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Abstract

Caching, i.e. storing popular contents at caches available at end users, has received
a significant interest as a technique to reduce the peak traffic in wireless networks. In
particular, coded caching proposed by Maddah-Ali and Niesen has been considered as a
promising approach to achieve a constant delivery time as the dimension grows, yielding
a scalable system. Albeit conceptually appealing, several limitations prevent its straight-
forward applications in practical wireless systems. Throughout the thesis, we address the
limitations of classical coded caching in various wireless channels. Then, we propose novel
delivery schemes that exploit opportunistically the underlying wireless channels while pre-
serving partly the promising gain of coded caching.

In the first part of the thesis, we study the achievable rate region of the erasure
broadcast channel (EBC) with cache and state feedback. Based on Wang and Gatzianas
scheme, we propose an achievable scheme that exploits multicasting opportunities created
by receiver side information both from local cache and overhearing. We prove that our
proposed delivery scheme achieves the optimal rate region for special cases of interest.
Using the interesting duality between the EBC and the multi-antenna broadcast channel,
these results are generalized to the multi-antenna broadcast channel with state feedback.

In the second part, we study the content delivery over asymmetric block-fading broad-
cast channels, where the channel quality varies across users and time. Assuming that
user requests arrive dynamically, we design an online scheme based on queuing structure
to deal jointly with admission control, files combinations, as well as scheduling. In the
short-term, we allow transmissions to subsets of users with good channel quality, avoiding
users with fades, while in the long-term we ensure fairness among users. We prove that
our online delivery scheme maximizes the alpha-fair utility among all schemes restricted to
decentralized cache placement. The performance analysis built on the Lyapunov theory.

In the last part, we study opportunistic scheduling over the asymmetric fading broad-
cast channel. Under this setting, we aim to design a scalable delivery scheme while
ensuring fairness among users. To capture these two contrasted measures, we formulate
our objective function by an alpha-fairness family of concave utility functions and we use
the Gradient descent scheduler (GDS). We propose a simple threshold-based scheduling
policy of linear complexity that does not require the exact channel state information but
only a one-bit feedback from each user. We prove that the proposed threshold-based
scheduling policy is asymptotically optimal for a large number of users.
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Résumé

Le stockage de contenu populaire dans des caches disponibles aux utilisateurs, est une
technique émergente qui permet de réduire le trafic dans les réseaux sans fil. En partic-
ulier, le coded caching proposée par Maddah-Ali et Niesen a été considérée comme une
approche prometteuse pour atteindre un temps de livraison constant au fur et a mesure
que la dimension augmente, ce qui donne un systeme évolutif. Bien que conceptuellement
attrayant, plusieurs limitations empéchent ses applications. Nous avons adressé les limita-
tions de coded caching dans les réseaux sans fil et avons proposé des schémas de livraison
qui exploitent le gain de coded caching.

Dans la premiere partie de la these, nous étudions la région de capacité pour un canal
a effacement avec cache et retour d’information. En se basant sur 1’algorithme de Wang
et de Gatzianas, nous proposons un schéma qui exploite les occasions de multidiffusion
créées par les sous-fichiers stockés dans la cache et les sous-fichiers recus au cours de
la transmission. Nous prouvons que notre schéma de livraison est optimal pour des cas
particuliers. En utilisant la dualité observée entre le canal a effacement et et le canal
a antennes multiples, ces résultats sont généralisés pour le canal a diffusion avec des
antennes multiples et retour d’information.

Dans la deuxieme partie, nous étudions la livraison de contenu sur un canal d’atténuation
asymétrique, ou la qualité du canal varie a travers les utilisateurs et le temps. En
supposant que les demandes des utilisateurs arrivent de maniere dynamique, nous con-
cevons un schéma dynamique basé sur une structure de queues pour assurer un controle
d’admission, un controle de combinaisons de fichiers, aussi bien que la planification de
la transmission. A court terme, nous permettons les transmissions aux sous-ensembles
d’utilisateurs avec un bon canal, évitant les utilisateurs avec mauvais canal, tandis que
a long terme nous assurons la justice entre les utilisateurs. Nous prouvons que notre
schéma de livraison dynamique maximise la fonction d’utilité par rapport a tous les sché-
mas limités au cache décentralisé. L’analyse de performance se base sur la théorie de
Lyapunov.

Dans la derniere partie, nous étudions la planification opportuniste pour un canal
d’atténuation asymétrique, en assurant une métrique de justice entre des utilisateurs.
Pour capturer ces deux mesures contradictoire, nous formulons notre fonction objective
par une famille de fonctions concaves de alpha-fairness et nous utilisons le planificateur
de descente de Gradient. Nous proposons une politique de planification simple & base de
seuil avec une complexité linéaire et qui n’exige pas la connaissance instantanée de 1’état
du canal, mais seulement un bit de retour de chaque utilisateur. Nous prouvons que la
politique de planification a base de seuil proposée est asymptotiquement optimale pour
un grand nombre d’utilisateurs.
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Notations

K number of users

(K] set of users {1,..., K}

N number of files in data base

F average size of the files

Z, cache memory of user k

My, € [0, N] size of cache memory of user £ in files
M average memory size in files

Wi, i-th file

|.| cardinal of sub-file in packets or bits

My = 2% € [0, 1] normalized cache size of user k

m = % € [0, 1] normalized cache size for equal cache capacities
&) the bit-wise XOR operation

dy, demand of user k

d demands vector d = (dy, .., dk)

Lg(W;) the sub-file of W; stored exclusively by the users in J

T(m, k) number of bits to be transmitted when using coded caching [1,2]
€ a constant which vanishes as x — oo, i.e. lim,_ €, =0

Dk power allocated to serve user k

F; size of W;

N set of integers
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S

the number of i-combinations from the set {1,..., K'}
number of bits per packet

input alphabet of size L = log,(q)
channel input

channel output of receiver k

erasure output

erasure probability of user k

state of the channel in slot ¢

states of the channel up to slot ¢
common logarithm of = (base 10)
logarithm of x (base a)

length of sub-phase J

length needed by user k for sub-phase J
packets intended to users in J

part of packets Vi received by users in J and erased at users in

[K1\d

number of packets useful for user k£ generated in sub-phase J and
to be sent in sub-phase J

message intended to users in J

rate of Wy

sum rate of order-j messages

length of any sub-phase in phase j

length of any sub-phase 7 when starting from phase ¢

number of packets created in sub-phase J and to be sent in sub-
phase J for any J C J of cardinality 7 < j

N,_,; when starting from phase i’ for 1 < i’ < j
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codeword queue storing XOR-packets intended users in J.
user queue storing admitted files for user k.
virtual queue for the admission control.

decision variable of number of combined requests for users J in
[Ovamax]‘

decision variable for multicast transmission rate to users J.

decision variable of the number of admitted files for user k& in
[0, Ymax)-

the arrival process to the virtual queue in [0, Ymax]-
time average delivery rate equal to limsup,_, . DkT(t) in files/slot.

mean of the arrival process.

length of codeword intended to users J from applying coded caching
for user in J.

the capacity region for a fixed channel state h.

the set of all possible channel states.

the probability that the channel state at slot ¢ is h € K.
number of successfully decoded files by user k up to t.

number of accumulated requested files by user k up to slot ¢.
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Chapter 1

Introduction

1.1 Overview

In the past decades, cellular networks have been evolving significantly from the first gen-
eration (1G) which only provides voice services with data speed of up to 2.4 kbps, to the
current fourth generation (4G) offering a wide range of data services (such as mobile In-
ternet access, multimedia applications, TV streaming, videoconferencing and more) with
much faster data speed of about 100 Mbps while a user moves at high speeds and 1 Gbps
data rate in a fixed position [3]. In order to support the exponentially growing mobile
data traffic, essentially driven by smart-phones, laptops, and tablets, the network was
brought closer to the users by denser node deployment including macro base station (BS),
micro-BS, pico-BS, femto-BS and relays. Such heterogeneous networks reduces the dis-
tance between BSs/relays and users, and thus increases the spectral efficiency, yielding
the increase of network capacity [4].

However, the ever-increasing number of mobile devices with exploding data demand
will eventually exhaust the bandwidth of existing backhaul connecting small BSs. More-
over, nearly 75% of the mobile data traffic is expected to be due to video by 2020 (e.g.
content-based video streams) [5]. Such video traffic has an interesting feature character-
ized by its skew nature. Namely, a few very popular files are requested over and over.
The skewness of the video traffic together with the ever-growing cheap on-board storage
memory suggests that the network performance can be boosted by caching popular con-
tents at (or close to) end users in wireless networks. Therefore, if one can proactively
prefetch the contents at (or close to) end users during off-peak hours prior to the actual
demands, the traffic during peak hours can be substantially off-loaded.

In the past years, this concept of caching has received a great deal of interest from
researchers of both the industry and the academia. Caching has been traditionally done
in the core of the networks. Recent trends focus on caching at the edges near the user
[6]. A large amount of works have demonstrated considerable performance improvement
by considering one of three network architectures:
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Figure 1.1: Femto-caching. Figure 1.2: Caching with D2D communication.

e Femto-caching: As depicted in Fig. 1.1, users are connected to several small BSs
(femto-cells), each equipped with a memory of finite size, and connected through a
bottleneck network to a content-providing server. The performance of femto-caching
was studied in [7-12]. [7] considers cellular network where helpers (small cell access
points) with caching ability are installed in the cell. Each user has access to multiple
helpers which can cooperate in order to minimize the access delay of the users. The
work [12] considers heterogeneous network where the BSs, relays and cache-enabled
users cooperate to satisfy the users demand.

e Caching with device-to-device (D2D) communication: Users request files from nearby
users equipped with a memory of finite size as shown in Fig. 1.2. Such technologie
greatly improves the network throughput and was studied by several works [13-21]
under different setting. [19] proposed D2D caching scheme that achieves the infor-
mation theoretic outer bound within a constant factor in some regimes. [16] has
studied the joint optimization of cache placement and scheduling. An opportunistic
cooperation strategy was proposed in [17] for D2D transmission to control the inter-
ference among D2D links. [20] has characterized the D2D caching capacity scaling
law under more realistic physical channel.

e Coded caching: users, equipped with a memory of finite size, request files from
the content-providing server which sends coded messages to satisfy all users. Coded
caching was introduced by Maddah Ali and Niesen [1,2], where sub-files are strategi-
cally placed in users’ caches and linear combinations are delivered to simultaneously
satisfy multiple users’ requests. As we focus on coded caching, we provide the details
in the following Section. Such a scheme significantly outperforms the conventional
uncoded caching [22-26] where the caching gain is obtained by sending the remaining
uncached requested files during peak hours.



1.2 Maddah-Ali and Niesen’s Coded Caching

In our thesis, we mainly focus on coded caching. In [1,2], Maddah-Ali and Niesen char-
acterized the memory-rate trade-off when user demands are arbitrary and the bottleneck
link is error-free. The network consists of a server with a database of N files, each F
bits long, and K users. Each user k is equipped with a cache memory Z; of size M files,
with M < N. We often use the normalized size memory denoted by m = % The server
is connected to users through a shared link assumed to be error-free and perfect. The
authors propose a two-phase coded caching scheme:

(i) placement phase: each file is divided in sub-files and each user pre-stores sub-files
up to its memory constraint prior to the actual demands. The cost of this phase is
negligible, provided that it could be performed in off-peak hours.

(ii) delivery phase: when the users make a particular request for certain files, the server
transmits codewords such that each user, based on the received signal and the con-
tents of its cache, is able to decode the requested file.

Al 4 [ 4, | 45

B | By | B, | By
c Talc e B | By By | Bs
R—— clal6|e
wan‘thA wants B wants C wan!(sA wants B waisﬂ'
1 [1] [2] N
4 o] [Aa]  [A]
B By B B, By B3
o]  [e] Lla]
(a) Conventional caching (b) Coded caching [1]

Figure 1.3: Example of K = 3 users with distinct user demands, data base of size N =3
and cache memory size M = 1.

We illustrate coded caching and its gain through a toy example with N = 3 files,
denoted by {A, B,C}, K = 3 users with a memory of M =1 file, each. Assuming the
worst case demand (i.e. different file requests) such that user 1, 2 and 3 requests A, B
and C, respectively. We calculate the total number of transmissions measured in files, for
uncoded caching and coded caching of [1]. Without user memory caches, the number of
transmissions is three. In both cases, we first split each file into 3 sub-files of equal size,
ie. A= (A17A2,A3), B= (Bth,Bg), C = (01,02703).

e Uncoded caching: All users cache (Aj, By, C1). To satisfy the users’ demands, the
server needs to send the remaining parts As, A3 to user 1, By, B3 to user 2, Cy, (s



to user 3, as shown in Fig. 1.3. The number of transmissions is equal to % X3 =2
files, decreased by one with respect to the case without caches.

e Coded caching: User k caches (Ay, By, Cy). User 1, 2, 3 needs respectively (As, A3),
(B1, Bs), (C1, Cs). By carefully choosing the placement, we can create three order-2
multicast symbols simultaneously useful to two users. As shown in Fig. 1.3, the
server sends As @ B for users {1,2}, A3 ® C for users {1,3}, and B3 & C; for users
{2,3}, where @& denotes the bit-wise XOR operation. The number of transmissions
is equal to % x 3 =1 file.

This toy example shows that a careful design of sub-packetization and cache placement
enables to perform opportunistic multicasting and thus decrease the total transmission
time.

In the placement phase of [1], each file is split into multiple sub-files and cached
in different users under the coordination of a central controller. Thus we refer to the
scheme by centralized coded caching. An uncoordinated placement called decentralized
coded caching has been proposed in [2], where each user independently caches sub-files
uniformly at random without central coordination. We provide a general description of
the two schemes in the following subsections.

Throughout the thesis, we use the following notational conventions. We let [k] =
{1,...,k}; €, denote a constant which vanishes as n — oo, i.e. lim, , €, = 0; |.| denote
the length of sub-files in bits or in packets and (If ) denote the number of i-combinations
from the set {1,..., K}.

1.2.1 Decentralized Content Placement

Placement phase Under the memory constraint of M F' bits, each user k independently
caches a subset of mF bits of each file, chosen uniformly at random. By letting £4(W;)
denote the sub-file of W; stored exclusively by the users in {, the cache memory of user k
after the decentralized placement is given by

Z={LsW;):dC[K], >k, i=1,...,N}. (1.1)
The size of each sub-file is given by
1L5(W)| = ml (1 —m)KWE 1 ep (1.2)

as F' — oo.

To illustrate the placement strategy, let us consider an example of K = 3 users. After
the placement phase, each file will be partitioned into 8 sub-files:

Wi = {Lo(W3), L1(W3), Lo(W5), L3(W5), L12(W5), L13(W5),
L23(VVZ'>7£’123<W1')}- (13>



Delivery phase Once the requests of all users are revealed, the offline scheme proceeds
to the delivery of the requested files. Assuming that user k requests file k, i.e. d = k, the
server generates and conveys the following codeword simultaneously useful to the subset
of users J:

Vi = ®realaiey Wi) - (1.4)

The main idea here is to create a codeword useful to a subset of users by exploiting the
receiver side information established during the placement phase. It is worth noticing
that the coded delivery with XORs significantly reduces the number of transmissions. Ob-
viously, the sub-files cached by the destination, e.g. L£1(W7), L12(W1), L13(W7), Li23(Wr)
for user 1 requesting Wi, need not be transmitted in the delivery phase. Compared to
uncoded delivery, where the server sends the remaining uncached sub-files with trans-
missions number equal to |J| x [Wyg\ (x|, the coded delivery requires the transmission
of |Wig\gryl, vielding a reduction of a factor [J|. In a practical case of N > K, it has
been proved that decentralized coded caching achieves the total number of transmissions,
measured in the number of files, given by [2]

1—(1—m)"

T(m,K) = (1 —m) —

(1.5)

On the other hand, in uncoded delivery, the number of transmissions is given by K (1—m)
since it exploits only local caching gain at each user.

1.2.2 Centralized Content Placement

Placement phase We suppose that M € {0, N/K,2N/K, ..., N} so that the parameter
b= % is an integer. Each file is split into (Ib{ ) disjoint equal size sub-files. Each sub-file
is cached at a subset of users J, VJ C [K] with cardinality |J| = b. Namely, the size of
any sub-file of file 7 is given by

[Lg(Wi)| = o5 P (1.6)

Delivery phase Once the requests of all users are revealed, the offline scheme proceeds
to the delivery of the requested files. Assuming that user k requests file k, i.e. d = k, the
server generates and conveys the following codeword simultaneously useful to the subset
of users J C [K] for |J| = b+ 1:

Vs = @realoiry (Wi), (1.7)

In a practical case of N > K, it has been proved that centralized coded caching
achieves the total number of transmissions, measured in the number of files, given by [1]

T(m, K) = (1= m) 5 —. (1.8)



Throughout the thesis we use three facts concerning the mapping 7" that hold for both
(1.5) and (1.8)

1-m

Property 1. T(m, k) converges to T(m,o00) = % when k — oo. The larger m is, the
faster it converges.

Property 2. T'(m, k) is an increasing function of k and so T'(m,1) < T(m, k) < T(m,o0).

Property 3. % 18 an increasing function of k.

1.2.3 Assumptions

Compared to uncoded caching, where the server sends the remaining uncached parts of the
requested files sequentially without any coding, the gain of coded caching is phenomenal.
More specifically, it has been proved that the delivery time, given by (1.5) or (1.8), to
satisfy K distinct requests converges to a constant in the regime of a large number of
users K (see Property 1). Albeit conceptually and theoretically appealing, the promised
gain of coded caching relies on some unrealistic assumptions (see. e.g. [6]). Namely, the
most sensitive assumptions that the works [1] and [2] rely on include:

1. The files popularity profile is uniform so that each of N files is requested with
probability %

2. The file size is arbitrarily large.

3. The content placement and delivery are performed in an offline manner for a fixed
set of user requests.

4. The shared bottleneck link is perfect and error-free.

1.2.4 Extensions

We summarize below recent progress to relax each of the above assumptions one by one.

Non-uniform files popularity

Existing works have relaxed the uniform demand assumption, and studied the performance
of coded caching under heterogeneous popularity profile was studied in [27-30]. The
proposed schemes in these works have modified the placement phase such that the most
popular files are likely to be cached with higher probability than the less popular files. In
[28,30], the gap between the achievable bound and the lower bound was shown to be a
constant.

Finite file size

In [31], it has been shown that the promised gain of coded caching holds only if the file
size grows exponentially in the number of users when decentralized cache placement [2]
and a class of clique cover delivery schemes are considered. In practical setting with finite
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file size, the promised multicasting gain disappears. To overcome this limitation, several
works [32-35] proposed different coded caching schemes. In [32] the shorter subfiles borrow
bits from other subfiles to make their sizes equal in the linear combination. [34] divides
the users into relatively small groups having the same cache contents. The work [33]
proposed a polynomial-time algorithm based on greedy local graph-coloring to recover a
part of the multicasting gain. In [35], the reduced coded caching gain in the finite file
size case was improved by the use of multiple transmitting antennas. Furthermore, for
sufficiently large number of antennas, the original coded caching gain under large file size
assumption, can be recovered.

Online users requests

In practical scenarios, users request files asynchronously and randomly whenever they
wish. Therefore, the time-varying user requests and corresponding delivery can be mod-
eled as a random arrival and departure process, respectively. Recent works [36-38], ad-
dressed partly such issue of the online nature of the cache placement and/or delivery. On
one hand, [36] studies the cache eviction strategies by assuming that the set of popular
files evolves in the same time scale as the content delivery. On the other hand, [38] has
focused on delay sensitive applications (such as video streaming) and studied the tradeoff
between the performance gain of coded caching and the delivery delay.

Index coding

It is noted that the delivery phase of coded caching can be seen as index coding problem
[39,40]. For index coding, a server with database of files is connected to users. Each
user has local access to a subset of files of the database and wishes to recover one file
not locally available. The goal is to satisfy all user demands with minimum number of
transmissions. Therefore, index coding (equivalently network coding, graph theory) was
used for designing new delivery schemes [30,33,41] under different setting and assumptions
(finite file length, random demands ..). The work in [41] considers the case of multiple
requests per user. The proposed scheme is based on multiple groupcast index coding and
showen to be approximately optimal within a constant. In [33], a graph coloring scheme
was proposed for finite file length. The work [30] proposes a caching scheme based on
chromatic number for the case of random demands.

Wireless broadcast channels

Further, recent works have attempted to relax the unrealistic assumption of a perfect
shared link by replacing it with wireless channels. If wireless channels are used only to
multicast a common signal, naturally the performance of coded caching (delivery phase)
is limited by the user in the worst condition of fading channels as observed in [42]. This
is due to the information theoretic limit, that is, the multicasting rate is determined by
the worst user [43, Chapter 7.2]. If the underlying wireless channels enjoy some degrees of
freedom to convey simultaneously both private messages and common messages, the de-
livery phase of coded caching can be further enhanced. These observations have inspired
a number of recent works to overcome these drawbacks [44-56]. The works [44-48,50,51]
have considered the use of multiple antennas, while [52-56] have proposed several interfer-
ence management techniques. The works in [52,53] consider the packet erasure broadcast
channel (EBC) with two different class of users: weak users, in terms of channel quality,



equipped with equal cache memory and strong users with no cache, and provide an achiev-
able scheme of joint cache-channel encoding based on Slepian-Wolf coding introduced in
[57]. It was then generalized in [55, 58] for Gaussian broadcast channels (BC) with un-
equal cache sizes where memory assignment is allowed. It has shown that larger rates
can be achieved by carefully assigning more cache memory to weaker users. For multiple
input single output (MISO) broadcast channel, the interplay between coded caching and
channel state information at the transmitter (CSIT) feedback was studied in [46,51]. It
has been shown that the multicasting gain of coded caching can reduce the CSIT feedback
providing broadcast gains.

We investigate in the first part, the cache-aided erasure broadcast channel with state
feedback. Note that the capacity region of the channel at hand was studied for the case
without caches in [59,60]. Thus we address the following questions in Chapter 2:

e What is the potential gain of coded caching for the EBC with feedback?

e What is the appropriate scheme to maximize such gain?

For coded caching in fading broadcast channel, recent works have studied opportunis-
tic scheduling [47] by exploiting the fading peaks. However, when the users experience
asymmetric fading statistics, opportunistic scheduling may lead to ignore some users in
the system. In the literature of wireless scheduling without caches at receivers, this prob-
lem has been resolved by the use of fairness among user throughputs [61]. By allowing
poorly located users to receive less throughput than others, precious air time is saved and
the overall system performance is greatly increased. However, the classical coded caching
scheme is designed to provide video files at equal data rates to all users. Furthermore,
when user requests files asynchronously in a random process, the problem becomes more
complicated. Thus we relax two assumptions (3 and 4) and address the following questions
in Chapter 3:

e How shall we ensure fairness in coded caching scheme in fading broadcast channel,
while adapting to the asynchronous and random arrival of the users requests?

e How shall we schedule a set of users to achieve our fairness objective while adapting
to time-varying channel quality?

