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1.1. Introduction 

The Galápagos Islands are an archipelago of volcanic islands located in the Pacific Ocean, 926 

km west of continental Ecuador, of which they are a part. The Galápagos Islands together with their 

surrounding waters form an Ecuadorian province, a national park, and a biological marine reserve. The 

official language on the islands is Spanish, although the English each time is more common due to 

tourists coming from the entire world. The islands are famous for their vast number of endemic species 

and because the scientist Charles Darwin studied them. His observations and collections contributed to 

the inception of Darwin's theory of evolution by natural selection. Since 1978, Galapagos Islands are 

accepted as Heritage World [1], and in 1998, the Organic Law of Special Regime for the Conservation 

and Sustainable Development of the Province of Galápagos has been approved. Since this date, the 

Galapagos Marine Reserve of 138,000 km2 is established. 

 

Fig. 1.1 Satellite View [2] 

 

Due to the growth of the population, there are several social, economic and environmental 

problems, which endanger the environment conservation of the Islands. According to the census made 

on 2010 by the “Instituto Nacional de Estadística y Censo” –INEC-, on the Galapagos province, there 

are 25.224 people [3], of which 15.393 live at Santa Cruz Island, 7.475 at San Cristobal Island, 2.256 at 

Isabela Island and 100 at Floreana Island. 

The Ecuadorian government desires to preserve its ecological heritage. Hence, with the 

participation of several stakeholders such as the Ministry of Energy and Renewable Energy –MEER-, 

Galapagos Government Council, among others, is releasing a lot of initiatives. In order to improve the 

Isabela 

Santa Cruz 

Baltra 

San 

Cristobal 

Floreana 
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general services that are provided in the islands either to the population or to the 180.000 people who 

visit Galapagos every year. 

Nowadays, there are so many activities ongoing; international and national organisms perform 

these ones, all this to achieve the Island’s sustainability and to reduce the environmental impact. One of 

these initiatives is the EcoSmart Project [4], managed by the Ecuadorean government, which is looking 

to improve the preservation of the Galapagos Islands and reduce the environmental footprint, becoming 

a world reference in optimal management of the energy and sustainability. This goal will be achieved 

by means of reducing fossil fuel consumption and therefore CO2 emissions, improving service quality 

and working together with the different utility companies, public agencies, local and national 

governments, and Galapagos Island’s residents and visitors. Various strategies such as increasing the 

use of renewable energies, balancing the generation and consumption, aiming for a rational use of energy 

and energy efficiency, and reducing the environmental footprint on this unique treasure must be 

implemented. 

1.1.1 EcoSmart Project  

MEER released EcoSmart Project through the project “Redes Inteligentes Ecuador” – REDIE-  

in 2014, the project has three objectives: 

1. The main goal of the project is to improve the preservation of the Galapagos Islands and 

reduced the environmental footprint, becoming a world reference in the management of the 

energy and sustainability.  

2. Promote the social, economic and cultural progress upon respect sustainable and respectful 

development. 

3. Finally, as derived objective, all the generated knowledge during the implementation phase 

will be used to extrapolate the best practices and models to the rest of provinces of Ecuador 

efficiently. 

1.1.1.1 EcoSmart Scope  

The fields of energy, mobility, water and solid waste are the main sectors in which it is suggested 

to work to achieve the objectives aforementioned. Within those areas described above, it is possible to 

identify the following axes:  

1. Power generation 

2. Mobility  

3. Electricity network modernization 

4. Efficient consumption 

5. Efficiency in Public Lighting 

6. Integrated water cycle management 

7. Solid waste treatment 

8. Governance 

9. Smart Health 
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In the next figure, it is possible to see the relationships among all the axes and their relation with 

transversals axes (general support) such as Geographic Information System –GIS-, Data Centers –DC- 

and Enterprise Service Bus –ESB-. 

  

Fig. 1.2. EcoSmart axes 

 

The Figure 1.2 illustrates the global objective of EcoSmart; foster the implementation of integrated and 

efficient services for social, economic development without affecting the environment, using 

technological enablers based on the availability and advances in information technology. 

 

1.1.1.2 Electrical Network Modernization   

Within this axis, its main objective is creating mechanisms to automate the low voltage network, to 

facilitate integrated management of the same, facilitating operation and maintenance tasks, and 

providing remote control. One of the objectives in this area of work includes installing smart meters as 

well as the Advanced Metering Infrastructure –AMI- system, defining power control models and 

establishing hourly tariffs. 

The benefits originated by the installation of Smart meters are the following: 
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1. Improved control of consumption.  

2. Increase energy efficiency, to have more information about where or how energy is consumed.  

3. Improve the management of networks, introducing mechanisms to encourage energy 

consumption at valley moments  

4. Improved reliability of supply, because it sets limits on the maximum power supplies, improving 

conditions for network stability. 

Another important objective is deploying an Advanced Distribution Management System, to facilitate 

the maintenance through prevention systems and fault detection, have a better robustness, improve 

processes network operation, contribution rates and avoid a reduction in the service quality. 

The EcoSmart project takes benefits from a national Ecuadorian project called “SIGDE”, which aim is 

to modernize and optimize the distribution system. 

1.1.2 SIGDE Project  

The electric distribution companies of Ecuador signed an agreement of institutional cooperation 

for the strengthening of the sector of the electrical distribution with the aim of achieving a paradigm 

shift toward an adequate and modern distribution service, working in a united and homogeneous way. 

In order to achieve this, the Integrated System for the Management of Electrical Distribution project -

SIGDE- was created [5]. This project intends to improve the business management of the electricity 

distribution sector of the country, understanding how to improve administration in aspects of the better 

use of company resources, optimization of processes, technology and infrastructure, human resources 

and information management. 

The SIGDE project was conceived and designed with a reference framework consisting of globally 

recognized standards such as i) IEC 61968, ii) IEC 61970, and iii) the NIST framework and roadmap 

for Smart Grid interoperability standards. The project is also perfectly aligned with the Constitution, the 

National Plan for Good Living, and with  MEER strategic plan [6].  

The program is based on six strategic axes, each of which is composed of a series of projects; these axes 

are i) Network Operation, ii) Business Management, iii) Enterprise Resources, iv) Strategic 

Management, v) Network Georeferencing and vi) Technology Management.  



Development of optimal energy management in Galapagos Islands towards Smart Grid 

 

 

- 13 - 
  

 

Fig. 1.3. Functional axes considered within the SIGDE project 

The objective is to improve the management of Utilities, by means of standardizing and homologation 

of  

i) Processes,  

ii) Procedures,  

iii) Semantics,  

iv)  Intelligent devices, 

v) Adoption of a common information model –CIM-, 

vi) Definition and implementation of mission critical systems,  

vii) Standardization of information and communication technology,  

viii) Establishment of unique data centers. 

1.2. Thesis Challenges 

Considering that, the Distributed Generation –DG- penetration increases significantly because 

of governments led targets and incentives. In parallel, electric vehicles are being developed, and the 

need for energy efficiency has resulted in the development of smart buildings. It is worth to evaluate the 

challenges originated on the traditional operation and planning of distribution networks, bringing the 

concept of Smart Grid –SG-. Thus, future network will have to be controlled through Advanced 

Distribution Automation –ADA- functions such as Voltage VAR Control –VVC- or grid reconfiguration 

(self-healing, minimization of losses), or soft load shedding.  

For many years, research has been focusing on Medium Voltage network, since its instrumentation and 

monitoring are more economically attractive. Now, the current deployment of smart meters and the 

availability of the corresponding data have drawn attention to the ADA functions for Low Voltage. 
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Another key aspect is the study of the impact of massive insertion of Renewable Energy Sources 

–RES-, Electric Vehicle –EV- and induction cookers –IC- on the Galapagos grid. Indeed, in EcoSmart 

Project, RES, EV, and IC have been identified to replace all the fuel and gas devices with a zero fossil 

energy objective. Also, the inclusion of storage systems is highly suggested. These impacts could be 

linked to different phenomena such as short-circuits, voltage drops, protection, detection and 

localization of faults, an increase of losses, voltage variations, and congestions. In order to achieve that, 

an "exhaustive" collect of detailed data of the Galapagos power system will have to be carried out.  

Another significant challenge: the optimal management of electricity of isolated grid with zero 

fossil energy. 

1.3. Thesis justification and objectives 

Taking into account that i) Galapagos Islands are a unique world treasure and ii) according to 

[3], Galapagos still have issues on topics such as electric service, waste management, and sewerage 

coverage, this thesis will deal with the electrical area. An important objective is to analyze the impact 

of new services on the grid such as the mandatory replacement of conventional vehicles and cookers for 

efficient ones, the massive deployment of renewable energies sources –RES-, and to propose solutions 

for reducing negative issues on the network originated by these new services. 

Innovative proposals have to be implemented within Galapagos for improving the electrical 

service without affecting the environment and conserving this world heritage. Therefore, several 

analysis and studies have to be performed in Galapagos Grid, in order to carry Galapagos towards a 

Smart Grid. Due to the demographic characteristics and the logistic existent, the analysis will be focused 

on the island with the largest population, i.e., Santa Cruz (61%), although, some measures could also be 

implemented at San Cristobal and Isabela. Thus, the primary objectives of this thesis are: 

1. Assess the impact of new services such as EV, IC, DG, Demand Side Management –DSM- 

into the MV and LV network. 

2. Proposes a communication architecture for deploying a Smart Grid within Galapagos. 

3. Test ADA functions on the distribution grid at Medium Voltage –MV- and Low Voltage –

LV- level. 

4. Develop an adapted solution for reducing unbalance in low voltage. 

5. Define the Advanced Distribution Management System structure for Galapagos, capable of 

dealing with the optimal management of electricity. 

In addition, this thesis is the first step towards an on-site implementation of Smart Grids in Galapagos, 

strongly desired by Ecuadorian Government, and thus, to reach this goal, various domains are addressed 

like power system, technical-economic concerns, reliability, communication and supervision systems. 
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1.4. Scope 

For this project, the assumption is that the Galapagos MV grid is already designed. It means that 

the works will focus on the LV network and the most important points to study are the RES optimal 

location and size, the impact of massive insertion of RES, EV, and IC on the grid and the optimal energy 

management of electricity. 

The second step will consist of modeling the actual and planned Galapagos power system in the tools 

which will be used (Matlab-Simulink, CYMDIST, and RT Lab). These tools are parts of a powerful 

real-time simulation environment, which will allow to study, develop, test and validate algorithms and 

scenarios. An important point to keep in mind is that the modeling will have to take care of the 

mandatory replacement of fuel vehicles by electric vehicles and gas cookers by induction ones. Thus, 

adequate models have to be taken into account.  

The thesis is framed in the context of the EcoSmart and SIGDE projects describes above. 

1.5. Chapters introduction 

 
The first chapter has described concretely the research done during this Ph.D., including the 

thesis challenges, the objectives, scope and the two most important projects released in Ecuador in order 

to reach a Smart Grid deployment. 

The second chapter presents the State of the Art of traditional networks regarding the main topics such 

as generation, transmission, and distribution. Also, several regulations are reviewed about various 

subjects such as markets, system operators, tariffs, and regulations. In addition, the DG deployment in 

Ecuador is presented. The central concepts of Smart Grids are also introduced. 

The third chapter provides an interface between Geographical System and Matlab/Simulink to create 

LV networks automatically, the suitable way of modeling PV panels, IC, electric motorbikes and DG is 

addressed as well. The impact in a typical LV system is assessed. 

The fourth chapter describes the analysis done at MV and LV levels to implement ADA functions. On 

Medium Voltage grid, we have considered Optimal Placement of Reclosers, Volt-Var Optimization and 

Network Reconfiguration. In low voltage network, an intelligent DSM method is proposed as well as 

the inclusion of storage in MV/LV transformers.  

The fifth chapter deals with the whole simulation of the distribution system (MV and LV network) at 

1:1 scale in order to assess a high integration of PV panels. An optimal energy management system is 

proposed as well as the next steps for transforming Galapagos towards a Smart Island. 

The sixth chapter presents a proposal for the communication architecture needed for deploying a Smart 

Grid within Galapagos since AMI and SCADA systems surely will need an adequate infrastructure. The 

protocols SEP 2.0 and OpenADR, as a solution for Smart Grid, are considered; in addition, a proposal 
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for a communication architecture at different levels is presented. In a Research & Development context, 

this chapter addresses more the development part since it presents a new communication architecture 

for Galapagos based on protocols already tested commercially.  

The final chapter summarizes the main conclusions of the research done during the Ph.D. and presents 

in a general manner the future works to implement within Galapagos. 
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In this chapter, a bibliographical review of the state of the art of traditional networks as well as 

Smart Grids is carried out. The purpose has a two-fold objective; on the one hand, to identify the latest 

advances around the world in the domain of SG and, on the other hand, to have a clear vision of the 

main weaknesses of Ecuadorian regulation, in order to identify barriers to the deployment of smart grids. 

In the same way, the key features of the Galapagos power system are presented. 

 

2.1 Generation, Transmission, Distribution and End User 
 

Historically, the electricity became a necessity due to the advent of broadcast radio in the 1920s.  

Since the radio served as a powerful tool for quickly send information to citizens, and it was, therefore, 

desirable to electrify as many homes as possible. A decade after, the electricity was considered as a 

public service, which had the exclusive right to provide electricity to customers within a concession 

area. In exchange for price regulation, utilities were operated such a monopoly to generate, transmit, 

and distribute electricity [7]. 

The term ‘electrical system’ is often used to define the whole chain of power supply from the generators 

usually located far away to consumption centers, including electrical transmission and distribution 

systems [8]. The two paradigms governing around the world the electrical system are:   

1.1 The historical one based on a vertical organization where a single company owns generation, 

transmission, distribution, and energy services;  

1.2 The new one, which considers the liberalization of energy markets, within a competing 

framework. 

 

Fig. 2.1. (a) Shows the traditional vertically integrated utility (b) Shows a fully unbundled utility 

where each function (except the local distribution company) is subject to competition.[7] 

This paradigm change, known as the liberalization of the energy markets, started in certain countries as 

Chile and the United Kingdom as early as 1980.  
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2.1.1 Generation 

The first generators built were designed for operating in direct current, but quickly the impossibility 

of transmitting the energy in the presence of large distances led to the development of alternating current 

(War of currents). Indeed, the transformer allows transmitting power at high voltage levels, in 

consequence, to limit losses during the transmission stage, since losses are inversely proportional to the 

square of the voltage. Traditionally, the construction of large hydraulic and thermal power stations is 

made on sites in which primary energy is readily available, it means near to i) rivers, ii) coal mines, iii)  

refineries and so on. As it is well known, the main drawback of the electrical energy it is the difficulty 

of storing significant amounts of energy. Thus the mean of avoiding this insufficiency is to keep the 

balance between generation and consumption at any time using transmission and distribution lines. The 

next paragraphs in a brief way describe the current situation in Santa Cruz according to [9] and [10]. 

First, the next figure shows a simplified scheme of Santa Cruz power system indicating the location of 

generation units. The generation systems of Santa Cruz and Baltra islands are interconnected, through a 

34,5 kV line, as shown in the single-line diagram of Figure 2.2. Santa Cruz Substation has an installed 

capacity of 8,75 MVA; the voltages are 480V/13,8 kV for distribution. 

 

Fig. 2.2. Interconnection between Baltra and Santa Cruz 

The next figure shows on a single map the location of Puerto Ayora and Baltra  
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Fig. 2.3. Santa Cruz and Baltra Islands 

Thermal Power Plant: Puerto Ayora 

The system is composed of eight units; the installed capacity is 8,01 MW, and the primary energy source 

is diesel. Table I presents the details. 

TABLE  I GENERATION THERMAL UNITS  

Number Model 
Manufacturing 

year 

Rated power 

(kW) 

Effective 

Power (kW) 
Comments 

1 Caterpillar 1990 650 520 Operative 

3 Caterpillar 1990 650 520 Operative 

4 Caterpillar 1990 650 520 Operative 

5 Caterpillar 2007 1.100 880 Operative 

6 Caterpillar 1990 650 520 Operative 

7 Caterpillar 2008 910 800 Injured 

8 Hyundai 2011 1.700 1.450 Operative 

9 Hyundai 2011 1.700 1.450 Operative 

Photovoltaic Plant: Puerto Ayora 

The records of the solar resource indicate May, June, and July, as the months of the lesser presence of 

the resource, and March and October as the maximum radiation, see Figures 2.4 and 2.5. 
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Fig. 2.4. Solar resource (measurements 2007 - 2009) 

   
a)                                                                        b) 

Fig. 2.5. a) Maximum daily profile (March) and b) Minimum daily profile (July) 

 
The 1.500 kWp power plant started its operation in May 2014; the energy contribution in 2015 was 

about 6%.   

Wind Power Plant: Baltra 

The Baltra wind farm is made up of three 750 kW wind turbines (2,25 MW installed capacity); this park 

became operational in December 2014. Historical wind records indicate that in the warm season 

(December to May) where the demand is maximum, there is minimal presence of the resource and in 

the cold season (June to November), the opposite happens: maximum wind generation and minimum 

demand, see Figures 2.6 and 2.7. 

 

Fig. 2.6. a)  Wind speed in Baltra, measurements in 2012. 
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a)                                                                        b) 

Fig. 2.7. a) Minimum daily profile (February) and b) Maximum daily profile (July) in kW. 

 
The variation of the wind resource requires thermal backup in order to take their load, mainly in the 

warm season. The energy contribution of the Baltra wind farm in 2015 was about 7%. In 2016, it was 

around 13%. In order to perform peak load shifting and stabilizing power fluctuation of wind generation, 

a battery system was installed in 2016 at Baltra; an additional PV power plant was commissioned as 

well, see Figure 2.8. 

 

Fig. 2.8. PV plant and batteries coupled with the wind power plant at Baltra, [11] 

2.1.2 Distribution  

In a power system, the electrical network is composed of three levels, with different functions for each 
one.  

1. The first level is the transmission system, which is responsible for delivering electricity from 
power plants to consumer centers. 

2. The second one is the sub-transmission system, which is in charge of distributing the electricity 
to different places of the consuming centers.  

3. Finally, the distribution system is responsible for feeding consumers in MV and LV. 
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The transmission networks work in mesh form, the sub-transmission works in light mesh form (loops) 

and/or antenna form, whereas distribution systems although are designed such a mesh network, but they 

always operate radially, except in high urban areas where they can work with loops. The distribution 

grid is composed of both overhead lines and underground cables, and its primary objective is feeding 

all customers who request electrical service.  

Obviously, in Galapagos Islands, there are no transmission lines, the most nearly is the line of 34,5 kV 

(In continental Ecuador, this level is used for distribution) and 50 km interconnecting the substations of 

Baltra and Santa Cruz. Within Galapagos, there are 12 feeders spread over the inhabited islands (see 

Table II for details). 

 
TABLE II  FEEDERS 

Island Name Voltage (kV) Consumers 
Installed Capacity 

(kVA) 

Baltra 

ALIM.-19BAL40T01 13,8 2 62,5 

ALIM.-19BAL40T02 13,8 1 300 

ALIM.-19BAL40T03 13,8 2 200 

Floreana ALIM-19FLO40T01 13,2 71 90 

 

Isabela 

ALIM-19ISB30T01 13,8 976 2027,5 

ALIM-19ISB30T02 13,8 169 605 

 

San Cristobal 

 

ALIM-19SCB10T01 13,2 1635 3090 

ALIM-19SCB10T02 13,2 1151 3315 

ALIM-19SCB10T03 13,2 426 1345 

 

Santa Cruz 

 

ALIM-19SCZ20T01 13,8 1534 5005 

ALIM-19SCZ20T02 13,8 3578 5112,5 

ALIM-19SCZ20T03 13,8 1513 3815 

 
The next figure depicts the spatial distribution of feeders within Santa Cruz and Baltra. We can see that 

feeders 1 and 2 in Santa Cruz are urban (blue and green) and feeder 3 is rural (red) and extremely 

dispersed. Another important point to note is that the area not occupied by people in both Island Santa 

Cruz and Baltra is considerable since those areas are national parks or ecological reserves. In Baltra, 

only four clients exist; one of them is the airport. 
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Fig. 2.9. Feeders spatial Distribution. 

 

2.1.3 End-user   

The energy consumption location has a well-marked characteristic, i.e., its dispersion over a given 
territory, see Figure 2.11. The client classification defines the next types i) residential, ii) commercial, 
iii) industrial, and iv) other uses (public services, pumps, etc.), see Figure 2.10. 

The predominant client is the residential type (80,99% located in urban areas). Hence, the geographical 
distribution of power consumption will be concentrated in the urban center.  

 

 

Fig. 2.10. Consumer Composition 
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Fig. 2.11. Clients Spatial Distribution.  

Blue: Single Phase, Green: Two-Phase and Red: Three-Phase 

 

Table III depicts the number of users of each island, the energy generated and billed and the annual 
growth rate. For the next analysis and simulations, the Santa Cruz values are chosen, it means 7,85% of 
increase in energy and 6,02% in users.  

 

TABLE III  DEMAND IN 2016 

Island Users 
Net energy  

GWh-year 

Billed Energy 

GWh-year 

Annual Growth Rate 

Users 

% 

Net energy  

% 

Billed Energy 

% 

San Cristobal 3292 14,6 14,41 4,43 8,33 9,50 

Santa Cruz  6642 31,9 27,86 6,02 7,85 7 

Isabela  1224 5 4,55 5,34 11,64 10,92 

Floreana 76 0,26 0,19 6,53 25,55 28,51 

Total 11.234 51,76 47,01    

SOURCE, [10] 
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So far, the characteristics of Galapagos with an emphasis in Santa Cruz concerning generation, 

distribution network, and clients have been presented. The next section shows the key features of the 

regulations of different countries. A review of countries operating in an entirely integrated way, others 

under the liberalized scheme, and some in transition is performed. 

 
 
 

2.2 Regulations 
 

The regulation must cover different topics such as i) Structure of the electrical sector, ii) Markets 

and tariffs, iii) Service quality, iv) Renewable Energy Sources and v) EV and DSM. Around the world, 

the management and operation of the electrical sector can change dramatically, thus, to have a general 

idea of different models and schemes, a review of Colombia, Spain, United States, United Kingdom and 

France regulations is done. The idea is to study a similar country (Colombia), another one more 

developed (Spain) than Ecuador, another one working with different models within the same country 

(United States), one unliberalized (United Kingdom) and France as a reference in Smart Grid projects. 

After that, a comparative analysis with Ecuadorian regulations is performed in order to identify strengths 

and weaknesses in the current regulation, since it might be necessary to change the regulatory framework 

to enable the deployment of smart grids. 

2.2.1 Colombia 

The governing body of the Colombian electrical system is the Ministry of Mines and Energy – 

MINMINAS- [12], Energy and Gas Regulatory Commission –CREG- is responsible for regulating the 

activity of the sector. The company XM manages the transactions in the wholesale electrical market, 

which is competitive with the participation of generators, transmitters, distributors, retailers and large 

consumers. 

The Colombian sector considers the retail market; for regulated clients, a tariff defined by CREG exists, 

and for large consumers, the prices are accorded freely. The energy cost is composed of the whole chain 

since generation to retail commercialization. There are six strata in the tariff scheme; the three first have 

a subsidy, the next three categories pay the complete cost. 

Regarding quality service, it is evaluated each three months and considers mainly indexes for assessing 

the Energy Not Supplied – ENS- and unavailability [13]. Mainly, flicker, swell, sag, and harmonics are 

regulated. In [14], the topics related to distributed generation-connected to a distribution system, 

efficient energy management, demand response to price signals or incentives and connection criteria are 

addressed. The normative for cogeneration is presented in [15]. 

2.2.2 Spain 

Law 54/1997 established the normative principles of liberalization of the sector. The new model creates 

an electricity market, where prices are based on the decisions made by agents. In July 2007, the Iberian 

(Portugal – Spain) electricity market started, reaching around 30 million customers and an annual 
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consumption of around 300 TWh (10% of European energy consumption). There are two operators to 

manage the electrical sector for the Market and System [16]. In Spain, the system operator also operates 

the transmission network.  

The planning and regulation of the electricity sector are elaborated by the Ministry of Industry, Energy, 

and Tourism. Regarding the market, there is spot market (daily and intraday), forward market and 

bilateral contracting. 

There are currently around 560 companies dedicated to the commercialization of electricity. These 

companies establish agreements with final customers where both parties negotiate the final price of 

energy. These agreements set energy prices and conditions of payment. Although, there is an exception 

for consumers with a contracted power of less than 10 kW, who could apply for subsidies on the tariff 

in certain cases. Access tariffs are classified according to the voltage level and discrimination hour, 

dividing into one, two or three periods in low voltage and three and six periods in medium/high voltage 

[17]. 

It exists ancillary services for frequency regulation; primary regulation is mandatory, whereas secondary 

and tertiary include a payment based on capacity and energy. The service quality consider the follows 

aspects, i) product quality relies on the Standard UNE-EN 50160 (voltage and frequency variations, 

flicker, swag, and harmonics) [18], ii) supply continuity (TIEPI and NIEPI indexes) and iii)  Consumer 

attention ( individual and zone indexes). 

The topic related to Renewable Energy and Cogeneration is addressed in [19], the technical criteria for 

connecting renewable energy are defined in Royal Decree 1955/2000 and Royal Decree 1699/2011. The 

Spanish government, in order to foster EV change, has implemented economic incentives for buying 

EV (€ 2.700 to € 5.500). Also, super valley tariffs try to support the EV charging. Most companies have 

three time zones along of the day: the most economical is the “super valley” rate. The other two are the 

"valley," cheaper than a standard tariff, and the "peak" with surcharge. 

 Super Valley period: from 01:00 to 07:00 in the morning. 

 Valley period: from 07:00 to 13:00 in the afternoon and from 23:00 to 01:00 in the early 

morning. 

 Peak period: from 13:00 to 23:00. 

The interruptible service in Spain is a mechanism that allows making the operation of the electrical 

system more flexible from the demand side. It is destined to a reduced group of 145 large consumers; 

they can offer packets of reduction either of 5 MW or 90 MW; customers receive discounts on their bills 

in exchange for reducing their electricity consumption. In this way, participants receive a payment, even 

if no interruption is required. On the other hand, sanctions apply if customers do not reduce their power 

by the agreed amount. 

2.2.3 United States 

In the United States, there are two large regional markets, i) markets where there is an independent 

electricity system operator that coordinates the different players under its control area, and ii) vertically 

integrated markets. 
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Markets with Independent System Operator  

A system operator operating in a single state is called the Independent System Operator –ISO-; while 

when a system operator works in more than one state, it is known as the Regional Transmission 

Organizations –RTO-. See the next figure for identifying ISO and RTO within the United States. 

 

Fig. 2.12. ISO/RTO in the United States, [20]. 

Vertically integrated markets 

There are three other markets in regions; these areas are Northwest, Southeast, and Southwest. See 

Figure 2.13 

 

Fig. 2.13. Markets in the United States,[17]. 
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At present, some states maintain the liberalization of their retail market and others have not even 

activated it. On the contrary, some states like California have suspended the liberalization of the retail 

market and have resumed the previous model of regulated supply. 

The California and New York markets in the next paragraphs will be discussed with particular attention 

in order to show different approaches within the United States.  

California – CAISO 

CAISO also has the responsibility of managing the wholesale electricity market under the direct 

jurisdiction of the Federal Energy Regulatory Commission –FERC-. The electric system has four 

distribution utilities. 

The electrical system in California is a mix of regulated and liberalized markets. The wholesale market 

(day ahead and real-time) is liberalized, and large supply companies carry out transactions through an 

auction process managed by the operator CAISO [21]. By contrast, the retail market is regulated, so that 

utilities sell electricity to end-users at regulated prices set by the California Public Utilities Commission 

–CPUC- 

The retail market is heavily regulated, and the liberalization process is suspended. Consumers are not 

free to choose; the CPUC regulates their supplier and prices. This entity sets electricity prices for 

residential, commercial and industrial consumers. Several subsidy programs are available in California 

to reduce the tariff [22].  

In [23] and [24], the renewable energy sources (RES) integrated into California are detailed, also the 

incentives for commissioning of new power plants, also the cogeneration is addressed. Regarding, the 

recharge of electric vehicles can be done at home, or public or commercial places enabled for it. For 

this, those who perform the recharging of electric vehicles have at their disposal special rates with 

reduced prices during the load. The recharging of the vehicle can be done at three voltage levels i) 120v 

– 17h, ii) 240v – 7h, iii) 400v – 45min.  

Pacific Gas and Electricity company –PG&E- offers several Demand Response Programs within 

California, among them could be mentioned [25]: 

1. Peak Day Pricing 

2. Base Interruptible Program 

3. Scheduled Load Reduction Program 

4. Optional Binding Mandatory Curtailment Plan 

5. Capacity Bidding Program, which is a program that works with aggregated loads. 

New York – NYISO 

There is a liberalized wholesale market where large blocks of electricity are exchanged between 

generators and traders and large consumers. NYISO operates the market through a mechanism known 

as market clearing auction (day ahead and real-time); it also exits the virtual trading [26].  

Unlike California, there is a liberalized retail market where consumers can freely choose their supplier 

company. There are about 75 retailers in the state of New York, with about seven different suppliers in 
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each area. There is also the possibility of establishing bilateral contracts between generators and 

consumers, subject to the terms agreed by both parties. Ancillary services exist such as frequency 

control, spinning and non-spinning reserves, voltage control and black start [27]. 

In New York State, the consumers are grouped into service classes, which help determine which rate 

fits needs best. Not all supplier companies have defined rates for each of the service classes; also, the 

retailer has social tariffs for consumers with low incomes that meet certain conditions. 

In addition to the programs offered by the system operator and retailers, New York State Energy 

Research and Development Authority, NYSERDA, provides grants to help to finance the cost of 

equipments needed to train consumers to participate in demand response programs [28]. For the 

deployment of renewable energy, several programs have been launched, for instance, Green Power, 

Solar market acceleration, Small wind turbine programs. 

New York State, through NYSERDA, began in 2013 the ChargeNY program which aims to reach 3.000 

charging stations for electric vehicles by 2018. This program will involve service to an estimated 40.000 

electric vehicles throughout the state. Almost 500 recharging stations have already been installed. Five 

stations recharge types exist, i) AC, ii) DC, iii) Wireless, iv) Fast chargers in DC, v) Tesla Supercharger. 

The incentive for buying an electric car is of $7.500 [29].  

The Quality Service, in the United States, is based on IEEE and ANSI standards. There are also safety 

standards, such as the National Electrical Code. The North American Electric Reliability Corporation –

NERC- is responsible for ensuring the reliability of electricity supply in North America. The NERC is 

an international non-profit regulator whose principal duties are the development of standards, annual 

and seasonal assessments of long-term system reliability, monitoring the reliability parameters of the 

North American power system. The momentary interruptions are those higher than 1 min; IEEE 

addresses the power quality in Recommended Practice for Monitoring Power Quality and ANSI C84.1. 

In California, consumers and generators can participate together in DSM programs to support the system 

operator to manage the network. To do this, participants in these programs must have installed the 

control and telemetry equipment required for each of them. There are three programs with different 

requirements for participants i) Participating Load program, ii) Proxy Demand Resources program and 

iii) Reliability Demand Response Product [30]. 

The NYISO offers four demand response programs: Emergency Demand Response Program –EDRP-, 

Installed Capacity Special Case Resource Program –SCR-, Day-Ahead Demand Response Program –

DADRP- and Demand Side Ancillary Services Program –DSASP- [31]. 

