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Résumé en Français

Introduction

En traitement du signal une des tâches les plus importantes et fondamentales est l’élimination
ou la réduction du bruit de fond. Cette thématique est connue sous le nom de débruitage,
suppression du bruit ou rehaussement de la parole dans le cas particulier du traitement de la
parole. Cette thèse est consacrée au traitement de la parole, et plus particulièrement à son
débruitage. Ces dernières années, l’exploitation du traitement du signal dans les applications
mobiles tel que les systèmes de commandes vocales ou les applications dans les smartphones,
a connu un intérêt croissant. Dans le cadre de ces applications mobile le rehaussement de la
parole a une place centrale. Dans les systèmes de télécommunication, les transmissions ont
généralement lieu dans un environnement bruité non-stationnaire ; à l’intérieur d’une voiture,
dans la rue ou à l’intérieur d’un aéroport. Le traitement de la parole joue alors un rôle important
aux récepteurs pour améliorer la qualité de la parole. Les méthodes du réhaussement de la parole
sont également utilisées comme pré-traitement dans les systèmes de codage et de reconnaissance
de la parole [1]. Aussi, les algorithmes de rehaussement de la parole peuvent également être
appliqués aux prothèses auditives ou aux implants cochléaires pour réduire le bruit ambiant.

Le rehaussement de la parole a pour objectif, d’augmenter le confort auditif d’une part et
de diminuer la fatigue de l’auditeur d’autre part . Dans ce contexte, ce rehaussement de la
parole vise idéalement à améliorer, non seulement la qualité, mais aussi l’intelligibilité de la
parole. Dans la littérature actuelle, les solutions proposées consistent en général à réduire le
bruit de font afin d’améliorer la qualité de la parole. Cependant, ces méthodes peuvent générer
une distorsion de la parole. C’est la raison pour laquelle, le défi principal du rehaussement de
parole est de trouver le meilleur compromis entre la réduction du bruit de fond et la conservation
de la qualité de la parole d’origine. De plus, la conception des techniques de rehaussement de
la parole dépend aussi de l’application visée, de la bases de données, du type de bruit, de
la relation entre le bruit et le signal intérêt et du nombre de capteurs utilisés. En fonction
du nombre de capteurs disponibles, les techniques de rehaussement de la parole peuvent être
classées en deux catégories : i) les techniques mono-capteur et ii) multi-capteurs. Théoriquement,
une amélioration des performances est possible par l’utilisation d’un système multi-capteur au
lieu d’un système mono-capteur. Par exemple, un capteur placé près de la source du bruit
nous permet d’estimer au mieux ce bruit. Cependant, la complexité de la mise en œuvre, la
consommation d’énergie et la taille de l’appareil peuvent être un frein important à la réalisation
du rehaussement de la parole dans des applications réelles. De plus, les méthodes utilisant un
système mono-capteur peuvent directement être exploitées après un beamforming sur le signal
reçu par un système multi-capteur. Par conséquent, nous avons décidé de restreindre notre
attention aux méthodes mono-capteur qui sont, non seulement un véritable défi, mais aussi
jouent un rôle essentiel dans le traitement de la parole.

De nombreuses méthodes mono-capteur ont été proposées dans la littérature pour le re-
haussement de la parole. En général, ces méthodes peuvent être classées en deux catégories :
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les méthodes supervisées et non-supervisées. Malgré les bonnes performances obtenues par les
méthodes supervisées, les méthodes non-supervisées sont toujours nécessaires. En effet, les mé-
thodes non-supervisée permettent de compenser les lacunes des bases de données qui ne sont
pas toujours suffisamment représentatives de l’ensemble des cas d’applications réelles. Dans ces
applications, les techniques non-supervisées doivent répondre à tous les critères suivants sans
devoir recourir à la aucun apprentissage (training en anglais), ni du bruit ni du signal d’intérêt :

• avoir une bonne performance pour les signaux audio (parole, musique ou autres),

• garantir un bon compromis entre la qualité et l’intelligibilité de la parole

• être robuste aux différents types de bruit stationnaire et non-stationnaire.

Ainsi, la motivation principale de cette thèse est de construire un système complet de dé-
bruitage avec des techniques innovantes pour le problème de débruitage de la parole et du signal
audio corrompus par un bruit additif. Tout d’abord, une vue d’ensemble de l’architecture gé-
nérale du système de débruitage mono-capteur en bloc est attentivement étudiée. Cette étude
nous permet d’extraire les point clés de chaque bloc et d’identifier les améliorations possibles.
Cette thèse est donc divisée en deux parties. Dans la première partie, notre travail consiste à
développer une méthode robuste d’estimation du bruit ce qui est un des problème principal dans
les systèmes de débruitage monocapteur. Pour ce faire, nous présentons une vue d’ensemble des
principales méthodes d’estimation du bruit avec leurs avantages et leurs inconvénients. On nous
basant sur cette analyse, nous proposons ensuite une méthode robuste d’estimation du bruit
pour les environnements non-stationnaires. Cette méthode repose sur le fait que la transformée
de Fourier à courte terme des signaux bruités est parcimonieux dans le sens où les signaux de
parole transformés peuvent être représentés par un nombre relativement petit de coefficients avec
de grandes amplitudes dans le domaine temps-fréquence. Cette méthode est robuste car elle ne
nécessite pas d’information à priori sur la distribution de probabilité du signal intérêt. Ainsi,
cette méthode peut améliorer les performances du rehaussement de la parole dans n’importe
quel scénario où les signaux bruités peuvent avoir une représentation parcimonieuse faible.

Dans la deuxième partie de cette thèse, nous considérons le cas où nous disposons d’une esti-
mation précise de la densité spectrale de puissance du bruit. Dans ce contexte, nous avons pro-
posé des méthodes de débruitage paramétrique et aussi non-paramétrique. La première famille
de méthodes sont des approches paramétriques qui nous permettent d’améliorer non seulement
la qualité mais aussi de réduire l’impact négatif sur l’intelligibilité de la parole. Les méthodes
proposées sont basées sur la combinaison de la détection et de l’estimation ce qui améliore les
performances par rapport aux algorithmes d’estimations paramétriques uniques. Ainsi, deux
modèles de la parole bruitées sont pris en compte. Dans le premier modèle, la parole est soit
présente, soit absente, alors que dans le deuxième modèle, la parole est toujours présente mais
avec différents niveaux d’énergies. La deuxième famille de méthodes sont des approches non-
paramétriques. Ces méthodes sont basées sur la fonction SSBS (pour smoothed sigmoid-based
shrinkage) dans le domaine de la transformée discrète en cosinus (DCT). Aussi, nous propo-
sons une méthode hybride capable de capter des avantages des méthodes paramétriques et
non-paramétriques.

Architecture générale

Comme nous l’avons introduit précédemment, l’objectif principal de ce travail de thèse est l’étude
et le développement d’approches non-supervisées de rehaussement de la parole dans le contexte
mono-capteur. Les challenges principaux dans ce contexte pour l’amélioration de la qualité de la
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parole sont le manque de ressources (un microphone disponible) et l’absence de bases de données
(seul le signal bruité est disponible). Dans ce qui suit (Chapitre 2) nous présentons un aperçu
de l’architecture générale des systèmes de débruitage mono-capteur.

Un système de débruitage mono-capteur se compose de quatre blocs principaux : décompo-
sition du signal, estimation du bruit, débruitage et reconstruction du signal (voir Figure 2.1). Le
signal bruité observé est segmenté, fenêtré et transformé par une transformée harmonique à court
terme dans le bloc de décomposition. En effet, la plupart, des algorithmes de rehaussement de la
parole sont appliqués dans un domaine transformé (Discrete Fourier Transform (DFT), Discrete
Cosinus Transform (DCT),...) où la séparation entre le signal propre et le bruit est accentuée.
La sortie du bloc de décomposition sont donc les coefficients de la transformée à court terme
du signal bruité. Ces coefficients sont mis à l’entrée du bloc d’estimation du bruit et du bloc de
réduction du bruit. Le bloc d’estimation du bruit à pour objectif d’estimer la densité spectrale
de puissance du bruit. L’estimation du bruit est le bloc principal où diverses techniques ont été
proposées. Après avoir obtenu une estimation de la densité spectrale de puissance du bruit, un
algorithme de réduction du bruit est utilisé pour estimer les coefficients du signal débruités dans
le domaine transformé en appliquant une fonction de gain. Cette fonction de gain est généra-
lement calculée à partir de l’amplitude du signal bruité à la sortie du bloc de décomposition
et de la densité spectrale de puissance du bruit estimé au bloc d’estimation du bruit. Enfin, le
bloc de reconstruction permet de transformer les coefficients estimés dans le domaine temporel.
Notez qu’il est possible de récupérer exactement le signal dans le domaine temporel à partir de
ses coefficients de la transformée à courte terme (transformations réversibles).

Afin d’évaluer les performances du système de débruitage, un bloc d’évaluation supplémen-
taire est ajouté (voir Figure 2.7). Dans cette partie, nous présentons certains critères qui sont
fréquemment utilisés pour évaluer les performances des méthodes de rehaussement de la parole.
Ces critères seront également utilisés dans cette thèse. Ces critères peuvent être divisés en deux
catégories ; tests objectifs (SSNR– pour Segmental Signal to noise ratio, SNRI – pour SNR im-
provement, MARSovrl – pour Multivariate adaptive resgression splines overall speech quality,
STOI – pour Short Time Objective Intelligibility) et tests subjectifs (MOS-Mean opinion score).
Les tests d’écoute subjectifs sont les critères les plus fiables, mais ils nécessitent plus de temps
pour l’évaluation. Certains tests objectifs ont été fortement corrélés avec des tests subjectifs. Par
conséquent, ces tests objectifs sont fréquemment utilisés pour évaluer la qualité et l’intelligibilité
de la parole.

Comme mentionné précédemment, l’architecture générique des systèmes de rehaussement
de la parole est composée de quatre blocs principaux. Par conséquent, une amélioration ou
une modification de l’un de ces blocs peut se traduire par une amélioration des performances
pour l’ensemble du système. C’est l’objectif des chapitres suivants. Dans le chapitre 3 le bloc
d’estimation du bruit sera revisité. Dans le chapitre 4 nous développerons une nouvelle approche
pour le bloc de réduction de bruit alors que dans le chapitre 5 nous présenterons une méthode
basée sur l’optimisation conjointe des blocs de décomposition du signal et de réduction du bruit.

Estimation du bruit

Comme nous l’avons présenté précédemment, nous avons motivé l’intérêt d’une approche non-
supervisée pour les systèmes de débruitage mono-capteur. Un aperçu général des systèmes a
ensuite été présenté. Dans ces systèmes, l’estimation de la densité spectrale de puissance du
bruit est une question clé dans la conception des méthodes robustes de réduction du bruit pour
le rehaussement de la parole. La question est de savoir comment estimer la densité spectrale
de puissance du bruit à partir du signal bruité capturé par un seul capteur. Dans les systèmes
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mono-capteur de rehaussement de la parole le principal défi consiste à traiter le cas d’un bruit
non-stationnaire. En notant que le signal d’intérêt a une parcimonie faible dans un domaine
transformé, une nouvelle méthode d’estimation de la densité spectrale de puissance de bruit non-
paramétrique est introduite dans le chapitre 3. Cet algorithme est capable d’estimer efficacement
la densité spectrale de puissance du bruit non-stationnaire.

Cette nouvelle méthode ne nécessite pas de modèle ou de connaissances a priori des distri-
butions de probabilité des signaux de parole. Fondamentalement, nous ne prenons même pas en
considération le fait que le signal d’intérêt ici est la parole. L’approche est appelée extended-
DATE (E-DATE) puisqu’elle étend essentiellement le DATE (d-dimensional amplitude trimmed
estimator) pour le bruit blanc Gaussien, le bruit stationnaire et le bruit non-stationnaire coloré.
Le principe général de l’algorithme E-DATE est la propriété de parcimonie faible de la STFT
(pour Short Time Fourier Transform) des signaux bruités. Aussi, la séquence de valeur complexe
renvoyée par le STFT dans le domaine temps-fréquence peut être modélisée comme un signal
aléatoire complexe avec une distribution inconnue et dont la probabilité inconnue d’occurrence
dans le bruit de fond ne dépasse pas la 1

2 . Ainsi, l’estimation du bruit à pour objectif l’estimation
de la variance du bruit dans chaque bande fréquentielle ce qui est fourni par le DATE.

L’algorithme E-DATE consiste à réaliser l’estimation de la densité spectrale de puissance
du bruit en exécutant l’algorithme DATE pour chaque bande de fréquence sur des périodes
de D trames consécutives sans chevauchements, où D est choisi de sorte que le bruit peut
être considéré comme approximativement stationnaire dans cet intervalle de temps. Une fois
l’estimation de la densité spectrale de puissance du bruit obtenue, elle peut être utilisée pour
le débruitage par exemple. Bien que l’algorithme E-DATE ait été spécifiquement conçu pour
l’estimation de la densité spectrale de puissance du bruit non-stationnaire, il peut être utilisé
sans modification pour l’estimation de la densité spectrale de puissance du bruit blanc ou du
bruit stationnaire coloré, ainsi il offre un estimateur de la densité spectrale de puissance du bruit
robuste et universel dont les paramètres sont fixés une fois pour tous les types de bruit.

Deux implémentations différentes de l’algorithme E-DATE sont mises en œuvre dans ce cha-
pitre. La première approche est une implémentation simple par blocs de l’algorithme présentée
dans Figure 3.3. Il s’agit d’estimer la densité spectrale de puissance du bruit sur chaque période
de D trames successives et sans chevauchement. Cela nécessite d’enregistrer D trames, de cal-
culer la densité spectrale de puissance du bruit en utilisant les observations dans ces D trames,
puis d’attendre D nouvelles trames sans chevauchement. Cet algorithme s’appelle Bloc-E-DATE
(B-E-DATE). L’estimation de la densité spectrale de puissance du bruit sur des périodes sépa-
rées de D trames réduit la complexité globale de l’algorithme. Cependant, cela implique une
latence de D trames, qui doit être considéré dans les applications à temps réelles. Cette latence
peut être contournée comme suit. Tout d’abord, une méthode standard d’estimation est utilisée
pour estimer la densité spectrale de puissance du bruit pendant les D− 1 premières trames. Par
la suite, en commençant par la trame Dème et en faisant glisser une fenêtre d’observation, une
version de l’algorithme E-DATE est utilisée pour estimer la densité spectrale de puissance du
bruit trame par trame. Cette implémentation alternative s’appelle SW-E-DATE (pour Sliding-
Window-E-DATE) montrée dans Figure 3.4.

Les algorithmes B-E-DATE et SW-E-DATE peuvent être considérés comme deux exemples
particuliers d’un algorithme général utilisant une fenêtre d’observation. Plus précisément, l’al-
gorithme B-E-DATE correspond au cas extrême où la fenêtre d’observation est totalement vidée
et mise à jour une fois toutes les D trames. En revanche, l’algorithme SW-E-DATE correspond
à l’autre cas extrême où seul la trame la plus ancienne est enlevée pour stocker la nouvelle,
en mode First-In First-Out (FIFO). De toute évidence, une approche plus générale entre ces
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deux extrêmes consiste à une mise à jour partielle de la fenêtre d’observation en renouvelant
seulement L trames parmi D.

Ces algorithmes ont été évaluer en utilisant la base de donnée NOIZEUS. Les résultat sont
rapportés dans le tableau 3.1 (pour le nombre de paramètres), dans les figure 3.5, 3.6 (pour
l’erreur de l’estimation la densité spectrale de puissance du bruit), la figure 3.7 (pour SNRI),
les figures 3.8, 3.9 (pour SSNR), les figures 3.10 et 3.11 (pour MARSovrl). Les résultats expé-
rimentaux montrent que l’algorithme E-DATE fournit généralement l’estimation de la densité
spectrale de puissance du bruit la plus précise et qu’il surpasse d’autres méthodes en étant utilisé
dans des système de débruitage de la parole en présence de différents types et niveaux de bruit.
En raison de ses bonnes performances et sa faible complexité, l’algorithme B-E-DATE devrait
être préféré dans la pratique lorsque les fréquences de traitement des données sont suffisamment
élevées pour induire des délais acceptables ou même négligeables.

Débruitage

Dans cette partie, nous proposons deux approches pour estimer l’amplitude spectrale à court
terme (STSA). L’objectif principal de cette partie est de prendre en compte les résultats récents
de la théorie statistique paramétrique et non paramétrique pour améliorer les performances des
systèmes mono-capteur de débruitage de la parole. Le Chapitre 4 prend en considération la
théorie statistique en combinant l’estimation et la détection basée sur l’approche paramétrique.
Chapitre 5 les performances du rehaussement de la parole sont améliorées en utilisant une
approche semi-paramétrique.

Approche paramétrique
L’objectif de cette partie (chapitre 4) est de de suivre une approche bayésienne visant à

optimiser conjointement la détection et l’estimation des signaux de la parole afin d’améliorer
l’intelligibilité de la parole. Pour ce faire, nous nous concentrons sur l’estimateur de l’amplitude
spectrale basé sur la combinaison de la détection et de l’estimation. En définissant la fonction
de coût sur l’erreur d’amplitude spectrale, notre stratégie est de déterminer une fonction de gain
sous la forme d’un masque binaire généralisé.

Ainsi, deux modèles d’hypothèse binaire sont utilisés pour déterminer la fonction de gain
discontinue. Tout d’abord, on considère les hypothèses binaires où l’absence de la parole est
stricte (Strict Model - SM). Dans ce modèle, nous supposons que le signal observé contient
du bruit et du signal de parole dans certains atomes temps-fréquence, alors que dans d’autres
atomes, l’observation contient uniquement du bruit. La présence de la parole est détectée en
contraignant la probabilité de fausse d’alarme comme dans l’approche Neyman-Pearson.

En résumé, pour chaque atome temps-fréquence, la méthode conjointe proposée estime
d’abord la STSA de la parole en utilisant l’estimateur bayésien (STSA-MMSE), ainsi le dé-
tecteur se base sur cette estimation pour détecter la présence ou l’absence de parole à chaque
atome. Si la parole est absent, cette méthode fixe la STSA de la parole à 0. En se concentrant
uniquement sur l’estimateur, l’estimation STSA peut être écrite comme un masque binaire.
Cette méthode s’appelle SM-STSA. Dans cette méthode, le détecteur dépend de l’estimateur. À
son tour, l’estimateur dépend du détecteurs. Cette double dépendance est censée améliorer les
performances du détecteur et de l’estimateur.

Deuxièmement, nous supposons que la parole est toujours présente avec différents niveaux
d’énergie (Uncertain Model - UM). Plus précisément, sous l’hypothèse nulle, le signal observé
est composé du bruit et d’une part négligeable du signal de parole alors que, dans l’hypothèse
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alternative, le signal observé est la somme du bruit et de la parole d’intérêt. Comme dans le
premier modèle, le détecteur est déterminé par la stratégie de Neyman-Pearson. La différence
principale entre les deux modèles est que le premier ne fournit aucune amplitude estimée sous
l’hypothèse nulle (la parole est absente) tandis que le dernier introduit une estimation même sous
l’hypothèse nulle (le signal de la parole de peu d’intérêt est présent). Ce modèle nous permet de
réduire le bruit musical. En effet, les méthodes basées sur le modèle strict de présence/absence
de la parole peuvent introduire un bruit musical puisque ces estimateurs peuvent générer au
hasard des pics isolés dans le domaine temps-fréquence. Ainsi, sous l’hypothèse nulle, l’estimateur
proposé devrait permettre de réduire l’impact de l’erreur des détections manquées. Pour ce
modèle, on considère la même fonction de coût pour toutes les situation, nous obtenons ainsi le
même estimateur STSA sous les deux hypothèse. C’est la raison pour la quelle nous l’appelons
estimateur STSA indépendant (IUM-STSA). Le détecteur influe uniquement sur l’estimateur
via un paramètre pondéré (cf. Eq. 4.84).

Pour prendre en compte le rôle de la présence et de l’absence de la parole, nous considérons
ensuite la fonction de coût qui nous permet de mettre davantage l’accent sur les détections
maquées. L’erreur de détection dépend alors uniquement de la vraie amplitude au lieu de la
différence entre la vraie amplitude son estimation. En particulier, lorsque une détection est
manquée, le fonction de coût pénalise implicitement non seulement l’erreur estimée mais aussi
l’erreur détectée. L’estimation JUM-STSA (c’est-à-dire Joint estimation in the Uncertain Model)
peut être écrite comme un masquage binaire généralisé (cf. Eq. 4.93).

Nous avons aussi évalué les performances de nos méthodes proposées sur la base de données
NOIZEUS et 11 types de bruit provenant de la base de données AURORA. Les performances de
toutes les méthodes proposées et les méthode de référence ont été évaluées dans deux scénarios.
Dans le premier scénario, le débruitage est effectué en utilisant la densité spectrale de puissance
du bruit de référence. Dans le deuxième scénario, la densité spectrale de puissance du bruit est
estimée par la méthode B-E-DATE. Les résultats expérimentaux sont présentés dans les figures
4.2 (pour SSNR), 4.3 (pour SNRI), 4.4 (pour MARSovrl) et 4.5 (pour STOI). Les résultats
expérimentaux ont montré la pertinence de l’approche proposée. En d’autre termes, ces résultats
expérimentaux confirme l’intérêt de combiner la détection et l’estimation pour l’amélioration
de la parole. En effet ces résultats expérimentaux de l’estimateur basé sur la combinaison de
la détection et de l’estimation sont généralement meilleurs que ceux de la méthode STSA-
MMSE, qui est reconnue comme une approche de référence. Par conséquent, en pratique, nous
recommandons l’utilisation de tels détecteurs/estimateurs. Le choix entre eux peut être régi par
le type de critère que nous souhaitons optimiser.

Extension semi-paramétrique
Dans la partie précédente (Chapitre 4) nous nous sommes concentrés uniquement sur les

méthodes paramétriques. Il s’avère que de nombreux résultats dans l’estimation statistique non-
paramétrique et robuste établis au cours des deux dernières décennies et basés sur les techniques
de seuillage sont suffisamment prometteurs pour suggérer leur utilisation dans le traitement
de signal audio non-supervisé afin d’améliorer la robustesse des méthodes de débruitage. De
manière générale et comme rappelé ci-dessous, l’intérêt du débruitgae non-paramétrique est
double. Tout d’abord, le débruitgae non-paramétrique ne nécessite pas de connaissance a priori
de la distribution du signal. Deuxièmement, il permet d’avoir un gain d’intelligibilité de la parole.
Étant donné que les approches bayésiennes sont connues pour améliorer la qualité de la parole,
l’idée est de combiner ces deux approches. Néanmoins, cette combinaison nécessite d’être mise en
place avec soin. En effet, la plupart des estimateurs non-paramétriques forcent à 0 des coefficients
de petite amplitude obtenus après une transformation dans un certain domaine. Bien que de
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nombreux bruits de fond soient annulés, en éliminant les petits coefficients cela génère du bruit
musical et réduit la qualité du signal audio an général et du signal de parole en particulier. Ce
problème est bien connu dans le traitement d’image où le forçage à zéro des petits coefficients
induit des artefacts.

Par conséquent, si nous voulons améliorer la qualité de la parole en éliminant le bruit musical
résiduel, le débruitage non-paramétrique devrait être une bonne alternative dont le principe est
d’atténuer les petits coefficients. Un estimateur bayésien peut ensuite être utilisé en aval du
débruitage non-paramétrique pour récupérer les informations dans les petits coefficients et ainsi
améliorer la qualité globale du signal audio. Une façon de procéder est d’estimer les amplitudes
spectrale des coefficients du signal propre dans le domaine temps-fréquence. L’estimation est
basée sur le critère MMSE. Cependant, au lieu d’utiliser une DFT, nous nous proposons d’utiliser
une transformée en cosinus discrète (DCT), qui évite d’estimer la phase du coefficients et peut
réduire la complexité.

Nous commençons par l’amélioration de l’intelligibilité de la parole et de l’audio par une
approche non-paramétrique basée sur le SSBS [2], initialement introduit pour le débruitage de
l’image. Deux caractéristiques principales de l’approche sont : 1) elle atténue les coefficients
DCT qui sont très susceptibles de concerner uniquement le bruit ou la parole avec une faible
amplitude dans le bruit ; 2) il tend à maintenir des coefficients DCT de grande amplitude.
Cependant, une telle approche non-paramétrique peut être considérée comme un filtrage de
Wiener et, en tant que telle, introduit du bruit musical. Nous modifions ensuite l’approche
SSBS initiale et proposons l’estimateur de bloc SSBS, ci-après nommé Bloc-SSBS. Bloc-SSBS
est pertinent pour éliminer les points isolés dans le domaine temps-fréquence qui peuvent générer
du bruit musical. Fondamentalement, Bloc-SSBS applique la même fonction de gain SSBS aux
blocs temps-fréquence. La taille de ces blocs est déterminée par le théorème SURE (pour Stein’s
Unbiased Risk Estimate) [3] afin de minimiser l’estimation impartialle de l’erreur quadratique
moyenne sur une régions temps-fréquence. En outre, d’autres paramètres de Bloc-SSBS peuvent
être optimisés en se basant sur des résultats récents de traitement du signal statistique non-
paramétrique [4] (méthode RDT). Une bonne caractéristique de la procédure d’optimisation
des paramètres proposée est le niveau de contrôle offert sur les performances de débruitage qui
permet de faire un compromis entre la qualité et l’intelligibilité de la parole. Ceci est rendu
possible en distinguant les composants de la parole (ou audio) significatifs et les composants de
la parole (resp. audio) avec un intérêt faible.

Les coefficients en sorti de Bloc-SSBS sont supposés satisfaire les mêmes hypothèses que
celles généralement utilisées pour l’estimation bayésienne. Par conséquent, dans une deuxième
étape, afin de réduire le bruit musical et, surtout, pour améliorer la qualité de la parole, un
estimateur statistique bayésien est proposé dans le domaine DCT pour une application à la
STSA lissée après Bloc-SSBS. Cette stratégie est nommée BSSBS-MMSE et présentée dans la
figure 5.4.

L’évaluation des performances des méthodes proposées ont été effectuées sur la base de
données NOIZEUS, avec et sans connaissance de la densité spectrale de puissance du bruit de
référence. Différents types de bruits stationnaires et non-stationnaires ont été considérés. Dans le
cas où la densité spectrale de puissance du bruit est inconnue, elle est estimés par l’algorithme E-
DATE. En outre, des tests objectifs et subjectifs ont été utilisés pour évaluer les performances des
estimateurs de la parole. Les tests subjectifs impliquaient un nombre statistiquement significatif
d’évaluateurs. Les résultats expérimentaux montrent que BSSBS-MMSE donne de meilleures
résultats que les autres méthodes dans la plupart des situations. Ces expériences confirment
également la pertinence du choix de la transformée dans le domaine DCT.
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Conclusions

L’objectif de cette thèse était de proposer un système mono-capteur complet d’amélioration de
la parole avec des techniques innovantes de traitement du signal pour des applications telles
que l’écoute assistée pour les prothèses auditives, les implants cochléaires et les applications de
communication vocale avec manque de ressources. Dans ces domaines d’applications, le système
complet d’amélioration de la parole devrait non seulement améliorer la qualité de la parole, mais
aussi son intelligibilité. En outre, ce système devrait avoir un faible coût de calcul, une faible
consommation d’énergie et fonctionner sans aide des bases de données. Afin de surmonter ces
contraintes, l’objectif de ce travail est d’évaluer possibilité d’utiliser uniquement des méthodes
statistiques non-supervisées, sans recourir à une approche psycho-acoustique ou à de l’appren-
tissage (supervisé). À cet égard et en tenant compte de la grande quantité de résultats fournis
dans la littérature sur le sujet, cette recherche impliquait à la fois des statistiques paramétriques
et non paramétriques pour le débruitage audio, lorsque le signal d’intérêt est dégradé par un
bruit additif non corrélé et indépendant.

Dans la première partie, l’estimation de la densité spectrale de puissance du bruit a été consi-
dérée. Nous avons proposé une nouvelle méthode pour l’estimation de la densité spectrale de
puissance du bruit, appelée Étendu-DATE (E-DATE). Cette méthode étend l’algorithme DATE
(pour D-dimensional Amplitude Trimmed Estimator), initialement introduit pour l’estimation
de la densité spectrale de puissance de bruit Gaussien blanc additif, au cas plus difficile du
bruit non-stationnaire. L’idée clé est que, dans chaque bande de fréquence et dans une période
de temps suffisamment court, la densité spectrale de puissance instantanée du bruit peut être
considérée comme approximativement constante et ainsi estimée comme la variance du bruit
gaussien complexe observé en présence du signal d’intérêt. La méthode proposée repose sur le
fait que la transformée de Fourier à courte terme des signaux de la parole bruitée est parcimo-
nieuse dans le sens où les coefficients transformés des signaux du signal de parole peuvent être
représentés par un nombre relativement petit de coefficients avec de grandes amplitudes dans le
domaine temps-fréquence.

L’estimateur E-DATE est robuste car il ne nécessite pas d’informations a priori sur la dis-
tribution de la probabilité du signal d’intérêt, à l’exception de la propriété de parcimonie faible.
Par rapport à d’autres méthodes de l’état de l’art, on constate que l’E-DATE nécessite le plus
petit nombre de paramètres (seulement deux). Deux implémentations pratiques de l’algorithme
E-DATE ; B-E-DATE et SW-E-DATE, permettent d’obtenir de bonnes performances. En géné-
ral, l’algorithme E-DATE nous permet d’estimer la densité spectrale de puissance de bruit la
plus précise pour différents types et niveaux de bruit. Cet estimateur a également montré sa
pertinence pour améliorer la qualité et l’intelligibilité de la parole lorsqu’il est intégré dans un
système complet basé sur la méthode STSA-MMSE. Bien que l’algorithme B-E-DATE soit une
version simple par blocs de l’algorithme E-DATE, mais il implique un délai d’estimation dû à la
latence du traitement. Ceci peut être contourné en recourant à la version SW-E-DATE, basée
sur une méthode de fenêtre glissante.

Après l’estimation de la densité spectrale de puissance du bruit par la méthode E-DATE,
nous nous sommes concentrés dans la deuxième partie sur les techniques de réduction du bruit.
Nous avons considéré deux approches différentes pour récupérer le signal d’intérêt : l’approches
paramétrique et non-paramétrique. Dans les deux approches, nous avons exploité une stratégie
de combinaison de la détection et de l’estimation pour supprimer ou réduire le bruit de fond,
sans augmenter la distorsion du signal. Cette stratégie a été motivée par le fait que, le signal
d’intérêt dans le bruit a une représentation parcimonieuse faible qui peut souvent être trouvée
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sur une base orthogonale appropriée. Ainsi, nous pouvons supposé raisonnablement que le signal
d’intérêt n’est pas être toujours présent dans le domaine temps-fréquence.

Plus précisément, nous avons proposé de nouvelles méthodes pour estimer la STSA de la
parole. Ces méthodes sont basées sur la combinaison paramétrique de la détection et de l’esti-
mation. L’idée principale est de prendre en compte la présence et l’absence de la parole dans
chaque atome temps-fréquence afin d’améliorer les performances des estimateurs. Les détecteurs
optimaux ont été dérivés où ils nous permettent de déterminer l’absence ou la présence du signal
de parole dans chaque atome temps-fréquence en fonction de ces estimateurs. Les estimateurs
prennent en compte les informations issues de ces détecteurs pour améliorer leurs performances.
Deux modèles de signaux incluant une présence et une absence de la parole strictes et incertaines
ont été pris en considération. Selon le modèle de signal, la STSA a été forcée à zéro ou remplacé
par un petite plancher spectral pour réduire le bruit musical lorsque l’absence de parole a été
détectée. Ces méthodes ont été évaluées dans deux scénarios, c’est-à-dire avec et sans connais-
sance de la densité spectrale de puissance du bruit de référence. Les tests objectifs ont confirmé
la pertinence de ces approches en termes de qualité et d’intelligibilité de la parole.

La combinaison de la détection et de l’estimation peuvent être considérées comme une fonc-
tion de SSBS. Afin d’améliorer les performances et la robustesse des méthodes de débruitage
audio précédemment présentées, une approche semi-paramétrique a été proposée. Il est bien
connu que la transformée de Fourier à court terme possède une bonne résolution fréquentielle.
Ainsi, la plupart des algorithmes de rehaussement de la parole se base sur cette transformée
pour représenter le signal observé dans le domaine temps-fréquence. Cependant, les coefficients
de Fourier sont complexes ce qui nécessite une estimation ou une connaissance de la phase de
ces coefficients. Pour contourner ce problème, nous avons présenté une nouvelle méthode pour
estimer l’amplitude des coefficients du signal de parole dans le domaine temps-fréquence utili-
sant la transformée cosinus discrète (DCT). Cet estimateur vise à minimiser l’erreur quadratique
moyenne de la valeur absolue des coefficients DCT du signal de parole. Afin de tirer des avan-
tages des approches paramétriques et non-paramétriques, on étudie également la combinaison
du shrinkage par blocs et de l’estimation bayésienne statistique. Ainsi, la valeur absolue des
coefficients du signal d’intérêt est d’abord estimée par Bloc-SSBS. La taille du bloc requise par
Bloc-SSBS est obtenue par l’optimisation statistique via l’application du théorème SURE. Cette
étape nous permet d’améliorer l’intelligibilité de la parole grâce à un masque binaire lissé. Afin
d’évaluer les performances des méthodes proposées, nous avons utilisé des tests subjectif et sub-
jectif informel. Les expériences réalisées démontrent que les méthodes proposées présentent des
résultats prometteurs, en termes de qualité et d’intelligibilité de la parole.