In Chapter 4, we address the fairness problem in coded caching over fading broadcast
channel by relaxing assumption 4. We shed light into the following questions:

e How can we achieve a scalable content delivery over asymmetric fading channels?

e [s there a simple scheduling policy that requires only statistical channel knowledge?
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Figure 1.4: 2-user erasure broadcast channel during 3 time slots.

1.3 Contributions

Throughout the thesis, we have focused on the design of efficient content delivery schemes
in wireless channels when the placement phase is restricted to centralized [1] and/or
decentralized [2] placement strategy.

In Chapter 2, we relax assumtion 4 and consider erasure broadcast channels where
receiver feedback is sent to the transmitter in the form of ACK/NACK messages. The ca-
pacity of the channel at hand has been characterized by Wang [60] and by Gatzianas [59].
The achievable scheme of [59,60] relies on multicasting opportunities created by the over-
heard packets under instantaneous feedback assumption. Namely, when packets do not
reach the destination because of the erasure event, and are received by other users, then
instead of discarding them, these users can keep the received packets as side information
that can be useful for future transmissions. We provide in Fig. 1.4 a 2-user example
requesting different packets. After three transmissions time, each user is able to decode
the requested packet where the overheard packets obtained in slots 1 and 2 are used in
the third transmission to create a packet useful simultaneously to both users. Such multi-
casting opportunities are very similar to the one created by the placement phase in coded
caching. We propose an achievable scheme exploiting receiver side information both from
local caches and overhearing. We characterize the upper bound on the achievable region
of the the cache-enabled EBC with state feedback for the decentralized placement. We
provide an intuitive interpretation of the the algorithms proposed by Wang [60] and by
Gatzianas [59] for the EBC with state feedback and then extend them to the case with
receiver side information (acquired after cache placement phase). We prove that our pro-
posed multi-phase delivery scheme achieves the optimal rate region for special cases of
interest. These results are generalized to the centralized content placement [1] as well as
the multi-antenna broadcast channel (BC) with state feedback.

In Chapters 3 and 4, we study the content delivery over asymmetric block-fading
broadcast channel, where the channel quality varies across users and time. We address



1
1
]
]

L

—
I
I
I

i

T;

I
1
I
L1
N
1l —

User 1 User 2 User 3

Figure 1.5: Files combinations decisions for 3 users example.

the fairness problem in the presence of caches by formulating our objective function by an
alpha-fairness family of concave utility functions [62]. Unlike the classical coded caching
which combines all the requested files, we exploit the fading peaks by deciding on the
subset of users to linearly combine their requested files. We show in Fig. 1.5 an example
on files combination decisions. We suppose that each user have several demands, stored
in users queues. Depending on the channel and/or queues states we decide on the subset
of files to combine. For this example the server decides on combing files requested by
all users (dashed blue line), files requested by user 2 and 3 (dashed red line), and files
requested by user 1 and 2 (dashed black line).

In Chapter 3, we propose an online scheme jointly dealing with the three main decisions
(admission control, file combinations and scheduling) through queuing structure in order
to ensure fairness between users with asymmetric channel statistics while dealing with the
dynamic arriving requests and also exploiting opportunistically the time-varying fading
channels. We prove in this chapter that our online delivery scheme maximizes the alpha-
fair utility among all schemes restricted to decentralized placement [2].

In Chapter 4, we focus on the scheduling part and provide a rigorous analysis on
the long-term average per-user rate in the regime of a large number of users. We study
opportunistic scheduling, based on Gradient descent scheduling (GDS) [63], in order to
achieve a scalable sum content delivery while ensuring some fairness among users. We
propose a simple threshold-based scheduling policy and determine the threshold as a
function of the fading statistics for each fairness parameter o. Such a threshold-based
scheme exhibits two interesting features. On one hand, the complexity is linear in K. On
the other hand, such a scheme does not require the exact channel state information but
only a one-bit feedback from each user. Namely, each user indicates whether its measured
signal to noise ratio (SNR) is above the threshold set before the communication. We
prove that the proposed threshold-based scheduling policy is asymptotically optimal in
Theorem 3. Namely, the utility achieved by our proposed policy converges to the optimal
value as the number of users grows.
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1.4 Preliminaries

1.4.1 Capacity region of Gaussian broadcast channels

Consider the additive white Gaussian noise BC. The channel output of user k at slot ¢ is
given by

Vi = VX + zy, (1.9)

where the channel input x € C" is subject to the power constraint E[||x||?] < Pn; z;, ~
Nc(0,I,) are additive white Gaussian noises with covariance matrix identity of size n,
assumed independent of each other; {h;, € C} are channel fading coefficients independently
distributed across users.

Note that the channel model in (1.9) is equivalent to the Gaussian BC by normalizing

(1.9) with v/

Yi =X+ Vg, (1.10)

where vy, ~ N (0, Ni1,,) with N £ L. Since the capacity region of BC depends only on
the marginal distribution, the capa01ty region of (1.9) and that of (1.10) coincide.

Theorem 1. [43] The capacity region of a K-user degraded Gaussian broadcast channel

with noise variances N1 < --- < Nk and total power constraint P is given by
N-
Ry <log 1 (1.11)
1
k
+ 308
Ry < log — Z;ipj k=2,....K (1.12)
kTt Zj:l Dj
for non-negative variables {py} such that Eszl pr < P.
1.4.2 Maximum weighted sum rate
We consider the following maximization problem
K
N
Ry < log 2 (1.14)
Ny
k
+ .
Ry < log * 251 Py k=2,... K (1.15)

B k+2]1]
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over the variables {p;} such that Y1 p. < P.

We provide Algorithm 1 to solve this power allocation problem as a special case of
the parallel Gaussian broadcast channel studied in [64, Theorem 3.2]. Following [64], we
define the rate utility function for user k given by

O

=——A 1.1
Utz ™ (1.16)

vE(2)

where \ is a Lagrangian multiplier. The optimal solution corresponds to selecting the
user with the maximum rate utility at each z and the resulting power allocation for user

k is
= {: (L = ) | (117)
with \ satisfying

P = {max— - —L. (1.18)

Algorithm 1 Weighted sum rate maximization

_ K O
A = maxj_, NP
; . _ O _ Ok
Find the users: ky = arg maxy, N and kp = argmax; NP A

Let K <+ ko and k1 = ko.

If kg = kp, then serve only this user with the full power py, = P.
Else

For j ={2,..., K}

Find the smallest intersection point with user k;_;

A

. eiNk‘j,1 - ekjle’i
Z; = 1nin

ie[K]\X O, — 0;

and its associated user ;.

s If z; < P,
9: pkj—l =Zj — Zj-1
10: K {XK, k;}.

11: Else py,_, = P — z;_1, Stop.

1.4.3 Gradient Descent Scheduling

We consider a time slotted system where at each slot ¢ we decide on the service rate ry(t)
of user k. We suppose that each user always has data to be served, and we are interested

12



in optimizing the average service rates t = (71, ..,71) with 7, = E(rg(t)). We aim to find
a scheduling algorithm that provides r* solving the following maximization problem

max G(T) (1.19)
Fel (1.20)

where G(.) is a concave utility function, and set I' is the system rate region.The
gradient descent algorithm [63] chooses a (possibly nonunique) decision

max A(G(u(t))).r(t) (1.21)

maximizing the scalar product with the gradient of G(u(t)) where ug(t +1) £ (1 —
€)ug(t) + erg(t) denotes the empirical data rate up to time ¢ for a given constant € > 0.

Theorem 2. (Asymptotic Optimality of the Gradient Algorithm [63]). Let t¢ denote the
vector of expected average service rates in a system with fived parameter € > 0. Then, as
e— 0, 1°—=r1".

1.4.4 Queueing structure and Lyapunov optimization

Queue stability Let Q(t) represent a discrete time process over integer time slots ¢t € N
evolving as the following recursive equation as shown in Fig. 1.6

Qt+1) = [Q@) —b(t)], + a(?), (1.22)

where {a(t)};2, and {b(t)},2, are stochastic processes. The value of a(t), b(t) represents
the amount of work that arrives, the amount of work the server of the queue ) can
process, respectively on slot ¢ and assumed to be non-negative. The value of Q(t) called
the backlog at slot ¢, assumed to have non-negative initial state Q(0) > 0.

Definition 1 (Stability [65]). A queue Q(t) is said to be (strongly) stable if

=
lim sup T Z E[Q(t)] < oo.
=0

T—o0

A queueing system is said to be stable if all its queues are stable. Moreover, the stability
region of a system is the set of all vectors of arrivals such that the system is stable.

Lyapunov Function Consider a network with L queues, and let U(t) = (Uy(t), ..., UL(t))

represents the vector of backlog in each queue at time slot t. We define the following
quadratic Lyapunov function

L(U) =) UXb). (1.23)
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Figure 1.6: Illustration of the evolution of queue Q(t).

which measures the total queue backlogs in the network. We define the Lyapunov drift
given by

AL(U(t)) =E{L(U(t+1) — L(U(t) |U(t)} (1.24)

which represent the expected change in the Lyapunov function (queue backlogs) from one
slot to the next one.

Lemma 3 (Lyapunov stability [66]). If there exist constants B > 0, € > 0, such that for
all time slots t we have:
L

AL(U(t)) < B—e€» _Ui(t), (1.25)

(1.26)

Note that whenever ZiLzl U(t) > 2+ the Lyapunov drift satisfies AL(U(t)) < —4.
Namely, (1.25) ensures that the Lyapunov drift is negative whenever the sum of queue
backlogs is relatively large, which ensures network stability.

Consider the following maximization problem
K
T = T 1.2
7" =arg max ; 9k (Tk) (1.27)

for some capacity region A; utility function gi(.); 7 = E {re(t)} and Sr, gr(ri(t)) <
Gmax- The drift-plus-penalty algorithm, corresponding to the maximization problem
in (1.27), is such that it minimizes the following [66]

AL(U(t) - VE {ng) | U<t>} (1.28)

Lemma 4 (Lyapunov optimization [61]). If there are positive constants V', €, B such that
for all time slots t and all unfinished work U(t), the Lyapunov drift satisfies

AL(U(t) - VE {ng) |U<t>} SB- Y UM-VY g (129)
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then the time average utility and congestion satisfy

T—-1 L
1 B + VG max
lim sup — E{U;(1)} < ———, 1.30
T%OPT;; {Ui(t)} p (1.30)
1 T K K B
liminf 2> > gk(ru(t) > > onlTh) — 3 (1.31)
t=1 k=1 k=1

Notice that V is a parameter that controls the utility-delay tradeoff. Indeed, by tuning the
constant V', the resulting utility can be arbitrarily close to the optimal one, where there is

a tradeoff between the guaranteed optimality gap O(1/V) and the upper bound on the total
queue backlogs O(V).
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Chapter 2

Erasure Broadcast Channels with
Feedback

We study the achievable rate region of the erasure broadcast channel (EBC) with cache
and state feedback. Based on Wang and Gatzianas scheme, we propose an achievable
scheme that exploits multicasting opportunities created by receiver side information both
from local cache and overhearing. We prove that our proposed delivery scheme achieves
the optimal rate region for special cases of interest. Using the interesting duality between
the EBC and the multi-antenna broadcast channel, these results are gemeralized to the
multi-antenna broadcast channel with state feedback.
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2.1 Introduction

In this chapter, we model the bottleneck link between the server with N files and K users
equipped with a cache of a finite memory as an erasure broadcast channel (EBC). The
simple EBC captures the essential features of wireless channels such as random failure or
disconnection of any server-user link that a packet transmission may experience during
high-traffic hours, i.e. during the delivery phase.

We consider a memoryless EBC in which erasure is independent across users with
probabilities {d} and assume that each user k has a memory cache of My, files. Moreover,
the server is supposed to acquire the channel states causally via feedback sent by the
users. Under this setting, we study the achievable rate region of the EBC with cache and
state feedback. Our contribution is four-fold:

1. We characterize the upper bound on the achievable region of the the cache-enabled
EBC with state feedback for the decentralized placement. The converse proof builds
on a generalized form of the entropy inequalities (Lemma 6) as well as the reduced
entropy of messages in the presence of receiver side information (Lemma 7). These
lemmas can be easily adapted to other scenarios such as centralized placement as
well as the multi-antenna broadcast channel.

2. We provide an intuitive interpretation of the the algorithms proposed by Wang [60]
and by Gatzianas [59] for the EBC with state feedback and then extend them to the
case with receiver side information (acquired after cache placement phase). We prove
that our proposed multi-phase delivery scheme achieves the optimal rate region for
special cases of interest.

3. These results are generalized to the centralized content placement [1] as well as the
multi-antenna broadcast channel (BC) with state feedback. Here, a duality between
the EBC and the multi-antenna BC in terms of the order-j multicast rate has been
exploited.

4. Numerical examples are provided to quantify the benefit of state feedback, the
relative merit of the centralized caching to the decentralized counterpart, as well
as the gain due to the optimization of memory sizes, as a function of other system
parameters.

Throughout the Chapter, we use the following notations. The superscript notation X"
represents a sequence (X1,...,X,) of variables. The entropy of X is denoted by H(X).

We say f(z) = 0, (g9(x)) if limg o0 % < .

2.2 System Model and Definitions

We consider the cache model of Maddah Ali and Niesen (Section 1.2) and relax some
assumptions (perfect shared link, equal file sizes and equal cache capacities). As depicted
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Figure 2.1: Cached-enabled EBC with K = 3.

in Fig. 2.1, the server, of data base with distinct file sizes, is connected to users with
different cache capacities through an EBC. The data base ﬁles are denoted by Wy, ..., Wy
where the i-th file W; consists of F; packets, each of size L = log,(q) bits. Each user k has
a cache memory Z; of M F packets for M, € [0, N], where FF = L ZZ | Fi is the average

size of the files. We often use the normalized cache size denoted by my = %

Placement phase We mainly focus on the decentralized content placement recalled
in Sub-Section 1.2.1. Under the memory constraint of MF packets, each user k in-
dependently caches a subset of m;F; packets of file 7, chosen uniformly at random for
i=1,...,N. We recall that £4(1W;) denotes the sub-file of W; stored exclusively by the
users in J. The size of each sub-file is given by

LW =]]mi 1] (1 —m)F +er (2.1)
jed  jE[KN\I

as F; — oo. It can be easily verified that the memory constraint of each user is fulfilled,
namely,

| Zi] IXN:Z |[Ca(W,

1 3:ked

ka+€F

I
M Mz I\

F+ Z €r, (2.2)
=1

as F; — oo for all i. Throughout this Chapter, we assume that F' — oo and meanwhile %

converges to some constant F; > 0. Thus, we identify all ez with a single ep. We provide
a more formal definition below:

e N message files Wy, ..., Wy independently and uniformly distributed over W; x
- X Wy with W, = IE‘?‘ for all 7.
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N g
e K caching functions defined by ¢y : ng":l By Fg Mk that map the files W1, ..., Wy
into user k’s cache contents

Zk:st(Wlw--,WN)a ke [K] (23)

Delivery phase Under such a setting, consider a discrete time communication system
where a packet is sent in each slot over the K-user EBC. The channel input X € F,
belongs to the input alphabet of size L bits. The erasure is assumed to be memoryless
and independently distributed across users so that in a given slot we have

K
Pr(Y1,Ya, ..., Yi|X) = [ Pr(¥ilX) (2.4)
k=1
1—6, Y.=2X,

2.5
Sk, Y, =FE (2:5)

Pr(Y;[X) = {
where Y, denotes the channel output of receiver k, E stands for an erased output, J;
denotes the erasure probability of user k. We let S; € § = 2{1+K} denote the state of
the channel in slot ¢ and indicate the set of users who received correctly the packet. We
assume that all the receivers know instantaneously S;, and that through feedback the
transmitter only knows the past states S*~! during slot t.

Once each user k makes a request di, the server sends the codewords so that each user
can decode its requested file as a function of its cache contents and received signals during
the delivery phase. A (My,..., Mg, Fy, ..., Fy,.,n) caching delivery scheme consists of
the following components.

N .
e A sequence of encoding functions defined by f; : IFqZ":1 Boxgtt F, that map the
requested files and the state feedback up to slot ¢ — 1 into a transmit symbol at slot
t. Namely, the transmit symbol in slot ¢ is given by

X = fiWay, oo . Wy, S71, t=1,....n (2.6)
where Wy, denotes the message file requested by user & for dj, € {1,...,N}.

e K decoding functions defined by 1y, : Ty X IE‘(I;Mk X 8" — IF,fd’“, k € [K], that decode

the file de = Yp(Y, Zk, S™) as a function of the received signals Y,", the cache
content Zy, as well as the state information S™.

A rate tuple (Ry,...,Rk) is said to be achievable if, for every ¢ > 0, there exists a
(My, ..., Mg, Fy,, ..., F4.,n) caching strategy that satisfies the reliability condition

max max Pr(¢g (Y, Zi, S™) # Wy, ) <€

(d1,...,dg)E€{l,..,.N}K k

as well as the rate condition

F,
R, < =% Vk e [K]. (2.7)
n
Throughout this Chapter, we express for brevity the entropy and the rate in terms of

packets in order to avoid the constant factor L.
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2.3 Main Results

In order to present the main results, we specify two special cases.

Definition 2. The cache-enabled EBC (or the network) is symmetric if the erasure prob-
abilities as well as the memory sizes are the same for all users, i.e. 6y = -+ = dg = 0,
miy=---=mg =m.

Definition 3. The rate vector is said to be one-sided fair in the cache-enabled EBC if
Ok > 0, implies

Ry, {5j (1—mj)/mj} :

— >maxq—, ————— ¢, VkF#]. 2.8

Rj - 6k (l—mk)/mk #j ( )
For the special case without cache memory (m; = --- = my = 0), the above definition

reduces to the one-sided fairness originally defined in [60, Definition 5]: d; > ¢; implies
dxRy > 0;R; for k # j. For the particular scenario of symmetric rate (R, = R Vk), the

rate vector (R, ..., R) belongs to the one sided-rate region if and only if max {g—i, ZLT];} <1,

Vj # k, which means that the better user in terms of channel quality should have the
larger cache memory.

Focusing on the case of most interest with N > K and K distinct demands, we present
the following main results of this Chapter.

Theorem 5. For K < 3, or for the symmetric network with K > 3, or for the one-sided
faur rate vector with K > 3, the achievable rate region of the cached-enabled EBC with the
state feedback under the decentralized content placement is given by

K k

(I —mg,
> L - J>R7rk <1 (2.9)
k=1 1 - Hj:l 57rj

for any permutation © of {1,..., K}.
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The above region has a polyhedron structure determined by K'! inequalities in general.
For the symmetric network, the above region simplifies to the following

(1 -m)

5 fn <1 (2.10)

o

=1

For the case without cache memory, i.e. m; = 0 for all k, Theorem 5 boils down to the
capacity region of the EBC with state feedback [59,60] given by

K

1
Y ————R, <1, Vr (2.11)
k=1 1— Hj:l 57rj

which is achievable for K' < 3 or the symmetric network or the one-sided fair rate vector
where 0; > §; implies 0, R, > §;R; for any k # j. Comparing (2.9) and (2.11), we
immediately see that the presence of cache memories decreases the weights in the weighted
rate sum and thus enlarges the rate region. In order to gain some further insight, Fig.
2.2 illustrates a toy example of two users with (my,ms) = (%, 2) and (01,8) = (3, 3).

303 12

According to Theorem 5, the rate region is given by

8 16

-Ri+—-Ry<1

g1 + 632 S

16 2

— R+ -Ry <1 2.12

631 T3S (2:12)

which is characterized by three vertices (2,0) (0.78,1.20), and (0, ). The vertex (0.78,1.20),
achieving the sum rate of 1.98, corresponds to the case when the requested files satisfy
the ratio Fy,/Fy, = 20/13. On the other hand, the region of the EBC without cache is
given by

4 8

-Ri+=-Ry <1
3 1+7 2 <

8
SR+ 2R, <1 (2.13)

which is characterized by three vertices (2,0), (0.63,0.14), (0,3). The sum capacity of
0.77 is achievable for the ratio Re/R; = 2/9. The gain due to the cache is highlighted

even in this toy example.

Theorem 5 yields the following corollary.

Corollary 1. For K < 3, or for the symmetric network with K > 3, or for the one-sided
fair rate vector with K > 3, the transmission length to deliver requested files to users in
the cached-enabled EBC under the decentralized content placement is given by

K 11k

- (1 —=my,

Tiot :mgx{ E L T J>Fdﬂk} +O(1), (2.14)
i | P

as F' — oo.
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For the symmetric network with files of equal size (F; = F, Vi), the transmission length
simplifies to

T, —fjﬂﬁw@u) (2.15)
tot — 1 N 6k ) .
k=1

as ' — oo. The corollary 1 covers some existing results in the literature. For the
case with files of equal size and without erasure, the transmission length in Corollary
1 normalized by F coincides with the “rate-memory tradeoff” ' under the decentralized
content placement for asymmetric memory sizes [67] given by

T“’t i [H 1—m; ] : (2.16)

where the maximum over all permutations is chosen to be identity by assuming m; >
- > mpg. If additionally we restrict ourselves to the case with caches of equal size, we
recover the rate-memory tradeoff given in [2]

T;t:%(l—%) {1—(1—%)?. (2.17)

In fact, the above expression readily follows by applying the geometric series to the RHS
of (2.16).

2.4 Converse

In this section, we prove the converse of Theorem 5. First we provide two useful lemmas.
The first one is a generalized form of the entropy inequality, while the second one is a
simple relation of the message entropy in the presence of receiver side information. The
former has been stated and proved in [68].

