
THÈSE DE DOCTORAT DE
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École doctorale Sciences Mécaniques, Acoustiques, Électronique et Robotique de
Paris

Présentée par

Solène CHAN-LANG

Pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE
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Abstract

More than ever, in today’s context of insecurity and terrorism, person re-identification
based on video surveillance images has become a hot research topic. Indeed, tracking
an individual not only requires to track him within a camera, but also to re-identify
him when he re-appears in other cameras.

In recent years, remarkable progress has been achieved in person re-identification,
notably thanks to the availability of larger datasets composed of thousands of iden-
tities captured by several cameras where each camera captures multiple images per
identity. Yet, we are still far from being able to automatically re-identify people
accurately in real life.

Considering the evolution of the available research data and the real applications
needs, this thesis has followed one major research axis. How can we tackle the
challenging question of open world re-identification in which the person we want
to re-identify might not appear in the database of known identities? A secondary
research axis consisted in relevantly making use of the multiple images that are
available for each identity.

The open world re-identification task we consider in this thesis consists in two
subtasks: a detection task and a re-identification task. We are given a set of known
identities, the gallery identities, but since we are in an open world situation, this
set of known identities is supposed not to be overcomplete. Therefore, when pre-
sented a query person also referred to as probe person, the detection task aims at
determining whether or not the query person is a probable known gallery person.
Since the probe person might look similar to several gallery identities, the goal of
the re-identification task is to the gallery identities from the most probable match
to the least likely one.

Our first contribution, COPReV for Closed and Open world Person RE-identification
and Verification, is mainly designed for tackling the decision aspect of the problem.
We formulate the re-identification task solely as a verification task and aim at deter-
mining whether two sets of images represent the same person or two distinct people.
With this information, we can find out whether the query person has been identified
previously or not and if so, who he is. This is achieved by learning a linear transfor-
mation of the features so that the distance between features of the same person are
below a threshold and that of distinct people are above that same threshold. The
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purpose of our proposed cost function is to obtain a maximum number of well clas-
sified pairs (same or distinct people) while not favoring positive pairs (same person)
or negative ones (distinct people). For a better generalization, it also encourages
the distances to be as far from the threshold as possible, enabling to use the same
decision threshold for the training and the testing phases.

Our second and third contributions are based on collaborative sparse representa-
tions. A usual way to use collaborative sparse representation for re-identification is
to approximate the feature of a query probe image by a linear combination of gallery
elements, where all the known identities collaborate but only the most similar ele-
ments are selected. Gallery identities are then ranked according to how much they
contributed to the approximation. We propose to enhance the collaborative aspect
so that collaborative sparse representations can be used not only as a ranking tool,
but also as a detection tool which rejects wrong matches. A bidirectional variant
gives even more robust results by taking into account the fact that a good match is
a match where there is a reciprocal relation in which both the probe and the gallery
identities consider the other one as a good match.

While our COPReV method only shows average performances on closed an open
world person re-identification tasks, our bidirectional collaboration enhanced sparse
representation method outperforms state-of-the-art methods for the open world sce-
narios.

Keywords: person re-identification, person verification, closed world, open world,
sparse representation, metric learning, subspace learning
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Chapter 1

Introduction

1.1 Context

The first idea that comes in mind when evoking ”person re-identification” is face
recognition or recognition based on biometric data such as footprint or iris images.
This kind of tasks allow long-term person re-identification, but they require high
quality information extracted under strict constraints that assume the cooperation
of the subject. For example, current face recognition algorithms require images
captured in a frontal way with appropriate illumination and minimum image res-
olution. In this thesis, we work with images captured by surveillance cameras in
an unconstrained way. The subject cooperation is not necessary but the drawback
is that it only allows short-term re-identification. Person re-identification based on
surveillance images aims at recognizing people within a day assuming that people
do not change clothes. An obvious application of person re-identification is crime
investigation. Since cameras are spread everywhere, person re-identification can
help in tracking a suspect across multiple cameras. In the private sphere, person re-
identification can be used in domotic applications for intelligent home for example.
For more comfort, re-identifying each person as he enters a room enables to tune
automatically the lighting and temperature according to his personal taste.

We can already sense with these two examples that depending on the application,
what we expect from person re-identification differs. For crime investigation, if we
are given an underground surveillance camera scene, the goal is not to identify every
person present in the video, but to find out whether the suspect is in it or not and
where he is heading to, so the person re-identification task would rather consists in
quickly discarding dissimilar people and focus on the similar ones to determine if
they really are the searched person or not. On the contrary, at home, every person
should be identified so as to adapt the environment accordingly. Though many ap-
plications require to re-identify people, every application has its own specific goal
and the criteria on which a person re-identification algorithm performance is eval-
uated should be defined consequently. This is why the person re-identification task
is constantly evolving, in terms of test scenarios and in terms of evaluation metrics,
so as to get closer to the actual needs of person re-identification applications.

15
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Literally, person re-identification consists in finding someone’s identity given that
he has been previously identified. The set of known people is called gallery. The
people whose identity we are looking for are referred to as probe or query per-
son. A match, right match or positive pair refers to a couple of gallery and probe
identities which actually represent the same person. A mismatch, wrong match or
negative pair refers to a couple of gallery and probe identities which represent two
distinct people. Though not equivalent, person re-identification is often described
as the task of matching people across non overlapping cameras. Indeed, historically,
before being first treated as an independent computer vision task in 2006, person
re-identification started as a subtask of multi-camera tracking. People were tracked
within a camera, and when re-appearing in another camera, person re-identification
ensured that they were assigned the same identity as before, instead of creating new
identities. This is the reason why in most test scenarios all gallery people are from
one camera view, the gallery camera, while probe people are captured by another
camera view, the probe camera. This is however changing. From pairwise camera
re-identification, we are moving towards multiple cameras re-identification. In some
recent person re-identification datasets, images are captured by multiple cameras
(more than 2). People do not necessary appear in all the cameras. Similarly to
real life, each person is captured only by a subset of cameras which differs with the
person. Another evolution is the increasing number of images available per iden-
tity. Even if the person re-identification task was initially a multi-cameras tracking
subtask, the test scenarios were single-shot scenarios where each identity was only
represented by one image per camera. Multi-shot scenarios on the other hand allow
for the exploitation of multiple images per identity per camera. These types of sce-
narios are developing.

Besides those changes related to an increased number of cameras and images, an
even bigger evolution is occurring in the research field of person re-identification: the
notion of open world is rising and brings with it many questions. Indeed, in a closed
world setting, a probe person is one of the gallery people so we are certain to be able
to find out his identity, even if the right match is the last one we check. On the other
hand, with an open world comes the possibility that a probe person is not present
in the gallery, in which case he has never been identified before and he therefore
can not be re-identified (identified once more). Relaxing the closed world assump-
tion seems more realistic, but it also brings ambiguity to the definition of the open
world re-identification task. Many interpretations of ”open world re-identification”
are possible, so there exist different scenarios corresponding to a generalization of
the closed world person re-identification task to an open world case. Some view it
as an identity inference task [1] where the goal is to give a label (identity) to every
bounding boxes extracted from multiple camera views during a time lapse without
necessarily knowing the total number of identities. Others prefer to consider it as
a group-based verification task [2, 3, 4]. The gallery is called the target set and is
only composed of a few identities. The objective is to determine whether the probe
person is one of the target people or not and does not require to find the exact
identity of the probe person. Yet others define it as a two subtasks problem: the
detection task and re-identification task. Similarly to the closed world re-id task,
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there is a gallery and a probe set, and the goal is to determine the identity of the
probe person but only in the case the probe identity is in the gallery. For probe
people whom are not present in the gallery, they must be detected and rejected.

Despite the progress made in the field of person re-identification, the main issues
are still the same as ten years ago and new challenges arise with the growing size of
datasets and the apparition of new more realistic test scenarios. This is the object
of the next section.

1.2 Challenges

It is a popular belief that person re-identification is an almost solved problem. This
misconception is largely conveyed by investigation movies which regularly show po-
licemen zooming on a specific area of a surveillance video image, the blurry image
becomes neat and within seconds the suspect’s identity is revealed thanks to key
points extracted from his face. The scene seems realistic since for us, humans,
re-identifying people is an easy task that we constantly perform without even con-
sciously thinking about it. Isn’t it therefore plausible for a computer to do it on a
larger scale? It has been long since we acknowledged that computers perform much
better than us for tasks such as calculating. Now with the booming of artificial
intelligence where computers can beat even the world best GO players, people can
be under the impression that computers will soon be provided with awareness and
the ability of understanding, analysing and reacting to the world.

The reality is quite different. To begin with, in our daily life, our vision is not
restricted to a rectangular picture and we unconsciously integrate context informa-
tion. Computers are only given pictures which can moreover be of bad quality. As
for images, when we see an image of a person, we immediately recognize that the
images represent someone and we easily differentiate the parts of the image which
represent the person and the parts of the image which belong to the background.
Computers on the other hand do not understand what is represented and even distin-
guishing relevant information such as a pixel belonging to the person from irrelevant
elements such as a background pixel is far from being an easy task. Therefore, when
comparing two images, we compare information coming only from the people that
are represented in the images while computers compare the two images as a whole.
Computers must be told what information to extract, how to extract it, and how
to compare the information extracted from different images. However, the large
variability in the images captured by camera networks make it difficult to find the
best description and the best comparison tool.

Moreover, it is common to find images of two distinct people that at first look
more alike than two images of a given person. Indeed, depending on the conditions
under which the images are taken, such as the environment, the cameras, the person
detector and the people themselves, images corresponding to a given person can be
quite dissimilar while distinct people’s images can be visually similar.
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People are asymmetric articulated body which can introduce a huge variability in
the images they appear in. Depending on the phase of the walking period at which
an image is captured, one person might look like an ”I” or like a reversed ”Y”.
Moreover, depending on their pose (front, back, side left or side right), the clothes
they wear and the accessories they bring might look different and some elements
might appear in some views but not in others. Some examples are shown in figure
1.1.

Figure 1.1 – Illustration of the pose variation related problems.
This figure displays 3 pairs of images, coming from the Shinpuhkan dataset [5] (left), the VIPeR
dataset [6] (middle) and the ETHZ 1 dataset [7] (right). On the left, with a back view, we only see
the girl’s black jacket, but with a front view, her white top and skirt are visible. With the middle
pair of images, two bag slings are visible in the frontal view but are not in the side view where the
main part of the bag can be seen. On the right are displayed a pair of images where the person is
at a different stage of the walking cycle, so his general shape is quite different.

Person re-identification is mainly based on color information, however those col-
ors can undergo drastic changes due to different cameras color rendering and varying
illumination conditions which mostly depend on the environment (indoor or outdoor)
and the weather (sunny, cloudy, rainy, ...). Under those changing conditions, the
captured clothing colors can be brighter or darker, and worst, with the presence of
shadows, a uniform color garment can appear to be made of several main colors,
especially from a computer point of view. Moreover, the color of people’s clothing
can also be greatly tampered by low image quality which can happen with video
surveillance images. Some examples are shown in figure 1.2.
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Figure 1.2 – Illustration of color issues.
The pair of images on the far right, taken from the GRID dataset [8], shows how low quality images
can distort the color of the clothing. Since most datasets only provide images from non-overlapping
camera views, the other three pairs of images, taken from iLIDS-VID dataset [9] and Shinpuhkan
dataset [5], jointly illustrate the effects of having different cameras color rendering and illumination
conditions. From a human point of view, despite the shadow, we can easily distinguish the red
color of the coat of the man on the far left in both images. For the man in pink, it is already
more difficult to tell whether his pants are actually grey of beige. For the man in black, the sun
reflection on his coat might confuse a computer which could consider it being black and white
while we know for sure it is a black coat.

Misalignment problems can arise due to the camera viewpoint which can be
plunging or at man size, or simply due to bad detections that are not centered on the
person. Moreover, due to bad detections, parts of a person can be missing and large
parts of the image might correspond to irrelevant background information. Some
datasets even provide bounding boxes that are wrong detections which do not depict
a person. Furthermore, the size of the images can vary, which also contributes to
the misalignment issue. In order to fit well in the page, the images in figures 1.1,
1.2, 1.3, 1.4, 1.5 and 1.6 have all been either resized to the same width or to the
same height, and even so, we can observe they do not all have the same proportions.
Figure 1.3 illustrates the misalignment issue with some image samples.

Figure 1.3 – Illustration of misalignment and bad detections issues.
The pair of images of the far left are taken from the Shinpuhkan dataset [5] by a camera at man
size and one with a plunging view. The other images are from the Market1501 dataset [10]. The
bounding box around the girl in the white dress is well centered in one image, but badly cropped
in the other image where her lower body is completely missing. The three images on the right are
very bad detections which still capture some body parts.

Along with wrong or badly centered detections, occlusions also bring misleading
information. There are three main types of occlusions. People can be occluded by
a common fixed object (pole, sign,...) as they pass along the same area, which
might make them look alike. People can be occluded by other people, so even when
labelling images, people might not agree on who the image represents, leading to
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a confusion in the labelling of each person. People can be occluded by a personal
item, such as a luggage, which might sometimes help and sometimes hinder his
re-identification.

The pair of images on the far right are taken from the Market1501 dataset [10]. They depict a
woman with a white bag which partially occludes her in one of the picture, but which is not visible
in the other picture. The other images are from the iLIDS-VID dataset [9]. On the left, three
people with different clothing color are occluded by a fixed yellow sign. This might be interpreted
by re-identification algorithms as a person’s characteristic, and these people could be confused with
the person wearing a yellow safety vest. In the middle right, two images of a man in white t-shirt
are presented, but on one of them, he is occluded by a woman wearing a striped top who is the
one at the forefront of the image.

Figure 1.4 – Illustration of the issues related to occlusion.

The background can play a big part in the good or the bad re-identification of
people. Indeed, while we easily tell apart the person from the background, in most
images, a non negligible pixel proportion corresponds to background pixels. From
uniform gray background to very colourful ones, without forgetting highly textured
ones, the range of background types is very large making it difficult to model and
discard. Figure 1.5 shows a small panel of background types.

Figure 1.5 – Illustration of a small panel of background types.
Images are taken from the VIPeR [6], PRID2011 [11], CUHK03 [12] and Shinpuhkan [5] datasets.
The following backgrounds are presented: a gray uniform background, a green one (grass), a pink
one (racetrack), two textured backgrounds with stripes (pedestrian crossing and stairs), and two
more complex background where buildings details are visible (black mesh and building wall).

All the previous elements explain and illustrate why the images of a given person
can look quite different. Now this wouldn’t be such a problem if different people’s
image looked even more dissimilar. However, since people tend to wear similar
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clothes, two people’s image can be visually very similar. A few such examples are
show Figure 1.6.

Figure 1.6 – Illustration of visually similar distinct people.
Images are taken from the VIPeR [6] dataset. It shows two groups of people that look similar but
who are distinct people.

The similarity between different people and the dissimilarity of images from a sin-
gle person is already an issue in the closed world setting but we do know that in any
case the identity of the probe person will eventually be found, should we have to look
at all the gallery identities. In the open world setting, it becomes a more critical
issue because there is no certainty about finding the identity of a probe person any-
more. If the right match is not found in the first ranks, should we continue looking
for it in the following ranks or declare the probe person as an imposter? The def-
inition of open world re-identification is still evolving, its goal and evaluation as well.

Up until now, we have only seen factors that make the re-identification task
very challenging. Hopefully, person re-identification datasets are growing in size
and intuitively, having more images can only help. We now have access to datasets
with more identities, more images per identities and more images captured by more
cameras. Nonetheless, a challenge also comes with it, the scalability of algorithms.

Datasets might be growing in size but they are useless for most learning based
methods if no annotation is available. For now, the minimum annotation required
is the identity of the people represented in the images. Information about the view
angle, the clothes, etc. can be a plus. Since annotations require a lot of workload,
designing methods usable even with some non labelled data is also an interesting
challenge.

1.3 Thesis objectives

At a time when new multi-cameras and multi-shot datasets are being developed and
when the performance of existing methods are being questioned when applied to
more realistic re-identification applications, this thesis focuses on two of the new
problematics. The question of the open world re-identification task is the main
research axis of this thesis. Finding a relevant exploitation of multi-shot data is
also an important aspect and throughout this thesis, we only worked with multi-
shot datasets. Since most existing work were conducted for the closed world person
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re-identification task, for each of our proposed methods, we also present our perfor-
mances for the closed world re-identification task.

For reminder, in the closed world re-identification task, the set of gallery identi-
ties are known and we have at disposal several images of each gallery person. For
each probe person represented by a set of images, the goal is to return a ranked list
of the gallery identities from the most likely match to the least likely one. Every
presented probe person is someone who is also present in the gallery.

For the open world re-identification task, among the different tasks which aim at
generalizing the closed world person re-identification task, namely the identity infer-
ence task [1], the group-based verification task [2] and detection and re-identification
tasks [13], it is the last one that we tackle in this thesis and which we consider as
being an open world person re-identification task. Similarly to the closed world case,
the gallery set is the set of known identities and the probe set is the set of query
people whose identity we are looking for. Contrary to the closed world case, a probe
person might not be present in the gallery. Probe imposters are probe people who
do not belong to the gallery. Non imposter probe people have their match in the
gallery. The detection subtask consists in detecting and rejecting probe people that
are considered as not belonging to the gallery. The re-identification subtask consists
in ranking the gallery identities from the most likely match to the least likely one
for a probe person who is considered as belonging to the gallery.

Closely related to this open world re-identification task we tackle is the person
verification task which is never discussed in any paper and which we will evoke
throughout this thesis along with the open world case. We define person verification
task as the task of determining whether two sets of images corresponds to the same
person or to two distinct people.

As for the multi-shot aspect, the way most existing methods exploit the availabil-
ity of multiple images for each person is as follows. Given a method which assigns
a similarity or dissimilarity score to a pair of images, where one image comes from
a probe person and the other one from a gallery person, the method is extended to
a method which assigns a score to a pair of sets of images, where one set of images
corresponds to the probe person’s images and the other set of images represents
the gallery person, by using a simple aggregation function. The score of a pair of
identity is defined as the aggregation of all the scores of the pairs of images involv-
ing these two people. The aggregation function can for example be the maximum
function if the score in question is a similarity score or the minimum function if the
method uses a dissimilarity score. With this approach, before the aggregation, each
pair of images is considered separately. Though less emphasis has been put into this
question, one of the objectives of this thesis is to propose a better exploitation of
the multi-shot aspect of data which does not consider independently each image of
a given person but considers them jointly.
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1.4 Thesis outline

The thesis is organized as follow:

• Chapter 1 positions this thesis with regards to the evolution of the person re-
identification task. We present the main challenges of person re-identification
tasks and point out the ones we focus on in this thesis. Finally, we introduce
the thesis outline.

• Chapter 2 gives an overview of the main work that have been conducted in
the field of person re-identification. After a short description of the evolution of
the main steps in person re-identification systems, we introduce the person re-
identification datasets available for research purpose. Then we move on to the
different methods proposed in the literature which we divide into two groups:
methods proposed in the context of closed world re-identification and methods
that specifically tackle open world re-identification. Finally we present the
evaluation measures used to assess the performance of person re-identification
methods.

• Chapter 3 examines the differences between closed and open world re-id tasks.
This preliminary study leads to the presentation of our COPReV method. CO-
PReV stands for Closed and Open world Person RE-identification and Verifi-
cation because this approach is meant to perform well for the usually dealt
with closed world re-id task, for the open world re-id task we tackle, and for
the person verification task. In COPReV, the re-id task is cast as a binary
classification task. A cost function is proposed to learn a linear transformation
of the features so that the Euclidean distance of the projected features of a
positive pair of images (coming from the same person) is smaller than a given
threshold and the distance of a negative pair (corresponding to distinct peo-
ple) is bigger than the same threshold. The decision threshold is fixed at the
training phase and re-used at the test phase, so that this approach can be eas-
ily employed for the open world re-identification detection subtask and for the
person verification task. The formulation of the cost function aims at enforcing
pairs distances to be as far from the threshold as possible during the training
phase so that it generalizes well and does not favor positive nor negative pairs.

• Chapter 4 presents a completely different approach specifically designed for
the open world re-id task which is based on sparse representations and on
an enhancement of the collaboration between gallery identities. After a brief
introduction on sparse representations, we point out the difference between
non collaborative and collaborative sparse coding which makes collaborative
sparse coding much more performing than the non collaborative approach for
the closed world re-identification task. Thanks to an analogy with the open
world case, we propose to artificially enhance the collaboration in the usual
sparse coding approach so that performances are further improved for the open
world re-identification case. Collaborative sparse coding is used as ranking and
a detection tool which explains its good performances for the open world task.
This approach can also easily be used for the person verification task.
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• Chapter 5 offers an improvement of the approach presented in Chapter 4.
Given that the collaborative sparse coding approach presented in Chapter 4
is not symmetric for probe and gallery identities and based on the intuitive
idea that being similar is a reciprocal relation, Chapter 5 proposes a bidirec-
tional collaboration enhanced sparse representation approach for the closed and
open world re-identification and verification tasks. The open world results are
particularly impressive.

• Chapter 6 summarizes our contributions to the person re-identification field
and recalls our main results. It also offers some ideas for future work.

• Chapter 7 summaries our work in french.

1.5 List of publications

Part of the work presented in this thesis has already been published:

• [14] Solène Chan-Lang, Quoc Cuong Pham, and Catherine Achard. Bidirec-
tional sparse representations for multi-shot person re-identification. In Ad-
vanced Video and Signal Based Surveillance (AVSS), 2016 13th IEEE Interna-
tional Conference on, pages 263–270. IEEE, 2016.

• [15] Solène Chan-Lang, Quoc Cuong Pham, and Catherine Achard. Closed and
open-world person re-identification and verification. In Digital Image Com-
puting Techniques and Applications (DICTA), 2017 International Conference
on. IEEE, 2017.

We are currently writing an article for a journal submission which covers the
work that has not been published in a conference yet.



Chapter 2

Related work

2.1 Introduction

Many people around the globe work on person re-identification and a commonly
adopted classification of re-identification work divide them into three groups: the
feature design group, the metric learning group and the neural network group. In
this short introduction of the related work, we will explain where this division comes
from, and why we choose to present the related work with several more categories
than the usual classification.

Two mains steps are involved in the person re-identification task. The feature
design step extracts from images, useful information about the person it represents.
The matching step compares probe and gallery images descriptions, and outputs
a score value used for ranking gallery identities from the most likely probe match
to the least likely one. This score value can be a dissimilarity score (for example a
distance value) or a similarity score (for example it can be the probability that the
pair of images comes from the same person).

In early methods [16, 17], these two steps formed the two main independent
steps in the person re-identification pipeline (cf Figure 2.1). Both steps were unsu-
pervised, the feature design were hand-crafted based on human intuitions, while
the matching step was based on simple distances such as Euclidean or cosine dis-
tances or weighted distances.

Gradually supervised methods involving a training phase with training data
appeared for each step (cf Figure 2.2). The feature design step becomes further di-
vided into feature extraction and feature transformation [18, 19]. The usual distances
used for the matching step such as the Euclidean distance or the Bhattacharyya for
histograms are replaced by more sophisticated metrics [20, 21, 22, 23] or other clas-
sification tools learnt on the training set (such as SVM in [24, 25] for example).
Some methods [26, 27, 28, 29, 30, 31, 32, 33, 34, 35] propose to add a re-ranking
step at the end of the pipeline. This multiplication of intermediate steps makes the
frontier between the description step and the matching step become blurrier and
some methods, such as Mahalanobis metric learning methods, can be seen as dis-

25
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Figure 2.1 – The two main steps in person re-identification frameworks.

tance learning methods, but could also be interpreted as a feature transformation
step.

Transfer learning approaches [36, 37, 38] involve even more supplementary train-
ing steps in order to transfer knowledge acquired in another domain, such as multi-
class classification, clothing classification, etc., into useful information for the person
re-identification task.

At the complete opposite, another trend consists in developing methods that
jointly learn features and similarity function, so that the similarity function is
adapted to the feature (cf Figure 2.3). Most of those methods are deep learning
approaches [12, 39, 40, 41, 42, 43], but deep learning approaches are sometimes also
used only for the feature design step [44, 45].

In the end, even if the three categories (feature design approaches, metric learn-
ing approaches and deep learning approaches) do not exactly correspond to person
re-identification step, this division is often adopted because a large part of existing
person re-identification approaches fall into one the three categories. The small part
of methods which do not fit this classification are often only mentioned by closely
related methods. In our case, the methods we present in our thesis are related to
sparse representations and re-ranking approaches which are not wide spread ap-
proaches in the person re-identification field but which we must mention so as to
differentiate our method from theirs.

Furthermore, the main research axis of this thesis is the open world case and
most existing methods were developed for the closed world case. The few papers
[1, 2, 3, 4, 13, 46, 47, 48] which evoke an open world task actually do not all tackle
the same problem. This is why a whole section is dedicated to these papers so as to
better highlight the difference in scenarios and methods.
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Probe

Figure 2.2 – Multiplication of intermediate steps in person re-identification frameworks.

When scenarios differ, it is natural that the evaluation also differs. For a given
scenario, there can also be several evaluation measures which assess different as-
pects of a method. What is evaluated at the end highly influences the design of a
method, therefore evaluation measures play an important role in the development
of re-identification methods and deserve a separate section.

In this chapter, we first introduce the publicly available person re-identification
datasets and look at their evolution over time. Then we give an overview of closed
world methods, by dividing it into five parts. The first two parts correspond to
the main steps of person re-identification, the representation learning methods and
the metric learning methods. The third part is devoted to deep learning methods
that are booming these few years. The fourth and fifth parts deal with less often
mentioned approaches which however are closely related to our work, namely sparse
representation methods and re-ranking methods. The presentation of closed world
methods is followed by that of open world approaches in which each type of open
world scenario is presented along with the methods specifically designed for tackling
it. This chapter is concluded by a description of the different evaluation metrics that
are employed for evaluating closed and open world re-identification approaches.
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Figure 2.3 – One single global step for person re-identification

2.2 Datasets

From the first person re-identification dataset VIPeR [6] released in 2007, to the last
released dataset as of today, DUKE [49] released in 2017, there exist around twenty
publicly available person re-identification datasets. Half of them were released be-
tween 2014 and 2017, which clearly shows the growing interest in this field. The
person re-identification datasets are becoming larger and larger, in terms of number
of images, identities and cameras. Each new dataset has been created to overcome
some of the shortcomings of previously existing datasets, but sometimes other as-
pects are overlooked, so each dataset has its own set of advantages and flaws. The
main information about each dataset is summarized in table 2.1. This evolution
of the datasets reflects the evolution of what is perceived as being the most use-
ful additional data needed for improving re-identification methods and what would
make the re-identification scenarios more realistic. This section presents the general
trends in the evolution of person re-identification datasets. Of course these are gen-
eral trends and while overcoming the shortcoming of previously existing datasets,
new datasets sometimes are less comprehensive for other criteria.

More images per identity

A few datasets are single-shot datasets, they contain at most one image per identity
per camera. VIPeR [6] is the most popular one. Multi-shot datasets, with several
images per identity per camera, allow for more varied information. They can be
divided into four groups. Some datasets contain only a few images per identity
per camera, and those images are a few consecutive images from a single tracklet.
It is the case of CUHK campus [53], CUHK02 [54] and CUHK03 [12] with 2 to 5
images per identity per camera. Other datasets such as PRID2011 [11] and iLIDS-
VID [9], contain sequences of images, where a sequence of image can be made of
up to several hundred images. However for a given identity and a given camera,
these images still come from only one single tracklet so the variation is limited.
Conversely, some datasets such as Caviar4Reid [17], only present a few images for
each identity, but the images representing one person are visually not so similar,
often with huge pose or illumination variation. Finally, most recent datasets, such as
Market1501 [10], PRW [60], contain much more images per identity, often extracted



2.2. DATASETS 29

Dataset Year #Ids #Distractors #Cams #Ims Multi Long
Common and shots tracklets

Imposters sequences
VIPeR [6] 2007 632 0 2 1264 7 7
ETHZ [7] 2007 146 0 1 8580 3 3

QMUL iLIDS [50] 2009 119 0 2 476 3 7
GRID [8] 2009 250 775 8 1275 7 7

3DPeS [51] 2011 192 0 8 1011 3 7
PRID2011 [11] 2011 200 185 + 549 2 94987 3 3

Caviar4ReID [17] 2011 50 22 2 1220 3 7
SAIVT-softbio [52] 2012 152 0 8 64472 3 3

CUHK01 [53] 2012 971 0 2 3884 3 7
CUHK02 [54] 2013 1816 0 5 pairs 7264 3 7
CUHK03 [12] 2014 1467 0 5 pairs 14097 3 7
OPERID [13] 2014 200 0 6 7413 3 7

HDA+ [55, 56] 2014 33 20 13 2976 3 3
RAiD [57] 2014 43 0 4 6920 3 7

iLIDS-VID [9] 2014 300 0 2 42459 3 3
Shinpuhkan [5] 2014 24 0 16 22504 3 3
Market1501 [10] 2015 1501 0 6 32 217 3 7

Airport [58] 2015 1382 8269 6 39902 3 7
SPRD [59] 2016 37 0 24 9619 3 3
PRW [60] 2016 932 6 34 304 3 7

MARS [61] 2016 1261 0 6 1 191 003 3 7
Duke [49, 62] 2017 1852 439 8 46261 3 7

Table 2.1 – Person re-identification datasets presentation.

from several tracklets, with eventually several images from the same tracklet which
are not consecutive ones. In the Shinpuhkan dataset [5], there are even several full
tracklets for each person and each camera.

More identities

After VIPeR [6] which contains 632 identities, many later released datasets em-
phasized more in having more images per identity rather than in capturing more
identities. For example iLIDS-VID [9] is composed of 300 distinct identities, and
Shinpuhkan [5] has only 24 identities. However, the trend now is to create datasets
with more identities. Several datasets now contain around a thousand identities or
more [53, 54, 12, 10, 61, 60, 49]. Besides datasets that simply contains more common
identities (identities that appear all cameras), which is the case of CUHK datasets
[53, 54, 12], more and more datasets [10, 49] include images from people that appear
only in one camera view. These additional identities which only appear in one of
the camera views when several camera views are available can be used as distractors
(identities present in the gallery set but not in the probe set) if they are put in the
gallery set or as imposter probe identities (identities present in the probe set but
not in the gallery set).
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More cameras

In the early datasets, apart from ETHZ [7] in which every person appears only in one
camera, people were captured by 2 cameras. Then multi-cameras datasets appeared.
At first, in datasets such as CUHK person re-identification datasets [53, 54, 12], the
images were captured by several camera pairs, but each identity appears only in one
camera pair. Only most recent datasets are really multiple cameras datasets. In
Shinpuhkan [5], each identity appears in all camera. In DUKE [49] and Market1501
[10], the images are captured by several cameras and the camera subset in which a
person appears is not the same of everyone.

More challenging bounding boxes

The image boxes have also evolved. In VIPeR [6], images are all resized to 48× 128
pixels, and people are in the center of the image. However, with the growing size
of datasets, it becomes very time consuming to manually extract people’s bounding
boxes and label them. Many datasets now rely on person detection and tracking
algorithms to automatically provide boxes which size varies and in which people are
not necessarily well centered. Some datasets even return boxes that do not contain
any person and those images are included in the dataset.

2.3 Closed world approaches

In this section, we present the main approaches developed for the closed world person
re-identification task. In addition to the usual description learning, metric learning
and deep learning methods, we also devote a subsection to sparse representation
methods and another section to re-ranking approaches which are closely related to
our work.

2.3.1 Representation learning

This subsection covers approaches which mainly focus on designing good descriptors.
It ranges from hand-crafted low level features to mid-level feature learning, without
forgetting methods that start with simple features and encompass them into more
sophisticated frameworks.

Hand-crafted features

Many methods [16, 17, 63, 64, 65, 66, 67, 68, 23], mainly early ones, propose hand-
crafted features. The idea is to extract from the images what we humans consider
as important clues to re-identify people. When we describe someone, we talk his
about his height, the color of his skin, his hairstyle and the clothes he wears. Us-
ing images, hand-crafted features essentially aim at retaining accurate color and
texture information. Information extracted from the center of the image should
describe clothes information. Skin and hair information is extracted from the top
of the image in the zone where the head appears. Very early methods [16, 17] pre-
sented part-based features which often required some pre-processing of the images
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(segmentation, background subtraction, etc) in order to extract information only
from the part of the images which were found to belong to the person represented
in the image. A little bit more recent papers [63, 64, 65, 66, 67, 68, 23] often put
less emphasis on accurate segmentation and alignment, because these issues are of-
ten tackled during the matching step. Instead information is extracted in a more
systematic way from horizontal slides or rectangular patches.

Several early methods present features based on rough body parts. In SDALF
[16], a segmentation and background subtraction pre-processing step on the images
is computed to extract the shape of the represented people. Then using the sym-
metry and asymmetry properties of the human body, the image is divided into two
parts corresponding to the torso and the legs. For each part, color and texture
information are extracted via an HSV histogram, the MSCR feature (Maximally
Stable Color Region) and the RHSP feature (Recurrent Highly Structured Patches).
The matching between two signatures is done by a weighted linear combination of
the distances of each of the features, where each feature is associated to a specific
distance. In Custom Pictorial Structures [17], six body parts (chest, head, left thig,
right thig, left leg, right leg) are localized by maximizing the posterior probability of
having that body configuration given the image. For each part, color features (Hue
and Saturation histogram and Brightness histogram) are extracted. Each histogram
is weighted depending on the part it is extracted from so as to give more importance
to bigger parts. They are then concatenated into a single vector and normalized. To
supplement body part features, MSCR blobs are also extracted from the body mask.
Similarly to [16], the matching is done based on a weighted linear combination of
the distances of each feature.

Figure 2.4 – Body parts used in SDALF [16] (left) and Pictorial Structures [17] (right) for hand-
crafted feature extraction.

Extracting information from specific body parts seems natural but body parts
are not often accurately delimitated, therefore some methods [63, 64, 65, 66, 67]
prefer to extract features from simpler splitting of the image such as rectangular
patches, where each patch has the same size [64, 65, 66, 67] or with different patch
sizes [63]. Similarly to SDALF [16] and PS [17], in those methods, an image is not
described by a single vector but by a set of descriptors. Each patch has a descriptor
and comparing two images consists in comparing its patches. There is no direct
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correspondence between the patches and the body parts, so there can be misalign-
ment and scale issues. Different strategies are adopted. In [63], SCR use covariance
matrices as features for their robustness to illumination and rotation change. These
features are extracted from rectangular patches of different sizes in order to capture
useful information at different scales. In [64, 65, 66, 67], the set of patch descrip-
tors used for describing an image is a mean to deal with misalignment issues by
allowing the matching of patches that are localized in the same horizontal stripe.
In addition, a learning phase enables to learn the saliency of patches based on the
probability of occurrence of similar patches and assuming that the less probable
a patch is, the more salient it is. The similarity of two images is computed based
on the matching score of the two images patches and on the saliency of those patches.

