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ABSTRACT 

Structural steel members with open cross-section are, in the majority of cases, subject to a 

combination of axial force and mono- or bi-axial bending. Nonetheless, owing to specific use, they 

may be subject to torsion as well. Indeed, crane girders are subject to torsion as the crane, 

circulating at the upper or lower flange, induces horizontal loads applied outside of the shear 

centre of the girder. Also, members with U section, sometimes used as edge girders, are generally 

subject to torsion as the vertical load acts through the web and it is consequently applied outside 

of the shear centre. Even if torsional loads are of practical interest for steel members of open 

section, the European standard for the design of steel structures, Eurocode 3, does not contain a 

generally accepted design method addressing the resistance of these members. Consequently, the 

main objective of this thesis is to fill the gap in the current standard. So as to attain this objective 

the behaviour of members of open section subject to complex load combinations is studied 

theoretically, experimentally and numerically. 

First, a finite element model is developed. In particular, the influence of the fillets of hot-rolled 

members and the influence of the calculation imperfections are studied. This study helped to 

complete the recommendations for numerical simulations that have been developed especially 

for members with double symmetric I sections and that may consequently not be applied directly 

to U-shaped members. 

In a second step, the plastic cross-section resistance is studied based on ten laboratory tests and 

an extensive numerical simulation campaign. The laboratory tests have been performed in order 

to characterise the interaction between the major-axis bending moment and the shear force. 

Indeed, it appeared that existing design models for this load configuration may yield highly 

different results. The tests together with supplementary numerical simulations highlight the 

influence of strain hardening on the shear resistance. It is shown that only a design model, which 

explicitly considers the level of strain hardening in a given section, may reliably predict the shear 

resistance. An example of such a design model is the “Continuous Strength Method”. The study is 

then extended to plastic interaction for mono-symmetric sections and to plastic interaction 

including the effect of torsion. In case of applied torsion, the member generally possesses a non-

negligible plastic torsional system reserve that cannot be accounted for by simple elastic analysis. 

In order to overcome this limitation, a two-step elastic analysis method is proposed that should, 

however, only be applied in practice if no specific “Serviceability Limit State” criteria are 

formulated for the studied members. Based on an extensive parametric study simplified 

interaction equations are proposed for the plastic cross-section resistance. Yet, as these 

interaction equations become very complex in some cases, it appeared more straightforward to 

adapt the “Partial Internal Force Method” to the results obtained by the numerical simulations 

and the laboratory tests. The resulting design method is shown to be sufficiently precise. 

The last part of this thesis is dedicated to the resistance of the member including second order 

effects and the effect of elasto-plastic instability. Existing design methods for members with or 

without torsion are discussed and compared to selected numerical simulations. Resulting 
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limitations and inconsistencies in these methods are then analysed. In order to get more insights 

into the behaviour of members subject to torsion, a theoretical study is performed based on the 

assumption of elastic material behaviour. The critical elastic loads are determined and it is shown 

that in some cases pre-buckling displacements should be considered. Indeed, for U-shaped 

members under minor-axis bending or bi-axial bending critical loads not considering the 

influence of pre-buckling displacements are not representative of the member behaviour. 

Subsequently to the investigations concerning elastic instability, the elastic second order 

equilibrium of the member is studied to redevelop the analytical background of available design 

methods addressing the resistance of members subject to a compression axial force and bi-axial 

bending. These investigations are also used to highlight the parameters that should be 

additionally accounted for if the member is also subject to torsion. Based on the theoretical 

developments and a second extensive numerical study covering more than 10 000 configurations 

(form of the section + load case) an extension of the Eurocode 3 Part 1-1 interaction equations for 

the member resistance is proposed. It is shown that the approach is sufficiently precise for 

member with compact and slender double symmetric I section. The proposal becomes more 

conservative for short U-shaped members due to the simple approximation of the plastic cross-

section interaction. Finally, it appears that the interaction equations are very conservative for 

members with mono-symmetric I section due to their high plastic torsional system reserve. 

A second design approach is developed in the format of the “Overall Interaction Concept” (OIC) 

for members with compact double symmetric I section in order to overcome the conservatism of 

the interaction equations linked to the approximation of the plastic cross-section interaction. The 

OIC proposal is shown to be at least as precise as the Eurocode 3 interaction equations (even in 

their initial field of application) and it is even more precise for members with short to 

intermediate lengths. 
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RÉSUMÉ ÉTENDU 

Les barres en acier à section ouverte sont généralement soumises à une combinaison de flexion 

bi-axiale et d’effort normal. Cependant, dans certain cas, ces barres sont également soumises à un 

moment de torsion. En effet, les poutres de roulement sont sollicitées par de la torsion en raison 

du fonctionnement de l’appareil de levage qui induit des charges horizontales appliquées en 

dehors du centre de cisaillement de la section de la poutre. Aussi, les barres en U, souvent utilisées 

comme poutres de rive, sont sollicitées en torsion étant donné que les charges sont généralement 

appliquées dans le plan moyen de l’âme de la section et donc en dehors du centre de cisaillement. 

Actuellement, la résistance des barres soumises à de la torsion ne peut pas être vérifiée sauf par 

une analyse numérique complexe. Mais, dans la pratique des bureaux d’étude, ce type d’analyse 

n’est pas facilement réalisable à cause d’un manque des logiciels adaptés. C’est pourquoi, cette 

thèse a pour objectif de définir un modèle de résistance qui peut facilement être utilisé dans les 

bureaux d’étude. En particulier, il est envisagé: 

• D’étudier le comportement des barres soumises à une combinaison complexe 

d’effort par voies théorique, expérimentale et numérique ; 

• De développer un modèle de résistance fiable pour déterminer la résistance 

plastique de la section ; 

• De développer un modèle de résistance fiable pour déterminer la résistance de la 

barre prenant en compte l’effet de l’instabilité élasto-plastique. 

Afin d’atteindre ces objectives, la théorie nécessaire pour comprendre le comportement des 

barres à section ouverte soumises à de la torsion est présentée. Il est montré qu’en élasticité le 

comportement est équivalent à celui des barres soumises à une combinaison d’effort axial de 

traction et d’un moment de flexion. Dans la suite de cette thèse, nous démontrons que cette 

équivalence peut être étendue dans le domaine plastique. 

Avant l’étude proprement dite du comportement des barres en acier soumises à de la torsion, un 

modèle numérique par éléments finis est établi. Il est apparu nécessaire d’étudier en détail la 

modélisation des congés de raccordement des barres en acier laminées à chaud. En effet, les 

congés ont une influence non négligeable sur la distribution des contraintes de cisaillement créées 

par le moment de torsion de Saint-Venant. En plus, on leur attribue généralement un effet 

favorable pour la résistance à l’effort tranchant. L’étude numérique a révélé que seule une 

modélisation par éléments finis volumiques est capable de représenter fidèlement la distribution 

des contraintes provoquées par la torsion sur des sections laminées à chaud et ainsi seule une 

modélisation volumique peut précisément prédire la résistance de la section. Les congés 

possèdent également une influence sur la résistance des barres si une configuration particulière 

est étudiée (configuration = combinaison entre section de la barre et chargement). En revanche, 

nous avons pu montrer que l’influence des congés disparaît lorsque la résistance est représentée 

dans un diagramme de type χ-λ (facteur de réduction – élancement réduit). De plus, il est possible 

de démontrer qu’une modélisation par éléments finis de type coque est capable de reproduire le 
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comportement en torsion des barres sans congés. Ses deux conclusions seulement ont permis 

d’établir une base de données de résultats numériques contenant plus que dix milles cas de barres. 

Ce grand nombre de cas, nécessaire pour étudier tous les paramètres qui influencent le problème 

traité, n’a pas pu être simulé avec une modélisation volumique en raison de la durée du calcul 

numérique. Afin d’assurer la fiabilité des résultats, les deux modèles numériques (modélisation 

volumique et modélisation en coque) ont été validés par rapport à des résultats expérimentaux 

publiés dans le passé. 

Ensuite, la résistance plastique de la section est étudiée. Cette résistance représente le cas limite 

de la résistance de la barre dans son ensemble si sa sensibilité à l’instabilité élasto-plastique 

devient négligeable (par exemple pour les barres courtes). C’est pourquoi il est indispensable de 

porter une attention particulière à la caractérisation du comportement plastique de la section. 

Tout d’abord, nous avons analysé les modèles de résistance disponibles dans la littérature. Il a 

alors été mis en évidence que : 

• Les équations d’interaction plastique proposées dans l’Eurocode 3 Partie 1-1 pour 

le cas d’une combinaison d’effort normal et de flexion bi-axiale sont plus précises 

que les formules d’interaction données par la norme Américaine AINSI/AISC 360-

10 et que celles données par la norme Australienne AS 4100 ; 

• La définition de l’aire de cisaillement des sections laminées à chaud diffère 

largement dans les trois normes citées, ce qui conduit à des résistances à l’effort 

tranchant très différentes ; 

• Ces trois normes ne contiennent pas de modèle de résistance satisfaisant pour les 

sections soumises aux effets de torsion. 

Afin de franchir les limitations observées, nous avons présenté deux autres modèles de résistance. 

Le premier est basé sur une distribution prédéfinie des contraintes. Ces contraintes sont ensuite 

augmentées itérativement jusqu’à ce que la section soit entièrement plastifiée. Ce modèle 

nécessite une implémentation numérique. Le second modèle est basé sur la méthode « Partial 

Internal Force Method » (PIFM) introduite dans la référence (Kindmann et al. 1999a). Les 

limitations de la version initiale de cette méthode ont été analysées et nous avons proposé des 

adaptations qui améliorent la précision de cette méthode pour les sections soumises à une 

combinaison d’effort axial et de flexion bi-axiale. Toutefois, ces deux dernières méthodes sont 

basées sur certaines hypothèses, notamment concernant l’aire de cisaillement des sections 

laminées à chaud. Par conséquent, il est apparu nécessaire de valider l’hypothèse concernant l’aire 

de cisaillement par voie expérimentale. En tout, dix barres en acier laminées à chaud ont été 

testées en laboratoire. Ensuite, nous avons complété les résultats par des analyses numériques 

avec le modèle volumique prenant en compte l’effet supposé des congés. Ces simulations 

supplémentaires ont porté sur une plus grande variété de géométries de section et de nuances 

d’acier. Cette étude a permis de montrer que : 
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• Le modèle de résistance à l’effort tranchant (et ainsi la définition de l’aire de 

cisaillement) donné dans l’Eurocode 3 Partie 1-1 est satisfaisant pour les sections 

compactes (faible rapport hauteur/largeur) ; 

• L’effet des congés sur la résistance à l’effort tranchant des sections en I est 

cependant faible. En effet, les sections sans congés de raccordement atteignent 

pratiquement la même résistance à l’effort tranchant que les mêmes sections 

possédant des congés ; 

• La résistance à l’effort tranchant est en effet lié à l’écrouissage de l’acier. Par 

conséquent, le modèle de résistance de l’Eurocode 3 Partie 1-1 peut devenir in-

sécuritaire dans certains cas si le niveau d’écrouissage atteignable par la section 

n’est pas suffisant ; 

• Un modèle de résistance qui tient spécifiquement compte du niveau d’écrouissage 

possible dans une section donnée, comme la « Continuous Strength Method », est 

capable de prédire plus fidèlement la résistance à l’effort tranchant des sections 

avec ou sans congés de raccordement. 

L’étude est ensuite élargie sur l’interaction plastique entre effort tranchant Vz et moment de 

flexion autour de l’axe de forte inertie pour les sections en U et en I mono-symétrique et sur 

l’interaction plastique entre effort tranchant Vy et moment de flexion autour de l’axe de faible 

inertie pour les sections en I mono-symétrique et doublement symétrique ainsi que pour les 

sections en U. Pour chaque cas, une formule d’interaction est proposée. A la suite de ces 

investigations, l’impact de la torsion sur la résistance plastique est étudié. D’abord, l’influence du 

type d’analyse (élastique ou plastique) est discutée. Nous avons montré que la résistance 

plastique des barres à section ouverte est fortement influencée par la réserve plastique en torsion 

de la barre. En effet, l’étude numérique révèle que la rigidité en gauchissement de la barre diminue 

à l’endroit de la plastification de la section la plus chargée jusqu’à la formation d’une « rotule en 

gauchissement ». Après la formation de cette rotule plastique, les charges peuvent continuer 

d’augmenter alors que la torsion est reprise uniquement par les contraintes de cisaillement 

associées au moment de torsion de Saint-Venant tandis qu’elle était reprise majoritairement par 

la torsion non-uniforme et en particulier par le bi-moment avant l’apparition de la rotule. Ainsi, la 

ruine plastique de la barre dans son ensemble n’est pas provoquée par une interaction d’efforts 

internes à l’endroit le plus chargé (selon une analyse élastique) mais cette ruine est provoquée 

par la plastification de la barre sur toute sa longueur due à l’interaction du moment de torsion de 

Saint-Venant avec les autres efforts internes. L’augmentation de l’importance relative des 

moments de torsion de Saint-Venant ne peut pas être prédite par une simple analyse élastique de 

la barre. Cependant, l’habitude actuelle qui consiste à vérifier la résistance de la section (ou de la 

barre) en se basant sur une analyse élastique pour la détermination des efforts internes et en 

négligeant le moment de torsion de Saint-Venant dans l’interaction plastique reste acceptable 

parce que cette approche donne, pour les cas pratiques, toujours une estimation de résistance plus 

faible que si la réserve plastique en torsion est considérée. Toutefois, il peut être économiquement 

intéressant de prendre en compte la réserve plastique en torsion. C’est pourquoi nous avons 

proposé une méthode d’analyse élastique en deux étapes qui est capable de représenter le 
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comportement plastique des barres à sections ouvertes en torsion. Cette méthode doit être limitée 

aux barres courtes, non sensibles aux effets d’instabilité élasto-plastique et aux barres non 

soumises à des critères particuliers d’Etat Limite de Service étant donné que la mobilisation de la 

réserve plastique en torsion implique aussi une augmentation non négligeable de la rotation en 

torsion qui ne peut pas être déterminée fidèlement par le modèle d’analyse simplifié. 

A la suite de l’examen du comportement plastique des barres, l’interaction plastique d’une section 

sous effet combiné du bi-moment, des moments de flexion et de l’effort tranchant Vz est étudiée. 

Nous avons proposé des formules d’interaction « simplifiées » pour les sections en I mono et 

doublement symétrique et pour les sections en U. Cependant, la complexité des expressions 

développées augmente considérablement avec la mono-symétrie de la section et avec le cas 

d’interaction considéré. Nous avons montré qu’une seule formule ou même un nombre limité de 

formules d’interaction ne peut pas être développé pour couvrir une interaction entre l’effort axial, 

la flexion bi-axiale et le bi-moment. Il est apparu plus prometteur d’adapter davantage la méthode 

PIFM aux résultats obtenus par l’étude paramétrique concernant la résistance plastique de la 

section. Les adaptions ont été validées par rapport aux résultats numériques et nous avons pu 

démontrer la bonne précision de l’approche proposée. 

Après avoir mis au point un modèle de résistance pour les barres (courtes) qui peuvent atteindre 

leur résistance plastique théorique, nous avons abordé la résistance des barres sensibles à 

l’instabilité élasto-plastique. Afin de caractériser leur comportement une large campagne de 

simulations numériques a été réalisée avec l’objectif de couvrir au maximum la globalité des 

paramètres qui étaient susceptibles d’influencer le problème. Ainsi, une totalité d’environ 10 000 

configurations (section + cas de charge) a été traitée. Cependant, avant de commencer cette 

campagne numérique, il a été indispensable d’étudier l’influence des imperfections de calcul sur 

le résultat numérique obtenu. En effet, les barres en acier possèdent des imperfections physiques 

concernant leur géométrie (imperfections géométriques) et concernant leur matériau 

(imperfections matérielles). Ces imperfections sont en réalité de nature arbitraire et ne peuvent 

donc pas être reproduites directement lors des simulations numériques. Il est alors nécessaire de 

les remplacer par des imperfections équivalentes afin d’obtenir une limite basse sécuritaire qui 

couvre l’effet le plus défavorable des imperfections réelles. Dans la littérature, il existe des études 

détaillées concernant les imperfections équivalentes pour les barres à section en I doublement 

symétrique. En revanche, pour les sections en I mono-symétriques et particulièrement pour les 

sections en U, certaines informations ou recommandations ne sont pas détaillées et d’autres sont 

contradictoires. Nous avons alors réalisé une étude spécifique pour caractériser l’influence des 

imperfections sur les résultats des simulations numériques. Cette étude a permis d’obtenir les 

résultats suivants : 

• Les recommandations concernant les imperfections géométriques appliquées aux 

sections en I doublement symétriques ne peuvent pas être transposées 

directement aux sections en U. Il est absolument nécessaire de vérifier que les 

imperfections amplifient l’effet des charges, ce qui n’est pas évident en raison de 
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l’influence du bi-moment résultant de la distribution des contraintes internes (à 

ne pas confondre avec le bi-moment généré par des charges de torsion). 

• Les imperfections géométriques locales (de plaque) doivent être appliquées avec 

une longueur d’onde (dans le sens de la barre) identique pour les semelles et l’âme 

de la section sinon la charge ultime obtenue numériquement ne correspond pas à 

une limite basse. 

• Une distribution auto-équilibrée de contraintes résiduelles (due au processus de 

fabrication de la barre en acier – ici laminage à chaud) a été déterminée pour les 

sections en U à l’aide des conditions d’équilibre interne et par simulation 

thermomécanique. Les deux approches donnent des résultats proches. 

A l’issue de l’étude concernant les imperfections de calcul, nous avons discuté différents modèles 

de résistance disponibles dans la littérature pour les barres à section ouverte soumises à un 

chargement complexe incluant des charges de torsion. A l’aide du modèle numérique validé, il a 

été possible de mettre en évidence certaines limitations des approches étudiées. Afin d’obtenir 

une connaissance plus détaillée du comportement théorique des barres en torsion une étude 

analytique est ensuite réalisée.  

L’instabilité élastique (supposant un comportement élastique du matériau) est la base d’un grand 

nombre de modèles de résistance à l’instabilité des barres en acier. C’est pourquoi, nous l’avons 

étudiée en détail. En particulier, nous avons montré que les déplacements de pré-flambage 

(généralement négligés) ont une influence majeure sur la charge critique des barres en U fléchies 

autour de leur axe de faible inertie et en flexion bi-axiale. Pour ces cas-là, la charge critique n’est 

pas représentative du comportement élasto-plastique de la barre si elle ne tient pas compte des 

déplacements de pré-flambage. Aussi, nous avons pu identifier les cas dans lesquels une barre en 

U peut être sensible à l’instabilité élastique si elle est soumise à un moment Mz agissant autour de 

l’axe de faible inertie. L’étude analytique a également permis de déterminer les modes propres 

d’instabilité élastique qui sont ensuite utilisés comme imperfection équivalente lors de l’étude 

analytique de l’équilibre élastique au second ordre de la barre. Nous avons étudié l’équilibre 

élastique pour différent cas de charge, y compris des charges de torsion, avec l’objectif : 

• De (re-) démontrer la base théorique du modèle de résistance proposé 

actuellement dans l’Eurocode 3 Partie 1-1 pour la résistance des barres en acier à 

section doublement symétrique soumises à une combinaison d’effort axial et de 

flexion bi-axiale ; 

• D’obtenir des paramètres supplémentaires nécessaires pour décrire le 

comportement théorique des barres soumises, en plus, à un moment de torsion. 

Cette étude théorique a mis en évidence qu’il n’est pas possible de développer un modèle 

entièrement analytique décrivant la résistance des barres soumises à un chargement complexe. 

En effet, les hypothèses nécessaires pour obtenir des solutions analytiques sont en partie 

contradictoires (par exemple pour l’approximation de la déformée et de la distribution des 
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moments de flexion et de torsion). C’est pourquoi, certaines approximations doivent être 

acceptées lors du développement du modèle de résistance. 

Ce modèle de résistance est développé dans la dernière partie de la thèse. Tout d’abord, le modèle 

existant pour les barres soumises à un effort axial et à de la flexion bi-axiale est étendu au cas de 

la torsion. Aussi, nous avons élaboré des extensions nécessaires pour couvrir entièrement des 

sections mono-symétriques. Les extensions proposées sont : 

• Suffisamment précises pour couvrir les barres à section doublement symétrique, 

sensibles ou non à l’instabilité locale de voilement. La perte de précision du modèle 

de résistance par rapport au cas des barres soumises uniquement à un effort axial 

et à de la flexion bi-axiale est négligeable pour la pratique ; 

• Sécuritaires pour les barres à section en U courtes en raison de l’approximation 

nécessaire de l’interaction plastique complexe pour ce type de section. Seul une 

complexification considérable pourrait améliorer la précision des formules 

d’interaction pour les barres en U ; 

• Très sécuritaires pour les barres à section en I mono-symétrique en raison de la 

réserve plastique en torsion très prononcée. Cette réserve plastique ne peut pas 

être prise en compte dans le cadre de la proposition mais elle influence la 

résistance des barres, même celles de longueur intermédiaire. Il pourrait être 

envisagé de prendre en compte la réserve plastique à l’aide du modèle d’analyse 

élastique en deux étapes proposé dans le cadre de cette thèse. Cependant, ce type 

d’analyse n’est pas recommandé ici pour les barres à section mono-symétrique 

étant donné que la rotation de torsion obtenue au niveau de charge « Etat Limite 

de Service » (ELS) ne correspond pas à la rotation de torsion réelle de la barre à ce 

niveau de charge (déterminée par une analyse plus précise – analyse plastique). 

Par conséquent, il ne peut pas être assuré que les critères ELS sont réellement 

respectés. 

L’imprécision observée pour le modèle de résistance basé sur des formules d’interaction est 

partiellement due à l’approximation de l’interaction plastique. Afin de franchir cette limite propre 

aux formules d’interaction, des modèles de résistance plus globaux comme le « Overall Interaction 

Concept » (OIC) ont été développés dans le passé. Cette approche exprime la résistance d’une 

barre dans le format χ-λ et peut ainsi lier de façon continue la résistance plastique exacte d’une 

barre courte avec la résistance à l’instabilité élasto-plastique d’une barre longue. L’OIC a fait ses 

preuves pour les profils creux. Par conséquent, il semblait intéressant d’étudier si cette approche 

était également capable de représenter fidèlement la résistance des barres à section ouverte. A 

l’aide du développement théorique et de la base de données de résultats numériques, une 

approche simple dans le format OIC a été proposée pour les barres en I doublement symétrique 

soumises à une combinaison d’effort axial, de flexion bi-axiale et de torsion. Nous avons pu 

montrer que cette proposition est au moins aussi précise que les formules d’interaction et elle est 

plus précise que celles-ci pour les barres de longueur faible ou intermédiaire. 
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NOTATIONS, ACRONYMS AND DEFINITIONS 

Definitions: 

Hereafter, several terms that are referred to throughout this thesis are defined. 

Equivalent structural geometric imperfection: 

Geometric imperfection included in the analysis influencing the behaviour and resistance of a 

structure as a whole like out-of-straightness of columns. 

Equivalent geometric member imperfection: 

Geometric imperfection included in the analysis of a given member generally not influencing the 

behaviour of a structure as a whole (in specific cases an influence may exist). This imperfection is 

applied to replace the influence of arbitrary physical geometric imperfections of members (for 

example: initial curvature of the member) and to induce member instability modes during 

numerical simulations (lateral-torsional buckling, flexural buckling, etc.). 

Equivalent geometric (local) plate imperfection: 

Geometric imperfection included in the analysis of a given member and applied to its constituting 

plates (flanges and web of the section) generally not influencing the behaviour of a structure as a 

whole (in specific cases an influence may exist). This imperfection is applied to replace the 

influence of arbitrary physical geometric imperfections of the cross-section (for example: initial 

curvature of the web) and to induce local plate instability modes during numerical simulations 

(local buckling.). 

Internal forces and moments: 

Forces and moments transiting through a member or a structure necessary to equilibrate the 

effect of the applied loads (for example: axial force, bending moments, shear force, etc.). 

Internal moments: 

For simplicity, the term of internal moments is used if only moments transit through a member 

(including bending moments, torsional moments and the bi-moment but excluding the axial force 

and the shear forces). 

Serviceability Limit State: 

State beyond which specified service requirements for a structure or a structural member are no 

longer met. 

Plastic Limit State:  

State associated with plastic failure of a member or a section without considering imperfections 

or geometric non-linearity. 
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Plastic resistance factor: 

Load factor associated with the Plastic Limit State. 

Ultimate Limit State: 

State associated with collapse or with other similar forms of structural failure. 

Ultimate resistance curve: 

Curve presented in the λ-χ format linking the relative slenderness l with the ultimate resistance 

represented by the ratio Rult (ultimate resistance factor) to Rpl (plastic resistance factor). 

Ultimate resistance factor: 

Load factor associated with the ultimate resistance of a member (or structure). 
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Acronyms: 

The following abbreviations are used in this thesis: 

CSM: Continuous Strength Method 

DSM: Direct Strength Method 

FEM: Finite Element Method 

FOSTA: Forschungsvereinigung für Stahlanwendung (German steel research association) 

GMNIA: Geometrical and Material Non-linear Analysis including imperfections 

LA: Linear (elastic) analysis 

LBA: Linear buckling analysis 

MNA: Material Non-linear Analysis (not including imperfections and the effect of geometric 

non-linearity) 

OIC: Overall Interaction Concept 

 

Notations 

It should be noted that Eurocode 3 notations are used as far as possible in the framework of this 

thesis. The main notations used here are defined below: 

Capital Latin letters: 

A: Area 

Ap: Area contained in the contour of the mid-line of a hollow section 

B: Bi-moment 

Bpl: Plastic resistance to the bi-moment 

BR: Resistance to the bi-moment 

C: Centroid of the cross-section 

CmLT: Moment factor according to Eurocode 3 Part 1-1 

Cmy: Moment factor according to Eurocode 3 Part 1-1 

Cmz: Moment factor according to Eurocode 3 Part 1-1 

E: Young’s modulus (of steel) 

Fy: Lateral point load (along y-axis) 

Fz: Vertical point load (along z-axis) 
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G: Shear modulus (of steel) 

I0: Polar second moment of area 

Iy: Major-axis second moment of area 

Iz: Minor-axis second moment of area 

It: Torsion constant 

Iw: Warping constant 

L: Member length 

Lth,ltbMz: Threshold length for elastic instability of U-shaped members subject to minor-axis 

bending 

Mh: Bending moment at member ends according to Eurocode 3 Part 1-1 

Ms: Bending moment at mid-span of the member according to Eurocode 3 Part 1-1 

MT: Applied torsional moment 

Mx: Internal total torsional moment 

Mx,St.V: Saint Venant’s torsional moment 

Mx,St.V,R: Resistance to the Saint Venant’s torsional moment 

Mx,w: Warping  torsional moment 

Mx,w,R: Resistance to the warping  torsional moment 

My: Major-axis bending moment 

My,Ed: Design value of the major-axis bending moment 

My,cr: Critical major-axis bending moment for lateral-torsional buckling 

My,cr,I: Critical major-axis bending moment explicitly not considering pre-buckling 

displacements 

My,cr,II: Critical major-axis bending moment explicitly considering pre-buckling displacements 

My,MNA: Major-axis bending moment at plastic limit state obtained through MNA simulation 

My,pl: Plastic resistance to the major-axis bending moment 

My,R: Major-axis bending moment resistance 

My,Rk; Characteristic value of the major-axis bending moment resistance 

My,ult: Major-axis bending at ultimate limit state (generally obtained by laboratory test or 

GMNIA analysis) 
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Mz: Minor-axis bending moment 

Mz,Ed: Design value of the minor-axis bending moment 

Mz,cr: Critical minor-axis bending moment 

Mz,cr,I: Critical minor-axis bending moment explicitly not considering the effect of pre-

buckling displacements 

Mz,cr,II: Critical minor-axis bending moment explicitly considering the effect of pre-buckling 

displacements 

Mz,MNA: Minor-axis bending moment at plastic limit state obtained through MNA simulation 

Mz,pl: Plastic resistance to the minor-axis bending moment 

Mz,R: Minor-axis bending moment resistance 

Mz,Rk; Characteristic value of the minor-axis bending moment resistance 

Mz,ult: Minor-axis bending moment at ultimate limit state (generally obtained by laboratory 

test or GMNIA analysis) 

N: Axial force 

NEd: Design value of the axial force 

Ncr,y : Critical axial force for flexural buckling about the major-axis 

Ncr,z : Critical axial force for flexural buckling about the minor-axis 

Ncr,t : Critical axial force for torsional buckling 

NMNA: Axial force at plastic limit state obtained through MNA simulation 

Npl: Plastic resistance to the axial force 

NR: Resistance to the axial force 

NRk: Characteristic value of the resistance to the axial force 

Nult: Axial force at ultimate limit state (generally obtained by laboratory test or GMNIA 

analysis) 

Rb,L: Load factor associated with the cross-section resistance (including the effect of local 

buckling) according to OIC 

Rb,L+G: Load factor associated with the ultimate member resistance (including the effect of 

local buckling and member buckling modes) according to OIC 

Rcr,G: Load amplification factor to attain the critical load for member instability according to 

OIC (also denoted as αcr) 
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Rcr,G
*: Load amplification factor to attain the critical load for member instability considering 

that the torsion constant It equals 0 (=neglecting the Saint-Venant’s torsional stiffness 

of the member – also denoted as αcr
*) 

Rcr,L: Load amplification factor to attain the critical load for cross-section instability 

according to OIC  

Rel,ov: Load amplification factor to attain the elastic cross-section resistance considering all 

internal forces and moments 

Rel,MyN: Load amplification factor to attain the elastic cross-section resistance only considering 

the major-axis bending moment and the axial force 

Rpl: Load amplification factor to attain the plastic cross-section resistance according to OIC 

Rpl,MNA: Numerically determined load factor associated with the plastic limit state (determined 

through MNA simulations) 

Rpl,ov: Load amplification factor to attain the plastic cross-section resistance considering all 

internal forces and moments 

Rpl,MyN: Load amplification factor to attain the plastic cross-section resistance only considering 

the major-axis bending moment and the axial force 

Rult: Numerically determined load factor associated with the ultimate member resistance 

S: Shear centre of the cross-section 

T: Temperature 

Vz: Transverse shear force (associated with My) 

Vz,Ed: Design value of transverse shear force 

Vz,MNA: Transverse shear force at plastic limit state obtained through MNA simulation 

Vz,pl: Plastic resistance to the transverse shear force 

Vz,pl,w: Plastic resistance of the web to the transverse shear force 

Vz,R: Resistance to the transverse shear force 

Vz,Rk: Characteristic value of the transverse shear force resistance 

Vz,ult: Transverse shear force at ultimate limit state (generally obtained by laboratory test or 

GMNIA analysis) 

Vy: Horizontal shear force (associated with Mz) 

Vy,Ed: Design value of horizontal shear force 

Vy,MNA: Horizontal shear force at plastic limit state obtained through MNA simulation 
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Vy,pl: Plastic resistance to the horizontal shear force 

Vy,R: Resistance to the horizontal shear force 

Vy,Rk: Characteristic value of the horizontal shear force resistance 

Vy,ult: Horizontal shear force at ultimate limit state (generally obtained by laboratory test or 

GMNIA analysis) 

 

Notations – Small Latin letters: 

a: Horizontal dimension (used for rectangular hollow sections) 

b: Width 

bf: Width of the flange 

e: Eccentricity of a load 

e0: Amplitude of an equivalent geometric imperfection 

ez: Eccentricity of a load along the z-axis 

ey: Eccentricity of a load along the y-axis 

fy: Yield strength 

fu: Ultimate strength 

h: Total height of a section (also used for Convection coefficient in paragraph 5.2.5.1) 

hw: Height of the web 

i0: Polar radius of gyration 

kyz: Interaction factor according to Eurocode 3 Part 1-1 

kyy:  Interaction factor according to Eurocode 3 Part 1-1 

kzy:  Interaction factor according to Eurocode 3 Part 1-1 

kzz:  Interaction factor according to Eurocode 3 Part 1-1 

lwave/2: Half wavelength of local plate imperfections 

mx: Distributed torsional load 

my: Ratio between the major-axis bending moment My and the plastic major-axis bending 

 moment resistance My,pl 

mz:  Ratio between the minor-axis bending moment Mz and the plastic minor-axis bending 

 moment resistance Mz,pl 
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n: Ratio between the axial force N and the plastic resistance Npl 

p: Circumference associated with the mid-line of a hollow section 

r: Radius of the fillets of hot-rolled sections 

ri: Inner corner radius of a rectangular hollow section (RHS) 

ro: Outer corner radius of a rectangular hollow section (RHS) 

t: Thickness of a plate 

tf: Thickness of the flanges 

tw: Thickness of the web 

u: Longitudinal displacement of the centroid (along the x-axis) 

v: Lateral displacement of the centroid (along the y-axis) 

v,x: First derivative of v with respect to x 

v,xx: Second derivative of v with respect to x 

w: Vertical displacement of the centroid (along the z-axis) 

w,x: First derivative of w with respect to x 

w,xx: Second derivative of w with respect to x 

x: Abscissa 

yc: Position of the centroid of a section along the y-axis 

ys: Distance between the shear centre and the centroid of a section along the y-axis 

ys,w: Distance between the shear centre and the web of a section along the y-axis (used for U 

 sections) 

zc: Position of the centroid of a section along the z-axis 

zs: Distance between the shear centre and the centroid of a section along the z-axis 

 

Notations – Greek letters: 

α: Imperfection factor 

αult,k: Minimum load amplifier of the design loads to reach the characteristic resistance of the 

 most critical cross-section according to Eurocode 3 Part 1-1 
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αcr
*: Load amplification factor to attain the critical load for member instability considering 

 that the torsion constant It equals 0 (=neglecting the Saint-Venant’s torsional stiffness of 

 the member – also denoted as Rcr,G
* in OIC notations) 

αcr: Load amplification factor to attain the critical load for member instability according to 

 (also denoted as Rcr,G in OIC notations) 

αcr,I: Load amplification factor to attain the critical load for member instability explicitly not 

considering the effect of pre-buckling displacements 

αcr,II: Load amplification factor to attain the critical load for member instability explicitly 

considering the effect of pre-buckling displacements 

αcr,op: Load amplification factor to attain the critical load for out-of-plane instability of a member 

without considering the effect of flexural buckling about the major-axis (according to 

Eurocode 3 Part 1-1) 

βy: Wagner constant considering the asymmetry of a section with respect to the z-axis 

βz: Wagner constant considering the asymmetry of a section with respect to the y-axis 

χ: Reduction factor  

χL: Reduction factor considering the effect of local buckling according to OIC 

χL+G: Reduction factor considering the effect of local buckling and member buckling modes 

 according to OIC 

χLT: Reduction factor associated with lateral-torsional buckling 

χop: Reduction factor of a structural component for out-of-plane buckling according to 

 Eurocode 3 Part 1-1 

χTF: Reduction factor associated with torsional-flexural buckling 

χy: Reduction factor associated with flexural buckling about the major-axis 

χz: Reduction factor associated with flexural buckling about the minor-axis 

ε: Εmissivity used in thermal analyses 

εy: Yield strain 

εst Strain associated with the start of strain hardening 

εt: Warping decay factor 

εu: Ultimate strain 

f: Torsional twist 
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f,x: First derivative of the torsional twist 

f,xx: Second first derivative of the torsional twist 

γM1: Partial (safety) factor for failure modes linked to stability 

η: Generalized imperfection 

λ: Relative slenderness (denoted as λ throughout the text) 

λL: Local relative slenderness of a member according to OIC (denoted as λL throughout the 

 text) 

λL+G: Global relative slenderness of a member according to OIC (denoted as λL+G throughout the 

text) 

λLT:  Relative slenderness with respect to lateral-torsional buckling (denoted as λLT 

 throughout the text) 

λop:  Global relative slenderness of a structural component for out-of-plane buckling according to 

Eurocode 3 Part 1-1 (denoted as λop throughout the text) 

λt:  Relative slenderness with respect to torsional buckling (denoted as λt throughout the 

 text) 

λTF:  Relative slenderness with respect to torsional-flexural buckling (denoted as λTF 

 throughout the text) 

λy:  Relative slenderness with respect to flexural buckling about the major-axis (denoted as 

 λy throughout the text) 

λz:  Relative slenderness with respect to flexural buckling about the minor-axis (denoted as 

 λz throughout the text) 

ν: Poisson’s ratio 

σ: Stress 

ω: Warping function 
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1.1 Context 

In practice, steel members are mainly subject to a combination of axial force and major-axis or bi-

axial bending. Especially, for members of open-cross section, torsional loads should be avoided as 

much as possible. Yet, in some cases, the application of torsion is inevitable. For example, crane 

girders (see beams painted in blue of Figure 1-1), i.e. girders supporting moveable cranes, 

experience torsion as the loads resulting from the braking of the carriage are generally introduced 

in the upper flange and therefore above the shear centre. Sometimes, the erection process leads 

to loads applied outside the shear centre, too. A typical example is a girder supporting a pre-cast 

slab that is typically supported by the flange of the cross-section. The torsional load may even 

increase if it is not possible to cast the additional part of the slab symmetrically. This situation 

should obviously be avoided. Also, U-shaped members are generally subject to torsional moments 

as the loads are introduced through the web and consequently with an eccentricity to the shear 

centre. In some cases, U sections may also be used for architectural reasons as shown in Figure 

1-2. Hence, even if members of open cross-sections are less frequently used in case of torsion, this 

load case is of practical interest and should be treated in design standards. However, the major 

international steel design standards do not include explicit and practical recommendations for the 

design of steel members subject to combined axial force, bending and torsion. 

 

Figure 1-1: Example of a crane girder 
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Figure 1-2: Example of U-shaped member used for architectural reasons 

The European standard for the design of steel structures, EN 1993-1-1 – Eurocode 3: Design of 

steel structures – Part 1-1: General rules and rules for buildings (CEN 2005a) only addresses the 

design of members subject to combined axial force and bi-axial bending on behalf of the well 

accepted interaction equations reproduced in Eq. ( 1.1 ). 
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One notices that two distinct design criteria have to be fulfilled. The first design criterion 

considers the second order effects created by the axial force and the influence of equivalent 

imperfection about the major-axis (mainly considered in χy) and the second criterion considers 

the second order effects of the axial force and the equivalent imperfection about the minor-axis 

(mainly considered in χz). The second order effects arising from lateral torsional buckling are 

mostly accounted for through the reduction factor χLT. The interaction factors kij account for 

possible plasticity (in case of compact sections – sections of class 1 and 2 following (CEN 2005a)) 

and consequently non-linear interaction between the internal forces. Additionally, they consider 

partially the second order effects arising from the axial force and the major-axis bending moment. 

The theoretical derivation of the interaction formulae is discussed extensively in references 
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(Boissonnade et al. 2002), (Boissonnade et al. 2004), (Villette 2004), (Greiner et al. 2006) and 

(ECCS 2006). Here it is not be discussed in detail. 

The interaction factors may be determined by Annex B of EN 1993-1-1 as shown in Figure 1-3 and 

Figure 1-4. A second method for the determination of the interaction factors kij is proposed in 

Annex A of the same standard. However, this method is not represented here as it is applied less 

frequently in the practice due to its complexity (see Annex A of this thesis). 

It should be noted that independently from the method used for the determination of the 

interaction factors, the field of application of the interaction formulae represented in Eq. ( 1.1 ) is 

limited to: 

• Members with constant cross-section along their length; 

• Members with double symmetric cross-section; 

• Members possessing cross-sections not sensitive to distortional buckling; 

• Members without any intermediate lateral restraint; 

• Members not subject to applied torsional moments. 