Lemma 6. [68, Lemma 5] For the erasure broadcast channel, if U is such that X; <

U}/Jtilst_l A (St+17 s 7Sn)7 vj;

1

1
————HY/|US") < ———HY,"|U,S") (2.18)
1 - Hje:] 5]’ ! 1= Hjea 5]' /
for any sets 3,3 such that § CJI C{1,..., K}.
Proof. We restate the proof in Appendix A.1. H

n [2] and all follow-up works, the “rate” is defined as the number of files to deliver over the shared
link, which corresponds to our Ti¢ here.
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Lemma 7. Under the decentralized content placement [2], the following inequality holds
for any i and J C [K]

HW; |[{Z}rer) = H (1 —my) HW;).

kel

Proof. Under the decentralized content placement, we have

H(Wi [{Zx}res) = HWi [{Lg(W1) Fargzn,1=1,...N) (2.19)
= H(W;[{£3(W:)}ars0) (2.20)
= H({£L3(Wi)}sro=0) (2.21)
= > H(L(W) (2.22)
B:ICIKI\
> > H(Ly(Wi)| £y) (2.23)
J:IC[K]\J

where the first equality follows from (1.1); the second equality follows due to the in-
dependence between messages Wi, --- , Wy; the third equality follows by identifying
the unknown parts of W; given the cache memories of J and using the independence
of all sub-files; (2.22) is again from the independence of the sub-files. Note that Ly
is a random variable indicating which subset of packets of file W, are shared by the
users in J. The size of the random subset |£Ly| follows thus the binomial distribution
B(H(VVi), [Ticsmy Hk:e[K}\a(l_m’f)>‘ It is readily shown that H(L5(W;) | £y) = E{| L4}
This implies that

H(Wi |[{Zk}reo)

S IIms TT = m)HEW) (2.24)

J:IC[K\I j€I ke[K\J

=1{a-my > IIm I Q-mEW) (2.25)

kel 3:3C[K\I j€d ke[K\I\J
kel

where the last inequality is obtained from the basic property that we have

S [T I (- mi) =1

IEM j€d keM\J

for any subset M C [K], in particular for M = [K] \ J. O

We apply genie-aided bounds to create a degraded erasure broadcast channel by pro-
viding the messages, the channel outputs, as well as the receiver side information (contents
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of cache memories) to the enhanced receivers. Without loss of generality, we focus on the
case without permutation and the demand (dy,...,dx) = (1,..., K).

k k
nH 1—mj)R :H1—mj W) (2.27)
j=1 i=1

< H(Wy|ZES™) (2.28)
< I(Wis Yy | 285™) + ne,, (2.29)
< I(Wi; Yy, WH Z5S™) + ne), (2.30)
= ](Wk, | W ZEsm) +nenk (2.31)

where the second inequality is by applying Lemma 7 and noting that S™ is independent of
others; (2.29) is from Fano’s inequality; the last equality is from I(W,,; W*=1| ZkSm) =0
since the caches Z* only store disjoint pieces of individual files by the decentralized content
placement [2]. Putting all the rate constraints together, and defining ¢, ; = €ni/ H?Zl(l —
m;), we have

7’L(1 — ml)(Rl — En,l) S H(Yin | len) — H(Yin | W1Z15”)

K
n [0 = m) (R — enx) < H(Y iy WK ZK5™)
j=1
— H(Yjq | WHEZESm). (2.32)
We now sum up the above inequalities with different weights, and apply K — 1 times
Lemma 6, namely, for k =1,..., K — 1,

H(Yjp, | WhZEFS™) - H(Yj, | WhZES™)

< (2.33)
L PR 1= TTepsn 95
szksn
_ HO ) -
1- Hje[k} 5]’

where the first inequality follows because removing conditioning increases entropy. Finally,
we have

i Hje[k}(l —m;) (R,
k=1 1- Hjé[k] 0
H(Y!| 2,5 H (Y | WH 275

_ Gn)

S Tui-6)  al-TLand) (2.35)
H(Y})
< m <1 (2.36)

which establishes the converse proof.
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2.5 Broadcasting Without Receiver Side Information

In this section, we first revisit the algorithm proposed in [59,60] achieving the capacity
region of the EBC with state feedback for some cases of interest, as an important building
block of our proposed scheme. Then, we provide an alternative achievability proof for the
symmetric channel with uniform erasure probabilities across users.

2.5.1 Revisiting the algorithm by Wang and Gatzianas et al.

We recall the capacity region of the EBC with state feedback as below.

Theorem 8. [59,60] For K < 3, or for the symmetric channel with K > 3, or for the
one-sided fair rate vector® with K > 3, the capacity region of the erasure broadcast channel
with state feedback is given by

K

1
> ————R, <1, Vr. (2.37)
k=1 1 - Hj:l 57fj

We provide a high-level description of the broadcasting scheme [59,60] which is optimal
under the special cases as specified in the above theorem. We recall that the number of
private packets {F}} is assumed to be arbitrarily large so that the length of each phase
becomes deterministic. Thus, we drop the e term wherever confusion is not probable.
The broadcasting algorithm has two main roles: 1) broadcast new information packets and
2) multicast side information or overheard packets based on state feedback. Therefore,
we can call phase 1 broadcasting phase and phases 2 to K multicasting phase. Phase j
consists of (I;) sub-phases in each of which the transmitter sends packets intended to a
subset of users J for |J| = j. Similarly to the receiver side information obtained after the
placement phase, we let £4(Vi) denote the part of packet Vi received by users in J and
erased at users in [K] \ J.

Here is a high-level description of the broadcasting algorithm:

1. Broadcasting phase (phase 1): send each message Vi, = Wy, of F}, packets sequen-
tially for £ = 1,..., K. This phase generates overheard symbols {L4(V})} to be
transmitted via linear combination in multicasting phase, where J C [K] \ k for all
k.

2. Multicasting phase (phases 2 — K): for a subset J of users, generate Vj as a linear
combination of overheard packets such that

Vi = F5 ({Laa00 (Vo) }ooorcaca) » (2.38)

where 5 denotes a linear function. Send Vj sequentially for all § C [K] of the
cardinality || =2,..., K.

25, > &; implies 0, Ry > §;R; for any k # j.
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The achievability result of Theorem 8 implies the following corollary.

Corollary 2. For K < 3, or for the symmetric channel with K > 3, or for the one-sided
fair rate vector with K > 3, the total transmission length to convey Wy, ..., Wy to users
1,..., K, respectively, is given by

K
F,
Tt = »  ———— +6(1).
k=1 1- Hj:l 57"]’

The proof is omitted because the proof in Section 2.6.2 covers the case without user
memories.

In order to calculate the total transmission length of the algorithm, we need to intro-
duce further some notations and parameters which are explained as follows.

e A packet intended to J is consumed for a given user k € J, if this user or at least one
user in [K]\J receives it. The probability of such event is equal to 1—] [, e gugry 95-

e A packet intended to J becomes a packet intended to J and useful for user k£ € J C
d C [K], if erased at user k and all users in [K]\ J but received by g\ J. The number
of packets useful for user k generated in sub-phase J and to be sent in sub-phase {,
denoted by N:}{k} is then given by

—J?
NE =8 T 6 JT -4 (2.39)

JE[ENIU{k}  jed\I

where t:}{k} denotes the length of sub-phase J viewed by user k to be defined shortly.

We can also express Nj{i];; as

k k
N = ST g (V). (2.40)
I CINk

where we let Vj{k} denotes the part of Vj required for user k.

e The duration t; of sub-phase { is given by

{k}
tg = t 2.41
g = maxt;”, (2.41)
where
{k}
t;k} _ ZkEJCH Nj—)ﬂ (242>

L= TLicipauiey 9
The total transmission length is given by summing up all sub-phases, i.e. Tio = Zgg[ K ta-
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Figure 2.3: Phase organization for K = 3 and packet evolution viewed by user 1.

Fig. 2.3 illustrates the phase organization for K = 3 and the packet evolution viewed
by user 1. The packets intended to {1,2,3} are created from both phases 1 and 2.
More precisely, sub-phase {1} creates Lo3(V]) to be sent in phase 3 if erased at user 1
and received by others (ERR). The number of such packets is Nl{gm. Sub-phase {1, 2}
creates L3(Vi2), La3(V12) if erased at user 1 but received by user 3 (EXR), while sub-phase
{1,3} creates L£5(Vi3), Log(Vi3) if erased at user 1 and received by user 2 (ERX). The total
number of packets intended to {1,2,3} generated in phase 2 and required by user 1 is

1 1
N1{2i>123 + N1{3i>123~

2.5.2 Achievability in the symmetric channel

We focus now on the special case of the symmetric channel with uniform erasure prob-
abilities, i.e. d; = ¢ for all k. In this case, the capacity region of the EBC with state
feedback in (2.37) simplifies to

1
Zm}zﬁk <1, vr. (2.43)

It readily follows that the capacity region yields the symmetric capacity, i.e. Ry = -+ =
Ry = Ryym(K), given by

B 1
T K 1
D ket ﬁ

In the following, we provide an alternative proof of the achievability of the symmetric
capacity. Notice that other vertices of the capacity region can be characterized similarly
as proved in subsection 2.6.3. Our proof follows the footsteps of [69] and uses the notion of
order-j packets. Let us define message set {I¥;} independently and uniformly distributed
over {Wy} for all J C [K]. For J with the cardinality j = |J|, the message set {Wj} are
called order-j messages. We define R; an achievable rate of the message Wy and define
the sum rate of order-j messages as

R(K)2& Y Ry= <€(> R;. (2.45)

3:1d1=7

Ry (K) (2.44)
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The supremum of R?(K) is called the sum capacity of order-j messages. We characterize
the sum capacity of order-j messages, in the erasure broadcast channel with state feedback
in the following theorem.

Theorem 9. In the K-user erasure broadcast channel with state feedback, the sum capacity
of order-j packets is upper bounded by

(5)
K—j+1 (If:f
k=1 1—6F

R(K) <

T j=1... K. (2.46)

The algorithms in [59, 60] achieve the RHS with equality.

Proof. We first provide the converse proof. Similarly to section 2.4, we build on genie-
aided bounds together with Lemma 6. Let us assume that the transmitter wishes to convey
the message Wy to a subset of users § C {1,..., K}, and receiver k wishes to decode all
messages Wy 2 {Wy}tggor for j = 1,..., K. In order to create a degraded broadcast
channel, we assume that receiver k provides the message set W, and the channel output
Y," to receivers k + 1 to K for k = 1,..., K — 1, Under this setting and using Fano’s
inequality, we have for receiver 1 :

n| Y Ry—en | <HYPS") - HY|WiS™). (2.47)

1€3C[K)

For receiver k =2, ..., K, we have:

n > Ry—enn | SHQ.YT|WHEISY)
kedc{k,....K}
— HYP .. Y [Wwks™), (2.48)

.....

and applying Lemma 6 K — 1 times, we readily obtain:

zK: 2 keac k... ) (Flg — €nk) o HOYS™)

1 — ok — n(l-=9)
<1 (2.50)

(2.49)

k=1

We further impose the symmetric rate condition such that Ry = Ry for any J # J’ with
the same cardinality. By focusing on J of the same cardinality j in (2.49) and noticing
that there are (K *k) such subset, Ry is upper bounded by

-1
1 .
Ry < —, Vv, |3 =7. (2.51)
K—j+1 (j—l)
k=1 1ok



This establishes the converse part.

In order to prove the achievability of R'(K) in Theorem 9, we apply the broadcasting
algorithm of [59,60] from phase i > 1 by sending N; packets to each subset I C [K] with
|9] = 4. First, we redefine some parameters by taking into account the symmetry across

{k} }

users. Due to the symmetry, we drop the user index £ in #5, Nj{ig and replace them by

tj, Ni_j, respectively for I C J C [K] with |J| =4, |d| = j. Now, we introduce variants of
these notations to reflect the fact that the algorithm starts from phase ¢ > 1, rather than
from phase 1. The length of any sub-phase in phase j when starting the algorithm from
phase i, denoted by t}, is given by

j—1

tjsz(l_JNHj» J >, (2.52)

where
N, =" (1 =6y (2.53)

denotes the number of order-j packets generated during a given sub-phase in phase 1,
again starting from phase .
For 7 =14, we have

i N;
tt =

i m. (2.54)

By counting the total number of order-i packets and the transmission length from phase
i to phase K, the sum rate of order-i messages achieved by the algorithm [59,60] is given
by

=—4— Vi 2.55
S ()t 259

It remains to prove that R'(K) coincides with the RHS expression of (2.46). We notice
that the transmission length from phase j to K can be expressed in the following different
way, 1.e.

i (f) t; = EKI Uj, (2.56)

Jj=t Jj=t

where we let

7 .
i J— 1\, SO
U; = g (l—l) 5, Vi3> (2.57)



By following similar steps as [59, Appendix C], we obtain the recursive equations given
by

i 1 = J—=1 I+1 K—j+l+1\7i
for 7 > i. Since we have Ul = t! = W and using the equality (] 1) (f:l) =
(Jjj) (j ;Z) and the binomial theorem >7_ (})az*y"™* = (z + y)", it readily follows that
we have
i_ Ni .7 -1 . .

By plugging the last expression into (2.55) using (2.56), we have
. ()N

R(K) = e — (2.60)
ZJK:Z %(?-1)
I ) (2.61)
K—i+1 (If:f) '
k=1 1-6k
which coincides the RHS of (2.46) for i« = 1,..., K. This establishes the achievability
proof. O]

As a corollary of Theorem 9, we provide an alternative expression for the sum capacity.

Corollary 3. The sum capacity of the K-user symmetric broadcast erasure channel with
state feedback can be expressed as a function of R*(K),..., RE(K) by

RYK) = KM (2.62)

N1
B + Y, (R)Z(I;)

KN1

where 1s the duration of phase 1, (Ij) Ni_,j corresponds to the total number of order-j
packets genemted i phase 1.

Proof By letting f denote the RHS of (2.62), we wish to prove the equality f = R'(K) =
by proving f = Rl(K ). If it is true, from the achievability proof of Theorem 9

Zk 19 §k
that proves R' = R’ for all 4, the proof is complete. In the RHS of (2.62), we replace R’
by the expression R in (2.55) by letting N;_,; = N; for i > 2. Then, we have

KN,
_ 2.63
f KN1+27, 22] z() ( )
KN,
_ N 2.64
T (T, o
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Comparing the desired equality f = R'(K) = % with the above expression and

J=1\35/%3

noticing that fig}( = Ktl, we immediately see that it remains to prove the following
equality.
j .
=t Vj>2 (2.65)
i=2

We prove this relation recursively. For j = 2, the above equality follows from (2.52) and
(2.54).

N 12
1 — oK1
Now suppose that (2.65) holds for [ =2,...,j — 1 and we prove it for j. From (2.52) we
have

ty = = t3. (2.66)

1 -1
1 _ 1
tf_T:WZHEZ(FJ>Mﬂ' (2.67)

1 g N g
T 1 gkt [N1—>j + Z (l B 1)t115K 1 = §)7 l] (2.68)

1=2
1

1 — §K—j+1

7j—1 . l
-1 ) ) .
[NHJ- Y (5 - 1) Stk (1 - 5)#1 (2.60)
=2 1=2

1 gy A
:fjﬂﬁNW+ZQ_JZMw (2.70)
L =2 1=2
1 S -1
L 1=2 [=3
=t + Z th, (2.72)
=2

where (2.68) follows from (2.53); (2.69) follows from our hypothesis (2.65); (2.70) follows
from (2.53); (2.71) is due to the equality 3775 371, = SY72 SV the last equality is

due to (2.52). Therefore, the desired equality holds also for j. This completes the proof
of Corollary 3. O

2.6 Achievability

We provide the achievability proof of Theorem 5 for the case of one-sided fair rate vector
as well as the symmetric network. The proof for the case of K = 3 is omitted, since it is
a straightforward extension of [60, Section V].
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2.6.1 Proposed delivery scheme for K > 3

We describe the proposed delivery scheme for the case of K > 3 assuming that user &
requests file Wy, of size F}, packets for k = 1,..., K without loss of generality. Compared to
the algorithm [59,60] revisited previously, our scheme must convey packets created during
the placement phase as well as all previous phases in each phase. Here is a high-level
description of our proposed delivery scheme.

1. Placement phase (phase 0) detailed in subsection 1.2.1: fill the caches 71, ..., Zk
according to the decentralized content placement (see subsection 1.2.1). Let L4(W;)
denote the sub-file of W; stored exclusively by the users in . This phase creates
“overheard” packets {Lg\r(Wy)} for § C [K] and all k to be delivered during phases
1to K.

2. Broadcasting phase (phase 1): the transmitter sends Vi, ..., Vi sequentially until
at least one user receives it, where V;, = Ly(W}) corresponds to the order-1 packets.

3. Multicasting phase (phases 2-K): for a subset J of users, generate Vj as a linear
combination of overheard packets during the placement phase as well as during
phases 1 to j — 1. Send Vj sequentially for J C [K],

Vs = F3 ({Lavaur (Vo) Yanacacas Logry(Wi)) - (2.73)

The proposed delivery scheme achieves the optimal rate region only in two special cases.
We provide the proof separately in upcoming subsections.

2.6.2 Proof of Theorem 5 for the case of one-sided fair rate
vector

We assume without loss of generality §; > -+ > 0k, 1Ry > -+ > xRk, and =24 Ry >

m1

- > %RK' Under this setting, we wish to prove the achievability of the following

equality.

K k

k=1 1 - Hj:l 5]‘

By replacing Ry = % and further assuming d; = k for all k& without loss of generality,

the above equality is equivalent to

F.. (2.75)



The rest of the subsection is dedicated to the proof of the total transmission length
(2.75). We start by rewriting t;k} in (2.42) by incorporating the packets generated during
the placement phase. Namely we have for k € J C [K]

k
PO > gkercs NJ{H}H + | Lg\ gy (W) |
J .

(2.76)
L= Temnaom %

We recall that the length of sub-phase J is given by 5 = maxy¢y t;k}. Our proof consists
of four steps.

Step 1 We express t;k} as a function of key parameters {d; }, {mu}, { Fx} in two different
ways. By following similar steps as in [59, Appendix C], the aggregate length of sub-phases
J C J required by user k for a fixed J C [K] is given by

» 1—m,;
i = HlJGW\HU{’“}( 5J)Fk. (2.77)
1:keICy o HJ’E[K]\HU{k} J

We have an alternative expression for t;}k} which is useful as will be seen shortly. The
length of sub-phase J needed by user k such that k € § C [K] is equal to

. 1 — m.
gt= > (=)™ HlJE[K]\BU{k}U“ ( 57 )Fk. (2.78)
H:HCI\{k} - HjG[K]\HU{k}UCH J

The proof is provided in Appendix A.2.

Step 2 The length of sub-phase J is determined by the worst user which requires the
. ) (k) . . .

maximum length, i.e. argmaxeyt; . For the special case of one-sided fair rate vector,

by using (2.78) it is possible to prove that the worst user is given by

argmax i = min{d} ,vgC K], (2.79)
€

where min{g} is the smallest index in the set of users J that corresponds to the user
with the largest erasure probability. The proof is provided in Appendix A.3. This means
that the user permutation (which determines the sub-phase length) is preserved in all
sub-phases for the one-sided fair rate vector.
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Step 3 By combining the two previous steps, the total transmission length can be
derived as follows.

Tin= Y Iilggctgk} (2.80)
J:3C[K]
min J
= Y ey (2.81)
J:9C[K]
K

:Z Z £ (2.82)

(1 —my)

—ZFk ;- 1H 5, (2.83)

where (2.81) is obtained from (2.79); the last equality follows from (2.77). Then, we
obtain the desired equality (2.75).

Step 4 The final step is to prove that under the one-sided fair rate vector (2.74) implies
all the other K!— 1 inequalities of the rate region (2.9). This is proved in Appendix A.4.
Hence, the achievability proof for the one-sided rate vector is completed.

2.6.3 Proof of Theorem 5 for the symmetric network

First we recall the rate region of the symmetric network with uniform channel statistics
and memory sizes given in (2.10),

K

1 — k
3 %Rm <1, v (2.84)
k=1

Exploiting the polyhedron structure and following the same footsteps as [69, Section V],
we can prove that the vertices of the above rate region are characterized as:

Ry (|X|), k € X
0,k¢ XK
for X C [K], where the symmetric rate Ry, (K) is given by
Reym(K) = ! 2.86
sym(K) = T — (2.86)
k=1 1—oF

This means that when only |X| users are active in the system, each of these users achieves
the same symmetric rate as the reduced system of dimension |X|. Then, it suffices to
prove the achievability of the symmetric rate for a given dimension K. As explained
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in subsection 2.6.1, the placement phase generates “overheard packets” {Lgx(Wy)} for
J C [K] and all k. We let No_,; = |L5,(Wi)| denote the number of order-j packets
created during the placement phase. Then, we can express the sum rate of the cached-
enabled EBC by incorporating the packets generated from the placement phase into (2.62)
as follows,

KF
K Rey(K) = — G T (2.87)
52_“ + Zj:Q : RI(K)

By repeating the same steps as the proof of Corollary 3, it readily follows that the above

expression boils down to ﬁ This establishes the achievability proof for the
k=1 1_sk

symmetric network.

2.7 Extensions

In this section, we provide rather straightforward extensions of our previous results to
other scenarios such as the centralized content placement and the multi-antenna broadcast
channel with the state feedback.

2.7.1 Centralized content placement

So far, we have focused on the decentralized content placement. We shall show in this
subsection that the rate region under the decentralized content placement can be easily
modified to the case of the centralized content placement proposed in [1] and recalled in
subsection 1.2.2. We restrict ourselves to the symmetric memory size My = M such that
M € {0,N/K,2N/K,...,N} so that the parameter b = % is an integer. In analogy
to Lemma 7 for the decentralized content placement, we can characterize the message
entropy given the receiver side information.

Lemma 10. For the centralized content placement [1], the following equalities hold for
any i and J C [K]

K—9|
H(WiHZk}keJ):( - )H(m-).
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Proof. Under the centralized content placement

HWi[{Zihee) = Y H(Ly(W)) (2.88)
ICIKN\I
= ) H(Ly(Wy) (2.89)
IC[KN\I;[|=b

= > =HW) (2.90)
IJC[K\I;|d|=b (b)
("3
L H (W), (2.91)

(»)

where the first equality follows by repeating the same steps from (2.19) to (2.22); (2.89)
and (2.90) follows from the definition of the centralized content placement (1.6). O

Then, we present the rate region of the cache-enabled EBC under the centralized
content placement.

Theorem 11. For the symmetric network, the rate region of the cached-enabled EBC
with the state feedback under the centralized content placement is given by

g (Kb_k)—/(l’f)R,rk <1 (2.92)

1— ok
k=1
for any permutation © of {1,..., K}.

Proof. Following the same steps as in section 2.4 and replacing Lemma 7 with Lemma 10,
the converse proof follows immediately.

For achievability, as explained in subsection 2.6.3, it is sufficient to consider the case
of symmetric rate for a given dimension. By focusing without loss of generality on the
dimension K, we fix the number of packets per user to be F' and prove that our proposed
scheme can deliver requested files to users within the total transmission length given by

Tip = F Z_ @—/5(:5) +0O(1), (2.93)

as ' — oo. We proceed our proposed delivery scheme from phase b+ 1 by sending packets
of order b+ 1. More precisely, in phase b + 1 we generate and send the packets intended
to J by the following linear combination

Vi = T (Law(Wh)) , (2.94)
for § C [K] with || = b+ 1. In subsequent phases b + 2 to K, we repeat

Vy =3y ({LH\JUJ’(VJ)}J’U:J’CUCa) (2.95)
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for J C [K] with |J] = b+ 2,..., K. In order to calculate the total transmission length
required by our delivery algorithm, we follow the same footsteps as in subsection 2.6.3
and exploit Theorem 9 on the sum capacity of order-¢ messages that we recall here for
the sake of clarity.

