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Main notations
Geometrical objects

• d ≥ 1 is the ambient space dimension. All considered vector spaces are over the
field R of reals.

• Ed := Rd denotes the d-dimensional euclidean space. The euclidean norm is denoted
‖ · ‖, and the euclidean scalar product 〈·, ·〉.

• Ld := Zd is the d-dimensional lattice of integer points.

• Points are denoted e.g. p,q. Vectors are generally distinguished with a “dot” e.g.
ṗ, q̇ ∈ Ed, and co-vectors with a “hat” e.g. p̂, q̂ ∈ E∗d, especially in part I which has
a strong geometric content.

• Lattice elements are distinguished with the use of specific letters, usually ė, ḟ ∈ Ld.

Quadratic forms

• L(E,F) denotes the set of linear maps from a vector space E to another F.

• S(E) ⊇ S+(E) ⊇ S++(E) denote respectively the sets of symmetric linear maps, of
semi-definite ones, and of positive definite ones, on a vector space E. Note that
S(E) ⊆ L(E,E∗). Symmetric linear maps are often identified with quadratic forms.

• ‖ṗ‖M :=
√
〈M ṗ, ṗ〉 denotes the norm of a vector ṗ ∈ E induced by a positive

quadratic form M ∈ S++(E).

• p̂⊗ p̂ ∈ S+(E) is the outer product of a co-vector p̂ ∈ E∗ with itself.

• Cond(M) :=
√
‖M‖‖M−1‖ denotes the condition number, or anisotropy ratio, of a

positive quadratic form.

Miscellaneous

• Jm,nK denotes the range of all integers from m to n, bounds inclusive.
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Tu ne sais plus de quel côté de la grille est le rêve. (Erin Morgenstern1)

1.1 Introduction (Version française)
Ce mémoire présente mes recherches dans le domaine de la discrétisation des Equations
aux Dérivées Partielles (EDPs), en se focalisant sur les difficultés liées à l’anisotropie, et
en se limitant délibérément à l’utilisation de grilles cartésiennes. L’interaction de ces deux
contraintes mène à l’utilisation d’outils géométriques originaux. Les EDPs considérées sont
très variées, allant des équations de Hamilton-Jacobi-Bellman à celle de Monge-Ampère,
en passant par la diffusion anisotrope, et l’optimisation de fonctionnelles sur l’ensemble des
fonctions convexes. Ma contribution majeure, en termes d’impact sur la communauté du
traitement de l’image notamment, est la conception de nouvelles variantes de l’algorithme
du Fast-Marching. Celles-ci permettent la résolution numérique efficace d’équations eiko-
nales anisotropes, et ainsi le calcul de distances riemanniennes, finsleriennes, voire pour
des systèmes de contrôle non-holonomes.

L’analyse numérique, domaine principal de ce mémoire, consiste à construire et étu-
dier des schémas de discrétisation pour les EDPs. Ceux-ci doivent respecter au mieux
la structure de l’EDP originale, par exemple un principe du maximum, ou de causalité,
et être suffisament robustes pour en extraire des solutions faibles, en un sens approprié.
Satisfaire ces propriétés représente un véritable challenge dans le cas de problèmes forte-
ment anisotropes, qui présentent des directions privilégiées non-uniformes sur le domaine
de résolution, et non alignées avec les axes de coordonnées. Une réponse possible, pour
laquelle je réfère à ma thèse [Mir11] et aux références qu’elle contient, est d’utiliser un
maillage du domaine adapté à la géométrie de l’EDP choisie, par la taille, la forme et
l’orientation de ses éléments. Nous prenons dans ce mémoire un parti pris opposé : la
représentation discrète du domaine utilise toujours une grille cartésienne - par simplicité
et car c’est le contexte naturel du traitement de l’image - dont l’alignement périodique des

1Ecrivain et artiste peintre américain. 1978-
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points semble en conflit évident avec la géométrie anisotrope et arbitraire des problèmes
étudiés.

La spécificité et la cohérence de ce travail se trouvent du côté des outils, issus de
la géométrie discrète, utilisés pour résoudre ce conflit2. Il s’agit principalement de deux
constructions géométriques dues à Voronoi, liées aux diagrammes de Voronoi et aux em-
pilements compacts de sphères respectivement, ainsi que de deux objets spécifiques des
basses dimensions d ∈ {2, 3}, que sont l’arbre de Stern-Brocot et l’algorithme de Selling.
Certains de ces outils sont loin d’être récents, et sont bien connus pour leurs applications
en génération de maillage, en cryptographie ou encore en arithmétique. Etudier leur inter-
action avec des opérateurs différentiels représente cependant une réelle nouveauté, l’unique
travail antérieur en ce sens étant à notre connaissance dû à Bonnans et al [BOZ04]. Les
thématiques de ce mémoire, EDPs et géométrie differentielle sur la grille cartésienne, sug-
gèrent un rapprochement avec la géométrie digitale [KR04] ; un examen plus approfondi
révèle pourtant, en l’état, peu de techniques et de problèmes communs.

Nous évoquons dans la suite de cette introduction les principaux résultats de ces
recherches. Elle met également en avant plusieurs projets et perspectives, qui seront l’ob-
jet de futurs travaux. Nous renvoyons au corps du texte pour le cadre formel, le détail
des applications, et des illustrations numériques supplémentaires. Les articles originaux
contiennent les preuves mathématiques, qui ne sont pas reproduites ici.

Organisation du mémoire. Ce mémoire est organisé en deux parties, largement in-
dépendantes, regroupant les chapitres §2-4 et §5-7 respectivement. La première partie
porte sur la discrétisation des équations eikonales anisotropes, à l’aide de schémas semi-
lagrangiens §2, ou Eulériens fondés sur une représentation particulière du hamiltonien
§3, et sur l’application de ces méthodes au traitement de l’image principalement §4. La
seconde partie décrit la discrétisation d’équations du second ordre : la diffusion anisotrope
§5, l’équation de Monge-Ampère §6, et la question liée de la contrainte de convexité §7.
Deux appendices servent de référence pour des outils revenant fréquemment au fil des
chapitres. L’un §A est dédié à la description des techniques de géométrie discrète utilisés.
Le second §B donne deux formulations utiles de l’algorithme du fast marching.

1.1.1 Outils géométriques

La schémas numériques développés dans ce mémoire sont, pour l’essentiel, fondés sur deux
constructions du mathématicien Voronoi, appelées première et seconde réduction d’une
forme quadratique, toujours supposée définie positive. Celle-ci est définie sur un espace
vectoriel réel de dimension finie, contenant un réseau additif. Dans les deux cas, Voronoi
associe à la forme quadratique un objet de nature discrète, d’une manière invariante sous
l’action des transformations linéaires stabilisant le réseau. Les Réductions de Voronoi ont
été introduites à des fins de classification des formes quadratiques [Sch09], mais nous
utilisons surtout des sous-produits de ces constructions géométriques.

2 Dans un souci de cohérence du mémoire, mes travaux sur les modèles de plaque mince [BCD+16], et
sur les équations d’Euler des fluides incompressibles [MM16], ne seront pas évoqués en détail. En effet,
leur discrétisation ne n’utilise pas de grille cartésienne, et est fondée sur des outils distincts.
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Figure 1.1 – Ellipsoïde {ṗ ∈ E2; ‖ṗ‖M ≤ 1}, et vecteurs apparaissant dans la décompo-
sition (1.2) de D := M−1, où M ∈ S++(R3) a pour valeurs propres 1, 102, 102 (aiguille, à
gauche) ou 1, 1, 102 (assiette, à droite) respectivement.
Ellipsoid {ṗ ∈ E2; ‖ṗ‖M ≤ 1}, and offsets appearing in the decomposition (1.17) of D := M−1,
for some M ∈ S++(R3) of eigenvalues 1, 102, 102 (needle-like, left) and 1, 1, 102 (plate-like, right)
respectively.

On note S++(E) l’ensemble des applications bilinéaires symétriques définies positives
sur un espace vectoriel E, qui est isomorphe à l’ensemble des formes quadratiques d’in-
térêt. Sans nuire à la généralité, l’espace vectoriel est usuellement Ed := Rd euclidien, ou
son dual, et le réseau est l’ensemble Ld := Zd des points à coordonnées entières.

La première réduction de Voronoi associe à D ∈ S++(E∗d) la solution d’un problème
d’optimisation linéaire L(D), défini comme suit :

L(D) := inf
M∈M

Tr(MD), où M := {M ∈ S++(Ed); ∀ė ∈ Ld \ {0}, ‖ė‖M ≥ 1}. (1.1)

On a noté ‖ · ‖M la norme définie par ‖ė‖2
M = 〈M ė, ė〉 = Tr(M ė ⊗ ė), et cette dernière

identité montre que les contraintes portant sur la matriceM , dans la définition de M, sont
linéaires3. Le problème (1.1) est bien posé dans le sens ou il admet un ensemble compact
de solutions, génériquement une seule [Sch09]. En dimension d ∈ {2, 3}, l’algorithme du
simplexe appliqué à ce problème prend une forme simple et intéressante d’un point de
vue géométrique, appelée algorithme de Selling [Sel74], voir §A.1.2. Pour la construction
de schémas numériques pour les EDPs, du premier et second ordre, l’intérêt principal de
(1.1) est son certificat d’optimalité. Les conditions de Karush-Kuhn-Tucker, affirment en
effet qu’il existe (ρi, ėi)

d′
i=1 ∈ (R+×Ld)d

′ , multiplicateurs de Lagrange et vecteurs associés
aux contraintes actives, tels que

D =
∑

1≤i≤d′
ρi ėi ⊗ ėi. (1.2)

On a noté d′ := d(d+1)/2 la dimension de l’espace des formes quadratiques. Voir la Figure
1.1. Cette décomposition matricielle rappelle l’écriture D =

∑d
i=1 µiv̇i⊗ v̇i en termes des

3 La contrainte implicite de définie positivité M � 0 peut être omise, car elle est conséquence de la
famille de contraintes 〈M ė, ė〉 > 0, ė ∈ Ld \ {0}.
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0 0

Figure 1.2 – Gauche : Ellipse {p ∈ E2; ‖p‖M ≤ 1}, oùM ∈ S++(E2). Centre : Région de
Voronoi VorZM(0), où Z := Z2 est la grille cartésienne. Droite : triangulation de Delaunay
DelZM , le voisinage de l’origine étant mis en avant.
Left : Ellipsoid {p ∈ E2; ‖p‖M ≤ 1}, where M ∈ S++(E2). Center : Voronoi region Vor(M),
where Z := Z2 is the cartesian grid. Right : Delaunay triangulation Del(M), with a highlight on
the origin’s neighborhood.

valeurs propres et vecteurs propres (µi, v̇i)
d
i=1 ∈ (R×Sd−1)d de la matrice. L’avantage cru-

cial de (1.2) est cependant que les vecteurs ėi ∈ Ld sont à coordonnées entières, et peuvent
donc être utilisés dans la construction de schémas numériques aux différences finies sur
grille cartésienne, pour des équations eikonales §3, de diffusion §5, et de Monge-Ampere
§6. La norme maxd

′
i=1 ‖ėi‖ des vecteurs apparaissant dans (1.2) détermine la localité de ces

schémas, qui est liée à leur précision, coût numérique, potentiel de parallélisation, et à la
difficulté d’implémenter les conditions au bord. Son estimation, et l’optimalité de cette
construction, sont l’objet de plusieurs résultats : voir les Theorèmes 2.1.5 et 2.1.6, et les
Propositions 3.2.3 et 5.1.2.

La seconde réduction de Voronoi fait intervenir le concept de diagramme de Voronoi.
Etant donnés Z ⊆ Ed un ensemble discret de points, et M ∈ S++(Ed), on pose

VorZM(p) := {x ∈ Ed; p ∈ argmin
q∈Z

‖x− q‖2
M}.

La triangulation de Delaunay4 DelZM , est définie comme duale de la partition de l’espace
par le diagramme de Voronoi (VorZM(p))p∈X . Voir la Figure 1.2. La triangulation de De-
launay est un objet fondamental en géométrie algorithmique [LS80, ES86]. Nous nous
limitons ici au cas de sites périodiques, qui possède une propriété géométrique exception-
nelle : ses angles internes sont aigus, pour le produit scalaire 〈M ·, ·〉, voir le Lemme 2.1.2.
Sa construction est aussi facilitée, voir §A.2.2. Ceci permet de l’utiliser pour développer
des schémas semi-lagrangiens causaux pour les équations eikonales riemanniennes, suivant
un principe dû à Sethian et al [SV03], voir §2.1.

Un dernier objet géométrique nous sera utile, appelé arbre Stern-Brocot [Bro62] et
limité à la dimension d = 2, voir la Figure 1.3. Il s’agit d’un arbre binaire complet infini,

4La généralisation présentée, par l’introduction d’une norme anisotrope ‖ · ‖M , n’en est pas vraiment
une car on peut se ramener au cas classique M = Id par un changement de variables linéaire.
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Figure 1.3 – Deux représentations de l’arbre (binaire infini complet) de Stern-Brocot,
avec la procédure de raffinement associée. Gauche : Les noeuds sont des paires de vec-
teurs, vus comme des triangles. Droite : Les noeuds sont des rationnels (représentation
classique).
Two representations of the (complete infinite binary) Stern-Brocot tree, with the associated re-
finement procedure. Left : Nodes are pairs of vectors, displayed as triangles. Right : Nodes are
rational numbers (classical representation).

dont les noeuds sont les paires de vecteurs5 entiers (e, f) ∈ L2
2 appartenant au premier

quadrant R2
+ et tels que det(e, f) = 1. Les enfants du noeud (e, f) sont (e, e+f) et (e+f , f).

Explorer l’arbre de Stern-Brocot permet de raffiner des secteurs angulaires, d’une manière
compatible avec la la grille cartésienne. Cet arbre intervient dans la discrétisation des
équations eikonales finsleriennes §2.2, et de la contrainte de convexité §7. Sa première
utilisation en EDP est due à Bonnans et al [BOZ04].

Projets et perspectives (Court terme. Réductions de Voronoi en dimension 4 et 5).
Les réductions de Voronoi se calculent de manière particulièrement simple et efficace en
dimension d ∈ {2, 3} grâce à l’algorithme de Selling, voir §A.1.2. C’est ce cas particulier
qui est utilisé dans tous nos codes informatiques, et dans l’intégralité des résultats numé-
riques présentés. Les équations eikonales sous-riemanniennes considérées en dimension 5,
voir §4.1.4, sont possibles grâce à la structure diagonale par blocs de la métrique.

A court terme, nous souhaitons produire une implémentation C++ rapide et robuste
de la première réduction de Voronoi en dimension 4 et 5, en nous fondant sur les résultats
de classification [CS88]. Les schémas numériques résultats seront mis en oeuvre sur des
applications pertinentes en ces dimensions, notamment en géométrie sous-riemannienne
et pour des problèmes de contrôle stochastique.

Projets et perspectives (Généralisation de la première réduction de Voronoi aux nuages
de points). Il est tentant de généraliser le programme linéaire (1.1) en replaçant la grille
cartésienne Ld par un nuage de points L ⊆ Rd quelconque. On obtient alors une décom-
position similaire à (1.2), a priori applicable à la discrétisation des EDPs sur un milieu
non-structuré.

Nous étudions cette possibilité, en gardant toutefois à l’esprit certaines réserves : (i)
Cette approche est inapplicable à la discrétisation des équations eikonales riemanniennes
(1.9), car celle ci utilise de manière cruciale la symétrie de l’ensemble d’offsets : ė ∈
L ⇔ −ė ∈ L. (ii) Pour la discrétisation des équations de diffusion, des contraintes

5Une autre représentation, plus classique, utilise des étiquettes rationelles [Niq07]. Au noeud (e, f),
où e = (a, b) et f = (a′, b′), est associée l’étiquette (a+ a′)/(b+ b′).
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Figure 1.4 – Une métrique associe à chaque point une gauge, c.a.d. une norme géné-
ralisée pouvant potentiellement être asymétrique et prendre des valeurs infinies. On en
représente ici la boule unité (indicatrice de Tissot). De gauche à droite : Métrique isotrope,
riemannienne, et finslerienne (asymétrique) sur R2. Puis métrique sous-riemannienne, ici
celle du modèle de Reeds-Shepp posé sur R2 × S1.
A metric associates to each point a gauge, i.e. a generalized norm which may be non-symmetrical
and may take infinite values. We display here the gauge’s unit balls (Tissot’s indicatrix). From
left to right : Isotropic, Riemannian, and Finslerian metric on R2. Rightmost : a sub-Riemannian
metric, here associated to the Reeds-Shepp model on R2 × S1.

supplémentaires doivent être ajoutées afin de garantir que
∑d′

i=1 ρiėi = 0, autrement un
terme indésirable du premier ordre est introduit. (iii) Le problème (1.1) ainsi généralisé
est en général mal posé, par exemple en dimension d = 2 si L = (Z \ {0}) × Z et D est
la matrice identité.

1.1.2 Equations eikonales

Les équations eikonales sont des équations au dérivées partielles, de type Hamilton-Jacobi-
Bellman, statiques et du premier ordre, caractérisant les solutions de problèmes de contrôle
optimal déterministes. Nous nous focalisons sur le cas le plus simple, où il s’agit de trouver
la longueur minimale des chemins allant du bord d’un domaine Ω ⊆ Ed à un point p ∈ Ω
donné

u(p) := inf{lengthF(γ); γ : [0, 1]→ Ω, γ(0) ∈ ∂Ω, γ(1) = p}. (1.3)

Le chemin γ : [0, 1]→ Ω est supposé localement Lipschitzien. Sa longueur est mesurée via
une métrique F : Ω×Ed → [0,∞] donnée, convexe et 1-homogène en sa seconde variable :

lengthF(γ) :=

∫ 1

0

Fγ(t)(γ̇(t)) dt. (1.4)

Nos travaux vont bien au delà des classiques métriques conformes [Tsi95, Set96, RT92] ,
localement proportionnelles à la norme euclidienne, qui sont de la forme Fp(ṗ) = ‖ṗ‖/s(p)
où s : Ω→]0,∞[ est une fonction vitesse donnée. Nous traitons en effet le cas de métriques
riemanniennes §2.1, finsleriennes (asymmetriques) §2.2, voire dégénérées de forme sous-
riemannienne §3.1 ou associée à des problèmes de contrôle optimal non-holonome §3.2.
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L’équation eikonale est, comme annoncé, une EDP satisfaite par la fonction temps
d’arrivée u : Ω→ [0,∞], au sens des solutions de viscosité [BCD08]. Elle s’écrit

F∗p(du(p)) = 1, où F∗p(p̂) := sup{〈p̂, ṗ〉; Fp(ṗ) ≤ 1}, (1.5)

pour tout p ∈ Ω, avec la condition au bord u(p) = 0 pour tout p ∈ ∂Ω. Cette formulation
EDP est l’outil principal pour établir la convergence des schémas numériques. Une esti-
mation de la vitesse de convergence peut être obtenue dans le cas de problèmes localement
contrôlables §3.1, grâce à la méthode du dédoublement des variables [SMK16, Mir17a].
Dans le cas contraire, nous établissons la convergence en un sens faible, grâce à la notion
de solution de viscosité discontinue d’une équation eikonale [BCD08], voir §3.2 issu de
[Mir17b].

Deux paradigmes s’opposent pour la discrétisation de l’EDP (1.5), fondés sur les
approches semi-lagrangienne et eulerienne respectivement. Avant de rentrer dans leurs
détails, je souhaite mettre en avant une seconde distinction, entre schémas causaux et
non-causaux. La causalité, définie dans §B, traduit la préservation au sein du problème
discret du caractère déterministe du problème de contrôle optimal sous-jacent. Elle équi-
vaut, dans le cadre des problèmes posés sur des graphes, à la positivité des longueurs des
arêtes. Cette hypothèse permet l’extraction rapide de chemins minimaux par l’algorithme
de Dijkstra, au lieu de la méthode générale plus lente de Bellman-Ford [Dij71]. Nous fai-
sons systématiquement le choix de schémas numériques causaux, résolus par l’algorithme
du Fast-marching qui généralise Dijkstra, pour plusieurs raisons : garantie d’un court
temps de calcul, pas de critère d’arrêt à définir, extraction plus robuste des géodésiques6,
possibilité de différentiation automatique §4.3.2, ... L’avantage en coût de calcul est parti-
culièrement marqué pour les métriques fortement anisotropes et spatialement hétérogènes,
qui interviennent souvent dans les applications en traitement de l’image [BC10, Mir14a].
Les algorithmes alternatifs au Fast-Marching ont d’autres avantages, notamment un trai-
tement plus simple des géométries complexes (pour lesquelles la causalité est difficile à
satisfaire) [BR06, TCO04, Zha05], ou des possibilités de parallélisation [CV15, Tug08] y
compris sur les architectures GPU [WDB+08, JW08], voir aussi la discussion dans §B.

Projets et perspectives (Algorithmes massivelement parallèles compatibles avec nos
schémas adaptatifs). Le calcul de chemins minimaux pour des modèles non-holonomes,
implémentant par exemple une pénalisation de la courbure §3.2, nécessite de résoudre des
équations eikonales dégénérées sur des espaces de dimension assez élevée, tels que Rd×Sd−1

où d ∈ {2, 3}. La réduction d’un ordre de grandeur des temps de calcul, actuellement
d’environ 1 seconde pour les cas-test intéressants, permettrait d’envisager le contrôle de
systèmes (véhicules, robots, ...) en temps réel.

Les méthodes numériques parallèles semblent être une solution à ce problème, et elles
ont déjà été étudiées pour les équations eikonales, y compris sur GPU comme discuté plus
haut. Cependant, toutes ces méthodes requièrent actuellement d’utiliser le stencil de dis-
crétisation canonique de la grille cartésienne, et ne sont donc pas appropriées pour gérer
les fortes anisotropies. Pour y remédier, nous recherchons des structures de données com-
patibles avec ces architectures mais aussi avec nos stencils de discrétisation anisotropes.

6Grâce au champ de vitesses upwind obtenu.
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Projets et perspectives (Quantification de la non-causalité des discrétisations d’équa-
tions eikonales). Les méthodes numériques pour la résolution des équations eikonales se
divisent actuellement en deux groupes : (I) les discrétisations causales, numériquement
résolues par des algorithmes en une passe de type Dijkstra, et (II) les discrétisations non-
causales, résolues par des méthodes itératives génériques. Nous souhaitons remplacer cette
dichotomie par une gradation, en quantifiant au sein du second groupe dans quelle me-
sure une discrétisation donnée est non-causale, et en exploitant cette propriété au sein
de l’algorithme de résolution. Des résultats préliminaires ont été obtenus sur des mo-
dèles jouets en dimension 1, où nous remplaçons par exemple la différence finie amont
h∂xu ≈ u(x)− u(x− h) par

h ∂xu ≈ (1 + 2γ)u(x)− (1 + γ)u(x− h)− γu(x+ h),

où la constante γ ≥ 0 quantifie le caractère non-amont. Les contextes visés concrètement
sont les métriques de Rander sur grille cartésienne, voir §3.1.3, et les métriques rieman-
niennes sur nuage de points en prenant pour point de départ le travail [RL16], voir la
perspective de recherche ci-dessous.

Schémas numériques semi-lagrangiens.

Les méthodes semi-lagrangiennes de calcul des temps d’arrivée (1.3) sont fondées sur une
propriété de consistance interne de la fonction valeur u : Ω → [0,∞], appelée principe
d’optimalité de Bellman. Elle exprime qu’un chemin minimal de ∂Ω à p ∈ Ω peut se
décomposer en la concaténation de deux chemins minimaux, de ∂Ω à un certain q ∈ ∂V (p)
et de q à p respectivement, où V (p) ⊆ Ω est un voisinage arbitraire de p. Ainsi, en notant
dF la quasi-distance7 associée à F ,

u(p) = inf
q∈∂V (p)

dF(q,p) + u(q). (1.6)

Les schémas numériques semi-lagrangiens miment, dans le domaine discret, cette pro-
priété. Soient X et ∂X des parties discrètes de Ed destinées à approcher Ω et ∂Ω, et
pour tout p ∈ X soit V (p) un polytope contenant p et dont les sommets appartiennent
à X ∪ ∂X. Trouver U : X ∪ ∂X → [0,∞] tel que pour tout p ∈ X

U(p) = inf
q∈∂V (p)

Fp(p− q) + IV (q) U(q), (1.7)

et U(p) = 0 pour tout p ∈ ∂X. En comparaison avec (1.6), la distance dF(q,p) est
approchée à l’aide de la métrique locale Fp(p−q), et les valeurs de U aux points q ∈ ∂V (p)
qui ne sont pas des sommets sont approchées par l’interpolation linéaire IV (p) U(q).

Sethian et al [SV03, Vla08], ont identifié une propriété géométrique dite d’angle aigu,
portant sur les couples (V (p),Fp)p∈X de stencil et métrique locale, impliquant la propriété
causalité du système (1.7), voir §B.

Notre contribution est la construction de stencils respectant la propriété d’angle aigu,
donc définissant des schémas numériques causaux, appelés Fast Marching using Lattice

7Une quasi-distance obéit aux axiomes de séparation et à l’inégalité triangulaire, mais n’est pas for-
cément symétrique et peut prendre des valeurs infinies.
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Figure 1.5 – Gauche : Illustration du principe d’optimalité de Bellman. Droite : Sa
discrétisation, qui est à la fondation des schémas semi-lagrangiens.
Left : Illustration of Bellman’s optimality principle. Right : Discretization of this principle, which
is a the foundation of semi-Lagrangian numerical schemes for eikonal PDEs.

First

Last

First Last

Figure 1.6 – Boule unité et stencil associé dans nos schémas semi-lagrangien. Gauche :
Cas d’une norme ‖ · ‖M , M ∈ S++(E3), et du schéma FM-LBR. Droite : Cas d’une norme
finslerienne asymétrique sur E2, et du schéma FM-ASR.
Unit ball of a norm, and corresponding stencil in our semi-Lagrangian schemes. Left : Case
of a norm ‖ · ‖M , where M ∈ S++(E3), and of the FM-LBR scheme §2.1. Right : Case of a
non-symmetrical norm on E2, and of the FM-ASR scheme §2.2.
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Basis Reduction (FM-LBR) et Fast Marching using Anisotropic Stencil Refinement (FM-
ASR), voir respectivement §2.1 issu de [Mir14a], et §2.2 issu de [Mir14b]. Pour les mé-
triques riemanniennes nous utilisons le concept de triangulation de Delaunay, et dans le
cas de métriques finsleriennes bidimensionelles nous utilisons l’arbre de Stern-Brocot, voir
la Figure 1.6. Notre approche requiert que l’ensemble discret X ∪ ∂X soit une grille car-
tésienne. Des constructions antérieures existaient [SV03, AM11, KS98, SK04], mais elles
étaient bien moins efficaces à cause de la grande taille et du grand nombre de sommets
des polytopes obtenus. Nos gains ont rendu possibles les applications [CCM14, BDMS15,
CMC16c, DMMP16] et [CMC16a, CMC16b, CC17a, CC17b] notamment, et ont été dis-
tribués au sein du code open source [Mir15a].

Projets et perspectives (Extension de l’algorithme FM-ASR aux nuages de points
bi-dimensionnels quelconques). Nous étudions une généralisation de cet algorithme, dé-
dié aux équations eikonales finsleriennes en dimension deux, voir §2.2, aux géométries
représentées par un ensemble discret quelconque de points L ⊆ E2 du plan au lieu d’une
grille cartésienne. Ceci est motivé par les applications, qui demandent une meilleure réso-
lution numérique dans certaines zones que d’autres (e.g. port et pleine mer dans le cadre
maritime considéré avec J. Dreo).

Ce travail requiert de généraliser l’arbre de Stern-Brocot, en remplaçant la somme
arithmétique t = q + r − p ∈ L2 d’éléments du réseau p,q, r ∈ L2 par une construction
géométrique, comme “le point de discrétisation t ∈ L appartenant aux cône engendré par
~pq et ~pr, et le plus proche de son sommet p, où p,q, r ∈ L.”

Projets et perspectives (Généralisation de l’algorithme FM-LBR fondée sur les étoiles
de Delaunay). Etant donnés un nuage de points L ⊆ Ed discret, et une famille de tenseurs
M : L → S++(Ed), on appelle étoile de Delaunay en p ∈ L l’union V (p) des simplexes
contenant p dans la triangulation de Delaunay de L associée à la norme ‖·‖M(p). Lorsque
L est le réseau Ld, et seulement dans ce cas, ces étoiles vérifient la propriété d’angle aigu
[SV03], peuvent être calculées rapidement indépendamment les unes des autres, et sont à la
fondation de l’algorithme FM-LBR de résolution des équations eikonales riemanniennes,
voir §2.1.

Un algorithme efficace de construction des étoiles de Delaunay, dans le cadre d’un
nuage arbitraire de points, est introduit dans [RL16], et utilisé pour l’amélioration d’une
méthode heuristique [CHK13] de calcul de géodésiques riemanniennes. Nous étudions leur
utilisation au sein d’un schéma numérique semi-lagrangien.

Schémas numériques Eulériens.

L’équation eikonale (1.5) peut également être discrétisée directement, de manière eule-
rienne, permettant de nouveau le calcul des temps d’arrivée (1.3). Cette discretization
prend la forme

Fp(U(p), (U(p)− U(q))q∈X) = 1, (1.8)

pour tout p ∈ X, avec la condition au bord U = 0 sur ∂X. De nouveau X et ∂X sont des
ensembles discrets dédiés à l’approximation du domaine Ω et de son bord ∂Ω. La résolution
stable du système (1.8) est possible pourvu que Fp : R× RX → R soit monotone, c’est à
dire croissante en chacune de ses variables. Si de plus Fp est causale, c’est à dire dépend
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seulement des parties positives des différences (U(p)−U(q))q∈X , alors la résolution peut
être effectuée en une seule passe par l’algorithme du Fast-Marching, donc très rapidement
en pratique, voir §B.2.

Notre contribution est l’introduction d’un schéma numérique monotone et causal dans
le cas d’une métrique riemannienne et d’une discrétisation sur grille cartésienne, appelé
FM-VR1 (Fast Marching using Voronoi’s First Reduction), voir §3.1 issu de [Mir17a]. Il
repose sur l’approximation au premier ordre

‖du(p)‖2
D ≈ h−2

∑
1≤i≤d′

ρi max{0, u(p)− u(p− hėi), u(p)− u(p + hėi)}2, (1.9)

où D ∈ S++(E∗d) est décomposée à sous la forme (1.2) à l’aide de la première réduction
de Voronoi. Nous avons également étendu cette approche (avec perte de causalité) aux
métriques finsleriennes asymétriques de type Rander §3.1.3. Plusieurs cas intéressants de
métriques singulières, définissant des normes “infinies” pour certains vecteurs tangents,
sont aussi traités. Ceux-ci correspondent à des systèmes de contrôle non-holonomes, où
certaines directions de mouvement sont localement interdites.

Les métriques sous-riemanniennes sont un premier exemple de métrique singulière.
On peut les voir comme des métriques riemanniennes dont certaines valeurs propres sont
infinies, mais pour lesquelles des propriétés de contrôlabilité locale sont néanmoins satis-
faites [Mon06]. Nous approchons ces valeurs infinies par de grandes valeurs, et établissons
des taux de convergence pour le schéma numérique résultant, voir §3.1. Avec Duits et al
[SBD+15, DMMP16], nous avons en particulier implémenté le modèle de Reeds-Shepp,
une métrique sous-riemannienne sur R2×S1 décrivant le déplacement de véhicules de type
“chaise roulante”, voir la Figure 1.7. Des variantes de ce modèle, posées sur le domaine
R3 × S2 de dimension d = 5, sont étudiées §4.1.4.

Nous avons également étudié des métriques conçues pour implémenter une pénalisation
de la courbure d’un chemin planaire. Associons à γ : [0, L] → R2, supposé paramétré à
vitesse unité, l’énergie ∫ L

0

α(γ(t), γ̇(t)) C(ξ|γ̈(t)|) dt, (1.10)

voir §3.2. L’application visée dicte le coût scalaire α, le paramètre ξ homogène à un rayon
de courbure, et la fonction C convexe et croissante, tous supposés positifs. La courbure
locale κ(t) = ‖γ̈(t)‖ intervenant dans (1.10) est une quantité d’ordre 2, ne pouvant pas
apparaitre directement dans l’expression d’une métrique Fγ(t)(γ̇(t)). Pour palier à cette
difficulté, nous introduisons le domaine tri-dimensionel M := R2 × S1, dont les éléments
p = (x, θ) sont des paires déterminant une position spatiale et une orientation angulaire.
Les vecteurs tangents à cette variété ṗ = (ẋ, θ̇) ∈ R2×R contiennent donc une information
de vitesse spatiale et angulaire. Munissons M de la métrique dégénérée définie lorsque
‖ẋ‖ = 1 par

Fp(ṗ) = F(x,θ)(ẋ, θ̇) =

{
α(x, θ) C(ξ|θ̇|) si ẋ = n(θ),

+∞ sinon,

et étendue par homogénéité Fp(λṗ) = λFp(ṗ) pour tout λ > 0. Par construction, tout
chemin η : [0, L]→M de longueur finie vis à vis de la métrique F est à une reparamétri-
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Figure 1.7 – Chemins planaires minimisant globalement une énergie dépendant de la
courbure, obtenus par la résolution d’équations eikonales dégénérées sur R2×S1, voir §3.2.
De gauche à droite : modèle de Reeds-Shepp réversible, Reeds-Shepp non-réversible, Euler-
Mumford, et Dubins. Paramètres du modèle : α ≡ 1, ξ = 0.3 (Reeds-Shepp) ou ξ = 0.2
(autres). Point source (1/2, 1/2, 0) ∈ R2×S1. Points cible (k/3, l/3, π/4), k, l ∈ {0, · · · , 3}.
Planar paths globally minimizing a curvature dependent energy, obtained by solving a degenerate
eikonal PDE on R2 × S1, see §3.2. From left to right : Reeds-Shepp reversible, Reeds-Shepp
forward, Euler-Mumford, and Dubins models. Model parameters : α ≡ 1, ξ = 0.3 (Reeds-Shepp)
or ξ = 0.2 (other). Source point (1/2, 1/2, 0) ∈ R2 × S1. Target points (k/3, l/3, π/4)3

k,l=0.

sation près le relevé η = (γ, γ̇) d’un chemin planaire γ : [0, L] → R2 paramétré à vitesse
unité8. De plus la longueur lengthF(η), définie par (1.4), égale (1.10) comme souhaité.

Nous nous sommes intéressés aux coûts classiques associés aux modèles de Reeds-Shepp
[RS90, DMMP16], de Euler-Mumford [Mum94], et de Dubins [Dub57], qui pénalisent de
manière croissante les fortes courbures et dont l’expression est la suivante :

CRS(κ) :=
√

1 + κ2, CEM(κ) :=1 + κ2, CD(κ) :=

{
1 si κ ≤ 1,

+∞ sinon.

Notre contribution est la conception de schémas numériques pour les métriques (dégéné-
rées) correspondant à ces coûts. Les premiers essais étant semi-lagrangiens non-causaux
[BDMS15, CMC17], puis des schémas Euleriens causaux ont été établis, voir §3.2 issu de
[Mir17b, DMMP16].

Projets et perspectives (Court terme. Modèles dissymétriques). Avec L. Cohen et
Da Chen, nous nous intéressons à des modèles de chemins davantage paramétrables et
notamment dissymétriques, dont la métrique prend la forme

F(x,θ)(ẋ, θ̇) := α(x, θ) C
(
ξ(x, θ) (θ̇ − κ(x, θ))

)
si ẋ = n(θ),

avec l’extension usuelle par 1-homogénéité positive, et par +∞ sinon. Le champ scalaire
κ : M→ R définit une courbure de référence, par rapport à laquelle on pénalise la courbure
du chemin. En choisissant par exemple un champ constant non nul κ ≡ κ0 ∈ R, on

8Cette interprétation heuristique doit être légèrement modifiée pour les modèles autorisant la rotation
sur place, comme le modèle de Reeds-Shepp sans marche arrière.
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implémente un véhicule de Dubins ayant un plus petit rayon de braquage d’un côté que de
l’autre, ou encore des elasticae d’Euler pour un matériau élastique ayant une configuration
de repos tordue et non droite. De premiers résultats numériques ont déjà été obtenus, et
leur application au traitement de l’image est en cours d’investigation.

Projets et perspectives (Utilisation d’approximations nilpotentes de distances sous-rie-
manniennes). Considérons le modèle de Reeds-Shepp sous-riemannien, décrivant typique-
ment une chaise roulante, initialement aux position et orientation (x0, y0, θ0) = (0, 0, 0).
Le coût du chemin menant à la configuration (x, y, θ) ∈ M peut être localement approché
de plusieurs manières, comme√

x2 + ε−2y2 + θ2, 4
√

(x2 + θ2)2 + y2. (1.11)

L’approximation (1.11, gauche), faisant intervenir un petit paramètre ε > 0, est une re-
laxation riemannienne, actuellement utilisée dans nos schémas numériques pour ce modèle
et ses variantes [SBD+15, DMMP16]. Nous souhaitons développer des méthodes fondées
sur l’approximation locale (1.11, droite), qui est bien plus fidèle [BCP17]. Des principes
similaires sont susceptibles de s’appliquer aux autres systèmes non-holonomes étudiés, par
exemple les Elasticae de Euler-Mumford.

Applications, notamment en segmentation d’images.

Le traitement des images médicales est une motivation majeure des mes travaux sur la
résolution numérique des équations eikonales anisotropes. Les applications dans ce do-
maine présentées ci-dessous sont développées en collaboration avec L. Cohen9 [CMC16a,
CMC16b, CC17a, CC17b, CCM14, CMC16c] et plus récemment avec R. Duits10 [SBD+15,
DMMP16]. Des applications indépendantes, dans le domaine de la planification de mou-
vement et de la surveillance, sont développées avec J. Dreo11 et discutées §4.3.

