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Résumé

La problématique générale de la recherche en Intelligence Artificielle (IA) est de parvenir à

reproduire les fonctions cognitives du cerveau humain au moyen des ordinateurs modernes.

L’objectif à long terme est de répliquer l’ensemble des capacités cognitives humaines les

plus sophistiquées, du raisonnement de haut niveau au maniement expert d’outils et d’ap-

pareils [1], en passant par la créativité intellectuelle et artistique. Les résultats obtenus ces

dernières années [2–6] semblent annoncer une révolution technologique qui pourrait changer

profondément la société et instituer de nouveaux paradigmes dans de nombreux domaines

tels que l’économie, l’enseignement, la médecine ou la défense.

Certains chercheurs et entrepreneurs envisagent la possibilité qu’une intelligence artifi-

cielle de niveau humain puisse advenir autour des années 2030, tels Ray Kurzweil et Yann

LeCun [7, 8]. Une proportion notable de chercheurs du domaine considèrerait comme pro-

bable l’avènement d’une telle intelligence au cours du XXIe siècle [9]. La seule certitude

sur ce point est que les conséquences sur la vie humaine et le développement technologique

seraient difficiles voire impossibles à anticiper.

La recherche en intelligence artificielle a démarré concrètement avec les travaux d’Alan

Turing et de John Von Neumann, ainsi qu’avec la célèbre conférence de Dartmouth en

1956. Dés 1957, un modèle phare de réseau de neurones est inventé par Frank Rosenblatt,

le perceptron. Les années suivantes voient le développement de nombreux algorithmes, dont

certains visant à reproduire la mémoire associative, tels que le modèle de Willshaw (1969)

[10]. Le temps passant, les résultats sont globalement décevants par rapport aux attentes

initiales, et les financements se raréfient. Plusieurs décennies plus tard, le progrès du matériel

informatique et notamment des processeurs graphiques (GPUs) permet d’appliquer des

algorithmes déjà anciens sur des bases de données de dimension importante. Dans les années

2000, des modèles de réseaux de neurones tels que le perceptron, l’auto-encodeur, les réseaux

de neurones convolutifs (CNN) reviennent au premier plan. Ils permettent alors d’obtenir
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des gains en performances marquants sur des jeux de données tels que MNIST et surtout

ImageNet [2, 11].

Mémoire et Apprentissage

Nous focalisons notre intérêt sur deux composantes fondamentales du comportement

cognitif du cerveau, l’apprentissage et la mémoire. Les algorithmes de mémoires associatives

[12–14] offrent la possibilité de stocker des éléments d’information et de les récupérer à

partir d’une partie de leur contenu. En cela ils reproduisent le comportement de la mémoire

cérébrale, et notamment de la mémoire à long-terme en réponse à l’évocation partielle d’un

élément de connaissance ou d’un souvenir.

Les mémoires associatives à cliques en particulier permettent de stocker une quantité

relativement grande d’information dans un espace de mémoire donné [10]. Chaque élément

de mémoire étant enregistré par l’interconnexion complète des neurones qui le forment,

le motif graphique créé est caractérisé par une surabondance de connexions. Cette redon-

dance permet de reconstituer un message y compris lorsqu’une proportion notable de ses

connexions est effacée.

Ces mémoires utilisent des connexions à poids binaires, contrairement à la majorité des

modèles de réseaux de neurones artificiels. Cette caractéristique contribue à leur robustesse

et s’accorde avec le fonctionnement de la mémoire à long-terme. Les éléments stockés dans

celle-ci sont très probablement supportés par un principe matériel stable et peu sujet aux

fluctuations rapides et permanentes de la règle de Hebb [15]. Ce principe repose donc plus

vraisemblablement sur l’existence ou l’absence de connexions que sur des valeurs de poids

continues et évolutives.

Plusieurs auteurs ont avancé l’idée que le codage de l’information dans le cerveau devait

être analogique dans certaines régions et numérique dans d’autres, notamment dans les

aires associées à la mémoire à long terme [16, 17]. Mochizuki et Shinomoto ont proposé

une démonstration du caractère tantôt analogique ou numérique du codage employé dans

différentes aires cérébrales [18]. Pour obtenir ce résultat, ces auteurs cherchent à inférer la
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fréquence de décharge dans un train d’impulsions par une estimation bayésienne empirique

d’une part, et par l’apprentissage d’un modèle de Markov à états cachés d’autre part.

La comparaison de la vraisemblance de ces estimateurs permet de discriminer entre des

trains d’impulsions de fréquence continue résultant d’un codage analogique, et d’autres à

fréquences discrètes produites par un codage numérique. Cette méthode semble mettre en

évidence que l’information traitée dans le cortex visuel primaire et l’aire temporale médiale

est analogique, tandis que les signaux produits par le corps géniculé latéral du thalamus

sont numériques.

Des arguments théoriques ont également été avancés pour justifier l’intérêt d’un co-

dage hybride, tantôt analogique ou numérique. Sarpeshkar affirme ainsi que si l’idée d’un

fonctionnement en grande partie analogique est très largement acceptée, l’accumulation de

bruit dans certaines régions tend à rendre un tel fonctionnement inefficace [16]. L’utilisa-

tion d’un codage numérique dans le thalamus serait donc cohérent avec son rôle particulier

d’intégrateur et de relais de signaux entre plusieurs réseaux corticaux [19,20].

Une autre conséquence probable du haut niveau de bruit dans certaines régions céré-

brales est le codage distribué de l’information. Selon les rapports de signal à bruit, Sar-

peshkar montre qu’un compromis peut être trouvé en terme de degré de distribution de

l’information, sachant qu’un codage distribué réduit le coût énergétique de calcul global

mais augmente les coûts de communications synaptiques [16].

Enfin, avec une fréquence de décharge ne dépassant pas 250 Hz, et des impulsions sy-

naptiques voyageant à une vitesse proche de 20 mètres par seconde, le matériel neuronal est

très lent en comparaison avec nos ordinateurs. Le cerveau effectue malgré cela des tâches

complexes très rapidement grâce à des algorithmes parallèles très optimisés [21].

Pour passer d’une perception analogique du monde extérieur à une représentation par-

cimonieuse et plus compacte, nous nous sommes tournés vers l’apprentissage profond. Nous

avons considéré que ces réseaux de neurones constituent une bonne option pour reproduire

le rôle des canaux sensoriels, et qu’ils peuvent ainsi être interfacés avec les algorithmes de
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mémoires associatives pour reproduire la combinaison de ces deux fonctions cérébrales.

Ces réseaux permettent d’opérer une compression intelligente reposant sur des carac-

téristiques de bases apprises dans les données. Cela est bien plus plausible biologiquement

que d’utiliser des filtres fixes pré-dessinés, comme l’ont montré plusieurs études sur le cortex

visuel. Dans certaines expériences célèbres, des chats ont été exposés lors de leurs premières

semaines uniquement à des orientations verticales, ou horizontales selon le groupe. Une fois

libérés dans un environnement normal, ces chats se montraient aveugles aux orientations

auxquelles ils n’avaient pas été exposés auparavant. Cela démontre que si le système visuel

est forcément partiellement pré-cablé, ses filtres ne se mettent en place correctement que

par une période d’apprentissage nécessaire [22,23].

Plan

Dans le chapître 2, nous présentons un modèle de mémoire associative neurale inspiré

des réseaux de Willshaw, dans lequel une contrainte de connectivité est introduite entre

neurones voisins pour reproduire le phénomène biologique d’inhibition latérale observé dans

le cerveau. Cette contrainte apporte une amélioration de la performance de récupération

des messages et un stockage plus efficace de l’information.

Dans le chapître 3, afin d’étudier la plausibilité biologique des réseaux profonds convo-

lutifs, une architecture convolutive a été appliquée sur une tâche de lecture de mots par-

tiellement affichés suivant des conditions similaires à une précédente étude de psychologie

impliquant 23 sujets humains. Cette expérimentation a mis en évidence les similarités de

comportement du réseau convolutif avec les sujets humains concernant le taux d’affichage et

la fréquence lexicale des mots, ainsi que la réponse préférentielle à certaines caractéristiques

visuelles des lettres.

Dans le chapître 4, une nouvelle méthode de représentation des catégories dans les

réseaux profonds est proposée. En associant aux différentes catégories des assemblées de

neurones recouvrantes plutôt qu’un neurone unique selon la manière habituelle, la perfor-

mance du système est favorisée et il peut être interfacé avec d’autres algorithmes, tels que
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les mémoires associatives neurales ou encore un code correcteur d’erreur. De plus, pour

les problèmes à grand nombre de classes, cette méthode d’encodage des classes permet de

réduire significativement les dimensions d’un réseau.

Dans le chapître 5, une méthode d’interfaçage des réseaux de neurones profonds non

supervisés avec les mémoires associatives neurales est présentée. Les réseaux profonds étant

exécutés sur GPU, une implémentation parallèle du modèle de mémoire associative est

requise pour une exécution fluide du système combiné. Des méthodes d’implémentation sur

GPU de deux algorithmes de récupération de messages sont proposées.
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Abstract

The general problematic of research in Artificial Intelligence (AI) is to manage to reproduce

the cognitive functions of the human brain by means of modern computers. The long term

objective is to replicate all the most sophisticated human cognitive abilities, from high-level

reasoning to expert handling of tools and devices [1], through to intellectual and artistic

creativity. The results obtained these last few years [2–6] seem to announce a technological

revolution that could profoundly change society and impose new paradigms in numerous

domains such as economy, education, medicine or defense.

Some researchers and entrepreneurs consider the possibility that a human-level artificial

intelligence may happen around the years 2030s, such as Ray Kurzweil and Yann Lecun [7,8].

A notable proportion of researchers of the domain would consider likely the advent of

such an intelligence during the 21st century [9]. The only certainty on this matter is that

the consequences on human life and technological development would be difficult if not

impossible to anticipate.

Research in artificial intelligence started concretely with the works of Alan Turing and

John Von Neumann, as well as the notorious Dartmouth conference in 1956. As soon as

1957, a seminal neural network model is invented by Frank Rosenblatt, the perceptron.

The following years see the development of numerous algorithms, some of which aiming

to reproduce associative memory, such as the Willshaw model (1969) [10]. Over time, the

results are disappointing overall with regards to initial expectations, and research credits

become increasingly scarce. Several decades later, the progress of computer hardware and

notably graphical processors (GPUs) allows the application of already ancient algorithms

on high-dimensional data-sets. In the years 2000s, neural network models such as the per-

ceptron, the auto-encoder, and convolutional neural networks (CNN) come to the fore. They

then allow to obtain notable performance improvements on data-sets such as MNIST and

ImageNet [2, 11].
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Memory and Learning

We focus our interest on two fundamental components of the cognitive behavior of the

brain, learning and memory. Algorithms of associative memory [12–14] offer the possibility

to store information elements and to retrieve them using a sub-part of their content. In

this, they reproduce the behavior of cerebral memory, and notably of long-term memory in

response to the partial evocation of a knowledge element or a memory.

Clique-based associative memories in particular allow to store a relatively large quantity

of information in a given memory space [10]. Each memory element being stored by the full

inter-connection of neurons composing it, the graphical pattern created is characterized by

an abundance of connections. This redundancy allows to reassemble a message, including

when a notable proportion of its connections is erased.

These memories use binary-weighted connections, to the contrary of the majority of

artificial neural network models. This feature contributes to their robustness and is in

accordance with the behavior of long-term memory. The elements stored in this memory are

very likely to be supported by a material principle that is stable and not very susceptible

to the rapid and permanent fluctuations of Hebbian learning [15]. This principle is thus

more likely to rely on the existence or absence of connections rather than on continuous

and evolving weights values.

Several authors have put forward the idea that information coding in the brain should

be analog in certain areas and digital in others, notably in areas associated with long-term

memory [16, 17]. Mochizuki and Shinomoto have proposed a demonstration of the analog

or digital nature of the coding used in different brain areas [18]. To get to this result,

these authors attempt to infer the spiking rate in a spike train by an empirical Bayes

method on the one hand, and by learning a hidden Markov model on the other hand. The

comparison of the likelihood of these estimators allows to discriminate between spike trains

with continuous frequency resulting from an analog coding scheme, and others with discrete

frequency produced by a digital encoding. This method seemingly brings to light that the
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information treated in the primary visual cortex and the medial temporal area is analog,

whereas the signals produced by the lateral geniculate nucleus in the thalamus are digital.

Theoretical arguments have also been made to justify the interest of hybrid coding,

partly analog and digital. Sarpeshkar thus states that if the idea of a largely analog func-

tioning is widely accepted, the accumulation of noise in certain areas tends to render such

an operation inefficient [16]. The use of a digital encoding in the thalamus would thus

be consistent with its particular role of signal integrator and hub between several cortical

networks [19,20].

Another likely consequence of the high level of noise in certain brain areas is the dis-

tributed encoding of information. Depending on the signal to noise ratio, Sarpeshkar shows

that a trade-off can be found in terms of the degree of distribution of information, knowing

that a distributed encoding lowers the global energetic cost of computations but raises the

synaptic communications costs [16].

Lastly, with a spiking rate below 250 Hz, and synaptic spikes traveling at a speed close to

20 meters per second, the neuronal material is very slow in comparison with our computers.

The brain however executes complex tasks very quickly thanks to highly optimized parallel

algorithms [21].

To transition from an analog perception of the outside world to a sparse and more

compact representation, we turned ourselves towards deep learning. We considered that

these neural networks constitute a good option to reproduce the role of sensory channels, and

that they can thus be interfaced with associative memory algorithms in order to reproduce

the combination of these two cerebral functions.

These networks allow to operate a smart compression relying on basic features learned in

the data. This is much more biologically plausible than to use fixed hand-engineered filters,

as have demonstrated several studies of the visual cortex. In certain famous experiments,

cats were exposed solely to vertical orientations, or horizontal depending on the group,

during their first weeks. Once freed into a normal environment, these cats were blind to the
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orientations they had not been formerly exposed to. This demonstrates that if the visual

system is necessarily partly pre-wired, its filters can only properly establish themselves

through a necessary learning period [22,23].

Plan

In Chapter 2, we present a neural associative memory model inspired by Willshaw

networks, in which a connectivity constraint is introduced between neighbouring neurons

in order to reproduce the biological phenomenon of lateral inhibition observed in the brain.

This constraint brings an improvement of performance in message retrieval and a more

efficient storage of information.

In Chapter 3, in order to study the biological plausibility of deep convolutional networks,

a convolutional architecture was applied on a task of reading partially displayed words under

similar conditions as those in a former psychology study involving 23 human subjects. This

experiment has put in evidence the similarities in the behavior of the convolutional network

with the human subjects regarding the display rate and the lexical frequency of words, as

well as the preferential response to certain visual features in letters.

In Chapter 4, a new method for representing categories in deep networks is presented.

By associating different categories with overlapping neuron assemblies rather than a single

neuron in the usual manner, the performance of the system is enforced and it can be

interfaced with other algorithms, such as neural associative memories or an error-correcting

code. Moreover, for problems with a large number of classes, this method for encoding

classes allows to reduce significantly the dimensions of a network.

In Chapter 5, a method for interfacing deep unsupervised networks with neural associa-

tive memories is introduced. Deep networks being executed on GPU, a parallel implemen-

tation of the associative memory model is required for a fluid execution of the combined

system. GPU implementation methods for two messages retrieval algorithms are presented.
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Chapter 1

Introduction

Animal intelligence has emerged on our planet through an evolutionary process spanning

hundreds of millions of years. Notable milestones along the way were the first reflex arcs

(580 millions of years ago), the first central nervous system (550MY ago), the reptilian

brain managing breathing, heartbeat and survival instinct (265MY ago), the limbic system

dealing with primary emotions (225MY ago), and finally the neocortex (80MY ago). The

latter allowed mammals to elaborate sophisticated tools and strategies, and to progressively

develop complex languages between 100.000 and 50.000 years ago.

From the early stages of development of Computer Science, the idea of recreating human-

like thinking into machines has occupied the minds of researchers and engineers. Even

though the idea of endowing artificial beings with reason is ancient, the modern quest for

Artificial Intelligence really began with the works of Alan Turing and John Von Neumann,

and the Dartmouth Conference in 1956. The initial enthusiasm of notorious attendees like

John McCarty, Marvin Minsky and Claude Shannon has since been dampened by two peri-

ods of research setbacks and subsequent scarce fundings, called "AI winters". Nonetheless,

the idea that most human cognitive abilities may one day be reproduced in silico has nothing

but gained terrain.

One obvious reason for this is the propagation of Artificial Narrow Intelligences, which
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are software programs specialized for one task, and capable of performing it better than

humans. Behind famous examples like Deep Blue, Watson [4], AlphaGo [5], and self-driving

cars [1], systems from this category are commonplace, from the supercomputers used for

weather forecasting, to the planning and analysis systems used in the military to optimize

logistics, through to air traffic management software. Even low-scale mathematic softwares

allow anyone to solve complex equations with many variables in the blink of an eye, illus-

trating Moravec’s paradox that high-level reasoning can be way easier to recreate artificially

than low-level sensory-motor functions [24]. Although initially surprising, this finding can

in part be explained by the fact that sensory-motor abilities only seem trivial to us because

they have been forged in our body structure through hundreds of millions of years of evolu-

tion. Their execution is thus largely unconscious and automatic. High-level concepts have

only kept our minds busy for a few thousands of years, and therefore appear more difficult

to us not because they are intrinsically hard, but because they are relatively new.

High-level thinking also simply involves less computations than perception and motor

skills. Recently, researchers have suggested that neuronal communications may be digital in

some parts of the brain and analog in others [18]. One could assume that mental information

may be supported by digital processes. Long-term memory, in particular, has to be very

robust to physico-chemical perturbations, and therefore likely relies on encoding schemes

using discrete values and important amounts of redundancy [17].

Sensory systems, though, use more energy and comprise complex hard-wired chains of

treatment. The foremost example of this is the visual system and its numerous areas. Our

senses can perceive tiny variations in the environment and can thus be likened to analog

systems. They treat complex, high-dimensional input flows and extract sparse and low-

dimensional information out of it through a complex arrangement of filters.

The compression, sparsification and memorization performed by the nervous system

evoke a Shannon-Weaver model. The two major steps in the function of such a model are

an initial removal of redundancy present in the input, followed by the addition of useful
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redundancy to ensure robustness to alterations.

