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ABSTRACT 

This manuscript presents the results of a thorough experimental and numerical investigation on 

model dense gravity currents. The gravity currents prepared are salt/tap water solutions at assigned 

concentrations. They are released in the form of a jet into a calm lighter ambient liquid (fresh tap water 

in this case) over a flat, smooth, and rigid bottom in order to simulate the discharge of a denser fluid in 

the coastal environment. The release of pollutants into rivers, oil spillage on the sea environment and 

desalination plants outflow are example of man-made gravity currents that frequently cause negative 

environmental impacts. The aim of this investigation is to contribute to a better understanding of the 

propagation dynamics and the mixing process of dense gravity currents. The Laboratory experiments 

proceeded with a fixed initial gravity current concentration in one experimental set-up. The gravity 

currents are injected using a rectangular injection channel into a rectangular basin containing the ambient 

lighter liquid. The injection studied is said in unsteady state volume, as the Reynolds number lies in the 

range 1111 - 3889. The experiments provided the evolution of the boundary interface of the jet, and it 

is used to validate the numerical model. 

The numerical model depends on the Reynolds-Averaged Navier Stokes equations (RANS). The 

k-ε (K-epsilon) and the Diffusion-Convective Equation (DCE) of the saline water volume fraction were 

used to model the mixing and the propagation of the gravity current jet. On the other hand, comparison 

of the mean flow (  !."# = $/$%&') with previous two-dimensional numerical simulations and 

experimental measurements have shown similarities. The numerical simulations of the hydrodynamic 

fields indicate that the velocity maximum at(0.18 (!.", where  !."is the height at which the mean velocity 

$(is the half of the maximum velocity($%&'. The excess-density shows a radial symmetry close to the 

inlet and asymmetry far from the inlet. As well, calculation of the gradient of the Richardson number 

)*+ as a function of the height of different longitudinal positions can give the zone of turbulent mixing. 

The comparison of the numerical with the experimental front positions presents an excellent agreement 

for Reynolds and Richardson's numbers varying in the ranges(2222 < ) < 3889 and 0.003 < )* <

0.01 respectively. The local gradient Richardson number )*+ shows that the maximum of the turbulent 

mixing occurs at  ,  !."  in the first stage of the gravity current, i.e. close to the inlet and it collapses 

far from the inlet. Consequently, calculation of the relative volume of the gravity current jet and 

entrainment as the threshold in the space or in the time permitted to evaluate the degree of the mixing. 

By analyzing the turbulent mixing in a 3D configuration, the volume of the turbulent mixing increases 

with the x-coordinate close to the inlet jet and decreases far from the inlet. The entrainment depends 

both on the front position and on the values of the iso-density threshold. The entrainment is found 

independent on Reynolds numbers between 2222 and 3889. 

Keywords: Bottom Gravity Current, Buoyant jet, Entrainment, Experiments, Mixing, Numerical 

simulations, RANS model. 
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RESUME 

Nous présentons une étude expérimentale et numérique systématique de jets gravitaires dans un 

liquide ambiant moins dense et statique au-dessus d’une plaque lisse et rigide pour représenter le 

déversement d’un fluide lourd en environnement côtier. Le but de ce travail de recherche est de 

contribuer à une meilleure compréhension de la dynamique de propagation et de la miscibilité de jets 

gravitaires au-dessous d’un liquide ambiant. Des expériences ont été réalisées en laboratoire à l’aide 

d’une plateforme expérimentale constituée d’un bassin parallélépipédique contenant de l’eau douce et 

d’un canal d’injection de section rectangulaire de jets gravitaires de concentration constante initiale 

fixée. 

Les calculs mathématiques et numériques sont basés sur les modèles RANS (Reynolds-Averaged 

Navier Stokes equations), k-ε (K-epsilon) et DCE (Diffusion-Convective Equation) de la fraction 

volumique de l’eau salée pour décrire la propagation et le mélange du jet gravitaire. L’évolution du front 

du jet obtenue expérimentalement est utilisée pour valider le modèle numérique. Par ailleurs, la 

comparaison des résultats obtenus sur l’écoulement moyen (  !."# = $/$%&') avec ceux des études 2D 

expérimentales et numériques antérieures ont montré des similarités. La simulation numérique des 

champs hydrodynamiques montre que la vitesse maximale est atteinte à la position 0.18( !.", où  !."(est 

la hauteur d’eau pour laquelle la vitesse moyenne $ est égale à la moitié de la vitesse maximale($%&'. 

La densité excédentaire présente une symétrie radiale proche de l’injection et une dissymétrie loin de 

l’injection. 

De même, le calcul du gradient du nombre de Richardson )*+ en fonction de la hauteur d’eau pour 

différentes positions longitudinales peut indiquer la zone où se produit le mélange turbulent. La 

comparaison des résultats expérimentaux et numériques des positions du front présente une bonne 

concordance pour les gammes respectives suivantes des nombres de Reynolds et de Richardson 

2222<R<3889 et 0.003<Ri<0.01. Le gradient local du nombre de Richardson )*+ montre que le 

maximum du mélange turbulent se produit en( ,  !."( dans la première phase de propagation du courant 

gravitaire, donc poche de l’injection, et s’effondre loin de l'injection. Par conséquent, le calcul avec le 

volume relatif du jet gravitaire et de l’entraînement comme seuil dans l’espace ou dans le temps permet 

d’évaluer le degré de mélange. L’analyse du mélange turbulent 3D montre que le volume du mélange 

turbulent croît avec la coordonnée longitudinale proche de l’injection et décroît loin de l’injection. 

L’entraînement dépend de la position du front et des valeurs du seuil de l’iso-densité. L’entraînement 

ne dépend pa du nombre de Reynolds pour des valeurs comprises entre 2222 et 3889. 

Mots clés: Courant gravitaire dense, Jet flottant, Entraînement, Expériences, Mélange, Simulations 

Numériques, Modèle RANS. 
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 Introduction 

1.1 Gravity currents 

The subject of this dissertation is Experimental and Numerical study of Model Gravity 

currents in Coastal Environment “Bottom Gravity Currents”. Gravity currents, sometimes 

called density currents or buoyancy currents, are flows generated by a density gradient between 

two fluids and occur in both natural and industrial flows. The density differences can be due to 

the variations in salinity, temperature, or concentration of suspended particulates (Benjamin 

1968, and Simpson 1997). The flow of a gravity current is predominantly horizontal. It can 

occur as either a top or bottom boundary current, or as an intrusion at some intermediate level. 

The spreading of one fluid into another fluid of a lower density, due to the horizontal density 

difference, is significant for many geophysical and industrial applications. Natural examples 

include sea breezes, avalanches (Allen 1982), estuaries (where fresh water meets salt water), 

surges from volcanoes, thunderstorm outflows, and sand storms (Bagnold 1941). Man-made 

examples include the accidental release into the atmosphere of dense gasses, early stages of an 

oil spillage (Kubat et al. 1998), etc. They can be either toxic or poisonous. Fig. 1.1 shows some 

examples of cases cited earlier. 

In his theoretical work, Von Kàrmàn (1940) proposed a perfect-fluid model for steadily 

gravity currents propagation as a first calculation. Also, he used an inviscid analysis to predict 

the front speed and interface shape of a gravity current flowing under an infinite ambient fluid. 

Von Kàrmàn’s (1940) work was updated by Benjamin (1968). In Simpson’s (1997) book a 

comprehensive description of gravity current flows in both environmental and laboratory fields 

can be found. Huppert (2006), and Ungarish (2009) give excellent reviews on the conceptual 

foundations used to understand and evaluate the evolution of gravity currents. Bottom and free-

surface gravity currents are produced by a multitude of municipal, agricultural, domestic, and 

industrial fluid buoyant jet discharge operations. These currents are a vital source of 

environmental concerns in that they present a typically adverse effect on the water quality, 

underwater flora and fauna, and the benthic environment. For example, bottom gravity currents 

generated by the buoyant sediment-laden jet disposal in coastal dredging and disposal 

operations can significantly affect the surrounding aquatic environment (Nichols & Thompson 

1978, and Hales 1996). Because of the density difference between fluids produced by dissolved 

substances (i.e. salt), the current is conservative since the total mass of the dissolved substance 

is conserved. Variations in density in such currents are only due to entrainment of ambient fluid 

(Nogueira 2013c). 
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The turbidity currents, which are sediment-laden underflows driven by a density difference 

between the ambient fluid and saline density currents, are examples of gravity currents. The 

driving buoyancy forces are simply due to the presence of suspended particles getting a turbidity 

current. The lower current, which is formed inside an intrusive turbidity gravity current at some 

neutrally buoyant intermediate depth, depends upon the volume fraction of both fluids. 

Furthermore, particle settling can lead to complete buoyancy reversal, the initiation of a buoyant 

plume, and the subsequent creation of a surface gravity current in which the few remaining 

particles play no role in the dynamics of the flow (Montgomery & Moodie 1999). 

         
 

          
 

    

Figure 1.1 : Examples of gravity currents in the environment: (a) Treatment wastewaters are 

rejected in the St. Lawrence River (Montréal). (b) A plume of acidic aluminum-rich water in the 

Manning River (Australia). (c) and (d) Sand storms are examples of buoyancy driven gravity currents 

in the atmosphere of specific interest is how ground friction affects speed of propagation and mixing in 

gravity currents in Iraq, 2015. (e) Gravity currents, in the form of pyroclastic flows, propagate down the 

flanks of the volcano in Mayon, Philippines, 1984. And (f) avalanche from Hunza Peak, Karimabad, in 

Pakistan. 

a) 
 

 

b) 

c) d) 

e) f) 

https://bateausportquebec.forumsactifs.com/t213
8p1sentir-la-marde 

https://fishhabitat.org.au/about-fish-habitat 
 

http://www.dailymail.co.uk/news/article-3097168 
 
 

http://www.dailymail.co.uk/news/article-3097168 
 
 

http://blankonthemap.free.fr/95_update/info038_ang.htm 
 

 

https://volcanoes.usgs.gov/Imgs/Jpg/Mayon/32923351-
020_caption.html 
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1.2 Statement of the problem 

Various municipal, agricultural, domestic, and industrial liquid discharge into lakes, 

estuaries, reservoirs, rivers, seas, and oceans. Most waste water, heated water from power 

plants, brine slurry from desalination plants, and dredged mud slurry are routinely released both 

intentionally and accidentally. In many of these operations, the discharges occur through a 

submerged round outfall into the receiving waters. The gravity currents were investigated in a 

2D configuration experimentally and numerically in several previous works (e.g. Turner 1973, 

Simpson & Britter 1979, Huppert & Simpson 1980, Rottman & Simpson 1983, Hallworth et al. 

1993 & 1996, Winter et al. 1995, Hacker et al. 1996, Shin et al. 2004, Lowe et al. 2005, 

Ungarish 2007, and 2009, Nogueira et al.  2013a, Fragoso 2013, among others). There are only 

few studies devoted to the 3D mixing gravity current (Ӧzgökmen et al. 2004a, Chang et al. 

2005, Ilicak 2014, and Ottolenghi et al. 2016a, b & 2017). 

The primary motivation behind this work in my dissertation is a study of both 2D and 3D 

dense bottom gravity currents propagation on a smooth bed, experimentally and numerically 

respectively. Also, it provides fundamental knowledge for the flow characteristics of the 

environmental impacts associated with the dense gravity current phenomenon. To our best 

knowledge, studies focusing on the mixing of the gravity flow in 3D jet configurations for the 

weak turbulent regime are very few. Notably, in all these studies cited previously, four key 

issues were not addressed: i) the dynamics of a 3D gravity current jet, ii) the hydrodynamic and 

density distributions of a 3D gravity current jet, iii) the turbulent mixing in a 3D gravity current 

jet for the weak turbulent regime, and iv) the entrainment of a 3D mixing gravity current jet. 

These four issues contribute to the internal structuration of the spatiotemporal evolution of 

a 3D density current in a miscible ambient fluid. Fulfilling that gap constitutes the motivation 

of the present work. In this dissertation, RANS with k-ε and diffusion-convection equations 

were used to model the 3D propagation and mixing of a saline gravity current into the ambient 

fresh water over a smooth horizontal bottom. The dynamics of the gravity current obtained by 

that numerical model and experimental studies present a good agreement. The Reynolds 

number R and the Richardson number Ri vary in the intervals [2222, 3889] and [0.003, 0.01] 

respectively. The mean flow profiles of the velocity and density obtained by the numerical 

simulations are used to calculate the gradient Richardson number  !" with the distance from 

the inlet. The spatial evolution of  !"#can give the turbulent mixing zone following the criterion 

value of Turner (1973). The entrainment estimates the characterization of the mixing process 

at different values of the iso-density threshold with the front position. 
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1.3 Methodology 

In our example of gravity currents, such as the spreading of a dense gravity current jet, the 

flow over the smooth bottom of the calm ambient fluid is turbulent. Small scale mixing 

processes between the ambient fluid and the dense fluid, due to turbulence, are important to the 

dynamics of the flow. As a result of the complication of the flow in a gravity current, it is 

difficult to understand the flow development. There are several approaches which can be used 

to solve this problem. The first approach is the state of the art, in order to develop a 

comprehensive look of the bottom gravity currents moving forward with front velocity. The 

resulting gravity current propagation calculation were deduced from experimental studies. The 

gravity current head was neglected because is very small and very difficult for Newtonian 

gravity currents to handle. Furthermore, investigations of the horizontal injection gravity 

currents propagation were presented in the state of the art. 

The second approach for studying problems involving gravity currents, which 

complements the bibliography work, is the use of experiments. These can be small scale jet 

gravity currents experiments in the laboratory. The experiments or measurements of jet flows, 

include all the details of the flow and can be used to obtain values for experimental parameters 

in the numerical model, as well as checking if the model gives reasonable predictions. 

Experiments are the only means to provide a full study of the weak turbulent high Reynolds 

number flows. 

The third approach which is numerical, aims at characterizing the mixing of fresh and 

saline waters by applying the Reynolds-Averaged Navier-Stokes equations (RANS), K-epsilon 

(k-ε) and the Diffusion-Convective equation (DCE) of the volume fraction. It also compares the 

mean flow profiles by RANS with measurement results, and calculates the Richardson number 

 !" as a factor representing the turbulent mixing zone. Consequently, this third approach 

examines the effects of volume ratio with time, as well as the quantity and the concentrations 

of mixed fluid produced leading to entrainment as a function of threshold with time were 

investigated. The use of simple scaling arguments for the bulk motion of the fluid gives some 

insight into the physical processes involved in the jet flow. 

The two-dimensional gravity currents experiments play a valuable role with the three-

dimensional gravity currents numerical model, and often give a good agreement in the x-axis 

and y-axis. Mixing is generally included through some form of parameterization, but it is 

currently limited to moderate Reynolds numbers by the computational requirements. 
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1.4 Outline of dissertation 

The dissertation is organized in six chapters and two appendices. In this chapter, an 

introduction to gravity currents was provided, where the main motivation and objectives of this 

work were presented. Chapter 2 provides a review of the previous literature and the main 

contributions to date on bottom gravity currents. Specific topics are covered by this dissertation, 

and important experimental, theoretical, and numerical results are described. In Chapter 3, the 

use and applicability of laboratory experiments to saline gravity current jet flow over a rigid, 

and smooth horizontal bottom into the lighter fluid is discussed. The different experimental 

apparatus, techniques, and image processing used in this work are described in detail, as well 

as comparison between results of experiments. 

In Chapter 4, a numerical model for the flow of the saline gravity current jet into the 

ambient fresh water in a basin and axisymmetric gravity currents is developed. The Reynolds-

Averaged Navier-Stokes (RANS) and the diffusion-convection equation of the volume fraction 

of the saline water are used to model the mixing and the propagation of the saline gravity 

current. Chapter 5 presents the main results arising from the experimental measurements and 

numerical computations of the numerical model, then validated by comparing the predictions 

with the experimental results. In Chapter 6, the main conclusions of the present research are 

drawn and suggestions and recommendations for future works are given. 

Two appendices are included at the end of the dissertation, complementing the information 

presented in Chapters 3, 4, and 5. Appendix A representing the development of Huppert's 

theory: solution of Newtonian gravity current equations, whereas Appendix B includes the 

equations relating to the solution of non-Newtonian gravity current (Rheology). Two solutions 

give additional details of the equations relating to the bottom gravity current beneath a static 

water layer at rest in the horizontal and inclined basin. 

1.5 Original contributions 

A number of contributions emerged during these four years of research, either by papers 

published (or submitted) in peer-reviewed journals or by papers published in conference 

proceedings, these are listed below: 

Ø Dhafar, I. A., Latrache, N., and  Nsom, B. (2015a). Applied the Large-Scale Particle 

Image Velocimetry Technique for Measurement the Velocity of Gravity Currents in the 

Laboratory. DOI: 10.4236/jwarp.2015.78048, Journal of Water Resource and 

Protection 07(08):597-604. 
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Ø Dhafar, I., A., Latrache, N., and  Nsom, B. (2015b). Image processing applied to 

characterize the denser gravity current propagates over rigid surface into the lighter 

fluid. 10th Pacific Symposium on Flow Visualization and Image Processing 

Conference, Naples, Italy, 15-18 June.  

Ø Dhafar, I. A., Latrache, N., Niang, P., and Nsom, B. (2015c). Etalement d'un jet 

horizontal miscible de flottabilité positive. 22ème Congrès Français de Mécanique, 

Lyon, France, 24 au 28 Août. 

Ø Dhafar, I. A., Nsom, B. and Latrache, N., (2015d). Effect of slope change on the 

dynamics of pseudoplastic mass movements beneath a static volume of water, ic-rmm2- 

2 nd International Conference on Rheology and Modelling of Materials, Miskolc-

Lillafüred, Hungary, 5-9, October. 

Ø A prize of Doctoral School of Marine Sciences (EDSM) worth 1300 € by my 

presentation of the poster entitled: Experimental and Numerical Study of Model Gravity 

Currents in Coastal Environment. The days of the Doctoral School of Marine Sciences 

(EDSM) were held on 5 and 6 November 2015e. 

Ø Dhafar, I. A., Latrache, N., and Nsom, B. (2015f). Mesure de vitesse par PIV à grande 

échelle d’un écoulement de courant gravitaire d’un liquide léger à la surface libre d’un 

liquide dense. 16ème congrès français du Club FLUVISU (« Visualisation et 

Traitements d’images en Mécaniques des Fluides pour l’Industrie »), associé au 14ème 

colloque international francophone du Club CMOI (« Contrôles et Mesures Optiques 

pour l’Industrie»). Lannion, France, Du 16 au 20 novembre. 

Ø Dhafar, I. A., Latrache, N., and Nsom, B. (2016). Experimental Study of the Effect of 

the Spreading Buoyant Gravity Current on the Coastal Environment. The 2016 3rd 

International Conference on Coastal and Ocean Engineering (ICCOE 2016), Tokyo, 

Japan, 8-9, April. 

Ø Dhafar, I. A., Latrache, N., and Nsom, B. (2017a). Experimental Study of the Effect of 

the Spreading Buoyant Gravity Current on the Coastal Environment. DOI: 

10.7763/IJET.2017.V9.957. International Journal of Engineering and Technology, 

09(02):129-132. 

Ø Dhafar, I. A., Latrache, N., and Nsom, B. (2017b). Mixing of Saline gravity Current Jet 

into Fresh Water in the Weakly Turbulent Regime (under review). 
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 Literature Review 

 

Many studies investigated gravity currents using both laboratory experiments and 

numerical simulations. The aim of this chapter is to provide a review of some literature centered 

on gravity currents that are relevant to this dissertation, and specifically related to the dense 

gravity current phenomenon. As discussed in Chapter 1, various municipal, agricultural, 

domestic, and industrial liquid discharge in the sea or ocean incredibly cause adverse 

environmental impacts via the formation of gravity currents. In section 2.1, the classification of 

gravity currents, then, the structure of the bottom gravity currents in section 2.2 are summarized. 

Section 2.3 presents the dispersion characteristics of buoyant gravity current jet discharges. 

Entrainment and mixing gravity currents are described in section 2.4, while the section 2.5 

includes the numerical modeling. The discussion is mostly focused on the process of interest of 

this investigation “bottom gravity currents”. However, many of the concepts, results, and 

conclusions of studies concentrate on a gravity current flow composed of a different medium 

are advantageous in this analysis. 

2.1 Classification of gravity currents 

A gravity current is a flow of a fluid with density  !within an ambient fluid of different 

density," #. The density gradient between fluids in such currents is primarily horizontal. The 

flows generated by vertical density gradients as a plumes are not within the scope of the present 

study. According to the different density types of the current and the ambient fluid, gravity 

currents can be classified as bottom currents (Fig. 2.1), when the current is denser than the 

ambient fluid,  !> #; top currents, if the density of the current is lower than the ambient fluid, 

 !< #; or intermediate currents, when the current has intermediate density value when 

compared to the stratified ambient fluid,  #$< !<" #%. The total depth of the two fluids is H, 

and non-constant depth h* moves forward with front velocity  ! into the surrounding fluid with 

the lower density"#. Moreover, gravity currents can be categorized as compositional or 

particle-driven gravity currents. In the case of compositional gravity currents, the driving force 

appears in dissolved solute like salt in the sea or difference of temperature. While for particle-

driven gravity currents, the driving force is represented by the suspension of sediments. In a 

compositional gravity current, the current is conservative since the total mass of the dissolved 

substance is conserved. Variations in density in such currents are only due to entrainment of 

the$"%, "# ambient fluid. 

 



 

8 
  

 

Figure 2.1: Schemes as example of possible density flow patterns for a gravity current discharge into 

the water bodies  !"intruding in the ambient fluid with uniform density  #, and  #$< !< #%: a) 

underflow gravity current, b) overflow gravity current, and c) interflow gravity current  (Morris & Fan 

1998, and Cesare et al. 2006). In this study:  !" = !#$%&'( and !) = !*$+(,. 

Gravity currents, of a high Reynolds number flow rate, are unsteady, turbulent, and tend to 

entrain ambient fluid. For instance, when gravity currents can entrain particles from the bed and 

deposit suspended material, changing the total amount of particles in the flow. The results of 

such entrainment, and the resulting dilution of the original intruding fluid, can be quite 

important. For example, many industrial pollutants are discharged into the atmosphere or 

hydrosphere with a contrasting density to their ambient surroundings. The dilution with distance 

of any resulting gravity currents by entrainment has important implications for toxicity levels 

and the degree and extent of contamination (Hallworth et al. 1993 &1995). In the following, a 

summary for relevant bottom gravity current classifications related to this dissertion, will be 

presented. The dynamics of gravity current jets are developed following different phases: the 

first phase is the balance between the radial momentum flux and the rate of change of the inertial 

force and is characterized by a constant speed front (Chen, 1980). While the second phase 

(inertia regime) is characterized by the equilibrium between inertia and buoyancy forces, and 

the third phase (viscous regime) by the equilibrium between viscous and buoyancy forces 

(Hoult, 1972, Huppert & Simpson 1980, and Huppert 1982). The internal flow structure of 

density currents is a key issue for understanding the spatiotemporal evolution of the mixing or 

entrainment of the ambient fluid into the head of the current during its propagation. 
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2.1.1 Density ratio of current to ambient fluids 

Benjamin (1968), Rottman & Simpson (1983), Haertel et al. (2000), Marino et al. (2005), 

and Ungarish & Zemach (2005) discussed the term of Boussinesq flows, which correspond to 

a small density difference between fluids. The density difference is mostly driving a high flow 

of the initial density jumping across the interface. The differences in the structure and shape of 

a gravity current depend on the ratio of initial density between the dense and the light fluids. 

When the two fluids densities are comparable (approximately equal), the progress of the gravity 

current helps understanding the presence of the ambient fluid, which imposes a significant 

resistive force on the intruding current. However, Birman et al. (2005), Etienne et al. (2005), 

Lowe et al. (2005), Ungarish (2007), and Bonometti et al. (2008) focused of the cases in which 

the current density is much higher than the ambient one. In the case of a dam break flow in 

which water spreads in the air, the current is not affected by any resistance from the surrounding 

ambient. Typically, the density difference is small enough for the Boussinesq approximation to 

be valid. The Boussinesq approximation is applied to problems where the fluid varies in 

temperature from one place to another, driving a flow of fluid and heat transfer. The Boussinesq 

gravity current acquires shape with a head, and a body as shown in (§2.2-Fig.2.2), while the 

thickness of a non-Boussinesq current decreases monotonically while approaching the ambient 

fluid, reaching a minimal value at the front of the current. Also, the current acquires a final 

height at which the flow is reversed, and returns to the bottom where it spreads as a gravity 

current. The brines produced from the desolation process are usually discharge into coastal 

waters as an example of denser current injection into lighter ambient. 

2.1.2 Density difference of current and ambient fluids 

The difference in density between the gravity current and ambient fluids is due to 

temperature, concentration, or compositional (different fluids completely) variations, or as an 

outcome of particles suspended. Bonnecaze et al. (1993), Hallworth & Huppert (1998), 

Gladstone et al. (1998), and Necker et al. (2002) characterized the case of a particle-laden 

current. Fresh water (lighter fluid) exits from a river into the ocean (dense liquid), it flows along 

the surface, partially due to the difference in salinity between fresh and saline water as shown 

in Fig. 2.1b. The turbid mixture spreading on the seafloor represents an example where the 

excess density in the current comes about from the suspension of sediments as shown in Fig. 

2.1a. In a non-mixing case, the density of a particle-laden current continues to develop in space 

and time as a result of the continuous deposition of particles and possible re-entrainment back 

into the flow (if the current is energetic enough). 
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2.1.3 Continuous release with finite volume 

Simpson (1972), Huppert & Simpson (1980), Bonnecaze et al. (1995), Hacker et al. (1996), 

Gladstone et al. (1998), Shin et al. (2004), and Cantero et al. (2007a) described the gravity 

current as a finite release. Following their description, a fixed volume of fluid is suddenly 

discharged into an ambient environment of a different density. Whereas Garcia & Parker 

(1993), Hogg et al. (2005), Sequeiros et al. (2009), and Shringarpure et al. (2012) described a 

continuous release. Based on the source configuration, there are two major types of gravity 

currents: constant-volume (or fixed-buoyancy) and continuous-flux (or continuous-buoyancy). 

Constant-volume gravity currents are generated in the laboratory through the use of a lock-

exchange tank (Chowdhury & Testik 2014). As a rule, the current release is produced from a large 

tank with a time-dependent flux q as  =  !"
!, where  ! is a positive constant, " is the time of 

positions, and # is an exponent either positive (waxing release), negative (waning release) or 

null (fixed, limited volume release). The limited release is observed when the sides of a 

container suddenly collapses releasing the embodied fluid instantaneously, while a continuous 

release can be the consequence of a small rupture along one of the edges of a large container or 

a pipeline leading to a continuous discharge of material. The fluid spreading due to a constant 

source of buoyancy on the surface or the bottom of a calm ambient was investigated 

experimentally and theoretically. Britter (1979), Chen (1980), Didden & Maxworthy (1982), 

Huppert (1982), and Lister & Kerr (1989) provided the estimation equations of the 

axisymmetric gravity current radius as a function of time, and source flow parameters (see 

§§2.3.1). 

