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Summary

A great deal of progress has been made in stellar physics thanks to asteroseismology, the
study of pulsating stars. Indeed, asteroseismology is currently the only way to probe the
internal structure of stars. The work presented here focuses on some of the theoretical
aspects of this domain and addresses two broad categories of stars, namely solar-like
pulsators (including red giants), and rapidly rotating pulsating stars.

The work on solar-like pulsators focuses on setting up methods for efficiently character-
ising a large number of stars, in preparation for space missions like TESS and PLATO 2.0.
In particular, the AIMS code applies an MCMC algorithm to find stellar properties and
a sample of stellar models which fit a set of seismic and classic observational constraints.
In order to reduce computation time, this code interpolates within a precalculated grid of
models, using a Delaunay tessellation which allows a greater flexibility on the construction
of the grid. Using interpolated models based on the outputs from this code or models
from other forward modelling codes, it is possible to obtain refined estimates of various
stellar properties such as the mean density thanks to inversion methods put together by
me and G. Buldgen, my former PhD student. Finally, I show how inversion-type methods
can also be used to test more qualitative information such as whether a decreasing rota-
tion profile is compatible with a set of observed rotational splittings and a given reference
model.

In contrast to solar-like pulsators, the pulsation modes of rapidly rotating stars re-
main much more difficult to interpret due to the complexity of the numerical calculations
needed to calculate such modes, the lack of simple frequency patterns, and the fact that
it is difficult to predict mode amplitudes. The work described here therefore focuses on
addressing the above difficulties one at a time in the hopes that it will one day be pos-
sible to carry out detailed asteroseismology in these stars. First of all, the non-adiabatic
pulsation equations and their numerical implementation are described. The variational
principle and work integrals are addressed. This is followed by a brief classification of the
pulsation modes one can expect in rapidly rotating stars. I then address the frequencies
patterns resulting from acoustic island modes and the interpretations of observed pulsa-
tion spectra based on these. This is then followed by a description of mode identification
techniques and the ongoing efforts to adapt them to rapid rotation. Finally, the last part
briefly deals with mode excitation.
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Résumé

Beaucoup de progrès ont été effectués dans la physique stellaire grâce à l’astérosismolo-
gie, l’étude des oscillations stellaires. En effet, l’astérosismologie est à l’heure actuelle la
seule façon dont on dispose pour sonder la structure interne des étoiles. Le travail présenté
ici concerne quelques uns des aspects théoriques de ce domaine et porte sur deux grandes
catégories d’étoiles, à savoir les pulsateurs de type solaire (y compris les géantes rouges),
et les pulsateurs en rotation rapide.

Le travail sur les pulsateurs de type solaire se focalise sur la mise en place de méthodes
capables de caractériser efficacement un grand nombre d’étoiles, ceci en anticipation de
missions spatiales telles que TESS et PLATO 2.0. En particuliers, le code AIMS applique
un algorithme MCMC afin de trouver les propriétés stellaires et un échantillon de modèles
qui reproduisent un jeu de contraintes observationnelles sismiques et classiques. Afin de
réduire le temps de calcul, ce code interpole au sein d’une grille de modèles précalculés,
en s’appuyant sur une triangulation de Delaunay, ce qui permet une plus grande souplesse
dans la construction de la grille. En s’appuyant sur des modèles interpolés à partir de
résultats d’AIMS ou de modèles issus d’autres codes d’optimisation, il est possible d’affiner
certaines propriétés stellaires, telles que la densité moyenne, grâce à des méthodes inverses
mis au point par moi et G. Buldgen, mon ancien doctorant. Enfin, je montre comment
des méthodes liées aux inversions permettent de tester des informations plus qualitatives
telles que la possibilité ou non d’avoir un profil de rotation décroissant pour un jeu de
“splittings” rotationnels1 et un modèle de référence donné.

Contrairement aux pulsations de type solaire, les pulsations d’étoiles en rotation rapide
demeurent beaucoup plus difficiles à interpréter à cause de la complexité des calculs
numériques pour calculer de telles oscillations, l’absence de motifs simples dans les spec-
tres de fréquences, et les difficultés qu’on a à prévoir l’amplitude de ces modes. Le travail
décrit ici cherche donc à s’adresser à ces difficultés une à la fois dans l’espoir de pou-
voir un jour effectuer des études astérosismiques détaillées de ces étoiles. Tout d’abord,
les équations d’oscillation non-adiabatiques sont décrites ainsi que leur implémentation
numérique. Le principe variationel et l’intégrale de travail sont abordés. Ceci est suivi
d’une classification succincte des modes auxquels on peut s’attendre dans une étoile en
rotation rapide. J’aborde ensuite les régularités présentes dans les spectres d’oscillations
de modes acoustiques d’̂ılots et comment celles-ci sont exploitées dans l’interprétation
de spectres observés. Ceci est suivi d’une description des techniques d’identification de
modes et des efforts afin de les adapter aux rotateurs rapides. Enfin, la dernière partie
aborde brièvement l’excitation des modes.

1Espacements en fréquences provoqués par la rotation stellaire.

4



Contents

Summary 3
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Chapter 1

Introduction

During the past century, stellar physics has undergone much development. Indeed,
progress in microphysics, fluid dynamics and numerical simulations has enabled us to
gain a better comprehension of the internal structure and evolution of stars thus lead-
ing to a basic understanding of the main stages in the life of a star. At the same time,
observations are helping to characterise stars in increasing detail, thereby placing tighter
constraints on current stellar models and revealing their shortcomings. New instruments
have enabled substantial progress in the following domains:

• interferometry: the combined use of multiple telescopes has lead to detailed im-
ages of the shapes of nearby stars. This has revealed, in particular, the sometimes
extreme centrifugal distortion of rapidly stars such as Achernar (Domiciano de Souza
et al. 2003, Kervella 2016), Altair (Monnier et al. 2007), Vega (Peterson et al. 2006),
and Rasalhague (Zhao et al. 2009), and has provided constraints on stellar radii and
limb darkening.

• spectropolarimetry: the instruments ESPaDOnS (Donati 2003), Narval (Aurière
2003), HARPSpol (Piskunov et al. 2011), NeoNarval, SPIRou (Donati et al. in Deeg
& Belmonte 2018), and SPIP have and will provide high-resolution polarimetric
spectra of stars thereby enabling a detailed reconstruction of the magnetic fields at
the stellar surface via the Zeeman Doppler Imaging technique (Semel 1989, Donati
et al. 2006).

• astrometry: the space mission Gaia (Perryman et al. 2001) is in the process of
revolutionising the field of astrometry by providing highly accurate stellar parallaxes
for an unprecedented number of stars. This leads to accurate distances which in
turn place tighter constraints on other stellar parameters.

• asteroseismology: dedicated space missions MOST (Walker et al. 2003, Matthews
et al. 2004), CoRoT (Baglin et al. 2009, Auvergne et al. 2009), Kepler (Borucki et al.
2009), and BRITE (Kuschnig et al. 2009) have dramatically increased the accuracy
with which stellar pulsations are observed for an ever increasing number of stars.
Forthcoming missions TESS (Ricker et al. 2015) and PLATO 2.0 (Catala et al. 2011,
Rauer et al. 2014) will further increase this number by covering a substantial part of
the sky. In parallel, ground based instruments, such as the SONG network (Grun-
dahl et al. 2008), are also providing spectroscopic observations of stellar pulsations
which complement space-based observations.
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8 Introduction

As is the case in many scientific domains, the interpretation of these new data has
revealed the limitations in our current models and how theory is lagging behind. For
instance, interferometric observations have shown the importance of going beyond a 1D
spherically symmetric modelling of rapidly rotating stars (e.g. Domiciano de Souza et al.
2003), and asteroseismic studies of red giants have shown the need for supplementary
transport mechanisms in order to explain the mismatch between their internal rotation
profiles and theoretical predictions (e.g. Eggenberger et al. 2012, Marques et al. 2013,
Ceillier et al. 2013). This highlights the importance of such observations as well as the
need to develop theory in order to interpret these.

The work presented here focuses on asteroseismology with an emphasis on theoretical
aspects. Asteroseismology, the study of stellar pulsations, is one of the most powerful
techniques for constraining stellar evolution models as it is currently the only way to
probe the internal structure of stars (apart from solar neutrino detections). It has and
will continue to provide a great deal of insight into stellar physics across the HR diagram
as will be made clear in the present document. My research has focused on two broad
categories of stars, listed here in order of increasing complexity:

1. solar-like pulsators: these include low-mass main-sequence stars and red giants,
characterised by a large convective envelope and stochastically excited pulsation
modes. The modes present in these stars tend to be acoustic modes or mixed modes
(i.e. which behave as acoustic modes in the envelope and gravity modes in the core).

2. rapidly rotating pulsators: these typically correspond to intermediate mass and
massive main sequence stars, which hardly have any surface convection but possess
a convective core. Their pulsation modes are typically excited by the classical κ
mechanism and can be acoustic, gravity or mixed modes.

Chapter 2 will deal with solar-like pulsators whereas Chapter 3 will address rapidly ro-
tating pulsating stars. This will then be followed by a brief conclusion and some perspec-
tives.



Chapter 2

Solar-like pulsators

2.1 Context

Solar-like pulsators correspond to stars with an effective temperature around 4500 to
6500 K and which harbour a convective envelope. This includes both main sequence stars
in a mass range of roughly 0.8 to 1.5 M� as well as red-giants. The convection zone
stochastically excites stable acoustic oscillation modes as well as mixed modes in the case
of red giants. The corresponding frequency spectra contain patterns which are easy to
recognise, thus allowing a clear identification of the modes in many cases, i.e. finding the
correspondence between observed and theoretical pulsations. Accordingly, much progress
has been made in the field of stellar physics thanks to the study of these stars and their
oscillations, and thanks to the unprecedented observations from CoRoT and Kepler. For
instance, it is possible to determine stellar properties such as mass, radius, and age to
a much higher degree of accuracy (e.g. Metcalfe et al. 2010, Chaplin et al. 2014, Silva
Aguirre et al. 2015, 2017), determine the core rotation rates of red giants (e.g. Beck et al.
2012, Deheuvels et al. 2012, 2014), distinguish between ascending red giant branch stars
(which burn hydrogen in a shell around a helium core) and red clump stars (which burn
helium in their core) (e.g. Mosser et al. 2012, Christensen-Dalsgaard 2014), etc. This in
turn has an impact on other fields in astrophysics. For instance, obtaining precise stellar
properties plays a key role in characterising stellar populations in the Milky Way and
reconstructing its history (Miglio et al. 2013, Casagrande et al. 2014). Also, in order to
characterise exoplanets and distinguish, for instance, between rocky planets and gaseous
giants, one needs to know precisely the characteristics of the host star (see e.g. Guillot &
Havel 2011, and references therein).

Future space missions such as TESS and especially PLATO 2.0 will dramatically in-
crease the number of stars in which oscillations are observed. Solar-like stars are a prime
target for PLATO 2.0. Indeed, the goal of this mission is to observe and characterise
precisely nearby exoplanetary systems, and hence the host stars (Rauer et al. 2014). Ac-
cordingly, there are stringent requirements on the accuracy with which the mass, radius,
and ages of these stars should be determined. Hence, the stellar physics community is
working hard on developing asteroseismic methods which can both meet these require-
ments and handle the large number of stars. This work goes hand in hand with efforts to
improve the physical ingredients which are used in stellar models.

Different methods exist for carrying out helio- and asteroseismic inferences, as ex-
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10 CHAPTER 2 : Solar-like pulsators

pressed in the following quotation from Gough (1985):

Inversions can conveniently be divided into three categories. The simplest
consists of the execution of the forward problem using solar models with a
few adjustable parameters, and the calibration of those parameters by fitting
theory to observation. The second is the use of analytical methods. [...]
Thirdly, there are the formal inversion techniques borrowed from geophysics
that have been used on real and artificial solar data.

The work presented in this chapter focuses on two of these three categories. Section 2.2
describes the AIMS code, a Bayesian code which applies forward modelling (i.e. repeated
“execution of the forward problem”). Then, Sect. 2.3 describes an inversion technique for
estimating the mean density of a star. Finally, Sect. 2.4 talks about consistency checks
on rotational splittings in red giant stars, using the same basis as formal inversions.

2.2 Forward modelling with AIMS

2.2.1 A brief survey of forward modelling methods

The most basic type of forward modelling consists in simply scanning a grid of stellar
models in search of a best fitting model. One may improve this approach and make it more
sophisticated by applying a Bayesian analysis to the results, thus obtaining probability
distributions for each of the stellar parameters. This is the approach taken by BASTA1

(Serenelli et al. 2013, Silva Aguirre et al. 2015). One of the important questions when
applying such an approach is the number of parameters to be used when setting up the
grid, and the grid resolution for each of these parameters. Ideally, one would like a large
set of parameters in order to test multiple aspects of stellar physics, and a high resolution
in order to obtain precise results. However, one needs to limit the number of parameters
and resolution in order to have a reasonable size for the grid.

One of the ways to try to overcome this limitation is to use interpolation within the
grid thus allowing a lower resolution. This is the approach taken by AIMS2 (Silva Aguirre
et al. 2017, , Rendle et al., in prep.). Furthermore, the MCMC3 algorithm used in AIMS
requires being able to calculate a model at any point within the relevant parameter space.
One of the issues with interpolation is interpolation errors. These need to be quantified
and compared with typical observational error bars (see Rendle et al., in prep.).