L’utilisation de chemins minimaux, issus de la résolutions d’équations eikonales, pour
la segmentation de de contours d’objets ou de structures tubulaires dans des images a été
introduite par Cohen et Kimmel [CK97], voir l’introduction historique §4.1.1. Le choix
de métriques anisotropes est naturel dans ce contexte, pour mieux guider ces chemins le
long des structures d’intérêt, et éviter les problèmes dits de “cours-circuits” et de “fuites”.
Cet enrichissement était rendu difficile en pratique par la mauvaise performance des al-
gorithmes connus [BC10] dans le cas de fortes anisotropies, mais cette limitation a été
essentiellement levée grâce aux contributions de ce mémoire. Des améliorations de temps
de calcul pouvant atteindre quatre ( !) ordres de grandeur ont été obtenues dans les cas
tests du domaine [Mir14a], et de nombreuses applications ont été rendues possibles, voir
la Figure 1.8 et les références ci-dessus.

Je souhaite mettre en avant deux développements, initialement inattendus, qui n’au-
raient pu être envisagés sans des algorithmes efficaces pour la résolution des équations
eikonales anisotropes. Le premier est lié à la minimisation d’énergies de segmentation, de

9Directeur de Recherches CNRS, Laboratoire Ceremade, Université Paris-Dauphine
10Professeur à l’Université TU/e d’Eindhoven
11PhD, Thales Research and Technology
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Figure 1.8 – Gauche : Segmentation fondée sur la minimisation une énergie (1.12) de
type Chan-Vese. Notre méthode numérique extrait le bord en tant que géodésique minimi-
sante pour une métrique asymétrique, voir §4.2 issu de [CMC16b]. Centre : Segmentation
du réseau vasculaire rétinien, utilisant des chemins minimaux pour le modèle de Reeds-
Shepp [SBD+15]. Droite : Chemins minimaux pour le modèle de Reeds-Shepp sans marche
arrière, posé sur R3 × S2, avec obstacles.
Left : Region segmentation based on the minimization of an energy (1.28) of Chan-Vese type,
extracting the boundary as a minimal geodesic w.r.t. an asymmetric metric, see §4.2 from
[CMC16b]. Center : Segmentation of the retinal vascular tree, based on minimal paths for a
data-driven Reeds-Shepp model [SBD+15]. Right : Minimal paths for the Reeds-Shepp forward
model, defined on R3 × S2, with obstacles.

Figure 1.9 – Comparaison des plus courts chemins des points (noirs) au sorties (vertes) du
centre Pompidou, pour le modèle de Reeds-Shepp avec (gauche) ou sans (droite) marche
arrière. En blanc apparaissent les points singuliers des différents modèles : points de
rebroussement (gauche), ou de rotation sur place (droite).
Comparison between the shortest paths from some points (black) to the exits (green), in a map of
Centre Pompidou, for cars with (left, blue lines) or without (right, red lines) reverse gear. The
yellow arrows indicate the orientation of the curve. The background colors show the distances
at each position, minimized over the orientation. White points indicate the curve singularities :
cusps (left), or in-place rotations (right).
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type Chan-Vese [CV01] : associons à toute partie de bord rectifiable U d’un domaine Ω
l’énergie

E(U) =

∫
U

f +

∫
∂U

g, (1.12)

où f, g : Ω→ R sont données, g étant positive. L’approche classique pour minimiser (1.12)
consiste à introduire une fonction ψ : Ω → R dont la région d’intérêt est un ensemble
de niveau : U = {p ∈ Ω; ψ(p) < 0}. La mise en oeuvre de ces méthodes, dites level
set, pose cependant plusieurs difficultés, comme la sensibilité à l’initialisation, la création
fréquente de petites composantes connexes indésirables, et le coût numérique. Nous avons
observé, en dimension d = 2 et en utilisant le théorème de la divergence, que le bord ∂U
de l’ensemble minimal était une géodésique pour une métrique de Rander, à savoir

Fp(ṗ) = g(p)‖ṗ‖+ 〈ω(p)⊥, ṗ〉.

où le champ de vecteurs ω : Ω → E2 satisfait divω = f et ‖ω⊥‖ < 1 au voisinage
de ∂U . Cette reformulation permet de minimiser (1.12) en calculant, par la résolution
d’une équation eikonale, le chemin minimal pour la métrique anisotrope et asymétrique
ci-dessus. Voir §4.2, issu de [CMC16b].

Le second développement concerne la segmentation du réseau vasculaire rétinien. L’ap-
proche de classique [CK97] pour la segmentation d’une structure tubulaire est d’introduire
une métrique isotrope Fp(ṗ) := ‖ṗ‖/s(p), déterminée par un champ scalaire de vitesses
s : Ω→]0,∞[ prenant de petites valeurs sur la structure d’intérêt et de grandes valeurs sur
le fond. On extrait ensuite les chemin minimaux reliant les extrémités de la structure, qui
sont déterminées par l’utilisateur ou par un autre algorithme. Cette méthode est malheu-
reusement rendue inopérante par l’intrication et les nombreuses intersections des vaisseaux
visibles dans les images de fonds rétiniens12, voir la Figure 1.8 (centre). En effet, les che-
mins minimaux obtenus sont la concaténation de branches de plusieurs vaisseaux sanguins.
Pour résoudre ce problème, nous enrichissons le modèle de chemin par une pénalisation
de la courbure, de type Reeds-Shepp ou Euler-Mumford [SBD+15, DMMP16, CMC17],
implémentée comme ci-dessus, améliorant une proposition de Duits et al [BDMS15]. Ce
nouveau modèle élimine les courts-circuits, en rendant trop coûteux les changements bru-
taux de direction qui avaient lieu au niveau des intersections, voir §4.1.

Projets et perspectives (Court terme. Publication des codes informatiques de réso-
lution d’équations eikonales non-holonomes). Avec J. Portegies, nous clarifions, docu-
mentons, et assortissons d’exemples, les codes C++ développés pour le calcul de chemins
minimaux avec pénalisation de courbure. Ceci en vue de leur soumission à une revue
de recherche reproductible, et leur mise à disposition open-source à la communauté du
traitement de l’image.

Projets et perspectives (Planification de mouvements de véhicules). Avec J. Dreo,
nous étudions les applications industrielles des solveurs d’équations eikonales anisotropes
développés dans le cadre de mes recherches. Nous nous intéressons en particulier au cal-
cul de trajectoires furtives et à leur détection par des dispositifs de surveillance [MD17].

12Précisément, les vaisseaux sont disjoints dans l’espace tri-dimensionel, mais leurs projections sur
l’image se superposent.
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Nous souhaitons également les coupler avec les algorithmes de planification multi-agent
développés dans le cadre du projet européen SWARM. La pénalisation de la courbure des
chemins, permise par les méthodes numériques présentées dans ce mémoire, est un réel
plus dans ce cadre compte tenu des contraintes mécaniques des véhicules considérés.

1.1.3 Equations du second ordre.

Nous avons étudié la discrétisation des EDPs d’ordre deux, à l’aide d’outils de géométrie
algorithmique mêlant anisotropie et structure de réseau - première réduction de Voronoi,
et arbre de Stern-Brocot -, déjà appliqués aux équations eikonales dans la section précé-
dent. Nos résultats concernent notamment les EDPs de diffusion anisotrope, l’équation de
Monge-Ampère, et la contrainte de convexité. Voir §5 issu de [FM06], §6 issu de [BCM16],
et §7 issu de [Mir16a] respectivement.

Equation de diffusion anisotrope.

Le domaine de l’imagerie a été moteur, un temps au moins, dans la proposition et l’étude
d’EDPs de diffusion très générales, non-linéaires, anisotropes, et typiquement sous forme
divergence. Elles prennent la forme

∂tu(x, t) = div(Du(x, t)∇u(x, t)) (1.13)

en tout point (x, t) ∈ Ω×]0,∞[, où Ω ⊆ Ed est le domaine de l’image. Pour compléter le
problème, une condition initiale est nécessaire sur Ω× {0}, et des conditions au bord sur
∂Ω×]0,∞[, par exemple de Neumann.

Par un choix judicieux des tenseurs non-linéaires Du, ce type d’équations permet d’éli-
miner du bruit13, de rehausser les contours, ou d’appliquer des effets artistiques à une
image donnée. Voir [Wei98] et la Figure 1.10. Il convient de distinguer les tenseurs non-
linéaires mais isotropes, comme celui Du(x, t) = Id /‖∇u(x, t)‖ de Perona et Malik14

[PM90], des constructions anisotropes plus sophistiquées dues par exemple à Weickert
[Wei98] et dont les vecteurs propres sont alignés avec les directions localement privilégies
de l’image.

Fehrenbach et l’auteur [FM14] ont introduit un schéma numérique pour l’EDP (1.13),
avec des tenseurs de diffusion anisotropes (leur non-linéarité ne posant pas de difficultés
dans les applications étudiées). Il est fondé sur l’approximation au premier ordre

‖∇u(p)‖2
D ≈

∑
1≤i≤d′

ρi
(u(p)− u(p− hėi))2 + (u(p)− u(p + hėi))

2

2h2
, (1.14)

où les poids et offsets (ρi, ėi)
d′
i=1 sont issus de la première réduction de Voronoi (1.2). L’ap-

proximation (1.14) permet d’approcher des énergies elliptiques définies par des champs
de tenseurs anisotropes, et donc de résoudre les EDPs de diffusion anisotrope qui sont
leurs flots gradients pour la métrique L2. Ce schéma préserve le principe du maximum, et
utilise un stencil plus compact que les constructions alternatives, voir §5.

13Effet de moutonnement présent dans e.g. les prises de vues en basse lumière.
14 Le modèle de Perona et Malik, introduit sous forme divergence et isotrope, et implémenté numéri-
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Figure 1.10 – Débruitage par diffusion anisotrope, images issues [Mir15a]. Gauche :
Empreinte digitale traitée par Coherence Enhancing Diffusion (CED). Droite : Scan IRM
(avec bruit artificiel) traité par Edge Enhancing Diffusion (EED). EDPs proposées dans
[Wei98], implémentation de [Mir15a].
Image denoising by anisotropic diffusion. Left : Coherence Enhancing Diffusion applied to a
fingerprint image. Right : Edge Enhancing Diffusion applied to IRM data (with artificial noise).
PDEs introduced in [Wei98], implementation from [Mir15a].

Notre approche permet également de traiter les équations de diffusion sous forme
non-divergence, grâce à l’approximation au second ordre

Tr(D∇2u(p)) ≈
∑

1≤i≤d′
ρi
u(p− hėi)− 2u(p) + u(p + hėi)

h2
,

où les poids et offsets (ρi, ėi)
d′
i=1 sont de nouveau issus de la première réduction de Voronoi

(1.2). Dans le cas particulier de la dimension d = 2, une construction équivalente avait
été proposée antérieurement [BOZ04].

Projets et perspectives (Généralisation de la formule de Varadhan aux métriques de
Rander). La formule de Varadhan lie les solutions de l’équation de diffusion en temps
court, et de l’équation eikonale, sur une variété riemannienne [Var67]. Elle est à la base
de méthodes numériques originales pour le calcul de plus courts chemins riemanniens
[CWW12], particulièrement efficaces en dimension d = 2. Avec D. Prandi, L. Cohen
et sont étudiante F. Yang, nous étudions un lien similaire entre les équations de dérive
diffusion, et les équations eikonales vis à vis de métriques de Rander non-symétriques.

Equation de Monge-Ampère.

L’opérateur de Monge-Ampère fait partie de la classe des opérateurs différentiels mono-
tones du second ordre, voir [CIL92] ou la Définition §B.1.1. Sous de faibles hypothèses,
ceux-ci peuvent s’exprimer en termes d’opérateurs de diffusion sous forme non-divergence ;
toute discrétisation des seconds permet donc de s’attaquer aux premiers, suivant la stra-
tégie [KT92]. Dans le cas de Monge-Ampère, ceci découle de l’identité

d(detM)
1
d = inf{Tr(DM); D ∈ S++(E), detD = 1}

quement comme tel, est parfois artificiellement reformulé sous forme non-divergence et non-isotrope, ce
qui a entrainé une malheureuse confusion terminologique [Wei98].
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valable pour tout M ∈ S+(E). Plus précisément, en dimension d = 2 et en regroupant
les matrices D ∈ S++(E2) suivant le support de leur décomposition associée à la première
réduction de Voronoi (1.2), nous aboutissons à une discrétisation monotone et consistante
de l’opérateur de Monge-Ampere, voir §6 issu de [BCM16]. Elle s’écrit, pour u convexe et
régulière

det(∇2u(p)) ≈ min
(ė0,ė1,ė2)∈B

H(∆+
ė0
u(p),∆+

ė1
u(p),∆+

ė2
u(p)) (1.15)

où B ⊆ (L2)3 désigne l’ensemble des superbases de L2, et où H est une fonction explicite
et croissante en ses trois variables. On a noté ∆+

ė u(p) := max{0, u(p − hė) − 2u(p) +
u(p+hė)}/h2 la partie positive de la différence finie seconde de u dans la direction ė, sur
une grille cartésienne d’échelle h > 0. Cette approche améliore les résultats [FO11b], en
éliminant l’erreur de consistance.

Dans le cadre de ces recherches, nous avons également établi la convergence d’un Al-
gorithme de Newton amorti [Mir15b] appliqué à la discrétisation de l’ équation de Monge-
Ampère en dimension d = 3. Cette technique fut reprise par Mérigot et al [KMT16] pour
établir la convergence de schémas de transport optimal semi-discrets sous les hypothèses
géométriques générales de Loeper et Ma-Trudinger-Wang [MTW05].

Mérigot et l’auteur ont également introduit une nouvelle discrétisation des équations
d’Euler des fluides incompressibles, avec conditions au bord de Dirichlet [MM16], en uti-
lisant les méthodes du transport optimal semi-discret [OP89, AHA98], qui sont liées bien
que distinctes. Nous nous intéressons au problème de reconstruction des états intermé-
diaires du fluide, avec données au bord, et non au problème de Cauchy considéré dans
[dGWH+15] avec des techniques liées. Nous avons publié les premiers résultats numé-
riques en dimension deux pour ce problème, voir la Figure 1.11, et mis en lumière des
comportements paradoxaux étudiés par Brenier [Bre08]. Cette thématique a ensuite été
développée au sein de l’équipe Mokaplan/MAGA, avec un schéma pour le problème de
Cauchy par Gallouet et al [GV16], et une approche numérique différente due à Benamou
et al [BCC+15].

Projets et perspectives (Discrétisations monotones et consistantes d’opérateurs de
type Hamilton-Jacobi-Bellman du second ordre). Dans ce travail, entrepris avec J.-D.
Benamou et V. Duval, nous développons des schémas numériques robustes, précis, et res-
pectant la monotonie en un sens discret pour des EDPs de HJB associées à des opérateurs
extrémaux au sens de Pucci, voir §5. Notre approche, dont le principe est présenté §6.1,
généralise nos résultats sur l’équation de Monge-Ampère. Elle donne des schémas consis-
tants, donc bien plus précis que les schémas classiquement considérés dans la littérature
[FO11a] qui dépendent d’un paramètre de relaxation et sont seulement asymptotiquement
consistants. Nous nous intéressons notamment au cas du 2-laplacien, un opérateur inter-
médiaire entre le laplacien et celui de Monge-Ampère.

Projets et perspectives (Schémas numériques pour la mécanique des fluides). Notre
travail, avec Q. Merigot [MM16], sur la résolution des équations d’Euler des fluides in-
compressibles, se prête à des généralisations. Par exemple dans le cadre des équations
de Camassa-Holm [GM16], ou des équations d’Euler avec borne supérieure sur la densité
[MP15]. Plusieurs schémas de discrétisation sont à l’étude.
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(a) t = 0.0 (b) t = 0.95 (c) t = 1.1 (d) t = 1.3 (e) t = 1.5

(f) t = 0.0 (g) t = 0.25 ∗ tmax (h) t = 0.5 ∗ tmax (i) t = 0.75 ∗ tmax (j) t = tmax = 1.5

Figure 1.11 – Haut : Particules transportées par le flot de Beltrami, qui est solution
des équations d’Euler, donc définit une géodésique dans l’espace l’espace des difféomor-
phismes préservant le volume [Arn66]. Bas : Géodésique minimisante au sens relaxé de
Brenier [Bre89], calculée numériquement dans [MM16]. La géodésique minimisante est ici
strictement plus courte, et fait apparaitre un phénomène a priori paradoxal de mélange.
Top : Particles transported along the Beltrami flow, which obeys Euler’s equations of incom-
pressible fluids, hence is a geodesic in the space of volume preserving diffeomorphisms [Arn66].
Bottom : Minimizing geodesic, in the relaxed sense of Brenier [Bre89], numerically computed in
[MM16]. The minimizing geodesic is here strictly shorter, and displays the paradoxical mixing
behavior.
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Contrainte de convexité.

Le problème du monopoliste, aussi appelé modèle de l’agent principal, fut proposé en
économie théorique par Rochet et al [RC98]. Un fabriquant de produits, sans concurrence
sur son marché, décide librement du catalogue de ses prix et le propose à une population.
Ses membres choisissent individuellement le produit du catalogue qui leur est d’utilité
maximale, le prix en étant soustrait, ou n’achètent rien si les prix proposés sont excessifs.
Connaissant ce comportement général, ainsi que le type et la distribution des fonctions
d’utilité au sein de la population, le monopoliste ajuste ses prix pour maximiser son profit.

D’un point de vue mathématique, ce problème est équivalent à la minimisation d’une
énergie elliptique dans l’ensemble des fonctions convexes sur un domaine. Son instance la
plus simple et la plus étudiée est la suivante :

min{
∫

[1,2]2

(
1

2
|∇u(p)|2 − 〈∇u(p),p〉+ u(p)

)
dp; u ≥ 0, u convexe}.

L’existence d’un minimiseur découle facilement des propriétés de compacité de l’ensemble
des fonctions convexes. Lors de la discrétisation, la contrainte de convexité crée cependant
de sérieuses difficultés, identifiées dans [CLM06]. Ceci a conduit au développement d’une
variété de méthodes numériques [CLRM01, AM08, AM09, EMB10, Obe13, MO14, Wac17,
Mir16a]. Pour s’en convaincre, donnons nous un convexe borné Ω ⊆ E2 de dimension deux,
posons X := Ω ∩ hL2, où h > 0 est l’échelle de discrétisation, et considérons

Conv(X) := {u|X ; u : Ω→ R est convexe}.

L’ensemble Conv(X) ⊆ RX est un cône convexe caractérisé par O(N2) inégalités linéaires
non-redondantes, où N = #(X), que nous avons identifiées, corrigeant [CLRM01]. Ce
grand nombre de contraintes, quadratique en la dimension du problème, rend excessive-
ment couteuses les discrétisations naives, fondées sur leur énumération. Notons cependant
qu’au plus N = dim(RX) contraintes non-redondantes peuvent être actives simultané-
ment.

Notre contribution a été d’organiser les contraintes linéaires définissant Conv(X) en
une structure hiérarchique, fondée sur l’arbre de Stern-Brocot, défini en §A.1.3. Ceci a per-
mis de définir des sur- et sous-cones de Conv(X), définis par un nombre moindre d’inégali-
tés linéaires, et de développer des stratégies adaptatives d’implémentation de la contrainte
de convexité. Nous avons ainsi pu améliorer substantiellement l’état de l’art pour ce pro-
blème, et comme sous produit estimer (dans certains cas) la complexité moyenne d’une
procedure très utilisée en géométrie algorithmique, appelée Edge-Flipping [HOS96], voir
§7 et [Mir16a].

Projets et perspectives (Court terme. Implémentation de la contrainte de convexité
par les techniques du transport optimal semi-discret). Avec Q. Mérigot, nous étudions une
nouvelle approche, fondée sur la pénalisation de l’entropie de la mesure image du gradient,
pour la minimisation d’énergies dans l’espace des fonctions convexes et des corps convexes.
Des résultats préliminaires sont présentés §7, portant sur la conjecture de Meissner et le
problème de l’agent principal en dimension 3.
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Figure 1.12 – Gauche : Solution u de (1.1.3). Centre-gauche : Régions définies par le
rang de d2u, et lignes de niveau de det(d2u). Centre droit : Densité des produits achetés
selon ce modèle. Droite : Stencils adaptatifs utilisés pour la discrétisation de la contrainte
de convexité, sur grille 20× 20.
Left : Solution u of (1.2.3). Center-left : Regions defined by the rank of d2u, and level lines of
det(d2u). Center-right : Density of products bought according to this model. Right : Adaptive
stencils used for the discretization of the convexity constraint, on a 20 × 20 grid.

1.1.4 Faits marquants sur la période 2012-2017

Distinction. Prix Vasil A. Popov, remis lors de l’International Conference on Approxi-
mation Theory, San-Antonio, 22-25 mai 2016. Ce prix international est remis tous les trois
ans, depuis 1995, à des chercheurs ayant soutenu leur thèse depuis moins de six ans et
ayant apporté des “contributions exceptionnelles à la théorie de l’approximation”.

Management. Porteur de l’ANR NS-LBR, JCJC, Numerical Schemes using Lattice
Basis Reduction, ayant pour objet la conception, l’analyse, et la distribution de sché-
mas numériques pour des EDPs anisotropes sur grille cartésienne (thème de ce mémoire
également). Les autres membres de l’équipe sont Laurent Cohen, Jérôme Fehrenbach, et
Laurent Risser. Dario Prandi puis Da Chen sont recrutés en tant que post-doctorants en
2016 et 2017.

Open source. Distribution sous forme de code Open-Source des schémas numériques
issus de mes recherches, pour la diffusion anisotrope et les équations eikonales aniso-
tropes15, dans l’Insight Journal [MFRT15, Mir15a]. Suite à leur succès, avec 18000 et
25000 téléchargements selon la plateforme, le premier module est repris par la société
Kitware (France et USA) et intégré à la librairie pour l’imagerie médicale Insight Toolkit.

Encadrement. Co-encadrement à 25% de Da Chen, en thèse sous la direction de
Laurent Cohen sur la segmentation d’images médicales via des plus courts chemins [Che16],
soutenue en septembre 2016. J’ai également participé à l’encadrement de Vijaya Ghor-
pade, en stage niveau M2 sous la direction de Laurent Cohen, et de Shaza Tobji, en stage
niveau M1 sous la direction de Jérôme Fehrenbach et de Laurent Risser.

15Schémas semi-lagrangiens seulement. Les schémas hamiltoniens et les techniques de pénalisation de
courbure, sont en 2017 encore distribués de manière informelle sur Github.com/Mirebeau/.
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Industrie. Collaboration avec Johann Dreo, ingénieur de recherche chez Thalès, sur
la thématique du routage de drones [MD17]. Les étudiants Meryem El Yamani et Allan
Rakotoarivony ont effectué un stage niveau M2 co-encadré en 2016 et 2017 sur un semestre.

International. Collaboration avec R. Duits de l’Université d’Eindhoven, autour des al-
gorithmes de type programmation dynamique pour le calcul de distances sous-riemanniennes,
et leurs applications à l’imagerie médicale [SBD+15, DMMP16].

Intégration. Au sein de l’équipe Inria Mokaplan, et de l’ANR MAGA, portées par
J.-D. Benamou et Q. Merigot, avec lesquels de fructueuses collaborations sont menées
[BCM16, MM16].

Naissance. Naissance de mes deux filles Rachel et Ariane, pour le bonheur de leurs
parents et de leur grand frère Nathanaël, le 16 juin 2013 et le 26 février 2016.
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You don’t know on which side of the grid is the dream. (Erin Morgenstern)

1.2 Introduction (English version)
This dissertation presents my research in the field of the discretization of Partial Differ-
ential Equations (PDEs), focusing on the difficulties associated with anisotropy, and de-
liberately limiting myself to discretizations on Cartesian grids. The combination of these
two choices leads to the use of original geometric tools. The considered PDEs are very di-
verse, ranging from the Hamilton-Jacobi-Bellman equations to that of Monge-Ampere, as
well as anisotropic diffusion, and energy minimization among the set of convex functions.
My major contribution, in view of its impact on the image processing community, is the
design of variants of the Fast Marching algorithm. These allow the efficient numerical
resolution of anisotropic eikonal equations and thus the computation of distances w.r.t
Riemannian and Finslerian metrics, and even some non-holonomic models.

Numerical analysis, which is the main domain of this dissertation, consists in con-
structing and studying discretization schemes for PDEs. These should respect the struc-
tural properties of the original PDE, for example a maximum principle, or a property of
causality, and be robust enough to extract weak solutions. Satisfying these properties is
challenging in the case of anisotropic problems, which feature preferential directions, not
aligned with the coordinate axes and non-uniform over the domain. A possible approach,
for which I refer to my thesis [Mir11] and references therein, is to design a mesh of the
domain which takes into account the geometry of the chosen PDE, by using triangles
of appropriately chosen size, shape and orientation. An opposite approach is taken in
this dissertation: the discrete representation of the domain uses, systematically, a basic
Cartesian grid - for simplicity and because it is natural in the context of image processing
- whose regular structure seems to be in obvious conflict with the anisotropic geometry
of the problems studied.
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The specificity and the coherence of this work are found in the tools, derived from
the discrete geometry, used to solve this conflict16. We rely on two general construc-
tions of Voronoi, and on two objects of low dimension named the Stern-Brocot tree and
Selling’s algorithm. Some of these tools are far from recent, and are well known for
their applications in mesh generation, cryptography or arithmetic [Sch09]. To our knowl-
edge, and with the sole the exception of Bonnans and al [BOZ04], their interaction with
anisotropic differential operators however had never been studied. The themes of this
memoir, PDEs and differential geometry on the Cartesian grid, are reminiscent of digital
geometry [KR04]; however a closer examination reveals, as it stands, only few common
techniques and problems.

The main results of this research are discussed below. We refer to the body of the text
for the formal framework, the details of the applications, and additional illustrations. The
original articles contain the mathematical proofs, which are not reproduced here. This
introduction also highlights several projects and perspectives, that will be the object of
future research. The (numerous) figures illustrating this introduction are located in the
french version of it, and feature english captions.

Organization of the dissertation. This dissertation is organized in two parts, largely
independent, regrouping chapters §2-4 and §5-7 respectively. The first part deals with
the discretization of anisotropic eikonal equations, using semi-Lagrangian schemes §2, or
Eulerian schemes involving a particular representation of the Hamiltonian §3. Applica-
tions of these methods to image processing and motion planning are presented in §4. The
second part describes the discretization of second-order equations: anisotropic diffusion
§5, the Monge-Ampere equation §6, and the constraint of convexity §7. Two appendices
serve as a reference for tools used within several chapters. The first §A describes a series
of techniques from discrete geometry. The second §B presents two general and abstract
formulations of the fast marching algorithm.

1.2.1 Geometric tools

Two constructions of Voronoi, referred to as Voronoi’s first and second reductions of a
quadratic form, serve as a foundation for many of the numerical schemes presented in this
dissertation. These quadratic forms are always assumed to be positive definite, and are
defined over a vector space E of finite dimension containing a lattice L. In both cases,
Voronoi associates a discrete object to the quadratic form, in a way that is invariant
under the action of the linear transformations stabilizing the lattice.

We denote S++(E) the set of symmetric positive definite bilinear maps defined on a
vector space E, which is isomorphic to the set of quadratic forms of interest. Without loss
of generality, the vector space is usually Ed := Rd equipped with the canonical euclidean
structure, or its dual, and the additive lattice is the set Ld := Zd of points with integer
coordinates.

16 For the sake of consistency, my work on the thin plate models [BCD+16] and the Euler equations of
incompressible fluids [MM16], will not be discussed in detail. Indeed, the PDE discretizations involved
do not use a Cartesian grid, and are based on distinct tools.
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Voronoi’s first reduction attaches to each D ∈ S++(E∗d) the solution to a linear opti-
mization problem L(D), defined as follows:

L(D) := inf
M∈M

Tr(MD), where M := {M ∈ S++(Ed); ∀ė ∈ Ld \ {0}, ‖ė‖M ≥ 1}.
(1.16)

We denoted ‖ · ‖M the norm defined by ‖ė‖2
M = 〈M ė, ė〉 = Tr(M ė ⊗ ė), and the latter

equality shows that the matrixM is indeed only subject to linear constraints17. Voronoi’s
first reduction is a well posed optimization problem, in the sense that it has a compact
set of solutions, generically a single one [Sch09]. In dimension d ∈ {2, 3}, the simplex
algorithm applied to this problem takes a simple form, which is interesting from a geo-
metrical point of view, and called Selling’s algorithm [Sel74], see §A.1.2. For the design of
PDE numerical schemes, of first and second order, the main interest of problem (1.16) lies
in its optimality certificate. The Karush-Kuhn-Tucker conditions indeed state that there
exists (ρi, ėi)

d′
i=1 ∈ (R+ × Ld)d

′ , respectively Lagrange multipliers and vectors associated
to the active constraints, where d′ := d(d + 1)/2 is the vector dimension of the space of
quadratic forms, such that

D =
∑

1≤i≤d′
ρi ėi ⊗ ėi. (1.17)

See Figure 1.1. This is reminiscent of the expression D =
∑

1≤i≤d µiv̇i ⊗ v̇i of a matrix
in terms of its eigenvalues and eigenvectors (µi, v̇i)

d
i=1 ∈ (R × Sd−1)d. The fundamental

advantage of (1.17) is however that the vectors ėi ∈ Ld have integer coordinates, and can
thus be used for the design of finite differences schemes on Cartesian grids, for eikonal §3,
diffusion §5, or Monge-Ampere §6 PDEs. The norm maxd

′
i=1 ‖ėi‖ of the vectors appear-

ing in (1.17) dictates the stencil width of these PDE schemes, which is related to their
accuracy, numerical cost, parallelization potential, and to the difficulty of implementing
boundary conditions. Estimating this norm, and establishing the optimality of this con-
struction, is the subject of Theorems 2.1.5 and 2.1.6, and of Propositions 3.2.3 and 5.1.2.

Voronoi’s second reduction involves the Voronoi cell of M ∈ S++(Ed), defined as the
polytope containing all points closer to the origin 0 than to any other point with integer
coordinates

Vor(M) := {p ∈ Ed; ∀e ∈ Ld, ‖p‖M ≤ ‖e− p‖M}. (1.18)

Voronoi’s second reduction attaches to M the Delaunay triangulation Del(M), defined as
the dual to the tiling of Ed by the region Vor(M) and its translates by vectors e ∈ Ld. The
Delaunay triangulation is a fundamental object in algorithmic geometry, usually defined
with M = Id and an arbitrary set of sites instead of Ld in (1.18). See [ES86] and Figure
1.2. The case of periodic sites, considered here, however has an exceptional geometrical
property: the internal angles of the triangulation are acute, hence it can be used for the
design of semi-Lagrangian schemes for Riemannian eikonal equations, following Sethian
et al [SV03], see §2.1.

17The implicit constraint of positive definiteness M � 0 can be omitted, since is it implied by the
family of constraints 〈M ė, ė〉 > 0, ė ∈ Ld \ {0}.
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A last geometrical object will be useful, called the Stern-Brocot tree and defined
in dimension d = 2 only. The original description of the Stern-Brocot tree involves
rational scalar labels, see [Bro62, Niq07] and Figure 1.3, but we choose here an alternative
construction that is more suitable for our application, see §A.1.3 for details. The Stern-
Brocot tree is an infinite complete binary tree whose nodes are (here) labeled with pairs of
integer vectors (e, f) ∈ L2

2 belonging to the first quadrant R2
+ and such that det(e, f) = 1.

The children of node labeled (e, f) are labeled (e, e+f) and (e+f , f). Descending into the
Stern-Brocot tree allows to refine angular sectors, in a way compatible with the Cartesian
grid. This tree intervenes in the discretization of Finslerian eikonal equations §2.2, and
of the constraint of convexity §7. In the context of the numerical analysis of PDEs, the
Stern-Brocot tree was first used in [BOZ04].

Projects and perspectives (Short term. Voronoi reductions in dimension 4 and 5).
Voronoi reductions are particularly simple to implement in dimension d ∈ {2, 3}, thanks to
Selling’ algorithm, see §A.1.2. This particular case is used in all our computer programs,
and in all the numerical results presented. The experiments involving 5-dimensional sub-
Riemannian eikonal equations, see §4.1.4, are made possible by the block-diagonal struc-
ture of the metric.

In the short term, we intend to produce a fast and robust C++ implementation of
Voronoi’s first reduction in dimension 4 and 5, based on the classification results [CS88].
The resulting numerical schemes will be used for applications which are relevant in these
dimensions, especially in sub-Riemannian geometry and for stochastic control problems.

Projects and perspectives (Extension of Voronoi’s first reduction to point clouds).
It is tempting to generalize the linear program (1.16) by replacing the Cartesian grid Ld
with an arbitrary set of points L ⊆ Rd. This yields a decomposition similar to (1.2), in
principle applicable to the discretization of PDEs in an unstructured environment.

We study this possibility, but keep in mind certain issues: (i) This approach is not
applicable to the discretization of Riemannian eikonal equations (1.9), because they cru-
cially use the symmetry of the set of offsets: ė ∈ L⇔ −ė ∈ L. (ii) For the discretization
of diffusion equations, additional constraints must be added to ensure that

∑d′

i=1 ρiėi = 0,
otherwise an undesirable first-order term is introduced. (iii) The generalized problem
(1.16) is often ill posed, for example in dimension d = 2 if L = (Z \ {0}) × Z and D is
the identity matrix.

1.2.2 Eikonal equations

Eikonal equations are static, first order partial differential equations of Hamilton-Jacobi-
Bellman type, which characterize solutions of deterministic optimal control problems
[BCD08]. We focus on the simplest case, where the objective is to find the shortest
path from the boundary of a domain Ω ⊆ Ed to a given point p ∈ Ω

u(p) := inf{lengthF(γ); γ : [0, 1]→ Ω, γ(0) ∈ ∂Ω, γ(1) = p}. (1.19)

The considered paths γ : [0, 1] → Ω are implicitly assumed to be locally Lipschitz. Path
length is measured using a given metric F : Ω× Ed → [0,∞], assumed to be convex and
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1-homogenous in its second argument:

lengthF(γ) :=

∫ 1

0

Fγ(t)(γ̇(t))dt. (1.20)

Our results encompass a variety of models, going much beyond the classical case of confor-
mal metrics [Tsi95, Set96, RT92], which are locally proportional to the euclidean metric
and thus take the form Fp(ṗ) = ‖ṗ‖/s(p) where s : Ω→]0,∞[ is a given speed function.
We indeed address Riemannian metrics in §2.1, Finslerian metrics in §2.2, as well as de-
generate metrics associated with non-holonomic optimal control problems in §3. These
metric structures are illustrated on Figure 1.4.

The eikonal equation is, as announced, a PDE obeyed by the front arrival time function
u : Ω→ [0,∞], in the sense of viscosity solutions [BCD08]. It reads

F∗p(du(p)) = 1, where F∗p(p̂) := sup{〈p̂, ṗ〉; Fp(ṗ) ≤ 1}, (1.21)

for all p ∈ Ω, with the boundary condition u(p) = 0 for all p ∈ ∂Ω. This formalism is the
main tool for establishing the convergence of numerical schemes. Convergence rates can
be obtained for locally controllable models, see §3.1 and [SMK16, Mir17a]. Otherwise,
convergence is established in a weak sense using the notion of discontinuous viscosity
solution to a PDE[BCD08], see §3.2 from [Mir17b].

Two approaches can be distinguished for the discretization of the PDE (1.5), based on
the semi-Lagrangian and the Eulerian paradigms respectively. Before going into details,
I emphasize a second distinction, between causal and non-causal schemes. Causality, de-
fined in §B, reflects the deterministic nature of the underlying optimal control problem.
It is equivalent, in the context of the problems posed on graphs, to the positivity of the
lengths of the edges, which enables the rapid extraction of minimal paths using Dijkstra’s
algorithm instead of the slower method of Bellman-Ford [Dij71]. We make systematically
the choice of causal numerical schemes, solved using the Fast-marching algorithm, which
generalizes Dijkstra, for several reasons: the guarantee of short computation times, the
absence of stopping criteria, a more robust extraction of the geodesics18, the possibility
of automatic differentiation §4.3.2, ... The computational cost advantage is particularly
strong for highly anisotropic and spatially heterogeneous metrics, which are often involved
in image processing applications [BC10, Mir14a]. Alternatives to the Fast-Marching al-
gorithm have other advantages, such as a simpler processing of complex geometries (for
which causality is difficult to satisfy) [BR06, TCO04, Zha05], or possibilities of paral-
lelization [CV15, Tug08] including on GPU architectures [WDB+08, JW08], see also the
discussion in §B.

Projects and perspectives (Massively parallel algorithms compatible with our adaptive
numerical schemes). Computing minimal paths for non-holonomic models, such as those
used to implement curvature penalization in §3.2, requires solving degenerate eikonal equa-
tions on spaces which are of quite high dimension, such as Rd × Sd−1 where d ∈ {2, 3}.
Reducing computation times, currently about 1 second for interesting test cases, by an or-
der of magnitude would may allow the real time control of some systems (vehicles, robots,
...).

18Thanks to the upwind vector field obtained for the velocities.
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Parallel numerical methods are an appealing solution, and they do already exist for
eikonal equations, including on GPU as discussed above. However all existing methods
require using the canonical discretization stencil of the Cartesian grid, which is not suitable
for handling strong anisotropies. We are thus looking for algorithms and data structures
compatible with these architectures and also with our anisotropic discretization stencils.

Projects and perspectives (Intermediate classes between causal and non-causal dis-
cretizations of eikonal equations). Numerical methods for the resolution of eikonal equa-
tions are currently divided into two groups: (i) causal discretizations, numerically solved
by single-pass algorithms of Dijkstra type, and (II) non-causal discretizations, addressed
using generic iterative methods. We want to replace this dichotomy with a gradation, by
quantifying within the second group to what extent a given discretization is non-causal,
and by exploiting this property within the numerical solver. Preliminary results have been
obtained for toy models in dimension 1, in which we replace the upwind finite difference
h∂xu ≈ u(x)− u(x− h) with

h ∂xu ≈ (1 + 2γ)u(x)− (1 + γ)u(x− h)− γu(x+ h),

where the constant γ ≥ 0 quantifies the non-upwind character. In practice, we are con-
cerned with Rander metrics on Cartesian grids, see §3.1.3, and with Riemannian metrics
on unstructured point sets, see the perspective below.

Semi-Lagrangian numerical schemes.