In recent years, several research projects aimed at closing some of the gaps listed above. In 

particular, one may cite references (Kaim 2004) and (Kalameya 2008) proposing an extension to 

mono-symmetric I and U sections respectively. In reference (Aswandy 2007) the extension of the 

interaction equations to members with intermediate lateral restraints is investigated. Finally, the 

extension of the interaction equations to tapered members (members with non-constant cross-

section over their length) is studied in (Marques et al. 2014). It should be mentioned that all of the 

research works cited here before concentrate on extensions based on Annex B interaction factors 

as these possess a wider practical application. One should also note that the proposals given to 

overcome the limits of the interaction Eurocode 3 Part 1-1 interaction formulae have not been 

integrated into the current version of this design standard. 
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a) Members without lateral-torsional buckling 

 

 

b) Members with lateral torsional buckling 

Figure 1-3: Annex B of EN 1993-1-1 - Determination of interaction factors kij for a) members not 

susceptible to lateral torsional buckling and b) members susceptible to lateral torsional buckling 

 



On the Design of Steel Members with Open Cross-Sections Subject to 

Combined Axial Force, Bending and Torsion 

Introduction 

 

6 

 

 

Figure 1-4: Annex B of EN 1993-1-1 - Equivalent uniform moment factors 

Additionally to the interaction formulae, the current version of Eurocode 3 Part 1-1 proposes the 

general method for lateral and lateral torsional buckling of structural components in order to 

overcome some of the limits of the interaction formulae. This method may be represented by Eq. 

( 1.2 ) 

0,1
1

, ≥
M

Rkultop

γ

αχ
 ( 1.2 ) 

Conversely to the interaction equations, the general method may be applied to members of non-

constant cross-section and intermediate lateral restraints. However, it is limited to combined 

major-axis bending and axial force. Consequently, members subject to an additional minor-axis 

bending moment or torsional moments cannot be treated. Therefore, this method seems even 

more limited than the interaction formulae represented in Eq. ( 1.1 ) if their extensions proposed 

in (Kaim 2004), (Aswandy 2007), (Kalameya 2008) and (Marques et al. 2014) are considered. 

Also, the general method is limited to sections symmetric about their minor-axis. Hence, the 

stability of U-shaped members cannot be verified using this method. 

The two methods mentioned before should be applied to verify the resistance of the member 

including member second order effects and member imperfection. This verification becomes 

relevant when the members are slender and fail before they attain the resistance of the most 

loaded cross-section. However, even for the cross-section resistance, i.e. the resistance of short 

members that do not fail by member instability, Eurocode 3 Part 1-1 does not give clear design 

rules for compact sections likely to attain full yielding in case of combined internal forces 

including torsion. Due to this lack of provisions, the cross-section design is limited to the elastic 
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resistance. For I sections a proposal has been made by Mirambel in reference 

(Mirambell et al. 2016) to close this gap. This proposal is discussed in detail in Chapter 4 of this 

thesis. Anyhow, it is not applicable to U sections and therefore cannot completely eliminate the 

restrictions of Eurocode 3 Part 1-1. 

Consequently, it may be concluded that even if some research effort has been spent to extend the 

field of application of the Eurocode 3 Part 1-1 methods, up to date there exists no practical 

approach for the design of members of open cross-section subject to torsion. 

Other major international standard propose different interaction formulae. Nevertheless, the field 

of application is very close to the European interaction equations. As an example, the American 

national standard ANSI/AISC 360-10 may be cited. For double symmetric cross-sections, it 

proposes the following interaction equation for combined axial compression and bi-axial bending 

(the notations of Eurocode 3 Part 1-1 are used as far as possible): 
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It should be noted that the moments My,Ed and Mz,Ed should include global and member second 

order effects. The effect of local instability is considered through a reduction of the plastic cross-

section resistances NRk, My,Rk and Mz,Rk. In case of mono-symmetric or unsymmetrical cross-

sections the maximum resulting von Mises stress, including second order effects, should be less 

than the yield strength. Hence, a possible plastic resistance is not accounted for leading to very 

safe-sided results for compact sections. Moreover, the case of applied torsional loads is not treated 

explicitly. 

Only two major international design standards have been rapidly presented here. However, it 

appears that the resistance of members subject to torsion in not satisfactorily addressed in any 

major steel design standards.  

In the past, several design approaches were proposed for the resistance of members subject to 

torsion as summarized in Table 1-1. Yet, except the proposal entitled “Berlin” none of them has 

been incorporated in Eurocode 3. The proposal entitled “BSI and Nethercott” was recommended 

in the former British standard BS 5950-1 (BSI 2000). Nonetheless, it was not considered for 

Eurocode 3. In Chapter 5 of this thesis, the proposals will be analysed in detail. Still, even without 

detailing these approaches further on, it may be seen that none of them possesses a field of 

application sufficiently wide to be applied to I- and U-shaped members subject to combined axial 

force, bi-axial bending and torsion. 
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Table 1-1: Summary of available design approaches for the resistance of members subject to 

torsion 

Proposal 

(reference) 

Field of application 

Limitations Shape of the 

section 
Load case 

BSI and Nethercott 
(Nethercott et al. 1989) 

I and U sections My, Mz, MT No axial force N 

Aachen I 
(FOSTA 2004) 

I sections N, My, Mz, MT Not applicable to U sections 

Aachen II 
(Stangenberg 2007) 

I and U sections 
N (for I sections), 

My, Mz, MT 

No axial force in case of mono-

symmetric sections 

Aachen III 
(Naumes 2009) 

I sections N, My, Mz, MT Not applicable to U sections 

Berlin* 

(Glitsch 2008) 
I sections My, Mz, MT 

No axial force  

Not applicable to U sections 

Eindhoven 
(de Louw 2007) 

U sections 

My, MT – loads 

applied in the 

web plane 

No axial force and minor axis 

bending 

Not applicable to I sections 
*included in Annex A of EN 1993-6 (CEN 2007b) 

Last, it seems interesting to mention that “global design methods”, as the Direct Strength Method 

DSM and the Overall Interaction Concept OIC, have become more and more popular in the last 

decade compared to interaction formulae as the ones proposed in Eurocode 3 Part 1-1 or 

ANSI/AISC 360. These global design approaches generally promise: 

• Full continuity between cross-section and member resistance; 

• Mechanically consistent and comprehensible resistance predictions; 

• Simple and direct design equations. 

Recently, several research projects promoted OIC especially for tubular cross-sections as 

illustrated in references (Taras 2011), (Boissonnade et al. 2013), (Li 2014), (Nseir 2015), 

(Boissonnade et al. 2017). Thanks to these studies a fully continuous and consistent design 

approach for the resistance of rectangular and circular hollow sections under combined axial force 

and bi-axial bending has been developed. The principle of OIC is illustrated in Figure 1-5. 
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Figure 1-5: Main principle of OIC 

As shown in Figure 1-5, OIC is based on 7 steps that are: 

• Determination of the load amplification factor leading to the plastic limit state of 

the cross-section: Rpl 

• Determination of load amplification factor leading to local instability of the cross-

section: Rcr,L 

• Determination of the cross-section slenderness: λL 

• Determination of the cross-section resistance reduction depending on the cross-

section slenderness: χL 

• Determination of load amplification factor leading to member instability: Rcr,G 

• Determination of the member slenderness: λL+G 

• Determination of the member resistance reduction depending on the cross-

section slenderness: χL+G 

Even if the OIC seems promising, up to date open cross-section have been treated in a rather 

limited extend in references (Kettler 2008) and (Taras 2011) addressing the cross-section and in-

plane member resistance of double symmetric I sections. In particular, applied torsion and out-

of-plane instability including torsional twist (flexural torsional buckling, lateral torsional) have 

not been in the centre of OIC research yet. Also, the resistance of members of mono-symmetric 
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cross-sections has not been treated. Therefore, it seems that an important research effort is still 

necessary to extend OIC to open cross-sections and complex combination of internal forces and 

moments as well as interaction between different modes of instability. 

1.2 Objectives and scope of the thesis 

The three main objectives of this thesis directly result from the limitations of the steel design 

standards outlined before: 

• Study of the behaviour of members subject to combined axial compression, bi-axial 

bending and torsion. 

• Derive design provisions addressing the plastic cross-section resistance of open 

sections subject to combined axial compression, bi-axial bending and torsion. 

• Derive design provisions addressing the resistance of members subject to 

combined axial compression, bi-axial bending and torsion. 

Moreover, it is intended to propose rules that represent an extension of the well-accepted design 

provisions given in Eurocode 3 Part 1-1 in order to facilitate the acceptance for practical design 

engineers. Yet, the possibility of design rules based on a global design concept as the OIC is studied 

as this approach may contribute to the simplification and unification of the design provisions 

currently available in steel design standards. 

However, due to the large field of parameters that will be included in the study performed to 

achieve the objectives of this thesis the scope of the research presented hereafter had to be limited 

to: 

• Double symmetric I sections whose cross-section may be sensitive to local plate 

buckling or not (class 1 to class 4 sections in the terminology of Eurocode 3 Part 1-

1). I sections may be fabricated from hot rolling or welding. 

• Compact welded mono-symmetric I sections and hot-rolled U sections of type 

UPE always attaining their theoretical plastic cross-section resistance if member 

instability becomes negligible (class 1 or class 2 in the terminology of 

Eurocode 3 Part 1-1). 

1.3 Structure of the thesis 

This first chapter has given a short introduction showing that the resistance of members subject 

to torsion in addition to axial compression and bending is not treated satisfactorily in the current 

design standards. In consequence, three main objectives for this thesis are formulated. 

Chapter 2 addresses briefly the theory of torsion necessary to understand the behaviour of 

members with open cross-section. The difference to members with closed sections is highlighted 

and it is shown why open cross-sections may be sensitive to torsion. 
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In order to develop a comprehensive design approach covering the resistance of I- and U-shaped 

members, an extensive numerical study is necessary. The Finite Element model used for this 

purpose is presented in detail in Chapter 3. Different modelling techniques are investigated in 

order to represent as precisely as possible the physical member. The Finite Element model is then 

validated with reference to analytical results and physical tests found in the literature. 

Chapter 4 is dedicated to the plastic cross-section resistance and interaction relevant for the 

design of short and compact members. Especially global design methods (for example OIC) 

employ the plastic cross-section resistance also as key parameter for the design of long and 

slender members. Consequently, the plastic cross-section resistance under combined loading is 

of importance when the member resistance is addressed. In a first step design approaches found 

in standards and in the literature are reviewed and discussed. This analysis leads to several 

questions. In order to obtain the elements necessary to give satisfactory answers, a campaign of 

physical tests as well as an extensive numerical study are performed and the results are 

presented. Finally, a practical design approach is proposed and validated. 

Chapter 5 then addresses the member resistance including second order effects and the effect of 

elasto-plastic instability. The design proposal developed in this chapter is based on an extensive 

numerical study. In order to ensure the reliability of the numerical simulations the influence of 

assumed calculation imperfection on the obtained results is studied. After this, the design 

proposals given in Table 1-1 are discussed in detail. With the help of the validated finite element 

model, limitations and inconsistencies of these design approaches are highlighted. 

So as to develop a design approach covering members of open cross-section under a complex load 

combination including torsion, it appears necessary to study their behaviour theoretically. In a 

first step, analytical solutions for the elastic critical loads of I- and U-shaped members are recalled 

and extended. After this an analytical study derives second order internal forces and moments for 

members in combined axial force, bi-axial bending and torsion. These analytical solutions are 

helpful to identify which parameters are essential to describe the member stability. Thereafter, 

the data basis of numerical simulations, covering more than 10 000 cases, is used for the 

development of a simple design model. Indeed, so as to facilitate the acceptance of the design 

model in practice, it is intended to propose an extension of the Eurocode 3 Part 1-1 interaction 

equations addressing the member instability. This extension should not significantly increase the 

complexity of the interaction equations in their current field of application. Consequently, a 

certain loss of precision is explicitly accepted. Nonetheless, a second design approach is 

elaborated in the OIC format so as overcome some limitations of the Eurocode 3 Part 1-1 

interaction equations. 

Finally, Chapter 6 summarizes the original contributions of this thesis and details future research 

needs required to extend the results of this thesis. 

 



On the Design of Steel Members with Open Cross-Sections Subject to 

Combined Axial Force, Bending and Torsion 

Introduction 

 

12 

 

1.4 Assumptions and definitions 

The developments presented in the framework of this thesis are based on the system of axis 

shown in Figure 1-6. 

 
 

Figure 1-6: Reference system 

It has to be insisted on the definition of positive displacement and internal forces and moments as 

the sign convention is of high importance for non-symmetric cross-sections. Hereafter it is 

assumed that: 

• Compression stresses are negative and tension stresses are positive; 

• A negative axial force creates tension stresses in the section; 

• A positive major-axis bending moment creates compression stresses in the upper 

flange (z > 0); 

• A positive minor-axis bending moment creates compression stresses for positive 

y-coordinates (tips of the flanges for U section and right part of the flange for I 

sections – see Figure 1-6); 

• A positive bi-moment (see Chapter 2) creates compression stresses if both 

coordinates y and z are positive, i.e. at the right tip of the upper flange, or negative, 

i.e. at the left tip of the lower flange. 

Figure 1-7 represents the positive directions of the bending moments and the bi-moment. It has 

to be noted that the web of the U section is always supposed to be situated on the left of the 

centroid (y < 0). 
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Figure 1-7: Definition of positive moments 

 

 

 

 

 

  

x 

y 

My > 0 

z 

Mz > 0 

C 

B > 0 



On the Design of Steel Members with Open Cross-Sections Subject to 

Combined Axial Force, Bending and Torsion 

Introduction 

 

14 

 

 

 

 

 

 

 

 

 

 

 

 

  



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Basic Theory of Torsion 

 

15 
 

2 BASIC THEORY OF TORSION 

 

2.1 General 16 

2.2 Stresses and internal forces and moments resulting from torsional loads 16 

2.3 Amplitude of Saint Venant’s and warping torsion for open cross-sections 22 

2.4 Equivalence between members subject to torsion and members subject to bending and tension 

 axial force 24 

2.5 Warping function for open cross-sections 28 

2.6 Summary 32 

 

  



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Basic Theory of Torsion 

 

16 
 

2.1 General 

The present Chapter provides a brief review of the elastic theory of torsion. However, the 

discussion represented hereafter concentrates on points that necessary to understand the results 

presented in Chapters 4 and 5. Very detailed presentations on the theory of torsion may be found 

in many publications as for example in (Vlassov 1962), (Tmoshenko et al. 1970) 

(de Ville de Goyet 1989), (Friemann et al. 2005) and (Bazant et al. 2010). 

 

2.2 Stresses and internal forces and moments resulting from torsional loads 

The two main terms to be distinguished in the following are twisting and warping. Figure 2-1 

represents both for the example of an I section. 

  

a) Torsional twist f b) Warping q 

Figure 2-1: Representation of a) torsional twist and b) warping 

For a double symmetric I section warping generates axial displacements of the flanges (associated 

to rotation q in Figure 2-1). Members loaded by constant torsional moment and possessing no 

restraint to these axial displacements, or warping, along their length and at their ends are 

exclusively subject to “pure” or “Saint Venant’s” torsion, denoted as Mx,St.V hereafter. In this case 

the cross-sections along the member are only subject to shear stresses. The associated stress 

pattern depends on the cross-section shape as recalled in Figure 2-2. It may be observed that the 

shear stresses are practically uniformly distributed over the thickness of a thin walled closed 

cross-sections. Indeed, there is a small variation of the shear stresses through the thickness. In 

case of open cross-section, the shear stresses resulting from Saint Venant’s torsion vary linearly 

over the thickness. Consequently, the lever arm of the stress resultants is only of about half of the 
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plates thickness whereas it is equal to the distance between the plates of the rectangular hollow 

section (a and b in Figure 2-3) leading to a much higher resistance to Saint Venant’s torsion this 

type of section (see Table 2-1). 

 
 

a) b) 

Figure 2-2: Shear stress distribution in open and closed cross-sections 

As mentioned the Saint Venant’s torsional moment that can be resisted by a rectangular hollow 

section (RHS) may be calculated in a simplified manner by multiplying the resulting forces in each 

plate with the lever arm accordingly to Figure 2-3 and Eq. ( 2.1 ). 

 

Figure 2-3: Calculation of the Saint Venant’s torsional moment resistance for RHS 
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The product standard for structural hollow sections EN 10210-2 (CEN 2006) gives the following 

expression considering the through thickness variation of the shear stresses. In Eq. ( 2.4 ), ro and 

ri are the outer and the inner corner radius, respectively. 
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For a double symmetric I sections one may obtain a simplified expression of the plastic Saint 

Venant’s torsional moment neglecting the fillets as given in Eq. ( 2.5 ) (see also reference 

(Ludwig 2014)). 
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,.,  ( 2.5 ) 

The exact plastic Saint Venant’s torsional moment resistance of hot-rolled I sections may be 

determined based on Finite Element calculations or with reference (Naida 1923). Figure 2-4 

represents a comparison for the most commonly used European I profiles. For cross-sections of 

type HEAA, the fillets may increase the Saint Venant’s torsional moment resistance by up to 30% 

as the contribution of the slender webs to the plastic Saint Venant’s torsional moment resistance 

is rather low. Inversely, for the very compact sections of type HEM the relative contribution of the 

fillets is only of about 7% because the compact web contributes in a greater amount as for the 

other section series. 

 

Figure 2-4: Contribution of the fillets to the plastic St. Venant's torsional moment resistance 

Even if the fillets may have a non-negligible influence on the plastic Saint Venant’s torsional 

moment (and on the torsional constant It) of hot-rolled open cross-sections, their Saint Venant’s 

torsional stiffness is much less than those of closed cross-sections as shown in Table 2-1. This 

table compares selected hot-rolled I sections and rectangular hollow sections possessing 
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approximatively the same major-axis second moment of area Iy. Obviously, rectangular hollow 

sections are much more efficient to resist torsion as demonstrated by the ratio of the plastic Saint 

Venant’s torsional moment resistances Mx,St.V,pl,RHS/Mx,St.V,pl,I. In case of pure Saint Venant’s torsion, 

the torsional constant It also highly influences the behaviour of the member as the torsional twist 

f only depends on its value, the value of the torsional moment and the member length as 

represented in Eq. ( 2.6 ) and Eq. ( 2.7 ). 

t

St.Vx,

,
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 =xϕ  ( 2.6 ) 
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Here before, it has been insisted on the case of Saint Venant’s torsion. However, in general, Saint 

Venant’s torsion is of theoretical nature as it supposes that cross-section warping is not restrained 

along the member or at its ends and that the torsional moment is constant along the member. In 

practice, load introduction or boundary conditions (fixed end of cantilevers) always represent a 

certain degree of warping restraint. Yet, as warping displacements are very low for closed cross-

sections or T sections, pure torsion may be considered in these cases. Conversely, warping 

displacements may not be neglected for I or U sections. In Figure 2-1, it may be observed that 

warping can be associated to differential longitudinal displacements of the parts of the cross-

section. A warping restraint therefore induces axial stresses into the cross-section. In this 

situation torsion is carried partly through the shear stresses arising from Saint Venant’s torsion 

and by axial stresses (and shear stresses resulting from the variation of these axial stresses over 

the member length) resulting from warping torsion (also referred to as restrained torsion). The 

distribution of the axial and shear stresses resulting from warping torsion are schematically 

represented in Figure 2-5 for an I section and Figure 2-6 for a U section. Yet, it may be noted that 

the shear stresses resulting from restrained torsion are rather low and may be neglected in 

practice when the cross-section resistance under combined bending, axial force and torsion is 

studied (see Chapter 4). Inversely, the axial stresses have to be accounted for in the interaction. 

They may be determined with Eq. ( 2.8 ). The concept of the warping function ω, necessary for the 

determination of the warping constant Iw and the stress distribution in the cross-section is 

recalled in paragraph 2.5. 

ωσ
w

x
I

B
 =  ( 2.8 ) 

and ∫= dAIw
2

 ω  ( 2.9 ) 
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a) Axial stresses b) Shear stresses 

Figure 2-5: Distribution resulting from restrained torsion for an I section 

  

a) Axial stresses b) Shear stresses 

Figure 2-6: Distribution stresses resulting from restrained torsion for a U section 

Figure 2-5 shows that the axial stresses resulting from restrained torsion mostly transit through 

the flanges of I sections. The web is not subject to these axial stresses and may consequently 

always carry additional stresses generated by a supplementary axial force or major-axis bending 

moment. Inversely, the stresses resulting from warping torsion transit through the flanges and 

the web of U sections. Therefore, if these sections are subject to a bi-moment equal to the plastic 

bi-moment, no additional axial force or bending may be resisted. Obviously, the stress distribution 

directly influences the plastic cross-section resistance studied in Chapter 4 of this thesis. 
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2.3 Amplitude of Saint Venant’s and warping torsion for open cross-sections 

Through the previous paragraph, the two concepts of Saint Venant’s and warping torsion have 

been recalled. Eq. ( 2.10 ) shows that the total torsional moment may be expressed as the sum of 

both torsional moments. 

wxtotx MMM ,St.Vx,,  +=  ( 2.10 ) 

Eq. ( 2.10 ) may also be expressed in terms of the derivatives of the torsional twist: 

xxxxtotx EIGIM ,w,t,  ϕϕ −=  ( 2.11 ) 

As in Eq. ( 2.10 ) the first term of the right hand side of Eq. ( 2.11 ) corresponds to the Saint 

Venant’s torsional moment and the second term corresponds to the warping torsional moment. 

By rearranging Eq. ( 2.11 ) as shown in Eqs. ( 2.12 ) and ( 2.13 ), it is possible to derive the 

parameter εt indicating the relative importance of warping torsion to the total torsional moment 

as represented in the Figure 2-8 and Figure 2-9. It should be noted that the parameter εt is specific 

for a member of a given cross-section and length. 

xxx

t

x

totx L

GI

M
,2

2

,

t

,
 ϕ

ε
ϕ −=  ( 2.12 ) 

w

t
t

EI

GI
L =ε  ( 2.13 ) 

So as to illustrate the influence of εt, we consider the example of a member of HEB 400 cross-

section. The length of the member is varied in order to vary the parameter εt. It is supposed that 

the member possesses fork end supports and is loaded by a torsional moment MT of 10 kNm 

applied at mid-span as represented schematically in Figure 2-7.  

 

Figure 2-7 : Studied member subject to an applied torsional moment 

Figure 2-8 and Figure 2-9 show the distribution of the torsional moments and the distribution of 

bi-moments depending on the member length and consequently depending on the parameter εt. 

Obviously, the distribution and the value of the total torsional moment Mx,tot, composed of the 

Saint Venant’s torsional moment Mx,St.V and the warping torsional moment Mx,w, does not depend 

on the member length. On the contrary, Figure 2-8 clearly demonstrates that the relative 

importance of the warping torsional moment decreases with increasing member length (and 

increasing parameter εt). For short members (L = 200 cm for εt = 1,20) the warping torsional 

moment attains nearly 90% of the total torsional moment at the member ends. For longer 
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members the warping torsional moment vanishes near the fork supports. At mid-span, where 

warping is restrained (warping has to vanish due to symmetry conditions), the warping torsional 

moment equals the total torsional moment in all cases. 

 

Figure 2-8: Distribution of warping torsional moment and the total torsional moment depending on 

parameter εt 

Figure 2-9 represents the distribution of the bi-moment along the member length. As expected, 

the bi-moment vanishes at the member ends because the fork supports do not generate a warping 

restraint. At mid-span the bi-moment attains its maximum. The exact distribution of the bi-

moment between the member ends and mid-spans depends on the parameter εt again. With 

increasing εt the variation of the bi-moment becomes more and more non-linear. For a value of εt 

close to 10 (L = 1600 cm), the bi-moment is concentrated at mid-span near the warping restraint 

and the other parts of the member are only subject to low bi-moments. 

 

Figure 2-9: Distribution of bi-moment depending on parameter εt 
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As an increasing value of parameter εt indicates decreasing influence of warping torsion, εt is 

referred to as warping decay factor hereafter. For practical lengths, members with open cross-

section generally possess rather low values of the warping decay factors (between 1 and 10). 

Consequently, they are always subject to mixed torsion, i.e. a combination between Saint Venant’ 

s and warping torsion whose relative magnitude results from the exact value of the warping decay 

factor. Contrariwise, due to their high Saint Venant’s torsional stiffness, members with closed 

cross-sections possess warping decay factors highly exceeding 10. Warping torsion may therefore 

be neglected in general. The same is true for T sections as their warping constant is very low (see 

paragraph 2.5). 

2.4 Equivalence between members subject to torsion and members subject to 

bending and tension axial force 

First, the member represented in Figure 2-10 is considered. It is assumed that this member 

possesses fork end supports and that it is subject to a distributed torsional load mx. Admittedly, 

this loading condition is of pure theoretical nature but it is used to highlight an important point 

concerning the behaviour of members subject to torsion. 

 

Figure 2-10: Member on fork end supports subject to a distributed torsional load 

For the given loading and support conditions, the behaviour of the member may be characterised 

with the differential equation provided hereafter: 

xxxtxxxxw mGIEI =− ,, ϕϕ  ( 2.14 ) 

It appears that Eq. ( 2.15 ) is of the same format as the differential equation characterising the 

member subject to a distributed vertical load represented in Figure 2-11.  

 

Figure 2-11 : Member on point supports subject to a distributed vertical load 

The differential equation characterising the in-plane second order equilibrium of the member 

of Figure 2-11 is recalled in Eq. ( 2.15 ). 



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Basic Theory of Torsion 

 

25 
 

zxxxxxxy qNwwEI =+ ,,  ( 2.15 ) 

Similarly to the case of members in torsion, it is possible to define the parameter εM specific for a 

given member (it is recalled that an axial compression force is defined as positive here): 

y

M
EI

N
L

−
=ε  ( 2.16 ) 

By comparing Eqs. ( 2.14 ) and ( 2.15 ), one may remark that the vertical load corresponds to the 

torsional load, the axial tension force corresponds to the Saint Venants’ torsional stiffness of the 

member and the bending stiffness corresponds to the warping stiffness of the member. Moreover, 

it is possible to develop an equivalence between the internal forces and moments as shown in 

Table 2-2. 

Table 2-2 : Internal forces and moments resulting from bending and torsion 

Member in bending Member under torsion 

Bending moment: xxyy wEIM ,=  Bi-moment: xxwEIB ,ϕ−=  

Shear force: xxxyz wEIV ,=  Warping torsional moment: xxxwwx EIM ,, ϕ−=  

Resulting vertical force (in the global 
coordinate system): 

xxxxyGlobz NwwEIV ,,, −=  

Total torsional moment: 
 

VStxwxxtxxxwtotx MMGIEIM .,,,,, +=+−= ϕϕ  

 

So as to illustrate the results of Table 2-2, it is proposed to study the example of a member of 

IPE 500 section. Two cases are distinguished: 

1) The member is subject to a uniformly distributed torsional load mx of 1 kNm/m 

generating a combination of bi-moment B, warping torsional moment Mx,w and 

Saint Venant’s torsional moment Mx,St.V. 

2) The member is subject to a uniformly distributed vertical load qz generating a 

combination of major-axis bending moment and a shear force. Additionally, the 

member is subject to an axial tension force N. 

The behaviour of these two members is similar if the two specific parameters εt and εM are equal. 

Consequently, the axial tension force necessary to equalize εt and εM is determined as follows: 

w

t
t

y

M
EI

GI
L

EI

N
L ==

−
= εε  ( 2.17 ) 

and: 
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w

y

t
I

I
GIN −=  ( 2.18 ) 

For the studied member of IPE 500 section the axial tension force is equal to N = -28297,6 kN. The 

two members are studied for different member lengths so as to highlight the influence of the 

parameters εt and εM. The studied lengths and the corresponding values of εt and εM are given in 

Table 2-3. 

Table 2-3: Studied lengths 

Length (mm) Factors εt and εM 

200 1,057 
500 2,642 

1000 5,283 
2000 10,566 

 

Both members are calculated through an elastic analysis to obtain the resulting internal forces 

and moments. It should be noted that the member subject to torsion is analysed without 

considering second order effects (not existing for this case) whereas the second order effects are 

accounted for for the member in bending. The obtained distribution of the bi-moment and the 

major-axis bending moment are represented in Figure 2-12. As in paragraph 2.3, Figure 2-12 

clearly shows the influence of the warping decay factor εt. Again, the relative influence of the bi-

moment decreases with the length of the given member (and hence with increasing εt). For the 

shortest member the distribution is nearly parabolic and the maximum bi-moment can be 

estimated with mxL²/8. The difference between the obtained value and the value calculated 

precisely is only of about 10%. Inversely, the relative value of maximum bi-moment (with 

reference to mxL²/8) decreases rapidly and it attains only approximatively 7% of the value mxL²/8 

for the longest member. Also, one observes that the flatness of the curves increases with 

increasing warping decay factor. The observed torsional behaviour of the member has already 

been described in paragraph 2.3. Figure 2-12 reveals that the second order behaviour of members 

subject to tension axial forces and bending is identical to the behaviour of members under torsion. 

Indeed, the relative value of the major-axis bending moment is exactly equal to the relative value 

of the bi-moment. The major-axis bending moment is normalised with reference to qzL²/8 

representing the maximum first order moment My. The flattening of the curves is linked to the 

major-axis bending moment created by the axial tension force. Understandingly, this moment is 

lower near the end supports as the vertical displacement is low. Inversely, the effect of this second 

order moment is very high at mid-span as the vertical displacement obviously attains its 

maximum there. 
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Figure 2-12: Distribution of the bi-moment and the major-axis bending moment along the 

members 

It seems also interesting to study the evolution of the Saint-Venant’s torsional moment along the 

members of different lengths. The results are represented in Figure 2-13. Again, it is clear that the 

relative influence of the torsional moment increases with increasing member length and 

increasing warping decay factor εt. It is shown that the Saint-Venant’s torsional moment can be 

linked to the axial tension force and more precisely to the resulting vertical force (in the global 

coordinate system) generated by the vertical displacement and the axial force. The equivalence 

between the in-plane second order equilibrium of member in bending and the equilibrium of 

members subject to torsion has been established in elasticity for a long time. In paragraph 5.6.4 it 

is shown that the equivalence may also be applied in the plastic domain. 

 

Figure 2-13: Distribution of the Saint-Venant’s torsional moment and Nw,x along the members 

In the previous paragraphs, the warping stiffness has been referred to several times. The warping 

stiffness and the warping function are also important terms in Chapters 4 and 5 addressing the 
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cross-section and member resistance for members of I and U sections. Consequently, it seems 

interesting to recall the derivation of the warping function in the next paragraph. 

2.5 Warping function for open cross-sections 

Let us consider the open cross-section of arbitrary shape represented in Figure 2-14. The centroid 

of the cross-section is denoted as C and its shear centre is denoted S. Also, the distance rs between 

the shear centre and the tangent to the cross-section passing through the point P is represented. 

Along the cross-section the position of the point P is measured with the length coordinate s. 

Additionally, the point P may move axially along the x axis and perpendicular to the mid-line of 

the cross-section. The axial displacement is denoted as “u” and the displacement perpendicular to 

the sections mid-line is denoted as ξ. 

 

Figure 2-14: Definition of warping function 

It is assumed that the shear strains in the middle surface of the walls of the cross-section is 

negligible (Wagner’s assumption). This may be expressed by: 

xs
sx ∂

∂
+

∂
∂

==
ξ

γ
u

0  ( 2.19 ) 

Let us now consider that the cross-section is subject to a torsional rotation f. It is assumed that 

the cross-section shape does not change after deformation (cross-section is rigid but free to warp). 

Consequently, the displacement ξ may be expressed as shown in Eq. ( 2.20 ). 

srϕξ =  ( 2.20 ) 

In order to obtain the longitudinal displacement of the point P, Eq. ( 2.19 ) is rearranged and 

integrated with respect to s. 

ax uds +−= ∫ ,
u ξ  ( 2.21 ) 

In Eq. ( 2.20 ), ua is an integration constant and physically represents the axial displacement at the 

origin of the length coordinate s. 
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Eq. ( 2.20 ) is now introduced into Eq. ( 2.21 ) to obtain: 

axs udsr +−= ∫ ,
u ϕ  ( 2.22 ) 

At this point the warping function is introduced and defined as: 

∫= dsrsω  ( 2.23 ) 

It has been considered that the cross-section is only subject to a torsional rotation. As no axial 

force is applied, the resultant of axial stresses has to be equal to zero. Based on this condition, the 

integration constant ua can be assimilated to the mean value of the warping function over the 

cross-section as demonstrated in reference (Vlassov 1962). One obtains: 

dsdstr
A

dAdsr
A

u ssa ∫ ∫∫ ∫ ==
11

 ( 2.24 ) 

A generalized form of the warping function may be introduced as: 

dsdstr
A

dsr ss ∫ ∫∫ −=
1

ω  ( 2.25 ) 

For simplicity the generalized warping function is denoted as ω hereafter. Also, it has been shown 

in reference (Vlassov 1962) that the integration constant vanishes if the origin of the length 

coordinate s is chosen at the centre of torsion and therefore, following the theorem of Maxwell-

Betti, at the shear centre of the cross-section. 

The generalized warping function is represented in Figure 2-15 for I and U sections studied in the 

framework of the present thesis. 
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a) U section b) I section 

Figure 2-15: Warping function for I and U sections 

Here before it has been implicitly assumed that the cross-section may be assimilated to its mid-

line in order to derive the warping function. For the majority of practically used cross-sections, as 

for I and U sections, this is sufficiently precise. Nevertheless, in some cases this assumption may 

lead to non-negligible errors. In fact, in reference (de Ville de Goyet 1989), it is shown that the 

complete warping function may be expressed as the sum of global warping (first term in Eq. ( 2.26 

)) and local or secondary warping (second and third term in Eq. ( 2.26 )), i.e. differential 

longitudinal displacements over the thickness of a cross-section’s plate. 
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2

2 12

t
=µ  ( 2.27 ) 

Figure 2-16 illustrates global and local warping of an I section. 
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a) Global warping b) Local warping 

Figure 2-16: Global and local warping of an I section 

In particular, local warping has to be accounted for when the warping constant calculated based 

on the global warping functions vanishes as for T or L sections. The influence of local warping is 

quantified in Table 2-4 (see also (de Ville de Goyet 1989) and (Boissonnade 2002)). 

Table 2-4: Influence of local warping 
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2.6 Summary 

The present chapter gave a short review about the theory of torsion especially for members with 

open cross-section. The developments discussed before have been presented in many 

publications in the past and should not be considered as an original contribution of this thesis. In 

particular, it has been recalled that: 

• The torsional behaviour of members with open cross-section is equivalent to the 

second order equilibrium of members subject to an axial tension force and 

bending; 

• Members with open cross-section are always subject to mixed torsion, i.e. a 

combination of Saint-Venant’s and warping torsion; 

• The relative magnitude of these two types of torsional moments can be estimated 

based on the warping decay factor εt; 

• Saint-Venant’s torsion generates shear stresses that vary linearly over the 

thickness of the plates of the cross-section; 

• Warping torsion generates shear and axial stresses. Both may be considered as 

constant over the thickness of the plates of the I and U sections; 

• The distribution of axial stresses resulting from the bi-moment is affine to the 

warping function ω that is cross-section specific; 

• In general only global warping has to be considered for open cross-sections apart 

from cross-sections composed of plates crossing each other in one point (L, T 

sections). 
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3.1 General 

Chapter 3 presents in detail the finite element model that is used throughout this thesis to study 

the behaviour of members with open cross-section subject to torsion. First, the general modelling 

choices concerning boundary conditions and load introduction are explained. Then, the modelling 

of the member itself is investigated. In particular, paragraph 3.3 discusses the numerical 

modelling of hot-rolled sections including their fillets. Different modelling techniques are 

investigated and validated with reference to theoretical results and laboratory tests. Based on 

these comparisons a numerical model is chosen for the use in Chapters 4 and 5. 

 

3.2 General description of the finite element model 

3.2.1 Material law and equivalent imperfections 

Depending on the type of analysis, different material laws are applied in the framework of this 

thesis. They are defined in Table 3-1. 

Table 3-1: Material laws used for different types of analysis 

Type of analysis Objective Material law 

Linear Analysis (LA)  
Determination of elastic 

distribution of internal forces 
and moments 

Elastic 

Linear Buckling Analysis (LBA) Determination of critical loads Elastic 

Material non-linear analysis 
(without imperfection and 
second order effects – MNA) 

Determination of the plastic 
cross-section resistance 

Elastic – perfectly plastic 

Geometrical and Material Non-
linear Analysis of the Imperfect 
member (GMNIA) 

Determination of the ultimate 
member resistance 

Multi-linear 
(see Figure 3-1) 

 

Table 3-1 also defines the objective that is associated with the different types of analysis. It should 

be noted that the MNA simulations are performed without equivalent geometric imperfections 

because they are used to determine the theoretical plastic cross-section resistance without 

considering the influence of instability. Therefore, geometric non-linearity is not included neither 

in this type of analysis. Conversely, the GMNIA simulations are performed to characterize the 

member behaviour and the member resistance. Consequently, they should include the effect of 

imperfections and the second order effects. If not otherwise indicated, the member imperfections 

are applied affine to the first (member) eigenmode obtained through the LBA simulations with an 

amplitude of L/1000 in this type of analysis. For members of slender section, local plate 

imperfections are also included. They are defined by sine-waves of amplitude hw/200 for the web 
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and bf/400 for the flanges (as recommended in (CEN 2007a). The influence of the wave length is 

studied in paragraph 5.2.1.7. Additionally to the equivalent geometric imperfections, residual 

stresses are introduced for the GMNIA simulations accordingly to reference (ECCS 1984). It is to 

be noted that a deeper investigation on the influence of assumed imperfections (geometric 

imperfections and residual stresses) on the member resistance is presented in paragraph 5.2. This 

paragraph is only intended to give the general information necessary for the simulations 

performed in Chapter 3. 

 

Figure 3-1 : Multi-linear material law 

3.2.2 Finite elements used in this thesis 

3.2.2.1 General 

In the framework of this thesis, the commercial finite element program ANSYS v17.0 is used. In 

the following, a short presentation is given for all types of finite elements employed here. Detailed 

information may be obtained in reference (ANSYS 2016). 

3.2.2.2 Beam 4 

Beam 4 is a uniaxial finite element with two nodes at its ends and six degrees of freedom for each 

of these nodes. A third optional node is used for the element orientation. The cross-section 

characteristics (Area, second moments of area, torsional constant, etc.) are not defined by its 

geometry but directly by entering the numerical values of these characteristics. This type of beam 

element is only used in order to simulate stiff cross-sections along the member and rigid links 

between different types of elements (see paragraph 5.3). 

3.2.2.3 Beam 188 

As Beam 4, the finite element Beam 188 is defined by two nodes at the element ends and a third 

node defining the element orientation. Beam 188 has seven degrees of freedom at the nodes 

including warping. The cross-section is defined by its geometry and the corresponding cross-

section characteristics are calculated by ANSYS. Beam 188 is suited for plastic analysis. In order 

to obtain a smooth stress distribution and to respect the zero shear stress condition at the cross-

section boundaries, the section has to be discretised in a sufficient number of cells. Each cell 
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contains four section integration points as shown in Figure 3-2. It should also be noted that 

Beam 188 is based on Timoshenko beam theory including shear-deformation effects relevant for 

short beams. 

 

Figure 3-2: Discretization of the cross-section of element Beam 188 – Figure188.3 of reference 

(ANSYS 2016) 

3.2.2.4 Shell 181 

Shell 181 is a four-node shell element with six degrees of freedom at each node. The number of 

integration points may be defined by the user. However, an odd number has to be chosen. At least 

three integration points through the thickness are applied: one at the centre and one at each 

boundary surface. For all shell elements ANSYS uses the Simpson integration rule. In case of non-

linear stress distribution at least 5 integration points through the thickness should be used. Here, 

9 integration points are used in order to represent precisely the distribution of shear stresses due 

to the Saint Venant’s torsional moment. Also, one may note that the element Shell 181 is based on 

the Mindlin-Reissner theory (first order shear-deformation theory) considering shear 

deformations through the thickness of the plate. This element is suited for thin to moderately thick 

shell structures and it may therefore be used to model steel members. 