Deep Learning is a family of algorithms that has generated lots of interest in recent

years. These methods rely on hierarchies of neurons arranged in layers, where inter-layer

connection weights get optimized through a gradient descent procedure with the goal of

mapping input vectors to output objectives as precisely as possible. This principle is not

new, and it is mainly the progress of the hardware that has allowed to use it on large scale

datasets, and to eventually establish new state-of-the-art performances on a vast array of

problems.

Neural Associative Memories are models of human memory that can complete patterns

when provided some of their subparts. NAMs typically involve formal neurons with binary

activity. The most efficient models employ sparse and distributed codes, as they use assem-

blies of neurons sampled in a pool to represent messages. The large number of combinations

brings an important diversity of possible messages. More than this, synaptic connections are

drawn between all elements of these assemblies to form cliques, which are strongly robust

to partial erasure because of their graphic redundancy.

We propose that a combination of Deep Learning and clique-based associative memories

can be a plausible way to reproduce the brain functions of feature extraction from sensory

inputs and storage in memory. Inspired by the Shannon-Weaver model, this idea has been

a guideline through this work.

In Chapter II, we present a model of clique-based associative memory that takes into

account the phenomenon of lateral inhibition observed in the sensory areas of the brain.

Chapter III investigates the behavior of a deep convolutional network in a word reading

task, in comparison with human subjects tested on the same data. This comparison of

human and artificial readers attempts to study the plausibility of the deep convolutional

network model on a functional level.

In Chapter IV, a new method of category representation in supervised learning neural

networks is presented, based on assemblies of neurons. This approach modifies the learning
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process and brings noticeable improvements in performance. It comes with practical ad-

vantages for problems with a large number of categories, in terms of memory requirements

and computational complexity. It also brings the possibility to interface the network with

a clique-based associative memory, or with an error-correcting decoder.

In Chapter V, we present a way to combine an unsupervised learning neural network

with a clique-based associative memory. The existing libraries for programming deep neural

networks leverage the massive parallelism of graphics hardware. For this reason, a method

for running the associative memory on GPU as well is presented, that makes its execution

time comparable to that of the learning network.
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Chapter 2

Sparse Neural Associative

Memories

Willshaw networks are a type of associative memories with a storing mechanism character-

ized by a strong redundancy. Namely, all the subparts of a message get connected to one

another. We introduce an additional specificity, by imposing the constraint of a minimal

space separating every two elements of a message. This approach results from biological

observations, knowing that in some brain regions, a neuron receiving a stronger stimulation

can inhibit its neighbors within a given radius. Theoretical arguments are derived to quan-

tify the benefits of this method in terms of memory usage as well as pattern completion

ability. We experiment with different values of the inhibition radius introduced, and we

study its impact on the error rate in the retrieval of stored messages. We show that this

added constraint can result in significatively better performance of the Willshaw network,

either when reducing its set of connections, or when extending its set of neurons while

maintaining the memory resource.
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2.1 Introduction

Associative memories are a type of computer memories that are part of the broader category

of content-addressable memories. Where addressable memories associate an address with

a piece of data, associative memories have the characteristic of associating patterns to

one another. Among this group, we distinguish between hetero-associative memories, and

auto-associative memories. An hetero-associative memory will associate together patterns

in pairs. For instance, if the pattern p1 was associated with pattern p2, the request p1 will

bring the response p2. Auto-associative memories follow a different principle, as they will

associate a pattern with itself. The main use case of these memories is pattern completion,

where a request made of a subpart of a stored message will get as response the completed

pattern. Associative memories can be found in several types of real-world applications, such

as database engines [25], network routers [26], data compression devices [27], and computer

vision systems [28,29].

Today, it is widely accepted that the working principle of the brain can often be likened

to the operation of a set of associative memory. The focus is put here on the phenomenon

observed in biological neural networks, called lateral inhibition [30]. It can also be referred

to as surround suppression [31]. This translates in the inhibition exerted by some neurons

on their close neighbors when these have an activity inferior to their own. Starting from the

Willshaw model [10], we propose a neural associative memory that is improved in terms of

plausibility, by the introduction of local inhibition that results in the prohibition of short-

range connections. We show that this modification brings a performance improvement in

the retrieval of stored messages. This also brings insight regarding the good performances

of clustered associative memories [14].

Section 2.2 introduces three associative memory models with relevant relationship to

this work. Section 2.3 gives a formal presentation of Willshaw networks, including the usual

message retrieval algorithm, and biological considerations motivating the modifications we
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introduce. Section 2.4 details modifications in our implementation as compared to the classic

Willshaw model, including the constraint applied on the space between connected neurons.

Section 2.5 provides theoretical arguments showing the better usage of memory brought by

this constraint. Section 4.4 presents the results we obtain in pattern completion, and gives

some theoretical explanations.

2.2 Related work

2.2.1 Hopfield Networks

The prominent model for associative memories was introduced by John Hopfield [12, 32].

Hopfield networks are made of a set of N neurons that are fully interconnected. The training

of these networks, given n binary vectors xµ of length N , consists in modifying the weight

matrix W according to the formula:

wij =
1

n

n
∑

µ=1

xµi x
µ
j , (2.1)

where element wij at the crossing between line i and column j of W is the real-valued

connection weight from neuron i to neuron j.

As connections are reciprocal and not oriented, we have:

wij = wji ∀i, j ∈ J1, NK (2.2)

for any indices i and j in the list of neurons, which makes W symmetrical.

The binary values considered for the stored messages are usually -1 and 1, but can be

adapted to work with other binary alphabets. The Hopfield model has a limited efficiency, on

which asymptotic limits have been detailed in [33]. The limits of the model can be explained

by the facts that each entry of the matrix is modified at every time step of the storing

procedure, and that the changes are made in both directions and can, therefore, cancel each

25



other out. This overfitted characteristics of associative memories is very different from that

observed in learning applications. Indeed, an overfitted learning system recognizes only the

training samples and fails at generalizing to novel inputs. To the contrary, an overfitted

storing system recognizes everything and does not discriminate anymore between stored

and nonstored data.

2.2.2 Willshaw Networks

Willshaw networks are another model of associative memories in which information is carried

by the existence or absence of connections [10,34]. Its material is made of a set of N neurons

and N2 potential connections between them. A message is then a fixed size subset of the

N neurons, and can be represented by a sparse vector of length N with ones at these

neurons’ positions and zeros everywhere else. The connection weights are binary, and the

active units in a message get fully interconnected as soon as it is memorized, thus forming

a clique. Figure 2.1 gives an example of such a network. The performances of Willshaw

networks are way superior to those of Hopfield memories, given that stored messages are

sparse (i.e., they contain a small proportion of nonzero elements). Further theoretical and

numerical comparison between Hopfield and Willshaw networks can be found in [35–38].

2.2.3 Clustered Cliques Networks

Recently, a novel type of associative memories was proposed by Gripon et al., called Gripon-

Berrou Neural Networks (GBNNs) or clustered cliques networks (CCNs) [14, 39]. These

associative memories make use of powerful yet simple error correcting codes. These networks

consider input messages to be nonbinary, and more precisely to be words in a finite alphabet

of size l. This specific structure allows the separation of nodes into different clusters, each

being constituted of the same number l of nodes. Connections between nodes inside a

given cluster are forbidden, only the connections between nodes in two different clusters are

allowed. There again, this model brings a significantly improved performance as compared to
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the former state-of-the-art of associative memories, namely Willshaw networks [40–42]. For

instance, it can be found experimentally that with 2,048 nodes and 10,000 stored messages

of order 4 and 2-erasures queries, a Willshaw network will have an error rate close to 80%,

while a clique-based neural network will only make 20% of wrong retrievals.

In Hopfield networks, the number of messages one can store and retrieve successfully is

linearly proportional to the number of nodes [36]. In clique-based neural networks however,

storage capacity grows quadratically as a function of the number of units.

One of the objectives of the present work is to explain the performance improvement

brought by the separation of the network into clusters. Therefore, we study a network that

can be considered as an intermediate between the Willshaw and Gripon-Berrou models.

More precisely, our proposed model adds a locally exclusive rule for nodes to be active in

the network.

2.3 Willshaw Networks and biological considerations

Willshaw networks are models of associative memories constituted of a given number of

neurons. A stored message, or memory, is a combination of nodes taken in this set. The

storage of this information element corresponds to the creation of connections with unitary

weights between every two neurons in this message. The graphical pattern thus formed is

termed "clique". The storing process of n binary vectors xµ of length N , is equivalent to the

modification of elements of the network’s connection matrix W , according to the formula:

wij = max
µ

xµi x
µ
j (2.3)

Note that here, the max operator is performed coefficient-wise. Equivalently, the con-

nection weight between nodes i and j is equal to 1 if, and only if, those two nodes are both

part of one of the n stored messages.

The network’s density d is defined as the expected ratio of the number of ones in the

27



Figure 2.1: Willshaw network. A message composed of 8 nodes is displayed, the inter-
connections being the means of its storage in the network.
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matrix W to the number of ones it would contain if every possible message was stored. For

cliques of order c, the number of connections they contain is
(

c
2

)

. Despite the correlation

between these edges, the probability of a given connection to be picked when forming

a message can be estimated as
(c2)
(N2 )

. Provided that the n stored messages are uniformly

distributed and independent, the density of the network equates to the probability for any

given connection to belong to at least one of these messages. This leads to the formula:

d = 1−
(

1−
(

c
2

)

(

N
2

)

)n

. (2.4)

The efficiency of a connectionist associative memory is defined as the ratio of the max-

imal amount of information carried by the messages it is capable of storing then retrieving

with high probability, over the total information quantity represented by its set of connec-

tion weights. For a Willshaw network with N nodes, the number of potential connections,

or binary resource, is

Q =
N(N − 1)

2
[bits]. (2.5)

After M messages have been stored in the network, the amount of information it contains

is

B = M

(

log2

((

N

c

)))

[bits]. (2.6)

Hence the efficiency of a Willshaw network is

η =
2M

(

log2

(

(

N
c

)

))

N(N − 1)
. (2.7)

The maximal attainable efficiency is ln(2) [43].

The stimulation of a Willshaw network with an input request can be performed as the

product of the sparse input vector by the network’s connection matrix. The resulting vector

then contains the output scores of the network’s neurons. The score of a neuron is thus
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the sum of unitary stimulations it receives from the request elements it is connected to.

Neurons must then be selected based on their score. Algorithm 1 defines a procedure that

can be used for the recovery of a complete message from a subpart of its content. The

Global Winner-Takes-All step consists in discarding all active neurons with a score below

the maximum.

Algorithm 1: Message retrieval procedure in a classic Willshaw network.
Data: Subpart x of a stored message
Result: Set of nodes z active after treatment
z = x
Repeat

y = Wz
z = GlobalWinnerTakesAll(y)

while (convergence not reached
and max. nb. of iterations not reached)

Return z

The probability of error in the retrieval of a message from the Willshaw network can

be calculated when the process uses a single iteration. If only one vertex of the clique to

complete has been erased, the probability of completing the message accurately after one

iteration is the probability that no unit is connected to all elements of the query, other than

the missing one:

Pretrieve = (1− dc−1)N−c. (2.8)

The probability of error is then:

Pe = 1− Pretrieve = 1− (1− dc−1)N−c. (2.9)

Knowing (2.4), this gives:

Pe = 1−



1−
[

1−
(

1−
(

c
2

)

(

N
2

)

)n]c−1




N−c

. (2.10)
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This holds for numbers of erasures ce superior to 1, bringing:

Pe = 1−



1−
[

1−
(

1−
(

c
2

)

(

N
2

)

)n]c−ce




N−c

. (2.11)

We aim to modify classic Willshaw networks in a way that is relevant in regard to

biological observations. Emphasis is put on lateral inhibition, a phenomenon that has been

observed in several areas of the brain. It is notably present in sensory channels. For vision,

it operates at the level of retinal cells and allows an increase in contrast and sharpness of

signals relayed to the upper parts of the visual cortex [31] [44]. In the primary somatosensory

area of the parietal cortex, neurons receive influx coming from overlapping receptive fields.

The Winner-Takes-All operation resulting from the action of inhibitory lateral connections

allows localizing precisely tactile stimuli, despite the redundancy present in the received

information [45]. The same scheme of redundancy among sensory channels, and filtering via

lateral inhibition, is present in the auditory system [30]. WTA is observed in the inferior

colliculus and in the upper levels of the auditory processing channel.

2.4 Preventing connections between neighbor neurons

Classic Willshaw networks have no topology. Their material is constituted with a list of

neurons each having an index as sole referent. There is neither a notion of spatial position

in these networks, nor, a fortiori, of spatial distance. We get closer here to a real neural

network, by arranging them on a two-dimensional map. In the model we propose, the

respective positions of two neurons impact the possibility for them to get connected together.

The considered network is composed of a number N of nodes evenly distributed along a

square grid, of side S =
√
N . Stored messages are of constant order, meaning they are all

constituted of the same number of neurons. We forbid connections between nearby neurons.

To this end, we apply a threshold σ on the spatial length of a connection. Stored messages
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must necessarily be conform to this constraint. Each message is formed in a random manner,

units being chosen iteratively. Each new element of the message is picked from the positions

left available after the removal of the neighbors of the formerly selected nodes, as indicated in

Figure 2.2. One can consider the introduced constraint as applied on the network’s material,

as the weights of a predetermined set of short-range connections will be enforced to stay

null all along the network’s life. During the formation of a message, it is practical to pick

neurons to satisfy this constraint in a sequential manner, with a local inhibition applied

on a neuron’s neighborhood from the moment it is selected until the message generation is

complete.

A link can be drawn between this approach and Kohonen Self-Organizing Maps, where

close-by neurons encode more similar information [46]. Therefore, long-range distance sep-

arates information elements that are different in nature, whereas shorter-range distance

depicts a difference in degree. Local competition is particularly relevant in this scheme.

During retrieval, the network is stimulated iteratively with a request that will most

often change from one iteration to the next. Each node of the request will first stimulate

every other element it is connected to. Scores are initialized with zero at the start of every

iteration, and each stimulation is a unitary increment to the score of the receiver unit.

For the first iteration, after the stimulation we apply a global Winner-Takes-All rule, which

consists in excluding from the research scope all units that do not achieve the maximal score

observed in the network. We know indeed that the neurons from the searched message will

all have the maximum possible score, equal to the number of elements in the request. Once

non-maximum elements are put to zero, we only pay interest in the remaining neurons

during the rest of the retrieval process. Moreover, for every iteration after the first one,

neurons in the new request are the only ones that can receive stimulation as the algorithm

proceeds to only discard neurons from then on.

Thereafter, we can keep using the global WTA principle iteratively, but other algorithms

such as Global Winners-Take-All (GWsTA) or Global Losers-Kicked-Out (GLsKO) [47] are
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Figure 2.2: Cyclic Willshaw network with a constraint on local connections.
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more efficient in discriminating the right nodes from the spurious ones that can appear

during retrieval.

GWsTA relies on the calculation of a threshold score to select winner neurons. This

threshold is chosen such that neurons with an activity above it are in number at least as

large as the order of stored messages.

GLsKO consists in putting off, at each iteration, all the units that do not have the

highest score, or a subgroup sampled randomly in this ensemble.

These two algorithmic techniques allow getting rid of an important proportion of false-

positives. In the clique-based CCN, clusters play a similar role.

The iterative nature of the process means that a message retrieved as output from

the network is typically reinjected in it until input and output no longer differ. A limited

number of iterations is applied in the case where the network would not converge to a stable

solution, an observable case in which it can oscillate between two states.

In addition to these two stopping criteria that are the maximum number of iterations

and convergence, comes a third one which is the identification of a clique. Indeed, if we

observe that the units still active after an iteration are in number equal to the order of

stored messages, and that they all have the same score, this means it is a clique. This

ensemble is then retained as the response given by the network for the current request.

Algorithm 2 shows the message retrieval procedure used in the results we present. Phase

II uses GLsKO.

We experiment the storage of messages of order c in the connection matrix of the net-

work. Messages are formed with the constraint of a minimal space between connected nodes.

Two units in a message must be spaced apart at a distance superior to a minimum σ. In

order to ease computations and avoid edge effects, we choose to use the L1 distance, even

though we believe this method should work using any distance. This way, when picking a

node x for a message, all nodes located in a square grid centered on x, of side 2σ+1, are

excluded from the possible choices for the elements of the message remaining to be filled.
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Algorithm 2: Message retrieval procedure in the modified Willshaw network with spacing
constraint.

Data: Subpart x of a stored message
Result: Set of nodes z active after treatment
Phase I

y = Wx
z = GlobalWinnerTakesAll(y)

Phase II

Repeat

y = Wz
a = active nodes in y
m = nodes in a with minimal score
z = a−m

while (convergence not reached
and max. nb. of iterations not reached)

Return z

Moreover, this distance is applied in a cyclic way, meaning a node located on the right

edge of the grid will be considered a direct neighbor of the element located at the crossing

between the same line and the left edge of the grid. All four corners of the grid will also be

neighbors to one another. We call the network so described a torus.

2.5 Efficient use of the memory resource

When applying a constraint σ on the minimal spacing between connected neurons, the

number of potential connections in the modified Willshaw network becomes

Q =
N(N − (2σ + 1)2)

2
[bits]. (2.12)

Let the total number of messages one can form in it under the spatial constraint, be denoted

M . The entropy per message b is given by

b =
(

log2
(

M
))

[bits]. (2.13)
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The amount of information contained in the network after the storage of M messages is

then

B = bM = M
(

log2
(

M
))

[bits]. (2.14)

Hence the efficiency of the network with lateral inhibition is

η =
2M

(

log2
(

M
))

N(N − (2σ + 1)2)
. (2.15)

Predicting the diversity of the spatially constrained Willshaw network given N , c and

σ, is not trivial for most values of these parameters. Indeed, once one neuron has been

picked among N , the remaining choice for the second element of a message is naturally

N − (2σ + 1)2. However, there are then several possibilities for the number of remaining

allowed components, as the inhibition areas around the first two elements can overlap.

Figure 2.3 shows this behavior with σ = 1. In this case, two overlapping inhibition areas

can either share one, two or three neurons. Given a fixed position for the first neuron, there

are four positions for the second one that will give an intersection of one, eight that will

give an intersection of two, and four positions will give intersections of three neurons.

For N − (4σ + 1)2 neurons, the two inhibition areas do not overlap, and there are

N − 2 (2σ + 1)2 remaining possible choices for the third node.

