvent décrire
pareillement, di�éremment ou avec des informations complémentaires une même
entité. Au vu de la croissance fulgurante de données publiées sur le web, se pose la
di�culté d’accéder rapidement et en une seule requête à la description d’une en-
tité donnée. De là, a été conçu le web de données, une initiative du W3C (World
Wide Web Consortium), qui consiste à structurer, lier et partager des données
décrites en graphe RDF. Un lien sémantique peut exprimer toute relation entre
deux ressources. Dans cette thèse, nous nous intéressons aux relations, appelées
liens d’identité, exprimant une équivalence entre deux ressources di�érentes mais
qui décrivent la même entité du monde réel. Formellement et en web de données,
un lien d’identité est exprimé par un lien owl:sameAs.
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Des milliers d’œuvres musicales sont décrites dans des catalogues des institutions
culturelles, dont le rôle est de stocker toutes les créations musicales à travers le
catalogage et de les di�user auprès du grand public. Cette thèse s’inscrit dans le
cadre du projet ANR DOREMUS2 -DOnnées en REutilisation pour la Musique
en fonction des USages- qui vise à explorer les métadonnées des catalogues de
trois grandes institutions culturelles : Bibliothèque Nationale de France (BNF),
Philharmonie de Paris et Radio France afin qu’elles puissent communiquer entre
elles et être mieux utilisées par les di�érents publics. Elles ne représentent pas
toutes les données musicales de la même manière. En e�et, les données sont
stockées dans di�érents formats et ne peuvent être directement échangées entre
les trois institutions. Dans le cadre du projet DOREMUS, ces institutions ont
alors adopté les techniques et principes du Web Sémantique dont l’objectif est
de rendre ces données ouvertes à tous, accessibles et liées. La création des liens
d’identité s’avère être une tâche non triviale et devient particulièrement di�cile
considérant la grande hétérogénéité entre les descriptions d’une même entité. Dans
cette thèse, notre objectif principal est de proposer une approche de liage générique,
traitant certains challenges, avec comme cas concret d’utilisation les données de
DOREMUS.

Structurer les métadonnées sur des entités nécessite l’utilisation d’un vocabulaire
qui modélise un domaine particulier. La première tâche dans le projet DORE-
MUS a été de modéliser la sémantique de l’ensemble de connaissances. Nous nous
sommes particulièrement intéressés à la musique classique. La sélection d’un vo-
cabulaire existant fut un processus compliqué. En e�et, le projet accorde une
attention particulière aux œuvres musicales qui constituent la principale entité
détenue par les trois partenaires. L’un des objectifs de DOREMUS est de pouvoir
exprimer, via un modèle, toutes les manifestations physiques (enregistrements,
partitions), d’une œuvre musicale, ainsi que tous les événements qui la définissent
(création, publication, interprétations). Plusieurs modèles existants peuvent être
réutilisés pour décrire une œuvre musicale, i.e., MusicOntology, alors que d’autres
sont conçus pour les documents bibliographiques, i.e., FRBR3. Il existe également
des modèles qui visent à décrire des événements (Event4, LODE5), mais sont rares
ceux qui définissent les processus de création et de publication. Par conséquent,
le groupe de modélisation a développé un nouveau modèle basé sur FRBRoo6 qui
est lui-même une extension du modèle CIDOC-CRM7. Ce modèle consiste en une

2http://www.doremus.org/
3https://www.ifla.org/publications/functional-requirements-for-bibliographic-records
4http://motools.sourceforge.net/event/event.html
5http://linkedevents.org/ontology/
6http://www.cidoc-crm.org/frbroo/
7http://www.cidoc-crm.org/

http://www.doremus.org/
https://www.ifla.org/publications/functional-requirements-for-bibliographic-records
http://motools.sourceforge.net/event/event.html
http://linkedevents.org/ontology/
http://www.cidoc-crm.org/frbroo/
http://www.cidoc-crm.org/
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nouvelle ontologie musicale permettant de prendre en compte la description des
œuvres et des événements qui les concernent.

Le processus de transformation de données en RDF présente donc un travail
préliminaire réalisé dans le cadre du projet DOREMUS. Les principales sources
d’informations consistent en des documents au format MARC (Bibliothèque Na-
tionale de France et la Philharmonie de Paris) ainsi que des documents au format
XML (Radio France). Le format MARC (MAchine Readable Cataloging) est un
format d’échange de données bibliographiques permettant d’informatiser les cata-
logues de bibliothèques. La conversion des données en RDF se basait essentielle-
ment sur des règles de mapping écrites manuellement par les experts du groupe
de modélisation. En e�et, il était devenu crucial pour le groupe de modélisation
de fournir un tableau de mapping expliquant la localisation de chaque propriété
par rapport au format utilisé par chacune des institutions. Ces règles varient con-
sidérablement en fonction de la nature des données en entrée. Dans ce projet, j’ai
participé au développement d’un outil, appelé MARC2RDF8, de transformation
de données venant de la BNF et de la Philharmonie de Paris. Comme son nom
l’indique, cet outil prend en entrée des notices au format MARC (UNIMARC/IN-
TERMARC) pour produire des données en RDF. MARC2RDF est donc basé sur
le modèle DOREMUS dans lequel les trois entités “œuvre”, “expression” et “événe-
ment” sont mises en relation tel qu’un événement crée une œuvre qui est réalisée
dans une expression.

Une fois que la structuration des données en RDF e�ectuée, l’étape suivante con-
siste à établir des liens d’identité entre les œuvres musicales. Dans cette thèse,
nous nous focalisons sur trois principaux challenges : (1) réduire la configuration
manuelle de l’outil de liage, (2) faire face à di�érents types d’hétérogénéité entre
les descriptions, et (3) Supprimer l’ambiguïté entre les ressources très similaires
dans leur descriptions mais qui ne sont pas équivalentes. Récemment, des ap-
proches ont été proposées en déployant di�érentes stratégies pour faire face au
problème de liage de données. Cependant, certaines d’entre elles demandent sou-
vent l’intervention de l’utilisateur pour configurer certains paramètres ou encore
pour valider ou décliner certains liens générés par le système. Ceci peut s’avérer
être une tâche coûteuse pour l’utilisateur qui peut ne pas être expert du domaine.
Par conséquent, une des questions de recherche que nous nous posons est comment
réduire autant que possible l’intervention humaine dans le processus de liage des
données. De plus, en fonction des sources, les descriptions des ressources peuvent
présenter diverses hétérogénéités qu’un outil doit savoir gérer. Par ailleurs, les
descriptions peuvent être exprimées dans di�érentes langues naturelles, avec des
vocabulaires di�érents ou encore avec des valeurs di�érentes. En e�et, l’absence de

8https://github.com/DOREMUS-ANR/marc2rdf

https://github.com/DOREMUS-ANR/marc2rdf
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directives sur la manière de structurer et de décrire les ressources peut grandement
impacter la complexité de la décision d’appariement. La comparaison peut alors
s’avérer très di�cile en raison des variations selon trois dimensions : basées sur
les valeurs, ontologiques et logiques. Dans cette thèse, nous analysons les aspects
d’hétérogénéité les plus récurrents en identifiant un ensemble de techniques qui
peuvent leur être appliquées. Un autre défi est la distinction entre des descrip-
tions de ressources fortement similaires mais non équivalentes dans un même jeu
de données. En leur présence, la plupart des outils existants se voient diminuer
leur e�cacité en terme de qualité, en générant beaucoup de faux positifs. Dans
cette optique, certaines approches ont été proposées pour identifier un ensemble
de propriétés discriminatives appelées des clefs. Très souvent, de telles approches
découvrent un très grand nombre de clés. La question qui se pose est de savoir si
toutes les clés permettent de découvrir les mêmes paires d’instances équivalentes,
ou si certaines sont plus significatives que d’autres. A notre connaissance, aucune
approche ne fournit de stratégie pour classer les clefs générées en fonction de leur
e�cacité à découvrir les bons liens. Afin d’assurer des alignements de qualité, nous
avons proposé dans ce travail une nouvelle approche de liage de données visant à
relever les défis décrits ci-dessus.

Nous avons développé Legato — un outil générique de liage automatique de don-
nées hétérogènes qui répond aux challenges évoqués précédemment. Notre outil est
basé sur la notion de profile d’instance permettant de représenter chaque ressource
comme un document textuel de littéraux gérant une variété d’hétérogénéités de
données sans l’intervention de l’utilisateur. Legato implémente également une
étape de filtrage de propriétés dites problématiques permettant de nettoyer les
données du bruit susceptible de rendre la tâche de comparaison di�cile. Pour
pallier au problème de distinction entre les ressources similaires dans leur descrip-
tion, Legato implémente un algorithme basé sur la sélection et le ranking des
clefs. Une clef représente un ensemble de propriétés qui identifie les ressources de
manière unique. Pour cela, la stratégie que nous avons adoptée est de regrouper
les ressources similaires dans chaque jeu de données. Puis, pour chaque paire de
clusters similaires de deux jeux de données, les ressources sont comparées en util-
isant la meilleure clef identifiée par notre algorithme de sélection et de ranking
des clefs ce qui devrait améliorer considérablement la précision au niveau des liens
générés.

Les di�érentes expérimentations menées ont clairement montré l’apport de cer-
taines étapes tout au long du processus de notre approche de liage. A l’étape
de nettoyage des données, il a été démontré que la suppression des propriétés
problématiques améliorait l’exactitude des liens générés. En e�et, nous avons pu
constater que ce type de propriétés rendait di�cile la tâche de comparaison. Les
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expérimentations e�ectuées à l’étape de profiling d’instances ont mis en avant la
nécessité de représenter les ressources par leur CBD (Concise Bounded Descrip-
tion) étendu. Autrement dit, chaque ressource est représentée par un sous-graphe
contenant tous les triplets de son CBD, du CBD de ses prédécesseurs directs et
du CBD de ses successeurs direct. L’idée derrière cette stratégie de représentation
est qu’il peut y avoir des informations pertinentes lors de la comparaison dans les
prédécesseurs et/ou les successeurs de chaque ressource. Nous pouvons prendre
l’exemple des données DOREMUS, où l’information sur le compositeur de chaque
œuvre se trouve dans son prédécesseur. Au meilleur de nos connaissances, aucune
approche dans la littérature n’exploite cette orientation dans le graphe. De plus,
les expérimentations soulignent l’intérêt de l’étape de post-traitement que nous
avons proposée en termes de réparation des liens erronés. En e�et, cette étape fut
particulièrement intéressante en présence d’instances très similaires dans un seul
jeu de données. Toutefois, nous avons constaté que certains nouveaux liens peu-
vent être générés à l’étape de post-traitement mais qui n’ont pas pu être identifié
lors de l’étape de pré-matching.

L’e�cacité de l’approche de liage implémentée dans Legato a été validée sur dif-
férents jeux de données synthétiques et aussi réelles soient-elles. En e�et, Legato
a participé à la compagne d’évaluation OAEI9 (Ontology Alignment Evaluation
Initiative) 2017 où il s’est montré très performant sur le benchmark des données.
Même en présence d’instances très similaires, Legato peut générer des liens de
qualité. Il s’est d’ailleurs montré le meilleur outil sur un jeu de données de la
compagne contenant uniquement ce type d’instances avec une exactitude de liens
élevée à 100%. De plus, les di�érentes expérimentations menées ont clairement
montré que notre système produit de très bons résultats en termes de F-Mesure et
les meilleurs alignements en termes de précision grâce à sa stratégie de réparation
de liens.

9http://oaei.ontologymatching.org/2017/
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An increasing amount of data, publishers, and users has been noticed over the
last years on the worldwide web. Data providers can easily share their contents
in the form of documents called web pages. The simplicity of their structure
makes it easy to read new content through web browsers. However, access to
relevant information becomes particularly complicated considering the explosion
in the amount of stored data. Seeking the desired information could be a di�cult or
even impossible task in all this mass of data. In fact, the World Wide Web (WWW)
is estimated currently at 4.58 billion pages1. The problem addressed above is also
due to the heterogeneity of data: the same information can be encoded in di�erent
formats and in di�erent languages. Note that the information content is expressed
in natural language and consequently it is only in a human-readable form.

To face this problem, many e�orts have been spent during the past years to make
information automatically processed by the machines. In 2000, Tim Berners-Lee,
the WWW inventor, proposed a new vision of the web of documents to the Se-
mantic Web of annotated resources. The vision of Semantic Web, the principle of
which is to semantically annotate the documents, appeared very promising. More
particularly, thanks to this new architecture of the web, the software agents are
able to understand the meaning of the published data.

The principles of the Web in general and the Semantic Web in particular can be
summarized as follows [2]:

• Anyone can say Anything about Anything (AAA).

• Anything can be linked to anything.

Considering the AAA slogan, any user can describe any entity with any piece of
data. Assume that no one knows everything about anything. Hereby, there always
can be something else that somebody can say. As for the web of documents, the
information content is provided under the Open World Assumption (OWA) in Se-
mantic Web. Therefore, the first principle aims at enriching the published data.
On the other hand, distributed information about the same real-world entity is
produced. As an example, people can describe an artist with any piece of infor-
mation they have. Given the large amount of published data, access to relevant
information becomes di�cult, hence the need to connect these data. This need
has led to the emergence of the web of data.

In the following, we will motivate the problem of data linking on structured knowl-
edge across heterogeneous data sources. Particularly, we will describe in Section
2.1 and 1.2 the popular standards, allowing to structure the information content
on the web, and data linking problem, respectively. In Section 1.3, we start by

1http://www.worldwidewebsize.com/

http://www.worldwidewebsize.com/
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motivating the general context of this thesis. Next in Section 1.4, we shift to a
narrower context where we discuss a variety of challenges including data hetero-
geneities, similarities and the configuration cost. Section 1.5 presents the research
questions alongside to the main contributions of this thesis on this regard. Finally,
we conclude the chapter by highlighting the structure of the thesis.

1.1 Open Data

Data that are accessible and publicly available for reuse, redistribution, reproduc-
tion and without any restriction, are considered as open. The concept of open data
appeared in the 2000s and has spread in scientific, governmental and civil societies
fields. The idea aims at providing to the citizens a greater transparency for data
processing allowing them to discover, to explore and to exploit the data across
di�erent areas. Indeed, it allows to develop applications or to conduct research
work using this data. Wikipedia2 is the best-known example of a data source
whose information is made available under free license. Also, the United States
o�ered a prominent example by providing citizens with a large amount of open
data. This initiative allowed the launch of the portal data.gov3 making available
data generated by the federal government. Currently, this platform has almost
198k datasets about di�erent areas (agriculture, education, finance, health, etc.).

To be considered as open, Tim Berners-Lee4 proposed five criteria for evaluating
the data:

• The data are available on the web and accessible via an URL.

• The data are provided in any non-proprietary format (e.g. .csv instead of
.xlsx).

• The data are available in a structured and machine-readable form (e.g. CSV,
XML and RDF).

• The data are provided with an open license so that they are freely reusable.

• The data are linked to other data from other sources.

However, due to the growing number of open data published on the web, they
cannot be processed manually. From there appears the open web of data allowing
access to the data through unique identifiers to be automatically queried regardless

2https://fr.wikipedia.org/
3https://www.data.gov/
4https://www.w3.org/DesignIssues/LinkedData.html

https://fr.wikipedia.org/
https://www.data.gov/
https://www.w3.org/DesignIssues/LinkedData.html
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of where they are stored. In the open web of data, the information is made available
in standard machine-readable formats. It denotes not only the supply of open data
but also their linking to constitute a network of open linked data so that from a
given information we can more easily and quickly access the other information.
The process of linking entities to one another is called data linking.

1.2 Data Linking

Data are being published continuously on the web in a decentralized manner lead-
ing to a web of heterogeneous data, containing duplicates, incomplete information
and often even errors. Data linking promises to address this issue and thus con-
siderably improve the quality of the open web of data, facilitating the access to
distributed and decentralized information.

In the Semantic Web field, the data linking task is defined as the process of estab-
lishing a relation between two resources coming from two distinct datasets, or in
other words, declaring a triple that has its subject in one dataset and its object in
another. We are interested in a specific kind of data linking that aims to connect
identical resources through an equivalence relation called identity link. We will re-
fer to data linking as the process of comparing two resources of two corresponding
classes, across two datasets. The outcome of this process is the establishment of
an identity link between the resources together with a degree of confidence of this
assertion. Two resources that are found to refer to the same real world object are
declared as being equivalent by linking their URIs r1 and r2 in an owl:sameAs
statement of the kind <r1,owl:sameAs,r2>. The use of owl:sameAs further en-
riches the Linked Data space by declaratively supporting distributed semantic data
integration at the instance level [3]. In fact, it allows to state individuals equality
indicating that they have the same identity.

The term Linked Open Data (LOD) appears as of 2006 following the four principles
recommended by Tim Berners-Lee5:

1. Use URIs to identify the resources;

2. Use the HTTP protocol to dereference URIs;

3. Provide useful information for URIs using Semantic Web technologies;

4. Include links to other URIs to discover more information.
5https://www.w3.org/DesignIssues/LinkedData.html

https://www.w3.org/DesignIssues/LinkedData.html
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A URI (Uniform Resource Identifier) [4] is a protocol allowing to identify, in a
unique and uniform way, any resource used in a web application. We mean by
resource any concrete or abstract entity, such as a file, image, video, concept or a
person.

The second principle indicates that it is possible to perform an HTTP request to
a URI in order to receive the information about the resource identified by this
unique identifier.

After referencing the resources, the next step is to annotate them, in order to
give them meaning that can be interpreted by the machines. This is precisely the
role of the RDF (Resource Description Framework) protocol. The RDF has been
standardized and defined by the W3C as “a standard model for web-based data
exchange” allowing to describe the resources. Please notice that a more detailed
definition of this language is provided in Sub-section 2.1.1 of Chapter 2.

According to the fourth principle, it is necessary to provide references (links) to
other URIs allowing the users to retrieve e�ectively and e�ciently the relevant
information.

To better illustrate the benefit of data linking consider the following example,
where a journalist would like to have all possible information about a particular
event. Anyone who was present at this event can describe what happened with
their own information and their own attributes in di�erent web sites. The main
problem is that the journalist would have to inspect whether the di�erent testi-
monies concern the same event. Given the size of the WWW and the number of
descriptions to compare, this task cannot be handled manually. What we need is
to explicitly show that all these facts describe the same event by establishing an
identity link between them. This explicit correspondence helps to complete and
to make more precise the available information about this event. In fact, if the
equivalent descriptions are linked together, the journalist can obtain them only
from one query on the web.

1.3 Context and Motivation

This thesis is part of the DOREMUS –DOing REusable MUSical data– project6

which is conducted in partnership with: BNF7 (Bibliothèque Nationale de France),

6http://www.doremus.org/
7http://www.bnf.fr

http://www.doremus.org/
http://www.bnf.fr
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la Philharmonie de Paris8 (PP), Radio France9, Meaning Engines10, EURECOM11,
LIRMM12, GERiiCO13 and OUROUK14.

Thousands of musical works are described in the catalogs of cultural institutions
whose role is: (i) Storing - store all the musical creation through the cataloging
as for BNF for example; (ii) Broadcasting - stream music to the general public as
it is the case of Radio France; (iii) Storing and dissemination - this role consists
in cataloging, disseminating and popularizing (Philharmonie de Paris). The three
cultural institutions mentioned above do not all manipulate musical data in the
same manner or pursue the same objective. The role of the DOREMUS project is
to explore their data in such a way that they can communicate and that they can
be more valued for the users. The idea is to store, order, classify and, finally, to
make the data about music accessible, as much as possible, to di�erent audiences.
More particularly, DOREMUS aims to provide common knowledge models and
shared multilingual vocabularies to cultural institutions, publishers, distributors
and users in the musical domain. The project pays particular attention to the
musical works which constitute the main entity held by the three partners. Indeed,
one of DOREMUS objectives is to express, through a model, all the physical
manifestations (recordings, partitions) of a musical work, as well as all the events
that define it (creation, publication, interpretations).

Considering the large amount of data, the project focuses only on classical and tra-
ditional musical works as well as their interpretations (events). DOREMUS also
relies on the DISCOTHEKA project carried out by Meaning Engines, in particu-
lar, for the ability to reuse open data on musical works. Among the applications
of DOREMUS, the recommendation is a typical example. Its richness is its pecu-
liarity, particularly in comparison with other similar applications such as Deezer15,
in terms of fine description of music. In contrast to Deezer, DOREMUS allows
describing, for example, that a musical work is derived from another one. Indeed,
this will be achieved by means of a process of aggregation of musical content,
languages, tools and practices of Semantic Web. The thesis goes towards this
direction. More particularly, we consider the whole workflow in Semantic Web
dealing with the semantics, the publication and the linking of these works on the
web of data.