R%K):——;jggﬁzg. (2.96)

sub-phases in phase b + 1 and in each sub-phase we send a
B

(%)

Noticing that there are (bfl)

linear combination whose size is , the total transmission length is given by

NENOP

T, = L0 (2.97)
—b (K—k\ /(K
/
S, oo
k=1
where the last equality follows by plugging the expression R**. O

For the case without erasure, Theorem 11, in particular, the expression of the trans-
mission length in (2.93), becomes the rate-memory tradeoff under the centralized content
placement [1] given by

T’tot 1
=K(1-M/N)——.
F ( / )1+1mwﬂv

(2.99)

2.7.2 MISO-BC

We consider the multi-input single-output broadcast channel (MISO-BC) between a N;-
antennas transmitter and K single-antenna receivers. The channel state 5; in slot [ is
given by the N, x K matrix and we restrict ourselves to the i.i.d. channels across time
and users. Here, we are interested in the capacity scaling in the high signal-to-noise ratio
(SNR) regime and define the degree of freedom (DoF) of user k as

. Ry,
DoF. = 1 _—
o T GNR e log, SNR

We define the sum DoF of order-j messages given by

Ry

3:191=j log, SNR

DoF! = lim

(2.100)
SNR 00

First we recall the main results on the MISO-BC with state feedback by Maddah-Ali and
Tse [69]. In [69, Theorem 3|, the DoF region of the MISO-BC with state feedback has
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been characterized as
K

3 Doka <1, Vv (2.101)
k=1

The sum DoF of order-j messages has been characterized in [69, Theorem 2| for N; >
K — 7+ 1 and is given by

K

(5)

Kk—j+1 (520
k=1 k

DoF’ = (2.102)

It is worth comparing the DoF region of the MISO-BC in (2.101) and the capacity region
of the EBC in (2.43). In fact, as remarked in [68], both regions have exactly the same
structure and can be unified through a parameter oy, = k for the MISO-BC and «ay, = 1—6*
for the EBC. The same holds for the sum DoF of order-j messages in the MISO-BC in
(2.102) and the sum capacity of order-j packets in the EBC characterized in Theorem 9.
By exploiting this duality and replacing 1 — 6* with & in the rate region of the symmetric
EBC (2.10), we can easily characterize the DoF region of the cache-enabled MISO-BC
with state feedback. Namely, under the decentralized content placement, the DoF region
is given by
K k
3 %DOFM <1, Vr (2.103)
k=1
for N; > K, while under the centralized content placement, the DoF region is given by
K—b (K—k\ /(K
> %DOFM <1, Vr (2.104)
k=1

for N; > K — b. The converse follows exactly in the same manner except that we use
the entropy inequality for the MISO-BC given in [68, Lemma 4] by replacing the entropy
by the differential entropy and again 1 — 6* by k. The achievability can be proved by
modifying the scheme in [69] to the case of receiver side information along the line of [70].

As a final remark, for the case of the centralized content placement, our DoF region
in (2.104) yields the following transmission length

Tiot = Z__: %F (2.105)

which coincides with [46, Corollary 2b].

2.8 Numerical Examples

In this section, we provide some numerical examples to show the performance of our
proposed delivery scheme. Fig. 2.4 illustrates the tradeoff between the erasure proba-
bility and the memory size for the symmetric network with K = 3 for the case of the
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decentralized content placement Each curve corresponds to a different symmetric rate

Ryym(3) = W The arrow shows the increasing symmetric rate from 1/3, corre-

k=1 1_sk
sponding to case with no memory and no erasure, to infinity. The memory size increases
the rate performance even in the presence of erasure and the benefit of caching is signifi-
cant for smaller erasure probabilities as expected from the analytical expression.

Fig. 2.5 compares the transmission length 7., normalized by the file size F', achieved
by our delivery scheme with feedback and the scheme without feedback for the case of the
decentralized content placement. We consider the system with N = 100, K = 10 and the
erasure probabilities of § = 0 (perfect link), 0.2, and 0.6. We observe that state feedback
can be useful especially when the memory size is small and the erasure probability is large.
In fact, it can be easily shown that the rate region of the cached-enabled EBC without
feedback under the decentralized content placement is given by

K k

(1-%)
> AR, <1 (2.106)
i

where the denominator in the LHS reflects the fact that each packet must be received by
all K users. This yields the transmission length given by

K M\ E
I =%
Tiot—noFB = Zkll(_ 5 N) F+ 6(1) (2107>

Under the centralized content placement, the rate region of the cached-enabled EBC
without feedback is given by

K-b (K—k /(K)

~b VR <1 2.1
; Ry < (2.108)

yielding

K(1—M/N) —2—~
71totfnoFB = ( 1/_ ; L KM/N F + @(1) (2109>

Without state feedback, the transmission length in (2.107), (2.109) corresponds to the
1

transmission length over the perfect link expanded by a factor ;= > 1, because each
packet must be received by all users. The merit of feedback becomes significant if the
packets of lower-order dominate the order- K packets. The case of small normalized mem-
ory m = % and large erasure probability corresponds to such a situation.

Fig. 2.6 plots the normalized transmission length Ty /F versus the memory size M
in the symmetric network with N = 100, K = 10. We compare the performance with
and without feedback under the decentralized and the centralized caching for § = 0
and 6 = 0.6. The relative merit of the centralized content placement compared to the

decentralized the counterpart can be observed.

42



Table 2.1: Optimal memory allocation for the lower bound.

Average user 1 user 2 user 3 user 4

memory 01=02[03=04|03=06 |0, =028
LigMe _y | g 0 5 11
iaMe _g | 7 10 14
i M _ 19| g 11 13 16
ZigMe 16| 14 15 17 18

Fig. 2.7 plots the normalized transmission length Ti./F versus average memory size
M in the asymmetric network with NV = 20 and K = 4 under the decentralized content
placement. We let erasure probabilities 9, = % for k=1,...,4 and consider files of equal
size. We compare “symmetric memory” (My = M,Vk), “asymmetric memory” obtained
by optimizing over all possible sets of {M}} using our delivery scheme, as well as “lower
bound” obtained by optimizing over all possible of {M} based on (2.14). This result
shows the advantage (in terms of delivery time) of optimally allocating cache sizes across
users, whenever possible, according to the condition of the delivery channels. We provide
in Table 2.1, the optimal memory allocation of the lower bound for different average
memory size. We observe that more cache is provided to the user with worse channel
quality. As we consider files of equal size, the rate vector (R, ..., R) does not belongs
to the one sided rate region in Definition 3 for the optimal memory allocation given by
Table 2.1. Thus we obtain the gap between our delivery scheme and the lower bound
in Fig. 2.7. Note that what we observe in Table 2.1, agrees with [55] which consider a
noisy broadcast channel and optimizes the receivers’ cache sizes subject to a total cache
memory to maximize the rate. It have been shown that more cache is allocated to the
weak users and for small cache memories, it is optimal to assign all the cache memory to
the weakest receivers, which correspond to M = 4 in Table 2.1 where no cache is allocated
to users 1 and 2 (M; = M, = 0).

2.9 Conclusions

In this Chapter, we investigate the content delivery problem in the EBC with state feed-
back, assuming that the content placement phase is performed with existing methods
proposed in the literature. Our main contribution is the characterization of the optimal
rate region of the channel under these conditions for some special cases, namely for K < 3,
or for the symmetric network with K > 3, or for the one-sided fair rate vector with K > 3.
This appears as a non-trivial extension of the work by Wang and Gatzianas et al. [59,60]
which have characterized the capacity region of the EBC with state feedback for some
cases of interest. We provide an intuitive interpretation of the algorithm proposed in these
works and revealed an explicit connection between the capacity in the symmetric EBC
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and the DoF in the MISO-BC. More specifically, we showed that there exists a duality
in terms of the order-j multicast capacity/DoF. Such a connection was fully exploited
to generalize our results to the cache-enabled MISO-BC. This Chapter demonstrates the
benefits of coded caching combined with state feedback in the presence of random era-
sure. Furthermore, if a memory allocation is allowed, numerical examples show that an
optimal memory allocation is to provide more cache to the weakest users as confirmed
in [55]. However, for such cache allocation, the symmetric rate vector does not belongs
to the one-sided fair region and so our linear encoding scheme is not optimal. A non
linear technique of joint cache-channel coding was provided in [71] over erasure broadcast
channels, where only the weak users are equipped with cache memory. We believe that
such encoding technique can improve the achievability region.
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Figure 2.4: The tradeoff between the memory and the erasure for K = 3.
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Chapter 3

Fading Broadcast Channels with
Dynamic User Requests

We study the content delivery over asymmetric block-fading broadcast channels, where
the channel quality varies across users and time. Assuming that user requests arrive
dynamically, we design an online scheme based on queuing structure to deal jointly with
admission control, files combinations, as well as scheduling. In the short-term, we allow
transmissions to subsets of users with good channel quality, avoiding users with fades,
while in the long-term we ensure fairness among users. We prove that our online delivery
scheme maximizes the alpha-fair utility among all schemes restricted to decentralized cache
placement. The performance analysis built on the Lyapunov theory.
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3.1 Introduction

As we mentioned before, in more realistic scenario, the performance of coded caching is
limited by the user in the worst channel condition. In particular, for the case of the i.i.d.
quasi-static Rayleigh fading channel, the works [45,47] showed that the long-term sum
content delivery rate does not grow with the system dimension if coded caching is naively
applied to this channel. In fact, the long-term average multicast rate of the i.i.d. Rayleigh
fading channel vanishes, as it scales as O(%) as K — oo, [72].

In the literature of wireless scheduling without caches at receivers, standard downlink
techniques are used to prevent such limitation such as opportunistic scheduling [61,63,73],
which serve the user with the best instantaneous channel quality and fairness among user
throughputs [61], which allows users with weak channel quality to receive less throughput.

Since serving the best user and equally satisfying all the users are typically the two
extreme objectives, past works have proposed the use of alpha-fairness [62] which allows
to select the coefficient v and drive the system to any desirable tradeoff point in between
of the two extremes. Previously, the alpha-fair objectives have been studied in the context
of (i) multiple user activations [63], (ii) multiple antennas [74] and (iii) broadcast channels
[75]. However, in the presence of caches at user terminals, the fairness problem is further
complicated by the interplay between scheduling and coding operations. For the case
of asychnoneous demand, online transmission scheduling over wireless channels has been
extensively studied in the context of opportunistic scheduling [63] and network utility
maximization [65].

We study in this chapter, the content delivery over a realistic block-fading broadcast
channel, where the channel quality varies across users and time. Furthermore, we deal with
asynchronous demands where the time-varying user requests and corresponding delivery
can be modeled as a random arrival and departure process, respectively. The new element
in our study is the joint consideration of user scheduling with codeword construction for
the coded caching delivery phase. More specifically, our approaches and contributions are
summarized below:

e We design a novel queueing structure which decouples the channel scheduling from
the codeword construction. Although it is clear that the codeword construction
needs to be adaptive to channel variation, our scheme ensures this through our
backpressure that connects the user queues and the codeword queues. Hence, we
are able to show that this decomposition is without loss of optimality.

e We then provide an online policy consisting of (i) admission control of new files into
the system; (ii) combination of files to perform coded caching; (iii) scheduling and
power control of codeword transmissions to subset of users on the wireless channel.
We prove that the long-term video delivery rate vector achieved by our scheme is a
near optimal solution to the alpha-fair optimization problem under the restriction
to policies that are based on the decentralized coded caching scheme [2].

e Through numerical examples, we demonstrate the superiority of our approach versus
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Base station

Fading channel

K users

Caches NI

Figure 3.1: System model with K = 3.

(a) standard coded caching with multicast transmission limited by the worst channel
condition yet exploiting the global caching gain, (b) opportunistic scheduling with
unicast transmissions exploiting only the local caching gain (c¢) superposition and
selection schemes exploiting both coded caching gain and channel fading peaks as
detailed in Chapter 4. This shows that our proposed scheme is the best among
online decentralized coded caching schemes.

3.2 System Model and Motivation

We present the system model considered in this chapter and provide a long-term analysis
on the performance of Maddah Ali and Niesen coded caching, recalled in Section 1.2, in
fading broadcast channel.

3.2.1 System model

We consider a content delivery system where a server with IV files wishes to convey the
requested files to K users over a wireless downlink channel. We assume that N files are of
equal size of F' bits and have equal popularity, while each user k has a cache memory Z
of size M F' bits, where M > 1 denotes the cache size measured in files. We often use the
normalized cache size denoted by m = M/N. We restrict ourselves to decentralized cache
placement [2]. As depicted in Fig. 3.1, we relax the perfect shared link assumption and
consider a wireless channel modeled by a standard block-fading broadcast channel, such
that the channel state remains constant over a slot and changes from one slot to another
in an i.i.d. manner. Each slot is assumed to allow for n channel uses. The channel output
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of user k£ in any channel use of slot ¢ is given by

yi(t) = he(t)x(t) + zi(1), (3.1)

where the channel input x € C" is subject to the power constraint E[||x||?] < Pn;
z;(t) ~ Ng(0,I,) are additive white Gaussian noises with covariance matrix identity
of size n, assumed independent of each other; {hy(t) € C} are channel fading coefficients
independently distributed across users. In addition, we are particularly interested in the
long-term behavior (e.g., time span of hours or days) of the system. To simplify such
analysis, we further assume that the channel coefficient hy(t) is i.i.d. over ¢ for a given k.
At each slot ¢, the channel state h(t) = (hy(%),...,hi(t)) is perfectly known to the base
station and to all users.

Encoding At each time slot, the base station observes the channel state h(¢) and the
request vector up to ¢, d’, and constructs a transmit symbol using the encoding function
fo : FMFE {1, N x cf — ¢

x(t) = f, (Z¥,d",h(t)), (3.2)

Decoding At the end of the whole transmission as ¢ — oo, each receiver decodes its
sequence of requested files by applying a decoding function &, to the sequence of the
received signals yt = (yr(1),...,yx(t)), that of the channel state h* = (h(1),...,h(t)),
its cache Zj. Namely, the output of the k-th user’s decoding function at slot t, & (t) :

FMFK  cnt x €K — FEP*O g given by

&u(t) = &(Zp, vt ht) € B0 (3.3)

where Dy (t) denotes the number of decoded files by user k up to slot ¢.

3.2.2 Standard coded caching and motivation

A naive application of coded caching consists on performing coded caching content delivery
on all users in the system and sending T'(m, K) files to satisfy all K demands. It is well-
known that the multicast capacity of the channel at hand, or the common message rate,
is given by

rme(h) = log (1 + P]rg[l% hj) (3.4)
measured in [bits/channel use|, and limited by the user in the worst channel condition. Tt
has been proved in [45] that such limitation is detrimental for a scalable content delivery
network. To see this, let us first define the sum content delivery rate when coded caching
is applied directly to the fading broadcast channel. In order to satisfy the distinct de-
mands from K users, the server sends T'(m, K) files over the wireless link at rate rp.(h) .

Therefore, to deliver K F' bits, it takes Tim’f;))F channel use. As a result, the sum content
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delivery rate of a naive application of coded caching for a given channel realization h is
given by
K
T(m, K)

measured in [bits/channel use] (x# in [files/slot]). For convenience, we call such a naive
application as the “baseline” (“bl”) scheme where the base station serves all K users
with the multicast rate limited by the worst user as in (3.4). The corresponding (long-
term) average sum content delivery rate is given by
K

T(m, K)
To gain an insight into the harmful effect, let us consider the case of symmetric fading
statistics where the fading gains are exponentially distributed with mean 1. The average
multicast capacity E[ry.(h)] vanishes as O(1/K) for K — oo [72], the average sum content
delivery rate converges to a constant, yielding a non-scalable system. More precisely, the
performance analysis of this scheme is given below.

Proposition 1. (i) Ty sum (K, P) = %B%El (%)

12) For a ! Thlsum (£, ~ = when K — oo.
(ii) F P sum (K, P) P";l hen K

1—

(i1i) For all K: Ty sum (K, P) ~ % log(P) when P — oo.

Tme(h) (3.5)

Tolsum () = E[rm.(h)]. (3.6)

where we define the exponential integral function Ey(x) = fﬁoo %dt.

Proof. Refer to Appendix B.1. n

This negative result motivates us to study some opportunistic scheduling strategy
which benefits both from the coded caching gain and the diversity of the underlying
wireless channel, while ensuring certain fairness among users.

3.3 Objectives

This section formulates the problem of alpha-fair file delivery. The performance metric is
the long-term average delivery rate of files to user k, denoted by 7. Hence our objective
is expressed with respect to the vector of delivery rates r. We define the feasible rate
region as the set of the average number of successfully delivered files for K users. We let
A denote the set of all feasible delivery rate vectors.

Definition 4 (Feasible rate). A rate vectort = (71,...,Tk), measured in file/slot, is said
to be feasible T € A if there exist a file combining and transmission scheme such that

Dy (t)

(3.7)

7 = lim sup
t—o0

where Dg(t) denotes the number of successfully delivered files to user k up to t.
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Under the assumption that n is arbitrarily large and ¢ — oo, the number of decoded
files ﬁk(t) shall coincide with the number of successfully delivered files Dy (t) under the
assumptions discussed previously. In contrast to the original framework [1,2], our rate
metric measures the ability of the system to continuously and reliably deliver requested
files to the users. Since finding the optimal policy is very complex in general, we restrict
our study to a specific class of policies given by the following mild assumptions:

Definition 5 (Admissible class policies I1¢“). The admissible policies have the following
characteristics:

1. The caching placement and delivery follow the decentralized scheme [2].

2. The users request distinct files, i.e., the ids of the requested files of any two users
are different.

Since we restrict our action space, the feasibility rate region, denoted by A““, under
the class of policies IT¢¢ is smaller than the one for the original problem A. However,
the joint design of caching and online delivery appears to be a very hard problem; note
that the design of an optimal code for coded caching alone is an open problem and the
proposed solutions are constant factor approximations. Restricting the caching strategy
to the decentralized scheme proposed in [2] makes the problem amenable to analysis and
extraction of conclusions for general cases such as the general setup where users may
not have the symmetrical rates. Additionally, if two users request the same file simul-
taneously, it is efficient to handle exceptionally the transmissions as native broadcasting
instead of using the decentralized coded caching scheme, yielding a small efficiency benefit
but complicating further the problem. Note, however, the probability that two users si-
multaneously requesting the same parts of video is very low in practice, hence to simplify
our model we exclude this consideration altogether.

Our objective is to solve the fair file delivery problem:

FEACC

K
7' =arg max ng(Fk), (3.8)
k=1

where the utility function corresponds to the alpha fair family of concave functions
obtained by choosing:

(3.9)

lfa_l .
3 , ifa#1,
ga(x) — { 11—« ?A

log(z), ifa=1.

Tuning the value of a changes the shape of the utility function and consequently
drives the system performance 7* to different operating points: (i) o = 0 yields max
sum delivery rate, (ii) o — oo yields max-min delivery rate [62], (iii) o = 1 yields
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Figure 3.2: Illustration of the feasibility region and different performance operating points
for K = 2 users. Point A corresponds to a naive adaptation of [2] on our channel model,
while the rest points are solutions to our fair delivery problem.

proportionally fair delivery rate [76]. Choosing a € (0, 1) leads to a tradeoff between max
sum and proportionally fair delivery rates.

The optimization (3.8) is designed to allow us tweak the performance of the system;
we highlight its importance by an example. Suppose that for a 2-user system A is given
by the convex set shown on Fig. 3.2. Different boundary points are obtained as solutions
to (3.8). If we choose o = 0, the system is operated at the point that maximizes the
sum 71 + 9. The choice o — oo leads to the maximum r such that 1 = 7, = r,
while @ = 1 maximizes the sum of logarithms. The operation point A is obtained when
we always broadcast to all users at the weakest user rate and use [2] for coded caching
transmissions. Note that this results in a significant loss of efficiency due to the variations
of the fading channel, and consequently A lies in the interior of A. To reach the boundary
point that corresponds to o — oo we need to carefully group users together with good
instantaneous channel quality but also serve users with poor average channel quality. This
shows the necessity of our approach when using coded caching in realistic wireless channel
conditions.

3.4 Proposed Online Delivery Scheme

This section presents the queued delivery network. At each time slot ¢, the controller
admits ay(t) files to be delivered to user k, and hence a(t) is a control variable. We equip
the base station with the following types of queues:

1. User queues to store admitted files, one for each user. The buffer size of queue k
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is denoted by S(t) and expressed in number of files.

2. Codeword queues to store codewords to be multicast. There is one codeword
queue for each subset of users 3 C {1,..., K}. The size of codeword queue J is
denoted by @4(t) and expressed in bits.

A queueing policy 7 performs the following operations: (i) it decides how many files
to admit into the user queues Si(t) in the form of variables (a(t)), (ii) it combines files
destined to user subset J to create multiple codewords. We let the control variable o3 € N,
denote the number of combinations among files requested from the user subset J according
to the coded caching scheme in [2], (iii) it decides the encoding function for the wireless
transmission. Namely, at slot ¢, it determines the number p5(t) of bits per channel use to
be transmitted for the users in subset J.

The user queue S evolves as:

St+1) = [Sk(t) = > og(t) ]+ an(t) (3.10)
J:ked number of
— admitted files

number of files
combined into

codewords
The codeword queue Q5 evolves as
Qi(t+1) = [Qs(t) = nus(t) "+ byoy(t) (3.11)
——

3:9C3

number of bits
multicast to J
number of bits

created by

combining files

where by g = m”I=1(1—m)=F+ denotes the number of bits generated for codeword queue

@9, J C J, when coded caching is performed to the users in J (see (1.4)).

3.4.1 Feasibility Region

The main idea here is to characterize the set of feasible file delivery rates via char-
acterizing the stability performance of the queueing system. To this end, let ap =

lim sup 7 L E[ax(t)], denote the time average number of admitted files for user k.
T—o0

If the queueing system we have introduced is stable (Definition 1), the rate of admitted
files (input rate) is equal to the rate of successfully decoded files (output rate), hence we
can characterize the system performance by means of the stability region of our queueing
system. We let I'(h) denote the capacity region for a fixed channel state h, as defined in
Theorem 14. Then we have the following:

Theorem 12 (Stability region). Let I'°C be a set to which a rate vector of admitted files
a belongs to, if and only if there ewist ft € Yy o dnl'(h), T3 € [0, 0max], VI € {1,..., K}
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such that:

Y Ty zavk=1,. K (3.12)
J:k€d
nily > Y byaoy, VI C{1,2,.., K}, (3.13)
3:9Cd

Then, the stability region of the system is the interior of I'°C, where the above inequalities
are strict.

Constraint (3.12) says that the aggregate service rate is greater than the arrival rate,
while (3.13) implies that the long-term average rate for the subset J is greater than the
arrival rate of the codewords intended to this subset. In terms of the queueing system
defined, these constraints impose that the service rates of each queue should be greater
than their arrival rates, thus rendering them stable !. The proof of this theorem relies on
existence of static policies, i.e. randomized policies whose decision distribution depends
only on the realization of the channel state. See the Appendix, Section B.4 for a definition
and results on these policies.

Since the channel process h(t) is a sequence of i.i.d. realizations of the channel states
(the same results hold if, more generally, h(¢) is an ergodic Markov chain), we can obtain
any admitted file rate vector @ in the stability region by a Markovian policy, i.e. a policy
that chooses {a(t), o (t), u(t)} based only the state of the system at the beginning of time
slot t, {h(t),S(¢),Q(t)}, and not the time index itself. This implies that (S(t), Q(t))
evolves as a Markov chain, therefore our stability definition is equivalent to that Markov
chain being ergodic with every queue having finite mean under the stationary distribution.
Therefore, if we develop a policy that keeps user queues S(t) stable, then all admitted files
will, at some point, be combined into codewords. Additionally, if codeword queues Q(t)
are stable, then all generated codewords will be successfully conveyed to their destinations.
This in turn means that all receivers will be able to decode the admitted files that they
requested:

Lemma 13. The region of all feasible delivery rates A°C

region of the system, i.e. A°C = Int(I'°Y).

18 the same as the stability

Proof. Please refer to Appendix B.5. ]

Lemma 13 implies the following Corollary.