En résumé, nous avons proposé plusieurs algorithmes de rehaussement de la parole qui sont
tous basés sur une stratégie de combinaison de la détection et de l’estimation. Ceux-ci nous
permettent d’améliorer la qualité et l’intelligibilité des signaux vocaux et audio, par rapport aux
estimateurs standard. Il est à noter que les approches paramétriques et semi-paramétriques ont
été exploitées et que chacune d’entre elles ont montré leur propre pertinence. Par conséquent,
selon l’application considérée, un estimateur approprié devrait être choisi. Les estimateurs pa-
ramétriques proposés ci-dessus sont plus efficaces pour réduire le bruit musical dans le rehaus-
sement de la parole, alors que les estimateurs non-paramétriques se sont révélés plus pertinents
pour le débruitage d’autres types de signaux audio, comme la musique.

Perspectives

Suite aux travaux réalisés dans le cadre de cette thèse, nous proposons les perspectives suivantes :
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1. Bien que notre travail ait porté sur la réduction du bruit dans les systèmes de rehaussement
de la parole utilisant la DFT, il faut souligner que l’estimateur E-DATE n’est restreint ni
au domaine DFT ni aux signaux de parole. Par conséquent, il pourrait trouver d’autres
applications dans n’importe quel scénario où les signaux bruités ont une représentation de
parcimonie faible. Par exemple, nous avons réussi à considérer l’utilisation de l’E-DATE
dans le domaine DCT. Pour de nombreux signaux d’intérêt, non limités à la parole, une telle
représentation de parcimonie faible peut être fournie par une transformation d’ondelettes
appropriée. A cet égard, l’application de l’algorithme E-DATE à la séparation de source
audio pourrait être considérée. L’estimateur E-DATE repose fondamentalement sur l’esti-
mateur DATE qui peut être considéré comme un détecteur d’anomalie. Par conséquent,
l’E-DATE peut également être utilisé comme détecteur d’anomalie dans chaque bande de
fréquence. Cela ouvre des perspectives intéressantes dans la détection d’activité vocale
basée sur l’analyse de fréquence ainsi que dans la détection et l’estimation de signaux de
chirp dans différents types de bruit.

2. Pour tenir compte de la présence ou de l’absence de parole, de nouveaux estimateurs
paramétriques ont été proposés en s’appuyant sur la combinaison de la détection et de
l’estimation. Ces estimateurs sont basés sur la STSA et la LSA où les hypothèses gaus-
siennes pour les coefficients DFT sont considérées. Cependant, d’autres distributions pour
les coefficients DFT pourraient être étudiées. En outre, plusieurs stratégies qui combinent
la détection et l’estimation pour améliorer la performance des estimateurs bayésiens du
rehaussement de la parole ont été proposées. L’efficacité de toutes ces approches dépend
fortement de la qualité du détecteur. En outre, tous les détecteurs sont basés sur l’hypo-
thèse gaussienne pour les signaux de parole. Étant donné que cette hypothèse peut ne pas
être satisfaite, d’autres types de détecteurs de parole dans chaque atome temps-fréquence
pourraient être considérés. Une approche prometteuse à cet égard est le détecteur basé sur
l’algorithme RDT qui pourra fournir de bonnes performances sans connaissance a priori
de la distribution du signal d’intérêt.

3. On a aussi étudié les méthodes de débruitage en utilisant le DCT. Étant donné qu’il ne
prend aucune hypothèse sur le signal d’intérêt, Bloc-SSBS peut être appliqué à d’autres
applications comme le débruitage de l’image. Nous avons également dérivé un STSA-
MMSE dans le domaine DCT en faisant une hypothèse gaussienne sur les coefficients DCT.
Il est donc naturel de se demander si d’autres distributions pourraient être plus pertinentes
pour la modélisation des coefficients DCT. En outre, il a été observé que bien que la DCT
ait une représentation réelle et plus compacte que la DFT, l’application du Bloc-SSBS et
du STSA-MMSE dans le domaine DCT sont plus sensibles aux erreurs d’estimation de la
densité spectral de puissance du bruit que dans le domaine DFT. Ce point nécessite une
étude approfondie.

4. Pour conclure, il convient de noter que toutes les méthodes de rehaussement de la parole
exposées dans cette thèse ont été proposées dans le cadre d’un seul microphone disponible
et étaient basées uniquement sur des approches statistiques. En tant que tel, quelques
perspectives prometteuses apparaissent comme une généralisation naturelle de nos résul-
tats. Tout d’abord et comme discuté dans l’introduction, les systèmes d’amélioration de
la parole de multi-microphones peuvent immédiatement s’appliquer et bénéficier des mé-
thodes proposées à la sortie d’une formation de voies. Deuxièmement, les performances de
nos algorithmes de rehaussement de la parole peuvent être améliorées en incorporant des
informations perceptuelles. Enfin, bien que nous ayons limité l’attention aux approches
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non-supervisées, les méthodes proposées peuvent être utilisées comme un post-traitement
dans des approches supervisées.
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Abstract
Abstract: This PhD thesis deals with one of the most challenging problem in speech enhance-
ment for assisted listening where only one micro is available with the low computational cost, the
low power usage and the lack out of the database. Based on the novel and recent results both in
non-parametric and parametric statistical estimation and sparse representation, this thesis work
proposes several techniques for not only improving speech quality and intelligibility and but also
tackling the denoising problem of the other audio signal. In the first major part, our work ad-
dresses the problem of the noise power spectrum estimation, especially for non-stationary noise,
that is the key part in the single channel speech enhancement. The proposed approach takes
into account the weak-sparseness model of speech in the transformed model. Once the noise
power spectrum has been estimated, a semantic road is exploited to take into consideration the
presence or absence of speech in the second major part. By applying the joint of the Bayesian
estimator and the Neyman-Pearson detection, some parametric estimators were developed and
tested in the discrete Fourier transform domain. For further improve performance and robustness
in audio denoising, a semi-parametric approach is considered. The joint detection and estima-
tion can be interpreted by Smoothed Sigmoid-Based Shrinkage (SSBS). Thus, Block-SSBS is
proposed to take into additionally account the neighborhood bins in the time-frequency domain.
Moreover, in order to enhance fruitfully speech and audio, a Bayesian estimator is also derived
and combined with Block-SSBS. The effectiveness and relevance of this strategy in the discrete
Cosine transform for both speech and audio denoising are confirmed by experimental results.

Keywords: speech and audio enhancement, noise reduction, spare representation, parametric
estimator, joint detection and estimation, sparse thresholding, non-parametric estimator.
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Résumé
Cette thèse traite d’un des plus problème stimulant dans traitement de la parole pour la prothèse
auditive où un seul capteur est disponible avec les faibles coûts de calcul, la faible l’utilisation
d’énergie et l’absence de bases de données. Basée sur les récents nouveaux résultats dans les deux
estimation statistiques paramétrique et non-paramétrique et la représentation parcimonieuse,
cette étude propose quelques techniques pour non seulement améliorer la qualité et l’intelligibilité
de la parole, mais aussi s’attaquer au débruitage du signal audio en général. La thèse est divisé
en deux parties. Dans la première partie, on aborde la problème d’estimation de la densité
spectrale de puissance du bruit, particulièrement pour le bruit non-stationnaire. Ce problème
est un des parties principales du traitement de la parole du mono-capteur. La méthode proposée
prend en compte le modèle parcimonieux de la parole dans le domaine transféré. Lors que
la densité spectrale de puissance du bruit est estimée, une approche sémantique est exploitée
pour tenir en compte la présence ou absence de la parole dans la deuxième partie. En combinant
l’estimation Bayésienne et la détection Neyman-Pearson, quelques estimateur paramétriques sont
développés et testés dans le domaine Fourier. Pour approfondir la performance et la robustesse
de débruitage du signal audio, une approche semi-paramétrique est considérée. La conjointe
détection et estimation peut être interprétée par Smoothed Sigmoid-Based Shrinkage (SSBS).
Donc, la méthode Bloc-SSBS est proposée pour prendre en compte les atomes voisinages dans le
domaine temporel-fréquentiel. De plus, pour améliorer fructueusement la qualité de la parole et
du signal audio, un estimateur Bayésien est aussi dérivé et combiné avec la méthode Bloc-SSBS.
La efficacité et la pertinence de la stratégie dans le domaine de transformée cosinus pour les
débruitages de la parole et de l’audio sont confirmées par les résultats expérimentaux.

Mots clés : enrichissement de la parole et de l’audio, débruitage statistique, représentation
parcimonieuse, estimation paramétrique, combinaison de détection et estimation, seuillage par-
cimonieux, estimation non-paramétrique
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Albert Einstein
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Chapter 1. Introduction

1.1 Context of the thesis

One of the most fundamental, long-studied and important task in signal processing is the removal
or reduction of background noise from a noisy signal, known as denoising, noise suppression or
speech enhancement in the particular case of speech signal. This thesis is dedicated to speech
enhancement, especially to signal processing techniques for assisted listening. With an increasing
interest in mobile speech processing applications such as voice control devices, smart phone
application, assisted listening, etc, improving speech quality is a basic requirement in many
situations. Communication electronic support, telephone communication, in particular often
take place in noisy and non-stationary environments such as the inside of a car, in the street
or inside an airport. Speech enhancement methods thus play an important role at the receiving
end to improve speech quality. Speech enhancement techniques are also used as pre-processing
in speech coding or speech recognition systems, which can be employed in telephone [1]. Speech
enhancement algorithms can be also applied to hearing aids like hearing impaired listener or
cochlear implant devices for reducing noise before amplification.

Speech enhancement is expected to increase the comfort and also to reduce listener’s fatigue.
In this respect, speech enhancement ideally aims at improving not only the quality but also the
intelligibility of noisy speech. Various solutions make it possible to remove the background noise
so as to enhance speech quality. However, they introduce speech distortion. Thus, the main chal-
lenge of speech enhancement algorithms is to reduce residual noise without distorting too much
the speech signal. Moreover, the design of a speech enhancement technique depends also on the
application, the database resource, the nature of noise, the relationship between noise and clean
speech, and the number of microphones in the device. Considering the number of microphones
or sensors available, speech enhancement technique can be classified into single-microphone and
multi-microphones techniques. Technically, the larger the number of microphones, the better the
speech quality. For instance, a microphone placed close to the noise source provides a better noise
estimate. However, the computational complexity, power consumption, size demands of devices,
and etc may impede their usability in real application, for example the invisible in the ear canal
hearing aid. Moreover, a technique designed in the single channel case can always be used after
beamforming on a microphones array. Indeed, for Gaussian noise model, an optimal method for
multi-channel noise reduction is a combination of a minimum-variance distortion-less response
multi-microphone beamformer with a single-channel noise reduction algorithm [5]. Figure 1.1
displays the role of single channel technique in the two situations. Therefore, we restrict our
attention to single microphone, which is not only the most challenging problem but also play a
central role in speech enhancement.

 

Single-microphone 

system 

�[�] � [�] 

(a) Single channel

 

Single-microphone 

systems 

��[�] � [�] 
Spatial filter/ 

Beamformer ��[�] 
� [�] 

(b) Multi-channel

Figure 1.1 – Single channel block function 1.1a and post-processor single channel in block diagram of
multi-channel denoising system 1.1b after [6].
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1.2. A brief history of speech enhancement

The next section will provide a brief review of single channel denoising methods, including
supervised and non-supervised approaches, from which we find motivation for taking a closer
look at unsupervised techniques. Then, an advanced strategy is going to be proposed by taking
into account the constraint of the application. Finally, the main objective, motivation and outline
of this thesis will be introduced in Section 1.3.

1.2 A brief history of speech enhancement

Many methods have been proposed in the literature for single channel speech enhancement.
In general, these methods can be categorized into two broad classes including supervised and
unsupervised approaches. Thus, these two types of approaches will be reviewed here by dividing
them into some basic sub-classes.

1.2.1 Unsupervised methods

Many algorithms have been proposed for speech enhancement with the primary objective to
improve speech quality and intelligibility. A detailed review can be found in [1, 7], most of
them operating in the Discrete Fourier Transform (DFT) domain in [6]. These methods can
be divided into two principal approaches including parametric and non-parametric approaches.
In parametric approach, the signal distribution is known. Therefore, possibly up to a certain
vector parameter, that makes it possible to resort to standard Bayesian and likelihood theory.
In non-parametric approach, the signal distribution is unknown.

Non-parametric approach: In this framework, the simplest speech enhancement methods
to implement are power spectral subtractions. The methods can be carried out with low compu-
tation and without much prior information [8–12]. They are based only on the basic signal model
where noise is additive. Another technique is the optimal Wiener algorithm, which assumes a
linear relationship between the noisy coefficients and the clean signal coefficients [13–17]. Other
non-parametric estimators are based on subspace decomposition. The main idea is that the noisy
space can be decomposed into a clean signal space and a noise-only space [18–22]. Recently, some
binary masking methods have been proposed in order to improve speech intelligibility [23–25].
In the time-frequency domain, the techniques consist in keeping only some frequency bins from
the noisy spectra while forcing to zeros the remaining ones.

Parametric approach: By taking the distribution of the clean speech and noise into account,
this approach estimates clean speech by formulating denoising as an estimation problem using
either maximum likelihood (ML) [26], minimum mean square error (MMSE) [27,28] or maximum
a posteriori (MAP) [29, 30] estimators. In order to derive MAP and MMSE estimators, the
probability density function (PDF) of speech can be assumed to be Gaussian [27], super-Gaussian
[31,32], Laplacian [33] or generalized gamma [34]. For MMSE estimators, the cost functions are
the mean-square error of magnitude or log-magnitude spectra or the distortion measures, for
instance, Itakura-Saito or Cosh measures [35]. In most parametric techniques mentioned above,
noise is assumed to be Gaussian. In fact, noise is also supposed to have Laplacian distribution
[36]. Some techniques incorporate also the knowledge of speech presence or absence to further
improve speech quality [37–39].
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Chapter 1. Introduction

1.2.2 Supervised methods

For the supervised approach, both the speech and noise model parameters are estimated by
learning from the corresponding training samples. Based on these model parameters, a strategy
is proposed to combine the signal of interest and the noise models. Then, the denoising problems
are tackled with the noisy signal. This broad approach can be divided into four main classes:
codebooks-based Wiener approach, Hidden Markov Model (HMM) based approach, dictionary-
based approach and Deep Neural Network (DNN) based approach.

Codebooks-based Wiener approach: Based on the Wiener filter, this approach uses code-
books of auto-regressive (AR) parameters for linear prediction synthesis of the speech and noise
signals. In fact, the Wiener filter is the ratio of the clean signal and the noisy power spectrum.
Moreover, the noisy power spectrum is reasonably assumed to be the sum of the clean signal and
noise power spectra. These spectra can be determined from the AR parameters. Therefore, this
approach first builds codebooks for speech and noise spectra via training the clean signal and
noise database. This training can perform offline for both the clean and noise signals [40–42]
or offline only for signal and online for noise [43]. The AR parameters (AR coefficients and
gain) of the observed signal are then estimated by ML or Bayesian MMSE criteria based on the
code-books.

HMM-based approach: Here, instead of linear prediction synthesis, the clean speech and
noise AR or the other parameters are modeled by HMM. In [44–46], the speech and noise AR
parameters are assumed to be Gaussian. More recently, the authors of [47] and [48] work directly
with the coefficients in the transformed domain where these signal coefficients are assumed to
have complex Gaussian or super Gaussian distribution. The model parameters have been trained
from the speech and noise databases via the Expectation Maximization (EM) algorithm. Finally,
for estimation of the clean speech, a maximum a posteriori (MAP) or a Bayesian MMSE have
been proposed to process the noisy signal based on the model parameters. These processes can be
done in the discrete Fourier transform (DFT) domain or in the reduced-resolution mel frequency
domain.

DNN-based approach: DNN has a long history, but was only applied to speech enhancement
at the end of year 2013 [49]. Like other supervised approaches, DNN-based approach has two
stages: the training and the enhancement stage. The logarithm of clean and noisy amplitude and
phase in DFT domain are the parameters of interest here [49–51]. A regression DNN model is
used to train these parameters from the signal and noise database. The trained DNN is then fed
with the noisy speech to estimate the amplitude of clean speech. In addition, a post-processor
can be incorporated to further improve speech quality [50,51].

Dictionary-based approach: This approach can be separated into K-SVD-based meth-
ods [52–55] and non-negative matrix factorization (NMF)-based methods [56–59]. The main
idea is that, a dictionary or a non-negative matrix for clean speech and/or for noise is trained
offline from the database based on K-SVD [60] or on NMF [61]. An over-complete matrix is
frequently constructed by concatenating the trained matrix of clean speech with one of noise.
In the enhancement stage, a Wiener filter-type, or MMSE estimators are derived from the noisy
signal and the over-complete matrix.

6



1.3. Thesis motivation and outline

1.3 Thesis motivation and outline

Despite good results obtained by machine learning (supervised) based approach, there is still
room for unsupervised techniques, especially in applications where large enough databases are
hardly available for all the types of noise, speech and audio signals that can actually be en-
countered. This is the case in assisted listening for hearing aids, cochlear implants and voice
communication applications with lack of resources. That is the reason why we decided to fur-
ther investigate unsupervised approach.

In such applications, unsupervised techniques are then expected to fulfill the following crite-
ria, without resorting to any prior training, either for noise or for the signal of interest. Any such
method is asked to perform well on both speech and audio signals in noise. It should achieve a
good trade-off between intelligibility and quality, for both audio and speech. It must be robust
to various stationary and non-stationary types of noise. Its complexity must be low so as to limit
computational cost in real-time applications.

Therefore, the main motivation in this thesis work is to construct a complete denoising system
with innovative techniques for audio denoising problem where the signal of interest is degraded
by uncorrelated and independent additive noise. This system should have low computational
cost and low power usage without the help of any database. We also assume that a single noisy
observation is available at the system input. It now turns out that many results both in non-
parametric and parametric statistical estimation established in the last two decades [4, 62–68]
and based on sparse thresholding and shrinkage, are general enough to suggest their use in un-
supervised speech and audio denoising. It is worth noting that the parametric approach provides
some statistical optimality in terms of MMSE or MAP criteria whereas the non-parametric leads
to robustness. Therefore, this work investigates both parametric and non-parametric statistical
approaches for single channel speech enhancement. This suggests the use of a semi-parametric
method to take advantage of both approaches.

With respect to the content of our research and for the sake of clarity, the thesis will be
organized in four main parts : "Introduction", "Noise", "Speech" and "Conclusion and Future
Work".

Part I consists of Chapter 1 and 2. A general introduction of the thesis is already pre-
sented in this chapter. Then, Chapter 2 provides a brief overview of the main single channel
speech enhancement methods, which allows us to clearly identify the main foundations of speech
enhancement systems and to point out areas for potential improvement.

The next two parts are the main contribution of this PhD research work.
Part II reduces to Chapters 3. The main problem of all supervised approach is noise estima-

tion accuracy. Hence, this part focuses on the problem of noise estimation. Our work looks first
for a robust noise estimation solution. Many noise estimation methods have been proposed in
the literature. Is there still room for further improvement? To answer this question, we present
a review of the major noise estimation methods with their advantages and drawbacks. We then
propose a robust noise power spectra estimator for non-stationary environments that relies on
the fact that the Short-Time Fourier Transform (STFT) of noisy speech signals is sparse in the
sense that transformed speech signals can be represented by a relatively small number of coef-
ficients with large amplitudes in the time-frequency domain. The proposed estimation method
is robust in that it does not require prior information about the signal probability distribution.
Thus, this method can improve performance of speech enhancement in any scenario where noisy
signal have weak-sparseness representations.

Part III is the core of this research work and consists of Chapter 4 and Chapter 5. All
proposed speech enhancement algorithms are developed in this part.

7



Chapter 1. Introduction

• Chapter 4 proposes a parametric approach for enhancing not only speech quality but also
reducing the negative impact on speech intelligibility. The proposed methods are based
on joint detection and estimation that improve upon previous parametric algorithms. To
this end, two models of noisy speech are taken into account. In the first model, speech is
either present, or absent, whereas in the second model the speech is always present but
with various levels of energy. The later is also called uncertain speech absence/presence.

• Chapter 5 describes a non-parametric algorithm for audio enhancement. The new non-
parametric approach is based on sparse coding and smoothed sigmoid-based shrinkage
(SSBS) in the discrete cosine transform (DCT) domain for dealing with speech and other
audio signal like music. Moreover, we propose a combined method that captures the ad-
vantages of both parametric and non-parametric solution.

Part IV is Chapter 6 concludes the PhD thesis and provides some perspectives for further
work.
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Chapter 2. Single microphone speech enhancement techniques

2.1 Introduction

As introduced in the first chapter, our primary goal in this thesis work is to pursue and im-
prove upon the unsupervised approach in the single microphone situation. The problem in this
situation is one of the most difficult problems in speech enhancement because of low resource
(one microphone available), lack of database (only noisy signal is presented). This chapter will
present an overview of single microphone systems for speech enhancement. In Section 2.2, we
first describe the general structure of single microphone system and detail each block in this sys-
tem. Section 2.3 then introduces several metrics which will be used to evaluate and validate the
performance of speech enhancement algorithms in this thesis. Section 2.4 concludes the chapter.

2.2 Overview of single microphone speech enhancement system

In audio and speech enhancement, one of the most important tasks is the removal or reduction
of background noise from a noisy signal. The observed signal is frequently segmented, windowed
and transformed into a representation domain. Then, the clean signal coefficients are usually
retrieved by applying an enhancement algorithm to the noisy observations in this domain. Figure
2.1 shows a basic single channel speech enhancement system block diagram. A single microphone
system consists of four blocks: Decomposition, Noise Estimation, Noise Reduction Algorithm and
Reconstruction Blocks, respectively. In short, the process is performed as follows. First, the noisy
signal y[n] is decomposed using a short time harmonic transform (STHT) in the decomposition
block. Second, the time-frequency noisy coefficient Y [m, k] is modified to obtain the enhanced
coefficient Ŝ[m, k] in the noise reduction block. Note that the noise estimation block provides
the noise power spectrum σ̂2

X [m, k], which is an important input of the noise reduction block.
Finally, the enhanced signal ŝ[n] is synthesized from the enhanced time-frequency coefficient
Ŝ[m, k] in the reconstruction block. Specially, we used the Hamming window and 50% overlap-
add method in implementation for all the algorithms in this thesis. We now describe the role of
each block in detail in the following sub-sections.

 

Decomposition 
Noise 

Reduction 
Reconstruction     

Noisy signal/ 
Observation  

Additive Noise    
 Enhanced Signal  

�   
Clean Signal  

Noise 
Estimation  � , �  

� , �  �   , �  

�    

Figure 2.1 – General principle of the classical audio enhancement system [1].

2.2.1 Decomposition block

The noisy observed signal is segmented, windowed and transformed by a computational harmonic
transform in the decomposition block. In fact, most but not all of speech enhancement algorithms
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2.2. Overview of single microphone speech enhancement system

proceed in the time-domain but rather in a transformed domain where the separate between clean
signal and noise is made easier. As mentioned above, we concentrate on speech enhancement
scenario where noise is uncorrelated and additive. Therefore, the noisy signal is modeled by
y[n] = s[n] + x[n], where s and x are respectively the clean signal and independent noise in the
time domain and n = 0, 1, . . . , N − 1 is the sampling time index. Most enhancement algorithms
operate on frame-by-frame where only a finite collection of observation y[n] is available. A
time-domain window w[n] is usually applied to the noisy signal, yielding the windowed signal
as:

yW [n] = y[n]w[n]. (2.1)

In frame-based signal processing, the shape of window is obtained by trading-off between smear-
ing and leakage effects [69]. The second parameter is the window length, which allows to trade-off
between spectral resolution and statistical variance. In speech enhancement, if the length of win-
dow is too large, can no longer speech be considered stationary within a frame. On the other
hand, if the length is too small, the spectral solution may not be accurate enough. Based on
previous consideration, Hanning and Hamming window functions are often chosen to truncate
the signal of interest in the considered frame. The shape of these windows is illustrated in Figure
2.2. In this thesis, we prefer the Hamming window function, which does not vanish to zero at
the end. The Hamming window function is defined as follow:

w[n] =





0.54 − 0.46 cos
(

2πn
K − 1

)
0 ≤ n ≤ K − 1,

0 Otherwise
(2.2)

where K is the length of the window.
Once the truncated signal yW [n] has been obtained, a short time transform is applied.

Common short time transforms include wavelet, Fourier and cosines transform. Let us denote
the noisy signal in the transformed domain by:

Y [m, k] = S[m, k] +X[m, k], (2.3)

where m and k ∈ {0, 1, . . . ,K − 1} are the time and frequency-bin indices, respectively. The
transformed coefficients can be obtained as:

Y [m, k] =
K−1∑

n=0

αk[n]w[n]y[mK∗ + n], (2.4)

where K∗ is the number of shifted samples of the two consecutive frames and αk[n] is a scaling
coefficient dependent on the transform. For instance, in the short time Fourier transform (STFT),
the value αDFT

k [n] is defined following:

αDFT
k [n] = exp

(
−j 2π

K
kn

)
, (2.5)

whereas, for the short time cosines transform (STCT):

αDCT
k [n] =

√
1 + ✶(0,∞)(n)

K
cos

(
π

2K
k(2n+ 1)

)
, (2.6)

where ✶(0,∞)(θ) is the indicator function ✶(0,∞)(θ) = 1 if θ > 0 and ✶(0,∞)(θ) = 0 otherwise.
The output of the decomposition block, the noisy signal in the transformed domain Y [m, k],

can be written in polar form as:

Y [m, k] = AY [m, k] exp (jφY [m, k]) , (2.7)
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Figure 2.2 – Two window functions are frequently used in speech enhancement system: the Hanning
window shown in Figure 2.2a and the Hamming window shown in Figure 2.2b.
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2.2. Overview of single microphone speech enhancement system

where AY [m, k] and φY [m, k] denote the amplitude and the phase of the noisy signal in the
[m, k] time frequency-bin, respectively. Therefore, the signal model is now given by:

AY [m, k] exp (jφY [m, k]) = AS [m, k] exp (jφS [m, k]) +AX [m, k] exp (jφX [m, k]) , (2.8)

where {AS [m, k], AX [m, k]} are also the amplitudes and {φS [m, k], φX [m, k]} are the phases of
the clean speech, and the noise signal, at the frame m and frequency bin k. The well-known
quantity periodogram, handled the spectrographic analysis of speech signal, is specified as:

‖S[m, k]‖2 = A2
S [m, k], (2.9)

where ‖ · ‖ denotes the ℓ2 norm. Moreover, the same definitions ‖Y [m, k]‖2 and ‖X[m, k]‖2 are
used for the periodogram of the noisy speech and the noise signal, respectively.

To summarize, the output Y [m, k] of the decomposition block is the short time transform
coefficient of the truncated noisy signal frame y[n] where n ∈ {mK∗,mK∗ + 1, . . . ,mK∗ +
K − 1}. This coefficient is the input of the noise estimation and noise reduction blocks. The
noise estimation block often solely uses the noisy signal periodograms ‖Y [m, k]‖2 whereas noise
reduction block takes into consideration both the noisy amplitude AY [m, k] and the noisy phase
φY [m, k].

2.2.2 Noise estimation block

The noise estimation block aims at estimating the power spectrum σ2
X [m, k] = E[‖X[m, k]‖2].

Therefore, the noise estimation is the main block where various techniques have been proposed.
In this section, we discuss only some general points for completeness. For further detail about
noise estimation, readers are invited to consult Chapter 3 in Part II. Most noise estimation
algorithms are based on the following assumptions [1, Chapter 9]:

(A1) As mentioned above, the speech signal is degraded by a statistically independent additive
noise.

(A2) Speech is not always present. Thus, we can always find an analysis segment, formed by
some consecutive frames, that contains speech-pause or noise-only.

(A3) Noise is more stationary than clean speech so that we can assume that noise remains
stationary within a given analysis segment.

As an example, we will detail one of the first noise power spectrum estimation based on minimum-
statistic (MS) [70]. This algorithm tracks the minimum value of the noisy speech power spectrum
within an analysis segment. For the reason that noise and speech are statistically independent
(A1), the periodogram of noisy speech is approximated as:

‖Y [m, k]‖2 ≈ ‖X[m, k]‖2 + ‖S[m, k]‖2 . (2.10)

Based on this approximation and the assumption (A2), when speech is paused or absent, the
periodogram ‖S[m, k]‖2 = 0 then ‖Y [m, k]‖2 ≈ ‖X[m, k]‖2. Moreover ‖S[m, k]‖2 ≥ 0 so that
‖Y [m, k]‖2 ≥ ‖X[m, k]‖2. Therefore, the minimum of the periodogram ‖Y [m, k]‖2 over a given
analysis segment is the estimated noise power spectrum. The periodogram ‖Y [m, k]‖2 varies
quickly over time. Thus, in order to estimate the noise power spectrum σ2

X , instead of the
periodogram, a recursive smoothed periodogram is used:

P [m, k] = αP [m− 1, k] + (1 − α) ‖Y [m, k]‖2 , (2.11)
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Chapter 2. Single microphone speech enhancement techniques

where P [m, k] is a first-order recursive version of the periodogram, or smoothed periodogram and
α is the smoothing constant, which was recommended be equal to 0.95 in [70]. The noise power
spectrum is now estimated by tracking the minimum of the smoothed periodogram P [m, k] over
an analysis segment. The length of the analysis segment should be long enough to include speech
pause but should remain small enough at the same time to track accurately and to adapt to
non-stationary noise. Let us denote the minimum of the smoothed periodogram at the frame m
and the frequency bin k by Pmin[m, k], determined over an analysis segment of D consecutive
frames. The minimum Pmin[m, k] is updated only after a given analysis segment as show by
Algorithm 1 [1]. In this algorithm, Ptmp[m, k] is the temporary minimum periodogram where
Ptmp[0, k] = P [0, k] and mod( · ) is the modulus operator. Effectively, the temporary minimum
periodogram makes it possible to update the minimum of the smoothed periodogram over every
D consecutive frames. Once Pmin[m, k] is tracked, the estimated noise power spectrum σ̂2

X [m, k]
is given as:

σ̂2
X [m, k] = BminPmin[m, k], (2.12)

where Bmin is a factor, which enables to compensate for the bias of the minimum estimate. This
factor was found to depend only on the D parameter [71]. Figure 2.3 illustrates an example of
minimum tracking at frequency of 500 Hz. We used in this example the parameters recommended
in [71], namely Bmin = 1.5, α = 0.95 and D = 50.

Algorithm 1: Simple MS algorithm for tracking the minimum of the smoothed peri-
odogram and updating it.

for m = 1 to the end of signal do
if mod(m/D) = 0
Pmin[m, k] = min {Ptmp[m− 1, k], P [m, k]}
Ptmp[m, k] = P [m, k]

else
Pmin[m, k] = min {Pmin[m− 1, k], P [m, k]}
Ptmp[m, k] = min {Ptmp[m, k], P [m, k]}

end if
end for

2.2.3 Noise reduction block

Once the noise power spectrum estimation is obtained, in single microphone system, a noise
reduction algorithm is used for retrieving the enhanced signal Ŝ[m, k]. Like the noise estimation
block, in this section, for the sake of self-completeness, we chose to present one of the first
noise reduction method, which is computationally efficient [9] and called the power spectral
subtraction algorithm. Further details will be given in the following chapters.

For most noise reduction algorithms, we can define a gain function G[m, k] for which the
enhanced amplitude of the signal of interest ÂS [m, k] is obtained as follows:

ÂS [m, k] = G[m, k]AY [m, k] (2.13)

whereas the enhanced phase φ̂S [m, k] is made equal to the noisy phase φY [m, k]. Therefore, the
estimated coefficient in the transformed domain Ŝ[m, k] is :

Ŝ[m, k] = ÂS [m, k] exp
(
jφ̂S [m, k]

)
= G[m, k]Y [m, k]. (2.14)
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Figure 2.3 – Example of the minimum statistic tracking for the noise power spectrum estimation [71].
Above sub-figure shows the smoothed periodogram P [m, k] (orange line) and its minimum Pmin[m, k]
(blue line). Below sub-figure displays the periodogram of the car noisy signal at 5 dB SNR (black line)
and the noise power estimation (red line).

The gain function of the power spectral subtraction method is given by [9]:

G(γ[m, k]) =

{ √
(γ[m, k] − α)/γ[m, k] γ[m, k] > α+ β,√
β/γ[m, k] Otherwise

(2.15)

where α ≥ 1 and β (0 < β << 1) are the over subtraction factor and the spectral floor parameter,
respectively. The a posteriori signal to noise ratio (SNR) γ[m, k] is defined as follows:

γ[m, k] =
‖Y [m, k]‖2

σ̂2
X [m, k]

. (2.16)

The gain function of the power spectral subtraction method is a function of the a posteriori SNR
only with two parameters α and β. In general, for other methods, this gain can be dependent
on other variables, which can be estimated from the noisy signal. Going back to the power
spectral subtraction, parameter α controls the trade-off between the speech distortion and the
residual noise whereas β is determined by trading-off between musical noise and the remaining
residual noise. Note that musical noise is the noise generated by the isolated point or peak in the
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transformed domain or in the spectrum. In [9], β is in the range of [0.005, 0.1] and α is obtained
from the estimated SNR γ̂ in each frame as:

α = α0 − (3γ̂)/20, (2.17)

where α0 is the over subtraction factor at 0 dB. In addition, for γ̂ ≥ 20, α = 1. Figure 2.4 shows
the gain function of the power spectral subtraction algorithm as a function of γ for fixed floor
parameter β = 0.1 and with various values α. At low SNR, these gain functions are the same
since they depend only on the floor parameter β. At high SNR, these gain functions tend to 1.
Clearly, the choice of the two parameters α and β dictates the performance of this algorithm.
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Figure 2.4 – The gain function of the power spectral subtraction for over subtraction factors α = {1, 3, 5}.