Another approach is to bypass interpolation altogether by calculating models on-the-
fly using a stellar evolution code. This is the approach taken in AMP4 (Metcalfe et al.
2009, 2014) and in Brassard et al. (2001), Charpinet et al. (2005) and Van Grootel et al.
(2013)5, both of which use genetic algorithms. There is also the work by Bazot et al.
(2012) where an MCMC algorithm is used instead. Calculating models on-the-fly will

1BAyesian STellar Algorithm.
2Asteroseismic Inferences on a Massive Scale – this is one of the codes I wrote, with the help of

colleagues, during my postdoc in Birmingham as a deliverable for the SpaceInn network (see Sect. A.2).
3Monte Carlo Markov Chain
4Asteroseismic Modelling Portal, see https://amp.phys.au.dk/.
5We note that the models used in this approach are static models rather than the product of a stellar

evolution code.

https://amp.phys.au.dk/


Forward modelling with AIMS 11

lead to the most accurate results. However, it also considerably increases the numerical
cost, thus limiting the number of stars to which such an approach can be applied.

2.2.2 A description of AIMS

Figure 2.1 provides a flowchart which outlines how AIMS works, what sort of inputs it
requires, and what sort of results are obtained. In the heart of the code is an MCMC
algorithm implemented via the EMCEE python package6 (Foreman-Mackey et al. 2013).
The EMCEE algorithms requires an initial group of “walkers”, i.e. initial models or points
in the parameter space, which will then progressively explore the parameter space through
an iterative process based on the probabilities for each model. The probabilities associated
with each model is deduced from Bayes’ theorem:

p(θ|O)︸ ︷︷ ︸
posterior

∝ p(O|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
priors

(2.1)

where θ represents the stellar parameters and O various seismic and classic observables.
After a sufficient number of iterations, the group of walkers reaches a stationary state,
representative of the probability distribution function (PDF) for the stellar parameters.
This distribution of models can then be used to find optimal stellar parameters and
associated error bars.

Grid of models
● n-dimensional (n ≥ 3)
● pre-computed pulsation
 frequencies

● optional surface effects
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AIMS = “Asteroseismic Inference on a Massive Scale”
● unstructured linear interpolation
● MCMC approach with parallel tempering (via the python
 EMCEE package, Foreman-Mackey et al. 2013)
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● probability distribution
 functions for different
 parameters

Estimated properties
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 functions for different
 parameters
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● provides coefficients for inter-
 polating acoustic structure
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Representative models
● provides coefficients for inter-
 polating acoustic structure

● allows inversions

Figure 2.1: A flowchart for the AIMS code.

A second very important component of AIMS is model interpolation. This takes place
in two steps:

6http://dfm.io/emcee/current/



12 CHAPTER 2 : Solar-like pulsators

• interpolation along evolutionary tracks: this consists in carrying out a linear
interpolation of the two models closest to the desired age. Rather than interpolating
according to the physical age, one can choose to interpolate according to a scaled age
in which each evolutionary track goes from 0 to 1. If the tracks cover comparable
phases in stellar evolution (e.g. the main sequence), this likely leads to combining
models at similar stages when interpolating between evolutionary tracks as described
in the following point. A more sophisticated approach involving an equivalent age
parameter is implemented in SPInS7 and may be implemented in AIMS at some
point in the future.

• interpolation within the grid of models: this is achieved thanks to a Delaunay
tessellation of the parameter space excluding stellar age (see Fig. 2.2). The algorithm
will search for the simplex (i.e. a triangle in 2D, a tetrahedron in 3D, etc.) which
contains the relevant point, then perform a linear interpolation of the models at
the vertices. This ensures that the interpolated quantities will remain continuous
throughout the parameter space.

When interpolating between two given models, AIMS linearly combines some of the global
parameters, and deduces the remaining parameters in a self-consistent way. In particular,
the masses and mean densities are interpolated linearly, but the radius is deduced from the
interpolated mass and mean density. The non-dimensional frequencies are interpolated
linearly then rescaled using the interpolated mean density.

Figure 2.3 illustrates the sort of distribution (or sample) of models that can be ob-
tained with AIMS for a set of observational constraints. Each subplot represents either
a histogram for a given parameter or a scatter plot for two parameters, colour-coded
according to the density of the points (hence, red is used for a high density of walkers
and typically corresponds to models which fit the observations better). AIMS has been
applied to most of the stars in the Kepler Legacy sample (Silva Aguirre et al. 2017), and
has also been used to investigate the systematic effects which result from different phys-
ical ingredients or different surface correction recipes (Nsamba et al. 2018). Currently,
Rendle et al. is carrying out various tests to quantify interpolation errors in AIMS, both
for global quantities and mode frequencies, and to check whether the dispersion in the
output set of models is truly representative of the observational error bars.

2.3 Inversions of the mean density

One of the drawbacks with forward modelling is its model-dependence. Hence, if a physical
ingredient is missing from the models, forward modelling can at most show something is
wrong with the models by producing a poor fit to the observations, but it does not provide
a diagnostic as to what is wrong. To go beyond this limitation, it is necessary to be able
to go outside the parameter space represented by the stellar evolution code (or the grid
of models) by allowing more general modifications of the model. This is precisely what is
achieved in inversion methods. Indeed, most inversion techniques rely on integral relations
which relate pulsation frequency modifications to structural changes, such as the following

7“Stellar Parameters INferred Systematically”. This code is derived from AIMS but does not include
the seismic component – see Sect. A.2.
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Figure 2.2: Tessellation of the grid of models by Coelho et al. (2015) and used by AIMS.

one8:

δωn, `
ωn, `

=

∫ 1

0

Kn, `
ρ,Γ1

(x)
δρ

ρ
dx+

∫ 1

0

Kn, `
Γ1, ρ

(x)
δΓ1

Γ1

dx (2.2)

where x = r/R, ωn, ` represents the frequency of a given pulsation mode, (n, `) its quantum
numbers, ρ the density profile, and Γ1 = (∂ lnP/∂ ln ρ)ad the profile of the first adiabatic
exponent. We note that a surface term has been neglected in the above expression. δ
represents a modification of the model or the difference between the observed star and
the reference model used to interpret the observations – hence, δωn, ` would be derived
from observations, whereas δρ and δΓ1 would be unknown functions which we would like
to constrain. Kn, `

ρ,Γ1
and Kn, `

Γ1, ρ
are structural kernels which quantify the pulsation mode’s

response to a structural change. These kernels are obtained by perturbing an integral
relation between the pulsation frequencies and their corresponding pulsation modes and
making use of the variational principle (Gough & Thompson 1991, see also Sect. 3.2.3).
The above kernels can then be transformed into kernels for other structural quantities
using various methods (e.g. Buldgen et al. 2017b).

At this point, two different strategies exist for carrying out the inversion. The first
consists in discretising the unknown structural profiles (δρ and δΓ1 in our case) and
adjusting them, typically through a regularised least-squares (RLS) fit, so as to reproduce

8We note that some inversion techniques rely on an entirely different methodology involving internal
phases of the pulsation modes (e.g. Vorontsov et al. 2013, Roxburgh 2015) or the additive constant from
Tassoul’s asymptotic formula (Roxburgh 2016).
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Figure 2.3: Set of plots which show the distribution of models obtained for a set of classic
and seismic constraints on KIC 10963065.
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the δωn, `/ωn, `. In the case of a linear method, the inverted value of say the density
modification, δρinv/ρ, at some point x0 will be a linear combination of the frequency
shifts. As pointed out in (Christensen-Dalsgaard et al. 1990), the coefficients from this
linear combination, cn, `, can then be used to construct an “averaging kernel”, Kavg, and
a “cross-term” kernel, Kcross:

δρinv

ρ
(x0) =

∑
i

ci
δωi
ωi

=

∫ 1

0

Kavg(x)
δρ

ρ
dx+

∫ 1

0

Kcross(x)
δΓ1

Γ1

dx (2.3)

Kavg(x) =
∑
i

ciK
i
ρ,Γ1

(x) (2.4)

Kcross(x) =
∑
i

ciK
i
Γ1, ρ

(x) (2.5)

where i is shorthand for (n, `) and where we made use of Eq. (2.2). The averaging and
cross-term kernels therefore show the true relation between δρinv/ρ and (δρ/ρ, δΓ1/Γ1).
Ideally, one would like Kavg to be small everywhere, except at x0, and have an integral
equal to 1, in order to provide a good estimate of (δρinv/ρ)(x0). Likewise, Kcross needs to
be small everywhere in order to reduce the cross-talk from δΓ1/Γ1.

The second inversion strategy consists in directly optimising Kavg and Kcross. In the
Subtractive Optimally Localised Averages inversion method (SOLA Pijpers & Thompson
1992, 1994), one tries to minimise the difference between Kavg and a target function, and
likewise for Kcross. A narrow Gaussian function is typically used as a target function for
Kavg as it is impossible to reproduce a perfect Dirac function.

Using the above strategies, various rotation and structural inversions have been carried
out for the sun (e.g. Basu et al. 1997, Schou et al. 1998, Thompson et al. 2003). In the case
of stars other than the sun, it is possible to carry out rotation inversions (e.g. Deheuvels
et al. 2012, 2014) but structural inversions remain difficult given that two functions are
being inverted simultaneously (as opposed to rotation inversions). However, one can still
use structural inversions to constrain global stellar properties using a careful choice of the
target function in a SOLA-type inversion. For instance, the following target function in
a (ρ,Γ1) inversion leads to an estimate of the relative difference in mean density between
the observed star and the reference model, as was shown in Reese et al. (2012):

T (x) = 4πx2ρ(x)

ρR
(2.6)

where ρR = M/R3. This inversion is linear, meaning that if the mean density of the
reference model is very different from that of the observed star, the inverted mean density
will be rather inaccurate. However, as was shown in Reese et al. (2012), one can carry
out the inversion, rescale the reference model to the inverted mean density, and repeat
the inversion and rescaling till convergence. This leads to following formula for the final
mean density estimate:

ρ
inv

= ρ
ref

(
1

2

∑
i

ci
ωobs
i

ωref
i

)2

(2.7)

where ρ
inv

is the inverted mean density, ρ
ref

the mean density of the reference model, and
ci the inversion coefficients. This extended form is more robust to large differences be-
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tween the reference and observed models. Even then, if the two have completely different
structures, the results will be poor.

The left panel of Fig. 2.4 shows inversion results for α Cen B using a set of 93 reference
models. As can be seen, although the reference models have very different mean densities,
the inverted mean densities span a much smaller range of values, thus showing the effi-
ciency of the method. In the same plots, results from Kjeldsen et al. (2008), the ∆ν ∝ √ρ
scaling law, and a scaling law based on Kjeldsen et al. (2008) are shown. A comparison
of these different approaches show that the SOLA inversion is comparable to the results
and the scaling law from Kjeldsen et al. (2008). The ∆ν scaling law leads to somewhat
different results with a larger dispersion, probably as a result of surface effects. The right
panel shows the averaging kernel for one of the inversions. Furthermore, averaging kernels
for the ∆ν and the Kjeldsen et al. (2008) scaling laws are shown – as was shown in Reese
et al. (2012), it is possible to express these scaling laws in differential form, extract the
equivalent of inversion coefficients, and produce averaging kernels from these. As can be
seen, the ∆ν scaling law produces a highly oscillatory averaging kernel which is further
from the target function than the two other averaging kernels, especially near the surface,
thus explaining its high sensitivity to surface effects.

Figure 2.4: (Left) Mean density inversion results for α Cen B for a set of 93 models. The x-
axis indicates the mean densities of the reference models whereas the y-axis corresponds
to the inverted mean densities. The horizontal dashed triple dot black lines show the
mean density estimates from Kjeldsen et al. (2008). SOLA corresponds to the inversions,
〈∆ν〉 to the simple ∆ν scaling law, and KBCD to the scaling law deduced from Kjeldsen
et al. (2008). The inversions in the upper panel have no surface correction terms, whereas
the lower panel corresponds to one surface correction term in the inversions. (Right)
Averaging kernels for a mean density inversion (“SOLA”), a simple ∆ν scaling law, and a
scaling law derived from Kjeldsen et al. (2008). The target function is shown as a dashed
black line (figures based on Reese et al. 2012).

As described in Sects. A.5.1 and A.5.2, G. Buldgen pursued this work by extending the
method to other global quantities, namely the acoustic radius, an age indicator based on
the small frequency separation, and various internal structure and mixing indicators, and
by applying these inversions to various stars (Buldgen et al. 2015b,a, 2016a,b, 2017b,a,
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2018). The next step is to systematically apply some of these global inversions to outputs
from the AIMS code in order to refine the estimates of some of the stellar properties.
This has already partially implemented thanks to the InterpolateModel program which
produces interpolated models using the interpolation coefficients from AIMS, and the
InversionPipeline program which systematically applies some of the above inversions
(see Sect. A.2).

2.4 Inequalities on rotational splittings

More subtle information can be gleaned from inverse type methods. Indeed, as was shown
in Reese (2015), it is possible to test whether a decreasing rotation profile or one which
satisfies Rayleigh’s stability criterion9 is compatible with a set of rotational splittings
and a given reference model. To illustrate how this works, I first recall the relationship
between a rotational splitting and the rotation profile (assuming the rotation profile only
depends on r, the radial coordinate):

sn, ` ≡
ωn, `,−m − ωn, `, 0

m
= (1− Cn, `)

∫ R

0

Kn, `(r)Ω(r)dr

= (1− Cn, `)
[
Ω(R)−

∫ R

0

dΩ

dr
In, `(r)dr

]
(2.8)

where sn,` is a rotational splitting, ωn, `,m the pulsation frequency of the mode with quan-
tum numbers10 (n, `, m), Cn, ` the Ledoux constant (Ledoux 1951), Kn, `(r) the relevant
rotation kernel, In, `(r) =

∫ r
0
Kn, `(r

′)dr′ the integrated rotation kernel, and Ω(r) the rota-
tion profile. The last equality was obtained by doing an integration by parts and making
use of the fact that

∫ R
0
Kn, `(r)dr = 1. As pointed out in Reese (2015), the functions

Kn, `(r) are positive (and strictly so apart from isolated points). Hence, the functions
In, `(r) are strictly positive except for r = 0. Furthermore, they tend to line up for similar
values of ` as can be seen in the left panel of Fig. 2.5.