2.2.4 United Kingdom 

Although Chile was the pioneer in market liberalization, the reforms in the British sector were more 

radical. Since the evolution of the British electricity market refers to the change of competition and 

regulation in the electricity industry rather than technical development [32]. The transport system 

operator is the NATIONAL GRID company. In Britain, there is a wholesale market where large energy 

packages (mainly through bilateral transactions) are exchanged and a retail market through which 
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retailers sell electricity to small consumers. There are six utilities and 22 retailers; the national operator 

is National Grid Electricity Transmission –NGET-.  

The operator of the Market of Balances and Liquidations of the British market is Elexon, a subsidiary 

company of National Grid. Its mission is to manage this market of economic form, effective and 

efficient, for the benefit of the consumers [33]. 

The regulator is the Office of Gas and Electricity Markets –OFGEM-. It is a non-ministerial 

governmental entity headed by a committee of experts called GEMA (Gas and Electricity Markets 

Authority), appointed by the Secretary of State of the Ministry of Energy and Climate Change. Its role 

is to protect the interests of consumers by promoting competition to the extent possible. The British 

wholesale market can be divided into four blocks i) Long-term market, ii) Short-term market, iii) 

Balance market and iv) Settlement of deviations [34]. 

In the UK retail market, retailers compete on price and service with each other to get more consumers. 

The prices include the costs they incur and add a profit margin. The only part of the electricity bill that 

is regulated corresponds to the expenses of managing the transmission network. Regarding ancillary 

services, three types are defined in the UK system; the first one is mandatory and includes reactive 

power supply and frequency control. The second category is optional and includes black start and 

frequency control with fast generators. The last type, known as commercial ancillary services, proposes 

optional services related with standby reserve. 

The only regulated part of the price paid by consumers corresponds to the tolls for the use of transport 

and distribution networks, in addition to taxes. The cost of the transmission network accounts for about 

4% of the total bill for consumers, while the cost of the distribution network amounts to 16% of the 

invoice. The tariff is composed of three terms i) contracted power, ii) a fixed value and iii) penalty for 

reactive energy (if any). It exists different prices in function of voltage level and day period (peak, 

valley, and semi-peak). 

In [35] is set the Regulation for Service Quality; the voltage regulation and frequency variations are 

considered for product quality, in continuity the interruptions are considered momentary when the 

interrupted time is lower than 3 minutes and the interrupted power is at least 20 MW. Another case is 

when the disconnected power is higher than 5 MW or when 5000 clients are involved; in this case, the 

time is 1 hour. 

Nowadays, the rate of renewable within the UK is about 7% composed of the wind, biomass, hydraulic 

and photovoltaic plants. There are several incentives for fostering RES deployment (Renewable 
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Obligation and Feed in tariff). Some retailers are offering special tariffs for charging EV in super valley 

periods. 

Several demand response programs, including various hourly discrimination and interruption programs, 

have been available for some time. About time discrimination rates, the Economy 7 and Economy 10 

rates allow consumers to have a lower price for 7 or 10 hours per day, respectively, so that they can 

adapt their consumption curves to take advantage of these prices during the valley hours. Also, other 

programs exist such as Short-term Operating reserve, Fast Reserve, Firm Frequency response, 

Frequency control by demand management and DSM balancing reserve. 

2.2.5 France 

In France, until the year 2000, the supply of electricity was regulated such a monopoly provided by EDF 

(Electricité de France) and in some localities or local areas by local distribution companies. The laws 

No. 2000-108 and No. 2004-803 initiated the market liberalization. This liberalization was gradual, 

starting in 1999 by companies consuming more than 100 GWh/year and progressively opening up to all 

professional customers and then, to domestic customers in 2007. On 1 July 2007, the entire electricity 

supply market became open to competition [36].  

In France, the Transmission System Operator –TSO- is Réseau de Transport d’Electricité –RTE-, which 

is a subsidiary of EDF. Its mission is to ensure, in real time, a balance between supply and demand for 

electricity, building on the capacities and needs of electricity producers, traders, distributors, industrial 

consumers and railway companies. The regulation function is done by the Commission de Régulation 

de l´Energie -CRE-. Its primary objectives are to guarantee the system operator independence, establish 

harmonized rules for the operation of networks and markets, develop competition between energy 

suppliers, ensure the best service and a fair price [37]. 

In France, electricity distribution is a public service, the local authorities are the owners of the 

distribution network, but they entrust the management to ENEDIS company (95% of the distribution 

system), as part of a public service delegation, or to local distribution companies (5% of the distribution 

system). Through this delegation, ENEDIS fulfills the public service tasks related to the distribution of 

electricity in the topics of continuity and quality of service, nondiscriminatory access to the network, 

maintain the high level of safety and reliability, promote and to deploy the Linky smart meter along 

France [38]. ENEDIS is also a subsidiary of EDF. 

The first producer of energy in France is EDF Production company. Its primary energy source is nuclear 

(78%) followed by hydropower, combined cycle gas, cogeneration, coal, and renewables. Regarding 

EV, different incentives exist for fostering EV deployment, for instance for a vehicle emitting between 



Development of optimal energy management in Galapagos Islands towards Smart Grid 

 

 

- 17 - 
  

21 and 60g CO2/km, the bonus amount is € 1´000, and for a vehicle 20g CO2/km or less, the bonus 

amount is € 6´300 [39]. 

The service quality is addressed in the standard NF EN 50 160 [40], where the main features of supply 

are described; the voltage level, voltage deviation and unbalance, harmonics, among others. According 

to the French regulation, it is possible to connect DGs at low voltage network and to inject energy into 

the grid, the respective standards are [41]: 

1. NF C 15 100 « Installation électrique à basse tension » 

2. UTE C15-712 « Installations photovoltaïques » 

3. UTE C15-400 « Raccordement des générateurs d’énergie électrique dans les installations  

alimentées par un réseau public de distribution »Décret 2008-386 du 23 Avril 2008. 

According [42], France was initially a country with significant Demand response –DR- participation, 

but since market opening, a gradual decrease in DR capacities occurred due to lack of incentives in the 

regulatory framework and technical difficulties like no smart meters. After a strong commitment and 

technical involvement, the DSM participation in the markets was authorized in 2010. DSM has already 

become a new market, where independent new entrants compete with incumbent suppliers, and DSM 

operator manages the activity (achieved in 2014). In Europe, France is the only country to allow DSM 

players to participate directly in D-1 markets as a resource (direct participation), see next figure. 

 

Fig. 2.14. DSM integration in all the markets in France, based on [42]. 
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2.2.6 Comparative Analysis 

This section compares the Ecuadorian electrical sector with those of the countries previously reviewed. 

In Ecuador, the MEER is responsible of the whole electrical sector and the planning activity. The 

Agency for Electricity Regulation and Control –ARCONEL- is in charge of regulating and controlling 

the activities related to the public electric power service and the general public lighting service, taking 

care of the interests of the consumers. The National Center for Energy Control –CENACE- is 

responsible for the functions of operation coordination of the National Interconnected System –SNI- 

and the administration of the technical and financial transactions of the Wholesale Electricity Market –

MEM-, as well as the electrical interconnections with Colombia and Peru. The Electric Corporation of 

the Ecuador –CELEC- with its different subsidiaries is responsible for the generation and transmission 

of energy. TRANSELECTRIC, subsidiary of CELEC, carry out the function of Transmission System 

Operator –TSO-, the National Corporation of electricity –CNEL- is a public company, which distributes 

and sells the energy, since in Ecuador a retailer market does not exist (see next figure). Figure 2.15 

depicts the different agents and it is worth noting that TRANSELECTRIC is within CELEC EP block. 

 

Fig. 2.15. Organization chart of the Ecuadorian electric sector, [43]. 

In Ecuador, the average price for the final customers of the distributors is 9,2 USDc/kWh. The average 

price per type of regulated customers is 7,15 USDc/kWh for industrial and other groups, 8,9 USDc/ 

kWh for commercial group, 10 USDc/kWh for residential and finally 12,7 USDc/kWh for public 

lighting. There are three subsidies; the first is aimed for low consumptions; 4 USDc/kWh for 

consumption less than 110 kWh/month in the Sierra region, and 130 kWh/month for Coast and Island 

region. The second is a cross subsidy and a special tariff for the third age. The regulation 004/01 [44] 

addresses the aspect of service quality in three main axes i) Quality product, ii) Quality of technical 

service and iii) commercial service quality. 

The regulation on the criteria and requirements related to the connection of non-conventional renewable 

generators to transmission and distribution networks is under review and based on the standards IEC 

61400-12, IEC 62116 and IEEE1547. On the other hand, an incentive exists to promote the RES 

deployment; it is a special period of 15 years for mandatory dispatching [45].  
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In order to support EV, the Coordinating Ministry of Employment and Competitiveness Production –

MCPEC- established the framework for the commercialization of batteries and electric vehicles, and the 

tariffs for importing finished EV and taxes for domestic manufacture were eliminated. In Ecuador, only 

Time Of Use –TOU- programs exist for large industrial consumers.  

Table IV summarizes the type of contracts that exist in each country within the wholesale market, and 

if there is also a retail market, and the concerned participants. In addition, a summary of the tariff 

components, the incentives for RES, and the EV programs is given. 

TABLE IV  MARKETS 

Country 

Wholesale  

Short-term Long Term 
Bilateral 

Contracts 

Retail  

Market 

Tariff 

components 

Incentives for  

RES 

EV  

Colombia 
Daily 

market 
- Unregulated 

The retail market 

only for large 

consumers. 

Energy  

Considered in 

Smart Grids 

roadmap 

Spain  

Daily and 

intraday 

market 

Yes Unregulated 

The retail market 

for all the 

consumers. 

If P<10kW, it is 

possible to choose 

a regulated tariff 

Energy and 

Power 

Priority in daily 

market 

Prime for 

operation and 

installed capacity 

Super valley 

periods 

Bonus for buying 

United 

States 

Daily 

Market 
- Unregulated* 

Retail market in 

New York 

Regulated rates in 

California 

Energy and 

Power 
Tax reduction 

Taxes reduction 

Program for 

installing recharge 

points. 

United 

Kingdom 

Daily 

Market 

Exchange 

Platform 
Unregulated Retail Market 

Energy and 

Power 

Prime for 

operation 

Requirement of 

renewable rate to 

generators 

Super valley 

periods 

 

Discounts for 

charging  

France 

Daily and 

intraday 

market 

Exchange 

Platform 
Unregulated Retail Market Energy Taxes Incentives 

 

Bonus 

Ecuador 
Economic 

Dispatch 
- Unregulated 

Regulated rates 

for all customers 

Energy Preferential 

period for 15 

years 

Taxes reduction 

* CAISO has no Bilateral Contracts 

 

In Table V, a summary of the Demand Side Management program within each country is presented as 

well as the participants, the minimum power for participating (if any) and if the aggregator figure is 

considered. 
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TABLE V  DEMAND SIDE MANAGEMENT 

Country Program Type Participant Power Aggregator 

Colombia - - - - 

Spain 

TOU Residential ,Commercial , Industrial - No 

Demand response Large consumers 5 and 90MW No 

United States 
TOU 

Demand response 
All consumers 

P>10kW in California 

P>100kW in New York 
Yes 

United Kingdom 

TOU Residential, Commercial, Industrial - No 

Demand response Large consumers P>3MW Yes 

France 
TOU 

Demand response 
All consumers - Yes 

Ecuador TOU Industrial - NO 

 

Once reviewed eight regulations with different approaches and designed for various kind of markets, it 

is possible to conclude that Ecuador presents substantial regulatory barriers for SG deployment, for 

instance, the DSM is not considered at the residential level. The next section presents a review of current 

state of DGs in Ecuador. 

2.3 DG Connection 
 

In [46] and [47] are addressed the standard definitions for Distributed Generation, considering that 

around the world there is still no agreement on this concept. Indeed, some authors define DG in function 

of voltage, power, technology, placement of installation, control mode, among others. [47] introduces 

the following definition: 

“An electric power generation source that is connected directly to the distribution network or on 

the customer side of the meter.” 

and [46] defines DG such as: 

“Distributed generation is a generating plant serving a client on-site or providing support to a 

distribution network, connected to the grid at distribution-level voltages. The technologies include 

engines, small (and micro) turbines, fuel cells, and photovoltaic systems. It excludes wind power since 

that is mostly produced on wind farms rather than for on-site power requirements.”   



Development of optimal energy management in Galapagos Islands towards Smart Grid 

 

 

- 21 - 
  

Wind farms are commonly included in Dispersed Generation definition. In the particular case of France, 

the DG (Distributed Generation) would not have to be higher than 12 MW. For the Ecuadorian case, the 

limit power in distribution is 30 MW [45], and the next energy sources are considered: 

1. Biomass power plant: generates electricity using as primary energy i) forest residues, ii) agro-

industrial waste and livestock and iii) urban waste. 

2. Biogas power plant generates electricity using as primary energy the biogas obtained in a 

digester as a product of the anaerobic degradation of organic waste. 

3. Conventional power plant: generates electricity using primary energy sources of energy that 

have already had a long history of exploitation and commercialization worldwide, such as water, 

coal, fossil fuels, petroleum products, natural gas and radioactive materials. 

4. Non-conventional power plant: uses energy resources capable of renewing unlimitedly such as 

sun (photovoltaic and solar thermal), wind, water, (small, micro and pico hydroelectric power 

stations), geothermal, biomass, biogas, waves, tides, hot rocks and dried. 

In the world, there have mainly been three great motivators for the increase of the distributed generation. 

i) Liberalization of markets 

ii) Governments incentives to achieve reductions in CO2 emissions 

iii) Technological advances, especially the performance of photovoltaic and wind power 

generators have increased and their investment costs, on the other hand, have been reduced. 

In [46], it is stated that, with DG, it is possible to reduce up to 30% the total cost of the electricity, due 

to a reduction in investments in transmission and distribution networks. However, all is not right with 

DG. For instance, the intermittency of the solar and wind resources causes a vital necessity of new 

methods for forecasting. Also, if the DGs are not well located, the losses could increase, and with the 

injection of energy in the network, the traditional protection schemes must be updated to consider at 

least bi-directional energy flows. Thus, DG will lead to a new conceptual mode for operating electrical 

systems; this is depicted in the Figure 2.16. 

 

Fig. 2.16. New Conceptual model with generation at any level.[48] 
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In Ecuador, there are 21 distribution utilities, 11 of them are within the same enterprise (CNEL). Once 

reviewed the DG in the country, only 18 utilities have DG connected at distribution level either along 

the feeders or in distribution substations.  

The energy sources currently present in Ecuador are: 

i) Biomass: 8 units, 58 MW 

ii) Wind : 3 units, 2,25 MW 

iii) Photovoltaic: 14 units, 12 MW 

iv) Hydraulic: 59 units, 94 MW  

v) Thermal: 31 units, 197 MW 

The next figure depicts the number of DGs per utility; Emelnorte is the utility with the most amount of 

DGs (23; 16 hydraulic and 7 thermal).  

 

Fig. 2.17. DGs number in Ecuador. 

Figure 2.18 shows the composition of the DG in Ecuador, the number of hydraulic units represents 51% 

of the existent park, whereas the number of wind units represents only 3%.  
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Fig. 2.18. DG composition – Total=116 units. 

Although the hydraulic type has numerous units (51%), the installed power represents only 26%, 

whereas the thermal units reach the 54%; it means the thermal units have a higher installed capacity per 

unit, see Figure 2.19 

 

Fig. 2.19. Installed capacity by an energy source. Total=365MW 

This section has allowed determining that the DG in Ecuador has not yet been implemented in a great 

way. The following section outlines the fundamentals of smart grids and the steps to follow for 

implementation in Ecuador. 

 

2.4 Smart Grids 
 

The current electricity grid is a system created at the end of the 19th century that has to meet the needs 

of the 21st century. Furthermore, the traditional network nowadays has to deal with aging infrastructure, 

non-technical losses, renewable integration, electrification of megacities, distributed generation and EV 

integration. All these challenges have forced the traditional electricity network to evolve towards a more 
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intelligent grid that keeps at least the same levels of reliability, sustainability and environmentally 

friendly. This new network concept is known as Smart Grid, according to [49]: 

“A smart grid is an electricity network that uses digital and other advanced technologies to 

monitor and manage the transport of electricity from all generation sources to meet the varying 

electricity demands of end-users. Smart grids coordinate the needs and capabilities of all generators, 

grid operators, end-users, and electricity market stakeholders to operate all parts of the system as 

efficiently as possible, minimizing costs and environmental impacts while maximizing system 

reliability, resilience, and stability.” 

According [50]: 

“A Smart Grid is one that incorporates information and communications technology into every 

aspect of electricity generation, delivery and consumption in order to minimize environmental impact, 

enhance markets, improve reliability and service, and reduce costs and improve efficiency.” 

In [51], an exhaustive analysis is done around the world in order to determine the primary 

motivating drivers and technology priorities to deploy Smart Grids, the report present results by 

continent (Asia, Australia, Europe, and North America). The main result depicts that the most important 

driver among the 21 participating countries is energy efficiency improvements (see Figure 2.20). 

 

Fig. 2.20. Top-6 Ranked Motivating Drivers [51] 

See participant list in http://www.iea-isgan.org/ 

 

2.4.1 Smart Grids Components 

The main components inside a Smart Grid are still in discussion. Some authors consider AMI as the key 

factor to deploy a Smart Grid, whereas other authors define the Distribution Automation –DA- as the 

pillar for it. In [52], a comprehensive analysis is presented including the different components inside a 

Smart Grid. 

Intelligent appliances  

They are appliances within the households with the ability for measuring power consumption and turn 

on and off themselves based on time-based pricing periods. Also, they can decide when to consume 
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power based on pre-set customer preferences or even based on the owner style and preferences using 

machine-learning algorithms [53]. In order to achieve the skills above, it needs to enable appliances to 

monitor their consumption and to support remote management. Smart grids projects have shown that 

consumers can save up to 25% on their consumption by providing them information about their 

consumption and tools to manage it. 

Smart power meters  

A meter, to be considered “Smart,” must comply at least with the task of data processing and storage for 

several purposes such as [54]:  

1. Monitoring of proper installation and working. 

2. Update of the meter software remotely. 

3. Calculating and monitoring power quality. 

4. Billing and settlement. 

5. Analysis of energy end use. 

6. Provide real-time data. 

7. Management of tariffs. 

8. Demand Response using device controllers.  

9. Detect outages and dispatch repair crews to the correct location faster. 

In order to roll–out smart metering projects, the project scope, operational expenses, and average meter 
life must be appropriately determined, since, according to [55], smart metering projects are not self-
financing from a DSO perspective. 
 

Smart substations  

These substations have a Substation Automation System –SAS-, like the one proposed in [56] : 
 

1. Using novel communication technologies and Intelligent Electronic Devices – IEDs- 
2. Control and monitoring facilities for auxiliary power systems. 
3. Integrate the standard IEC 61850 – Communication networks and systems for power utility 

automation – in order to perform control, monitoring, automation, metering and protection 
functions of critical and non-critical operational data such as power factor performance, breaker, 
transformer and battery status, security, etc. 

 

Within the SAS system, it could be built interlocking logics, switching sequences, and load management 

substation level. The next figure depicts the communication structure of an automated substation. 
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Fig. 2.21. Example of a communication structure of an Automated Substation [56] 

 

Distribution Automation  

 
According [57], Distribution Automation –DA- is the set of sensors, IEDs, communications equipment, 

protocols, reclosers, switches, and disconnectors integrated either in a local architecture of automation 

or a centralized one. It means that those elements along the distribution network can be operated 

remotely. Using DA deployment could achieve around 15 Advanced Distribution Automation functions. 

They could be divided into three groups according to their action: 

 
1. Observe: sensors that collect accurate real-time information, i.e. DG monitoring for example. 
2. Analyze/Decide: methods to transform the massive data in information in order to improve 

awareness situational, i.e., Optimal Power Flow, for instance. 
3. Execute: electrical devices respond to control signals coming through either SCADA, IEDs or 

SAS systems, i.e., Fault Location Isolation Supply Restoration – FLISR-, for example. 
 
 
One of the new functions that the last years have taken off significantly is the FLISR function. FLISR 

could be executed in a centralized or local architecture. For instance, Schneider Electric has developed 

this feature embedded in a SCADA system [58]. It is worth noting that the Volt Var Control function, 

which aims maintain acceptable voltage along feeders under different loading conditions [59], is also 

implemented by Schneider Electric. Even it is possible that both VVC and FLISR closed loop control 

are active at the same time on the same feeder. 
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The FLISR included the next steps: 
 

1. Fault Localization:  this step consists in locating the faulted section. The fault location could be 
estimated by means of equipment in the distribution system as fault locators or by advanced 
methods based on fault currents.  

2. Fault Isolation: this step through of opening equipment controlled remotely isolates the fault. 
3. Service Restoration: once the fault is located, by means of remote control signals to devices 

such switches, the major quantity of sections are re-energized. 
4. Return to Normal State: once the fault is solved, the devices come back to their normal position 

in order to return the network to the regular state. 
 

 

Fig. 2.22. Distribution domain, where it is possible to identify DA,[48] 

Smart generation 

 
It is capable of optimizing energy production, and automatically maintaining voltage, frequency, power 

factor within the allowed ranges delivering stability to the grid regardless of the complexity of the 

system. The smart generation manages advanced methods and techniques for forecasting and data 

analytics in order to deal with DG integration and energy storage solutions.  

2.4.2 Innovations around the world 

This section summarizes the most innovative projects around the world according to IEEE Power and 

Energy Magazine. The main purpose is to determine the latest research and development topics around 

the world, as well as its results. These experiences could be considered the moment of the deployment 

of Smart Grids in Ecuador. 

AVANGRID 

The project is being implemented in New York; the primary objective is to provide an active network 

management –ANM- to the network. ANM is looking for management and control of DGs in order to 
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increase DG hosting capacity and managing operational constraints on the existing distribution system. 

The impact of ANM occurs throughout the life of DG assets, from planning and operation to market 

participation [60]. 

 

Fig. 2.23. ANM as a new layer in distribution grid management. 

 

IGREENGRID 

The objective of this project, IntegratinG Renewables in the EuropEaN electricity Grid (IGREENGrid), 

was to evaluate and select the most promising research and development for the integration of 

Distributed Renewable Energy Sources –DRESs-. The project concludes that a centralized solution 

using in a coordinated way the OLTC and DRESs reach the highest amounts of hosting capacity. It is 

worth mentioning that in [61], an optimal control for DGs based on a decoupled Mixed Optimization 

algorithm is presented in order to keep a set point of reactive power or voltage at the connection point, 

and the same conclusion is obtained. Another important conclusion was that DSO must have advanced 

planning tools and an excellent asset management system. [62]. 

ID4L 

The main objective of this project tested in Bornholm Island (Denmark) was to define, design, and 

demonstrate the ideal grid for all, with an active distribution network, which integrates RES with new 

loads.  

The project was focused in to propose innovative solutions for i) hierarchical control architecture ii) 

Aggregator implementation for virtualization of DGs and iii) large-scale integration of DGs in network 

management 
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Fig. 2.24. IDE4L automation solution [63] 

CLASS 

The project Customer Load Active System Services –CLASS- operated by the U.K. DNO Electricity 

North West Limited (ENWL) from 2014 to 2016 proposed and implemented an innovative voltage-led 

load management program that was demonstrated to be both practical and scalable. 

The CLASS Project managed demand instead customers, based on the Conservation Voltage reduction 

–CVR –. An innovative scheme, which controls the supplied voltage by means of primary substation 

transformers OLTC, can reduce customer demand for short periods (e.g., 15, 30, or 60 min) when the 

TSO requires this action in balancing operations. 

 

Fig. 2.25. CLASS: five steps involved in the voltage-led load management scheme [64] 
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Isolated Community Microgrids 

Here, three isolated microgrid projects are presented i) Huatacondo, Chile, ii) Ollagüe, Chile and iii) 

Puertecitos, Mexico. All of them were developed in the last few years with the support of the University 

of Chile.  

The main conclusions are i) the dependency of  a single energy source easily could be avoided if the 

microgrid is properly designed, ii) microgrids incorporate interesting security characteristics that 

facilitate a quick and robust response to specific disturbances, iii) the experience provided by microgrid 

pilot projects can be converted into a learning platform for future resilient distribution systems. 

 

Fig. 2.26. Microgrid diagram [65] 

2.4.3 Smart Grids in Ecuador  

The first pillar for developing Smart Grids in Ecuador was the SIGDE project that started in 2009. After 

that, in 2013, the MEER signed a cooperation agreement for implementing Smart Grids in Ecuador, and 

a roadmap with a time horizon till 2030 was done. 

In 2015, the MEER with the support of the “Universidad Politécnica de Valencia” –UPV- carried out 

an analysis to deploy Smart Grids in five pilot areas including Galapagos. In this framework, a survey 

study was done to determine the primary drivers to implement SG in Ecuador; the participants were 

MEER (5), ARCONEL (2), CENACE (2), CELEC (1) and distribution utilities (7) resulting in 17 

surveys. The results are presented in the next figure.  
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Fig. 2.27. Top-10 Ranked motivating drivers in Ecuador,[66] 

 

The philosophy to deploys SG in Ecuador is based on [67], where ten minimal actions must be done in 

order to have a successful transition towards Smart Grids. 

TABLE VI  DECALOGUE FOR SMART GRID DEVELOPMENT 

Item Action Responsible Project/Entity 

Develop Regional and national 

roadmaps for smart grids 

National roadmap defined in 2013, under updating with the 

“Agence Francaise de Developpemment” –AFD- support. 
REDIE 

Develop a policy framework to 

promote smart grids 
Several Meetings with ARCONEL and stakeholders. MEER 

Adapt the energy regulation to 

promote smart grids 
Some regulations adopted and other in developing stage. ARCONEL 

Create, collect and disseminate 

business cases 

Losses reduction program 

Funding from International Development Bank, AFD, Government 
MEER + Utilities 

Develop and demonstrate smart 

grids technologies 

Advanced Distribution Management System deployed in all the 

country 

Commercial Information system ongoing 

SIGDE + Utilities 

Demonstrate distribution 

automation and smart meters 

20.000 smart meters in Guayaquil city 

DA projects in 5 cities 
MEER+ Utilities 

Share best practices and knowhow 

 

IEEE ISGT Latin America conference in Quito, 2017 

IEE and IEC standard such fundamentals 

Smart Grid Interoperability panel member 

MEER 

IEEE Ecuador 

CENACE 

Promote standardization 

 

Materials and Processes unified 

Technical systems unique 
SIGDE+ Utilities 
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Engage public awareness 

Energy efficiency program 

Galapagos free of CO2 project 

Induction Cooker project 

MEER + ARCONEL + 

Local Governments 

Build up on regional skills and 

excellence 

Cooperation with other countries and foreign agencies 

Smart Grid master in Ecuador 
MEER + Universities 

 

The country is working hard to build in the long term a Smart Grid, although several projects are 

ongoing, a lack of developing in the regulation subject is identified. In addition, Research & 

Development programs must support skills, excellence, know-how and best practices. In this 

framework, this Ph.D. will contribute to increase the level and develop of the items above usually not 

encouraged within Ecuador.  

 

2.5 Conclusion 
 

A detailed description of the Santa Cruz network was carried out in this chapter; it was possible to 

identify the installed power about thermal and renewable generation. There was also a survey of the 

number of customers and their type, as well as the number of feeders with their installed capacity. 

The regulatory analysis revealed that in Ecuador today there are substantial regulatory barriers to the 

implementation of SG, the main ones refer to the lack of a regulatory framework for the execution of 

DSM, and there is no retail market. The incentives for DG deployment are only applicable at MV / HV 

level, and TOUs are available only at the level of industrial users. Thus, a long way in the regulatory 

aspect must be pursued. 

Concerning DG deployed in Ecuador, the integration rate yet is small, and a strong incentive to install 

renewable energies is required. The major capacity power installed is coming from thermal sources, if 

we remember that an incentive to deploy DG is the C02 emission reduction, the concept in Ecuador is 

not well managed.  

The Smart Grid concepts and the different projects around the world were studied. It was identified that 

Ecuador needs to define a roadmap to deploy new technologies, and the international experience and 

the most recent advances in research fields have to be considered in order to improve the projects.  

The next chapter deals with the assessment of integrating new loads in the low voltage network, such as 

electrical motorbikes, induction cookers and PV panels. 
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Chapter 3: Impact Assessment of New Services in the 

Galapagos Low Voltage Network 

 

Impact Assessment of New Services in the 

Galapagos Low Voltage Network 
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Traditionally, strong investments have been made on the transmission network, since a fault in this 

level may cause severe issues such as thousands of clients with an outage, acting of frequency 

protections and even a blackout. Furthermore, the transmission system is designed with the N-1 criteria, 

which means that the system must be able to keep working properly even in a scenario with a faulted 

major element, i.e., generator, transformer or line. Unlike transmission system, the distribution grid 

historically has not had the deserved attention; it has changed with the advent of SG since now the 

attention is focused mainly on the distribution and end-user segments. 

End users have patterns unpredictable and non-scheduled consumption, with the arrival of SG, these 

users are enabled for managing their consumption, based on hourly tariffs interacting with utilities, 

through devices that can measure and control the loads, as well as, increase the visibility for DSO or 

agents as the aggregator or the Virtual Power Plant –VPP-. Thereby, consumers will now become 

prosumers (producer + consumer) [68]. Also, the prosumer is defined like a pro-active consumer since 

in the case it is possible, they can sell energy to the utility. 

DGs, control equipment, EV, storage, smart appliances among other new services, are connected in low 

voltage networks. Thus, it is necessary to address the modeling of the low voltage system appropriately, 

in order to have an accurate model in which to test the SG concepts. All this must be made through 

several realistic simulations to identifying the impacts on the grid of i) high penetration of DG which 

may cause bi-directional flows [69], ii) EV and iii) IC. 

Therefore, the ability to model the distribution network including all aforementioned new services 

would provide a clear and accurate perspective of the future impacts into the low voltage network. Thus, 

this chapter will assess the impact of induction cookers, electric motorbikes, and distributed generation 

(PV panels) on the Galapagos LV network. A powerful interface to extract information from 

Geographical Information System – GIS- and then import it into Matlab/Simulink is proposed as well. 

 

3.1 Modeling 
 

An important step previous to execute analysis, simulations and to create scenarios, consists in modeling 

the different electrical devices of the distribution network. Those elements are lines, cables, 

transformers, loads [70] and unconventional elements, e.g., PV panels, smart buildings, EV, microgrid 

controllers, batteries, and DGs. In order to consider the mutual effects between wires, it is essential to 

model the distribution network in MV and LV phase by phase, considering the neutral; thus, the 

traditional models used in simplified calculus are not an option anymore. Furthermore, for the modeling 

purpose, Matlab-Simulink ® and CYMDIST® software are good options for modeling due to their 

programming/calculation capability and versatility [71].  

3.1.1 Transformers 

Distribution transformers are the key element in distribution networks since they have the function of 

connecting end-users with medium voltage levels. In addition, in the distribution system, there are 

several existing wiring architectures. For instance, in Ecuador, it is possible to find single-phase, two-
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phase, three-phase, overhead and underground configurations. The most typical configuration in low 

voltage is 1P3W; a single-phase transformer at MV side with a central tap at the low voltage side in 

order to obtain 240/120 V, i.e., two-phase + neutral (see Figure 3.1). 