2.1.4 Geometrical limitations 

In general, the gravity currents are studied in one of two geometric constraints, in particular 

the planner and the axisymmetric setups. These configurations are widely searched due to their 

simplicity on the contrary of my dissertation case. Experimental and numerical studies provide 

an easily construct and a more flexible challenge for modeling aims (Shallow Water equations 

and Box Model). The planar release case, a flat rectangular gate at first separates a rectangular 

reservoir of fluid from an ambient with lower density. As well, at the start of the axisymmetric 

three-dimensional release case, the current is confined inside a hollow circular cylinder at the 

center of a large tank containing the ambient fluid (Huppert 1982, and Cantero et al. 2007b). 

Huppert & Simpson (1980), and Cantero et al. (2007a) was investigated the small angle of 

expansion typically 10-15° by an expanding inside the tank. 
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The gate would be partially lifted up, and the restricted fluid would be continuously fed to 

maintain the desired volumetric discharge rate as a continuous release. The setup of the planar 

case used of as a two-dimensional releasing since the current is confined to move in a specified 

direction. While for the set-up of the circular discharge case, the current would spread radially 

outwards (in all directions) but remains axisymmetric because of the fundamental circular 

nature of the release. 

2.2 Bottom gravity currents structure 

Bottom gravity currents are formed by a head region at the front, which is usually deeper 

than the following tail. It advances into the ambient fluid and it is followed by the body or 

sometimes a tail (Kneller & Buckee, 2000). Although some mixing usually occurs at the head, 

the clear distinction between the gravity current and the ambient fluid typically remains. During 

propagation, the mass and momentum balance in the head differs significantly from in the body 

(Middleton 1993). The head must displace the stationary ambient water resulting in a greater 

thickness than the trailing body. As shown in Fig.2.2, a cross-section of 2D gravity current 

along a horizontal bottom surface, generated by a constant buoyancy flux ‘constant-volume 

release’ (see §§ 2.1.3) at the left end could be considered. It propagates with a distinct dividing 

line making a body, a head or/and a front. 

 

Figure 2.2: Structure Scheme of a bottom gravity current (Chowdhury & Testik 2014). 

Generally, the front part of this current, which is deeper/thicker than the body, is known as 

the head of the gravity current (Britter & Simpson 1978). The symbols: S  represents the particle 

erosion from the bottom, D particle deposition from the gravity current,  !velocity of the front, 

"# entrainment velocity into the current, $% density of the current, and $& density of the ambient 

water (Chowdhury & Testik 2014). The frontal zone of a propagating saline gravity current had 

been investigated in a number of previous studies (e.g. Simpson 1969, Fleischmann et al. 1994, 

Härtel et al. 2000a & b, La Rocca et al. 2008, and Ottolenghi et al. 2016a, b & 2017). The 

following sections focus on the structure of the bottom gravity currents propagation over a 

horizontal bed. 
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2.2.1 Distribution of bottom gravity current concentration 

For a Newtonian fluid, the experimental measurements of concentration profiles revealed 

the existence of two main types. For constant-flux release-inertial gravity currents: the smooth 

profile and the stepped profile are shown in Fig. 2.3a and b respectively (Chowdhury & Testik 

2014). In one of the earlier studies on gravity currents, Ellison & Turner (1959) studied 

concentration profiles in constant flux gravity currents as shown in Fig.2.3a. They observed a 

decline concentration gradient near the bottom boundary that fell off rapidly near the height of 

the velocity maximum. Garcia (1993 & 1994) found a layer of nearly constant density extending 

up to the velocity maximum then decreasing dramatically in the vertical direction as shown in 

Fig.2.3b. While, for a non-Newtonian fluid, Van Kessel & Kranenburg (1996) observed a 

lutocline profile for high concentration fluid of mud gravity currents which they attributed to 

the Bingham rheology of the liquid mud as shown in Fig2.3c. It is similar to the stepped profile 

presented in Fig.2.3b. 

 

Figure 2.3: The mean concentration profiles found in previous literature; a) Smooth profile, b) Stepped 

profile, and c) Lutocline profile [Jacobson & Testik (2014) and Kneller& Buckee (2000)]. 

 

Three-Dimensional unsteady flow characterizes the gravity current head. Two types of 

turbulence structures of instability which govern the mixing processes are the Kelvin- 

Helmholtz instability on the one hand and lobes and clefts on the other hand (Simpson 1969, 

1972, 1997, Allen 1971, Britter & Simpson 1978, Chowdhury et al. 2009, and Peng & Lee 

2010). Kelvin-Helmholtz billow (wave) are generated in the interfacial region, at the rear of the 

current head, and roll up as the current advances. They remain quasi-steady in the current body, 

disappearing away due to continuous mixing with the surrounding fluid. Lobes and clefts 

produced by a convective instability formed at the first region of the head, are caused by the 

incorporation of less dense fluid by the current head during its propagation which is a direct 

result of the no-slip boundary condition at the bottom boundary such as a rigid surface. 
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2.2.2 Distribution of the velocity in a bottom gravity current 

The general form of the mean velocity profile in a typical inertial gravity current flow 

consists of a thinner inner region (near-basin wall) and a thicker outer region, both regions are 

separated by the maximum velocity as shown in Fig.2.4. The inner region has a positive velocity 

gradient and behaves similarly to a conventional turbulent boundary layer. The outer area has 

a negative velocity gradient that acts as a shear layer. The vertical position of the velocity 

maximum is controlled by the ratio of drag forces at the upper interface and the lower boundary 

(Middleton 1993 and Chowdhury & Testik 2014). 

 

Figure 2.4: The mean velocity profile of a constant-flux release two-dimensional gravity current, the x- 

and y-axis values are normalized (Kneller & Buckee 2000, and Jacobson & Testik 2013). 

 

Prandtl theory (1952), concerns the transient phase (see §§2.4.2) following the release of 

dense fluid in a low surrounding fluid with lower density. Neglecting hydrostatic forces and 

applying the hypothesis, which formed a roll at the rear of the head of the current, does not fall 

backwards. He obtained the ratio of the propagation velocity to the flow velocity by the 

evaluation of the dynamic pressures against the front. Prandtl’s theory can be only applied to 

the "transient phase" during which the confluence between the two fluids occurs after opening 

the injection orifice partly. The roll formed at the rear of the head of the currents fell behind 

and entrained with the lower layer, developing a turbulent motion at the front. After this stage 

of development, a state of stationary propagation takes place. Then the turbulent motion is 

confined to the head of the current, and the ratio of the propagation velocity to the flow velocity 

must be 1 (Benjamin 1968). 
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2.3 Dispersion of discharges of buoyant gravity current jet 

Buoyancy forces are the engine for gravity current propagation. These forces are in turn 

counterbalanced by inertia as well as resistance due to Reynolds stress and viscous drag, both 

acting at the upper and lower boundaries of the current. When the propagation velocity 

decreases, viscous stresses become significant and counterbalance buoyancy as well (Nogueira 

2013c). The developed gravity currents is typically an unsteady phenomenon, i.e., the current 

kinematics and the internal density distribution are time varying. Many buoyant jet discharge 

configurations can be found. Only the four following ones, which concern our study, are 

presented. Firstly, the vertical positively downward discharges of denser fluids (Fig. 2.5a). 

Secondly, the vertical negatively upward discharges of lighter fluids (Fig. 2.5b). Thirdly, the 

inclined negatively upward discharges of dense fluids at an angle,  ! to the horizontal (i.e., the 

angle between the discharge axis of the outlet and the horizontal,  ! = 0 to"90°) (Fig. 2.5c). 

And fourthly, the discharge at an angle of a positively buoyant jet with similar source and 

ambient conditions (Fig.2.5d). 

For the downward or upward discharges (with" ! = "90°), the descending (Fig. 2.5a) and 

rising (Fig. 2.5b) entrain ambient water of buoyant jets, expand in the water column, and 

eventually impinge on either the bottom or free-surface boundary. In the angled discharge 

configurations (Fig. 2.5c), the negatively buoyant jet of the dense fluids first rises to its high 

elevation over the port of discharge and then retreats in the water column to impinge on the 

lower boundary. A positively buoyant jet is caused from the impingement at an angle (Fig. 

2.5d). The flow spreads initially as a short-lived wall jet before becoming a gravity current, 

when the impingement redirects the flow of the discharge as a radial outflow. 

The flow spreads in x-axis, y- axis, and z-axis near the impingement point as a gravity 

current, i.e. a dense layer propagates horizontally on the bottom. The downward flow, after the 

location of the ultimate height, accelerates since the buoyancy now effects in the flow direction 

(Chen 1980, Moursi et al.1995, Kotsovinos 2000, Lawrence & Maclatchy 2001, Papakonstantis 

& Christodoulou 2010 and Chowdhury & Testik 2014). In laboratory experiments, gravity 

currents are studied by releasing a dense fluid into a lighter fluid by the lock-exchange 

technique or using a continuous source with a constant inflow rate such as a jet (Nogueira et al. 

2014, Lombardi et al. 2015, Cenedese and Adduce 2008, and Ottolenghi et al. 2017). In 2D-

flow theory, box models or shallow-water theory can describe the dynamics of the front and the 

height of the gravity currents (Hoult 1972, Huppert & Simpson 1980, and Huppert 1982). 
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Figure 2.5: Schematic of flow a) a vertical positively  downward discharge of the denser (than ambient 

water) fluids, b) a vertical negatively upward discharge of lighter fluids, c) the angled upward negatively 

discharge of denser fluids and d) a horizontal positively discharge of denser fluids (Papakonstantis & 

Christodoulou 2010 and Chowdhury & Testik 2014). 

2.3.1 The flow conditions 

The flow conditions (e.g., flow rate, buoyancy flux, and momentum flux) at the outflow 

source (see Fig. 2.5a) serve as the parameters of origin for the gravity current. These parameters 

effect significantly the current dynamics (Papakonstantis & Christodoulou 2010 and 

Chowdhury & Testik 2014). 

For the injection (discharge) in Fig.2.5 (presented above), a fluid with a density of  ! was 

injected at a velocity "# from an injection source with a radius$%#, into an ambient water at a 

depth of & with a density of$ '. The main parameters at the injection source are the initial 

specific volume flux,$(#[(# = )"#%#' 4* ]; the initial specific momentum flux,$+#[+# =

"#(#]; the initial specific buoyancy flux,$,#[,# = -#.(#]; and the density metric Froude 

number, /0#[/0# = "# 1-#.%#* ], where -#. = -2 ! 3  '5  '*  is the reduced acceleration of 

gravity at the injection source (Fischer et al. 1979). 

According to (Papakonstantis & Christodoulou 2010), the spreading is an unsteady 

problem since the gravity current develops with time and the outer boundaries changes, i.e. for 

a certain position 6, while$7 = 7285, the radial distance 9 can be expressed by: 
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 (!) = ("# + $(!)#)% #&       (x=constant)                                                                                (2.1) 

Four regimes are shown in the growing period of the gravity current, which may not be 

present, depending on the flow conditions. Using the force balance method and considering the 

first leading and resistance forces, according to Chen (1980) and Kotsovinos (2000), the 

following regimes of radial spreading are expected, as time t from initiation of spreading 

increases: 

I. For small times, assuming the radial momentum is dominant and neglecting other 

variables, dimensional analysis, leads to (Chen 1980): 

 ! = "(#) ($! %& #! '&& )                                                                                                         (2.2) 

where  !*represents a constant of the experiment. 

II. For a slightly longer period of times, the balancing between the radial momentum flux 

and the inertial force changes rate (Kotsovinos, 2000): 

 ' = "(#)/[($/+)#]                                                                                                            (2.3) 

where  '*represents a constant of the experiment. Ansong et al. (2008), studied the regime of 

constant velocity, which is controllable by both momentum and buoyancy. 

III. After that, the balancing between buoyancy and inertia forces gives ( Chen and List, 

1976): 

 , = "(#)/(-! %& #, %& )                                                                                                           (2.4) 

where  ,*represents a constant of the experiment. Eq. (2.4) shows the spreading when buoyancy 

is higher than the radial momentum, and the inertia is more important than the viscous drag. 

The relation "~#, %& was found to characterize initially the radial spreading studied by Chen and 

List (1976) and Britter (1979) and was also confirmed by Kotsovinos (2000) and Ansong et al. 

(2008). 

IV. Finally, the equilibrium between buoyancy and viscous drag force implies: 

 % = "(#)/[(.0+1
,/2)! 3& #! '& ]                                                                                              (2.5) 

where  %*represents a constant of the experiment and 2 is the kinematic viscosity of the fluid. 

Eq. (2.5) predicts the manner of the gravity current spreading, when the viscous drag producing 

from boundary or interfacial shear is higher than the inertia (Huppert 1982). 

2.3.2 Buoyant jet length scales 

Three relevant length scales determine buoyant jet behavior in Fig. 2.5. In Fig.2.5a and b; 

the source length scale: 
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  = !"#"
$ %& ,                                                                                                                       (2.6) 

the momentum jet length scale: 

'( = #"
) *& /+"

$ %& ,                                                                                                                (2.7) 

and the source-bottom separation distance: 

,- = .0 1 ,"                                                                                                                          (2.8) 

where, .0 is the vertical distance from the discharge source to the impingement point, and ," 

is the vertical distance from the discharge source to the virtual origin. Determining whether a 

buoyant jet discharge shows either a plume-like or jet-like behavior at the impingement location 

is important as it may dictate the conduct of the radial outflow. For example, if the discharge 

occurs in very shallow waters, the buoyant jet may impinge the bottom as an energetic jet, with 

the outflow spreading as a wall jet for an extended period and distance. Similarly, a shorter wall 

jet may be expected for the plume-like impingement (Chowdhury & Testik 2014). 

The dynamics of the angled and horizontal discharge configurations (Fig. 2.5c, and d) are 

more complex than the other two as the impingement occurs at a radial distance 234 from the 

discharge source (234 = 5 in Fig. 2.5a, b). In Fig. 2.5 (c and d), the jet elevates and its 

momentum decreases due to the negative buoyancy. Then at the steady state is acquiring a latest 

head of elevation6,7. After the reflection of the flow, the jet reflects back on the bottom at a 

horizontal distance6234 from the source point and impinges at an angle 8 to the horizontal 

(Papakonstantis & Christodoulou 2010). 

Consequently, the flow spreads in all directions near the impingement point as a gravity 

current, i.e. a dense layer propagates horizontally on the bottom. Also, in most cases, especially 

through65° < 8° < 95°, since the impingement does not occur at 95° (i.e.,8 : 95°), the outer 

boundary shape is non-axisymmetric. However, for axisymmetric outer boundary, only one !3 

value governs the spreading of the gravity current in all directions (!3—volume flow rate at the 

outflow source, see Fig. 2.5). 

For asymmetric outer boundary, !3 values may differ in every direction, resulting in 

different radial positions in each direction at a particular time, t. Unlike the vertical discharge 

configurations (Fig. 2a, and b), a substantial deficit exists in the basic understanding of the 

dynamics of negatively buoyant jets in the angled discharge configuration, mainly due to lack 

of experimental data (Bleninger & Jirka 2007). Jirka (2008), and Shao & Law (2010) found 

that 234 depends upon the values of '( and the discharge angle of68". 
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If flow measurements are unavailable and theoretical models are available, the local flow 

parameters at the outflow source ( ,!",#,!$, and %&counterparts of! ', "', #', $', and 

%'
( !respectively at the outflow source) can be estimated according to (Chowdhury & Testik 2014). 

As for the discharge configuration of Fig. 2.5a, which presents a plume-like impingement on a 

smooth bottom, the radial extent/length of the wall-jet, !", was found to depend on the length-

scale, #$. For example, (Kaye & Hunt 2007) found that !" = 0.66#$ for a saline discharge. 

Once !" is known, the duration of the wall jet phase,%" and for a sloping bottom topography, 

the slope angle, along with #$ and &', influences the extent, !" and the dynamics of the wall 

jet phase (Ross 2000). 

2.3.3 Gravity currents on a flat bottom in calm ambient waters 

According to (Chowdhury & Testik 2014), the post-impingement bottom outflow is 

reflected by a buoyancy flux,  () = *)
+,), at the discharge source. First (for! < !)) experiences 

present a short-lived wall jet phase. Then, the jet (for!" < ! < !-) conducts as a fully 

developed gravity current [X radial distance from the impingement point to the measurement 

position, !- radial position of the gravity current front at a particular time, t]. Papakonstantis & 

Christodoulou (2010) debated the case of buoyant jets in a positively state, a comparable 

linkage cannot be made in principle. However, the parameters at the bottom surface may depend 

on the source location, i.e. the head #$(Fig. 2.5a). In the case of negatively buoyant jets, the 

buoyancy dominates the flow after its reversal, and the flow impinging on the bottom resembles 

a plume. Therefore, it is expected that the spreading is described by Eq. (2.4) or (2.5). In the 

case of the positively buoyant jet, the same may occur if the flow at the bottom level is buoyancy 

driven (Papakonstantis & Christodoulou 2010). 

2.3.4 Physical properties of heavy gravity currents 

Sang (2011) described the physical properties of gravity currents, and presented several 

dimensionless parameters frequently used to provide important quantitative information on the 

turbid density flows. 

I. Density stratification 

The densities of gravity currents can be defined as a function of temperature and sediment 

concentration. Therefore, the density structure of ambient fluid can have a significant effect on 

density current dynamics. Density currents occurs mostly due to a density difference between 

density current (/1) and ambient water (/2). Also, the densimetric gravitational acceleration 
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results from the difference in specific weight between the density flows and ambient water 

( !"#where#!" = " ! "#). The specific weight difference (also called buoyancy) per unit 

mass ($%"/" ) can be viewed as a reduced gravitational acceleration ($&). Turner (1973) 

considered the gravity currents propagating in a stratified ambient fluid, the gravity currents 

will fluctuate in pure harmonic with-angular frequency as: 

' = (! )
*
+*
+,-. #0                                                                                                                      (2.9) 

This equation defines the Brunt-Väisälä frequency also called the buoyancy frequency. 

II. Richardson Number 

The Richardson number is defined as the ratio of the square of the buoyancy frequency (N) 

to the square of velocity gradient represented (Richardson 1920). It writes: 

12 = -'# 34+5+,6
# 7 4+8+,6

#9: = ! )
*
+*
+, 34+5+,6

# 7 4+8+,6
#9:                                                                         (2.10) 

The gradient Richardson number 12)-can be used to determine the dynamic instability of 

the flow. The laboratory results showed that flow becomes unstable due to the dynamic 

instability when--12 < 1;, where 1; is a stability threshold value and 12 > ?@AB (Taylor 1931, 

Miles 1961, and Geyer & Smith 1987). 

Besides, the overall Richardson number 12C (or bulk Richardson number,12D) is defined 

as the ratio of buoyancy to kinetic energy of inflows. A large overall Richardson number 

12Cmeans that the buoyancy becomes dominant, resulting in less mixing across the interface 

between turbidity currents and ambient fluid. It can be predicted using the scales of length L 

(generally vertical length scale, i.e. water depth and velocity U). 

12C = )EF
GH                                                                                                                                (2.11) 

III. Densimetric Froude Number 

The densimetric Froude number is similar to the Froude number. Where the densimetric 

Froude number is the inverse square root of -12C. 

IJC = G
K)EF                                                                                                                             (2.12) 

The ratio also clarifies the relation between the gravitational forces resisting the mixing to 

the inertial forces of the flow. Laboratory experiments have shown that the potential effect of 

the saline water boundary form increases with the densimetric Froude number. 
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2.4 Entrainment and mixing gravity currents 

In general, the entrainment of ambient fluid into a gravity current propagation has 

important effects. Dense gravity currents characteristics have applications in geophysics and in 

coastal engineering. They are specially characterized by the amount of ambient entrained into 

the gravity current during its evolution. For example, the horizontal spreading of dense fluid in 

a relatively buoyant ambient, due to gravity, occurs in oceans naturally or from anthropogenic 

causes. Also, if a polluted industrial effluent is pumped into a river or the seas, it is essential to 

identify when the entrainment of the ambient fluid has diluted this deadly flow to a safe level 

(Simpson 1997). 

The mixing of buoyant fluid released into the surrounding fluid is of essential concern for 

a significant number of industrial and environmental turbulent flows. Also, the evaluation of 

mixing occurring between a denser current and the ambient fluid is an important issue, since it 

affects the buoyancy forces of the motion driving (Ottolenghi et al. 2016a, b, and 2017). 

Therefore, it can have an effect on the dynamics of the gravity current propagation through the 

reduction of the density difference that drives the flow (Johnson & Hogg 2013). Entrainment 

and mixing in the case of unsteady gravity currents flow have been studied less extensively, in 

both experimental and numerical cases (Ӧzgökmen & Chassignet 2001, Chang et al. 2005, 

Ӧzgökmen & Fischer 2008, Ӧzgökmen et al. 2009, and Adduce et al. 2012). 

2.4.1 Entrainment 

Morton et al. (1956) has provided an effective way of modelling dense vertical plumes and 

jets. They formulated their modelling using the volume, momentum and buoyancy fluxes ( , 

! and " respectively) as variables. Afterwards, Ellison & Turner (1959) drew attention to the 

entrainment as a specific phenomenon. They fixed the important role of the entrainment on the 

gravity currents motion, a request justified by its measurable impact on the natural flows. Also, 

Ellison & Turner (1959) performed a laboratory experiments of continuously fed dense gravity 

current over smooth bottom, with varying slope (horizontal and inclined bottom), inside a pool 

of mixed dense and ambient fluid, and the currents were fixed at a length of#$~1000. 

According to (Huppert & Simpson 1980), they observed in their experiments that the initial 

stages of the motion transit from the inertia regime to a viscous regime as a small scale. They 

observed that the entrainment occurred in transition regime. It becomes significant, preventing 

the monitoring of the entrain regime. While, Ӧzgökmen, & Chassignet (2002) studied the 

natural flows in large scale. After that, they studied the beginning of viscous effects which 

occurs much later. The entraining is described by a flow regime dominating the dense current. 
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According to Ross (2000), many works related on buoyant, dense plumes, and jets, depend 

more or less on the work of Morton et al. (1956), and Cenedese & Adduce (2010). They 

proposed a new parameterization for entrainment in overflows that takes into account the 

dependence of the entrainment on both the Fr and Re. Accordingly, obtaining accurate 

knowledge of the gravity current dynamics evolution requires a deeper understanding of the 

entrainment. Also, Johnson & Hogg (2013) fixed the entrainment effect on the current 

dynamics. Subsequently, this influence becomes ultimately important at long times, for the case 

of gravity currents propagating on horizontal surfaces. Furthermore, the absence of entrainment 

effect cannot monitor the gravity currents. Experimentally, the propagation of gravity currents 

without the flow influence becomes controlled by viscous forces (Huppert & Simpson 1980). 

The accuracy of the entrainment depends on the accuracy of the measured of the density 

structure itself. Also, this accuracy depends upon specifying the quantified self of the mixing 

between dense and lighter fluids. After that, several experimental studies concentrated on 

entrainment into the head at the current front becomes significant, when a gravity current is 

instead led by progressing flow front. 

2.4.1.1 Analysis of entrainment 

In literature, studies dealing with theoretical and experimental investigation on entrainment 

in gravity currents have been brought out in laboratory and in nature. Morton et al. (1956) 

proposed an effective way of modelling dense vertical plumes and jets. They formulated their 

model using the volume, momentum and buoyancy fluxes ( , !"and # respectively) as 

variables. Notably, they found that the entrainment rate of ambient fluid into a propagation flow 

results from turbulent motion and is proportional to the difference in velocity between the 

current and surrounding flow. 

By dimensional arguments, with Turner's model (1986) of the entrainment phenomenon 

makes the same assumption. For gravity currents, most entrainment analyses have been 

conducted by using constant-flux gravity currents where the fresh ambient fluid is steadily 

supplied to the system in order to account for the ambient lost through entrainment (Fernando 

1991, Breidenthal 1992, Princevac et al. 2005 among others). The flow is considered in steady 

state. These analyses generally assume the Morton-Taylor-Turner (MTT 1956) entrainment 

hypothesis, that writes: 

$ =
%&

'
                                                                                                                                   (2.13) 
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where E represents the entrainment coefficient,    corresponding to Fernando (1991), 

Breidenthal (1992), and Princevac et al. (2005), is an inflow velocity or entrainment velocity 

as shown as previously in Fig.2.2, also called the entrainment velocity, and U is the 

characteristic velocity (Morton et al., 1956, and Turner 1986). Depending on Eq. (2.13) the 

entrainment of the tail is given by Morton et al. (1956), and expressed as: 

!" =
#$%

&'
                                                                                                                                 (2.14) 

where ($) represents the entrainment velocity into the tail of the gravity current, and can be 

estimated by: 

($) =
*+

,
                                                                                                                                  (2.15) 

*- describes the growth in the transport of the density current over the length of the tail section 

(.). Similarly, the entrainment in the head is measured according to the definition of (Ellison & 

Turner 1959, and Turner 1986), and can be written as: 

!/ =
0/

01
                                                                                                                                 (2.16) 

The right-side of Eq. (2.16) represents the rate of change in the head thickness H versus the 

distance X down the slope. Turner’s definition (1986) of the tail entrainment: 

!" 2 *3 *45                                                                                                                          (2.17) 

where 63 is the thickness of the tail, it is comparable to Eq. (2.14), since 6!" = *-78".9 2

*3 *45 . 

In large scale of experiments, Ӧzgökmen & Chassignet (2002) assumed: 

*-78".9 = *3:                                                                                                                    (2.18) 

and6. = *4. 

Equation (2.18) helps investigating the influence of the density difference and the slope on 

the dynamics of the bottom gravity currents in a nonrotating and homogenous environment. 

Furthermore, in the case of steady gravity currents Turner (1986) and Parker (1987) discussed 

Eq. (2.18), based on experiments data, and when the entrainment is parameterized as a function 

of the Froude number. 
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2.4.1.2 Total entrainment 

Ӧzgökmen & Chassignet (2002) stated that the previous two Eqs. (2.14) and (2.16) 

represent the definitions of entrainment and they are valid only as long as the tail and the head 

stay separate. When the head grows and develops downstream, there are no merges between 

the tail and head. Following this idea, Meleshko & Van Heijst (1995) defined an unambiguous 

metric for obtaining a better understanding of the total entrainment quantitatively of ambient 

fluid into the gravity currents, written as: 

 !
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where 
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Herein, the total volume per unit depth (area) of dense fluid has entered the domain across 

.* with thickness 5 in the straight distance. In the absence of entrainment, the total area that 

has entered the domain8)* is equal the total area of dense fluid within the domain8)696:;. This 

leads to an absence of any mixing and the entrainment coefficient is8 = <. Furthermore, if the 

total area of the dense fluid inside the domain would be larger than the area that has indeed 

entered across the boundary,8)696:; > )*, then  > <. For example,  = ? for 50% dilution of 

the gravity current or, in other words, the expansion of the area of dense fluid is doubled. 