In summary, the noise reduction block estimates the enhanced coefficient Ŝ[m, k] in the
transformed domain by applying a gain function G[m, k] to the noisy coefficient Y [m, k]. This
gain function is usually calculated from the noisy amplitude AY [m, k] at the output of the
decomposition block and from the estimated noise power spectrum σ̂2

X [m, k] at the downstream
of the noise estimation block.

2.2.4 Reconstruction block

This block dedicates to transform the estimated clean speech back into the time-domain. Note
that it is possible to recover the signal in time domain exactly from its short time transform
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2.3. Performance evaluation of speech enhancement algorithms

coefficients. Several methods have been proposed in the literature [72–77]. In this section, we
only present the implementation of the overlap-add method, which is frequently used in speech
enhancement. The mathematical framework is detailed in [1, Chap. 2] and [73]. The inverse short
time transform is applied to each frame of enhanced coefficients {Ŝ[m, 0], Ŝ[m, 1], . . . , Ŝ[m,K −
1]}. The time enhanced signal ŝm[n] in the given frame m is written as:

ŝm[n] =
K−1∑

k=0

βn[k]Ŝ[m, k], (2.18)

where βn[k] depends on the used transform in the decomposition block. For example, when
STFT is used, the value βDFT

n [k] is:

βDFT
n [k] = exp

(
j

2π
K
nk

)
(2.19)

while for STCT the value βDFT
n [k] is:

βDCT
n [k] =

√
1 + ✶(0,∞)(k)

K
cos

(
π

2K
(2n+ 1)k

)
. (2.20)

Once we have obtained the time enhanced signal ŝm[n] in the relevant overlapped frames, the
enhanced signal is calculated as:

ŝ[n] =
∑

m,k

ŝm[k], (2.21)

where 1 ≤ m and 0 ≤ k ≤ K − 1 are chosen to satisfy n = (m − 1)K∗ + k. Figure 2.5 shows
the reconstruction of the enhanced signal ŝ[n] from the time enhanced ŝm[n] by using 75% and
50% overlap-add methods. For the 75% overlap-add method, to recover the enhanced signal, we
need to know the three consecutive previous frames whereas, for the 50% overlap-add method,
only the previous frame m− 1 is required.

Figure 2.6 displays an example of reconstruction of a single sinusoidal signal s[n] using
50% overlap-add method, where the sampling rate of the sinusoidal signal is equal to 8 kHz.
The sinusoidal signal was Hamming-windowed into 32-ms frames with 50% overlap, and then
transformed by DFT. The obtained coefficients S[m, k] is then synthesized by 50% overlap-add
to obtain ŝ[n]. In Figure 2.6, the original and reconstructed signals are shown respectively by
the red and blue lines. A slight difference is appeared in maximal amplitude between the two
signals.

2.3 Performance evaluation of speech enhancement algorithms

Practical audio enhancement systems include the four main blocks of Figure 2.1. In research,
for evaluating the performance, an additional evaluation block is added as illustrated in Figure
2.7. In this section, we will present some criteria that are frequently selected to evaluate the
performance of speech enhancement methods. These criteria will also be used in this thesis. All
the criteria can be divided into objective and subjective tests. The subjective listening tests are
the most reliable criteria but they require more time for evaluation. Certain objective tests were
shown to be highly correlated with subjective tests. Therefore, these objective tests can be often
selected to assess the quality and intelligibility of speech. Let us first introduce the objective
criteria used in this thesis.
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Figure 2.5 – Schema to synthesize the enhanced signal ŝ[n] by 75% (left side) or 50% (right side)
overlap-add method. Note that the percent of the overlapped part is the same for decomposition and
reconstruction blocks.
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Figure 2.7 – Full audio enhancement system under consideration in the present work.

2.3.1 Objective tests

2.3.1.1 Segmental signal to noise ratio measure

The segmental signal to noise ratio (SSNR) measure is one of the simplest and well-known
criteria. This measure is the geometric mean of the SNR over all frames of the speech signal [1]:

SSNR =
10
M

M−1∑

m=0

log10

∑Km+K−1
n=Km s2[n]

∑Km+K−1
n=Km (s[n] − ŝ[n])2

, (2.22)

where K is the frame length in samples and M is the total frames number. The evaluated signal
ŝ[n] and the clean signal s[n] have the same length and must be synchronized in time. Note that
the frames, with SNRs above 35 dB, do not provide a large perceptual difference so that these
SNRs are clipped to 35 dB. Moreover, in the noise-only frames, the speech energies are small in
that the frame-based SNRs are very low. These frames do not also contribute to the perception
of the signal. Therefore, the frame-based SNRs values were trimmed so as to remain within the
range [−10,35 dB] instead of using a silence/speech detector [78].

2.3.1.2 Spectral distance measure

The SSNR criterion was based on the frame-based SNRs across all frames of the speech signal in
the time domain. We introduce now the second measure called Itakura-Saito (IS) distance based
on the dissemblance between all-pole model of the clean signal and the evaluated signal [79].
This distance is defined as:

dIS(as,aŝ) =
σ2

s

σ2
ŝ

(
aT

ŝ
Rsaŝ

aTs Rsas

)
+ log

(
σ2

ŝ

σ2
s

)
− 1, (2.23)

where Rs is the auto correlation matrix of the clean signal, σ2
s and σ2

ŝ
denote the LPC gains of

the clean speech and evaluated or enhanced speech, respectively. as and aŝ are the LPC vectors
of the clean signal frame and the evaluated signal frame. RT is the transpose operator of the
matrix R. The LPC vectors of the clean and evaluated signal frame are estimated by assuming
that the speech signal over an interval can be modeled as:

s[n] =
p∑

i=1

as(i)s[n− i] + σsu[n]T (2.24)
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where p is the order of the all-pole model, as(i) denotes the coefficient of the all-pole filter and
u[n] is the white Gaussian noise with unit variance. Thus, the LPC vector of the clean signal
as are formed as as = [1,−as(1),−as(2), . . . ,−as(p)] where as(i) can be estimated by linear
prediction method. A similar way is used for determining the LPC vector aŝ of the evaluated
signal.

2.3.1.3 SNR improvement measure

The SNR improvement (SNRI) measure is an objective criterion standardized in the ITU-T
G.160 recommendation for evaluating noise reduction algorithms in transmission systems [80].
This measure requires various types of noises and at different SNR levels. The clean speech
utterance si is degraded by noise xj , yielding the noisy speech yij :

yij = si + βijxj , (2.25)

where βij depends on the SNR levels. The output of the speech enhancement system is the
corresponding enhanced signal ŝij . Like SSNR above, for evaluating the frame-based SNR, the
noisy and enhanced signals are segmented into 10-ms frame. We denote the noisy and enhanced
framed signal as yij [m,n] and ŝij [m,n], where m is the frame indice and n is the sample in-
dice within a given frame m. These frames are then divided into the four frame-energy classes
including: three speech classes (high, medium and low power of the speech presence) and one
noise-only class (the speech absence). For the three speech classes, the output and input speech
SNRs are determined in the same way. For instance, the output SNRs and the input SNRs of
high power speech class are calculated as follows:

SNRout_hij = 10 log





max



ǫ,

10

1
Msph

∑Msph
m=1 log{max[ξ,

∑
n

ŝ2
ij [m,n]]}

10

1
Mnse

∑Mnse
m=1

log{max[ξ,
∑

n
ŝ2

ij [m,n]]}
− 1








(2.26)

SNRin_hij = 10 log





max



ǫ,

10

1
Msph

∑Msph
m=1 log{max[ξ,

∑
n

y2
ij [m,n]]}

10

1
Mnse

∑Mnse
m=1

log{max[ξ,
∑

n
y2

ij [m,n]]}
− 1







, (2.27)

where Msph and Mnse are the total number of high power speech classes and speech absence
classes in the considered signal, respectively. ǫ and ξ are constants that are set equal to −12 dB
and −71 dB. The SNRI_hij of the high power speech frames is defined as:

SNRI_hij = SNRout_hij − SNRin_hij . (2.28)

Therefore, the SNRI of the signal ŝij is given by:

SNRIij =
1

Msph +Mspm +Mspl
(MsphSNRI_hij +MspmSNRI_mij +MsplSNRI_lij) , (2.29)

where Mspm and Mspm are the total numbers of the medium power and the low power speech
frames and SNRI_mij and SNRI_lij denote the SNRI of the medium power and the low power
speech frames. Finally, the SNRI is obtained by the mean measure over all types and levels of
noise:

SNRI =
1
J

J∑

j=1

(
1
I

I∑

i=1

SNRIij

)
, (2.30)
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where I is the total number of clean speech utterances and J is the number of different back-
ground noises.

2.3.1.4 Perceptual motivated Measure

The perceptual evaluation of speech quality (PESQ) criterion is widely used for evaluating
the performance of the noise reduction algorithms in telephone handset application, which was
recommended by IUT-T P.862 [81]. A semantic description of the PESQ measure is presented
in [1, Chap 11. Sec 11.1.3.3].

In brief, the structure of the PESQ measure contains five main blocks, namely, pre-processing,
time alignment, auditory transforming, disturbance processing and time and frequency averaging
blocks. The clean and the enhanced speech are firstly passed through the pre-processing block
to have the same listening level and to adapt to a standard telephone handset. Then, the time
alignment block determines the time delay value between the clean and the enhanced signals.
This block provides also a delay confidence. Next, the auditory transforming block codifies the
clean and the enhanced signal into a perceptual representation of the perceived loudness, where
we can point out the loudness spectra of the two signals. Latter, the disturbance processing block
measures the dissimilarity between the enhanced and the clean speech representations. Finally,
the time and frequency averaging block evaluates the PESQ measure from the dissimilarity
determined in the previous block.

2.3.1.5 Composite measures

For capturing different dissimilarities between original and enhanced signals, several composite
measures formed by combining multiple objective measures have been proposed. These combi-
nations, either linear or non-linear, make it possible to achieve high correlation with subjective
listening tests [78,82–84]. In this thesis, we use the composite measures that are based on multi-
variate adaptive regression splines (MARS) and have been found to yield a good correlation with
listening tests [83]. The MARSovrl, predicting overall speech quality (OVRL) is the combination
of the IS and PESQ criteria and is defined as:

MARSovrl = 1.757 + 1.740BF1 + 0.047BF2 − 0.049BF3 − 2.593BF4 + 11.549BF5, (2.31)

where

BF1 = max(0,PESQ − 1.696) BF2 = max(0, IS − 11.708) (2.32)

BF3 = max(0, IS − 3.559) BF4 = max(0,PESQ − 2.431) (2.33)

BF5 = max(0,PESQ − 2.564). (2.34)

This measure is found to have a high correlation with the mean opinion score (MOS) of subjective
listening test [83]. In this paper, two other metrics are introduced, MARSsig and MARSbak,
that are designed to provide a high correlation with the two usual corresponding subjective
measures that are the signal distortion (SIG) and the background intrusiveness (BAK).

2.3.1.6 Short-time objective intelligibility measure

All criteria mentioned above enable us to estimate speech quality. In this section, we briefly
present a widely used criterion for predicting speech intelligibility. Many intelligibility measures
have been proposed in the literature. Most of them are based on the articulation index (AI)
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with the speech intelligibility index (SII) standardized as S3. 5-1997 [85] or on the speech trans-
mission index (STI) [86]. Recently, a short-time objective intelligibility (STOI) measure has
been presented in [87]. This criterion has a high correlation with subjective speech intelligibility
test. Therefore, we use it for evaluating all the algorithms considered in this thesis. Figure 2.8
illustrates the structure for evaluating STOI in block.
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Figure 2.8 – Principle of STOI evaluation [87].

In the one-third octave band decomposition block, both the clean and the enhanced signal
are first Hanning-windowed into 256-sample frames with 50% overlap, and then transformed by
DFT to obtain S[m, k] and Ŝ[m, k], respectively. Then, the norm of the clean speech Sj [m] at
the jth one-third octave band is computed as:

Sj [m] =
√∑

k

‖S[m, k]‖2, (2.35)

where k is the frequency index pertaining to the jth one-third octave band. In the same way, we
also obtain the norm of the evaluated speech Ŝj [m] at the one-third octave band jth.

In the short-time segmentation block, the short-time temporal envelope vector Sj [m] of the
clean speech at the jth one-third octave band is formed from the N consecutive norms Sj [m] as:

Sjm = [Sjm(1),Sjm(2), . . . ,Sjm(N)]T = [Sj [m−N + 1], Sj [m−N + 2], . . . , Sj [m]]T , (2.36)

where N is recommended to be equal to 30 frames. Similarly, the same N is used for grouping
Ŝj [m] in Ŝjm. The short-time temporal vector Ŝjm of the evaluated signal are then normalized
and trimmed in the normalization block via:

Sjm(n) = min

(
‖Sjm‖
‖Ŝjm‖

Ŝjm(n), (1 + 10−β/20)Sjm(n)

)
, (2.37)

where β = −15 dB is the signal to distortion ratio lower bound, Sjm is the normalized and
trimmed vector of Ŝjm and n ∈ {1, 2, . . . , N}.

The intelligibility in the jth one-third octave band is the sample correlation between Sjm
and Sjm:

STOIjm =

(
Sjm − µSjm

)T (
Ŝjm − µ

Ŝjm

)

‖Sjm − µSjm‖ ‖Ŝjm − µ
Ŝjm

‖
, (2.38)

where µX denotes the empirical mean of vector X. The final STOI measure is obtained by
averaging over all bands and time-segmentation:

STOI =
1
JM

∑

j,m

STOIjm, (2.39)
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where M and J refer to the total numbers of the frames and bands in the considered signal,
respectively. In addition, a logistic function is applied to map the STOI measure to a meaningful
intelligibility score. This function is defined by:

f(STOI) =
100

1 + exp(a× STOI + b)
, (2.40)

where a = −17.4906 and b = 9.6921 for fitting with the IEEE sentences in the NOIZEUS
database [1].

2.3.2 Mean opinion scores subjective listening test

All the criteria mentioned above are objective measures which enable us to save time-consuming
tests. For further reliable evaluation, we can not avoid the subjective listening test. In this
section, we describe the widely used directed method called mean opinion scores (MOS). This
method was selected by the IEEE Subcommittee on Subjective Methods [88]. Raters evaluate
the speech quality of the test signal using five numerical scores shown by Table 2.1. Overall
speech quality is then determined by averaging all the scores obtained by all raters so that this
subjective listening test, hence the name of the test. For further detail, the interested readers
are invited to consult paper [88].

Table 2.1 – MOS rating score

Score Speech quality Level distortion
5 Excellent Imperceptible
4 Good Just perceptible, but not annoying
3 Fair Perceptible and slightly annoying
2 Poor Annoying, but not objectionable
1 Bad Very annoying and objectionable

In brief, the MOS listening test consists of two steps: training and evaluation. In the training
step, the raters listen to a group of reference sentences that are clear representative of each of
the five point rates. In the evaluation step, listeners are invited to rate the test signal according
to the MOS score table (see Table 2.1). Note that some constraints must be respected in the
MOS listening test. First, there must be at least 10 listeners. Second, the test duration of each
rater should not exceed 20 minutes because of listening fatigue. Third, headphones should be
used for listening to avoid external distortions due to the use of loudspeakers.

2.4 Conclusion

In this chapter, we have described the general structure of speech enhancement system where
only a single microphone is available to capture or record noisy speech. Objective and subjective
criteria for evaluating the performance of speech enhancement algorithms have also been intro-
duced and discussed. From a high-level perspective, the generic structure of speech enhancement
systems was shown to include four main signal processing blocks. An improvement or modifica-
tion in any of these blocks may translate into better performance for the whole systems. This is
the purpose of the following chapters. Chapter 3 will revisit the noise estimation block. Chapter
4 will investigate a new approach for noise reduction block whereas Chapter 5 will take a broad
perspective and jointly optimize the signal decomposition and noise reduction blocks.

23





Part II

Noise: Understanding the Enemy
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In the first chapter, we have motivated the need to carry out an unsupervised approach for single
microphone speech enhancement. A general overview of the speech enhancement systems was
then given in the second chapter. In these systems, noise power spectrum estimation is a key is-
sue in designing robust noise reduction methods for speech enhancement. The question is how to
estimate the noise power spectrum from only the noisy signal captured by only one microphone.
In the single speech enhancement, this is the main challenge, especially when background noise
is non-stationary. By noting that the signal of interest is weak-sparse in a transformed domain,
a novel non-parametric noise power spectrum estimation algorithm is introduced in this chap-
ter. This algorithm can deal efficiently with non-stationary noise. The results described in this
chapter have been published in [89].
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Chapter 3. Noise estimation block

3.1 Introduction

Most noise power spectrum estimation algorithms found in the literature can be classified into
four main categories [1], namely histogram-based methods, minimal-tracking algorithms, time-
recursive averaging algorithms, and other techniques derived from Maximum-Likelihood (ML)
or Bayesian estimation principles, e.g. minimum mean square error (MMSE) methods.

In the first category of algorithms, the noise power spectrum is estimated from the maximum
of the histogram in the time-frequency domain of the observed signal power spectrum, the latter
being determined by using a first-order smoothing recursion [90]. An improvement of this method
involves updating the noise power spectrum solely on the frames detected as noise-only by a
chi-square test [91]. However, most of the histogram-based algorithms have the drawback of
being relatively complex in terms of computational cost and memory resources [92].

In the second family of methods, the noise power spectrum is tracked via minimum statistics,
according to the reasonable hypothesis that the noise power spectrum level is below that of noisy
speech [71, 93]. First, the smoothed noisy speech power spectrum is evaluated by a first-order
recursive operation. Then, the noise variance is computed as the statistical minimum of the
smoothed power spectrum with a factor of correction. The main difference between the two
methods in [71] and [93] lies in the computation of the smoothing parameter used in the first
order recursion. In [71], the smoothing parameter is chosen empirically, whereas this parameter
is derived by minimizing the mean square error between the noise and the smoothed noisy
speech power spectrum in [93]. Minimum-statistics methods require observing the noisy signals
on a sufficiently long time interval so as to track speech power instead of noise power. On
the other hand, a long time interval is detrimental to the quality of the estimate in case of non
stationary noise. A trade-off is thus necessary, leading to a typical time-delay of 1 to 3 seconds in
practice. This causes underestimation which decreases in turn the performance of noise reduction
algorithms.

Famous methods in the third category include the Minima-Controlled Recursive-Averaging
(MCRA) algorithm [94] and its many modifications such as the Improved-MCRA (IMCRA) [92]
or the MCRA2 [95] methods. In this class of algorithms, the noise power spectrum in a given
frequency bin is estimated by first-order recursive operations where smoothing parameters de-
pend on the conditional speech presence probability inside the bin. The main difference between
MCRA, MCRA2 and IMCRA lies in the way the speech-presence probability is estimated.
MCRA and MCRA2 directly estimate the speech-presence probability frame-by-frame via a
smoothing operation whereby, for a given frame, the probability of speech presence is increased
when this frame is detected as noisy speech and decreased otherwise. A frame is detected as
noisy speech if the ratio of the smoothed noisy speech power spectrum to its local minimum is
above a certain threshold, the local minimum being computed by using the minimum-statistics
technique proposed in [93]. Fixed and frequency-dependent thresholds are used in MCRA and
MCRA2, respectively. On the other hand, IMCRA derives the speech-presence probability in
each bin by a two-step estimation of the speech-absence probability. The first iteration aims at
detecting the absence of speech in a given frame, while the second iteration actually estimates
the speech-absence probability from the power spectral components in the speech-absence frame.
The main disadvantage of these methods is the estimation delay in case of sudden rising noise,
this delay being mainly due to the use of the minimum-statistics methods of [93].

Techniques derived from ML or Bayesian estimation principles overcome the problem of
sudden rising noise by estimating the noise power spectrum from the noise periodogram via a
statistical criterion. In [96], [97] called MMSE1 and MMSE2, respectively, the noise instantaneous
power is evaluated by MMSE and then incorporated in a recursive noise power spectrum estima-
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tion technique. [96] proposes a simple bias compensation of the noise instantaneous power before
estimating the noise power spectrum via the same recursive smoothing and under the same hy-
potheses as in [97]. However, the noise instantaneous power estimate in [96] remains biased. In
contrast, an unbiased estimator for the noise instantaneous spectrum is obtained in [97] by soft-
weighting the noisy speech instantaneous power and the previous noise power spectrum estimate
by the conditional probabilities of speech-absence and speech-presence, respectively. The noise
power spectrum estimation can also be carried out by recursive ML-Expectation-Maximization
(ML-EM) [98], similar to MCRA and IMCRA. This approach allows for rapid noise power spec-
trum estimation and tracking by avoiding the use of minimum-statistics methods.

In this chapter, we propose a new approach for noise power spectrum estimation, without
requiring any model or any prior knowledge for the probability distributions of the speech signals.
Fundamentally, we do not even take into consideration the fact that the signal of interest here is
speech. The approach is henceforth called extended-DATE (E-DATE) since it basically extends
the d-dimensional amplitude trimmed estimator (DATE), initially proposed in [65] for white
Gaussian noise (WGN), to colored stationary and non-stationary noise. The main principle
at the heart of the E-DATE algorithm is the weak-sparseness property of the STFT of noisy
signals, according to which the sequence of complex values returned by the STFT in a given
time-frequency bin can be modeled as a complex random signal with unknown distribution and
whose unknown probability of occurrence in noise does not exceed one half. Noise in each bin
is assumed to follow a zero-mean complex gaussian distribution [1, p. 210], so that estimating
the noise power spectrum amounts to estimating the noise variance in each bin, the latter
being provided by the DATE. The DATE trims the amplitudes in each given bin, after having
sorted them by increasing norm. Noise power spectrum estimation by E-DATE is thus similar
to and actually extends the quantile-based approach of [99], which relies on assumptions that
the weak-sparseness model embraces. More generally, the reader will notice similarities between
the proposed method and the state-of-the-art techniques mentioned above. A main difference
between the E-DATE approach and standard ones is actually the mathematical justification of
the former via the weak-sparseness model, which formalizes more or less standard heuristics in
speech processing and yields a reduced number of parameters for more robustness. Although
the E-DATE does not rely on minimum-statistics principles or methods, it does however require
a time buffer having the same length — typically 80 frames for a sampling rate frequency of 8
kHz — as other popular algorithms.

The chapter is organized as follows. In Section 3.2, the main features of the DATE are
reviewed. Section 3.3 develops the weak-sparseness model for noisy speech. The E-DATE is
then introduced in Section 3.4, following a step-by-step methodology where we successively deal
with WGN, stationary noise and non-stationary noise. Two practical implementations of the
E-DATE algorithm are then described. The performance of the E-DATE algorithm is evaluated
in Section 3.5 and compared to state-of-the-art methods in terms of number of parameters
and estimation errors. Speech enhancement experimental comparisons using objective as well as
pseudo-subjective criteria are also conducted by combining the noise power spectrum estimation
methods with a noise reduction system. Conclusions are finally given in Section 3.6.

3.2 DATE algorithm

For the sake of self-completeness, this section presents the DATE in its full generality. Given
d-dimensional observations of random signals that are themselves randomly absent or present
in independent and additive WGN, the purpose of the DATE is to estimate the noise standard
deviation. Such an estimation may serve to detect the signals or to estimate them as in speech
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denoising. As in [100], the DATE addresses the frequently-encountered case where 1) most ob-
servations follow the same zero-mean normal distribution with unknown variance, 2) signals of
interest have unknown distributions and occurrences in noise. Standard robust scale estimators
such as the very popular median absolute deviation (MAD) estimator and the trimmed estima-
tor (T-estimator) have performance that degrades significantly when the proportion of signal
increases. In contrast, the DATE can still estimate the noise standard deviation when the sig-
nals of interest occur with a probability too large for usual scale estimators to perform well. As
indicated by its name, the DATE basically trims the norms of the d-dimensional observations.
However, in contrast to the conventional T-estimator, which applies to one-dimensional data
and fixes the number of outliers to remove, the DATE applies to any dimension and chooses
adaptively the number of outliers to discard. It performs the trimming by assuming that the
signal norms are above some known lower-bound and that the signal probabilities of occurrence
are less than one half. These assumptions bound our lack of prior knowledge about the signals
and make it possible to separate signals from noise. Moreover, these assumptions are suitable
for signal processing applications where noisy signals are considered as outliers with respect
to the noise distribution. They are particularly suitable for observations obtained after sparse
transforms capable of representing signals by coefficients that are small for the most part except
a few ones whose norms are relatively big. In particular, the sequel will exhaustively use the fact
that the Fourier transform of speech signals is sparse in a weak sense detailed hereafter.

The DATE basically relies on [65, Theorem 1], which is asymptotic and can be viewed as
a method of moments. A detailed presentation of the theoretical background of the DATE is
beyond the scope of this chapter and the reader is referred to [65] for details. However, the
following brief heuristic presentation may be convenient for the reader. This heuristic exposure
departs from that proposed in [65, Theorem 1], so as to shed different light on the theory behind
the DATE.

Notation: In what follows, ‖ · ‖ is the usual euclidean norm in the space of all d-dimensional
real vectors, Id stands for the d × d identity matrix, N (0, σ2

0Id) designates the d-dimensional
Gaussian distribution with zero-mean and covariance matrix σ2Id and ✶[X ∈ B] stands for the
indicator function of the event [U ∈ B], where U is any random variable and B is any borel
set of the real line: ✶[U ∈ B] = 1 if U ∈ B and ✶[U ∈ B] = 0, otherwise. In addition, Γ is the
standard Gamma function and 0F1 is the generalized hyper-geometric function [101, p. 275]. All
the random vectors and variables are henceforth assumed to be defined on the same probability
space (Ω,P,E).

Let (Yn)n∈N be a sequence of d-dimensional random observations such that:

(A0) The observations Y1, Y2, . . . , Yn, . . . are mutually independent, Yn = εnΛn + Xn where
Xn ∼ N (0, σ2

0Id) and εn is Bernoulli distributed with values in {0, 1} for each n ∈ N.

In this model, each observation is either noise alone or the sum of some signal and noise. The
probability distributions of the signals Λn are supposed to be unknown. Our purpose is then to
estimate σ0.

If all the ratios ‖Λn‖/σ0 are known to be above some sufficiently large signal to noise ratio
(SNR) ρ, it can be expected that some threshold height σ0ξ(ρ) can suitably be chosen to decide
with small error probability that Λn is present (resp. absent) whenever ‖Yn‖ is above (resp.
less) σ0ξ(ρ). Therefore, most of the non-zero terms in the sum

∑N
n=1 ‖Yn‖✶[‖Yn‖ 6 σ0ξ(ρ)]

should pertain to noise alone. If the number
∑N
n=1 ✶[‖Yn‖ 6 σ0ξ(ρ)] of these non-zero terms is

itself large enough, we should have an approximation of the form
∑N

n=1
‖Yn‖✶[‖Yn‖6σ0ξ(ρ)]∑N

n=1
✶[‖Yn‖6σ0ξ(ρ)]

≈ λσ0.
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Such an approximation can actually be proved asymptotically with the help of some additional
assumptions. More precisely, suppose that:

(A1) Λn, Xn and εn are independent for every n ∈ N;

(A2) the set of priors
{
P[εn = 1] : n ∈ N

}
is upper-bounded by 1/2 and the random variables

εn, n ∈ N, are independent;

(A3) sup
n∈N

E
[‖Λn‖2

]
< ∞.

These assumptions including (A0) deserve some comments. To begin with, the independence
assumption in (A0) is mainly technical to prove the results stated in [65]. In fact, our exper-
imental results below suggest that this assumption is not so constraining in speech processing,
where we deal with non-overlapping but not necessarily independent time frames. Assumption
(A1) simply means that the two hypotheses for the observation occur independently and that
the noise and signal are independent. The model thus assumes prior probabilities of presence
and absence through the random variables εn. However, the impact of these priors is reduced
by assuming that the probabilities of presence and absence are actually unknown. The role of
Assumption (A2) is then to bound this lack of prior knowledge about the occurrences of the
two possible hypotheses that any Yn is supposed to satisfy. Assumption (A3) simply means that
the signals Λn have finite power.

Under assumptions (A0)-(A3) and with the help of [102, Theorem 1], [65, Theorem 1] then
guarantees that σ0 is the unique positive real number σ such that:

lim
ρ→∞

∥∥∥∥∥ lim sup
N→∞

∣∣∣∣∣

∑N
n=1 ‖Yn‖✶[‖Yn‖ 6 σξ(ρ)]
∑N
n=1 ✶[‖Yn‖ 6 σξ(ρ)]

− λσ

∣∣∣∣∣

∥∥∥∥∥
∞

= 0 (3.1)

where λ =
√

2 Γ
(
d+1

2

)
/Γ
(
d
2

)
and ξ(ρ) is the unique positive solution in x to the equality

0F1(d/2; ρ2x2/4) = e ρ
2/2. It is thus natural to estimate the noise standard deviation σ0 by

seeking for a possibly local minimum with respect to N of:
∣∣∣∣∣

∑N
n=1 ‖Yn‖✶[‖Yn‖ 6 σξ(ρ)]
∑N
n=1 ✶[‖Yn‖ 6 σξ(ρ)]

− λσ

∣∣∣∣∣ , (3.2)

where σ ranges over some search interval [σmin, σmax]. Given a lower bound ρ for the ratios
‖Λn‖/σ0, the DATE computes the solution in σ to the equality:

∑N
n=1 ‖Yn‖✶[‖Yn‖ 6 σξ(ρ)]
∑N
n=1 ✶[‖Yn‖ 6 σξ(ρ)]

= λσ. (3.3)

Indeed, such a solution trivially minimizes (3.2).
In addition, an application of Bienaymé-Chebyshev’s inequality makes it possible to deter-

mine the value nmin ∈ {1, 2, . . . , N} such that the probability that the number of observations
due to noise alone be above nmin is larger than or equal to some given probability value Q.
The main steps of the DATE are summarized in Algorithm 2, where Y(1), Y(2), . . . , Y(N) is the
sequence Y1, Y2, . . . , YN sorted by increasing norm so that ‖Y(1)‖ 6 ‖Y(2)‖ 6 . . . ‖Y(N)‖, and
where we have defined

M∗
{‖Y1‖,‖Y2‖,...,‖YN ‖}(n) =





1
n

n∑

k=1

‖Y(k)‖ if n 6= 0

0 if n = 0,
(3.4)
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Algorithm 2: DATE algorithm for estimation of noise standard deviation

Input:

• A finite subsequence {Y1, Y2, . . . , YN} of a sequence Y = (Yn)n∈N of d-dimensional real
random vectors satisfying assumptions (A0-A3) above

• A lower bound ρ for the SNRs ‖Λn‖/σ0, n ∈ N

• A probability value Q 6 1 − N
4(N/2−1)2

Constants: nmin = N/2 −
√
N/4(1 −Q), ξ(ρ), λ

Output: The estimate σ∗
{Y1,Y2,...,YN } of σ0

Computation of σ∗
{Y1,Y2,...,YN }:

Sort Y1, Y2, . . . , YN by increasing norm so that ‖Y(1)‖ 6 ‖Y(2)‖ 6 . . . 6 ‖Y(N)‖
if there exists a smallest integer n in {nmin, . . . , N} such that:
‖Y(n)‖ 6

(
M∗

{‖Y1‖,‖Y2‖,...,‖YN ‖}(n)/λ
)
ξ(ρ) < ‖Y(n+1)‖

n∗ = n
else

n∗ = nmin

end if
σ∗

{Y1,Y2,...,YN } = M∗
{‖Y1‖,‖Y2‖,...,‖YN ‖}(n∗)/λ

The parameters on which the DATE relies are thus: the dimension d of the observations, the
number N of observations and the lower bound ρ for the possible SNRs. The two parameters
that directly influence the DATE performance are N and ρ. As recommended in [65, Remark
4], we can use ρ = 4 in practice. Theoretically, N should be large since the theoretical result on
which the DATE relies is asymptotic by nature. However, experimental results show that the
DATE performance is acceptable when N is above 200. This will be confirmed by the application
to speech processing in Sections 3.4 and 3.5.

Another means to choose the minimal SNR required by the DATE is to resort to the notion of
universal threshold [103], as proposed in [104]. Indeed, the coordinates of all the N observations
Y1, Y2, . . . , YN form a set of N × d random variables. If no signals were present, these N × d
random variables would be i.i.d (independent and identically distributed) Gaussian with zero-
mean and variance equal to σ2

0. According to [105, Equations (9.2.1), (9.2.2), Section 9.2, p.
187] [106, p. 454] [107, Section 2.4.4, p. 91], the universal threshold λu(N×d) = σ0

√
2 ln(N × d)

could then be regarded as the maximum absolute value of these Gaussian random variables
when N × d is large. Instead of proceeding as in wavelet shrinkage [103] where the universal
threshold is utilized to discriminate noisy signal wavelet coefficients from wavelet coefficients
of noise alone, the trick proposed in [108] and [104] is to consider λu(N × d) as the minimum
amplitude that a signal must have to be distinguishable from noise. The minimal SNR can then
be defined as ρ = ρ(N × d) = λu(N × d)/σ0 =

√
2 ln(N × d). It is an interesting fact that the

value of ρ(N × d) grows rapidly to 4 with N × d.
In the sequel, we will consider values returned by STFT. The DATE will therefore be applied

to sequences of real and complex values, that is, one- and two-dimensional data since complex
values can be regarded as 2-dimensional real vectors. It is thus worth recalling the specific values
of ξ(ρ) and λ for d = 1 and d = 2. If d = 1, ξ(ρ) = cosh−1(eρ

2/2) = 1
2ρ + 1

ρ log(1 +
√

1 − e−ρ2)
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Figure 3.1 – Spectrograms of clean and noisy speech signals from the NOIZEUS database. The noise
source is car noise. No weighting function was used to calculate the STFT.

and λ = 0.7979. If d = 2, ξ(ρ) = I−1
0 (e ρ

2/2)/ρ where I0 is the zeroth order modified Bessel
function of the first kind and λ = 1.2533. Note that 1/λ can be regarded as a bias correction
factor, similar to those employed by minimum-statistics approaches.