 

Fig. 3.1. Equivalent circuit for centre tapped transformer  

Most of the transformers are single-phase-overhead with power around 5 to 75 kVA. For this reason, 

the 12 terminals Simulink block is suitable, since, allow connecting transformers in different ways. For 

modeling, required parameters are: 

Rm: Resistance of iron losses  

Xm: magnetizing inductance 

Rp: primary winding resistance 

Lp: primary leakage inductance 

Rs: secondary winding resistance 

Ls: secondary leakage inductance 

a:  transformer ratio 

Parameters above are calculated using information coming from open and short circuit tests. Figure 3.2 

shows equivalent circuit and the blocks employed in Simulink and CYMDIST 

    

a)                                                                             b)                                   c) 

Fig. 3.2. a) Equivalent circuit based on the secondary side, b) Simulink block, c) CYMDIST block 

[72] 

Distribution lines in medium voltage carry power to distribution transformers usually located close to 

the customers. In Ecuador, the typical configuration is 3P4W (3-phases, 4-wires), and most of the lines 

are overhead. For modeling, the nominal PI model, which does not take into account propagation effects, 

is used. 



Development of optimal energy management in Galapagos Islands towards Smart Grid 

 

 

 
 

 

Fig. 3.3. Model of the Line, [73] [74] 
 
 

It implies the necessity of the calculus of inductance and capacitance for each configuration. 

According to [75], recommended Simulink block is "Mutual inductance" set as Generalized Mutual 

Inductance, in order to have more accurate and reliable results. Within CYMDIST, the unbalanced line 

must be selected. 

3.1.2 Load 

The load is a circuit that consumes electric power; for modeling, three models could be chosen i) 

constant impedance, ii) constant current and iii) constant power, even in order to be more accurate, a 

combination of the three (ZIP model) is sometimes used. Nevertheless, it is worth noting that end users 

are classified typically such as residential, commercial and industrial. Thus, each client has a 

characteristic load profile. This profile could be specified with more precision taking into account 

another factor such season, the day of the week (weekend or holiday) or geographical regions. Hence, 

if the utility has real load profiles, those must be included in the simulation in order to improve the 

results. In Matlab, it is done using the "Three Phase Dynamic Load" block; this block is fed with active 

and reactive curves [76]. In addition, this block enables load modeling using any model. In CYMDIST 

the Energy Profiles Manager module, allow using different load curves. 

 

Fig. 3.4.  Load modeled into Simulink and CYMDIST [76] 

3.1.3 Unconventional electrical elements 

PV sources could be modeled as a negative load, whereas EV and smart buildings, could be 

represented by equivalent blocks [74]. On one side, EV is modeled through a particular profile, which 

absorbs power. On the other hand, the smart building is modeled with a residential or a commercial 

profile. Load shedding process could be tested distinguishing appliances, using real load profiles 

disaggregated in end-uses of energy such as heating, hot water, lighting and so on [77]. 
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3.2 Interface GIS-MATLAB 
 

The SIGDE project described in Chapter 1 has as one of its axes on Network Georeferencing, this 

axis has been under deployment since 2009. Nowadays, the whole country has a GIS and the data model 

in the same way. The chosen software was ArcGIS®, which provides contextual tools for mapping and 

spatial reasoning, so the user can explore data and share location-based insights [78]. ArcGIS Desktop, 

the family of desktop GIS applications, is one of the most widely used, including in its latest editions 

the tools ArcReader, ArcMap, ArcCatalog, ArcToolbox, ArcScene, and ArcGlobe. All the distribution 

network, including MV and LV, is geo-referenced in ArcMap as well as loads, meters, substations, 

transformers, reclosers, switches, and all the electric devices in general. Thus, the power network 

topology needed for the modeling must be built in function of GIS system. 

The conventional process consists in transfer manually the characteristics of the GIS system to Matlab-

Simulink topologically speaking. However, this process could take several weeks or even months; thus, 

it was decided to invest time in developing an interface to create the Simulink blocks automatically 

based on GIS information. Also, the interface must have the ability to fill the electric characteristics of 

the each device, in other words, to query a database with electric parameters. The next figure depicts the 

process performed by the interface; first, the information of the GIS system necessarily has to be 

represented such a connectivity diagram, it is done using the extension ArcGIS Schematics (see Figures 

3.5-3.6).   

The second phase is to read the connectivity diagram (tables with source and terminal nodes) in 

Matlab. Thus, the tables are imported, and by means of code, the different elements are created within 

Simulink. Once created, those elements need to be connected (join command) according to the 

connectivity imported from GIS. In addition, two databases with information of i) electric parameters 

and ii) load curves are considered in order to complete all the information requested by Simulink. The 

final model within Simulink platform now is ready to be executed.  

 

 
Fig. 3.5. Interface between ArcMap and Matlab/Simulink 
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Fig. 3.6. Connectivity diagram created into GIS 
 

As was previously described in Table II, Santa Cruz island has three MV feeders of 13.8 kV, the 

backbone network is three-phase, whereas the branches are composed of single-phase sections. This 

chapter deals with the impact assessment of new services connected at low voltage system. Therefore, 

a representative MV/LV transformer with its LV network must be selected to perform the simulations; 

in this selected system, all the new services would be integrated and must enable extrapolation of results 

in most cases. The next paragraphs describe the process to choose this representative transformer. 

In Chapter II, Feeder 1 and Feeder 2 are classified as urban and Feeder 3 as rural. In addition, Feeder 

1 has residential characteristics. Thus, the selection should be focused in Feeder 1. In order to select a 

representative LV network, a statistical analysis is necessary since there are 123 MV/LV transformers 

with their LV networks within Feeder 1. Through the GIS own tools, the summary about the rated power 

of the transformers is performed. The next figure depicts that the minimum installed power is 10 kVA 

and the maximum is 150 kVA. The values in the diagram parts represent the number and percentage 

(referring to total number of clients) of connected clients for each type of transformer, and the legend 

on the right gives the rated power of transformers in kVA. According to this figure, the largest number 

of users (510) is connected to 50 kVA transformers. Thus, this power value is the first parameter defined 

to select the transformer for simulations. 

 

Fig. 3.7. Consumers classified by rated power of MV/LV transformers  
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Once established the representative rated power, it is time to determine the typical number of clients 

in a transformer of 50 kVA. The range of connected clients goes from 1 to 70 (see Figure 3.8). 

 

Fig. 3.8. Frequency distribution of connected clients at 50 kVA transformers. 

One client per transformer commonly refers to a commercial/industrial use. According to Galapagos 

Electric Distribution Utility -ELECGALAPAGOS-, the peak of an average residential client is 1,55 

kVA. Hence, any transformer of 50 kVA with less than 10 clients would have as maximum 30% of 

relative load. In this manner, we must select a transformer with at least 30 customers in order to have a 

“fully” loaded transformer with clients close to the “average client” to see the effect of strong integration 

of IC, EV, and DGs over the loadability. Therefore, the results are valid for other residential LV 

networks; the significate change would be established in the base scenario of each transformer.  For 

commercial/industrial networks, a similar statistical analysis must be carried out. 

Then, Table VII shows the main characteristics of the defined LV network, which is shown in Figure 

3.9  

TABLE VII DESCRIPTION OF THE SELECTED LV NETWORK  

Substation Feeder Transformer Power (KVA) Customers Nodes 

Santa Cruz  1 TR1  50 40 15 

0

2

4

6

8

10

12

14

1 2 3 4 7 9 17 18 19 28 29 32 33 36 40 47 70
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Fig. 3.9. LV Network modeled into Simulink 

 

Once defined the LV network, the logical step for starting the simulations is creating the base scenario, 

in terms of load curves.  

3.3 Active and Reactive scenario -PQ 
 

The base scenario represents the current situation of the transformer. This first scenario is named PQ 

since it integrates real load curves for both active power (P) and reactive power (Q). For each scenario, 

the voltages, power, and currents are analyzed. 

Within Simulink, several blocks have to be filled in order to feed the load with real load curves, for 

instance, a block for the P curve, another for Q curve, one more to join P and Q, and so on. To avoid 

excessive time in building the model necessary for feeding the load in Simulink manually, another script 

was developed to execute the entire process. In GIS system, the number of clients per phase and per 

node, the client type, the last consumption, and an average of P and Q are clearly defined. With this 

information, a traditional study using coincidence factors could be done, and thus, the impact of new 

services can be estimated, but the result will be a simple value representing the power in the transformer. 

In this chapter, the proposed methodology is based on using real load profiles for each client, and the 

reader can note that several curves are necessary. In Galapagos, different types of clients exist, most of 

them are of residential type; a typical residential client has various appliances such as refrigerator, 

television, washing machine, microwave, and lighting. The Galapagos utility makes regular measuring 

campaigns. Therefore, there are available real load curves concern both the active and reactive power 

with 10 minutes samples [79]. The database of real curves has to be filtered in order to use only curves 

from the month in analysis. For that, historically, the higher consumption in Galapagos is registered in 

April; it is associated directly with the temperature since more air conditioners and fans are used. 

Most loads are connected to 120 V (phase-to-neutral), then, the script assigns randomly, load curves for 

each client in phase either 1 or 2. The next figures show the database of P and Q curves. 
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Fig. 3.10. P curves database with 40 curves 

 

Fig. 3.11. Q curves database with 40 curves 

 

The approach that considers real curves is much better than one which considers only an average curve 

[80]. Although obviously, it is more complex due to i) usually, the utilities have not real residential 

curves ii) It needs a higher computational effort.  

In addition, the typical configuration in Galapagos LV network has to be modeled [81]. For that, a 

custom library [82] with blocks for representing single and two-phase loads has been created, see Annex 

1. With the interface described in the Figure 35, which create/add/join/fill blocks called from the custom 

library, the electric model inside Simulink is created. Annex 2 depicts a portion of the LV network. The 

model includes the blocks for measuring voltage and current, as well as the tapped central transformer, 

and the plotter and scopes for viewing the results.  

Regarding the load curves, the next figure depicts a portion of blocks created for feeding the single and 

two-phase loads; the disconnected pins are ready for the inclusion of EV, IC, and DGs. 

Figure 3.13 presents the main results of the base case simulation, i.e., with only the loads; the maximum 

power occurs at 20:48 and its value is 36,96 kVA. Regarding the drop voltage standard (limits of +/- 

5% of the nominal voltage) all the nodes are inside the margin. The maximum current through the 

transforms is 164,30 A in the phase L1, and the minimum voltage is 233,40 V (phase-to-phase). As 

expected, a current flowing through the neutral wire exits, the maximum value is 27,06 A. This confirms 

that the network is unbalanced. 
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Fig. 3.12. Blocks created automatically for feeding loads. 

 

The average power in the transformer is 24,40 kVA, and the factor of use is defined such as: 

 

 

Maximum Demand
FU

Installed Capacity
           ( 3.1 ) 

 

Thus, the FU in this scenario is 73,9% 

 

Fig. 3.13. Scenario PQ 
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Now, the base case scenario is entirely defined, thus, in the next sections, the scenarios including 

induction cookers, electric vehicles, and photovoltaic energy sources, and the results of their impact 

studies on the LV grid will be presented. 

3.4 Induction Cooker (IC) scenario –PQ+IC 
 

In Ecuador, especially in Galapagos, several policies foster the change of conventional stoves by 

induction ones. The IC is a particular new load in Ecuador, which has been recently deployed into the 

LV grid to replace gas stoves. There already have been deployed 187.280 induction cookers in Ecuador, 

and for the particular case of Galapagos Archipelago nowadays, there are 80 already connected, and 240 

have been requested [83]. The induction cooker rated power is typically in the range 2500-7000 W and 

connection voltage level is 240 V.  

In the case of IC, profile curves already exist since IC program has been deployed previously in the 

Continental Country and the Distribution Utilities installed exclusive meters for determining power and 

current in IC as well as habits in the cooking process. The database of IC measurements was taken from 

Quito city, where ICs are already installed. After the validation process, it remains 1442 daily use curves 

with a sample time of 10 min. Thus, real measurements are used to feed the block used for modeling 

induction cooker. The next figure shows 40 induction cooker profiles and depicts that the greater use 

occurs at 12:00 coinciding with the mealtime. Peaks are also appreciably higher at 7:00 a.m. and at 7:00 

p.m., coinciding with breakfast and dinner, respectively. 

 

Fig. 3.14. Induction Cooker profiles 

 

Upon the PQ scenario, an IC is implemented for each residential client; in order to assess the impact on 

the grid variables, for the case of analysis at the transformer level, it would be considered an integration 

ratio of 100%, since the changing is mandatory nowadays. 

The next figure depicts the created blocks to consider IC; the real curves of active and reactive power 

are added to the P and Q curves.  
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Fig. 3.15. Blocks created automatically considering active and reactive curves for IC. 

 

The results of the second scenario (PQ + IC) show an increase of 5,73 kVA in the average power, see 

Figure 3.16. Now, the profile has two peaks during the day, the first one at 12:48 and the second one at 

19:18. The peak in the night is higher and reaches a value of 56,05 kVA. The lowest voltage is 229,8V 

(phase-to-phase). This scenario highlights overloads during the night and noon. However, voltages are 

still within the standard limits. The maximum value of neutral current is 28,15 A. 

The increase in the current flowing in phases 1 and 2 is approximately 50%. Thus the maximum current 

is 234,11A in the phase 2. The factor of use in the night is FU=112%, which shows a small overload of 

the transformer, whereas the FU in the noon is FU=102%. 

 

Fig. 3.16. Scenario PQ+IC 
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Once the impact of IC is assessed, the next step consists in integrating electric motorbike in each 

household.  

 

3.5 Electric Motorbike scenario –PQ+IC+EM 
 

The government of Ecuador has launched the initiative zero CO2 emissions in order to support the 

nature preservation. Thus, electric vehicles must replace the conventional ones (fuel oil). Hence, the 

council of government of Galapagos –CGREG- has been released a law to promote the massive change 

towards electric vehicles. The regulation is in force since March 23, 2016. 

According to CGREG, there are 1391 vehicles in Santa Cruz, of which motorbikes represent 48%, 

vans represent 34%, and cars represent only 5% (see next figure). 

 

Fig. 3.17. Vehicle types within Santa Cruz 

There are only 81 trucks, all of them with a commercial purpose. Thus, the study will be focused in 

the proper way of modeling the electric motorbikes –EM-. Due to the lack of information on the pattern 

of use of the new elements in analysis, specific studies should be carried out. Such studies must be based 

on surveys or comparisons with other similar studies based on the opinion of experts in sociology and 

electric demand. 

A Monte Carlo simulation has been performed to estimate an average profile for EM; two types of 

motorbikes are considered based on CGREG guidelines. The first one is the ZX-220 model and the 

second one is the ZX-3M model, both of them from UNIDECO Company. Their power is 3000 W and 

1500 W respectively. The autonomy for the ZX-220 is 70km with a charging time between 6h and 8h; 

the model ZX-3M has an autonomy of 60km with the same charging time. Next table depicts the 

hypotheses to build the model. Two recharge types are created; Type 1 is associated with ZX-3M model 
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and the Type 2 with ZX-220, also, two kinds of users are defined; the first one (User A) charges the 

battery only when it is completely discharged and the second one (User B) charges the battery every 

day.  

TABLE VIII RECHARGE TYPES 

Features Type 1 Type 2 

Power –kW- 1,5 3 

Charging period 16:30-20:30 16:30-20:30 

Peak 18:30 18:30 

 

Monte Carlo simulation obtains the average curve of 600 users in each iteration. Additionally, it is 

supposed that the user A represents 20% and the user B 80% of the users. Moreover, an amount of 25% 

of full daily charges is assumed. Thus, Table IX presents the percentage by users and recharge type. 

TABLE IX DAILY CHARGERS 

 

Type 1 

50% 

300 users 

Type 2 

50% 

300 users 

User A 

2,5% 

3h for charging 

and 30 min of deviation 

15 users 

 

2,5% 

5h for charging 

and 1 h of deviation 

15 users 

 

User B 

 

40% 

30 min  for charging 

and 10 min of deviation 

240 users 

 

40% 

45 min  for charging 

and 15 min of deviation 

240 users 

W/O charge 15%  - 90 users 

  

After executing the Monte Carlo model with 1.100 simulations, an average profile is determined, the 

maximum value is 630 W, see Figure 3.18. 
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Fig. 3.18. Average Profile for Electric Motorbike 

This average profile has been combined with a coincidence factor, which is a function of client’s number 

[80]. The coincidence curve is defined in [84]. It is worth to mention that the electric motorbikes are 

modeled only with the active power, assuming that their interface converter can tune a power factor 

equal to 1. 

This scenario shows an increase in the maximum power of 10,76 kVA, the second peak at night is 

66,81 kVA at 19:18, the lowest voltage is 228,2 V (phase-to-phase) during a few minutes. The maximum 

value of neutral current is 30,09 A, which indicates that the imbalance is still equivalent to the scenario 

1 and 2. However, the maximum current in the transformer is 279,94 A, i.e., almost twice than for PQ 

scenario. This scenario highlights voltages outside the standard limits and a significant overload in the 

transformer. During few minutes at night, the FU=134%, whereas FU in the noon still equal to previous 

scenario FU=106% 

 

Fig. 3.19. Scenario PQ+IC+EM 
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The natural growth also must be considered in the scenarios. Hence, the next section presents a 

simulation that integrates the growth as well as PV panels installation in each household. 

 

3.6  Photovoltaic scenario -PQ+IC+EM+G+PV 
 
This scenario considers an annually growing (G) due to population increase rate leading to a 7,85% 

increase in the load [85]. This value is higher than growth population rate in other provinces because 

the population has grown haphazardly mainly for the tourist activities. This growth has forced to increase 

the generation capacity and to deploy energy efficiency programs. Also, encourage customers for 

generating their energy is an essential aspect considered within the new policies to convert Galapagos 

to an archipelago energetically self-sustaining. 

In addition, assuming that the transformer will suffer overloads and take advantage of the existence 

of solar resources, an array of PV panels [84] is connected to each client house to 240 V. The next figure 

illustrates the scenario, where all the new services are connected. PV and EM are modeled only with 

active power, assuming that their interface converter can tune a power factor equal to 1. 

 
Fig. 3.20. Simulink Model considering all the new services 

 

PV sources could be modeled taking into account different approaches; for instance, in  [86] the PV 

model consider the single-diode five-parameters model. In [41], the block “three phase dynamic load ” 

fed with a negative profile is used. For our studies, this last approach has been selected since this chapter 

seeks to evaluate the PV impact on the network and several PV curves from real measurements are 
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available. The April active power measures of the existing PV power plant of 1500 kW installed on 

Santa Cruz Island are used in order to create 40 individual PV curves for the end-users. Hence, thirty 

curves are available (one per day from the main meter), the other ten are obtained from the backup meter 

of the PV power plant. 

 The existing curves were transformed to per unit system after that these were multiplied by the rated 

power desired. According to [84], the energy resources in Santa Cruz island are enough to satisfy the 

end-user's average consumption. These resources even could generate 25% of additional power. In order 

to achieve the above mentioned, it is necessary to install 2.150 Wp on the roof of each client´s household. 

For reaching 2.150Wp, it is required to build a PV array composed of several PV panels. Thus, the new 

PV profiles are created based on Equation 3.2 

_ *2,150
1500

i
profile

PV
New PV kWp

kW
    ( 3.2 ) 

The Figure 3.21 shows the different profiles obtained. As the reader can see, the resource is available 

between 06:00 AM and 06:00 PM. 

 

Fig. 3.21. PV profiles 

 

The final scenario assesses the insertion of PV sources in the end-user's facilities plus natural growth. 

The installed PV panels are enough (in terms of produced power) to reverse the flow between 07:36 and 

15:54. The average power in the transformer decreases considerably to 13,75 kVA. Despite the PV 

sources installation, we still have one overload period during the night for obvious reasons, since this 

scenario considers annual Growing –G-; now the power peak is greater reaching a value of 71,07 kVA 

and a FU=142%, and consequently, the voltage still crosses the lower limit during this peak. The 

maximum current flowing in the reverse sense is 122,44 A, the imbalance is higher than in the previous 

scenarios since the neutral current is 35,20A (see next figure). 
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Fig. 3.22. Scenario PQ+IC+EM+G+PV 

 

The Figure 3.23 shows in a single graph the four scenarios analyzed in low voltage, the scenarios with 

IC creates two peaks along the day; both of them are higher than rated power. 

Similarly, the scenario with EM and G presents considerable peaks, the scenario with PV can delete 

the first peak at noon and even reverse the flow. However, the peak at night for obvious reasons is still 

present.  

 

Fig. 3.23. Comparative Analysis 
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3.7 Conclusion 
 

In this chapter, a study of the impact of new services which will be implemented soon in the Galapagos 

Islands has been carried out. Real data curves have been used such as residential load, PV production, 

and induction cookers, with a real part of LV Galapagos network, in order to make the simulations most 

realistic as possible. Normally, it is common to suppose that between midnight and 03:00 AM, the 

consumption is almost zero. However, as we can see in the results, it does not happen in Santa Cruz, 

and therefore, shift the EM load to this period is not convenient. On the other hand from 3:00 to 6:00 

the consumption reaches its minimum, probably being a time to stimulate EM charging.  

The EM and IC also could be connected at 120V. However, it will not be a good solution because high 

power loads must be connected to the highest voltage available and the load unbalance in the center 

tapped transformer is a strong reason for this. Thus, the idea is to take advantage of the changes that are 

suffering the clients to change their supply to 240V. 

A powerful interface between GIS and Simulink has been developed to facilitate the carrying out of 

several analysis with different scenarios and topologies, and a Simulink library was created with new 

blocks for considering the Galapagos reality.  

In the next chapter, smart strategies to avoid significant overloads in the MV/LV transformer and 

keeping the voltages within the normal operating range, as well as, a solution considering batteries in 

order to store the excess energy to be returned at night, are presented.  
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functions in the Medium and Low voltage network 

from Galapagos  
 

 

Advanced Distribution Automation –ADA- 

functions in the Medium and Low voltage 

networks of Galapagos 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Development of optimal energy management in Galapagos Islands towards Smart Grid 

 

 

- 53 - 
  

The future network will have for sure to be controlled through Advanced Distribution 

Automation functions such as volt-var control, grid reconfiguration or soft load shedding, with the 

current deployment of smart meters, and the availability of the corresponding data have drawn particular 

attention to the ADA functions in Low Voltage. Thus, once determined the impact of new services, it is 

worth proposing smart strategies in order to deal with the load growth due to these services and to solve 

issues like voltage drops, power peaks, neutral current, etc., that have been highlighted in the last 

chapter. Therefore, this chapter proposes an adapted and intelligent method for performing Demand 

Side Management in the Galapagos low voltage network. The proposal executes Demand Response 

(DR) in the presence of Time Of Use (TOU) pricing. In addition, a solution based on electric batteries 

is analyzed at low voltage level; the primary objective is to shave the peak in the night. At last, an 

Automatic Phase Switching system to reduce unbalance in the Galapagos LV networks is presented. 

After that, solutions at medium voltage network are analyzed; for instance, the deployment of 

reclosers to improve the reliability, as well as network reconfiguration techniques for reducing losses. 

Also, the Volt-Var Optimization strategy is analyzed as well.  

 

4.1 Low Voltage – Simulink 
 

So far, the impacts in the LV network due to new services such as EM, IC, and DGs has been 

determined. It was observed a considerable increase in the required power and adverse effects such 

significant overloads. For modeling, the Simulink platform was used, due to its ability to model the load 

fed by real load curves. Simulink models also can be easily tailored to run the model in a real-time 

simulation. The software RT-LAB is a Simulink fully integrated software, which was selected due to its 

flexibility and scalability allowing any simulation for the electrical network. Additionally, it exists the 

possibility to include real devices in simulations with low cost with automatic scripts to run 24h / 7d 

simulations [87]. RT-LAB enables Simulink models to interact with the real-world in real-time [88]. 

Although for this study was used just RT-LAB server in order to improve the simulations speed and to 

have a model ready to be integrated with real devices. 

Innovative solutions must be proposed to address the negative issues generated by the inclusion of new 

services. Thus, the next section will present the first proposed solution for LV; it consists in perform 

DSM in LV.  

4.1.1 Smart Demand Side Management 

Once quantified the impacts of new equipment on the LV network, smart techniques have to be 

proposed in order to manage adverse effects and to keep the client's comfort. In [81] (author´s paper), 

all the assessment of these policies is conducted in the particular case of Galapagos. In [89], a 

methodology to evaluate DSM in electric distribution systems, based on time of use pricing and elasticity 

concepts is presented, the evaluation is performed through an optimal power flow model considering 

linear constraints. Reference [90] shows a time-of-use-based bottom-up model of residential electricity 

consumption; the model deals with the presence of multiple individuals in a household, their behavior 
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and the related use of appliances. Reference [91] simulates domestic energy consumption and presents 

an algorithm which controls consumption during peak hours. The results indicate 40% reduction in peak 

time energy demand. In [92], two DR program options are analyzed for low voltage feeders, the first 

one based on the electricity price, and the second one based on the loading of the network, the benefits 

of these two DR programs are presented. In [93], the likely impacts of China's ongoing power sector 

reform on its DSM is conducted. The effects of the new reform are determined, among them i) grid 

companies may have more motivations for DSM investment, ii) electricity end-users’ motivations for 

DSM may be both enhanced and dampened. [94] Affirms that the tariff programs commonly used do 

not achieve the desired results. Hence, the article includes an assessment of using a Decentralized Active 

Demand Response system for activities related to the reduction of peak loads. 

Reference [95] proposes a stochastic programming approach model, which is developed with 

cloud computing scheme for effective DSM in the smart grid. In [96], the new proposal of the tariff 

structure of distribution companies in Brazil, which is looking for establishing a mechanism called Tariff 

Flags, which aims to foster a Demand Response Program in Brazil via an increase in the energy tariff, 

is analyzed. In [97], a two-stage stochastic problem for energy resource scheduling to address the 

challenge brought by the demand, renewable sources, electric vehicles, and market price uncertainty, is 

proposed. The proposed method minimizes the expected operational cost of the energy aggregator. 

Reference [98] develops an algorithm for automatically adjusts the power demand according to the 

output of the distributed renewable generation, mitigating disruptions due to variations of the DER 

output, as well as, adjusting the load demand dynamically according to the fluctuations of electricity 

price.  

The literature review reveals a need for research in DR programs applied in the presence of 

TOU pricing, mainly in LV networks. Most of the research is focused on independent initiatives. Thus, 

this section proposes an innovative combined program DR+TOU in Galapagos Low Voltage network. 

Also, the current rate model of Ecuador is analyzed objectively. 

 The proposed DSM program meet some goals such as i) avoid peaks canceling the rebound 

effect,  ii) keep the voltage profile within acceptable limits and iii) shift the energy during the whole day 

and not only after the peak period.  

Figure 3.22 shows that the transformer is overloaded during almost 2 hours per day and thus, 

the need for performing additional techniques such as DSM to reduce the peak is highlighted. According 

to [99], an intelligent DSM provides an excellent approach to optimize the management of energy use 

by means of i) advanced communication device, ii) regulation methods and iii) appropriate economic 

incentives. DSM is seen in [100] as a good promoter of distributed generation: in order to avoid long-

distance transport, locally generated energy could be consumed by local loads, immediately when it is 

available [101]. The main advantage of DSM, taking into account the economic point of view, is that it 

is a less expensive way to influence changes in the load than to build a bulk power plant. In [102], a 

multi-agent system for the coordination of active demand and plug-in EV is presented, the agents 

perform the optimization following the Nash’s theory on games. Then, DSM can be classified as shown 

in Figure 4.1. 
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Fig. 4.1. DSM Categories [100] 

a) Energy Efficiency -EE 

b) Time of Use –TOU- 

c) Demand Response –DR- 

 Market DR  
 Physical DR 

 
d) Spinning Reserve 

 

In [103] (author´s paper), each category of DSM and the actions taken in Ecuador are explained, 

since the proposal considers DR+TOU. A brief explanation of these topics is given hereunder. 

4.1.1.1 Time of Use –TOU- 

The time of use is an array of static tariffs that penalize with a higher price specified periods of time, 

generally the peak hours, in order to motivate the customers to re-arrange their processes to minimize 

the energy cost. It does not mean that a consumption reduction exists in all the cases, but an expected 

change in the consumption patterns would be registered. In the worst scenario case, even if we have a 

reduction of the consumption in a first step, a period known as “rebound effect” (or payback) [104] 

appears. Thus, the expected energy saving is typically not carried out, and maybe even a new peak is 

generated [100] (see Figure 4.2).  

Reference [105] presented the rebound effect and the energy shifted that is taking into account through 

a shedding vector. The peak could be moved before or after. However, it is better to move the peak 

before the shed time and be prepared. There are two additional options considered as Time-Based rates 

i) Critical peak pricing and ii) Real-time pricing [106].  
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Fig. 4.2. DSM Categories with and w/o rebound [100], Energy Efficiency in green. 

 

4.1.1.2 Demand Response –DR- 

In this DSM, a signal coming from the DSO is broadcasted to the clients in order to get a much quicker 

response than TOU. Typically, this signal contains i) price of energy ii) command for load shedding or 

shifting. To perform DR efficiently, a “controller” is required (see Figure 4.3), which uses load models 

for taking good decisions. It can be done in an autonomous way or in a coordinated way. For the last 

case, a multi-agent controller with communications between distributed controllers should be 

considered. However, it implies a huge work. In order to execute automated demand response, a new 

protocol has been presented recently by OpenADR [107]. 

 

Fig. 4.3. DR using Appliance controller device [108] 

 

4.1.1.3 Intelligent DSM for Galapagos 

In this section, the current TOU in Ecuador, developed by ARCONEL, will be explained; then, 

an upgrading proposal prepared by UPV (Polytechnic University of Valence) for Ecuador is analyzed, 

and after that, a new intelligent method that combines DR + TOU is proposed.  

Nowadays, considering all the policies launched by the Ecuadorean government, ARCONEL 

has updated the tariff schedule in order to include a new tariff for EV (up to 10kw) [109],  see Table X. 
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The primary initiative is based on fostering the EV deployment, ought their efficiency and contribution 

to the environment. In addition, the power grid applications such as i) voltage control, ii)  exchange 

reactive power for autonomous voltage support, iii)  influencing the available active power for primary 

transportation function [110]. Unscheduled high penetration of EVs surely has adverse effects on power 

system performance when EVs are used widely. As a result, there is an exigent need to predict the EVs' 

consumption; [111] present a probabilistic modeling for  EV charging demand, to avoid irreparable 

effects, in particular for the distribution network. In [112], a time series forecasting of EV charging 

demand for a stochastic power system is conducted. 

TABLE X TARIFF FOR EV 

Days/Hour 
Demand   

(USD/kw) 

Energy 

(USD/kwh)   

Commercialization 

(USD/consumer) 

M-F  

8h00 to 18h00 
2,43 0,08 1,414 

M-S  

18:00 to 22:00 
4,050 0,10 1,414 

M-S  

22h00 to 8h00 
1,458 0,05 1,414 

S*-D  

8:00 to 18:00 
1,458 0,05 1,414 

M= Monday, F= Friday, S=Sunday, S*= Saturday 

The above table presents the tariff calculated by two variable components and by a fixed one. The 

variables components i) demand, and ii) energy, change according to the day and hour. For instance, the 

consumption in the national peak period (18:00 – 22:00) is the most expensive (demand 4,05 USD/kW 

and energy 0,10 USD/kWh). Assuming, that 15% of the loads are controllable [113] and that every 

household possesses at least one controllable device which participates in the load management process, 

a polynomial function is created in order to represent the effect of applying TOU according the Table 

X, and a 50% rebound is integrated into the simulation [114]. 

The weighting function implements the weekly tariff (Monday to Friday). The A region from 18:00 to 

22:00 is shifted immediately after the most expensive period to the region B where we have the lowest 

price, this means from 22:00 to 08:00. However, the reader should take into account that the energy of 

4 hours was shifted. Thus, energy now is consumed between 22:00 and 02:00. An essential premise, this 

kind of DSM keeps the consumption almost equal [115], see Equation 4.1. 