We denote Aσ(N,C) the set of all possible ordered arrangements of C nodes among

N . The number of ordered arrangements of c = 3 nodes respecting the spacing constraint

σ = 1 is thus

|Aσ=1(N, 3)| = N((N − 25)(N − 18) + 4(N − 17)

+8(N − 16) + 4(N − 15)).

(2.16)

Finally, as the considered messages are unordered, we divide this formula by c !, here
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Figure 2.3: Different overlapping configurations between the inhibition areas around two
neurons. Here with σ = 1, the union of the two overlapping areas can contain 17, 16, or 15
neurons. The green dots show the locations of nodes whose inhibition areas have the same
number of intersecting elements with that of the central node.
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six, to get the number of allowed messages:

M =
N3 − 27N2 + 194N

6
. (2.17)

Similarly, for other sets of parameters, the diversity of the spatially constrained network

will be obtained by sum-product compositions [48] of polynomials with integer roots. As c

grows, the number of overlapping configurations between inhibition areas for neurons in a

message is multiplied, and finding a formula to predict the diversity becomes increasingly

complex.

Indeed, a general formula for the number of possible ordered arrangements of c = 3

nodes among N under the spatiality constraint σ would be:

|Aσ(N, 3)| =
∑

n1





∑

n2 /∈V1

(N − |V1 ∪ V2|)



 = N





∑

n2 /∈V1

(N − |V1 ∪ V2|)



 , (2.18)

where ni is the ith node in the arrangement and Vi is its surrounding inhibition area.

With c = 4 this formula becomes:

|Aσ(N, 4)| = N





∑

n2 /∈V1



(N − |V1 ∪ V2|)
∑

n3 /∈V1∪V2

(N − |V1 ∪ V2 ∪ V3|)







 , (2.19)

and so forth for higher values of c.

Figure 2.4 shows a possible configuration for the intersections of the inhibition areas of

four neurons that can be part of the same message, when σ = 2. This illustrates the variety

of intersection configurations that arise as c and σ grow larger.

For some values of σ and c, the total number of legitimate messages can be predicted by

polynomial formulas that can be easy to find experimentally. Table 2.1 shows a list of such
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Figure 2.4: Overlapping inhibition areas for a combination of 4 selected neurons satisfying
the spatial constraint σ = 2. Intersections are made of 2, 3, 4 and 6 neurons.
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Table 2.1:
POLYNOMIAL FORMULAS FOR THE NUMBERS OF ALLOWED AND FORBIDDEN MESSAGES UNDER
THE SPATIALITY CONSTRAINT ON CONNECTIONS, AS A FUNCTION OF THE NUMBER N OF NEURONS,
FOR DIFFERENT CLIQUE ORDERS AND INHIBITION RADII. CASES WITH σ = 0 ARE EQUIVALENT
TO WILLSHAW NETWORKS. THE VALIDITY OF THESE FORMULAS HOLDS FOR NETWORK SIZES
SUFFICIENTLY LARGE BEFORE σ.

c σ Allowed messages Forbidden messages

2 0 N
2
−N

2
0

1 N
2
−9N

2
4N

2 N
2
−25N

2
12N

3 N
2
−49N

2
24N

3 0 N
3
−3N

2
+2N

6
0

1 N
3
−27N

2
+194N

6
4N2 − 32N

2 N
3
−75N

2
+1514N

6
12N2 − 252N

3 N
3
−147N

2
+5834N

6
24N2 − 972N

4 0 N
4
−6N

3
+11N

2
−6N

24
0

1 N
4
−54N

3
+1019N

2
−6798N

24
2N3 − 42N2 + 283N

2 N
4
−150N

3
+7931N

2
−149550N

24
6N3 − 330N2 + 6231N

3 N
4
−294N

3
+30539N

2
−1133958N

24
12N3 − 1272N2 + 47248N

formulas, for the diversity of the constrained network as well as its number of prohibited

messages, for different values of c and σ. σ = 0 corresponds to the unconstrained Willshaw

network. Figure 2.5 shows the evolution of the number of legitimate messages for different

constraints on connection length, for c = 3.

With c = 3 and σ = 1, the network’s efficiency is given by

η =
2M

(

log2

(

N3−27N2+194N
6

))

N(N − 9)
, (2.20)

while the efficiency of the corresponding Willshaw network is

η =
2M

(

log2

(

N3−3N2+2N
6

))

N(N − 1)
. (2.21)

The ratio of these two efficiencies is thus given by
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Figure 2.5: Number of allowed messages as a function of the total number of neurons, under
constraints σ = 1, 2, and 3 compared with a Willshaw network, for c = 3.

ησ=1

ησ=0
=

(N − 1)
(

log2

(

N3−27N2+194N
6

))

(N − 9)
(

log2

(

N3−3N2+2N
6

)) , (2.22)

and is independent of the number M of stored messages. Figure 2.6 displays the evolution

of the efficiency ratios between spatially constrained networks with σ = 1, 2, 3, and the

unconstrained Willshaw network, as a function of the number of neurons in the network,

for messages made of three neurons. It shows that, although the spacing constraint can

not be applied on too small networks, for sufficiently large networks, prohibiting shorter

connections comes with an increase in efficiency, as the ratio is superior to one. Larger values

of σ are associated with larger gain in efficiency, and for a given σ the best improvement

over a Willshaw network comes for the smaller networks where this constraint applies, i.e.,

where it does not block the vast majority of Willshaw messages. The decay of the ratio when

the network size increases is due to the fact that the constraint then prohibits a smaller

proportion of connections, making the difference with a Willshaw network less noticeable.
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Figure 2.6: Evolution of the ratios of the efficiency of the networks with spatial constraints
σ = 1, 2, and 3 over the efficiency of a Willshaw network, with increasing network size, for
c = 3.

Figure 2.7 shows the evolution of the same efficiency ratios for cliques of order 4. The

improvement is then slightly lower for constant σ and network size, in comparison to the

case c = 3. The ratio remains superior to one however. This tends to show that the spacing

constraint can be more beneficial, in terms of gained efficiency, for shorter messages.

The efficiency is a measure of the amount of information one can store for a given amount

of available memory. The improvement in efficiency brought by the spacing constraint on

connections means that the reduction of used material is more significant than that of the

quantity of information carried by messages.

2.6 Pattern completion

We now pay interest specifically in the pattern retrieval ability of the modified Willshaw

network, as compared to the classical model. During retrieval, only a sample from the nodes

of the complete message are stimulated, the inputs are subparts of stored messages. Units
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Figure 2.7: Evolution of the efficiency ratios for σ = 1, 2, and 3 over the Willshaw efficiency
as a function of the number of neurons in the network, for c = 4.

that are close to elements of an input will not reach the maximum score in the network,

and will therefore be ruled out after the first WTA operation. During the second phase of

the algorithm, nodes in the vicinity of input neurons will also be more likely to reach a low

score if they are activated, and to be discarded. Hence, the local inhibition used initially

during the creation of messages impacts the retrieval process as well.

We pay interest in the network’s ability to return the exact memory associated with a

request. Hence every difference, even marked by a single unit, between the expected pattern

and the network’s output is counted as an error.

We measure the performance of the network as the ratio of the number of successfully

retrieved messages over the total number of requests.

Various parameters can impact this performance, albeit to different degrees:

- the length S of the grid’s side

- the number M of stored messages

- the minimal space σ between two elements of a message
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Figure 2.8: Matrix of the potential and forbidden connections in a clustered clique network
with 4 clusters of 16 fanals each. The element at the crossing of a line i and a column j repre-
sents the connection between neurons ni and nj . White cells represent allowed connections,
black cells correspond to forbidden ones.

- the order c of stored messages

- the number of erasures ce applied on stored messages to obtain the corresponding request

messages

The behavior of this network is interesting in relation to Willshaw networks and clustered

cliques networks, as it is close to a classic Willshaw network and displays the added feature

of prohibited connections as observed in CCNs. This modification can be viewed as a form

of sliding-window clustering.

Figures 2.8 and 2.9 represent the matrices of allowed and forbidden connections in

a clustered clique network with χ = 4 clusters comprising l = 16 neurons each, and in

a modified Willshaw network of side length S = 8 under constraint σ = 1, respectively.

The two networks have the same number of neurons, and comparable numbers of allowed

and forbidden connections. Indeed, the number of potential non-oriented connections in the
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Figure 2.9: Connection matrix for a modified Willshaw network with side length S = 8 and
σ = 1.

clustered clique network is given by

Q =
χ(χ− 1)l2

2
[bits], (2.23)

which here gives 1,536 allowed connections, against 480 ones forbidden due to the cluster-

ing constraint. On the other hand, from (2.12) we have 1,760 allowed connections in the

spatially constrained Willshaw networks, and 256 forbidden ones. The major difference is

the potential overlapping between the inhibition areas around different neurons in the mod-

ified Willshaw network. It follows that in this network, two neurons ni and nj can be both

prohibited from connecting to a third one nk, and yet be allowed to connect together. To

the contrary, if in a clustered clique network, connection weights wik and wjk are forced to

remain at 0, then necessarily wij will be as well.

In a first series of experiments, we focus on the ability of the network to first store inde-
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pendent, identically distributed messages, and then complete them properly when probed

with partial cues. For every configuration of the network, messages and requests we test, we

store a set of thousands of messages in the network. These messages are generated randomly

following the local inhibition pattern described in section 2.4. We then request it with the

full set of queries associated with stored messages.

For each network size, we observe that there is an optimal value of the minimal distance

σ, that lowers the most significantly the error rate, as compared to the corresponding

Willshaw network without constraint on local connections. For a given minimal distance,

the reduction in error rate depends on the number of stored messages, with an optimal

number of messages which is a function of the network size. For cliques of order four and

with two erasures, the maximal reachable improvement is close to 15%, and seems to be

the same for all network sizes. In this configuration, the minimal distance bringing the best

performance is approximately the third of the network side.

The evolution of the retrieval error rate as a function of the number of stored messages is

slower with the appropriate constraint on connections than for a classic Willshaw network,

as can be seen in Figure 2.10.

Figure 2.11 shows a similar comparison, this time between the modified Willshaw net-

work with constraint σ = 5 made of 400 neurons, and an unconstrained Willshaw network

with 335 neurons. Because of the reduction in the number of connections when σ = 5,

the two networks have almost the same binary resource. Indeed, the Willshaw network

has 55.945 connections while the constrained one has 55.800 possible connections, despite

having more neurons. Even though the modified network has a slightly lower footprint, the

improvement is even more noticeable than for the comparison with equal size of the neurons

sets. In fact for 1, 500 stored messages, the modified network gains around 50% in error rate

over the Willshaw network. Like the CCNs approach, this shows the interest of spreading

the binary resource across a larger set of units with constrained connectivity, as opposed to

allowing any two neurons to link.
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Figure 2.10: Evolution of the retrieval error rate with and without constraint σ = 5 in a
network of side length 20 with 400 neurons, stored messages of order 6 and 1 erasure applied
to form corresponding requests, with 1 iteration.

Figure 2.11: Evolution of the retrieval error rate after one iteration as a function of the
number of stored messages, in a classic Willshaw network with 335 neurons, and in a mod-
ified Willshaw network of side length 20 with 400 neurons, with constraint σ = 5. Stored
messages have order c = 6 and associated queries are obtained by erasing one vertex. The
two networks have close numbers of possible connections.
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Figure 2.12: Minimal connection distance effect on performance in a modified Willshaw
network with local inhibition, made of 2500 neurons. Stored messages are of order c = 4,
and ce = 2 erasures are applied to form corresponding requests. Seven different numbers of
stored messages are tested. The case where minimal spacing σ = 0 corresponds to a classic
Willshaw network.

For a constant number of stored messages, the graph of the error rate as a function of

σ is characterized by a progressive decay down to a minimum, followed by a rapid growth

for upper values of σ, as shown in Figure 2.12.

This can be explained by two phenomena. On the one hand, the prohibition of a growing

part of the possible connections gradually decreases the probability of a "false message",

characterized by the intrusion of a spurious node in the output. The existence of a node that

is connected to all elements in a request, yet is not part of the corresponding message, will

potentially cause an error. In fact, forbidding some connections has the effect of reducing

the number of concurrent nodes susceptible to cause errors. We can estimate the mean

number of concurrent nodes remaining after the choice of k neurons of a message:

Nc(σ, k) = N

(

1−
(

(2σ + 1)2

N

))k

. (2.24)
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Indeed, (2σ+1)2

N represents the probability for a random neuron to be in the inhibition

neighborhood of another previously picked neuron, thus 1−
(

(2σ+1)2

N

)

is the probability for

not being in it.
(

1−
(

(2σ+1)2

N

))k
is the probability for a neuron not to be in any of the

inhibition neighborhoods of k previously selected neurons.

The corresponding number of nodes blocked by the constraint on connections is thus,

on average:

Nb(σ, k) = N



1−
(

1−
(

(2σ + 1)2

N

))k


 . (2.25)

This explains the decay phase in error rate observed for the first values of σ. Let us

note that it comes with a decrease in the diversity of messages, namely the total number

of different messages that can be stored in the network. Following this decay, the decrease

in the number of concurrent nodes has another effect: the reuse of connections by different

messages becomes more frequent as the choice for possible connections gets reduced. This

comes to counteract the former phenomenon and raises the error rate.

The density of the modified network after the storage of n messages can be calculated

by

d = 1−
(

1−
(

c
2

)

Q

)n

, (2.26)

that is

d = 1−
(

1− c(c− 1)

N (N − (2σ + 1)2)

)n

. (2.27)

As for the Willshaw network, we can calculate the probability of error of the modified

network after one iteration of decoding. Given queries where ce nodes have been removed,

the probability of retrieval after one iteration can be estimated by:

Pretrieve = (1− dc−ce)Nc(σ,c−ce)−ce . (2.28)

One can then deduce the probability of error:
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Pe = 1− (1− dc−ce)Nc(σ,c−ce)−ce. (2.29)

Now referring to (2.26), this leads to:

Pe = 1−



1−
[

1−
(

1−
(

c
2

)

Q

)n]c−ce




Nc(σ,c−ce)−ce

, (2.30)

which holds for lower values of σ. For higher values, however, the global density is no longer a

proper estimator of the probability of spurious connections. Given c− ce message elements,

the local connection density between these nodes and the restricted ensemble of allowed

neighbors they can all be potentially connected to, is then higher than the average density

over the whole network.

Figure 2.13 shows how the network density grows faster as messages are stored in the

network, than for a classic Willshaw network with equal number of neurons. This is because

of the decrease in number of possible connections due to the spacing constraint. When

the number of connections of the compared classic and modified networks is close, the two

densities evolve at a similar rate however.

Besides, we observe that the maximal improvement in performance, for given values of c

and ce, does not considerably vary as a function of the network size. This can be explained

by the fact that the minimal distance giving the best performance is approximately propor-

tional to the side of the network. Consequently, the proportion of neurons in the network

that cannot be connected to the c−ce neurons in the request remains more or less the same

for different network sizes, with the optimal minimal distance.

The benefit brought by the constraint on connections tends to be stronger for smaller

numbers of erasures. For erasures of about half the units of the messages, the maximum gain

will be lower, yet for a high amount of erasures the performance may be more noticeably

enhanced by the added constraint. The performance improvement over a classic Willshaw
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Figure 2.13: Evolution of the density for ordinary Willshaw networks with 335 and 400
neurons, and for a modified Willshaw network of side length 20 with 400 neurons and
σ = 5, with stored messages of order 6.

network also depends on the number of messages stored in the network. It reaches a peak for

a certain number of stored messages, and then decays when additional messages get stored.

The maximal improvement tends to be reached earlier during storage for higher numbers of

erasures, as illustrated by Figures 2.14 and 2.15 for a network with 400 neurons, messages

of order c = 6, and numbers of erasures ce ranging from one to five. Figure 2.16 shows that

for a larger network with 900 neurons, this arrangement is respected for the most part, with

the exception of the case where ce = 1, for which the peak in performance improvement

occurs for a lower number of stored messages than for ce = 2 or ce = 3. Figures 2.14

and 2.15 also show that the maximum number of iterations applied during retrieval has a

varying effect on performance improvement, depending on the number of erasures applied

to form requests. With 400 neurons, increasing the number of iterations has a clear effect

on performance for ce = 3 and ce = 4, more so than for ce = 1 and ce = 2.

When comparing networks with the same number of neurons, the greatest performance
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Figure 2.14: Maximal improvement obtained over a classic Willshaw network made of 400
units with messages of order 6, using a single iteration of decoding.

improvement is most often observed over a classic Willshaw network and a number of

stored messages originally giving an error rate ranging from about 40%, up to 70%. The

performance gain is then often close to 15%.
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Figure 2.15: Maximal improvement obtained over a classic Willshaw network of 400 neurons
with messages of order 6, using a maximum of 3 iterations.

Figure 2.16: Maximal improvement obtained over a classic Willshaw network of 900 neurons
with messages of order 6, using a maximum of 3 iterations.
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Chapter 3

Robustness of Deep Neural

Networks to Erasures in a Reading

Task

3.1 Introduction

The attempts to process visual input using artificial neural networks with a serial, hierar-

chical architecture, date back to the seminal work of Hubel and Wiesel that revealed the

visual cortex of mammals was organized in such a way [49,50]. These early findings also led

to new models of reading based on overlapping, compositional neural structures supporting

letters, syllables, words and sentences. A few decades later, the amount of training data and

computing power has raised to a level sufficient to allow training of layered neural networks

on high-dimensional visual data. In particular, the translation-invariant Convolutional Neu-

ral Networks have proven very efficient on a vast panel of tasks. Moreover, they have been

found to mimic the visual cortex in their level of performance, and internal representation

geometry. We experiment with such a network on a word reading task where only a small

percentage of the pixels of a word are displayed, using the same testing conditions as in a
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Figure 3.1: Display sequence used for each word during the reading experiment.

previous psycholinguistic study.