Corollary 4. Solving (3.8) is equivalent to ﬁ?}(dz’ng a policy m such that

a" :argmaXZga(ak) (3.14)
k=1

s.t. the system is stable.

1'We restrict vectors @ to the interior of I'“C| since arrival rates at the boundary are exceptional cases
of no practical interest, and require special treatment.
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This implies that the solution to the original problem (3.8) in terms of the long-term
average rates is equivalent to the new problem in terms of the admission rates stabilizing
the system.

3.4.2 Admission control and files combination

At the beginning of each slot, the controller decides how many requests a(t) for user k,
(input of Sk(t)), should be pulled into the system from the infinite reservoir. Moreover,
it decides on the files to be combined (output of Si(¢)) by applying coded caching among
specified files.

Input of the user queues Si(¢): Our goal is to find a control policy that optimizes
(3.14). To this aim, we need to introduce one more set of queues. These queues are
virtual, in the sense that they do not hold actual file demands or bits, but are merely
counters to drive the control policy. Each user k is associated with a queue Uy (t) which
evolves as follows:

Ur(t +1) = [Up(t) — ax(®)]" + n(t) (3.15)

where 7, (t) represents the arrival process to the virtual queue and is an additional control
parameter. We require these queues to be stable: The actual mean file admission rates are
greater than the virtual arrival rates and the control algorithm actually seeks to optimize
the time average of the virtual arrivals v, (¢). However, since Uy (t) is stable, its service
rate, which is the actual admission rate, will be greater than the rate of the virtual
arrivals, therefore giving the same optimizer. Stability of all other queues will guarantee
that admitted files will be actually delivered to the users. With these considerations,
U (t) will be a control indicator such that when Uj(t) is above Si(t) then we admit files
into the system, else we set ax(t) = 0. In particular, we will control the way Uy (t) grows
over time using the actual utility objective g,(.) such that a user with rate = and rapidly
increasing utility g, (z) (steep derivative at x) will also enjoy a rapidly increasing Uj(t)
and hence admit more files into the system.

In our proposed policy, the arrival process to the virtual queues are given by

v(t) = arg max [Vg.(x) — Ug(t)x] (3.16)

Ogmgvk,max

In the above, V' > 0 is a parameter that controls the utility-delay tradeoff achieved by
the algorithm (see Theorem 16).

For every user k, admission control chooses ay(t) demands given by
Clk(t) = ’Vk,maxl{Uk(t) Z Sk(t)} (317)

Output of the user queues Si(t): At each slot, files from subsets of these queues are
combined into codewords by means of performing coded caching content delivery scheme
[2]. Specifically, the decision at slot ¢ for a subset of users § C {1,.., K}, denoted by
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og(t) € {0,1,..., 0max}, refers to the number of combined requests for this subset of
users. 2 For every subset J C {1,..., K}, the server combines o4(t) demands of users in
d given by

04(t) = Ol {2 SAOEDS %@gu)}. (3.18)

ked J:9C7

If o4(t) > 0, the server creates codewords by applying (1.4) for this subset of users as
a function of the cache contents {Z; : j € J}.

3.4.3 Scheduling and transmission

The codewords intended to the user subset J are stored in codeword queue whose size is
given by Qy(t) for 3 C {1,..., K}. Given the instantaneous channel realization h(t) and
the queue state {Q4(t)}, the server performs multicast scheduling and rate allocation.

In the following section we propose the scheduling and resource allocation solving the
following weighted sum rate maximization at each slot ¢ where the weight of the subset J
corresponds to the queue length of Q)4

p(t) =arg max Y Q(t)ry, (3.19)
rel(h(t)
Ic{1,..K}

where I'(h(t)) is the capacity region of a K-user degraded Gaussian broadcast channel
with 2% — 1 independent messages provided in the following Subsection 3.4.4. Algorithm
2 summarizes our online delivery scheme.

%It is worth noticing that standard coded caching lets o3 = 1 for § = {1,..., K} and zero for all the
other subsets. On the other hand, uncoded caching can be represented by o3 =1 for J =k, k € 1,...., K.
Our scheme can, therefore be seen as a combination of both, which explains its better performance.
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Algorithm 2 Proposed delivery scheme

PLACEMENT (same as [2]):
2: Fill the cache of each user k
Zy={Wys: dC{1,....,K},ked,Vi=1,...,N}.
DELIVERY:
4: fort=1,...,T
Decide the arrival process to the virtual queues
Yi(t) = arg (< aax [Vga(z) — Uk(t)z]

k,max

6: Decide the number of ’admitted files
a’k(t) = ’yk,maxl{Uk(t) Z Sk(t>} :
Update the virtual queues
Up(t +1) = [Ux(t) — ar(t)]" +(t)
8: Decide the number of files to be combined

Uﬂ(t) = Omax1 {Zsk(t) > Z %QJ(YS)} :

ked J:9CJ

Scheduling decides the instantaneous rate

t) = arg max t)ryg.

p(t) greF(h(t)) Zag{l K} Qa(t)rs

10: Update user queues and codeword queues:

St +1) = [Sk(t) = X gueg 0]+ an(t),

Qs(t + 1) = [Qs(t) — (1)) + Y bagoa(t).

3:3C7

.....

3.4.4 Degraded Broadcast Channel with Private and Common
Messages

It readily follows that the channel in (3.1) for a given channel realization h is a degraded
Gaussian broadcast channel. Without loss of generality, we assume hy > --- > hg. Let
us consider that the transmitter wishes to convey 2% — 1 mutually independent messages,
denoted by {Mj}, where My denotes the message intended to the users in subset J C [K].
Each user k£ must decode all messages {Mj} for J k. By letting Ry denote the multicast
rate of the message Mj;, we say that the rate-tuple R € RiK_l is achievable if there
exists some encoding and decoding functions such that decoding error probability can be
arbitrarily small with large codeword length n. The capacity region is defined as the set
of all achievable rate-tuples and is given by the following theorem.

Theorem 14. The capacity region I'(h) of a K-user degraded Gaussian broadcast channel
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with fading gains hy > -+ > hg and 25 — 1 independent messages { My} is given by

1+ h ]?_ D
> Ri<log il
IC{1,...k}:keg 1+ Ry, Zj=1 pj

=2,... K (3.21)

for non-negative variables {py} such that ZkK:lpk < P.

Proof. The proof is quite straightforward and is based on rate-splitting and the private-
message region of degraded broadcast channel. For completeness, see details in Appendix
B.2. O

In order to characterize the boundary of the capacity region I'(h), we consider the
weighted sum rate maximization given as

> O3Ry. 22
A s Ry (3.22)
J:3C[K]

By exploiting a simple property of the capacity region, the problem at hand can be cast
into a simpler problem as summarized below.

Theorem 15. The weighted sum rate mazimization with 25 —1 variables in (3.22) reduces
to a simpler problem with K variables given by

K k
. L+hy ) 1D
max Z 0y log Zii .. (3.23)
P 1+ h Zjﬂ Dj
where p = (p1,...,PK) € Rf s a positive real vector satisfying the total power constraint,

and 0y, denotes the largest weight for user k

0, = max 6.
J:keIC{1,....k}

Proof. Refer to Appendix B.3. m

Note that (3.23) is similar to (3.19) by taking 85 = Qy(¢).

We provide an efficient algorithm to solve this power allocation problem in Subsection
1.4.2.

3.4.5 Example

We conclude this section by providing an example of our proposed online delivery scheme
for K = 3 users as illustrated in Fig. 3.3.
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Figure 3.3: An example of the queueing model for a system with 3 users. Dashed lines rep-
resent wireless transmissions, solid circles files to be combined and solid arrows codewords
generated.

We focus on the evolution of codeword queues between two slots, t and ¢ + 1. The
exact backlog of codeword queues is shown in Table 3.1. Given the routing and scheduling
decisions (oy(t) and py(t)), we provide the new states of the queues at the next slot in the
same Table.

We consider the set of files {A, B,C, D, E, F'} where user 1 requests {A, D, F'}, user
2 requests {B, E'} and user 3 requests {C, F'}. We suppose that files {A, B,C} were
linearly combined in previous slot(s) using (1.4) and the created codewords are stored in
the corresponding codeword queues at slot t. We let A; denote the sub-file A exclusively
cached at users in J C [K]. The same notation is used for the other files. We suppose
that hy(t) > ho(t) > hs(t). The scheduler uses (3.19) to allocate positive rates to user
set {1,2} and {1,2,3} given by g2y and pq23), and multicasts the superposed signal
x(t) = Ay @ By + Ags @ Bz @ Cho. User 3 decodes only Ayz @ Big @ Cho. User 1 and 2
decode first Ass @ Bis @ C1o, then subtracts it and decode A, @ B;. In the next slot, the
received sub-files are evacuated from the codeword queues as shown in Table 3.1. Using
successive interference cancellation (SIC) and XOR operation: user 1 decodes (A, Ass),
user 2 decodes (Bj, By3) and user 3 decodes Cis.

For the routing decision, the server decides at slot ¢ to combine D requested by user 1
with F requested by user 2 and to process F' requested by user 1 uncoded. Therefore, we
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Table 3.1: Codeword queues evolution for fir1 93(t), py12,33(t) >0 and oy 2y () = op13(t) = 1.

Q1 Qoy | Q| Qua Q1,3 Q2,3 Qp1,2,3)
Qy(1) Ay By Cy Ay ® By | As®Cy | Bs® Cy | Ays ® B13 @ Cho
Output
fi1,23(t) >0 - - - Ay @ By - - Ay @ B3 @ O
2,3y (t) >0
I t
o1 2?51)1 —1 | b Ey; By | - e b - - -
: N F ’ Es® D
o) =1 | i 1 ® Day
Ay B E\® D
Q(t+1 Dy; D i C, LY22 A Oy | By C .
3( ) F@ 3 th E3 0 E13 D D23 3 1 3 2
{Fyti¢s

have op191(t) = o13(t) = 1 and 04(t) = 0 otherwise. Given this codeword construction,
codeword queues have inputs that change its state in the next slot as described in Table
3.1.

3.5 Performance Analysis

In this section, we present the main result by proving that our proposed online algorithm
achieves near-optimal performance for all policies within the class I7¢°:

Theorem 16. Let 7} the long-term average delivery rate for user k achieved by the pro-
posed policy. Then

-1 K
lim sup % Z E {Q(t)} _ B+V Zk:l Go(Vmaz,k) ’
=0

T—o0 €0

where @(t) 15 the sum of all queue lengths at the beginning of time slot t, thus a measure
of the mean delay of file delivery. The quantities B and ¢y are constants that depend on
the statistics of the system.

Proof. Please refer to Appendix B.6. O]
The above theorem states that, by tuning the constant V', the utility resulting from
our online policy can be arbitrarily close to the optimal one, where there is a tradeoff

between the guaranteed optimality gap O(1/V) and the upper bound on the total buffer
length O(V).
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3.6 Dynamic File Requests

In this Section, we extend our algorithm to the case where there is no infinite amount of
demands for each user, rather each user requests a finite number of files at slot t. Let
Ak (t) be the number of files requested by user k at the beginning of slot t. We assume it
is an i.i.d. random process with mean \; and such that Ag(t) < Apax almost surely. 3 In
this case, the alpha fair delivery problem is to find a delivery rate T that solves

K
Maximize Z 9o (Tk)
k=1
s.t. T € A9

T < A\, Vk € {1, ...,K},

where the additional constraints 7, < A; denote that a user cannot receive more files than
the ones actually requested.

The fact that file demands are not infinite and come as a stochastic process is dealt
with by introducing one "reservoir queue” per user, Ly (t), which stores the file demands
that have not been admitted, and an additional control decision on how many demands
to reject permanently from the system, di(t). At slot ¢, no more demands then the ones
that arrived at the beginning of this slot and the ones waiting in the reservoir queues can
be admitted, therefore the admission control must have the additional constraint

an(t) < Aut) + Li(t), Yk, t,

and a similar restriction holds for the number of rejected files from the system, dj(t). The
reservoir queues then evolve as

The above modification with the reservoir queues has only an impact that further con-
strains the admission control of files to the system. The queuing system remains the
same as described in Section 3.4, with the user queues S(t), the codeword queues Q(t)
and the virtual queues U(¢). Similar to the case with infinite demands we can re-
strict ourselves to policies that are functions only of the system state at time slot t,
{S(t), Q(t),L(t), A(t),h(t), U(t)} without loss of optimality. Furthermore, we can show
that the alpha fair optimization problem equivalent to the problem of controlling the
admission rate. That is, we want to find a policy 7 such that

K

a" = argmax Z 9o (@)
k=1

s.t. the queues (S(t),Q(t), U(t)) are strongly stable
&k(t) S min[amw,k, Lk(t) + Ak(t)],Vt 2 O, vk

3The assumptions can be relaxed to arrivals being ergodic Markov chains with finite second moment
under the stationary distribution
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The rules for scheduling, codeword generation, virtual queue arrivals and queue updat-
ing remain the same as in the case of infinite demands in Section 3.4. The only difference
is that there are multiple possibilities for the admission control; see [61] and Chapter 5
of [66] for more details. Here we propose that at each slot ¢, any demand that is not
admitted get rejected (i.e. the reservoir queues hold no demands), the admission rule is

ap(t) = Ar(t)1{Ux(t) > Sk(t)}, (3.24)

and the constants are set as Vi max; Omax = Amax. Using the same ideas employed in the
performance analysis of the case with infinite demands and the ones employed in [61], we
can prove that the O(1/V) — O(V) utility-queue length tradeoff of Theorem 16 holds for

the case of dynamic arrivals as well.

3.7 Numerical Examples

In this section, we compare our online proposed delivery scheme Section 3.4 with the
following other schemes, all building on decentralized cache placement in (1.1).

e Unicast opportunistic scheduling: for any request, the server sends the remain-
ing (1 — m)F bits to the corresponding user without combining any files (we only
exploit the local caching gain). In slot ¢ the serve sends with full power to user

log (1 + hy(t)P)

kE*(t) =
(t) = argmax RO
where u(t) = (uy(t), ..., ux(t)) is the vector of empirical data rates up to time ¢, and
obeys the recursive equation u;(t 4+ 1) = =5 [tu;(t) 4 77 (t)].

The following two schemes are more detailed in Chapter 4.

e Superposition: At each slot }2’ this scheme solves the weighted sum rate maximiza-
tion problem in I'(h(t)) C R3 ~', using Theorem 14:

Yies w
Rsp(h(t),t) = arg max Z 03<t>RH with Hg(t) _ €d ug(t)

ReI'(h(t)) J9ClK] T(m,|d])’
The average rate of user 7 is
Fap; = lim E Z;R, s(h(t), )| .
D e P T(m,|d]) ™" ’

e Selection with full CSIT: At each slot ¢, this scheme selects the subset of users

1 ' K .
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The average rate of user ¢ is:

(m, |dse(h(t), 1)]) log(1 + sein T (t))1{i € dsc(h(t), )}

Tsed = tlggoE T
We consider the system with normalized memory of m = 0.6, power constraint P =
10dB, file size F' = 10 bits and number of channel uses per slot n = 102, channel
coefficients exponentially distributed with mean p,. We divide users into two classes of
K /2 users each: strong users with p, = 1 and weak users with pp = 0.2. We compare all
the algorithms for the cases where the objective of the system is sum rate maximization
(v = 0) and proportional fairness (v = 1). The results are depicted in Fig. 3.4 and 3.5,
respectively.

Regarding the sum rate objective and the proportional fair objective, baseline scheme
performs very poorly, indicative of the adverse effect of users with bad channel quality. It
is notable that our proposed scheme outperforms the unicast opportunistic scheme, which
maximizes the utility if only private information packets are to be conveyed. Although
the selection scheme and threshold-based scheme can simultaneously exploit the coded
caching gain and use the channel opportunistically, our proposed scheme provides better
performance since it is declared near-optimal. The relative merit of our scheme increases
as the number of users grows. This can be attributed to the fact that our scheme can
exploit any available multicast opportunities. OQur result here implies that, in realistic
wireless systems, coded caching can indeed provide a significant throughput increase when
an appropriate joint design of routing and opportunistic transmission is used.

3.8 Conclusions

In this chapter, we studied coded caching over wireless fading channels in order to address
its limitation governed by the user with the worst fading state. We designed an online
scheme that deals with the asynchronous nature of the user demands and benefits both
from the coded caching gain and the diversity of the underlying wireless channel. By
formulating an alpha-fair optimization problem with respect to the long-term average
delivery rates and using queueing structure, our proposed scheme allowed us to obtain
an optimal algorithm for joint file admission control, codeword construction and wireless
transmissions. The main conclusion is that, by appropriately combining the multicast
opportunities and the opportunism due to channel fading, coded caching can lead to
significant gains in wireless systems with fading. Furthermore, the queueing structure
makes our scheme flexible to be adapted to different setting such us asymmetric finite
file size and/or distinct memory capacity. In fact, the admitted files to the system can
be partitioned into sub-files and stored in virtual queues depending on the users caches
before deciding on the files combination. However the queueing structure makes our
optimal solution complex for implementation. Thus, in the next chapter, we address
the same limitation of coded caching in wireless channels by focusing on the scheduling

64



part. We propose a simple scheme of low-complexity, that achieves a scalable sum content
delivery in fading broadcast channels.
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Chapter 4

Opportunistic Scheduling

We consider the same system model of Chapter 3, where the users, equipped with a memory
of finite size, experience asymmetric fading statistics. We showed that a naiwve application
of coded caching over the channel at hand performs poorly especially in the regime of a
large number of users due to the vanishing multicast rate. To overcome this detrimental
effect we focus on the scheduling part and propose opportunistic scheduling policies of
low-complexity compared to the queued scheme in Chapter 3. In particular, we propose a
threshold-based scheduling that requires only statistical channel state information and one-
bit feedback from each user. More specifically, each user indicates via feedback whenever
its SNR is above a threshold determined solely by the fading statistics and the fairness
requirement. Surprisingly, we prove that this simple scheme achieves the optimal utility
in the regime of a large number of users. Numerical examples show that our proposed
scheme performs closely to the scheduling with full channel state information, but at a
significantly reduced complexity.
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4.1 Introduction

We consider the same system model as in chapter 3, where the users, equipped with a
memory of finite size, experience asymmetric fading statistics. We provided a long-term
analysis on the performance of Maddah Ali and Niesen coded caching fading broadcast
channel and showed its limitation. Although the proposed online delivery scheme is able
to exploit both coded caching gain and fading peaks while ensuring fairness among users,
its complexity grows exponentially with the number of users. This makes the scheme of
Chapter 3 difficult to implement in a system with a large number of users. In this chapter,
focusing on scheduling, we propose a more practical scheme with reduced complexity. We
provide a rigorous analysis on the long-term average per-user rate in the regime of a large
number of users.

Our contribution in this Chapter is three-fold:

1. We propose a simple threshold-based scheduling policy and determine the threshold
as a function of the fading statistics for each fairness parameter «. Such threshold-
based scheme exhibits two interesting features. On the one hand, the complexity
is linear in K and significantly reduced with respect to the original problem where
the search is done over K? variables. On the other hand, a threshold-based policy
does not require the exact channel state information but only a one-bit feedback
from each user. Namely, each user indicates whether its measured SNR is above the
threshold set before the communication.

2. We prove that the proposed threshold-based scheduling policy is asymptotically
optimal in Theorem 3. Namely, the utility achieved by our proposed policy converges
to the optimal value as the number of users grows. The proof of Theorem 3 involves
essentially three steps. First, we characterize the lower and upper bounds on the
long-term average rate of each user. Second, we prove that the size of the selected
user set grows unbounded as the number of users grows. Finally, we prove the
convergence of the utility value.

3. Our numerical experiments show that the proposed scheme indeed achieves a near-
optimal performance. Namely, it converges to the selection scheme with full channel
knowledge as the number of users and/or SNR increases. Such scheme is therefore
appropriate for a large number of users. In addition, the multicast rate is less sensi-
tive to the user in the worst fading condition in the large SNR regime. Furthermore,
the speed of convergence increases with the memory size and/or a-fair parameter.

Throughout this Chapter, we use the notation 5 to denote convergence in probability

a.s.
and — to denote almost sure convergence.
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4.2 System Model and Objectives

4.2.1 System model

We consider the same channel model as in the previous chapter. We recall the network
model given by a content delivery system where a server with N files wishes to convey the
requested files to K users over a wireless downlink channel. We assume that N files are
of equal size of F' bits and have equal popularity, while each user k£ has a cache memory
7y, of size M F bits, where M > 1 denotes the cache size measured in files. We often use
the normalized cache size denoted by m = M/N. We also restrict the cache placement
to be performed according to decentralized cache placement [2]. As depicted in Fig. 3.1,
we relax the perfect shared link assumption and consider a wireless channel modeled by
a standard block-fading broadcast channel (3.1).

In Sections/Subsections 4.4, 4.6.1 and 4.6, we provide our results for the case where
the channel coefficient of user k is exponentially distributed with mean p;. For simplicity,
we use in the following sections, the notation h(t) to denote Phy(t).

Unlike Chapter 3, we do not consider any admission control and we focus only on the
scheduling part to maximize some utility function described in the following section.

4.2.2 Objectives

Our objective is to design a scheduling policy maximizing a utility function of alpha fair
family of concave functions. Such policy benefits from coded caching gain and at the same
time exploits CSI opportunistically. We restrict our self to the scheduling policy region
11 such that:

e At each slot ¢, and channel realization h(t), we select a subset(s) of users to perform
the content delivery scheme of Maddah-Ali and Niesen [2].

e The caching placement and delivery follow the decentralized scheme [2].
e The transmission is under time sharing strategy.

e The users request distinct files.

Under policy 7, we denote the long-term average rate of user ¢ by 77, which is the

expectation of the instantaneous data rate over the channel realizations h.

We are interested in utility-optimal scheduling, where the goal is to maximize some
utility function of the long-term rates. We restrict our attention to a-fair allocations (3.9),
namely,

K
* 1 =T
T € argmax {E Z‘Zlg,l(ri )} . (4.1)

well
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The solution of the maximization problem in (4.1) is obtained by applying GDS schedu-
lar recalled in Subsection 1.4.3. At each slot ¢ and for each channel realizations h, the
GDS rule is given by (1.21)

Tk
t) = argmax : (4.2)
r ; uk(t>a

where 77, is the service rate of user k and u(t) = (uy (%), ..., ux(t)) is the vector of empirical
data rates up to time ¢, and obeys the recursive equation:

ui(t+1) = t% [tui(t) + 75 (1)) (4.3)

In the following section we provide the optimal scheduling policy for (4.1). Moreover,
we propose a simple threshold-based scheme and prove that it is asymptotically optimal
for a large number of users.

Note that when relaxing the time sharing strategy condition we prove in 4.5 that su-
perposition scheme is optimal. However, such policy is much complex for implementation.
In fact, additionally to its channel sate, each user needs to know the channel state of the
weaker users in order to apply successive cancellation technique to decode its message.

4.3 Selection Scheme

By performing coded caching to the user subset J, the total number of bits to be multicast
to satisfy |J| distinct demands is equal to T'(m,|J|)F bits. By letting R; denote the
multicast rate of the codewords intended to user subset J, the per-user rate after applying
coded caching to subset J is given by Tm IH\ Rg for any user in J. Under time sharing
strategy, we allocate a fraction of time 75 to the subset of users J, with Zag Ty = 1.
The base station performs coded caching content delivery on users in J and transmits

codewords at rate log(1 + mingeg hg) during 75 fraction of time slot.