3.3 Weak-sparseness model for noisy speech

The main motivation for utilizing the DATE is that noisy speech signals in the time-frequency
domain after STFT reasonably satisfy the same type of weak-sparseness model as used to es-
tablish [65, Theorem 1]. This weak-sparseness model essentially assumes that the noisy speech
signal can be represented by a relatively small number of coefficients with large amplitudes.
Indeed, let us consider the spectrograms of Figure 3.1 obtained by STFT of typical examples
of clean and noisy speech signals. In the time-frequency domain, speech is composed of a set
of time-frequency components or atoms. Most atoms with small amplitudes are masked in the
presence of noise. Only the few atoms whose amplitudes are above some minimum value remain
visible in noise. Clearly, the proportion of these significant atoms does not exceed one half. These
remarks lead to the following model for noisy speech STFTs. In the time domain, as mentioned
in Chapter 2, the observed signal is given by

y[n] = s[n] + x[n], (3.5)

where s[n] and x[n] denotes clean speech and independent additive noise. Note that both are
real-valued signals. The signal in the time domain is transformed into the time-frequency domain
by STFT since most noise reduction systems operate in this particular transform domain. Hence,
all processing is frame-based. Let K be the frame length, or equivalently, the STFT length. The
corresponding system model in the time-frequency domain then reads:

Y [m, k] = S[m, k] +X[m, k], (3.6)

in which m denotes the frame index, k is the frequency-bin index, and S[m, k] (resp. X[m, k])
stands for the STFT component of the speech signal (resp. noise) at time-frequency point [m, k].
Following [1, page 210], we model each X[m, k] as a complex Gaussian random variable. Complex
values Y [m, k] are manipulated as 2-dimensional real vectors. According to the empirical remarks
above, the weak-sparseness model first assumes that an atomic speech audio source is either
present or absent at any given time-frequency point [m, k]. The presence or the absence of this
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source is modeled by a Bernoulli random variable ε[m, k]. This Bernoulli model is tantamount
to and justified by the concept of ideal binary masking in the time-frequency domain, as used
in audio source separation [104, 109]. The probability of presence is assumed to be less than or
equal to 1/2. Thus P

[
ε[m, k] = 1

] ≤ 1/2. Second, the atomic audio source must have significant
amplitude so as to contribute effectively to the mixture that composes the speech signal. The
minimum amplitude that such a source must have will hereafter be denoted by ρ. Let us further
denote by Θ[m, k] the underlying atomic audio source. Then, under the previous assumptions,
the noisy speech signal at time-frequency point [m, k] can be modeled as:

Y [m, k] = ε[m, k]Θ[m, k] +X[m, k] (3.7)

We recognize here the weak-sparseness model [110] applied to speech processing, in the contin-
uation of [104].

In summary, our model essentially assumes that the STFT of noisy speech signals satisfies
the following three key properties in each time-frequency bin [m, k]:
(A’1): the presence/absence of speech ε[m, k] and the atomic speech audio source Θ[m, k] are
independent,
(A’2): the speech-presence probability does not exceed 1/2,
(A’3): the instantaneous power of the random clean speech signal is upper-bounded by a finite
value.

Assumptions (A’1-A’3) are adaptations of (A1-A3) to the particular case of noisy speech
signals. Regarding (A0), its equivalent form for noisy speech signals is simply Equation (3.7).

Our purpose is then to estimate the noise power spectrum σ2
X [m, k] = E

[‖X[m, k]‖2
]

at any
given time-frequency point [m, k]. This problem is similar to that addressed in [104], where the
signal of interest was a mixture of audio signals, possibly including speech signals, and where
additive noise was stationary, Gaussian and white. The DATE was used to estimate the noise
power spectrum in [104] because this estimator does not make prior assumption on the statistical
nature of the signals of interest. In the present chapter and in contrast to [104], we do not restrict
our attention to WGN and generalize the approach of [104] to the estimation of colored and
possibly non-stationary noise in the presence of speech. The corresponding extension will be
called E-DATE in the following.

3.4 Noise power spectrum estimation by E-DATE

In this section, we derive the E-DATE algorithm that will be used for noise power spectrum es-
timation in all the experiments conducted in Section 3.5. The derivation follows a three-step
process, which aims at gradually introducing the modifications required to evolve from the aca-
demic WGN model to the much more realistic, but also more challenging, practical case of
non-stationary noise. More precisely, we first describe the application of the DATE algorithm to
noise power spectrum estimation of noisy speech signals in the time-frequency domain. We ex-
tend the DATE to the case of colored stationary Gaussian noise, and then discuss the estimation
of non-stationary noise. This leads to the E-DATE algorithm, which is specifically designed for
noise power spectrum estimation in non-stationary noisy environments, but can be used with
stationary noise as well.

In the following, we suppose to be given M noisy speech frames of K samples. The frames
are assumed to be non-overlapping so as to satisfy assumption (A0). The STFTs are normalized
by 1/

√
K.
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3.4. Noise power spectrum estimation by E-DATE

3.4.1 Stationary WGN

In this case, the noise power spectrum is constant and equals σ2
X over the whole time-frequency

plane. Accordingly, and by properties of the (normalized) STFT, each noise sample X[m, k]
in the time-frequency domain is a zero-mean circularly-symmetric Gaussian complex random
variable with variance σ2

X :
X[m, k] ∼ Nc(0, σ2

X).

Equivalently, X[m, k] may be viewed as a zero-mean two-dimensional real Gaussian random
vector with covariance matrix (σ2

X/2)I2:

X[m, k] ∼ N
(
0, (σ2

X/2)I2

)
.

Since the STFT of noisy speech signals is weakly-sparse in the sense of Section 3.3, the M ×
(K/2 − 1) values Y [m, k] for m ∈ {1, 2, . . . ,M} and k ∈ {1, 2, . . . ,K/2 − 1} can be used as
inputs of the two-dimensional (d = 2) version of the DATE to provide an estimate σ̂2

X of
σ2
X . Note that, due to the Hermitian property of the STFT of real input signals, ‖Y [m, k]‖ =

‖Y (m,K−k)‖. Therefore, the frequency bins K/2+1 to K are not used in the estimation process
as they do not bring additional information. Note also that, in principle, another estimate of
σ2
X could be obtained by applying a one-dimensional (d = 1) DATE on the 2 × M real data-

set Y [1, 0], Y [2, 0], . . . , Y [M, 0], Y [1,K/2], Y [2,K/2], . . . , Y [M,K/2]. However, the size of this
second dataset is usually much smaller than that of the first one. Thus only the first option is
used in practice as it leads to a more reliable estimate.

3.4.2 Colored stationary noise

For colored stationary noise, the noise power spectrum is no longer constant over the whole
time-frequency plane but may vary as a function of frequency. Consequently, each noise sample
X[m, k] in a given frequency bin k will now be modeled as a zero-mean complex Gaussian
random variable with variance σ2

X(k):

X[m, k] ∼ Nc
(
0, σ2

X(k)
)
.

Here again, the STFT output sequence Y [m, k] for m = 1, 2, . . . ,M is assumed to be weakly-
sparse in the sense of Section 3.3 so that in each frequency bin k, only a few of these values will
have an SNR above ρ and in a proportion that does not exceed 1/2. As a result and as illustrated
in Figure 3.2, the extension to colored stationary noise involves running concurrently K/2 + 1
independent instances of the DATE to estimate σ2

X(k) in each frequency bin k = 0, 1, 2, . . . ,K/2.
As discussed earlier, we do not use the DATE to estimate σ2

X(k) for k > K/2 because of the
Hermitian symmetry. For k ∈ {1, 2,K/2 − 1}, the estimate of σ2

X(k) is computed by the two-
dimensional (d = 2) DATE whereas the one dimensional (d = 1) DATE is used for bins 0 and
K/2. For colored noise, assumption (A’1) may not always rigorously hold, especially at low
frequencies. However, as supported by the experimental results of Section 3.5, this deviation
with respect to the underlying theoretical model turns out to be no real issue in practice, thanks
to the robust behavior of the DATE, even when the signal presence probability may exceed 1/2
(see [65, Figure 2]).

In contrast to WGN for which the whole time-frequency plane (≈ MK/2 observations) is
used to estimate the noise variance σ2

X , M frames only are available here to estimate σ2
X(k)

in each frequency bin. Clearly a more reliable estimate can be obtained by increasing M , but
this increases in return the overall computational cost and may also entail some time-delay. A
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Figure 3.2 – Principle of noise power spectrum estimation based on the DATE in colored stationary
noise

possible solution is to begin with a first estimate σ̂2
X(k) computed over the first M frames, and

then to periodically update this estimate as new frames are acquired. For stationary noise, the
initial number of frames M does not need to be very high. Even if the first estimate is not very
accurate, it is expected to improve rapidly as new frames enter the estimation process.

3.4.3 Extension to non-stationary noise: The E-DATE algorithm

Most practical applications including speech denoising usually face a mix of stationary as well
as non-stationary noise. Unlike white or colored stationary noise, the power spectrum of non-
stationary noise varies over time and frequency, and, as such, proves to be much more challenging
to estimate. Interestingly, non-stationary noise models including car noise, babble noise, exhi-
bition noise and others, usually exhibit some form of local stationarity in time and frequency.
In such cases, non-stationary noise can be considered as approximately stationary within short
time periods of D consecutive frames, where parameter D has to be defined appropriately for
each noise model. This amounts to assuming the existence of a noise power spectrum in this
time interval, which is a function of frequency only. The DATE algorithm for colored stationary
noise introduced in Section 3.4.2 can then be used to estimate the noise power spectrum within
this time window of D frames. This is the basis of the E-DATE algorithm.

Parameter D can be preset once for all or could be optimized for applications where prior
knowledge about noise is available. The choice for duration D results from a trade-off between
estimation accuracy, stationarity and practical constraints such as computational cost and time-
delay. A large value for D may violate the local stationary property. On the other hand, the
number of frames D should be large enough to produce reliable estimates σ2

X(k). In case D
is too small to provide the DATE with a sufficient number of input data, a possible solution
consists in grouping several consecutive frequency bins. This is tantamount to assuming that
the noise power spectrum is approximately constant over those frequencies. Such a procedure
however requires prior knowledge on the noise spectrum properties, which can be irrelevant in
practical applications where noise has often unknown type and may evolve across time. For this
reason, this solution will not be further studied below.

In summary, the E-DATE algorithm consists in carrying noise power spectrum estimation
by running a per-bin instance of the DATE (see Figure 3.2) on periods of D consecutive non-
overlapping frames, where D is chosen so that noise can be considered as approximately station-
ary within this time interval. Once an estimate of the noise power spectrum has been obtained,
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3.4. Noise power spectrum estimation by E-DATE

it can be used for denoising purpose for instance, but will not be taken into account in the com-
putation of future estimates, as the local power spectrum of non-stationary noise may change
significantly from one period of D frames to the next.

Although the E-DATE algorithm was specifically designed for power spectrum estimation
of non-stationary noise, it can be used without modification for power spectrum estimation of
WGN or colored stationary noise, thereby offering a robust and universal noise power spec-
trum estimator whose parameters are fixed once for all types of noise considered above. Let us
now discuss the practical implementation of the E-DATE algorithm.

3.4.4 Practical implementation of the E-DATE algorithm

Two different implementations of the E-DATE algorithm are proposed here. The first approach
is a straightforward block-based implementation of the algorithm described in Section 3.4.3. It
involves estimating the noise power spectrum on each period of D successive non-overlapping
frames. This requires storing D frames, calculating the K/2 + 1 estimates σ̂2

X(k) using the
observations in these D frames, and then waiting for D new non-overlapping frames. The result-
ing algorithm is called Block-E-DATE (B-E-DATE) and summarized in Algorithm 3, where
σ̂ = DATEd,ρ

(
y1, y2, . . . , yn

)
denotes the standard deviation estimate σ̂ returned by the d-

dimensional DATE with minimal SNR ρ and n real d-dimensional inputs y1, y2, . . . , yn.
Estimation of the noise power spectrum over separate periods of D non-overlapping frames

reduces the overall algorithm complexity. However, this entails a time-delay of D frames, which
must be considered in applications. Consider the particular example of speech denoising illus-
trated in Figure 3.3. Noise reduction is performed on a frame-by-frame basis. A new noise power
spectrum estimate is provided to the noise reduction system by the B-E-DATE algorithm once
every D non-overlapping frames, and then used to denoise each of those D frames. Clearly, de-
noising cannot start before the first D non-overlapping frames have been recorded. This results
in an overall latency of about 1 or 2 seconds for typical sampling rates of 8 and 16 kHz. This
delay can then have some impact for speech applications embedded in current mobile devices. It
will naturally be lesser in applications such as Active Noise Cancellation (ANC) where frequency
rates are much higher.

Algorithm 3: Block-Extended-DATE (B-E-DATE) algorithm for noise power spectrum es-
timation

for m ≥ D do
if mod (m,D) = 0
m∗ = m
σ̂X [m∗, 0] = DATE1,ρ

(
Y [m−D + 1, 0], Y [m−D + 2, 0], . . . , Y [m, 0]

)

σ̂X [m∗,K/2] = DATE1,ρ
(
Y [m−D + 1,K/2], Y [m−D + 2,K/2], . . . , Y [m,K/2]

)

for k := 1 to K
2 − 1 do

σ̂X [m∗, k] = DATE2,ρ
(
Y [m−D + 1, k], Y [m−D + 2, k], . . . , Y [m, k]

)

σ̂X [m∗,K − k] = σ̂X [m∗, k]
end for

else
for k := 0 to K − 1 do
σ̂X [m−D, k] = σ̂∗

X [m∗, k]
end for

end if
end for
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Figure 3.3 – Block E-DATE (B-E-DATE) combined with noise reduction (NR). A single noise power
spectrum estimate is calculated every D non-overlapping frames and used to denoise each of these D
frames.

The delay limitation can be bypassed as follows. First, a standard noise power spectrum track-
ing method is used to estimate the noise power spectrum during the first D− 1 non-overlapping
frames. Any of the methods mentioned in the introduction can be used for this purpose. Af-
terwards, starting from the Dth frame onwards, a sliding-window version of the E-DATE algo-
rithm is used to estimate the noise spectrum on a per-frame basis, using the latest recorded D
non-overlapping frames. This alternative implementation called Sliding-Window E-DATE (SW-
E-DATE) is summarized in Algorithm 4. Its application to speech denoising is illustrated in
Figure 3.4.

Algorithm 4: Sliding-Window Extended-DATE (SW-E-DATE) algorithm for noise power
spectrum estimation

for m = 1 to the end of signal do
if m < D

Calculate σ̂X by an alternative method
else
σ̂X [m, 0] = DATE1,ρ

(
Y [m−D + 1, 0], Y [m−D + 2, 0], . . . , Y [m, 0]

)

σ̂X [m,K/2] = DATE1,ρ
(
Y [m−D + 1,K/2], Y [m−D + 2,K/2], . . . , Y [m,K/2]

)

for k := 1 to K
2 + 1 do

σ̂X [m, k] = DATE2,ρ
(
Y [m−D + 1, k], Y [m−D + 2, k], . . . , Y [m, k]

)

σ̂X [m,K − k] = σ̂X [m, k]
end for

end if
end for

The B-E-DATE and the SW-E-DATE algorithms may be viewed as two particular instances
of a more general buffer-based algorithm. More precisely, the B-E-DATE algorithm corresponds
to the extreme case where the buffer is totally flushed and updated once every D non-overlapping
frames. In contrast, the SW-E-DATE algorithm corresponds to the other extreme case where
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Figure 3.4 – Sliding-Window E-DATE (SW-E-DATE) combined with noise reduction. For the first
D− 1 frames, a surrogate method for noise power spectrum estimation is used in combination with noise
reduction. Once D frames are available and upon reception of frame D + ℓ, ℓ ≥ 0, the SW-E-DATE
algorithm provides the NR system with a new estimate of the noise power spectrum computed using the
last D frames Fℓ+1, . . . , Fℓ+D for denoising of the current frame.

only the oldest frame is discarded in order to store the current one, in a First-In First-Out
(FIFO) mode. Clearly, a more general approach between these two extremes consists in partially
updating the buffer by renewing only L frames among D. This point has not been further
investigated in the present work.

Note finally that the proposed implementations of the E-DATE algorithm are not limited to
speech denoising but could find use in any application involving signals corrupted by additive
and independent non-stationary noise, and to which the weak-sparseness model locally applies.

3.5 Performance evaluation

Several comparisons and experiments were conducted in order to assess the performance and
benefits of the E-DATE noise power spectrum estimator in comparison with other state-of-the-art
algorithms. Both the B-E-DATE and the SW-E-DATE implementations were considered in two
different benchmarks. In subsection 3.5.1, we first compare the number of parameters required
by the E-DATE and several classical or more recent noise power spectrum estimators. Then, we
compare in subsection 3.5.2 the estimation quality of the different algorithms in several distinct
noise environments. The combination of the noise power spectrum estimation algorithms with a
noise reduction system based on the STSA-MMSE algorithm is investigated using the NOIZEUS
speech corpus in subsection 3.5.3. Finally, the time-complexity of the E-DATE algorithm is
analyzed in subsection 3.5.4.

3.5.1 Number of parameters

Table 3.1 gives the number of parameters required by the E-DATE as well as by the state-
of-the-art noise power spectrum estimation algorithms mentioned in the introduction. Derived
from robust statistical signal processing concepts, the E-DATE is the simplest algorithm to
configure, with only two parameters to specify, namely the SNR lower bound ρ and the number
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Table 3.1 – Number of parameters (NP) required by different noise power spectrum estimation algorithms

Method MS IMCRA MCRA2 MMSE1 MMSE2 E-DATE
NP 7 10 7 3 5 2

of frames D. This stands in sharp contrast with other popular approaches such as Minimum
Statistics (MS) [93], which involves 7 parameters. In practice, the minimal SNR ρ can be set
as explained at the end of Section 3.2 so that the only crucial parameter is D. Working with
D = 80 non-overlapping frames of K = 256 samples was found to yield good performance in all
the experiments reported here.

3.5.2 Noise estimation quality

The estimation quality of the noise power spectrum estimation algorithms listed in Table 3.1 was
evaluated on several noise models using the symmetric segmental logarithmic estimation error
measure defined in [111]. The difference between the estimated noise power spectrum σ̂2

X [m, k]
and reference noise power spectrum σ2

X [m, k] is evaluated by

LogErr =
1

MK

M−1∑

m=0

K−1∑

k=0

∣∣∣∣∣10 log10

σ̂2
X [m, k]
σ2
X [m, k]

∣∣∣∣∣ (3.8)

where M denotes the total number of the available frames. For WGN, the theoretical reference
noise power spectrum is known and can be substituted to σ2

X [m, k] in (3.8). This is no longer
the case for non-stationary noise involved in the NOIZEUS database. For non stationary noise,
the reference noise power spectrum σ2

X [m, k] is estimated as follows [111]:

σ2
X [m, k] = ασ2

X [m− 1, k] + (1 − α)|X[m, k]|2,with α = 0.9. (3.9)

Both the B-E-DATE and the SW-E-DATE implementations of the E-DATE algorithm were
evaluated and compared. The SW-E-DATE uses the recently-introduced MMSE2 method [97]
as a surrogate algorithm to provide an estimate for the first D− 1 frames since, as shown below,
this algorithm turns out to offer excellent performance among state-of-the-art noise estimators.

The LogErr measures obtained with the different noise power spectrum estimators are given
in Figures 3.5 and 3.6. All algorithms have been benchmarked at four SNR levels and against var-
ious noise models, namely three synthetic noises (WGN, auto-regressive (AR) colored stationary
noise and modulated WGN), and 8 typical real non-stationary noise environments.

The results for white and colored stationary noise are given in Figures 3.5b and 3.5c, re-
spectively. The B-E-DATE and SW-E-DATE methods yield the lowest LogErr error, the best
performance being achieved by the B-E-DATE algorithm in WGN. This is no surprise since the
underlying DATE algorithm was originally developed for estimating the standard deviation of
additive WGN.

For non-stationary noise with slowly-varying noise spectrum like car, station, train and with
speech-like noise including exhibition, restaurant and babble, depending on the noise level, the
B-E-DATE algorithm uniformly obtains either the best score, or comes very close to the best
score, as shown in Figures 3.5d- 3.5e and 3.6a-3.6c respectively.

Figures 3.6e-3.6f present the results obtained with the least favorable types of non-stationary
noise. In the case of modulated WGN (resp. babble noise), the SW-E-DATE algorithm yields the
smallest LogErr error. As illustrated in Figures 3.6e and 3.6f, the two proposed algorithms are
among the best in estimating the very challenging airport noise environment. Their performance
closely match those obtained with the state-of-the-art MMSE2 estimator.
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Figure 3.5 – Noise estimation quality comparison of several noise power spectrum estimators at different
SNR levels and with different kinds of stationary synthetic noise and slowly varying non-stationary noise.
Legend is displayed in Figure 3.5a.
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(d) modulated WGN
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Figure 3.6 – Noise estimation quality comparison of several noise power spectrum estimators at different
SNR levels and with different kinds of non-stationary noise where noise power spectra are changing fast.
The same legend as in Figure 3.5a is used.
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3.5.3 Performance evaluation in speech enhancement
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Figure 3.7 – SNRI with various noise types

In complement to the previous study, the performance of the noise power spectrum estimation
algorithms listed in Table 3.1 have also been evaluated and compared in combination with a noise
reduction system. The speech denoising experiments are based on the NOIZEUS database [1],
which contains IEEE sentences corrupted by eight types of noise coming from the AURORA
noise database, at four SNR levels, namely 0, 5, 10 and 15 dB. The noise reduction algorithm
retained for our experiments is the STSA-MMSE estimator [27]. This method is a standard
reference in speech denoising. It can easily be implemented and is known to reduce residual
noise without introducing musical noise [1, p. 215, Sec. 7.3].

Three different criteria have been used to compare the different algorithms as mentioned in
Section 2.3.1 in Chapter 2. The first one is the SSNR objective criterion. For illustrating the
performance of speech enhancement, we evaluated the SSNR improvement (SSNRI) defined as
the difference between SSNR of the enhanced signal and SSNR of the noisy signal. Figures 3.8
and 3.9 provide the SSNRI performance for various noise types and SNR levels. B-E-DATE and
SW-E-DATE yield good performance in the case of stationary and low-varying non-stationary
noise like WGN, AR noise, car noise, train noise and station noise (see Figure 3.8). Even better
performances are obtained in Figures 3.9a-3.9c for the exhibition, restaurant and babble speech-
like non-stationary noises, respectively. For the fast-changing non-stationary noise shown in
Figures 3.9d-3.9f, the two proposed methods are also the best algorithms. Their SSNRI are
closed to those achieved with MMSE2 estimator.

The second performance metric is the Signal-to-Noise Ratio Improvement (SNRI) objective
criterion standardized in the ITU-T G.160 recommendation for evaluating noise reduction sys-
tems [80]. The SNRI performance obtained with the STSA-MMSE combined with the noise
power spectrum estimators of Table 3.1 are shown in Figure 3.7 for various noise environments.
Note that 4 noise levels were used for each noise type, the final SNRI score being computed as
the average score over these 4 levels. We observe that the B-E-DATE and SW-E-DATE yield
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similar performance measurements and that they outperform all other methods for each type of
noise. The average SNRI score computed over the 11 noise types and labeled Total at the right
of Figure 3.7 clearly emphasizes the SNRI gain brought by the E-DATE in comparison to other
methods.

The third criterion used to assess noise power spectrum estimation in speech enhancement
is the composite objective measures proposed in [83]. As mentioned in Chapter 2, the three
measures MARSsig, MARSbak and MARSovrl are designed so as to provide a high correla-
tion with the three widely used corresponding subjective measures that are signal distortion
(SIG), background intrusiveness (BAK) and Mean Opinion Score (OVRL). We focus here on
the MARSovrl criterion since it has the highest correlation with the real subjective tests. Figures
3.10 and 3.11 show the MARSovrl improvement scores, defined as SSNRI scores, obtained with
the different noise power spectrum estimators and noise environments. The good performance of
the B-E-DATE and SW-E-DATE are confirmed by the MARSovrl measures obtained in the case
of WGN, AR noise, car noise, station noise and train noise. These results allow us to conclude
that the E-DATE approach is well-suited for stationary or slowly varying non-stationary noise.
Although not shown here for space limitation, we hasten to mention that very similar trends
were observed for the other two criteria MARSsig and MARSbak. In the challenging case of
fast-changing noise, all the methods in this chapter yield the same result at 0dB. At higher
SNR levels, depending on the kind of noise, the E-DATE MARSovrl scores are similar to that
obtained by the best method or are the highest scores (see Figure 3.11).

Two final remarks are in order here. First, the B-E-DATE algorithm generally performs bet-
ter than the SW-E-DATE algorithm. This is particularly evident in Figures 3.9 and 3.9 and can
also be noticed in the other experimental results. This is mainly due to the fact that our imple-
mentation of the SW-E-DATE initially resorts to a surrogate algorithm to estimate noise power
spectrum during the first D = 80 frames, which has inferior performance to the B-E-DATE.
Since these D frames represent a significant part of the total duration of many of the tested
utterances, the performance loss incurred by the use of a worse estimator significantly impacts
the overall score. Second, in the previous section was evoked the possibility to partially update
the buffer by renewing only L frames among D instead of flushing it completely (B-E-DATE), or
renewing it only one frame at a time in a FIFO manner (SW-E-DATE). The difference in perfor-
mance between these two E-DATE implementations suggests that such a partial renewal should
not dramatically modify the results. This means that buffer optimization can be performed in
practice whenever required by practical constraints, and without significantly impacting the de-
noising performance. For instance, additional experimental results with airport, babble, station,
car and train noises suggest that D can be chosen in the range [50, 80] without really affecting
MARSovrl for SNR > 0dB.

3.5.4 Complexity analysis

Tables 3.3 and 3.4 compare the computational costs of the B-E-DATE and SW-E-DATE imple-
mentations, respectively. Each table gives the number of real additions, multiplications, divisions
and square roots required to perform the estimate. Both the B-E-DATE and the SW-E-DATE
use D frames to compute the noise power spectrum estimate. However computation is performed
only once every D frames for the B-E-DATE algorithm, whereas it is performed once per frame
in the SW-E-DATE implementation. Hence the number of operations in Table 3.3 should be
divided by D to allow for a fair per-frame computational cost comparison between the two
implementations. For reference purpose, Table 3.2 lists the number of operations required by
the MMSE2 estimator of [97]. Inspection of Tables 3.3 and 3.2 shows that the B-E-DATE and
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(e) train noise
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(f) station noise

Figure 3.8 – Speech quality evaluation after speech denoising (SSNR) for the stationary and low-varying
non-stationary noise. Legend of all sub-figure is illustrated in Figure 3.8a.
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(b) restaurant noise
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(c) babble noise
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(d) modulated WGN
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(e) street noise

0 5 10 15
−0.5

0

0.5

1

1.5

2

SNR (dB)

S
e
g
S

N
R

 I
m

p
ro

v
e
m

e
n
t

(f) airport noise

Figure 3.9 – Speech quality evaluation after speech denoising (SSNR)for the fast-changing or speech-like
non-stationary noise. Legend is the same as in Figure 3.8a.
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(c) AR noise
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(d) car noise
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(e) train noise
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(f) station noise

Figure 3.10 – Speech quality evaluation after speech denoising (MARSovrl composite criterion) for sta-
tionary or low-varying non-stationary noise. Legend is the same as in Figure 3.10a.
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(b) restaurant noise
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(c) babble noise
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(d) modulated WGN
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(e) street noise
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(f) airport noise

Figure 3.11 – Speech quality evaluation after speech denoising (MARSovrl composite criterion) for fast-
changing or speech-like non-stationary noise. Legend is also pointed out in Figure 3.10a.

48



3.6. Conclusion

Table 3.2 – Computational cost of MMSE2 per new frame and per frequency bin

Addition Multiplication Division Exponent
12 10 2 1

Table 3.3 – Computational cost of B-E-DATE per group of D frames and per frequency bin

Addition Multiplication Division Square root
Norm D 2D 0 D

Sorting D logD 0 0 0
Search n∗(worst case) D(D − 1)/2 D D 0

Total D (logD + (D + 1)/2) 3D D D

MMSE2 estimators have similar computational complexity. This is confirmed by execution times
of Matlab implementations of these algorithms where the B-E-DATE algorithm is found to have
a processing time about 1.53 times that of the MMSE2 algorithm. We also note from Tables 3.3
and 3.4 that SW-E-DATE requires approximately D/3 times more operations that B-E-DATE.
Indeed, B-E-DATE requires 3D multiplications to process D frames at once, whereas SW-E-
DATE requires D+ 2 multiplications per frame. Execution times of Matlab implementations of
these algorithms also confirm this ratio.

3.6 Conclusion

In this chapter, we have proposed a novel method to estimate the power spectrum of some non-
stationary noise, in applications where a weak-sparse transform makes it possible to represent the
signal of interest by a relatively small number of coefficients with significantly large amplitude.
The resulting estimator called Extended-DATE (E-DATE) is robust in that it does not use prior
knowledge about the signal or the noise except for the weak-sparseness property. Compared
to other methods in the literature, the E-DATE algorithm has the remarkable advantage of
requiring only two parameters to specify. A straightforward block-based implementation of the
E-DATE, called B-E-DATE, has first been introduced. This implementation entails an estimation
delay, which diminishes as the frequency rate increases. This delay could be reduced by grouping
frequency bins. Another solution to shorten this delay involves resorting to a sliding-window
implementation called SW-E-DATE, but at the price of a higher computational cost. The B-
E-DATE and SW-E-DATE have been benchmarked against various classical and recent noise
power spectrum estimation methods in two situations: with and without noise reduction. The
experimental results show that the E-DATE estimator generally provides the most accurate

Table 3.4 – Computational cost of SW-E-DATE per new frame and per frequency bin

Addition Multiplication Division Square root
Norm 1 2 0 1

Sorting logD 0 0 0
Search n∗(worst case) D(D − 1)/2 D D 0

Total 1 + logD +D(D − 1)/2 D + 2 D 1
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noise estimate, and that it outperforms other methods for speech denoising in the presence of
various noise types and levels. For its good performance and low complexity, the B-E-DATE
should be preferred in practice when frequency rates are high enough to induce acceptable or
even negligible time-delay.
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Part III

Speech: Improving you
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In this part, we propose two approaches for estimating speech short-time spectral amplitude
(STSA). The main objective of this part is to take into account the recent result in parametric
and non-parametric statistical theory to improve the performance of speech enhancement system.
Chapter 4 takes into consideration the joint estimation and detection theory based on the para-
metric approach. Chapter 5 further improves speech quality by resorting to a semi-parametric
approach.
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Chapter 4. Spectral amplitude estimator based on joint detection and estimation

4.1 Introduction

Optimal Bayesian estimator algorithms aimed to remove or to reduce background noise are
frequently used in speech enhancement. By assuming a statistical distribution for the signal
of interest and the observation in the STFT domain, the estimator of the short-time spectral
amplitude (STSA) is obtained by minimizing the statistical expectation of a cost function that
measures the difference between the true amplitude and its estimate. These optimal estimators
perform better than most unsupervised methods including the spectral-subtractive algorithms,
the Wiener filtering and subspace approach [1].

The first original optimal Bayesian STSA estimator was proposed in [27], where the cost
function is the square error between the clean signal and its STSA estimate. A general STSA
estimator was developed in [112], where the cost function of this method is defined by the
square error of the β power amplitude. Based on the properties of auditory systems, a number
of STSA Bayesian estimators are also derived by defining the cost function as the perceptual
distortion metric [28, 35]. Taking advantage of the β-power and the auditory approaches, a
weighted estimator is proposed in [113]. Similarly, instead of the Gaussian assumption as in
the above methods, some Bayesian estimators are calculated or approximated by supposing the
super-Gaussian or generalized Gamma distribution for the STSA [34,114,115].

Nevertheless, these algorithms implicitly suppose that speech is present in all time-frequency
bins, which may degrade their performance. Hence, some studies take into account speech
presence uncertainty to estimate STSA for improving speech quality [27, 116, 117]. In those
approaches, the gain function is simply multiplied by the speech presence probability, which
provides much more attenuation. The speech presence probability is calculated by using the a
priori probability of speech presence, which is assumed to be fixed or to vary with time and
frequency [37,118]. An optimal approach applied to log-short-time spectral amplitude (LSA) is
also proposed in [37] but this method does not yield better performance than the original LSA
estimator [119]. In addition, most algorithms do not improve speech intelligibility [120].

Recently, some researches try to combine detection and estimation as in the binary masking
approach where spectral amplitudes in some time-frequency bins are retained, whereas the other
amplitudes are discarded for improving performance [121]. The gain function of these methods is
defined as a generalized binary mask function, which enables to recover speech intelligibility [122].
This is the reason why we decided to pursue these approaches.