In all the hand-crafted features methods mentioned so far, the use of sets of local
features extracted from body parts or from rectangular patches for describing an
image enables to have local information, but these descriptors do not correspond
accurately to body parts. Moreover, the way they are used for matching pairs of
images not only does not completely solve the misalignment issues and but also
does not take into account more global information such as the relationship between
the patches of each image (because the global score is a linear combination of the
matching scores of each descriptor) . Recent hand-crafted features [68, 23] do not rely
on segmentation preprocessing step anymore for obtaining features corresponding
exactly to body parts, and instead of using a set of local features for describing
an image, local features are concatenated into one vector which acts as a global
descriptor for an image. Feature are global but contain local information. In [68],
the ISR feature is a concatenation of HOG, HSV and RGB histograms extracted
from 15 overlapping horizontal stripes. The color histograms take into account the
position of the pixels in the image: every pixel’s bin’s participation in the histogram
is weighted by an Epanechnikov kernel. The reason for using the Epanechnikov
kernel to weight the participation of a pixel’s bin is the same as the reason for using
a mask or a pre-segmentation of the human body in the image: extract information
mostly from informative pixels coming from the person and not from the background.
In [23], one of the state-of-the art features, LOMO (Local Maximal Occurrence
Feature) is presented. Images are preprocessed by the Retinex algorithm [69] that
considers human color perception to produce images with vivid colors and better
details in shadowed regions. HSV color histogram and SILTP (an improved operator
over LBP) are extracted from overlapping patches at two different scales. For each
scale, each horizontal position, and each bin, the maximum value over all the patches
is taken. In that way, local information at different scales are extracted. Features
presented in [68, 23] have both been proposed together with a specific matching step
(sparse representation for [68] cf section 2.3.4 and metric learning for [23] cf section
2.3.3) but these features can be part of other re-identification frameworks.

Features selection and weighting

Instead of designing features by hand and relying on intuitions for the choice of color
and texture descriptors which besides might present redundancies, some methods
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propose to use a whole set of classic color and texture features and learn which ones
are important through a learning phase so as to combine them in an appropriate way.

In [18], the Ensemble of Localized Features (ELF) method extracts eight color
channels and nineteen texture channels from the images. For each feature, a binary
classifier is learnt to output whether two images are from the same person or from
distinct people. Each binary classifier is considered as a weak classifier. Adaboost is
used to learn a robust classifier defined by a weighted linear combination of the weak
classifiers. In [19], there is a similar idea of weighting differently different features,
but the framework is quite different. Clustering forests are used to group similar
people into prototypes. Classification forests are then employed to learn a different
weight vector for each prototype. The distance of a probe image to a gallery image is
computed using the weights of the prototype the probe person most likely belongs to.

Figure 2.5 – Illustration of the framework presented in [19] for learning prototypes and weighting
differently the features for different prototypes.

Adding some semantic information

In addition to usual low level features, some methods propose to consider higher
level information such as semantic colors (linguistic labels we use to describe colors)
or even attributes (presence or absence of an accessory, type of clothes, hair, gender,
etc).

In [70], along with other descriptors (color histograms, texture features, covari-
ance descriptors), color name descriptors are extracted from each of the 6 horizontal
stripes in which an image is divided. The color name descriptor is an 11 dimensional
vector, coding for a region, the probability distribution of colors on 11 basic color
names. Each type of descriptor has its corresponding similarity measure (Bhat-
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tacharyya distance for histograms, solution of a generalized eigenvector problem for
covariance matrix, etc), and the similarity measure of each descriptor in each of the
6 regions form a weak ranker. RankBoost is used to sequentially add and weight a
weak ranker to finally form a strong ranker which is a linear combination of weak
rankers.

In [71], a 16 dimension salient color names descriptor (SCNCF) is proposed. This
descriptor is designed to be robust to illumination variation, because not only do
similar colors have similar color description, but multiple similar colors also share
the exact same color description. This salient color name descriptor is extracted
from 6 horizontal stripes and concatenated. It is not meant to be used alone, but
in addition to usual color descriptors. In that paper, the KISSME metric learning
is used for the final person matching step.

In [72, 73], mid-level attributes such as the presence of shorts, skirt, backpack, etc
are used. For each of these attributes, an SVM is trained to output the probability of
presence of the attribute. The vector of probability of presence of all the attributes
is then fused to other usual features for the final matching step. This approach
requires to have a annotated datasets with both identities and attributes labels.

To overcome this labelling issue, the paper [38] proposes a transfer learning ap-
proach to transfer knowledge learnt from datasets labelled with clothing attributes
(fashion photography datasets) to the person re-identification task. Semantic at-
tribute classifiers are learnt at patch level, using SVM once again.

Instead of semantic attributes that require labelled datasets, be it from a re-
identification dataset or from other fields datasets, another type of approaches that
promotes the use of mid-level attributes rely on latent attributes. In [74], ARLTM
(Attribute Restricted Latent Topic Model), inspired by document topic search, uses
the probabilistic model LDA (Latent Dirichlet Allocation) to re-identify people by
learning latent attributes. A study of the correlation between attribute and semantic
labels is integrated to better exploit related attributes such as ”long hair”, ”skirt”,
”female”.

Time space features

In previously mentioned approaches, features were computed per image. For datasets
that present full tracklets, a few papers [9, 47] propose to extract time-space features
which capture people’s appearance but also motion and gait information.

Both DVR [9] and MDTS-DTWt [47] propose to perform person re-identification
by video matching, ie. by matching video sequences rather than images. The videos
sequences are not required to be previously aligned. In [9], based on the walking
cycle that is periodic, several fragments of fixed length (21 frames) are extracted
from the full sequence. This is illustrated in Figure 2.6. Each fragment is encoded by
one single HOG3D descriptor. An SVM is learnt to separate positive and negative
pairs, based on pairs’ absolute difference. The similarity associated to a pair of
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sequence is given by the maximum similarity between all pairs of selected fragments
from the two sequences. In [47], instead of first selecting different fragments of
a video sequence, video sequences are directly matched with a modified Dynamic
Time Warping algorithm, which jointly selects and aligns fragments from both video
sequences.

Figure 2.6 – Illustration of the DVR framework presented in [9].
The figure and the legend are directly taken from the paper [9] and they explain how the walking
cycles are exploited. (a) A person sequence of 50 frames is shown, with the motion intensity of each
frame shown in (b). The red dots in (b) denote automatically detected local minima and maxima
temporal landmarks in the motion intensity profile, of which the corresponding frames are shown
in (c). (d) Two example video fragments (shown every 2 frames) with the landmark highlighted
by red bounding boxes.

2.3.2 Metric Learning

This section is dedicated to metric learning methods which aim at solving the match-
ing step by replacing usual distances by metrics adapted to the features and the
person re-identification problem.

In mathematics, a synonym of metric is distance function. It refers to a function
that defines a distance between pairs of elements of a set. One of the most well-
known metric is the Euclidean distance, but many other metrics exist, they must
verify a small number of constraints.

A function d is a metric on the set E if it is a function

f : E × E → R+ (2.1)

that satisfies:

1. d(x, y) = 0 ⇐⇒ x = y identity of indiscernibles
2. d(x, y) = d(y, x) symmetry
3. d(x, z) ≤ d(x, y) + d(y, z) subadditivity or triangle inequality

(2.2)

Metric learning is the task of learning a metric, ie. the task of learning a function
that satisfy the conditions just described.
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A popular metric is the Mahalanobis metric. A Mahalanobis distance is charac-
terized by a matrix M that must be symmetric positive definite . The Mahalanobis
distance characterized by the matrix M between two column vectors x, y ∈ Rd is
given by:

dM(x, y) = (x− y)TM(x− y). (2.3)

The Euclidean distance is a special case of Mahalanobis metric, where the matrix
M is the identity matrix I:

dI(x, y) = (x− y)T I(x− y) = (x− y)T (x− y) = ||x− y||22 (2.4)

where ||.||2 is the L2-norm.

The metric learning step is often associated to the matching step of person re-
identification because it replaces usual distances by metrics learnt on training data.
However, a simple reformulation of Mahalanobis distance makes it evident that
using Mahalanobis metric as a new distance function actually amounts to applying
a linear transformation to the initial features and then use the Euclidean distance
for matching. Indeed since M is symmetric positive definite, there exist a real value
matrix L such that :

M = LTL. (2.5)

Therefore the equation 2.4 can be reformulated as:

dM(x, y) = (x− y)TM(x− y)
= (x− y)TLTL(x− y)
= ||L(x− y)||2F

(2.6)

where ||.||F is the Frobenius norm. Thus learning a Mahalanobis distance charac-
terized by a matrix M = LTL can also be considered as a learning a linear trans-
formation of the features characterized by the matrix L.

Most metric learning algorithms [75, 76, 21, 23] proposed for person re-identification
are Mahalanobis metrics but not all. They rely on the optimization of different ob-
jective functions using training data. Some methods [77, 78, 76] impose constraints
per probe person with relative ranking constraints on the pairs of images the probe
person appears in. Other methods [79, 20, 21, 23, 80] adopt a more global reasoning
in terms of positive pairs and negative pairs, without specifically distinguishing the
constraints for each probe person. Yet other approaches [81, 82] propose to combine
several metrics instead of using a single one. Metrics initially developed for other
applications might also be relevant for person re-identification.

Relative ranking for each identity

Quite a few metric learning methods are based on relative ranking constraints on
each training identity [75, 77, 78, 83]. Those approaches impose constraints on the
relation between positive and negative pairs of each identity independently of other
identities. While some of these approaches also enforce positive pairs distances to
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be small or negative pairs distances to be large, no fixed threshold are imposed, or
solely on negative pairs.

In LMNN [75] and TopPush [83], the constraints are directly on the distances.
The main idea is to encourage positive pairs distances to be as small as possible
and for each probe image, the distance of a positive pair it appears in is enforced
to be smaller by a margin than the distance of a negative pair it appears in. In
LMNN [75], only the most difficult negative pairs are taken into account during
the optimization process. For each probe image, only mismatch gallery images that
are among the probe image’s k nearest neighbors and whose distance to the probe
image is smaller than the positive pairs distance are considered. In TopPush [83],
features are computed for video-sequences. For each probe identity, each relevant
positive pair’s distance should be smaller than that of all relevant negative pairs,
ie. it should be smaller than the smallest distance of all related negative pairs.
A probabilistic approach is adopted in [77]. Instead of direct penalization on the
distances, it is probabilistic values that are considered. The PRDC method [77] aims
at maximizing for each training person the probability that the distance of a positive
pairs is smaller than that of a negative pair. The WARCA [78] method focuses on
the ranking rather than on the distances themselves. A Mahalanobis metric is learnt
by minimizing the ranks at which the right matches are found. A drop in the top
ranks is more heavily penalized than a drop in further ranks. In EIML [76], there
is no direct relative distance constraints. Instead, the ratio between the distance of
the negative and the positive pair of a triplet is used to weight the importance of
the penalization on the negative pair. The metric is learnt to minimize the distance
of positive pairs and maximize that of negative pairs. The smaller the ratio distance
negative pair over distance positive pair, the more penalized the negative pair is.

Minimizing positive pairs distances, maximizing negative pairs distances

Other metric learning methods formulate constraints on the positive pairs and on
the negative pairs but without explicit constraints on the relations between positive
and negative pairs. The intent is to minimize the intra-class variances while maxi-
mizing the extra-class variances where each class corresponds to a training identity.

In RPLM [79], the optimization of the objective function leads to globally mini-
mizing the distance of positive pairs and maximizing that of negative pairs. In PCCA
[20] and MLAPG [84], a log-logistic loss function is applied to the Mahalanobis dis-
tance of pairs of features so that positive pairs are penalized if their distance is bigger
than a predefined threshold, while negative pairs are penalized when their distance
is smaller than the same threshold. The LADF [22] approach on the other hand does
not use a predefined threshold, but jointly learns a metric and a local threshold. In
KISSME [21], using the assumption that both negative and positive pairs distri-
bution follow gaussian distributions with zero mean, the learnt metric minimizes
intra-class variance and maximize extra-class variances. XQDA [23] combines the
KISSME metric with a dimension reduction method. The LFDA method proposed
in [80], combined Fisher Discriminant Analysis and Locality Preserving Projection,
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to minimize intra-class variance and maximize extra-class variance, while still allow-
ing for multi-modal distributions. Following the reverse direction, in DNS [85], not
only intra-class variances are reduced but the learnt metric squarely projects images
of the same identity into one single point.

Combination of several metrics

Some methods consider that one metric is not good enough and propose to combine
several metrics in order to obtain more robust matching.

In [81], MiMl-DML-IR uses 8 features and learns one metric for each of them.
The final distance of a pair is the sum of its 8 Mahalanobis distances. This approach
measures the confidence of an image extracted with a tracking algorithm being an
imposter and integrates this information in the metric learning process. In [82],
MtMCML deals with the person re-identification task in a camera network context,
where there are more than two cameras. It is a multi-task metric learning method,
where several metrics are learnt jointly. There is one metric for each camera and
one for each pair of cameras.

Metric learning, kernelization, transfer metric

In addition to the metric learning methods proposed specifically for the person re-
identification task, many other metric learning methods and dimension reduction
methods exist and can also be used for re-identification. To cite only a few, we
could use LDA (linear discriminant analysis) [86], LDML (Logistic Discriminant
Metric Learning) [87] or ITML (Information theoretic metric learning) [88].

Moreover, many metric learning methods can be kernelized. The paper [89]
proposes several kernel variants of existing person re-identification metric learning
methods.

In [90], instead of simply learning a generic metric during the training phase and
use it as it at test time, an online transfer learning phase is proposed to adapt the
generic metric to candidate-set-specific metric.

2.3.3 Neural networks

In the last few years, we have witnessed an explosion of the number of person re-
identification approaches based on neural networks. Long after the beginning of
neural networks in the late 1950’s with the perceptron, it is only from 2012 on, after
a deep learning method won the ImageNet Large Scale Visual Recognition Chal-
lenge [91], that deep neural networks approaches became popular and started to be
used for a large variety of domains. The better designed backpropagation strategies
and the increasing size of datasets have played a large role in this renewed interest
in neural networks. It is however only two years later, in 2014, that the first deep
neural network was presented for the person re-identification [12]. The delay in the
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apparition of deep neural network approaches for the person re-identification task
is connected to the size of re-identification datasets that were previously too small,
making it impossible for neural networks to generalize well to unseen data. But
since then, the number of deep neural network person re-identification papers is
ever increasing.

A neural network is a group of interconnected nodes where each node applies
a non linear function to a linear combination of its inputs. The architecture of a
network is designed depending on its application with some fixed choices of non
linear function for the nodes. The non linear functions are often the tanh func-
tion, sigmoid functions, or relu function (derivable approximation of the function
f(x) = max(x, 0)). What is learnt during the training phase of a neural network are
all the weights corresponding to the linear combinations of nodes input. The deeper
the network, the more parameters (weights) there are to learn and the larger the
amount of labelled data needed is. The learning process is based on the optimization
of a cost function which is defined depending on the application.

Neural network approaches are sometimes seen as complete re-identification frame-
works that take raw pairs of images as input and return similarity scores by jointly
learning feature extraction and matching. Other times, they are solely used as
a way of designing features. In this section, we divide the neural network ap-
proaches for person re-identification into six groups. The first group considers the
re-identification task as a binary classification task and focuses on the conception of
the different layers of the network. The second and third groups are interesting due
to their choices of loss function which is either based on ranking constraints only
or on a combination of different types of constraints. The last four groups empha-
size on the information that is captured by the features learnt by the network. For
that purpose, some networks rely on their recurrent architecture, others rely on the
learning process to integrate information regarding the presence or absence of some
attributes or the description of space-time information.

We will use the following abbreviations: NN for Neural Network, DNN for Deep
Neural Network (neural networks with many layers of neurones) and CNN for Con-
volutional Neural Network (neural networks with convolutional layers).

NN solving a binary classification problem for feature extraction and matching

The methods adopted in [12, 39, 40, 41, 42, 43] use training data to learn a network
for feature extraction and matching. The re-identification task is cast as a binary
classification problem. During training and testing phases, the network is used in
the same way. It is given a pair of images as input, and it outputs a score value that
represents the probability that the images comes from one single person or from two
distinct people.

FPNN [12] is one of the first neural network framework for person re-identification.
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The architecture of the network is designed so that patch matching between the
patches from a pair of images is performed by taking into account possible horizon-
tal displacements. The Figure 2.7 shows the architecture of this filter pairing neural
network. In [39, 40] a siamese architecture (DML) is presented. Instead of patches,
the images are partitioned into three horizontal parts. Each part is treated with a
different CNN, but the weights of the CNNs are shared for the two input images.
The cost function is based on binomial deviance which enables the network to train
more on hard samples than on easy ones. The cosine similarity function is used
for matching. In [41], the MBDML network is a combination of the siamese DML
architecture [39] used for the person re-identification task and the bilinear CNN ar-
chitecture [92] used for fine-grained classification. By incorporating bilinearity with
outer product of features in DML [39], more spatial information are captured. In
[42], in between the first two layers of convolution with max pooling layer, which
extract features from each image, and the last fully connected layer, it is the middle
layers that capture the cross-input local mid-level and high-level features through a
neighborhood difference layer, a patch features summary layer, and an across patch
features layer. In [43], the deep embedded metric network makes a parallel between
the weights of the fully-connected layer (FC) of the neural network and the coeffi-
cients of the matrix characterizing a Mahalanobis metric. The loss function aims at
minimizing the distance of positive pairs and encourages distances of negative pairs
to be bigger than a predefined threshold, under the constraints that the weights of
the FC layer are such that the final Mahalanobis metric does not deviate too much
from the Euclidean distance. Furthermore, for learning a metric that does not dis-
tort the manifold, an emphasize is put on the choice of positives pairs that should
be moderate, ie. not too hard nor too easy.

The approach presented in [93] also takes pairs of images as input and outputs a
similarity score. It differs from the previously presented neural network methods in
the fact that the network is jointly considered as a network that outputs a similarity
score given a pair of images and as a network that provides features for single images.
The proposed network is composed of two subnetworks, SIR and CIR, that share the
same first part. SIR stands for single-image representation, CIR stands for cross-
image representation. The SIR subnetwork computes features from single images
such that the Euclidean distance of positive pairs are below the threshold bSIR − 1
and the Euclidean distance of negative pairs are above the threshold bSIR + 1. Slack
variables are added to enlarge the field of possible solutions. The CIR subnetwork
computes a feature for a pair of images. The associated loss function ensures that
an SVM can perform binary classification on the CIR feature. The final output is
the similarity score computed by a weighted sum of the Euclidean distance of the
SIR features of each image and of the SVM score on the CIR feature.

NN learnt with ranking constraints

Several neural network approaches rely on ranking constraints on pairs of images.
In order to impose such constraints, at least triplet of images need to be considered
during the training phase. For testing phase however, a neural network is either
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Figure 2.7 – Illustration of the Filter Pairing Neural Network (FPNN) presented in [12].

used for providing features for each image, or for returning a score for the matching
of two images. Therefore, the way the network is used at testing phase is a little bit
different than at training.

The neural networks architectures presented in [94, 95, 45] are learnt through
ranking constraints. In [94], a deep ranking framework made of two consecutive
components is proposed. The first component, the deep joint representation learning
component takes a pair of images as input, and outputs a similarity score. The
second component, the learning to component, takes as input pairs’ similarity scores
and minimizes for each probe identity, the number of gallery disorders. During test
phase, only the first component is exploited, it returns for a pair of images, the
associated similarity score. The neural network presented in [95] is learnt to provide
image features by keeping the last fully connected layer. During the training phase,
relative distance constraints are imposed on triplets. All three images of a triplet
are passed through the same network, and the loss function aims at minimizing the
Euclidean distance of the features of the positive pair of the triplet while maximizing
that of the negative pair of the triplet. The neural network TCP presented in [96],
is also used for providing image features that are compared using the Euclidean
distance. During the training phase, TCP takes triplets of images as input. Each
image of the triplet passes through the same CNN. That CNN is a multi-channel
part-based CNN that extracts features from the whole body, and from four body
parts through 5 independent channels, and the features extracted from each part are
then concatenated into a single feature. The improved triplet loss function is not
a simple relative ranking constraint. For a triplet, in addition to constraining the
Euclidean distance of the positive pair to be smaller than that of the negative pair
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by a margin τ1, it also constraints the Euclidean distance of the positive pair to be
smaller than a predefined threshold τ2 < τ1. The idea is that in addition to relative
ranking constraints, the intra-class variance should be smaller than the extra-class
variance.

NN with several loss functions

A few neural network approaches aim at producing features adapted for re-identification
thanks to their ability to solve several tasks.

In [97], the Multi-Task Deep neural network MTD is trained on triplets of images.
A ranking loss function enforces that the distance between the wrong pair is bigger
than that of the matching pair by a margin. Furthermore, to ensure that the network
is able to solve the binary classification task, a binary logistic regression loss is
applied to the pairs (positive and negatives) involved in the triplets. Once learnt, the
network is used for feature extraction. An additional transfer learning phase enables
to adapt the network weights for use on a different dataset. This is interesting
for datasets that are too small for obtaining good generalization using the usual
learning process. In [36], the Deep Transfer Learning (DTL) network is trained
on two different tasks: an ID classification task and a pairwise verification task.
The network itself is composed of three blocks. Starting with an existing network
(GoogLeNet is used but other networks could replace it), two blocks are added: an
identity classification block and a verification block. The network undergoes two
fine-tuning processes, one for each of these two blocks. The identity classification
block is associated to the task of being able to relate the training images with
their right identity index. The verification block is associated to the task of finding
whether two images represent one single person or two distinct people. For testing,
the network is truncated to extract features that are compared with the Euclidean
distance. Coincidentally, both MTD and DTL approaches rely on two types of
loss functions and on transfer learning. However, these two points are completely
independent ideas that can be implemented separately. Moreover transfer learning
simply refers to the idea of re-using the knowledge acquired in a domain for another
domain. The domains can be more or less related. In MTD [97], the network weights
are first learnt using a big person re-identification dataset, and this knowledge is
transferred to smaller person re-identification datasets through the transfer learning
phase. In DTL [36], the knowledge is acquired in an object classification task and
it is transferred to the person classification and verification tasks.

NN for attribute feature extraction

In this paragraph, we introduce some approaches [44, 45] where a special importance
is given to capturing understandable attribute features, such as the type of clothes
worn, the presence of some accessories, the hair length, etc.

The deep attribute learning network SSDAL presented in [44] is trained so that
its last layer outputs a -dimensional feature where each value corresponds to a
clothing attribute. A semi-supervised attribute learning approach is proposed for
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training the network. This approach not only requires a person re-identification
dataset with identity labels but also requires an independent dataset with annotated
attributes. The learning phase incorporates several steps: a fully supervised training
on the attribute dataset, a fine-tuning step on a person re-identification dataset using
predicted attributes, and finally a fine-tuning step with both attribute and person
re-identification datasets.

In [45], the ResNet-50 pretrained on ImageNet object classification task is fine-
tuned on person re-identification datasets annotated with both identities and at-
tribute labels. During the training phase, the network takes one image as input,
and predicts people’s identity and attributes. There is one output per attribute and
one output per training identity, so the final size of the output vector is the sum of
the number of attributes and the number of training identities. For the test phase,
the network output vector is used as an image descriptor.

Recurrent NN

Recurrent neural networks (RNN) are a type of neural network that can process
sequences of information thanks to their internal memory. Most RNN approaches
[98, 99] use it for computing space-time features from sequences of consecutive im-
ages. Others [100] use it to sequentially treat sequences of information coming from
single images.

Both RFAnet [98] and RCPVPR [99] approaches deal with the video-based per-
son re-identification task. The recurrent networks aggregate temporal information
of sequences of images and are used at test time as a mean to provide a single feature
descriptor given a sequence of images. In the RFAnet approach [98], the network is
trained on a multi-class classification task, where each class is a training identity.
The weights are optimized for maximizing the log of the probability of finding the
right match. At test time, the descriptor computed using the trained recurrent net-
work can either be directly compared with a cosine distance or through a RankSVM
model learnt during the training phase. In [99], the RCPVPR network is trained
using pairs of sequences of images by optimizing jointly an identification task and a
verification task.

In [100], the recurrent neural network is used to sequentially process image regions
rather than image sequences. This allows for capturing interactions between features
extracted from different regions of an image. It is a siamese network that takes
pairs of images as input. It is optimized with the contrastive loss that minimizes
the distance of positive pairs, and penalizes the negative pairs that have a distance
larger than a margin. After the learning phase, the network is used to provide image
features and pairs of images are compared with the Euclidean distance.

NN and cross-dataset re-identification

The person re-identification performances are always evaluated on several datasets,
but most of the time each dataset is evaluated separately. For each dataset, a model
is learnt on the training set, and then tested on the testing set. Using the model
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learnt on a dataset but tested on another dataset often leads to poor results. For
deep neural network approaches an additional problem comes on top of it due to
the fact that the training phase requires a huge amount of data that is not available
for each dataset, especially small ones.

Most methods which tackle this issue propose an additional training steps for
adapting the weights already learnt on a larger dataset for the smaller dataset which
is the case in [97]. A different approach is adopted in [101] where it is the dropout
process that enables to tackle the cross-dataset issue. The network is trained on
several datasets and to obtain generic features that are effective on all datasets,
some neurons are shared for all datasets while some are used only for a subset of
datasets. During training, depending on the dataset, the dropout rate of a neuron
varies. The dropout rate of a given neuron depends on its impact on the outputs
of the samples of the chosen dataset. At test time, the features are computed using
the learnt network in which each neuron is applied a dataset dependent mask.

2.3.4 Sparse representations

Following the success of sparse coding for face verification and recognition, some
person re-identification methods [68, 102, 103, 104, 105, 106, 107, 108, 109, 110,
111, 112, 113] also adopted sparse coding in their framework.

Sparse coding consists in representing an element with a sparse vector. Given
a column vector x ∈ Rd×1 and a dictionary D ∈ Rd×n, a sparse code of x is a
weight vector α ∈ Rn×1 such that x ≈ Dα where α is sparse, ie. α contains only
a few non-zero elements. In the end, x is approximated by a linear combination
of a few dictionary elements (columns of D) where the weights are the non zero
values of α. In order for α to be sparse, the dictionary elements that participate
in the reconstruction of x are most often those that are the most similar to the
reconstructed x. The sparse code is not unique, there can be many different linear
combinations of dictionary elements that are sparse and approximate well x. α is
determined by solving an equation of the following form:

α∗ = arg min
α
||x−Dα||2F + ψ(α) (2.7)

where ψ is often chosen as the L1 norm, but other choices of ψ exist.

For person re-identification, sparse representation can be exploited in different
ways. In [68, 102, 103, 104], the gallery features form the dictionary, and probe
elements are reconstructed by linear combinations of gallery elements. The recon-
struction errors are used for ranking gallery identities. Sparse code can also be
considered as new features, as in [105, 106, 107, 108, 109] where a dictionary is
learnt during the training phase. Using that dictionary, the sparse code of gallery
and probe elements are computed and then compared for matching. Apart from
these two main categories, some papers propose still other ways of exploiting probe
sparse representation [110, 111, 112, 113].
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Matching with residual errors

Methods [68, 102, 103, 104] use residual errors for matching gallery and probe iden-
tities. A residual error is a reconstruction error where the reconstruction does not
take into account all the dictionary elements corresponding to non zero values in the
sparse representation, but where only part of the dictionary elements is considered.

What differentiates [68] and [102, 103], is the way the sparse code is computed. In
[68], in order to deal with a ranking issue inherent to sparse coding methods, sparse
codes are computed by an iterative method. Since a probe element is approximated
by a sparse linear combination of gallery elements, most gallery elements do not
participate in the approximation, their associated sparse code αi is a null vector, so
their residual error equals ||x||, the Euclidean norm of the probe element. Therefore
it is not possible to those gallery identities because they have the same residual error.
In [68], after computing an initial sparse representation of a probe element using
the whole dictionary D, another sparse representation is computed using only the
dictionary elements that participated in the initial sparse representation, where each
dictionary element is penalized differently depending on the value of its weight in the
initial sparse representation. The gallery identities that were involved in the initial
sparse representation are ranked according to their new residual error. This process
is iterated using the overall dictionary D deprived of the dictionaries associated to
gallery identities that have already been ranked. None of the other existing sparse
representation methods for person re-identification tackle this issue of lack of clear
ranking from a certain rank onward. The approaches presented in [102, 103] aim at
better exploiting the multi-shot aspect of gallery identities. A group penalization
with L2 norm is introduced to obtain sparse codes that are not only sparse in terms
of non zero elements, but also in terms of identities involved. Among two sparse
codes that would involve the same number of non zero elements, the one spread over
l1 < l2 identities would be preferred over the one which involves l2 identities. In
[104], instead of whole images, SURF points are extracted from each images. For
each image, each SURF point is assigned to an identity by considering the identity
that has the smallest residual error, then majority decision rule is applied, and the
image is labelled with the identity that has the most SURF points vote. In the
approaches just presented [68, 102, 103, 104], the dictionaries are not learnt but
simply composed of features from the gallery.

Matching with sparse representations as new features

Approaches presented in [105, 106, 107, 109, 108] rely on dictionary learning, and
sparse representations are simply new feature descriptions. Training data are used
to learn either a single dictionary [105, 106, 107] or a coupled dictionary [109] so
that the sparse representation of gallery and probe elements are similar and can be
compared for the final matching.

In [105], a dictionary is learnt by minimizing the overall reconstruction error of
every probe and gallery training elements and the associated L1 norm of the sparse
codes, with the constraint that for each identity, the Euclidean norm of the dif-
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ference in sparse code of a positive pair of (probe,gallery) images is smaller than
that of a negative pair. During test, the sparse code of probe and gallery elements
are computed using the learnt dictionary, and for each probe query, gallery iden-
tities are ranked by increasing Euclidean distance of their sparse code with that
of the probe query. In [106], in addition to the reconstruction error and the L1
norm of the sparse code, a graph Laplacian regularisation term is introduced. Just
as the constraint in [105], the aim of the additional regularization term is to force
pairs of probe and gallery images of the same identity to have similar sparse code.
The regularization term is based on a cross-view correspondence matrix of training
elements, which encodes information about the K-nearest neighbours in terms on
cosine distance. This method can exploit labelled as well as unlabelled data. At test
time, the sparse code of probe and gallery elements are compared using the cosine
distance. In [107], instead of using the L1 norm operator ψ = ||.||1, a robust graph
regularization is used. This regularization is designed to further alleviate the effect
of outlying samples. During test, probe and gallery sparse codes are computed with
ψ = ||.||2 and their cosine distance is used for ranking.

While only one common dictionary was learnt in [105, 105, 106], the approach
[108] proposes to learn several dictionaries for tackling the cross-dataset issue. When
using several datasets, in addition to a common dictionary used for all datasets, two
dictionaries are learnt for each dataset. For tests on a chosen dataset, the sparse
codes of gallery and probe elements are computed jointly on the three dictionaries
and the cosine distance of the concatenation of the sparse codes on the three dictio-
naries is used for ranking.

In [109], probe and gallery sparse codes are not computed using the same dictio-
nary. A coupled dictionary is learnt during the training phase. Through a subspace
learning phase (Canonical Correlation Analysis), projection matrices for each cam-
era is learnt. Then a gallery dictionary and a probe dictionary are jointly learnt
by minimizing for all training examples, their reconstruction error and the weighted
L1 norm and L2 norm of their sparse code. At test time, the sparse codes of probe
elements are computed using the probe dictionary while the sparse codes of gallery
elements are computed using the gallery dictionary. A modified cosine similarity is
used as a measure of the similarity of gallery and probe elements sparse codes.

Sparse representation, an intermediate step for other methods

This paragraph introduces a few other person re-identification approaches which use
sparse representations but neither for ranking with the residual errors, nor as new
features.

In [110], like in [109], coupled probe and gallery dictionaries are learnt for three
body parts (head,body, legs). The method is semi-supervised and can make use of
unlabelled data. At test time, the sparse codes of probe elements are computed us-
ing the probe dictionary. The obtained sparse codes are used to recover new features
using the gallery dictionary. The matching is based on the sum for each body part
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of the Euclidean distance of the new features with the existing gallery features.

In [111], instead of a coupled probe and gallery dictionary, it is a coupled low
and high resolution patch dictionary that is learnt, as well as a mapping matrix
to convert features corresponding to low-resolution images into features that could
be extracted from high-resolution images. In the person re-identification scenario
considered, it is assumed that gallery images, which correspond to known identi-
ties, are high resolutions images. The query images on the other hands are in low
resolution. Similarly to [110], the sparse codes of a probe image patches obtained
through optimization with the low-resolution dictionary are used to compute new
high resolution features thanks to the high resolution dictionary and the mapping
matrix. Gallery image patches are approximated by a sparse linear combination
of elements of the high resolution dictionary, and a gallery image new feature is
the concatenation of all its patches reconstructions. For a given probe image, the
gallery images are ranked based on the distance of their new high resolution features.

In [112], the proposed semi-supervised coupled dictionary method is used to ob-
tain sample specific SVM. For each training probe identity, an SVM is learnt to
separate positive pairs and negative pairs. Then a coupled dictionary composed of a
feature dictionary and an SVM weights dictionary are learnt jointly with a mapping
between the two dictionaries. At test time, from the coding of the probe image
using the feature dictionary, the sample specific SVM weights is recover and used
for determining the matching score of that probe image with each of the gallery
images.

In [113], sparse codes of probe elements are computed using the gallery as the
dictionary. But instead of using the residual errors for ranking the gallery identities,
they are simply used as a mean to assess the reliability of a matching.

2.3.5 Re-ranking methods

Most of the methods presented so far are what some call train-once-and-deploy
scheme which involve a training phase in which a model is learnt and considered
final, ie. it is not modified anymore afterwards and is directly applied in the test-
ing phase. However training datasets are yet still not big and varied enough to be
representative of images extracted from any surveillance camera. Therefore, meth-
ods do not generalize so well on new data. Some researchers propose to update
the model online thanks to user feedback [114, 115] to improve the ranking perfor-
mances. Other papers [26, 27, 28, 29, 30, 31, 32, 33, 34, 35] tackle it in an automatic
way and propose re-ranking approaches that do not require human interaction.

Human feedback for ranking and re-ranking

Person re-identification algorithms are far from being perfect, and in the end there
is always a human who checks the returned list of identities that are supposed to
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be ranked from the most similar individuals to the least similar ones. However, in
practice, the top ranks gallery identities often contain identities that we would not
consider as similar. The approaches described in [114, 35] make use of this kind of
information that can easily be given by the final user so as to improve the ranking
algorithm in an online manner.

In [114], a Post-rank OPtimization (POP) method is proposed to refine the rank-
ing using user feedback. For each probe instance, the user selects an image which is
visually dissimilar to the probe instance but which is in the top of the ranked list
of gallery identities (strong negative image). Optionally he can also select images
that are visually similar to the probe instance but which do not represent the right
person (weak negative images). An affinity graph describing the similarity between
all gallery instances and synthesized positive pairs is computed. The negative pairs
information obtained by user feedback is propagated from the labelled elements to
the unlabelled ones thanks to the post rank function. The post rank function is
learnt through a Lapalacian SVM optimization problem which besides encouraging
positive pairs to have a similarity score bigger than 1 and negative pairs to have
a similarity score smaller than -1 also takes into account the affinity graph by en-
forcing the post-rank function to take close values when the inputs are close gallery
instances.

Contrary to POP [114] where the final matching score is a weighted linear com-
bination of the initial ranking score and the refined ranking, in [115], the online in-
cremental learning method proposed for human in the loop person re-identification
does not require pre-labelled data and initial ranking, it only requires feedback about
whether probe and gallery images are similar or dissimilar. For each new probe, a
new Mahalanobis metric is learnt through the optimization of a loss function simi-
lar to that of the WARCA method [78] which aims at quickly pushing up the true
matches to the top ranks. A Bregman divergence regularization ensures that the new
metric is close to the previous metric thus incrementally improving the metric learnt
with previous instances with the new human feedback. Once human feedback is not
available anymore, instead of directly using the last updated Mahalanobis metric for
matching, the paper [115] proposes to learn a strong ensemble model from the set
of metrics obtained throughout the feedback process which are considered as weak
models.