3.2.2.5 Solid 185 

Solid 185 is an eight node volume finite element. It possesses three degrees of freedom at each 

node (3 translations). The rotational degrees of freedom are not accounted for. Enhanced strain 

formulations are used so as to handle shear locking and volumetric locking recommended for 

bending-dominated problems. 
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3.2.3 Boundary conditions and loading 

3.2.3.1 General 

In case of finite beam elements, the application of boundary conditions and loading is rather trivial 

as both may be applied directly at the nodes defining the element as only one node is associated 

to a given section along the member length. However, when the physical member is modelled with 

shell or solid finite elements, the application of boundary conditions and loading is much more 

delicate as a given cross-section along the member length is defined by a certain number of 

nodes (depending on the mesh density). Also, the application of loads or boundary conditions are 

applied at only one node may lead to numerical convergence problems and unphysical high 

strains and stresses as well as local instabilities in the vicinity of the application node. Therefore, 

some precaution must be taken in order to apply loads and boundary conditions to shell or solid 

model. 

3.2.3.2 End supports for I sections 

In paragraph 3.3, several techniques are presented to model the cross-section. However, for all 

models (except the beam model) the same principles are employed to model the theoretical 

boundary conditions (e.g. fork end supports) and load introduction. Figure 3-3 represents 

schematically the end supports of two models, one consisting of shell elements and the other 

consisting of solid elements. 

  

a) Shell model b) Solid model 

Figure 3-3: Rigid Beam elements to prevent local instability at the support location 

In order to prevent local instability at the end section and to avoid the previously mentioned 

problem of unphysical high stresses at the end sections, the mid-line of the two models is meshed 

with rigid beam elements of type Beam 4 represented in violet in the following figures. In some 

references as (Boissonnade 2012) and (Hayeck 2017), the rigid beam elements are replaced by 

kinematic conditions. Here, it is preferred to introduce beam elements as the kinematic conditions 
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used in ANSYS are linearized and therefore not suited in case of large deformations (see “cerig” 

command in (ANSYS 2016)). 

3.2.3.3 End supports for U sections 

In case of U sections, neither the centroid nor the shear centre is located in the section itself. 

Consequently, the application of boundary conditions may seem more delicate than for I sections. 

The real physical boundary condition depend on the design of the joints of the (U-shaped) member 

with the connected structural elements. Obviously, there is a rather important variety of possible 

designs (end plats, angle sections …) and, depending on the design, the physical boundary 

conditions may be more or less close to idealised boundary conditions considered in the 

numerical model. In particular, it may be noted that a complete fork support may not be realised 

physically as the warping function does not vanish neither over the whole web nor over the whole 

flanges of U sections (see Chapter 2). If for example the web of the U section is connected by angle 

sections or partial depth endplates to a column, the warping displacements are always restrained 

at a certain degree. For I sections, this is not the case because the warping function vanishes over 

the whole web. Consequently, connecting the web of an I-shaped beam to a column does not 

restrain warping. Admittedly, it would be desirable to represent as precisely as possible the 

physical boundary conditions in the numerical model to capture their (beneficial) effect. Still, this 

seems delicate due to the variety of possible design. Rather, it is proposed to determine lower 

bound results for U-shaped members based on the assumption of ideal fork end supports. In order 

to allow free warping the axial displacements is restrained at one member end at the mid-height 

of the web (level of the centroid and the shear centre). At this point, the warping function vanishes 

and warping may therefore freely develop if necessary. In order to prevent lateral displacements 

and torsional twist, lateral restraints are applied at the upper and lower flange at the intersection 

with the web. Figure 3-4 illustrates the application of the boundary conditions for U-shaped 

members. 

 

Figure 3-4: End fork condition applied at a U-shaped member 
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3.2.3.4 Load introduction 

Point loads introduced in the span are applied as nodal forces. In order to prevent the cross-

section from local buckling, a stiffener is created at the point of load introduction as shown in 

Figure 3-5. This represents the practical habit. Otherwise, it would have been possible to 

introduce rigid beam elements as done for the application of the boundary conditions. 

 

Figure 3-5: Introduction of point load at mid-span 

Applied major- and minor-axis bending moments and axial forces are introduced by nodal forces 

distributed over the cross-section following a plastic stress distribution as represented for the 

case of major-axis bending in Figure 3-6. Consequently, the values of the nodal forces depend on 

the width of the neighbouring elements and the node location. 

Obviously, the plastic stress distribution only represents a limit case. Sometimes, it is preferred to 

introduce point loads at the member ends based on an elastic stress distribution. Nonetheless, 

this also represents only a limit case. Physically the stress distribution changes with ongoing 

yielding and evolves between elastic distribution and plastic distribution. Additionally, in the real 

structure, end moments are only introduced in a given member if this member is continuous or 

possesses moment-resisting connections providing a certain level of (warping) restraint. As it is 

intended to obtain lower bound resistances, the members are analysed supposing fork end 

supports as detailed in paragraph 3.2.3. Therefore, a simplification has to be accepted for the 

introduction of end moments. Also, it may be shown that the distributions of forces (based on 

elastic or plastic stress distribution) does not significantly influence the obtained member 

resistance. 
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Figure 3-6: Introduction of an applied major-axis bending moment 

3.3 Section modelling 

3.3.1 Different possibilities to model fillets 

In order to account for the influence of the fillets on the cross-section and member resistance of 

hot-rolled sections, different techniques may be applied. They are presented hereafter and 

evaluated in the following paragraphs. 

A first approach consists in the use of shell elements with modified thickness (see for example 

(Kettler 2008)). Here, it is proposed to modify the thickness of shell elements in the web in the 

zone of the fillets. Figure 3-7 shows an IPE 200 section modelled by the “modified thickness 

technique”. This model is referred to as “Shell var” (var = variable thickness) in paragraph 3.3.2. 

 

Figure 3-7: Modelling the fillets by shell elements of variable thickness 

Shell var 
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In (Taras 2011), the fillets are modelled by beam elements of rectangular hollow sections. The 

height and width of the hollow section as well as the thickness of its walls are chosen here to 

obtain the same torsion constant and area for the numerical I section as for the physical section. 

The out-of-plane and in plane bending stiffness are well approximated. The nodes of the beam 

elements are common with the shell elements and situated at the theoretical centroid of the fillets. 

Figure 3-8, shows the IPE 200 section whose fillets are modelled by rectangular hollow sections. 

This model is referred to as “Shell-Beam 1” in paragraph 3.3.2. 

 

Figure 3-8: Modelling the fillets by rectangular hollow section beam elements 

Similarly to the previous approach, the fillets may be modelled by beam elements possessing the 

exact geometry of the fillets. Additional nodes are created at the centroid of each fillet. These 

nodes are then attached to the shell model (at nodes A and B of Figure 3-9) by rigid beam elements 

as shown in Figure 3-9. Again an IPE 200 section is shown to demonstrate this approach. This 

model is referred to as “Shell-Beam 2” in paragraph 3.3.2. 

 

Figure 3-9: Modelling fillets by beam elements of identical geometry 

Shell-Beam 1 

Shell-Beam 2 

Node A 

Node B 
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The next approach evaluated here consists of a combination of shell and solid elements. The zone 

of the section that can be assimilated to plates is modelled by the shell elements and the fillet zone 

is modelled by solid elements as shown in Figure 3-10. The shell elements are attached to the solid 

elements by non-flexible contact (always bounded – MPC technology of ANSYS; see reference 

(ANSYS 2016)). A full continuity between the different elements can therefore be considered. This 

approach is advantageous as the fillet geometry can, depending on the solid element density, be 

modelled perfectly. The real stiffness of the fillet zone, offering the restraint to the flanges and the 

web, is accounted for. This model is referred to as “Shell-Solid” in paragraph 3.3.2. 

A clear inconvenient of this technique is the longer calculation time as the model possesses more 

degrees of freedom as a simple shell model or a model consisting of a combination of shell and 

beam elements (the calculation times are evaluated at the end of this paragraph). 

 

Figure 3-10: Modelling the fillet zone with solid elements 

 

Last, the member is modelled entirely with solid elements. As no interface between different 

element types exists, full continuity between the finite elements can be ensured. Additionally, the 

section geometry is most reliably approximated. However, the use of solid elements implies longer 

calculation time as mentioned before. Figure 3-11 shows the solid model of an IPE 200 section. 

This model is referred to as “Solid” in paragraph 3.3.2. 

Shell-Solid 

Contact « always bounded » 
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Figure 3-11: Modelling the section entirely with solid elements 

3.3.2 Study on the influence of meshing density 

3.3.2.1 General 

Hereafter, the influence of the meshing density is studied. In particular three points need to be 

taken into special consideration: 

• The element width: If the mesh is too coarse, the numerical result may be 

unreliable as the distribution of stresses and displacements are less well 

approximated. Also, as the distribution of residual stresses is not uniform over the 

cross-section but linear or quadratic (see paragraph 5.3), the number of elements 

over the cross-section and consequently their width has to be calibrated in order 

to represent the residual stresses (in particular as the residual stresses are 

generally introduced as constant per finite element). 

• The element aspect ratio: Here, the aspect ratio is defined as ratio between 

element length and element width (here the element length refers to the element 

dimension along the x-axis of the member and the element width refers to the 

dimension of the element in the plane of the cross-section; i.e. the y-z plane of the 

flanges). The use of finite elements of quadratic shape (element length = element 

width; aspect ratio = 1) generally yields the most reliable results. However, for long 

members, using finite elements of quadratic shape leads to an important number 

of elements and therefore excessive calculation times. Hence, it seems interesting 

to study the influence of the aspect ratio of the element in order to optimize the 

meshing density with reference to calculation time. 

• The number of elements to represent local buckling: A special issue arises for 

slender (class 4 in the terminology of Eurocode 3 Part 1-1 (CEN 2005a)) sections. 

Indeed, a minimum number of elements is necessary to represent the formation of 

Solid 
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local buckles. If too few elements are used, the curvature of the buckle may not be 

sufficiently approximated and the numerical result may be less precise. 

The mentioned topics are studied in the following paragraphs. 

 

3.3.2.2 Element width for stocky and medium slender cross-sections 

In the following, the influence of the element width is studied for stocky and medium slender 

sections whose ultimate resistance is not influenced by local plate instability. The influence of the 

element width is studied for several examples through GMNIA simulations including the residual 

stress pattern represented in Figure 3-14 and Figure 3-15 as well as a geometric member 

imperfection affine to the first member (or global) Eigen mode with an amplitude of L/1000. The 

material behaviour is supposed multi-linear including strain hardening (see Figure 3-1) . All 

studied members are fabricated from steel S235. 

The first example is a member of IPE 240 section without fillets (the modelling of the fillets is 

addressed in paragraph 3.3.3) subject to a constant bending moment of 56,92 kNm and a 

compression axial force of 379,3 kN (this load combination leads to full yielding of the section). 

The length of the member is varied between 800 mm and 7000 mm. For the second example the 

same configuration is studied but the section is supposed to be welded. The meshing density is 

characterised by the number of elements per flange. The element width of the finite elements in 

the web is the same as the one in the flanges. For all cases, the element aspect ratio is 1 (elements 

width = element length). 

Figure 3-12 shows the results obtained for the member made of hot-rolled IPE 240 section. The 

reference value is the result obtained with a meshing density of 20 elements per flange (as being 

the mesh with the highest density). As can be seen the results for the different densities are rather 

close. If at least 8 elements are used along the width of the flange, the difference to the reference 

value is less than 1%. 

 

Figure 3-12: Ultimate resistance as a function of the meshing density for a hot-rolled section 
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Figure 3-13 presents the results for the member made of a welded “IPE 240” section (the 

reference results are those obtained for 26 elements per flange). Here, it may be observed that the 

meshing density is of more importance than for hot-rolled sections. In fact, at least 12 to 16 

elements per flange are needed in order to converge to the reference value. Also, it can be seen 

that the difference between the coarse meshes (4 and 6 elements per flange) and the finest 

meshing densities increases with the member length. This observation seems somewhat 

surprising because the effect of the imperfections generally vanishes for members of high length 

and high member slenderness. Figure 3-12 represents a similar tendency but much less 

pronounced. The problem of the coarser meshes is not studied further in here. Rather, a 

sufficiently fine mesh is chosen to ensure reliable results. 

It may be understood why a denser mesh is necessary for welded sections than for hot-rolled 

sections if the specific residual stress patterns of Figure 3-14 and Figure 3-15 are studied. It can 

be seen that the variation of the residual stresses is much higher and much more concentrated for 

welded sections than for hot-rolled sections. Indeed, Figure 3-15 shows that the residual stresses 

for welded sections varies from +fy to -0,25fy on a distance representing only 5% of the panel 

width (web height or flange width). Obviously, a smaller element width is necessary to represent 

this variation. 

 

Figure 3-13: Calculated ultimate resistance as a function of the meshing density for a welded 

section 
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Figure 3-14: Residual stress distribution for a hot-rolled section 

 

 

 

Flange Web 

a1 0,075bf 0,075(h-2tf) 

a2 0,125bf 0,125(h-2tf) 

Figure 3-15: Residual stress distribution for a welded section 

In order to confirm the previous findings, the meshing density is evaluated next for the more 

complex load case of Figure 3-16. The member is made of an IPE 300 section without fillets. It is 

subject to axial compression and to a lateral and vertical point load applied on the upper flange at 

mid-span as represented in Figure 3-16. 

 

Figure 3-16: Member subject to compression, bi-axial bending and torsion 
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The results obtained for this most complex load combination are given in Figure 3-17 to Figure 

3-19. Additionally to the cases of hot-rolled and welded residual stress pattern, the case of a 

section without residual stresses is represented in Figure 3-17. It can be observed that if the 

member is not subject to any residual stresses, the meshing density seems not to be of importance. 

Indeed, the differences between the different meshing are much less than 1% and consequently 

negligible. 

 

Figure 3-17: IPE 300 section without residual stresses 

In case of residual stresses corresponding to hot-rolled sections, one may again remark that 8 

elements per flange are sufficient to obtain reliable results. Inversely, the mesh should be rather 

dense for the case of welded sections. Figure 3-19 shows again that at least 12 to 16 elements 

along the flange are necessary in order to converge to the reference results. As before, one may 

observe the surprising behaviour of longer members with the coarsest mesh of 8 elements per 

flange. In order to obtain reliable results 16 elements per flange are consequently used for 

members of welded sections in the following. 
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Figure 3-18 : IPE 300 section with residual stresses of hot-rolled sections 

 

Figure 3-19 : IPE 300 section with residual stresses of welded sections 

3.3.2.3 Element aspect ratio 

As mentioned previously, the second point that has to be discussed is the aspect ratio of the finite 

elements. In Figure 3-21, the results of the member used in the first example of paragraph 3.3.2.2 

(equivalent IPE 240 section subject to My = 56,92 kNm and N =  379,3 kN) are represented. In 

every case the element width corresponds to a number of 8 elements per flange (residual stresses 

according to hot-rolled sections). 

As can be seen, up to an aspect ratio of 7, the results differ very few from the reference (aspect 

ratio = 1). The sole remarkable difference is obtained for the member of 7 m length meshed with 

elements of an aspect ratio of 10. 

However, the load case of constant internal forces, creating uniformly distributed stresses along 

the member, may be favourable when the aspect ratio is studied. Therefore, the case of the 

0.98

0.99

1.00

1.01

1.02

1000 2000 3000 4000 5000 6000

R
u

lt
,i
/R

u
lt

,1
0

 (
-)

Lenght (mm)

6 elements per flange

8 elements per flange

10 elements per flange

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1000 2000 3000 4000 5000 6000

R
u

lt
,i
/R

u
lt

,,
2

6
(-

)

Length of the member (mm)

8 elements per flange

12 elements per flange

16 elements per flange

20 elements per flange

26 elements per flange



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Finite Element Model 

 

50 
 

member shown in Figure 3-20 is studied. The member is consequently subject to a combination 

of major-axis bending and torsion (and shear forces for the shortest specimen). 

 

Figure 3-20: Member subject to non-uniform bending and torsion (Figure from reference 

(FOSTA 2004) 

The element width corresponds to a number of 8 elements per flange. 

 

Figure 3-21: Calculated ultimate resistance as a function of the aspect ratio of the finite element 

Figure 3-22 shows that the aspect ratio seems to have more influence on the calculated ultimate 

resistance in case of variable internal forces. It is to be noted that the maximum difference is 

obtained for short members. In case of longer members, the difference becomes negligible (less 

than 0,5%). Hence, one might also argue that it is not the aspect ratio that needs to be calibrated 

but the number of elements along the member length. The results depending on the number of 

elements are represented in Figure 3-23. 
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Figure 3-22: Calculated ultimate resistance as a function of the aspect ratio of the finite element 

for a hot-rolled section under non-uniform bending and torsion 

 

Figure 3-23: Calculated ultimate resistance as a function of the element division along the member 

for a hot-rolled section under non-uniform bending and torsion 

It can be seen in Figure 3-23 that the element division along the member length seems to be a 

more meaningful parameter to assess the quality of the finite element model. In fact, the error of 

each model with respect to the reference (8 elements per flange and 150 divisions along the 

member) varies much less than the error represented in Figure 3-22 (error as a function of the 

element aspect ratio). It can be concluded that it is not the aspect ratio of the finite element that 

is at the origin of the error but a too small element division along the member. As the internal 

forces acting in the member are non-uniform and hence the stresses are also non-uniform along 

the member, a minimum number of elements is needed to represent this non-uniform stress 

distribution. Figure 3-23 also shows that the maximum error is always obtained for the shortest 

member. As the cross-section is compact (IPE 200: class 1 following Eurocode 3 terminology), the 

stockiest member of 1 m of length is susceptible to attain a certain amount of its plastic resistance. 

Therefore, the finite element mesh should be fine enough to represent the extent of plasticity. In 
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Figure 3-24, one may see that, depending on the element division along the member, the yielded 

zone on the top flange differs. In fact, the model possessing the coarsest mesh (Figure 3-24 a) 

predicts the greatest plastic zone. However, the peak plastic strain is much smaller than the peak 

plastic strain calculated by the model with the finest mesh (Figure 3-24 d). One may also remark 

that the continuity of the plastic strain between the finite elements is not entirely respected in the 

model represented in Figure 3-24 a) and Figure 3-24 b), whereas the plastic strain spreads 

continuously over the elements in Figure 3-24 c) and Figure 3-24 d) (it is to be noted that the 

results determined at the integration points are represented and not the averaged results over 

the element). 

Therefore, in the following at least 100 element divisions along the member is used for the finite 

element model. 

  

 
  

a) 10 divisions b) 20 divisions c) 50 divisions d) 100 divisions 

Figure 3-24: Plastic strain distribution on the top flange for the member of 1 m of length depending 

on the element division along the member 

3.3.2.4 Element width for slender cross-sections 

Hereafter, cross-sections that are sensitive to local buckling are referred to as slender cross-

sections (class 4 section in the terminology of Eurocode 3). For these sections the meshing has to 

be capable of reproducing local instability. Obviously, the mesh would be too coarse if there is 

only one finite element along the presumed local buckle. Conversely, a very fine mesh would again 

lead to longer calculation time. Hence, it is of interest to study the influence of the number of finite 

elements along the local buckle on the calculated ultimate resistances. Here, two welded sections 

are studied. They are noted as W.h.tw.bf.tf: 

• W.500.9,5.200.12,5 (web is sensitive to local buckling – class 4 web) 
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• W.500.7.200.5,36 (flange is sensitive to local buckling – class 4 flange) 

The studied members are subject to constant major-axis bending. The Figure 3-27 and Figure 3-28 

compare the results obtained through GMNIA calculations. These calculations include the typical 

residual stress pattern for welded sections (see Figure 3-15), a member imperfection affine to the 

first Eigen-mode for lateral-torsional buckling with an amplitude of L/1000 and a local 

imperfection. It is chosen to apply a local imperfection of sinusoidal shape. The longitudinal 

extension of one half wave of the local imperfection (see Figure 3-25) is chosen to be the mean 

value of the sum of half the flange width and the web height (twice the medium length of half the 

flange width and the web height) as shown in Eq. ( 3.1 ). In the perpendicular direction the local 

imperfection extends over the width of the considered plate (over bf/2 for the flanges and over hw 

for the web – see Figure 3.2). 

2

2
2/

w

f

wave

h
b

l

+
=  

( 3.1 ) 

 

 

Figure 3-25: Definition of wave length for the sinusoidal imperfection 

The amplitude of the imperfection is chosen to be equal to hw/200 for the web and bf/400 for the 

flanges (a deeper investigation on the influence of the local imperfection on the member 

resistance is presented in paragraph 5.2.1.7). Figure 3-26 shows the applied local imperfection for 

one example with an increased amplitude for a better representation. It should be noted that the 

number of elements per quarter wave (half of the local buckle) is 10 for the given example. 
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Figure 3-26: Local imperfection applied to an I-shaped member 

Figure 3-27 and Figure 3-28 compare the ultimate load factors obtained based on different 

numbers of elements per quarter wave. In order to facilitate the comparison between both 

members, the scale of the ordinate axes (representing the ratio Rult,i/Rult,10) is the same. 

As expected, the figures clearly show that the coarsest mesh yields the least reliable results. Also, 

one may observe that a coarser mesh leads to unsafe results (up to 5% for W.500.7.200.5,36 – see 

Figure 3-28). This may be explained by the fact that curvature of the plate due to local buckling is 

less well approximated by a coarse mesh. Consequently, the stresses resulting from local buckling 

are lower in this case (again it is referred to paragraph 5.2.1.7 giving details on the influence of 

the local imperfection). Finally, the figures show that the differences between the mesh densities 

decrease with the member length. Here the interaction between member instability (lateral-

torsional buckling) and section instability is the probable reason. In fact, the sensitivity of the 

member to lateral torsional buckling increases with the member length. Therefore, the stresses 

are lower at the Ultimate Limit State and hence the cross-section is less sensitive to local buckling. 

However, the tendencies discussed above are much more pronounced in case of the section with 

slender flanges. As the flanges contribute much more to the bending resistance of the section than 

the web, local buckling of the flanges has a greater influence on the section and member resistance 

than local buckling of the web. Consequently, the differences between a coarse mesh and a fine 

mesh are less pronounced for the section with a slender web. 

On the basis of the results presented in Figure 3-27 and Figure 3-28, it is concluded that at least 4 

elements per quarter wave seem to be necessary to obtain reliable results. 
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Figure 3-27: Influence of element number along the local buckle – W500.9,5.200.12,5 

 

Figure 3-28: Influence of element number along the local buckle – W.500.7.200.5,36 

3.3.2.5 Summary on meshing density 

Through paragraph 3.3.2, the influence of the meshing density on the ultimate resistance has been 

analysed. This study permits to conclude on the following points: 

• For hot-rolled sections, 8 finite elements of constant width per flange are sufficient 

to obtain reliable results; 

• For welded sections, at least 16 finite elements of constant width per flange are 

necessary to account for the residual stress distribution; 

• For stocky and medium slender sections (not sensitive to local buckling), the 

member should be divided into at least 100 elements along its length; 

• For slender sections (sensitive to local buckling), the element division along the 

length depends on the wave length of the presumed local buckle; it seems 

necessary to use at least 4 elements along one quarter wave; 
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• The aspect ratio of the finite element is not of primary importance for the 

numerically determined ultimate resistance of the member; however the number 

of elements along the member should respect the prescription given above. Also, 

in order to avoid excessively long elements, the aspect ratio is limited to 3 

hereafter. 

  



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Finite Element Model 

 

57 
 

3.3.3 Evaluation of the stiffness of the different modelling techniques 

3.3.3.1 General 

In Chapter 2, it has been recalled that the fillets of hot-rolled sections may have a non-negligible 

influence to the cross-section characteristics, especially to those linked to Saint Venant’s torsion 

as the torsion constant It and the Saint Venant’s torsional moment resistance Mx,St,V,R. It seems 

therefore interesting to study how the influence of the fillets may be precisely accounted for. In 

paragraph 3.3.1, different modelling techniques have been presented. They are evaluated 

hereafter in two steps: 

• First, elastic critical loads are calculated for different load cases in order to 

evaluate the precision of the bending, torsional and warping stiffness obtained 

with the different modelling techniques. 

• In a second step (see paragraph 3.3.4) the plastic cross-section resistances 

obtained with the different models are compared for simple and combined load 

cases. 

The sections used for this sub study as well as their geometric and mechanical characteristics are 

given in Table 3-2. 

In order to evaluate the quality of the approximation of the mechanical characteristics by the 

different modelling techniques, the elastic critical loads are calculated for the following modes: 

• Major-axis flexural buckling; 

• Minor-axis flexural buckling; 

• Torsional buckling; 

• Lateral-torsional buckling. 

Different lengths are studied for each member so that the relative slenderness is varied between 

approximately 0,1 and 2 supposing that the member is made of S235. 

For the following comparisons the reference value is obtained with the analytical expressions 

based on the theoretical values of the cross-section constants Iy, Iz, Iw et It. In fact, in order to 

validate the numerical model in a last step with reference to physical tests, it is necessary to 

reproduce as precisely as possible the physical cross-section and its mechanical characteristics. 

Hereafter only selected results are presented. Nevertheless, they are representative of the totality 

of results. 
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Table 3-2: Sections used to evaluate different techniques for the modelling of the fillets 

Section Geometry Mechanical characteristics 

IPE 200 

h [mm] 200 A [cm2] 28,484 

tw [mm] 5,5 Iy [cm4] 1943,2 

b [mm] 100 Iz [cm4] 142,37 

tf [mm] 8,5 It [cm4] 6,884 

r [mm] 12 Iw [cm6] 13052 

IPE 550 

h [mm] 550 A [cm2] 134,42 

tw [mm] 11,1 Iy [cm4] 67117 

b [mm] 210 Iz [cm4] 2667,6 

tf [mm] 17,2 It [cm4] 122,16 

r [mm] 24 Iw [cm6] 1,893.106 

HEM 160 

h [mm] 180 A [cm2] 97,051 

tw [mm] 14 Iy [cm4] 5098,3 

b [mm] 166 Iz [cm4] 1758,8 

tf [mm] 23 It [cm4] 163,63 

r [mm] 15 Iw [cm6] 108380 

HEB 300 

h [mm] 300 A [cm2] 149,08 

tw [mm] 11 Iy [cm4] 25166 

b [mm] 300 Iz [cm4] 8562,8 

tf [mm] 19 It [cm4] 185,87 

r [mm] 27 Iw [cm6] 1,69.106 

HEA 800 

h [mm] 790 A [cm2] 285,83 

tw [mm] 15 Iy [cm4] 303443 

b [mm] 300 Iz [cm4] 12639 

tf [mm] 28 It [cm4] 606,77 

r [mm] 30 Iw [cm6] 18,35.106 

 

3.3.3.2 Major-axis flexural buckling 

Hereafter, the results for the different models are compared for the case of major-axis flexural 

buckling. In addition to the models presented in paragraph 3.3.1 the results of two beam models, 

noted as Timoshenko and Bernoulli, are included in the following figures in order to illustrate the 

influence of shear deformations on the critical load for small values of the relative slenderness 

(short members). In fact, the difference between both beam models can be directly linked to shear 

deformation, not considered by the Bernoulli beam model, as both beam models are identical in 

all other points. 

The reference value is the result obtained by the Timoshenko beam elements considering the 

influence of shear deformations. The results are represented as function of the relative 
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slenderness λy defined by (it may be noted that all sections can be considered as compact, i.e. 

susceptible to attain the plastic resistance Npl if second order effects are negligible): 

ycr

pl
y

N

N

,

=λ  ( 3.2 ) 

 

 

Figure 3-29: Comparison of the critical loads obtained by the different models – IPE 200 

 

Figure 3-30: Comparison of the critical loads obtained by the different models – HEM 160 
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Figure 3-31: Comparison of the critical loads obtained by the different models – HEA 800 

The influence of shear deformation on the critical axial force for major-axis buckling can be 

identified easily in the previous figures. For a relative slenderness of approximately 0,1 the 

difference attains 40 to 90%. Between models considering the shear deformations (all but beam 

model Bernoulli) and the Bernoulli beam model. Even for more realistic values of the relative 

slenderness (between 0,4-0,6) the influence of shear deformation does not completely disappear, 

yet it is much less pronounced (3-10%). 

The results obtained by the other models correspond very well to the reference result. The 

differences are in most cases lower than 1% and consequently negligible. 

3.3.3.3 Minor-axis flexural buckling 

As for the case of major-axis buckling, the models are compared hereafter. The reference value is 

again the result obtained with the Timoshenko beam model considering the influence of shear 

deformations. The results presented next are again given as a function of the relative slenderness 

following the definition of Eq. ( 3.3 ). 
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Figure 3-32 to Figure 3-34 highlight the influence of shear deformation for a small relative 

slenderness again. Additionally, the results confirm that all studied models represent well the 

major- and minor-axis bending stiffness of the member. The results are even closer to each other 

than in the case of major-axis buckling. 
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Figure 3-32: Comparison of the critical loads obtained by the different models – IPE 550 

 

Figure 3-33: Comparison of the critical loads obtained by the different models – HEB 300 

 

Figure 3-34: Comparison of the critical loads obtained by the different models – HEA 800 

0.90

1.00

1.10

1.20

1.30

1.40

1.50

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20

N
cr

,z
,i
/N

cr
,z

(-
)

λz (-)

Timoshenko

Bernoulli

Shell-Beam1

Shell-Beam 2

Shell var

Shell-Solid

Solid

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20

N
cr

,z
,i
/N

cr
,z

(-
)

λz (-)

Timoshenko

Bernoulli

Shell-Beam1

Shell-Beam 2

Shell var

Shell-Solid

Solid

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20

N
cr

,z
,i
/N

cr
,z

(-
)

λz (-)

Timoshenko

Bernoulli

Shell-Beam1

Shell-Beam 2

Shell var

Shell-Solid

Solid



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Finite Element Model 

 

62 
 

3.3.3.4 Torsional buckling 

Figure 3-35 to Figure 3-37 compare the quality of the models to predict the critical load for 

torsional buckling. The reference result may be obtained with Eq. ( 3.4 ).  









+=

2

2

2,

1

L
EIGI

i
N wt

p

tcr

π
 ( 3.4 ) 

and  

tcr

pl
t

N

N

,

=λ  ( 3.5 ) 

In the case of torsional buckling, the difference between the two beam models is negligible. 

However, it seems that the representation of the torsional stiffness of the member is more delicate 

than the modelling of the bending stiffness. In fact, the differences between the studied models 

are much more pronounced than before. The model giving the results the closest to the reference 

is the one combining shell and solid elements; the difference is generally less than 1%. The model 

combining shell and rectangular beam elements also yields very satisfactory results. The models 

“Shell var” and “Shell-Beam 2” give similar but generally the least exact results. For these twos 

models, it may be observed that the difference to the reference result increases with the member 

length. It should be recalled that for high member lengths the critical load is mainly influenced by 

the Saint Venant’s torsional stiffness of the member as shown in Eq. ( 3.4 ). In fact, with increasing 

length the value of the critical axial force for torsional buckling attains a limit value as the term 

EIwπ²/L² tends to zero. Based on the results, one may therefore conclude that the warping stiffness 

is predicted satisfactorily by models “Shell var” and “Shell-Beam 2” (small differences to the 

reference value for small lengths) whereas the torsional stiffness is poorly approximated. This 

discrepancy may be attributed to the fact that the continuity of material is not respected in the 

zone of the fillets. Indeed, for both models, “Shell var” and “Shell-Beam 2”, the geometry of the 

fillets is precisely modelled but the fillets are not in continuous contact with the web and the flange 

and consequently, the continuity of material is not ensured (continuity of the warping function). 

The model combining shell and beam elements of rectangular hollow section does not possess the 

mentioned continuity, either, as the geometry of the fillets is not modelled directly. However, as 

the geometry of the rectangular hollow section is calibrated so that the torsional constant and the 

area of the section are equivalent to the real section, the torsional stiffness as well as the flexural 

stiffnesses are well approached. The “Solid” model and the “Shell-Solid” model perfectly respect 

the continuity of the material and consequently yield very satisfactory results. 
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Figure 3-35: Comparison of the critical loads obtained by the different models – IPE 200 

 

Figure 3-36: Comparison of the critical loads obtained by the different models – IPE 550 

 

Figure 3-37: Comparison of the critical loads obtained by the different models – HEB 300 
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3.3.3.5 Lateral-torsional buckling 

Last, the influence of the fillet modelling is evaluated for the case of lateral-torsional buckling. As 

for the case of torsional buckling, the differences between the studied models cannot be overseen 

in Figure 3-38 to Figure 3-40. The “Solid” model and the model combining shell and solid elements 

yield the best results. Since the continuity between the different zones of the section is best 

represented (besides the case of beam models), the quality of the models is not surprising. 

Again, the models “Shell-Beam 2” and “Shell-var” represent the stiffness the least well. The 

differences with respect to the reference attain 5 to 10%. Yet, the model “Shell var” gives slightly 

more accurate results. Nonetheless, it appears that the differences between these two models and 

the other models are much less pronounced than for the case of torsional buckling. This may be 

understood because, additionally to the torsion constant and to the warping constant, the second 

moment of area about the minor-axis highly influences the value of the critical moment Mcr (more 

than the critical axial force for torsional buckling). This is recalled by the analytical expression 

represented in Eq. ( 3.6 ) (applicable for the case of constant major-axis bending). Eq. ( 3.6 ) also 

shows that the influence of the torsional constant of the section is reduced as it is divided by Iz. 
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Finally, one may observe that the model “Shell-Beam 1” confirms its good quality to represent the 

torsional stiffness of the member. In most cases, the results are comparable to the more complex 

“Solid” and “Shell-Solid” models. 

 

Figure 3-38: Comparison of the critical loads obtained by the different models – IPE 200 
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Figure 3-39: Comparison of the critical loads obtained by the different models – HEB 300 

 

Figure 3-40: Comparison of the critical loads obtained by the different models – HEA 800 
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different models with respect to their quality to represent the real stiffness of the member, 

especially for the case of hot-rolled cross-sections whose fillets have a considerable influence on 

the torsional stiffness of the beam. The results permit to conclude that: 

• All models represent very well the major- and minor-axis bending stiffness; 
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of the section; 

• The model “Shell-Beam 1”, combining shell and beam elements of rectangular 

hollow section also represent very well the torsional stiffness of the section; 

0.92

0.94

0.96

0.98

1.00

1.02

1.04

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80

M
y

,c
r,

i/
M

y
,c

r
(-

)

λLT (-)

Timoshenko Bernoulli

Shell-Beam 1 Shell-Beam 2

Shell var Shell-Solid

Solid

0.92

0.94

0.96

0.98

1.00

1.02

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20

M
y

,c
r,

i/
M

y
,c

r
(-

)

λLT (-)

Timoshenko Bernoulli

Shell-Beam 1 Shell-Beam 2

Shell var Shell-Solid

Solid



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Finite Element Model 

 

66 
 

• The models “Shell-Beam 2” and “Shell var” are the least well suited to represent 

the torsional stiffness of the section. 

As it has been shown that the models “Shell-Beam 2” and “Shell var” are not capable to reproduce 

satisfactorily the torsional stiffness of the member, they is not be considered in the following. 

It should be recalled that the reference values are obtained based on analytical expressions using 

the theoretical mechanical cross-section characteristics. This is justified as the goal of the 

comparison is to conclude on what modelling technique may be used to reproduce most precisely 

the cross-section characteristics of a physical member so as to recalculate laboratory tests used 

in a last step for the final validation of the numerical model. 

3.3.4 Plastic section resistance 

3.3.4.1 General 

The sections of Table 3-2 are used hereafter in order to evaluate whether the different types of 

section modelling are capable to represent well the plastic distribution of the stresses over the 

cross-section and consequently the plastic cross-section resistance. In order to obtain the plastic 

limit load, material non-linear analyses (MNA) are performed supposing an elastic-perfectly 

plastic material behaviour. It is recalled that this type of analysis only includes material non-

linear effects. Geometric non-linearity as well as imperfections are not included. Also, it should be 

noted that residual stresses are not introduced here. In general, their influence on the plastic limit 

state is negligible owing to the ductility of steel. Nonetheless, if instability (local buckling or 

member buckling) was studied, residual stresses should be accounted for. 

3.3.4.2 Mono-axial bending and axial force 

The members studied hereafter are supposed to be subject to a constant distribution of major-

axis bending, minor-axis bending or the axial force. Also, they are supposed to possess fork end 

supports. Figure 3-41, Figure 3-42 and Figure 3-43 show the results for the cases of major-axis 

bending, minor-axis bending and axial force, respectively. One may observe that all models yield 

results very close to the reference values for all cross-sections and member lengths. The results 

are slightly conservative compared to the theoretical plastic cross-section resistance but the 

differences are negligible. It should also be mentioned that the results do not depend on the length 

as second order effects (geometric non-linearity) are excluded from the numerical simulations 

(MNA). 
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Figure 3-41: Comparison of different models regarding the plastic major-axis bending resistance 

 

Figure 3-42: Comparison of different models regarding the plastic minor-axis bending resistance 

 

Figure 3-43: Comparison of different models regarding the plastic axial force resistance 
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3.3.4.3 Torsion 

The case of applied torque differs from the cases treated before. In fact, an applied torsional 

moment generally creates a combination of bi-moments, warping torsional moments and Saint 

Venant’s torsional moments. Hence, for a section subject to an applied torque, the numerically 

obtained section resistance corresponds to an interaction between several internal moments. The 

importance of each component (B, Mx,St.V, Mx,w) depends on the length of the member and on the 

torsional characteristics of the section, i.e. on the warping decay factor εT (see Chapter 2). 

Hereafter, the case of a member made of a HEB 300 cross-section is considered. Conversely to the 

cases studied before, it is assumed that the member is fixed at one end (all degrees of freedom 

blocked including warping) and entirely free at the other end. At the free end, a torsional moment 

is applied. The resulting rotation-bi-moment and rotation-total torsional moment diagrams are 

given next for different member lengths and therefore different warping decay factors εT. 

It is interesting to observe in the following figures that: 

• The “Solid” model as well as the “Shell-Solid” and the “Shell-Beam 1” model yield 

very similar results; the “Beam” model shows some differences to the other 

models; 

• Independently of the member lengths, the maximum bi-moment is constant and 

equal to approximatively 30 kNm². However, the plastic bi-moment obtained for 

the “Solid” and the “Shell” models varies slightly between 32 kNm² and 30 kNm² 

whereas the plastic bi-moment is always equal to 28,8 kNm² in case of the beam 

model; 

• Conversely to the observation mentioned above, the maximum total torsional 

moment depends highly on the member length and varies between 

approximatively 69 kNm for the shortest member and about 25 kNm for the 

longest one; 

• Additionally, it may be seen that when the member attains its plastic bi-moment 

resistance, the total torsional moment continuous to increase; 

• The plastic bi-moment resistance may be attained for small torsional twists if the 

member is rather short. Contrariwise, for longer members, the torsional twist 

necessary to attain the full plastic bi-moment seems excessive (0,40 rad for a 

member length of 12h = 3600 mm). 
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a) Bi-moment 

 

b) Torsional moments 

Figure 3-44: Relation between torsional rotation at free end and a) bi-moment B at fixed end and 

b) torsional moments Mx,i at fixed end for a member length of 600 mm (εT = 0,40) 
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a) Bi-moment 

 

b) Torsional moments 

Figure 3-45: Relation between torsional rotation at free end and a) bi-moment B at fixed end and 

b) torsional moments Mx,i at fixed end for a member length of 1800 mm (εT = 1,19) 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28

B
 a

t 
fi

x
e

d
 e

n
d

  (
k

N
m

²)

Torsional rotation at the free member end (rad)

Beam

Shell-Beam 1

Shell-Solid

Solid

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28

M
x

,t
o

t
=

 M
x

,S
t.