3.1.1 Visual recognition of partially displayed words

An experiment was formerly run on 23 human subjects confronted with partial displays of

words [51,52]. The volunteers were asked to signal through a computer keyboard whenever

they thought they had recognized a word, at display rates always inferior to 30% of the

pixels. They were then to type in the word they believed to have seen. The display rates

came in ascending order, starting at 0.25% and were incremented each time all words in

a sequence had been seen. The first increment was of 0.25%, and the following increments

were of 0.5%. Participants signaled their recognition of all words, accurately or not, before

reaching the 10% mark. The order of the sequence of words was randomly reset at each

display rate increment, with correctly recognized words getting removed from the display

list right away. A fixation cross was displayed for 500 milliseconds prior to the display of

a word, centered on this location, for 350 milliseconds. A white screen was then displayed

for 2000 milliseconds, before repetition of this tri-fold sequence with the next word. Figure

3.1 illustrates this protocol. Word length ranged from 4 to 9 letters, all letters were in

upper-case and the used font was Courier.

The words were chosen to be sufficiently well balanced in terms of length as well as

frequency in the French lexicon. The results of this study showed the conjunct role of
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several parameters in word recognition, which can be arranged in three categories. The first

category is constituted by bottom-up factors, i.e., characteristics of the display triggering

recognition. Other studied parameters are linguistic factors, such as the frequency of a word

and the size of its orthographic neighborhood in the lexicon, and subject-related factors,

e.g., age and level of education. The prominent factors in the specifics of recognized visual

displays happened to be the display rate of the whole word, followed by the specific display

rates of lines and curves in the letters. Regarding lexical factors, the frequency of a word had

a significant impact, with high-frequency words being recognized at lower display rates than

lower-frequency words, on average. Longer words (8-9 letters) were also usually recognized

at lower display rates than mid-length words (6-7 letters), themselves being recognized faster

than short words (4-5 letters). As for the human subjects, age and level of education were

the most determinant factor affecting word recognition performances.

3.1.2 Pre-existing models of reading

One well-known phenomenon involved in the recognition of written letters is the Word Su-

periority Effect (WSE), first evidenced by the work of Reicher [53] and Wheeler [54], in

which human subjects were shown to recognize briefly displayed words more easily than

random sequences of letters. This suggests that images of words may stimulate higher-level,

conceptual feature detector units in the brain, when inconsistent strings of letters trigger

more bottom-up processing. Indeed, when presented with a known word, the brain can

exploit stored visual memory of this word and its sub-parts, e.g., syllables, while it has to

perform some additional low-level exploration of the input when it is either unknown or

simply irrelevant. Several models of visual text recognition have been proposed to account

for the WSE. Among these, the Template Matching Model [55] postulates that several ver-

sions of each object are stored in memory, such as different possible variations of a letter.

An incoming pattern would then be recognized as a known object if it matched precisely

with one of its stored templates. The Prototype Matching Model [56] brings a more flexible
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approach, which no longer relies on exact matching between input and memory elements.

One prototype is stored for each object class, and pattern recognition here occurs when an

input object displays sufficient similarity with one of the prototypes. As a result, such a

system can be robust to changes in font, size and angle, as well as the variations found in

handwriting. Some of the proposed models also use hierarchical treatment to emulate the

combination of bottom-up and top-down processing at work during reading. The Feature

Analysis Model [57] assumes that words-like patterns are detected, then decomposed recur-

sively. The set of sub-parts are then compared with memory elements, and global recognition

happens through distributed classification of components paired with structural rule match-

ing. The Interactive Activation Model (IAM) [58] of McClelland and Rumelhart promotes

a hierarchical treatment of visual text through successive levels associated with strokes, let-

ters, and words. The process is interactive in that top-down retroaction, both excitatory and

inhibitory, operates concurrently with bottom-up flow. For instance, input strokes activate

letters that feature them, and inhibit letters that do not. In turn, letters propagate activa-

tion and inhibitory signal to the words layer. Strongly activated words then stimulate back

the letters they contain and inhibit the other ones. Lateral inhibition also occurs between

elements at the same level. The IAM thus gives a plausible explanation to the Word Superi-

ority Effect, in that recognizing a specific letter in a word is helped by the retroaction from

the activated word, which is lacking in the case of non-words displays. Recent variations of

this model, such as the Bimodal Interactive Activation Model (BIAM) [59], the Bilingual

Interactive Activation (BIA) [60] and its extension BIA+ [61] add language-related levels

on top of the original chain, e.g., lexical and phonological.

3.1.3 Deep Convolutional Neural Networks

As hierarchical processing has become a key aspect in the cognitive models of reading, it has

been the object of lots of interest in the computer science communities. Several attempts

have been made to compute complex mathematical functions through the combination

57



of multiple layers of neurons, such as the Multi-Layer Perceptron [62] and Fukushima’s

Neocognitron [63]. This decades long endeavour has recently given rise to the field of Deep

Learning. Once inefficient on most high-dimensional Machine Learning problems, it has

now established state-of-the-art performances on a vast array of applications and data-

sets, including the majority of visual pattern recognition problems. This late success is due

in part to the raise in computing power available, with the advent of modern Graphical

Processing Units (GPUs) and machine clouds. From the algorithmic point of view, it has

been demonstrated that even shallow feed-forward neural networks could approximate any

possible mapping between sets of inputs and outputs, with a precision depending on the

number of units in the network. This is known as the Universal Approximation Theorem [64].

Deep learners rely on successive layers of formal neurons. The parameters of the net-

work are arranged into matrices of inter-layer connection weights, and vectors of additive

activation biases. Activity propagates from one layer to the next by the product of an input

vector with the local matrix of synaptic weights, the result of which is added to the biases

vector of the output layer before passing through an activation function, typically linear or

sigmoïdal. In the end of the chain, a scalar cost is computed based on the difference between

the output of the network and its assigned objective. This cost is then differentiated with

respect to each parameter. The resulting gradient is used to concurrently adjust the whole

set of parameters with respect to their individual contributions to the loss.

Convolutional Neural Networks are a particular type of deep learners, which rely in part

on classic formal neurons in the upper layers, but use maps of convolutional filters in the

first levels of treatment. These filters are used in order to reproduce the characteristics of

translation invariance as observed in human vision. A visual feature detector, once learned,

will indeed fire regardless of the position of the object in the visual field.

It is also a practical solution for learning features in large images, as it can drastically

reduce the number of parameters necessary in the first layers of the chain of treatment, hence

lowering the amounts of required memory and calculations. In the images data-set used in
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this work, the number of pixels per image exceeds 48.000, and renders irrelevant other

solutions sometimes used to develop invariance to translation, such as providing a classic

Multi-Layer Perceptron with several laterally shifted versions of each training image.

3.1.4 Previous study of the representation geometry and biological plau-

sibility of CNNs

Since their introduction with LeNet5 on the toy data-set MNIST [11], Convolutional Neu-

ral Networks have set a long track of record breaking performances on various Machine

Learning challenges. Notably, the AlexNet [2] model of Krizhevsky et al drew much at-

tention by overcoming its competitors by a large margin in the ILSVRC contest, on the

high-dimensional ImageNet data-set of natural images comprising 1000 categories. Shortly

thereafter, Zeiler and Fergus presented an effort to visualize and understand the deep fea-

ture detectors developed by AlexNet, through the use of deconvolution filters [65]. This

visualization put in evidence that Krizhevsky’s model developped primarily high-frequency

and low-frequency filters, and neglected mid frequencies. Higher-level features also displayed

aliasing. By raising the convolution sampling rate and using smaller kernels, Zeiler et Fergus

found an architecture whose features were exempt of these artefacts, and which performed

better on ImageNet. In this line of work, several attempts have been made to understand

the inner working of a learning CNN and enable visualization of the feature detectors devel-

opped in higher layers. This often involves the gradient ascent search for a bounded input

bias, or image prior, that maximizes the activity of a chosen hidden unit in a trained deep

network whose all other parameters remain fixed [66–68].

Apart from visualizing features to get insights on the inner working of deep networks,

another research approach has been used that compares the activity patterns of deep layers

in CNNs with those of the human visual cortex, in reaction to the same input images. This

method has revealed the relatively high level of functional biomimetism of certain deep con-

volutional architectures, and, therefore, has given some credit to the biological plausibility
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of these systems. Among these efforts, Cadieu et al notably compared the inner activations

of AlexNet and its updated version by Zeiler et Fergus, with activity patterns in the differ-

ent levels of the ventral stream in the visual cortex of human subjects, when both groups

were confronted with the same images of different types of objects, such as car, animal, or

face [69]. In their study, object pose varies among images of the same category, and objects

are cropped from their original image background to be superposed on a randomly selected

one, to ensure that the task would focus on the core recognition of the object [70]. The

representations are typically sampled at the level of the penultimate layers of the studied

models, right before the output level associated with the class representation. Depending

on the model considered, said output would be a grandmother cell layer topped with a

softmax or logistic regression operator [71, 72]. A linear Support Vector Machine is used

to assess the degree of separability of the groups of feature activation vectors associated

with the different classes, using hyperplanes. The study demonstrates that the network of

Zeiler and Fergus has high-level representations that are almost exactly as easy to separate

class-wise as those of the inferior temporal (IT) cortex, where AlexNet is just slightly below.

The inner representations of both models are significantly more easy to part than in-vivo

measurements in V4, the major area preceding IT in the ventral stream.

The study also involves artificial systems with fixed, hand-engineered features, whose

behavior do not appear to resemble as much that of higher levels of the visual ventral

stream on such a complex, high-dimensional images data-base. This underlines the interest

of using a learning process such as gradient descent, that adapts the parameters finely to the

data and task at hand. Several authors have argued in favor of the biological plausibility of

gradient descent, among which [73] showed its mathematical equivalence with a combination

of homeostatic plasticity and Spike Timing Dependent Plasticity (STDP), a corollary of

Hebb’s update rules. Other biologically plausible weights optimization methods have been

proposed, such as Contrastive Hebbian Learning [74] and eXtended Contrastive Attractor

Learning (XCAL) [75], to name but a few.
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As a potential, supplementary indicator of biological relevance, it was put in evidence

by Yamins et al that the performance of a given deep convolutional architecture is corre-

lated with its level of IT prediction, i.e., the better a specific CNN architecture performs,

the more the activity patterns of its deeper layers resemble those of the infero-temporal

lobe of human subjects on the same task [76]. To the contrary, the level of performance of

other types of classifiers does not appear to correlate as significantly with their behavioral

similarity to IT. This suggests that the visual cortex has been shaped by a dual constraint,

having to ensure good recognition performance using a hierarchical cascade of representa-

tions. This hierarchical organization is likely itself the result of an evolutionary optimization

that combines the low computational cost, and efficient reuse of material, resulting from a

factorization of modular visual functions [77].

Following this line of ideas, Khaligh-Razavi et al have shown the importance of su-

pervision to emulate IT behavior using gradient descent learning [78]. Supervision here

designates the method that uses the category of each image to define the output vector that

the network is trained to produce given that image. It is the typical method employed in

most comparative studies of deep networks and IT. A deep network can also be trained in

unsupervised fashion, and is then typically led to reproduce its input image on its output

layer. Such a network is called a deep auto-encoder and, provided the network’s structure

and training algorithm are adequate, can extract features relevant with the structure of the

training data. Because it is not assigned to categorize inputs, however, it tends to learn the

specific details of individual samples in place of the low-frequency patterns that help define

categories, and discriminate between them. As a result, it turns out that weakly supervised

models do not have an activation behavior as category-specific as that of IT, and have a

significantly different representational geometry.

Here one of the brain areas whose function the artificial network is trained to emulate,

is the visual word form area (VWFA), located in the occipitotemporal cortex [79]. However,

the focus is put on comparing human subjects and our network on a functional level, that
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is, determining which variations of the task are associated with a high correlation between

the performances of the two groups, and to the contrary, which specific display settings

reveal a difference in behavior.

3.2 Methods

3.2.1 Data-set pre-processing

Knowing pixels could only be displayed inside one of up to 9 letter bounding boxes of 77*70

pixels, the inter-letter spacing is ignored and each image is represented as a sparse binary

vector of length 9*77*70 = 48.510. For words shorter than 9 letters, a padding is applied

at the right end of the vector, as if the word was 9 letters long but with strictly no pixel

displayed in the bounding boxes corresponding to the last letters. Hence, unlike what was

done during the experiments with human subjects, no centering is applied, the first element

of each image vector always represents the value of the top-left pixel of the displayed word’s

first letter. Knowing that the learning process of the first layers of a Convolutional Neural

Network is designed to develop invariance to translation of input images, it is not altered by

this padding choice. On the other hand, the centering of words displayed to human subjects

was aimed at optimizing conditions relative to visual attention, ensuring that each subject

would have the least ocular effort to do to get a global picture of the shortly-displayed word.

A fixation cross was used before each display to recall the central position of the word.

3.2.2 The convolutional architecture employed

The Convolutional Neural Network used in the experiment contains 3 convolution layers

made of 10, 20 and 40 convolutional feature maps, respectively. Feature kernels are square

grids of dimension 11*11 pixels for all 3 layers. Each of these convolution layers is followed

by a Rectified Linear Unit (ReLU) activation function, which zeroes out negative output

values [80]. The third layer is followed by a 2*2 max-pooling operator which retains the
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Figure 3.2: Architecture of the Convolutional Neural Network used.

maximum value out of every four units, and reduces the vector size accordingly. A dropout

process is applied on the output of the last max-pooling, with an exclusion probability

of 0,25 [81]. This means that for each image, an ever changing, random sample of 25%

of the units are put to zero in the activation vector resulting from the max-pooling. The

3-layer convolutional stack is followed by a perceptron with one hidden layer of size 70

with a sigmoïd activation, on which a dropout of 50% is applied. The last fully-connected

layer finally connects to the output. A soft-max activation is applied on top of it, to bring

output vectors closer to 1− of −K codewords. The output size is equal to the number of

classes considered, which is increased progressively during learning. Figure 3.2 shows the

architecture of the Convolutional Neural Network used.

Sigmoïdal functions limit activation to one, and are practical in the top layers to match

with one-zero objective vectors. ReLU, by allowing single-unit activations up to infinity,

favorize the activity to be borne by a small sub-set of the units of a layer, for each input.
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This promotes sparsity of activation patterns. Both max-pooling and dropout also promote

sparse activations at different levels in the network. Although the output of ReLU and max-

pooling operators are deterministic while dropout is stochastic, they all help concentrate

the energy on a sub-set of the units at various levels, for all images. As a result, each image

is processed by a sub-part of the network’s parameters, and in the training phase only this

set of active parameters gets updated in reaction to said image. In the end the trained

network is an assembly of processing channels sharing weight values [82].

These operations are part of a set of methods called regularizations, and have been

retained by the community of Deep Learning through trial and error. They all favor the

performances of deep convolutional classifiers, as they are prone to combat over-fitting, the

propensity of a learning system to become overly specialized on its training data to the

point of failing to generalize to previously unseen samples. To the extreme, an over-fitted

system would have learned a definition of a class as the very set of representative examples

it would have been trained with, and would fail to recognize even a very slightly distorted

version of one of these. To the contrary, one would want a classifier to develop an abstracted

canvas, and be able to extrapolate a category under different kinds of variations, such as

distorsion, scale, rotation, translation, and lighting, but also the differences that are found

between two indivuals of a species or two models of cars. In statistics, cross-validation is a

commonly used method aimed at checking how a model’s parameters inferred using a part

of the available data translate to other parts [83]. In Deep Learning, regularization methods

based on sparsity emulate assemblies of classifiers inside of a single network, exploiting the

same logic as cross-validation. Instead of having a global learner that sees the whole set

of samples and learns a holistic, reductive view of it, every step of learning is performed

by a unique channel, which in the end has only been confronted with a reduced portion of

the data. The different channels are averaged smoothly through their weight-sharing. This

approach ensures the extracted features hold valuable information as to the common traits

shared by a category, as well as those that more specifically distinguish it from other classes.
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Figure 3.3: Displays of the word ’RAPPEL’ at 1%, 2% and 3% of the pixels.

The network was programmed using Python along with libraries Theano [84] and Keras

[85]. Training involves newly generated images obtained through random erasures of pixels

from the corresponding full displays of the words. For every given iteration, each training

sample is assigned an erasure probability p chosen randomly between 1% and 99%, all values

being equally probable. Once this target rate is fixed, each pixel of the fully displayed word

image gets erased following a Bernoulli distribution of probability p. Figure 3.3 shows an

example of a word plotted at low display rates.

3.2.3 Training procedure

To ensure convergence towards a satisfyingly low classification error rate, the network was

trained incrementally, starting with 100 words. Every time the error rate on a random test
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set got under 15%, 100 new words were added. This is similar to human learning, in that

the vocabulary is expanded step-by-step. The procedure was repeated until the number of

words reached 3000. The output layer was made large enough from the start to handle these

3000 classes.

To explain the necessity for training the network incrementally, let us consider a classi-

fication problem with only one class. The trained neural network would then only be able

to output the single right answer, thus all possible configurations of the synaptic weights

would be considered solutions. Add in a second class, and then only a region in the space of

weights configurations would contain satisfying solutions to the classification problem. Add

a third class, and the solutions are now a smaller region of the parameters space, contained

in the previous region of solutions to the two-classes problem. Add in hundreds of other

classes to the problem, and the right configurations of the weights are now localized in a

considerably smaller region of the space. This explains why it can be practically difficult

to bring a network to converge to a solution to a problem with a very large number of

categories, starting out from a random initialization of the weights. Incremental augmenta-

tion of the number of classes allows to guide the network progressively towards a solution

by refining the search area, knowing that a weights configuration solving the 3000-classes

problem would necessarily also be a solution to the partial problems with 2000, 1000, and

100 classes.

The frequencies of words in the lexicon were used to create the training sequence. The

number of occurrences of each word in the sequence was, thus, calculated as the floor integer

value of the ratio of its lexical frequency over that of the least frequent word present. This

way, even the word with the lowest frequency would be presented at least once, while more

frequent ones would be seen several times. The resulting sequence would be repeatedly fed

to the network, each time in a newly shuffled order, until the required performance would

be attained. The average display rate of each word occurrence would be chosen as a random

integer percentage ranging between 1% and 99%. At each augmentation of the list of words,
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the training error rate would temporarily raise back to a high level, then slowly decay again.

We found that, over the long haul, the decay in error rate after each update tends to be

slower and require more iterations, when the network has already been trained on numerous

words.

