
HAL Id: tel-01813184
https://theses.hal.science/tel-01813184

Submitted on 12 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmic approaches to Siegel’s fundamental domain
Carine Jaber

To cite this version:
Carine Jaber. Algorithmic approaches to Siegel’s fundamental domain. General Mathematics
[math.GM]. Université Bourgogne Franche-Comté, 2017. English. �NNT : 2017UBFCK006�. �tel-
01813184�

https://theses.hal.science/tel-01813184
https://hal.archives-ouvertes.fr

UNIVERSITE DE BOURGOGNE
U.F.R Sciences et Techniques

Institut de Mathématiques de Bourgogne

Algorithmic approaches to
Siegel’s fundamental domain

THESE
présentée et soutenue publiquement le 28 juin 2017

pour l’obtention du grade de

Docteur de l’Université de Bourgogne
(Specialité Mathématiques)

par

Carine Jaber

Devant le jury composé des Professeurs

COUVEIGNES Jean-Marc Université de Bordeaux (Président du jury)
BRADEN Harry Université d’Edimbourg (Rapporteur)
KOROTKIN Dmitri Université Concordia (Rapporteur)

Montréal
ABENDA Simonetta Université de Bologne (Examinatrice)
SCHAUENBURG Peter Université de Bourgogne- (Examinateur)

Franche-Comté
KLEIN Christian Université de Bourgogne- (Directeur de thèse)

Franche-Comté

Remerciements

Les remerciements constituent une partie facile et en même temps difficile à
écrire. Facile car elle est exclue des corrections mais en même temps un exer-
cice difficile pour les matheux qui n’aiment pas beaucoup parler ni exprimé
leur propres sentiments (même si les femmes ne sont pas vraiment reconnues
pour cela!).
J’ai toujours considéré la recherche non pas comme un travail mais plutôt
comme une passion. Le défi et la curiosité sont les deux mots qui résument
mon histoire avec les maths. Ces trois années ont été pour moi une expérience
très enrichissante.
J’aimerai commencer par remercier celui qui m’a lancé dans cette fabuleuse
aventure, celui avec lequel j’ai pris un très grand plaisir à travailler: mon
directeur de thèse Christian Klein que je ne saurai jamais assez remercier
pour tout ce qu’il m’a apporté. Je le remercie énormément pour ses précieuses
remarques, la qualité de nos discussions mathématiques mais aussi pour sa
gentillesse et son écoute. Je tiens également à remercier Peter Schauenburg
pour son aide, sa gentillesse et aussi pour sa disponibilité malgré un planning
chargé. J’ai eu également la chance et le plaisir de rencontrer Jörg Frauendi-
ener, que je remercie pour son attention, son suivi tout au long de ces trois
ans, à distance mais également en n’hesitant pas à venir depuis la Nouvelle
Zélande.
Je remercie également Damien Stehlé pour les conseils prodigués et les discus-
sions que nous avons pu avoir. Il me faut également remercier Harry Braden
et Dmitri Korotkin pour avoir accepter d’être mes rapporteurs. Merci encore
à Simonetta Abenda d’avoir accepter de faire partie du jury et à Jean-Marc
Couveignes d’être le président de ce jury.
Faire une thèse, c’est également faire des rencontres!
Je salue et remercie tous les thésards que j’ai pu rencontrer et je leur souhaite
une bonne chance pour leur thèses. Je remercie également les membres du
laboratoire.
Ce travail n’aurait pu s’effectuer sans la bourse de la société libanaise L’orient
SAL que je ne remercierai jamais assez de m’avoir offrir l’opportunité pour-
suivre mes études en réalisant cette thèse.
Enfin un grand merci à ma famille: ma sœur Léa, mes deux frères et tout
particulièrement mes parents qui ont toujours été à mes côtés et fières de leur
fille. Je remercie énormément mon amour (mon mari Jamal) et ma princesse
(Ella) dont j’étais enceinte durant ma première année de thèse. Ils m’ont

apporté tant de bonheur me permettant d’oublier tout mon stress.
Merci à vous tous!!

2

Contents

Remerciements 1

List of Figures 5

List of Tables 6

1 Introduction 2
1.1 Lattices and lattice reductions 2

1.1.1 Gram-Schmidt orthogonalization 4
1.1.2 Size-reduction . 5
1.1.3 The Shortest vector problem (SVP) 5
1.1.4 Lattice reduction algorithms 8

1.2 Siegel’s fundamental domain 18
1.3 Theta Functions . 24
1.4 Outline of the thesis . 30

2 Lattice and lattice reduction 32
2.1 Introduction . 32
2.2 Lattice . 34

2.2.1 The Dual Lattice . 36
2.2.2 Gram-Schmidt Orthogonalization 39
2.2.3 The Determinant . 43
2.2.4 Complex-Valued Lattices 45
2.2.5 Size Reduction . 46
2.2.6 Minkowski’s Successive Minimum And Hermite’s

Constant . 46
2.2.7 Minkowski’s Theorem 47

2.3 The Shortest vector problem and Sphere decoding algorithms . 50
2.3.1 The Closest Point And The Shortest Vector Problem . 51
2.3.2 The Sphere Decoding Algorithms 54
2.3.3 The Algorithms for SVP 55

3

2.4 Lattice reduction: . 60
2.5 An introduction to the fundamental domain of Minkowski

reduction . 77
2.5.1 Equivalence of reduced quadratic forms 79
2.5.2 The exact domain of Minkowski reduction for m= 3 . . 83

3 Time Complexity Of Reduction Algorithms 89
3.1 Mathematical Preliminaries 89
3.2 Introduction . 91
3.3 Computational Complexity . 93
3.4 Complexity of the Gauss algorithm 97
3.5 Complexity of the LLL algorithm 100
3.6 Complexity of HKZ and Minkowski algorithms 108

4 Minkowski reduction algorithm 109
4.1 A Descripition Of The Algorithm 110

4.1.1 Where This Idea Comes From? 110
4.1.2 Why do we change every time the Transform function? 115

4.2 Comparison Between Reduction
Algorithms . 124

4.3 The Orthogonality Defect Of Lattice Reduction Algorithms . . 128

5 On the action of the Symplectic Group on the Siegel Upper
Half Space 130
5.1 Siegel fundamental domain for general g 132
5.2 Genus 1 . 137
5.3 Genus 2 . 142
5.4 Genus 3 . 146

5.4.1 F3 . 147
5.5 Approximation to the Siegel fundamental

domain . 153
5.5.1 Theta functions . 155
5.5.2 Example . 157

Bibliography 161

4

List of Figures

1.1 The lattice generated by two different bases 4
1.2 GSO . 5
1.3 Idea behind the sphere decoder for the shortest lattice vector . 7
1.4 Enumeration tree . 7
1.5 Gauss’s reduction . 9
1.6 Gauss’s algorithm . 9
1.7 The elliptic fundamental domain [Mumford] 21

2.1 Lattice in R2 . 35
2.2 A "good" basis and a "bad" basis 36
2.3 Gram-Schmidt orthogonalization 39
2.4 Example lattice Z2 with bases B =

(
1 00 1

)
and B̃ =(

1 20 1
)
and associated fundamental parallelograms 43

3.1 Illustration of size reduction (red) and Gauss reduction (green)
for a two-dimensional lattice L spanned by the basis vectors
u = [2.1 1]> and v = [3 1]> (shown in blue) 100

5.1 F1 . 139
5.2 F̃1 . 139

5

List of Tables

4.1 Upper bounds for the orthogonality defect of HKZ, LLL (δ =
3/4) and Minkowski reduced bases. 128

6

List of Abbreviations

01×m−1 the column vector of m− 1 zeros

0n,n the n× n zero matrix

det(A) the determinant of a matrix A

dxe the smallest integer greater than x

bxe the nearest integer to x

bxc the greatest integer smaller than x

I(x) the imaginary part of a variable x

R(x) the real part of a variable x

A the complex conjugate of A

A(:, i) the ith column of A

A(:, i : j) a sub-matrix of A which contains the columns of A from the ith to
the jth position

A−1 the inverse of a matrix A

A⊥ the orthogonal of A

A> the transpose of a matrix A

Aij the ith row and jth column of A

CV P the closest vector problem

GL(n, F) the group of all invertible n× n matrices with entries in F

GSO Gram-Schmidt orthogonalization

7

HKZ Hermite-Korkine-Zolotarev

i the complex unit, i2 = −1

In or simply I the n× n identity matrix

LLL Lenstra, Lenstra and Lovász

M(n, F) the space of all n× n matrices with entries in the field F

Pn the space of positive definite symmetric, real, n× n matrix

SV P the shortest vector problem

8

Abstract

The action of the symplectic group Sp(2g,R) on Siegel upper half space is a
generalization of the action of the group SL(2,R) = Sp(2,R) on the usual
complex upper half plane to higher dimensions. A study of the latter action
was done by Siegel in 1943 and led to the well known elliptic fundamental
domain. This action for dimension 2, goes back to Gottschling’s work in 1959
where 19 conditions were identified to construct this fundamental domain for
g = 2. However, for g > 2, no results appear to be known until now.
The construction of a fundamental domain for the symplectic group is essen-
tially based on the Minkowski reduction theory of positive definite quadratic
forms, i.e., a collection of shortest lattice vectors which can be extended to a
basis for the lattice and on the maximal height condition (det(CΩ +D) ≥ 1),
i.e., find the symplectic element in order to maximize the length of the shortest
vector of the lattice generated by the imaginary part of the Riemann matrix.
In this work, we present our Minkowski reduction algorithm for dimension
g ≤ 5. Also, we present a part of the finitely many conditions that determine
Siegel’s fundamental domain for genus 3, especially rank C = 1 (the necessity
of the conditions is not yet shown).
A motivation for this study is to obtain a rapid convergence of theta functions.
The approach adopted here is based on a previous algorithm by Deconinck et
al using the Lenstra, Lenstra and Lovász algorithm for finding the shortest
lattice vector. In this work, the LLL algorithm is replaced by our exact
Minkowski reduction algorithm for small dimensions (g ≤ 5) and an exact
identification of the shortest vector problem for larger values of the genus
for two simple reasons: first, the LLL algorithm only provides vectors that
are no more than exponentially longer than the shortest ones whereas the
Minkowski reduction algorithm finds an exact determination of the shortest
lattice vector. Secondly, in the LLL algorithm, there is no reason for the
shortest lattice vector to appear at the first position of a matrix whereas it is
the first with the Minkowski reduction (an important condition in Siegel’s
fundamental domain). The utility and effectiveness of this replacement are
justified by examples.

Résumé

L’action du groupe symplectique Sp(2n,R) sur le demi-espace de Siegel n’est
qu’une généralisation de l’action du groupe SL(2,R) = Sp(2,R) sur le demi-
plan de Siegel, à une dimension supérieure. Une étude de cette dernière
action a été effectuée par Siegel en 1943 et a conduit au domaine fondamental
elliptique bien connu. Cette action pour la dimension 2, remonte au travail
de Gottschling en 1959 où 19 conditions ont été identifiés pour construire ce
domaine fondamental pour g = 2. Cependant, pour g > 2, aucun résultat ne
semble être connu jusqu’à présent.
La construction d’un domaine fondamental pour le groupe symplectique
repose essentiellement sur la théorie de la réduction de Minkowski des formes
quadratiques définitives positives, c’est-à-dire une collection de vecteurs les
plus courts d’un réseau qui peut être étendue à une base à ce réseau et sur
la condition de hauteur maximale (det(CΩ +D) ≥ 1), c’est-à-dire, trouver
l’élément symplectique afin de maximiser la longueur du vecteur le plus court
d’un réseau engendrée par la partie imaginaire de la matrice de Riemann.
Dans ce travail, nous présentons notre algorithme de réduction de Minkowski
pour une dimension g ≤ 5. De plus, nous présentons une partie des conditions
finies qui déterminent le domaine fondamental pour le genre 3, notamment
pour rang C = 1 (la nécessité des conditions n’est pas encore connue).
Une motivation de cette étude est d’obtenir une convergence rapide des
fonctions thêta. L’approche adoptée ici est basée sur un algorithme précédent
de Deconinck et al utilisant l’algorithme Lenstra, Lenstra et Lovász pour
trouver le vecteur le plus court d’un réseau. Dans ce travail, l’algorithme
LLL est remplacé par notre algorithme de réduction de Minkowski pour
une petite dimension (g ≤ 5) et une identification exacte du problème de
vecteur le plus court pour des dimensions supérieures pour deux simple raisons:
D’abord, l’algorithme LLL ne fournit que des vecteurs qui ne sont pas plus
qu’ exponentiellement plus longs que les vecteurs les plus courts d’un réseau
tandis que l’algorithme de réduction de Minkowski trouve une détermination
exacte du vecteur le plus court. Deuxièmement, dans l’algorithme LLL, il n’y
a aucune raison pour que le vecteur le plus court apparaisse à la première
position d’une matrice alors qu’il est le premier avec la réduction de Minkowski
(une condition importante dans le domaine fondamental de Siegel). L’utilité
et l’efficacité de ce remplacement sont justifiés par des exemples.

Chapter 1

Introduction

The Symplectic group Sp(2g,R) is a generalization of the group SL(2,R) =
Sp(2,R) to higher dimensions. This group acts on a symmetric homogeneous
space, called Siegel upper half space. This action has a few similarities with
the action of SL(2,R) on the hyperbolic plane for genus g = 1. A study of
this action was firstly done by Carl Ludwig Siegel in 1943 and published in his
book Symplectic Geometry [170]. Siegel described a fundamental domain for
that action, using Minkowski’s reduction of positive definite quadratic forms.
It is clear that Siegel’s fundamental domain is intimately linked to lattices
where the central computational problem on lattices is the shortest vector
problem for dimensions greater than 2. The shortest vector problem appears
in the context of Siegel’s fundamental domain and for this the main part
of our work was dedicated to an exact determination of the shortest lattice
vector for low-dimensional lattices, more precisely constructing a Minkowski
reduced basis for dimensions ≤ 5. As an application, Siegel’s fundamental
domain can be used as an efficient method for the computation of theta series.

1.1 Lattices and lattice reductions
Lattice reduction plays an important role in many areas of mathematics
and computer science (see [28], [139], [91], [65], [108], [85], [183], [83], [128],
[138],[107], [105], [43], [143]). Lattice reduction was used to break schemes
based on the Knapsack problem1. The success of reduction algorithms at
breaking various cryptographic schemes over the past twenty years (see [83])
have arguably established lattice reduction techniques as the most popular tool

1or the subset sum can be stated as follows: Given a set of r weights W = (w0, ..., wr−1)
and a sum X, find x0,.., xr−1 where each xi ∈ {0, 1}, so that X = x0w0 + x1w1 + ... +
xr−1wr−1, see [141]

2

in public-key cryptanalysis. Ajtai and Dwork in [8] designed a probabilistic
public key cryptosystem whose security relies on the hardness of lattice
problems. Inspired by the Ajtai-Dwork cryptosystem, Goldreich, Goldwasser
and Halevi proposed in [32] a public key cryptosystem based on the closest
vector problem in a lattice i.e, the location of the lattice vector closest to
a given point x ∈ Rn [72] (see also [27]). In [36], Coppersmith showed
by means of lattice reduction how to solve rigorously certain apparently
non-linear problems related to the question of finding small roots of low-
degree polynomials equations. Lattice reduction leads to efficient solutions for
several classical problems in lattice theory. For example, lattice reduction is
intimately linked to the search for the shortest vector in a lattice, which is a
fundamental algorithmic problem and lies at the heart of the solution of many
diophantine problems in arithmetics, including integer programming, [101],
finding irreducible factors of polynomials (see [88], [45]), minimal polynomials
of algebraic numbers, [88], and many more, [172], [5] and [49].
We will show in this first part that an exact determination of the shortest
lattice vector can be obtained by lattice reduction algorithms, in particular
our Minkowski reduction algorithm. Other algorithms as the LLL algorithm
are faster (in polynomial time) then the Minkowski reduction but find the
shortest lattice vector merely with an error growing exponentially with the
lattice dimension.

Definition. A lattice in Rg is the set

L(b1, .., bg) =
{ g∑
i=1

xibi | xi ∈ Z
}
,

of all integer combinations of g linearly independent vectors b1,...,bg. These
vectors are known as a basis B of the lattice. A lattice basis is usually not
unique but all have the same number of elements called "dimension" or "rank"
of the lattice. Now, in order to understand when the lattice bases that
generate the same lattice hold, we recall that an integer matrix U is called
"unimodular" if and only if |det(U)| = 1. Then, it follows

Lemma. Let B, B′ ∈ Rg×g be two non-singular matrices. One has L(B) =
L(B′) if and only if there exists an unimodular matrix U ∈ Zg×g with
B′ = BU .

The most fundamental problem involving lattices is to find a "nice" basis,
which consists of short and almost orthogonal vectors (see Figure 1.1).

3

a1

a2

b1 b2

Figure 1.1: The lattice generated by two different bases

The process of improving the quality of a basis by applying well chosen
unimodular matrices is generally called lattice reduction. The lattice re-
duction techniques provide a compromise between the quality of the reduced
basis and the computational effort required for finding it.

Many different notions of reduced bases exist, and for most of them there
is an algorithm for computing a reduced basis from any lattice basis. These
reduction algorithms are often classified into two categories according to their
complexity: exponential time or the slower algorithms as Minkowski reduced
bases and polynomial time where such algorithms are used more from the
practical point of view as the LLL algorithm named after Lenstra, Lenstra
and Lovász.

In this work, in order to better understand lattice reduction, we study
low-dimensional lattices (g ≤ 5).

1.1.1 Gram-Schmidt orthogonalization
The achieved reductions are most often defined in terms of orthogonality. For
linearly independent vectors, we define the Gram-Schmidt orthogonalized
vectors b∗1,..., b∗g via an iterative process. First, we define b∗1 = b1 and
then for i = 2, .., g we define b∗i to be the component of bi orthogonal to
Span(b1, .., bi−1) = Span(b∗1, .., b∗i−1), the linear span of the previous vectors,

b∗i = bi −
∑
j<i

µi,jb
∗
j where µi,j =

〈
bi, b

∗
j

〉
〈
b∗j , b

∗
j

〉 .
However, the Gram-Schmidt orthogonalization process is not useful in

general for lattices since the coefficients µi,j do not usually lie in Z and so
the resulting vectors are not elements of the lattice (see, Figure 1.2).
It follows from this definition a simple but not very powerful criterion, the
so-called "size-reduction"

4

Figure 1.2: GSO

1.1.2 Size-reduction
A lattice basis is said to be size-reduced or weakly reduced if its Gram-Schmidt
coefficients µi,j’s all satisfy:

|µi,j| ≤
1
2 .

The size-reduction was introduced by Lagrange and seems like one of the main
condition for several algorithms such as Gauss, HKZ and LLL algorithms.
The size-reduction can be easily achieved by subtracting from each bi a
suitable linear combination ∑i−1

j=1 xjbj of the previous bj ’s, for each i = 2, ..., g.

1.1.3 The Shortest vector problem (SVP)
The most basic computational problem in lattices is the shortest vector
problem. The SVP asks to find a non zero lattice vector of smallest norm
for a given lattice basis as input. This norm is called the first minimum,
λ1(L) or the minimum distance and is in general unique up to the sign.
An equivalent way to define the λ1: it is the smallest r such that the lattice
points inside a ball of radius r span a space of dimension 1.
Minkowski’s theorem gives a simple way to bound the length of the shortest
lattice vector.

Theorem (Minkowski’s theorem). λ1(L) ≤ √g(det(L))
1
g for any L of dimen-

sion g.

However, in general λ1 can be much smaller than √g(det(L))
1
g and as

an example we take a lattice generated by the following orthogonal vectors

5

b1 = εe1 and b2 = (1
ε
)e2 (ei are the unit vectors). The determinant of this

lattice is 1 (det(L) = |det(B)|) and we obtain λ1(L) ≤
√

2 via Minkowski’s
theorem. However, λ1(L) = ε can be arbitrarily small.

In fact, the SVP can be solved efficiently by lattice reduction for dimension
2 (Gauss’s reduction). However for dimension greater than 2, the exact
determination of the shortest lattice vector becomes more complicated to be
obtained.

The definition of the first minimum leads to the following generalization
of λ1 known as "successive minima". The ith successive minimum, λi(L), is
the radius of the smallest closed ball centered at the origin containing at least
i linearly independent lattice vectors.

Proposition. The successive minima of a lattice are always reached, there
always exist independent vectors vi’s such that

‖vi‖2 = λi(L), for all i.

However, for g > 4, such vectors do not necessarily form a basis for the
lattice. This implies that the construction of a "nice" basis will not be easily
obtained.

The best approach for solving the shortest vector problem for low dimen-
sional lattices is the enumeration technique which dates back to the early
1980s with work by Pohst [142], Kannan [87], and Fincke-Pohst [49], and is
still actively investigated [159, 5, 70, 144, 158, 130, 174]. These methods are
all deterministic and are guaranteed to output a non zero vector of minimum
length. The time complexity is exponential in the lattice dimension, but the
storage requirements are polynomial. This approach is known by the name
"sphere decoding" in the communications community. Enumeration is simply
an exhaustive search for the best integer combination of the basis vectors.

Another approach for solving lattice problems was suggested in 2001 by
Ajtai, Kumar and Sivakumar [9] (see also [10], [140], [129], [145]). This
technique known as sieving algorithm leads to the asymptotically fastest
algorithms for solving lattice problems (running in time essentially 2O(g)) and
requires an exponential amount of space. As a result, it is so far not useful in
practice.

The basic enumeration algorithm (as in [49, 159]) allows to enumerate
all vectors of euclidean norm ≤ R (see, Figure 1.3). So, we attempt to
search over only lattice points that lie in a certain sphere of radius R around
the vector zero, thereby reducing the search space by taking the new radius
R equal to the shortest distance between the lattice points and the vector

6

Figure 1.3: Idea behind the sphere decoder for the shortest lattice vector

0. The procedure continues until no points can be found inside the sphere
and the last point obtained by this procedure is considered as the shortest
lattice vector. The search can be seen as a depth-first on a tree whose leaves
correspond to lattice vectors, and whose internal nodes correspond to partial
assignments to the coefficients of the integer combination (see, Figure 1.4).

Figure 1.4: Enumeration tree

The Schnorr-Euchner enumeration. The Schnorr-Euchner enumeration
[159] performs a depth-first search to find the single leaf. The goal is to find the
shortest lattice vector, say, v. The enumeration goes through the enumeration
tree formed by all vectors in the projected lattices πg(L), πg−1(L),..., π1(L)
of norm at most R where πi is the orthogonal projection on (b1, ..., bi−1)⊥.
For all i ∈ {1, ..., g + 1}, πi(L) is a g + 1− i-dimensional lattice generated by
the basis (πi(bi), ..., πi(bg)). The enumeration tree is a tree of depth g, and
for each k ∈ {0, ..., g}, the nodes at depth k are all the vectors of the rank-k
projected lattice πg+1−k(L) with norm at most R. In particular, the root of
the tree is the zero vector (because πg+1(L) = {0}), while the leaves are all
the vectors of L of norm ≤ R.
The shortest lattice vector v ∈ L can be written as v = ∑g

i=1 vibi where
the vi’s are unknown integers, {b1, ..., bg} is the lattice basis of L such that

7

bi = b∗i + ∑i−1
j=1 µijb

∗
j . Then v = ∑g

j=1(vj + ∑g
i=j+1 µijvi)b∗j which gives the

norm of its projection as:

‖πg+1−k(v)‖2 =
g∑

j=g+1−k

vj +
g∑

i=j+1
µijvi

2 ∥∥∥b∗j∥∥∥2
, 1 ≤ k ≤ g.

If v is a leaf of the tree, then we have

g∑
j=g+1−k

vj +
g∑

i=j+1
µijvi

2 ∥∥∥b∗j∥∥∥2
≤ R2, 1 ≤ k ≤ g. (1.1)

(1.1) can be written for 1 ≤ k ≤ g as

∣∣∣∣∣∣vg+1−k +
g∑

i=g+2−k
µijvi

∣∣∣∣∣∣ ≤
√
R2 −∑g

j=g+2−k(vj +∑g
i=j+1 µijvi)2

∥∥∥b∗j∥∥∥2

∥∥∥b∗g+1−k

∥∥∥ . (1.2)

Suppose that the projection πg+2−k(v) has been computed for some k i.e.,
the integers vg+1−(k−1),..., vg are known. Then (1.2) allows to compute
an interval Ig+1−k such that vg+1−k ∈ Ig+1−k, and therefore to perform an
exhaustive search for vg+1−k. A depth first search of the tree corresponds
to enumerating Ig+1−k from its middle, by increasing values of ‖πg+1−k(v)‖,
namely vg+1−k =

⌊
−∑g

i=g+2−k µijvi
⌉
,
⌊
−∑n

i=g+2−k µijvi
⌉
± 1, and so on.

1.1.4 Lattice reduction algorithms
The result of the multiplication of the basis B by a unimodular matrix U can
be also obtained by a sequence of elementary column operations on B:

1. Swapping columns: bi ↔ bj;

2. Multiplication of a column with −1: −bi ← bi;

3. Addition of an integral multiple of one column to another column:
bi ← bi + kbj for i 6= j and k ∈ Z.

Now that we know which operations to apply let us consider an example
of lattice basis reduction. Suppose that we want to determine the shortest

vector of the lattice generated by the following vectors u =
[
2.1
1

]
and v =

[
3
1

]
.

It is difficult to guess what the shortest vector of this lattice could be. Thus,

8

we subtract u from v and replace v with the outcome of this operation. The
result is this new basis

(u, v) =
[
2.1 0.9
1 0

]
.

Since ‖u‖2 > ‖v‖2, we perform a column swap u ↔ v, that leads to the
following basis matrix

(u, v) =
[
0.9 2.1
0 1

]
.

Still, it is not easy to determine the shortest vector. Next, we subtract

2-times u from v and replace v with the outcome of this operation, v =
[
0.3
1

]
.

Now, according to the figure 1.5, the shortest vector reveals itself easily

Figure 1.5: Gauss’s reduction

since the obtained basis consists of two orthogonal vectors. In fact, we have
traced here the reduction algorithm of Lagrange which was also described by
Gauss. Gauss’s algorithm takes a two-dimensional basis matrix B as input

Figure 1.6: Gauss’s algorithm

and successively performs swaps and size-reduction until a Gauss reduced

9

basis is obtained ‖b1‖2 ≤ ‖b2‖2. Thus, we have described an algorithm which
finds a minimal basis in two dimension and it is similar in style to Euclid’s
famous gcd (greatest common divisor) algorithm.

For dimension greater than 2, several types of strong reductions are
considered in the literature and includes the most frequent one: Minkowski’s
reduction which gives an exact determination of the shortest lattice vector at
least for dimension less or equal to 4 however it is considered as an exponential
time algorithm.
In 1905 Minkowski introduced his theory of reduction of positive definite
quadratic forms [123]. This theory is one of the essential foundations of the
geometry of numbers.

Definition. A form f = ∑g
i,j=1 aijxixj is Minkowski reduced if for any col-

lection of integers (l1, ..., lg), from the condition gcd(li, ..., lg) = 1, it follows
that

f(l1, ..., lg) ≥ aii.

A Minkowski reduced basis can also be defined as follows:

Definition. A basis B = {b1, .., bg} of a lattice is Minkowski reduced if for
each i, bi is the shortest vector in the lattice such that b1,...,bi can be extended
to a basis of the lattice L.

Note that (aij)1≤i,j≤g = (〈bi, bj〉)1≤i,j≤g where we denote by ” 〈., .〉 ” the
Euclidean scalar product.

Equivalently;

Lemma. A basis [b1, ...,bg]≤ of a lattice L is Minkowski-reduced if and only
if i ∈ [1, .., g] and for any integers x1, ..., xg such that xi, ..., xg are altogether
coprime, we have:

‖x1b1 ++ xgbn‖ ≥ ‖bi‖ .

Fortunately, in any fixed dimension, it is sufficient to check a finite subset
of conditions and we callMinkowski conditions such a subset with minimal
cardinality. Minkowski conditions have been obtained by Tammela up to
dimension 7 in [177, 178]. However, it is not clear how to generalize these
conditions for higher dimensions. As a consequence, in low dimension, one can
check quickly if a basis is Minkowski-reduced by checking these conditions.

10

Here, we present Tammela’s conditions for g ≤ 7.

Theorem (Tammela). Let g ≤ 7. A basis [b1, ...,bg]≤ of L is Minkowski-
reduced if and only if for any i ≤ g and for any integers x1, ..., xg that satisfy
both conditions below, we have the inequality:

‖x1b1 ++ xgbg‖ ≥ ‖bi‖ .

1. The integers xi, ..., xg are altogether coprime.

2. For some permutation ∇ of [1, .., g],
(∣∣∣x∇(1)

∣∣∣ , .., ∣∣∣x∇(g)

∣∣∣) appears in the
list below (where blanks eventually count as zeros).

Gauss’s algorithm computes a Minkowski basis for any two-dimensional
lattice. In terms of Minkowski conditions, Gauss’s reduction can be defined
as follows:

Definition. A lattice basis b1, b2 is Gauss reduced if it satisfies

‖b1‖ ≤ ‖b2‖ ≤ ‖b1 − b2‖ ≤ ‖b1 + b2‖ .

For g > 2, an algorithm was presented by Helfrich [74] which is polynomial
for fixed g but grows exponentially in g. Also Phong and Stehlé presented in
[137] a new concept of reduced bases called "greedy-reduced". They showed
that the algorithm takes polynomial time for g ≤ 4 and this basis found is
Minkowski reduced. In fact, there exist many algorithms for producing a
Minkowski reduced bases and an HKZ reduced bases in exponential time.

11

However, up to now, there is no known polynomial time algorithms. Some of
these algorithms are more considered as a theoretical result than as a practical
tool.

In our work, we present in this context a Minkowski reduction algorithm
for g ≤ 5 inspired by the algorithm presented by Zhang, Qiao and Wei [198].

We search a unimodular matrix Z such that the lattice basis B′ = BZ is
Minkowski reduced. This work is divided into two parts as indicated in the
definition.

1. Constructing the ith Minkowski reduced basis vector mi;

2. Extending {m1, ...,mi} to a basis for the lattice L.

The first part is based on Schnorr-Euchner enumeration since enumerative
algorithms are more efficient than the probabilistic ones (Sieve algorithms)
for g ≤ 40. However, there is a difference between the enumeration adopted
here and the original Schnorr-Euchner enumeration and this is in the way of
updating the search radius. In the original one we update the search radius
when a shorter lattice vector is found whereas here we update the search
radius when a shorter lattice vector satisfying the gcd constraint is found.

For the second part, we use the following results:

Lemma. Let B = {b1, ..., bg} ∈ Rn×g and L be the lattice generated by B.
For a vector v = ∑g

i=1 vibi and any index p, 1 ≤ p ≤ g, there exists a basis
for L containing {b1, .., bp−1, v} if and only if gcd(vp, .., vg) = 1.

Procedure. Let [p, q]> be a non zero integer vector and gcd(p, q) = d. Using
the extended Euclidean algorithm, we find integers a and b such that
ap+ bq = d. The integer matrix

M =
[
p/d −b
q/d a

]

is unimodular and

M−1
[
p
q

]
=
[
d
0

]
,

such that

M−1 =
[

a b
−q/d p/d

]
.

12

In terms of matrices, we try to find a unimodular matrix Z such that

Bi+1 = BiZ,

where the first i − 1 columns of Z are the first i − 1 unit vectors and the
ith one is the integer vector z obtained by the Schnorr-Euchner enumeration.
Therefore, the first i − 1 columns of Bi+1 equal to the first i − 1 columns
m1,..,mi−1 and the ith column of Bi+1 is mi = Biz. Since gcd(zi, .., zg) = 1
where zi, ..., zg are the values taken by z from the ith to the last position, we
can construct from the above procedure a unimodular matrix Mi whose first
column is [zi, ..., zg]>. Therefore, Z = Z1Z2 where

Z1 =
[
Ii−1 0
0 Mi

]
, Z2 =



z1

Ii−1
... 0

zi−1
1

0 . . .
1


This algorithm looks like the algorithm presented by Zhang, Qiao and

Wei [198] only in the idea and not in the content.
The algorithm is applied to the upper triangular matrix R obtained by the

Cholesky decomposition i.e, Y = R>R. If the initial matrix Y is symmetric
positive definite therefore R = chol(Y) otherwise R = chol(Y >Y).

In fact, Minkowski reduction defines three different domains:

1. The Minkowski domain formed by the set of Minkowski reduced forms
considered in the space RN (N = g(g+1)

2) where the domain is a convex
cone with finitely many faces;

2. The simple Minkowski domain. This domain can be obtained by adding
the condition ai,i+1 ≥ 0 for i = 1, ..., g − 1;

3. The Minkowski fundamental domain (the "exact" domain of reduction)
which is contained in a simple domain of Minkowski reduction.

Definition ([137]). An ordered basis {b1, .., bg}≤ is Hermite-reduced if it
is the smallest basis of L for the lexicographic order: for any other basis{
b′1, ..., b

′
g

}
≤

of L, we must have ‖b′1‖2 = ‖b1‖2,...,
∥∥∥b′i−1

∥∥∥
2

= ‖bi−1‖2 and
‖b′i‖2 > ‖bi‖2 for some 1 ≤ i ≤ g.

13

Definition. Let f be a Hermite-reduced form, and S be an unimodular
matrix. Then by the definition of Hermite reduction, fS is Hermite-reduced
if and only if

f(Si1, ..., Sig) = aii, (i = 1, ..., g).

LetM be the domain of Minkowski reduction (respectively, H the domain
of Hermite reduction); H ⊂M and the interior points of H andM coincide
[185]. H =M for g ≤ 6 (see, [153, 177]), H 6=M for g > 6 [150] (parts of
the boundary ofM do not belong to H).
For g = 2, the Minkowski fundamental domain is given by the simple
Minkowski domain.

Theorem. 
a12 ≥ 0
a11 − 2a12 ≥ 0
a22 ≥ a11 > 0

(1.3)

All the transformations of a form f (f is a Hermite-reduced form) from
the domain (1.3) into reduced form are automorphisms of this form (Mf ′ =
S>MfS). In other words, all the forms of the domain (1.3) are not equivalent.

However, for g > 2, the simple Minkowski domain does not define the
Minkowski fundamental domain. On the boundary of a simple Hermite-
Minkowski domain, there are equivalent points. The fundamental domain for
g = 3 is given by Tammela (see details in chapter2; section: An introduction
to the fundamental domain of Minkowski) but the corresponding conditions
in higher dimensions appear to be unknown.

In order to better understand the problem, we consider an example for
g = 3

Example. Consider the face a11 = a22 of a simple Minkowski domainM0.
This domain intersects with two domainsM1 andM2 equivalent to it, where
M1 = M0S̃1, M2 = M0S̃2 and S̃1, S̃2 are a linear transformations in the

space RN induced by the matrices S1 =

0 1 0
1 0 0
0 0 1

 and S2 =

0 1 0
1 0 0
0 0 −1

.
Thus, M1 =

a22 a12 a23
a12 a11 a13
a23 a13 a33

 and M2 =

 a22 a12 −a23
a12 a11 −a13
−a23 −a13 a33

. M0 and

M1 intersect along the part a13 ≥ 0 andM0 andM2 intersect along the part

14

a13 ≤ 0 of the face a11 = a22.
It can be easily seen that the partition of the cone of positivity into domains
equivalent to a simple Minkowski domain is not normal. Some domains
intersect along pieces of the faces. The idea of Tammela here was to reconstruct
a new partition of all the faces of a simple Minkowski domain where all the
faces are not equivalent.

Now, we present 2 systems among the 16 systems that define the Minkowski
fundamental domain for g = 3 where only the boundary points are considered
in this case.

a12 = 0
a23 ≥ 0
a11 − 2a12 > 0
a11 − 2a13 > 0
a11 + 2a13 > 0
a22 − 2a23 > 0
a22 > a11

a33 > a22

a11 + a22 − 2a12+
2a13 − 2a23 > 0
a13 ≥ 0



a12 = 0
a23 ≥ 0
a11 − 2a12 > 0
a11 − 2a13 > 0
a11 + 2a13 > 0
a22 − 2a23 > 0
a22 = a11

a33 > a22

a11 + a22 − 2a12 + 2a13 − 2a23 > 0
a23 ≥ a13

a13 ≥ 0

The famous one in the second category of lattice reductions is the LLL algo-
rithm. Lenstra, Lenstra and Lovász introduced the notion of LLL reduction
in their article [103] where an algorithm for computing such reduced bases
is also presented. The LLL algorithm can be seen as an extension of Gauss
reduction for dimension greater than 2. The LLL algorithm generalizes Gauss
reduction and exploits the Gram-Schmidt orthogonalization.

Definition. A lattice basis B = {b1,, bg} is LLL reduced if:

• It is size reduced, i.e, |µik| ≤ 1
2 for 1 ≤ i < k ≤ g;

• δ
∥∥∥b∗i−1

∥∥∥2
≤ ‖b∗i ‖

2 + µ2
i,i−1

∥∥∥b∗i−1

∥∥∥2
,

such that 1
4 < δ ≤ 1 and

{
b∗1, ...b

∗
g

}
is the Gram-Schmidt orthogonalization of

B.

15

The LLL algorithm performs a sequence of steps: translations and swap
steps, where the aim of translations is to satisfy the size-reduction condition
and the swap is to shift the weight in the orthogonalized basis B∗ from the
first to the last ones.

However, this type of reduction has some drawbacks:
The first vector in an LLL-reduced basis approximates a shortest lattice
vector.

Corollary 1. In an LLL-reduced basis B with δ = 3/4, we have

‖b1‖ ≤ 2(n−1)/2.λ1(L(B)).

Hence, we can deduce that
• The LLL algorithm runs in polynomial time but it only provides
vectors that are no more than exponentially longer (in n) than the
shortest ones.

• In the LLL algorithm, there is no reason for the shortest lattice vector
to appear at the first position of a matrix. An important remark for
Siegel’s fundamental domain where the shortest lattice vector is assumed
to appear at the fist position of a matrix (see, [51] and chapter 5).

Now, to illustrate the difference between our Minkowski reduction algorithm
for dimension less or equal to 5 and the LLL algorithm, we consider examples
of random matrices,
Y=

1.4903 0.4132 -0.2758 0.6514
0.4132 1.1509 -0.2646 0.0255

-0.2758 -0.2646 0.8102 0.2585
0.6514 0.0255 0.2585 0.6964.

This matrix was created using a 4 × 4 matrix L with random entries, and
then setting Y = L>L. We put Y = R>R where the upper triangular matrix
R is obtained from Y via a Cholesky decomposition (see, Definition 3). To
this matrix R, we apply our Minkowski reduction algorithm and this leads to
the following Minkowski reduction matrix (it suffices to check Minkowski’s
conditions to prove it)

0.6255 0.2135 0.2759 0.1231
0.2135 0.6964 0.2585 0.0255
0.2759 0.2585 0.8102 -0.2646
0.1231 0.0255 -0.2646 1.1509.

16

The diagonal elements of a Minkowski reduced matrix represent the norm of
the shortest vectors in ascending order.
The corresponding LLL reduced matrix (δ = 3/4) takes the form

0.8102 -0.2759 0.2585 -0.2646
-0.2759 0.6255 -0.2135 -0.1231
0.2585 -0.2135 0.6964 0.0255

-0.2646 -0.1231 0.0255 1.1509.

This example shows that the LLL algorithm gives the shortest lattice vector
as a second vector in contrast to a Minkowski ordered matrix where the
shortest vector is always the first of the matrix.

The second example shows the overestimation of the length of the shortest
vector even for small size of the matrix

Y=
0.7563 0.4850 0.4806 0.3846
0.4850 1.3631 0.2669 -0.3084
0.4806 0.2669 0.7784 -0.4523
0.3846 -0.3084 -0.4523 1.7538.

The Minkowski reduction yields

0.5321 0.2058 -0.1639 0.0181
0.2058 0.5735 0.0920 0.2634

-0.1639 0.0920 0.5741 0.1364
0.0181 0.2634 0.1364 0.6535.

It can be seen that the squared length of the shortest lattice vector is 0.5321,
the (11) element of the matrix. However, an LLL reduction with δ = 3/4 of
the matrix Y leads to

0.7563 -0.2757 0.3182 -0.1089
-0.2757 0.5735 0.0920 0.2634
0.3182 0.0920 0.5741 0.1364

-0.1089 0.2634 0.1364 0.6535.

We notice here that the length of the shortest vector identified by the LLL re-
duction is 0.5735, longer than the shortest vector obtained by the Minkowski re-
duction (0.5321) and appears as the second vector in contrast to the Minkowski
matrix where an exact determination of the length of the shortest vector
appears at the first element of the matrix.

17

1.2 Siegel’s fundamental domain
The construction of the fundamental domain for the modular symplectic
group is essentially based on the Minkowski reduction theory of positive
quadratic forms. In the matrix language, the problem of reduction of positive
quadratic forms relative to unimodular equivalence is that of construction of
a fundamental domain for the unimodular group ι = GL(g,Z) acting on the
cone

P = Pg :=
{
Y ∈M(g,R) | Y > = Y, Y positive definite

}
of real positive definite matrices of order g by

ι 3 V : Y 7→ Y [V] := V >Y V.

In other words, Y must be in the Minkowski fundamental domain: we search
the fundamental domain of the unimodular group such that the matrix V >Y V
is Minkowski-reduced.
We will see that Siegel’s fundamental domain shows that every Riemann
surface is Γg-equivalent to a unique point of the fundamental region. It also
permits to decide whether two different algebraic curves define the same
Riemann surface and this by constructing for both Riemann matrices the
symplectic transformation to the Siegel fundamental domain. If both Riemann
matrices map to the same point in the fundamental domain, they correspond
to the same surface.
We begin this part with some definitions.

Definition 1. Siegel’s modular group Γg is the group of all 2g × 2g matrices
with integer entries which satisfy the condition

M>JM = J,

whereM ∈ Γg, and if Ig and 0g are the g×g unit and zero matrices respectively,
and where

J =
(

0g Ig
−Ig 0g

)
.

It follows from the definition that a 2g × 2g integer matrix
[
A B
C D

]
with

g × g-blocks A, B, C, D is symplectic if and only if

A>C = C>A, B>D = D>B, A>D − C>B = Ig. (1.4)

18

It is easy to see that a matrix M is symplectic if and only if the matrix
M> = JM−1J−1 is symplectic. This implies that the conditions (1.4) can
be rewritten in the form

AB> = BA>, CD> = DC>, AD> −BC> = Ig.

Generators for Γg were first determined by Hua and Reiner [79]. In 1961,
Klingen [90] obtained a characterization of Γg for g ≥ 2 by a finite system
of defining relations. In 1983, Mumford [133] gave three generators for the
modular group Γg. (

0 I
−I 0

)
,

(
A 0
0 (A−1)>

)
,

(
I B
0 I

)

for all A ∈ GL(g,Z) and B a symmetric, integer matrix.