Semi-Lagrangian methods for computing the arrival time function (1.19) are based on
Bellman’s optimality principle, described below and illustrated on Figure 1.5. This prin-
ciple reflects the fact that a minimal path from ∂Ω to a given p ∈ Ω can be regarded
as the concatenation of two minimal paths, from ∂Ω to some q ∈ ∂V (p) and from q
to p respectively, where V (p) ⊆ Ω is an arbitrary but fixed neighborhood of p. Hence,
denoting by dF the path length quasi-distance19 defined from (1.20),

u(p) = inf
q∈∂V (p)

dF(q,p) + u(q). (1.22)

Semi-Lagrangian numerical schemes mimic, in the discrete setting, this principle. Let
X and ∂X be finite disjoint subsets of Ed devoted to the approximation of Ω and ∂Ω, and
for all p ∈ X let V (p) be a polytope enclosing p and which vertices belong to X ∪ ∂X.
Find U : X ∪ ∂X → [0,∞] such that for all p ∈ X

U(p) = min
q∈∂V (p)

Fp(q− p) + IV (p) U(q), (1.23)

and U(p) = 0 and for all p ∈ ∂X. In comparison with (1.22), the distance dF(p, ·) is
here approximated using the local metric Fp(· − p), and the values of U at the points
q ∈ ∂V (p) which are not vertices are approximated using the linear interpolation operator
IV (p) U(q).

19A quasi-distance obeys the positive definiteness and triangular inequality axioms, but may be asym-
metric and may take infinite values.
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Sethian et al [SV03, Vla08] discovered a geometrical acuteness property, involving the
pairs (V (p),Fp)p∈X of a local stencil and metric. It implies the causality of the system
(1.23), which can thus be solved efficiently using the Fast-Marching algorithm.

The author’s contribution is the design of stencils obeying the acuteness property.
We use for Riemannian metrics the concept of Delaunay triangulation, see the numerical
method referred to as Fast Marching using Lattice Basis Reduction (FM-LBR), described
in §2.1 from [Mir14a]. For two dimensional Finslerian metrics we rely on the Stern-Brocot
tree, see Fast Marching using Anisotropic Stencil Refinement (FM-ASR), described in
§2.2 from [Mir14b]. Our approach requires the discrete set X ∪ ∂X to be a Cartesian
grid. Previous constructions [SV03, AM11, KS98, SK04] were much less effective due to
the large size and the large number of vertices of the obtained stencils. Our improved
methods are an essential ingredient of the application papers [CCM14, BDMS15, CMC16c]
and [CMC16a, CMC16b, CC17a, CC17b] respectively. They are distributed within open
source codes [Mir15a].

Projects and perspectives (Extension of the FM-ASR algorithm to arbitrary two-di-
mensional point sets). We study a generalization of this algorithm, devoted to two-dimensional
Finslerian eikonal equations, see §2.2, to unstructured point sets L ⊆ E2 instead of the
Cartesian grid L2. We are motivated by some applications which require a higher nu-
merical resolution in some areas than others (e.g. harbor and open sea in the maritime
framework considered with J. Dreo).

This work requires generalizing the Stern-Brocot tree structure, by replacing the arith-
metic sum t = q + r − p ∈ L2 of some lattice elements p,q, r ∈ L2 with a geometrical
construction, such as the point t ∈ L within the cone generated by ~pq and ~pr which is
closest to p, where p,q, r ∈ L.

Projects and perspectives (Generalization of the FM-LBR algorithm based on Delau-
nay stars). Given a point cloud L ⊆ Ed and a family of tensors M : L → S++(Ed), the
Delaunay star at p ∈ L is the union of the simplices containing p in the Delaunay trian-
gulation of L defined w.r.t. the norm ‖ ·‖M(p). If L is the lattice Ld, and in this case only,
then these stars obey the acuteness property defined in [SV03], can be computed quickly
and independently of each other, and are at the foundation of the FM-LBR algorithm for
solving Riemannian eikonal equations, see §2.1.

An efficient algorithm for the construction of Delaunay stars of general point sets is
introduced in [RL16], where it is used to improve an heuristic method [CHK13] for geodesic
computation. We consider using them in a semi-Lagrangian numerical scheme.

Eulerian numerical schemes.

The eikonal equation (1.21) can also be discretized directly, in an Eulerian way, which
yields a distinct numerical method for computing the arrival times (1.3). This discretiza-
tion takes the form

Fp(U(p), (U(p)− U(q))q∈X) = 1, (1.24)

for all p ∈ X, with the boundary condition U = 0 on ∂X. We require Fp : R× RX → R
to be monotonous, in other words non-decreasing w.r.t. each entry, since this implies
comparison principles and stability properties for solutions of the system (1.24). If in
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addition Fp is causal, i.e. only depends on the positive parts of the differences (U(p) −
U(q))q∈X , then the system can be solved in a single pass and for a quasi-linear numerical
cost using the Fast-Marching algorithm, see §B.2.

Our contribution is the design of a monotone and causal numerical scheme, in the case
of a Riemannian metric and of a Cartesian discretization grid, based on the first order
approximation

‖du(p)‖2
D ≈ h−2

∑
1≤i≤d′

ρi max{0, u(p)− u(p− hėi), u(p)− u(p + hėi)}2, (1.25)

where D ∈ S++(E∗d) is expressed in the form (1.17) using Voronoi’s first reduction, see
[Mir17a] and §3.1. This approach is extended in §3.1.3 to Rander metrics, a family of non-
symetric Finsler metrics, with the loss of causality. We also address a variety of singular
metrics, which associate “infinite” norms to some tangent vectors. They correspond to
non-holonomic control systems, in which some directions of motion are inaccessible at
some points.

Sub-Riemannian metrics are the simplest instance of such singular metrics. They
can be regarded as Riemannian metrics which tensors have some infinite eigenvalues,
but for which some local controllability properties are nevertheless satisfied [Mon06].
We relax these infinite eigenvalues into large values, and establish convergence rates for
the resulting numerical scheme, see §3.1. With Duits et al [SBD+15, DMMP16] We
implemented in particular the Reeds-Shepp model, which is a sub-Riemannian metric on
R2×S1 appropriate for wheelchair-like vehicles, see Figure 1.7. Several higher dimensional
variants, posed on the 5-dimensional domain R3 × S2, are also discussed in §4.1.4.

Some singular metrics, combined with a dimension lifting technique, can be used to
encode a penalization of path curvature, see §3.2 from [Mir17b]. Define the energy of a
path γ : [0, L]→ E2, parametrized at unit euclidean speed, as∫ L

0

α(γ(t), γ̇(t))C(ξ|γ̈(t)|) dt. (1.26)

The scalar cost α : R2 → S1 → R, the parameter ξ > 0 which is homogeneous to a turning
radius, and the convex non-decreasing function C : R+ → R, are positive and dictated
by the intended application. Clearly, the path curvature κ(t) = ‖γ̈(t)‖ is expressed in
terms of the second order path derivative, and thus cannot appear as is in the expression
Fγ(t)(γ̇(t)) of a metric. To overcome this difficulty, we introduce the three-dimensional
domain M := R2×S1, which elements p = (x, θ) are pairs characterizing a spatial position
and an angular orientation. The tangent vectors ṗ = (ẋ, θ̇) ∈ R2 × R to this manifold
therefore contain both spatial and angular velocity information. Let us equip M with the
degenerate metric defined when ‖ẋ‖ = 1 by

Fp(ṗ) = F(x,θ)(ẋ, θ̇) =

{
α(x, θ)C(ξ|θ̇|) if ẋ = n(θ),

+∞ otherwise,

and 1-homogeneously extended Fp(λṗ) = λFp(ṗ) for all λ > 0. By design, any path
η : [0, L] → M of finite length w.r.t. the metric F is up to re-parametrization the lift
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η = (γ, γ̇) of a planar path γ : [0, L] → R2 parameterized at unit euclidean speed20. In
addition lengthF(η), defined by (1.20), equals (1.26) as desired.

We focused on three classical curvature costs named by Reeds-Shepp [RS90, DMMP16],
Euler-Mumford [Mum94], and Dubins [Dub57], with the following expressions:

CRS(κ) :=
√

1 + κ2, CEM(κ) :=1 + κ2, CD(κ) :=

{
1 si κ ≤ 1,

+∞ sinon.

Our contribution is the design of numerical schemes for the eikonal equations associated
with (degenerate) metrics on R2 × S1 corresponding to this costs. Our first experiments
used non-causal semi-Lagrangian schemes [CMC17, DMMP16], but we eventually man-
aged to design causal Eulerian schemes [Mir17b], see §3.2. See Figure 1.7 for some globally
minimal paths obtained with the latter method.

Projects and perspectives (Short term. Unsymmetrical models). With L. Cohen and
Da Chen, we are interested in more configurable path models and in particular in asym-
metric models, which metric takes the form

F(x,θ)(ẋ, θ̇) := α(x, θ) C
(
ξ(x, θ) (θ̇ − κ(x, θ))

)
si ẋ = n(θ).

As before F is extended positively 1-homogeneously, and set to +∞ otherwise. The scalar
field κ : M → R defines a reference curvature, with respect to which the path curvature
is penalized. If this field is defined as a non-zero constant κ ≡ κ0 ∈ R, then we obtain
a Dubins car with a distinct turning radius on the right and left sides, or Euler elastica
curves w.r.t. a material which rest position is distorted instead of straight.

We already obtained preliminary numerical results, and are investigating their appli-
cations to image processing.

Projects and perspectives (Using nilpotent approximations of sub-Riemannian dis-
tance functions). Consider the Reeds-Shepp model, used to describe wheelchair-like vehi-
cles, with an initial configuration (x0, y0, θ0) = (0, 0, 0) of position an orientation. The
cost of motion to the configuration (x, y, θ) ∈ M can be locally approximated in several
ways, such as √

x2 + ε−2y2 + θ2, 4
√

(x2 + θ2)2 + y2. (1.27)

The expression (1.27, left), involving a small parameter ε > 0, is a Riemannian relaxation
of the sub-Riemannian model, currently used in our numerical schemes. We want to
develop numerical methods based on the approximation (1.11, right), which is much more
accurate [BCP17]. Similar techniques may apply to the other non-holonomic systems
studied, for instance the Euler-Mumford Elasticae.

20A slight modification of this argument is required for models allowing in place rotations such as the
Reeds-Shepp model without reverse gear.
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Applications, mainly to image segmentation.

Medical image processing is one of the main motivation for our works on the discretization
of anisotropic eikonal equations. Applications to this field are developed in collaboration
with L. Cohen [CMC16a, CMC16b, CC17a, CC17b, CCM14, CMC16c] and more recently
with R. Duits [SBD+15, DMMP16], see §4. Independent applications, in the field of
motion planning and surveillance, are developed with J. Dreo, see §4.3 from [MD17].
Some of our results are illustrated on Figure 1.8.

Cohen and Kimmel [CK97] were first to consider the use of globally minimal paths,
computed by solving eikonal equations, for the segmentation of contours or of tubular
structures, see §4.1.1 for a brief historical discussion. Considering anisotropic metrics is
natural in this context, so as to better guide these paths along the structures of interest,
and to avoid segmentation artifacts known as “short-circuits” and “leaks”. This enhance-
ment was initially difficult to put into practice, due to the poor performance of the classical
eikonal equation solvers when applied to strongly anisotropic problems [BC10, Mir14a].
The contributions of this dissertation yield computation time reductions by several up
to four (!) orders of magnitude in some test cases of the field, see [Mir14a], and made
possible numerous new applications.

I wish to highlight two realizations, unexpected at first and that could not be envi-
sioned without efficient algorithms for solving anisotropic eikonal equations. The first is a
new procedure for minimizing Chan-Vese-like energies [CV01] involved the segmentation
of image regions. To each subset U of a domain Ω, with rectifiable boundary, associate
the energy

E(U) =

∫
U

f +

∫
∂U

g, (1.28)

where f, g : Ω→ R are given, and g is positive. The usual method for minimizing (1.28)
relies on the introduction of a map ψ : Ω→ R, of which the region of interest is a level set
U = {p ∈ Ω; ψ(p) < 0}. Numerical implementations of this approach unfortunately suffer
from several issues, such as the excessive sensitivity to initialization, the lack of control
on the topology of the region U , and the numerical cost. We observed, in dimension d = 2
and using the divergence theorem, that the boundary ∂U of the optimal set is a geodesic
for a Rander metric, namely

Fp(ṗ) = g(p)‖ṗ‖+ 〈ω(p)⊥, ṗ〉.

where the vector field ω : Ω→ E2 obeys divω = f and ‖ω⊥‖ < 1 in the neighborhood of
∂U . We can thus optimize (1.28) by computing a minimal path for the above anisotropic
and asymmetric metric, using our eikonal equation solvers, see §4.2 from [CMC16b].

Our second highlight deals with the segmentation of the retinal vascular network.
The classical approach [CK97] for segmentating a tubular structure is to introduce a
metric taking small values on the structure and large values in the image background.
Minimal paths are then extracted between the structure endpoints, which are provided
by the user or found by another algorithm. Retinal background images however display so
many entangled and superposed21 vessels that this approach is impractical. Indeed, the

21The vessels are disjoint in three dimensional physical space, but the input medical image only shows
their two dimensional projections, which intersect.
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obtained minimal paths feature short circuits, engaging from one blood vessel to another
at the places of their intersections. To solve this problem, we augment the path model
with a Reeds-Shepp or Euler-Mumford curvature penalty [SBD+15, DMMP16, CMC17],
implemented as above, improving on an idea of Duits and al [BDMS15]. This eliminates
short circuits, by increasing the cost of sudden changes in orientation, which occured at
vessel intersections, see §4.1.

Projects and perspectives (Short term. Publication of the computer codes for solv-
ing non-holonomic eikonal equations). With J. Portegies, we clean up the C++ codes
developed for the computation of minimal paths with a curvature penalty, and add doc-
umentation and examples. Our objective is to submit them to a reproducible research
journal, and distribute them open-sourced to the image processing community.

Projects and perspectives (Motion planning for vehicles). With J. Dreo, we study
the industrial applications of the numerical solvers of anisotropic eikonal equations here
presented. We are particularly interested in the computation of threatening trajectories,
and in their detection by surveillance systems [MD17]. We also want to couple these
solvers with the multi-agent planning algorithms developed as part of the European project
SWARM. The penalization of path curvature, made possible by the numerical methods
presented in this memoir, is fully relevant in this context given the mechanical constraints
of the controlled vehicles.

1.2.3 Second order equations.

We studied second-order PDEs, using the same tools from lattice geometry that are
applied to eikonal equations in the previous section. Our results on anisotropic diffusion,
the Monge-Ampere equation, and the constraint of convexity, are presented below. See
also §5 from [FM06], §6 from [BCM16], and §7 from [Mir16a] respectively.

Anisotropic diffusion.

Image processing has fueled, for some time, the study of very general diffusion PDEs,
simultaneously non-linear and anisotropic, and usually in divergence form. They take the
form

∂tu(x, t) = div(Du(x, t)∇u(x, t)) (1.29)

for all (x, t) ∈ Ω×]0,∞[, where Ω ⊆ Ed is the image domain. In addition, an initial state
is chosen on Ω× {0}, and boundary conditions on ∂Ω×]0,∞[, often of Neumann type.

This class of PDEs allows, by a careful choice of the non-linear tensors Du, to remove
noise, enhance object contours, or imitate the style of artists. See Figure 1.10 and [Wei98].
One must distinguish the use of non-linear but isotropic tensor fields, such as Perona and
Malik [PM90] filtering defined by Du(x, t) = Id /‖∇u(x, t)‖22, from genuinely anisotropic
tensor designs due in particular to Weickert [Wei98] and which eigenvectors are aligned
with the locally preferred image directions.

22 The Perona and Malik model, which is best described as (non-linear) divergence form diffusion
with isotropic tensors, is often artificially reformulated as non-divergence form diffusion with anisotropic
tensors, which led to an unfortunate terminological confusion [Wei98].
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Fehrenbach and the author [FM14] introduced a numerical scheme for the PDE (1.29),
associated with an arbitrary given anisotropic tensor field D : Ω→ S++(Ed) (non-linearity
and time dependency are not the difficulty in this context). Our approach is based on the
first order approximation

‖∇u(p)‖2
D ≈

∑
1≤i≤d′

ρi
(u(p)− u(p− hėi))2 + (u(p)− u(p + hėi))

2

2h2
, (1.30)

where the weights and offsets (ρi, ėi)
d′
i=1 are obtained from Voronoi’s first reduction (1.17).

Using (1.30) and a Riemann sum one can approximate the elliptic energy defined by an
anisotropic tensor field, and thus solve the anisotropic diffusion PDE which is its gradient
flow w.r.t. the L2 metric. This numerical scheme obeys the maximum principle, and uses
a more compact stencil than alternative methods, see §5.

Non-divergence form diffusion diffusion equations can also be discretized using our
techniques, using the second order approximation

Tr(D∇2u(p)) ≈
∑

1≤i≤d′
ρi
u(p− hėi)− 2u(p) + u(p + hėi)

h2

where the weights and offsets (ρi, ėi)
d′
i=1 are again obtained from Voronoi’s first reduction

(1.17). In the two dimensional case, an equivalent construction was earlier proposed
[BOZ04].

Projects and perspectives (Extension of Varadhan’s formula to Rander metrics). The
Varadhan formula relates the solution in short time of the equation of diffusion, with the
solution of the eikonal equation, on a Riemannian manifold [Var67]. It is the basis of an
original numerical method for the computation of Riemannian minimal paths [CWW12],
which is particularly competitive in dimension d = 2. With D. Prandi, L. Cohen and F.
Yang, we study a similar link between drift and diffusion equations, and eikonal equations
with respect to non-symmetric Rander metrics.

Monge-Ampere equations.

The Monge-Ampere operator belongs to the class of second-order monotone differential
operators, see [CIL92] or Definition B.1.1. Under weak assumptions, they can be expressed
in terms of non-divergence form diffusion operators; hence any discretization of the latter
can be used to address the former [KT92]. In the case of the Monge-Ampere operator,
this follows from the property

d(detM)
1
d = inf{Tr(DM); D ∈ S++(E), detD = 1},

which holds for any M ∈ S+(Ed). More precisely, in dimension d = 2 and by grouping
matrices D ∈ S++(E2) according to the support {±ėi; 1 ≤ i ≤ d′} of their decomposition
(1.2), we obtain a monotone and consistent discretization of the Monge-Ampere operator,
see §6 from [BCM16]. For any smooth convex map u,

det(∇2u(p)) ≈ min
(ė0,ė1,ė2)∈B

H(∆+
ė0
u(p),∆+

ė1
u(p),∆+

ė2
u(p)) (1.31)
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where B ⊆ (L2)3 stands for the set of all obtuse superbases of L2, where H is an explicit
and non-decreasing function, and where ∆+

ė u(p) := max{0, u(p − hė) − 2u(p) + u(p −
hė)}/h2 denotes the positive part of the second order finite difference of u with offset ė.

This research also led us to establish the convergence of a damped Newton algorithm
[Mir15b] applied to the discretization of the three dimensional Monge-Ampere equation.
This technique was later applied by Mérigot et al. [KMT16] to semi-discrete optimal
transport schemes with a transport cost obeying the general geometric assumptions of
Loeper and Ma-Trudinger-Wang [MTW05].

Merigot and the author also introduced a numerical method for solving the Euler
equations of incompressible fluids [MM16], relying on efficient discretizations of optimal
transport problems. Note that we are interested in the reconstruction of the intermediate
states of the fluid, given the initial and final states, and not in the Cauchy problem
addressed in [dGWH+15] with related techniques. We published the first two dimensional
numerical results for this problem, illustrating paradoxical behaviors studied by Brenier
[Bre08], see Figure 1.11. This thematic was then developed within the Mokaplan/MAGA
team: our numerical scheme was adapted to the Cauchy problem by Gallouet et al.
[GV16], and a distinct numerical method was introduced by Benamou et al. [BCC+15].

Projects and perspectives (Monotonous and consistent discretizations of second-order
Hamilton-Jacobi-Bellman operators). In this work, undertaken with J.-D. Benamou and
V. Duval, we develop robust, precise, and monotonous numerical schemes for HJB EDPs
associated with Pucci extremal operators, see §5. Our approach, whose principle is pre-
sented in §6.1, generalizes our results on the Monge-Ampere equation. The resulting
numerical schemes are consistent, hence much more accurate than the schemes classically
considered in the literature [FO11a] which depend on a relaxation parameter and are only
asymptotically consistent. We are particularly interested in the case of the 2-Laplacian,
an intermediate operator between the Laplacian and Monge-Ampere.

Projects and perspectives (Numerical schemes for fluid mechanics). Our work on
the numerical solution of the Euler equations of incompressible fluids, with Q. Merigot
[MM16], lends itself to generalizations. For example, in the framework of the Camassa-
Holm equations [GM16], or of the Euler equations subject to an upper bound on the density
[MP15]. Several discretization schemes are under study.

The constraint of convexity.

The monopolist problem, also called the principal agent model, belongs to the field of
theoretical economy and was introduced by Rochet et al [RC98]. A manufacturer of
products, without competition in his market, freely decides of his catalog of prices and
proposes it to a population. The population members individually select the product from
the catalog which maximizes their personal utility, taking price into account, or reject the
offer if the proposed prices are excessive. Knowing this general behavior, as well the type
and distribution of the utility functions within the population, the monopolist adjusts his
prices so as to maximize profit.

From a mathematical point of view, the monopolist problem is equivalent to minimiz-
ing an elliptic functional over the set of all convex functions on a domain. The simplest
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and most studied instance is the following:

min{
∫

[1,2]2

(
1

2
|∇u(p)|2 − 〈∇u(p),p〉+ u(p)

)
dp; u ≥ 0, u convex},

see Figure 1.12 for a numerical solution. Existence theory is particularly simple, thanks
to the compactness properties of the set of convex functions. When discretizing this
problem, serious difficulties however arise from the constraint of convexity, as discovered
in [CLM06]. A variety of numerical methods have been developed in the attempt to to
address them [CLRM01, AM08, AM09, EMB10, Obe13, MO14, Wac17, Mir16a]. Indeed
consider a two dimensional convex bounded domain Ω ⊆ E2, denote X := Ω∩ hL2 where
h > 0 is the gridscale, and introduce the cone of all restrictions to X of convex functions

Conv(X) := {u|X ; u : Ω→ R is convex}.

The set Conv(X) ⊆ RX is a convex cone, which can be equivalently defined via O(N2)
non-redundant linear inequalities, where N = #(X), which we classified, correcting
[CLRM01]. This huge number of linear constraints, quadratic in the problem dimension,
makes naive discretizations excessively costly.

Our contribution is to organize the linear constraints defining Conv(X) within a hi-
erarchical structure, based on the Stern-Brocot tree. This enables the design of adaptive
strategies for implementing the constraint of convexity, based on super- and sub-cones of
Conv(X). Our numerical results substantially improve on the state of the art for the prob-
lem (1.2.3) and variants, and as a byproduct we obtain an average complexity estimate
of a procedure frequently used in algorithmic geometry and referred to as Edge-Flipping,
see §7 and [Mir16a].

Projects and perspectives (Short term. Implementation of the constraint of convex-
ity using semi-discrete optimal transport techniques). With Q. Mérigot, we study a new
approach for the minimization of energy functionals in the space of convex functions, or
of convex bodies. More precisely, we regard the gradient of such a map as a transport
plan, and penalize the entropy of the image measure. Preliminary results, applied to the
Meissner conjecture and to the three dimensional principal agent problem, are presented
in §7.

1.2.4 Highlights of the period 2012-2017

Distinction. Vasil A. Popov prize awarded at the International Conference on Approx-
imation Theory, San-Antonio, May 22-25 2016. This international prize is awarded every
three years, since 1995, to a mathematician who defended his PhD at most six years
before, for “exceptional contributions to approximation theory”.

Management. Leader of the NS-LBR young researcher grant, from the french National
Research Agency, where the acronym stands for Numerical Schemes using Lattice Basis
Reduction. This project is devoted to the design, analysis, and distribution within open
source numerical codes, of numerical schemes for anisotropic PDEs on Cartesian grids
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(which incidentally is also the topic of this report). Team members are Laurent Cohen,
Jérôme Fehrenbach, and Laurent Risser. Dario Prandi and Da Chen are recruited as
post-doctoral researchers in 2016 and 2017.

Open source. Distribution of C++ implementations of the numerical schemes from
my research, for anisotropic diffusion §5, and eikonal equations23 §2, in the insight journal
[MFRT15, Mir15a]. In view of their success, with 18000 and 25000 downloads respectively
according to the platform, the first module was incorporated within the Insight Toolkit
software by the Kitware team (based in France and the US).

Supervision. Co-supervision of Da Chen, PhD student of Laurent Cohen, working
on medical image segmentation methods using minimal paths [Che16]. He defended in
September 2016. I was also involved in the supervision of Vijaya Ghorpade, in internship
(M2 level) under the direction of Laurent Cohen, and of Shaza Tobji, in internship (M1
level) under the direction of Jérôme Fehrenbach and Laurent Risser.

Industry. Collaboration with Johann Dreo, from Thales Research and Technology, on
the topic of drone routing and surveillance [MD17]. Co-supervision of Meryem El Yamani
and Allan Rakotoarivony, who did an internship (M2 level) in 2016 and 2017 respectively.

International. Collaboration with R. Duits from Eindhoven university, on the topic
of efficient algorithms for the computation of sub-Riemannian distances, and of their
applications to medical imaging [SBD+15, DMMP16].

Integration. Within the Mokaplan INRIA team, and the MAGA ANR research grant,
led by J.-D. Benamou and Q. Merigot, see the joint publications [BCM16, MM16].

Birth. Birth of my two girls Rachel and Ariane, for the delight of their parents and of
their brother Nathanaël, on June 16th 2013 and February 26th 2016.

23This publication features the semi-Lagrangian schemes only. As of 2017, Eulerian numerical schemes
are still informally distributed at Github.com/Mirebeau/.
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Part I

Anisotropic Eikonal equations
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This chapter describes efficient numerical methods for computing globally optimal
solutions to deterministic, time-optimal control problems, by solving an eikonal PDE, fol-
lowing a line of research begun in the 1990’s [RT92, Tsi95, Set99]. In contrast with these
early works, we focus on anisotropic models, in the sense that the addressed control prob-
lem features some privileged directions of motion. Numerical methods for such problems
can be separated into two classes, either based on the Semi-Lagrangian paradigm, see §2
in the spirit of [SV03, AM11, KS98], or the Eulerian discretization of the underlying HJB
PDE using finite differences and a special representation of the Hamiltonian, see §3 in the
spirit of [RT92]. Some applications of our of methods to medical image processing and
motion planning are presented §4.

As mentioned in the general introduction, we limit our attention to causal numerical
methods24 both for the semi-Lagrangian and the Eulerian paradigms, which enables us
to solve all the discretized problems using the Fast-Marching algorithm, §B. There exists
alternative approaches to distance computation w.r.t. anisotropic metrics, the most ob-
vious one being non-causal discretizations of the eikonal PDE. More exotic approaches
include the Short Term Vector Dijkstra method [CHK13, RL16], or the “geodesics in heat”
method based on the short time asymptotics of the diffusion equation [Var67, CWW12].
They latter two methods have advantages but also significant flaws, such as respectively
the lack of a convergence proof, and the excessive numerical cost in dimension25 d ≥ 3.
We will not discuss them further in this dissertation.

In order to present our results, we need to introduce some basic (altough not entirely
conventional) geometrical notation, following [Che16, DMMP16]. The concept of metric,
next defined, is illustrated on Figure 1.4.

Definition 1.2.1. Let E be a finite dimensional vector space26, and let Ω ⊆ E be open.

• A gauge is a 1-homogeneous, convex and lower-semi-continuous map F : E→ [0,∞]

24With the exception of §3.1.3, on Rander metrics.
25The method [CWW12] requires solving an elliptic PDE, which sparse matrix M is in practice

Cholevsky factored: M = LLT where L is lower triangular. The factor L happens to be remarkably
sparse when d ≤ 2, but this miracle ceases in dimension d ≥ 3, strongly increasing the numerical cost.

26The definition of a metric easily extends to subdomains of manifolds, see [DMMP16]
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vanishing at the origin only. The gauge’s unit ball is the compact and convex set
B := {ṗ ∈ E; F (ṗ) ≤ 1}.

• A metric on Ω is a map F : Ω×E→ [0,∞] such that Fp is a gauge for each p ∈ Ω,
and the unit balls depend continuously on p w.r.t. the Hausdorff distance.

A gauge, or a metric, which takes infinite values is said singular (otherwise said finite).

In contrast with usual norms, gauges can be non-symmetric (i.e. F (ẋ) 6= F (−ẋ) for
some ẋ ∈ E), and non-finite (i.e. F (ẋ) =∞ for some ẋ ∈ E). Note that any compact and
convex set B ⊆ E containing the origin conversely defines the gauge F (ṗ) := min{r ∈
[0,∞]; ṗ ∈ rB}, and is its unit ball. The purpose of metrics is to measure the length of
Lipschitz paths γ : [0, 1]→ Ω, thus defining a quasi-distance27 dF on the domain Ω:

lengthF(γ) :=

∫ 1

0

Fγ(t)(γ̇(t))dt, dF(p,q) := inf
γ:[0,1]→Ω,

γ(0)=p, γ(1)=q

lengthF(γ).

Depending on the particular choice of metric F , the following properties may or may
not hold: dF(p,q) = dF(q,q) (symmetry), dF(p,q) = ∞ (global controllability), and
dF(p,q)→ 0 as p→ q (local controllability), where p,q ∈ Ω.

This first two chapters of this part are devoted to the description and numerical
analysis of methods for computing the map u : Ω → [0,∞] defined as the distance from
the domain boundary

u(p) = inf
q∈∂Ω

dF(q,p). (1.32)

The value u(p) can be regarded at the arrival time at p ∈ Ω of a front originating from ∂Ω
at time 0, and propagating at unit speed w.r.t. the local metric F . In applications, it is
often convenient28 to introduce a position dependent initial delay µ : ∂Ω→]−∞,∞], but
for simplicity we limit our theoretical analysis to the case of a null boundary condition29.

The value map u obeys a PDE, and the minimal paths γ an ODE, both involving the
dual metric; recall that the dual of a gauge is defined as

F ∗(p̂) := sup{〈p̂, ṗ〉; ṗ ∈ E, F (ṗ) ≤ 1}.

More precisely, u is under weak assumptions a viscosity solution [BCD08] to a generalized
eikonal equation, as already mentioned in the general introduction.

∀p ∈ Ω, F∗p(du(p)) = 1, ∀p ∈ ∂Ω, u(p) = 0. (1.33)

27A quasi-distance obeys the positive definiteness and the triangular inequality axioms, but may be
asymmetric and may take infinite values.

28In applications, outflow boundary conditions are obtained by setting µ =∞ on part of ∂Ω.
29Non-constant boundary conditions must indeed be interpreted in a weak sense in the PDE formulation

(1.33), which complicates the proofs and the statements of convergence, see [BCD08]. These technicalities
can only be avoided if the boundary data µ varies very slowly [BR06].
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Figure 1.13 – From left to right: (I) a Riemannian metric, proposed as a test case in [SV03],
and inspired by seismic imaging, (II) level lines of the distance map u from the center
point, (III) geodesic flow direction p 7→ dF∗p(du(p)), (iv) minimal geodesics, backtraced
to the center point.

As announced our numerical schemes for this PDE assume and exploit a specific form of
the discretization sets, denoted X and ∂X and which must be part of an additive lattice
L ⊆ E.

X = Ω ∩ L, ∂X := (E \ Ω) ∩ L. (1.34)

In practice, E = Ed := Rd is the Euclidean space, and L = hLd := hZd is the lattice of
integers scaled by a parameter h > 0. Once u is computed, the minimal paths for (1.32)
are extracted for a negligible cost by solving, backwards in time, the following ODE:

γ̇(t) = dF∗γ(t)(du(γ(t))), (1.35)

see [DMMP16] appendix C for the (weak) required assumptions and a proof. The ODE
integration is non-trivial in practice, especially in the cases where (i) the metric is singular,
(ii) the arrival times map u is discontinuous, (iii) discretization stencils are wide, and/or
(iv) obstacles are present in the domain. We choose however not to discuss this point
in detail in this dissertation, and focus instead on the computation of u which is more
interesting from the mathematical point of view. Let us only say that our latest software30

offers two backtracing methods. The first method relies on a second order Euler scheme
for the ODE (1.35), where the geodesic flow direction p 7→ dF∗(du(p)) is obtained in an
upwind manner as a byproduct of solving the PDE, see [Mir17a]. The second method is
based on the diffuse geodesics obtained by automatic differentiation of the PDE scheme,
in the spirit of [BCPS10].

The metric F : Ω × E → [0,∞] encodes the geometry of Ω, and is usually data-
driven in applications, see §4. The specific form of F plays a crucial role, both for the
applications and for the discretization strategy, and in our works it may be Riemannian
§2.1, Finslerian §2.2, sub-Riemannian §3.1, or related to more complex non-holonomic
control models §3.2. In addition to these structural properties, the condition number of
the metric also determines the difficulty of the numerical implementation. This parameter
describes how much a gauge F , or a metric F , distorts length w.r.t. some reference norm

30HamiltonFastMarching project on GitHub.com/Mirebeau/
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‖ · ‖, which in practice is the Euclidean norm on Ed. It is defined as

Cond(F ) := sup
‖ṗ‖=‖q̇‖=1

F (ṗ)

F (q̇)
, Cond(F) := sup

p∈Ω

Cond(Fp). (1.36)

For instance, a Riemannian metric F on Ω ⊆ Ed is defined via a continuous field of
positive definite matricesM : Ω→ S++(Ed), and for any p ∈ Ω and any ṗ ∈ Ed

Fp(ṗ) := ‖ṗ‖M(p), Cond(Fp) :=
√
‖M(p)‖‖M(p)−1‖. (1.37)

Our numerical methods are tailored to robustly handle strongly anisotropic metrics, typ-
ically obeying Cond(F) . 10, which is common in applications to image segmentation
[BC10]. Extreme anisotropy Cond(F) ≈ 100 is also considered in some test cases, with
rather convincing results [Mir14a, Mir14b, Mir17a]. We also address degenerate models,
obeying Cond(F) =∞, but for that purpose we rely on a relaxed metric, see §3.1.2 and
§3.2.

The rest of this part’s introduction is devoted to a short discussion of differences
between Semi-Lagrangian and Eulerian based numerical schemes for eikonal equations.
For each point, we indicate the best class of methods, in the author’s experience. This
paragraph is purely informal, and is open to discussion.

• Soundness of the discretization principle: advantage to semi-Lagrangian schemes.
These schemes are based on Bellman’s optimality principle, which is intuitive and
geometrical. Eulerian schemes rely on a wide stencil finite differences discretization
of the eikonal PDE, which is hardly interpretable.

• Obeying the causality property: equality. In both cases, causality can be related to
a simple and interpretable property of the discretization scheme. However there is
no general recipe, independent of the metric structure and dimension, for designing
small stencils obeying this property, and whose construction has a low numerical
cost. At the time of writing, this remains an open question for many classes of
metrics, except of course for those addressed in this dissertation.

• Ease of the numerical implementation: advantage to Eulerian schemes. Semi-
Lagrangian schemes require rather complex geometrical computations, involving
the enumeration of all facets and sub-facets of a d-dimensional polytope. Eulerian
schemes use basic finite differences, which implementation is straightforward.

• Extension to meshed domains: advantage to semi-Lagrangian schemes. The semi-
Lagrangian paradigm trivially extends to meshed domains, whereas our Eulerian
discretization intrinsically requires a cartesian grid31.

• Numerical cost: advantage to Eulerian schemes in dimension d ≥ 4. In lower
dimension, the O(N lnN) cost of maintaining the priority queue dominates the

31Specifically, we use symmetric upwind finite differences max{0, u(x) − u(x − ė), u(x) − u(x + ė)}.
They only make sense provided one has the following symmetry property: x + ė ∈ X ⇒ x− ė ∈ X, for
any discretization point x ∈ X and any offset ė ∈ Ed. This implies that X is an additive lattice.
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computation time in both cases. In dimension d ≥ 4 however, the complexity of the
geometrical computations involved in Semi-Lagrangian schemes starts to explode.
For instance the semi-Lagrangian implementation of the generalized Reeds-Shepp
model considered in [DMMP16], sub-Riemannian on R3 × S2, uses 5 dimensional
polytopes each having 20 vertices, 126 edges, 324 faces, 360 three dimensional facets,
and 144 four dimensional facets. Computation times for the Eulerian discretization
of the same model [Mir17a] are up to 6 times faster.

• Accuracy: advantage to Eulerian schemes. Eulerian schemes can trivially be made
second order accurate, at least formally, which substantially increases their accuracy
in practice. Second order semi-Lagrangian schemes are in contrast more difficult to
implement, in particular when the metric is non-constant.
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Chapter 2

Semi-Lagrangian schemes

Contents
2.1 Riemannian metrics . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2 Finsler metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

This section describes the design of Semi-Lagrangian schemes for eikonal equations
associated with Riemannian metrics, in arbitrary dimension, and Finsler metrics, in di-
mension d = 2. Our approach is based, respectively, on a specific property of Delaunay
triangulations of periodic sets, see §2.1 from [Mir14a], and on a two dimensional structure
named the Stern-Brocot tree, see §2.1 from [Mir14b]. Here and below, the letter E denotes
a finite dimensional real vector space.

Semi-Lagrangian discretization schemes for eikonal equations are based on a charac-
terization of the distance to the boundary (1.32) by Bellman’s optimality principle. More
precisely, let Ω ⊆ E be a bounded domain, and let F : Ω× E be a finite metric. Let also
V (p) ⊆ Ω be a neighborhood of each p ∈ Ω. Then one easily checks that u : Ω→ [0,∞[
is the unique continuous map obeying

∀p ∈ Ω, u(p) = min
q∈∂V (p)

dF(q,p) + u(q), ∀p ∈ ∂Ω, u(p) = 0. (2.1)

Numerically, as described in the introduction, finite sets X and ∂X are introduced, de-
voted to the discretization of Ω and ∂Ω. For each p ∈ X, a polytope V (p) is constructed,
enclosing p and with its vertices within X ∪ ∂X. See Figure 2.1 for classical examples.
The characterization (2.1) is approximated as

∀p ∈ X, U(p) = inf
q∈∂V (p)

Fp(p− q) + IV (p) U(q), ∀p ∈ ∂X, U(p) = 0. (2.2)

Within the domain interior, the system (2.2) approximates (2.1) by replacing the distance
function with the local gauge of the metric, and subsituting the exact value of the function
u(q) at q ∈ ∂V with the piecewise linear interpolation IV (p) U(q) of its approximation U .