V
+

  M
x

,w
a

t 
fi

x
e

d
 e

n
d

  

(k
N

m
)

Torsional rotation at the free member end (rad)

Beam

Shell-Beam 1

Shell-Solid

Solid



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Finite Element Model 

 

71 
 

 

a) Bi-moments 

 

b) Torsional moments 

Figure 3-46: Relation between torsional rotation at free end and a) bi-moment B at fixed end and 

b) torsional moments Mx,i at fixed end for a member length of 3600 mm (εT = 2,39) 

In order to explain the previous observations, it seems interesting to recall the theoretical 

distribution of internal moments obtained by an elastic analysis for the studied member as shown 

in Figure 3-47 and Figure 3-48. One may observe that the torsional moment is nearly completely 

carried through warping torsion (see Figure 3-47). Conversely, for the member length of 

3600 mm (Figure 3-48), the Saint Venant’s torsional moment exceeds the warping torsional 
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It has also been observed in Figure 3-44 to Figure 3-46 that even if the plastic bi-moment is 

attained the total torsional moment continues to increase. This can be explained as follows: the 

bi-moment is exclusively carried by the flanges of the cross-section. When they have completely 

yielded (or nearly) a warping hinge is created as the effective warping stiffness of the member 

nearly vanishes at the member end. Yet, supplementary torsional moments may be carried 

through shear stresses resulting from Saint Venant’s torsional moment. As the flange has yielded, 

these shear stresses transit through the web until it has entirely yielded. A deeper discussion on 

the plastic behaviour of members in torsion is given in paragraphs 4.4.4.1 and 5.6.4.2. 

 

a) Bi-moment 

 

b) Torsional moments 

Figure 3-47: Distribution of bi-moment and torsional moments – short member L = 600 mm 
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a) Bi-moment 

 

b) Torsional moments 

Figure 3-48: Distribution of bi-moment and torsional moments – long member L = 3600 mm 

Last, the difference between the beam model and the models containing solid and/or shell 

elements is of interest. As before a mechanical explanation may be given. In fact, it may be 

observed in Figure 3-49 and Figure 3-50 that the axial stresses attain the yield stress of 235 MPa 

in case of the beam model whereas they attain 271,2 MPa in case of model “Shell-Beam 1”. 

However, for both models, the maximum von Mises stress is equal to the yield stress. Figure 3-51 

shows why the axial stresses exceed the yield stress in case of the shell model. Indeed, stresses in 

the z and y directions develop at the fixed end and allow the axial stresses σx to exceed the yield 

stress according to the von Mises yield criterion. A similar result has been highlighted in reference 

(Gonçalves et al. 2014) for the bending moment shear force interaction (see also paragraph 

3.3.4.4). As the beam model only considers axial stresses σx and shear stresses τxy and τxz, the effect 

of a multi-axial stress interaction in the von Mises yield criterion is obviously not considered. 

Therefore, the maximum bi-moment obtained with the beam model equals the theoretical plastic 

bi-moment whereas the maximum bi-moment obtained with the shell and solid model may exceed 

the theoretical plastic bi-moment resistance. It is recalled that the bi-moment acting in the cross-

section is obtained by integrating the axial stresses following Eq. ( 3.8 ). 

dAB ∫= σω  ( 3.8 ) 
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a) Axial stresses 

 

 

b) Von Mises stresses 

Figure 3-49: Beam model - L = 600 mm - Distribution of a) axial stresses and b) von Mises stresses 
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a) Axial stresses 

 

 

b) Von Mises stresses 

Figure 3-50: Model Shell-Beam 1 - L = 600 mm - Distribution of a) axial stresses and b) von Mises 

stresses 
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a) Stresses σz  b) Stresses σy 

Figure 3-51: Model Shell-Beam 1 - L = 600 mm - Distribution of stresses a) σz and stresses b) σy 

Up to this point, it has been shown that the studied models are very close and may therefore be 

used to determine the plastic resistance of hot-rolled sections including the influence of the fillets. 

Eurocode 3 Part 1-1 (CEN 2005a) attributes a rather important influence to the fillets concerning 

the shear resistance. Consequently, it seems interesting to validate the different modelling 

techniques also for the bending moment-shear interaction. 

3.3.4.4 Interaction between major-axis bending and shear force 

Last, the interaction between major-axis bending and shear force is studied. It is supposed that 

the members possess fork end conditions and that they are subject to bending moments varying 

linearly from +My to –My leading to a constant distribution of the shear force over the member 

length. Hereafter, the case of a HEB 300 cross-section is treated again. Figure 3-52 shows the 

interaction curve obtained by the different models as well as the interaction curve predicted by 

Eurocode 3 Part 1-1 (CEN 2005a). It should be noted that only the area of the web is considered 

as shear area (excluding the fillets). A detailed discussion on the plastic shear resistance and the 

corresponding shear area is given in chapter 4. 

Figure 3-52 clearly shows the difference between the results obtained on the basis of beam 

elements and the results obtained by the other models. Independently of the applied shear force, 

the beam model always attains the plastic major-axis bending moment resistance. In order to 

understand these somewhat surprising results, the stress distribution at the plastic limit state 

deserves being studied. 
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Figure 3-52: Numerical determined interaction between major-axis bending and vertical shear 

force 

Figure 3-53 shows the stress distribution obtained with the beam model. It may be observed that 

the axial stresses reach the yield stress of 235 MPa at the supports. It seems that there is no 

interaction between these stresses and the shear stresses. Also, one may observe that the shear 

stresses greatly exceed the yield stress in shear. It is obvious that the beam model is not suited if 

the interaction between shear force and bending moments are studied. Here, one may suppose 

that the interaction between shear stresses resulting from the shear force and the axial stresses 

is not correctly considered in the von Mises yield criterion. 
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a) Axial stresses σx, b) Shear stresses τxz 

 

c) von Mises stresses 

Figure 3-53: Distribution of a) axial stresses σx, b) shear stresses τxz and c) von Mises stresses for a 

member length of 1800 mm obtained by beam model 

In order to compare the results obtained with the other models Figure 3-54 shows the interaction 

curve again. Obviously, the models “Shell-Beam 1”, “Shell-Solid” and “Solid” yield very similar 

results. The differences are negligible. As for the beam model, the plastic stress distributions at 

the ultimate limit state are given for a member of 1800 mm of length in Figure 3-55 and Figure 

3-56 for the model “Shell-Beam 1” and the “Solid” model. 
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Figure 3-54: Numerically determined interaction curves between major-axis bending and vertical 

shear force 

The following two figures show that both models, “Shell-Beam 1” and “Solid”, yield nearly identical 

stress distributions at the ultimate limit state. As the continuity of the material in the fillet zone is 

better represented by the “Solid” model, the stress distribution is smoother, too. 

a) Axial stresses σx b) Shear stresses τxz 

 

c) von Mises stresses 

Figure 3-55: Distribution of a) axial stresses σx, b) shear stresses τxz and c) von Mises stresses for a 

member length of 1800 mm obtained from Shell-Beam 1 model 
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a) Axial stresses σx b) Shear stresses τxz 

 

c) von Mises stresses 

Figure 3-56: Distribution of a) axial stresses σx, b) shear stresses τxz and c) von Mises stresses for a 

member length of 1800 mm obtained from solid model 

The present paragraph has shown that the “Beam” model is not suited to study the bending 

moment-shear forces interaction. Conversely, models “Shell-Beam 1”, “Shell-Solid” and “Solid” 

predict nearly identical results and can therefore be used in the following. 

3.3.4.5 Conclusion 

Paragraph 3.3.4 presented a comparison of different modelling techniques for hot-rolled cross-

sections. The objective was to determine whether or not the models are capable to represent the 

theoretical plastic cross-section resistance. It has been shown that: 

• All models yield very similar results for the case of applied bending moments and 

axial forces; 

• For the case of an applied torsional moment and especially for the case of bending 

moment-shear force interaction the beam model yields poor results as the 

interaction between shear stresses and axial stresses does not seem to be well 

represented; 
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• Models “Solid”, “Shell-Solid” and “Shell-Beam 1” yield very similar results including 

for the case of applied torsion and bending-shear force interaction. 

It has been shown that the models “Solid”, “Shell-Solid” and “Shell-Beam 1” (combining Shell 

elements and beam elements of rectangular hollow section to model the fillets) yield very similar 

results for all studied cases. However, as the model “Shell-Beam 1” contains beam elements not 

capable to correctly represent the interaction between shear and axial stresses, it may not be 

excluded that the results are affected in certain situations and complex load interactions. 

Therefore, this model is not used to study the influence of fillets. As the calculation time is nearly 

identical for both models, “Solid” and “Shell-Solid”, the “Solid” model is used to study the influence 

of the fillets of hot-rolled sections. 

Paragraphs 3.3.3 and 3.3.4 studied the influence of different modelling techniques for the 

modelling of hot-rolled cross-section and in particular the modelling of their fillets. 

Eurocode 3 Part 1-1 accepts, conversely to other international standards as (ANSI 2010) and 

(Standard Australia 1998), that the fillets increase the shear resistance of hot-rolled cross-

sections compared to welded cross-sections. Consequently, the fillets have to be included 

explicitly in numerical simulations so as to quantify their influence on the plastic section 

resistance. However, the use of solid elements implies longer calculation times, that may be 

acceptable for the study of the plastic cross-section resistance. It should be noted a typical MNA 

simulation performed in the framework of this paragraph takes about 30 min to 60 min 

depending on the member length if it is performed with models “Solid” and “Shell-Solid”. 

Conversely, the same simulations take only about 5 min to 15 min if they are performed with 

model “Shell-Beam 1”. Therefore, an extensive parametric study concerning the member 

resistance including second order effects does not seem feasible with a solid model because the 

length of the member enters as supplementary parameter leading to a greater number of cases to 

be studied. Also, it has been shown several times for simple load cases not including torsion, for 

example in reference (Taras 2011), that the fillets do not influence the general behaviour of a 

member. In fact, if the member resistance is given in relative terms in a λ-χ diagram the results 

are practically identical whether or not the fillets are included into the simulation. Consequently, 

it seems interesting to study if these conclusions may be extended to the case of members subject 

to applied torsional moments. 
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3.3.5 Influence of the fillets on the member resistance 

In order to study the influence of the fillets on the behaviour of members subject to combined 

bending and torsion, the example represented in Figure 3-57 is treated. The member is made of 

IPE 500 cross-section fabricated from steel grade S235. It is subject to constant major-axis 

bending and to a torsional moment applied at mid-span. The value of the torsional moment is 

calculated as a function of the member length by: 

L

b
MM yT =  ( 3.9 ) 

Eq. ( 3.9 ) accounts for the fact that torsional moments are generally introduced by loads applied 

with an eccentricity to the shear centre. In fact, the torsional moment applied here is equal to a 

torsional moment that would be introduced by a vertical point load applied at mid-span half way 

between the web and the flange’s tip and creating the maximum bending moment My (that is 

applied at the member ends for studied example). 

 

Figure 3-57: IPE500 subject to combined bending and torsion 

The three different cases represented in Figure 3-58 are studied. Here the torsional characteristics 

as well as the plastic major-axis bending moment are of special interests. The cross-section 

characteristics are given in Table 3-3 for each model. Obviously, the characteristics are identical 

for the models not considering the fillets. Table 3-3 also shows that the fillets contribute to about 

4% to the major-axis bending moment, 28% to the torsion constant, 36% to the plastic Saint 

Venant’s torsional moment and 1% to the warping constant. Obviously, the fillets especially 

influence the cross-section characteristics related to Saint Venant’s torsion. 
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Table 3-3: Cross-section characteristics for the three models 

Characteristic 
Solid model with 

fillets 
Solid model without 

fillets 
Shell model without 

fillets 

Plastic bending 
moment My,pl 

515,6 kNm 495,2 kNm 495,2 kNm 

Plastic St. Venant’s 
torsional moment 
Mx,St.V,pl 

11,4 kNm 8,41 kNm 8,41 kNm 

Torsional constant 
It 

89,37 cm4 69,94 cm4 69,94 cm4 

Warping constant Iw 1248658 cm6 1235064 cm6 1235064 cm6 

 

   

a) Solid model with fillets b) Solid model without fillets c) Shell model without fillets 

Figure 3-58: Modelling of the IPE 500 section 

Figure 3-59 represents the results obtained by GMNIA calculations of the three models for 

different member lengths. The resistance is represented with reference to the plastic bending 

moment resistance. As the member is subject to combined bending and torsion (creating a bi-

moment, a warping torsional moment and a Saint Venant’s torsional moment), the plastic bending 

moment is not attained even for short members, whatever the model is. It can be seen that, both 

the solid model not considering the fillets and the shell model yield quasi identical results. This 

observation confirms the quality of the shell model for the case of applied torsion. Additionally, it 

may be seen that the influence of the fillets is nearly negligible, especially for short members 

(attaining the plastic cross-section resistance under combined bending and torsion) and long 

members (λLT > 1,4 – failure characterized by elastic instability). Some differences may be 

identified for members of medium length. This may be attributed to the contribution of the fillets 

to the torsional stiffness of the member (see Figure 3-60 and Figure 3-61). 



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Finite Element Model 

 

84 
 

 

Figure 3-59: Reduction of the ultimate bending moment with the relative lateral-torsional buckling 

slenderness 

Figure 3-60 and Figure 3-61 show the evolution of the torsional twist and the lateral displacement 

at mid-span with the applied major-axis bending moment for the member possessing a lateral-

torsional buckling slenderness of about 1,0 (L =5400 mm). The negative sign for the lateral 

displacement directly results from the sign conventions (positive torsional twist leads to negative 

lateral displacement). Nonetheless, as the section is double symmetric, the sign is not of primary 

importance. 

It may note that the shell model and the solid model not including the fillets yield identical results 

again. Owing to higher torsional stiffness of the member with the fillets, the torsional twist and 

the lateral displacement at a given load level are lower than for the members without fillets. 

Consequently, the resulting second order internal forces, in particular bi-moment and minor-axis 

bending moment, are lower too. Thus, the member possessing fillets may resist a higher applied 

major-axis bending moment. The difference is of about 8%. Nevertheless, it has to be noted that 

the fillets do not modify the general behaviour of the member. In fact, due to the higher Saint 

Venant’s torsional stiffness, the critical load is higher and the relative slenderness is lower for the 

member with fillets. Consequently, it is not surprising that its resistance is slightly higher than the 

resistance of the member with the same dimensions not possessing the fillets. Nonetheless, a 

single ultimate resistance curve is capable of describing the behaviour of both members. 

Therefore, a design model may be developed based on a numerical study of members without 

fillets. If the torsional characteristics are included into this design model, it is able to predict the 

ultimate resistance of members made of hot-rolled sections as reliably as the resistance of 

members made of welded sections. 
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Figure 3-60: Evolution of the torsional twist at mid span with the applied bending moment 

 

 

Figure 3-61: Evolution of the lateral displacement of the centroid at mid span with the applied 

bending moment 
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3.3.6 Choice of the numerical model 

The present paragraph aimed at comparing different types of numerical models with respect to 

the stiffness of the member and the plastic resistance for elementary load cases (mono-axial 

bending, axial force or torsion) and combined major-axis bending and shear force. The modelling 

of the fillets of hot-rolled sections was of special interest. It has been shown that, depending on 

the type of modelling, the results may vary. Indeed, the first part of this paragraph, concerning the 

elastic member buckling loads, has shown that even if model “Shell–Beam 2” and the model “Shell 

var” represent very closely the real geometry of the section, these models represent the least 

precisely the torsional stiffness of the member. The models containing solid elements in the zone 

of the fillets and the beam model represent best the torsional stiffness as they not only represent 

perfectly the section geometry but also model the closest the continuity of the material 

(representation of the warping function over the fillets!). This continuity can only be 

approximated very roughly by the models “Shell var” and “Shell–Beam 2”. Hence, these two 

models are not capable to represent the real torsional stiffness of the member. As the models 

“Shell-Beam 2” and “Shell var” yield poor results for the torsional stiffness, they have been 

excluded from the subsequent comparisons. Model “Shell-Beam 1” does not represent the 

continuity of the material neither, but the geometry of the rectangular hollow section, 

representing the fillets, is specifically calibrated so as to obtain the exact torsion constant and area 

of the physical section that is modelled. Therefore, model “Shell-Beam 1” is capable to represent 

precisely the stiffness of the studied hot-rolled member. 

The second part of this paragraph has compared the quality of the different models to attain the 

full plastic resistance of the section. It has been demonstrated that the models yield similar results 

for the elementary load cases of major- and minor-axis bending, axial force and applied torque. 

Conversely, in case of interaction between major-axis bending and shear force, it has been shown 

that the beam model does not consider the interaction between shear stresses resulting from the 

shear force and axial stresses. Consequently, the beam model may not be used for the parametric 

studies. Models “Shell-Beam 1”, “Shell-Solid” and “Solid” yield again very close results. Yet, 

obviously, the model “Shell-Beam 1” does not perfectly represent the continuity of the material 

and therefore leads to stress distribution that are less smooth than for the solid model. Also, as 

this model contains beam elements to model the fillet zone, the shear stress-axial stress 

interaction is not well represented as shown for the beam model. Since it is intended to study the 

influence of the fillets of hot-rolled cross-sections on their plastic cross-section resistance, it 

seems necessary to base the corresponding numerical simulations on a model that represents the 

best the continuity of the material and the stress distribution. As the model “Shell-Solid” does not 

reduce the calculation time compared to the solid model, this last is used in the mentioned study. 

Yet, it has to be noted that the calculation time necessary for the solid model is up to ten times 

higher than for the shell model. Hence, it is not possible to perform a parametric study on the 

member resistance based on the solid model. Therefore, the last section of this paragraph studied 

the influence of the fillets on the member resistance. It has been confirmed that the fillets do not 

influence the general behaviour of the member but only increase the torsional stiffness and the 
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cross-section resistance. These observations allows the parametric study concerning the member 

resistance to be performed based on the shell model not considering the fillets. The difference 

between hot-rolled sections and welded section is introduced exclusively through the residual 

stress pattern. 

3.4 Comparison of the numerical model to physical tests 

3.4.1 General 

The numerical model should well represent the reality. Therefore, the best way to validate the 

numerical model is to compare it to results from physical tests. In reference (FOSTA 2004), a total 

number of 74 tests on I- and U-shaped sections are documented. The tests have been performed 

at the three German universities: TU Berlin, RWTH Aachen and RU Bochum. The tests realised at 

TU Berlin are recalculated hereafter using the model described in the previous paragraphs. A 

selection of results is given next. Supplementary comparisons to laboratory tests performed in the 

framework of the present research project are detailed in Chapters 4. 

In order to capture the behaviour of the member precisely, the geometrical imperfections 

measured in (FOSTA 2004) are introduced in the model. Also, the measured stress-strain curve of 

the steel is used. 

3.4.2 Tests performed at TU Berlin 

3.4.2.1 Numerical Model 

So as to reproduce the conditions of the physical tests, the load introduction and support 

conditions should be as close as possible to the conditions chosen in the laboratory. The two 

following figures show the load introduction and support configuration used in the physical tests. 
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Figure 3-62: Support configuration used for the physical test (figure from (FOSTA 2004)) 

 

 

Figure 3-63: Load introduction used for the physical test (figure from (FOSTA 2004)) 

As can be seen in Figure 3-63, the load is introduced through a frame fixed to the member. This 

frame is also considered for the numerical model as shown in Figure 3-64. The support conditions 

are kept as described in paragraph 3.2.3.2 of this report. 
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Figure 3-64: Numerical model of the physical tests performed at TU Berlin 

Hereafter, the tests are recalculated with a solid model. In paragraph 3.4.2.5 the results obtained 

by the shell model are compared to the results of the solid model. 

3.4.2.2 Results for I sections 

First, the test shown in Figure 3-65 is considered. The member is fabricated from an IPE 200 

section and it is loaded by a point load applied with a vertical and horizontal eccentricity with 

respect to the shear centre. Consequently, the member is subject to combined major-axis bending, 

shear force and torsion. Figure 3-66 to Figure 3-68 provide the load displacement plots. The 

lateral and vertical displacements are measured at the centroid of the cross-section at mid-span. 

The vertical displacement is directed downwards. For the torsional twist and the vertical 

displacement, the sign conventions used in the framework of this thesis are applied. 

 

Figure 3-65: Physical test BE-1-4 (from (FOSTA 2004)) 
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Figure 3-66: Lateral displacement of the centroid at mid-span 

 

 

Figure 3-67: Torsional rotation of the centroid at mid-span 
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Figure 3-68: Vertical displacement of the centroid at mid-span 

Figure 3-66 to Figure 3-68 clearly indicated that: 

• The numerical simulation and the laboratory test attain practically the same peak 

load. Indeed, the member reaches a maximum load of 21,9 kN in the physical test. 

The numerically obtained value is 21,8 kN. Obviously, the difference is negligible.  

• The initial stiffness of the member is also very well approximated by the numerical 

model. Nonetheless, it appears that the load-displacements curve slightly diverge 

starting from a load of approximatively 10 kN. Near the peak load, the load 

displacement curves approach again. 

• The load-displacement curves are also very close after the peak load level. 

It may be concluded that the numerical model precisely predicts the behaviour of the studied 

member. A more global evaluation is given in paragraph 3.4.2.4. The next paragraph represents 

the results obtained for a U-shaped member. 

3.4.2.3 Results for U sections 

Hereafter, the results obtained for the test shown in Figure 3-69 are presented. The cross-section 

of the member is a UPE 200. The member is subject to a point load applied through the plane of 

the web with a vertical eccentricity of 215 mm with respect to the shear centre. Consequently, it 

is again subject to combined major-axis bending, shear force and torsion. The load displacement 

plots are given in Figure 3-70 to Figure 3-72. 
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Figure 3-69: Physical test BE-3-22 (from FOSTA 2004)) 

 

 

Figure 3-70: Lateral displacement of the centroid at mid-span 

 

Figure 3-71: Torsional rotation of the centroid at mid-span  
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Figure 3-72: Vertical displacement of the centroid at mid-span 

In Figure 3-70 to Figure 3-72, one may observe in particular; 

• The peak load is quasi identical for the laboratory test and the numerical 

simulation. Again, the difference is approximatively equal to 1%. 

• The initial stiffness of the member with reference to the lateral and the vertical 

displacement seems to be less well represented than for the IPE 200 section. The 

torsional twist is however extremely well represented. It is recalled again that the 

lateral and the vertical displacement have been calculated at the centroid based on 

the torsional twist and a reference displacement in (FOSTA 2004). This may result 

in certain imprecision that complicate the comparison. 

• The numerical load-displacement curves are also rather close to the laboratory 

tests after the peak load. Only the lateral displacement is not well represented. Yet, 

in general the load-displacement curves correspond very well. 

As for the double symmetric I section, the numerical simulation represents precisely the physical 

test for the member of UPE 200 section. A global evaluation of the numerical model with reference 

to the physical tests is given next. 

3.4.2.4 Summary of the results 

Figure 3-73 gives an overview of the totality of the tests. As can be seen the numerical model gives 

very satisfactory results. In fact the maximum difference is about 4%. Also, it can be noted that the 

GMNIA results are safe-sided for all I-shaped members (tests 1-13). However, for U-shaped 

members one numerical result is unsafe. Nonetheless, the maximum unsafe difference is only of 

about 4%. Yet, for test 15, noted as BE-3-21 in reference (FOSTA 2004), local buckling at the 

supports has been observed in the laboratory. This explains, at least partly, the over-estimation 

of the GMNIA resistance. 
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Figure 3-73: Comparison of all physical tests performed at TU Berlin 

3.4.2.5 Influence of the fillets on the test results 

In paragraph 3.3.5 it has been shown that the fillets do not influence the general behaviour of 

the member (represented in the λ-χ format). Hereafter, this is confirmed again for the case of the 

physical tests. For this objective, the results obtained for the test BE-1-1 are represented for the 

case of: 

• “Shell model” without fillets; 
• “Solid” model without fillets; 
• “Solid” model with fillets. 

 

Figure 3-74 represents the test setup. The numerical simulations are performed including the 

classical residual stress pattern, measured geometric imperfections as well as the measured 

material law. 

 

Figure 3-74: Physical test BE-1-1 (from FOSTA. 2004)) 
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Figure 3-75: Evolution of the applied load with the lateral displacement of the centroid at mid span 

for test BE-1-1 

 

Figure 3-76: Evolution of the applied load with the torsional twist at mid span for test BE-1-1 

Figure 3-75 and Figure 3-76 show that the “Shell” and the “Solid” model yield practically identical 

results if the fillets are not modelled. Conversely, it may be observed that the “Solid” model with 

fillets leads to a higher ultimate resistance for this individual case. This is not surprising as the 

fillets add torsional stiffness to the member leading to a lower torsional twist and a lower lateral 

displacement for a given load level. Hence, second order internal moments are also lower and 

yielding of the cross-section starts at a higher load level. 

The example treated above allows the conclusions of paragraph 3.3.5 to be confirmed. It is shown 

that the “Shell” model is equivalent to the “Solid” model if the fillets are not considered. 

Additionally, paragraph 3.3.5 has shown that the influence of the fillets vanish when the resistance 

is represented in the λ-χ format, i.e. with reference to the real cross-section characteristics. 
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Consequently, the parametric study concerning the ultimate member resistance may be 

performed based on the less time consuming shell model. 

3.4.3  Conclusions 

Throughout the present chapter the numerical model used in the framework of this thesis was 

presented, discussed and validated extensively. This preparatory work was absolutely necessary 

in order to ensure that the numerical model is capable to predict reliably the resistance of 

members subject to complex load combinations creating interaction between axial force, bi-axial 

bending and torsion. Moreover, due to the complexity of the problem treated here, a very high 

number of parametric calculations has to be performed in order to develop a resistance model in 

Chapters 4 and 5. Therefore, the numerical model should be sufficiently efficient to perform the 

parametric studies in a reasonable amount of time. 

In particular, the following points were of special interest and have been studied: 

• Meshing density of hot-rolled and welded cross-sections for different load cases 

and for different values of the section slenderness (cross-section classes); 

• Modelling techniques for the fillets of hot-rolled cross-sections; 

• Influence of fillets on the member resistance; 

• Choice and validation of the numerical model. 

The different studies presented in the present chapter concerning the points mentioned above 

made it possible to conclude that: 

• The meshing density should be different for hot-rolled and welded sections in 

order to represent the distribution of different residual stress pattern; 

• In the longitudinal direction, at least 100 finite elements should be used to 

precisely account for the spread of plasticity in material non-linear calculations; 

• For slender cross-sections sensitive to local buckling, a higher element density is 

necessary in the longitudinal direction in order to represent the presumed local 

buckle reliably; 

• The influence of the fillets on the plastic cross-section resistance may only be 

studied with a solid model due to the limitations of the shell and beam finite 

elements concerning the interaction between axial and shear stresses. Also, only 

the solid elements are capable of representing the continuity of material in the 

fillet zone; 

• The fillets do influence the resistance of members fabricated from hot-rolled cross-

sections as they increase notably the torsion constant It; yet the general member 

behaviour is not modified; 

• The comparisons between the numerical model and physical tests performed in 

the framework of a previous research project have shown that the numerical 
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model is reliable and capable to predict the resistance of members under complex 

load combinations including cases with torsional loads. 

The present chapter only consisted in a general presentation and validation of the numerical 

model. Specific questions resulting from the study of the member resistance, as for example the 

sensitivity to loading path and assumed imperfections are studied in Chapter 5. Also, 

supplementary validations of the numerical models used here are given in Chapter 4, concerning 

the cross-section resistance and Chapter 5 concerning the member resistance. 

Obviously, the numerical simulations as well as the real behaviour of the member always contain 

a certain amount of incertitude. Therefore, the numerical simulations can only approach the 

reality with a given tolerance. Based on the investigations presented in this chapter and in 

particular the comparisons to physical tests, it may be concluded that the precision of the model 

used here is of about ±5-10%. In the following, extensive parametric studies are performed to 

characterize the behaviour of members of open cross-section subject to a combination of internal 

forces and moments including torsion. Therefore, a very high number of parameters is susceptible 

to have a certain influence. Nonetheless, only parameters possessing an influence of more than 

5% percent may be characterised owing to the natural scatter of the numerical results. Yet, this 

“limitation” seems to be completely acceptable. Additionally, it should be noted that the practical 

design of the ideal numerically modelled boundary conditions may also possess an influence that 

could be even higher than 5%. However, the influence of the design of supports and restraints on 

the member resistance cannot be studied in the framework of this thesis. Hereafter, it is intended 

to develop lower bound solutions based on idealised boundary conditions. 

  



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Finite Element Model 

 

98 
 

 



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Plastic Cross-Section 
Resistance 

 

99 
 

4 PLASTIC CROSS-SECTION RESISTANCE 

 

4.1 Introduction 101 

4.2 Assessing the plastic cross-section resistance 102 

4.2.1 Plastic interaction in various standards 102 

 Internal forces and moments creating only axial stresses 102 

 Interaction between shear and axial stresses 108 

4.2.2 Numerical tools for the cross-section interaction 116 

 General 116 

 Iterative calculation based on predefined elastic stress distribution 116 

 Partial internal force method – PIFM 120 

4.2.3 Conclusions 131 

4.3 Laboratory tests performed at University of Applied Sciences of Western Switzerland 133 

4.3.1 Motivation 133 

4.3.2 Choice of the test specimen and test program 133 

4.3.3 Test set-up 137 

4.3.4 Preparatory measurements 139 

 General 139 

 Dimensions of the cross-sections 139 

 Tensile tests characterizing the material behaviour 141 

4.3.5 Three point bending laboratory tests 143 

4.3.6 Numerical simulations of the laboratory tests 145 

 Presentation of the numerical model 145 

 Comparison between numerical model and laboratory tests 146 

 Comparison between laboratory tests and resistance models 150 

4.3.7 Complementary numerical simulations and comparison to resistance models 155 

4.3.8 Conclusions 161 

4.4 Parametric study and resistance model 162 

4.4.1 General remarks 162 

 Studied cross-sections 162 

 Load cases 164 

 Material model 166 

4.4.2 Interaction between major-axis bending and shear force 168 

 Double symmetric I sections 168 

 U sections 172 

 Mono-symmetric I sections 176 

4.4.3 Interaction between minor-axis bending and shear force 183 

 Double symmetric I sections 183 

 U sections 185 



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Plastic Cross-Section 
Resistance 

 

100 
 

 Mono-symmetric I sections 187 

 Conclusions 189 

4.4.4 Interaction between bending, shear force and torsion 190 

 Influence of the plastic torsional system reserve of the member 190 

 Double symmetric I sections 204 

 Mono-symmetric I sections 218 

 U sections 227 

4.4.5 Other selected load cases 237 

 General 237 

 Combined axial force, bending and torsion for double symmetric I sections 237 

 Combined axial force and major-axis bending for U sections 240 

 Conclusions 244 

4.5 Proposed resistance model 245 

4.6 General conclusions concerning the plastic cross-section resistance 254 

 

 

 

  



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Plastic Cross-Section 
Resistance 

 

101 
 

4.1 Introduction 

The ultimate resistance of an arbitrary member subject to an arbitrary combination of loads may 

be represented by a characteristic curve linking the resistance to the relative slenderness λ. 

Hereafter, this curve is referred to as ultimate resistance curve of the member. Its form is 

schematically represented by the dots in Figure 4-1. In this figure the resistance is given by the 

ratio Rult to Rb,L., designating the load amplification factor leading to the failure of the member and 

the load amplification factor leading to the failure of the most loaded cross-section, respectively.  

 

Figure 4-1: Ultimate resistance curve of an arbitrary member subject to an arbitrary combination of 

loads 

The reduced slenderness used as abscissa in Figure 4-1 may be expressed by Eq. ( 4.1 ). 

Gcr
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,=λ  ( 4.1 ) 

The form of the ultimate resistance curve is not specific to any design model but describes the 

behaviour of a member in a general way. Two main regions may be distinguished in Figure 4-1: 

1) Failure of the member is mainly characterized by the failure of the most loaded 

cross-section; 

2) Failure of the member is characterized by elasto-plastic (member) instability. 

Depending on the cross-section and the load combination, the width of the two regions may vary. 

Anyhow, the member always attains at least the full cross-section resistance of its most loaded 

section in region 1). Depending on the compactness of the cross-section, this resistance may be 

plastic, elastic or even less if the section is sensitive to local buckling before it attains its elastic 

resistance. For very short members, the resistance may, in some cases, exceed the cross-section 

resistance due to the spread of plasticity through the member and through the cross-section even 

for slender sections with limited plastic reserve. 
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In region 2) the member suffers from a strength reduction (Rult/Rb,L< 1,0) due to the effect of 

member imperfection and member instability. For long members the ultimate resistance curve 

may cross the Euler curve associated with pure elastic instability. However, this is generally linked 

to excessive displacements as shown in (Taras 2011). Consequently, this post-critical resistance 

reserve should be neglected for members. 

In order to predict the ultimate member resistance with sufficient precision, both regions of the 

ultimate resistance curve have to be studied and characterized. The present Chapter concentrates 

on region 1) characterized by cross-section failure. Moreover, hereafter, the plastic cross-section 

resistance is of special interest due to the lacks in Eurocode 3 Part 1-1. Indeed, the resistance of 

slender cross-sections may be treated with the effective width method (EWM) proposed in 

(CEN 2005a). Yet, it may be noted that the EWM was in the centre of criticism due to its complexity 

(see for example (Nseir 2015) and (Boissonnade et al. 2017)). However, it is still widely accepted 

as it possesses an extensive range of application. Also, the resistance of semi-compact cross-

sections can be treated with the methods proposed in the current version of Eurocode 3 Part 1-1. 

Additionally, in order to close the discontinuity between compact (or class 2) and semi-compact 

(or class 3) sections a continuous design method has been proposed in the framework of the RFCS 

project SEMI-COMP in reference (RFCS 2009). 

Conversely to the resistance of slender and semi compact sections, the plastic resistance of 

compact sections subject to complex combination of internal forces and moments, including 

torsion, has not been sufficiently investigated and may not be treated neither with the provisions 

of Eurocode 3 Part 1-1 nor with other international standards as is shown in paragraph 4.2. 

Therefore, the plastic interaction is studied in the present Chapter based on laboratory tests (see 

paragraph 4.3) and an extensive numerical study (see paragraph 4.4). 

4.2 Assessing the plastic cross-section resistance 

4.2.1 Plastic interaction in various standards 

 Internal forces and moments creating only axial stresses 

In the past, many proposals have been made to assess the plastic cross-section interaction. In 

Europe the works of (Djalaly 1975), (Rubin 1978), (Rubin 2000), (Rubin 2005), 

(Kindmann et al. 1999), (Vilette 2004) and (Ludwig 2014) may be cited. This long, but incomplete 

list shows that the plastic section resistance has been studied for a long time and is still of interest 

for current researchers. 

Hereafter, it is proposed to review only the methods included in major current design standards. 

Also, the review is limited to open sections (I and U). A more detailed review is given for example 

in (Villette 2004). 

The following tables summarise the interaction formulae for combined bending and compression 

given in (ANSI 2010), (Standard Australia 1998) and (CEN 2005a). 
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Table 4-1: Interaction criterion given in the North American steel building design standard – 

ANSI/AISC 360-10 
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Table 4-2: Interaction criterion given in the Australian steel building design standard – 

AS 4100:1998 

Cross-section Load case Criterion 
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Table 4-3: Interaction criterion given in the European steel building design standard – 

Eurocode 3 Part 1-1 

Cross-section Load case Criterion 

Double symmetric 

I section 
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By comparing Table 4-1, Table 4-2 and Table 4-3, one may note that the North American design 

standard proposes certainly the simplest design approach. Also, as the same formulae are used 

for the cases of mono-axial bending and axial force and bi-axial bending, full continuity of the 

interaction space is guaranteed. However, one might wonder if the North American interaction 

formulae are not overly safe-sided for common cases like double symmetric I sections (see Figure 

4-2, Figure 4-3 and Figure 4-4). 

Both, the Australian and European design standards propose a set of formulae applicable for a 

given combination of internal forces and moments. However, Eurocode 3 is the only standard 

presented here considering the influence of the cross-section proportions by introducing the 

factor “a” (ratio between area of web area and the total area of the cross-section). In order to 

compare the three approaches in more detail, the following figures give the resulting interaction 

curves My-Mz for three values of the axial force: 0,0; 0,3 Npl and 0,6 Npl. For Eurocode 3 two curves 

are shown corresponding to the upper and lower bound of European profiles (HEM 100 – a = 0,16 

and HEAA 800 – a = 0,51). Finally, the analytical interaction curve, based on a theoretical plastic 

stress distribution for the combination of axial force and bi-axial bending is represented. 
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Figure 4-2: My-Mz Interaction curve without axial force N/Npl = 0 

 

 

Figure 4-3: My-Mz Interaction curve with N/Npl = 0,30 
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Figure 4-4: My-Mz Interaction curve with N/Npl = 0,60 

The previous figures clearly show that the design provisions of the North American standard are 

very safe-sided. Moreover, the conservatism increases with increasing axial force. Nevertheless, 

it can be noted that in case of combined major-axis bending and axial force (mz = 0), very good 

agreement with the analytical result is obtained. Both, AS 4100 and Eurocode 3 Part 1-1 capture 

very well the form of the cross-section interaction. However, as the Australian standard does not 

include any parameter accounting for the exact proportions of the cross-section, the proposed 

interaction curve may be far away from the analytical result, especially in case of cross-sections 

with high values of the coefficient a (a tending to 0,50). It appears that the Australian provisions 

yield satisfactory results for cross-sections possessing an a value of approximatively 0,15-0,25. 

Yet, one may also see that the provisions given for combined axial force and major-axis bending 

are unsafe for the given examples.  

Eurocode 3 Part 1-1 seems to approximate the best the interaction behaviour of double 

symmetric I sections subject to a combination of axial force and bi-axial bending even if the 

interaction formulae are not excessively more complex than the ones proposed in AS 4100. As 

Eurocode 3 Part 1-1 accounts for the cross-section proportions by introducing the factor a, the 

results are in better agreement with the analytical results. Nevertheless, the European provisions 

may also lead to unsafe results in some cases. In Figure 4-3 and Figure 4-4, it can be seen that the 

results are (too) unsafe for the cross-section of high a value (a = 0,51) and values of mz in the range 

between 0,7 and 0,9. Admittedly, the double symmetric I sections are rarely subject to such high 

minor-axis bending moments. 

Last, Figure 4-5 shows the interaction curves for the current case of combined axial force and 

major-axis bending. It is seen that the bi-linear approximation of AISC 360-10 fits very well the 

lower bound interaction curve. For cross-section with higher a values, it may however be very 

conservative. As before, the provisions of AS 4100 seem to be calibrated to cross-sections 

possessing medium values of a. Also, as a cut-off value for the axial force of approximatively 

0,15Npl has been defined, the provisions can be unsafe for low values of axial forces. The same 
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tendency can be seen for the European provisions. Especially, for cross-sections with high a 

values, this may lead to unacceptable unsafe results. Conversely, the European interaction curve 

fits very well the analytical results for high axial forces. Again the cross-section proportion factor 

a is very beneficial. 

 

Figure 4-5: My-N interaction diagram (mz = 0) 

Here before, the N-My-Mz cross-section interaction curves provided in three major international 

standards have been compared. It should be noted that none of the standards provides specific 

rules for other open cross-sections, as U sections or mono-symmetric I sections. The American 

provisions are explicitly applicable to all shapes of cross-sections, a reason why these rules may 

be very conservative for double symmetric I sections. The Australian standard proposes a linear 

interaction that certainly leads to very conservative results for compact U sections. Finally, the 

European standard silently omits other open cross-sections. It is implicitly mentioned that an 

elastic cross-section interaction may always be applied to sections not sensitive to local buckling. 

Also, it should be noted that none of the mentioned design provisions considers the influence of 

axial stresses due to the bi-moment in case of plastic interaction (see paragraph 4.2.1.2.2 for more 

details). The North American design standard as well as Eurocode 3 Part 1-1 propose an elastic 

interaction that, obviously, leads to very conservative results if only few torsion is applied to the 

member. Paragraph 4.2.1.2 gives more details on the influence of torsion on the cross-section 

interaction. 

Based on the comparison presented here before, it may be concluded that: 

• Very simple design provisions may be over conservative for the specific case of 

double symmetric I sections, as observed for AISC 360-10. 

• More complex design provisions, as given in Eurocode 3 Part 1-1 and 

AS 4100:1998 may approximate more precisely the real cross-section 

interaction. 
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• Specific design provisions for other open sections are not included in the studied 

design standards. 

The last point listed above may be very well understandable. Obviously, including specific rules 

for other than double symmetric I sections would lead to an even more extended set of interaction 

formulae that would be more or less complex depending on the desired precision. 