Definition 2. A symmetric matrix A ∈ Rn×n is positive definite if

x>Ax > 0 for all x 6= 0.

Note that if A is an n× n symmetric matrix, then x>Ax is the function

x>Ax =
n∑
i=1

n∑
j=1

Aijxixj =
n∑
i=1

Aiix
2
i + 2

∑
i>j

Aijxixj;

this is called "a quadratic form".

Definition 3 (Cholesky Factorization). Every positive definite matrix A ∈
Rn×n can be factored as

A = R>R

where R is upper triangular matrix with positive diagonal elements.

Definition 4. A matrix Ω ∈ M(g,C) is called a Riemann matrix, if it is
symmetric and its imaginary part I(Ω) is positive definite.

Definition 5. The set of Riemann matrices is denoted by Hg and generally
called the Siegel upper half space of degree g (or genus g).

It was introduced by Siegel in 1939 and obviously

Hg ∼= R
g(g+1)

2 × Pg ⊂ Rg(g+1),

19

The group Sp(2g,R) operates on Hg by(
A B
C D

)
.Ω := (AΩ +B)(CΩ +D)−1,

where M =
(
A B
C D

)
∈ Sp(2g,R),

one has
I(M.Ω) = (CΩ +D)−>I(Ω)(CΩ +D)−1.

We give a brief overview of this action. The facts stated here will be given in
more detail later.

We consider the Siegel modular group Γg = Sp(2g,Z) of degree g and
the generalized upper half plane Hg, on which Γg acts properly discontinu-
ously. For Γg, a fundamental domain on Hg, which (roughly) contains one
representative from the orbit of every Ω ∈ Hg, has been given in [171].

Definition 6. Siegel’s fundamental domain is the subset of Hg such that
Ω = X + iY ∈ Hg satisfies:

1. |Xjk| ≤ 1
2 , j, k = 1, ..., g;

2. Y is in the fundamental region of Minkowski reductions;

3. |det(CΩ +D)| ≥ 1 for all C, D.

Note that the third condition must be verified for all matrices C and D
of the symplectic group and it is also called the maximal height condition.

For genus 1, Siegel’s fundamental domain is given by the well-known
"elliptic fundamental domain"

D :=
{

Ω ∈ H1 | |Ω| ≥ 1, |R(Ω)| ≤ 1
2

}
.

In fact, there are many ways of constructing a fundamental domain (see,
Figure 1.7) whereas a common choice is the above region, bounded by the
vertical line R(Ω) = 1

2 and R(Ω) = −1
2 and the circle |Ω| = 1. It has vertices

at 1
2 + i

√
3

2 and −1
2 + i

√
3

2 , where the angle between its sides is π
3 and a third

vertex at infinity, where the angle between its sides is 0.
Since the points on the borders of this region are equivalent under symplectic
transformations: the points on the two lines R(Ω) = ±1

2 are equivalent under
the action of T : ω → Ω± 1 and the points on the left and right halves of the
arc |Ω| = 1 are also equivalent under the action S : Ω→ − 1

Ω , it is better to

20

Figure 1.7: The elliptic fundamental domain [Mumford]

consider a part of the boundary of this domain more precisely, we add only
the boundary points with non-positive real part. For this reason, we define
the semi-closure of D as the fundamental region of the elliptic case. Thus,
every point of Hg is equivalent under modular group to a unique point of this
new fundamental domain.

We can also factorize H2 by the action of Sp(4,Z) (g = 2). This gives
the Siegel-Gottschling fundamental domain H2/Sp(4,Z). In this case, the
fundamental domain is defined by the following set of inequalities:
The standard bounds on the real part of the Riemann matrix Ω,

|X11| ≤
1
2 , |X12| ≤

1
2 , |X22| ≤

1
2 ,

the simple Minkowski ordering conditions on Y =
(
Y11 Y12
Y12 Y22

)
, the imaginary

part of Ω:
Y22, Y11 ≥ 2Y12, Y22 ≥ Y11, Y12 ≥ 0

and the following 19 inequalities corresponding to the third conditions:

|Ω11| ≥ 1, |Ω22| ≥ 1, |Ω11 + Ω22 − 2Ω12 + e| ≥ 1,

these consitions correspond to rank C = 1 where e = ±1, and for rank C = 2
since C = I2, the third condition is replaced by |det(Ω + S)| ≥ 1 where S are
the matrices (

0 0
0 0

)
,

(
e 0
0 0

)
,

(
0 0
0 e

)
,

(
e 0
0 e

)
,(

e 0
0 −e

)
,

(
0 e
e 0

)
,

(
e e
e 0

)
,

(
0 e
e e

)
.

(1.5)

21

A constraint appears in the construction of such a domain: the maximal height
condition that must be verified for all matrices C and D of the symplectic
group. For this reason, Siegel showed in his book [171] that third condition
is equivalent to a finite number of conditions i.e., just a finite number of
matrices has to be considered. However, it is not trivial to determine these
set of matrices for dimension greater than 2.
We present in this context, a part of the finitely many inequalities that
determine the fundamental domain for g = 3, especially for rankC = 1 (see,
Chapter 5).

Theorem 1. For genus 3 and a rank 1 matrix C, we have the following
inequalities to be verified:

Writing Ω =

Ω1 Ω4 Ω5
Ω4 Ω2 Ω6
Ω5 Ω6 Ω3

 then

|Ω1| ≥ 1, |Ω2| ≥ 1, |Ω3| ≥ 1, |Ω1 + Ω2 − 2Ω4 ± 1| ≥ 1, |Ω2 + Ω3 − 2Ω6 ± 1| ≥ 1,

|Ω1 + Ω3 + 2Ω5 ± 1| ≥ 1 if I(Ω5) < 0, |Ω1 + Ω3 − 2Ω5 ± 1| ≥ 1 if I(Ω5) > 0,

|Ω1 + Ω2 + Ω3 + 2Ω4 − 2Ω5 − 2Ω6 + d| ≥ 1, for −4 ≤ d ≤ 4, and I(Ω5) > 0,

|Ω1 + Ω2 + Ω3 − 2Ω4 − 2Ω5 + 2Ω6 + d| ≥ 1, for −4 ≤ d ≤ 4, and I(Ω5) > 0,

|Ω1 + Ω2 + Ω3 − 2Ω4 + 2Ω5 − 2Ω6 + d| ≥ 1, for − 4 ≤ d ≤ 4.

For this result, we have used Tammela’s conditions for constructing a
Minkowski fundamental domain for dimension 3 [176] and the following lemma
due to Gottschling.

Lemma (Gottschling). In the domain Be where e = −1, 0, 1, the inequality

|B11 + B22 − 2B33 − 2e| ≥ 1;

is a sequence of |det(B + eS)| ≥ 1 with S =
(

0 1
1 0

)
.

B0 is the part of B in which Y22 ≤ 1, B1 is a part of B0 in which −1
2 ≤

X3 ≤ −1
4 and B−1 that part of B0 in which 1

4 ≤ X3 ≤ 1
2 . B is a region

that contains the standard limits for the real part and the simple Minkowski
conditions for dimension 2 and the two inequalities |B11| ≥ 1 and |B22| ≥ 1.

22

Now, since the Minkowski fundamental domain appearing in the second
condition is only known for g ≤ 3 (see, [176]) and the third condition is the
least studied one, there is no constructive approach to actually identify the
domain for g > 2. However, Siegel [171] gave an algorithm to approximately
reach the fundamental domain called Siegel reduction. Siegel’s reduction
preserves the first condition presented in its fundamental domain and among
the finitely many inequalities of the third condition, Siegel’s reduction is
concerned with that the absolute value of the first element of the Riemann
matrix must be greater or equal to 1, i.e, |Ω11| ≥ 1.

Theorem 2 (Siegel Reduction). Every Riemann matrix Ω can by means of
a symplectic transformation be reduced to a Riemann matrix Ω̃ = X̃ + iỸ ,
where Ỹ = R>R, X̃(Ỹ) are the real (imaginary) part of Ω̃ and R is an upper
triangular matrix, obtained by Cholesky decomposition, such that

1.
∣∣∣X̃jk

∣∣∣ ≤ 1
2 , for j, k = 1, ..., g;

2. The length of the shortest lattice vector of the lattice generated by the
columns of R is bound from below by

√√
3/2.

The second condition is ensured by the following quasi-inversion:

Ω 7→ Ω̃ := (AΩ +B)(CΩ +D)−1 (1.6)

such that
A =

(
0 0>n−1

0n−1 In−1

)
, B =

(
−1 0>n−1

0n−1 0n−1,n−1

)

C =
(

1 0>n−1
0n−1 0n−1,n−1

)
, D =

(
0 0>n−1

0n−1 In−1

)
Where does the second condition comes from?
Siegel showed that the determinants of the imaginary parts of two Riemann
matrices connected by a modular transformation (1.6) are related by

∣∣∣det(Ỹ)
∣∣∣ = |det(Y)|
|det(CΩ +D)|2

, (1.7)

then by using (1.6) with the above A, B, C and D, (1.7) becomes

∣∣∣det(Ỹ)
∣∣∣ = |det(Y)|

|Ω11|2

23

and finally by the maximal height condition we obtain the second condition
of Siegel’s reduction.

A motivation for this work will stem from theta functions associated to
Siegel upper half space, more precisely an efficient method for the computation
of these theta functions by using Siegel’s reduction will be presented in this
part.

1.3 Theta Functions
The theta function of a Riemann surface is a very fundamental special function
associated to a Riemann surface both in algebro-geometrical calculations and
in applications to non-linear equations and cryptography [175, 82, 53, 54].
Partial solutions of differential equations can often be written in terms of
abelian functions, and this in terms of theta functions [93]. Jacobi introduced
theta functions in his study of elliptic functions. The Riemann theta function
was introduced by Riemann as a generalization of Jacobi’s theta functions
of one variable for solving the Jacobi inversion problem on general compact
connected Riemann surfaces [149, 1].
Multidimensional theta functions are functions in g complex variables and a
convenient tool to work with meromorphic functions. In general, each Riemann
surface is characterized by its Riemann matrix [39] and to a Riemann matrix
one can associate a Riemann theta function.
Note that in general, the presence of symmetries allows to significantly simplify
the Riemann matrix of a surface, but only in a homology basis adapted to
the symmetries, see [23] for the Klein curve.
We start by some basic facts about theta functions and we define them as an
infinite series.

Definition. Let Ω be a g × g Riemann matrix. The theta function with
characteristic [p, q] is defined as

θpq(z,Ω) =
∑
N∈Zg

exp {iπ 〈Ω(N + p), N + p〉+ 2πi 〈z + q,N + p〉} , (1.8)

with z ∈ Cg and p, q ∈ Cg, where 〈., .〉 denotes the Euclidean scalar product
〈N, z〉 = ∑g

i=1Nizi.

The properties of the Riemann matrix ensure that the series converges
absolutely and that the theta function is an entire function on Cg. The theta
function with characteristic is related to the Riemann theta function θ, the

24

theta function with zero characteristic θ := θ00, via

θpq(z,Ω) = θ(z + Ωp+ q) exp {iπ 〈Ωp, p〉+ 2π 〈p, z + q〉} . (1.9)

The theta function has the periodicity properties

θpq(z + ej) = e2πpjθpq(z), θpq(z + Ωej) = e−2π(zj+qj)−iπΩjjθpq(z), (1.10)

where ej is a vector in Rg consisting of zeros except for a 1 in the jth position.
These periodicity properties (1.10) can be used in the computation of the
theta function: an arbitrary vector z ∈ Cg can be written in the form
z = ẑ +N + ΩM with N , M ∈ Zg, where z̃ = Ωp̂+ q̂ with |p̂i| ≤ 1

2 , |q̂i| ≤
1
2 .

Thus, it is sufficient to compute the theta function for arguments z̃ lying
in the fundamental domain of the Jacobian. For general arguments z one
computes θ(ẑ,Ω) and obtains θ(z,Ω) from the periodicity properties (1.10)
by multiplying with an appropriate exponential factor.
In this work, we are interested in a rapid convergence of these multi-dimensional
theta functions. The basic idea is to approximate the expression (1.8) via a
truncated series.
To compute the series (1.9), it will be approximated by a sum, |Ni| ≤ Nε,
i = 1, ..., g where the constant Nε is chosen such that all omitted terms in
(1.8) are smaller than some prescribed value of ε. In contrast to [38], we
do not give a specific bound for each Ni, i = 1, ..., g, i.e., we sum over a
g-dimensional sphere instead of an ellipsoid. Taking into account that we can
choose z in the fundamental domain of the Jacobian, we get for the Riemann
theta function the estimate

Nε >

√
− ln ε
πymin

+ 1
2

such that
ymin = 〈Nmin, Nmin〉Y := min

N∈Zg/0
〈Y N,N〉 ,

i.e., ymin is the shortest vector of the lattice generated by the imaginary part
Y of the Riemann matrix Ω.
Thus, the longer the shortest vector, the more rapid the convergence of the
theta series. Changing the shortest vector can be achieved by changing the
homology basis of the underlying Riemann surface which yields a different
but symplectically equivalent Riemann matrix. An important step in the
efficient computation of theta functions is the construction of appropriate
symplectic transformations to generate larger norms of the shortest vector for
a given Riemann matrix Ω assuring a rapid convergence of the theta series.

25

The behavior of theta functions under modular transformations is explicitly
known. One has

θp̃q̃(M−1z, B̃) = k
√

det(M) exp
1
2
∑

i≤j zizj
∂

∂Bij
ln detM

θpq(z),

M = CB +D,

(
p̃
q̃

)
=
(
D −C
−B A

)(
p
q

)
+ 1

2

(
diag(CD>)
diag(AB>)

)
.

Thus, such transformations can dramatically increase the rate of convergence
which is especially important for larger values of g.

Now, the goal is to find these symplectic transformations on the Riemann
matrix Ω and this will be done by Siegel’s fundamental domain. We have
already seen that Siegel has constructed a fundamental region for Riemann
matrices, analogous to the elliptic case and the algorithm finds iteratively a
new Riemann matrix. However, the determination of such a domain becomes
more complicated for g > 2.
This approach was for the first time implemented in an algorithm by Deconinck
et al. in [38]. This algorithm is based on Siegel’s reduction together with the
LLL algorithm for finding the shortest lattice vector. In our work, the LLL
algorithm is replaced by our Minkowski reduction algorithm for dimension
≤ 5 and an exact determination of the shortest lattice vector for higher
dimensions.

In order to generate larger norms of the shortest lattice vector, [38] adopted
the following algorithm:
1. Apply the LLL algorithm on the imaginary part of the Riemann matrix in
order to find the shortest lattice vector as the first vector of the lattice.
2. Subtract an integer matrix to Ω so that |R(Ωij)| ≤ 1

2 .
3. If |Ω11| ≥ 1, terminate the algorithm; if not apply a quasi-inversion
Ω 7→ Ω̃ = (AΩ +B)(CΩ +D)−1 such that

A =
(

0 0>n−1
0n−1 In−1

)
, B =

(
−1 0>n−1

0n−1 0n−1,n−1

)

C =
(

1 0>n−1
0n−1 0n−1,n−1

)
, D =

(
0 0>n−1

0n−1 In−1

)
,

then go back to step 1 for the resulting Ω.
It is clear that the shortest lattice vector is assumed to appear at the first

position of the imaginary part of the Riemann matrix.
Now, in order to show the improvement that can be achieved in the

computation of theta series if we replace the LLL algorithm used by Deconinck
et al by our Minkowski reduction algorithm for small dimensions and an exact
determination of the shortest vector problem for higher dimensions, we take

26

as an example (among many others) the Riemann matrix of the Fricke-
Macbeath surface [56, 115], a surface of genus g = 7 with the maximal
number 84(g−1) = 504 of automorphisms. It can be defined via the algebraic
curve

f(x, y) := 1 + 7yx+ 21y2x2 + 35x3y3 + 28x4y4 + 2x7 + 2y7 = 0.

RieMat =

Columns 1 through 4

1.0409 + 1.3005i 0.0530 + 0.3624i 0.3484 + 0.0000i
0.0530 + 0.3624i -0.5636 + 1.0753i 0.0187 - 0.5975i
0.3484 + 0.0000i 0.0187 - 0.5975i 1.0544 + 1.7911i
0.2077 + 0.6759i 0.6749 + 0.3001i 0.3220 - 1.0297i

-0.2091 - 0.2873i 0.1220 - 0.5274i 0.3029 + 0.8379i
-0.1064 - 0.4257i 0.1205 - 0.1783i -0.2297 - 0.3668i
0.3590 + 0.5023i 0.1990 - 0.1118i 0.3495 - 0.0499i

Columns 5 through 7

0.2077 + 0.6759i -0.2091 - 0.2873i -0.1064 - 0.4257i
0.6749 + 0.3001i 0.1220 - 0.5274i 0.1205 - 0.1783i
0.3220 - 1.0297i 0.3029 + 0.8379i -0.2297 - 0.3668i

-0.0978 + 1.7041i -0.7329 - 0.8055i -0.0714 - 0.1766i
-0.7329 - 0.8055i 1.1824 + 1.0163i 0.4425 + 0.2592i
-0.0714 - 0.1766i 0.4425 + 0.2592i 0.2815 + 0.7791i
-0.0415 + 0.5448i 0.0835 - 0.2430i -0.6316 - 0.0369i

Columns 7 through 7

0.3590 + 0.5023i
0.1990 - 0.1118i
0.3495 - 0.0499i

-0.0415 + 0.5448i
0.0835 - 0.2430i

-0.6316 - 0.0369i
0.2315 + 0.6895i.

We notice that after the LLL reduction, the first vector of the lattice
presented as the first component of the imaginary part of the above Riemann

27

matrix has the squared norm 1.3005. Since the norm of the shortest vector is
greater than

√
3/2, no quasi-inversion is applied. An ensuing shift of the real

part leads to the matrix

W =

Columns 1 through 3

0.0409 + 1.3005i 0.0530 + 0.3624i -0.4849 - 0.6245i
0.0530 + 0.3624i 0.4364 + 1.0753i -0.3594 - 0.6598i

-0.4849 - 0.6245i -0.3594 - 0.6598i -0.4706 + 1.3844i
-0.1064 - 0.4257i 0.1205 - 0.1783i -0.1946 - 0.1178i
0.3590 + 0.5023i 0.1990 - 0.1118i -0.0510 - 0.0073i

-0.4511 + 0.1383i -0.0171 + 0.2485i -0.0543 - 0.3239i
0.2684 - 0.2975i -0.4161 + 0.2521i 0.0481 + 0.3949i

Columns 4 through 6

-0.1064 - 0.4257i 0.3590 + 0.5023i -0.4511 + 0.1383i
0.1205 - 0.1783i 0.1990 - 0.1118i -0.0171 + 0.2485i

-0.1946 - 0.1178i -0.0510 - 0.0073i -0.0543 - 0.3239i
0.2815 + 0.7791i 0.3684 - 0.0369i 0.3907 - 0.1531i
0.3684 - 0.0369i 0.2315 + 0.6895i 0.3656 - 0.1563i
0.3907 - 0.1531i 0.3656 - 0.1563i -0.4318 + 0.6585i

-0.2437 - 0.3094i -0.2134 - 0.1308i -0.1541 + 0.0260i

Columns 7 through 7

0.2684 - 0.2975i
-0.4161 + 0.2521i
0.0481 + 0.3949i

-0.2437 - 0.3094i
-0.2134 - 0.1308i
-0.1541 + 0.0260i
-0.4997 + 1.0021i.

However, the square of the norm of the shortest lattice vector of the
imaginary part of the matrix W is 0.6585, well below the threshold

√
3/2.

This shows the limitations of the LLL algorithm since the convergence of the
theta series is controlled by the length of the shortest lattice vector. Note

28

that the LLL reduced Ỹ above has the shortest vector in the 6th column
(with squared norm 0.6585). One could construct a unimodular matrix Z
such that RZ has this vector appearing in the first column (the resulting
matrix might not satisfy the LLL condition). This would be more suited to
the application of Siegel’s algorithm, but will be still approximate since in
general LLL does not identify the shortest lattice vector correctly.

Now, if the same algorithm is applied with an exact determination of
the shortest vector, the result changes considerably: in the first step of the
iteration, the shortest lattice vector is correctly identified having the square
of the norm 0.6585. Thus after a shift of the real part, a quasi-inversion is
applied. The subsequent identification of the shortest vector of the resulting
matrix leads to a vector of squared norm 0.7259. After a shift of the real
part, another quasi-inversion is applied. This time the square of the norm of
the shortest vector is 1.0211 and thus greater than

√
3/2. After a shift of the

real part we finally obtain W=

Columns 1 through 3

0.3967 + 1.0211i 0.0615 - 0.1322i -0.0000 + 0.0000i
0.0615 - 0.1322i 0.3967 + 1.0211i 0.3553 - 0.5828i

-0.0000 + 0.0000i 0.3553 - 0.5828i 0.2894 + 1.1656i
-0.4609 - 0.2609i -0.3386 + 0.1933i 0.0905 + 0.2450i
0.3553 - 0.5828i 0.4776 - 0.1287i -0.4776 + 0.1287i
0.1838 + 0.3219i 0.2743 + 0.5669i 0.3871 - 0.3736i

-0.3386 + 0.1933i -0.3386 + 0.1933i -0.1223 - 0.4541i

Columns 4 through 6

-0.4609 - 0.2609i 0.3553 - 0.5828i 0.1838 + 0.3219i
-0.3386 + 0.1933i 0.4776 - 0.1287i 0.2743 + 0.5669i
0.0905 + 0.2450i -0.4776 + 0.1287i 0.3871 - 0.3736i
0.3967 + 1.0211i -0.4776 + 0.1287i 0.0167 - 0.3895i

-0.4776 + 0.1287i 0.2894 + 1.1656i -0.1671 - 0.7115i
0.0167 - 0.3895i -0.1671 - 0.7115i 0.4414 + 1.2784i
0.0615 - 0.1322i 0.0905 + 0.2450i -0.3386 + 0.1933i

Columns 7 through 7

29

-0.3386 + 0.1933i
-0.3386 + 0.1933i
-0.1223 - 0.4541i
0.0615 - 0.1322i
0.0905 + 0.2450i

-0.3386 + 0.1933i
0.3967 + 1.0211i.

In contrast to the algorithm incorporating LLL reductions, the square
length of the shortest vector of the imaginary part is here given by the (11)
component of the matrix W .
Note that the approximate character of the LLL algorithm is unsatisfactory
for our purposes for two reasons:
First, the overestimation of the length of the shortest vector leads to a
premature end of the algorithm and a much shorter shortest vector than
necessary. But secondly, the potentially crude approximation of its length
implies that an estimate of the truncation parameter Nε based on the LLL
result could be misleading with the consequence of a loss of accuracy in the
approximation of the theta functions.

We have shown in this part that Siegel’s reduction can be used to efficiently
compute the theta functions and this by replacing the LLL algorithm used
by Deconinck et al. by a Minkowski reduction algorithm. In fact, our
implementation of Siegel’s reduction algorithm allows also a precise estimate
of the number in the truncated sum and reduces this number. If for example,
we were to gain in dimension g a factor 2 per direction, this would correspond
to 2g terms in the sum. hence more g is high, the advantage would be decisive.

1.4 Outline of the thesis
The material of this work is arranged as follows:
We start the second chapter by a general introduction about lattices and
lattice reduction problems in section 2.1. In section 2.2, we recall the necessary
background about lattices (the dual lattice, the Gram-Schmidt orthogonal-
ization, the determinant of a lattice, the complex-valued lattices, the size
reduction algorithm, Minkowski’s successive minimum and Hermite’s con-
stant, Minkowski’s theorem), in order to be able to properly define several
notions of reduction. In section 2.3 and 2.4, we present the most studied
algorithmic problem on Euclidean lattices the SVP and the known algorithms
related to lattice reduction especially for the Minkowski reduction and its

30

different definitions. In section 2.5, we show a particular result due to Tam-
mela in the determination of Minkowski’s fundamental domain for genus
3. In chapter 3, we focus on the time complexity of the different reduction
algorithms presented in the second chapter where Gauss’s reduction and the
LLL reduction are the only polynomial reduction algorithms. In chapter 4,
we present our Minkowski reduction algorithm up to dimension 5, we start by
a description of the algorithm, the drawback of this algorithm, and then we
show by examples the differences between these reduction algorithms and the
quality of a reduction algorithm measured in terms of the orthogonality defect.
Finally, chapter 5 is devoted to study the action of the symplectic group on
the Siegel upper half space, especially for genus 1 and 2. A new result is
presented for genus 3. This chapter contains also a powerful application of
Siegel’s fundamental domain to "Riemann’s theta function" where the idea
was investigated first by Deconinck et al. An efficient computation of this
function illustrated by examples is presented in this context by replacing the
LLL algorithm used in [38] strategy by our Minkowski reduction algorithm
up to dimension 5 and an exact determination of the shortest lattice vector
for greater dimensions.

31

Chapter 2

Lattice and lattice reduction

Historically, lattices were investigated since the late of 18th century by
Lagrange and Gauss. In the 19th century, important results due to Minkowski
motivated the use of lattice theory in the theory and geometry of numbers.
The evolution of computer science in the 20th century, especially after the
publication of the landmark polynomial time reduction method by Lenstra,
Lenstra and Lovász and that was widely known as the LLL algorithm, led
to lattice applications in various theoretical areas such as factorization of
integers, polynomials, integer programming and public-key cryptography. In
the latter area, lattice theory has played a powerful role in the definition of
new cryptosystems and in cryptanalysis.

2.1 Introduction
A lattice L is a discrete additive subgroup of Rn. Any lattice can be char-
acterized in terms of a set of m ≤ n linearly independent basis vectors
B = {b1, ..., bm} as {x : x = ∑m

l=1 zlbl, zl ∈ Z} = {Bz : z ∈ Zn} where m is
the rank or the dimension of L.
A lattice basis is usually not unique. Given a lattice L of dimension m,
(m ≥ 2), the lattice L can have infinitely many different bases, see [77], where
two bases are connected by an unimodular matrix Z, B′ = BZ. Some bases
are more interesting than others; they are called reduced.
The goal of lattice basis reduction is to find, for a given lattice, a basis
matrices with favorable properties. Usually, such a basis consists of vectors
that are reasonably short or, equivalently, a basis consisting of vectors that
are pairwise nearly orthogonal, is called "a reduced lattice basis".
It is a vague concept and the geometry of numbers has sought from the
beginning to clarify this reduced bases concept. This leads to two crucial

32

questions:
What is the complexity of the main problems related to the reduction?

How to construct effective reduction algorithms?
The time complexity of an algorithm quantifies the amount of time taken

by an algorithm to run. It is commonly estimated by counting the number
of elementary operations performed by the algorithm, where an elementary
operation takes a fixed amount of time to perform. An algorithm with
2poly(n) is called an exponential time complexity and with 2O(logn) = poly(n),
a polynomial time complexity where poly(n) means polynomial in n.

There are many lattice reduction algorithms with corresponding reduction
criteria and for each of them, there is a notion of quality of the reduced
basis and computational complexity required to obtain it: in 1850, Hermite
introduced the first notion of reduction, [76]. In 1873, Korkine and Zolotareff,
[92], strengthened the definition of Hermite reduction. Their proposed notion
is referred to as HKZ reduction, [139]. In 1973, Kannan gave an algorithm for
constructing HKZ reduced bases, [87], which in particular contain a shortest
non zero lattice element. The algorithm was exponential, but polynomial for
fixed dimension. His algorithm yields the asymptotically best known algo-
rithm for integer linear programming as Hermite reduced bases. Minkowski
reduced bases contain a shortest nonzero lattice vector, however, Minkowski
reduced bases were only constructed for dimensions 2 and 3, [97]. The algo-
rithm was further refined to construct both Minkowski reduced bases and
HKZ reduced bases and improved the complexity analysis by Helfrich [74] in
1985, Kannan in 1987 [86], Banihashemi and Khandani [17] in 1998.
Among these, the strongest one is Minkowski reduction. In 1890s, Minkowski
[121] defined ’Minkowski reduced’ bases, requiring that each basis vector is
as short as possible. Minkowski dealt with these bases in his Geometry of
Numbers and in the theory of quadratic forms. Up to dimension four, it is
arguably optimal compared to all other known reductions, because it reaches
all the so-called Minkowski’s successive minima, denoted by λi and defined
as the smallest positive number λ such that λL contains at least i linearly
independent lattice vectors. However, finding a Minkowski reduced basis
cannot be solved in polynomial time under randomized reductions as the
dimension increases because such a basis contains a shortest lattice vector
and the shortest vector problem cannot be solved in polynomial time under
randomized reductions, [125], [128].
Unfortunately, finding good reduced bases has proved invaluable in many
fields and the computational complexity of lattice reduction has attracted con-
siderable attention. Therefore, the lattice reduction algorithms yield reduced
bases with shorter basis vectors and improved orthogonality. It provided
a compromise between the quality of the reduced basis and the computa-

33

tional effort required for finding it. The lattice reduction algorithms can be
grouped into two categories according to their complexity: exponential time
algorithms and polynomial time algorithms. There are no known polynomial
time algorithm for producing Minkowski reduced bases and HKZ reduced
bases [6].

Practical algorithms for computing Minkowski reduced and HKZ reduced
lattice bases can be found in [137], for lattices of low dimensions with quadratic
complexity, [30], [198], [199], for lattices of arbitrary rank, where [198], [199]
used sphere decoding strategies [73] to find a shortest lattice vector inside a
sphere centered at 0 of radius ρ and reduced the computational costs of their
existing counterparts.

The first polynomial time lattice reduction algorithm was presented in
1982, [103], known as LLL reduced basis, named after the three authors
A. Lenstra, W. Lenstra and L. Lovász. Theoretically, the LLL reduction
algorithm can produce an approximate shortest vector that is at most a factor
of O(2m) times longer than a real shortest vector of a lattice, [15]. This
basis is, of course, not perfect but sufficient for many problems. Further
improvements of the LLL algorithm have been developed, while some improve
the output quality, [157, 111, 136, 112], others improve the efficiency, [136],
[106].
The Jacobi lattice reduction algorithm presented in [146] adopted a different
strategy from the LLL algorithm to construct a reduced basis in polynomial
time and showed that the Jacobi method outperforms the LLL algorithm
in not only efficiency, but also the orthogonality defect (which measures the
quality of a such lattice basis). It is equal to 1 if and only if the vectors of a
such a lattice basis are orthogonal.

In this chapter, we give the mathematical background on lattices. The
chapter mainly includes definitions about lattices, some useful lattice prop-
erties and some necessary theorems in section 2.2. Then, we proceed by
defining and studying a very important characteristic of a lattice, namely its
shortest vector in section 2.3. we describe also various notions of reduction in
section 2.4 and present an important result due to Tammela for constructing
a Minkowski fundamental domain for dimension 3 in section 2.5.

2.2 Lattice
A lattice is a set of points in an n-dimensional space with period structure,
such as the one illustrated in Figure. 2.1. The theoretical study of lattices is
often called the Geometry of Numbers, a name bestowed on it by Minkowski in
his 1910 book "Geometrie der Zahlen". More recently, lattices have become a

34

Figure 2.1: Lattice in R2

topic of active research in computer science. They are used as an algorithmic
tool to solve a wide variety of problems as the SVP and the CVP. The
practical process of finding short(est) or close(st) vectors in lattices is called
"Lattice Reduction".

Let Rn be the n-dimensional Euclidean space. A lattice in Rn is the set

L(b1, .., bm) =
{

m∑
i=1

xibi;xi ∈ Z
}
,

of all integer combinations of m linearly independent vectors b1, b2, ..., bm in
Rn (n ≥ m). The integers n and m are called the dimension and rank of
the lattice. The sequence of vectors b1, .., bm is called a lattice basis and it is
conveniently represented as a matrix

B = [b1, ..., bm] ∈ Rn×m,

having the basis vectors as columns. Using matrix notation, a lattice can be
rewritten as

L(B) = {Bx : x ∈ Zm},

where Bx is the usual matrix-vector multiplication. If n = m, then L(B) is
called a full rank lattice. Note that a full rank lattice will be considered in
this context except otherwise indicated.
The basis for a given lattice is not unique. There exist infinitely many bases
for a lattice.

Theorem. [127] Let B and B̃ be two bases. Then L(B) = L(B̃) if and only
if there exists a unimodular matrix U such that B = B̃U .

Proof. First let B = B̃U for some unimodular matrix U . Notice that if
U is unimodular, then U−1 is unimodular too. B = B̃U and B̃ = BU−1.
Therefore, L(B) ⊆ L(B̃) and L(B̃) ⊆ L(B), i.e., the two matrices generate
the same lattice.
Now, we assume that B and B̃ are two bases for the same lattice. Then,

35

b1 =

b2

b̃1

b̃2

Figure 2.2: A "good" basis and a "bad" basis

by definition of lattices, there exist integer square matrices V and W such
that B = B̃W and B̃ = BV . Combining these two equations we obtain,
B = BVW , or equivalently, B(I − VW) = 0. Since the vectors of B are
linearly independent, I − VW = 0, i.e., VW = I and V , W have integer
entries, then det(V)det(W) ∈ Z and det(V) = det(W) = ±1.

The simplest example is the cubic lattice, obtained by taking the basis
vectors bi = ei where ei denotes the ith column of the n-dimensional identity
matrix In. In this case, we have B = In and L = Zn. Zn can also be
generated by the basis vectors {e1, e2 + ke1, ..., en + ke1}, k ∈ Z, i.e, B̃ =
B + k(0, e1, e1, ..., e1). Since B = In is an orthogonal basis, B is the best
reduced basis of L. Above, we illustrate the case for n = 2, see Figure. 2.2.

2.2.1 The Dual Lattice
To any lattice, there is an associated dual lattice, defined by

L? =
{
x? ∈ Span (B) | x>x? ∈ Z for all x ∈ L

}
,

where
Span (B) = {Bx | x ∈ Rm} .

If B is a basis for the primal lattice L, a basis B? for the dual lattice L? can
be obtained via the right Moore-Penrose pseudo inverse [114], i.e.,

D = B? = B
(
B>B

)−1
.

Since B>B? = Im, it follows that the primal and the dual basis vectors are
bi-orthogonal, i.e., b>l b?k = 0 for l 6= k. Geometrically, this means that the

36

dual basis vector b?k is orthogonal to the subspace spanned by the primal basis
vector b1, ..., bk−1, bk+1, ..., bm. This is useful since for any x = Bz ∈ L we can
recover the kth integer coefficient via zk = x>b?k. The cubic lattice Zn is an
example of a lattice that is self-dual in the sense that L = L?. Note that,
instead of applying a particular lattice reduction algorithm to the basis B, a
reduction of the dual basis B? can be performed. And a reduction of B? by
a unimodular matrix T corresponds to a reduction of the primal basis B by
the unimodular matrix T−1.

Definition. For an m-dimensional lattice spanned by B, we call a basis
D ∈ Rn×m a dual basis if:

1. Span(B) = Span(D).

2. B>D = D>B = I.

In other words, B and D are dual bases if they have the same linear span,
and any primal and dual basis vector have scalar product 〈bi, dj〉 = δij where

δij =

0 if i 6= j

1 if i = j

It is not hard to check thatD is unique for a given B, given byD = B(B>B)−1.
v ∈ Rn is a dual vector if and only if B>v ∈ Zn. Therefore, this last condition
can be written as v ∈ B−>Zn = L(B−>). Thus, B−>is a basis for the dual
lattice. We deduce that when B ∈ Rn×n, the expression for the dual basis
given before simplifies to D = B−>.

Theorem. If D is the dual basis of B then L(B)? = L(D).

Proof. For any Dy ∈ L(D), and all Bx ∈ L(B), we have:

Dy = B(B>B)−1y ∈ Span(B).

Also, we find that

(Dy)>(Bx) = y>D>Bx = y>x ∈ Z,

which implies that Dy ∈ L(B)? and L(D) ⊆ L(B)?. Now, we consider an
arbitrary vector v ∈ L(B)?, so by the definition of the dual lattice basis, we

37

obtain that B>v ∈ Zm and v ∈ Span(B). It follows that v = Bw for some
w ∈ Rm and

v = Bw = B(B>B)−1B>Bw = D(B>v) ∈ L(D).

This proves L(D) ⊆ L(B)?.

Properties of dual lattices.

Lemma. For any lattice L, (L?)? = L.

Proof. We assume that B is the basis of L

B(B>B)−1((B(B>B)−1)>B(B>B)−1)−1 = B(B>B)−1((B>B)−1)−1 = B.

Lemma. For a lattice L,

det(L?) = 1
det(L) .

Proof. Let B be the basis of L. Then, we have

det(L?) =
√

(B(B>B)−1)>B(B>B)−1

=
√

(B>B)−1(B>B)(B>B)−1

=
√

(B>B)−1

= 1
det(L) .

Lemma. For any lattice L of rank m,

λ1(L)λ1(L?) ≤ m,

where λ1 is the first successive minimum.

Proof. From Minkowski’s bound, [126], (see also 2.2.7), we have

λ1(L) ≤
√
m det(L) 1

m .

38

b1 =

b2

b?1

b?2

Figure 2.3: Gram-Schmidt orthogonalization

Since Span(L) = Span(L?),

λ1(L?) ≤
√
m det(L?) 1

m .

Multiplying and using the previous lemma, we obtain the desired result.

Lemma. For a lattice L,

λ1(L)λm(L?) ≥ 1.

Proof. Let v ∈ L such that λ1 = ‖v‖, v is a vector that achieves the first
successive minimum of the lattice L. Take any set x1, ..., xm of m linearly
independent vectors in L?. Not all of them are orthogonal to v. Hence, there
exists an i such that 〈xi, v〉 6= 0. By the definition of the dual lattice, we have
〈xi, v〉 ∈ Z and hence

λ1(L)λm(L?) ≥ ‖v‖ . ‖xi‖ ≥ |〈v, xi〉| ≥ 1.

More generally, for any i,

λi(L)λm−i+1(L?) ≥ 1.

2.2.2 Gram-Schmidt Orthogonalization
Any basis B can be transformed to an orthogonal basis for the same vector
space using the well-known Gram-Schmidt orthogonalization method. Suppose

39

we have vectors B = [b1, .., bm] ∈ Rn×m generating a vector space V =
Span (B). These vectors are not necessarily orthogonal, but we can always
find an orthogonal basis B∗ = [b∗1, ..., b∗m] for V where b∗i is the component of
bi orthogonal to Span (b1, ..., bi−1).

Definition. For any sequence of vectors B = [b1, .., bm], we define the orthog-
onalized vectors B∗ = [b∗1, ..., b∗m] iteratively according to the formula

b∗i = bi −
∑
j<i

µi,jb
∗
j where µi,j =

〈bi, b∗j〉
〈b∗j , b∗j〉

. (?)

In matrix notation, B = B∗M where M is the upper triangular matrix
with 1 along the diagonal and mi,j = µi,j for all j < i. It also follows that
B∗ = BM−1 where M−1 is also upper triangular with 1 along the diagonal.
Note that the columns of B∗ are orthogonal

(
〈b∗i , b∗j〉 = 0 for all i 6= j

)
. There-

fore, the (non-zero) columns of B∗ are linearly independent and form a basis
for the vector space Span (B). However they are generally not a basis for the
lattice L (B).

Example. The Gram-Schmidt orthogonalization of the basis B =
(

2 1
0 2

)
is

B∗ =
(

2 0
0 2

)
. However this is not a lattice basis for L (B) because

(
0
2

)
does

not belong to the lattice. L (B) contains a sublattice generated by a pair of

orthogonal vectors
(

2
0

)
and

(
0
4

)
but no pair of orthogonal vectors generate

the entire lattice L (B).

So, while vector spaces always admit an orthogonal basis, this is not
true for lattices. Let B = [b1, .., bm] be a basis for a lattice L in Rn and
B∗ = [b∗1, ..., b∗m] be its Gram-Schmidt orthogonalization. For i ∈ {1, ...,m},
denote by πi : Rn → (Rb1 + ...+ Rbi−1)⊥ the orthogonal projection on the
orthogonal complement of Rb1 + ..+ Rbi−1. Lm−i+1 = πi(L), this is a lattice
of rank m− i+ 1 with basis [πi(bi), ..., πi(bm)]. In terms of the Gram-Schmidt
decomposition we have

πi(bj) = b∗j +
j−1∑
k=i

µjkb
∗
k,

In particular, πi(bi) = b∗i .

40

What is the dual of πi(L(B))? It is the sublattice of L(D) generated by
di, ..., dm

Lemma. Let B,D ∈ Rn×m be a pair of dual bases. For all i = 1, ...,m,
[πi(bi), .., πi(bm)] and [di, ..., dm] are also dual bases.

Proof. We only prove the statement for i = 2. The general statement
follows easily by induction on i. Therefore, let B′ = [π2(b2), ..., π2(bm)] and
D′ = [d2, .., dm]. So, we have to verify first that B′ and D′ span the same
vector space and secondly that (B′)> (D′) = I.
We start with the second one. For all i, j > 1, we have

〈π2(bi), dj〉 = 〈bi − µi1b1, dj〉
= 〈bi, dj〉 − µi1 〈b1, dj〉
= δij − µi1δ1j

= δij

This proves that (B′)> (D′) = I.
For the first one, we know that B and D span the same vector space V . The
linear span of B′ is by definition the orthogonal complement of b1 in V . Since
the vectors d2, ..., dm are all orthogonal to b1 (by definition of dual basis) and
they are linearly independent, they also span the orthogonal complement of b1
in V . So, B′ and D′ have the same linear span and this proves the lemma.

In contrast, another orthogonalization approach is the QR decomposition.

Definition. The QR decomposition is a decomposition obtained by applying
a sequence of Householder or Givens transformations, that factorizes B
according to B = QR, where Q = (q1, ..., qm) is an n×m columns-orthogonal
matrix, we have Q>Q = Im, and R is an m ×m upper triangular matrix
with positive diagonal element.

The QR decomposition amounts to expressing the lth column of B in
terms of the orthonormal basis vectors q1, ..., ql as

bl =
l∑

k=1
rk,lqk.

Here, q>k bl = rk,l characterizes the component of bl collinear with qk. Fur-
thermore, rl,l describes the component of bl which is orthogonal to the space

41

spanned by b1, .., bl−1, or, equivalently, by q1, ..., ql−1. A basis vector bl is
almost orthogonal to the space spanned by b1, .., bl−1, if the absolute values of
r1,l, ..., rl−1,l are close to zero. If these elements of R are exactly zero, bl has
no component in the direction of b1, .., bl−1 and is correspondingly orthogonal
to the space spanned by these vectors. However, for general lattices such a
strictly orthogonal basis does not exist and one has to settle for a basis satis-
fying less stringent criteria. Instead of GSO, many recent lattice reduction
algorithms [195], [110], [193],[194], [131], [29] adopt the QR decomposition
approach, since the QR decomposition can be performed more efficiently
than the Gram-Schmidt orthogonalization. We have the following relations
between QR decomposition and the Gram-Schmidt orthogonalization:

• ql = b∗l
‖b∗l ‖

.

