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The Tidal Motions of a Rotating, Elliptical, Elastic and Oceanless
Earth

Thesis directed by Assistant Professor Martin L. Smith

A theoretical study is presented of the response of a
rotating, elliptical and elastic Earth to the combined gravitational
attraction of the Sun and Moon. Five of the most heavily constrained
contemporary models of the Earth's material structure are considered
{all have a fluid ocuter core and a solid inner core). The non-
orbital part of the response is separated into the body tide (the
Earth's deformation), the precession and nutation of the Earth, and
changes in the Earth's rotation rate. In particular, the nutations
are shown to be the best represented by motion of the 'Tisserand
mean figure axis of the surface', which also is essentially a mean
mantle fixed axis.

An eigenfunction expansion technique is developed and used
to compute the total induced displacement. The computed results
at the surface are shown to be accurate to at least 1 part in 300.
Observatrional effects of the displacements are examined, with all
rotational, elliptical and inertial effeets included. The results
show slight (£ 1%) latitude dependence in the Love numbers and in

the gravimetric and diminishing factors. A4 10% reductiom in

amplitude of the tidally induced changes in the Earth's rotatiom
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rate is found and is due to the fluid core. Only small numerical
differences are observed between results for the different structural
models, suggesting that observations will probably not impose
additional constraints on these models within the near future.

This abstract is approved as to form and content. I recommend

its publication.
stmed Lo 2l

Faculty member in charge of thesis
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CHAPTER 1

INTRODUCTION

Ground based geodetic and astrometric observations have long
contributed to our understanding of the structure and dynamical
behavior of the Earth. The newly developed precision space tech-
niques of VLBI (Counselman, 1976; Robertson, et al., 1978) and
lunar and satellite ranging (Williams, 1977; Silverberg, 1978;
Smith, 1978) should offer even better opportunities for constraining
terrestrial models in the future. One particular consegquence should
be improved observation of the Earth's response to the combined
gravitational attractions of the Sun and Moon. This response is
conveniently referred to as the Earth's tidal motion and is
important both as a useful geophysical signal and as a source of
nolse for other phenomena.

It 18 uwsual to separate the tidal motion into three conceptu—
ally disjoint effects: body tides, tidally induced changes in the
Earth's rotation rate, and the forced precession and nutation of
the Earth. The body tide (or Earth tide) is defined as the lumi-
solar induced deformation of the Earth. Most of the important
response occurs at (approximately) semi—diurnal, diurnal and zero
frequencies. For a spherical Earth, a description of this defor-
mation at the outer surface usually employs a convenient set of

dimensionless parameters, the Love numbers. As will be shown,

both rotation and ellipticity modify this simple representatiom.




The long perlod tidal deformation perturbs the Earth's
principal moment of inertia. To conserve angular momentum the
Earth must correspondingly alter its rotation rate. These long
period (from ~» 10 days to 18.6 years) rotational perturbations
affect the instantaneous angular position of the Earth and are
observed in precision time measurements of stellar transits.

The precession and nutation of the Earth is the result of
the Earth's rotation and accompanying ellipticity of figure and
has important astrometric consequences. Because of the ellipticity
the luni-solar tidal force exerts a torque on the Earth about an
equatorial axis. Since the Earth is rotating it responds
gyroscopically: 1its figure axis precesses about the normal to
the ecliptic plane. The angle of inclination is 23.5° and the
precessional period is about 26,000 years. To further complicate
matters the Sun and Moon are both moving relative to the Earth's
center of mass. Consequently, the Earth's instantaneous axis of
precession is actually moving through inertial space. This may be
accomnodated conceptually by superimposing a set of higher
frequency wi:ggles or 'nutations' onto the ecliptic precession.
These nutations occur at periods of from ~ 10 days to 18.6 years
in inertial space but are observed at any sidereally rotating

Earth fixed observatory as approximately diurnal phenomena.




The success of modelling these different aspects of tidal
motion depends on assumptions about the Earth's dynamical behavior.
Nutations have been shown to be reasonably well represented by the
tidal response of a rotating, elliptical but rigid Earth (Woolard,
1953; Kinéshita, 1977). Conversely, the body tide is traditiomally
computed for an Earth which iz elastiec, but non-rotating and
spherically symmetric (see e.g. Longman, 1962, 1963; Farrell, 1972).
Tidal changes in the Earth's rotation rate are usually computed
directly from the long period body tide results by assuming a
completely solid Earth (see Munk and McDonald, 1960}).

The two most important omissions in these models are probably
the effects of oceans (see e.g. Farrell, 1972; Beaumont and Lambert,
1972; Warburton et al., 1975; Beaumont and Berger, 1975; Zschau,
1976) and local, near-surface inhomogeneities in geology and
topography (see e.g. Beaumont and Berger, 1974; Harrison, 1976;
Berger and Beaumont, 1976). Identification of these contributions
offers a means of improving our understanding of both the dynamics
of the oceans and local geolegical structure (see Baker, 1979, for
a general review).

As observations improve, more complete dynamical models of

the Earth's interior become necessary, Of particular importance

are the effects of non-rigidity om the nutations and of rotation




and ellipticity on the body tides. These considerations may be
combined into a more general problem: computation of the complete
tidal motion on a rotating, elliprical, elastic Earth. This problem
is made increasingly important by the presence of the fluid core

and its treatment has a long history. Hough (1895) and Poincare
(1910) demonstrated the presence of a free nutational mode for a
fluid ellipsoid contained in an imvariably rotating rigid cavity.
Jeffreys (1948, 1949, 1950) considered the geophysical consequences
of this mode for both the free and forced nutational motions of

the Earth.

Jeffreys and Vicente (1957a, 1957b) and Molodensky (1961)
greatly extended these results by including more realistic, elastic
stratification throughout the Earth, In both cases mantle deforma—
tion is computed for a spherical mon-rotating shell and only
particularly simple core structures are considered. Furthermore,
both theories rely almost totally on analytical techniques which
demand varying degrees of approximation, of often obscure signifi-
cance,

Shen and Mansinha (1976) and Sasao et al. (1979) extended
these theories of the free nutational and diurmal tidal motions to
include more complete dynamical and structural models of the fluid

core. Sasao et al. (1979) use a predominantly analytical approach




conceptually similar, in many respects, to that of Molodensky
{(1961). Shen and Mansinha (1976), relying more heavily on numerieal
techniques, are able to include even more general representations

of the flow in the fluid core. In both cases mantle deformation

is computed for a spherically stratified, non-rotating solid shell.

Smith (1976, 1977) used a more complete description of the
Infinitesimal motion of a rotating, slightly elliptical, elastic
Earth (see Smith, 1974) to numerically investigate portions of the
Earth's low frequency normal mode spectrum. He relies prinecipally
on a truncated representation of the response throughout the Earth
which is similar to th&dt used by Shen and Mansinha (1976) in the
fluid core.

We use, here, the linearized equations of Smith (1974) to
examine the complete tidal motion on a rotating, slightly
elliptical, linearly elastic, self-gravitating, hydrostatically
pre-stressed Earth. Unlike earlier theories, elliptical and
rotational effects are considered throughout the Earth. Calculations
have been performed for five of the most heavily constrained
elastic Earth models currently available, all of which have a
fluid outer core and a solid inner core. Although the dynamical
equations must necessarily be truncated, the approximation used has
an apparently minimal affect. Im particular, mumerical investiga-

tions suggest our results are probably accurate to better than one

percent.




The dynamical problem is formulated in Chapter II. Vector
and scalar equations are developed and the tidal potential is
defined. A unique approach to the tidal problem, developed in
Chapter IV, is an expansion of the tidal motion as a sum of normal -
modes of the Earth. As a preliminary, the normal modes of a
rotating, slightly elliptical, elastic Earth are described in
Chapter III, =

The complete computational procedure used to solve the
dynamical equations is presented in Chapter V. The truncation
process is described and its numerical consequences discussed. -

Chapters VI, VII and VIII separate and identify the body tide,
nutations and changes in rotation rate, respectively. Observational
effects of each phenomenon are discussed with all rotatiomal, -
elliptical and inertial modifications included. The nutatiomns
are shown to be described by the inertial space motion of a well
defined, observationally meaningfuvl axis, B, the Tisserand mean -
figure axis of the surface. Finally, numerical results are presented
in Chapter Iﬁ and a brief summary offered in Chapter X.

Other dynamical processes in the Earth's interior may vet N

prove important. Zschau (1978) demonstrated the importance of

mantle anelasticity on the ocean loading tide. In addition,




independent sources of core mantle coupling (e.g. core viscosity,
electromagnetic effects) are useful in damping the predicted core
resonance (see, e.g. Toomre, 1974; Rochester, 1976; McClure, 1976:
Sasao et al., 1977). Non—inertial core-mantle coupling could also
be important in modelling the tidal angular position changes since

it would damp the angular rotation between core and mantle (see

Section 9.4 below).




CHAPTER II

FORMULATION OF THE TIDAL PROBLEM

The combined gravitational fields of the Sun and Moon cause
acceleration of the Earth's center of mass as well as displacements
relative to the center of mass. The relative displacements are
referred to as the Earth's 'tidal motion' and are the subject of
this study. To compute them we work in a reference frame which
follows the Earth's center of mass through space. The applied
gravitational force is seen in this frame as the negative gradient
of an appropriately defined function: the luni-solar tidal potential.
Section 2.1 describes the dynamical model assumed here for the Earth
and develops the invariant equations of motion. These are expanded
in Section 2.3 into scalar equations over radius. The tidal

potential is developed in Secrion 2.2,

2.1 Equations of Motion

The Earth's tidal response is computed here as the first
order infinitesimal deviation from equilibrium induced by the luni-
solar tidal force. It consists of perturbations in the particle
displacement vector, the gravitational potential and the stress
tensor.

At equilibrium the Earth is assuvmed uniformly rotating about

the g axis with angular velocity Q. It is assumed hydrostatically




preatressed and is consequently an axisymmetric ellipsoid of
revolution. The (small) ellipticity of constant density surfaces
is found from the equilibrium density distribution, p, and angular
velncity'a using Clairaut's equation (Jeffreys, 1970). The Earth
is self-gravitating and has a constitutive relation assumed as
linear, elastic and isotropic with equilibrium Lame parameters, X
and p, constant over any constant density (elliptical) surface.

Define the equilibrium coordinate system, K, with origin at
the Earth's instantaneous center of mass and uniformly rotating
with constant angular velocity Q= ﬁg. (The center of mass is in
a non—-infinitesimal orbit around the Sun and Moon. We choose R
to follow its motion through inertial space and will adjust the
luni-solar gravitational potential accordingly, in Section 2.2).
We conform to tradition by orienting the % axis along the equili-
brium Greenwich meridian.

To represent deviations from equilibrium in R, we must adopt
some method of labelling the material within the Earth. We choose
here the Lagrangian formulation where every material point is
represented by its equilibrium position vector. The Eulerian
puaitian,_z, in R of any infinitesimally displaced Lagrangian

material point, x, at time t is
e

(2.1) I(x,t) = x + s(x,t)

where s(x,t) is the infinitesimal Lagrangian displacement of X
P
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The linearized infinitesima* Lagrangian egquations of motion

of the Earth are written in R as ‘see e.g. Dahlen, 1972).

2 E
'HJEI:E + Ea_tpfi xs p_?_ﬂ

355 pf_-_‘ﬂ_'[Ew )] +9-T + pj_

2.2) 9%} = - Gy (os)

T=A@es) 14+ uivs + @)

with boundary conditions

8 “n continuous aecross any boundary

B continuous across any welded boundary
(2.3) T continuous across any boundary

[ S

¢-f continuous across any boundary

fe {?ﬁf + ﬁﬂﬂoi) continuous across any boundary

Here, ¢f, I_and 1..’.5.. are the incremental Eulerian gravitatiomal
potential, Infinitesimal Cauchy elastic stress temsor and applied
body force, respectively; G is the gravitational constant; i the
second rank identity temsor, ¢ and ¢ the equilibrium gravitational

and centripetal potentials, and i the local (outward) normal at

the boundary.
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Elliptical modifications to the equllibrium material parameters
are glven to first order as (see Dahlen, 1972)

p(r,0,¢) = po{r} + % re(r) Brpan(‘:"s 8)

Alr,0,8) = luﬁr] + %rrs(r) Brlanfcus a)

(2.4) w(r,0,4) = u_(r) +% re(r) 8_u _P,(cos 8)

$(r,0,0) +y(r,0,6) = ¢_(r) + 3 re(x) 3_¢ P, (cos 0)

1 @
'If{r‘.a,¢':' = -=0rP (EDH 3}
i 2
where £(r) is the ellipticity. The normal to any constant density
surface is

{205_} ﬁ-?—g
~ o~ 3

rE{r}Eszcns g8)
(Smith, 1974).

The radially dependent ¢0, pu, lo and uu define an Earth
model and are determined from free oscillation and body wave data.
In particular, every model considered here has a solid ioner core,

a fluid outer core and a solid mantlie capped by a thin continental

crust,.
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2.2 Tidal Potential

We wish to solve (2.2) and (2.3) for

(2.6)  f£=0F,

where 2& is the luni-solar tidal acceleration. Although ET has been
studied extensively (see, e.g. Bartels, 1957; Melchior, 1966) a
brief, independent description is offered here.

The total external gravitational acceleration of the Moon (or

Sun) may be written as the negative gradient of a scalar function

(2.7) F= -9V
Fo i

where V is interpreted as the gravitational potential energy per
unit mass, Let zibe any fixed Lagrangian point within the Earth
and R the vector between the centers of mass of the Earth and Moon
(see Figure 1). Assuming uy is much larger than the Moon's
diameter we im@ approximate

M

(2.B) V=

| xR
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MOON

R

Figure 1. ¥ is the geocentric zenith distance of the Moon at the
point x.
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where Hm in the Moon's masns. By defining r = |§], R= !§| and

¢ as the geocentric zenith distance of the Moon at x (see figure 1),

(2.8) is expanded as

Gbgn = 2
(2.9) V=—'ﬁ'— 1‘23] (E)KPE(cﬂsq:}

where PL are Legendre polynomials. Since the potential energy is
only meaningfully defined to within a spatial comstant, we choose
to subtract the =0 terms from V. This defines r=0 as the point of
zero potential energy.

To further transform V into a more usable form we define € as
the geocentric co-latitude at:i(the angle between the % axis and;@
and § and hH as the declination (the angle between the equator and
5) and hour angle (between the equatorial projections ofjf_andly
of the Moon (see figures 2a and 2b). The addition theorem for
spherical harmonics gives

imh

L
2-m) ! M
(2.10) B, (cosy) = Re ]E_i ETFET P| (cos 8) Pg(ms(% - a)) e

where the PE are associated Legendre polynomiazls and Re denotes the

real part.
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FIGURE 2a

FIGURE 2b

Figure 2. A number of angles are shown which relate the Earth-Moom
vector, R, and the macterial point, x, to the X, ¥, %
equaturizl coordinate system. Figures 2a and 2b are,
respectively, perpendicular to and concident with the

- BEarth's equator.
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The Moon's hour angle is the difference between the sidereal
hour angle, h, (between the equinox and the equatorial projection
of 3} and the Moon's right ascension, o (between the equinox and
the equatorial projection afﬂg}. (The equinox is defined in

Section 7.8.) h may be written as

(2.11) h=‘—‘ﬂ,t+¢+¢ﬂ

where I is the sidereal angular wvelocity of rotation, ¢ is the
longitude of x measured eastwards from Greenwich and ¢O is the
angle between Greenwich and the equinox at the epoch t =0).

Consequently,

. =.I"'+ =5
(2.12) hy=Rt+6+9¢ -a

Using (2.12), (2.10) and (2.9) gives

GM = 2 im(Qt+d )
" m x5 & m* o m o
V= Re g ) (R) 2041 1 (2 ‘5":‘) Y (5,0) e
=1 me=-1

(2,13)

m ; : : :
where the Yi are surface spherical harmonics with normalization

described in Appendix A, and #* denotes complex comjugation. A

similar expression describes V for the Sum.
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The Earth moon distance, R, and angles « and 4 are time
dependent. Writing RE as the equatorial radius of the Earth (the
equator is chosen to coincide with the development of Cartwright

and Tayler, 1971) and noting

-m m ,m¥
YE (=1) Yt

(2.14)

glven

a L | 4
(2.15) Va=-Re S () Ty YT6,4)
xza E:J(HE) Sl

where the time dependence is confined to

(2.16)

im(ic + ¢0}

2 %o \R(MD X (E‘ 8(t), “{”) e

m
Cy(€) = - 2i+1 2

M (RE )" b m*

for m # 0 and

£
@an e --::I‘:} (RE ) oL Y”*(l ﬁ(t),a{t})

“FEEL R ND

R(t)
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Equation (2.15) represents the total gravitational potential
of the moon (or sun), including that part responsible for the
Earth's orbital motion. The tidal response at any point is defined
as the displacement relative to the Earth's instantaneous center of
mass. Consequently, the tidal abceleration, denoted by EI' is the
total gravitational acceleration minus the acceleration of the

center of mass:

(2.18)  Fo(x) = F(0) - o,

where
(2.19) F. == [ or
v

with p, M and ‘JE the density, total mass and volume of the Earth and
F the total luni-solar tidal acceleration.

The spatially constant vector,ﬁg'm, can be written

(2.20)  Foy = = EVq(x)
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Uning (2.15) and (2.7) and some laborlious algebra glven

1
T
Veu® = - ne[wg g C:(t) Y‘l‘(e,ep} -

(2.21)
C-Ar | s+ L0 0 Tgd 1
—2- g[ 21 C3(tj Yl (5,9) +J E ﬂa{t] Yl (H’q}}]]

HmE

where C and A are the Earth's greatest and least moments of inertia.

Equation (2.21) is accurate to first order in the dynamical

ellipticity, Ei&.
Finally, the tidal potential is defined as

(2.22) vTEﬁ? = Uﬁz} - ?CH(E}

From (2.21) and (2.15):

A

C-Ar 0 0
\'T{‘E} = - P.&LRETE ﬁ ['{i C3{t} Yl (6,4) +

i .1 1
(2.23) }% Catt} Yy [B,@)]

< = I £ m m
' (w) ngt} Yl[ﬂ,‘#}]

"
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with the E? given by (2.16) and (2.17) and

(2.24) F (x) = - 9V (x)

m

Eguations (2.16) and (2.17) show the CE

to decrease with? as

RE ;3 RE_
i - :
(R{t} ) . Since for the moon R(E) ~ 60 {(and is much smaller for

the sm), it is sufficient for our purposes to keep only £ < 3 terms
in (2.23).

The #=1 terms in ?T are not found in the usual spherical
developments of the tidal potential. They are needed for amn
elliptical Earth to keep the coordinate system centered at the
center of mass: they negate the orbital motion induced by the =3
terms in ?T. (Contemporary models of the Earth's ephemeris take
the non-sphericity into account.) These terms do not cause any
deformation within the Earth.

m : X
The Cgft} are usually Fourier transformed into the frequency

domain as

t

(2.25) cp(e) = § H_(w) e
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Historical treatments (see, e.g. Darwin, 1883; Doodson, 1922) express
4({t), a(t) and R(t) as truncated, finite harmonic expansions in t.
Algebraically combining terms results in a finite expansion of the
form (2.25). Cartwright and Tayler (1971), in a recent study,
generate a time series for each EE{t} from corresponding series
for §, o and R and they then use Ffiltering techniques to reduce
CE{E] to the form (2.25). Only those terms which exceed a specified
amplitude are kept,

Since the important variations in 5, o and R have periods of
a month or longer, the C?(t) time dependence exhibited in (2.16)
and (2.17) consists of frequencies closely grouped around mi.
Consequently, w=0,1,2 and 3 terms in ?T are referred to as long
period, diurnal, semi-diurnal and ter-diurnal, respectively.

The Fourier expansion (2.25), of CE{t} is particularly
convenient for tidal calculations. The dynamical equations, (2.2),
are transformed to the frequency domain (by replacing Bt with iw)

and solved for

Z
(2.26) h{ 2t [(;—E—) Y?(e,fﬁ}]

Once computations have been completed for a representative set

of frequencies, results may be convolved with the Hsfm} to obtain

a time series solution.




2.3 Secalar Equations

The Lagrangian equations of motion (2.2) and (2.3), are
defined over the elliprically symmetric equilibrium Earth. To
minimize computational difficulties we transform this domain into
an equivalent spherical domain (the ESD). The ESD is pointwise
identical to the equilibrium Earth except near boundaries, where
each elliptical surface is smoothly mapped onto a spherical surface
In the ESD. The boundary conditions are altered appropriately.

(For a more complete discussion of the ESD, see Smith, 1974.)

The invariant vector equations (2.2) and (2.3) are conveniently
transferred to scalar equations over radius in the ESD by using
the generalized spherical harmonics, Din{5,¢}, described in Appendix
A, In particular, the completeness of the Dim allows us to
expand the Fourier transformed gravitationmal potential, displace-

ment, stress and luni-solar tidal force as:

lbflil',ﬁ,d},m) 2 E H’E}?(r,m} D:;Dfaj¢}
L,m

8(r,0,0,0) = T 8 si%(r,u) DX (8,6
£, my
{2.27)
E(rjaj¢$m} E EQEE, T;ﬂB (I’,(l-'l} Di.l(& +E)(9:¢’}
Z,m
a,p

]
E(r,0,0,u) = = PV Y (fg) Bfm{ﬁ,ﬁi =
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Here, the Eq are complex unlt wvectors described In Appendix A.
Substitulon of (2.27) into (2.2) and (2.3) transforms the dyvnamical
vector equationsinto a formlidable, infinite system of ordinary
differential equations over radius. The mechanics of this process,
together with the resulting scalar equations for'E = [}, can be
found in Smith (1974).

We have followed Smith (1974) (see alsoc Phinney and Burridge,

1973) in choosing as our complete independent set of unknown scalar

functions:

m m m

Uy (r,0), Vi(r,w), Wiirw), 2irw), Q e,
(2.28)

RD(r,u), (0] (r,0), (g1))(xr,m)

g s Bk R e g sl S g N R
where

m _ o _ omt o m_ .o ame

U = S, ,‘.f{::‘—si+5i ; Wy =8 -8
(2.29)

m [} m _ mot mo— m_ omot  mo-

g = TED P T 3 Byl Ty

m m
81y = 9, 7, * 416 () U}

and pﬂ[r} is the spherical part of the equilibrium demsity

distribution.
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For each £ and m the set of 8 scalars, (2.28), can be

conveniently separated into two groups:

1) a sphereidal set, G?, containiag UE, VE, P?, Qz,

2} a toroidal set, T?, containing W?, R?

E.m E.m
“’1}2’ (840,

m m
{The 9, and Ty

ment components, in which case they are represented in the text as

may alternatively refer to just the relevant displace—

vectors. )
This division is useful for the following reasons:

is dynamically coupled to any other of iunless 2-2° is even

a) no o 02

b) no 1, is coupled to any other :?, unless L-1' is even.

¢) no v, is coupled to any U:, mless £-2' is odd

W= Hge=H =g

These properties come directly from the invariance of (2.2)
and (2.3) under spatial inversion through the center of mass. In
addition, the assumed rotational invariance demands that no DE or

m
t, may be coupled to any other nm. or T

' 2 g unless m = m'.

The coupling rules prove valuable for calculations of both

tides and normal modes. In either case the exact solutiom to (2.2)

and (2.3} has the form
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As a comparison, the corresponding solutions for a spherically

symmetric, non-rotating Earth are

u= ﬂ: for an ,m tide, and either
(2.31)
i m m
u =g, or. u.= 3, for a normal mode.




CHAPTER 111

NORMAL MODE CATALOG

In Chapter IV the forced soiution to (2.2) and (2.3) will be
written as a sum of normal modes of the rotating, elliptical Earth
{the case EFD in (2.2}). We anticipate this by examining the
Earth's normal mode spectrum,

The best known normal modes are the seismic free oscillations,
a denumerably infinite set of modes, all with period less than one
hour. The dynamical behavior of these modes 1s determined by
elastic restoring forces. They are the only modes with non-zero
eigenfrequency for a non-rotating, everywhere solid Earth and are
altered only slightly by rotation and ellipticity (Dahlen, 1968,
1969).

An important class of modes for an Earth with a stably
stratified fluid core is the set of internal gravity waves, an
infinite family of normal modes with motion confined predominantly
to the core. Although these modes can be correctly computed for a
nﬂn~rntatin§ Earth (see, e.g. Pekeris and Accad, 1972) the effects
of rotation should be large and are presently unknown. The results
of Kudlick (1966) (see also Greenspan, 1968) for a confined
homogeneous, incompressible rotating fluid suggest characteristic

eigenfrequencies of less than two cycles per day with an

accumulation point at infinite period.
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A third group of eigenfunctlons which are of prime importance

to this study, are a set of three free nutations. These are:

1) The Eulerian free nutation of the mantle, commonly called
the Chandler Wobble (CW), with period of about 14 months.
The CW is predominantly a slow wobble of the mantle
figure axls about the mantle rotation axis. The Earth's
non-rigidity has an important effect on the CW eigen-
frequency and there is some accompanying deformation
(see, e.g. Hough, 1895; Love, 1909; Larmor, 1909; Jeffreys
and Vicente, 1957a, 1957b; Molodensky, 1961; Smith, 1977).