 Interaction between shear and axial stresses 

4.2.1.2.1 Cross-section resistance under pure shear 

As before the provisions given in AS 4100, AISC 360-10 and Eurocode 3 Part 1-1 are compared for 

the shear resistance. All three standards define a plastic shear resistance equal to: 

vRdRdpl AV τ=,  ( 4.2 ) 

The aspect of the plastic shear resistance is equal. However, for the yield shear stress τRd and the 

shear area, different definitions are used. The North American and the Australian design standard 

define τRd as 0,6fy. Eurocode 3 uses a more precise definition based on the von Mises yield criterion 

of (omitting the partial factor γM0 equal to 1,0): 

y
y

Rd f
f

57,0
3

≈=τ  ( 4.3 ) 

The difference is about 5% and may be neglected. Yet, the difference in the definition of the shear 

area is much more pronounced. Figure 4-6 illustrates the shear areas used in the different codes. 

   

a) Eurocode 3 Part 1-1 b) AISC 360-10 c)AS 4100 

Figure 4-6: Shear areas for double symmetric hot-rolled I sections and shear parallel to the web 

For a better visualization, Figure 4-7 shows the relative difference between the shear areas for the 

two European steel profile series, IPE and HEA, representing approximatively the lower and the 

upper bound. 
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Figure 4-7: Comparison between shear areas Avz defined in different standards 

It can be seen that Eurocode 3 may be very economic compared to ANSI/AISC 360-10 and 

AS 4100. Especially for H sections the difference may attain 25%-30% compared to the North 

American standard and up to 35% compared to the Australian standard. These last give very 

similar results apart from H sections with small fillets and thick flanges (HEA 100 – HEA 330). For 

hot-rolled U-sections the results are similar. 

In case of welded sections, Eurocode 3 allows (optionally) the use of η = 1,2 (=overstrength factor 

for shear) times the web area as shear area. Hence, the difference between the standard is in the 

same range as for hot-rolled sections (IPE, HEA 600 and wider). It should be noted, that only 

AS 4100 introduces a particular formula for mono-symmetric I sections given in Eq. ( 4.4 ). 
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Where: 

τmax,el: is the maximum elastic shear stress 

τmed,el: is the average elastic shear stress 

Finally, it should be noted that the plastic shear resistance might be used up to a limit web 

slenderness defined in Table 4-4. For more slender webs, shear buckling has to be accounted for. 

For a better comparison, the values provided in AISC 360-10 and AS 4100 are presented with 

Eurocode 3 notation. If the overstrength factor η is used with a value greater than 1,0, the limit 

slenderness for shear buckling has to be decreased in Eurocode 3. It can be observed that the limit 

slenderness is in the same range. 
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Table 4-4: Limit slenderness for shear buckling 

Eurocode 3 Part 1-1 AISC 360-10 AS 4100 

72ε/η 67ε 77ε 

 

In practice, the shear force is not acting alone in the section, but it is accompanied by a bending 

moment. The interaction equations provided in different standards are discussed in the next 

paragraph. 

4.2.1.2.2 Combination of major-axis bending and shear force 

AISC 360-10 gives a very simple design provision as the interaction needs not to be accounted for. 

It should only be checked that: 

• The maximum normal stress is less than the yield stress fy and; 

• The maximum shear stress is less than 0,6fy. 

As plasticity is not accounted for, these design rules may, however, be very conservative, 

especially for low shear forces. It may be noted that these provisions are applicable for all load 

combinations creating shear and axial stresses (including the load case of combined bending and 

torsion).  

Eurocode 3 Part 1-1 specifies a set of interaction formulae. The principle is to reduce the bending 

moment resistance due to the influence of shear as given in Eqs. ( 4.5 ) and ( 4.6 ) for the My-Vz 

interaction. 
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It can be seen that the interaction between major-axis bending and shear is neglected up to a value 

of Vz,Ed/Vz,pl,Rd = 0,5. For higher values of the shear force, a parabolic reduction is applied (see 

Figure 4-8).  

AS 4100 proposes the following interaction: 
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In order to compare to Eurocode Eq ( 4.7 ) is reorganised to obtain: 
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Eq. ( 4.8 ) shows that the interaction between the shear force and the major-axis bending moment 

can be omitted up to a value of 0,6Vz,pl for the shear force. For higher shear forces, a linear 

reduction of the major-axis bending moment should be adopted. The minimum value of the 

resistance moment obtained for VEd/Vz,pl = 1 is equal to 0,75MRd. The two proposals are compared 

in Figure 4-8 and Figure 4-9 for a HEA 280 and a HEAA 1000 cross-section. Also, a numerical 

interaction curves, noted as “Solid model”, is included (see paragraph 4.4.1). The numerical 

calculation is based on an elastic-perfectly plastic material law without strain hardening 

performed on a solid model of a beam subject to a point load at mid-span. 

The two figures indicate that the Eurocode 3 interaction curve based on the shear area given in 

Figure 4-6 yields unsafe results compared to the numerical results not considering strain 

hardening. Especially, in the case of the compact HEA 280 section, (area of the fillets is rather 

important), the Eurocode provisions seem to be up to 40% unsafe. Conversely, if only the web 

area is considered as shear resisting, the Eurocode provisions are closer to the numerical solution, 

especially in case of the compact section. The provisions given in the Australian standard are also 

unsafe compared to the numerical results, yet, less than the Eurocode 3 interaction. The unsafe 

nature of both proposals may be explained by the shear area that is used. As mentioned, if only 

the area of the web is considered as shear area, the Eurocode provisions are safe-sided for the 

studied cross-sections. A detailed study on the shear force-bending moment interaction is 

presented in paragraphs 4.3 and 4.4. 

 

Figure 4-8 : Interaction between shear force Vz and bending moment My for a HEA 280 cross-

section 
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Figure 4-9 : Interaction between shear force Vz and bending moment My for a HEAA 1000 cross-

section 

4.2.1.2.3 Combination of bending, shear force and torsion 

Last, it is interesting to study the interaction between bending, torsion and shear force defined in 

different standards. Yet, neither AISC 360-10 nor AS 4100 provide an interaction rule for this load 

case (for open sections). As stated previously, AISC 360-10 imposes explicitly an elastic 

calculation without interaction. In AS 4100 no specific provisions are given. Conversely, 

Eurocode 3 Part 1-1 provides a specific paragraph on torsion and interaction between torsion and 

shear. It is stated that for open section the shear resistance Vz,pl should be reduced by the influence 

of shear stresses resulting from torsion. For U and I sections, two different interaction formulae 

are given: 

For I sections: 

Rdpl
Rd

Edt
RdTpl VV ,

,

,,
25,1

1
τ

τ
−=  ( 4.9 ) 

For U sections: 

Rdpl
Rd

Edw

Rd

Edt
RdTpl VV ,

,,

,,
25,1

1













−−=

τ

τ

τ

τ
 ( 4.10 ) 

The stress τt,Ed corresponds to the shear stress created by Saint Venant’s torsional moments, and 

the shear stress τw,Ed corresponds to shear created by warping torsional moments. Obviously, for 

I sections, these last are neglected in the interaction as they only affect the flange (see Chapter 2). 

However, it may be noted that the axial stresses resulting from the bi-moment are not included in 

the interaction equations. As has been recalled in Chapter 2, an open cross-section carries torsion 

mainly by warping torsion. Consequently, the axial stresses induced by the bi-moment are not 

negligible in many cases (see paragraph 4.4).  
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In order to eliminate the possible insecurity, Mirambell recently proposed an amendment to 

Eurocode 3 Part 1-1 introducing specific plastic interaction formulae for combined major-axis 

bending, bi-moments and shear forces for double symmetric I sections (Mirambell 2016). His 

proposition is based on a predefined plastic stress distribution. It is supposed that the bending 

moment creates an axial force in the flanges and the bi-moment creates a flange bending moment. 

Consequently, the interaction between major-axis bending and the bi-moment of the sections is 

replaced by an interaction between bending moment and axial force of the flange that may be 

considered as a rectangle. The theoretical considerations of Mirambell are illustrated through 

Figure 4-10. 

 

Figure 4-10: Interaction between major-axis bending and bi-moment for a double symmetric I 

section 

Hence, one may express the moment resistance of the flanges by: 
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By introducing the axial stress σw due to the bi-moment, given in Eq. ( 4.12 ), Mirambell transforms 

Eq. ( 4.11 ) into Eq. ( 4.13 ). 
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He introduces the factor α in order to account for plasticity. If full plasticity is accounted for, this 

factor should be equal to 1,5. If the resistance to the bi-moment is limited to the elastic resistance, 

the factor α is obviously equal to 1,0. Mirambell proposes a factor of 1,25 in order to account only 

partially for the plastic reserve. One might argue that this ensures that the torsional twist does 

not increase excessively. However, it should be noted that for practical cases, high values of the 

bi-moment may only be attained for very short members. In these cases, the member may yield 

My 

B 

B 

MFl = B/h 
NFl = My/h 
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without attaining an unreasonable torsional twist. Inversely, longer members only yield in 

presence of high torsional twist and consequently the Serviceable Limit State may become 

relevant for the design. Also, the relative part of the bi-moment in the total load carried by the 

member reduces (see Chapter 2). Hence, a value of 1,5 for the factor α would certainly be 

acceptable (see paragraph 4.4.4). Last, it should be noted that following Eq. ( 4.13 ), the resistance 

of the whole cross-section is reduced. The proposal is therefore safe-sided as the stresses due to 

the bi-moment do not transit through the web. In presence of a bi-moment, the major-axis bending 

moment resistance should thus be at lowest the bending moment resistance of the web. 

In presence of a vertical shear force Vz, Mirambell proposes to reduce the major-axis bending 

moment resistance as indicated in Eurcode 3 Part 1-1 and shown in Eqs. ( 4.14 ), ( 4.15 ) and ( 

4.16 ). 
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Regarding Eqs. ( 4.14 ) to ( 4.16 ), one might wonder why the resistance of the web should be 

reduced due to the influence from Saint Venant’s torsion (reduced shear force resistance Vpl,T,Rd) 

whereas the resistance of the flanges is supposed to be affected only by the influence of the bi-

moment. In order to underline this remark, it may be recalled that for practical cases of I sections 

whose flanges are thicker than the web, the Saint Venant’s torsional shear stresses are higher in 

the flanges than in the web. Therefore, one might suppose that the resistance of the flanges should 

be reduced as well, at least for high Saint Venant’s torsional moments. A detailed study concerning 

the plastic cross-section interaction including the effect of torsion is presented in paragraph 4.4. 

Through this paragraph, it has been shown that Eurocode 3 contains some provisions for the 

interaction between the shear force Vz and shear stresses due to Saint-Venant’s and warping 

torsion (for U sections). However, the European standard does not contain any provision for the 

interaction between the shear force Vy and shear stresses due to torsion. It is recalled that the 

shear stresses due to Vy and due to warping torsion are affine in the flanges of I sections. 

Therefore, one might expect a reduction of the shear force resistance. Moreover, the current 

version of Eurocode 3 Part 1-1 does not include any plastic interaction formula for major-axis 

bending and the bi-moment. In order to close this lack, Mirambell proposes interaction formulae 

based on a predefined plastic stress distribution. Yet, some questions remain in particular 

concerning the interaction with shear stresses arising from Saint-Venant’s and warping torsion. 

Additionally, it should be noted that the proposal may not be applied to U sections as the bi-
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moment also transits through their web. Consequently, the interaction behaviour is more complex 

(see paragraph 4.4.2). 

4.2.1.2.4 Conclusion 

The previous paragraph has compared rules on plastic section resistance and interaction given in 

three major steel design standards. It has been shown that: 

• AISC 360-10 may be very conservative for the interaction between axial force and 

bi-axial bending; 

• AS 4100 and Eurocode 3 predict rather well the interaction between axial force 

and bi-axial bending. However, by introducing the cross-section proportion factor 

“a”, Eurocode 3 yields more precise results; 

• AISC 360-10 neglects the interaction between shear and axial stresses. However, 

only the elastic resistance of the section may be exploited; 

• The shear resistance Vz,pl provided in AS 4100 and Eurocode 3 Part 1-1 seems to 

be too optimistic, when compared to numerical simulations (elastic-perfectly 

plastic material). The influence of strain hardening is studied in paragraph 4.3; 

• Only Eurocode 3 Part 1-1 explicitly includes a reduction for the plastic section 

resistance due to shear stresses created by Saint Venant’s and warping torsional 

moments. However, the interaction between the shear force Vy and shear stresses 

due to (in particular warping) torsional moments is neglected; 

• None of the cited standards includes the axial stresses created by the bi-moment 

for the reduction of the plastic section resistance; 

• The amendment proposal by Mirambell introducing the interaction mentioned in 

the previous point closes a lack in Eurocode 3 Part 1-1 concerning the interaction 

between major-axis bending and torsion but this proposal does not close all 

inconsistencies. 

It has also been shown that the more or less complex interaction formulae can only predict 

approximatively the interaction behaviour between internal forces and moments. Especially, the 

case of combined bending, shear force and torsion is approximated very roughly. Obviously, 

formulae yielding more precise results are certainly far more complex (see for example 

(Ludwig 2014) and (Kindmann et al. 1999)). In the following, two methods implemented by 

programming are presented. The first method consists in step-by-step calculation of yielding of 

the cross-section. The second approach corresponds to the design method proposed by Kindmann 

in reference (Kindmann et al. 1999). The use of numerical tools for the plastic cross-section 

interaction certainly changes the habit of the vast majority of design engineers. However, a fast 

and precise determination of the plastic cross-section resistance may contribute to the acceptance 

of numerical automatized tools. Yet, simple interaction equations that may be applied by hand-

calculation should always be proposed, at least for some cases (simple cross-section form, simple 

interaction cases between two or three internal forces), in order to verify the consistency of the 

obtained numerical results. 
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4.2.2 Numerical tools for the cross-section interaction 

 General 

Sophisticated numerical simulations based on the finite element method can obviously determine 

the plastic resistance of an arbitrary cross-section subject to an arbitrary combination of internal 

forces and moments. However, this approach is certainly not suited for the current practice of 

engineering offices. Nevertheless, practical engineers do increasingly use numerical tools to 

establish calculation notes and to check the resistance of the studied sections and members, as for 

the simplest case Excel spread sheets. Therefore, it seems of interest to investigate the possibility 

of simple numerical tools determining the plastic cross-section resistance. In the following 

paragraphs, two procedures are presented. 

 Iterative calculation based on predefined elastic stress distribution 

The first procedure proposed here is based on a step-by-step increase of the loads. The cross-

section is discretised in a certain number of cells as shown in Figure 4-11.  

 

Figure 4-11: Discretisation of the cross-section into cells 

Based on a predefined elastic stress distribution the load factor that leads to yielding of the first 

cell of the section is determined iteratively. For double symmetric I sections the elastic stress 

distribution is recalled in Figure 4-12 for the different internal forces and moments. 
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torsional moment 
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moment Mx,w 

b) Shear stresses 

Figure 4-12: Elastic stress distribution for a double symmetric I section 

Starting from the point of first yield the load factor is increased stepwise. At each step the load 

increment, which leads to yielding (based on the von Mises yield criterion) of the next cell of the 

cross-section, is estimated. Then, the yielded cells are deactivated and the cross-section 

characteristics are recalculated for the section composed of non-yielded cells. Again, the stresses 

are distributed elastically over the non-yielded section. The procedure is illustrated in Figure 4-13 

and Figure 4-14 for the example of a HEB 200 section without fillets subject to an axial force of 

600 kN, a major-axis bending moment of 20 kNm and a minor-axis bending moment of 40 kNm. 

The section is supposed to be fabricated from steel S235. Green zones indicate that the cells do 

not have reached the yield stress, blue zones indicate yielding in compression and red zones 

indicate yielding in tension. Figure 4-13 also represents the principal system of axis that changes 

its position and orientation with ongoing yielding. 
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a) Load factor = 0 b) Load factor = 1,088 

  

c) Load factor = 1,288 d) Load factor = 1,370 

  

e) Load factor = 1,418 f) Load factor = 1,444 

Figure 4-13: Spreading of yielding through the cross-section with increasing load factor 
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Figure 4-14: Plastic stress distribution the end of the calculation – Rpl = 1,449 

The procedure described above may be applied to an arbitrary combination of internal forces and 

moments. It should be noted that it is supposed that the distribution of the shear stresses does not 

depend on the orientation of the principal system of axis, i.e. for example shear stresses due to Vy 

and due the warping torsional moment Mx,w are always supposed to transit through the flanges in 

case of an I section. 

The presented iterative procedure is precise compared to theoretical results. However, it should 

be noted that it is based on a presumed elastic distribution of stresses that has to be determined 

previously. Additionally, the plastic shear resistance cannot be determined directly but it has to 

be based on the assumption of a shear area. Due to the two problems mentioned just before, it is 

obvious that this approach cannot be applied for arbitrary forms of cross-sections. Yet, for 

commonly used steel sections, the elastic distribution of the stresses is known and may be 

included. 

The calculation time depends on the number of cells necessary to obtain sufficiently precise 

results. In particular, in case of complex load combinations, as the one studied here before, and 

even more in presence of a Saint Venant’s torsional moment, an important number of cells may 

be necessary. As the shear stress varies through the thickness of the plate (web or flange), at least 

6 to 8 cells through the thickness are necessary to obtain satisfactory results. Therefore the 

calculation is slowed down. Nevertheless, it is still faster than a rigorous plastic finite element 

analysis. 

In the next paragraph the method proposed by Kindmann in reference (Kindmann et al. 1999a) is 

presented. 
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 Partial internal force method – PIFM 

4.2.2.3.1 Initially proposed version of PIFM 

For open cross-sections composed of three plates perpendicular to each other, a quasi-analytical 

method for the plastic interaction between all eight internal forces and moments has been 

proposed by Frickel and Kindmann in references (Kindmann et al. 1999a) and 

(Kindmann et al. 1999b). The so-called “Partial Internal Force Method” is based on the principle 

that the internal forces may be distributed to the three constituting plates depending on their 

stiffness and location in the reference system. The reference system is located at the mid-height 

of the web and oriented as shown in Figure 4-15. It should be noted that the reference system 

represented in Figure 4-15 is rotated by 180° compared to the system used in the framework of 

the present thesis. 

 

Figure 4-15: Cross-section definition for PIFM 

Obviously, the reference system yDz is generally not coincident with the principal axis of the 

section (this would only be the case for double symmetric I sections). Hence, the internal forces 

and moments have to be transformed in the reference system first. It yields: 
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It should be noted that the Saint Venant’s torsional moment and the axial force are independent 

from the cross-section system of coordinates. 

After the transformation to the reference system, the internal forces and moments creating shear 

are distributed to the three plates. One obtains: 
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It is recalled that the indices “uf” and “lf” refer to the upper flange, the lower flange and the web, 

respectively. 

For each plate, an interaction between the plate’s shear force and the plate’s torsional moment is 

introduced as given in Eq. ( 4.31 ). 
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( 4.31 ) 

 

This interaction formula assumes a shear stress distribution in the plate as shown in Figure 4-16. 

 

Figure 4-16: Assumptions of the shear stress distribution in a plate (Kindmann et al. 1999a) 
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If the factor ρ is less than 1,0, the corresponding plate may carry additional axial stresses. In order 

to account for the interaction between shear and normal stresses, the yield stress of the plate is 

reduced to: 

2

, 1 ρ−= yredy ff  
( 4.32 ) 

 

One may note that Eq. ( 4.32 ) is in accordance with the von Mises yield criterion. The reduction 

can be neglected if the factor ρ is less than 0,25 (Kindmann et al. 1999b). This may however lead 

to a certain discontinuity for the resistance model. It would be preferable to adopt continuous 

conditions as for example given in (CEN 2005a) and (Standard Australia 1998). 

Based on the reduced yield stress, the plastic resistance of each plate is calculated by: 
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In a next step, the internal forces and moments creating axial stresses have to be distributed over 

the three plates. Based on equilibrium considerations, Kindmann obtains the following four 

equations: 
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It should be noted that the axial forces Nuf, Nlf and Nweb as well as the bending moments Muf, Mlf and 

Mweb refer to the centroid of the corresponding plate. Up to this step they are not known. For the 

flanges, however, it is possible to write the following condition: 
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Muf,wc and Mlf,wc are the bending moments in the upper and lower flange calculated in the reference 

system. At the plastic limit state, a quadratic interaction between the moments and the axial force 

in the flanges can be considered. It yields: 
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with: 
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As the moments Muf,wc and Mlf,wc are known, Eqs. ( 4.45 ) and ( 4.46 ) can be solved for the unknown 

axial forces Nuf and Nlf. One obtains: 
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The solution for the axial force in the lower flange may be obtained by simply changing the indices 

“uf” to “lf” in Eqs. ( 4.49 ) to ( 4.52 ). Obviously, Eqs. ( 4.49 ) to ( 4.52 ) can only be solved 

numerically if the radicand is positive. Therefore, it is possible to determine a condition for the 

bending moment in the flanges: 
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As can be seen, Eqs. ( 4.53 ) and ( 4.54 ) allow checking whether the cross-section is able to resist 

the applied minor-axis bending moment and bi-moment (transformed to the reference system). 

At this point, it is still necessary to check the resistance to the applied axial force and major-axis 

bending moment. Both can be resisted by the full web of the cross-section and the part of the 

flanges not fully utilized by the minor-axis bending and the bi-moment. 

It is shown in Eqs. ( 4.55 ) to ( 4.56 ), that the axial force in the flanges has to be included in the 

interval: 

max,min, ufufuf NNN ≤≤  ( 4.55 ) 

max,min, lflflf NNN ≤≤  ( 4.56 ) 

 

As the web is not utilized yet, the web’s axial force has to be included in the interval: 

wplwebwpl NNN ,,,, ττ ≤≤−  ( 4.57 ) 

 

Consequently, the total axial force has to respect the conditions expressed by Eq. ( 4.58 ). 

maxmin NNN ≤≤  ( 4.58 ) 

and: 
 

uflfweb NNNN ++=  ( 4.59 ) 
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webpluflf NNNN ,,min,min,min τ−+=  ( 4.60 ) 

webpluflf NNNN ,,max,max,max τ++=  ( 4.61 ) 

 

Similarly, the major-axis bending moment should respect the following condition: 

max,min, yyy
MMM ≤≤  ( 4.62 ) 

 

Finally, depending on the value of the axial force, the minimum and maximum values of the 

bending moment are given in Table 4-5. 

Table 4-5: Expressions for My,min and My,max 
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The plastic resistance conditions redeveloped here before have been derived in reference 

(Kindmann et al. 1999b). They are summarized hereafter: 
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maxmin NNN ≤≤  ( 4.68 ) 
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MMM ≤≤  ( 4.69 ) 

 

It should be recalled that the internal forces and moments used in Eqs. ( 4.63 ) to ( 4.69 ) are not 

the ones calculated in the principal axes system of the section. This may be confusing for the use 

in practice as the interaction formulae given in most current standards refer to internal forces and 

moments in the principal system of the cross-section. However, it seems very interesting to verify 

the resistance of a great number of practically used sections by only seven interaction criteria. 

Obviously, the number of interaction criteria to be used decreases if the section is not subject to 

all eight internal forces and moments. Nevertheless, the described procedure seems somewhat 

too complicated for practical use by hand-calculation. An implementation in a numerical tool 

seems necessary as has been done by Kindmann and Wolf (see reference (Wolf et al. 2014)). 

Even if the PIFM is of quasi-analytical nature, it has been highly criticised several times for 

example in (Krüger 1999), (Werner 1999), (Rubin 1999), (Rubin 2000), (Rubin 2005). The 

reasons for the different critical remarks are presented hereafter based on two examples. 

It is proposed to compare the plastic major-axis bending moments obtained with PIFM for the two 

sections of Figure 4-17 with analytical results based on the plastic stress distribution also given 

in Figure 4-17. It is supposed that the section is made of steel S235. The analytical results and the 

PIFM plastic moments are compared in Table 4-6. Based on the supposed axial stress distribution, 

the analytical major-axis plastic moments are identical. Conversely, the PIFM method predicts a 

plastic moment of about 5% less for the U section. At a first look, this result seems astonishing. 

Before this result is explained, it is proposed to compare the results for a second example. 



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Plastic Cross-Section 
Resistance 

 

127 
 

  

Figure 4-17: U and I cross-section and supposed plastic stress distribution under major axis bending 

only 

Table 4-6: Comparison of plastic major axis bending moment for an I and U section 

 Analytic My,pl [kNm] PIFM My,pl [kNm] My,pl,PIFM/My,pl,analytic 

I section 89,63 89,63 1,000 

U section 89,63 84,86 0,947 

 

The section represented in Figure 4-18 is considered and studied under combined bi-axial 

bending and axial compression. 

 

Figure 4-18: HEB 200 cross-section without fillets 

It is again supposed that the section is made of steel S235. It is subject to an axial force of 1125 kN, 

a major-axis bending moment of 60,84 kNm and a minor-axis bending moment of 29,77 kNm. This 

combination of internal forces and moments leads to full yielding of the cross-section, as shown 

in Figure 4-19. The stress distribution is obtained by a numerical calculation of the cross-section 

discretised into cells with the method presented in paragraph 4.2.2.2. 

In Figure 4-19 the blue zones correspond to compression axial stresses and the red zone 

corresponds to tension axial stresses. The neutral axis is represented in green. As the section has 

(nearly) entirely yielded under the applied loads, the plastic load amplification factor for the given 

loading is equal to 1,0. If, however, the PIFM method is applied iteratively, the obtained plastic 

load amplification factor is equal to 0,838. Consequently, PIFM is nearly 20% safe-sided. 
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Figure 4-19: Plastic stress distribution for the section of Figure 4-18 under the applied internal 

forces and moments 

In order to understand this difference, it is interesting to determine the internal forces and 

moments associated with the stress distribution shown in Figure 4-19. Obviously, one obtains an 

axial force of 1125 kN, a major-axis bending moment of 60,48 kNm and a minor-axis bending 

moment of 29,77 kNm. However, one also obtains a bi-moment of 2,74 kNm². Hereafter this 

bi-moment is referred to as “stress induced bi-moment” BSI as it directly results from the axial 

stress distribution and not from an externally applied load. 

The stress induced bi-moment also explains the differences noted for the example of the U section. 

In fact, in order to obtain a full plastic stress distribution, a bi-moment is necessary. As the stress 

induced bi-moment is not considered in the derivation of PIFM, as already highlighted in 

(Kindmann 1999b), (Rubin 2000), (Rubin 2005) and (Kettler 2008), the PIFM may be very safe-

sided, especially for U-shaped sections and I sections under combined bi-axial bending and 

compression. 

However, despite the safe-sided nature of the proposed method, it may be concluded that the 

PIFM presents several advantages: 

• It gives a small number of interaction formulae treating a great variety of cross-

section shapes and combination of internal forces and moments; 

• The treatment of the interaction between shear and axial stresses is of special 

interest as it is not treated satisfactorily in Eurocode 3 and other standards, 

especially for torsion; 

• If PIFM is implemented numerically, its application is easy and yields rapidly 

results. 

Nevertheless, it has also been shown that PIFM presents some disadvantages. In particular, it 

should be noted that: 

• The complexity of PIFM disables it from being used manually, 
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• For certain load cases, the initially proposed PIFM may be highly conservative 

compared to results obtained based on a generally accepted presumed plastic 

stress distribution, 

• For compact hot-rolled sections, the fillets may have a non-negligible influence on 

the plastic resistance but they are not included in PIFM that, consequently, yield 

conservative results. 

The present paragraph has shown that it is possible to derive a design model that, based on 

theoretical developments, is able to predict the resistance of open cross-sections subject to an 

arbitrary combination of internal forces and moments. Also, the design expressions ensure a 

complete continuity in the interaction space between all eight internal forces and moments. 

However, the resulting design expressions are complex and cannot be applied by “hand” in 

practice. Therefore, a numerical implementation is necessary. Additionally, PIFM cannot take into 

account all phenomena necessary to predict the “real” cross-section resistance (in particular the 

stress induced bi-moment). Consequently, it seems that PFIM is promising; however it needs some 

adaptations in order to predict economically the plastic cross-section resistance. 

4.2.2.3.2 Adaptation of PIFM 

In paragraph 4.2.2.3.1, it has been shown that the PIFM is a very promising method to assess the 

plastic cross-section resistance of complex sections. Nevertheless, it has also been shown, that due 

to the hypothesis concerning zero stress induced bi-moments, PIFM may lead to very conservative 

results. It has to be noted, that for an arbitrary combination of loads and an arbitrary cross-

section, the stress induced bi-moment necessary for full yielding cannot be determined 

analytically. In order to allow a more economic design, it seems interesting to adapt PIFM in the 

following way: 

• Introduction of the stress induced bi-moments: First, an initial load amplification 

factor αpl,0 is determined not considering the bi-moment necessary for full yielding. 

In a second step, the stress induced bi-moment leading to the maximum load 

amplification factor αpl is calculated iteratively. 

• Introduction of the fillets for hot-rolled sections: Due to the position of the fillets, 

it is considered that they yield in priority under major-axis bending. If the major-

axis bending moment carried by the fillets is less than the resistance of the fillets 

they may be utilized by the minor-axis bending moment (if present). If the fillets 

may carry additional loads, it is used to resist the axial force (if present). 

Obviously, the proposed adaptations absolutely need a numerical implementation. However, this 

seems not to be disadvantageous, as already the initially proposed PIFM has to be implemented 

numerically. 

The proposed procedure is applied hereafter. First, the example of the previous paragraph is 

considered again (HEB 200 without fillets, N = 1125 kN, My = 60,84 kNm, Mz = 29,77 kNm, S235). 
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The plastic load factor obtained by the modified PIFM is equal to 0,992. Hence, the difference to 

the iterative procedure given in paragraph 4.2.2.2 is negligible. Finally, the iteratively determined 

stress induced bi-moment necessary for full yielding of the cross-section is equal to 2,736 kNm² 

and consequently, it is equal to the one determined based on the Step-by-Step procedure 

presented in the previous paragraph. 

In order to validate the adaptations further on, the My-Mz interaction curves for a HEB 180 

(including the fillets) section are determined for three values of the axial force. The reference 

results are obtained with the Step-by-Step procedure presented in the previous paragraph. Figure 

4-20 shows that both methods yield very close results.  

 

Figure 4-20: Interaction curve My-Mz for HEB 180 

In order to quantify the influence of the proposed adaptations of PIFM, Figure 4-21 shows 

interaction curves for the previous example again. Obviously, if no axial force is applied, the 

results are rather close. Yet, the initially proposed PIFM is slightly safe-sided for high major-axis 

bending moments as the influence of the fillets is neglected. The difference is of about 3%. It 

should be noted that for combined major- and minor-axis bending without axial force the stress 

induced bi-moment is not necessary to yield the section entirely. Conversely, if an axial force is 

applied to the section in addition to bi-axial bending, yielding of the section is accompanied by a 

stress induced bi-moment that is not considered in the initially proposed PIFM. In Figure 4-21 the 

influence of this bi-moment may be clearly identified and it is confirmed that the results may be 

very conservative and non-economic if the PIFM is applied as proposed by Kindmann (not 

considering stress induced bi-moments). 
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Figure 4-21: Interaction curve My-Mz for HEB 180 - Comparison between initially proposed and 

modified PIFM 

The present paragraph presented and validated several adaptations of the Partial Internal Force 

method proposed by Kindmann in references (Kindmann et al. 1999a) and 

(Kindmann et al. 1999b). The introduction of the influence of the fillets and, especially, the 

introduction of stress induced bi-moments lead to precise and more economic results. 

Nevertheless, further investigations are still necessary, especially for the interaction between 

internal forces and moment creating axial stresses and internal forces and moments creating 

shear stresses. Indeed, in this case the interaction behaviour is based on several key assumptions 

as the shear area. These key assumptions absolutely need validation. Consequently, a specific 

experimental and a numerical study are presented in paragraph 4.3 with the objective to 

characterize the bending shear interaction. 

4.2.3 Conclusions 

Paragraph 4.2 has presented several approaches to assess the plastic cross-section resistance. 

First, approaches proposed in current design standards have been compared. It has been shown 

that: 

• Eurocode 3 Part 1-1 yields satisfactory results for the cases of combined bi-axial 

bending and axial force (including the extreme cases if one of the internal forces 

and moments is zero). Nevertheless, the current provisions may be too optimistic 

for low axial force and applied major-axis bending (especially for sections with 

high ratio h/b). It seems that Eurocode 3 provisions may be unsafe for the major-

axis bending-shear force interaction (compared to elastic-perfectly plastic 

analysis), as the shear area for Vz seems to be overestimated; 

• The interaction formulae provided in the Australian standard AS 4100:1998 also 

yield satisfactory results. However, it seems that they have been calibrated for 

rather compact sections (ratio h/b is small). In case of interaction between major-

axis bending and transversal shear force, AS 4100 also seems to yield unsafe 
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results due to a too optimistic definition of the shear area; however, AS 4100 is less 

unsafe than Eurocode 3; 

• The North American standard AISC 360-10, yields safe-sided results for the 

interaction between axial force and mono-axial bending. In case of bi-axial bending 

the results may be even considered as too safe-sided. AISC 360-10 considers that 

interaction between shear and axial stresses may be neglected for open sections. 

However, for the individual internal force or moment only the elastic resistance 

may be exploited; 

• None of the cited standards introduces a specific plastic interaction between 

torsion and other internal forces. Only Eurocode 3 roughly addresses this 

interaction problem, however the sole influence of shear stresses due to the Saint 

Venant’s torsional moment and the warping torsional moment (for U sections) is 

introduced. Neither the axial stress due to the bi-moment nor the interaction 

between shear stresses due to the warping torsional moment and the shear force 

Vy are accounted for; 

• An amendment to Eurocode 3 Part 1-1 has been proposed recently in order to 

(partially) close the lack observed concerning plastic interaction including torsion. 

Yet, the proposal seems to be inconsistent in certain points. 

Based on the previous remarks, one may summarize that empirical formulations, even rather 

complex as in case of a combination between bi-axial bending and shear, always possess certain 

limitations. Therefore, analytical and numerical methods describing the plastic interaction have 

been studied in the second part of paragraph 4.2. The Partial Internal Force method has been 

presented and an adaptation has been proposed in order to account for the influence of the fillets 

and of the stress induced bi-moments, necessary for the full yielding of the cross-section in case 

of combined bi-axial bending and compression. Also, a Step-by-Step procedure based on a 

presumed elastic stress distribution has been presented. Both methods yield practically identical 

results. However, the modified Partial Interaction Method possesses the advantage to be very time 

efficient. Even if both methods are very precise, they are based on key assumptions especially for 

the shear resistance. Consequently, the following points of interrogation remain: 

• Which definition of the shear area yields safe-sided but economic results? 

• What cut-off value of the shear force should be used in combination with major-

axis bending? 

• Is it safe-sided to neglect the interaction between shear stresses resulting from 

warping torsion and from the horizontal shear force? 

• Is it safe-sided to neglect the interaction between axial stresses resulting from the 

bi-moment and from other internal forces and moments or should an interaction 

be included as proposed in reference (Mirambel et al. 2016)? 

• Is it possible to develop a safe-sided, economic and simple design method that 

continuously predicts the plastic cross-section resistance of open section (in 

particular I and U sections)? 
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In order to find appropriate solutions to these questions, the following two paragraphs present 

the results of a series of laboratory tests (paragraph 4.3) and of an extensive numerical study 

(paragraph 4.4). 

4.3 Laboratory tests performed at University of Applied Sciences of Western 

Switzerland 

4.3.1 Motivation 

Paragraph 4.2 has shown that the definition of the shear area and consequently the shear 

resistance for hot-rolled I sections may be very different in the major international design codes 

as recalled in Table 4-7. Also, the interaction between bending and shear forces is treated 

differently. This may lead to rather important discrepancies between the code predicted 

resistances. Therefore, it seems interesting to evaluate the resistance models proposed in the 

studied standards. Hereafter, the cross-section resistance is studied based on laboratory tests. 

Furthermore, the laboratory tests serve to validate the numerical model used in the extensive 

numerical study presented in paragraph 4.4. 

Table 4-7: Definition of shear area in different standards 

EN 1993-1-1 AS 4100 AISC 360-10 

   
 

4.3.2 Choice of the test specimen and test program 

In order to explain the choice of the specimen tested in the laboratory, it seems interesting to 

recall the general form of the major-axis bending shear force interaction curve proposed in 

EN 1993-1-1. Figure 4-22 shows that the Eucorode 3 interaction curve is characterized by 4 

special features: 

• Cut-off limit linked to 0,5Vpl: If the shear force does not exceed 50% of the plastic 

shear resistance of the cross-section, the major-axis bending moment resistance is 

not reduced; 

• Cut-off limit linked to My,pl,Fl: If the major-axis bending moment does not exceed the 

bending moment resistance associated with the flanges only, the shear resistance 

of the cross-section is not reduced; 
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• A quadratic interaction is proposed between the two cut-off limits; 

• The plastic shear resistance proposed by Eurocode 3 exceeds the plastic shear 

resistance of the web by approximatively 15% to 30% depending on the 

dimensions of the fillets and the thickness of the flanges. 

The supplementary shear resistance mentioned in point 4 is sometimes attributed to the influence 

of strain hardening. However, it seems that there is no comprehensive numerical, theoretical or 

experimental study that justifies the shear area defined in Eurocode 3. Therefore, the laboratory 

tests are designed in particular to investigate the validity of the Eurocode 3 shear resistance 

reserve. 

 

Figure 4-22: My-Vz interaction curve proposed in EN 1993-1-1 

In order to study members subject to high shear forces, three point bending tests are performed. 

The cross-sections are chosen so as to maximize the Eurocode 3 shear strength reserve as shown 

in Table 4-8. 

Table 4-8: Studied cross-sections 

Cross-section 
Shear strength 

reserve 

HEA 220 36% 

HEB 180 36% 

IPE 270 25% 
 

The three studied cross-sections are tested with two member lengths in order to vary the ratio 

between the shear force and the bending moment. The following figures represent the tests in the 

corresponding interaction diagrams. As can be seen in Figure 4-23 the shortest length for each 
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member is chosen so as to attain the plastic shear resistance of the member without interaction 

with the bending moment. The resistances of the longer specimen are situated in the interaction 

zone of the diagrams. It should be noted that for the IPE 270 cross-section, the shortest member 

is also situated in the interaction zone of the diagram in order to avoid excessively short members. 

 

 

Figure 4-23: Laboratory tests for HEA 220 in the interaction diagram 

 

 

Figure 4-24: Laboratory tests for HEB 180 in the interaction diagram 
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Figure 4-25: Laboratory tests for IPE 270 in the interaction diagram 

As the shear strength reserve is sometimes attributed to strain hardening, it is also interesting to 

study its influence by testing the two steel grades S235 and S355 possessing a ratio between the 

ultimate strength fu and the yield strength fy of fu/fy of 1,53 and 1,44 respectively. Consequently, 

strain hardening is less pronounced in case of S355. 

Table 4-9 summarizes the specimen tested in the laboratory of University of Applied Sciences of 

Western Switzerland in Fribourg. 

Table 4-9: Summary of test specimen 

Designation 
Cross-
section 

Nominal 
yield 
stress 
[MPa] 

Member 
length 
[mm] 

Web 
height hw 

[mm] 

Web 
thickness 
tw [mm] 

hw/twε 

HEA220_S235_L420 

HEA 220 

235 
420 

188,0 7,0 

26,9 
HEA220_S235_L840 840 

HEA220_S355_L420 
355 

420 
33,0 

HEA220_S355_L840 840 

HEB180_S235_L540 

HEB 180 

235 
540 

152,0 8,5 

17,9 
HEB180_S235_L810 810 

HEB180_S355_L540 
355 

540 
22,0 

HEB180_S355_L810 810 

IPE270_S355_L540 
IPE 270 355 

540 
257,8 6,6 48,0 

IPE270_S355_L810 810 
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4.3.3 Test set-up 

As mentioned before, three point bending tests are performed in order to characterize the 

interaction behaviour and shear resistance of the studied specimen. The tested members are 

placed on a trolley in a reaction frame (see Figure 4-26). The trolley is used to simplify the 

exchange of the specimen at the end of each test. 