We then need to consider two modes, labelled i and j (which is shorthand for (n, `)
and (n′, `′)). If one can then find two positive constants such that:

aIj(r) ≤ Ii(r) ≤ bIj(r), for 0 ≤ r ≤ R (2.9)

then multiplying this inequality −dΩ
dr

, which we assume is positive, and integrating from
0 to R leads to the following inequality:

a
[
s′j − Ω(R)

]
≤ [s′i − Ω(R)] ≤ b

[
s′j − Ω(R)

]
, (2.10)

where s′i = si/(1 − Ci), and where we’ve made use of Eq. (2.8). If Ω(R) ≥ 0, this
inequality may be simplified to a s′j ≤ s′i ≤ bs′j although this is a less restrictive condition.
Another variant of this inequality, which is possibly more constraining, may be obtained
by excluding the centre of the star and choosing an upper bound on −dΩ

dr
over the excluded

region. Also, it is possible to combine the information from multiple modes and come up

9According to this criterion, the angular momentum must increase as the distance to the rotation axis
increases, otherwise a dynamical instability will set in.

10Here, we are using the “retrograde” convention, i.e., modes with positive m values are retrograde.
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Figure 2.5: (Left) Integrated rotation kernels for several modes. (Right) A comparison
between an observed rotational splitting (horizontal solid line) with its error bars (hor-
izontal dotted lines) and inequalities based on the assumption of a decreasing rotation
profile (vertical segments – the light blue extensions show the error bars). The vertical
dotted line shows the frequency of the mode being tested. As can be seen, the inequalities
break down just above 120µHz and around 150µHz (taken from Reese 2015).

with other inequalities. Finally, equivalent inequalities may be obtained for Rayleigh’s
stability criterion.

If the rotational splittings fail to meet this inequality then either the assumption
dΩ
dr
≤ 0 is false, or the reference model with which the rotation kernels are calculated is

a poor match to the observed star. The right panel of Fig. 2.5 shows an example where
some of the inequalities break down in a red giant model. The cause for this break down
is a mismatch of the density profiles between the observed target and the reference model
used in the interpretation, in the upper 0.5 % of the star. Because of this mismatch, the
pulsation modes in the reference model have slightly different relative sensitivities to the
core and the surface of the star compared to the modes in the observed target. However,
such differences in sensitivity may be masked by correcting the pulsation frequencies with
surface correction recipe such as the one proposed in Kjeldsen et al. (2008), thus showing
the need for surface effect corrections which also correct the pulsation modes.



Chapter 3

Oscillations of rapidly rotating stars

3.1 Context

Stellar rotation is one of the major obstacles in the study of stellar evolution and the
interpretation of stellar pulsations. Indeed, two new forces are introduced: the centrifugal
and Coriolis forces. These cause stellar deformation, a non-uniform surface temperature
known as gravity darkening, baroclinic flows which include both meridional circulation
and differential rotation, various forms of turbulence, and the transport of chemical species
and angular momentum (e.g. Maeder 2009). Nonetheless, rapidly rotating stars play an
important role in several domains of astrophysics. Indeed, the majority of massive and
intermediate mass stars are rotating rapidly (Royer 2009). Massive stars dominate the
evolution and structure of galaxies thanks to their winds, their radiation, the resultant
supernovae and the chemical enrichment of the interstellar medium (Zinnecker & Yorke
2007). Intermediate masses represent the upper limit on stars which host exoplanets (see
http://exoplanets.org). Furthermore, many intermediate mass stars, notably δ Scuti
stars, have very rich pulsational spectra (Poretti et al. 2009). Primordial stars are very
likely rapidly rotating because they are compact and they lose little mass and angular-
momentum (Ekström et al. 2008). However, these are the stars which reionised the early
universe and which started the production of heavier elements. Finally, rapid rotation
plays a critical role in the precursors to gamma ray bursts. Indeed, all of the scenarios
which are currently proposed require a very large amount of angular momentum (see
Woosley & Heger 2006, and references therein).

Modelling rapidly rotating stars has already yielded a number of interesting results.
As succinctly stated in Meynet & Maeder (2005a):

Rotating models can reproduce the chemical enrichments observed at the
surface of OBA stars (Heger & Langer 2000, Meynet & Maeder 2000), the
number ratio of blue to red supergiants in the Small Magellanic Cloud (Maeder
& Meynet 2001), the variation with the metallicity of the number ratio of Wolf-
Rayet to O type stars (Meynet & Maeder 2003) as well as of the type Ibc to
type II supernoave (Prantzos & Boissier 2003, Meynet & Maeder 2005b).

However, various recent observations of early B-type stars in the Large Magellanic Cloud
have shown mismatches between the nitrogen enrichment and theoretical expectations
(Hunter et al. 2008, Brott et al. 2011). Galactic O stars, nonetheless, are in better
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agreement with theoretical expectations (Martins et al. 2017). Furthermore, most of these
models are based on the assumption that turbulence is much stronger in the horizontal
rather than vertical direction, thereby causing a “shellular” rotation profile (i.e., a profile
which depends on isobars only) and an essentially 1D formalism (Zahn 1992). However, it
is not clear up to what rotation rates such an approach is valid. Recently, rotation profiles
have been self-consistently calculated from baroclinic effects in the 2D Evolution STEllaire
en Rotation (ESTER) code (Rieutord & Espinosa Lara 2013, Espinosa Lara & Rieutord
2013, Rieutord et al. 2016). These depend on latitude thus departing from a shellular
profile. Finally, most of these models have not been tested through asteroseismology – it
is only their surface quantities which have been compared with observations.

Carrying out asteroseismology in rapidly rotating stars is by no means a straight-
forward task. As was highlighted in Reese et al. (2006), and as is shown by interferometric
observations (e.g. Domiciano de Souza et al. 2003, Kervella & Domiciano de Souza 2006,
Monnier et al. 2007), only a 2D approach will allow us to model rapidly rotating stars
and their oscillations. Coming up with accurate 2D pulsation calculations has only been
achieved in recent years with the advent of improved computing capabilities as well as
highly accurate pulsation codes (e.g. Reese et al. 2006, Ouazzani et al. 2012). Further-
more, identifying modes, i.e. finding the correspondence between observed pulsations and
their theoretical counterparts, is not a straightforward task (e.g. Goupil et al. 2005 and
Fig. 5 of Deupree 2011). Nonetheless, this is a prerequisite before carrying out detailed
asteroseismology. Finally, given that it is mainly massive and intermediate mass stars
which rotate rapidly, the pulsation modes in such stars are excited, for the most part, by
the κ mechanism. Such a mechanism leads to a non-linear saturation of mode amplitudes
and couplings between different modes (e.g. Dziembowski et al. 1988). Accordingly, cur-
rent theory is not able to predict the amplitudes of these modes. As a result, it has not
yet been possible to carry out the same type of detailed asteroseismic deductions as what
has been achieved for solar-like pulsators.

In order to address some of the above difficulties, a substantial part of my research
has focused on the theoretical aspects related to pulsations in rapidly rotating stars. This
work will be presented in the following sections. Section 3.2 will describe the pulsation
equations in rapidly rotating stars, both in the adiabatic and non-adiabatic cases, and
their implementation in a numerical code. This will be followed by a description of the
variational principle as well as the work integral for non-adiabatic calculations. Section 3.4
will deal with frequency patterns obtained for a particular class of acoustic modes at rapid
rotation rates, as well as observations which seem to confirm these predictions. This
will be followed by a description of the observational signatures which can be used in
mode identification strategies, namely amplitude ratios, phase differences, and line-profile
variations (LPVs). The final section will briefly deal with mode excitation.

3.2 Pulsation calculations

3.2.1 Pulsation equations

In order to obtain the pulsation equations, one first has to start off with an equilibrium
model of a rotating star. Ω will denote its rotation profile. At this point, it is interesting
to distinguish between stars with a conservative rotation profile and those with a non-
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conservative profile. When the rotation profile is conservative, the centrifugal force derives
from a potential, and the the structure of the star is barotropic, i.e. lines of constant
density and pressure coincide (as can be seen by taking the curl of Euler’s equation). It
turns out that a necessary and sufficient condition for a rotation profile to be conservative
is that it only depends on the distance to the rotation axis, i.e. it is cylindrical. A
good example of models with conservative rotation profiles are SCF models (Jackson
et al. 2005, MacGregor et al. 2007). Such stellar models, however, do not respect energy
conservation locally. Indeed, due to the propagation of energy, isotherms tend to take
on a more spherical shape compared to isobars, thus leading to a baroclinic structure
where isobars and isochores do not coincide. This baroclinic stellar structure in turn
leads to a non-conservative differential rotation profile (see, e.g. Fig. 3.1) and meridional
circulation. As mentioned above, Zahn (1992) proposed an approximate way of modelling
such phenomena including the resultant transport of chemical elements thanks to the
assumption that horizontal turbulence is much stronger than vertical turbulence, thus
leading to a shellular rotation profile. This approach is essentially 1D and has accordingly
been included in various stellar evolution codes (e.g. Palacios et al. 2003, Eggenberger et al.
2008, Marques et al. 2013). At more rapid rotation rates, a full 2D approach is necessary
to model such stars. This has recently been achieved in the ESTER code in which the
effects of stellar evolution are in the process of being included (Rieutord & Espinosa Lara
2013, Espinosa Lara & Rieutord 2013, Rieutord et al. 2016).

The equilibrium model is then perturbed by the pulsations. The pulsations are as-
sumed to have a small amplitude. Thus, second order or higher order terms, resulting for
instance from the product of perturbations, are neglected. This assumption considerably
simplifies the system of equations by only retaining linear terms, but also makes it im-
possible to predict the pulsation amplitudes, when these are excited by the κ mechanism.
The pulsations are assumed to have a time dependence of the form exp(iωt). Finally, the
star is assumed to be symmetric with respect to the rotation axis. Accordingly, pulsation
modes will be have an azimuthal dependence of the form exp(imφ) where m is the az-
imuthal order and φ the azimuthal angle1. This leads to the following system of equation
in an inertial frame of reference:

0 =
δρ

ρ0

+ ~∇ · ~ξ, (3.1)

0 = [ω +mΩ]2 ~ξ − 2i~Ω× [ω +mΩ] ~ξ − ~Ω×
(
~Ω× ~ξ

)
− ~ξ · ~∇

(
sΩ2~es

)
−P0

ρ0

~∇
(
δP

P0

)
+
~∇P0

ρ0

(
δρ

ρ0

− δP

P0

)
− ~∇Ψ′ + ~∇

(
~ξ · ~∇P0

ρ0

)

+

(
~ξ · ~∇P0

)
~∇ρ0 −

(
~ξ · ~∇ρ0

)
~∇P0

ρ2
0

(3.2)

0 = ∆Ψ′ − 4πG

(
ρ0
δρ

ρ0

− ~ξ · ~∇ρ0

)
, (3.3)

1The above forms for the time and azimuthal dependencies lead to what could be called the “retro-
grade” convention, i.e. modes with a positive m value correspond to retrograde modes. The opposite
convention, where positive m values correspond to prograde modes, can be achieved by taking a time
dependence of the form exp(−iωt).
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where δ denotes a Lagrangian perturbation, a prime ′ an Eulerian perturbation, the
subscript “0” equilibrium quantities, ~ξ the Lagrangian displacement, ρ the density, P the
pressure, Ψ the gravitational potential, and G is the gravitational constant. The first of
these equations is the continuity equation and expresses the conservation of matter. The
second is Euler’s equation and corresponds to the conservation of momentum. The third
equation is Poisson’s equation and relates the gravitational potential to the distribution
of matter. The above system of equation is written for the general baroclinic case. If the
star were barotropic, the last term in Euler’s equation would vanish. One effect which
is not taken into account is meridional circulation. This is, however, expected to play a
marginal role given the small velocities involved.

This system of equations needs to be completed as it contains one more unknown than
equations. A simple way of closing this system is by including the adiabatic relation:

δP

P0

= Γ1
δρ

ρ0

(3.4)

where Γ1 = (∂ lnP/∂ ln ρ)ad is the first adiabatic exponent. Imposing this equation
amounts to neglecting heat transfers during the oscillatory motions, an approximation
which is well verified in the stellar interior but not near the surface. Accordingly, the
pulsation frequencies obtained this way remain very accurate, but it is not possible to cal-
culate which modes are excited by the κ mechanism (or other mode excitation mechanisms
excluding stochastic excitation).

In order to include heat transfers during the oscillatory motions and hence carry out
a full non-adiabatic calculation, one must deal with the equation of energy conservation.
The unperturbed form is:

T0
dS0

dt
= ε0 −

~∇ · ~F0

ρ0

(3.5)

where T corresponds to temperature, S to entropy, ε to the energy production rate (mainly

from nuclear reactions), and ~F to the energy flux (Dupret, PhD Thesis, page 274). Per-
turbing this equation with a pulsation mode yields:

i(ω+mΩ)ρ0T0δS = ε0ρ0

(
δε

ε0
+
δρ

ρ0

)
− ~∇· δ ~F + ~ξ · ~∇

(
~∇ · ~F0

)
− ~∇·

[(
~ξ · ~∇

)
~F0

]
(3.6)

In what follows, we will neglect the Lagrangian perturbations to the energy production
rate, δε.