3.2.4 Testings to study the effect of the different letter feature types on

recognition

In the former psycholinguistic study on the same type of written data, the impact of certain

component features of letters on recognition was analyzed. The six feature types considered

were straight lines, curves, terminators of essential lines, terminators of serif segments,

crossings of essential lines, and crossings between essential lines and serifs. As every single

random display presented to subjects in the experiments had been recorded, the capacity

of the individual display rates of the different feature types to explain word recognition

was studied using logistic regression. Here we use another approach as our trained network

can be queried with new data without restraint. Hence, we observe the evolution of the

recognition performance starting with a blank screen, and adding pixels randomly across the

word pixel map. In addition to displaying pixels randomly in the word, we also experiment

displaying random pixels in locations associated with one type of features, specifically. We

repeat this process separately for all six types of features. Given that the different types of

features typically represent highly varying proportions of the pixels of a word, we compare

the average recognition for the different feature types at equal number of shown pixels,

equal feature type display rate, and equal word display rate. To mitigate the effect of word

frequency in this study, tests are performed on a sample of 200 words, of which 20 have very

low frequency (<10), 20 are very frequent (>50) and the remainder 160 have intermediate

frequency.

67



3.2.5 Study of the learned feature detectors and associated activation

patterns

Measuring the mutual information between intermediate layer neurons and

classes

Referring to the concepts from Shannon’s theory of information [86], the entropy of a discrete

random variable X is the expected surprisal associated with it, given by:

H(X) = −
∑

x∈X
p(x) log p(x) (3.1)

where x represents a possible value that X can hold, and p(x) is the probability of the

event (X = x). Entropy is expressed in bits of information provided the logarithm in (3.1)

is in base 2. It is maximal if all possible values x of X are equally probable.

The conditional entropy of a given random variable X knowing the value of another

variable Y, is defined by:

H(X | Y ) = −
∑

y∈Y
p(y)

∑

x∈X
p(x|y) log p(x|y) (3.2)

H(X|Y ) quantifies the amount of uncertainty remaining as to the outcome of X once

knowing that of Y.

The mutual information between two variables X and Y is, to the contrary, what un-

certainty is removed from the entropy of one variable when the other is known:

I(X;Y ) = H(X)−H(X|Y ) =
∑

x∈X

∑

y∈Y
p(xy) log

p(xy)

p(x)p(y)
. (3.3)

Basically, it represents the quantity of information that X holds about Y and that Y

holds about X [87]. It is worth zero if X and Y are independent. Its maximum value is

min(H(X), H(Y )) and is reached when one of the variables is totally redundant given the
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other.

The mutual information between the activation of feature detectors in a given layer of a

neural network, and the class of the input, indicates how categorical this layer is. Here we

assess the mutual information between the activation patterns of the hidden layers of the

network and its output layer representing the class, using empirical measures of p based on

observed frequency. Estimators for these magnitudes are calculated using the formula:

Î(X;Y ) =
1

N

N
∑

i=1

log
p̂(xiyi)

p̂(xi)p̂(yi)
. (3.4)

where X is the variable associated with the binarized value of a single neuron randomly

sampled from the layer of interest, and the Y variable represents the class, whose value is

integer and ranges from 0 to 2999. The values x are obtained by binarizing the activity

of neurons using a 0,5 threshold. The value of Î is calculated by producing ten random

displays of each of the 3000 words, and recording the activations of each layer in reaction

to these images. Denoting n the number of neurons in a layer, this results in 30000 ∗ n

measurements for the pair (X;Y ), as X represents the value of any given neuron in the

layer. That is, 100.800.000 measures for the first convolutional layer, 165.000.000 for the

second one, 259.200.000 for the third one, and 2.100.000 for the last, fully-connected hidden

layer with 70 neurons. Given these numbers, the calculation of (3.4) can be tedious, hence

for all convolutional layers it is made on a random subsample of N = 2.000.000 pairs of

neuron activation and class value. For the fully-connected hidden layer it is made on the

whole set of 2.100.000 measurement pairs, without sub-sampling.

Visualization of the internal representation geometry using t-SNE embedding

To study the geometry of representation spaces at the different levels of the deep network,

visualization tools can be useful to get an idea about how the density of samples is spread

across these high-dimensional systems. Recently developed embedding methods are very
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interesting tools in order to display complex, high-dimensional data-sets across two or three

dimensions. Among these, t-SNE [89] is particularly efficient at producing maps where the

groups of points associated with the different classes are easy to identify, without recourse to

supervision. It relies on the approximate reproduction, in the low-dimensional map space, of

the distance relationships between data points in the original, high-dimensional referential.

To this end, original distances are first converted into probabilities of the points to be

neighbors of one another, or similarities.

The similarity of point j to point i in the space of the data-set is expressed as:

pj|i =
exp(−‖xi − xj‖2/2σ2

i )
∑

k 6=i exp(−‖xi − xk‖2/2σ2
i )
, (3.5)

Similarities between map points are formulated the same way. Here the variance is set

to 1√
2
, giving:

qj|i =
exp(−‖yi − yj‖2)

∑

k 6=i exp(−‖yi − yk‖2)
, (3.6)

In both referentials, only similarities between different points are considered , and pi|i =

qi|i = 0 for all i. Relying on these two definitions, a cost function is calculated as the sum

of Kullback-Leibler divergences between distributions pj|i and qj|i over all points i, j of the

data:

C =
∑

i

KL(Pi‖Qi) =
∑

i

∑

j

pj|i log
pj|i
qj|i

, (3.7)

where Pi and Qi are conditional probabilities defined over all other points given xi and

yi, respectively.

Map points coordinate vectors y are updated iteratively in a gradient descent proce-

dure aimed at minimizing this cost function, and thus at making neighborhood probability

distributions Qi in the map space as close as possible to distributions Pi from the data
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Figure 3.4: Evolution of the average word recognition rate as a function of the display rate.

space.

In Pi, values of the standard deviations σi are adapted to the local densities around

data points xi, where values of σ should be smaller in denser regions of the input space

and larger in sparser regions. A given value of σi defines a specific neighborhood probability

distribution over all other data points given xi.

3.3 Results

3.3.1 Display rate effects

Similarly to human subjects, the trained network recognizes the majority of words correctly

for display rates superior to 5%. Figure 3.4 shows the evolution of the average success rate

as a function of the display rate.
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Figure 3.5: Average word recognition rate as a function of lexical frequency for three display
rates.

3.3.2 Relationship with lexical factors

frequency

Word frequency has a very notable impact on recognition. Frequency values correspond to

the average number of occurrences of each word per 1.000.000 words measured in a corpus

of 50.000.000 words [88]. We study the relationship between word frequency and recognition

using three display rates, namely 1%, 5% and 10%. Each word is first presented 10 times for

each display rate to calculate an average success rate. Figure 3.5 shows the three regression

curves obtained by averaging on (frequency, success rate) pair samples.

Success rate seems approximately proportional to the exponential of the word frequency.

Very frequent words (f>50) are very well recognized even at 5% of pixels. For 1% displays,

rare words (f<10) are recognized less than 20% of the time on average, when very frequent

words are recognized about 70% of the time.

length

Word lengths in experiments range from 3 to 9. We find the error rate to be higher on

average for longer words. Also, the average length difference between the accurate word and

the response of the network is higher for longer words.
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Figure 3.6: Average word recognition rates for feature-type specific displays, as a function of
the specific display rate (top-left), overall display rate (bottom-left), and number of pixels
displayed (top-right).

Table 3.1:
AVERAGE RESPECTIVE PROPORTIONS OF THE SIX FEATURE TYPES IN THE PIXELS OF WORDS.

Feature type Proportion

Straight lines 42.12%

Curves 26.54%

Terminators of essential lines 0.25%

Terminators of serif segments 20.47%

Crossings of essential lines 2.85%

Crossings between essential lines and serifs 7.78%

3.3.3 Effects of feature types

Figure 3.6 shows the network’s success rate when pixels are displayed randomly in the whole

word or in specific feature types, as a function of the number of shown pixels, the feature

type display rate, and the word display rate, respectively. This representation is motivated

by the highly-varying proportions of pixels in each feature type. Table (3.1) gives the average

proportions of pixels in the six feature types in the data-set.

On Figure 3.6, curves associated with the six feature types are limited to the right

by their respective proportions in words, and thus their maximum number of pixels. All

73



curves are characterized by a quick increase in success rate with the first steps of display

augmentation, soon followed by a slow progression, or stagnation in the case of the overall

word displays. Interestingly, this is particularly evident in Figure 3.6 where the progression

rate of good recognition is the most similar between the graphs of the different feature

types, whereas the number of pixels associated with a given abscissa varies widely from one

feature type to another. Indeed, all curves enter the slower progression phase around the

5% mark of feature-specific display rate. Displaying a specific feature type at 10% is usually

enough to get the information it holds about the word, as further increasing this display

rate does not increase performance significantly. This remains true whether the feature type

accounts for 40% of the pixels of the word, or 10%.

As is the case for human subjects, lines are hereagain the feature type that is the

most important for good recognition [52]. Crossings between essential lines and serif come

in second, followed closely by curves. The previous study of human recognition on this

task evidenced that curves were the second most determinant feature type in triggering

recognition, with crossings between essential lines and serif coming in third. In both studies,

though, curves and crossings between essential lines and serif and curves appear to have

very comparable effects.

3.3.4 Observations on the geometry of representations and the informa-

tion carried by their activation patterns

Mutual information

The calculation of the mutual information between the activity of single randomly sampled

neurons in the hidden layers and the index of the class, using formula (3.4), gives the values

in table (3.2).

This shows how the activation of a single neuron in the hidden layer of the network

brings more and more information about the class of the image as we ascend the layer
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Table 3.2:
AVERAGE MUTUAL INFORMATION BETWEEN NEURONS IN THE HIDDEN LAYERS AND THE CLASS
INDEX.

Layer Mutual information per neuron

with the class layer

Convolution 1 0.02396 bits

Convolution 2 0.11995 bits

Convolution 3 0.27970 bits

Fully-connected layer 0.34551 bits

hierarchy. The activity of neurons in a given layer is more class-specific than that in the

layer under it.

Embedding

Figure 3.7 shows a two-dimensional embedding obtained using, as input data, last feature

layer activation patterns for words of length seven, eight and nine. These activations result

from stochastic partial displays of the pixels of words, where several different displays are

generated for each word. Words are grouped into five clusters based on their orthographic

proximity, so that words in the same cluster share at least four common letters. The letters

in common are often a suffix, like -VRIER or -ATION, but can also be present in varying

orders among words of a group, as the letters E,E,I,R,S in GRISETTES and BRASSERIE.

The group of words containing letters V,R,I,E,R is concentrated in the down-left corner,

whereas groups M,E,N,T and E,R,I,E,S are more spread across the center of the graph.

Groups A,T,I,O,N and especially I,L,L,O,N are split in several parts. Some regions contain

close-by words belonging to different groups, like COTERIES, RILLONS and OUVRIERS

at the right of the graph, that all share letter O and pair RI but in different parts of

the word, and the final S. Also, AGACERIES and SERREMENT, in the left part of the

figure, share the partially overlapping sequence ER*E, with an I or R in between that

have a vertical line in common. This leads to think that the learned feature detectors at

the network’s penultimate level of representation, respond to associations between specific
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Figure 3.7: t-SNE visualization of the last hidden layer activation patterns resulting from
input words grouped in 5 clusters. Each cluster contains words with at least 5 letters in
common, e.g., PAPILLON and MANILLON.
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Figure 3.8: 2-dimensional visualization of the network’s last hidden layer activation patterns
associated with words of variable lengths, obtained after learning a t-SNE embedding for
100 iterations. Seven groups of words of lengths three to nine are displayed in different
colors.

letters and approximate positions in the word.

Figure 3.8 shows an embedding where words are colored by length from three to nine.

Words of length three and four are clearly concentrated in the upper part of the graph, and

long words of length eight and nine are more present in the lower part. This shows that

length information is maintained in the penultimate level of the network and plays a role

in the classification.
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3.4 Discussion

3.4.1 Reproducibility of lexical effects relative to word frequency

The method used to reproduce the effect of lexical frequency during learning is equivalent

to presenting a learner with a text where word order is random, but where word occurences

follow a distribution close to that found in real text. As such the learning process holds

reasonable cognitive plausibility. As is seen in human subjects, the display rate necessary to

trigger word recognition is highly dependent on word frequency. Very frequent words can be

accurately classified at lower display rates than rare words. This brings evidence that the

frequency effects found in psycholinguistic experiments can be reproduced without taking

other aspects into account, like semantic relationships between words. Indeed, the size of

the semantic neighborhood of words is known to be correlated with their frequency, and

could therefore be suspected to play a role in the ease of reading frequent words. However,

presented experiments reveal that such semantic information is not necessary to reproduce

this effect.

3.4.2 Role of lexical factors

Experiments reveal that the relative impacts of the different feature types on the perfor-

mances of the deep convolutional network and of human subjects are comparable. One may

argue that feature types that have a strong impact, namely lines and curves, do so because

they account for more surface in the letters. Pixels randomly displayed in these letter parts

therefore tend to be spread apart more, and give more indication to the viewer, human

or artificial. However, crossings between essential lines and serifs represent a much smaller

part of the letters, and still have an influence comparable to that of curves. This can be

due to the simple fact that these parts are what make letters most distinguishable from

one another, i.e., it can be a factor inherent to the data-set. Still, this shows that deep

convolutional nets are sensitive to this information, like humans are.
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To the contrary of human subjects, the deep net shows a preference for shorter words.

We note that, even though the first convolutional layers of the network detect small and

mid-sized shapes independently of their location in the image, the fully-connected layer

captures the global organization of the image. Since words pixel vectors are arranged so as

to start with the bounding box of the first letter, the network is trained more for the first

letter positions, and only sees the rightmost part of its input vectors activate for longer

words. It is thus less trained on the right part of the 9 letter spots, which explains its lesser

performances on longer words.

3.4.3 Comparison with other models

CNN is a model of vision and does not contain, in its current form, specific processing

strategies for written text. Other models of reading, listed in Section 3.1.2, explain how

full letters are processed, and can provide robustness to shifted letter positions or elastic

distortions. No feedback processing occurs from upper levels to lower ones, as in the FAM

and IAM models, during the recognition phase. Top-down interaction only happens during

the error gradient back-propagation phase. No lateral interaction occurs between detectors

at the same level, unlike IAM. The principal type of distortion handled by the presented

neural network is partial erasures of pixelated letters. This is because of the training data-

set used, and it has been shown that convolutional networks can perform well on distorted

text [90]. Moreover, our study of the internal geometry of the hidden layer representations

using embeddings reveals that the position of letters in a word is less important than their

simple presence. This suggests that the model could have some degree of robustness to

typoglycemia and be able to recognize words with scrambled letters [91].

3.4.4 Major differences with human recognition behavior

It is crucial to note how deep networks that perform image classification at near human-level

performance on a given data-set can still behave very differently on new image variations.
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Adversarial examples are a notorious instance of this phenomenon [92]. Such examples

can be obtained using gradient descent on the pixels space, with a cost function that pro-

motes misclassification while penalizing large modifications of pixel values. In the end, the

original and modified images are barely distinguishable to humans, yet the neural network

that could classify the original ones accurately is fooled by the new examples. To the con-

trary, by performing gradient ascent on the pixels in order to maximize the activation of a

class, one can create a synthetic image that resembles nothing like the actual instances of

the class. These inputs, that can look very much like random noise, still activate strongly

the targeted class neuron, meaning they are classified with very high confidence by the net-

work [93]. These phenomena are sometimes interpreted as proof that the structure of deep

learning networks and their training process are fundamentally different from the working

of the brain. One may also argue that current neural networks are simply not trained on

enough data. When trained on ImageNet, artificial classifiers only get to see hundreds of

discrete samples of a given class, where human subjects have typically been confronted mul-

tiple times with continuous streams of images from instances of this category, under varying

lighting, pose and background. Of course, humans can create a new mental category out of

a few discrete examples [94]. Even in this case they would not associate noise-like inputs

with this category, the way deep networks do.

So maybe, the same way currently available data-sets have permitted to reach near

human-level performance, much larger data-sets consisting of multiple videos for each ob-

ject category could bring fully human-like behavior on most images, to the level of the

degree of confidence in one’s decisions. Such data-sets could obviously be gathered nowa-

days, but using them will require considerable memory and computation resources. For the

moment, these odd false positives and false negatives offer room for investigation and trial

of new training techniques that would bring more human-like behavior. Hubel and Wiesel

determined the approximate shape of the preferred input of the orientation filters at the

low levels of the visual cortex. For the most part, precise estimations of the visual inputs
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maximizing the reaction of neurons is lacking for the deeper levels. Such data would bring

a possibility to diminish the gap between deep networks and the brain at the intermediate

representation levels.

3.5 Conclusions

This study has corroborated findings from the former psycholinguistic studies where human

subjects were confronted with the same data-set of partially displayed pixelated words.

Namely, many of the display and lexical factors correlated with good recognition in the

previous study were found again to play a significant role here. The presented artificial

neural network indeed performs better on average at higher display rates, and necessitates

significantly less pixel information to recognize frequent words than rare words. Moreover we

find lines, curves and crossings between essential lines and serif to be the most important

letter parts for recognition, as was the case for human subjects. To the contrary, some

previous work found terminators and line junctions to be more important. We conclude

that the three prominent feature types here may result from the nature of the data-set,

and particularly from the pixelation process. Secondly, the fact that the deep network

reacts more strongly to the same feature types as humans supports the hypothesis that its

working has at least some similarity with that of the brain. The initial quest for performing

computations using layered neural networks was motivated by the same neuroscientific

discoveries that inspired the main models of reading. As a result, although some of their

key features vary, e.g., top-down retroaction and lateral interactions, the principal Deep

Learning architectures are not in opposition to these models. Integrating these top-down and

same-level interactions in the current model would be an interesting area of investigation.

Deep networks do not recognize good images altered by a slight shift in pixel values, but

they recognize synthetic images with the highest possible certainty, that look nothing like

any real-world category instances. It is not clear yet whether these differences are due to
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the training procedure and amount of training data, or to the structure of these neural

networks. Near-human performance is now achieved by Deep Learning networks for many

data-sets. The Universal Approximation Theorem states that with a high enough number

of neurons, any mapping can be achieved between pairs of vectors. Consequently, one could

expect to reproduce the same associations between visual objects and categories as in a

human mind using current algorithms, provided the right data, memory and computing

power were available. This does not mean the visual input would then be processed and

stored as efficiently as it is by the brain. Also, it is not certain that such an artificial learner

would generalize sufficiently well to new data. We can legitimately assume that the working

of current deep networks is different in nature to that of the visual cortex, although some

aspects of it are more questionable than others. Gradient descent may not be the definitive

tool for training, no more than convolutional filters and the commonly used regularization

techniques. Hierarchy, though, may be crucial. It is indeed a key characteristic of mammal

sensory systems. Its computational and material efficacy has been proven, and is likely one

of the reasons why evolution shaped our brains this way [77].
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Chapter 4

Assembly Output Codes for

Learning Neural Networks

Neural network-based classifiers usually encode the class labels of input data via a com-

pletely disjoint code, i.e. a binary vector with only one bit associated with each category.