24 24

0 0

RpbTOU RpwTOU         ( 4.1 ) 
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Fig. 4.4. Weighting function for performing TOU considering the guidelines given by ARCONEL 

 

Where: 

RpbTOU = Residential Profile before TOU 

RpwTOU = Residential Profile with TOU 

Figure 4.5 illustrates an example of changing caused over an average residential profile; this profile 

represents a typical shape, it was given by ELECGALAPAGOS utility. It is possible to identify the 

rebound and how the load is shifted to the night hours.  

 

Fig. 4.5. Comparative curves of residential profile vs. residential profile with TOU 

 

A modification in the model developed by [81] was executed in order to perform DSM. The changes 

consist in adjusting all the residential curves (40) by means of multiply the curve by the weighting 

function defined using the information of Table X. 
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Fig. 4.6. Results after applying DSM using ARCONEL curve 

 

As illustrated Figure 4.6, and compared to Figure 3.22, the power peak in the transformer at 19:18 has 

been decreased to 63,02 kVA, but a new peak at 22:18 is registered (59,7 kVA). The voltages are 

exceeding the limits required by the quality standard (minimum 114V). Additionally, the neutral current 

at 22:18 is higher than the original case. In summary, the rating scheme proposed by ARCONEL is not 

suitable. 

Then, a first study carried out by UPV about the feasibility of deploying Smart Grids in Ecuador [116] 

suggests a better TOU schedule considering different profiles in the country since ARCONEL has been 

using only a national profile. This methodology is more consistent because it takes into account the real 

time measurements available at the interconnection points between transmission and distribution, the 

measurements were provided by CENACE. Figure 4.7 depicts the methodology for achieving the new 

profiles. 

 

Fig. 4.7. Method for getting the power delivered to the end users 

 

The equation 4.2 defines the total power delivered to the end users. 
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        ( 4.2 ) 

Where: 

consE  = Total power delivered to the end users connected to the distribution network. 

d,iAS = Power delivered coming from the transmission network to the distribution network at the node 

NTi 

d,iAE = Power delivered coming from the distribution network to the transmission network at the node 

NTi 

g, jAE = Power delivered to the distribution network by the generators connected to the node NDj 

g,jAS = Demand of the elements connected to distribution network at the node NDj 

n     = Transmission nodes  

m   = Distribution nodes with a generator connected. 

Once defined the methodology and the equation 4.2, different profiles are determined for 6 regions in 

Ecuador, i) Sea Coast, ii) Sierra, iii) Amazon, iv) Quito, v) Guayaquil and vi) Galapagos; those profiles 

are divided by weeks, weekends and holidays as well as seasons. For the study, only a typical profile is 

considered (weekly profile during summer). Then, a new TOU schedule is defined. Figure 4.8 depicts 3 

periods within Galapagos, P1 is the on-peak, P2 the semi-peak, and P3 the off-peak. 

 

Fig. 4.8. TOU defined by real measurements.[116] 
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Reference [116] reported that after performing an in-depth analysis on the monotonic curve, three 

periods are identified and the peak period (P1) is located between 09:00 and 21:00. Then, a new 

simulation considering the described above is performed. The principal curves are depicted in the 

following figures. 

 

Fig. 4.9. Weighting function for performing TOU considering the guidelines given by the study 

conducted to deploy Smart Grids in Ecuador -UPV- 

This function starts the shifting process in the region A (16:00 – 21:00) and shifts this reduction in the 

consumption to the region B (21:00 – 02:00). In addition, the rebound effect is taken into account. Figure 

4.10 illustrates the changes caused over an average residential profile, and it is possible to identify the 

rebound and how the load is shifted. 

 

Fig. 4.10. Comparative curves of residential profile vs. residential profile with TOU defined by 

regions. 
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As we can see in figure 4.11, a higher peak (74, 31 kVA) at 21:00 is recorded. The voltages are worst, 

compared with the previous scenarios, and the limits accepted by the quality standard are violated 

(minimum 111.3V). 

  

Fig. 4.11. Results after applying DSM using UPV curve 

Obviously, the rebound added to the original power around 21:00 (higher than 22:00, see Figure 3.22) 

causes this increase in the peak. Hence, a smart strategy must be implemented in order to avoid the peak 

as well as to shift the energy during the whole day, and not only after the peak period. Therefore, the 

previous weighting function is modified until to reach a soft function, which has the same energy during 

the whole day with the difference that now, it will be considered an algorithm for the appliance controller 

device in each household, and the shifted energy will be consumed during the whole day. It is 

worthwhile to mention that there are two key technologies enabling demand side load optimization: i) 

Building automation and ii) Smart metering + Appliance controller.  

Previously, it was defined a 15% of controllable loads; the loads are usually classified as: 

 Baseline loads refer to those appliances that must be activated immediately at any time or 
maintained at ‘Standby’ mode. Their economic value does not allow any intelligence 
integration, and they are not controllable because they depend on consumer behavior and 
comfort. Lighting, TV, and computing are some examples.    

 Regular loads are those corresponding to the appliances that are operated for extended time 
periods like fridge and water heater   

 Burst loads concern the appliances that must work for a limited period within deadlines. This 
last type can be flexible and so, delayed to start operation in another moment, like washing 
machine, dryer dishwasher, air conditioning and EV 
 

The peak load problem is mainly caused by regular and burst loads combination. In addition, DSM 

programs could be classified as traditional or as modern ones. Thus, the smart strategy will consider 

only actions over the burst loads and will use a modern DSM program (DR+TOU), with no more 

rebound. The proposed weighting smart function is shown in see Figure 4.12. 
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Fig. 4.12. Smart function for performing DSM 

 

As depicted, the consumption of the region A is shifted to the Region B. The limit of the region B is 

7:00 because after this time, the price is not the cheapest. Figure 4.13 illustrates the new residential 

profile obtained without peaks.  

 

Fig. 4.13. Comparative curves of residential profile vs. residential profile with smart function. 

 

In order to summarize the process, a flowchart of the developed methodology, with the main steps, is 

presented in Figure 4.14. The developed script offers the possibility to run the 3 options (ARCONEL, 

UPV, and Smart DSM) for comparative purposes.  
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Fig. 4.14. Flowchart of the DSM programs executed. 

This flowchart depicts the whole process for performing the DR+TOU program, as input information 

are defined i) 40 residential profiles, ii) topology information (GIS) and iii) electrical database. After, 

all this information are transformed into an electrical model. The program implements three options: 

1. ARCONEL DSM, which uses the function defined in Figure 4.4  
2. UPV DSM, which uses the function defined in Figure 4.9 and  
3. SMART DSM, which considers the implementation of appliance device controllers, as well as, 

minimize the peaks originated by rebound effect through of shifting the consumption in the 
whole day and use the function of Figure 4.12. The program respects the equation 4.1 and 
creates modified profiles, which will be utilized for new simulations. 

 

Using the profiles affected by the smart function, another simulation is performed.  



Development of optimal energy management in Galapagos Islands towards Smart Grid 

 

 

- 65 - 
  

 

Fig. 4.15. Results after applying intelligent DSM. 

 

Figure 4.15 shows the principal curves of active power and voltages. As we can see, the peak generated 

by the rebound in the previous scenarios is annulated due to the consideration of an installed controller 

at the households, and ought to a smart technique for DSM. 

This scenario takes into account the implementation of an appliance device controller in each household. 

By means of the option 3) (Smart) of the flowchart illustrated in Figure 4.14, the residential profiles are 

modified in order to perform DSM program to decrease peaks through of consumption shifting of energy 

in expensive periods to cheapest periods along the day. The maximum FU is 128%, and the voltages in 

phases L1 and L2 respect the quality regulation (114,3 V minimum). The highest power during the day 

is 64,07 kVA, the reverse flow generated is 28,33 kVA and the average power is 13,13 kVA. 

Considering all these values, it is easy to conclude that this scenario is the better. The next figures show 

a comparative analysis of the DSM programs in reference to the active power and voltages. 

The Figure 4.16 depicts the power along a typical day. As we can see, the first strategy (ARCONEL in 

blue) has a prominent peak around 22:00 and the second strategy (UPV in green) reaches the higher 

peak around 21:00. Whereas the Smart DSM strategy, in red, has the minimum peak and the shifted 

energy is allocated mainly in dawn hours. In addition, the peak created for the rebound effect is entirely 

annulated. 

The Figure 4.17 depicts the voltage profile along the day. As it was expected, the minimum voltage 

value is reached when the load is highest. The ARCONEL strategy reached a minimum voltage of 

113,58V; the average voltage is 117,55V. The UPV strategy reached the lowest voltage value of 111,3V, 

and its average voltage is 117,51V. The Smart strategy shows the best profile since no minimum peaks 

are disrespecting the quality regulation. 
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Fig. 4.16. Comparative Analysis: Power at Transformer 

 

 

Fig. 4.17. Comparative Analysis: Voltage at secondary phase L1-to-neutral   

 

Even if the proposed Smart DR+TOU has a better behavior than ARCONEL and UPV strategies, a 

power peak around 19:30 still exists, and during this peak, the MV/LV transformer is overloaded. To 

shave this peak and avoid this overload, a well-known mean is the use of storage. We propose then to 

implement a BESS and to develop an intelligent controller adapted to Galapagos’s particular case. 
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4.1.2 Battery Energy Storage System -BESS 

The BESS is a system based on electrical batteries that capture energy produced at one time for a 

later use [117].  With a proper management of a BESS, the excess generation originated by DG could 

be stored and used during peaks hours or the connection period of the new loads. This section presents 

a new intelligent controller capable of managing the additional energy generated by PV solar panels. It 

reduces the relative load on the distribution transformers. In addition, the total cost using PV solar panels 

and batteries is defined through an iterative process, and ideal size battery approach is calculated taking 

into account technical and economic constraints. 

Several simulations showed that, during some hours, the PV generation is higher than the load. On the 

contrary, the peak in Galapagos occurs in the night where the PV resources are not enough to satisfy the 

power consumption; means of DSM methods reduce the peak during this time. However, it is quite clear 

that the PV energy surplus in the morning could be stored and used later in the peak hour through a 

BESS; this system must be able to perform peak shaving and store energy for nighttime use. 

The design and implementation of an advanced Battery Management System –BMS- is conducted in 

[118], with continuous monitoring of voltage and current of each battery. The research presented in 

[119] assesses the storage aging of different types of batteries such Li-ion and Lead-acid for stand-alone 

systems, in order to have reliable lifetime estimation. It was stated in [120] that the energy storage 

technology would be the key to the future development of renewables. However, the limited practical 

applications of storage using batteries were linked to 1) typically, enough energy exists coming from 

generating sources whose generation could be easily varied to match the load in real time. In addition, 

a balance could be achieved using the interconnections between different zones. 2) there are no optimal 

tools available to manage i) operational cost’s optimization and ii) assess benefits of long-term storage. 

Further to those above, it is quite complicated to justify the economic gains obtained by using storage 

systems.  

A smart grid environment with a high penetration level of household´s storage batteries is presented in 

[121], where the utilities influence family’s consumption by means of electricity price structure, while 

the homes aim to reduce their bills using coordinate charging and discharging process. Also, it is 

assumed that the batteries will be charged only after the load has been satisfied. Through Nash 

equilibrium, the users are modeled as selfish but rational players. 

Relationship curve of BESS capacity versus economic benefits is presented in [122], in order to seek 

the best solution for BESS capacity and power allocation with the maximum economic advantages. A 

mechanism for optimal power flow management in grid-connected PV systems was carried out in [123], 

the proposal consists in increasing the PV penetration level taking advantage of the peak shaving service 

at lowest cost achieved with batteries. Reference [124] proposed a comprehensive methodology to 

optimally control lead-acid batteries operating under dynamic pricing schemes in both independent and 

aggregated ways and taking into account the effects of the charge controller operation, as well as the 

variable efficiency of the power converter, and the maximum capacity of the electricity network. A 

genetic algorithm was used to solve the optimization problem in which the daily net cost is minimized. 
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In reference [125], a probabilistic approach was used for sizing battery in a scenario considering TOU 

pricing; the research takes into account the uncertainties such as load demand, energy prices, and 

economic factors. In addition, the customers were allowed to sell power back to the grid. On the other 

hand, in [126], an evaluation of tariffs in the scenario with self-generation using photovoltaic generation 

and battery storage was presented. A case study in low voltage with semi-urban topology was analyzed 

in detail. In [127], the evaluation of the contribution of DR and Electrical Energy Storage – EES- to 

adequacy the supply was modeled and analyzed using operational flexibility parameters and constraints.  

Reference [128] covered comprehensively the individual, aggregated ESS applications and their 

corresponding benefits, compared the different technology selection methods and provided application-

specific controls. In addition, the combination of ESSs coupled with application-specific control 

methods to achieve the interdependent objectives of Distribution System Operator – DSO-, electrical 

utilities, retailers, equipment sellers, the government and the electricity customers were also reviewed. 

Reference [129] studied the placement of energy storage based on models of real LV distribution 

network, as well as the energy storage for peak power reduction. In addition, a comparative analysis of 

energy storage only versus energy storage with phase balancing and the additional benefits derived from 

voltage support and losses reduction was presented. In [130] and [131], real-time simulations have been 

conducted to analyze smart strategies with a high level of distributed generation in low voltage networks. 

Several uncertainties hinder the deployment of large-scale BESSs due to their relatively high capital 

costs, and to the difficulty to evaluate their performance, their lifetime and thereby, their potential 

financial benefits [132]. The main applications of the batteries in mid-term (min to hours < 5 h) for the 

utility surely would be: i) market unbalance, ii) arbitrage, iii) load balancing, iv) peak load shaving (2 

and 4 h duration), v) improving reliability vi) support for transport and automobile feeding, and vii) 

deferment of new generation and transmission investments. 

4.1.2.1 Cost Functions considering TOU tariffs 

A detailed model for determining the possibilities of storage in a context with TOU tariffs was presented 

in [125], although the presented scenario does not consider the PV generation. About the case that the 

end user is not allowed to sell energy, the total cost of the system is given by: 

0( )TC x C Cen   ( 4.3 ) 

Co is the capital cost including, purchase, installation, and maintenance (percentage of capital cost). The 

replacement cost is not included because the battery lifetime is not lower than the planning time, for our 

case (10 years) [133].  

The energy cost Cen involves the expense of the load in the presence of PV generation _load ppvC , the 

expense of charging the battery 
chC , and the savings originated for discharging the battery 

dchC .The PV 

generation cost is considered as free [123]. 

_ -e n l o a d p p v c h d c hC C C C    ( 4.4 ) 
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The model presented in [125] is now adapted to take into account the PV generation and three price 

levels.  

 

L_ _

_med __ 1
1 1

_peak _

( )*[( (n,i) (n,i))*Pri (n,i)
1 ( (n,i) (n,i))*Pri (n,i)(

1 ( (n,i) (n,i))*Pri (n,i)])

off ppv off off
N Sn

L ppv med medload ppv n
n i

L ppv peak peak

D i E E

E EC

E E 
 



 
  

    ( 4.5 ) 

Where N is the number of years,   is the discount rate, Sn is the season numbers of each year (winter, 

summer, etc.). D(i) is the number of days of the ith season. 

L_offE  , _medLE  and _peakLE  are the total energy absorbed by the load during the off-peak, medium 

consumption and on the peak periods, respectively. 

_ppv offE , _ppv medE   and _ppv peakE  are the total energy generated by the PV panels during either off-

peak or medium consumption or during peak periods. 

Prioff , Primed and Pri peak  are the energy prices of off-peak, medium consumption and on peak 

periods of the ith season of the nth year. 

The energy required by the load during the off-peak, medium consumption and on-peak periods could 

be evaluated using the integral between the start time and end time of the load power profile LP  of each 

period; using the trapezoidal rule  
b n-1(b-a) f(a)+f(b) (b-a)

f(x)dx» * + f(a+k* )
n 2 nk=1a
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Where in  is the subintervals number of each period,  b offT  and  a offT  are the upper and lower limits of the 

off-peak period.  b med
T  and a med

T  are the upper and lower limits of the medium consumption period,  peakbT  

and  peakaT  are the upper and lower limits of the on-peak period. 

In the same way, the energy generated by PV panels is 
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The charging and discharging cost could be defined as [125]: 

  1
1 1

1 1
( )* * ( , )*Pri ( * )

1
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ch offn
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        ( 4.12 ) 

  1
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1 ( ) * * ( , ) * P ri( * )
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C D i e n i n i
 

 

 
  
 




       ( 4.13 ) 

Assuming a daily balance ( , )e n i is the energy charged and discharged in a typical day by the BESS. 

Pri( * )n i  could be either Primed
 or Pri peak

 depending on which period is performed the discharge 

process. 

Let  
L_ _

_med _

_peak _

[( (n,i) (n,i))*Pri (n,i)

( (n,i) (n,i))*Pri (n,i)

( (n,i) (n,i))*Pri (n,i)]

off ppv off off

L ppv med med

L ppv peak peak

E E

E E

E E

 

 



 = A  

Then, the cost is expressed as: 
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  1
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    ( 4.14 ) 

 

Considering that PV generation reduces the energy consumption from the electric grid, the minimum 

cost is reached when the charge/discharge energy is maximal. 

4.1.2.2 Constraints  

To encourage customers to generate their own energy is an essential aspect considered within the new 

policies to convert Galapagos to an archipelago energetically self-sustaining. Hence, in [103] (author´s 

paper), the PV integration at low voltage level was analyzed. The next figure depicts the scheme. 

 

Fig. 4.18.  System in study 

The next equation represents the power balance in the system. 

( ) ( ) ( ) ( )EGRID PV BAT LOADP t P t P t P t        ( 4.15 )  

The next constraints equations represent the batteries’ degradation [123]. 

 

min max( )SOC SOC t SOC      ( 4.16 ) 

 

min max( )BAT BAT BATP P t P      ( 4.17 ) 

 

Where SOC is the State Of Charge of the battery, this value should be maintained between the levels 

suggested by the battery manufacturer. BATP  is the power in the battery at any instant. Also, these levels 

must be kept in conscious levels. In order to consider the peak shaving function, the next constraint is 

imposed. 

 -
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max( )EGRID GRIDP t P  1  ( 4.18 )     

Where:  

max
GRIDP  is the maximum value of power coming from the network. 

In [134], the Equation 4.18 is restrictive since if this restriction is not respected, a penalty is assigned. 

However, [123] defines flexibility in it, for distribution transformers this consideration is suitable. In the 

proposed model, the preservation of the battery´s lifetime is also considered as a constraint, which is in 

function of the number of cycles at a level of the depth of discharge defined by the manufacturer and 

the daily charging/discharging cycles --. In order to keep the lifetime equals to the value defined by 

the manufacturer, charging/discharging cycles must be: 

 1       ( 4.19 )   

Based on the battery size, the maximum daily energy that can be exchanged is:  

max
max *

100
e size


     ( 4.20 )     

Where max  is the value of the maximum depth of discharge of the battery [120]. The Equation 4.14 

determines the total cost and must take into account the technical and contractual constraints described 

in equations (4.15) -(4.20). Finally, the revenue considering selling energy to the grid would be: 

_en load ppv ch dchC C C R      ( 4.21 )    

Where 
dchR  is the revenue for discharging the battery. For more details, the reader is encouraged to read 

[125], [124] and [135].  

4.1.2.3 The system 

In this section, we calculate the battery size, which minimizes the cost function defined in Equation 4.14  

4.1.2.3.1 Setting 

The government gives the TOU electricity tariffs, ARCONEL has updated the tariff schedule in order 

to include a new tariff for EV (up to 10kw) [109] 

Prioff ,   0.05 ¢/kWh from 22 PM to 8 AM 

Primed , 0.08 ¢/kWh from 8 AM to 18 PM 

Pri peak , 0.10 ¢/kWh from 18 PM to 22 PM 

                                                      
 

 

1 The customer is not allowed to sell energy to utilities 
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Fig. 4.19 TOU scheme 

Figure 4.20 depicts the load in each phase after DSM strategy, which assumes that 15% of the loads are 

controllable [113] and that every household possesses at least one controllable device which participates 

in the load management process, with a 50% rebound integrated into the simulation [114]. 

 

Fig. 4.20 Load in each phase in the presence of PV generation. 

As we can see, due to PV generation, a reverse flow is originated between 7:23 and 16:06.  

4.1.2.3.2 Battery 

First, the proper battery must be selected. Nowadays, the two most developed types are i) Lead-acid and 

ii) Li-ion. A detailed battery type review is presented in [120] and [136]. The Li-ion battery possesses 

the greatest potential, a small size and low weight, higher energy density and efficiency near to 100%, 

life span (300 cycles at 80% of discharge), and self-discharge (1%/month). The main drawback is related 

to the investment cost (731-1045 USD/kWh). The lead acid (flooded type) battery has an efficiency η= 

72 -78% , life span 200-300 cycles at 70% depth of discharge, self-discharge 2-5%/month. The cost is 

relatively cheap 52-157 USD/kWh. 

A threshold value for assessing batteries in function of the prices, which takes into account the aging 

factor, is defined in [134] 

(max min )* Btarrif tariffKcrit
Z


       ( 4.22 ) 
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Where Kcrit is the maximum value for the unit cost for the admitted capacity loss, Z is the aging factor 

and B is the battery performance. According to the test made by [119], 43 *10Z  . Using the 

Galapagos data, Kcrit value is: 

5

4

(10 5)*10 *0,9
0,15

3*10
Kcrit






   

Different values for K are presented in [137], for instance for Lead-acid batteries, for Li-ion 

1,33
USD

K
Wh

 . According to Kcrit and K values for these two batteries types; the Li-ion battery would 

not be selected because the huge investment is not justified. The Lead-acid battery is selected for the 

next simulations, although its K value is equal to the Kcrit. Equation 4.14 requires an iterative process 

to evaluate differents batteries capacity in order to determine the optimal battery size. To comply that, 

the next table is used. 

TABLE XI BATTERY SIZE TESTED 

Name Size (kWh) Cost (USD) 

C1  1 100 

C2 4 400 

C3 8 800 

C4 12 1200 

C5 16 1600 

C6 20 2000 

C7 24 2400 

C8 28 2800 

C9 32 3200 

C10 36 3600 

C11 40 4000 

 

The battery must be charged during the period when the PV generation exceeds the consumption. It 

means 0.6h with Prioff
 and 8,1h with Primed

. The discharge must be performed immediately after, in 

order to reduce the electric power coming from the grid. Using equations (4.6) to (4.11) and the TOU 

scheme, we can calculate _load ppvC . In this case, _load ppvC = USD 20,33  
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TABLE XII COST DETERMINATION FOR LOADS WITH PV 

Period 
 

Time 

Energy  

L1 (kWh) 

Energy  

L2 (kWh) 

TOU tariffs  

(USD/kWh) 

Total Cost ($) 

1  0:00-8:00 86,37 81,56 0,05 8,39 

2 8:00-18:00 -59,64 -63,20 0,08 -9,82 

3 18:00-22:00 94,63 89,76 0,1 18,44 

4 22:00-24:00 35,10 30,78 0,05 3,29 

 

In the same way, the charging energy cost defined in Equation 4.12 would be calculated considering 

Table XI and XIII. 

TABLE XIII BATTERY CHARGING PERIODS  

 

Period 

 

Time 

 

TOU tariffs (USD/kWh) 

1 07:23-08:00 0,05 

2 08:00 -16:06 0,08 

 

In order to maximize the discharging energy, the exchange energy needs to be equal to the charging 

energy. The Assumption 1 is defined as the energy will be discharged at the same time that it was 

charged, thus in 8,711h. Therefore, the discharging process is performed between 16h06 and 00:00. 

With this assumption, three periods are defined for discharging energy. 

TABLE XIV BATTERY DISCHARGING PERIODS  

 

Period 

 

Time 

 

TOU tariffs 

(USD/kWh) 

1 16:06-18:00 0,08 

2 18:00 -22:00 0,10 

3 22:00-00:00 0,05 

Once executed the evaluation of Equation 4.14 using Table X – XIV, 0,9ch dch    , a fixed discount 

rate 1%  , a fixed annual increment of 0%2 of the tariff and a fixed annual increase of 5% of the load 

                                                      
 

 

2 The tariff in Ecuador is subsidiary and does not reflect the real cost of energy. 
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[9]. The results show that there is no profitability during 10 years with the installation of batteries at low 

voltage level. 

 

Fig. 4.21 Total Cost for different batteries’ sizes. 

In Galapagos, when the peak is reached, it is necessary to start thermal generators. Normally, the 

payment for those is expensive, about 0,40 - 0,45 USD/kWh. Thus, a new regulation of ARCONEL 

defines 0,57 USD/kWh for PV generation in order to encourage changing the technology [138]. 

Based on those above, we define the Assumption 2 for the batteries considered such as a distributed 

energy resource –DER-: the consumers using batteries to reduce the peak will be beneficiaries of a TOU 

of 0,33 USD/kWh. Also, a fixed annual increment of 3% is considered. The results are depicted in the 

next figure. 

  

Fig. 4.22 Total Cost for different batteries’ sizes considering different TOU for batteries. 

The value that reaches a cost near to zero is around C6 (size of 20 kWh, see Table XI); for the 

simulations, we chose 19,5 KWh. 

4.1.2.4 Simulations 

The system in this study is modeled in the Matlab/Simulink environment; the selected simulation 

method is the Phasor Mode, instead of Time Domain Mode, because we do not consider dynamic 

phenomena and with this model, the simulation/computing time is faster. Figure 4.23 depicts the model 
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built in, which is the network defined in Chapter 3. Since the battery is installed at transformer secondary 

bus bar, the 40 clients are grouped in 2 loads, one per phase. 

 

Fig. 4.23 Simulink Model based in [135] 

A simple model for modeling the battery is built, which shows the electric discharge capacity [Ah] and 

SOC that have been taken from [135]. The advantage is that it is compatible with the Phasor Mode. 

( )
 [Ah]

3600

t

o
i t dt

Capacity 


       ( 4.23 ) 
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         ( 4.24 ) 
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i t dt q
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    ( 4.25 ) 

The battery is connected between L1 and L2, thus to 240V. This approach was chosen because it is too 

expensive to install a battery by phase. In addition, one of the primary objectives is to reduce the relative 

load in the transformer. 

4.1.2.4.1 Controller 

Once configured the model within Simulink, a controller for the respect of the constraints defined in 

Equations 4.16 – 4.20 is proposed and implemented. An admissible value for the depth of discharge is 

50% 

min 40%SOC   

max 90%SOC        

(0) 40%SOC        
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max min 12BAT BATP P KW          

( ) 50EGRID TransformerP t Pn kVA          

1             

4.1.2.5 Results 

Figure 4.24 shows the total load, in other words, the load in phase 1 plus load in phase 2. The peak is 

reached at 19:21 with a value of 61,1 kVA. The section marked in red shows a negative power load, 

which is originated by the PV Generation.  

 

Fig. 4.24 Total Load (Phase1 + Phase 2)  

The next figure shows the load seen at transformer secondary side. The maximum demand is now 49,1 

kVA due to the battery action. The section marked in red show the reverse flow. As the reader can see, 

the constraint related to the assigned power of the transformer Pn (50kVA) is now respected.  

 

Fig. 4.25 Power at transformer (Phase1 + Phase 2)  

The FU is 98%; in [103], the minimum FU achieved with the proposed Smart Techniques is 128%. 

Hence, a considerable reduction has been reached. The next figure shows the power in the battery 

(receiver convention), the controller starts the charging process when the PV generation is higher than 

the load until the generation is equal to the load. After that, the discharge process begins. As the load 

during the discharge process is higher; the discharging energy is consumed in less time (6,91h) than the 

time used for charging. In figure 4.26, it is also depicted the charging energy Ech and the discharging 

energy Edch. By calculating the areas, we can say that Ech = Edch.  
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Fig. 4.26 Power Battery connected at 240V, Exchanged battery energy  

In the next figure, we can see the SOC. The lower and upper levels are respected, as well as the constraint 

related to the number of cycles per day. In addition, the maximum allowed depth of discharge is 

respected as well. 

 

Fig. 4.27 SOC, one cycle per day  

In order to better illustrate the behavior of the whole system, Figure 4.28 is presented. At point A, we 

see the beginning of the charging; the point B is the charging end point. The battery and the electric grid 

feed the load at point C (peak), respecting the power balance. Point D is the discharging end point.  

 

Fig. 4.28 Whole system behavior  

4.1.2.6 Analysis and Discussion of the Results 

According to the results, the controller suitably performs its function. It means that all constraints are 

respected. However, in Figure 4.25 and Figure 4.28, it is possible to see that the energy coming from 
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PV could be reversely injected in the transformer. Thus, it is used for charging the battery, because a 

maximum limit for Pbat is imposed. We could change this limit (it was calculated as

_at peak transformerPload Pn ), but it will not be used because this value is more than enough to reach a 

relative load under 100%. Another important case noted in the Figure 4.27 and Figure 4.28 is that the 

controller is more efficient than the Assumption 2, because, in function of the load, it decides how much 

energy to discharge. Hence, the discharging time is lower than the charging time. 

Once executed the simulation and obtained this new time value, the calculus for cost discharging 

battery should be repeated to have more precise value for battery size. Finally, Equation 4.14 does not 

take into account the revenue generated by selling energy to the grid; therefore, Equation 4.21 must be 

evaluated, and surely, the battery size will change (lower size), and the benefits from the end user would 

improve. 

An important topic identified during the previous simulations is the phase unbalance. The next section 

will present a proposal to reduce it in the presence of DGs. 

 

4.1.3 Automatic Phase Switching System 

With the advent of Smart Grids and the strong deployment of DGs, especially PV panels, nowadays the 

end-users are able to install local generation, generally single-phase because of low power levels (some 

kW). It means that now, the DSO has to deal with the effects derivate of DGs such as bi-directional 

flows or increase in the losses. The most common approach is connecting the single-phase PV system 

in the same phase of the load; however, it could generate unbalance increase and voltage problems. In 

[131], a methodology for analyzing the best phase for connection of single phase DGs is presented. 

Using weighting functions, each phase is classified; the phase with lower coefficients is chosen. 

Nevertheless, in the medium or long-term, the selected phase could not be the best option. In order to 

avoid having permanently the same phase and to enable to the PV for choosing the optimal phase based 

on network state, in [41], a system named “Commutation Automatique de phase – Automatic Phase 

Shifting” –CAP-APS has been patented. 

The system is designed for working with configurations 3P4W; it means 3 phases - 4 wires (three 

phases+neutral) and then with single-phase PV. It could also work with other types of DG, interruptible 

loads, EV charging stations. The next figure illustrates the concept. 
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Fig. 4.29. CAP System [41] 

 

The patent developed for CAP system must be tailored for working properly in other configurations; in 

the context of this thesis, the CAP system would be adapted for operating in the most typical 

configuration in Galapagos, in other words, 1P3W as is depicted in figure 3.1. It means that the system 

would choose between Phase L1 or Phase L2, see the next figure. 

 

Fig. 4.30. Tailored CAP system for Galapagos 

 

For testing purposes, the same LV network is chosen than previously, and three CAP systems are 

installed with different distances from the transformer; One at the secondary bus bar of the transformer, 

one at the end of a feeder, and one approximately in the middle of a feeder, see next figure. 
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Fig. 4.31. Topology for testing CAP System 

 

For this scenario, the PV systems installed in each household (2.150Wp) are removed, except those of 

the clients equipped with a CAP system. The deadband used for switching is 0,96. In other words, each 

time the voltage reaches this value will have the effect to switch to another phase.  