2} The Nearly Diurnal Free Wobble (NDFW), predominantly a
relative incremental rotation between the fluid core and
the solid mantle with period slightly less than one day.
This relative rotation is maintained through inertial
pressure coupling across the elliptical core-mantle
boundary. There is some elastic deformation associated
with the NDFW (see, e.g. Hough, 1895; Jeffreys and
Vicente, 1957a, 1957b; Molodensky, 1961; Smith, 1977).

3} The tilt-over-mode (TOM), a mode with exactly diurmal
frequency, representing a rotation around an axis slightly
different than.ii. The TOM does not depend in any way on
the constitution of the Earth and has no accompanying

deformation. Yet, desﬁite its simpliecity, it is a very
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important eigenfunction representing free periodic motion
relative to the invariably rotating reference frame, R,
and must be included in our normal mode catalog. (See,
e.g. Hough, 1895; Dahlen and Smith, 1975; Smith, 1977.)
In particular, the TOM will be seen to be strongly
excited by the &=2 diurnal tides.
A1l three of these nutational modes are characterized by a
large, nearly linear (in r}'EE:} displacement component in the mantle.
(In rectangular coordinates a linear ll term represents {£_+ ii} X T

motion, where g_and ¥ are unit vectors.) The CW and NDFW have, in

addition, fairly sizable G“Fl

T elastic components.

There are two other sets of modes of some importance to this
study, all of which are associated with particular zero—frequency
normal modes of a non-rotating Earth. These are 1) the axial spin
modes of the inner core, fluid core and mantle, representing
rotations about the EFaxis, and 2) the set of 3 uniform
translations - one for each spatial dimension. These modes are
all complicated by the fact that they contain both constant and
secular (linear in time) parts (see Dahlen and Smith, 1975).

a

The translational displacements may be written as s
-

Z ¥
] ; N ; T T P T
tranxslation in the z direction, and s°,, =8 + is , 58~ | =
~ we XLy X Y =1V
E E T T : : ~ e
~ is , where s and s represent translations in the X and y
m—x ¥ =X ~y . -~

directions, respectively. has- zero eigenfrequency and the

el

functional form
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(3.1) 5, = 2+ 8D)

where o and B are constants. Eguation (3.1) i=s a special form of

a L spheroidal displacement. The two modes ET and ST iy have

Ei-l xtiy =1

eigenfrequencies H! and -0, respectively (corresponding to zero

frequency in non-rotating inertial space) and the functional form:

T AL A b A%
(3.2) 8 ity [Eiiz} (a+8t) e
m=+1
representing a E b digplacement.

The constant,x, terms in both (3.1) and (3.2) represent an
Earth which is not centered on the origin of the reference system.
The secular, B, terms describe miform motion at a constant velocity
away from the origin.

The zero-frequency axial spin mode (ASM) for a given region

is more complex. Its time independent component has a displacement

representing an Earth which has been rotated slightly about the
EAaE;s relative to the reference frame. Equatiom (3.3) is

s displacement. The ASM also has a

=
equivalent to a linear To=1

secular part which describes an Earth which is rotating at a
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fanter rate than the reference frame. The principal displacement
of this latter mode is Et% x r. Kowever, the increased centrifugal
forces comnected with such motion must alsc deform the Earth
slightly. The accompanying deformatiom will be constant in time
(not secular) and must be found from the equations of motiom, (2.2)
and (2.3).

Other well-known modes of the Earth include inner core trans-
lations (the Slicher modes) (see, e.g. Slichter, 1961; Alsop, 1963;
Busse, 1974; Smith, 1976) and nutations (see, e.g. Busse, 1970).

These will be of decreased importance importance here, since they

deseribe motion eonfined mainly to the deep interior.




CHAFTER 1V

EIGENFUNCTION EXPANSION

An analytical technique often applied to forced physical
systems is to represent the motion as a linear combination of the
normal modes of the system. This method is used in geophysics,
for example, to compute synthetic seismograms from a given seismic
source and a sufficiently dense suite of spherical Earth free
oscillations. We describe, here, a similar technique in which the
tidal response is represented as a sum of rotating, elliptical
normal modes. The process is considerably complicated by non-
sphericity. Both ellipticity and rotation affect the Earth's
normal modes (see Chapter II1I) making computation difficult and
expensive. The Coriolis force (represented thix Bﬁi_in (2.2))
has the additional effect of serlously degrading the usual method
of expansion: it couples normal modes together inte an infinite
algebraic eystem (see Dahlen and Smith, 1975). A modified

formulation must be used and is developed, below.

4.1 Transformation to a Six Dimensional Solution Space

Taking the Fourier transform (in the time wariable) of (2.2)

gives

(4.1) —wzps + piuNs + K s = ..E..S'

L
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where w Is the perturbing frequency and the operators K and N are

defined as
(4.2)  Kg = oW +0s:Y [TH)] - 9T

(4.3) Ns=20x

8 8
- —

[¢E andvz are determined frﬂmJi using the second and third of (2.2)).

Let L2 be the set of all square integrable, vector wvalued,
complex funectlions defined over the equilibrium wvolume of the Earth.
Define X as the (dense) subspace of L2 containing all sufficiently
differentiable functions (i.e. functions in the domain of K) which
satisfy the boundary conditions (2.3). Given the applied force,ﬁs,
we must findi £ X which solves (4.1).

It is convenient to reformulate (4.1) so that only first
derivatives in time are present. Define the function space, H,

as the cartesian product

(4.4) H=1? x 12

Any element, z, in H is a siz—dimensional vector field of the

form

=1
o o)
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where uEl and _:?'2 are both in Lz. We further defline the dense sub-

space, UV c H as
(4.6) D=XxX

Suppose 5, £ X solves (4.1). Then the six-dimensional wvector

e D:
F ]
<o
(4.7) z =
iws
=]
solves
0 o) 0
(4.8) plwz = z + @
2 Nek -on/ " \:
LY

~]1
to see that S, - X and_x;sﬂ solves (4.1). Conmsequently, the two

" s :
Conversely, if Zo ('55 solves (4.8) and Z, € U, it is easy
formulations, (4.1) and (4.8), are equivalent.
Define the six-dimensional differential operator

o =1
(4.9) A=

[ n

Efp ¥
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and the vector

The solutions to (2.2) and (2.3) are exactly represented by
thuae_go e U which satisfy (4.11). This equivalence extends to the
special case'E-ﬂ. where the Bnlutinns,_ii, are the normal modes

of the Earth and solve

(4.12) w,z, = Az

with wy the eigenvalue associated with =z Equation (4.12) repre-

5
sents the non-secular normal modes on a rotating Earth as solutions

to a linear eigenvalue problem. Such a linear descriptiom is not

available using the original formulatiom, (2.2), because of the

Coriolis term, 0 x ati.
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4.2 Inner Product of H

It is reasonable to expect that the forced Fourier transformed
solution to (4.11},_&0 e D, can be expanded in terms of the eigen-—

funcl:i.anﬂ,_z' as

i}
(4.13) z = ?aﬁ_i

To develop (4.13) effectively it is useful to first find an inner

product on H which orthogonalizes the.ﬁi'

8 L
let y = Sor and z = i be any two elements in D. We
e =\

define a bilinear form ({ , )) on T according to
G148 ysa)) ofians e Yo taen)
2 _‘-'- wl-l‘ &) =1 =272

where (s,t) denotes the usual three-dimensional inner product
et

(4.15) (s,t) -f ps-t*
e Ao

with # denoting complex conjugation, p the demsity and ‘EFE the

volume of the Earth. We continuously extend (4.14) to all of H.




It proves necessary to modify H to make (( , )) an inmer
product. Let C be the set of all elements in H where

(4.16) z e CH((z,z)) £0
Define an equivalence relation, '=' on H as

(4.17) ysz 1ff y-zeC
.4 e

Any ce C is consequently equivalent to 0. The vector space, H,
together with the equivalence relatiom, (4.17), is conventionally
written as H/C, the 'quotient space of H modulo C' (quotient spaces
are rigorously defined by e.g. Rudin, 1973).

The equivalence relation, (4.17), is introduced so that
((z,2z)) is positive definite on H/C - {E}. ( ((z,z)) will be
defined as 0 for z = 0). It can then be verified that (4.14) is an

inner product. Completing H/C under the norm

6.18)  |z] = ((z,2)?

defines a Hilbert space which we continue to denote as H/C.
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4.3 Eigenfunction Expansion on H/C

Consider the operator A (4.9) with domain restricted to

P/C € H/C. It is not difficult to show that for any y,z e D/C:

(4.19)  ((7,42)) = ((ay,2))

Consequently, A is symmetric. It is beyond the scope of this work
to rigorously decide if A has a self-adjoint extension on H/C.
We assume this to be the case and denote the extension also by A.
We also assume the spectrum of A to be discrete (it must be real
since A 18 assumed self-adjoint).

From the spectral theorem (see, e.g. Rudin, 1973) we can then

expand any z ¢ H/C as

Gz, 2Tag,

where the-fn are eigenvectors of A in H/C and the a are scalar
coefficients. (Note the equivalence relation, =, in (4.20).) The_gn
are orthogonal under the inner product, (4.41). (They are eigen-
vectors of a self-adjoint operator.) Letting_gu in (4.20) be the
forced solution to (4.11) and taking the immer product of (4.11)

with Z,» Ve can solve for the coefficients, a
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1(Ez_))

*n 7 (_-0)((z_,z))

(4.21)

where w is the eigenwvalue associated with o

4.4 Composition of C

Let

CwC

8
e O
(4.22) fcn( iw s

be any eigenvector of A in C. Then

e OO

K 2
(4.23) ((z_,z )) = (_gc, =8 )+ S A
It is possible to show that
(4.24) (*sc’ 'E::) - EEE’EE} = G(Ec Er_} * ‘I;(f't’-s-c}
where EEEC’&C}, GEE,EC) lp(-f-cliﬂ} and EEC’E'C} are, respectively,

the elastic, gravitational, centripetal potential and relative

kinetic energy bilinear forms (see Dahlen, 1972,and Dahlen and

Smith, 1975).
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As a result,

(4.25) ((z42)) =2[T+ 7)1 <0
where V and T represent the time averages over one harmonic cycle
of the potential and relative kinetic energies, respectively (T
is not the total kinetic energy on a rotating Earth).

The dissipationless momentum equation (2.2) fur‘gl_c can be used
to independently derive the conservation of energy (Dahlen and Smith,

1975)
d
(4.26) it (T+V) =0

where V and T are the instantaneous potential and relative kinetic
energies of the deformation. For a dissipative system (4.26) is

replaced by

(4.27) :-I:- (T+ V< 0

Consequently, in the presence of dissipation, T+ V (and thus T + V)
is continuously decreasing. In this case, any Zo with “zc’-z-c}} <0

which is initially excited will centinue to grow: i.e., Zz. is

secularly unstable. For an Earth with 'realistic' material
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properties in the mantle and Inner core and with a stable fluid
core, no secularly unstable modes are expected to exist.

There is, however, a set of modes in { satisfying
{{EE,EC}} = (0 which rcan never havz accompanying dissipation: the
static axial spin modes and center of mass translations. These
modes are all associated with simple conservation properties of
the Earth {as will be seen), and their union is assumed ro span

the set, C.

4.5 New Modes in H/C

The elgenfunctions of A form a mathematically complete set
only in H/C - not in H, This is reflected by the equivalence
relation, "=', in (4.21). It introduces two distinct complications:
First, the forced snlutiun,.ED, is determined by (4.21) only to
within an arbitrary member of (. This undetermined component
(the 'projection’of z, onto C) must be found independently. This
is done in Section 4.6.

Second, and discussed here, the eigenfunctions of & in H/C
are not quite the same as those in H. More precisely, the linear

eigenvalue equation (4.12) is modified on #/C by replacing '=' with

=% %
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The solutions to (4.28) which are not equivalent to zero, include
all those normal modes in H (i.e., those satisfying (4.12)) which
are not in C.

In addition, since any Z. € C is equivalent to 0 in H/C,

there will be solutions, E} to (4.28) which satisfy

(4,29) ﬁEi = uizi +_§c

is the eigenvalue associated with Z;

in D/C, each of which

In H, where w Consequently

i

A has an additional set of normal modes Ei,
may be identified with one of the normal modes in C (the ASM™
and translations). To find these new modes in H/C for a given

normal mnde_z.:c e C, we write

(4.30) _E -

a1

Using (4.22) for Z. € C, and solving (4.29) for s .131:1::1“%1!"_1 gives

(4.31) Wy 1”1‘.5-1 + is

and

(4.32) [E+1HE. -EE]E. "'[m + w. -iN]s
o i i mei e T -

where W, is the eigenvalue of A in H, associated with Z.-
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Using the appropriate expressions for Each.fc as given in
Chapter III we solwve (4.31) and (4.32) to find

1} E—translationg Efc = g, w, = 0)

{4.33) =0 ,v=iz, w=0

3
L] - it

N A : noOA
2) xtiy translatioms Efc = filz, W, =+0)

(4.34)

- — o =
= +4 = +}
s, = 0, v i(f_lz] i W +0

3) axial spin modes (s = 2 x r, w. = 0)
e O e . C
KE— n s . A =
(4.35) — 5 = - iN (2 xr) 4 T REX LT w = 0
" Lo o [ ko L] -

Equations (4.33), (4.34) and (4.35) describe new modes in H/C which
must be included in the expansion (4.20). For the translations,
(4.33) and (4.34), the displacement cnmponent,hé; vanishes.
Consequently, excitation of (4.33) and (4.34) will not contribute

to any forced displacement. On the other hand, the associated

ASM displacement solution, E, in
[ .
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(4.36) 1is non—zero; 1t actually represents the elastic deformation

in the secular ASM (see Chapter III)., Since every s _ & C safisfies

(4.36)

fm
o

s is only determined by (4.35) to within an element of (. We choose
[
to define & for the ASM so that

Lg )

(4.37) giﬁfc} =0

for all s_ e C.
w, O
Consideration of (4.33)-(4.35) and (4.37) then shows that each

z, £ C can be identified with a new normal mode, z. & H/C
P

e

according to

(4.38) E =

where Efi’-f'c J =0 for all_fc g &
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4.6 Expansion of the displacemen: in H

The eigenfunections of A in H/C thus consists of the non-

translational and non-ASM normal modes in H, with the form

(4.39) 2, = £

iw =
n-n

an well as a set of new modes each associated with an element

¥ Ei,
of C and with the form, (4.38). By summing (4.20) over all these
modes and using (4.14) for (({ , )) and (4.21) for a , we find the

forced solution z , in H/C as
O

(4,40) 'ED = anEn + z amEm
n m
where
£f.,8 )
1 Q—ﬂhn
(4.41) a = = — o s
n 2 {mﬂ_m} [Wn{Ensiﬂ} = (-En’-lﬂj-{-?n}]
= (.5
(4.42) a = =
m 7= m K
({‘J _U-"} [{EE,ECJ o Emt pq...m]]
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Slnce&u as given by (4.40) is only determined in H to within
an element of C, we must further Eind the projection of Z, onto C

and add it o (4.40). Write

(4.43) i E az + Eaufm - Ebmgt
n m =

in H. The hrn represent excltation coefficients of normal modes
in C (1.e. the translations and ASHEJ and must now be found. Using

(4.43) in (4.11) and noting that

(4.44) ﬁEm = Ecm + Wz
we find
(4.45) %:t{'n*m“} B“En + %i{w—mcm} bmicm

-

*:Zn:am [1B)z +2 1-F

where w_ 1is the eigenvalue of z (¢ = w_ for every m). Taking
e e e m
the upper (displacement) component of (4.45) and then the convention-

al three-dimensional inner product with s gives
|l
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(4.46) T ile-w ) a (B‘__k,s ) + }:i{m—m } b (s ) 5

..__kh.(.‘.
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So, all together

i'zanﬁn+ z}:ﬁ[_“m EASH+2x.E}+b é‘x..r.]*‘
n AS]
(4.49)

~ e -~ il Pl
hz z + bx+iy{E+iz} + hx_i?(f—igi

where the sum over n includes all normal modes except for the ASME

and translations, a is given by (&.41},_§ASH represents the elastic

deformation associated with the sccular part of the ASM, and
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where M 18 the mass of the Earth

(4.54) an P
v

E

and the sum in (4.51} is over all normal modes except the ASHE-and
translations. (To find b_ and b__,, we have used (%,s ) =
z xtiy - T
A
{3;1&, fn} = 0 for any s not in €:)

Equations (4.49)-(4.53) represent the complete forced displace-
ment of rhe Earth for any f. The contributions from the transla—
tional modes merely reflect Newton's second law (F = q&} for motion

o
of the Earth's center of mass.

In particular,

(4.55) X 2
3 _‘—11:._1!§+1F{:,l"1

z2xiy

(wr)? 2M

wheraﬁfﬂn is the total force on the Earth. Since the tidal foree is

defined so that_fcﬂ = 0 {(see Section 2.2) the translatiomal

contributions to (4.49) will not appear in the tidal solution.
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The ASM contributions are associated with Euler's equation for

the Erennponent of the Earth's angular momentuom

(4.56) d_

where N and H are the torque and angular momentum. A non-zero Hz
(proportional to EE, 2 ‘.E}] will cause the Earth to spin more
rapidly about the % axis, an incremental displacement proportional
to z x r. The resulting increase in centripetal force which results
produces an elastic-gravitational deformatian.uégsﬂ. For the tides
on an axlsymmetric Earth, “z = 0 and EAEH will vanish.

The other ASM contribution, represented by bASH’ describes the
increased spin needed to offset inertia tensor perturbations:
angular momentum must be comserved. This term is not dependent on
the applied torque and must be included in the tidal solutiom.

(It will be shown to describe changes in the Earth's rotation rate.)

For the luni-solar force, then, the complete solutiom is

RS ST Y o
n

with a_  and b, ., given by (4.41) and (4.51).
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4.7 GSignificance of the Expansion

L, in (4.41) implies that if the
m
Earth is forced at a frequency near a particular normal mode eigen—

The resonance factor,

frequency, that mode may be highly excited. This phenomenon will
be shown responsible for perturbations both in the Love numbers
near $1 and in the annual and semi-annual nutations (both dues to
excitation of the NDFW) as well as for the observed nutational
resonance at exactly one retrograde sidereal day (caused by
excitation of the TOM). (Note: a retrograde diurnal frequency in
our Ilnvariably rotating frame 1s equivalent to zero frequency in
inertial space.)

Conversely, for any narrow band of perturbing frequencies far
removed from theset of excited normal modes, the response is
smooth. This can be used to reduce the number of caleculations
needed for many of the tidal groups.

However useful (4.57) is as a coneceptual tool, its computa-
ticonal utility is often limited. Successful application of (4.57)
is only possible once a sufficient number of rotating, elliptical
normal modes have been computed. Since such normal mode ealculations
are not trivial, it is often easier to integrate the forced
equations (2.2) and (2.3) directly.

The one tidal exception is the set of computations for the

1=2, m=1 (diurnal) tides. Both the NDFW and TOM eigenfrequencies
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lie within the diurnal band, and their eigenfunctions are highly
excited. To recover the considerable frequency dependent structure,
results must be found at many percurbing frequencies. In this case,
(4.57) permits a very efficient means of computation. The
efficiency is, in fact, increased by first directly integrating
(2.2) and (2.3) for the response S at some diurnal frequency, w,

away from any resonance. The response, €, at any other frequency

w, 1z then

71 2: Egifn} W mﬁ
(4.58) =g +5 e = e
' Ft g (s .anJ gfn,iﬂqfn} (mn mﬂ(mﬂ-mﬂ) n

gl w=

{(The ASM is not excited by the diurnal tides on an axisymmetric
Earth.) Since the free oscillation contributieon to s is mearly
the same as to s (a fact reflected by the correspondingly small
factor {wﬂ—w}f{um—m) in (4.58)) fewer modes are needed in (4.58)
than in (4.57). 1In fact, by comparing results computed from (4.58)
with directly integrated solutions, it is found that nine normal

modes (six free oscillations and the three mantle nutations) are

sufficient to guarantee accuracy well above one part im 300.




CHAPTER V

COMPUTATIONAL PROCEDURE

The infinitely coupled system of equations developed in
Section 2.3 is truncated, here, in 5.1 and solved mmerically in
5.2. Errors introduced by the truncation are investigated in 5.3
and an attempt is made to correct for them. Section 5.4 summarizes

the computational procedure used for each tidal group.

5.1 Truncation

The Earth's tidal response is found either by computing normal
modes and using (4.57) or (4.58) or by integrating the forced
equations, (2.2)-(2.3), directly. The exact, coupled infinite
get of scalar equations over radius for both cases are described
{n Section 2.3 and have solutions of the form (2.30). Since it is
not feasible to solve infinite systems, some form of truncation is
needed. In particular, (2.30) is arbitrarily restricted to a

finite number of GE and 153

Oo-i %545
(5.1) U= . or +...+T, , *¥0 +Tgq F e + T or
L-1i 24+

This procedure results in a finite system of equations and

unknowns and can be handled, at least in principle, with existing

numerical techniques. Remeber that the truncated equations
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represent only an approximatiom to the dynamical behavior of the
Earth. It is not safe to accept the results of such a calculation
if they cammot be substantiated by independent means.

Consider, as the important example here, the tidal case. It
will be shown in Section 5.3, below, that the tidal solution in
the upper mantle for an %,m potential term can be expressed
accurately to at least one partin 300 as

m
{5.2) u =0, 5 + T

-1 %

m
tag s 242

m
w41 T

To understand the significance of this series of sphercidal
and toroidal components, consider the familiar spherical, non-

rotating case. There, the tidal response simplifies to

(5.3) u = o’;

The set of displacement and gravitational potential scalars

represented by (5.3) is simply:
(5.4) Uh(r,0), Vo(r,0), (P30

(see section 2.3).




The surface wvalues of these three scalar functions are

proportional to the Love numbers, h ii and ki’ respectively,

E‘II‘

and, in fact, are independent of m.
For an elliptical rotating Earth the set of pertinent scalars

represented by the approximate solution (5.2), is expanded to:

m E.m m m E.m
(5.5) UJI.-—Z’ ?E_E! {¢1)R'-2, I"‘ri"_ls Uf.’ v?r (¢1) B

HE+1’ UE+2’ ??+2, {¢fji+2
To describe this enlarged scalar set using Love number
terminology, it is necessary to introduce a new group of Love
numbers, each proportional to the surface value of a particular
member of (5.5). Another approach is described in Chapter VI,
where the physically observable quantities are related directly

to the scalars in (5.5).

5.2 Solving a Truncated Problem

The approximation (5.2) represents, in general, 22 scalar
unknowns with an equal number of scalar differential equations.

Although a system this size is In principle directly solwvable, the

effort needed is extreme.
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Instead, a more indirect techmique has been employed which
cakes, as its starting point, an algorithm developed by Smith
(1974, 1976, 1977). Smith was interested in the normal modes of
a rotating, elastiec, slightly elloitical Earth, the problem
corresponding to 5;- 0 in equation (Z.2) above. To solve the
resulting infinite set of scalar equations, he took as a truncated

form for his solution

m m
(5.6) um Ty +oy T

(Equation (5.6) is the same approximation used by Crossley (1975)
and Shen and Mansinha (1976) to describe motion in the fluid outer
core.) The resulting system is tenth order, and its numerical
golution is straightforward.

Smith's normal mode algorithm need be modified only slightly
to find the approximate tidal solution to (2.2) and (2.3) with the
truncated form (5.6). First, ﬂfﬂt = vT + ¢f is defined as the sum
of the tidal and induced potentials. Since v? ?T = 0, it is
strnightfor;ard to show that the set of equations (2.2) and (2.3)
with E.' - EFT’ is equivalent to (2.2) and (2.3) uithui = 0 and

¢E replaced by & The only exception is at the outer surface,

Tot"

where ¢ must satisfy different boundary conditions than ¢§.

Tot
(This is a standard technique in tidal calculations.)
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5.3 Truncation Errors -

Use of the truncéted series (5.8) naturally results in
discrepancies between the computed and exact solutions. As shown
below, the errors could conceivably be large in the core. However,
in the mantle the relative error should be the order of the
ellipticity, and a correction is computed as a first order perturba-

tion.

Internal Waves in the Fluid Core

Smith (1977) has found serious discrepancies between his
calculations of internmal gravity-inertial waves in the core for
simple Earth models and known analytical results. He attributes
the differences to the truncation scheme used, (5.6).