We use coding theory to propose assembly codes where each element is associated with

several classes, making for better target vectors. These codes emulate the combination of

several classifiers, which is a well-known method to improve decision accuracy. Our experi-

ments on data-sets such as MNIST with a multi-layer neural network show that assembly

output codes, which are characterized by a higher minimum Hamming distance, result in

better classification performance. These codes are also well suited to the use of clustered

clique-based networks in category representation.

4.1 Introduction

Automatic learning systems are different from storing systems in that they aim at gen-

eralizing to unknown inputs. This happens through the extraction of the core features of

learned data, and works as long as the unknown data to extrapolate to follows a similar
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distribution. The system thus learns a dictionary of features that is targeted to be well

suited for the task at hand, e.g. classification. These features are meant to correspond to

the most relevant building blocks underlying the training inputs, that unseen data samples

would likely also be made of. In supervised Deep Learning networks, an output is calculated

through a pipeline of vector-matrix products between input data and connection weights,

intertwined with non-linear mathematical operators. Each level of the network is associated

with a set of features that is more and more abstract as one moves towards the upper layers.

During learning, an error is calculated from the difference between the resulting output and

an objective vector specific to the class of the input. A gradient is then calculated from

this error for the whole set of connection weights, and the hierarchy of features thus gets

optimized through gradient descent for the task of classifying the data-set examples. Com-

bining classifiers has been an extensive area of research for a few decades [95] and several

algorithms have been shown to bring improved decision by leveraging the diversity brought

by an assembly of systems [96–98]. Among these methods, boosting is a way to combine

opinions of experts by weighting them based on their respective estimated accuracy. These

base classifiers can be differentiated using various strategies, like training them on various

subsets of the data or by providing them with different sub-parts of an ensemble of learned

feature detectors. Another way to combine classifiers is to split the problem into a set of

binary problems. A base classifier will then focus on classifying inputs between two of the

initial classes, as in One-Vs-One (OVO), or between one class and the rest as in One-Vs-All

(OVA). A way to implement these strategies is to provide a classifier with objective vectors

that are not always specific of a single class but can be associated with a set of classes. Much

attention is paid here to the Error-Correcting Output Coding (ECOC) method, which splits

a multi-class problem into several two-way classification problems between meta-classes. It

is shown in [99] that ECOC can reach a better classification performance on an image data-

set as compared to other multi-class methods. The approaches presented here are derived

from ECOC for multi-class problems. These methods allocate assemblies of output neurons
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to the different input classes, with potential overlap between the codes of two classes. A

clustering of the output layer is also applied, with only one active neuron per cluster for

each target vector, and a local soft-max [100] process applied in each cluster at test time.

The soft-max operator has the effect of normalizing to 1 the sum of energies of output

neurons in each cluster. Experimental results suggest that the number of classes sharing an

output node impacts performance, and so does the minimal distance between class codes.

This finding is maintained when output codes are repeated so as to ensure that the differ-

ent tested networks have very similar numbers of parameters. The outline of this chapter

is as follows. Section 4.2 provides theoretical considerations on the advantages of different

output codes. Section 4.3 explains the methodology used in training the networks. Section

4.4 presents experimental results.

4.2 Coding theory

Prior to experimenting with assembly codes as output for neural networks, a theoretical

analysis can provide insights about which assemblies should perform better. Consider a

classifier with P classes to identify. The simplest way to make the classifier express its

decision is to assign a single output node (the so-called grandmother cell) to each class. We

propose to replace these P nodes with n =
(

P
m

)

nodes representing all the combinations (or

assemblies) of m classes among P . Let us define the coding rate R of the corresponding

code as the ratio between log2(P ) and n:

R =
log2(P )
(

P
m

) . (4.1)

To calculate the minimum Hamming distance, let us consider any two classes among P .

The number of assemblies that contain neither one nor the other is
(

P−2
m

)

and the number

of assemblies that contain both is
(

P−2
m−2

)

.

The minimum Hamming distance of the code is given by n minus the latter two terms:
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dmin =

(

P

m

)

−
(

P − 2

m

)

−
(

P − 2

m− 2

)

. (4.2)

The product of R and dmin, called the merit factor F , is deduced as:

F = Rdmin =
2m(P −m) log2(P )

(P − 1)P
. (4.3)

and its maximal value is obtained for m = P
2 :

Fmax =
P log2(P )

2(P − 1)
. (4.4)

The corresponding minimum distance may be expressed as:

(dmin)max =
P

(P − 1)

n

2
. (4.5)

For instance, with P = 10 (e.g. for MNIST classification), the best code involves quin-

tuplet assemblies and offers a minimum distance of 140 and a merit factor of 1.84, with

n = 252. If quintuplets are replaced with couples, the parameters become: dmin = 16 and

n = 45. Note that the classical output code (one node per class), still with P = 10, has a

minimum distance of 2 with n = 10.

Now we propose that the n assemblies be distributed among c clusters such that each

class appears once and only once in each cluster. Therefore, there are l = P
m nodes in each

cluster, assuming that P is a multiple of m (Fig. 1). This structure has two advantages.

Firstly, it complies exactly with the clustered clique-based associative memory proposed

in [14] which offers the possibility to store a number of patterns proportional to l2 (for larger

sought diversities, the sparse scheme proposed in [42] may be contemplated). However,

the optimal value I = 2 (as deemed by the optimization of F ) is too low for a clique-

based implementation and a trade-off has then to be found. For instance, l = 5 (that is,

m = 2) seems a good choice for P = 10. The second advantage is that a cluster containing
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Figure 4.1: The output layer of the classifier is organized in c clusters, each one having l
nodes. These l nodes represent disjoint combinations of m classes among P with l = P

m .

disjoint assemblies and therefore probabilities, through the soft-max principle [101], may be

rigorously used for both learning and testing.

4.3 Methodology

4.3.1 MNIST

MNIST [102] is a data-set of grey-scale images of handwritten digits that is widely used

in Machine Learning as a benchmark. The data-set is made of 60.000 images targeted for

training and 10.000 test examples. Many published works use the first 50.000 examples from

the training set to actually train the network, saving the last 10.000 examples to perform

cross-validation. Some papers however present networks trained on the whole set of 60.000

training images, as is the case in [103]. Here the 50.000/10.000 split of the training set is

used for the experiments of section 4.4.1, whereas in sections 4.4.2 and 4.4.3 the networks

are trained with all 60.000 examples. Figure 4.2 shows a sample of images from MNIST.
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Figure 4.2: Sample of images from the MNIST data-set.

4.3.2 SVHN

SVHN [104] is a data-set made of color images of digits captured in real-world situations, e.g.

house numberings. As for MNIST, the number of classes is 10. It contains 73.257 training

images and 26.032 test images. We use 60.000 examples from the train set to actually train

our networks, and the remaining 13.257 serve for cross-validation. Figure 4.3 shows a sample

of images from SVHN.

4.3.3 Assembly codes

Couple cells are a method we introduce for encoding the class using a distributed code.

Each cell no longer reacts to a single class but is specific of a couple of classes. Hence

since the experiments are performed on data-sets with 10 classes, there are 45 possible

couplings a given output neuron can be associated with. The whole set of 45 couplings
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Figure 4.3: Sample of images from the SVHN data-set.

is used here. Moreover, it is possible to partition these 45 couplings into 9 clusters of 5

couple cells where each individual class is represented exactly once in each cluster. This

way the soft-max methodology can be applied inside of every cluster, between 5 competing

hypotheses that are mutually exclusive. Quintuplets are yet another code where each neuron

is associated with a combination of classes, this time 5 among 10. The same approach as

for the couples is used, by using all 252 possible quintuplets and partitioning them into

126 clusters each containing 2 complementary quintuplet cells. The first two important

factors considered to choose assembly codes are usability in a clique-based architecture and

the merit factor. Alongside with the grandmother cell (our baseline), couples of classes

(best trade-off cliques/merit factor) and quintuplets of classes (best merit factor, but larger

output network) are tested. But only comparing these parameters is not enough, because

one could argue that couples and quintuplets work better because they have a larger number

of parameters for the last layer of the neural network. To avoid this we also train networks
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Table 4.1:
Summary of the tested assembly codes. Assembly code * number: Code repeated number times. 1: 252 non-repeated
clusters

Assembly code n m l c F dmin

Grandmother cell (1GM) 10 1 10 1 0.66 2

Couples (1C) 45 2 5 9 1.18 16

Quintuplets (1Q) 252 5 2 126 1.84 140

Grandmother cell * 25 (25GM) 250 1 10 25 0.66 50

Couples * 6 (6C) 270 2 5 54 1.18 96

Grandmother cell * 126 (126GM) 1260 1 10 126 0.66 252

Couples * 28 (28C) 1260 2 5 252 1.18 448

Quintuplets * 5 (5Q) 1260 5 2 630 1.84 700

Special Couples (SC)1 1260 2 5 252 1.18 448

using repeated codes to reach output length of equal or comparable size. This repetition

allows us to make a fair comparison between networks with virtually the same number of

parameters in spite of using different output codes. Couples of classes have an interesting

characteristic, in that there are a very large number of different possible ways to partition

45 couple cells into 9 clusters, each featuring the 10 classes. Therefore it is possible to design

an output layer of 1.260 couple cells parted in 252 clusters where no cluster configuration is

repeated twice. During the training phase the categorical cross-entropy is used as the loss

function. For classification a majority voting is done where each active output node votes

for its associated set of classes. The assembly codes are summarized in table 4.1.

4.3.4 Neural network settings

For tests, the neural networks used are multi-layer perceptrons. Two architectures of network

are used, one that is shallow and the other deep. The shallow network has only one hidden

layer, while the deep network has five hidden layers. The results are presented by the mean

and standard deviation over ten executions with different weight initialization, noise and

image order. In sections 4.4.1 and 4.4.2 the neural network is shallow and its only hidden
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layer is composed of 2000 feature units. As it is applied on MNIST, its number of parameters

is 1.568.000+2000*n. Training lasts for 200 epochs with a constant learning rate of 0.1.

The model "baseline + noise" from [103] is chosen as a base for the deep network used in

sections 4.4.3 and 4.4.4. This is a network that gets close to the current state-of-the-art in

the task of permutation-invariant MNIST. It has 6 layers, where the first 5 of them are fully

connected layers (with sizes 1000-500-250-250-250) and the last one is an output layer. At

each connection layer, between the input and the activation, a batch normalization [105] and

a Gaussian noise with mean 0 and standard deviation 0.3 are used. To finish the connection

layer, a rectifier activation is used. The output layer has the length of the output code. A

batch normalization is applied between the input and the activation and as in the case of

the shallow network it uses a per-cluster soft-max activation. The number of parameters of

each network is given by the formula: 1.000*(input length) + 750.000 + 250*n. This means:

1.534.000+250*n for MNIST and 3.822.000 + 250*n for SVHN. This deep network has 150

epochs to learn where it optimizes the weights with the ADAM optimizer [106], using an

initial learning rate of 0.002 that has an annealing phase of 50 epochs where the learning

rate decays linearly to 0.

4.4 Results

4.4.1 Experimenting with random codes

Assigning the same number of output nodes to the different classes may not be ideal for a

real-world data-set. Following this idea, it may be interesting to allocate different amounts of

the output material to the different combinations of classes, as for instance the distributions

of examples can be more correlated in a subset of classes than on average in the whole

data-set. An experimental scheme inspired from the quintuplet configuration is tested, with

252 output neurons parted in 126 clusters of size 2 where a soft-max is applied. Instead

of rigorously associating an output cell with each possible quintuplet however, ten binary
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Figure 4.4: Influence of the proportion of ones in the output target vectors on classification
error rates.

output codes are generated following a binomial distribution. This distribution is modulated

to make vary the average number of ones in the output codes. Used as output for a shallow

network, the average number of ones has an impact on classification performance, as shown

by Figure 4.4.

We see here that the error rate is maximal when there are less than 10% of ones in

the output codes. It decays with higher values down to a minimum reached when there

are around 60% of ones. Above that proportion, the error rate raises again. The minimal

distance is obtained when generating as many ones as zeros on output as shown on Figure

4.5, whereas the classifier performs better with output codes made of 60% up to 80% of

ones. The error rate is also about 1.7 times lower for 90% of ones as compared to the case

with 10% of ones, while the minimal distance is the same in both cases. This asymmetry is

due to the way the class label is selected at test time, where a majority voting procedure is

applied in which each output unit getting a value of 1 increments the score of all classes it
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Figure 4.5: Measured mean Hamming distance between generated class codes depending on
the proportion of ones.

is associated with. In this setting, the higher the number of ones in the output targets, the

more connection weights end up being involved in the decision process at test time. The

classifier thus makes use of a finer features-output mapping in this case. With too many ones

however, e.g. 90%, the distance between codes becomes too low which affects performance.

4.4.2 MNIST - Shallow network

The first test with the assembly codes defined in section 4.3.3, applies the shallow network

to the MNIST data-set. The goal of this test is to compare the assemblies in similar set-

tings, rather than achieving a competitive result to the state-of-the-art. The results indicate

that Quintuplets are better than Grandmother cells and also that Couples are better than

Grandmother cells, but it is inconclusive in the comparison between Couples and Quintu-

plets (less than two misclassified images of difference on average between the best networks

of the two assemblies).
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Figure 4.6: Results summary for a shallow network on the MNIST data-set. GM, C and Q
respectively stand for the Grandmother Cell, Couple and Quintuplet codes. The numbers
beforehand indicate the number of repetitions of the code to adjust output lengths. 25GM,
6C and 1Q all have approximately 252 output units, while 126GM, 28C, SC and 5Q have
exactly 1260 output units.

4.4.3 MNIST - Deep network

Another test is conducted on the MNIST data-set, now trying to emulate the results

from [103]. It is summarized in Figure 4.7. Despite respecting the hierarchy of Quintu-

plets ≥ Couples ≥ Grandmother cells, the results are too close to take any conclusions (less

than one image on average between 5Q and 126G).

4.4.4 SVHN - Deep Network

Finally, applying the deep network to the SVHN data-set allows us to obtain more significant

results than the ones obtained over MNIST. SVHN is more difficult to classify and has been

less extensively studied. The results respect the hierarchy drawn from coding theory in

section 2 (Quintuplets ≥ Couples ≥ Grandmother Cells), with an average distance of 0.11%

(∼ 26 images) between the worst quintuplets network and the best couples network and

0.33(∼ 85 images) between the worst quintuplets network and the best grandmother cells.
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Figure 4.7: Results summary for a deep network on the MNIST data-set.

Figure 4.8: Results summary for a deep network on the SVHN data-set.
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On both MNIST and SVHN, these results show the interest of the quintuplets code

which gives better performance than most other output codes for a comparable number

of parameters. The only case where a code outperforms the quintuplets is the "special

couples"(SC) code of non-repeated couple cells clusters, which beats 5Q on MNIST. It is

also worth noting that the non-repeated couples perform better than the repeated 28C on

both data-sets.

4.5 Problems with a large number of classes

4.5.1 Memory constraints

The number of classes in Machine Learning problems is today usually inferior to 1000. With

the augmentation in volume of data available and the progress of classification systems,

data-sets with large number of categories are bound to become common-place in the span

of a few years. In this frame, the way that classes are represented is critical. Indeed, in a

problem with 1.000.000 classes, a learning neural network with a last hidden neurons layer

comprising 5000 units would have 5.000.000.000 synaptic weights only in its last matrix.

Using four bytes per weight value, this would bring the memory requirements up to 20

GigaBytes for this sole matrix, beyond the capacity of most current commercially available

GPUs. Assembly codes are especially interesting in this setting, as they can drastically

reduce the size of the output layer. In the above example, one may chose to represent the

different classes using a constant-weight code with three units active in a set of only 200

output neurons [109]. The number of distinct codewords would be sufficient to handle the

1.000.000 classes, and with 200 output units, the top layer would contain 1.000.000 synaptic

weights. This would represent only 4 MegaBytes, which is easily handled with affordable

graphic cards. Finally, we know that the cortex has evolved a complex folding of its outer-

layer grey matter, in order to store more neuron somas in a skull of reasonable size [110].

Similarly, it is reasonable to suppose that evolution has found and retained efficient coding
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strategies for the neural representation of concepts. In such a scheme, a given unit, e.g., a

micro-column, may well often be used to support different, partially overlapping categories.

4.5.2 Error-correcting decoding

Another advantage of using assemblies to represent categories is the possibility to combine

the deep neural network with an error-correcting code. A rather simple example of error-

correcting code is the Hamming code, which uses parity check bits to detect the presence

and location of errors [111]. The Hamming (7,4,3) code uses seven bits per codeword, of

which four represent useful information and three bear added redundancy, i.e., the parity

checks. In this code the bits in the first, second and fourth positions are the parity checks.

Let us denote by d1, d2, d3 and d4 the four bits of data. They are positioned in the third,

fifth, sixth and seventh spots in the word, respectively. The first bit of a word represents

the parity of the sum d1 + d2 + d4, the second encodes the parity of d1 + d3 + d4 and the

fourth bit is the parity of d2 + d3 + d4. A parity bit is put to 0 if the sum is even, and 1 if

the sum is odd.

At the reception of a codeword, one can detect transmission errors by recomputing the

parity bits based on the received four core bits. Summing together the positions of the parity

bits found to be erronated gives the position of an erroneous bit of data. The Hamming

(7,4,3) code can repair up to two bit errors.

The product code associated with the Hamming (7,4,3) scheme consists in a 7*7 matrix,

whose first four rows and four columns contain the data [112]. In this embedded 4*4 matrix,

each row and each column is treated as the data in a Hamming (7,4,3) codeword, and is

thus used to compute three parity check bits. These bit triplets are appended at the end

of said row or column in the 7*7 matrix. Finally, the four top bits in the fifth, sixth and

seventh columns are used to compute parity check bit triplets, that are put in the three

lower spots of these columns. Computing parity bits from the four leftmost bits in the three

last rows yields the same nine values. This principle is illustrated by Figure 4.9.
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Figure 4.9: Product code structure obtained with the Hamming (7,4,3) code.
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Figure 4.10: Hard decoding performances of the Hamming (7,4,3) product code per number
of randomly inserted bit errors, obtained by iterating twice over all lines and columns.