4.3.1 Scheduling rule

Under selection scheme, the per-user data rate is given by

rE = Z Ton. 1) |3|) log(1 + mm hi), (4.4)

J:k€dC[K]
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By plugging (4.4) into (4.2) we obtain

5oy 5 Y gkercix
Z i Gheaclk] 1 I?J\ 1og(1+m1nhk) (4.5)
k=1 u() k=1 uk(t)
Z Z |3| log 1+m1nhk) (4.6)
3:3C|K] k:kej
2rked w0
Z - kkeﬂ ‘5‘) log(l—i—mlnhk) (4.7)
3:3C[K]

where (4.6) holds because 31, D gaCIK] = 2oggC(i] dkkeg- Lhus, using (4.7), the

maximization problem in (4.2) is equivalent to

max

Zk'k‘Ea k,(lt)o‘
=Y Jog(1 in hy). 4.8
T2 75=1 Z 7 og( +rl?€12? 2 (48)

The optimal solution is readily given by

. o Zk ked m
S 1, if §=argmax; === log(1 + minges hy), (4.9)
0, otherwise.
Proposition 2. The selection selecting at each time slot t the set of users:
1 . 1{ied} 3}
J(h(t),t) € argmax ———— log(1 + min h;) (4.10)
scir) T'(m, [d]) jes ; ui(t)
converges almost surely to a utility optimal scheduling in I1:
| X
EZga(ui(t = rTPaX{ Zga }
i=1
The corresponding long-term average rate of user i is given by:
_ 1{i € J(h(t),t)} : )
r=E log(l+ min h;)]. 4.11
(T(m, |d(h(t), 1)) B ™) (4.11)
Proof. The result readily follows from (4.2) and (4.4)-(4.9). O

Therefore, utility-optimal scheduling can be achieved simply by applying the above
scheme during a large number of time slots. By corollary, we deduce an alternative
characterization of the optimal policy which is essential to prove our main result.
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Corollary 5. The following scheme yields a utility optimal scheduling:

X 1 . “1{ked}
J*(h) € arg;nax {—T(m, a0 log(1 + min h;) ZZI N } :

Proof. The result holds as a consequence of proposition 2, by letting ¢ — oo in (4.10).
Equation (4.10) indeed defines which group is selected by the above iterative scheme as
t — oo. 0

4.3.2 Complexity

Assume that hi(t) > ... > hg(t), i.e. h(t) has been previously sorted. Define k =
max J(h(t),t) the index of the worst user and the set size s = |J(h(t),t)|. Let vy be
a permutation on {1,...,k} such that wu,,)(t) < ... < w,w)(t). Since J(h(t),t) is a
maximizer of (4.10):

log(1+ hi(t)) x~ i € 3(h(t), )} _ log(1 + hy(t)) —1{i € 3}
T(m, s) 2 wihe  T(m.s) agmrznni&l?fnaxa:k; i ()
_ log(1+ hy(t)) § 1

T(m,s) i=1 (uwc(i) (t))a‘
This implies:

Ih(t),t) = {i(1), ... vi()}.

Hence J(h(t),t) can be computed by sorting h(t) and u(t), (with complexity O(K log(K))
using quick sort), and searching over the possible values of k = 1,..., K and s = 1,..., K
(with complexity O(K?)). Thus, finding J(h(t),t) takes time O(K?). For the encoding
operation, channel state information at the transmitter (CSIT) is necessary. For the
decoding functions, only local channel state information (CSIR) at the receiver is needed,
i.e. each user knows its channel state.

4.4 Threshold-Based Scheduling Scheme

We also introduce a sub-class of policies called threshold policies. We say that policy
7 € II is a threshold policy with threshold c if, for any channel realization h it selects all
users with a channel gain larger than ¢, that is:

g7 h)={i=1,...,K:h;>c} (4.12)

We prove in the following that a well designed threshold policy in fact becomes optimal
in II, when the number of users K grows large.
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4.4.1 Fair scheduling for large number of users

In this section, we consider utility optimal scheduling when the number of users K grows
large. We show that threshold policies become optimal in this regime. Our result is general
and applies to any value of a > 0 as well as heterogeneous users where the channel gains
statistics p1, ..., px are arbitrary as long as they are bounded. We denote by p = min; p;
and 7 = max; p;. As a corollary, we compute the optimal threshold policy in closed form
as a function of pq, ..., px, so that the system is indeed tractable.

We first state Theorem 17, the main technical contribution of this Chapter. That is,
as the number of users grows large (K — o0), a well designed threshold policy become
utility optimal, and that the optimal threshold may be derived explicitly as a function of
the channel gains statistics pq, ..., px-

Theorem 17. Consider the solution of the optimization problem:

K
x 1 —<
¢* € argmax {E ;1 Ja <log(1 +c)e pz) } 7 (4.13)

c>0

and e the threshold policy with threshold ¢*. Then the long term data rates under e
are:

1 e
T = sy 8L )T Fo(1) , K o (4.14)

Furthermore, m is asymptotically optimal in I, in the sense that:

K

K
1 s 1 .
gi;ga(n- ) = %%{ggga(n )} +o(1) , K — cc.
Proof. Refer to Appendix C.1 0

We now show that, for @ > 1 the optimal threshold defined in (4.13) reduces to the
maximization of a concave function, so that it can be computed efficiently using a local
search method such as Newton’s method.

Proposition 3. Consider ¢* the optimal threshold as defined in (4.13). For a = 1, the
optimal threshold is given by:

o = MoK /o)) _ .

with Wy the Lambert W function. For a > 1, the optimal threshold is the unique solution
to the equation:

ZK _c(l/:a)
e i
(1+c)log(l+c) = == —.
K 1 _c(l-o)
D i »e 7
Proof. Refer to Appendix C.2. O
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4.4.2 Complexity

While threshold policies are in general sub-optimal, they can be implemented with min-
imal complexity. Indeed, computing the solution of (4.10) can be done in time O(K?).
Whereas, computing a threshold policy requires O(K) time. Furthermore, while comput-
ing (4.10) requires all users to report the value of their channel gain hy(t), ..., hx(t) up to
a given accuracy, implementing a threshold policy simply requires user to report 1 bit of
information which is 1{h;(t) > c}.

Surprisingly, as stated in Theorem 17, a well designed threshold policy is asymptoti-
cally optimal when the number of users K grows large, so that utility optimal scheduling
can be achieved with both linear complexity O(K') and 1-bit feedback.

4.5 Superposition Scheme

We relax the time sharing assumption given in the policies region II and provide a super-
position scheme that solves the utility maximization problem (4.1) in II’ (11 C II').

4.5.1 Scheduling rule

By simultaneously applying coded caching over different subset of users, the per-user data
rate is given by
1
re= Y =Ry (4.15)

Plugging (4.15) into (4.2) and following (4.5)-(4.7), we obtain

K 1
Tk o Z Zk:kéﬂm

)04
e Tom.Jal) (4.16)

k=1 3:9C[K]

Thus, using (4.16), the maximization problem of (4.2) in I1’ is equivalent to

1
Zk:kea ug ()™

R*(t) = argmax Z 05Ry, with 05 = T3

Rerl'(h) 3:9C (K]

(4.17)

where I'(h) C RiK_l is the capacity region of K-user degraded Gaussian broadcast channel
with 2% — 1 independent messages characterized in Theorem 14 in Subsection 3.4.4. We
solve the maximization problem using Theorem 15 in Subsection 3.4.4 and Algorithm 1
in Subsection 1.4.2. To summarize the proposed scheme: at each slot ¢, 1) given the
weights 05, we calculate R*(¢) € RiK_l, 2) using superposition scheme we obtain at most
K parallel channels of capacity given by R*(¢), which enable the base station to perform
coded caching content delivery simultaneously to different subset of users (i.e. sends
T'(m, |d|)F bits to user subset J at rate Rj).
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Proposition 4. Under the above scheme u(t) converges almost surely to a utility optimal

allocation:
1 o 1 o
FOWUIEEES SIS
Proof. The result readily follows from (4.2) and (4.15)-(4.17). O

4.5.2 Complexity

As shown in Subsection 3.4.4 of Chapter 3, the maximization problem of (4.17) with
2K _ 1 variables, can be simplified to K variables. Without loss of generality we suppose
hy > .. > hg. Using Theorem 15 in Subsection 3.4.4, maximizing (4.17) is equivalent to

max Y 0y, Ry, (4.18)
k=1

where Jp = argmaxy cgcn 4y 0g and By = 0 for I ¢ {Jy : 1 < k < K}. Let v, be a
permutation on {1,...,k — 1} such that u,,q)(t) < ... < uy,k-1)(t). For a given k we have

1
Zk:kéﬂ ug (t)™

max f4 = max 4.19

J:kedC{l,.. k} J gked{l,..k} T(m,|d]) ( )
1 1 |

= max - + — . 4.20

j1<i<k T'(m, ) (uk(t)a — uyk(i)(t)a> (4.20)

Thus, the complexity of searching for all {J; : 1 < k < K} is O(K?). Note that superpo-
sition encoding requires full CSI everywhere (transmitter and receivers) so that each user
can decode its message by performing successive interference cancellation (SIC).

4.6 Special-Cases and Numerical Examples

We provide a rigorous analysis on the long-term average per-user rate for special cases
and then we provide numerical examples on the proposed schemes.

4.6.1 Special cases

We consider provide a close form of the utility of selection scheme with full CSIT and of
the threshold-based scheme for some special cases.

Selection scheme for symmetric channel statistics and o = 0 in large P regime:
We suppose that p;, = P Vi € [K]. In this case all users have the same long-term average
rate since the channel statistics are equals. When no fairness is required (o = 0), the
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utility boils down to the average per user rate. Let 7y denote the long-term average rate
of any user in the system under the selection scheme given by (4.10).

Proposition 5. For all K: the selection scheme coincides with baseline scheme in large
P regime:

log(P
Tse ™~ % when P — oo. (4.21)
Proof. refere to Appendix C.3 Clwhich
coincides with the baseline scheme in large P regime in Proposition 1, which means that
in such regime, the optimal scheduling rule is to apply coded caching of Maddah Ali and
Niesen on all the users. Threshold-based scheme in large K regime

e For the symmetric channel case (p; = P), we have from Theorem 17

¢* = argmaxlog(l + c)e P (4.22)
c>0
= argmax log (log(1 + ¢)) — —. (4.23)
c>0 P

Since ¢ — loglog(1 + ¢) is strictly concave, there exist a unique solution given by

_ JWo(P _ _P
c* = Mol )—1—WO(P)—1

Thus, the long term data rate of user ¢ is given by

e Ly (et 4.24
. ¢ = — P
i T(m, o0) o (P)e (4.24)
1 11
= — W, (P)e?P W@, 4.25
T(m, o) o (P)e ’ ( )

Furthermore, when P — oo we have Wy(P) ~ log(P), and so

log(P
e l0g(P)

N Tm, o) (4.26)

which coincides with selection scheme in (4.21) for large K.

e For P — 0 (equivalent to p; — 0) and « > 1, the optimal threshold is the unique
solution of (1 + ¢*)In(1 + ¢*) = minj<;<x p;. Thus,

o= Molmmacin) _ (127

Note that the optimal threshold for & = 1 depends on the channel statistics of all
users. However, when o > 1 and P — 0, the optimal threshold depends only on the
worst user in terms of channel statistics and does not depend on «. Thus, in low
P regime, and « > 1, the threshold scheme boils down to the max min scheduler as
confirmed in the following.

76



e For a — oc:

Thus,

the optimal threshold is the unique solution of

Zfil e—¢ (1=a)/pi

K ec*(1-a)/p;
i=1 Pi

(1+c)In(1+4c") =

60*06/ minlSiSK Pi

12

ec*a/minlgiSK Pi

ming <;<x pPi

= min p;.
1<i<K

o — o0) = Wo(mincispi) _

(4.28)

(4.29)

(4.30)

(4.31)

Note that @ — oo corresponds to the max min per user rate, and so the threshold
depends only on the worst user channel statistics, which coincides with (4.27) for

P —=0and a > 1.

4.6.2 Numerical Examples

In this section, we illustrate the performance of the various schemes defined in the previous
sections through numerical experiments. For each scheme, we compute the long term
average data rates of each user 7q,...,7g, and the corresponding utility % Zfil 9a(T4),
which is our objective function. The considered schemes are recalled below.

e Superposition: At each slot ¢, this scheme solves the weighted sum rate maximization
problem in I'(h(t)) C R%:{_l, using Theorem 14 Chapter 3:

R, (h(1),1) = arg

max
Rel(h(t)

The average rate of user i is

Topi = i B

d

J:i€d

:dCIK]

Z 1

T(m,

) > O5(t)Ry with 0y(t) =

1)

1
2icl @
T(m,1d])’

Ryp g(h(t), t)] :

e Selection with full CSIT: At each slot ¢, this scheme selects the subset of users

log(1 + min hi(t)> 1“—63}} .

1 K
sc h(t 7t = T T
b0, 1) a%%ﬁ?x{ﬂm a0

The average rate of user 7 is:

1
00 {T(m, |35c(h(t)vt)|)

773(371‘ = tlim E

log(1 +

7

min
j€Jsc(h(t),t)

Uz‘(t)a

h(1)1{i € Hsc(h(t),t)}] .



e Threshold-based selection: At each slot ¢, this scheme selects the subset of users
d.(h(t)) = {i: hi(t) > ¢}, where ¢* is the threshold given by (4.13), and depends

only on the channel statistics py, ..., px. The average rate of user 7 is:

_ 1 ) .
s <[ g1 i (o)1 € m(h(t))}] |

e Baseline: At each slot ¢, this scheme selects the subset of users {1,..., K'}, and the
average rate of user ¢ is:

Thli = E [log(1 4+ min hj(t»} .

T(m, K) 1<G<K

e Unicast opportunistic scheduling: At each slot ¢, the server sends the remaining
(1 — m)F bits to the corresponding user (exploits only the local caching gain). At
slot ¢ the server sends with full power to user

log(1
k*(t) = arg max log(1 + ()
1Sk<K ug(f)®

In all scenarios, we divide users into two classes of K/2 users each: strong users with
pr = P and weak users with p, = 0.2P. For each figure we consider a normalized cache
size of m = [0.1,0.6]. In Figs. 4.1, 4.3 and 4.5 we plot the utility versus K for a = 0,
a =1 and a = 2 respectively at P = 10 dB. In Figs. 4.2, 4.4 and 4.6 we plot the utility
versus P for « = 0, a = 1 and a = 2 respectively with K = 20 users. We draw the
following conclusions:

Complexity: As seen in Figs. 4.1-4.6, superposition encoding outperforms all the
others schemes at the price of a larger complexity of coding/decoding O(K) compared to
the other schemes whose complexity is O(1).

Number of users K: From Figs. 4.1, 4.3 and 4.5, the performance of the threshold-
based scheme is as good as full CSIT selection scheme for a sufficiently large K, as
predicted by Theorem 17. In Fig. 4.1, corresponding to o = 0, the average per user rate
of the baseline scheme vanishes as the number of users increases for both small and large
cache size as predicted by Proposition 1 in Chapter 3. For a = 1 and a = 2, the utility
of the baseline scheme decreases with the number of users. On the contrary, the utility of
all the other schemes converges to a constant as K grows for all a.

Power constraint P: We observe in Figs. 4.2, 4.4 and 4.6 that the performance of
full CSIT selection, threshold-based selection and baseline schemes becomes identical for
large P, which is expected since in that case the multicast rate is not limited by users with
small channel gains. Therefore, all users are selected. Note that Proposition 5 proves that
the full CSIT selection scheme coincides with the baseline scheme in the large P regime
for a = 0.

Memory size m: Figs. 4.1-4.6 show that the gap between the threshold-based scheme
and the full CSIT scheme decreases with the memory size. Such a behavior is justified by
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Property 1 stating that the function k — T'(m, k) converges to 1= faster as the memory
size m increases.

Alpha-fairness a: We now consider the performance as a function of the fairness
parameter a. We notice that the gap between the selection with full CSIT and the
threshold-based selection decreases as the parameter « increases. This is because both
schemes tend to coincide with the baseline scheme, or max-min scheduler as a — oo.

In summary, remarkably, even for a relatively reasonable number of users, say K > 50,
the threshold-based selection scheme ensures near optimal performance, with both 1-bit
feedback and linear complexity O(K), which makes this scheme appealing for practical
implementation.

4.7 Conclusions

In order to overcome the limitation of coded caching in wireless channel, we have studied
opportunistic scheduling schemes for coded caching over the asymmetric fading broad-
cast channel. Although, the same limitation was addressed in the previous Chapter, the
objectives and approach are different. The proposed solution in Chapter 3 deals with
asynchronous user demands through an optimal algorithm for joint file admission control,
codeword construction and wireless transmissions. However, the queueing structure of
the proposed scheme increases its implementation complexity. In this Chapter we have
focused on the scheduling part and have proposed a simple threshold-based scheduling
policy, which requires only statistical channel knowledge and can be implemented by a
simple one-bit feedback from each user. Our striking result, through rigorous and rather
involved analysis, demonstrates that such threshold-based policy is asymptotically opti-
mal as the number of users grows. Additionally, the numerical examples show that our
proposed policy incurs a negligible loss with respect to the optimal scheduling scheme
(requiring full channel knowledge) for a reasonable number of users, i.e., between 20 to
100 users depending on the fairness parameter and the memory size. Albeit simple and
appealing, the threshold-based scheme does not capture the asynchronous nature of user
requests. In fact the scheduling rule is based on GDS scheduler, which supposes that each
user has enough data to be served. Thus, adapting the threshold-based scheduler to the
online scenario remains an open problem .
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Figure 4.1: Average per user rate vs K for « =0, P = 10dB and m = [0.1, 0.6].

Average per user rate

45

iy
o

w
(&3]

W
o

N
(&)

[\S]
o

—_
(&3]

10

+ <1 ¥0<

| ——m=0.6
- - -m=0.1

Superposition
Selection with full CSIT
Threshold-based scheduling
Unicast opportunistic scheduling
Baseline

Figure 4.2: Average per user rate vs P for « = 0, K = 20 and m = [0.1,0.6].

80



5 | \

¢ Superposition
4r O Selection with full CSIT

# Threshold-based scheduling
3r ¥ Unicast opportunistic scheduling||
5L + Baseline

—m=0.6

1F ===-m=0.1

Utility

Number of users K
Figure 4.3: Utility vs K for « = 1, P = 10dB and m = [0.1, 0.6].

s ‘ Pe ¢ Superposition

-3 P ’ O  Selection with full CSIT T

‘ + ¥ Threshold-based scheduling

-4 P Vv Unicast opportunistic scheduling| -
e + Baseline

s 0 —m=0.6 1

===-m=0.1
—6 1 1 1 |
0 10 20 30 40 50
P

Figure 4.4: Utility vs P for « = 1, K = 20 and m = [0.1,0.6].

81



Utility

{ Superposition ~o
12 | O Selection full CSIT Vo |
¥ Threshold-based R
14 + W Unicast opportunistic Sw
+ + Baseline
6t |=™=m=0.6 i
| == =m=0.1
18 b ‘ ' ! |
10 20 30 40 50 60

number of users K

Figure 4.5: Utility vs K for a = 2, P = 10dB and m = [0.1, 0.6].

20

-30 ’ ¢ Superposition
35 Py _‘_,’ O Selection with full CSIT |
) , % Threshold-based
-40 ’ ! WV Unicast opportunistic
,' + Baseline
A4S, ——m=0.6 i
==-m=0.1
50 ‘ ' :
0 5 10 15
P

Figure 4.6: Utility vs P for a = 2, K = 20 and m = [0.1,0.6].



Conclusions

We have studied coded caching [1,2] in more realistic scenarios by relaxing the perfect
shared link and considering wireless channel. Recent works have revealed that the the-
oretical gain of coded caching is sensitive to the behavior of the multicast rate of the
underlying channel and might vanish in the regime of a large number of users. Thus we
have focused on the design of efficient content delivery schemes in wireless channels when
the placement phase is restricted to centralized [1] and/or decentralized [2] placement
strategy.

We considered in Chapter 2, erasure broadcast channel with state feedback for asym-
metric file sizes and distinct cache capacities. We demonstrated the benefits of coded
caching combined with state feedback in the presence of random erasure and character-
ized the optimal rate region of the channel for some special cases, namely for K < 3, or for
the symmetric network with K > 3, or for the one-sided fair rate vector with K > 3. The
proposed scheme was based on the works by Wang and Gatzianas [59,60] of which, we
provided an intuitive interpretation and revealed an explicit connection between the ca-
pacity in the symmetric EBC and the DoF in the MISO-BC. More specifically, we showed
that there exists a duality in terms of the order-j multicast capacity/DoF. Such a con-
nection was fully exploited to generalize our results to the cache-enabled MISO-BC. Note
that our proposed scheme uses only linear combinations (XOR) and so, can be further
improved by using the joint source-channel coding [57].

In Chapter 3 and 4, we address the fairness problem in the presence of caches. In par-
ticular we studied the content delivery over asymmetric block-fading broadcast channel,
where the channel quality varies across users and time. Unlike the classical coded caching
which combines all the requested files, we exploit the fading peaks by deciding on the
subset of users of which the requested files are linearly combined. The main conclusion
of these chapters is that, by appropriately combining the multicast opportunities and the
opportunism due to channel fading, coded caching can lead to significant gains in wireless
systems with fading. Furthermore, in Chapter 3 we dealt with the dynamic arriving user
requests through a queued scheme that combines file admission control, codeword con-
struction and wireless transmissions. Moreover the above queueing structure cuts both
ways, it makes our scheme flexible to be adapted to different setting such us asymmet-
ric finite file size and/or distinct memory capacity, but it makes our optimal solution
complex for implementation. Thus, in Chapter 4, we addressed the same limitation of
coded caching in wireless channel in offline scenario by focusing on the scheduling part
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and proposed a low-complex scheme that achieves a scalable sum content delivery in fad-
ing broadcast channel. In fact the proposed scheduling policy, named threshold-based
scheduling, requires only statistical channel knowledge and can be implemented by a sim-
ple one-bit feedback from each user. We demonstrated that such threshold-based policy
is asymptotically optimal as the number of users grows.

To see the tradeoff between complexity and performance of the proposed schemes for
the fading BC, we compare their complexity in Table 4.1. Although the queued scheme
provides the best performance as shown in Fig. 3.4, it has an exponentially growing
complexity with the system dimension. However, the threshold-based scheme has linear
complexity which makes it appealing even though it provides the lowest performance.
Moreover, the threshold-based scheme requires the less channel state information among
all the proposed schemes.

In all the above content delivery scheme over wireless channels, we did not consider any
delivery delay constraints which can be important in several applications. For example,
each file can have a delay tolerance that should be respected, otherwise the request is
dropped. In that case, additionally to the channel state we need to consider the delay to
decide on the scheduling policy, which remains an open problem for future work.

Table 4.1: Comparison of the proposed schemes for the fading BC.