The the energy flux can be separated into two main components:

~F0 = ~FR
0 + ~FC

0 (3.7)

where ~FR
0 is the radiative energy flux, and ~FC

0 the energy flux from convection. The
radiative energy flux is given by the following relation:

~FR
0 = −4acT 3

0

3κ0ρ0

~∇T0 (3.8)

where a is the radiation constant (deduced from the Stefan-Boltzmann constant), c the
speed of light, and κ the Rosseland mean opacity. This equation can be perturbed as
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follows:

δ ~FR =

[
4
δT

T0

− δκ

κ0

− δρ

ρ0

]
~FR

0 −
4acT 3

0

3κ0ρ0

[
T0
~∇
(
δT

T0

)
+ ~ξ · ~∇

(
~∇T0

)
− ~∇

(
~ξ · ~∇T0

)]
(3.9)

In the frozen convection approximation, the Lagrangian perturbation to the convective
energy flux is neglected:

δ ~FC ' ~0 (3.10)

Such an approximation neglects the interactions between pulsations and convections thus
making it difficult to predict the red edge of the δ Scuti instability strip due to the
thin convective envelope present in these stars. A more realistic treatment such as time-
dependent convection yields results in better agreement with observations (Dupret et al.
2004). However, such a treatment has not yet been implemented in the case of rapidly
rotating stars.

Finally, the non-adiabatic equations are completed with perturbed equations of state
and opacities. To this must be added various boundary conditions which ensure the
solutions remain regular in the centre, the perturbations to the gravitational potential
vanish at infinity, and the pressure and temperature variations take on the appropriate
behaviour at the surface. More realistic surface conditions could be obtained if model
stellar atmospheres were added onto the internal structure and a treatment similar to
what is done in Dupret et al. (2003) carried out. However, this would imply using a grid
of model atmospheres given that the effective temperature depends on latitude in rotating
stars. This has yet to be implemented.

In the end, we end up with a generalised eigenvalue problem where the pulsation
frequencies are the eigenvalues, and the various perturbations to equilibrium quantities
correspond to the eigenvectors. In contrast to the non-rotating, spherically symmetric
case, this problem is non-separable with respect to the radial coordinate, r or ζ, and
the co-latitude, θ. However, there remains the symmetry with respect to the rotation
axis, thereby allowing the φ coordinate to be separated from the two other coordinates.
Hence, this problem is two-dimensional and must be solved numerically as described in
the following section.

3.2.2 Numerical implementation

The above system of equations is solved numerically in the Two-dimensional Oscillation
Program (TOP, see Reese et al. 2006, 2009a). The numerical implementation can be
broken down in two parts. The first part is the discretisation which transforms the
above system of differential equations into matrix form. The second part corresponds to
numerically solving this problem using a standard eigenvalue solver.

The first step in discretising the above system is expressing explicitly the equations in
terms of a surface-fitting coordinate system such as the one illustrated in Fig. 3.1 for an
ESTER model. The advantage of using surface-fitting coordinates is that it is possible to
impose boundary conditions without loss of accuracy.

The equations are then projected onto the spherical harmonic basis. This is a two-step
procedure. First the variables are expressed as sums of spherical harmonics. For instance,
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Figure 3.1: Coordinate system
and rotation profile in an ES-
TER model (taken from Rieutord
et al. 2016). ESTER models use
a multi-domain approach as can
be seen from the coordinate sys-
tem. The rotation rates are in-
dicated by the colour bar, where

ΩK =
√
GM/R3

eq is the Keple-

rian break-up rotation rate and
Req the equatorial radius.

the perturbation to the gravitational potential becomes:

Ψ′(ζ, θ, φ) =
∞∑

`=|m|

Ψ`
m(ζ)Y m

` (θ, φ) (3.11)

where ζ is the radial coordinate, ` the harmonic degree, m the azimuthal order, Ψ`
m a

radial function, and Y m
` a spherical harmonic. More complicated expressions also exist

for vectorial quantities. Then, the product between the equations and various spherical
harmonics are integrated over 4π steradians. For the continuity equation, one would have:

∫∫
4π

{Continuity equation} (Y m
`′ )∗ sin θdθdφ, |m|≤ `′ ≤ ∞ (3.12)

where (.)∗ denotes the complex conjugate. This leads to an infinite system of coupled
1D differential equations in terms of the radial variable ζ, which is then truncated at
some maximal value of ` and `′. The coefficients which intervene in these equations are
typically coupling integrals of the form:

C``′(ζ) =

∫∫
4π

G(ζ, θ)Y m
` (θ, φ) [Y m

`′ (θ, φ)]∗ sin θdθdφ (3.13)

where G(ζ, θ) is typically a model-related or geometric function, and C``′(ζ) the resultant
coupling coefficient. These coupling integrals are calculated via Gauss-Legendre quadra-
tures which are both efficient and accurate numerically.

Finally, the equations are discretised in the radial direction. For the sake of consistency,
a similar discretisation is used in the pulsation calculations as in the models. For instance,
in the case of SCF models, a finite-differences approach is used (Reese et al. 2009a, 2013)
based on the numerically stable scheme described in Reese (2013). In ESTER models, a
multi-domain spectral approach based on Chebyshev polynomials is used. In contrast to
finite difference, one of the limitations of spectral approaches is that the grid is imposed
beforehand for a given resolution thus hindering us from increasing the number of grid
points where there are rapid spatial variations. The use of multiple domains bypasses
this limitation by allowing us to introduce domains with a high resolution in the regions
of the star where it is needed. A second advantage of the multi-domain approach is the
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possibility of introducing true discontinuities in the stellar model and investigating their
impact on stellar pulsations (Reese et al. 2011, 2014).

Once the problem has been discretised, it takes on the following form:

A~v = ωB~v (3.14)

where A and B are square matrices, ~v the eigenmode, and ω the eigenvalue (i.e. the pul-
sation frequency). In some cases, higher powers of the eigenvalue intervene. However, it
is possible to rewrite the system so that it takes on the form given by Eq. (3.14) thanks
to appropriate definitions of A, B, and ~v. This problem is solved for a few eigenmodes
with the largest eigenvalues in terms of absolute value thanks to the Arnoldi-Chebyshev
algorithm, in which the original system is approximated by a smaller matrix based on
successive applications of the A matrix to a starting vector. In order to calculate eigen-
values around a target value σ, the above problem can be rewritten using the following
spectral transformation:

(A− σB)−1 B~v = µ~v (3.15)

where µ plays the role of an eigenvalue and ω = σ + 1/µ. As can be seen, solutions with
large values of |µ| are those which are closest to σ. Hence, applying the Arnoldi-Chebyshev
algorithm to this modified version of the eigenvalue problem will yield the eigensolutions
closest to σ.

An important contribution to the numerical cost is factoring the matrix A − σB, a
necessary step when applying (A − σB)−1. In the case of SCF models, A − σB has
a band structure as a result of using finite differences. Efficient algorithms have been
implemented within the linear algebra LAPACK library2 in order to factor such matrices.
When dealing with the multi-domain spectral ESTER models, A− σB takes on a block
tridiagonal structure. It is then possible to factorise only the diagonal blocks including
some corrective terms rather than factorising the entire matrix. Once more, this reduces
the amount of computation time and computer memory involved in the factorisation.

3.2.3 Variational principle and work integral

Once the pulsation frequencies have been calculated, it is possible to check their accuracy
by means of an independent integral formula based on the associated eigenfunctions. This
formula is obtained by taking the dot product of Euler’s equation with the Lagrangian
displacement multiplied by the equilibrium density and integrating this over the volume
of the star:∫∫∫

V

ρ0
~ξ∗ · {Euler’s equation} dV (3.16)

where a∗ denotes the complex conjugate of a. After a lengthy derivation, one obtains an
equation of the form (Reese et al. in prep):

Aω2 + 2Bω + C = 0 (3.17)

2See http://www.netlib.org/lapack/.

http://www.netlib.org/lapack/
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where A and B are real, and C and ω are complex. Explicit expressions for A, B, and
C = CR + iCI are:

A =

∫
V

ρ0ξ
2dV, (3.18)

B =

∫
V

ρ0

[
mΩξ2 − i~Ω ·

(
~ξ × ~ξ∗

)]
dV, (3.19)

CR =

∫
V

{(
m2 + 1

)
ρ0Ω2ξ2 − 2imρ0Ω~Ω ·

(
~ξ × ~ξ∗

)
− ρ0

∣∣∣~Ω · ~ξ∣∣∣2 − ~ξ∗ · [~ξ · ~∇(~∇P0

)]
−ρ0

~ξ∗ ·
[
~ξ · ~∇

(
~∇Ψ0

)]
+ <

{
−δPδρ

∗

ρ0

+ 2
(
~ξ · ~∇P0

) δρ∗
ρ0

}}
dV

+
∑
i

∫
Si

~ξ ·
(
~∇P−0 − ~∇P+

0

)
~ξ∗ · ~dS −

∫
S

<
{
δP ~ξ∗ · ~dS

}
+

∫
V∞

‖~∇Ψ′‖2

4πG
dV, (3.20)

CI = −
∫
V

=
{
δPδρ∗

ρ0

}
dV −

∫
S

=
{
δP ~ξ∗ · ~dS

}
, (3.21)

where we’ve dropped the triple integral notation, ξ = ‖~ξ‖, V is the stellar volume, V∞
infinite space (including the star), S the stellar surface, Si the surfaces of any discontinuity
that may be present in the model (including the surface), P−0 the pressure right below the
discontinuity, and P+

0 the pressure right above. We note that the surface element vectors
~dS are always orientated outwards. When discontinuities are present, the volume integrals

are to be understood as the sum of the volume integrals over the domains delimited by the
discontinuities - the surface terms given above deal with the transitions from one domain
to the next. Solving Eq. (3.17) leads to the following relations:

ωR = −B
A
±

√√√√B2 − ACR +
√

(B2 − ACR)2 + A2C2
I

2A2
(3.22)

ωI = − CI
2 (AωR +B)

(3.23)

where ω = ωR + iωI . We note that ωI is the damping rate – positive values of ωI
correspond to mode damping. The larger of the two solutions of Eq. (3.22) corresponds
to the pulsation frequency, and Eq. (3.23) is the work integral.

When adiabatic calculations are carried out, the above expressions simplify. In-
deed, the adiabatic relation δP/P0 = Γ1(δρ/ρ0) can be used to simplify various terms
in Eq. (3.20), and causes δP and δρ to be in phase thus cancelling out the first term in

Eq. (3.21). Furthermore, both the real and imaginary parts of
∫
S
δP ~ξ∗ · ~dS vanish if one

applies the boundary condition δP = 0 as is typical in adiabatic calculations. Hence,
the term CI vanishes entirely thus leading to ωI = 0 if one applies Eq. (3.23) – alternate
expressions of the work integral would lead to non-zero values of ωI , in particular when
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applying the quasi-adiabatic approximation. The simplified expression for CR is:

CR =

∫
V

{(
m2 + 1

)
ρ0Ω2ξ2 − 2imρ0Ω~Ω ·

(
~ξ × ~ξ∗

)
− ρ0

∣∣∣~Ω · ~ξ∣∣∣2 − ~ξ∗ · [~ξ · ~∇(~∇P0

)]
−ρ0

~ξ∗ ·
[
~ξ · ~∇

(
~∇Ψ0

)]
− |P

′|2

Γ1P0

+
|~ξ · ~∇P0|2

Γ1P0

}
dV

+
∑
i

∫
Si

~ξ ·
(
~∇P−0 − ~∇P+

0

)
~ξ∗ · ~dS +

∫
V∞

‖~∇Ψ′‖2

4πG
dV (3.24)

It is important to note that in the adiabatic case, the pulsation equations are symmetric
with respect to the dot product defined in Eq. (3.16). This leads to the variational
principle which states that to first order, errors on the eigenfunctions do not affect the
frequency obtained via Eq. (3.22) (Lynden-Bell & Ostriker 1967). Hence, this “variational
frequency” can be used as a more accurate estimate of the pulsation frequency (e.g.
Christensen-Dalsgaard et al. 1979).

3.3 Mode classification

Having described how pulsation modes are calculated in rapidly rotating stars, we can
now turn our attention to some of the results which have been obtained over the past few
years. I start by describing the classification of modes in the presence of rapid rotation as
this is important for understanding the ensuing discussions as well as the various issues
at stake. I will first describe acoustic modes before dealing with gravito-inertial modes.

3.3.1 Acoustic modes

At the high end of the pulsation frequency spectrum are acoustic modes. These are
modes for which the restoring force is pressure. When rotation is present, these modes are
affected by the centrifugal deformation, and to a lesser degree by the Coriolis force. Using
ray dynamics, Lignières & Georgeot (2008, 2009), showed that at rapid rotation rates,
acoustic modes subdivide into different classes of pulsation modes, each characterised by
a specific geometry and an independent frequency organisation. These classes include: 2-
period island modes, chaotic modes, 6-period island modes, and whispering gallery modes.
These modes are the rotating counterparts to modes with low, low-intermediate, high-
intermediate, and high values of ` − |m| respectively, where ` is the harmonic degree, m
the azimuthal order, and `−|m| the number of nodal lines parallel to (and including) the
equator. The term “island mode” derives from the Poincaré surface of section for which
the region occupied by island modes corresponds to regular island within chaotic regions.