Although, Hallworth et al. (1993 & 1996) and Hacker et al. (1996) studied the entrainment rate 

depending on a specified value of E, as dimensionless entrainment ratio, in order to quantify 

the experimental results. 

2.4.1.3 Entrainment of dense jets 

Morton et al. (1956), built the classical approach to turbulent entrainment based on 

macroscopic conservation equations for mass fluxes, buoyancy, and momentum, with the 

assumption that turbulent jets are self-similar with respect to dimensionless downstream 

distance from the source. Also, they described how a buoyant plume propagation from a point 

source can be modeled by the next equations (Eqs. 2.21-2.26) for the horizontally integrated 

buoyancy, volume and momentum fluxes in the plume. The constant of proportionality,8@ is 

known as the entrainment coefficient. In this model, the volume flux is defined by: 

A = BCDE                                                                                                                            (2.21) 
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Its x-variation is a result of this entrainment and it is governed by the following linear 

function of U (average velocity in the plume): 

 !
 " = 2 !"#,                                                                                                                           (2.22) 

where the constant of proportionality, !$is known as the entrainment coefficient and is equal to 

1.85, " is the plume radius. The momentum flux is expressed as: 

% =  "&#&,                                                                                                                           (2.23) 

the momentum flux is governed by the momentum that writes: 

'(

')
=  "&*+.                                                                                                                         (2.24) 

Therefore, the buoyancy is conserved with the following expression: 

- =  "&*+#                                                                                                                         (2.25) 

This model predicts the shape and density of the plume as a function of the height and it 

concords well with both laboratory experiments and field observations. Turner (1966) injected 

a salt water vertically upwards in a basin of static water. Dimensional arguments allow the 

maximum elevation height (jet length) as being proportional to$%.
/ 01 34.

5 &1 . Also, Britter 

(1979) detected the apparent difference between theoretical and experimental values of 

proportionality constants 6/ in Eq. 2.4. These values were correctly associated with the 

entrainment of ambient fluid in a positively buoyant jet. Subsequently, the entrainment occurred 

as a significant result of the supercritical flow at the outflow source from the impingement of 

vertical downward discharges. 

Initially, an excess of momentum compared to the unmixed plume due to the forced plume 

was described by Morton et al. (1956), and it was completed by Morton (1959). As a result of 

the dense forced plume with the initial momentum directed upwards, the buoyancy will act 

against on the flow. The maximum rise height for a plume with initial buoyancy and momentum 

fluxes -. and$%., and with no initial volume flux is: 

789) = :;2<!5 &1 (>
? @1

A>
B C1 D

E?

F5GEHIB C1 JK
5

.
                                                                                  (2.26) 

For the sources have a finite small volume flux, the previous constant of proportionality in 

the experiments was found to be 1.85 according to (Turner 1966). The model of plume 

propagation provides a description of the upward part of the flow and predicts the height at 

which the flow will reverse. But it does not predict the motion in the downwards part of the 

flow, nor does it take into account the flows interaction between the upward and downward. 
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According to Ross (2000), the integral in the above Eq. (2.22) can be found equal 0.46 and the 

constant proportionality as 1.73. Also, assuming an entrainment coefficient of 0.1, the 

maximum evolution height  !"# for plume can be calculated depending on the prediction of 

Morton (1959) as a comparison with the experimental background. 

2.4.1.4 The dependency and velocity of entrainment 

Cenedese & Adduce (2008), Adduce et al. (2012), Nogueira et al. (2014), and Ottolenghi 

et al. (2016a & b) considered the flow of a dense gravity current with a mixing occurring with 

the ambient lighter fluid. They notably stated that along its path, the gravity current entrains 

fresh water and increases its volume. The entrainment velocity can be modelled as a fresh water 

discharge per unit area crossing the interface between the two fluids, which causes an increase 

in volume of the gravity current. Also, Johnson & Hogg (2013) considered the rate of 

entrainment of ambient fluid into current due to turbulent mixing as introduced by Morton et 

al. (1959). They calculated the difference in velocity between the gravity current and the 

stationary ambient |!|. Morton et al. (1959), Turner (1986), and Johnson & Hogg (2013) 

defined the entrainment velocity as: "# = $|!|. Ellison & Turner (1959) stated that the 

entrainment coefficient E is mostly a function of the bulk Richardson number  %& = '()/!*, in 

high Reynolds and high Péclet numbers configurations respectively. Boussinesq 

approximation, where E(Ri) tends to a constant, almost equal to 0.075, for %& + 1, and 

vanishing at high Richardson numbers. After that, Ottolenghi et al. (2016a) defined the bulk 

entrainment velocity "#, within the interface -, separating the two fluids with different density 

as: 

"#, =
.02

32
                                                                                                                               (2.27) 

where the interface is scaled by -, = 456, in the x-z plane, and a bulk entrainment discharge 

can be calculated at each time by: 

7#, =
892

8:2
                                                                                                                               (2.28) 

where 8;, represents the increasing in volume at a given time <, (8<, increasing time steps). 

The experimental measurements of Johnson & Hogg (2013) are in good concordance with the 

theoretical results of Ellison & Turner (1959) and can be viewed as the vanishing act of 

entrainment approximately as $~ 1 %&>  at high Richardson number as shown in Fig. 2.6. 

Johnson & Hogg (2013) considered the variation between different experiments of (Fernando 

1991). Also, they gathered theoretical considerations of the turbulent kinetic energy balance in 

a gravity current studied by Sherman et al. (1978) for the two following configurations: 
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 ~ 1 !"#  when !" $ 1, and  ~constant when !" % 1. In this aim, they chose a model 

equation of entrainment velocity. They assumed a dependency relation of the entrainment 

coefficient on the Richardson number that captures the observed behavior of& (!"), in both low 

and high Richardson number regimes. Therefore, the entrainment velocity equation was written 

as: 

'* =  |+| =
,-

./023
|+|                                                                                                         (2.29) 

 

 

Figure 2.6: The experimental measurements and proposed fits of the dependency of entrainment on 

Richardson number [Johnson & Hogg (2013) compared their results with those of Christodoulou (1986), 

Parker et al. (1987), and Ross et al.  (2006)]. 

They notably found the following values of the constants appearing in Eq. (2.29):  ! =

0.075 and"# $ 27, which are suitable for the experimental measurements of entrainment 

presented in Fig. (2.6). Also, this Eq. (2.29) was simplified dependency captures the reduction 

of entrainment with growing Richardson number. Hallworth et al. (1993 & 1996) observed the 

dilution in the vicinity of the head, after passing the slumping point (because the entrainment is 

negligible in the slumping phase). They could not provide a physical clarification of the relation 

between this transition and entrainment within the head. As a result, the cavity transmits 

backwards from the front of the head, reflects off the back wall, and catchs up with the head 

(Rottman & Simpson 1983, Bonnecaze et al. 1993, and Fragoso et al. 2013). 
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2.4.2 Turbulent mixing 

The dense mixing occurs within the boundary between the current and the ambient fluid 

which indicates that no acute density transition exists (Middleton 1993). Fernando (1991), 

Breidenthal, (1992), and Princevac et al. (2005) studied different mixing mechanisms concerns 

of the entrainment velocity (! ), applied across a density interface. Such phenomenon is 

complex and difficult to study. The turbulent mixing between the gravity current and the 

ambient fluid is determined by the use of the gradient Richardson number !"#, which is the 

ratio of the stabilizing current stratification to the destabilizing velocity shear (Ellison & Turner 

1959, Turner, 1973 and 1986). The turbulence eventually collapses for !"# > 0.25 (Turner 

1973). The turbulence is characterized by the presence of buoyancy forces, and the term 

“stratified turbulence”, as discussed by Fernando (2000), is used when the mixing can only 

takes place in the horizontal plane. Furthermore, the so-called “pancake” mixing, demonstrated 

in laboratory experiments, occurs for a stratified flow with$!"# > 0.7. 

Chang et al. (2005) used vertical shear (diffusivity) related to !"#$and Turner’s work 

(Ellison & Turner 1959, Turner 1986, and Hallberg 2000) as two entrainment parameterizations 

to model the mixing. Their results present an agreement with two entrainment 

parameterizations, resulting from ocean circulation and nonhydrostatic models. However, 

Britter and Simpson (Britter & Simpson 1978 and Simpson & Britter 1979) studied the steady-

state transport and mixing of fluids via the head of the gravity current, by using a gravity current 

released into a tank with a streaming ambient over a horizontal surface. For example: Simpson 

& Britter (1979) quantified the bulk mixing rates for a steady-state current. To this aim, they 

used either from an apparatus in which the head is brought to rest by an opposite flow and a 

moving floor, they used a modified lock exchange flow. Unfortunately, they could not 

determine the density structure produced. Later, using a technique involving a chemical reaction 

by Hallworth et al. (1993) observed the mixing only after the transition to the self-similar phase, 

while, (Hacker et al. 1996, Jacobson & Testik 2013, and Nogueira et al. 2013a, 2014) observed 

the mixing during the slumping phase. They measured the density structure and estimated the 

mixing by the entrainment based on the analysis of iso-density levels. 

The entrainment depends strongly on the choice of the density threshold used to define the 

interface through the dense current and the ambient fluid. Hacker et al. (1996) used a large 

interval of threshold values from 5% to 100%. While in the experiments of Fragoso et al. 

(2013), small values of density were not detected and the values of the threshold used varied 

from 50% to 92%. In all the experiments reported (Hallworth et al. 1996, Hacker et al. 1996; 
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Nogueira et al. 2013, and Fragoso et al. 2013), the determination of density distribution of the 

gravity currents was limited to the 2D configuration with many present difficulties related to 

the experimental methods (calibration curve, coloured pH indicator, etc.), and the results were 

often presented without accuracy. 

2.4.2.1 Fractional area/volume ratio of the dense current 

The ratio of the field of the current   to the initial area of the discharge fluid  ! changes 

with time depending on the iso-density level selection. These changes are determined by the 

propagation internal structure. Hacker (1996) and Jacobson & Testik (2014) used the ratio  / ! 

with dimensionless front location of the gravity current as indicator of the entrainment in lock-

release gravity currents. To this aim, Hacker (1996) used a new experimental technique to 

investigate the density structure of mixed gravity current in the lock-release case. This 

experimental technique is produced across the limit of the concentration range, and studied the 

effect of the aspect ratio of the release on the subsequent evolution of the propagation flow. 

Fragoso et al. (2013) and Ottolenghi et al. (2016a & b) followed the method proposed by 

Hacker (1996). Their contribution consisted in evaluating entrainment and mixing for the 

unsteady gravity currents case. They notably focused on the effect of the aspect ratio between 

the initial water depth and the lock length, and the driving motion of the initial excess density. 

Ottolenghi et al. (2016) suggested that the existence of ambient fluid entrainment for the total 

time of the experiments and the choice of the iso-density thresholds values > 40%  leads to 

opposite results: the slope of the curves is negative, therefore the volume of the fluid starts 

decreasing at high density. Fragoso et al. (2013) discussed the fractional area of the current and 

found sudden changes in mixing in the vicinity of the slumping point by a suitable choice of 

threshold value. The different thresholds are used by Ottolenghi et al. (2016) to determine the 

edge of the current: 2%, 5%, 20%, 40%, 60%, 80%, and 100% for  "/ ! with dimensionless 

front location of the gravity current comparable to Hacker’s (1996). While, the thresholds used 

by Fragoso et al. (2013) were: 50%, 80%, and 92% for# #  !#with# $ $&'' . 

2.4.2.2 Potential energy 

Winters et al. (1995) studied the effect of the critical value of the density threshold that is 

used to determine the interface between the two layers. This method is useful for the evaluation 

of irreversible mixing inside a lock-release gravity current by the energy budget. This process 

is not dependent on the distinction between the dense current volume and the ambient fluid 

volume. 
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For the reason mentioned above, Patterson et al. (2006), and Fragoso et al. (2013) did not 

need to specify any interface between the dense and light fluids. This methodical approach was 

successfully applied to investigate the dynamics of lock-release gravity currents propagation 

over horizontal surfaces. Ottolenghi et al. (2016a & b) used depending the energy budget 

method to get the distinction between the adiabatic processes for horizontal and inclined 

boundaries cases. This can modify the initial potential energy  ! of the flow without exchanges 

between the mass or heat, and the adiabatic ones.  The definition of the potential energy  ! of 

the flow is given by: 

 !(") = # $ %&(', *, ")+*-./
                                                                                                (2.30) 

where V represents the entire volume of the fluid (dense and ambient fluids), x and y are 

respectively the streamwise and vertical directions, %&+ represents the spanwise averaged 

density field. The definition of the background potential energy  0 is defined as: 

 0(") = # $ %&1(', *, ")+*-./
                                                                                                 (2.31) 

where %&1+ represents the spanwise averaged density field adiabatically compatible with the 

minimum state of the potential energy. Consequently,  0 can be estimated from the fluid 

particles redistribution in a perfectly stable horizontally stratified configuration. According to 

the definition of Winters et al. (1995), %&+ and %&1+ are used to calculate the quantities of  ! 

and2 0 . This relation was adopted in each of the Patterson et al. (2006), and Fragoso et al. 

(2013) studies. As a result, the difference between  ! and  0 can be a useful approximation for 

obtaining the available potential energy2 3: 

 3(") =  !(") 4  0(")                                                                                                         (2.32) 

From %&(', *, ")+ to %&1(', *, ")+2and within an adiabatic transition, the available potential 

energy  3 was released without changing in the probability density function of the density. 

Also, the potential energy  ! can be modified by adiabatic processes during a redistribution of 

& without changing the background energy. Furthermore, the state of the background potential 

energy  0 can be changeable in order to obtain the direct measure of the energy expended in 

the fluid mixing due to dilution (Winters et al. 1995). Fragoso et al. (2013) relying upon the 

density threshold method together with an integral method of (Winters et al. 1995) rearranged 

the potential energy to investigate the evolution of a continuous density field. Then, Ottolenghi 

et al. (2016a, b, & 2017) characterized the potential energy budget with dimensionless front 

location of gravity current for different cases. Finally, Gerber et al. (2011) drew the profiles of 

excess density difference and buoyancy production of turbulent kinetic energy, and detected 

only local maximum at the interface with the ambient fluid. 
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2.5 Numerical modeling of gravity currents 

The investigation of the gravity currents field is typically very difficult, due to unexpected 

characteristic and complication occurrences. Numerical models are valuable tools for 

investigating the gravity currents impact, and such models are used in the studies of water 

quality. In order to achieve a higher clarification, laboratory experiments have been widely used 

to explore the gravity currents dynamics. Therefore, numerical models are not able to faithfully 

reproduce the experimental studies but are dependent on the available amount of computational 

resources. In order to reduce the duration of the calculations, numerous simplifying 

assumptions must be taken in the numerical model. Furthermore, the equations governing the 

gravity current model usually contain the mass and momentum conservation equations, as well 

as possible addition of one or more scalar transport equations. The scalar transport equations 

are chosen depending on the situation of the modeled turbulence, and the density variances 

caused by the variations in temperature or changes in fluid mixture composition. 

According to Chowdhury & Testik (2014), the quantitative gravity currents models are the 

most widely used: the force-balance, box and depth-averaged modeling for currents generated 

in controlled laboratory setups. The force-balance modeling provides the choice and definition 

of the parameters necessary for front position temporal evolutions and gravity currents height. 

In the box modeling, the gravity current is represented in a series of boxes; either rectangular 

for 2D flows or cylindrical for radial currents instantaneously with uniform properties. 

Solutions of the box modeling for compositional gravity currents is obtained by using mass 

conservation and front or dynamic conditions of the head. In depth-averaged modeling, the 

negligible effect of vertical variations assumption in the characteristics of the current represents 

the best solution of Navier-Stokes equations. The equations of fluid mass and momentum 

conservation are solved simultaneously for compositional gravity currents. 

Two-dimensional (2D) gravity currents have been widely examined by both laboratory 

experiments and numerical simulations on the contrary of three-dimensional (3D) gravity 

currents. Both numerical configurations depend on the theoretical formulation. In the following, 

different gravity current propagation model types are reviewed, considering the gravity currents 

propagation as a constant-flux release: theoretically, within the static ambient water in 

(§§2.5.1); dynamically, gravity currents are affected by hydrodynamics of ambient water in 

(§§2.5.2); and several numerical methods are described in (§§2.5.3). 
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2.5.1 Gravity current model into static ambient water 

Britter (1979) was the first to use shallow water model as a force-balance modeling 

approach to investigate the parameterization of the radial axisymmetric spreading of 

compositional gravity currents in the inertial regime from the impingement point of downward 

discharges over a horizontal bottom (see § 2.3, and Fig. 2.5a: a vertical positively buoyant jet) 

over a horizontal bottom. Chowdhury & Testik (2014) indicated that the shallow water models 

are applicable for the layer of gravity current (single-layer models) and for the improvement 

accuracy, of both the ambient fluid layer and the underlying current layer (double-layer 

models). 

Moreover, Huppert & Simpson (1980) were the first to propose that the parameterization 

can be obtained from the box modeling for constant volume gravity currents. The equation of 

sediment mass conservation is used as an additional equation in the box model to specify 

particle deposition from a particle-laden bottom gravity currents. Referring to (Eq. 2.4 in §§ 

2.3.1), the resulting term of  (!) from the force-balance and box models is similar to the force 

balance term in Eq. (2.4) with analytical term for the proportionality constant"#$. 

Bonnecaze et al. (1995) extended and solved the shallow water model (force-balance 

modeling) numerically, and Dade & Huppert (1995b) extended the box modelling of 

compositional gravity current to examine carefully the particle-laden gravity currents. The 

force-balance modelling is not compatible with particle-laden gravity currents depending on 

the development of theoretical considerations. Also, Bonnecaze et al. (1995) validated the 

force-balance and box models relying on the observations of experiments for the axisymmetric 

gravity currents. These axisymmetric gravity currents were generated by subcritical inlet source 

conditions over a horizontal bottom. The prediction based on the horizontal and vertical 

variations of gravity currents dynamics is impossible; for this reason the two models resolve 

the interior dynamics of the motion. The expression in Eq. (2.5), applied to each of the force-

balance models depending on Huppert’s [lubrication] theory (Huppert 1982), and the box model 

(Ungarish 2009) investigated the propagation of  viscous compositional gravity currents over a 

horizontal bed for Newtonian fluid as a radial spread of the constant flux release axisymmetric. 

Didden & Maxworthy (1982) agreed with Huppert’s (1982) experimental results, which 

showed proportionality constant (#% = 0.63"discussed"in"§§"2.3.1) as a consequence of the 

similarity solution of the lubrication theory model. Depth-averaged modeling follow the 

lubrication theory model: the inertia force is neglected from the equation of momentum 

conservation for the viscous gravity currents. 
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As for inertial gravity currents: the viscous force is neglected from the equation of 

momentum conservation, when the depth-averaged modeling is following the shallow water 

models. The horizontal variations are formed during the depth-averaged modeling, but this 

model cannot predict the vertical variations. 

Consequently, the modeling of the interior dynamics can use complex numerical models 

such as Navier-Stokes equations in the Reynolds-averaged numerical solver. These equations, 

considered as governing equations, are used to model the vertical variations within the mean 

flow structure of inertial gravity currents. Several studies for each of: Hallworth et al. (2001, & 

2003), Patterson et al. (2006), and Ungarish (2007) were performed to investigate the 

experimental and numerical axisymmetric gravity currents in a rotating system using both 

shallow water equations and complete Navier-Stokes equations.  La Rocca et al. (2008) studied 

the propagation of the bottom gravity currents on both smooth and rough surfaces using 

experimental, numerical, and mathematical models. These models are based on shallow water 

theory together with the single-layer approximation. 

2.5.2 Gravity current model with dynamic ambient water 

The ambient water flow affects the dynamics of two dimensional bottom gravity currents. 

Hogg et al. (2005) studied the effects of both co-and counter- flowing uniform ambient fresh 

water flows. Hogg’s (2005) experimental setup was similar to the two dimensional narrow 

rectangular channel employed by Hallworth et al. (1998) and the bottom gravity currents were 

generated by impingement of buoyant jet discharges at the channel bottom in the middle of the 

channel. The generated gravity currents followed a two-dimensional propagation and they were 

flowing with either both co- or along counter- flowing the ambient fresh water flow relying 

upon the position of the impingement point. Before that, Simpson & Britter (1980) used the 

moving belt setup in order to generate the saline fluid into a co-moving ambient fluid and 

stopping the advance of the dense fluid. 

Hogg et al. (2005) formulated a model combining both multi-layered shallow-water model 

and depth-averaged model. Such model calculates the heights, densities, and velocities of the 

movable layer and the ambient fluid as functions of space and time. As well, this model depends 

on previous models of shallow salt wedges in estuaries developed by (Schijf & Schӧnfeld 1953, 

and Sorgard 1991) and of particle-driven gravity currents developed by (Bonnecaze et al. 1993) 

using ambient fresh water entrainment within a gravity current and the opposite when the 

gravity current fluid entrainment within ambient fresh water. 
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This multi-layered shallow-water model consists of: i) a bottom layer of a dense gravity 

current, ii) a top layer of an ambient fresh water, and iii) a layer of the bottom and top layers 

mixture. The above mentioned studies found that the shallow-water and box models not 

agreement expectations for experimental results except close to the point of impingement. 

Consequently, Slim & Huppert (2008) reanalyzed the Hogg’s (2005) shallow-water model, and 

they succeeded in solving the one-layer shallow water model analytically (consisted of a 

compositional gravity currents similarity solution and a particle-laden gravity currents 

asymptotic solution). 

A theoretical framework of varying degrees of complexity was employed to model the 

gravity currents motion. Rottman & Simpson (1983) used the depth-averaged modeling for the 

shallowness of the flow, and Klemp et al. (1994) used the full equations of the motion for 

obtaining the numerical simulations. Eames et al. (2005) acquired a similarity solution for the 

equation of the non-linear advection to examine carefully how a laminar co-flowing ambient 

flow is affected by the Newtonian viscous gravity current spreading. Huppert & Simpson 

(1980), Dade & Huppert (1995a), and Harris et al. (2001) studied the bulk characteristics by 

exploiting the basic or box models without including any solving of the internal dynamics of 

the motion. Few studies has been proceeded to research the dynamics of gravity current 

advected by ambient flow. Kranenburg (1993) established a relation of the front velocity of the 

bottom gravity current with the counter-flowing ambient flow and Liu & Moncrieff (1996) 

studied the bottom gravity currents propagation by an elastic equation solution of the motion 

but did not utilize experimental results to validate their theoretical formulations. 

2.5.3 Numerical methods 

The dynamics and mixing of the gravity currents can be modeled using the Navier-Stokes 

equations with the Boussinesq approximation. The resolution of this model is made using DNS 

(direct numerical simulations) or LES (large eddy simulations). Numerical models can give 

unlimited information in the three-dimensional and time coordinates, but they need many 

computing resources. In the last two decades, there were several studies of the gravity currents 

using high-resolution numerical models, which use the three-dimensional Boussinesq form for 

solving the Navier-Stokes equations. According to Härtel et al. (1997, 1999, & 2000a, b), 

Cantero et al. (2007, 2008), Ooi et al. (2007, 2009), Tokyay et al. (2011, 2012), Dai (2013, 

2015), and Ottolenghi (2016a, b) different settings employed either large eddy simulations 

(LES) or direct numerical simulations (DNS) to study lock-exchange gravity currents. 

However, they are very complex and require high computing resources. 
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These models supply significant details for the description of the gravity current’s 

dynamics as Computational Fluid Dynamics (CFD) and have reached better and more reliable 

understanding of their dynamics results. DNS needs significant amounts of computer power in 

the case of the initial two-dimensional simulations. Examples include Härtel et al. (1997, 1999, 

& 2000b), which suffered from some of the same problems as other two-dimensional models. 

In fact, they could not capture all the three-dimensional features of the flow. To reduce the 

computational resources, the numerical models can use different assumptions to solve the 

system equations. 

Direct numerical simulations (DNS) and large eddy simulations (LES) in the turbulent 

flows are costly compared to the models based on the Reynolds Averaged Navier-Stokes 

(RANS) equations usually used in CFD codes, but still expensive because of the complexity of 

the eddy viscosity. Reynolds Averaged Navier-Stokes (RANS) equations models can be 

employed without assumptions to investigate the mean flow, and are often functional to 

simulate the turbulent flows with less computational resources comparing to DNS or LES. The 

governing equations of three-dimensional models include Reynolds Averaged Navier-Stokes 

(RANS) equations, mass conservation equations, free surface equations, the equation of state 

relating density to temperature and sediments, and a conservation equation for each scalar 

variable. To simplify the governing equations, the models use the Boussinesq, and hydrostatic 

assumptions and the water is assumed to be incompressible. The standard ( ! ") model is most 

commonly used with (RANS), which has been in usage since the 1970s. 

Hossain and Rodi (1977), using a RANS model with Reynolds stress and mass transport 

equations, showed that the entrainment in such model is reduced as a result of the collapse of 

turbulence due to a stable stratification. Brørs and Eidsvik (1992) studied the turbidity current 

flows using a RANS multiphase mixture model. They used transport equations instead of the 

Boussinesq and flux-gradient hypotheses for the individual Reynolds stresses and fluxes. They 

argued that ( ! ") turbulence model underestimated the turbulent mass transport at the height 

of velocity maximum. They showed that their model gave higher predictions. Huang et al. 

(2005) used a RANS multiphase mixture model with the Boussinesq and flux-gradient 

hypotheses to investigate turbidity currents with deforming bottom boundary. For model 

validation, they compared model results with some of the two-dimensional flume experiments 

of Garcia (1993) for both saline and sediment-laden flows. A satisfactory concordance was 

shown for velocity profile, similarity profiles of velocity and sediment concentration between 

the model and Garcia’s (1990) experimental results. 
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Gerber et al. (2011) investigated a two-dimensional, unsteady gravity saline using 

Reynolds-averaged Navier-Stokes model (2DV-URANS). The Reynolds-averaged equations 

of the flow state a mixture continuity, a mixture momentum based on the Boussinesq 

approximation and a conservation of salt mass fraction (Rodi 1980). To compute the mixture 

density, the equation of state proposed by Lide (1997) was used, while closure for the Reynolds 

stress tensor was obtained using the Boussinesq hypothesis (Pope 2001). An agreement was 

found between the modeled and the measured (using PIV facilities)1, 2 normalized mean 

profiles. 