A corresponding problem can be anticipated in the tidal
solution. Consider the forced response, g, as a sum of excited
normal modes, as in (4.57). Errors in s due to truncation can
then be related directly to corresponding errors in the normal mode
results. Since the internal gravity waves cannot, at this writing,
be adequately computed, their contribution to the sum in (4.57) is
unknown; the solution in the core must always be assumed suspect.
However, these modes probably represent motion confined almost
entirely to the fluid core, and, as such, appreciably affect the
mantle tidal response only when the perturbing frequency lies very

close to a gravity wave eigenfrequency. Although such a coincidence
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is certainly conceivable, we are obliged to omit these modes when
using the elgenfunction expansion (4.57), and to look carefully

for any evident excitatlon when Integrating the equations directly.
Maturally, should these core waves ever be accurately computed,
they can be incorporated into the solution at a later date by

including appropriate terms in (4.57).

S§ize of the Error in the Mantle

The tidal solution for a spherical, non-rotating Earth is
exactly u = 0j. The combined effects of ellipticity and the
rotationally induced Coriolis and centripetal forces serve to
couple spheroidal and toroidal components together yielding a
solution of the form (2.30). Using a truncated solution form, such
as (5.6), is exactly equivalent to ignoring certaln coupling terms
in the dynamical equations. To see this, consider first a
spherical Earth with a Coriolis force. The Coriolis force couples

0, terms te Ty, terms. The order £ body tide for such an Earth

L

is a solution to an equation of the form
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« Boyo Coup Dgyp O O b Opt0 0
0 Bpyy Co4q Dppa O 0 0 To41 0
0 0 B, € D 0 0 o, -1 5
0 0 0 By y € g Dygy 0 To 1 0
0 0 0 4] EE—Z Ci*z D£_2 U£_2 0
iy : : i SR L.:ﬁ
(5.7)

where fk is a term in the luni-solar tidal force with angular order
%, and each B,, C; and D, is a vector valued operator. (The {C,}
lie on the diagonal.) ThE'{BR} and {DE} represent coupling
between spheroidal and toroidal components and are due totally to

Corlolis effects.

Equation (5.7) has the form

(5.8) M-z = f

where z is the exact tidal solution. When we truncate the solution

to (5.6) and1solve (2.2) and (2.3) we are, in reality, solving

(5.9) M'»u=f

for the truncated solution, u, where M' is a matrix identical to M

except with the coupling terms DL+ and Ei—? set arbitrarily to =zero.

2
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We may always write the exact solution, z, as the sum of the

truncated solution, u, plus a correction, Aun:

(5.10) z =u+ Au

Then, Au satlisfies

(5.11) Mofuim (MY S W E R
where .
0 0
Dota Tos1 Fosr
(5.12) Fu- B - 9
0 0
|
0 0 |
By 2 To Fo 2
0 0

with T the tidal components of u.

11
This process may be extended to include the corrections due to
both the centripetal force and ellipticity. The latter poses some
added difficulties since it couples together components through

the boundary conditions, as well. However, it is always possible

to transform a homogeneous volume equation with non-homogeneous




0

boundary conditions to a non-homogeneous volume equation with
homogeneous boundary comditions. This is done by adding or sub-
tracting to the solution any well-behaved function which satisfies

the boundary conditions, athough aot necessarily the volume equations.
Suffice it to say that when appropriate modificatioms are effected,

we write the total truncationm correctiom, Au, for elliptical,

rotating Earth as the solution to (5.11) where, for the general

case, F has the form:

Fois
Foso

(5.13) F=[M -HMu-=

— —

Here, M is the exact dynamical operator for am elliptical, rotating

Earth and M' is the approximate operator used to find the truncated

solution, u.

Consequently, the truncation correctiom, Au, is represented

as the response of the rotating elliptical Earth to a fietitious
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force, F. As such, It may be expanded as a sum of eigenfunctions
according to (4.57), with fgr Fc in (4.41).

Since (M'-M) is a known operator and u is calculable (it is
the solution to the truncated problem) it is always possible to
find F. 1In fact, for each tidal computation the components of F
are observed to be everywhere smaller than the tidal forces, EE’ by
a factor of at least 200.

As a result, it is tempting to conelude that Au should be
smaller than the complete solution, z, by about the same factor.
This assertion must be reparded carefully.

The equivalent force, F, though pointwise much smaller than
fi’ is also of markedly different character. Im particular, F
would appear to excite normal modes with large Tpip OF Tgyy
components, while fR mainly excites those with large UE terms,

The consequences of this observation for fAu are mixed. The seismic
mode contribution to Au poses little problem. All such modes have
periods of less than one hour, far removed from any pertiment tidal
band. This eliminates the possibility of resonance excitation of
these modes by F. As a result, it is safe to conclude that although
F may excite different seismic modes than does fi’ the total contri-

bution of these modes to fu should still be smaller than the

seismic mode contribution to z by about 1/200, the ratio of F to fi'




Other modes are more of a problem. As expected, little can be
said about the intermal gravity wave contribution to Au. Suppose,
for example, there was a gravity wave with eigenfrequency near
the tidal frequency, and which happened to 'look' significantly
more like F than like fi' Such a circumstance could conceivably

overcome the small F to f, ratio, so that the gravity wave contri-

z
butions to Au might be as large or even larger than their correspond-
ing contributions to z. However, we must agaln seek solace in the
fact that these modes probably consist almost entirely of core
motion. As a result, their contribution to Au in the upper mantle
should, in any case, be much smaller than the seismic mode contri-
bution to =z.

There are three tidal cases where F excites other modes. For

the #=2 m=0 (long period) tides, the F component of F

L=2(=0)
excites the zero frequency axial spin modes. However, as will be
discussed below, each ASM is excited approximately 300 times as
much by the corresponding tidal force, fi’ itself. So again, the
ASM contribution to Au will be much smaller than its contribution
to the complete solution, =z.

The £=3 m=1 and 2=3 m=0 tides are slightly more of a problem.

The F components for these tides excite both the Slichter

i-2(=1)
modes and the center of mass translations, none of which are present

in the truncated solution, u. Little can be said about the

Slichter mode excitation coefficients. However, neither of the
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two tidal groups has a representative period near those of the
Slichter modes (4-5 hours, see Smith, 1975) implying no evident
resonant responses. Furthermore, these modes exhibit very little
mantle ﬁntian, suggesting that their contribution to the tidal
surface motlon should be small indeed.

In contrast, the translations are highly excited by Fg-z for
these tides. The discussion of Section 2.2 shows that the =3 m=l
and #=3 n=0 components of fE impart a net linear momentum to an
elliptical Earth. Due to the restrictive truncation, (5.6), for u,
the resulting large translational motion is absorbed entirely by Aua.
However, as shown in 2.2, this net center of mass motion should be
exactly balanced by the Earth's response to additiunai f=1 terms
in the tidal potential, (2.23). Computationally, these extra terms
may be added directly to F when solving for Au. The result is that
almost all of the translational motion disappears from lu. The
small amount remaining comes simply from the fact that the trunca-
ted solution, u, does mot quite conserve momentum, Consequently,

a weakly excited translational mode must be present in Au to
preserve a stationary center of mass. The net contribution from

this mode to fu will be, however, about 300 times smaller than the

seismic mode contribution to =z.
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Method of Computing hu

Let z be the complete tidal solutiom, u the truncated solution,
and Au = z—u the correction to u. It was shown ahéve that the
magnitude of u should be about 200 times smaller than that of =z
throughout the upper mantle. This suggests the following first
order method of finding Au.

Consider equation (5.11) for the truncation correction Au.
This equation represents the response of a rotating, elliptical
Earth to the fictitious foree, F. Like the original tidal problem,
{5.11) is not solvable exactly. As before, a trunction scheme is
needed. Since Au is so small we do not require great relative
accuracy in its determination. In fact, the scheme we adopt is to
approximate u as the response of a non-rotating, spherical Earth

to the force, F. Write the total dynamical operator of (5.11) as:

(5.14) M= Ho + &M

where Hﬂ is the operator for a non-rotating, spherical Earth, and
&M represents the corrections due to rotation and ellipticity. We

then solve for an approximation to Au from

(5.15) M Au = F
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The sclutien, Au, should adequately represent Au with the

following two exceptions:

1) Since rotation is witally important to the core response
and is not included in HD, hu will undoubtedly suffer in
the core. This problem is presumably of little importance
for the upper mantle response, as discussed above.

2) The axial spin mode is excited by F£~2 for the £=2 wm=0
tides and so must be present in Au. However, its contri-
bution will not show up on Bfu due to the absence of
rotational terms in Hﬂ. This mode must be put into Au
separately, as discussed in Section 5.4

One other condition is imposed on Au: only the spheroidal terms are

included, This is equivalent to ignoring F in (5.13). These

243
components are the result of elliptical terms in M-M' acting on the
Tpeq Parts of u. They are significant only in the core (they are
observed to be ~1 x 106 times smaller than the corresponding fﬂ
terms in the mantle). As a result, one would expect minimal
accompanyinﬁ excitarion of seismic or other mantle modes. In any

case, the strong dependent of F£+3 on the poorly computed internal

gravity wave contribution to u, would make inclusion of F£+3 of

questionable value.
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The numerical technique used in solving (5.15) is not much
different from the standard free oscillation technique described in
Section 5.2. The first step is to compute a particular solution,
satisfying all non-homogeneous volume and internal boundary
equations. This solution will not, in general, satisfy the free
surface boundary conditions. Next, a complete set of regular,
independent homogeneous solutions are found. These are added to the
particular solution in such a way that the free surface conditions

are satisfied.

5.4 Computations for Each Tidal Group

This section offers a brief descriptiom of the calculation
process for each tidal group. Throughout, z will represent the
exact tidal solution, u the truncated solution with the form (5.6),
fu = z - u the truncation correction to u, and Au the approximation
to Au found from (5.15). The final adopted approximation to the
tidal response will then be u + Au. From the discussion above,
we may conclude that the upper mantle wvalues of u + Au should
agree with the corresponding values of z to ar least 1 part in 300.
Any (unlikely) larger deviations can be assumed to arise from the
contribution of the imperfectly known internal gravity waves to =z,

through (4.57). As has been mentioned, should these modes ever be

adequately calculated, the corresponding tidal contributions can

easily be computed.




67

1) 4=2 m=]1 tldes

These are the principal diuwrpal tides. The calculated response
consists of
=1 1

e 1 1
(5.16) u + Au Tgeq * 05 + a5 + %

The spheroidal dl

2 component represents the primary tidal

response. The T} component describes the corresponding forced
nutations of the Earth. The other two components represent addition-
al tidal deformation and are found to be at least 100 times smaller
than G; throughout the upper mantle.

There is considerable frequency structure in this tidal group.
Both the NDFW and the TOM have eigenfrequencies within the diurnal
tidal band and are higly excited by certain tidal lines. A4s a
result, it is important to compute the response for many tidal
frequencies. The first step in finding u + Au is to find the
truncated solution
(5.17) u=T5+ 0+ TS

For this, the eigenfunction expansion technigque is used as

follows: a base tide, O is computed using srandard integration

l!‘

methods. In addition, nine truncated eigenfunctions are found:
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6 seismic modes and 3 nutations (NDFW, TOM, CW). These are added
to the ﬂl tide according to (4.58), to find the truncated response
at any other frequency. In this manner, results are computed for
a complete set of frequencies at a relatively inexpensive cost.
Once u is found, Au is calculated from (5.15) without undue

difficulty. &Au has the form:

(5.18) fu =0

2) =2 m=2 tides

These are the principal semi-diurnal tides. The approximate

response is taken to be:

-— 2 2 2
(5.19) v+ B = o) ) + T o
The primary component in (5.19) is Uﬁ. The other two components
are reduced throughout the upper mantle by a factor of about 200.
There should be little significant frequency structure in
u + Au. For this reason, calculations are done only for a small

set of important tidal limes. The slight frequency structure then

permits extrapolation to any other semi-diurnal frequency.
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The truncated solution, u, consisting of

2
(5.20) g uﬁ + 12

is first calculated using the standard integration approach.

The correction
2
(5.21) fu = 04

i1s found with little difficulty.

3) i=2 m=0 tides

These are the principal long period tides. The calculated
response is
o e m=0 0

0
(5.22) u+ Au= 090 + T, + 0,

a0 0
+
+ 13 54
. (1] 250+ 0
The primary tidal response is Tye In addition, the 11 component
represents an incremental rotation about the E axis and is
responsible for long period changes in the Earth's rotation rate. The

other three components are less than a percent of Ug through the

upper mantle.
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The only silgnificant frequency dependence in (5.22) is found
in the T? component. It comes from near resonance excitation of
the zero frequency axial spin modes. What is happening, as discussed
in Chapter IV, is that the important tidal response, Ug, serves to
change the greatest moment of inertia, which by itself would alter
the angular momentum. Since the tidal force cannot exert a torque
about the spin axis on an axisymemtric Earth, the induced angular
momentum change must be balanced by a corresponding change in the
spin rate. The result is a large linear (in r) Tg component. Since
the angular momentum from such a term is proportional to mTE, with
w the tidal frequency, we would expect T?tc vary with frequency as
1/w. This behavior can alsoc be anticipated directly from the
eigenfunction expansion expression (4.57).

The consequences are that although there is frequency depen-
dence in (5.22), it is evidently predictable from just a few tides.
As a result, calculations are done for only a few frequencies, and
the results extended throughout the tidal band.

The tguncat&d solution
(5.23) i +uﬁ+-rg

is first found by direct integration. The correction:

(5.24) By cg +0
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may then be computed from (5.15). However, as described above, the
real correction, u, should include a contribution from the axial

spin mode, as well (i.e. a TG component). What happens is that,

1
like the Gg component, Ug affects the greatest moment of inertia.
As a result, the axlal spin mode must be additionally excited to
offset the induced angular momentum. This second excitation will
be about 300 times smaller than the primary ASM terms, since Gg

is approximately 300 times smaller than ﬂg. The extra contributiom
may be computed, once Au is found from (5.15), by calculating the

change in the angular momentum due to Gg and then absorbing this

angular momentum into an excited ASM,

=3 m=3 apnd 2=3 n=2 tides

These are ter-diurnal and semi-diurnal tides, respectively.
As for all I=3 tides, the amplitudes here are smaller than the =2

amplitudes by at least a [actor of 60. The assumed response is

(5.25) u+ Au = Gz:g + Tﬁ + Tg for m= 3
(5.26) o rg:g +-c§ + ai + of for me2

The principal tidal response for both (5.25) and (5.26) is ng.
The other components are reduced in size near the surface by about

a factor of 100 or more.
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Little significant frequency dependence is expected over these
tidal bands. As a result, only three of the larger tides have been
computed for each group, with the result assumed to be extendable,
as usual. In both cases, standard integration is used to find the

truncated solutions.

(5.27) .- ag + -rz =3
2 2 o
(5.28) u = T2 + 53 +'T¢ m=2

The corrections
(5.29) Bu = o’;

are easily computed, though of little importance.

¥=3 m=1 and i=3 w=0 tides

These are diurnal and long period tides, respectively. As
discussed in Section 2.2 both the #=3 and the 1=3 w=0 potential
Lerms exert a net force on the elliptical Earth. However, as shown
in Section 2.2, the true tidal potential must include additiomal
YE:i and YE terms, the sole effect of which will be to offset this
center of mass motion. These latter terms may, in principle, be

tacitly included when computing Au by first solving (5.15) and then




subtracting off all net translaticnal motlion. However, since Au
is so unimportant for the =3 tides we have not computed it here.

Instead, only the truncated solution, u, is found

(5.30) u--r';+o’;‘+rz‘ m=0 or 1

As might be expected, u shows no anomalous frequency structure.




CHAPTEE VI

RELATIONSHIPS BETWEEN TIDAL DISPLACEMENTS AND OBSERVATIONS

The tidal solution, described in Chapter V, consists of a
scalar gravitational potential field, ¢f, a vector displacement
field, 3, and a second rank tensor stress field,E. Physical
observations of these quantities are restricted to the outer
surface of the Earth. In this Chapter we will develop the
relations between the surface tidal solution and a variety of
physical observables. The particular quantities modelled are:
tilt, strain and gravity signals; variations in astronomical
latitude and longitude of the instantaneous gravity normal (local
vertical): perturbations in the free space gravitational potential
due to the Earth's deformation: and inertial space vector displace-

ments of the Earth's surface.

6.1) Gravity
Consider a fixed point, P, on the Earth's surface with unde-
formed (Lagrangian) position vector, x. The deformed (Eulerian)

position of P at time t in the invariably rotating coordinate

system, R is:

(6-13 *E{ij t} -i't'i{:i; t}




where Jigi.t] is the incremental Lagrangian particle displacement
described in Chapter II. The gravitarional acceleration at P is
the Eulerian acceleration at r:

P

(6.2) .fE(-E} -EE(: +58) = g (0 + 5778, (%)
Expressing By a8 the sum of the undeformed acceleration, g ,
- s 0
and the negative gradient of the incremental Eulerian potential
energy, ¢E, gives
E
1

(x) - 7¢

0 e

+ g-Vg

[N s

(6.3) BE (3} -8

Suppose a test mass is dropped from P at time to' The

position of the mass at a later time t may be represented as
(6.4) position = r(t,x) + d(t,x)
L L

Hhere-i{t,sg is the separation vector between P and the falling

mass. The equation of motion for the mass is

(6.5) 22(xkd) + 20 x 3_(r+d) + 0 x (@x(ctd))
| e e | T, (. PO S

E
= E —i";'l + 5.Vg

L=
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Or, since r = x + gu:
e T -
2
d P = -4 1 +
(6.6) ati-l‘ZEI: d+hx(ﬂx£] -Eﬂ ".Exf:ix-:j} 5g
where
(6.7) fg = = ?¢E + 5+Vg . - 325 -2 x9s8-0% (R x8)

is the tidal perturbation in the effective gravitational accelera-
tion. 4g 18 thus affected by changes in the Lagrangian gravita-
o
tional acceleration {:Epf +FETEEQ} as well as by tidally induced
inertial, Coriolis, and centripetal forces acting at the reference
point, P,
The vectorhgu - Ox(0xx) is the apparent gravitational

acceleration on an unperturbed Earth and may be written as -ﬁnﬂ

~0

where ﬁo is the outward unit vector antiparallel to the acceleration,

and au is the acceleration magnitude. We may analogously express

the total ﬁetturbed acceleration as

-
(6.8) ..,,E-::- -3_ x {Ehx_x_} + ﬁ‘§_= _AEEE
where
(6.9) A=A -T -5g
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s the magnitude of acceleration and

M >

Ca M A L &
(6.10) Eg e L} ana] Ag - + &n
is (opposite to) its direction (1 is the 2nd rank identity tensor).
Note that 30 and Eg will point tewards the Earth's exterior and

both have unit magnitude.

The simple picture of a test mass falling from an Earth fixed
reference point may be applied to model many instruments. The
most effective vertical gravimeters are conceptually just a falling
mass with some additional non-gravitational furn:e,_ﬁ, applied to
keep the mass continuously at the reference point. In this case

dﬁi?t} = 0 and the observed magnitude of f will be (from (6.6)):
P £

& = - ¢ | =
620 Jolieelg - S Qengaigy) o,

Consequently, the tidal perturbation in |f| (and the instru-
Lo

ment reading) is
(6.12) 6f = - ?lo-ag
- T

with §g given by (6.7).
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This general dynamical relation between the gravimeter output
and the tidal deformation may be compared to the simpler spherically
symmétric, non-rotating expressions where !ﬁu = E, =0 and

B = -A £. In the spherical case, dropping the small 325 term
w0 o= t

in fg as is customary, gives:
L™

E ~
(6.13) 6f 3r¢1 +.ﬂ T arAﬂ (spherical case)

which is proportional to the familiar combination of spherical Love
numbers, 1 - %k + h. The complete expression for &f (eq. 6.12) on
a rotating, elliptical Earth is consequently modified for inertial,
Coriolis and centrifugal effects acting on the reference point, P,
for elliptical perturbations in the unperturbed gravitational
acceleration, B, and for elliptical and centrifugal effects on

the total unperturbed acceleraticn normal, :ﬁa. After some algebra,

—Eln-‘,& can be represented in terms of the computed solution scalars

described in Chapter II. Numerical results are given in Chapter IX.
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6.2) Tilt

Any poin:._z, on the outer geometric surface of the unde-

formed elliptical Earth will satisfy
(6.14) T()=r-2e(e)rp? (0,8) ~c =0
& (s 3 oo e Q

where r is the mean radius of the surface, Dﬁu is a generalized
spherical harmonic described in Appendix A, e(r) is the ellipticity
of the surface, and the Lagrangian puint,qi:, is described by the
apherical coordinates (r,0,4). an, defined by (6.14), is simply
o utflity function).

The local unit vector geometrically perpendicular to this
surface is

(6.15) B, =37 /|91 |

o]
Because of the assumed hydrostatic equilibrium of the unperturbed
Earth, this definition ﬂfﬁu as the geometrical normal to the
surface must coincide with the unperturbed gravitational normal,
a » defined in section 6.1.
-0

When the Earth is deformed each Lagrangian point, X is

displaced to r = x + s, Since the surface particles of the
Py W P, F
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deformed Earth are the same as those of the undeformed Earth, we

see that the Eulerian surface satisfies:
. = - g-¥ =0
€16 T = T - g9,

Consequently, the geometrical mormal to the deformed surface

is

(6.17) Bg(x) = VT (1) - 89T VIZIT (x) - 5°77 ]

8 a nanlll N &

By writing r = x + 8 we may expressﬁ in Lagrangian
s,

[ ey B

coordlnates as
V(s-7T ]
A A A A - O A
E = i s ———— - g7
(6.18) Ag(x) =n (x) - [1-71] { s n]
A tiltmeter measures horizontal components of the incremental

spherical angle, A, between the instantaneous geometrical normal,
e

Es‘ and the instantaneous outward gravity normal :n"g as given by

(6.10).
~ A A
(6.19) A=B,-n,=@-n1)-[6g/a - V(s-¥T /|97 |
+ 5«90 ]
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The tilt in the East ( or ¢) direction is

(6.20) bg =

Ym

b
and that in the (approximately) north direction is
(6.21) Ay = (€, x 0 )eA

- - -

(Note that for an elliptical Earth the horizontal vector §¢ xﬁo
is not quite equal to EB}. For the spherically symmetric case,

(6.19) reduces to

T Y l E
(6.22) 4 = [1-2f] [’E'Ef.;? - Aﬂ_gnpl] (spherical case)
which fa proportional to the spherical Love number combination:

1+ k - h. Complete scalar representations for 'R'E. and é‘!’l on a

rotating, elliptical Earth are given in Chapter IX.

6.3) Strain

Consider two closely spaced Lagrangian points, X

the Earth's surface. These points are tidally displaced to

and Zp» on

..:tl +-E{311, t) and X, +.E{Ez,tj, respectively, with a separation of




LY

(6.23) L= |x; +8(x,.t) - x, - 5(x,,0)] A
Since
(6.24) f{,’fz'ﬂ = 5(x;,t) + (=, - X,)7s

and defining the wnperturbed baseline length as

with direction

'x—
- ul.’.‘z
(6.26) iﬁ Lo -

we find the strain:

(6.27) L/L = 1 +
(]

Yoo 3

i,
-‘]’s-j‘_
-

0 e =0

Observed tidal variations in strain are represented by

A
Vg=-1
O wpq =0

(6.28) s(L/L) = 31_,
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.S
h(LJ’LﬂJ ls dependent on the choice of baseline orientation, ?'o’
which is assumed tangent to the surface of the unperturbed Earth

ry F i
(or normal ton ). & may be expressed as

-0 ~0

F Pl A A
(6.29) j"u = gin Es e, — cos ES (eq X Eu]

A
where ﬁa is the orientation angle af}n measured clockwise from
North. (e

~
elliptical Earth is not quite equal to ?ﬁj'

xjﬁc is tangent to the surface of the Earth but on an
Using (6.29) and (6.28) gives

2
sin GE

L 2 ’
(6.30) 6( Lu) E'.*IS cos Es ~ Eyg COS E!IS sin EE + € o

where €ns’ ENE and Epy are the three tangential components of strain

and are independent of EE.

(6.31) Cns = (E(ta KEQ}IEE'(% x Eu)
L ~ "~ ~ e
(6.32) E‘.HE --E'?.Ef.. (E¢ xEu) + (E¢. xn )-Vs E¢
e A
(6.33) - E¢-E-E¢

Scalar representations for ®Ns® ENE and €py are given in Chapter IX.




6.4) Astronomical Co-Latitude and Longi tude

defines two angles, © and X, at P, by:

(6.34) cos 0 = 8 -2
(6.35) sin O cos A =1 _+%
~T

cal co-latitude and (eastward) lcongitude at P.
(6.36) 0 = an + &8

(6.37) A = 10 + 8

(6.35) with n replaced by B , we find
- 0 #

By writing
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Classical astronomical position measurements reflect changes
in the inertial space orientatiom Of.gg’ the outward instantaneous
gravity normal as given by equation (6.10). At any surface point,

P, the direction nf'ﬁg in the uniformly rotating frame, R, uniquely

s
where 2 and g are unit wvectors withlg in the direction anE and x
along the equilibrium Greenwich meridian (see figures 3a and 3b).