This classification was initially derived for polytropic stellar models but later extended
to the more realistic SCF models based on mode geometry (Reese et al. 2009a) and is also
present in ESTER models. Figure 3.2 illustrates the meridional cross-section of pulsation
modes from 3 of these classes. In some of the SCF models with extreme differential
rotation, some of these classes of modes seem to disappear, as described in Reese et al.
(2009a), but may reappear at large values of |m|.

Of these different classes of modes, island modes are the most interesting. Indeed,
these are the most visible in terms of disc-integrated observations (Lignières & Georgeot
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Island Chaotic Whispering gallery
Low `− |m| Medium `− |m| High `− |m|

Figure 3.2: Different classes of acoustic modes in rapidly rotating stars (taken from Reese
et al. 2009a).

2009, Reese et al. 2013) and their frequencies follow a regular pattern as will be described
in Sect. 3.4. Furthermore, these modes are described by new quantum numbers which are
illustrated in the left panel of Fig. 3.2. ñ is the number of nodes along the underlying ray
path and ˜̀ gives the number of node lines parallel to the underlying ray path. To these
must be added m the azimuthal order which retains the same definition as in the non-
rotating case. A relationship based on “node conservation” between the usual spherical
quantum numbers (n, `) and the island mode quantum numbers can be derived:

ñ = 2n+ ε
˜̀ = `−|m|−ε

2

ε = `+m mod 2


n = ñ−ε

2

` = 2˜̀+ |m|+ε
ε = ñ mod 2

(3.25)

where ε corresponds to mode parity (i.e. ε = 0 if the mode is symmetric with respect to the
equator and ε = 1 when it is antisymmetric). It is hoped that a successful identification of
these modes will lead to detailed seismic constraints on the structure of rapidly rotating
acoustic oscillators.

3.3.2 Gravito-inertial modes

At the low end of the frequency spectrum are gravity modes for which the restoring force
is buoyancy. When rotation rate is present, these modes are affected by the Coriolis
force, and to a lesser degree by the centrifugal deformation. Given that the Coriolis
force combines with buoyancy, we will call these gravito-inertial modes. We note that
some modes, such as r-modes, owe their existence to the Coriolis force and are therefore
called inertial modes (e.g. Papaloizou & Pringle 1978, Rieutord et al. 2001, Lee 2006).
In what follows, however, we will restrict our attention to modes which are the rotating
counterparts to gravity modes.

Various detailed classifications of these modes have been proposed in the past (see, e.g.
Townsend 2003b, and references therein). However, in what follows, we will give a some-
what simpler and less detailed classification. Gravito-inertial modes can be subdivided
into two categories: sub-inertial modes for which ω < 2Ω, and super-inertial modes for
which ω > 2Ω. In the sub-inertial regime, a critical latitude appears which confines the
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modes to equatorial regions (e.g. Dintrans & Rieutord 2000, Townsend 2003b, Ballot et al.
2010). In the super-inertial regime, the geometric structure of the modes changes very
little compared to the non-rotating case. An exception to this rule is the so-called rosette
modes, discovered by Ballot et al. (2012). These modes take on a distinct geometric
rosette-like pattern which closely matches the underlying ray paths. Their non-separable
structure means that they cannot be correctly described with the traditional approxima-
tion, a popular approach for calculating gravito-inertial modes. However, a perturbative
analysis including the effects of near degeneracies can reproduce their structure (Takata
& Saio 2013, Saio & Takata 2014). Figure 3.3 displays the meridional cross-section of
modes from these different categories.

Figure 3.3: Different types of gravito-inertial modes in rapidly rotating stars (taken from
Ballot et al. 2013).

We note that Prat et al. (2018) recently investigated pulsations in differentially rotat-
ing stars using ray dynamics. They find ray trajectories which represent new classes of
modes, in particular the trans-inertial modes for which the pulsation frequency lies in the
interval [2 min(Ω), 2 max(Ω)]. Numerical calculations using a two-dimensional pulsation
code such as TOP will be needed to find eigenmodes which are the counterparts to these
ray trajectories.

3.4 Frequency patterns

As was mentioned in the previous chapter, frequency patterns are typically used in solar-
like (and hence slowly rotating) pulsators to identify modes. In the rapidly rotating case,
using frequency patterns to identify modes is not so straightforward. Indeed, rotation
considerably complicates the frequency spectrum of such stars. This is furthermore com-
pounded by the fact that there is currently no theory fully capable of predicting mode
amplitudes in such stars. Nonetheless, it is important to study frequency patterns, both
from a theoretical and an observational point of view, as this is sometimes the only seismic
information available.

In what follows, we will focus our attention on the frequencies of island modes. We note
that considerable work has gone into studying the pulsation frequencies of gravito-inertial
modes using both the traditional approximation (e.g. Berthomieu et al. 1978, Lee & Saio
1987, Bouabid et al. 2013) and full 2D calculations (e.g. Ballot et al. 2010, Ouazzani et al.
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2017). Also, Lignières & Georgeot (2009) looked at the frequency organisation of chaotic
and whispering gallery modes in addition to that of the island modes. Current work
based on techniques from quantum chaos is investigating the distribution and frequency
separations of chaotic acoustic mode frequencies (Evano et al., in prep.).

3.4.1 An asymptotic formula for island modes

Initially, Lignières et al. (2006) obtained an empirical formula describing the frequencies
of axisymmetric island modes in polytropic stellar models. This formula is analogous
to the asymptotic formula from Tassoul (1980) except that the ratio between the large
frequency separation, ∆n = ωn+1, `,m−ωn, `,m, and the spacing for consecutive ` values, ∆`,
is not necessarily two but depends on the rotation rate. This formula was subsequently
extended to non-axisymmetric by Reese et al. (2008) who also showed that ∆n continues
to scale with the square-root of the stellar mean density, even at high rotation rates, as
illustrated in Fig. 3.4.

Figure 3.4: Large frequency sep-
aration as a function of the ro-
tation rate for an N = 3 poly-
trope. The large frequency sep-
aration has been normalised by
the square-root of different cal-
culations of the mean density in-
volving the true volume and the
volume based on the equatorial
or polar radii (taken from Reese
et al. 2008).

In the mean time, Lignières & Georgeot (2008) used ray dynamics to justify the
empirical formula from Lignières et al. (2006) and demonstrate its asymptotic nature. This
analysis was extended to non-axisymmetric modes by Lignières & Georgeot (2009). In
these articles, they showed that the frequency separation between modes with consecutive
ñ values, ∆ñ (i.e. half the large frequency separation – see Eq. 3.25), is simply half of
the inverse acoustic travel time along the underlying ray trajectory. They also tested
this relation numerically and found it to be accurate to within 2.2 %. They found a
preliminary formula for ∆˜̀ = ωñ, ˜̀+1,m − ωñ, ˜̀,m, formula which was later extended by
Pasek et al. (2011, 2012) and tested through comparisons with pulsation calculations
using TOP.

Reese et al. (2009a) showed that the above empirical formula also applies in more
realistic models, namely the SCF models, as did subsequent works (Reese et al. 2014,
Ouazzani et al. 2015b). The behaviour of the frequencies at high values of |m| and ñ was
investigated, thus leading to the following empirical formula3:

ωñ, ˜̀,m ' ñ∆ñ +Dm(˜̀)

√
m2

ñ
+ µ(˜̀)2 −mΩ + α(˜̀) (3.26)

3This formula is written for the retrograde convention, where positive m values correspond to retro-
grade modes.
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Pasek et al. (2012) also found a dependence of the form m/
√
ñ for non-axisymmetric

modes based on ray theory. The left panel of Fig. 3.5 illustrates a frequency spectrum for
a uniformly rotating SCF model which has been fitted using a slightly simplified version
of Eq. (3.26). The right panel superimposes several sequences of island mode frequencies
as a function of m/

√
ñ for large values of ñ.

Figure 3.5: Spectrum of corotating pulsation frequencies (i.e. without the advective term
−mΩ) for ñ = 15 − 20 and ˜̀ = 0 − 1 (left panel), and scaled frequency sequences for
ñ = 20, 40, 50 and 60 and ˜̀ = 0 (right panel) in a 25 M� SCF model rotating at 0.6 ΩK

(taken from Reese et al. 2009a).

Of particular interest is the generalised rotational splitting, defined as:

Sm =
ωñ, ˜̀,−m − ωñ, ˜̀,m

2m
(3.27)

Based on Eq. (3.26), it turns out that Sm ' Ω much like in the slowly rotating case. This,
however, neglects the effects of the Coriolis force as well as those of differential rotation
when present. To go beyond these limitations, one can derive the following relation based
on the variational principle and using various approximations (Reese et al. 2009a, in
prep.), provided the differential rotation is not too strong:

Sm '
Ωeff

m + Ωeff
−m

2
+
Cm + C−m

2
(3.28)

where

Ωeff =

∫
V

Ωρo‖~ξ‖2dV∫
V
ρo‖~ξ‖2dV

(3.29)

C =
i

m

∫
V
ρo~Ω ·

(
~ξ∗ × ~ξ

)
dV∫

V
ρo‖~ξ‖2dV

(3.30)

The left panel of Fig. 3.6 compares the generalised rotational splitting with the integral
formula for a selection of modes in a 3 M� ESTER model rotating at 0.7 ΩK. The right-
hand side of Eq. (3.28) is of the form 1

2

∫
V

(
Kñ, ˜̀,m(ζ, θ) +Kñ, ˜̀,−m(ζ, θ)

)
Ω(ζ, θ)dV where
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the K functions are rotation kernels. The right panel of Fig. 3.6 illustrates one such
kernel. It is an open question whether the accuracy of Eq. (3.28) is sufficient to allow
the use of inverse methods to probe the rotation profile, provided a sufficient number of
island modes are identified.
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Figure 3.6: (Left) Generalised rotational splittings vs. integral formula for a selection of
modes in a 3 M� ESTER model rotating at 0.7 ΩK. (Right) The rotational kernel for the
mode at m = 1.

3.4.2 Interpreting observations

Various works then investigated whether it is possible to exploit the frequency patterns
present in the island mode frequencies when interpreting observed pulsation spectra. For
instance, Lignières et al. (2010) created artificial pulsation spectra using the island mode
asymptotic formula for the frequencies, and mode visibilities based on the disc integrated
visibilities from Lignières & Georgeot (2009). They then showed it was possible to extract
recurrent frequency spacings such as 2Ω and sometimes ∆n from the autocorrelation
function of the frequency spectrum, depending on the inclination and the frequency range
of the spectrum. This was followed by Reese et al. (2017b) who worked with pulsation
spectra from SCF models at various rotation rates instead of asymptotic frequencies, and
used more realistic mode visibilities based on Reese et al. (2013) (see following section). In
this work, the autocorrelation function of the frequency spectrum was investigated as was
its Fourier transform, thus showing that it may be possible to identify the large frequency
separation, half its value, and 2Ω depending on the inclination and number of modes in
the spectrum, and assuming a regular behaviour for the intrinsic mode amplitudes (which
are then subsequently multiplied by the mode visibilities). If, however, random intrinsic
amplitudes are used, it becomes quite difficult to reliably identify the above spacings,
except in some cases for models rotating at 0.3 ΩK and 0.7 ΩK for which 2Ω coincides with
∆ñ = ∆n/2 and ∆n, respectively, as illustrated in Fig. 3.7.

On the observational side, various authors found recurrent spacings or patterns in δ
Scuti stars. For instance, thanks to Fourier transforms of the frequency spectrum of a
star observed by CoRoT, Garćıa Hernández et al. (2009) found a recurrent spacing which
they interpreted as half the large frequency separation (see left panel of Fig. 3.8). Others
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Figure 3.7: Autocorrelation
functions of frequency spec-
tra with random intrinsic
amplitudes between 1 and
100 for an SCF model ro-
tating at 0.7 ΩK for different
inclinations (columns) and
number of selected modes
(rows). Once the high-
est amplitude modes are se-
lected their amplitudes are
set to a constant value prior
to calculating the autocorre-
lation function.

(Mantegazza et al. 2012, Garćıa Hernández et al. 2013, 2015, 2017, Paparó et al. 2016a,b,
Michel et al. 2017), using power spectra or Fourier transforms of frequency distributions,
histograms of frequency differences, echelle diagrams, visual inspection, and comparisons
between multiple pulsation spectra, found recurrent spacings and patterns in observed
frequency spectra. Of particular interest is the work by Garćıa Hernández et al. (2015),
in which it was shown that the recurrent spacings in a selection of δ Scuti stars in binary
systems scale with the root mean densities obtained by independent means regardless of
the rotation rate (see right panel of Fig. 3.8), in accordance with the predictions from Reese
et al. (2008) and more recent calculations based on SCF models. This was followed by
Garćıa Hernández et al. (2017), who estimated log(g), using mean densities obtained from
frequency spacings and parallaxes from Hipparcos or Gaia, and found a good agreement
with log(g) values from binary analysis.

Reese et al. (2009b) proposed a strategy for identifying individual modes which con-
sisted in scanning the parameter space formed by the coefficients of the asymptotic formula
to find best matching spectra for a given set of observed frequencies. This method works
well in the absence of chaotic modes, or at very high radial orders. However, as based
on the visibility calculations of Lignières & Georgeot (2009), Reese et al. (2013), chaotic
modes are expected to be visible. Furthermore, the radial mode orders in δ Scuti stars are
expected to be lower both observationally (Michel et al. 2017) and theoretically (Dupret
et al. 2004)). What is therefore needed is a systematic study of a grid of rotating stellar
models, analogous to the study carried out by Suárez et al. (2014) for non-rotating δ
Scutis, to further constrain the behaviour of the coefficients in the asymptotic formula
and hence restrict the associated parameter space. In parallel, observational mode iden-
tification strategies, such as what is described in the next section, need to be developed.