The r.h.s. of the discrete system of non-linear equations (2.2) is denoted by Λ :
RX∪∂X → RX∪∂X and referred to as the Hopf-Lax operator, following [BE84]. This
operator is by construction monotone, in the sense that U ≤ V ⇒ ΛU ≤ ΛV , where
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Figure 2.1 – Some classical stencils used in semi-Lagrangian discretizations of two di-
mensional (left) or three dimensional (right) eikonal equations. They are ‖ · ‖M -acute,
where M ∈ S++(Ed), see Definition 2.0.1, provided the condition number Cond(M) :=√
‖M‖‖M−1‖ is bounded by respectively 1, 1 +

√
2, 1, (

√
3 + 1)/2 (from left to right).

In the following, we refer by FM-8 to the two dimensional Fast-Marching algorithm using
with the stencil (center-left).

U, V : X ∪∂X → E and inequalities are understood pointwise on X ∪∂X. This property,
along with mild assumptions, implies comparison principles, and thus stability properties
and the convergence of iterative schemes for solving the system of equations (2.2), see
§B.1. We choose to postpone to §3 the discussion of convergence, of the discrete solutions
of this system towards the actual distance to boundary as the discretization set X∪∂X is
refined. Indeed these matters become more interesting there, due to additional difficulties
related with the non-holonomy of the considered models. Let us only mention that the
papers [Mir14b, Mir14a] from which this chapter is adapted establish convergence without
rates, by relying on compactness arguments similarly to [BR06], but that the doubling
of variables technique used in [SMK16] could easily be adapted to establish a O(

√
h)

convergence rate, where h is the grid scale.
An additional property of the operator Λ, referred to as causality and defined in §B.1,

is required for being able to solve (2.2) via the efficient and single pass Fast-Marching
algorithm. Within the Semi-Lagrangian paradigm, as mentioned in the general introduc-
tion, causality turns out to be equivalent to a geometrical property of the stencils, referred
to as acuteness and defined below, see [SV03, Vla08, Mir14b].

Definition 2.0.1 (Generalized acuteness property). Let p ∈ E, let V be a polytope1

containing p in its interior, and let F be a finite gauge on E. We say that (V,p) is
F -acute iff for any points q = p + q̇ and r = p + ṙ of a common facet of ∂V one has

∀t ≥ 0, F (q̇ + tṙ) ≥ F (q̇). (2.3)

The point p in Definition 2.0.1 is not mentioned when it is obvious from context. One
can show that it suffices to check (2.3) for points q, r belonging to the boundary of a
common facet of V (p). In particular, in dimension d = 2, it suffices to check (2.3) for
consecutive vertices of V (p), a property used in §2.2. In the case of a gauge of Riemannian
type (in arbitrary dimension d), the condition (2.3) becomes bi-linear w.r.t. q̇ and ṙ, see

1A polytope is defined here a bounded set which boundary is a triangulated surface.
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the next proposition, and thus it suffices again to satisfy it for any vertices q̇ and ṙ of a
common face of V (p).

The name acuteness given to property (2.3) is justified by the simpler equivalent form
that it takes when the metric is Riemannian or isotropic, as shown in the next proposition,
proved in [Mir14b]. The acuteness property defined above was first described under these
specialized forms [SV03, Vla08].

Proposition 2.0.2. Under the assumptions of Definition 2.0.1.

• If F is differentiable at q̇, then (2.3) is equivalent to

〈dF (q̇), ṙ〉 ≥ 0.

• If F is of Riemannian type, that is if there exists M ∈ S++(Ed) such that F (ṗ) =
‖ṗ‖M for all ṗ ∈ Ed, then (2.3) is equivalent to

〈M ṙ, q̇〉 ≥ 0. (2.4)

• If F is isotropic, that is if there exists m > 0 such that F (ṗ) = m‖ṗ‖ for all ṗ ∈ Ed,
then (2.3) is equivalent to

〈ṙ, q̇〉 ≥ 0.

In addition, if the dimension is d = 2, or if the metric is Riemannian, then it suffices to
check (2.3) when p + q̇ and p + ṙ are vertices of a common facet of V .

If the metric F is Euclidean or has a small condition number, then a reasonably
small isotropic stencil based of the immediate neighbors on the grid may be acute, see
Figure 2.1. In contrast, the construction of acute stencils w.r.t. metrics of arbitrarily
strong anisotropy is non-trivial and has been the subject of a continued line of research
[SV03, AM11, KS98]. The next two chapters present the contributions of the author
in this direction, published in [Mir14a, Mir14b]. Theoretical guarantees and numerical
experiments illustrate their superior efficiency, when they are applicable.

2.1 Riemannian metrics
This subsection is devoted to Fast-Marching using Lattice Basis Reduction (FM-LBR)
[Mir14a], a causal semi-Lagrangian numerical scheme for eikonal equations involving Rie-
mannian metrics (1.37), discretized on Cartesian grids of arbitrary dimension (1.34). Open
source implementations in dimension d ≤ 3 are distributed [Mir15a]. Our stencil construc-
tion is based on the concept of Delaunay triangulation, and obeys the required acuteness
property (2.4). In two dimensions, we can describe the dependency of the stencil size on
the metric condition number in the worst case and in the average case, see Theorem 2.1.6,
and establish that it is minimal among causal semi-lagrangian schemes, see Theorem 2.1.5.

For that purpose, we briefly recall the concept of Delaunay triangulation, which is a
fundamental tool in discrete geometry [ES86]. See also A.2.2.
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Definition 2.1.1. Let Z ⊆ E be a discrete point set, and let M ∈ S++(E). The Voronoi
cell VorZM(p) ⊆ E of a site p ∈ Z is defined as

VorZM(p) := {x ∈ Ed; p ∈ argmin
q∈Z

‖x− q‖2
M}.

One denotes by DelZM the collection of simplices, of any dimension, such that the Voronoi
cells associated to their vertices intersect

{p0, · · · ,pk} ∈ DelZM ⇔ VorZM(p0) ∩ · · · ∩ VorZM(pk) 6= ∅.

If the point set Z and the matrixM are generic, then it is known that DelZM is indeed a
triangulation2 of Hull(Z), referred to as the Delaunay triangulation. Note that Definition
2.1.1 slightly generalizes (up to a linear changes of variables) the classical one [LS80], which
requires thatM = Id. More complex generalizations exist [BGM97, LS03, BWY15, RL16,
Mir11], defined w.r.t. a non-constant Riemannian metric M : E → S++(E) instead of a
single tensorM . However, and despite their relevancy for the discretization of anisotropic
PDEs, they will not be further discussed here.

The key ingredient of the FM-LBR numerical scheme is a geometrical property of De-
launay triangulations, which holds when the collection of sites obeys an additive stability
property, thus in particular when it is a lattice.

Lemma 2.1.2. Let p, q = p + q̇ and r = p + ṙ be the vertices of a common simplex of
a Delaunay triangulation DelZM . If p + q̇ + ṙ ∈ Z then 〈M ṙ, q̇〉 ≥ 0.

Proof. Let x ∈ VorZM(p)∩VorZM(q)∩VorZM(r). Then denoting z := p+ q̇+ ṙ = q+ r−p
one obtains

‖z− x‖M = ‖(q + r− p)− x‖M ≥ δ := ‖p− x‖M = ‖q− x‖M = ‖r− x‖M .

Therefore, denoting ẋ := x− p

0 ≤ ‖(q + r− p)− x‖2
M − ‖q− x‖2

M − ‖r− x‖2
M + ‖p− x‖2

M

= ‖q̇ + ṙ− ẋ‖2
M − ‖q̇− ẋ‖2

M − ‖ṙ− ẋ‖2
M + ‖ẋ‖2

M

= 2〈M ṙ, q̇〉

We next deduce from Lemma 2.1.2 that the germ of a Delaunay triangulation DelZM
at a point of an additive lattice Z, referred to as the Delaunay star [BWY15], obeys the
acuteness property of Definition 2.0.1 w.r.t. the norm defined by M .

Definition 2.1.3 (Delaunay star). The Delaunay star StarZM(p) collects all simplices of
a Delaunay triangulation DelZM containing a given vertex p ∈ Z.

Proposition 2.1.4. Let M ∈ S++(E), let Z be an additive lattice of E, and let p ∈ Z.
Then V (p) := StarZM(p) is F -acute, in the sense of Definition 2.0.1, where F (ṗ) := ‖ṗ‖M .

2A triangulation is a collection of simplices which is stable under intersection.
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Figure 2.2 – Unit ball {ṗ ∈ Ed; ‖ṗ‖M ≤ 1} and FM-LBR stencil V (M) defined in (2.6), for
some M ∈ S++(Ed) of varying orientation and condition number. The three dimensional
matrices are plate-like, with eigenvalues 1, 102, 102. See Figure 1.6 for the needle-like case.

Consider a Riemannian metric M : Ω → S++(E), and a discretization set X ∪ ∂X
based on a Cartesian grid Z, see (1.34). The stencils of the FM-LBR semi-Lagrangian
scheme are defined, at each discretization point p ∈ X, as the local star of the Delaunay
triangulation of Z, defined w.r.t. the geometry encoded in the local tensor M(p).

V (p) := StarZM(p)(p). (2.5)

The acuteness property follows from Proposition 2.1.4, and thus the guarantee that the
FM-LBR scheme can be solved in a single pass and with quasi-linear complexity. The
stencil (2.5) can be efficiently constructed in dimension d ≤ 3 using Selling’s algorithm and
the concept of obtuse superbase, rather than actually computing the Voronoi diagram,
see §A.2.2 or [CS92]. In contrast, causality does not hold if the collection Z of sites is not
an additive lattice. In that case, the stencils (2.5) nevertheless remain “nicely shaped”
typically, and have been used to solve Riemannian eikonal equations [RL16], improving
on the (partly heuristic) approach [CHK13].

Let us emphasize that that the stars (2.5) are typically inconsistent with each other,
in other words they cannot be glued into a global triangulation, since the matrixM(p)
changes from point to point. Consistent stars are only obtained if the metric varies
very slowly and if the point set obeys a quantitative non-degeneracy property [BWY15],
which is not satisfied by Cartesian grids. A much weaker consistency property of these
Delaunay stars is nevertheless proved in Proposition 1.8 of [Mir14a]: in dimension d ≤ 4,
if Z is an additive lattice and if M,M ′ ∈ S++(Ed) are sufficiently close, then StarZM and
StarZM ′ contain the elements of a common basis of Z, and their opposites. This property
implies that the discrete solution U of (2.2) obeys a Lipschitz property, and thus does not
suffer from the chessboard artifacts which are commonly observed with (badly designed)
adaptive PDE schemes on Cartesian grids.

In the rest of this subsection, we show evidence that the FM-LBR is better than al-
ternative semi-Lagrangian schemes, for Riemannian eikonal equations on Cartesian grids.
We present theoretical arguments as well as numerical test cases. We say that a stencil
V is M -acute iff it is F -acute, where F = ‖ · ‖M and where the reference point is p = 0.
We also use the following shorthand for the FM-LBR stencils, i.e. Delaunay stars of the
canonical lattice Ld ⊆ Ed

V (M) := StarLdM (0). (2.6)
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Figure 2.3 – Unit ball {ṗ ∈ E2; ‖ṗ‖M ≤ 1} and stencil V (M) defined in (2.6), for some
M ∈ S++(E2).

A first argument in favor of the FM-LBR is numerical cost, which is under control
since the scheme is causal and uses stencils with few vertices. More precisely, the number
of vertices of V (M) is independent of the specific tensor M ∈ S++(Ed) considered, but is
bounded in terms of the dimension d alone. In dimension d = 2 there are 6 vertices, and
in dimension d = 3 there are 14 vertices, for almost every M ∈ S++(Ed), see [Mir14a].
In arbitrary dimension, boundedness follows from a result of Voronoi stating that there
are only finitely many classes of Delaunay triangulations T Ld

M , where M ∈ S++(Ed), up
to linear changes of coordinates in GL(Ld), see §A.2.2 or [Sch09]. In contrast, alternative
constructions ofM -acute stencils typically yield a number of vertices growing polynomially
with the condition number Cond(M), see [SV03, AM11, KS98]. The main exception is
the FM-ASR scheme, presented in the next section, for which growth is poly-logarithmic
w.r.t. Cond(M) in average, see §2.2. However, the FM-ASR is only applicable in dimension
d = 2, contrary to the FM-LBR.

A second argument in favor of the FM-LBR is numerical accuracy, which is tied to the
diameter of the stencils, since the metricM is approximated with a constant tensorM(p)
over the stencil V (p). The FM-LBR stencils are optimal in this regard, in dimension d = 2,
as shows the following result proved in [Mir16b]. See also the discussion in Appendix B
of [Mir14a].

Theorem 2.1.5 (Minimality of the FM-LBR stencils). Let M ∈ S++(E2) be generic3,
and let V be an M-acute stencil with vertices in Ld. Then Hull(V ) ⊇ Hull(V (M)).

The final result of this section provides sharp quantitative asymptotic estimates of
the FM-LBR stencil radius, in dimension d = 2, in both the average case and the worst
case. The proof, presented in [Mir16b], is based on a careful study of the Minkowski
reduced bases, see Definition A.1.2, associated with the following family of matrices. For
all κ ∈ [1,∞[ and all θ ∈ R,

Mκ(θ) := κ−1n(θ)⊗ n(θ) + κn(θ)⊥ ⊗ n(θ)⊥, where n(θ) := (cos θ, sin θ).

The eigenvalues of M θ
κ are κ and κ−1, thus the related metric condition number is κ in

the sense of (1.37). We denote Vκ(θ) := V (M θ
κ), and measure the radius of this stencil

3It suffices that V (M) is uniquely defined, which is the case for every M ∈ S++(Ed) except on a set
of co-dimension 1.
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Figure 2.4 – Distance to the center point w.r.t. to anisotropic Riemannian metrics, com-
puted by the FM-LBR, and backtraced minimal paths, see [Mir14a]. Left: Distance
computation on an embedded manifold, considered in [SV03] and with maximal condi-
tion number Cond(M) ≈ 5.1. Right: Test inspired by tubular structure segmentation,
considered in [BC10]. The metric is in this second case Euclidean, except along a thin
spiraling tube where it is extremely anisotropic, with Cond(M) ≈ 100.

w.r.t. both the Euclidean norm and the intrinsic Riemannian norm.

Rκ(θ) := max
q̇∈Vκ(θ)

‖q̇‖, Sκ(θ) := max
q̇∈Vκ(θ)

‖q̇‖Mκ(θ).

Theorem 2.1.6 (Worst and average size of the FM-LBR stencils). For any p ∈ [1,∞]
one has

‖Rκ‖Lp ≈ κ
1
2‖Sκ‖Lp , ‖Sκ‖Lp ≈


1 if p < 2√

lnκ if p = 2

κ
1
2
− 1
p if p > 2.

The Lp norms are over the interval [0, 2π], and the ≈ sign means that the ratio of the
l.h.s. and r.h.s. is bounded above and below by positive constants as κ→∞.

In summary, the stencil size grows linearly ‖Rκ‖L∞ ≈ κ, when measured using the
Euclidean metric and in the worst case. However, stencil size ‖Sκ‖L∞ ≈

√
κ is much

smaller when measured in the intrinsic metric, which is often more relevant for the nu-
merical error, see Appendix B of [Mir14a]. In addition, stencil size is also much smaller
in average, e.g. ‖Rκ‖L2 ≈

√
κ lnκ and ‖Sκ‖L2 ≈

√
lnκ, which we believe has a favorable

impact on the effective numerical error. See §A.1.1 or [Mir16b] for more on this topic.

2.2 Finsler metrics
We describe in this section a numerical scheme referred to as Fast-Marching using Aniso-
tropic Stencil Refinement (FM-ASR), which applies to eikonal equations associated with
Finsler metrics, discretized on two dimensional Cartesian grids. In applications to image
processing and segmentation, the main interest of Finsler metrics is that they can be
asymmetric, in contrast with Riemannian metrics, which allows for a variety of new
applications, see §4.2 or [MPAT08, ZSN09, CMC16a, CMC16b, CC17a, CC17b]. The
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FM-LBR FM-8 AGSI MAOUM
Rotation angle θ = π/6

CPU time 0.20 0.21 1.44 1.31
L∞ error 5.52 12.5 9.45 8.56
L1 error 1.46 3.42 2.51 2.52

0.2 0.4 0.6 0.8
Θ

1

2

3

4

5
L1 error

AGSI

FM-8

FM-LBR

MAOUM

Figure 2.5 – Left: Comparison, on the test case of Figure 2.4 (left), of different numerical
methods. Grid size is 193×193, CPU time is in seconds on a 2.7Ghz laptop, and numerical
errors are multiplied by 100 for convenience. Discretization schemes are (i) The FM FM-
LBR, presented here, (ii) FM-8, Fast marching using the 8-point stencil of Figure 2.1
(center left) - this stencil is not acute w.r.t. the metric at all points, hence convergence does
not hold asymptotically. (iii) AGSI, a non-causal, iterative method [BR06], instantiated
with a 6-point stencil. (iv) MAOUM, a causal method with a very wide stencil [AM11].
Right: Comparison of the error for different angles of rotation the test case (lower is
better). The coordinate bias of the FM-8 and AGSI methods is apparent.

Figure 2.6 – Results of the FM-LBR in a 3D test case, inspired by applications to tubular
structure segmentation, see [Mir14a]. The metric is Euclidean, except in a tube along
a curve Γ, where it is highly anisotropic with condition number equal to 50. Iso-surface
{u(z) = 2} (left), and shortest path joining the points (0, 0, 0) and (3, 0, 0) (center). Detail
of the discrete points (represented by small cubes), in the neighborhood of the curve
Γ(t) = (cosω0t, sinω0t, t), for which the Riemannian metric is not Euclidean (right).
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Figure 2.7 – Top left: Unit ball of an asymmetric gauge F of condition number Cond(F ) =
20. Bottom: Construction of V (F ) by recursive refinement (bottom, left to right). The
triangles which non-zero vertices for not do not form an F -acute angle are shown in color,
and are refined in the next step. Top right: The four binary trees corresponding to this
refinement procedure.

FM-ASR stencil construction is based on an arithmetic structure named the Stern-Brocot
tree, which is mostly known for its applications in the study of rational approximations
of reals, see §A.1.3 or [Niq07] and references therein.

Definition 2.2.1. Let F be a finite gauge on E2. We say that ṗ, q̇ ∈ E2 form an F -acute
angle, iff F (ṗ + tq̇) ≥ F (ṗ) and F (tṗ + q̇) ≥ F (q̇) for all t ≥ 0.

See Proposition 2.0.2 for equivalent but simpler forms of this condition when the gauge
F has additional structure, e.g. is differentiable or is of Riemannian type. As its name
indicates, the FM-ASR numerical scheme builds its stencils using an iterative refinement
procedure, ending when all the external angles are acute w.r.t. the metric. See Figure 2.7.

Definition 2.2.2. To each asymmetric gauge F on E2 we associate a family (Vn)n≥0 of
triangulations defined as follows:

• V0 consists of the four triangles of vertices {(0, 0), (±1, 0), (0,±1)}.

• Vn+1 is obtained by replacing any triangle {0, ṗ, q̇} of Vn such that ṗ, q̇ do not form
an F -acute angle, with its two children {0, ṗ, ṗ + q̇} and {0, ṗ + q̇, q̇}.

The four triangles of V0 can be regarded as the roots of four copies of the Stern-Brocot
tree, one for each quadrant. The algorithm main loop, described in the second point of
this definition, inductively defines four finite subtrees. Each node is replaced with its two
children, until a stopping criterion is met, which is based on the notion of F -acute angle.
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Proposition 2.2.3. The refinement procedure of Definition 2.2.2 stabilizes4 to a stencil
denoted V (F ), which by construction is F -acute.

Let Ω ⊆ E2 be a bounded two-dimensional domain, equipped with a finite metric F :
Ω×E2 → [0,∞[. Let h > 0 be a gridscale, and let X := Ω∩hL2 and ∂X := (E2\Ω)∩hL2

be the discrete domain and discrete boundary. For each p ∈ X, the FM-ASR Fp-acute
stencil V (p) is defined by choosing the local gauge F := Fp in Definition 2.2.2, and
adequately translating and scaling the result

V (p) := p + hV (Fp).

The resulting semi-Lagrangian discretization is causal, since its stencils by construction
obey the acuteness property, see Definition 2.0.1. It can thus be solved in a single pass
using the fast marching algorithm, and is referred to as the FM-ASR. The complexity5

of this algorithm is O(M lnN), where N := #(X) is the cardinality of the discrete
domain, andM :=

∑
p∈X #(V (p)) is the total number of elements of the stencils (triangles

or vertices equivalently). Our main result shows that the FM-ASR stencils cardinality
#(V (F )) grows quasi-linearly in the worst case and poly-logarithmically in the average
case (under random rotations of the discretization grid), w.r.t. the condition number of
the gauge F , defined by (1.34).

Theorem 2.2.4. Let F be an finite gauge on E2, with condition number κ := Cond(F ).
Then #V (F ) ≤ Cκ(1 + lnκ), and∫ 2π

0

#(V (F ◦Rθ)) dθ ≤ C(1 + ln3 κ), (2.7)

where Rθ denotes the rotation of angle θ ∈ R, and C is an absolute constant.

The proof of the average case estimate (2.7), presented in [Mir14b], proceeds by succes-
sive generalizations. Riemannian norms are addressed first, since in that case the stencil
construction of Definition 2.2.2 only explores a single branch of the Stern-Brocot tree,
and can be related to the continued fraction approximation of tan θ. A similar behavior
is observed in [BOZ04] in the context of anisotropic non-divergence form diffusion. Argu-
ments of convex analysis and of approximation theory are then used to extend the result
to arbitrary non-symmetric finite gauges.

4In other words there exists N ≥ 0 such that Vn = V (F ) for all n ≥ N .
5The complexity is given assuming a standard heap structure for the the sorted list of points, such as

red-black trees. Theoretical complexity drops to M(M + N lnN) when using the Fibonacci heap data
structure, but computation time empirically increases, due to the larger hidden constant.
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Figure 2.8 – Unit balls and stencils generated by the FM-ASR, for some symmetric (top)
and asymmetric (bottom) norms.
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Figure 2.9 – An instance of Zermelo’s problem, considered in [SV03]. The unit ball of the
metric F(x,y) is the Euclidean unit ball translated by −γ sin(4πx) sin(4πy) (x,y)

‖(x,y)‖ , where
γ := 0.9. Left: Distance the the center. Center: Minimal geodesics backtraced. Right:
Error vs CPU time plot (lower is better), for the FM-ASR presented here, the AGSI
[BR06], the MAOUM [AM11], and the FM-8 see Figure 2.1. The latter is fast and gives
good results at low resolutions, but is non-convergent asymptotically due to the lack of
acuteness.
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Chapter 3

Eulerian schemes
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This section describes Eulerian numerical schemes for generalized eikonal PDEs, asso-
ciated with Riemannian metrics, sub-Riemannian metrics, and more general non-holonomic
models. Contrary to the semi-Lagrangian schemes discussed in §2, which can be inter-
preted in geometrical terms, the numerical schemes presented in this section directly
discretize the eikonal PDE using upwind finite differences. For that purpose, let us in-
troduce the Lagrangian and Hamiltonian associated to a metric F , which are defined for
any point p ∈ Ω, any vector ṗ ∈ E, and any co-vector p̂ ∈ E∗d by

Lp(ṗ) :=
1

2
Fp(ṗ)2, Hp(p̂) := sup

ṗ∈Ed
〈p̂, ṗ〉 − Lp(ṗ).

One easily checks that the Hamiltonian is the half squared dual metric: Hp = 1
2
(F∗p)2.

The eikonal equation (1.33) can thus be rewritten in terms of the Hamiltonian

∀p ∈ Ω, 2Hp(du(p)) = 1, ∀p ∈ ∂Ω, u(p) = 0. (3.1)

Note that the distance map u associated with the non-locally controllable models con-
sidered in §3.2 has discontinuities, both on ∂Ω and within Ω. The PDE (3.1), and its
boundary conditions, thus need to be understood in the relaxed sense of discontinuous
viscosity solutions [BCD08]. Our discretizations of the PDE (3.1) rely on a special repre-
sentation or approximation of the Hamiltonian Hp(p̂) ≈ Hp(p̂), of the following form

2Hp(p̂) = max
i∈I

∑
j∈J

ρij(p)〈p̂, ėij(p)〉2+, (3.2)

63



where a+ := max{a, 0}, and where I and J are finite sets. The choice of the weights
ρij(p) ≥ 0 and offsets ėij(p) ∈ Ld is non-trivial and depends on the structure of the metric,
see §3.1 and §3.2. In the following, for readability, we omit to write the dependency of
the offsets eij = eij(p) on the base point p ∈ Ω.

The discrete domain samples, as usual, the PDE domain Ω ⊆ Ed on the canonical
cartesian grid of scale h > 0

Xh := Ω ∩ hLd, ∂Xh := (Ed \ Ω) ∩ hLd. (3.3)

The generalized eikonal PDE (3.1) is discretized using (3.2) as follows: find U : Xh ∪
∂Xh → R obeying

∀p ∈ Xh, max
i∈I

∑
j∈J

ρij(p) (U(p)− U(p− hėij))2
+ = h2, ∀p ∈ ∂Xh, U(p) = 0. (3.4)

The l.h.s. of the numerical scheme (3.4, left) is a non-decreasing function of the positive
parts of the finite differences (U(p)−U(q))q∈Xh . Our discretization is therefore monotone
and causal, in the sense of Definition B.2.1, thus the system can be solved in a single pass
and with quasi-linear complexity using the Fast-Marching algorithm, see §B.2.

For several models, it is interesting to introduce symmetric terms in (3.2), which yield
symmetric upwind finite differences after discretization in (3.4), as follows

µij(p)〈p̂, ḟij(p)〉2, µij(p) max{0, U(p)− U(p− hḟij), U(p)− U(p + hḟij)}2. (3.5)

Note that this type of finite differences cannot be envisioned if the discretization set
Xh ∪ ∂Xh is not an additive grid, since it relies on the assumption that p+ ė ∈ Xh ∪ ∂Xh

iff p− ė ∈ Xh ∪ ∂Xh, with ė = hḟij. In the next two subsections, we introduce numerical
schemes for various models, using representations of their Hamiltonians in the form (3.2).
We also state convergence results, with convergence rates for the models which are locally
controllable, and in a weak sense otherwise.

Before turning to these complex models, we recall the classical case of an isotropic
metric, first addressed in [Set96, RT92]. Denoting by c : Ω→]0,∞[ the cost function, the
metric and hamiltonian read

Fp(ṗ) := c(p)‖ṗ‖, 2Hp(p̂) = c(p)−2‖p̂‖2 = c(p)−2
∑

1≤j≤d

〈p̂, ėh〉2,

for any p ∈ Ω, any vector ṗ ∈ Ed, and any co-vector p̂ ∈ E∗d. We denoted by (ej)
d
j=1 the

canonical basis of Ed. This leads to the eikonal PDE discretization

∀p ∈ Xh, c(p)−2
∑

1≤j≤d

max{0, U(p)− U(p− hėj), U(p)− U(p + hėj)}2 = h2,

and ∀p ∈ ∂Xh, U(p) = 0. Surprisingly, this formulation is mathematically equivalent to
a common semi-Lagrangian scheme, in the sense that the discrete solutions are identical.
The corresponding scheme is based on the stencil which is the convex hull of {p±hėj}dj=1,
as illustrated on Figure 2.1 (left and center right). In contrast the discretizations of
Riemannian eikonal equations described in §2.1 and §3.1.1 are genuinely distinct.
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3.1 Quadratic Hamiltonians
This subsection is devoted to Fast-Marching using Voronoi’s First Reduction, abbreviated
FM-VR1, which applies primarily to Riemannian metrics. Adaptations are provided for
singular sub-Riemannian metrics (via Riemannian approximations), and non-symmetric
Rander metrics (with the loss of causality). The results of this section are from [Mir17a].

3.1.1 Riemannian metrics

A Riemannian metric is determined by a field of positive definite tensors M : Ω →
S++(Ed). The metric, dual metric, Lagrangian and Hamiltonian read as follows. For any
point p ∈ Ω, any vector ṗ ∈ Ed and any co-vector p̂ ∈ E∗d

Fp(ṗ) = ‖ṗ‖M(p), F∗p(ṗ) = ‖p̂‖D(p),

2Lp(p̂) = ‖p̂‖2
M(p), 2Hp(p̂) = ‖p̂‖2

D(p),

where D(p) :=M(p)−1. Voronoi’s first reduction, applied to the matrix D(p), provides
a decomposition of the Hamiltonian

D(p) =
∑

1≤i≤d′
ρi(p) ėi ⊗ ėi, Hp(p̂) =

1

2

∑
1≤i≤d′

ρi(p)〈p̂, ėi〉2, (3.6)

where d′ := d(d+1)/2, ρi(p) ≥ 0, and ėi = ėi(p) ∈ Ed for all 1 ≤ i ≤ d′. We recognize the
general form (3.2), except that there is no need of a maximum over a finite set I, and that
the terms do not feature the positive part, hence they are discretized using symmetric
upwind finite differences as in (3.5). See Figure 1.1 for examples of the decomposition
(3.6, left).

A convergence analysis of this numerical scheme is presented in [Mir17a], with conver-
gence rates, obtained using the doubling of variables technique [Eva10]. This technique
is also applicable to adaptive semi-lagrangian schemes [SMK16].

Theorem 3.1.1. Let Ω ⊆ Ed be open and bounded, and let M : Ω → S++(Ed) be
Lipschitz. Then the discretized1 system (3.4) admits for each h > 0 a unique solution,
denoted Uh. Furthermore, denoting by u : Ω→ R the solution of the continuous problem
(3.1), one has

max
p∈Xh

|Uh(p)− u(p)| ≤ C
√
h,

where the constant C depends on Ω andM.

In our experiments, first order convergenceO(h) is typically observed [Mir17a], but the
announced slower rate O(

√
h) does hold in some pathological cases [SMK16]. In favorable

cases and with a careful initialization, second order convergence O(h2) can be achieved
in the L1 norm, provided the scheme is modified in the spirit of the High Accuracy Fast
Marching Method (HAFMM) [Set99]. More precisely, the first order upwind finite differ-
ences appearing in (3.4) are replaced when possible with the following formally second

1Instantiated with symmetric upwind finite differences (3.5) in this case.
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Figure 3.1 – Numerical error of the FM-VR1 as a function of gridsize for some two
dimensional test cases, illustrated respectively on Figure 1.13, Figure 2.4, and Figure
2.9 (with the adequate modification for Rander metrics in the latter case, see §3.1.3).
Second order convergence is achieved in the L1 norm, but not in the L∞ norm (despite
the removal of a 5 pixel layer along the boundary), which is not surprising since solutions
to eikonal equations are not smooth, but typically feature a gradient discontinuity along
a (d− 1)-dimensional interface called the cut locus.

order counterparts. For any smooth U : Ω→ R, any point p ∈ Ω, any offset ė ∈ Ed, and
any small grid scale h > 0

〈dU(p), ė〉 =
1

h
(U(p+hė)−U(p))− 1

2h
(U(p)−2U(p+hė)+U(p+2hė))+O(h2). (3.7)

Second order convergence however cannot be expected in the Lp norm for any p > 1.
Indeed, numerical error is at best O(h2) in regions where the distance map solution u is
smooth, but is also O(h) along a surface of co-dimension 1 where u is non-differentiable.
This singular set, where minimal geodesics of equal length meet, is an important object
of study for several communities, and may be called the cut locus, the Maxwell set, or
the medial axis.

3.1.2 Sub-Riemannian metrics

Sub-Riemannian metrics are the simplest class of singular metrics: their gauges attach
infinite values to some vectors, thus forbidding direct motion in some directions, a property
also referred to as non-holonomy. One of their simplest instances, due to Reeds and Shepp
[RS90] describes the motion of a wheelchair, which can move forward and backward, rotate
left and right, but cannot translate sideways. This model is considered in §3.2 and §4.1.3,
and higher dimensional extensions are considered in §4.1.4. See also Figure 3.2.

A sub-Riemannian metric F : Ω × E → [0,∞] can be regarded as degenerate Rie-
mannian metric, which gauges Fp take infinite values outside of a subspace ∆(p) ⊆ E
of the tangent space, depending on the current point p ∈ Ω. We denoted by E a finite
dimensional real vector space, and by Ω ⊆ E a subdomain. In addition, it is assumed that
vector fields within the subspace distribution ∆ and their Lie brackets up to a finite depth
span the tangent space E, which implies the local controllability of the model [Mon06].
This latter point turns out to be irrelevant for the design of our discretization scheme
and its convergence analysis, hence it is not discussed here. Instead of sub-Riemannian
geometry, we actually consider the simpler class of pre-Riemannian models, defined below,
and introduce alternative controllability assumptions, also considered in [BCD08].
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Figure 3.2 – Minimal paths for the Reeds-Shepp sub-riemannian model on R2× S1 (left),
its generalization to R3 × S2 (center), and the dual model (right), see §4.1.4. A point
(x,n) ∈ Rd×Sd−1 is shown as an arrow originating from x and with direction n. Top: The
backtraced paths do (approximately) obey the sub-riemannian constraint of parallelism
ẋ ‖ n = 0 (left and center) or orthogonality ẋ ⊥ n = 0 (right) of the physical velocity
ẋ with the angular coordinate n. Bottom: Comparison of the backtraced paths obtained
from the numerical solution to the eikonal equation, with paths obtained using an ODE
shooting method based on Hamilton’s equations of geodesics.
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Definition 3.1.2. A pre-riemannian model is the data of Lipschitz vector fields ω̇1, · · · ,
ω̇n : Ω→ E. We let ∆(p) := Span{ωi(p); 1 ≤ i ≤ n}, and say that the model is:

• Globally Controllable to the Boundary (GCB) iff for each p ∈ Ω there exists a
smooth path γ : [0, 1] → Ω obeying γ(0) = p, γ(1) ∈ ∂Ω, and γ(t) ∈ ∆(p) for all
t ∈ [0, 1].

• Short Time Locally Controllable to the Boundary (STLCB) iff ∂Ω admits unit nor-
mals n : ∂Ω→ Ed with Lipschitz regularity, obeying n(p) /∈ ∆(p)⊥ for each p ∈ ∂Ω.

Each pre-Riemannian model comes with a singular metric, defined dually as follows.
For any point p ∈ Ω, and any co-vector p̂ ∈ E∗

F∗p(p̂) := ‖p̂‖D(p), where D(p) :=
∑

1≤i≤n

ωi(p)⊗ ωi(p).

Note that D(p) is only positive semi -definite in general, thus admits no inverse tensor
in the sense of linear algebra. The primal metric itself Fp(ṗ), determined by the above
expression of F∗, therefore equals +∞ unless the vector ṗ belongs to the range ∆(p) of
D(p). Property GCB nevertheless implies that the distance u : Ω → R+ to the domain
boundary, as measured by the metric F , only takes finite values. The additional property
STLCB implies that u has Lipschitz regularity, see [Mir17a], and thus is a standard
viscosity solution of the eikonal equation (1.33).

A relaxation strategy is used to compute the distance map w.r.t. a sub-Riemannian
metric, based on an approximating family (Mε)ε>0 of Riemannian metrics, increasingly
degenerate as ε→ 0.

Definition 3.1.3. A completion of a pre-riemannian model ω̇1, · · · , ω̇n is the data of an
additional family of Lipschitz vector fields ω̇?1, · · · , ω̇?n? : Ω → E which, together with the
former, span Ed at each point of Ω. For each p ∈ Ω and each ε > 0, we let

D?(p) :=
∑

1≤i≤n?
ω?i (p)⊗ ω?i (p), Dε(p) := D(p) + ε2D?(p), Mε(p) := Dε(p)−1.

Theorem 3.1.4. Consider a pre-riemannian model (ωi)
n
i=1 obeying GCB and STLCB,

and a completion (ω?i )
n?

i=1. Let u : Ω be the pre-Riemannian distance to the domain
boundary ∂Ω, and for each ε ∈]0, 1] denote by uε : Ω → R+ the distance w.r.t. the
Riemannian metric defined by Mε. Let also Uh,ε : Xh → R+ be the discrete solution of
the FM-VR1 numerical scheme applied to the metricMε with the grid scale h > 0. Then

max
p∈Ω
|u(p)− uε(p)| ≤ Cε, max

p∈Xh
|uε(p)− Uε,h(p)| ≤ C

√
rεh,

where rε denotes the maximal stencil radius (measured in pixels) used forMε, and C only
depends on Ω, (ω̇i)

n
i=1, (ω̇

?
i )
n?

i=1. In particular Uh,ε → u uniformly as ε→ 0 and h rε → 0.

By construction, the condition number of the tensorsMε is O(ε−1), hence rε ≤ Cε−α

with α = 1 if d ∈ {2, 3}, and α = d−1 otherwise2, see Proposition A.2.2. The convergence
2We conjecture that this estimate is sub-optimal when d ≥ 4, but this is the best that we have

presently.
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rate maxΩh |Uh,ε − u| ≤ Ch
1

α+2 is thus ensured by choosing ε = h
1

α+2 . We must however
admit that these rates are hard to measure in practice, and that a convenient small fixed
value of the relaxation parameter is used in our applications, such as ε = 0.1 typically.