It 18 econvenient to think of © and 3 as the instantaneous astronomi-

where the unperturbed angles ﬁﬂ and lu are defined by (6.34) and
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N>

¢?>

FIGURE 3a

FIGURE 3b

Figure 3. The astronomical co-latitude, @, and longitude, A, at

. the surface point, P. fi, is the instantaneous gravity
normal. Figures 3a and are, respectively, perpendicu-
lar to and coincident with the Earth's equator.
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L |
(6.38) sin ﬂn 60 = = qﬂg.f

{6.39) 8in ©® sin A &)X -~ cos © cos A &8 = - &n -;
o o o o g A

where {EE is defined in equation (6.10). Equations (6.38) and
(6.39) are algebraically reduced to the sealar representation
for §) and 50 found in Chapter IX. However, as will be described

in Chapters VII and VIII the results given in Chapter IX do not

include the effects of the diurnal Tm#l or long period rnpﬂ tidal

i=1 f=1
components,. Their contributions will be considered separately

in Chapters VII and VIII.
The angles 0O and ) are closely related to stellar observa-

tions of zenith distance and transit time. Consider a star, S,

with known inertial space declination 4. The zenith angle,

Z'I

L

between S and the sidereally rutating'ﬁg is measured when S, a

and Eg all lie in the same plane. So (see figure 4)
(6.40) .8, = e - &
Let t_be the atomic time at which S, 2 and Eg are coplanar:

i.e. to is the observed time of transit of S. Let tc be the time

at which S, 2 and the unperturbed normal § are coplanar; t is
=" A -~ 0 C




FIGURE 4.

8

a7

—
Q) STAR

is the observed zenith angle of the star at transit.

The plane of the figure is perpendicular to the equator.
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the predicted time of tranalt of S on an unperturbed, sldereally

rotacting Earth. Then
(6.41) At = tﬂ - tc

represents perturbations in the transit rime of S and directly
corresponds to a change in UTO-UTC observed at the point, P, (UTO is
universal time determined astronomically by observing stellar

transite. UTC is atomic time adjusted for a slight secular

decrease in the Earth's rotation rate.) These individual measure-
ments are adjusted for polar motion and compiled over the surface
of the Earth into global values of UT1-UTC (UTLl is UTO after

adjustment for polar motion).

To find the tidally induced comtributions to At we note that
at tlme L. the equatorial projection of the rotating normal, ﬁg,
I# advanced relative to 5 by the angle ﬁl{t-tc} (see figure 5).

Consequently, the additional time needed for these two vectors to

line up is
1
(6.42) At = = §~61{t-tc}

For an individual tidal harmonic where

(6.43) sA(t) = srel (WTH)

equation (6.42) becomes

1 (wt +a)
(6.44) At = = % fra ©




Figure 5.

The time needed for 7, to line up with the star is

-5A/fi. The plane ﬂfughﬁ figure coincides with the
equator.

B9

A variation in longitude, 61, affects astronomical time.
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6.5) Eulerian Free Space Potential

The orbit of any terrestrisl satellite is affected by tidal
perturbations in the Earth's gravity field. The Eulerian free space
potential energy, ¢E, arising from the Earth's deformation must

satisfy
(6.45) 727 = 0

and vanish at infinity. Consequently, ¢a§ has the form

2+1
r
(6.46) ¢f = Z ¢fft}(;‘l) Dinfﬁidﬂ

£,m

where r0 Is the mean radius of the Earth, the Hiﬂ are generalized
spherical harmonics discussed in Appendix A, and the ﬁr(t}, which
completely characterize the deformation, are independent of
position. The ¢: are found for any tidal line by demanding continu-
ity of ¢f across the outer surface. Scalar expressions are given

in ChapterI[I. For a spherical, non-rotating Earth perturbed by

a luni-solar tidal potential compoment with angular orders EG

:ﬂ would be proportional to the spherical Love number k,

o
and all other @‘: -

and mu, ¢




rj;

6.6) Surface Displacement

Absolute geocentric distance and position measurements of
any object in space are affected by tidal displacements of the
observing station. This motion is directly represented by the
Lagrangian displacement, S In Chapter IX, expressions for the
scalar components uf‘; at the Lagrangian point described by

(r,0,¢) are given. These may be incorporated into experimental

models, as needed,




CHAPTER VII
FORCED NUTATIONS

An understanding of the Earth's nutational behavior is
valuable both for its own sake as an important physical phenomenon
and for the potential constraints its observation can place on
structural models of the Earth. Traditional conceptions of nutation
(e.g. Woolard, 1953; Kinoshita, 1977) rely on rheologically rigid
Earth models, for which the instantaneous response to an £ = 2
diurnal tidal potential can be completely described by incremental
rotation about a moving vector in the equatorial plane; i.e., the
Earth 'nutates' about the celestial pole (the normal to the
equatorial plane). Any such iﬁcremeutal rotation will perturb
the inertial space orientation of the Earth's instantaneous rotation
axis, instantaneous angular momentum axis and instantaneous axis
of figure (all defined below). It is usual to identify the Earth's
nutational motion with these changes in axis orientation, although
this has led to some confusion concerning the axis to use (a problem
considerably compounded when non—-rigidity is later included). This
difficulty was addressed by Atkinson (1875) who showed that for a
rigid Earth the incremental rotation, itself, directly corresponds

to perturbations of the figure axis. Relationships between the
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three axes may be understood using elther the geometrical Poinsot
representation (see, e.g. Woolard, 1953) or its purely algebraic
representation, the rigid Earth "dynamical wvariation of latitude'
(Oppolzer, 1880; Atkinson, 1973). Both approaches are straight-
forward wvariations of the operator equality %E-= Bt + {ix which
holds in the sidereally rotating reference frame,

For a non-rigid Earth the diurnal tidal response is not
slmply rotational In character but alsc Includes elastic deforma-
tion. The perturbed rntatiunT figure and angular momentum axes are
affected by these terms to varying degrees, and their interrelation-
ship may no longer be described with the simple Poinsot representa-
tion. In fact, knowledge of the differences between these axes
provides some understanding of the elastic tidal response within
the Earth.

Nutational motion need not be viewed as a separate tidal
phenomenon, as it is necessarily inecluded in the total diurnal
Lagrangian displacement, 8- Since the invariant eobservational
equations o6f Chapter VI are represented as functionals of the
complete displacement, &, any effects of nutation are automatically
included there, as well. Conseguently, a separate identification

of nutational motion may appear an observationally unnecessary

complication.
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However, our results for s are computed at any frequency
assuming # unit harmonic potential at that frequency and must
eventually be convolved with a luni-solar tidal potential theory
(most aceurate is probably that of Cartwright and Tayler (1971)
and Cartwright and Edden (1973)). As will be seen, the rotational
component of s is highly resonant in the frequency domain at
exactly one cycle per sidereal day. In fact, this component becomes
80 large at frequencles close to w = & that the inherent computa-—
tional errors in existin% tidal potential theories introduce errors
in the Earth's rotation which lie above experimental precision.

For this reason we choose to separate the rotational (Li} component
out of the diurnal tidal response (5.16) and treat it separately.
We will uniquely identify the values of li on the mean outer
surface with the Earth's nutation and will introduce a related
axis, B, whose nutational behavior matches this definition. B will
be computed by convolving li with Kinoshita's (1977) nutational
results for a rigid Earth.

The observational effects of the remaining elastic deformation
in s is compiled analytically and numerically in Chapter IX. In
this manner, after correcting astronomical latitude and longitude
measurements for these "body tide' results (which differ from terms
proportional to 1 + k = £ only by small elliptical effects) the
observer is left with reduced observations which exactly reflect

motion of the axis, E.
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7.1) Identification of Nutatiomal Motion

The tidal response to an £ = 2, m = 1 (diurnal) applied
potential can be adequately expanded into toroidal and spheroidal
components

m=1 1 1 1

(7.1) N el T A

as discussed in Section 5.4. Here, E; and the smallerdzi_and g:

represent elastic deformation. The remaining toroidal component,
li’ is strongly excited in the diurnal band and has a more unique

interpretation. Its (complex) displacement field has the form

(7.2) _:r_}{r] =y xr
where
(7.3) f e n(r}(::z: - ii} Ei{wtﬁ}

Here, E and ir; are unit vectors and o and w are the phase and
positive angular frequency of the disturbance. For any spherical
surface, ™I _, (7.2) and (7.3) represent a rigid rotation of that
surface around an axis perpendicular to the uniform sidereal

rotation vector, E. For positive w the surface is said to "nutate’

about ﬁ in a retrograde (opposite to E} sense.
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The usual global concept of the Earth's nutation is rooted in
traditional rigid body treatments, where g_; = l::: = Ei = 0 and n(r)
in (7.3) is a constant (in r). This allows for an umambiguous
identification of global nutational motion. For the realistic,
deformable case the picture is complicated not only by
E;‘ + :E; + Ei in (7.1), but also by the possible radial variation
in n(r). We will choose, for reasons discussed below, to identify
nutations solely with theigi component at the outer surface, The

remaining terms in (7.1) will be hereafter referred to as the diurnal

body tide.

7.2) Nutations and Gravitational Perturbations of a Rigid Earth

The rigid Earth responds to an £ = 2, m = 1 tidal potential

with a displacement field given by

(7.4) 8(r) =y xr
wvhere

A i{mt‘h::}
(7.5) Xo = nn{§-+ i?} @

Here, N, is a constant and w, o are the frequency and phase of the

disturbance. As shown above, (7.4) implies




1}?

(7.6) 5(r) = 17(0)

Given the tidally induced torque, E, it is possible to solve

for n, using conservation of angular momentum.
(7.7) 3 H+2xH=N

where H is the angular momentum of the Earth.

However, to facilitate later comparison with the more general
elastic results, we will instead compute N using the eigenfunction
expansion technique detailed in Chapter IV. The only pertinent
normal modes for a rigid Earth in a uniformly rotating frame are

1) the Tilt-Over-Mode (TOM) characterized by a displacement:

SxoM ™ (i + 1%) x r, and eigenfrequency w 0

TOM ~

2) the rigid Earth Chandler Wobble (CW) with displacement
e ':3‘1 + 1)) x r, and eigenfrequency W = — ((C-A)/A)a
where C and A are the Earth's greatest and least moments

of inertia.

Given any applied torque of the form
"~ sl
(7.8) o - No{£'+ %?}

we sum (4.57) over these two modes to find:
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Hﬂ
(7.9) P

Equation (7.9) shows n, to be resonant in the retrograde
direction at exactly one sidereal day and in the prograde direction
at about 300 days (C-A/A < 1/300). Since the diurnal tides are
closely grouped around w = {1, tﬁe sidereal resonance is clearly
visible in the rigid Earth nutation series (after transforming to
non-rotating, inertial space, this resonance is seen centered ar
zero frequency).

The rigid rotation, (7.4) and (7.5), perturbs the incremental
Eulerian gravitational potential, ¢?. Since the potential rotates
with the rigid Earth, the Lagrangian potential at any point must

vanish. Consequently, within the Earth
(7.10) ¢y = ¢y — 8-V = - g-¢

i~ - ~
where - E*n is the unperturbed gravitational acceleration and s the

rigid rotation described by (7.4). By continuously extending ¢f

into free space we find that at any interior or exterior point:

(7.1) 4700 = - (x, x £)-T6_
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As (7.10) suggests, ¢f is non-zero only if the Earth is
elliptical: Efn *® 3}2310 =0 1if @u depends only on r. The reason
is that after any rigid rotation a spherically symmetric body will
not look any different to an observer fixed in space. Consequently,
although @f{|3¢gi is resonant along “ithyﬁ at exactly one sidereal
day this resonance is correspondirgly less important by about a

factor of ellipticity (~ 1/300).

7.3) Relations Between Axes on a Rigid Earth

The instantaneous position of any particle, X, in a rigid,

nutating Earth is

(7.12) E(xt) = x4 x xx

- o~

with X, defined in (7.5). Since

d =
(7.13) " L +EZ
we have
dr
(7.14) ~
Tl FETREE- BV E

The rotation vector, E, must satisfy
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(7.15)

80

(7.16)

The figure axis, F, can be found by noting that for a rigid
body F will always point towards the geographic north pole.

Since
the inertial space orientation of the pole is

; 2,t) = 2 + z
(7.17) E(f,t} z En{t} X z

we use (7.5) for ¥ to find
n~o

(7.18)

A
F= r(z,t) = z + iy
. LE ~ a0

Polar motion is defined as the vector displacement between
the figure axis and the rotatiom axis.

By comparing (7.17) and
(7.18) we can find the polar motion, P, as the offset of F and I:

i ol & N
(7.19) P=1/2-F (F 1_)11“
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The unperturbed inertia tensor is

A 0 O
(7.20) L. & &
o 0

and the perturbed inertia temsor, I, is found by rotating Ia around
Lad -

Xo'
T
SE I S

¥
1 0 xu
(7.22) R=[ o S
- o
= x
xﬁ xﬂ' 1

The angular momentum, H, is then given as the product of the

inertia tensor with the rotation vector

(7.23) H= T+ = ReT oR'<1

L

(o}
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After some algebra:
A . A C—-A 2
(7.24) H=Ch [E.+ S [ A a + m] 110]

The incremental parts of F, I, H and P scale linearly with
tiﬂ' This permits the familiar Poinsot representation of the
nutations (see, e.g. Woolard, 1953) which is to first order simply
an Iinertial apace, geometrical description of equations (7.16),
(7.18), (7.19) and (7.24).

It is of some Interest to examine polar motion and angular

momentum in more detail. Using (7.9) in (7.19) and (7.24) gives

-iN
+
(7.25) o & £ i gy sttut *+a)
2" m _CcaA
fi =——+ w
A
; i + 0o
(7.26) i [Sa® ) ey SR
- " 0 G-w

Equation (7.25) shows E to be resonant only at the CW frequency.
This is not surprising since of the two free modes, only the CW
contains any polar motion. As a consequence of (7.25) the tidally
induced diurnal polar motion, although non-wvanishing, is not
resonant across the diurmal band.

On the other hand, the angular momentum given by (7.26) is

resonant only at one sidereal day. This, also, should be expected
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alnce the TOM contalns Incrementéi angular momentum while the CW
does not.

As a final point, the figure axls given by (7.18) is directly
representative of the displacement angle, EG' Consequently, on a
rigid Earth, F is observationally the most useful axis to consider,
This 1is discussed in more detail by Atkinson (1973, 1975). If the
rotation axis is used, allowance must be made for the factor w/0
in (7.16), responsible for the so-called 'dynamical variation of
latitude' (see, e.g. Atkinson, 1973). Similar considerations will
hold for the angular momentum axis.

1
1

7.4) Elastic Modifications to

T
o~

The inclusion of non-rigidity into the tidal problem has two
distinct effects:
1) The introduction of other spheroidal and toroidal terms
into the solution, as shown in (7.1).
2) The potential non-lipearity in r of the Li nutation term,
represented in (7.3) by an r-dependent n(r).
The additional components in (7.1) have been labelled as
body tide deformation and differentiated from the rotaticnalifi

term, Care must be exercised since these terms have non-negligible

effects on many traditional axes (this will be discussed below)}.
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However, ;i serves at this stage as a clear and distinct represen-
tation of the Earth's nutation which will be placed on a firm
observational footing, below.

To discuss the effects of non-rigidity on ll we consider the

1

;i projection of the eigenfunction expansion equation, (4.57)

1 1
(7.27) - %’j a (17

where the sum is over all pertinent rotating, elliptical, elastic
normal modes, a is given by (4,41), and {Iijn represents the li
component of the nth mode. The necessary modes in the sum (7.27)
consist of the seismic free oscillations of the Earth and the three
nutational modes: the TOM, CW and NDFW, all discussed in Chapter III.
The internal gravity waves of the fluid core are not included
consistent with the discussion in Chapter V. Nutatioms of the solid
inner core are similarly excluded. HNeither of these omissions
should sensibly affect Li in the mantle.

The applied force, in this case, consists of an i=2, n=l
tidal potential. Consequently, the non-resonant modes most excited

in (7.27) are those with 1argE.El components. Sinece free oscillations

2

terms will contribute little to an aggregate El

with sizable al .
- 1l

2

their contribution to (7.27) is quite small. Instead, the most

important contributions come from the three nutational modes.
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The TCOM for a non-rigid Earth has the same displacement and
eigenfrequency as the TOM for a rigid Earth. Consequently, its

1
contribution te 1, isthe same as in the rigid case, namely (from

1
(7.9)):

=

1 o 1l

{31} i{wtta)

A ol
ToM " Cone Xtippxre

(7.28) AroM
As in the rigid case, the TOM provides the highly wisible, exactly
diurnal resonance in the nutation series.

The 1; CW component is modified slightly by non-rigidity. It
is nearly linear in r throughout the mantle, corresponding to a
constant n in (7.3), but vanishes In the fluld core. Equally
importantly, its eigenfrequency is correspondingly altered (see Smith,
1977). Consequently, the CW contribution to (7.27) is somewhat
different than in the rigid case.

The Nearly Diurnal Free Wobble (NDFW) is due entirely to the
presence of the fluid core. Its Ei toroidal field comsists of a
nearly uniform rotation throughout the mantle and an opposite

rotation throughout the fluid core, It is particularly important

in (7.27) because its eigenfreqnecy lies wvery near one day and is

consequently resonant within the diurnal tidal band.
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The total tidally Induced 11 component is then seen as a

1
nearly constant rotation in the mamtle coupled with a different,
nearly conetant rotation in the outer core. Differences between
the rigid and non-rigid results are due predominantly to near-
resonant excitation of the NDFW, and, to a lesser extent, the
elastic modifications in the CW.

7.5) Observational Uniqueness of E}

We have taken pains, above, to distinguish between Ii and
the E; + Eg +-Ei combination in the diurnal tidal solution. Such a
separation is not merely a conceptual aid but is in faect suggested
by practical considerations. The tidal observables modeled in
Chapter VI are finctionals of the total tidal surface displacement
and associated gravitational potential. As discussed in Chapter II,
the solution at any frequenecy is computed by assuming an appropri-
ately normalized amplitude for the luni-solar potential. To compare
with observation these results must be convolved with some reliable
potential théur?. Unfortunately, due to the resonant E%E-excitatinn
of the TOM discussed above, the ddurnal surface ;i component
becomes so large that no published diurnal tidal tables are accurate

enough: 1i.e., inherent errors in these tables, when convolved

with the computed £1

1’ lie above the experimental precision of most

present day astronomical techniques. For this reason we choose to
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separate ;i from the diurmal surface solution and identify it
solely with the Earth's nutational motion. It will be convolved,
below, not with the tidal potential but with accurate rigid body
nutation results.

A corresponding problem is the diurmal resonance in the

Eulerian potential, ¢E which must accompany rntatinnalizi motion.

1!
E
The TOM, with eigenfunction Seom = Xrom * E» perturbs ¢l according
to
(7.29) ) moy = = Otpopy X )°T
5 1" TOM TOM = +" ~'0

(see the discussion preceding equation (7.10)). Consequently, a
highly resonant TOM shows up in ¢E, as well as in s. This gives
reason to also separate ¢f into nutational and body tide factors.
The manner of separation is somewhat arbitrary, as long as the
entire resonant TOM contribution is inecluded im the nutatiomal

contribution, {¢EJ component on the mean

- ﬂy Hlitln tt;e L

1

epherical surface, r = Ty 35

(7.30) ii(r = rb} =

-
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we choose to define
(7.31) @y == (x, x £)-T%
i 1"nut i s 0
Equation (7.31) is similar to the simple rigid Earth and TOM -

relationsihps between ED and ¢f ((7.11) and (7.29)).
The result of this discussion is thar when expanding the
invariant expressions of Chapter VI into the diurnal scalar compo- -
nents described in Chapter IX, the resonant effects of :} and
(¢f]nut are analytically removed. These effects can be visualized
as the nutational contributions to the observable quantities and -

will now be discussed.

7.6) Observable Effects of li -

The ‘1'11 component at the mean ocuter surface for any dlurnal

tidal frequency, w, is given by (7.30) with
A AL i(wtta)
“5{5 = {E} e

(7.32) g

where a is the phase associated with n. The corresponding nutational

contribution to ¢E is defined by (7.31). TUsing these expressions in

the relevant Chapter VI equations gives:
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gravity

6f = in_[w-0) rQ sin 26 ot (Fiutia)

eile
Ng 2 i (drwe+a)
bE e i [W=2]" r cos B e
o
. i (Gutta
b= 7 (00 ¢ [w-2 cos 26] e’ $luria)
[}

astronomical co-latitude and longitude

(7.33)

50 + ins[l + :— [fi-w] [w=ii cos 28]
(s ]

] REICETI

A
o

§h=n cot® |-1+ X [ﬂﬁn]z 1 (FHurta)
8 1]

free space potential

E
4 =~ G S0,

surface displacement

L
where © and ¢ are the geocentric co-latitude and longitude, Gu is

the angle between the unperturbed outward gravity normal, ﬁ;, and the
i "~

invariant rotation vector, (i.e., Gﬂ is the unperturbed astronomical
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co-lactitude given by Do = § — ¢ sin 28, with € = surface ellipticity),
and Aa is the equilibrium gravitational plus centripetal acceleratiom p
at the surface (see Section 6.1). There are no effects on strain.
Equation (7.33) represent the effects of nutational motion
on observable quantities. Many terms contain the product (w-{) ng =
which results from incremental inertial, Coriolis and/or centripetal
forces. These terms are not resonant at one sidereal day; in fact
they are notably smaller than the corresponding body tide contri- -
butiona. For this reason, all (w-{) ns contributions to (7.33) are
included in the body tide results given in Chapter IX. Consequently,
the only diurnal terms which are removed and must be treated -

separately are:

astronomical co-latitude and longitude -

50 = 1ﬂ3 e1{¢+u1t+1:.r.}

GA = - n, cot Gn Ei{¢+mt+u}

(7.34)
free space potential

E
¢1 - {53 A £? E¢0

surface displacement

8 = Xr
_~— ES -

Any observer wishing to completely model ome of these observables

must add (7.34) to the body tide results described in Chapter IX.




111

7.7) Convolutlon with Rigid Earth Results

In order to accurately include the rotational contributions,
(7.34), values of ﬂs’ the surface rotation angle, must be specified.
The computational process described in Chapter V gives Ii‘ and
consequently Ngs to desired accuracy assuming a unit amplitude tidal
potential. As already discussed, it is convolution with Inaccurate
luni-solar potential theory which is troublesome. Fortunately,
highly accurate tidal potential theories do exist, although in
disguised form, Most useful 1s presently Kinoshita's (1977) investi-
gation of the nutations of a rigid Earth. FKinoshita combined a very
accurate potential theory with the simple dynamical response of a
rigid Earth to produce a corresponding nutation series. To use his

results we write ns as

n_-n
5 o
(7.35) . =% [1 + N ]

where ns_nn is the perturbation in N due to effects of non-rigidity

and Ng is the rigid rotational angle given by (7.9). A description

of the elastic contributioms to n, using f?s}'“_u_ is particularly

useful because it is independent of errors zn the tidal theory: they

cancel by division. Numerical results for ﬂz"ﬂo will be described
o

in Chapter IX.
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7.8) Description of ng Ueling Longitude and Obllquity Variations

e — B —————

It is not usual to find rigid body nutations expressed as
diurnal variations in the angle, n,- Instead, results usually
describe long period variations in longitude and obliquity of some
familiar physical axis. We show, here, how to connect these formu-
lations.

First, three related coordinate systems must be described
(see figure 6). The geocentric ecliptic system, E, is (nearly)
inertial with origin at the Earth's instantaneous center of mass
and is almost always used to describe nutational motion. The 5—2
ecliptic plane is defined as the mean plane of the Earth's orbit
about the Sun and Moon with the % axis oriented along the inter-
section with the Earth's equatorial plame (this intersecting line
is called the equinox).

The Earth's rotating equatorial system, R, is the invariably
rotating coordinate system defined in Section 2.1 and used for
computation of the tidal respomse. In this system the 2 axis points
along the time—averaged rotation vector, 2, and the %.axis along
the equilibrium Greenwich meridian. Q, and thus %, are chosen
to follow the Earth's 26,000 year precession through space.

The Earth's non-rotating equatorial system, X, is similar

A 3 X
to R except that X is not sidereally rotating. The z axis in X
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Figure 6. Relationship between the eliptic and equatorial planes.
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~
polintas along the precessing rotation vector, 2, and the x axis

points along the equinox,
Consider any unit vector, A, in R with the form
Ll
A A d{wtto
(7.36) AR = 7 +iﬁa(£+iy} el( )
- -3 J
where fa is an incremental (real) scalar constant reflecting the
tldally Induced displacement ﬂf_ﬁR, and o and » are the phase and
(diurnal) frequency of the disturbance. To trnnnfurm}&'tn non-

rotating lnertlal space, X, we rotate (7.36) with the appropriate

coordinate transformation

cos B -gin B 0
(7.37) sin B cos B 0
0 0 1

where f is Greenwich mean sidereal time (the angle between the

equilibrium Greenwich meridian and the equinox)
(7.38) B=gt+a,

with aﬂ the phase at epoch. Then

& - i (i) + a—aﬂ}
(7.39) Ap =z +iﬁa{£+ixj e
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As (7.39) shows, the nearly diurnal tidal frequency, w, in R
corresponds to a long period frequency, w-{l, in inertial space, X.