• ‖b∗l ‖ = rl,l.

• µl,k = rk,l
rk,k

.

Another practical method will be used in this context, and it is called the
"Cholesky factorization".

Definition. A symmetric matrix A ∈ Rn×n is positive definite if

x>Ax > 0 for all x 6= 0

Note that if A is an n× n symmetric matrix, then x>Ax is the function

x>Ax =
n∑
i=1

n∑
j=1

Aijxixj =
n∑
i=1

Aiix
2
i + 2

∑
i>j

Aijxixj

this is called "a quadratic form".

Definition (Cholesky Factorization). Every positive definite matrix A ∈
Rn×n can be factored as

A = R>R

where R is upper triangular matrix with positive diagonal elements.

We define now a fundamental quantity associated to any lattice, the
determinant.

42

b1 =

b2

b̃1

b̃2

Figure 2.4: Example lattice Z2 with bases B =
(

1 0
0 1

)
and B̃ =

(
1 2
0 1

)
and

associated fundamental parallelograms

2.2.3 The Determinant
Given a basis B = [b1, ..., bm] ∈ Rn×m, the fundamental parallelepiped associ-
ated to B is the set of points

P (B) = B [0, 1)m =
{

m∑
i=1

xi.bi : 0 ≤ xi < 1
}
.

P (B) is also a so-called fundamental region, i.e, a region that completely
covers the span of B when shifted to all points of the lattice (for any x ∈ Rn,
there exists a unique lattice point v ∈ L (B), such that x ∈ (v + P (B)).
Another important fundamental region is the Voronoi region, defined as
the set of points in Rn that are closer to the origin than to any other lattice
point,

V (L) := {x| ‖x‖ ≤ ‖x− y‖ for all y ∈ L} .

In contrast to the fundamental parallelepiped P (B), the Voronoi region V (L)
is a lattice invariant, i.e., it is independent of the specific choice of a lattice
basis. However, the volume (here, volume is defined in the m-dimensional
space spanned by the columns of B) of P (B) is the same for all bases of a
given lattice. This volume equals the so-called lattice determinant, which is a
lattice invariant defined as the square-root of the determinant of the Gramian
B>B,

|L| := Vol (P (B)) =
∏
i

‖b∗i ‖ =
√

det (B>B),

where B∗ is the Gram-Schmidt orthogonalization of B. The first part is the
definition of the determinant of a lattice which is a generalization of the well

43

known formula for the area of a parallelepiped. A useful application of the
Gram-Schmidt process is the following:
Let b1, ..., bm be a set of m linearly independent vectors in Rn and consider
the orthonormal basis vectors given by b∗1/ ‖b∗1‖ ,, b∗m/ ‖b∗m‖. In this basis,
the vectors b1, ..., bm are given as the columns of the n×m matrix

‖b∗1‖ µ21 ‖b∗1‖ · · · µm1 ‖b∗1‖
0 ‖b∗2‖ · · · µm2 ‖b∗2‖
...
0 · · ·

∥∥∥b∗m−1

∥∥∥ µmm−1

∥∥∥b∗m−1

∥∥∥
0 · · · 0 ‖b∗m‖
0 · · · 0 0
... · · ·
0 · · · 0 0


In the case n = m this is an upper-triangular square matrix. From this
representation, it is easy to see that the volume of P(b1, ..., bn), or equivalently,
det(L(b1, .., bn)), is given by ∏n

i=1 ‖b?i ‖.
If the lattice has full rank, the lattice determinant equals the magnitude of
the determinant of the basis matrix B, i.e.,

|L| = |det (B)| .

Remember the Gram-Schmidt orthogonalization procedure (?). In matrix
notation, it shows that the orthogonalized vectors B∗ satisfy B = B∗T ,
where T is an upper triangular matrix with 1’s on the diagonal, and the µi,j
coefficients at position (j, i) for all j < i.So, our formula for the determinant
of a lattice can be written as√

det (B>B) =
√

det (T>B∗>B∗T) =
√

det (T>) det (B∗>B∗) det (T).

The matrices T ∗, T are triangular, and its determinant can be easily computed
as the product of the diagonal elements, which is 1. Now consider B∗>B∗.
This matrix is diagonal because the columns of B∗ are orthogonal. So, its
determinant can also be computed as the product of the diagonal elements
which is

det
(
B∗>B∗

)
=
∏
i

〈b∗i , b∗i 〉 =
(∏

i

‖b∗i ‖
)2

= det (L (B))2 .

Taking the square root we get√
det (T>) det (B∗>B∗) det (T) = det (L (B)) .

44

2.2.4 Complex-Valued Lattices
A complex-valued lattice of rank m in the n-dimension complex space Cn is
defined as

L =
{
x | x =

m∑
l=1

zlbl, zl ∈ Zj
}
,

with complex basis vectors bl ∈ Cn and Zj = Z + jZ denoting the set of
complex integers (also known as Gaussian integers). By arranging the basis
vectors into an n×m complex-valued matrix B and noticing that the complex
mapping x = Bz can be equivalently expressed as

x =
(
R (x)
I (x)

)
=
(
R (B) −I (B)
I (B) R (B)

)(
R (z)
I (z)

)
,

In fact, since a m-dimensional complex lattice is isomorphic to a 2m-
dimensional real lattice, every decoding problem that has a complex lattice
formulation can also be reformulated as a real lattice decoding problem. Many
of the concepts and algorithms from the real-valued space can be formulated
directly in the complex domain with minor modifications [113], [161], [162],
[57], [132], [58], [107].

For example, let H = {h1, ..., hm} an n × m complex matrix, and the
conjugate transpose (Hermitian) of a matrix H is denoted by HH . The
inner product of two vectors h1 and h2 is defined as 〈h1, h2〉 = hH2 h1. The
set of orthogonal vectors generated by the Gram-Schmidt Orthogonalization
procedure are represented as {h∗1, ..., h∗m} which span the same space as
{h1, ..., hm}, and further

µij =

〈
hi, h

∗
j

〉
∥∥∥h∗j∥∥∥2 ,

Note that working directly on the complex lattice can result in decoding
algorithms with lower complexity, because the exploitation of the complex
lattice structure allows the lattice dimension involved to be only half of that
of the equivalent real lattice.

Definition (The orthogonality Defect.). The "quality" of a lattice basis can
be measured in terms of the orthogonality defect, defined as

δ (B) = 1
det (L (B))

m∏
l=1
‖bl‖ .

For anym×m positive definite matrix A with elements ak,l, the Hadamard
inequality, [67], states that det (A) ≤ ∏m

l=1 al,l with equality if and only if A

45

is diagonal. Setting A = B>B this implies that the orthogonality defect is
bounded from below as δ (B) ≥ 1, with equality if and only if B is orthogonal.
Reduce a lattice basis means transform this lattice basis to an orthogonal
one or constitute a basis where the lengths of the bases vector are close to
successive minima. This is why some reductions are trying to imitate the
orthogonalization of Gram-Schmidt.

2.2.5 Size Reduction
A rather simple but not very powerful criterion is given by the so-called "Size
Reduction", often called weakly reduced. A basis B is size-reduced if the
elements of the corresponding upper triangular matrix R satisfy the following
condition:

|rkl| ≤
1
2 |rkk| for 1 ≤ k < l ≤ m.

We can also say, a basis is called size-reduced if

|µkl| ≤
1
2 , for 1 ≤ i < j ≤ m where µkl = 〈bk, bl〉

〈bl, bl〉
.

2.2.6 Minkowski’s Successive Minimum And Hermite’s
Constant

Let L be an m-dim lattice in Rn. For 1 ≤ i ≤ m, the ith Minkowski’s
successive minimum, λi (L), is the radius of the smallest closed ball centered
at the origin containing at least i linearly independent lattice vectors.

λi(L) = min (r, dim(B(0, r) ∩ L) ≥ i) .

In particular, λ1 (L) is the Euclidean length of the shortest non zero lattice
vector of L. In dimension 2, we say that a basis (b1, b2) of a lattice L is
reduced, if it takes out the first and the second minimum.

Proposition. The successive minima of a lattice are always reached, there
always exist independent lattice vectors vi’s such that

‖vi‖2 = λi (L) , for all i

Proof. We consider an n-ball, Bn, centered at the origin with radius r. r
is large enough such that Bn contains a non zero lattice vector. D = (L ∩
Bn)− {0} is non-empty. Then, we restrict ‖.‖ to D: ‖.‖ : D → R. Since D

46

contains a finite number of lattice points, it is compact and ‖.‖ is continuous,
‖D‖ = {‖d‖ : d ∈ D} ⊂ R is also compact. Since every compact subset of R
contains a smallest and a largest element, ‖D‖ contains a smallest say b. By
the property of norm, b ≥ 0. Since D contains only non zero vectors, b > 0.
Therefore, there exists a non zero lattice vector of minimal length in D.

Note that for m > 4, such vectors do not necessarily form a basis for L.
Let us consider for example the following lattice, in dimension 5:

2 0 0 0 1
0 2 0 0 1
0 0 2 0 1
0 0 0 2 1
0 0 0 0 1


.

This lattice contains the vector below:

V =


1
1
1
1
1


.

It is easy to notice that the successive minima are:

λ1 = 2, λ2 = 2, λ3 = 2, λ4 = 2, λ5 = 2.

However, a family realizing these minimum, does not contain necessarily V ,
as for example: 

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2


Now, we are going to give Minkowski’s theorem, which allows to finitely

increase the minimum of a given lattice and to make the link between a simple
invariant to calculate, the volume, and the successive minima.

2.2.7 Minkowski’s Theorem
In this section, we consider the classical result of Minkowski, which, in some
sense, originated the whole geometry of numbers.

47

Definition. A set S ⊂ Rn is said to be centrally-symmetric about the origin,
if x ∈ S implies −x ∈ S. The set S is said to be convex, if for any x, y ∈ S,
tx + (1 − t)y ∈ S for 0 ≤ t ≤ 1: that is S contains the line segment that
passes through x and y.

Theorem (Blichfeldt, [21]). For any full rank lattice L ⊂ Rn and a measur-
able set S ⊂ Rn with vol(S) > det(L), there exist distinct vectors z1, z2 ∈ S
such that z1 − z2 ∈ L.

Proof. Let B be a basis of L. x ranges over all L, therefore, x + P(B) :=
{x+ y : y ∈ P(B)} form a partition of Rn, [166]. Let us define Sx = S ∩
(x + P(B)). Since S = ⋃

x∈L Sx, we deduce that vol(S) = ∑
x∈L vol(Sx).

Now, consider the translates Ŝx = Sx − x. Clearly, Ŝx ⊆ P(B). Now, we
argue that these translates Ŝx cannot be pairwise disjoint. Indeed, since
vol(Ŝx) = vol(Sx), the total volume of all these sets is∑

x∈L
vol(Ŝx) =

∑
x∈L

vol(Sx) = vol(S) > vol(P).

Therefore, there must exist some x, y ∈ L, x 6= y for which Ŝx ∩ Ŝy 6= ∅.
Let z be a point in Ŝx ∩ Ŝy. Then, z + x ∈ Sx ⊆ S, z + y ∈ Sy ⊆ S, and
(z + x)− (z + y) = x− y ∈ L.

We will give an upper bounds on the length of the shortest vector in a
lattice. For this, we start by giving and proving a very important theorem
(Minkowski’s convex body theorem).

Theorem 3 (Minkowski’s Convex Body Theorem). Let L be a full rank
lattice of rank m. Then, for any centrally-symmetric convex set S, if vol(S) >
2m det(L) then S contains a non-zero lattice point.

Proof. Let us define Ŝ = 1
2S = {x : 2x ∈ S}. Then, vol(Ŝ) = 2−mvol(S) >

det(L). By Blichfeldt’s theorem, there exist two points z1, z2 ∈ Ŝ such that
z1 − z2 ∈ L is a non zero lattice point. By definition, 2z1, 2z2 ∈ S and
because is centrally-symmetric, also −2z2 ∈ S. Finally, since S is convex,
2z1−2z2

2 = z1 − z2 is in S.

Theorem (The first theorem of Minkowski). Let L be a lattice of di-
mension m. Then, we have:

λ1(L) ≤
√
m vol (L)

1
m .

48

Proof. We first bound the volume of the ball B (0, r), for some radius r. This
ball contains the hypercube

[
− r√

m
, r√

m

]m
. Hence, its volume is greater than(

2r√
m

)m
.

For r =
√
m det(L) 1

m , the volume of B(0, r) is greater than 2m det(L), so by
Minkowski’s convex body theorem (see, theorem. 3), the ball contains a non
zero lattice vector, and therefore, the length of the shortest vector is at most√
m det(L) 1

m .

When the dimension remains small, we know explicitly the constant of
Hermite, [24]. It is the supremum of the following quantities as L ranges over
all m-dimensional lattices:

γm = max
L, dimL=m

(
λ1(L)

vol(L) 1
m

)2

≤ m,

We notice that Hermite’s lattice constant is used to scale the size of the first
minimum λ1(L). However, finding the exact value of γm is a very difficult
problem, which plays a central role in the theory of geometry of numbers.
The exact value of γm is only known for 1 ≤ m ≤ 8 and m = 24, [139]. An
upper bound of Hermite’s constant is given in [139]:

γm ≤ 1 + m

4 , for all m ≥ 1.

In the following table, we give the values known to date.

m 1 2 3 4 5 6 7 8 24
(γm)m 1 4

3 2 4 8 64
3 64 28 424

It has never been proved that γm is an increasing function of m. For conve-
nience we define

γ?m = max {γi : 1 ≤ i ≤ m}
to obtain a non-decreasing function of m.

The first theorem of Minkowski admits a stronger version, which allows
to limit the product of the successive minimum. The above theorem easily
generalizes to other minima.

Theorem (The second theorem of Minkowski.). Let L be a lattice of dimen-
sion m, then we have:

m∏
i=1

λi(L) ≤ γmmvol(L) ≤ m
m
2 vol(L).

Where λi(L) is the length of the ith shortest vector.

49

Proposition. For every lattice basis B and its Gram-Schmidt orthogonal-
ization B∗,

λj(L(B)) ≥ min
1≤i≤m

‖b∗i ‖ . (2.1)

Proof. Note that b∗i are not lattice vectors. Let us consider a generic lattice
vector

Bx ∈ L(B) \ {0} , (2.2)
where x ∈ Zm \ {0} and let k be the biggest index such that xk 6= 0. We
prove that

‖Bx‖ ≥ ‖b∗k‖ ≥ min
i
‖b∗i ‖ . (2.3)

In order to prove (2.3), we take the scalar product of our lattice vector and
b∗k. Using the orthogonality of b∗k and bi (for i < k) we get

〈Bx, b∗k〉 =
∑
i≤k
〈bixi, b∗k〉 = xk〈bk, b∗k〉 = xk ‖b∗k‖

2 . (2.4)

By Cauchy-Schwarz inequality, i.e., |〈x, y〉| ≤ ‖x‖ ‖y‖,

‖Bx‖ . ‖b∗k‖ ≥ |〈Bx, b∗k〉| ≥ |xk| . ‖b∗k‖
2 . (2.5)

Using |xk| ≥ 1 and dividing by ‖b∗k‖, we get ‖Bx‖ ≥ ‖b∗k‖.

2.3 The Shortest vector problem and Sphere
decoding algorithms

Minkowski’s first theorem gives a simple way to bound the length λ1 of the
shortest non zero vector in a lattice L (B). In general λ1 can be smaller than√
m det(B) 1

m where L(B) is a full rank lattice.
For example, consider the two-dimensional lattice generated by orthogonal

vectors b1 = εe1 and b2 =
(

1
ε

)
e2. The determinant of the lattice is 1 and

λ1 ≤
√

2. However λ1 = ε can be arbitrarily small.
Moreover, we know from Minkowski’s theorem (see, Section. 2.2.7) that a

shortest non zero vector exists, but it doesn’t give any computational method
to efficiently find vectors of length bounded by

√
m det(L) 1

m , let alone vectors
of length λ1. The problem of finding a lattice vector of length λ1 is the
well-known, shortest vector problem (SVP).

Definition (Shortest Vector Problem, SVP). Given a basis B ∈ Rn×m, find
a non zero lattice vector Bx (with x ∈ Zm \ {0}) such that ‖Bx‖ ≤ ‖By‖ for
any other y ∈ Zm \ {0}.

50

The lack of efficient algorithms to solve SVP has led computer scientists
to consider approximative versions of the problem.

2.3.1 The Closest Point And The Shortest Vector Prob-
lem

The Closest-Point problem is the problem of finding for a given lattice L and
a given input point x ∈ Rn, a vector ĉ ∈ L such that

‖x− ĉ‖ ≤ ‖x− c‖ for all c ∈ L, (2.6)

where ‖.‖ denotes the Euclidean norm. The shortest vector problem is a
special case of the closest point problem, the idea is to use x = 0 as the input
and exclude 0 as a potential output,

min
z 6=0
{‖Bz‖2 | z = dzic ∈ Zm} , (2.7)

where B is the lattice basis of L.
As already said, the shortest vector problem is to find a vector in L \ {0}

that has the smallest Euclidean norm. Thus, the history of the shortest vector
problem is closely linked with that of the closest point problem.

This problem was studied in a very intense way for more than 25 years.
It has been conjectured [188] that the shortest vector problem (with L ⊆ Zn)
is NP-hard, in other words, cannot be solved in polynomial time. But, in
contrast to the closest point problem, this is still not proved. The conjecture of
[188] is supported by the result of Ajtai [7] who showed that the shortest vector
problem cannot be solved in polynomial time under randomized reductions.
Micciancio [125] furthermore proved that finding an approximate solution
within any constant factor less than

√
2 cannot be also solved in polynomial

time for randomized reductions. It is known [62], [75], however, that the
shortest vector problem is not harder than the closest vector problem.

Therefore, the answer to the question: "What is the best and fastest
algorithm available to determine the shortest vector of a lattice?" is not
immediately clear. The choice of a method for solving the shortest vector
problem depends on the structure of the lattice. For many classical lattices,
efficient search methods are known [35], [189]. Here, we address the problem
for general lattices.

The first SVP algorithm was Gauss’s reduction algorithm (details in
Section. 2.4), which solves SVP exactly in dimension 2, in quadratic time. In
arbitrary dimension, there are two types of SVP algorithms:

51

Exact algorithms These algorithms provably find a shortest vector, but
they are expensive, with a running time at least exponential in the dimension.
Intuitively, these algorithms perform an exhaustive search of all extremely
short lattice vectors, whose number is exponential in the dimension (in the
worst case): in fact, there are lattices for which the number of shortest
lattice vectors is already exponential. Exact algorithms can be split into two
categories:

a) Polynomial-Space exact algorithms In general, the common feature
of these deterministic algorithms is to first identify a region in which a shortest
lattice point must lie, and then exhaustively search the lattice points lying in
this region for the shortest non zero lattice vector, while possibly reducing the
size of the region dynamically. They are based on enumeration which dates
back to the early 1980s with work by Pohst [142], Fincke-Pohst [49], and
named sphere decoding algorithms, [5], [159], [142], [49], [191], in which they
examined lattice points lying inside a hypershere. Also, we have algorithms
based on Kannan’s strategy, [87], [74], [86], [17]. Let {b1, .., bm} be a basis
for an m-dim lattice L and let π2 (.) be an orthogonal projection operator
which projects "." onto b∗1, where b∗1 denotes the orthogonal complement of the
subspace spanned by b1. Note that a basis {b1, .., bm} of a lattice L is called
a HKZ basis if and only if {b1, .., bm} is weakly reduced and b∗i is a shortest
non zero vector in Lm−i+1, i = 1, ..,m (see details in Section. 2.4). The basic
idea of Kannan enumeration is to first find an HKZ reduced basis for the
lattice π2 (L) by calling itself recursively, and then lift it to a size-reduced
basis {b1, b

′
2, ..., b

′
m} for L such that {π2(b2), ..., π2(b′m)} is an HKZ-reduced

basis of π2(L) and ‖b1‖2
2 ≤

4
3 ‖b

′
2‖

2
2. Then the shortest lattice point must lie

in a parallelepiped of cardinality no more than m0.5m+O(1) and can thus be
found by enumerating this finite set (see, [84]). It is proved in [74], [86] that
algorithms based on Kannan’s strategy require a complexity of m0.5m+O(m)

polynomial-time operations. Variants of Kannan’s [87], [74], [86], [17] differ
mainly in how the size of the search region for each iteration level are chosen.

b) Exponential-Space exact algorithm These algorithms have a better
asymptotic running time, but they all require exponential space 2O(m). The
first algorithm of this kind is the randomized sieve algorithm of Ajtai, Kumar
and Sivakumar (AKS), [9], with exponential worst-case complexity of 2O(m)

polynomial-time operations. Micciancio and Voulgaris [130] presented an
alternative deterministic algorithm, which solves both CVP and SVP within
22m+O(m) polynomial-time operations. Interestingly, there are several heuristic
variants [72], [140], [129], [192] of AKS with running time 2O(m), where O(.)

52

constant, is much less than that of the best provable algorithms known, result-
ing in the List Sieve algorithms of Micciancio and Voulgaris [129]. Currently,
the fastest provable variant of lattice sieving runs in time 22.465m+O(m) and
space 21.325m+O(m), [145], (see [96] for a quantum acceleration).
In practice, heuristic variants of the lattice sieving algorithms are found to
be more efficient. Nguyen and Vidick [140] exhibited a version of AKS that
can be heuristically argued correct and which requires a running-time of
(4/3)m+O(m) ≈ 20.4150m+O(m) and space of (4/3)m/2+O(m) ≈ 20.2075m+O(m). Mic-
ciancio and Voulgaris [129] later proposed a heuristic variant of their ListSieve
algorithm, namely the GaussSieve algorithm. In practice, the GaussSieve
seems to perform well compared to the other variants [129]. It has been
investigated further in a series of works (see, e.g., [50]). The GaussSieve algo-
rithm is one of the most promising candidates for lattice sieving algorithms
in practice.

Nearest neighbor search techniques have been used to accelerate heuristic
sieving algorithms further. The technique was first used in the context of
lattice sieving by Laarhoven in [95]. Currently, the best variant is due to
Becker, Ducas, Gama, and Laarhoven [19], which has a time complexity
of(3/2)m/2+O(m) ≈ 20.2925m+O(m) and space complexity (4/3)m/2+O(m).

Recently, Bai, Laarhoven and Stehlé, [16], propose tuple variants for
the ListSieve and GaussSieve algorithms which they call TupleSieve and
TupleMinkowskiSieve, whose memory footprint is smaller than 20.2075m+O(m).
The main idea is to attempt to create shorter vectors by looking at triples,
quadruples, etc. of vectors rather than pairs of vectors. For triples of vectors,
they estimate the space complexity by 20.1887m+O(m) and for the quadruples,
the space complexity is about 20.1724m+O(m).

Approximation algorithms These algorithms are much faster than exact
algorithms, but they output short lattice vectors, not necessarily the shortest
ones: they typically produce a whole reduced basis, and are therefore lattice
reduction algorithms. The first algorithm of this kind is the celebrated
algorithm of Lenstra, Lenstra and Lovasz (LLL) [103], which can approximate
SVP to within a factor of O((2/

√
3)m) in polynomial time. The efficiencies

of the three strategies were compared in [140], [199], and simulation results
in [140], [129], suggest that for lattices of dimension less than 40, the sphere
decoding algorithm using the SE (Schnorr-Euchner enumeration) [159]
is the most efficient algorithm.

We give a table that summarizes the best known fully analyzed algo-
rithms. We denote by "T", (respectively. "S" and "P or D"), the "Time upper
bound" (respectively, the "Space upper bound", "Probabilistic or Deterministic

53

algorithm").
T S P or D

via enumeration [70, 71] mm/2+O(m) poly(m) Deterministic
via Sieving [145] 22.247m+O(m) 21.325m+O(m) Probabilistic
via Voronoi Cell [130] 22m+O(m) 2m+O(m) Deterministic
via Gaussians [129] 2m+O(m) 2m+O(m) Probabilistic

2.3.2 The Sphere Decoding Algorithms

Idea Behind The Sphere Decoder

The basic premise in Sphere decoding is rather simple: we attempt to search
over only lattice points that lie in a certain sphere of radius ρ around the
given vector x, here in our case x = 0, thereby reducing the search space
and hence the required computations. Clearly, the shortest lattice vector
inside the sphere will also be the shortest lattice vector for the whole lattice.
However, close scrutiny of this lattice basic idea leads to two key questions:

How to choose ρ? Clearly, if ρ is too large, we obtain too many points and
the search remains exponential in size, whereas if ρ is too small, we obtain no
points inside the sphere.

We have already seen that Minkowski’s theorem (see Section. 2.2.7) gives
us a simple way to bound the length of the shortest non zero vector. However,√
m det(L) 1

m can be too large and produces an exponential-time complexity.
A natural candidate for ρ is the covering radius of the lattice, defined to be
the smallest radius of spheres centered at the lattice points that cover the
entire space. This is clearly the smallest radius that guarantees the existence
of a point inside the sphere for any vector x. The problem with this choice
of ρ is that determining the covering radius for a given lattice cannot be
solved in polynomial time, [35]. Another choice is to use ρ as the distance
between the Babai estimate (found by the Babai nearest plane algorithm [15].
This Babai estimate can be easily obtained by first, finding the real solution
for the triangular system Rz = x, which is the real least squares solution
for the problem min ‖x−Bz‖2

2, then round the entries of z to their nearest
integers to obtain the lattice point, z = dzc ∈ Zm) and the vector x, i.e.,
ρ = ‖x−Bz‖. However, Zhao and Qiao [197] have showed that this method
may produce a too small radius and cause sphere decoding to fail to find a
solution. Note also that in the case of searching the shortest lattice vector,
this distance will be zero.

54

How can we know which lattice points are inside the sphere? If
this means testing the distance of each lattice point from x (to determine
whether it is less than ρ), then there is no point in sphere decoding as we will
still need an exhaustive search. A natural candidate for ρ is ‖b1‖2. However,
it does propose an efficient way to answer the second. The basic observation
is the following: Although it is difficult to determine the lattice points inside
a general m-dimensional sphere, it is trivial to do so in the (one-dimensional)
case of m = 1. The reason is that a one-dimensional sphere is simply an
interval and so the desired lattice points will be the integer values that lie in
this interval. We can use this observation to go from dimension k to dimension
k + 1. Suppose we have determined all k-dimensional lattice points that lie
in a sphere of radius ρ. Then for any such k-dimensional point, the set of
admissible values of the k + 1th-dimensional coordinate that lie in the higher
dimensional sphere of the same radius ρ forms an interval. This means that
we can determine all lattice points in a sphere of dimension m and radius ρ
by successively determining all lattice points in spheres of lower dimensions
1, 2, ...,m and the same radius ρ (see, below).

2.3.3 The Algorithms for SVP
Let ρ be the radius of the initial search sphere in which at least one shortest
lattice point must lie. The sphere of radius ρ and centered at 0 in (2.7) can
be defined as

S =
{
z | ‖Bz‖2

2 < ρ2
}
, (2.8)

Such hypersphere search strategy was firstly presented in [142] and further
improved in [5], [159], [49], [191]. To learn the strategy of the hypersphere
enumeration, we shall present a recursive version of the sphere decoding
algorithms in this section.

Let R = chol(B>B) be the Cholesky factorization of B>B, then (2.8)
can be transformed into

‖Rz‖2
2 < ρ2, (2.9)

Since R is an upper triangular matrix, we can rewrite the condition (2.9) as

m∑
i=1

 m∑
j=i

ri,jzj

2

< ρ2. (2.10)

where ri,j, j ≥ i, denotes the (i, j)th entry of R. The above inequality can
then be expanded to

(rm,mzm)2 + (rm−1,m−1zm−1 + rm−1,mzm)2 + < ρ2, (2.11)

55

the first entry of Rz is a function of zm only. We can see that a necessary
condition for Rz lying in the hypersphere of radius ρ is (rm,mzm)2 ≤ ρ2 which
is equivalent to the following condition for entry zm:

lm =
⌈
− ρ

rm,m

⌉
≤ zm ≤

⌊
ρ

rm,m

⌋
= um.

Partition R into [
Rm−1 h

0> rm,m

]

where Rm−1 ∈ R(m−1)×(m−1), h ∈ Rm−1. Then for each integer value of zm,
the m-dimensional SVP (2.7) is reduced to an (m− 1)-dimensional CVP.

min
{
‖Rm−1z

′ + zmh‖2 : z′ ∈ Zm−1
}
, (2.12)

with a solution lying in the (m− 1)-dimensional hypersphere

‖Rm−1z
′ + zmh‖2

2 ≤ ρ2 − z2
mr

2
m,m, (2.13)

Therefore, an m-dimensional SVP can be reduced to a finite number (at
most

⌊
2ρ

rm,m

⌋
+ 1) of (m− 1)-dimensional CVPs, leading to a recursive algo-

rithm. In summary, we unite Pohst’s strategy [142], [49], [191] and Schnorr-
Euchnerr strategy [5], [159] in the same framework, and present a recursive
implementation (see below, details about the recursion implementation).
Clearly, a shortest non zero lattice vector can be found by calling Algorithm
Sph-Dec (R,0, ∅, r, 0).

Details About the Recursive Implementation.

Let

cm = 0, ck =
 m∑
j=k+1

rk,jzj

 /rk,k, for k such that m− 1 ≤ k ≤ 1. (2.14)

Note that ck depends on zk+1, ..., zm. Substituting (2.14) in (2.10), we have
m∑
k=1

r2
k,k (zk − ck)2 < ρ2. (2.15)

If z satisfies the bound, then it must also satisfy inequalities

level k : r2
k,k (zk − ck)2 < ρ2 −

m∑
i=k+1

r2
i,i (zi − ci)

2 . (2.16)

56

The search process starts at level m and moves down to level 1. At level k,
zk is determined for m− 1 ≤ k ≤ 1. From (2.16), the range of zk is [`k, uk],
where

`k =

ck −
ρ2 −

m∑
i=k+1

r2
i,i (zi − ci)

2

 1
2

/rk,k


and

uk =

ck +
ρ2 −

m∑
i=k+1

r2
i,i (zi − ci)

2

 1
2

/rk,k

 .
There are two typical strategies to examine the integers inside [`k, uk]. In the
Pohst strategy, the integers are chosen in the ascending order

`k, `k + 1, `k + 2,, uk.

However, in the Schnorr-Euchner strategy, the integers are chosen in the
zig-zag order

zk =

bcke , bcke − 1, bcke+ 1, bcke − 2, ..., if ck ≤ bcke
bcke , bcke+ 1, bcke − 1, bcke+ 2, ..., if ck ≥ bcke .

In fact, Schnorr-Euchner strategy combines the advantages of the Babai near-
est plane algorithm and the Pohst strategy (when the radius ρ is immediately
updated every time a lattice point inside the sphere is found).

Observe that in Schnorr-Euchner strategy, once an integer zk does not
satisfy (2.16), all the following integers in the sequence will not satisfy it.
These integers can be pruned from the search process. Such a property does
not exist in the Pohst strategy. Another benefit with the Schnorr-Euchner
enumeration order is that the first points examined are more likely to minimize
(2.16) than the last points examined. As will be seen in the next paragraph,
this allows to shrink the search hypersphere faster. Simulations in [5] confirm
that the Schnorr-Euchner strategy is more efficient than the Pohst strategy.

We now describe the search process using the Schnorr-Euchner strategy.
At level m, we set zm = 0. If (2.16) at level k = m is not satisfied, no
integer can satisfy (2.15). Otherwise, we go to level m − 1, compute cm−1
and set zm−1 = bcm−1e. If (2.16) does not hold, we go back to level m and
choose zm to be the second nearest integer to cm. Otherwise, we move down
to level m − 2. When we reach level 1, we compute c1 and set z1 = bc1e.
Then if (2.16) at level k = 1 is satisfied, we set ẑ = [z1, ..., zm]>, where ẑ is
a full integer point inside the search hypersphere. We update ρ by setting
l = ρ2 = ∑m

k=1 r
2
k,k (ẑk − ck)2 = nd. This step allows to eliminate more points

57

by "shrinking" the search hypersphere. Now we search for a better point than
ẑ. If one is found, we update ẑ. We move up to level 2 and choose z2 to be the
next nearest integer to c2, where "next" is relative to ẑ2. If inequality (2.16)
holds at level 2, we move down to level 1 and update z1; otherwise, we move
up to level 3 and update z3. The procedure continues until we reach level m
and (2.16) at level m is not satisfied. The last full integer point found is the
OILS (Ordinary Integer Least Squares) or the shortest lattice vector solution.

Note that the efficiency of the sphere decoding algorithm is closely related
to the structure of the lattice basis.

Thus, an appropriate preprocessor, such as the LLL algorithm, is useful.
The LLL algorithm [103] can be used to reduce the computational complexity
in two ways:

First, it can be used to reduce the radius of the search sphere by reducing
the norm of R. Second, the sphere decoding is a depth-first searching (i.e.,
an algorithm that constructs a tree to obtain a solution) for the lattice points
inside a sphere, the LLL algorithm can be used to reduce the total number of
search paths. Thus, the performance of the sphere decoding algorithm can
be further improved for LLL reduced bases.

58

Algorithm 1 Sphere-Dec (R, x, zin, r, dist)
Input: R ∈ Rm×m, a vector x = [xi] ∈ Rm to decode, an integer partial
solution zin, the current distance record r and the distance to the examined
layer dist.
Output: a solution z ∈ Zm and ` = ‖Rz− x‖2

2.
LB←

⌈
−
√
r−dist+xm
rm,m

⌉
, UB←

⌊√
r−dist+xm
rm,m

⌋
;

`← r, z← ∅;
if LB ≤ UB then
for each integer s lying in [LB,UB] do
newdist← dist+ (xm − s.rm,m)2 ;
if newdist ≤ ` then
ẑin ← [s; zin] ;
if m > 1 then
x̂← x (1 : m− 1)− s×R (1 : m− 1,m) ;
[z′, `′]← Sph-Dec (Rm−1, x̂, ẑin, `, newdist) ;
if `′ ≤ ` then
`← `′, z ← z′;

end if
else
if newdist 6= 0 then
z ← ẑin, `← newdist;

end if
end if

end if
end for

end if

59

Obviously, a shortest non zero vector can be found by calling Algorithm
Sph-Dec(R, 0, ∅, r, 0) see Algorithm 1. We notice, onem-dimensional problem
can be solved recursively by reducing it to at most b2

√
r/rm,mc+ 1 (m− 1)-

dimensional sub-problems. The size ` of the search region is reduced dy-
namically (however, the algorithms based on the Kannan strategy scan all
the (m− 1)-dimensional sub-lattices with the same value of ρ). That is,
when any lattice point Rz̃ inside the search region is found, the squared
radius ` can be reduced to ‖Rz̃‖2

2, since ‖Rz̃‖
2
2 < `. Therefore, not all the

b2
√
r/rm,mc+1 (m− 1)-dimensional sub-problems are necessarily to be solved

in practice.
Note that the last condition "if newdist 6= 0" is to make sure that the

lattice points being searched are non zero. The above algorithm can be
applied to solve general CVP, by deleting this last condition.

The complexity of the sphere decoding algorithms was discussed in [73],
[80], [140].

The efficiency of the three strategies were compared in [140]. In general,
for lattices of small dimensions, the sphere decoding using Schnorr-Euchner
enumeration is the fastest. Simulation results in [140], [129] illustrate that
for lattices of dimension m ≤ 40, Schnorr-Euchner enumeration provides the
most efficient algorithm.

2.4 Lattice reduction:
The history of reduction theory begins in the Euclidean era about 300 BC when
the Euclidean algorithm was introduced to compute the greatest common
divisor of two integers. A lattice basis reduction algorithms is analogous to
Euclid’s GCD algorithm. A formal study of integer lattices was initiated in
the 18th century by Lagrange, Gauss, Hermite and others. However, little
progress was made. As computers became more powerful towards the middle
of the 20th century, researchers contributed extensive work to lattices. The
development of lattice basis reduction began in 1773 by Lagrange, [40]. He
had presented the first algorithm for constructing a reduced bases for lattices
of dimension two. The algorithm takes a two-dimensional basis matrix B
as input and successively performs column swaps and size reduction until a
Gauss reduced basis is obtained where ‖b1‖ ≤ ‖b2‖ and the properties of a size
reduced basis are satisfied. Then this algorithm was extended to dimensions
three by Vallée in 1986 and Semaev in 2001 [184] [164]: Semaev’s algorithm
is quadratic without fast integer arithmetic, whereas Vallée’s algorithm has
cubic complexity. An extension to dimension four by Nguyen and Stehlé [137]
was named "greedy algorithm". This implies that a shortest vector and a HKZ

60

reduced basis can be computed in quadratic time up to dimension four. More
generally, Helfrich [74] and Afflerbach and Grothe [3] presented algorithms for
lattices of arbitrary dimension. A variant of Kannan’s strategy was proposed
in [74]. Hence, like Kannan’s algorithm [87], [86], Helfrich’s algorithm is also
intended rather as a theoretical result than as a practical tool and its runtime
is exponential, but polynomial for fixed dimension. However, Afflerbach and
Grothe handled this problem in a different way: let p be the pth stage of
the reduction process, starting from p = 1, this algorithm first performs
Pohst enumeration [49], [142] and during the search process, whenever an
intermediate lattice point Bpz inside the search process satisfying the gcd
conditions (gcd(zp, ..zm) = 1), for m > 7 or zp = 1 for m ≤ 7, is found, the
pth column of Bp is then replaced by Bpz and the algorithm is restarted from
p = 1. On the other hand, if the pth column of Bp is already the shortest
lattice point satisfying the corresponding gcd constraint, we set p = p + 1
and repeat the above process. The algorithm terminates when p = m + 1.
Note that the number of lattice points enumerated by Pohst’s strategy grows
exponentially with the dimension m. Therefore, in practice the algorithm in
[3] is restarted many times and the complexity becomes prohibitive quickly
as the dimension increases.

Gauss Reduction. The reduction method introduced by Gauss in the
context of binary quadratic forms is restricted to lattices of rank m = 2, [61],
which is a natural generalization of the centered Euclidean algorithm, [182].
For such two-dimensional lattices, Gauss reduction constructs a basis that
fulfills the reduction criteria introduced by Minkowski and HKZ.

In addition to size reduction, Gauss reduction also includes column swap-
ping operations. In particular, after first size reducing the given basis matrix
B, the columns of the resulting basis B̃ =

(
b̃1, b̃2

)
are swapped if the length

of b̃1 is larger than that of b̃2 and the resulting basis is again size-reduced.
This process of successive size reduction and column swapping operations is
repeated until the length of b̃1 is shorter, after the preceding size reduction
step, than that of b̃2, which implies that no further column swapping operation
is performed.

After a finite number of iterations, this algorithm provides a Gauss
reduced basis B̃, where

∥∥∥b̃1

∥∥∥ ≤ ∥∥∥b̃2

∥∥∥ and the properties of a size reduced basis
are satisfied. In particular, b̃1 and b̃2 are the two shortest vectors in the lattice
L that form a basis for L.

Minkowski Reduction.

61

Definition 7. A lattice generator matrix B := [b1, ..., bm] is called Minkowski
reduced if for all 1 ≤ i ≤ m, the vector bi has the minimum norm among all
lattice vectors bi such that {b1, ..., bi} can be extended to a basis for L (B),
[121].

From [187], [94], the length of each Minkowski reduced basis vector can
be bounded by

λ2
i (L) ≤ ‖bi‖2

2 ≤ max
{

1,
(5

4

)(m−4)}
λ2
i (L) , 1 ≤ i ≤ m; (2.17)

m∏
i=1
‖bi‖2 ≤ γ

m
2
m vol (L) , for m ≤ 4; (2.18)

m∏
i=1
‖bi‖2 ≤ γ

m
2
m

(5
4

) (m−3)(m−4)
4

vol (L) , for m > 4. (2.19)

From (2.17), we deduce that for lattices of dimension m ≤ 4, the norms
of Minkowski reduced basis vectors reach strongly Minkowski’s successive
minima. However, in high dimensions, there does not necessarily exist a
Minkowski reduced basis whose vector norms achieve Minkowski’s successive
minima. Furthermore, from (2.19) and the Hermite constant, we find that the
orthogonality defect of a Minkowski reduced basis is bounded by a constant
depending only on the rank of the given lattice.

δM,d ≤ γ
m
2

(5
4

) (m−3)(m−4)
4

=
(5

4

)m2
4 +O(m logm)

.

Lemma 1. A lattice generator matrix B := [b1, ..., bm] is called a Minkowski
reduced basis if and only if for all 1 ≤ i ≤ m, and all integers xi, ..., xm such
that gcd(xi, .., xm) = 1, we have:

‖x1b1 ++ xmbm‖ ≥ ‖bi‖ ;

With the above statement, one might think that to ensure that a given
basis is Minkowski reduced, there are infinitely many conditions to be checked.
Fortunately, it is sufficient to check a finite subset of them. This result is
noted as the second finiteness theorem in [167]. Several sufficient sets of
conditions are possible. We call a such a subset with minimal cardinality,
Minkowski conditions.

62

For dimensionsm ≤ 6, Minkowski stated a finite number of conditions that
a quadratic form is Minkowski reduced. In the m ≤ 4 case, he published a
proof in [122]. The proofs in the m = 5 and m = 6 cases can be found in [2],
[152], [153], [176], [177]. Corresponding conditions for the case m = 7 were
stated and proved in [178]. But for m ≥ 8 no similar conditions are known to
date. Therefore, in low dimension, one can check quickly for m ≤ 7 if a basis
is reduced in the sense of Minkowski by checking these conditions.

Naturally the dimension is limited by m = 7. However, in this case
already over 90000 conditions have to be checked. Therefore, there is a need
for an algorithm which calculates Minkowski reduced bases in acceptable
computation time for even greater dimension.

Note that for each bi, there are more than one shortest vector available
(−bi for example). So when we refer to a minimal basis, we mean one among
many available minimal bases. As a special case, when L has a basis consisting
of orthogonal vectors, it is automatically a reduced basis. In the general
case, a reduced basis is the closest to an orthogonal basis that a lattice can
have.