 

4.1.3.1 Algorithm 

At the initial state, the PV could be connected in any phase. Obviously, the voltage profiles in each node 

will depend on the initial phase chosen for PV connection. For instance, the Figure 4.32 shows the 

profiles in the closest node when the Phase 1 or 2 is selected. 

The algorithm uses the local voltage measurements of the two phases and the current produced by the 

DG as input data. These quantities make it possible to perform an estimation of the impact of a switching 

on the phase voltages and give thus a switching validation if required. 
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Fig. 4.32. Voltage profiles before installing CAP system 

 

A phase change is allowed if the two inequalities remain valid for a minimum time.  

(V/ )( * )*0,96j pj W DG iV S P V    (4.26 ) 

max0,1*( )DG DGP P    (4.27 ) 

Where: 

i   the current phase  

j  the other phase 

iV  Phase i  amplitude 

(V/ )pj WS phase j  sensibility at the moment of the active power insertion 

DGP power produced by DG 

For validating Equation 4.26, the voltage in the phase i must be 4% higher than the estimated one of 

phase j after the switching. The phase j voltage is determined by means of (V/ )pj WS . Moreover, Equation 



Development of optimal energy management in Galapagos Islands towards Smart Grid 

 

 

 
 

4.27 guarantees that the DG supply is at least 10% of its rated capacity, which means that the impact of 

a switching will not be negligible. 

4.1.3.2 Implementation 

The load curves, the LV network, the EM average profile and the IC curves are the same that those 

defined in Chapter III. At the beginning of the simulation, the Phase L1 is chosen arbitrarily for 

connecting the PV. Once connected the PV through the CAP system, the model is set to automatic to 

select the best phase option for the PV connection. The next curves show voltages of Phase 1 and 2 i) 

without PV, ii) with PV connected to Phase 1 without CAP system iii) with PV with CAP system. 

 

Fig. 4.33. Closest Node 

The Figure 4.33 illustrates that installing PV at the closest node tends to increase the voltage of the 

connection phase when the PV products power. The CAP system allows coming back to a similar 

situation of the one where there is no PV, i.e., the unbalance between phase voltages due to the insertion 

of PV is substantially reduced. We can also notice that the CAP system is not able to solve the problem 

of voltage drop at 19:30 since there is no PV production at this time. However, in the previous section, 

we observed that with the employment of BESS, the maximum peak, which is responsible for the voltage 

drop, is deleted. Therefore, the solution that considers the application of Smart DR+TOU, BESS and 

CAP system at the same time, will be able of shifting consumption along the whole day, shaving the 

maximum peak and reduce the unbalance.  

In order to determine the improvements concerning to unbalance, the next equation is defined. 

 

24

1 2
1

1 2i i
i

U V V


       ( 4.28 ) 

Where: 
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1 2U  Voltage difference between phase 1 and 2 along the day 

1iV  Voltage in phase 1 in the ith hour 

2iV  Voltage in phase 2 in the ith hour 

Thus, for the initial case without PV generation 1 2 4,74vU  , when the PV panel is connected to the 

Phase 1, 1 2 16,07vU  , and when the CAP system is installed in the closest node 1 2 7,82vU   

Regarding the middle node, the effect of CAP system is similar, but a bit better 1 2 11,68vU  . However, 

there are two negative commutations (red one around 12:48 and blue one around 13:16). See Figure 

4.34 

 

Fig. 4.34. Middle Node 

The values reached are 0,88 p.u. at Phase L2 and 0,87 p.u. at Phase L1, nevertheless, those peaks last 

less than 2 min. Thus, the effect is negligible since the quality standard in Ecuador establishes a 

maximum duration of 10 min for a voltage drop under the standard limit [44]. 
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Fig. 4.35. Lowest voltages during the switching 

Finally, the next figure shows the results for the farthest node, a slight improvement of the voltage 

profile is registered, 1 2 10,83 VU  . 

 

Fig. 4.36. Farthest Node 

 

After several simulations and detailed analyses of all the curves, with the chosen conditions, the PV 

seems to have only a slight effect on the voltage profile of the phase where it is connected. However, 

the results are promising because along the day the 1 2U  value improved considerably after CAP 

installation. In order to notice a better effect the follows actions could be taken into account: 
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1. The unbalance should be higher, this LV network has 1 2 4,74vU  , but other LV networks 

surely would have different values. 

2. The PV power must be increased, indeed, if the PV has a small effect on voltage, the CAP 

system is not useful. 

3. More CAP systems could be deployed, as simulation considered 1 per node, it means in total 3. 

It is important to mention that EM and IC do not generate an increase in the unbalance since they are 

connected to 240 V.  

Once analyzed strategies in low voltage such as Intelligent DSM, BESS, and CAP system, it is worth to 

investigate the effect of ADA functions in Medium Voltage. This is the purpose of the next section. 

4.2. Medium Voltage – CYMDIST 

Once proposed different innovative solutions in low voltage, this section will address the 

implementation of ADA functions in Medium Voltage: the network reconfiguration, recloser 

deployment, and VV0 (Volt-Var Optimization) functions are chosen for the analysis because they have 

been widely studied in the literature these last years. These functions would improve reliability, reduce 

losses and keep voltages in regulated limits respectively, with small investments.   

4.2.1  Reclosers deployment for improving reliability 

In this section, we propose first to show the need of reliability improvement in the Galapagos 

network. We have thus developed a predictive reliability model. The objective of this model is to 

represent the average reliability of the area under study and, later, to estimate how it will be improved 

by the reclosers implementation [139].  

In Ecuador, the reliability standard is defined in [44]. Reliability indices are based on frequency and 

duration of the interruption. There are two stages, the first one defines global indices at MV feeder and 

whole network level, and the second one defines individual indices at the client level. The interruptions 

that are taken into account in the indices calculation are those which last more than 3 min (momentary 

interruptions). 

4.2.1.1 Indices 

The indices are calculated for the whole network (Rd) and each MV feeder (Aj)  

inst

i
i

Rd kVA

kVAfs
FMIK


                      ( 4.29 ) 

Ajinst

i
Aji

Aj kVA

kVAfs

FMIK


                      ( 4.30 ) 
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i

Rd kVA

Tfs*kVAfs
TTIK


     ( 4.31 ) 

Ajinst

Aji

A

i
Aji

Aj kVA

Tfs*kVAfs
TTIK

j


     ( 4.32 ) 

           

Where: 

FMIK: Cumulated Average Interruption Frequency per rated kVA installed and per year, expressed in 

faults per kVA 

TTIK: Total Interruption Time per rated kVA installed and per year, expressed in hours per kVA. 

i
 : Sum of all interruptions of the service, i is an interruption with duration higher than three 

minutes 

jA

i
 : Sum of all service interruptions in the "Aj" feeder in the period under analysis. 

kVAfsi: kVA out of service at each of the i interruptions. 

kVAinst: Rated kVA installed. 

Tfsi: Time out of service, for interruption i 

Rd: Distribution Network 

Aj: MV feeder j 

 

The reliability indices are reported monthly to ARCONEL; the MEER is responsible for setting the 

limits of each index. For Galapagos case, the limit for FMIK is 8 and 15 for TTIK. Next Table shows 

the monthly value of the indices in 2016 for Feeder 1 of Santa Cruz island. 

TABLE XV FMIK-TTIK  

Period 

FMIK 

Feeder 1  

SCZ01 

TTIK 

Feeder 1  

SCZ01 

Jan 1,51 6,79 

Feb 1,48 1,66 

Mar 2,01 6,51 

Apr 1,03 4,05 
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May 0,00 0,00 

Jun 1,60 0,84 

Jul  -     -    

Aug 2,00 2,67 

Sep 0,48 0,48 

Oct 1,03 2,03 

Nov 3,25 1,98 

Dec 2,44 6,20 

Total 16,83 33,21 

 

As the reader can appreciate, the values for FMIK and TTIK in the year 2016 have exceeded the 

regulation limits in more than twice. Thus, an improvement of the network is urgent. 

As was mentioned previously, the medium voltage network is modeled in CYMDIST. This 

software has a powerful module for assessing the reliability. However, CYMDIST complies with IEEE 

standards; it means that it works with well-known indices SAIFI, MAIFI, and SAIDI defined in [140]. 

𝑆𝐴𝐼𝐹𝐼 =
∑     

    
        ( 4.33 ) 

𝑀𝐴𝐼𝐹𝐼 =
∑      

    
      ( 4.34 ) 

𝑆𝐴𝐼𝐷𝐼 =
∑     

    
        ( 4.35 ) 

 

Where: 

SAIFI: System Average Interruption Frequency Index 

MAIFI: Momentary Average Interruption Frequency Index  

SAIDI: System Average Interruption Duration Index   

 

Therefore, the assumption based on [139] is considered: The index FMIK is equivalent to SAIFI, and 

the index TTIK is equal to SAIDI. The main advantages of using these indices are. 

1. It exists an extensive database prepared by the IEEE Distribution Reliability Working Group 

that allows comparing the reliability of any Utility with a wide range of North America utilities.  

2. There is abundant specialized literature and reports of experiences and projects carried out by 

the industry with the aim of improving these reliability indices.  
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3. In addition, these indices are based on customers served by the utility, whereas the indices 

currently used in Ecuador estimate the average reliability per installed kVA. In this sense, using 

the SAIDI and SAIFI indices is considered as an intermediate step in the final long-term 

objective considered by MEER that is estimating the reliability at the individual customer level. 

4.2.1.2 Predictive Model 

The methodology described in [141] and [139] is implemented within CYMDIST in order to determine 

a predictive model. Using the Reliability Assessment Module –RAM-, the model aims to represent the 

baseline or initial reliability of the feeder, in other words, the current situation of the system before any 

implementation. In the predictive model, changes in the reliability parameters (failure rates and average 

repair times) produce modifications in the reliability indices such as SAIFI and SAIDI, as well as TTIK 

and FMIK. 

In order to calibrate the model, an iterative process must be executed; the objective is to equal the 

reliability indices calculated by RAM with the target values, see Table XVI. 

TABLE XVI TARGET VALUES 

 

 

For establishing the MAIFI, according to the expert criterion of distribution technicians, the momentary 

interruptions are likely 25% more. Considering that these professionals know very well the network and 

work on it all the year, this value is accepted as a good approximation. 

Unfortunately, ELECGALAPAGOS has no historical information of failure rates or average repair 

times. Hence, several simulations with RAM has to be carried out to determine the suitable values for 

reaching the target values of the initial situation defined in Table XVI. According to [142] and  [143], 

the relationship between the permanent failure rate of overhead lines with SAIFI index is linear and the 

relation between average repair time of overhead lines with SAIDI index is approximately linear. The 

next figure depicts the process developed to calibrate the failure rate – FR- and the average repair time 

–RT-. 

SAIFI SAIDI MAIFI 

16,83 33,21 21,03 
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Fig. 4.37. Calibration Flow Chart 

In addition, the next parameters are configured in the RAM  

1. Fuse saving scheme 

2. Reconnection and three-phase blocking 

3. The permanent and momentary faults were classified according to the following percentages, 

80% single-phase, 15% two-phase and 5% three-phase [144]. 

4. Momentary interruptions under 3 min. 

5. Switching time of manual devices equal to 45 min. 

6. Restoration downstream 

7. Restoration upstream 

8. Maximization of number of restored clients 
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Once executed the whole calibration process, the rates are obtained for reaching the target values. Next 

table shows the calibrated values. 

TABLE XVII RATES FOR SCZ01 FEEDER 

Type 

Failure Rate 

(int/year/km) 

Momentary  

Failure Rate 

(int/year/km) 

Repairing Time 

(h/int) 

Overhead 4,26 0,091 0,05 

Underground 1,28 0,013 17,20 

 

With the values defined in Table XVII, the SAIFI, MAIFI, and SAIDI identified as targets are 

accomplished. Now, the improvements in the reliability due to reclosers deployment can be quantified. 

4.2.1.3 Implementation 

A recloser is defined in [145] such « A self-controlled device for automatically interrupting and 

reclosing an alternating-current circuit, with a predetermined sequence of opening and reclosing 

followed by resetting, hold-closed, or lockout operation » 

CYMDIST has another module named “Optimum Recloser Placement,” which suggests optimal 

locations where reclosers could be installed, based on user-defined targets to improve network reliability 

[146]. Considering that Galapagos indices are upper the required limits, the objective function must 

consider the improvement of those indices. Let J denote the objective function 

𝐽 = min (𝑆𝐴𝐼𝐹𝐼 ∗ 𝑘1 + 𝑆𝐴𝐼𝐷𝐼 ∗ 𝑘2)    ( 4.36 ) 

 

Where k1 and k2 are the weighting values, in this case, 1 for both of them. It means that SAIDI and 

SAIFI would be minimized in the same proportion. The constraints are i) rated current of reclosers 

(150A), ii) ignore underground sections, iii) ignore bi-phase sections and iv) ignore the downstream 

sections of the fuses. 

A sequential method for the optimization is chosen, due to its simplicity and its good results, even if this 

kind of method is sub-optimal; this approach places a first recloser at each location in the network and 

finds the best location before repeating the same process with the second. In addition, the maximum 

number of reclosers per feeder is set to four, because it is often complex to coordinate more than three 

reclosers in series. For instance, in [147], a scheme with two reclosers in series and one additional in 

open state for performing transfers between feeders is presented. Table XVIII show the base scenario of 

reliability in Santa Cruz on Feeder 1. 

 

 

 



Development of optimal energy management in Galapagos Islands towards Smart Grid 

 

 

- 93 - 
  

TABLE XVIII RELIABILITY SCZ01 FEEDER 

SAIFI 

int/consumer-year 

MAIFI 

int/consumer-year 

SAIDI 

hour/consumer-year 

ENS 

kWh/year 

16,79 21,49 33,22 74460,627 

 

The ENS is calculated in CYMDIST as follows [148]: 

𝐸𝑁𝑆 = ∑ 𝑙𝑜𝑎𝑑 ∗ 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛       ( 4.37 )  

 

Where:  

ENS: Energy not supplied during a year due to the interruptions in the period. 

The base scenario is depicted in the next figure. Nowadays there are two reclosers, one of them in the 

feeder header and the other one downstream. The reclosers, named R1 and R2, are identified by means 

of a green circle, all the sections in blue are three-phase. 

 

Fig. 4.38. Base Scenario in Feeder 1 

 

Once executed the sequential analysis for optimal placement of reclosers, two additional reclosers are 

suggested, and their location is shown in figure 4.39. In addition, a fuse exists at the interconnection 

node between Feeder 1 and Feeder 2, which is replaced by a normally-open recloser (RI). Table XIX 

shows the improvements on the indices. 

R1 

R2 
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Fig. 4.39. Scenario with reclosers in Feeder 1 

 

TABLE XIX RELIABILITY SCZ01 FEEDER 

# Reclosers SAIFI 

int/consumer-year 

SAIDI 

hour/consumer-year 

Objective Function 

% 

Improvement 

Base 16,79 33,22 100 - 

1 14,60 30,19 88,95 11,1% 

2 14,34 27,88 84,67 4,8% 

3 14,27 25 78,5 7,2% 

 

The results are promising; however, it is worth noting that the value of one recloser is about USD 20.000. 

The ENS in the scenario with four reclosers is 56.494,479 kWh/year. According to [149], the ENS cost 

is 1,53 USD/kWh. Thus, in a year, the savings would be approximately 27.488 USD; in consequence, 

the return on investment (ROI) will be achieved in 2,18 years, which is a very short period. It is also 

worth noting that the last generation reclosers have the options of single-phase trip and single-phase 

lock. Considering those options, the reduction in the indices is extremely effective, see next Table. 

 

 

 

 

R1 

R2 

R3 

R4 

RI 
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TABLE XX FINAL RELIABILITY ON SCZ01 FEEDER 

SAIFI 

int/consumer-year 

MAIFI 

int/consumer-year 

SAIDI 

hour/consumer-year 

ENS 

kWh/year 

8,21 12,03 14,65 38289,715 

 

4.2.2 Network reconfiguration 

The Galapagos distribution network, as it was mentioned, previously, has three feeders in Santa 

Cruz Island. Only one interconnection point exists, between Feeder 1 and Feeder 2. Feeder 3, classified 

as rural, does not have any interconnection point. In the interconnection point between Feeder 1 and 

Feeder 2, a normally-open fuse is installed. The previous section defined as a good strategy to replace 

it by a recloser to allow transferring load in case of contingencies. This change also enables the network 

to perform reconfiguration actions to reduce losses, which is the purpose of this section.  

For this purpose, CYMDIST uses the Network Configuration Optimization module, which 

minimizes the losses or the voltage violations in the network by changing the network topology, while 

respecting voltage and loading limits [150]. The next figure shows the two feeders, the switch 

disconnector in orange and the recloser in green, interconnection node is indicated. 

  

Fig. 4.40. Initial Topology: Feeder 1 and 2  
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4.2.2.1 Implementation 

The analysis must be executed over the two feeders, the configuration parameters for the module as 

follows: 

1. Allow initial overload conditions 

2. Energy cost 0,09 USD/kWh 

3. Overvoltage limit = 105% 

4. Under voltage limit= 95% 

5. All the switchgear devices are considered  

The module can be configured to achieve different objective functions such as i) minimize overload, ii) 

minimize voltage violations, iii) balance feeders and, iv) minimize losses. For this study, the initial 

actuators are 2 switch disconnectors + 9 reclosers, the objective is the minimization of losses. The 

algorithm is sub-optimal since that choose the best solution for 1 switch, then the best solution for a 

second switch keeping the first one and so on, and then organize the results according to the input criteria 

and respecting the limitations imposed by the user. For instance, an option that allows adding new switch 

disconnectors is activated.  

Thus, a new topology for Feeder 1 and 2 is configured; the change consists in transferring 365 kVA 

from Feeder 1 to Feeder 2. For achieving it, recloser R4 (Figure 4.41) is closed, and the switch S1 (added 

by the module)  is opened, see next Figure 4.41. 

  

 Fig. 4.41. Final Topology after reconfiguration: Feeder 1 and 2  

R4 

S1 
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With the actions of closing and opening an improvement in losses of 0,98 % is reached; naturally, we 

can conclude that this small value does not merit any real action. Better results are not evidenced since 

the network has not enough interconnection points and both feeders are radial. See next table for detailed 

results. 

TABLE XXI INITIAL AND FINAL CASES  

Feeder Initial Load -kVA Final Load -kVA Initial Losses -kW Final losses -kW 

SCZ01 2450,4 2083,4 61,30 48,41 

SCZ02 2825,0 3190,7 62,36 74,04 

4.2.3 Volt/Var Optimization -VVO 

According to [151] a standard definition for Vol/Var optimization is as follows : 

Volt/VAR optimization (VVO) is a process of optimally managing voltage levels and reactive 

power to achieve more efficient grid operation by reducing system losses, peak demand or energy 

consumption or a combination of the three. 

The Volt/VAR regulation consists in supplying VARs to the network by means of different devices; for 

substations, capacitor banks, voltage regulators and power transformers with on-load tap changers –

OLTC- are considered. On the other hand, along feeders, capacitor banks and regulators are considered. 

Experience has proven that overall costs and performance of operating a power system can be best 

managed if voltage control and reactive power control are well integrated [152]. One type of VVO 

solution is the strategy known as Conservation Voltage Reduction –CVR-, which is based on lowering 

the supply voltage to consumers to reduce the energy consumption while maintaining customer service 

voltage within statutory limits [153]. A significant benefit of CVR is to flatten voltage profile, doing 

this reduces overall system demand by a factor of 0,7-1% for every 1% reduction in voltage. 

For performing the VVO analysis, the Volt/VAR Optimization module of CYMDIST is used. This 

module finds the best configuration of the installed capacitors, the inline regulators and the transformers 

with load tap changers in a distribution network [154] using sub-optimal algorithms. Some important 

details need to be considered i) there are neither regulator nor capacitors initially installed in the 

distribution network, ii) in the current situation, there are no violations of the voltage limits. Thus, there 

is no real voltage problem to solve. Figure 95 shows the voltage profile in phases A, B, and C along the 

feeder, the minimum voltage is 0,95 p.u. 

The configuration of the module includes: 

1. CVR method, it means minimizing the active power 

2. The objective is to remove abnormal states as under voltages 

3. Constraint of Power factor as minimum 0,95 
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Fig. 4.42. Voltage Profile 

 

As expected, since there were no violations in the voltage profile, the VVO module offers no solution. 

Additionally, implementing capacitor banks or regulators in the distribution network is not considered 

an alternative at least in the short-term, because the voltage levels are acceptable. 

4.3. Conclusion 

A Smart DSM program composed of DR+TOU has been developed and implemented. This program 

uses a practical and ingenious approach in order to modify the load curves and to create new ones, and 

these new curves consider peak reduction and shifted energy along the whole day. In addition, the 

developed algorithm takes into account an appliance controller in each house to neutralize the rebound 

effect and keep the load curve without new higher peaks.  

Despite this new Smart DSM, overloads in the transformer still exist, so we investigated an analysis 

for decreasing the relative load in distribution transformers through BESS application. In order to define 

the battery size, a cost function minimization has been proposed. This function takes into account 

technical and contractual constraints. After the corresponding modeling and economic evaluation, it was 

determined that Li-ion batteries are not profitable at low voltage level, the lead-acid batteries are just on 

the border to be considered, a controller to manage the charging/discharging process is designed, 

implemented and tested. A new TOU scheme has to be implemented in Galapagos if the government 

wants to encourage end-users to install BESS system. 

For managing unbalances and voltages induced by the connection of new single-phase devices to the 

grid, the automatic phase shifting (CAP) system offers interesting benefits such selecting the best phase 

for connecting DGs in this particular case, PV panels. Results of insertion of the CAP system in 

Galapagos LV network show new capabilities to reduce adverse impacts of connection of single-phase 

PV systems. 
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The reliability of the distribution network can be drastically improved by the installation of remote-

controlled reclosers and activating the option of trip/lock single-phase, with a quick Return On 

Investment. Optimal reconfiguration of the network in the case of the feeder 1 is theoretically possible; 

however, its practical application is not viable for the Galapagos case since the feeders have not enough 

interconnection points. The VVO strategy for the particular case of the feeder 1 does not find any 

improvement proposal due mainly to the lack of elements for the reactive energy injection and to the 

fact that the current voltage magnitudes are in ranges that comply with the regulation. 

The next present a methodology for analyzing the whole Santa Cruz electrical system in the presence of 

a strong integration of DGs, as well as the management of energy in the island, in order to move towards 

a Smart Island. 
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Chapter 5 Analysis of medium and low voltage 

networks on a large scale 
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This chapter deals with the results and their analysis of the simulation of the whole distribution 

network of Santa Cruz. In chapter four, a representative LV network has been selected in order to 

quantify the impact of new services. Some studies were carried out also on the MV network. However, 

it is an essential point to get a detailed vision of the changes that would suffer the whole distribution 

network, considering the strong aim of implementing smart grid facilities in the near future in Galapagos 

islands. Thus, an analysis considering all the clients and the three feeders must be accomplished. Santa 

Cruz network is composed as follows:  

1. There Medium Voltage feeders 
2. 465 MV/LV Transformers 
3. 6625 customers: 5364 residential, 1118 commercial, 130 industrial and 13 lighting streets 

 
 

CYMDIST includes a powerful interface to create the electrical model [155], using the information 

coming from GIS and a database of electrical parameters. 

 

Fig. 5.1. CYMDIST Model 

 

Thus, within CYMDIST, the author has modeled the whole network (see Figure 5.1). Hence, assessing 

the overall impact at the main MV substation when all the clients have IC, EM, and DG, is feasible. As 

the purpose of the analysis is focused at substation level, the simulation begins from feeder’s real 

measurements to build end-users load curves, so that the 6625 clients are modeled. For the inclusion of 

new services, the analysis would consider coincidence criteria or use average profiles in order to reflect 

the impact at substation level.  
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5.1 Strong Integration of DGs 
 

This section compares the base scenario, which considers just typical clients connected to the 

network, with a future scenario with new services. The percentage of integration of IC, EM, and DG are 

defined in function of sociological studies (carried out by UPV with the participation of the author during 

the whole process) based on several meetings with different sectors in Santa Cruz, by means of focus 

groups, the acceptation degree of new technologies was defined [156]. 

The information available for the analysis is composed of the Commercial Database with consumers 

consumption, Geodatabase with the geographical placement, CYME model with electrical topology and 

feeder load profiles, which have been measured by ELECGALAPAGOS in the MV substation. Starting 

from these real measurements, our first purpose is to propose a methodology to build end-consumers 

load profiles, which are not available, of course, as there are no measurement devices today at this level. 

These client load curves will then be included in the detailed network model in CYMDIST to carry out 

the simulations. 

ELECGALAPAGOS has then daily load profiles at substation level; the maximum profile of April is 

selected since it represents the highest consumption during the year in Santa Cruz. 

 

Fig. 5.2. Load Profiles in the feeder Header 

The above figure depicts the three load profiles for the base scenario, the curves correspond to the day 

with the maximum load profile of April, and the maximum in each feeder is identified.  We can see that 

the maximum power in Feeder 2 and 3 is reached at 19:00, whereas the peak in Feeder 1 occurs at 18:45. 

The maximum load at the Santa Cruz MV substation is 6.669,109 kVA (sum of the power peaks of the 

three feeders, which are coincidents).  

For determining the base load profiles at the consumer level, the next equation is applied in each feeder. 
Thus, all the clients have the same load profile shape, the difference will be the average values. 
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𝐶𝑃𝑟𝑜 =
∗

∑#      ( 5.1 ) 

Where: 

𝐶𝑃𝑟𝑜      Base Customer Profile. 

𝐶𝑜𝑛𝑠     Average Consumption of the i-th customer in kWh of the last 6 months. 

𝐿𝑃  Maximum Feeder Load Profile of April in kVA. 

∑ 𝐶𝑜𝑛𝑠#  Sum of the total consumption in April of the Feeder in kWh. 

 

The next figure shows some 𝐶𝑃𝑟𝑜    for different clients generated after applying Equation 5.1 

 

Fig. 5.3. Examples of 𝐶𝑃𝑟𝑜   for different clients. 

 

To build the new “smart grid” load curves, IC, EM and DG profiles must be added to this base profile, 

as well as the natural growth of population and the DSM strategy. The next figure depicts briefly the 
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methodology followed in order to modify the consumer’s profiles for considering the inclusion of DG, 

EM, DG, and DSM (DR+TOU). 

 

Fig. 5.4. Methodology applied on a large scale  

 

For the IC integration, the next profile is considered since this represents an average profile of IC seen 

at substation level.  

 

Fig. 5.5. Average Profile of ICs 

Concerning EM, the average profile of EM defined in Figure 3.18 is considered. For the case of DG, in 

order to be conservative, the minimum curve of PV generation in p.u. is considered. If we remember, it 

is possible to install 2150Wp in the roofs of each client, therefore this factor also should be integrated. 

The DSM strategy defined in chapter 4 is considered in each client. As the reader can notice, in the base 
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customer profile, average profiles will be integrated for IC and EM; this consideration is valid since the 

analysis seek to determine the impact in the substation and at this level, the profiles are much more 

aggregated. Another important consideration is that the level of participation of residential clients in the 

DSM has to be determined previously as well as the penetration degree of DG. Thus, the next equation 

for considering new services integration is proposed: 

𝑁𝑟𝐶𝑃𝑟𝑜 =
∗

∑# ∗
( % % ∗ )∗( ∆ )

𝑙𝑜𝑠𝑠𝑒𝑠𝐿𝑉
+

% ∗
+

                                                   %𝐸𝑀 ∗ 𝑛 ∗ 𝐸𝑀 − %𝐷𝐺 ∗ 2,15 ∗ 𝐷𝐺  ( 5.2 ) 

Where: 

𝑁𝑟𝐶𝑃𝑟𝑜  New Residential Customer Profile  

%DSM  Participation degree of residential customers in DSM strategy  

DSM  Polynomial function for executing Smart DSM (DR+TOU) defined in the chapter 4, 

Figure 4.12 

∆   Growth rate for residential customers 

%𝐼𝐶  Insertion degree of Induction Cooker in the network 

𝐼𝐶   Average profile of IC seen at substation level, see Figure 5.5 

%𝐸𝑀  Insertion degree of Electric Motorbike in the network 

𝑛  Number of EM per house 

𝐸𝑀  Average profile of EM, see Figure 3.18 

%𝐷𝐺  Insertion degree of Distributed Generation in the network 

𝐷𝐺  Minimum curve of PV generation in p.u, see Figure 3.21 

PF  Power Factor of IC (typically 0,95) 

𝑙𝑜𝑠𝑠𝑒𝑠  The losses in low voltage are composed of losses in the transformers, cables, meters and 

connections. The average value of these losses in Galapagos is 9%. According to [202], 

the part referring to meters (coil/sensors) is evaluated to 4% of the average value of 

losses. Thus in the modeling, an efficiency of 0.9964 (9% * 4%) is considered. 

 

In Equation 5.2, there are several terms; one of them is(1 − %DSM + %𝐷𝑆𝑀 ∗ DSM ), which 

consider two component; first, the percentage without DSM (1 − %DSM) and the second, the percentage 

with DSM (%𝐷𝑆𝑀 ∗ DSM ). The term 
% ∗

 represents the insertion degree of IC along the 

day; the term %𝐸𝑀 ∗ 𝑛 ∗ 𝐸𝑀  represents the insertion degree of EM along the day considering the 

number of motorbikes per house. The last term, −%𝐷𝐺 ∗ 2,15 ∗ 𝐷𝐺  represents the insertion degree 

of DGs along the day, and it is negative since it is not a load. As it was mentioned in previous chapters, 
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the EM and DGs are modeled assuming that their interface converter can tune a power factor equal to 

1, thus, the IC component must be divided by its PF in order to allow the sum of all the terms. 

A similar analysis is done for commercial clients. At this point, it is important to note that for the 

commercial sector (greater subsidy), gas tanks different from those of the residential sector are used, 

besides the national plan of change towards induction cookers is designed only for residential customers. 

Thus, the next equation is applied and no EM nor IC are considered. As DG could have a considerable 

installed power on the roof of commercial buildings due to higher areas of installation, this service is 

considered. 

𝑁𝑐𝐶𝑃𝑟𝑜 =
∗

∑# ∗
( ∆ )

1−𝑙𝑜𝑠𝑠𝑒𝑠𝐿𝑉
−  Power ∗ 𝐷𝐺   ( 5.3 ) 

 

Where: 

𝑁𝑐𝐶𝑃𝑟𝑜  New Commercial Customer Profile 

∆   Growth rate for commercial customers 

 

For the case of street lighting, first, the monthly consumption has to be transformed to power, for doing 

that, a month of 30 days is considered and luminaires are turned on during 12 hours per day. Once done 

it, the value must be multiplied by the typical profile. Thus, the next equation is used. 

𝑆𝐿𝑃𝑟𝑜 =
∗

∗ ∗( )
     ( 5.4 ) 

Where: 

𝑆𝐿       Profile of street lighting in p.u, see Figure 5.6 

 

 

Fig. 5.6. Profile for Street Lighting 
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Once applied the Equations 5.2-5.3, new “smart grid” load curves are available, for illustrative purposes 

the next figure depicts some of them. 

 

 

 

Fig. 5.7. Examples of 𝑁𝑟𝐶𝑃𝑟𝑜  and 𝑁𝑐𝐶𝑃𝑟𝑜  

Once defined the base scenario and the consumer profiles, through the Equations 5.2-5.4, the new 

services can be integrated massively. In accordance with the sociological studies [195], the different 

values for the simulation are set. Thus, the next table illustrates the percentage of total users for each 

modeled element. 