Automatic re-ranking

Instead of relying on human feedback as in POP [114] and Human In the Loop [115]
for obtaining better ranking performances, some methods propose to use existing
person re-identification methods and add an additional re-ranking step to improve
the performances of the initial ranking. Those methods assume that true matches
appear in the first ranks without necessarily be the first ones. To find out the
most likely true match among the top ranks gallery identities, they develop different
strategies mostly based on top ranks neighbours.



2.3. CLOSED WORLD APPROACHES 49

Some approaches only make use of ranking information [35, 26, 27, 28]. In [35], the
Common Near-Neighbor-Analysis proposes a refined ranking based on the weighted
linear combination of two dissimilarities, the direct and the relative dissimilarities.
Given two identities i and j, the direct dissimilarity returns the minimum rank
between the rank of person i in the ranked list of person j and the rank of person
j in the ranked list of person i. The relative dissimilarity is the sum of the ranks
of the nearest neighbors of person j in the ranked list of person i and of the ranks
of the nearest neighbors of person i in the ranked list of person j. The direct
dissimilarity gives an information about whether at least one of the identity is among
the nearest neighbour of the other one. The relative dissimilarity evaluates the
similarity between the sets of nearest neighbors of the pair of identities.

The approaches [26, 27, 28] also consider the top k-ranks gallery identities and
their nearest neighbours to refine the ranking list. A good match should not only
appear in the top ranks, but its nearest neighbor set should significantly overlap the
probe’s nearest neighbor set. This is captured by the Jaccard similarity, which is
the ratio of the cardinality of the intersection of two sets over the cardinality of the
union of those two same sets. The similarity score of a gallery identity is redefined
as the Jaccard similarity weighted by a coefficient related to the original rank of the
gallery person. In [27], considering that different descriptors might capture different
types of similarities, the probe nearest neighbors among the gallery identities and
the gallery nearest neighbors also among the gallery identities are obtained using
different feature descriptors. If probe nearest neighbors are obtained using global
descriptors, then gallery’s nearest neighbors are found using local descriptors, and
vice-versa. In [26], in addition to a first re-ranking step that considers the sets of
top ranking gallery identities and their nearest neighbors sets, a second refinement is
conducted using dissimilarities. Elements that are strongly dissimilar to the probe
element should also be strongly dissimilar to its true match. The more often an
identity appears among the nearest neighbors of the bottom ranked gallery identi-
ties, the more their ranking is penalized. The paper [28] combines the ideas of the
two previous papers [27, 26] by making use of similar and dissimilar people, and
using different ranking methods for computing the nearest neighbors of the probe
identity and of that of its top ranked gallery identities.

Other approaches make use of both ranking and similarity value information
[29, 34]. In [29], the main idea is once again that the probe person and the true
gallery match should share many common nearest neighbors. The Jaccard simi-
larity captures the similarity between sets but all nearest neighbors are considered
the same way, regarding of whether they are the first nearest neighbor of the kth

one. A revised Jaccard similarity that takes into account the distance of gallery
images to the probe image is proposed. Along with it, a new feature encoding, the
k-reciprocal feature, enables to compute set comparisons by vector calculation. The
method proposed in [34] also requires ranking information and similarity value, but
it applies only to the case the people we wish to re-identify appear at the same time
in one camera observation view or several non overlapping camera views. Based on
the fact that people can not appear twice at the same time at different places, the
proposed method penalizes for a probe person, the ranks of gallery identities that
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are already very likely to be the true match of another probe person that appears
concurrently.

Different variants of the Discriminant Context Information Analysis (DCIA) are
proposed in [30, 31, 32]. DCIA aims at learning what distinguishes people that look
similar, it focuses on the visual ambiguities shared between the first ranks. A first
training step learns a model to distinguish true and false matches. Then the second
training step requires the introduction of two notions, the content set and the con-
text set. The content set contains gallery images that have low dissimilarity with the
probe person. The context set contains gallery images that have low dissimilarity
with both the probe person and a gallery person that belongs to the content set.
Based on these content and context sets, a feature transformation step is conducted
to remove the visual ambiguities of the first ranks. Finally, a new model is learnt
on the new features for checking whether two images are from the same person or
not. At test time, after obtaining a first ranking thanks to the first model, only the
content sets are re-ranked using the transformed features and the second model.

2.4 Generalizing person re-identification

Person Re-identification methods performances have tremendously risen in the past
few years for the closed world case. However, the situation where every query per-
son has been previously identitified and is thus included in the gallery set, does
not correspond to the context of most real applications. Therefore the open world
re-identification topic has emerged and is gaining strong interest.

However, many ways of relaxing the closed world assumption exist and the per-
son re-identification research commonity has not yet plebiscite one situation over
another. Indeed, ”open” simply refers to the fact that the gallery set of known
people is not comprehensive. It could correspond, for example, to a case where the
gallery is empty and grows as new identities come in, or to a case where not all
identities are included in the gallery set but the gallery remains unchanged even if a
new identity is captured. Many more situations could match the expression ”open
world”, each being specific and corresponding to different applications with distinc-
tive goals. This is why even though most methods first developed for the closed
world task could apply to open world tasks, and vice-versa, we chose to present the
methods specifically tackling an open world task in a separate section.

We grouped the existing papers generalizing person re-identification task into
three groups corresponding to the type of scenario tackled: identity inference, group-
based verification, detection and re-identification.

2.4.1 Identity Inference

Literally, identity inference consists in inferring people’s identity. This task is
closely related to multi-person tracking. Given a video sequence or a collection of



2.4. GENERALIZING PERSON RE-IDENTIFICATION 51

sequences where multiple people appear, the goal of identity inference is to assign an
identity to every person detection in the sequence(s). This task can be considered
as a generalization of closed world person re-identification because images are not
assumed to be already grouped by identity. This task actually send us back to where
person re-identification started as an independent vision task. Instead of assuming
that images are already grouped by identities thanks to tracking algorithms, here
all detections must be labelled.

Both papers [116, 1] which discuss this topic use a Conditional Random Field
model (CRF) for minimizing an energy function composed of a unary energy func-
tion and a pairwise energy function. In [116], the model assumes that the gallery is
known and a few images of each identity are available. The unknown query detec-
tions however are not grouped by identity. The unary potential penalizes the cost
of associating a detection to an identity according to its L1-distance to the closest
gallery representation of that identity. The binary potential favors attributing the
same label to similar detections. The method presented in [1] can be used in a more
general context where many of the closed world re-identification assumptions are
relaxed. Not only does it not require to have a set of known labels (gallery), but it
also does not assume that every identity appears in several cameras. Therefore, by
assigning a label to every person detection, the method [1] also returns the number
of people present in the scene. Spatio-temporal information are taken into account.
The labels are first initialized using information within each camera, before being
further refined for matching identities across cameras. The identities inference are
based on a global inference using all the video sequences across all the cameras.

The scenario in [1] illustrates well an open world case: not only the gallery set
is not comprehensive, but there is actually no gallery. However, this situation is
actually more related to tracking than to re-identification. Camera relations are
supposed to be known. The whole scene, with all people’s detection, is needed to
determine each person’s identity.

2.4.2 Group-based verification

Literally, group-based verification consists in determining whether a person be-
longs to a given group or not. The associated scenario is the following. A small
set of identities is known, it is referred to as the target set. When given a query
identity, the goal is to verify whether he is one of the target identities or not. This
task is strongly related to the forensic application where a group of wanted people
are the target set, and the query images corresponds to all the pedestrian detections
captured by different surveillance cameras. This group-based verification task can
be considered as an open world re-identification task since the target set of known
identities is only a small subset of all the existing people.

Three papers [2, 3, 4] tackle this group-based verification task. Contrary to the
usual closed world case, where the training and the testing sets contain non over-
lapping sets of identities, for the group-based verification, the target set of identity
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stays the same in the training and the testing phases. The non target set is different
in training and testing phases. In [2, 3, 4], metric learning approaches are proposed
to learn from the target set and the non target training set. It is assumed that only
one image of each target identity is available, while the identities in the non target
training set can be represented by multiple images. Therefore, to compensate for
the lack of information about target identities intra-class variance, the non target
set images are exploited. The main ideas of the work in one-shot group-based ver-
ification are the following. The intra-class variance of non target identities should
be smaller than the extra-class variance, in both target and non target set. The
extra-class variance of the target set should be smaller than the extra-class variance
between identities in the target set and in the non target set.

Intuitively, it might seem that in order to verify the membership of a person to
a group, one must find a target identity with whom the probe person matches, but
the previous methods showed that it is possible to determine that a person belongs
to a group without finding out his identity. Therefore, the group-based verification
scenario is not really a re-identification task since even if the query person is found
to be among the target set, the group-based verification task does not require him
to be re-identified.

2.4.3 Detection and Re-Identification

In this subsection, the open world task is defined by two subtasks: a Detection task
and Re-Identification task. As it was the case for closed world re-identification, there
is a list of known people, the gallery. When presented images of a query person,
two questions need to be answered: has that person been previously identified? If
so, who is he?

The paper [13] introduces the OPERID dataset for person re-identification with
images captured by 6 cameras such that each identity appears only in a subset
of those cameras. Benchmark open world test partitions are provided with the
dataset. In those partitions, the probe set contains identities that are not present in
the gallery. In addition, the multiple cameras aspect also make the re-identification
scenario difficult to tackle. In the test partitions, gallery images come from one
camera view, while probe images come from all five other cameras, but each probe
image is not a priori associated with other probe images of the same person. This
paper [13] does not propose any new re-identification method, but highlight the fact
that existing methods are not yet performing enough for the open world detection
and re-identification task. It is also this paper that proposes the DIR versus FAR
evaluation metric presented in the next subsection.

In [46], it is also the detection and re-identification task that is considered, but
in a one-shot case. A semi-supervised method is presented, but it relies on the
additional assumption that for each identity in each camera, there is at most one
image. Though presented as a method for open set re-identification, the open world
aspect, meaning that the gallery is not overcomplete and the probe person might
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not be in the gallery, is not directly taken into account. The proposed method is a
subspace learning method that aims at minimizing the variance of similar pairs of
images that are captured by different camera view and at maximizing the variance of
similar pairs of images captured by the same camera. In doing so, the variations in
appearance due to different camera view is minimized, while the variation associated
to distinct people is reinforced.

2.4.4 Drone based

Paper [48] generalizes the person-re-identification task based on fixed cameras into
several tasks where cameras are not fixed anymore but in movement on flying drones.
This leads to very challenging open world re-identification tasks. Three types of
scenarios are considered: watchlist verification, within-flight re-identification and
across-flight re-identification.

2.5 Evaluation measures

2.5.1 Closed world measures

Closed world person re-identification measures mainly evaluate the relevance of the
relative ranking of gallery similarity to each probe person. We present these mea-
sures from the most widely used to the least used.

• CMC (Cumulative Matching Characteristic) represents the proportion
of right matches found in the r top ranks. The ranks range from one to the
number of gallery identities. To use this measure, it is assumed that for each
probe person, the person re-identification method returns a ranked list of the
gallery identities, where each gallery identity appears only once. In the multi-
shot case, the similarity between a probe person and a gallery person is often
chosen as the maximum value of the similarity between their image pairs.

• mAP (mean Average Precision) is used for multi-shot cases. Gallery
images of the same person are not grouped together so as to return a single
similarity value for each gallery person. Instead, a ranked list of gallery images
is returned for every query person. For a set of queries Q, the mean average
precision is the mean of the average precision of each query:

mAP =
1

|Q|
∑
q∈Q

AP (q) (2.8)

where AP is the average precision.

The average precision is the mean of the precision scores after each relevant
gallery image is retrieved. It is defined by:

AP (q) =
1

R

∑
r

Precisionr(q) (2.9)

where r is the rank of each relevant gallery image, R is the total number of
relevant gallery images and Precisionr(q) is the proportion of relevant gallery
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images in the top r gallery images. What we call here a relevant gallery image
is a gallery image which represents the query person.

• MRR (Mean Reciprocal Rank) is the average of the reciprocal ranks for a
set of queries Q. The reciprocal rank of a query response is the multiplicative
inverse of the rank of the first correct match. The other matches are not taken
into account. MMR is given by:

MRR =
1

|Q|
∑
q∈Q

1

r(q)
(2.10)

where r(q) refers to the rank position of the first relevant gallery image for the
query q.

• PUR (Proportion of Uncertainty Removed) is the normalized entropy
reduction between a randomized rank and any given method’s output rank. It
accommodates information from across the entire CMC, rather than at arbi-
trary values of rank r. It is defined in [80] by:

PUR =
log(N)−

∑N
r=1CMC(r)log(CMC(r))

log(N)
(2.11)

where N is the number of gallery images.

2.5.2 Open world measures

For each of the open world scenarios, a different measure is employed.

• When open world is considered as a binary classification problem, or as an
identity inference problem, as in [116, 1], the performances are assessed by
information retrieval measures.

A Positive pair is a pair of probe-gallery images or identities which corresponds
to one single person.
A Negative pair is a pair of probe-gallery images or identities which corresponds
to two distinct people.
A True Positive pair (TP) is a correctly accepted pair, ie. a pair of probe-
gallery images or identities which represents the same person and which is
detected as so.
A True Negative pair (TN) is a correctly rejected pair. ie. a pair of probe-
gallery images or identities which corresponds to two distinct people and is
detected as so.
A False Positive pair (FP) is a wrongly accepted pair, ie. a pair of probe-
gallery images or identities which corresponds to two distinct people but which
is classified as the same person.
A False Negative pair (FN) is a wrongly rejected pair, ie. a pair of probe-
gallery images or identities which corresponds to one person but which is clas-
sified as corresponding to two distinct people.
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TP, TN, FP, FN also refer respectively to the number of true positive pairs,
the number of true negative pairs, fthe number of alse positive pairs and the
number of false negative pairs.

Based on these notions of TP, TN , FP and FN, the following evaluation mea-
sures can be used.
Recall is also called TP rate (true positive rate). It is the ratio of true positive
pairs (TP) over the number of positive pairs (TP+FN):

recall =
TP

TP + FN
(2.12)

Specificity is also called TN rate (true negative rate). Is is the ratio of true
negative pairs (TN) over the number of negative pairs (TN+FP):

specificity =
TN

TN + FP
(2.13)

Precision is the ratio of the number of true positive pairs (TP) over the number
of pairs that are found to be positive (TP+FP):

precision =
TP

TP + FP
(2.14)

Accuracy is the proportion of well classified pairs:

accuracy =
TP + TN

TP + TN + FP + FN
(2.15)

F-score is the harmonic mean of precision and recall

F =
2

TP+FP
TP

+ TP+FN
TP

=
2TP

2TP + FP + FN
(2.16)

• In the case open world re-id is cast as a group-based verification task, as
in [2, 3, 4], True Target recognition Rate (TTR) and False Target recognition
Rate (FTR) are used as evaluation measures. They are defined by:

TTR =
|T T Q|
|T Q|

(2.17)

FTR =
|FNT Q|
|NT Q|

(2.18)

where
T T Q = { query target images from target people }
NT Q = { query non-target images from non-target people }
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T Q = { query target images that are verified as on of the target people }
FNT Q = { query non-target images that are verified as one of the target
people }.

• In the case open world re-id is cast as a Detection and Identification task,
as in [13], performance is evaluated with Detection and Identification Rate
(DIR) versus False Acceptance Rate (FAR) which are defined by:

DIR(τ, r) =
|{i|i ∈ P ∩G, rank(i) ≤ r, dist(ig, ip) ≤ τ}|

|P ∩G|
(2.19)

FAR(τ) =
|{i|i ∈ P\G,minj∈Gdist(jg, ip) ≤ τ}|

|P\G|
(2.20)

where P is the set of probe identities, G is the set of gallery identities, P ∩ G
are common identities, P\G are probe imposter identities and dist(jg, ip) is
the distance between the set of images of person j in the gallery and the set
of images of person i in the probe set. DIR(τ, r) represents the proportion of
common identities that are re-identified before rank r with a distance smaller
than τ and FAR(τ) is the proportion of imposter identities whose distance to
their closest gallery identity is smaller than τ .

2.6 Conclusion

In this chapter, we have given an overview of the main work that has been con-
ducted on the person re-identification task since its beginning a decade ago. From
a subtask of the multi-camera tracking task, person re-identification in the closed
world setting has become an integral task. With the growing interest in the open
world problematics, person re-identification tasks are even starting to be splitted
into several groups, the identity inference group, the group-based verification group
and the detection and re-identification group. More groups might appear since this
problematic is still a novel one in the process of emerging.

This evolution of the person re-identification task is actually a consequence of
the increase in performances of re-identification approaches which has allowed re-
searchers to relax some assumptions and deal with tasks that are closer to the
actual need of practical applications. Mainly based on intuitions, early methods
[16, 17] proposed hand-crafted features and matching schemes. With the appari-
tion of supervised methods, especially metric learning approaches [75, 20, 21, 23],
performances have improved a lot. While these metric learning approaches were
applied on previously developed features, the apparition of deep learning methods
[12] allowed for supervised methods to learn from raw images. Today, deep learning
methods are very popular and often outperform other methods. A large majority
of the recent papers are deep learning based approaches. Nonetheless, aside these
huge trends, some papers still propose some alternative methods based on sparse
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representation or re-ranking for example.

The successful development of supervised methods has been made possible by
the creation of larger datasets. Indeed, the learning phase requires some training
data. Deep learning methods in particular need huge amounts of data during the
training process so that it doesn’t overfit and generalizes well at test time. Besides
the need for more training data, datasets are also evolving in order to become more
representative of the data that could be collected in a large scale by real applica-
tions. It contains images from more identities captured by multiple cameras and the
bounding boxes are automatically generated.

Overall, the evolution of the datasets, the evolution of the re-identification ap-
proaches, the improvement of the performances and the change in the definition of
re-identification tasks go hand in hand. The evolution of one component influences
the evolution of another one leading to better performances and more and more
realistic scenarios and datasets. However, these improvements are achieved thanks
to a learning phase on training data and the learnt model often overfit the dataset
used for training. Better results are obtained mostly because features and metrics
are adapted to each dataset and to the closed world scenario but all the challenges
mentioned in the introduction are still unsolved.

2.7 Position of our work

Given that approaches based only on designing robust hand-crafted features per-
form poorly, they must be combined with a learning step. Therefore in this thesis
we chose to focus on the matching step for which we proposed two approaches, a
metric learning approach and a sparse representation based approach. Nonetheless,
considering that features do play a major role in the re-identification process, all the
experiments have been conducted using several types of features so as to show the
robustness and the relevance of the proposed matching methods regardless of the
features.

Moreover, even though many datasets now contain multiple images for each per-
son, the information brought by these multiple images is often not exploited to its
fullest. A few approaches do extract temporal information when full tracklets are
available but they are not usable if the multiple images come from different tracklets.
In the methods we propose, we do not exploit temporal information. Instead, in our
metric learning approach, we exploit the multiple images but also attempt to lessen
the impact of images that could potentially be outliers. In our sparse representation
approach, the variability of the images of a person is kept. Be it a gallery or a probe
person, a person is represented by all its images with his different poses, under vary-
ing illumination conditions, etc. The similarity score however is computed per pair
of gallery-probe identities in such a way that the image of a probe person does not
need to be similar to all the images of a gallery person to be deemed corresponding to
the same person, but it is only required to be similar to at least one or a few of them.
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As for the re-identification scenarios, we consider both the usually tackled closed
world person re-identification scenario and the novel open world detection and re-
identification scenario. The metric learning approach we proposed focuses on the
open world aspect assuming that when the open world task is solved, the closed
world task is solved as well. The sparse representation approach on the other hand
considers the specificities of both the closed and the open world task: being able to
rank gallery identities and being able to take a decision on whether two images are
from the same person or not are both important.



Chapter 3

COPReV

In this chapter, we first re-expose what closed and open world re-identification tasks
are in order to better point our their differences in terms of scenario and evaluation.
Then, we present our COPReV method (Closed and Open Person RE-identification
and Verification method) which addresses the open world re-identification problem
by adopting a binary verification perspective because we focus on tackling what we
consider is the main difference between closed and open world tasks, namely the
necessity of returning a decision about whether a test person belongs to the gallery
or not. Finally we evaluate the proposed COPReV approach on closed and open
world re-identification tasks and on the person verification task.

3.1 Motivation

3.1.1 Closed world re-identification

What is commonly referred to as the person Re-ID task, is what we refer to by
closed world Re-ID task. It literally consists in re-identifying people, ie. finding
their identity given that they had been previously identified. A query probe person
is also one of the gallery people and the aim is to find which one is the right match.
Since we are never a hundred percent certain that our best conjecture is the right
one, what is actually returned is not the identity of the gallery person who seems to
be the best match for the presented probe person, but a ranked list of all the gallery
identities from the most probable match to the least likely one. Therefore the rank
at which the right match is found is given a huge importance in all the existing
evaluation measures for assessing the performance of closed world re-id approaches.
The most often used closed world evaluation is the CMC (Cumulative Matching
Curve) which represents the proportion of right matches found in the top r ranks.
Papers often report the CMC value for a few ranks (rank 1, 5, 10 and 20). What
is assessed is the ability of a method to rank well the gallery identities. A method
which has a higher recognition rate at first rank is considered better than a method
which has a lower recognition rate at first rank.

However, the ranking ability in question is only a relative ranking ability com-
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puted independently for each probe person. We talk about relative ranking because
the only requirement is for the right gallery match to be better ranked than the
false gallery matches for a given probe person. The similarity score of the right
gallery match for a given probe person does not need to be bigger than the simi-
larity score of a wrong gallery match involving another probe person. Let’s take a
look at the toy examples in Figure 3.1 for a better understanding of relative ranking.

In Figure 3.1, three cases are presented for the same test data, corresponding to
methods A B and C. These are not real examples, but help illustrate the relative
ranking issue. There are five identities in total. Every row corresponds to a probe
person. The y-axis corresponds to dissimilarity scores. Each dot represents the
dissimilarity score of a pair of probe-gallery identities. Green dots represent positive
pairs (same identity) and red dots represent negative pairs (distinct people). In all
three cases, for each probe person (ie. on each row), the green dot is on the left
of the red dots, ie. the dissimilarity score of the positive pair is smaller than the
dissimilarity of the negative pairs. The right match is always the first match, so
all probe identities are re-identified at first rank, the recognition rank is of 100%
from the first rank on and all three methods have perfect CMC scores. Nonetheless,
we can notice that for methods B and C, there are wrong matches with smaller
dissimilarity scores than some right matches. In the CMC evaluation, there is no
comparison between the dissimilarity of a right match for a given probe person and
the dissimilarity of wrong matches corresponding to other probe people.

3.1.2 From closed world re-id to open world detection and re-identification

In the open world re-identification task we tackle in this thesis, we relax the assump-
tion that the person to be re-identified has been identified before. Thefore strictly
speaking, open world re-identification is not a re-identification task. The open world
re-identification task we adopt here is actually a generalization of the closed world
re-identification task which can be decomposed into two subtasks, the detection and
the re-identification subtasks. The detection task consists in determining whether
the presented probe person should be matched with one of the gallery people or if
he should be rejected as an imposter (someone who is not present in the gallery).
The objective of the re-identification task is to rank the gallery identities whom are
considered to be possible right matches for the presented probe person.

Contrary to the closed world task, for the open world task, besides the relative
ranking aspect, the detection aspect also needs to be evaluated. The evaluation com-
monly adopted in the few papers which dealt with the same problem ([13, 46, 47])
is the one presented in the Operid paper [13]. The proposed DIR vs FAR evaluation
(defined in section 2.5.2) is a unified measure for detection and ranking. For re-
minder, the Detection and Identification Rate DIR(τ, r) represents the proportion
of common identities that are found in the first r ranks with a dissimilarity score
smaller than τ and the False Acceptance Rate FAR(τ) is the proportion of imposter
identities whose dissimilarity score to their closest gallery identity is smaller than
τ . Papers mostly report the DIR at first rank for given values of FAR. In that case,
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only the first rank matches are considered. Indeed, FAR is only a function of τ and
it only takes into account the worst wrong match, ie. the one with the smallest
dissimilarity score, the other wrong matches for bigger dissimilarity score are not
taken into account in the FAR value. DIR is a function of the rank r and of the
threshold τ , so DIR at first rank is solely a function of the threshold τ , and it only
takes into account the first match. DIR at first rank versus FAR are functions of the
threshold variable τ and it reflects the proportion of well re-identified non imposter
probe identities for given proportions of wrongly matched imposter probe identities,
where the dissimilarity score of matched elements are below the threshold τ .

Let’s compare once again the methods A, B and C presented in Figure 3.1 but in
the open world case this time. For the sake of the example, we examine two open
world partitions of the identities. In both partitions, the probe set of identities is
composed of all 5 identities. In the first partition, the gallery set contains people 1,
2 and 3. In the second partition, the gallery set contains people 3, 4 and 5. Since
there are only two probe imposters, the non zero False Acceptance Rate (FAR) only
takes 2 values, 50% when only one of them is wrongly accepted and 100% when both
are wrongly accepted. For each FAR value, the value of the dissimilarity score of the
wrongly accepted probe imposter is used as the decision threshold τ to determine
the corresponding DIR rate. In our example, since there are two possible values
of FAR, there are two decision thresholds τ1 and τ2. Figure 3.2 presents the open
world situations for the two described partitions. For each probe person, only the
first match is taken into account, ie. we only consider the pair with the smallest dis-
similarity score. They are circled in black in the figure. For each FAR value and its
corresponding decision threshold value, the DIR value is computed by counting the
proportion of non imposter probe identites re-identified with a dissimilarity value
smaller than the decision threshold. On the first partition, for all three methods,
the open world DIR vs FAR results are perfect (100% recognition at first rank when
the false acceptance rate equals 50%). Indeed, the circled green dots corresponds to
dissimilarity values that are smaller than the decision threshold τ1 associated to the
first wrong accepted probe imposter identity. On the second partition however, the
performances are really different depending on the method. While method A still
achieves perfect DIR vs FAR results, method B and C perform poorly. The open
world results are provided in Table 3.1.

Partition 1
FAR (%) 50 100
Method A 100 100
Method B 100 100
Method C 100 100

Partition
FAR (%) 50 100
Method A 100 100
Method B 0 33.3
Method C 0 0

Table 3.1 – DIR vs FAR performances for the two partitions considered for the toy examples
presented in Figure 3.2.

This toy example shows how different the closed and open world re-identification
tasks and evaluations are. While the three methods A, B and C had perfect CMC
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results in the closed world setting, in the open world case, the DIR vs FAR per-
formances greatly differ between methods but also depending on the partitions for
methods B and C. This is because CMC only evaluates ranking whereas DIR at
first rank versus FAR evaluates the adequacy of first rank matches to a decision rule
(threshold).

In an open world task, a decision has to be taken about accepting or rejecting a
probe person as one of the gallery identities. Therefore, a method with good ranking
abilities alone does not guarantee good open world performances. The methods B
and C are good examples. Even when for each probe identity the right matches
are ranked first before the wrong matches, the dissimilarity score of right matches
of a given probe person are not necessarily smaller than those of negative matches
involving a different probe person, which can lead to small DIR values when some
gallery identities are removed from the gallery set for the open world scenario.

On the contrary, a verification method or a binary classification method that
perfectly determines whether two sets of images come from the same person or from
distinct people solves both the closed and open world Re-ID problems. The method
A is a good illustration of such a method. The decision rule of the verification
method is not necessarily a fixed threshold decision rule where the distance of posi-
tive pairs is smaller than the specified threshold and the distance of negative pairs
is bigger than the threshold. It could be some sophisticated decision rule, but the
important point is that once you are able to distinguish positive pairs from negative
pairs, you can always rank positive pairs before negative pairs, and therefore such
a method can also perform well in closed world settings. Notice that even in the
closed world case, there is actually no ground truth ranking of wrong matches, the
right matches are the only ones that should be ranked before the wrong ones.

To sum up, due to the relaxation of the assumption that every presented probe
person is present in the gallery, the open world task we consider can not simply be
assessed by the CMC evaluation and it requires to employ a better adapted evalua-
tion measure. The toy examples we assessed using CMC and DIR vs FAR evaluation
brought to light the shortcoming of the CMC evaluation which only measures a rela-
tive ranking ability and which can therefore not be representative of the open world
performances.

3.1.3 Existing closed world re-id approaches used in open world re-
identification

Since the person re-identification task has been tackled only in the closed world set-
ting for a long time and were evaluated using CMC, a few methods are only based on
ranking constraints per probe identity. It is for example the case of metric learning
methods EIML [76] and WARCA [78] or neural network approaches [94, 95, 45].
Although it is possible that some of these approaches perform well for the open
world re-id task, nothing in their formulation ensures it.
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There exist some methods which instead of being based on ranking constraints
per identity are based on minimization problems which involve constraints on pos-
itive and negative pairs and which do not specifically distinguish these constraints
per probe person. It is for example the case of metric learning methods KISSME [21]
and XQDA [23] where the objective is to minimize intra-class variance and maximize
extra-class variance, or RPLM [79] whose objective is to minimize the distance of
positive pairs and maximize the distance of negative pairs. However, these kind of
methods do not specify any threshold under which the intra-class variance and the
positive pairs distances should be nor a threshold above which the extra-class vari-
ance and negative pairs distances should be. Therefore, depending on the dataset,
or even on the partitions, the decision threshold corresponding to a given FAR value
could vary a lot.

Some methods developed for closed world person re-identification, such as the
PCCA [20], cast the re-identification task as a binary classification task and intro-
duce a threshold during the training phase. However, even when a threshold is used
during the training phase to separate positive pairs from negative pairs, the best
decision threshold on the test set might not be the one used for the training phase
because the distribution of the distances of test data are often shifted to the right
(bigger values) because negative pairs are better modeled.

3.1.4 Existing open world re-id approaches

Some papers specifically tackle an open world re-identification task. Among them,
some [1, 2, 3, 4] tackle different open world tasks from the one we deal with while
a few others [13, 46, 47] also tackle the two subtasks detection and re-identification
open world task we consider.

The papers [1] which have a different definition of the open world re-identification
task from ours present methods that focus on the specific aspect of their definition
of the open world re-identification task. In the multi label inference paper [1], the
optimization of the cost function aims at grouping images by identity and assigning
a label to each detection. Rather than having to determine whether a person is a
known gallery person or not, the total number of probe identities is unknown and to
be determined by the algorithm there is actually no gallery. In [2, 3, 94] the gallery
is assumed to be composed of a small group of target identities and the goal is to
determine whether a probe person is one of the gallery identities or not, without
necessarily giving the exact identity of a probe person who is found to be someone
from the target set. In all three methods, the optimization is based on relative
ranking constraints.

As for papers which evoke the same open world person re-identification task
as we do, they do not focus on what we argue makes the open world re-id task
so different from the closed world re-id task. The paper [13] does not propose
any new method to tackle the open world re-id task but experimentally shows that



64 CHAPTER 3. COPREV

several existing metric learning methods do not perform well for the open world re-id
task. The method proposed in [47], focuses on feature design (it exploits space-time
information from tracklets) and their matching without specifically tackling closed
or open world re-identification. In [46], the method is supposed to be designed for
an unsupervised single-shot open world re-id task, however, its formulation which
enforces visually similar pairs from the same camera to be pushed apart and visually
similar pairs from different camera to be pulled together does not seem to specifically
take into account the difference between closed and open world re-identification.
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Figure 3.1 – Three toy examples of closed world dissimilarity scores leading to perfect CMC eval-
uation.
There are 5 people. On each row are presented the dissimilarity scores (green and red dots) of
one probe person with every gallery person. Each dot corresponds to the dissimilarity of a pair
of probe-gallery identities, where the probe identity is given by the row and the gallery identity is
given by the number in the dot. Green dots corresponds to right matches and red dots to wrong
matches. For all three methods A B and C, for each probe person, the right matches have smaller
dissimilarity scores than wrong matches.
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Figure 3.2 – Three toy examples for 2 open world partition sets leading to very different DIR at
first rank vs FAR performances.
The dissimilarity scores for the three methods A, B and C are displayed for all probe-gallery pair of
identities. We consider 2 open world partition sets. In the first partition the gallery only contains
identities 1, 2 and 3. In the second partition, the gallery only contains identities 3, 4 and 5.
Since some gallery identities are not present, the associated pairs are crossed. The DIR at first
rank versus FAR evaluation only takes into account the best match for each probe person. These
best matches are circled in black. FAR can take 2 non zero values, 50% when one of the two
probe imposters is not rejected and 100% when both probe imposters are accepted. The threshold
decision values τ1 and τ2 are shown in blue for each FAR value (50% and 100%). DIR can take 4
values, 0, 33.3, 66.7 and 100 depending on the number of non probe imposters re-identified at first
rank with a dissimilarity score smaller or equal to the decision thresholds τ1 or τ2.
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3.2 COPReV

3.2.1 Overview

Considering that for open world scenarios a decision needs to be taken about whether
a probe person belongs to the gallery or not and given that a perfect binary classifi-
cation method would solve the closed and open world re-identification tasks and the
verification task, we formulate the re-identification task as a verification task. We
name our method COPReV for Closed and Open world Person RE-identification and
Verification. In order to have an easily usable method where the decision threshold
is clear, we introduce an arbitrary threshold during the training phase to learn a
linear transformation of the features such that distances of positive pairs are below
the threshold and that of negative pairs are above that threshold. For the person
verification task, the same threshold can be used during the test phase for distin-
guishing positive and negative matches. We propose a cost function that limits the
effect of unbalanced data and outliers during training by promoting a high propor-
tion of well classified positive and negative pairs for every identity. Our method
therefore handles the unbalanced number of positive and negative pairs, as well as
the unbalanced number of images per identity, and most importantly, though cast
as a verification task, it works for closed and open world scenarios.

3.2.2 Problem notations

Let τ ∈ R be an arbitrarily fixed threshold and L ∈ Rd′×d the linear transformation
matrix we look for, where d is the dimension of the initial features, and d′ ≤ d is
the dimension of the final transformed features. Let I be the set of identities in
the training set and K its cardinality. xil ∈ Rd represents the feature in the initial
space of the lth image of person i ∈ I, with l ∈ [1, . . . , ni], where ni ∈ N denotes
the number of images of person i. Let Dii = {xil − xil′}l,l′∈[1,ni],l<l′ be the set of
difference between positive pairs of features of person i and mii its cardinality. Let
Dij = {xil − xjl′}i 6=j,l∈[1,ni],l′∈[1,nj ] be the set of difference between negative pairs of
features involving person i and j, and mij its cardinality.

3.2.3 Mathematical formulation

We cast the open world re-identification scenario as a binary classification task. Our
goal is to find a linear transformation L of the features such that the distances of
positive respectively negative pairs are smaller respectively bigger than the decision
threshold. For an easy use, the decision threshold which enables to accept or reject
a probe person is fixed during the training phase and the same threshold can be
used for test.

We reckon that penalizing misclassified pairs in a linear way with respect to their
distance to the decision threshold as done in PCCA [20] is sensible to outliers. Rea-
soning in terms of number of misclassified pairs seems more robust to outliers, but
this favors elements that are widely represented such as identities that are captured
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by many images and negative pairs that are much more numerous than positive
pairs. Therefore, we will minimize proportions of misclassified pairs rather than the
number of misclassified pairs.