Sec. | delivery Required CSI | Encoding Decoding Comp-
scheme lexity
3.4 | Queued on- | Full CSI at ev- | e Superposition SIC to decode mul- | O(2K)
line scheme eryone encoding to per- | tiple sub-files and
form multiple coded | remove sub-files of
caching weaker users
¢ 25 — 1 codeword
queues
4.5 | Superposition | Full CSI at ev- | Select multiple sub- | SIC to decode mul- | O(K?)
scheme eryone set of users to per- | tiple sub-files and
form multiple coded | remove sub-files of
caching weaker users
4.3 | Selection Full CSIT lo- | Select the best user | XOR decoding O(K?)
scheme cal CSIR set based on GDS
4.4 | Threshold Statistical Perform coded | XOR decoding O(K)
scheme CSIT and | caching to the subset
local CSIR of users whose SNR
is above a threshold
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Appendix A

Erasure Broadcast Channels with
Feedback

In the appendix, we repeatedly use the following weight expression.

w :Hjea(l_mj): my
T 1Tl 1-4

where we let 77; = 1 —m; and use a short-hand notation d; = [ [, 6; and my = [[;, ;.

(A1)

A.1 Proof of Lemma 6

We have, for J C 7,

H(Yy"|U,5") (A.2)
= H(Ya YL U ST (A-3)
t=1
= H(Yy|Y{ U878 (A.4)
t=1
= Pr{SinI# 0y H(X, |V, U8, 5,07 #0) (A.5)
t=1
=> (1-J[o)EX Y U8 (A.6)
t=1 €]
<(-]J0)) HX Y] U S (A7)
i€J t=1

where the first equality is from the chain rule; the second equality is because the current
input does not depend on future states conditioned on the past outputs/states and U,

85



the third one holds since Y3, is deterministic and has entropy 0 when all outputs in J are
erased (S;NJ = 0); the fourth equality is from the independence between X; and S;; and
we get the last inequality by removing the terms th\a in the condition of the entropy.
Following the same steps, we have

HY; | U,S™) = (1-][6:) D> HX: Yy U857, (A.8)
i€d t=1

from which and (A.7), we obtain (2.18).

A.2 Length of sub-phase

In this section, we prove (2.78) given by

k [Leixpaupusc(d —m;)
=y (-)" fe_[ﬁ - ). (A.9)
H:HCI\{k} JE[KN\JU{k}IUH Y7
(kY

To this end, we first introduce a new variable g{ - fw for k € § C [K]. Using (2.77)

we obtain
k
Z gt = WIKN\JU{k}- (A.10)
J:keICI

We first need to prove the following lemma.

Lemma 18. For any nonempty set [K] and J C [K]. It holds

Z Z KN\IUH = WK\ (A.11)

9:9C3 H:HCI
Proof.
Z Z WIKN\IuIC = Z Z K\(I\H) (A.12)
9:9C3 H:HCI 9:9C3 H:HCI
- S S ) g a3
9:9C3 H:H!' CI

= Z Z (= 1)V e g (A.14)

HH'CFI-H'CICY

= Y wpee Y, (=DPV (A.15)

HH'CJ J:H'CICYH
> wgpee Y (=D (A.16)
HHICY 9.3 CI\H!
= Wig)\g + Z W[K\H! Z (—1)'jl (A.17)
HH'CF 79 CI\H’
= w[K]\g. (A.18)
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We set H' =T\ H and I = I\ H' to obtain (A.13) and (A.16), respectively. The last
equality follows from Zjﬂg(—l)m =0 for all J # 0. O

We prove (2.78) by induction on [J]. For § = {i} we have Y ;. o, gl = ggl} nd

Zﬂﬁg\{i}(—l)w{'w[ K\Jufijuk = Wik\gug}- By applying (A.10) for § = {i}, we obtain the
proof for |J| = 1.

Now suppose (2.78) holds for any J C [K] such that |J| < |J| and we prove in the
following that it holds for J too. We have

2. 9" = wipgug (A.19)

J:1€IC3
=g"+ > g (A.20)

J:i€dCd
Thus, we obtain
9" = vy — > 9" (A.21)
J:2€ICd

WIKN\Ju{i} — Z Z WIK\JU{i U (A.22)

J:4€ICF HHCTI\{i}

|H
wrngogy — Y Y wirpoogpusc + Y (= 1) wrpgugos

J:1€ICJ H:HCI\{3} H:HCI\{i}
(A.23)
wigaoy = Y Y (D wmguuet > (CDMwpaugo (A.24)

J:ICI\{i} H:HCT FHCI\ {4}
H
= WKN\Ju{s} — WK©\@\(}) Z — 1) wirpgugiyuse (A.25)
H:HCI\{i}

= Z (‘Umw[m\au{i}u% (A.26)

36:HCI\{i}
where (A.22) is obtained from the hypothesis of induction; (A.24) is obtained from a

simple manipulation of the summation, i.e. » 5. qcqan (i) = ng\{i} as; (A.25) is from
Lemma 18.

A.3 Existence of the permutation

In this section, we prove that the worst user under the one-sided fair rate vector is deter-
mined by (2.79), namely

arg max i = min{g} ,vgC[K]. (A.27)
€
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We set [ = min(g) for any subset J C [K] such that |J| > 2. Proving (2.79) is equivalent
to prove

Rigl" > Rigi" vie . (A.28)

Recall that from our one-sided rate vector assumption we have for ¢ € g , o > 0
0B = 0;R; and LRy > M R;. Plugging (2.1) and (2.39) into (2.76), we obtain

i 1 it s 7
gt = | 2 9y dpadirnaugsy + M@y KNG | (A.29)
— OIKNIVLY [ ge5cg
and
l 1 N =
91" = | D 9" dpudupau +mamymipa | - (A.30)
— OIKNIV | 9050

We prove by induction on || that ngé{l} > Riggi}: For |J| = 2, 3 = {l,4} hence (A.29)
and (A.30) imply the following

g = 9 ducnavgy + Mo | (A.31)
L= dixpgugay
and
g = [gz{l}gﬁm\au{z} + mim[K]\ﬂu{l}} : (A.32)
1 = dirpguqy

Since &; > §;, it holds 1 and 9; > ;. Since %Rl > %Ri, then

L >
1=0pnguy = 101k \augiy ,
it holds m;m k) guy B > mumk)pgugipRi. In addition we have from (2.78) : gl{l} = ng{l} =

1"_1([31[?(] and o, R; > 6;R;, thus we obtain ngé{l} > Rigé{i} for [g] = 2.

Suppose that (A.28) holds for any J C [K] such that |J| < |J| and we prove that it
holds also for J in the following.
Since §; > d;, it holds —— > ———— Since LR, > ™R, it holds
[KI\JU{1} (K1\JU{i} m m;

mg\{l}m[K]\gu{l}Rl > mg\{i}m[K]\gu{i}Ri. By observing (A.30) and (A.QQ), it remains to
prove that

l}¢ it
Ry A" Spaducpay > R > 96330 N au gy - (A.33)

J:1eICyg J:i€IC]

We have for user [

l} < I} 1}
Yo o aatupaom = Y. o Gudmaon + D 9 dpudugaoy (A34)

J:leicd J:{1,3}3CICI 1leICI\{i}
_ (I} 5 W
= > 9 &l T DL Gomdnnmdxnaoa,
J:{1,:}CICI J:ICI\{4,l}

(A.35)
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and similarly for user i

S o admpann = Y. 0 admpao + Y 98 eadikpaon (A36)

J:4€3Cy J:{1,i}CICI J:4€ICI\{l}
_ (i} 5 (i}
= Y g hamanm + DL GomdaniOinase) -
J:{1,4}CICd J:ICI\{l,i}

(A.37)

For any J satisfying {l,i} € J C J we have |J| < |J|, min(J) = [ and i € J so by the
hypothesis we have gj{l}Rl > gj{Z}Ri. In addition we have §; > 9; thus

35N 1N
Y. 9 Geduaun = D g padipauin B (A.38)
9:{1,i}CICd 9:{1,i}CICY

For any J satisfying J € g\ {l,i} we have from (2.78) 93{6}{1} = gj{é}{i}. In addition we

have (i Z 51 and RZ(SI Z Rl-(SZ-, then Sg\j\{l}é[K]\gu{l}Rl 2 (53\3\{i}5[K}\5u{i}Ri- As a result we
obtain

O = {it 3
R Y gomdanwdimnaom = Ri Y gi0m0nn i Oimnae) - (A.39)
ICI\{4,l} JCN{Li}

Hence the proof is completed.

A.4 The outer-bound under the one-sided fair rate
vector

Suppose that there exists m; such that Z]K:1 R\ ()yWr, (1)..m ;) < 1and that m () < mp(i+1)
holds for some i € [K —1]. We prove that for any permutation 7, that satisfies mo(i+1) =
m(i) = k, m(i) = m(i+1) = K and m(j) = m(j) V j € [K]\ {i,i + 1}, it holds
ZJK:1 Ry (7YWry(1)..ma(j) < 1. It suffices to show that

Wary (1)1 (8) By (6) Wiy (1)1 (i41) By (41
> Wy (1) (i) Loma (i) T Wan(1).ma(i41) Pora(i41)

equivalent to

(Way (1)1 (6) — Wra(1)..ma(i+1)) Ry (3)

2 <w7r2(1)..7r2(z') - w7r1(1)..7r1(i+1))R7r1(i+1)
equivalent to

(W — Wk ) Ry > (W — ks ) Ry (A.40)
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where J = m1(1)..m1(¢ — 1). By replacing the weight by its expression (A.1) we obtain

Wk = Wikk! = 7 ﬁ_ljgjk 1 Tjgf,;k, (A.41)
— i L —15% - _EW o ngkk] (A.42)
- [(1(1— _(Sjgjki(z (_16; jﬂ)k) 1 ngkk} (A.43)
“rh s ] <A-44>

where we obtain: (A.42) by replacing my with 1 — my; (A.43) and (A.44) by trivial
calculations. Similarly

mjk/ 6jk/<1 — 6k)
; — ;= + . A.45
W9 W9k ke 1 (Sgkk/ |: (1 6%/) myg ( )

Thus, (A.40) is equivalent to

d9(1 — o) _

03(1 — O
J( i >mk(5kRk — mk/ék/Rk/ + (mkmk/Rk - mklmkRk/) Z 0. (A46)

(1 — 5jk) (1 — 5jk/>
Since k < Kk’ then d;, > 0;, so it is sufficient to prove that

09(1 — 0
(31(— 55:)) 0k Rk — mk’(sk'Rk'l+Smkmk'Rk - mk’mkRk,l = 0. (A47)
A B

This is satisfied if A > 0 and B > 0. The condition B holds thanks to the definition of
one-sided fair rate vector, and it is equivalent to

R/ mm/
k< kTTUE

A
. =9. A48
Rk B mk/mk ( )

We will examine condition A by considering the case my > my and m; > my sepa-
rately.

e Case > 1
In this case we have my < my, or m; > my. Condition A reduces to:

(SkRk — 5k’Rk’ > 0.

e Case /<1
In this case we have m; > my or m; < my. Then we have

Ry mymy  myd 0
k < _k k < = kY < _k
Rk mpgmy mk,(;k/ 5k’
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This means that B implies A so that the desired inequality holds once B holds. Since
A is inactive, we can then consider a looser bounds

O Ry, — O Ry > 0,

which holds by the definition of one-sided fair rate vector.

Thus we obtain the result. Starting by m; as the identity we can obtain all the remaining
K! — 1 permutations.
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Appendix B

Fading Broadcast Channels with
Dynamic User Requests

B.1 Proof of Proposition 1

The content delivery rate is:

Thlsum (K, P) = E [log (1 4+ Phumin)]

T(m, K)
k are i.i.d. with distribution Exp(1), Ay, has

e

A . .
where Ay, = min  hg. Since (hg)g=1
k=1,...K

distribution Exp(K’). Hence:

+o0 P
E [log (1 + Phumin)] = / e "log <1 + —x) dx
0 K
K
-5 (3)

K Km
WhenK%oowehavemw T

+00 +o00
/ e "log (1 + —x) dx ~ —/ e fdx =
0

Replacing yields statement (ii).

which yields statement (i).

and

When P — oo, & — 0. Since Ey(z) ~ log(1/z) for z — 0 we obtain statement (iii).

B.2 Proof of Theorem 14

Let My be the message for all the users in J C [K] and of size 2"%. We first show the
converse. It follows that the set of 25 — 1 independent messages {My : J C [K], J # 0}
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can be partitioned as

K

Uy kedc [k} (B.1)

k=1
We can now define K independent mega-messages M, = {M;: k€ J C [k]} with rate
Ry =3, keI k] Rj. Note that each mega-message k£ must be decoded at least by user k
reliably. Thus, the K-tuple (Rl, cee RK) must lie inside the private-message capacity
region of the K-user BC. Since it is a degraded BC, the capacity region is known, see
Sub-section 1.4.1, then we obtain

k=2.. . K, (B.2)

for some p; > 0 such that Zszl p; < P. This establishes the converse.

To show the achievability, it is enough to use rate-splitting. Specifically, the trans-
mitter first assembles the original messages into K mega-messages, and then applied the
standard K-level superposition coding [43] putting the (k— 1)-th signal on top of the k-th
signal. The k-th signal has average power py, k € [K]. At the receivers’ side, if the rate of
the mega-messages are inside the private-message capacity region of the K-user BC, i.e.,
the K-tuple (Rl, ceey RK) satisfies (B.2), then each user k£ can decode the mega-message k.
Since the channel is degraded, the users 1 to kK — 1 can also decode the mega-message k
and extract its own message. Specifically, each user j can obtain My (if § > j), from the
mega-message k when k € J C [k]. This completes the achievability proof.

B.3 Proof of Theorem 15

The proof builds on the simple structure of the capacity region. We remark that for a
given power allocation of users 1 to k — 1, user k sees 2¥~! messages {M;} for all J such
that k£ € § C {1,...,k} with the equal channel gain. For a given set of {p; ;?;11, the
capacity region of these messages is a simple hyperplane characterized by 28! vertices
Rysume; for i = 1,...,2""1 where Ry, qum is the sum rate of user k in the RHS of (3.21)
and e; is a vector with one for the i-th entry and zero for the others. Therefore, the
weighted sum rate is maximized for user k£ by selecting the vertex corresponding to the

largest weight, denoted by 6. This holds for any .

B.4 Static Policies

An important concept for characterizing the feasibility region and proving optimality of
our proposed policy is the one we will refer to here as "static policies”. The concept is that
decisions taken according to these policies depend only on the channel state realization
(i.e. the uncontrollable part of the system) as per the following definition:
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Definition 6 (Static Policy). Any policy that selects the control variables {a(t), o (t), pu(t)}
according to a probability distribution that depends only on the channel state h(t) will be
called a static policy.

It is clear from the definition that all static policies belong to the set of admissible
policies for our setting. An important case is where actually admission control a(t) and
codeword routing o (t) are decided at random and independently of everything and trans-
missions p(t) are decided at by a distribution that depends only on the channel state
realization of the slot: It can be shown using standard arguments in stochastic network
optimization (see for example [61,63,65,66]) that the optimal long term file delivery vector
and any file delivery vector in the stability region of the queueing system can be achieved
by such static policies, as formalized by the following Lemmas:

Lemma 19 (Static Optimal Policy). Define a policy ©* € II°C that in each slot where
the channel states are h works as follows: (i) it pulls random user demands with mean
ay, and it gives the virtual queues arrivals with mean %, = a as well (ii) the number of
combinations for subset J is a random variable with mean o and uniformly bounded by
Omax, (1) selects one out of K + 1 suitably defined rate vectors p' € I'(h),l =1,... K +1
with probability Yiv. The parameters above are selected such that they solve the following
problem:

K
max Z gr(@y)
k=1

st Y oy >aVke{l, . K}

J:ked

K41
Z bya0g < Tt Z ®n Z Yrnps(h), VI C {1,2, ..., K}
3:3C] h =1

Then, m* results in the optimal delivery rate vector (when all possible policies are restricted
to set I1°C).

Lemma 20 (Static Policy for the 6— interior of I'““). Define a policy ©° € I1°C that
in each slot where the channel states are h works as follows: (i) it pulls random user
demands with mean @, such that (a+ &) € I'°C, and gives the virtual queues random
arrivals with mean ¥, < ay+€ for some € > 0 (ii) the number of combinations for subset
d is a random variable with mean Eg and uniformly bounded by owyax, (111) selects one out
of K + 1 suitably defined rate vectors u' € I'(h),l = 1,.., K + 1 with probability wih. The
parameters above are selected such that:

Y 0% >etayVke{l, . K}

J:keg

K+1
> byah < e+ Taor D on D Upnits(h), VI € 2%
3:1C3 h =1

for some appropriate € < §. Then, the system under © has mean incoming rates of a°
and is strongly stable.
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B.5 Proof of Lemma 13

We prove the Lemma in two parts: (i) 1'°¢ C A°C and (ii) (I'°“)° C (A°°)".

For the first part, we show that if a € Int(I'“C) then also a € A°C, that is the long
term file delivery rate vector observed by the users as per (3.7) is T = a. Denote Aj(t) the
number of files that have been admitted to the system for user k up to slot t. Also, note
that due to our restriction on the class of policies I1°¢ and our assumption about long
enough blocklengths, there are no errors in decoding the files, therefore the number of
files correctly decoded for user k till slot ¢ is Dy (¢) . From Lemma 20 it follows that there
exists a static policy 7*4NP  the probabilities of which depending only on the channel
state realization at each slot, for which the system is strongly stable. Since the channels
are i.i.d. random with a finite state space and queues are measured in files and bits,
the system now evolves as a discrete time Markov chain (S(t), Q(¢), H(¢)), which can be
checked that is aperiodic, irreducible and with a single communicating class. In that case,
strong stability means that the Markov chain is ergodic with finite mean.

Further, this means that the system reaches to the set of states where all queues are
zero infinitely often. Let T'[n] be the number of timeslots between the n—th and (n+1)—th
visit to this set (we make the convention that 7°[0] is the time slot that this state is reached
for the first time). In addition, let Ag[n], Di[n] be the number of demands that arrived
and were delivered in this frame, respectively. Then, since within this frame the queues
start and end empty, we have

Ag[n] = Dy[n],Vn, Vk.

In addition since the Markov chain is ergodic,

N -
A

a — tim 20 _ gy —Z“;O 2

oot Nooo SV T
and N =
Dt D

7, = lim —( ) = lim —Z”;O au

t—oo ¢ N—oo anoT[”]

Combining the three expressions, ¥ = a thus the result follows.

We now proceed to show the second part, that is given any arrival rate vector a that is
not in the stability region of the queueuing system we cannot have a long term file delivery
rate vector ¥ = a. Indeed, since a ¢ I'°“| for any possible & satisfying (3.12), for every
€ D hes dnl'(h) there will be some subset(s) of users for which the corresponding
inequality (3.13) is violated. Since codeword generation decisions are assumed to be
irrevocable and ) 5 ¢nI'(h) is the capacity region of the wireless channel, the above
implies that there is not enough wireless capacity to satisfy a long term file delivery rate
vector of a. Therefore, a ¢ A°C| finishing the proof. !

'We would also need to check the boundary of I'“C. Note, however, that by similar arguments we
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B.6 Proof of Theorem 16

We first look at static policies, which take random decisions based only on the channel
realizations. We focus on two such policies: (i) one that achieves the optimal utility, as
described in Lemma 19 and (ii) one that achieves (i.e. admits and stabilizes the system for
that) a rate vector in the §— interior of A“C (for any § > 0), as described in Lemma 20.
Then, we show that our proposed policy minimizes a bound on the drift of the quadratic
Lyapunov function and compare with the two aforementioned policies: Comparison with
the second policy proves strong stability of the system under our proposed policy, while
comparison with the first one proves almost optimality.

From Lemma 13 and Corollary 4, it suffices to prove that under the online policy the
queues are strongly stable and the resulting time average admission rates maximize the
desired utility function subject to minimum rate constraints.

The proof of the performance of our proposed policy is based on applying Lyapunov
optimization theory [65] with the following as Lyapunov function (where we have defined
Z(t) = (S(t),Q(t), U(t)) to shorten the notation)

L(Z) = L(S,Q,U) = % (Z Up(t)+ Sp(t) + > 2 ) .

We then define the drift of the aforementioned Lyapunov function as
AL(Z) = E{L(Z(t + 1)) — L(Z(1))|Z(t) = Z}

where the expectation is over the channel distribution and possible randomizations of the
control policy. Using the queue evolution equations (3.10), (3.11), (3.15) and the fact that
([z]*)? < 22, we have

AL(Z(t)) <B

t
-

)& { 3 bygoy(t) - Tslotug(t)‘Z(t)}

Je2X J:1C7J
+3 S (HE {akm -y Uﬂ(t)'Z(t)}
+ 3 UOE{nlt) — an()|Z(1)} (B.3)

can show that for each vector on 9I'““ we need to achieve a rate vector on the boundary of the capacity
region of the wireless channel. Since, as mentioned in the main text, we do not consider boundaries in
this work, we can discard these points.
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where

+ % DD (Omaxbsg)’

Je2% 3:Cg

Slot LY ) E{(logy(1 + Phi(t)))*} . (B.4)

Je2X kel
Note that B is a finite constant that depends only on the parameters of the system.

Adding the quantity —V Zszl E{gr(7£(t))|Z(t)} to both hands of (B.3) and rearranging
the right hand side, we have the drift—plus—penalty expression

AL(Z VZE{gk W (0)|Z(t)} <
B4 S E{Vaw(t) + O UIZ(0)

+ ) E{oy(t)|Z() (Z bjg—Zsk )

ae2f’< J:9C7 k:ked

+Z (Sk(t) — Uk()) E {an(t)|Z (1)}

=3 O (0120} (B.5)

Je2X

Now observe that the proposed scheme 7 minimizes the right hand side of (B.5) given
any channel state h(¢) (and hence in expectation over the channel state distributions).
Therefore, for every vectors @ € [1, Ymax)™, fl € [1, Ymax]X, € € Conv({0, .., Omax }M), 1t €
> nese @nl’(h) that denote time averages of the control variables achievable by any static
(i.e. depending only on the channel state realizations) randomized policies it holds that

AL™(Z VZE{gk YR(t)} <
B=VY () + Y Ult) (7 — @)
k=1 k=1
+ 3 Si(t) (ak - 63>
k=1 J:ked
Z (Z by 09 — slotﬂg> (B.6)
] 9:4C9
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We will use (B.6) to compare our policy with the specific static policies defined in Lemmas
19, 20.