3.5 Mode identification techniques

Observational mode identification techniques rely on exploiting various observational in-
dications which constrain the geometry of the underlying modes. These can include line



34 CHAPTER 3 : Oscillations of rapidly rotating stars

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.7

0.8

0.9

1

1.1

1.2

1.3

Ω/ΩK

(2
π
∆
ν
)/

(4
π
G
ρ
/
3
)1

/
2

 

 

KIC3858884
KIC4544587
KIC10661783
HD51844
HD172189
ID100866999
ID105906206
Rasalhague

Ree se e t al .

Figure 3.8: (Left) Fourier transform of various selections of observed frequencies in a δ
Scuti star observed by CoRoT (taken from Garćıa Hernández et al. 2009). (Right): ratio
between recurrent frequency spacings, interpreted as the large separation, and root mean
densities, as a function of the rotation rate (taken from Garćıa Hernández et al. 2015).

profile variations (LPVs) which result from Doppler shifts induced by the pulsation veloc-
ity fields, or comparisons of pulsation amplitudes and phases in various photometric bands
(e.g., Chapter 6 of Aerts et al. 2010). These have been a popular technique for main
sequences massive and intermediate mass stars, excited by the classical κ-mechanism.
However, much work is still needed in order to adapt these techniques to rapid rotators.
The following sections describe these techniques in more detail as well as some of the
latest efforts to include the effects of rapid rotation.

3.5.1 Multicolour mode visibilities

Multicolour mode identification consists in observing pulsation modes in different photo-
metric bands, calculating the ratio between the amplitudes in the different bands as well
as the phase differences, and comparing these to theoretical predictions. The advantage
of doing this is that the amplitude ratios and the phase differences do not depend on the
intrinsic mode amplitude, but only on its geometric characteristics. Hence, a linear pulsa-
tion code can provide realistic predictions for such quantities based on mode visibilities in
different photometric bands. Furthermore, in the non-rotating case, these do not depend
on the azimuthal order or the inclination of the star, thereby facilitating the comparison
with theoretical expectations.

Various authors have looked into including the effects of rotation in amplitude ratios
and phase differences. For instance, Daszyńska-Daszkiewicz et al. (2002), Daszynska-
Daszkiewicz et al. (2007) and Townsend (2003a) have carried out realistic mode visibility
calculations (including non-adiabatic effects) but approximated the effects of rotation (ei-
ther by using a perturbative approach or the traditional approximation). This allowed
them to show that amplitude ratios and phase differences depend on the azimuthal order
and the stellar inclination in the rotating case. Savonije (2013) carried out slightly sim-
plified visibility calculations while fully including the effects of the Coriolis acceleration
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as well as non-adiabatic effects, but neglecting the centrifugal deformation. In contrast,
Lignières et al. (2006), Lignières & Georgeot (2009) calculated disk integration factors
(i.e., a simplified version of mode visibilities) but fully including the effects of rotation
in the pulsation calculations. They showed that chaotic acoustic modes are expected
to be more visible than their non-rotating counterparts and may need to be taken into
account when interpreting observed pulsation spectra. Reese et al. (2013) carried out
realistic mode visibility calculations while fully including the effects of rotation, but ne-
glected or approximated non-adiabatic effects. Finally, Reese et al. (2018) fully included
non-adiabatic effects in realistic mode visibility calculations.

In order to calculate the variations of light in a pulsating star in a particular photo-
metric band, one must first express the radiated energy of a non pulsating star received
by an observer per unit of time and unit of detector surface:

E =
1

d2

∫∫
Vis.Surf.

I(µ, geff , Teff)~eobs. · ~dS (3.31)

where d is the distance between the observer and the star, “Vis. Surf.” the visible surface
(i.e. made up of the surface elements pointing to the observer), I(µ, geff , Teff) the specific
radiation intensity in the relevant photometric band (as deduced, for instance, from model
atmospheres), µ the cosine of the angle between the line of sight and the outward normal
to the surface, geff the effective gravity (including the centrifugal acceleration), Teff the

effective temperature, ~eobs. the vector pointing to the observer, and ~dS the vectorial surface
element. We note the above expression is only valid for stars with a convex shape. If the
star is concave (as can be the case for some of the SCF models with extreme differential
rotation – see, e.g., Jackson et al. 2004), certain parts of the surface may be hidden by
other parts, thus requiring the use of a ray tracing method.

When the star is pulsating, this quantity is perturbed as follows:

∆E(t) =
1

d2
<
{∫∫

∆(Vis.Surf.)

I(µ, geff , Teff)~eobs. · ~dS

+

∫∫
Vis.Surf.

δI(µ, geff , Teff , t)~eobs. · ~dS

+

∫∫
Vis.Surf.

I(µ, geff , Teff)~eobs. · δ( ~dS)

}
(3.32)

where <{. . . } denotes the real part of some quantity, and ∆(Vis.Surf.) the perturbation
to the visible surface (given that the outward normal at each point is perturbed by the
pulsations). It turns out that the first term in Eq. (3.32) is of the order of the square of
the perturbation, hence it is negligible. The second term is developed using the following
relation:

δI = I

(
∂ ln I

∂ lnTeff

δTeff

Teff

+
∂ ln I

∂ ln geff

δgeff

geff

)
+
∂I

∂µ
δµ (3.33)

where the terms ∂ ln I/∂ lnTeff , ∂ ln I/∂ ln geff , and ∂I/∂µ are deduced from model at-
mospheres, and the terms δTeff/Teff , δgeff/geff , and δµ from stellar pulsations. Detailed
expressions as well as a complete derivation of this latter group of terms including the
effects of rapid differential rotation is provided in Reese et al. (2013). It is important
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to note that δTeff/Teff can only be obtained accurately through non-adiabatic pulsation
calculations. For completeness, one would also have to include the effects of a Doppler
shift in δI as this shifts the intensity profile as a function of wavelength thereby slightly
modifying the received energy, whether integrated over the relevant range associated with
the broadband filter or over the entire spectrum. However, this effect is probably not very
important for mode visibilities. Finally, the perturbed surface element which appears in
the third term is developed as follows:

δ( ~dS) = δ (∂θ~r × ∂φ~r) dθdφ =
(
∂θ~ξ × ∂φ~r + ∂θ~r × ∂φ~ξ

)
dθdφ (3.34)

Figure 3.9 illustrate these different contributions to ∆E(t). Figure 3.10 then shows the
sort of amplitude ratios and phase differences which can be obtained in the Geneva and
BRITE photometric systems. As can be seen from the left panel, modes with the same
` and m values can have similar amplitude ratios, even at rapid rotation rates. Based
on this observation, Reese et al. (2017b) suggested grouping together modes with similar
amplitude ratios in the hopes of forming families of modes with similar quantum numbers.
Figure 3.11 shows one such grouping of modes with similar amplitude ratios. As can be
seen, a number of these modes are island modes with similar quantum numbers. Studying
their distribution of frequencies may then reveal characteristic frequency spacings from
the asymptotic formula and constrain mode identification. An alternate approach consists
in carrying out a χ2 minimisation of the differences between observed amplitude ratios and
phase difference and theoretical expectations (e.g. Daszyńska-Daszkiewicz et al. 2015).

3.5.2 Line profile variations

A complementary approach to photometric mode identification is exploiting line profiles
variations (LPVs). As briefly explained above, the velocity field from the pulsations and
the stellar rotation locally shift spectroscopic absorption lines due to the Doppler effect.
When integrated over the visible disc, this leads to an enlarged absorption line which fur-
thermore changes shape as the pulsation velocity field varies with time. Unlike amplitude
ratios and phase differences, LPVs depend on the intrinsic mode amplitudes. Nonetheless,
the information content in LPVs is quite rich, and can thus provide constraints on the
underlying mode geometry and associated quantum numbers.

In order to calculate LPVs, one needs to start with essentially the same equation as
Eq. (3.32) but include the dependence on wavelength as well as the Doppler shifts resulting
from the pulsation velocity field. As the mode phase varies with time, the resultant LPVs
will also vary.

Relatively few articles have dealt with the effects of rapid rotation on LPVs. Clement
(1994) obtained LPVs for g-modes calculated with his 2D pulsation code. Relatively
little detail is given on the ingredients which went into the LPV calculation. Later on,
Townsend (1997) used the traditional approximation to calculate the effects of rapid
rotation on stellar pulsations, then proceeded to calculate rather realistic LPVs. Reese
et al. (2017a) provide some examples of LPV calculations based on non-adiabatic modes
in an ESTER model (also see Fig. 3.12). These calculations use a number of simplifying
assumptions: a blackbody spectrum is used to model the continuum and include the
effects of gravity darkening, a crude limb-darkening law is used, the intrinsic line profile
(prior to including Doppler shifts) is Gaussian, and any temperature-dependence of line
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Figure 3.9: Different con-
tributions to mode visibili-
ties and line profile varia-
tions. We note that the
stellar deformation includes
both the centrifugal defor-
mation and the deformation
resulting from the pulsations
(which is greatly exagger-
ated here), and that the
Doppler shifts include the
contributions from both the
stellar rotation and the pul-
sations.
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Figure 3.10: (Left) Amplitude ratios in the Geneva photometric system for a series adia-
batic modes with the same ` and m values, but consecutive n values, in a 2 M� SCF model
at 0.8 ΩK (taken from Reese et al. 2013). (Right) Amplitude ratios vs. phase differences
in the BRITE photometric system for non-adiabatic modes in a 9 M� ESTER model at
0.5 ΩK (taken from Reese et al. 2018).



38 CHAPTER 3 : Oscillations of rapidly rotating stars

Figure 3.11: A grouping of 10 modes with similar amplitude ratios selected from a large
set of modes in a 2 M� SCF model at 0.6 ΩK. The top row shows, from left to right,
the amplitude ratios, the frequency spectrum, and the autocorrelation of the frequency
spectrum along with some characteristic frequency spacings. The bottom two rows show
the cross section of these modes along with their frequencies and (n, `, m) quantum
numbers (taken from Reese et al. 2017b).
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depth is neglected. More realistic calculations based on model atmospheres will be needed
to come up with more reliable predictions. Tools like FAMIAS (Zima 2008) will then need
to be adapted to allow mode identification.

Figure 3.12: Line profile
variations in a 9 M� ESTER
model rotating at 0.5 ΩK.
The panels from left to right,
then top to bottom, are the
LPVs, their first and sec-
ond moments, the ampli-
tudes and phases of the first
3 harmonics of the variations
across the line profile, and
a cross-section of the pulsa-
tion mode (taken from Reese
et al. 2017a).

3.6 Mode excitation

Non-adiabatic effects are also important for knowing which modes are excited and may
potentially be detected in classic pulsators. In some cases, this can help constrain mode
identification, particularly in stars with few pulsation modes, such as some β Cep stars.
Nonetheless, only two pulsation codes are currently capable of handling non-adiabatic
effects in the pulsations of rapidly rotating stars. These are: the code by Lee & Baraffe
(1995) and the TOP code (Reese et al. 2017a). Furthermore, only the TOP code uses
models from ESTER code, currently the only code which self-consistently solves the energy
equation in 2D (Espinosa Lara & Rieutord 2013, Rieutord et al. 2016), a prerequisite for
consistent non-adiabatic calculations. Hence, there are relatively few results on the topic,
most of them being focused on low frequency modes for which centrifugal deformation
is less of an issue (e.g. Lee 2013). Accordingly, only a few preliminary results will be
presented here.

A first question is what type of modes are excited. Figure 3.13 shows excited modes
from several classes, calculated for 9 M� stellar models at various rotation rates. Of these,
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it seems likely that whispering gallery modes will not be detected due to disc integration
effects. A second question is whether there is a preference for prograde or retrograde
modes. The left panel of Fig. 3.14 shows the work integral for a mode multiplet. As can
be seen, retrograde modes are stabilised first while prograde modes remain excited. This
agrees with what Lee (2008) found for gravito-inertial modes. The right panel shows a
2D plot of the work integral using log(T ) as a radial coordinate. Finally, we note that
Mirouh et al. (2017) calculated non-adiabatic pulsation spectra and mode visibilities in
an attempt to interpret the seismic observations of Rasalhague (α Ophiuchi). Although
some excited modes are obtained with a semi-regular pattern, more work is needed to
obtain fully reliable calculations and in particular reliable mode excitations in that mass
range.

Figure 3.13: Different modes which are excited. These are, from left to right: an island
mode, a whispering gallery mode, a mixed mode, and a rosette mode (taken from Reese
et al. 2017a).

Figure 3.14: (Left) Work integral for a multiplet of modes. The retrograde modes have
been stabilised whereas the prograde modes are still excited. (Right) 2D plot of the work
integral of the m = −2 mode (which is excited) using log(T ) as a radial coordinate (with
the outer boundary corresponding to the stellar surface) so that the excitation regions
(red/white) and damping regions (blue/black) are clearly visible.
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Conclusion and perspectives

As can be seen, much progress has been made in the field of asterosesismology thanks
to the work of many scientists including the work presented here. For solar-like pul-
sators, the basic components of what will probably become an asteroseismic pipeline,
capable of accurately characterising a large number of stars, are coming together. These
include AIMS, a Bayesian code for carrying out forward modelling of observed pulsating
stars, InterpolateModel, a code which combines the acoustic structure of multiple mod-
els, and InversionPipeline, an inversion tool capable of producing refined estimates of
stellar parameters. Another component which I have not worked on but which is equally
important is a glitch analysis tool capable of measuring the acoustic depth of the base
of the convection zone and various ionisation zones, as well as estimate the amount of
helium in the convective envelope. Other components will also be necessary to handle
post-main-sequence stars with a few mixed modes that are not in the asymptotic regime
(e.g. Deheuvels & Michel 2011).