According to Sangdo An et al. (2012) an approximated study of the gravity current 

propagation dynamics is investigated using the FLOW-3D computational dynamic code. The 

performance of the numerical model uses two different turbulence closure schemes namely the 

renormalization group [(RNG) ! "] schemes in a Reynolds-averaged Navier-Stokes 

framework (RANS) and the large-eddy simulation (LES) technique. They studied the Intrusive 

Gravity Currents (IGC) and Particle-Driven Gravity Currents (PDGC) using the three 

dimensional non-hydrostatic FLOW-3D CFD code. Also, Ӧzgökmen & Chassignet (2002) used 

nonhydrostatic, high- horizontal and vertical resolution and two-dimensional simulations of 

gravity currents to conduct their research in large scale model. They notably showed the 

primary characteristics of this simulation is of the Kelvin-Helmholtz billows instability in 

nonrotating laboratory gravity currents. These instabilities have a predominantly two-

dimensional structure. The hydrostatic assumption neglects vertical acceleration and non-

hydrostatic pressure gradients so that it can be employed for a reservoir in which horizontal 

length scales are larger than vertical scales (Hodges 2009). The three-dimensional model has 

been successfully applied to water quality simulations, providing physical understanding on a 

full seasonal limnological process in a reservoir. 

                                                 

1 Dhafar, I. A., Latrache, N., and  Nsom, B. (2015a). Applied the Large-Scale Particle Image Velocimetry Technique for Measurement the 

Velocity of Gravity Currents in the Laboratory. DOI: 10.4236/jwarp.2015.78048, Journal of Water Resource and Protection 07(08):597-604. 

 
2 Dhafar, I. A.,   Latrache, N., and  Nsom, B. (2015f). Mesure de vitesse par PIV à grande échelle d’un écoulement de courant gravitaire d’un 
liquide léger à la surface libre d’un liquide dense. 16ème congrès français du Club FLUVISU (« Visualisation et Traitements d’images en 
Mécaniques des Fluides pour l’Industrie »), associé au 14ème colloque international francophone du Club CMOI (« Contrôles et Mesures 

Optiques pour l’Industrie»). Lannion, France, Du 16 au 20 novembre. 
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Chapter 3: Experimental Study 

 

3.1 Introduction 

In this chapter, we present the experimental study of the two-dimensional propagation of 

saline gravity currents into calm fresh water contained in a basin covered with a smooth bottom. 

The experimental investigation of the outer boundaries of gravity currents and their front 

positions from the injection point such as those which occur in the environment are a traditional 

topic in the laboratory. In this study, we determined the relation of the space versus time ( 

x~At !and!y~Ct" ) under the influence of initial or local parameters of the jet flow. Part of the 

results and analysis presented in this chapter appeared in Dhafar et al. (2015b)3. Several reasons 

are presented for studying the dense gravity currents: Firstly, laboratory experiments are carried 

out in a more controlled environment than larger scale field experiments. This means that more 

data of higher quality can be collected. Secondly, the effect of each aspect of the flow can be 

carefully studied for a full understanding. Thirdly, experiments can easily be repeated, either 

with the same parameters or for a wide range of parameters. 

3.2 Apparatus and experimental procedure 

3.2.1 Experimental setup 

The experiments were performed at the Institut de Recherche Dupuy de Lôme (IRDL) 

Laboratory of Brest University (UBO). The experimental setup as shown in Fig. 3.1 consists of 

a rectangular basin containing a static ambient fresh water of 11 × 10#$%$  at H=5 × 10#&%. 

The dimensions of the basin are the following: L = 55 × 10#&% length,!' = 4 × 10#&% 

width, and H = 5 × 10#&% depth. The walls of the basin are made of 5mm transparent glass 

allowing the visualization of the gravity current development. A tank with a capacity of 60 ×

10#$%$ was used to prepare the salt fluid. The denser fluid is pumped to another tank with a 

capacity of 20× 10-3 m3, where it was colored with Rhodamine B dye. The colored salt water 

was injected into the basin via a transparent plastic square channel at the horizontal bottom 

surface made of a smooth white plastic. The injection tube is a square channel with a length of 

d =5 × 10#$%, and it is kept horizontal for the duration of all the experiments. 

                                                 

3
 Dhafar, I. A., Latrache, N., and  Nsom, B. (2015b). Image processing applied to characterize the denser gravity current propagates over rigid 

surface into the lighter fluid. 10th Pacific Symposium on Flow Visualization and Image Processing Conference, Naples, Italy, 15-18 June. 
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The fractional height is  = !/" = 0.1#defined as the ratio of the initial salt water height 

( = !) to the total height " of the fresh water in the basin as shown in Fig.3.2. For all the 

experiments performed, the smooth bottom of the basin is considered as the reference level used 

to measure the initial depth of both fluids and the gravity current head. When the injection 

orifice opens instantly, the two fluids with different densities come in contact and a non-

equilibrium condition occurs. 

Figure 3.1:  Experimental setup of the horizontal miscible jet. 

3.2.2 Measurement techniques 

In this study, compositional of dense gravity currents were performed using a solution of 

tap water and soluble sodium chloride (NaCl). This solution is the denser fluid (salt water) with 

an excess density #$ = 40% &' *+,  (equivalent to an effective density%-. = 1040kg/m+ ± 1). 

The tap water is the surrounding ambient fluid with a density of%%-23567 = 1000kg/m+. The 

density of salt water $89:;<8>?;@ was measured in the tank using a “WTW Conductivity meter”. 

The relative difference of the salt water densities was very low [(A%$8 B $89:;<8>?;@A %$8, C

0DEF)]. The flow rate GH of the gravity current released from the colored salt water tank into 

the basin was controlled by a flowmeter “TechFluid 2300”. A light source made of 50 Hz-500w 

projector lamp was placed in front of the basin. The experiments were undertaken in a dark 

room to avoid other disturbing light sources (Fig.3.1). A small red soluble dye quantity of 

Rhodamine B was used as a tracer in order to visualize the instantaneous state of the dense 

gravity current (salt water) released from the “coloured salt water tank”. Rhodamine B was 

introduced as an agent for video-photographic analysis purposes, and the dye did not affect the 

density and viscosity of the salt water. 
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Figure 3.2: Definition sketch of the basin used to perform 3D injection experiment: (a) top view; and 

(b) side view. 

A video sequence with a frequency of 38 frames per second was considered for each 

experiment. An observation system consisting of one camera (type: Photron Fastcam) taking 

190 images per second with a resolution of (1024x1024 Pixels) was used as well. The camera 

was placed 1m above the water surface of the basin. The pictures observed by the camera were 

captured at a frequency of 38 Hz owing to a system of image processing consisting of a PC 

equipped with a Pentium IV processor (2.6 GHz) of a 1024 Mb random-access memory. 

3.2.3 Experimental procedures 

This work presents six experiments, in which every flow rate was tested three times to 

check the reproducibility of the experiment. The initial values of each flow rate Q  were chosen 

from!(2.00 ± 0.03) × 10"#$%/& to!(3.00 ± 0.05) × 10"'$%/&, with an increment of 

2.78×10-6 m3/s. The reduced gravity * 
+  and viscosity υ were fixed at 0.39 $/&,- and 10"#$,/& 

respectively. The dense gravity current was represented by a salt water with a density equal to 

!!46 = 1070kg/m%!prepare in a tank of the denser fluid and pumped towards the colored salt 

water tank. The colored salt gravity currents were accelerated by the gravity towards the 

flowmeter. Then, it was injected via the flowmeter along the bottom of the basin by a square 

channel into a static lighter fluid represented by a fresh water with density equal 489:;< =

1000kg/m%!as shown in Fig.3.1. The room temperature ranged from 19 to 24 °C measured 

during experiments. The fluid plane as shown in Fig.3.2 is divided into two sections; a first 

section where the length of the injection zone is represented by!d, and a second section where 

the length is represented by!>. 
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3.3 Experimental parameters 

The experiments were performed to estimate the shape and investigate the outer boundaries 

of gravity currents. The horizontal propagation of the denser fluid region is due to the initial 

momentum flux: 

 ! = "!. #!                                                                                                                           (3.1) 

where u$%indicates the velocity of the initial salt water injection, "! is the initial flow rate; 

"! = #!. &'                                                                                                                            (3.2) 

and & denotes the side of the injection channel. The flow of the denser fluid into the bottom 

deep lighter fluid formed an immersed bulk due to the buoyancy flux: 

(! = )0
* . "!%                                                                                                                           (3.3) 

where%)0
* , is the initial reduced acceleration of the gravity at the injection source, it defined as: 

)!
+ =

,s-,water
,water

. )                                                                                                                     (3.4) 

and )%is the acceleration of gravity. The fluid densities%%/12345 = 6000%7)89:and %/; =

60<0%7)89:are chosen in order to obtain the initially reduced gravity current )!
+=0.39%98>'. 

Consequently, the initial (at the injection orifice) parameters "!?  !? (!? and%)0
*  can be derived 

for the flow analysis. The experimental parameters are presented in the non-dimensional form 

by adopting the following dimensionally independent scales (Hacker et al. 1996, Marino et al. 

2005, Ungarish & Zemach 2005, and Papakonstantis & Christodoulou 2010): 

· the Reynolds number based on the initial quantities is given by: 

@ = #!
A

B
                                                                                                                                (3.5) 

where C is the kinematic viscosity of the salt fluid, 

· the initial Richardson number is a ratio of buoyancy to the flow shear: 

@D = ) E/; - /12345F& E/12345#!
'FG                                                                                        (3.6) 

· the initial Froude number is estimated by: 

HI = 6 JRiG                                                                                                                              (3.7) 
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· the Schmidt number: 

Sc =  !/D"                                                                                                                                 (3.8) 

Sc=667 is defined as the ratio of the kinematic viscosity # = 10$% &' ()  to the molecular 

diffusivity *+ = 1.5 × 10$, &' ()  for the salt water. The values of the experimental control 

parameters are summarized in table 3.1. 

Table 3.1: Inlet experimental control parameters conditions (x/d=0) with Sc=667 and -2
3 = 0.49 & (')   

Variable Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 
Q26m7/s8 5.5: × 10$% ;.44 × 10$% 1.11 × 10$< 1.49 × 10$< 1.:> × 10$< 1.9? × 10$< 

R 1111 1667 2222 2778 3333 3889 

Fr 5.1 7.7 10.2 12.8 15.3 17.9 

@26&/(8 0.AA 0.44 0.?? 0.55 0.:: 0.>> 

B26mC/s78 A.1 × 10$% 4.1 × 10$% ?.A × 10$% 5.A × 10$% :.4 × 10$% >.4 × 10$% 

M2(mC/s'8 1.A4 × 10$% A.>> × 10$% ?.9 × 10$% >.> × 10$% 1.11 × 10$< 1.51 × 10$< 

       

3.4 Image analysis technique 

3.4.1 ImageJ software 

An image analysis technique was applied to assess the two-dimensional planar top view of 

the gravity current flow. Using the ImageJ image processing software allowed the video images 

to be captured directly from the camera during the experiments. Using the captured video tapes 

allowed the analysis of the experiments results as shown in Fig. 3.2. ImageJ is written in Java, 

which allows it to run on Linux, Mac OS X or Windows, in both 32-bit and 64-bit modes. 

ImageJ and its Java source code are freely available in the public domain, where no license is 

required. ImageJ can calculate area and pixel value statistics of user-defined selections. It can 

measure distances and angles. It can create density histograms and line profile plots. It supports 

standard image processing functions such as contrast manipulation, sharpening, smoothing, 

edge detection and median filtering. ImageJ can be zoomed up to 32:1 and down to 1:32. All 

analysis and processing functions are available at any magnification factor. 

 

Figure 3.3: Overview of ImageJ software. 
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The program supports any number of windows (images) simultaneously, limited only by 

the computing available memory. ImageJ supports 8-bit, 16-bit and 32-bit (real) grayscale 

images and 8-bit and 32-bit color images. 8-bit images are represented using unsigned integers 

in the range 0 to 255. 16-bit images use unsigned integers (0 to 65,535) and 32-bit grayscale 

images use floating-point numbers. 

3.4.2 Image processing 

In Fig. 3.4, each frame of the movie acquired by the camera is a rectangular matrix 

(522×766 pixels) of integers representing the gray level “intensity level” of the corresponding 

pixel and ranging from 0 (black) to 255 (white). A ruler was dependent along both the length 

and width scales of the basin in order to obtain the conversion factor pixel/mm. The gray level 

of the interface between the two fluids was chosen as the threshold value. 

Firstly, all frames were converted to grayscale. Subsequently, individual video frames are 

captured and stored in computer memory (use the submenu to save the active image in Tiff) as 

single instantaneous snap-shots of the flow sampled with an exposure of n/38 second “n 

represented the increments of images”. The recorded images are analyzed in order to extract 

the position of the gravity current boundaries. 

By opening a series of images in a chosen folder as a stack, images may have different 

dimensions and can be of any format supported by ImageJ as shown in Fig.3.4-a [the source 

image( !"1)]. Afterwards, the frame where chosen before the dense gravity current released 

as the base image as shown in Fig.3.4-b [the destination image( !"2)]. Instantaneously, the 

first injection introduced at the bottom of the basin of the video sequence of all the tests is 

considered as the time zero. The Process menu lists all commands related to image processing. 

Then, going to the submenu, image Calculator was used for  !"1 and  !"2 as shown in 

Fig.3.4-a, and b. The results shown in Fig.3.4-c were obtained using  !"1 = | !"1 #  !"2| 

in the Difference option of the ImageJ software. 

Using the Image menu, the Adjust submenu contains commands that adjust the 

brightness/contrast, the threshold levels and the image size in order to produce clear image 

series as shown in Fig.3.4-d. By returning to the Process menu: the FFT submenu supports 

frequency domain display, editing and processing; using a Bandpass Filter in order to remove 

high frequencies (blurring the image) and low frequencies (similar to subtracting a blurred 

image). After using the FFT, the Binary submenu creates binary images (black and white) in 

the Process menu as well. 
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Assume that saline gravity currents injected are black and the background is white and 

represents the static fresh water as shown in Fig.3.4-e. Furthermore, in the Process menu, the 

Find Edge submenu was used as shown in Fig. 3.4-f (using the Sobel edge detector) in order to 

highlight sharp changes in intensity in the active image or selection. The final image is produced 

by combining the two derivatives using the square root of the sum of the squares. 

 

Figure 3.4: The steps of profile result realization for R=2778: (a) the source of images series without 

motion ( !"1) (b) the first image ( !"2) at t=0, (c) the Difference result of images series; 

Difference:# !"1 = | !"1 $  !"2| , (d) the image after applying the adjust brightness/contrast at t=2s, 

(e) the binary image at t=2s, and (f) the skeletonized image at t=2s. 
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Finally, the Analyze menu contains commands related to statistical measurements on the 

image data, profile, histogram plotting and plugins related to image analysis. The Tools 

submenu provides access to various image analysis plugins. Then in Tools by using the Save 

XY Coordinate command, the system provides a text file where the XY coordinates and pixel 

value of all non-background pixels in the active image are written. Such data file helps drawing 

the final shape of the gravity current outer boundaries during its propagation. A comparison 

between the different flows rates presents different figures of image processing analyses as 

shown in figures 3.5-3.10. 

A controlled quantity of red dye Rhodamine B was used to obtain the instantaneous images 

sequences of the saline gravity currents injection into the static fresh water. The procedure 

depended on each pixel in the image relating to the amount of dye uniformly distributed in the 

colored salt water tank and the intensity corresponding to images as shown in Fig. 3.11 (see 

Exp.4). This procedure is a simple way to assess the time-evolution within the gravity current, 

allowing the investigation of gravity current dynamics and mixing processes. Assuming that 

the diffusivity of the salt and dye are equal, the concentration of dye is proportional to the 

concentration of salt. The change in color and net attenuation can be used to make quantitative 

as well as qualitative measurements. 

The experimental basin was placed in a dark room where the source of light could be 

controlled. The illumination is provided by the means of a light projector. The upper part of the 

basin is uncovered and the bottom part is covered with a smooth white plastic. During the 

experiments, no erosion of the bottom material was observed. Hence the heavier fluid flows 

under the lighter one, producing the gravity current. The experiment stops when the current’s 

front reaches the end of the sidewall of the basin. 

The estimation of the gravity current is based on a relation between the reflected light 

intensity and the concentration of dye present in the injection flow. As the light passes through 

the dye, the wavelengths of the complementary color are absorbed preferentially. The light 

intensity between the two video images gives a measure of the absorbed light amount, and 

hence the amount of dye in the various parts of the flow. 
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Figure 3.5: Experimental frames capturing by difference (row 1), make binary (row 2), and skeletonize 

(row 3) processes of two dimensional gravity currents performed with initial density  !" = 1040#$/%& 

and  !'()*+ = 1000#$/%&  for R=1111, and frames acquired at (a) t= 2s, (b) t=4s, (c) t=6s, (d) t=8s, 

(e) t=10s, and (f) t=12s. 
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Figure 3.6: Experimental frames capturing by difference (row 1), make binary (row 2), and skeletonize 

(row 3) processes of two dimensional gravity currents performed with initial density  ! = 1040!"#/$% 

and !&'()*+ = 1000!"#/$% for R=1667, and frames acquired at (a) t= 2s, (b) t=4s, (c) t=6s, (d) t=8s, 

(e) t=10s, and (f) t=12s. 
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Figure 3.7: Experimental frames capturing by difference (row 1), make binary (row 2), and skeletonize 

(row 3) processes of two dimensional gravity currents performed with initial density  !" = 1040 #$/%& 

and  !'()*+ = 1000 #$/%& for R=2222, and frames acquired at (a) t= 2s, (b) t=4s, (c) t=6s, (d) t=8s, 

(e) t=10s, and (f) t=12s. 
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Figure 3.8: Experimental frames capturing by difference (row 1), make binary (row 2), and skeletonize 

(row 3) processes of two dimensional gravity currents performed with initial density  ! = 1040!"#/$% 

and !&'()*+ = 1000!"#/$%! for R=2778, and frames acquired at (a) t= 2s, (b) t=4s, (c) t=6s, (d) t=8s, 

(e) t=10s, and (f) t=12s. 
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Figure 3.9 : Experimental frames capturing by difference (row 1), make binary (row 2), and skeletonize 

(row 3) processes of two dimensional gravity currents performed with initial density  !" = 1040 #$/%& 

and  !'()*+ = 1000 #$/%& for R=3333, and frames acquired at (a) t= 2s, (b) t=4s, (c) t=6s, (d) t=8s, 

(e) t=10s, and (f) t=12s. 
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Figure 3.10: Experimental frames capturing by difference (row 1), make binary (row 2), and skeletonize 

processes (row 3) of two dimensional gravity currents performed with initial density  ! = 1040!"/#$ 

and %&'()*+ = 1000!"/#$ for R=3889, and frames acquired at (a) t= 2s, (b) t=4s, (c) t=6s, (d) t=8s, (e) 

t=10s, and (f) t=12s. 
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Figure 3.11: Original Frames capturing of two-dimensional gravity currents performed with initial 

density  !" = 1040kg/m# and ρwater=1000 kg/m3 for R=2778, and frames acquired at (a) t= 2s, (b) t=4s, 

(c) t=6s, (d) t=8s, (e) t=10s, (f) t=12s. 

3.5 The configuration of gravity currents 

3.5.1 Experimental front position 

The instantaneous front position  !(") was estimated through the instantaneous injection 

salt gravity current by taking the x-position of the foremost point of the outer boundary current. 

Also, the width of the gravity current increased with time in the y-direction. The two 

dimensional profiles of the gravity current showed that the flow is non-axisymmetric. This 

technique works well for flows without depth variations, where an approximately uniform light 

source can be placed in front of the experiment and where there are no free surface disturbances 

(see e.g. Cenedese & Dalziel, 1998). 
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The techniques of image processing are suitable for characterizing the gravity current flow. 

Fig. 3.12a-b shows the variation in time of the front position at both x and y directions of the 

visual outer boundaries, and shows that the gravity current increases with the initial density    

of the injected current. For a certain time (!"), the gravity current with an initial density covering 

a long distance is represented by front positions #$ for every flow rate. As expected, that the 

rapid expansion and change of the outer boundary shape depends on the releasing characteristic 

of the salt water, which presents a possibility of important current dynamics. 

Figure 3.12: Dimensional characteristics of salt gravity currents front position versus time for the x and 

y axes. 

All the experiments shown in this section are performed with d and H kept constant. The 

values of the experimental parameters are shown in Table 3.1. Once a horizontal injection is 

introduced into the ambient fluid, the motion is non-axisymmetric, and this adds further 

complexity to the model. Subsequently, the denser fluid collapses, flowing under the lighter 

one, and forming therefore the gravity current. The front position #$ is determined by a power 

law, varying in time and in horizontal bottom coordinate x-y according to Fig.3.12a. 

3.5.2 Propagation Phase Transitions 

For an initially salt gravity current flow injected over the horizontal bottom of fresh water, 

the gravity current initial motion is non-axisymmetric. Using the scaling law applied to a power 

fitting for measurements of the exponents B and D (for  # = %!& ,'( = )!*). All the 

experiments gave a functional form of the internal details in a two-dimensional configuration 

with x and y varying with the time t. Table 3.2 shows the variation of distance with time, 

following the approximated laws:'#~!+.,- , and'(~!+./-. It was found that B and D did not vary 

noticeably for all experiments, their values being around 0 = 1.45 ± 1.14 and2 = 1.65 ±

1.16. 
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Table 3.2: Scaling laws for two dimensions gravity currents: ! = "(#), and $ = "(#). 

Variable Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 
Q%(m&/s) 5.56 × 10'* 8.33 × 10'* 1.11 × 10'+ 1.39 × 10'+ 1.67 × 10'+ 1.94 × 10'+ 

 
!-(2) 108.5t0.49 128.8t0.47 144.5t0.46 

 

163.4t0.45 181.2t0.43 

 

204.4t0.42 

 

$(2) 46t0.71 

 

54.7t0.69 56.3t0.67 66.4t0.64 

 

76.3t0.62 

 

84.3t0.59 

 

#(:) 0.16<t(s)<20.64 0.13<t(s)<15.9 0.1<t(s)<14.7 0.1<t(s)<14.5 0.1<t(s)<13.3 0.08<t(s)<10.9 

       

       

Fig 3.13 shows the outer boundary when the front position and the time are normalized by 

the geometric and experimental parameters introduced earlier. Generally, two distinct phases 

were observed during the development of the gravity current: i) The equilibrium between the 

inertia and the gravity forces, characterized by a linear relation between the front position and 

the time after the injection started. ii) The equilibrium between the viscous and the gravity 

forces in which the current moves under the balance between buoyancy and viscous forces, 

while the front position is a nonlinear function of time. Consequently, the propagation of a 

gravity current can be viewed as an evaluative phenomenon since the gravity current grows 

with time. 

In the inertia-buoyancy phase, the gravity current propagates starts experiencing an 

increasing viscous force. The viscous force may become comparable to the inertia force after a 

period of time. After that, the effect of viscosity becomes more and more pronounced, and the 

propagation of the gravity current may transition into the viscous-buoyancy phase. 

Furthermore, the propagation is mainly dominated by the driving buoyancy force and the 

retarding viscous force, with negligible effects due to the inertia force. All the measurements 

performed start about one second after the starting of the gravity current injection because it 

was difficult to measure the profiles of the gravity current during its initial stage of 

development. Huppert and Simpson (1980) studied the transition in their dense gravity current 

experiments and provided an expression for the transition time based on their experimental data. 

Different integral and shallow water models accurately predict the volume motion for such 

cases. Huppert (1982) derived the transition time expressions for two-dimensional and radial 

gravity currents from order-of-magnitude relationships. 

Although by using the same experimental 2D procedure as Huppert (1982) and Rottman & 

Simpson (1983) it can be predicted that dense gravity currents develop not in three phases 

during their evolution, but only in the second and third phases (see §2.1). 
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Figure 3.13:.Experimental outer positions of the mixing gravity current at !"(#, $): a) R=2222; b) 

R=2778; c) R=3333; d) R=3889. 
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Bonnecaze et al. (1993) derived critical Reynolds number criterion for the transition based 

on the transition time expression of Huppert and Simpson (1980). Indeed, the first phase seems 

not to occur in the gravity current’s evolution, because of the nonexistence of the resistance due 

to the bottom shear stress of the smooth bottom used. A second factor is the decreasing of the 

gravity current buoyancy due to the entrainment of the ambient fluid at the bottom level. This 

may cause an earlier end of the first phase as shown in Fig.3.14. Amy et al. (2005) widened the 

work of Hallworth & Huppert (1998) and explored the presence of abrupt transitions in 

homogeneous gravity currents. They notably confirmed the presence of abrupt transitions to 

dynamic changes in the propagation phases. The slumping phase “first phase” transitions 

directly to the viscous-buoyancy phase that is similar to the work presented in this study. 

3.5.3 The lobe-cleft instabilities 

In this study, the small density inversions occur at the outer edges boundaries of the 

intrusion as saline gravity current is raised and the ambient fresh water is pushed below it. These 

inversions are distinct from the larger-scale billows caused by the shear instability on the outer 

edges boudaries of the intrusion as shown in Fig.3.14. This mode of instability which occurs 

only when the gravity current is propagating along a no-slip boundary, is a convective 

instability known as lobs and clefts (Simpson 1972). A top-view of the gravity current planform, 

using the shadowgraph techinque visualizes the flow in Fig.3.14. The evolution of a spanshots 

lobe-cleft pattern was found and measured as a function of time as shwon in Table 3.2 and also 

in Fig.3.13. 

3.6 Summary 

This chapter begins with a brief description of the experiments brought out for modelling 

bottom gravity currents jet flows, focusing on the use of salt water to create saline gravity 

currents. These laboratory experiments are used to validate the numerical simulation model. 

The experimental apparatus used in the experiments of this study is described, and the image 

processing techniques applied are discussed. The experimental data collected come firstly from 

visual method (e.g. visual technique measurements, red dye Rhodamine B) and from 

conductivity and salinity probe measurements. This method provides a large amount of 

information, enabling techniques of the bottom gravity current propagation and dilution of a 

denser current jet flow through a static lighter ambient fluid. Such as the studied in this 

dissertation, to be measured in detail. Further details of different experiments are given in the 

follow. 
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Figure 3.14: Snapshots with 2D lobes and clefts structures at the front of the intruding gravity current 

development over a smooth bottom for: (a) R=1111, (b) R=1667, (c) R=2222, (d) R=2778, (e) R=3333, 

and (f) R=3889 at t=2, 4, 6, 8, 10, and 12s respectively. 
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Chapter 4: 3D Numerical Model and Computational Details 

 

4.1 Introduction 

Many situations where an accidental or intentional release of dense fluid such as industrial 

or agricultural effluents into river or ocean can pollute the environment. The ambient liquid can 

slow down or speed up the propagation of a dense gravity current, leading to significant 

differences in the injection dose and exposure time at a given location and altering the area 

affected by the release. In this Chapeter, numerical simulations are using RANS (Reynolds 

Averaged Navier Stokes) with k-ε and diffusion-convection equations. Part of the numerical 

model presented in this chapter appeared in Dhafar et al. (2015c)4. A turbulent model of the 3D 

propagation and mixing of a saline gravity current into ambient fresh water over a smooth 

horizontal bottom, incompressible fluid, two-fluids, no-slip boundary condition, and unsteady 

formulation. 