TABLE XXII VALUES FOR ASSESSING INTEGRATION OF NEW SERVICES 

Item Value  

Year 9 

IC insertion degree 70% 

EM insertion degree 50% 

DSM participation degree 40% 

DG residential 40% 

∆  2% 

∆  4,02% 
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Before performing the simulation with the values described in Table XXII, a previous simulation 

without any response of the people to neither TOU strategies nor DG deployment is executed, in other 

words, with %DSM and %𝐷𝐺 equals to 0. The purpose of this simulation is clearly to show the benefits 

of the implementation of DSM and DG. 

 

Fig. 5.8. The base scenario 9 years later (with IC and EM and without DSM and DG).  

In this scenario, the maximum power is 10.648,56 kVA (sum of the power peaks of the three feeders); 

the peaks in the three feeders are coincident and are reached at 18:45. If we remember, the installed 

capacity in Santa Cruz is of 8,75 MVA. Hence, the consumption will exceed to the generation of 21% 

in 9 years if no DSM and DG are implemented. 

The simulation within CYMDIST is performed considering the worst scenario, it means with the peak 

values. Thus, the next figure shows the whole network after the load flow analysis. The most affected 

feeder is the number 3, where a significant portion highlighted in red of the feeder is suffering under 

voltages (<95%). 

Regarding MV/LV transformers overloads (most of them located in Puerto Ayora), the results are less 

encouraging since there are 110 of them with overloads that go from 100,1% until 466,7%. The 

transformers with overload with unthinkable levels have a rated power of 5 or 10 kVA, feeding a range 

of 5 to 40 clients. Obviously, this is a consequence of an unplanned growth. Therefore, the investment 

plan must include a reinforcement not only in generation but also in the replacement of lines and 

transformers on the distribution network. 
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Fig. 5.9. Analysis of Under Voltages in Santa Cruz  

 

5.1.1 Load flow with DSM + DG 

A new load flow analysis with the values set in Table XX is carried out; as it was expected, we can 

observe a reduction of 8,8% in the higher peak, that is now of 9.709,98 kVA (see Figure 5.10). This 

decrease is due to DSM strategy. Besides, a reduction in the noon peak is reached thanks to DG 

deployment. The decrease goes from 9.000 kVA to 8.451 kVA (6,1%). However, a new peak of 8.039 

kVA appears near to midnight since the polynomial function shifts the energy to these hours. Although 

the existing generation could supply this value, it is dangerous because any failure in a generation unit 

would cause power outages, since there is not enough reserve at this point. The next figure depicts all 

the aforementioned. 

Regarding transformers overloads, the number decreases to 94. However, the ranges are almost the 

same. It is because the main issues are originated for the same transformers with a small rate power that 

are feeding many clients. In Annex 3, the complete list is presented. 

As we can see in Figure 5.11, the zone that suffered under voltages has been significantly improved; in 

this scenario, the main problems are located in transformers in both populated center and far places (red 

points in Figure 5.11 zooms on the top right and bottom right). To fix these issues, the next section 

proposes a better management of resources in Galapagos. 
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Fig. 5.10. The scenario at 9 years with TOU and DG. 

 

 

Fig. 5.11. Analysis of under voltages in Santa Cruz in the presence of DSM and DG. 
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5.2 Upgraded management of energy in Galapagos 
 

In chapter four, a proposal for the management of the energy considering PV panels, loads and 

BESS at low voltage level was presented. The problem of energy management consisted in the storage 

of PV energy surplus in the noon to feed the loads with the BESS system in the peak hours. The previous 

section identified that it would be mandatory to launch an investment program that considers the 

commissioning of new power plants and to reinforce lines and MV/LV transformers as well since the 

maximum DG residential penetration rate in 9 years will achieve only 40% of the total users. 

In [157], two approaches for EMS architectures are presented i) centralized EMS and ii) distributed 

EMS; the primary function of an EMS is to dispatch the resources optimally according to the selected 

objectives. For that, information referent to cost functions, technical characteristics, constraints [158], 

topology, network parameters, load as well as the forecasting of wind and solar resources must be 

considered, even the effect of the temperature in the load ought to be modeled [159]. For the Galapagos 

case, the centralized EMS architecture is the best solution since it will take advantage of the ADMS 

system as well as the communication architecture proposed in Chapter 5. Thus, the proposed EMS for 

Galapagos is depicted in the next figure. 

 

Fig. 5.12. EMS architecture proposal for Galapagos. 

In order to test the EMS on a large scale, a penetration rate of PV of 100% of users is considered, this 

value pretends to show that if a strong PV penetration exists, the thermal generation investment could 

be deferred or even canceled. Indeed, if the regulatory barriers are addressed properly, it could be 

possible to reach this value in 9 years. If PV surplus exists in the noon, this energy could be stored and 

used in the peak hours in order to reduce the peak and likely to defer investments in bulk generation. 

For the simulations, the Eqs. 17-23 are considered and the model developed for the inclusion of BESS 

is tailored for working at substation level. In order to reduce the maximum load, the EMS must use three 
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weighting functions for DSM (based on Equation 4.1), the function for Feeder 1 is shifted forward 30 

min, and the polynomial function for the feeder 3 is shifted backward 30min; the purpose of that is to 

cancel the coincidence between maximum peaks of feeders. Thus, the new maximum peak is 9.399,82 

kVA at 18:45; the noon peak is 7.501,31 kVA at 12:45 and the peak at midnight is 7.465,9 kVA at 

00:15. Although the load in the peak decrease of 3,2%, the generation is still insufficient. With this 

change, the noon peak reached a reduction of 12,66%, hence, theoretically, 785 kVA could be stored. 

 

Fig. 5.13. Scenario at 9 years (DG at 100% and 3 weighting functions)  

 

There are now 83 overloaded transformers; the maximum peak value is slightly reduced (see Annex 4 

for the complete list). The next figure shows a thematic map, which depicts in detail the distribution 

network colored by loadability (load in transformers/rated power). 
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Fig. 5.14. Loadability Map 

As we can see, the biggest problems will be located in the populated center. Therefore, a zoom into this 

area is done in order to see with more detail the different levels of loadability. 

 

Fig. 5.15. Feeders 1, 2 with transformers overloaded in yellow. 
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The equations and constraints from Chapter 4 are used at this level for determining the optimal battery 

size at substation level. Thus, the value is 1194 kVA. 

Fig. 5.16. Energy Management on a large scale. 

 

The above figure shows interesting things; first, with the implementation of a BESS, it is possible to 

defer investments in the thermal generation since the previous figures showed that the main peak during 

the whole day occurs around 18:45-19:15. Thus, renewables energies are not available in this period. 

Second, to charge the BESS during the morning (4:00 – 16:00), the thermal resources are used. The load 

will be composed of the inherent load of the island, plus battery charging. Here, it is important to notice 

that the noon peak was reduced by the deployment of DG with 100% of integration. The top curve of 

Figure 5.16 shows clearly that the power generation curve has a smoothed shape with an exception from 

18:00 to 21:00, where all the energy stored during the morning is used to supply the load. The charging 

beginning is depicted with the point A (4:00), and the charging end is noted with point B (16:00). At 

point C, the maximum peak is reached, however, due to BESS discharging, the generation at the 

substation is now sufficient. Even, a generation reserve is available. Another feature of the point C is 

that it depicts the balance between load (9.400 kVA), the generation (4.700 kVA) and the BESS (4.700 

KVA). The bottom curve shows the SOC of the BEES, the initial/final value is 50%, whereas the 

maximum value reached in the charging is 81,97%. 

Obviously, this scenario considers important assumptions like the 100% DG penetration rate.  

Nevertheless, it is a good example to show how the developed models could be tailored for different 

scales. ELECGALAPAGOS must take the final decision in the future, it is a choice between betting on 

new and friendly technologies with the environment, or continue to invest in traditional approaches like 

thermal generation. 
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The final section of this manuscript will present the next steps to be implemented in Galapagos in order 

to achieve smart islands in the long term. 

 

5.3 Galapagos such as a Smart Island  
 

According to [160], it is crucial nowadays to address topics such as i) energy efficiency, ii) 

sustainability, iii) waste and water management and iv) mobility. However, for the specific case of 

islands, it is even more important; it is a matter of survival. This topic is so important that the European 

Union has created the Smart Islands Initiative, an effort of European island authorities and communities 

for implementing real-life laboratories for technological, social, environmental, economic and political 

innovation within the islands due to their significant potential. Insularity implies today energy 

dependency on fossil fuels, high transportation costs, limited economic diversification and access to 

markets. Although there are not many pieces of evidence yet, it is likely that the synergy between 

innovative technologies and regulatory frameworks could reverse this trend within the islands [160]. 

Thus, the first step to become a smart island is carrying out a comprehensive plan that unifies and brings 

together all the efforts made by the different stakeholders. This plan would provide common objectives 

and a unified management through different working axes. The plan must involve all agencies with 

competence in the territory, both national and provincial, as well as international organizations that also 

works for the improvement and conservation of the islands. In addition, the leaders in the sectors of 

energy efficiency, water cycle management, waste treatment, mobility, and technology have to take 

action too, in order to find feasibility and effectiveness solutions. 

In Galapagos the EcoSmart project, described in Chapter 1 page 11, it is a good first try for achieving 

this unified plan. The fields of energy, mobility, water, and waste have been identified as the main 

sectors, on which it is recommended to work urgently. Within these fields, the EcoSmart axes should be 

addressed in depth and can be completed as follows: 

1. Power generation 

2. Mobility  

3. Electricity network modernization 

4. Efficient consumption 

5. Efficiency in Public Lighting 

6. Integrated water cycle management 

7. Solid waste treatment 

8. Governance 

9. Smart Health 

The five first axes are totally related to the Smart Grid concept, and most of them have been addressed 

in this thesis. Power generation is studied in chapter 5, the mobility in chapter 3 and 4, the electricity 

network modernization is addressed in a certain way in chapter 5 with the communication proposal for 

substation and distribution network, the efficient consumption is explained in detail in chapter 4 previous 

to implement DSM strategies.  
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The points 5-9 must be studied in order to have a whole vision of the next steps for Galapagos. 

 

5.3.1 Axes Description 

 

The power generation is the most critical axe since, without enough energetic resources, preferably 

renewables, it is not possible to deploy the majority of projects, for instance, change of traditional 

vehicles by electric ones or the commissioning of a new plant for waste treatment. Hence, the forecasting 

must include all the new projects in order to define the future power generation needs accurately within 

the islands. The reality of islands is worrying as terrestrial and maritime mobility consume more than 

75% of the fossil fuels that arrive in Galapagos. Therefore, the planning of traffic within the islands and 

the displacements between them of both public and private users should be improved. In addition, the 

new solutions must have an efficient use of resources, and a constant transition towards a 100% electric 

and emission-free mobility. According to Ecuador Oil Company, taxis, especially in the trips between 

Baltra Airport and Puerto Ayora town, consume 55% of the total daily fuel for land transportation in 

Santa Cruz. For this reason, a good option to be considered is the replacement of traditional gasoline 

buses by electric ones. For this purpose, additional studies for determining the necessary public 

recharging infrastructures should be carried out; two fast-charging stations at the beginning (Baltra) and 

at the end of the bus line (Puerto Ayora) likely are required. In mobility, there are significant advances, 

including that the Galapagos Governing Council establishes to buy only new electric vehicles, as well 

as ARCONEL defined the electrical characteristics of motorcycles, and the Ministry of Foreign Trade 

eliminated the taxes on the purchase of electric vehicles. On the other hand, the MEER is implementing 

thermal generation based on biofuels on Isabela island. 

Concerning electricity network modernization, some innovative solutions have been proposed in this 

thesis, for instance, PV installation in LV grid, BESS deployment, reclosers installation, AMI, smart 

meters, communication architecture for Smart Grids among others. However, there are additional 

improvements to be considered. First, the connection of public lighting to a dedicated circuit since it is 

currently connected directly to the low voltage network, which makes it difficult to manage and prevents 

accurate data collection; second, the definition of new modalities to contract the power supply, 

considering power control mechanisms, such as maximum power or load shedding. 

Efficiency plans implemented in Ecuador have already been described. To sum up, old refrigerators 

have been replaced with more efficient ones, incandescent bulbs with energy-saving bulbs and a plan to 

replace traditional cookers with induction ones are underway. To this, it is recommended to work on a 

regulation for the construction of efficient buildings in which to regulate aspects related to the thermal 

insulation and the water cycle. It is also advisable to have subsidies for water heaters and centralized air 

conditioning of energy category A. Concerning efficiency of public lighting, it is recommended to 

implement flow control systems for luminaires, lamp replacements, and programming on and off cycles 

to regulate power according to the needs of use. 

The integrated water cycle management is vital in Galapagos since only one of the five inhabited islands 

of the archipelago has natural water sources. San Cristobal has abundant water in the highlands but it’s 
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difficult to bring it to people and Floreana has depleted its springs [161]. In the other islands, the main 

sources are rainwater or salt water, the latter resulting from the mixing of rainwater with that of the sea. 

In addition, sewer coverage is the only service that has not increased its coverage in the last 10 years. It 

is necessary to implant the awareness that an efficient and quality water cycle represents energy saving. 

It is imperative to design a sewerage network and begin the construction, of water treatment plants in 

order to ensure the correct processing of the same and avoid the pollution problems that currently exist. 

In the long term, a SCADA system could be implemented for the automation of water supply and sewage 

management. 

For performing solid waste treatment, first, it is recommended to carry out studies on the optimal waste 

treatment and its uses for energy use, such as biomass. Another recommendation is the implementation 

of a household trash characterization program. 

The axes of Governance include the interaction of local and national authorities with citizens, with 

accountability and transparency. By means of social networks, the government can interact quickly with 

different users keeping client data secure. The first try of ELECGALAPAGOS is made with a Facebook 

account to inform of outages and scheduled maintenance; the Galapagos Governance Council must 

coordinate all these initiatives in order to offer unified applications, for instance, parking lots available, 

optimal bus routes, water and energy debts queries. 

The last axe is Smart Health; this concept puts ICTs at the service of health, where sensors and 

information will improve the quality of life of people. In Galapagos, only one hospital exists, and it is 

located in Puerto Ayora town, in Santa Cruz. This shows that there is still a long way to go on this axis. 

Just as an example of an application for Smart Health, a mobile application exists which allows to 

geolocalize patients with various forms of cognitive impairment, such as Alzheimer's, detecting if these 

patients leave their routine or their usual spaces and automatically notify the responsible person. 

As the reader may have noticed, for each of the axes, a communication network is necessary. 

Fortunately, according to [162-164], the Smart Grids support a subsequent deployment of a Smart City, 

thus, the communications architecture proposal for the NAN / FAN will play a fundamental role in 

transforming Galapagos towards a Smart Island, but all the presented axes have to be taken into account 

for its sizing. 

5.3.2 Stakeholders 

 

Two groups are identified: the leading actors and the strategic actors. Both are complementary and to 

reach the objectives, a good synergy is needed. 

 Leading actors: they will be the project promoters, in charge of proposing the different solutions 

for improvement in each of the work axes. Their collaboration is essential for the successful 

completion of the project, facilitating institutional support, promoting regulatory changes, 

seeking funding, and providing a cross-cutting vision for solutions to ensure maximum 

synergies. 
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 Strategic actors: integrated by collaborators in the fields of consulting, technology and financial 

fields, which will contribute to the definition of business and exploitation models, providing 

experiences and technological solutions. 

The next tables show the relation between leading actors and axes. 

TABLE XXIII STAKEHOLDERS: LEADING ACTORS 

Name   Axes 

MEER 1-5 

Ministry of Environment 6-7 

ARCONEL 2,4,5 

CENACE 1 

CELEC 1 

SIGDE 1-5 

Galapagos Government Council 8, Whole Coordination 

ELECGALAPAGOS 1-5 

United Nations Development Program 1-8 

Ministry of Health 6,7-9 

Ministry of Transport 2 

 

TABLE XXIV STAKEHOLDERS: STRATEGIC ACTORS 

Name   Axes 

Citizenship 1-8 

Taxi Association 2 

Commercial and hotel sector. 2-4-6 

Ecuadorian Institute of Normalization 2,3,4,5 

Internal transport companies in Galápagos. 2 

Suppliers of renewable generation solutions. 1 

Suppliers of smart metering solutions. 3 

Providers of Smart Grid solutions. 3 

Providers of effective solutions in homes and commercial. 4 

Suppliers of effective solutions in public lighting. 5 

Suppliers of electric mobility solutions. 2 

Suppliers of recharge infrastructure solutions. 2 

Providers of communications solutions. 3 

Universities 1-8 

Ecuador Oil Company 2 

 

At present, the current services are dispersed, not integrated and incomplete. Hence, there are particular 

solutions for each case. There is no unified, centralized and integrated control center for monitoring 

energy/water, although there are some regulations, those would need to be modified in order to integrate 

new concepts. An integrated and efficient solution must be implemented with a view to achieve social 
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and economic development without affecting the environment, with the use of technological enablers 

based on the availability and timeliness of the information. 

 

5.4 Conclusion 
 

A future scenario with penetration rates based on sociological studies has been analyzed. The results 

show that, in a future of 9 years, more thermal generation would be needed. However, through an EMS 

system based on the ADMS system proposed in chapter 5 and complemented with other systems such 

as the DSM server, it is possible to integrate a BESS to store energy during the morning and return this 

energy at night avoiding to exceed the maximum limit of available generation. The proposed solutions 

are feasible, and their implementation will depend on ELECGALAPAGOS efforts and its ability to 

promote the initiative to find investments sources. The government is fostering some projects inside 

Galapagos; however, they should have a unified vision to make Galapagos a self-sustaining island and 

energy management model. 

Again, the need for a change in the regulatory framework is evident in order to allow the inclusion of 

BESS, which will contribute to maintaining the reliability of the system, as well as the domestic 

generation based on renewable energies, must be supported. 

The lack of an integral vision on the different projects that have been implemented in recent years, and 

in some cases technical or economic incapacity, have caused that the projects have not generated the 

improvements that were expected, or have remained in a pilot phase that has not been further developed 

and extended. 

It is necessary to carry out detailed studies of the socio-economic and socio-cultural aspects that the 

different projects can originate so that the citizens accept any implemented measures. Likewise, 

financing and sustainability studies are necessary. As a final conclusion, it is worth mentioning that a 

roadmap must be drawn up with input from all those involved in each of the axes. This roadmap is 

imperative to chart the way forward in order to achieve unified and optimal solutions as well as 

improving public services delivered to the interior of the islands. 

The next chapter will present a proposal for the communication architecture needed for deploying a 

Smart Grid in Galapagos. 

 

 

 

 

 

 



Development of optimal energy management in Galapagos Islands towards Smart Grid 

 

 

 
 

Chapter 6 Communications Architecture for a Smart 

Grid in Galapagos 
 

 

 

Communications Architecture for a  

Smart Grid in Galapagos 
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6.1. Introduction 

From the communications point of view, the smart grid definition is a concept quite difficult to capture 

with one single definition. The United States Energy Independence and Security Act of 2007, among 

the main characteristics that describe the evolving smart grid, mentions that a smart grid must include 

Standards development to enable seamless communication and interoperability of equipments 

connected to the grid [165]. The U.S. Department of Energy –DOE- establishes in [166] the 

communications requirements and recommendations of various components of the Smart Grid. The 

NIST in [48] has identified six key priority functionalities of the Smart Grid. The correct functioning of 

these features depends in large part on a robust and reliable communications system. 

6. Advanced metering infrastructure 

7. Demand Response 

8. Electric vehicles 

9. Wide-area situational awareness  

10. Distributed energy resources and storage and,  

11. Distribution grid management  

 

In [167], a vision of the Smart Grid for the year 2030 from a communication perspective is presented. 

The main driver for improvements in communications is based on increasing the situation awareness of 

power grid operators, in order to avoid major power disturbances that could cascaded into large 

blackouts. However, it is worth noting that the integration and interoperability of the traditional grid 

with communication technologies would present significant constraints for the evolving towards a smart 

grid. The key role of the communications in the Smart Grids is clear. However, we must not forget that 

also the Smart Grid has to be interoperable, secure and cost effective [168].  

In addition, the smart measurement that needs communications systems strongly would require such 

as sensors networks, and phasor measurement units –PMUs- [169]. This chapter will present the main 

advances in Ecuador regarding Wide Area Network –WAN- as well as a proposal for communications 

architecture for the specific case of Galapagos. 

 

6.1.1 Current Situation in Ecuador 

 

An important component of the SIGDE Project is the axis number 6 cited above, which is related to the 

Technology Management. Within this axis, the Information and Communications Technologies –ICTs- 

are considered. 

The communications infrastructure must enable the Utilities to interact with devices on their electric 

grid as well as with end users. Thus, it has also to cover large geographical areas connecting a large set 

of communication nodes along the entire region. For this purpose, a WAN should be deployed [170].  
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Currently, a WAN exclusive for the distribution sector has been established. This network interconnects 

the different utilities, and there are three main nodes in Quito, Guayaquil, and Cuenca forming the 

backbone. The medium is optical fiber, and the transmission capacity is 10 Gbps. CELEC-Transelectric 

owns the network; the system uses the Dense Wavelength Division Multiplexing technology based on 

the variation of the wavelengths to diffuse several signals through the same physical medium. This 

bandwidth is also used for interconnecting the two existing data centers located in Quito and Guayaquil. 

In each main node, several Utilities are connected with a bandwidth of 1 Gbps. For instance, in the 

Cuenca node, the next Utilities are connected i) Loja, ii) Azogues, iii) Riobamba, and iv) Centrosur. The 

next figure depicts that Galapagos is connected to Centrosur by means of a satellite link. 

 

Fig. 6.1. WAN for supporting the Smart Grid in Ecuador 

In order to separate logically the communication networks, a data transport mechanism called Multi-

Protocol Label Switching –MPLS-, which supports the use of multiple protocols on the same physical 

network, is implemented. Additionally MPLS allows the creation of virtual private networks. 

The interface architecture is based on [171], which established a Common Information Model for 

Utilities, the idea lies in the concept of an Enterprise Service Bus –ESB-. The ESB faces the 

interconnection between the different systems avoiding point-to-point connections. 



Development of optimal energy management in Galapagos Islands towards Smart Grid 

 

 

- 123 - 
  

 
Fig. 6.2. Interoperability scheme in Ecuador  

BPM: Business Process Management 

ADMS: Advanced Distribution Management System 

OMS: Outage Management System 

DMS: Distribution Management System 

MWM: Mobile Workforce Management 

CRM: Custom Relationship Management 

MDM: Meter Data Management 

AMI: Advanced Metering Infrastructure 

IVR: Integrate Voice Response  

ECM: Enterprise Content Management 

EAM: Enterprise Asset Management 

ERP: Enterprise Resource Planning 

BI: Business Intelligence  

External System: Ministries, Agencies. 

 

Once presented the developments reached in Ecuador concerning the WAN for Smart Grid, the need of 

addressing the communications at lower levels in order to arrive at the end-user level, more known as 

Home Area Network –HAN- [172], is evident. Thus, the next sections present a proposal for a 

communication architecture for AMI system as well as for the ADMS system. 
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6.2 ADMS 
 

According to [173] an Advanced Distribution Management System is:  

The software platform that supports the full suite of distribution management and optimization. An 

ADMS includes functions that automate outage restoration and optimize the performance of the 

distribution grid. ADMS features being developed for electric utilities include fault location, isolation 

and restoration; volt/volt-ampere reactive optimization; conservation through voltage reduction; peak 

demand management; and support for microgrids and electric vehicles. 

Since 2011, the MEER have begun the design phase for the acquisition of an ADMS system for Ecuador. 

The design phase lasted about 2 years, thus in 2013, the implementation of the solution of Schneider 

Electric in the whole country started. The ADMS suite has embedded the SCADA, OMS, DMS and 

MWM systems. Taking into account the homologation objective of SIGDE project, the adopted solution 

is based on the concept server/clients, it means that the core application is installed in the National Data 

Centers (CDN1 and CDN2) and the clients (20 Utilities) will connect their operation consoles to the 

server using the WAN. 

 

 

Fig. 6.3. Global Architecture for ADMS based on [174] 

 

The above figure shows the replication process between ADMS servers, the access to the web or remote 

clients through the WAN, and the Utilities connected by means of a Front End, which is responsible for 

collecting the information coming from Remote Terminal Units –RTUs-, as well as being the bridge 

between the client application and the server. 
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Now, the communication for the segment between the RTU and the sensors or IEDs (Intelligent 

Electronic Devices) has to be defined. The new proposed architecture considers a RTU per substation, 

which must be able to receive information from different sources using different mediums. A typical 

substation in Ecuador has about 30 years aging; however, almost all of them have been strengthened. 

Thus, there are various devices installed. 

1. IEDs recently installed: those are typically connected to the feeder header for performing 

control, protection and measurement actions. They are equipped with the last technology; hence, 

the medium is either copper or fiber using Ethernet protocols. 

2. Meters: those have been installed since the operation beginning since it is always necessary to 

measure the energy. The meters can transmit information over serial protocols with RS232 

and/or RS485 configurations. 

3. Usually, open and closed contacts: any substation has contacts for indicating the status of 

devices such as breakers, reclosers or disconnectors. To integrate this information, the contacts 

have to be wired. 

4. Coils: the operation devices have coils for receiving signals of opening or closing. For instance, 

a signal coming from the control center to close a breaker. 

Therefore, the RTU for the substation must have the software and hardware enough to integrate IEDs, 

meters, and wired signals. For this purpose, a CPU to execute different control logics and processing 

information ought to be included, as well as a serial module (COM) and different cards, such as i) Digital 

Outputs –DO-, ii) Analog Outputs –AO-, iii) Digital Inputs –DI-, iv) Analog Inputs –AI-. [175]. It is 

common in a substation that there are several IEDs, so a Local Area Network –LAN- has to be deployed 

within the substation.  

Regarding protocols, the most commons in the electrical industry are MODBUS, Profibus, DNP 3.0, 

[176], IEC 60870-5-104 [177] and IEC 61850 [178]. MODBUS can be implemented either serial or 

Ethernet, but its main drawback is that it has not stamp time. Profibus has been discontinued for the 

electrical sector, and nowadays, it is considered for industrial applications. 

IEC-101 overcomes the deficiencies of MODBUS, but it works serially. IEC-104 works over Ethernet 

and currently is the most common protocol used to interconnect RTUs with SCADA systems. DNP 3.0 

is very common in North America, whereas IEC 61850 is taking importance in Europe, both protocols 

converge in terms of capabilities. DNP 3.0 is designed for working on inexpensive endpoints and low-

bandwidth communication channels while IEC 61850 is suitable for environments with high-bandwidth 

communication channels [179].  

The next figure summarizes those above and presents the new substation architecture with details about 

protocols and physical mediums.  
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Fig. 6.4. Substation architecture 

 

Within the archipelago, tens of kilometers separate the islands, thus interconnecting them by means of 

the optical fiber is not a viable solution due to some important considerations: 

1. The implementation cost is still higher than the wireless solution. 

2. According to [180], the wireless transmission capacity between the islands can reach up to 

42 Mbps. This value is more than enough for control and monitoring applications. 

3. The sea bottom of Galapagos makes challenging the fiber deployment. 

Hence, a wireless communication has to be considered [181]. The network should interconnect the 

inhabited islands, except Floreana since the population there is too small and the investment will not be 

profitable. Thus, four links have to be established from the central node, which is located in Santa Cruz 

substation. The links characteristics are i) private channel and ii) Frequency of 7,2 GHz, see the next 

figure. 

1. Santa Cruz – San Cristobal 

2. Santa Cruz – Isabela 
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3. Santa Cruz – Baltra  

4. Santa Cruz – Puerto Ayora 

 

 

Fig. 6.5. Wireless Network for Galapagos 

 

As it was mentioned in Chapter 1, Santa Cruz is the most populated island. As a consequence, this island 

has more power generation. For this reason, the main control center –MCC- should be installed there; 

the second island with most population is San Cristobal. Hence, this island would have a backup control 

center –BCC-. In the MCC, two servers (hot/standby configuration) per application are considered to 

guarantee a high availability in the servers. On the other hand, in the BCC, only one server is installed 

since the operation of the BCC will be rare, as BCC will operate only when the link Santa Cruz –San 

Cristobal will be down. It means that this control center is of emergency; in addition, BCC is able to 

operate only San Cristobal whereas MCC is able of controlling Baltra, Santa Cruz, and San Cristobal. 

The ADMS system has different functionalities. Hence consoles for operation (user: distribution 

operator), simulation (user: planning analyst) and development (user: integration engineers) should be 

considered. In most cases, the connection with the ADMS servers is executed using IEC 104 protocol, 

although there is a particular case for the wind power plant from Baltra since the current SCADA is only 

able to transfer information using OPC protocol. It is worth noting that the PV power plant and the wind 

power plant from Baltra, as well as wind power plant from San Cristobal, have their own SCADA. The 

communication between the already installed SCADAs and the suite ADMS is carried out for the most 

part with IEC 104. Thus, the next figure shows the proposed communications architecture for Galapagos 

Islands. 
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Fig. 6.6. Proposed architecture communications for ADMS in Galapagos 

 

In order to interconnect Galapagos with CDN1, the new proposal considers the Inter-Control Centre 

Communications Protocol – ICCP- [182]. ICCP allows for data exchange over the WAN or LAN 

between a utility control center and other control centers, other utilities, power pools, regional control 

centers, and non-utility generators. Data exchange information consists of real-time and historical data, 

including measured values, scheduling data, energy accounting data, and operator messages. Nowadays, 

the ICCP is the most capable, widely adopted communication protocol available for interconnection 

control centers each other.  

6.3 AMI 
 

Taking into account that distribution networks will evolve towards Smart Grids and the most significant 

change would occur in the customer segment, an AMI system will able consumers to get more data in 
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order to make informed decisions in some cases, even in real time. According to [183] AMI is defined 

as  

The communications hardware and software and associated system and data management software that 

creates a network between advanced meters and utility business systems and which allows collection 

and distribution of information to customers and other parties such as competitive retail providers, in 

addition to providing it to the Utility itself 

The main smart meter characteristics, as well as its benefits, were defined in Chapter 2, the proposal 

presented in Chapter 4 concerning DSM considered a Smart Meter with an embedded device controller. 

Thus, in order to execute the intelligent DR+TOU, the existence of an AMI system is mandatory, which 

will be responsible for receiving signals from the Utility and, at the same time, sending customer 

information such as outages, consumption, among other electrical variables to the Utility. In addition, it 

is recommended to integrate the reclosers (suggested in the previous chapter in order to improve the 

FLISR function of the ADMS) into the control center. 

In [184], a methodology for installing Fault Locators –FL- with communication in the Galapagos 

distribution network is presented. In addition, in a medium term, the MEER will finance distribution 

automation projects. Taking into account this background, the proposed infrastructure must be designed 

to support i) Smart meters, ii) Distribution Automation, iii ) Electrical devices located on the distribution 

network (reclosers, FL, Voltage and current sensors, capacitor banks, regulators), iv) EV and v) DSM, 

see next figure. 

 

Fig. 6.7. Proposed AMI architecture based on [185, 186] 

The segments External Access and Operational Systems are not the subjects of this AMI study. The 

backbone network, which includes the architecture for substation and the WAN, was presented in the 

previous section (Figure 6.6). Hence, the access network and home area network are segments which 
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will be addressed. Before proceeding with the proposal, the Power Line Communication – PLC- and RF 

– Radio Frequency- mesh technologies have to be presented. 

6.3.1 Power Line Communication 

PLC is a technology that provides interactive communication by embedding modulated carrier signals 

on already existing power lines. Thus, those signals must be embedded on the different frequency bands 

from the electric power system now in use. Since the power system is operated at typical frequencies of 

50 or 60 Hz, the application of PLC can be limited at relatively higher frequency bands. The technology 

of PLC is based on digital communication. However, the power lines originally were designed to transfer 

electric power. Thus, it is not well protected from external noise. The next figure shows the simple 

diagram of PLC system.    