The next steps for this work is to streamline the above tools. For instance, rather
than dealing with three different codes, it will be much easier to work with a single
program which carries out all of the above steps. In addition the tools need to be made
more efficient. For instance, the AIMS code currently takes a few minutes to run with
a grid of 105 models. Increase that to 106 models and the execution time takes several
hours. In addition, storing the grid in memory takes up a large amount of space, which
furthermore may be duplicated on each process when AIMS is run in parallel (depending
on the exploitation system), probably as a result of AIMS’ python implementation. It
may therefore be necessary to rewrite parts of the code in a lower level language with
a better management of the memory, and only use the parts of the grid relevant to the
star being analysed. This would then allow AIMS to handle larger grids, possibly with
supplementary dimensions, thus testing a wider range of physical ingredients. In addition
to these improvements, it will be necessary to investigate the sources of error at every
level of the program, in particular those related to interpolation, and determine how they
propagate to the final results. With such a pipeline, it will then be possible to handle the
large amount of data expected from future space missions like TESS and PLATO 2.0. It
will lead to the production of large homogeneous sets of stellar properties useful not only
for stellar physics but also for galactic archaeology and exoplanetary science.

For stars with particularly rich pulsation spectra, in order to extract structural profiles,
it will be necessary to put together non-linear iterative inversion tools such as the ones
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by Antia & Basu (1994), Antia (1996), Vorontsov et al. (2013), Roxburgh (2015). The
NonLinearKit tool described in Sect. A.2 is a step in this direction, but a more efficient
regularisation is needed in order to obtain well-behaved smooth solutions. Longer term
improvements, which could be implemented in collaboration with G. Buldgen, include
setting up one or several equations of state in the inversion process. This would then
produce physically coherent solutions and may provide ways of testing more detailed
aspects of physics. Non-linear inversions may also be useful when inverting rotation
profiles in red giants. Indeed, linear inversions frequently produce solutions which are
not decreasing throughout the star and which change sign in some cases. Although such
solutions may be representative of true physical effects in some cases, they are likely to be a
numerical artefact related to the inversion in many cases. Hence, it is necessary to explore
the solutions which may be obtained by enforcing supplementary a priori assumptions.

For rapidly rotating pulsators, much progress has been made, particularly in charac-
terising the pulsation spectra of increasingly more realistic rapidly rotating models, im-
plementing non-adiabatic effects in the pulsation calculations, and predicting multicolour
amplitude ratios and phase differences, as well as spectroscopic line profile variations. In
parallel, progress has been made in interpreting observed pulsation spectra of δ Scuti,
notably in finding frequency patterns and recurrent spacings (e.g. Paparó et al. 2016a,b,
Michel et al. 2017) and using them to constrain their mean densities and log(g) values
(Garćıa Hernández et al. 2015, 2017).

Nonetheless, in order to make a real breakthrough in this domain, it is necessary to
identify individual modes in the pulsation spectra. So far, this is only starting to be
achieved in γ Dor stars and SPBs where clear period spacing patterns in their g-mode
pulsation spectra have led to an identification of the azimuthal order and to various seismic
diagnostics (e.g. Van Reeth et al. 2015, 2016, Ouazzani et al. 2017, 2018, Pápics et al.
2017). For similar progress to be made in the acoustic domain, namely in δ Scuti and
β Cep stars, several strategies need to be investigated. First of all, a systematic study
of the pulsation spectra of a grid of rapidly rotating models needs to be carried out in
order to characterise the relationship between model properties and the coefficients in the
asymptotic formula for island mode frequencies. Preliminary investigations show that the
ratio between some of these coefficients depends primarily on the rotation rate. Using
constraints such as these could help guide the search for frequency patterns in observed
spectra. If the grid of models is sufficiently large, it may be possible to interpolate the
spectra to intermediate points and implement a similar forward modelling approach as
what is implemented in AIMS.

However, chaotic modes are also expected to be visible thus complicating the ex-
traction of island mode (Lignières & Georgeot 2009, Reese et al. 2013). This is further
compounded by the lack of an adequate non-linear theory capable of predicting mode
amplitudes. This brings us to the second strategy, namely applying mode identification
techniques. Indeed, amplitude ratios and phase differences from multicolour photometry
depend on the geometry and properties of the mode, and not on the intrinsic amplitudes.
They can thus be used to constrain the mode identification. Accordingly, it is necessary
to systematically calculate amplitude ratios and phase differences using the non-adiabatic
version of TOP and models from the ESTER code and compare them with observations.
Likewise, line profile variations also provide constraints on mode geometry and identifica-
tion, constraints which are often complementary to those from multicolour photometry.
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Hence a systematic survey of theoretical line profile variations needs to be carried out and
implemented in a tool like FAMIAS (Zima 2008) in order to carry out mode identification.
Intermediate results used to calculate amplitude ratios, phases differences, and line profile
variations need to be stored in a database from which future mode identification tools
could operate.

In addition, mode excitation mechanisms need to be studied in a systematic way
using the non-adiabatic version of TOP. This would then help with the interpretation of
stars with relatively few detected pulsation modes, for instance by ruling out potential
identifications if the relevant modes are not excited in the model. Combining all of these
strategies should hopefully lead to a clear identification of modes in rapidly rotating
acoustic pulsators. This would then help with obtaining precise stellar properties, and in
some cases with constraining the internal structure of these stars. For instance, it may be
possible to probe differential rotation using the rotation kernels described in Sect. 3.4.1
and inversion methods. Achieving success in this domain would open up new regions
of the HR diagram to asteroseismology and would enable us to test stellar physics in
parameter regimes that have so far not been accessible.

Longer term, it will be interesting to include supplementary ingredients such as mag-
netic fields and tidal deformation in the TOP pulsation code. This would imply extending
the code’s capability to 3D problems which of course would require much more numerical
resources. As a preliminary step in this direction, the code has partially been parallelised
using appropriate numerical libraries for distributed memory supercomputers. Once the
code is functioning correctly, it would then allow us to study roAp stars (e.g. Kurtz 1990),
other magnetic rotating pulsating stars, including neutron stars, and pulsating stars in
close binary systems, thus bringing new physical insights into these objects.

Beyond the progress in stellar physics, some of the results described above may also
be applied to rapidly rotating planets such as Jupiter and Saturn, at 30 % and 40 % of the
critical rotation rate, respectively. Indeed, the goal of the JOVIAL project is to observe
pulsation modes in Jupiter (Schmider et al. 2013). Already, a large frequency separation,
comparable to that of the sun has been observed (Gaulme et al. 2011). Given the proximity
of Jupiter, it may be possible to obtain resolved images of the pulsations thus considerably
facilitating the identification of modes. TOP could then calculate pulsation modes in
Jovian models, which in turn could be used to probe its internal structure and answer
key questions such as whether Jupiter has a solid core. Preliminary collaborations have
already allowed me to provide an accurate and rapid method for calculating gravitational
moments of a given centrifugally-deformed model which have subsequently been compared
with Juno observations (Wahl et al. 2017, Guillot et al. 2018) and to put together a simple
and rapid code for deforming a 1D model thanks to the centrifugal force (see Sect. A.5.1).
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Appendix A

Complementary note

In this chapter, I will describe the various duties I have carried out over the years in
addition to my research, including teaching and supervision of Master’s and PhD stu-
dents. Indeed, during my postdocs in Sheffield (2006-2009) and Birmingham (2014-2015),
I worked for scientific networks funded by the European Union, and as such, produced
a number of deliverables as well as helped with organising various activities. These will
be described in Sects. A.1 and A.2, respectively. Since becoming an associate astronomer
at the Observatoire de Paris at Meudon, I carry out an astronomer’s duty (“tâche de
service” in French) as part of that position (see Sect. A.3). During my Sheffield and
Birmingham postdocs, and within the context of my current position, I have carried out
various teaching duties (see Sect. A.4). Finally, I have had the opportunity to super-
vise the internship of 2 Master’s student, co-supervise a PhD student and am currently
co-supervising another PhD student as will be described in Sect. A.5.

A.1 Work for the HELAS network

The European HELio- and ASteroseismology Network (HELAS) was funded as a Coor-
dination Action under the European Union’s Sixth Framework Programme. As such it
helped structure and coordinate helio- and asteroseismology research activities within the
European community and beyond. From 2006 to 2009, I carried out my Sheffield postdoc
working for the Global Helioseismology branch of the HELAS network. This included
producing software, helping with the organisation of workshops, and setting up a website
for this branch with various articles, documentation, software, and links.

The software developed for the HELAS network are as follows:

• InversionKit: software for carrying out inversions of stellar rotation and structural
profiles, and later on, the mean density (as based on Reese et al. 2012)

• Splittings: software for calculating rotational splittings for 2D rotation profiles
(see Fig. A.1 for a screen capture of this program)

• Echelle: utility for visualising echelle diagrams

• SurfCorrect: utility for applying the surface correction from Kjeldsen et al. (2008,
ApJL 683, 175)

• ReadAMDL: utility for reading and visualising stellar models in the AMDL and
FAMDL formats, compatible with the ADIPLS pulsation code
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https://www.helas-project.eu/
https://www.helas-project.eu/resources/software/software-asteroseismology/inversionkit/
https://www.helas-project.eu/resources/software/software-asteroseismology/splittings/
https://www.helas-project.eu/resources/software/software-asteroseismology/echelle/
https://www.helas-project.eu/resources/software/software-asteroseismology/surfcorrect/
https://www.helas-project.eu/resources/software/software-asteroseismology/readamdl/
http://astro.phys.au.dk/~jcd/adipack.n/
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• ReadFAMDE: utility for reading and visualising pulsation modes in the AMDE and
FAMDE formats from the ADIPLS pulsation code

All of these programs were written in Java so that they could be run in a web-browser1

or as a stand-alone application. They are highly interactive and well documented, thus
allowing a simple usage of the programs by non-specialists. The InversionKit program
was extensively used and adapted by G. Buldgen during his PhD (see Sect. A.5).

Figure A.1: Screen-capture
of the Splittings program,
written for the HELAS net-
work.

I participated in the organisation of the “Low degree and low frequency modes”
HELAS workshop at La Palma in 2007 and to a lesser degree in that of the “The Acous-
tic Solar Cycle” HELAS workshop in Birmingham in 2009. This included helping with
setting up the program (and putting it on the website), contacting various speakers, and
helping with editing the proceedings. Finally, I translated CESAM2k’s quick reference
from French into English (about 60 pages worth of translation) and made this available
on the HELAS Global Helioseismology website2. This, of course, facilitates the use of
CESAM2k by non-French speakers.

A.2 Work for the SpaceInn network

The “Exploitation of Space Data for Innovative Helio- and Asteroseismology” network
(SpaceInn) was funded as a collaborative Project under the European Union’s Seventh
Framework Programme. The goal of this network is to make full use of space data as
well as complementary ground observations in order to gain a better understanding of
solar and stellar interiors. It relies on establishing coordinated, long-term data archives
which include derived products and analysis tools, coordinating the use of these data, and

1Unfortunately, due to security issues, most browsers today do not allow Java applets to run within
them.

2This documentation is currently available at the following address: https://www.helas-project.

eu/wp-content/uploads/Software/global/models/CESAM_quick_reference.pdf

https://www.helas-project.eu/resources/software/software-asteroseismology/readfamde/
http://astro.phys.au.dk/~jcd/adipack.n/
https://www.spaceinn.eu/
https://www.helas-project.eu/wp-content/uploads/Software/global/models/CESAM_quick_reference.pdf
https://www.helas-project.eu/wp-content/uploads/Software/global/models/CESAM_quick_reference.pdf
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increasing the public awareness of this field. From 2014 to 2015, I carried out my Birm-
ingham postdoc working for the Asteroseismolgy branch of the network. This involved
producing scientific software, carrying out a hare-and-hounds exercise in order to compare
and validate different methods for interpreting a combination of seismic and classic stellar
data, and writing relevant articles.

The software developed for the SpaceInn network are as follows:

• AIMS (Asteroseismic Inference on a Massive Scale): Python code which estimates
stellar parameters from classical and seismic data using an MCMC method

• InversionKit: interactive Java code for carrying out inversions of stellar rotation
profiles, structure, and integrated quantities (see Fig. A.2).

• InversionPipeline: interactive Java code for carrying out inversions of integrated
quantities from a grid of models

• InterpolateModel: interactive Java code which allows the user to combine the
acoustic structure of multiple stellar models

• NonLinearKit: experimental interactive Java code for carrying out non-linear seis-
mic structural inversions in stars

The InversionKit code was considerably enhanced during my Birmingham postdoc.
Supplementary features include: an integrated pulsation code which can deal with dis-
continuities in the model, enhanced model treatment (accepts more model formats, can
manipulate the models in various ways, provides detailed information at each grid point),
possibility of inverting supplementary profiles and integrated quantities (the latter being
provided by G. Buldgen during his PhD – see Sect. A.5), self-consistency tests on rota-
tional splittings (see Reese 2015), an integrated echelle diagram, and the possibility of
adjusting fundamental constants such as the gravitational constant. Figure A.2 provides
a screen-capture of the program.