In this respect, the purpose of this chapter is to follow a Bayesian approach aimed at jointly
optimizing detection and estimation of speech signals so as to improve speech intelligibility. To
the best of our knowledge, this approach is the first attempt of that kind in speech processing. To
this end, we focus on the spectral amplitude estimator based on joint detection and estimation
theory. By defining the cost function on the spectral amplitude error, our strategy tries to
determine a gain function in the form of a generalized binary masking. Furthermore, two binary
hypothesis state-models are used to figure out the discontinuous gain function. First, the well-
known strict binary speech and absence hypotheses are considered. In this model, we assume
that the observed presence signal contains noise and speech signal in some given time-frequency
bins, whereas in other time-frequency bins, the observation is noise-only. The presence of speech
is detected by constraining the false alarm probability as in the Neyman-Pearson approach.
Second, we assume that speech is always present with variable energies. Specifically, we assume
that, under the null hypothesis, the observed signal is composed of noise and negligible speech
while, in the alternative hypothesis, the observed signal is the sum of noise and speech of actual
interest. As in the first model, the detector is determined by the Neyman-Pearson strategy. The
main difference between the two models is that the former provides no estimated amplitude
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4.2. Signal model in the DFT domain

under the null hypothesis (i.e speech is absent) whereas the later introduces a rough estimate
even under the null hypothesis (i.e some speech of little interest is present).

The remainder of this chapter is organized as follows. Section 4.2 presents notation and
assumptions about noise and the signal of interest. In Section 4.3, the combination strategy
of detection and estimation for speech enhancement is presented in the strict speech presence
and absence model. Based on this, we derive the generalized binary STSA combined estimator
by defining different cost functions under each hypothesis. Similarly, Section 4.4 introduces the
uncertainty of speech presence/absence and the derivation of the discontinuous STSA estimators
are also proposed. Then, in Section 4.5, experimental results conducted on both synthetic and
real-word noise emphasizes the gain brought by our methods. Finally, Section 4.6 concludes this
chapter.

4.2 Signal model in the DFT domain

As mentioned in the second chapter, one most important problem in speech enhancement appli-
cations is to estimate the clean speech from noisy speech y[n] = s[n] + x[n], where s[n] and x[n]
are respectively the clean signal and independent noise in the time domain. The observed signal
is frequently segmented, windowed and transformed by a computational harmonic transform as
the short-time Fourier, wavelet or discrete cosine transforms. As most methods in the literature,
this chapter considers the STFT.

The corrupted speech in the time-frequency domain is denoted by Y [m, k] = S[m, k] +
X[m, k], where m and k denote the time frame and frequency-bin indices, respectively and
S[m, k] and X[m, k] also denote the STFT coefficients of the clean speech signal and noise,
correspondingly. These STFT coefficients are assumed to have complex Gaussian distributions
with zero-mean and to be uncorrelated [27]. For convenience, the m and k indices will be omitted
in the sequel unless for clarification, and estimates are pointed by a wide hat symbol: e.g. ψ̂
is an estimate of ψ. The complex noisy coefficients in polar form are also given as AY eΦY =
ASe

ΦS + AXe
ΦX , where {AY , AS , AX} and {ΦY , ΦS , ΦX} are the amplitudes and phases of

the observed signal, clean speech and noise respectively. Clean speech and noise are furthermore
supposed to be independent and centered so that E(A2

Y ) = E(A2
S) + E(A2

X) = σ2
S + σ2

X , with
E(A2

S) = σ2
S , E(A2

X) = σ2
X , where E is the expectation. The a priori signal-to-noise ratio (SNR)

ξ and the a posteriori SNR γ are defined as follows ξ = σ2
S/σ

2
X , γ = A2

Y /σ
2
X . For the sake of

simplicity, we then denote also A for the clean speech amplitude AS .
Concerning the two-state model, the true hypothesis H is valued in {H0, H1}. The decision

D takes its value in {0, 1} and thus returns the index of the so-called accepted hypothesis. For
simplicity sake, let PHj (D = i) denote the probability that D = i under the true hypothesis Hj

and P(D = i|Y = y) denote the probability that D = i given Y = y, where i, j ∈ {1, 0}.
Generally, for determining the decision rule D, the Neyman-Pearson test maximizes the de-

tection probability PD(D) = PH1(D = 1) or minimizes the miss probability PM (D) = PH1(D =
0) subject to PF (D) = PH0(D = 1) ≤ α, where α is the so-called level of the test [123]. On
the other hand, for estimating the signal of interest, Bayesian estimators minimize Bayes risks
R that are constructed via a cost function c(Â, A), where A is the clean signal amplitude and
Â is its estimate [1, p.241]. Usually, R(Â) = E[c(Â, A)]. The two optimization problems are
summarized as:

Detection: min
D

PM (D) subject to PF (D) ≤ α

Estimation: min
Â

E
[
c(Â, A)

] (4.1)
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In the sequel, we focus our attention on decisions D for which exists some test δ such that
D = δ(Y ). We recall that a test δ is a function defined on C and valued in {0, 1}. By taking
into account two well-known approaches, we now present several joint detection/estimation of
speech.

4.3 Strict presence/absence estimators

In the certain two-state modeled by binary hypothesis, the noisy speech signal is given by

H0 : speech is absent: Y = X
H1 : speech is present: Y = S +X,

(4.2)

where H0 and H1 are the null and alternative hypotheses denoting speech presence and speech
absence in the given time-frequency bin, respectively. Using the assumptions of the above section,
we have the probability density function of Y under each hypothesis Hi, i ∈ {0, 1} as follows

fY (y;H0) =
1

πσ2
X

exp

(
−|y|2
σ2
X

)
, (4.3)

fY (y;H1) =
1

πσ2
X(1 + ξ)

exp

(
− |y|2
σ2
X(1 + ξ)

)
, (4.4)

for any complex value y. In order to improve performance of optimal Bayesian estimators, a
detector is applied to each time-frequency bin for detecting the presence of speech. Then, an
estimator allows us to retrieve the signal of interest. Furthermore, the estimator and the detector
are obtained by defining a Bayesian/Neyman-Pearson based risk.

Following [67], in order to combine detection and estimation, we aim to find the couple (Â, δ),
where Â is the estimate of A and δ denotes a test valued in {0, 1}. The decision made by the
test when the observation is Y is thus D = δ(Y ) and is the index of the accepted hypothesis.
Basically, when the decision is 0, the absence of speech is accepted and thus, the estimate of
A must be Â = 0 and the cost is then c(A) := c(0, A). Otherwise, the presence of speech is
accepted and the estimation cost must then be c(Â, A). Therefore, given the observation Y , the
estimated cost is defined by

C(Â, A) = c(Â, A)δ(Y ) + c(A)(1 − δ(Y )). (4.5)

Thus, the average Bayes risk R under H1 is defined by:

R
(
Â,D

)
= E1

[
C(Â, A)

]
, (4.6)

where E1 stands for the expectation under H1 with respect to Y and A.
By taking the constraint on the Neyman-Pearson detector and the generalized cost of the

Bayesian estimator, the joint detection and estimation problem becomes the following con-
strained minimization problem:

min
Â,D

R
(
Â,D

)

subject to: PH0(D = 1) ≤ α.
(4.7)

This problem is investigated and solved in [67, Theorem 1] for randomized tests. The proof of
this result can be simplified for non-randomized tests, which are sufficient for application to
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4.3. Strict presence/absence estimators

speech. In fact, the result follows by minimizing the Lagrange multipliers:

L(Â,D) = R
(
Â,D

)
+ τ (PH0(D = 1) − α)

= τ(1 − α) +
(
E1

[
C(Â, A)

]
− τPH0(D = 0)

)
.

(4.8)

Therefore, the problem amounts to minimizing the second term in the right hand side (rhs)
term of the second equality in Equation (4.8). This term is henceforth named L1(Â,D). Let us
compute it. We have first

E1

[
C(Â, A)

]
=
∫
C(ψ(y), a)fA,Y (a, y;H1)dady, (4.9)

where ψ is a map of C into [0,∞) and given an observation Y , the estimate Â of A provided by
this map is:

Â = ψ(Y ). (4.10)

Using the cost function defined by Equation (4.5) and Bayes’s theorem, we obtain

E1

[
C(Â, A)

]
=
∫

[c(ψ(y), a)δ(y) + c(a)(1 − δ(y))] fA|Y=y(a)fY (y;H1)dady

=
∫ [

δ(y)
∫
c(ψ(y), a)fA|Y=y(a)da+ (1 − δ(y))

∫
c(a)fA|Y=y(a)da

]
fY (y;H1)dy.

(4.11)

Moreover, let us recall that the conditional expectation E [g(X,Y )|Y = y] of a measurable func-
tion g(X,Y ) is given by:

E [g(Y,X)|Y = y] .=
∫
g(x, y)fX|Y=y(x)dx, (4.12)

so that, the Bayesian risk is :

E1

[
C(Â, A)

]
=
∫

[E [c(ψ(Y ), A)|Y = y] δ(y) + E [c(A)|Y = y] (1 − δ(y))] fY (y;H1)dy. (4.13)

For the sake of simplicity, we denote E [c(ψ(Y ), A)|Y = y] and E [c(A)|Y = y] by r(y; Â) and
r(y), respectively. Therefore, L1(Â,D) rewrites:

L1(Â,D) =
∫ [

r(y; Â)δ(y) + r(y)(1 − δ(y))
]
fY (y;H1)dy + τ

∫
(1 − δ(y))fY (y;H0)dy

=
∫ [

r(y; Â)fY (y;H1)δ(y) + (r(y)fY (y;H1) − τfY (y;H0)) (1 − δ(y))
]
dy

(4.14)

Since we consider non-randomized tests, δ is completely specified by its critical region A so that:

δ = ✶A and δ(Y ) = ✶A(Y ) (4.15)

where ✶A is the indicator function of A. It follows that:

L1(Â,D) =
∫

A

[
r(y; Â)fY (y;H1) − (r(y)fY (y;H1) − τfY (y;H0))

]
dy

+
∫

[r(y)fY (y;H1) − τfY (y;H0)] dy.
(4.16)
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Chapter 4. Spectral amplitude estimator based on joint detection and estimation

The second term in the right-hand side term in Equation (4.16) depends neither on Â nor on the
decision D. Therefore, minimizing L1(Â,D) with respect to Â and D amounts to minimizing
the first integral to the right-hand side of Equation (4.16). Using Lemma 1 (see Appendix A),
the optimal critical region that minimizes L1(Â,D) is:

A =
[(
r(y; Â)fY (y;H1) − r(y)fY (y;H1) + τfY (y;H0)

)
< 0

]
, (4.17)

where [f < 0] = {x ∈ C : f(x) < 0}. Furthermore, over this set, we must also minimize r(y; Â)
with respect to Â, which is the standard Bayesian estimator. Thus, the obtained result is simply
given by





Â = ψ(Y ) where ψ(y) = argmin
a

r(y; a)

Test H0 vs. H1:
fY (y;H1)
fY (y;H0)

[
r(y) − r(y; Â)

] D=1

R
D=0

τ,

if D = 0, force Â = 0

(4.18)

In addition, τ is calculated by imposing PH0(D = 1) = α. Moreover, using Equations (4.3)
and (4.4), the likelihood ratio is given by:

fY (y;H1)
fY (y;H0)

=
exp

(
γξ

1 + ξ

)

1 + ξ
=

exp(ν)
1 + ξ

, (4.19)

where

ν =
γξ

1 + ξ

This approach is similar to ideal binary masking [122]. When the decision is that noise
only is present, the amplitude is set to 0. The difference is that, when the decision is that
speech is present, the binary masking keeps simply the noisy amplitude, whereas joint detec-
tion/estimation provides a Bayesian estimator. Additionally, in speech enhancement, the square
error between the clean STSA (or the clean LSA) and its estimate is widely used as the cost
function. Therefore, we propose the following detectors derived from the the STSA and LSA
cost functions.

4.3.1 Strict joint STSA estimator

The STSA cost function is:

c(A) = A2 (4.20)

c(Â, A) =
(
Â−A

)2
(4.21)

Under hypothesis H1, the Bayesian estimator of the speech STSA when deciding D = 1 is a
map ψSM

STSA
1 of C into [0,∞) aimed at minimizing r(y; Â). It is known to be derived from the

conditional mean and is given for every y ∈ C by [124]:

ψSM
STSA(y) =

∫ ∞

0
afA|Y=y(a;H1)da =

∫ ∞

0
afY |A=a(y;H1)fA(a)da

∫ ∞

0
fY |A=a(y; , H1)fA(a)da

. (4.22)

1SM: Strict Model
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4.3. Strict presence/absence estimators

Thus, given the DFT coefficient Y , the estimate Â of A provided by this estimator is:

Â = ψSM
STSA(Y ). (4.23)

In order to determine ψSM
STSA via Equation (4.22), the DFT coefficients of the clean speech

and noise are assumed to be statistically independent and to have complex centered Gaussian
distributions. According to this assumption, the probability density function (pdf) of the STSA
A and the phase ΦS are Rayleigh and uniform in the range (0, 2π) [125, Example 6-22, p. 202],
respectively. We have:

fY |A=a(y;H1)fA(a) =
∫ 2π

0
fY |A=a,ΦS=φ(y;H1)fA,ΦS

(a, φ)dφ, (4.24)

where

fA,φS
(a, φ) =

a

πσ2
S

exp

{
− a2

σ2
S

}
, (4.25)

and

fY |A=a,ΦS=φ(y;H1) =
1

πσ2
X

exp

{
−|y − a exp(−iφ)|2

σ2
X

}
. (4.26)

The map ψSM
STSA is given by [27]:

ψSM
STSA(y) = GSTSA(ξ, γ)|y|, (4.27)

where

GSTSA(ξ, γ) =
√
πν

2γ
exp

(−ν
2

)[
(1 + ν)I0

(
ν

2

)
+ νI1

(
ν

2

)]
, (4.28)

where I0( · ) and I1( · ) are the modified Bessel functions of zero and first order, respectively. This
gain is a function of two variables: the a priori SNR ξ and the a posteriori SNR γ. As mentioned
in [27], for high a posteriori SNR, this gain function is close to the Wiener gain function. The
a posteriori SNR is directly given by the observed amplitude AY . In contrast, the a priori SNR
is unknown. This variable ξ can be estimated via the decision directed approach [27]:

ξ[m, k] = β
Â2[m− 1, k]
σ2
X [m− 1, k]

+ (1 − β) max ((γ[m, k] − 1), 0) , (4.29)

where 0 < β < 1 is the smoothing parameter and Â[m − 1, k] is the estimated STSA at the
previous frame. Thus, the STSA estimate under hypothesis H1 is obtained as :

Â = GSTSA(ξ, γ)AY . (4.30)

The joint detector is determined via two risks r(y) and r(Â, y). They are respectively the
miss detection risk and the standard Bayesian risk under H1. In this case, the miss detection
risk is calculated by:

r(y) =
∫ ∞

0
c(a)fA|Y=y(a;H1)da =

∫ ∞

0
a2fA|Y=y(a;H1)da. (4.31)

Similarly, the cost for the Bayesian estimating error is also provided by:

r(y; Â) =
∫ ∞

0
c(ψ(y), a)fA|Y=y(a;H1)da =

∫ ∞

0
(ψSM

STSA(y) − a)2fA|Y=y(a;H1)da. (4.32)
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Chapter 4. Spectral amplitude estimator based on joint detection and estimation

Expanding the square in the rhs of Equation (4.32), the Bayesian risk can be written as the
function of the miss detection risk by using Equation (4.22):

r(y; Â)=
∫ ∞

0

((
ψSM

STSA(y)
)2

−2aψSM
STSA(y)+a2

)
fA|Y=y(a;H1)da=r(y) −

(
ψSM

STSA(y)
)2
. (4.33)

So, in the strict present/absent model considered in this section for STSA estimation, the decision
in Equation (4.18) is

DSM
STSA(y)

D=1

R
D=0

τ, (4.34)

where:

DSM
STSA(y) =

exp(ν)
1 + ξ

(
r(y) − r(y; Â)

)
=

exp(ν)
1 + ξ

(
ψSM

STSA(y)
)2
. (4.35)

In short, for each time-frequency bin, the proposed joint method estimates first the speech
STSA by using the Bayesian estimator, then the detector is based on this estimate to detect the
presence or absence of speech at each bin. If speech is absent, this method sets the speech STSA
to 0. Focusing only on the estimator, the STSA estimate can be written as a binary masking:

Â = GSM
STSA(ξ, γ)AY , (4.36)

where the gain function GSM
STSA(ξ, γ) is:

GSM
STSA(ξ, γ) =

{
GSTSA(ξ, γ) if DSM

STSA(y) ≥ τSM
STSA

0 otherwise,
(4.37)

where the threshold τSM
STSA is determined by seeking a solution to PH0(D = 1) = α (see Appendix

B).

4.3.2 Strict joint LSA estimator

4.3.2.1 Optimal joint LSA estimator

We now consider that the cost function is the square of the error between the clean LSA and
its estimate:

c(A) = (log(A) − log(ε))2 (4.38)

c(Â, A) =
(
log(Â) − log(A)

)2
(4.39)

where ε satisfies (0 < ε ≤ A) and is a fixed constant that enables us to ensure a monotonic
cost function under hypothesis H0. Therefore, similarly to above, the Bayesian estimator under
hypothesis H1 of the speech LSA is also a map ψOSM

LSA
2 of C into (−∞,∞):

ψOSM
LSA (y) =

∫ ∞

0
log(a)fA|Y (a|y,H1)da =

∫ ∞

0
log(a)fY |A(y|a,H1)fA(a)da
∫ ∞

0
fY |A(y|a,H1)fA(a)da

. (4.40)

Using the moment-generating function of A, this estimator is calculated in [28]:

Â = exp
(
ψOSM

LSA (Y )
)

= GLSA(ξ, γ)AY , (4.41)

2OSM means Optimal estimator in the "Strict Model".
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where GLSA(ξ, γ) is the LSA gain function given by :

GLSA(ξ, γ) =
ξ

1 + ξ
exp

{
1
2

∫ ∞

ν

e−t

t
dt

}
. (4.42)

Note that the a priori SNR ξ is estimated by decision-directed approach again. The integral in
Equation (4.42) can be numerically approximated.

For determining the detector, the two Bayesian risks r(y), r(Â, y) need to be evaluated. The
value of r(y) is calculated by

r(y) =
∫ ∞

0
(log(a) − log(ǫ))2fA|Y=y(a;H1)da (4.43)

and then, the cost value with the optimal estimate Â is

r(y; Â) =
∫ ∞

0

(
log(a) − ψOSM

LSA (y)
)2
fA|Y=y(a;H1)da. (4.44)

Based on Equation(4.43), Equation (4.44) simplifies to

r(y; Â) = r(y) −
(
ψOSM

LSA (y) − log(ε)
)2
. (4.45)

Thus, with the results of Eqs. (4.41) and (4.45), the joint optimal LSA estimator under strict
speech absence/presence model (OSM) turns into a binary masking function as well:

Â = GOSM
LSA (ξ, γ)AY , (4.46)

where the spectral gain function GOSM
LSA (ξ, γ) is

GOSM
LSA (ξ, γ) =

{
GLSA(ξ, γ) if DOSM

LSA (Y ) ≥ τOSM
LSA ,

0 otherwise.
(4.47)

where:

DOSM
LSA (y) =

exp(ν)
1 + ξ

(ψLSA(y) − log(ε))2 . (4.48)

Note that Â is a function of three parameters: the a priori SNR ξ, the a posteriori SNR γ and
the spectral amplitude AY . The calculation of the threshold τOSM

LSA is presented in Appendix B.

4.3.2.2 Sub-optimal joint LSA estimator

In the above subsection, because of the logarithmic-based non-decreasing cost function, we had
to introduce a fixed constant ε, which cannot be chosen theoretically since A is unknown and
which can be fixed in practice after some preliminary experiments. For eliminating this undesired
constant ε and taking advantage from the performance of the LSA approach, an alternative cost
function can be defined as:

c(A) = (log(A+ 1))2 (4.49)

c(Â, A) =
(
log(Â+ 1) − log(A+ 1)

)2
(4.50)

The choice of c(A) defined by (4.49) is suitable for penalizing the decision in terms of LSA. This
cost function is monotonically increasing and equals zero when the true amplitude is zero. In the
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Chapter 4. Spectral amplitude estimator based on joint detection and estimation

same way, the choice of c(Â, A) under hypothesis H1 is adapted to the same kind of constraints:
this cost function increases with Â and equal to 0 when Â = A.

Following the same process as in the above subsection, the corresponding Bayesian estimator
under hypothesis H1 is given by a map ψSSM

LSA
3 of C into [0,∞):

ψSSM
LSA (y) =

∫ ∞

0
log(a+ 1)fA|Y=y(a;H1)da. (4.51)

Thus, the STSA estimated is obtained as:

Â = exp
(
ψSSM

LSA (Y )
)

− 1. (4.52)

Then, the Bayesian risk for the miss detection r(y) is written as

r(y) =
∫ ∞

0
(log(a+ 1))2 fA|Y=y(a;H1)da. (4.53)

and so that the standard Bayesian risk under hypothesis H1, r(Â, y) is

r(y; Â) = r(y) −
(
ψSSM

LSA (y)
)2
. (4.54)

Even if we use the moment-generating function of A+1, the integral in Equation(4.51) is hardly
tractable. In addition, the estimator of Equation (4.51) is similar to that of Equation (4.40). The
latter will thus be used to approximate the former. We thus propose the sub-optimal spectral
gain function in the strict presence/absence model (SSM) as follows:

GSSM
LSA (ξ, γ) =

{
GLSA(ξ, γ) if DSSM

LSA (y) ≥ τSSM
LSA ,

0 otherwise,
(4.55)

where DSSM
LSA (y) is given by:

DSSM
LSA (y) =

exp(ν)
1 + ξ

{
log

[
exp

(
ψOSM

LSA (y)
)

+ 1
]}2

(4.56)

and the calculation of the threshold τSSM
LSA is detailed in Appendix B.

The detectors DOSM
LSA (Equation (4.48)) and DSSM

LSA (Equation (4.56)) are slightly different.
Both are monotonic increasing and depend on the LSA estimator. In turn, the OSM-LSA and
SSM-LSA estimators depend on the detectors. This twofold dependency is expected to improve
the performance of the two detectors and estimators. However, in contrast to the optimal esti-
mator (DOSM

LSA ) , the sub-optimal (DSSM
LSA ) does not introduce any auxiliary parameter ε, which

should be beneficial.

4.4 Uncertain presence/absence estimators

The proposed above methods based on strict presence/absence hypotheses may introduce musical
noise since these estimators can randomly generate some isolated peaks in the time frequency
domain. Thus, under H0, it should be proposed an estimator that allows us to reduce the impact
of miss detection error, since such error may introduce musical noise [1, pp.132]. Normally,
under H0, this estimate should be Â0 =

√
βAX where β (0 < β ≪ 1) is a constant spectral floor

3SSM means "Sub-optimal" estimator in the "Strict Model"
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parameter [9], which is empirically chosen. In favor of this suggestion, as in [126], we now assume
that, under hypothesis H0, the signal of little interest S0 is present but with small amplitude.
Under the alternative hypothesis H1, the noisy signal remains the sum of the signal of actual
interest S1 and noise. Therefore, with these hypotheses, the two-state model is

H0 : Y = S0 +X,

H1 : Y = S1 +X,
(4.57)

where S0 is key to distinguish between the two models summarized by Equations (4.2) and
(4.57). Furthermore, supposing that S0 =

√
βX, we similarly get the conditional pdf of the

observed signal, so that :

fY (y;H0) =
1

πσ2
X(1 + β)

exp

(
− |y|2
σ2
X(1 + β)

)
(4.58)

fY (y;H1) =
1

πσ2
X(1 + ξ)

exp

(
− |y|2
σ2
X(1 + ξ)

)
(4.59)

The main difference between the conditional pdfs above is that, under hypothesis H0, the a
priori SNR β is identical for all frequency bins since β is fixed once for all, whereas, under
hypothesis H1, the a priori SNR ξ = ξ[m, k] varies in time and frequency.

The true signal S is either S0 or S1, depending on the true hypothesis. Set Ai = |Si| for
i ∈ {0, 1} and denote the clean speech amplitude by A. Under hypothesis Hi, we have A = Ai.
Let Âj be the estimate of A when the decision is Hj , that is, when D = j. As in Section 4.3
and in Bayesian detection, we then define a priori cost function cji for deciding D = j under
the true hypothesis Hi. When deciding D = j, the cost of providing the estimate Âj of A under
the true hypothesis Hi is thus cji(Âj , Ai). By involving the decision made by the test δ, the
weighted cost function under true hypothesis Hi becomes:

Ci(Â1, Â0, Ai) = c1i(Â1, Ai)δ(Y ) + c0i(Â0, Ai)(1 − δ(Y )). (4.60)

Thus, the Bayesian risk under hypothesis Hi can now be computed as :

Ri

(
Â1, Â0,D

)
= Ei

[
Ci(Â1, Â0, Ai)

]
, (4.61)

where Ei denotes the statistical expectation under hypothesis Hi with respect to Y and Ai
and where i ∈ {0, 1}. Since a non-null estimate of the clean speech amplitude is provided when
the decision is 0, which entails an estimation cost, we follow [127] by tackling the following
constrained optimization problem:

min
Â1,Â0,D

R1

(
Â1, Â0,D

)

subject to R0

(
Â1, Â0,D

)
≤ α,

(4.62)

where the false alarm probability of Equation (4.7) is replaced by the cost under H0. In this
strategy, we control the cost of erroneously estimating the signal amplitude under H0, that is,
when the signal is of little interest and there is no real need to estimate it accurately. So, we
can be satisfied by upper-bounding the estimation cost under H0. Of course, the upper-bound
must be fixed to a small value. In contrast, under H1, the speech signal must be estimated as
well as possible and thus, we want to minimize the estimation cost.
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Chapter 4. Spectral amplitude estimator based on joint detection and estimation

It is worth noticing that this optimization problem (4.62) is a general case of the problem
treated in the section above. Indeed, if under H0, we assume that A = A0 = 0 and thus force
the estimate under H0 to Â0 = 0, we choose c00(Â0, A0) = 0 and the upper-bounding of the
cost under H0 amounts to upper-bounding the false alarm probability. Furthermore, if we focus
only on the detection cost and set cii(Âi, Ai) = 0, cji(Âj , Ai) = 1 with j 6= i, the optimization
problem of Equation 4.62 becomes the testing problem solved by the Neyman-Pearson lemma.

The problem (4.62) is considered and solved by using [127, theorem 2.1]. As above, an
alternative and much simpler proof of [127] is given in Appendix B by using Lagrange multiplier
and seeking estimators and a non-randomized test that solves:

min
Â1,Â0,D

L(Â1, Â0,D) (4.63)

with:
L(Â1, Â0,D) = R1(Â1, Â0,D) + τ

(
R0(Â1, Â0,D) − α

)
. (4.64)

For i = 0, 1, we have:

Ri(Â1, Â0,D) = Ei

[
Ci(Â1, Â0, Ai)

]

=
∫

Ei

[
Ci(Â1, Â0, Ai)|Y = y

]
fY (y;Hi)dy,

(4.65)

by definition of a conditional. Properties of a conditional now induce that:

Ei

[
Ci(Â1, Â0, Ai)|Y = y

]
= Ei

[
c1i(Â1, Ai)δ(Y ) + c0i(Â0, Ai)(1 − δ(Y ))|Y = y

]

= Ei

[
c1i(Â1, Ai)δ(Y )|Y = y

]
+ Ei

[
c0i(Â0, Ai)(1 − δ(Y ))|Y = y

]

= Ei

[
c(Â1, Ai)|Y = y

]
δ(y) + Ei

[
c(Â0, Ai)|Y = y

]
(1 − δ(y))

= Ei [c1i(ψ1(Y ), Ai)|Y = y] δ(y) + Ei [c0i(ψ0(Y ), Ai)|Y = y] (1 − δ(y))

For any ψ : C → [0,∞), we set

rji(y;ψ) = Ei [cji(ψ(Y ), Ai)|Y = y] (4.66)

Therefore,
Ei

[
Ci(Â1, Â0, Ai)|Y = y

]
= r1i(y;ψ1)δ(y) + r0i(y;ψ0)(1 − δ(y)) (4.67)

It follows that:

Ri(Â1, Â0,D) =
∫
r1i(y;ψ1)δ(y)fY (y;Hi)dy +

∫
r0i(y;ψ0)(1 − δ(y))fY (y;Hi)dy (4.68)

Injecting Equation (4.68) into Equation (4.64), the optimization problem of the latter is simpli-
fied into the minimization of the function L1

(
Â1, Â0,D

)
given by

L1

(
Â1, Â0,D

)
= R1(Â1, Â0,D) + τR0(Â1, Â0,D)

=
∫

[D1(y;ψ1)δ(y) + D0(y;ψ0)(1 − δ(y))] dy,
(4.69)

where
Di(y;ψi) = fY (y;H1)ri1(y;ψi) + τfY (y;H0)ri0(y;ψi), (i = 0, 1) (4.70)
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As in Section 4.3, we are looking for a test defined by Equation (4.15). Equation (4.69)
rewrites

L1

(
Â1, Â0,D

)
=
∫

A
[D1(y;ψ1) − D0(y, ψ0)] dy +

∫
D0(y;ψ0)dy. (4.71)

Using Lemma 1 again, we obtain:

A = {y ∈ C : (D1(y;ψ1) − D0(y;ψ0)) ≤ 0} . (4.72)

This specifies δ and D. In particular,

∀y ∈ C, δ(y) =

{
1 if y ∈ A
0 otherwise

(4.73)

It remains to calculate optimal ψ0 and ψ1. To this end, with our choice for δ, it follows from
Equation (4.69) that:

L1

(
Â1, Â0,D

)
=
∫

A
D1(y;ψ1)dy +

∫

Ac
D0(y;ψ0)dy, (4.74)

where Ac is the complementary set of A. Provided they exist, it suffices to choose

ψi = argmin
ψ

Di(y;ψ) = argmin
ψ

[fY (y;H1)ri1(y;ψ) + τfY (y;H0)ri0(y;ψ)] (4.75)

Summarizing the foregoing, the estimator and detector are respectively given by

Âi = ψi(Y ) withψi = argmin
ψ

[fY (y;H1)ri1(y;ψ) + τfY (y;H0)ri0(y;ψ)] , i = 0, 1 (4.76)

fY (y;H1)
fY (y;H0)

[
r01(y;ψ0) − r11(y;ψ1)

] D=1

R
D=0

τ [r10(y;ψ1) − r00(y;ψ0)] , (4.77)

where τ is determined by using the constraint with equality (see Appendix B). Moreover, the
standard likelihood ratio Λ(ξ, γ) is directly computed by using Equations (4.58) and (4.59)

Λ(ξ, γ) =
fY (y;H1)
fY (y;H0)

=
1 + β

1 + ξ
exp

(
γ(ξ − β)

(1 + β)(1 + ξ)

)
. (4.78)

In the next sections, we consider different cost functions, we propose some approaches to derive
several joint detector/estimator with the structure of Equations (4.76) and (4.77).

4.4.1 Uncertain joint STSA detector/estimator

4.4.1.1 Independent STSA estimator

In this section, we consider the same cost function for the four different situations where D = j
under true hypothesis Hi with (j, i) ∈ {0, 1}2. This cost is defined as:

cji(a, b) = c(a, b) = (a− b)2 (4.79)

It follows from Equations (4.12) and (4.66) that:

rji(y;ψ) =
∫
c(ψ(y), ai)fAi|Y=y(ai)dai (4.80)

65



Chapter 4. Spectral amplitude estimator based on joint detection and estimation

which does not depend on j any more. Given ψ : C → [0,∞) and y ∈ C, set t = ψ(y) and rewrite
Di(y;ψ) as:

Di(y;ψ) = fY (y;H1)
∫
c(t, a1)fA1|Y=y(a1)da1 + τfY (y;H0)

∫
c(t, a0)fA0|Y=y(a0)da0

= fY (y;H1)
∫

(t− a1)2fA1|Y=y(a1)da1 + τfY (y;H0)
∫

(t− a0)2fA0|Y=y(a0)da0

We have a convex function of t and by derivation with respect to t, some routine algebra shows
that the value of t = ψ(y) that minimizes Di(y;ψ) is 4

ψIUM
STSA(y) =

fY (y;H1)GSTSA(ξ, γ) + τ IUM
STSAfY (y;H0)GSTSA(β, γ)

fY (y;H1) + τ IUM
STSAfY (y;H0)

|y|, (4.81)

where GSTSA(ξ, γ) is defined by Equation (4.28) and τ IUM
STSA is given in Appendix B. This function

can be simplified by using the likelihood ratio Λ(ξ, γ):

ψIUM
STSA(y) =

Λ(ξ, γ)GSTSA(ξ, γ) + τ IUM
STSAGSTSA(β, γ)

Λ(ξ, γ) + τ IUM
STSA

|y|. (4.82)

It is important to note that ψIUM
STSA(y) of Equation (4.82) does not depend on i. Therefore, the

estimated STSA Â1 and Â0 are given as:

Â1 = Â0 = ψIUM
STSA(Y ) = GIUM

STSA(ξ, γ)AY , (4.83)

where the gain function GIUM
STSA(ξ, γ) is given by:

GIUM
STSA(ξ, γ) =

Λ(ξ, γ)GSTSA(ξ, γ) + τ IUM
STSAGSTSA(β, γ)

Λ(ξ, γ) + τ IUM
STSA

. (4.84)

Because under any hypothesis, we get the same STSA estimator, we call it as independent
STSA estimator. The detector influences the estimator only via the threshold τ IUM

STSA in the gain
function GIUM

STSA(ξ, γ).