 

Fig. 6.8.  Model of a PLC diagram system 

 

A basic PLC transmitter/receiver consists of four subsets: data source/destination, encoder/decoder, a 

modulator/demodulator and coupling circuits. The function of the transmitter is to modulate the data 

signal using digital modulation techniques in order to overdrive it on the power signal. The method 

commonly used is known as spread frequency shift keying –SFSK-, and orthogonal frequency division 

multiplexing -OFDM-. It is important to mention that it exists two kinds of PLC very well proved [187]. 

1. Broadband: a technology that uses high and very high frequency (1,5-250 MHz) and reaches 

data rates of the order of hundreds of Mbps. 

2. Low and High data rate (LDR & HDR) narrowband (NB): operating at very low, low and 

medium frequencies (3 kHz – 500 kHz), the LDR technology reaches some kbps, while HDR 

can reach until 500kbps. 

 

At the medium voltage level, the Narrowband is preferred instead of Broadband PLC, since that the 

lines present lower attenuation at the lower frequencies, reducing the numbers of repeaters. Besides, the 
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transmitter power is lower, resulting in reduced electromagnetic interferences. The Narrowband PLC 

applications are best suitable for medium voltage networks [187] in comparison with the wireless 

solutions, especially for large scale systems, the narrowband is the best cost-effective technology, 

mainly for the complex extent of the network. Besides, it is worth remembering that PLC uses the 

existing infrastructure as a channel of communication. 

As results of the increasing need for improving the control and management capabilities, several projects 

are using the PLC technology. Narrowband and Broadband provide a bi-directional communications 

platform able of delivering real-time data for some applications such as: 

 Identify Failures, 

 Monitoring and Control of distributed generation DG [188], 

 Power Grid reconfiguration [189],  

 AMI 

 Real-time energy pricing, DSM 

 Smart Home Networking [190], 

 Street lighting control,  

 Control of distributed energy storage, and 

 Electric vehicles.  

 

The figure below shows that PLC technology is used to acquire the data of smart meters through a data 

concentrator located in the transformer. Then, using GPRS or 3G technologies, the collected information 

is delivered to the control center. Although, it is also possible to create a direct physical channel between 

the smart meter and the control center using the MV/LV network via a bypass coupling [191]. One really 

interesting project [192] has been deployed at Europe-France by ERDF from 2001 to 2007; it consisted 

in the creation of a system with 300.000 meters and 5.000 concentrators. The system is based on PLC 

LAN and a GPRS WAN. Also, recently the project So-Grid launched in Toulouse in 2013 has completed 

its activities, among the main conclusions could be evidenced the real potential of the G3-PLC (last 

version of the protocol) communication technology in reference to performances, flows, latencies, 

robustness, and security [193]. 
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Fig. 6.9. Smart meter communications through different mediums. 

 

6.3.2 Radio Frequency- Mesh 

RF mesh technology is widely used today in the world for smart metering applications. The main 

purpose of an RF mesh is to perform automatic meter readings as well as to offer DR programs, which 

require reliable and robust two-way communication between the metering end-points and the Utility’s 

head-end system. Over 10 million metering end points are managed today using RF mesh technology 

[194]. RF mesh technology is suitable for use in smart metering applications since this network is able 

of dynamically self-organize and self-configure itself and, with the nodes in the network, automatically 

establishing an ad hoc network and maintaining the mesh connectivity. In addition, the range is increased 

performing multiple hops between different nodes within the same neighborhood until to reach the final 

destination. Thus, RF mesh overcomes the main issue in the Neighborhood Area Network –NAN- that 

is related to propagation by finding alternative paths through the mesh. RF mesh operates predominantly 

in the unlicensed bands such as the 902- 928 MHz [195]. The next figure illustrates the conceptual 

architecture for Wireless Meshed Networks. We can identify mesh router, which has routing functions 

to support mesh networking and it is equipped with multiple wireless interfaces. In addition, a sub 

network labeled as Wireless Mesh clients is depicted. In this network, the mesh clients are able of 

working as a router for mesh networking purposes, but the mesh clients have only a single wireless 

interface. 
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Fig. 6.10. Wireless Meshed Network Architecture, [196] 

The main characteristics of a RF Mesh architecture are: 

 Scalable 

 Mesh connectivity guaranteed 

 Broadband and Quality of Service available 

 Secure 

 Ease of use 

 Compatible and Interoperable 

The 802.15.4 standard [197] defines frequency, power, modulation, and other wireless conditions of the 

link as well as the format of the data handling.  

6.3.3 FAN/NAN architecture proposal 

 

According to [198], the Field Area Network is a broadband wireless network providing essentially 

ubiquitous regional coverage, whereas the NAN is responsible for providing coverage to a more little 

area, in this case, neighborhood. With the advent of the Smart Grids, the last-mile data communications 

networks referred as FAN have gained considerable importance since they have to support a variety of 

applications, such as DA (Distribution Automation), smart metering remote asset management, DG, EV, 

micro grids, and remote workforce automation [199]. Thus, the next figure depicts the proposal for 

FAN/NAN architecture communications. For the NAN, PLC and RF mesh technologies are combined. 

The reason is simple; due to the topology of the islands, it will be more rentable to deploy PLC between 

Meter-Meter and Meter-Data Concentrator –DC- than RF mesh in some places. Also, some unfavorable 
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conditions exist where RF mesh cannot be implemented due to lack of coverage in difficult access areas 

such as basements, high buildings, far points, among others. 

 

Fig. 6.11. FAN/NAN architecture proposal 

The Data Concentrator –DC- is the bridge between the NAN and the FAN; it is equipped with different 

interfaces for wireless and wired communications. For the FAN area, IEEE 802.11 protocol is chosen 
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because it is a promising communication standard that provides improvements in i) scalability, ii) low 

energy consumption, and iii) coverage of large area. In addition, the standard performs better 

performance than the 802.15.4 regarding coverage range and association time [200]. The NAN is 

designed to integrate field devices like the reclosers proposed in the previous chapter or FLs, as well as, 

future sensors in the distribution networks. The DGs could also be integrated into the FAN easily 

through of a DC. Using radio links is the most economical solution since the distance between the field 

devices, sensors, and DG, with respect to Santa Cruz substation, is suitable for this kind of technology. 

The FAN border is the link with the WAN, and operational systems are accessed through the WAN. The 

DSM server and the meter data management –MDM- system are also depicted in the previous figure. 

An MDM can store long-term data coming from the AMI and manages this information. It is worth 

noting that the volume of generated data is huge and consists primarily of usage data and events that are 

imported from Head-End. The MDM system collects the data, then validates, cleanses and processes it 

in order to have useful information for billing and data analytics. 

On the other hand, Head-End system is able of scheduling, adding and setting rates locally or remotely, 

by customer group or individual. In addition, it must configure punctually or collectively the 

measurement devices as well as updating the firmware remotely. Other essential functions are i) sending 

commands of cut and reconnection (for safety, when a reconnection command is sent, the meter must 

verify that there is no voltage on the load side), ii) to manage demand profiles and iii) reporting and 

alarms. 

In order to have a complete architecture for implementing Smart Grids in Galapagos islands, the last 

segment is known as Home Area Network –HAN- must be defined, the next section addresses this topic. 

6.3.4 HAN 

An HAN is a communication network within a household, which establishes communications 

between smart meter, Energy Management System, and other gateways or devices inside a home. This 

kind of network is relatively new, its proposal is i) to inform the consumer about energy usage and 

pricing and ii) to request actions to support to the grid for instance thermostat changes, plug-in electric 

vehicle charging among others. In other words, its goal is to reach an integration of the end-users into 

the smart grid (Smart Home or Smart Building concepts). Variety of architectures can be considered in-

home only, via smart meter, via Internet, cloud-based or combinations. 

The most popular protocols for HAN are i) Smart Energy Profile –SEP- and ii) OPENADR. 

6.3.4.1 SEP  

 

SEP 2.0 is the last edition of this protocol, and it is addressed in IEEE 2030.5-2013 [201]. The 

protocol is based on internetworking using routers in order to allow easily connect consumers’ existing 

devices and to manage convergence and architecture changes easily. For instance, it allows smartphones 

(Wi-Fi) to speak directly with the smart meter (ZigBee), as well as a plug-in electric vehicle 

(HomePlug). One of the main advantages of this protocol is that it allows consumers to use existing 
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devices, has a rapid development and adoption since is sponsored by strong Alliances such Zigbee and 

HomePlug, and it is an already mature protocol. Besides, SEP2.0 is compatible with IEC 61850 and IEC 

61968, for sending information over the internet uses Hypertext Transfer Protocol -HTTP-. 

The protocol is divided into blocks of functionalities, any device can be a server and/or a client for 

a function set, and the servers provide the data whereas clients use the data. The main functionalities 

are: 

 Price Communication: support time and consumption based tariffs. 

 Demand Response and Load Control: events of request to shed a certain amount of Watts. 

 Energy Usage Information: a variety of measurements near to real time. 

 Service Provider messaging: billing messages, energy saving tips. 

 Prepayment Metering: interface for privileged clients to view, update or act upon account 

balance information. 

 Distributed Energy Resources: support for both generation and storage. 

 Electric Vehicle: the ability to schedule charging times. 

 Billing Communication: provides consumption or costs, estimates of future consumption, 

and/or historical consumption. 

 File Download / Update: support secure, interoperable, remote software download to SEP 2.0 

devices. 

SEP 2.0 protocol has four layers; the physical layer supports 802.15.4 and PLC. The internet layer 

supports IPv4 and IPv6; the transport layer works with UDP and TCP, the application layer handles 

SEP, HTPP, and Efficient XML Interchange –EXI- protocols, see next figure. 

 

Fig. 6.12. SEP 2.0 layers 

6.3.4.2 OpenADR  

OpenADR 2.0 is the current edition of the original standard released in 2009. Nowadays, it is an 

internationally recognized standard for Automated Demand Response –ADR-. It defines the interaction 

between an ADR server and client, and its profile is defined in [202]. OpenADR improves the 

optimization between electric supply and consumption. The primary purpose of OpenADR is to manage 
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automated DR actions at the customer side, with no manual intervention either by means of load 

shedding or shifting. OpenADR is also able of providing a dynamic price in a range that goes since day-

ahead until real time.  There are two profiles:  

 Profile A (OpenADR 2.0a): it is designed for low-end embedded devices to support basic 

demand response services and markets. 

 Profile B (OpenADR 2.0b): it is designed for high-end embedded devices and includes 

consumer feedback of past, current, and future data events. 

OpenADR 2.0 support two types of communication nodes: the Virtual Top Node –VTN-, which is 

typically considered as a server that transmits OpenADR signals to end devices or other intermediate 

servers, and the Virtual End Node –VEN- thought as a client or an Energy Management System –EMS-

, or any device that accepts OpenADR signals from a server VTN. It is important to note that a node 

could be both a VTN and VEN at the same time, see next figure. 

 

Fig. 6.13. OpenADR nodes,[203] 

The available architectures for OpenADR [204] are i) single VTN communicating with one or multiple 

VENs, ii) XMPP -Extensible Messaging and Presence Protocol- server architecture, iii) three-level 

architecture, iv) hybrid device deployment architecture, v) vendor cloud, vi) vendor cloud per 

household, vii) VEN Application Server Architecture and vii) XMPP Server-to-Server Architecture.  

XMPP is an open and extensible XML-based protocol originally designed for instant messaging. In the 

next figure, the acronym Rcrs represents a resource of demand within the household, for instance, a 

thermostat, a dryer or any smart appliance. For integrating EMS and aggregators in the ADR process, 

the architecture of three-level is chosen due to its flexibility and scalability since the same nodes act as 

VTN or VEN. In addition, it does not need an additional server (option ii, vii and viii), options v and vi 

require a cloud network, which is generally provided by a third party. The option iv is a good option as 

well. However, the need of a VTN server on the customer side will increase the cost of implementation. 

The next figure depicts the eight architectures with their main elements. 
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Fig. 6.14. OpenADR architectures  
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6.3.4.3 Proposal for HAN   

 

Although theoretically SEP 2.0 is able to perform DSM and OpenADR, with some adaptations, it 

can support the HAN. One could think that both protocols are in competition, but OpenADR has 

traditionally focused on commercial and industrial customers, whereas SEP 2.0 has traditionally focused 

on residential customers. OpenADR has a more focused scope (DR) than SEP 2.0. However, the two 

standards can work together quite well, for example, using OpenADR to communicate from the utility 

to an Energy Service Interface –ESI-, and then use SEP 2.0 to communicate from the ESI into the home. 

According to [205], an ESI is a gateway placed at the boundary of the customer domain and exchange 

energy data between the client's domain and other external domains such as distribution, operation, and 

market. 

Thus, for the HAN segment, the SEP 2.0 protocol is chosen for the features aforementioned. In addition, 

SEP 2.0 covers the Internet of Things concept completely. On the other hand, for the Intelligent DSM 

proposal presented in chapter 4, the OpenADR protocol is suitable. Generally, the EV is charged within 

the household by means of a slow charger. There are some important variables to monitor such as SOC 

and power consumed, even the EV could participate in DR programs due to its higher power. In order 

to perform ADR for EV charging, a communication protocol between EV and distribution network is 

required. Nowadays, for this purpose, SEP 2.0, OpenADR 2.0, the Society of Automotive Engineers –

SAE-, ISO/IEC 15118 and the Open Charge Point Protocol –OPCC- have been developed. According 

to [206], SEP 2.0 and SAE protocols are good solutions when DR is applied to EV. 

In [207], an exhaustive survey of Utilities is made, the principal interest was to know the real interest to 

perform DR with EV. The results show that 69% of the utilities in the United States of America are 

planning, researching, or considering DR programs that integrate EV managed charging, and just 20% 

have no interest. The report also summarizes the protocols incorporated into the Electric Vehicle Supply 

Equipment –EVSE- from different manufacturers. Nine of them were analyzed. According to five 

manufacturers, it is possible to use OCCP protocol. For three others, SEP 2.0 and OpenADR are 

available. It means that OCCP, SEP 2.0 and OpenADR are already commercial protocols. 

Considering that SEP 2.0 is able to perform DR with EV, an unified solution for the HAN is evident; 

the HAN will be designed over SEP 2.0. In the previous sections, the protocol IEEE 802.15.4 and the 

protocol 802.11.4 were defined as best solutions for NAN and FAN respectively. Besides, taking into 

account that SEP 2.0 supports IEEE 802.15.4 (Figure 6.12), this protocol is selected in order to have a 

more unified solution for communication architecture for Smart Grids. The next figure depicts thus the 

proposal for HAN architecture. 

 

 



Development of optimal energy management in Galapagos Islands towards Smart Grid 

 

 

 
 

 

Fig. 6.15. Communication architecture proposal for HAN considering DSM 

 

6.4 Conclusion  
 

An architecture proposal has been presented for the adequate functioning of the ADMS of Galapagos 

islands. The architecture starts at the substation and ends at the Control Center / Data Center. 

Considering the substation, a key piece within the context of Smart Grids, the architecture to integrate 

measurement devices has also been presented in details, either by serial protocols, Ethernet or wiring. 

Likewise, in order to deploy a real Smart Grid in Galapagos, the communication system is of course 

needed. This chapter defined the recommended communications architecture for three key segments: 

- for the HAN network, the SEP 2.0 protocol is proposed 

- for the NAN network, the suggested protocol is IEEE 802.15.4 

- for the FAN network, the proposal has considered IEEE 802.11.4 for its best features in large 

areas. 

The last chapter present the main conclusions reached during this thesis and the perspectives to continue 

working. 
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Chapter 7 Conclusions and PerspectivesAnalysis 
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The Galapagos Islands are a fragile ecosystem that must be preserved. For that, the Ecuadorian 

Government has initiated ambitious projects so that the islands are self-sustaining. An attractive solution 

analyzed during this Ph.D. is to transform Galapagos towards Smart Island, which is based on a Smart 

Grid capable of managing new renewable energy resources and the inclusion of new charges through 

the deployment of modern and intelligent systems.  

First of all, a review of state of the art was done. This analysis revealed that in Ecuador nowadays 

substantial regulatory barriers exist to the SG implementation. The main ones refer to the lack of a 

regulatory framework for the execution of DSM, nor is there a retail market. The incentives for DG 

deployment are only applicable at MV / HV level, and TOU is available only for the industrial user. The 

reliability indices are not comparable with the international community since they are not following 

IEEE, ANSI or IEC standards; thus, the adoption of SAIDI and SAIFI indices is suggested. Also, a 

strong incentive to install renewable energies is required as well as it is needed to define a roadmap for 

the SG deployment in Galapagos. A long way in the regulatory aspect must be pursued. 

The inclusion of new services in the low voltage network enabled by induction cookers, electric 

motorbike, and distributed generation has been assessed on a representative network to generalize the 

results later and have a clear idea of the impact generated in LV. These new services have a significant 

impact since cause overloads and drop voltages in the transformers. The approach that considers real 

data curves (IC, PV, loads) allow to make the simulations as most realistic as possible. The EM and IC 

must be connected to 240V for avoiding increasing unbalance. The developed interface between GIS 

and Simulink allow carrying out enough analysis with different scenarios and topologies. 

Smart strategies to avoid significant overloads in the MV/LV transformer and keeping the voltages 

within the standard operating range are necessary. The Demand Side Management is the first strategy 

and a program composed of DR+TOU has shown outstanding results. The component corresponding to 

TOU must be designed based on measurements given by CENACE since the studies have reflected that 

before of establishing the TOU scheme, an in-depth analysis is needed because of the national load 

profile does not reflect the behavior of Galapagos. Also, for being more accurate, the rebound effect 

should be modeled. DR ought to use appliance controllers in each house in order to shift the energy 

during the whole day and in this way, the rebound is deleted. 

The results show that either ARCONEL or UPV strategies are nor suitable since in some periods the 

voltages limits are violated, and the peaks created by rebound effect are important. Thus, the proposed 

Smart DSM program has the minimum peak, and the shifted energy is allocated mainly in dawn hours. 

Also, the best voltage profile is obtained since there are not minimum peaks disrespecting the quality 

regulation. 

While overload in the transformer still exists, another smart solution has been applied: BESS connected 

at MV/LV transformer level. For determining the optimal battery size, the cost function has to be 

minimized; this function should take into account technical and contractual constraints such as daily 

charges, SOC, number of cycles, the maximum power of the network, among others. It was determined 

that Li-ion batteries are not profitable at low voltage level due to its high cost, the lead-acid batteries are 

just on the border to be considered, a controller to perform the charging/discharging process has to be 

installed to comply all the technical constraints. A new TOU scheme has to be implemented in 
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Galapagos if the government wants to encourage to end user for installing BESS system. Certainly, the 

regulations also have to be modified in order to allow the end user to become a “prosumer”; the BESS 

system should be recognized as RES and should be included in the regulation with a preferential price. 

According to the simulations, this price must be around 0,33USD/kWh for being profitable. The lead-

acid battery has interesting characteristics for deploying grids projects. For instance, it could be 

mentioned a good depth of discharge rate and most important, the capital cost is cheaper.  

For managing unbalances and voltages induced by the connection of new single-phase devices to the 

grid, the automatic phase shifting (CAP) system offers exceptional benefits such selecting the best phase 

for connecting DGs in this particular case, PV panels. Results of the connection CAP systems in 

Galapagos LV network have shown new capabilities to reduce adverse impacts of connection of single-

phase PV systems, for instance, the unbalance is reduced considerably. It is worth noting that if the PV 

has a small effect on voltage, the CAP system is not useful. 

The reliability of the distribution network can be drastically improved by the installation of remote-

controlled reclosers and activating the option of trip/lock single-phase, with a quick Return On 

Investment. With the deployment of four reclosers, one in the header, two more downstream and the last 

one as interconnection point between feeders, a reduction of more than 50% on SAIFI, MAIFI, and 

SAIDI indices have been achieved 

The optimal reconfiguration of the network is theoretically possible; however, its practical application 

is not viable for the Galapagos case since the feeders have not enough interconnection points. Similarly, 

the VVO strategy does not find any improvement proposal due mainly to the lack of elements for the 

reactive energy injection and to the fact that the current levels of voltage are in values that comply with 

the regulation. 

The implementation of an Advanced Distribution Management System will bring technical benefits to 

the distribution network since will enable to the utility for controlling and monitoring the system in real 

time, other systems such as an OMS and MWM integrated into the platform allows improving the 

service quality. For the proper functioning of the ADMS, a communication architecture is essential; this 

architecture has to enable the communication between all the substations with the Control Center by 

means of a WAN. Also, the architecture must integrate the different IEDs by either serial protocols, 

Ethernet or wiring. The rolling out of AMI system is highly recommended. AMI system will allow 

collecting information in real time of different devices installed in the distribution networks such as i) 

smart meters, ii) fault locators, iii) reclosers, iv) DGs, v) current and voltage sensors, v) regulators, vi) 

capacitor banks and any intelligent device able of being integrated by means of a communication 

protocol. 

For determining the degree of acceptance of EM, IC, DG and DSM sociological studies have been 

executed at Santa Cruz. The results of the simulation that considered these acceptance values show that, 

in a future of 9 years, more thermal generation would be needed. However, through an EMS system 

based on the ADMS system and complemented with DSM and forecasting servers, it is possible to 

integrate the BESS to store energy during the morning and return this energy at night avoiding exceeding 

the maximum limit of available generation. The solution is feasible and will prevent the installation of 

thermal generation in the future. 
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To make Galapagos a Smart Island, some mandatory fields must be addressed i) power generation, ii) 

mobility, iii) electricity network modernization, iv) efficient consumption, v) efficiency in public 

lighting, vi) integrated water cycle management, vii) solid waste treatment, vii) governance and ix) smart 

health. All these fields are related to each other in some way, for this reason, following projects should 

bring together all stakeholders for determining a common objective.  

It is necessary to carry out detailed studies of the socio-economic and socio-cultural aspects that the 

different projects can originate so that the citizens accept/support the proposed improvements within the 

islands. Likewise, financing and sustainability studies are necessary. As an important conclusion, it is 

worth mentioning that a roadmap must be drawn up with input from all those involved in each of the 

axes. This roadmap is imperative to chart the way forward in order to achieve unified and optimal 

solutions as well as improving public services delivered to the interior of the islands. 

After a detailed review of existing commercial protocols, the best options for the deployment of NAN, 

FAN, and HAN networks have been determined within the context of a Smart Grid. Thus, for the HAN 

network, the SEP 2.0 protocol is proposed due to its capacity to enable end user as an active element 

within a smart grid. For the NAN network, the selected protocol is IEEE 802.15.4 in combination with 

PLC (IEEE 1901) due to the topology of the islands; it will be more profitable to deploy PLC than RF 

mesh in some places due to lack of coverage in difficult access areas. For the FAN network, the proposal 

has considered IEEE 802.11.4 for its best features in large areas.  

The interconnection between the HAN and the FAN/NAN segment is performed through the smart 

meter, to interconnect the DSM server, which manages OpenADR and the demand resources within the 

household an Energy Service Interface is required. The energy service interface can work with several 

protocols, for instance, OPCC. As last consideration, the EVSE is integrated using SEP 2.0 protocol. 

As a final conclusion, we would like to mention that real-time simulations allow analyzing various 

scenarios with reduced optimizing costs time and effort; also offer the possibility of connecting real 

devices in the simulation. Using real-time simulation is possible to get accurate information such as 

voltage profiles, line current, power in peak hours, current in the power transformer and so on. All this 

information is necessary to understand the network state in both present and future scenarios. Hence, 

the simulations help us to build a new vision based on smart grids, which consider new services and 

effective strategies to face the challenges ahead for the distribution networks. 

Some simulations have been tried using the RT-Lab real-time simulator during the Ph.D., because the 

Matlab/Simulink platform integrated with RT-Lab allows performing both medium and low voltage 

analysis. However, the large-scale implementation of the Galapagos electric model in RT-Lab is not 

feasible due to a large number of nodes and a lot of hardware resources needed at the time of the 

compilation. In this way, the CYMDIST platform was chosen for the large-scale analysis, for its 

flexibility and mainly for being the technical analysis software homologated in Ecuador. 

Following the work carried out in this thesis, different perspectives for studies has been identified; this 

Ph.D. have explored several leads and, in further works, each item could be much more detailed and 

improved.  
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It is not trivial to install CAP system in a massive way within the whole LV network and to analyze the 

results at substation level. In addition, it would be interesting to simulate the communication of smart 

meters using IEC61850, as well as to implement a direct communication between the Virtual Power 

Plant and DGs to receive set points and make available ancillary services.  

The typical philosophy of the protection scheme that considers that the flow of current is given in a 

single direction must be rethought to consider the bidirectional flows originated by the distributed 

generators. Also, it needs a detailed study for analyzing the benefits of integrating into the electrical 

sector new agents such as Aggregators, Retailers, Virtual Power Plants, and Energy Service Companies, 

the communication architecture to support the different interrelationships between each other should be 

analyzed as well. 

ELECGALAPAGOS should choose the option of investing in innovative solutions such as EMS 

deployment, installation of reclosers of the last generation and roll out of smart meters with appliance 

controller instead of typical approach (reinforcement). 

All new project for Galapagos should involve all stakeholders and are based on international standards 

and national policies. The results obtained during this Ph.D. must be extrapolated to the continental 

country with the particular considerations. 

It is highly recommended to begin the modeling of the generation within CYMDIST. It will allow the 

model to executed dynamics analyses; it is important since the integration of renewables energies 

requires studies focused not only on the steady state. In addition, with the generators within CYMDIST, 

we can perform integral studies considering other phenomena such transients. 

Some test were carried out between CYMDIST and RT-LAB ephasorsim in order to get the real-time 

component on the electrical models developed in CYMDIST, the results were promising, as a 

recommendation, this work should continue until full integration between the two platforms. 

Finally, it is suggested to apply the Smart Grid Maturity model within Ecuador in order to assess the 

current situation and define the desired future of the electrical sector of the country. 
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Annexes 

Annex 1: Library Created with blocks for LV loads. 

 

Annex 2: LV network within Simulink 
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Annex 3: List of overloaded transformers at Future Scenario 

Equipment Number  Initial Node Final Node 
Load 
(%) 

18153_MTA-1 MTA_S_18153 MTA_L_18153 100,1 

13161_MTA-1 MTA_L_13160 MTA_L_13161 100,8 

5650_MTA-1 MTA_L_5649 MTA_L_5650 100,9 

11202_MTS-1 MTS_S_11202 MTS_L_11202 101,1 

5479_MTA-1 MTA_L_5478 MTA_L_5479 101,2 

5734_MTA-1 MTA_S_5734 MTA_L_5734 101,6 

5439_MTA-1 MTA_S_5439 MTA_L_5439 102,7 

16064_MTA-1 MTA_S_16064 MTA_L_16064 102,7 

70971_MTA-1 MTA_S_70971 MTA_L_70971 104,8 

17283_MTA-1 MTA_L_17282 MTA_L_17283 104,9 

5736_MTA-1 MTA_L_5735 MTA_L_5736 105,9 

2287_MTS-1 MTS_S_2287 MTS_L_2287 106,4 

14722_MTA-1 MTA_L_14721 MTA_L_14722 107 

5327_MTA-1 MTA_S_5327 MTA_L_5327 107 

10896_MTS-1 MTA_L_34292 MTS_L_10896 107,4 

2288_MTS-1 MTA_L_5729 MTS_L_2288 107,7 

68666_MTA-1 MTA_L_68665 MTA_L_68666 108,2 

11204_MTS-1 MTS_S_11204 MTS_L_11204 108,3 

69953_MTA-1 MTA_L_69952 MTA_L_69953 108,3 

5640_MTA-1 MTA_S_5640 MTA_L_5640 108,6 

14728_MTA-1 MTA_S_14728 MTA_L_14728 109,6 

7744_MTS-1 MTS_S_7744 MTS_L_7744 109,8 

5670_MTA-1 MTA_S_5670 MTA_L_5670 110,3 

5668_MTA-1 MTA_L_5667 MTA_L_5668 111,2 

5484_MTA-1 MTA_L_5483 MTA_L_5484 111,6 

63204_MTA-1 MTA_L_63203 MTA_L_63204 112,5 

17968_MTA-1 MTA_S_17968 MTA_L_17968 112,9 

5739_MTA-1 MTA_S_5739 MTA_L_5739 116,3 

5357_MTA-1 MTA_S_5357 MTA_L_5357 116,8 

15044_MTA-1 MTA_S_15044 MTA_L_15044 118 

13140_MTA-1 MTA_S_13140 MTA_L_13140 120,1 

5622_MTA-1 MTA_L_5621 MTA_L_5622 121,9 

13471_MTA-1 MTA_S_13471 MTA_L_13471 122,3 

5347_MTA-1 MTA_L_5346 MTA_L_5347 123,7 

5656_MTA-1 MTA_S_5656 MTA_L_5656 124,1 

5519_MTA-1 MTA_L_5518 MTA_L_5519 128,6 

69951_MTA-1 MTA_S_69951 MTA_L_69951 129,8 

14408_MTA-1 MTA_S_14408 MTA_L_14408 132,7 

17640_MTA-1 MTA_S_17640 MTA_L_17640 133,4 

68664_MTA-1 MTA_L_68663 MTA_L_68664 134,1 
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11208_MTS-1 MTA_L_5631 MTS_L_11208 134,4 

13165_MTA-1 MTA_S_13165 MTA_L_13165 135,3 

5317_MTA-1 MTA_S_5317 MTA_L_5317 135,4 

16114_MTA-1 MTA_S_16114 MTA_L_16114 135,6 

63210_MTA-1 MTA_L_63209 MTA_L_63210 135,7 

13761_MTA-1 MTA_L_13472 MTA_L_13761 136,3 

5644_MTA-1 MTA_S_5644 MTA_L_5644 137,2 

10894_MTS-1 MTS_S_10894 MTS_L_10894 137,3 

5666_MTA-1 MTA_S_5666 MTA_L_5666 138,2 

17988_MTA-1 MTA_L_17987 MTA_L_17988 138,3 

69305_MTA-1 MTA_S_69305 MTA_L_69305 138,6 

5468_MTA-1 MTA_L_5467 MTA_L_5468 139,7 

13469_MTA-1 MTA_S_13469 MTA_L_13469 141,5 

13466_MTA-1 MTA_S_13466 MTA_L_13466 142,3 

5740_MTA-1 MTA_S_5740 MTA_L_5740 144,1 

17623_MTA-1 MTA_L_17622 MTA_L_17623 144,9 

5537_MTA-1 MTA_L_5536 MTA_L_5537 146,9 

5540_MTA-1 MTA_L_5539 MTA_L_5540 148 

72242_MTA-1 MTA_L_72241 MTA_L_72242 150 

5646_MTA-1 MTA_L_5645 MTA_L_5646 150,4 

2277_MTS-1 MTS_S_2277 MTS_L_2277 152,1 

15050_MTA-1 MTA_S_15050 MTA_L_15050 157,7 

13137_MTA-1 MTA_L_13136 MTA_L_13137 157,9 

68658_MTA-1 MTA_S_68658 MTA_L_68658 161,6 

2176_MTS-1 MTS_S_2176 MTS_L_2176 163,2 

38135_MTA-1 MTA_S_38135 MTA_L_38135 163,5 

14730_MTA-1 MTA_S_14730 MTA_L_14730 170,3 

16099_MTA-1 MTA_S_16099 MTA_L_16099 170,7 

5642_MTA-1 MTA_S_5642 MTA_L_5642 178,8 

5495_MTA-1 MTA_S_5495 MTA_L_5495 180,3 

13167_MTA-1 MTA_L_13166 MTA_L_13167 181,7 

5365_MTA-1 MTA_L_5364 MTA_L_5365 182,9 

5626_MTA-1 MTA_S_5626 MTA_L_5626 185,2 

13446_MTA-1 MTA_S_13446 MTA_L_13446 188,9 

5387_MTA-1 MTA_L_5386 MTA_L_5387 189 

5359_MTA-1 MTA_L_5358 MTA_L_5359 197,6 

5634_MTA-1 MTA_L_5633 MTA_L_5634 199,3 

5477_MTA-1 MTA_L_5476 MTA_L_5477 199,4 

5395_MTA-1 MTA_S_5395 MTA_L_5395 201,4 

11207_MTS-1 MTS_S_11207 MTS_L_11207 210,6 

13163_MTA-1 MTA_L_13162 MTA_L_13163 214,5 

5376_MTA-1 MTA_L_5375 MTA_L_5376 216,7 

5630_MTA-1 MTA_S_5630 MTA_L_5630 221,2 



Development of optimal energy management in Galapagos Islands towards Smart Grid 

 