To ensure that every couple of identities is given the same importance, regardless
of the number of images each identity appears in, the loss associated to a pair of
images of a given couple of identities is weighted by the inverse of the total number
of pairs involving that couple of identities. Similarly, to avoid favoring negative
pairs over positive ones, the maximum cost associated to positive and negative pairs
should be the same. Consequently, we minimize for each identity the proportion of
misclassified positive pairs and for each couple of distinct identities, 1

K−1 times the
proportion of misclassified negative pairs. This is expressed by the following cost
function:

E(L) =
∑
i∈I

 1

mii

∑
y∈Dii

L+

(
‖Ly‖22 − τ

)
+

1

K − 1

∑
j∈I\i

 1

mij

∑
y∈Dij

L−
(
τ − ‖Ly‖22

)
(3.1)

where L− and L+ are the loss functions respectively applied to negative and positive
pairs.

To strictly stick to the previous interpretation of our cost function, the loss func-
tions should be Heaviside functions. However Heaviside functions are not derivable,
so instead of replacing them by a random derivable S-shape function that would
simply act as a counting function, we take this opportunity to choose a flexible
S-shape function that can tackle some more issues. Generalized logistic functions

S(z) = A+
B − A

(C +De−λz)
1
ν

with C > 0, D > 0 (3.2)

that are parameterized by six parameters, A,B,C,D, λ, ν, are an extension of sig-
moid and logistic functions.

The first aim of the loss function is to bound the loss associated to each pair to
a value between 0 and 1 so that it is easier to balance the importance given to each
pair, identity or couple of identities. Imposing that the generalized logistic function
takes the value 0 when elements are very well classified and the value 1 when they
are completely missclassified implies that :


λ > 0
A = 0

B = C
1
ν

(3.3) or


λ < 0
A = 1

B = 1− C 1
ν

(3.4)

Thanks to their S shape, generalized logistic functions penalize differently el-
ements that are close to their inflexion point or far away from it. We use this
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property to limit the influence of outliers image pairs. When a pair’s distance is
far from the threshold, it is already very well classified or completely misclassified
so a little variation of the distance will not change the classification outcome. Con-
versely, when a pair’s distance is close to the threshold, either it is misclassified but
almost in the right class in which case it should be highly encouraged to vary in the
right direction, either it is already well classified and it should be strongly prevented
from varying in the wrong direction. Therefore, the closer a pair’s distance is to
the threshold, the more its variation should hold importance, and the further away
from the threshold, the less its variation should matter. This implies that the inflex-
ion point of the generalized logistic function corresponds to the case when a pair’s
distance is equal to the threshold. The second derivate of the generalized logistic
function in zero equals zero imposes

D = Cν. (3.5)

The two previous constraints reduce to two the number of parameters that need
to be chosen. We can only use generalized logistic functions where ν > 0 that are
defined by:

{
λ > 0
S(z) = 1

(1+νe−λz)
1
ν

(3.6)

or

{
λ < 0
S(z) = 1− 1

(1+νe−λz)
1
ν

(3.7)

In Figure 3.3, on the first row, we visualize on the left some generalized logistic
functions verifying Eq. 3.6 and on the right some generalized logistic functions veri-
fying Eq. 3.7. On the second row, the corresponding gradient functions are plotted.
The generalized logistic functions values are between 0 and 1 and the inflexion point
is in 0.

For ν = 1, the loss function is a sigmoid which is symmetrical with respect to its
inflexion point. In that case, a variation in opposite direction of the distance of two
pairs that are at the same distance to the threshold, one being well classified and the
other misclassified, will have no effect on the overall value of the cost function. Well
classified elements should be encouraged to be further away from the threshold only
when they are very close to it while misclassified elements should still be penalized
even when they are far from the threshold. To fulfill this requirement, ν should be
smaller than 1 in the Eq. 3.6, and bigger than 1 in the Eq. 3.7.


λ > 0,
ν < 1,
S(z) = 1

(1+νe−λz)
1
ν

(3.8)

or


λ < 0,
ν > 1,
S(z) = 1− 1

(1+νe−λz)
1
ν

(3.9)
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Figure 3.3 – Examples of generalized logistic functions and their gradient.
On the first row are plotted generalized logistic functions verifying Eq. 3.6 (left) and Eq. 3.7
(right). The corresponding gradient functions are plotted on the second row. Red curves are
sigmoides functions. For S shaped functions verying Eq. 3.6 (left), the gradient is bigger for
positive values than for negative values when ν < 1 (blue). For S shape functions verying Eq. 3.7
(right), the gradient is bigger for positive values than for negative values when ν > 1 (yellow).

Distances have 0 as a lower bound but do not have an upper bound. Therefore,
well classified negative pairs can be far from the threshold but well classified pos-
itive pairs can not. To compensate for this asymmetry, the loss functions L+ and
L− associated to positive and negative pairs should be different.

In the end, for a given choice of threshold τ , there are four parameters to choose:
ν+ and λ+ for L+, and ν− and λ− for L−. The value of the threshold itself is
not important. To obtain the same results with another choice of threshold τ2,
the parameters ν+ and ν− are unchanged while the λ+ and λ−parameters should
be multiplied by the ratio τ

τ2
. What is important about the threshold is that it is

the same one that is used during the training phase and for the test phase of the
verification task.

3.2.4 Optimization

Our cost function is bounded and not monotonous, so there are minima. The op-
timization of the cost is done using gradient descent algorithms. The gradient is
given by:
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∂E
∂L

(L) = 2
∑
i∈I

[
1
mii

∑
y∈Dii

L′+
(
‖Ly‖22 − τ

)
LyyT

+ 1
K−1

∑
j∈I\i

(
1
mij

∑
y∈Dij

L′−
(
τ − ‖Ly‖22

)
LyyT

)] (3.10)

where

L′(z) =
|λ|e−λz

(1 + νe−λz)
1
ν
+1

(3.11)

3.3 Experimental results

3.3.1 Feature extraction

Our method is not attached to a specific feature so we tested it with two types
of features. We use LOMO [23], a hand-crafted feature designed for person re-
identification. We also tested our approach with the more generic feature extracted
with the Inception-Resnet-v2 neural network [117] that has been trained for classifi-
cation tasks. We will refer to the Inception-Resnet-v2 features by the abbreviation
IR.

The dimension of the LOMO and IR features are rather large, respectively 16960
and 1536. Therefore, before learning our transformation matrix, we first perform
a supervised dimension reduction step using multiclass LDA (Linear Discriminant
Analysis). Using all the images of the training set, but considering only cross-view
image pairs (pairs of images coming from two different cameras), we compute the
between class scatter matrix Σb and the within class scatter matrix Σ. We solve the
generalized eigenvalue problem

arg max
w

wTΣbw

wTΣw
, (3.12)

and keep the eigenvectors w corresponding to eigenvalues that are superior to 1,
ie. we keep the directions in which the between class variance is bigger than the
within class variance. If there are more than 128 eigenvectors with eigenvalues big-
ger than 1, we only keep the 128 eigenvectors associated to the biggest eigenvalues.
By projecting our initial features on the base formed by the selected eigenvectors,
we obtain new features that have a dimension smaller or equal to 128.

This multiclass LDA dimension reduction step is also used in the XQDA [23]
approach in which it is follow by a KISSME metric learning step [21]. We ex-
perimentally found that using XQDA [23] or multiclass LDA as a first dimension
reduction step lead to similar results. This is understandable since the composition
of two linear transformations is still a linear transformation, and COPREV ◦ XQDA
which is COPREV ◦ KISSME ◦ LDA can be reduced to COPREV ◦ LDA. This is
why throughout this chapter we will compare our method to XQDA [23].
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3.3.2 Implementation details

During the training phase, we use cross-view image pairs (ie. one image comes from
the probe camera, and the other from the gallery camera). Unless specified other-
wise, training is performed using 200 randomly selected positive pairs per identity
and 200 randomly selected negative pairs per couple of distinct identities.

We learn a square transformation matrix L by optimizing our cost function with
the Matlab fminunc solver with the quasi-newton algorithm.

The value of threshold τ is fixed to 1. The presented results correspond to tests
conducted with the following parameters: ν+ = 4, ν− = 4, λ+ = −4 and λ− = −16.
Figure 3.4 shows a visualization of the loss functions.
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Figure 3.4 – Visualization of the loss function for positive (solid) and negative (dash) pairs.

3.3.3 Datasets and Re-ID scenarios

As far as we know, [47] is the only paper which evaluated its method on both the
closed world re-id task and the type of open world re-id scenario we tackle, and does
so on a multi-shot dataset. For fair comparison, we therefore chose to use the same
datasets and test protocols as in [47].

iLIDS-VID [9] contains sequences of variable length, with 22 to 192 images,
from 300 people. The images are captured in a busy airport by 2 cameras. The
main difficulty comes from the occlusions.
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PRID2011 [11] contains sequences of variable length, with 5 to 675 images,
from 934 people captured by 2 cameras. Only 200 people appear in both cameras.
The remaining people are captured either only by camera A or only by camera B.
For this dataset, even for the closed world person task, several test protocols exist.
Some papers include in the gallery some distractor identities that appear only in
the gallery camera, but in most papers only the 200 common identities are used.
Yet other papers, among which [47], use an even more reduced part of the dataset.
Those methods are mostly based on spatio-temporal features that capture infor-
mation about people’s gait and which require a minimum number of images in the
sequence. We follow the test protocols of [9] and [47] where only images from 178
identities that appear in both cameras with more than 21 images per sequence are
used.

We adopt a multi-shot protocol using all the images of the sequences. During
test, the distance between a probe identity and a gallery identity is chosen to be the
mean of the distances of all the pairs of images from those two people.

For closed set scenario, we follow the test protocol from [9] using the provided
10 splits of the data into training and testing sets, each containing half of the identi-
ties, ie. 150 people for iLIDS-VID and 89 for PRID2011. Probe images are captured
by camera A and gallery images comes from camera B.

For open set scenario, we follow the test protocol from [47] using the same 10
splits as in the closed world scenario, but the gallery set of the test set is reduced to
100 people for iLIDS-VID and to 60 people for PRID2011. One third of the probe
identities are not present in the gallery. Since we use the same splits, the training is
actually done once for each split, but there are separate evaluations for closed and
open world scenarios.

3.3.4 Precision about the evaluations

The closed world tests are evaluated using CMC, Cumulative Matching rank Curve.
For a given rank r, it represents the proportion of probe identities for whom the
right match is at a rank smaller or equal to the rank r. We report CMC values at
ranks 1, 5, 10, 20.

For the open world scenario, paper [47] reports DIR (Detection and Identifi-
cation Rate) values at first rank for several FAR (False Acceptance Rate) values
(1%, 10%, 50% and 100%). In the case of iLIDS-VID, there are 50 probe imposters,
so when only one of them is wrongly accepted, the FAR value already equals 2%.
Therefore, what we actually report for iLIDS are the DIR values when FAR equals
(2%, 10%, 50% and 100%). In the case of PRID2011, there are 29 probe imposters,
so when only one of them is wrongly accepted, the FAR value already equals 3.4%.
Therefore, what we actually report for PRID are the DIR values when FAR equals
(3.4%, 10.3%, 48.3% and 100%).
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3.3.5 Evaluation on closed world re-id scenario

In Tables 3.2 and 3.3, we report CMC values at rank 1, 5, 10 and 20, for our COPReV
method tested with two features (LOMO [23] and Inception-Resnet-v2 [117]). We
also report the performance of other state-of-the-art methods that were evaluated
on the same closed world re-id scenario.

Dataset PRID2011
Rank 1 5 10 20
MDTS-DTW [47] 69.6 89.4 94.3 97.9
DVR [9] 77.4 93.9 97.0 99.4
XQDA+IR 41.2 68.9 79.9 90.2
COPReV+IR 53.0 80.8 91.5 98.1
XQDA+LOMO[23] 86.4 98.3 99.6 100.0
COPReV+LOMO 82.8 97.8 99.6 100.0

Table 3.2 – Evaluation on closed world person re-identification task. CMC value at rank 1, 5, 10,
20 for PRID2011 dataset.
Best results are in bold red.

Dataset iLIDS-VID
Rank 1 5 10 20
MDTS-DTW [47] 49.5 75.7 84.5 91.9
DVR [9] 51.1 75.7 83.9 90.5
XQDA+IR 11.1 29.0 39.6 51.5
COPReV+IR 21.9 51.2 66.9 81.3
XQDA+LOMO[23] 55.9 83.4 90.5 96.1
COPReV+LOMO 53.9 83.4 91.6 97.9

Table 3.3 – Evaluation on closed world person re-identification task. CMC value at rank 1, 5, 10,
20 for iLIDS-VID dataset.
Best results are in bold red.

Let’s first compare the performance of our COPReV method with the XQDA
approach [23]. The results obtained with the hand-crafted LOMO feature designed
for person re-identification performs much better than the more generic IR fea-
ture, for both COPReV and XQDA approaches, which highlights the well-known
fact that the choice of the features plays an important part in the re-identification
performances. But of course only good features are not enough, a good matching
distance is also necessary. For the IRfeature, COPReV performs clearly better than
XQDA, with around 10% difference in the recognition rate at all ranks on the PRID
dataset, and up to 30% on the iLIDS-VID dataset. For the LOMO feature, XQDA
is slightly better at first rank, but the two methods are equivalent for the other ranks.

As for the MDTS-DTW [47] and DVR [9] approaches, they are based on spatio-
temporal features and the matching involves matching video fragments rather than
matching pairs of images and fusing their results. Therefore, those methods differ
from ours in both the representation part and the matching part. Thus, we can not
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point out what makes one method better than the other, we simply observe that
for both datasets, we obtain better results than in [47, 9] by applying our COPReV
transformation to the LOMO features.

3.3.6 Evaluation on open world re-id scenario

We report in Tables 3.4 and 3.5 the DIR values at first rank (r = 1) when FAR
equals 1%, 10%, 50% and 100%.

Dataset PRID2011
FAR(%) 1 10 50 100
MDTS-DTW [47] 42.7 55.2 70.5 72.8
DVR [9] 46.8 58.3 78.3 79.7
XQDA+IR 3.0 8.7 24.7 47.7
COPReV+IR 8.3 15.8 40.0 60.5
XQDA+LOMO [23] 21.0 40.5 80.3 90.3
COPReV+LOMO 26.5 43.5 81.0 87.5

Table 3.4 – Evaluation on open-world re-identification task. DIR values at rank 1 for several values
of FAR (1%, 10%,50% and 100%) for PRID2011 dataset.
Best results are in bold red.

Dataset iLIDS-VID
FAR(%) 1 10 50 100
MDTS-DTW [47] 12.7 32.6 51.8 57.3
DVR [9] 17.3 29.1 49.9 57.8
XQDA+IR 0.6 2.0 8.6 13.7
COPReV+IR 1.2 5.7 17.4 25.8
XQDA+LOMO [23] 5.6 15.4 45.8 59.9
COPReV+LOMO 3.9 21.0 47.9 59.1

Table 3.5 – Evaluation on open-world re-identification task. DIR values at rank 1 for several values
of FAR (1%, 10%,50% and 100%) for iLIDS-VID dataset.
Best results are in bold red.

Similarly to the closed world case, the DIR vs. FAR results with LOMO are
better than with the IRfeatures. Though not negligible for the LOMO features, the
contribution of our COPReV approach compared to XQDA is more noticeable for
the IRfeatures, especially for medium and big values of FAR.

However, we must acknowledge that the DIR values at first rank when FAR
equals 1% are still far from the open world results of MDTS-DTW [47] and DVR
[9] approaches and we only manage to obtain similar results to those methods when
FAR takes big values (50% or 100%).
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3.3.7 Discussion on the evaluation measures and practical uses

With the closed world results in Tables 3.2 and 3.3 and the open world results in
Tables 3.4 and 3.5, we can observe in a real case, that having good performances in
terms of CMC does not guarantee to have good results in terms of DIR vs. FAR.

While CMC evaluation only assesses a relative ranking ability, the DIR vs. FAR
evaluation takes into account both ranking and false acceptance rate. However, re-
porting DIR results only for rank 1 is not sufficient to assess the performance of an
approach, the other top ranks are also important. Let’s consider an extreme case
where the right match is at the second rank for every probe identity. Then the DIR
value at first rank is zero for any value of FAR, yet an approach that would be able
to achieve such a result would be quite a good one.

Moreover, the False Acceptance Rate FAR only takes into account the most sim-
ilar false match for imposter probe identities. It does not capture the difference
between a situation where a probe imposter could be wrongly matched with one
gallery identity or with many of them. In real applications however, we do not
know in advance that the person has never been identified previously. Therefore,
we would check the whole list of gallery identities who have a distance smaller than
a threshold value τ before stating that the person is an imposter. The fact that the
list contains only one gallery identity, or many of them makes a huge difference. The
reader can take a look at the toy example in Figure 3.2 and compare the method B
and C for the second open world partition.

People report DIR values for only first rank for FAR varying from 1 to 100, but
we are actually more interested in DIR values for several top ranks and only for low
FAR values.

Besides, since we expect to find the right match among the first r gallery identi-
ties whose distances are smaller than a threshold τ , that threshold must be chosen at
some point. Based only on the DIR vs FAR evaluation, we can not determine which
threshold to use. Moreover, the best threshold to base the decision on might depend
on the dataset, the application, etc., and nothing in the DIR vs. FAR evaluates the
difficulty to find a good decision rule.

In summary, CMC only evaluates ranking, while DIR vs. FAR is a unified mea-
sure for Detection and Ranking, but reporting DIR values at rank 1 only for FAR
varying from 1 to 100 does not reflect well what we actually care about in practical
use: up until which rank and up until which distance value should we look for the
right match or reject the probe person?

The open world task we tackle is composed of two subtasks, the detection and
the re-identification task. The re-identification part is already assessed by the CMC
metric. For the detection part, it seems biased to considerer differently a negative
pair where the probe identity is an imposter person to the case where the probe
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identity is a known gallery person, as it is the case with the DIR vs. FAR metric.
We reckon we should evaluate an open world re-id method on its ability to make
the decision on whether an image pair corresponds to one single person or to two
different people in an non biased way. Therefore, we propose to simply evaluate the
detection part using true positive rate (TPR or recall) and true negative rate (TNR
or specificity) so as to know how good we are in retrieving positive pairs and how
good we are in rejecting negative pairs.

3.3.8 Evaluation on the verification task

We evaluate the verification task with TP rate and TN rate where TP rate = TP
TP+FN

and TN rate = TN
TN+FP

.

We base our decision on whether a pair of images corresponds to one person or
to distinct people on a simple threshold rule. That decision threshold is not a pa-
rameter to be determined after the learning phase. We use as decision threshold the
threshold used at the training phase. Indeed, the whole purpose of our COPReV
approach is to learn a projection so that distances of negative and positive pairs
are well distributed on either side of the threshold, so it is only right that for the
test phase we use the same threshold, and even if the generalization is not perfect,
we still expect that positive pairs distances will be under the threshold and that
negative pairs distances will be above the treshold.

In Table 3.6, we report the recall and specificity rates obtained on PRID2011 and
iLIDS-VID for the two tested features. We did not report these rates for XQDA
since XQDA metric learning method does not make use of a threshold at train phase
and finding the best threshold to be used for verification would require a whole pro-
cess of cross-validation which is precisely what we want to avoid with our method.

PRID2011 iLIDS-VID
TP rate TN rate TP rate TN rate

COPReV+IR 89.2 87.7 57.9 93.5
COPReV+LOMO 99.2 88.1 94.2 90.8

Table 3.6 – Evaluation for the verification task on PRID2011 and iLIDS-VID. Recall (or TP rate)
and specificity (or TN rate) values are reported.

By using at test time the same threshold as in training, we achieve high true
positive rate and high true negative rate (around 90%) with the LOMO features.
For the IRfeatures, the results are lower. The two rates (TP rate and TN rate) are
quite balanced in most of the cases, which is exactly what we aimed to obtain.

In complement to the recall and specificity values, the Table 3.7 shows the mean
value of the distances of positive pairs and negative pairs. The threshold has been
set to 1 and we can observe for both datasets and both features that the average
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distance of positive pairs is closer to the threshold than the average distance of neg-
ative pairs. This is the case even when the TP rate is larger than the TN rate. This
is because distances have 0 as lower bound, and it is difficult to have very small
distances. Distances do not have upper bound, and even if from a certain value of
distance on we do not enforce negative pairs to be bigger, it does not mean they can
not take bigger values.

PRID2011 iLIDS-VID
mean distance mean distance

pos. pair neg. pair pos. pair neg. pair
COPReV+IR 0.88 1.64 0.99 1.62
COPReV+LOMO 0.51 1.81 0.70 1.74

Table 3.7 – Evaluation for the verification task on PRID2011 and iLIDS-VID. Average positive
pairs distances and average negative pairs distances are reported.
The decision threshold is set to 1.

3.3.9 About the initialization

Even though the objective function is not convex, experimentally, we found that
under some easily verified conditions, the results were not much dependent on the
initialization of the projection matrix. We tested initializing the projection matrix
with several uniformly distributed random values and normally distributed random
values and most of the time our cost function converge to the same value resulting
in the same performances. The only point that must be taken into account is that
the distance of positive and negative pairs obtained by using the initial projection
matrix should be in the range of the fixed threshold. Indeed, if it is not the case,
the gradient of the positive and negative pairs loss functions will probably be near
zero and the optimization will not even start. If this is the case, simply multiplying
the initial matrix by a relevant constant coefficient will do the trick.

However, this is true when the features have already been preprojected on the
lower dimension using LDA. Without this preprojection step, the proposed COPReV
method is more sensible to local minima.

3.3.10 Robustness to unbalanced data

The unbalanced data in the training set is handled thanks to the normalization co-
efficients which weight the importance of the loss function associated to each pair
of images. To assess the relevance of that normalization, we conduct some experi-
ments on the first partition of the iLIDS-VID dataset, keeping the same test set as
previously, but using only a part of the training set to simulate unbalanced data.
The new training sets are formed by randomly selecting 10 people out of the 150
training identities for whom we keep up to 20 images per camera while the remaining
people are only represented by 3 images per camera. The training is computed 10
times, with 10 random selections of the identities that are overrepresented compared
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to other identities. All pairs of images of the reduced training set are used during
the training process. We compare the performance of our COPReV method with
a variant of it where the normalization coefficients are replaced by 1. We use the
LOMO features [23] as initial features.

Tables 3.8 and 3.9 are about the relevance of the positive and negative pairs
distributions with respect to the fixed decision threshold τ = 1. In Table 3.8 we
report the mean TP rate and TN rate. In Table 3.9, we report the mean over the
10 rounds of the mean positive pairs distances and mean negative pairs distance.

TP rate TN rate
without normalization 50.8 100
with normalization 88.9 94.6

Table 3.8 – Recall and specificity on iLIDS-VID open world test set, first partition, for variants of
our COPReV formulation, based on an unbalanced training set.

mean positive pair distance mean negative pair distance
without normalization 1.47 2.80
with normalization 0.83 1.88

Table 3.9 – Mean distance of positive and negative pairs on iLIDS-VID open world test set, first
partition, for variants of our COPReV formulation, based on an unbalanced training set.

Without the normalization, only half of the positive pairs have a distance that
is smaller than the decision threshold. Moreover, the mean value of positive pairs
distance is much bigger than the threshold. The much bigger number of negative
pairs is very likely to be the cause of it. With the normalization coefficients, we
have balanced TP and TN rate even if the training set was unbalanced. The mean
of positive pairs distance is under the threshold, and the distance of negative pairs
distance is above the threshold, just as it is supposed to be.

To assess how much the unbalanced data affected the results, we compute for
every pair of identities, the standard deviation of its distance over the 10 rounds.
We report in Table 3.10 the mean of the standard deviation for positive pairs dis-
tances and for negative pairs distances separately. To avoid any misunderstanding,
we would like to point out that this is not at all equivalent to the standard deviation
of the mean of the distance of positive pairs and of negative pairs.

Given that the decision threshold is τ = 1, a standard deviation of 0.3 for a pair’s
distance is quite a lot, but this is the case in average for the negative pairs when we
do not apply any normalization coefficients. With our normalization formulation,
the standard deviation for negative pairs distances is also large (0.2), but already
much smaller. For the positive pairs distances, the mean standard deviation in also
smaller in the case we weight the loss functions than in the case we do not weight
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mean std positive pairs mean std negative pairs
without normalization 0.14 0.32
with normalization 0.08 0.21

Table 3.10 – Mean of the standard deviation of positive and negative pairs distances over the 10
rounds.

them. This shows that weighting the loss functions helps lessen the sensibility to
unbalanced data.

3.4 Conclusion

In this chapter, we discussed about the person re-identification task, and more specif-
ically the difference between the closed and open world re-identification tasks. We
highlighted the fact that ranking methods alone are not sufficient for tackling open
world scenarios so we proposed to adopt a verification perspective. Through the op-
timization of our cost function, COPReV learns a linear transformation of the space
such that the number of misclassified pairs is minimized while not favoring negative
pairs nor largely represented identities. Rather than reasoning on the distances of
misclassified pairs, or directly on the number of misclassified pairs, we reasoned on
the proportions of misclassified positive and negative pairs. This enabled our method
to be less sensitive to unbalanced training data. For both tested datasets, and for
both closed and open world evaluations, COPReV improved the performances for
the different tested features. However, while our closed world performances are at
the state-of-the-art, for the open world case, DVR [9] and MDTS-DTWt [47] meth-
ods still outperform our approach. This could be due to the features because both
DVR [9] and MDTS-DTWt [47] use time space features. However, we reckon that
casting the re-identification task only as a verification problem without any ranking
constraints might be one of the main reasons why the performances of COPReV are
mitigated.



Chapter 4

Sparse representations with
enhanced collaboration

In the previous chapter, the presented COPReV method focuses solely on the de-
cision that needs to be taken about the presence or absence of the probe person in
the gallery set. If a perfect decision method existed, it would make it unnecessary
to also integrate ranking constraints. However this is not the case. For the open
world re-identification task, focusing only on the decision aspect without taking
ranking aspects into account is not enough. A good method should consider both
decision and ranking aspects. In that regard, collaborative sparse coding seems to
be a perfect tool. On one hand, by its collaborative aspect, collaborative sparse cod-
ing integrates ranking considerations. On the other hand, the sparsity aspect could
be exploited to manage the decision part of the open world re-identification task.
However, would this really be sufficient to tackle the open world re-identification
task? Does collaboration manage absolute ranking or only relative ranking? Will
the sparsity of representations enable to reject most of the wrong matches or solely
a small part of obvious wrong matches?

In addition to its relevance for the open world task, another advantage of sparse
representations is its relevance for tackling multi-shot scenarios. Indeed, sparse rep-
resentation allows to compare in one go a probe image with all the images of a
gallery person so that two people can be deemed similar even if not all their images
are alike but only a few of them match, for example those where they appear with
the same pose.

After introducing in the first section the notations and important notions needed
for the rest of the chapter, the second section of this chapter studies the difference
between collaborative and non collaborative sparse coding when applied to the per-
son re-identification task in order to make the most of both the collaborative and
the sparsity aspects of collaborative sparse coding. Based on the observations made
in the second section, the third section presents a collaborative sparse coding ap-
proach designed for the open world re-identificaton task where the collaboration is
enhanced. The last section is dedicated to the analysis of the experimental results
on closed and open world re-identification tasks and on person verification tasks.
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4.1 Preliminaries

4.1.1 Notations: training and testing data

Let Tg and Tp be the matrices corresponding to the concatenation of column features
extracted from training images respectively from the gallery camera and from the
probe camera. For our sparse coding approach, the identity associated to each train-
ing image does not matter, therefore unlabelled training images can be exploited.

As for the testing set, let K be the set of gallery identities and L be the set of
probe identities. In a closed world setting, card(K) = card(L) = C and we could use
c ∈ [1, . . . , C] to refer to each person’s identity. In an open world setting, there are
common identities (K∩L 6= ∅) but the two sets of identities are not equal (K 6= L).
We call probe imposter an identity who is in the probe set but not in the gallery set
(L \ (K ∩ L)) . A distractor refers to a person who is present in the gallery set but
not in the probe set, ie. a person who is in K \ (K ∩ L).

Let K = card(K) and L = card(L) be the number of identities respectively
in the gallery set and in the probe set. The set of gallery identities is given by
K = {k1, . . . , kK} = {ki}i∈[1,K] and the set of probe identities is described by
L = {l1, . . . , lL} = {lj}j∈[1,L].

In a multi-shot dataset, every probe and gallery person are represented by several
images and the number of images available for each person varies. Let nki be the
number of images of gallery person ki and mlj be the number of images of probe
person lj. Each image is described by a single feature column vector of length d.
We refer by the letter g a feature from a gallery image and by the letter p a feature
from a probe image. The matrix Gki = [gki,1, . . . , gki,nki ] is the gallery person ki’s
dictionary, it is the concatenation of all its features. The concatenation of all the
gallery features forms the gallery dictionary G = [Gk1 , . . . , GkK ]. Similarly the ma-
trix Plj = [plj ,1, . . . , plj ,mlj ] is the concatenation of the features of all the images of

probe person lj.

To lighten the notations, when there is no ambiguity, we drop the i and j sub-
scripts, and refer to a probe identity by the letter l and refer to a gallery identity
by the letter k.

4.1.2 Notations: sparse coding

In section 2.3.4 we have seen that a sparse representation depends of the dictionary
with which the sparse representation has been computed and on the choice of the
sparsity penalization function. In the rest of the thesis, we will always specify the
dictionary with which a sparse code has been computed and we adopt the L1 norm
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as sparsity penalization function.

For a column vector x of dimension d and a dictionary D of dimension d× u, a
sparse representation of x using dictionary D is a column vector ax,D of dimension
u solution of the following Lasso problem:

ax,D = arg min
a
||x−Da||22 + λ||a||1. (4.1)

where λ is a parameter with a value between 0 and 1.

Let’s consider that the dictionary D is the concatenation of Q subdictionaries,
ie.

D = [D1, D2, . . . , DQ] (4.2)

where Dq for q ∈ [1, Q] is of dimension d× vq, and
∑Q

q=1 vq = u.

The sparse representation ax,D can be decomposed accordingly to the subdic-
tionaries into:

ax,D =


ax,D,D1

ax,D,D2

...
ax,D,DQ

 (4.3)

where ax,D,Dq is a column vector of dimension vq.

Since ax,D is a sparse representation of x computed with the dictionary D, we
have an approximation of x by a sparse linear combination of dictionary elements
(columns of D) :

x ≈ Dax,D = [D1, D2, . . . , DQ]


ax,D,D1

ax,D,D2

...
ax,D,DQ

 (4.4)

The reconstruction error of x using the dictionary D is defined by:

ex,D = ||x−Dax,D||22. (4.5)

The residual reconstruction error of x using only the elements from dictionary
Dq for q ∈ [1, Q] while the sparse representation ax,D of x has been computed with
dictionary D is given by:

rx,D,Dq = ||x−Dqax,D,Dq ||22 (4.6)

In our problem, we compute the sparse representation of many elements, so we
prefer to adopt a matrix formulation. Let’s suppose we are given N column vectors
x1, x2, . . . , xN and we want to compute their sparse representations ax1,D, ax2,D, . . . , axN ,D
using dictionary D. It can be done by solving the Lasso problem of Eq 4.1 for each
of the column vectors. It is equivalent to consider the matrix X of dimension d×N ,
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concatenation of the N column vectors X = [x1, x2, . . . , xN ] and solve the following
Lasso problem:

AX,D = arg min
A
||X −DA||2F + λ||A||1 (4.7)

where ||.||F is the Frobenius norm. The dimension of AX,D is u × N . The nth

column of AX,D corresponds to the sparse code of the nth column of X. Each row
of AX,D corresponds to the weight of the participation of a column of D for the
reconstruction of X. AX,D can be decomposed into:

AX,D = [ax1,D, ax2,D, . . . , axN ,D] =


ax1,D1 , ax2,D1 , . . . , axN ,D1

ax1,D2 , ax2,D2 , . . . , axN ,D2

...
ax1,DQ , ax2,DQ , . . . , axN ,DQ

 (4.8)

axn,Dq is the submatrix of AX,D containing the weight coefficients corresponding
to the participation of subdictionary Dq to the reconstruction of elements xn.

The reconstruction error of X using dictionary D is the sum of the reconstruction
error of each column of X:

eX,D = ||X −DAX,D||2F (4.9)

The mean reconstruction error of X using dictionary D is the mean of the recon-
struction error of each column of X, it is given by:

EX,D =
||X −DAX,D||2F

N
(4.10)

The residual reconstruction error of X using only the elements from dictionary
Dq for q ∈ [1, Q] while the sparse representation AX,D of X has been computed with
dictionary D is given by:

rX,D,Dq = ||X −DqAX,D,Dq ||2F (4.11)

The mean residual reconstruction error of X using only the elements from dictio-
nary Dq for q ∈ [1, Q] while the sparse representation AX,D of X has been computed
with dictionary D is given by:

RX,D,Dq =
||X −DqAX,D,Dq ||2F

N
(4.12)

The reader should simply remember that when there are 2 or 3 subscripts, the
first subscript refers to the element whose sparse code has been computed, the second
subscript refers to the dictionary used for computing the sparse representation and
the third subscript refers to a subdictionary of the dictionary used for computing
the sparse code.

4.1.3 Features prerequisites

The method we propose is not specific to a given type of features, but we require
to have one descriptor per image and every descriptor must have a unit L2 norm.
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If the chosen descriptor is not designed as such, one simply needs to normalize
every descriptor before applying our sparse representation method. This feature
normalization step is necessary and is an important point of this method. Firstly,
the features that compose a dictionary should have the same norm so that there is
a fair competition between each element. Indeed, suppose the norm of one feature
is equals to C > 1 times another one. Then the one with a bigger norm will always
be preferred to the smaller one because for the same decrease in the reconstruction
error term, the sparsity penalization term will be C times smaller. Secondly, the
features for which we compute the sparse representation should also have the same
norm otherwise we should modify the λ parameter that balances the importance
given to the reconstruction error and the sparsity accordingly to the norm of the
feature to be reconstructed.

4.2 Collaborative versus non collaborative sparse coding

4.2.1 Non collaborative sparse coding of probe elements

A non collaborative sparse coding method for re-identification requires the compu-
tation of a sparse code for each of the probe identities, using independently each of
the gallery identities’s specific dictionary.

When given a probe person l’s features Pl, we compute the sparse representation
APl,Gk of Pl with respect to the gallery identity k using gallery dictionary Gk by
solving the following Lasso optimization problem:

APl,Gk = arg min
A
||Pl −GkA||2F + λ||A||1 (4.13)

where ||.||F is the Frobenius norm, ||.||1 is the L1 norm and λ is a trade-off parameter
between the reconstruction error and the sparsity penalization term, and its value
is chosen between 0 and 1.

The dissimilarity score s(l, k) between probe person l and gallery person k is
defined as the mean reconstruction error of probe elements using gallery dictionary
Gk:

s(l, k) = EPl,Gk =
||Pl −GkAPl,Gk ||2F

ml

(4.14)

The gallery identities are ranked from the most similar ones to the least similar
ones by increasing reconstruction errors.

In this thesis, we name this non collaborative sparse coding method Lasso DNC.
Lasso refers to the fact that the sparse representations are computed by solving a
Lasso problem. D stands for Direct. There is a need to specify this because in the
next chapter there will be a reverse approach. NC stands for Non Collaborative.



86 CHAPTER 4. SPARSE REPRESENTATIONS WITH ENHANCED COLLABORATION

4.2.2 Collaborative sparse coding of probe elements

In a collaborative sparse coding approach for person re-identification, only one sparse
representation is needed and it involves all gallery elements at the same time.