3.1.3 Rander metrics

Rander metrics are among the simplest examples of non-symmetric metrics [Ran41]. They
are encountered in Zermelo’s motion planning problem, which involves a vehicle moving
a unit speed but subject to a drift term, see the end of this subsection. They also appear
in the reformulation of some region based energies appearing in image segmentation, see
§4.2, and in the study of the Euler elastica model, see [CMC17]. Rander metrics are a
generalization of Riemannian metrics, taking the form

Fp(ṗ) = ‖ṗ‖M(p) + 〈η̂(p), ṗ〉,

for any point p ∈ Ω and any vector ṗ ∈ E. Rander metrics are thus parametrized by a field
of positive definite tensorsM : Ω→ S++(Ed) and a field of co-vectors η̂ : Ω→ E∗d, which
must obey following compatibility relation so as to ensure the positiveness Fp(ṗ) > 0 of
the gauges on any non-zero vector ṗ ∈ E \ {0}. For any point p ∈ Ω

‖η̂(p)‖D(p) < 1, where D(p) :=M(p)−1. (3.8)

The eikonal equation satisfied by the distance map w.r.t. to a Rander metric can be
stated in several equivalent forms, such as the natural one F∗p(du(p)) = 1. The following
inhomogeneous one however turns out to be more easily amenable to discretization

∀p ∈ Ω, ‖du(p)− η̂(p)‖2
D(p) = 1, ∀p ∈ ∂Ω, u(p) = 0. (3.9)

Similarly to the Riemannian case (3.6), we use Voronoi’s first reduction of quadratic forms
to obtain a decomposition D(p) =

∑d′

i=1 ρi(p) ėi(p)⊗ ėi(p) of the tensors. We discretize
the HJB PDE (3.9, left) as follows: find U : Xh ∪ ∂Xh → R, such that for all p ∈ Xh∑
i≤i≤d′

ρi(p) max{0, U(p)−U(p+hėi)+h〈η̂(p), ėi〉, U(p)−U(p−hėi)−h〈η̂(p), ėi〉}2 = h2,

and U(p) = 0 for all p ∈ ∂Xh. This numerical scheme is monotone, i.e. the above
expression is a non-decreasing function of the finite differences (Uh(p) − Uh(q))q∈X , but
unfortunately it is not causal, i.e. a function of their positive parts only. As a result, the
fast marching algorithm is not applicable, and this PDE discretization cannot be solved
in a single pass. We rely instead on iterative solvers, such as [BR06], which provide good
performance provided the metric anisotropy and non-homogeneity are moderate.

It is natural to compare the present approach with the semi-Lagrangian FM-ASR
scheme, see §2.2 or [Mir14b]. The latter has the advantage of being causal, and applies not
only to Rander metrics, see Figure 2.9, but also to arbitrary Finsler metrics. However, the
present approach applies in arbitrary dimension, see e.g. the three dimensional instance
on Figure 3.3, in contrast with the FM-ASR which is limited to planar problems d = 2.
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Figure 3.3 – Left and center: Level sets and minimal geodesics for a three dimensional
instance of Zermelo’s problem, see [Mir17a]. Right: Illustration of the numerical scheme
in dimension d = 2. Current point (blue), discretization stencil (arrows), unit ball for the
local non-symmetric gauge Fp (black circle), unit ball forM(p) (dashed ellipse).

The discretized PDE (3.9) admits a unique solution, converging uniformly as h→ 0 to
the distance u from the boundary ∂Ω w.r.t. the Rander metric [Mir17a]. The guaranteed
convergence rate O(

√
h) is similar to the Riemannian case, see Theorem 3.1.1, provided

the tensors M and co-vectors η̂ have Lipschitz regularity. The proofs are similar to
the Riemannian case, since they only use the monotony of the discretization scheme, see
[Mir17a]. (The lack of causality solely raises difficulties of algorithmic nature.) In practice,
similarly again to the Riemannian case, the observed convergence rate is usually O(h),
and convergence can be further accelerated by using the formally second order HAFMM
finite differences (3.7). Second order O(h2) convergence is then observed in the L1 norm,
in favorable cases and with a careful initialization, see Figure 3.1.

We conclude this section with a brief description of Zermelo’s navigation problem
[BCD08], a classical optimal control problem involving Rander metrics, also illustrated
on Figure 2.9. Consider a drift velocity on a domain Ω ⊆ Ed, encoded in a vector field
η̇ : Ω → Ed. Define u : Ω → R+ as the minimal time needed to reach ∂Ω for a vehicle
subject to a unit speed constraint relative to the drift η̇. In other words, T = u(p) is the
smallest time for which there exists a Lipschitz path γ : [0, T ] → Ω satisfying u(0) = p,
u(T ) ∈ ∂Ω, and for all t ∈ [0, T ]

‖γ̇(t)− η̇(γ(t))‖ ≤ 1.

We assume the strict bound ‖η̇(p)‖ < 1 for all p ∈ Ω, so that local controllability holds.
The exit time u then obeys the HJB PDE (3.9), with null boundary conditions, where
the tensor field D and co-vector field η̂ are defined as follows, see [Mir17a]

D(p) := (1− ‖η̇(p)‖2)(1− η̇(p)⊗ η̇(p)), η̂(p) =
−η̇(p)

1− ‖η̇(p)‖2
.
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3.2 Curvature penalized models
The numerical schemes presented in this section are designed to extract planar paths, with
prescribed endpoints and tangents, minimizing an integral energy defined in terms of their
local position, tangent, and curvature. The results of this section are from [Mir17b]. At
the risk of introducing a slight redundancy with the general introduction, we first recall
the models of interest.

Define the cost of a smooth path x : [0, T ] → R2, parametrized at unit euclidean
speed, as ∫ T

0

α(x(t), ẋ(t)) C(ξ|ẍ(t)|) dt.

The parameter ξ > 0 is homogeneous to a radius of curvature. It is fixed in the following,
but could equally well depend on the local path position and orientation. The cost α :
R2× S1 →]0,∞[, depending on the path position and orientation, is typically application
dependent and data driven. The curvature penalization C, on the other hand, is so far
chosen within a limited number of models, for we which have developed efficient numerical
schemes. The three available choices implement increasingly strong penalizations of large
curvatures, and are related to classical optimal control problems referred to as the Reeds-
Shepp car [RS90, DMMP16], the Euler-Mumford elastica [Mum94], and the Dubins car
[Dub57] respectively.

CRS(κ) :=
√

1 + |κ|2, CEM(κ) := 1 + |κ|2, CD(κ) :=

{
1 if |κ| ≤ 1,

+∞ otherwise.
(3.10)

Note, importantly, that we address in this section the discretization of the Reeds-Shepp
forward model, without reverse gear, see [DMMP16]. This models differes from the Reeds-
Shepp reversible model, able to shift into reverse gear instantly and at no cost, which is
sub-Riemannian and is considered in §3.1.2. Figure 3.5 (left and center left) clearly
illustrates the difference. Qualitatively, physical projections of minimal paths feature
cusps in the reversible case, and in place rotations in the forward only case, see Figure
1.7 page 20.

Our numerical strategy requires to lift the planar paths of interest into the three
dimensional manifold M := R2×S1 of positions and orientations, where S1 := R/(2πZ). It
is equipped with a singular metric, designed to appropriately penalize changes in direction,
and to forbid physical motions (sideways or reverse) which are not positively collinear with
the current orientation. More precisely, given a point p = (x, θ) ∈M and a tangent vector
ṗ = (ẋ, θ̇) ∈ T(x,θ)M such that ‖ẋ‖ = 1, we let

Fp(ṗ) = F(x,θ)(ẋ, θ̇) :=

{
α(x, θ) C(ξ|θ̇|) if ẋ = n(θ),

+∞ otherwise,
(3.11)

where n(θ) := (cos θ, sin θ). The metric (3.11) is extended by positive 1-homogeneity
to velocities (ẋ, θ̇) which physical component is not unit: ‖ẋ‖ 6= 1. In other words
Fp(λṗ) := λFp(ṗ) for any λ > 0. The gauge (3.11) is singular by construction, and is
convex provided the cost C is non-decreasing and convex, see [Mir17b]. The unit balls of
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Figure 3.4 – Minimal paths in the presence of obstacles, w.r.t. the Reeds-Shepp reversible,
Reeds-Shepp forward, Euler-Mumford, and Dubins models. Parameters α ≡ 1, ξ = 0.2
or ξ = 0.1 in the Dubins case. CPU time, on a single core, from 0.2s to 1.2s depending
on the model.

Figure 3.5 – Unit balls of the gauges of the Reeds-Shepp reversible, Reeds-Shepp forward,
Euler-Mumford and Dubins models, see (3.10). Model parameters ξ = 1 and α ≡ 1. All
have empty interior, reflecting the non-holonomy of the models.

(3.11) are illustrated on Figure 3.5, and some minimal paths are presented on Figure 1.7
and Figure 3.4.

The models considered in this section are not locally controllable, as illustrated on
Figure 3.6. For instance Dubins paths have a positively lower bounded radius of curvature
(and no cusps), therefore large maneuvers are required for e.g. moving to a close position
sideways. For this reason, following [BCD08], two variants of the distance to the boundary
must be considered. Given a bounded domain Ω ⊆M, we define two maps u, û : Ω→ R+

as follows

u(p) := inf{lengthF(γ); γ(0) ∈ ∂Ω, γ(1) = p},
û(p) := inf{lengthF(γ); γ(0) ∈M \ Ω, γ(1) = p}.

The functions u and ûmay be discontinuous, both in the interior of Ω and on its boundary,
see Proposition 3.2.2 below. They are respectively the smallest super-solution, and the
largest sub-solution, to the eikonal PDE (1.33), with boundary conditions understood in
a weak sense [BCD08].

Our discretization schemes for this degenerate HJB PDE involve both a scale param-
eter h > 0, and a relaxation parameter ε > 0. Before entering their details, we state a
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Figure 3.6 – Level set {p ∈ R2 × S1; dF(p, 0) = 0.6} of the distance map associated
to the Reeds-Shepp reversible, Reeds-Shepp forward, Euler-Mumford and Dubins models.
Parameters ξ = 0.14, α ≡ 1. Origin shown as a red point. The origin lies on the boundary
of the level set on pictures (II, III, IV), illustrating the lack of local controllability of these
models. (In contrast, the Reeds-Shepp reversible model (I) is sub-Riemannian hence
locally controllable.)

convergence result common to the three models. Given h > 0, we denote by Mh ⊆ M
the three dimensional, semi-periodic cartesian grid Mh := (hL2)× (hZ)/(2πZ), with the
implicit assumption that 2π/h must be a positive integer.

Theorem 3.2.1. Let Ω ⊆ M be an open and bounded domain, and let α : Ω →]0,∞[
have Lipschitz regularity. Let Xh := Ω ∩Mh, ∂Xh := (M \ Ω) ∩Mh, and let Hε,h be the
discretization scheme presented in this section for the Reeds-Shepp forward model, or the
Dubins model. Then for any h > 0 and any ε ∈]0, 1] the system

∀p ∈ Xh, H
ε
hU(p) = 1/2, ∀p ∈ ∂Xh, U(p) = 0, (3.12)

admits a unique solution denoted Uε,h : Mh → R. This solution can be computed using
the fast marching algorithm with complexity O(Nh lnNh), where Nh := #(Ωh).

Let Un := Uεn,hn, where εn → 0 and hn/εn → 0 as n→∞. Define for all p ∈ Ω

u(p) := lim
r→0

lim inf
n→∞

inf
Mh∩B(p,r)

Un, u(p) := lim
r→0

lim sup
n→∞

sup
Mh∩B(p,r)

Un.

Then u ≤ u ≤ u ≤ û on Ω.

Our discretization schemes, denoted by Hε
h in the above result, are based on sparse

and adaptive stencils of radius O(h/ε), where h > 0 is the gridscale and ε > 0 is a
relaxation parameter. See Figure 3.7. In order to achieve convergence, the relaxation
parameter ε needs to tend to zero, for consistency with the continuous model, but slower
than the grid scale so that the effective discretization scale h/ε also tends to zero. Indeed,
our discretization uses stencils of radius O(1/ε), measured in pixels, which are each of
width h. In the absence of quantitative error estimates, due to the discontinuity of the
problem solution u, we have no clear rule on how to optimally set the relative magnitude
of ε and h asymptotically. In numerical applications one typically chooses ε = 1/10,
independently of the other parameters. The discretization of the Euler-Mumford elastica
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Hamiltonian involves a third parameter, which is an integer K ≥ 1, affecting the number
of points in the discretization stencil but not its radius, K = 5 typically in applications.
Theorem 3.2.1 also holds for this model, but the complexity becomes O(KNh lnNh), and
convergence requires the extra assumption that Kn →∞ as n→∞.

The proof of Theorem 3.2.1 proceeds by first showing that the discrete maps Un are
uniformly bounded independently of n ≥ 0, using a comparison principle. Their lower
and upper limits u and u are respectively super- and sub-solutions to the eikonal PDE
(1.33), with the appropriate boundary conditions. The minimality and maximality of u
and û allows to conclude.

The conclusion u ≤ u ≤ u ≤ û of Theorem 3.2.1 is not a proper convergence result
unless one can show that u = û on a sufficiently large set. Our knowledge on this subject
is gathered in the next proposition, proved in [Mir17b]. Surprisingly, the qualitative con-
tinuity properties of the distance(s) to the boundary are distinct for each of the considered
models. The Reeds-Shepp reversible model is included for completeness, see §3.2.1 for a
discussion.

Proposition 3.2.2. Under the assumptions of Theorem 3.2.1, and in addition that the
interior of Ω equals Ω. The value functions u, û : Ω→ R are equal in the following cases:

• (Reeds-Shepp reversible model) u = û on Ω.

• (Reeds-Shepp forward model) u = û on Ω, if this domain has the form Ω = Ω0×S1.

• (Euler-Mumford model) u = û on Ω.

• (Dubins model) u = û on a dense subset of Ω.

Furthermore, in each case, u and û are continuous at each point p ∈ Ω such that u(p) =
û(p).

In the rest of this subsection, we provide the expression of the Hamiltonians of the
three considered models, see [Mir17b] for a proof, and we approximate them in the form
(3.2). This which naturally defines a monotone and causal finite differences scheme (3.4),
see Figure 3.7. For notational simplicity, we assume that the cost α : Ω →]0,∞[ is
identically equal to 1. Otherwise the Hamiltonians simply need to be multiplied by the
scalar factor α(x, θ)−2.

3.2.1 The Reeds-Shepp forward model.

We focus on the forward only variant of the Reeds-Shepp model, without reverse gear.
More precisely, the distinction between the forward and the reversible Reeds-Shepp models
lies in the collinearity constraint imposed in the metric expression (3.11), respectively
ẋ = n(θ) and ẋ = ±ṅ(θ). The (more classical) reversible Reeds-Shepp model benefits
from a sub-Riemannian structure (4.5), which makes it locally controllable and allows it
to be addressed using a Riemannian relaxation, see §3.1.2 for details.

The Hamiltonian of the Reeds-Shepp forward model has a quadratic structure, in-
volving a non-symmetric first term related to the physical momentum x̂. For any point
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Figure 3.7 – Offsets of the finite differences used for the discretization of the Reeds-
Shepp reversible, Reeds-Shepp forward, Euler-Mumford, and Dubins models. Note the
sparseness and the anisotropy of the stencils. Model parameters: ξ = 0.2, current angular
coordinate θ = π/3. Discretization parameters: ε = 0.1, and for Euler-Mumford K = 5.

(x, θ) ∈M of the state space, and any co-vector (x̂, θ̂) ∈ T ∗(x,θ)M, one has

2H(x,θ)(x̂, θ̂) = 〈x̂,n(θ)〉2+ + |θ̂/ξ|2, (3.13)

where a+ := max{a, 0}. The following proposition is used to approximate the first term
of this Hamiltonian.

Proposition 3.2.3. Let d ∈ {2, 3}, let ṅ ∈ Rd, and let ε ∈]0, 1]. Then there exists
non-negative weights ρεė(ṅ) ≥ 0, where ė ∈ Zd is an integral offset, such that for all
p̂ ∈ Rd

〈p̂, ṅ〉2+ ≤
∑
ė∈Zd

ρεė(ṅ)〈p̂, ė〉2+ ≤ 〈p̂, ṅ〉2+ + ε2‖ṅ‖2‖p̂‖2.

Furthermore the support {ė ∈ Zd; ρεė(ṅ) > 0} has at most 3 elements in dimension d = 2
(resp. 6 elements in dimension d = 3), and is contained in a ball of radius CWS/ε, where
CWS is an absolute constant. In addition

∑
ė∈Zd ρ

ε
ė(ṅ)‖ė‖2 = ‖ṅ‖2(1 + (d− 1)ε2).

The proof is based is based on Voronoi’s first reduction, and some additional geomet-
rical discussions for the radius estimate rε : O(ε−1), see [Mir17b]. The latter point is non
trivial, and is particularly relevant for our application, since converge the convergence
analysis requires that the scaled stencil radius hrε tends to zero, see Theorems 7.4.2 and
3.1.4.

Using proposition 3.2.3, we obtain a relaxation Hε of the Hamiltonian (3.13), which
is amenable to discretization.

2Hε
(x,θ)(x̂, θ̂) =

∑
ė∈Z2

ρεė(n(θ))〈x̂, ė〉2+ + |θ̂/ξ|2.

Indeed, this expression is defined in terms of scalar products of the co-vector (x̂, θ̂) with
integral vectors, here of the form (ė, 0) or (0, 1). Proceeding as in (3.4), we obtain a
monotone and causal finite differences scheme, denoted Hε

h. For any U : Mh → R and
any (x, θ) ∈Mh

2Hε
hU(x, θ) := h−2

∑
ė∈Z2

ρεė(n(θ))(U(x, θ)− U(x− hė, θ))2
+ (3.14)

+ (ξh)−2 max{0, U(x, θ)− U(x, θ − h), U(x, θ)− U(x, θ + h)}2.
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The Reeds-Shepp forward model can be extended to dimension 3, using a singular
metric on the 5-dimensional manifold R3 × S2, see §4.1.4. The resulting 5-dimensional
eikonal PDE is then be discretized and solved using an approach similar to the one above,
see [Mir17b].

3.2.2 The Euler-Mumford elastica model.

The Euler-Mumford elastica model benefits from a physical interpretation, as the bending
energy of an elastic bar. Originally discovered by Euler, and later introduced by Mumford
in the field of image processing [Mum94], it is regarded as one of the most natural energy
models for image segmentation purposes. The Hamiltonian is (the half square of) the
sum of a sub-Riemannian and of a linear term:

2H(x,θ)(x̂, θ̂) =
1

4

(
〈x̂,n(θ)〉+

√
〈x̂,n(θ)〉2 + |θ̂/ξ|2

)2

.

One can recognize a degenerate instance of Rander Hamiltonian, see §3.1.3. Unfortu-
nately, the FM-ASR numerical scheme introduced §2.2 is not applicable since model is
three dimensional. The non-causal variant of the FM-VR1 designed for Rander metrics,
see §3.1.3, is not directly applicable either because the metric is singular. We tried an
approach based on relaxation but only obtained unsatisfying results. A different approach
is thus developed, based on the following integral representation of the Hamiltonian: for
any p ∈M, with angular coordinate θ ∈ S1, and any p̂ ∈ TpM

2Hp(p̂) =
3

4

∫ π/2

−π/2
〈p̂, v̇(θ, ϕ)〉2+ cos(ϕ) dϕ, where v̇(θ, ϕ) := (n(θ) cosϕ, ξ−1 sinϕ).

See [Mir17b] for a proof. Consider a quadrature rule on the interval [−π/2, π/2] with
cosine weight, denoted (αk)

K
k=0 in the following, which is non-negative and second order

consistent. For instance the Clenshaw-Curtis or Fejer rules3. Using Proposition 3.2.3, we
define a two parameter approximation of the Hamiltonian

2Hε,K
p (p̂) :=

3

4

∑
0≤k≤K

αk
∑
ė∈Z3

ρεė(v̇(θ, ϕ))〈p̂, ė〉2+.

A monotone and causal finite difference scheme is obtained, as for the Reeds-Shepp for-
ward model (3.14), by replacing each term 〈p̂, ė〉+ with the finite difference h−1(U(p) −
U(p− hė))+.

3.2.3 The Dubins car model.

This model implements a hard constraint on the path turning radius, bounded below
by the parameter ξ > 0, which is appropriate for applications in motion planning. The
Hamiltonian is non-smooth, and is a maximum of two terms

2Hp(p̂) = max
{
〈p̂, v̇+(θ)〉2+, 〈p̂, v̇−(θ)〉2+

}
, where v̇±(θ) := (n(θ),±ξ−1).

3These are usually described as quadrature rules on the interval [−1, 1] with uniform weight, but this
is equivalent since

∫ 1

−1 f(t) dt =
∫ π/2
−π/2 f(sinϕ) cosϕdϕ for any f ∈ L1([−1, 1]).
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Using Proposition 3.2.3 we obtain an approximation of this Hamiltonian, which is ame-
nable to discretization, similarly to the two previous models

2Hε
p(p̂) := max

σ∈{+,−}

∑
ė∈Z3

ρεė(v̇
σ(θ, ϕ))〈p̂, ė〉2+.
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Chapter 4

Applications
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4.1 Tubular structure segmentation
This subsection is devoted to variational methods for tubular structure segmentation,
based on paths minimizing a data-driven energy. Historical approaches are first recalled,
followed by the enhancements made possible by the anisotropic fast marching methods
developed by the author.

4.1.1 Historical approaches

Historical approaches to tubular structure segmentation can be divided into two groups,
depending on the structure of the path energy that is minimized. The first group consists
of methods based on complex energies, typically featuring second order terms, such as the
snakes model, see Kass et al [KWT88] and (4.1) below. This approach suffers from relia-
bility issues since in practice the energy can only be locally minimized. The second group
consists of methods based on a basic conformal cost, locally proportional to Euclidean
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path length, see Cohen and Kimmel [CK97] or (4.2). This type of functional can be glob-
ally minimized using the classical fast marching method [Tsi95], but only offers limited
flexibility. The latter approach is often enhanced by dimension lifting, see Li and Yezzi
[LY07], that is considering paths with an additional coordinate, in an abstract parameter
space.

We describe these works in more detail in the following paragraphs. Note that the
numerical methods presented in §3.2 and [Mir17b], fast marching with curvature penaliza-
tion, attempt to combine the strong points of the three historical approaches: an energy
featuring second order terms (as in the snake model), a guarantee of global optimality (as
in the Cohen and Kimmel model), and an intrinsic dimension lifting in R2× S1 (as in the
Li and Yezzi model).

The snake model

The segmentation of tubular structures is a natural and challenging task in medical image
processing. Pioneer works by Kass et al [KWT88] suggested to extract these image
features as paths γ : [0, 1] → Ω minimizing the following quantity, referred to as the
snake model energy ∫ 1

0

a‖γ̈(t)‖2 + b‖γ̇(t)‖2 + c(γ(t))dt. (4.1)

This expression features a Sobolev-like part, weighted by coefficients a, b > 0, and a non-
convex part encoded in a cost c : Ω→ R, that is usually data driven in applications. The
endpoints of the path γ are prescribed, assumed to be at the extremities of the tubular
structure of interest, provided by the user or detected by another algorithm. A similar
approach can be used to extract the contours of two dimensional regions, by imposing a
periodic boundary condition instead of fixed endpoints, see §4.2.

The heuristic behind the snakes model is that the data-driven cost c(γ(t)), data-driven
and designed to be small in the neighborhood of the structures of interest, favors paths
staying close them. The energy terms b|γ̇(t)|2 and a|γ̈(t)|2, which are of Sobolev type,
control the regularity of the minimal paths and are loosely1 related to the penalization of
path length and path curvature. Path energies rigorously implementing a curvature cost
are discussed in §3.2, and applied to tubular structure extraction in §4.1.3.

Numerical implementations of the snake model typically represent the path γ as a
piecewise polynomial curve, and optimize the energy (4.1) by gradient descent, see the
appendix of [KWT88]. This approach unfortunately suffers from deficiencies, which make
it hard to use in practice, and are typical of numerical methods based on the local opti-
mization of a non-convex functional. Such methods indeed have a tendency to get stuck
at local minima of the functional of interest, here defined by (4.1), and are sensitive to
the initial guess.

1It would rigorously be the case if the path was parametrized at unit Euclidean speed.
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Figure 4.1 – Column 1 A typical retinal image patch. Column 2 White and red curves
indicate a vein and an artery respectively. Column 3 Visualization of the vesselness map.
Column 4 Normalized vesselness values distribution along the vein (light blue curve) and
the artery (red curve) labeled in column 2. Work with Da Chen and L. Cohen.

Globally optimal paths w.r.t. conformal metrics.

Cohen and Kimmel [CK97] suggested, as a remedy to the lack of reliability of the snake
energy minimization procedure, to focus on simpler models for which global minimization
is achievable. The considered energy is locally proportional to Euclidean path length,
hence of the form ∫ 1

0

c(γ(t))‖γ′(t)‖dt. (4.2)

We denoted by c : Ω→ R a cost, continuous and bounded below, which is data-driven in
applications and designed so as to favor paths staying close to the features of interest. In
contrast with the snakes model, global minimizers for this path energy, with presecribed
endpoints, can be computed efficiently by solving the standard eikonal equation ‖du(x)‖ =
c(x) on the image domain, with appropriate boundary conditions. Numerically, this is
done using the original isotropic fast marching algorithm [Tsi95, RT92], with quasi-linear
complexity O(N lnN) w.r.t. the number of discretization points. The robustness of this
approach, especially in comparison with the snakes model, enabled the design of a variety
of image processing methods [PPK10]. Their development was eventually limited by the
very rigid and specific form of the cost functions that could be addressed, see (4.2).

Dimension lifting

We focus in this paragraph on the setting where the two dimensional input image displays
a large number of intersecting tubular structures, this is for instance the case of retinal
background images, which are actually the superposed projections of distinct vessels in
a three dimensional volume. This overlay of structures unfortunately tends to fool seg-
mentation methods based on the minimization of the two dimensional measure of path
length (4.2). Indeed, these methods typically select paths going along the concatenation
of several distinct biological vessels. The extracted path jumps from one vessel to another,
when they cross or come nearby, an issue referred to as the shortcuts problem. These
defective paths are typically only piecewise smooth, with angles at the (undesirable) tran-
sitions between distinct vessels, and the second order term appearing in the snakes model
(which has its own defects) is precisely meant eliminate them.

Li and Yezzi [LY07] proposed to introduce an artificial third dimension to the input
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AV Groundtruth ArR Model CuP Model Grayscale lifted model

Figure 4.2 – Retinal vessel extraction examples. Column 1 is the groundtruth. Columns
2-4 are paths from the ArR (Anisotropic radius lifted Riemannian), CuP (Curvature
Penalized) and another lifted model based on grayscale coherency proposed with Da Chen
and L. Cohen, which gives here the best results.

image, in the attempt to separate the vessels, as they originally were in physical three
dimensional space. Extracted paths η : [0, 1] → Ω × A feature an additional coordinate
η(t) = (γ(t), α(t)), valued in an abstract parameter space. The cost function c(x, a), where
(x, a) ∈ Ω × A, accounts for the inverse likelihood that a vessel is present at position x
and has the feature a. In practice, the additional parameter a may account for the vessel
radius [LY07], gray-level, or orientation [PKP09].

4.1.2 Data adaptive Riemannian metrics

A natural enhancement of the Cohen and Kimmel model for tubular extraction [CK97], is
to replace the conformal cost (4.2), which originally is locally proportional to the Euclidean
metric, with a more general anisotropic Riemannian cost [BC10]. For that purpose, the
local analysis of the image data, performed before the minimal path extraction, needs
to be enhanced: a full Riemannian metric M : Ω → S++(Ed) is assembled, instead of a
scalar valued local cost c : Ω→ R∗+. The Riemannian metric is chosen so as to favor paths
which not only remain on tubular structures, but also go tangentially along them. As a
side note, if it was possible to locally infer the direction of the blood flow in the vessels,
in addition to the vessel orientation, then the above mentioned Riemannian metric could
be advantageously replaced with an asymmetric Finsler metric.

Computational difficulties overcome

Computing minimal paths with respect to Riemannian metrics, by the corresponding
eikonal equation, is a classical problem [SV03, BR06, AM11]. It happens however that
the Riemannian metrics used for tubular extraction typically feature a large condition
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Figure 4.3 – Flow of minimal path based tubular structure segmentation. Left: A Rie-
mannian metric is created. Right: minimal paths are extracted, between appropriate
points. Credit: L. Cohen and F. Benmansour.

number and a large local contrast. In other words the metric (p, ṗ) 7→ Fp(ṗ) varies
strongly w.r.t. both the point p and the vector ṗ. A representative test case, originally
proposed in [BC10], is illustrated on Figure 2.4 (right).

Classical causal methods [SV03, AM11] are sensitive to large condition numbers, which
make them use very wide stencils, hence render them costly and inaccurate. Classical non-
causal methods [BR06] are sensitive to both large contrast and large anisotropy, and as a
result may take hundreds of iterations to converge [BC10]. This undesirable compromise
ended with the FM-LBR numerical scheme, see [Mir14a] and §2.1, which is causal but
nevertheless uses rather small stencils even for large anisotropies. The computational
issue was essentially solved, reducing CPU time by up to four (!) orders of magnitude for
a given accuracy in comparison with earlier state of the art in the above mentioned test
case.

Design of the metric

Constructing a Riemannian metric for tubular structure segmentation in medical images
is a non-trivial task. There does not seem to be an universal solution, but rather appli-
cation dependent models requiring substantial expert knowledge. This process may be
streamlined in the future, by the adequate use of machine learning, but this is outside of
the scope of this dissertation.

The first step is to construct a tensor field M0 : Ω → S(E) which acts as a vessel
detector, where Ω ⊆ E is the image domain, for instance the oriented flux tensor [LC08].
In other words, the presence of a vessel at a position x ∈ Ω implies that M0(x) has an
eigenvector aligned with the vessel and associated with a small eigenvalue, and that the
other eigenvalues are comparatively large.

The second step is to define the Riemannian metricM : Ω→ S++(Ed) which, usually,
has eigenvalues distinct from M0 but shares the same eigenvectors. An eigenvalue λ of
M(x) is chosen small if the eigenvalue λ0 ofM0(x) corresponding to the same eigenvector
e0 is small comparatively to the other eigenvalues ofM0(x) (in other words, if a vessel is
likely to be present at the position x and with the orientation e0). The other eigenvalues
of M(x) are chosen large. The specific form of the new eigenvalues, meant to enhance
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paths alongside the vessels, is usually a complex recipe, see e.g. [BC10].
Data adaptive Riemannian metrics can be combined with the dimension lifting trick.

The augmented space Ω × A has dimension d + d′ > d; typically d = 2 and d′ = 1. The
Riemannian metric on this space is usually chosen block diagonal, with the d × d block
corresponding to the physical coordinates built as above [CCM14, CMC16c].

Keypoint insertion methods: a definite improvement

In this paragraph, we discuss a vessel tree extraction algorithm based on keypoint in-
sertion, which relies on the comparison of the Euclidean distance with a Riemannian
distance defined w.r.t. a data adaptive metric. When first introduced, this algorithm re-
lied on isotropic metrics [BC08]. Substantial improvements were obtained by upgrading
those to anisotropic Riemannian metrics [CMC16c], for reasons that we discuss below.

Consider an image displaying a tubular structure shaped into a tree, and assume that a
Riemannian metricM : Ω→ S++(E) has been designed so that paths along the structure
are particularly short. Let X0 = {x0} be a singleton, containing the root x0 ∈ Ω of the
tree to be extracted. For each n ≥ 0 define inductively Xn+1 := Xn ∪ {xn+1} where xn is
a minimizer to the following optimization problem:

min
x∈Ω

dM(x, Xn) subject to d0(x, Xn) ≥ δ. (4.3)

We denoted by dM the distance w.r.t. the data-driven Riemannian metric, and by d0 the
usual Euclidean distance. The distance to a set is defined as the minimal distance to
the points of this set. This iterative procedure, defining a sequence of points (xn)n≥0,
is terminated after a finite number N of steps when an appropriate stopping criterion is
met. The reconstructed tree is defined by the set XN = {xn}Nn=0 of nodes, and the edges
are the geodesics from xn+1 to Xn, for all 0 ≤ n < N .

The scalar δ > 0 appearing in the keypoint definition (4.3) is a positive and fixed
parameter. Choosing δ excessively large leads to leakage and shortcuts problems: the
geodesic from xn+1 to Xn may leave the actual vessel tree, jumping to nearby vessels,
which leads to an incorrect reconstruction. The smaller the scale δ, the best these issues
can be avoided. However, δ also needs to be above a lower bound, for the keypoint
insertion algorithm to work reliably in practice. It turns out that this lower bound for δ
is significantly smaller in the case of well designed anisotropic metrics (a few pixels) than
for isotropic metrics (the vessel width), for reasons explained below. See also Figure 4.4.

Assume that the metric M is Riemannian and anisotropic, designed so as to favor
paths that remain tangent to the vessels. The keypoint insertion criterion (4.3) then works
provided the Riemannian distance dM can be reliably estimated at Euclidean distance δ.
In other words, δ must be larger than the size of the stencil used for the eikonal PDE
discretization, which is typically a few pixels wide when using the FM-LBR algorithm
with a reasonably anisotropic metricM.

Assume now that the metricM is isotropic,M(x) = m(x)2 Id where m : Ω →]0,∞[
is a data driven scalar cost. Then the data driven and the Euclidean distances are locally
proportional: dM(x,y) ≈ m(x)d0(x,y) for any x,y ∈ Ω sufficiently close so thatm can be
regarded as constant at the scale ‖x− y‖. Therefore, comparing dM(x,y) with d0(x,y),
as done in the keypoint insertion procedure (4.3), only yields meaningful information
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Figure 4.4 – Segmentation of the retina vessel tree. Left: Standard method. Right:
Enhanced method, using an anisotropic metric and a small distance threshold δ. Images
from [CCM14], which contains more examples and comparisons.

(i.e. selects a point further along the tubular structure of interest) if δ := d0(x,y) is
significantly larger than the feature scale of the cost map m, which is here the radius of
the vessels to be extracted in the input image.

4.1.3 Curvature penalized planar paths.

One of the main differences between the historical snakes model (4.1) [KWT88] and the
conformal metric model considered by Cohen and Kimmel [CK97], is that the latter ig-
nores the path acceleration. This simplification, from a second order model to a first
order one, was motivated by computational considerations solely: for being able to com-
pute globally minimal geodesic paths by solving a standard eikonal equation. From a
modeling point of view, however, penalizing second order quantities such as path cur-
vature is highly relevant. Indeed, it is one of the most natural and efficient approaches
to avoid the shortcuts problem, which arises when extracting tubular structures from an
image displaying a complex overlay of vessels. See the discussion in §4.1.1 related with
the dimension lifting trick.

Fortunately, globally optimal paths with curvature penalization can now be computed
using the methods of §3.2, with good accuracy and within a reasonable computation time.
In fact, these methods allow for more variety in the choice of the second order term than
the original snakes functional, which is limited to the basic H2([0, 1]) Sobolev type cost.
Given an initial and final point and direction in Ω × S1, where Ω ⊆ R2 is the image
domain, we can compute the path x : [0, L]→ Ω globally minimizing the energy∫ L

0

c(x(t), ẋ(t)) C(|ẍ(t)|) dt. (4.4)

The path is here assumed to be parametrized at unit speed, and its Euclidean length
L ≥ 0 is a free parameter. The cost function c : Ω× S1 →]0,∞[ is usually data driven in
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Figure 4.5 – Vessel extraction using the Euler-Mumford elastica model, see [CMC17].

applications, and c(x,n) should be small when a vessel is likely to be present at the point
x and with the orientation n. Note that curvature penalization implies, automatically, a
dimension lifting. The design of the local cost c is usually a complex recipe, typically based
on local correlations with oriented wavelets [DFGtHR07, DDHCG13], which is outside the
scope of this paper, see e.g. [BDMS15]. This issue is also related with the Riemannian
metric design evoked in §4.1.2

The curvature penalization C : [0,∞[→ [0,∞] must, in the present state of our nu-
merical methods, be chosen among the three possibilities discussed in §3.2. Each is
parametrized by a scalar ξ > 0 which is homogeneous to a radius of curvature. The
Reeds-Shepp model is defined by C(κ) :=

√
1 + ξ2κ2, and may or may not be authorized

to shift into reverse gear. The Euler elastica model obeys C(κ) := 1 + ξ2κ2. The Dubins
model satisfies C(κ) := 1 if ξκ ≤ 1, and C(κ) :=∞ otherwise.

The Reeds-Shepp model with reverse gear, which has a sub-Riemannian structure, was
first considered as it is the easiest to implement. A non-causal discretization is proposed
in [BDMS15], and a causal one is introduced in [SBD+15]. Definite improvements are
obtained over the first order models, but the presence of cusps, due to the ability to shift
into reverse gear, yields annoying artifacts. The forward only Reeds-Shepp model solves
the latter issue, see [DMMP16].

Among the four models, the Euler-Mumford elastica seems to deliver the best tubular
segmentation results, see Figure 4.5. A non-causal discretization is proposed in [CMC17],
where we also discuss region segmentation, see Figure 4.6. A causal one is finally obtained
in [Mir17b], see §3.2. The improvement over the Reeds-Shepp forward model is striking
when the cost function c : Ω × S1 →]0,∞[ is independent2 of the direction θ ∈ S1, see
the synthetic test cases in [Mir17b]. The forward only Reeds-Shepp model does however
deliver rather similar results when the cost function is well designed (dependent of both
position and orientation), and it has the advantage of requiring up to 4 times less CPU
time in practice, since it uses a stencil with less points, see Figure 3.7.

Finally, the bounded turning radius implemented in the Dubins model turns out to be
more adequate for vehicle path planning than for vessel segmentation.

2This is a poor design choice in practice, only considered so as to exacerbate the differences between
the curvature penalized models.
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Figure 4.6 – Application of globally minimal Euler-Mumford elastica paths to region
segmentation, see [CMC16a]. Contour detection results from different models. Column
1 shows the edge maps, which determines the ground speed, here orientation independent:
α = α(x). Columns 2-4 show the contour detection results from the Cohen-Kimmel
model [CK97], the orientation lifted model [PKP09], and the model [CMC16a] based on
Euler-Mumford elastica curves [Mum94].

4.1.4 Models in dimension 3 + 2.

Extracting globally optimal curvature penalized paths in Rd requires, with our dimension
lifting approach, to solve a singular eikonal PDE on the on the (2d − 1)-dimensional
product manifold Md := Rd × Sd−1. Because of the curse of dimension, the case of
three dimensional paths, lifted in dimension 3 + 2 = 5, seems to be the limit. We
describe here our results in this setting, which as of today are more experimental than
in the planar case, see Figure 4.7 and [DMMP16, Mir17a, Mir17b]. This is due to the
important numerical costs associated with solving 5-dimensional PDEs, and to the fact
that the fundamental motivation for curvature penalization, coming from the overlaid
two dimensional projection of three dimensional vessels in e.g. retinal background images,
does not have a counterpart in three dimensional image data. The tractography of brain
white matter fiber may raise issues of similar nature though [DMMP16], since groups of
such fibers may cross each other.

We limited our attention to variants of the Reeds-Shepp model: the (classical) re-
versible instance, the forward only variant, and a dual3 variant which does not exist in
dimension d = 2. Indeed, their hamiltonian benefits from a separable structure, see (4.5)
below, which simplifies their implementation: one can rely on Voronoi’s first reduction of
three dimensional quadratic forms. More complex models, based on the Euler-Mumford
and Dubins costs, will be the subject of future work. Regarding the Reeds-Shepp forward
model, we refer to §3.2 (for planar paths) and [DMMP16], and we focus below on the
reversible and dual variants.