8https://philharmoniedeparis.fr
9http://www.radiofrance.fr/

10http://www.meaningengines.com/
11http://www.eurecom.fr
12https://www.lirmm.fr/
13http://geriico.recherche.univ-lille3.fr/
14http://www.ourouk.fr/
15https://www.deezer.com/fr/

https://philharmoniedeparis.fr
http://www.radiofrance.fr/
http://www.meaningengines.com/
http://www.eurecom.fr
https://www.lirmm.fr/
http://geriico.recherche.univ-lille3.fr/
http://www.ourouk.fr/
https://www.deezer.com/fr/
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In this context, we ought to deal with the complexity associated with the size of
the databases and the data formats used by each institution. The main sources
of information included in this project are MARC -Machine Readable Cataloging-
(BNF and Philharmonie de Paris) documents as well as documents in XML format
(Radio France). In the literature, we identified a number of methods for automat-
ically linking identical resources to each other. Despite the good performances
described by the authors, we analyzed the task of linking in itself. Indeed, few
of them were interested in the MARC format and even less those who manage
multilingualism. This aspect seems relevant given the existence of multilingual
labels in the data of our partners.

Figure 1.1 illustrates the data workflow in DOREMUS, ranging from raw musical
data (from the 3 partners) to the RDF data. Once the content is published on the
web of data, it can be exploited by the users (from music lovers to professionals)
in many ways. In this thesis, we focus on the following three steps: conversion,
publishing and linking.

Figure 1.1: The DOREMUS workflow: from raw musical data to RDF on the web
of data.
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For the data transformation step where data is converted from its original format
(MARC, XML) into RDF, an ontology was developed and provided by the model-
ing working group within the project. The modeling process is based on a narrower
collaboration with the three cultural institutions. The DOREMUS project pays
a particular attention to the musical works which constitute the main entity held
by the three partners. Several existing models can be used to represent a musical
work: MusicOntology16, FRBR17, Event18, etc. However, a specificity of musi-
cal works is their complexity. In the context of DOREMUS project, the chosen
model should be able to describe both the physical manifestations (recordings and
partitions), the events that define them (creation, publication and interpretation)
and possibly all the relationships between theses works. This is not the case for
existing models. Therefore, the modeling group worked on a new model, based on
FRBRoo19 which itself is an extension of the CIDOC-CRM model20, constitutes
a new musical ontology allowing to take into account the description of the works
and the events that concern them.

1.4 Challenges

One of the promising visions of the Semantic Web is the ability to share a very
large amount of semantic data in an open context. As a result, the web of data, and
particularly the Linked Open Data (LOD) project21, has been receiving growing
popularity over the past years, with hundreds of datasets published on the web.
Given that data are published in a decentralized manner, this sets new challenges
for discovering identity links in the open context of the Web.

Considering the first principle of Semantic Web mentioned above, any data provider
can describe any real-world entity by assigning it a URI. Note that there is no URI
naming convention, i.e., every user has the freedom to name the entity to be de-
scribed in any manner. Without imposing constraints on the URI naming forces
the discovering of resources referring to the same real-world entity and connect-
ing them with identity links. Given the large amount of semantically structured
information, it seems di�cult if not impossible to manually proceed for aligning
di�erent datasets especially if there is no semantic and structural homogeneity
between them. In fact, the lack of guidelines on the use of schema for each in-

16musicontology.com
17https://www.ifla.org/publications/functional-requirements-for-bibliographic-records
18http://motools.sourceforge.net/event/event.html
19http://www.cidoc-crm.org/frbroo/
20http://www.cidoc-crm.org/
21http://linkeddata.org

musicontology.com
https://www.ifla.org/publications/functional-requirements-for-bibliographic-records
http://motools.sourceforge.net/event/event.html
http://www.cidoc-crm.org/frbroo/
http://www.cidoc-crm.org/
http://linkeddata.org
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formation type may have a negative impact on the matching decision. A linking
tool has to be able to deal with a large variety of data heterogeneities, by taking
into account di�erences in descriptions on value, ontological or logical level. While
heterogeneities on literals are rather well-handled by similarity measures and data
unification techniques, ontological discrepancies (regarding structure and proper-
ties) appear to be way more challenging.

Another challenge for data linking problem in the open context of the web is to
handle correctly datasets containing blocks of highly similar in their descriptions,
but yet distinct resources (for instance, two datasets composed by piano sonatas by
Beethoven, Brahms and Schubert), likely to generate false positives. We assume
that descriptions about similar instances usually have very small distance, and
that no tool is able to e�ciently separate highly similar though not identical ones.
In this particular case, no similarity threshold will be su�cient to catch all the
equivalences and distinguish between these highly similar entities. In fact, even
if the threshold is set at a lower value, a data linking tool may produce a higher
number of false positive match.

Example. Three high similar musical works of Pierre Boulez retrieved from PP
and BNF are shown in Figure 1.2 and 1.3, respectively. The identity mappings
between them are declared by the experts of DOREMUS as follows:

<mw1, owl:sameAs, mw1’>
<mw2, owl:sameAs, mw2’>
<mw3, owl:sameAs, mw3’>

In order to make more explicit the complexity of the problem, we consider in this
example only a sample of their descriptions.

Looking at the descriptions in Figure 1.2 and 1.3 separately, it is possible for a
human person to conclude that they are di�erent even if they share most of their
attributes. In fact, only the underlined and in bold words di�er from one work to
another. However, it is not obvious for a tool to automatically distinguish between
them. Consider the case where a tool has to compare the works coming from BNF
with those coming from PP, the task of finding the right correspondences seems to
be particularly complicated. Therefore, if we compare mw1’ with mw1, mw2 and
mw3, the similarity value will be a�ected by a high weight for each of them which
increases the problem of false positive matching.

We argue that setting the linking tool parameters is another challenging prob-
lem that often requires in-depth knowledge of the data. State-of-the-art tools like
LIMES [5] or SILK [6] require link specification files where one has to indicate
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Figure 1.2: An excerpt of the musical descriptions of Pierre Boulez retrieved from
PP.

property names, select and tune similarity measures. This process is handled ei-
ther manually, or by specialized tools. Making a linking tool self dependent in
that respect is among the challenges that we set in this work. Where the user
is expected to provide the names of the classes, in which to look for instances
to match and the properties whose values to compare. While the choice of pairs
of corresponding classes is rather well-assisted by ontology matching techniques
[7], property selection appears to be a more challenging issue. Often equivalent
properties do not help in the matching process, or even lead to errors, as we show
in the sequel. Automatic key discovery techniques [8, 9] attempt to alleviate that
problem by providing discriminative properties for each dataset, but their direct
application to data linking remains limited by the lack of measure of usefulness for
these keys on both datasets. Providing a better user assistance in the linking con-
figuration process appears as an important challenge. Since this process remains
in its essence dissociated from the matching task and, therefore, of what the two
datasets actually have in common, the usefulness of the automatically generated
keys remains variable. This is particularly so because these algorithms generate
keys in large numbers, lacking a link-likelihood score. To close the gap between
automatic key discovery and data linking approaches, we propose an approach
(as explained in Chapter 4) which allows reducing the user e�ort significantly by
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Figure 1.3: An excerpt of the musical descriptions of Pierre Boulez retrieved from
BNF.

selecting automatically the best keys relevant to the datasets to be linked.

1.5 Research Problem and Contributions

The Semantic Web community has addressed the problem of matching identical
instances over RDF graphs, an area that keeps evolving. The configuration in-
volving human user is not the only problem that faces a data linking system. As
briefly explained in Section 1.4, another important issue is to discover the identity
links under the heterogeneities that characterize the data and in the presence of
highly similar resources. Our work is motivated by the fact that identifying the
correspondences considering these issues is a non-trivial task which should clearly
require filtering and repair processings. Indeed, the specific research problem that
we address in this thesis can be stated as follows:

Research problem: what requirements must a data linking system fulfill to
reduce as much as possible the user’s intervention and how can it overcome the
di�erences of identical resources and discover the similarity of distinct ones?
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Of this problem arise four main research questions:

Research Question 1. What are the di�erent heterogeneity types and how are
they organized?

As we have stated in Section 1.4, data linking can be particularly complicated
considering the heterogeneous descriptions of the resources. To gain an overview
of di�erent heterogeneities is itself a challenging task; that it is partially (not
exhaustive) addressed in Chapter 2.

Research Question 2. How to deal with the di�erent heterogeneity aspects be-
tween the resources?

There are several challenges to overcome varying from the schema to the instance
layers. It is important to note that this work does not address the heterogeneities
at the ontological level, as many state-of-the-art ontology matching approaches
already exist [10–14]. Thus, we assume in our proposed data linking approach the
presence of the ontological mappings.

Research Question 3. How to make the linking process as automatic as possi-
ble?

Most of the data linking approaches require user intervention throughout the pro-
cess, especially in the preprocessing and post-processing steps. Usually, the pre-
processing allows to train a classifier with links manually annotated by the user
[15, 16] or to tune parameters such as thresholds [5, 6, 17–20], similarity measures
or selecting in an appropriate manner the attributes of interest to compare. This
requires a high degree of knowledge from the user about the data as well as about
the functioning of the linking tool he uses. Such knowledge is usually time expen-
sive for users to accomplish the task the first time he encounters the data. In fact,
it is not possible to manually quantify the heterogeneity of data in order to fix a
threshold about their similarities.

To address the question, we choose pragmatically to set a unique threshold regard-
less of the data (whether heterogeneous or not). In chapter 5, we describe how
can identity links be e�ectively generated without setting the threshold according
to the data. Furthermore, selecting the appropriate properties to compare is a
non-trivial task. The majority of the linking approaches adopt a property-based
philosophy. The precision in selecting the right properties to compare is of high
importance for the quality of the produced linkset. Consider for example the prop-
erty that provides information about the identifier of a music work belonging to
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some institution. In the context of the DOREMUS project, for the same musical
work, the identifier is undoubtedly di�erent across the three institutions since they
independently assign di�erent identifiers for all the works. Thus, we argue that
this type of property could have a significant impact on the matching decision.
To overcome this issue, we propose a filtering strategy of so-called problematic
properties (see Sub-section 5.1.1).

Research Question 4. How to distinguish between highly similar resources?

The existing data linking approaches are designed on the assumption that re-
sources from the same data source usually have a high distance. Only a small
number of approaches fits within the opposite hypothesis, i.e., those based on the
clustering [17, 21] or blocking [22] techniques. When each of the two datasets to
be matched contains resources with similar descriptions, these approaches regroup
such resources together according to one of these three cases: (i) Case 1. Similar
resources share a similar label (based on the rdfs:label property) according to a
given threshold [17]; (ii) Case 2. Similar resources share similar values of the key
predicates [22]; or (iii) Case 3. Similar resources share the same terms in their
documents where a document contains the literal information retrieved at a given
distance from a resource [21].

However, these solutions do not perform well since sharing similar labels is not
necessarily a crucial matching criterion. If we consider the example given in Table
1.1, the musical works mw1, mw2, mw3 and mw4 retrieved from PP share the same
value ’sonata’ of the rdfs:label property whereas they are completely di�erent
in their description.

Musical Work Composer Title Opus Key
mw122 Ludwig van Beethoven Sonate pour piano no 3 Op. 2 no 3 C Major

mw223 Scriabine Alexandre Sonate no 2 en sol dièse mineur Op. 19 G sharp Minor

mw324 Corelli Arcangelo Sonate pour violon et basse continue no 4 Op. 5 F Major

mw425 Grieg Edvard Sonate pour violon et piano no 1 Op. 8 F Major

Table 1.1: Musical works from PP sharing the same value ’sonata’ of the
property rdfs:label.

As stated in case 2, some approaches gather the resources sharing similar values
of the properties identified as keys. In practical terms, this means that given two

22http://data.doremus.org/expression/1a62abda-26a1-36d1-b4aa-c930f68b31ed
23http://data.doremus.org/expression/08b19fb9-4ee1-3169-a04e-2d0d626d6c28
24http://data.doremus.org/expression/822e5a32-e3c4-3aac-9dca-f6da9948e616
25http://data.doremus.org/expression/4fd3dff5-1af3-3862-bb04-41f91b6e091e

http://data.doremus.org/expression/1a62abda-26a1-36d1-b4aa-c930f68b31ed
http://data.doremus.org/expression/08b19fb9-4ee1-3169-a04e-2d0d626d6c28
http://data.doremus.org/expression/822e5a32-e3c4-3aac-9dca-f6da9948e616
http://data.doremus.org/expression/4fd3dff5-1af3-3862-bb04-41f91b6e091e
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datasets A and B, and the sets of discovered keys KA and KB respectively, it
consists at grouping the resources sharing the same values of KA(KB) in A (in
B). However, discovering keys does not seem relevant when it is performed in
an upstream of the process of identifying similar resources in the same dataset.
Indeed, we are quite confident that the reverse direction of this process allows
us to reach our objective more e�ciently and produces better results. In fact,
once similar resources are clustered, the strategy consists in identifying the key
predicates that distinguish them. Note that several keys can be generated for the
same dataset. The final aim being to compare the most similar clusters, a tool
can also identify di�erent keys between them. Therefore, this entails the following
fifth research question:

Research Question 5. Are all the keys generated for one dataset equally im-
portant?

In other words, we need to answer the question that whether some of the generated
keys produce more accurate links than others. In Chapter 4, we formulate this
problem as a ranking problem, where the goal is to rank the keys that are valid
for both datasets and to select the best one. We also discuss the problems that can
occur during the ranking.

Other approaches represent each resource using its literals retrieved at a given
distance (d >= 1) and cluster those having similar representations (case 3). We
argue that there is no better than comparing resources by their most represen-
tative description. In fact, here arises the problem of which information should
be compared, i.e., set a high distance may introduce noise and set a low distance
may not be su�cient to retrieve the important information. This issue entails the
following sixth research question:

Research Question 6. How can the resources be e�ectively represented?

Considering the second research question, one of the main objectives of our work
is to make our data linking tool as automatic as possible. Setting the distance
parameter represents a real challenge. Therefore, it is important that the distance
is not considered in the representation of resources. In this thesis, we refer to
this problem as instance profiling, which is designed to represent the resources
only by their most representative literal information. The resources that share
similar profiles will be in the same cluster. Only the most similar clusters will
be further compared in detail. In Chapter 5, we investigate how to profile the
resources by their relevant description for e�ective data linking. We also show
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how to distinguish between resources in the same cluster using the key ranking
algorithm.

Figure 1.4: Positioning of the research issues in the overall linking process.

The relation between the proposed solutions, regarding the steps of our data linking
approach (Chapter 5), of the questions raised above is depicted in Figure 1.4.

1.6 Thesis Outline

The remaining chapters discuss one of the main contributions cited before. This
dissertation is organized as follows:

• Chapter 2 provides the definitions of the main concepts used in this thesis.
Particularly, it presents the necessary preliminaries on RDF data model,
instance profiling and the notion of keys in a Semantic Web context. The
second part of this chapter outlines in detail the data heterogeneity types
that a linking tool might have to confront. We show that some of these
issues are not tackled by most of the state-of-the-art alignment tools. Then,
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we analyze these issues and identify a set of specific techniques that can be
applied.

• Chapter 3 provides an overview of the di�erent techniques applied on each
step in service of the global linking task. We consider the linking process as a
pipeline composed of preprocessing, data linking and post-processing steps.
Finally, we described and compared di�erent state-of-the-art approaches and
tools according to these steps and to the surveyed techniques. Exploring such
techniques is important to discern which of them can be applied for which
task and in what stage of the overall process of linking.

• Chapter 4 describes our solution regarding the fifth research question where
we propose an RDF key ranking approach that attempts to close the gap
between automatic key discovery and data linking approaches and thus re-
duce the user e�ort in linking configuration. It presents the implementation
of a prototype called RANKey that implements the approach proposed in
this chapter. We prove the completeness of the top-ranked keys showing
through the experiments that the combined use improves significantly the
recall. We empirically evaluate the discriminability impact of a set of prop-
erties on ranking with respect to their coverage. Moreover, we investigate
how some properties identified as problematic can have a negative e�ect on
the keys ranking. This chapter builds upon our own work, published in [23].

• Chapter 5 describes Legato, the approach and tool that automatically dis-
covers identity links across RDF datasets. It is a novel way of thinking
the instance matching task, attempting to reduce the di�culty of manual
configuration, especially when it comes to data-related parameters, such as
properties to compare, similarity measures to use or threshold setting. In
this chapter, we describe how Legato addresses e�ciently many of the data
heterogeneities presented in sub-section 2.2. Also, our approach is able to
discriminate between highly similar, but di�erent resources, thanks to an ef-
ficient post-processing strategy. Using benchmark matching tasks, we show
that Legato is in competition with state-of-the-art tools, outperforming them
on datasets containing highly heterogeneous or di�cult to disambiguate in-
stances.

• Chapter 6 summarizes the thesis with a discussion about the di�erent results
regarding the research problem and concludes with some perspectives for
future research directions.
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Introduction

In the first part of this chapter, we introduce some preliminaries required to follow
the rest of this thesis. After defining the basic concepts in Section 2.1, an overview
of the most relevant issues considering the heterogeneities when comparing two
descriptions, is presented. An important point is that the way that resources are
structured and valued can greatly impact the complexity of matching decision. We
show how the comparison can be complicated due to the variations according to
three dimensions: value-based, ontological and logical. Following the observations
made in Section 1.4, the second part of this chapter aims to analyze the more
relevant data heterogeneities and identify a set of specific techniques that can be
applied. Finally, we discuss the challenges and the focus of this work.

2.1 Preliminaries

This section introduces a standard of the open web of data. Particularly, we will
see a fundamental recommendation of the semantic web: RDF for structuring
linked data. We will then describe two main concepts: instance profiling and
keys. Theses notions are used by most RDF data linking approaches including our
approach described in Chapter 5.

2.1.1 RDF Data Model

A data model aims at structuring in an abstract way how real-world entities are
organized and at describing the relationships between them. The data can be
modeled in di�erent ways1: (i) They can be stored in relational tables; (ii) For
their exchange with information systems, they can be structured in an XML tree;
or (iii) To make them in a machine-readable form, the data can be described in a
graph structure. In the Semantic Web context, several graph-based models have
been proposed. RDF (Resource Description Framework) is the first basic brick
of Semantic Web, and was defined by W3C2 as “the standard model for data
interchange on the web”.

As its name implies, RDF is a standard data model allowing to describe resources
on the web using a set of statements such as:

1https://www.w3.org/1999/04/WebData$#$models
2https://www.w3.org/RDF/

https://www.w3.org/1999/04/WebData$#$models
https://www.w3.org/RDF/
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• Each RDF statement is a triple of <subject, predicate, object>. This means
that an RDF triple expresses a relation “predicate” between two given re-
sources “subject” and “object”.

• A resource denotes any element that can be referred, whether abstract or
concrete such as a book, a picture, a web page, an event or a person.

• A set of RDF triples containing as subject the same resource r are considered
as the description of r.

An RDF graph is defined by a set of triples of the kind t= <s, p, o>; where s

is a subject (an URI or a blank node), o is an object (an URI or a literal) and p

is the relation (an URI) between s and o.

For example, the declaration “The moonlight sonata is a musical work by Ludwig
van Beethoven whose web page is: https://fr.wikipedia.org/wiki/Ludwig$_
$van$_$Beethoven” can be decomposed into four triples as follows.

1 Resource The moonlight sonata

2 Resource’s type musical work

3 Resource’s composer Ludwig van Beethoven

4 Composer’s URL https://fr.wikipedia.org/wiki/Ludwig_van_Beethoven

Notice that the two elements “the moonlight sonata” and “Ludwig van Beethoven”
have the property values (2,3) and (4) respectively. However in Semantic Web,
only a resource referred by an URI or a blank node can be described by a set of
properties. In our example, “the moonlight sonata” and “Ludwig van Beethoven”
are two strings (literals). Thereby, the statements (1) and (3) must be decomposed
in two other statements each as follows.

1 Resource pref:mw

5 Resource’s title The moonlight sonata

3 Resource’s composer pref:composer

6 Composer’s full name Ludwig van Beethoven

This means that we created two URIs pref:mw and pref:composer referring the
resources about the moonlight sonata and Ludwig van Beethoven, respectively.
Notice that to reduce the size of the URIs, it is possible to use prefixes. In our
example, we used pref which may refer the prefix of any URI that we must set
before declaring the RDF triples.

The graph given in Figure 2.1 presents the description of the resource pref:mw.
The nodes represented by an ellipse designate an URI while an empty ellipse

https://fr.wikipedia.org/wiki/Ludwig$_$van$_$Beethoven
https://fr.wikipedia.org/wiki/Ludwig$_$van$_$Beethoven
https://fr.wikipedia.org/wiki/Ludwig_van_Beethoven
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Figure 2.1: An RDF graph example.

denotes a blank node. Those represented by a rectangle designate a literal (string).

An RDF graph can be expressed with di�erent syntaxes (serializations). The
commonly used ones are: RDF/XML [24], turtle [25], n-triples [26] and N3 [27].
Figure 2.2 illustrates a serialization in RDF/XML of the graph in Figure 2.1.
RDF/XML is the first syntax recommended by W3C for representing RDF graphs
in XML structure. An RDF/XML document uses XML namespace notations and
.rdf extension.