Given a probe person’s features Pl we compute its sparse representation APl,G
using the collaborative gallery dictionary G, concatenation of all gallery dictionaries,
by solving the following Lasso optimization problem:

APl,G = arg min
A
||Pl −GA||2F + λ||A||1 (4.15)

Since G = [G1, . . . , GK ], APl,G can be written as

APl,G =


APl,G,G1

APl,G,G2

...
APl,G,GK

 (4.16)

where APl,G,Gk is the sparse submatrix of APl,G which describes the participation of
dictionary elements Gk. For k ∈ [1, K], the dimension of APl,G,Gk is of nk ×ml.

The dissimilarity score s(l, k) between probe person l and gallery person k is
defined as the mean residual reconstruction error of the reconstruction of probe
features Pl using only the elements from gallery dictionary Gk given the sparse
representation computed with the dictionary D:

s(l, k) = RPl,G,Gk =
||Pl −GkAPl,G,Gk ||2F

ml

(4.17)

Gallery identities are ranked by increasing dissimilarity score, ie. the smaller the
residual error, the most likely the right match.

We call Lasso DC this approach where DC stands for Direct Collaborative.

4.2.3 Comparison of non collaborative and collaborative sparse coding

We have presented how non collaborative and collaborative sparse coding could be
used for the person re-identification task. In reality, no paper has proposed the non
collaborative sparse coding approach for tackling person re-identification. The aim
of this section is to point out what exactly makes the collaborative sparse coding
approach much more suitable for closed world person re-identification than the non
collaborative approach and to stress what is still lacking to tackle the open world
case.

In order to compute the sparse representation of probe features, in both the col-
laborative and the non collaborative cases, we optimize Lasso problems, respectively
Eq. 4.15 and Eq. 4.13. In the Lasso problem, the cost function is the sum of two
terms, the reconstruction error term and the sparsity term. Even if the sparsity
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term penalizes reconstructions that involve many dictionary elements, it is very un-
likely that the sparse matrix will be equal to the null matrix, some elements will be
selected for reducing the reconstruction error until a balance is found between the
two terms. In Figure 4.1 a two dimensions toy example is given.
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Figure 4.1 – Comparison of non collaborative (Lasso DCN) and collaborative sparse coding (Lasso
DC) approaches on a toy example.
The dimension of the features is d = 2. The probe person is represented by only one feature (black).
There are 3 gallery identities (blue, red, green), each of them are representated by 2 features. The
sparse representations obtained by the Lasso DCN and the Lasso DC approaches are presented
in the table, as well as the reconstruction errors (for Lasso DCN) and the residual errors (for
Lasso DC). In the Lasso DC case gallery people 2 and 3 do not particpate in the reconstruction of
probe element and only gallery person 1 who is the most similar to the probe person participates.
Therefore the residual errors for people 2 and 3 are both equal to 1. In the Lasso DNC case,
however, even if the green vectors are almost perpendicular to the black vector (gallery person 3 is
very dissimilar to the probe person), the non collaborative sparse code for gallery person 3 is not
null and even though the reconstruction error is not small, it is not null either.

For the sake of the example, let’s consider that the probe person is represented by
only one image, so we only compute the sparse representation of one probe feature
with unit L2 norm. In the rare case the sparse representation is a null vector, the
cost function equals the reconstruction error which is in this case also the norm of
the probe feature, ie. it equals 1. When the sparse representation is not null, the
cost function must therefore be equal or smaller to 1, which also means that the
reconstruction error is strictly smaller than 1 because the sparsity term is no longer
equal to zero.

In the non collaborative approach, the dissimilarity score is the reconstruction
error value. Therefore the dissimilarity score will hardly ever be equal to 1, but
most of the time it will be strictly smaller than 1. Even if some participate more
than others, every gallery person does participate in the reconstruction of the probe
feature, and there is no clear distinction between the reconstruction error value of a
gallery person who is not at all similar to the probe person and a gallery person who
is somehow similar to the probe person. Nonetheless, the reconstruction error still
enables to rank gallery identities because a gallery person who is more similar to
the probe person should still have a smaller reconstruction error than a less similar
gallery person.

In the non collaborative approach, the sparsity does not play an important role
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because every gallery person does participate in the reconstruction of the probe fea-
ture anyway. In the collaborative approach however, the sparsity plays an important
role. Because the matrix APl,D is sparse, some submatrices APl,D,Dk are null matri-
ces. This means that some gallery identities do not participate in the reconstruction
of the probe feature. All these gallery identities have the same dissimilarity score
which equals 1. Therefore they are either not ranked at all or they are all given the
same rank. This issue is tackled in the paper [68] which proposes to use iterative
sparse coding to rank all gallery identities. We argue that since these gallery identi-
ties do not participate in the reconstruction of probe features, it means they are not
similar enough to the probe person and are therefore obvious wrong matches. The
sparsity aspect of collaborative sparse coding enables to eliminate from the gallery
list the gallery identities that are the less likely to be the probe person.

As for the collaborative aspect, the collaborative reconstruction puts into com-
petition elements from different identities. Elements that are selected for the recon-
structions are the ones that are more similar to the probe person than the other
elements. The more a gallery person’s dictionary participates in the reconstruction,
the more likely he is to be the right match. The gallery identities who did participate
in the reconstruction of the probe feature are ranked by increasing residual error.

However, we must emphasize on the fact that such collaborative representations
only allow for a relative ranking and nothing ensures that the gallery person who
has the smallest residual error is actually similar to the probe person. At this point,
we must distinguish the closed world and the open world re-identification cases. In
the closed world case, the probe person is present in the gallery set. Therefore, the
right match will certainly participate a lot in the reconstruction of probe elements,
and as a consequence the participation of other gallery identities will be greatly
reduced. This will be the case for every probe person, so everything goes well. In
the open world case, the probe person might not be in the gallery set, which makes
a huge difference. If the presented probe person is an imposter probe person, even
if he is not present in the gallery, there will still be some gallery elements that will
be selected so that the reconstruction error decreases. We are back to a case similar
to the non collaborative sparse coding method: a probe person’s features must be
reconstructed with gallery elements none of which are actually related to the probe
person.

Moreover, even if the sparsity enables to find gallery identities who are clearly
dissimilar to the probe person, we can not reject a probe person and consider him
as an imposter probe person who has no right match among the gallery identities.
Indeed, there will always be some gallery elements who will participate in the recon-
struction of the probe person’s features, so we won’t obtain a residual error equal
to 1 for every gallery identity.
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4.3 Collaboration enhanced sparse coding for open world
person re-identification

4.3.1 Enhanced collaboration for open world re-identification

For tackling the open world re-identification, relative ranking is not sufficient, we
must also reject imposter probe people. In order to reject a probe person, the dis-
similarity score (or mean residual error) of every gallery person should be big, equal
to 1, or close to it. It means that no gallery person should participate in the recon-
struction of the probe features, or at least not much. However, we have seen that
a sparse representation matrix is hardly ever null, it is simply sparse. We therefore
propose to supplement the collaborative gallery dictionary with an additional dic-
tionary D which aim is to relieve the participation of the gallery dictionaries for the
reconstruction of imposter probe people’s features.

The optimization problem is similar to Eq 4.15, but there is now an additional
dictionary D and the sparse representation APl,[G,D] of probe features Pl using the
collaborative dictionary [G,D], concatenation of gallery dictionary G and the addi-
tional dictionary D, is computed by optimizing the following Lasso problem:

APl,[G,D] = arg min
A
||Pl − [G,D]A||2F + λ||A||1 (4.18)

The dissimilarity score s(l, k) between probe person l and gallery person k is
defined as previously by the mean residual reconstruction error of the reconstruction
of probe features Pl using only the elements from gallery dictionary Gk, but the
sparse representation is the one computed with dictionary [G,D]:

s(l, k) = RPl,[G,D],Gk =
||Pl −GkAPl,[G,D],Gk ||2F

ml

(4.19)

The gallery identities are ranked by increasing dissimilarity score, and for a probe
person l the best match is given by:

k∗ = arg min
k
RPl,[G,D],Gk (4.20)

Notice that the additional dictionary D is only used for the computation of the
sparse representations. The residual error corresponding to the additional dictio-
nary D is not exploited. Therefore the nature of D is not important. For example,
D could be the result of a dictionary learning process, a clustering process, etc. The
columns of D could also correspond to features extracted from real images and the
identity of the people represented in those images would not matter, so unlabelled
data can be used.

We refer to this collaboration enhanced sparse representation approach by Lasso
DCE where D stands for Direct, and CE for Collaboration Enhanced. The Figure
4.2 shows an overview of this Lasso DCE approach.
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4.3.2 Additional dictionary D

The only data available for us to construct the additional dictionary is the training
data, and we propose here a simple selection process to form the additional dictio-
nary.

The first point we would like to raise attention to is the camera from which the
images are captured. Maybe in a few years this point won’t be so relevant anymore,
but at this stage of development of person re-identification features, even the best
image descriptors and metric learning methods, are not yet capable of providing
features or transformed features which really are invariant to camera views. Im-
ages taken from the same camera have the same color rendering and it generally
shows people with similar pose and viewpoint which is still reflected in the final
features. Therefore, intraclass variability between images from a given person cap-
tured by gallery and probe cameras can be higher than the interclass variability
between images from different people all captured with the same camera. We wish
to have a fair competition between identities, so since the elements from the ad-
ditional dictionary will be competing against the collaborative gallery dictionaries
(with features extracted from images captured by the gallery camera), they should
also come from the gallery camera. Therefore, in our method, we do not use train-
ing data from the probe camera, we solely use training data from the gallery camera.

The additional dictionary is essentially meant to help avoid false matches by re-
ducing the participation of gallery identities in the reconstruction of imposter probe
elements. However, we know nothing about the imposter probe people. Probe im-
posters might be similar to some gallery identities. They might also be dissimilar to
every gallery people. In order to reject a maximum number of probe imposters, we
include in the additional dictionary all the training data available coming from the
gallery camera. While this additional dictionary should enable to reject more probe
imposters, the re-identification of non imposter probe people should not be affected.
Indeed, collaborative sparse coding selects the elements that are the most similar to
the elements to be reconstructed. If there is a match among the gallery people for
the probe person, the elements from the dictionary of this gallery person should be
the most similar to the features of the probe person so they should be among the
few selected elements, even if that gallery dictionary competes with elements from
an extended collaborative dictionary.

In the end, the additional dictionary we propose for our collaboration enhanced
sparse coding approach is simply composed of all the features from the gallery camera
images of the training set: D = Tg.

4.3.3 A method also relevant for person verification

In the person verification task, the goal is to determine whether a pair of identities
are the same people or distinct people. In the COPReV method, we had to specify a
decision rule that was used during the training phase and re-used at test time. With
our collaborative sparse coding approach, 1 is a natural decision threshold. Indeed,
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features are normalized to unit L2 norm. We have seen that when gallery identities
do not participate in the reconstruction of the probe person, their dissimilarity scores
equal 1. When gallery identities do participate in the reconstruction of the probe
features, most of the time the dissimilarity score is strictly smaller than 1 although
it might happen that it is bigger than 1.
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4.3.4 About the exploitation of multi-shot data

In this collaborative sparse coding Lasso DCE method, we exploit the multi-shot
aspect of probe data in the usual way by computing for each probe person, the mean
of the dissimilarity score of each of its images with regards to each gallery person.

The multi-shot aspect of gallery data is better exploited. When comparing a
probe person’s image to a gallery person, instead of comparing the probe image
to each of the gallery images separately, all of that gallery person’s images are
considered jointly. The residual error of a probe feature is computed by gallery
identity rather than by gallery image.

4.4 Experimental results

4.4.1 Implementation details and feature extraction

Optimization. All the optimization problems we consider are L1-norm minimiza-
tion problems which can be be solved using proximal algorithms. We used the
mexLasso function of the SPAMS library 1.

Parameters. The parameter λ has been set to 0.2 in all our experiments.

Features. We use as our base feature, LOMO features [23] that are already trans-
formed by a metric learning algorithm and a normalization step. Images are resized
to 128×64 pixels and we extract LOMO features of dimension 26960. All the train-
ing images are used to learn the XQDA [23] matrix M which is symmetric definite
positive and which can thus be decomposed into M = LTL. To obtain our final
features LOMOpn where the subcript pn stands for projected and normalized, we
project LOMO features using the projection matrix L into a lower dimensional space
and then normalize the projected features to unit L2-norm.

Since our approach is not specific to a given feature, the main tests have also
been conducted with other features. We use generic features that have not specifi-
cally been designed for the person re-identification task, they are extracted from a
well-known neural network, the Inception-Resnet-v2 network [117] which has been
trained on the ImageNet dataset for classification tasks. In the tables we will refer
to this feature by the abbreviation IR for Inception-Resnet feature. We tested our
approach with L2-norm normalized XQDA projected IR features (IRpn) and with
L2-norm normalized IR features (IRn) where the subscript n stands for normalized.

4.4.2 Datasets, training and testing sets, testing protocols, evaluation

Please refer to section 3.3.3.

1spams-devel.gforge.inria.fr/downloads.html
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4.4.3 Evaluation on closed and open world re-identification tasks

In order to assess the relevance of collaborative sparse coding for the re-identification
task and the relevance of enhanced collaboration for the open world case, we conduct
the tests with differents features to show the improvement they bring regardless of
the features. The closed world CMC performances are reported in Tables 4.1 and
4.2. The open world DIR vs FAR evaluations are reported in Tables 4.3 and 4.4.

Rank 1 Rank 5 Rank 10 Rank 20

MDTS-DTW [47] 49.5 75.7 84.5 91.9
DVR [9] 51.1 75.7 83.9 90.5
IR + Eucl. dist. 2.8 8.7 14.3 22.6
IRn + Lasso DNC 2.1 8.8 15.0 26.3
IRn + Lasso DC 2.9 10.9 18.3 31.5
IRn + Lasso DCE 2.7 11.4 18.6 32.1
IR + XQDA 11.7 30.9 41.5 53.6
IRpn + Lasso DNC 31.7 52.9 64.9 76.5
IRpn + Lasso DC 40.7 66.6 77.1 85.9
IRpn + Lasso DCE 40.1 65.1 76.2 85.9
LOMO + XQDA 55.3 83.1 90.3 96.3
LOMOpn + Lasso DNC 56.1 81.9 88.5 94.5
LOMOpn + Lasso DC 64.9 87.1 92.5 96.1
LOMOpn + Lasso DCE 65.1 86.6 92.4 96.1

Table 4.1 – Evaluation on closed world re-identification task. CMC value at rank 1, 5, 10 and 20
for iLIDS-VID dataset.
Best results are in bold red.

Rank 1 Rank 5 Rank 10 Rank 20

MDTS-DTW [47] 69.6 89.4 94.3 97.9
DVR [9] 77.4 93.9 97.0 99.4
IR + Eucl. dist. 14.4 39.2 52.7 70.0
IRn + Lasso DNC 26.5 53.3 67.2 78.2
IRn + Lasso DC 30.6 55.4 69.7 81.3
IRn + Lasso DCE 29.0 55.5 70.2 80.9
IR + XQDA 43.4 71.9 82.4 91.6
IRpn + Lasso DNC 68.5 89.7 94.7 97.4
IRpn + Lasso DC 70.7 90.0 96.1 98.3
IRpn + Lasso DCE 72.0 89.9 95.3 98.1
LOMO + XQDA 86.3 98.3 99.6 100.0
LOMOpn + Lasso DNC 87.3 98.2 99.6 100.0
LOMOpn + Lasso DC 90.2 98.0 99.3 100.0
LOMOpn + Lasso DCE 90.6 97.9 99.2 100.0

Table 4.2 – Evaluation on closed world re-identification task. CMC value at rank 1, 5, 10 and 20
for PRID2011 dataset.
Best results are in bold red.
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FAR(%) 1 10 50 100

MDTS-DTW [47] 12.7 32.6 51.8 57.3
DVR [9] 17.3 29.1 49.9 57.8
IR + Eucl. Dist. 0.4 0.9 1.7 3.0
IRn + Lasso DNC 0.1 0.8 1.7 3.3
IRn + Lasso DC 0.1 0.8 2.2 3.0
IRn + Lasso DCE 0.4 0.9 2.4 3.4
IR + XQDA[23] 0.6 2.2 8.4 14.9
IRpn + Lasso DNC 2.8 8.9 27.4 35.7
IRpn + Lasso DC 7.3 16.7 36.4 46.0
IRpn + Lasso DCE 7.3 18.6 37.7 44.9
LOMO + XQDA[23] 5.1 15.2 45.3 59.1
LOMOpn + Lasso DNC 4.5 16.6 45.7 61.5
LOMOpn + Lasso DC 12.9 35.1 58.8 68.5
LOMOpn + Lasso DCE 17.2 37.5 62.8 69.0

Table 4.3 – Evaluation on open world re-identification task. DIR at first rank for several FAR
values (1%, 10%, 50% and 100%) on iLIDS-VID dataset.
Best results are in bold red.

Relevance of sparse coding

For both datasets, for both closed and open world evaluation, using non collaborative
sparse coding (Lasso DNC) for the matching step instead of XQDA metric learning
leads to much better results in the case of IR features and to similar results in the
case of LOMO features. Collaborative sparse coding approaches (Lasso DC and
Lasso DCE) perform even better than the non collaborative approach. This shows
the relevance of using sparse coding for the matching step of person re-identification.

Relevance of collaborative sparse coding

For closed world scenarios, on the iLIDS-VID dataset, collaborative sparse repre-
sentation approaches (Lasso DC and Lasso DCE) bring almost a 10% improvement
with a first rank recognition rate for LOMO features of 55.3% for XQDA and respec-
tively 64.9% for Lasso DC and 65.4 for Lasso DCE. On PRID2011 dataset, the first
rank recognition rate is already very high, 86.3% for XQDA, so the improvement is
a little bit smaller, but still significant (+3.9% for Lasso DC and +4.3% for Lasso
DCE). With the IRfeatures projected with XQDA, the gap is even more impressive
with an increase of around +30% of the first rank recognition rate on the iLIDS-VID
dataset, but XQDA results start lower with IRfeatures.

For open world scenarios, the improvement brought by collaborative sparse cod-
ing is also considerable. For both iLIDS-VID and PRID2011 datasets, when using
the LOMO features, the first rank Detection and Identification Rate is more than
doubled for the lowest non null False Acceptance Rate. On iLIDS-VID, we improve
the DIR value at first rank by more than 7% and on PRID we raise it by more than
28%.
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FAR(%) 1 10 50 100

MDTS-DTW [47] 42.7 55.2 70.5 72.8
DVR [9] 46.8 58.3 78.3 79.7
IR + Eucl. Dist. 2.2 5.5 9.8 19.3
IRn + Lasso DNC 3.8 4.3 16.0 31.2
IRn + Lasso DC 8.8 13.7 26.8 35.8
IRn + Lasso DCE 8.7 14.5 27.7 34.5
IR + XQDA[23] 3.2 9.5 25.7 50.8
IRpn + Lasso DNC 12.5 29.5 61.2 73.0
IRpn + Lasso DC 21.0 44.8 66.2 75.2
IRpn + Lasso DCE 28.0 46.8 69.5 76.3
LOMO + XQDA[23] 21.2 40.7 78.8 90.5
LOMOpn + Lasso DNC 21.2 39.2 74.5 90.2
LOMOpn + Lasso DC 49.8 69.3 88.2 93.8
LOMOpn + Lasso DCE 55.7 71.0 90.2 93.2

Table 4.4 – Evaluation on open world re-identification task. DIR at first rank for several FAR
values (1%, 10%, 50% and 100%) on PRID2011 dataset.
Best results are in bold red.

Using collaborative sparse coding (Lasso DC or Lasso DCE) on normalized XQDA
projected features greatly improves the performances compared to using XQDA only
as a Mahalanobis metric. This is true for both LOMO and IRfeatures and for both
closed world CMC evaluation and DIR vs FAR open world evaluation. An excep-
tion when collaborative sparse coding does not improve recognition rates, is on the
iLIDS-VID dataset, with the non projected IRfeatures, where the performances are
very low for both Euclidean distance matching and collaborative sparse representa-
tion matching.

Relevance of collaboration enhanced sparse coding for the open world re-id task

For both tested datasets, the performances of Lasso DC and Lasso DCE are similar
for closed world evaluations. However, for open world cases, the DIR vs FAR value
for Lasso DCE is about 5% higher than that of Lasso D. This is true for XQDA
projected features (LOMO and NN) but once again there is the exception of non
projected IRfeatures for which the performances of collaborative and collaboration
enhanced sparse coding are comparable.

For open world scenarios, on the iLIDS-VID dataset, we obtain comparable re-
sults to state-of-the-art method DVR [9], with a DIR at rank 1 for a one percent
FAR of around 17%. On the PRID2011 dataset, we outperform DVR [9] by far with
a DIR at rank 1 for a one percent FAR of 55.7% compared to 46.8% for DVR.

The reasons why relying on residual errors of probe reconstructions using gallery
dictionary or extended gallery dictionary does not have much effect on closed world
performances is because CMC only evaluates the relevance of the ranking of gallery
identities and adding additional elements to the collaborative gallery dictionary does
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not influence the relative participation of the gallery dictionary elements in the probe
reconstruction so the ranking of gallery identities remains stable.

In the open world case, DIR vs FAR is an hybrid evaluation which combines rank-
ing and decision aspects. While for closed world re-id, having a small residual error
for a wrong match does not matter, in the open world case, it can have an impact
on the False Aceptance Rates, and as a consequence it modifies the Detection and
Identification Rate which are reported for a few values of False Acceptance Rates. In
the open world scenario, some probe person do not appear in the gallery and should
therefore not be reconstructed by gallery elements. The additional dictionary’s aim
is to participate for those probe people so that it reduces the participation of gallery
identities and avoids ranking gallery identities that are not similar to the probe per-
son. Thanks to the additional dictionary, there are less false matches accepted for
small values of residual errors. The residual errors corresponding to true matches
are also bigger but to a lesser extent. This can be observed in Figure 4.6 where True
Positive and True Negative rates are plotted when varying the decision threshold
between 0 and 1. This explains how better Detection and re-Identification Rates
can be obtained for the same False Acceptance Rate, even if the ranking evaluations
are similar.

Relevance of the additional dictionary choice: Gallery vs Probe features

We recommended to use elements from the gallery camera as additional elements to
avoid favoring features extracted from the probe camera while reconstructing query
probe people. In Tables 4.5 and 4.6 are presented the open world DIR vs FAR
results for collaborative sparse coding without additional dictionary (Lasso DC),
with training probe features as additional dictionary (Lasso DCE probe) and with
training gallery features as additional dictionary (Lasso DCE).

FAR(%) 1 10 50 100

IRn + Lasso DC 0.1 0.8 2.2 3.0
IRn + Lasso DCE probe 0.4 1.8 5.9 8.7
IRn + Lasso DCE 0.4 0.9 2.4 3.4
IRpn + Lasso DC 7.3 16.7 36.4 46.0
IRpn + Lasso DCE probe 7.1 16.6 34.8 44.6
IRpn + Lasso DCE 7.3 18.6 37.7 44.9
LOMOpn + Lasso DC 12.9 35.1 58.8 68.5
LOMOpn + Lasso DCE probe 16.9 36.9 61.1 69.8
LOMOpn + Lasso DCE 17.2 37.5 62.8 69.0

Table 4.5 – Evaluation on open world re-identification task. DIR at first rank for several FAR
values (1%, 10%, 50% and 100%) on iLIDS-VID dataset.
Comparison of three variants of Lasso Direct direction: without additional dictionary, with an
additional dictionnary composed of training probe features and with an additional dictionary
composed of training gallery features. Best results are in bold red.
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FAR(%) 1 10 50 100

IRn + Lasso DC 8.8 13.7 26.8 35.8
IRn + Lasso DCE probe 12.7 21.3 34.0 47.2
IRn + Lasso DCE 8.7 14.5 27.7 34.5
IRpn + Lasso DC 21.0 44.8 66.2 75.2
IRpn + Lasso DCE probe 25.7 47.0 68.5 75.3
IRpn + Lasso DCE 28.0 46.8 69.5 76.3
LOMOpn + Lasso DC 49.8 69.3 88.2 93.8
LOMOpn + Lasso DCE probe 54.8 71.5 89.3 93.2
LOMOpn + Lasso DCE 55.7 71.0 90.2 93.2

Table 4.6 – Evaluation on open world re-identification task. DIR at first rank for several FAR
values (1%, 10%, 50% and 100%) on PRID2011.
Comparison of three variants of Lasso Direct direction: without additional dictionary, with an
additional dictionnary composed of training probe features and with an additional dictionary
composed of training gallery features. Best results are in bold red.

For the non projected IR features, using the training features from the probe
camera gives better results than using features from the gallery camera as additional
dictionary but the performance reached with non projected IR feature is really low.
For XQDA projected features (LOMO and IR), forming the additional dictionary
with features from the gallery camera gives slightlly better results than with features
from the probe camera (+0.3 for iLIDS-VID and +0.9 for PRID2011). Regardless of
the camera provenance of the additional dictionary features, collaboration enhanced
sparse coding approaches perform better than the simple collaborative sparse coding
approach.

4.4.4 Evaluation on the person verification task

In this section we report verification performances, ie. we evaluate the ability to
distinguish positive pairs from negative pairs. We do not consider the ranking aspect
anymore.

One way to compare re-identification methods for the verification task consists in
comparing ROC curves where the x-axis corresponds to False Positive rate and the
y-axis to True Positive rate. ROC curves are computed for a wide range of decision
threshold values. In Figure 4.3 are presented the ROC curves for XQDA, Lasso
DNC, Lasso DC and Lasso DCE obtained on iLIDS-VID and PRID2011 datasets.
The ROC curves of the two collaborative sparse representation approaches (with
and without collaboration enhancement) are very similar and they are clearly above
the ROC curves of the XQDA and Lasso DNC approaches which are also similar.

A drawback of the ROC evaluation is that the decision threshold does not appear
on the ROC curve. However, for real applications a decision rule is applied in order
to tell apart positive pairs from negative pairs and it is important to know which
threshold should be used, or at least in what range the relevant threshold is and
what kind of results could be obtained for some given thresholds values. Except
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Figure 4.3 – ROC curve for XQDA, Lasso DNC, Lasso DC and Lasso DCE on iLIDS-VID (left)
and PRID2011 (right) datasets. There is a zoom corresponding to the smallest values of false
positive rates, and another zoom for slightly bigger false positive rates.
XQDA and the non collaborative sparse coding approach (Lasso DNC in blue) have similar ROC
values. The two collaborative sparse coding approaches, Lasso DC and Lasso DCE also have
similar ROC values. The collaborative sparse coding approaches perform much better than XQDA
and the non collaborative approach on both datasets.

for the LADF approach [22] which proposes a local threshold as decision rule, the
verification question has rarely been raised in the person re-identification literature,
even in papers which cast this problem as a binary classification task.

Let us visualize in Figure 4.4, the distribution of dissimilarity scores of positive
and negative pairs for XQDA, Lasso DNC, Lasso DC and Lasso DCE. The dissimi-
larity scores correspond to the distances in the case of XQDA, to the reconstruction
errors in the case of Lasso DNC and to the residual errors in the case of Lasso DC
and Lasso DCE. At first sight, we would group the distributions into the two same
groups as those we found with the ROC results. Indeed, on one hand, the shape
of the distributions of positive and negative pairs scores are similar for XQDA and
Lasso DNC. Negative and positive pairs distributions overlap in a large interval
compared to the range over which positive pairs scores spread and negative pairs
scores spread over a larger interval than positive pairs scores. On the other hand,
the distributions of positive and negative pairs scores are very similar for the two
collaborative sparse coding approaches Lasso DC and Lasso DCE. Negative and pos-
itive pairs distributions overlap in a small interval compared to the range over which
positive pairs scores spread and it is positive pairs scores that spread over a larger
interval than negative pairs scores. Nonetheless, while XQDA and Lasso DNC lead
to similar ROC curves with distributions of positive and negative score of similar
shapes, we must point out that the interval over which the XQDA distances spread
differs quite a lot between the two datasets (between 0 and 120 for iLIDS-VID and
between 0 and 300 for PRID2011) while the reconstruction errors obtained with the
Lasso DNC approach always stays between 0 and 1. Therefore, for the sparse cod-
ing approaches, collaborative or not, the range over which the dissimilarity scores
spread is known and stays the same for every dataset. For XQDA however, since
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the dissimilarity score spread over different intervals for every dataset, a validation
step is necessary for each dataset to determine the range in which a good decision
threshold could be found for a given application.

Figure 4.4 – Distribution of positive and negative pairs distances for XQDA and distribution
of residual errors for Lasso DNC, Lasso DC and Lasso DCE on iLIDS-VID dataset (top) and
PRID2011 dataset (bottom).
We can group these distributions in two groups. The first group contains the distributions ob-
tained with the XQDA approach and the non collaborative Lasso DNC approach, where the scores
(distance or reconstruction error) of negative pairs spread over a larger interval than the scores of
positive pairs. The second group contains the distributions obtained with the collaborative sparse
coding approaches Lasso DC and Lasso DCE where the scores of negative pairs span on a very
small interval while the score of positive pairs spread over a much larger interval. We can notice
that while the distances for XQDA spread over different intervals for iLIDS-VID and PRID2011,
for all three sparse coding approaches, the reconstruction errors and residual errors stay between
0 and 1 for both datasets.

Instead of representing the distributions of positive and negative pairs scores, the
same kind of information can be found by visualizing the TP rates and TN rates for
varying thresholds. We plot for both iLIDS-VID and PRID2011, the TP rates and
TN rates for varying threshold values for the XQDA method in Figure 4.5 and for
the sparse coding methods (Lasso DNC, Lasso DC and Lasso DCE) in Figure 4.6.
We can once again observe in Figure 4.5 that for XQDA, the distances that positive
and negative pairs take are quite different on iLIDS-VID dataset and PRID2011
dataset and the decision threshold value which leads to equal TP rate and TN rate
also differs a lot between datasets with a value smaller than 50 for iLIDS-VID and
bigger than 50 for PRID2011. In Figure 4.6, we can also observe once more that the
dissimilarity scores of sparse coding approaches, stay between 0 and 1. Although
not in the same range, the shapes of TP rates and TN rates for varying thresholds of
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XQDA and Lasso DNC are similar. Almost as soon as the TP rate starts increasing,
the TN rate starts decreasing. For the collaborative sparse coding methods, there
is a large interval in which the TN rate stays high and the TP rate increases. It is
only near 1 that the TN rate drops.
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Figure 4.5 – TP rate and TN rate for varying thresholds for XQDA on iLIDS-VID and PRID2011
datasets.
The TP rate and TN rate have the same shape on both datasets. However, the distribution of
positive and negative pairs do not span on the same intervals. The threshold value which lead to
equal TP rate and TN rate is smaller than 50 for iLIDS-VID and bigger than 50 for PRID2011.
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Figure 4.6 – TP rate and TN rate for varying thresholds sparse coding approaches (Lasso DNC,
Lasso DC and Lasso DCE) on iLIDS and PRID datasets
The shape of TP rate and TN rate for the non collaborative approach Lasso DNC is clearly different
from the shape of TP rate and TN rate of collaborative approaches Lasso DC and Lasso DCE. For
the collaborative spasre coding approaches, the TN rate stays high in almost the whole interval
and only drops quickly when the threshold gets close to 1.

Besides those observations, plotting the TP rate and the TN rate, allows for a
more precise comparison of the distributions of positive and negative pairs scores
and a better understanding of the impact of the additional dictionary. In Lasso
DCE, since there are additional elements which can participate in the reconstruc-
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tions of probe elements compared to Lasso DC, the elements that are in the initial
collaborative gallery dictionary can only participate as much as it did without the
additional dictionary, or less. Therefore the mean residual errors obtained with the
additional dictionary are bigger, for both positive and negative pairs (the yellow
curves are on the right of the red curves). However, what makes Collaboration
Enhanced Lasso DCE perform better than Lasso DC in terms of DIR vs FAR for
small values of FAR, is not the general increase of the residual errors values, it is the
fact that for small decision threshold values, the false positive dissimilarity scores
as pushed further away (to the right) than the true positives dissimilarity scores.

In the theoretical part, we argued that 1 was a natural decision threshold. How-
ever, some applications might prefer to retrieve more true positives at the cost of a
smaller precision while other applications might prefer to retrieve less positive pairs
but with a good precision. In Tables 4.8 and 4.7, we report the recall (true positive
rate), specificity (true negative rate), classification rate ( TP+TN

TP+TN+FP+FN
) and preci-

sion ( TP
TP+FP

) for Lasso DCE for different values of decision threshold (0.999, 0.950
and 0.900) that are close to 1. For all three chosen decision thresholds, the TN rate
is high and since there are much more negative pairs than positive pairs, the value of
the classification rate is almost the same as the TN rate. For the same three decision
thresholds, the TP rate varies more than the TN rate, especially on the iLIDS-VID
dataset. Even if some of the precision values are low, knowing that there are much
more negative pairs of identities than positive pairs of identities, the precision values
are actually quite acceptable. In practice, for a chosen application, it shouldn’t be
difficult to find an appropriate decision threshold because the TN rate stays high in
a large interval while the TP rate increases in a linear way in the interval of interest
so one could slowly increase the decision threshold until the wanted precision and
recall specifications are reached.

Threshold TP rate TN rate classification rate precision

0.999 97.8 81.6 81.7 3.4
0.950 73.8 99.2 99.0 38.3
0.900 48.8 99.9 99.5 70.3

Table 4.7 – Recall, Specificity, Classification rate and Precision values for 3 decision threshold
values on the iLIDS-VID dataset.

Threshold TP rate TN rate classification rate precision

0.999 100.0 85.8 85.9 7.4
0.950 97.3 98.2 98.2 38.7
0.900 92.8 99.4 99.4 65.3

Table 4.8 – Recall, Specificity, Classification rate and Precision values for 3 decision threshold
values on the PRID2011 dataset.
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4.5 Conclusion

In this chapter we have compared sparse coding without collaboration and with col-
laboration for the person re-identification task. The competition induced between
identities by collaborative sparse coding is what makes it relevant for ranking tasks
or more precisely for relative ranking tasks. It enables to boost the ranking perfor-
mances which lead to a significant gap in performances for closed and open world
scenarios between the metric learning method XQDA and our collaborative sparse
coding approach applied to L2 norm normalized XQDA projected LOMO and IR
features. Indeed, it lead for example for LOMO features to an increase of +10% on
closed world iLIDS VID first rank recognition rate and to an increase of +28% on
open world PRID2011 detection and re-identification rate at first rank when FAR
equals 1%.

For open world re-identification, besides ranking abilities, a good method needs
to be able to make a decision. We proposed the Lasso DCE method which stands for
Direct Collaboration Enhanced Lasso approach. In addition to collaborative sparse
coding adequacy for ranking tasks, the proposed collaboration enhancement makes
collaborative sparse coding also fit for the detection task by better rejecting false
matches. This lead to a further improvement of around 5% for DIR values at rank
1 when FAR equals 1% compared to collaborative sparse coding without additional
dictionary (Lasso DC).

For the person verification task, depending on the application, ie. depending on
whether it is more important to have a high precision, or to retrieve most of the true
matches, the ideal decision threshold is to be determined by the user but we know
the decision threshold should be close to 1. The shape of the positive and negative
pairs distributions is definitely an advantage for easily finding that ideal threshold
because the proportion of positive pairs increases almost linearly with the threshold
while the proportion of negative pairs stays high in a large interval and only drops
quickly near 1.
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Chapter 5

Bidirectional Sparse
Representations

In the previous chapter, we showed how for a given probe person, collaborative
sparse coding could be used to reject wrong gallery matches and rank similar look-
ing gallery people. In this chapter, we emphasize on the importance of a reciprocal
relation. Instead of only focusing on ranking and rejecting gallery identities for a
given probe person, we also take the gallery person point of view. Using once again
sparse coding with an enhanced collaboration, for a given gallery person, we can
reject wrong probe matches and also rank similar looking probe people if several
of them are presented. By combining the results from both collaboration enhanced
sparse coding approaches, we obtain more robust detection and ranking results.