4.4.1.2 Joint STSA estimator

For further taking into account the role of the presence and absence of speech, we consider the
cost function as follows:

cji(Âj , Ai) =

{
A2
i , i 6= j,

(Âj −Ai)2, i = j,
(4.85)

where i, j ∈ {0, 1}. The cost function enables us to put more emphasis on the miss detection.
Thus, the error miss detection depends only on the true amplitude instead of the difference
between the true amplitude under true hypothesis and its estimate under deciding the other
hypothesis. Particularly, when we make the false-alarm and miss detection, unlike Subsection
4.4.1.1, the cost functions now not only implicitly penalize the estimated error but also the
detected error.

Similar to the above subsection, given ψ : C → [0,∞) and y ∈ C, set t = ψ(y), Di(y;ψ) can
be now rewritten as:

D1(y;ψ) = fY (y;H1)
∫

(t− a1)2fA1|Y=y(a1)da1 + τfY (y;H0)
∫
a2

0fA0|Y=y(a0)da0 (4.86)

D0(y;ψ) = fY (y;H1)
∫
a2

1fA1|Y=y(a1)da1 + τfY (y;H0)
∫

(t− a0)2fA0|Y=y(a0)da0 (4.87)

4IUM means "Independent" estimator in the "Uncertain Model"
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By derivation with respect to t of each Di(y;ψ), the value of t = ψ(y) that minimizes Di(y;ψ)
defines the function ψ

JUM(i)
STSA

5 evaluated as:

ψ
JUM(i)
STSA (y) =

∫ ∞

0
aifAi|Y=y(ai;Hi)dai = GSTSA(ξi, γ)|y|. (4.88)

where ξ1 = ξ as in the standard gain function GSTSA(ξ, γ) whereas ξ0 = β. Therefore, the
estimated Âi is given as

Âi = ψ
JUM(i)
STSA (Y ) = GSTSA(ξi, γ)AY , (4.89)

According to Equation (4.66), the Bayesian risk rji for j 6= i is given by:

rji(y;ψj) =
∫ ∞

0
a2
i fAi|Y=y(ai;Hi)dai (j 6= i) (4.90)

Moreover, under correct detection, the Bayesian risk rii is computed by using Equations (4.66)
and (4.88) and equals:

rii(y;ψi) =
∫ ∞

0

(
ψ

JUM(i)
STSA (y) − ai

)2
fAi|Y=y(ai;Hi)dai = rji(y;ψj) −

(
ψ

JUM(i)
STSA (y)

)2
, (4.91)

with j 6= i. Injecting Equations 4.91 and 4.78 into Equation (4.77), we obtain the decision rule
as:

Λ(ξ, γ)
(
ψ

JUM(1)
STSA (y)

)2 D=1

R
D=0

τJUM
STSA

(
ψ

JUM(0)
STSA (y)

)2
(4.92)

where τJUM
STSA is given in Appendix B. Finally, the gain function in this situation is written as

GJUM
STSA(ξ, γ) =

{
GSTSA(ξ, γ) if DJUM

STSA(y) ≥ τJUM
STSA,

GSTSA(β, γ) otherwise,
(4.93)

where DJUM
STSA is given by:

DJUM
STSA(y) = Λ(ξ, γ)

(
ψ

JUM(1)
STSA (y)

ψ
JUM(0)
STSA (y)

)2

. (4.94)

4.4.2 Uncertain joint LSA estimator

4.4.2.1 Independent LSA estimator

The first method is derived by defining the cost function as follows

cji(Âj , Ai) =
(
log(Âj) − log(Ai)

)2
, (4.95)

The estimators are sequentially evaluated following Equation (4.76). We have fist:

Di(y;ψ) = fY (y;H1)
∫

(t− log(a1))2fA1|Y=y(a1)da1 +τfY (y;H0)
∫

(t− log(a0))2fA0|Y=y(a0)da0,

where, given y ∈ C, t = log(ψ(y)) with ψ : C → (0,∞). Therefore, the value of t = log(ψ(y))
that minimize Di(y;ψ) is :

tIUM
LSA =

f(y;H1)
∫

log(a1))fA1|Y=y(a1)da1 + τ IUM
LSA fY (y;H0)

∫
log(a0))fA0|Y=y(a0)da0

fY (y;H1) + τ IUM
LSA fY (y;H0)

, (4.96)

5JUM mean "Joint" estimation in the "Uncertain Model".
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where τ IUM
LSA is calculated in Appendix B. This value can be evaluated by using the standard

LSA gain function as follows:

tIUM
LSA =

Λ(ξ, γ) log(GLSA(ξ, γ)|y|) + τ IUM
LSA log(GLSA(β, γ)|y|)

Λ(ξ, γ) + τ IUM
LSA

, (4.97)

The corresponding map function ψIUM
LSA from C to (0,+∞) under the two hypotheses are the

same and equal to

ψIUM
LSA (y) = exp

(
tIUM
LSA

)
= exp

(
Λ(ξ, γ) log(GLSA(ξ, γ)) + τ IUM

LSA log(GLSA(β, γ))
Λ(ξ, γ) + τ IUM

LSA

)
|y|. (4.98)

Thus, the amplitude estimators under two hypotheses are identical Â, which is determined as
follows:

Â = ψIUM
LSA (Y ) = GIUM

LSA (ξ, γ)AY , (4.99)

where the gain function GIUM
LSA (ξ, γ), independent on the decided hypothesis, is a combination of

GLSA(β, γ) and GLSA(ξ, γ).

GIUM
LSA (ξ, γ) = exp

(
tIUM
LSA

)
= exp

(
Λ(ξ, γ) log(GLSA(ξ, γ)) + τ IUM

LSA log(GLSA(β, γ))
Λ(ξ, γ) + τ IUM

LSA

)
. (4.100)

Note that the gain function GIUM
LSA (ξ, γ) in Equation (4.100) and GIUM

STSA(ξ, γ) in Equation (4.84)
clearly become GLSA(ξ, γ) and respectively (res.) GSTSA(ξ, γ) when the threshold τ IUM

LSA = 0 and
res. τ IUM

STSA = 0.

4.4.2.2 Sub-optimum joint LSA estimator

As Subsection 4.4.1.2, for more emphasizing the role of the detector, the second LSA estimator
in the uncertain model is built by basing on the cost function succeeding

cji(Âj , Ai) =





(log(Ai + 1))2 , i 6= j,(
log(Âj + 1) − log(Ai + 1)

)2
, i = j.

(4.101)

In the same way, as for the above cost function, we firstly calculate the risk Di(y;ψ) where
ψ : C → [0,∞). Then, we set the derivative of this risk with respect to t = log(ψ(y)+1) to equal
zero for seeking the ψi. First, the risk Di(y;ψ) following the cost defined in Equation (4.101) is
given by:

D1(y;ψ) =fY (y;H1)
∫

(t− log(a1 + 1))2fA1|Y=y(a1)da1

+ τfY (y;H0)
∫

(log(a0 + 1))2fA0|Y=y(a0)da0,

D0(y;ψ) =fY (y;H1)
∫

(log(a1 + 1))2fA1|Y=y(a1)da1

+ τfY (y;H0)
∫

(t− log(a0 + 1))2fA0|Y=y(a0)da0,

Thus, the value of tJUM(i)
LSA that minimizes Di(y;ψ) is

t
JUM(i)
LSA =

∫
log(ai + 1)fAi|Y=y(ai)dai. (4.102)
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As discussed in Subsection 4.4.1.2, tJUM(i)
LSA can be approximated by :

t
JUM(i)
LSA = log [GLSA(ξi, γ)|y| + 1] , (4.103)

where ξ1 = ξ and ξ0 = β. The corresponding map ψ
JUM(i)
LSA from C to [0,+∞) writes:

ψ
JUM(i)
LSA (y) = exp

(
t
JUM(i)
LSA

)
− 1 = GLSA(ξi, γ)|y|. (4.104)

In order to determine the decision rule, as in Section 4.4.1.2, with j 6= i, we have:

rji(y;ψj) =
∫

(log(ai + 1))2fAi|Y=y(ai)dai, (4.105)

rii(y;ψi) =
∫

(tJUM(i)
LSA − log(ai + 1))2fAi|Y=y(ai)dai = rji − (tJUM(i)

LSA )2,

Thus, we obtain the decision rule as follows:

DJUM
LSA (y)

D=1

R
D=0

τJUM
LSA , (4.106)

where τJUM
LSA is given in Appendix B and the lhs of the decision rule is

DJUM
LSA (y) = Λ(ξ, γ)




log
(
ψ

JUM(1)
LSA (y) + 1

)

log
(
ψ

JUM(0)
LSA (y) + 1

)




2

. (4.107)

The detector DJUM
LSA can be simply expressed as a function of two variables Â0 and Â1 to point

out the relation between the detector and the estimator. Additionally, the detector depends on
the a priori SNR ξ and the a posteriori SNR γ. Finally, the estimator is summarized as

Â = GJUM
LSA (ξ, γ)AY , (4.108)

where

GJUM
LSA (ξ, γ) =

{
GLSA(ξ, γ) if DJUM

LSA (y) ≥ τJUM
LSA ,

GLSA(β, γ) otherwise.
(4.109)

The gain functions of all the methods in this chapter are displayed by Figure 4.1. Compared to
the standard STSA and LSA methods (Figures 4.1a and 4.1b, respectively), these joint methods
provide more impact at low instantaneous SNR. We recall that the instantaneous SNR is defined
by γ − 1 [1].

4.5 Experimental results

4.5.1 Database and Criteria

We assessed our proposed methods on the NOIZEUS database [1] and 11 types of noise from
the AURORA database. We also involved synthetic white noise and auto-regressive noise (AR).
These tests were conducted at four SNR levels, namely 0, 5, 10 and 15 dB, as in Chapter 3. In our
experiments, speech signals are sampled at 8 kHz, segmented into frames of 256 samples each,
transformed by STFT with 50% overlapped Hamming windows. All thresholds are calculated by
fixing the false alarm probability α to 0.05 for all noise levels (see Appendix B). The parameter
β is chosen as β = 0.002.
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Figure 4.1 – Attenuation curves of all joint detection/estimations in comparison with the standard STSA
and LSA methods at a piori SNR level ξ = 5dB . The detector thresholds were calculated with α = 0.05
and β = −25 dB.

The performance of all the methods were evaluated in two scenarios. In the first scenario,
denoising is performed by using the reference noise power spectrum. This one is simply the
theoretical power spectrum if noise is stationary. Otherwise, the reference noise power spectrum
of the frame m in a given bin k is estimated as in [111] by:

σ2
X [m, k] = µσ2

X [m− 1, k] + (1 − µ)A2
X [m, k], (4.110)

where µ = 0.9. This iterative estimation is initialized by setting σ2
X [0, k] = A2

X [0, k]. The purpose
of this scenario is to assess the performance of the denoising in itself, as much as possible. In
the second scenario, for all the methods, the noise power spectrum was estimated using the
B-E-DATE algorithm introduced in the chapter above [89]. This scenario makes it possible to
estimate the performance loss in denoising incurred by integrating an up-to-date noise estimator.

For assessing speech quality and preliminary speech intelligibility after denoising, objective
quality and intelligibility criteria have been used. Speech quality is firstly measured by SSNR
improvement and then by SNRI. The overall quality of speech was also predicted by MARSovrl
measure as in Chapter 3. Secondly, intelligibility of speech was initially evaluated by the short-
time objective intelligibility measure (STOI), which highly correlates with intelligibility mea-
sured by listening tests.

4.5.2 STSA-based results

Methods STSA SM-STSA IUM-STSA JUM-STSA
Gain Eq. (4.28) Eq. (4.37) Eq. (4.84) Eq. (4.93)

Table 4.1 – All jointed STSA methods have been implemented in the simulation

In this section, we consider all methods given by Table 4.1. All algorithms have been bench-
marked at four SNR levels and against various noise models, namely white Gaussian noise
(White), 2nd-order auto-regressive (AR) noise, 3 usual types of quasi-stationary noise (car,
train and station) and 6 kinds of non-stationary noise (airport, exhibition, restaurant, street,
modulated WGN and babble). The experimental results of all the methods based on the STSA
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(c) AR noise
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(d) car noise
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(e) train noise
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(f) station noise

0 5 10 15
0

1

2

3

4

5

6

SNR (dB)

S
e
g
S

N
R

 I
m

p
ro

v
e
m

e
n
t

(g) exhibition noise
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(h) restaurant noise
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(i) babble noise
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(j) modulated WGN
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(k) street noise
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(l) airport noise

Figure 4.2 – Speech quality evaluation by SSNR improvement after speech denoising using STSA-based
methods for stationary, slowly-changing,speech-like and fast-changing non-stationary noise. The common
legend to all the sub-figures is that of Figure 4.2a.
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Figure 4.3 – SNRI with various noise types for all STSA-based methods with and without the reference
noise power spectrum

cost function are shown by Figures 4.2-4.5. Our methods are compared to the standard short-
time spectral amplitude estimator (STSA) proposed in [27]. This STSA-based method is simple
to implement and generally considered as a good reference method.

All measures of the STSA, SM-STSA, IUM-STSA and JUM-STSA methods are designated
by the blue, red, green and black lines with the circle, x-mark, plus and star makers, respectively,
as displayed in Figure 4.2a. Moreover, all of the measures obtained with the reference noise power
spectrum and with B-E-DATE methods are drawn by dashed and solid lines, correspondingly.

Figure 4.2 displays the average results of the objective criterion SSNR improvement for
different noise types and SNR levels and with two noise estimators. In the ideal situation where
noise is Gaussian and known, IUM-STSA yields the best score at all SNR levels shown by
Figure 4.2b. More specifically, in the same situation, between two strict and uncertain models,
SM-STSA and JUM-STSA provide almost the same measures, whereas IUM-STSA derived
from the uncertain model perform better than SM-STSA derived from the strict model. The
gain is about 0.5 dB. Compared to STSA, the gain of the joint estimators is around 1 − 1.8
dB. In the more realistic case where noise power spectrum is estimated by B-E-DATE, SSNR
improvement measures obtained by the joint estimators are not so much different. The gain of
the joint estimators regarding to STSA is now around 1 dB. The loss due to the use of noise
estimator. The error of noise estimator can generate undesirable effect both in the estimator
and the detector of the joint detection and estimation.

For stationary (AR) and slowly-change non-stationary (car, train and station) noise as in
Figures 4.2c-4.2f, all joint estimators lead the same measure and outperform STSA with a gain
around 1.5 dB in the first scenario where the reference noise power spectrum is used and with
a gain around 1 dB in the second scenario.

For fast-changing and speech-like non-stationary (modulated, street, airport, exhibition,
restaurant and babble) noise, the SSNR improvement score of IUM-STSA achieves also the best
measure (see Figures 4.2g- 4.2l). The gain is also equal around to 1.5 dB in the first scenario
and to 1 dB in the second scenario in comparison to standard STSA.
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(b) WGN
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(c) AR noise
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(d) car noise
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(e) train noise
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(f) station noise
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(g) exhibition noise
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(h) restaurant noise
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(i) babble noise
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(j) modulated WGN
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(k) street noise
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(l) airport noise

Figure 4.4 – Speech quality evaluation by MARSovrl improvement after speech denoising using STSA-
based methods for stationary, slowly-changing,speech-like and fast-changing non-stationary noise. Legend
is also pointed out in Figure 4.4a.
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Figure 4.5 – Speech intelligibility evaluation by STOI after speech denoising using STSA-based methods
for stationary, slowly-changing,speech-like and fast-changing non-stationary noise. Legend of all sub-figure
is also illustrated in Figure 4.5a.
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The second criterion SNRI measure is displayed in Figure 4.3. The legend is that in Figure
4.2a. This criterion confirms that IUM-STSA gives the best overall SNR improvement in the
two scenarios. The gain is around 6 dB when using B-E-DATE and 8 dB when using the ref-
erence noise power for fast-changing non-stationary noise). For stationary and slowly-changing
non-stationary noise, the gain is around 10 dB (res. 11.5 dB) when using noise power spectrum
estimated by B-E-DATE (res. when using the reference noise power spectrum). We can summa-
rize the foregoing by saying that joint estimators generally outperform standard STSA [27] in
terms of SSNR improvement and SNRI in all situations. The overall gain is around 6 to 10 dB,
which is emphasized by label "Total" in Figure 4.3.

The composite speech quality overall MARSovrl improvement measure results are illustrated
by Figure 4.4. The legend is given by Figure 4.4a. For stationary (white and AR) noise, in the two
scenarios, at low SNR levels, SM-STSA and JUM-STSA yield the same score and outperform
IUM-STSA and STSA (see Figures 4.4b-4.4c). However, the gain is not significant. At high SNR
levels, joint estimators outperform STSA as well. For slowly-changing non-stationary noise, in
the two scenarios, at low SNR levels, JUM-STSA and STSA lead the same measure and slightly
perform better than SM-STSA and IUM-STSA. At high SNR levels, joint estimators perform
outperform standard STSA, except at 10 dB, for train noise, where SM-STSA and STSA yield
the same score for using the noise power spectrum estimated by B-E-DATE (see Figures 4.4d-
4.4f).

In the case of fast-changing and speech-like non-stationary noise, when all estimators are
combined with the B-E-DATE noise power spectrum estimator, all methods provide similar
scores at low SNR levels, even at 10 dB except for modulated WGN. The relevance of joint
detection/estimation is only confirmed at higher SNR levels (see Figures 4.4g-4.4l). However,
when using the reference noise power spectrum, a significant gain is yielded by joint detec-
tor/estimators in comparison to STSA at high SNR levels. This emphasizes the impact of noise
estimation which seemingly provide undesirable effects in the detection quality. The good per-
formance of the detector is obtained with the reference noise power spectrum and at high SNR
levels.

With respect to the foregoing three criteria, we can say that, in a nutshell, in terms of
SSNR and SNRI, SM-STSA leads better scores than JUM-STSA but performs lesser than IUM-
STSA. In terms of overall speech quality, providing an estimation of the speech signal under H0

hypothesis (JUM-STSA) makes it possible to obtain a better score than forcing the estimated
amplitude to 0 under the null hypothesis (SM-STSA).

Finally, the intelligibility score (IS) obtained by mapping the STOI measure is shown by
Figure 4.5. At high SNR levels, the methods yield the same results. Therefore, we focus at 0
dB. For stationary (white and AR) and slowly-changing non-stationary (car, train and station)
noises, the proposed SM-STSA and JUM-STSA obtain the best score. The IS measure of these
methods improves 5 to 10% in comparison to STSA and in the two scenarios. However, for the
fast-changing airport and speech-like non-stationary noises, SM-STSA, JUM-STSA and STSA
give the same score and are better than IUM-STSA. For modulated WGN and street noises, the
gain in IS is around 4−7% when using SM-STSA and JUM-STSA instead of STSA (see Figures
4.5g-4.5l).

4.5.3 LSA-based results

We now consider the joint detection and estimation methods mentioned in Table 4.2 and based
on the log-spectral amplitude error function. We compare these methods to the standard log-
spectral amplitude estimator (LSA) presented in [28]. In order to perform a significant analysis,
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(i) babble noise
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(j) modulated WGN
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(k) street noise
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Figure 4.6 – Speech quality evaluation by SSNR improvement after speech denoising using LSA-based
methods for stationary, slowly-changing,speech-like and fast-changing non-stationary noise. Legend of all
sub-figure is also given in Figure 4.6a.
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Table 4.2 – All jointed LSA methods have been implemented in the simulation

Methods LSA SSM-LSA IUM-LSA JUM-LSA
Gain Eq. (4.42) Eq. (4.55) Eq. (4.100) Eq. (4.109)

Figure 4.7 – SNRI with various noise types for all LSA-based methods in two scenarios where the
reference noise power spectrum is used or not.

all the methods have also been tested at four SNR levels and against 11 kinds of noise, from
stationary to slowly-changing non-stationary and fast-changing or speech-like non-stationary
noises. All the scores obtained with these methods at all SNR levels and for all types of noise
are displayed in Figures 4.6-4.9.

The scores of the LSA, SSM-LSA, IUM-LSA and JUM-LSA are plotted in pink, yellow, dark
green, light blue lines with square, diamond, pentagram and hexagram markers, respectively (see
legend of Figure 4.6a). As in the above section, the scores obtained when using the reference
noise power spectrum are designed by dashed lines with same colors as that used to represent
results obtained when the noise power spectrum is estimated by B-E-DATE.

The objective criterion SSNR improvement is shown in Figure 4.6 for all kinds of noise
and in the two possible scenarios. We can see that IUM-LSA achieves the best score under all
situations, from stationary noise (see Figures 4.6b-4.6c) to slowly-changing non-stationary noise
(see Figures 4.6d-4.6f), and up to speech-like and fast-changing non-stationary noise (see Figures
4.6g-4.6l). At 15 dB SNR level, combining with the noise power spectrum estimated by B-E-
DATE, the three joint detector/estimators (SSM-LSA, IUM-LSA, JUM-LSA) lead to the same
score. By forcing the estimated amplitude A0 under decision H0 to 0, SSM-LSA yields slightly
better results than JUM-LSA when the reference noise power spectrum is given. Moreover, the
three joint detector/estimators outperform the standard LSA for all noise types and in the two
scenarios in terms of SSNR improvement. This gain is more significant at low SNR levels. In
this case, the gain is around 0.5 − 1.5 dB.

Figure 4.7 displays the average ITU criterion SNRI for various noise types, levels, and also in
the two scenarios. The legend is the same as in Figure 4.6a. SSNR improvement demonstrates the
gain of the joint detector/estimators at each noise SNR levels, SNRI confirms the performance of
joint detector/estimators at all SNR levels for each noise and for all considered noise. IUM-LSA
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(f) station noise
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(h) restaurant noise
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(i) babble noise
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(j) modulated WGN
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(k) street noise
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Figure 4.8 – Speech quality evaluation by MARSovrl improvement after speech denoising using LSA-
based methods for stationary, slowly-changing,speech-like and fast-changing non-stationary noise. Legend
of all sub-figure is also illustrated in Figure 4.8a.
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Figure 4.9 – Speech intelligibility evaluation by STOI after speech denoising using LSA-based methods
for stationary, slowly-changing,speech-like and fast-changing non-stationary noise. Legend is also pointed
out in Figure 4.9a.
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remains better than the other methods. Compared to LSA, the gain is in the range of [10 − 17]
dB. This gain is higher in the situation where the noise reference is used. Generally, all of the
joint detector/estimators give better scores than standard LSA. The gain is at least 3 dB.

In terms of MARSovrl improvement, the averaged scores are illustrated in Figure 4.8. Note
that IUM-LSA, which achieves the best SSNR improvement and SNRI scores, gives the smallest
MARSovrl score in all situations. IUM-LSA as IUM-STSA removes more the background noise so
that they may suppress the signal of interest. Therefore, IUM-LSA leads the smallest MARSovrl
measure. An informal listening confirms that IUM-LSA provides a large noise distortion and also
a signal distortion.

Considering the other methods, at low SNR levels in the two scenarios, for stationary noise,
LSA, SSM-LSA and JUM-LSA obtain similar results (see Figure 4.8b and 4.8c). In the same
situation, for non-stationary noise, LSA and JUM-LSA yield better scores than SSM-LSA (see
Figures 4.8d-4.8l). At high SNR levels, in the first scenario (i.e. using the reference noise power
spectrum) JUM-LSA and SSM-LSA achieve better scores than LSA for all noise types. For the
second scenario (i.e. using the noise power spectrum estimated by B-E-DATE), only at 15 dB
JUM-LSA yields a significantly better score than LSA and SSM-LSA, except for white noise
and its modulation (see Figures 4.8b and 4.8j ). The fact that JUM-LSA outperforms SSM-LSA
in the realistic situation where noise is unknown strengthens the motivation to provide a small
estimate under hypothesis H0,

In terms of speech intelligibility, the IS scores are shown by Figure 4.9. In general, we focus
also on low SNR levels. JUM-LSA presents the best measure, whereas IUM-LSA returns the
smallest measure in all the situations under consideration. In the first scenario, SSM-LSA has
the same score than JUM. Compared to LSA the gain is around 1−2%. For the second scenario,
for stationary and slowly-changing non-stationary noise, the gain is equal to 1 − 2%. It can
even reach 5% for train noise (see Figure 4.9e). For speech-like and fast-changing noise, LSA,
SSM-LSA and JUM-LSA yield same scores, except for modulated WGN.

4.6 Conclusion

In this chapter, for speech enhancement, we have proposed joint detection and estimation meth-
ods based on STSA and LSA estimation. The key idea is to take into account the presence and
absence of speech in each time-frequency bin. Thus, optimal detectors are derived to improve
quality of speech in noisy environments. When the absence of speech is detected, our methods
have set the STSA to zero or to a small spectral floor for avoiding musical noise. The perfor-
mance evaluation was conducted in two scenarios, one where the reference noise power spectrum
is used and one where noise is estimated by an up-to-date method. The experimental results
have shown the relevance of the approach. In a nutshell, these experimental results enhance
the interest to combine speech detection and estimation. Actually, joint detection/estimation
generally outperforms the standard STSA, which is still recognized as a reference approach. So,
in practice, we would recommend the use of such detector/estimators. the choice between them
can be ruled by the type of criterion the practitioner wishes to optimize.

We proposed a unified framework based on the combination of detection and estimation
for improving the performance of Bayesian estimators in speech enhancement. The efficiency of
the approaches deriving from this framework is totally dependent on the quality of the speech
detection on which the estimation is based. Indeed, miss detection induces degradation of the
estimation, whereas false alarms may generate musical noise. In addition, all detector/estimators
are based on the Gaussian assumption, which may not be respected. Therefore, another type
of detector could be considered in each time-frequency bin. Prospects in this respect will be
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discussed in the final chapter. In the next chapter, we will introduce a semi-parametric approach,
where the Gaussianity of the speech is not required.
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Chapter 5. Non-diagonal smoothed shrinkage for robust audio denoising

5.1 Introduction

5.1.1 Motivation and organization

The previous chapter focused solely on the parametric methods. But it turns out that many
results in non-parametric and robust statistical estimation established in the last two decades
[2,62–64,66,103] and based on sparse thresholding and shrinkage, are generally enough to suggest
their use in unsupervised speech and audio denoising for improving the robustness of the de-
noising methods. Generally speaking and as recalled below, the interest in non-parametric audio
and speech denoising is twofold. First, it performs regardless of the signal distribution. Second,
it achieves gain in intelligibility [120]. Since Bayesian approaches are known to improve qual-
ity [82], the idea is to combine the two approaches. Nonetheless, this combination requires some
care. Indeed, most non-parametric estimators force to 0 small amplitude coefficients obtained
after transformation into a certain domain. Although much background noise is canceled by
doing so, removing small noisy coefficients pertaining to the signal of interest generates musical
noise and reduces speech and audio quality [1]. This problem is well known in image processing
where zero-forcing of small coefficients induces artifacts [63].

Therefore, if we want to improve quality by eliminating residual musical noise, the non-
parametric denoising should be a smooth shrinkage merely aimed at attenuating small coeffi-
cients. A Bayesian estimator can then be used downstream the non-parametric one to retrieve
speech and audio information in small coefficients and thus improving the overall quality. Note
that if the Bayesian estimator were used before the non-parametric one, the latter would tend
to shrink small coefficients estimated by the former, which is not desirable because even small
coefficients after Bayesian estimation may pertain to relevant speech or audio contents for overall
quality.

With respect to the foregoing, the problem addressed in this chapter is the design and
combination of non-parametric and Bayesian estimation for speech and audio denoising. In this
chapter, as the other methods mentioned above, we estimate the amplitudes of the clean signal
coefficients in the time-frequency domain. The estimation is based on the MMSE criterion.
However, instead of the DFT, we focus on the discrete cosine transform (DCT), which avoids
estimating the phase spectrum and may reduce complexity [128, 129]. To this end, we will
consider the following strategy.

We begin by improving speech and audio intelligibility by a non-parametric approach based
on smoothed sigmoid-based shrinkage (SSBS) [2], originally introduced for image denoising.
Two main features of the approach are: 1) it attenuates DCT coefficients that are very likely to
pertain to noise only or to speech with small amplitude in noise; 2) it tends to keep unaltered
large-magnitude DCT coefficients. However, such a non-parametric approach can be regarded
as an approximated Wiener filtering and, as such, introduces musical noise. We then modify
the original SSBS approach and propose the SSBS block estimator, hereafter named Block-
SSBS. Block-SSBS is relevant to eliminate isolated points in the time-frequency domain that
may induce musical noise. Basically, Block-SSBS applies the same SSBS gain function to time-
frequency blocks. The sizes of these blocks are determined by adaptive Stein’s Unbiased Risk
Estimate (SURE) [3] so as to minimize the unbiased estimate of the mean square error over
regularly distributed time-frequency regions. In addition, other parameters of Block-SSBS can
be optimized by resorting to recent results in non-parametric statistical signal processing [4]. A
nice feature of the proposed parameter optimization procedure is the level of control offered on
the denoising performance that allows trading-off speech quality and intelligibility. This is made
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possible by discriminating speech (or audio) components with significant contents from speech
(resp. audio) components with lesser interest.

For reasons detailed below, the outcome of Block-SSBS is assumed to satisfy the same hy-
potheses as those generally used for Bayesian estimation. Therefore, in a second step, to further
reduce musical noise and, above all, to improve speech quality, a Bayesian statistical estimator
is devised for application to smoothed short-time spectral amplitude (STSA) after Block-SSBS.
This Bayesian estimator is hereafter called STSA-MMSE.

In a nutshell, the main contributions of this chapter are as follows. To begin with, the whole
method is carried out in the DCT domain, so as to get rid of the phase estimation problem.
It introduces Block-SSBS in the DCT domain for speech and audio denoising in presence of
stationary or non-stationary noise. Block-SSBS is then optimized via automatic and adaptive
statistical methods tailored to speech and audio enhancement. The derivation of STSA-MMSE
in the DCT domain is another contribution. The chapter also propounds and studies the com-
bination of Block-SSBS and STSA-MMSE and shows that this combination is very promising
for speech and audio denoising in presence of various types of noise, via objective and subjective
tests. It must also be pointed out that these tests include situations where the noise spectrum
is known, as well as cases where this spectrum is estimated via an up-to-date estimator.

The rest of this chapter is organized as follows. Sub-Section 5.1.2 introduces the signal model,
the notation and makes some general recalls on the DCT. Sub-Section 5.1.3 reviews the non-
parametric thresholding methods originally developed for image denoising, with a particular
emphasis on SSBS. In Section 5.2, we present semi-parametric audio and speech enhancement
by Block-SSBS, derive the Bayesian STSA-MMSE in the DCT domain and then combine the
two. Experimental results, both objective and subjective, are reported and analyzed in Section
5.3. Finally, Section 5.4 concludes this chapter.

5.1.2 Signal model and notation in the DCT domain

As announced above, the DCT will hereafter be used for denoising. Therefore, this section
reviews the principle of the DCT and the reasons why the DCT can be applied to speech and
audio enhancement.

The DCT is analyzed from a general point of view in [130]. Originally developed for pat-
tern recognition and Wiener filtering in image processing, its interest in speech and audio en-
hancement is more specifically studied in [128, 129]. Basically, given a sequence {y[n]} with
0 ≤ n ≤ K − 1, the DCT coefficients are calculated as:

Y [k] = αk

K−1∑

n=0

y[n] cos
(2n+ 1)kπ

2K
, (5.1)

with α0 =
√

1/K and αk =
√

2/K for 1 ≤ k ≤ K − 1 [131]. The inverse DCT is then given by:

y[n] =
K−1∑

k=0

αk Y [k] cos
(2n+ 1)kπ

2K
. (5.2)

The DCT defined by (5.1) and (5.2) can be effectively used in speech and audio enhancement
or noise reduction for the subsequent reasons. As discussed in [128, 130, 131], DCT has higher
energy compaction than DFT. The signal of interest can thus have a sparse representation in the
DCT domain. That is why the DCT is widely used in image compression [130] and dictionary
learning [132]. Second, the DCT coefficients are real whereas DFT coefficients are complex. The
DCT coefficients have binary phase, whereas phases of the DFT coefficients are often assumed
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to follow the uniform distribution in the range [−π, π]. Therefore, the DCT phase [128] does
not need to be estimated because error in the DCT phase has no important role for estimating
the signal of interest. Third, DCT is known to be better than DFT for approximating the
Karhumen-Lovève transform (KLT), which is optimal in terms of variance distribution, rate
distortion function and mean-square estimation error. Moreover, DCT and inverse DCT (IDCT)
can be also calculated by fast computation algorithms.

For estimating a clean audio signal from its noisy observation, the latter is often segmented,
windowed and transformed by computational harmonic analysis. In the present framework, this
harmonic analysis will be performed by DCT.

Let us denote the noisy signal in the DCT domain by:

Y [m, k] = S[m, k] +X[m, k], (5.3)

where m and k ∈ {0, 1, . . . ,K − 1} are the time and frequency-bin indices, respectively. As an
extension of (5.1) and similarly to the expressions of DFT coefficients, the DCT coefficients are
obtained as [1]:

Y [m, k] =
K−1∑

n=0

αnw[n]y[mK∗ + n] cos
(2n+ 1)kπ

2K
, (5.4)

where K is the frame length, K∗ is the number of shifted samples between two consecutive
frames and w[n] is a window such as the Hamming or the Hanning windows with length K.
For the sake of simplicity, the indices m and k will be omitted unless for clarification. Wide hat
symbols are henceforth used to denote estimates. Moreover, lower case letters denote realizations
of random variable. The absolute value (resp. sign) of the DCT coefficients of the noisy signal,
signal of interest and noise are denoted by AY , AS , AX (resp. φY , φS , φX), correspondingly.