By a tedious but conceptually simple application of successive
rotations, the orientation of ﬁ relative to the ecliptic plane can
he described by two angles: £ = £, + 8€ and Y = 6 where

i((uw-Dt +—tb41u}
fe = - 8a e

(7.40) 1((w-Dt + o)

sin € S =4ida e

The obliquity, £, describes the absolute angle between ﬁ and
the normal to the ecliptic, while the longitude, ¥, is defined
as 90° minus the angle in the ecliptic plane between the projection
afié and the equinox (see Figure 7). For an unperturbed axis,
where hR = E, we find € = € and ¥ = 0.

-~ . o

Every diurnal tidal harmonic with frequency w, = 1 + f and
phase o

+
w_=@ - f and phase a_ = /2 + a_ - 8a. Defining a  and da_ as

= 7f2 + a + 6a has a complementary term with frequency

the amplitudes of 8a at these two complementary frequencies and

combining perturbations im € and ¢ gives

Sc = - (8a, + 8a) cos(ft + §a)
(7.41)

sin €, Gp = - {$g+ - 6a_) sin(ft + Sa)
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Figure 7. The obliquity, £, and longitude, ¥, of the vector A
are shown. A is assumed to be very nearly coincident
with (. Figures 7a and 7b are, respectively, perpendi-
cular to and coincident with the ecliptic plane.
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Equations (7.41) can be used, for example, to find n, from
published rigid body perturbations in &€ and 6Y. As shown by
equation (7.18), the figure axis, E, on 2 rigid Earth has an incre-
mental component, iy , with X, given by (7.5). By using da = Ny
in (7.41) we may relate n: and n; (the two symmetric (about w=f{ )
tidal contributions to nn) to GEF and G¢F {the Fourier transformed
variations in obliquity and longirude for the rigid Earth figure

axis) as:

+ 1.0 )
n, = -3 [8ep + sin g Y]

(7.42)

N | "
IR [8in £y G¢F - 5£F]

and, conversely

+ -
(7.43)
sin€ &Y. = (n_ -n)
o F (v} o

We now use (7.41) in a similar manner for the non-rigid

Earth. Consider the unit wector

(7.44) B -§+1x
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where Xg is given by (7.32). Using da = n, in (7.41) we find
]

the Fourier transformed obliquity and longitude for the vector B:
-

+ =
GEB - (ns + ns}
(7.45)

= T
sin E-u 61”5 {T|H - T|s}
Consequently, defining

n.-n
g ‘o
(7.46) Bratiﬂ B n

as the ratio of the elastic components of 2 to the rigid components

of B, and using (7.42) and (7.35) gives

1 + -
6EB GCF [1 ¥ 2 [Bratio i Eratinl]

; 1 + =
+ain_ bh. o (Br . - B ]
(7.47) o 'F 2 " ratio ratio

1+ -
= F -
5 [B B |

sin e 60 = GE . z
o VB 6 ratio ratio

F

ratio

. 1 o -
+ gin e:u 1511;F [1 + 2 IBrat:i.a + B ]:l

e
Thus, by combining the results for E:atin computed here with

published results for ﬁﬁF and sin € 6$F, the angles GEB and GwB,
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describing B, may be found. Results for EaB and sin E. ﬁwﬂ using
Kinoghita's values for 6¢F and ﬁEF are discussed in Chapter IX.

-
The rotational angles, n;, may be recovered as desired by inverting

(7.45) to find

+ 1
n =->[6, +sin € & ]
(7.48) -] 2 B o B

= 1 3
N, = 2 [8in e ﬁ¢ﬁ GEB]

7.9) Nutations of Other Axes

We have been careful, above, to identify the Earth's nutation—
al motion with the L{ component in (7.1) and the corresponding
vector E. Some such separation ia necessary from a practical view-
point because of the large TOM resonance near one day. Hbreover,lg
is an obvious choice for a nutation axis because itse adoption
allows for clear separation between the observational effects of
nutation and those of the 'body tide'. Other axes, such as those
described below, may be alternatively comsidered. However,
particular care must be taken when relating nntations of these

axes to observations.
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Mean Rotation Vector

Let E{E} be the total tidally induced displacement wvector at
a point, r, in the Earth. Since a rigid change in rotation
corresponds to a displacement of the form X, X X, we follow

bl

Jeffreys (1970) and define the meanrotation vector of the Earth as

(7.49) I = E-+ d

"
|

where {! is the unperturbed uniform rotation vector of the Earth
-~

and ¥ is the vector angle which minimizes
fad

(7.50) f nls - X }:Iz v
v =
E

Here, UE is the volume of the Earth and p its demsity. ¥ is given
—

by the solution to

(7.51) IDW_.;" f prxsdv
1|IFE

where Eo is the unperturbed inertia temnsor of the Earth (see

(7.20). This definition of ¥ is slightly different than a global
-

- 1 A x
value of ¥ derived solely from the I compoment in s. This is

-~
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because the constant density surfaces In (7.50) and (7.51) are not
spherical, but slightly ellliptical, and consequently ¥ Is very
~

slightly modified by T, in (7.1).

The mean rotation vector of any sub-region of the Earth may
be similarly defined by changing the domain of integration in (7.50)
and (7.51) accordingly. We have considered the mean rotation
vector for the mantle ;EH} and for the outer elliptical surface

{Ia] as well as for the entire Earth. Differences between these
L

three axes are due predominantly to radial variations in thelsi
component through the Earth, particularly to its discontinuity

across the core-mantle boundary. The nutational calculations of

Molodensky (1961) refer to &H‘

Figure Axis

The Earth's figure axis is defined here as the instantaneous
axis of greatest moment of inertia. For an axisymmetric Earth
the unperturbed inertia tensor En’ is given by (7.20). For the

forced problem the total inertia tensor is
(7.52) I=1 + 61

where 51 is related in rectangular coordinates to the complete

tidal deformation, 8, by




(7.5 81,0 = j; pl2s7x 8, ~ (5%, + 5.x))]
E

with 61 the Kroenecker delta functicm, p the density and V

J E

volume of the Earth,

The instantaneous axis of figure, F, must satiafy
(7.54) I-F = (C + 8C)F
- L]

where C + 6C 1s the instantaneous moment of greatest inertia

ig not difficult to show that

r 1 A A
(7.55) E =z + A [fﬁlxz +-Iﬁfyz}
and
(7.586) 6C = ﬁtzz

The diurnal tides do not contribute to 5Izz.

4 ST 1 1
l—" is highly sensitive to the "body tide': Ez +E3 +£$£.

The reason is the small elliptiecity of the Earth. A little

122

the

e v

thought

will show that on a nearly spherical Earth it doesa't take much
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deformation to shift the figure axis, since that axis is quite
weakly constrained to begin with. This is reflected in (7.55) by
the faector 1/(C-A). On the other hand, the effect of rigid body
rotational motion on F is nearly independent of the ellipticity.
As a result, the figure axis is usually more a reflection of the
elastic behavior of the Earth than of its rotational motion. The
figure axes have, however, been computed for the surface EES}; the

mantle {EH) and the whole Earth.

Angular Momentum

The angular momentum of the Earth is the product of the

instantaneous inertia tensor with the instantaneous rotation vector

{7:55) H, = 11 = CQ + 6I-0 +Eo-ati

~ -

E

where C is the greatest moment of inerria, E and ati the unper-
turbed and incremental mean rotation wvectors, and.ED and @E the
unperturbed‘ and incremental inertia tensors. Similar expressions
describe the angular momentum of the mantle, EH'

Equation (7.57) shows the angular momentum to be affected by
changes in the rotation rate (through BEE? and by internal mass

redistribution (through éI). For H_ we expect all elastic contri-

E

butions to cancel leaving a value identical to the rigid body

result. This offers a means of testing for internal comsistency.
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Convolution with Rigid Results

Every one of the above axes has the form (7.36). The
corresponding nutational amplitude, Sa, may be conveniently

separated Into rigid and non-rigid parts

(7.58) ba = Garigid [1+ ﬁannn—rigid;ﬁarigid]

By presenting results for the ratio

(7.59) ) /8

fratio 5auon—-rigid arigid

uncertainties in the luni-solar ephemeris and related comstants
will cancel. This procedure has been discussed above (Section 7.8)

for the axis, E, where da From knowledge of

= B 5
ratio ratio

hﬂrat[n for any axis, perturbations in longitude and obliquity
may be found if desired, using equations identical in form to

(7.47)

7.10) Interpretation of B

The vector B, described inm Section 7.8, is the nutationm axis
adopted here because it is clearly and simply connected with

observational quantities. Consequently, it is useful to discuss




the physical significance of B. For rhis purpose the concept of
the Tisserand mean is presented.

Let E“ be the mean rotation vector of the mantle

(7.60) L= Q.+ 3 EEH

as described in Section 7.9. The 'Tisserand mean mantle' is then
conventionally defined by rigidly rotating the unperturbed mantle
with an instantaneous angular wvelocity of EH (see Munk and McDonald,
1960)}. The axis of figure of the rigidly displaced Tisserand mean

mantle is (see equation (7.18))

Tiss A e
(7.61) .-FH z + i EH

The desired effect of this definition is to rid the Tisserand
mantle figure axis of contamination from the body tide deformation.
It does not quite realize this objective on an elliptical Earth,
since the elliptical demsity distribution used to define E& slightly
couples the body tide to EH'

The concept of Tisserand mean can be extended to the outer

(elliptical) surface, S, where the axis of figure for the

appropriately defined Tisserand mean outer surface is
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Tiss - = =
{(7.62) .-T:S - 2

with E; given by expressions similar to (7.50) and (7.51) {'r
o~ v )
replaced hyJ- }. Once ag&in,‘fiiss is not completely free =
S
from body tide effects, since 5 is slightly elliptical. However,

from a conceptual viewpoint this small elliptical coupling can

be ignored and ')EB and X , the latter defining the axis B, can be
~ ~ =

accepted as equivalent. E may then be perceived as essentially

the axis of figure for the Tisserand mean outer surface, E';i“,




CHAPTER VIII

LONG PERIOD CHANGES IW THE LENGTH OF DAY

The %=2 m=0 (long period) tides excite the non-secular, zero-
frequency axial spin mode (ASM) of the mantle (see Chapters IIT and
IV). This mode comsists solely of avz? toroidal component,

representing

{8.1) 8

=n(r) Zxzx
Spow = THELSET

motion. Harmonic excitation of the ASM increments the angular
velocity of the mantle, and thus conserves angular momentum by
compensating for tidally induced changes in the greatest moment
of inertia.

The mantle ASM is resonant at zero frequency. Consequently,

many of the very long period tidal solutlions have extremely large

8]

1 components. We choose to separate the observational

surface T
i,

effects of Ti from those of the remaining 'body tide' components

o o o o :
o + o, + T. +T,, in much the same way as the nutations are
v O el g v 3

handled in Chapter VII.
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8.1) Description of I:

The computed =2 m=0 tidal solution at the outer mean spheriecal

surface may be written

m=0 0 0 0 0
(936 S %20 Rt THTE

The IE component in (8.2) has the form

0
(8.3) 7 e EE x X
where
o b it + 0)
(8.4) Xg = NgZ ©

Here, n5 is a constant scalar angle and @« and @ are the phase
and frequency of the tidal disturbance. n, iz affected slightly

by excitation of seismic free oscillations, but mostly comes from

the large resonant ASM of the mantle.
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8.2) Observable Effects of I;

By using s = x_ x r , with X_ given by (8.4), in the pertinent

Chapter V1 equations, we find the following nbservahlfizg effects:

gravitg

SF = = in, 20 ginlp l(Wt + )

tilc

&N = ins EEE 2 cosf sinb ei(wt .03
o

(8.5)

astronomical latitude and longitude

60 = - in_ A@-— ain 29 Tl ¥ )
o

ey %
§A = n_ (1—2—5) o HE-H
Q

surface displacement

where 6 and ¢ are the geocentric co-latitude and longitude, and
hﬂ is the equilibrium gravitational plus centripetal acceleration

at the surface (see Section 6.1}. There are no effects on strain
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or free space gravity (assuming an axisymmetric zero order
gravitational field).

Most effects shown in (8.5) contain the product mﬂs. This
factor is non-resonant at w = 0 since w exactly cancels the 1/w
ASM resonance in nB. As a result, we choose to categorize all mﬂa
contributions as '"body tide' effects and have included them in the
analytical body tide expressions and the numerical results
described in Chapter IX. The only long period terms which must

then be treated separately are:

astronomical longitude

&)\ = ny pllwt + a)

(B.6)

surface displacement

8.3) Changes in the Length of Day

It is_evidunt from (8.6) and the discussion in Section 6.4,
that the surface rotation % affects transit time observations
(reflected in UT1-UTC) but not the apparent zenith distances. This
phenomenon is often referred to in the geophysical literature as

a long period change in the length of day.
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Strictly speaking, a perturbation in the length of day is
proportional to the incremental angular wvelocity, ne_, which is non-
resonant at W = 0. In fact, for =2 unit tidal disturbing potential
0 0 0

0
+g. ¥ T, +0,, are
0 -

. (] O L]
both mns and the accompanying 'body tide’, E 2 I3 g,

nearly constant across the long period band. Results for both

wng and ng are presented in Chapter IX.




CHAPTEE IX

NUMERICAL RESULTS

9.1 Earth Models

Adoption of a set of equilibrium values for lcfr}, uo{r] and
po{r} (see Section 2.1) is equivalent to choosing a model for the
mechanical structure of the Earth. Here we use models PEM-C
(Dziewonski et al., 1975), C2 (Anderson and Hart, 1976), 1066A
(Gilbert and Dziewonski, 1975) and two variants of 1066A obtained
by slightly modifying the stability of the fluid core. These models
are constructed to accommodate a large volume of recent seismologi-
cal data and probably represent the most reliable elastic global

models currently availlable.

10664

By applying powerful numerical techniques to two important
sets of global seismic records, Gilbert and Dziewomski (1975)
succeeded in ‘observing 1064 free oscillation eigenfrequencies of
the Earth, Using these frequencies as constraints in a linear
inverse scheme, Gilbert and Dziewonski arrived at two distinet
Earth models: 1066A, a perturbation of Model 508 (Gilbert and

Dziewonski, 1973) and 1066B, derived from Model Bl (Jordan and

Anderson, 1974). Differences between 1066A and 1066B are most




apparent in the upper 1000 km of the mantle, where 1066B has two

sharp discontinuities in material properties and 1066A is continuous.

FPEM-C

Dziewonski et al. (1975) used the 1064 free oscillation eigen-
frequencies of Gilbert and Dziewonski (1975} together with recent
body wave travel time and surface wave dispersion data to obtain
models PEM-0, PEM-C and PEM-A. Model 1066B of Gilbert and
Dziewonski (1975) was chosen as the starting model and its upper
mantle discontinuities preserved. Most obvious differences between
the PEM models and 1066A occur in the upper 1000 km and are
assoclated with these discontinuities. Of the three PEM models,
PEM-C is most appropriate for tidal calculations since it includes
a solid crustal surface. A unique characteristic of the PEM
models is their description of material properties as piecewise

parameterized functions of radius.

C2

Starting from Model Bl (Jordan and Andersom, 1974), Anderson
and Hart (1976) inverted 437 free oscillation frequencies and a
large volume of body wave data to produce Model C2. Much of the
free oscillation data is taken from Gilbert and Dziewonski (1975).
Model C2 differs from the 1066 and PEM models most noticeably in

the upper mantle. In addition, C2 has a significamtly smaller

inner core density than the other models. As presented, €2 includes
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an oceanlc surface. We have replaced this fluid layer with a

continental crust taken from PEM-C.

Variants of 1066A

An important parameter summarizing the dynamical behavior of
the fluid core is the squared Brunt-Vaisdld frequency (see, e.g.

Masters, 1978)

("4 9_p
2 o0 ro
(9.1) ™ = = #E——-+ 5 ]
o o
2

N° is a measure of the stability of the core and could be particular-
ly important in the dynamics of the core dynamo (see, e.g. Busse,
1975). The models discussed above are found to have values of Nz
which fluctuate rapidly about an approximately zero mean.
Unfortunately, however, Brp and consequently H2 are mot well
determined by any free oscillation of body wave data. Masters
(1978) has made optimal use of free oscillation results to conclude
the core is hearly neutrally stable (i.e. Nz = () except possibly
near the core-mantle boundary where it may be significantly stable
™% > 0).

We have generated and used two variants of 1066A, each

obtained by modifying the core density structure to produce an outer

core which is, respectively: 1) neutrally stable; 2) positively
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stable with HZ = 8.1 x lﬂ-g aec_z throughout. Both cases are
probably within the limits imposecd by the seismological data
(Masters, 1978). Our hope is that tidal and/or nutational results

could be used to obtain informatiom about Hz.

Expected Differences

As discussed in Chapter IV, the Earth's tidal response can
be written as a sum of normal modes of which the free oscillations,
3 mantle nutations and wobbles (i.e. the CW, NDFW and TOM) and
the mantle axial spin mode (ASM) are observationally of most
importance. Since the lower frequency free oscillations must
provide the larger tidal contributions and since all models
considered here are constrained by the same low frequency free
oscillation observations, we may anticipate few important model
differences for the free oscillation tidal contributions. In
addition, the TOM and ASM are completely model independent and so
their tidal contributions should also not differ significantly
between models. Consequently, it is the NDFW and CW contributions
which are most likely to differ from one model to another. In
particular, the NDFW contribution is most promising since it is

highly resonant within the diurnal band and affects both the body

tide and the nutations.
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However, we have found no significant numerical differences
in the results for 1066A and its two variants. We are forced to
conclude that geodetic and astrometric observations canmot
differentiate between these three models differing only in Hz
in the fluid core - at least not at our level of computational
accuraey: one part in 300. Of course, by further increasing the
stability parameter, Hz, we might begin to notice computational
differences (as do Shen and Manshina, 1976). However, a value of

H2 much larger than 8.1 x ltl'_Ei seu-z throughout the core is

probably incompatible with the free oscillation data (see Masters,

1978).

9.2 Body Tide Results

Invariant vector expressions for the tidal observables are
given in Chapter VI, Using surface spherical harmonic expansion,

these expressions yield the following scalar representations:

‘Gravity

2 2 r m m
(9.2a) §F = - % H x 10" g [GDYE ¥ + G_Ei_z]
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Strain (continued)

i 2 2

LNE- 2 — R{ﬂ} E x 10 [52 aind leots — & ]Ym+53[a-a

e {ﬂ+1 (142)
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Surface Displacement
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8- Hs x 10 -I:E-rho[ 1+ > [3 cos™ 8-1] ¥ + h+Y£+2 + h—!E—Z]

A s z 2 m
+ga!lﬂ[ 1+ 3 [3 cos"B- 1] Elﬂ‘fsr + i,+aﬂY’:+2 N
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Here, T, {s the Earth's mean radius (6371 km); R(8) is the distance
between the Earth's center of mass and a surface point at

co-latitude = 8 (i.e. R(B) = T —*% ErD[B cnszﬁ - 1] where

s 8
R

acceleration which would be observed were the Earth spherically

€ = ,00334 is the ellipticity of the surface); and BT

979.8259 cm/sec’ is the eguatorial gravitatlonal

symmetric {RE le the Earth's equatorial radius). The coefficients
{HE} in (9.2) represent the frequency dependent tidal potential
amplitudes in meters obserwved at the equator - thus chosen to
directly correspond to the amplitude coefficients used by Cartwright

and Tayler (1971) and Cartwright and Edden (1973). The scalars:

(o Gy os B B B 2

E B 2B
29 Tj.' T.ﬁl 51, 5 S5,, 5 S?, Sﬂ’ 5

2? 53! 4! 5:! Sﬁ! g'l

LAT LDHGG » LONG

R RO

2'!

(9.3) LAT , LAT,, LAT,, LAT 1

LONG,, LONC,, k_, k_, k,, h , h_, b, 2,2 , 2,

¥y Ty W_, H+}

are dimensionless linear combinations of the solution scalars
described in Chapter V. Fi=nally, the Yf in (9.2) are surface

spherical harmonics with normalization as defined in Appendix A.
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For a spherical Earth, the scalars (9.3) reduce to a
particularly simple form. First, the only non-zero free space
potential and displacement Love numbers are kh, hﬂ and Eu.

Secondly, all other scalars are zero except:

- -FL o E—tl— + i
Gu 3 5 kn hn (gravimetric factor)
N E -
T =T =1-h_+k (diminishing factor)
o o o a
S, =h
(9.4) = e
52 - E.D

LAT = LONG = -~ [L+ k - 4 ]
o o o o

To illustrate the cumulative effects of rotation and
ellipticity, we consider the gravity signal. From (9.2a):

2 2
(9.5) S5f = = r—o Hs x 10 ga‘ft G

where, in the spherical case, C = Gu with Ga given by (9.4). PFor

an elliptical, rotating Earth:

i iy

L

m m m
(9.6) G'GQ+G+ 'EE+2H£+G__Y

-2
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(9.6) describes a slightly latitude dependent gravimetric factor

0G+ and G_ are both <1X of ﬂo}: not a surprising results since

both rotation and ellipticity single out a preferred latitude in
space. The kinematical relation between Ga and the tidal solution
scalars, represented in (9.4) for the spherical case, is also

altered by non-sphericity at about the 1% level. Finally, the tidal
solution itself is affected by eliipticity and rotatiom, particularly
in the i=2 diurnal tidal band, as we shall see. Similar arguments
can be applied to the other observables in (9.2).

The dynamical behavior of the Earth is reflected by the
dimensionless scalars, (9.3). Results for these scalars are
presented in Tables 1-18 for models PEM-C, C2 and neutrally
stratified 1066A (the scalars Ti, Tg, Sg’ LAT?, lﬂﬂﬂz and £_ do not
appear since they vanish identically for the tidal groups considered).
As is evident, no significant frequency structure was ever found
within the £=2 m=2,6 i=2 w=0, or any =3 tidal bands. Furthermore,
the truncation corrections described in Chapter V were not performed
for the small =3 m=1, or £=3 w0 tides, and these tides do not
appear in Tables 1-18. In this case, the appropriate scalars in
(9.3) are adequately represented by the =3, m=2 results.