In this chapter, we call direct direction the sparse coding of probe elements with
gallery elements, and reverse direction the sparse coding of gallery elements with
probe elements. Even if at first glance the reverse direction sparse coding approach
seems to be quite symmetrical to the one presented in the previous chapter, several
important aspects differ.

Therefore we first present the main differences between probe and gallery data
which make the reverse direction sparse coding approach not so symmetrical to the
direct direction sparse coding approach. Then we expose our reverse direction sparse
coding approach. The third section focuses on the meaning of residual errors for
direct and reverse directions. The fourth section explains how we combine direct
and reverse direction sparse representations results. The fifth section deals with
complexity issues. The last section presents extensive experiments on closed and
open world re-identification tasks and on the verification task as well.

105
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5.1 Difference between sparse coding of probe and gallery
elements

5.1.1 Known and undetermined identities

As the reader should know by now, gallery elements are from known identities while
the identity of probe elements is to be determined. Though obvious, this simple ob-
servation makes a crucial difference in the way the additional dictionaries are formed.

In the direct direction, the identity of the probe element is undetermined, he
could be someone present in the gallery or not, so when reconstructing it with the
gallery dictionary, it is important that the overall collaborative dictionary contains
varied features that can reconstruct well anyone so that gallery identities do not par-
ticipate to a non similar probe element’s reconstruction only to obtain a balanced
overall reconstruction error and sparsity term.

In the reverse direction, elements that are reconstructed are known gallery el-
ements. A probe person would be considered similar to the gallery person if he
participates to the reconstruction even if put in competition with elements that are
similar to the gallery person. The participation of the probe person to the recon-
struction of a gallery element is not meaningful if he is only put in competition with
elements that are dissimilar to the gallery person.

5.1.2 Availability of gallery and probe data

In the direct direction, each probe element is approximated by a linear combination
of gallery elements, where any gallery element is allowed to participate in the recon-
struction. For a symmetric approach, in the reverse direction, we should reconstruct
each gallery element with a linear combination of probe elements, where any probe
element is also allowed to participate.

However, depending on the application, all probe elements might not all be avail-
able simultaneously at test time. Some applications might provide one test person’s
images at a time or a few identities images while other applications might provide
simultaneously many people’s images.

In the direct direction, the aim of the additional dictionary is to improve false
match rejection in a sparse coding framework which is already collaborative. In the
reverse direction, the additional dictionary is necessary when only one test person
is presented at a time. Otherwise, with only one probe person’s features, there is
no collaboration, we fall into a non collaborative sparse coding method which is not
so useful for our task.
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5.1.3 Final goal

We must keep in mind that what we are looking for is the presence or the absence
of a probe person in the gallery set, and his identity if relevant. Therefore, it is not
important to be able to give a ranking of probe identities for a given gallery person,
but it is important to be able to return a ranked list of gallery identities for a given
probe person.

A ranked list of probe identities for given gallery identities can be very useful in
a closed world setting to reinforce the robustness of the ranking. However in the
open world case, even if identities in the gallery and the probe sets overlap, some
gallery identities might not appear in the probe set (they are called distractors) and
some probe identities might not be in the gallery set (they are the imposters who
must be rejected), so such a ranked list looses a little bit of its interest even if it
does not become useless.

5.2 Reverse direction: sparse coding of gallery elements

5.2.1 Sparse representation of gallery elements

Depending on the application, we might have more or less probe identities to re-
identify at a given test time. In this chapter, L refers to the set of probe identities
that we have to re-identify at a given test time. If we only have one probe person’s
images at a time, then L = card(L) = 1. If we have several probe person’s images at
a time, then L > 1. Let P = [Pl1 , . . . , PlL ] denote the concatenation of the features
from all the available probe images.

For every gallery identity k ∈ [1, K], we compute the sparse representation
AGk,[P,Dk] of their features Gk by optimizing the following Lasso problem:

AGk,[P,Dk] = arg min
A
||Gk − [P,Dk]A||2F + λ||A||1 (5.1)

where the additional dictionary Dk is different for each gallery identity, and depends
on each gallery identity’s specific dictionary Gk. The way the dictionary Dk is com-
puted is explained in the next subsection.

The dissimilarity score s(l, k) between probe person l and gallery person k is
defined by the mean residual reconstruction error of the reconstruction of gallery
features Gk using only the elements from probe person l’s dictionary Pl, when the
sparse representation is the one computed with dictionary [P,Dk]:

s(l, k) = RGk,[P,Dk],Pl =
||Gk − PlAGk,[P,Dk],Pl ||2F

nk
(5.2)

The gallery identities are once again ranked by increasing dissimilarity score, and
for a probe person l the best match is given by:

k∗ = arg min
k
RGk,[P,Dk],Pl (5.3)
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We call Lasso RCE this sparse coding approach where the sparse representations
of a gallery person’s features are computed using test probe features and gallery
additional dictionary. R refers to Reverse direction, because instead of Figure 5.1
illustrates Figure 5.2 illustrates
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5.2.2 Choice of the additional dictionaries

In this reverse direction collaborative sparse coding approach, it is in order to find
out whether the probe elements are similar to the gallery elements or not that we
reconstruct gallery elements using probe instances. It is only if the probe person
participates in the reconstruction of the gallery elements when collaborating with
instances that are already considered similar to that gallery person that he will be
considered a possible match. If the probe person participates more than non similar
elements, it is not really informative.

Since the gallery elements are known, it is possible to find among the training
samples, instances that are similar to the gallery person, or at least to select the
most similar ones and use them as additional collaborative and competitive elements
for the reconstruction.

Using the same argument as for direct direction collaboration enhanced sparse
coding, we reckon that since the additional dictionary will come in complement to
probe dictionaries, their elements should also be features corresponding to images
captured by the probe camera. In order to select the training samples that will form
the additional dictionaries, we compute the sparse representation of every gallery
instance using the probe training dictionary Tp.

A∗ = arg min
A
||G− TpA||2F + λ||A||1 (5.4)

Each column of Tp corresponds to a training image feature. The identity as-
sociated to each column of Tp is not important. Therefore we do not decompose
the matrix A∗ according to the identity it is associated to in Tp (ie. by selecting
blocs rows), but instead we decompose the matrix A∗ by selecting blocs of columns,
according to the decomposition of G = [G1, . . . , GK ].

A∗ = [A∗1, . . . , A
∗
K ] (5.5)

For each gallery person k, the sparse representation of their features Gk is given
by the sparse submatrix A∗k of A∗. We form the additional dictionary Dk used in
addition to probe elements for reconstructing the gallery person k by selecting the
columns of Tp which corresponds to the rows of A∗k which contain non zero values.
Since A∗ is sparse, A∗k is also sparse, and the dictionary Dk is small. Put in words,
Dk contains all the elements from the probe camera training set which participate
in the reconstruction of at least one of the gallery person k’s feature when put in
competition with the other training elements.

The reason why we form an additional dictionary for each gallery person by select-
ing a few training samples rather than using the same global additional dictionary
composed of all training samples is to reduce the computations while maintaining
similar performances. Indeed, contrary to the direct direction where only one sparse
representation was needed to rank gallery identities for a given probe person, in
the reverse direction, we need to compute one sparse representation for each gallery
element. Using a smaller dictionary reduces the computation and memory load.
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It is particularly relevant to form the additional dictionaries by select training el-
ements using collaboraive sparse coding because it is the way they will be used at
test time, and training instances that have not been selected when reconstructing
a given gallery element, will not be selected either if put in competition with even
more elements at test time for reconstructing the exact same gallery instance.
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Figure 5.2 – Overview of the online part of the Lasso RCE (Reverse Collaboration Enhanced)
approach when several probe person’s images are simultaneously provided.
In multi-shot datasets, probe and gallery identities are represented by several images and the
number of images can vary with the person. nk is the number of images of gallery person k. In the
shown example, the gallery person 1 is represented by 1 image, the gallery person 2 by 4 images
and the gallery person K by 3 images. A column feature is computed for each image. We have
at disposal, the features of several probe people l1, l2, . . . , lj whose identity we are looking for,
the features of gallery people and the additional dictionary associated to each test gallery. For
each gallery person, a Lasso problem is solved in order to find the sparse representation of the
gallery features using a dictionary composed of all the provided probe people’s features and the
additional dictionary corresponding to the considered gallery person. The sparse representations
are presented by gray scale matrices where the darker the square, the smaller the value. The
coefficients corresponding to the participation of the additional dictionaries (coefficients circled
in blue) are discarded. The coefficients corresponding to the participation of each probe person
features (coefficients circled in red) are used to compute the dissimilarity score (mean residual
error) between the gallery person and the probe person. Once again, the dissimilarity score is
displayed in gray scale, where smaller values are darker. If all dissimilarity score for a probe
person are big (white in the figure), the probe person is considered as an imposter. Otherwise,
gallery identities are ranked by increasing dissimilarity scores.
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5.3 Ranking of gallery identities, meaning of the residual
errors

In both the direct direction collaborative sparse coding approach, and the reverse
direction we rely on the residual errors for ranking gallery identities for each probe
person. However, the meaning behind the ranking based on the residual errors is
different. Indeed, there is an asymmetry in our problem. In both directions, given a
probe identity, the residual errors are used to rank gallery identities from the most
similar ones to the most dissimilar ones, we never rank probe identities for a given
gallery person.

Let’s take a closer look at the residual errors involved in the ranking process. In
the direct direction, gallery identities are ranked by increasing residual errors where
the so called residual errors {RPl,[G,D],Gk}k are the residual errors of the reconstruc-
tion of a probe element using only the specific dictionary of each gallery person k.
We therefore rank gallery identities based on how much each gallery person partic-
ipated in the reconstruction of the probe elements, knowing that gallery identities
were collaborating and competing against each other for the overall reconstruction.
The best match is the gallery who participated the most.

In the reverse direction, gallery identities are still ranked by increasing residual
errors but this time, the residual errors in question {RGk,[P,Dk],Pl}k are the residual
errors of the reconstruction of each gallery features using the probe person’s ele-
ments and an additional dictionary which is different for each gallery person. While
in the direct direction the residual errors were computed from the same sparse rep-
resentation, in the reverse direction, the residual errors we compare to rank gallery
identities k seem to be unrelated to each other and it is legitimate to wonder whether
these residual errors are comparable. Indeed, there is one additional dictionary per
gallery person, so a given gallery person has an additional dictionary that is dif-
ferent from another gallery person and we do not control how well each gallery
person’s element’s reconstructions could be using their associated additional dic-
tionary. Depending on the content of the training set and that of the test gallery
set, the additional dictionaries of some gallery people could be very similar to their
associated gallery person, but could also be quite dissimilar for other cases. Is it
thereby relevant to rank gallery identities based on these residual errors?

Let’s take a step back and assume that instead of a different additional dictio-
naries per gallery identity, we use the whole probe camera training set as a common
additional dictionary. In that case, ranking gallery identities based on the residual
errors of their reconstruction using the probe person’s elements and the common
additional dictionary would mean looking for the gallery identity the probe person
is the closest to, because it would be the gallery person for whom the probe person
contributes the most when put in competition with the same set of elements. In
this situation, it is understandable to compare the residual errors for ranking gallery
identities.
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Now, if we return to our previous case where the additional dictionary of each
gallery person is selected by our proposed collaborative sparse coding approach 5.4,
we should obtain similar results to the case when the same common additional dic-
tionary is used because the elements we discarded to form the additional dictionary
of a gallery person were already not participating in the reconstructions.

To sum up, in the direct direction, we rank the gallery identities according to
which ones participated the most to the reconstruction of the probe person when
they are all put together to collaborate. In the reverse direction, we look for the
gallery person for whom the probe person participates the most when put into com-
petition with the same elements.

In the reverse direction, in the case all the probe identities corresponding to the
gallery identities are available at test time, there is a double comparison. Indeed,
when computing the sparse representations gallery elements Gk, the features Pli of
a given probe person li are in competition with other test probe identities features
{Pl′i}. However, when ranking gallery identities, we are not interested anymore in
whether the probe person li participated more than probe person l′i, but what we are
interested in is to which gallery person’s features reconstruction the probe person
li participated the most. Therefore li might be the person who participated the
most in the reconstruction of gallery person k’s features, and not be the one who
participated the most for gallery person k′ but if the residual error for person k′

is smaller than that of person k, then k will be ranked before k′. Exploiting the
reconstruction errors from the reverse direction sparse reconstructions can be more
powerful than exploiting the errors obtained with the direct direction because the
reverse direction integrates different comparisons, but this is the case only if the
reverse direction sparse representation involved the simultaneous participation of
several probe identities that are also present in the gallery set.

5.4 Combination of both representations

We have presented two different collaborative sparse methods for the person re-
identification which might have slightly different results because one is based on the
probe person’s point of view and the other one on the gallery people’s point of view.
A good match is a match where both parties agree, so combining the results from
the two methods should lead to more a robust system.

We define the dissimilarity between the probe person l and the gallery person
k as the sum of the dissimilarity score obtained with the direct direction method
and the dissimilarity score obtained with the reverse direction method. Thus, the
dissimilarity score is given by:

s(l, k) = RPl,[G,D],Gk +RGk,[P,Dk],Pl (5.6)

Combining the dissimilarity scores from the two methods by a simple sum is rel-
evant because the dissimilarity scores are in the same range (between 0 and 1).
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Gallery identities are ranked by increasing dissimilarity value, and the best gallery
match for probe id l is given by:

k∗ = arg min
k
s(l, k) (5.7)

We have seen that for the direct direction sparse coding approach Lasso DCE, the
multi-shot aspect of probe data is dealt with in the usual way by a simple average ag-
gregation function and the multi-shot aspect of gallery data is well exploited thanks
to the computation of residual errors by gallery identity rather than by gallery image.

In the reverse direction sparse coding approach Lasso RCE, it is the reverse. The
multi-shot aspect of gallery data is dealt with in the usual way by a simple aver-
age aggregation function and the multi-shot aspect of probe data is fully exploited
thanks to the computation of residual errors by probe identity.

Combining the direct and the reverse direction sparse coding approaches is there-
fore also a way to better exploit the availability of multiple images in both the probe
set and the gallery set.

5.5 Complexity

This section studies the complexity of our method (direct and reverse direction) at
test time for the task of ranking the K gallery identities when given L ∈ N∗ probe
identities to be re-identified. We address the differences between the cases when
there is only one probe person’s images available at a time, or when probe images
are given by batches of u identities with v = L

u
∈ N, or when all L probe identities

images are given simultaneously. For simplicity, we consider that the computation
of a sparse representation in the direct direction is given by the constant Cd and
the computation of a sparse representation in the reverse direction is given by the
constant Cr. We also count as one the computation of the sparse representations
of all features of one given person, instead of counting it as the number of images
available for that person.

Let’s begin with re-identifying one probe person l. In the direct direction, we
have a complexity of C = Cd because probe person l’s elements are approximated
just once by a linear combination of all gallery elements. In the reverse direction, the
complexity is of C = KCr because each gallery identity’s elements must be recon-
structed once using elements from the probe person l whom we wish to re-identify
and elements from other identities. Therefore the reverse direction sparse represen-
tation approach is much more computationally expensive than using only the direct
direction approach as it grows linearly with the number of gallery identities.

In the case we want to re-identify L probe people, why do we not just multiply
the previous complexities by the number of probe people to be re-identified? It is
because for the reverse direction some reconstructions can be re-used and only some
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more residual errors need to be computed. Unfortunately this is not the case in the
direct direction, so in the case we need to re-identify L probe person the complexity
is C = LCd. If we only have one probe person’s image at a time, the complexity is
also multiplied by L if we have to identify L people, so in that case the complexity
of the reverse sparse coding method becomes C = LKCr. In the case all probe
images are available simultaneously, the complexity remains unchanged compared
to the case we only wanted to re-identify one of the probe person and still equals
C = KCr. This is because the dictionary used for computing the sparse representa-
tion of gallery elements is P = [Pl1 , . . . , PlL ] which already contains elements from
every probe person. For re-identifying L probe people instead of just one, we sim-
ply need to compute the residual errors that were not needed previously. If probe
identities are presented by batches of u identities, the concept is similar. For each
batch, the complexity equals KCr. Since there are L

u
batches, the overall complexity

is C = L
u
KCr.

The table 5.1 summarizes the complexity of the different variants in the case we
have one probe person to re-identify and in the case we have L probe person to
re-identify. K is the number of gallery identities.

LassoD LassoR (all ids) LassoR (u ids) LassoR (1 id)
1 person to be re-id Cd KCr KCr KCr

u people to be re-id uCd KCr KCr uKCr

L people to be re-id LCd KCr
L
uKCr LKCr

Table 5.1 – Complexity in terms of number of sparse representations computations needed for the
different proposed variants for the case there is one of K probe people to re-identify. LassoD refers
to the Direct direction and LassoR to the Reverse direction. A distinction is made between the
case when there is one or several probe identities’s images simultaneously.

In the case only one probe person’s images are presented at a time, the reverse
direction sparse coding method is indeed much more computationally expensive
than the direct direction approach, but if several identities’s images are available
simultaneously, it is not so much more expensive since the constant Cr is smaller
than Cd because the additional dictionary is small.

5.6 Experimental results

The datasets, training and testing protocols are the same as those presented in
section 3.3.3. The features used are L2 norm normalized XQDA projected LOMO
features [23].

5.6.1 Evaluation on closed and open world re-identification tasks

Depending on the applications, we might have at a time only one single probe per-
son’s images available, or several ones, or all of them. Not only it changes the
complexity of the algorithm, but it also has an impact on its performance. Assum-
ing that at the end, we have to re-identify L people, we tested our Lasso R approach
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(R for reverse direction) for the following number or proportions of probe identities
simultaneously available at test time:

• Lasso RCEs. There is only one identity provided at a time, s stands for single.

• Lasso RCE1
4
. The images of a quarter of the total number L of probe people

to be re-identified are simultaneously provided.

• Lasso RCE1
4
. The images of half of the total number L of probe people are

simultaneously provided.

• Lasso RCEa. All probe people’s images are simultaneously available, a stands
for all.

The closed world CMC results are reported in Tables 5.2 and 5.5 and the open
world DIR vs FAR results are reported in Tables 5.2 and 5.5 for iLIDS-VID and
PRID2011 datasets.

Rank 1 5 10 20

MDTS-DTW [47] 49.5 75.7 84.5 91.9
DVR [9] 51.1 75.7 83.9 90.5
XQDA[23] 55.3 83.1 90.3 96.3
Lasso DC 64.9 87.1 92.5 96.1
Lasso DCE 65.1 86.6 92.4 96.1
Lasso RCEs 65.4 88.3 93.9 96.8
Lasso RCE 1

4 67.7 88.9 93.9 96.5
Lasso RCE 1

2 69.1 89.3 93.7 96.9
Lasso RCEa 69.9 89.8 94.2 96.9
Lasso DCE+ RCEs 68.1 88.9 93.7 96.7
Lasso DCE+ RCE 1

4 68.9 89.1 94.1 96.9
Lasso DCE+ RCE 1

2 69.5 89.5 93.9 96.9
Lasso DCE+ RCEa 69.8 89.6 93.5 96.8

Table 5.2 – Closed world results on iLIDS-VID dataset.
CMC values at ranks 1, 5, 10, 20 are reported. Best results are in bold red. Best results where only
one probe person is provided at a time are in bold blue.

Relevance of reverse direction sparse coding

Even in the case we are given only one probe person’s images at a time, the Lasso
RCE approaches perform much better than XQDA alone for both closed and open
world scenarios.

Moreover, even though the sparse coding phase of the reverse direction does not
involve a direct competition neither between probe identities nor between gallery
identities, in the closed world case, the results of Lasso DCE and Lasso RCEs are
similar. In the open world case, Lasso RCEs performs better than Lasso DCE on
PRID2011 dataset (+2.3%), but worse than Lasso DCE on iLIDS dataset (−3.3%).
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Rank 1 5 10 20

MDTS-DTW [47] 69.6 89.4 94.3 97.9
DVR [9] 77.4 93.9 97.0 99.4
XQDA[23] 86.3 98.3 99.6 100.0
Lasso DC 90.2 98.0 99.3 100.0
Lasso DCE 90.6 97.9 99.2 100.0
Lasso RCEs 89.8 98.2 99.2 100.0
Lasso RCE 1

4 90.6 98.2 99.6 100.0
Lasso RCE 1

2 91.3 98.5 99.6 100.0
Lasso RCEa 94.2 98.5 99.2 100.0
Lasso DCE+ RCEs 91.2 98.4 99.4 100.0
Lasso DCE+ RCE 1

4 91.5 98.4 99.9 100.0
Lasso DCE+ RCE 1

2 92.5 98.7 99.8 100.0
Lasso DCE+ RCEa 93.8 98.3 99.6 100.0

Table 5.3 – Closed world results on PRID2011 dataset.
CMC values at ranks 1, 5, 10, 20 are reported. Best results are in bold red. Best results where only
one probe person is provided at a time are in bold blue.

In any case, it performs much better than XQDA.

Influence of the number of probe people’s images simultaneously available

When several probe people’s images are available at test time, the performances are
improved. There more probe people’s images are available, the better the results.
In the closed world setting, for both iLIDS VID and PRID, there is an increase of
around 4% between the case when there is only one person’s images available at a
time (Lasso RCEs) and the case when all probe images are simultaneously available
(Lasso RCEa). The performances of intermediate cases (Lasso RCE1

4
and Lasso

RCE1
2
) are indeed in between the two extreme cases. In the open world case, the

improvement induced by the simultaneous availability of more probe people’s images
at test time is more significant. In the case of iLIDs-VID, the increase is progressive
with a DIR at first rank for a FAR value of 1% of 13.9% for Lasso RCEs, of 17.7% for
Lasso RCE1

4
, of 19.4% forLasso RCE1

2
and finally of 22.0% for Lasso RCEa. In the

case of PRID, the increase is not significant between Lasso RCEs and Lasso RCE1
2
,

but there is a gap of +13.5% between Lasso RCE1
2

and Lasso RCEa. The increase is
more progressive if we look at the results for FAR = 10%. The reason why there is
such an improvement with the availability of more probe people’s images is because
some of those probe people indeed corresponds to some of the gallery identities.

Relevance of a reciprocal relation

Both direct and reverse directions sparse coding show great improvement compared
to XQDA metric learning alone and lead to similar results, so we could wonder if
they actually contain the same information.
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FAR 1 10 50 100

MDTS-DTW [47] 12.7 32.6 51.8 57.3
DVR [9] 17.3 29.1 49.9 57.8
XQDA[23] 5.1 15.2 45.3 59.1
Lasso DC 12.9 35.1 58.8 68.5
Lasso DCE 17.2 37.5 62.8 69.0
Lasso RCEs 13.9 35.6 61.5 69.2
Lasso RCE 1

4 17.7 40.3 63.7 70.7
Lasso RCE 1

2 19.4 41.4 65.5 71.3
Lasso RCEa 22.0 44.7 67.4 72.7
Lasso DCE+RCEs 18.0 40.5 66.5 71.6
Lasso DCE+RCE 1

4 20.7 41.9 67.0 71.6
Lasso DCE+RCE 1

2 21.5 44.1 68.2 72.4
Lasso DCE+RCEa 23.8 45.8 68.1 72.9

Table 5.4 – Open world results on iLIDS-VID dataset.
DIR values at rank 1 for different values of FAR (1%, 10%,50% and 100%) are presented. Best
results are in bold red. Best results where only one probe person is provided at a time are in bold
blue.

For closed world scenarios, most often the combination of direct and reverse di-
rection residual errors does improve the performances but it never improves the
results for more than 3% for first rank recognition compared to the best of the two
combined methods taken alone (Lasso DCE and Lasso RCE).

For open world scenarios, the increase in performances brought by the combina-
tion of the residual errors from the two directions is more significant. It is especially
the case for PRID2011 where the improvement of the reverse direction approaches
due only to the simultaneous availability of several probe identities’s images (Lasso
RCE1

4
and Lasso RCE1

2
) wasn’t so visible, but which becomes clear when combined

with the direct direction approach. On one hand, there is a huge gap of around
13 − 14% between the Lasso RCEa approach and the three variants Lasso RCEa,
Lasso RCE1

4
and Lasso RCE1

2
, on the other hand, the improvement is progressive

from Lasso DCE+RCEs to Lasso DCE+RCEa.

These results support the idea that for a given person present in both the gallery
and the probe set, the set of most similar identities in the other set are not exactly
the same, and combining the results from both directions makes the results more
robust by retrieving first the identities that appear in both directions list of most
likely matches and thus leveraging the ambiguities that exist in each direction.

5.6.2 Influence of the choice of the additional dictionaries

In this section, we discuss different choices of additional dictionaries in order to
validate our proposed sparse coding based selection of training elements to form the
additional dictionaries. We consider the case when only one probe person’s images
are available at a time and we examine the following variants:
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FAR 1 10 50 100

MDTS-DTW [47] 42.7 55.2 70.5 72.8
DVR [9] 46.8 58.3 78.3 79.7
XQDA[23] 21.2 40.7 78.8 90.5
Lasso DC 49.8 69.3 88.2 93.8
Lasso DCE 55.7 71.0 90.2 93.2
Lasso RCEs 58.0 69.7 91.0 93.0
Lasso RCE 1

4 58.8 71.2 91.3 93.5
Lasso RCE 1

2 59.7 79.0 92.0 94.0
Lasso RCEa 73.2 87.3 95.3 96.0
Lasso DCE+RCEs 60.8 76.0 91.7 93.3
Lasso DCE+RCE 1

4 62.7 75.8 92.2 93.7
Lasso DCE+RCE 1

2 66.7 78.8 93.2 94.7
Lasso DCE+RCEa 73.3 83.2 94.0 95.2

Table 5.5 – Open world results on PRID2011 dataset.
Open world DIR values at rank 1 for different values of FAR (1%, 10%,50% and 100%) are pre-
sented. Best results are in bold red. Best results where only one probe person is provided at a
time are in bold blue.

• Lasso RNC. In this Lasso Reverse direction Non Collaborative approach, for
each presented probe person, only this probe person’s features are used to
compute the sparse code of gallery features. There is no collaboration involved
and reconstruction errors are used as dissimilarity scores.

• Lasso RCEv1. In this Lasso Reverse direction Collaboration Enhanced Vari-
ant 1 approach, the sparse representations of gallery features are computed
using a collaborative dictionary composed of the probe person’s features and
an additional dictionary composed of features selected from probe images of
the training set. Instead of selecting from the probe training features, elements
that are similar to gallery features, ie. elements that participate in the recon-
struction of gallery features, we form the additional dictionary by selecting a
fixed number of elements that do not participate to any of the approximations
of gallery features. We limit the size of this additional dictionary to the number
of identities in the training set, ie. for 89 PRID2011 and 150 for iLIDS VID.
Mean residual errors are used as dissimilarity scores.

• Lasso RCEv2. In this Lasso Reverse direction Collaboration Enhanced Vari-
ant 2 approach, the sparse representations of gallery features are computed
using a collaborative dictionary composed of the probe person’s features and
an additional dictionary composed of one feature per probe training person.
Mean residual errors are used as dissimilarity scores. The size of the additional
dictionary is the number of identities in the training set.

• Lasso RCEs. The Lasso Reverse Collaboration Enhanced approach is the
approach we propose in this thesis. The sparse code of gallery features are
computed using a collaborative dictionary composed of probe features and an
additional dictionary which differs for each gallery person. Mean residual er-
rors are used as dissimilarity scores. The elements which compose the addi-
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tional dictionary specific to a gallery person are the probe training features
which participate in the reconstruction of that gallery person’s features when
all probe training features are put into competition. Therefore the size of the
additional dictionary can vary depending on the gallery identity and ranges
between around 30 and 100 in our experiments.

• Lasso RCEv3. In this Lasso Reverse direction Collaboration Enhanced Vari-
ant 3 approach, the additional dictionary is the same for every gallery person
and is formed by all the training probe features Tp.

The closed world CMC evaluations are reported in Table 5.6 and the open world
DIR vs FAR evaluations are reported in Table 5.7. The ROC curves are displayed
in Figure 5.4. The distribution of the residual errors corresponding to positive and
negative pairs are shown in Figure 5.5. The TP rate and TN rate are presented in
Figure 5.6.

Dataset PRID2011 iLIDS VID
Rank 1 5 10 20 1 5 10 20

Lasso RNC 84.7 97.1 99.1 99.9 53.7 80.7 87.2 93.3
Lasso RCEv1 (dissimilar) 84.7 97.1 99.1 99.8 53.7 80.7 87.2 93.3
Lasso RCEv2 (1 image per train id.) 89.8 98.7 99.9 100.0 64.2 87.8 93.7 97.0
Lasso RCEs (similar) 89.8 98.2 99.2 100.0 65.4 88.3 93.9 96.8
Lasso RCEv3 (all probe train images) 89.9 98.2 99.2 100.0 65.5 88.3 93.9 96.8

Table 5.6 – Closed world results. Comparison of 5 reverse direction sparse coding approaches.
CMC values at rank 1, 5, 10 and 20 are reported on PRID2011 and iLIDS VID. Best results are in
bold blue because we consider here the case when only one probe person’s images are available at
a time.

Dataset PRID2011 iLIDS VID
FAR(%) 1 10 20 100 1 10 20 100

Lasso RNC 20.0 36.3 76.3 89.7 4.4 19.0 46.4 58.4
Lasso RCEv1 (dissimilar) 20.3 35.5 75.0 88.5 4.4 19.0 46.4 58.3
Lasso RCEv2 (1 image per train id.) 43.8 61.3 88.0 92.5 9.9 31.6 59.6 68.3
Lasso RCEs (similar) 58.0 69.7 91.0 93.0 13.9 35.6 61.5 69.2
Lasso RCEv3 (all probe train images) 58.0 70.0 90.8 93.0 14.1 35.8 61.8 69.3

Table 5.7 – Open world results. Comparison of 5 reverse direction sparse coding approaches.
We report for PRID2011 and iLIDS-VID, DIR at first rank versus FAR, when FAR takes values
1%, 10%, 20% and 100%. Best results are in bold blue because we consider here the case when only
one probe person’s images are available at a time.
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Figure 5.4 – Comparison of the ROC curves of 5 reverse direction sparse coding approaches (Lasso
RNC, Lasso RCEv1, Lasso RCEv2, Lasso RCEs, Lasso RCEv3) on PRID2011 and iLIDS VID
datasets.

A quick look at Figures 5.4, 5.5, and 5.6 and Tables 5.6 and 5.7 enables to group
the five variants into three groups. The first group is composed of the approaches
Lasso RNC and Lasso RCEv1. The second group is formed of only one approach,
Lasso RCEv2. The third group contains Lasso RCEs and RCEv3. If we were to
group them into only two groups, we would merge the second and third groups.

Lasso RNC, Lasso RCEv1: no collaboration and useless collaboration

In every aspects, the results obtained for the collaboration enhanced reverse sparse
coding approach Lasso RCEv1 where the additional dictionary is composed of probe
training features that do not participate to any of the gallery features’s reconstruc-
tion are quasi identical to the results obtained with the non collaborative reverse
sparse coding approach Lasso RNC. Except in Figure 5.6 where we can observe for
the PRID2011 dataset that the TP rate and TN rate of the collaboration enhanced
Lasso RCEv1 approach (in red) are pushed towards the right compared to those of
the non collaborative approach Lasso RNC (in blue), ie. the residual errors obtained
with Lasso RCEv1 are bigger than the reconstruction errors obtained with Lasso
RNC, everything else is similar. The distribution of the dissimilarity scores overlap
over a large interval and the distribution of negative pairs score spread over a larger
interval than the distribution of positive pairs score, similarly to the direct direction
non collaborative sparse coding approach Lasso DNC. The ROC curves of Lasso
RNC and Lasso RCEv1 are much lower than those obtained with other choices of
additional dictionaries. The closed world CMC values and the open world DIR vs
FAR performances are also much below the other approaches for both PRID2011
and iLIDS-VID, with for example a difference of around 30% for DIR at first rank on
PRID2011 dataset. These results confirm that it is useless to force a collaboration
between test probe features and an additional dictionary composed of train features
that are unlikely to participate in the reconstruction of gallery elements. The results
are similar to the case when no collaboration is involved.
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Figure 5.5 – Comparison of the distributions of positive and negative pairs dissimilarity score of 5
reverse direction sparse coding approaches (Lasso RNC, Lasso RCEv1, Lasso RCEv2, Lasso RCEs,
Lasso RCEv3) on PRID2011 (top) and iLIDS VID (bottom) datasets.

Lasso RCEv3, Lasso RCEs: full collaboration and useful collaboration

In section 5.3, we discussed the meaning of residual errors and their use for ranking
tasks. We evoked the necessity of a common additional dictionary for every gallery
identity instead of a specific additional dictionary associated to each gallery identity
so that the residual errors associated to a given probe person can be compared and
have an interpretable meaning. However, the results shown in Figures 5.4, 5.5, and
5.6 and Tables 5.6 and 5.7 confirm that the way we form the additional dictionaries
specific for each gallery person (Lasso RCEs) give similar results to the case when all
training features corresponding to probe camera images are put into a commun ad-
ditional dictionary used for the reconstruction of all gallery people (Lasso RCEv3).
The results are not completely identical but this is due to very minor differences.
Using the whole training probe features as additional dictionaries gives similar or
slightly better results, with a difference of recognition rate of at most 0.3% in the
open world case and at most 0.1% in the closed world case. These differences are
not even observable on the ROC curve in Figure 5.4 nor on the positive and negative
pairs distributions in Figure 5.6, even on the zoomed parts. Forming the additional
dictionary of a gallery person by selecting from the training set the most similar
elements using sparse coding (Lasso RCEs) leads to open world results that are
much better than the non collaborative reverse direction sparse coding approach
Lasso RNC with an improvement in the open world case of +28% for PRID2011
and +9.7% for iLIDS. In Lasso RCEv3, the features of the whole training probe set
are used (around 10000 elements) whereas in Lasso RCEs , the additional dictionary
size is often smaller than 100 due to the sparsity of the selection. Yet the results
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Figure 5.6 – Comparison of th TP rates and TN rates of 5 reverse direction sparse coding approaches
(Lasso RNC, Lasso RCEv1, Lasso RCEv2, Lasso RCEs, Lasso RCEv3) on PRID2011 (top) and
iLIDS VID (bottom) datasets.

of Lasso RCEs and RCEv3 are quasi identical in every aspect. This demonstrates
the relevance of the selection of training elements we proposed. There is no need
to use the whole training set as additional dictionary and selecting for each gallery
person the most similar elements enables to force useful collaboration during the
online re-identification process.

Lasso RCEv2: an intermediate case

The Lasso RCEv2 is a variant of the Lasso RCE approach in which the additional
collaborative dictionary is also composed of elements selected from the training
probe set but which does not require to compute the sparse code of gallery elements
using training probe elements. The additional collaborative dictionary is commun to
every gallery person and is formed by selecting one image per probe training identity.