The Reeds-Shepp reversible model selects paths of low curvature, but potentially with
cusps. The dual model enhances paths embedded within a smooth hypersurface, but

3This term is here used informally, in view of the expressions (4.5) and (4.6).
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Figure 4.7 – Synthetic segmentation test of 3D tubular structures, using curvature penal-
ization, from [DMMP16]. Left: 3D configuration of bundles and a visualization of part of
the synthetic dMRI data. Middle: successful backtracking of geodesics in (M, dFε) from
several points inside the curves to end points of the bundle, using ε = 0.1. Right: when
using ε = 1 (isotropic metric), the dominant red bundle can cause the paths from the
green bundle to deviate from the correct structure.
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Figure 4.8 – Synthetic example. Left: The speed function S(x,n) = S(x) is small in
the neighborhood of two curves, with respectively low curvature and low torsion. Center:
Shortest path for the generalized Reeds-Shepp model (4.5) on R3 × S2. Right: Shortest
path for the dual model (4.6).

potentially with folds. These cusps and folds are a signature of sub-Riemannian geometry,
and can only be avoided with more complex metrics as described in §3.2. We choose to
describe these models by providing directly the corresponding families of approximating
Riemannian metrics, denoted respectively (Mε)ε>0 and (M′

ε)ε>0. For any point (x,n) ∈
Md = Rd × Sd−1, and any tangent vector (ẋ, ṅ) ∈ T(x,n)Md

‖(ẋ, ṅ)‖2
Mε(x,n) := S(x,n)−2

(
〈n, ẋ〉2 + ε−2‖Pn(ẋ)‖2 + ξ2‖ṅ‖2

)
, (4.5)

‖(ẋ, ṅ)‖2
M′ε(x,n) := S(x,n)−2

(
ε−2〈n, ẋ〉2 + ‖Pn(ẋ)‖2 + ξ2‖ṅ‖2

)
. (4.6)

We denoted by Pn(ẋ) := ẋ− 〈n, ẋ〉n the orthogonal projection of ẋ onto the hyperplane
orthogonal to n. When ε = 1, these two models coincide, and define a standard Rieman-
nian metric on the manifold Md. The speed function S is usually application dependent
and data driven. The parameter ξ > 0, homogeneous to a radius of curvature, balances
the relative cost of motion of the physical coordinate x and of the angular coordinate n.

As ε→ 0 some contributions explode, effectively enforcing constraints on vectors (ẋ, ṅ)
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of bounded norm at the point (x,n). For the Reeds-Shepp modelM0, this constraint is
Pn(ẋ) = 0, in other words the physical speed ẋ must be positively or negatively collinear
with the angular direction n. Since the motion of n is also penalized, the model overall
amounts to a penalization of path curvature, with here the possibility of cusps, see §3.2
for a discussion of similar ideas.

For the dual model M′
0 the enforced constraint is 〈n, ẋ〉 = 0, in other words the

physical speed ẋ must remain orthogonal to the angular direction n. This model selects
paths which admit a smoothly varying normal, which is the case of paths embedded in
manifolds of co-dimension 1, as well as of paths of low torsion. See Figure 4.8.

4.2 Region segmentation using Rander metrics
The segmentation of image regions is an image processing problem which is as much
classical, if not more, as the segmentation of tubular structures discussed in §4.1. A
number of models and of numerical methods have been considered, under the generic name
of active contours [KWT88, CK97, CKS97, MPAT08], including the following recent works
relying on our anisotropic fast marching methods [CMC16b, CMC17, CC17a, CC17b]. We
limit our attention to two dimensional regions, which boundary is a one dimensional curve
and can thus be extracted using minimal path methods. Two main differences distinguish
region segmentation from tubular structure extraction.

• Absence of overlays. Region boundaries do not cross each other, except in the rare
case where the input image represents a superposition of semi-transparent objects.
In contrast, the overlay of tubular structures is frequent and is typically the major
difficulty for segmentation. Regions do occlude each other, but this issue is usually
addressed with different tools.

• Region boundaries are oriented, for instance counter-clockwise. The best minimal
path models for region segmentation take this asymmetry into account, and are thus
based on asymmetric Finsler metrics [MPAT08, ZSN09, CC17b].

In this section, we discuss how some variational models for region segmentation, usu-
ally implemented numerically using level set methods, can be reformulated into a minimal
geodesic problem w.r.t. an asymmetric metric, and solved with unprecedented speed and
reliability using the FM-ASR method §2.2. These results were presented in [CMC16b].
We focus for simplicity on the following energy functional

E(U) :=

∫
U

f +

∫
∂U

g (4.7)

where U ⊆ Ω is the unknown region to be found by energy minimization, and the cost
functions f, g : Ω → R are given, with g being positive. The classical Chan-Vese energy
[CSV00] can be written under the form (4.7) (up to an additive constant), and more
complex energies may be locally linearized into this form.

Consider a region U , with a smooth boundary of signed curvature κ : ∂U → R, and a
sufficiently small function η : ∂U → R. Defined a perturbed region Uη by moving, at each
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Figure 4.9 – Application of our method to image segmentation. Left: Initialization.
Center left and right: Intermediate steps. Right: Final (and third) iteration. Images
from [CMC16b].

point of ∂U , the boundary of U in the direction of its outward normal on the distance η.
One easily obtains the following first order approximation, referred to as a shape gradient
[ABFJB06]

E(Uη)− E(U) ≈
∫
∂U

fη + gκη.

The classical strategy for minimizing (4.7) is based on the linearization (4.2) combined
with either a piecewise polynomial representation of the contour (as for the snake model
[KWT88]), or an implicit representation of the region U using a level set function [CSV00].
In any case, the results tend to be quite sensitive to initialization, for at least two reasons.
First, one is minimizing a non-convex functional using successive linearizations, which is
known to be risky. Second, the data-driven region cost f : Ω→ R is usually non-smooth,
since it is directly derived from the image, at least in the original Chan-Vese model
[CSV00]. Hence restricting f to the one dimensional region boundary ∂U is unstable if
not mathematically ill posed, if e.g. f ∈ Lp(Ω) for some p <∞. (The boundary weight g
is usually smoother in contrast, if not identically constant.)

We propose an approach for globally minimizing the energy (4.7) can be globally
minimized, in dimension d = 2, entirely distinct from the previous level set methods.
We make at first a series of strong assumptions, but show in the end that they can be
considerably weakened in practice. Denoting by U∗ the optimal region, we assume that:

1. The optimal region U∗ has the topology of a disk, and a neighborhood Ω∗ of ∂U∗
is known, with the topology of a ring. In other words Ω∗ is homeomorphic to
{x ∈ E2; 1/2 < |x| < 2}, and U∗ to the unit ball.
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2. A vector field ω : Ω∗ → E2 is known, obeying pointwise on Ω∗

divω = f, ‖ω‖ < g. (4.8)

3. A point of the optimal region boundary is known, denoted x∗ ∈ ∂U∗.

Let U ⊆ Ω be a region, which is sufficiently close to the optimal region U∗ so that the
symmetric difference (U \U∗)∪ (U∗ \U) is contained in the neighborhood Ω∗ of ∂U∗. Let
also γ : [0, 1] → Ω be a counter-clockwise parametrization of ∂U . Then using (4.8, left)
and the divergence theorem one obtains [ABFJB06, CMC16b]

E(U) =

∫ 1

0

(
g(γ(t))‖γ′(t)‖+ 〈ω⊥(γ(t)), γ′(t)〉

)
dt + Cst, (4.9)

where the constant is independent of the region U , subject to the above assumptions.
Crucially, the energy (4.9) is (up to the constant term) the length of the path γ measured
with respect to the Rander metric Fp(ṗ) := g(p)‖ṗ‖ + 〈ω(p)⊥, ṗ〉. The compatibility
condition (3.8) is satisfied in view of (4.8, right).

We have reformulated the region energy (4.7) as the geodesic length of its contour,
with respect to a data driven, asymmetric Finsler metric. The contour of the optimal
region U∗ is therefore the shortest closed geodesic within the ring shaped domain Ω0.
Since a point x0 ∈ ∂U∗ is known by assumption, this geodesic can be extracted in a single
pass by numerically solving an eikonal equation.

In the rest of this section, we discuss how the assumptions used to introduce our
method can be weakened, and the scope of our approach extended to realistic use cases,
as in [CMC16b]. The following discussion is only heuristic, and mathematical proofs of
e.g. the convergence of the suggested iterative algorithms may be the object of future
work.

1. The assumption that the optimal region U∗ has the topology of a disk is not limiting,
since the connected components of U∗ can otherwise be extracted independently. If
a connected component has holes, then these holes may be extracted using a similar
approach. Actually, the fact that our numerical method has a topological guarantee
(it returns a disc shaped region), is in our eyes a strength rather than a weakness.

The assumption that one knows a ring shaped neighborhood Ω∗ is however more
limiting for applications, because this neighborhood needs to be rather thin, due to
point 2. below. In practice, an iterative approach is used: an initial ring shaped
subdomain Ω0 is provided, which may not contain the boundary of the globally
optimal region, and an optimal curve γ0 within Ω0 computed. Then a new ring Ω1

is defined as a tubular neighborhood of the curve γ0, and the process is repeated
until convergence. This procedure stabilizes rapidly in practice, and three iterations
only are required to achieve convergence for the instances of Figure 4.9.

2. The co-vector field ω obeying (4.9) does not actually need to be known a priori, of
course. Instead, it is computed as a preprocessing step of our numerical method, by
solving an elliptic equation. More precisely, we set ω = ∇u, where ∆u = f on Ω∗
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with suitable boundary conditions4. If f ∈ L2+ε
loc for some ε > 0, and if the domain

Ω∗ has sufficiently small area, then the smallness condition (4.9) is met [CMC16b].
This is the reason why Ω∗ needs to be a rather thin ring, see point 1.

3. The assumption that one knows a point lying exactly on the optimal region boundary
does not seem realistic, but it can be eliminated as follows, see also Figure 4.9
(bottom). Consider an arbitrary point x0 ∈ Ω (a possibly incorrect substitute
for x∗ ∈ ∂U∗), and observe that the proposed numerical method can extract the
region U0 minimizing the energy (4.7), but subject to the additional constraint
that x0 ∈ ∂U0. In order to remove the latter constraint, an iterative strategy is
appropriate: for each n ≥ 0, select a point xn+1 ∈ ∂Un, as far as possible from
xn, and define Un+1 as the region minimizing E(U) subject to xn+1 ∈ ∂Un+1. We
observe empirically that Un converges to U∗.

Finally, we note that several generalizations of the method presented in this subsection
were formulated and successfully implemented [Che16, CC17a], such as (i) constraining
the region boundary to contain several given points, (ii) introducing a balloon force, (iii)
replacing the linear region energy term

∫
U
f with a general functional, which is then

locally linearized for optimization purposes.

4.3 Motion planning and surveillance
We present in this subsection a proof of concept numerical implementation of a two player
game involving motion planning, whose results were presented in [MD17]. A first player
selects, within an admissible class Ξ, an integral cost function on paths, which takes into
account the path position, orientation, and possibly curvature. The second player selects
a path, within an admissible class Γ, with prescribed endpoints and an intermediate
keypoint. The players objective is respectively to maximize and minimize the path cost

C(Ξ,Γ) := sup
ξ∈Ξ

inf
γ∈Γ

C(ξ, γ), where C(ξ, γ) :=

∫ T (γ)

0

Cξ(γ(t), γ′(t), γ′′(t)) dt, (4.10)

where the path γ is parametrized at unit Euclidean speed, and the final time T (γ) is
free. From a game theoretic point of view, this is a non-cooperative zero-sum game,
where player Ξ has no information and player Γ has full information over the opponent’s
strategy.

The game (4.10) typically models a surveillance problem [Str11], in which exp(−C(Ξ,Γ))
is the probability for player Γ to visit a prescribed keypoint without being detected by
player Ξ. For instance player Ξ is responsible for the installation of radar [BM00] or sonar
detection systems [Str11], and would like to prevent vehicles sent by player Γ from spying
on some objectives without being detected.

The dependence of the cost Cξ on the path tangent γ′(t) models the variation of a
measure of how detectable the second player vehicle is (radar cross section, directivity

4Numerically we use Neumann boundary conditions, but the proof of smallness discussed in the next
argument does require a distinct formulation, see [CMC16b].
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index, etc.) w.r.t. the relative positions and orientations of the target and sensor. The
dependence of Cξ on the path curvature γ′′(t) models the vehicle maneuverability con-
straints, such as the need to slow down in tight turns [Mum94], or even a hard bound on
the path curvature [Dub57].

Strode [Str11] has shown the interplay of motion planning and game theory in a similar
setting, on a multistatic sonar network use case, but using graph-based path planning.
The same year, Barbaresco [Bar11] used fast-marching for computing threatening paths
towards a single radar. In comparison with these earlier works, our contributions are
(i) the use anisotropic and curvature penalized path models in this context, and (ii) an
implementation of a reverse mode semi-automatic differentiation of the fast marching
method, for efficiently (locally) optimizing w.r.t. parameter ξ ∈ Ξ.

4.3.1 Mathematical background of trajectory optimization

The objective of player Γ is to find a path of minimal energy within a planar domain, w.r.t.
a cost Cξ(x, ẋ, ẍ) featuring in particular a penalization of curvature. The path must start
from the “home” of player Γ, visit a prescribed target, and then return back home. (We
chose this setting over the simplified problem where the path does not need to return back
home, so as to emphasize the role of curvature penalization, see 4.3.3.) In this paragraph,
we describe the PDE formalism underlying this optimization problem, see also §3.2.

The second order path energy minimization problem of player Γ is first lifted into a
shortest path problem within the three dimensional domain R2 × S1, the state space of
positions and orientations. We let Ω,Υ,Θ ⊆ R2 × S1 be respectively the full accessible
domain, the source of player Γ, and his target. We assume Υ ⊆ ∂Ω, and Θ ⊆ Ω. A
singular metric F ξ : TΩ → [0,∞] is also introduced, encoding similarly to (3.11) the
curvature penalized cost Cξ into a first order model, dimension lifted and non-holonomic.
More precisely, for any point p = (x, θ) ∈ Ω of the state space, and any tangent vector
ṗ = (ẋ, θ̇) such that ẋ = (cos θ, sin θ) we let

F ξp(ṗ) = F ξ(x,θ)(ẋ, θ̇) := Cξ(x, θ, θ̇).

The metric is extended by positive 1-homogeneity, F ξp(λṗ) = λF ξp(ṗ) for all λ > 0, and
set to +∞ whenever ẋ is not positively collinear with (cos θ, sin θ).

The minimal action map uξ : Ω → [0,∞] is defined as the minimal cost uξ(p) =∫ 1

0
F ξη(t)(η̇(t))dt of a path η : [0, 1] → Ω ending at some given point p = (x, θ) ∈ Ω and

starting from an arbitrary point q = (y, ϕ) of the source set Υ. A closely related variant
u−ξ (p) is defined likewise, except that the path endpoint orientations are reversed: (x,−θ)
and (y,−ϕ). By construction, the minimal cost of a path from the source set Υ to itself,
passing through the target Θ, is

min
p∈Θ

uξ(p) + u−ξ (p). (4.11)

Numerically, uξ and u−ξ are computed by solving generalized eikonal equations. We focus
on uξ for simplicity, and recall that under weak assumptions [BCD08] it is the viscosity
solution to the following PDE, involving the Hamiltonian Hξ of the problem. For all
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p ∈ Ω

Hξ
p(duξ(p)) = 1/2, where Hξ

p(p̂) := sup
ṗ
〈p̂, ṗ〉 − 1

2
F ξp(ṗ)2, (4.12)

with boundary condition uξ(p) = 0 on the source set Υ, and uξ = +∞ on the rest of ∂Ω.

4.3.2 Reverse mode semi-automatic differentiation

In this subsection, we describe how solutions to the parametric eikonal PDE (4.12) can
be numerically computed and differentiated w.r.t. the opponent’s strategy ξ ∈ Ξ. For
that purpose we introduce discrete sets X, ∂X, Y ⊆ R2 × S1, usually on a cartesian grid,
acting as counterparts of the domain Ω, boundary ∂Ω, and source set Υ. We then design
a sum-of-squares representation of the Hamiltonian: for all (p, p̂) ∈ T ∗Ω

Hξ
p(p̂) ≈ h−2

∑
q∈X

c2
ξ(p,q)〈p− q, p̂〉2+, (4.13)

where cξ : X × (X ∪ ∂X) → [0,∞[ is a family of weights, and where a+ := max{0, a}.
Expression (4.13) is typical, although some models require a slight generalization, see
§3.2 for details. The discretized PDE system reads: find Uξ : X → [0,∞] obeying for all
p ∈ X ∑

q∈X

c2
ξ(p,q)(Uξ(p)− Uξ(q))2

+ = h2/2, (4.14)

with u = 0 on the source set Y , and u = +∞ on the rest of ∂X. See §3.2 for the
convergence analysis.

The minimal cost (4.11) for player Γ is determined by the values of uξ on the set Θ ⊆ Ω,
which is typically small, e.g. of the form {x∗} × S1. Hence we are only interested in the
values of Uξ at a few points of X, say for simplicity a single point p∗. We describe below
how to numerically estimate the sensitivity of Uξ(p∗) w.r.t. variations of the parameter
ξ, thus also in the weights cξ(p,q), p,q ∈ X. For that purpose we differentiate the
discretized PDE system (4.14) w.r.t. ξ at an arbitrary point p ∈ X \Υ, and obtain∑

q∈X

ωξ(p,q)
(

dUξ(p)− dUξ(q) + (Uξ(p)− Uξ(q)) d ln cξ(p,q)
)

= 0,

where ωξ(p,q) := c2
ξ(p,q)(Uξ(p)− Uξ(q))+. Therefore

dUξ(p) =
∑
q∈X

αξ(p,q)dUξ(q) +
∑
q∈X

βξ(p,q)dcξ(p,q), (4.15)

where αξ(p,q) := ωξ(p,q)/
∑

q ωξ(p,q), and βξ(p,q) := αξ(p,q)/cξ(p,q). We first
choose p = p∗ in (4.15), and then recursively eliminate the terms dUξ(q) by applying the
same formula at these points, except for points in the source set q ∈ Y for which one uses
the explicit expression dUξ(q) = 0 (since Uξ(q) = 0 is in this case independent of ξ). This
procedure terminates: indeed, whenever dUξ(p) depends on dUξ(q) in (4.15), one has
αξ(p,q) > 0, thus ω(p,q) > 0, hence Uξ(p) > Uξ(q). It is closely related to automatic
differentiation by reverse accumulation [GW08], and has the modest complexity O(N)
where N = #(X).
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Curvature independent Reeds-Shepp car, forward only Dubins car

Figure 4.10 – Shortest path from the blue point (left) to the red keypoint (right) and
back.

4.3.3 Numerical experiments

The chosen physical domain R is the rectangle [0, 2] × [0, 1] minus some obstacles, as
illustrated on Figure 4.10. The computational domain is thus Ω = R for curvature
independent models and Ω = R×S1 for curvature dependent models, which is discretized
on a 180 × 89 or 180 × 89 × 60 grid respectively. We use a single physical source point
(0.2, 0.5) and target keypoint (1.8, 0.5), thus for curvature dependent models the source
and target set both have the structure {x} × S1.

No intervention from the first player. We first consider a cost function Cξ(x, ẋ, ẍ) =
C∗(|ẍ|), independent of the first player strategy ξ ∈ Ξ. The curvature cost C∗(κ) is
respectively 1 (curvature independent),

√
1 + ρ2κ2 (Reeds-Shepp, without reverse gear)

and 1 iff ρκ ≤ 1, otherwise +∞ (Dubins car), with ρ := 0.3. The differences between the
three models are apparent. The curvature independent model uses the same path forward
and back. The Reeds-Shepp forward car spreads some curvature along the way but still
makes an angle at the target point, due to the ability of this model to perform in-place
rotations. The trajectory of the Dubins car is a succession of straight and circular segments
of radius ρ. Note that following an optimal trajectory for the Dubins model might be
dangerous in practice, since any small deviation is typically impossible to correct locally,
and may drive into an obstacle; these trajectories are also easier to detect due to the large
circular arc motions.

Next we study three games where player one aims to detect player two along its way
from the source set Υ to the target Θ and back, using different means. If the first player
does not intervene, see Figure 4.10, or if its strategy is not optimized, see Figure 4.12,
then there is typically a unique optimal path (actually, an optimal loop in our setting) for
player two. In contrast, an interesting qualitative property of the optimal strategy ξ ∈ Ξ
for the first player is that it has a large number of optimal responses from player two, see
Figure 4.13, in some cases even a continuum, see Figure 4.11 (bottom) and [BCPS10].
This is typical of two player games.

Fresh paint based detection. In this toy model, see Figure 4.11, the first player
spreads some fresh paint over the domain, and the second player is regarded as detected
if he comes back covered in paint from his visit to the keypoint. The cost function is
Cξ(x, ẋ, ẍ) = ξ(x)C∗(|ẍ|), where ξ : R→ R+ is the fresh paint density, decided by the first
player, and C∗(κ) is as above. For wellposedness, we impose upper and lower bounds on
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Curvature independent Reeds-Shepp car, forward only Dubins car

Figure 4.11 – Top: Optimal distribution of paint, to mark a path from the blue point
(left) to the red keypoint (right) and back. Bottom: Geodesic density at the optimal
paint distribution.

the paint density, namely 0.1 ≤ ξ(x) ≤ 1, and subtract the paint supply cost
∫
R
ξ(x)dx to

(4.10). The main interest of this specific game, also considered in [BCPS10], is that the
function C(ξ,Γ) to be maximized is concave w.r.t. ξ ∈ Ξ. The observed optimal strategy
for player Ξ is in the curvature independent case to make some “fences” of paint between
close obstacles, and in the curvature penalized models to deposit paint at the edges of
obstacles, as well as along specific circular arcs for the Dubins model.

Visual detection. The first player places some cameras, e.g. with a 360-degree field of
view and mounted at the ceiling, which efficiency at detecting the second player decreases
with distance and is blocked by obstacles, see Figure 4.12. The cost function is

Cξ(x, ẋ, ẍ) = C∗(κ)
∑
y∈ξ

[x,y]⊆R

1

‖y − x‖2
, (4.16)

where ξ ∈ Ξ is a subset of R with prescribed cardinality, two in our experiments. The
green arrows on Fig 4.12 originate from the current (non optimal) camera position, and
point in the direction of greatest growth ∇C(ξ,Γ) for the first player objective function.

Radar based detection. The first player places some radars on the domain R =
[0, 2] × [0, 1], here devoid of obstacles, and the second player has to fly by undetected.
The cost function is

Cξ(x, ẋ, ẍ) = C∗(|ẍ|)

√√√√∑
y∈ξ

〈ẋ, n ~xy〉2 + δ2〈ẋ, n⊥~xy〉
‖x− y‖4

(4.17)

where n ~xy := (y− x)/‖y− x‖. The first player strategy ξ contains the positions of three
radars, constrained to lie in the subdomain [0.4, 1.6]× [0, 1]. The parameter δ is set to 1
for an isotropic radar cross section (RCS), or to 0.2 for an anisotropic RCS. In the latter
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Curvature independent Reeds-Shepp forward Dubins car

Curvature independent Reeds-Shepp forward Dubins car

Figure 4.12 – Field of view of the cameras (black gradients), optimal furtive paths (red
lines), local direction of improvement of the camera position (green arrows).

Curvature independent Reeds-Shepp forward Dubins car

Curvature independent Reeds-Shepp forward Dubins car

Figure 4.13 – Optimal radar placement with an isotropic (top) or anisotropic (bottom)
radar cross section.

case a plane showing its side to radar is five times less likely to be detected than a plane
showing its nose or back, at the same position. Green arrows on Figure 4.13 point from
the original position to the (locally) optimized position for player Ξ. At this position,
several paths are optimal for player Γ, shown in red on Fig 4.13.
Discusssion of the computational cost. On a standard Laptop computer (2.7Ghz,
16GB ram), optimizing the second player objective, by solving a generalized eikonal equa-
tion, takes ≈ 1s in the curvature dependent case, and ≈ 60 times less in the curvature
independent case thanks to the absence of angular discretization of the domain. Opti-
mizing the first player objective takes ≈ 100 L-BFGS iterations, each one taking at most
8s. For the stability of the minimization procedure, the considered problems were slightly
regularized by the use of soft-minimum functions and by “blurring” the target keypoint
over the 3× 3 box of adjacent pixels.
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Part II

Second order equations
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This part is devoted to numerical methods for a wide class of second order PDEs, rely-
ing on cartesian grid discretizations as in the rest of this dissertation. We discuss diffusion
PDEs in §5, in divergence or non-divergence form, focusing on the difficulties related to
(strongly) anisotropic tensor fields. We introduce a numerical scheme for Monge-Ampere
equations in §6, which in principle can be generalized to the wider class of Pucci’s ex-
tremal operators. Finally, we study the constraint of convexity in §7, which is of second
order since it can be expressed as the non-negativity of the hessian matrix.

This second part features less geometry than the first, which was mostly devoted to
the numerical computation of distance maps on manifolds. In order to alleviate notations,
we thus rely on the euclidean structure on Ed := Rd to identify vectors with co-vectors,
and do no use decorations such as ẋ or x̂.
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Chapter 5

Anisotropic diffusion

Contents
5.1 Non-Divergence form diffusion . . . . . . . . . . . . . . . . . . 99

5.2 Divergence form diffusion . . . . . . . . . . . . . . . . . . . . . 102

This chapter is devoted to Anisotropic Diffusion using Lattice Basis Reduction (AD-
LBR), a numerical scheme applicable to diffusion PDEs in divergence or non-divergence
form. This work was presented in [FM14, Mir16b, MFRT15], and is at the foundation
of our numerical scheme for Monge-Ampere equations presented in §6. Our approach re-
quires a cartesian discretization grid, and is based on Voronoi’s first reduction of quadratic
forms.

5.1 Non-Divergence form diffusion
This section is devoted to non-divergence form diffusion, a PDE which appears (time
reversed) in stochastic problems, and describes the evolution of an expectancy of gain
attached to a brownian motion. It is one of the simplest second order anisotropic PDEs,
and Voronoi’s first reduction is both natural and adequate for its discretization. We
only say a few words on the modeling aspects, see last paragraph of this section, and
emphasize instead the issues of numerical analysis and discretization. The numerical
scheme presented below (5.2) can be regarded as a generalization, to arbitrary dimension,
of the two dimensional method [BOZ04]. It has not been published elsewhere at the time
of writing, in contrast with our work on divergence form diffusion presented in §5.2.

Consider a domain Ω ⊆ Rd, and a field D : Ω → S++(Ed) of diffusion tensors. Non-
divergence form diffusion takes the form

∂tu(x, t) = Tr(D(x)∇2u(x, t)). (5.1)

Boundary conditions, e.g. of Dirichlet type for the model considered in the end of this
section, are provided on ∂Ω × R+. An initial distribution at time t = 0 completes the
system.

The solution u of (5.1) can be regarded as an expectancy, see the last paragraph of
this section, hence it obeys the maximum principle. More precisely, if initial distribution
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and the boundary conditions are uniformly bounded by some constant, then so is u. We
would like to guarantee this property at the discrete level since, in addition to be natural,
it enables stable computations. The following class of discretization schemes is designed
to achieve these properties. Recall that Ed := Rd and Ld := Zd.

Definition 5.1.1. A D-diffusion scheme, where D ∈ S++(Ed), is the data of weights
ρi ≥ 0 and offsets ei ∈ Ld, where 1 ≤ i ≤ d′ and d′ is an arbitrary integer, such that the
following Taylor expansion is (second order) consistent as h→ 0

Tr(D∇2u(x)) ≈
∑

1≤i≤d′
ρi ∆

ei
h u(x), with ∆e

hu(x) :=
u(x− he)− 2u(x) + u(x + he)

h2
.

(5.2)

This discretization of diffusion is qualified as monotone, because −∆e
hu(x) is a non-

decreasing function of the finite differences (u(x)− u(y))y∈X , where X := Ω ∩ hLd is the
cartesian discretization grid. For each x ∈ X denote1 by (ρi(x), ei)

d′
i=1 a D(x)-diffusion

scheme, where D : Ω → S++(Ed) is the given field of diffusion tensors. Non-divergence
form diffusion (5.1) can then be numerically implemented using the following explicit
scheme

Un+1(x) =
δ

h2

∑
1≤i≤d′

ρi(x) (Un(x− hei) + Un(x + hei)) +

(
1− δ

h2

∑
1≤i≤d′

ρi(x)

)
Un(x),

(5.3)
where δ > 0 is the time step. The discrete function Un : X → R is intended to approx-
imate u(·, nδ), and may need to be extended outside X using e.g. the provided Dirichlet
boundary conditions. Assume that the time step δ obeys the following Courant-Friedrichs-
Levy [CFL28] condition: for each x ∈ X

δ

h2

∑
1≤i≤d′

ρi(x) < 1.
(
Note that

∑
1≤i≤d′

ρi(x) ≤
∑

1≤i≤d′
ρi(x)‖ei‖2 = Tr(D(x)).

)
(5.4)

Then Un+1(x) is a positively weighted linear combination of the values of Un, see (5.3),
and as a result remains bounded above and below by the initial condition, as desired.
Note that our focus is on the spatial discretization of the PDE (5.1) only, and we thus
refer to [PHHR55, GWB10] for more subtle time discretizations than the explicit time
step (5.3).

The property defining D-diffusion schemes is easily shown to be equivalent to

D =
∑

1≤i≤d′
ρiei ⊗ ei.

The design such decompositions is a natural objective, see [KT92, Wei98, BZ03, BC05].
Contrary to previous works, we rely for that purpose on Voronoi’s first reduction, applied
to the quadratic form defined by D, see §A.2.1 which yields d′ = d(d + 1)/2. In the

1The dependency of the offset ei = ei(x) on the reference point x is omitted for readability.
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Figure 5.1 – Illustration of the AD-LBR stencils minimality, see Proposition 5.1.2.
(I,II,III) Comparison of the AD-LBR diffusion stencil (blue), with another construction
due to Weickert [Wei98, FM14], for some D ∈ S++(E∗2) with Cond(D) = 10 and various
orientations θ ∈ S1 of the eigenvector associated with the small eigenvalue. (IV) Stencil
radius as a function of θ ∈ [0, π/2], for the two constructions.

special case of the dimension d = 2, Bonnans et al [BOZ04] proposed an alternative but
equivalent construction, based on the Stern-Brocot tree, defined in §A.1.3.

PDE discretization schemes based on small stencils are often preferred in applications,
because they tend to be more robust, accurate, amenable to parallelization, and since the
treatment of boundary conditions raises fewer issues. Our next result, proved in [Mir16b],
shows that the D-diffusion stencils obtained by Voronoi’s first reduction are optimal in
this regard, in two dimensions, in the strong sense of convex hull inclusion.

Proposition 5.1.2. Let d = 2, and let D ∈ S++(E2). Let (ρi, ei)
n
i=1 be the D-diffusion

stencil defined by Voronoi’s first reduction, with ρi > 0 for each 1 ≤ i ≤ n, and let
(ρ′i, e

′
i)
n′
i=1 be another D-diffusion stencil. Then

Hull(±ei, 1 ≤ i ≤ n) ⊆ Hull(±e′i, 1 ≤ i ≤ n).

In addition to this qualitative result, one may want to bound the radius of aD-diffusion
stencil in terms of the condition number Cond(D) :=

√
‖D‖‖D−1‖ of the diffusion ten-

sor. In dimension d = 2, a key observation is that the concepts of D-diffusion stencil
and of M -acute stencil are equivalent [Mir16b], where M := D−1 and where the second
concept is defined in §2.1 in the context of semi-Lagrangian fast marching schemes. As a
result, applying Theorem 2.1.6, we obtain that the worst case bound on the stencil radius
is O(CondD), for the construction based on Voronoi’s first reduction. We also obtain
sharp average bounds, for instance the quadratic mean of the stencil radius upon random
rotations of the tensor is O(

√
Cond(D) ln(CondD)).

Elements of stochastic calculus. In this paragraph, we briefly describe the modeling
aspects underlying non-divergence form diffusion. For that purpose we need to introduce
some elements stochastic calculus. Our objective is only to provide a short, elementary,
informal, self contained motivation for the PDE studied, and we refer to classical textbooks
such as [KS12] for more background on the subject. Note that, for reasons detailed below,
this analysis leads to a time reversed variant of the PDE (5.1). In particular, the time
variable is negative in this paragraph, t ∈]−∞, 0].

Consider a domain Ω ⊆ Rd, and a continuous field of diffusion tensors D : Ω →
S++(Ed). Let (Xt)t≤0 be a Brownian motion, without drift, with covariance tensors D,
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which is frozen when it hits the boundary ∂Ω. Thus for any x ∈ Ω, any t < 0, and any
sufficiently small h > 0, one has denoting Zh := Xt+h − x the conditional expectancies

E[Zh |Xt = x] = o(h), E[Zh ⊗ Zh |Xt = x] = hD(x) + o(h), E[‖Zh‖3 |Xt = x] = o(h).
(5.5)

Define for any t ≤ 0, and any x ∈ Ω, the conditional expectancy

u(t,x) := E[u0(X0) |Xt = x],

where u0 : Ω → R is a given continuous map. The following boundary conditions are
satisfied: At the terminal time u(0,x) = u0(x), for any x ∈ Ω, since the Brownian motion
has no time to move. On the domain boundary u(t,x) = u0(x), for any x ∈ ∂Ω and any
t ≤ 0, since the Brownian motion is frozen.

On the domain interior, recalling that Brownian motions have no memory, one obtains
the following self-consistency property. For any x ∈ Ω and any t < t+ h < 0

u(t,x) := E[u(t+ h,Xt+h) |Xt = x]. (5.6)

We next proceed to a formal Taylor expansion, conditionally to Xt = x and denoting
again Zh := Xt+h − x.

u(t+h,Xt+h) = u(t,x)+h∂tu(t,x)+〈Zh,∇u(t,x)〉+ 1

2
〈Zh,∇2u(t,x)Zh〉+O(h2 +‖Zh‖3).

Inserting this expression in (5.6), and using (5.5) to compute the expectancy, we obtain

u(t,x) = u(t,x) + h∂tu(t,x) + 0 +
1

2
hTr(D(x)∇2u(t,x)) + o(h).

We also used the identity 〈z,Mz〉 = Tr(z⊗ z ·M) with z := Zh and M := ∇2u(t,x). The
latest equation is equivalent to −∂tu = 1

2
Tr(D∇2u), which is (5.1) as announced, up to

the time reversal and the scaling factor 1/2.

5.2 Divergence form diffusion
The physical interpretation of divergence form diffusion PDEs, as the gradient flow of
an elliptic energy, is fundamentally distinct from the stochastic expectancy underlying
non-divergence form diffusion. This energetic interpretation may explain the successes
of divergence form diffusion in image processing applications [Wei98], and in particular
denoising. The numerical scheme presented in this section also has applications outside
of image processing. It has been used for the computation of gradient flows w.r.t. the
Wasserstein metric [Pey15], and the approximation of distance maps using Varadhan’s
formula [YC17].

The anisotropic, divergence form diffusion PDE takes the following form

∂tu(x, t) = div(D(x)∇u(x, t)), (5.7)
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Figure 5.2 – Left. I: MRI scan, with articifially added noise. II: effect of Weickert’s
Coherence Enhancing Diffusion PDE, implemented using the AD-LBR; this is a slice of
Figure 1.10 right. Right. I: Noisy cartoon image. II: Effect of Perona and Malik’s non-
linear isotropic diffusion. (Object boundaries are not denoised) III: Effect Weickert’s Edge
Enhancing Diffusion, implemented using the AD-LBR. (Object boundaries are denoised
by tangential diffusion.)

on Ω× [0,∞[, where Ω ⊆ Ed is the physical domain, and D : Ω→ S++(Ed) is a continuous
field of diffusion tensors. With boundary conditions of Neumann type on ∂Ω, the solution
(5.7) follows as announced the steepest slope w.r.t. the L2 norm for an elliptic Lyapunov
functional. More precisely, for any t ∈ [0,∞[, denoting u(t) := u(·, t) ∈ L2(Ω), one has at
first order as δ → 0

u(t+ δ) ≈ argmin
v:Ω→R

1

2δ2
‖v − u(t)‖2

L2(Ω) + E(v), where E(u) :=

∫
Ω

‖∇u(x)‖2
D(x) dx. (5.8)

Consider a positive tensor D ∈ S++(Ed) and a D-diffusion stencil (ρi, ei)
d′
i=1 ∈ (R+ ×

Ld)d
′ , in the sense of Definition 5.1.1. Then using (5.1) one obtains the (first order) Taylor

expansion

‖∇u(x)‖2
D ≈

∑
1≤i≤d′

ρi
(u(x)− u(x− hei))2 + (u(x)− u(x + hei))

2

2h2
, (5.9)

which is reminiscent but also quite different from (5.2). Recall that ‖x‖D :=
√
〈x, Dx〉.

The integral energy E defined in (5.8) can be approximated, on the cartesian grid
X := Ω ∩ hLd, with the Riemann sum E(u) ≈ hd

∑
x∈X ‖∇u(x)‖2

D(x). Each term of the
sum is in turn approximated using (5.9), but with weights ρi(x) and offsets ei = ei(x)
adapted to the local tensor D(x). It is shown in [FM14], in dimension d = 2, that this
finite differences based energy is asymptotically equivalent, as the grid scale is refined,
to the finite element energy obtained using an adaptive Delaunay triangulation [LS03] of
the point set X w.r.t. the Riemannian metricM := D−1.