 

- 151 - 
  

5662_MTA-1 MTA_S_5662 MTA_L_5662 227,2 

68980_MTA-1 MTA_L_68979 MTA_L_68980 230,8 

6081_MTA-1 MTA_L_5776 MTA_L_6081 232,1 

13153_MTA-1 MTA_L_13152 MTA_L_13153 236,4 

5660_MTA-1 MTA_L_5659 MTA_L_5660 252,8 

7698_MTS-1 MTS_S_7739 MTS_L_7698 257,1 

14405_MTA-1 MTA_L_14404 MTA_L_14405 296,6 

69298_MTA-1 MTA_S_69298 MTA_L_69298 339,9 

69621_MTA-1 MTA_L_69620 MTA_L_69621 387,3 

20017_MTS-1 MTS_S_20018 MTS_L_20017 467,5 

5459_MTA-1 MTA_L_5458 MTA_L_5459 495,6 

 

Annex 4: List of overloaded transformers at Future Scenario with DG at 100% 

Equipment Number  Initial Node Final Node 
Load 
(%) 

70971_MTA-1 MTA_S_70971 MTA_L_70971 100,3 

69953_MTA-1 MTA_L_69952 MTA_L_69953 101 

5327_MTA-1 MTA_S_5327 MTA_L_5327 101,6 

18153_MTA-1 MTA_S_18153 MTA_L_18153 102,6 

63204_MTA-1 MTA_L_63203 MTA_L_63204 103,2 

5484_MTA-1 MTA_L_5483 MTA_L_5484 103,3 

5736_MTA-1 MTA_L_5735 MTA_L_5736 104 

2287_MTS-1 MTS_S_2287 MTS_L_2287 104,8 

5357_MTA-1 MTA_S_5357 MTA_L_5357 105,3 

7744_MTS-1 MTS_S_7744 MTS_L_7744 105,7 

2288_MTS-1 MTA_L_5729 MTS_L_2288 105,7 

10896_MTS-1 MTA_L_34292 MTS_L_10896 105,8 

5668_MTA-1 MTA_L_5667 MTA_L_5668 106,5 

5670_MTA-1 MTA_S_5670 MTA_L_5670 106,7 

11204_MTS-1 MTS_S_11204 MTS_L_11204 106,7 

15044_MTA-1 MTA_S_15044 MTA_L_15044 107,5 

13140_MTA-1 MTA_S_13140 MTA_L_13140 108,8 

13471_MTA-1 MTA_S_13471 MTA_L_13471 109,3 

17968_MTA-1 MTA_S_17968 MTA_L_17968 111 

5347_MTA-1 MTA_L_5346 MTA_L_5347 114 

5739_MTA-1 MTA_S_5739 MTA_L_5739 114,6 

5622_MTA-1 MTA_L_5621 MTA_L_5622 114,9 

5656_MTA-1 MTA_S_5656 MTA_L_5656 118,1 

69951_MTA-1 MTA_S_69951 MTA_L_69951 119,9 

17640_MTA-1 MTA_S_17640 MTA_L_17640 120,4 

5519_MTA-1 MTA_L_5518 MTA_L_5519 120,8 

17988_MTA-1 MTA_L_17987 MTA_L_17988 121 
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13165_MTA-1 MTA_S_13165 MTA_L_13165 121,5 

14408_MTA-1 MTA_S_14408 MTA_L_14408 121,6 

13761_MTA-1 MTA_L_13472 MTA_L_13761 123,7 

63210_MTA-1 MTA_L_63209 MTA_L_63210 123,9 

68664_MTA-1 MTA_L_68663 MTA_L_68664 125,2 

13469_MTA-1 MTA_S_13469 MTA_L_13469 126,2 

69305_MTA-1 MTA_S_69305 MTA_L_69305 126,2 

5317_MTA-1 MTA_S_5317 MTA_L_5317 127,2 

13466_MTA-1 MTA_S_13466 MTA_L_13466 127,9 

5468_MTA-1 MTA_L_5467 MTA_L_5468 128,5 

16114_MTA-1 MTA_S_16114 MTA_L_16114 130,6 

11208_MTS-1 MTA_L_5631 MTS_L_11208 130,7 

5644_MTA-1 MTA_S_5644 MTA_L_5644 130,8 

17623_MTA-1 MTA_L_17622 MTA_L_17623 132 

5666_MTA-1 MTA_S_5666 MTA_L_5666 132,8 

10894_MTS-1 MTS_S_10894 MTS_L_10894 135,2 

5540_MTA-1 MTA_L_5539 MTA_L_5540 139,9 

5740_MTA-1 MTA_S_5740 MTA_L_5740 141,9 

5537_MTA-1 MTA_L_5536 MTA_L_5537 142,4 

72242_MTA-1 MTA_L_72241 MTA_L_72242 142,5 

15050_MTA-1 MTA_S_15050 MTA_L_15050 143,2 

5646_MTA-1 MTA_L_5645 MTA_L_5646 146,7 

13137_MTA-1 MTA_L_13136 MTA_L_13137 148,7 

2277_MTS-1 MTS_S_2277 MTS_L_2277 149,8 

68658_MTA-1 MTA_S_68658 MTA_L_68658 153,9 

14730_MTA-1 MTA_S_14730 MTA_L_14730 157,4 

16099_MTA-1 MTA_S_16099 MTA_L_16099 160 

38135_MTA-1 MTA_S_38135 MTA_L_38135 160,2 

2176_MTS-1 MTS_S_2176 MTS_L_2176 161,1 

5495_MTA-1 MTA_S_5495 MTA_L_5495 163,8 

13167_MTA-1 MTA_L_13166 MTA_L_13167 166,8 

5642_MTA-1 MTA_S_5642 MTA_L_5642 166,9 

13446_MTA-1 MTA_S_13446 MTA_L_13446 167,3 

5365_MTA-1 MTA_L_5364 MTA_L_5365 170,4 

5626_MTA-1 MTA_S_5626 MTA_L_5626 172,7 

5387_MTA-1 MTA_L_5386 MTA_L_5387 179,5 

5359_MTA-1 MTA_L_5358 MTA_L_5359 181,3 

5395_MTA-1 MTA_S_5395 MTA_L_5395 188,6 

5477_MTA-1 MTA_L_5476 MTA_L_5477 190,1 

13163_MTA-1 MTA_L_13162 MTA_L_13163 195,3 

5634_MTA-1 MTA_L_5633 MTA_L_5634 196,3 

5376_MTA-1 MTA_L_5375 MTA_L_5376 204,4 

11207_MTS-1 MTS_S_11207 MTS_L_11207 206,5 
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5662_MTA-1 MTA_S_5662 MTA_L_5662 206,7 

5630_MTA-1 MTA_S_5630 MTA_L_5630 211,6 

6081_MTA-1 MTA_L_5776 MTA_L_6081 213,3 

68980_MTA-1 MTA_L_68979 MTA_L_68980 217 

13153_MTA-1 MTA_L_13152 MTA_L_13153 218,7 

5660_MTA-1 MTA_L_5659 MTA_L_5660 240,3 

7698_MTS-1 MTS_S_7739 MTS_L_7698 253,3 

14405_MTA-1 MTA_L_14404 MTA_L_14405 268,1 

69298_MTA-1 MTA_S_69298 MTA_L_69298 309,8 

69621_MTA-1 MTA_L_69620 MTA_L_69621 361,9 

5459_MTA-1 MTA_L_5458 MTA_L_5459 470,9 

20017_MTS-1 MTS_S_20018 MTS_L_20017 475,1 
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ABSTRACT 
The Galápagos Islands are an archipelago of volcanic islands located in the Pacific Ocean, 926 

km west of continental Ecuador, of which they are a part. Since 1978, Galapagos Islands are accepted 

as Heritage World. Due to the growth of the population, there are several social, economic and 

environmental problems, which endanger the environment conservation of the Islands. 

In this context, the Ecuadorian government desires to preserve its ecological heritage. Hence, with the 

participation of several stakeholders, mainly the Ministry of Energy and Renewable Energy, it is 

releasing a lot of initiatives. In order to improve the general services that are provided in the islands, 

this goal will be achieved by means of reducing fossil fuel consumption and therefore CO2 emissions. 

Thus, this thesis has analyzed the impact of new services on the grid such as the mandatory replacement 

of conventional vehicles and cookers for efficient ones and to propose solutions for reducing negative 

issues originated on the network. Also, a strong integration of distributed generation is considered in the 

analysis. 

In addition, innovative solutions for both low and medium voltage have been designed and tested for 

improving the electrical service without affecting the environment and conserving this world heritage. 

For instance, a smart DSM program composed of Time Of Use scheme combined with Demand 

Response has shown interesting results, the installation of a Battery Energy Storage System has been 

studied as well; the results in Medium Voltage are promising. An Automatic Phase Switching system is 

adapted like a solution for reducing unbalance in low voltage with impressive results. The deployment 

of reclosers has demonstrated a considerable improvement in the reliability with a very short Return On 

Investment. 

Considering the Information and Communication Technologies, a key piece to deploy Smart Grids, the 

communication architecture of the Neighbor, Field and Home Area Networks is addressed.  

An important contribution is a methodology proposed to perform analysis on a large scale considering 

that all the clients connect to Santa Cruz distribution network. The percentage of integration of each 

new service is determined through sociological studies. As last, an Energy Management System for 

performing optimal energy management within Galapagos is designed. All these studies have a 

significant challenge: the optimal management of electricity of isolated grid with zero fossil energy. 
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RÉSUMÉ 
Les îles Galápagos sont un archipel d'îles volcaniques situées dans l'océan Pacifique, à 926 km 

à l'ouest de l'Equateur continental, dont elles font partie. Depuis 1978, les îles Galápagos sont acceptées 

comme patrimoine mondial. En raison de la croissance de la population, il existe plusieurs problèmes 

sociaux, économiques et environnementaux qui mettent en péril la conservation de l'environnement des 

îles. 

Dans ce contexte, le gouvernement équatorien veut préserver son patrimoine écologique. Par 

conséquent, avec la participation de plusieurs intervenants, principalement du ministère de l'Énergie et 

des Énergies renouvelables, beaucoup d'initiatives ont été lancées. Avec, l'amélioration des services 

généraux fournis dans les îles, cet objectif de préservation sera atteint grâce à la réduction de la 

consommation de combustibles fossiles et donc des émissions de CO2. Ainsi, cette thèse a analysé 

l'impact des nouveaux services sur le réseau, par exemple le remplacement obligatoire des véhicules 

conventionnels et des cuisinières pour des solutions efficaces. Aussi, elle propose des solutions pour 

réduire les impacts négatifs sur le réseau et une forte intégration de la génération distribuée est 

considérée dans l'analyse. 

De plus, des solutions innovantes à la fois en basse et moyenne tension ont été conçues et testées pour 

améliorer le service électrique sans affecter l'environnement et conserver ce patrimoine mondial. Par 

exemple, un programme intelligent DSM composé d'un schéma de temps d'utilisation (TOU) combiné 

à la réponse à la demande (DR) a montré des résultats intéressants, l'installation d'un système de stockage 

d'énergie de batterie a également été étudié; les résultats de moyenne tension sont prometteurs. Un 

système de commutation de phase automatique a été adapté comme une solution pour réduire le 

déséquilibre en basse tension avec de bons résultats. Le déploiement des réenclencheurs a démontré une 

amélioration considérable de la fiabilité avec un retour sur investissement très court. 

Compte tenu des technologies de l'information et de la communication, une pièce clé pour déployer des 

Smart Grids, l'architecture de communication des réseaux de NAN/FAN/HAN est abordée.  

Une contribution importante est une méthodologie proposée pour effectuer une analyse à grande échelle 

étant donné que tous les clients se connectent au réseau de distribution de Santa Cruz. Le pourcentage 

d'intégration de chaque nouveau service est déterminé par des études sociologiques. Enfin, un système 

de gestion de l'énergie pour la gestion optimale de l'énergie au sein des Galápagos est conçu. Toutes ces 

études ont un défi majeur : la gestion optimale de l'électricité d’un réseau isolé sans énergie fossile. 
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Résumé français 
 

Les îles Galápagos sont un archipel d'îles volcaniques situées dans l'océan Pacifique, à 926 km 

à l'ouest de l'Equateur continental, dont elles font partie. Depuis 1978, les îles Galápagos sont acceptées 

comme patrimoine mondial, en raison de la croissance de la population, il existe plusieurs problèmes 

sociaux, économiques et environnementaux qui mettent en danger la conservation de l'environnement 

des îles. 

Dans ce contexte, le gouvernement équatorien veut préserver son patrimoine écologique. Par 

conséquent, avec la participation de plusieurs parties prenantes, principalement le ministère de l'Énergie 

et des Énergies renouvelables, il publie de nombreuses initiatives. Afin d'améliorer les services généraux 

fournis dans les îles, cet objectif sera atteint grâce à la réduction de la consommation de combustibles 

fossiles et donc des émissions de CO2. Ainsi, la première étape consistait à effectuer une revue 

bibliographique de l'état de l'art des réseaux traditionnels ainsi que des Réseaux Intelligentes –SG-. Le 

but a deux fois pour objectif, d'une part, d'identifier les dernières avancées dans le monde dans le 

domaine de la SG et, au contraire, d'avoir une vision claire des principales faiblesses de la réglementation 

équatorienne. Les analyses ont révélé qu'en Équateur, il existe des obstacles réglementaires importants 

à la mise en œuvre de SG, principalement pour la perte d'un cadre réglementaire pour l'exécution de 

DSM, et il n'existe pas non plus de marché de détail. Les incitations au déploiement de la DG ne sont 

applicables qu'au niveau MV / HV, et le TOU sont disponibles uniquement au niveau des utilisateurs 

industriels. 

Avec l'arrivée de Smart Grids, les consommateurs deviendront prosumers (producteur + 

consommateur). Étant donné que les DG, les équipements de contrôle, les EV, les appareils de stockage, 

les appareils intelligents, entre autres nouveaux services, sont connectés dans des réseaux basse tension, 

il est nécessaire d'aborder la modélisation du système basse tension de manière appropriée. Cette thèse 

a évalué l'impact sur le réseau basse tension des cuisinières à induction, des motos électriques et de la 

production distribuée (panneaux photovoltaïques) en utilisant une interface puissante pour extraire des 

informations du Système d'Information Géographique -GIS- puis l'importer dans Matlab / Simulink. 

Ainsi, un transformateur MV / LV représentatif avec son réseau LV a été sélectionné pour effectuer les 

simulations. Dans ce système sélectionné, tous les nouveaux services sont intégrés. Différents scénarios 

ont été créés pour quantifier l'impact de nouveaux services et les principaux résultats ont montré que les 

scénarios avec des cuisinières à induction produisent deux pics le long de la journée ; les deux sont 

supérieurs à la puissance nominale. De même, le scénario avec motos électriques et en croissance 

présente des pics considérables, le scénario avec PV peut supprimer le premier pic à midi et même 

inverser le flux. Cependant, le pic de nuit pour des raisons évidentes est toujours présent. 

En outre, des solutions innovantes à la fois basse et moyenne tension ont été conçues et testées 

pour améliorer le service électrique sans affecter l'environnement et conserver ce patrimoine mondial. 

Une fois déterminé l'impact des nouveaux services, il vaut la peine de proposer des stratégies 

intelligentes pour faire face à la croissance de la charge due à ces services et résoudre des problèmes 

tels que les chutes de tension, les pics de puissance, le courant neutre, entre autres. Deux stratégies ont 
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été analysées, la première définie par ARCONEL et le second un schéma mis à jour effectué par UPV, 

les deux ne tiennent pas compte de l'effet de rebond et les limites pour les profils de tension ne sont pas 

respectées. Ainsi, une stratégie intelligente qui considère uniquement les actions sur les charges de rafale 

et utilise un programme DSM moderne (DR + TOU) pour supprimer le rebond a été développée, en 

utilisant une fonction de pondération intelligente, l'énergie est déplacée tout au long de la journée. Il a 

été possible d'identifier que, en utilisant ce programme DSM, le pic généré par le rebond dans les 

scénarios précédents est annulé en raison de la prise en compte d'un contrôleur installé chez les ménages 

puisque ce scénario prend en compte la mise en œuvre d'un contrôleur de périphérique d'appareil dans 

chaque ménage. La puissance la plus élevée pendant la journée est de 64,07 kVA, et les tensions des 

phases L1 et L2 respectent la régulation de la qualité (114,3 V minimum). Compte tenu de toutes ces 

valeurs, il est facile de conclure que ce scénario est le meilleur. Cependant, un pic de puissance vers 

19h30 existe toujours, et pendant ce pic, le transformateur MV / LV est surchargé. Pour raser ce pic et 

éviter cette surcharge, un moyen bien connu est l'utilisation du stockage. Par conséquent, un système de 

stockage d'énergie de batterie est développé ainsi qu'un contrôleur adapté au cas particulier de 

Galápagos. 

Un modèle détaillé pour déterminer les possibilités de stockage dans un contexte avec les tarifs 

TOU est présenté en tenant compte de la génération PV. Afin de dimensionner la batterie, certaines 

contraintes sont considérées comme i) balance de puissance dans le système, ii) dégradation des piles, 

iii) déglaçage et iv) énergie de charge / décharge maximale. Ainsi, la batterie qui atteint un coût proche 

de zéro est de 19,5 KWh. Les simulations ont montré que la demande maximale est maintenant de 49,1 

kVA en raison de l'action de la batterie. Par conséquent, une réduction considérable a été atteinte ; il 

convient de noter que le contrôleur démarre le processus de chargement lorsque la génération PV est 

supérieure à la charge jusqu'à ce que la production soit égale à la charge. Selon les résultats, le contrôleur 

effectue de manière appropriée sa fonction. Cela signifie que toutes les contraintes sont respectées. Afin 

que le déploiement des batteries soit bénéfique, les batteries doivent être considérées comme une 

ressource énergétique distribuée et les consommateurs qui utilisent des piles pour réduire le pic devraient 

être bénéficiaires d'une TOU de 0,33 USD / kWh. 

En outre, un système de commutation automatique de phase -CAP- est adapté comme une 

solution pour réduire le déséquilibre en basse tension avec des résultats impressionnants; le système 

serait adapté pour fonctionner dans la configuration la plus typique de Galápagos, autrement dit 1P3W. 

Cela signifie que le système choisirait entre la phase L1 ou la phase L2. À des fins de test, le même 

réseau LV est sélectionné et trois systèmes CAP sont installés à différentes distances du transformateur; 

Un à la barre de bus secondaire du transformateur, un à la fin d'un alimentateur, et un au milieu d'un 

alimentateur. L'algorithme utilise comme données d'entrée les mesures de tension locales des deux 

phases et le courant produit par la DG. Ces quantités permettent d'effectuer une estimation de l'impact 

d'une commutation sur les tensions de phase et donner ainsi une validation de commutation si nécessaire. 

Afin de constater un meilleur effet, les actions suivantes pourraient être prises en compte : 

1. Le déséquilibre devrait être plus élevé. 

2. La puissance PV doit être augmentée, en effet, si le PV a un faible effet sur la tension, le 

système CAP n'est pas utile. 
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3. Plus de systèmes CAP pourraient être déployés, car la simulation est considérée comme 1 par 

nœud, c'est au total 3. 

Il est important de mentionner qu’EM et IC ne génèrent pas une augmentation du déséquilibre 

puisqu'ils sont connectés à 240 V. 

Une fois proposées différentes solutions innovantes en basse tension, on étudie la mise en œuvre 

des fonctions de Automation de distribution Avancée en moyenne tension ; la reconfiguration du réseau, 

le déploiement du réenclencheur et les fonctions VVO sont choisis pour l'analyse. Étant donné que ces 

fonctions amélioreront la fiabilité, réduiront les pertes et garderont les tensions dans les limites 

réglementées respectivement, avec de petits investissements 

Le déploiement des réenclencheurs a démontré une amélioration considérable de la fiabilité avec 

un retour sur investissement très court. Afin de déterminer la fiabilité initiale, un modèle prédictif a été 

mis en œuvre au sein de CYMDIST, étant donné que les indices de Galápagos sont supérieurs aux 

limites requises, la fonction objective a considéré l'amélioration de SAIDI et de SAIFI. Une méthode 

séquentielle pour l'optimisation a été utilisée en raison de sa simplicité et de ses bons résultats; cette 

approche place le premier réenclencheur à chaque emplacement du réseau et trouve le meilleur endroit 

avant de répéter le même processus avec le second. Les résultats de l'installation de quatre 

réenclencheurs dans le chargeur sont prometteurs car le retour sur investissement sera réalisé dans 2,18 

ans. 

La reconfiguration optimale du réseau dans le cas de l'alimentateur 1 est théoriquement possible; 

cependant, son application pratique n'est pas viable pour l'affaire Galápagos puisque les alimentateurs 

n'ont pas suffisamment de points d'interconnexion. La stratégie VVO pour le cas particulier de 

l'alimentateur 1 ne trouve aucune proposition d'amélioration en raison principalement du manque 

d'éléments pour l'injection d'énergie réactive et du fait que les niveaux de tension actuels sont en valeurs 

conformes à la réglementation. 

Actuellement, en Équateur, une WAN exclusive pour le secteur de la distribution a été établie. 

Ce réseau interconnecte les différents Entreprises Électriques, et il y a trois noeuds principaux à Quito, 

Guayaquil et Cuenca formant l'épine dorsale. Le support est une fibre optique et la capacité de 

transmission est de 10 Gbps. CELEC-Transelectric possède le réseau. Cependant, l'architecture pour les 

segments plus près de l'utilisateur final est nécessaire. ADMS est la plate-forme logicielle qui prend en 

charge la gestion complète de la gestion et de l'optimisation de la distribution, la nouvelle architecture 

proposée considère une RTU par poste de source qui doit pouvoir recevoir des informations provenant 

de différentes sources en utilisant différents supports. Compte tenu de l'objectif d'homologation du projet 

SIGDE, la solution adoptée est basée sur le concept serveur / clients ; Cela signifie que l'application 

principale est installée dans les National Data Centers (CDN1 et CDN2) et que les clients (20 

Entreprises) connectent leurs consoles d'exploitation au serveur à l'aide du WAN. 

Dans l'archipel, des dizaines de kilomètres séparent les îles, les interconnecter par la fibre 

optique n'est pas une solution viable en raison de certaines considérations importantes 

1. Le coût d'implémentation est encore plus élevé que la solution sans fil. 
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2. La capacité de transmission sans fil entre les îles peut atteindre jusqu'à 42Mbps; sa valeur est 

plus que suffisante pour les applications de contrôle et de surveillance. 

3. Le fond marin de Galápagos rend difficile le déploiement des fibres. 

Par conséquent, une communication sans fil doit être considérée. Compte tenu des technologies 

de l'information et de la communication, une pièce clé pour déployer Smart Grids, l'architecture de 

communication des réseaux NAN/FAN/HAN est abordée. Pour le segment NAN, les technologies PLC 

et mesh RF sont combinées. La raison est simple; en raison de la topologie des îles, il sera plus rentable 

de déployer l'automate entre Meter-Meter et Meter-Data Concentrator -DC- que RF mesh dans certains 

endroits. En outre, des conditions défavorables existent, où le maillage RF ne peut pas être implémenté 

en raison du manque de couverture dans les zones d'accès difficiles telles que les sous-sols, les bâtiments 

élevés, les points lointains, entre autres. Le concentrateur de données est le pont entre la NAN et le FAN 

; Il est équipé d'interfaces différentes pour les communications sans fil et câblées. Pour la zone FAN, le 

protocole IEEE 802.11 est choisi car il s'agit d'une norme de communication prometteuse qui permet 

d'améliorer i) l'évolutivité, ii) la faible consommation d'énergie, et iii) la couverture de grande surface. 

En ce qui concerne le segment HAN, le protocole SEP 2.0 est choisi car couvre entièrement le 

concept Internet de choses. D'autre part, pour la proposition Intelligente DSM développée, le protocole 

OpenADR convient. L'EV est chargé dans le ménage à l'aide d'un chargeur lent. Il existe certaines 

variables importantes à surveiller, telles que le SOC et la puissance consommée, même si l'EV pourrait 

participer aux programmes DR en raison de sa puissance supérieure. Afin d'effectuer une réponse 

automatisée de la demande pour la charge EV, un protocole de communication entre EV et un réseau de 

distribution est requis, dans ce cas SEP 2.0 couvre également cette nécessité. 

C'est un point essentiel pour obtenir une vision détaillée des changements qui pourraient subir 

tout le réseau de distribution, compte tenu de l'objectif ferme de la mise en place d'installations de 

réseaux intelligents sous peu dans les îles Galápagos. Ainsi, une analyse portant sur tous les clients et 

les trois alimentateurs a été réalisée. Le pourcentage d'intégration d’IC, EM et DG a été défini en 

fonction d'études sociologiques basées sur plusieurs rencontres avec différents secteurs à Santa Cruz, au 

moyen de groupes de discussion, le degré d'acceptation des nouvelles technologies a été défini. À partir 

de ces mesures réelles, l'objectif était de développer une méthodologie pour créer des profils de charge 

des consommateurs finaux, qui ne sont pas disponibles, bien sûr, car il n'existe actuellement aucun 

dispositif de mesure à ce niveau. Ces courbes de charge du client ont ensuite été incluses dans le modèle 

de réseau détaillé dans CYMDIST pour effectuer les simulations. La stratégie DSM est considérée dans 

chaque client. Dans le profil de base du client seront intégrés des profils moyens pour IC et EM; cette 

considération est valable car l'analyse cherche à déterminer l'impact dans la sous-station et, dans ce 

niveau, les profils sont beaucoup plus agrégés. Le scénario de base 9 ans plus tard (avec IC et EM et 

sans DSM et DG) a montré une puissance maximale de 10.648,56 kVA (somme des pics de puissance 

des trois alimentateurs); les pics dans les trois alimentateurs sont coïncidents et sont atteints à 18h45. 

Considérant que la capacité installée à Santa Cruz est de 8,75 MVA, la consommation dépassera la 

génération de 21% en 9 ans si aucun DSM et DG ne sont mis en œuvre. 

Une nouvelle analyse du flux de charge prenant en considération la DG et le DSM a été 

effectuée; comme on pouvait s'y attendre, on observe une réduction de 8,8% dans le sommet supérieur, 
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soit maintenant de 9,709,98 kVA. Cette diminution est due à la stratégie DSM. En outre, une réduction 

du pic du midi est atteinte grâce au déploiement de la DG. La diminution va de 9.000kVA à 8.451kVA 

(6,1%). Cependant, un nouveau pic de 8,039 kVA apparaît près de minuit puisque la fonction de 

pondération déplace l'énergie à ces heures. Bien que la génération existante puisse fournir cette valeur, 

elle est dangereuse car toute défaillance dans une unité de génération entraînerait des pannes de courant, 

car il n'y a pas assez de réserve à ce stade. 

La simulation finale considère qu'un EMS centralisé sera installé à Galápagos, l'EMS profitera 

du système ADMS ainsi que de l'architecture de communication proposée. Ainsi, avec la mise en œuvre 

d'un BESS, il est possible de différer les investissements dans la production thermique, car il a été 

démontré que le pic principal pendant toute la journée se produit vers 18:45-19:15. Ainsi, les énergies 

renouvelables ne sont pas disponibles dans cette période. Deuxièmement, pour charger le BESS pendant 

la matinée (4:00 - 16:00), la ressource thermique est utilisée. La charge sera composée de la charge 

inhérente de l'île, plus la charge de la batterie. Ici, il est important de noter que le pic du midi a été réduit 

par le déploiement de la DG avec 100% d'intégration (obtenue avec des incitations appropriées et un 

cadre réglementaire amélioré). Avec toutes ces mesures, la courbe de génération d'énergie a une forme 

lissée avec une exception de 18:00 à 21:00, où toute l'énergie stockée pendant la matinée est utilisée 

pour fournir la charge. 

Pour pouvoir faire de Galápagos une île intelligente, certains champs obligatoires doivent être 

abordés: i) production d'électricité, ii) mobilité, iii) modernisation du réseau électrique, iv) 

consommation efficace, v) efficacité dans l'éclairage public, vi) gestion intégrée du cycle de l'eau, vii) 

solide traitement des déchets, vii) gouvernance et ix) santé intelligente. Tous ces domaines sont liés de 

quelque manière que ce soit, pour cette raison, les projets suivants devraient regrouper toutes les parties 

prenantes pour déterminer un objectif commun. À l'heure actuelle, les services actuels sont dispersés, 

non intégrés et incomplets. Par conséquent, il existe des solutions particulières pour chaque cas. Il n'y a 

pas de centre de contrôle unifié, centralisé et intégré pour surveiller l'énergie / l'eau, bien qu'il existe des 

règlements, ceux-ci devront être modifiés pour intégrer de nouveaux concepts. Une solution intégrée et 

efficace doit être mise en œuvre pour atteindre le développement social et économique sans affecter 

l'environnement, en utilisant les facilitateurs technologiques en fonction de la disponibilité et de la 

rapidité de l'information. 

En conclusion, il convient de mentionner qu'une feuille de route doit être établie avec l'apport 

de tous ceux impliqués dans chacun des axes. Cette feuille de route est impérative pour tracer la voie à 

suivre pour parvenir à des solutions unifiées et optimales ainsi qu'à l'amélioration des services publics 

livrés à l'intérieur des îles. Tout cela avec un défi majeur: la gestion optimale de l'électricité de réseau 

isolée sans énergie fossile. 

Quelques recommandations à considérer, les méthodologies développées au cours de ce doctorat 

pourraient être adapté pour fonctionner correctement dans le pays continental avec des considérations 

particulières. Il est fortement recommandé de commencer la modélisation de la génération au sein de 

CYMDIST, il pourra analyser les analyses dynamiques du modèle ; il est important car l'intégration des 

énergies renouvelables nécessite des études axées non seulement sur l'état d'équilibre. De plus, avec les 
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générateurs de CYMDIST, nous pouvons effectuer des études intégrales en considérant d'autres 

phénomènes tels que transitoires. 

Certains tests ont été effectués entre CYMDIST et RT-LAB ephasorsim pour obtenir la 

composante en temps réel sur les modèles électriques développés dans CYMDIST; les résultats étaient 

prometteurs, ce travail devrait se poursuivre jusqu'à une intégration complète entre les deux plates-

formes. 

Enfin, il est suggéré d'appliquer le modèle Smart Grid Maturity au sein de l'Équateur afin 

d'évaluer la situation actuelle et de définir l'avenir désiré du secteur électrique. 
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