In terms of CMC, Lasso RCEs and the Lasso RCEv2 variant are similar, but
in terms of DIR vs FAR the results differ more significantly (difference of 14% on
PRID2011 and of 4% on iLIDS-VID in the open world case). We already came
across a similar situation when comparing Lasso DC and Lasso DCE, and the same
reason applies to this case as well. Both Lasso RCEs and Lasso RCEv2 are col-
laboration enhanced sparse coding approaches, where the additional collaborative
dictionary contains elements that are likely to be used in the reconstruction of gallery
elements. The additional dictionary of Lasso RCEs contains more of these useful
elements because they have been specifically selected due to their similarity to the
gallery features while the Lasso RCEv2 contains one element randomly selected from
each training identity. Therefore the residual errors of Lasso RCEs are in general
bigger than the residual errors of Lasso RCEv2 (cf. Figure 5.6) but this does not
influence the relative ranking of gallery identities, ie. it does not have any significant
impact on the CMC evaluation.
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In Lasso RCEv2, the additional dictionary is composed of as many elements as
there are identities in the training set, ie. 150 for iLIDS-VID and 89 for PRID2011.
In Lasso RCEs, the additional dictionaries result from a sparse coding selection
approach, so their size vary and are most of the time much smaller than 100. Even
though the additional collaborative dictionaries in Lasso RCEv2 are bigger than in
Lasso RCEs, the residual errors are smaller for positive and negative pairs. This
is because for each gallery person only the elements in the collaborative dictionary
which participate in their reconstruction of the gallery features matter. Overall, for
each gallery person, this number of elements is smaller in the case of Lasso RCEv2
than in the case of Lasso RCEs, even if the size of the collaborative dictionary is
bigger. The results obtained with Lasso RCEs are better than with Lasso RCEv2,
but Lasso RCEv2 also performs well, much better than XQDA and non collaborative
sparse coding Lasso RCN.

5.6.3 Influence of the number of probe identities simultaneously avail-
able

In Figure 5.7, are plotted the TP rates and TN rates for the reverse direction collab-
orative sparse coding for different proportions of test probe identities available at a
time at test time. The TP and TN rates are shifted to the right when the collab-
orative dictionary gets bigger. This is because when more elements are allowed to
participate in the reconstructions, the contributions of the probe people we consider
are bound to participate at most as much as they would participate without the
presence of the additional elements, and most of the time their participation will be
reduced, and the residual errors will thus be bigger.
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Figure 5.7 – TP rate and TN rate for on iLIDS and PRID datasets. Comparison of Lasso RCE
approach for different proportions of simultaneously available probe people’s images.

The ROC curves in Figure 5.8 show that in terms of proportion of well retrieved
True Positive Pairs for given proportions of wrongly retrieved False Positive Pairs,
there is no big difference between the different cases of applications (more or less
probe people’s images simultaneously available) except for low values of FAR for
which having more probe people’s images at disposal lead of higher TP rates. What



5.6. EXPERIMENTAL RESULTS 127

makes the difference between these cases is the presence among all available probe
images, of probe identities that are also in the gallery and which enables to reduce
the amount of False Positive that have very low residual errors.
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Figure 5.8 – ROC curves for collaboration enhanced sparse representation in the reverse direction
on iLIDS and PRID datasets. The variants correspond to different practical cases when only one
probe person’s images are available at a time, or when the images are simultaneously available for
a quarter, a half or for all of the probe people to be re-identified.

5.6.4 Evaluation on the person verification task
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Figure 5.9 – ROC curves for XQDA, Lasso DCE, Lasso RCEs and Lasso DCE+RCEs on iLIDS
VID (left) and PRID2011 (right) for the open world scenario.

The Figure 5.9 presents for iLIDS VID and PRID2011, the ROC curves for
XQDA, for the direct direction approach Lasso DCE, for the reverse direction ap-
proach Lasso RCEs and for the bidirectional approach Lasso DCE+RCEs. Similarly
to Lasso DCE, we can observe that the ROC curve of Lasso RCEs is high above the
ROC curve of XQDA meaning that we retrieve more true positive pairs for the same
false positive rates. The ROC curves of the direct direction approach Lasso DCE
and the reverse direction approach Lasso RCEs are actually really similar. We can
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see that the ROC curve of the reverse direction approach is slightly below that of
the direct direction approach. When zooming, we can observe that the ROC value
corresponding to the combination of the two approaches is imperceptibly above the
ROC curve of each approach taken separately.

In Figure 5.9, we observed that the TP rates for small FP rates are bigger for
Lasso DCE than for Lasso RCEs for both iLIDS VID and PRID2011. We have also
seen in the re-identification task section 5.6.1 that the DIR at first rank when FAR
equals 1% is higher for Lasso RCEs than for Lasso DCE on the PRID2011 dataset.
This might seem contradictory but it is possible because for a probe imposter, FAR
only takes into account the score (distance/reconstruction error/residual error...) of
the first wrongly matched gallery identity. The other wrong matches of a probe
imposter are not taken into account. Moreover wrong matches corresponding to
non imposters probe people are not considered either when reporting DIR at first
rank. Therefore in our case, even if the first rank detection and re-identification
rate is higher for a given FAR value for Lasso RCEs than for Lasso DCE, when we
consider the pairs of probe-gallery identities which have small residual errors, there
is relatively more wrong matches in the Lasso RCE approach than in the Lasso DCE
approach.

Let’s now take a look at the TP rate and TN rate presented in Figure 5.10 cor-
responding to the Lasso DCE, Lasso RCEs and Lasso DCE+RCEs approaches. For
a better visualization, we also zoomed on the TP and TN rates when the threshold
gets close to 1.
The shape of the TP rates and TN rates of all three collaborative sparse coding ap-
proaches (Lasso DCE, Lasso RCEs and Lasso DCE+RCEs) are similar, especially
with the TN rates which stay high in almost the whole interval [0, 1] and only starts
to drop when the threshold gets closer to 1. On the iLIDS VID plot, we observe that
the residual errors obtained with the reverse direction approach (yellow curves) are
smaller than those obtained with the direct direction approach (red curves). For the
same value of threshold, the TP rate (solid lines) of Lasso RCE (yellow) is above
that of Lasso DCE (red). On the zooms, the TN rate (dash lines) of Lasso RCE
(yellow) are below that of Lasso DCE (red), ie. for the same value of threshold,
there are more False Positives for Lasso RCE than for Lasso DCE. For a same de-
cision threshold, the reverse direction sparse coding approach Lasso RCEs rejects
less wrong matches than the direct direction collaborative sparse coding approach.
Lasso DCE. Since the Lasso DCE+RCEs combined the direct and reverse direction
approaches by simply adding the residual errors, for the same decision threshold,
The number of pairs detected as false matches (TN+FN) is an intermediate value
between that of Lasso DCE and Lasso RCEs.

In Tables 5.8 and 5.9 are reported the recall, specificity and classification rate and
precision values for the Lasso DCE, Lasso RCE and Lasso DCE+RCEs approaches
for three choices of decision threshold (0.999, 0.950 and 0.900). As we have just
mentioned when studying the TP and TN rates, for the same decision threshold,
the proportion of found TP pairs and found TN pairs differs. When the decision
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Figure 5.10 – TPrate and TN rate for Lasso DCE, Lasso RCEs and Lasso DCE+RCEs on iLIDS
VID (left) and PRID2011 (right) for the open world scenario.

threshold is bigger, we find more right matches, but we also wrongly accept more
false matches so the precision decreases. If we look at the results for a decision
threshold equal to 0.999 on the PRID2011 dataset, it seems that the direct direc-
tion Lasso DCE approach is better fitted for the verification task than the reverse
direction approach Lasso RCEs or the bidirectional approach Lasso DCE+RCEs.

Thres Method TP rate TN rate classif. rate precision

DCE 97.8 81.6 81.7 3.4
0.999 DCE+RCEs 98.4 77.4 77.6 2.8

RCEs 98.5 76.6 76.8 2.8
DCE 73.8 99.2 99.0 38.3

0.950 DCE+RCEs 80.8 98.6 98.5 27.9
RCEs 83.1 97.7 97.6 19.7
DCE 48.8 99.9 99.5 70.3

0.900 DCE+RCEs 60.0 99.7 99.4 58.5
RCEs 63.8 99.3 99.1 38.4

Table 5.8 – Recall, Specificity, Classification rate and Precision values for 3 choices of threshold on
the iLIDS VID dataset.
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Thres Method TP rate TN rate classif. rate precision

DCE 100.0 85.8 85.9 7.4
0.999 DCE+RCEs 100.0 72.0 72.3 3.9

RCEs 100.0 68.2 68.5 3.5
DCE 97.3 98.2 98.2 38.7

0.950 DCE+RCEs 98.8 96.2 96.3 23.2
RCEs 99.3 93.5 93.5 15.0
DCE 92.8 99.4 99.4 65.3

0.900 DCE+RCEs 95.7 98.8 98.8 48.7
RCEs 96.8 97.5 97.5 30.6

Table 5.9 – Recall, Specificity, Classification rate and Precision values for 3 choices of threshold on
the PRID2011 dataset

5.7 Conclusion

In this chapter we have presented another open world person re-identification method
based on collaborative sparse coding but we adopted the probe’s point of view
rather than the gallery’s point of view. Though the general idea of our collabo-
ration enhancement is the same as in the previous chapter, the asymmetry of the
re-identification problem where gallery identities are known while probe people can
be anyone in an open world setting brought to light some interesting elements that
allowed us to propose an appropriate selection of training elements to form addi-
tional collaborative dictionaries adapted to each gallery person.

Extensive experiments on iLIDS VID and PRID2011, have demonstrated the
relevance of our reverse direction sparse coding approach, where we compute the
sparse code of gallery elements rather than that of probe instances, as well as the
relevance of our construction of additional collaborative dictionaries for each gallery
person for both closed and open world re-identification tasks. Contrary to the direct
direction case where the additional dictionary acts as a collaboration enhancement,
in the reverse direction, the additional dictionaries are required because since probe
identities can be provided one by one and not simultaneously there is no ”natural”
collaboration between probe identities.

In order to take into account both the probe person and the gallery identities’s
point of view and make sure that there is a strong reciprocal similarity between the
probe person and the top ranked gallery identities, we propose to combine the two
approaches (direct and reverse direction). Because the two sets of residual errors are
in the same range and present similar distributions, combining the residual errors
from the direct and the reverse direction by a simple sum is relevant and gives the
same importance to the probe and the gallery point of view. The experiments show
that combining the two approaches into one bidirectional approach improves the
performances for both closed and open world scenarios.

Depending on the applications, one or several probe people’s images can be simul-
taneously available. If only one person’s images is provided, the proposed method
shows good performances in the closed settings and it already outperforms other
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state-of-the-art methods in the open world settings (+14% for PRID2011). When
available, the images of the several probe people are jointly used in the collaborative
dictionary. The more identities are simultaneously available, the less computations
for a same number of people identified and the better the results.
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Chapter 6

Conclusion and Perspectives

6.1 Conclusion

The person re-identification task essentially based on surveillance camera images
started as a subtask of multi-camera tracking ten years ago and has tremendously
evolved since then. At first, the person re-identification task only involved two
cameras, with identities who always appeared once in each camera. Today several
generalization of this problem are tackled by the person re-identification community.
In this thesis, we aimed at well exploiting the multiple images available for each iden-
tity but our main focus was the open world aspect of person re-identification.

The open world person re-identification task we tackled is defined by two sub-
tasks, the detection subtask and the re-identification subtask. In the detection task,
the goal is to determine whether a probe person is likely to be one of the gallery
people. The object of the re-identification subtask is to rank the gallery identities
that have been considered to be possible matches for the presented probe person.
Contrary to the closed world case where a relative ranking of gallery identities from
the most similar to the most dissimilar one was enough, the open world re-id task
requires a decision rule to separate possible matches from unlikely matches.

Considering that when the verification task is completely solved, ie. when we are
able to tell apart positive pairs from negative pairs, then the re-identification task
(ranking task) should consequently also be resolved, we propose a first method called
COPReV which casts the open world re-identification task as a binary classification
task. Through the optimization of an objective function which balances the penal-
ization on positive and negative pairs and encourages pairs distances to be far from
a predefined threshold, we learn a linear projection of the features that enables to
separate positive pairs and negative pairs by a simple threshold rule. After applying
our COPReV subspace learning approach to LOMO [23] and Inception-Resnet-v2
[117] features projected with XQDA [23], the distributions of positive pairs and
negative pairs distance overlapped less. This resulted in a gain in performances for
both closed and open world person re-ie tasks. Moreover, COPReV can be used
for person verification and there is no need to look for the right threshold for the
decision rule. The threshold used during the training phase can also be used as

133
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decision rule for the verification task and it leads to almost balanced true positive
rate and true negative rate. However, for the re-identitication tasks, the gain in
performance is not so significant with initially already good features. Moreover, for
the open world case, the results are still far from state-of-the-art methods DVR [9]
and MDTS-DTWt [47]. We explain these mitigated results by the fact that the
verification task is not perfectly solved and therefore the improvement brought to
re-identifications tasks though real are limited. Assuming that binary classification
constraints alone could enable to tackle re-identification and verification tasks might
have been too presumptuous.

In the light of this observation, our second contribution is based on collabora-
tive sparse coding which is a tool that has good ranking capabilities and which
we adapted so that it also became a decision tool in our re-id framework. The
computation of the sparse code of probe elements using a collaborative dictionary
composed of all the gallery identities puts gallery identities into competition against
each other and only the most similar elements are selected. Since elements that
are more similar participate more, collaborative sparse coding is a good ranking
tool. It is also already partially a decision tool because most dissimilar elements
do not participate in the reconstructions. However, in every case, even when no
elements are similar to the element to be reconstructed, some elements will be se-
lected. Moreover if there is one gallery person who is very different from the others
and that the probe person has some similarity with him, the whole participation
will be reported on that one gallery person, making him a very likely match even if
they are not so similar. Our Lasso DCE method enhances the collaboration of the
collaborative gallery dictionary by adding to it elements from the training set and
this lead to significant improvement for the open world person re-identification task.

Our third contribution stems from the idea that a good match involves two el-
ements each of which considers the other element as a good match. In the Lasso
DCE approach, we only compared gallery identities among themselves and looked
for the ones that were the most similar to the probe person. In this Lasso RCE ap-
proach, we propose to check for a gallery person whether the presented probe person
is similar to him or not by approximating him using the probe person’s features put
in concurrence with elements that are selected from the training set and which are
already the gallery person’s most similar elements but which describe other identi-
ties. The probe person is assumed to be a possible match if he participates when
he is put in concurrence with those elements that are already similar to the gallery
person. Indeed, if he participates, it means he is as similar or more similar to the
gallery person than elements that are already alike. The Lasso RCE approach alone
has similar performances to the Lasso DCE approach. The combination of the two
further boosts the results and we achieve remarkable detection and recognition rates
for open world experiments. Moreover, the residual errors are bounded (between 0
and 1) and while the true positive rate increases almost linearly with the threshold,
the true negative rate stays high for a wide range of threshold and only drops near
1, so one can easily find an appropriate decision threshold for his person verification
application.
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6.2 Perspectives

6.2.1 Design adapted features for sparse coding approaches

Developing a feature learning method specifically designed for the sparse represen-
tation approaches we proposed for matching is one of the research axes which should
be privileged in a future work. Indeed, in this thesis, we mainly focused on the open
world aspect of re-identification and the question of the feature description has
only been evoked to show the effectiveness of our approaches for different features.
However, these features were not specifically designed for a use in a sparse coding
matching framework. The Inception-Resnet-v2 features were not even learnt for the
person re-identification task but for classification tasks. As for the XQDA metric
learning approach which we use as a projection, if applied without our bidirectional
sparse coding approach, it performs remarkably well in the closed world setting, but
when it comes to open world re-identification, the performances completely collapse.
Even if we manage to obtain results which outperform other existing methods for the
open world re-identification task using normalized XQDA projected LOMO features
with our bidirectional sparse coding matching scheme, the use of adapted features
could give even better results.

One possibility could be to use training data to jointly learn a linear projection
of the features along with computing the sparse code and residual errors. A more
interesting variant would be to use an existing neural network architecture designed
for computing features for the re-identification task and replace the cost function of
the network by a new cost function adapted for a sparse coding based matching step.

Moreover, instead of keeping the distinction between training images coming
from the gallery or the probe camera, the training stage should enable to lessen
the disparity between images coming from different cameras and allow for tackling
multiple cameras (more than 2) scenarios.

6.2.2 Adapt the sparse coding framework to multi-camera scenarios

If some differences between camera views can be lessen by well designed features, it
is likely that there will still be features corresponding to images from different people
taken from the same camera which will be more similar than features corresponding
to images from the same person captured by different cameras. For a multi-camera
(more than 2) scenario, it is therefore important to tackle the issue of the camera
provenance. When presented a probe images captured by camera A, should we
look for the possible matches separately for each gallery camera B, C, D , etc., or
should we put into competition the gallery identities appearing in all the gallery
cameras? On one hand comparing the images from all the cameras together might
favor camera views that are more similar to the probe camera view and consequently
favor gallery identities which do appear in those gallery cameras, but on the other
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hand, isn’t the competition between identities and the sparsity constraints what
made the collaborative sparse coding approach so performant for re-identification?
Wouldn’t it be a shame to find possible gallery matches per gallery camera and then
use an ad hoc way of ranking these gallery identities selected from different cameras?
These are important questions which need to be considered because in the real world,
there are not just two cameras. People are captured by numerous cameras, in various
places and tackling into account the differences due to the camera view is crucial. In
that regards, the fact that the residual errors are always in the same range (between
0 and 1) is definitely an asset but it is not good enough. Depending on the pair of
cameras considered, the best verification threshold might still vary.

6.2.3 Learn the additional dictionaries in the reverse direction sparse
coding

For now, for the reverse direction sparse coding, we proposed to select elements
from the training set to form one additional dictionary for each gallery identity. An
issue with such a way of forming the additional dictionaries is that some gallery
identities are better approximated by their associated additional dictionary than
other gallery identities. We have no control over how similar the selected training
elements are to the test gallery identities. This can lead to a disparity in the range
value that the residual errors take and we have seen that while the range value of
similarity or dissimilarity score do not matter in the closed world setting, for open
world re-identification and person verification tasks it plays an important role. In
other words, for a given gallery person, we compared a probe person to the people
in the training set who are the most similar to the gallery person, but the similarity
between those people in the training set and the gallery person is not quantified.
It would be better to compare a probe person to instances whose similarity to the
gallery person is somehow quantified. Therefore the next step to improve the reverse
direct Lasso RCE approach we proposed in this thesis, is to find a way to create
additional dictionaries which would enable to obtain the same residual errors value
if presented images with the same level of similarity to a gallery identity. While
we selected instances from the training set, a learning phase could also be based on
training data, but it might also be possible to learn dictionaries directly from the
test gallery set.

6.2.4 Learn the additional dictionary in the direct direction sparse cod-
ing

Contrary to the reverse direction where we have shown the relevance of the chosen
selection process for the additional dictionaries, for the direct direction, we simply
proposed to use the whole training data available as additional dictionary. Though
the results show that it does improve significantly the performances for the open
world re-identification task, there is room for improvement. Indeed, even if there
exist methods which aim at solving Lasso problem efficiently even with large dictio-
naries, having smaller dictionaries from the beginning can reduce the computation
time and memory load. An in-depth study should be conducted to assess the impact
of the use of certain types of elements when forming the additional dictionary. In
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particular, we could distinguish training elements that are similar to some gallery
identities from training elements which are dissimilar to every gallery elements. Once
the type of elements needed for forming a useful additional dictionary is clear, we
could consider learning an additional dictionary rather than selecting elements from
the training set to form it.

6.2.5 Complexity and speed considerations for huge datasets

In this thesis, we used small dimension features (dimension 1536 for Inception)
and projected features especially when the dimension of the features were too big
(dimension 26960 for LOMO features). This was of course for performance reasons
but also for time consumption problem as well. For these small dimension features,
there were no memory nor speed issues for the datasets we perform tests on. Indeed,
even if some tracklets are composed of several hundred images, iLIDS-VID and
PRID2011 datasets only contain a few hundred identities. Actually even if existing
person re-identification datasets have increased in size, they are still quite small with
only a few thousand identities for the biggest datasets. This roughly corresponds to
the number of students in a Parisian high school. Nonetheless, when deployed in the
real word, it isn’t just a few thousand people that the algorithm will have to deal
with, it could be million. The question of the scalability becomes crucial. Reducing
the size of the dictionaries with a better management of multi-shot data could be part
of the solution. Multi-shot data gives richer and more complete descriptions but a
good selection of these images might enable to keep only the important information.
The tracklets could be preprocessed so that redundant images, images with occluded
people and images where people are not well centered are removed.

6.2.6 A better use of simultaneously appearing people

In the reverse sparse coding approach, we have observed that when several probe
identities’ images were simultaneously available and were therefore used together
for computing the sparse representation of gallery features, the performances were
improved. Yet, we did not fully exploit the information that we had several distinct
probe people’s images. Similarly to some re-ranking approaches, if a gallery person
is already the best match for one of the probe people, he should not also the best
match for another distinct probe person.

6.2.7 Generalize even more the re-identification task: dynamic set of
identities

The main focus of the thesis was the open world issue with the decision and ranking
aspects to take into account. While this task is already much more realistic than
the closed world re-identification task, the gallery set is still static. Even when new
identities are detected, they are not added to the base of known identities, so if these
people are observed once more, they will still be rejected as unknown people. Many
new issues will arise with dynamic sets of identities re-identification tasks. Indeed,
if identities are detected as yet unknown, they should be given a new label and be
added into the set of known identities. However, there can be mistakes. Known
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people might be detected as unknown and be added under a new identity label into
the set of known identities. Algorithms will have to dynamically question decisions
made about previously seen people. Some people might have to be fused into a
single one while others will be splitted into two distinct people.

Just as closed world re-identification task was assessed by the CMC measure and
the open world re-identification task we dealt with by the DIR versus FAR measure,
new evaluation measures will have to be defined for new scenarios. The definition
of the evaluation measure is critical because it will dictate the orientation of the
approaches which will be developed to tackle the new tasks.



Chapter 7

Résumé en français

7.1 Introduction

Dans l’esprit collectif, ”ré-identification” rime souvent avec ”reconnaissance faciale”.
Or si ces domaines de la vision par ordinateur ont tous les deux pour but de
trouver l’identité d’une personne, la reconnaissance faciale s’appuie sur des images
hautes résolutions du visage de personnes prises dans des conditions particulières
d’illumination et de pose qui requièrent la coopération de ces personnes, alors que
la ré-identification de personnes s’appuie sur des images comportant les silhouettes
de personnes apparaissant sur des images de vidéo surveillance ayant souvent une
faible résolution et qui sont acquises sans soumettre les personnes à des contraintes
spécifiques. Cette absence de contraintes a un prix. En effet, la reconnaissance
faciale permet une identification des personnes à long terme. La ré-identification de
personnes à partir d’images de vidéo surveillance quant à elle ne permet de retrouver
l’identité d’une personne que dans un court lapse de temps, souvent d’une journée
si l’on considère que la personne ne change pas de vêtements au cours de la journée.

C’est d’ailleurs de cette absence de contraintes que découle la plupart des dif-
ficultés associées à la ré-identification de personnes. Les personnes, les caméras
et l’environnement sont autant de paramètres qui varient et qui mènent parfois à
l’obtention d’images très différentes représentant une seule et même personne ou
à l’acquisition d’images qui semblent très similaires alors qu’elles correspondent
à plusieurs personnes différentes. En effet, selon le rendu couleur des caméras
et l’illumination de la scène, les couleurs d’un même vêtement peuvent sembler
très différentes. De plus une personne n’est pas un solide indéformable, ainsi on
peut observer une grande variabilité dans la pose d’une personne. A cela s’ajoute
les variations dues au positionnement de la caméra par rapport à la personne.
Cette dernière peut être capturée de face, de profil ou de dos, par des caméras
placées à différentes hauteurs ce qui mène à des problèmes d’alignement des images.
Ces problèmes d’alignement sont parfois amplifiés par l’utilisation d’un mauvais
détecteur de personnes. L’environnement joue également un rôle, avec en partic-
ulier des problématiques liées à l’arrière plan et les occlusions.

Le problème de la ré-identification de personne est un problème en constante
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évolution. Littéralement, ré-identifier quelqu’un suppose que cette personne a déjà
été identifiée auparavant, et il s’agit de retrouver son identité parmi l’ensemble
des personnes déjà connues. On appelle galerie l’ensemble des personnes connues.
On appelle personne requête une personne dont on souhaite retrouver l’identité.
Dans la plupart des bases d’images utilisées pour la recherche en ré-identification
de personnes, les images sont capturées par deux caméras. Les images des person-
nes connues proviennent d’une des caméras, tandis que les images des personnes
requêtes proviennent de l’autre caméra. Les quelques dernières années, plusieurs
nouvelles bases d’images pour la ré-identification ont été assemblées avec des images
prises par plus de deux caméras. D’autre part, pendant longtemps, on comparait
les performances des méthodes de ré-identification sur une base d’images où chaque
personne n’était représentée que par une image par caméra (single-shot). De nos
jours, nous disposons pour de bases d’images où plusieurs images par personnes par
caméra sont disponibles (multi-shot) avec parfois des trajectoires complètes com-
posées de plusieurs centaines d’images. Ces deux évolutions restent dans le cadre
d’une base d’identité fermée. L’ensemble des identités, précédemment identifiées
(galerie) et à ré-identifier (requête), est un ensemble fixe connu. Toutes les person-
nes à ré-identifier sont supposées être présentes dans la galerie. Cependant dans la
vie réelle, il n’y a aucune garantie qu’une personne dont l’identité est à déterminer
a déjà été identifiée auparavant et apparait déjà dans la galerie.

Dans cette thèse, nous nous intéresserons non seulement au problème de la base
d’identités fermée, mais aussi et surtout au problème de la base d’identités ouverte,
et ce dans le cadre de bases d’identités multi-shot. Lorsque la base d’identités est
ouverte, cela signifie que la personne dont on souhaite connâıtre l’identité ne fait
potentiellement pas partie de la base d’identités connues. Bien qu’il ne soit pas
possible de ré-identifier une personne qui n’a pas été précédemment identifiée, on
parlera tout de même de ré-identification en base ouverte pour évoquer le problème
suivant composé de deux sous tâches, la détection et la ré-identification (classement).
Comme pour le cas de la base fermée, nous disposons d’un ensemble d’identités con-
nues, la galerie. La détection consiste à déterminer si la personne requête appartient
ou non à l’ensemble des identités de la galerie. La ré-identification consiste à ranger
les identités de la galerie selon leur similarité avec la personne requête.

7.2 Etat de l’art

La problématique de la base ouverte n’est apparue que très récemment et la plu-
part des approches de ré-identification de personnes ont donc été développées pour
répondre aux exigences de la ré-identification en base fermée. Ainsi la littérature
concernant la ré-identification en base ouverte est assez réduite avec à notre connais-
sance, moins de dix papiers traitant de cette problématique [1, 2, 3, 13, 46, 48, 9, 47].
Quant à la ré-identification de personnes en base fermée, la littérature est très
vaste. On peut diviser les approches de ré-identification en trois grands groupes:
les méthodes visant à développer des descripteurs discriminatifs [118, 17, 9], les
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méthodes d’apprentissage de métrique [75, 20, 23], et les méthodes se basant sur
l’apprentissage de réseaux de neurones [12, 39, 93].

Historiquement, les premières méthodes proposées pour la ré-identification de
personnes sont des méthodes qui cherchent surtout à définir des descripteurs qui
sont capables de différencier les personnes. Dans le premières méthodes, telles que
SDALF [118] et Pictorial Structures [17], ces descripteurs sont définis de manière
ad hoc et sont basés sur des idées intuitives. Les méthodes SDALF [118] et PS
[17] proposent de détecter des parties du corps (tête, torse, jambes, etc.) afin
d’extraire des informations couleurs et textures de ces parties. La comparaison
de deux images consiste alors à comparer pour les différentes parties, les descrip-
teurs de chacune des deux images. Puis des méthodes supervisées intégrant une
phase d’apprentissage sont apparues. Au lieu d’utiliser des descripteurs ad hoc,
certaines approches suggèrent d’utiliser tout un ensemble de descripteurs de base
et d’apprendre lors de la phase d’apprentissage une manière de les combiner de
manière optimale avec des méthodes de boosting [18] ou encore des forêts de classi-
fication [19]. Enfin, avec le développement des bases d’identités où chaque personne
est représentée non plus par une seule image mais par une trajectoire, quelques
méthodes récentes [9, 47] intégrent des informations temporelles en plus de la sim-
ple apparence.

Décrire une image est une étape indispensable pour la ré-identification, mais
l’étape de comparaison de deux images ou de deux ensembles d’images est tout aussi
importante. Les méthodes d’apprentissage de métrique ont pour but justement de
développer de nouvelles métriques qui permettent de mieux discriminer les person-
nes qu’une simple distance euclidienne. Cet apprentissage de métrique s’effectue la
plupart du temps en optimisant une fonction objective avec un terme de pénalisation
des paires positives (même identité) et un terme de pénalisation des paires négatives
(identités distinctes) [75, 20]. D’autres approches cherchent des solutions à des
problèmes aux valeurs propres généralisés [21, 23]. Si ces méthodes d’apprentissage
de métriques nécessitent des données d’apprentissage, elles sont également à l’origine
d’un fort progrès en terme de performances.

L’arrivée en 2014 [12] de méthodes utilisant des réseaux de neurones a permis
un nouveau bond des performances et depuis lors, de plus en plus de nouvelles ap-
proches sont basées sur les réseau de neurones. Des réseaux de neurones sont ainsi
proposés en tant qu’outil pour extraire de nouveaux descripteurs [44, 45] ou encore
comme méthode globale effectuant à la fois l’extraction de descripteurs et la com-
paraison de deux images [12, 39, 93]. L’inconvénient de telles approches est que la
phase d’apprentissage nécessite un important volume de données sans lesquelles il est
impossible d’apprendre les paramètres du réseau sans complètement sur-apprendre.
C’est d’ailleurs la raison pour laquelle ce n’est que ces dernières années que de
nouveaux datasets assez larges comprenant de nombreuses images ont fait leur ap-
parition (CUHK [12], Market [10], DUKE [49]).

En ce qui concerne le problème de la base ouverte, on peut distinguer plusieurs
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types de scénarios. Dans [1], non seulement l’hypothèse selon laquelle on connait
toutes les personnes de la galerie est relâchée, mais cela est poussé encore plus loin.
Il n’y a plus de galerie ni de regroupement des images d’une même personne appa-
raissant sur la même caméra. Le but est d’associer une identité à chaque image.
Cela ressemble à un problème de clustering non supervisé où les différentes classes
sont inconnues et leur nombre aussi. Dans [2, 3] un petit nombre d’identités est sup-
posé connus et forme l’ensemble cible. Lorsqu’une personne requête est présentée,
il faut déterminer si cette personne fait parti de l’ensemble cible ou non. Trouver
l’identité précise de la personne requête n’est pas nécessaire. Dans [13, 46, 9, 47],
la ré-identification de personnes en base d’identité ouverte est définie comme un
problème avec deux sous-problèmes. Comme dans le cadre de la base fermée, nous
disposons d’une galerie qui contient les identités connues. La détection permet de
déterminer si une personne requête fait possiblement parti de la galerie ou non.
Le classement permet de ranger par ordre de similarité les personnes de la galerie
qui sont considérées comme de potentiels bons appariements. Enfin le papier [48]
propose des scénarios encore plus généraux dans le cadre non plus de caméras fixes
mais de caméras se déplaçant sur des drones. Il s’agit donc non plus seulement de
reconnâıtre des personnes lorsqu’elles apparaissent sur des caméras distinctes mais
également d’être capable de reconnâıtre une même personne lorsqu’elle est à nou-
veau détectée par la même caméra située sur un drone qui a changé de position,
d’orientation, etc...

Les problèmes de ré-identification de personnes en base d’identités fermée et en
base d’identités ouverte diffèrent en terme de scénario et donc en terme d’évaluation
également. En base fermée, seul le rang auquel la bonne personne galerie est
retrouvée est pris en compte dans l’évaluation CMC (Cumulative Match Curve).
Pour différentes valeur de rang r, la CMC donne la proportion de personnes requête
ré-identifiées dans les r premiers rangs, et ce peu importe la valeur du score de dis-
similarité ou de similarité. En base d’identité ouverte, chaque scénario est associé à
une mesure d’évaluation différente. Le scénario que nous étudions ici est la tâche de
ré-identification en base ouverte décomposable en deux sous-tâches, la détection et
le classement. L’évaluation associée consiste à fournir les valeurs de DIR (Detection
and Identification Rate) pour différentes valeurs de FAR (False Acceptance Rate).
Pour différents taux FAR de personnes requête n’apparaissant pas dans la galerie
mais ayant été acceptées par erreur comme en en faisant partie, DIR fournit le taux
de personnes requête faisant effectivement partie de la galerie et pour lesquelles le
bon appariement est au premier rang.

7.3 COPReV

7.3.1 Présentation de la méthode

Dans cette section nous allons présenter notre méthode nommée COPReV pour
”Closed and Open world Person Re-identification and Verification”. L’idée de cette
méthode est simple. Dans le cadre d’une base d’identités fermée, ranger une liste
de personnes galerie par ordre de similarité permet d’obtenir une CMC parfaite, ie.



7.3. COPREV 143

avec un taux de ré-identification de 100% dès le premier rang, dès lors que la bonne
identité galerie est au premier rang pour chacune des personnes requête. Dans le
cadre d’une base d’identités ouverte, cela n’est pas suffisant. En effet, s’il existe des
personnes requêtes ne faisant pas partie de la galerie, mais pour lesquelles il existe
une personne de la galerie pour laquelle le score de dissimilarité est plus petit (ou
dont le score de similarité est plus grand) que celui d’une personne requête faisant
partie de la galerie avec l’identité galerie correspondance, alors on aura une faible
valeur de DIR pour des valeurs fixées de FAR. Par contre, si le score de dissimilarité
des paires positives est toujours inférieur à un certain seuil, et que le score de dissim-
ilarité des paires négatives est toujours supérieur à ce même seuil, alors le score de
dissimilarité de toutes les paires positives sera plus petit que celui de n’importe quel
paire négative. Ainsi les bons appariements seront toujours rangés avant les paires
négatives. Cela permet donc de résoudre à la fois le problème de la ré-identification
en base d’identités ouverte et en base d’identités fermée.

Fort de ces observations, la méthode COPReV consiste à apprendre une pro-
jection des descripteurs telle qu’avec les descripteurs projetés, la distance entre les
descripteurs de deux images d’une même personne est inférieure à un certain seuil,
et que la distance entre les descripteurs correspondant à deux personnes distinctes
est supérieure à ce même seuil. Pour ce faire, nous proposons d’optimiser une fonc-
tion objective contenant deux termes, un terme pénalisant les paires positives ayant
une distance supérieure au seuil fixé et un terme pénalisant les paires négatives
ayant une distance inférieure au seuil fixé. Nous avons fait le choix d’une fonc-
tion logistique généralisée comme fonction de perte associée à chacun des termes
de pénalisation. Une telle fonction a une forme en S et agit donc comme une fonc-
tion de comptage qui compte le nombre de paires mal classées. Afin de ne pas
favoriser les paires négatives dont le nombre est bien supérieur au nombre de paires
positives, et afin d’éviter de donner davantage d’importance aux identités qui sont
représentées par davantage d’images, des pondérations sont appliquées aux deux
termes de pénalisation. Des contraintes supplémentaires sur le comportement de
la fonction de perte sont détaillées dans la partie écrite en anglais et permettent
d’obtenir une fonction de perte n’ayant plus que deux paramètres.