Figure 2.2: Representation of the graph of Figure 2.1 in RDF/XML format.

2.1.2 Instance Profiling

An instance profile can be broadly defined as a set of features that define an
instance. Typically, the profiles are the basis on which the instances are compared.
In other words, we focus on the question of: for each source resource, what is the
suitable information to use as a profile to be compared with the profile of a given
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target resource? Following what is common practice in selecting the most relevant
descriptions of resources in RDF data, an instance profile would be the set of triples
where the subject is the described resource or any other resource with which it is
connected. In this thesis, we adopted the notion of instance profile to represent a
given resource with a set of features for which we intend to compare with other
profiles.

The definition of profiling at instance level is analogous to the one defined at
dataset level. A dataset profile as defined in [28] is the formal representation
of a set of features that describe a dataset and allow the comparison of di�erent
datasets with regard to their characteristics. Remember that the last criterion of
open RDF data is that they should be linked to other data from other sources
(see Section 1.1). However, due to the huge amount of data on the web, manually
finding potential datasets containing equivalent resources is a non-trivial task and
may be expensive. Ideally, each dataset should provide information describing the
resources it contains; so that we can quickly examine whether these resources can
be linked or not. This allows a data provider to significantly reduce the search
space and look directly at the candidate datasets for linking. Nevertheless, there
were few researches that focused on this problem [29–32]. According to a more
recent research [33], a dataset profile is formed from the information collected
at the schema level; the process is referred as intensional profiling. In [33], two
datasets are candidate for linking if they share at least one pair of semantically
similar concepts. More particularly, the similarity between the concepts labels of
two datasets is computed.

To remove any ambiguity over the interpretation of instance profiling considered
in this dissertation, we are interested in profiling for linking and not to reduce
the search space. At the step of matching of data linking process, the instance
profiling operates at di�erent levels:

Value-based profiling. The features at this level are identified according
to some values only, i.e., the values of datatype properties as well as those of
object properties. A typical example is profiles called virtual documents or textual
documents containing only the literals based on the graph traversal according to
a specified depth [34,35].

<Predicate,Value>-based profiling. The features at this level are identified
according to some valued properties. In other words, an instance profile is the set
of <predicate,value> pairs such as two profiles are similar if their share the same
values for most or all of their properties. A typical example is profiles based on
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key dependencies such as for comparing two resources, the similarity between the
values of a given set of discriminative properties is computed [31].

The main drawback of existing instance profiling techniques (except keys-based
profiling) is that for each resource the information is retrieved at a given distance.
Setting a small distance may not be enough to get relevant information. In con-
trast, setting a large distance may collect information with noise. It is not an easy
task to decide the distance to which we want to represent a resource.

2.1.3 Keys for RDF Datasets

In the context of Linked Open Data (LOD) [36], the resources can be connected
with di�erent sorts of semantic links. As mentioned in Section 1.2, we focus in
this dissertation on identity links, i.e., defining that two descriptions are about the
same real-world entity. Many approaches were proposed to detect such links in
RDF data (see Chapter 3 for a survey). Some of them rely on the use of keys to
identify and establish these links between equivalent data items.

A set of properties are considered as a key for a given class if their combination
uniquely identify each resource. This means that all the resources are distinct for
this set of discriminative properties. Formally, a key in an RDF graph is defined
as follows.

Definition 1 (Key) Let G be an RDF graph, let subj(G) be the set of resources
in G and let pred(G) be the set of properties in G. We define a key denoted by K
as the set

K = {P : P ™ pred(G) and ” ÷r1, r2 œ subj(G) such as p(r1) = p(r2) for all
p œ P},

where p(r1) and p(r2) are the values of the property p for the resources r1 and r2,
respectively. A set of properties P is considered as a minimal key if it is a key and
there is no subset of P which is also a key.

This definition of a key is similar to the one from the relational database field.
However, the main di�erence is that in RDF data a property can be multivalued.
Moreover, a new challenge emerging from Semantic Web is incompleteness of the
data considering the OWA (Open World Assumption). In other words, another
characteristic of RDF data is that a property does not necessarily cover all the
data items. These features should be taken into account when identifying the keys
in the RDF data.
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Notice that for a given dataset several keys may be identified where several combi-
nations of properties uniquely identify the resources. Let us consider the example

Figure 2.3: Property keys identification in an RDF dataset.

given in Figure 2.3 of two musical works mw_1 and mw_2 in an RDF dataset.
Even if these works seem similar (the same title and the same composer), they refer
to two di�erent entities, hence the need to identify which properties, called keys,
to compare in order to decide whether they are identical or not. Relying on key
definition, we can deduce that the property catalogue is a key. However, a question
that arises is: How about the property genre? Discovering keys under the open
world assumption (OWA) considers that a property is a key if two resources share
at least one common value for this property [8,37]. On the other hand, discovering
keys under the close world assumption (CWA) considers that a property is a key
if two resources share all the values for this property [9]. The former supposes
that the description of a dataset is complete while the second does not. Thus, the
property genre is considered as a key under the OWA but it is not the case under
the CWA.

2.2 Data Heterogeneity Types

In this section, we focus on the most recurrent issues that may arise when compar-
ing the resources illustrated by the means of a hypothetical example (see Figure
2.4).
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Figure 2.4: Issues occurring during the linking task.

2.2.1 Motivating Example

Let us imagine that the composer Ludwig van Beethoven is described by two dif-
ferent data sources without making any assumption about the way the data are
structured in a general form nor about the used properties describing the com-
poser. When the same entity is heterogeneously described (like the case of Ludwig
van Beethoven in Figure 2.4), the comparison becomes much more complex. Fur-
thermore, one of the main di�culties is the fact that data may be incomplete. This
would raise the question about identity criteria for comparison – between which
attributes the comparison is done? Variations in how such attributes are valued or
structured may lead to missing true positive links or may produce false positive
ones. Indeed, the matching quality improves when various aspects of heterogeneity
between two resources are managed. In the following, we analyze the issues and
identify a set of specific techniques that can be applied.

In the context of the instance matching tools benchmarking task, [38] introduce
three major levels of data heterogeneity to be considered: value, structural and
logical levels. We base ourselves on these levels and extend them in order to define
a list of data heterogeneity problems relying on three core dimensions, namely:
value, ontological and logical dimensions. The di�erent heterogeneity types will be
described in detail hereafter.
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2.2.2 Value Dimension

In the open context of the web, the resources are described using natural languages
in their string values. Any attribute valued with textual description may poten-
tially raise matching issues. This characterizes the heterogeneities at data value
level. In the following, we define a list of heterogeneity types of what we call value
dimension.

1. Terminological heterogeneity. A description about an entity could present
syntactical or semantic variations with respect to another description about
the same entity. A term refers to a word or to a set of words. This het-
erogeneity can be expressed in: (i) Variation of terms to represent the same
concept (synonymy); (ii) Variation of the meaning of a term representing
di�erent concepts (polysemy); or in (iii) Variation in spelling (acronymy or
abbreviations). The problems of synonymy and polysemy can be solved us-
ing lexical databases such as WordNet [39] which is composed of sets of syn-
onyms called synsets where each term belongs to one or more synsets. Each
synset represents a particular concept and is accompanied by a description
of the meaning it represents. Indeed, a word should be disambiguated to
be compared. The disambiguation consists in assigning the most appropri-
ate meaning for each word in a text according to the context in which it
is found. Many works proposed solutions allowing to find the full form of
an acronym or an abbreviation, among others, consider [40, 41]. This issue
can be observed between “Ludwig van Beethoven” and “L.V. Beethoven” in
our example (Figure 2.4). As we can see, the full name values of the two
instances are distinct with the first source preferring to name a person by
his/her first name and last name, while in the second source, a person is
named using the initials of his/her first name and the full last name. Indeed,
the comparison between such values becomes much more complex.

2. Lingual heterogeneity. Note that data providers often publish their data in
their native language. To better clarify the impact of this fact on the match-
ing decision, consider the example of BNF (French National Library) [42]
and Freebase [43] that make their existing data available as RDF in their
own language, i.e., French and English languages, respectively. Thereby, if
we consider the same entity of Ludwig van Beethoven, we would end up not
being able to compare correctly (if it is not impossible) its two representa-
tions particularly when applying string similarity measures. This problem is
of crucial importance in the open web of data. Hence, it becomes necessary
to discover links among RDF data with multilingual values. To overcome
this problem, few studies proposed methods for automatic cross-lingual data
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Figure 2.5: RDF resources described in di�erent languages.

linking [20,34,35] reducing considerably the complexity of comparison task.
Machine translation is performed by [20,34] to make two descriptions in dif-
ferent languages comparable using Google Translator API3 and Bing Trans-
lator API4 respectively. A more recent study [35] proposed a data linking
method based on the BabelNet multilingual lexicon to bridge the language
gap. The authors define the resources as vectors of BabelNet identifiers where
each of them represents a sense (concept identifier) of a term. The similar-
ity between these vectors is then computed. TR-ESA [44] is a cross-lingual
data linking tool which matches resources whose descriptions are written
in di�erent languages. Each resource description is translated into English
using Bing Translator API5. Then, a wikipedia-based representation (a set
of concepts) is generated for each resource. Then, these representations are
indexed using Lucene. The main drawback of such approaches is that they
do not deal with acronyms in the compared descriptions.

The di�culty of this issue is demonstrated in Figure 2.5 where two resources
with multilingual object values are compared. In fact, the data property
values in this example are expressed in English and in Chinese which makes
it impossible to find a correspondence using string-based similarity metrics
without using machine translation or external multilingual resources.

3. Transgression to best practices. Data representations on value level can dif-
fer depending on the degree to which the Semantic Web best practices are
respected in the data publishing process. In Figure 2.4, this can be illus-
trated through the titles of Beethoven’s work, where one of them (“Moonlight
sonata”) is annotated by the language in which it is given but not the other

3http://code.google.com/apis/ajaxlanguage/
4http://datamarket.azure.com/dataset/bing/microsofttranslator
5http://datamarket.azure.com/dataset/bing/microsofttranslator

http://code.google.com/apis/ajaxlanguage/
http://datamarket.azure.com/dataset/bing/microsofttranslator
http://datamarket.azure.com/dataset/bing/microsofttranslator
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(the presence/absence of a language tag). Another problem may occur on
the values by introducing inappropriate symbols that convey no information.
A good practice would be to ignore what we do not know due to the accep-
tance of the open world assumption (missing information is not necessarily
wrong). This practice is not always respected, where symbols such as ’˘’ can
be used to indicate an unknown value as for example when comparing the
object values “29-07-1990” and “##-##-1990”. Indeed, this may hinder the
matching decision. Recently, best practices for the creation, linking, and use
of multilingual linked data were elaborated by the multilingual linked open
data community group.6

4. Value type heterogeneity. An e�cient linking tool has to be able to deal with
di�erent value types expressing the same information. This heterogeneity
type concerns di�erences in encoding of data. Often values are expressed in
di�erent formats or by using di�erent value types, as for example, represent-
ing an ’age’-value as a string (i.e., “twenty six”) or as a number (26). This
property describes the month of the year part of the birth date of a person
(e.g. February). It is included mostly to ease problems related to structural
heterogeneity in the representation of the birth date values. For example,
some sources would not represent the date as a date format (consider the
example of “17-12-1770”), but would rather represent the same information
as a string (“17 december 1770”). The main challenge is to provide a means
for semantic unification. Do not take into account the birth date would
impact the quality of matching results. For instance, a possible solution con-
sists in retrieving individual resource values in the RDF graph, transforming
di�erent object values in a given format, and standardizing the retrieved
information to compare them in a uniform manner. Two data generators fo-
cused on this issue: the Semantic Publishing Instance Matching Benchmark
(SPIMBENCH) [45] and LANCE [46] by transforming the source instances
based on their values, structures and semantics. The aim of these generators
is to produce benchmarks evaluating whether the data linking tools deal with
certain problems. One of theses problems addressed by both SPIMBENCH
and LANCE is the use of di�erent date (“1948-12-21” vs “December 21,
1948”), gender (“Male” vs “M”) and number formats (“1.3” vs “1.30”).

2.2.3 Ontological Dimension

This dimension refers to variations in the properties or classes of instances to
compare. We identify four main heterogeneity problems:

6https://www.w3.org/community/bpmlod/

https://www.w3.org/community/bpmlod/
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1. Vocabulary heterogeneity. Classes and properties are often described by us-
ing di�erent vocabularies by di�erent data publishers because the semantics
of a given class or a property can be interpreted di�erently according to the
application and the intension. This problem is even more complicated in
the context of open web of data where all resources are not necessarily de-
scribed in the same manner. Indeed, di�erent data publishers may interpret
di�erently the semantics of attributes when they decide how to model their
data. Indeed, it is not uncommon that the open nature of the web is one of
the main causes of di�erent uses of properties. In fact, everyone can define
their own ontology and can describe their own classes. Let us consider the
example of the property providing the information about the full name of
Beethoven.

< i1, foaf:name, “Ludwig van Beethoven”>
< i2, vcard:name, “Ludwig van Beethoven”>

< i3, foaf:name, “Beethoven”>

For a given data source, such information could be described by the property
foaf:name (i1 and i3), while for another data source it could be described by
the property vcard:name (i2).

Description Vocabulary Property
Full Name contact7 http://www.w3.org/2000/10/swap/pim/contact#fullName

FOAF8 http://xmlns.com/foaf/0.1/name
DBpedia9 http://dbpedia.org/ontology/name
VCard10 http://www.w3.org/2006/vcard/ns#Name

Table 2.1: Vocabularies describing the full name of a person.

Beyond the fact that the same information can be described by di�erent
properties (see Table 2.1), the same property can be used to describe di�er-
ent information. In fact, the instances have been described with the same
property to describe the full name and the last name, respectively. Yet in
both cases, the use of the property foaf:name is correct regarding the FOAF
ontology11. Given the large amount of existing vocabularies, it becomes
necessary to propose a solution aiming at finding correspondences between
properties conveying the same information. Notice that the Linked Open
Vocabularies12(LOV) is a catalog containing more than 600 vocabularies in

11http://xmlns.com/foaf/spec/#term_name
12http://lov.okfn.org/dataset/lov/

http://www.w3.org/2000/10/swap/pim/contact#fullName
http://xmlns.com/foaf/0.1/name
http://dbpedia.org/ontology/name
http://www.w3.org/2006/vcard/ns#Name
http://xmlns.com/foaf/spec/#term_name
http://lov.okfn.org/dataset/lov/
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the linked open data cloud. A vocabulary in LOV provides a set of terms
(classes and properties) describing a given type of entities. LOV facilitates
the reuse of vocabularies through a SPARQL endpoint13 for retrieving types
and their properties. LOV is a good initiative but notice that to date it is
not exhaustive and has as a characteristic of being incomplete (e.g. Yago,
Freebase or MusicBrainz are not included in LOV).

2. Structural heterogeneity. The description of an entity can be done at di�er-
ent levels of granularity. To take a brief example, consider the birth date
of Ludwig van Beethoven. It can be described in a single information field
(as a value of the property vcard:bday14) “17 December 1770” or distributed
over several information fields (multiple properties) “17” (day), “december”
(month) and “1770” (year). The three last values are parts of the property
vcard:bday. Comparing two instances presenting this heterogeneity may im-
pact the matching decision. A possible solution consists in identifying the
sub-properties (day, month and year) as belonging to a given type (date)
and aggregating them or in decomposing one value in several values to make
the properties comparable at the same level of granularity. To the best of
our knowledge, the problem of structural heterogeneity is not treated in the
literature. However, it is partially resolved using inverted indexes and NLP
(Natural Language Processing) techniques in some data linking approaches
[6, 18, 21, 34, 35]. The method consists in indexing each resource by its lit-
erals collected at a distance15 n >= 1 in the RDF graph. Then, a vector
space model is used to represent each resource description as word feature
vector. The resources sharing similar vectors (similar words) are considered
to be equivalent or to be linking candidates. By doing so, the resources
are compared with respect to their literals without taking into account the
properties describing them. The main drawback of this process is the loss of
precision when comparing resources represented as bags of words instead of
comparing their literals in pairs (those defined with equivalent properties).

3. Property depth heterogeneity. This type of heterogeneity regards the di�er-
ence in property modeling. In a given dataset, a property can be specified
directly (at a distance n = 1) through a literal value while in another dataset
the same information is given by a longer property chain including several
triples. In our example (see Figure 2.4), we can observe this problem between
the two resources, where the name of the country of birth is a literal that
is directly assigned to the resource describing Ludwig van Beethoven, while

13http://lov.okfn.org/dataset/lov/sparql
14https://www.w3.org/2006/vcard/ns#bday
15A distance in an RDF graph is defined as the minimal number of edges (properties) connect-

ing two resources or a resource and a literal.

http://lov.okfn.org/dataset/lov/sparql
https://www.w3.org/2006/vcard/ns#bday
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for the other resource the same value is assigned through a literal to another
resource, which is the URI of the country itself. In fact, we can observe that
for the first resource the country of birth is defined through a datatype prop-
erty while for the second one it is defined through an object property which
is described by the same value of place of birth “Germany”. This problem
can also be solved indexing the scope of literals describing each resource.
Namely, for each entity, the distance to which the literals are collected can
be set. However, this is a limitation given the fact that in this context the
further we get from the resource, the more likely it is that we collect noisy
information.

4. Descriptive heterogeneity. A resource can have several types (concepts) or
it can be described with more information (a larger set of properties) in one
dataset than in another, as we can see in our example (see Figure 2.4). We
can observe that a resource contains more information denoted by a descrip-
tive text (biography) about Ludwig van Beethoven through the property
-:hasDescription, while the other resource, referring to the same real-world
person is described by a much more austere set of properties. It is obvi-
ous that comparing these two resources by this property will not identify
any equivalence between them namely for approaches considering the whole
description (all the literals) of a resource or for approaches relying on key
properties to compare the resources. In fact, for the former approaches
[34,35], the property -:hasDescription decreases the similarity value between
the two resources while it is identified as a key property by the most of the
second approaches [8, 9, 37].

2.2.4 Logical Dimension

This heterogeneity problem refers to the fact that the equivalence between two
pieces of information across two datasets is implicit but can be inferred by the
help of reasoning methods. We outline two main heterogeneity problems.

1. Class heterogeneity. This type of heterogeneity regards the class hierar-
chy level. This is typically the case of two resources belonging to di�erent
classes for which an explicit or an implicit hierarchical relationship is de-
fined (the concepts “Person” and “Composer”, in Figure 2.4, illustrate this
issue). Moreover, two instances referring to the same object can belong to
two di�erent subclasses of the same class.

2. Property heterogeneity. At this level, the equivalence between two values
is deduced after performing a reasoning task on properties. Two resources
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can have two properties that are semantically reversed. In this case, these
two properties convey the same information, as illustrated in the example in
Figure 2.4:

<< i2 >, ≠ : composed, “Moonlight sonataÕÕ@en >

<< i4 >, ≠ : composedBy, < i1 >>

<< i4 >, ≠ : title, “Sonate au clair de luneÕÕ > .

Here the instances comparison process has to go beyond the value and prop-
erty levels by comparing an explicitly specified value and an implicitly spec-
ified one between the two entities. Another example of this problem is
given by two instances having “26” and “29 july 1990” as values of age
andbirthdate properties, respectively.

2.3 Conclusion

In the beginning of this chapter, we introduced the main notions that are used in
this thesis. It is important to notice that given the large number of heterogeneities
between the data sources, the instance profiling should be able to capture the most
relevant information of each resource and thus to avoid noise.

In the second part of this chapter, we gave a broad overview of what may make the
matching decision complicated. As a conclusion of our study, we note that, during
the past years, significant progress has been made in the field with numerous
o�-the-shelf tools now available to the data community at large. However, we
also outline that more e�ort is needed in order to allow for the matching tools to
cope with certain more di�cult and less studied heterogeneity types. Particularly,
the value-based, ontological, and logical heterogeneity dimensions have to be paid
more attention to. The challenge of linking multilingual data also remains largely
unexplored.

In the remainder of this dissertation, we will show how our linking approach pro-
files the resources facing certain heterogeneity aspects and especially those of the
ontological dimension. Before that, we will investigate more deeply the existing
matching solutions in the next chapter.
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Introduction

In this chapter, we describe the main steps of data linking on the basis of our
analysis. This aims at providing a bird’s-eye view on the main research problem of
this thesis. We consider the linking process as a pipeline composed of preprocess-
ing, (pre-)matching and post-processing steps. Then, we provide an overview of
the di�erent techniques applied on each step in service of the global linking task.
Finally, we describe and compare di�erent state-of-the-art approaches and tools
according to these steps and to the surveyed techniques.

3.1 Data Linking Steps

The linking process is composed of three main steps: preprocessing, (pre-)matching,
and post-processing (see Figure 3.1).

Figure 3.1: Data linking workflow, adopted from [1].