Theorem. (Minkowski conditions [176], [178])

Let m ≤ 6. A lattice generator matrix B := [b1,, bm] is a Minkowski
reduced basis if and only if for all 1 ≤ i ≤ m and for all integers xi,, xm
satisfying the three conditions below, we have:

‖x1b1 ++ xmbm‖ ≥ ‖bi‖ ;

1. The integers xi, ..., xm are relatively prime;

2. For some permutation σ ∈ Sm,
(∣∣∣xσ(1)

∣∣∣ ,, ∣∣∣xσ(m)

∣∣∣) appears in the list
below (where empty places can be counted as zeros);

63

2 1 1
3 1 1 1
4 1 1 1 1
5 1 1 1 1 1

1 1 1 1 2
6 1 1 1 1 1 1

1 1 1 1 1 2
1 1 1 1 2 2
1 1 1 1 2 3

7 1 1 1 1 1 1 1
1 1 1 1 1 1 2
1 1 1 1 1 1 3
1 1 1 1 1 2 2
1 1 1 1 1 2 3
1 1 1 1 2 2 2
1 1 1 1 2 2 3
1 1 1 1 2 2 4
1 1 1 1 2 3 3
1 1 1 1 2 3 4
1 1 1 2 2 2 3
1 1 1 2 2 3 4

Moreover, this list is minimal, which means that if a table row is rejected,
then a basis satisfy the remaining conditions without being a Minkowski
reduced basis.

We have already seen that Minkowski proved a result saying that we
only need to check a finite number of inequalities. This is most conveniently
expressed in terms of the Gram matrix associated to the basis. Call B the
m×m matrix having b′is as columns, then the Gram matrix Q = B>B has
entries qij = qji = 〈bi, bj〉. Q is a positive definite matrix.

Theorem (Minkowski, see [167, 66]). Given m linearly independent vectors
B = b1, ..., bm in Rm. Let L be the lattice generated by B and Q be the
Gram matrix with qij = 〈bi, bj〉. Then B is a reduced basis for L if and only
if the qij entries satisfy a set of linear inequalities, which only depend on the
dimension m.

We call any symmetric matrix Q satisfying such inequalities a "reduced
or Minkowski" reduced form. Reduction in R2 is particularly simple and was

64

known to Gauss. In this case,

M =
(
a b
b c

)

is Minkowski reduced when

a ≤ c and 2 |b| ≤ a,

these correspond to the inequalities

‖b1‖2 ≤ ‖b2‖2 and 2 |〈b1, b2〉| ≤ ‖b1‖2 .

A more geometric way to look at the second inequality is

‖b2‖ ≤ ‖b1 − b2‖ and ‖b2‖ ≤ ‖b1 + b2‖ ,

together with ‖b1‖ ≤ ‖b2‖, these are exactly the finite collection of inequalities
for m = 2.

In dimension 3, a basis is Minkowski reduced if and only if we have the
following inequalities:

‖b1‖ ≤ ‖b2‖ ≤ ‖b3‖
‖b1 + b2‖ ≥ ‖b2‖ ‖b1 − b2‖ ≥ ‖b2‖
‖b1 + b3‖ ≥ ‖b3‖ ‖b1 − b3‖ ≥ ‖b3‖
‖b2 + b3‖ ≥ ‖b3‖ ‖b2 − b3‖ ≥ ‖b3‖

‖b1 + b2 + b3‖ ≥ ‖b3‖ ‖b1 + b2 − b3‖ ≥ ‖b3‖
‖b1 − b2 + b3‖ ≥ ‖b3‖ ‖b1 − b2 − b3‖ ≥ ‖b3‖ .

It was shown in [18] that a (4× 4) positive definite matrix

M =


a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44


is Minkowski reduced when it verifies the following 39 reduction conditions:

• a11 ≤ a22 ≤ a33 ≤ a44;

65

• For each 1 < i < 4, we must have x>Mx ≥ aii for any
x = {x1, x2, x3, x4} satisfying xi = 1, xj = 0 if j > i, xj ∈ {0, 1,−1} if
j < i, and xj 6= 0 for at least one j < i.

The 36 inequalities of the second kind consist of 28 inequalities which cor-
respond to the inequalities of 3 dimensions. Those in fact tell us that the
four rank 3 sub-lattices generated by {b2, b3, b4} , {b1, b3, b4} , {b1, b2, b4} and
{b1, b2, b3} are also Minkowski reduced. The other eight inequalities are added
to compare ‖b4‖ with ‖±b1 ± b2 ± b3 + b4‖ .

A lattice basis of dimensionm that reaches successive minima is necessarily
Minkowski reduced, but the inverse isn’t true. On the other hand, it still
reaches the first four minimum [187] :

If [b1, ..., bm] is Minkowski reduced, then for all 1 ≤ i ≤ min(m, 4), we
have ‖bi‖ = λi(L). Thus, a Minkowski reduced basis is optimal in a very
natural way up to dimension 4.

LLL Reduction. In 1982, a central tool in the algorithmic study of lattices
(and their applications) appears, the LLL algorithm of Lenstra, Lenstra and
Lovász, which generalizes an old algorithm due to Gauss for reducing lattices
of rank 2 to dimensions m ≥ 2, performed a sequence of steps, each being
a translation step, or a swap step. It is a polynomial time algorithm that
finds a non zero vector in an m-dimensional lattice that is guaranteed to be
at most O((2/

√
3)m)-times the length of the shortest non zero vector in that

lattice.
This notion of reduction, although not perfect, has solved many problems.

After this publication, many results appeared. For example, Kannan provided
an algorithm (not polynomial time) for finding the shortest vector of a lattice,
from a reduced basis in the sense of Lovász. Babai extends this algorithm to
the search of the closest lattice point to a given arbitrary point.

The performance of the LLL algorithm has been further improved by
suitable modifications [47], [99], [147], and new algorithms were invented
[109], [157], [156], [165], [25], [26], [31].

Seysen [165], [195] and Schnorr [157], [156] have written new algorithms
for basis reduction in the square norm. Seysen’s method performs extremely
well for lattices of dimension up to 30. It operates on small integers. Brun
[25], [26], [31], proposed an efficient algorithm for finding approximate integer
solutions, i.e., finding integer vectors tl ∈ Zm that are (almost) orthogonal to
a given vector u ∈ Rm while being as short as possible. It has been realized in
[164] that Brun’s algorithm can also be used for lattice reduction. Compared
to LLL and Seysen reduction, Brun reduction performs more poorly but has
significantly lower complexity.

66

Schnorr offered many improvements of the LLL algorithm: on the theo-
retical side, he shows how to make it faster by replacing rationals by floating
points in LLL and how to do better by defining a hierarchy of polynomial
time algorithms that approximate the shortest vector of a lattice better than
the LLL algorithm does but increasingly slow. Finally, together with Euchner
[195], he shows how to reduce in practice a lattice as fast as possible. At the
same time, the possible applications of the reduced lattice basis algorithms
are diversified.

Nguyen and Stehlé, [136], introduced a new and natural floating point
variant of the LLL algorithm which provably outputs LLL reduced bases in
polynomial time and claim that this is the first LLL algorithm whose running
time (without fast integer arithmetic) provably grows only quadratically with
respect to logC, (C is a constant where the Euclidean norm of the vectors of
the lattice basis are less than C), like Euclid’s gcd algorithm and Lagrange’s
two-dimensional algorithm. Also the Jacobi lattice reduction algorithm [146],
[181] which presents a new strategy with respect to the LLL algorithm to
construct a reduced basis in polynomial time.

Recently, Neumaier and Stehlé, [135], describe an asymptotically fast
variant of LLL lattice reduction algorithm. It takes as input a basis B ∈ Zm×m
and returns a reduced basis C of the Euclidean lattice L spanned by B,
whose first vector satisfies ‖c1‖ ≤ (1 + c)(4/3)m−1

4 (detL) 1
m for any fixed

c > 0. It terminates within O(m4+εβ1+ε) bit operations for any ε > 0, with
β = logmaxi ‖bi‖.

Definition. Let δ be a constant with 1
4 < δ ≤ 1. A lattice basis B =

{b1, ..., bm} is called LLL reduced if and only if:

|µij| ≤
1
2 , (2.20)

δ
∥∥∥b∗i−1

∥∥∥2
≤
∥∥∥b∗i + µi,i−1b

∗
i−1

∥∥∥2
, for all i ≥ 2. (2.21)

It can also be defined as follows:
Let R be the upper triangular matrix of the QR decomposition of the basis
matrix B, then B is LLL reduced if and only if:

|rij| ≤
1
2 |rii| , for 1 ≤ i < j ≤ m,

δ |rj−1,j−1|2 ≤ |rjj|2 + |rj−1,j|2 , j = 2, ...,m.
The choice of the parameter δ affects the quality of the reduced basis and the
computational complexity. We often set δ = 3

4 .

67

The second property (2.21) can be written as:

δ
∥∥∥b∗i−1

∥∥∥2
≤
∥∥∥b∗i + µi,i−1b

∗
i−1

∥∥∥2
= ‖b∗i ‖

2 + µ2
i,i−1

∥∥∥b∗i−1

∥∥∥2
.

where the second equality follows since b∗i−1 and b∗i are orthogonal. It follows
that

‖b∗i ‖
2 ≥

(
δ − µ2

i,i−1

) ∥∥∥b∗i−1

∥∥∥2
≥
(
δ − 1

4

) ∥∥∥b∗i−1

∥∥∥2
.

Put this way, the second property (2.21) reads "b∗i is not much shorter than
b∗i−1".

Consider the orthogonal basis obtained by normalization of the Gram-
Schmidt vectors b∗1, ..., b∗m. In this basis, B can be written as

‖b∗1‖ ∗ · · · ∗
0 ‖b∗2‖ · · · ∗
... . . .

0 · · · ‖b∗m‖


where column i shows the coordinates of bi in this orthonormal basis. The

first condition (2.20) guarantees that the absolute value of any off-diagonal
element is at most half the one in the diagonal element on the same row. This
can be written as

‖b∗1‖ ≤ 1
2 ‖b

∗
1‖ · · · ≤ 1

2 ‖b
∗
1‖

0 ‖b∗2‖ · · · ≤ 1
2 ‖b

∗
2‖

... . . .

≤ 1
2

∥∥∥b∗m−1

∥∥∥
0 · · · ‖b∗m‖


where ≤ 1

2

∥∥∥b∗j∥∥∥ indicates that the absolute value of this coordinate is at
most 1

2

∥∥∥b∗j∥∥∥. For the second condition (2.21), consider the 2× 2 sub-matrix
of the above matrix, with the upper left entry indexed at (i− 1, i− 1).[∥∥∥b∗i−1

∥∥∥ µi,i−1

∥∥∥b∗i−1

∥∥∥
0 ‖b∗i ‖

]
.

Then the second condition (2.21) requires that the second column of this
matrix is almost as long as its first column.

68

Proposition. Let {b1, ..., bm} ∈ Rn be a LLL reduced basis. Then

‖b1‖ ≤
(4

4δ − 1

)(m−1)/2
λ1 (L) .

For δ = 3
4 this gives

‖b1‖ ≤ 2(m−1)/2λ1 (L) .

Proof. Since for any basis b1, ..., bm, λ1 (L) ≥ mini ‖b∗i ‖ (‖bi‖ ≥ ‖b∗i ‖). We get

‖b∗m‖
2 ≥ (δ − 1

4)
∥∥∥b∗m−1

∥∥∥2
≥ ≥ (δ − 1

4)m−1 ‖b∗1‖
2 = (δ − 1

4)m−1 ‖b1‖2

then, for any i,

‖b∗1‖ ≤ (δ − 1
4)−(i−1)/2 ‖b∗i ‖ ≤ (δ − 1

4)−(m−1)/2 ‖b∗i ‖ .

Hence,

‖b1‖ ≤ (δ − 1
4)−(m−1)/2 min

i
‖b∗i ‖ ≤ (δ − 1

4)−(m−1)/2.λ1 (L) .

Lemma. If the LLL procedure described above ever terminates, then its
output is an LLL reduced basis for the lattice spanned by the input basis
b1, ..., bm.

Proof. We need to prove that the output of the LLL algorithm is a basis for
L (B) that satisfies both properties of an LLL reduced basis. The second
property of an LLL reduced basis is enforced by the check during the swap
step. The reason that the output of the algorithm is indeed a basis for L (B),
is that we only perform column operations of the form bi ← bi + abj for i 6= j,
with a ∈ Z. We notice that throughout this step, the Gram-Schmidt basis
does not change. After this step of reduction, b1, ..., bm satisfy |µi,j| ≤ 1

2 , for
all i > j. Consider some i > j, then |µi,j| can be written as

|µi,j| =

∣∣∣∣∣∣
〈
bi − ci,j.bj, b∗j

〉
〈
b∗j , b

∗
j

〉
∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈
bi, b

∗
j

〉
〈
b∗j , b

∗
j

〉 −

〈
bi, b

∗
j

〉
〈
b∗j , b

∗
j

〉
 .
〈
bj, b

∗
j

〉
〈
b∗j , b

∗
j

〉
∣∣∣∣∣∣ ≤ 1

2 .

Where the first equality follows from the fact that µi,j was |µi,j| ≥ 1
2 at the

beginning
(
ci,j =

⌈ 〈bi,b∗j〉
〈b∗j ,b∗j〉

⌋)
, and the last inequality follows from the fact

that
〈
bj, b

∗
j

〉
=
〈
b∗j , b

∗
j

〉
.

69

Proposition. Let b1, ..., bm be an LLL reduced basis for a lattice L in Rn,
δ = 3/4 and let b∗1, ..., b∗m be the Gram-Schmidt orthogonalization. Then we
have

‖bj‖2 ≤ 2i−1 ‖b∗i ‖ for i ≤ j ≤ i ≤ m, (2.22)

det (L) ≤
m∏
i=1
‖bi‖ ≤ 2m(m−1)/4 det (L) , (2.23)

‖b1‖ ≤ 2(m−1)/4 det (L)
1
m . (2.24)

Proof. From the LLL conditions, we notice that

‖b∗i ‖
2 ≥

(3
4 − µ

2
i,i−1

) ∥∥∥b∗i−1

∥∥∥2
≥ 1

2
∥∥∥b∗i−1

∥∥∥2
,

for 1 < i ≤ m, so by induction we get
∥∥∥b∗j∥∥∥2

≤ 2i−j ‖b∗i ‖
2 for 1 ≤ j ≤ i ≤ m.

Now, From the Gram-Schmidt orthogonalization and condition (2.20) we
obtain

‖bi‖2 = ‖b∗i ‖
2 +

i−1∑
j=1

µ2
ij

∥∥∥b∗j∥∥∥2

≤ ‖b∗i ‖
2 +

i−1∑
j=1

1
42i−j ‖b∗i ‖

2

=
(

1 + 1
4
(
2i − 2

))
‖b∗i ‖

2

≤ 2i−1 ‖b∗i ‖
2 .

It follows that
‖bj‖2 ≤ 2j−1

∥∥∥b∗j∥∥∥2
≤ 2i−1 ‖b∗i ‖

2

for 1 ≤ j ≤ i ≤ m. This proves (2.22).
The determinant det (L) of L is defined by

det (L) = |det (b1, ..., bm)| ,

It follows from the Gram-Schmidt orthogonalization that

det (L) = |det (b∗1, ..., b∗m)|

70

and thus, since the b∗i are pairwise orthogonal

det (L) =
m∏
i=1
‖b∗i ‖ .

Note that the left side of the second inequality follows from "Hadamard’s
inequality" [67], [78]. Now, from ‖b∗i ‖ ≤ ‖bi‖ and ‖bi‖ ≤ 2(i−1)/2 ‖b∗i ‖, we
deduce the second property (2.23).
Putting j = 1 in (2.22) and taking the product over i = 1, 2, ...,m we find
(2.24).

Proposition 1. Let L be a lattice with reduced basis b1, ..., bm. Then

‖b1‖2 ≤ 2m−1 ‖x‖2 ,

for every x ∈ L, x 6= 0.

Proof. x ∈ L , then x = ∑m
i=1 ribi = ∑m

i=1 r
′
ib
∗
i with ri ∈ Z, r′i ∈ R, (1 ≤ i ≤

m). And as, x 6= 0 so if we take i as the largest index with ri 6= 0 then r′i = ri,
so

‖x‖2 ≥ r′2i ‖b∗i ‖
2 ≥ ‖b∗i ‖

2 .

By using (2.22) and putting j = 1, we obtain

‖b1‖2 ≤ 2i−1 ‖b∗i ‖
2 ≤ 2m−1 ‖b∗i ‖

2 .

This proves the proposition.

Note that, by proposition 1 we can also prove a previous result, ‖b1‖ ≤
2(m−1)/2λ1 (L).

Proposition 2. Let L be a lattice with reduced basis b1, ..., bm. And let
x1, x2,, xt ∈ L be linearly independent. Then we have

‖bj‖2 ≤ 2m−1 max
{
‖x1‖2 , ‖x2‖2 , ..., ‖xt‖2

}
for j = 1, 2, ..., t.

Proof. We have xj = ∑m
i=1 rijbi with rij ∈ Z (1 ≤ i ≤ m) for 1 ≤ j ≤ t. For

fixed j, let i(j) be the largest i for which rij 6= 0. Then, as in the previous
proof of proposition 1, we have

‖xj‖2 ≥
∥∥∥b∗i(j)∥∥∥2

, (2.25)

71

for 1 ≤ j ≤ t. We renumber the xj such that i(1) ≤ i(2) ≤ ... ≤ i(t) and
we claim that j ≤ i(j) for 1 ≤ j ≤ t. If not, we take for example j = 2 and
j > i(j), hence i(2) = 1, then we notice that ri,2 = 0 for 2 ≤ i ≤ m which
implies that x2 belongs to Rb1, so we conclude that in this case x1,, xt would
all belong to Rb1 + ...+ Rbj−1, a contradiction with the linear independence
of x1,, xt. Therefore, from j ≤ i(j), (2.22) and using (2.25) we obtain

‖bj‖2 ≤ 2i(j)−1
∥∥∥b∗i(j)∥∥∥2

≤ 2m−1
∥∥∥b∗i(j)∥∥∥2

≤ 2m−1 ‖xj‖2 ,

for j = 1, 2, ..., t. This proves the proposition.

Let now, λ1, λ2, ..., λm denote the successive minima on L and b1, ..., bm
a reduced basis for L. Then by the previous proposition 2 and (2.22), we
deduce that

21−iλ2
i ≤ ‖bi‖

2 ≤ 2m−1λ2
i , for 1 ≤ i ≤ m.

So, the norm ‖bi‖2 is a reasonable approximation of λ2
i .

Definition (Complex LLL Reduction). Let H = {h1, ..., hm} an n × m
complex lattice basis and {h∗1, ..., h∗m} the set of orthogonal vectors generated
by the Gram-Schmidt orthogonalization. H is CLLL reduced (complex LLL-
reduced), if both of the following conditions are satisfied:

|R (µij)| ≤
1
2 and |I (µij)| ≤

1
2 ,

for 1 ≤ j < i ≤ m, and

Hk ≥
(
δ − |µk,k−1|2

)
Hk−1,

where Hk denote the squared norm of h∗k, i.e, Hk = ‖h∗k‖
2, for 1 < k ≤ m,

and δ with 1
2 < δ < 1 is a factor selected to achieve a good quality-complexity

tradeoff, see [103], [58], for more details.

The LLL algorithm has many applications. Here is a brief description of
some of these applications.

1. Approximation to the SVP and the CVP (see, [15, 5]).

2. Finding Z-linear relations among real numbers (Machin’s formula) [172].

72

3. cryptanalysis: breaking cryptosystems based on number theory (break-
ing the Merkle-Hellman cryptosystem...).

4. The simple application of LLL to algorithmic number theory is the
two-square theorem: if p is a prime ≡ 1mod4, the p is a sum of two
squares p = x2 + y2.

5. Integer programming, factoring polynomials (see, [104]) and many
more...

HKZ Reduction In reduction theory, we often distinguish between reduc-
tions that are weak, but can be computed efficiently, and reductions that are
strong but that require a much larger amount of computational resources.
The famous reduction of the first family is the LLL reduction (can be reached
in polynomial-time). However, the famous one in the second family is the
HKZ reduction.

Note that an HKZ reduced basis is LLL reduced for any 1/4 < δ < 1.
There are two main algorithms to compute an HKZ reduced basis. The
first one is due to Kannan [84] and further refined by Helfrich and Schnorr
[74, 157]. Its complexity has been revisited by Hanrot and Stehlé [70] who
proved a mm

2e (1+O(1)) upper bound, where m is the lattice dimension. The
other algorithm is due to Ajtai, Kumar and Sivakumar (AKS) [9]. It was
introduced as the first single-exponential time algorithm for shortest lattice
vector problem, However, no explicit time bound was given. In [148], Regev
described a simple version of this algorithm, running in time 216m+O(m). The
constant in the exponent was decreased from 16 to 5.9 by Nguyen and Vidick
[140], 3.4 by Micciancio and Voulgaris [129], 2.7 by Pujol and Stehlé [145]
and the currently best time complexity upper bound is 22.465m+O(m) with
a space requirement bounded by 21.325m+O(m) [72]. The latter algorithm
has a much better asymptotic complexity upper bound than Kannan’s. All
algorithms based on the Kannan strategy are intended as theoretical results
and the complexity quickly becomes prohibitive as the dimension of the lattice
increases. However, the second algorithm had also drawbacks (which is a
Monte-Carlo probabilistic algorithm running in exponential time and space).

Recently, Zhang, Qiao and Wei, [198], have proposed a new algorithm
for constructing a HKZ basis. They used Schnorr’s strategy and a different
method for the extension of a shortest vector into a new lattice basis (the
unimodular transformation technique presented in [112]) than the basis exten-
sion strategy introduced by Kannan (which only works for rational lattices,
not for general real lattices).

73

Definition 8. A lattice basis B = {b1, .., bm} is called HKZ reduced if the
upper triangular matrix R of the QR decomposition of B is size reduced
and for each trailing (m− i+ 1)-by-(m− i+ 1) sub-matrix, 1 ≤ i < m, its
first column is a shortest non zero vector in the lattice generated by the
sub-matrix.

HKZ Properties:

An HKZ reduced basis has a very interesting property, it provides a very
good approximation of the successive minima of a lattice.

Theorem 4. If [b1, .., bm] is an HKZ basis of a lattice L, then

4
i+ 3λ

2
i (L) ≤ ‖bi‖2 ≤ i+ 3

4 λ2
i (L) for 1 ≤ i ≤ m,

Note that the upper bound of this theorem is due to K. Mahler, [119].

Proof. Consider Lm−i+1 = πi(L), the lattice of rank m − i + 1. From the
definition of successive minima λi(L) and under the projection L −→ L(m−i+1),
at least one of them maps to a non zero vector. Therefore we have

λ1(Lm−i+1) = ‖b∗i ‖ ≤ λi(L).

Now, from the Gram-Schmidt orthogonalization and the size reduction, we
obtain the right side of the inequality

‖bi‖2 ≤ ‖b∗i ‖
2 + 1

4

i−1∑
j=1

∥∥∥b∗j∥∥∥2
≤ λ2

i (L) + 1
4

i−1∑
j=1

λj(L) ≤ i+ 3
2 λ2

i (L).

For the left side of the inequality, since πj(bi) is a non zero element of L(m−j+1)

and for j ≤ i we have∥∥∥b∗j∥∥∥2
= λ2

1(L(n−j+1)) ≤ ‖πj(bi)‖2 ≤ ‖bi‖2 .

The last inequality comes from the fact that bi = b∗i +∑i−1
k=1 µkib

∗
k and πj(bi) =

b∗i +∑i−1
k=j µkib

∗
k.

Hence, for j ≤ i we have

‖bj‖2 ≤
∥∥∥b∗j∥∥∥2

+ 1
4

j−1∑
k=1
‖b∗k‖

2 ≤ j + 3
4 ‖bi‖2 .

74

Therefore, we obtain

λ2
i (L) ≤ max

{
‖bj‖2 : 1 ≤ j ≤ i

}
≤ i+ 3

4 ‖bi‖2 .

Theorem. If [b1, ..., bm] is a HKZ basis of a lattice L, then
m∏
i=1
‖bi‖2 ≤

(
γmm

m∏
i=1

i+ 3
4

)
det(L)2.

Proof. This follows from the previous theorem. 4 and Minkowski’s theorem,
(see 2.2.7):

m∏
i=1

λi(L) ≤ γ
m
2
m . det(L).

Proposition 3. Let [b1, .., bm] be a HKZ basis of a lattice L, and let L? be
its reciprocal (dual) lattice. Then we have

‖bi‖2 λ1(L?) ≤ i+ 3
4 γ?2m

for 1 ≤ i ≤ m, where γ?m is defined by max {γi}, γi is Hermite’s constant for
a lattice of dimension i (see, [98]).

Proof. Since L(m−j+1)? is a sub-lattice of L?, we have λ1(L?) ≤ λ1(L(m−j+1)?)
for each j. From the Gram-Schmidt decomposition and HKZ definition, we
have

‖bi‖2 ≤ ‖b∗i ‖
2 + 1

4

i−1∑
j=1

∥∥∥b∗j∥∥∥2
= λ1(L(m−i+1))2 + 1

4

i−1∑
j=1

λ1(L(m−j+1))2.

Therefore, we obtain

‖bi‖2 λ1(L?)2 ≤ λ1(L(m−i+1))2λ1(L(m−i+1)?)2+1
4

i−1∑
j=1

λ1(L(m−j+1))2λ1(L(m−j+1)?)2.

By the definition of Hermite’s constant (see, section. Minkowski’s successive
minimum and Hermite’s constant), we have that for any lattice N of rank k

λ1(N)2λ1(N?)2 ≤ γk. det(N) 2
k .γk. det(N?) 2

k = γ2
k,

75

We deduce that

‖bi‖2 λ1(L?)2 ≤ γ2
m−i+1 + 1

4

i−1∑
j=1

γ2
n−j+1 ≤

i+ 3
4 γ?2m .

Proposition 4. For any lattice L of rank m with reciprocal lattice L? we
have

λi(L)2λ1(L?)2 ≤ i+ 3
4 γ?2m

for 1 ≤ i ≤ m.

Proof. This follows from the previous proposition. 3, since
λi(L)2 ≤ max

{
‖bj‖2 : 1 ≤ j ≤ i

}
.

Theorem 5. If [b1, ..., bm] is HKZ basis of a lattice L, then

‖bi‖2 λm−i+1(L?)2 ≤ i+ 3
4

n− i+ 4
4 γ?2m , for 1 ≤ i ≤ m.

Proof. Since L(m−j+1)? is a sub-lattice of L?, we have
λm−i+1(L?) ≤ λm−i+1(L(m−j+1)?)

whenever j ≤ i. Combining this with

‖bi‖2 ≤ ‖b∗i ‖
2 + 1

4

i−1∑
j=1

∥∥∥b∗j∥∥∥2
= λ1(L(m−i+1))2 + 1

4

i−1∑
j=1

λ1(L(m−j+1))2,

we obtain,
‖bi‖2 λm−i+1(L?)2 ≤ λ1(L(n−i+1))2λm−i+1(L(m−i+1)?)2

+ 1
4

i−1∑
j=1

λ1(L(n−j+1))2λm−i+1(L(m−j+1)?)2.

Applying the previous proposition. 4 to each L(m−j+1) we find that

‖bi‖2 λm−i+1(L?)2 ≤ m− i+ 4
4 γ?2m−i+1 + 1

4

i−1∑
j=1

m− i+ 4
4 γ?2m−j+1

m− i+ 4
4

i+ 3
4 γ?2m .

76

Theorem. The successive minima of a lattice L of rank m and its dual lattice
L? satisfy

1 ≤ λi(L)2λm−i+1(L?)2 ≤ i+ 3
4

m− i+ 4
4 γ?2m ,

for 1 ≤ i ≤ m.

Proof. The lower bound is due to [28]. For the upper bound, interchanging L
and L?, if necessary, we may assume that i ≤ (m+ 1)/2. Choosing an HKZ
basis [b1, .., bm] of L and applying the previous theorem. 5, we obtain

λi(L)2λm−i+1(L?) ≤ max
{
‖bi‖2 : 1 ≤ j ≤ i

}
λm−i+1(L?)2

≤ max
{
‖bj‖2 λm−j+1(L?)2 : 1 ≤ j ≤ i

}
≤ max

{
j + 3

4 .
m− j + 4

4 γ?2m : 1 ≤ j ≤ i
}

= i+ 3
4

m− i+ 4
4 γ?2m .

2.5 An introduction to the fundamental do-
main of Minkowski reduction

Suppose that f = ∑m
i,j=1 aijxixj is a positive definite quadratic form with real

coefficients aij. The condition for f to be Minkowski-reduced is that, for all
i = 1, ..,m, and for all integer (l1, .., lm) if

gcd(li, .., lm) = 1 then f (l1, ..., lm) ≥ aii.

Hermite reduction is closely related to Minkowski reduction. A form f is
Hermite reduced if for δ →∞ the function

h(f, δ) = a11δ
m−1 + a22δ

m−2 ++ amm

is the smallest among functions defined in the same way for all forms equivalent
to the form f , [137]. We notice from the definition that corresponding diagonal
coefficients of two equivalent Hermite reduced forms are identical.
The domains H for Hermite’s reduction andM for Minkowski reduction are
convex. H =M for m ≤ 6, [154] [177] and different for m > 6, [150] (a part
of the boundary ofM doesn’t belong to H).

77

The positivity cone ℘ corresponds to the set of positive-definite quadratic
forms in the N = 1

2m (m+ 1)-dimensional space of the coefficients (a11,..,
amm, a12,.., am−1,m).

The set of all Minkowski reduced forms in ℘ will be called the classical
Minkowski region, and its subset with the additional constraint

ai,i+1 ≥ 0 (i = 1, ..,m)

will be called the simple Minkowski reduction region.
The Minkowski reduction regions (classical and simple) are convex gono-

hedra with finitely many planar faces in the positivity cone ℘ (finitely many
inequalities of Minkowski’s condition suffice to define it), [123]. These finitely
many inequalities have been determined for m ≤ 7, [151, 150, 176, 178, 123].

Consider the set of regions equivalent to any of the reduction regions of
quadratic forms. The set of such regions covers the entire ℘ and different
regions have no common interior points. Only the classical Minkowski region
may have completely coinciding equivalent regions; other regions are funda-
mental and may not coincide. The set of equivalent regions forms a partition
of the positivity cone.

We call a partition of the positivity cone ℘ normal if any N -dimensional
element of the partition touches only one element of the partition along any
integral (N − 1)-dimensional face (it suffices to show that the Minkowski
reduction region has at least one (N − 1)-dimensional face which is parti-
tioned into two (N − 1)-dimensional parts, such that an integral unimodular
transformation moves one part of this face into itself and removes the other
part outside the Minkowski reduction region). Otherwise, the partition is
called non normal.

Note that a face of dimension (N −k) for 1 ≤ k ≤ N −1 is any non empty
set Γ of points of the Minkowski domain of reductionM which satisfies the
following properties:

1. Γ lies in some (N − k)-dimensional plane.

2. Γ is open in this plane.

3. Γ contains no points of the faces of dimensions N, ..., N − k + 1.

4. Γ is maximal: if Γ ⊂ Γ′ ⊂M and Γ′ satisfies conditions 1, 2, 3, then
Γ′ = Γ.

The unique face of dimension N is the interior of the cellM.
A simple domain of Minkowski reduction together with its equivalent

domains fills out the cone of positivity without gaps and superpositions of
interior points. It gives a partition of the cone of positivity.

78

For m = 2, the simple domain of Lagrange-Minkowski reduction is

a12 ≥ 0
a11 − 2a12 ≥ 0
a22 ≥ a11 > 0

Tammela showed in [176] that for m ≥ 3 the partition of the cone of positivity
into regions (domains) equivalent to a simple Minkowski reduction region
(to a simple domain of Minkowski reduction) is non normal (some domains
intersect along pieces of the face), the same for m ≥ 7 in [179], Tammela
showed that for m ≥ 7 the partition of the cone of positivity into regions
equivalent to the classical Minkowski reduction region is non normal.

Theorem ([176]). Let m ≥ 3. Then the partition of the cone of positivity
into domains equivalent to a simple domain of Minkowski reduction is not
normal.

Proof. We will give here the main steps of the proof without going into
details. Let D be the simple Minkowski reduction region. In order to prove
the theorem, it suffices to find an (N − 1)-dimensional closed face Γ of D,
two quadratic forms f1 and f2, and an integral unimodular matrix S which
satisfy the following conditions: 1) f1 lies inside Γ, 2) f2 ∈ Γ, 3) f1S = g1
lies inside Γ, 4) f2S = g2 /∈ D. Then the region D and DS touch at the
interior points of the face Γ, but D ∩ DS 6= Γ. Note that (fS)(x) = f(Sx),
DS = {f ′ = fS | f ∈ D}.

2.5.1 Equivalence of reduced quadratic forms
We consider a form f from the domain of Hermite reduction.

Definition. We denote by Z1(f) the collection of all integer vectors
l
(i1)
1
.
.
l(i1)
m


,

for which
f(l(i1)

1 , ..., l(i1)
m) = a11.

79

Let k be an index with 2 ≤ k ≤ m, we denote by Zk(f) the collection of all
integral primitive matrices (the matrix is primitive if the greatest common
divisor of the minors of order k of this matrix is equal to one) l

(i1)
1 . . l

(ik−1)
1 l

(ik)
1

.
l(i1)
m . . l(ik−1)

m l(ik)
m

,

where  l
(i1)
1 . . l

(ik−1)
1

. . . .
l(i1)
m . . l(ik−1)

m

 ∈ Zk−1(f)

and
f(l(ik)

1 , ..., l(ik)
m) = akk.

We denote Zm(f) by Z(f). By the definition of the domain of Hermite
reduction, Z(f) is the set of all transformations of the form f into forms
which are Hermite reduced.

Let f be a Hermite reduced form, and let S be an integral unimodular
matrix. Then by the definition of Hermite reduction in order that fS be
Hermite reduced it is necessary and sufficient that

f(si1, ..., sim) = aii, i = (1, ...,m).

Therefore, if for some form f and integral, unimodular matrix S for some
k = 1, ...,m

f(si1, ..., sim) = aii, i = (1, ..., k − 1)
and

f(sk1, ..., skm) < akk,

then the form f is not Hermite reduced.

Theorem. Let Γ be a face of the domain of Hermite reduction of dimension
d (1 ≤ d ≤ N) and let f, g ∈ Γ. Then

Zk(f) = Zk(g) (k = 1, ...,m).

We can deduce from this theorem that the set Zk(f) only depends on Γ
and does not depend on the choice of f ∈ Γ. Therefore, we denote

Zk(Γ) = Zk(f) (k = 1, ...,m), Z(Γ) = Z(f).

By Minkowski’s theorem (|lik| < C), we deduce that the set Z(Γ) is finite.

80

Theorem. Let Γ be a face of the domain of Hermite reduction of dimension
d (1 ≤ d ≤ N) and let f ∈ Γ. In order that an integer, unimodular matrix
S = (sij) transforms the form f into a Hermite reduced form it is necessary
and sufficient that S ∈ Z(Γ).

For m ≤ 6 the construction of Z(Γ) can be found in [176].
Let now Γ be a face of a simple domain of Hermite reduction of dimension d
(1 ≤ d ≤ N). We consider a form f ∈ Γ.

Definition. We denote by Z(0)
1 (f) the collection of all integer vectors

l
(i1)
1
.
.
l(i1)
m


,

for which
f(l(i1)

1 , ..., l(i1)
m) = a11.

If k is an index with 2 ≤ k ≤ m, we denote by Z(0)
k (f) the collection of all

integer primitive matrices l
(i1)
1 . . l

(ik−1)
1 l

(ik)
1

.
l(i1)
m . . l(ik−1)

m l(ik)
m

,

where  l
(i1)
1 . . l

(ik−1)
1

. . . .
l(i1)
m . . l(ik−1)

m

 ∈ Z
(0)
k−1(f)

and
f(l(ik)

1 , ..., l(ik)
m) = akk,

and
f(l(ik−1)

1 , .., l(ik−1)
m ; l(ik)

1 , ..., l(ik)
m) ≥ 0.

We denote Z(0)
m (f) by Z(0)(f).

Z(0)(f) is the set of all transformations of the form f into forms f ′
belonging to a simple domain of Hermite reduction.

Note that if f is considered as a form from the classical domain of Hermite
reduction, i.e., if f ∈ Γ, where Γ is a face of a classical Hermite domain of
dimension d, then Z(0)(f) ⊂ Z(Γ).

81

Theorem 6. Interior points of a simple domain of reduction have only trivial
transformations (the automorphisms ±I, where I is the identity transforma-
tion) into forms that belong to a simple domain of reduction.

Proof. Let f = (aij) ∈ Γ0 be an interior form of a simple domain of Hermite
reduction, and let f ′ = (a′ij) be a form of a simple domain of Hermite reduction
equivalent to f . As Z(0)(f) is contained among matrices that transform the
interior points of the classical domain of Hermite reduction into points of the
classical domain of Hermite reduction, i.e., by the previous theorem among
matrices of the form 

ε1 0
.
.

0 εn


where εi = ±1 (i = 1, ..,m). But since ai,i+1 > 0, (interior points), ai,i+1 ≥
0 (i = 1, ...,m − 1), it follows that ε1 = ε2 = ... = εm = ±1. Therefore
Z(0)(f) = {±I}.

Let Γ be a face of a simple domain of Hermite reduction of dimension d
(1 ≤ d ≤ N) and let g ∈ Γ. We consider a partition of Γ by the planes

f(si1, ..., sim; si+1,1, ..., si+1,m) = 0, (i = 1, ...,m− 1),

where S = (sij) ∈ Z(0)(g). We obtain partitions

Γ =
p⋃

k=1
Γk,

where Γk are the parts of Γ of different dimensions which are open in the
respective subspace.

Let the points f, g ∈ Γk, then Z(0)(f) = Z(0)(g) for otherwise there would
exist a plane (defined above) separating these points. Therefore, we can say

Z(0)(Γk) = Z(0)(f) if f ∈ Γk.

The finiteness of this partition follows from the Minkowski theorem |sik| < c for
transformations S = (sij) of a domain of Minkowski reduction into equivalent
domains having common points with a domain of Minkowski reduction not
lying on the boundary of the cone of positivity.

Let L = {Γi}Mi=0 be a finite set that represents the elements of the partition
of all faces. Note that points of faces of a classical domain of Hermite reduction
can be equivalent only to points of faces of a classical domain of Hermite

82

reduction of the same dimension, we find that Γi is either equivalent to Γj
(j 6= i; j = 0,,M) or has no equivalent points with Γj (j 6= i; j = 0, ...,M).

A simple domain of reduction can be considered as the basis for construct-
ing a fundamental domain F of reduction of positive quadratic forms (i.e, as
a set of forms such that any positive definite form is equivalent to one and
only one form of the fundamental domain).

Note that the definition of the faces of a fundamental domain is analogous
to the definition of the faces of a simple domain of Hermite reduction.

2.5.2 The exact domain of Minkowski reduction for
m= 3

Tammela described in [176] an algorithm for finding a fundamental domain.
It starts by a partition L = {Γi}Mi=0 of all the faces of a simple domain of
Hermite reduction (where Γ0 represent the interior of a simple domain of
Hermite reduction). He constructed a set F as the union F = ⋃M

i=0Fi of
certain subsets Fi = ⋃

p Γ(p)
i of a simple domain of Hermite reduction, where

the Γ(p)
i are parts of the set Γi. For constructing Fk (k = 0, ...,M), it was

enough to consider Γk, where three cases were possible:
a) Γk is equivalent to one of the Γj, j < k; for this Fk = ∅; b) Γk is not
equivalent to one of the Γj , j < k, and all transformations of Γk into itself are
automorphisms of all the forms of Γk, then Fk = Γk; c) Γk is not equivalent
to one of the Γj , j < k, but among the transformations of Γk into itself there
are transformations S = (sij) which are not automorphisms of all the forms
of Γk; this case was considered separately.
Let S(t) = (S(t)

ij) (t = 1, ..., ι) be all the transformations in question in part c).
The partition of Γk by the planes

f(S(t)
i1 ,, S

(t)
im;S(t)

j1 , ..., S
(t)
jm) = aij (t = 1, .., ι; i, j = 1, ...,m).

is considered into account and provides the following partition

Γk =
v⋃
p=1

Γ(p)
k ,

where Γ(p)
k are parts of Γk of different dimensions.

If f ∈ Γ(p)
k and suppose that some transformation S(t) (1 ≤ t ≤ ι) takes f

into the form f ′ ∈ Γ(p)
k , then S(t) is an automorphism of the form f , since

otherwise there would exist a plane (defined above) separating the equivalent
forms f and f ′. Then Tammela defined

Fk =
⋃
p∈P

Γ(p)
k ,

83

where p runs through the set P ⊂ [1, ..., v] which is constructed as follows:
1 ∈ P ; h ∈ P if Γ(h)

k is not equivalent to one of the sets Γ(j)
k , j < h; and

otherwise h /∈ P .
Having thus considered all i = 0, ...,M , corresponding to elements Γi of the
partition L, Tammela constructed the sets Fi (i = 0, ...,M). Then

F =
M⋃
i=0
Fi.

For m = 2 the simple domain of Lagrange-Minkowski reduction is also a
fundamental domain. (It suffices to prove that all forms of the domain are not
equivalent. Since an interior form of the domain is not equivalent to any other
reduced form, it suffices to consider the boundary points. All transformations
of the form f from the domain into reduced forms are automorphisms of this
form, for more details see [176]).

However, for m = 3 this is no longer true: on the boundary of a simple
Hermite-Minkowski domain there are equivalent points.