A detailed description of the AIMS code and its scientific and technical aspects is
provided in Sect. 2.2. Here, we will look at some of the other aspects of this code. AIMS

was written in Python in order to facilitate additional contributions from others in the
field. This has allowed B. Rendle, a PhD student in Birmingham, to extend it use to
red-giants. Furthermore, students at the “Asteroseismology and Exoplanets: Listening
to the Stars and Searching for New Worlds” summer school were taught how to use this
code. Likewise, the “Stellar Parameters INferred Systematically” (SPInS3), a spin-off of
the AIMS code in which the seismic part has been removed, was used for one of the hands-
on session at the “5th International Young Astronomers School: Scientific Exploitation
of the Gaia Data”. Both of these codes may become reference codes or provide ideas for
exploiting PLATO 2.0 and Gaia data.

The AIMS, InterpolateModel, and InversionPipeline codes were designed to work
together. Typically, AIMS produces a sample of representative models, or more precisely
a set of coefficients from which to interpolate models, for a set of classic and seismic con-
straints. InterpolateModel can then use these coefficients to interpolate4 the acoustic

3The name of this code is likely to change in the near future.
4Here, the word “interpolate” refers to interpolating between multiple models, rather than interpolat-

ing a given model to a finer mesh.

https://bison.ph.bham.ac.uk/spaceinn/aims/
https://bison.ph.bham.ac.uk/spaceinn/inversionkit/
https://bison.ph.bham.ac.uk/spaceinn/inversionpipeline/
https://bison.ph.bham.ac.uk/spaceinn/interpolatemodel/
https://bison.ph.bham.ac.uk/spaceinn/nonlinearkit/


54 APPENDIX A : Complementary note

Figure A.2: Screen-capture
of the InversionKit pro-
gram, initially written for
the HELAS network and im-
proved for the SpaceInn net-
work.

structure of these modes. Finally, InversionPipeline can systematically apply inver-
sions of integrated quantities to these interpolated models in order to obtain a refined
estimate of these quantities. The left panel of Fig. A.3 illustrates the sound profiles
of interpolated models representative of KIC 10963065 obtained via InterpolateModel

and the right panel shows the corresponding inverted mean densities, obtained with
InversionPipeline.

The hare-and-hounds exercise carried out for SpaceInn involved producing a num-
ber of models from which to calculate “observed” pulsation spectra and classic con-
straints. These “observations” were then sent to a number of “hounds” who applied
various methodologies to try to recover a number of stellar properties, namely radius,
mass, age, mean density, surface gravity, the radius of the base of the convection zone
(BCZ), and the acoustic radii of the BCZ, the He II zone, and the Γ1 peak between the
He I and He II zones. One of the original aspects to this exercise was that the hounds came
in three groups: those who applied grid (or forward) modelling, those who applied glitch
analysis, and those who applied inversions. The basic conclusions of the exercise was that
grid modelling leads to more accurate but also more model-dependent results and that
it is possible to meet PLATO 2.0 requirements for a star similar to the sun (Reese et al.
2016).

A.3 CNAP duties (i.e. “tâche de service”)

Within the context of my current position as an associate astronomer, I carry out an
astronomer’s duty, i.e. a “tâche de service” in French. My duty is to head workpackage
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Figure A.3: Sound velocity profiles of interpolated models (left panel) and various mean
densities (right panel), representative of KIC 10963065.

321000 for PLATO, i.e. “PSF5 modelling”. The goal is to obtain detailed images of the
PSFs across the entire field-of-view (FOV) for PLATO. Although these can be modelled
on earth using the optical design of the PLATO telescopes, imperfections in the actual
alignment of the optical components and any further deterioration as a result of launch
vibrations and space conditions make it necessary to periodically recalibrate the PSFs
while the PLATO mission is in space. These detailed PSFs will then intervene in the
determination of optimal masks around observed stars, as well as various post-treatments
of the data, such as reducing the effects of satellite jitter and correcting for long term
drifts such as relativistic aberration.

The basic strategy for obtaining high-resolution reconstructions of the PSFs can be
broken down into two parts:

• PSF inversions: the goal of this step is to go from low resolution images, obtained
with the PLATO CCDs, to a high-resolution image of a PSF. Indeed, the various
post-treatments based on the PSFs require a resolution at least 10 times greater
than that of the CCDs. The currently adopted strategy consists in carrying out a
microscanning session in which a series of imagettes (i.e. small images) is obtained
with subpixel displacements (see left panel of Fig. A.4). These imagettes are then
supplied to an inversion program which reconstructs the high resolution PSF. This
procedure is carried out for a number of reference stars across the FOV.
• PSF interpolation: the goal of this step is to interpolate the PSF to stars at any

position in the FOV using the inverted PSFs for the reference stars. We note that
the FOV is relatively large – approximately 20◦ in radius for one PLATO telescope.
Hence the PSF will vary substantially across the FOV. Besides interpolation in
position, it may also be necessary to interpolate according to stellar temperature as
this affects their colour and hence the PSFs.

Work for workpackage 321000 initially began with J. J. Green who first investigated
various voxel (i.e. volume element) type inversions to combine images from multiple stars

5Point Spread Function.
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Figure A.4: (Left) Subpixel displacements for microscanning strategy (taken from Green,
J. J. 2011a). (Right) Inverted PSF using the weighted positive RLS scheme (Reese, D. R.
2017c).

at the same distance from the centre of the FOV but in different directions (Green, J. J.
2010b,a). The underlying assumption is that the PSF would be the same for these targets
apart from a rotation. However, a slight offset of the CCD from the focal plane and
departures from planarity may invalidate this assumption. Hence, J. J. Green investigated
the possibility of applying a microscanning strategy (Green, J. J. 2011a). J. Auriac and
he put together various iterative procedures for inverting the series of imagettes from the
microscanning session and obtain a detailed image of the PSF (Green, J. J. 2011b, Auriac,
J. 2011). Later on, Ouazzani et al. (2015a) extended this study to different microscanning
strategies and including a more realistic treatment of satellite jitter in the imagettes. I
then became leader of the workpackage and looked into PSF interpolation across the
FOV using the same strategy as in AIMS, i.e. using a Delaunay tessellation (Reese, D. R.
2016). Figure A.5 shows the interpolation errors across one of the quadrants of the PLATO
FOV. I then went on to investigate regularised-least squares (RLS) inversions including a
positivity constraint (the PSF cannot take on negative values) using a uniform Laplacian
for the regularisation (Reese, D. R. 2017a) and a weighted Laplacian (Reese, D. R. 2017c).
The latter approach yields on average better results than the iterative methods as it
allows an explicit control over the regularisation rather than an implicit one. The right
panel of Fig. A.4 shows an example of an inverted PSF. In (Reese, D. R. 2017b), I
describe an alternate algorithm for carrying out the weighted positive RLS inversion
which is substantially faster for our particular problem than what could be achieved with
the ALGLIB library6. Currently, I’m working on a strategy for inverting PSFs when
nearby stars contaminate the imagettes. This strategy incorporates a deconvolution in
the inversion, but requires prior knowledge of the relative positions and luminosities of

6http://www.alglib.net/

http://www.alglib.net/
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the contaminants.

Figure A.5: PSF interpolation
errors across one quadrant in
PLATO’s field-of-view.

A.4 Teaching

A detailed list of the past and present teaching responsibilities is provided in my CV
(see App. B). Hence, this section will briefly address some of the basic aspects of my
approach to teaching. So far, most of my teaching has been tutorials in which I help
students work through various maths or physics exercises. In sufficiently small classes, I
will strive to obtain interaction with the students by either asking them questions as I
explain how to solve the problem, or by asking volunteers to work through the problem on
the blackboard. I also go around checking their progress and correcting them if need be.
My goal is for students to work through the problems themselves and try to understand
the principles behind, rather than relying on rote memorisation. On the few occasions
where I have given lectures, I have tried to carefully think through the organisation of my
lecture so that the students can have clear idea of the underlying train of thought.

A.5 Supervision

A.5.1 Supervision of Master’s students

From 2012 to 2013, M.-A. Dupret and I supervised G. Buldgen’s year 2 Master’s project (or
internship). The goal of his project was to extend the mean density inversions described
in Reese et al. (2012) to two other quantities, namely the acoustic radius and an age
indicator based on the small frequency separation. Accordingly, I taught him inversion
theory by having him work through simplified examples, derive the variational principle,
and obtain explicit expressions for some of the simpler structural kernels. A detailed
proofreading of his work allowed me to correct mistakes or show simpler ways of doing
certain mathematical manipulations. I also had him implement these inversions in the
the InversionKit code, which meant he had to learn Java. Of course, I explained the
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structure of the code to him and helped him with debugging the code when necessary.
This work was subsequently pursued during his PhD and lead to the publication of an
article (Buldgen et al. 2015b).

In 2016, I supervised B. Herbert’s year 1 Master’s project. The goal of his project was
to set up an interface between AIMS and OSM7, a python code written by R. Samadi
which uses a Levenberg-Marquardt algorithm to find optimal stellar models which fit a
set classic and seismic constraints. Although the AIMS code obtains a global view of the
stellar parameter space, it is subject to interpolation errors which stem from interpolating
in a grid of models. In contrast, OSM uses stellar models from a stellar evolutionary code
at each iteration, thereby avoiding interpolation. However, the Levenberg-Marquardt al-
gorithm is local and can easily be trapped by local minimum. Hence by combining the two
codes, one can get the best of both worlds, i.e. carrying a global exploration of parameter
space, but obtaining optimised solutions which do not involve model interpolation. B.
Herbert therefore made the necessary modifications to AIMS so that it would produce the
necessary output files with which to start the OSM code. He then went on to investigate
several stars using the two codes together, and also tested the effects of different surface
correction recipes on derived stellar properties.

In addition to supervising the above two students, I helped G. Mirouh with his year
2 Master’s project which took place from 2012 to 2013. Indeed, he used the TOP code in
its adiabatic version to fit the pulsation spectrum of Rasalhague (α Ophiuchi). I helped
him learn how to use the code, produced a brief documentation to go with it, supplied
him with a program to calculate mode visibilities based on Reese et al. (2013), and helped
him with debugging when necessary. He produced a first set of results8 including mode
frequencies, visibilities, and damping rates based on the quasi-adiabatic approximation,
which he then compared with Rasalhague’s pulsation spectrum (Mirouh et al. 2014).

Finally, I soon will be supervising P. Houdayer’s year 1 Master’s project. He will work
on extending a program I wrote which is able to calculate the centrifugal deformation of
a rotating star or planet, starting from a 1D non-rotating model. The method applied in
the program is very close to the SCF method (e.g. Jackson et al. 2005, MacGregor et al.
2007) in which Poisson’s equation is solved alternatively with finding the level surfaces,
i.e. the isopotentials, and iterating till convergence. He will extend the code so that it can
handle discontinuous models, thus making it applicable to planets such a Jupiter which
may have a solid core. This can subsequently be included in programs such as CEPAM
(Guillot & Morel 1995) which calculates the evolution of planets. Another use of the code
is to generate deformed models of evolved stars for asteroseismology, while waiting for
ESTER to fully include the effects of stellar evolution.

A.5.2 Supervision of PhD students

From 2014 to 2017, G. Buldgen carried out his PhD. M.-A. Dupret was his supervisor and
I his co-supervisor. During this time period, G. Buldgen extended his work on inversions
to new integrated quantities (Buldgen et al. 2015a, 2018) thus requiring the derivation of
new structural kernels (Buldgen et al. 2017b). He applied these inversions to the 16 Cyg

7“Optimal Stellar Models” – see https://pypi.python.org/pypi/osm/
8Later on, G. Mirouh would pick up on this work again, but using the non-adiabatic version of TOP,

as described in Sect. 3.6.

https://pypi.python.org/pypi/osm/
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binary system (Buldgen et al. 2016a,b), the targets from the SPACEINN hare-and-hounds
exercise (Reese et al. 2016), and Legacy targets (Buldgen et al. 2017a), thus showing how
they could further constrain stellar properties such as mass, radius, and age. He also
carried out detailed profile inversions of an entropy proxy in the sun (Buldgen et al.
2017e) and the Ledoux discriminant to further constrain the solar tachocline (Buldgen
et al. 2017c). His inversions on the solar metallicity (Buldgen et al. 2017d) favour the
newer, lower abundances, although the uncertainties remain large. Given that I had moved
away from Liège, I kept track of his work through email correspondence and various trips.
A careful proofreading of his articles allowed me to improve their clarity and sometimes
suggest new ideas. Thanks to his perseverance, hard work, and aptitude for theoretical
work, he achieved brilliant results and has been able to impose himself as a reference in
the domain of asteroseismic inversions.

Currently, I’m co-supervising K. Bouchaud’s PhD. He started his PhD in 2017 in Nice
under the supervision of A. Domiciano de Souza, working on spectroscopy and interfer-
ometry of rapidly rotating stars. This summer he will move over to Meudon to carry out
the second part of his PhD, namely using asteroseismology to constrain such stars. Given
how difficult this problem is, it will be necessary to use mode identification techniques
and to carefully choose which stellar targets to study. Accordingly, he will also work
on improving the theoretical predictions for line profile variations by including stellar
atmospheres rather than using the simplified treatment described in Sect. 3.5.2.

I’ve also assisted PhD students with some of their work. For instance, I supplied the
TOP pulsation code to K. Burke so that she could compare full 2D pulsation calculations
with a perturbative approach in realistic models from the ASTEC9 code (Burke et al.
2011). I also helped R.-M. Ouazzani by supplying her with models of rapidly rotating
polytropes, interpolated to a dense radial suitable for finite-differences so that she could
apply the ACOR10 pulsation code to these models. She then compared her pulsation
modes and frequencies with the results from TOP, thus validating her code (Ouazzani
et al. 2012).

9Aarhus STellar Evolution code (Christensen-Dalsgaard 2008).
10Adiabatic Code of Oscillation including Rotation.
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