The preprocessing step aims at preparing the input RDF datasets for linking by
representing them (see Sub-section 2.1.2) in a manner that allows for the com-
parison of data items. More than that, this step also aims at reducing the space
where to look for potential linking candidates by identifying key properties and
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equivalent classes of instances across datasets, assuring computational e�ciency
on large scale. The (pre-)matching task provides an assertion on the degree, to
which data instances can be considered as referring to the same real-world object.
Notice that in this thesis, we make a distinction between the notions of matching
and pre-matching. The main di�erence is that for the former notion the generated
links are final while for the second one the links are considered candidates and
are the input of the post-processing step. Finally, the post-processing step further
improves the linking results by filtering out erroneous matches or inferring new
ones.

A plethora of approaches and systems exist, surveyed in [1, 47, 48]. The majority
of the linking tools take as an input two RDF datasets and look for identity links
between their resources (mostly of arity 1:1) declared as owl:sameAs statements.

Note that we make a distinction between linking tasks, linking techniques and link-
ing approaches/tools. A task is defined as a subproblem of data linking, originating
at a particular need and identified by a particular result that has to be achieved in
service of the linking process. For example, “search space reduction” is a particular
task aiming at reducing the number of instances to be compared. A technique is
understood as the means to perform a task – for example, the “clustering” is used
to perform search space reduction. Finally, an approach, or a tool refers to an engi-
neering artefact that performs a given (set of) task(s) by applying and combining
a number of techniques.

3.2 Techniques Applied to the Data Linking Pro-
cess

Various techniques from di�erent computer science fields are adapted and applied
to the data linking problem. We outline several of the main groups of techniques,
drawing the reader’s attention to the fact that a single approach commonly com-
bines several techniques from di�erent groups in its workflow. The techniques
presented in the current section are applied to solve di�erent tasks on each of the
three main levels of the linking process: preprocessing, (pre-)matching and post-
processing. We have organized the techniques by task into four main categories,
presented below.

1. Search space reduction. Scalability and computational e�ciency are ma-
jor issues when dealing with data linking problems on the web scale, tak-
ing as input datasets with thousands of instances. Search-space reduction
is, therefore, a central preprocessing task, which aims at minimizing the
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number of comparisons to perform, regarding both resources and their prop-
erties. We focus on two main techniques used to achieve this aim. Keys
identification: Keys identification techniques are well-known from relational
databases, where they are used to identify and distinguish records (rows)
within a database table. In data linking, for a given class, a key is identi-
fied by a property or a set of properties such that there do not exist two
or more instances, referring to di�erent real world objects and having the
same values for these key-properties. Therefore, two instances, belonging to
the same class, across two datasets, can be matched with an “owl:sameAs”
link if they share the same values for the class key. Clustering [49] aims at
forming groups of data items, based on their similarity with respect to their
properties. These entities may be of di�erent types: terms, documents or
any given data entity represented as a set of features. Web resources shar-
ing similar properties are likely to be identical, and are therefore potential
linking candidates. Applying clustering methods on a set of instances from
di�erent datasets allows to reduce the search space of matching candidates.

2. Instance representation. Instances need to be given a common repre-
sentation so that comparison between them can be performed by the help
of a similarity measure(s) of some kind. This representation can be done in
terms of strings, numerical vectors or other and it often applies a transforma-
tion of the original data to enable comparison. The following techniques are
of interest for achieving this task. Linguistic techniques: These techniques
perform linguistic analysis of the textual information describing resources
based on knowledge of the language and its structure. Most of the linguistic
techniques exploit syntactic, lexical or morphological information.

- Low-level preprocessing Trivially, tokenization, lemmatization and stop-
word filtering techniques are applied on string values prior to further
analysis in order to prepare the data for additional processing or com-
parison.

- Word sense disambiguation is a sub-problem of natural language pro-
cessing, which consists in identifying the appropriate meaning of a word
with respect to its context. A known example is the word “apple”, which
may refer to the fruit or to the company. In data linking, commonly,
contextual information is explored to assign the appropriate meaning
for a term which describes a resource.

- Lexical resources exploitation: A lexicon is a linguistic resource, com-
monly used in information retrieval, defining terms in structured knowl-
edge bases. For instance, WordNet [39] is a lexical database of English
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words where semantic relations between synsets, such as hypernymy
or meronymy, are explicitly defined. This allows to perform word sens
disambiguation, but also to measure semantic distances between terms.
The multilingual lexical databases can be applied to managing multilin-
gualism by describing all RDF entities across two data sets via a single
pivot language.

- Machine translation is a natural language processing method, which
consists in automatically translating a word (or a text) from one lan-
guage to another. In data linking, applying this technique is very
important if we have instances described in di�erent languages. Of-
ten textual information is compared across resources and the similarity
measures that exploit this information take as an input terms in one sin-
gle language. Through machine translation, instances, or their textual
descriptions, are made comparable for the linking task.

Feature-based techniques [50]: This group of techniques of data represen-
tation, used in information retrieval, consists in representing a document
(or any other data element for that purpose) in a model by using a set
of features that describe this document. At the schema level, a dataset
can be represented as a set of index elements. In this context, approaches
aiming at identifying relevant data sources in the LOD cloud that con-
tain resources of a given (set of) class(es) or of resources sharing certain
properties [51] have been proposed. At the instance level, this technique
is used to index each resource by a document of terms (called a virtual
document or a pseudo-document), in which each term is a part of a string
literal collected within a given distance to the resource in its RDF graph.
In the example in Figure 3.2, the document built from the resource <http:
//..../Ludwig_van_Beethoven> (within a path length distance equal to
1) is composed of four terms (literals): “Ludwig van Beethoven”, “com-
poser”, “17 december 1770” and “Germany”. Each pair of documents is
then represented in a feature model. Two documents D1 = {t1, t2, .., tn} and
D2 = {tÕ

1, tÕ
2, .., tÕ

m} are represented by vectors such as D1 = [v1, v2, .., vo]
(o = n if n > m or o = m otherwise) and D2 = [vÕ

1, vÕ
2, .., vÕ

o] (o = n if n > m
or o = m otherwise), where vi (vÕ

i) represents the weight of the term ti (tÕ
i

respectively) considering the document D1 (D2 respectively). Here, the ob-
jective is to provide a similarity comparison in a structure, called similarity
vector, that will be understood and processed by learning algorithms. For
the purposes of data linking, two main feature representations are applied:

- Vector space model [52]: For the similarity computation between doc-
uments, one of the best known and most commonly used weighting

http://..../Ludwig_van_Beethoven
http://..../Ludwig_van_Beethoven
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schemes is TF-IDF (Term Frequency–Inverse Document Frequency). It
is based on the frequency of occurrences of a term in a single document,
penalized (or boosted) by the number of documents in which the term
appears in the whole corpus. To compute the distance between pairs
of documents (i.e., resources), several similarity measures can be used.
The cosine similarity [53] is the most common one calculating the cosine
of the angle between two vectors.

- Boolean model: In this representation type, each document Di is mapped
into a vector of binary values indicating the presence or absence of each
term in a document. In data linking, this representation is used to built
an inverted index for resources to be compared.

Figure 3.2: Exploring the context of a resource within an RDF graph.
(a) Given an RDF graph, (b) Literals (terms) of a corresponding resource within a distance

equal to 2, and, (c) Literals of another resource within a distance equal to 1 are gathered and
stored into a document.

3. Instance comparison. Instance comparison is a task that stands in the
core of the link discovery process. The goal of this task is to produce a
score that quantifies the likelihood that there exist a link of some kind (most
commonly “owl:sameAs”) between two instances. We outline some of the
main techniques applied to this task.
String matching: By using this technique, we compute the similarity D (often
with D œ [0, 1]) between two strings. The result D = 1 means that we have
an exact match between the two strings. If D > ‡ (‡ œ (0, 1)) then we have
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an approximate matching between them with D being used a confidence
value. In data linking, this technique is commonly used to measure the
correspondence of di�erent resources property values, in the case of string
literals.
In the following example, we have two RDF triples that describe the same
resource, the composer Ludwig van Beethoven:

– << http : //..../Ludwig_van_Beethoven >, foaf : name, “L.V. BeethovenÕÕ >

– << http : //..../Ludwig_van_Beethoven >, foaf : name, “L. van BeethovenÕÕ >

The string matching algorithm computes the similarity value between the
two strings “L.V. Beethoven” and “L. van Beethoven”. For this purpose,
several o�-the-shelf similarity measures can be used. As an illustration, we
present three of the most commonly used measures.

- The Levenshtein distance or Edit distance[53] is given as the cost (i.e.,
the minimum number of operations) to transform one string to another.
Several edit operations are defined, such as: insertion, deletion or sub-
stitution. For instance, the Levenshtein distance between the words
A = “L.V. BeethovenÕÕ and B = “L. van BeethovenÕÕ is 3 and it is
computed as follows:
- Adding the whitespace character between the first character “.” and
the character “v” of the word A;
- Substitution of the second character “.”, of the word A, by character
“a”;
- Adding the character “n” (after the added character “a”) to the word
A.
Levenshtein distance is commonly normalized and scaled into a [0,1]
interval.

- The Jaccard distance [53] is the ratio between the number of charac-
ters in common between two strings on the total number of characters,
defined by the formula:

J(A, B) = |A fl B|
|A fi B| ,

where A and B are the two strings of interest. For instance, the Jaccard
similarity coe�cient between the two strings A = “L.V. BeethovenÕÕ

and B = “L. van BeethovenÕÕ, seen as sets of characters, is computed
as J(“L.V. BeethovenÕÕ, “L. van BeethovenÕÕ) = 13 ÷ 14 = O.92.

- The Jaro distance [53] is based on the common characters between two
strings A and B. It is defined by the formula:
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J(A, B) = 1
3( m

|A| + m

|B| + m ≠ t

m
),

where |A| and |B| are the length of the strings A and B respectively.
m denotes the number of corresponding characters and t is the ration
of their transpositions. In other words, the number of all matching
characters (in di�erent sequence order) between the two words defines
t. Given our running example, we have m = 13 (9 characters are
matched) and t = 0. Thus, the Jaro distance between the two strings
is computed as (1÷3)◊ ((13÷14)+(13÷16)+((13≠0)÷13)) = 0.91.

Binary classification [49] is a supervised learning technique, which consists
in assigning elements to one out of two classes based on training data. In
data linking, this technique can be used to assign pairs of resources to one
of the two predefined categories: (1) pairs of resources to be matched, or
linking candidates; (2) pairs of resources considered as di�erent. Provided
that su�cient amount of training data is available, this technique can be used
to infer the category (match or non-match) of an unseen pair of resources
from two datasets.
Graph-based techniques: An RDF dataset is seen as of a graph formed by
a number of triples (see Subsection 2.1.1 for a definition and Figure 3.2(a)
for an example). In data linking, graph traversal techniques from graph
theory [54] are called upon in order to collect information that can be used
to describe resources and further compute the similarity between them. For
each resource, the information collected according to the graph traversal
distance which is greater than 1 (coming from nodes that are not adjacent
to the instance of interest) is called contextual knowledge. It may be of several
types (see Figure 3.3 for more details): URIs, values (literals), <predicate,
value> pairs, conceptual or descriptive knowledge. An example is given
in Figure 3.2(b) and Figure 3.2(c), where literals at a distance equal to 2
(referring to the resource’s direct neighbors) and literals at a distance equal
to 1 (referring to the resource directly) are collected, respectively. Graph
distances, as mentioned above, are also used in order to compute semantic
closeness of terms in large semantic networks (such as WordNet).

4. Link Validation. The final step of the linking process includes processing
the output data. This consists in improving, in di�erent ways, the quality
of the link set produced by a data linking tool. One of the techniques used
for this purpose is presented below.
One-to-one filter. This technique aims to put a restriction on the cardinality
of the discovered matchings. It creates a list for each source resource with
the corresponding target resource. This list is sorted by the similarity value,
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i.e., the resource pair with the best similarity score is selected and the al-
gorithm stops. Where several resource pairs have the same similarity score,
the algorithm is re-executed on those resources with other properties and the
resource pair with the best similarity score is selected.

3.3 Preprocessing

As discussed in the previous section, the preprocessing step consists in preparing
the input datasets for linking. It aims : (1) to reduce the search space, (2) to
represent the instances in an appropriate manner for comparison, or (3) to auto-
matically learn the link specification.

1. Reducing the search space. Comparing all pairs of instances through all
their properties is costly and time consuming. An instance, being described
by a set of properties, a number of comparisons of the di�erent property val-
ues has to be performed for each pair of instances. It is, therefore, desirable
to select the properties to compare and the candidates mappings prior to the
data matching task.

- Candidates mappings selection. It is usually based on clustering
techniques, assuming that instances sharing some properties (keywords
for example) may be potentially identical. Identity links occur in each
cluster. In other words, the number of inter-cluster owl:sameAs links is
fixed at zero. This is a way to avoid comparing all instances to decide
whether they are identical or not.

- Properties selection. It is based on keys identification, which consists
in discovering sets of properties that uniquely identify the resources.
This is a way to avoid comparing all property values to decide whether
two resources are equivalent or not. The comparison task is applied
at the data matching step where instances sharing the same values for
a key, which may consist of one or more properties, are considered
as equivalent. In what follows, we present approaches based on keys
identification that act on the preprocessing step only.

Atencia et al [31] proposed an approach which is based on two measures
for keys detection. The approach consists in determining whether a set
of properties is a key for the particular data set. However, because of
erroneous and redundant data, the authors extended the key definition
to that of a pseudo-key, defined as a set of properties that identifies
most of instances in a RDF dataset. For this purpose, the measures
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of discriminability and support are introduced. The discriminability is
defined as the ratio between the number of instances sharing identical
values (for this key) to the support of the key. The support is the pro-
portion of individuals having all the predicates of the key instanciated.
A set of properties is considered as a pseudo-key if its discriminability
value is greater than a given threshold.

Similarly to [31], the notion of almost-key is proposed by Symeonidou
et al. [8] to describe sets of properties that fail to be keys due to few
exceptions. To filter data, the authors propose to discover first the max-
imal non keys and use them to derive the minimal keys. The approach
is implemented in the tool SAKey (Scalable Almost Key discovery) and
proceeds in three main steps. The first step allows to eliminate irrel-
evant sets of properties. Based on pruning strategies, the second step
allows for the discovery of (n + 1) maximal non-keys, i.e., n + 1-non
keys that are not subsets of other n + 1-non keys for a fixed n. In the
third step, the algorithm derives the almost keys from the set of (n +1)
non-keys, i.e., all the sets of properties that are not maximal (n+1)-non
keys are n-almost keys.

In the same way, KD2R [37] discovers the maximal non-keys to infer
keys. The authors introduce the notion of undetermined keys to des-
ignate a set of properties that are not a non-key. There are at least
two instances that share same values for a subset of undetermined keys.
The remaining properties are not instantiated for at least one of the two
instances. In other words, an undetermined key defines a set of proper-
ties that cannot be considered neither as keys neither as non-keys due
to the lack of information. Therefore, the authors introduce the op-
timist and the pessimist heuristics, implying the consideration of this
set of properties as a key or not, respectively. To determine the set of
keys in RDF datasets, the algorithm starts by presenting the instances
of a given class in a structure called prefix-tree. This structure is used
to discover the set of maximal undetermined keys and the set of max-
imal non-keys. The minimal keys are then derived from the previous
sets. The algorithm is iterative and is applied for each class of a given
ontology.

Unlike SAKey [8], ROCKER [9] considers two resources as distinguish-
able with respect to a set of properties P even if they share one (or
more) object(s) for each p œ P . It relies on a scoring function to com-
pare sets of properties and allows the discovery of keys or almost-keys
within a given threshold (i.e., a set of properties is a non-key if its score
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is less than 1). The score function expresses the number of subject
resources that are distinguishable with respect to a set of properties.
The authors combine the characteristics of the refinement operator (i.e.,
prune the refinement tree) with the key monotonicity property to ob-
tain a time-e�cient approach for detecting keys. In particular, using
monotonicity of keys allows to check for the existence of keys as well as
decide on nodes that need not be refined.

2. Instance representation. Various kinds of transformations on the original
data can be applied to make the resources comparable. These transforma-
tions may be the result of linguistic analysis where the entities are described
in di�erent languages, or numerical where the entities are represented as
vectors based on computed scores. The linguistic representation often uses
external resources, such as BabelNet [55] or WordNet [39], to perform the
data transformation.

2. Learning of link specification. Another way to prepare the data is to
specify the conditions that all data items must fulfill in order to be com-
pared. These conditions are defined in a so-called link specification. It is
defined by [56] as: (i) the setting of the elements S and T to compare from
two knowledge bases KS and KT respectively, (ii) the setting of a complex sim-
ilarity metric via the combination of several atomic similarity measures, and
(iii) the setting of thresholds for the similarity measures. Note that a link
specification can either be set by the user or learned from labeled training
data [57]. The challenges issues with regard to manually define link speci-
fication have witnessed recent interest and have been addressed employing
machine learning [58] whether supervised [15,16,59] or not [60].

The authors in [60] proposed an unsupervised learning approach of the link-
ing specification implemented in KnoFuss [7]. The approach is based on
genetic programming to learn iteratively the optimal similarity parameters.
However, this approach still require setting the fitness function and the spec-
ification of fitness measures, thresholds and the maximum number of itera-
tions which does not guarantee an optimal solution.

Supervised machine learning to compute link specification requires a domain
expert to label a set of candidate links. With respect to this, two main
categories emerged: active [16,56,61] and batch [15,59] learning approaches.
The batch approaches require a large amount of candidate links as input
to learn the classifiers while the active approaches proceed iteratively and
for each iteration the user is required to label a set of generated links. For
example, the data linking tool LIMES [5] includes EAGLE [16] as well as Silk
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[6] includes ActiveGenLink [15], semi-supervised active learning approaches
based on genetic programming. It proceeds iteratively until the maximal
number of iterations is reached or the fitness value is greater than a given
threshold. In each iteration it asks the user to label (valid or decline) the
generated links.

3.4 (Pre-)Matching

The (pre-)matching step is at the very heart of the linking problem. It aims at
finding instances referring to the same real world object by using appropriate in-
stance similarity measures. In the semantic web field, the data linking process
operates at di�erent levels depending on which piece of information the compar-
ison between instances is done. In fact, we have identified in the literature two
levels of comparison -an intensional and an extensional level (see Figure 3.3). In
this context, the intensionality means information that describes implicitly a re-
source. On the other hand, the extensionality covers information that describes
explicitly a resource. For the linking task, a question is raised around this issue:
between which pieces of information the comparison is done ? Whether
at extensional or intensional levels, resources can be compared based on several
types of information that define them.

Figure 3.3: Data matching levels.
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1. Linking at extensional level consists in generating identity links based on
explicit information. In this case, links can be established, between resources,
comparing their:

- URIs: The idea is to interlink entities comparing their URIs. Links
can be established if the last fragments of their URIs are identical.
For example, we find that the two resources I1= http://dbpedia.
org/page/Ludwig_van_Beethoven and I2= http://yago-knowledge.
org/resource/Ludwig_van_Beethoven in DBpedia [62] and Yago [63]
represent the same entity.

- <Predicate, Value> pairs: To interlink two resources, some ap-
proaches compare their literals attached to given properties. In other
words, two resources are linked together if they share the same values
for all or a subset of their properties identified as a key (see Section
3.3).

- Values: Here, the idea is to compare the literals, which are at a dis-
tance1 n = 1 to each of the two resources (the literals are directly
attached to the resources to be compared) regardless to the properties.

- Contextual knowledge: In some cases, especially in the presence
of property chains, information related to neighboring resources in the
RDF graph is used, because literals directly related to them are not
su�cient to decide whether these resources are identical. In other words,
two entities are compared based on the literals which are at distances
1 to n to the resources with n > 1 in the RDF graph.

2. Linking at intensional level generates identity links based on information
derived from instance’s descriptive knowledge or conceptual knowledge.

- Descriptive knowledge: Generally, approaches relying on this type
of information exploit the words contained in the descriptions of two
resources to decide whether they are likely to be linked. This means
that two entities sharing the same words in their description (for in-
stance, the corresponding wikipedia pages) are considered to be linking
candidates.

- Conceptual knowledge: The types of instances carry important knowl-
edge of their similarity and are often used to filter out candidates both
in the preprocessing and the matching steps. Indeed, the semantic
equivalences between data items can be discovered only if these items

1A distance is defined over the nodes (resources) of a (RDF) graph as the minimal number of
edges connecting two nodes (resources).

http://dbpedia.org/page/Ludwig_van_Beethoven
http://dbpedia.org/page/Ludwig_van_Beethoven
http://yago-knowledge.org/resource/Ludwig_van_Beethoven
http://yago-knowledge.org/resource/Ludwig_van_Beethoven
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belong to the same class (i.e., their concepts match). Many approaches
have been proposed where the problem is referred to concept matching.
Note that this paper is devoted to survey only data linking tools and
approaches. Hence, no approach will be assigned at this category. An-
other solution to linking issue is to group entities, belonging to the same
class, together. Approaches relying on conceptual knowledge determine
correspondences between ontological concepts before establishing links.
This means that resources sharing the same label of their concepts are
assigned to the same cluster (where these resources are considered to
be candidate for the (pre-)matching task).