Theorem. The following 16 systems of linear inequalities between the coeffi-
cients of forms define a fundamental domain:



a12 > 0
a23 > 0
a11 − 2a12 > 0
a11 − 2a13 > 0
a11 + 2a13 > 0
a22 − 2a23 > 0
a22 > a11

a33 > a22

a11 + a22 − 2a12 + 2a13 − 2a23 > 0



a12 = 0
a23 ≥ 0
a11 − 2a12 > 0
a11 − 2a13 > 0
a11 + 2a13 > 0
a22 − 2a23 > 0
a22 > a11

a33 > a22

a11 + a22 − 2a12 + 2a13 − 2a23 > 0
a13 ≥ 0

84



a12 = 0
a23 ≥ 0
a11 − 2a12 > 0
a11 − 2a13 > 0
a11 + 2a13 > 0
a22 − 2a23 > 0
a22 = a11

a33 > a22

a11 + a22 − 2a12 + 2a13 − 2a23 > 0
a23 ≥ a13

a13 ≥ 0



a12 > 0
a23 = 0
a11 − 2a12 > 0
a11 − 2a13 > 0
a11 + 2a13 > 0
a22 − 2a23 > 0
a22 > a11

a33 > a22

a11 + a22 − 2a12 + 2a13 − 2a23 > 0
a13 ≥ 0



a12 ≥ 0
a23 = 0
a11 − 2a12 > 0
a11 − 2a13 > 0
a11 + 2a13 > 0
a22 − 2a23 > 0
a22 > a11

a33 = a22

a11 + a22 − 2a12 + 2a13 − 2a23 > 0
a12 ≥ a13

a13 ≥ 0



a12 > 0
a23 ≥ 0
a11 − 2a12 = 0
a11 − 2a13 ≥ 0
a11 + 2a13 > 0
a22 − 2a23 > 0
a22 > a11

a33 ≥ a22

a11 + a22 − 2a12 + 2a13 − 2a23 > 0
2a23 ≥ a13

a13 ≥ 0



a12 > 0
a23 ≥ 0
a11 − 2a12 = 0
a11 − 2a13 ≥ 0
a11 + 2a13 > 0
a22 − 2a23 > 0
a22 = a11

a33 > a22

a11 + a22 − 2a12 + 2a13 − 2a23 > 0
a13 ≥ 2a23



a12 ≥ 0
a23 ≥ 0
a11 − 2a12 > 0
a11 − 2a13 = 0
a11 + 2a13 > 0
a22 − 2a23 ≥ 0
a22 ≥ a11

a33 > a22

a11 + a22 − 2a12 + 2a13 − 2a23 > 0
2a23 ≥ a12

85



a12 ≥ 0
a23 > 0
a11 − 2a12 ≥ 0
a11 − 2a13 ≥ 0
a11 + 2a13 > 0
a22 − 2a23 = 0
a22 > a11

a33 > a22

a11 + a22 − 2a12 + 2a13 − 2a23 > 0
2a13 ≥ a12



a12 ≥ 0
a23 > 0
a11 − 2a12 > 0
a11 − 2a13 ≥ 0
a11 + 2a13 > 0
a22 − 2a23 = 0
a22 > a11

a33 = a22

a11 + a22 − 2a12 + 2a13 − 2a23 > 0
a13 ≥ 2a12



a12 > 0
a23 ≥ 0
a11 − 2a12 > 0
a11 − 2a13 > 0
a11 + 2a13 > 0
a22 − 2a23 > 0
a22 = a11

a33 > a22

a11 + a22 − 2a12 + 2a13 − 2a23 ≥ 0
a23 ≥ a13

a13 ≥ −a23



a12 ≥ 0
a23 > 0
a11 − 2a12 > 0
a11 − 2a13 > 0
a11 + 2a13 > 0
a22 − 2a23 > 0
a22 > a11

a33 = a22

a11 + a22 − 2a12 + 2a13 − 2a23 > 0
a12 ≥ |a13|



a12 ≥ 0
a23 ≥ 0
a11 − 2a12 > 0
a11 − 2a13 > 0
a11 + 2a13 > 0
a22 − 2a23 > 0
a22 = a11

a33 = a22

a11 + a22 − 2a12 + 2a13 − 2a23 ≥ 0
a12 ≥ |a13|
a23 ≥ a12



a12 ≥ 0
a23 > 0
a11 − 2a12 > 0
a11 − 2a13 ≥ 0
a11 + 2a13 > 0
a22 − 2a23 = 0
a22 = a11

a33 = a22

a11 + a22 − 2a12 + 2a13 − 2a23 > 0
a13 ≥ 2a12

86



a12 > 0
a23 > 0
a11 − 2a12 > 0
a11 − 2a13 > 0
a11 + 2a13 > 0
a22 − 2a23 > 0
a22 > a11

a33 = a22

a11 + a22 − 2a12 + 2a13 − 2a23 = 0
a12 ≥ −a13

a11 − a12 + 2a13 ≤ 0



a12 > 0
a23 > 0
a11 − 2a12 > 0
a11 − 2a13 > 0
a11 + 2a13 > 0
a22 − 2a23 > 0
a22 > a11

a33 > a22

a11 + a22 − 2a12 + 2a13 − 2a23 = 0
a11 − a12 + 2a13 ≤ 0

Theorem. If Y = (ykl)1≤k,l≤m is a Minkowski reduced matrix, then the
following holds:

• yk,k ≤ yk+1,k+1 (k = 1, ...,m− 1),

• |2yk,l| ≤ yk,k (k < l),

• there exists a real number cm such that

det (Y) ≤
m∏
v=1

yv,v ≤ cm. det (Y)

where cm is a constant depending only on m.

A proof can be found on page 13 of Klingen’s book, [90]. The last inequality
is called "Minkowski’s inequality" (see below).

Minkowski’s fundamental inequality

Minkowski established the existence of a number cm with the property that, if
f (x)= ∑m

1 ai,jxixj is positive definite and reduced in the sense of Minkowski,
with determinant D = det (ai,j), then

a11a22...amm ≤ cmD,

named Minkowski’s fundamental inequality for reduced quadratic forms.
Lekkerkerker (1969, Section 10) [100] and Van der Waerden (1956) [185]

give detailed accounts of reduction theory and the best estimates for cm in
this "fundamental inequality". Mahler has made several contributions to the

87

theory of Minkowski reduction. In particular, he obtained in (1938) [116] an
estimate for cm for all m, applicable to general convex bodies, and in (1940)
[117] and (1946) [118] he gave proofs of the best possible results for m = 3
and m = 4. Best possible results are now known for m ≤ 5; these are

c2 = 4
3 , c3 = 2, c4 = 4, c5 = 8.

So in fact for all m ≤ 5, cm = γmm where γm is Hermite’s constant; for m = 5,
see Van der Waerden (1969) [186] and Nelson (1974) [134].

88

Chapter 3

Time Complexity Of Reduction
Algorithms

This chapter is intended to study the complexity of each reduction algorithm
without going into the details of the computational complexity theory, which
is a branch of the theory of computation in theoretical computer science.
We provide some background on complexity theory in sections 3.1, 3.2 and
3.3. We present the algorithms that produce the reduction notions cited
in the previous chapter and comment their performance and computational
complexity in sections 3.5, 3.6 and 3.7.

3.1 Mathematical Preliminaries
We start by explaining mathematical preliminaries that are important for
some details in this chapter.

Turing Machine: In theoretical computer science, a Turing Machine is
a theoretical machine that is used in thought experiments to examine the
abilities and limitations of computers.
A Turing Machine uses a tape, which is considered to be infinite in both
directions. The tape consists of a series of squares each of which can hold a
simple symbol. The tape head or read-write head, can read a symbol from
the tape, write a symbol to the tape and move one square in either direction.
In other words, A Turing Machine is a 7-tuple (Q,Σ,Γ,∆, q0, B, F) whose
components have the following meaning:

• Q: The finite set of states of the machine;

• Σ: The finite set of input symbols;

89

• Γ: The complete set of tape symbols;

• ∆: The transition function. The arguments of ∆ (q,X) are a state q
and a tape symbol X. The value of ∆(q,X), if it is defined, is a triple
(p, Y,D) where

1. p: is the next state in Q;

2. Y is the symbol, in Γ, written in the cell being scanned, replacing
whatever symbol was there;

3. D is the direction, either L or R, standing for "left" or "right", respec-
tively and telling us the direction in which the head moves;

• q0: The start state, a member of Q, in which the machine is found
initially;

• B: The blank symbol. This symbol is in Γ but not in Σ;

• F : The set of final or accepting states; a subset of Q.

There are two kinds of Turing Machines: a deterministic and non-deterministic
Turing Machine.

Deterministic Turing Machine, [163]: A Turing Machine is determinis-
tic if there is only one possible action each step.

Non-Deterministic Turing Machine, [163]: A Turing Machine is non-
deterministic if there is many finite actions each step.

Probabilistic Turing Machine (PTM), [155]: The finite state machine in
the Probabilistic Turing Machine is probabilistic, in other words, a transition
can be a random choice according to fixed, predetermined probabilities.
For example, the transition function will look something like the following:

∆ (q, a) =

q1, b, L with probability1
2

q2, c, R with probability1
2

In this case, the transition function will transition from state q to state q1,
write a b, and move its head left with probability 1

2 and it will transition to
state q2, write a c, and move its head right with probability 1

2 .

90

Oracle Turing Machine, [12]: An Oracle is a language A. An Oracle
Turing Machine, is a standard Turing Machine with an additional tape denoted
as the oracle tape. The machine can copy characters onto the oracle tape and
in a single step receive definitive knowledge of whether the string is in the
language A.

Definition. Given computational problems A to B, A is reducible to B if:
given a way instantly finding answers to arbitrary instances of B allows
for some easy method of solving arbitrary instances of A. The source of
information concerning B is called an oracle to B. The algorithm for using
the answers of B in order to find answers to A is called the reduction algorithm.

3.2 Introduction
How long does this sorting program run? By the computational complexity
(or for short, complexity) of an algorithm, we mean the number of basic com-
putational steps (such as arithmetical operations and comparisons) required
for its execution. This number clearly depends on the size and nature of the
input.
Since the algorithm’s performance may vary with different types of input
data, hence for an algorithm we usually use the worst-case time complexity
of an algorithm because that is the maximum time taken for any input size.

Definition. The worst-case time complexity of an algorithm is expressed as
a function

T : N −→ N

where T (n) is the maximum number of steps in any execution of the algorithm
on inputs of size n. The amount of time an algorithm takes depends on how
large is the input on which the algorithm must operate: sorting large lists
takes longer than sorting short lists; multiplying huge matrices takes longer
than multiplying small ones.

We have already defined the worst-case time complexity so for example, if
the time complexity of an algorithm is 3.n2, it means that on inputs of size
n, the algorithm requires up to 3.n2 steps. To make this precise, we must
classify what we mean by input size and step.

Definition. We define the size of the input in a way that is problem-

91

dependent. For example, if we are dealing with algorithms for multiplying
square matrices, we may express the input size as the dimension of the matrix
(i.e, the number of columns, or rows), or we may express the input size as the
number of entries in the matrix. Sometimes there may be several reasonable
choices for the size of input.
So, in order to properly interpret the function that describes the time com-
plexity of an algorithm we must be clear about how exactly we measure the
size of inputs.

Definition. In general we will consider a step to be anything that we can
reasonably expect a computer to do in a fixed amount of time. Typical
examples are performing an arithmetic operations, comparing two numbers.

The question that we can ask now, how can we define time complexity in
an universal way?
Thus, we measure time in somewhat abstractly defined steps, there is little
point in fretting over the precise number of steps. If by some definition of
steps the time complexity of the algorithm is 5.n2, by a different definitions of
steps it might be 7.n2, and by yet another definition of steps it might be n2/2.
For this, computer scientists have developed some special notation about
functions, known as the big-oh, the big-omega and big-theta notation.

If k ∈ N, N≥k denotes the set of natural numbers that are greater than
or equal to k. R≥0 denotes the set of non negative real numbers and R>0

denotes the set of positive real numbers.

Definition. Let f : N≥k −→ R≥0, for some k ∈ N. O(f) is the following set
of functions from N≥l to R≥0, for any l ∈ N: O(f) :={
g: there exist c ∈ R>0 and n0 ∈ N such that for all n ≥ n0, g(n) ≤ c.f(n)

}
.

Therefore, g ∈ O(f) if for all sufficiently large n (for n ≥ n0), g(n) is
bounded from above by f(n) - possibly multiplied by a positive constant. We
say that f is an asymptotic upper bound for g.

Example. f(n) = 3.n2 + 4.n 3
2 ∈ O(n2). This is because 3.n2 + 4.n 3

2 ≤
3.n2 + 4.n2 ≤ 7.n2. Thus, take n0 = 0 and c = 7. For all n ≥ n0, f(n) ≤ c.n2.

If the complexity is bounded from above by a polynomial in the input
size, the algorithm is called a polynomial-time algorithm. Such an algorithm

92

is further qualified as linear-time, quadratic-time and so on.
There is a similar notation for asymptotic lower bounds, the big-omega
notation.

Definition. Let f : N≥k −→ R≥0, for some k ∈ N. Ω(f) is the following set
of functions from N≥l to R≥0, for any l ∈ N: Ω(f):={
g: there exist d ∈ R>0 and m0 ∈ N such that for all n ≥ m0, g(n) ≥ d.f(n)

}
Therefore, g ∈ Ω(f) if for all sufficiently large n (for n ≥ m0) g(n) is

bounded from below by f(n)-possibly multiplied by a positive constant. We
say f(n) is an asymptotic lower bound for g(n).

Definition.
Θ(f) := O(f) ∩ Ω(f).

Thus, if g(n) ∈ Θ(f) then g(n) and f(n) are within a constant factor of
each other.

3.3 Computational Complexity
Computational complexity theory is concerned with how much computational
resources are required to solve a given task.

Definition (Polynomial-time solvable algorithms). The significance of polynomial-
time algorithms is that they are usually found to be computationally feasible,
even for large input.

By contrast, algorithms whose complexity is exponential in the size of
the input have running times which render them unusable even her inputs of
moderate size. Researchers recognized early on that not all problems can be
solved this quickly, but had a hard time figuring out exactly which ones could
and which ones could not. There a several so-called NP-hard problems,
which most people believe cannot be solved in polynomial time, even though
nobody can prove a super-polynomial lower bound.
In this connection, a class of problems denoted by NP (standing for non-
deterministic polynomial-time) plays an important role. We give here an
informal definition of this class: a precise treatment can be found in the book

93

of Garey and Johnson, [59], or in chapter 29 of the Handbook of Combinatories,
[64], [14].

The classes P, NP and co-NP:

An alphabet is a finite set of symbols Σ. A string (over Σ) is a sequence of
symbols from Σ (a string of bits is a finite sequence of zeroes and ones). The
length of a string y is the number of symbols in y, and it is denoted by |y|.
The set of all strings over Σ is denoted by Σ∗ and the set of all strings of
length n is denoted by Σn.
A Turing Machine M runs in time T (n), if for every input string ω of length
n (over some fixed input alphabet Σ), M(n) stops after at most T (n) steps.
We identify the notion of efficient computations with Turing Machines that
stop in time polynomial in the size of the input, i.e, Turing Machines that
run in time T (n) = a+ nb for some constants a, b independent of n.
There are many basic problems for which polynomial time algorithms have
yet to be found, and indeed might well not exist. Determining which problems
are solvable in polynomial time and which are not is evidently a fundamental
question. For this reason, let us define three classes of decision problems.

Definition (Decision Problem). A decision problem is the problem of decid-
ing whether the input string satisfies or not some specified property. Formally,
a decision problem is specified by a language, i.e, a set of strings L ⊆ Σ∗, and
the problem is given an input string ω ∈ Σ∗ decide whether ω ∈ L or not.
Thus, a decision problem is a question whose answer is either yes or no.

Definition (P). The class of decision problems that can be solved by a
deterministic Turing Machine in polynomial time is called P. Such a problem
belongs to the class P if there is a polynomial time algorithm that solves any
instance of the problem in polynomial time. We can say that P is the set of
problems that can be solved quickly.

Definition (NP). The class of decision problems that can be solved by a
non-deterministic Turing Machine in polynomial time is called NP. Such a
problem belongs to the class NP if, given any instance of the problem whose
answer is yes, there is a certificate validating this fact which can be checked
in polynomial time; such a certificate is said to be succinct (that means that
you can quickly check whether a candidate solution is a solution). Intuitively,
NP is the set of problems where we can verify a Yes answer quickly if we have

94

the solution in front of us.

Definition (co-NP). Analogously, a decision problem belongs to the class
co-NP if, given any instance of the problem whose answer is no, there is a
succinct certificate which confirms that this is so. (A decision problem X is a
member of co-NP if and only if its complement X is in the complexity class
NP. Instances of decision problems in co-NP are sometimes called "counterex-
amples", or co-NP is the set of decision problems where "no" instances can be
solved in polynomial time by a theoretical non-deterministic Turing machine).

We can notice from those definitions that P ⊆ NP. Likewise, P ⊆ co-NP.
Therefore, P ⊆ NP ∩ co-NP.

Conjecture. P 6= NP.

Conjecture. P= NP ∩ co-NP.

The first one is one of the most fundamental open questions in mathematics.
(A prize of one million dollar has been offered for its resolution). It is widely
(but not universally) believed that the conjecture is true, that there are
problems in NP for which no polynomial time algorithms exists.
The second one is strongly supported by empirical evidence. Most decision
problems which are known to belong to NP∩ co-NP are also known to belong
to P. A particular case is the problem of deciding whether a given integer is
prime. Although it had been known for some time that this problem belongs
to both NP and co-NP, a polynomial time algorithm for testing primality
was discovered only much more recently by Agrawal, Kayal and Saxena, [4].

Reducing Problems Sometimes, a common approach to problem-solving
is to transform the given problem into one whose solution is already known,
and then convert that solution into a solution of the original problem. Of
course, this approach is feasible only if the transformation can be made
rapidly.

A reduction from problem X to problem Y means that if we have an
algorithm for problem Y, we can use it to find an algorithm for problem X.

Using Reductions:

A) we use reductions to find algorithms to solve problems.

95

B) we also use reductions to show that we cannot find algorithms for some
problems. (We say that these problems are "hard").

We say that X is polynomial-time reducible or reducible in polynomial time
to Y if the reduction map between them can be computed in polynomial
time. Therefore, we say X is polynomially reducible to Y and write X ≤ Y.
The significance of polynomial reducibility is that X ≤ Y, and if there is a
polynomial time algorithm for solving Y, then this algorithm can be converted
into polynomial time algorithm for solving X.
If X and Y are both decision problems;

X ≤ Y and X ∈ P =⇒ Y ∈ P.

Definition (Karp reduction). Let A and B be two decision problems. A Karp
reduction from A to B is a polynomial time computable function f : Σ∗ → Σ∗
such that x ∈ A if and only if f(x) ∈ B.

Clearly, if A reduces to B can be solved in polynomial time, then also A
can be solved in polynomial time. Let us define another notion of reductions
called Cook reduction and Randomized reduction.

Definition. A Cook Reduction from A to B is a polynomial time Turing
Machine M with access to an oracle that takes instances of problem B as
input. M reduces A to B, if, given an oracle that correctly solves problem B,
M correctly solves problem A.
A problem A is NP-Hard under Cook Reduction if for any NP problem B
there is a Cook Reduction from B to A. If A is NP, then we say that A is
NP-Complete under Cook Reduction.

Definition. Language A reduces to language B under randomized reduction,
denoted A ≤r B, if there exists a deterministic, polynomial time computable
function f : {0, 1}∗ → {0, 1}∗ and a polynomial p() such that

For all x ∈ A, Pry∈{0,1}p(|x|) [f(x, y) ∈ B] ≥ 2
3

For all x /∈ A, Pry∈{0,1}p(|x|) [f(x, y) ∈ B] ≤ 1
3

In other words, the reduction from A to B is a polynomial time computable
function by a probabilistic algorithm f : Σ∗ → Σ∗ such that x ∈ A if and
only if f(x) ∈ B. The output of the reduction is only required to be correct
with sufficiently high probability, for more details see [128].

96

NP-Complete Problems. NP-complete problems are special problems in
class NP, i.e., a subset of class NP. A problem p is NP-complete if:

1. p ∈ NP (you can solve it in polynomial time by a non-deterministic
Turing Machine),

2. All other problems in class NP can be reduced to problem p in polyno-
mial time.

This means that the NP-complete problems are the most difficult problem
in class NP. If we could solve just one of them in a polynomial time, we could
solve all problems in class NP in a polynomial time.

NP-Hard Problems are partly similar but more difficult problems than
NP-complete problems. They do not themselves belong to class NP (or they
do, but no one has found it yet) but all problems in class NP can be reduced to
them, i.e., a problem satisfying the second condition of NP-Complete problems
is said to be "NP-Hard", whether or not it satisfies the first condition of NP-
Complete problems. Therefore, a NP-Hard problem cannot be solved in
polynomial time unless P = NP.
We notice that NP-Complete problems are a subset of NP-Hard problems,
for more details, see [69]. The standard technique to prove that a problem
A in NP-Hard (and therefore no polynomial time solution for A is likely to
exists) is to reduce some other NP-Hard problem B to A.

3.4 Complexity of the Gauss algorithm

The proof that the algorithm terminates is based on the fact that the
value of

∥∥∥b̃2

∥∥∥ decreases strictly. A lattice is a discrete set, therefore, it can
take only a finite number of values. We show now, that this algorithm
computes a good basis, realizing the first and the second lattice successive
minima. First, the algorithm produces necessarily a basis because at each
step, the applied transformation is unimodular. Secondly, as the obtained
basis satisfies

∥∥∥b̃1

∥∥∥ ≤ ∥∥∥b̃2

∥∥∥ and 2
∣∣∣b̃1.b̃2

∣∣∣ ≤ ∥∥∥b̃1

∥∥∥2
. Therefore, for any vector of

97

Algorithm 2 Gauss reduction
Input: a two dimensional basis matrix B = (b1, b2).
Output: a Gauss reduced basis B̃ =

(
b̃1, b̃2

)
.

B1 = ‖b1‖2 ;
µ = 〈b1, b2〉 /B1;
b2 = b2 − bµe b1;
B2 = ‖b2‖2 ;
while B2 < B1 do
Swap b1 and b2;
b̃1 = b2 and b̃2 = b1;
B̃1 =

∥∥∥b̃1

∥∥∥2
= B2;

µ =
〈
b̃1, b̃2

〉
/B̃1;

b̃2 = b̃2 − bµe b̃1;
B̃2 =

∥∥∥b̃2

∥∥∥2
;

end while

the form αb̃1 + βb̃2, where α and β are integers, we have:∥∥∥αb̃1 + βb̃2

∥∥∥2
= α2

∥∥∥b̃1

∥∥∥2
+ 2αβb̃1.b̃2 + β2

∥∥∥b̃2

∥∥∥2
,

≥
(
α2 − |αβ|+ β2

) ∥∥∥b̃1

∥∥∥2
,

≥
(
(|α| − |β|)2 + |αβ|

) ∥∥∥b̃1

∥∥∥2
,

≥
∥∥∥b̃1

∥∥∥2
.

Thus, b̃1 is the shortest lattice vector. Now, if b̃∗2 is the perpendicular projection
of b̃2, we have b̃∗2 = b̃2 − µb̃1, with |µ| ≤ 1

2 , therefore
3
4

∥∥∥b̃2

∥∥∥2
≤
∥∥∥b̃∗2∥∥∥2

≤
∥∥∥b̃2

∥∥∥2
,(∥∥∥b̃∗2∥∥∥2

=
∥∥∥b̃2

∥∥∥2
− µ2

∥∥∥b̃1

∥∥∥2
)
.

We will move now to check that b̃2 realizes the second successive minimum
of the lattice and for it we choose αb̃1 + βb̃2, a linearly independent vector
from b̃1, i.e, with β 6= 0. The length of this vector is greater than β2

∥∥∥b̃∗2∥∥∥2

and therefore to 3β2

4

∥∥∥b̃2

∥∥∥2
. As soon as, |β| > 1, this vector is greater than b̃2,

therefore, even changing the signs of α and β, it can be assumed that β = 1,
and in this case, the last step of Gauss’s algorithm, ensures that the vector
b̃2 is the shortest one among these of the form b̃2 − µb̃1. All this proves, that
the algorithm calculates a lattice basis, which realizes the successive minima.

The Gauss algorithm performs a number of iterations that is linear in the

98

size of the entries. For an input basis of size M , the number of iterations is
at most log√3M + 2.

The proof is not trivial, as we need for it a t-Gauss algorithm, where the
stop condition is replaced by a stronger one: the

∥∥∥b̃1

∥∥∥ ≤ ∥∥∥b̃2

∥∥∥ condition is
replaced by

∥∥∥b̃1

∥∥∥ ≤ t
∥∥∥b̃2

∥∥∥ for t > 1. The proof has two steps:
First, we show that the t-Gauss algorithm terminates in polynomial

number of iterations in the size of the entries. Then we show that the Gauss
algorithm is at most one more iteration than the t-Gauss, for a t well chosen,
for details, see [190].

We illustrate size reduction and Gauss reduction with an example.

Example. Let B =
(

2.1 3
1 1

)
be a basis matrix for a two-dimensional lattice

L.

Size Reduction: The Cholesky factorization of B>B yields

R =
(

2.3259 3.1385
0 0.3869

)

Since |r1,2| = 3.1385 > |r1,1/2| = 1.1629, this basis is not size reduced. So we
replace v by v = v−µu such that µ =

⌊
〈v,u〉
‖u‖2

⌉
=
⌊

3.1385
2.3259

⌉
= 1. This translation

leads to a new basis vector
v =

(
0.9
0

)
.

The first basis vector is unchanged, i.e, ũ = u, hence r̃12 = r12 − r11 =
0.8126 < |r11| /2. And finally the new basis is size reduced.

Gauss Reduction: After the size reduction, we notice that ‖ũ‖ > ‖ṽ‖. So,
we perform a column swap ũ↔ ṽ, that leads to the basis matrix(

0.9 2.1
0 1

)

which is an upper triangular matrix. Since |r̃12| = 2.1 > |r̃11| /2 = 0.4500, we
perform another size reduction step, i.e.,

v′′ = ṽ −
⌊2.1

0.9

⌉
ũ = ṽ − 2.ũ =

(
2.1
1

)
− 2.

(
0.9
0

)
=
(

0.3
1

)

99

axis x

axis y
u = ũ v

ṽ =

v′′

u′′

−2u′′

Figure 3.1: Illustration of size reduction (red) and Gauss reduction (green)
for a two-dimensional lattice L spanned by the basis vectors u = [2.1 1]> and
v = [3 1]> (shown in blue)

and
u′′ = ṽ =

(
0.9
0

)
Since u′′ is shorter than v′′, no further column swap or size reduction is
possible and a Gauss reduced basis has been obtained i.e the basis(

0.9 0.3
0 1

)

consists of two shortest vectors that span L.

The complexity of Gauss’s algorithm is given by the following result:

Theorem. Given as input a basis {b1, b2} of a lattice L. Gauss’s algorithm
produces a lattice basis that realizes the successive minimum in time

O (log ‖b2‖ . [1 + log ‖b2‖ − log λ1 (L)]) .

The main difficulty is to prove that the total number of loop iterations
is O (1 + log ‖v‖ − log λ1 (L)), where v is the initial second basis vector, for
details, see [137].

3.5 Complexity of the LLL algorithm
Let us make some important observations on this reduction. We can see
that as Gauss’s algorithm, there are essentially two types of operations:
translations and exchanging vectors. The aim of these translations is to

100

return the µij coefficients with an absolute value lower than 1
2 . Thus letting bk

closer to b∗k for making bk almost orthogonal to the previous vectors. Each of
these translations is realized by a call to the RED procedure (see Algorithm.
3).

We take as an input a lattice basis {b1, ..., bm} and output {b′1, ..., b′m} a
lattice basis of the same lattice. Let us suppose that, the first k − 1 vectors
b1, ..., bk−1 already satisfy the LLL conditions and that we have calculated
the µij coefficients for j ≤ i ≤ k − 1 as well as ‖b∗i ‖

2 for 1 ≤ i ≤ k − 1.
First, we take care of the first condition which is easy to satisfy. Indeed,
suppose that we replace the bk vector by a vector of the form bk − qbl with
l < k and q an integer (this step is to make sure that the projection of bk
on b∗l for any l < k is at most 1

2 ‖b
∗
l ‖, and it does so by subtracting from the

column k some integer multiple of the column l such that the lth coordinate
becomes at most 1

2 ‖b
∗
l ‖ in absolute value), then:

• The lattice generated by b1, ..., bk is unchanged.

• The Gram-Schmidt orthogonalization vectors b∗1,, b∗k stay also un-
changed.

• µkk,..., µk,l+1 are unchanged. However, µkl is replaced by µkl − q.

The last point is a consequence of the equality:

bk − qbl =
k∑
j=1

(µk,j − qµl,j) b∗j .

Therefore, we see that we can successively satisfy the conditions:
|µk,k−1| ≤ 1

2 by replacing bk by bk−bµk,k−1e bk−1, then |µk,k−2| ≤ 1
2 by replacing

bk by bk − bµk,k−2e bk−2 and so on. To demonstrate this step, let us write B
in the orthonormal basis obtained by normalizing the Gram-Schmidt vectors

‖b∗1‖ ∗ · · · ≤ 1
2 ‖b

∗
1‖ ∗

0 ‖b∗2‖
... . . .

≤ 1
2

∥∥∥b∗k−1

∥∥∥ ∗
‖b∗k‖

. . .
0 · · · ‖b∗m‖


RED(k, l) is the procedure which replaces bk by

bk − bµk,le bl

101

and updates the µkj coefficients for j ≤ l. So to obtain the condition (2.20), it
is necessary to execute successively RED(k, k−1) until RED(k, 1). It should
be noted that the condition (2.20) can be checked as soon as RED(k, k−1) is
executed because the µk,k−1 coefficient is not changed any more. Thus, we pro-
ceed in the following way: we execute RED (k, k − 1), then later we test the
second condition. If it is verified, we execute RED (k, k − 2),....,RED (k, 1),
and then we move to the next vector bk+1. If it is not verified: we swap bk
and bk−1 and we go back to the previous case. The swaps, allow to decrease
the length of b∗k−1 at the expense of b∗k, the aim is to shift the weight in B∗
from the first vectors to the last ones, allowing to minimize the first vectors
and improve the basis quality.

Note that after this exchange, we have always a lattice basis. However,
only the first k − 2 vectors are LLL reduced. On the other hand, b∗k−1 is
modified. SWAP (k) is the procedure which exchanges the vectors bk−1 and
bk and updates b∗i and the µij coefficients. The vectors b∗1, ..., b∗k−2 have not
changed, nor µij for i ≤ k − 2. As

bk = b∗k + µk,k−1b
∗
k−1 + µk,k−2b

∗
k−2 +

b∗k−1 is replaced by b∗k + µk,k−1b
∗
k−1 and the µk−1,j’s coefficients by µk,j for

j < k − 1.

Algorithm 3 RED
Input: i and j are integers.
Output: |µij| ≤ 1

2 .
if |µi,j| > 1

2 then
r ← bµi,je ;
bi ← bi − rbj;
µi,j ← µi,j − r;
w ← 1;
while w ≤ l − 1 do
µi,w ← µi,w − rµj,w;
w ← w + 1;

end while
end if

In order to better understand the strategy of this reduction, we take the
following simple example for m = 2:

Example. Let

B =
(

2.1 3
1 1

)

102

a lattice basis matrix. The Cholesky decomposition of B>B yields the upper
triangular matrix

R =
(

2.3259 3.1385
0 0.3869

)
.

We notice from R that the first condition (2.20) is not verified. So, we apply
RED procedure for k = 2 and we obtain

v ← v − b3.1385/2.3259eu = v − u =
(

0.9
0

)
,

and
r̃12 = r12 − r11 = 3.1385− 2.3259 = 0.8126.

After the RED(2, 1) procedure, we check the Lovász condition (2.21). For
this, we take δ = 1/2

δ |r̃11|2 = 2.7049 > |r̃22|2 + |r̃12|2 = 0.8100.

According to the algorithm, a column swap, u↔ v, must be done in this case,
then we repeat what we had already done for k = max(k − 1, 2) = 2. Thus,
again

v = v − b2.1/0.9eu =
(

2.1
1

)
− 2

(
0.9
0

)
=
(

0.3
1

)

and we obtain the following lattice basis matrix(
0.9 0.3
0 1

)

We notice that the second condition holds: 0.5.(0.9)2 < 12 + (0.3)2. Since
the second condition is verified, we move to the next case k = 3 but as
k = 3 > m = 2, the algorithm terminates and the LLL reduced basis is(

0.9 0.3
0 1

)
.

Note that a Gauss reduced basis is an LLL reduced basis.
A pseudo-code summarizes the main algorithmic steps (see, Algorithm. 4).

Now, it is clear that if the algorithm terminates, an LLL reduced basis
lattice is obtained.

103

Algorithm 4 LLL algorithm
Input: A lattice basis [b1, .., bm].
Output: An LLL reduced basis.
Compute the Gram-Schmidt basis b∗1, ..., b∗m and coefficients µij for 1 ≤ j <
i ≤ m;
Compute Bi = 〈b∗i , b∗i 〉 = ‖b?i ‖

2 for 1 ≤ i ≤ m;
k = 2;
while k ≤ m do
for j = k − 1 to 1 do
Let qj = bµkje and set bk = bk − qjbj;
Update the values µkj for 1 ≤ j < k;

end for
if Bk ≥

(
δ − µ2

k,k−1

)
Bk−1 then

k = k + 1;
else
Swap bk with bk−1;
Update the values b∗k, b∗k−1, Bk, Bk−1, µk−1,j and µkj for 1 ≤ j < k, and
µik, µi,k−1 for k < i ≤ m;
k = max {2, k − 1} ;

end if
end while

104

Definition. Let B = {b1, ..., bm} be a lattice basis. The potential of B,
denoted DB, is defined by

m∏
i=1
‖b∗i ‖

m−i+1 =
m∏
i=1
‖b∗1‖ ‖b∗2‖ ... ‖b∗i ‖ =

m∏
i=1
DB,i.

where DB,i := det Λi and Λi is defined as the lattice spanned by b1, .., bi.

We have already seen that during the Size Reduction step, the Gram-
Schmidt basis does not change. Now consider the swap step. Suppose that bi
is swapped with bi+1. For all k 6= i, Λk is not changed by the swap, and so
DB,k. To prove this look at the two cases k < i and k > i. When k < i then
there is no change in the basis [b1, ..., bk], so the value of det (L (b1, ..., bk))
remains the same. On the other hand, if k > i the only change is that two
basis vectors in [b1, ..., bk] are swapped, so the lattice L (b1, ..., bi) does not
change and the determinant det (L (b1, ..., bk)) stays also the same. Therefore,
only L (b1, ..., bi) is affected by the swap and only DB,i changes. Consequently,
let Λ′i, D′B,i denote the new values of Λi and DB,i respectively. We have that

D′B,i
DB,i

= det Λ′i
det Λi

= detL (b1, ..., bi−1, bi+1)
detL (b1, .., bi)

=

(∏i−1
j=1

∥∥∥b∗j∥∥∥) . ∥∥∥µi+1,ib
∗
i + b∗i+1

∥∥∥∏i
j=1

∥∥∥b∗j∥∥∥
=

∥∥∥µi+1,ib
∗
i + b∗i+1

∥∥∥
‖b∗i ‖

<
√
δ.

Where the last inequality follows from the condition in the swap step.
Thus each passage through Swap multiplies the product DB,1DB,2...DB,m by
a factor at most equal to

√
δ. Therefore, we have just to show that the lower

bound of this product is a constant depending only on the lattice.

Proposition 5. If L is a lattice of dimension m, then the quotient

γ (L) := min (L)
det (L)

1
m

.

is bounded from above by a constant depending only on m.

105

Proof. In fact, the quotient measures the density ∆ of the spheres packing
associated to a lattice L. Let r =

√
min(L)

2 . The spheres centered at the lattice
points of radius r are interior disjoints, (it is the largest possible radius). Let
Σ be the set of these spheres and V the Voronoi region of the lattice L, an
important fundamental region, defined as the set of points in Rn that are
closer to the origin than to any other point. The volume of this fundamental
region is equal to

√
det (L). And the volume of V ∩ Σ is equal to the volume

of a sphere of radius r, i.e, rmΠm where Πm is the volume of a sphere of
radius 1 and dimension m, for details see [173], [33]. Then we have

∆ = vol (V ∩ Σ)
vol (V) ≤ 1.

Let
rmΠm√
det (L)

≤ 1, or
 min (L)

det (L)
1
m

m
2 Πm

2m ≤ 1.

Then,

γ ≤
(2m

Πm

) 2
m

= 22

Π
1
m
m

.

Proposition. The LLL algorithm terminates for arbitrary lattice bases.

Proof. The previous proposition. 5 shows:

γk := SupL⊂Rkγ (L) , is finite.

Therefore, we obtain for Λk,

DB,k ≥
(

min (Λk)
γk

)k
≥
(

min (L)
γk

)k
.

And the product DB,1....DB,m is well bounded from below by a constant
and only depends on the lattice L. Note that if B was an integer basis, i.e,
B ∈ Zn×m, we can show that the LLL algorithm terminates in an easier way.
As shown above, in each iteration, DB decreases by a multiplicative factor,√
δ. Let DB,0 be the initial value of DB. Since DB is a non zero integer, and

in particular at least 1, this means that we can bound from above the number
of iterations by

log 1√
δ
DB,0 = logDB,0

log 1√
δ

≤ 1
log 1√

δ

.
m(m+ 1)

2 log
(

max
i
‖bi‖

)
.

106

(Since ‖b∗i ‖ ≤ ‖bi‖, the initial value of DB can be bounded from above by
(maxi ‖bi‖)

m(m+1)
2).

And this bound is for any constant δ < 1. This proves an upper bound on
the number of iterations as a function of the initial value of DB. Since DB
is computable in polynomial time from the input size, then its size must be
polynomial in the input size.
We proved that the number of iterations is bounded by a polynomial in
the input size. In order to mark the boundary of the running time of the
algorithm, we still need to show that each iteration also takes polynomial time.
It is not difficult to see that in each iteration we perform only a polynomial
number of arithmetic operations (i.e., additions, multiplications, etc.) [103].
Hence, in order to prove a polynomial bound on the running time we only
need to show that the size of the numbers involved in the entire computation
also is polynomially bounded, see [89], [124], [103]. So, we have to prove that
the bit length (i.e., the number of binary digits and it is necessary to represent
an integer in the binary number system) of the numerators and denominators
of the rational numbers ‖b∗i ‖

2, µi,j and the bit length of the coefficients of the
bi ∈ Zm are polynomially bounded throughout the algorithm. An analysis of
the algorithm leads to a bound of the form O(m log maxi ‖bi‖2), [103].

The complexity of the LLL algorithm is traditionally assessed by counting
the number of iterations, where an iteration is started whenever the Lovász
condition is tested. In particular, when the Lovász condition is not satisfied.
We had already given an upper bound for the number of iterations of LLL,
which is polynomial in the data size, for all values of δ except the optimal
value 1. This result depends on a quantity defined by

D :=
m−1∏
k=1

k∏
l=1
|r̃l,l|2 ,

and which is bounded from below by 1 throughout the execution of the LLL
algorithm when the basis matrix has an integer-valued. All of this implies
that the number of swap operations carried out by the LLL algorithm is finite
and the algorithm always terminates but under the condition that the original
basis matrix B is an integer-valued. A similar statement can be made also in
the extreme case where δ = 1, although the proof of this statement requires
some additional work, see [37], [11].
The complexity analysis for the general case (real or complex valued) of B is
complicated by the fact that the quantity D is not necessarily ≥ 1. However,
other strictly positive lower (and upper) bounds on D can be found in this
case. Based on such bounds, it was shown in [37] that the number of LLL

107

iterations in general is bounded from above by

m2 logt
A

a
+m,

where t = 1√
δ
, A = maxl |r̃l,l| and a = minl |r̃l,l|. This bound implies that the

LLL algorithm terminates for arbitrary bases. Also this bound was used in
[37] to prove polynomial average complexity of the LLL algorithm for special
cases, for example, when the basis vectors are uniformly distributed inside the
unit sphere in Rm, and has been extended to i.i.d. (independent identically
distributed) real and complex-valued Gaussian bases in the context of MIMO
communications [107], [81].

3.6 Complexity of HKZ and Minkowski algo-
rithms

Algorithm 5 HKZ reduction
Input: A lattice basis [b1, .., bm].
Output: An HKZ reduced basis.
1. Find the shortest lattice vector of the lattice, b̃1.
2. Extend b̃1 to a lattice basis.
3. Apply HKZ to

(
π2(b̃2), ..., π2(b̃m)

)
where π2(.) be an orthogonal operator

which projects "." onto b∗1 where b∗1 denotes the orthogonal complement of
the subspace spanned by b1.
4. Size reduce the obtained basis .

It is true, that Minkowski’s and HKZ’s reductions are the strongest but
also the computationally most demanding to obtain. In both, the Minkowski
and the HKZ lattice basis (see, definition 8, algorithm 5, definition 7) we
notice that the first vector b1 is the shortest vector in the lattice. This implies
that the computation of the Minkowski and HKZ reduced bases are at least
as complex as the computation of the shortest lattice vector. Computing an
HKZ basis can be achieved by making m calls to an SVP oracle (recursively
find a shortest non zero lattice vector in the projected lattice). So, the two
problems have the same time complexity up to a factor of m.
Zhang, Qiao and Wei, in [198], were the last to propose an algorithm for
constructing an HKZ reduced basis. However, the expected complexity of
their algorithm is exponential with the lattice dimension m. Therefore, no
polynomial time algorithm in the dimension of the lattice is currently known
for a HKZ reduced basis neither for a Minkowski reduced basis.

108

Chapter 4

Minkowski reduction algorithm

We are interested in lattices of low dimensions. It is desirable to have an
algorithm to compute a "good" lattice bases quickly. However, the construction
of such bases is a real problem.

Minkowski’s reduction is the best one among all the existing lattice
reduction algorithms, at least for low-dimensional lattice bases (m ≤ 4).
For this reason, we present our Minkowski reduction algorithm which is a
modification of the Zhang, Qiao and Wei algorithm [198] and it is practical
at least for lattices of low dimensions (m ≤ 5).

Our algorithm simply applies the definition of Minkowski reduction (see,
definition 7). This implies a basis that consists of shortest lattice vectors mi

which can be extended to a basis of the lattice L.
This work is divided into two parts where the first one is related to the
shortest lattice vector problem (SVP). Since the enumerative algorithms
were considered as the best among all the sphere decoding algorithms at
least for low-dimensional lattice bases, we adopt here the Schnorr-Euchner
enumeration with a little change in the way of updating the search radius. This
algorithm updates the search radius when a shorter lattice vector satisfying
the gcd constraint (i.e., gcd(zii, .., zim) = 1 where zi = [zi1, ..., zim] ∈ Zm, for
i = 1, ..,m) is found (see, lemma 1).
The second part is about extending {m1, ...,mi} to a basis for L. It can be
easily obtained by finding a unimodular matrix Z such that Bi+1 = BiZ,
where Bi is a generator matrix of an m-dimensional lattice L such that the
first i− 1 columns of Bi (i.e., {m1, ...,mi−1}) can be extended to a Minkowski
reduced basis for L.
We construct Z such that the first i− 1 columns of Bi+1 are the first i− 1
columns m1, m2,..., mi−1 and the ith column of Bi+1 is mi = Bizi where zi is
the integer vector obtained by the Schnorr-Euchner enumeration for the ith
position.

109

In this chapter, we present our algorithm for computing a Minkowski reduced
basis up to dimension 5. We begin first with a detailed description of the
algorithm then we show its drawbacks in section 4.1 . We compare the
different notions of reduction by simple examples in section 4.2 and finally
in section 4.3, we measure the quality of their output by what we call the
orthogonality defect of lattice reduction algorithms.

4.1 A Descripition Of The Algorithm
We now state the following result useful for our algorithm.

Lemma 2 ([187]). Let B = [b1, ..., bm] ∈ Rn×m and L be the lattice generated
by B. For a vector v = ∑m

i=1 vibi, and any index p, 1 ≤ p ≤ m, there exists a
basis for L containing {b1, ..., bp−1, v} if and only if gcd(vp, ..., vm) = 1.

The goal of lattice reduction algorithms is to determine a sequence of
elementary column operations (equivalently, a unimodular matrix Z) that
transforms the given basis B into a reduced basis B̃ = BZ according to the
specific requirements of the corresponding reduction criterion.