The theoretical simple support conditions are realized in the laboratory tests by three elements 

(see Figure 4-27): 

• U composed of three steel plates used to adjust the position of the steel plate in 

contact with the specimen before the start of the test; 

• Steel cylinder free to move; 

• Steel plate in contact with the test specimen uniformly introducing the load. 

At mid-span the test specimen is in contact with the reaction frame via a semi-cylindrical steel 

element. The tests are performed under displacement control and the load is introduced by a 

hydraulic jack situated beneath the trolley. The test layout is represented in Figure 4-26 and 

Figure 4-27 showing an ongoing laboratory test. 

 

Figure 4-26: Test set up - General view 
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Figure 4-27: Test set up - Detailed view 

Figure 4-26 and Figure 4-27 also show that stiffeners are applied at the member ends (at the 

theoretical support) and at mid-span in order to avoid local buckling at the supports. During the 

test the displacement of the hydraulic jack as well as the displacements of two LVDTs are 

measured. The LVDTs are applied at mid-span on both sides of the member. Figure 4-28 shows a 

front view of an ongoing test with the LVDT. 

 

Figure 4-28: Test set up - Detailed view of supports and LVDT 
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4.3.4 Preparatory measurements 

 General 

So as to interpret the results of the laboratory tests correctly, it is necessary to possess knowledge 

of the parameters influencing these results. In case of the tests presented next, the resistance is in 

particular influenced by the real yield strength and the material behaviour as well as the real 

geometry of the cross-section. In order to determine these parameters, preparatory 

measurements of the cross-section geometry and the material behaviour have been performed. 

 Dimensions of the cross-sections 

The geometric dimensions of the cross-sections have been measured with an electronic slide 

gauge. The position of the measurements along the cross-section and the member are represented 

in Figure 4-29. As can be seen the dimensions have been determined for three intermediate 

sections along the member. For each intermediate section, the thickness has been measured twice 

for the upper flange, the lower flange and the web, respectively. In addition to the thicknesses, the 

height of the cross-section and the width of the flanges have been measured for each intermediate 

section. 

 

Figure 4-29: Measurements of cross-section dimensions 

The following tables show examples for the obtained dimensions. The other measurements are 

summarized in Annex C. Table 4-10, Table 4-11 and Table 4-12 show that the fabrication 

tolerances defined in EN 10034 (CEN 2011) are respected. Additionally, it can be seen that the 

dimensions exceed in general the nominal values except for the thickness of the flanges that is 

lower than its nominal value for the studied sections. 
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Table 4-10: Measured dimensions for test HEA220_S235_L420 

 Measure 1 Measure 2 Measure 3 
Mean 
value 

Nominal value 
(Tolerance) 

bFl,u [mm] 221,20 220,29 220,54 220,67 
220,00 
(+4;-2) 

tfl,u1 [mm] 10,68 10,80 10,43 
10,62 

11,00 
(+2.5;-1.5) 

tfl,u2 [mm] 10,77 10,47 10,56 

bFl,l [mm] 220,60 220,25 220,73 220,53 
220,00 
(+4;-2) 

tfl,l1 [mm] 10,73 10,88 10,80 
10,82 

11,00 
(+2.5;-1.5) 

tfl,l2 [mm] 11,00 10,93 10,82 

h [mm] 210,26 211,47 210,8 210,84 
210,00 
(+3;-2) 

tw,1 [mm] 7,17 7,17 7,35 
7,24 

7,00 
(+0.7;-0.7) 

tw,2 [mm] 7,22 7,20 7,31 

 

Table 4-11: Measured dimensions for test HEB180_S355_L540 

 Measure 1 Measure 2 Measure 3 
Mean 
value 

Nominal value 
(Tolerance) 

bFl,u [mm] 180,39 179,91 179,72 180,01 
180,00 
(+4;-2) 

tfl,u1 [mm] 13,59 13,70 13,51 
13,62 

14,00 
(+2.5;-1.5) 

tfl,u2 [mm] 13,72 13,59 13,61 

bFl,l [mm] 180,25 180,10 179,92 180,09 
180,00 
(+4;-2) 

tfl,l1 [mm] 13,46 13,59 13,58 
13,57 

14,00 
(+2.5;-1.5) 

tfl,l2 [mm] 13,62 13,58 13,57 

h [mm] 180,40 180,33 180,44 180,39 
180,00 
(+3;-2) 

tw,1 [mm] 8,31 8,15 8,23 
8,27 

8,50 
(+1;-1) 

tw,2 [mm] 8,35 8,19 8,38 
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Table 4-12 : Measured dimensions for test IPE270_S355_L540 

 Measure 1 Measure 2 Measure 3 
Mean 
value 

Nominal value 
(Tolerance) 

bFl,u [mm] 135,20 135,12 135,31 135,21 
135,00 
(+4;-2) 

tfl,u1 [mm] 9,63 9,63 9,41 
9,55 

10,20 
(+2.5;-1.5) 

tfl,u2 [mm] 9,57 9,51 9,57 

bFl,l [mm] 135,16 135,17 135,49 135,27 
135,00 
(+4;-2) 

tfl,l1 [mm] 9,64 9,59 9,53 
9,65 

10,20 
(+2.5;-1.5) 

tfl,l2 [mm] 9,72 9,56 9,84 

h [mm] 270,57 270,24 270,39 270,40 
270,00 
(+4;-2) 

tw,1 [mm] 6,90 6,70 6.85 
6,81 

6,60 
(+0.7;-0.7) 

tw,2 [mm] 9,62 6,74 6,72 

 

 Tensile tests characterizing the material behaviour 

The stress strain-behaviour of the material was determined for each studied member by tensile 

tests. So as to obtain precise results representing the entire cross-section, one necked coupon was 

cut out of each plated part of the section as shown in Figure 4-30 (left and right part of the upper 

and lower flange and web). Consequently, five coupon tests were performed for each specimen. 

In order to determine the Young’s modulus of the specimen the coupons were loaded until they 

reached approximatively the middle of the plastic plateau. Then they were released and loaded 

again. The initial inclination associated with this second load step corresponds to the Young’s 

modulus. After the determination of the Young’s modulus, the load is increased up to failure with 

a constant strain rate of 0,045%/s. 

 

Figure 4-30: Position of the coupons 
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Figure 4-31 and Figure 4-32 show the obtained material law for the HEB 180 section fabricated 

from steel S235 and S355, respectively. The results are represented in terms of engineering 

stresses and engineering strains, i.e. both are calculated with reference to the initial cross-section 

area of the coupon specimen. 

The two following figures show that the material behaves homogenously as the curves practically 

overlap for each specimen up to the initiation of failure. With the initiation of failure, however, the 

curves diverge. Yet, the divergence starts at very high strain levels that may not be attained in the 

laboratory tests of the entire members. The figures also show that, for both steel grades, the 

nominal yield strength is largely exceeded (35% in case of S235 and 16% in case of S355). Also, it 

may be observed that the steel used respects the minimum total strain at failure of 15% defined 

in reference (CEN 2005a) and the minimum ratio between the yield strength and the ultimate 

strength of 1,1 defined in the same reference. The results of the tensile tests are summarized in 

Table 4-13. The values given in this table represent the mean value of the five tensile tests 

performed for each section. 

Table 4-13: Results of tensile tests 

Section and steel 
grade 

Young’s 
modulus E 

(MPa) 

Yield strength fy 
(MPa) 

Tensile strength 
fu (MPa) 

fu/fy (-) 

HEA 220 S235 191118 315,07 447,43 1,42 

HEA 220 S355 190882 412,79 518,29 1,26 

HEB 180 S235 191554 302,56 435,90 1,44 

HEA 180 S355 181900 409,32 509,11 1,24 

IPE 270 S355 186144 408,48 497,98 1,22 

 

 

Figure 4-31: HEB 180 - L = 810 mm - S235 
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Figure 4-32: HEB 180 - L = 810 mm – S355 

 

4.3.5 Three point bending laboratory tests 

Table 4-14 summarizes the ultimate loads obtained in the laboratory tests. The failure of the 

specimen was characterized by local buckling of the web in the plastic range as represented in 

Figure 4-33 and Figure 4-34. Especially in Figure 4-33, one may also identify the formation of four 

plastic hinges (marked by the orange circles) indicating that a certain post buckling reserve has 

been activated in the tests (see also paragraph 4.3.6.3). 

Table 4-14: Peak loads obtained in the laboratory tests 

Cross-section 
Measured yield 
strength (mean 

value) (MPa) 

Member length 
(mm) 

Maximum load 
(kN) 

HEA 220 

302,6 (S235) 
420 1147,6 

840 884,2* 

398,0 (S355) 
420 1297,2 

840 1021,0 

HEB 180 

316,0 (S235) 
540 1156,4* 

810 885,8 

369,0 (S355) 
540 1262,2 

810 998,8* 

IPE 270 380,0 (S355) 
540 1140,4 

810 963,8 

*Peak load not attained due to displacement limits of the hydraulic jack 
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Figure 4-33: Failure of test HEA 220_S235_L420 by local buckling of the web 

 
Figure 4-34: Failure of test IPE 270_S355_L810 by local buckling of the web 

It should be noted that the tests HEA 220_S235_L840, HEB 180_S235_L540 and 

HEB 180_S355_L810 could not be conducted up to the peak load as the displacements exceeded 

the capacity of the hydraulic jack. The deformed specimen of test HEB 180_S235_L540 is 

represented in Figure 4-35. It may be observed that local buckling may not be identified visually 

when the test had to be aborted. 
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Figure 4-35: Specimen HEB 180 in S235 of 540 mm of length at abort of the test 

4.3.6 Numerical simulations of the laboratory tests 

 Presentation of the numerical model 

In order to recalculate the laboratory tests numerically, the finite element model detailed in 

Chapter 3 is slightly adapted. The whole member is modelled with ANSYS solid element 

“Solid 185”. The metal plates serving as supports and the stiffeners are modelled with the same 

finite element. The imposed displacement is introduced linearly below the metal plates as 

illustrated schematically by the blue triangles in Figure 4-36. The plates are free to rotate about 

the point of application of the imposed displacements. The rigid support created by the metal 

demi-sphere at mid-span in the laboratory test is represented in the numerical model by blocking 

the vertical displacement of the upper flange at mid-span. 

 

Figure 4-36: Numerical simulation of the laboratory tests – Side view 

 



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Plastic Cross-Section 
Resistance 

 

146 
 

 

Figure 4-37: Numerical simulation of the laboratory tests – Isometric view 

It should be noted that the classical residual stress pattern is included into the numerical model 

of the member and that the measured stress-strain behaviour is adopted as material law in the 

numerical GMNIA simulations. As the initial plate imperfection has not been measured, the 

numerical simulations include a sine shaped plate imperfection with varying amplitude. The 

influence of the amplitude of the imperfection is highlighted in the following paragraph. 

 Comparison between numerical model and laboratory tests 

Table 4-15 presents the comparison of the GMNIA results and the laboratory tests. As stated 

previously, the plate imperfection has not been measured. Therefore, the laboratory tests are 

recalculated based on a sine shape imperfection introduced to the web. The amplitude of this 

imperfection is varied between hw/50000 and hw/500 as shown in Table 4-15 and Figure 4-38. It 

may be observed that, independently from the applied local imperfection, the numerical results 

are rather close to the laboratory tests. Yet, with increasing amplitude of the imperfection, the 

simulations become more and more safe-sided. Consequently, it appears that the tested members 

were only subject to very low imperfections and in particular imperfections much lower than the 

tolerances authorized by the fabrication standard EN 1090-2 (CEN 2011). 

When the load displacements curves obtained with the numerical simulations are studied, one 

may observe that the amplitude of the imperfection does not influence the pre-buckling zone. Yet, 

with increasing amplitude, local buckling is initiated at lower load levels. Also, after buckling, the 

load decreases less abruptly for higher amplitudes of the imperfection than in the case of small 

imperfections (compare curves associated with hw/500 and hw/50000 in Figure 4-38). This is not 

surprising as the webs affected by a higher imperfection are also subject to higher out-of-plane 

bending before local buckling affects the resistance of the member. In case of webs with low 

imperfection, the out-of-plane bending moments increase abruptly with the initiation of local 

buckling generating an abrupt decrease of the load with increasing applied displacements. 
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Figure 4-38: Load-displacement curve obtained numerically for test HEA220_S235_L420 

Table 4-15: Comparison between test results and GMNIA simulations 

Designation 
Peak load 

Laboratory 
Fult,Lab (kN) 

Peak load 
GMNIA – 

hW/50000 
(kN) 

Peak load 
GMNIA – 

hW/10000 
(kN) 

Peak load 
GMNIA –h 
hW/1000 

(kN) 

Peak load 
GMNIA – 
hW/500 

(kN) 

HEA220_S235_L420 1147,6 1081,2 1041,1 970,00 946,76 

HEA220_S235_L840 884,2* 855,95 849,72 827,61 817,45 

HEA220_S355_L420 1297,2 1293,7 1252,8 1180,2 1153,4 

HEA220_S355_L840 1021,0 1036,3 1033,0 1011,5 999,54 

HEB180_S235_L540 1156,4* 1085,9 1069,0 1032,4 1016,8 

HEB180_S235_L810 885,8 872,77 872,7 869,47 866,4 

HEB180_S355_L540 1262,2 1200,6 1193,6 1153,7 1139,9 

HEB180_S355_L810 998,8* 975,76 975,65 975,51 975,05 

IPE270_S355_L540 1140,4 1128,7 1089,1 1018,7 990,96 

IPE270_S355_L810 963,8 1001,2 989,0 944,79 924,52 

Mean value Fult,GMNIA/Fult,Lab 0,979 0,964 0,929 0,916 

Standard deviation Fult,GMNIA/Fult,Lab 0,033 0,039 0,058 0,065 

* Peak load not attained due to displacement limits of the hydraulic jack 

By observing the results given in Table 4-15 in more detail, it may seem surprising that the 

numerical simulations are safe-sided for the tests HEA220_S235_L840, HEB180_S235_L540 and 

HEB180_S355_L810 even if they do not attain their peak load in the laboratory. However, the load 

displacement curves show that these tests are very close to their ultimate load in the laboratory 

as represented in Figure 4-39. In Figure 4-39, one may also recognize that the load-displacement 

curve obtained by the GMNIA simulation has a slightly different shape than the one obtained by 
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the laboratory tests. In fact, one may distinguish four phases in the load-displacement curve of the 

numerical simulation corresponding respectively to 1) linear elastic behaviour, 2) the start of 

yielding and the passage through the yield plateau, 3) strain hardening up to plastic shear buckling 

and 4) finally the decrease of load in the post buckling stage. Especially, for loads corresponding 

to the beginning of yielding, the real behaviour of the specimen seems to be smoother. Indeed, the 

passage through the yield plateau cannot be clearly identified in the laboratory test. It should be 

noted that the numerical simulations are based on the material behaviour obtained by uni-axial 

tensile tests. For the compact members failing in shear it seems that the tensile tests may not 

exactly represent the material behaviour. However, even if there are some differences in the load 

displacement curves, Figure 4-40 and Figure 4-41 show that the deformed shape of the physical 

member corresponds very well to the numerical simulation. It can be seen that a plastic hinge 

(again marked with an orange circle) is formed near the stiffener at mid-span. 

 

Figure 4-39: Load-displacement curve for test HEA220_S235_L840 

 

 

Figure 4-40: Photo for test HEA220_S235_L840 
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Figure 4-41: GMNIA for test HEA220_S235_L840 – uz = 87mm 

The numerical simulation of this test has been conducted further on up to the formation of local 

buckling under a high shear force (in the plastic domain) as shown in Figure 4-42 and Figure 4-43. 

 

Figure 4-42: GMNIA for test HEA220_S235_L840 – uz = 115 mm 

 

Figure 4-43: GMNIA for test HEA220_S235_L840 – uz = 148 mm 

 

Last, Figure 4-44 compares the deformed shape obtained in the numerical simulations and the 

laboratory test HEA220_S355_L420. Obviously, the results correspond very well. 
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Figure 4-44: Deformed shape at ultimate end of the test HEA220_S355_L420 

This paragraph presented a comparison between the laboratory tests characterizing the major-

axis bending-shear force interaction and the corresponding numerical simulations. It could be 

shown that the GMNIA calculations represent very well the obtained results in terms of peak load, 

failure mode and deformed shape. However, in some cases the load-displacement curve is slightly 

smoother at the beginning of yielding for the laboratory tests than for the simulations. Yet, this 

does not alter the quality of the GMNIA results. Therefore, it may be concluded that the numerical 

model is capable to correctly simulate the real behaviour of the member and it is consequently be 

used for the parametric study presented paragraph 4.4. 

 Comparison between laboratory tests and resistance models 

Hereafter, the ultimate resistance obtained in the laboratory is compared to different resistance 

models. The proposals of Eurocode 3 Part 1-1 (CEN 2005a) and AS 4100 

(Standard Australia 1998) are recalled in Table 4-16. 
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Table 4-16: Major-axis bending - shear interaction proposed in EN 1993-1-1 and AS 4100 

Standard Interaction formula Shear area 
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RdcyRdy MM ,,, =    if 5,0
,

≤
Rdpl

Ed

V

V
 

Rdcyy

w

w
yplRdy Mf

t

A
WM ,,

2

,,
4

≤







−=

ρ
 elsewise 

and: 

0,11
2

2

,

≤











−=

Rdpl

Ed

V

V
ρ  

 

( ) fwfv trtbtAA 22 ++−=  

AS 4100 RdyRdy

Rdpl

Ed
RdVy MM

V

V
M ,,

,

,,
6,18

11
≤










−=  fv btAA 2−=  

 

Recently, the strain based Continuous Strength Method (CSM) has been developed in order to 

consider especially the strain hardening and deformation capacity of compact stainless steel 

cross-sections (Gardner et al. 2013). It has been extended to sections made from structural steel 

(noted as S…) in bending and combined bending and compression (Liew et al. 2015) and to 

stainless steel sections in combined bending and shear (Saliba et al. 2014). Hereafter, it is 

evaluated for the cross-sections tested here. The applied method is recalled in Table 4-17 to Table 

4-19. 
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Table 4-17: CSM for major-axis bending resistance 

Calculation steps Expression 
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Table 4-18: CSM for shear resistance 

Calculation steps Expression 
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Table 4-19: Major-axis bending – shear interaction based on CSM resistances 

Calculation steps Expression 
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It should be noted that the CSM procedure for the shear resistance and the major-axis bending 

shear interaction has been developed based on physical tests of welded plate girders 

(Saliba et al. 2015). Consequently, the shear area considered in that study has been set equal to 

the area of the web. For the comparison represented in Table 4-21, it is considered that the shear 

area is again equal to the area of the web not including the fillets of the studied hot-rolled cross-

sections. Therefore, it may be notably smaller than the shear area defined in EN 1993-1-1 as 

summarized in Table 4-20. The influence of the definition of the shear area is discussed further in 

paragraph 4.3.7 and 4.4.2. 

Table 4-20: Comparison between Eurocode 3 and AS 4100 shear area and area of the web 

Cross-section Av,EC3 (cm²) 
Av,AS4100 
(cm²) 

Av,EC3/Av,AS4100 
(-) 

Aw = hw×tw 
(cm²) 

Av,EC3/Aw (-) 

HEB 180* 20,00 14,73 1,36 12,92 1,55 

HEA 220* 21,14 16,49 1,28 13,16 1,61 

IPE 270* 22,55 19,01 1,19 16,47 1,37 

*nominal section dimensions are used 

Obviously, the application of CSM to the major-axis bending-shear interaction leads to a slightly 

increased calculation effort especially in order to determine the deformation capacities. Yet, as it 

considers explicitly the effect of strain hardening, one might suppose that it yields more precise 

results compared to laboratory tests and numerical calculations. Table 4-21 presents the 

comparison between the laboratory tests and the ultimate resistance obtained when the different 

resistance models are applied. 

Table 4-21: Comparison between laboratory tests and resistance models 

Laboratory test Vult,EC3/Vult,Lab Vult,AS4100/Vult,Lab Vult,CSM/Vult,Lab 
Vult,CSM/Vult,Lab 

without γlim 

HEB180_S235_540 0,629 0,463 0,558 0,807 

HEB180_S235_810 0,773 0,605 0,669 0,907 

HEB180_S355_540 0,748 0,552 0,635 0,813 

HEB180_S355_810 0,886 0,697 0,740 0,926 

HEA220_S235_420 0,644 0,502 0,589 0,697 

HEA220_S235_840 0,821 0,651 0,672 0,751 

HEA220_S355_420 0,776 0,608 0,692 0,754 

HEA220_S355_840 0,967 0,772 0,741 0,813 

IPE270_S355_540 0,924 0,786 0,770 0,820 

IPE270_S355_810 0,896 0,814 0,826 0,858 

Mean 0,807 0,645 0,689 0,815 

Standard deviation 0,115 0,121 0,083 0,070 
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Table 4-21 shows that the method used in the Australian standard AS 4100 is clearly the least 

precise one of the approaches studied here. Especially, the ultimate resistance obtained for the 

very compact HEB 180 and HEA 220 sections are overly safe-sided compared to the physical tests. 

Also, the standard deviation confirms the poor quality of this proposal. 

The strength predictions obtained with Eurocode 3 Part 1-1 seem satisfactory. Only, for tests 

HEB180_S235_540 and HEA220_S235_420 the provisions seem to be too safe-sided. However, 

these tests concern very compact sections that additionally possess an important strain hardening 

reserve. Indeed, the measured ratios fu/fy are equal to 1,44 and 1,42, respectively. 

The Continuous Strength Method, used with a shear area equal to hw.tw, yields conservative results 

if the strain limitation γLim of 15% is considered. Nonetheless, it appears that the standard 

deviation is very satisfactory. As tensile tests have been performed the real strain limit is known. 

Hence, it is possible to neglect the limitation of 15%. If this is done, CSM gives even better results. 

Especially, the low standard deviation of 7% for this complex interaction problem seems very 

satisfying. In order to evaluate the proposal further on, supplementary calculations are presented 

in the following paragraph. 

4.3.7 Complementary numerical simulations and comparison to resistance models 

In the previous paragraph, the laboratory tests have been compared to design models proposed 

in standards and in the literature. Obviously, this comparison cannot be considered as complete 

because of the limited number of physical tests. Also, the tests have been designed in order to 

study very compact sections fabricated from steel with considerable strain hardening reserve. 

Hereafter, some complementary numerical simulations are presented with the objective to extend 

the comparisons. In particular, the cross-section compactness (sensitivity to shear buckling) and 

the influence of the ratio fu/fy (strain hardening reserve) are studied. Additionally, the influence 

of the fillets on the shear resistance is of special interest. The calculations are performed with the 

same model as before. In paragraph 4.3.6.2 it has been shown that the amplitude of the plate 

imperfection was very low for the studied members. Yet, for the following simulations the 

amplitude is chosen to be equal to hw/200 as recommended in reference (CEN 2007a). This is 

justified here as the execution standard EN 1090-2 authorizes this value as out-of-plane tolerance 

for the web. Consequently, sections may possess this high amplitudes of geometric imperfection 

in practice. 

The parameters of the complementary simulations are summarized in Table 4-22 and Table 4-23. 

First, the compact sections HEA220 and the IPE270 section are re-examined considering steel 

S460 and steel S690 in order to quantify the influence of the strain hardening reserve for compact 

sections (see Table 4-22). After this, supplementary hot-rolled sections (HR) with invented 

dimensions are studied. The dimensions are chosen so that the web slenderness is close to the 

limit of shear buckling, i.e. 72ε following the provisions of Eurocode 3 Part 1-1. In order to 

quantify the influence of the fillets for slender sections, they are studied considering the fillets 

(HR11-HR31) and without fillets (HR12-HR32) (see Table 4-22). Finally, the influence of strain 

hardening on the ultimate bending moment resistance is investigated for the compact sections 
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HEA 100, HEB 220 and HEA 280 (see Table 4-23). Inversely to the other tests, the shear force is 

rather low for these last three simulations and should, in theory, not reduce the major-axis 

bending resistance. In order to study exclusively the cross-section resistance, without the 

influence of lateral torsional buckling, the out-of-plane displacements are restrained at the 

intersection between the web and the two flanges. 

Table 4-22: Complementary simulations – compact sections 

Designation Cross-section 
Yield 

stress/Tensile 
strength (MPa) 

Member 
length (mm) 

hw/twε (-) 

HEA220_S460_L420 

HEA220 

460/570 
420 

37,58 
HEA220_S460_L840 840 

HEA220_S690_L420 
690/770 

420 
46,02 

HEA220_S690_L840 840 

IPE270_S460_L540 

IPE 270 

460/570 
540 

52,91 
IPE270_S460_L810 810 

IPE270_S690_L540 
690/770 

540 
64,80 

IPE270_S690_L810 810 

HR11_S355_L874 
HR.437.7,5.135,9.6.15* 355/470 

847 
69,99 

HR11_S355_L1311 810 

HR21_S460_L780 
HR.390.7,5.135,9.6.15* 460/570 

780 
70,02 

HR21_S460_L1170 1170 

HR31_S460_L654 
HR.327.7,5.135,9.6.0* 690/770 

654 
69,90 

HR31_S460_L981 981 

HR12_S355_L874** 
HR.437.7,5.135,9.6.0* 355/470 

847 
68,47 

HR12_S355_L1311** 810 

HR22_S460_L780** 
HR.390.7,5.135,9.6.0* 460/570 

780 
69,17 

HR22_S460_L1170** 1170 

HR32_S460_L654** 
HR.327.7,5.135,9.6.0* 690/770 

654 
70,32 

HR32_S460_L981** 981 

* HR.A.B.C.D.E = Hot-rolled cross-section h = A; tw = B; bf = C; tf = D; rf = E 
** Hot-rolled cross-section without fillets 

 



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Plastic Cross-Section 
Resistance 

 

157 
 

Table 4-23: Supplementary calculations - compact section under predominant bending 

Designation Cross-section 
Yield 

stress/Tensile 
strength (MPa) 

Member 
length (mm) 

hw/twε (-) 

HEA100_S235_L1440* HEA100 235/360 1440 16,00 

HEB220_S235_L3300* HEB220 235/360 3300 19,79 

HEA280_S235_L4050* HEA280 235/360 4050 30,50 

*with nominal section dimensions 

The results obtained for the complementary calculations are given in Table 4-24 and Table 4-25. 

Table 4-24 represents the members failing predominantly due to the shear force and Table 4-25 

represents the members failing in bending. 

Regarding Table 4-24 it seems interesting to note that: 

• The fillets have only negligible influence on the shear resistance. Indeed, the 

obtained resistance is only of about 5%-10% higher for sections HR11-HR31 (with 

fillets) whereas their shear area (Eurocode 3) exceeds the shear area of sections 

HR12-HR32 (without fillets) by approximatively 18%-24%. 

• The Eurocode 3 strength predictions are safe-sided on average. Additionally, the 

low standard deviation seems satisfying. However, for high strength steels the 

predicted resistance becomes unsafe. 

• The Australian steel construction standard as well as CSM yield very similar results 

in terms of mean value and standard deviation. Also, both methods are generally 

safe-sided. 
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Table 4-24: Results of complementary calculations – Major-axis bending – Shear force interaction 

Test Vult,GMNIA (kN) 
Vult,EC3/Vult,GMNIA 

(-) 
Vult,AS4100/Vult,GMNIA 

(-) 
Vult,CSM/Vult,GMNIA 

(-) 

HEA220_S460_L420 629,00 0,892 0,696 0,791 

HEA220_S460_L840 539,57 1,024 0,812 0,780 

HEA220_S690_L420 859,18 0,988 0,773 0,809 

HEA220_S690_L840 734,64 1,133 0,904 0,811 

IPE270_S460_L540 589,58 1,015 0,856 0,840 

IPE270_S460_L810 551,92 0,881 0,801 0,808 

IPE270_S690_L540 793,20 1,133 0,955 0,896 

IPE270_S690_L810 741,38 0,983 0,894 0,864 

HR11_S355_L874 641,71 0,983 0,952 0,956 

HR11_S355_L1311 491,32 0,989 0,960 1,030 

HR21_S460_L780 752,11 1,019 0,979 0,943 

HR21_S460_L1170 622,26 0,957 0,919 0,940 

HR31_S690_L654 975,93 1,072 1,012 0,935 

HR31_S690_L981 853,96 0,963 0,908 0,888 

HR12_S355_L874 623,43 0,905 0,931 0,935 

HR12_S355_L1311 472,13 0,952 0,950 0,983 

HR22_S460_L780 738,16 0,917 0,943 0,931 

HR22_S460_L1170 594,84 0,917 0,911 0,923 

HR32_S690_L654 958,35 0,940 0,960 0,942 

HR32_S690_L981 814,47 0,907 0,896 0,881 

Mean value Vult,Method/Vult,GMNIA 0,979 0,901 0,894 

Standard deviation Vult,Method/Vult,GMNIA 0,073 0,078 0,069 

 

In order to analyse the results further on, Figure 4-45 and Figure 4-46 show the stress distribution 

at ultimate limit state for the tests HEA220_S460_L420 (Eurocode 3 is safe-sided) and 

HR31_S690_L654 (Eurocode 3 is unsafe). It may be observed that the stress distribution is very 

similar for both sections. Indeed, the web has yielded in shear between the fillets. Moreover, in 

both cases the stresses nearly attain the ultimate strength of steel due to the high influence of 

strain hardening (570 MPa for S460Q and 770 MPa for S690Q). It should be noted that Figure 4-45 

and Figure 4-46 represent “true stresses” and not “engineering stresses” (σEng = σTrue/(1+εEng)). 
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The shear strains attain high values of 12% and 6% for tests HEA220_S460_L420 and 

HR31_S690_L654. However, the strains respect the minimum strain capacity defined in 

Eurocode 3 Part 1-1. 

Figure 4-45 and Figure 4-46 show that the stresses are nearly uniform over the web. Yet, they 

decrease rapidly at the connection of the web with the flanges. It seems that plasticity is not 

capable to spread into the fillets and the flanges as supposed by the shear area defined by 

Eurocode 3. Consequently, it becomes obvious that the safety margin of the shear strength 

prediction directly depends on the level of strain hardening attained by the cross-section. It has 

been shown that strain hardening leads generally to safe-sided results for the shear strength 

predicted by Eurocode 3. However, for less compact sections and steel grades possessing only 

limited strain hardening reserve (S460 and S690) the results may become unsafe. 

 

 

 

 

 

a) Shear stresses  b) von Mises stresses 

Figure 4-45: Distribution of a) shear stresses and b) von Mises stresses at the ultimate limit state 

for test HEA220_S460_L420 

 

 

 

 

 

a) Shear stresses  b) von Mises stresses 

Figure 4-46: Distribution of a) shear stresses and b) von Mises stresses at the ultimate limit state 

for test HR31_S690_L654 
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Table 4-25 represents the results of the compact members failing predominantly in bending 

(Vz,ult/Vz,pl < 0,5). For the three members, the ultimate limit state is characterized by local buckling 

in the plastic range of the compressed flange at mid-span as shown for test HEA280_S235_L4050 

in Figure 4-47. 

 

 

Figure 4-47: von Mises stress distribution and local buckling at ULS for HEA280_S235_L4050 

These last tests are performed in order to quantify the influence of strain hardening on the major-

axis bending resistance. Table 4-25 clearly shows that strain hardening highly influences the 

resistance not only in case of shear but also for bending. Only CSM considers this influence and 

consequently yields more economic results than Eurocode 3 and the Australian steel standard. 

These standards are limited to the plastic bending moment resistance and therefore give very 

conservative results compared to the simulations. 

Table 4-25: Major-axis bending resistance of very compact sections 

Test Mult,GMNIA (kN) 
Mult,EC3/Mult,GMNIA 

(-) 
Mult,AS4100/Mult,GMNIA 

(-) 
Mult,CSM/Mult,GMNIA 

(-) 

HEA100_S235_L1440 43,46 0,625 0,625 0,738 

HEB220_S235_L3300 172,00 0,685 0,685 0,813 

HEA280_S235_L4050 180,30 0,716 0,716 0,739 

Mean value Mult,Method/Mult,GMNIA 0,676 676 0,763 

Standard deviation Mult,Method/Mult,GMNIA 0,046 0,106 0,043 
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4.3.8 Conclusions 

The objective of the laboratory tests was to validate the numerical model used for the parametric 

study and to obtain more insights into the real interaction between major-axis bending and the 

shear force. It has been shown that the numerical model is satisfactory as it predicts the ultimate 

limit load as well as the failure mode obtained by the laboratory tests. 

The laboratory tests as well as the supplementary calculations and comparisons to code 

provisions have shown that: 

• Strain hardening highly influences the ultimate resistance of compact sections 

failing in shear and bending. 

• Generally, the strength predictions of Eurocode 3, AS 4100 and CMS are safe-

sided. However, Eurocode 3 may become unsafe for cross-sections close to the 

limit of shear buckling and/or high strength steels. It has been shown that the 

Eurocode 3 safety problem is linked to the definition of the shear area as it 

implicitly includes a minimum level of strain hardening. Yet, if this level of strain 

hardening cannot be attained by the cross-section, Eurocode 3 becomes unsafe. 

Obviously, in today’s practice, compact sections are generally not used with steels S460 and S690, 

in particular when they are subject to bending. However, provisions given in standards should be 

safe in their field of application. Consequently, a reduction of the shear area may be justified, 

especially as it has also been shown that the fillets do not have a considerable influence on the 

shear resistance. By reducing the shear area to the area of the web (without fillets), the Eurocode 3 

provisions of the shear resistance of welded and hot-rolled sections would be unified and the 

application would be simpler for the engineer. Nevertheless, strain hardening does have an 

important impact on the major-axis bending-shear force interaction (see also paragraph 4.4.1.3) 

and should therefore be considered in order to obtain an economic design. This can be done if the 

over strength factor η (see paragraph 4.2.1.2.1) is applied to welded and hot-rolled sections and 

if it is linked to the available strain hardening reserve (for example ratio fu/fy). 

CSM proposes to introduce explicitly the influence of strain hardening into the design equations. 

Admittedly, this leads to more complex interaction equations. Yet, it also leads to less scattered 

results than considering strain hardening implicitly by increasing the shear resistant area. It is 

recalled again that the shear area to be used in combination with CSM is the area of the web 

without the fillets (= (h - 2tf).tw). The slight increase of the resistance due to the presence of fillets 

is taken into account through the critical shear stress τcr that is used as key parameter to 

determine the shear strain capacity in CSM. 

Finally, it should be noted that even if the Eurocode shear area for hot-rolled sections was limited 

to the area of the web, the design would not become non-economic as only very compact sections 

are highly impacted. Yet, these sections are in general not used when the shear resistance becomes 

determining for the design. 
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4.4 Parametric study and resistance model 

4.4.1 General remarks 

 Studied cross-sections 

Hereafter, the plastic cross-section resistance of I and U sections is studied based on an extensive 

parametric study. This study is based on FEM calculation taking into account a bilinear elastic-

perfectly plastic material law excluding local buckling and member second order effects (MNA 

calculations - see paragraph 4.4.1.3). 

In order to account for the influence of the section geometry, the compactness as well as the ratio 

h/bf are varied. The studied cross-sections are represented in Figure 4-48. In addition, mono-

symmetric I sections are considered by reducing/increasing the width of the flanges of the double 

symmetric I sections. It is considered that the mono-symmetric sections are always welded and 

hence do not possess fillets. 
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Figure 4-48: Cross-sections considered for the parametric study 
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 Load cases 

Throughout the present paragraph, the plastic interaction between internal forces and moments 

creating exclusively axial stresses (N, My, Mz, B) and internal force and moments creating shear 

stresses (Vz, Vy, Mx,ST.V, Mx,w) is of special interest. In fact, the interaction behaviour between 

internal forces and moments creating exclusively axial stresses may be treated quasi-analytically. 

Conversely, the interaction between axial stresses and shear stresses can only be treated 

“analytically” based on some key assumption as the definition of a shear area or the form of the 

plastic distribution of shear stresses. As has been shown previously, these key assumption may 

differ greatly from one standard to another. Therefore, it is absolutely necessary to investigate the 

bending moment-shear force interaction. For double symmetric I sections, this study has already 

been advanced greatly owing to the laboratory tests and complementary simulations presented 

in paragraph 4.3. Hereafter, the investigations on bending moment-shear force interaction are 

completed for U and mono-symmetric I sections based on numerical analyses. Moreover, the 

influence of torsion on the resistance of the cross-section is studied in detail. However, it has to 

be noted that this study is much more delicate as a study on the interaction behaviour between 

axial force and (bi-axial) bending as the shear stresses, resulting from the shear force, are always 

linked to the variation of the internal moments along the member length. Consequently, it is 

practically inevitable to perform the numerical simulation on the whole member subject to 

variable bending or torsion. On the first sight, this fact may seem insignificant but it has a major 

influence on the interpretation of the obtained results. Indeed, as the whole member is modelled 

and the internal forces vary along its length, the plasticity spreads along the member accordingly 

to plastic zone theory. Due to the spreading of plasticity, the member possesses a certain plastic 

reserve. Also, it has been shown in reference (Gonçalves et al. 2014) and in Chapter 3 that the load 

introduction may create a complex stress field combining in-plane and through thickness stresses 

that are generally neglected in the interaction. These secondary stresses may have a beneficial 

effect on the von Mises yield criterion leading to resistances exceeding the theoretical plastic 

cross-section resistance. Inversely, it is much less delicate to study the interaction between axial 

force and bending as the forces and moments may be introduced as constant along the member. 

Consequently, all sections yield simultaneously and the member does not have any supplementary 

reserve (or only numerical reserve due the simulation precision). The maximum loads therefore 

correspond (quasi) exactly to the analytical values. Hence, in this case the interaction can be 

evaluated very precisely. However, in case of, for example, bending shear interaction, the 

influence of plastic zones somewhat disturbs the theoretical cross-section interaction behaviour. 

Also, it should be noted that if torsion is applied, the bi-moment, the warping torsional moment 

and the Saint Venant’s torsional moment always interact as recalled in Chapter 2. In fact, it is not 

possible to apply one of the previous moments independently from the others. Hence, it becomes 

even more delicate (or nearly impossible) to study the individual influence of one of the torsional 

components on the interaction. Nevertheless, in case of torsion the maximum respective torsional 

moments are generally not located at the same abscissa of the member. Additionally, it is shown 

that the warping torsional moment is insignificant and may be neglected when the interaction is 

studied (see paragraph 4.4.4). 
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So as to limit the influence of the exact form of the bending moment distribution and load 

introduction on the numerical results, different load cases are studied hereafter (see Table 4-26). 

The member is always considered to possess fork supports at its ends. Load cases LC2 and LC3 

resemble, however, for load case LC2 the member length is varied to obtain different values of 

the shear force, whereas, for load case LC3, the ratio between the end moments is varied to 

obtain different values of the shear force. Load case LC4 consists in the application of a constant 

bending moment combined with pure shear. Admittedly, this load case is not of practical interest, 

yet, it permits to study the interaction behaviour without the influence of yield zones (as both 

internal forces are constant). It therefore yields a lower bound of the interaction. Hereafter, it is 

only used when the bending shear force interaction is studied and it is not used in case of applied 

torsion. 

For hot-rolled cross-sections the fillets may have a certain influence on the interaction behaviour 

in presence of shear stresses. Yet, for the case of major-axis bending – shear force interaction, it 

has been shown in paragraph 4.3.7 that the fillets do not increase considerably the shear force 

resistance. Nevertheless, it seems important to include the fillets explicitly in the simulations in 

order to predict as precisely as possible the interaction behaviour especially in presence of 

torsion. 
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Table 4-26: Load cases studied for the caracterisation of the My-Vz cross-section interaction 

Load case 
Distribution of bending 
moment and shear force 

LC 1 

 

 

 

LC 2 

 

 

 

LC 3 

 

 

 

LC 4 

 

 

 

 

 Material model 

The results presented in paragraph 4.3.7 imply that the plastic shear resistance of hot-rolled I 

sections should be limited to the plastic shear resistance of the web only in order to be consistent 

with the resistances obtained for predominant bending and for the resistances of welded sections. 