4.2 Navier-Stokes Equations 

Navier-Stokes equations are a set of partial differential equations of space and time that 

describe the motion of fluids with flow velocity and pressure as unknown functions. The fluid 

can be a liquid or a gas. The general Navier-Stokes equations can be written as: 

 (!"
!#

+ $%$) = &%' + %. * + ,                                                                                               (4.1) 

where:  =density, !=velocity, "=pressure, #=stress tensor, and $=sum of external forces. 

In general, Eq. (4.1) representing the momentum equation is equivalent to Newton’s second 

law of motion. The left hand side of the equation is the product of density and acceleration; the 

right hand side is the sum of forces per volume acting on a fluid particle, an infinitesimal fluid 

volume. It is completed by Eq. (4.2) representing the continuity equation which ensures 

conservation of mass for an incompressible fluid. 

%&

%'
+ (. ) !* = 0                                                                                                                        (4.2) 

                                                 
4 Dhafar, I. A.,   Latrache, N., Niang, P., and  Nsom, B. (2015). Etalement d'un jet horizontal miscible de flottabilité positive. 22ème Congrès 

Français de Mécanique, Lyon, France, 24 au 28 Août. 
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All the variables above are functions of time t and space (x, y, and z). The velocity vector u 

is sometimes split into its components u, v, and w. In the following sub-sections, each of the 

terms in the equations is explained. 

4.3 Three-dimensional numerical modeling 

Since there is no known analytical solution of the momentum and continuity equations 

except for some model simplified cases, they must be solved numerically. The model 

simultaneously solves the governing equations of the three-dimensional motion of fluids, the 

conservation of mass, and the transport of numerical variables. RANS (Reynolds-average 

Navier-Stokes), the volume of fluid (VOF) model using a single set of momentum equation, and 

 ! " are used to describe the flow field in this work. The absence of surface tension and the 

presence of molecular diffusion can affect the miscible gravity currents formed by the salt and 

fresh water. A finite-volume scheme has been widely applied in the various engineering branches 

of fluid mechanics due to its high accuracy. However, the application of the CFD model to the 

research for turbulent gravity currents in a basin is a relatively new approach in a three- 

dimensional configurations. 

4.3.1 The numerical model 

Certain assumptions were made to simplify the complexity of a saline gravity current flow 

dynamics. The governing equation describing its dynamics in an ambient fluid are derived from 

principles of mass, momentum, and energy conservation. A volume-fraction transport equation 

is used to characterize the mixing of the ambient fluid with the saline fluid. In order to provide 

predictions of the saline gravity current flow within the basin containing fresh water adjacent to 

the wall, the form of model given below must be enlarged in three ways. These are: 

i. Viscous diffusion of   and#" must be included. 

ii. The terms containing the C’s in equations (4.10) and (4.11) will become dependent upon 

the turbulence Reynolds number, defined by:#$%,#$&',#$&(,#$), and#$*. 

iii. Further terms must be added to account for the fact that the dissipation processes are not 

isotropic. 

The equations have been solved using the Finite Volume method, with the application of the 

VOF method. In general, the volume-of-fluid method (VOF) is a method for keeping track of 

two different fluids in two-phase flow simulations. The method tracks the volume of each fluid 

in each cell. For each time iteration, the interface between the two fluids is reconstructed from 

the volume data. 
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As well, the advection-diffusion equation for the volume fraction of salt water   is solved. 

The Reynolds Averaged mass and momentum conservation equations for the incompressible 

saline mixture can be expressed as: 

 !"#
 $# = 0                                                                                                                                     (4.3) 

 %!&'
 ( +  %!"&!"#

 $# = )  *,
 $& +

 
 $# -.

 !"&
 $# ) /123143''5 ) /6728                                                           (4.4) 

)/123143 ''= .( - !"& $# +
 !"#
 $&5 )

9
8/:724                                                                                        (4.5) 

where 1;2 denotes the Reynolds-averaged velocity in the <2'directions (also referred to as x, y, z); 

>, is the Reynolds-averaged pressure; ? and / are respectively the viscosity and the density of the 

saline mixture fluid.  

The gravitational acceleration acting along <8 or z direction is g; 123143 is the Reynolds-stress 

tensor obtained by using the Boussinesq hypothesis (Eq. 4.5) and 724 Kroneker delta; k is half the 

trace of the Reynolds-stress tensor, referred to as turbulent kinetic energy can be expressed by: 

: = @
9123123                                                                                                                                  (4.6) 

The turbulent viscosity can be written as: 

?( = AB'/ CD
E                                                                                                                               (4.7) 

where AB is one of the constants of the : ) F model ( see table 4.1); and F is the turbulent energy 

dissipation rate. 

The Navier-Stokes equations are solved as usual with the interpolated fluid properties. No 

boundary conditions need to be applied at the interface (Ashley et. al. 2003). The equations (4.3) 

to (4.5) represent the governing equations for the turbulence regime. The equations (4.3) and 

(4.5) above are called the Reynolds-Averaged Navier-Stokes (RANS), and the details of these 

equations are detailed in section 4.2. 

Consider the heavier fluid to be below the interface, and the lighter fluid above the interface. 

A volume-fraction transport equation is used to characterize the mixing of fresh water with the 

injected saline gravity current. The Reynolds-Averaged mass and momentum conservation 

equations have been solved, with density ρ and viscosity μ determined in each cell by the volume 

fraction of salt to the fresh water present. Thus, if the volume fraction of salt water is'G, and the 

density of salt water is /H = I0J0' :6 K8L  and the density of fresh water'/MN(OP =
I000' :6 K8L . The density and viscosity are linearly interpolated between the two fluids, 

respectively as: 
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 = ! " + (1 # !) $%&'*                                                                                                        (4.8) 

, = !," + (1 # !),$%&'*                                                                                                        (4.9) 

The volume fraction value in a cell is in the range [0, 1] and defines how much of the cell is 

filled with heavier fluid. The remaining part of the cell is filled with light fluid. The volume-

fraction c equal 1 for saline gravity current fluid, c equal 0 for ambient fresh water, and for 

mixture 0 < ! < 1. 

The standard turbulence model employed in our simulations for computation of the 

turbulence viscosity "# is the realizable $ % & model, based on the Reynolds-Averaged Navier-

Stokes (RANS) equations. This model was chosen over the standard $ % & model because it is 

more accurate at predicting the spreading rate of saline bottom gravity current injection into 

ambient fresh water. The equations for $ and & are given in Eqs. (4.10) and (4.11) respectively: 

'(
'# + )*,

'(
'-.

= '
'-.

/2" + 34
567

8 '(
'-.

9 + "# :';>?
'-.

+ ';>.
'-?

@ ';>?
'-.

                                                             (4.10) 
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'-.
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+ ';>.

'-?
@ ';>?

'-.
% CE&9                                          (4.11) 

The model contains five standard empirical constants which values are given in table 4.1 by 

(Launder & Spalding, 1974, Huang et al. 2005, Gerber et al. 2011, and Guillas et al. 2014). These 

values of constants were chosen for two reasons: i) they were obtained by data fitting for a wide 

range of flows (Launder & Spalding 1974); ii) they provided a good agreement with experimental 

data for the gravity currents studied (Huang et al. 2005, and Gerber et al. 2011). The kinematic 

turbulent viscosity can be defined as: 

"# = F4
G                                                                                                                                       (4.12) 

Table 4.1: The values of the empirical constants in the high Reynolds number of $ % & model. 

HI HJK HJL HM HN 

0.09 1.3 0.77 1.44 

 

1.92 

 
The terms containing CO( and COA in equations (4-10) and (4-11) represent the diffusion rates 

of $ and & respectively. These constants therefore possess the significance of turbulent Prandtl 

numbers for transport processes in equation, consequently, their values should lie close to unity 

accords with expectations. Equations (4.10 and 4.11) were solved using the Finite Volume 

method, with application of the VOF method. Density P and viscosity Q are determined in each 

cell by the volume fraction of the salt water !. The density variation in a cell is due to the densities 

difference between salt water and fresh water only, since the temperature is kept constant. 
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According to the state equation of density (Eq. 4.8), the mixture density and viscosity vary 

linearly with the volume fraction , since !" and !#$%&' are kept constant in the numerical 

calculations. So, the advection-diffusion equation for the volume of the salt water fraction  (was 

used to describe the mixture density and the viscosity in the flow (Eq. 4.13) as: 

)*
)% +

),-.(*
)/.

= )
)/.

0123 + 45
67*58

)*
)/.

9                                                                                        (4.13) 

where [ ! +"(#$ %&'$) *] is the total diffusivity,  ! = 1.5 × 10,-/2 3)  is the molecular 

diffusion of the salt water, and &'$ is the turbulent Schmidt number defined as the ratio of the 

turbulent viscosity to the turbulent diffusivity of the mixture fluid transported in the flow. 

Three values of &'$  = 0.5, 1 and 2 were investigated in our numerical simulations. For 

&'$=0.5, the numerical saline jet is over-diffusive where the numerical front is faster than the 

experimental front, while for &'$=2, the numerical front is slower than the experimental front. 

For &'$=1, the numerical simulations of the front position present a good agreement with the 

experimental data. A closer value of &'$=1.3 was used in the numerical models of turbidity 

current (Huang et al. 2005) and of the saline density current (Gerber et al. 2011), where the 

numerical results present a good agreement with the experimental data. 

4.3.2 Initial and boundary conditions 

4.3.2.1 Initial conditions 

Generally, it is difficult to put a reasonable initial guess for an unsteady-state simulation or 

suitable initial conditions for a dynamic one. If the velocity field is initialized by zero, the flow 

takes some time to become fully turbulent. The instantaneous velocities were measured at 

geometrical center of inlet injection, the inlet velocity 46 is given as: 

47 =
89

:;
" < >7 = 0<?7 = 0"                                                                                                       (4.14) 

Therefore, we activate the k-ε model at a certain time @A B 0 after the startup. During the 

‘laminar regime’ this means the initial phase (@ C @A) in the injection, a constant effective 

dynamic turbulent viscosity #$7 = D(#$* is prescribed. The values to be assigned to k and ε at 

@ = @A are uniquely defined by the choice of #$7and of the default mixing length in our case 

represented by d, and (E = F7) where"F7 G [F!HI< F!JK]. Because, the numerical domain has 

dimensions"FK = 0.55/< FL = 0.M/< and"FN = 0.05/. The threshold parameter F!HI"corresponds 

to the size of the smallest admissible eddies. We have: 
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  = (!.!"#$)%
&

 ,             ' =
*+
, -/

.0$
1 %/

2
                   at 3 4 35                                                    (4.15) 

Table 4.2 presents the inlet conditions measured at the inlet (x/d=0). The initial values of k 

and6' can be estimated by means of a zero-equation (mixing length) turbulence model or 

computed using an extension of the inflow or wall boundary conditions (see below) into the 

interior of the computational domain. The inlet Reynolds number R and the turbulent viscosity 

ratio 7897 indicated that the inflow was weakly turbulent, and the inflow is weakly turbulent, 

while the Richardson number :; indicated that the inflow was supercritical. 

Table 4.2: Inlet conditions (x/d=0) with Sc=667 and6<!
> = ?.@A6B C&/ . 

Variable Run1 Run2 Run3 Run4 Run5 Run6 

QD(m
E9s) F.FG × H?IJ K.@@ × H?IJ H.HH × H?I" H.@A × H?I" H.GL × H?I" H.AM × H?I" 

: 1111 1667 2222 2778 3333 3889 

NO 5.1 7.7 10.2 12.8 15.3 17.9 

:; ?.?M ?.?P ?.?H ?.??G ?.??M ?.??@ 

S!(m
&9s&) GP × H?IJ HM × H?I" PF × H?I" @A × H?I" FG × H?I" LG × H?I" 

'!(m&9sE) HG × H?IJ FM × H?IJ H@ × H?I" PF × H?I" M@ × H?I" GK × H?I" 

78 / 7 22 32 43 54 65 75 

       

 

Fresh water was therefore entrained into the current body because the inertial forces 

dominated the stabilizing buoyancy forces (Gerber et al. 2011). The domain (105 d to 110 d, 0 

to 80 d, and 10 d) placed far from the inlet represents the outlet of the overflow discharge. The 

Schmidt number Sc, defined as the ratio between the kinematic viscosity and the molecular 

diffusivity, was set to Sc=667 (the reference value for salt water). 

4.3.2.2 Boundary conditions 

The inlet boundary is used if the flow into (or out of) the domain is known. The normal 

component of the velocity is set to some prescribed value and the tangential component is set to 

zero. At the inflow boundary6TUV, we prescribe all velocity components and the values of k and ε: 

 = ! ,              " = #$%| |² ,              & =
'(
) *+ .,-

/ 0+

1
                    on       234                          (4.16) 

where5#$% 6 [7.798:.9;] is an empirical constant (see Table 4.1) and | | = < .   is the 

Euclidean norm of the velocity. The boundary condition for smooth surface is used to calculate 

the bottom and all the walls with flow interior. 
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When fluid is to flow freely across the boundary, the velocity gradient at the boundary is set 

to zero. Outlets should be placed far away from any obstacle such that the flow is allowed to 

develop and stabilize before reaching the boundary. If the flow is not fully developed at the 

boundary, the Neumann boundary conditions used for the velocity would be physically incorrect 

and lead to inaccurate results (Versteeg & Malalasekera 1995). 

At the outlet !"#$, the normal gradients of all variables are set equal to zero, which 

corresponds to the Neumann (‘do-nothing’) boundary condition: 

%. [&' + &'(] = 0,             %. &) = 0,      %. &* = 0,                   on     !"#$                         (4.17) 

In the finite element framework, these homogeneous boundary conditions imply that the 

surface integrals resulting from integration by parts in the variational formulation vanish. 

At an impermeable solid wall !,, the normal component of the velocity is set equal to zero: 

%. ' = 0                                                                                         on      !,                           (4.18) 

The no-slip boundary condition is used for walls in turbulent flow simulations. No-slip 

boundary conditions are applied at the basin walls and turbulent wall functions are employed 

near the wall. The flow field is initialized with the fluid at rest everywhere, this means the 

velocity is set to zero at the wall boundary. There is no flow across the wall boundary and the 

flow does not slip along the wall. Consequently, the symmetry boundary is used for symmetry 

axes or planes. Because of symmetry, the flow through the plane must be zero. The tangential 

velocity must be equal on each side of the symmetry plane, therefore the normal derivative of the 

tangential velocity must be zero. 

Pressure boundaries should also be placed far away from any obstacles such that the flow is 

allowed to develop and stabilize before reaching the boundary. At the basin outlet, a zero-gradient 

or outflow condition is imposed. Because the simulation is incompressible, only the pressure 

gradient of the ambient surface equal to the atmospheric pressure, and therefore the outlet 

pressure is set to a reference value of zero. The boundary conditions are summarized in Table 

4.3. 
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Table 4.3: Boundary conditions. 

Variable Inlet Left Right Bottom Atmosphere FrontBack 

 ! fixedValue 

value" ! 

fixedValue 

value"0 

fixedValue 

value"0 

fixedValue 

value"0 

fixedValue 

value"0 

fixedValue 

value"0 

#_$%& fixedFlux 

Pressure 

value"0 

fixedFlux 

Pressure 

value"0 

fixedFlux 

Pressure 

value"0 

fixedFlux 

Pressure 

value"0 

fixedFlux 

Pressure 

value"0 

fixedFlux 

Pressure 

value"0 

' fixedValue"1 zeroGradient zeroGradient zeroGradient zeroGradient zeroGradient 

( zeroGradient kqRWall 

Function 

Value() 

kqRWall 

Function 

Value() 

kqRWall 

Function 

Value() 

zeroGradient kqRWall 

Function 

Value() 

* zeroGradient epsilonWall 

Function 

Value*0 

epsilonWall 

Function 

Value*0 

epsilonWall 

Function 

Value*0 

zeroGradient epsilonWall 

Function 

Value*0 

+, Calculed 
Value0 

nutkWall 

Function 

Value0 

nutkWall 

Function 

Value0 

nutkWall 

Function 

Value0 

Calculed 
Value0 

nutkWall 

Function 

Value0 

 

A spatial injection distribution of the scalar is imposed at t=0 with a discontinuity in 

correspondence of the plane x=d (or h): in our case the initial length same the depth of the saline 

gravity current h. This depth represents the injection channel as a square side section Fig.4.1. The 

salinity values are fixed to obtain the initial density value of -. on the injection plane of h, 

whereas the density is equal to -/2,34 elsewhere in the basin. 

 

Figure 4.1: The configuration of an injection by a square channel and into fresh water basin. 

4.4 Numerical method description 

The simulation of the three-dimensional spreading of the saline gravity current injection by 

OpenFOAM is the most popular open-source of Computational fluid dynamics (CFD) program 

in the world today. CFD codes are structured around the numerical algorithms that can tackle 

fluid flow problems. OpenFOAM (Open Field Operation and Manipulation) is first and foremost 

a C++ library, used primarily to create executables, known as applications. 
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In 1993, it was developed by Imperial College London as a computer code using the finite 

volume method.  The code in C ++ provides an alternative and more simple simulation software. 

Since December 2004, it can be downloaded from the site of OpenFoam (www.openfoam.org) 

freely. OpenFOAM represents one of the several existing mathematical models such as CFX, 

and FLUENT among others, for predicting numerically the flow field and concentration 

distribution. 

4.4.1 OpenFOAM characterization 

The OpenFOAM distribution contains numerous solvers and utilities covering a wide range 

of problems. One of the power points of OpenFOAM is that new solvers and utilities can be 

created by its users with some pre-requisite knowledge of the underlying method, physics and 

programming techniques involved. OpenFOAM is supplied with pre- and post-processing 

environments. The interface to the pre- and post-processing are themselves OpenFOAM utilities, 

thereby ensuring consistent data handling across all environments. The overall structure of 

OpenFOAM is shown in Fig.4.2. 

Figure 4.2: Overview of OpenFOAM structure. 

For solving numerical equations, several commercial CFD packages include a graphical user 

interface (GUI) for a user friendly setup of simulations to input problem parameters and to 

examine the results like OpenFoam. The applications fall into two categories: solvers, that are 

each designed to solve a specific problem in continuum mechanics; and utilities, that are designed 

to perform tasks that involve data manipulation. There are many advantages to OpenFOAM: It 

solves the partial differential equations by the finite volume method and takes by default into 

account 3D geometries. It is free software with no licensing fee. It support automatic 

parallelization of applications written using OpenFOAM with a wide range of applications, and 

models ready to use. As each software, OpenFOAM has disadvantages: The absence of an 

integrated graphical user interface. The Programmer's guide does not provide sufficient details. 

It operates with C++ and Linux. 
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4.4.2 File structure of OpenFOAM cases 

The block Mesh process makes the geometry meshes within pre-processing tool of open-

source code OpenFoam 2.30, also can be imported and converted mesh by using OpenFOAM 

converter. This software contains several solvers for all types of flow. In my study, the two liquid 

mixing foam was used (Simple Foam and turbulent (turbo Foam)). The results come from 

OpenFOAM analysis by the Para view process and can be exported to other post-processing 

softwares. The basic directory structure for an OpenFOAM case that contains the minimum set 

of files required to run an application is shown in Fig. 4.3 and described as follows: 

 

Figure 4.3: Scheme of the general configuration of OpenFOAM. 

4.4.2.1 A constant directory 

The package contains a full description and the information needed to construct the mesh 

case and the gravity acceleration in a subdirectory polyMesh and files specifying physical 

properties for the application concerned, e.g. transport properties. There are four files (Poly mesh, 

g, transport properties, turbulence properties). 
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In continuum mechanics, properties are represented in some chosen units, e.g. mass in 

kilograms( !), volume in cubic metres( !), the pressure in Pascals ("#. $%. &$').*Algebraic 

operations must be performed on these properties using consistent units of measurement; in 

particular, addition, subtraction, and equality are only physically meaningful for properties of the 

same dimensional units. As a safeguard against implementing a meaningless operation, 

OpenFOAM attaches dimensions to field data and physical properties and performs dimension 

checking on any tensor operation. For example, the value x of viscosity*+ such that*+* =

*,* '*-$%, we obtain the statement in the following manner*+*[0*2 / 1*0*0*0*0]. These units 

should be written respecting this order in table 4.4. 

The transport properties file can give the properties of the two fluids (fresh and salt water). 

The transport properties file defines transport model for both Newtonian phases and gives 

information on the viscosity and density of two phases. 

Table 4.4: Positions of physical properties of OpenFOAM. 

Positions 1 2 3 4 5 6 7 

Variables Mass Lenght Time Temperature Quantity Current 

 
Luminousi 
Intensity 

 

SI*unit Kilogram 

(kg) 

Meter 

(m) 
 

Second 

(s) 
 

Kelvin 

(K) 

Mole 

(mol) 

 

Ampere 

(A) 

 

Candela 

(cd) 

 

 

The file g defines the value of # and the direction of gravity acceleration. Also, notice in this 

folder a file dynamic Mesh Dict that indicates if the meshing is static or dynamic. In our case, 

Meshing is programmed to be static fv Mesh which means static. OpenFOAM always operates 

in a 3D Cartesian coordinate and all geometries are generated in 3D. The simulation was 

conducted for a total of (0.5) seconds with time step, based on the smallest grid spacing (1 mm) 

and the maximum velocity value found for each time step. In Fig.4.4 shows the structure of the 

mesh for the domain basin filled with fresh water completely. The grids were equidistant and 

structured. Several meshes were compared to select those giving and the best results without 

numerical diffusion. The final runs were made on a 275 × 80 × 50 grid following x, y and z 

coordinates, respectively. The constant directory contains a Poly Mesh subdirectory that has a 

block Mesh Dict file; this file allows creating the mesh and generating it. The block Mesh file 

can define the conversion of dimensions in the meter. 
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Figure 4.4: The meshes 3D view. 

For example, since the dimensions are expressed in mm, in block Mesh file, we can put 

convert to Meters “0.001” to convert it to meters. Also, we can define vertices to create blocks 

in 3D. Indeed, the OpenFOAM always uses three-dimensional mesh, even for two-dimensional 

simulations such as 3-D blocks and mesh can be defined as vertices. Also, we can define border 

areas or stick two blocks that are not connected but share the same physical area associated with 

the patch / boundary. 

4.4.2.2 A system directory 

A system directory is consists of 3 files. The first file is represented by controlDict where 

run control parameters are set including start/end time, time step and parameters for data output. 

In the second file, fvSchemes, where discretisation schemes used in the solution may be selected 

at run-time. In the third file, called fvSolution, where the equation solvers, tolerances, and other 

algorithm controls are set for the run. These 3 files were used to set parameters associated with 

the solution procedure itself. The fvSchemes sub-dictionary in the system directory sets the 

numerical schemes for terms, such as derivatives in equations that appear in applications being 

run. This section describes how to specify the schemes in the fvSchemes sub-dictionary. The 

terms that must typically be assigned a numerical scheme in fvSchemes range from derivatives, 

e.g. gradient  , and interpolations of values from one set of points to another. 

The aim of OpenFOAM is to offer an unrestricted choice to the user. For example, while 

linear interpolation is effective in many cases, OpenFOAM offers complete freedom to choose 

from a wide selection of interpolation schemes for all interpolation terms. The derivative terms 

further exemplify this freedom of choice. The user first has a choice of discretisation practice 

where standard Gaussian finite volume integration is a common choice. Gaussian integration is 

based on summing values on cell faces, which must be interpolated from cell centres. 
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The user again has a completely free choice of interpolation scheme, with certain schemes 

being specifically designed for particular derivative terms, especially the convection divergence 

 • terms. The set of terms, for which numerical schemes must be specified, are subdivided within 

the fvSchemes sub-dictionary into the categories listed in table 4.5. 

Table 4.5: Main keywords used in fvSchemes. 

Keyword  Category of mathematical terms   

interpolationSchemes Point-to-point interpolations of values   

SnGradSchemes 

GradSchemes 

DivSchemes 

LaplacianSchemes 

TimeScheme 

fluxRequired 

Component of gradient normal to a cell face  

Gradient   

Divergence  • 
Laplacian  ! 

First and second time derivatives"# #$% , #! #!$%   

Fields which require the generation of a flux 

  

 

Each keyword in table 4.5 is the name of a sub-dictionary which contains terms of a 

particular type, e.g.gradSchemes contains all the gradient derivative terms such as grad (p) 

(which represents  p). The sub-directory “fv Solution”: represent the equation solvers, tolerances 

and algorithms are controlled from the fv Solution sub-dictionary in the system directory. Fv 

Solution contains a set of sub dictionaries that are specific to the solver being run. The sub-

directory Control Dict: to control the step of time that is important in the resolution of problem. 

We can use a fixed step time to achieve temporal accuracy and numerical stability when running 

the solver. 

4.4.2.3 The time “0” directories 

These directories is containing individual files of data for particular fields. The data can be 

either both initial values and boundary conditions that the user must specify to define the problem 

or results written to file by OpenFOAM. Note that the OpenFOAM fields must always be 

initialised, even when the solution does not strictly require it, as in steady-state problems. It is 

sufficient to say now that since we usually start our simulations at time t = 0, the initial conditions 

are usually stored in a directory named 0 or 0.000000e+00, depending on the name format 

specified. There are three parameters; we will impose some conditions if the case of laminar 

regime model resolved which are: velocity field"&, pressure field"'_()*, and presence of salt 

water phase"+. In the case where the turbulent regime model is processed, also taking into 

consideration the turbulence the"-, ./ , and"0. Fig.4.5 shows the different boundary conditions in 

our simulation and all the conditions represented in table 4.3. 
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Figure 4.5: Scheme of the boundary conditions of the basin in the numerical model. 

OpenFOAM needs to read a range of data structures such as strings, scalars, vectors, tensors, 

lists and fields. The input/output (I/O) format of files is designed to be extremely flexible to 

enable the user to modify the I/O in OpenFOAM applications as easily as possible. The I/O 

follows a simple set of rules that make the files extremely easy to understand, in contrast to many 

software packages whose file format may not only be difficult to understand intuitively but also 

not be published anywhere. 

4.5 Image processing analyze 

Fig. 4.6 shows the saline gravity currents development for Run6 (R=3889). While, Fig. 4.7 

shows the ImageJ software steps that were applied to obtain the profile of 2D gravity current on 

both the numerical and experimental runs and the details was explained in the chapter 3 in §3.4.2. 