The signal of interest and noise are assumed to be independent and zero mean, so that
E(Y 2) = E(S2) + E(X2) = σ2

S + σ2
X , where the spectra of the clean signal and noise are

denoted by E(S2) = σ2
S , E(X2) = σ2

X , respectively, and where E(.) is the expectation. We also
define the a priori signal-to-noise ratio (SNR) ξ and the a posteriori SNR γ as ξ = σ2

S/σ
2
X ,

γ = |Y |2/σ2
X . As usual [28], the DCT coefficients Y [m, k] with k ∈ {0, 1, . . . ,K−1} are assumed

to be uncorrelated. The notation introduced above is used throughout with always the same
meaning.

5.1.3 Sparse thresholding and shrinkage for detection and estimation

Because we want to study to what extent sparse thresholding and, more precisely, smooth shrink-
age can contribute to speech and audio denoising, this section provides recalls on such methods,
originally devised for retrieving the transformed coefficients of a clean image observed in noise.
These methods perform estimation regardless of the signal distribution. Their implementation
is quite simple.

Image denoising can be typically achieved via shrinkage functions, whereby an estimate of
the signal of interest is obtained by thresholding the coefficients obtained by projection of the
noisy observation onto an orthogonal basis. Given an observation coefficient Y in the wavelet,
DCT or DFT domain with Y = S+X, the estimate Ŝ of the clean signal coefficient is obtained
by Ŝ = GY , where G is a gain or shrinkage function. Such a shrinkage function depends on Y .
In the sequel, G will be expressed as a function of γ or an estimate of γ. In this respect, hard
thresholding is the first shrinkage function introduced in [103] and further developed in [62].
Hard thresholding estimates S by keeping or discarding Y according to:

Ŝ =

{
Y if ‖Y ‖ ≥ λσX ,
0 otherwise,

(5.5)
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where λ is an appropriate threshold. The hard thresholding gain function is thus:

Gλ(γ) =

{
1 if γ ≥ λ2,
0 otherwise.

(5.6)

Smooth shrinkage performs estimation of the clean transformed coefficient by the soft thresh-
olding gain function proposed in [62]:

Gλ(γ) =

{
1 − λ√

γ if γ ≥ λ2,

0 otherwise.
(5.7)

It is illuminating to interpret shrinkage by soft thresholding as a combined detection and esti-
mation process. By comparing the a posteriori SNR γ to a suitable threshold and setting Ŝ to
zero if the a posteriori SNR γ falls below the threshold, a kind of speech and audio detection
is indeed realized. In addition, soft thresholding provides a transformed coefficient estimate of
the desired signal by subtracting the threshold from the noisy coefficients. A similar approach
operating in the time domain was proposed in [133].

Another form of smoothed shrinkage is provided by the SSBS approach proposed and an-
alyzed in [2, 63]. The SSBS gain function relies on the sigmoid function, also called logistic
function, widely used in machine learning. Based on three desirable properties for any shrink-
age function, that is, smoothness, penalized shrinkage and vanishing attenuation at infinity, the
SSBS method allows for a trade-off between hard and soft thresholding. The original SSBS gain
function in [2] reads:

Gτ,λ(γ) =
1

1 + e−τ(√
γ−λ)

, (5.8)

where parameter λ influences the detection performance, whereas τ controls the attenuation pro-
vided by the SSBS function. The hard thresholding gain function is a limiting case of SSBS gain
function. Furthermore, SSBS functions make it possible to attenuate

√
γ below λ in a continuous

manner, instead of setting it to zero as conventionally done in hard and soft thresholding. SSBS
methods are simple to implement since they only require multiplying the noisy coefficients by
the logistic function to obtain the enhanced transformed coefficients.

In the DFT or DCT domain, the attenuation factors or gain functions Gλ(γ) , Gτ,λ(γ) of
the above methods are independently and singly evaluated for each [m, k] atom. Therefore, in
order to incorporate the impact of neighboring time-frequency atoms, the block thresholding
approach, originally proposed in [134] for wavelet transform, can be applied to the DFT [135].
In both cases, the method is based on the so-called subtraction gain function or soft thresholding
so that the gain function for block Bi with size Li is:

Gλ(γi) =
(

1 − λ

γi

)

+

, (5.9)

where

γi =

∑
[m,k]∈Bi

|Y [m, k]|2
Liσ2

X

, (5.10)

and (θ)+ = θ if θ ≥ 0 and (θ)+ = 0 otherwise.
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5.2 Non-diagonal audio estimation of Discrete Cosine Coeffi-

cients

Non-parametric and parametric estimations are very different. Non-parametric methods can
cope with lack of prior knowledge about the signal of interest and its distribution. Thus, they
can deal with various signals.

However, because non-parametric methods perform estimation regardless of the signal distri-
bution, the quality of denoised speech can be reduced. Moreover, such methods tend to introduce
musical noise. To the contrary, parametric methods take a model for the distribution of the signal
of interest into account. Therefore, if the model is reasonably good, they can achieve good per-
formance in speech enhancement applications by noticeably improving speech quality. However,
they can fail to improve speech intelligibility [120].

Therefore, our objective is to design a method that takes advantage of both the parametric
and non-parametric approaches so as to achieve a good trade-off between intelligibility and
quality. To this end, we combine an SSBS-based method with a Bayesian statistical estimator.
The rationale for this combination is the following. Bayesian statistical estimators of STSA
in the DCT domain can be expected to provide good performance in speech enhancement,
especially to improve quality without introducing musical noise. Since an SSBS-based approach
merely attenuates small coefficients, the idea is to enhance speech quality thanks to a Bayesian
estimator. This one, placed downstream an SSBS-based estimator aimed at canceling most of
the background noise, should retrieve information on clean speech.

In this respect, the next subsection introduces the Block-SSBS approach. Based on the
SSBS estimator, it is designed for audio denoising. Section 5.2.2 then presents STSA-MMSE, a
Bayesian estimation of STSA in the DCT domain. The combination of Block-SSBS and STSA-
MMSE is described in Section 5.2.3.

5.2.1 Non-parametric estimation by Block-SSBS

The original SSBS estimation is a diagonal method which may yield isolated spectral amplitudes
and, thus, musical noise in speech enhancement. We can eliminate these isolated points by
performing SSBS on blocks of time-frequency neighboring atoms. Such an approach is very
similar to that proposed in [134] for denoising signals in the wavelet domain. However, the
method we propose has some specific features.

First, it is carried out in the DCT domain for reasons evoked before. Second, speech or
audio is not stationary but can be considered stationary on relatively small time-frequency
zones. The same may hold for non-stationary noise as well. It follows that we must choose
time-frequency zones in which speech and noise can reasonably be expected to be stationary.
Such zones are unknown and highly dependent on the signal and noise of interest. The design
of algorithms dedicated to the detection of such zones is beyond the scope of this thesis. In this
work, we restrict attention to a regular splitting of the time-frequency domain in rectangular
time-frequency boxes with the same size (∆T,∆F ), where ∆T is the number of time frames and
∆F is the number of frequency bins in each box. Values for ∆T and ∆F will hereafter be chosen
so that audio signal and noise can acceptably be regarded as stationary in the resulting time-
frequency boxes. If the audio and speech distribution in a given box is assumed to be unknown,
the general methodology exposed in [134] can be adapted as follows for noisy speech and audio
estimation in the DCT domain.

Since the signal distribution in a given box is unknown, the idea is to divide the box into non-
overlapping rectangular blocks so that the signal can reasonably be considered to be deterministic
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and unknown in each block. To reduce computational cost, we look for blocks with the same
size inside a given box. The issue is then to find the optimal blocks size such that the overall
estimation error in the box containing these blocks is minimal. On the one hand, when the box
is filled with noise only, it makes seem to divide this box into small blocks. In this case, the
optimal block size should be the minimum possible block size. On the other hand, when the box
contains the signal of interest, it is expected that the deterministic assumption should lead the
algorithm to find a relatively big optimal block size. Based on the aforementioned, the following
estimation algorithm arises.

5.2.1.1 Block-SSBS gain function

Consider a given box B and a block B within this box. As mentioned above, speech is assumed to
be deterministic unknown in B. For noise estimation by various noise power spectrum estimators,
noise is assumed to be centered and Gaussian distributed in the box under consideration, so that
the noise variance is supposed to be the same in all blocks within this box. Let σ2

X(B) stand for
the noise power spectrum in B. Under these assumptions, in block B, the estimated a posteriori
SNR γ̂ can be calculated by averaging the instantaneous noisy signal energies Y 2[m, k] divided
by the noise variance, so that:

γ̂ = Y 2/σ2
X(B), (5.11)

with
Y 2 =

1
|B|

∑

(m,k)∈B
Y 2[m, k], (5.12)

where |B| is the number of time-frequency points (m, k) within B. Since we want to remove
isolated time-frequency points, we proceed similarly to Equations. (5.9) and (5.10) for block
thresholding, by choosing the SSBS gain function in block B equal to:

GBτ,λ(γ̂) =
1

1 + e−τ(
√
γ̂−λ)

. (5.13)

To implement the above SSBS gain function, we must choose the sizes of the boxes and blocks
as well as parameters τ and λ.

5.2.1.2 Size of the time-frequency boxes

With the notation introduced above, the larger ∆T , the greater the time delay. Therefore, for real
time processing applications, the length ∆T should be small enough. We have chosen ∆T = 8
(i.e 128 ms in the our implementation) as a good trade-off between performance and time-delay.
Furthermore, for taking into consideration that non-stationary noise impacts differently distinct
frequency bands, we follow [10], which recommends to choose more than 6 bands, linearly spaced
within the 8kHz bandwidth, to get good speech quality. Accordingly, and as a good trade-off
between performance and computational load, we set ∆F = 16, which corresponds to 8 bands
linearly spaced.

5.2.1.3 Time-frequency splitting by SURE

We now address the computation of the optimal block size within a given box B. The common
size of the blocks is a pair henceforth denoted by (L,W ). The number of DCT coefficients
pertaining to any block is thus N = L × W . The computation of the optimal size (L∗,W ∗)
for the blocks within a given box B can be performed as in [134, 135], by resorting to the
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SURE approach derived from Stein’s Theorem [3]. However, in contrast to [134,135], the SURE
approach is hereafter limited to the estimation of the optimal block size (L∗,W ∗) and will not
be used to estimate λ or τ . Indeed, these two parameters can be evaluated via other means as
we shall explain later.

For a given τ and λ, consider a box B. Split this box in J non-overlapping rectangular blocks
B1, . . . , BJ . The overall estimation risk for B and its partition in J boxes is thus:

R =
J∑

j=1

Rj , (5.14)

where
Rj =

∑

(m,k)∈Bj

E
[
|Ŝ[m, k] − S[m, k]|2

]

and
Ŝ[m, k] = G

Bj

τ,λ(γ̂)Y [m, k]

for (m, k) ∈ Bj . Since the SSBS gain function is constant in each block and the blocks are
constrained to have the same size, the overall risk depends on the block size (L,W ). The SURE
Theorem now provides us with an unbiased estimate of Rj . Therefore, we can calculate an
unbiased estimate of the overall risk R. It is then possible to look for the block size (L∗,W ∗)
that minimizes this unbiased estimate of R.

Specifically, we proceed as follows. Let Y [m, k] with (m, k) ∈ Bj be the N available DCT
values in block Bj . We can re-arrange these DCT values so as to form the N -dimensional random
vector Y = (Y1, Y2, . . . , YN ). Since the signal of interest is supposed to be deterministic unknown
and noise to be Gaussian in Bj with variance σ2

X , we assume that

Y ∼ N (S, σ2
XIN ) (5.15)

where S models the unknown clean signal in Bj and IN is the N ×N identity matrix.
Now, define Ŝ : RN → R

N for any y ∈ R
N by

Ŝ(y) = G(y)y

and use Equations (5.11), (5.12) so that:

G(y) = G
Bj

τ,λ

(
‖y‖2

2

Nσ2
X(B)

)

where ‖ · ‖2 stands for the usual Euclidean norm in R
N . Readily, Ŝ is differentiable. Therefore,

[136, Section 2] applies and the Stein’s unbiased risk estimate of Rj is given by:

R̂j(y) = −Nσ2
X + ‖y − Ŝ(y)‖2

2 + 2σ2
N∑

n=1

∂Ŝn
yn

(y) (5.16)

with Ŝ = (Ŝ1, . . . , ŜN ). Some easy algebra leads to (see Appendix C.1):

R̂j(y) = Nσ2
X(B)

(
2GBj

τ,λ(γ̂) − 1
)

+
(
1 −G

Bj

τ,λ(γ̂)
)

×
(
1 + τG

Bj

τ,λ(γ̂)/(N
√
γ̂) −G

Bj

τ,λ(γ̂)
)

‖y‖2
2,

(5.17)
We can then estimate R by:

R̂ =
J∑

j=1

R̂j (5.18)

90



5.2. Non-diagonal audio estimation of Discrete Cosine Coefficients

Time index

F
re

q
u
e
n
c
y
 i
n
d
e
x

 

 

10 20 30 40 50 60 70 80 90

50

100

150

20

40

60

80

100

120

Time index

F
re

q
u
e
n
c
y
 i
n
d
e
x

 

 

10 20 30 40 50 60 70 80 90

50

100

150

0

0.05

0.1

0.15

0.2

0.25

Figure 5.1 – A typical division of the time-frequency domain into boxes and blocks inside boxes shown
in sub-figure above. This division is obtained by risk minimization for noisy white speech at SNR = 5dB.
The time-frequency domain is first divided into non-overlapping rectangular boxes of size 23 × 24. Then,
each box is split into blocks whose size is determined by minimizing the overall risk (5.18) via the SURE
approach. We can see that this division matches rather well to the DCT spectrogram displayed by sub-
figure below.

It then suffices to carry out an exhaustive search among all possible pairs (L,W ) so as to find
the pair (L∗,W ∗) that minimizes R̂. Note that the value of R̂j does not only depend on N but
also on L and W through y. With respect to the values ∆T and ∆F chosen above for the boxes
B, it turns out that the set of all possible sizes (L,W ) contains 20 values only, which is easily
tractable in practice. In addition, the noise variance σ2

X(B) within a given box B was estimated
according to:

σ2
X(B) =

1
|B|

∑

(m,k)∈B

σ2
X [m, k], (5.19)

where |B| is the number of the time-frequency bin [m, k] in B and the values σ2[m, k] are the
true spectrum if it is known, or estimated values of the spectrum otherwise.

Fig. 5.1 shows an example of box and block tiling obtained by minimization of the overall
risk (5.18) on some noisy speech. In this figure, boxes have size 8 × 16 and the color of each
box corresponds to the size determined by the SURE approach for the blocks within this box.
For example, the rectangular box that spans from frames 41 to 48 and from frequency bins 16
to 32 is divided into blocks with size 128. Note that, as expected, the SURE approach yields a
block size equal to the box size in time-frequency zones occupied by speech and noise. This is
normal since, within a noisy box, speech is homogeneous. In contrast, in boxes where noise is
only present, the SURE approach returns smaller block sizes because variations of speech inside
these boxes require a finer analysis. This was expected as well.
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5.2.1.4 RDT-based selection of Block-SSBS parameters τ and λ

For speech enhancement applications, the two parameters τ and λ in (5.8) are also key elements
for controlling the performance of the proposed method and reaching the desired trade-off be-
tween signal distortion and noise reduction. As mentioned above, it is possible to estimate τ and
λ via the SURE approach. Such a possibility has not been tested in this work for the following
reasons.

On the one hand, the SURE approach is particularly relevant to estimate local parameters,
whereas the authors’ feeling and experience with speech and images [137] suggests that τ can
be adjusted as a global parameter. Indeed, τ is basically a slope which may vary from one signal
to another but a global or average value for this parameter is not really detrimental. Basically,
τ controls the level of attenuation applied by the SSBS gain function to the noisy signal. For a
fixed λ and when τ tends to infinity, the SSBS gain function behaves like hard thresholding gain
function or binary masking. Binary masking or channel selection improves successfully speech
intelligibility [1, pp.615]. Thus, shrinkage by the SSBS gain function can also be expected to
bring some gain in speech intelligibility. Moreover, a large τ will affect speech quality. Some
informal tests then led to choose

τ ≈ 4/λ, (5.20)

as recommended in [2] for images, without resorting to any statistical approach.
As far as λ is concerned, the question is a bit more intricate because λ plays the role of a

threshold that can be used to make a decision on speech presence or absence. This threshold may
therefore vary significantly in the time-frequency domain with respect to the type of speech signal
under observation. Thus the idea to estimate this threshold in each block, once (L∗,W ∗) has
been calculated. Additionally, it is desirable to keep some control on the estimation performance,
which is not actually feasible via the SURE approach. Thence, the interest of the non-parametric
approach introduced below has the advantage of ensuring that the proposed choice for λ is
optimal in the particular sense of guaranteeing the false alarm probability of erroneously deciding
that significant speech is present.

The method we propose below is based on the following rationale. Parameter λ influences
shrinkage performance by SSBS gain function because it affects the level of noise reduction
applied to the noisy DCT coefficients. Although the SSBS gain function is smoother than hard
thresholding, parameter λ must however be carefully chosen to enhance speech quality. Indeed,
suppressing too many speech components for reducing noise will necessary induce loss of speech
quality. Otherwise said, when one aims at improving not only speech quality but also speech
intelligibility, missing some important speech-carrying time-frequency channels may be more
detrimental to speech enhancement than conserving more noise-only channels than strictly re-
quired. This favors the choice of small values for λ. On the other hand, the smaller λ, the smaller
the signal distortion and musical noise, but the larger the background noise. Therefore, we can-
not choose a too small value for λ. Hence, the necessity to achieve a trade-off between speech
quality and denoising. A mean to achieve such a trade-off is to control the denoising by taking
the outcome of some speech detector into account.

We follow a similar strategy by choosing λ such that DCT coefficients with amplitudes above
λ with high probability pertain to relevant speech signal components, whereas DCT coefficients
below λ are more likely to be components of noise only or noisy speech coefficients that can
be safely discarded. Since we accept that observations with amplitudes below λ may contain
information merely attenuated by the SSBS function, the choice of λ is not derived hereafter
from a detection problem as in [63, 137] for denoising images by wavelet shrinkage. Instead, we
resort to the random distortion testing (RDT) approach [4].
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Basically, with the notation and hypotheses of (5.15), the RDT approach amounts to testing
whether ‖S‖2 6 δ or not when we observe Y, where δ is a tolerance that is specified by the
application. For better understanding the sequel, it must be noticed that this binary hypothesis
test is invariant by orthogonal transform, in the sense that it remains identical if Y is transformed
by any orthogonal transform of RN . This basically derives from the properties of the Gaussian
distribution.

Let us decide that ‖S‖2 6 δ if ‖Y‖2 6 ηα(δ) and that ‖S‖2 > δ otherwise, where ηα(δ)
is the unique solution in x to the equation QN/2(δ, x) = α 1, where QN/2( · , · ) stands for the
Generalized Marcum function [4] . According to [4, Proposition 2], the thresholding test satisfies
several optimality properties with respect to the inherent invariant features of the problem. In
particular, it is Uniformly Most Powerful Invariant (UMPI) with size α among all of the tests
with level α that are invariant by orthogonal transforms. The reader is asked to refer to [4] for
further details.

According to these properties, the threshold ηα(δ) makes it possible to control the false
alarm probability via α and guarantees optimal power or correct decision probability, without
prior knowledge on the signal of interest, an appealing feature for speech enhancement. For
homogeneity of the physical quantities in Equations (5.11) (5.12) and (5.13), we choose

λ = ηα(δ)/
√
N. (5.21)

To clarify the use of RDT theory in speech denoising, Fig. 5.2 shows spectrograms when de-
noising is performed by SSBS on blocks and two different levels α are tested. The smaller the
α, the smaller the background noise. However, with α = 0.05, some important frequency-time
atoms are ignored (for instance, see the rectangle in Fig.5.2 (c)).

5.2.2 MMSE STSA in the DCT domain

Similarly to standard MMSE-based methods in the DFT domain [27], we compute the MMSE
Bayesian estimator of the absolute value of the DCT clean signal coefficients. To this end, we
need a model for the clean speech distribution. Motivated by the central limit theorem when the
frame length is large enough, we assume that DCT coefficients of the clean signal have Gaussian
prior density. Based on this assumption, the probability of each event φS = 1 or φS = −1 is
equal to 1/2. Thus, the probability density function of the amplitude of a given clean speech
DCT coefficient AS has half-normal distribution:

fAS
(a) =

√
2

σS
√
π

exp

(
− a2

2σ2
S

)
✶[0,∞)(a), (5.22)

where ✶[0,∞) is the indicator function ✶[0,∞)(x) = 1 if x ≥ 0 and ✶[0,∞)(x) = 0 otherwise.
Moreover, noise is assumed to be Gaussian. Thus,

fY |AS
(y|a) = P (φS = 1)fY |AS=a,φS=1(y) + P (φS = −1)fY |AS=a,φS=−1(y) (5.23)

so that fY |AS
can be rewritten as:

fY |AS=a(y) =
1

2σX
√

2π
×
(

exp

(
−(y − a)2

2σ2
X

)
+ exp

(
−(y + a)2

2σ2
X

))
. (5.24)

1For any x ∈ [0, ∞), QN/2(δ, x) = 1 −Fχ2

N
(δ2)(x

2) is the cumulative distribution function of the square root of

non-central chi-square distribution with N degrees of freedom and non-central parameter δ2.
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(a) Clean signal (b) Noisy signal at 5dB

(c) α = 0.01 (d) α = 0.15

Figure 5.2 – Spectrogram of clean speech (a), corresponding noisy car speech (b) and denoised speech
by SSBS with two different levels: level = 0.01 (c) and level = 0.15 (d)

The Bayesian estimator of the speech short-time spectral amplitude (STSA) is a map ψ of R

into [0,∞) aimed at minimizing the mean-square error between the estimated and the true
amplitude. It is known to be the conditional mean and is given for every y ∈ R by [124]:

ψ(y) =

∫ ∞

0
afY |AS=a(y)fAS

(a)da
∫ ∞

0
fY |AS=a(y)fAS

(a)da
. (5.25)

Given the DCT coefficient Y , the estimate ÂS of AS provided by this estimator is:

ÂS = ψ(Y ), (5.26)

Injecting (5.22) and (5.24) into (5.25) yields:

ψ(y)=

∫∞
0 a

[
exp

(
ay
σ2

X
− a2

2σ2

)
+ exp

(
− ya
σ2

X
− a2

2σ2

)]
da

∫∞
0

[
exp

(
ay
σ2

X
− a2

2σ2

)
+ exp

(
− ya
σ2

X
− a2

2σ2

)]
da

, (5.27)
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where
σ =

σSσX√
σ2
X + σ2

S

. (5.28)

As in [27], we can compute the gain function. By a direct computation from (5.27) (see Appendix
C.2) or by using [138, Equations 3.462.1, 9.254.1, 9.254.2] successively, we get:

ψ(Y ) = G(ξ, γ)AY , (5.29)

where the gain function G(ξ, γ) is given by:

G(ξ, γ) =
√
ν

γ

√
2 +

√
πν erf(

√
ν/2) exp(ν/2)√

π exp(ν/2)
, (5.30)

where

ν =
ξ

1 + ξ
γ =

σ2A2
Y

σ4
X

. (5.31)

and erf( · ) is the error function. This gain function depends on the a priori SNR ξ and the
a posteriori SNR γ. The a posteriori SNR is directly given by the observed amplitude AY . In
contrast, the a priori SNR is unknown. This variable ξ can be estimated via the decision directed
approach [27]:

ξ[m, k] = β
Â2
S [m− 1, k]

σ2
X [m− 1, k]

+ (1 − β)(γ[m, k] − 1)+, (5.32)

where 0 < β < 1 is the smoothing parameter and ÂS [m − 1, k] is the estimated STSA at the
previous frame.

Figure 5.3 (a) displays G(ξ, γ) as a function of the a posteriori SNR γ for fixed values of
ξ = 5,−5,−10 dB. Alternatively, this gain function G(ξ, γ) is plotted as a function of ξ for
fixed values of γ = 5,−5,−10 dB in Fig 5.3 (b). The gain function of the STSA MMSE in the
DFT domain [27] is also a function of the same a priori and a posteriori SNRs. Therefore, for
comparative purpose, Fig. 5.3 (a) and (b) also display the gain functions in the DFT domain with
dashed lines in the same settings. In the two cases, the gain function of the STSA estimator
in the DCT domain is shifted down by 2 dB with respect to the gain function of the STSA
estimator in the DFT domain. This suggests that denoising in the DCT domain tends to reduce
more the background noise.

5.2.3 Combination method

After Block-SSBS, the transformed signal and noise are assumed to be Gaussian distributed.
We then apply Bayesian STSA-MMSE. By doing so, prior knowledge on speech is incorporated
to improve speech quality beyond speech intelligibility improvement achieved by Block-SSBS.
Whence the following suggested combination of these parametric and non-parametric methods,
which is summarized by Figure 5.4.

(i) Signal decomposition: The observed signal is segmented and transformed using DCT.

(ii) Noise reduction: The transformed coefficients are shrunk by the block SSBS gain function
GBτ,λ(γ̂) in each block B. Given a DCT coefficient Y in this block, the estimate Â∗

S of the
amplitude AS of the clean signal is calculated by:

Â∗
S = GBτ,λ(γ̂)AY (5.33)
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Figure 5.3 – Gain functions of the STSA-MMSE estimators in the DCT and DFT domains as functions
of ξ and γ. In Fig. 5.3 (a) the gain functions vary with γ at fixed values of ξ whereas, in Fig. 5.3 (b), the
gain functions vary with ξ at fixed values of γ.
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(iii) Refined Estimation: The Bayesian MMSE statistical estimator is applied to the coeffi-
cients shrunk by Block-SSBS so that the final estimate of the clean signal amplitude is:

ÂS = G(ξ, |Â∗
S |2/σ2

X)Â∗
S , (5.34)

where G is the gain function of the STSA-MMSE Bayes estimator given by (5.30) and ξ is
calculated by the decision-directed approach (5.32).

(iv) Signal reconstruction: The enhanced signal is finally obtained from the estimated STSA
ÂS and the noisy phase φY by the overlap-add method [1].
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Figure 5.4 – Block overview of combination method where y[n] is the input and ∆T , ∆F , δ and α are
the parameters of the proposed combination method.

5.3 Experimental Results

5.3.1 Parameter adjustment

For Block-SSBS, the tolerance δ and the level α were chosen by maximizing the segmental SNR
(SSNR) on sentences randomly chosen and corrupted by car noise at SNR level of 5 dB. These
preliminary tests led us to choose α = 0.05 and δ = 4 dB for Block-SSBS.

5.3.2 Speech data set

The performance of all the methods were evaluated in two scenarios. In the first scenario,
denoising is performed by using the reference noise power spectrum. This one is simply the
theoretical power spectrum if noise is stationary. Otherwise, the reference noise power spectrum
in a given bin m is estimated as in [111] by:

σ2
X [m, k] = µσ2

X [m− 1, k] + (1 − µ)A2
X [m, k], (5.35)
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where µ = 0.9. In the second scenario, for all the methods, the noise power spectrum was
estimated using the E-DATE algorithm introduced in [89].

Experiments have been first conducted on the NOIZEUS database to evaluate the per-
formance of the proposed methods in speech enhancement. The NOIZEUS database contains
speech sentences degraded by noise environments from the AURORA database at various levels,
namely 0, 5, 10 and 15 dB. The speech signals are sampled at 8 kHz. The noisy signals were
segmented and windowed into 32-ms duration frames, and then transformed using STCT for
STSA-MMSE(DCT), Block-SSBS, and BSSBS-MMSE and using STFT for STSA-MMSE(DFT)
with 50% overlapped Hamming windows. STSA-MMSE(DFT) proposed in [27] is the referent
method. This MMSE-based method is simple to implement and generally considered as a good
reference method. As for STSA-MMSE(DCT) and Block-SSBS, this method is based on the
MMSE criterion

5.3.2.1 Speech objective Test

Speech quality and intelligibility were evaluated using objective quality as well as intelligibility
criteria. Speech quality was assessed using the standard SSNR, SNRI, and the overall quality of
speech criteria MARSovrl criterion. Speech intelligibility was first estimated by STOI criterion.
A logistic function is applied to map the STOI measure to a meaningful intelligibility score [87].

The results are displayed in Figs. 5.5-5.8. Each figure has the same legend where STSA-
MMSE(DFT), STSA-MMSE(DCT), Block-SSBS, and BSSBS-MMSE denote the STSA-MMSE
in the DFT domain, the STSA-MMSE, the Block-SSBS and the combination of Block-SSBS and
STSA-MMSE(DCT) methods in the DCT domain and designed by the red, green, black and
blue lines with the circle, x-mark, plus and star makers, respectively as displayed in Fig. 5.5b.
Moreover, the all measures obtained with the reference noise power spectrum and with B-E-
DATE methods are drawn by dashed and solid lines, correspondingly. All algorithms have been
benchmarked at four SNR levels and against various noise models, namely white Gaussian noise
(White), 2nd-order auto-regressive (AR) noise, 4 usual types of quasi-stationary noise (car,
train, station and street) and 4 kinds of non-stationary noise (airport, exhibition, restaurant
and babble). AR noise was obtained by filtering white Gaussian noise by the discrete filter with
transfer function 1/(1 + az−1) and a = 0.5. Fig. 5.5 shows the segmental SNR improvement
obtained with the different denoising methods employing the reference noise power spectrum
(dashed lines) and the noise power spectrum estimated by E-DATE (solid lines). We firstly
consider the scenario where the reference noise power spectrum is used. The result for white and
AR noises are given in Fig. 5.5b and 5.5c, respectively. The proposed BSSBS-MMSE method
yields the highest segmental SNR improvement at three levels including 0, 5 and 10 dB, whereas
the non-parametric Block-SSBS method achieves the best SSNR at 15dB. For non-stationary
with slowly-varying noise spectrum like car, train, station and street noises, similar results are
obtained: BSSBS-MMSE provides the largest SSNR improvement at the low and medium SNRs,
while Block-SSBS performs better than BSSBS-MMSE at 15 dB. But the difference is small, as
shown by Figs. 5.5d-5.5k. Figs. 5.5g- 5.5i present SSNR improvement for non-stationary noises.
In this case, BSSBS-MMSE yields the best score at low and medium SNRs. At high SNR level,
Block-SSBS and BSSBS-MMSE both lead to the same best measure. Remarkably, in comparison
to STSA-MMSE in the DFT domain, the BSSBS-MMSE method has a gain of around 2.5−3dB
in this case.

The SSNR improvement, obtained in the more realistic case where the noise power spectrum
is estimated by E-DATE, is also shown in Fig. 5.5 by solid lines. In this case, the BSSBS-
MMSE method still yields the best score for all noise types from 0 dB to 10 dB, whereas
Block-SSBS achieves the highest score at 15 dB. The gain now is about 0.5 − 1 dB. Such results
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Figure 5.5 – Speech quality evaluation after speech denoising: improvement of segmental SNR criterion.
The result is displayed from stationary noise (White,AR) to quasi-stationary noise (train, car and station)
and up to non-stationary noise (restaurant, exhibition, babble, street, modulated and airport). The legend
is shown by Figure 5.5a.
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basically relate to the sensitivity of STSA-MMSE and Block-SSBS in the DCT domain to noise
estimation errors. In comparison with Fig. 5.5, STSA-MMSE(DCT), Block-SSBS and BSSBS-
MMSE undergo performance loss by using E-DATE for noise power spectrum estimation. This
loss is negligible for white and AR Gaussian noise and around 3 dB for other types of noise.
Generally, although BSSBS-MMSE is sensitive to noise estimation errors, it keeps on yielding
the best SSNR improvement. SNRI shown by Figure 5.6 confirms the performance of BSSBS-

Noise Type
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Figure 5.6 – SNRI with various noise types for all methods in two scenarios where the reference noise
power spectrum is used or not. The legend is the same than in Fig. 5.5b.

MMSE in terms of the SNR where BSSBS-MMSE remains yield the best score in all situations.
In the first scenario, compared to STSA-MMSE(DFT), the gain is at least 20 dB in the case
of white noise and can be around 25 dB in the other kind of noise. The average gain indicated
by label total reaches around 24.5 dB. Because BBSSB-MMSE is sensitive to noise estimation
error, in the second scenario, the gain is around 10 − 20 dB. Note that, like SSNR improvement
score, STSA-MMSE(DCT) leads a better score in the first scenario and a lower score in the
second scenario than STSA-MMSE(DFT).

In term of speech quality estimated by MARS overall, Fig. 5.7 (dashed lines) shows the
improvement score when the reference noise power spectrum is used. With small a priori in-
formation about speech, the Block-SSBS method yields the lowest score in all situations. This
remains true when E-DATE is employed to estimate the noise power spectrum (see the solid lines
in Fig. 5.7). By taking into account the speech distribution at the refined estimation step, the
good performance of the BSSBS-MMSE method is confirmed by MARS improvement measure
obtained in the case of white Gaussian noise and AR noise (see Figs. 5.7b and 5.7c). For all
types and levels of noises, BSSBS-MMSE provides the best MARS scores, except for babble and
restaurant noises at low noise levels. However, in these cases, the MARS scores of the BSSBS-
MMSE method is not significantly different from the best ones obtained by STSA-MMSE(DCT)
(see Fig. 5.7d-5.7i).
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Figure 5.7 – Speech quality evaluation after speech denoising: improvement of MARSovrl composite
criterion. The legend is shown in Figure 5.7a.
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When combining denoising with E-DATE noise estimation, the MARS overall improvement
is presented in Fig. 5.7 by solid lines. It turns out that the speech quality obtained by STSA-
MMSE(DFT) is not really affected by errors in the noise spectrum estimation (compare the
dashed lines to solid line in Fig. 5.7). In contrast, for non-stationary noise, the sensitivity to
noise estimation errors mentioned above for methods carried out in the DCT domain is greater.
Thereby, BSSBS-MMSE, STSA-MMSE(DCT) and STSA-MMSE(DFT) yield very similar re-
sults for this type of noise, especially at low and medium SNR levels (see Figs. 5.7e-5.7i). For
stationary noise, Figs. 5.7b and 5.7c show that the BSSBS-MMSE method remains better than
the other methods, without real performance loss due to noise spectrum estimation by E-DATE.