However, it has been shown that strain hardening may increase the shear resistance considerably. 

Hereafter, the influence of strain hardening is highlighted again for the major-axis bending – shear 

force interaction curve. The numerical analyses are performed without considering geometric 
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second order effects and geometric imperfection (MNA). The calculation is stopped when the limit 

strain (von Mises) of 15% is exceeded. 

The results are given for two examples in Figure 4-49 and Figure 4-50. Obviously, as before strain 

hardening increases the shear resistance notably. Yet, one may observe again that even with strain 

hardening the Eurocode 3 plastic shear resistance is not attained for all calculations. It might 

however be acceptable to use the Eurocode 3 plastic shear resistance for very compact sections. 

Nevertheless, one should also observe that the obtained bending resistance exceeds the 

theoretical plastic moment resistance by up to 65%! It is recalled again, that neither Eurocode 3 

nor other international standards consider this strain hardening reserve for the bending 

resistance. Therefore, in order to be consistent with the definition of the plastic bending moment 

resistance, the following simulations are based on an elastic-perfectly plastic material law. 

Obviously, it is not possible to consider strain hardening only for the shear stresses and not for 

the axial stresses in the numerical simulations. However, the influence of strain hardening may be 

introduced by simply changing the reference resistance for the individual internal force (for 

example accept a bending moment resistance higher than the plastic bending moment or a shear 

resistance equal to Eurocode 3 shear resistance). The resistance may for example be based on the 

strain capacity of the section as rigorously done by the Continuous Strength Method presented in 

paragraph 4.3.6.3. The general aspect of the interaction curve is not influenced by the reference 

resistance. 

 

Figure 4-49: My-Vz plastic cross-section interaction diagram for HEA 100 with strain hardening 
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Figure 4-50: My-Vz plastic cross-section interaction diagram for HEA 280 with strain hardening 

In the following, the cross-sections represented in Figure 4-48 are studied for combined loading. 

Step by step, the interaction behaviour of double and mono-symmetric I sections and U sections 

are evaluated for the load cases of: 

• Major axis bending and associated shear force 

• Minor axis bending and associated shear force 

• Bending, shear force and torsion 

• Complex interaction including bi-axial bending, shear forces, axial forces and 

torsion 

 

4.4.2 Interaction between major-axis bending and shear force 

 Double symmetric I sections 

Through paragraph 4.3 the interaction between major-axis bending and the shear force has been 

studied in detail for double symmetric I sections in three point bending. A series of ten laboratory 

tests as well as several supplementary GMNIA calculation led to the conclusion that the 

Eurocode 3 shear area may be unsafe in some conditions. Hereafter, several complementary MNA 

calculations are performed in order to confirm these calculations for a greater variety of cross-

sections. Additionally, the influence of the load case is studied based on the following examples. 

First, the section HEA 280 is studied. The numerical results are given in Figure 4-51. Figure 4-51 

also gives the interaction curve provided by Eurocode 3 Part 1-1 (EC 3 Vpl) and the interaction 

curve EC 3 Vpl,w based on the provisions of Eurocode 3 but considering a shear area Avz equal to 

the area of the web (hw x tw).  
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Figure 4-51: My-Vz cross-section interaction diagram for HEA 280 

As can be seen, the numerical results are rather close for load cases LC1 to LC3. One may also 

recognize the influence of the yield zones and complex stress interaction. In fact, for load cases 

LC1 to LC3, the maximum bending moment of the member exceeds the plastic bending moment 

(MMNA > Mpl) even if the simulations do not include the effect of strain hardening. Inversely, for 

load case 4 (constant bending moment + pure shear) the maximum bending moment is always 

less (or equal) than the plastic moment resistance as all sections of the member yield 

simultaneously. Additionally, Figure 4-51 confirms that Eurocode 3 seems to overestimate the 

plastic shear resistance. It can be observed that the numerically obtained shear resistance only 

attains the shear resistance of the web. 

In order to compare the results obtained for the different load cases further on, the following 

figures show the stress distributions at plastic limit state for the members subject to 

approximatively 0,5Vpl at their PLS. Consequently, the failure occurs in the interaction zone 

between major-axis bending and the shear force. It may be observed that the stress distribution 

is similar for LC1 to LC3 in the vicinity of the plastic hinge explaining again why the results are 

nearly identical. 

 

Figure 4-52: HEA 280 subject to point load at mid-span (LC1) 
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Figure 4-53: HEA 280 subject to inverse moments at member ends (LC2) 

 

Figure 4-54: HEA 280 subject to moments at member ends – ψ = 0,4 (LC3) 

The results obtained for the other cross-sections are given next. However, as it has been shown 

that the load case possesses only insignificant influence on the obtained results, hereafter load 

cases LC2 and LC3 are not considered anymore. LC4 is kept for the comparison as it represents 

the lower bound of the resistance. 

Figure 4-55 to Figure 4-58 clearly confirm the conclusions obtained for the cross-section HEA 280. 

In particular, it is observed that: 

• Due to the spreading of plasticity and complex stress interaction in the yield zone 

the ultimate moment obtained by MNA calculations may exceed the theoretical 

plastic moment resistance of the cross-section. 

• The plastic shear resistance of the cross-section is overestimated by 

Eurocode 3 Part 1-1. It is recalled again that the influence of strain hardening, not 

considered here, may increase the ultimate shear resistance. 

Also, it is interesting to note that the shear resistance may be more or less close to the shear 

resistance of the web depending on the cross-section geometry. For compact cross-sections, for 

which the fillet area is rather tall the numerically obtained shear resistance exceeds the shear 



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Plastic Cross-Section 
Resistance 

 

171 
 

resistance of the web by approximatively 10 to 20% (HEA 100, HEB 220, HEA 280). However, for 

cross-sections with smaller fillets compared to the cross-section geometry, the shear resistance 

coincides practically with the shear resistance of the web (IPE 360, IPE 600). 

The present paragraph confirms the conclusions concerning the plastic major-axis bending shear 

force interaction obtained based on the laboratory tests. Additionally, it has been shown that the 

load case has only an insignificant influence on the obtained resistance (apart from load case 4 

that is only of theoretical nature). In the following paragraphs the study concerning the plastic 

cross-section resistance is extended to U sections and mono-symmetric I sections. 

 

Figure 4-55: My-Vz plastic cross-section interaction diagram for HEA 100 

 

 

Figure 4-56: My-Vz plastic cross-section interaction diagram for HEB 220 
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Figure 4-57: My-Vz plastic cross-section interaction diagram for IPE 360 

 

 

Figure 4-58: My-Vz plastic cross-section interaction diagram for IPE 600 

 U sections 

Before the major-axis bending-shear force interaction is addressed, it seems necessary to review 

essential points concerning the resistance of U sections subject to major-axis bending only. In 

paragraph 4.2.2.3, it has been shown that the definition of the plastic major-axis bending 

resistance is much more delicate than for I sections as illustrated by the discussion published in 

references (Kindmann et al. 1999b), (Rubin 2000) and (Rubin 2005). In order to recall the 

problem Figure 4-59 represents the elastic and plastic stress distribution for a UPE section under 

major-axis bending as well as the warping function of a UPE 200 cross-section without fillets. 
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a) Elastic stress distribution b) Plastic stress distribution c) Warping function 

Figure 4-59: Representation of a) elastic and b) plastic stress distribution and c) the warping 

function 

The theoretical elastic and plastic moment resistance can be obtained by integrating the stresses 

over the section. For a UPE 200 section without fillets fabricated from steel S235 (fy = 235 MPa), 

one obtains: 

 My,el = 43,60 kNm 

 My,pl = 50,25 kNm 

However, if the stresses are integrated over the cross-section, one also obtains the bi-moments: 

 BMy,el = 0 kNcm²  (associated with the elastic moment resistance My,el) 

 BMy,pl = -1321,13 kNcm² (associated with the plastic moment resistance My,pl) 

It should be noted that the elastic stress distribution does not generate a bi-moment as the 

“partial” bi-moments resulting from the stress distribution in the flanges are equilibrated by the 

“partial” bi-moment resulting from the stress distribution along the web. It is possible to 

determine an analytical expression of the stress induced bi-moment as given in Eq. ( 4.70 ). 
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( 4.71 ) 

 

The distance ys,w is equal to the distance along the y-axis between the shear centre and the plane 

of the web. One may note that ys,w is also equal to the distance between the plane of the web and 

the zero of the warping function. Table 4-27 gives the value of the stress induced bi-moment for 

three U sections (fillets are included into the calculation of ys,w). These stress induced bi-moments 

induce a torsional twist to the member even if it is subject to major-axis bending only (see Chapter 
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5). Yet, it is recalled that the bi-moment is linked to the second derivative of the torsional twist. 

Consequently, the resulting torsional twist is low especially for short member that may attain 

their full plastic resistance. Obviously, longer members under bending are sensitive to lateral-

torsional buckling (if there are not restrained) and may therefore not attain the full plastic major-

axis bending moment. It should be noted that it is not necessary to consider the stress induced bi-

moment in the interaction between major-axis bending and the shear force as it directly yields 

from the stress distribution and consequently does not lead to a strength reduction. 

Table 4-27: Stress induced bi-moments associated with plastic moment resistance for U sections 

 

 

 

 

 

For the interaction between major-axis bending and the associated shear force, it may be 

supposed that U sections behave similarly as double symmetric I sections as only the lateral 

position of the flanges changes. However, neither of the standards studied in paragraph 4.2 

explicitly treat the case of U-sections. Hereafter, the results of the calculations performed on 

sections UPE 80, UPE 200 and UPE 360 are represented. In paragraph 4.4.2.1 it has been 

demonstrated that the load case does not have any significant influence on the plastic interaction 

behaviour. Therefore, only load cases LC1 and LC4 are kept for the analysis. It is recalled that the 

members are supposed to possess end fork supports and the material is supposed to behave 

elastic – perfectly plastic (no strain hardening). 

Figure 4-60 to Figure 4-62 confirm that the Eurocode 3 plastic interaction formula, recalled 

hereafter, may be safely applied to U sections if it is based on the plastic shear resistance of the 

web.  
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Cross-section 
Stress induced bi-moment 

associated with My,pl (kNcm²) 

UPE 80 -87,51 

UPE 200 -1321,13 

UPE 360 -10357,79 
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Figure 4-60 : My-Vz plastic cross-section interaction diagram for UPE 80 

 

Figure 4-61 : My-Vz plastic cross-section interaction diagram for UPE 200 
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Figure 4-62 : My-Vz plastic cross-section interaction diagram for UPE 360 

 Mono-symmetric I sections 

Hereafter, the interaction behaviour of mono-symmetric I sections is studied. It is supposed that 

the sections are welded. Consequently, fillets are not accounted for. Accordingly to the conclusions 

of paragraph 4.4.1.3 the MNA calculations are based on an elastic-perfectly plastic material law 

neglecting strain hardening. It has been shown that the shell model represents very well the 

plastic interaction for welded cross-sections without fillets. Therefore, the following calculations 

are performed exclusively with the shell model. As the load case does not have any significant 

influence either, it is supposed that the studied members possess fork supports at their ends and 

that they are subject to a point load applied at mid-span. 

As before several section geometries are studied to characterize the My-Vz plastic cross-section 

interaction. The cross-section geometries are based on 4 cross-sections: 

• HEA 100 

• IPE 360 

• IPE 600 

• W 1450.12.300.25 

The mono-symmetry of the cross-section is obtained by varying the flanges’ widths. The thickness 

of the flanges is kept constant for all calculations. The mono-symmetry is characterizes hereafter 

by the parameter ψmono defined by equation ( 4.74 ). 
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It should be noted that: 

• For double symmetric cross-section ψmono = 0; 
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• For mono-symmetric sections whose tension flange’s second moment of area is 

greater than the compression flange’s second moment of area ψmono < 0; 

• For mono-symmetric sections, whose compression flange’s second moment of 

area is greater than the tension flange’s second moment of area ψmono > 0 (common 

case). 

 
 

a) ψmono = 0 

 

 

 

 

b) ψmono > 0 c) ψmono = 1 

 

 

 

 

d) ψmono < 0 e) ψmono = -1 

Figure 4-63: Derivation of mono-symmetric cross-section from their double symmetric original 

So as to illustrate the influence of the mono-symmetry parameter ψmono, Figure 4-64 represents 

the IPE 600 section and its mono-symmetric derivatives. 

     

ψ mono = 0 ψ mono = 0,2 ψ mono = 0,7 ψ mono = 0,975 ψ mono = 1 

Figure 4-64: Geometry of IPE 600 section and of its mono-symmetric derivatives 

First, the results obtained for the HEA 100 cross-section and its mono-symmetric derivatives are 

given in Figure 4-65. The results for all cross-sections are represented in the same diagram. For a 

given section, the obtained resistance is given with reference to its own theoretical plastic 

resistance. Consequently, if two different cross-sections possess a ratio Mult,i/Mpl,i of 1,0 they do 

not possess the same value of the ultimate moment but they attain their respective plastic moment 

resistance at plastic limit state. Also, Figure 4-65 shows the standardized interaction curves based 

on the plastic moment resistance of each cross-section and the plastic shear resistance of the web. 

M 
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It is proposed here to apply the same simplified interaction equation as used for double symmetric 

I sections again. 

It may be observed that, for the plastic cross-section interaction, it has no influence whether the 

smaller flange is in compression or in tension. In fact, the results obtained for the same absolute 

value of ψmono   practically overlap. Additionally, it can be seen that the results are grouped. A 

major difference can only be observed for the T cross-section (ψmono = ±1). Nevertheless, it seems 

that the general form of Eurocode 3 plastic cross-section interaction yields safe-sided results, if it 

is based on the shear resistance of the web and the plastic moment resistance of the cross-section. 

 

Figure 4-65: Numerical My-Vz plastic cross-section interaction for HEA 100 and its mono-symmetric 

derivatives 

In addition to the interaction curve, it seems interesting to study the stress distribution over the 

cross-section, especially for the case of high mono symmetry and high shear forces. Figure 4-66 

and Figure 4-67 show the results obtained for the cross-section of ψmono = 0,975 and ψ mono = 1,0 

and a shear force at the plastic limit state of 1,1 Vpl,w,0.975 and 0,95 Vpl,w,1.0, respectively. For a better 

representation, the stiffener and the force applied at mid-span are not represented. 

It can be seen that, at the plastic limit state, the cross-section at mid-span has entirely yielded. 

Also, one may observe the influence of plastic zones, leading to a spreading of plasticity along the 

member. For both cases, the compressed flange and the lower part of the cross-section yields due 

to axial stresses at mid-span. However, the shear stress distribution in the web differs. In fact, 

Figure 4-66 shows that the total height of the web yields due to shear for the mono-symmetric 

section with ψ = 0,975. Contrariwise, in the case of the T section, the shear stresses only lead to 

yielding of the upper part of the web as the axial stresses already utilize completely the lower part. 

Consequently, it seems not astonishing that the major-axis bending moment resistance suffers a 

higher strength reduction at a given load level of the shear force for T sections than for mono-
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symmetric sections possessing two flanges. Obviously, the interaction formula given for double 

symmetric sections is not fully consistent in the case of mono-symmetric I sections as the plastic 

neutral axis in bending is not located at mid-height of the web. However, its application leads to 

safe results. Consequently, its application may be accepted. Also, applying the same interaction 

equation contributes to the unification of the design formulae. 
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a) Distribution of von Mises stresses 

 

b) Distribution of shear stresses in the web 

 

 

c) Distribution of axial stresses 

Figure 4-66: Stress distribution for ψmono = 0,975 and L = 2h at PLS 
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a) Distribution of von Mises stresses 

 

 

b) Distribution of shear stresses in the web 

 

 

c) Distribution of axial stresses 

Figure 4-67: Stress distribution for ψmono = 1,0 and L = 2h at PLS 

Hereafter, the results obtained for other section geometries are represented. As it has no influence 

whether the tension flange is the smallest or not, only results corresponding to a positive value of 

the factor ψmono  are given. 



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Plastic Cross-Section 
Resistance 

 

182 
 

 

Figure 4-68: Numerical My-Vz plastic cross-section interaction for IPE 360 and its mono-symmetric 

derivatives 

 

Figure 4-69: Numerical My-Vz plastic cross-section interaction for IPE 600 and its mono-symmetric 

derivatives 
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Figure 4-70: Numerical My-Vz plastic cross-section interaction for W 1450.12.300.25 and its mono-

symmetric derivatives 

Figure 4-68 to Figure 4-70 confirm the conclusions obtained for the cross-section HEA 100 and its 

derivatives. The interaction formula yields only one slightly unsafe result in case of the T section 

based on IPE 360. Yet, the member length is equal to 1,5 times the section height and consequently 

at the very lower bound of practical interest. Hence, it is concluded that the Eurocode 3 interaction 

formula may be applied if it is based on the shear resistance of the web and the plastic moment of 

the cross-section. It seems also justified to neglect the influence of the shear force on the plastic 

moment resistance if the ratio Vz/Vz,pl is less than or equal to 0,5. 

4.4.3 Interaction between minor-axis bending and shear force 

 Double symmetric I sections 

In the following, the interaction between minor-axis bending and the associated shear force is 

studied. Admittedly, the interaction is of less practical interest as the interaction between major-

axis bending and the associated shear force because the shear force acting parallel to the flanges 

is even less important than the shear force acting parallel to the web in practical cases. Yet, 

Eurocode 3 does not propose any provisions and therefore, it seems necessary to study this load 

case. For I sections, the Mz-Vy plastic interaction may be assimilated to the interaction for a simple 

plate as the shear stresses only transit through the flanges. However, in order to evaluate the 

influence of the fillets and the web on the resistance of the cross-section, three different section 

geometries are studied. As before, the member is supposed to possess end fork supports and the 

material is supposed to follow an elastic perfectly plastic material law. The results are represented 

in Figure 4-71 to Figure 4-73. Also, the interaction curve resulting from the application of Eqs. ( 

4.75 ) and ( 4.76 ) is represented. 
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Figure 4-71 to Figure 4-73 show again that load cases LC1 and LC2 yield very similar results. Yet, 

LC4 leads to rather conservative results, especially for shear forces less than 70% of the plastic 

shear resistance defined by Eurocode 3. This can again be explained as LC4 supposes that shear 

force and bending moment are completely independent. Therefore, the beneficial influence of the 

variation of the bending moment is not considered. 

On Figure 4-71 to Figure 4-73, one may observe that there is a plateau on the interaction curve 

for low values of the bending moment. This plateau is especially pronounced for the cross-section 

HEAA 1000. In fact, if the applied bending moment Mz is less than the minor-axis bending moment 

resistance of the web (and of the fillets), there is no interaction as the shear stresses only transit 

in the flanges. Admittedly, the plateau is not of practical interest as the shear force cannot attain 

high values if the bending moment tends to 0. Also, the strains necessary to mobilize the yielding 

of the web are very high and, depending on the cross-section, may exceed the minimum strain at 

failure of 15% defined by Eurocode 3 Part 1-1. 

The following figures clearly show that the interaction between minor-axis bending and the 

associated shear force may be neglected. Indeed, it should be noted that shear forces exceeding 

the value of 0,5Vpl are linked to very short members with lengths of about 1,5 times the flanges 

width.  

 

Figure 4-71 : Mz-Vy plastic cross-section interaction diagram for HEM 100 
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Figure 4-72: Mz-Vy plastic cross-section interaction diagram for HEA 280 

 

 

Figure 4-73: Mz-Vy plastic cross-section interaction diagram for HEAA 1000 

 U sections 

The following figures represent the results obtained for the three U sections UPE 80, UPE 200 and 

UPE 360. For the UPE 80 section the results for load cases LC1 and LC2 are represented. For the 

other sections only LC1 is considered as the load case has again only insignificant influence on the 

results. Figure 4-74 to Figure 4-76 also represent the quadratic interaction curve given in Eq. ( 

4.79 ) and Eq. ( 4.80 ). 
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The figures given hereafter, show that the interaction curve is safe-sided. It may even be 

considered that the interaction is negligible as before for I sections. Only for shortest member of 

UPE 80 section this would be unsafe. However, the member length is of only once the member 

height. Obviously, such short members are again out of the range of practical interest. 

 

Figure 4-74 : Mz-Vy plastic cross-section interaction diagram for UPE 80 

 

 

Figure 4-75 : Mz-Vy plastic cross-section interaction diagram for UPE 200 
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Figure 4-76 : Mz-Vy plastic cross-section interaction diagram for UPE 360 

 Mono-symmetric I sections 

Last the interaction between minor-axis bending and the shear force Vy is studied for mono-

symmetric I sections. Before the interaction behaviour is addressed, it is necessary to go back to 

the plastic minor-axis bending moment. In fact, as for U sections under major-axis bending, mono-

symmetric I section cannot entirely yield under applied minor-axis bending without stress 

induced bi-moments as may be observed in Figure 4-77. By integrating the plastic stress 

distribution over the cross-section one obtains the plastic minor-axis bending moment of: 
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The resulting bi-moment is given in Eq. ( 4.84 ). 

( )lfplzlfSufplzufSMzpl MzMzB ,,,,,, −−=  ( 4.80 ) 

The sign “-” in Eq. ( 4.80 ) directly results from the sign convention used in the framework of this 

thesis. The distances zS,uf and zS,lf represent the distances between the shear centre and the upper 

flange and the shear centre and the lower flange, respectively. The same expression has also been 

derived in reference (Glitsch 2008). Obviously, the bi-moment vanishes for double symmetric I 

sections, as the distances zS,uf and zS,lf are equal, and for T sections as they do not possess a second 

flange. Between these two extrema and depending on the cross-section geometry the stress 

induced bi-moments develops. Yet, as before these stress induced bi-moments do not decrease 

the plastic section resistance to minor-axis bending moments. 
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a) Elastic stress distribution b) Plastic stress distribution c) Warping function 

Figure 4-77: Elastic and plastic stress distribution and warping function for a mono-symmetric I 

section 

The two following figures represent the interaction behaviour for sections HEA 100 and its mono-

symmetric derivatives as well as section IPE 600 and its mono-symmetric derivatives. The length 

of the members is varied between twice the section height and 8 times the section height. Figure 

4-78 and Figure 4-79 show that even for the shortest members the shear force is rather low. 

Moreover, it may be observed again, that the shear force does not reduce the plastic minor-axis 

bending moment. Also, as stated before, the stress induced bi-moment develops in all cases and 

allows the cross-section to attain its theoretical plastic resistance. 

 

Figure 4-78: Mz-Vy plastic cross-section interaction diagram for HEA 100 and its mono-symmetric 

derivatives 
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Figure 4-79: Mz-Vy plastic cross-section interaction diagram for IPE 600 and its mono-symmetric 

derivatives 

 Conclusions 

Before the case of applied torsion is studied in detail it seems necessary to summarize the results 

obtained here before for the interaction between major-axis bending and shear forces as well as 

minor-axis bending and shear forces. The numerical study based on MNA simulations has shown 

that: 

• Complex 3 dimensional stress fields developing at the plastic hinge as well as the 

spreading of plasticity along the member have a beneficial effect on the cross-

section resistance leading to bending moments at plastic limit state that exceed the 

theoretical plastic bending moment resistance in case of low shear forces. 

• In practice, the load case has only insignificant influence on the generation of these 

3 dimensional stress fields or the spreading of plasticity. The cross-section 

interaction behaviour is therefore independent from the load case. 

• The Eurocode 3 plastic interaction formula for combined major-axis bending and 

shear force given for double symmetric I sections may also be applied for U 

sections and mono-symmetric I sections. 

• For practical cases, the minor-axis bending moment is not reduced by the influence 

of shear forces. Consequently, it is recommended to neglect the interaction. 

• Stress induced bi-moments are necessary for mono-symmetric I sections to yield 

entirely under minor-axis bending and for U sections to entirely yield under major-

axis bending. 

• These stress induced bi-moments do not influence the cross-section interaction 

behaviour as they directly result from the stress distribution. However, they 
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induce a torsional twist to the member. Nevertheless, the torsional twist is low for 

members sufficiently short to attain their plastic resistance without lateral-

torsional buckling (see Chapter 5). 

• The shear resistance Vy,pl may be based on the shear area equal to the area of the 

two flanges. 

Hereafter the study is extended to the case of applied torsion. 

4.4.4 Interaction between bending, shear force and torsion 

 Influence of the plastic torsional system reserve of the member 

The study of the interaction behaviour presented in the previous paragraphs has been based on 

MNA calculations and hence plastic analysis of the studied members. For statically determined 

structures, as the members studied here, this is generally not remarkable as the internal forces 

and moments evolve linearly with the applied loads up to the formation of the first plastic hinge. 

Inversely, for statically non-determined structures, the internal forces and moments do not 

increase linearly with the applied loads due to plastic redistribution after formation of the first 

plastic hinge. For members subject to torsion, a certain parallelism to statically non-determined 

structures may be observed as shown in Figure 4-80. This figure compares the ratio between the 

major-axis bending moment and the bi-moment obtained by plastic analysis (MNA) and their 

values obtained by linear elastic analysis (LA) of the same member (UPE 200 with a length of 1 m 

subject to a point load with an eccentricity yF of approx. 14 cm). It can be seen that plastic and 

elastic analysis yield the same value for the major-axis bending moment. However, for load factors 

greater than 0,65, the difference between the bi-moment determined by plastic and elastic 

analysis increases rapidly. In fact, due to yielding of the cross-section at mid-span, the warping 

stiffness decreases locally. This leads to the formation of a “warping hinge” at mid-span. Yet, the 

plastic limit state is not attained as the cross-section has not fully yielded and the additional 

torsional moment may be carried by shear stresses resulting from Saint Venant’s torsion. In order 

to illustrate this observation, Figure 4-81 shows the von Mises stress distribution for the studied 

member for a load factor of 0,80 and 1,00 (corresponding to points I and II in Figure 4-80). In 

Figure 4-81a), it may be seen that the flanges of the cross-section have entirely yielded leading to 

an important loss of warping stiffness at mid-span. However, the web is able to carry 

supplementary stresses as it has not yielded over its total height. Therefore, the load may be 

increased further on and the supplementary torsional moment is carried through shear stresses 

generated by Saint Venant’s torsion developing between the warping hinge and the supports of 

the member. 
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a) b) 

Figure 4-80: a) Ratio between internal moments obtained by plastic and elastic analysis at mid-

span and b) Evolution of the internal moments with the load factor 

 

 

a) Point I b) Point II 

Figure 4-81: Von Mises stresses at a) point I and b) point II of Figure 4-80 

The torsional system reserve described here before is not specific to U sections but to all open 

sections possessing a considerable warping stiffness. Inversely, as the warping constant of T 

sections is close to zero, axial stresses due to warping do not develop (this is discussed in more 

detail in 4.4.4.3) and hence even before yielding is initiated, the torsional moment is carried 

through Saint-Venant’s torsional shear stresses. Consequently, this type of section does not 

possess any supplementary reserve. 

The torsional system reserve may lead to a considerable increase of the load that may be carried 

by the member. However, it should be noted that the torsional twist also highly increases 

compared to an elastic analysis as the member loses its warping stiffness. If the torsional system 

reserve is implicitly included in the design method, as has been done for example in reference 

(Glitsch 2008) (see paragraph 5.4.4), the designer completely loses the control about the torsional 

twist of the member at failure. Hence, the engineer is not capable to verify whether the 

deformations of the member are compatible with its position in the real structure (stiffness, 
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rotation capacity and resistance of the joints and connected members and equipment). 

Additionally, it has been shown in Figure 4-81 that important Saint-Venant’s torsional moments 

develop that lead to yielding of the member over its length. These Saint-Venant’s torsional 

moments may obviously not be determined with an elastic analysis based on the initial warping 

stiffness of the member. However, they should be accounted for if the torsional system reserve is 

exploited. It may therefore be concluded that: 

• Members of open cross-section that have a considerable warping stiffness (I and U 

sections but not T sections) possess a certain plastic torsional system reserve that 

leads to the complete yielding of the whole member and not only to yielding of the 

most loaded cross-section. 

• The plastic torsional system reserve is mobilised after the creation of a warping 

hinge and leads to a considerable increase of the loads that may be carried by the 

member. 

• After formation of the warping hinge, the torsional behaviour of the member has 

completely changed; additional torsional moments are not carried principally 

through warping torsion but exclusively by Saint-Venant’s torsion. Due to the 

small Saint-Venant’s torsional stiffness (GIt) of members with open cross-section 

the torsional twists highly increase after formation of the warping hinge. 

• For simplified design based on an elastic analysis of the member the plastic 

torsional system reserve should be neglected. Yet, it may be accounted for when 

the member is analysed plastically. 

A simplified method to account for the torsional plastic system reserve may be developed based 

on the equivalence between the second order (in-plane) equilibrium of members under combined 

axial tension forces and bending and the behaviour of members of open section subject to torsion 

as has been discussed for the case of elastic analysis in paragraph 2.4. This equivalence can be 

extended into plasticity. So as to illustrate this fact, a member of IPE 500 section with a length of 

5,4 m is studied. The member, fabricated from steel S235, is subject to a vertical point load at mid-

span. Finally, it is supposed that the member possess simple supports at its ends that are both 

restrained against axial displacement. The static system of the member is represented in 

Figure 4-82. 
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Figure 4-82 : Studied member 

It is supposed to be restrained against lateral displacement and torsional twist along its total 

length to prevent the member from lateral-torsional buckling. The member is analysed through 

second order plastic analysis but without imperfection (GMNA). The material is supposed to 

follow an elastic-perfectly plastic law. The second order effects have to be accounted for to 

represent the equivalence of a member in bending to members under torsion. Finally, it should be 

noted that the member is modelled with beam elements in order to avoid local plate instability 

before the formation of the plastic hinge. As the shear force is low the interaction with the major-

axis bending moment can be neglected and consequently, the beam elements can be used. 

The obtained load displacement curve is shown in Figure 4-83. It may be observed that it is 

characterised by five sections: 

• A nearly linear part up to a vertical displacement of approximatively 12 mm: in 

this section of the load displacement diagram the member attains the elastic 

major-axis bending moment at a load level of PMy,el = 248 kN. With starting yielding 

the stiffness of the member decreases but less as would be expected for members 

in bending due to the beneficial second order effects arising from the tension axial 

force. 

• At a mid-span vertical displacement of approximatively 27 mm the plastic hinge in 

bending is formed and the member therefore loses its total bending stiffness. 

• After the formation of the plastic bending hinge the applied load continuous to 

increase due to the catenary effect. Also, the stiffness of the member increases as 

the catenary effect is amplified with increasing vertical displacement. 

• At a vertical mid-span displacement of approximatively 275 mm, the section 

located at mid-span starts to be highly used by the increasing axial force and 

consequently the stiffness decreases again up to the complete transformation of 

the plastic bending hinge into a plastic axial displacement hinge. 

• Finally, after the formation of the plastic axial displacement hinge the load cannot 

increase anymore and the peak load is therefore attained at a vertical mid-span 

displacements of approximatively 370 mm. 
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Figure 4-83 : Load displacement curve 

It seems also interesting to compare the evolution of major-axis bending moment as well as the 

evolution of the axial force with the vertical displacement at mid-span. In Figure 4-84, one may 

clearly identify the catenary effect. Indeed, the axial force is practical equal to zero up to a vertical 

mid-span displacement of 12 mm. At this point, the member starts to yield at mid-span as the 

elastic major-axis bending moment is attained. Due to spreading of yielding, the vertical 

displacements increase rapidly and consequently, the axial force as well as the catenary effect 

increase. The plastic bending hinge is generated at a vertical displacement of 27 mm (Point A of 

Figure 4-84). As the member is statically determined (for vertical loads), the bending moment 

cannot be redistributed. Moreover, the bending moment at mid-span reduces and practically 

vanishes when the axial force attains its maximum value for a vertical displacement of 370 mm 

(Point B of Figure 4-84). 

 

Figure 4-84 : Evolution of the major-axis bending moment and the axial force with the load factor 

The axial stress distribution for the member is represented in Figure 4-85 for point A of Figure 

4-84. The plastic hinge generated by the major-axis bending moment may be easily identified.  
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Figure 4-85 : Axial stress distribution for load level corresponding to My,pl 

Due to the increasing axial force, the major-axis bending moment has to decrease at mid-span and 

this is possible as the member does not possess any global bending stiffness after the formation 

of the plastic bending hinge. The supplementary load is transferred to the supports by the axial 

force and the member consequently behaves similarly to a cables. Finally, Figure 4-86 presents 

the distribution of axial stresses at mid-span at B of Figure 4-84 (the deformed shape is not 

represented). The observed stress distribution clearly indicates yielding under the tension axial 

force at mid-span. It should be noted that the maximum value of the axial stress exceeds 235 MPa 

as “real” stresses are represented and not “engineering stresses”. For high strains the differences 

between both become relevant (σreal = σengin(1+ε)). 

 

Figure 4-86: Axial stress distribution at the peak load level 

The example treated above reveals that the plastic torsional system reserve of members of open 

cross-section subject to torsion is similar to the catenary effect for members subject to bending. 

For members in bending the catenary effect is exploited in particular in fire design situations and 

for structures subject to blast loads (FABIG 2002). Indeed, in this design situation one can accept 

the failure of the structural element accompanied with high displacements. For other design 

situations, this is generally not acceptable. Consequently, the catenary effect is not accounted for 

for the design of members in non-accidental design situations. If the plastic torsional system 

reserve is exploited the torsional twist also increases highly. Yet, for short members it may be 

economic to account for the plastic warping hinge, as the torsional twist does not attain 

unacceptable high values in all cases. Here, it is proposed to allow for the plastic torsional system 

reserve in the analysis of the member and hence for the determination of the internal forces and 

moments but only in cases where the torsional twist is not incompatible with the deformation 

capacity of the possible structural elements attached to the member, i.e. especially for short 

members that are not sensitive to the effect of elasto-plastic member instability. 

Anyhow, it appears that a completely analytical method cannot be developed as members subject 

to torsion are generally also subject to a complex interaction with over internal forces and 
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moments as for example major-axis and minor-axis bending and consequently it is not possible to 

determine exactly the load factor linked to the creation of the warping hinge. In fact, the plastic 

warping hinge is generated when yielding of a given cross-section along the member leads to a 

significant loss of the warping stiffness at this location. Still, first, it is difficult to define exactly 

what is “significant” and second, even if “the significant loss” may be quantified it seems even more 

difficult to determine the load combination that leads to this loss. In general, one may determine 

the load that leads to the elastic limit state and the load that leads to the plastic limit state of a 

section with a sufficient precision. Inversely, a load combination that results in a given reduction 

of the stiffness of a given section cannot be obtained easily. 

As a simplified approach one could envisage to perform the analysis of the member in two steps: 

• In a first step, the loads are increased up to complete yielding of the cross-section 

along the member that is subject to the maximum combination of major-axis 

bending, minor-axis bending, vertical shear force, axial force and the bi-moment. 

It is considered that the plastic warping hinge is generated at this load level. 

• In a second step, the static system is transformed by generating a warping hinge 

at the location determined in the first step. The loads are then increased up to 

yielding of the member under the combination of major-axis bending, minor-axis 

bending, vertical shear force, axial force and the Saint-Venant’s torsional 

moment. 

Obviously, depending on the boundary conditions, intermediate restraints and applied loads, 

several plastic warping may be generated before the plastic resistance of the member as a whole 

is attained. These more complex situations should only be treated by rigorous plastic analysis if it 

is intended to account for the torsional plastic system reserve. 

So as to illustrate the possible procedure, the following example is treated: 

• The member is of HEB 200 section (without fillets) subject to a constant major-

axis bending moment of 119,6 kNm and a torsional moment applied at mid-span 

of 21,8 kNm. 

• The length of the member is equal to 1,1 m. 

• The member possess fork end support. 

• The member is fabricated from steel S235. 

Admittedly, this example may not be very current in practice (especially concerning the loading 

conditions) but it is used here for the ease of representation of the effects to be studied. The first 

order elastic analysis of this member leads to the following maximum internal forces and 

moments: 

My,Max = 119,6 kNm 
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Mx,St.V,max = 1,577 kNm 

Mx,w,max = 10,9 kNm 

Mx,tot,max = 10,9 kNm 

Bmax = 5,41 kNm² 

The distributions of the internal forces and moments linked to torsion are represented in Figure 

4-87 and Figure 4-88. Due to the short length and consequently the low value of the warping decay 

factor εt, the member is principally subject to warping torsion and major-axis bending. The part 

of Saint-Venant’s torsion is nearly negligible. 

 

Figure 4-87: Distribution of the internal torsional moments 

 

Figure 4-88: Distribution of the bi-moment 

Based on the method that is developed in the following paragraphs (adaption of PIFM), it is 

possible to determine a plastic load amplification factor for the given load combination. It should 

be noted that only the bi-moment and the major-axis bending moment are considered because 

only these two act simultaneously at mid-span. The warping torsional moment is shown to be 

negligible in all cases in the following paragraphs. 
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The load factor linked to the plastic warping hinge (Rpl,wh) is obtained with the adapted PFIM 

(validated in paragraphs 4.4.4 to 4.5): 

Rpl,wh = 0,777 

The obtained result indicates that the plastic warping hinge is generated at load level 

corresponding to 78% of the applied loads. Nevertheless, the member may resist additional loads 

owing to the plastic torsional system reserve. The static system of the member is transformed and 

a warping hinge is introduced at mid-span. The new member is loaded with a constant major-axis 

bending moment of 26,67 kNm ((1-0,777)My,max) and a torsional moment of 4,86 kNm applied at 

mid-span (2*(1-0,777)Mx,tot,max). The distribution of the obtained internal moments linked to 

torsion are again represented in Figure 4-89 (only the additional moments are represented). The 

additional torsional moment is carried exclusively through Saint-Venant’s torsion as a result of 

the formation of the plastic warping hinge and consequently, neither an additional warping 

torsional moment nor an additional bi-moment are generated. 

 

Figure 4-89: Distribution of the internal torsional moments for the member with warping hinge 

The resulting internal forces and moments necessary to check the resistance of the member can 

be obtained as the sum of the internal forces and moments determined at the load level 

corresponding to the formation of the warping hinge and those determined by elastic analysis of 

the member possessing the warping hinge. Consequently, one obtains: 

My,Max = 119 kNm (= 0,777*119 kNm + 26,67 kNm) 

Mx,St.V,max = 3,66 kNm (= 0,777*1,577 kNm + 2,43 kNm) 

Mx,w,max < 8,39 kNm 

Mx,tot,max = 10,9 kNm (= 0,777*10,9 kNm + 2,43 kNm) 

Bmax < 4,16 kNm² 
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It should be noted that neither the bi-moment nor the warping torsional moment, which act in the 

member at its plastic limit state, can be determined exactly. Obviously, the bi-moment has to 

decrease in order to allow the major-axis bending moment to increase at mid-span. At this location 

the member has entirely yielded when it attains the load level corresponding to the assumed 

plastic warping hinge and it stays entirely yielded up to the plastic limit state of the member. 

Consequently, the bi-moment at mid-span is always just equal to the bi-moment resistance of the 

section reduced by the influence of the major-axis bending moment. 

The plastic resistance of the member can be checked based on the internal forces and moments 

determined after the second calculation step. For the example, the plastic interaction of the 

HEB 200 section subject to a Saint-Venant’s torsional moment of 3,66 kNm and a major-axis 

bending moment of 119 kNm is checked. The adapted PIFM is again applied to obtain: 

Rpl = 1,00 

The member consequently just attains its plastic limit load. 

So as to analyse the obtained result the member is calculated numerically with a MNA simulation 

based on the solid model of the studied member. The numerical results are represented in Figure 

4-90 and Figure 4-91. Figure 4-90 represents the evolution of the major-axis bending moment, 

the total torsional moment and the bi-moment with the vertical displacement at mid-span. The 

reference values (My,max, Mx,tot,max and Bmax) are those obtained at the supposed plastic limit state 

of the member that has been determined here before. 