The first Minkowski reduced basis vector m1 is a shortest non zero lattice
vector in L, which can be obtained by applying Schnorr-Euchner enumera-
tion [5], [159] and we can extend m1 to a basis for L by calling Procedure
Transform (R, Im, 1, z), (see, Algorithm 6).

Note that if the initial lattice basis Y is a symmetric matrix then the
upper triangular matrix R = Chol(Y). Otherwise, R = Chol(Y >Y).

4.1.1 Where This Idea Comes From?
Suppose that m1 = Bz, where z ∈ Zm. Therefore, we have to construct
an m × m unimodular matrix Z whose first column is z. In other words,
Z−1z = e1, which says that Z−1, also unimodular, transforms z into the first
unit vector e1.
For the special case when m = 2, we have the following algorithm:

Procedure 1 (Unim2 (p, q) [112]). Let [p, q]> be a non zero integer vector and
gcd(p, q) = d. Using the extended Euclidean algorithm, we find integers a
and b such that ap+ bq = d. The integer matrix

M =
[
p/d −b
q/d a

]

110

Algorithm 6 Transform (R,Z, k, z) [112]
Input: given R ∈ Rm×m upper triangular (obtained by Cholesky decom-
position), Z ∈ Zm×m unimodular, and an integer vector z ∈ Zm−k+1, 1 ≤
k ≤ m− 1, such that gcd(zi) = ±1.
Output: the updated Z ∈ Zm×m such that the integer vector z is in the
kth position.
for j = m− k + 1 : −1 : 2 do
l = j + k − 1;
z1 = z(j − 1); z2 = z(j);
[d, a, b] = gcd(z1, z2);
M = [[z1/d; z2/d] , [−b; a]] ;
z(j − 1) = d;
R(1 : l; l − 1 : l) = R(1 : l, l − 1 : l)×M ;
r = R(l − 1 : l, l − 1);
r = r/norm(r);
c = r(1); s = r(2);
G = [[c s] ; [−s c]] ;
R(l − 1 : l, l − 1 : m) = G×R(l − 1 : l, l − 1 : n);
Z(:, l − 1 : l) = Z(:, l − 1 : l)×M ;

end for

is unimodular and

M−1
[
p
q

]
=
[
d
0

]
,

such that

M−1 =
[

a b
−q/d p/d

]
.

Thus, if gcd(p, q) = ±1, then z can be transformed by the unimodular
matrix M−1 into the first unit vector e1.

Now, for the general case when m > 2. If Bz is a shortest non zero lattice
vector then by applying a sequence of plane unimodular transformations M
as above to z, with gcd(zi) = ±1, z can be transformed into the first unit
vector.

Let us go back to lemma 2, suppose that Bp is a generator matrix of an
m-dim lattice L such that the first p− 1 columns of Bp can be extended to a
Minkowski reduced basis for L. Then it follows from lemma 2 that the pth
Minkowski reduced basis vector mp, which can be extended to an Minkowski

111

reduced basis with the first p− 1 columns of Bp must satisfy

‖mp‖2 = min
{
‖Bpz‖2 : z ∈ Zm, gcd(zp, ..., zm) = 1

}
.

Obviously, the minimization problem can be considered as an SVP with the
constraint gcd(zp,, zm) = 1. Thus it is enough to incorporate the gcd
constraint into the Schnorr-Euchner enumeration to solve it. A small change
is going to take place in the way of updating the search radius.

Now, suppose that a basis {m1, ...,mp−1, bp, ..., bm}, 1 < p ≤ m, has been
obtained, to extend {m1, ...,mp−1} to a Minkowski reduced basis for L, we
have to solve the following two problems:

• Constructing the pth Minkowski reduced basis vector mp.

• Extending {m1, ...,mp} to a basis for L.

We can use the length of the pth column as the initial size of the search region,
so that at least one lattice point z = ep, (Rzp = R(:, p)) satisfying such a
gcd constraint lies inside the search region. To further accelerate the search
process, the LLL algorithm can be applied as a preprocessor.

Algorithm 7 mdecode1 (R,ω, p)
Input: R ∈ Rm×m, the LLL parameter ω, and an index p, 1 ≤ p ≤ m.
Output: a vector z ∈ Zm such that Rz is a shortest lattice point with
gcd(zp, ..., zm) = 1.
if m = 1 then
return z = 1;

end if
set the initial size r ← ‖R(:, p)‖2

2 ;
utilize LLL algorithm to find a unimodular Z and an upper triangular
matrix Rnew such that RZ is LLL reduced and Rnew is the R-factor of RZ;
[z, `]← msearch1 (Rnew, Z, 0, ∅, r, 0, p) ;

The msearch1 algorithm, (see, Algorithm 8), finds a solution for the
closest vector problem (CVP) with the constraint gcd (zp,, zm) = 1. We
present now a recursive version (see, Algorithm 7, Algorithm 8) of this
algorithm as Sph-Dec algorithm.

This algorithm is based on Schnorr-Euchner enumeration with the main
difference between them on the way of updating the search radius. The
original Schnorr-Euchner enumeration updates the search radius when a
shorter lattice vector is found whereas the msearch1 algorithm updates the

112

Algorithm 8 msearch1 (R,Z, x, zin, r, dist, p)
Input: R ∈ Rm×m, a vector x ∈ Rm to decode, an integral partial solution
zin, the current distance record r, the distance between the current lattice
vector and the corresponding sub-lattice, and an index p, 1 ≤ p ≤ m.
Output: a vector z ∈ Zm such that RZ−1z is a closest lattice point to x
satisfying gcd(zp, .., zm) = 1, and ` = ‖RZ−1z − x‖2

2.
LB←

⌈
−
√
r−dist+xm
rm,m

⌉
, UB←

⌊√
r−dist+xm
rm,m

⌋
;

`← r, z ← ∅;
if LB ≤ UB then
for each integer s in the order of increasing distance from the center of
[LB,UB] do
newdist← dist + (xm − s.rm,m)2 ;
if newdist ≤ ` then
ẑin ← [s; zin] ;
if m > 1 then
x̂← x (1 : m− 1)− sR (1 : m− 1,m) ;
[z′, `′]← msearch1 (Rm−1, Z, x̂, ẑin, `, newdist, p) ;
if `′ ≤ ` then

set `← `′, z ← z′;
end if

else
if gcd(zp, ..., zm) = 1 then
set `← newdist;
z ← Zẑin;

end if
end if

else
return z and `;

end if
end for

end if

113

search radius when a shorter lattice vector satisfying the gcd constraint is
found.

After determining the pth Minkowski reduced basis vector mp = Bpz, we
move to our second problem: how can we extend {m1,,mp} to a basis for
L? Simply, in terms of matrices, it is enough to find a unimodular matrix Z
such that

Bp+1 = BpZ,

which implies that the first p − 1 columns of Z are the first p − 1 unit
vectors ei, i = 1, ..., p−1 and the pth column of Z is the integer vector z found
by the mdecode1 algorithm, so that the first p − 1 columns of Bp+1 equal
the first p− 1 columns m1, ...,mp−1 and the pth column of Bp+1 is mp = Bpz
as desired. Since gcd(zp, ..., zm) = 1, we can construct from procedure 1 a
unimodular matrix Mp whose first column is [zp, ..., zm]>. Now we consider
the two m×m unimodular matrices

Z1 =
[
Ip−1 0
0 Mp

]
, Z2 =



z1

Ip−1
... 0

zp−1
1

0 . . .
1


The product Z1Z2 is unimodular since both Z1 and Z2 are unimodular

and the first p− 1 columns of Z1Z2 are the first p− 1 unit vectors and the
pth column of Z1Z2 is z = [z1, ..., zm]>. Therefore, the product Z1Z2 is an
unimodular matrix that satisfies Bp+1 = BpZ. The application of Z1 can be
performed by the Transform algorithm (see Algorithm 6) and the application
of Z2 is the calculation of a linear combination of the first p columns (see, Z1
and Z2 matrices). Putting all things together, the algorithm for constructing
a Minkowski reduced basis of a lattice is mred(B,ω), see Algorithm 9.

Note that if B is not a symmetric positive definite matrix, we apply
Minkowski on B and as mentioned before we take R = chol(B>B) to finally
obtain the symmetric definite positive matrix Z>B>BZ where the latter is a
Minkowski reduced matrix. Otherwise, we apply Minkowski on R = chol(B)
and we obtain at the end Z>T>TZ a Minkowski reduced matrix.

114

Algorithm 9 mred1 (B,ω)
Input: B ∈ Rn×m, and the LLL parameter ω, 1

4 < ω < 1
Output: a unimodular Z ∈ Zm×m such that the columns of BZ form a
Minkowski reduced basis.
Cholesky factorization R = chol(B>B);
Z ← Im;
for k = 1 to m do
z ← mdecode1 (R,ω, k) ;
if k = m then
Z = Z ×

[[
Im−1;01×m−1

]
z
]

;
else

[,Z]← Transform (R,Z, z, k) ;
Z(:, k) = Z(:, k) + Z(:, 1 : k − 1) [z1, ..., zk−1]> ;
R = chol

(
(BZ)> × (BZ)

)
;

end if
end for

4.1.2 Why do we change every time the Transform
function?

This algorithm will be changed including the algorithm named "Transform"
(see, Algorithm 6), according to the size of the selected lattice for p ≥ 2. So,
as an example we take a 3-dimensional lattice generated by Y.

Y =
 0.5603 −0.2109 0.4901
−0.2109 0.4309 −0.0287
0.4901 −0.0287 0.7630

, R =
 0.7486 −0.2818 0.6546

0 0.5929 0.2628
0 0 0.5151


where R = Chol(Y).
First, by mdecode1 (R, 0.5, 1) (see, Algorithm 7), we obtain the shortest
lattice vector z′1,

z′1 =

 1
0
−1

 =

z
′
11
z′12
z′13

 ,
and by Transform (1, z1) (see, Algorithm 6), we extend Rz′1 to a basis for
L (R),i.e., RZ.
For j = 3 and l = 3, we have z1 = z′12, z2 = z′13 and

M =
[

0 1
−1 0

]

115

z2 = 1,

Z(:, 2 : 3) = Z(:, 2 : 3)M

=

0 0
1 0
0 1

M

=

 0 0
0 1
−1 0

 .
Now, for j = 2, l = 2 we have z1 = z′11, z2 = 1

M =
[
1 −1
1 0

]
and

Z(:, 1 : 2) = Z(:, 1 : 2)M

=

1 0
0 0
0 −1

M

=

 1 −1
0 0
−1 0


Finally, for p = 1

Z =

 1 −1 0
0 0 1
−1 0 0

 .
For p = 2. Again, by mdecode1(R, 0.5, 2), we obtain the second integer

vector,

z2 =

−1
0
−1

 ,
we have in this case Z = Z1Z2, where

Z1 =
[
I1 0
0 M2

]
=

1 0 0
0 z22 ?
0 z23 ?

 =

1 0 0
0 0 ?
0 −1 ?


and

Z2 =

1 z21 0
0 1 0
0 0 1

 =

1 −1 0
0 1 0
0 0 1

 .
116

If we take a look at the Transform algorithm, we notice that j = 3− 2 + 1
and [d, a, b] = gcd(z21, z22). However, this should be [d, a, b] = gcd(z22, z23)
and

M =
[

0 1
−1 0

]

Therefore,

Z = Z1Z2 =

1 0 0
0 0 1
0 −1 0


1 −1 0

0 1 0
0 0 1

 =

1 −1 0
0 0 1
0 −1 0

 .
For the last p, p = 3, we have by mdecode1(R, 0.5, 3),

z3 =

 0
0
−1


and

Z =

1 0 z31
0 1 z32
0 0 z33

 =

1 0 0
0 1 0
0 0 −1

 .
Finally, we multiply all the unimodular matrices obtained at the end of each
case,

Z =

 1 −1 0
0 0 1
−1 0 0


1 −1 0

0 0 1
0 −1 0


1 0 0

0 1 0
0 0 −1

 =

 1 −1 1
0 −1 0
−1 1 0

 .
Thus, by this Z, we form a new basis matrix for L(R) such that Z>R>RZ =
Z>YZ is Minkowski reduced.

Looking now at an example for m = 4

Y = 
1.1134 0.2193 −0.4414 0.0126
0.2193 0.8688 0.4175 0.2081
−0.4414 0.4175 0.8351 −0.0239
0.0126 0.2081 −0.0239 0.6607


R = 

1.0552 0.2078 −0.4183 0.0119
0 0.9086 0.5552 0.2263
0 0 0.5932 −0.2437
0 0 0 0.7416


117

For p = 1, by the mdecode1(R, 0.5, 1), we obtain our first integer vector
z1,

z1 = 
0
0
0
−1


and by the "Transform(1, z1)" function, we form our first unimodular matrix ,

Z = 
0 −1 0 0
0 0 −1 0
0 0 0 1
−1 0 0 0


such that

Z−1.z1 = 
1
0
0
0


.

For p = 2, the second integer vector is

z2 = 
0
1
−1
−1


= 

z21
z22
z23
z24


.

Now, how can we form a lattice basis, or in a simple words, how can we form
a unimodular matrix Z such that the second integer vector is this z2?

We had already shown that Z = Z1Z2, where

Z1 =
[
I1 0
0 M3

]
, Z2 = 

1 z21 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and M3 is a 3× 3 matrix such that the first vector column must be

z′2 =
 z22
z23
z24

,

then
M3 =

 1 ? ?
−1 ? ?
−1 ? ?

.

118

In this case, we apply the Transform(1, z′2) function.
Then we obtain

M3 =
 1 −1 0
−1 0 1
−1 0 0

.

Therefore,

Z1 = 
1 0 0 0
0 1 −1 0
0 −1 0 1
0 −1 0 0


and Z2 = 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Finally,

Z = Z1Z2 = 
1 0 0 0
0 1 −1 0
0 −1 0 1
0 −1 0 0


and this Z verifies

Z−1z2 = 
0
1
0
0


.

If we multiply this Z by the previous one for p = 1, we obtain
0 −1 1 0
0 1 0 −1
0 −1 0 0
−1 0 0 0


.

Now, what happens in the coded algorithm?
For p = 2, we have

z2 = 
0
1
−1
−1


= z

then by Transform(2, z) algorithm, we obtain

Z = 
0 0 −1 0
0 −1 0 −1
0 −1 0 0
−1 0 0 0


6= 

0 −1 1 0
0 1 0 −1
0 −1 0 0
−1 0 0 0


.

119

The problem came from z1 = z(j− 1), z2 = z(j) and z(j− 1) = d. In the case
p = 2, it has to be z(j) = d and not z(j− 1) = d, z1 = z(j) and z2 = z(j + 1).
There is no problem for p = 3 since j = m− p+ 1 = 4− 3 + 1 = 2. However,
another problem appears in this case, z1 and z2 must be changed from z(j−1)
and z(j) to z(j + 1) and z(j + 2).

The same problems arise if we take 5 as the dimension of a lattice. For
p = 2, z(j−1) = d must be replaced by z(j) = d and z1, z2 should be replaced
by z(j) and z(j + 1). For p = 3, we should take z1 = z(j + 1), z2 = z(j + 2)
and z(j + 1) = d and finally, for p = 4, z1 = z(j + 2), z2 = z(j + 3).

Sometimes, the z obtained by the mcode1 algorithm have a particular
shape and cause problems in the algorithm. That is why we had the idea of
taking each m independently in an algorithm.

For example if p = 1 and
z = 

1
0
0
0


then we should add in this case, if z1 = 0 and z2 = 0 then j = j − 1.

Note that after obtaining a Minkowski reduced basis, we have to verify
Minkowski’s conditions. Also in order that a simple real symmetric Minkowski
reduced basis M = (ai,j)1≤i,j≤m has aj,j+1 ≥ 0 for all j ∈ {1, ..,m− 1}, an
algorithm. 10 is also given, named Sign2 for m = 2 and Sign3 for m = 3
(see, Algorithm 11). We can also construct such an algorithm for arbitrary
m however because of the space occupied by the algorithm for m > 3, we
deal only with dimensions 2 and 3.

Note that if B is not a symmetric positive definite matrix, we apply Sign2
on (B,Z).

We illustrate now the simple Minkowski reduction with an example. Let
Y be a symmetric positive definite matrix,

Y =
 0.7106 −0.8157 0.4323
−0.8157 1.0491 −0.6070
0.4323 −0.6070 0.3989


and

R = Chol(Y) =
 0.8430 −0.9676 0.5128

0 0.3358 −0.3299
0 0 0.1646


We start by calling the sphere decoding algorithm and hence, the first integer

120

Algorithm 10 Sign2(R,Z)
Input: B is a symmetric positive definite matrix, R = Chol(B) an upper
triangular matrix and Z the unimodular matrix obtained by Minkowski
reduction algorithm.
Output: U an unimodular matrix such that ((RU)>(RU))i,i+1 ≥ 0.
U = ∅;
C = (RZ)>(RZ);
if C(1, 2) < 0 then
U = [−Z(:, 1) Z(:, 2)] ;
C = (RU)>(RU);
Z = U ;
if C(1, 2) < 0 then
U = [−Z(:, 1) − Z(:, 2)] ;
C = (RU)>(RU);
Z = U ;

end if
end if
if C(1, 2) >= 0 then
U = Z;

end if

vector z1 such that Rz1 is the shortest lattice vector spanned by R is obtained,

z1 =

1
2
2

 .
To construct a lattice basis such that Rz1 is the first lattice vector, we call
the Transform(1, z1) algorithm, (see, Algorithm 6). This algorithm gives us
the following unimodular matrix Z for p = 1:

Z =
 1 0 0

2 1 −1
2 1 0


we go up to the next level p = 2. We start with an update of the up-
per triangular matrix R, simply by applying Cholesky’s decomposition to
(RZ)>(RZ).

Then, again by the sphere decoding algorithm, we find the second integer
vector,

z2 =

 1
−2
−1

 .
121

Algorithm 11 Sign3(R,Z)
Input: B is a symmetric positive definite matrix, R = Chol(B) ∈ Rm×m

an upper triangular matrix, Z ∈ Zm×m an unimodular matrix obtained by
Minkowski reduction algorithm.
Output: U an unimodular matrix such that ((RU)>(RU))i,i+1 ≥ 0.
U = ∅;
C = (RZ)>(RZ);
if C(1, 2) < 0 || C(2, 3) < 0 then
Z(:, 1) = −Z(:, 1);
U = [Z(:, 1)Z(:, 2)Z(:, 3)] ;
Z = U ;
C = (RZ)>(RZ);
if C(1, 2) < 0 || C(2, 3) < 0 then
Z(:, 2) = −Z(:, 2);
U = [−Z(:, 1)Z(:, 2)Z(:, 3)] ;
Z = U ;
C = (RZ)>(RZ);
if C(1, 2) < 0 || C(2, 3) < 0 then
Z(:, 3) = −Z(:, 3);
U = [−Z(:, 1)− Z(:, 2)Z(:, 3)] ;
Z = U ;
C = (RZ)>(RZ);
if C(1, 2) < 0 || C(2, 3) < 0 then
Z(:, 1) = −Z(:, 1);
Z(:, 2) = −Z(:, 2);
U = [Z(:, 1)Z(:, 2)− Z(:, 3)] ;
Z = U ;
C = (RZ)>(RZ);
if C(1, 2) < 0 || C(2, 3) < 0 then
Z(:, 1) = −Z(:, 1);
Z(:, 3) = −Z(:, 3);
U = [Z(:, 1)− Z(:, 2)Z(:, 3)] ;
Z = U ;
C = (RZ)>(RZ);
if C(1, 2) < 0 || C(2, 3) < 0 then
Z(:, 2) = −Z(:, 2);
Z(:, 3) = −Z(:, 3);
U = [−Z(:, 1)Z(:, 2)Z(:, 3)] ;
Z = U ;

end if
end if

end if
end if

end if
end if
if C(1, 2) < 0 || C(2, 3) < 0 then
U = Z;

end if

122

To form a basis matrix by this lattice vector Rz2 already obtained. We had
shown before that the unimodular matrix Z which transform the basis matrix
to a new one had the following form, Z = Z1Z2 where

Z1 =
[
I1

M2

]

and

Z2 =

1 z21 0
0 1 0
0 0 1

 .
M2 is an unimodular matrix whose first column is [z22, z23]>, thus,

M2 =
[
−2 1
−1 0

]

and finally,

Z = Z1Z2 =
 1 0 0

0 −2 1
0 −1 0

.
 1 1 0

0 1 0
0 0 1

 =
 1 1 0

0 −2 1
0 −1 0

.

Before moving to the final step, we update the upper triangular matrix R.
Finally, for p = 3,

Z =
 1 0 z31

0 1 z32
0 0 z33

 =
 1 0 1

0 1 0
0 0 −1

.

Now, we multiply the unimodular matrices Z obtained at the end of each p,

Z =
 1 0 0

2 1 −1
2 1 0

.
 1 1 0

0 −2 1
0 −1 0

.
 1 0 1

0 1 0
0 0 −1

 =
 1 1 1

2 1 1
2 0 1

,

A = (aij)1≤i<j≤m = (RZ)>(RZ) =
 0.1130 0.0123 0.0284

0.0123 0.1283 −0.0464
0.0284 −0.0464 0.1778

.

Since a23 < 0, we apply U = Sign3(R,Z) =

1 1 −1
2 1 −1
2 0 −1

. And finally,

(RU)>(RU) =
 0.1130 0.0123 −0.0284

0.0123 0.1283 0.0464
−0.0284 0.0464 0.1778

.

123

4.2 Comparison Between Reduction
Algorithms

HKZ and LLL: Both, the HKZ reduced basis and the LLL reduced basis
require size-reduction. The main difference between them is that for each
trailing (n− i+ 1)× (n− i+ 1) sub-matrix of the upper triangular matrix
R of the lattice generating matrix, an HKZ reduced basis requires that its
first column be a shortest non-zero vector in the lattice generated by the
sub-matrix, while an LLL-reduced basis only requires that its first column
scaled by a factor of δ be shorter than its second column. Thus, an HKZ
reduced basis, is an LLL reduced basis for any 0.25 < δ < 1.

HKZ and Minkowski: In dimension 2, HKZ reduction is equivalent to
Minkowski’s reduction. But, HKZ and Minkowski reduction may differ
from dimension 3 on. In particular, when a basis is Minkowski reduced,
this basis must verify ‖b1‖ ≤ ≤ ‖bn‖, which is not necessarily true for
HKZ reduced bases. For this, we take as an example a lattice generated
by b1 = [0.6410; 0.6698;−0.2927], b2 = [0.6698; 1.3165;−0.5127] and b3 =
[−0.2927;−0.5127; 0.6450] where B = {b1, b2, b3} and the upper triangular
matrix R = Chol(Y).

As the previous reduction algorithm, we start by searching the first shortest
lattice vector. Note that we adapt here the HKZ algorithm of Zhang, Qiao
and Wei, [199].

By the sphere decoding algorithm, we obtain our first shortest vector

z1 =

 1
−1
0


Then by Transform(1, z), we extend z1 to a basis of the lattice and we obtain

Z =
 1 −1 0
−1 0 0
0 0 −1


And

R = chol
(
(RZ)>(RZ)

)
=
 0.7861 0.0366 −0.2799

0 0.7998 −0.3532
0 0 0.6648


Now, to find a non zero vector z2 ∈ Z2 such that R(2 : 3, 2 : 3)z2 (where

R(2 : 3, 2 : 3) is a sub-matrix of R formed by the second and the third rows

124

and the second and the third columns of R) is the shortest vector of the
lattice generated by R(2 : 3, 2 : 3), the sphere decoding algorithm is also used,
and we obtain as a solution

z2 =
[

0
−1

]

As before, we apply the transform function, Transform(2, z2) and we obtain

M2 =
[

0 1
−1 0

]

Z =
 1 0 0

0 0 1
0 −1 0

.

We multiply the unimodular matrices Z obtained at the end of each case

Z =
 1 −1 0
−1 0 0
0 0 −1


 1 0 0

0 0 1
0 −1 0

 =
 1 0 −1
−1 0 0
0 1 0


Now, we have to verify the size reduction condition:

R = chol((RZ)>(RZ)) =
 0.7861 0.0367 0.2799

0 0.7998 0.3532
0 0 0.6648



r12 = 0.0367 < 0.7861
2

r13 = 0.2799 < 0.7861
2

r23 = 0.3532 < 0.7998
2

So, the upper triangular matrix R is size reduced and finally,

(RZ)>(RZ) =

0.6179 0.2200 0.0288
0.2200 0.6450 0.2927
0.0288 0.2927 0.6410

 .
We notice that

∥∥∥b̃2

∥∥∥2
= 0.6450 >

∥∥∥b̃3

∥∥∥2
= 0.6410. However, the Minkowski

reduction gives us the following reduced matrix:

(RZ)>(RZ) =

 0.6179 0.0288 −0.2200
0.0288 0.6410 −0.2927
−0.2200 −0.2927 0.6450

 ,
125

where

Z =

 1 −1 0
−1 0 0
0 0 −1

 .
As we know, for a basis to be reduced in the sense of HKZ, the lattice

basis B must verify the size reduction condition which is not the case for the
Minkowski reduction.

Let
B =

 100 49 0
0 100 62
0 0 100

.

This lattice basis is Minkowski reduced, it suffices to check Minkowski’s
conditions to prove it. But it is not an HKZ reduced basis since r23 = 62 >
r22
2 = 50.

LLL and Minkowski: We start first by examples to illustrate the difference
between an LLL and a Minkowski reduced basis, and for this, we consider a
symmetric real 4× 4 matrix (for the ease of representation, we only give 4
digits)

Y=
0.7563 0.4850 0.4806 0.3846
0.4850 1.3631 0.2669 -0.3084
0.4806 0.2669 0.7784 -0.4523
0.3846 -0.3084 -0.4523 1.7538

This matrix was created using a 4×4 matrix L with random entries, and then
setting Y = L>L. As usual we put Y = R>R where the upper triangular
matrix R is obtained from Y via a Cholesky decomposition.

To this matrix R, we apply the algorithm for Minkowski reductions
discussed above based on a successive finding of shortest lattice vectors. The
found matrix Ỹ = R̃>R̃ is then postprocessed to ensure the simple Minkowski
reduction condition Ỹi,i+1 ≥ 0, i = 1, 2, 3, i.e., a unimodular matrix Z̃ is
constructed such that Z̃>Ỹ Z̃ has positive elements in the right parallel to
the diagonal. This leads to the matrix

0.5321 0.2058 -0.1639 0.0181
0.2058 0.5735 0.0920 0.2634

-0.1639 0.0920 0.5741 0.1364
0.0181 0.2634 0.1364 0.6535.

126

In particular it can be seen that the squared length of the shortest lattice
vector is 0.5321. An LLL reduction with δ = 3/4 of the matrix Y leads to

0.7563 -0.2757 0.3182 -0.1089
-0.2757 0.5735 0.0920 0.2634
0.3182 0.0920 0.5741 0.1364

-0.1089 0.2634 0.1364 0.6535.

The length of the shortest vector identified by the LLL algorithm is in
this example 0.5735, thus longer than the shortest vector of the lattice which
is still 0.5321 since both the LLL and the Minkowski reduction of a lattice
are obtained via unimodular transformations. The latter obviously do not
change the length of the shortest vector. Thus, this example shows that the
LLL algorithm can lead to a considerable overestimation of the length of the
shortest vector even for small size of the matrix. The effect is known to grow
exponentially with the size of the matrix.

Note that in the above example, the shortest vector appears as the second
vector in contrast to a Minkowski ordered matrix where the shortest vector is
always the first.

Remark. An LLL reduced matrix is always ordered in accordance with the
LLL condition. Thus there is no reason why the shortest vector should appear
in the first position as in Minkowski reduced matrices. This is especially
important in the context of the Siegel algorithm (see, Chapter 5) where the
shortest vector is always assumed to be the first of the matrix.

To illustrate this aspect even more, we consider another example of a
random matrix,

Y =

1.7472 0.5191 1.0260 0.6713
0.5191 1.3471 0.2216 -0.5122
1.0260 0.2216 0.6801 0.4419
0.6713 -0.5122 0.4419 0.7246.

The Minkowski reduction yields

0.2205 0.0443 0.0342 0.0351
0.0443 0.3636 0.1660 -0.0294
0.0342 0.1660 0.3688 0.1516
0.0351 -0.0294 0.1516 0.3753.

127

Table 4.1: Upper bounds for the orthogonality defect of HKZ, LLL (δ = 3/4)
and Minkowski reduced bases.

m 2 3 4 5 6 7 8 24
γm 2/

√
3 2 1

3
√

2 8 1
5 (64/3) 1

6 64 1
7 2 4

δH,m 1.291 1.937 3.623 7.246 17.75 48.61 161.2 4.26× 1013

δL,m 1.414 2.828 8 32 181.0 1.45× 103 1.64× 104 3.48× 1041

δM,m 1.155 1.414 2 3.162 6.455 15.63 48.83 2.51× 1017

The corresponding LLL reduced matrix (δ = 3/4) takes the form
0.3753 0.0294 -0.1516 0.0351
0.0294 0.3636 0.1660 -0.0443

-0.1516 0.1660 0.3688 -0.0342
0.0351 -0.0443 -0.0342 0.2205.

In this case the shortest vector is found by the LLL algorithm in contrast to
the previous example, but it appears as the last vector. The first vector has
with 0.3753 almost twice the length of the shortest vector, 0.2205.

Note that the algorithm [38] implemented in Maple uses the LLL algorithm
on Y instead of an exact determination of the shortest lattice vector. As
discussed above and illustrated below, this is considerably more rapid than
an exact determination of the vector, but can lead to exponentially (in the
dimension g) growing errors in this context.

4.3 The Orthogonality Defect Of Lattice Re-
duction Algorithms

We denote by δH,m, δL,m and δM,m the upper bounds of the orthogonality
defect over all m × m HKZ, LLL (with δ = 3/4) and Minkowski reduced
bases, respectively. Then from

m∏
i=1
‖bi‖ ≤

(
γmm

m∏
i=1

i+ 3
4

) 1
2

vol(L) (HKZ)

m∏
i=1
‖bi‖ ≤ β

m(m−1)
4 vol(L), where β = (δ − 1

4)−1 (LLL)

m∏
i=1
‖bi‖ ≤ γ

n
2
m

(5
4

) (m−3)(m−4)
4

vol(L) (Minkowski)

γm ≤ 1 + m

4 , for all m ≥ 1 (Hermite’s constant).

128

We obtain,

δH,m ≤ γ
m
2
m

(
m∏
i=1

i+ 3
4

) 1
2

= 2O(m logm)

δL,m ≤ 2
m(m−1)

4

δM,m ≤ γ
m
2
m

(5
4

) (m−3)(m−4)
4

=
(5

4

)m2
4 +O(m logm)

.

We see from Table 4.1 that the upper bound of the orthogonality defect
of Minkowski reduced bases is better (slightly smaller) than that of HKZ
reduced bases. However, both are expected to be more orthogonal than LLL,
especially for m = 6, 7, 8 and generally for lattices of dimensions m ≤ 8.
And we notice that for lattices of high dimension, an HKZ reduced basis is
expected to be more orthogonal than a LLL reduced basis or a Minkowski
reduced basis, such as m = 24, and the gap between HKZ reduced bases and
LLL reduced bases gets larger quickly as the dimension increases.

129

Chapter 5

On the action of the Symplectic
Group on the Siegel Upper
Half Space

In his fundamental paper [168] Siegel introduced a special symmetric space
Hg of dimension g which is called now the the g-dimensional Siegel upper
half space. H1 is the hyperbolic upper half plane. Hg is formally defined as
the subset of g × g complex symmetric matrices whose imaginary part is a
positive definite matrix.
In fact, the origin of Hg goes back to Riemann who defined the Riemann
matrix A ∈ Hg corresponding to a compact Riemann surface of genus g,
endowed with a specific complex structure.
Sp(2g,R) is the biholomorphism group of Hg. Of special interest is the lattice
Γg = Sp(2g,Z) which is called the Siegel modular group.
The modular group name is related to the fact that the points of the quo-
tient space Γ1/H

1 where Γ1 = SL(2,Z) are moduli (= parameters) for the
isomorphism classes of elliptic curves over C. To each point τ ∈ H1 one can
associate the lattice Λτ = Zτ + Z1 ⊂ C and the quotient space Eτ = C/Λτ ,
which is an elliptic curve, i.e., it is at the same time a complex curve and
an abelian group. Conversely, every elliptic curve over C can be obtained in
this way, but not uniquely: if E is such a curve, then E can be written as
the quotient C/Λ for some lattice (discrete rank 2 subgroup) Λ ⊂ C which
is unique up to "homotheties" Λ 7→ λΛ with λ ∈ C∗, and if we choose an
oriented basis (ω1, ω2) of Λ (one with I(ω1/ω2) > 0) and use λ = ω−1

2 for
the homothety, then we see that E ∼= Eτ for some τ ∈ H1, but choosing
a different oriented basis replaces τ by γ.τ for some γ ∈ Γ1. The quotient
space Γ1/H

1 is the simplest example of what is called a moduli space, i.e., an
algebraic variety whose points classify isomorphism classes of other algebraic

130

varieties of some fixed type, (see [68, 196]).
In this chapter, we would like to introduce the action of Siegel’s modular
group on the Siegel upper half space, and study the fundamental domain for
this action defined for all g.

Definition 9. Siegel’s fundamental domain Fg is the set of Ω = (Ωij) ∈ Hg

that satisfies the three following conditions:

1. |R(Ωij)| ≤ 1
2 for all i, j ∈ {1, ..., g};

2. I(Ω) is in the fundamental region of Minkowski reductions;

3. |det(CΩ +D)| ≥ 1 for all C,D ∈ Gg.

However, this action known as Siegel’s fundamental domain seems difficult
to obtain for genus greater than 2. For genus 1, we have the well known
elliptic fundamental domain and genus 2 is due to Gottschling’s work [63].
However, two points prevent us for constructing this fundamental domain
for arbitrary g. First, the Minkowski fundamental domain appearing in the
second condition of this domain Def 9 is only known for g ≤ 3. For the
moment, the case g = 3 is the most promising to study in this context.
Secondly, the third condition of Def 9, i.e., finding the finite number of
classes {C,D} of coprime symmetric pairs C, D for which the absolute value
of det(Cτ +D) ≥ 1. Even less is known about the third condition, it would
be interesting to explore the matrices C and D of Def 9 as Gottschling did
in genus 2 to compute |det(Cτ +D)| at least for an interesting set of these
matrices (say for rank C = 1).
Siegel in [171] gave an algorithm to approximately reach the fundamental
domain. But unfortunately, another problem appears, the shortest vector
problem (SVP) for higher dimensions.
Siegel’s modular group and Siegel’s upper half space have many applications
[13]. For example, theta functions [48, 42] are classically connected with
Riemann surfaces and modular group. An important step in the efficient
computation of multi-dimensional theta functions is the construction of
appropriate symplectic transformations for a given Riemann matrix assuring
a rapid convergence of the theta series. Siegel’s algorithm [171] is used to
approximately map the Riemann matrix to the Siegel fundamental domain.
The shortest vector of the lattice generated by the Riemann matrix is identified
exactly, and the algorithm ensures that its length is larger than

√
3/2. The

approach is based on a previous algorithm by Deconninck et al. [38] using
the LLL algorithm for lattice reductions. Here, the LLL algorithm is replaced

131

by exact Minkowski reductions for small genus and an exact identification of
the shortest lattice vector for larger values of the genus.
A good introduction to the Siegel modular group and the Siegel modular
forms can be found in Freitag’s and Klingen’s books, [55, 90].
In this work, we will need the following definition:

Definition. The action of a group G on a topological space X is said to be
properly discontinuous if for any compact set K ⊂ X

K ∩ g(K) = ∅,

except for a finite number of elements g ∈ G.

In this chapter we focus on Siegel’s fundamental domain. In sections 5.1
and 5.2, we give the well known results for genus 1 and 2. In section 5.3, we
define Siegel’s fundamental domain for general g. In section 5.4, we aim at
an exact identification of this domain in genus 3, so we present some results
concerning rank C = 1. In section 5.5, we present Siegel’s approximative
reduction algorithm. We show the relation between Siegel’s fundamental
domain of symplectic transformations of Riemann matrices and the efficiency
of computation of higher dimensional theta functions. We give in this context
a different strategy than the existing algorithms illustrated by examples.

5.1 Siegel fundamental domain for general g
We first define notions which are the main objects studied in this section.

Definition. The following subset:

Hg :=
{
z ∈ Cg×g | z> = z, I(z) > 0

}
,

is called the Siegel Upper Half Space of (degree or genus) g. Clearly, it is a
generalization of the usual complex upper half plane

H := {z ∈ C | I(z) > 0} = H1.

Definition. The subgroup of GL(2g,R) defined as

K =
{
M ∈M(2g,R) : M>JM = J

}
, (5.1)

132

where J =
(

0 Ig
−Ig 0

)
, is called the (real) symplectic group of degree g and

denoted by Sp(2g,R).

Notice that det(J) = 1, J2 = −I2g and J> = J−1 = −J .
It is often useful for practical purposes to use block-matrix notation and to

write M =
(
A B
C D

)
where the entries A,B,C and D are g × g matrices.

So M is symplectic if and only if

A>C = C>A, B>D = D>B, A>D − C>B = Ig. (5.2)

We notice also if M is symplectic, M> is symplectic too since:

MJM> = MJ(JM−1J−1) = −MM−1(−J) = J. (5.3)

And we can always write M> ∈ Sp(2g,R) in block-matrix form

M> =
(
A> C>

B> D>

)
,

such that

AB> = BA>, CD> = DC>, AD> −BC> = Ig. (5.4)

It follows that we have the equivalences

M ∈ Sp(2g,R)⇔M>JM = J ⇔MJM> = J.

We have also the following formula for the inverse of M :(
A B
C D

)−1

=
(
D> −B>
−C> A>

)
, (5.5)

such that if M is a symplectic matrix M−1 is symplectic too since

(M−1)>JM−1 = −(MJM>)−1 = J.

Notice that in the case g = 1 the formula above (5.5) reduces to the familiar

M−1 =
(
d −b
−c a

)

which is true for every 2× 2 matrix M =
(
a b
c d

)
such that det(ad− bc) = 1.

This implies that for g = 1, we have Sp(2,Z) = SL(2,Z).

133

An action of Sp(2g,Z) ⊂ Sp(2g,R), a discrete subgroup called "Siegel
modular group", on Hg can be defined

Sp(2g,Z)×Hg −→ Hg (5.6)

(γ, τ) −→ γ.τ = Aτ +B

Cτ +D
, (5.7)

where γ =
(
A B
C D

)
.

Proposition. The action of the symplectic group on the Siegel upper half
plane is well defined, transitive and biholomorphic.

Proof. For each γ ∈ Sp(2g,Z) and τ ∈ Hg, the following two identities can
be easily verified:

(Aτ +B)>(Cτ +D)− (Cτ +D)>(Aτ +B) = 0, (5.8)

(Aτ +B)>(Cτ +D)− (Cτ +D)>(Aτ +B) = τ − τ = 2iI(τ). (5.9)

In order to be sure that the action is well defined, it is necessary first to show
that Cτ +D is invertible for each τ ∈ Hg and for each γ ∈ Sp(2g,Z). If not,
there would be a non zero vector z ∈ Cg such that (Cτ + D)z = 0. Then
(5.9) would imply

z>(Aτ +B)>(Cτ +D)z̄ − z>(Cτ +D)>(Aτ +B)z̄ = 2iz>I(τ)z̄ = 0,

which is impossible since I(τ) > 0.
Now, we prove that γ.τ = (Aτ + B)(Cτ + D)−1 ∈ Hg for each τ ∈ Hg and
for each γ ∈ Sp(2g,Z).
Since Cτ + D is invertible under this hypothesis, (5.8) is equivalent to
γ.τ−1 = γ.τ . From this assertion and (5.9), we deduce:

I(γ.τ) = 1
2i
[
(γ.τ)> − (γ.τ)

]
,

= 1
2i((Cτ +D)−1)> (5.8)(Cτ +D)−1,

= ((Cτ +D)−1)>I(τ)((Cτ +D))−1.

Since τ ∈ Hg, it follows that I(γ.τ) > 0.
Therefore, it has been shown that γ.τ is contained in Hg. We can immediately
verify that I2g.τ = τ for each τ ∈ Hg and if γ1, γ2 belong to Sp(2g,Z), then

134

γ1.(γ2.τ) = (γ1γ2).τ , for each τ ∈ Hg. Hence, the action is well defined.
To prove transitivity, it is enough to find a symplectic map that transforms
τ = iI to any X + iY ∈ Hg, Y > 0. Hence, we consider the composition of
two symplectic maps associated with the following symplectic matrices

ν =
(√

Y 0
0
√
Y −1

)
and ξ =

(
I X
0 I

)

such that (ξν).τ = X + iY .
This action is biholomorphic since it is a rational function and the inverse of
this action is obtained by acting on γ−1, i.e., γ−1.τ = D>τ−B>

−C>τ+A> where it is a
rational function, too.

Sp(2g,Z) acts properly discontinuously on Hg. For example, for g = 1,
given γ ∈ SL(2,Z), we have γ(F) ∩ F = ∅ unless γ lies in a finite set of
elements of SL(2,Z) which have the fix point η = 1

2 + i
√

3
2 ∈ H

1 and i ∈ H1

where F is the fundamental domain for the action of SL(2,Z) on the upper
half plane H1.

Note that −I2g acts trivially on Hg, i.e, −I2g.τ = τ for each τ ∈ Hg.
Therefore, we can consider the action of

Gg := Sp(2g,Z)/ 〈±I2g〉

called " the projective symplectic group", on Hg, where

Γg := Sp(2g,Z)

is called "the modular group".

Proposition ([133]). The modular group Γg is generated by the three fol-
lowing classes of generators:(

0 I
−I 0

)
,

(
A 0
0 (A−1)>

)
,

(
I B
0 I

)

for all A ∈ GL(g,Z) and B a symmetric, integer matrix.

Proof. See, [[133], proposition A5, p.210].

Siegel in [171] gave, for all g, the following fundamental domain for the
action of G on Hg.

135

Definition 10. Siegel’s fundamental domain Fg is the set of Ω = (Ωij) ∈ Hg

that satisfies the three following conditions:

1. |R(Ωij)| ≤ 1
2 for all i, j ∈ {1, ..., g};

2. I(Ω) is in the fundamental region of Minkowski reductions;

3. |det(CΩ +D)| ≥ 1 for all C,D ∈ Gg.

We continue to use the matrix representation of γ =
(
A B
C D

)
in Sp(2g,Z)

to denote elements of Gg.
Note that the third condition in Def 10 can be seen as a condition

of maximal height or a highest-point condition, i.e, you choose γ ∈ Γg to
maximize I(γ.τ), see [90]. It must be satisfied for all the Γg/ 〈±I2g〉 matrices.
However, it is shown that it is enough for this condition to be satisfied
for a certain finite set, for all g see [90], which is only known for g = 1

({S} =
{(

0 −1
1 0

)}
) and g = 2 (19 matrices due to Gottschling [63]).