Presentation of the =2 diurnal results are more of a

problem, They show considerable frequency dependence near *1'

a consequence of near-resonance excitation of the NDFW. Results
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TABLE 1]

TIDAL GRAVITY SIGNAL FOR NEUTRAL 1066A

Tidal Line GG G G

1) 1=2 m=1 (diurnal)

125755 (2Q1) 1.152 -.006 .0
127555 (g,) 1.152 -.006 .0
135655 (Qi1) 1.152 ~.006' " .0
137455 (p,) 1.152 -.006 .0
s 145555 (01) 1.152 -.006 .0
147555 (T,) 1,152 -.0067'" .8
155655 (M;) 1.152 -.006 .O
157455 (X,) 1.152 -.006 .0
162556 (m) 1.149 -.006 .0
163555 (P;) 1.8 006 .0
164556 (S1) 1.144 -.006 0
165545 1.138 -.006 .0
165555 (K1) 12132 -.006 ':.0
165565 1.131 -.006 .0
165575 1.129 -.006 .0
166554 (¥1) 1.235 -.007 .0
167555 (1) 1.167 -.D06 .0
173655 (8;) 1.155 -.006 .0
175455 (J1) 1.155 -.006 .0
183555 (S0,:) 1.154 -.006 .0
185555 (00;) 1.154 -.006 .0
195455 (v,) .15 —-.006 .0

2) any 1=2 m=2
(semi-diurnal) 1.160 -.005 .0

3) any 1=2 m=0

(long period) 1.155 -.007 .005

) any 1=3 m=3

(ter-diurnal) 1.606 -.005 .0

5) any 1=3 m=2
(semi-diurnal) 1.602 -.008 .0




TIDAL GRAVITY SIGNAL “OR PEM-C

TABLE 2

Tidal Line Gg Gy G_
1) 1=2 m=1 (diurnal)
125755 (2Q;) 1.152 -.007 .0
127555 (o01) 1.152 -.007 .O
135655 (Qy) 1.152 -.007 .0
137455 (o,) 1. 052 <. 007 _..0
145555 (0y) 1.152 —. 00T -..0
147555 (t1) 1.152 -.007 .0
155655 (M) 1.152 -.007 .D
157455 (x;) 1.152 -.007 .0
162556 (1) 1.149 -.007 .0
163555 (P1) 1.14T7 -.007 .0
164556 (S1) 1188 =007 ., 10
165545 1.134 -.006 .0
165555 (K1) 1.132 -.006 .0
165565 1,050 =006 1D
166575 1.2 —006 0.
166554 (¥;) 1.235 -.007 0
167555 ($;) 1.167 -.00T .0
173655 (84) 1.156 =-.00T .D
175455 (J71) 1.155 -.007 .0
183555 (S0;) 1.154 -.007 .0
185555 (009) 1.154 -.007 .0
195455 (v,) 1.154 —.007 0
2) any 1=2 m=2
(semi-diurnal) 1. 160 -.005 .0
3) any 1=2 m=0
(long period) 1.155 -.007 .005
4) any 1=3 m=3
(ter-diurnal) 1.606 -.005 .0
5) any 1=3 m=2
(semi-diurnal) 1.602 -.008 .0

144
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TABLE 3

TIDAL GRAVITY SIGHAL Fok C2

Tidal Line l3y Gy G

————— e ——

1) 1=2 m=1 (diurnal)

125755 (2Q1) 1.151 -.007 .0
127555 (0,) 1.151 -.007 .0
135655 (Q1) 1.151 -.007 .O
137455 (p1) 1.151 -.007 .0
145555 (01) 1.151 -.007 .0
147555 (T1) 1.151. - 00F .0
155655 (M) 1.151 —.00T" .O
157455 (X,) 1.151. —. 007 -0
162556 () 1.148 -, 007 .0
163555 (P1) 1.187 -.006 .0
164556 (851) 1.143 -.006° .D
165545 1933 ~Zone6 L0
165555 (K1) 1.132 -.006° .0
165565 1.130 -.006 .0
165575 1.129 '%.006° .0
166554 (Y1) 1.235 -.007° .0D
167555 (¢,) 1.1656, —.007 .0
173655 (0;) 1.158 007 .0
175455 (J1) 1.154 -.007 .0
183555 (S0;) 1.153 -.007 .0
185555 (001) 1.153 -.007 0
195455 (v;) 1.153 -.007 .0

2) any 1=2 m=2
(semi-diurnal) 1.159 -.005 .0

3) any 1=2 m=0
{long period) 1.1548 —-.007 .005

4) any 1=3 m=3
(ter-diurnal) 1.606 -—-.005 .0

5) any 1=3 m=2
(semi-diurnal) 1.602 -.008 N3
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TASLE 4
TIDAL TILT SIGNAL FOR NEUTRAL 1066A
Tidal Line Tﬂ T? T: Tz o TE A
1) 1=2 m=1 (diurnal)
125755 (20:) .688 -.001 -.001 .00% .688 .0 -,001 .002
127555 (01) .688 -.001 -.001 .004 .688 .0 -.001 .002
135655 (Q1) .689 -.001 -,001 .004 .688 .0 -.001 .002
137455 (py) .689 -.001 -.001 .004 .688 .0 -.001 .002
145555 (0,) .689 -.001 -.001 .004 .68 ,0 =,001 .002
147555 (1) .689 -.001 -.001 .004 .68 .0 -,001 .002
155655 (M;) .690 -.001 -.001 .00% .680 .0 =-,001 .002
157455 (X1) .691 -,001 —.001 .004 .650 .0 =,001 .002
162556 () .697 -.001 -, 001 .00%4 .606 .0 -,001 .002
163555 (P1) .700 -.001 -.001 .004 .700 .0 -.001 .002
164556 (S31) 707 -.001 -,001 .004 .706 .0 =.001 .002
165545 .728 -.001 -.001 .004 s L0 ~00% o002
165555 (K1) .730 -.001 -.001 .004 .730 .0 =-.001 .002
165565 .733 -.001 -.001 .004 733 .0 —=00% .002
165575 .737 -.001 -.001 .004 .737 .0 -,001 .002
166654 () .523 -.001 -.001 .006 .522 .0 -.001 .003
167555 (¢3) .660 -.001 -.001 .004 .659 .0 -.001 .002
173655 (0) .685 -.001 -,001 .004  .684 .0 -.001 .002
175455 (J,) .685 -.001 =’ 001 .004 .685 .0 -.001 .002
183555 (S01) .687 -.001 -.001 .004 .686 .0 =-.001 .OD2
185555 (00;) .687 -.001 -.001 .004 .686 .0 -.001 .002
195455 (vy) .687 -.001 -.001 .004 .687 .0 -.001 .002
2) any 1=2 m=2
(semi-diurnal) .692 -.001 -.001 .0 .68 .0 -=,002 .0
3) any 1=2 m=0
(long period) .689 -.001 .0 .0 .0 0 .0 .0
4) any 1=3 m=3
(ter-diurnal) .801 -.001 -.001 .0 .799 .0 -.001 .0
5) any 1=3 m=2
(semi-diurnal) .799 -.001 .0 -.001 .799 -.001 —.001 —-.004
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TABLE 5

TIDAL TILT SIGNAL FOR PEM-C

Tidal Line T T1 T

1) 1=2 m=1 (diurnal)

125755 (201) .688 -.001 -.001 .004 .688 .0 -.001 ,002

127555 (o) .689 -.001 -.001 .0O0H .688 .0 -.001 .002
135655 (Q1) .689 -.001 -.001 .004 .688 .0 -.001 .002
137455 (p;1) .689 -.001 -.001 .004 .688 .0 -.001 .002
145555 (0y) .689 —.001 -.001 .004 .680 .0 =-.001 .002
147555 (13) .689 -.001 -.001 .004 .689 .0 =.001 .002
155655 (M;) .690 -.001 -.001 .004 .690 .0 -.001 ,002
157455 (x1) .691 -.001 -.001 .004 .690 .0 -.001 .002
162556 (m;) .697 -.001 -.001 .004 .697 .0 =-.001 .002
163555 (P;) .700 -.001 -.001 .004 .700 .0 -.001 .002
164556 (5;) .707 -.001 -.001 .004 .706 .0 -.001 .002
165545 .728 -.001 -.001 .003 727 .0 -.001 .002
165555 (K,;) .730 -.001 -.001 .003 .730 .0 =-.001 .002
165565 .733 -.001 -,001 .003 .733 .0 -.001 .002
165575 737 =001 =.001 003 .736 .0 -.001 .o002
166554 () .522 -.001 -.001 .005 521 0 =.001 .003
167555 (¢,) .660 -,001 -.001 .004 .660 .0 -.001 .002
173655 (8;) .685 -.001 -.001 .00 684 .6 ~.001 .002
175455 (J,) .686 —.001 —.001 .004 .685 .0 -.001 .002
183555 (S0,) .687 -.001 -.001 .004 .686 .0 =-.001 .002
185555 (00;) .687 -.001 —.001 .004 .686 .0 -.001 .002
195455  (v,) .687 —.001 —-.001 .004 .687 .0 -.001 .002

2) any 1=2 m=2
(semi-diurnal) .693 .0 =001 .0 .68 .0 -.002 .0

3) any 1=2 m=0
(long period) .689 -.001 .0 .0 R o T S

4) any 1=3 m=3
(ter=diurnal) 802 -.001 -.007 .0 .800 .0 -.001 .0

5) any 1=3 m=2
(semi-diurnal) -799 -.001 -.001 -, 001 .T799 -, 001 —. 0071 —.004
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1) 1=2 m=1 (diurnal)

125755
127555
135655
137455
145555
147555
155655
157455
162556
163555
164556
165545
165555
165565
165575
166554
167555
173655
175455
183555
185555
195455

(2Q1)
(g1)
Q1)
(p1)
(0y)
(ty)
M)
(x,)
(my)
(Py)
(51)

(K1)

(V1)
()
(8,)
{(J1)
(50,)
(00,)
(v1)

2) any 1=2 m=2
(semi-diurnal)

3) any 1=2 m=0
{(long period)

4) any 1=3 m=3
(ter-diurnal)

5) any 1=3 m=2
{semi-diurnal)

TABLE 6
TIDAL TILT SIGNAL FOR C2

N N E v E K
TE Y Ty T§ L e .
689 —.001 -.0071 .00%4 .689 .0 -.001 .002
.689 -.001 -.001 .00% 689 .0 -.001 .002
.689 -.001 -.001 .004 .689 .0 =.001 .002
.689 -.001 -.001 .0O0Y .689 .0 -.001 .002
690 -.001 -.001 .004 .689 .0 -.001 .002
.690 -. 001 -.001 _00U .689 .0 -,001 ,002
.691 -.001 -.001 .004 .690 .0 -,001 .002
.691 -.001 -.001 .0D4 .691 .0 -=,001 .002
J69T =.007 =001 008 .697 .0 -,001 .002
701 =.001 -.001 .00 LJ00 .0 =001 .002
.707 -.001 -.001 .0OL .707 .0 =,001 .002
.728 -.001 -.001 .003 .727 .0 =,001 ,002
.T30 -.001 -.001 .003 736 .0 =,001 .002
0733 "'iuﬂ.l -iﬂD.I iﬂn3 -T33 .U - ﬂﬂ'l .ﬂﬂE
JI3T =i00% <001 2003 7306 L0 =001 002
521 =, 001 =.001 .006 521 .0 =.001 .003
661 -.001 -.001 .004 660 .0 =001 .002
.686 -.001 -.001 .00%4 685 .0 -.001 .002
.686 —.001 -.001 _0OL .685 .0 -,001 .002
JE68T7 =.001 -, 001 004 LE68T .0 =001 .002
.687 -.001 -,001 .004 687 .0 -.001 .002
.6B8 -.001 -.001 .00% 687 .0 -—.001 .002
693 .0 =.001 .0 ;690 .0 =,002 .0
.689 -.001 .0 .0 .0 0 .0 .0
802 -.001 -.001 .0 .800 .0 -.001 .0
.T99 =.001 =.001 =001 .799 -.001 -.001 -,004
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TIDAL EFFECTS ON LATITUDE AND LONGITUDE FOR NEUTRAL 1066A

fidal Line

1) 1=2 m=1 (diurnal)

125755
127555
135655
137455
145555
147555
155655
157455
162556
163555
164556
166545
165555
165565
165575
166554
167555
173655
175455
183555
185555
195455

(2Q4)
(o1
Q1)
{91}
(0,)
{(11)
(M)
(x1)
(my)
(P,)
(51)

(K1)

)
(9,0
(8,)
(J1)
(S0,)
(00,)
(v,)

2) any 1=2 m=2
(semi-diurnal)

3) any 1=2 m=0
(long period)

) any 1=3 m=3
(ter-diurnal)

5) any 1=3 m=2
(semi-diurnal)

N

-. 005
-.005
-. 005
-. 005
-.005
-.005
-.005
-. 005
-.005
-. 005
-.005
-. 005
-. 005
-.005
-. 005
-.006
-.005
-.005
-.005
-. 005
-.005
-.005

.0

LAty LAT, LAT, LAT, LG, Lﬂﬂ{i! LOHG 3 LOMG,
-1.212 .001 .005 -.008 -1.211 .0 .0
-1.212 .001 .005 -.008 -1.211 .0 .0
-1.212 .001 .005 -.008 -1.211 .0 .0
-1.212 .001 .005 -.008 -1.211 .0 .0
-1.211 .001 .005 -.008 -1.210 .0 .0
-1.211 .001 .005 -.008 -1.210 .0 .0
-1.210 .001 .005 -.009 -1.209 .0 .0
-1,210 .001 .005 -.009 -1.209 .0 .0
-1.203 .001 .005 -.009 -1.202 .0 .0
-1.200 .001 .005 -.009 -1.199 .0 =8
-1.193 .001 .005 -.008 -1.192 .0 .0
-1.170 .001 ,005 -.008 -1.169 .0 .0
-1.167 .001 .005 -.008 -1.166 .0 .0
-1.164 .001 .005 -.008 -1.163 .0 .0
-1.160 .001 .005 -.008 -1.159 .0 .0
=1.390 .,.007, .008% ~. 010 =1.388 .0 . =.001
-1.283 001  .005 —.009 -t1.2842 .OD .0
-1.216 .001 .005 -.009 =-1.215 .0 .0
-1.216 .001 .005 -.009 -=1.215 .0 .0
-1.215 .001 .005 -.009 -1.214 .0 .0
-1.215 .001 .005 -.009 -1.213 .0 .0
-1.214 .001 .005 -.009 -1.213 .0 .0
-1.217 .001 .004 .0 -1.216 .0 .0
-1.215 .001 .005 -.008 .0 .0 .0
-1.079 .001 .003 .0 -1.078 .001 .0
-1.077 .002 .004 -.002 -1.077 .001 .0

-.001




TABLE 8

TIDAL EFFECTS ON LATITUDE AND LONGITUDE FOR PEM-C

Tidal Line
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1) 1=2 m=1 (diurnal)

125755 (20Q1)
127555 (0;)
135655 (Q:)
137455 (p,)
145555 (0,)
147555 (1,)
155655 (M;)
157455 (x,)
162556 (m,)
163555 (Py)
164556 (S,)
165545
165555 (K;)
165565
165575
166554 (¥, )
167555 (4,)
173655 (9,)
175455 (J1)
183555 (50,)
185555 (00:)
195455 (v,)

2) any 1=2 m=2
(semi-diurnal )

3) any 1=2 m=0
{(long period)

4) any 1=3 m=3
(ter-diurnal)

5) any 1=3 m=2
(semi-diurnal)

-1.212
-1.212
-1.212
-1.212
-1.211
-1.211
-1.210
-1.210
-1.203
-1.200
-1.193
-1.171
-1.168
~1.164
-1.161
-1.391
~1.243
=1.217
-1.216
-1.215
-1.215
-1.214

=1.217

-1.215

-1.079

-1.078

- 001
- 001
. 001
- 001
.001
- 001
. 001
- 001

- 001
-001

. 001
001
. 001
- 001
.001
. 001
.001
. 001
. 007
-001
. 001
. 001

001

. 001

- 001

.0o02

. 005
- 005
- 005
. 005
.005
- 005
-005
- 005
- 005
- 005
. 005
-005
-005
. 005
.005
. 004
005
- 005
-005
-005
. 035
-005

- 004

-005

. 0303

- 005

-. 008
—. 008
—. 008
-.008
-.008
-.008
-.008
-.008
-.008
-. 008
-.008
—-.008
-.008
-.008
-.008
-.010
-. 009
—.008
-. 008
-.008
-.008
-. 009

—. 008

.0

-. 002

23234
-1.211
e
<1211
-1.210
-1.210
-1.209
-1.209
-1.202
-1.199
-1.192
-1.170
-1. 167
~1.163
-1.160
-1.390
-1.242
-1.215
-1.215
-1.214
~1.214
-1.213

-1.216

-1.079

=1.077

-0 .0 -.00%
.0 -0 -,005
-0 .0 -,005
0 .0 =-.005
.0 -0 =,005
-0 .0  -.005
-0 .0 -.005
-0 .0 -.005
.0 .0 =.005
.0 .0  =-,005
.0 0 =005
-0 .0 -.005
.0 -0 =-.005
0 .0 =.005
.0 .0 =,005
.0 =.001 -, 006
.0 .0 -.005
.0 .0 -.005
.0 .0 -.005
.0 .0 -,005
.0 .0 -.005
.0 .0  -.005
.0 0 -0

-0 -0 .0

001 .0 -0

001 .0 .0
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TIDAL EFFECTY ON LATITUDE AND LONGITULE FOR €2

Tidal

Line

LAT

LAT

LAT3

LAT

LONG,, LﬂHGl LONG, LONG,

0 1 4
1) 1=2 m=1 (diurnal)
125755 (2Q;) -1.211 .001 .005 -.008 -1.210 .0 .0 -.005
127555 (0,) -1.211 .001 .005 -.008 -1.210 .0 .0 -.005
135655 (Q;) -1.211 .001 .095 —.008 -1.210 .0O .0 -.005
137455 (p,) -1.211 .001 .005 -.008 -1.210 .0 .0 -.005
145555 (0;) -1.211 .001 .005 -.008 -1.210 .0 .0 -.005
147555 (T1,) -1.211 .001 .005 -.008 -1.210 .0 .0 =,005
155655 (M;) -1.210 .001 .00N5 -.008 -1.209 .0 .0 =.005
157455 (%) -1.210 .001 .005 -.008 -=1.209 .0 .0 =.005
162556 (my) -1.203 .001 .005 -.008 -1.202 .0 .0 =-,005
163555 (P;) -1.200 .001 .005 -.008 -1.199 .0 .0 =,005
164556 (S;) -1.193 .001 .005 -.008 -1.192 .0 .0 -.005
165545 -1.171 .001 .00D5 -.008 =1.170 .0 .0 -.005
165555 (K1) -1.168 .001 .005 -.008 -1.167 .0 .0 -.005
165565 -1.164 ,001 .005 -.008 -1.163 .0 .0 =.005
165575 -1.161 .001 .005 -.008 -1.160 .0 .0 -.005
166554 (i) =1.392 .001 .004 -.010 -=1.391 .0 =.001 -=.006
167555 (¢,) -1.243 .001 .005 -.009 -1.242 .0 .0 =.005
173655 (6,)  -1.216 .001 .005 -.008 -1.215 .0 .0 =-.005
175455 (J7,) -1.216 .001 .005 -.008 -1.215 .0 0 -.005
183555 (50,) =1.215 .001 .005 —.008 -1.213 .0 .0 =-.005
185555 (00,) -1.214 .001 .005 —-.009 -1.213 .0 .0 -.005
195455 (v,) -1.214 .001 .005 -.009 -1.213 .0 .0 -.005
2) any l=2 m=2
(semi-diurnal) =1.217 .001 .004 .0 -1.216 .0 .0 .0
3) any 1=2 m=0
(long period) -1.215 .001 .095 —.008 .0 .D .0 .0
4) any 1=3 m=3
(ter-diurnal) -1.079 .001 .003 .0 -1.078 .001 .0 .0
5) any 1=3 m=2
(semi-diurnal) -1.077 .002 .005 -.002 =1.077 .001 .0 .0




TIDAL STRAIN SIGNAL FOR NEUTRAL 1066A

TABLE 10

32

Tidal Line 51 52 s 5& 3 3 5? 53
1) 1=2 m=1 (diurnal)
125755 (2Qi) .604 .084 .0 .0 .0 -0 .001 .0
127555 (o31) .604 .084 .0 .0 .0 .0 .001 .0
135655 (Q1) .604 .084% .0 .0 .0 .0 .001 .0
137455 (p;) .603 .084 .o .0 .0 .0 .001 .0
145555 (0,) .603 .08k .0 .0 .0 .0 .001 .0
147555 (1,) 503, 088 .0 - 0 0N =8y 007 <8
155655 (M;) .601 .084 .0 .0 .0 .0 .001 .0
157455 (x,) .600 .084 .0 .0 .0 .0 .001 .0
162556 (m,) .587 .085 .0 .0 .0 .0 .001 .0
163555 (P,) .581 .085 .0 .0 .0 .0 .001 .0
164556 (S,) .568 .085 .0 .0 .0 .0 001 .0
165545 .526 .087 .0 .0 .0 .0 .001 .0
165555 (K1) .520 .087 .0 .0 .0 .0 .001 .0
165565 .514 _.087 .0 .0 .0 .0 .001 .0
165575 .507 .087 .0 .0 .0 .0 .001 .0
166554 (y1) .937 .074 .0 .0 .0 .0 .002 .0
167555 (¢1) .662 .082 .0 .0 .0 .0 .001 .0
173655 (8;) .612 .084 .0 .0 .0 .0 .001 .0
175455 (J1) .611 _084 .0 .0 .0 .0 .001 .0
183555 (50;) .608 .084 .0 .0 .0 0 .001 .0
185555 (00,) .608 .084 .0 .0 .0 .0 .001 .0
195455 (v,) .607 .084 .0 .0 .0 .0 .00t .0
2) any 1=2 m=2
(semi-diurnal) .609 .085 .¢C .0 .0 .0 .001 .0
3) any 1=2 m=0
{long per;od} 606 .084% .0 .0 .0 .0 001 .0
4) any 1=3 m=3
(ter-diurnal) .292 .015 .0 .0 .0 0 001 .0
) any 1=3 m=2
(semi-diurnal) .290 .01 .0 -.001 .0 .0 001 .0




TABLE 13

TIDAL STRAIN SIGNA. FOR PEM-C
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Tidal Line Sy S, Sy S Ss S¢ Sy Sg
1) 1=2 m=1 (diurnal)
125755 (2Q1) 604 _088 .0 D .0 .0 001 .0
127555 (01) .604 .084% .0 .0 ig .0 .001 .0
135655 (Q1) .603 .084 .o 0 .0 .0 001 .0
137455 (p1) .603 .088 .0 .0 .0 .0 .001 .0
145555 (0;) .602 .088 .0 .0 .0 .0 .001 .0
147555 (T11) .602 .084% .0 .0 .0 .0 .001 .0
155655 (M) .600 .084 .0 .0 .0 .0 .001 .0
157455 (X,) .600 .0B4% .0 .0 .0 .0 .001 .0
162556 (m,) .587 .084 .0 .0 .0 .0 .001 .0
163555 (P1) .581 .085 .0 .0 .0 .0 .001 .0
164556 (51) .567 .085 .0 .0 .0 .0 .001 .0
165545 .526 .086 .0 .0 .0 .0 .001 .0
165555 (Ky) .520 .087 .0 D .0 .0 .001 .0
165565 .514 ,087 .0 .0 .0 .0 .001 .0
165575 507 .08T .0 .0 .0 .0 .001 .0
166554 () .939 .073 .0 .0 .0 .0 ;002 .0
167555 (¢1) .662 .082 .0 .0 .0 .0 .001 .0
173655 (8;) .612 .084 .0 .0 .0 .0 .001 .0
175455 (J;) .611 .084 .0 .0 .0 .0 .001 .0
183555 (50,) .608 .084 .0 .0 .0 .0 .001 .0
185555 (00,;) .608 .084 .0 .0 .0 .0 .001 .0
195455 (v;) .607 .0B4 .0 .0 .0 .0 .001 .0
2) any 1=2 m=2
(semi-diurnal) 609 .G85 .0 .0 .0 .0 001 .0
3) any 1=2 m=0
(long period) .606 .084 .0 .0 -0 .0 001 .0
B) any 1=3 m=3
(ter-diurnal) .291 .015 .0 .0 .0 .0 .001 .0
5) any 1=3 m=2
(semi-diurnal) .290 .015 .0 -.001 .0 .0 .001 .0




TIDAL STRAIN SIGNAL FOR C2

TABLE 12

154

Tidal Line 5y S, Sq Sy Sg Sg 37 Sg
1) 1=2 m=1 (diurnal)
125755 (2Q1) .604 .085 .0 .0 .0 .0 .001 .0
127555 (0:) .604 .085 .0 .0 .0 .0 .001 .0
135655 (Q1) .603 .085 .0 .0 .0 =0 .001 .0
137455 (1) .603 .085 .0 .0 .0 .0 .001 .0
145555 (01) .602 .085 .0 .0 .0 .0 .001 .0
147555 (T1) .602 .085 .0 .0 .0 .0 .001 .0
155655 (M1) .600 .085 .0 .0 .0 .0 .001 .0
157455 (x,) .599 .085 .0 .0 .0 .0 .001 .0
162556 (my) .587 .085 .0 .0 .D .0 .001 .0
163555 (Py) .581 .085 .0 .0 .0 .0 .001 .0
164556 (S1) .568 .086 .0 .0 .0 .0 .001 .0
165545 526 .08T .0 - .0 (#] 001 .0
165555 (Ki) .521 .087 .o .0 .0 .0 .001 .0
165565 515 .087 .0 .0 .0 0 .001 .0
165575 .508 .088 .0 .0 .0 .0 .001 .0
166554 (1) .942 074 .0 .0 .0 .0 .002 .0
167555 (¢,) 661 .083 .0 .0 .0 .0 .001 ,0
173655 (8;) .611 .0B4 .0 .0 .0 .0 .001 .0
175455 (J,1) .610 .084 .0 .0 .0 .0 .001 .0
183555 (S04) .608 .084 .0 0 0 .0 .001 .0
185555 (00;) .608 .0B4 .0 .0 .0 .0 .001 .0
195455 (V) .607 .0B4 .0 .0 .0 .0 .001 .0
2) any 1=2 m=2
(semi-diurnal) 609 .086 .0 .0 .0 .0 .001 .0
3) any 1=2 m=0
(long period) .606 .084 .0 .0 .0 .0 .001 .0
4) any 1=3 m=3
{ter=diurnal) .292 .015 .0 .0 .0 .0 .001 .0
5) any 1=3 m=2
(semi-diurnal) «290 .015 .0 -—-.001 .0 .0 .001 .0




TAELE 11

INDUCED FHEE SPACE POTENTIAL <OR NEUTRAL 1066A

Tidal Line kg k+ %
1) 1=2 m=1 (diurnal)