Note that some categories will not be illustrated in the remainder of this sub-
section as is the case of descriptive knowledge-based approaches that may perform
other steps of the overall linking process (see Section 3.6). In the following, we
briefly describe approaches proposed in [64], [65] and [66] acting only at this stage
and they can be based on several pieces of information for the comparison task.

To illustrate the interlinking process based on contextual knowledge and on the
similarity between values, we present LD-Mapper [64], an interlinking system
of musical datasets, which is based on the similarity between the resources in the
RDF graph and the similarity of their neighbors. The system starts by computing
the similarity values between literals of all pairs of resources. Then, it combines a
measure (aggregation of all the similarity values between resources pairs) for each
graph mapping. The graph mappings are all the possible combinations between
the resources of the two graphs. Finally, the mapping of which the similarity value
is the largest will be selected by the algorithm.

In the same category, the approach proposed in [65] is based on contextual

knowledge and on the similarity between values. It is a user profiles in-
terlinking approach of di�erent social networks such as Facebook, Twitter and
MySpace. The idea consists in constructing RDF graphs from XML files of the
social networks. These RDF graphs will then be interconnected based on the user
identifiers of each social network. Data linking uses several similarity measures
based on the graphs in order to create owl:sameAs links.

In the conference/university field, a coreference resolution system called RKB-CRS
[66] has been introduced, based on the similarity between values. It consists
in establishing a list of equivalent URIs (resources). For each datasets pair, a new
program has to be written. This program selects the resources to be aligned and
it compares them using similarity measures. RKB-Explorer 2 uses this system to
store, manipulate and reuse coreference data.

2http ://www.rkbexplorer.com/explorer/
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3.5 Post-processing

In this sub-section, we present approaches operating only once data is interlinked.
They aim to evaluate the existing links in a dataset. As stated in Sub-section 1.2,
the identity links are crucial for integrating data, inferring new ones or navigating
between the resources in di�erent RDF graphs. Furthermore, they also can be used
to detect erroneous literal values [67,68]. For example, the approach proposed by
[68] aims at identifying wrong numerical values in Linked Data using the outlier
detection technique.

It is important to notice that any change in the data may: (i) invalidate certain
links when modifying the data (invalid links); (ii) destroy them when removing
the data (dead links); or (iii) require to generate new ones when adding the data
(new links) [69]. The task of keeping existing links in a valid state whatever the
changes in the data is called mapping maintenance [70]. The fast growth in the
amount of Linked Open Data3 raised new challenges for the solution of the map-
ping maintenance problem. Hence, in recent years, an increasing number of works
have shown interest in the maintaining of good quality links [69, 71–77]. These
approaches have been proposed in order to detect change events in the datasets
supporting to maintain the links between them. For exemple, the data linking
framework Silk [6] proposes WOD-LMP (Web of Data - Link Maintenance Proto-
col) for synchronizing and maintaining links on data change. As well as DSNotify
[73], WOD-LMP periodically accesses a dataset via SPARQL queries which does
not require a persistent maintenance of these links. SDValidate approach [75]
proved to be e�ective improving the quality of RDF statements in DBpedia [62].
In fact, applying this approach, 13.000 erroneous links have been identified and
removed from the knowledge base. However, the mapping maintenance approaches
try to assess the correctness of any type of statements; while in this work we focus
on owl:sameAs statements.

In [78], the authors proposed an unsupervised approach for identifying wrong iden-
tity links between datasets. The approach is based on outlier detection methods
[79–84] representing the links as multidimensional feature vectors and assigning
them outlier scores. The links that are far from the overall distribution in the
feature space are considered as erroneous.

A partitioning method, proposed by [85], detects the existing erroneous links in
a bibliographic knowledge base where each bibliographic record (i.e., a document
describing a book for instance) is connected to one or several authority records
(i.e., where each of them describes a person who edited or wrote the book). The

3http://lod-cloud.net/#history

http://lod-cloud.net/#history
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main idea is to discover if these existing links are correct. The concept of partition,
for a set of objects, is defined as a set of classes such that each object belongs to
only one class. Their global method proceeds as follows:

1. Construct contextual authorities where each is composed of an authority
record with one of the bibliographic records pointing to it. It corresponds to
an author with one written book.

2. Partition the set of contextual authorities according to di�erent criteria (title,
date of publication, domain). Each partition makes sense from the point of
view of the respective criteria.

3. Aggregate criteria to decide whether these contextual authorities represent
or not a same person using two proposed semantics.

3.6 Multi-step methods

Multi-step methods, as mentioned above, combine two or three steps of the data
linking workflow.

The SERIMI system [17] operates in two steps: selection and disambiguation.
In the selection phase, SERIMI extracts, for each instance in dataset A its label
(identifier) and looks for instances in the dataset B that have a similar label
according to a given threshold (i.e., retrieve target candidate resources with a
string similarity greater than 70%, as fixed by the authors). This step outputs a set
of pseudo-homonym resources for each source resource. As distinct instances may
share the same label, the disambiguation phase will allow to select the appropriate
instances among the set of pseudo-homonym resources. Indeed, the disambiguation
phase consists in filtering the instances found in the dataset B and keeping only
those that identify the same real world object as the resources in the dataset A. As
the class of the target resources is not known, SERIMI selects the resources that
belong to the class of interest to filter instances in the pseudo-homonym sets. The
authors define the concept of class of interest as a set of attributes that instances
may share in common. The idea is to classify a target resource as belonging to
a given class of interest by comparing it to all the other pseudo-homonym sets.
Finally, the system selects all resources with a score greater than a given threshold.

To tackle the multilingualism problem, Lesnikova et al. [34] proposed a linking
method using indexing and NLP techniques. The method consists in creating a
document (accumulation of data collected in the graph traversal) for each URI. All
documents are automatically translated into a pivot language before computing
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similarity between them. The same authors proposed a similar approach, which
relies on the use of a multilingual lexical resource (BabelNet [55]) instead of
a machine translation technique [35]. Once the documents are constructed, the
algorithm replaces each term by the corresponding identifier (ID) from BabelNet.
There may exist many senses (IDs) per term. If it is the case, word sense dis-
ambiguation techniques are applied in order to select the most appropriate sense.
After preprocessing, the authors index the documents by using the vector space
model to represent the documents as word feature vectors. They compute a set of
similarity values between pairs of documents by using the standard term weight-
ing scheme TF-IDF and applying the cosine similarity. Resources are then linked
based on the produced similarity scores between the documents.

Indexing techniques can also be used to reduce the number of instances comparison.
Indeed, Rong et al. [21] developed a system, which extracts in the first step
literal information from entities. The literal information l = {l1, l2, ..., ln} is similar
to a document generated from an instance. Then, it uses a vector space model
to represent this information. An inverted index is built for instances of some
keywords in their descriptions. The instances sharing the same keywords in their
index are considered to be linking candidates. Then, the algorithm computes
the similarity vectors for the candidate instance pairs. The authors propose a
feature vector of similarity metrics. To train a binary classifier based on the
similarity vectors, they are labeled into two classes: non-matching and matching.
The existing links in the LOD cloud can also be used to train the classifier. The
authors evaluate the proposed approach on the datasets of OAEI 2010 showing
that the approach performed better than the other paricipants.

To prepare the instances for the linking task, RiMOM-IM [18] unifies languages
and/or formats in which data are expressed, removes stop words, or computes
the TF-IDF of words composing the predicate values. After that, RiMOM-IM
applies a blocking technique which consists in using inverted indexing to generate
candidate sets and unique instance sets. It takes the predicate and the top five
words of the object (ordered by TF-IDF values) as index keys of instances. For each
pair in the candidate set, it computes similarities over all aligned predicates and
then aggregates them to get the final matching score of two instances. It iteratively
selects the pair with the highest score (above a given threshold) as the aligned pair.
It will be used to infer new candidate pairs without computing the similarities until
no new aligned instances are generated, by using two strategies: unique subject
matching and one-left object matching (see [18] for detailed descriptions).

To avoid exhaustive pairwise comparisons of instances, a blocking step is also
applied in [19] by grouping together properties. Unlike RiMOM-IM, two instances
are in the same cluster if they share tokens of the labels of any two properties that
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were grouped together. The authors propose to apply the block purging algorithm
which eliminates clusters larger than a threshold value, with the premise that such
clusters are the result of stop-word tokens. Once the candidate set is generated,
the system tries to ensure that only compatible instance pairs are evaluated by
generating restriction sets (matching classes and properties between two RDF
files). Each compatible instance pair is represented by the help of the boolean
model where the values are equal either to 1 if the instances share a common
token or to 0 otherwise. A binary classifier is trained on these data and applied
to discover new links.

To prune the search space, Silk [6] implements indexing and entity pre-selection
methods. The pre-selection consists in finding a limited set of target entities that
are likely to match a given source entity. All target resources are indexed by one
or more specified property values (most commonly, their labels). The rdfs:label
of a source resource is used as a search term into the generated indexes and only
the first target resources found in each index are considered as link candidates
for matching. This strategy does not ensure the identification of all equivalent
resources in the target dataset. Silk is based on user link specification (Silk-LSL).
In other words, it features a declarative language for specifying which types of RDF
links should be discovered between data sources and which conditions entities must
fulfill in order to be interlinked.

As Silk, LIMES [5] is configured by using a link specification language. It is based
on the mathematical characteristics of metric spaces to compute the similarity
between instances. In particular, it utilizes the triangle inequality to reduce the
number of comparisons and therefore to reduce the time complexity of the mapping
task, which is one of its major advantages. By these means, LIMES partitions the
(instance) metric space by representing each of these portions by an exemplar that
allows to compute an accurate approximation of the distance between instances
based on already known distances. Due to the considerable gain in e�ciency
provided by the tool, LIMES is capable of linking very large datasets, where other
tools usually fail. However, LIMES assigns for each source resource at most one
target resource. A dataset may contain duplicates while it does not generate
mappings 1:n.

Nguyen et al. [22] propose an approach that also combines preprocessing with data
matching. The authors introduce the notions of coverage and discriminability to
define a property as a key. The coverage of a property is defined as the ratio of
the number of instances having that property to the total number of instances.
The discriminability is the ratio of the number of distinct values for the property
to the total number of instances having that property. The instances that have
similar literal values for the candidate selection key are linked together.
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RDF-AI [20] is a semi-automatic tool which acts on the three main data linking
steps. It takes as an input two RDF datasets and two XML configuration files and
generates as an output either a new dataset resulting from the fusion of the two
input datasets, or a list of correspondences between equivalent resources of the two
datasets. The XML configuration file specifies the preprocessing operations to per-
form (consistency checking, properties translation, linking techniques, properties
transformation) for each resource. Indeed, the preprocessing step generates two
datasets processed by the user operations. The second configuration file describes
the post-processing parameters such as the correlation threshold and the fusion
parameters. The system includes two similarity computation algorithms: a string
matching algorithm and a word relations algorithm. There are two implementa-
tions to the latter: a synonyms comparison algorithm based on WordNet and a
taxonomical similarity algorithm based on the SKOS vocabulary. Finally, the sys-
tem checks the inconsistencies (for example, breaking ontology axioms) that may
appear as a result of the linkset or of the fused graph.

Like RDF-AI, KnoFuss [7] takes as an input two datasets with their respective on-
tologies by specifying the resources to be compared and the comparison techniques
to use. It is also able to merge two datasets using existing ontology alignments in
case when the two datasets are described by di�erent ontologies. In this context,
ontology matching allows to translate the SPARQL queries that are used to select
the appropriate instances and the comparable properties from the terms of one
scheme to another. In this way, the instances are compared in the same manner
as if they were described by the same ontology. Just like [20], KnoFuss includes a
post-processing step to check the inconsistencies of the merged datasets.

AML’s matching pipeline [86] includes a matching step and a filtering step. In
the former, AML combines four matching algorithms in order to generate the
mapping candidates: (1) HybridStringMatcher : for a given pair of individuals,
it computes the maximum similarity between their entries in the Lexicons, (2)
ValueStringMatcher : for a given pair of individuals, computes the maximum string
similarity between their entries in the ValueMaps, (3) Value2LexiconMatcher : it
compares the lexicon entries of one individual with the ValueMap entries of the
other individual, in order to account for cases where a property is not detected
as a "name", and (4) ValueMatcher : it identifies the individuals that have the
exact same value and scores their similarity as the inverse of the total number
of individuals that have that value for that property. In the filtering step, the
similarities of all of the matchers above are computed and combined for each
mapping candidate, in order to select the final set of mappings.
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3.7 Discussion and comparison of the tools and
approaches

In this Section, for sake of clarity, we present a classification of somes approaches
and tools depicted in Figure 3.4. We organize them in a (pseudo-) taxonomy
with respect to the three major steps of the matching process (preprocessing, data
(pre-)matching and post-processing), splitting them further into several categories
according to the tasks that each approach adresses and finally according to the
techniques that are applied. We additionally consider a fourth, multi-step category
of methods – those that act on more than one step of the matching process (they
can be found on multiple leaf-nodes of our taxonomy). In order to evaluate and
compare the data linking tools and approaches, we define several criteria allowing
to highlight the specificity of each of them. The criteria are described hereafter:

Domain. Certain tools are developed for datasets of a specific field (music,
library or conference) while others are generic. The interest here is whether
the domain has an impact on the interlinking results or not.

Input. This criterion specifies the type of input data. Indeed, as we have
seen, we are interested in this paper to di�erent data formats. The goal is
to address similar issues as interlinking RDF data.

Output. The output data type di�ers depending on the input data type
(RDF data or articles) or on the stage (preprocessing, data matching or
post-processing) on which focuses the tool.

Preprocessing. This criterion specifies whether the tool applies a treatment
before the interlinking phase.

Data matching. As shown in this paper, some tools have been developed
just in order to identify keys among a given dataset. Indeed, even if our
work focuses on data linking tools, those presented in this paper were not
necessarily conceived to discover identical entities. This criterion specifies
whether the tool performs the linking task or not.

Post-processing. This criterion specifies whether the tool applies a treatment
after the interlinking phase.

Techniques. This criterion specifies the techniques used by the tool to be
compared.

Multilingualism. Any entity matching tool must necessarily dealing the mul-
tilingual RDF datasets. In fact, nowadays, RDF data are expressed in 474
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languages4 on the LOD. Therefore, the lingual heterogeneity occurs mainly
at the value level. This criterion specifies whether the tool distinguishes the
multilingual aspect between the RDF data.

Automation. In addition to the results that the linking tools produce, they
should also be compared according to their degree of automation. Indeed,
the user intervention may be required before (configuration stage) or after
(validation stage) the entities are linked. This allows to give increased costs
with respect to the computing time. This criterion specifies the degree of
automation of the compared tools.

Approaches Data Linking
Step Technique Input Output Domain Multilingualism Degree of Automation Evaluation

Atencia et al.
[31]

Preprocessing

Keys
Identification

RDF
datasets

Keys set

LOD

No

/

No
SAKey [8]

AutomaticKD2R [37]
ROCKER [9]
EAGLE [16] Link

Specification
Learning

Link
specification

Semi-
automaticActiveGenLink

[15]

SLINT [22]

Preprocessing
Matching

Keys
Identification
Blocking
String Matching

Linkset

Automatic

SERIMI [17] Clustering
String Matching Yes (2011)

Lesnikova et al.
[35]

WSD
Multilingual
Lexical
Resources
Feature-based

Yes / /

Rong et al. [21]

Feature-based
Clustering
Binary
classification

No Semi-automatic No

Lesnikova et al.
[34]

Machine
translation
Feature-based

Yes / /

Raimond et al. [64]
Matching

Graph-based Music

No

/ /
SILK [6] Link

Specification
RDF
datasets
+
link
specification

LOD
Semi-
automatic NoLIMES [5]

RDF-AI [20]
Preprocessing
(Pre-)matching
Post-processing

Machine
translation
String matching
Inconsistency
checking

Linkset/
Merged
datasets

KnoFuss [7] (Pre-)matching
Post-processing

String
matching
One-to-one
filter

Linkset

Paulheim et al.
[78] Post-processing Outlier detection RDF datasets RDF datasets / /

Guizol et al. [85] Post-processing Partitioning Bibliographic
records

Link
validation

Bibliographic
knowledge / /

Table 3.1: Summary table of the main data linking tools/approaches.

Table 3.1 provides a comparison between the surveyed approaches classified accord-
ing to the three steps of a data linking process, i.e., preprocessing, data linking
and post-processing steps. As we can see, each approach can perform more than

4http://stats.lod2.eu/languages
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one step. We refer to such approaches as hybrid. For each step of a matching
process, an approach performs a set of techniques. Moreover, each approach is de-
scribed by its principle (inputs and outputs), the specificity of its application to a
particular field (music, LOD), its management of multilingualism, and in the case
where it is implemented in a tool: its degree of automation and its participation
in the Ontology Alignment Evaluation Initiative5 (OAEI) campaign.

We can notice that string matching techniques are used by every approach for data
linking step as they are the obvious techniques for comparing resources values. For
preparing data in the preprocessing step, the used techniques di�er according to
the purpose of the approach that can be either search space reduction or repre-
senting the resources in an uniform manner. However, it seems clear that there is
few approaches performing the final step of post-processing. This can surely be
explained by the fact that the most of approaches trust their process of matching.
The same remark applies, in fact, to multilingualism where only few approaches
tackle this issue. However, it is obvious that this criterion presents a crucial prob-
lem which shall be resolved particularly to match equivalent resources described
in multi-languages.

3.8 Conclusion

In this chapter, we have provided a broad overview of the existing data linking
approaches. We classified these approaches according to the step on which they
focus and the techniques used in each step.

We have seen in this study that there are as many single-step approaches as multi-
step approaches (combination of several steps).

However, there are very few works that focus on the post-processing step. Further-
more, there is no generic approach to tackle the data linking issue from preprocess-
ing to post-processing step. Also, the multilingualism proves to be an important
issue to be taken into account in order to identify the same resources across multi-
lingual RDF datasets and interlink them. However, this study has shown that only
few approaches tackle this problem. We note that many of the linking tools require
a laborious step of configuration, by specifying manually properties, types, sim-
ilarity measures and other parameters before launching the tool. Automation of
the configuration step appears to be a pressing problem in the field. Finally, while
there exist multiple generic linking tools/approaches, there is just a few works
dedicated to interlinking specific type of data. In fact, the authors of [64] seem

5http://oaei.ontologymatching.org/

http://oaei.ontologymatching.org/
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to be the only ones to propose an approach for linking musical datasets. Does the
domain specificity of data a�ect the results produced by a generic linking approach?
We leave this as an open question which has to be answered by evaluating linking
tools on di�erent domain specific datasets.
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Introduction

Due to the large amount of data already available on the web, defining manually
owl:sameAs links would not be feasible. Therefore, many approaches try to an-
swer to this challenge by providing di�erent strategies to automate this process.
Datasets conforming to di�erent ontologies, data described using di�erent vocab-
ularies, datasets described in di�erent languages are only several of the examples
that make this problem hard to solve.

Many of the existing link discovery approaches are semi-automatic and require
manual configuration. Some of these approaches use keys, declared by a domain
expert, to link. A key represents a set of properties that uniquely identify the
resources (see Sub-section2.1.3). Keys can be used as logical rules to link data
ensuring high precision results in the linking process. Additionally, they can be
exploited to construct more complex rules. Nevertheless, keys are rarely known
and are very hard to declare even for experts. Indeed, experts may not know all
the specificities of a dataset leading to overlook certain keys or even introduce
erroneous ones. For this reason, several automatic key discovery approaches have
been already proposed in the context of the Semantic Web [8, 9, 31,37,87].

In spite of that fact, applying the output of these approaches directly is, in most
of the cases, impossible due to the characteristics of the data. Ontology and data
heterogeneity are not the only issues that can arise while trying to apply keys
directly for data linking. Even if the datasets conform to the same ontology and
the vocabulary of the properties is uniform, this does not ensure the success of the
linking process. Very often, key discovery approaches identify a very large number
of keys. The question that arises is whether all the keys are equally important
among them for the linking quality, or there are some that are more significant
than others. In this chapter, we propose a strategy to rank the discovered keys,
by taking in consideration their e�ectiveness for the matching task at hand.

Bridging the gap between key discovery and data linking approaches is critical
in order to obtain successful data linking results. Therefore, in this chapter we
propose a new approach that, given two datasets to be linked, provides a set of
ranked keys, valid for both of them. We introduce the notion of “e�ectiveness” of
a discovered key. Intuitively, a key is considered e�ective if it is able to provide
many correct owl:sameAs links. In order to measure the e�ectiveness of keys, a
support-based key quality criterion is provided. Unlike classic approaches using
support for the discovered keys, in this work we introduce a new global support
for keys valid for a set of (usually two) datasets.
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4.1 Problem Statement

Given two RDF datasets, candidates to be linked, our approach aims at ranking
the keys that are valid for both of them. These keys can be used successfully as
link specifications by link discovery frameworks. Notice that the definition of a
key given in Sub-section 2.1.3 is only based on distinguishing resources coming
from the same dataset. In this section, we introduce the definition of a key for
two datasets. Formally, it is defined as follows.