Pour résumer, nous cherchons la matrice de projection L qui minimise la fonction
objective suivante:

E(L) =
∑
i∈I

 1

mii

∑
y∈Dii

L+

(
‖Ly‖22 − τ

)
+

1

K − 1

∑
j∈I\i

 1

mij

∑
y∈Dij

L−
(
τ − ‖Ly‖22

)
(7.1)

où I désigne l’ensemble des identités de l’ensemble d’apprentissage et K son car-
dinal. i et j font référence à des identités. Dii représente l’ensemble des différence
des descripteurs de deux images de la personne i, Dij représente l’ensemble des
différence des descripteurs de deux images, l’une représentant la personne i, l’autre
représentant la personne j. τ est le seuil de décision qui permet de distinguer les
paires positives et négatives. Les fonctions L+ et L− sont les fonctions de perte
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qui s’appliquent respectivement aux paires positives et aux paires négatives. Elles
s’écrivent sous la forme suivante:

L(z) = 1− 1

(1 + νe−λz)
1
ν

où λ < 0 et ν > 1 (7.2)

7.3.2 Résultats expérimentaux

Nous avons testé COPReV sur deux datasets, PRID2011 [11] et iLIDS VID [9]. Afin
de montrer l’apport de notre approche, nous l’avons testé avec deux descripteurs: les
descripteurs LOMO [23] et les descripteurs Inception-Resnet-v2 [117] abrégé par IR.
Chacun de ces deux descripteurs ont au préalable subit une projection en utilisant la
méthode d’apprentissage de métrique XQDA [23] considérée comme une projection
plutôt qu’une distance.

Les résultats en base fermée sont présentés dans les tableaux 7.1 et 7.2.

Dataset PRID2011
Rang 1 5 10 20
MDTS-DTW [47] 69.6 89.4 94.3 97.9
DVR [9] 77.4 93.9 97.0 99.4
XQDA+IR 41.2 68.9 79.9 90.2
COPReV+IR 53.0 80.8 91.5 98.1
XQDA+LOMO[23] 86.4 98.3 99.6 100.0
COPReV+LOMO 82.8 97.8 99.6 100.0

Table 7.1 – Evaluation en base fermée sur PRID2011.
Les valeurs de CMC sont fournies pour les rangs 1, 5, 10 et 20. Les meilleurs résultats sont en
rouge et en gras.

Dataset iLIDS-VID
Rang 1 5 10 20
MDTS-DTW [47] 49.5 75.7 84.5 91.9
DVR [9] 51.1 75.7 83.9 90.5
XQDA+IR 11.1 29.0 39.6 51.5
COPReV+IR 21.9 51.2 66.9 81.3
XQDA+LOMO[23] 55.9 83.4 90.5 96.1
COPReV+LOMO 53.9 83.4 91.6 97.9

Table 7.2 – Evaluation en base fermée sur iLIDS VID.
Les valeurs de CMC sont fournies pour les rangs 1, 5, 10 et 20. Les meilleurs résultats sont en
rouge et en gras.

Pour PRID et iLIDS VID, l’amélioration entre XQDA et COPReV est assez im-
portante pour les descripteurs IR avec plus de 10% de différence dans le taux de
ré-identification sur quasiment tous les rangs. Avec les descripteurs LOMO, les
résultats obtenus avec XQDA et COPReV sont assez similaires mais très légèrement
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meilleurs pour les rangs plus élevés. En comparaison avec l’état de l’art, COPReV
appliqué aux descripteurs LOMO donne de meilleurs résultats.

Les résultats en base ouverte sont présentés dans les tableaux 7.3 et 7.4.

Dataset PRID2011
FAR(%) 1 10 50 100
MDTS-DTW [47] 42.7 55.2 70.5 72.8
DVR [9] 46.8 58.3 78.3 79.7
XQDA+IR 3.0 8.7 24.7 47.7
COPReV+IR 8.3 15.8 40.0 60.5
XQDA+LOMO [23] 21.0 40.5 80.3 90.3
COPReV+LOMO 26.5 43.5 81.0 87.5

Table 7.3 – Evaluation en base ouverte sur PRID.
Les valeurs de DIR au rang 1 sont fournies pour les valeurs suivants de FAR: 1%, 10%,50% et
100%. Les meilleurs résultats sont en rouge et en gras..

Dataset iLIDS-VID
FAR(%) 1 10 50 100
MDTS-DTW [47] 12.7 32.6 51.8 57.3
DVR [9] 17.3 29.1 49.9 57.8
XQDA+IR 0.6 2.0 8.6 13.7
COPReV+IR 1.2 5.7 17.4 25.8
XQDA+LOMO [23] 5.6 15.4 45.8 59.9
COPReV+LOMO 3.9 21.0 47.9 59.1

Table 7.4 – Evaluation en base ouverte sur iLIDS VID.
Les valeurs de DIR au rang 1 sont fournies pour les valeurs suivants de FAR: 1%, 10%,50% et
100%. Les meilleurs résultats sont en rouge et en gras.

Dans le cadre de la base ouverte, avec les descripteurs IR, l’apport de COPReV
comparé à XQDA est visible pour les différentes valeurs de FAR. Avec les descrip-
teurs LOMO, l’amélioration est visible pour PRID et iLIDS pour des valeurs de
FAR moyennes, égales à 10% et 50% mais aussi lorsque FAR = 1% sur PRID.
Cependant, ces performances sont encore largement en dessous de celles d’autres
méthodes de l’état de l’art.

7.3.3 Conclusion

COPReV s’appuie uniquement sur des contraintes de vérification pour apprendre
une projection des descripteurs. Les performances sont assez mitigées ce qui suggère
que des contraintes de rangement sont également nécessaires.
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7.4 Représentations parcimonieuses avec une collaboration
élargie

7.4.1 Présentation de la méthode

Dans le cas idéal où une méthode de vérification donne des résultats parfaits, les
problèmes de ré-identification en base ouverte et en base fermée sont également
résolus. Cependant si la méthode de vérification n’est pas parfaite, ce qui est le
cas dans la pratique, les performances en ré-identification en base ouverte et fermée
ne sont absolument plus garanties non plus. Au lieu d’imposer uniquement des
contraintes sur l’appartenance ou non de deux images à une même classe (identité),
nous proposons dans cette section une méthode qui prend en compte à la fois l’aspect
vérification (décision), et l’aspect ré-identification (classement). Notre approche est
basée sur les représentations parcimonieuses collaboratives. Nous proposons de ren-
forcer l’aspect collaboratif de ces méthodes afin de mieux gérer le problème de la
base ouverte et en particulier la possibilité de rejeter une personne requête lorsqu’elle
ne fait pas partie de la galerie.

Plusieurs méthodes de ré-identification de personnes qui exploitent les représentations
parcimonieuses collaboratives existent déjà [109, 102]. Pour comprendre l’intérêt de
la représentation parcimonieuse collaborative, commençons par expliquer ce qu’est
une représentation parcimonieuse. Etant donné un vecteur colonne x de dimension
d et un dictionnaire D de dimension d × c, une représentation parcimonieuse de x
est un vecteur colonne ax,D de dimension c tel que Dax,D est une approximation de
x et que ax,D est parcimonieux. Une telle représentation parcimonieuse peut être
obtenue en optimisant la fonction suivante:

ax,D = arg min
a
||x−Da||22 + λ||a||1 (7.3)

où λ est un paramètre compris entre 0 et 1, ||.||2 est la norme euclidienne et ||.||1
est la norme 1. Deux termes interviennent: l’erreur de reconstruction (||x−Da||22)
et le terme de pénalisation pour obtenir un vecteur parcimonieux (||a||1).

Dans le cadre de la ré-identification de personnes, le dictionnaire D est com-
posé de la concaténation des dictionnaires de chacune des K personnes de la galerie
D = [D1, D2, . . . , DK ] et la représentation parcimonieuse du descripteur de la per-
sonne requête est calculée à partir de ce dictionnaire collaboratif D. Plus qu’une
simple collaboration, les différents éléments de D sont mis en concurrence et seuls les
éléments les plus similaires au descripteur de la personne requête sont sélectionnés
pour participer à la combinaison linéaire parcimonieuse de colonnes de D qui ap-
proxime ce descripteur de la personne requête. Ainsi, certaines identités galerie ne
participent pas du tout à la reconstruction du descripteur de la personne requête.
Ces identités galerie sont exclues du classement des identités galerie semblables à
la personne requête. D’autre part, les identités galerie qui participent à la recon-
struction sont rangées par ordre de similarité en considérant que plus le dictionnaire
d’une personne galerie participe à la reconstruction, plus elle est similaire à la per-
sonne requête.
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Dans le cas de la base ouverte, l’aspect collaboratif de la représentation qui met
en compétition les identités galerie permet comme en base fermée de classer les iden-
tités galerie. Par contre, la combinaison de l’aspect collaboratif et de l’aspect parci-
monieux qui permet de ne représenter l’élément requête qu’à partir du dictionnaire
de peu d’identités galerie n’est pas suffisant pour rejeter complètement une personne
requête comme ne faisant par partie de la galerie. En effet, la représentation parci-
monieuse est parcimonieuse et non pas complètement nulle. Or si la représentation
parcimonieuse correspondant au dictionnaire D était entièrement nulle, cela signi-
fierai qu’aucune personne galerie ne doit être associée à la personne requête qui est
alors rejetée. Nous proposons donc d’élargir le dictionnaire avec lequel est calculé
la représentation parcimonieuse de l’élément requête de telle sorte qu’il est envis-
ageable d’obtenir une participation nulle pour chaque personne galerie, même si la
représentation parcimonieuse n’est quant à elle par totalement nulle. Les éléments
non nuls correspondent au dictionnaire additionnel que nous concaténons au dictio-
nnaire D afin de calculer la représentation parcimonieuse de l’élément requête.

Pour résumer, pour identifier une personne requête représentée par le descrip-
teur x, nous calculons la représentation parcimonieuse de x en utilisant comme
dictionnaire collaboratif le dictionnaire [D1, D2, . . . , DK , T ], concaténation des dic-
tionnaires de chaque identité galerie et des éléments de l’ensemble d’apprentissage
T en optimisant la fonction suivante:

ax,[D1,D2,...,DK ,T ] = arg min
a
||x− [D1, D2, . . . , DK , T ]a||22 + λ||a||1 (7.4)

Les identités galerie dont les dictionnaires n’interviennent pas dans la reconstruction
ne sont pas classées, les autres identités galerie sont classées selon leur participation
plus ou moins importante à la reconstruction.

7.4.2 Résultats expérimentaux

Nous avons testé l’approche parcimonieuse collaborative avec collaboration élargie
sur deux datasets, PRID2011 [11] et iLIDS VID [9]. Afin de montrer l’apport de
notre approche, nous l’avons testé avec deux descripteurs: les descripteurs LOMO
[23] et les descripteurs Inception-Resnet-v2 [117] abrégé par IR. Chacun de ces
deux descripteurs ont au préalable subit une projection en utilisant la méthode
d’apprentissage de métrique XQDA [23] considérée comme une projection plutôt
qu’une distance, ainsi qu’une étape de normalisation afin d’obtenir des descripteurs
de norme unité.

Les résultats en base fermée sont présentés dans les tableaux 7.5 et 7.6.
En base fermée, pour les deux descripteurs IR et LOMO, il y a une amélioration

nette (de 4% au minimum jusqu’à 29% du taux de ré-identification au premier rang)
entre l’approche d’apprentissage de métrique XQDA seul et l’utilisation d’une ap-
proche parcimonieuse collaborative. Pour iLIDS VID et PRID, pour IR et LOMO,
l’utilisation d’une collaboration élargie plutôt qu’une collaboration usuelle n’a pas
d’effet sur les performances. Cela s’explique par le fait que l’ajout d’éléments
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Rang 1 Rang 5 Rang 10 Rang 20

MDTS-DTW [47] 49.5 75.7 84.5 91.9
DVR [9] 51.1 75.7 83.9 90.5
IR + XQDA 11.7 30.9 41.5 53.6
IR + collaboratif 40.7 66.6 77.1 85.9
IR + collaboratif élargi 40.1 65.1 76.2 85.9
LOMO + XQDA 55.3 83.1 90.3 96.3
LOMO + collaboratif 64.9 87.1 92.5 96.1
LOMO + collaboratif élargi 65.1 86.6 92.4 96.1

Table 7.5 – Evaluation en base fermée sur iLIDS VID.
Les valeurs de CMC sont fournies pour les rangs 1, 5, 10 et 20. Les meilleurs résultats sont en
rouge et en gras. Best results are in bold red.

Rang 1 Rang 5 Rang 10 Rang 20

MDTS-DTW [47] 69.6 89.4 94.3 97.9
DVR [9] 77.4 93.9 97.0 99.4
IR + XQDA 43.4 71.9 82.4 91.6
IR + collaboratif 70.7 90.0 96.1 98.3
IR + collaboratif élargi 72.0 89.9 95.3 98.1
LOMO + XQDA 86.3 98.3 99.6 100.0
LOMO + collaboratif 90.2 98.0 99.3 100.0
LOMO + collaboratif élargi 90.6 97.9 99.2 100.0

Table 7.6 – Evaluation en base fermée sur PRID.
Les valeurs de CMC sont fournies pour les rangs 1, 5, 10 et 20. Les meilleurs résultats sont en
rouge et en gras.

supplémentaires ne modifie pas le classement des identités galerie, il modifie seule-
ment la valeur de dissimilarité, mais celle dernière n’est pas prise en compte par
l’évaluation CMC.

Les résultats en base ouverte sont présentés dans les tableaux 7.7 et 7.8.
En base ouverte, à nouveau, la différence est nette entre XQDA et l’approche

parcimonieuse collaborative. Ce qui diffère par rapport au cas base fermée est
l’apport de l’approche collaborative avec une collaboration élargie qui permet d’améliorer
le taux de DIR de 5% lorsque FAR est égal à 1% par rapport à l’approche collabora-
tive usuelle. Ainsi nous atteignons voire même surpassons les performances à l’état
de l’art.

7.4.3 Conclusion

Afin de mieux rejeter les mauvais appariements dans le cadre de la base ouverte,
nous avons proposé une méthode parcimonieuse collaborative avec une collaboration
élargie qui permet d’améliorer les performances en base ouverte et ainsi égaler ou
dépasser les autres méthodes de l’état de l’art avec pour FAR=1%, un DIR égal à
17.2% sur iLIDS VID et 55.7% sur PRID2011.
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FAR(%) 1 10 50 100

MDTS-DTW [47] 12.7 32.6 51.8 57.3
DVR [9] 17.3 29.1 49.9 57.8
IR + XQDA[23] 0.6 2.2 8.4 14.9
IR + collaboratif 7.3 16.7 36.4 46.0
IR + collaboratif élargi 7.3 18.6 37.7 44.9
LOMO + XQDA[23] 5.1 15.2 45.3 59.1
LOMO + collaboratif 12.9 35.1 58.8 68.5
LOMO + collaboratif élargi 17.2 37.5 62.8 69.0

Table 7.7 – Evaluation en base ouverte sur iLIDS VID.
Les valeurs de DIR au rang 1 sont fournies pour les valeurs suivants de FAR: 1%, 10%,50% et
100%. Les meilleurs résultats sont en rouge et en gras.

FAR(%) 1 10 50 100

MDTS-DTW [47] 42.7 55.2 70.5 72.8
DVR [9] 46.8 58.3 78.3 79.7
IR + XQDA[23] 3.2 9.5 25.7 50.8
IR + collaboratif 21.0 44.8 66.2 75.2
IR + collaboratif élargi 28.0 46.8 69.5 76.3
LOMO + XQDA[23] 21.2 40.7 78.8 90.5
LOMO + collaboratif 49.8 69.3 88.2 93.8
LOMO + collaboratif élargi 55.7 71.0 90.2 93.2

Table 7.8 – Evaluation en base ouverte sur PRID.
Les valeurs de DIR au rang 1 sont fournies pour les valeurs suivants de FAR: 1%, 10%,50% et
100%. Les meilleurs résultats sont en rouge et en gras.

7.5 Représentation collaborative bidirectionnelle

7.5.1 Présentation de la méthode

L’approche parcimonieuse collaborative avec collaboration élargie a permis dans la
section précédente d’obtenir des résultats dépassant déjà l’état de l’art. Dans cette
section, nous renforçons cette approche en insistant sur l’importance d’une relation
réciproque afin d’obtenir une correspondance encore plus robuste. Au lieu de ne
s’intéresser qu’au classement des identités galerie similaires à la personne requête,
nous évaluons également le problème du point de vue de chacune des personnes de
galerie. Nous nommerons méthode inverse cette approche où les rôles de la requête
et de la galerie sont inversés. De même qu’un score de dissimilarité peut être cal-
culé à partir de la représentation parcimonieuse d’un élément requête en utilisant le
dictionnaire de la galerie, la représentation parcimonieuse d’un élément de la galerie
en utilisant des éléments requête fournit également un score de dissimilarité. La
combinaison de ces deux scores par une simple somme forme une nouvelle méthode
bidirectionnelle.

Il est important de noter que le problème n’est pas tout à fait symétrique. En
effet, ce sont toujours les identités galerie que l’on souhaite classer en fonction de
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leur similarité avec la personne requête. De plus, si les personnes galeries sont tou-
jours toutes disponibles puisqu’elles sont connues, les images des identités requêtes
peuvent être fournies une par une (on parlera de méthode inverse 1 personne), ou
toutes simultanément (on parlera de méthode inverse toutes personnes).

7.5.2 Résultats expérimentaux

Nous avons testé l’approche parcimonieuse collaborative avec collaboration élargie
sur deux datasets, PRID2011 [11] et iLIDS VID [9]. Nous avons distingué le cas où
les personnes requête sont présentées une par une (cas ”inverse 1 pers.”) et le cas où
toutes les personnes sont présentées simultanément (cas ”inverse toutes pers”). Afin
de montrer l’apport de notre approche, nous l’avons testé avec deux descripteurs: les
descripteurs LOMO [23] et les descripteurs Inception-Resnet-v2 [117] abrégé par IR.
Chacun de ces deux descripteurs ont au préalable subit une projection en utilisant
la méthode d’apprentissage de métrique XQDA [23] considérée comme une projec-
tion plutôt qu’une distance, ainsi qu’une étape de normalisation afin d’obtenir des
descripteurs de norme unité.

Les résultats en base fermée sont présentés dans les tableaux 7.9 et 7.10.

Rang 1 5 10 20

MDTS-DTW [47] 49.5 75.7 84.5 91.9
DVR [9] 51.1 75.7 83.9 90.5
XQDA[23] 55.3 83.1 90.3 96.3
collaboratif 64.9 87.1 92.5 96.1
collaboratif élargi 65.1 86.6 92.4 96.1
inverse 1 pers. 65.4 88.3 93.9 96.8
inverse toutes pers. 69.9 89.8 94.2 96.9
collaboratif élargi+ inverse 1 pers. 68.1 88.9 93.7 96.7
collaboratif élargi+ inverse toutes pers. 69.8 89.6 93.5 96.8

Table 7.9 – Evaluation en base fermée sur iLIDS VID.
Les valeurs de CMC sont fournies pour les rangs 1, 5, 10 et 20. Les meilleurs résultats sont en
rouge et en gras.

En base fermée, les performances de l’approche inverse lorsqu’une seule personne
requête est présentée à la fois sont similaires à l’approche parcimonieuse collabo-
rative avec collaboration élargie présentée dans la section précédente et sont donc
nettement supérieures à XQDA seul. Lorsque toutes les personnes requêtes sont
présentées de manière simultanée, nous observons à nouveau un gain de 4% en
terme de taux ré-identification au premier rang. Quant à la combinaison des ap-
proches directes et inverses, cela améliore les performances lorsqu’une seule requête
est présentée à la fois, mais cela n’apporte pas de gain en performances lorsque
toutes les personnes requêtes sont présentées simultanément.

Les résultats en base ouverte sont présentés dans les tableaux 7.11 et 7.12.
En base ouverte, les performances de l’approche inverse lorsqu’une seule personne

requête est présentée à la fois sont similaires voire même meilleurs que l’approche
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Rang 1 5 10 20

MDTS-DTW [47] 69.6 89.4 94.3 97.9
DVR [9] 77.4 93.9 97.0 99.4
XQDA[23] 86.3 98.3 99.6 100.0
collaboratif 90.2 98.0 99.3 100.0
collaboratif élargi 90.6 97.9 99.2 100.0
inverse 1 pers. 89.8 98.2 99.2 100.0
inverse toutes pers. 94.2 98.5 99.2 100.0
collaboratif élargi+ inverse 1 pers. 91.2 98.4 99.4 100.0
collaboratif élargi+ inverse toutes pers. 93.8 98.3 99.6 100.0

Table 7.10 – Evaluation en base fermée sur PRID.
Les valeurs de CMC sont fournies pour les rangs 1, 5, 10 et 20. Les meilleurs résultats sont en
rouge et en gras.

FAR 1 10 50 100

MDTS-DTW [47] 12.7 32.6 51.8 57.3
DVR [9] 17.3 29.1 49.9 57.8
XQDA[23] 5.1 15.2 45.3 59.1
collaboratif 12.9 35.1 58.8 68.5
collaboratif élargi 17.2 37.5 62.8 69.0
inverse 1 pers. 13.9 35.6 61.5 69.2
inverse toutes pers. 22.0 44.7 67.4 72.7
collaboratif élargi+inverse 1 pers. 18.0 40.5 66.5 71.6
collaboratif élargi+inverse toutes pers. 23.8 45.8 68.1 72.9

Table 7.11 – Evaluation en base ouverte sur iLIDS.
Les valeurs de DIR au rang 1 sont fournies pour les valeurs suivants de FAR: 1%, 10%,50% et
100%. Les meilleurs résultats sont en rouge et en gras.

parcimonieuse collaborative avec collaboration élargie présentée dans la section précédente
et sont donc nettement supérieures à XQDA seul. Lorsque toutes les personnes
requêtes sont présentées de manière simultanée, nous observons à nouveau un gain de
9% jusqu’à 15% en terme de DIR lorsque FAR est égal à 1%. Quant à la combinaison
des approches directes et inverses, cela améliore surtout les performances lorsqu’une
seule requête est présentée à la fois, mais cela n’apporte pas systématiquement un
gain en performances lorsque toutes les personnes requêtes sont présentées simul-
tanément.

7.5.3 Conclusion

Dans cette section nous avons présenté une approche qui se veut symétrique à
l’approche présentée dans la section précédente où les rôles de la galerie et de la
requête sont inversés. Cette approche inverse présente des résultats meilleurs que
l’approche directe que ce soit en base fermée ou ouverte. De plus la combinaison
des deux approches permet d’améliorer les performances et d’obtenir des résultats
meilleurs que l’état de l’art lorsqu’une seule personne requête est présentée à la
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FAR 1 10 50 100

MDTS-DTW [47] 42.7 55.2 70.5 72.8
DVR [9] 46.8 58.3 78.3 79.7
XQDA[23] 21.2 40.7 78.8 90.5
collaboratif 49.8 69.3 88.2 93.8
collaboratif élargi 55.7 71.0 90.2 93.2
inverse 1 pers. 58.0 69.7 91.0 93.0
inverse toutes pers. 73.2 87.3 95.3 96.0
collaboratif élargi+inverse 1 pers. 60.8 76.0 91.7 93.3
collaboratif élargi+inverse toutes pers. 73.3 83.2 94.0 95.2

Table 7.12 – Evaluation en base ouverte sur PRID.
Les valeurs de DIR au rang 1 sont fournies pour les valeurs suivants de FAR: 1%, 10%,50% et
100%. Les meilleurs résultats sont en rouge et en gras.

fois. Lorsque les personnes requêtes sont présentées simultanément, les résultats
sont meilleurs que lorsqu’une seule personne requête est présentée à la fois.

7.6 Conclusion et perspectives

7.6.1 Conclusion

D’abord considéré comme un sous problème du problème de suivi multi-caméras, le
problème de la ré-identification de personnes est devenue une tâche à part entière
de vision par ordinateur en 2007. Depuis lors, cette problématique n’a eu de cesse
d’évoluer en prenant en compte des données de plus en plus riches et en considérant
des scénarios de plus en plus réalistes. Ainsi dans cette thèse, nous avons tenu à
proposer des méthodes adaptées à l’exploitation de données multi-shot. Néanmoins,
la recherche a été surtout axée sur la problématique de la ré-identification en base
ouverte où contrairement à la base fermée, la galerie ne contient pas toutes les iden-
tités possibles et la personne requête doit pouvoir être rejetée si elle ne correspond
à aucune personne de la galerie.

Sachant que lorsque le problème de la vérification de personnes est parfaitement
résolu (ie. lorsqu’on est capable de déterminer si deux ensemble d’images corre-
spondent à une seule personne ou à deux personnes distinctes), les problèmes de
ré-identification en base fermée (classement) et en base ouverte (détection et classe-
ment) sont également résolus, nous avons proposé une méthode appelée COPReV
(Closed and Open World Person Re-identification and Verification) qui utilise ex-
clusivement des contraintes de vérification pour apprendre une projection des de-
scripteurs telle qu’après projection, les distances des descripteurs de paires positives
sont inférieures à un certain seuil et celles des paires négatives sont supérieures à
ce même seuil. Si cette méthode permet globalement une amélioration des per-
formances pour les descripteurs testés dans le cadre de bases d’identités fermée et
ouverte, l’amélioration est variable selon le descripteur utilisé et les résultats en base
ouverte restent largement inférieurs à ceux de l’état de l’art.
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Ainsi nous avons proposé un deuxième type d’approches basées sur les représentations
parcimonieuses collaboratives. Les représentations parcimonieuses collaboratives
permettent d’une part de mettre en concurrence les identités de la galerie quant à
leur similarité avec la personne requête (aspect collaboratif) et d’autre part d’exclure
du classement de nombreuses identités galerie, celles qui sont les moins semblables
à la personne requête. Nous avons proposé une approche avec une collaboration
élargie afin de mieux traiter la problématique de la base ouverte tout en conser-
vant sur la problématique de la base fermée, des performances équivalentes à une
approche parcimonieuse collaborative standard. Grâce à la collaboration élargie, le
nombre de mauvais appariements de personnes requêtes n’existant pas dans la galerie
avec des personnes de la galerie est réduit. Afin de renforcer l’approche collabora-
tive élargie proposée, nous avons développé une seconde approche collaborative dans
laquelle les rôles des personnes de la galerie et des personnes requêtes sont inversées.
Les deux approches ne sont néanmoins pas complètement symétriques car au final
ce sont toujours les personnes galeries que l’on doit ranger pas ordre de similarité
avec la personne requête. En combinant les deux approches collaboratives élargies,
nous obtenons une approche collaborative bidirectionnelle qui montre des résultats
meilleurs que ceux de l’état de l’art.

7.6.2 Perspectives

Tout au long de la thèse, nous nous sommes essentiellement intéressés a l’appariement
des personnes requête et galerie. Nous avons utilises deux descripteurs afin de
montrer la pertinence de la méthode d’appariement. Si les méthodes proposées
améliorent les performances pour les deux descripteurs testés, les résultats diffèrent
grandement selon les descripteurs choisis. Des travaux futurs pourraient être con-
duits afin de développer des descripteurs directement adaptés a un appariement avec
les approches parcimonieuses proposées. L’apprentissage de ces nouveaux descrip-
teurs pourraient notamment se faire avec une approche de type réseaux de neurones.

Certaines étapes des méthodes proposées peuvent également être améliorées. En
particulier d’autres manières de former les dictionnaires collaboratifs pourraient être
proposées, avec par exemple un apprentissage de dictionnaire plutôt qu’une sélection
d’éléments de l’ensemble d’apprentissage.

Des considérations sur les temps de calcul et les besoins mémoire devrons également
être pris en compte afin de permettre l’utilisation de nos méthodes dans le cadre de
bases d’images avec toujours plus d’identités et plus d’images par identités.

Enfin, des scénarios encore plus complexes devrons faire l’objet de futurs travaux
car si le problème de ré-identification en base ouverte étudié dans cette thèse se rap-
proche davantage des problématiques rencontrées en pratique comparé au problème
de la base fermée, les nouvelles identités requêtes non présentes dans la galerie ne
sont pas pour le moment ajoutée dans la galerie pour de futures ré-identifications.
L’ensemble des identités de la galerie devrait être un ensemble dynamique qui
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s’agrandit au fur et a mesure de la détection de nouvelles personnes auparavant
inconnues.
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pairwise learned metric for person re-identification. In European Conference
on Computer Vision, 2012.

[80] Sateesh Pedagadi, James Orwell, Sergio Velastin, and Boghos Boghossian.
Local fisher discriminant analysis for pedestrian re-identification. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2013.

[81] Xiaokai Liu, Hongyu Wang, Jie Wang, and Xiaorui Ma. Person re-
identification by multiple instance metric learning with impostor rejection.
Pattern Recognition, 67:287–298, 2017.

[82] Lianyang Ma, Xiaokang Yang, and Dacheng Tao. Person re-identification over
camera networks using multi-task distance metric learning. IEEE Transactions
on Image Processing, 23(8):3656–3670, 2014.

[83] Jinjie You, Ancong Wu, Xiang Li, and Wei-Shi Zheng. Top-push video-based
person re-identification. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

[84] Shengcai Liao and Stan Z. Li. Efficient psd constrained asymmetric metric
learning for person re-identification. In The IEEE International Conference
on Computer Vision (ICCV), December 2015.



162 BIBLIOGRAPHY

[85] Li Zhang, Tao Xiang, and Shaogang Gong. Learning a discriminative null space
for person re-identification. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

[86] Ronald A Fisher. The use of multiple measurements in taxonomic problems.
Annals of human genetics, 7(2):179–188, 1936.

[87] Matthieu Guillaumin, Jakob Verbeek, and Cordelia Schmid. Is that you?
metric learning approaches for face identification. In Computer Vision, 2009
IEEE 12th international conference on, pages 498–505. IEEE, 2009.

[88] Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S Dhillon.
Information-theoretic metric learning. In Proceedings of the 24th international
conference on Machine learning, pages 209–216. ACM, 2007.

[89] Fei Xiong, Mengran Gou, Octavia Camps, and Mario Sznaier. Person re-
identification using kernel-based metric learning methods. In European con-
ference on computer vision, pages 1–16. Springer, 2014.

[90] Wei Li, Rui Zhao, and Xiaogang Wang. Human reidentification with trans-
ferred metric learning. In Asian Conference on Computer Vision, pages 31–44.
Springer, 2012.

[91] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural informa-
tion processing systems, pages 1097–1105, 2012.

[92] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnn mod-
els for fine-grained visual recognition. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1449–1457, 2015.

[93] Faqiang Wang, Wangmeng Zuo, Liang Lin, David Zhang, and Lei Zhang.
Joint learning of single-image and cross-image representations for person re-
identification. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[94] Shi-Zhe Chen, Chun-Chao Guo, and Jian-Huang Lai. Deep ranking for person
re-identification via joint representation learning. IEEE Transactions on Image
Processing, 25(5):2353–2367, 2016.

[95] Shengyong Ding, Liang Lin, Guangrun Wang, and Hongyang Chao. Deep
feature learning with relative distance comparison for person re-identification.
Pattern Recognition, 2015.

[96] De Cheng, Yihong Gong, Sanping Zhou, Jinjun Wang, and Nanning Zheng.
Person re-identification by multi-channel parts-based cnn with improved triplet
loss function. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[97] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi Huang. A multi-task
deep network for person re-identification. arXiv preprint arXiv:1607.05369,
2016.



BIBLIOGRAPHY 163

[98] Yichao Yan, Bingbing Ni, Zhichao Song, Chao Ma, Yan Yan, and Xiaokang
Yang. Person re-identification via recurrent feature aggregation. In European
Conference on Computer Vision, pages 701–716. Springer, 2016.

[99] Niall McLaughlin, Jesus Martinez del Rincon, and Paul Miller. Recurrent
convolutional network for video-based person re-identification. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

[100] Rahul Rama Varior, Bing Shuai, Jiwen Lu, Dong Xu, and Gang Wang. A
siamese long short-term memory architecture for human re-identification. In
European Conference on Computer Vision, pages 135–153. Springer, 2016.

[101] Tong Xiao, Hongsheng Li, Wanli Ouyang, and Xiaogang Wang. Learn-
ing deep feature representations with domain guided dropout for person re-
identification. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[102] Srikrishna Karanam, Yang Li, and Richard Radke. Sparse re-id: Block spar-
sity for person re-identification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages 33–40, 2015.

[103] Srikrishna Karanam, Yang Li, and Richard J Radke. Person re-identification
with block sparse recovery. Image and Vision Computing, 60:75–90, 2017.

[104] Mohamed Ibn Khedher, Mounim A El Yacoubi, and Bernadette Dorizzi. Multi-
shot surf-based person re-identification via sparse representation. In The IEEE
International Conference on Advanced Video and Signal Based Surveillance,
2013.

[105] Srikrishna Karanam, Yang Li, and Richard J. Radke. Person re-identification
with discriminatively trained viewpoint invariant dictionaries. In The IEEE
International Conference on Computer Vision (ICCV), December 2015.

[106] Elyor Kodirov, Tao Xiang, and Shaogang Gong. Dictionary learning with
iterative laplacian regularisation for unsupervised person re-identification. In
Mark W. Jones Xianghua Xie and Gary K. L. Tam, editors, Proceedings of the
British Machine Vision Conference (BMVC), pages 44.1–44.12. BMVA Press,
September 2015.

[107] Elyor Kodirov, Tao Xiang, Zhenyong Fu, and Shaogang Gong. Person re-
identification by unsupervised\ ell 1 graph learning. In European Conference
on Computer Vision, pages 178–195. Springer, 2016.

[108] Peixi Peng, Tao Xiang, Yaowei Wang, Massimiliano Pontil, Shaogang Gong,
Tiejun Huang, and Yonghong Tian. Unsupervised cross-dataset transfer learn-
ing for person re-identification. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.

[109] Le An, Xiaojing Chen, Songfan Yang, and Bir Bhanu. Sparse representation
matching for person re-identification. Information Sciences, pages –, 2016.



164 BIBLIOGRAPHY

[110] Xiao Liu, Mingli Song, Dacheng Tao, Xingchen Zhou, Chun Chen, and Jiajun
Bu. Semi-supervised coupled dictionary learning for person re-identification. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2014.

[111] Xiao-Yuan Jing, Xiaoke Zhu, Fei Wu, Xinge You, Qinglong Liu, Dong Yue,
Ruimin Hu, and Baowen Xu. Super-resolution person re-identification with
semi-coupled low-rank discriminant dictionary learning. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2015.

[112] Ying Zhang, Baohua Li, Huchuan Lu, Atshushi Irie, and Xiang Ruan. Sample-
specific svm learning for person re-identification. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[113] Xiang Li, Ancong Wu, Mei Cao, Jinjie You, and Wei-Shi Zheng. Towards
more reliable matching for person re-identification. In Identity, Security and
Behavior Analysis (ISBA), 2015 IEEE International Conference on, pages 1–
6. IEEE, 2015.

[114] Chunxiao Liu, Chen Change Loy, Shaogang Gong, and Guijin Wang. Pop:
Person re-identification post-rank optimisation. In The IEEE International
Conference on Computer Vision (ICCV), December 2013.

[115] Hanxiao Wang, Shaogang Gong, Xiatian Zhu, and Tao Xiang. Human-in-the-
loop person re-identification. In European Conference on Computer Vision,
pages 405–422. Springer, 2016.

[116] Svebor Karaman and Andrew D Bagdanov. Identity inference: generalizing
person re-identification scenarios. In Computer Vision–ECCV 2012. Work-
shops and demonstrations, pages 443–452. Springer, 2012.

[117] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learn-
ing. In AAAI, pages 4278–4284, 2017.

[118] Michela Farenzena, Loris Bazzani, Alessandro Perina, Vittorio Murino, and
Marco Cristani. Person re-identification by symmetry-driven accumulation of
local features. In Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, pages 2360–2367. IEEE, 2010.