125755(2Q1) 298 -.005 .0
127555(01) 298 005 =20
135655(Q;) .298 -.005 .0
137455(p;1) .298 -.005 .0
145555(01) .298 -.005 .0
147555(11) .298 -.005 .0
155655(M; ) .297 -.005 .0
157455(X,) .296 -.005 .0
162556 (1) .290 -.005 .0
163555(P;) +2BT — 005 .0
164556(S1) 280 -.005 . .0
165545 .259 -.005 .0
165555(K1) .256 -.006 .0
165565 .253 -.005 .0
165575 .250 -.005 .0
166554 () .66 -.004 .0
167555 (¢ ) .328 005 . .0
173655(8,) .302 -.005 .0
175455(31) .302 -.005 .0
183555(50;) .301 -.005 .0
185555(00,) .301 -.005 .0
195455(v,) .300 -.005 .0

2} any 1=2 m=2
(semi-diurnal) 302 -.003 .0

3) any 1=2 m=0
(long period) .299 -.005 -0

§) any 1=3 m=3
(ter-diurnal) .094 —.008 .0

5) any 1=3 m=2
(semi-diurnal) .093 -.011 .0

155
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TABLE 14

INDUCED FREE SPACE POTENTIAL FOR PEM-C

Tidal Line Ko kg k_
1) 1=2 m=1 (diurnal)
125755 (20Q4) .298 -.005 .0
127555 (o;) .208 -.005 .0
135655 (Q1) .298 -.005 .0
137455 (p;) .28 -.005 .0
145555 (0;) -298 —-.005 .0
147555 (1;) .298 -.005 .0 ,
155655 (M,) .297 -.005 .0
157455 (x;) .296 -.005 .0
162556 (m;) .290 -.005 .0
163555 (p,) 287 -.005 .0
164556 (S,) .280 -.005 .0
165545 .25 - 005 .0 F
165555 (Ki) .256 -.006 .0
165565 253 =005 .0
165575 «200 =005 .0
166554 (1) 467 -.004 O
167555 (¢1) 327 — 005 ' 0
173655 (8,) .302 -.005 .0 A
175455 (3,) .302 -.005 .0
183555 (s0,:) .301 005 .0
185555 (00;) -.301 —-.005 .0
195455 (vp) .300 -.005 0
2) any 1=2 m=2 "
(semi-diurnal) .302 -.003 .0
3) any 1=2 m=0
(long period) .299 -.005 .0
4) any 1=3 m=3 F
(ter-diurnal) -094 -_008 .0

5) any 1=3 m=2
(semi-diurnal) 093 -, 011 .0
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TABLE 15

INDUCED FREE SPACE POTENTIAL FOR C2

Tidal Line k k k

1) 1=2 m=1 (diurnal)

125755 (2q;) .299 -.005 .0
127555 (0,1) -.299 -.005 .0
135655 (Q:1) .299 -—.005 .0
137455 (p;y) .299 —.005 .0
145555 (0;) .298 -.005 .0
147555 (1) .298 -.005 .0
155655 (M;) 297 -.005 .0
157455 (x,) -297 -.005 .0
162556 (m;) 291 -.005 .0
163555 (P,) .287 -.005 .0
164556 (S,) .281 -.005 .0
165545 .260 -.005% .0
165555 (K1) -257 —.006 .0
165565 254 - 006 .0
165575 .251 -.006 .0
166554 () .469 -.004 .0
167555 (é,) .328 -.005 .0
173655 (87) .303 =-.005 0
1754855 (31) 302 -.005 .0
183555 (50,) .301. =005 .0
185555 (00;) -.301 -.005 .0
195455 (v,) .300 -.005 .0

2) any 1l=2 m=2
(semi-diurnal) -302 -.004 .0

3) any 1=2 m=0
(long period) .299 -.006 .0

4) any 1=3 m=3
(ter-diurnal) 094 —.008 .0

5) any 1=3 m=2
(semi-diurnal) 093 -.011 .0
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TABLE 16

DISPLACEMENT LOVE NUMBERS FOR NEUTRAL 1066A

Tidal Line h° y h+ h_ 1o z l+ W w_ 3
1) 1=2 m=1
(diurnal)
125755 (2Q;) .604 .001 .0 .0 .0841 .014 -.002 .0 .0
127555 (0y) /608,007 .0 .O'/%loBHT 018 -.002 .0 .0
135655 (Qp) _603°7.001°°.0 .0 1Si08HISTIO1y —.002 .0 .0 -~
137455 (°;) .603 .001 .0 .0 .0841 .014 -.002 .0 .0
145555 (0,) .603 .001 .0 .0 .0841 .014 -.002 .0 .0
147555 (1) .603 .001 .0 .0 .0842 .014 -.002 .0 .0
155655 (My) 600 -.007-.0 .0 1Ti08E2SNOIN — 002 .0 .0
157455 (x;) .600 .001 .0 .0 .0843 .014 -.002 .0 .0
162556 (7)) .587 .001 .0 .0 .0847 .013 -.002 .0 .0 -~
163555 (P1) 581 .0091°-.0 .0 .0889€91g13 2002 .0 .0
164556 (S1) .568°°.001T--.0 .0 2i0853°°1013 -.002 .0 .0
165545 .526 .001 .0 .0 .0866 .011 -.001 .0 .0
165555 (K1) .520 .001 .0 .0 .0868 .011 -.001 .0 .0
165565 .514 ,001 .0 .0 .0870 .011 -.001 .O .0
165575 ' 507°.001-°.0 .0 i0872'Vi011 =001 .0 .0 -
166554 (Y1) .937 .001 .0 .0 .0736 .026 -.004 .001 .0
167555 (¢1) .662 .001 .0 .0 .0823 .016 -.002 .0 .0
173655 (87) .612 ,001 .0 .0 .0839 .014 -.002 .0 .0
175455 (J1) .611 ,001 .0 .0 .0839 .014 -,002 .0 .0
183555 (S0;) .608 .001 .0 .0 .0840 .014 -.002 .0 .0
185555 (00;) .608 .001 .0 .0 .0840 .014 -.002 .0 .0 -
195455 (V1) .607 .001 .0 .0 .0840 .014 -.002 .0 .0

2) any 1=2 m=2
(semi-diurnal) .609 .001 .0 .0 .0852 .014 -.001 .001 .O

3) any 1=2 m=0
(long period) .606 .001 .0 .0 .0840 .014 -.002 .0 .0

4) any 1=3 m=3 3
(ter-diurnal) .292 .001 .0 =0 .0151 .041 -.007 -.007 .O

5) any 1=3 m=2
(semi-diurnal) .291 .001 -,001 .0 .0149 .041 -.007 -.007 -.083
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TABLE 1%
DIGPLACEMENT LOVE NUMBER: FOR PEM-C

Tidal Line hy y h, h 1ﬂ z 1, M, W
. 1) 1=2 m=1
(diurnal)

125755 (2Q;) .60 .001 .0 .0 .0B39 .014% -.002 .0 .0
127555 (9;) .604 .001 .0 .0 .0839 .014 -.002 .0 .0
135655 (Q1) .603 .001 .0 .0 .0839 .01 -.002 .0 .0
h 137455 (0,) .603 .001 .0 .0 .0839 .01%-.002 .0 .0
145555 (0y) .603 .001 .0 .0 .0839 .018 -.002 .0 .0
147555 (7,) .602 .001 .0 .0 .0839 .018 -.002 .0 .0
155655 (M) .600 .001 .0 .0 .0840 .014 -.002 .0 .0
157455 (X1) .600 .001 .0 .0 .0840 .014 -.002 .0 .0
162556 (my) 587 .001 .0 .0  .0888 .013 —.002 .O .0
163555 (Py) .581 .001 .0 .0 .0B46 .013 -.002 .0 .0
164556 (S5;) <567 .001 .O0' O -.0850: 013 -002 .O .0
165545 526 ..001 .0 .D | _0B6% _014'=.001 .0 .0
165555 (K;) 520 .001 .0 .0 .0865 013 =001 .0 .0
165565 SHE 00T 000 08 V08T .OTE=l001 .0 .0
165575 507,001 O .D L0869 (0135001 .0 .0
166554 (1) .939 .001 .0 .0 .0735 .026 - 004 .001 .0O
167555 (¢1) .661 .001 .0 .0 .0B21 .016 -.002 .0O .0
173655 (8;) 612 ,001 .0 .0 .0837 .04 -,002 .0 .0
175455 (J1) LH11T 001 .0 .0 .0837 JOM8-i@D2 .0 .0
183555 (S0;) .608 .001 .0 0 .0838 .014 -.002 .0 .0
185555 (00;) .608 .001 .0 0 .0838 .014 —,002 .0 .0
.0 .0 .0B38 .014 -.002 .0 .0

195455 (vy) .607 .001

2) any 1=2 m=2
(semi-diurnal) 609 .001 .0 .0 -0850 .074 -,001 .001 .0

3) any 1=2 m=0
(long period) .606 .001 .0 .0 .0838 .014 -.002 .0 .0

i) any 1=3 m=3
(ter-diurnal) .291 .001 .0 .0 .0148 .0482 -.007 -.007 .0

5) any 1=3 m=2
(semi=-diurnal) .290 ,001 -.001 .0 0T8T .042 —. 007 -.007 -.084
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TABLE 18

DISPLACEMENT LOVE NUMBERS FOR C2

Tidal Line h y h h 1 z 1 W W
1) 1=2 m=1
(diurnal)

125755 (2Q;) .603 .001 .0 .0846 .04 -.002 .0 .0

L
o
®E ® & & § @
o= e e e B e B oo B o B e e B B A e T e N e T e R o R e

127555 (o) .603 .001 .0 . .08456 .014 -.002 .0 .0

135655 (Q;) -603 .001 .0 . .0846 .014 -.002 .0 .0

137455 (p,) .603 .001 .0 . .0846 .014 -.002 .0 .0 3
145555 (0,) .602 .001 .0 . .0846 .014 —.002 .0

147555 (t;) .602 .001 .0 .084% .014 -.002 .0 .

155655 (M) .600 .001 .0 .0847 .014 -.002 .0 .

.0847 .014 -.002
.0851 .013 -.002
.0853 .013 -.002
.0857 .013 -.002

157455 (x;) .599 .001 .0
162556 () 587 .001
163555 (P;) .581 .001 .0
164556 (s,) .568 .001 .0

- -

OO0 O00000DOoOO0ODO OO
L

165545 .526 .001 .0 .0870 .011 -.001
165555 (K;) «.521 001 .0 . .0872 .011 -.001
165565 a2 A0E. BuC . -0873 .011 -.001

165575 508 001 .0 . .0876 .011 -.001
166554 (y,) 942 001 .0 . L0742 .026 -.004
167555 (¢,) .661 .001 .0 . .0828 .016 -.002
173655 (8,) 611 .001 .0 .0 .0B43 .p14 -.002
175455 (J,) .610 .001 .0 .0 .DB4Y4 .014 -.002
183555 (50;) .608 .001 .0 .0 .0BYS .014 -.002
185555 (00;) .608 .001 .0 .0 .08B45 .014 -.002
195455 (v,) .607 .001 .0 .0 .0BUS .014 -.002 .

o
il

« & @ . & & = .
CO0 000 OO0 DO0OO00DDO0O0DODD

2) any 1=2 m=2
(semi-diurnal) 609 001 .0 -0 .0857 .014 -, 001 .001 .0

3) any 1=2 m=0
(long period) .606 .001 .0 .0 L0884 014 -.002 .0 .0

4) any 1=3 m=3
{ter-diurnal) 292 .001 .0 .0 -0154 _040 -.006 - 006 .0

5) any 1=3 m=2
(zemi-diurnal) .290 .001 -.001 .0 .0152 .040 -.007 -.007 -.082
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are glven In Tables 1-18 for a set of 22 important diurnal
frequencies. It is possible to generate results for larger sets
of frequencies by using the eigenfunction expansion, (4.58). In

particular any scalar, a, in (9.3) is written as

o {58, ey
(9.7) o =a *3 ! w (s _,8 ;T{s i9%s ) (v -w)(w_-w_) |“n
°1 n n'=n’~n" “Fn'T~ =n n n o

1

where @, and o are the computed values of « for the non-resonant
1
base tide (ol] and the nth normal mode, respectively. We rewrite

(9.7) as
W=
5 Oy
(9.8) oy AL
1 n n

where
(9.9) A =1 L5y n

1 n 2 (s ,s)- (g ,ils ) w -u

o ~n-n - = ~q n o

1

If we give &n(u} for each pertinent normal mode, an’ and
each scalar, o, then we have prescribed frequency dependent
analytical expressions for the {a). To keep confusion to a minimum
we choose to use (9.8) in an approximate sense. First, the
An(u) and a are given only for the secalars kn’ ha and in. These

correspond roughly to the familiar spherical Love numbers.
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Approximate results for any other scalar in (9.3) can then be
found using the spherical correspcndence presented in (9.4).

Second, the ﬁn{u} are found only for the resonant NDFW.

Consequently,
A - A
1
k =k + e
(9.10) T T
A=k
g
h =h + e
(] nl hﬂDFW AHDFH_R
X = A
L = +- & Gl
o 01 NDFW ANBFﬁfl
"oy “NDFW
o — f the 0, tide
where lnl a and lNDFW = a are the frequencies of the 1
and NDFW in eycles per sidereal day. The coefficients knl, kHDFW'
Tabl 19- for
an, RHHFH' hﬂl, hHDFH' lnl and AHDFH are listed in Tables 23

all five Earth modelsa. Tables 19-23 alsoc allow us to compare the
NDFW elgenfrequency, lNDFH’ between structural models. The maximum
difference in period is between C2Z and stable 1066A and amounts ro
only about three days as seen in inertial space. Such a slight

offset may not be numerically significant.

The results, (9.10), for hﬂ, kn and tﬂ appear accurate to
within the .3% level suggested as the computational accuracy in
(haptey V. Of vourse, the relationships, (9.4), between hu, kn
and io and the other scalars on a spherical Earth necessarily

contain small errors of the order of ellipticity. Results for

kﬂ' ko

and ha are presented in Figures 8-10 as functions of
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TABLE 19

EXPANSION COEFFICIENTS FOR 10664

h 1 k B A
01 Tide .603 . 0842 .298 816 .92700
NDFW -2.46x1073 7.81¥102-1.23x10"3 .665 1.0021714
cwW .810 -2.48x10°3

Rigid CW 1,06 =3.28x0°°




1hé

TABLE 20

EXPANSION COEFFICIENTS FOR NEUTRAL 106GA

h 1 k E A
0y Tide 603 . 0842 . 298 L4518 .92700
NDF W —2.46xX10°3 7.82:x107° ~1.28%1072 .667 1.0021716
CW LB10 =2.48x1073

Rigid CwW 1.06 =3.28x1073
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TABLE 21

EXPANSION COEFFICIENTS FOR STABLE 1066A

h 1 k B A
0, Tide .603 . 0842 298, 418 .92700
NDEW —2.U6x1073 7.83x107°-1,24x107° ,667 1.002170
CW 810 2. 48x10”

Rigid CW 1.06 -3.28x10"3
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TAELE 22

EXPANSION COEFFICIENTS FOR PEM-C

i 1 k B A
0] Tide 602 .0839 .298 417 92700
NDFW ~2. 461073 7.69x1077-1,24x107>

. bbb I.GGETTT%
CW LB14 -2, 48x10”
Rigid CW 1.06 -3.28x10°3
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TABLE 23

EXPANSION COEFFICIENTS FOR C2

h 1 k B A
04 Tide .602 g, -DBN6 . 208 . 397 .92700
NDFW ~2.45x10 " 7.58x10 " -1.23x10 ~ .661 1.0021844
CW .60B -2.48x10" 7

Rigid CW 1.06 -3.28x10-3




] | I

LI | 9
—= PERIOD (days)

Figure 8, Diurnal frequency dependence of the Love number, kn'

891
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frequency over the diurnal band for model 1066A. In each case,
the NDFW resonance is superimposed on the nearly frequency
Independent free oscillation contributions. It is instructive to
compare these diurnal tidal results with the results of other
theories. A precise, absolute comparison is difficult because of
the more complex latitude dependence predicted here for the tides.
However, we can get a general idea of the differences by examining
the shape of the NDFW resonance. This is effectively accomplished
by comparing changes in the Love numbers as we progress across the
diurnal band. Tables 24-26 compare the results for kﬂ,hc and iu
computed here for models neutral 1066A, PEM-C and C2 with the
corresponding results of Molodensky's (1961) Model II and the
neutrally stable (i.e. B = 0) model of Shen and Mansinha (1976).
The numbers in Tables 24-26 are ratios of the appropriate Lowve
numbers at the given frequency to the corresponding value at the
Gl frequency. In general, differences between our three structural
models are noticeably smaller than our general disagreement with
Molodensky. (1961). Agreement with Shen and Mansinha (1976) is

quite good except for RD, where their results exhibit some very

peculiar frequency dependence.
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TABLE 24

RATIOS OF THE LOVE NUMBER, kD, TO 1TSS VALUE AT ﬂl

Neutral PEM-C c2 Molodensky  Shen & Mansinha
10664 Model IT g =20 =
Hl 997 097 997 997 996
Pl 963 963 .963 967 .962
Kl . 859 . 859 .B62 .870 .854
!#l 1.564 1.567 1.574 1.517 1.566 .
¢1 1.101 1.097 1.101 1.093 1.102
I, 1.013 1.013 1.013 1.013 1.014
TR R T e A T ok SO
RATIOS OF THE LOVE NUMBER, h_, TO ITS VALUE AT 0, 4
Neutral PEM-C c2 Molodensky Shen & Mansinha
1066A Model IT B =0
Hi =995 .995 997 997 -996
Pl 964 .964 . 965 - 966 .963
Kl . 862 .862 . 865 .871 - 867
wl 1.554 1.557 1.565 1.511 1.557
¢l 1.098 1.096 1.0938 1.091 1.301
Jl 1.013 1.013 1.013 1.011 1.014
W RTRG S s ¥ s [y ah J
RATIOS OF THE LOVE NUMBER, ED, TO ITS VALUE AT ﬂl
L=+ Nentral ... PEM-C. = .. . G%.. . Mbizﬁensky Shen & Mansinha -
10664 Model II B =0
My 1.001 1.001 1.001 1.001 1.001
Pl 1.010 1.008 1.008 1.009 .902
Kl 1.032 1.031 1.031 1.035 .924
¥ .875 .876 .877 .862 777
¢1 979 .979 .9279 975 . 873
Jl .998 -998 .998 .996 . 891

— = EaTsEs T
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9.3 Nutation Results

The complete diurnal tidal motion comprises both body tide
and nutational components. Separation of these two phenomena is
discussed at some length in Chapter VII, where the Tisserand mean
figure axis of the surface, B, is defined as the axis most naturally
representing the observational consequences of nutation.

The most important normal mode contributions to B come from
the TOM, the CW and the NDFW. Free oacillation effects on B are
minor and essentially frequency independent over the diurnal band.
Consequently, the eigenfunction expansion, (4.58), can be applied

as in Section 9.2 to give an amplitude for B of

A=A A=A A —ln
1

o
1

(9.11) 1B =& Ay R, T F —_—

A A Arow TR T Aew T T ——
(The CW and TOM were not necessary in (9.10) because of their small
(or non-existent) accompanying deformation.) A dimensionless plot
of B versus frequency is presented in Figure 11, where the dominant
TOM contriburion is shown separately. The NDFW excitation is

i

approximately proportional only to the relative torque between

the core and mantle and consequently its resonance is quite narrow.




B AXIS AMPLITUDE —=

O

—=== TOM CONTRIBUTION

—— CW +NDFW
CONTRIBUTION

Figure 11,

|
~=— PERIOD (days)

Frequency dependence of the amplitude of the nutating
axis, B, computed for an assumed frequency independent
The large TOM contribution is shown

tidal potential.
separately.

Wi
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It Inw, however, broader than the NDFW resonance in the Love numbers -
a consequence of the fact that in the mantle the NDFW 1s mostly a
rigid rotation. Its contribution tuIB|is shown in Figure 11 as
superimposed on a small non-zero offset — the CW contribution to
(2.11).

As discussed in Chapter VIL, it proves most expedient to
remove the resomant TOM contribution by comsidering, instead,
Eratio - the ratio of the elastic contributions in (9.11) to the

amplitude of the rigid Earth figure axis (see equation 7.46). Using

the rigid Earth development presented in Section 7.2 gives

A= A-ED
(2.12) B i K on. ™ B E'BCW A : )
frElpat s | cW rigid "CW_, .
rigid
A=A
°1
+ B s [1-3]] 22
NDFW Ay~ [ mrigid]
where A, EHDFH’ AEW and lcwrigid are the tidal frequency, NDFW

frequency, CW frequency and the fregquency of the CW om a rigid

Earth, all in cycles per sidereal day; and Bu g BEW’ BCW . and
1 rigid
ENDFW are suitably defined constants. Numerical results for the

{3} and {B} (using E%§-= .003273952 (Kinoshita, 1977)) are given

in Tables 19-23 for all five Earth models. (The notable difference
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between HEH for €2 and for the other models seems to be associated
with differences in the fluid core CW deformation; the corresponding
nutational effects are not large.)

A plot of Bra versus frequency is given in Figure 12 for

tio
model 1066A. The most notable feature is the pronounced NDFW
resonance., The constant background slope and the zero crossing at
exactly one sidereal day merely reflect division by the

results for a rigid Earth.

A complete set of numerical values for Bratic for 10664 is
presented in Table 27. Kinoshita's (1977) frequency set is chosen
here and his ordering procedure is adopted. Both Brown's (1919)
fundamental arguments (L i’, F, D, @) and the corresponding
Doodson numbers are shown here and his ordering procedure is adopted.
The ratios in Table 27 are then convolved with Kinoshita's theory
for the figure axis of a rigid Earth, using orbital elements computed
at epoch 2000 (results privately commmicated by T. Sasao). The
resulting perturbations in longitude and obliquity of the axis, B,
are shown in. Table 28, in units of .0001 seconds of arc.