Figure 4.6: Iso-volume fraction evolution of the saline gravity current jet (x, y) with α=3% for Run6 

(R=3889):  a) t=0s, b) t=2s, c) t=4s, d) t=6s, e) t=8s, f) t=10s, and g) t=12s. 
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Figure 4.7: Numerical frames captured by difference (row 1), made binary (row 2), and skeletonize (row 

3) processes of two dimensional gravity currents performed with initial density !" = 1040#$/%& and 

ρwater=1000 kg/m3 for R=3889, and frames acquired at (a) t= 2s, (b) t=4s, (c) t=6s, (d) t=8s, (e) t=10s, and 

(f) t=12s. 
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4.6 The configuration of gravity currents 

4.6.1 Numerical front position 

The front position of the gravity current is shown in Fig.4.8. Because of the axisymmetric 

spreading in numerical simulation, the position of the front is taken as the location where the 

head (height) current thickness drops to minimum value with respect to the fractional height Ø. 

Our last four runs results from the six numerical runs for Reynolds number (2222  !  3889) 

simulations are in good agreement with their experimental in terms of outer boundaries in spite 

of the difference in the axisymmetric numerical and non- axisymmetric experimental on account 

of the rule of instability in the experiments. 

4.6.2 Propagation Phase Transitions 

The numerical results are compared with experimental measurements of two dimensional 

gravity currents front positions. These results are subject to change of scaling law by applying 

the power fitting in the same procedure followed experimentally. After some time, depending on 

the salinity properties of the current fluid jet, the viscous drag force may become comparable to 

the inertia buoyancy force. The effect of viscous drag becomes more and more clearly dominant 

after further propagation, the gravity current injection may undergo a transition to the viscous-

buoyancy propagation with negligible effects due to the inertia force. The difference between 

experimental (set of exp1-6) and numerical (set of run1-6) is explained (§5.2). 

4.6.3 The lobe-cleft instabilities 

We concluded that lobes and clefts are formed due to hydrostatic instability exclusively in 

gravity currents propagation over a non-slip boundary. This type of the instability occurs visibly 

in the experiments but in our numerical simulation it was not is observed. The disappearance is 

occurred due to the average quantities were used in the RANS model could not detect the entire 

space scales like the lobe-cleft structures of the front. Furthermore,  the change was appeared in 

the frontal dynamics as a result of used the " # $ model with the Reynolds-Averaged Navier-

Stokes (RANS) equations as shown as in Figs. 4.9. In the morphological analysis of lobes and 

clefts (LC). Simpson (1982) described the clefts as v-shaped initial distances in the front positions 

that propagate and integrate along the front. Also, their lobes are described as a progression of 

localized bursts series along the front that appear as notable noses with bulges or buttresses which 

continuously variable transmission shape. Simpson (1972) found through the propagation of the 

gravity current, along a non-slip boundary is not imparts the shear stress effect on the current jet. 



 

72 

 

 

 

 

 

Figure 4.8: Numerical outer positions of the mixing gravity current at xf (y, t): a) R=2222; b) R=2778; 

c) R=3333; d) R=3889. 
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Figure 4.9: Evolution of spreading with time for: a) R=1111, b) R=1667, c) R=2222, d) R=2778, e) 

R=3333, and f) R=3889. 

This a non-slip boundary is leads to absence in the overturning at the nose of the current. 

Subsequently, the hydrostatic instability does not generation with lobes and clefts. We observed 

the absence of lobes and clefts form in a numerical boundary stress. In our case, the domain of 

Reynolds number is not effect in the gravity current. This mean a bottom submerged nose front 

depending on the Reynolds values are not observed. Finally, they cannot be generated (LC) as a 

result of the predominant hydrostatic instability mechanism
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Chapter 5: Results 

 

5.1 Introduction 

This chapter is devoted to the display of the numerical results and comparison with the 

experiments. The dense gravity currents are generated in the experimental setup described in 

chapter 3 to elucidate the propagation phases and their transitions, while the numerical 

simulations are described in chapter 4. Part of the results and comparison analysis presented in 

this chapter appear in Dhafar et al. (2017b)5. The propagation images (i.e. temporal evolution 

of front positions), and the propagation profiles for the denser fluid injection under the fresh 

water are presented in section 5.2. From the injection point, the coordinates of the outer visual 

boundaries of the gravity currents were determined at different flow rates and times. Using the 

velocity and the density profiles, the propagation phases observed in numerical results, and the 

mean flow structure of weakly turbulent regime gravity currents are identified in section 5.3. 

As the denser fluid propagates, it undergoes distinct propagation phases. In section 5.4 we 

studied numerically the turbulent mixing depending on the gradient Richardson number Ri  

profiles and the domain of the turbulent mixing between the current and the ambient fluid. 

Finally, in section 5.5, we investigate characteristics of the mixing that takes place between the 

saline bottom gravity currents and the fresh ambient fluid, the entrainment rates and the 

relationship between the entrainment and volume fractions. 

5.2 Front position of the jet: experimental and numerical results 

The shape of gravity currents for every flow Run depends on the volume of saline fluid 

that was released. The process consists in injecting a dense current with a constant velocity. 

This injection depends on initial flow, momentum, and buoyancy fluxes. Although, the current 

motion depends upon the initial depth (d) and the modified acceleration due to gravity (!"). 
Observation of the flow structures in a fully developed gravity current front were done by 

repeating experiments. However, these experiments served to emphasize the importance of 

including the effect of the ambient fluid on the gravity current. Figure 5.1 presents the evolution 

of the experimental (left side) and numerical (right side) gravity current jet from the top view 

(x, y) for R=3889. 

                                                 
5 Dhafar, I. A., Latrache, N., and Nsom, B. (2017b). Mixing of Saline gravity Current Jet into Fresh Water in the 

Weakly Turbulent Regime (under review). 
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In Fig.5.1, the images of the left-hand side represent the light intensity recorded by the 

camera where the mixing gravity current has a high intensity (white color) and the fresh water 

has a low intensity (black color). In Fig. 1, the sequences on the right-hand side represent the 

variation of the density of the mixing liquid  (!, ") close to the bottom of the basin at 

z=0.0005m. The density of the mixing liquid varied from 1000 kg/m3 (fresh water) to 1040 

kg/m3 (salt water). The lobe cleft instabilities was observed in the experiment (left-hand side of 

the Fig. 1) but it was not obtained by the RANS model in the numerical results. The average 

quantities used in the RANS model could not detect the entire space scales like the lobe-cleft 

structures of the front. The typical side view profiles of the numerical density ρ (x, z) of the 

mixing between the gravity current and the ambient fresh water are shown in Fig. 5.2. The 

mixing gravity current have not any rise in it head, so the hydroplaning effects are not observed 

(Fig. 5.1). 

 

Figure 5.1: Evolution of the experimental (left side) and numerical (right side) mixing gravity current 

jet from the top view (x, y) for R=3889. Experimental (left side) profiles are the treated images of light 

intensity recordered by the camera I(x, y) and numerical (right side) profiles are the variation of the 

density. 
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As described in the previous studies (Simpson & Britter 1979, Huppert & Simpson 1980, 

Rottman & Simpson 1983, Kneller et al. 1999, and Thomas et al. 2003), the density ρ (x, z) of 

the mixing gravity current presents a frontal zone, named “head”, and is followed by a body 

zone (Fig.5.2). In our case, the head can be defined as the zone located at the front and has the 

maximum thickness  ! (Fig. 5.2-a). The maximum depth of the head  !  increases with the 

distance from the inlet. The head does not show any rise, so the hydroplaning effects are not 

observed (Fig. 5.2). Also, Fig. 5.2 shows that the numerical head development is the zone where 

higher density is spotted, which is in accordance with different previous studies (Hacker et al. 

1996, Hallworth et al. 1996, Marino et al. 2005, and Nogueira et al.  2013a). This dimensionless 

evolution of the head of mixing gravity currents jet shows a head expansion and the 

disappearance of the density gradients throughout the gravity current development, which 

occurs through deterioration of the current jet velocity far off the jet source, and finally fades 

away in time by diffusion processes. Also, from Fig 5.2 can be adopted for the evolution of the 

current front position in x-z coordinates. 

 

Figure 5.2: Evolution of the numerical density of the mixing gravity current jet from the side view (x, z) 

for R=3889: a) t=1s; b) t=5s; c) t=11 s. 

From the profiles of Fig. 5.1, we plotted the spatial evolution of the light intensity as shown 

in Fig5.3-a, and the density as shown in Fig 5.3-b as function of the streamwise coordinate x. 

The profiles of intensity and density decrease in space from their maxima ("#$% & 255, '( =

1040 )*/+-) at . = 0 to their minima ("#36 & 178, '9$:;< = 1000 )*/+-) at .! and remain 

constant at those minimum values for>. ? .!. 
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The front position  ! is defined as the position where the profiles of intensity and density 

of mixing gravity currents decrease abruptly to the minima as shown in (Fig. 5.3a-b). The 

binarization technique based on the minimum thresholds of intensity and density makes it 

possible to automatically obtain the different front positions in the time and for all values of R 

(Fig. 5.4). 

 

Figure 5.3: a) Evolution of the light intensity of mixing gravity current obtained by the contrast 

difference using the Rhodamine B as function of x direction, b) Evolution of numerical density of jet as 

function of  x direction at y=l/2; z=0.005m;  t=5s for ! = 2778, and  xf  is the front position at y=l/2. 

The quantitative comparison of experimental ("#$%&) with numerical ("#'()) front 

positions of mixing gravity current jet for different Reynolds numbers is shown in (Fig 5.4). 

For all the values of Reynolds number used in this study, the numerical simulations produced 

a good reproduction of the front position evolution over time. The difference between 

experimental and numerical front positions was estimated by the mean difference Diff of the 

relative difference in front positions, defined as: 

*+,, = -./0 1%34569:%34;<>%34569 1                                                                                                 (5.1) 

The values of the mean difference are 6.1, 5.2, 2.8, 3.1, 3.1, and 2.8%, for (exp1; run1), 

(exp2; run2), (exp3; run3), (exp4; run4), (exp5; run5) and (exp6; run6) respectively.  
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The above estimation gives an overview of the accuracy as reasonable agreement between 

the experimental and the numerical positions of the outer fronts. In Fig. 5.4a-b the experimental 

and the numerical mean difference of front positions appears not satisfactory, unlike (Fig. 5.4c-

f) where a good agreement is obtained for the front position for (exp3; run3), (exp4; run4), 

(exp5; run5) and (exp6; run6) particularly. 

 

 

   

Figure 5.4: Experimental and numerical positions of the mixing gravity current xf as a function of time 

for: a) R=1111; b) R=1667; c) R=2222; d) R=2778; e) R=3333; and f) R=3889. 

A quantitative comparison between experimental and numerical continuous of a mixing 

gravity current jet for different Reynolds numbers are shown in (Fig 5.5). 
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Figure 5.5: Experimental and numerical continuous of the mixing gravity current xf (y, t): a) R=2222; 

b) R=2778; c) R=3333; and d) R=3889. 

 

0 10 20 30 40 50 55
-20

-10

0

10

20

x(cm)

y
(c

m
)

a)

 

 

2s 4s 6s 8s 10s 12s

0 5 10 15 20 25 30 35 40 45 50 55
-20

-10

0

10

20

x(cm)

y(
cm

)

b)

 

 

2s 4s 6s 8s 10s 12s

0 10 20 30 40 50 55
-20

-10

0

10

20

x(cm)

y
(c

m
)

c)

4s 6s2s 8s 10s

0 10 20 30 40 50 55
-20

-10

0

10

20

x(cm)

y
(c

m
)

d)

 

 

2s 4s 6s 8s 10s



 

80 

 

The comparison shows a good agreement between experimental and numerical results. The 

absence of the lobe-cleft instability in the numerical simulations is revealed using the RANS 

model. The average quantities used in RANS model were not able to resolve the entire range 

of length scales present in the flow. Results similar to Fig.5.5 are shown in La Rocca et al. 

(2008 & 2012), where unconfined gravity currents are investigated by both laboratory 

experiments and shallow water simulations. The instabilities of the front gravity are also not 

captured in their numerical simulations (La Rocca et al. 2008 & 2012), but the lobe-cleft 

instability can be observed numerically by using the DNS method (Härtel et al. 2000, and 

Cantero et al. 2007) or LES method (Ottolenghi et al. 2016a, and 2016b). 

5.3 Velocity and density profiles 

The gravity jet current interacted with both the ambient fresh water and the bottom 

boundary of the basin. The basin bottom is solid, so a no-slip condition can be imposed, while 

the top is a free surface with zero gradient condition in our case. Consequently, the saline jet 

current could propagate asymmetrically in the vertical direction following two regions (inner 

and outer). The inner region is close to the solid boundary and resembles the turbulent boundary 

layer, while the outer region resembles a free shear flow (Turner 1973, Kneller et al. 1999, 

Erikson et al. 1988, and Gerber et al. 2011). Fig. 5.6 shows the simulated mean velocity profiles 

 !(", #)$at$% = & 2'  and t=11s The velocity presents a maximum close to the injection channel 

and it decreases strongly with the vertical (z) and the streamwise (x) coordinates. 

 

Figure 5.6: Mean horizontal velocity profile u(x, z) at y=l/2. 

We plotted in Fig. 5.7, the dimensionless mean horizontal velocity profiles with the 

dimensionless vertical coordinate   !."#  at x/d= 8, 15, 20, 30, 40, 45, 50, 60, and 80. In these 

profiles, the velocity is normalized by its maximum$%&'(), while the vertical position z is 

normalized by$ !.", the height at which the mean velocity % is equal to half the maximum mean 

velocity$%&'(). 
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All simulated mean velocity profiles collapse for different positions (Fig. 5.7). Collapsed 

mean velocity profiles were also observed in the numerical and experimental works of Kassem 

and Imran (2001) and Gerber et al. (2011). 

For !/" # 50 and $/$ .! > 3, the velocity vanishes following the vertical axis. Such 

behavior can be explained by the absence of the return flow at " = # 2$  in front of the inlet. 

For%&/' > 50, the velocity vanishes at the free surface at%" = # 2$ . The velocity profiles for all 

positions x/d presents a unique maximum value at%( ( .! ) 0.18$ .  The height ( ) 0.18( .! can 

be used to differentiate the inner and the outer regions of the flow with opposite velocity 

gradients. This value is in agreement with the wall-jet experiment of Eriksson et al. (1998), 

who found the maximum velocity to be at 0.17. This value is lower than that obtained by Gerber 

et al. (2011) in their experiment on saline density current and that laid between 0.37 and 0.4. 

Ahlman (2006) observed, for his compressible wall-jet simulations that the return flow velocity 

of the overlying ambient fluid increased the height of the velocity maximum.  In our case, the 

absence of the return flow might explain why the height (0.18) of the maximum velocity is 

lower than that obtained by Gerber et al. (2011). To obtain lower values of the height (between 

0.1 and 0.4), Buckee et al. (2009) minimized the return flow by using a perforated pipe in their 

experiment on dense gravity currents (density current). 

 

Figure 5.7: Dimensionless mean horizontal velocity profile versus the vertical coordinate ( ( .!$  at%" =

# 2$ . 

Fig. 5.8 shows the simulated mean density profiles%*+&, (-%at%" = # 2$ . The density 

presents a maximum close to the injection channel and it decreases strongly versus the vertical 

(z) and the streamwise (x) coordinates. 
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Figure 5.8: Dimensionless mean excess-density profiles in the (x, z) plane at ! = " 2# . 

Fig. 5.9 shows the dimensionless mean excess density $% $%&'(#  versus the dimensionless 

vertical coordinate ) )*.+# . For , -# / 50, the profiles of $% $%&'(#  collapse versus 

) )*.+ < 3#  and versus ) )*.+ > 3# , the profile $% $%&'( = 0#  (zone without mixing). 

For , -# > 50, mixing occurs along the vertical direction and the profiles of the excess-density 

do not collapse for , -# / 50. 

 

Figure 5.9: Dimensionless mean excess-density profiles. 

Fig. 5.10 shows the mean density $% $%&'(#  profiles at , -# = 20 and 50 in the (y, z) 

plane. The mean density shows a radial symmetry close to the inlet (Fig. 5.10-a) and asymmetry 

far from the inlet (Fig. 5.10-b). These profiles represented the increasing and occurring of 

mixing by the growth of the outer density scale $%&'(. Also for , -# / 50, all these profiles 

collapse and for ) )*.+ > 3# , there is no mixing where the excess-density $% $%&'( = 0# . 

For , -# > 50, the mixing occurs along the vertical axis and the profiles of the excess-density 

do not collapse as well as for , -# / 50. 
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Figure 5.10: Dimensionless mean excess-density profiles in the (y, z) plane at: a) x/d=20 and b) 

x/d=50. 

Fig. 5.11 shows the simulated mean density profiles ρ (x, z) at y=l/2. The density presents 

a maximum close to the injection channel and it decreases strongly with the vertical (z) and the 

streamwise (x) coordinates. 

In order to determine the dynamics of each fluid (mixing gravity current and ambient fresh 

water) in the y-coordinate, we plotted the density-excess and velocity profiles close to (x/d=20) 

and far from ( ! = 50" ) the inlet and at the height#$%&', which corresponds to the maximum 

velocity ()%&'  (Fig. 5.11). Close to the inlet ( ! = 20" , Fig. 5.11-a), the profiles show four 

zones: I) mixing zone (*+ *+%&' , 0" ) where the gravity current moves streamwise -( , 0. 

and horizontal -v , 0. directions; II) mixing zone (*+ *+%&' , 0" ) with motion only 

horizontal direction -( = 0/ v , 0.; III) zone without mixing *+ *+%&' = 0" ), where the fresh 

water moves in the horizontal direction -( = 0/ v , 0., that can be explained by the presence 

of the viscous boundary layer (Philippe et al. 2005); IV) zone of fresh water without mixing. 

Far from the inlet (x/d=50, Fig. 5.11-b), the profiles show one mixing zone with motion. 
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Figure 5.11: Profiles of the excess-density and velocity in y-coordinate at: a) x/d=20, x/d=50. 

5.4 Turbulent Mixing 

In order to characterize the turbulent mixing, we used the gradient Richardson number  !  

(Turner 1973; Garcia 1993; Buckee et al. 2009; Gerber et al. 2011, Chang et al. 2005) defined 

as the ratio of the buoyancy frequency !" = #  
$%
. &$&' to the vertical shear rate: 

() * !"/ +,&-&'0
" 1 ,&2&'0

"3                                                                                                   (5.2) 

Turner (1973) showed that the turbulence mixing is low if the gradient Richardson number 

()   exceeds 0.25. We plotted the ()  as function of 4 45.67  for different axial positions: 8 97 = 

8, 15, 20, 30, 60 and 80 (Fig. 5.12). 
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Close to the inlet ( !"# $% < 50), the gradient Richardson number &'( is a minimum at 

) * )+., (Fig. 5.12), which means that maximum turbulent mixing occurs at height ) * )+.,, 

where the mean horizontal velocity u is equal to half the maximum mean velocity  !"#$. In that 

position, the vertical shear dominates the stratification density. Far from the inlet%(50 < & ') <

80*, the turbulent mixing can occur close to the bottom boundary for%+ +,.- < 0.2) , where /13< 

0.25. 

For%0.25 < + +,.-) < 2.8, and%& ') < 50, the gradient Richardson number /13 is lower 

than 0.25. It indicates that turbulent mixing is possible. Furthermore, we see that for%& ') > 50, 

the gradient Richardson number /13 exceeds 0.25 and conclude that there is no turbulent 

mixing. In this case, mixing can occur only in the horizontal plane; a phenomenon known as 

“pancake” mixing that was demonstrated by Fernando (2000) in a laboratory experiment on 

stratified flow for%/13 > 0.7. 

 

Figure 5.12: Gradient Richardson number profiles indicating the increase in stable stratification with 

downstream distance for & ') > &"#$ ') %where &"#$ ') %=50 for R=3889 (run 6). 

To analyze the turbulent mixing in the 3D space, we plotted the contours of the gradient 

Richardson number at 0.25 (critical value determined by Turner, 1973) in the (y, z) plane at 

different & ')  positions from the inlet (Fig. 5.13). For%& ' 4 8) , the profile of /13 at 0.25 

presents a radial symmetry with a semi-circular form. Therefore the turbulent mixing zone has 

a semi-circular form with radial symmetry and that is absent outside it. This can be explained 

by the absence of turbulent mixing in the outside of the semi-circular turbulent mixing zone. 

For%8 < & ' < 65) , the turbulent mixing zone becomes non-axisymmetric following the radial 

coordinate, increases in the y-z and reaches its maximum at & ') ≈32 (Fig. 5.13). 
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For 35 < ! " < 55# , the turbulent mixing zone decreases in the y-z (Fig. 5.13). 

For ! " > 55# , the turbulent mixing zone decreases strongly and exists only close to the bottom 

of the basin (Fig. 5.13). 

 

Figure 5.13: Position of Gradient Richadson number Rig at 0.25 in the (y,z) plane for different position 

from the inlet x/d. a, b, c, d, e, f, g, h, i and k represent the position from the inlet respectively for 8, 15, 

20, 25, 30, 35, 40, 45, 55 and 60. 

5.5 Entrainment Rates 

Hacker et al. (1996) quantified mixing by examining the quantity and the concentrations 

of the mixed fluid in the lock-exchange gravity currents. They measured the ratio of the gravity 

current volume to the initial volume per unit width of the lock for different chosen concentration 

thresholds. Using the same idea, we calculated the volume fraction as $ $%# , where V is the 

gravity current volume for different concentrations: 

$ & ' ' ' ()!,´ *́, +́-.
%

/0

%

10

%
"!́"*́"+́,                                                                                         (5.3) 

()!,*, +- = ' 2)!,*, 3́, +-"3́46

%
,                                                                                              (5.4) 

where 2)!,*, 3, +- = 78, 9(:; <? )!,*, 3, +- <?@A/# B C,

D, 9(:; <? )!,*, 3, +- <?@A/# E CF
 

and C = {8F8G,8F85, 8FD8,8FD5, 8FH8,8FH5,8FG8,8FG5,8FI8, 8FI5,8F58,8F55,8FJ8, and 8FJ5}. 

Figures 5.14, and 5.15 show an example of the evolution of the iso-density gravity current 

corresponding to α = 3% and R = 3889 (run6) that makes it possible to calculate V and the inlet 

volume, given by: 

$K = LK F +                                                                                                                                (5.5) 
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The ratio    !  increases or decreases with time depending on the chosen threshold 

concentration. The ratio " " ! versus #$ %!  can be viewed as a further indicator of the 

entrainment in the gravity current problem (Hacker et al. 1996, Fragoso et al. 2013, and 

Ottolenghi et al. 2016a & b). 

 

Figure 5.14: Iso-density evolution of the gravity current jet with α=3% for Run6 (R=3889): a) t=1s, b) 

t=5s; c) t=11s. 

As a result of the numerical calculations, the variation of the dense current fractional 

volume to the total basin volume as a function of time in the three directions can be seen in Fig. 

5.15. Near the injection source, the head of the gravity current can have boundaries allowing 

the distinction between the saline and the fresh waters. On the other hand, far from the injection 

source, the gravity current is well established but it cannot be distinguished clearly the 

boundaries between two fluids due to the diffusivity and mixing, and the head of the gravity 

current represented by &' (x, y, z, t). Therefore, the case of continuity of the gravity current 

head as shown as in Figs. 5.14-5.15 that the head of the gravity current front is almost similar 

in the lateral and axial directions. This evidence on the domain of the buoyancy because of the 

shortage of time. Also, it is related to the observation of the shape of the jet in the nearest zone 

of injection source. 
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Figure 5.15: Evolution of the volume fraction of salt water with time with α=3% for Run6 (R=3889): a) 

1s; b) 4s; c) 8s; d) 10s; and e) 12s. 

The non-dimensional volume fraction of the fluid current    !  at different concentration 

thresholds is plotted versus the front position in Fig. 16 for R=2778 and in Fig. 17 for different 

values of R. For"# $ 0.15, the volume of the jet current increases, then decreases, with the front 

position after reaching a maximum at xm (Figs. 5.16, 5.17, & 5.18). The front position xm 

corresponds to the maximum volume of the jet current. The position %& decreases with"#. The 

volume ratio is larger than unity throughout this range of concentration (# $ 0.15) and all 

values of initial Reynolds numbers (Figs. 5.16, 5.17, and 5.18). 
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This can be explained by the entrainment of the ambient fluid. For ! " 0.20, the volume 

ratio has a negative slope and decreases with the front position (Figs. 5.16, 5.17, & 5.18). The 

extent of mixing within the dense jet gravity current can be derived for different values of the 

initial Reynolds number R following the approach first adopted by Hacker et al. (1996). For ! #

0.15, mixing inside the jet gravity current is homogenous for $ % < 15& , where the slope of 

' '( & shows no change with $ %& . For 15< $ %& < $) %& , the slope changes with $ %& , this can 

be explained by the non-homogeneity of the mixing inside the jet gravity current. For ! = 0.10 

and $ > $), the ' '(&  decreases and tends to be constant with x, we conclude that the dense jet 

current entrains light fluid only at the leading edge of the current, while the interior part is 

essentially unmixed. For ! " 0.20, the volume decreases with $ %& , which indicates that the 

ambient fluid does not intrude into the core of the gravity current. 

Figure 5.16: The fractional volume '/'* of total volume to the initial injection volume of the fluid 

current plotted as a function of the front position run3. 

The variation of volume fraction for different values of iso-density threshold (Figs. 5.16, 

5.17, and 5.18) showed that the entrainment is affected by the choice of the iso-density 

threshold. This result confirms that obtained by Hacker et al. (1996). By fixing the threshold 

and varying the Reynolds number (Fig. 5.18), the volume fraction remains unchanged. So, we 

can conclude that the entrainment is not affected by the Reynolds number for R varying between 

2222 and 3889. Previous investigations (Cenedese & Adduce 2008, Nogueira et al. 2014, and 

Ottolenghi et al. 2016a, 2016b, & 2017) found that there is a dependence of the entrainment on 

Reynolds number, but the R in the present simulations does not have an important variation 

(2222 ≤ R ≤ 3889). 
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Figure 5.17: Fraction volume  / ! of total volume to the initial injection volume of the fluid current 

plotted as a function of the front position for: a) run4, b) run5, and c) run6. 
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Figure 5.18: Fraction volume  / ! of total volume to the initial injection volume of the fluid current for 

different concentrations threshold plotted as a function of position front: a) 3%, b) 20%, c) 35%, d) 45%, 

e) 55%, and f) 65%. 

To compare our result with that obtained in the previous investigations (Cenedese & 

Adduce 2008, Nogueira et al. 2014, and Ottolenghi et al. 2016a, 2016b, & 2017), we must use 

the bulk Reynolds and Froude numbers. Following Ottolenghi et al (2016 a, and 2016b), bulk 

Reynolds "# and Froude $%# numbers are defined as: 

"# =
&'(/)

*
                                                                                                                                (5.6) 
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 ! =
!