In terms of speech intelligibility, the intelligibility score (IS) obtained by mapping the STOI
measure is shown in Figs. 5.8. At high SNR, the scores obtained by all the methods are not
significantly different. At low SNR and in presence of AR and white Gaussian noise, Block-
SSBS and BSSSBS-MMSE behave similarly in the two scenarios (with and without reference
noise power spectrum). For non-stationary noises and when using the reference noise spectrum,
BSSBS-MMSE yields the highest scores. In comparison with the worst results, the gain is around
10 − 15%. When noise spectrum is estimated by E-date, the best performance is attained by
Block-SSBS. In comparison to the STSA-MMSE(DFT) method, BSSBS-MMSE provides often
better score in the case of non-stationary noise with a gain 5−15%, whereas Block-SSBS method
leads to the improvement 10 − 20% (see Figs. 5.8h, 5.8l and 5.8i).

Summarily, the BSSBS-MMSE method achieves a better trade-off between speech
quality and intelligibility than the other methods.

5.3.2.2 Subjective Test

We have also conducted a subjective test for comparing two methods namely BSSBS-MMSE and
STSA-MMSE(DFT). This test was performed with ten listeners using the mean opinion score
(MOS) method recommended by the IEEE Subcommittee [88]. Two SNR noise levels namely
5dB and 10 dB and three different kinds of noise from stationary white noise to speech-like
non-stationary babble noise up to fast-changing non-stationary street noise are used.

The results obtained with different noise types and SNR values are compiled in Table 5.1. For
each scenario, noise types and considered noise level, the best results are shown in boldface. In

Table 5.1 – MOS obtained with BSSBS-MMSE and STSA-MMSE(DFT) in the two scenarios

Reference noise E-DATE
STSA-MMSE SBSSB-MMSE STSA-MMSE SBSSB-MMSE

White
5 dB 2.35 2.4 2.15 2.31
10 dB 2.80 3.00 2.78 2.78

Street
5 dB 2.1 2.68 1.73 2.35
10 dB 3.08 3.2 2.73 2.85

Babble
5 dB 2.53 2.88 2.05 1.75
10 dB 3.23 3.25 2.28 2.98

the first scenario, BSSBS-MMSE yields a better score than STSA-MMSE(DFT) in all situations.
In the second scenario, at 5 dB SNR level, for babble noise, MMSE-STSA leads to better scores,
whereas, for the other case, BSSBS-MMSE provides similar or better results than the STSA-
MMSE(DFT).
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Figure 5.8 – Speech intelligibility evaluation after speech denoising: Intelligibility score by mapping
STOI criterion.
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5.3.3 Music data set

For demonstrating the robustness and universality of our algorithms, we also assessed our pro-
posed method on music audio signal recorded from the solo wind instrument (oboe). Experiments
have been realized with 6 types of noise (White, car, train, babble, street and airport noise) and
at 4 levels (0, 5, 10 and 15 dB). The music signal is sampled at 11kHz and transformed into
time-frequency domain by using 50ms frames with 50% overlapped Hamming windows. The
reference noise power spectrum as given in section above is also used.

5.3.3.1 Objective criterion

In order to evaluate the algorithm performance, we used the SSNR criterion for the objective
test. The results are shown in the Figure 5.9. For white noise displayed by Figure 5.9a, at
low SNR levels, Block-SSBS and BSSBS-MMSE yield similar and better measures than STSA-
MMSE(DFT) and STSA-MMSE(DCT) with gains of 3 dB. At high SNR levels, Block-SSBS
leads to the best score with a gain of 4.5 dB in comparison to STSA-MMSE(DFT). The same
behavior for car, train and airport noise is seen in Figures 5.9b, 5.9c and 5.9e. For street and
babble noise, in all situations, Block-SSBS achieves the best score (see Figures 5.9d and 5.9f),
albeit with lower gain compared to BSSBS-MMSE. Note that as for speech data set, when using
the reference noise, STSA-MMSE(DCT) outperforms slightly the STSA-MMSE(DCT).

In conclusion, Block-SSBS gives the best score in terms of SSNR for most sit-
uations, with a gain in range 0.5 − 6 dB in comparison to the reference method.
Although BSSBS-MMSE provides a lower score than Block-SSBS, which is a non-
parametric method, there is not much difference.

5.3.3.2 Subjective criterion

For further analyzing the robustness of the semi-parametric approach, we have also performed
subjective test on the same music database with 15 raters some of them being music players.
We consider only the white noise (5 and 10 dB) where its power spectral can be theoretically
determined at two SNR levels. Moreover, this subjective test has been conducted for comparing
BSSBS-MMSE to STSA-MMSE(DFT).

The MOS score obtained is given by Table 5.2. In each element, the first number is the
average score and the second couple numbers is the 95% confidence interval (CI). In two SNR
levels, SSBS-MMSE provides a higher average score and also the CI than STSA-MMSE(DFT).
This result confirms the relevance of BSSBS-MMSE for audio signal denoising.

Table 5.2 – MOS for music signal obtained with BSSBS-MMSE and STSA-MMSE(DFT)

STSA-MMSE(DFT)(CI) SBSSB-MMSE (CI)

5 dB 2.78 ([2.65 2.91]) 3.82 ([3.67 3.97])

10 dB 3.21 ([3.09 3.34]) 4.02 ([3.89 4.16])

5.4 Conclusion

In this chapter, we have introduced several speech denoising methods in the DCT domain,
which makes it possible to get rid of the phase estimation problem. These methods are Block-
SSBS, STSA-MMSE(DCT) and BSSBS-MMSE. Block-SSBS is non-parametric and can be seen
as a smooth shrinkage of DCT coefficients. Its parameters are optimized by SURE and RDT
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(f) Babble

Figure 5.9 – The SSNR improve for audio signal with the reference noise for 6 kinds of noise from
stationary noise (white) to slow-changing non-stationary noise (car and train noise) and up to speech-like
and fast-changing non-stationary noise (street, airport and babble noise).
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approaches, which are also non-parametric methods for statistical inference. STSA-MMSE(DCT)
is a Bayesian estimator. BSSBS-MMSE combines Block-SSBS and STSA-MMSE(DCT) so as to
benefit from the advantages of each method. Namely, Block-SSBS achieves good performance
in terms of speech intelligibility by background noise reduction; STSA-MMSE improves speech
quality by enhancing speech contained in small coefficients returned by the shrinkage.

The performance evaluation was conducted on the NOIZEUS database, with and without
noise power spectrum reference. Various types of stationary and non-stationary noises were
considered. When the noise spectrum is unknown, it is estimated by an up-to-date method. In
addition, objective and subjective tests were used to assess the speech estimators, in comparison
to a reference approach. Subjective tests involved a statistically significant number of raters.
The experimental results show that BSSBS-MMSE performs better than the other methods in
most situations. These experiments also confirm the relevance of working in the DCT domain.

The STSA-MMSE is devised under the Gaussian assumption for the Block-SSBS outcome.
Asymptotic statistics could perhaps help justifying this assumption. However, the task seems
rather difficult and, in any case, the experimental results provide evidence that such a Gaussian
assumption leads to an STSA-MMSE good enough to retrieve relevant speech contents in small
DCT coefficients.

All these results have proved the relevance of the proposed methods for speech signals. Noting
however that the theoretical framework is based on very general assumptions, it can be wondered
whether the proposed methods could be used to denoise other kinds of signals. As a proof of
concept, these methods were applied here to denoise music signals. Subjective tests involving
several raters confirm these very good and promising results. They demonstrate the robustness
of the approaches independently of the nature of the signal of interest.
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Chapter 6. Conclusions and Perspectives

6.1 Conclusion

The objective of this thesis work was to propose a complete speech enhancement system with
innovative techniques in signal processing for applications such as assisted listening for hearing
aids, cochlear implants and voice communication applications with lack of resources. In such
areas of applications, the complete speech enhancement system should not only further enhance
speech quality but also speech intelligibility. Moreover, this system is expected to have low
computational cost, low power usage and operate without help of any database. In order to
overcome these constraints, this research intended to investigate how far we can get in speech
denoising by using unsupervised statistical methods only, without resorting to psycho-acoustics
or machine learning (supervised) based approach. In this respect and taking into account the
large amount of results provided by the literature on the topic, this research involved both
parametric and non-parametric statistics for audio denoising, when the signal of interest is
degraded by uncorrelated and independent additive noise.

In the first part, noise power spectrum estimation, the main block of most single micro
speech enhancement system, has been considered. We have proposed a novel method for noise
power spectrum estimation, called Extended-DATE (E-DATE). This method extends the d-
dimensional amplitude trimmed estimator (DATE), originally introduced for additive white
Gaussian noise power spectrum estimation to the more challenging scenario of non-stationary
noise. The key idea is that, in each frequency bin and within a sufficiently short time period, the
noise instantaneous power spectrum can be considered as approximately constant and estimated
as the variance of a complex Gaussian noise process possibly observed in the presence of the
signal of interest. The proposed method relies on the fact that the Short-Time Fourier Transform
of noisy speech signals is sparse in the sense that transformed speech signals can be represented
by a relatively small number of coefficients with large amplitudes in the time-frequency domain.
The E-DATE estimator is robust in that it does not require prior information about the signal
probability distribution except for the weak-sparseness property. In comparison to other state-
of-the-art methods, the E-DATE is found to require the smallest number of parameters (only
two). Two practical implementations of E-DATE algorithm, namely the B-E-DATE and SW-E-
DATE, achieve good performance with and without noise reduction. In general, the E-DATE
estimator yields the most accurate noise power spectrum estimate for speech enhancement in
presence of various noise types and levels. This estimator has also shown its relevance for both
speech quality and intelligibility improvement when incorporated into a complete system based
STSA, a standard noise reduction algorithm. Although B-E-DATE is the straightforward block-
based implementation of the E-DATE, but it entails an estimation delay. This can however be
circumvented by resorting to the sliding window implementation SW-E-DATE.

After noise power spectrum estimation by E-DATE, Part III focused on noise reduction
techniques. We have considered two different approaches for recovering the signal of interest: a
parametric one and a non-parametric one. In the two approaches, we exploited a joint detection
and estimation strategy to further remove or reduce background noise, without increasing the
signal distortion. This strategy was motivated by the fact that for the signal of interest in noise
has a sparse representation that can often be found on an appropriate orthogonal basis. Thus,
the signal of interest can be reasonably assumed to be not always present in the time-frequency
domain. These two joint strategies have been applied to speech enhancement in a parametric
and a semi-parametric approaches presented in Chapters 4 and 5, respectively. In Chapter 4,
the approach is purely parametric, whereas Chapter 5 focuses on non-parametric approaches as
well as their combination with parametric statistics.

110



6.2. Perspectives

More specifically, in Chapter 4, we proposed some novel methods for estimating the STSA
and LSA of speech. These methods are based on the combination of parametric detection and
estimation theories. The main idea is to take into consideration speech presence and absence
in each time-frequency bin for improving performance of minimum mean square error based
estimators. Optimal detectors have been derived where they enable to figure out the absence or
presence of speech in each time-frequency bin based on the estimators. Conversely, the estima-
tors take into account the feedback from these detectors to improve them. Two signal models
including strict and uncertain presence/absence of speech have been considered. Depending on
the signal model, the STSA was either forced to zero or replaced by a small spectral floor for re-
ducing musical noise when speech absence has been detected. These methods have been assessed
in two scenarios, that is, with and without reference noise power spectrum. The objective tests
confirmed the relevance of these approaches both in terms of speech quality and intelligibility.

Joint detection and estimation can be viewed as a form of Smoothed Sigmoid-Based Shrink-
age (SSBS). For further improvement of performance and robustness in audio denoising, a semi-
parametric approach was proposed in Chapter 5. As is well known, the narrowband Fourier
transform has good frequency resolution. Thus, most speech enhancement algorithms use it to
transform the observed signal into the time-frequency domain. However, the Fourier coefficients
are complex so that these algorithms require phase spectrum estimation. To bypass this issue,
Chapter 5 presents a novel estimator for estimating the amplitude of the speech coefficients in
the cosine time-frequency domain after discrete cosine transform (DCT). This estimator aims
at minimizing the mean square error of the absolute value of speech DCT coefficients. In order
to take advantage of both parametric and non-parametric approaches, Chapter 5 studies also
the combination of block shrinkage and Bayesian statistical estimation. In such a combination,
the absolute value of the clean coefficient is firstly estimated by block smoothed sigmoid-based
shrinkage (Block-SSBS). The block size required by Block-SSBS is obtained by statistical opti-
mization via application of the SURE theorem. This step enables us to improve speech intelli-
gibility as achieved by smoothed binary masking. In addition, it makes it possible to deal with
various types of signals. Secondly, for refining the estimation, an optimal statistical estimator
is added to handle musical noise. For evaluating the performance of the proposed method, ob-
jective as well as informal subjective test were used. The experiments described in this chapter
yield promising results, both in terms of speech quality and intelligibility.

In summary, we have proposed several speech enhancement algorithms that are all based on
a joint detection/estimation strategy. These enable us to improve quality and intelligibility, for
speech as well as audio signals, in comparison to standard estimators. Figure 6.1 displays all
methods in the plan of quality and intelligibility. Parametric methods (STSA-MMSE) provide a
higher score in terms of quality and a lower score of intelligibility than non-parametric approach
(Block-SSBS). Semi-parametric approach allow us to take advantage of two methods. It is worth
noticing that, both parametric and semi-parametric approaches were exploited and that each
of them has been shown to have its own relevance. Therefore, depending on the considered
application, a suitable estimator should be chosen. The parametric estimators proposed above are
more efficient to reduce musical noise in speech enhancement, whereas non-parametric estimators
have been shown to be more relevant to denoise other types of audio signal, like music for
instance.

6.2 Perspectives

Although the present work focused on noise reduction in speech enhancement systems using the
DFT, it must be emphasized that the E-DATE estimator introduced in Chapter 3 is neither
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Figure 6.1 – A general view of all noise reduction methods based on STSA-MMSE considered in this
thesis.

restricted to the DFT domain nor to speech signals. Therefore, it could find other applications
in any scenario where noisy signals have a weakly-sparse representation. For instance, we have
successfully considered the use of the E-DATE in the DCT in Chapter 5. For many signals
of interest, not limited to speech, such a weakly-sparse representation can be provided by an
appropriate wavelet transform. In this respect, the application of the E-DATE algorithm to
audio source separation could be considered in continuation of [104]. The E-DATE estimator
fundamentally relies on the DATE estimator which, as emphasized in [65], can be regarded as
an outlier detector. Consequently the E-DATE can also be used as an outlier detector in each
frequency bin. This opens interesting perspectives in voice activity detection based on frequency
analysis as well as in the detection and estimation of chirp signals in various types of noise.

In Chapter 4, to take into account the presence or absence of speech, a novel estimator
has been proposed relying on joint detection and estimation. This estimator is based on STSA
and LSA where a Gaussian distribution of DFT coefficients is assumed. But other distributions
for the DFT coefficients could be investigated. In addition, in this chapter, several strategies
that combine detection and estimation for improving the performance of Bayesian estimators
in speech enhancement have been proposed. The efficiency of all these approaches is highly
dependent on the quality of the detector. In addition, all detectors are based on the Gaussian
assumption for speech signals. Because this assumption may not be satisfied, other types of
speech detectors in each time-frequency bin could be considered. A promising approach in this
respect is proposed in [4]. This detector is based on the RDT algorithm and can provide good
performance without knowledge about the distribution of signal of interest as already discussed
in Chapter 5. Therefore, the semi-parametric estimators could be paired with the RDT detector
in each time-frequency bin.

Chapter 5 investigated denoising methods using the DCT. Since it does not make any as-
sumption on the signal of interest, Block-SSBS can be applied to other applications like image
denoising. In this chapter, we also derived an STSA-MMSE in the DCT domain by making a
Gaussian assumption on the DCT coefficients. It is thus natural to wonder again whether other
distributions could be more relevant for modeling DCT coefficients. In addition, it has been ob-
served that although DCT has a real and more compact representation than DFT, Block-SSBS,
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STSA-MMSE in the DCT domain and BSSBS-MMSE are more sensitive to noise estimation
errors than STSA-MMSE in the DFT domain. This point requires further investigation.

As a final note, it is worth noticing that all the speech enhancement methods exposed in
this thesis were proposed in the context of a single microphone and were based on statistical
approaches only. As such, a few promising perspectives arise as a natural generalization of
our results. First and as discussed in the introduction, multi-microphone speech enhancement
systems can immediately apply and benefit from the proposed methods at the output of the beam
former. Second, the performance of our speech enhancement algorithms may be further improved
by incorporating perceptual information, in continuation of researches such as [139,140]. Finally,
although we have restricted attention to unsupervised approaches, the proposed methods can
be used to post-process supervised approaches like the Wiener filter or the MMSE estimator.
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Lemma of the integral optimization

problem
This appendix recalls a lemma that allows us to derive the Neyman-Pearson test and the com-
bination detection and estimation presented in Chapter 4 proposed in [141].

Lemma 1 If f : Rn → R is a function defined on R
2, thus:

[f < 0] = argmin
B∈B(Rn)

∫

B
f(x)dx, (A.1)

where B(Rn) is the Borel algebra and [f < 0] = {x ∈ R
n : f(x) < 0}

Proof: For any function f we can have: f(x) = f✶[f≥0](x) + f✶[f<0](x). Therefore, ∀B ∈
B(Rn):

I =
∫

B
f(x)dx =

∫

B
f✶[f≥0](x)dx+

∫

B
f✶[f<0](x)dx

=
∫

B
⋂

[f≥0]
f(x)dx+

∫

B
⋂

[f<0]
f(x)dx

=
∫

B
⋂

[f≥0]
|f(x)|dx−

∫

B
⋂

[f<0]
|f(x)|dx.

(A.2)

In fact,
∫
B
⋂

[f≥0] |f(x)|dx ≥ 0 so that

I ≥ −
∫

B
⋂

[f<0]
|f(x)|dx.

Because B
⋂

[f < 0] ⊂ [f < 0],

I ≥ −
∫

[f<0]
|f(x)|dx.

Moreover, − ∫[f<0] |f(x)|dx =
∫

[f<0] f(x)dx, ∀B ∈ B(Rn), we have

∫

B
f(x)dx ≥

∫

[f<0]
f(x)dx. (A.3)

To reach the equality, we need only set B = [f < 0]. �
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Detection threshold under joint

detection and estimation

B.1 Strict model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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This appendix provides the computation of detection threshold in Chapter 4 based on Gaus-
sian assumption.

B.1 Strict model

In the strict presence/absence model, the threshold τ can be chosen by fixing the false alarm
probability to a specified value. Thanks to the Gaussian assumption, the pdf of AY under H0 is
Rayleigh [1, p.212] and given by:

fAY
(a;H0) =

2a
σ2
X

exp

(
− a2

σ2
X

)
. (B.1)

Consider the decision

|Y |
D=1

R
D=0

τ, (B.2)

The false alarm probability is:

PH0(D = 1) =
∫ ∞

τ

2r
σ2
X

exp

(
− r2

σ2
X

)
dr = exp

(
− τ2

σ2
X

)
. (B.3)

Therefore the threshold to guarantee a false alarm probability equal to α is

τSM(α) = σX

√
− log(α) (B.4)

Therefore, the detection thresholds in the strict speech presence/absence model are determined
as follows:

τSM
STSA(α) = DSM

STSA(τSM(α)), (B.5)

τSSM
LSA (α) = DSSM

LSA (τSM(α)). (B.6)
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Appendix B. Detection threshold under joint detection and estimation

B.2 Uncertain model

Generally, in the uncertain model, the detection threshold τ is obtained by imposing R0(Â1, Â0,D) =
α. In addition, in the uncertain model, the distribution of AY under hypothesis H0 is given by

fAY
(a;H0) =

2a
σ2
X(1 + β)

exp

(
− a2

σ2
X(1 + β)

)
. (B.7)

However, for the sake of simplicity, we propose the different choices of the threshold for the
corresponding situations.

B.2.1 Independent estimators

In this situation, because D1(y;ψ1) = D0(y;ψ0), the choice of threshold τ does not affect A.
Thus, focusing on the estimation problem and with regard to Equations (4.84) and (4.100), it
seems coherent to choose τ IUM

STSA in the form of a likelihood ratio. In this respect, we propose to
choose:

τ IUM
STSA = τ IUM

LSA = Λ(ξ, γ0), (B.8)

where γ0 is the smallest a posteriori SNR above which we have a false alarm. Since the probability
density function under H0 is given by Equation (B.7), Equation (B.2) can be rewritten as

γ
D=1

R
D=0

−(1 + β) log(α), (B.9)

where α is the false probability. It follows that γ0 = −(1 + β) log(α).

B.2.2 Joint estimator

B.2.2.1 STSA-based estimator

In this section, the Bayesian risk under H0 is given by:

R0(Â1, Â0,D) =
∫
r10(y;ψ1)δ(y)fY (y;H0)dy +

∫
r00(y;ψ0)(1 − δ(y))fY (y;H0)dy, (B.10)

where

r10(y;ψ1) =
∫
c10(ψ1, a0)fA0|Y=y(a0)da0 =

∫
a2

0fA0|Y=y(a0)da0,

r00(y;ψ0) =
∫
c00(ψ0, a0)fA0|Y=y(a0)da0 = r10(y;ψ1) −

(
ψ

JUM(0)
STSA (y)

)2
.

According to [1, Equation (7.94)], we have:

r10(y;ψ1) = E0[A2
0|Y = y] =

β

1 + β

(
1 + νβ
γ

)
|y|2 = G0|y|2, (B.11)

where νβ = γβ/(1 + β) and G0 =
β

1 + β

(
1 + νβ
γ

)
. Moreover (see Equation (4.88):

ψ
JUM(0)
STSA (y) = GSTSA(β, γ)|y|. (B.12)
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B.2. Uncertain model

The Bayesian risk under H0 is now

R0(Â1, Â0,D) =
∫

A
G0|y|2fY (y;H0)dy +

∫

Ac
(G0 −G2

STSA(β, γ))|y|2fY (y;H0)dy (B.13)

where A is the critical region given by Equation (4.72). Theoretically, G0 and GSTSA(β, γ) are
dependent on y. However, 0 ≤ β ≪ 1 so that G0 and GSTSA(β, γ) are smaller than 1. We
can reasonably assume that G0 and GSTSA(β, γ) are independent on y. By taking into account
that β is less than ξ, it follows from Equations (4.93) and (4.94) that the decision amounts to
comparing the absolute value of the observation to a threshold τ∗. Therefore, the Bayesian risk
is approximated by:

R0(Â1, Â0,D) =G0

∫ ∞

τ∗

2r3

σ2
X(1 + β)

exp

(
− r2

σ2
X(1 + β)

)
dr

+ (G0 −G2
STSA(β, γ))

∫ τ∗

0

2r3

σ2
X(1 + β)

exp

(
− r2

σ2
X(1 + β)

)
dr,

(B.14)

After a change of variable and an integration by parts, some routine algebra leads to:

R0(Â1, Â0,D) = σ2
X(1+β)(G0−G2

STSA(β, γ))+
(
G2

STSA(β, γ)τ2
∗ + σ2

X(1 + β)
)

exp

(
− τ2

∗
σ2
X(1 + β)

)
.

By solving equality R0(Â1, Â0,D) = α, we can find τ∗(α). Therefore the detection threshold
τJUM

STSA(α) is given by:
τJUM

STSA(α) = DJUM
STSA(τ∗(α)) (B.15)

B.2.2.2 LSA-based estimator

With the same methodology as above, we have first:

r10(y;ψ1) =
∫

(log(a0 + 1))2fA0|Y=y(a0)da0,

r00(y;ψ0) =
∫
c00(ψ0, a0)fA0|Y=y(a0)da0 = r10(y;ψ1) −

(
t
JUM(0)
LSA (y)

)2
,

where tJUM(0)
STSA (y) = log[GLSA(β, γ)|y| + 1]. The r10(y;ψ1) is hardly tractable in theory. In order

to evaluate R0(Â1, Â0,D), we can reasonably assume that A0 = β0AY where 0 ≤ β0 ≪ 1.
Moreover, log(x+ 1) ≈ x with x ≪ 1. Therefore, according to Equation (B.11):

r10(y;ψ1) = G0|y|2

r00(y;ψ0) =
(
G0 −G2

LSA(β, γ)
)

|y|2,

In the similar way as section above,

R0(Â1, Â0,D) = σ2
X(1+β)(G0−G2

LSA(β, γ))+
(
G2

LSA(β, γ)τ2
∗ + σ2

X(1 + β)
)

exp

(
− τ2

∗
σ2
X(1 + β)

)
.

where τ∗(α) is found by solving R0(Â1, Â0,D) = α. Thus, the detection threshold is given by:

τJUM
LSA (α) = DJUM

LSA (τ∗(α)). (B.16)
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C.1 The unbiased estimate risk of block for Block-SSBS

In the block Bj , the estimate risk R̂j in Equation 5.17 is calculated by SURE theorem given by
Equation 5.16. We derive now this result. We consider first that the estimated risk is the sum
of the three part following:

R̂j1 = −Nσ2
X(B), (C.1)

R̂j2 = ‖y − Ŝ(y)‖2
2, (C.2)

R̂j3 = 2σ2
X(B)

N∑

n=1

∂Ŝn
yn

(y). (C.3)

The second part R̂j2 is the difference between the estimated Ŝ and the observation Y. Readily,
G(y) is a scalar gain so that this difference can be written as:

R̂j2 = (1 −G(y))2 ‖y‖2
2. (C.4)

In the fact that Ŝn(y) = G(y)yn. Therefore the partial derivative
∂Ŝn
yn

(y) can be calculated as:

∂Ŝn
yn

(y) =
∂G(y)
yn

yn +G(y). (C.5)

Moreover, the gain function in the Bj block can be explicitly expressed as a function of yn
whereas other are considered as the parameter. Thus, using the chain rule for computing the
derivative, we have

∂G(y)
yn

= τ
e−τ(

√
γ̂−λ)

(
1 + e−τ(

√
γ̂−λ)

)2

1
2
√
γ̂

2yn
Nσ2

X(B)
= τG(y) (1 −G(y))

yn√
γ̂Nσ2

X(B)
, (C.6)

where the estimated a posteriori SNR γ̂ = ‖y‖2
2

Nσ2
X(B)

. The third part of the estimated block risk

is leaded to:

R̂j3 = 2Nσ2
X(B)G(y) + 2τG(y) (1 −G(y))

‖y‖2
2

N
√
γ̂
. (C.7)
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Taking the sum of the three part R̂j1, R̂j2 and R̂j1, we obtain the estimated risk of the block
Bj as Equation (5.17).

C.2 The MMSE gain function in the DCT domain

The gain function G(ξ, γ) for STSA-MMSE in the DCT domain is derived from Equation (5.27)
by two ways and shown by Equation (5.30). This appendix section provides the computational
detail of the direct method for calculating this gain function. Without the loss of generality, we
suppose that y ≥ 0 so that y = |y|. Let us denote,

I1± =
∫ ∞

0
a exp

(
− a2

2σ2
± ay

σ2
X

)
da, (C.8)

I2± =
∫ ∞

0
exp

(
− a2

2σ2
± ay

σ2
X

)
da, (C.9)

the nominator I1 and the denominator I2 of Equation (5.27) are respectively given by:

I1 = I1+ + I1−, (C.10)

I2 = I2+ + I2−. (C.11)

Moreover, we have

I1± =
∫ ∞

0
(−σ2)

(
−a
σ2

± y

σ2
X

)
exp

(
− a2

2σ2
± ay

σ2
X

)
da±

(
yσ2

σ2
X

)
I2±. (C.12)

Therefore, the nominator can be written as I1 = I1+ + I1− = 2σ2 +

(
yσ2

σ2
X

)
(I2+ − I2−). In

addition,

I2± =
∫ ∞

0
exp


−

(
a√
2σ2

∓ y
√
σ2

√
2σ2

X

)2

 exp

(
σ2y2

2σ4
X

)
da. (C.13)

Thus, the denominator and the nominator can be evaluated as:

I2 = I2+ + I2− = 2
√

2σ2 exp

(
σ2y2

2σ4
X

)∫ ∞

0
exp(−t2)dt, (C.14)

I1 = 2σ2 +

(
yσ2

σ2
X

)
(I2+ − I2−) = 2σ2 +

yσ2

σ2
X

2
√

2σ2 exp

(
σ2y2

2σ4
X

)∫ +y∗

−y∗

exp(−t2)dt, (C.15)

Considering the zero-mean Gaussian distribution with its variance equal to 1/2, its prob-

ability density function is φ(t) = e−t2

√
π

. It makes possible that
∫∞

0 exp(−t2)dt =
√
π/2 and

∫+y∗

−y∗ exp(−t2)dt =
√
π/2 erf(y∗). Replacing these results to Equations (C.14) and (C.15), we

can compute ψ(y) and G(ξ, γ) = ψ(y)/ |y|, Equation (5.30) is proved.
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Résumé 

Cette thèse traite d'un des problèmes les plus stimulants dans le 

traitement de la parole concernant la prothèse auditive, où seulement 

un capteur est disponible avec de faibles coûts de calcul, de faible 

utilisation d'énergie et l'absence de bases de données. Basée sur les 

récents résultats dans les deux estimations statistiques paramétriques 

et non-paramétriques, ainsi que la représentation parcimonieuse. Cette 

étude propose quelques techniques non seulement pour améliorer la 

qualité et l'intelligibilité de la parole, mais aussi pour s'attaquer au 

débruitage du signal audio en général. 

La thèse est divisée en deux parties ; Dans la première partie, on 

aborde le problème d'estimation de la densité spectrale de puissance 

du bruit, particulièrement pour le bruit non-stationnaire. Ce problème 

est une des parties principales du traitement de la parole du mono-

capteur. La méthode proposée prend en compte le modèle 

parcimonieux de la parole dans le domaine transféré. Lorsque la 

densité spectrale de puissance du bruit est estimée, une approche 

sémantique est exploitée pour tenir compte de la présence ou de 

l’absence de la parole dans la deuxième partie. 

En combinant l'estimation Bayésienne et la détection Neyman-

Pearson, quelques estimateurs paramétriques sont développés et 

testés dans le domaine Fourier. Pour approfondir la performance et la 

robustesse de débruitage du signal audio, une approche semi-

paramétrique est considérée. La conjointe détection et estimation peut 

être interprétée par Smoothed Sigmoid-Based Shrinkage (SSBS). 

Ainsi, la méthode Bloc-SSBS est proposée afin de prendre en compte 

les atomes voisinages dans le domaine temporel-fréquentiel. De plus, 

pour améliorer fructueusement la qualité de la parole et du signal 

audio, un estimateur Bayésien est aussi dérivé et combiné avec la 

méthode Bloc-SSBS. L’efficacité et la pertinence de la stratégie dans le 

domaine transformée cosinus pour les débruitages de la parole et de 

l'audio sont confirmées par les résultats expérimentaux. 

 

Mots clés: Enrichissement de la parole et de l'audio, Débruitage 

statistique, Représentation parcimonieuse, Estimation paramétrique, 

Combinaison de détection et estimation, Seuillage parcimonieux, 

Estimation non-paramétrique 

 

 

 

Abstract 

This PhD thesis deals with one of the most challenging problem in 

speech enhancement for assisted listening where only one micro is 

available with the low computational cost, the low power usage and the 

lack out of the database. Based on the novel and recent results both in 

non-parametric and parametric statistical estimation and sparse 

representation, this thesis work proposes several techniques for not 

only improving speech quality and intelligibility and but also tackling the 

denoising problem of the other audio signal. 

In the first major part, our work addresses the problem of the noise 

power spectrum estimation, especially for non-stationary noise, that is 

the key part in the single channel speech enhancement. The proposed 

approach takes into account the weak-sparseness model of speech in 

the transformed model. Once the noise power spectrum has been 

estimated, a semantic road is exploited to take into consideration the 

presence or absence of speech in the second major part. 

By applying the joint of the Bayesian estimator and the Neyman-

Pearson detection, some parametric estimators were developed and 

tested in the discrete Fourier transform domain. For further improve 

performance and robustness in audio denoising, a semi-parametric 

approach is considered. The joint detection and estimation can be 

interpreted by Smoothed Sigmoid-Based Shrinkage (SSBS). Thus, 

Block-SSBS is proposed to take into additionally account the 

neighborhood bins in the time-frequency domain.  Moreover, in order to 

enhance fruitfully speech and audio, a Bayesian estimator is also 

derived and combined with Block-SSBS. The effectiveness and 

relevance of this strategy in the discrete Cosine transform for both 

speech and audio denoising are confirmed by experimental results. 

 

Keywords: Speech and audio enhancement, Noise reduction, Spare 

representation, Parametric estimator, Joint detection and estimation, 

Sparse thresholding, Non-parametric estimator. 
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