’r, ’rÕ, ·C(r)·C(rÕ)·r œ subj(G)·rÕ œ subj(GÕ)
nfi

i=1
(pi(r, oi)·pi(rÕ, oi)) ∆ r = rÕ,

(4.1)
Where r and r’ are resources of the graphs G and GÕ respectively and they are of
the class C. pi(r, oi) · pi(rÕ, oi) expresses that both r and r’ share the same value
oi for every property pi in the key.

In the next section, we describe how do we select keys that are valid for two
datasets. Afterwards, we describe our ranking approach on the set of these keys.

4.2 RANKey: Automatic Key Selection for Data
Linking

The number of available vocabularies has been growing with the growth of the
LOD cloud, resulting in datasets described by a mixture of reused vocabulary
terms. It is therefore often the case that two di�erent datasets to be linked are
described by di�erent vocabularies. This makes the comparison more complicated
if not impossible. To answer to that, ontology alignment methods [88] are used in
order to create mappings between vocabulary terms. In this work, we assume that
equivalence mappings between classes and properties across two input datasets are
declared (either manually, or by the help of an ontology matching tool). These
mappings will be used to obtain keys that are valid for both datasets.

4.2.1 RANKey Overview

Algorithm 1 gives an overview of the main steps of our approach called RANKey,
also depicted in Figure 4.1. Overall, given two datasets to be linked, this algorithm
returns a set of ranked keys valid for both datasets. In addition to that, every
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Figure 4.1: The processing pipeline of Algorithm 1.

proposed key is given a score, allowing to rank keys according to their e�ectiveness
for the data linking process. This process is described step by step below.

First, given the datasets DS and DT , a set of property mappings M between
the two datasets is computed. As described in [37], property mappings allow
the identification of properties that belong to both datasets simultaneously. We
assume that the instances are of the same class C. If this is not the case, we apply
ontology alignment methods.

A key discovery step is applied to both datasets independently allowing the dis-
covery of valid keys in each dataset. Only mapped properties, appearing in M ,
will be contained in the discovered keys. For this step, existing key discovery tools
such as SAKey [8] or ROCKER [9] can be used to obtain keys for a given class C.

However, even if keys consist of properties that belong to both datasets, nothing
ensures that the discovered keys found in each dataset independently will be the
same. Indeed, there can be cases where something found as a key in one dataset
is not in the other. Since key discovery approaches learn keys from the data,
the generality of each dataset a�ects the generality of the discovered keys. For
example, if a dataset contains people working in a specific university, it is possible
to discover that the last name is a key. Thus, to deal with this challenge a merging
step is performed. Indeed, merging keys coming from di�erent datasets allows to
verify the validity of discovered keys and to obtain more meaningful keys since they
are applicable to more than one datasets. Di�erent strategies for key merging could
be applied. In this work, we apply a merging strategy proposed in [37] providing
minimal keys valid in both datasets.

The result is a set of merged keys considered as valid for both datasets. However,
the number of merged keys produced by the algorithm can be significantly high,
which makes manual selection di�cult, particularly in the lack information of the
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keys suitability for the data linking task. Therefore, we introduce a novel ranking
method for merged keys to identify the most suitable keys to be used in the link
specification, introduced in next section.

Algorithm 1 The merged keys ranking algorithm
Input: DS and DT , a pair of datasets candidates to be linked
Output: A set of merged and ranked keys: rankedMergedKeys

1: M Ω Mapping(DS , DT )
2: KeysDS Ω keysDiscovery(DS , M)
3: KeysDT Ω keysDiscovery(DT , M)
4: MergedKeys Ω keysMerging(KeysDS , KeysDT )
5: rankedMergedKeys Ω mergedKeysRanking(DS , DT , MergedKeys)
6: return rankedMergedKeys;

4.2.2 Merged Keys Ranking

As described before, the merged keys are valid for both datasets. However, these
keys may vary in terms of “e�ectiveness” in the linking process. Therefore, we
propose to first to assign a score reflecting the “e�ectiveness”1 of a discovered key
and second use this score to rank the discovered keys among them.

In general, it is very common that not all the properties are used to describe every
instance of a given class. This happens often due to the nature of the property or
the incompleteness of the data and may have significant impact on the quality of
the discovered keys with respect to the linking task. While many properties apply
to every instance of a class, there exist cases of properties that have values only for
certain instances (the property “spouse” for a person applies only to people that
are married). In addition, in the case when data are incomplete, an instance may
not have a value for a specific property even if a value exists in reality. This can
lead to the discovery of wrong keys since not all the possible scenarios are visible
in the data. Since it is very hard to di�erentiate these two cases automatically
and a manual identification would not be feasible due to the size of the existing
datasets, we use the notion of support to measure the completeness of a key. The
support measures the presence of a set of properties in a dataset. Intuitively, we
tend to trust more keys that are valid for many instances in the data, i.e., keys
with high support.

Basing ourselves on the support definition initially given by Atencia et al. in [31],
we redefine this measure in order to provide a ranking score for properties with
respect to a given dataset.

1It denotes if the key allows to discover identical resources with accuracy.



62 CHAPTER 4. AUTOMATIC KEY SELECTION USING RANKEY

Let D be an RDF dataset described by an ontology O. For a given class C œ O, let
IC be the set of instances of type C and P the set of properties having an element
of IC as a subject and let GC be the subgraph defined by the set of triples of IC

and P , GC= {< i, p, . >: i œ IC , p œ P}.

Definition 2 (Property Support Score) The support of a property p œ P with
respect to the pair (D, C) is defined by:

supportProp(p, D, C) =
------

€

iœIC

< i, p, . >

------
1

|IC | .

In other words, supportProp(p, D, C) = N 1
|IC | means that N instances of type C

in the dataset D have a value for the property p (supportProp(p, D, C) œ [0, 1]).

As keys for a given class can be composed of one or several properties, we introduce
a ranking score for keys based on the supports of their properties, again with
respect to their dataset.

Definition 3 (Key Support Score) Let K = {p1, ..., pn} be a key corresponding
to the pair (D, C), where pj œ P, j œ [1, n]. We define the support of K with respect
to (D, C) as

supportKey(K, D, C) =
------

€

iœIC

< i, K, . >

------
1

|IC | ,

where < i, K, . > means that ’pj œ K, ÷ < i, pj, . >œ GC.

In other words, supportKey(K, D, C) can be seen as a measure of the co-occurrence
of {p1, ..., pn} in GC .

To illustrate, let us consider a source dataset DS having 300 instances of type CS.
Respectively, let DT be a target dataset having 100 instances of type CT , where
CS and CT are two mapped (equivalent) classes, potentially sharing instances. Let
Ki and Kj be two merged keys, obtained as described in Algorithm 1, with the
following supports for (DS, CS) and (DT , CT ), respectively:

supportKey(Ki, DS, CS) = 160
300; supportKey(Ki, DT , CT ) = 40

100;

supportKey(Kj, DS, CS) = 110
300; supportKey(Kj, DT , CT ) = 90

100 .
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Obviously, the challenge that arises here is how to rank the merged keys in order
to ensure a maximum instance representativeness.

We note that key support score expresses the importance of a merged key with
respect to each dataset, however, it is still necessary to provide a ranking function
allowing to measure the importance of the merged keys for both datasets simulta-
neously.

An intuitive strategy to compute the final support of a merged key, given the
supports computed locally in each dataset, would be to compute the average score
of these supports. Nevertheless, this strategy would fail to capture all the di�erent
scenarios that could lead to a support value. For example, a key having supports
1 and 0.4 in datasets 1 and 2, would have the same merged support than a key
having supports of 0.7 and 0.7 in datasets 1 and 2 respectively. Thus, we propose
a multiplication function between already computed key supports which ensures
better results in the context of data linking evaluation. Consequently, we adopt
this ranking function as defined below.

Definition 4 (Merged Keys Rank Function) We define the rank of a merged
key K with respect to two datasets DS and DT and two classes CS and CT as:

mergedKeysRank(K) = supportKey(K, DS, CS) ◊ supportKey(K, DT , CT ).

Applying the ranking to our example, we obtain the following scores:

globalRank(Kj) = 0.33; globalRank(Kk) = 0.22; globalRank(Ki) = 0.21;

Therefore, in this example, the key Kj is more important than Ki which means
that intuitively should lead to better data linking results.

4.3 Experiments

In order to confirm the e�ectiveness of the proposed approach, we have con-
ducted an experimental evaluation applying two state-of-the-art key discovery
tools: SAKey and ROCKER. We have used two di�erent datasets, a real-world
dataset coming from the DOREMUS project2 and a synthetic benchmark provided
by the Instance Matching Track of the Ontology Alignment Evaluation Initiative

2http://www.doremus.org

http://www.doremus.org


64 CHAPTER 4. AUTOMATIC KEY SELECTION USING RANKEY

(OAEI) 20103. The current experiments were applied on links generated semi-
automatically using the linking tool SILK. In this evaluation, we highlight a set of
issues raised during these experiments. But first, let us define the criteria and the
measures used for this evaluation.
Two aspects are taken into account through the keys ranking performed using our
approach, first the correctness that determines whether the discovered links are
correct and second, the completeness that determines whether all the correct links
are discovered. These criteria are evaluated by the help of three commonly used
evaluation metrics:

- Precision: expresses the ratio between the cardinalities of the set of valid
matchings and all matching pairs identified by the system.

- Recall: expresses the ratio between the cardinalities of the set of valid
matchings and the all matching pairs that belong in the reference alignment.

- F-Measure: is computed by the following formula :

F-Measure = 2 ú Precision ú Recall

Precision + Recall

We note that all considered pairs of datasets are using the same ontology model,
hence, the ontology mapping process is not considered in our experiments. We
first execute SAKey or ROCKER on each dataset in order to identify the set of
keys. However, we emphasize the fact that advanced key exceptions like pseudo-
keys or almost keys are not the focus of this work, therefore, only traditional keys
are discovered. These keys are then merged and ranked according to their support
score. We launch SILK iteratively as many times as the number of the retrieved
keys and produce an F-measure at each run by the help of the reference alignment
of our benchmark data. We expect to find a monotonic relation between the ranks
of keys and the F-measure values produced by SILK by using these keys. Note that
the purpose of these experiments is not to evaluate the performance of the linking
tools, but to evaluate the quality of the automatically computed ranks of keys. In
other words, we assess whether the generated links are increasingly correct in an
ascending order of the ranked keys.

4.3.1 Experiments on the DOREMUS Benchmark

The data in our first experiment come from the DOREMUS project and consist
of bibliographical records found in the music catalogs of two major French institu-
tions – La Bibliothèque Nationale de France (BnF) and La Philharmonie de Paris

3http://oaei.ontologymatching.org/2010/

http://oaei.ontologymatching.org/2010/
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(PP). These data describe music works and contain properties such as work titles
(“Moonlight Sonata”), composer (Beethoven), genre (sonata), opus number, etc..
The benchmark datasets were built based on these data with the help of music
librarian experts of both institutions, providing at each time sets of works that
exist in both of their catalogs, together with a reference alignment. The data
were converted from their original MARC format to RDF using the marc2rdf pro-
totype4 [89]. We consider two benchmark datasets5, each manifesting a number
data heterogeneities:

1) DS1 is a small benchmark dataset, consisting of a source and a target dataset
form the BnF and the PP, respectively, each containing 17 music works. These
data show recurrent heterogeneity problems such as letters and numbers in the
property values, orthographic di�erences, missing catalog numbers and/or opus
numbers, multilingualism in titles, presence of diacritical characters, di�erent value
distances, di�erent properties describing the same information, missing properties
(lack of description) and missing titles. SAKey produced eight keys in this scenario.
The three top-ranked merged keys using our approach are:

1. K1: {P3_has_note}

2. K2: {P102_has_title}

3. K3: {P131_is_identified_by, P3_has_note},

where P3_has_note, P102_has_title, P131_is_identified_by and P3_has_note
correspond to a comment, title, composer and creation date of a musical work, re-
spectively.

As we can see in Figure 4.2(a), our ranking function ensures a decrease of the
F-measure with the decrease of the key-rank, in the prominent exception of the
top-ranked key, which obtains a very low value of F-Measure. This is explained
by the nature of the property P3_has_note. This property describes a comment
in a free format text written by a cataloguer providing information on the works,
creations or authors of such works. The values for this property for the same
work are highly heterogeneous (most commonly they are completely di�erent)
across the two institutions, which introduces noise and considerably increases the
alignment complexity between these resources. Thus, we decided to conduct a
second experiment on the same data by removing the property has_note in order
to confirm our observation. Figure 4.2 (b) reports the results of this experiment
and shows a net decrease of the curve. Overall, the experiment showed that our

4https://github.com/DOREMUS-ANR/marc2rdf
5Doremus datasets, together with their reference alignments, are available at http://lirmm.

fr/benellefi/doremus-bench

https://github.com/DOREMUS-ANR/marc2rdf
http://lirmm.fr/benellefi/doremus-bench
http://lirmm.fr/benellefi/doremus-bench
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(a) (b)

Figure 4.2: Results by using SAKey on DS1: (a) by considering all properties, (b)
without the property has_note.

ranking approach is e�cient and the misplaced key is due to the heterogeneous
nature of data.

The same experiment has been conducted using this time the key discovery ap-
proach ROCKER. The results are reported in Figure 4.3 showing that the keys
were well ranked. Note that, due to the di�erent keys identification definition
used by ROCKER, the problematic property has_note did not appear in the keys
produced by the system.

Figure 4.3: Results on DS1 by using ROCKER.

2) DS2 is a benchmark dataset consisting of a source and a target dataset from
the BnF and the PP, respectively, each composed of 32 music works. Contrarily
to DS2, these datasets consist of blocks that are highly similar in their description
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(a) (b)

Figure 4.4: Results by using SAKey on DS2: (a) by considering all properties, (b)
without the property has_note.

works (i.e., works of the same composer and with same titles).

The results on this dataset by using SAKey are reported in Figure 4.4(a). The
three top-ranked merged keys are:

1. K1: {P3_has_note, P102_has_title, P131_is_identified_by}

2. K2: {P3_has_note, P102_has_title, U35_had_function_of_type}

3. K3: {P3_has_note, P131_is_identified_by, P3_has_note}

As their names suggest the properties P3_has_note (in K1 and the first property
in K2 ), P102_has_title,
P131_is_identified_by, U35_had_function_of_type and P3_has_note (the
third property in K3 ) correspond to a creation date, title, composer, function of the
composer and comment on a musical work, respectively. The results of this exper-
iment are similar to the first one. Not considering the property P3_has_note im-
proves considerably (see Figure 4.4 (a) and (b)) the keys ranking. Indeed, as shown
in Figure 4.4 (a), the key K5 which is composed by the properties P102_has_title,
U35_had_function_of_type and P3_has_note has significantly lowered the f-
measure value; which is not the case of the keys in Figure 4.4 (b).

4.3.2 Experiments on the OAEI Benchmark Data

In the second series of experiments, we apply our ranking approach on keys iden-
tified in datasets proposed in the instance matching track of OAEI 2010. In this
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work, we report the obtained results on the dataset Person1. The results by using
SAKey and ROCKER are shown in Figure 4.5(a) and (b), respectivey, where one
can notice that there is an overall decrease in the F-Measure values in the two cases.
Note that in Figure 4.5(a), there are some problematic key-ranks, showing increase
in F-measure while the ranks descend. We observed that SILK achieves better re-
sults comparing string characters than numeric characters. Indeed, this explains
why we have had an increasing curve between the keys K7 and K8, knowing that
they are composed of street and house_number properties (street and surname
properties), respectively. The three top ranked merged keys (in Figure 4.5(a)) on

(a) (b)

Figure 4.5: Results on the dataset Person1: (a) by using SAKey, (b) by using
ROCKER.

the dataset Person1 using SAKey are:

1. K1: {soc_sec_id},

2. K2: {given_name, postcode}

3. K3: {surname, postcode},

where the properties soc_sec_id, given_name, surname and postcode correspond
to the social security number, given name, surname and postal code address of a
person, respectively. In the same manner, we reiterated the experiment using
ROCKER which gives better results as shown in Figure 4.5(b).

4.3.3 Top Ranked Keys Complementarity

In this evaluation, we want to examine whether using the k (we have taken k = 3)
top-ranked keys in combination can improve the linking scores as compared to
using only one of the top-ranked keys (e.g., the first one) for linking. As discussed
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above, even if a key is discovered as a first-rank key, nothing ensures that the
vocabulary used in both datasets to describe that key is homogeneous. To answer
to that, combining a set of top ranked keys would lead to better linking results.

SAKey ROCKER
Dataset 1 Dataset 2 Dataset 1 Dataset 2

F P R F P R F P R
No merged

key has been
identified.

K1 0.12 0.12 0.11 0.5 0.75 0.37 0.59 0.8 0.47
K2 0.71 0.9 0.58 0.48 0.7 0.37 0.2 0.66 0.11
K3 0.52 1 0.35 0.37 0.56 0.28 0.2 0.66 0.11

K1+K2+K3 0.54 0.44 0.7 0.51 0.63 0.43 0.62 0.75 0.52

Table 4.1: Results of the combination of the three top-ranked keys on the DORE-
MUS datasets.

Notice that by doing so, the recall value remains the same or increases as compared
to the single key approach, while the precision may increase (if the proportion of
the positive matching pairs becomes larger than the negative matching pairs) as
it may as well decrease.
As shown in Table 4.1, the experiments on DOREMUS datasets using the three top
ranked keys increased relatively (in bold in the table) the F-Measure with respect
to the first-rank key (where the improved values are in italics) and significantly
the recall scores (more positive matching pairs were recovered). Thus, it seems
reasonable to conclude that merging the matching results retrieved from the top
ranked keys allows to improve significantly the results in terms of recall, while this
cannot guarantee an improvement in precision.

4.4 Conclusion

In this chapter, we have presented a new approach called RANKey for automati-
cally ranking and selecting the most relevant key. As we have shown, the current
approaches discover keys only per dataset. To address the problem of finding keys
that are valid for a given pair of input datasets, RANKey adopts a strategy of
merging the keys generated separately for each of them. Then, it ranks them
with respect to their “e�ectiveness” for the task of discovering owl:sameAs links
between them. The e�ectiveness of a merged key is defined as a function of the
combination of its respective supports on each of the two input datasets. We also
look into the complementarity properties of a small set of top-ranked keys and
show that their combined use improves significantly the recall. To demonstrate
our concepts, we have conducted a series of experiments on data coming from the
OAEI campaign, as well as on real-world data from the field of classical music
cataloging.
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The proposed approach can be summarized in the following main steps. (1) Pre-
processing: in this step, given two datasets to be linked, only properties that are
shared by both datasets are kept. This ensures that a key can be applied on both
the source and the target datasets, and not only on each of them independently.
At this point, it is important to state that we consider that the datasets use either
common vocabularies or that the explicit mapping between the respective vocabu-
laries is known. (2) Merge: the key candidates discovered in each dataset are then
merged by computing their cartesian product (recall that a key is a set of prop-
erties). (3) Ranking: we introduce a ranking criterion on the set of merged keys
that is a function of the respective supports of each merged key in each dataset,
normalized by the dataset sizes. (4) Keys combination: finally, the combined use
of several top-ranked merged keys is evaluated, showing an improvement of the
recall of a given link discovery tool.

On the one hand, our approach attempts to bridge the gap between configuration-
oriented approaches, such as automatic key discovery and automatic link specifi-
cation. Therefore, it allows to reduce significantly the user e�ort in the selection
of keys used as a parameter of a data linking tool. However, as we will see in the
next chapter, RANKey will be used in our proposed approach to disambiguate
between highly similar but di�erent resources from the same dataset (see research
question 3 in Section 1.5).
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Introduction

The web of data, and particularly the Linked Open Data (LOD) project1, has
been receiving growing popularity over the past years, with hundreds of datasets
published on the web following the semantic web principles. However, the vision
of the web of data will only become reality when related resources across datasets
are linked together—a process that cannot be handled manually, given the amount
of data published as RDF knowledge graphs. Data linking is the semantic web
research field that has taken the challenge of proposing methods and providing
tools for the automatic detection of relations between cross-dataset resources.

As mentioned in Section 1.4, setting the linking tool parameters is a challenging
problem that often requires in-depth knowledge of the data. State-of-the-art tools
like LIMES [5] or SILK [6] require link specification files where one has to indicate
property names, select and tune similarity measures. This process is handled either
manually, or by specialized tools [15, 16]. Making a linking tool self dependent in
that respect is among the challenges that we set in this work.

Also, a data matcher has to be able to deal with a large variety of data hetero-
geneities, by taking into account di�erences in descriptions on value, ontological
or logical level (see Section 2.2). While heterogeneities on literals are rather well-
handled by similarity measures and data unification techniques, ontological dis-
crepancies (regarding structure and properties) appear to be way more challenging.