"#$%& '/(
                                                                                                                         (5.7) 

where U is a velocity scale defined as the ratio between a length scale L and a time scale T. L 

is chosen as L= 0.55 m and T is the time taken by the gravity current to travel a distance of 0.55 

m. )*%+ is the mean value of the reduced gravity between the initial and the final configuration 

of the gravity current. In this study, the velocity scale varied in the range 0.032,/-%< U 

<0.048%,/-, while the bulk Reynolds and Froude numbers varied in the ranges 800 <. < 1200 

and   0.3 < 01  < 0.5, respectively. For Rb21000 and 3 < 01  < 6 (closer values of . and larger 

values of 01  than those obtained in our study), Cenedese and Adduce (2008) showed that E 

does not present a clear variation and is almost constant in the mixing turbulent regime. For the 

studies of Ottolenghi et al. (2006a, 2016b, and 2017), E increases in larger ranges of . %between 

(2000-16000) but with small values of 01 %between (0.2-0.8). So, in the present study, we 

conclude that E is almost constant because . and 01  did not show large variations. 

5.6 Summary 

In this chapter of my dissertation, I investigated the mixing of a saline water current jet into 

the ambient fresh water at rest in a large basin. Reynolds-Averaged Navier-Stokes (RANS) and 

diffusion-convection equations of the saline water volume fraction are used to model the mixing 

and the propagation of the saline gravity current jet. The comparison of the numerical with the 

various experimental front positions presents a good agreement for Reynolds and Richardson 

numbers laying in the ranges 2222 ≤ R ≤ 3889 and 0.003 < Ri < 0.01 respectively. 

The numerical simulations of the hydrodynamic fields show that the maximum velocity is 

located at 0.183456, where 3456 is the height at which the mean velocity u is equal to the half of 

the maximum velocity umax. The excess-density shows a radial symmetry close to the inlet and 

asymmetry far from the inlet. The local gradient Richardson number .7# shows that the 

maximum of the turbulent mixing occurs at 3 8 3456 in the first stage of the gravity current close 

to the inlet and it collapses far from the inlet. By analyzing the turbulent mixing in a 3D 

configuration, the volume of the turbulent mixing increases with the x-coordinate close to the 

inlet jet and decreases far from the inlet. The entrainment depends both on the front position 

and on the values of the iso-density threshold. The entrainment is found independent of the 

Reynolds numbers between 2222-3889. 



 

 

 

 

 

 

 

 

 

 



 

93 

 

 

Chapter 6: Conclusions and Future Works 

 

Section 6.1 highlights the main results of this dissertation, while Section 6.2 provides 

recommendations for future works. 

6.1 Conclusions 

In this dissertation, the results of a thorough experimental and numerical investigation was 

presented on Newtonian saline gravity current jet propagation into calm fresh water over a 

horizontal, rigid, and smooth bottom surface generated in a typical saline discharge as a jet into 

a coastal environment. The investigation was performed to determine the influence of the jet 

characteristics (e.g. the dynamics of a 3D gravity current jet, the hydrodynamic and density 

distributions of a 3D gravity current jet, the turbulent mixing in a 3D gravity current jet for the 

weak turbulent regime, and the entrainment of a 3D mixing gravity current jet) on the 

propagation dynamics of the saline gravity currents. According to literature reviewed in chapter 

two, there are very few experimental investigations on gravity currents jet and the experimental 

component of this research. Laboratory experiments were conducted with different initial flow 

rates and one concentration in the same experimental setup. 

The experiments in the basin involved a typical denser fluid jet incoming into calm lighter 

ambient fluid submerged horizontally discharge configuration in the field and three-

dimensional gravity currents were generated in these experiments. Immediately after the 

injection of the denser fluid into the basin, a gravity current of heavy fluid forms nearer the 

injector channel zone and the bottom surface. The propagation of the gravity currents evolves 

over time downstream; simultaneously, a current formed by ambient lighter fluid flows above 

the heavy current in the opposite direction, upstream. Through the development of the 

propagation, the saline gravity current mixes with the surrounding ambient fresh water and 

continuously entrains part (the entrainments occurring) of gravity current. Also, understanding 

the interactions between two fluids dynamically appears in the three dimensional 

representation. 

In this study, the RANS model was used, while this model is known to be able to give good 

agreement with the experimental data of the dynamics at the front position, it presents 

difficulties to reproduce the instability at the same position. Therefore, the front instability for 
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the lock-exchange can be observed using the LES (Ottalenghi et al. 2016a, b, and 2017) or DNS 

(Illicak 2014) methods, but such method need high computer resources. 

RANS with k-ε and diffusion-convection of the saline water volume fraction are used to 

study numerically the mixing in the weakly turbulent with Reynolds and Richardson numbers 

(  and !") lying between 1111-3889 and 0.001-0.03 respectively. The front positions obtained 

with numerical simulations and experiments present a good agreement with the regime studied 

(2222<R<3889). 

For all positions from the inlet, the velocity profiles present a unique maximum value 

at #/#$.% & 0.18. This value is close to the one observed in the 2D gravity current mixture 

(Buckee el al. 2009, and Gerber el al. 2011). The numerical simulations of the hydrodynamic 

fields show that the maximal mean velocity is located at# & 0.18 #$.%, where #$.%is the height 

at which the mean velocity u is equal to half the maximal velocity  '()*+. The excess-density 

shows a radial a symmetric close to the inlet and asymmetry far from the inlet. The local 

gradient Richardson number !", shows that the maximum of the turbulent mixing occurs for 

# & #$.% in the first stage of the gravity current close to the inlet, while it collapses far from the 

inlet and the bottom surface. Also, the comparison between the density and velocity profiles in 

y-coordinates shows that close to the inlet, the mixing of gravity current jet propagates while 

the pure fresh water can move without mixing. 

This can be explained by the presence of the viscous boundary layer zone of the fresh water 

without mixing (Philippe et al., 2005). Far from the inlet, the presence of one mixing gravity 

current zone with motion, and by analyzing the turbulent mixing in the 3D space, the mixing 

turbulent zone increases close to the inlet and decreases far from the inlet. The turbulent mixing 

zone is characterized by the estimation of the gradient Richardson number !", in the 3D 

coordinates. The entrainment at different values of the iso-density threshold shows that the 

mixing does not depend on the Reynolds number. The maximum of the turbulent mixing occurs 

at height # & #$.% where the mean horizontal velocity u is equal to half of the maximal mean 

velocity')*+. 

The envelope of the mixing turbulent depends strongly to space from the inlet. Close to the 

inlet, the mixing turbulent zone presents a semi-circular form. The mixing turbulent zone 

increases and changes to a non-axisymmetric form. While, far from the inlet, the mixing 

turbulent zone decreases strongly and exists only close to the bottom of the basin. The 

entrainment of the mixing gravity current jet characterized by the determination of the non-
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dimensional volume fraction of the fluid current   !"  depends strongly on the threshold chosen 

concentrations α and the front position xf. While the entrainment is not affected by the Reynolds 

number for 2222 ≤ R ≤ 3889. The entrainment at different values of the iso-density threshold 

shows that mixing does not depend on the Reynolds number for 2222 ≤ R ≤ 3889. For this 

narrow range of R that corresponds to the weakly turbulent regime, we didn’t observe the 

dependence of the entrainment E on the Reynolds number R. This result is in contrast from 

those obtained in the lock-release investigations where the entrainment E increases with R for 

a larger range (2000 < R < 10000) according to (Cenedese & Adduce 2008, Nogueira et al. 

2014, and Ottolenghi et al 2016 a, 2016b, & 2017). 

Derivations and evaluation of Navier Stokes equations mathematically as a theoretical 

study (presented in the two appendices A and B) for one and two dimensional. As well, for 

radially axisymmetric horizontal and inclined Newtonian and non-Newtonian gravity currents 

for: a) to investigate the gravity current height since the Newtonian gravity currents experiments 

presents difficulties getting it, and b) the non-Newtonian gravity current height, speed and 

impact of a pseudoplastic gravity current with the same rheological parameters. 

6.2 Future works 

It is expected that the theoretical, experimental, and numerical studies presented in this 

study will encourage numerous studies on the saline gravity currents generated in coastal 

discharges as well as other possible applications. Furthermore, this study has put forward some 

questions, particularly on the following areas: 

· The obvious experiments of investigation part of this dissertation is to conduct a 

thorough laboratory study on the Newtonian gravity currents generated from horizontal 

injection (see Fig. 3.5 to Fig. 3.10 for example). The bottom slope is expected to 

influence the propagation dynamics significantly. It will be interesting to see all the 

locations where the phases of the propagation are occurring, how the front positions and 

the time vary in relation to the slope angle with either smooth or rough bottoms. The 

characteristics of the rough bottom materials such as the porosity and size play an 

important role in both dynamics and current kinematics. Also, must be taken into 

account the influence of the ambient water conditions with the slope of the bottom on 

the gravity currents propagation generating in a typical disc arches operation. It is 

necessary to see the effects of these ambient conditions in the experimental 
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investigations on the dynamics of the injection bottom propagation and such 

experiments may need a large experimental facility. 

· The comparison between numerical and experimental results of the front’s position 

shows a fairly good agreement for four runs in spite of the denser fluids initial head 

lower value. This fact can be due to the application of the RANS with k-ε and diffusion-

convection used for the numerical model, which seems to be suitable for lower initial 

depth of the gravity currents, when the development of this gravity current is influenced 

by the oscillations of the ambient fresh surface. The lower thickness of the denser 

gravity current layer, and such an ambient fresh surface oscillations should not be 

neglected in future studies as laminar current’s dynamics and instability in the range of 

the Reynolds number for 10 < ! < 1000. Also, observation of mixing the dependency 

and velocity of entrainment, and potential energy occurring in the dense mixing within 

the boundary between the current and the ambient fluid. We aspire to using the direct 

numerical (DNS) for comparison with the (RANS with k-ε) and diffusion-convection 

model. 

· Studying the effects of various slopes on the motion of Newtonian and non-Newtonian 

(Rheology) gravity current over a rigid surface generated by injecting a source 

experimentally and numerically. These external influences can play an important role 

in the gravity current development depending on the equations derivatives in the two 

appendices (Equations for Newtonian gravity current: A-77, and A-103, and for non-

Newtonian gravity current: B-50, and B-84). 



 

97 

 

Appendix A                                               

Newtonian gravity current equations 

In the present appendix, we consider the derivation and the analytical solution to the 

2D saline bottom gravity currents jet into fresh water in horizontal and in sloping channel. The 

case study of my dissertation “saline bottom gravity currents jet into fresh water” are subject to 

the no-slip condition at the smooth bottom boundary, while the fresh gravity currents jet over 

saline free-surface are subject to the free-slip condition at the free-surface boundary appear in 

the studies of Dhafar et al. (2016, and 2017b)6 7. 

A.1 Equations for horizontal channel 

Consider a gravity current made of saline water introducing in a basin containing a static lighter 

liquid made of the fresh water. The lighter ambient liquid characteristics are: Density: !"#$%& = ! '

(!, Height= H, Pressure=P, and Viscosity=µ. While the denser gravity current characteristics are: 

Density: !) = !, Height: * = +,-. /0, Viscosity: 1, Presuure: р, and Velocity: 23,45 2 = 65 7 = 60. 

 

Figure A.1: A plot of the gravity current flow and co-ordinate system. 

Gravity current flow is mono directional along the x-axis as shown in Fig.A.1 and is infinitely wide 

so it is planar in the (x, y) plane and therefore, the flow field ,2888835 9) does not depend on z. Its flow beneath 

the ambient liquid is described by the continuity equation together with Navier Stokes equation. The 

continuity equation expresses the mass conservation. It writes for an incompressible fluid case: 

                                                 
6 Dhafar, I. A., Latrache, N., and Nsom, B. (2016). Experimental Study of the Effect of the Spreading Buoyant Gravity Current on the Coastal 

Environment. The 2016 3rd International Conference on Coastal and Ocean Engineering (ICCOE 2016), Tokyo, Japan, 8-9, April. 

 
7 Dhafar, I. A., Latrache, N., and Nsom, B. (2017a). Experimental Study of the Effect of the Spreading Buoyant Gravity Current on the Coastal 

Environment. DOI: 10.7763/IJET.2017.V9.957. International Journal of Engineering and Technology, 09(02):129-132. 
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+

 %

 &
= 0                                                                                                                                (A.1) 

which leads to (' = ( = 0), and; 
 !

 "
= 0                                                                                          (A.2) 

but, as stated previously, * does not depend on the z, so: * = *,-)                                                 (A.3) 

The Navier Stokes equations describe the motion of fluid substances. These equations express the 

momentum conservation and they axis from applying Newton’s second law to fluid motion, together 

with the assumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the 

gradient of velocity) and a pressure term. 

./
1#23

14
= 562237 + 89'22223 + /:3;                                                                                                                (A.4) 

Projecting vectorial equation (A.4) the Navier stokes equation on the ,<-22223) axis gives: 

0 = 5
>

?

 @

 $
5 A                                                                                                                                  (A.5) 

This differential equation can be integrated easily in the form: 

7,-) = 5/A- + B..,B = C<DEFGDF.<H.IDFJAKGFI<D)                                                                     (A.6) 

Equation (A.6) shows that 7,L) is described by the law of hydrostatic pressure (Pascal Law) in the 

gravity current. Now, in the ambient fluid the same hydrostatic pressure field takes the form: 

M,-) = MN4O + ,/ 5 9/)AP ,Q 5 -)                                                                                                 (A.7) 

at the interface.- = L,RS F), it writes: MN4O + ,/ 5 9/),Q 5 L) = M,L)                                         (A.8) 

Equating that expression of P(h) with that of P(y) at the interface (y=h) given by Eq. (A.6) we get: 

5/AL + B = MN4O + A,/ 5 9/),Q 5 L)                                                                                          (A.9) 

The constant of integration A can be derived from Eq. (A.9) in the form: 

B = MN4O + ,/ 5 9/)QA + AP 9/P L                                                                                                    (A.10) 

Introducing Eq. (A.10) in Eq. (A.6) gives the pressure field in the gravity current: 

7,-) = MN4O + ,/ 5 9/)A,Q 5 L) + /A,L 5 -)                                                                           (A.11) 

Let us now project the Navier Stokes vectorial equation (A.4) on the ,<R22223) axis. 

 @

 "
= 89*                                                                                                                                           (A.12) 

Taking account of (A.3), we get: 

 @

 "
= 8

 
T.
U

 $T
                                                                                                                                        (A.13) 

While the pressure field is given by Eq. (A.11) so it can be derived that: 

 @

 "
= A9/P

1V

1"
                                                                                                                                    (A.14) 

If we note the differential gravity: 
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 !" =  #                                                                                                                                          (A.15) 

The Eq. (A.13) becomes: 

 $%
&'
&( = ) *+,

*-+                                                                                                                                     (A.16) 

This ordinary differential equation can be solved easily by taking two successive quadratures: 

 !

 "
=

#$

%
& .
 '

 (
) + *,                                                                                                                             (A.17) 

and, -/)0 =
#1

%
&
 '

 (
&
"2

3
+ *,) + *3                                                                                                    (A.18) 

where *, and *3 are two constants of integration to be determined by the boundary conditions: the first 

boundary condition is the no slip condition at the basin bottom. 

) = 4& 5 - = 4                                                                                                                                  (A.19) 

which leads to:&*3 = 4&                                                                                                                    (A.20) 

The second boundary condition expresses the continuity of the shear stress at the free surface: 

6!

6"
/78 98 :0 = 4          At y=h                                                                                                             (A.21) 

which brings: 

 
#;

%

 '

 (
7 + *, = 4                                                                                                                              (A.22) 

That is: *, = <
#1

%
.
 '

 (
. 7                                                                                                                  (A.23) 

The velocity field is therefore obtained in the form: 

&-/)0 =
,

3

#1

%
&
 '

 (
[)3 < >)7]                                                                                                             (A.24) 

The continuity equation that has been written in its local form (Eq. A.2) and that expresses the mass 

conservation can also be written in its global form. Consider two transversal sections s and sʹ at 

respective abscissa x and x+dx as shown in Fig.A.2. 

 

Figure A.2: Two transversal cross section view element  

We must write that the variation of flow rate from station x to station x+dx is due to the time 

variation of wet surface: 

6?

6@
+

6A

6@
= 4                                                                                                                                        (A.25) 
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the section being rectangular and its width being  !, we have: " =  . #                                             (A.26) 

and if we note q the unit flow rate, i.e. $ = %
& = '. #                                                                         (A.27) 

where ' is the average velocity defined by: 

' = ( )*+,-+/0 1                                                                                                                                        (A.28) 

2!Equation (A.25) becomes: 

31
34 5 36

37 = 8                                                                                                                                         (A.29) 

so: 

31
34 5 3

37 9( )*+,-+/0 1 . #: = 8                                                                                                                  (A.30) 

which gives:  

 
31
34 5 3

37 ;( <*>,?>1
@ A = 8                                                                                                                (A.31) 

Equation (A.31) is the global form of the continuity equation. Let us introduce the expression of 

the velocity field <*>, obtained in Eq. (A.24) in the latter continuity equation (Eq. (A.31)) we get: 

31
34 5 3

37 9( BC D
E

FG
H

31
37 >*I# C >,J ?>1

@ : = 8                                                                                           (A.32) 

31
34 C D

E
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37 ;( K31

37 >*I# C >,?>L1
@ A = 8                                                                                            (A.33) 
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E
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37 ;31

37 K( *I#> C >E1
@ ,?>LA = 8                                                                                           (A.34) 

31
34 C D

E
FG
H

3
37 ;31
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E C 1N

O LA = 8                                                                                                      (A.35) 

31
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3
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37 K#O C 1N
O LA = 8                                                                                                           (A.36) 

31
34 C D

E
FG
H

3
37 ;31

37 . E1N
O A = 8                                                                                                                    (A.37) 

31
34 C FG

OH
3
37 K#O 31

37L = 8                                                                                                                       (A.38) 

This is the EDP dynamic equation governing (of gravity current) with unknown function h(x, t). 

Calculate 
3
37 *#P, to make more tractable the second term on the first member. 

3
37 *#P, = Q#O 31

37                                                                                                                                (A.39) 

#O 31
37 = D

P
3
37 *#P,                                                                                                                                (A.40) 
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is replaced in equation (equation is restored EDP): 

 !
 " #

$%

&'(
)
 

 *
+,-. = 0                                                                                                                        (A.41) 

A.2 Equations of Sloping Bottom 

If the channel bottom is now inclined, with the gravity current the static ambient liquid, we can 

sketch the flow field as shown in Fig. A.3. Remark that the interface of the ambient liquid is horizontal, 

owing to the Pascal hydrostatic law and therefore the pressure field in the ambient liquid is given by: 

/+1. = /2"3 4 +5 # 65.7 87 1                                                                                                           (A.42) 

Remark secondly that the flows is entirely defined by the following three quantities;)9: Channel 

slope, H: down field height, and L: channel bottom length. While the gravity mono directional motion 

is still governed by the continuity and the Navier stokes equations (Eq. (A.2) and Eq. (A.4) : 

 

Figure A.3: A plot of the inclined gravity current flow. 

The continuity equation (A.31) brings; : = :+;.. While, the Navier stokes equations can 

be projected respectively on the)<;>>>>? axis as: 

0 = #
&

@

 A

 B
# 87 C<D9                                                                                                                         (A.43) 

This differential equation can be solved as: 

E+;. = #58C<D97 ; 4 F                                                                                                                  (A.44) 

where B is as constant of integration. Also here, we can see that a hydrostatic pressure field governs. 

While the same Pascal law writes, in the ambient liquid (see Eq. (A.42)): 

/+1. = /2"3 4 +5 # 65.81                                                                                                            (A.45) 

At the interface the), = ;, the pressure in the gravity current is given by: 
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 (!) = "#$%&'*. ! + ,                                                                                                                  (A.46) 

While for the ambient fluid, we must first of all remark that: Only two lengths are needed 

to design the -/ (downfield height) and L (length of channel bottom), and Using these three 

quantities !", L, θ, we can derive the following other axis. (See Fig.A.4). 

The flow system is entirely defined by the three flowing parameters: D, L, θ. Indeed, we can calculate: 

# = $. %&'(                                                                                                                                        (A.47) 

) = $. '*+(                                                                                                                                        (A.48) 

, - = !0 / ) = !0 / $'*+(                                                                                                            (A.49) 

1 2345 = (                                                                                                                                         (A.50) 

 

Figure A.4: A plot of the inclined gravity current flow and co-ordinate system. 

and so on:    5346 =
7

8
/ (                                                                                                                 (A.51) 

1
9

:;
= tan<634 >?  @       , 3> =

9

ABC<D:;?E =
9

ABC<
F

G
HI?

=
9

JKA I
                                                         (A.52) 

, #L = # / 3> = $ cos ( /
9

JKA I
                                                                                                      (A.53) 

since it is:   - = 36 cos (  @         , 36 =
9

JKM I
=

NHO MPC I

JKM I
                                                            (A.54) 

What is the vertical height H(x) at given abscissa x as shown in Fig. A.5. 

2Q = 2R. '*+(                                                                                                                                   (A.55) 

at abscissa x, the vertical height H(x) is IJ, , RS = TQ = 2T / 2Q,                                                 (A.56) 

and so: !<U? = !0 / U. '*+(                                                                                                              (A.57) 
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Figure A.5: A plot of the inclined frontal gravity current head flow and co-ordinate system. 

A.2.1 Conclusion 

Given a point at abscissa x inside the fluid domain and with coordinate y, what is its vertical 

depth Y as shown in Fig.A.6. 

 !" = #($),                                                                                                                                      (A.58) 

given IM=y we have: 

 !% = &. '*+,----- /          0 "% = #($) 1 !%                                                                                  (A.59) 

and so: 2 = 34 = "% = [#5 1 $. +67,] 1 &. '*+8                                                                            (A.60) 

given a point with abscissa x, the total depth (river bottom) (see Eq. A.57) is: 

#($) = #5 1 $. +67,, 

and for a point with abscissa x, inside the fluid domain (ambient fluid or gravity current) with coordinate 

y, its vertical depth is: 

2 = #5 1 $. +67, 1 &. '*+,                                                                                                              (A-61) 

Can get the pressure field in the (ambient fluid or gravity current) by substitute Y in Eq. (A.42) is: 

9(2) = 9:;< > (? 1 @?). A. (#5 1 $. +67, 1 &. '*+,)                                                                    (A.62) 

At the interface the depth of gravity current equal the depth y in the equations (A-59, 60, and 61) 

so the h from eq. (A-61) is: B(67CDEFG'D) = B(& = H) = 1?. A. '*+, > I. Given by Eq. (A-46), and 

also the pressure at the interface equal the Eq. (A-62) written by: 

0 9(67CDEFG'D) = 9:;< > (? 1 @?). A. (#5 1 $. +67, 1 H. '*+,)                                                 (A.63) 
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Figure A.6: A plot of pressure field the inclined gravity current in the ambient fluid. 

Equating these two expression (Eq. (A.46) and Eq. (A-62) are brings: 

 !. ". #. $%&' + ( = )*,- + /!  0!1. ". /23  4. &56'  #. $%&'1                                              (A.64) 

7 ( = !. ". #. $%&' + )_89: + /!  0!1. ". /23  4. &56'1  !. #. $%&' + 0!. #. $%&'                (A.65) 

We introduce that expression of B in p(y) given by Eq. (A.44) 

;/<1 =  !. ". $%&'. < + (  

7 ;/<1 =  !. ". $%&'. < + )*,- + /!  0!1. ". /23  4. &56'1 + 0!. #$%&'                                 (A.65) 

In that relation let us add and subtract the same quantity: 

/!. ". #$%&';/<1 = )*,-  !. ". <$%&' + /!  0!1. ". /23  4. &56'1 +>>0!. #$%&' + !. ". $%&'  

!. ". #$%&'                                                                                                                                        (A.66) 

7 ;/<1 = )*,- + !. ". /#  <1$%&' + /!  0!1/23  4. &56'  #. $%&'1                                     (A.67 

A.2.2 Verification 

The above equation represents the pressure field, thereafter for the horizontal channel ( =0) in that 

expression, we recover Eq. (A.11) solution of the horizontal channel. The Navier Stokes vectorial 

equation is: 

0 = !"##$% ! &'$ + ()*$                                                                                                                       (A.68) 

,-####$ ....../0 = ! 12
13 ! &4 '4 567 + (81

9:
139 +

19:
1;9<>                                                                                 (A.69) 

,?####$ ....../0 = ! 12
1; ! &4 '4 @,5 >                                                                                                           (A.70) 

The above equation represents the solved of Eq. (A.43), and, so: 
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 !
 " = #$. %. &'() + *  ,-

 /,                                                                                                                  (A.71) 

The same as mentioned above if ()=0), when the flow on a horizontal surface, we recover the equation 

(A.12):01 ! " = *234: The Navier Stokes equation 0n the 156777784 axis gives: 

9 = #  !
 " # $. %. &'() + * :,-

:/,                                                                                                          (A.72) 

;  !
 " = #$. %. &'() + * :,-

:/,                                                                                                                (A.73) 

with, 

< = >?@A + $. %. 1B # C4D5&) + 1$ # 2$4. %. 1E9 # 6&'() # BD5&)4                                            (A.74) 

 !
 " = $. %. D5&).  F " + 1$ # 2$4. %. G#&'() # D5&).  F "H                                                                     (A.75) 

 !
 " = $%D5&)  F

 " + % G#$&'() # $D5&)  F
 " + 2$&'() + 2$D5&)  F

 "H                                                (A.76) 

;  !
 " = % G#$&'() + 2$1&'() + D5&)  F

 "4H                                                                                         (A.77) 

A.2.3 Remark about a horizontal channel 

For a horizontal channel, we have ( = 0) so the Eq. (A.77) reduces to: 

!"
!# = $. %&. !'!#                                                                                                                                     (A.78) 

which is exactly the equation we obtained at (A-14). If we make the differential gravity: 

$. %& = $*                                                                                                                                              (A.79) 

then, equation (A.73) becomes: 

+ ,-/
,1 = &. $. 234 5 !"

!#                                                                                                                        (A.80) 

+ ,-/
,6- = &. $234 5 7$ 89&234 5 %&(234 5 :;2 . !'!#)<>                                                               (A.81) 

+ ,-/
,6- = &$234 9 &$234 5 $*(234 5 :;2 . !'!#)                                                                             (A.82) 

? + ,-/
,6- = $*(234 5 :;2 . !'!#)                                                                                                            (A.83) 

This ordinary differential equation can be solved easily by taking two successive quadratures. 