Remark. For g = 2, the Minkowski fundamental region, in Def 10. 2, i.e
the fundamental domain of the unimodular group, is given by the simple
Minkowski reduction. However, for g > 2 the simple Minkowski reduction does
not define the Minkowski fundamental domain, see [176]. The fundamental
domain for g = 3 is given in [176] and chapter. 2, but the corresponding
conditions in higher dimension appear to be unknown.

These three conditions address different parts of Gg =
(
A B
C D

)
. The first

condition Def 10. 1 fixes the matrix B in Gg. The second one Def 10. 2
refers to Minkowski reductions, see. chapter 2 and 4, and [121, 122] and fixes
the unimodular matrix A in Gg. The third and last one Def 10. 3 fixes the
matrices C,D in Gg.

Proposition. Fg is a fundamental domain for the action of Gg on Hg. Then
for all Ω ∈ Hg, there exists γ ∈ Gg such that γ.Ω ∈ Fg and this element γ is
unique if γ.Ω is an interior point of Fg.

Proof. See, [[90], theorem 2 p.34], [168].

136

Lemma 3. For all Ω ∈ Fg, let Ω11 be the first diagonal element of Ω, then

I(Ω11) ≥
√

3
2 .

Proof. Let
(
A B
C D

)
∈ Gg such that

A =
(

0 0>g−1
0g−1 Ig−1

)
, B =

(
−1 0>g−1
0g−1 0g−1,g−1

)
, (5.10)

C =
(

1 0>g−1
0g−1 0g−1,g−1

)
, D =

(
0 0>g−1

0g−1 Ig−1

)
, (5.11)

where 0g−1 denotes the column vector of g − 1 zeros, we notice that

|det(CΩ +D)| = |Ω11| .

Since Ω ∈ Fg, we have |Ω11| ≥ 1 and |R(Ω11)| ≤ 1
2 which implies that

I(Ω11) ≥
√

3
2 .

Note that since I(Ω) is Minkowski reduced, then
√

3
2 ≤ I(Ω11) ≤ I(Ω22)... ≤ I(Ωgg).

5.2 Genus 1
An early study of this action was done by C. L. Siegel in his 1943 book
"Symplectic Geometry" [170].
Hg and Γg are meaningful generalizations of the usual upper half plane

H = H1 = {τ ∈ C | I(τ) > 0} ,

and the linear fractional transformation group SL(2,R) acting on H, where

SL(2,R) =
{(

a b
c d

)
| a, b, c, d ∈ R, ad− bc = 1

}
.

The special linear group acts on H via the "Möbius transformation" (5.7).
This action is well defined and

I(γ.τ) = I(bcτ̄ + adτ)
|cτ + d|2

= I(τ)
|cτ + d|2

. (5.12)

137

Definition. The projective symplectic group (or elliptic projective symplectic
group) is defined by

G1 = G := Γ1/ 〈±I2〉 ,

where Γ1 = SL(2,Z)

It is just the image of SL(2,Z) on

PSL(2,R) := SL(2,R)/ 〈±I2〉 ,

where PSL(2,R) acts faithfully on H, i.e., for all τ ∈ H, γ.τ = τ ⇒ γ = e.
We will show now the fundamental domain F1 for the action of G on H

and some important properties.

Definition. G = Γ1 is generated by the two elements

T =
(

1 1
0 1

)
and S =

(
0 −1
1 0

)
,

with the relations S2 = (ST)3 = −I2. And the action of S and T on H are
given by

S : τ → −1
τ
, T : τ → τ + 1.

Proposition. The set

F1 :=
{
τ ∈ H | |τ | > 1, |R(τ)| < 1

2

}
,

is a fundamental domain for the action of G on H (sometimes called, a
fundamental domain for the full modular group Γ1), see. Figure. 5.1.

Remark. For genus 1, it is clear that the third condition of Siegel’s funda-
mental domain is |τ | > 1 and this corresponds to the set {S}.

Remark 1. Note that the fundamental domain for G1, is an open subset
F1 ⊂ H such that no two distinct points of F1 are equivalent under the action
of G1 and every point τ ∈ H is G1-equivalent to some points in the closure
F1 of F1.
The points on the two lines R(τ) = ±1

2 are equivalent under the action of

138

x
−1 0 1

Figure 5.1: F1

x
−1 0 1

Figure 5.2: F̃1

T : τ → τ ± 1. And the points on the left and right halves of the arc |τ | = 1
are also equivalent under the action of S : τ → − 1

τ
. These are the only

equivalences for the points on the boundary. Therefore, F̃1 is defined as the
semi-closure of F1 where only the boundary points with non-positive real part
(see, Figure. 5.2) are added. Then every point of H is G1-equivalent to a
unique point of F̃1, i.e., F̃1 is a strict fundamental domain for the action of
G1. However, most people use the words "fundamental domain" for the strict
fundamental domain or for its closure rather, then for the interior (see, [196]).

Proof. Let τ ∈ H. Then {mτ + n | m,n ∈ Z} is a lattice in C. We know
that every lattice has a point different from the origin of minimal modulus.
Let us suppose cτ + d be such a point. The integers c, d must be relatively
prime (otherwise we could divide cτ + d by an integer to get a new point
in the lattice of even smaller modulus). So, there are integers a and b such

that γ1 =
(
a b
c d

)
∈ G1. By (5.12) we deduce that I(γ1.τ) is a maximal

member of the set {I(γ.τ) | γ ∈ G1}. Now, we choose an n such that T n(γ.τ)
is shifted into the vertical strip between −1

2 and 1
2 . Then τ̃ = T n(γ.τ) ∈ F1,

139

since if not, i.e., |τ̃ | < 1, we would obtain

I(Sτ̃) = I(−1/τ̃) = I(τ̃)
|τ̃ |2

> I(τ̃),

a larger imaginary part than τ̃ , contradicting the maximality of the imaginary
part of γ.τ . Therefore, for every τ ∈ H there exists γ ∈ G1 such that γ.τ ∈ F1.
Suppose that given γ ∈ G1, τ1 = τ ∈ F1 and τ2 = γ.τ ∈ F1 as well with
γ 6= ±I2. As the pairs (τ, γ) and (γ.τ, γ−1) play symmetric roles here. We
assume without loss of generality that I(γ.τ) ≥ I(τ) which implies from
(5.12) that |cτ + d| ≤ 1. γ cannot be of the form T n since this would contradict

the condition |R(τ1)|, |R(τ2)| < 1
2 , so γ =

(
a b
c d

)
with c 6= 0. I(τ) >

√
3

2 for

all τ ∈ F1. Hence, from (5.12) we get
√

3
2 < I(τ2) = I(τ1)

|cτ1 + d|2
≤ I(τ1)
c2I(τ1)2 <

2
c2
√

3
,

which can only be satisfied if c = ±1. However, |±τ1 + d| ≥ |τ1| > 1, and this
gives a contradiction with I(γ.τ) ≥ I(τ).

Given now two points τ1 = τ , τ2 = γ.τ ∈ F1, then either R(τ2) = ±1
2

and τ2 = τ1 ± 1 or |τ2| = 1 and τ2 = − 1
τ1
, (we show Remark. 1). Indeed,

I(γ.τ) ≥ I(τ) implies that |cτ + d| ≤ 1 which is impossible for |c| ≥ 2. And
consequently, we get c ∈ {−1, 0, 1}.

If c = 0:
we have a = d = ±1. Since bc = 0, γ can be written as a translation of

±b. Therefore, Y =
(
±1 ±b
0 ±1

)
which implies that γ.τ = τ ± b.

τ1, τ2 ∈ F1, then |R(τ1)|, |R(τ2)| ≤ 1
2 . From here, we deduce the following

two cases:

1. b = 0 and then γ =
(
±1 0
0 ±1

)
,

2. b = ±1 and then R(τ2) = −1
2 and R(τ1) = 1

2 (or vice-versa).

If c = 1:
d = 0 except for τ = exp(2πi

3) and τ = exp(πi3) where d = {0, 1}, respec-
tively {−1, 0} which will be discussed in detail later.
It follows that b = −1 and γ.τ = aτ+b

cτ+d = a− 1
τ
. But since τ and γ.τ belong

to F1. So, for every τ such that R(τ) 6= ±1
2 , we have a = 0 otherwise the

translation would leave the fundamental domain.
If c = −1:

140

d = 0, it follows that b = 1 and γ.τ = −a− 1
τ
. But since τ and γ.τ belong

to F1. So, again for every τ , we have a = 0 otherwise the translation would
leave the fundamental domain.

Proposition. To each τ ∈ F1, let Stabilizer(τ) = {γ ∈ G1 | γ.τ = τ}. Then
Stabilizer(τ) = {±I2} for all τ ∈ F1 unless

• τ = i, then Stabilizer(τ) = 〈S〉 of order 2,

• τ = exp(2πi
3), then Stabilizer(τ) = 〈ST 〉 of order 3,

• τ = exp(πi3), then Stabilizer(τ) = 〈TS〉 of order 3.

Proof. We will show first why {0, 1} respectively, {−1, 0} are the only values
for which d can be taken for τ = exp(2πi

3) respectively, τ = exp(πi3).
For τ = exp(2πi

3), |τ | = 1 and Re(τ) = −1
2 . If cτ + d = τ + 1, we get

R(cτ + d) = R(τ + 1) = R
(
−1

2 + i

√
3

2 + 1
)

= R
(
−1

2 + 1
)

= R
(1

2

)
.

More precisely, this gives us exp(2πi
3) + 1 = exp(πi3). Therefore |τ | = |τ + 1| =

1, i.e., |cτ + d| ≤ 1 when d ∈ {0, 1}.
For τ = exp(πi3), this case is similar to the previous one where d ∈ {−1, 0}.
If d = 0:
we get γ.τ = a − 1

τ
(c = 1, then b = −1). Hence, for τ = exp(2πi

3), we
have

a− 1
τ

= a+ 1
− exp(2πi

3)
= a+ 1

exp(−iπ3)
= a+ exp

(
iπ

3

)
.

Therefore, a ∈ {−1, 0}.
For τ = exp(πi3), we apply the same strategy and we get a ∈ {0, 1}.

We obtain the identity, i.e., γ.τ = τ in these two cases:

• γ =
(
−1 −1
1 0

)
= (ST)2, for τ = exp(2πi

3),

• γ =
(

1 −1
1 0

)
= (TS), for τ = exp(πi3).

If d = 1:
for τ = exp(2πi

3). To determine the values of a, we have:

γ.τ = a− 1
exp(2πi

3) + 1
= a− 1

exp(πi3)
= a+ 1

exp(−2πi
3)

= a+ exp
(2πi

3

)
,

141

which implies that a ∈ {0, 1}.
Similarly, we show that for d = −1 and τ = exp(πi3), the values of a are
{−1, 0}.

Therefore, the identity is obtained:

• if γ =
(

0 −1
1 1

)
= (ST), for τ = exp(2πi

3),

• if γ =
(

0 −1
1 −1

)
= (TS)2, for τ = exp(πi3).

If c = −1: we return to c = 1 by simply changing the sign of the coefficients
a, b, c, d.

Finally, for τ = i, we have Sτ = −1
i

= i, and therefore, we get the identity
when γ = S. To summarize, we have that Stabilizer(exp(2πi

3)) (respectively,
Stabilizer(exp(πi3)), Stabilizer(i)) is generated by ST , (respectively, TS, S).

We deduce the following corollary:

Corollary 2. The canonical map h : F1 → H/G1 is surjective and its
restriction on F1 is injective.

Proof. This action is surjective since for every τ ∈ H, there exists γ ∈ G1
such that γ.τ ∈ F1 and injective since for a given τ1, τ2 ∈ F1 such that
τ2 = γ.τ1, these elements are on the boundary of F1.

Theorem. Γ1 is generated by S and T .

Proof. Let Γ′1 be the subgroup of Γ1 generated by S and T . Pick any point
τ0 in the interior of F1, i.e., F1. For any γ ∈ Γ1, we must show that γ ∈ Γ′1.
If τ = γ.τ0, then there exists a γ′ ∈ Γ′1 such that γ′ .τ = γ

′
γ.τ0 ∈ F1. But

since τ0 was chosen in F1, and τ0, γ
′
γ.τ0 are both in F1, so this implies that

γ
′
γ = ±I2 and hence γ ∈ Γ′1.

5.3 Genus 2
G2 := Γ2/ 〈±I4〉 acts on the space H2 via τ → (Aτ +B)/(Cτ +D)−1 for all

γ =
(
A B
C D

)
∈ G2, where A,B,C and D are 2× 2 integer matrices.

For genus 2, we have the following theorem due to Gottschling [63]:

142

Theorem 7. Under this action (5.7) a fundamental domain for H2/G2 is

given by the subset of τ =
(
τ1 τ3
τ3 τ2

)
∈ H2 such that:

1. |R(τj)| ≤ 1
2 for all j ∈ [1, 3],

2. I(τ) is simple Minkowski reduced.

3. |det(Cτ +D)| ≥ 1 for all symplectic matrices
(
A B
C D

)
∈ {Rj}1≤j≤19.

Gottschling [63] has shown that for the case g = 2, the necessary C and D in
condition 3 are C = I2 and D is one of 15 choices, explicitly determined, all
with entries 0, e = ±1,(

0 0
0 0

)
,

(
e 0
0 0

)
,

(
0 0
0 e

)
,

(
e 0
0 e

)
,

(
e 0
0 −e

)
,

(
0 e
e 0

)
,

(
e e
e 0

)
,

(
0 e
e e

)

or C is a rank 1 matrix in which case, if τ =
(
τ1 τ3
τ3 τ2

)
then |τ1| , |τ2| ≥ 1 and

|τ1 + τ2 − 2τ3 ± 1| ≥ 1.
From (5.2) or (5.4), we can now find the matrices A and B and construct

the {Rj}1≤j≤19 symplectic matrices below.

R1 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , R2 =


0 0 −1 0
0 0 0 −1
1 0 1 0
0 1 0 0

 , R3 =


0 0 −1 0
0 0 0 −1
1 0 −1 0
0 1 0 0



R4 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 1

 , R5 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 −1

 , R6 =


0 0 −1 0
0 0 0 −1
1 0 1 0
0 1 0 1



R7 =


0 0 −1 0
0 0 0 −1
1 0 −1 0
0 1 0 −1

 , R8 =


0 0 −1 0
0 0 0 −1
1 0 −1 0
0 1 0 1

 , R9 =


0 0 −1 0
0 0 0 −1
1 0 1 0
0 1 0 1



R10 =


0 0 −1 0
0 0 0 −1
1 0 0 1
0 1 1 0

 , R11 =


0 0 −1 0
0 0 0 −1
1 0 0 −1
0 1 −1 0

 , R12 =


0 0 −1 0
0 0 0 −1
1 0 1 1
0 1 1 0


143

R13 =


0 0 −1 0
0 0 0 −1
1 0 −1 −1
0 1 −1 0

 , R14 =


0 0 −1 0
0 0 0 −1
1 0 0 1
0 1 1 1

 , R15 =


0 0 −1 0
0 0 0 −1
1 0 0 −1
0 1 −1 −1



R16 =


1 0 −1 0
0 1 0 −1
1 0 0 0
0 0 0 1

 , R17 =


1 0 −1 0
0 1 0 −1
0 0 1 0
0 1 0 0

 , R18 =


1 0 0 0
0 1 0 0
1 −1 1 0
−1 1 0 1



R19 =


−1 0 0 0
0 −1 0 0
1 −1 −1 0
−1 1 0 −1

 .

Gottschling [63] has shown in his article the necessity and sufficiency of
these 19 matrices to define Siegel’s fundamental domain for genus 2.
Subsequently, we will use in this context an algorithm written by Dupont [44]
(see, algorithm 12).

where,

R1 =

I2

(
1 0
0 0

)
0 I2

 , R2 =

I2

(
0 0
0 1

)
0 I2

 , R3 =

I2

(
0 1
1 0

)
0 I2

 .
and {Rj}1≤j≤19 are those introduced in theorem 7.

This algorithm follows from theorem 7, as well as from the following
result:

Lemma. For all τ ∈ H2 and ε > 0, the set{
λ ≥ ε | ∃

(
A B
C D

)
∈ G2 such that λ = |det(Cτ +D)|

}

is finite

Proof. It is a direct consequence of [[90],Lemma1, p.29].

144

Algorithm 12 Reduce H2 to F2
Input:τ ∈ H2
Output:(γ, τ ′) ∈ G2 × F2 such that τ ′ = γ.τ
γ ← I4;
τ
′ ← τ ;
t← true;
while t do
U ← MinkowskiReduction(I(τ ′));

γ ←
(
U> 0
0 U−1

)
γ;

τ
′ ← U>τ

′
U ;

for j = 1 to 3 do
a← −

[
R(τ ′j)

]
;

τ
′ ← Ra

j τ
′ ;

γ ← Ra
jγ;

end for
t← false;
for j = 1 to 19 do
if
∣∣∣det(Cjτ

′ +Dj)
∣∣∣ < 1 then

t← true;
τ
′ ← Rjτ

′ ;
γ ← Rjγ;

end if
end for

end while

145

5.4 Genus 3
In this section, we present some results concerning the fundamental domain
for genus 3, in particular for rank C = 1. Before the discussion of our new
results, we state a result due to Gottschling which plays a central role in our
work.
We start by giving some definitions that are important for some details in
this result.

Definition. Let B be a region containing F2 which is defined by the following
inequalities:

1. The standard limits for the real part of τ =
(
τ1 τ3
τ3 τ2

)
=
(
x1 x3
x3 x2

)
+

i

(
y1 y3
y3 y2

)
∈ H2 :

−1
2 ≤ x1, x2, x3 ≤

1
2;

2. The simple Minkowski conditions for g = 2:

y2 ≥ y1 ≥ 2y3 ≥ 0;

3. The two inequalities
|τ1| ≥ 1, |τ2| ≥ 1

that correspond to the third condition of F2 and which are obtained by
the following set of matrices:

C =
(

1 0
0 0

)
, D =

(
0 0
0 1

)
and C =

(
0 0
0 1

)
, D =

(
1 0
0 0

)
.

Definition. Let B0 be the part of B in which y2 ≤ 1, B1 be that part of B0
in which −1

2 ≤ x3 ≤ −1
4 and B−1 that part of B0 in which 1

4 ≤ x3 ≤ 1
2 .

Lemma 4. In the domain Be where (e = −1, 0, 1), the inequality

|τ1 + τ2 − 2τ3 − 2e| ≥ 1;

is a sequence of |det(τ + eS)| ≥ 1 with S =
(

0 1
1 0

)
.

146

Proof. See, [lemma 2, p. 109, [63]].

Definition. Two pairs (C, D) and (C1, D1) are associated when there is an
unimodular matrix U such that

(C1D1) = U(CD).

5.4.1 F3

It follows from Siegel’s fundamental domain that its third condition in theorem
10 makes this domain not easy to be obtained, specially for g ≥ 3. The task
here, is to find a finite set (in other words, a finite number of conditions) for
which the inequality, |det(Cτ +D)| ≥ 1, must be verified.

Theorem. For genus 3 and a rank 1 matrix C, we have the following in-
equalities to be verified:

Writing τ =

τ1 τ4 τ5
τ4 τ2 τ6
τ5 τ6 τ3

 then

|τ1| ≥ 1, |τ2| ≥ 1, |τ3| ≥ 1, |τ1 + τ2 − 2τ4 ± 1| ≥ 1, |τ2 + τ3 − 2τ6 ± 1| ≥ 1,
|τ1 + τ3 + 2τ5 ± 1| ≥ 1 if I(τ5) < 0, |τ1 + τ3 − 2τ5 ± 1| ≥ 1 if I(τ5) > 0,
|τ1 + τ2 + τ3 + 2τ4 − 2τ5 − 2τ6 + d| ≥ 1, for − 4 ≤ d ≤ 4, and I(τ5) > 0,
|τ1 + τ2 + τ3 − 2τ4 − 2τ5 + 2τ6 + d| ≥ 1, for − 4 ≤ d ≤ 4, and I(τ5) > 0,

|τ1 + τ2 + τ3 − 2τ4 + 2τ5 − 2τ6 + d| ≥ 1, for − 4 ≤ d ≤ 4,

Proof. Rank C = 1, therefore, there exist two unimodular matrices U and V
such that

UCV =

c 0 0
0 0 0
0 0 0

 c > 0 and UDV −> =

 d d3 d4
d5 d1 d6
d7 d8 d2

 .
It follows from (5.4), i.e., CD> = DC> and DA> − CB> = I3, that
d5 = d7 = 0, gcd(c, d) = 1 and −d6d8 + d1d2 = 1.

If we replace U by

1 d3 d4
0 d1 d6
0 d8 d2

U , then

UCV =

c 0 0
0 0 0
0 0 0

 and UDV −> =

d 0 0
0 1 0
0 0 1

 . (5.13)

147

Let

V −1 =

p q r
s t u
v w x

 , hence V =

tx− uw rw − qx qu− rt
uv − sx px− rv rs− pu
sw − tv qv − pw pt− sq

 ,
with

p(tx− uw)− q(sx− uv) + r(sw − vt) = 1.
Finally, we obtain

|det(Cτ +D)| =
∣∣∣c(p2τ1 + q2τ2 + r2τ3 + 2pqτ4 + 2prτ5 + 2qrτ6) + d

∣∣∣ ,
(5.14)

with gcd(c, d) = 1 and pZ + qZ + rZ = 1. (5.15)
And the matrices

C =

c 0 0
0 0 0
0 0 0

V −1, D =

d 0 0
0 1 0
0 0 1

V > (5.16)

are coprime, symmetric (i.e., CD> = DC> and DA> − CB> = I3) and rank
C = 1.

We will show now that the assignment between the classes of associated
pairs (C, D) with rank C = 1 and the integers c, d, p, q, r is uniquely deter-
mined with the properties (5.15).
In the first hand, let, in addition of V −1, V −1

1 be an unimodular matrix with
(p, q, r), the first line of this matrix, and we take the following pair of matrices

C1 =

c 0 0
0 0 0
0 0 0

V −1
1 , D1 =

d 0 0
0 1 0
0 0 1

V >1 , (5.17)

similarly to (5.16).
It follows from (5.16), and (5.17) that

C1 = U1C, D1 = U1D,

where U1 is an unimodular matrix of the form

U1 =

d 0 0
0 1 0
0 0 1

V >1 V −>
d
−1 0 0
0 1 0
0 0 1

 .
Hence, we can deduce that the pairs (C1, D1) and (C, D) are associated
and by specifying c, d, p, q, r, the class of the pairs associated with C, D, is

148

uniquely determined. On the other hand, let C, D be given (in the inverse
way) and

U0CV0 =

c0 0 0
0 0 0
0 0 0

 , U0DV
−>

0 =

d0 0 0
0 1 0
0 0 1

 ,
where the first line of V −1

0 is denoted by (p0, q0, r0) and we apply the corre-
sponding conditions on c, d, p, q, r to the integers c0, d0, p0, q0, r0.
From

U0U
−1

c 0 0
0 0 0
0 0 0

 =

c0 0 0
0 0 0
0 0 0

V −1
0 V,

and c, c0 > 0, we deduce that c = c0. We have also

V −1
0 V =

±1 0 0
? ? ?
? ? ?


which implies that the first lines of V −1

0 and V −1 coincide.
And from

UU−1
0

d0 0 0
0 1 0
0 0 1

 =

d 0 0
0 1 0
0 0 1

V >V −>0

we notice that d0 = d.
According to (5.14), |det(Cτ +D)| ≥ 1 is equivalent to∣∣∣c(p2τ1 + q2τ2 + r2τ3 + 2pqτ4 + 2prτ5 + 2qrτ6) + d

∣∣∣ ≥ 1

where the integers c, d, p, q, r satisfy the conditions (5.15).
The right-hand side of (5.14) can be estimated by the absolute value of

the imaginary part, where the imaginary part is denoted by

I(τ) =

y1 y4 y5
y4 y2 y6
y5 y6 y3


therefore,

|det(Cτ +D)| ≥ c(p2y1 + q2y2 + r2y3 + 2pqy4 + 2pry5 + 2qry6).

Since the imaginary part of τ is Minkowski reduced, I(τ) must satisfy the
following Minkowski conditions:

y1 ≤ y2 ≤ y3, 0 ≤ y4 ≤
y1

2 , |y5| ≤
y1

2 , and 0 ≤ y6 ≤
y2

2 . (5.18)

149

And from lemma 3, we obtain

y1 ≥
√

3
2 .

All these conditions allow us to write

|det(Cτ +D)| = c(p2y1 + q2y2 + r2y3 + 2pqy4 + 2pry5 + 2qry6)

= c

2(p2y1 + q2y2 + 4pqy4 + p2y1 + r2y3 + 4pry5 + q2y2 + r2y3 + 4qry6)

≥ c

2y1
[
(|p| − |q|)2 + (|p| − |r|)2 + (|q| − |r|2

]
≥ c

2

√
3

2
[
(|p| − |q|)2 + (|p| − |r|)2 + (|q| − |r|2

]
≥
√

3
4
[
(|p| − |q|)2 + (|p| − |r|)2 + (|q| − |r|2

]
Clearly, this last inequality is greater or equal to 1 if and only if

(|p| − |q|)2 + (|p| − |r|)2 + (|q| − |r|2) ≥ 3,

and less than 1 when |p|, |q| and |r| are not too far from each other.
Hence, two cases must be considered:

1. (|p| − |q|)2 + (|p| − |r|)2 + (|q| − |r|)2 = 2,

2. (|p| − |q|)2 + (|p| − |r|)2 + (|q| − |r|)2 = 0.

It follows from 2, and p ≥ 0 that |p| = |q| = |r|. Since pZ + qZ + rZ = 1,
|p| = |q| = |r| = 1 are the unique possibilities which imply four cases to be
studied:

(p, q, r) = {(1, 1, 1); (1,−1, 1); (1, 1,−1); (1,−1,−1)} .

For (p, q, r) = (1, 1, 1) :
we have,

|det(Cτ +D)| ≥ c (y1 + y2 + y3 + 2y4 + 2y5 + 2y6) > 1.

For (p, q, r) = (1,−1, 1) :

|det(Cτ +D)| ≥ c (y1 + y2 + y3 − 2y4 + 2y5 − 2y6) ,

we notice from the fundamental domain of Minkowski, see [176], that the 16
systems of linear inequalities have the following condition:

y1 + y2 − 2y4 + 2y5 − 2y6 ≥ 0. (5.19)

150

For c ≥ 2, we notice that |det(Cτ +D)| > 1, this remains the case where
c = 1. Now, when c = 1, we obtain

|det(Cτ +D)| = |τ1 + τ2 + τ3 − 2τ4 + 2τ5 − 2τ6 + d|

but since gcd(c, d) = 1, we deduce that |det(Cτ +D)| ≥ 1 for |d| ≥ 5. This
leaves the following inequalities to be verified:

|τ1 + τ2 + τ3 − 2τ4 + 2τ5 − 2τ6 + d| ≥ 1, for − 4 ≤ d ≤ 4. (5.20)

For (p, q, r) = (1, 1,−1):
we have,

|det(Cτ +D)| ≥ c (y1 + y2 + y3 + 2y4 − 2y5 − 2y6) .

From Minkowski’s conditions (5.18), we notice that |det(Cτ +D)| > 1 for
c ≥ 2 and as above it remains the true case where c = 1.
For c = 1 and y5 ≤ 0:

|det(Cτ +D)| ≥ y1 + y2 + y3 + 2y4 − 2y5 − 2y6 > 1.

However, if c = 1 and y5 > 0, the following inequalities must be verified:

|τ1 + τ2 + τ3 + 2τ4 − 2τ5 − 2τ6 + d| ≥ 1, for −4 ≤ d ≤ 4 and y5 > 0. (5.21)

For (p, q, r) = (1,−1,−1):
we obtain,

|det(Cτ +D)| ≥ c (y1 + y2 + y3 − 2y4 − 2y5 + 2y6) .

As above, from Minkowski’s conditions (5.18), we have |det(Cτ +D)| > 1
for c ≥ 2. It remains the true case where c = 1 which implies the following
inequalities to be verified:

|τ1 + τ2 + τ3 − 2τ4 − 2τ5 + 2τ6 + d| , for − 4 ≤ d ≤ 4 and y5 > 0. (5.22)

From 1, we find three possibilities:

• 1.a. |p| − |q| = ±1, |p| − |r| = ±1 and |q| − |r| = 0,

• 1.b. |p| − |q| = ±1, |p| − |r| = 0 and |q| − |r| = ±1,

• 1.c. |p| − |q| = 0, |p| − |r| = ±1 and |q| − |r| = ±1.

Since p ≥ 0, for each possibility, three cases must be studied:

151

• 1.d. p ≥ 0, q ≥ 0 and r ≤ 0,

• 1.e. p ≥ 0, q ≤ 0 and r ≥ 0,

• 1.f . p ≥ 0, q ≤ 0 and r ≤ 0.

We notice in 1.d, that if we replace p by p+ 1, q by q + 1 and r by r− 1, and
by Minkowski’s conditions (5.18), then

|det(Cτ +D)| ≥ c(p2y1 + q2y2 + r2y3 + 2pqy4 + 2pry5 + 2qry6)

= c

2[p2y1 + q2y2 + 4pqy4 + p2y1 + r2y3 + 4pry5 + q2y2 + r2y3 + 4qry6]

> 1.

In 1.f , similarly, we replace p by p+ 1, q by q− 1 and r by r− 1 and then by
Minkowski’s conditions (5.18), we deduce that |det(Cτ +D)| > 1. Again, in
1.e, we replace p by p+ 1, q by q − 1 and r by r + 1. Then by Minkowski’s
(5.18) and Tammela’s (5.19) conditions, we obtain

|det(Cτ +D)| ≥ c
(
p2y1 + q2y2 + r2y3 + 2pqy4 + 2pry5 + 2qry6

)
> 1.

Therefore, it remains to test the first values taken by p, q and r.
We deduce from 1.a, in particular, when |p| = 1 + |q| and |q| = |r| that for
c = 1 and (p, q, r) = (1, 0, 0), the following inequality should be verified:

|τ1| ≥ 1. (5.23)

Again, from 1.a, when |p| = −1 + |q| and |q| = |r|, we obtain the following
conditions

|τ2 + τ3 − 2τ6 + d| ≥ 1, (1, d) = 1

which correspond to (p, q, r) = (0, 1,−1) and c = 1. And according to lemma
4, it is enough to check the following inequalities:

|τ2 + τ3 − 2τ6 ± 1| ≥ 1. (5.24)

In 1.b, on the one hand, |p| = 1 + |q| and |p| = |r|, implies the following
conditions:

|τ1 + τ3 − 2τ5 + d| ≥ 1, (1,d)=1, and y5 > 0

which correspond to c = 1 with (p, q, r) = (1, 0,−1).

|τ1 + τ3 + 2τ5 + d| ≥ 1, (1,d)=1, and y5 < 0

152

which correspond to c = 1 with (p, q, r) = (1, 0, 1).
Again, according to lemma 4, it is enough to verify the following inequalities:

|τ1 + τ3 − 2τ5 ± 1| ≥ 1, for y5 > 0, (5.25)

and
|τ1 + τ3 + 2τ5 ± 1| ≥ 1, for y5 < 0. (5.26)

On the other hand, |p| = −1+|q| and |p| = |r|, implies the following inequality:

|τ2| ≥ 1, (5.27)

and which corresponds to c = 1 with (p, q, r) = (0, 1, 0).
In 1.c, |p| = |q| and |p| = 1 + |r| implies

|τ1 + τ2 − 2τ4 + d| ≥ 1, (1, d) = 1

which correspond to c = 1 with (p, q, r) = (1,−1, 0).
But according to lemma 4, we obtain the following inequalities:

|τ1 + τ2 − 2τ4 ± 1| ≥ 1. (5.28)

Finally, |p| = |q| and |p| = −1 + |r| gives us the last inequality to be verified:

|τ3| ≥ 1, (5.29)

and which corresponds to c = 1 with (p, q, r) = (0, 0, 1). This proves the
theorem.

5.5 Approximation to the Siegel fundamental
domain

Whereas Siegel’s fundamental domain as defined in Def 10 is an important
theoretical concept in symplectic geometry, its practical relevance is limited
since no constructive approach exists to actually identify the domain for g > 2:
the first condition on the components of the matrix of the real part of Ω is
straight forward. But as discussed in section 5.1, the Minkowski fundamental
domain appearing in the second condition of Def 10 is only known for g ≤ 3,
and the third condition of Def 10 is, however, the least studied one.

For this reason, Siegel in [171] gave an algorithm to approximately reach
the fundamental domain. Now, we review this algorithm due to Siegel which
has been implemented together with the LLL algorithm in [38]. This algorithm
is used here together with an exact determination of the shortest lattice vector
(see, [51]).
Siegel proved the following:

153

Theorem 8. Any Riemann matrix Ω = X+iY ∈ Hg with real and imaginary
part X respectively Y = R>R, where R is an upper triangular matrix, can
be transformed by a symplectic transformation 5.7 to a matrix satisfying the
following conditions:

1. |Xnm| ≤ 1/2, for n,m = 1, ..g,

2. the squared length of the shortest lattice vector of the lattice generated
by Y is greater than or equal to

√
3/2.

The proof in [171], see also [38], is constructive and leads naturally to an
algorithm:

Proof. The first condition can be always achieved by an appropriate choice

of the matrix B in Gg =
(
A B
C D

)
, B = [X], i.e., each component of B is the

integer part of the corresponding component of X.
For the second condition, we assume that the shortest vector of the lattice
generated by R, where R is the Cholesky decomposition of Y = R>R, is the
first vector of R. It is discussed in the previous chapters 2 and 4 that this can
be always achieved. Siegel showed that the determinants of the imaginary
part of two matrices Ω̃ = X̃ + iỸ and Ω = X + iY related by a symplectic
transformation (5.7) satisfy

∣∣∣det(Ỹ)
∣∣∣ = |det(Y)|
|det(CΩ +D)|2

. (5.30)

If one considers the quasi-inversion (5.10), (5.11), equation (5.30) takes the
form ∣∣∣det(Ỹ)

∣∣∣ = |det(Y)|
|Ω11|2

. (5.31)

This leads to the following algorithm:

1. choose A in (5.7) such that the shortest lattice vector appears as the
first vector of R;

2. choose B in (5.7) such that the real part of Ω̂ = A>ΩA has components∣∣∣X̂nm

∣∣∣ ≤ 1/2, for n,m = 1, ..., g;

3. if
∣∣∣Ω̂11

∣∣∣ ≥ 1, terminate the algorithm; if not, apply the quasi-inversion
(5.10), (5.11) and continue with step 1 of the algorithm for the resulting
Ω.

154

Because of (5.31) the modulus of the determinant of the imaginary part
of the transformed matrix increases with each application of step 3. Since
Siegel [171] has shown that there exists only a finite number of symplectic
transformations leading to increasing |det(Y)| and that this determinant will
be eventually greater than or equal to 1, the algorithm terminates after a
finite number of steps. Then Y11 is the squared length of the shortest lattice
vector by construction. According to lemma 3, one has Y11 ≥

√
3

2 . This
proves the theorem.

This algorithm can be used to efficiently compute multi-dimensional theta
functions.

5.5.1 Theta functions
Definition. Theta functions with characteristics are defined as an infinite
series. Let Ω be a g × g Riemann matrix, then

Θpq(z,Ω) =
∑

N∈Zg
exp {iπ 〈Ω (N + p) ,N + p〉+ 2πi 〈z + q,N + p〉} , (5.32)

with z ∈ Cg and the characteristics p, q ∈ Rg, where 〈··〉 denotes the
Euclidean scalar product 〈N, z〉 = ∑g

i=1Nizi. The positive definiteness of
I(Ω) guarantees the convergence of the series (5.32) for all values of z. Then
the series (5.32) converges in both z and Ω, and uniformly on compact sets.
Therefore, the theta function with characteristics is an entire function of
z ∈ Cg.

A characteristic is called singular if the corresponding theta function
vanishes identically. Of special interest are half-integer characteristics with
2p, 2q ∈ Zg. Such a half-integer characteristic is called even if 4〈p, q〉 =
0 mod 2 and odd otherwise. It can be easily shown that theta functions with
odd (even) characteristic are odd (even) functions of the argument z. The
theta function with characteristic is related to the Riemann theta function Θ,
the theta function with zero characteristic Θ := Θ00, via

Θpq(z,Ω) = Θ(z + Ωp + q) exp {iπ 〈Ωp, p〉+ 2πi 〈p, z + q〉} . (5.33)

From its definition, a theta function has the periodicity properties

Θpq(z+ej) = e2πipjΘpq(z) , Θpq(z+Ωej) = e−2πi(zj+qj)−iπωjjΘpq(z) , (5.34)

where ej is a vector in Rg consisting of zeros except for a 1 in jth position.
These periodicity properties (5.34) can be conveniently used in the computa-
tion of the theta function: an arbitrary vector z ∈ Cg can be written in the

155

form z = ẑ + N + ΩM with N,M ∈ Zg, where ẑ = Ωp̂ + q̂ with |p̂i| ≤ 1/2,
|q̂i| ≤ 1/2. Thus, it is enough to compute the theta function for arguments ẑ
lying in the fundamental domain of the Jacobian, i.e., Cg/Λ, where Λ is the
period lattice1 formed by Ω and the g-dimensional identity matrix, ẑ = Ωp̂+q̂
with |p̂i| ≤ 1/2, |q̂i| ≤ 1/2. For general arguments z one computes Θ(ẑ,Ω)
and obtains Θ(z,Ω) from the periodicity properties (5.34) by multiplying
with an appropriate exponential factor.

The convergence of the series (5.32) depends on the bilinear term, more
precisely on the shortest vector Nmin of the lattice Zg equipped with the
inner product defined by the imaginary part Y of the Riemann matrix Ω:
〈N,M〉Y := 〈YN,M〉, N,M ∈ Zg (see, [22, 38, 51]). For a given Riemann
matrix the shortest vector Nmin is then defined in terms of its squared length

ymin = 〈Nmin,Nmin〉Y := minN∈Zg/{0} 〈YN,N〉 . (5.35)

The longer the shortest vector, the more rapid the convergence of the theta
series. This idea follows from the fact that the theta series can be approximated
by a sum, |Ni| ≤ Nε, i = 1, .., g, where the constant Nε is chosen such that all
omitted terms in (5.32) are smaller than some prescribed value of ε where
ε = 10−16. We sum over a g-dimensional sphere and we take into account
that we can choose z in the fundamental domain of the Jacobian because of
(5.34), we get with (5.35) for the Riemann theta function the estimate

Nε >

√
− ln ε
πymin

+ 1
2 ,

(see, [51, 22]). Changing the shortest vector can be achieved by changing the
homology basis of the underlying Riemann surface which yields a different
but symplectically equivalent Riemann matrix. This can be achieved by
using modular transformations, i.e., symplectic transformations with integer
coefficients to generate larger norms of the shortest vector in order to accelerate
the convergence of a theta series for given Ω. This part corresponds to the step
3 of the algorithm presented in the proof of theorem 8. Since the behavior
of theta functions under modular transformations is explicitly known, such
transformations can dramatically increase the rate of convergence which is
especially important for larger values of g. This approach was for the first
time implemented in an algorithm by Deconinck et. al. in [38].

The main task in this context is the identification of the shortest vector
in a given g-dimensional lattice known as the shortest vector problem (SVP).

1Note, that this lattice Λ is not to be confused with the lattice generated by the matrix
Y discussed in this work.

156

Currently, there is no known algorithm that would solve this problem in
polynomial-time. The LLL algorithm yields an approximation to the shortest
vector in polynomial-time but with an error growing exponentially with the
dimension g (though in practice slowly with g such that it can be used for
small genus as an approximation). For this reason in, [38] the SVP was
solved approximately via the LLL algorithm. However, since we are interest
in an evaluation of theta functions in a large number of points, it can be
beneficial to identify the shortest vector exactly even for small g. Though
it is computationally demanding this knowledge will accelerate the ensuing
evaluation of the theta function (5.35). Therefore, we replace the LLL
algorithm in [38] with an exact Minkowski reduction for g ≤ 5, and with an
exact solution to the SVP for higher genus.

5.5.2 Example
As an example we want to study the Riemann matrix of the Fricke-Macbeath
surface [56, 115], a surface of genus g = 7 with the maximal number 84(g−1) =
504 of automorphisms. It can be defined via the algebraic curve

f(x, y) := 1 + 7yx+ 21y2x2 + 35x3y3 + 28x4y4 + 2x7 + 2y7 = 0. (5.36)

The code [52] produces for this curve the following Riemann matrix2

RieMat =

Columns 1 through 4

1.0409 + 1.3005i 0.0530 + 0.3624i 0.3484 + 0.0000i
0.0530 + 0.3624i -0.5636 + 1.0753i 0.0187 - 0.5975i
0.3484 + 0.0000i 0.0187 - 0.5975i 1.0544 + 1.7911i
0.2077 + 0.6759i 0.6749 + 0.3001i 0.3220 - 1.0297i

-0.2091 - 0.2873i 0.1220 - 0.5274i 0.3029 + 0.8379i
-0.1064 - 0.4257i 0.1205 - 0.1783i -0.2297 - 0.3668i
0.3590 + 0.5023i 0.1990 - 0.1118i 0.3495 - 0.0499i

Columns 5 through 7

0.2077 + 0.6759i -0.2091 - 0.2873i -0.1064 - 0.4257i
0.6749 + 0.3001i 0.1220 - 0.5274i 0.1205 - 0.1783i

2For the ease of the reader, we present only 4 digits though the Riemann matrix is
computed with an error of the order of 10−10.

157

0.3220 - 1.0297i 0.3029 + 0.8379i -0.2297 - 0.3668i
-0.0978 + 1.7041i -0.7329 - 0.8055i -0.0714 - 0.1766i
-0.7329 - 0.8055i 1.1824 + 1.0163i 0.4425 + 0.2592i
-0.0714 - 0.1766i 0.4425 + 0.2592i 0.2815 + 0.7791i
-0.0415 + 0.5448i 0.0835 - 0.2430i -0.6316 - 0.0369i

Columns 7 through 7

0.3590 + 0.5023i
0.1990 - 0.1118i
0.3495 - 0.0499i

-0.0415 + 0.5448i
0.0835 - 0.2430i

-0.6316 - 0.0369i
0.2315 + 0.6895i.

Remark. Since we work with finite precision, rounding is an issue also in
the context of lattice reductions. The code [52] generally produces results
with a tolerance Tol between 10−10 and 10−14, which appears for instance in
the form of an asymmetry of the computed Riemann matrix of the order of
Tol. Since in lattice reductions the components of the Riemann matrix are
multiplied with integers, these errors will be amplified. Thus a rounding of
an order of magnitude larger than Tol is necessary in practice.