Proof of strong stability: Replacing the time averages we get from the static
stabilizing policy 7° of Lemma 20 for some § > 0, we get that there exist ¢,e’ > 0 such
that (the superscript 7 denotes the quantities under our proposed policy)

AL™(Z(t)) < B + VZE{gk ar())} =V gi(@)

K
Qy(1)
Sk(
K

—¢ Z Ui() (B.7)

Since ay(t) < YmaxkVt, it follows that gk( a7) < gk(Ymaxk)- In addition, gi(x) > 0,Vz > 0
therefore

AL(Z(t) < B+ V'Y E{gr(maxk)}
>osut+ Y A
k=1 Jeax
— > Ui(t) (B.8)

(Sk(t) + U(t))

5

[0}

5

|
M:
=
™
1=
[\'j =

< B+V 3 0 (max)

- €

(B.9)

Therefore the queues are strongly stable under our proposed policy. In order to prove
the part of Theorem 16 regarding the guaranteed bound on the average queue lengths, we
first note that the above inequality holds for every ¢ > 0 and define ¢, as

€y = argmaxe (B.10)
e>0
s.t. el € A°C. (B.11)

Following the same arguments as in Section IV of [61], we can show that the Right Hand
Side of (B.9) is bounded from below by

B + Vv Zf:l 9k (’7max,k)

Y

€0
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therefore proving the requested bound on the long-term average queue lengths.
We now proceed to proving the near-optimality of our proposed policy.

Proof of near optimal utility: Here we compare 7 with the static optimal policy
7* from Lemma 19. Since 7* takes decisions irrespectively of the queue lengths, we
can replace quantities @, &, on (B.6) with the time averages corresponding to 7%, i.e.
a*, 0", ;1*. From the inequalities in Lemma 19 we have

VY E{g(i())} 2V ) a(@) - B+ ALT(Z(1))

Taking expectations over Z(t) for both sides and summing the inequalities for t = 0, 1,..,T—
1 and dividing by VT we get

G > 2 ElaGi@)} = 2 @) - b _E(r(@0)
E{L"(Z(T)}
VT

Assuming E {L™(Z(0))} < oo (this assumption is standard, for example it holds if the
system starts empty), since E{L™(Z(T))} > 0,YT > 0, taking the limit as T goes to

infinity gives
T-1 K

Jm LSS E (G0 2 Y lar) - 3

In addition, since g,(x) are concave, Jensen’s inequality implies
) )

P ACHED N (715{.10 % > E{~; (t)}>

k=1 k=1

Finally, since the virtual queues Uy(t) are strongly stable, it holds a} > 7%. We then have

K
> on(@g) >
k=1

which proves the near optimality of our proposed policy 7.

M)~

N B
gr(Vk) = ng(aZ) o
k=1

k=1
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Appendix C

Opportunistic Scheduling

C.1 Proof of Theorem 17

C.1.1 Proof element 1: lower bound on the rates

The first step towards proving Theorem 17 is to show that the rates allocated by a-fair
scheduling are upper and lower bounded by two constants, so that min; 1/(77)® and
max; 1/(77 )% are of the same order even as K — co. This is in fact the step of the proof
which is the most involved.

Proposition 6. There exists 0 < Ci(p,p) < Cs(p,p) < oo such that for all K > 0 and
ali=1,...,K: a B

Ci(p,p) <77 < Ca(p, D).
Proof. Without loss of generality, we may order users to ensure 77 < ... < 7% . Through-
out the proof we consider the optimal policy 7* and, to ease notation, we denote 7™ by
7;. We define the function:

K

1 .
J(8.h) = s log(1 4+ minhy) 3 |

1{i € J}
T(m, |3]) '

(73)°

As shown in corollary 5, under the optimal policy 7*, the chosen group is

(C.1)

1=

ignored. Denote by 7 = Zf; ﬁ, the sum of weights of all users except user 1. Define

2= o) log(1 + plog2). We now prove the following inequality:

P(f(di(h),h) < z) <
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Define the group: Ji(h) = {i > 2 : h; > p;log2}. Let us lower bound f(Ji(h),h). By
definition, j € J1(h) implies h; > p;log2 > plog2, hence:

log(1 + plog2) <log(l+ min hy),
- Jj€d1(h)

and further using Property 2 implying T'(m,o00) > T(m,J1(h)), we obtain the lower
bound:

K

1 1{h; > pilog2}
——— log(1 log 2
T(m, o) og(1 + plog )122 (7)™

Define the random variable:

< f(31(h), h).

K

1 1{h; > p;log 2}

Z = ———log(1+ plog2) - .
T(m, o00) = ; (7))«

By definition of J7(h), we have f(J%(h),h) > f(d1(h),h), so that:

Since h; follows an exponential distribution with mean p;, we have P(h; > p;log2) = %
and since the channel realizations are independent across users, the random variables
1{h; > p;log2} and 1{h; > pylog2} are independent whenever i # i’. Therefore:

K
1 P(hi > pilog?2)
E(Z) = ———log(1 log 2 =
(2) T(m. o) og(1 + plog );:2 AL z,

and Z is a weighted sum of Bernoulli independent random variables with mean % so that
Z is symmetrical, i.e. Z — z has the same distribution as z — Z. Therefore: P(Z < z) =
P(Z > z) =1 and:

P(f(3i(h),h) < 2) <P(Z < z) = -

We now control the value of min;egs(n) h;. Choose any ¢y, ¢, such that both of the condi-
tions below are satisfied:

T(m,1)
2T (m, 00)
2T (m,00) [ (log(1 + ) /)Py _
(i) T'(m,1)log(1+ plog2) -

(i) log(l4+¢1) < log(1 + plog2); and

1
1

It is noted that we may indeed choose ¢y, ¢z in that way since ¢ — log(1 + ¢) is increasing
and vanishes for ¢ = 0, and since ¢ — [ (log(1 +y)/p)e ¥/?dy is decreasing and vanishes
for ¢ — co. It is also noted that c; c; may be chosen only based on the value of p and p
and m.

102



Assume that min;egr) hy < c; and that f(J5(h
the facts that (a) log(1 + minegsn) hi) < log(

since Property 2, and (c) that 31, 1{zera b <5

),h) > z. If this event occurs, using
+e1), and (b) T(m,|g;(R)]) > T(m, 1)
, we obtain the upper bound:

f(di(h), h) < Ton 1)

log(1 + ¢).

In summary, if min;eg:) hi < 1 and f(J5(h),h) > 2z we have 2z < 77— log( + ;1) and
replacing z with its definition:

-
" log(1+ plog2) <
2T (m, o0) og(l + plog2) <

7
log(1
T(m, 1) Og( +Cl)7

which is equivalent to

T(m,1)

) oe(1 + plog2) < log(1
T (. o0) og(1 + plog2) <log(1l+ c1),

a contradiction with (i) the definition of ¢;. We have hence proven that f(dy(h),h) > 2
implies Mil;eg: (n) h; > c.

Now assume that minegsny hi > c2 and that f(Ji(h),h) > z. If this event occurs,
using the facts that

(a) log(1+ in, h;){i € Ji(h)} <log(1+ hi)1{i € Ji(h)}
J<dy

since ¢ € Jj(h) implies h; > co, and (b) T'(m,|J5(h)|) > T'(m,1) since Property 2, we
obtain the upper bound:

. 1 log(1+4 hy)1{h; > co} .,
1) < gy SRR = 2

In summary min;egsn) hs > c2 and f(J5(h),h) > 2z implies z < f(J7(h),h) < Z'. Let us
upper bound the expectation of Z’. Since h; has exponential distribution with mean p;
we have:

Bllog(1+ h)1{h; > c2}) = [ " (log(1 + )/p)e v/ dy

Cc2

< / " (log(1 + y)/p)eV/7dy.

Cc2

Hence: _
7 [ (log(1 +y)/p)ev/Pdy
T(m,1)

E(Z') <
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Using Markov’s inequality, we get:

2T (m, 00) [ (108 (1 + y)/B)eV/Pdy
T'(m,1)log(1+ plog2)

1
< R
— 4
using the definition of ¢y for the final inequality.

In conclusion, we have proven that:
P (i o fevedd) =P (i 1o fe, ol @A) < 2

+ P (i ¢ fescol 35 ).B) 2 <)

i€d5 (h)

<P(f(7i(h).h) < ) + P ( min hs ¢ [er, s F(T2(R),B) > )

i€dy(h)

(F(@(R),h) < 2) + P ( min i > s £(1(h),h) > )

1€d5(h)

VAN

1.3
1

IN

Y

P
P(Z<2)+P(Z'>2)
1
2

4

hence:

1
P <Z£g(rill) h; € [01,02]) > 1
The second step involves lower bounding 7, using the previous result on the fluctu-
ations of min;egsn) hy. We will use the four following facts: (a) Since Ji(h) depends
solely on hy, ..., hx, the event minieg:n) hi € [c1,co] is independent of hy, (b) When
both mineg:ny hi € [c1, 2], and hy > ¢y, then 1 € J*(h) since ﬁ > max;>o ﬁ and
min;eg«p) hi < c2 < hy. Indeed, if 1 & J*(h), for any i € J*(h) we have f(d*(h) \ {i} U
{1},h) > f(d*(h),h), a contradiction since J*(h) is a maximizer of J — f(d,h), (c) Since
hy has exponential distribution with mean p; > p, P(hy > ¢;) = e=/P1 > ¢7¢/2 and (d)
We have T'(m, |3*(h)|) < T(m, co) since Property 2.

Putting (a), (b), (c¢) and (d) together we get:

————log(1 + ¢1)P( min h; € |c1,c3],hy > ¢
T(m, o0) g( 1) (z‘eaf(h) [c1, ¢2], I 2)

1
- log(1 P( min h; € [er, o] )P(hy >
T(m, 00) og(1+c1) (igjlg%}l) € [c1, &2])P(h1 > )

1
> ————log(1 —e2lp = D).
= T(m, 00 4 og(l+ci)e Ci(p, p)
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Furthermore, for any i =1, ..., K:

L E(log(1+ )

< oy a1 + Eh)

1
T 1) og(1+ p;)

1
< log(1+p) = p)-
— T(m,1) os(1+7) C’z(g,p)
We have proven that:
Cl(ﬁa ﬁ) <7 < CZ(paﬁ)

forall i =1, ..., K and all K as announced. 0

C.1.2 Proof element 2: asymptotic size of J

From the first proof element we deduce the second one, that is, only groups g*(h) of
large size are chosen with high probability as the number of users grows. In turn this

implies that T'(m, |*(h)]|) 5 T (m,o0). This result is important, since it allows to take
K—oo

T'(m, |d*(h)|) out of the equation when it comes to controlling which users are selected by
the optimal policy.

Proposition 7. For all J > 0 we have:

P(|g*(h)| > J) — 1.

K—oo

Furthermore, T'(m,|d*(h)]) Kg T(m,o0).
— 00

Proof. Consider the following group of users:

Let us lower bound the value of f(d(h),h) = mlog(l + min;ey hj)Zfil % as
defined in (C.1). Using the facts that (a) T'(m,d(h)) < T(m,o0) due to Property 2, (b)
i € J(h) implies h; > p;log2 > plog2 so that mineyn) hi > plog?2 and (c) 7; < Ca(p, p)

so that =4~ >

2 W we obtain the lower bound:

log(1 + plog2)
02(27 ﬁ)aT(mv OO)

Z 1{h; = pilog2} < f(3(h), h).

i=1
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Let us upper bound the value of f(g*(h), h), using the facts that (a) T'(m,J(h)) > T'(m, 1)
due to Property 1, (b) 7; > Ci(p,p) so that (ml)a < Cl(plﬁ)a and (c) minegp) hi <
x (hi/p;) we obtain: B

max;—; . g h; < pmax;—;

..........

log(1 + pmax;—1,.. x(hi/p:))
Ci(p,p)*T(m, 1)

f(@(h),h) < |3"(h)|
Since J*(h) is a maximizer of J — f(J,h) we have f(d(h),h) < f(J*(h),h), and the two

previous inequalities imply:

T(m, 1) (Cl(g
T(m,o0) \ Ca(p

p)) log - '

log(1 log 2
og(l + plog2) (1 +pmaxi—1,. x(hi/p:))

To finish the proof, we prove that:

Zfil 1{h; > p;log 2} g
log(1 + pmax—y,.. k(hi/pi)) Ko

Q.

Since hi/p1, ..., hx/pK are ii.d exponentially distributed with mean 1, we have P(h; >
pilog2) = % and the law of large numbers gives:

]_ 1
P

P . > . —.
E 1 1{h; > p;log2} —

Since }L < %, we have for K — oo, with high probability,

K

K
Z 1{h; > pilog2} > T

=1

Furthermore,

IP’( max (h /pi) > 2log K) = 1—]P’( max (h /pi) < 2log K)

~~~~~~~~~~
K
i=

=1 _H]P(hi/pi < 2log K)

1

1 K
:1_(1_ﬁ) Pt

Thus for K — oo, with high probability, we have
max (h /pi) <2log K.

Hence, the following occurs with high probability:

o 1)) (Cl o > a log( >

log(1 log 2
A RS AN 1 +2plog K)

< [d*(h)].
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Since ﬁ — 00, this implies that, for all J > 0:
glog K g [

P(|g*(h)| > J) — 1.

K—oo

Therefore, for any J > 0:

P (T(m,J) < T(m, |J*(h)|) < T(m,o0)) — 1.

K—oo

This holds for all J, which proves the second statement. 0

C.1.3 Proof element 3: convergence to a deterministic equiva-
lent

The last proof element is to show that, when K — oo, maximizing f(J,h) reduces to a
simpler, deterministic optimization problem, which we call a “deterministic equivalent” of
the original problem. Define the following mapping:

- 1 &N 1{ied}
¢(3,h) = log(1 + min h;) - ; N

which corresponds to the value of W f(d,h) when |J| goes to infinity. Further define
P
1 o 1{h; > ¢}
h) = loo(1 _ ="
vle ) =logl+ A 3 —Es
which is the value of ¢ when selecting only users whose channel realization is larger than
c. It is noted that when K — oo, we have
h) = h).
jomax ¢(d,h) Igggw(c, )
Indeed, if minjeg h; = ¢ for some ¢, then all users ¢ such that h; > ¢ should be included
in J in order to maximize ¢(J,h). Hence maximizing ¢(d,h) over all subsets of users
d reduces to a simple, one-dimensonnal search over the value of minjcjh; = ¢, that is
maximizing ¥ (c, h) over ¢ > 0. We are now left to control the value of the random quan-
tity max.>¢ ¢(c, h), which is not straightforward since its maximizer arg max.>o ¥ (c, h) is
typically a random variable as well. For a fixed value of ¢, we define ¥(c) which is the
expected value of 1(c, h):

¥(c) = E(¥(c,h)) = log(1 +¢) 1 Z

We will show that ¥ constitutes a deterministic equivalent, in the sense that maximizing
(e, h) over ¢ > 0 for a fixed value of h yields, asmptotically with high probability,
the same outcome as maximizing ¥(c) over ¢ > 0. In other words, a concentration
phenomenon occurs as the number of users grows large and channel opportunism does
yield any gains over choosing all users whose channel realization is above a fixed threshold.
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Proposition 8. We have:

P
g vleh) D)

Proof. We first show that, for any fixed ¢, 1(c,h) is concentrated around ¥(c) when
K — oo. Since (a) the channel realizations hy, ..., hx are independent across users, and
(b) var(1{h; > c}) <1, and (c) 7; > Ci(p,p) for i = 1,..., K, we have:

~ log(1+¢)? f: var(1{h; > c})
K2 — (fi)2a
log(1 + ¢)? 0
= KCI(E;?)ZI K —s00 .

var(¢(c, b))

Hence, Chebychev’s inequality proves that

P
veh) 5 B h) = )
— 00
We may now lower bound max.> 1 (c, h) as follows. Consider ¢ € arg max.>o¥(c), then
we have ¥(¢,h) < max.>ov(c, h) and since ¢(¢, h) Kg v (¢) = max.>o¥(c), this proves
— 00
that, for all € > 0:

P <max£l7(c) —e< mggcw(c, h)) — 1.

c>0 K—oo

We now upper bound max.>q % (c, h). We do so by splitting [0, +00) into a finite number
of intervals and control the behaviour of ¢ — (¢, h) in those intervals. Consider € > 0
fixed. Define 0 > 0, and L > 0 such that both of the following conditions are satisfied:

o0

: 1 \ —u/7 €
0 ey J,, losl +9)/p)e Py <
(i) o P
Ve T2

Such a choice is always possible since [/} (log(1 + y)/p)e ¥/?dy vanishes for L§ — oc.
Further define:

m, — maxce[(g_1)57g(;] w(C, h) if ¢ = 1, ceey L
¢ maxce[L57+oo) 'Qb(C’ h) lf f - L + 1

It is noted that my,...,mp, are random variables and that:

max(c,h) = max my.
>0 ¥le,h) =1, 1



We may now upper bound the value of each my individually. First consider ¢ € [(£—1), ¢4],
then we have:

w(c,h) < log(1+65) Z (T(f —1)d}
=Y((€ —1)d,h)
+ (log(1 + €6) — log(1 + (£ — 1)5))% > 1{h; Z(fifa_ 1)6}
< (0 —1)6,h) + Cl(j .

since ¢ — log(1 + ¢) is increasing, ¢ — 1{h; > ¢} is decreasing, log(1 + ¢0) < log(1 + (£ —
1)6) + 0, and 7; > Ci(p,p) for i = 1,..., K. We have proven that:

me g¢((z-1)5,h)+§, (=1,..,L

and since

G- 15 k) 5w (L =1)8) <maxw(e), (=1, L,

—00 c>0
we have that:
P(m, <max¥(c)+e¢) — 1,¢0=1,.., L.
c>0 K—oo

Now consider ¢ € [Ld, 00). We have the upper bound:

W(c,h) < Zlog (14 h)1{h; > L} =Y,

KC(p.p)* =
using the fact that 7; > Ci(p,p) for i = 1,..., K and:

log(1 4 ¢)1{h; > ¢} <log(1l + h;)1{h; > c}
<log(1 + h;)1{h; > Ld}.

Hence mp,1 <Y, and we control the first and second moment of Y to show that Y is
concentrated around its expectation. By definition of L and 9, since h; has exponential
distribution with mean p;:

= # ZE(log(l + hi)1{h; > Lé})

E(Y
(Y) E)H
:Kclp

~

>

— Z/ (log(1 +y)/pi)e™*""dy,
_/7 LS

1 - =)oY/
a0 / o814 9)/p)e ™y

Y

<

<

DO | ™
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and since hq, ..., hx are independent:

1
Yy = —— l 1 1 > L
var(Y) RK2Cr(p. 7 2 1var og(1+ h;)1{h; o))
! / " os(1 + 9 /p)e Py 5 0
= Ko7 )y K

using the fact that fori =1, .., .K:
var(log(1 + hy)1{h; > L§}) < E(log(1 + h;)*1{h; > L§}?)
< E(log(1 + 7;)*)

=/ (log(1 +y)*/pi)e /" dy

0

< / (log(1 + y)/p)e¥/7dy.
0

Hence Chebychev’s inequality shows that Y 5 E(Y) < ¢, from which we deduce:

K—oo

P(mL+1 S E) —> 1.

—00

So combining both cases, we have that:

P(my < max¥(c)+e) — 1,0=1,..,L+1.
c>0 K—oo

We have proven that, for all € > 0:

P(max¥(c) —e < rnaxw(c h) < maxLP( )+¢€) e 1,

c>0 c>0

and max.>o ¢ (c, h) K% max.>o ¥ (c) as announced.
oo

C.1.4 Putting it all together

We now complete the proof of Theorem 17. From proposition 8, asymptotically with
high probability, utility optimal scheduling can be realized by selecting a threshold policy,
where the threshold ¢* is a maximizer of the deterministic mapping @¢. Under a theshold

policy with threshold ¢*, the rate of user ¢ is given by:
1
7 =E | —=———log(1+c)1{h; >} |,
= & (e e+ )

where J(c*) is the number of users whose channel realization is above ¢*:

K

J(c)=> 1{h; >}

=1
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We have:

7 —F (ﬁ log(1 + ¢*)1{h; > c*})‘ < log(1+ c")E <‘T<m17 ) T(mi](C*)) D '

From the law of large numbers:

p(hi/pi) >} =3 e CZ>07

K—oo

||Mx

therefore J(c*) “3 oo. Hence
K—oo

1 ws. 1
T(m, J(c*)) K—o T(m, o)

and

E (T(mi](c*))) < T(ni,l) , K >1,

so we apply Lebesgue’s theorem to yield:

" (‘T(ﬂi %) T(m,1J<c*)> D e

We have proven that:

P E (W@(Han{hi > c*})

1 gl e
= Tm, o) og e ri.

The value of ¢* may be retrieved from the fact that applying theshold policy with threshold
¢* maximizes the utility + Zf; 9a(7;), hence:

K —£
. 1 log(1+ c)e »
cr e ar%g(l)ax {g Zga <—T(m, o0) ) } )

=1

K
1 _c
= argmax {E ;1 Ja <log(1 +c)e m)} :

c>0

This completes the proof of Theorem 17.
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C.2 Proof of Proposition 3

In all cases, it is noted that 0 < ¢* < oo. Consider a = 1. By definition, since g,(z) =
log(x):

K
1 _e
¢* € argmax {E g ga(log(l+c)e P)} :

e20 i=1
c K 1
= argmax < loglog(l +¢) — — — 5.
am {g g(1+c) K;pi}

Since ¢ — loglog(1l + ¢) is strictly concave, mapping ¢ — loglog(l + ¢) — £ fil %

is strictly concave, hence it admits a unique local maximum which is ¢*. The optimal
threshold ¢* is thus the unique point at which the derivative is null. Differentiating we
get:

i—1 Pi

(1+c*)log(1+c*):K<Z 1) :

The result follows by definition of the Lambert function Wj.

Now consider a > 1, so that 1 — a < 0. By definition, since g,(z) = mll_fa_lz
| X
e al"%IzI[l)aX {E ;ga(10g<1 +c)e p)} )
5
= argmin 0 +c) e ri ,
§20 i=1 °
K _c(l-o)
= argmin} (1 — ) loglog(1 + ¢) 4 log Ze Pi :
c>0 i—1

where we took the logarithm to obtain the last expression. Now, since a > 1, ¢ +—
_c(l-o)

1 —a)loglog(1l + ¢) is convex, and so is ¢ +— log Ii e ri log-sum-exp function,
=1

see [77]). Hence the above admits a single local minimum, which equals ¢* and may be
found by solving:

(14+c¢)log(l+c) =
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C.3 Proof of Proposition 5

From (4.10) we have

1 & 1 &
? Zg[)(rscz) - E ’Fscz (02)
=1 =1
1 K
=—E Z rsc,i] (C3>
K =1
_ 1 [ 13 og(1 4 minhy)] (C.4)
K 3C[K] T( .13 jed ’

Since the channel coefficients {h;},c(x] are proportional to P, we have for P — oo:

maxyc[x] 7 19 ||5‘) log(1 + minjeg hy) s K (©5)
log(P) T(m,K) '

which means that at each slot, the selection scheme selects all K users to perform coded
caching content delivery. Thus all users have the same rate. Furthermore,

. E [maxag K] 7 IH\ log(l + minjeg b, )] . E [maXac[K] T \HI log(l + minjeg hy) e
e log(P) P20 log(P)
(C.6)
max S ] min,; i
so by Lebesgue’s theorem Elmeacie T<m1f|122113)g(1+ scat) T(n[ny Thus,
1 Cal . log(P)
Tse = —E log(1 +minh;)| ~ , C.7
K |:3C[K] T(m,|d]) 8 j€d ])} T(m, K) (C1)

which coincided with the baseline scheme in Proposition 1 of Chapter 3.
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