The decoding process of this code simply consists in performing the Hamming (7,4,3)

decoding procedure iteratively on all rows and then all columns, alternately. Figure 4.10

shows the average decoding performances of this product code as a function of the number

of bit errors.

The capacity to decode a corrupted codeword directly depends on the corruption pat-

tern, and not on the codeword itself.

4.5.3 Experiments

A typical problem involving a large number of categories is the classification of written

words. We experiment the combination of a deep neural network with a Hamming product

code on a part of the synthetic data-set introduced in [113]. This set is made of synthetic

images of words written in random fonts, in a randomly selected grey-level, over a random

grey-level background. The words are also rotated and distorted randomly. Figure 4.11
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Figure 4.11: Sub-samples of the available images in the Synth data-set for words ’transits’,
’offstages’, ’toked’, ’lancets’, ’unfeigned’ and ’shelf’.

shows samples of images from this data-set, representing 6 different words.

We extract all images corresponding to the first 1.000 words in the data-set, and obtain

a training set made of 28.593 images and a test set with 3.436 images. Our network archi-

tecture is based on that in [113]. It has five convolution layers containing respectively 64,

128, 256, 512 and 512 kernels in ascending order. Kernel sizes in the five layers are 5, 5, 3, 3

and 3. Two-dimensional max-pooling layers are added on top of the first, second and fourth

convolution layers. This convolutional stack is followed by two successive fully-connected

layers of 4.096 neurons each. Both of these layers are followed by a dropout regularization

operator with probability 0.5 [81]. All of these convolutional and fully-connected layers have

a ReLU activation function [80]. Finally, a fully-connected output layer with 49 units and a
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Table 4.2:Classification performances with and without error-correcting decoding.

Initial classification
performance

Classification
after decoding

Initial average number
of output bit errors

Post-decoding
average number
of bit errors

Training set 93.71% 94.78% 1.64 0.58

Test set 83.00% 84.17% 2.6 1.46

soft-max activation function completes the architecture. All layers are initialized using the

Glorot uniform method [114].

The output matrix contains 4.096 ∗ 49 = 200.704 synaptic weights, instead of 4.096.000

if a 1− of −K code was used to represent classes. The compression ratio obtained for this

part of the network is thus 20.4.

Experimentally we find convergence to be more difficult when using variable-weight

objective codes. To encode 1.000 classes using 16 bits, we thus pick 1.000 binary words out

of the 1.820 possible code-words of length 16 and weight 4. Convergence is achieved without

problems on these constant-weight 16-bits words in 2.000 iterations. The parity bits are then

appended to these objective vectors, first with the six parity checks of the first two rows, and

then the six parity checks of the third and fourth rows. Both times, training is pursued for

2.000 iterations and achieves convergence again after an initial divergence phase. The bits

in the fifth, sixth and seventh rows of the matrix are then successively added to the target

vectors and training is each time proceeded with. The reasons justifying this incremental

approach are similar to those described in Subsection 3.2.3.

At test time, the ouputs resulting from each sample are binarized using a threshold value

that is calculated so as to keep four active bits among the 16 core bits of the product code.

The resulting binary vectors are decoded using the product code procedure.

4.5.4 Results

Table 4.2 shows classification results before and after error-correcting decoding on the train-

ing and test data-sets.
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It appears that the error-correcting procedure effectively corrects some bit errors, al-

though the average number of bit errors per output vector is already inferior to three on

both sets. As a result, there is a noticeable improvement in classification thanks to the

product code operation, which accounts for 304 training images and 40 test images.

Finally, the reduction in output size due to the use of a population code reduces the

complexity of the classification. When an output vector is computed, it is multiplied by all

class codes in order to find the highest dot-product. For each image, these 1.000 dot-products

involve 1.999.000 single operations with the 1−of−K code. Using output vectors of size 49,

they only take 97.000 operations, which is 20.6 times less. As a comparison, the decoding of

a 49-bit codeword using the Hamming (7,4,3) product code hard decoding procedure with

2 iterations represents less than 336 operations, which is virtually negligible.Even larger

gaps in complexity may be obtained for classification problems with tens of thousands of

categories. Also, much larger compression ratios could be achieved on such problems.
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Chapter 5

Combination of Unsupervised

Learning and Associative Memory

As it was shown in Chapter 2, neural associative memories are especially efficient for com-

pleting partially erased pieces of information. This property may prove itself useful when

dealing with occlusions in natural images, for example. However, like most data in the

real-world, the pixel values in pictures usually feature a highlevel of correlation, when neu-

ral associative memories deal more easily with random independent, identically distributed

patterns.

Gradient-descent based learning neural networks bring the possibility to pre-process data

and convert it into binary codes. In Chapter 4, we introduced a way to train a learning neural

network to output sparse distributed binary codes associated with categories. Unsupervised

training is an open problem that consists in extracting relevant features from a data-set

without access to any category information.

We hereby introduce a way to combine the feature extraction capabilities of hierarchical

neural networks trained through gradient descent, with the pattern completion ability of

neural associative memories, in order to deal with corruption in real-world data. Also, as

most available programming frameworks for training deep networks are adapted to run
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models transparently on massively parallel Graphic Processing Units, we detail ways to run

two decoding schemes for Sparse Clustered Associative Memories on this type of device,

thus avoiding cumbersome data transfers and speed bottlenecks.

5.1 Introduction

The neural system is trained throughout our lifetime to detect all kinds of patterns, associ-

ated with all the sensory channels but also on the level of mental concepts. These patterns,

be they sensory or abstract, can cover very wide ranges of scales and complexities. In ad-

dition to being able to recognize patterns when we are confronted with them, we have the

capacity to evoke them in our minds, and to complete them given partial clues. Good exam-

ples of this are our natural propensity to mentally complete familiar melodies when hearing

the first notes, or written words where a few letters are missing.

It appears that learning patterns, and then being able to recall them, are two funda-

mental components of human cognition. Nowadays, layered neural networks trained via

gradient descent are the preponderant model for feature extraction from high-dimensional

data. Sparse Clustered Cliques Networks are the state-of-the-art among connectionist as-

sociative memories in terms of pattern completion and storage capacity. Using these two

models, we propose a framework that combines feature extraction by Deep Learning, and

association between cliques of pattern detectors using the sparse CCN scheme.

5.2 Gradient descent learning

The term Deep Learning designates a group of neural network algorithms relying on hier-

archical processing and synaptic weight optimization by gradient descent. A deep network

is typically composed with a series of layers of formal neurons, interconnected by synap-

tic weights matrices. Input vectors are fed to the entry layer and activity is propagated

towards the output by a succession of vector-matrix products, with additive biases and
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Figure 5.1: Principle of a mutli-layer perceptron.

specific activation functions applied on the output of each product.

Figure 5.1 shows a toy example of deep network with one hidden layer of neurons.

Such a network is called a perceptron [120].

The gradient descent procedure consists in differentiating this loss with respect to every

parameter in the network, and then modifying parameters proportionally to their individual

contributions.

Through multiple iterations of this process, one can train the network to associate

together a large number of high-dimensional input and output vectors, with only little error

overall.

The most typical use case of this system is to train it to map inputs to categories

they belong to. This method is called supervised learning for classification, and necessitates

access to the categorical information associated with each input sample. In the case where

no categorical information is available about the data, one can nonetheless extract a relevant

dictionary of features using unsupervised learning. The common neural network architecture

to perform this is the auto-encoder, a perceptron trained to reproduce its input vector on
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the output layer.

5.3 Sparse Clustered Associative Memories

5.3.1 CCNs

Clustered Clique Networks (CCN) are composed of a set of N neurons, divided in clusters

all containing the same number of neurons. A connection can be drawn between two of

these neurons only if they belong to different clusters. A memory element is then supported

by a choice of neurons all located in different clusters. The storage of such a message in the

network consists in connecting all of its neurons together, forming a clique.

By the separation of the network into clusters, it makes use of sparseness to a higher

extent than former states-of-the-art neural associative memories, thus lessening the amount

of overlapping between stored messages and easing the search of the unknown elements of

patterns to complete. During retrieval, the commonly used procedure consists in propagating

activation from the neurons of a request through all their existing connections to other

neurons, followed by a selection of neurons based on the resulting activity scores. A local

Winner-Takes-All rule is generally used to perform the selection. It consists in keeping active

only the neurons possessing the highest activity score in each cluster. This is an iterative

process, and it is repeated as long as the stopping criterion is not reached. Activation is

computed again with the selected neurons, and the rule is applied once again.

5.3.2 Sparse messages

Sparse Clustered Clique Networks as introduced by Aliabadi et al [42] have the same prin-

ciple as classic CCNs. The main difference is that stored messages no longer need to possess

a neuron in every cluster of the network, but only in a selected subset of the clusters. This

characteristic raises the diversity of messages, that is the total number of different messages

one can store in the network. However, it brings the added difficulty of not knowing which
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Figure 5.2: Example of a sparse Clustered Clique Network with 12 clusters and messages of
order 4.

clusters support the searched message. The high level of sparsity usually makes up for this,

and the retrieval error rates are much lower in general as compared to full messages CCNs.

Figure 5.2 shows an example of such a network.

This specific case can benefit from an adaptation of the retrieval procedure used in

classic CCNs. Aboudib et al [47] introduce two such variants of the Winner-Take-All algo-

rithm. These are the Global Winners-Take-All (GWsTA) and the Global Losers-Kicked-Out

(GLsKO), and come with a significant improvement in retrieval success rate.

The present work focuses on the acceleration of these algorithm variants by means of

Graphical Processing Units (GPUs). These chipsets allow the massively parallel compu-

tation of operations on data, and are currently widely used to accelerate neural network
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implementations. To achieve this, one must ensure a sufficient amount of operations to

execute can actually be performed in parallel without altering the accuracy of the whole

computation. The main requirement for this is the independence of the parallelly processed

data. We aim at making clear here how we adapt the former serial implementation under

this constraint. We use the Compute Unified Device Architecture (CUDA) which is a cod-

ing framework specifically designed to program GPUs, supported by C/C++. Yao [116,117]

formerly achieved acceleration of the classic CCN algorithm using CUDA.

5.3.3 Specific retrieval algorithms for sparse messages

When retrieving sparse messages, the mere selection of the most active neuron in each

cluster can no longer be relied upon as not all clusters contain an element of a message

of interest. Not knowing which clusters support a given message therefore brings up an

additional difficulty. The retrieval of sparse messages can be performed more efficiently by

using strategies specifically tailored for this case. These will typically make use of the set of

activity scores observed after stimulation instead of solely focusing on local winners. Two

such strategies can be found in [47] namely the Global Winners-Take-All and the Global

Losers-Kicked-Out. These two algorithms were originally developed to improve retrieval

of sparse messages in CCN. However, they are unsurprisingly practical for the modified

Willshaw network as well, where no 1 − of − K rule applies either, and the use of the

GLsKO is documented in Chapter I.

In Global Winners-Take-All, one wants to retain a number of neurons equal or superior

to a predefined minimum. The minimal threshold score for a fanal to be retained is adapted

in order to fulfill this requirement. After the first activity computation step, we iteratively

select a number of fanals which are then used to compute activity for the next iteration.

For instance, if after a stimulation of the network, there are 7 activated fanals with scores

{2,3,1,4,3,4,4} and we know at least 4 neurons must be retained, a lower threshold of 3

will be applied on the scores of neurons to remain active. This way the 5 neurons with an
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activity of 3 or more are kept as output for the ongoing iteration, while the 2 neurons with

scores 1 and 2 are discarded.

In Global Losers-Kicked-Out, focus is put on active neurons with relatively low scores.

After the initial activity computation, the aim is to discard a number of fanals iteratively,

instead of selecting them. Among the non-zero scores observed after stimulation, a fixed

number of lower score values is set so that neurons with these activity levels are put to

zero. In the previous example, if we know 3 lower score values must be discarded, this will

designate the 4 neurons in the list with scores {2,1,3,3} and only the 3 neurons with an

activity of 4 will remain active. Nonetheless, it has been shown that banning only the one

minimal score in the list gives the best results.

5.3.4 Accelerations using GPUs

Graphics Processing Units (GPU) are highly parallel processors. They are based on a high

number of processing units, which can be used to process data using a Single Instruction

Multiple Data (SIMD) paradigm. In this paradigm, the same instruction can be applied

simultaneously on all elements of a vector. As a result, GPU can be very efficient when pro-

cessing algorithm without data dependency. For example, loops in which each iteration can

be performed regardless of previous iterations can be very efficiently accelerated. Most Deep

Learning libraries are adapted to perform parallel computations on GPU. During the phase

of activity propagation towards the output layer, the matrix-vector products are thus accel-

erated by parallel computing, as well as the application of biases and activation functions.

The differentiation of the cost with respect to the different parameters, and their subse-

quent updating also leverage the parallelism of the GPU. In the perspective of combining

Deep Learning with Sparse Clustered Cliques Networks, a parallel implementation of these

associative memories can be useful as it allows the fast completion of requests directly on

GPU. In addition to accelerating computations in comparison with a sequential execution

of the same algorithm, this suppresses the need to copy data to the host and back again
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to the GPU, which would itself be time-consuming. For this reason, we propose parallel

implementations for the GWsTA and the GLsKO algorithms.

5.3.5 GWsTA

Global Winners-Take-All aims at retaining a number of active fanals superior or equal to

a predefined minimum. In order to do this, we compute for each possible score value the

number of fanals that reach it. In practice, scores counts are first computed in parallel for

the different clusters, with one thread computing the counts for the different scores inside

of one cluster, as shown on Figure 5.3. In a second step, the scores counts are accumulated

by reduction to get their totals over the whole network. A number of threads is launched,

equal to half the number of clusters. Each thread sums the vectors of scores counts of two

clusters located in different halves of the network. The operation is repeated on the new

set of counts lists and so forth, each time halving the number of computed values until one

single list remains with the global sums. A final thread then runs a loop over the possible

score values in descending order, accumulating scores counts until the sum equals or exceeds

the minimum expected number of active neurons. As soon as this criterion is met, looping

stops and the last considered score value is kept as the minimum score for nodes to remain

active. A thresholding with binarization is then applied on nodes activities, with scores

above the threshold being put to one while other neurons are all at zero. This operation

is performed in parallel, where each thread computes the output values for one neuron as

illustrated by Figure 5.4. The resulting set of active fanals is then returned as output for

the current iteration.

5.3.6 GLsKO

For our implementation of the Global Losers-Kicked-Out we set to 1 the number of low

scores to be discarded. This is known to give the best results, and it reduces the complexity

of the algorithm, since we only need to find the minimum score and discard neurons with
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Figure 5.3: Example of the parallel computation of local scores counts in the different
clusters. Each thread computes a vector of the numbers of fanals possessing the different
possible score values in one cluster.
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Figure 5.4: Example of the threshold-binarize operation as performed on GPU. Non-zero
scores below the threshold are put to 0 while those above it are set to 1. Input and output
values are in one-to-one relationships, hence computation can be performed in parallel.
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Figure 5.5: Illustration of the GWsTA procedure after the first iteration of retrieval. All
operations in rectangular boxes are performed on GPU.
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this score [47]. Hence we focus on finding the global minimum among all non-zero scores

present after stimulation. To this end the minimum positive scores inside of the different

clusters are first computed in parallel. A reduction strategy is employed on the resulting set

of local minimums to compute the global one. At every step of the reduction, each thread

compares the minimums obtained for two clusters, keeping the lowest of the two values. The

set of values is thus halved iteratively to result in a single minimum. Along with the strictly

positive minimum, a global boolean value is computed indicating the presence of several

different non-zero scores, as described in Figure 5.6. Here the fact that several threads

modify the output boolean does not alter its accuracy, as it indicates whether two different

non-zero scores are seen at least once. If this boolean is true at the end of the reduction

procedure, the ThresholdBinarize operation is applied to compute the iteration output,

setting off all nodes with the non-zero minimum score. Otherwise, only one strictly positive

score is present and all its representatives are kept active. This case where all stimulated

fanals have equal scores is also a good stopping criterion for the GLsKO.

5.3.7 Experiments

Our GPU experiments were performed with an NVIDIA GeForce 780 Ti, with a frequency

of 900MHz and 3GB of memory. The CPU used is a 3.3GHz Intel Core i7. Each message

is generated randomly by first picking a fixed size subset of the available clusters, and then

choosing one fanal in each selected cluster. In the retrieval phase, requests are formed from

stored messages by dropping out a fix number of their nodes.

Figure 5.8 shows the execution times in seconds for the retrieval of 500 stored messages

as a function of the number of erasures per queries, in networks with 16 clusters and 32

fanals per cluster. Each message is made of 12 neurons and the corresponding query is a

subsample from the message with a size going from 11 down to 1.

The execution times are very close at the beginning and differ when the number of

erasures exceeds about half the message size, due to the different stopping criteria employed.
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Figure 5.6: Illustration of the operation SeveralScoresPresent performed in the parallel
implementation of GLsKO. This operation is performed in the same threads as the search
of the non-zero minimum by reduction among local minimums. Each thread compares the
minimum scores of two clusters to assess whether they are different and strictly positive.
Several threads may access and modify the output boolean concurrently without affecting
the result’s accuracy.
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Figure 5.7: Illustration of the GLsKO procedure after the first iteration of retrieval. The
global minimum non-zero score is computed by reduction, along with a boolean indicating
if several non-zero scores are present. The output is computed using the parallel Thresh-
oldBinarize operation, excluding the lowest non-zero score in the latter case.
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Figure 5.8: Execution time of the parallel versions of GWsTA and GLsKO for the retrieval
of 500 sparse messages as a function of the number of erasures per query, in a network
of 16 clusters and 32 fanals per cluster. Messages are made of 12 nodes and the size of
sub-sampled queries goes from 11 nodes to 1.
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For higher number of erasures the GLsKO takes more and more time, with a maximum when

the request is made of a single neuron. The stopping criterion used is the equality of scores of

all neurons active after stimulation. The GWsTA scheme takes less time for higher numbers

of erasures. Its stopping criteria are convergence, i.e. equality between input and output at

a given iteration, and a maximum number of iterations, hereby 8.