Longitude and obliquity perturbations are also given for
model C2 in Table 29. Although these results for C2 do differ

from the results for the other structural models, it is evident

from Tables 28 and 29 that agreement is actually quite good. Inm

particular, differences in longitude and obliquity between C2 and
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Figure 12. Frequency depencence of B
to the nutating axis, .?_

- the elastic contribution
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TABLE 27
RELATIVE NUTATIONS OF Brat: F FOR 1066A
Argument Negative Positive -
11" FDaq Doodson no ratio Doodson no ratio
1 30000 135.855 1.8TE-02 195.255 8. 19E-02
2 210-20 162.756 3.69E-02 168. 354 7.26E=02
3 20200 165.775 -3.61E-02 165.335 1.46E-02
4 200-20 163.755 3.33E-02 167.355 9.25E-02 -
5§ 200-40 181.755 6.97E-0D2 149,355 3.09E-02
6 20020 127.755 1.01E-02 1%3.355 9.08E=02
T -20000 145,755 2.BYE-D2 185. 355 7.22E-02
8 1=-1 0-1 0 165.654 -8.248E-073 165. 456 6.17E-03
g9 1=-1 0=2 0 174.654 6.33E-02 156, 456 3.7TTE=-02
10 1=-1 000 156. 654 3.TBE-02 174, 456 6.32E-02 g
11 110-20 172 .656 6.25E-02 158,454 3.8TE-0D2
12 11000 154,656 3.6TE-02 176. 454 6.42E-02
13 1 0=-2-2 0 193.675 8.0BE-Q2 137.435 1.98E=02
14 10-2 20 157.675 3.84E-02 173.435 £.2TE-02
15 10-2 00 175.675 6.38E-02 155.435 3. TOE=-02
16 10 2=2 0 153.635 3.60E-02 177.475 6.48E-02 T
17 10200 135.635 1.85E-02 195,475 8.21E-02
18 100=-10 164,655 2.58E-02 166,455 4,8TE-01
19 100-20 173.655 6.28E-02 157.455 3.82E-02
20 10 0=4 0 191.655 7.93E-02 139.455 2. 14E-D2
21 10020 137.655 2. 00E-02 193. 455 8.06E=-02
22 10000 155.655 3.T2E-02 175.455 6.3T7E-02
23 01=2 20 166.576 1.T9E-01 164,534 2.84E=-02
24 012=20 162.536 3. TGE-02 168.574 6.99E-02
25 01020 182.556 7-03E-02 148.554 3.04E-D2
26 01020 146.556 2.90E-02 184.554 7.17E-02
27 01010 155.556 3.T2E-02 175.554 6.37E-02
28 00220 163.535 3. 49E02 167.575 8.24E-02
29 00200 145.535 2.82E-D2 185.575 7.25E-02
0 00020 147.555 2.97E-02 183.555 7. 10E-02
31 0oo0o010 156.555 3.TIED2 174.555 6.32E-02
32 -1-1021 158. 464 3.8T7E-02 172.646 6.28E-02
33 =10 2=-2 1 173. 445 6.27TE-D2 157.665 3.83E-02
33 10221 137. 445 1.98E-02 193.685 8.0BE-D2 i
35 -10201 155. 445 3.71E-02 175.665 6.38E-02
36 =10 0=2 1 193. 465 8.06E-02 137.645 2.00E-02
3 10021 157 . U65 3.82E-02 173.645 6.28E-02
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TABLE 27 (contd)

RELATIVE NUTATIONS OF B FOR 1066A
ratio

Argument Negative Positive
11" Fb %2 Doodson no ratio Doods=on no ratio
38 10011 166. 465 3.26E-01 164,645 2.65E-02
39 -1000 1 175. 465 6.37E-02 155.645 3.T2E-02
4 20201 165. 345 1.29E-02 165.765 -2.T1E-02
41 2002 1 167.365 9.04E-02 163.745 3.36E-02
42 -2 000 1 185. 365 7.23E-02 145, 745 2.84E-02
43 2 0-2 01 165.785 -U4.TH4E-02 165. 325 1.62E-02
y 20 2-2 1 143.745 2.TOE-D2 187.365 T.3TE=-D2
45 20201 125,745 8.58E-03 1X5. 365 9.21E-02
46 20 0-2 1 163.765 3.31E-02 167.345 g.48E-02
a7 20001 145,765 2.85E-02 185.345 T.22E-02
48 11 0=-21 172.666 6.25E-02 158. 444 3.86E-02
4g 10 2-2 1 153.645 3.60E-02 177.465 6.48E-02
50 10221 117.645 -1.03E-0U4 1E3. 465 1.01E=-01
51 19.2:0 % 135. 645 1.85E-02 195, 465 8.21E-02
52 10 0=2 1 173.665 6.29E-02 157. 445 3.82E-02
53 10021 137.665 2.01E-02 193, 445 8.05E-02
54 100017 155.665 3.T3E-02 175. 445 6.36E-02
55 0=1 2=2 1 164.54Y 2.78E-02 166.566 2.06E-01
56 0=1 201 146.544 2.89E-02 184 .566 7.17E=-02
57 0-1 001 166,564 2.06E-01 164,546 2.T8E-02
58 0 1 2-2 1 162.546 3.75E-02 168.564 7.03E-02
59 01201 144,546 2.75E-02 186,564 7.31E-02
60 01001 164.566 2.66E-02 166,544 3. 16E-01
£1 00-2 21 167.585 8.12E-02 163.525 3.51E-02
62 00201 185.585 T.25E-02 145,525 2.82E-02
63 00 2-2 1 163.545 3.47E-02 167.565 8.36E-02
64 oD221 127.545 9.92E-03 1X3.565 9.0TE-02
65 00201 145,545 2.82E-02 185.565 7.24E-02
&6 000-21 183.565 T. 10E-02 147.545 2.9TE=02
67 00021 147.565 2.97TE-02 183.545 T7.09E=02
68 00001 165.565 -3.60E-03 165.545 3. 14E-03
60 =1=1 2 2 2 138. 454 2.06E-02 192.656 8.00E-02
70 =10402 135.435 1.83E-02 195.675 8.23E-02
T1 =1 02182 119.455 1.28E-03 1E1.655 9.94E-D2
T2 10222 137.455 1.99E-02 193.655 8.07E-02
3 -10202 155. 455 3.TIE-02 175.655 6.3BE-02
74 =-1000 2 175. 475 6.37E-02 155.635 3.72E-02
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TABLE 27 (rontd)

RELATIVE NUTATIONS OF B__ .~ FOR 10664
Argument Negative Positive -
11 FDu Docd=on no ratio Doodson no ratio
7 -20242 129.355 1. 13E-02 1X1.755 8.93E-02
76 -2 0222 147.355 2.95E-02 183.755 T.11E-02
7T -2 0202 165.355 1.10E-02 165.755 -1.98E-02
78 3022 2 133.855 1.72E-02 197.255 8.34E-02 -
79 30202 115.855 -—1.41E-03 1E5.255 1.02E-01
80 2032-2 2 143,755 2.TO0E-02 187.355 7.36E-02
a1 20222 107.755 -1.01E-02 1G3.355 1. 11E-01
B2 20202 125. 755 8.62E-03 1X5. 355 9.20E-02
B3 1-1 202 136.654 1.93E-02 194 . 456 8.13E-02
a4 11 2-2 2 152.656 3.54E-02 178.454 6.54E-02 F
85 11, 2'0. 2 134,656 1.TBE-02 196. 454 B.28E-02
86 10 2=2 2 153.655 3.60E-02 177. 455 6.48E-02
87 10202 2 117.655 -6.18E-05 1E3. 455 1.01E-01
B8 1020 2 135.655 1.86E-02 195. 455 8.21E-02
89 1000 2 155,675 3.T3E-02 175.435 6.36E-02
g0 0-12 2 2 128.554 1.07E-02 1X2.556 8.99E-02 -
91 01202 146,554 2.90E-02 184,556 7.17E=-02
92 01202 144,556 2.75E-02 186.554 7.31E=-02
93 o100 2 164,576 2.59E-02 166.534 4,62E-01
94 00 42 2 143,535 2.6TE-D2 187.575 7.3%E-02
95 00 2=1 2 154,555 3.66E-02 176.555 6.43E-02
96 Do 242 109.555 -8.7T8E-03 1G1.555 1.09E=01 &
9T o0 2z222 127.555 9.96E-03 1X3.555 9.0TE-D2
98 o0 0212 136.855 1.92E-D2 194,555 B.14E-02
59 00202 145,555 2.83E-02 185.555 T.2UE-02
0 00002 165.575 -T7.77E-03 165.535 5.90E-03
1o 02000 163.557 J.48E-02 167.553 8.50E-02
1002 01000 164.556 2.72E-02 166.554 2.46E-01
103 0-12=2 2 164,554 2.T2E-02 166.556 2. 46E-01
104 02222 161.557 3.89E-02 169.553 6.58E-02
105 012-22 162 .556 3.TYHE-D2 168.554 T.0TE=-02
106 00222 163.555 3. 44E-02 167.555 8.50E-02
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Obliquity
(.0001")

Longitude
(.0001"™)

TABLE 29 (contd)

AXIS B FOR C2

Period
(days)
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TABLE 29 (contd)

NUTATIONS IN LGNGITUDE AND OBLIQUITY OF THE

AXIS B FOR C2

Period Longitude  Obliquity

(days)

Argument

(.0001"™)

11*Fba

(.0001™)

-31

A0 B~ [~ &0~ oh = i
L3 *® Ll L]
[ Tl - R

LA I IR U o VI o ¥ R o T IR Y
HEUEQEEGGJ
LAt I VI VI o ¥ o VI VIR ¥ I o T oY

Uﬂu_ﬂuﬂ_unﬂ.ﬂuaﬂnl

WD b= OO o ™ =
TT???EE%ES

MO OO0 0 DW= OO WnWwe-ar N
[ o I = | = on [Ta =, Ly Rl
] - o D I 3T I

] Tl

B SRR O 1 b B e B o= 0y T.m”qrfu = =r
o = S R | 1 1 ™M M..,H%T — = 00
"y I a M| 5,1

1 J._E - (ag]

A

9961522227{“813?26323?5
- L L ) L]
BESQTT“ 3925“ Tﬁ;3g255112
31] ol ..1_.Inu_.112 ™ Oh a0 WO WD O 0 0D
M= M ot ol

e

MU NN NN NN NN NDO O NN

OO DNOMMAMNOITIONNONAMNOOONDNIRNIMN

F o0 00 rmr0DD0 00 000N rHrN—D

I I
11111ﬂu nﬂﬂﬂﬂﬂunﬂ_ﬂnunnn

W o e~
L= A= ]

100
101
102
103
104
105
106

MW~ — 0 M o Oh
o0 o 0D OO @ O O O O OO0 oh o




187

1066A amount Lo about .4 meec of are for the 1H.6 yeaar term and

arenever more Lthan .1 msec of are at other frequencles.

Table 3 shows elght Important frequency results for Bratio
as computed for models PEM-C, C2, neutral 1066A and stable 1066A.
Most notable differences seem to occur near the NDFW resonance.
However, results for 1066A and its two fluid core variants do not
differ significantly.

The other physical axes defined in Chapter VII are presented
in Table 31 for model 1066A for eight important frequencies.
Molodensky's (1961) results for EH have also been included. Several
features deserve discussion.

The angular momentum for the Earth, EE’ is exactly determined
by the luni-solar torque and is independent of the elastic response
of the Earth. As a result, the EE ratio shown in Table 31 should
vanish identically. Consequently, the non-zero values presented
there serve as an independent check on the numerical procedures
used and may be regarded as estimates of the absolute errors in
the other axes. In most cases this error amounts to approximately
one or two percent of the total axis ratio. (The absolute errors
in the figufe axes, IH and ;3, are, in general, somewhat larger
due to independent error sources. However, their walues in Table 31
should also be accurate to 1 percent.) Since computation of

EE involves integration of the tidal solution over the Earth's

volume, its deviation from zero is probably mostly a measure of




TASLE 30

YALUMRS OF THE OBSERVATIONAL AXIS, 5, FOR 4 OF THE 5 EARTE MODELS.

l.mmmuxmmlmmmm

FEN-C 10664 neutral 10660 srable

e » e 5 b 2 e ' "
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the accuracy of that integration. Consequently, it provides a
fairly conservative error estimate for the non-integrated axis, E.

It is convenient to think of the wvalues in Table 31 as -
resulting from two distinct phenomena: 1) elastic deformation in
the mantle, and 2) near resonance excitation of the Nearly Diurnal
Free Wobble. The NDFW differential rotation between core and mantle p
is clearly evident in Table 31 by comparing‘_l_-lH with EE or I with

M

lE at any of the tidal lines. The differences are the largest at
166.554 which lies wery near the Nearly Diurnal Free Wobble -
eigenfrequency.

The elastic mantle deformation, on the other hand, is
particularly evident at those frequencies, such as 145.555 and f
185.555, which are farthest from the Nearly Diurnal Free Wobble.
Here, differences between the mantle angular momentum, Hy» and the

mean mantle rotatiom, LH’ are quite pronounced, suggesting the
inadequacy of_ﬂH as an observational reference axis. TIn addition,
as predicted, the figure axes fﬁ_aﬂd,fs are strongly perturbed by
the mantle deformation. They are included in Table 31 strictly for
illustrativg purposes.

In Table 32 we compare cur nutation results for 1066A with
those of earlier theories for a small set of important frequencies.
Kinoshita's (1977) results for the figure axis of a rigid Earth

are shown as are the non-rigid results of Molodensky (1961),

Shen and Mansinha (1976), and Sasao et al. (1979) for the

Tisserand mean figure axis of




TABLE 32

A comparison of the nutations of the axis, B,
with the results of other theories

18.6 years 1 year 6 months 13.7 ¢ davs
Obliquity Longitude Obliquity Longitude Obliquity Longitude Obliquicy Longitude

Present 9.,2025" -6, B416" ,0054" 0567" «5736" -.5245" 0977" -, 0905"
Theory

Kinnahitax 9,2278 -6.8743 -,0001 L0499 + 5534 -, 5082 0949 -. 0881

(rigid Earth)

Molodensky 9.2044 -6.8441 0049 0561 5719 -.5232 0972 -.0899

{(Model II)

Shen and 9.1966 -6,8328 5768 -.5274 , 0973 -, 0899

Mansinha

Sasao, et al 9.2018 ~6.,8407 ,0051 . 0565 .5739 -.5249 L0877 -, 0904

(Wang model)

(61
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the mantle (although our results describe motion of the Tisserand
mean figure axis of the surface, differences between the two axes
have been shown above to be Insignificant). Molodensky's (1961)

reaults in Table 32 are found by convolving his elastic nutation
E=E
corrections, < 2 , for his Model II with Kinoshitak (1977) rigid

o
Earth figure axis (conveolution results privately communicated by

T.Sasac), and are the results currently favored for adoption by
the TAU Working Group on MNutation (P. K. Seidelmann, personal
comonunication).

The most pronounced absolute differences between the rigid
and non-rigid results ocecur at 18.6 vears and at six months, with
offsets of around .02" to .03" (seconds of arc). Differences
between the non-rigid results are smaller, but still potentially
important. For example, results for both the 18.6 year and six
month nutations differ between our model and Molodensky's by around
.002": about 10% of the total non-rigid correction. This can be
compared with the difference between our results for 1066A and for
C2 of .0004" for the 18.6 year nutation and .0001" for the six

month term.

9.4 Changes in Angular Position of the Earth (UTI-UTC)

As di;cussed in Chapter VIII, the long period tidal solution
consists of body tide components and an incremental rotation about
the %;axis- Relationships between the rotation amplitude, nE{m},
and observations are given in equations (8.6). Results for mnS{m}
for an assumed unit potential are nearly constant across the long

reriod band and do not vary significantly between models. In

particular, we find
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(9.13) -{mnnfm} = - ,726 msec/sldereal day.

By convolving with a long period potential theory we find frequency

dependent amplitudes of UT1-UTC in msec as
9.4) (UT1-UTC] (w) = - H_(w) % (.726) sin(wtta)

where the {Hs{”}} represents equatorial coefficients in meters of

the £=2 long period tidal potential, %-is the period in sidereal

days and a is the tidal phase. Taking the {HB} from Cartwright

and Edden (1973) glves the UT1-UTC amplitudes for 1066A listed in
the third column of Table 33. Only those terms with amplitude

larger than .05 msec are kept. (The large annual {S#]and semi-annual
{Sqa} amplitudes must be added to even larger atmospheric contribu-
tions at the same frequencies to compare with observation. The

total observed annual term, for example, is over ten times as large

as predicted tidal contribution.)

Also in Table 33 are corresponding results for 2=

§
[UTL-UTC] (w), with [UTL-UTC](w) given by (9.14),which roughly
corresponds to changes in the length of day (stod). The usual
method of computing Atod (see e.g. Munk and McDonald, 1960) uses

conservation of angular momentum on an assumed solid Earth to

equate
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TABLE 33

TIDAL VARIATIONS IN RNTATION RATE

Dogodson ne  Period UT1-UTC LOD Change So0lid Earth LOD

(days) (msec) (msec) (msec)
055.565 6798.4 -138. -. 127 -. 142
055.575 3399.2 .693 .0013 0014
056.554 (54) 365.3 1.31 .0224 . 0251
056.556 365.2 -.069 -.0012 -.0013
057.555 (S5g5)182.6 4,12 .41 . 158
057.565 177.8 =. 100 -.0035 -.0039 &
058,554 121.7 . 160 . 0083 . 0092
063.655 31.8 . 156 L0307 L0347
065.455 (Mp) 27.6 .T06 . 160 179
073.555 14.8 063 . 0266 L0297
075.555 (Mg) 13.7 .663 . 304 . 340
075.565 13.6 . 274 . 126 .14 0

085.455 9.1 . D85 - D582 . 0651
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AR
(9.15) 'EE%" 5C,,/C

where §C.. is the tidally induced change in the Earth's greatest

i3
moment of inertia and C is the unperturbed greatest moment.

Expressing ﬁc33 in terms of the spherical Love number, k, as

3

(9.16) 8Cqq = k 55— x tidal potential

gives
Afod k
(9.17) ——— EE x tidal potential

We have used (9.17) together with k = .299 to derive the
fifth column in Table 33. Differences between these results and
the correct values (fourth column) amount to around 10%. These
discrepancies are caused by the fluid core. In particular, for
our axisymmetric and non-dissipative model of the Earth,
mantle rotation will not be affected by mass redistribution within

the core. Consequently, (9.15) should be replaced by

(9.18) Atod _ st /M

Lod 33
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where ECI;J and (:I.1 are computed for the mantle only. The use of

(9.18) should give results idemtical to 2—;['1 [UT1-UTC](w), which

is used to compute the fourth column in Table 33.




CHAPTER X
SUMMARY

The tidal motions of the Harth are conveniently separated
conceptually into the body tide (i.e. the Earth's deformatiom), the
Earth's precession and nutation, and changes in the Earth's rotation
rate, A separation is effected, above, which maintains the
intuitive observational significance of each of these three
phenomena.

The traditional use of vae numbers as dimensionless parameters
representing the surface tidal deformation is complicated by
rotation and ellipticity. The latitude dependence of the response
becomes more involved, and new Love numbers must be defined to
maintain 1% or better accuracy. The relationships between the
various observational quantities (e.g. gravity, tilt, strain) and
the Love numbers are also affected by ellipticity and rotation at
the 1% level. Consequently, to successfully exploit the high
accuracy of the body tide solution (one part im 300), we have
found it useful to model each observable separately. In each case,
small (< 1%) latitude dependent modifications must be added to
the familiar, spherical results. Comparable differences are also
found between the different tidal bands. These smaller effects
are overshadowed in the diurmal h%nd by the much studied fluid core

resonance, This resonance results from excitation of the nearly
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diurnal free wobble (NDFW) whlch, In turn, depends roughly on the
differential tidal torque between the core and mantle. Since this
differential torque is small the resonance is quite narrow.

The most pronounced body tide differences between the five
Earth models considered here (PEM-C, C2, 1066A, and two variants
of 1066A obtained by modifying the stability of the fluid core)
occur near the NDFW resonance in the diurnal band. These differences
are due to the slight variations between models of the NDFW eigen-—
frequency. Unfortunately, no computationally significant differen-
ces are found between the results for 1066A and its two wvariants.

The Earth's forced nutational motion is simply one component
of its diurnal tidal response. Separate identification of nutation
is desirable, however, to avoid contamination with errors in
available tidal potential theories. Observational considerations
have prompted the use of the axis,‘ﬁ, (the Tisserand mean figure
axis of the surface) to describe the forced nutational motion. The
most nmotable non-rigid characteristic im the results forHE is the
narrow NDFW resonance. As for the body tide, most model-dependent
differences inlE'occur near this resonance. Again, no significant
differences are found between results for the three models of the
fluid core stability (1066A and its two wvariants).

Tidally induced changes in the Earth's rotatiomn rate are

part of the long period tidal motion. These changes are found to
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be about 10% less than previously supposed due to relative axial
rotation between the fluld core and mantle. No significant
variations in the results are found for any of the five models.

The numerical results described in Chapter IX may be applied
either to remove the tidal signal from geodetic or astrometric data
as an undesirable source of noise, or to use observed tidal motion
to investigate the geophysical behavior of the Earth. Our success
in achieving these ends depends on the answers to three questions:

1} Is our model of the Earth's dynamical behavior adequate?

2) Have we chosen models for the material structure which

are sufficiently close to the real Earth?

1) Is our computational process reliable (l.e. do we

accurately solve the posed problem)?

The computational accuracy here is quite good; we have argued
that the results are uniformly accurate to at least one part in
300. 1In view of the current large modelling uncertainties
associated with the effects of ocean loading and local geological
and topographical inhomogeneities, it appears that these computa-
tional limits should pose no problems.

For the structure of the Earth we have chosen what seems to
be a fairly representative sample of contemporary dissipationless
models, each of which has been designed to accommodate great

quantities of free oscillation and seismic wave data. Differences
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between results for the various structural models are usually near
the level of computational accuracy. Once égain, deficiencies

in our current ability to correct for the oceans and for other local
effects are probably much larger than these differences. We must
conclude that measurements of the different tidal motioms are not
likely to greatly improve our knowledge of rhe global structure

of the Earth within the near future (at least not within the limits
imposed by the dynamical model used here). On the other hand, the
close agreement between these results does allow for relatively
unambiguous removal of the tidal signal from observations, if
desired.

The dynamical model used here is incomplete. By far the most
serious known defects are the absence of both oceans and local
near surface inhomogeneities in geclogy and topography, which must
be corrected for independently. Uncertainties in these corrections
currently present the most formidable obstacles to a successful
interpretation of tidal observations.

Other unmodelled dynamical behavior could conceivably be
important, however. Probably most likely to be observed, either
geodetically or astrometrically, is any phenomenon which affects
the NDFW resonance in the diurnal tides and nutations. The
anomalous frequency behavior associated with this resonance is
not likely to be masked by the effects of oceans or local

inhomogeneities (as one qualification: the oceanic tide may exhibit
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spome structure near the resonance sgince It must in part respond to
any resonant tidal motion of the solid ocean floor).

0f particular geophysical interest are proposed mechanisms of
dissipative coupling between the fluid core and the mantle. Since
the NDFW resonance depends on relative rotation between the core
and mantle, any mechanism (i.e. viscosity, electro-magnetic coupling,
an irregular core-mantle boundary)} which could impede this slippage
might be observed. Such coupling could also show up in astrometric
observations of the changes in rotation rate, since these also
involve a large relative core-mantle rotatiom.

The elliptictiy of the core-mantle boundary determines the
inertial pressure coupling between core and mantle and is wvery
important in controlling the frequency of the NDFW resonance.
Although the core-mantle ellipticity has not been directly observed
seismically, it is thought to be well determined by the core density
structure and the assumption of hydrostatic equilibrium. It seems
unlikely that tidal observations can offer improvement over these
estimates. However, should there be large unknown processes in
the core (such as large scale convective flows) which alter the
state of hydrostatic egquilibrium, the ellipticity of the boundary
could be affected. It should be understood that if such processes
exist or if hydrostatic equilibrium is violated in the core (a most

unlikely situation) all existing theories of the tidal resonance

must be suspect.
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APPENDIX A

GENERALIZED SPHERICAL HARMONICS

The most analytically tractable partial differential equations
are usually those possessing some degree of global symmetry.
Exploitation of symmetry usually leads to separation of wariables
and a corresponding expansion in terms of some complete set of
orthogonal functions. Thus, spheriecally symmetric scalar equations
are most usefully solved in spherical polar coordinates with
spherical harmonics, Ytﬁ, chosen as a basis set. In particular,
any scalar function of position, f,is conveniently expanded over

each spherical surface as

w §
(A.1) £0,0) = ¥ T 2y, Y,(8,0) .
=0 m=-L

where the nh are constants and the YE are defined here with

normalizacion -

1/2
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- Unfortunately, extension to spherical vector and tensor
equations is not easily realized. For example, vector completeness

of the Yz takes the form

 =%]

0>

& 1 A Ym 2 v Ym 3
(A.3) :‘(B,d.'r} R’E: [aﬂm e Y, - ag, VY, - ay

where Er is the unit vector alemg r. Tensor fields prove even more
awkward.

To overcome these difficulties we introduce generalized
spherical harmonics, Din(ﬁ ,), as (Phinney and Burridge, 1973;

Edmonds, 1960)

(A.4) Diﬂ{ﬁ,¢) = {Hl)m sz{cﬂsﬁ} e'ﬁw
where
1/2
(A.5) Pio(x) = i:llf:f_ (B-n)! (&+m)!? o )-lfiim-u)
- £ x) Zi[ﬂ—n}i (4n)! (Z-m)! x

(1+x)

=1/2(mtn) (g )E_m[{l-xji-n (1 + x}“’“]
dx




214

)
(D 1in (A.4) differs from the Yy of Phinney and Burridge, 1973, )
by the factor (-1]“.] Any spherically symmetric tensor of

arbitrary order is conveniently represented by the D:’m with

components along complex spherical umit vectnrs,j:_, Ea and E e =

These are related to the conventional spherical basis vectors,

Fa] F ]
Lo Bgr By by

~ 1 A
A By i§¢:'
(A.6) " &
€t =2
~0 ~T
& - - (B, + i)
~+ S -0 ih -

In particular, any scalar, ¢, vector, v, and second order

tensor, ._'I;. can be expanded over a spherical surface as

oo £
0(r,0,8) = 3 3 65(x) DL (8,9)

£=0 m=-i
; B +1 ik ) - 2
- o) = B ¥ X vy 0,005
e - B 2 A A
J@0.0 = 3 ¥ a,;"iﬁ (®) D oipy @0 5,85 2
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Furthermore, the D:u are orthogonal in the familiar sense that

(A.8)

2 n
L} A o 4m
] /; D__(8,¢) (D, (8,9)) sinBdBd¢ =( m) 8018 1

Useful recurrence relations for the Bin are found in Phinney and

Burridge (1973).

The n:m are related to the YE defined by (A.2)

according to

L 4 -m
Do “\f 2201 T2
A % & 2 m -m
D + D = Y
m— m 2841 &T!H_l] sin E E
(A.9)
L 2 4m 2 -m
D° -D_ = - : dg ¥
m-  m \/ 2941 Ty 8 %
] o 4m / 1 2.-m , L(8H1) -m
Dtz ¥ 0p 2 "\/zstﬂ \ e e D ["EziYE. L ) ]

L £ 4m 1 m -m _ cosf ,-m
Put2 = Pm2 = 4\/ 220 \/ 2(A1) (42) (B-1) sind [%Yg " sind 2 ]




216

0f equal importance is the product of two generalized

spherical harmonics:

BT AR
R’ E_'I 1"
EI E’l‘l —~ = - L
(A.10) Dm'n‘ nm"n" E an'n Dmn §
E’EE"—E' l mm m
wvhere
R R!‘ ill m+n .ﬂ, £1 E_II E- E' E." =
(A.11) na' o | = (2041)(-1) i Rt R g

m ml mlII

£ 4t -
and the (—n “r n") are Wigner 3-j symbols (see e.g., Edmonds,

1960: Messiah, 1958). A more complete discussion may be found in

Smith (1974).