The fully discretized counterpart of the elliptic energy E(u) takes the form UTAU ,
where A is a positive semi-definite matrix and U : X → R is regarded as a vector.
Divergence form diffusion can be implemented using explicit time discretization as Un+1 =
Un− (δ/h2)AUn, where δ > 0 is the time step and Un is intended to approximate u(·, nδ).
By construction (5.9), a structural property of the matrix A is that its diagonal terms
are positive, and the off diagonal terms are non-positive. Therefore, the proposed explicit
scheme preserves the non-negativity of (Un)n≥0 through the iterations, provided the time
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Figure 5.3 – Left: Directions and norms (black=0, white=1) of the vector field v(x) :=
sign(‖x‖−1) x⊥/‖x‖ on [−1.3, 1.3]2, degraded by gaussian noise of variance 2, on a 50×50
grid. Right: Effect of cEED. Note that the streamlines are better reconstructed, and that
the norms vanish along the (approximate) circle ‖x‖ = 1 where v(x) changes sign so
that there is a cancellation effect (and likewise close to the vector field singularity at the
center). Images from [MFRT15].

step δ is sufficiently small [FM14]. (The CFL condition is identical to the non-divergence
form case (5.4), and more subtle schemes w.r.t. the time variable can again be implemented
if needed [PHHR55, GWB10].)

This numerical scheme is implemented in the Insight Toolkit toolbox for medical
image processing [MFRT15]. It is, straightforwardly, adapted to non-linear diffusion
equations, whose tensors Du(x) depend on the current state of the function u, and to
multi-channel images. Numerical experiments based on Weickert’s edge-enhancing and
coherence-enhancing diffusion PDEs [Wei98] are presented on Figures 5.2 and 5.3. Note
that our works are irrelevant for the simpler case of diffusion PDEs involving non-linear
isotropic tensors, i.e. proportional to the identity matrix, such as in the Perona and Malik
model [PM90].
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Chapter 6

The Monge-Ampere operator

Contents
6.1 Discretization of general Pucci operators . . . . . . . . . . . . 106

6.2 The MA-LBR numerical scheme . . . . . . . . . . . . . . . . . 111

This chapter is devoted to Monge-Ampere using Lattice Basis Reduction (MA-LBR),
a monotone and consistent discretization of the Monge-Ampere operator, on two dimen-
sional cartesian grids, introduced by Benamou, Collino, and the author. In contrast with
our original publication [BCM16], we do not motivate our approach by the geometrical
interpretation of the Monge-Ampere operator [Gut01, OP89], but regard it as a generic
instance within the larger class of Pucci extremal operators, which take the form

inf
D∈D

Tr(D∇2u(x)), (6.1)

where D ⊆ S++(E∗d) is an arbitrary set of matrices. Pucci extremal operators may also
be defined using a supremum, instead of the infimum (6.1). These operators, thus in par-
ticular the Monge-Ampere operator, see (6.9), share a fundamental structural property:
they are monotone operators [CIL92].

Definition 6.0.1. A monotone PDE operator on a domain Ω ⊆ Ed takes the form

F (x, u(x),∇u(x),∇2u(x)), (6.2)

where x ∈ Ω and u : Ω→ R. The function F : Ω×R×Ed×S(Ed) must be non-decreasing
w.r.t. the second variable “u(x)”, and non-increasing w.r.t. the fourth variable “∇2u(x)”
for the usual partial order on symmetric matrices1.

“Degenerate ellipticity” is sometimes used as a synonym for “monotony” [Obe06].
Monotony implies comparison principles, which are typically used to prove convergence
results upon perturbations of the PDE [CIL92]. It has a discrete counterpart, see the
next definition, and monotone numerical schemes similarly benefit from comparison prin-
ciples. When satisfied, this property is an essential tool for proving the numerical scheme

1For any A,B ∈ S(Ed), on has A � B iff B −A ∈ S+(Ed).
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stability and establishing the convergence of its discrete solutions towards the continuous
problem solution as the grid scale is refined, see [Obe06, FO11b]. The same technique is
used in the context of first order equations in e.g. [BR06, SMK16] and the author’s works
[Mir14a, Mir17a, Mir17b].

Definition 6.0.2. A monotone numerical scheme on a finite set X takes the form

F (x, u(x), (u(x)− u(y))y∈X), (6.3)

where x ∈ X and u : X → R. The function F : X × R × RX must be non-decreasing
w.r.t. the third variable (u(x)− u(y))y∈X , componentwise.

A natural objective is to design monotone discretizations of monotone PDE operators
of interest [KT92, Fro15], yet naive approaches to this task unfortunately suffer from
several flaws. Often the resulting numerical schemes may rely on very wide stencils,
which increases the cost of the linear systems to be solved (by reducing their sparsity), and
reduces the solution accuracy (by increasing the effective discretization scale). Another
source of accuracy loss is the lack of consistency of a number of schemes, in the sense
that (6.3) is not equal to (6.2), even for quadratic functions u, but only approximates it
as some relaxation parameter tends to zero. A possible remedy is to use filtered schemes
combining together a monotone but poorly accurate numerical scheme, and another non-
monotone but accurate scheme [FO13], in the attempt to combine their strengths. We
propose a different approach, which is the design of monotone and consistent schemes,
based on optimally small stencils.

Outline. We describe in §6.1 the discretization of general Pucci operators, using Voronoi’s
first reduction of quadratic forms, and its specialization to the Monge-Ampere operator.
Further discussion of the MA-LBR numerical scheme is presented §6.2.

6.1 Discretization of general Pucci operators
The work presented in this section belongs to a line of research initiated by Trudinger
and Kuo [KT92], devoted to the discretization of general second order Hamilton-Jacobi
PDEs using monotone finite differences schemes, and which is still active today [BOZ04,
Obe04, Obe05, FO11a, Fro15]. Our contribution, in comparison with earlier research,
is that our schemes are consistent - instead of being asymptotically consistent as some
relaxation parameter tends to zero -, and that their discretization stencils can be shown
to be optimally small in a number of cases - see e.g. Proposition 5.1.2 or Theorem 1.9
in [BCM16]. Our approach is based on Voronoi’s first reduction of quadratic forms, see
below, and thus requires a cartesian discretization grid. The reader solely interested in
the properties of our MA-LBR numerical scheme for the Monge-Ampere operator may
skip this part and jump to §6.2. The contributions of this section are original, and have
not been published elsewhere.

Consider a Pucci extremal operator, defined as in (6.1) by taking the infimum of
a family of non-divergence form linear operators with diffusion tensor D ∈ D, where
D ⊆ S++(E∗d) is a given fixed set. In the case where D = {D} is a singleton, one
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obtains an usual non-divergence form diffusion operator: Tr(D∇2u(x)). We discretize it
using a D-diffusion stencil, see Definition 5.1.1, obtained as a byproduct of Voronoi’s first
reduction, see A.2.1 and below, which is chosen for its optimality, see Proposition 5.1.2.

A slightly more general case is the one of a finite set D = {D1, · · · , DK} ⊆ S++(Ed)
of diffusion tensors. For any discrete map U : hLd → R we define

ΛU(x) := min
1≤k≤K

∑
1≤i≤d′

ρki ∆
eki
h U(x), where Dk =

∑
1≤i≤d′

ρki e
k
i ⊗ eki (6.4)

for all 1 ≤ k ≤ K. Again, Voronoi’s first reduction is used to obtain this matrix decom-
position. We denoted by ∆e

hu(x) := (u(x− he)− 2u(x) + u(x+ he))/h2 the second order
centered finite difference on the cartesian grid hLd, at the position x and in the direction
e, as in the previous section (5.2).

In the case of a general Pucci operator, and in particular of the Monge-Ampere op-
erator see below, the set D ⊆ S++(E∗d) of diffusion tensors is typically infinite. For
discretization purposes, we partition these diffusion tensors into subsets determined by
the support of the corresponding diffusion PDE schemes, e.g. {±eki ; 1 ≤ i ≤ d′} for the
tensor Dk in (6.4, right). In order to better describe this procedure, we recall the defi-
nition Voronoi’s first reduction, see §A.2.1, denoted VR : S++(E∗d) → S++(Ed). For any
D ∈ S++(E∗d),

VR(D) := argmin
M∈M

Tr(DM), where M := {M ∈ S++(Ed); ∀e ∈ Ld \ {0}, ‖e‖M ≥ 1}.

(6.5)

The set M ⊆ S(Ed) is a polytope, since it can be defined in terms of the linear constraints
‖e‖2

M = Tr(Me ⊗ e) ≥ 1 where e ∈ Ld \ {0} (the positive definiteness constraint is
redundant). The vertices of M are called perfect forms, and we denote their collection
by M0. The linear problem defining VR(D) is well posed, and admits a single minimizer
provided D is outside2 of a set of co-dimension 1, which by construction is an extremal
point of M, hence a perfect form.

Consider a fixed D ∈ S++(E∗d) and denote by M := VR(D) ∈ M0 the corresponding
perfect form. The Karush-Kuhn-Tucker conditions for this linear optimization problem
can be written in the form of a matrix decomposition, that we have used several times
already: denoting by ρDe ≥ 0 the Lagrange multipliers

D =
∑
e∈Ld

ρDe e⊗ e. (6.6)

By construction, the offsets e ∈ Ld such that ρDe > 0 all belong to the following finite set
LM ⊆ Ld determined by the perfect form M = VR(D)

LM := {e ∈ Ld; ‖e‖M = 1}. (6.7)
2 In non-generic cases, this optimization problem admits a compact set of minimizers, of which one

at least is a perfect form.
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Indeed, these offsets correspond to active constraints in (6.5). Denoting by DM := {D ∈
D; VR(D) = M} the collection of diffusion tensors which share a perfect form, we dis-
cretize the Pucci extremal operator (6.1) as follows. For any U : hLd → R

ΛU(x) := min
M∈M0

ΛMU(x), where ΛMU(x) := min
D∈DM

∑
e∈LM

ρDe ∆e
hU(x). (6.8)

Each of the sub-operators ΛM associated with a perfect form M ∈M0 is monotone, and
is discretized using a bounded stencil only, namely {x}∪{x+he; e ∈ LM}. It is defined in
terms of a finite dimensional optimization problem (6.8, right), which admits an explicit
solution in some cases of interest, such as the Monge-Ampere operator discussed in the
following paragraph.

If the condition number is bounded over the set D defining the operator (6.1) then,
by wellposedness of Voronoi’s first reduction, the Voronoi reductions of the tensors in D
all belong to a finite subset of M0. Hence the minimum (6.8, left) is over a finite subset
of M0 only, which eases the numerical implementation. In some other cases, such as for
the Monge-Ampere operator discussed next, the condition number is unbounded over D,
but the Pucci operator associated with D′ ⊇ {D ∈ D; Cond(D) ≤ κ}, where κ ≥ 1 is
sufficiently large, is equal to the original one provided the solution Hessian is not too
degenerate. The latter property may be guaranteed by a-priori estimates, making it still
feasible to design a consistent discretization.

As a final note, let us mention that it seems uneasy but not necessarily un-tractable to
adapt the strategy (6.8) to define monotone an consistent discretizations of fully general
second order HJB monotone operators, which (under mild assumptions [CIL92]) take the
form

sup
α∈A

inf
β∈B

Tr(Dαβ∇2u(x)),

where (Dαβ)β∈Bα∈A is a two-parameter family in S++(E∗d). Similar strategies have been
considered in the past [KT92, BOZ04], but our approach has added benefits which make
it more effective, such as the consistency of the discretization and the smallness of the
stencils.

Specialization to the two dimensional Monge-Ampere operator.

In the rest of this section, we fully describe the discretization (6.8) of the Monge-Ampere
operator, regarded as a Pucci operator. More precisely, we consider the following operator,
defined for any smooth and convex u : Ed → R

d(det∇2u(x))
1
d = inf

detD=1
D�0

Tr(∇2u(x)D). (6.9)

In doing so, in dimension d = 2, we recover the MA-LBR numerical scheme [BCM16],
which interestingly was not discovered using this systematic way, see §6.2.

In order to apply the discretization strategy (6.8), our first step is to describe the set
M0 of perfect forms, and to characterize tensors D ∈ S++(E∗2) which Voronoi reduction is
a given perfect formM ∈M0. Perfect forms in dimension d ≤ 3 can be parametrized by a
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family of (redundant) coordinate systems named superbases, see [CS92], or §4 of [Mir17b],
or §A. A superbase of Z2 is a triplet (e, f ,g) ∈ (Z2)3 obeying

e + f + g = 0, and | det(f ,g)| = 1. (6.10)

Define the corresponding perfect form by3 M = 1
2
(e⊥ ⊗ e⊥ + f⊥ ⊗ f⊥ + g⊥ ⊗ g⊥) ∈M0,

which support (6.7) is LM := {±e,±f ,±g}.
Let us fix the superbase (e, f ,g) as well as M in the rest of this section. Matrices

D ∈ S++(E∗d) such that VR(D) = M can be parametrized by three scalars a, b, c ≥ 0,
taking the role of the Lagrange multipliers ρDe , ρDf , ρDg in (6.6) respectively. Thus

D = a e⊗ e + b f ⊗ f + cg ⊗ g, and det(D) = det

(
b+ a a
a c+ a

)
= ab+ ac+ bc.

The expression of det(D) is obtained using a linear change of variables from (e, f ,g)
to the canonical superbase (−1,−1), (1, 0), (0, 1). This change of variables has unit
determinant in view of (6.10, right). We deduce, from above the parametrization of
D and the expression of its determinant, a semi-explicit expression of the operator ΛM

appearing when discretizing the (6.9) in the form (6.8). For any U : hLd → R

ΛMU(x) = G(∆e
hU(x),∆f

hU(x),∆g
hU(x)),

where we denoted, for any α, β, γ ∈ R

G(α, β, γ) := min{αa+ βb+ γc; a, b, c ≥ 0, ab+ bc+ ca = 1}. (6.11)

The following proposition, un-published, concludes our discretization of the Monge-Ampere
operator by explicitly solving the optimization problem (6.11).

Proposition 6.1.1. For any α, β, γ > 0, one has G(α, β, γ) = 2
√
H0(α, β, γ), where

H0(α, β, γ) :=

{
βγ if α ≥ β + γ, and likewise permuting α, β, γ,
1
2
(αβ + βγ + γα)− 1

4
(α2 + β2 + γ2) otherwise.

(6.12)

Proof. The minimum defining (6.11) is attained at some (a, b, c) ∈ R3
+, fixed in the fol-

lowing, since the objective function (a, b, c) 7→ αa + βb + γc is coercive on R3
+, and since

the constraint ab+ bc+ ca = 1 is closed. If c = 0, then the optimization problem becomes
min{αa + β/a; a > 0}, by elimination of b = 1/a, which solution is 2

√
αβ attained for

a =
√
β/α. Likewise if a = 0 or b = 0 instead of c = 0.

Consider now the case where all three of a, b, c are positive. Then by the KKT condi-
tions for the optimization problem (6.11), there exists a Lagrange multiplier λ ≥ 0 such
that (α, β, γ) = (λ/2)(b+ c, c+ a, a+ b). Equivalently

λ(a, b, c) = (β + γ − α, γ + α− β, α + β − γ). (6.13)
3 The opposite convention, namely M = 1

2 (e⊗ e + f ⊗ f + g⊗ g) and thus LM := {±e⊥,±f⊥,±g⊥},
is chosen in [Mir17b] for a better generalization to dimension d = 3.

109



Figure 6.1 – Top: Finite differences stencil. Middle: Relative consistency error of the
MA-LBR. Bottom: Relative consistency error of the Froese-Oberman [Fro12] wide stencil
scheme. Matrix parametrization: Mκ(θ) := κ−1n(θ) ⊗ n(θ) + κn(θ)⊥ ⊗ n(θ)⊥, where
n(θ) := (cos θ, sin θ). Parameters θ and κ are along the horizontal and vertical axes
respectively. Note that the MA-LBR consistency error vanishes to zero exactly, for any
given matrix, once the stencil size is sufficiently large.

In particular, we obtain that the positiveness of a and b and c cannot hold if α ≥ β + γ,
or β ≥ γ + α, or γ ≥ α + β, as announced in the expression (6.12) of H0. Replacing
a, b, c with their expression in terms of λ and α, β, γ, see (6.13), and doing straightfoward
simplifications, we obtain new expressions of the problem (6.11) objective and constraint

αa+ βb+ γc = ∆/λ, 1 = ab+ bc+ ca = ∆/λ2,

with ∆ := 2(αβ + βγ + γα) − (α2 + β2 + γ2). The constraint yields λ =
√

∆, and the
objective value is thus ∆/λ =

√
∆ = 2

√
H0(α, β, γ) as announced.
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6.2 The MA-LBR numerical scheme
In this section, we discuss some properties of the MA-LBR numerical scheme, a monotone
and consistent discretization of the two dimensional Monge-Ampere operator, on cartesian
grids [BCM16], defined as follows. For any U : hL2 → R, and any discretization point
x ∈ hL2, where h > 0 is the grid scale

ΛU(x) := inf
(e,f ,g)

superbase

H(∆e
hU(x),∆f

hU(x),∆g
hU(x)). (6.14)

A superbase is a discrete object, a triplet of vectors (e, f ,g) ∈ L3
2 obeying the compatibility

conditions (6.10), which naturally appears in lattice classification [CS92]. The function
H : R3 → R is defined as H(a, b, c) := H0(a+, b+, c+), where a+ := max{a, 0} and where
H0 is defined by (6.12). This discretization is monotone since, as can easily be checked, H
is a non-decreasing function of its arguments. Furthermore, if u : E2 → R is sufficiently
smooth, and if the grid scale h is sufficiently small, then

Λu(x) ≈ det+(∇2u(x)), (6.15)

where det+(D) := det(D) if D ∈ S+(E∗d), and det+(D) := 0 otherwise.
Interestingly, the MA-LBR numerical scheme was not discovered in this systematic

way, but was instead related to numerical approaches based on Pogorelov solutions of
Monge-Ampere equations and on the computation of convex envelopes [OP89, AHA98,
Mer11]. Indeed, each member of the infimum (6.14) can be interpreted as the subgradient
measure |∂u(x)| of a symmetrized interpolation of u on the local stencil {x,x ± e,x ±
f ,x± g}, see Remark 1.8 in [BCM16].

Numerically, one can choose a finite collection B of superbases, and implements the
operator ΛB defined by restricting the minimum (6.14) to elements of B. This discretiza-
tion is consistent in the following sense: for any compact set K ⊆ S++(Ed), there exists
a finite family B of superbases, such that equality holds in (6.15) for any quadratic func-
tion u(x) = 1

2
〈x,Mx〉, where M ∈ K, see [BCM16]. The practical choice of the set

B of superbases may be guided by a-priori estimates on the regularity of the addressed
Monge-Ampere PDE.

A significant part of the publication [BCM16] is devoted to the design and proof
of correctness of an adaptive strategy for the evaluation of the operator (6.14, right)
associated to the infinite set of superbases - excluding only those for which the stencil
support {x±he,x±hf ,x±hg} goes outside of the discretization domain. The algorithm
is extremely cheap in practice, since it is able to a-priori discard all superbases except a
few. It requires the assumption ΛU(x) > 0 (a property akin to discrete convexity), and
is based on a hierarchical exploration of the Stern-Brocot tree structure, with a suitable
termination criterion. We choose not to present the details of this approach here, and
refer instead to the original publication [BCM16] and to §7 where ideas of similar nature
are exposed.

A discretization of the three dimensional Monge-Ampere operator is proposed in
[Mir15b], based on the sub-gradient interpretation of (6.14) rather than the general ap-
proach presented in §6.1. The global convergence of a damped Newton algorithm for
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solving the discretized system of equations is proved in this context, see also [KMT16].
This is an interesting development since previous theoretical guarantees for numerical
solvers of discretized Monge-Ampere equations were limited to much solver algorithms,
based on e.g. coordinate wise increment [OP89], which are never used in practice. Fi-
nally, let us mention that the MA-LBR scheme was originally implemented with Dirichlet
boundary conditions [BCM16], but that its adaptation to optimal transport type bound-
ary conditions seems possible and is under investigation by Benamou and Duval.
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Chapter 7

The constraint of convexity

Contents
7.1 Discrete analogues of convexity. . . . . . . . . . . . . . . . . . . 114
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7.3 Hierarchical cones of discrete convex functions . . . . . . . . . 119

7.4 Cardinality of the minimal stencils . . . . . . . . . . . . . . . . 121

This chapter is devoted to a numerical method for optimization problems posed on the
set of convex functions, originally presented in [Mir16a]. Since the seminal work [CLM06],
which established that the most natural discretization of the constraint of convexity is
not consistent, a surprisingly diverse variety of strategies have been developed to address
it [CLRM01, AM08, AM09, EMB10, Obe13, MO14, Wac17, Mir16a]. A first specificity
of our approach is its adaptive nature: it is based on adaptive stencils, refined until a
sufficient angular resolution is obtained in the directions along which the solution Hessian
degenerates. Some may find it reminiscent of Adaptive Finite Element Methods [MN06],
which increase the mesh spatial resolution around the solution singularities. A second
specificity is that we require the discretization set to be a cartesian grid, and heavily rely
on the Stern-Brocot tree structure to define our discretization and the refinement strategy.
This structure is also used in §2.2 and [Mir14b, BCM16]. Our main result is an average
case estimate of the behavior of our numerical scheme, under random orientations of the
grid, see Theorem 7.4.2. This chapter is adapted rather directly1 from the introduction
of [Mir16a], because its subject is in large part independent from the other parts of the
dissertation.

A number of mathematical problems can be formulated as the optimization of a convex
functional over the cone of convex functions on a domain Ω:

Conv(Ω) := {u : Ω→ R; u is convex}.

This includes optimal transport, as well as various geometrical conjectures such as New-
ton’s problem of the body of least resistance [LRO05, MO14, Wac14], Meissner’s problem
on bodies of constant width [KW11], ... . We choose for concreteness to emphasize an

1The other chapters of this dissertation were in contrast entirely written from scratch.
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Figure 7.1 – Numerical approximation U of the solution of the classical Monopolist’s
problem (7.1), computed on a 50 × 50 grid. Left: level sets of U , with U = 0 in white.
Center left: level sets of det(∇2U) (with again U = 0 in white); note the degenerate region
Ω1 where det(∇2U) = 0 but U is non-constant. Center right: distribution of products
sold by the monopolist. Right: profit margin of the monopolist for each type of product
(margins are low on the one dimensional part of the product line, at the bottom left).
Color scales on Figure 7.2.

economic application: the Monopolist (or Principal Agent) problem [RC98], in which
the objective is to design an optimal product line, and an optimal pricing catalog, so as
to maximize profit in a captive market. The following minimal instance is numerically
studied in [AM08, EMB10, Obe13]. With Ω = [1, 2]2

min {E(u); u ∈ Conv(Ω), u ≥ 0} , E(u) :=

∫
Ω

(
1

2
‖∇u(z)‖2 − 〈∇u(z), z〉+ u(z)

)
dz

(7.1)

We refer to [RC98] for the economic model details; let us only say here that the Mo-
nopolist’s optimal product line is {∇U(z); z ∈ Ω}, and that the optimal prices are given
by the Legendre-Fenchel dual of U . Denote by ∇2U the Hessian of U , and consider the
following three regions: for any k ∈ {0, 1, 2} (implicitly excluding points z ∈ Ω at which
U is not smooth)

Ωk := {z ∈ Ω; Rank(∇2u(z)) = k}. (7.2)

Strong empirical evidence suggests that these three regions have a non-empty interior, see
Figure 7.1 (II), although no qualitative mathematical theory has yet been developed for
these problems. The optimal product line observed numerically, see Figure 7.1 (III and
IV), confirms a qualitative (and conjectural) prediction of the economic model [RC98]
called “bunching”: low-end products are less diverse than high-end ones, down to the
topological sense. The monopolist willingly limits the variety of cheap products, because
they may compete with the more expensive ones, on which he has a higher margin.

7.1 Discrete analogues of convexity.
We propose an adaptive numerical scheme for the problem (7.1), on a two dimensional
convex domain Ω ⊆ R2, discretized on a cartesian grid. For that purpose, following
[CLRM01], we consider restrictions of convex functions to a finite set of points, referred
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Figure 7.2 – Similar to Figure 7.1, but the domain [1, 2]2 is rotated by π/4 around its
center. See Figure 10 in [Mir16a] for more examples.

to as discrete convex functions2. We also consider piecewise linear convex functions on a
triangulation T of X, and denote by IT the interpolation operator. Their collections are
denoted

Conv(X) := {u : X → R; ∃û ∈ Conv(Ω), u = û|X},
Conv(T ) := {u : X → R; IT u ∈ Conv(Ω)}.

Let (Th)h>0 be a family of well shaped triangulations of Ω of scale h > 0, and denote by
Xh the collection of their vertices. Maury et al [CLRM01] showed that the solutions of
the discretized problems

min{E(ITh u); u ∈ Conv(Xh)} (7.3)

converge uniformly as h → 0 to the solution of the continuous problem (7.1), see also
the appendix of [Mir16a]. It is known, in contrast and quite surprisingly, that replacing
Conv(Xh) with Conv(Th) in (7.3) yields a non-convergent discretization [CLM06].

We choose, similarly to [CLRM01], to numerically solve the optimization problem
(7.3). For that purpose we enumerate the linear constraints characterizing Conv(X)
when X is a cartesian grid, correcting an error of [CLRM01]. It turns out that their
number is quadratic O(N2) w.r.t. the number of unknowns N := #(X). We thus propose
an adaptive strategy to select only the active constraints, without even enumerating them
all. Our approach is based on a hierarchical family of sub- and super-cones of Conv(X),
and by Theorem 7.4.2 below only O(N lnN) constraints need to be considered in average.

Before entering the details of our approach, we need to mentions alternative strategies
for discretizing the constraint of convexity.

• (Global constraint methods) The functional of interest, suitably discretized, is min-
imized over the cone Conv(X) of discrete convex functions [CLRM01], or alterna-
tively [EMB10] on the augmented cone

GradConv(X) := {(U|X ,∇U|X); U ∈ Conv(Ω)}, (7.4)

in which we refer by ∇U to arbitrary elements of the subgradient of the convex map
U .

Both Conv(X) and GradConv(X) are characterized by a family of long range linear
inequalities, with domain wide supports, and of quadratic O(N2) cardinality, see

2Contrary to [FT07], we do not require our discrete convex functions to take integer values.
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§7.2 and [EMB10]. Despite rather general convergence results, these two methods
are limited by their expensive numerical cost, in terms of both computation time
and memory.

• (Local constraints methods) Another cone Conv′(X) is introduced, usually satisfy-
ing neither Conv(X) ⊆ Conv′(X) nor Conv′(X) ⊆ Conv(X), but typically char-
acterized by relatively few constraints, with short range supports. Oberman et al.
[OF11, Obe13] use O(N) linear constraints. Merigot et al. [MO14] use slightly more
linear constraints, but provide an efficient optimization algorithm based on proximal
operators. Aguilera et al. [AM08, AM09] consider O(N) constraints of semi-definite
type.

The methods [AM08, AM09, MO14] benefit from convergence guarantees as N →
∞. Those tested numerically [AM08, OF11, Obe13], however show a lesser accuracy,
for a given grid scale, than methods based on global constraints, see the numerical
experiments in [Mir16a].

Recently interior approximations using convex P2 finite elements have been con-
sidered [Wac17]. This method requires the domain to be triangulated using a De-
launay mesh obeying a quantitative non-degeneracy property [BDG13]. While this
approach is appealing from the theoretical standpoint, the numerical experiments
resented in [Wac17] are somewhat puzzling: for instance, using adaptive meshes un-
explicably degrades the solution accuracy, and the use of a Taylor made constrained
optimization solver seems required for the method to work at its best.

• (Geometric methods) A polygonal convex set can be described as the convex hull
of a finite set of points, or as an intersection of half-spaces. Geometric methods
approximate a convex function U by representing its epigraph {(z, t); z ∈ Ω, t ≥
U(z)} under one of these forms. Energy minimization is done by adjusting the
points position, or the coefficients of the affine forms defining the half-spaces, see
[Wac14, LRO05].

Merigot and the author also considered implementing convexity by enforcing, through
a logarithmic penalization term, the subgradient measures (|∂xu|)x∈X to remain
strictly positive, where u : X → R. Some (unpublished) results of these experi-
ments are presented on Figures 7.3 and 7.4.

7.2 Convexity constraints on the cartesian grid.
In this paragraph, we describe the minimal collection of linear constraints characterizing
the polytope Conv(X), when X is a cartesian grid. The results presented here are proved
in [Mir16a]. Given a compact and convex domain Ω ⊆ R2, denote X the grid of integer
points, by Xh the grid of scale h, and by Xθ,ξ

h the scaled, rotated and offsetted grid defined
as follows

X := Ω ∩ Z2, Xh := Ω ∩ hZ2, Xθ,ξ
h := Ω ∩ hRθ(ξ + Z2).
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Figure 7.3 – Numerical experiments based on a distinct, geometrical method, with Q.
Merigot. Solution to the principal agent problem, color coded, on a disk (I) or a triangular
(III) domain, instead of a square as in Figure 7.1. Corresponding product line (II and
IV), which is the gradient of the solution.

Figure 7.4 – Numerical experiments based on a distinct, geometrical method, with Q.
Merigot. (I) Product line (gradient of the solution) for the principal agent problem posed
on the three dimensional domain [1, 2]3. (II and III) Numerical solutions to Meissner’s
problem [KW11]. The optimal shapes are conjectured to be tetrahedron-like bodies with
some rounded and some angular edges.
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Figure 7.5 – The supports, and weights, of the different linear forms Sex, T ex , P e
x .

In order to describe our results, we need to introduce an arithmetic structure related to
the Stern-Brocot tree3, see §A.1.3 and [Bro62].

Definition 7.2.1. A basis (f ,g) of Z2 is said direct iff det(f ,g) = 1, and acute iff
〈f ,g〉 ≥ 0. A vector e ∈ Z2 is said irreducible iff its coordinates are co-prime.

Proposition 7.2.2. The map (f ,g) 7→ e := f + g defines a bijection between direct acute
bases (f ,g) of Z2, and irreducible elements e ∈ Z2 such that ‖e‖ > 1. The elements f ,g
are called the parents of e. (Unit vectors have no parents.)

We next introduce a family of linear constraints, illustrated in Figure 7.5, and ap-
plicable to functions defined on the grid Z2. The geometrical shape of their support is
emphasized, since it plays an important role in our approach, see Figure 7.7.

Definition 7.2.3. For each x ∈ Z2 and u ∈ Z2 → R define

1. (Segments) For any irreducible e ∈ Z2:

Se
x(u) := u(x + e)− 2u(x) + u(x− e).

2. (Triangles) For any irreducible e ∈ Z2, with ‖e‖ > 1, of parents f ,g:

T e
x (u) := u(x + e) + u(x− f) + u(x− g)− 3u(x).

3. (Parallelograms) For any irreducible e ∈ Z2, with ‖e‖ > 1, of parents f, g:

P e
x (u) := u(x + e)− u(x + f)− u(x + g) + u(x).

A linear form L among the above can be regarded as a finite weighted sum of Dirac masses.
In this sense we define the support supp(L) ⊆ Z2, # supp(L) ∈ {3, 4}. The linear form
L is also applicable to any u : X → R such that supp(L) ⊆ X.

Correcting a result of [CLRM01], we obtain a minimal characterization of Conv(X) by
linear inequalities. As announced, there are O(N2) such constraints, where N = #(X).
This is because the irreducible vectors involved in their definition are not rare. In fact,
they have positive density in Z2

6

π2
= lim

n→∞
n−2#

{
(i, j) ∈ {1, · · · , n}2; gcd(i, j) = 1

}
.

This large number of constraints, quadratic in the number of unknowns, motivates the
introduction of sub-cones of Conv(X) in the next section.

3In order to match the classical description [Niq07], associate to each irreducible vector e = (α, β) ∈ Z2
+

the ratio α/β ∈ Q. In order to match the description of Proposition A.1.11, associate to e the pair (f ,g)
of its parents, see Proposition 7.2.2.
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Figure 7.6 – Left: a maximal stencil at a point of a domain. Center: some minimal
stencils. Right: some adaptively generated stencils used in the numerical resolution of
(7.1).

Theorem 7.2.4. The cone Conv(X), where X := Ω∩Z2, is a convex polytope. Elements
u ∈ Conv(X) are characterized by the following minimal4 set of linear inequalities: Se

xu ≥
0 and T e

xu ≥ 0 whenever these are supported on X, where x, e ∈ Z2 are as in Definition
7.2.3.

7.3 Hierarchical cones of discrete convex functions
We introduce in this section the notion of stencils V = (V(x))x∈X on X, and discuss
the properties (hierarchy, complexity) of cones Conv(V) attached to them. The following
family Vmax of sets is referred to as the “maximal stencils”: for all x ∈ X

Vmax(x) := {e ∈ Z2 irreducible; x + e ∈ X}. (7.5)

The convex cone generated by a subset A of a vector space is denoted by Cone(A), with
the convention Cone(∅) = {0}.

Definition 7.3.1. A family V of stencils on X (or just: “Stencils on X”) is the data, for
each x ∈ X of a collection V(x) ⊆ Vmax(x) (the stencil at x) of irreducible elements of
Z2, satisfying the following properties:

• (Stability) Any parent f ∈ Vmax(x), of any e ∈ V(x), satisfies f ∈ V(x).

• (Visibility) One has Cone(V(x)) = Cone(Vmax(x)).

The set of candidates for refinement V̂(x) consists of all elements e ∈ Vmax(x) \ V(x)
which two parents f ,g belong to V(x).

In other words, a stencil V(x) at a point x ∈ X contains the parents of its members
whenever possible (Stability), and covers all possible directions (Visibility). By construc-
tion, these properties are still satisfied by the refined stencil V(x)∪{e}, for any candidate
for refinement e ∈ V̂(x).

4Up to the duplicate constraints Se
x = S−ex .
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Definition 7.3.2. To each family V of stencils on X we associate a cone Conv(V) ⊆
F(X), characterized by the non-negativity of the following linear forms: for all x ∈ X

1. Se
x, for all e ∈ V(x) such that supp(Se

x) ⊆ X.

2. T e
x for all e ∈ V(x), with ‖e‖ > 1, such that supp(T e

x ) ⊆ X.

3. P e
x for all e ∈ V̂(x) (by construction supp(P e

x ) ⊆ X).

When discussing unions, intersections, and cardinalities, we (abusively) identify a
family V of stencils on X with a subset of X × Z2:

V ≈ {(x, e); x ∈ X, e ∈ V(x)}. (7.6)

Note that the cone Conv(V) is defined by at most 3#(V) linear inequalities. The sets
Vmax are clearly stencils on X, which are maximal for inclusion, and by Theorem 7.2.4 we
have Conv(Vmax) = Conv(X). The cone Conv(V) always contains the quadratic function
q(x) := 1

2
‖x‖2, for any family V of stencils. Indeed, the inequalities Se

x(q) ≥ 0, x ∈ X,
e ∈ V(x), and T e

x (q) ≥ 0, ‖e‖ > 1, hold by convexity of q. In addition for all e ∈ V̂(x),
of parents f ,g, one has

P e
x (q) =

1

2

(
‖x + f + g‖2 − ‖x + f‖2 − ‖x + g‖2 + ‖x‖2

)
= 〈f ,g〉 ≥ 0,

since the basis (f ,g) of Z2 is acute by definition, see Proposition 7.2.2. There is an
elegant relation between cones of convex functions associated to our stencils V , and to
triangulations T , see [Mir16a] for a proof. Whenever Conv(V) has non-empty interior,

Conv(V) =
⋃
T ⊆V

Conv(T ). (7.7)

where the inclusion T ⊆ V is meant in the sense of graphs, i.e. any edge [x,x + e] of
T satisfies e ∈ V(x). Stencils can thus be regarded as a relaxation of triangulations. In
light of (7.7), the following result is not surprising.

Theorem 7.3.3 (Hierarchy). The union V∪V ′, and the intersection V∩V ′ of two families
V ,V ′ of stencils are also families of stencils on X. In addition

Conv(V) ∩ Conv(V ′) = Conv(V ∩ V ′), (7.8)
Conv(V) ∪ Conv(V ′) ⊆ Conv(V ∪ V ′). (7.9)

As a result, if two families of stencils V ,V ′ satisfy V ⊆ V ′, then

Conv(V) ⊆ Conv(V ′) ⊆ Conv(X).

The left inclusion follows from (7.8), and the right inclusion from (7.9) applied to V ′ and
Vmax. The intersection rule (7.8) also implies the existence of stencils Vmin minimal for
inclusion, which are illustrated on Figure 7.6. Elements of proof of Theorem 7.3.3 are
illustrated on Figure 7.7.
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Figure 7.7 – The linear forms Sez , T ez and P e
z can be regarded as weighted sums of Diracs,

located at grid points. The hierarchical properties presented in Theorem 7.3.3 follow
from the ability to build long range constraints by combining together several short range
constraints, as illustrated in the above figure.

Remark 7.3.4 (Optimization strategy). For any u ∈ Conv(X), there exists by (7.8) a
unique smallest (for inclusion) family of stencils V such that u ∈ Conv(V). If u is the
minimizer of an energy E on Conv(X), then it can be recovered by minimizing E on the
smaller cone Conv(V), defined by O(#(V)) linear constraints. Algorithms presented in
[Mir16a], attempt to find these smallest stencils V (or slightly larger ones), starting from
Vmin and successively incorporating refinement candidates.

7.4 Cardinality of the minimal stencils
In this last section, we fix a grid scale h > 0 and consider for all θ ∈ R, and all ξ ∈ R2,
the grid

Xξ
θ := Ω ∩ hRθ(ξ + Z2). (7.10)

The notions of stencils and of the related cones trivially extend to this setting. We denote
by |Ω| the domain area, and by diam(Ω) := max{‖y − x‖; x, y ∈ Ω} its diameter. We
also introduce rescaled variants, defined for h > 0 by

|Ω|h := h−2|Ω|, diamh(Ω) := h−1 diam(Ω).

For any parameters θ, ξ, one has denoting N := #(Xξ
θ ) (with underlying constants de-

pending only on the shape of Ω)

|Ω|h ≈ N, diamh(Ω) ≈
√
N. (7.11)

Proposition 7.4.1. Let X := Xξ
θ , for some grid position parameters θ ∈ R, ξ ∈ R2,

and let N := #(X). Let u ∈ Conv(X), and let V be the minimal stencils on X such
that u ∈ Conv(V). Then #(V) ≤ CN diamh(Ω), for some universal constant C (i.e.
independent of Ω, h, θ, ξ, u).