After LLL reduction the first basis vector of the lattice is found to have
squared norm 1.3005 i.e., the first component of the imaginary part of the
above Riemann matrix. Note that the lattice basis is almost LLL reduced,
there are only minor effects of the LLL algorithm applied to this matrix.
Since the norm of the shortest vector is greater than

√
3/2, no quasi-inversion

is applied. An ensuing shift of the real part leads to the matrix

W =

Columns 1 through 3

0.0409 + 1.3005i 0.0530 + 0.3624i -0.4849 - 0.6245i
0.0530 + 0.3624i 0.4364 + 1.0753i -0.3594 - 0.6598i

-0.4849 - 0.6245i -0.3594 - 0.6598i -0.4706 + 1.3844i

158

-0.1064 - 0.4257i 0.1205 - 0.1783i -0.1946 - 0.1178i
0.3590 + 0.5023i 0.1990 - 0.1118i -0.0510 - 0.0073i

-0.4511 + 0.1383i -0.0171 + 0.2485i -0.0543 - 0.3239i
0.2684 - 0.2975i -0.4161 + 0.2521i 0.0481 + 0.3949i

Columns 4 through 6

-0.1064 - 0.4257i 0.3590 + 0.5023i -0.4511 + 0.1383i
0.1205 - 0.1783i 0.1990 - 0.1118i -0.0171 + 0.2485i

-0.1946 - 0.1178i -0.0510 - 0.0073i -0.0543 - 0.3239i
0.2815 + 0.7791i 0.3684 - 0.0369i 0.3907 - 0.1531i
0.3684 - 0.0369i 0.2315 + 0.6895i 0.3656 - 0.1563i
0.3907 - 0.1531i 0.3656 - 0.1563i -0.4318 + 0.6585i

-0.2437 - 0.3094i -0.2134 - 0.1308i -0.1541 + 0.0260i

Columns 7 through 7

0.2684 - 0.2975i
-0.4161 + 0.2521i
0.0481 + 0.3949i

-0.2437 - 0.3094i
-0.2134 - 0.1308i
-0.1541 + 0.0260i
-0.4997 + 1.0021i.

However, the square of the norm of the shortest lattice vector of the
imaginary part of the matrix W is 0.6585, well below the threshold

√
3/2.

Note that the LLL reduced Ỹ above has the shortest vector in the 6th column
(with squared norm 0.6585). One could construct a unimodular matrix Z
such that RZ has this vector appearing in the first column (the resulting
matrix might not satisfy the LLL condition). This would be more suited to
the application of Siegel’s algorithm, but will be still approximate since in
general LLL does not identify the shortest lattice vector correctly.

If the same algorithm is applied with an exact determination of the shortest
vector, the picture changes considerably: in the first step of the iteration, the
shortest lattice vector is correctly identified having the square of the norm
0.6585. Thus after a shift of the real part, a quasi-inversion is applied. The
subsequent identification of the shortest vector of the resulting matrix leads
to a vector of squared norm 0.7259. After a shift of the real part, another

159

quasi-inversion is applied. This time the square of the norm of the shortest
vector is 1.0211 and thus greater than

√
3/2. After a shift of the real part we

finally obtain W=

Columns 1 through 3

0.3967 + 1.0211i 0.0615 - 0.1322i -0.0000 + 0.0000i
0.0615 - 0.1322i 0.3967 + 1.0211i 0.3553 - 0.5828i

-0.0000 + 0.0000i 0.3553 - 0.5828i 0.2894 + 1.1656i
-0.4609 - 0.2609i -0.3386 + 0.1933i 0.0905 + 0.2450i
0.3553 - 0.5828i 0.4776 - 0.1287i -0.4776 + 0.1287i
0.1838 + 0.3219i 0.2743 + 0.5669i 0.3871 - 0.3736i

-0.3386 + 0.1933i -0.3386 + 0.1933i -0.1223 - 0.4541i

Columns 4 through 6

-0.4609 - 0.2609i 0.3553 - 0.5828i 0.1838 + 0.3219i
-0.3386 + 0.1933i 0.4776 - 0.1287i 0.2743 + 0.5669i
0.0905 + 0.2450i -0.4776 + 0.1287i 0.3871 - 0.3736i
0.3967 + 1.0211i -0.4776 + 0.1287i 0.0167 - 0.3895i

-0.4776 + 0.1287i 0.2894 + 1.1656i -0.1671 - 0.7115i
0.0167 - 0.3895i -0.1671 - 0.7115i 0.4414 + 1.2784i
0.0615 - 0.1322i 0.0905 + 0.2450i -0.3386 + 0.1933i

Columns 7 through 7

-0.3386 + 0.1933i
-0.3386 + 0.1933i
-0.1223 - 0.4541i
0.0615 - 0.1322i
0.0905 + 0.2450i

-0.3386 + 0.1933i
0.3967 + 1.0211i.

For applications, it is important to know how long a certain task takes on
a given computer. For the above example, the LLL code is not very efficient,
but converges in roughly 1 ms. The SVP code takes in this case 4− 5 times

160

longer, which is still completely negligible compared to what can be gained
by applying the above algorithm.

If we consider an example of even higher genus, the curve

f(x, y) := y9 + 2x2y6 + 2x4y3 + x6 + y2 = 0 (5.37)

of genus 16, we find a similar behavior. Using Siegel’s algorithm on the
Riemann matrix for this curve computed with the code [52], we find that
the variant with the LLL algorithm converges within three iterations. The
LLL algorithm takes 1− 2ms in each step. The algorithm produces Ω11 =
0.3314 + 1.0188i, a value clearly larger than 1. The length of the shortest
vector generated by the imaginary part of this Riemann matrix as found via
SVP is 0.4437, well below the theoretical minimum of

√
3/2 ≈ 0.866. On

the other hand Siegel’s algorithm with an exact solution of the SVP in each
step requires 14 iterations where each SVP takes around 10ms. Finally we
get Ω11 = 0.4748 + 0.8956i, i.e., a shortest vector almost twice as long as
what has been found with the LLL algorithm. As we see, the approximative
LLL algorithm is for g < 20 only an order of magnitude faster than the
SVP algorithm, but finds the shortest vector merely with an error growing
exponentially with g.

161

Bibliography

[1] N. A’Campo, L. Ji, A. Papadopoulos, On the early history of
moduli and Teichmüller spaces, L. Keen, I. Kra and R. E. Rodriguez.
Lipman Bers, a Life in Mathematics, American Mathematical Society,
978-1-4704-2056-7, pp. 175-262, 2015.

[2] L. Afflerbach, Minkowskische Reduktionsbedingungen für positiv defi-
nite quadratische Formen in 5 Variablen, Mh. Math. 94, pp. 1-8, 1982.

[3] L. Afflerbach and H. Grothe, Calculation of Minkowski-reduced
lattice bases, computing, vol. 35, no. 3-4, pp. 269-276, 1985.

[4] M. Agrawal, N. Kayal and N. Saxena, PRIMES is in P, Ann. of
Math. (2) 160, pp. 781-793, 2004.

[5] E. Agrell, T. Eriksson, A. Vardy and K. Zeger, Closest point
search in lattices, IEEE Trans. Inform. Theory, vol. 48, no. 8, pp. 2201-
2214, Aug. 2002.

[6] D. Aharonov and O. Regev, Lattice problems in NP and co-NP, J.
ACM, 52, pp. 749-765, Sept 2005.

[7] M. Ajtai, The shortest vector problem in L2 is NP-hard for randomized
reductions, in Proc. 30-th Annual ACM Symp. Theory of Computing, pp.
193-203, Dallas, TX, May 1998.

[8] M. Ajtai and C. Dwork, A public-key cryptosystem with worst-
case/average-case equivalence, In Proc of 29th STOC, pp. 284-293. ACM,
1997.

[9] M. Ajtai, R. Kumar, and D. Sivakumar, A Sieve algorithms for the
shortest lattice vector problem, in Proc. ACM STOC’01, Crete, Greece,
pp. 601-610, Jul. 2001.

162

[10] M. Ajtai, R. Kumar, and D. Sivakumar, Sampling short lattice
vectors and the closest lattice vector problem, In Proc. of 17th IEEE
Annual Conference on Computational Complexity (CCC), pp. 53-57,
2002.

[11] A. Akhavi, The optimal LLL algorithm is still polynomial in fixed
dimension, Theor. Comput. Sci., vol. 297, no.1, pp. 3-23, Mars. 2003.

[12] J. D. Alper, Oracle Theory, Oracle Theory courses Notes, May 2001.

[13] A. N. Andrianov, Quadratic forms and Hecke operators, Grundlehren
Math. Wiss. 286. Springer, Berlin, 1987.

[14] S. Aurora, B. Barak, Computational complexity: A modern approach,
Cambridge University Press, 2009.

[15] L. Babai, On Lovász Lattice reduction and the nearest lattice point
problem, Combinatorica, 6, pp. 1-13, 1986.

[16] S. Bai, T. Laarhoven and D. Stehlé, Tuple Lattice Sieving, volume
19, Issue A(Algorithmic Number Theory symposium XII), LMS Journal
of Computation and Mathematics, pp. 146-162, Jan 2016.

[17] A. H. Banihashemi and A. K. Khandani, On the complexity of
decoding lattices using the Korkine-Zolotarev reduced basis, IEEE Trans.
Inf. Theory. Vol. 44, no. 1, pp. 162-171, Jan. 1998.

[18] E. S. Barnes and M. J. Cohn, On Minkowski reduction of positive
quaternary quadratic forms, Mathematika 23, pp. 156-158, Dec 1976.

[19] A. Becker, L. Ducas, N. Gama, and T. Laarhoven, New direc-
tions in nearest neighbor searching with applications to lattice sieving, In
Proc. Of SODA, pp. 10-24. SIAM, 2016.

[20] W. A. Beyer, R. B. Roof and D. Williamson, The lattice structure
of multiplicative congruential pseudo-random vectors, Math. Comput, 25,
pp 345-360, 1971.

[21] H. F. Blichfeldt, A new principle in the geometry of numbers, with
some applications, Transactions of the American Mathematical Society,
vol. 15, pp. 227-235, 1914.

[22] A. I. Bobenko, C. Klein, Computational Approach To Riemann
Surfaces, Lectures Notes in Mathematics 2013, Mathematics ISSN 0075-
8434, Springer, pp. 152-155, 2013.

163

[23] H. W. Braden, T. P. Northover, Klein’s curve, J. Phys. A 43
(2010), no. 43, 434009, 17 pp. 2010.

[24] M. R. Bremner, Lattice basis reduction, An introduction to the LLL
and its applications, CRC Press, pp. 1-336, 2012.

[25] V. Brun, En generalisation av kjederbrøken I, Skv.Vidensk. Selsk. Kris-
tiana, Mat. Nat. Klasse, vol. 6. pp. 1-29, 1919.

[26] V. Brun, En generalisation av kjderbrøken II, Skv.Vidensk. Selsk. Kris-
tiana, Mat. Nat. Klasse, Vol. 6. pp. 1-24, 1920.

[27] J.-Y. Cai and T. W. Cusick, A lattice-based Public-key cryptosystem,
Information and Computation, vol. 151. Issues 1-2, pp. 17-31, 1999.

[28] J. W. S. Cassels, An introduction to the geometry of numbers, Springer-
Verlag, Berlin, 1971.

[29] X. W. Chang and G. H. Golub, Solving ellipsoïd-constrained integer
least squares problems, SIAM J. Matrix Anal. Appl., vol. 31, no. 3, pp.
1071-1089, 2009.

[30] H. CHEN and L. XU, Greedy Algorithm Computing Minkowski Reduced
Lattice Bases with Quadratic Bit Complexity of Input Vectors, Chin. Ann.
Math. Ser. B 32:857, doi: 10.1007/s11401-011-0680-1, pp. 857-862, 2011.

[31] I. V. L. Clarkson, Approximation of linear forms by lattice points
with applications to signal processing, PhD. dissertation, Australian Nat.
Univ., Canberra, Australia, 1997.

[32] O. Coldreich, S. Goldwasser and S. Halevi, Public-key cryptosys-
tem from lattice Reduction Problems, Advances in cryptology-CRYPTO,
vol. 1294 of LNCS, pp. 112-131, Springer-Verlag, 1997.

[33] J. H. Conway, N. J. A Sloane, Sphere Packings Lattices and Groups,
Third Edition, Grundlehrender mathematschen Wissenschaften, 3. Band.
vol 290, Springer-Verlag, 1999.

[34] J. H. Conway and N. J. A. Sloane, On the Voronoi regions of
certain lattices, SIAM Journal on Algebraic and Discrete Methods, vol.
5, pp. 294-305, Sept. 1984.

[35] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and
Groups, New York, NY: Springer-Verlag, 3rd ed., 1999.

164

[36] D. Coppersmith, Small solutions to polynomial equations, and low
exponent RSA vulnerabilities, J. of Cryptology, 10(4), pp. 233-260, 1997.

[37] H. Daudée and B. Vallée, An upper bound on the average number
of iterations of the LLL algorithm, Theor. Comput. Sci., vol. 123, no. 1,
p. 95-115, Jan. 1994.

[38] B. Deconinck, M. Heil, A. Bobenko, M. van Hoeij, M. Schmies,
Computing Riemann theta functions, Mathematics of Computation, 73,
pp. 1417-1442, 2004.

[39] B. Deconinck, M. Hoeij, Computing the Riemann matrix of algebraic
curve, PhysicaD, 152, pp. 28-46, 2001.

[40] J.L De Lagrange, Recherches d’arithmétique, Nouveaux Mémoires de
l’Académie de Berlin, 1773.

[41] B. N. Delone, R. V. Galiulin, and M. I. Shtogrin, On types of
Bravais lattices, in: Sovrem. Probl. Mat., Vol. 2, Moscow, pp. 119-254,
1973.

[42] E. De Shalit and E. Z. Goren, On special values of theta functions
of genus two, Ann. Int. Fourier (Grenoble), 47(3), pp. 775-799, 1997.

[43] K. Draziotis and D. Poulakis, Lattice attacks on DSA schemes
based on Lagrange’s algorithms, 5th international conference on algebraic
Informatics, CAI 2013, Berlin. LNCS 8080, pp. 119-131, 2013.

[44] R. Dupont, Moyenne Arithmético-Géométrique, suites de Borchardt et
applications, thèse, 2006.

[45] F. Eisenbrand, Integer Programming And Algorithmic Geometry Of
Numbers, A tutorial, Chapter of 50 Years of Integer Programming 1958-
2008, pp. 505-559, Nov 2009.

[46] F. Eisenbrand, and G. Rote, Fast reduction of ternary quadratic
forms, In Proceedings Of The 2001 Cryptography And lattices Conference
(CALC ′01). Lecture Notes in Computer Science, vol. 2146, Springer-
Verlag, pp. 32-44, 2001.

[47] M. Euchner, Praktische Algorithmen Zur Gitterreduktion Und Fak-
torisierung, Diplomarbeit Uni. Frankfurt. 1991.

[48] J. D. Fay, Theta functions on Riemann surfaces, Lect. Notes in Math.,
352, Springer, 1973.

165

[49] U. Fincke and M. Pohst, Improved methods for calculating vectors of
short length in a lattice, including a complexity analysis, Math. Comput.,
vol. 44, no. 170, pp. 463-471, 1985.

[50] R. Fitzpatrick, C. Bischof, J. Buchamann, Ö. Dagdelen, F.
Göpfert, A. Mariano, and B.-Y. Yang, Tuning GaussSieve for
speed, In Proc. Of LATINCRYPT, volume 9230 of LNCS, pp. 288-305,
Springer, 2015.

[51] J. Frauendiener, C. Jaber, C. Klein, Efficient computation of
multidimensional theta functions, arXiv:1701.07486, 2017.

[52] J. Frauendiener, C. Klein, Computational approach to compact
Riemann surfaces, Nonlinearity 30(1), 138, 2016.

[53] J. Frauendiener, C. Klein, Computational Approach to Hyper-
elliptic Riemann Surfaces, Lett. Math. Phy. 105(3), pp. 379-400,
doi:10.1007/s11005-015-0743-4, 2015.

[54] J. Frauendiener, C. Klein, Hyperelliptic theta functions and spectral
methods: Kdv and KP solutions, Lett. Math. Phy., 76, pp. 249-267, 2006.

[55] E. Freitag, Siegelsche Modulfunktionen, Grundlehren der Mathematis-
chen wissenschaften 254, Springer-Verlag, Berlin, 1983.

[56] R. Fricke, Über eine einfache Gruppe von 504 Operationen, Mathema-
tische Annalen, 52 (23), pp. 321-339, 1899.

[57] Y. H. Gan, G. Ling, and W. H. Mow, Complex lattice reduction
algorithm for low-complexity full-diversity MIMO detection, IEEE Trans.
Signal Processing, vol. 57, no. 7, pp. 2701-2710, July 2009.

[58] Y. H. Gan and H. W. Mow, Complex lattice reduction algorithms for
low-complexity MIMO detection, in Proc. IEEE Global Communications
Conf. (GLOBECOM), St. Louis, MI, pp. 2953-2957, Nov 2005.

[59] M. R. Garey and D. S. Johnson, Computers and intractability.
A guide to the theory of NP-completeness, A series of books in the
Mathematical Sciences. W. H. Freeman and Co., San Francisco, Calif.,
1979.

[60] C. F. Gauss, Disquisitiones Arithmetics, Springer-Verlag, 1801.

[61] C. F. Gauss, Untersuchungen über höhere Arithmetik, (Disquisi-tiones
Arithmeticae). Berlin, Germany: Springer-Verlag, 1889.

166

[62] O. Goldreich, D. Micciancio, S. Safra, and J. -P. Seifert,
Approximating shortest lattice vectors is not harder than approximating
closest lattice vectors, Information Processing Letters, Vol. 71, pp. 55-61,
July 1999.

[63] E. Gottschling, Explizite Bestimmung der Randfächen des Funda-
mentalbereiches der Modulgruppe zweiten Grades, Math. Ann. 138, pp.
103-124, 1959.

[64] R. L. Graham, M. Grötschel and L. Lovász, eds, Handbook of
combinatories, Vol. 1,2. Elsevier, Amsterdam, 1995.

[65] M. Grötschel, L. Lovász and A. Schrijver, Geometric Algotithms
and combinatorial Optimization, Berlin, Germany: Springer-Verlag, 1993.

[66] P. Gruber and C. Lekkerkerker, Geometry of numbers, North-
Holland Publishing Co., 1987.

[67] J. Hadamard, Résolution d’une question relative aux détérminants,
Bulletin des sciences math. (2), 17, pp. 240-248, 1893.

[68] R. Hain, Lectures on moduli spaces of elliptic curves, arXiv:0812.1803v3
[math.A6], Mars 2014.

[69] W. Hämäläinen, Class NP, NP-Complete, and NP-Hard Problems,
Nov 2006.

[70] G. Hanrot and D. Stehlé, Improved analysis of Kannan’s shortest
lattice vector algorithms (extended abstract), In Proceedings of Crypto
2007, Volume 4622 of Lecture Notes in Computer Science, pp. 170-186,
Springer-Verlag, 2007.

[71] G. Hanrot and D. Stehlé, Worst-case Hermite-Korkine-Zolotarev
reduced lattice bases, [Research Report] RR-6422, INRIA., pp. 25, <inria-
00211875v2>, 2008.

[72] G. Hanrot, X. Pujol and D. Stehé, Algorithms for the shortest
and closest lattice vectors problems, In IWCC, volume 6639 of LNCS, pp.
159-190, Springer, 2011.

[73] B. Hassibi and H. Vikalo, On the sphere-decoding algorithm I: Ex-
pected complexity, IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2806-
2818, Jul. 2005.

167

[74] B. Helfrich, Algorithms to construct Minkowski reduced and Hermite
reduced lattice bases, Theory comput. Sci., vol. 41, no. 2-3, pp. 125-139,
1985.

[75] M. Henk, Note on shortest and nearest lattice vectors, Information
Processing Letters, vol. 61, pp. 183-188, 1997.

[76] C. Hermite, Extraits de lettres de M. Hermite à M. Jacobi sur différents
objets de la théorie des nombres, J. Reine. Angew. Math., vol. 40, pp.
279-290, 1850.

[77] J. Hoffstein, J. C. Pipher and J. H. Silverman, An introduc-
tion to mathematical cryptography, Undergraduate texts in mathematics.
Springer, 2008.

[78] F. Holland, Another Proof Of Hadamard’s Determinantal Inequality,
Irish Math. Soc. Bulletin 59, pp. 61-64, 2007.

[79] L. K. Hua, I. Reiner, On the Generators of the Symplectic Modular
group, Transactions of the American Mathematical Society, vol. 65, no.
3, pp. 415-426, May 1949.

[80] J. Jaldén and B. Ottersen, On the complexity of sphere decoding in
digital communications, IEEE Trans. Signal Process., vol. 53, no. 4, pp.
1474-1484, Mar. 2005.

[81] J. Jaldén, D. Seethaler, and G. Matz, Worst-and average case
complexity of LLL lattice reduction in MINO wireless systems, in Proc.
IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP),
Las Vegas, NV, pp. 2685-2688, Apr. 2008.

[82] L. Ji, J. Jost, Universal moduli spaces of Riemann surfaces, arXiv:
1611.08732v1 [math.A6], Nov. 2016.

[83] A. Joux and J. Stern, Lattice reduction: A toolbox for the cryptanalyst,
J. Cryptol., vol. 11, no. 3, pp. 161-185, 1998.

[84] R. Kannan, Improved algorithms for integer programming and related
lattice problems, In Proceedings of the 15th Symposium on the theory of
computing (STOC 1983), pp. 99-108. ACM Press, 1983.

[85] R. Kannan, Algorithmic geometry of numbers, Annual review of com-
puter science, 2, pp. 231-267, 1987.

168

[86] R. Kannan, Minkowski’s convex body theorem and integer programming,
Math. Oper. Res., vol. 12, pp. 415-440, Aug. 1987.

[87] R. Kannan, Improved algorithms for integer programming and related
lattice problems, In Proceedings of the fifteenth annual ACM symposium
on Theory of Computing, STOC’ 83, pp. 99-108, NEW YORK, NY,
USA, ACM, 1983.

[88] R. Kannan, A. K. Lenstra and L. Lovász, Polynomial factorization
and nonrandomness of bits of algebraic and some transcendental numbers,
in, Proc. 16th Ann. ACM Symp. on Theory of computing, Washington,
D.C., pp. 191-200, 1984.

[89] E. Kaplan, LLL Algorithm, Lattices in computer Science, Tel Aviv
University, Fall 2004.

[90] H. Klingen, Introductory Lectures on Siegel Modular Forms, Cambridge:
Cambridge University Press, 1990.

[91] D. E. Knuth, The Art of Computer Programming, Reading, 2nd ed
Reading, MA: Addison-Wesley, 1981.

[92] A. Korkine and G. Zolotareff, Sur les formes quadratiques, Math.
Ann., vol. 6, pp. 366-389, 1873.

[93] D. A. Korotkin, Finite-gap solutions of the stationary axially symmet-
ric Einstein equation in vacuo, (Russian); translated from Teoret. Mat.
Fiz. 77(1988), no. 1, pp. 25–41 Theoret. and Math. Phys. 77(1988), no.
1, pp. 1018-1031, 1989.

[94] A. Krieg, Primitive minima of positive definite quadratic forms, Acta
Arithmetica, 63:1, pp. 91-96, 1993.

[95] T. Laarhoven, Sieving for shortest vectors in lattices using angular
locality-sensitive hashing, In Proc. Of CRYPTO, volume 9215 of LNCS,
pp. 3-22. Springer, 2015.

[96] T. Laarhoven, M. Mosca, and J. van de Pol, Finding shortest
lattice vectors faster using quantum search, Designs, Codes and Cryptog-
raphy, 77(2-3), pp. 375-400, 2015.

[97] J. C. Lagarias, Worst-Case complexity bounds for algorithms in the
theory of integral quadratic forms J. Algorithms 1, pp. 142-186, 1980.

169

[98] J. C. Lagarias, H. W. Lenstra, Jr., and C. P. Schnorr, Korkin-
Zolotarev bases and successive minima of a lattice and its reciprocal
lattice, Combinatorica 10 (4), pp. 333-348, Springer-Verlag, 1990.

[99] A. Lamacchia, Basis Reduction Algorithms And Subset Sum Problems,
SM Thesis, Dept. of Elect. Eng. Comp. Sci, Massachusetts Institute of
Technology, Cambridge, MA 1991.

[100] C. G. Lekkerkerker, Geometry of Numbers, Wolters-Noordhoff,
Groningen, 1969.

[101] A. K. Lenstra, Lattices and factorization of polynomials, ACM, vol.
15 Issue 3, August 1981.

[102] H. W. Lenstra, Jr., Integer programming with a fixed number of
variables, Math. Oper. Res.8, pp. 538-548, 1983.

[103] A. K. Lenstra, H. Lenstra Jr and L. Lovász, Factoring Poly-
nomials With Rational Coefficients, Math. Ann., 261, pp. 515-534, Dec
1982.

[104] L. Likavec, Application of lattice basis reduction, thesis, Technische
Universität Darmstadt, mars 2011.

[105] C. Ling, Towards Characterizing the performance of Approximate
Lattice decoding in MIMO communications, Proc. Int. Symp. Turbo
codes and ITG conf. Source channel coding, 2006.

[106] C. Ling and N. Howgrave-Graham, Effective LLL reduction for
lattice decoding, in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Nice,
France, Jun. 2007.

[107] C. Ling and N. Howgrave-Graham, Effective LLL reduction for
lattice decoding, in Proc. IEEE Int. Symp. Information Theory (ISIT),
Nice, France, pp. 196-200, 2007.

[108] L. Lovász, An Algorithmic Theory of Numbers, Graphs and Convexity,
volume 50. SIAM, CBMS-NSF Regional Conference Series in Applied
Mathematics, 1986.

[109] L. Lovász and H. Scarf, The generalized basis reduction algorithms,
Math. Oper. Res., vol 17, Issue 3, pp. 751-764, 1992.

[110] F. T. Luk and D. M. Tracy, An improved LLL algorithm, Linear
Algebra Appl., vol 428, no. 2-7, pp. 441-452, Jan. 2008.

170

[111] F. T. Luk and S. Qiao, A pivoted LLL algorithm, Linear Algebra.,
vol. 434, no. 11, pp. 2296-2307, Jun. 2011.

[112] F. T. Luk, S. Qiao and W. Zhang, A lattice basis reduction
algorithm, nstitute for computational Mathematics, Hong Kong, Baptist
University, Tech. Rep. 10-04, Apr. 2010.

[113] X. Ma, W. Zhang, and A. Swami, Lattice-reduction aided equaliza-
tion for OFDM systems, IEEE Trans. Wireless Commun., vol. 8, no. 4,
pp. 1608-1613, Apr. 2009.

[114] R. Macausland, The Moore-Penrose Inverse and Least Squares, Math
420: Advanced Topics in linear algebra, university of Puget Sound,
Creative commons License, April 2014.

[115] A. Macbeath, On a curve of genus 7, Proceedings of the London
Mathematical Society 15, pp. 527-542, 1965.

[116] K. Mahler, On Minkowski’s theory of reduction of positive quadratic
forms, Quart. J. Math. 9, pp. 259-262, 1938.

[117] K. Mahler, On reduced positive definite ternary quadratic forms, J.
London Math. Soc. 15, pp. 193-195, July 1940.

[118] K. Mahler, On reduced positive definite quaternary quadratic forms,
Nieuw Arch. Wiskunde (2) 22, pp. 207-212, May 1946.

[119] K. Mahler, A theorem on inhomogeneous diophantine inequalities,
Nederl. Akad. Wetensch., Proc. 41, pp. 634-637, 1938.

[120] G. Marsaglia, The structure of linear congruential sequences, Appli-
cations Of Number Theory to Numerical Analysis (S.K.Zaremba), ed,
pp. 249-285, 1972.

[121] H. Minkowski, Über die positiven quadratischen Formen und über
kettenbruchähnliche Algorithmen, J. Reine und Angewandte Math., vol.
107, pp. 278-297, 1891.

[122] H. Minkowski, Gesammelte Abhandlungen 1, pp. 145-148, 153-156,
217-218. Leipzig-Berlin: Teubner 1911.

[123] H. Minkowski, Diskontinuitatsbereich für arithmetische Äquivalenz.,
Ges. Abh., vol. 2, Leipzig-Berlin, pp. 53-100, 1911.

171

[124] D. Micciancio, The LLL Algorithm, CSE 206A: Lattice Algorithms
and Applications, UCSD CSE, Winter 2012.

[125] D. Micciancio, The shortest vector in a lattice is NP-hard to ap-
proximate to within some constant, in Proc. 39-th Annual Symp. Found.
Computer Science, pp. 92-98, Palo Alto, CA, Nov, 1998.

[126] D. Micciancio, Lecture 3: Minimum distance, CSE 206A: Lattice
Algorithms and Applications, Spring 2007.

[127] D. Micciancio, Introduction To Lattices, CSE 206A: Lattice Algo-
rithms And Applications, UCSD CSE, Winter 2010.

[128] D. Micciancio and S. Goldwasser, Complexity of Lattice Problems:
A cryptographic Perspective, Boston, MA: Kluwer Academic, 2002.

[129] D. Micciancio an P. Voulgaris, Faster exponential time algorithms
for the shortest vector problems, in Proc. ACM/SIAM SODA ’01, Austin,
TX, pp. 1468-1480, Jan 2010.

[130] D. Micciancio and P. Voulgaris, A deterministic single expo-
nential time algorithm for most lattice problems based on Voronoi cell
computations, In Proc. STOC’10, pp. 351-358. ACM, 2010.

[131] I. Morel, D. Stehlé, and G. Villard, H-LLL: Using householder
inside LLL, in Proc. Int. Symp. on Symb and Alg. Comput. (ISSAC’ 09),
Seoul, Korea, pp. 271-278, Jul. 2009.

[132] H. W. Mow, Universal lattice decoding: A review and some recent
results, in Proc. IEEE Int. Conf. Communications (ICC), Paris, France,
vol. 5, pp. 2842-2846, 2004.

[133] D. Mumford, Tata lectures on Theta. I and II., Progress in Mathe-
matics, 28 and 43, respectively. Birkhäuser Boston, Inc., Boston, MA,
1983 and 1984.

[134] C. E. Nelson, The reduction of positive definite quinary quadratic
forms, Aequationes Math. 11, pp. 163-168, 1974.

[135] A. Neumaier and D. Stehlé, Faster LLL-type reduction of lattice
bases, ISSAC’ 16, Waterloo, Ontorio, Canada. ACM., DOI: 10.475/1234,
2016.

[136] P. Q. Nguyen and D. Stehlé, An LLL algorithm with quadratic
complexity, SIAM J. Comput ., vol. 39, no. 3, pp. 874-903, 2009.

172

[137] P. Q. Nguyen and D. Stehlé, Low dimensional basis reduction
revisited, In. D. A. Buell, editor, Proceedings of ANTS 2004, number
3076 in LNCS, pp. 338-357, Springer-Verlag, 2004, ACM Transactions
on Algorithms, 5(4), 2009.

[138] P. Nguyen and J. Stern, Lattice Reduction in cryptology: An Update,
W. Bosma (Ed.): ANTS-IV, LNCS 1838, pp. 85-112, Springer-Verlag
Berlin Heidelberg, 2000.

[139] P. Q. Nguyen and B. Vallée, The LLL Algorithm: Survey and
Applications, Eds. Berlin, Germany: Springer-Verlag, 2009.

[140] P. Q. Nguyen and T. Vidick, Sieve algorithms for the shortest
vector problem are practical J. Math. Crypt., vol. 2, no. 2, pp. 181-207,
2008.

[141] A. M. Odlyzko, The rise and fall of Knapsack cryptosystems, In
Cryptology and Computational Number Theory, volume 42 of Proc. of
Symposia in Applied Mathematics, pp. 75-88. A.M.S., 1990.

[142] M. Pohst, On the computation of lattice vectors of minimal length,
successive minima and reduced bases with applications, ACM SIGSAM
Bulletin, vol. 15, pp. 37-44, Feb. 1981.

[143] D. Poulakis, New lattice attacks on DSA Schemes, J. Mathematical
Cryptololy, vol. 10, Issue 2, pp. 135-144, 2016.

[144] X. Pujol and D. Stehlé, Rigorous and efficient short lattice vectors
enumeration, In Proc. ASIACRYPT’08, vol. 5350 of LNCS, pp. 390-405,
Springer, 2008.

[145] X. Pujol and D. Stehlé, Solving the shortest lattice vector problem
in time 22.465n, Cryptology ePrint Archive, Report 2009/605, pp. 1-7,
2009.

[146] S. Qiao, A Jacobi method for lattice basis reduction, In Proceeding
of 2012 International Conference On Wireless Communications and
Networks, Xi’an China, May 2012.

[147] S. Radziszowski and D. Kreher, Solving Subset Problems With
The LLL algorithm, J. Combin. Math. Combin. Comput. 3, pp. 48-63,
1988.

[148] O. Regev, Lecture notes of lattices in Computer Science, taught at
the Computer Science Tel Aviv university, Fall 2009.

173

[149] B. Riemann, Theorie der Abel’schen Functionen, Journal für die reine
und angewandte Mathematik, pp. 115-155, 1857.

[150] S. S. Ryshkov, On the reduction of positive quadratic forms of n
variables in the sense of Hermite, Minkowski, and Venkov, Dokl. AN
SSSR, 207, no. 5, pp. 1054-1056, 1972.

[151] S. S. Ryshkov, On the theory of reduction of positive quadratic forms,
Dokl. AN SSSR, 198, no. 5, pp. 1028-1031, 1971.

[152] S. S. Ryshkov, On the reduction theory of positive quadratic form, J.
Soviet Math. Dokl. 12, pp. 946-950, 1971.

[153] S. S. Ryshkov, The theory of Hermite-Minkowski reduction of positive
definite quadratic forms, J. Soviet Math. 6, pp. 651-671, 1976.

[154] S. S. Ryshkov, On the theory of Hermite-Minkowski reduction of
positive quadratic forms, Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,
vol. 33, Leningrad, pp. 37-64, 1973.

[155] C. Saha, P. Verna, Lecture 14: Randomized / Probabilistic computa-
tion, E 224 computational complexity theory, Aug-Dec 2015.

[156] C. P. Schnorr, A more efficient algorithms for lattice basis reduction,
J. Algorithms 9, pp. 47-62, 1988.

[157] C. P. Schnorr, A hierarchy of polynomial lattice basis reduction
algorithms, Theor. Comput. Sci., vol. 53, no. 2-3, pp. 201-224, 1987.

[158] C. P. Schnorr, Average time fast SVP and CVP algorithms for low
density lattices, TR Goethe Universität Frankfurt, Jan 2010.

[159] C. P. Schnorr and M. Euchner, Lattice basis reduction: Improved
practical algorithms and solving subset sum problems Mathematical Pro-
gramming, vol. 66, pp. 181-191, 1994.

[160] C. P. Schnorr and H. H. Hörner, Attacking The Chor-Rivest
Cryptosystem By Improved Lattice Reduction, In Proc. EUROCRYPT’95,
LNCS 921, Springer-Verlag, Berlin New York, pp. 1-12, 1995.

[161] D. Seethaler and G. Matz, Efficient vector perturbation in multi-
antenna multi-user systems based on approximate integer relations, in
Proc. European Signal Processing Conf. (EUSIPCO), Florence, Italy,
Sept, 2006.

174

[162] D. Seethaler, G. Matz, and F. Hlawatsch, Low-complexity
MIMO detection using Seysen’s lattice reduction algorithm, in Proc.
IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP),
Honolulu, HI, pp. 53-56, Apr. 2007.

[163] Y. Sheng, Relationships between Nondeterministic and Deterministic
tape complexity, Math. 336, 2014.

[164] I. Semaev, A 3-dimensional lattice reduction algorithm, In Proceedings
Of The 2001 Cryptography And Lattices Conference (CALC ′01). Lecture
Notes in Computer Science. Vol. 2146. Springer-Verlag, pp. 181-193, 2001.

[165] M. Seysen, Simultaneous reduction of a lattice basis and its reciprocal
basis, Combinatorica, vol. 13, Issue 3, pp. 363-376, Sept 1993.

[166] G. Shomonin, Minkowski’s theorem and its application, Integer Points
in polyhedra, 2009.

[167] C. L. Siegel, Lectures on the Geometry of Numbers, Springer-Verlag,
1989.

[168] C. L. Siegel, Einführung in die Theorie der Modulfunktionen n-ten
Grades, Math. Ann. 116, pp. 617-657, 1939.

[169] C. L. Siegel, Lectures on Quadratic Forms, Notes by K. G. Ra-
manathan, Bombay: Tata institute of Fundamental Research, 1967.

[170] C. L. Siegel, Symplectic Geometry, Academic Press, New York and
London, 1964.

[171] C. L. Siegel, Topics in complex function theory, vol. III. John Wiley
and sons, Inc., New York, 1989.

[172] D. Simon, Selected Applications Of LLL In Number Theory, Chapter
of The LLL algorithm, part of the series Information Security and
Cryptography, pp. 265-282, 2009.

[173] N. J. A. Sloane, The Sphere Packing Problem, arXiv: math/020725v1
[math. CO], Jul 2012.

[174] D. Stehlé and M. Watkins, On the extremality of an 80-dimensional
lattice, In: Hanrot G., Morain F., Thomé E. (eds) Algorithmic Number
Theory. ANTS 2010. Lectures Notes in Computer Science, vol 6197,
Springer, Berlin, Heidelberg, pp. 340-356, 2010.

175

[175] C. Swierczewski, B. Deconinck, Computing Riemann theta func-
tions in Sage with applications, Mathematics and computers in Simulation
127, pp. 263-272, 2016.

[176] P. P. Tammela, On reduction theory of positive quadratic forms,
Studies in number theory. Part 3, Zap. Nauchn. Sem. LOMI, 50, "Nauka".
Leningrad. Otdel., Leningrad, pp. 6-96, 1975.

[177] P. P. Tammela, The Hermite-Minkowski domain of reduction of
positive definite quadratic forms in six variables, Zap. Nauchen. Sem.
Leningrad. Otdeh. Mat. Inst. Steklov. LOMI, 13, pp. 72-89; English
transl. in J. Soviet. Math. 5, no. 3, 1976.

[178] P. P. Tammela, Minkowski reduction region for positive quadratic
forms in seven variables, J. Sov. Math, vol. 16, Issue 1, pp. 836-857,
1981.

[179] P.P. Tammela, Theory of reduction of positive-definite quadratic
forms: Nonnormality of the partition of the positivity cone into Minkowski
(n ≥ 7) and Barnes-Cohn (n = 4) reduction region, J. Sov. Math, vol.
43, Issue 5, pp. 2699-2705, Dec 1988.

[180] P. P. Tammela, Reduction theory of positive quadratic forms, J. Math
Sci, vol. 11, Issue 2, pp. 197-277, 1979.

[181] Z. Tian and S. Qiao, A Complexity Analysis Of a Jacobi Method
for Lattice Basis Reduction, Proceeding C3S2E’12 Proceedings of the
Fifth International C* conference on Computer Science and Software
Engineering, pp. 53-60, 2012.

[182] B. Vallée, Gauss’s algorithm revisited, J. of Algorithm, 12(4), pp.
556-572, 1991.

[183] B. Vallée, La réduction des réseaux: autour de l’algorithme de Lenstra,
Lenstra, Lovász, RAIRO Inform. Théor. Appl., 23(3), pp. 345-376, 1989.
English translation in CWI Quaterly, 3(2), pp. 95-120, 1990.

[184] B. Vallée, Une approche géométrique de la réduction des réseaux en
petite dimension, Ph.D. thesis, Université de Caen, 1986.

[185] B. L. Van der Waerden, Die Reduktionstheorie der positiven
quadratischen Formen, Acta Math. 96, pp. 265-309, 1956.

176

[186] B. L. Van der Waerden, Das Minimum von D/f11f22...f55 für
reduzierte positive quinäre quadratische Formen, Aequationes Math. 2,
pp. 233-247, 1969.

[187] B. L. Van Der Waerden and H. Gross, Studien Zur Theorie der
Quadratischen Formen, Book, Mathematische Reihe, vol. 34, 1968.

[188] P. Van Emde Boas Another NP-Complete partition problem and the
complexity of computing short vectors in a lattice Rep. 81-04, Mathema-
tisch Institut, Amsterdam, The Netherlands, Apr. 1981.

[189] A. Vardy and Y. Be’ery, Maximum-likelihood decoding of the Leech
Lattice, IEEE Trans. Inform. Theory, vol. 39, pp. 1435-1444, July 1993.

[190] A. Vera, Analyses de l’algorithme de Gauss. Applications à l’analyse
de l’algorithme LLL, Algorithme et structure de données [cs.DS], thèse,
Université de Caen, HAL, 2009.

[191] E. Viterbo and J. Boutros, A universal lattice code decoder for
fading channels, IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1639-1642,
Jul. 1999.

[192] X. Wang, M. Liu, C. Tian and J. Bi, Improved Nguyen-Vidick
heuristic sieve algorithms for shortest vector problem, Cryptology ePrint
Archive, Report 2010/647, 2010.

[193] D. Wübben, R. Böhnke, V. Kühn and K. D. Kammeyer, Near-
maximum-likehood detection of MIMO systems using MMSE-based lattice
reduction, in Proc. Int. Commun. Conf. (ICC’ 04), pp. 798-802, Jun.
2004.

[194] D. Wübben, R. Böhnke, V. Kühn, and K. D. Kammeyer,
MMSE-based lattice reduction for near-ML detection of MIMO systems,
in Proc. Int. ITG Workshop on Smart Antennas, Munich, Germany, pp.
106-113, Mar. 2004.

[195] D. Wübben, D. Seethaler, J. Jaldén, and G. Marz, Lattice
reduction: A survey with applications in wireless communications, IEEE
Signal Process. Mag., vol. 28, no. 3, pp. 70-91, May 2011.

[196] D. Zagier, Elliptic modular forms and their applications, In the 1-
2-3 of Modular forms: Lectures at a summer school in Nordfjordeid,
Norway (=[10] of "books":ed.K. Ranested), Universitext, Springer-verlag,
Berlin-Heidelberg-New York, pp. 1-103, 2008.

177

[197] F. Zhao and S. Qiao, Radius Selection Algorithms For Sphere Decod-
ing, C3S2E’09 Proceedings of the 2nd Canadian conference on Computer
Science and Software Engineering, pp. 169-174, 2009.

[198] W. Zhang, S. Qiao and Y. Wei, HKZ and Minkowski Reduction
Algorithms for Lattice-Reduction-Aided MIMO Detection, IEEE Transac-
tions on SIGNAL Processing, vol. 60, no. 11, Nov. 2012.

[199] W. Zhang, S. Qiao and Y. Wei, Practical HKZ and Minkowski Lat-
tice Reduction Algorithms, Dept. Comput. Software, McMaster University,
Hamilton, ON, Canada, Tech. Rep. CAS-11-04-SQ, 2011.

178