Finally, as we will show in our experiments, if the evaluated approaches handle
correctly datasets containing blocks of highly similar in their descriptions, but
yet distinct resources (for instance, two datasets composed by piano sonatas by
Beethoven, Brahms and Schubert), likely to generate false positives.

In this chapter, we aim at reducing the di�culty of manual configuration, espe-
cially when it comes to data-related parameters, such as properties to compare,
similarity measures to use or threshold setting. We propose a system, called Legato,
based on indexing techniques that allows to represent each instance as a textual
document consisting of its literals, addressing in its mechanism a large variety of
data heterogeneities without requiring user input. A data cleaning module allows
to decrease noise prior to data linking. Our approach is able to discriminate be-
tween highly similar, but di�erent resources, thanks to an e�cient post-processinig
strategy.

1http://linkeddata.org

http://linkeddata.org
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Figure 5.1: Processing pipeline of Legato for capturing and repairing identity links

5.1 Legato Approach

In this section, we present the complete Legato framework, which consists in au-
tomatically processing, comparing, repairing and providing a set of identity links
(also called a link set), as shown in Figure 5.1. The pseudo-code of Legato is given
in Algorithm 2. It takes one single parameter as input: a pair of datasets to be
compared and linked.

5.1.1 Data Cleaning

Certain property values make it di�cult, if not impossible, to compare the re-
sources, even if identified as parts of a key. Legato considers a property as prob-
lematic if it makes the comparison di�cult for all resources. In this case, we are
convinced that it is useless to use this property for matching decision. In fact, there
may be a possibility of missing some matches considering this kind of properties.
To better clarify this issue, consider the example presented in Table 5.1.

Descriptions mw1 and mw1’ are about two equivalent musical works retrieved from
Philharmonie de Paris and Bibliothèque Nationale de France (BNF), respectively
(in DOREMUS data). These works are high similar in their description, except
the ecrm:P3_has_note property values. Indeed, the descriptions of mw1 and mw1’
do not match, by considering this property, we would have a very low value of the
similarity score.

The problematic properties may concern the properties that have values in a free
text format, i.e., comments (as in the above example), as well as known values. By
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mw12 a efrbroo:F22_SelfContained_Expression
mus:U70_has_title “Sonates”
mus:U12_has_genre sonate3

ecrm:P3_has_note “Cette sonate est constituée de cinq
f̈ormants̈: Antiphonie, Trope, Constellation, Strophe et
Séquence. Seuls les 2e et 3e formants sont publiés. Le For-
mant 2 (Trope) est composé de quatre sections : Commen-
taire, Glose , Texte, Parenthèse, qui peuvent être jouées dans
di�érents ordres. Cette oeuvre nécessite un piano à 3 pédales.
- Durée d’exécution : 20 minutes environ"

mw1’4 a efrbroo:F22_SelfContained_Expression
mus:U70_has_title “Sonates”
mus:U12_has_genre sonate5

ecrm:P3_has_note “Date de révision : 1963, comprend :
Antiphonie; Trope; Constellation (ou Constellation-Miroir);
Strophe; Séquence"

Table 5.1: ecrm:P3_has_note — An example of a problematic property in DORE-
MUS data

known values, we mean resources-specific values, that the publisher can not freely
describe. Imagine the likely case of di�erent data providers assigning di�erent
identifiers to equivalent resources across datasets (e.g., the same record of a musical
work is identified di�erently in the catalogs of two di�erent libraries, as this is
the case of DOREMUS data at OAEI 20166). Nonetheless, the property http://
erlangen-crm.org/efrbroo/R46_assigned will be considered as a key by any key
discovery algorithm. If a given linking tool uses this key to compare the instances,
it will fail to find a correspondence. One way of going around this problem is to
remove the properties of such values, that we call problematic properties (line 3 in
Algorithm 2).

The way we propose to identify automatically these properties, is to discover mono-
property keys that are valid over both datasets, i.e., each object for this property
has at most one subject in both datasets. Avoiding to compare such properties
allows to alleviate descriptive heterogeneity (cf. Section 2.2) and therefore to
improve the linking results.

6http://islab.di.unimi.it/content/im_oaei/2016

http://erlangen-crm.org/efrbroo/R46_assigned
http://erlangen-crm.org/efrbroo/R46_assigned
http://islab.di.unimi.it/content/im_oaei/2016
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Algorithm 2 Legato Data Linking Algorithm
Input: Datasets={DS , DT } A pair of datasets to be compared
1: LinkSet = ÿ {the set of generated links}
2: for (D œ Datasets) do
3: D = clean(D);
4: R={r: ÷p, o with (r,p,o) œ D};
5: Set F = new Set();
6: for (r œ R) do
7: F .add(CBDú(r));
8: end for
9: end for

10: for (fs œ F(DS)) do
11: for (ft œ F(DT )) do
12: if sim(fs,ft)> ‡ then
13: LinkSet.add(map(fs,ft));
14: end if
15: end for
16: end for
17: CS = Hierarchical-Clustering(DS);
18: CT = Hierarchical-Clustering(DT );
19: SureLinks = ÿ
20: for (cs œ CS) do
21: for (ct œ CT ) do
22: if sim(cs, ct)> fl then
23: bestKey=RANKey(cs, ct);
24: links = linking(< cs,ct >,bestKey)
25: SureLinks.add(links);
26: end if
27: end for
28: end for
29: LinkSet= repair(LinkSet, SureLinks);
30: return LinkSet;
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Figure 5.2: Constructing CBD-based instance profile

5.1.2 CBD-based Instance profiling

A core feature of our approach is the representation of resources as text documents
(line 7 in Algorithm 2). More particularly, each resource is represented by a set
of literals considered as relevant to its description, based on the CBD subgraphs
(Figure 5.2). CBD, for Concise Bounded Description7, allows to represent a given
resource r by a subgraph such that all triples of this subgraph have as a subject r
or a blank node connected to r. The CBD of r is denoted CBD(r).

Formally, the CBD of r in an RDF graph G is defined as follows.

Definition 5 (CBD) CBD(r) = {< r, p, o >: ÷r, p, o œ G} fi {< rÕ, pÕ, oÕ >:
÷rÕ, pÕ, oÕ œ G · ÷rÕÕ| < rÕÕ, pÕÕ, rÕ >œ CBD(r)},

where rÕ is a blank node.

We extend the CBD definition by also considering the description of neighboring
nodes of r in its graph defined as follows:

• ø CBD(r) defines the scope of resource description including CBD(r) and the
concise bounded description of its direct predecessors denoted CBD(ø r).

• ¿ CBD(r) defines the scope of resource description including CBD(r) and the
concise bounded description of its direct successors denoted CBD(¿ r).

• Ï CBD(r) defines the scope of resource description including CBD(r), CBD(ø
r) and CBD(¿ r).

• CBDú(r) defines the scope of resource description including one of the CBDs
cited above, i.e., CBD(r), ø CBD(r), ¿ CBD(r) or Ï CBD(r).

7https://www.w3.org/Submission/CBD/

https://www.w3.org/Submission/CBD/
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We refer to an instance representation obtained on that basis as an instance profile
(see Section 2.1.2), defined as follows.

Definition 6 (CBD-based Instance Profile) Let G be an RDF graph, let r be
a resource of G and let F(G) be the set of literals found in G. We define the
instance profile of r as the set

fr = {lr : lr œ F(G) · lr œ CBDú(r)}.

Figure 5.2 provides an illustration. We integrate in our framework a parameter
that allows the user to choose the profile based on the depth at which the literals
are collected – a choice that has to be motivated by the specificities of the data.
Selecting the most relevant profile depends on the way the resources are modeled
in the graph. Without any user intervention, the default setting represents the
instances only by literals found in their CBDs. Thus, avoiding property-based
comparison addresses the vocabulary, structural and property depth heterogeneities.

5.1.3 (Pre-)Matching

Once all resources in both datasets are profiled, it is necessary to process the result-
ing documents in order to prepare data for the matching task. Data preprocessing
includes tokenization and stop-words removal by applying NLP (Natural Language
Processing) filters. The set of instance profiles in both datasets are indexed in a
standard manner by using all remaining terms. We apply a vector space model
where the terms are weighted by their TF-IDF (Term Frequency-Inverse Document
Frequency) weights.

To compute the similarity between the resources (line 13 in Algorithm 2), we
compute the correlation between their vectors. To this end, several similarity
measures can be used. In our system, we applied the well-known cosine similarity
based on the cosine of the angle between two vectors. According to the arity of
the matching to perform, we propose two strategies:

— 1:1 expected mappings. If the matches are expected to be of type 1:1, we
aim at detecting, for each instance from the source dataset, the one from the target
dataset that has the highest similarity score greater than the threshold ‡.

— 1:n expected mappings. If the matches are expected to be of type 1:n, we
aim at detecting, for each instance, the set of instances that are most similar to
it. We apply a blocking method by selecting a subset of vector pairs with high
similarity scores by ignoring the remaining pairs, by using ‡ as threshold to filter



78 CHAPTER 5. DATA LINKING APPROACH

out the matching candidates.
Note that in the (pre-)matching step we have decided to keep the threshold ‡ low
in order to capture as many links as possible, achieving high recall. More precisely,
for any input datasets, ‡ is set to 0.2 regardless to the nature of data to capture
as many links as possible. Thereby, it is necessary to improve the quality of the
generated links by applying a post-processing task to repair erroneous links which
may have been generated at this step, aiming to boost precision.

5.1.4 Link Repairing

For each dataset, the algorithm proceeds to cluster highly similar instances (lines
17 and 18 in Algorithm 2), i.e., sharing the same values for most properties, relying
on the generic Hierarchical Clustering Algorithm [90]. Then, a cluster matching
procedure across the two datasets allows to isolate pairs of similar clusters, where
the first belongs to the source dataset and the second – to the target dataset.
For that purpose, we use a distance metric on the cluster centroids. Each pair of
similar clusters is then analyzed separately and their respective instances are com-
pared on a property basis (lines 20, 21 and 22 in Algorithm 2). The e�ectiveness
of this process depends on the quality of the compared properties. Therefore, the
RANKey algorithm [23] is then applied to select the best key (i.e., set of discrim-
inative properties) allowing to disambiguate highly similar instances (line 23 in
Algorithm 2). This ensures a maximization of the rate of correct alignments (line
25 in Algorithm 2), or what we call sure links. Finally, for each link =(rs, rt)
produced in the earlier step, the repair module begins by searching over the set of
sure links for a link with a source resource rs and with a target resource rÕ

t ”= rt.
The target resource rt in is then replaced with rÕ

t.

5.2 Algorithm Analysis

In this section, we will analyze the e�ciency of our data linking algorithm based
on three criteria [91]: (i) Termination: if it terminates its execution at all; (ii)
Correctness: if it produces the expected results [92]; and (iii) Computational com-
plexity: the number of operations (or time) needed to terminate its execution [93].

Termination. Our algorithm takes in input two RDF datasets and provides
a set of identity links. The termination of the algorithm depends on the number
of comparisons performed between the resources. The number of comparisons
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depends on the size of the input datasets. We will study in particular the cases
leading to compare all the resources. Since the set of resources in each dataset
is finite, the LinkSet returns necessarily a finite number of owl:sameAs links.
Therefore, the variables i of for loops used in the algorithm are between 1 and
the cardinal of DS and DT . Thus, these for loops terminate in the sense of a finite
number of iterations.

In the case where the input datasets are not finite, the algorithm certainly loops
to the infinite, but it would be just enough to limit the reached resources in the
graphs, i.e., if the numbers n and m (n, m œ N) of source and target resources
(respectively) are compared, then the algorithm stops its execution. Therefore, we
consider that the input datasets are finite.

Correctness. Regarding Legato, we have to show that it produces the expected
results in terms of generated links. Indeed, we must ensure that our algorithm
generates an identity link for each pair of resources whose similarity value is higher
than a given threshold. Previously, we have demonstrated that the algorithm treats
all possible combinations of resources in both datasets in a finite time. Then, we
have to check its correctness at two steps of the linking process:

1. (Pre-)Matching: The result is correct for n ú m (n and m are the number
of source and target resources, respectively) iterations of the algorithm. For
each pair of data items, if the similarity value is higher than a given threshold
‡, then the algorithm generates a new link between them (see line 12 in
Algorithm 2).

2. Link repairing: The result is correct for all source and target cluster pairs.
For each pair of clusters, if the similarity value is higher than a given thresh-
old fl, then the algorithm compares all the resources which are contained
therein (see line 22 in Algorithm 2).

This criterion ensures that our algorithm always gives the expected link for any
input datasets.

Computational Complexity. The classic definition of computational com-
plexity is the number of operations performed by the algorithm to return the
expected result. The number of operations is expressed according to the size of
the input data. Regarding Legato, the operations are the conditions, the for loops
and the generation of the identity links. The computational complexity of our
algorithm depends on: (pre-)matching, clustering and the similarity computation
between the formed clusters.
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For (pre-)matching, it is important to notice that at most only one link is generated
by iteration. Consequently, the total number of produced links can vary between
1 and núm (n and m are the number of source and target resources, respectively).
Therefore, the complexity of this step is of order O(n ú m). In order to simplify, if
we consider the worst case, we select the highest cardinal denoted n. In this case,
we suppose that n is the cardinal of the source dataset and also the one of the
target dataset. Therefore, the complexity would be of order O(n2).

Following the work of [94], the hierarchical algorithm (see the lines 17-18 in Al-
gorithm 2) has a time complexity of O(n2log(n)), where n is the number of data
points. It is clear that the computational complexity of this algorithm severely
slows the execution of our data matcher for large datasets. If we want to deal with
this theoretical complexity, our algorithm could be improved by using other more
e�cient clustering algorithms [95,96] of complexity O(n2).

Moreover, the complexity of comparing the pairs of the formed clusters (see the
lines 20-22 in Algorithm 2) depends on the number of the formed clusters in both
datasets. Consequently, the total number of comparisons can vary between 1 and
k ú l (k and l are the number of source and target clusters, respectively). Thereby,
the complexity is of order O(k2). For the sake of simplicity, we suppose that k is
the number of the clusters in each dataset.

Finally, considering these three steps, the global computational complexity of our
algorithm is of order O(n2 + k2 + n2log(n)).

5.3 Experiments

Legato was implemented in Java 8 and the experiments were conducted on a ma-
chine running under Windows 10 over an Intel Core i5-5300U, with 2.30 GHz CPU
and 16 GBytes RAM. The system is available an open source (see the Introduc-
tion). We provide an open source implementation of our prototype Legato in a
GitHub project8.

5.3.1 Experimental Setting

We evaluate Legato on datasets from the Ontology Alignment Evaluation Initiative
(OAEI) instance matching tracks, as well as on real-world music-related data from

8https://github.com/DOREMUS-ANR/legato

https://github.com/DOREMUS-ANR/legato
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the DOREMUS9 project.

Datasets. Our experiments were performed on real-world datasets in the field
of classical music coming from the DOREMUS project and on several well-known
benchmark datasets from Instance Matching tracks of the Ontology Alignment
Evaluation Initiative (IM@OAEI201510 and IM@OAEI201611).

• DOREMUS datasets. The DOREMUS project brings together a number
of major French cultural institutions, among which Radio France, Bibliotheque
Nationale de France (BNF) and Philharmonie de Paris (PP). Among the aims of
the project is to represent and publish the catalogs of these institutions, containing
rich data about music works and events, as RDF graphs, following a specifically
designed for this purpose model [89]. We have asked the librarian experts of
DOREMUS to construct reference alignment datasets containing matching music
works of their respective institutions with di�erent degrees of heterogeneities. This
resulted in two dataset pairs PP-BNF, denoted by DHT (for heterogeneities) and
DF P (for false positives). We make these data available under the following link:
https://github.com/DOREMUS-ANR/doremus-playground. Note that an earlier
version of this benchmark was part of the IM@OAEI 2016 campaign, namely 9-HT,
4-HT and FP-trap datasets. DHT contains 476 musical works, which are highly
heterogeneous (see Section 2.2 for data heterogeneity types), while DF P contains
66 musical works, which have very similar descriptions, challenging the ability of
linking systems to correctly disambiguate them. All data follow the same model
and therefore share significant number of vocabulary terms. Because of their very
high heterogeneity, richness of description and because of our unsuccessful earlier
attempts to link them by the help of o�-the-shelf tools, we have used these data
as a main motivating example for developing and evaluating Legato.

• OAEI datasets. We additionally evaluated LEGATO on five artificial bench-
mark dataset pairs. The first three datasets come from the OAEI 2015 campaign.
They have been generated through the Semantic Publishing Instance Matching
Benchmark (SPIMBENCH) [97] by transforming the source instances based on
their values and semantics (val-sem task), on their values and structures (val-struct
task) and on their values, structures and semantics (val-struct-sem task). Note
that each of the three datasets is about 10000 instances (referred as SANDBOX
datasets). In the same manner, the two other datasets (SPIMBENCH small and
SPIMBENCH large) coming from the OAEI 2016 campaign have been produced
by employing value-based, structure-based and semantics-aware transformations.
We then compared the performance of LEGATO with the participating systems.

9http://www.doremus.org
10http://oaei.ontologymatching.org/2015/
11http://oaei.ontologymatching.org/2016/

https://github.com/DOREMUS-ANR/doremus-playground
http://www.doremus.org
http://oaei.ontologymatching.org/2015/
http://oaei.ontologymatching.org/2016/
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In 2015, the two systems STRIM [98] and LogMap [99] participated in the three
tasks. In 2016, the systems LogMapIm, AML [86] and RiMOM [18] participated
in both datasets.

To evaluate data linking systems, three traditional metrics are used: Precision
(P), Recall (R) and F-Measure (F). P and R evaluate the correctness and the
completeness of the generated links, respectively, while F is their harmonic mean.

Scenarii. Before comparing to other linking systems, we evaluated Legato with
respect to three of its core features: (1) the impact of problematic properties on
the quality of the generated links, (2) the choice of instance representation and
(3) the use of keys to e�ciently assess and repair such links. In the first scenario,
instances are first compared considering all the properties and then after removing
problematic ones. An improved performance is expected after property filtering.
As a second scenario, the identity links are identified by comparing the di�erent
representations of the instances, i.e., their CBD, ø CBD, ¿ CBD or Ï CBD. The aim
is to analyze the behavior of Legato according to these di�erent representations.
Finally, to evaluate the repairing capacity of the post-processing step, we applied
Legato with and without performing this step. The repair module should at least
validate the generated links and at best repair the erroneous ones.

We have conducted a series of experiments by varying the threshold value ‡ ob-
serving its impact on the F , P and R measures. We observed that the best results
of Legato on all data were achieved with ‡ = 0.2 – a low threshold, which guaran-
tees a fair trade-o� between the matching module (ensuring high recall) and the
repairing module (improving precision).

5.3.2 E�ectiveness of Data Cleaning

To assess property filtering e�ectiveness, we perform experiments on DOREMUS
datasets articulated in two phases: without (histograms) and with (curves) remov-
ing problematic properties.

The experiments (Figure 5.3) show that applying property filtering allows to im-
prove the linking quality for all datasets except for DHT and 9-HT. Examining the
results on these two datasets reveals that removing all the other properties sepa-
rately does not improve the results either, which indicates that all the properties
are important for the comparison.
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Figure 5.3: Property filtering evaluation on DOREMUS datasets.

Figure 5.4: CBD-based instance profiling evaluation on reference datasets.

5.3.3 E�ectiveness of Instance Profiling

The choice of instance profiles to pick up only the relevant data is shown in this
second series of experiments. As shown in Figure 5.4, the e�ectiveness of instance
profiling depends on how the data are modeled. Observing the F-Measure values,
it is easy to deduce that: (1) For instances of both DHT and DF P data, the rel-
evant information is located in the Ï CBD of the resources, with 91% and 98%
of F-Measure respectively; (2) For all the other datasets, the relevant information
is located only in their CBD. For those datasets, we can also deduce that taking
into account the description of predecessors does not impact the matching deci-
sion which assumes that creative works have no description in their predecessors.
Thereby, we set Ï CBD and CBD as profile parameters for these two datasets,
respectively.
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#safe_links #repaired_links #added_links

DHT

CBD ƒ 10% ƒ 2% 0%
¿ CBD ƒ 14% ƒ 2% 0%
ø CBD 10.5% ƒ 2% 0%
Ï CBD ƒ 5% ƒ 1% 0%

DF P

CBD ƒ 55% ƒ 18% ƒ 3%
¿ CBD ƒ 21% ƒ 3% 0%
ø CBD ƒ 15% 0% 0%
Ï CBD ƒ 15% 0% 0%

Table 5.2: Link repairing evaluation on experimental datasets

5.3.4 E�ectiveness of Link Repairing

Table 5.2 presents the e�ectiveness of post-processing on DOREMUS data, where
#safe_links represents the proportion of owl:sameAs links generated in both
matching and repairing steps. The same links produced in those steps are con-
sidered as valid, #repaired_links represents the proportion of erroneous links
repaired by the repair module, and #added_links represents the proportion of
links generated by the repair module and added in the final link set. We can ob-
serve that performing the link repairing step is significant in the presence of highly
similar yet distinct instances.