Combining this result with (7.11) we see that an optimization strategy as described
in Remark 7.3.4 should heuristically not require solving optimization problems subject to
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more than N diamh(Ω) ≈ N
3
2 linear constraints. This is already a significant improvement

over the ≈ N2 linear constraints defining Conv(X). The typical situation is however even
more favorable: in average over randomized grid orientations θ and offsets ξ, the restriction
to Xξ

θ of a convex map U : Ω → R (e.g. the global continuous solution of the problem
(7.1) of interest) belongs to a cone Conv(Vξθ ) defined by a quasi-linear number O(N ln2N)
of linear inequalities. See [Mir16a] for the proof, which is based on elements of convex
analysis, and on the structure of the Stern-Brocot tree.

Theorem 7.4.2. Let U ∈ Conv(Ω), and let Vξθ be the minimal stencils on Xξ
θ such that

U|Xξ
θ
∈ Conv(Vξθ ), for all θ ∈ R, ξ ∈ R2. Assuming diamh(Ω) ≥ 2, one has for some

universal constant C (i.e. independent of h,Ω, U):∫
[0,1]2

∫ π/2

0

#(Vξθ ) dθ dξ ≤ C |Ω|h (ln diamh(Ω))2. (7.12)

Finally, we briefly discuss algorithmic geometry concepts known as the edge flipping
procedure, and regular/generalized Delaunay triangulations. Consider U ∈ Conv(Ω),
and a finite point set X ⊆ Ω. Generically, there exists a unique triangulation T (U)
such that the interpolation IT (U) U is convex. Such triangulations are referred to as
regular triangulations in CGAL R©, and are at the foundation of the so-called semi-discrete
methods for Monge-Ampere equations and optimal transport [OP89, AHA98, Mer11].
They generalize Delaunay triangulations, which corresponds to the special case U(x) :=
1
2
‖x‖2.
Edge flipping is a local modification of a triangulation, in which the common side of

two triangles forming a convex quadrilateral Q is removed from the triangulation, and
replaced with the other diagonal of Q. For any two triangulations of a common point set,
there exists a sequence of edge flips which transforms one into the other, and the minimal
length of such a chain is called the edge flipping distance between the triangulations.
Edge flipping is a common procedure in mesh generation, used in diverse domains such
as fluid dynamics simulations [DF08], or GPU accelerated image vectorization [QCT13].
Little is known however on its complexity from the theoretical standpoint, apart from
some conservative worst case estimates [HNU99].

We show in [Mir16a] that the edge flipping distance from the usual Delaunay triangu-
lation of X to any regular triangulation T (U) is at most the stencil cardinality #(V(U)).
Proposition 7.4.1 and Theorem 7.4.2 can thus be regarded as respectively a worst case and
an average case complexity estimate of mesh generation by edge flipping, in the particu-
lar case of regular triangulations and of cartesian grids. The mean estimate O(N ln2N),
under rotations and translations of the grid, is the first of its kind for this algorithm.
Recall that N is the discrete domain cardinality, and note that the worst case complexity
is O(N

3
2 ).

122



Part III

Appendix

123



Appendix A

Geometry of lattices
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This appendix is devoted to the description of a series of tools from discrete geometry,
which are at the foundation of the numerical schemes presented in this dissertation. More
precisely, these tools come from the field of low dimensional lattice geometry, and are
described in particular in [Sch09, CS92, NS04]. Two contributions of the author are also
presented, see Theorem A.1.5 and Proposition A.2.2.

A lattice is a discrete subgroup of a vector space, which linearly spans the vector
space. Up to a linear transformation, the lattice and the vector space can be identified
with Ld := Zd and Ed := Rd. A matrix M ∈ S++(Ed) is fixed throughout this appendix
and defines a scalar product 〈M ·, ·〉 and a norm ‖ · ‖M . The distortion of this norm w.r.t.
the usual euclidean norm on the vector space Ed is measured by the condition number
Cond(M) :=

√
‖M‖‖M−1‖.

The first section §A.1 of this appendix is devoted to the characterization and design
of preferred coordinate systems in lattices of low dimension, using a variety of concepts
such as Minkowski reduction, Selling’s algorithm, and the Stern-Brocot tree. The second
section A.2 describes the two Voronoi reductions of quadratic forms, which are maps from
the set of positive definite tensors S++(Ed) to a suitable discrete set, and are designed
to be compatible with the action of the linear group GL(Ld). All the tools described
have substantial applications in several parts of the dissertation, to which pointers are
provided.
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Figure A.1 – Left: M -Minkowski reduced bases of Z2 and Z3, w.r.t. some M ∈ S++(Ed)
whose unit ball is presented. Right: M -obtuse superbase of Z2, see §A.1.2, before and
after change of variables by M
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A.1 Basis reduction methods
Lattice basis reduction is study of coordinate systems, in additive lattices within a normed
vector space, obeying preferred geometrical properties. Some of the most iconic applica-
tions of this field are related to high dimensional lattices and the celebrated LLL algorithm
[LLL82]. It has applications in number theory, cryptography, operational research, etc
[NV09].

In view of our applications to PDE discretizations, we focus in contrast on low-
dimensional basis reduction. Indeed, the dimension d of the lattice is also the dimension
of the PDE domain, which is typically d ∈ {2, 3} and in the worst case d = 5 for our
applications. Cartesian grids are not regarded as adequate for PDE discretizations in
higher dimensions, due to the curse of dimension.

We discuss Minkowski reduced bases, which are built of small vectors w.r.t. the norm
‖ · ‖M , in §A.1.1. Obtuse superbases, and the related algorithm of Selling, are presented
in §A.1.2. The Stern-Brocot tree, discussed in §A.1.3, places a hierarchical structure on
bases of Z2.

A.1.1 Minkowski reduction

A basis of a d-dimensional lattice is a d-plet of lattice vectors which determinant is non-
zero and minimal in absolute value. Formally, and limiting our attention to the integer
lattice.

Definition A.1.1. A basis of Ld is a d-plet (e1, · · · , ed) ∈ Ldd s.t. | det(e1, · · · , ed)| = 1.

Any lattice of dimension d ≥ 2 admits countably infinitely many bases. Geometrical
problems posed on lattices are usually defined w.r.t. a given norm - for instance computing
the shortest non-zero lattice vector, or the closest lattice vector to a given point. In order
to solve these, a natural first step is to select a lattice basis which is “reduced” w.r.t.
the norm, in the sense that its vectors are small, and/or are close to being orthogonal to
each other. Formally, a number of notions of reductions have been introduced, by several
authors and over more than a century: Hermite (1850), Minkowski (1896), Hermite-
Korkine-Zolotarev (1905), Venkov (1972), Lenstra-Lenstra-Lovász (1982), etc. See [NS04]
and references therein. We limit here our attention to Minkowski reduction.
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Figure A.2 – Plots of Rκ(θ) (left) and Sκ(θ) (right), for κ ∈ {10, 50}, as a function of
θ ∈ [0, π/2], see Definition A.1.4. Logarithmic scale.

Definition A.1.2. Let M ∈ S++(Ed) be fixed. A basis (e1, · · · , ed) of Ld is said M-
Minkowski reduced iff the vector (‖e1‖M , · · · , ‖ed‖M) is minimal, among all bases of Ld,
w.r.t. lexicographic ordering.

For instance, if (e1, · · · , ed) is M -Minkowski reduced, then ‖e1‖M ≤ · · · ≤ ‖e‖M , and
e1 is the shortest non-zero vector of Ld w.r.t. ‖ · ‖M . See also Figure A.1.

Algorithmically, an M -Minkowski reduced basis can be computed in dimension d = 2
using Lagrange’s algorithm [Lag75], which has logarithmic complexity O(ln(Cond(M)))
and can be regarded as a the transposition to vectors of Euclid’s gcd algorithm. This
algorithm is extended in [NS04] to compute Minkowski-reduced bases of three and four
dimensional lattices, still with logarithmic complexity. Note that we benefit here from
the favorable properties of low-dimensional lattices, since computing even the first vector
of a Minkowski-reduced basis (i.e. the shortest lattice non-zero vector), is in contrast a
NP-hard problem in high dimensions [Ajt98], to the point that it is used at the foundation
of some cryptographic protocols [Pei09].

The author’s contribution has been to determine, in dimension d = 2, the average
radius ofM -Minkowski reduced bases, whenM is a random rotation of a given symmetric
positive definite matrix, see Theorem A.1.5 below which is proved in [Mir16b]. Our
motivation was to estimate how compact are the stencils used in our PDE schemes, in
average, assuming that the preferred directions of the differential operators (encoded for
instance in a Riemannian metric) are independent of those of the cartesian grid used for
discretization. These results apply to the FM-LBR and the AD-LBR numerical schemes,
devoted respectively to Riemannian eikonal PDEs and anisotropic diffusion PDEs, and
described in §2.1 and §5 respectively.

Definition A.1.3. Let M ∈ S++(Ed), and let (e1, · · · , ed) be an M-Minkowski reduced
basis. We denote R(M) := ‖ed‖ and S(M) := ‖ed‖M .

Let n(θ) := (cos θ, sin θ), for any θ ∈ R, and let e⊥ := (−b, a) if e = (a, b) ∈ E2.

Definition A.1.4. In dimension d = 2 we let Rκ(θ) and Sκ(θ), where κ ≥ 1 and θ ∈ R
be the quantities of Definition A.1.3 attached to the matrix Mκ(θ) ∈ S++(E2) defined by

Mκ(θ) := κ−1n(θ)⊗ n(θ) + κn(θ)⊥ ⊗ n(θ)⊥.

Our main result, presented below, is illustrated on Figures A.2 and A.3. We write
A(κ) ≈ B(κ) iff the ratio A(κ)/B(κ) is bounded independently of κ.
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Theorem A.1.5. For any p ∈ [1,∞] one has uniformly w.r.t. κ ∈ [2,∞[

‖Rκ‖Lp ≈ ‖Sκ‖Lp , ‖Sκ‖Lp ≈


κ

1
2
− 1
p if p > 2,

(lnκ)
1
2 if p = 2,

1 if p < 2,

where the Lp norms are over the interval [0, π].

A.1.2 Selling’s algorithm

We discuss superbases, which are slightly redundant coordinate systems in a lattice, and
Selling’s algorithm, used in dimension d ≤ 3 to generate superbases obeying preferred
geometrical properties. Superbases can be obtained by the adjunction of an initial vector
e0 = −(e1 + · · ·+ ed) to a basis, see Definition A.1.1.

Definition A.1.6. A superbase of Ld is a (d + 1)-plet (e0, · · · , ed) ∈ Ld+1
d such that

e0 + · · ·+ ed = 0 and | det(e1, · · · , ed)| = 1.

In contrast with the numerous concepts of reduced basis of a lattice, see the previous
subsection, there is a consensus on what a good superbase is [CS92]. See also Figure A.1.

Definition A.1.7. A superbase (e0, · · · , ed) of Ld is said M-obtuse iff 〈Mei, ej〉 ≤ 0 for
all 0 ≤ i < j ≤ d.

Obtuse superbases have exceptional properties. The fundamental bricks of our dis-
cretization schemes, Voronoi’s first and second reduction of a matrix M are easily con-
structed from an M -obtuse superbase, see §A.2. For this reason, our numerical codes
implementing the FM-LBR, FM-VR1, and AD-LBR schemes for eikonal equations and
anisotropic diffusion, see §2.1, §3.1, and §5 respectively, compute as a preliminary step an
obtuse superbase with respect to the tensor attached to each pixel. However, for reasons
detailed in the next paragraph, this strategy is only appropriate in dimension d ≤ 3.

A lattice equipped with a scalar product, such as (Ld,M), is said of Voronoi’s first
kind iff there exists an M -obtuse superbase of Ld. This property does systematically hold
in dimension d ≤ 3, but fails for some lattices of dimension d = 4 and higher [NS04].
The proof of existence in dimension d ≤ 3 is constructive and due to Selling [Sel74], see
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also [Mir17b]. It is based on the decrease of the following energy, defined w.r.t. a matrix
M ∈ S++(Ed) and attached to any superbase b = (e0, · · · , ed)

EM(b) :=
1

2d

∑
I⊆J0,dK

‖eI‖2
M , where eI :=

∑
i∈I

ei.

Proposition A.1.8 (Selling’s algorithm). Let M ∈ S++(Ed), where d ∈ {2, 3}, and let
b = (e0, · · · , ed) be a superbase of Ld. Define a second superbase b′ of Ld by:

Case d = 2 : b′ := (−e0, e1, e0 − e1). Case d = 3 : b′ := (−e0, e1, e0 + e2, e0 + e3).

Then EM(b)−EM(b′) = 22−d〈e0, e1〉M . Selling’s algorithm consists in iteratively, and until
b is an M-obtuse superbase: (a) reordering the superbase b so that 〈e0, e1〉M > 0, and (b)
applying the transformation b← b′.

This algorithm terminates, and in particular there exists an M-obtuse superbase of Ld.

Selling’s algorithm can also be regarded as a specialization of the simplex algorithm
to the linear program defining Voronoi’s first reduction, see §A.2.1 and [Mir17b]. It is
straightforward to implement, and sufficient for the moderate condition numbers Cond(M)
encountered in PDE discretizations. Alternatively, in dimension d ≤ 3, an M -obtuse su-
perbase of Ld can be obtained in a single step from an M -Minkowski reduced basis, see
e.g. Proposition 1 in [FM14]. The complexity O(ln Cond(M)) of this second approach
makes it preferable in applications involving tensors of huge condition number, such as
integer programming.

A.1.3 The Stern-Brocot tree

A third type of coordinate system is considered in this subsection: direct and acute bases of
the two dimensional lattice L2. We regard them as delimiting angular sectors originating
from 0, by integral vectors. A refinement procedure allows to split these angular sectors
into two (unequal) parts, in a way that is compatible with the underlying grid structure.

This process is appropriate for discretizing two-dimensional anisotropic PDEs on carte-
sian grids, and was initially proposed for anisotropic diffusion in [BOZ04]. It is also used
within the FM-ASR numerical scheme for Finslerian eikonal equations §2.2, and the im-
plementations of the Monge-Ampere operator and of the constraint of convexity §6 and
§7.

Definition A.1.9. A basis (e1, e2) of L2 is said direct iff det(e1, e2) = 1. It is said acute
iff 〈e1, e2〉 ≥ 0.

Definition A.1.10. The children of a direct and acute basis (e1, e2) are (e1, e1 +e2) and
(e1 + e2, e2). They are also direct and acute bases.

The Stern-Brocot tree, described in the next proposition, organises direct and acute
bases into a hierarchical structure, using the relation of the latest definition.
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Proposition A.1.11. Let T be the collection of all direct and acute bases of L2, and
let T+ be the subset of those which coordinates are non-negative. Then T+ is a complete
infinite binary tree, referred to as the Stern-Brocot tree, whose root is the canonical basis
(e1, e2) where e1 = (1, 0) and e2 = (0, 1).

In addition T consists of four disconnected infinite binary trees, whose roots are
(e1, e2), (e2,−e1), (−e1,−e2) and (−e2, e1) respectively.

Our description of the Stern-Brocot tree is slightly unorthodox, since it is classically
described as a tree of rational numbers [Niq07]. To match this convention one should map
each basis b = (e1, e2) = ((a, b), (a′, b′)) ∈ T+ to the rational number (a+ a′)/(b+ b′). See
Figure 1.3.

A.2 Voronoi reductions of quadratic forms
This section is devoted to the description of Voronoi’s first and second reduction, see
§A.2.1 and §A.2.2 respectively. We use these constructions in many of our numerical
schemes: the first reduction is used for Riemannian eikonal equations and generalizations
(FM-VR1) §3.2, anisotropic diffusion (AD-LBR) §5, and non-linear second order equations
(MA-LBR) §6; the second reduction in a semi-Lagrangian scheme for Riemannian eikonal
equations (FM-LBR) §2.1. It can be argued however, that we use only by-products of
Voronoi’s constructions. The rest of this introduction briefly explains the original inten-
tions of Voronoi, as far as we understand them, and the meaning of the word reduction,
see §[Sch09] for more details. The impatient reader may directly jump to §A.2.1.

The arithmetic properties of quadratic forms have long fascinated mathematicians:
consider for instance Lagrange’s celebrated four squares theorem, which expresses that
any integer n ≥ 0 can be written under the form a2 + b2 + c2 + d2. There are infinitely
many distinct quadratic forms, but many of them share the same arithmetic properties.
For instance Lagrange proved that any positive quadratic form of determinant 1 with
integer coefficients is equivalent to (a, b) 7→ a2 + b2, up to an invertible linear change of
variables with integer coefficients as well, and thus takes the integer values described in
Fermat’s two squares theorem.

Lagrange similarly classified the two dimensional positive definite quadratic forms with
integer coefficients and determinant below 17, see [Lag75]. For that purpose he relied on
Lagrange’s algorithm1, which provides an algorithmic method for computing a canonical
basis of a two-dimensional lattice, that we now describe as Minkowski-reduced see §A.1.1.
This approach could later be extended to dimension up to 4, see [Sem01, NS04] but it
does not seem appropriate beyond [Sch09].

Voronoi’s reductions help with this classification effort [Sch09], by providing a canoni-
cal way to reduce an arbitraryM ∈ S++(Ed) quadratic form to a fundamental domain, see
Definition A.2.1 below, under the following action of linear changes of coordinates with
integer coefficients. For any M ∈ S++(Ed) and any A ∈ GL(Ld)

A ·M := AMAT. (A.1)
1Often incorrectly called Gauss’s algorithm, see [NS04].
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Definition A.2.1. Let G be a group acting on a set X. Consider the relation on X
defined by x ∼ x′ iff there exists g ∈ G such that x′ = g · x. A fundamental domain,
for the action of G on X, is a subset A ⊆ X containing exactly one element of each
equivalence class.

In order to compute such fundamental domains, Voronoi introduces mappings from
S++(Ed) into some discrete spaces, which are compatible with the action of GL(Ld). These
spaces consist of countable families, perfect forms or Delaunay triangulations defined
below, and have a finitely many equivalence classes under the action of GL(Ld). In other
words, a suitably chosen finite set defines a fundamental domain for the target space.
Taking the pre-image we obtain a (superset of a) fundamental domain for the action of
GL(Ld) on S++(Ed).

A.2.1 Perfect forms and the first reduction

Consider the set of quadratic forms with value at least 1 on each non-zero vector with
integer coordinates

M := {M ∈ S++(Ed); ∀e ∈ Ld \ {0}, ‖e‖M ≥ 1}.

Observing that ‖e‖2
M = 〈Me, e〉 = Tr(Me ⊗ e) is a linear function of M , and that

the positive-definiteness constraint is redundant, we obtain that M is a polytope of the
d(d+ 1)/2-dimensional space S++(Ed). Voronoi calls perfect forms the vertices of M, and
proves that there are only finitely many distinct classes of perfect forms under the action
of GL(Ed). The exact number of equivalence classes is 1, 1, 2, 3, 7, 33, 10916 in dimension
two to eight, where the known classification ends [Sch09]. Voronoi associates to each
D ∈ S++(Ed) a perfect form defined as the minimizer to the linear program

min
M∈M

Tr(MD). (A.2)

This optimization problem is well posed in the sense that it has a compact set of min-
imizers, which is generically a single vertex of M, hence a perfect form [Sch09]. De-
noting this minimizer by VR(D), one easily checks compatibility with the group action:
VR(A ·D) = (A−1)T · VR(D), for any A ∈ GL(Ld), using the notation (A.1). See Figure
A.4 for a partition of the collection of two-dimensional positive definite quadratic forms
according to VR. Interestingly, Voronoi’s first reduction (A.2) is one of the first non-trivial
linear programs ever studied [Vor08], in arbitrary dimension and with infinitely many con-
straints. In particular, it precedes by three decades Kantorovich’s linear relaxation of the
optimal transport problem [Kan42].

The Karush-Kuhn-Tucker conditions for the linear program (A.2) state that the ob-
jective function M 7→ Tr(MD) is a non-negatively weighted linear combination of the
active constraints M 7→ Tr(Me ⊗ e). Hence there exists weights and offsets (ρi, ei)

d′
i=1 ∈

(R+ × Ld)d
′ , obeying ‖ei‖M = 1 and where d′ = dim(S(Ed)) = d(d+ 1)/2, such that

D =
∑

1≤i≤d′
ρiei ⊗ ei,
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Figure A.4 – I-II. Matrices M ∈ S++(R2) such that det(M) = 1 partitioned according
to Voronoi’s first reduction. I: Parametrization by condition number κ and eigenvector’s
orientation θ, see Definition A.1.4. II: Natural parametrization by Poincaré’s disk [Sch09].
III: Classification of two dimensional positive quadratic forms with integer entries, by
Lagrange [Lag75].

as announced in the general introduction of the dissertation. The following result esti-
mates the size of the vectors ei ∈ Ld, which dictates the size of the stencil of our PDE
discretization schemes. It scales linearly with the condition number of D, in dimension
d ≤ 3. In two dimensions, the average case estimates of Theorem A.1.5 also apply, be-
cause one can turn a Minkowski reduced basis into an obtuse superbase, and then into a
solution to Voronoi’s first reduction, see the end of this subsection.

Proposition A.2.2. The offsets (ei)
d′
i=1 associated with the active constraints for Voronoi’s

first reduction (A.2) of D ∈ S++(Ed) obey ‖ei‖ ≤ C Cond(D)d−1, where C is an absolute
constant. In dimension d = 3 one can show the improved estimate ‖ei‖ ≤ C Cond(D).

The first estimate of Proposition A.2.2 follows from the finiteness of equivalence classes
of perfect forms, see [Mir17a]. It is sub-optimal for d = 3, and presumably also for d > 3.
The second estimate, which proof is more involved, is an original result of the author, to
our knowledge, presented in [Mir17b].

We end this subsection by outlining the connection of Voronoi’s first reduction with
the concept of obtuse superbase, defined in §A.1.2. More precisely, if (e0, · · · , ed) is a D-
obtuse superbase, then the minimizerM to (A.2) and the KKT conditions are respectively

M =
1

2d

∑
I⊆J0,dK

eI ⊗ eI , D =
∑

0≤i<j≤d

λijvij ⊗ vij, (A.3)

where eI :=
∑

i∈I ei, λij := −〈ei, Dej〉, and the offsets are defined by the linear relations
〈vij, ek〉 = δik − δjk. See [Mir17b] for a proof, and [CS92] or Appendix B of [BK10] for
more discussion.

A.2.2 Voronoi diagrams and the second reduction

The Voronoi diagram, of a discrete set Z ⊆ Ed of sites, collects the region closest to each
given site. We measure distances using the ‖ · ‖M norm, where M ∈ S++(Ed) is a given
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Figure A.5 – Illustration of the concept of Voronoi diagram (left), and dual Delaunay
triangulation (right). (The presented diagram generalized in the sense of [LS03]. In
contrast, region boundaries are straight for a standard Voronoi diagram.) Images from
[FM14].

matrix. For all p ∈ Z,

VorZM(p) := {x ∈ Ed; p ∈ argmin
q∈Z

‖x− q‖2
M}.

Note that one may assume M = Id, as is commonly done, up to a linear change of
coordinates. Voronoi diagrams have numerous generalizations, and many more uses
[ES86]. Generalized Voronoi diagrams include Laguerre diagrams (used in so-called
semi-discrete numerical schemes for Monge-Ampere equations and optimal transport
[OP89, AHA98]), Appolonius diagrams, Riemannian diagrams (used for anisotropic mesh
generation [LS03, BPC09]), etc. See also Figure A.5.

The Delaunay triangulation DelZM contains all simplices, of arbitrary dimension k,
which Voronoi regions intersect

{p0, · · · ,pk} ∈ DelZM ⇔ VorZM(p0) ∩ · · · ∩ VorZM(pd) 6= ∅.

Under generic assumptions, e.g. that no k + 1 points of X belong to a common k − 1
dimensional affine space, the Delaunay triangulation is a valid triangulation of Hull(Z).
This triangulation is, again, a fundamental tool in discrete geometry, with numerous
generalizations which are the subject of ongoing research, see e.g. [LS03, BWY15].

Voronoi’s second reduction associates to each M ∈ S++(Ed) the Delaunay triangula-
tion Del(M) := DelLdM of the periodic point set Ld, computed with respect to the metric
‖ · ‖M . This triangulation is well defined for almost every M ∈ S++(Ed), and it has spe-
cific geometrical properties that make it suitable for the discretization of semi-Lagrangian
Riemannian equations, see Lemma 2.1.2 in §2.1. One easily checks the co-variance prop-
erty Del(A ·M) = (A−1)T · Del(M), where A ∈ GLd(M). The linear group here acts by
congruence (A.1) on S++(Ed), and by linear change of coordinates on the triangulation.

Voronoi proved that there are only finitely many distinct classes of triangulations
Del(M) up to linear changes of coordinates in GL(Ld). In fact, there is only one such
class in dimension d ≤ 3. (There are also 3 classes in dimension 4, and 222 classes in
dimension 5, and the known classification stops there at the time of writing [Sch09].)

Finally, the knowledge of an M -obtuse superbase (e0, · · · , ed) of Ld (if one exists),
allows to construct the related Delaunay triangulation in a simple and efficient manner,
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Figure A.6 – Left: Construction of the Delaunay triangulation Del(M) from anM -obtuse
superbase (e0, · · · , ed), where M ∈ S++(Ed), in dimension d = 2 and d = 3 (simplices
containing the origin shown). Right: Unit ball {x ∈ E3; ‖e‖M ≤ 1} and neighborhood of
the origin in Del(M), for some M ∈ S++(E3).

see [CS92] and Figure A.6. For instance, the (d+ 1)! simplices of Del(M) containing the
origin are

{vϕ0 , · · · ,v
ϕ
d }, where vϕi :=

∑
0≤j<i

eϕ(j),

and where ϕ is an arbitrary permutation of J0, dK. This construction is used in our
numerical implementation [Mir15a] of the FM-LBR numerical scheme in dimension d ≤ 3,
see §2.1. The superbase itself is obtained via Selling’s algorithm, see §A.1.2.
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Appendix B

The fast marching algorithm

Contents
B.1 Fixed point formulation . . . . . . . . . . . . . . . . . . . . . . . 136

B.2 Systems of equations . . . . . . . . . . . . . . . . . . . . . . . . 137

This appendix describes the Fast-Marching algorithm [Tsi95, RT92], which can be
regarded as a generalization of Dijkstra’s algorithm [Dij71]. This algorithm is far from
new, but it has several formulations and generalizations that we choose to put in light in
this appendix, in view of the applications in §2 and §3. We also discuss in this introduction
the limitations of this method, and its possible alternatives. The results presented in this
appendix are reformulations and sometimes generalizations of the literature. Proofs are
provided for completeness.

We make a distinction between two formulations of the fast marching algorithm, de-
signed to solve fixed point problems and systems of equations respectively. They are
naturally encountered in semi-Lagrangian discretizations of eikonal PDEs, see (2.2) in §2,
and Eulerian discretizations, see (3.4) in §3, respectively. The discretized systems read

ΛU = U, (resp. FU = 0). (B.1)

The unknown is a map U : X → R, defined on a finite set X, and the operator Λ : RX →
RX (resp. F) is given. The fast marching algorithm efficiently solves either form of the
system (B.1) in a single pass, with typically a quasi-linear complexity O(N lnN) in the
discrete domain cardinality N := #(X). For that purpose, it reconstructs at run-time the
ordering U(x1) ≤ U(x2) ≤ · · · ≤ U(xN) of the solution values, relying on a property of the
operator Λ (resp. F) referred to as causality. See also Figure B.1. Before focusing entirely
on the Fast-Marching algorithm, we review its two main limitations, and the alternative
equation solvers that have been proposed to address them.

• (Obeying the causality property.) As a fundamental assumption, the fast marching
algorithm requires the operator λ (resp. F) to obey the strong structural property
of causality, see Definitions B.1.1 and B.2.1 below respectively. Designing such a
discretization scheme, with reasonably small stencils, is highly non-trivial, see §2
and §3 or [SV03, Alt10]. It remains an open question in a number of cases of

134



x
¶VHxL

¶X

x y1

y2

¶VHxL

Figure B.1 – Illustration of the causality principle, in a semi-Lagrangian scheme. (Left)
The value ΛU(p) is defined in terms of a number of neighbors. (Center) Those “active”
obey U(q) < U(p). (Right) Global dependency graph, obeying U(p) > U(q) whenever
U(p) depends on U(q) (denoted p→ q). The Fast-Marching algorithm reconstructs the
ordering U(p0) ≤ · · ·U(pN) at run-time.

interest, such as e.g. Riemannian metrics on three dimensional meshed domains, or
Finslerian metrics on three dimensional cartesian grids, see §3.1.3.

Numerical methods such as Fast-Sweeping [TCO04], or Adaptive Gauss-Siedel It-
eration [BR06], do not require the operator to be causal. They are generalizations
of Bellman-Ford’s algorithm on graphs, instead of Dijkstra’s algorithm, and they
do not attempt to reconstruct on the fly the ordering of the solution values. Their
complexity is reportedly O(N1+ 1

d ), see [BR06], which is good enough for many ap-
plications. The hidden constant however depends on the geometry of the specific
problem instance, and is severely unfavorable in applications to image segmentation,
see §4.1.2.

• (Serial enumeration of the domain points.) A defining feature of the Fast-Marching
algorithm is that it iterates over the discrete domain according to the ordering of
the solution values, which is reconstructed at run time. This procedure is serial in
nature, which is a major limitation in the era of parallel computing. The issue of
parallelization was studied from the start [Tsi95], but remains an active subject of
research [CV15, Tug08], in particular for GPU architectures [WDB+08, JW08].

Notations. A finite set X is fixed in this appendix, and we denote U :=] −∞,∞]X .
Given U, V ∈ U , we write U ≤ V iff U(x) ≤ V (x) for all x ∈ X. For any U ∈ U , for any
threshold λ and any subset A ⊆ X, we let U<λ, U |A ∈ U be defined by

U<λ(x) :=

{
U(x) if U(x) < λ,

+∞ otherwise.
U |A(x) :=

{
U(x) if x ∈ A,
+∞ otherwise.

, (B.2)

for all p ∈ X. We define U≤λ ∈ U likewise.
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B.1 Fixed point formulation
This section describes the fast marching algorithm, as applied to semi-Lagrangian dis-
cretizations of optimal control problems, see §2. In this context, it acts as a solver of fixed
point systems ΛU = U , where U ∈ U :=] − ∞,∞]X is the unknown and Λ is a given
operator which mimics Bellman’s optimality principle (2.2). The quantity ΛU(x), where
x ∈ X, should be regarded as the estimated arrival time of a front at the point x ∈ X,
knowing the arrival times U(y) at its neighbors y ∈ X \ {x}.

Definition B.1.1. An operator on a finite set X is a map Λ : U → U , where U :=
]−∞,∞]X . The operator is said

• Monotone if for all U, V ∈ U one has: U ≤ V ⇒ ΛU ≤ ΛV .

• Causal if for all U, V ∈ U and all λ ∈]−∞,∞] one has:

U<λ = V <λ ⇒ (ΛU)≤λ = (ΛV )≤λ.

Monotony alone, plus mild assumptions, is sufficient to establish the existence of fixed
points of the operator Λ, which can be computed by sufficiently iterating Λ, see the next
proposition. There exists more efficient alternative solvers of the equation ΛU = U using
monotony only [BR06, Zha05].

Proposition B.1.2 (Gauss-Siedel iteration). Let Λ be a monotone operator on a finite
set X, which has a continuous restriction to RX . Assume that there exists U−, U+ ∈ RX

such that U− ≤ U+, ΛU− ≥ U− and ΛU+ ≤ U+. Then ΛnU+ converges as n→∞ to a
limit U ∈ RX such that U− ≤ U ≤ U+ and ΛU = U . (Likewise for ΛnU−.)

Proof. By monotony one has ΛU− ≤ ΛU+, hence U− ≤ ΛU− ≤ ΛU+ ≤ U+. By induction
ΛnU− ≤ Λn+1U− ≤ Λn+1U+ ≤ ΛnU+ for all n ≥ 0. The sequences (ΛnU−(x))n≥0 and
(ΛnU+(x))n≥0 are thus monotone and bounded, for any x ∈ X, hence converging to
limits denoted U−∞(x) and U+

∞(x) respectively. Then U− ≤ U−∞ ≤ U+
∞ ≤ U+ by the above

inequalities, and as announced U+
∞ = limn→∞ Λn+1U+ = Λ(limn→∞ ΛnU+) = ΛU+

∞ by
continuity of Λ (likewise for U−∞).

The next proposition presents an algorithm which, depending on the choice of operator
Λ, may be called Dijkstra’s algorithm, or the Fast Marching algorithm, or the Dynamic
programming principle. In terms of efficiency, it greatly improves upon Gauss-Siedel
iteration, but it requires in addition the operator to be causal.

Proposition B.1.3 (Fast marching). Let Λ be a monotone and causal operator, on a
finite set X of cardinality N . Let A0 := ∅, and U0 :≡ ∞ identically on X. For each
1 ≤ i ≤ N :

(a) Define Ui := ΛU
|Ai−1

i−1 . (This notation is defined in (B.2).)

(b) Define Ai := Ai−1 ∪ {xi}, where xi is an arbitrary minimizer of Ui on X \ Ai−1.

Then ΛUN = UN . In addition U |Aii+1 = U
|Ai
i for each 0 ≤ i ≤ N .
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Proof. Define λ0 := −∞, and λi := Ui(xi) for each 1 ≤ i ≤ N . Our first objective is to
establish by induction the property Pi: “U≤λii+1 = U≤λii and λi ≤ λi+1”, for each 0 ≤ i ≤ N .
Induction basis: both Uλ0

1 and Uλ0
0 are identically equal to +∞, and λ0 = −∞ can only

be less or equal than λ1, hence P0 holds.
For the induction, namely the proof of Pi+1, assuming Pj for all j ≤ i, our first step

is to show that (U
|Ai
i )<λi = (U

|Ai−1

i−1 )<λi . For that purpose, we consider x ∈ X, and
distinguish two cases:

• If x ∈ Ai−1, then x = xj for some j ≤ i − 1, hence Uj(x) = Uj(xj) = λj. By
induction one has λj ≤ λi−1, hence also U

≤λj
j = · · · = U

≤λj
i−1 = U

≤λj
i . Thus Ui−1(x) =

Ui(x) = λj, and therefore (U
|Ai
i )<λi(x) = (U

|Ai−1

i−1 )<λi(x) equals λj if λj < λi, or +∞
if λj = λi.

• If x /∈ Ai−1, then Ui(x) ≥ λi by definition of λi, thus (U
|Ai
i )<λi(x) = ∞ =

(U
|Ai−1

i−1 )<λi(x).

Having shown that (U
|Ai
i )<λi = (U

|Ai−1

i−1 )<λi we obtain U≤λii+1 = U≤λii , by step (a) of the
algorithm and causality of the operator Λ, as announced. Finally assuming for contra-
diction that λi+1 < λi, we obtain Ui(xi+1) = U≤λii (xi+1) = U≤λii+1 (xi+1) = λi+1 < λi. This
contradicts the definition of xi, as the minimizer of Ui on X \Ai−1 ⊆ X \Ai 3 xi+1, hence
concludes the proof of Pi+1 and the induction argument.

The above argument implies that Ui takes on Ai the values {λ1 ≤ · · · ≤ λi}. Hence
U
|Ai
i+1 = U

|Ai
i follows from U≤λii+1 = U≤λii . Choosing i = N and observing that AN = X

yields UN = UN+1 = ΛUN .

In summary, the fast marching algorithm finds an exact fixed point by applying the
operator Λ finitely many times, namely N times where N := #(X). The operator Λ is
applied successively to discrete maps U |Ai−1

i−1 and U |Aii which only differ at a single point xi
of the domain. In other words, the operator value ΛU(y) thus has to be recomputed (for
a cost regarded as unit) and inserted into a sorted list, for each point y ∈ X \Ai such that
ΛU(y) depends on U(xi). Overall, the complexity of this algorithm is thus O(M lnN)
using a standard heap structure for the sorted list (O(M+N lnN) using a Fibonacci heap),
where M is the cardinality of the dependency graph {(x,y); ΛU(y) depends on U(x)}.

B.2 Systems of equations
This section describes the Fast-Marching algorithm, as applied to eulerian discretizations
of eikonal equations, which take the form of a system of coupled and non-linear equa-
tions FU = 0. Similarly to the semi-Lagrangian case, the operator F needs to obey two
structural assumptions.

Definition B.2.1. A (finite differences) scheme on a finite set X is a continuous map
F : X × R× RX → R. The scheme is said:

• Monotone, iff F is non-decreasing w.r.t. the second and (each of the) third variables.
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• Causal, iff F only depends on the positive part of the third variable.

To the scheme is associated a function RX → RX still (abusively) denoted by F, and
defined for all x ∈ X and all U ∈ RX by

(FU)(x) := F(x, U(x), (U(x)− U(y))y∈X).

In order to solve the system FU = 0, we reformulate it as a fixed point problem ΛU =
U , and rely on the method of the previous section, see Proposition B.1.3. More precisely,
we associate to each scheme F an operator Λ : U → U defined for all U ∈ U :=]−∞,∞]X

and all x ∈ X by

ΛU(x) := sup{V (x); V ∈ RX , FV (x) ≤ 0, V ≤ U on X \ {x}}. (B.3)

For the numerical schemes F considered in this report, see §3, computing (B.3) amounts
to solving a (small number of) univariate quadratic equations.

Let us emphasize that the concepts of monotony and causality have different meanings
for the operator Λ and the scheme F, see Definitions B.1.1 and B.2.1 respectively. These
meanings are related by the following lemma.

Lemma B.2.2. Let F be a scheme on a finite set X, in the sense of Definition B.2.1, and
let Λ be the associated operator, defined by (B.3). Then Λ is by construction monotone.
In addition

1. If F is monotone then (ΛU = U ⇒ FU = 0), for any U ∈ RX .

2. If F is causal then Λ is causal.

Proof. Monotony of Λ: If U1 ≤ U2 then (V ≤ U1 ⇒ V ≤ U2) for any V ∈ RX , hence
ΛU1 ≤ ΛU2 by definition (B.3). Proof of point 1: The result easily follows from the
continuity of F and the observation that: for any x ∈ X, the supremum defining ΛU(x)
is attained for some V ∈ RX obeying V = U on X \ {x}, by monotony of F. Proof of
point 2: Let F be a causal scheme, and let U ∈ U , x ∈ X, λ ∈ R. One easily checks that

(ΛU(x))≤λ = sup{V ≤λ(x); V ∈ RX , FV (x) ≤ 0, V ≤ U<λ on X \ {x}}.

Thus (ΛU)≤λ only depends on U<λ, as announced, which concludes the proof.
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