,/
,6 =

@A
B C234 5 :;2 . ,',#DE 5 :F                                                                                                      (A.84) 
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and, 

 (!) =
"#
$ %&'*+ , -.&+/ 01023 /

45
6 , -7! , -6                                                                                     (A.85) 

where -7 and -6 are two constant of integration to be determined by the boundary condition. The first 

boundary condition is the no slip condition of the basin bottom: 

When (! = 8) 9999:99;  = 89<                                                                                                            (A.86) 

which leads to: 

-6 = 8                                                                                                                                                  (A.87) 

The second boundary condition expresses the continuity of the shear stress at the interface: 

at ! = >9999 :999999999999; 9 ?@?4 (>< A< B) = 8                                                                                               (A.88) 

which brings: 
"#
$ C&'*+ , -.&+/ 0102D / > , -7 = 8                                                                                (A.89) 

 ! = "
#$

% &'()* +  ,'*. -/-01 . 2                                                                                                          (A.90) 

The velocity field is therefore obtained in the form: 

3456 = #$

7% 8'()* +  ,'*. -/-09 . 5
7 +  !5                                                                                            (A.91) 

3456 = #$

7% 8'()* +  ,'*. -/-095
7 " #$

% &'()* +  ,'*. -/-01 2. 5                                                             (A.92) 

which leads to: 3456 = #:
7% &'()* +  ,'*. -/-01 . [5

7 " ;52]                                                                 (A.93) 

Let us apply the equation of continuity (A-31): 
</
<> +

<
< &? 3456@5/

A 1 = B 

If we replace 3456 by the equation we just obtained: 

</
<> +

<
<0 C?

#:
7% &'()* +  ,'* </

<01
/
A 457 " ;526@5D = B                                                                        (A.94) 

</
<> +

#:
7% C

<
<0 ? '()*457 " ;56@5 + <

<0 ?  ,'* </
<0 45

7/
A

/
A " ;526@5D = B                                           (A.95) 

</
<> "

#:
7% C

<
<0 &'()* ? 4;52 " 576@5/

A 1 + <
<0 & ,'* ? </

<0 4;52 " 576@5/
A 1D                                           (A.96) 

</
<> "

#$

7% C'()*
<
<0 &2

E " /F

E 1 +  ,'* </
<0 &

</
<0 82

E " /F

E 91D = B                                                               (A.97) 

</
<> "

#$

% C'()*. <
<0 &

/F

E 1 +  ,'*. <
<0 &

/F

E . </<01D = B                                                                                    (A.98) 

 
</
<> "

#$

E% C'()*42
E6 +  ,'*. <

<0 42
E. </<06D = B                                                                                   (A.99) 
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The DEP differential equation that governs the dynamics of the gravity currents with unknown 

function h(x, t). Now calculate 
 
 ! ("

#) to make more tractable the second term in the first member: 

 
 ! ("

#) = 4"$.  % !                                                                                                                           (A.100) 

"$.  % ! =
&
# '

 
 ! ("

#)                                                                                                                          (A.101) 

is replaced in the dynamic equation: 

 %
 * +

,-
$/ 01235.

 
 ! ("

$) 6 &
# '7815.

 9
 !9 ("

#): = ;                                                                            (A.102) 

< '  % * +
,-
&>/ 041235.

 
 ! ("

$) 6 7815.  
9

 !9 ("
#): = ;                                                                       (A.103) 

A.3 Exact Solution to Newtonian gravity current beneath a static water layer in horizontal 
basin 

The equation of motion that we established writes: 

 !
 " #

$%
&'(

)*
)+* ,-./ = 0                                                                                                                     (A.104) 

where: 12 = 34
4  , 5 = 6

4 , and 37 = 7 # 78, 78 being the density of the water. 7: Density of the gravity 

current, and υ: kinematic viscosity of the gravity current.  In our problem, the gravity current is released 

beneath the static water at conventional rate q; at this point, Huppert (1982) makes the assumption that: 

9 -,:; </>: = ?<@
+A,B/
C

 

D being a constant whose value is determined by the flow configuration; D=0 for the injection of a fixed 

volume of fluid, and D=1 corresponding to constant inflow rate (this case). Such ad’hoc assumption is 

not satisfactory. In this work, we intend to build rigorously exact similarity solutions without such as 

assumption. The solution will be gives in terms of scaling laws. The form of the equation of motion. 

 !
 " #

$%
&'(

)*
)+* ,-./ = 0  

Suggests to search solutions in the form of separated variables, i.e.: 

-,:; </ = E,:/F G,</                                                                                                                        (A.105) 

Substituting Eq. (A.105) into Eq. (A.104) we get: 

[G,</F E,:/];H# $%
'( [G,<./F E,:./];++ = 0                                                                                        (A.106) 

G2,</F E,:/ # $%
&'(G,<./F E.;++= 0                                                                                                  (A.107) 

Let us divide the 2 members of Eq. (A.107) byE,:/F G,<.) there comes: 

I2,H/
IJ,H/#

$%
&'( F

&
+ F

K*
K+* LE.,:/M = 0                                                                                                        (A.108) 

I2,H/
IJ,H/: N,</function of variable <Oonly. 
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 !
"#$ .

"
% .

&'
&%' ()*+,-/: 0+,-function of variables , only. As the 2 variables are independent: 

1+2- 3 0+,- = 4                                                                                                                              (A.109) 

Has as only solution: 

51+2- = 6
0+,- = 6    ,              6 = 678 

The first equation of that system writes: 
"
9: .

&9
&7 = 6; <;;> ;&9&7 = 6?2. Taking one quadrature: 

3@*
A = 6+2 3 2B- ;;<;;> ;@CD = 3A6+2 3 2B- 

E
@D = 3A6+2 3 2B- ;<;;> @+2- = 3E

[A6+2 3 2B-]" DF  

The second equation of the system writes: 

0G
EHI .

1

 
.
!"( #)
! "

= $ 

!"

! "
( #) =  .

12%

&'
.$ 

Put  # = * 

+,-
+/,

= 0"34
56 *0 #7                                                                                                                                 (A.110) 

Ordinary differential equation is said to be autonomous. It means that variable x does not appear in it: 

Let 8(*) = *'( ) 
*66( ) = +9

+/ = +9
+- . +-+/ = 86(*). 8(*)                                                                                               (A.111) 

The equation (A-111) becomes: 

86(*). 8(*) = 0"34
56 . *0 #7                                                                                                                  (A.112) 

+9
+- . 8(*) = 0"34

56                                                                                                                                 (A.113) 

8. !8 = 0"34
56 . *0 #7 !*                                                                                                                        (A.114) 

9,
" = 0"34

56 . #: . *: #7                                                                                                                               (A.115) 

8(*) = (;<: . 345> . *: #7 )0 "7                                                                                                                  (A.116) 

*6( ) = ?;<
: . 3456 *: @7                                                                                                                        (A.117) 

+-
-A B7 = ?;<

:
34
56 !                                                                                                                                (A.118) 

@
C*0 @7 = ?;<

:
34
5> ( D  E)                                                                                                                 (A.119) 

*C @7 = F?<
: . 3456 . C@ ( D  E)                                                                                                             (A.120) 

*C @7 = ?:#
"G . 345> ( D  E)                                                                                                                 (A.121) 
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 (!) = [(
"#

$%
.
&'

*+
)$ ", ]- /, (! 0 !1)- /,                                                                                               (A.122) 

 (!) = (
"#

$%
.
&'

*+
)2 /, (! 0 !1)- /,                                                                                                       (A.123) 

Or    (!) = 32(!)                                                                                                                          (A.124) 

32(!) = (
"#

$%
.
&'

*+
)2 /, (! 0 !1)- /,                                                                                                     (A.125) 

3(!) = (
"#

$%
.
&'

*+
)$ /, (! 0 !1)" /,                                                                                                        (A.126) 

Finally: 

4(!. 5) = 6(5). 3(!)                                                                                                                       (A.127) 

4(!7 5) = (
"#

$%
.
&'

*+
)$ /, . (

8$

/'(9891)
)$ /, . (! 0 !1)" /,                                                                              (A.128) 

: 4(!. 5) = (
;

$%
.
&

*+
)$ /, $

(9891)< >,
. (! 0 !1)" /,                                                                                  (A.129) 
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Appendix B                                             

Non-Newtonian gravity current equations 

The bottom gravity currents are dense fluids that can be non-Newtonian. Indeed, the 

introduction of additives in water can modify their rheological behaviour. In the present 

appendix, we consider the case where the dense gravity currents are shear-thinning in a 

horizontal and in the sloping configuration appear in Dhafar et al. (2016d)8. 

A.4 Equation for horizontal channel 

As shown in Fig. A.1, for a shear thinning fluid (gravity current) (example: polymer solution, mud, 

pollutants…etc). The rheological behavior is described by the following equation of state: 

 = !"1# + $%&'                                                                                                                                (B.1) 

where(1# is unit tension, " is the pressure field,    : stress tensor, %&: is the rate of shear tensor, n: is the 

power law index, and k: is the consistency. The flow of such fluid is no more described by the Navier 

Stokes equations but by the general equation of conservation of momentum. 

)*, = -, +  ,./.                                                                                                                                   (B.2) 

where *, is the 023 component of the acceleration vector: 

(1, 2, 3) = (x, y, z)           *4  5*6*7*8 

 ,. is the component of 023 line and 923 column of the stress tensor: 

 = ; 66  67  68 76  77  78 86  87  88<                                                                                                                       (B.3) 

Recalling that the stress tensor is symmetric, i.e.   ,. =  ., 

 = ; 66  67  68 67  77  78 68  78  88<                                                                                                                       (B.4) 

In fact when i≠j, σ is noted τ, so: 

 

                                                 
8 Dhafar, I. A., Nsom, B. and Latrache, N., (2015d). Effect of slope change on the dynamics of pseudoplastic mass movements beneath a static 

volume of water, ic-rmm2- 2nd International Conference on Rheology and Modelling of Materials, Miskolc-Lillafüred, Hungary, 5-9, October. 
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 = ! "" #"$ #"%#"$  $$ #$%#"% #$%  %%&                                                                                                                       (B.5) 

In the configuration of a 2D flows, the 3-cordinate does appear. 

 = ' "" #"$#"$  $$(                                                                                                                                 (B.6) 

Using the equation of state, we see that:  = )*1+ , -./0 

With ./ = 2 3435 "$ 63437 , 38359"$ 63437 , 38359 3837
:                                                                                               (B.7) 

For a 2D flows; but in this case: ;< >?@. Moreover, due to the continuity equation: 

3435 , 3837 , 3A3B = @                          With v=w=0 

So  
3435 = @          but z does not play any role in our 2D flow. Finally  ? = ?6C9 

D ;< E?6C9@@   

Finally the rate of shear is given by: 

./ = 2 @ "$ F 3437"$ F 3437 , @ :,                                                                                                                       (B.8) 

also,    1+ = '1 @@ 1(, and unit tensor is: G = )*1+ , -./0 

We can form the equation of state: 

 = H)* @@ *I , -2 @ "$J 6343790"$J 6343790 @ :                                                                                         (B.9) 

K G = 2 )* L$J 6343790L$J 6343790 * :                                                                                                          (B.10) 

A.4.1 Calculating the pressure 

Fluid constitutive law (rheology) occurs only for the dynamic, that is to say, when the fluid is 

moving. Statically, all the liquids obey the law of Pascal, whatever liquid behavior law studied. So we 

can fully resume the study of the Hydrostatic Newtonian fluid. 



 

112 

 
 

For the shear-thinning fluid (that is to say its viscosity decreases with increasing speed). Obeying 

the power law describing the pollutants, we find exactly the same equation for pressure, that is to say, 

as for the water; 

 =   !" + (# $ %#)&(' $ *) + #&(* $ ,)                                                                                (B.11) 

That we have equation (B.11). So pass the hydrostatic to hydrodynamics that is for say for moving the 

gravity current. 

A.4.2 Equation of conservation of momentum 

#-. = /. + 0.121                                                                                                                                 (B.12) 

(32 4) 5 (62728)                                  (6 9 :2 7 9 ;2 8 9 ,) 

Plane flow → z does not appear. Therefore only two equations following x and y, 

with        <> ?@(;)A                                                                                                                                (B.13) 

BProjection CD,EEEE>: 

# FGHG! + @ GH
GI + < GH

GJK = /I + (0LL2L + 0LM2M)                                                                                    (B.14) 

SoN O@OP NisNstationary2 @ = @(;)3QN O@O: 2 < = A2 

NandN/I = R/> = #&>TNonlyNtheNweightU 

G
GI ($V) +

G
GJ [W

L
MX (

GH
GJ)

Y ] =0                                                                                                           (B.15) 

with 0LL = $V 

0LM = WU LMX U (
GH
GJ)

Y                                                                                                                             (B.16) 

BProjectionCD;EEEE>: 

# FGZG! + @ GZ
GI + < GZ

GJK = /J + (0ML2L + 0MM2M)                                                                                     (B.17) 

\sNtheN O<OP = A2 O<O: = A2 O<O; = ANbecauseN< = ANand/J = $#& 

] 0ML = W L
MX (

GH
GJ)

Y            , and         0MM = $V                                                                               (B.18) 

A = $#& + G
GI [W

L
MX (

GH
GJ)

Y^ + G
GJ ($V)                                                                                             (B.19) 
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 ! = 0 because ! = !("). Resolution of the projection #$%%%%& (Eq. B.17): 

'
'* (+) , -

./ 1 '
'2 ('3

'2)45 = 0                                                                                                               (B.20) 

with the pressure given by eq. (B.11), i.e. 

+ = +678 9 (: , ;:)<(> , ?) 9 :<(? , @) 

+ = +678 9 (: , ;:)<> , (: , ;:)? 9 :<? , :<@ 

with A
A$ [+678 9 (: , ;:)<> , :<@] = 0 

B 'C
'* = '

'* [,:<? 9 ;:<? 9 :<?] = '
'* [;:D <?]                                                                            (B.21) 

'C
'* = <;:D 'E

'*                                                                                                                                     (B.22) 

So, Eq. (B.20) becomes: 

<;:D 'E
'* , -

./ 1 '
'2 ('3

'2)45 = 0                                                                                                             (B.23) 

Let <D ;: = <F  denote the differential gravity: 

<G HE
H* = -

./ I H
H2 1(H3

H2)45J                                                                                                                     (B.24) 

Take one quadrature of that equation with respect to y: 

<K ./

- D HE
H* = H

H2 1(H3
H2)45                                                                                                                       (B.25) 

<K ./

- D HE
H* D " 9 L = (H3

H2)4                                                                                                                  (B.26) 

H3
H2 = [<K ./

- D HE
H* D " 9 L]M 4N                                                                                                                 (B.27) 

Taking a second quadrature with respect to y: 

!(") = M
O
/PM

× M
QRS/

T DUV
UW

× [<K ./

- D HE
H* D " 9 L]

O
/PM 9 X                                                                           (B.28) 

where A and B are two constants of integration to be determined by the boundary conditions. The 

boundary conditions are applied to Eq. (B.28). Equation (B.28) can be rewritten in the form: 

!(") = Y
(Y 9 Z) D Z

(<K ./

- D HE
H*)

× [<K \4

^ D _?
_$ " 9 L]M 4N PM 9 X 

The first boundary condition is the no slip condition at the bottom of the basin: 
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 = 0!!!!!!! " !!!!!!!!!!!!# = $                                                                                                                (B.29) 

which leads to: 
%&'()'

*%+,-.*/12(3 .4546-
7 8 = 0                                                                                            (B.30) 

The second boundary condition expresses the continuity of the shear stress at the free surface. 

9:
9; <>*?@ A-B = 0!!!!!!!!!!!!!!CA!!!!!!! = >!                                                                                              (B.31) 

The expression of 
9:
9; is given by Eq. (B-31) is write so in y=h: 

[DE. F(G . 9H9I . > 7 J], %K = 0                                                                                                                (B.32) 

So, DE F(G . 9H9I . > 7 J = 0                                                                                                                   (B.33) 

Then, J = LDE. F(G . 9H9I . >                                                                                                                  (B.34) 

Introducing that expression of A in Eq. (B.34): 

8 = L %
*%+,-.*/12(3 .4546-

. J'
(+,                                                                                                               (B.35) 

M 8 = L %
*%+,-.N/12(3 .4546O

× [LDE F(G . 9H9I . >], %K +,                                                                                (B.36) 

Substituting these expressions of A and B in Eq. (B.28), we obtain the velocity field in the form: 

#* - = %
*%+,-.N/12(3 .4546O

× [DE F(G . 9H9I .  L DE F(G . 9H9I . >], %K +, L %
*%+,-.N/12(3 .4546O

× [LDE F(G . 9H9I . >], %K +,               (B.37) 

M #* - = %
*%+,-.N/12(3 .4546O

× P[DE F(G . 9H9I * L >-]'(+, L [LDE F(G . 9H9I . >]
'
(+,Q                                      (B.38) 

Let us apply the continuity equation in its global form (mass conservation) ;(Eq. B.31): 

  
RH
RS 7 R

RI TU #* -V H
W X = 0 

To use it, let us calculate the derivative of the integral by Eq. (B.38) for u(y). 

R
RI U #* -V H

W = R
RI Y %

*%+,-.N/12(3 .4546O
×!P[DE F(G . 9H9I * L >-]'(+, L [LDE F(G . 9H9I . >]

'
(+,QZ V               (B.39) 

R
RI U #* -V H

W = %
*%+,-.N/12(3 .4546O

. RRI PU [DE F(G . 9H9IH
W ]'(+, × * L >-'(+,V L U [LDE F(G . 9H9I . >]

'
(+,. V H

W Q             (B.40) 

R
RI U #* -V H

W = %
*%+,-.N/12(3 .4546O

× R
RI P[DE F

(
G . 9H9I]

'
(+, U * L >-'(+,. V L U *L\-'(+,>. V H

W
H
W Q          (B.41) 



 

115 

 
 

 
 ! " #($)%$&

' = *
*+,×  

 ! -(./ 0
1
2 3 4&4!)

5
1 × ,

5
1+0

3 [($ 6 7)51+0]'& 6 (68)51+,751+,3 [$]'&9                  (B.42) 

 
 ! " #($)%$&

' = *
*+,×  

 ! :(./ 0
1
2 3 4&4!)

5
1 × *

0*+, [6(67)
5
1+0] 6 (68)51+,3 75

1+,3 7;                         (B.43) 

 
 ! " #($)%$&

' = *
*+, ×  

 ! :(./ 0
1
2 3 4&4!)

5
1 × *

0*+, [(68)3 (68)
5
13 <68)03 751+0> 6 (68)513 (68)3 751+0;             (B.44) 

 
 ! " #($)%$&

' = *
*+,×  

 ! :(./ 0
1
2 3 4&4!)

5
1(68)51 × *

0*+, 3 (68) × 75
1+0 ? 75

1+0;                               (B.45) 

 
 ! " #($)%$&

' = *
*+,×  

 ! :(6./ 0
1
2 3 4&4!)

5
13 75

1+0 @ A*
0*+,? 8>;                                                            (B.46) 

 
 ! " #($)%$&

' = *
*+,×  

 ! :(6./ 0
1
2 3 4&4!)

5
13 75

1+0 @A*+0*+,0*+, >;                                                             (B.47) 

 
 ! " #($)%$&

' = *
*+,×  

 ! :(6./ 0
1
2 3 4&4!)

5
13 75

1+03 *+,0*+,;                                                                     (B.48) 
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Now let us introduce that result of the integral in the equation of continuity (B.31): 

D E  & F ? *
0*+,×  

 ! :(6./ 0
1
2 3 4&4!)

5
13 7B1C51 ; = G                                                                                 (B.50) 

This is the final equation we will have to solve for the pseudo plastic fluid (pollutants) as gravity current. 

A.5 Equations of motion in an inclined bottom 

The projection of the dynamic equation along the y-axis gives the pressure field. As for the 

horizontal channel, the equation of motion along the y-axis is exactly the same as for the Newtonian 

fluid. The solution also is the same and we obtain the following expression for the pressure field (Eq. 

A.67). 

H($) = IJFK ? L3 .3 (7 6 $)MNOP ? (L 6 QL)(RS 6 T3 OUVP 6 73 MNOP) 
If we put P=0 in that expression, we recover the pressure field of the horizontal channel. 

Projection along the x-axis represented by the general equation of conservation of momentum; 

LWX = YX ? ZX\^\ 
 (i, j)  _  [1, 2, 3]         [1→x, 2→y, 3→z] 

Plane flow → z does not appear, only two equations following x and y with;                à b#($)G  

The equation of conservation of the momentum written as: 
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with      "$$ = %&,''''''''''''''''''''''''"(( = %&,                                     "$( = "($ = ). $
(* -/0

/12
3 

Projected on 4566667  , Eq. (B.1) write: 

8 9/0
/: + ; /0

/< + > /0
/1? = !$ + -"$$,$ + "$(,(2                                                                                    (B.52) 

@;
@A 'BC'CADAB4EDFG, ; @;

@5 = -; = ;-G2, DEH'> @;
@G = -> = I2' 

I = %8JCBEK + L% /M
/<N + ). $

(* 9 /
/1 -/0

/12
3?                                                                                      (B.53) 

with; 
/M
/< = J 9%8CBEK + O8 LCBEK + P4CK /Q

/<N?                                                                              (B.54) 

Eq. (B.53) becomes: 

I = %8JCBEK + 8JCBEK % O8JP4CK /Q
/< + R

(*
/
/1 -/0

/12
3                                                                   (B.55) 

Put     J. O8 = JS,        T R
(* . /

/1 -/0
/12

3 = JUCBEK + O8. P4CK. /Q
/<                                                     (B.56) 

This ordinary differential equation can be solved easily by taking two successive quadratures: 

-/0
/12

3 = JU. (
*

R LCBEK + P4CK. VQ
V<N G + W                                                                                          (B.57) 

V0
V1 = [ JU. (

*

R LCBEK + P4CK. VQ
V<N G + W]$ 3X                                                                                       (B.58) 

Taking the second quadrature: 

;-G2 = $
Y
*Z$ × $

\U^
*
_

`a
`b

×= [ JU. (
*

R LCBEK + P4CK. VQ
V<N G + W]$ 3Z$X +B                                              (B.59) 

where A and B are two constants of integration to be determined by the boundary conditions. The 

boundary conditions are applied to Eq. (B.59) which can be written in the form: 

;-G2 = 3
3Z$ × $

\U^
*
_

`a
`b

×= [ JU. (
*

R LCBEK + P4CK. VQ
V<N G + W]$ 3Z$X +B                                              (B.60) 

The first boundary condition is the no slip condition at the bottom of the basin: 

G = I' c ''; = I'                                                                                                                             (B.61) 

which leads to: 
3

3Z$ × $
\U^

*
_

`a
`b

× W
Y
*Z$ + d                                                                                         (B.62) 

The second boundary condition expresses the continuity of the shear stress at the free surface: 
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The expression of   
 !

 "
  is given by Eq. (B.58) so: 

[+
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1 2345678936:
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+-
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E : 2FGHI @ JKFI:  L M?# @ A = 0                                                                                                (B.65) 

So; A = N+-
D/

E : 2FGHI @ JKFI:  L M?#                                                                                              (B.66) 

Introducing that expression of A in Eq. (B.11) gives: 

O = N
5

57B
×

B
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1
;<
;>
× A

Q
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R O = N 5
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B
PS.

/
1
;<
;>
× A

Q
/7B × [N+- D
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E : 2FGHI @ JKFI:  L M?#]
B
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Substituting these expressions of A and B in u(y) given by Eq. (B.59), we get: 

 (!) = "
"#$× $

%&'*+ ,-
,.
×[/0 1*2 3 45678 9 :;583 <><?@! A /0 1*2 3 45678 9 :;583 <><?@B]$ "#$C A "

"#$ ×
$

%&'*+ ,-
,.
× DE

*#$ × [A/0 1*2 3 45678 9 :;583 <><?@ B]$ "#$C                                                                      (B.69) 

We arrived at the following expression for the velocity field of a shear-thinning fluid as gravity current 

over an inclined channel, beneath a quiet volume of water. 
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Let us apply the global continuity equation: 

K>
KL 9 K

K? HM  (!)N!>
O I = P                                                                                                                 (B.72) 

First of all, let us calculate the integral: 
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That the expression of the integral, let us introduce it (Eq.B.83) into the global equation of continuity 

(Eq.B.72): 
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Etude Expérimentale et Numérique de Courants Gravitaires Modèles en 
Environnement Côtier: Courant gravitaire dense 

 

Résumé: Le but de ce travail de recherche est de contribuer à une meilleure compréhension 

de la dynamique de propagation et de la miscibilité de jets gravitaires au-dessous d’un liquide 

ambiant. Des expériences ont été réalisées en laboratoire à l’aide d’une plateforme 

expérimentale constituée d’un bassin parallélépipédique contenant de l’eau douce et d’un 

canal d’injection de section rectangulaire de jets gravitaires de concentration constante initiale 

fixée. Les calculs mathématiques et numériques sont basés sur les modèles RANS (Reynolds-

Averaged Navier Stokes equations), k-ε (K-epsilon) et DCE (Diffusion-Convective Equation) 

de la fraction volumique de l’eau salée pour décrire la propagation et le mélange du jet 

gravitaire. L’évolution du front du jet obtenue expérimentalement est utilisée pour valider le 

modèle numérique. Par ailleurs, la comparaison des résultats obtenus sur l’écoulement moyen 

(  !."# = $/$%&') avec ceux des études 2D expérimentales et numériques antérieures ont 

montré des similarités. La simulation numérique des champs hydrodynamiques montre que la 

vitesse maximale est atteinte à la position 0.18( !.", où  !."(est la hauteur d’eau pour laquelle la vitesse 

moyenne $ est égale à la moitié de la vitesse maximale($%&'. 

Mots clés: Courant gravitaire dense, Jet flottant, Entraînement, Expériences, Mélange, 

Simulations Numériques, Modèle RANS. 

 

 

 

Experimental and Numerical Study of Model Gravity Currents in Coastal 
Environment: Bottom Gravity Currents 

 

The aim of this investigation is to contribute to a better understanding of the propagation 

dynamics and the mixing process of dense gravity currents. The Laboratory experiments 

proceeded with a fixed initial gravity current concentration in one experimental set-up. The 

gravity currents are injected using a rectangular injection channel into a rectangular basin 

containing the ambient lighter liquid. The injection studied is said in unsteady state volume, 

as the Reynolds number lies in the range 1111 - 3889. The experiments provided the evolution 

of the boundary interface of the jet, and it is used to validate the numerical model. The 

numerical model depends on the Reynolds-Averaged Navier Stokes equations (RANS). The 

k-ε (K-epsilon) and the Diffusion-Convective Equation (DCE) of the saline water volume 

fraction were used to model the mixing and the propagation of the gravity current jet. On the 

other hand, comparison of the mean flow (  !."# = $/$%&') with previous two-dimensional 

numerical simulations and experimental measurements have shown similarities. The 

numerical simulations of the hydrodynamic fields indicate that the velocity maximum 

at(0.18 (!.", where  !."is the height at which the mean velocity $(is the half of the maximum 

velocity($%&'. 

Keywords: Bottom Gravity Current, Buoyant jet, Entrainment, Experiments, Mixing, 

Numerical simulations, RANS model. 

 

 