5.3.5 General Results and Discussion

In this experiment, we test the performance of Legato in its complete version, i.e.,
performing both property filtering and link repairing steps. We compare Legato to
the participant tools to the instance matching track for OAEI and with AML [86]
and SILK [6] for DOREMUS data. Note that the comparison to SILK was made
by using the best keys in its link specification identified by the RANKey algorithm
[23]. The results of the evaluation are presented in 5.3.

We can observe that Legato significantly outperforms the state-of-the-art systems
in 4 out of the 10 datasets. These results are of primary significance as they
show that Legato is well suited for dealing with real-world data containing di�-
cult to disambiguate instances (DF P and FP -trap). Legato succeeds where other
tools fail thanks to its clustering and key-based post-processing phase (Subsection
5.1.4). Also, our system outperforms other tools on highly heterogeneous data
(DHT and 4-HT). In fact, Legato performs well when data heterogeneity is related
to descriptive di�erences and all remaining heterogeneity types of the ontological
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System P R F size
DHT LEGATO 0,98 0,86 0,91 ƒ 476

AML 0,63 0,77 0,69
SILK 0,98 0,29 0,45

DF P LEGATO 1 0,96 0,98 ƒ 66
AML 0,68 0,72 0,7
SILK 0,7 0,21 0,32

9 ≠ HT LEGATO 0,9 0,9 0,9 ƒ 60
AML 0,96 0,87 0,91
RIMOM 0,81 0,81 0,81

4 ≠ HT LEGATO 0,9 0,9 0,9 ƒ 400
AML 0,93 0,77 0,84
RIMOM 0,74 0,74 0,74

FP ≠ trap LEGATO 0,9 0,9 0,9 ƒ 80
AML 0,92 0,85 0,88
RIMOM 0,7 0,7 0,7

Val-Sem Task LEGATO 0,91 0,89 0,9 ƒ 10000
STRIM 0.91 0.99 0.95
LogMap 0.99 0.86 0.92

Val-Struct Task LEGATO 0,98 0,96 0,97 ƒ 10000
STRIM 0.99 0.99 0.99
LogMap 0.99 0.82 0.9

Val-Sem-Struct
Task LEGATO 0,94 0,89 0,92 ƒ 10000

STRIM 0.92 0.99 0.96
LogMap 0.99 0.79 0.88

SPIMBENCH
small LEGATO 0,98 0,74 0,84 ƒ 380

LogMapIm 0.95 0.76 0.85
AML 0.9 0.74 0.82
RiMOM 0.98 1.0 0.99

SPIMBENCH
large LEGATO 0,96 0,71 0,81 ƒ 1800

LogMapIm 0.98 0.69 0.81
AML 0.9 0.74 0.81
RiMOM 0.99 1.0 0.99

Table 5.3: Results on the benchmark datasets for Legato, compared to other
linking tools.
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dimension (Section 2.2) thanks to its property filtering and indexing techniques,
respectively. As expected, our system is less e�cient on the synthetic data trans-
formed with SPIMBENCH, where it ranks second, for most of the experiments.
This can be explained by the fact that the heterogeneities of value dimension are
not considered by Legato. Nevertheless, we consider the results of Legato satisfac-
tory on these data, given that it provides comparable results as the systems, to
which it was confronted, but requires significantly less user-tuning e�ort.

To sum up, Legato ranks among the best linking tools, outperforming them or
achieving comparable results on the used datasets, by demanding less user inter-
vention in the linking process. On the one hand, Legato is particularly suited to
deal with highly heterogeneous real-world data, and on the other hand it is able to
cope with di�cult particular cases where blocks of highly similar but yet distinct
instances are described in both datasets.

System Precision Recall F-measure
AML 0.849 1.000 0.918

I-Match 0.854 0.997 0.920
Legato 0.980 0.730 0.840

LogMap 0.938 0.763 0.841

Table 5.4: The results for SPIM-
BENCH sandbox of synthetic task

System Precision Recall F-measure
AML 0.855 1.000 0.922

I-Match 0.856 0.997 0.921
Legato 0.970 0.700 0.810

LogMap 0.893 0.709 0.790

Table 5.5: The results for SPIM-
BENCH mainbox of synthetic task

System Precision Recall F-measure
AML 0.851 0.479 0.613

I-Match 0.680 0.071 0.129
Legato 0.930 0.920 0.930

LogMap 0.406 0.882 0.556
NjuLink 0.966 0.945 0.955

Table 5.6: The results for HT of
DOREMUS task

System Precision Recall F-measure
AML 0.914 0.427 0.582

I-Match 1.000 0.053 0.101
Legato 1.000 0.980 0.990

LogMap 0.119 0.880 0.210
NjuLink 0.959 0.933 0.946

Table 5.7: The results for FPT of
DOREMUS task

5.4 Related Work Positioning

Numerous research e�orts have been made to find identical instances across RDF
graphs. This research has been described and surveyed in Chapter 3. In this sec-
tion, in a more concise manner, we describe the main commonalities and di�erences
between several of the most well-known linking tools, by putting an emphasis on
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the configuration and the post-processing phases, in an attempt to better situate
our contribution.

The core idea behind the link specification learning methods [15, 16, 56, 61] is to
provide no configuration to data linking. The problem of identifying accurate link
specifications has been receiving increased attention due to the laborious human
e�ort required to know which setting of instance relatedness parameters allows
to take accurate matching decisions. As stated in Sub-section 3.3, only few ap-
proaches address this problem and the majority of them applies the active learning
technique [100]. For learning link specification, these approaches employ the algo-
rithm of genetic programming [101]. The main drawback of such algorithm is the
large number of iterations that does not guarantee an optimal solution. Further-
more, it is true that it reduces the manual e�ort of specifying the linkage rules but
the user is still required to label a set of candidate links to learn the algorithm.
In contrast, Legato aims to reduce as much as possible the user intervention. The
only required user-configuration in Legato is the type of the resources to link since
choosing CBD-types remains optional. In fact, as shown through experiments in
Sub-section 5.3.3, the default setting using only the CBD of the resources produces
good F-Measure values on all benchmarks. Moreover, regardless the nature of the
data, the default setting for the similarity threshold is always set at a low value in
order to capture as many links as possible in the (pre-)matching step and thus to
increase the recall. In contrast, in the link repairing step, the similarity threshold
is always set at a high value in order to increase the accuracy of the generated
links. These are design decisions that do not involve the end-user.

5.5 Conclusion

In this work, we proposed, implemented and evaluated Legato, an open source
framework for capturing and repairing identity links in the context of web data.
We have identified and addressed the data heterogeneities that make the matching
decision di�cult. Legato addresses e�ectively many of these heterogeneities by
the help of its data cleaning from the problematic properties and link repairing
modules. In addition, our system has the advantage that no user configuration
is required in terms of selection of properties to compare, similarity measures to
select and threshold values to set. In fact, a unique threshold is set for all data
regardless of their degree of heterogeneity.

A core feature of Legato is its capacity to avoid the generation of false positive links
by disambiguate e�ectively highly similar instances across datasets. We evaluate
Legato on real-world music-related data and on synthetic datasets coming from
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OAEI 2015, 2016 and 2017. The results showed clearly that our system is in
competition with state-of-the-art tools, outperforming them on datasets containing
highly heterogeneous or di�cult to disambiguate instances.

Regarding our algorithm, there is a need for more challenging problem of data
linking. Actually, Legato implements an approach handling structurally heteroge-
neous descriptions. However, the limit of the current version of our system is that
it is not dealing with value-based heterogeneity since it searches for exact matches.
Also, we have shown that while the (pre-)matching step scales linearly with the
number of resources, the computational complexity of the repair module (hierar-
chical clustering) drastically worsens as this number increases. Furthermore, we
need to discover matches between resources coming from multiple data sources
simultaneously.
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This chapter concludes the dissertation by first summing up our main contributions
compared to the research questions posed in Chapter 1. Then, we present some
of the remaining issues not yet solved by our data linking system. Finally, we
highlight several possible directions for future work.

6.1 Thesis Summary

This thesis presents a data liking method that captures identity links in the open
context of the web. As stated in Chapter 1, we set out the following research
problem:

what requirements must a data linking system fulfill to reduce as much as possi-
ble the user’s intervention and how can it overcome the di�erences of identical
resources and discover the similarity of distinct ones?

Indeed from this question, we identified three main challenges in Chapter 1. We
investigated in depth each research question, we implemented solutions and we
evaluated them through experiments in three chapters; each solution corresponds
to a specific step of the global data linking process.

As a first contribution, we showed the first research question of what are the di�er-
ent heterogeneity types and how are they organized in Chapter 2. We extended the
list of data heterogeneities in [38] and structured them in three main dimensions:
value, ontological and logical. For these dimensions, we identified respectively 4,
4 and 2 heterogeneity types. We defined, analyzed and suggested some possible
solutions for each of the considered heterogeneities. However, it is important to
notice that best matching performance of Legato were achieved tackling only some
of these heterogeneities. In particular, the current version of our data linking tool
manage only the heterogeneities of ontological dimension. This work does not
address the problem of class dimension. Indeed, we assume that ontological map-
pings already exist or the resources to be compared are of the same type. Even so,
methods are still needed to automatically connect equivalent resources even if they
are described with the same ontology. From our investigations, it appears that few
approaches in the literature tackle the heterogeneities of the ontological dimension.
An overview of the more relevant approaches dealing with these heterogeneities is
presented in Sub-section 2.2. Nevertheless as discussed in the same chapter, the
proposed solutions do not seem to be e�cient. We related the problem of vocabu-
lary, structural and property depth heterogeneities to the problem of profiling the
resources. We established a representation making the resources comparable at
the same level of granularity.
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Considering the third research question of how to make the linking process as
automatic as possible, the aim is to deal with the complexity of systems requiring
a considerable user configuration e�ort. As explained in Chapter 5, we proposed a
semi-supervised approach to capture match candidates by identifying the resources
that share similar profiles. In fact, the only required user-configuration is the
type of the resources to link. Choosing CBD-types and mapping arity remains
optional. Regarding the similarity threshold, the parameter does not depend on
the data. In the first step, the similarity threshold is set to 0.2 improving recall.
The main objective of this process is to obtain the possible equivalence links even
those that are generated between the least similar resources. It is clear that the
threshold parameter a�ects the performance of our system since it may increase
the number of false positive matching. The next step is to analyze the presence of
such mappings. Especially, a source resource r1 may be linked to one or n (n >= 1)
target resources (rÕ

1, rÕ
2, ..., rÕ

n) while the expected mapping is between r1 and only
one target resource. At this stage, we decided to always set the threshold at 0.6
distinguishing these resources and increasing precision. These are design decisions
that do not involve the end-user.

Due to the highly similar descriptions in the same data source, as stated in the
fourth research question in Section 1.5 of Chapter 1, a large number of false positive
matching may be generated. In the post-processing step, this issue is fixed by
a key-based data linking approach. In Chapter 4, we proposed an unsupervised
approach to select the best combination of attributes, called key, for distinguishing
the resources across two RDF graphs. As explained in Sub-section 5.1.4, we select
for each pair of similar clusters the best key to distinguish the similar resources
and match only those having the same values for this key.

In Chapter 4, we showed that although the use of keys based on which data link-
ing approaches attempt to align the resources sharing the same values for them,
key discovery techniques may decrease their e�ectiveness for the matching task.
Indeed, the keys are extracted from each dataset independently not guaranteeing
that the resource pairs satisfying the matching condition are unique in their rela-
tions. In other words, a set of properties P identified as a key for the dataset A
is not necessarily a key for the dataset B. Thus, comparing the resources from A
and B using P may output a lot of matches that are actually non-matches.This
problem raises the question of how to identify the best key valid from both datasets
to be compared. In order to resolve this issue, we proposed an automatic approach
which sorts the keys based on their e�ectiveness. The best key is the one which
is able to provide as many correct owl:sameAs links as possible. We introduced a
new support-based criterion computed for keys that are valid for both datasets to
be compared.
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Finally, the output of this thesis is the implementation of an instance matcher
prototype called Legato that overcomes all the issues raised beforehand. The pro-
cessing pipeline of Legato is presented and described in Sub-section 5.1. Firstly, we
proposed a naive strategy for cleaning the data before its processing relying on the
notion of keys. According to our experiments, some attributes may make the com-
parison task di�cult or may generate false-positive matches despite the fact that
they are identified as keys. Such attributes are called problematic properties and
defined as mono-property keys that are valid for both datasets. Thereby, the main
goal of this step consists in dealing with the challenge of descriptive heterogeneity
and therefore to improve the e�ectiveness of our system. Secondly, we defined
the notion of instance profiling as representing each resource by all the literals
in its CBDú(r). This aims at addressing the challenges of vocabulary, structural
and property depth heterogeneities by avoiding the property-based comparison and
selecting the most relevant information to compare. Thirdly, the profiles are in-
dexed and Legato considers a matching candidate of two resources by computing
the correlation between their vectors. Two . Finally, Legato disambiguates between
highly similar yet di�erent resources by combining clustering and key-selection al-
gorithms. In order to properly evaluate the performance of Legato, we decided to
experimentally evaluate the suitability of each step with respect to three of its core
features as follows:

• We analyzed through experiments the impact of problematic properties on
the quality of the generated links as described in sub-section 5.3.2.

• In order to evaluate the suitability of instance profiling to pick up the most
relevant data, we needed to perform experiments representing the resources
by their CBDú. In other words, four executions were performed where for
each of them the resources are described by one of their CBDs, i.e., CBD,
ø CBD, ¿ CBD or Ï CBD. For more details, please, see sub-section 5.3.3.

• We evaluated the impact of Legato’s repair module relied on the use of keys
to e�ciently distinguish highly similar resources by performing experiments
(see sub-section 5.3.4) computing the proportion of repaired and the newly
generated links.

The combination of these steps was evaluated on the bibliographic datasets from
DOREMUS as well as on the OAEI 2015 and 2016 instance matching test datasets.
When applied to these benchmarks, our system obtained comparable results and
outperformed the best performing the state-of-the-art systems particularly on
highly heterogeneous data as well as on highly similar ones (but yet distinct).

This empirical evaluation allowed us to learn the more suitable features for each
dataset. For example, the Ï CBD is more e�cient for comparing the resources in
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DOREMUS data using the information in their CBD, that of their predecessors
and that of their successors. In particular, this feature depends on the way the
resources are modeled in the graph. Notice that Legato’s implementation has been
made publicly available on a Github platform1 for reuse.

6.2 Future Research

Several issues have been identified throughout this work which deserve further
investigation. In this section, we present some directions for future research that
appear to be feasible and e�ective for data linking.

Dealing with all Data Heterogeneities. In this thesis, we have motivated
the investigation of data heterogeneity types as the main challenges to solve when
linking data. We have identified the features of each of them as well as some
relevant solutions that have to be explored. Particularly, we identified three main
dimensions, namely value, ontological and logical dimensions. However, we mainly
dealt with the ontological dimension. In fact, Legato is suitable to avoid the
problem of vocabulary di�erences and to solve the problems of structural, property
depth and descriptive heterogeneities. To improve the e�ectiveness of our system,
the other dimensions require more attention and especially the heterogeneity at the
lingual level. In fact, we have shown that when two resources are described with
di�erent natural languages, one solution to automatically compare them correctly
is to translate one of them into the language that is used to describe the other
resource.

Improving the Ranking Criterion. It is important to remember that dis-
covering discriminant properties takes place in the final step of our linking process
and any automatic key detection algorithm could be used for that purpose. To
our knowledge, the most of state-of-the-art key generation systems often return
a very large number of combinations of properties that uniquely identify the re-
sources. In that context, we proposed an approach for automatically evaluating
the generated keys and selecting the best one regarding the produced links in terms
of F-Measure. Notice that the current key discovery algorithms perform an exact
match operation on the resources values. Intuitively, the set of properties for those
the instances do not share the same values represent a key. However, this is not
necessarily true in all cases. Indeed, variations (errors, misspelling, abbreviations,

1https://github.com/DOREMUS-ANR/legato

https://github.com/DOREMUS-ANR/legato
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acronyms and punctuations) in object values may lead to discover erroneous keys.
Consider the example of values describing the name of the same person but writ-
ten di�erently, the key identification tools still consider that the name represents a
discriminant property. In other cases, there exists linguistic variations (a resource
described in di�erent natural languages) of the same value (e.g. école and school)
of a property (e.g. describing a workplace). Hence, in a long term perspective, it is
crucial to conceive a key ranking approach suitable for data showing terminological
or linguistic heterogeneity. In particular, with respect to the ranking criterion, we
plan to add the constraint of discriminability regarding the di�erent heterogeneity
types at the value dimension. The heterogeneities of the other two dimensions will
be dealt with in an earlier step of the overall data linking process.

Automating the Instance Profiling. In the setting of CBD-based instance
profiling, four representations CBDú(r) can be considered for each resource r. In
the current version of Legato, the parameter ú, representing one of the four possible
profiles listed in Sub-section 5.1.2, is defined by the user. Selecting the most
relevant profile type can be very di�cult for the user, since it depends on how the
instances are modeled. If the user does not know the structure of the data, the
default setting represents the instances only by the literals found in their CBD.
However, we have shown that considering di�erent CBDús produce di�erent results
(see sub-section 5.3.3). Representing the data items only by their CBD might not
be su�cient to keep the most relevant description, while representing them by
their ø CBD, their ¿ CBD or their Ï CBD is potentially error prone, i.e., may
introduce some noise. Thus, we are interested in proposing ways to automatically
select the most appropriate profile type depending on the data.

Setting Automatically the Arity Mapping. In the current version of
Legato, the default setting is 1:n. If the expected mapping by the user is 1:1,
Legato links each source resource with a target resource having the highest sim-
ilarity score which is greater than a fixed threshold, i.e., 0.2. Consequently, the
user could change the arity parameter of Legato to enable 1:1 mapping discovery.
However, such user-based configuration can hardly be accomplished considering
the wide possible representations of the real world entities. Thereby, it is neces-
sary to provide a mechanism allowing to automatize this configuration. Such a
mechanism requires further deep investigation on the data. A possible solution to
this problem would be to provide a machine learning based approach relying on
some training examples of correspondences.
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Linking multiple datasets. In this thesis, we proposed an approach for auto-
matically identifying correspondences between the resources across two datasets.
It is important to remember that one of the main goals of DOREMUS project is to
match musical works coming from more than two data sources, namely BNF (Bib-
liothèque Nationale de France), Philharmonie de Paris and Radio France. Hence,
in the short term of future work, the transitive relations on the generated links
can be exploited to discover matches between resources coming from multi data
sources. For example, if an equivalence relation is identified between the resources
mw1 and mw1’ and between the resources mw1’ and mw1”, then an identity link
is generated between the resources mw1 and mw1”. In this case, we suppose that
the three resources mw1, mw1’ and mw1” are from three di�erent datasets. In
doing this, we reduce as much as possible the search space and thus we reduce the
time needed for aligning all the resources.

Ontology Matching. The manual definition of ontology mappings is a time-
consuming task especially when considering a very large number of properties
and classes to be compared. In fact, each concept and each attribute has a label
that defines its meaning. However, it sometimes happens that the designer of an
ontology does not define them explicitly. For this reason, manually proceeding
potentially lead to errors or to missing mappings. This is because the semantic
of concepts and attributes may be misinterpreted. Therefore, we plan to extend
our current matching solution to proceeding over both the ontologies and the
data items. For example, we plan to investigate how to exploit our initial e�ort
for aligning the ontological concepts relying on what we have proposed to align
the resources. More precisely, in the future we aim at defining an automatic
approach to determine the correspondence between the concepts and then to match
the resources of the same type. This is of paramount importance because type
alignment is an inevitable step from any data linking process.

Linking Large Scale Datasets. Notice that, considering the exponential
growth in the size of the web of data, Legato should scale to very big datasets. For
example, linking similar products on websites selling consumer electronic goods
allows the user to quickly access the desired product and to compare its price
which is a non-trivial task if he had to do it manually. Linking these datasets
mostly challenges the repair module of Legato, which may become particularly
time consuming according to many experiments we have conducted. In fact, this
module performs data linking dealing with high similar descriptions. Particularly,
it relies on clustering technique combined with the key ranking algorithm RANKey.
Legato was experimentally evaluated relying on thousands triples with and without
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performing the clustering algorithm. It appeared that our system takes much
longer time to execute than when it does not perform the clustering algorithm.
A solution consists in including a mechanism for accelerating the repair module
while the current version of Legato does not ensure that.

Overall, we argue that the main purpose of this work is to show through experi-
mental evaluations how heterogeneous data items can be e�ectively aligned. We
analyzed the data and identified the most recurring problems. Then, we presented
solutions to deal with certain challenges at the level of automation, data hetero-
geneities and similarity between non-identical resources. These solutions have been
implemented in a data linking tool called Legato. The main advantage of Legato
is that it remains agnostic to the nature of data, allows to reduce significantly
the user e�ort of link specification and still guarantees a performance that is at
least as good as, and in the presence of highly similar descriptions better than the
existing o�-the-shelf data linking systems.
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