Figure 5.9 shows the execution time of the two schemes for networks of 64 clusters of 724

fanals each and 500 stored messages. Here messages are made of 56 nodes and the number

of erasures applied to create the corresponding queries varies from 2 to 54. The two schemes

make no retrieval error except for the GLsKO which fails to retrieve one pattern out of 500

when provided with 2-nodes requests. The number of iterations is impacted and alters the

speed of retrieval.

With 2 erasures the GLsKO scheme takes 0.093573 seconds to complete retrieval of the

whole set of messages, when a serial implementation of the same algorithm takes 4.74341

seconds running on CPU. This brings an acceleration factor of 50.69. Parallel and serial

versions of the GWsTA use respectively 0.0246 seconds and 4.16881 seconds in the case

with 2-nodes requests, giving an acceleration of 169.319. To be fair, it has to be stated that

our serial and parallel implementations are not tailored to leverage a high sparseness of the

connectivity graph, which could bring further improvements. To this end, one would want

to represent the set of connections as lists of indexes instead of a boolean matrix.

5.4 Combination of learning and memory

Hearing the first notes of a melody or the first words of a proverb often triggers an automatic

mental completion, as well as seeing a partially erased picture of an object or a known face

is usually enough to activate the mental image present in memory. It is most likely that in

these real-world cases, the mental completion of the missing parts of known patterns results

from a high-level process that happens remotely from the input sensory neural groups. To
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Figure 5.9: Parallel execution times of the two schemes for the retrieval of 500 messages of
56 nodes in a network with 64 clusters and 724 fanals per cluster. Queries size goes from
54 down to 2.
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Figure 5.10: Principle of the combination of an auto-encoder with a sparse clustered as-
sociative memory. The auto-encoder is first trained for a few iterations, then is used to
get sparse binary encodings of input images. These codewords are stored in the Clustered
Clique Network and can be used to reconstruct partially occluded images.

reproduce this behavior artificially, it would then be way more sensible to implement these

associations between abstract high-level features, rather than between low-level entries such

as the pixels in an image. We therefore propose a generic architecture that combines learning

and memory, based on a deep learning network and a sparse clustered cliques network.

Figure 5.10 illustrates the principle of this system.

For simplicity, the simulated network is based on a denoising auto-encoder [122] with

only one hidden layer, as the data-set used has small dimensions which do not make a deeper

architecture necessary. During training, each pixel in an image is put to zero following a

Bernoulli law with probability 0.3. A sigmoïd activation is applied on the hidden layer as
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well as on the output layer. The connection weights in the encoding and decoding matrices

are tied, meaning that they are forced to be exact transposes of each other at all time.

The hidden layer is made of 5.000 neurons parted in 2.500 clusters of size 2. In order to

enforce sparsity and to spread activation patterns across the layer, each image is assigned

a subset of 128 clusters. When the network takes an image as input and the hidden layer

is activated, the values of the hidden activity vector located in the 128 clusters associated

with this particular image are left untouched, while all the other values are forced to zero.

A clustered K-sparse activation scheme is then applied, in which the lowest activity among

the two neurons of a cluster is put to zero [123,124]. The auto-encoder is implemented using

the Theano library, which generates CUDA code in order to execute activity propagation

and gradient back-propagation on GPU [121].

When the training phase of the auto-encoder is complete, activity is propagated one

last time to the hidden layer using the sigmoïd and K-sparse activations. The resulting

sparse activation vectors are binarized, and thus correspond to possible code-words of a

Clustered Clique Network with 2500 clusters of size 2, and cliques of order 128. These

clique patterns are stored in a binary connection matrix that implements the associative

memory. In addition to being binary, this matrix is different from the two weights matrices

of the auto-encoder in that its input and output indices correspond to the same set of

neurons, which is characteristic of a recurrent neural network [125].

The auto-encoder is trained on a subset of 1.000 of the training images in MNIST for

five iterations. These images are then passed through the encoder to get 1.000 distinct

sparse binary codes. These patterns are stored in the Clustered Clique Network which,

given 64-nodes associated queries, is able to complete all these cliques correctly. Partially

occluded images are created by applying a cross-shaped mask on the four central rows and

the four central columns of training images. These masked images are given as input to the

auto-encoder, with a different activation scheme following the first sigmoïd: the highest 64

activities are retained while the rest is put to zero. Resulting activation vectors are binarized
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Figure 5.11: Processing chain showing samples of original, masked and reconstructed images
after code completion by the associative memory.

and given as queries to the associative memory, which proceeds to complete them. The

outputs of the CCN are placed back on the hidden layer of the auto-encoder and multiplied

by its decoding matrix. A sample of reconstructed images can be seen on Figure 5.11, which

shows that this system is robust to erasures.

The GPU implementation of the sparse Clustered Cliques Networks is useful here to

avoid a speed bottleneck. The encoding of a single image only takes around 0.6 milliseconds

using Theano, where the completion of 64-nodes queries takes an average of 0.2 seconds using

Python. The parallel version of the CCN needs only 0.36 milliseconds to complete a pattern.

When processing 1.000 images in a row, the full chain of treatment of occluded images is

thus taken from more than three and a half minutes using the sequential implementation
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of the memory, down to less than two seconds with the parallel scheme.
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Chapter 6

Conclusion and Openings

6.1 Conclusion

This work has been driven by the search for implementation methods of learning and mem-

ory using artificial neural networks, with computational efficiency and biological plausibility

as primary guidelines. These two objectives are inherently connected, as biology is a model

of efficient use of material and energy.

We have assumed that a plausible neural network should be robust to alterations of

both its input and internal signals. Also, it should perform tasks quickly, by using relatively

few units and elementary operations.

The robustness of sensory and mental information must result from redundancy in its

supporting material. Clique-based associative memories exemplify this with their redundant

connection patterns that directly contribute to their strong pattern completion abilities.

Also, a regularization technique like Dropout, employed in training deep networks, enforces

redundancy as various random subsets of a pool of feature detectors are trained on each

training sample. As any fixed-size, random subsample of the features can be brought to

interpret any image, it has to contain a sufficient vocabulary on its own. The resulting

feature detectors are thus partly redundant with each other. Also, Dropout prevents single
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feature detectors from overfitting on very specific elements in the data, and promotes their

focusing on redundant parts that better define the data distribution. It thus brings a layer of

a deep learning network to behave more like a low-pass filter. Also, it helps fit the Shannon-

Weaver model canvas. By representing redundant elements present in the input signal by

the activation of single units, it removes unnecessary redundancy from the output code, like

a compression algorithm would. By enforcing the ability of subsamples of feature detectors

to interpret input vectors autonomously, it promotes inter-features redundancy that likely

improves the robustness of the learner to erasures and distortions of the input.

The mid-level representations resulting from the regularized training of deep neural net-

works tend to be sparse and distributed, like the patterns in clique-based neural associative

memories. This convergence is not a complete coincidence as distributed sparse codes are a

strategy of choice for efficient use of neural material. The typically large number of possible

combinations of neurons brings a high diversity of patterns. Moreover, each unit can be

reused in several representations, that can still be distinguished easily even if they par-

tially overlap. Several neuroscientific studies suggest that the brain does indeed use such

representations [126–128].

Sparse distributed representations allow to use relatively little material to encode a

given amount of information. As such, they can reduce the complexity of training incoming

synaptic weights, and the amount of energy needed to do it.

The use of distributed representations is also associated with parallel computing, which is

essential to the performance of the brain. When modern central processing units perform at

a speed of about one instruction per nanosecond, biological neurons have a maximum firing

rate close to 250 Hz. Also, synaptic spikes travel at a very low pace of around 20 meters

per second. However, the brain can perform complex tasks quickly thanks to its highly

optimized parallel algorithms. This is why GPUs are essential in modern implementations

of neural networks.

In Chapter II, we presented an associative memory model using connectivity constraints
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based on the locations of neurons. This relies on the idea that the known phenomenon of

lateral inhibition due to short-range inhibitory connections can be modeled as a prohibition

of the co-activation of close-by neurons. It brings increased sparsity and reduced overlap

between patterns, and thus enforces the pattern completion performances of the model.

Also, it increases the storage efficiency and hence the compression ratio applied on stored

information.

Chapter III detailed a study of the biological plausibility of deep convolutional neural

networks on a functional level. Several linguistic and graphic parameters were found to

favor the recognition performance of the convolutional network, as they do for humans. In

addition to the display rate, we found that the positive influence of lexical frequency of

words can be reproduced without integrating any semantic treatment. The letter feature

types found to favor recognition by the convolutional network were the same overall as for

human subjects. Tests involving 2-dimensional embeddings of intermediate representation

vectors suggest that the presence of certain letters, bigrams or trigrams in the word can be

more determinant in the representation than their specific positions and layout. This opens

the question of how well the network would be able to deal with typoglycemia. Convolutional

Neural Networks are a model of vision, and making it a more plausible model of reading

would probably require substantial adjustments. In particular, integrating characteristics

from more high-level models of reading like IAM and FAM would be interesting, such as top-

down feedback signal during recognition and lateral interaction between feature detectors

at the same level.

Chapter IV introduced a method using sparse distributed codes as training objectives for

supervised learning neural networks. This is more biologically plausible than the commonly

used 1− of −K code [128]. It also comes with the benefit of strongly reducing the memory

footprint of the ultimate layer of the deep network, which can contain the major part of its

weights when the number of classes is very large. As a result, the complexity of both training

this matrix and classifying its output vector can be importantly reduced. It brings the
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possibility to combine a supervised deep neural network with a neural associative memory,

or with an error-correcting decoder. For this latter option, our experiments showed that the

error-correcting decoding could benefit the classification performance. Pursuing this effort

on problems with even larger numbers of categories is part of our plans.

Chapter V proposed a simple way to interface an unsupervised learning neural network

with a neural associative memory. This revealed the interest of implementing associative

memories on GPU, when most programming tools for Deep Learning are already adapted

for it. Not only does it bring the execution speed of the memory up in the same range as

that of the learning device, it also evacuates the need to copy the memory inputs back to

the host machine for CPU processing, and the completed patterns back again to the GPU.

6.2 Openings

In recent years, much attention has been focused on classification problems with a properly

crafted training data-set in which label information is fully complete and accurate. In real

life, many use cases occur where some samples may be doubtfully tagged, or not labeled at

all. Machine Learning researchers are paying more and more interest into these problems

today. Based on the findings presented in this work, we foresee at least two lines of future

work: one on semi-supervised learning, and another on decision under uncertainty.

6.2.1 Semi-supervised learning

Semi-supervised learning refers to the intermediate case where label information is available

for some of the data samples and missing for the other ones. It is a hot area of research

nowadays, because it is a common way in which we humans apprehend our environment:

we are verbally taught the category of a few items, and we are then able to keep training

to categorize new ones without external help, in spite of variations of many kinds from the

first examples met [94]. Very recently, new systems based on Deep Learning such as the
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Ladder Network [129] and Generative Adversarial Networks [130], specifically designed for

semi-supervised learning, have pushed the state-of-the-art further.

GANs in particular have been the object of a lot of attention. They consist of two deep

learners: a generator and a discriminator. Like an auto-encoder, the generator is trained

to output samples resembling the data, but its input is random noise. The discriminator is

alternately trained to classify actual data samples for which label information is available,

to dismiss outputs from the generator as being synthetic, and to avoid doing the same

for real but unlabeled data. To train the generator, a global network is formed from the

two systems, with the output layer of the generator plugged on the input layer of the

discriminator. The generator is trained through gradient descent to fool the discriminator,

using a loss function based on the probability for generated data to be classified as such

by the discriminator. The weights of the discriminator remain fixed during this stage. Over

the course of many iterations training both systems in turns, the discriminator becomes

increasingly harder to fool and the generator becomes increasingly better at it. For this the

generator must capture the underlying distribution of the data, and is then able to generate

highly plausible samples that are not simple variations or compositions from actual data

samples. As such, Generative Adversarial Networks are a very efficient data augmentation

method.

Pseudo-labels are another method for semi-supervised learning, in which unlabeled train-

ing samples are assigned estimated labels by the classifier, that are then used as objectives

for supervised learning [131].

In experiments, we found that recursively applying the pseudo-labeling method allowed

to improve classification performance progressively. On MNIST, starting with only 10 la-

beled training samples per class, a GAN architecture based on the model in [129] gave

an initial test error rate of 1.33% on average. By training this architecture several times

starting from different weights initializations, we could produce an assembly of classifiers.

Also, the classification step of the GAN is not entirely deterministic, as we keep applying
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random perturbations on the intermediate layers, such as gaussian noise. As a result, each

trained network can be used several times to produce varying sets of pseudo-labels for the

same training data. Hence, with a few trained classifiers, we could easily get more than 10

sets of pseudo-labels. Pseudo-labels that would vary little from one set to the next could

then be deemed safer. By selecting top-scorers in a majority vote, we could thus increment

the supervised part of the training data, from 10 samples per class to 50, then 1000, 2000,

3000, 4000 and 5000. Through this procedure, the error rate on the test set is progressively

brought down to 0.87%, and its standard deviation is also significantly reduced.

This method appears very promising for semi-supervised learning. We plan on experi-

menting with it on other data-sets where the state-of-the-art performance is lower, and to

combine it with the assembly output codes technique introduced in Chapter IV.

6.2.2 Decision under uncertainty

Another case of data with partial category information is imprecision of the labels. This

can result from data aggregation from many sources, lack of precision of measurement

devices, data fluctuation during a measurement time window, etc... Interval-valued data

are an instance of this problem that is widely addressed in the literature. However, in some

cases such as computation errors, memory alterations or lossy compression, the available

information does not come in the form of intervals, but as sets of discrete values [132]. As

an example, the suspected inaccuracy of a few bits of high weight in a binary word can

result in several possible decimal values spread apart from one another.

Dempster-Shafer theory is an extension of Bayesian theory, in which each event and

each combination of events is assigned a mass measuring its degree of belief. The mass of

an event or set of events is proportional to the quantity of available information supporting

this hypothesis, and the sum of all masses is normalized to one. The plausibility of an

hypothesis is equal to one minus the sum of the masses of the sets that do not intersect this

hypothesis. For any hypothesis considered, its belief is always inferior to its plausibility.
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Table 6.1:
Numbers of classification errors on MNIST test data (10.000 images total), using beliefs and plausibility extracted
from three trained networks’ outputs and their fusion.

Source Belief Plausibility Belief+Plausibility

Grandmother cell (1GM) 85 85 85

Couples (1C) 79 80 81

Quintuplets (1Q) 82 78 82

Fusion of 3 sources 69 58 60

These two measurements bring several possible decision criteria: the highest belief, the

highest plausibility, or the highest sum of belief and plausibility for example.

In experiments, we used the deep network from Chapter IV, trained with assembly

output codes, to create set-valued data out of MNIST. Given that each neuron on the output

layer is associated with a combination of classes, we used it to derive belief functions over sets

of 1, 2, and 5 classes. Applying the Dubois-Prade fusion method to estimate beliefs [133], we

find that by combining inputs from the grandmother cells network, the couple cells network

and the quintuplets cell network, it is possible to get significantly less classification errors

than with single networks. The criterion of the maximum of plausibility gives the best result

with only 58 misclassified images, as shown in Table 6.1.

Again, this first result seems promising, and more tests should be run on different data-

sets. A possible direction of research would be to use this method to calculate pseudo-labels

recursively as described in the previous section.
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Résumé 

L'objectif de la recherche en Intelligence Artificielle (IA) est de répliquer 

les capacités cognitives humaines au moyen des ordinateurs 

modernes. Les résultats de ces dernières années semblent annoncer 

une révolution technologique qui pourrait changer profondément la 

société. 

 

Nous focalisons notre intérêt sur deux aspects cognitifs fondamentaux, 

l'apprentissage et la mémoire.  

Les mémoires associatives offrent la possibilité de stocker des 

éléments d'information et de les récupérer à partir d'une partie de leur 

contenu, et imitent ainsi la mémoire cérébrale. 

L'apprentissage profond permet de passer d'une perception 

analogique du monde extérieur à une représentation parcimonieuse et 

plus compacte. 

 

Dans le chapitre 2, nous présentons une mémoire associative inspirée 

des réseaux de Willshaw, avec une connectivité contrainte. Cela 

augmente la performance de récupération des messages et l'efficacité 

du stockage de l'information. 

  

Dans le chapitre 3, une architecture convolutive a été appliquée sur 

une tâche de lecture de mots partiellement affichés dans des 

conditions similaires à une étude de psychologie sur des sujets 

humains. Cette expérimentation montre la similarité de comportement 

du réseau avec les sujets humains concernant différentes 

caractéristiques de l'affichage des mots. 

     

Le chapitre 4 introduit une méthode de représentation des catégories 

par des assemblées de neurones dans les réseaux profonds. Pour les 

problèmes à grand nombre de classes, cela permet de réduire 

significativement les dimensions d'un réseau. 

     

Le chapitre 5 décrit une méthode d'interfaçage des réseaux de 

neurones profonds non supervisés avec les mémoires associatives à 

cliques.
 
 
Mots-clés : Apprentissage machine, Réseaux de neurones, Codage, 

Parcimonie, Robustesse 

 

 

 

Abstract 

The objective of research in Artificial Intelligence (AI) is to reproduce 

human cognitive abilities by means of modern computers. The results 

of the last few years seem to announce a technological revolution that 

could profoundly change society. 

 

We focus our interest on two fundamental cognitive aspects, learning 

and memory. 

 Associative memories offer the possibility to store information 

elements and to retrieve them using a sub-part of their content, thus 

mimicking human memory. 

 Deep Learning allows to transition from an analog perception 

of the outside world to a sparse and more compact representation. 

 

 

In Chapter 2, we present a neural associative memory model inspired 

by Willshaw networks, with constrained connectivity. This brings an 

performance improvement in message retrieval and a more efficient 

storage of information. 

 

In Chapter 3, a convolutional architecture was applied on a task of 

reading partially displayed words under similar conditions as in a 

former psychology study on human subjects.This experiment put in 

evidence the similarities in behavior of the network with the human 

subjects regarding various properties of the display of words. 

 

 

Chapter 4 introduces a new method for representing categories using 

neuron assemblies in deep networks. For problems with a large 

number of classes, this allows to reduce significantly the dimensions of 

a network. 

 

Chapter 5 describes a method for interfacing deep unsupervised 

networks with clique-based associative memories. 
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