In Figure 4-90, one may easily recognize the creation of the warping hinge for a vertical 

displacement of 2,4 mm. At this point the bi-moment attains its maximum. As the member has not 

completely yielded (also see Figure 4-93), the load can increase further on. Hence, the bi-moment 

has to decrease in order to allow an augmentation of the major-axis bending moment. The total 

torsional moment however increases further on (in Figure 4-90 the curves associated with Mx,tot 

and My are superposed) and the additional torsion is carried by the Saint-Venant’s torsional 

moment creating shear stresses over the member. The maximum load is attained for a vertical 

displacement of approximatively 25 mm. At this point the member has (nearly) completely 

yielded (also see Figure 4-95) and does therefore not possess any additional stiffness (the 

material is supposed to behave elastic-perfectly plastic here). As the member has lost its complete 

stiffness the displacement increases without an increase of neither the major-axis bending 

moment nor the total torsional moment. Therefore the bi-moment stays constant, too. It is 

however to be noted that the major-axis bending moment does not completely attain the 

maximum value predicted by the simplified analysis method. The difference is of about 6%. 
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Figure 4-90: Evolution of the internal moments with the vertical displacement 

Figure 4-91 represents the evolution of the major-axis bending moment and the bi-moment as a 

function of the load factor. Again, a load factor of 1,0 corresponds to the plastic limit state 

predicted by the simplified two step analysis method. Also, the load level corresponding to the 

predicted generation of the warping hinge (noted as Rpl,wh) as well as the load factor 

corresponding to first yield are represented. One may observe that the load level corresponding 

to the theoretical generation of the warping hinge is close to the load level linked to the maximum 

value of the bi-moment. Yet, it is to be noted that the evolution of the bi-moment is non-linear 

before the warping hinge is created. In fact, one may observe that the evolution of the bi-moment 

starts to be non-linear at a load level situated between first yield and the assumed generation of 

the warping hinge (point A of Figure 4-91). This indicates that the torsional load starts already to 

be carried by an increasing part of Saint-Venant’s torsion at a lower load level than assumed by 

the simplified analysis. The Saint-Venant’s torsional moment in the member is consequently 

higher than predicted and hence the plastic limit state is attained at a lower load level than the 

one obtained with the simplified method. This leads to the unsafe strength prediction observed 

for the simplified analysis method. 
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Figure 4-91 : Evolution of the internal moments with the load factor 

Figure 4-92 shows the von Mises stress distribution over the member at the load level 

corresponding to point A of Figure 4-91. At this point the evolution of the bi-moment with the load 

factor becomes non-linear. Clearly, the member has already yielded in the flanges over an 

important part of its length. Yet, the web stays nearly completely elastic.  

 

Figure 4-92 : Von Mises stresses at point A of Figure 4-91 

Figure 4-93 and Figure 4-94 show the von Mises stress distribution as well as the distribution of 

the shear stresses over the member when it attains the load level corresponding to point B of 

Figure 4-91. Obviously, yielding has continued to spread over the member. Indeed, at this load 

level the flanges have nearly completely yielded over their total length. It is shown in Figure 4-94 

that the flanges do not yield exclusively under axial stresses resulting from the major-axis bending 

moment but also due to the shear stresses resulting from Saint-Venant’s torsion. Additionally, the 

von Mises stresses have increased in the web of the member. 
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Figure 4-93: Von Mises stresses at point B of Figure 4-91 

As the member is subject to a constant bending moment, the shear stresses represented in Figure 

4-94 result from the Saint-Venant’s torsional moment (the shear stresses resulting from the 

warping torsional moment are nearly negligible due to the high corresponding resistance of the 

section). Also, they are much higher than expected based on the Saint-Venant’s torsional moment 

determined with the elastic analysis. At the shown load level Mx,St.V is equal to 1,22 kNm following 

and elastic analysis. Consequently, the shear stresses should be equal to: 

MPacm
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t
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M
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t
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., ===τ  
( 4.81 ) 
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., ===τ  
( 4.82 ) 

Obviously, the results indicate that the Saint-Venant’s torsional moment is already much higher 

than predicted by the elastic analysis (the shear stresses attain nearly 3 times the value of Eqs ( 

4.81 ) and ( 4.82 )). 

 
 

 

Figure 4-94: Shear stresses at point B of Figure 4-91 
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Finally, Figure 4-95 represents the von Mises stress distribution at the plastic limit state of the 

member. One may easily observe that the member has practically completely yielded due to the 

arising Saint-Venant’s torsional moment. Additionally, it is clear that the torsional twist is rather 

important and in particular much higher than at points A and B of Figure 4-91 (the displacement 

of the members are represented in Figure 4-92, Figure 4-93, Figure 4-94 and Figure 4-95 in true 

scale). 

 

Figure 4-95: Von Mises stress distribution at the plastic limit state 

The results represented above show that a simplified two step elastic analysis may 

approximatively represent the complex plastic behaviour of members subject to torsion. In order 

to ensure a sufficient level of safety, the creation of the warping hinge should however be 

considered before the plastic limit state of the most loaded section under the combination of the 

bi-moment and other internal forces and moments is obtained. At this point of the thesis, the 

proportion of the plastic load amplification factor that should be associated with the creation of 

the plastic warping hinge is not determined. Before this is done, the interaction between the bi-

moment and the other internal forces and moments is studied in detail in paragraphs 4.4.4.2, 

4.4.4.3 and 4.4.4.4. These investigations are based on MNA simulations of the members under 

combined bending, shear force and torsion. Consequently, the plastic limit state of these members 

is always linked to complete yielding over their total lengths owing to the generation of the plastic 

warping hinge and the resulting Saint-Venant’s torsional moment. Nonetheless, at the location of 

the plastic warping hinge, yielding is due to the combination of the bi-moment with the other 

internal forces and moments acting in the same section. Consequently, the plastic interaction 

behaviour can be studied at this location even if the ratio between the bi-moment and the other 

internal forces and moments is not the one predicted by an elastic analysis. Anyhow, it is to be 

noted that the internal forces and moments are determined by integrating the stresses over the 
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section. Therefore, the interaction diagrams, presented in the following, are always based on the 

real internal forces and moments acting in the studied section (if not otherwise indicated). 

Last, it should be noted that the design methods and interaction equations developed hereafter 

remain valid if the internal forces and moments are determined based on an elastic analysis of the 

member as the bi-moment is overestimated in this case. Consequently, an elastic analysis is always 

safe-sided, as is also shown in the following paragraphs. 

 Double symmetric I sections 

4.4.4.2.1 Plastic reference resistances to torsion 

The plastic bi-moment is one of the reference values that is used hereafter. However, its value is 

not defined in any standard. For double symmetric I sections it may be determined by integrating 

the plastic stress distribution of the section. One obtains the following expression: 

( ) ( )fzpl

yf

ff

pl th
M

fth
tb

B −=−=
24

,
2

 
( 4.83 ) 

 

In Chapter 2, it has been recalled that the bi-moment is associated with the warping torsional 

moment that attains its maximum at the same location as the bi-moment. Hence, on might suppose 

that an interaction between warping torsional moment and bi-moment is necessary. As shown by 

Eq. ( 4.84 ), the plastic warping torsional moment is equal to the plastic shear force resistance of 

one flange multiplied with the lever arm between the flanges. Anyhow, the resistance to the 

warping torsional moment is very high compared to the value of the warping torsional moment 

that may act on the members in practice. Consequently, it has no influence on the resistance of the 

cross-section (see paragraph 4.4.4.2.2). 

( ) ( )f
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4.4.4.2.2 Interaction between major-axis bending, torsion and shear force 

As for the case of interaction between bending and shear force, the following figures represent 

interaction diagrams obtained based on numerical MNA simulations of members subject to LC1 

(point load applied at mid-span). Obviously, as three internal forces and moments interact 

(neglecting the warping torsional moment and the Saint Venant’s torsional moment that do not 

influence the interaction), the representation of the results is more complex than before. Indeed, 

it is necessary to show two interaction diagrams that represent respectively the Vz-My plane and 

the B-My plane of the interaction space. 

Additionally to the numerical results, the Eurocode 3 Part 1-1 interaction curve for the major-axis 

bending shear force interaction (without torsion) and an analytical interaction curve between the 

bi-moment and the major-axis bending moment (without shear forces) are represented in the 
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diagrams. The analytical interaction curve B – My is based on the same hypothesis concerning the 

distribution of stresses as the interaction curve proposed by Mirambell (see paragraph 4.2.1.2.3), 

i.e. the bi-moment is distributed over the flanges as flange bending moment and the bending 

moment is distributed to the web and the flange. In the flange, the bending moment induces an 

axial force. The equation representing this interaction is: 
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Eq. ( 4.85 ) may also be expressed as resistance criterion as follows: 
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Eq. ( 4.86 ) to ( 4.87 ) may be easily adapted for the case of applied shear: 
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Or as interaction equations: 
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The presentation of the interaction formula ( 4.85 ) is slightly different from the one used by 

Mirambell recalled in Eq. ( 4.92 )Erreur ! Source du renvoi introuvable.. It should be noted that 

the notations used in this thesis are introduced into Eq. ( 4.85 ). Also, the partial factor γM0 is 

omitted here. The main difference between Eq. (4.92 ) and Eq. ( 4.85 ) is the factor considering the 

influence of the bi-moment. In fact, Mirambell only considers partial plasticity by the reference 

resistance of 1,25fy (for full plasticity the factor should be 1,5fy - see paragraph 4.2.1.2.3). 
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Also, Eq. ( 4.92 ) does not consider that the interaction may be neglected if the major-axis bending 

moment is less than the major-axis bending resistance of the web. Admittedly, this case is 

obviously of less practical interest. In case of high shear forces Mirambell proposes the following 

adaption, equivalent to Eq. ( 4.95 ). Again, he considers a reduction of the web resistance due to 

the bi-moment. 

( ) RdfBBVzRdwebRdVBy MMM ,,,,, 1 ρρρ +−=  ( 4.93 ) 

In the following, the numerical results are represented. First, Figure 4-96 and Figure 4-97 give the 

results obtained for the section HEB 220. The influence of the bi-moment may be easily identified. 

Regarding Figure 4-96, it is clear that the major-axis bending - shear resistance of a member with 

a given length is reduced by the action of the bi-moment. For very short members (L = 3h) 

however, it is not the bi-moment that leads to failure but the shear resistance as shown in Figure 

4-98 and Figure 4-99. 

 

Figure 4-96 : My-Vz-B plastic interaction for HEB 220 – Vz-My plane 
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Figure 4-97 : My-Vz-B plastic interaction for HEB 220 – B-My plane 

In Figure 4-98, the axial stress distribution shows the interaction between the bi-moment and the 

major-axis bending moment in the flanges. It should be noted again that the axial stresses exceed 

the yield stress of 235 MPa due to a 3 dimensional stress field created at the plastic hinge. 

Consequently, a supplementary resistance reserve is mobilized explaining why the numerical 

results exceed the analytical plastic resistance. In Figure 4-98 one may also observe that the axial 

stresses do not transit through the web, as it is entirely utilized by the shear force as shown in 

Figure 4-99. In this figure one may recognize that the shear stresses are constant through the 

thickness of the web. Hence, they are not resulting from Saint Venant’s torsion (creating shear 

stresses varying linearly over the thickness – see Chapter 2) but from the shear force Vz as 

indicated.  

 

 

Figure 4-98: Axial stress distribution at PLS for section HEB 220 under combined My-B-Vz – Case I of 

Figure 4-96 
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Figure 4-99: Shear stress distribution at PLS for section HEB 220 under combined My-B-Vz – Case I of 

Figure 4-96 

Figure 4-100 to Figure 4-103 present the results obtained for section IPE 600 and HEA 100. As 

before the influence of the bi-moment and the shear force may be easily identified. Also, the 

interaction curves applicable for the extreme cases of respectively zero shear force and zero bi-

moment represent very well the interaction behaviour. 

 

Figure 4-100 : My-Vz-B plastic interaction for IPE 600 – Vz-My plane 
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Figure 4-101 : My-Vz-B plastic interaction for IPE 360 – B-My plane 

 

 

Figure 4-102 : My-Vz-B plastic interaction for HEA 100– Vz-My plane 
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Figure 4-103 : My-Vz-B plastic interaction for HEA 100 – B-My plane 

The previous figures have shown that the proposed interaction corresponds very well to the 

numerically determined resistances for selected examples. Hereafter, the interaction conditions 

are compared to the totality of the numerical simulations preformed for the characterization of 

the plastic major-axis bending-shear force-bi-moment interaction. 

Figure 4-104 presents the comparison between the MNA simulations and the interaction 

conditions defined by Eq. ( 4.89 ). Obviously, the results are very satisfactory both in terms of 

scatter and in terms of precision. Yet, for some simulations of the IPE 360 section, the proposal 

seems to be slightly unsafe. In order to explain this, the example of a member with a length of 

1260 mm is studied in more detail. The member is made of IPE 360 section and it is subject to a 

point load applied at mid-span at the upper flange’s tip (Point I in Figure 4-104). 

 

Figure 4-104: Comparison between MNA simulations and interaction curve of Eq. ( 4.89 ) 

Figure 4-105 shows the evolution of the major-axis bending My and of the total torsional moment 

Mx,tot as well as of the bi-moment B with the applied loads for the example I of Figure 4-104. Again, 
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one may observe the specific behaviour of members with open sections subject to torsion that has 

been discussed in detail in paragraph 4.4.4.1. Indeed, the bending moment and the total torsional 

moment increase linearly with the load factor whereas the bi-moment attains its maximum at a 

given load level and then decreases due to the formation of a plastic warping hinge. After the 

formation of this warping hinge the applied load may increase further on. However, it is recalled 

that the supplementary torsional load is exclusively carried by Saint-Venant’s torsion leading to 

yielding of the member over its total length. For the studied example Figure 4-106 illustrates the 

von Mises stress distribution at the plastic limit state. 

 

Figure 4-105: Evolution of the internal forces with the applied load 

The von Mises stress distribution represented in Figure 4-106 clearly shows that the member has 

yielded over its total length. At mid-span, the member yields predominantly under combined 

major-axis bending, bi-moment and the shear force (see Figure 4-107). Inversely, at its ends, the 

member yields under shear stresses resulting from the Saint Venant’s torsional moment that 

highly increases after the formation of the plastic warping hinge as shown by the representation 

of the shear stress distribution in Figure 4-108. 
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Figure 4-106: Distribution of von Mises stresses at plastic limit state for example I of Figure 4-104 

 

 

Figure 4-107: Distribution of axial stresses at plastic limit state for example I of Figure 4-104 

Especially, the shear stress distribution in the flanges given in Figure 4-108 b) clearly indicates 

the presence of high Saint Venant’s torsional moments. This example confirms, once more, the 

conclusions of paragraph 4.4.4.1 dedicated to the plastic behaviour of members in torsion. 

Moreover, it appears that, depending on the case, there can be a slight interaction between the 

Saint-Venant’s torsional moment arising between the supports and the plastic warping hinge and 

the internal forces and moments acting in the plastic warping hinge itself. Nonetheless, the 

interaction leads only to a small supplementary reduction of the plastic section resistance. Hence, 

the influence of the Saint-Venant’s torsional moment can be neglected for the interaction between 

the internal forces and moments acting in the warping hinge.  
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a) Shear stresses τxz b) Shear stresses τxy 

 

Figure 4-108: Distribution of shear stresses at plastic limit state for example I of Figure 4-104 

It should again be emphasized that the objective of the present paragraph is not the development 

of a design method describing the plastic resistance of a member as a whole, i.e. including the 

plastic system reserve resulting from the formation of plastic warping hinge, but rather the 

development of a design method (interaction equations) that describes the plastic interaction that 

leads to the formation of the plastic warping hinge in the first place. The supplementary plastic 

system reserve should be covered in the analysis as described in paragraph 4.4.4.1. Consequently, 

it is not unsafe to accept the provisions of the current version of Eurocode 3 Part 1-1 that indicate 

that the influence of the Saint Venant’s torsional moment may be neglected for members of open 

section (§6.2.7of (CEN 2005a)). In fact, these provisions are, implicitly, based on elastic analysis 

and hence they do not consider the formation of a warping hinge leading to higher resistances. In 

order to underline this fact Figure 4-109 represents the comparison of the MNA results to the 

interaction curve again. Yet, hereafter, it is considered that the internal forces and moments used 

in the interaction equation have been determined based on an elastic analysis of the member. 

Obviously, the results obtained with the interaction formulae are less precise as before because 

the bi-moment used in the formulae is not the bi-moment really acting in the studied section. 

Indeed, the elastic analysis overestimates the bi-moment. Also, due to this fact the scatter of the 

results is increased. Nevertheless, it seems that the results are still acceptable. Additionally, it is 

shown that neither the Saint Venant’s torsional moment nor the warping torsional moment need 

to be accounted for (as the results do not become unsafe if both are neglected). Hence, the 

verification is simplified. 
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Figure 4-109: Comparison between MNA simulations and interaction curve of Eq. ( 4.89 ) used with 

elastic analysis 

Last, the proposal of Mirambell is compared to the MNA simulations. As before two diagrams 

present the comparisons. In Figure 4-110 the internal forces and moments used in the interaction 

formulae are those obtained by the MNA simulations and in Figure 4-111 the internal forces and 

moments are determined by elastic analysis. For both cases the proposal of Mirambell is less 

precise than the interaction formulae defined in Eq. ( 4.89 ). Especially, if the design is based on 

an elastic analysis, the precision is poor and the scatter is important for Mirambell’s proposal. Yet, 

it should however be noted that, by introducing a plastic adaption factor equal to 1,25 (and not 

equal to analytical factor of 1,50) Mirambell seems to accept this scatter  

 

Figure 4-110: Comparison between MNA simulations and proposal Mirambell – Eq. ( 4.93 ) used 

with plastic analysis 
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Figure 4-111: Comparison between MNA simulations and proposal Mirambell – Eq. ( 4.93 ) used 

with elastic analysis 

4.4.4.2.3 Interaction between minor-axis bending, torsion and shear force 

In paragraph 4.4.3.1 it has been shown that the interaction between the shear force and the minor-

axis bending moment may be neglected. It is shown hereafter that this hypothesis may also be 

considered in case of the more complex interaction including torsion. 

It is recalled that the stresses resulting from the minor-axis bending moment and the bi-moment 

are affine in the flanges. Yet, depending on the sign of bending moment and the bi-moment, the 

stresses may add in the upper flange and neutralise in the lower flange or inversely (see Chapter 

2 for stresses resulting from the bi-moment). Anyhow, owing to the distribution of the stresses in 

the flange a linear interaction may be considered. Hereafter, the example of the HEA 280 section 

is studied. Again, two diagrams are given in order to characterize the interaction behaviour. Figure 

4-112 represents the Vy-Mz plane of the interaction space and Figure 4-113 represents the B-Mz 

plane. As before, one may observe that the shear force parallel to the flanges does generally not 

influence the plastic minor-axis bending resistance. Only for extremely short members, outside of 

the practical range, the shear force slightly reduces the resistance. 
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Figure 4-112: Mz-Vy-B plastic interaction for HEA 280 – Vy-Mz plane 

Figure 4-113 shows that the linear interaction fits very well the real interaction behaviour of the 

section. It should however be recalled that the internal forces used in Figure 4-112 and Figure 

4-113 are those obtained by the MNA analysis and hence the real internal forces and moments 

acting in the plastic warping hinge. Here, it is shown again that, conversely to the hypothesis done 

by certain authors, the bi-moment does not vanish entirely after the formation of the warping 

hinge (see reference (Glitsch 2008) and Chapter 5). Indeed, after the formation of the warping 

hinge, the plastic failure of the member is always due to the Saint Venant’s torsional moment 

leading to the yielding of the member over its total length. Depending on the case, the failure of 

the member may occur before the minor-axis bending moment is close to the plastic minor-axis 

resistance of the section at-mid span. 

 

Figure 4-113: Mz-Vy-B plastic interaction for HEA 280 – B-Mz plane 

If the interaction is based on elastic analysis the results become, in some cases, very conservative 

as shown in Figure 4-114. 
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Figure 4-114: Mz-Vy-B plastic interaction for HEA 280 – B-Mz plane – internal forces and moments 

obtained by elastic analysis 

The pronounced difference between elastic and plastic analysis may be explained with Figure 

4-115 showing the evolution of the internal forces with the applied loads of case I of Figure 4-114. 

It can be seen that the bi-moment decreases highly after the formation of the warping hinge. 

Consequently, the plastic system reserve is even more pronounced than in the case of combined 

major-axis bending and torsion. In fact, as the web of the I section is not utilized by the stresses 

resulting from minor-axis bending and the corresponding shear force, it may be entirely used by 

the shear stresses resulting from the arising Saint Venant’s torsional moment. In case of combined 

major-axis bending, shear force and torsion the web is already utilized by the shear stresses 

resulting from the shear force and the axial stresses generated by the major-axis bending moment. 

Hence, the plastic system reserve is generally less pronounced than for combined minor-axis 

bending, torsion and shear force. 

 

Figure 4-115: Evolution of the internal moments with the applied loads 
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4.4.4.2.4 Conclusions 

Through the present paragraph the interaction between bending, torsion and the shear force has 

been investigated in detail for double symmetric I sections. It has been shown that the torsional 

plastic system reserve highly influences the member behaviour. In fact, owing to the formation of 

a plastic warping hinge the torsional load is redistributed and carried through a Saint Venant’s 

torsional moment that is negligible before yielding of the member is initiated. This system reserve 

may highly increase the resistance of the member compared to an elastic analysis. Yet, after the 

formation of the warping hinge, the torsional twist may also highly increase. Therefore, the 

torsional plastic system reserve should only be accounted for if the torsional twist is not 

incompatible with the member in the structure. Generally, the internal forces and moment are 

determined by an elastic analysis in practice. Consequently, the interaction equations, that 

precisely predict the cross-section resistance based on the real internal forces acting in the 

section, may be rather conservative. However, this conservatism has to be accepted as it ensures 

that the torsional twist does not increase excessively. 

 Mono-symmetric I sections 

4.4.4.3.1 Plastic bi-moment resistance 

In paragraph 4.4.3.3 it has been shown that the mono-symmetric I sections can only fully yield 

under minor-axis bending if a stress-induced bi-moment arises. The numerical simulation have 

indicated that the stress-induced bi-moment is generated and consequently full yielding of the 

mono-symmetric I section under Mz may be attained. If the section is subject to a bi-moment, the 

problematic is similar. In fact, the section can only entirely yield if a minor-axis bending moment 

Mz arises as represented in Figure 4-116. However, due to the static equilibrium conditions, a 

minor-axis bending moment can only be induced by an external load.  

  

a) Elastic stress distribution b) Plastic stress distribution 

Figure 4-116: Elastic and plastic stress distribution for a mono-symmetric I section subject to a bi-

moment 

In presence of an externally applied minor-axis bending moment, the bi-moment resisted by the 
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moment. The minor-axis bending moment leading to the maximum bi-moment can be determined 

with Eq. ( 4.94 ). It should be noted, that following the sign convention used in this thesis Mz,Bmax 

and the corresponding maximum bi-moment Bmax are of the same sign. 
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The expression of the corresponding maximum bi-moment may be derived based on the stress 

distribution given in Figure 4-116b).  
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In Eq. ( 4.95 ), zS,uf and zS,lf correspond to the distance between the shear centre and the centroid 

of the upper and lower flange, respectively. 

The plastic bi-moment may also be obtained based on the stress distribution shown in Figure 

4-116b) and by neglecting the stresses associated with Mz,Bmax represented in light blue. One 

obtains: 
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Depending on the cross-section dimensions the upper or the lower flange may be determining for 

the value of the plastic bi-moment. Nevertheless, it is to be noted that the plastic bi-moment 

should only be considered as a reference value as the real plastic stress distribution under an 

applied bi-moment is obviously not the one represented in orange in Figure 4-116b). Indeed, in 

any case the yielding of the flanges starts from the flange’s tips and evolves to the centre of the 

flanges. Yet, the numerical simulations presented in the following paragraphs justify that the 

expression given in Eq. ( 4.98 ) is acceptable. 

4.4.4.3.2 Interaction between major-axis bending, torsion and shear force 

First, the interaction between major-axis bending, the associated shear force and the bi-moment 

is studied. As before, the mono-symmetry is introduced by reducing the width of the lower flange. 

The following figures represent the results obtained for the modified IPE 600 section. 

Additionally, the interaction curves applicable for the extreme cases of respectively negligible bi-

moment and negligible shear force are represented. For the major-axis bending-bi moment 

interaction, the interaction curve used for double symmetric sections is used again. Yet, the value 

of My,pl,fl is calculated based on the weaker of the two flanges (see Eq. ( 4.98 )) and the plastic bi-

moment is obtained with Eq. ( 4.96 ). 
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In the following, the mono-symmetry parameter ψ is varied between 0,2 (slightly mono-

symmetric) and 0,975 (highly mono-symmetric). Figure 4-117 and Figure 4-118 show that the 

proposed interaction curves are in good agreement with the numerical results and may therefore 

considered as satisfying. 

 

  

a) My-Vz plane b) My-B plane 

Figure 4-117: Major-axis bending - shear force - bi-moment interaction for IPE 600m ψmono = 0,2 

 

  

a) My-Vz plane b) My-B plane 

Figure 4-118: Major-axis bending - shear force - bi-moment interaction for IPE 600m ψmono = 0,7 

On the contrary, to the case of slightly and medium mono-symmetric sections, the results obtained 

for the highly mono-symmetric section seem to be much less satisfying especially if one observes 

the My-B plane represented in Figure 4-119. Obviously, the plastic bi-moment resistance is much 

higher than predicted with Eq. ( 4.97 ). 
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a) My-Vz plane b) My-B plane 

Figure 4-119: Major-axis bending - shear force - bi-moment interaction for IPE 600m ψmono = 0,975 

So as to highlight the reason of this surprising results, Figure 4-120 represents the stress 

distribution for a IPE 600m section possessing a ψmono value of 0,975. The section is subject to a 

vertical point load applied at mid-span at the upper flange’s tip. For the represented load step, the 

bi-moment just attains the value of the plastic bi-moment defined in Eq. ( 4.96 ).It may be observed 

that the lower flange has yielded due to the influence of the bi-moment. Contrariwise, the upper 

flange has not reached the yield stress in any point. However, it can also be observed that the axial 

stresses vary through the upper flange from approximatively -90 MPa to 150 MPa at the right tip 

and from -150 MPa to 90 MPa at the left tip. This indicates that the local warping stiffness and 

associated resistance is mobilised (see Chapter 2). It is evident that the supposed stress 

distribution shown in Figure 4-116 is not valid anymore for highly mono-symmetric sections. 

 

Figure 4-120: Plastic stress distribution for IPE 600m ψmono = 0,975 at load factor corresponding to 

Bpl 

Interaction psi = 0.975 psi = 0.975 - L = 1.5h psi = 0.975 - L = 2h

psi = 0.975 - L = 3h psi = 0.975 - L = 5h psi = 0.975 - L = 9h

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00 1.20

V
z,

M
N

A
/V

z,
p

l
(-

)

My,MNA/My,pl (-)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

0.00 0.20 0.40 0.60 0.80 1.00 1.20

B
M

N
A
/B

p
l
(-

)

My,MNA/My,pl (-)

Interaction - ψ
mono

 = 0,975 

ψ
mono

 = 0,975 – L = 3h 

ψ
mono

 = 0,975 – L = 1,5h 

ψ
mono

 = 0,975 – L = 5h 

ψ
mono

 = 0,975 – L = 2h 

ψ
mono

 = 0,975 – L = 9h 



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Plastic Cross-Section 
Resistance 

 

222 
 

The stress distribution at the plastic limit state is represented in Figure 4-121. Especially, the 

distribution of axial stresses in the upper flange indicates clearly the mobilisation of the local 

warping resistance. In fact, after the yielding of the lower flange the mono-symmetric section acts 

like a T section whose behaviour is prescribed by local warping. 

 
 

a) von Mises stresses over the section and axial stresses in 

the upper flange 

b) Axial strains 

Figure 4-121: Stress and strain distribution for IPE 600m ψmono = 0,975 at plastic limit state 

Also, it should be noted that inversely to double and slightly or medium mono-symmetric sections 

the reduction of the warping stiffness due to yielding of the lower flange appears to be insufficient 

to generate a real warping hinge. Consequently, the bi-moments continues to increase in the most 

loaded section at mid-span. Indeed, the diagram represented in Figure 4-122, gives the ratio 

between the initial warping constant Iw of the section and the effective warping constant of the 

section with yielded lower flange (T section Iw = 10320 cm4). Figure 4-122 points out that the 

decrease of the warping constant for the highly mono-symmetric IPE 600m ψmono = 0,975 section 

is much less pronounced than for the less mono-symmetric sections. 
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Figure 4-122: Ratio between warping constant for the mono-symmetric I section and warping 

constant of the associated T section for different ψmono values 

Additionally, it seems interesting to represent the influence of the local bi-moment resistance on 

the overall bi-moment resistance. The overall plastic bi-moment including the local warping has 

been determined numerically. By observing Figure 4-123 it becomes obvious that for mono-

symmetric sections the local effects leading to an increased plastic bi-moment can be neglected in 

general. However, for highly mono-symmetric sections, as the IPE 600m ψmono = 0,975, the local 

effects are nearly as important as the global plastic bi-moment. 

 

Figure 4-123: Ratio between total plastic bi-moment including local effects and plastic bi-moment 

obtained with Eq. ( 4.96 )for different ψmono values 

It is obvious that the local bi-moment influences considerably the behaviour of highly mono-

symmetric I sections. However, Figure 4-121b) also shows that the yielding may be accompanied 

by very high axial strains depending on the exact geometry of the section. Therefore, the local 

effects are not accounted for and the observed conservatism is accepted here for the resistance 

model. 

4.4.4.3.3 Interaction between minor-axis bending, torsion and shear force 

The plastic interaction curve for combined minor-axis bending torsion and the shear force is 

derived based on the assumed distribution of axial stresses represented in Figure 4-116. In 
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particular, the local effects leading to an increased plastic bi-moments are not considered 

hereafter. Again, this leads to certain conservatism for highly mono-symmetric sections. 

It should be recalled that the interaction between the shear force Vy and the minor-axis bending 

moment has been shown to be negligible. Also, as the minor-axis bending moment and the bi-

moment are affine in the flanges a linear interaction may be considered again. Yet, due to the 

mono-symmetry of the section this linear interaction possesses two special features as discussed 

in paragraph 4.4.4.3.1: 

• In presence of a minor-axis bending moment, the maximum bi-moment that can 

be resisted by the section is higher than the theoretical plastic bi-moment (not 

considering local effects). 

• A stress induced bi-moment is necessary for the complete yielding of the section 

subject to minor-axis bending only. 

As the interaction behaviour is not symmetric it has to be distinguished between the two cases 

that the bi-moment and the minor-axis bending moment are of the same sign and that the minor-

axis bending moment and the bi-moment are of opposite sign. The following interaction equations 

may be applied: 

Mz and B are of the same sign: 


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Mz and B are of opposite sign: 
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
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It should be noted that the absolute values should be used for all quantities used in Eqs. ( 4.99 ) to 

( 4.101 ). The quality of the proposed interaction curve is presented in Figure 4-124 giving the 

results obtained for a modified HEA 100 section whose lower flange is reduced to a width of 

87 mm (ψmono = 0,2). Obviously, the interaction curve is in in good agreement to the MNA results. 

Yet, it might be confusing for the engineer that the bi-moment resistance exceeds the plastic bi-

moment when the minor-axis bending moment is increased up to Mz,Bmax. For simplified desing it 

seems more appropriate to consider a plateau for the plastic bi-moment up to the value of Mz,Bmax. 
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Also, it seems more convinient to present the interaction formulae as a function of the bi-moment. 

The proposed interaction formulae for simplified design are given in Eqs. ( 4.102 ) to ( 4.104 ). 

 

Figure 4-124 : Minor-axis bending - bi-moment interaction for HEA 100m ψmono = 0,2 

Mz and B are of the same sign: 
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The proposed interaction curve is compared to the MNA results in the following figures. Again, 

one may observe that the proposal represents well the interaction behaviour for slightly and 

medium mono-symmetric sections. However, it becomes rather conservative for highly mono-

symmetric members as shown in Figure 4-127 as the local warping effects become relevant in this 

case. 

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

0.00 0.20 0.40 0.60 0.80 1.00 1.20

B
M

N
A
/B

p
l
(-

)

Mz,MNA/Mz,pl (-)

psi = 0.2 - L = 3h

psi = 0.2 - L = 4h

psi = 0.2 - L = 6h

psi = 0.2 - L = 9h

Interaction curve

ψmono = 0,2 - L = 3h

ψmono = 0,2 - L = 4h

ψmono = 0,2 - L = 6h

ψmono = 0,2 - L = 9h



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Plastic Cross-Section 
Resistance 

 

226 
 

 

Figure 4-125: Minor-axis bending - bi-moment interaction for IPE 600 m ψmono = 0,2 

 

Figure 4-126: Minor-axis bending - bi-moment interaction for IPE 600 m ψmono = 0,7 
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Figure 4-127: Minor-axis bending - bi-moment interaction for IPE600 m ψmono = 0,975 

The study on mono-symmetric I sections presented throughout the three previous paragraphs 

shows that simplified interaction formulae may be derived based on a presumed plastic stress 

distribution. However, for highly mono-symmetric cross-sections the supposed stress 

distribution is not valid anymore due to local warping effects that increase the plastic bi-moment. 

These local effects may attain approximatively the same magnitude as the “global” plastic bi-

moment. Yet, for simplified design they are not considered. 

 U sections 

4.4.4.4.1 Plastic bi-moment 

Before interaction equations are developed for U sections under combined bending, torsion and 

shear forces, it seems interesting to determine an expression of the plastic bi-moment resistance 

that is used as reference value in the interaction formulae. It is possible to calculate the plastic bi-

moment resistance based on the plastic stress distribution represented in Figure 4-128. In order 

to obtain the plastic bi-moment, the position of the neutral axis should be determined. The 

horizontal neutral axis has to be located at the mid-height of the cross-section for symmetry 

reasons. The position of the vertical neutral axis, characterized by the distance noted as yB,pl in 

Figure 4-128 a), is not known a priori. It can be calculated based on the assumption that the major-

axis bending moment vanishes as expressed by Eq. ( 4.105 ) (due to the form of the plastic stress 

distribution, the axial force and the minor-axis bending moment vanish independently from the 

value of yB,pl). Consequently, the position of the vertical neutral axis is given by Eq. ( 4.106 ). 
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a) Plastic stress distribution b) Warping function 

Figure 4-128: a) Plastic stress distribution for a U section subject to a positive bi-moment and b) 

warping function 

( )
f

w

f t

t

th

hb
y

−
−=

2

plB,
8

1

2
 ( 4.106 ) 

( ) wff
w

f
w

ttht
t

b

t
t

b

y

−+






 −








 −
=

2
6

2
3

2

ws,
 ( 4.107 ) 

The position of the vertical plastic neutral axis allows the determination of the plastic bi-moment 

as given by Eq. ( 4.108 ) and Eq. ( 4.109 ). 
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It should be noted that, as the vertical plastic neutral axis is not located at the same point as the 

zero of the warping function in the flanges (distance ys,w – see Table 4-28), the cross-section may 

resist a slightly higher bi-moment than the plastic bi-moment resistance if the section is also 

subject to a certain major-axis bending moment My,Bmax. 

Table 4-28: Comparison of yB,pl and ys,w 

Cross-section yB,pl (mm) ys,w (mm) 

UPE 80 18,74 20,96 

UPE 200 25,57 31,48 

UPE 360 21,66 37,46 
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Table 4-29 gives the value of the plastic bi-moment Bpl and the maximum bi-moment Bmax that the 

cross-section can resist in presence of the major-axis bending moment My,Bmax. Again, it is 

supposed that the cross-section is fabricated from steel grade S235. 

Table 4-29: Plastic and maximum bi-moment (Steel grade S235) 

Cross-section Bpl (kNm²) Bmax (kNm²) My,Bmax (kNm) 

UPE 80 0,0966 0,09716 0,535 

UPE 200 1,1372 1,1540 5,771 

UPE 360 6,8998 7,2323 43,309 

 

The expressions of the maximum bi-moment Bmax and the associated major-axis bending moment 

My,Bmax are given in Eqs. ( 4.110 ) and ( 4.111 ). 
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Here, it should be noted that, contrarily to the case of major-axis bending (see paragraph 4.4.2.2), 

the maximum bi-moment Bmax is not considered as plastic bi-moment as the major-axis bending 

moment My,Bmax, necessary to attain this bi-moment does not develop naturally for a U section 

subject to torsion only. Indeed, it cannot develop as static equilibrium would not be respected. 

Inversely, the stress-induced bi-moment BMy,pl necessary to attain My,pl results directly from the 

stress distribution and develops even if the cross-section is subject to major-axis bending only. 

4.4.4.4.2 Interaction between major-axis bending, torsion and shear force 

The following figures represent the results of the numerical simulations. The internal forces and 

moments at the plastic limit state are, as before, determined according to the stress distribution 

in the cross-section. Consequently, these internal forces and moments correspond exactly to the 

internal forces acting in the most loaded section. 

In Figure 4-129, the influence of the shear force and the bi-moment on the plastic major-axis 

bending resistance may be easily identified again. If the cross-section is subject to combined 

major-axis bending and shear force the interaction curve applicable to double symmetric I 

sections may be safely applied as has already been shown in paragraph 4.4.2.2. When a torsional 

load is applied to the member, the cross-section is subject to an additional bi-moment reducing 

the combined major-axis bending-shear resistance. Consequently, with increasing bi-moments 

the numerically determined resistances tend to zero in the My-Vz interaction diagrams for the 

members of a given length. 
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Figure 4-129 : My-Vz-B interaction diagram for UPE 360 – My-Vz-plane 

The interaction diagram given here before in the My-Vz plane resembles to the interaction diagram 

obtained for double symmetric I sections. However, it should be noted that the interaction 

diagram is not symmetric in the B-My plane as, depending on the sign of the bi-moment and major-

axis bending moment the axial stresses may add or neutralise in the web as recalled in Figure 

4-130.  

  

a) Elastic stress distribution due to My > 0 b) Elastic stress distribution due to B > 0 

Figure 4-130: Elastic stress distribution due to a) positive major-axis bending and b) positive bi-

moments 

The results of the MNA simulations performed for three UPE sections are represented in Figure 

4-131. In order to simplify the lecture, the following diagrams contain only the cases not affected 

by a strength reduction due to the shear force. Observing Figure 4-131, one may recognize the 

mentioned asymmetry of the interaction curve. 
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Figure 4-131: My-B interaction curve for UPE sections obtained by MNA calculations 

Hereafter, interaction equations are based on the stress distribution and the position of the plastic 

neutral axis. 

First, the case of interaction between a bi-moment and a major-axis bending moment of the same 

sign (both either positive or negative) is investigated. If both internal moments are of the same 

sign, the axial stresses neutralise in the web. The vertical plastic neutral axis may therefore be 

situated in the web or in the flanges as shown for the case of a UPE 200 section subject to a low 

bi-moment (Figure 4-132) and to a high bi-moment (Figure 4-133). In the flange the position of 

the vertical neutral axis varies between yB,pl and the edge of the web. 
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a) View from the left (y < 0) 

 

 

b) View from the right (y > 0) 

Figure 4-132: Plastic stress distribution for low bi-moments and high major-axis bending moments 

– vertical plastic neutral axis in the web 

 

  

a) View from the left (y < 0) b) View from the right (y > 0) 

 

Figure 4-133: Plastic stress distribution for high bi-moments and low major-axis bending moments 

– vertical plastic neutral axis in the flange 

The vertical plastic neutral axis is situated in the web in case of high major-axis bending moments 

and low bi-moments. Eq. ( 4.112 ) gives the limit bi-moment that leads to a plastic vertical neutral 

axis that is just located at the edge between the web and the flange. Condition ( 4.112 ) expresses 

that the vertical plastic neutral axis is located in the web if the bi-moment is less than twice the 
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bi-moment resistance of the web. The factor of “2” may be explained as follows: In absence of a bi-

moment, the positive major-axis bending moment creates compression stresses at the upper part 

of the web and tension stresses at the lower part of the web. It has been shown that the positive 

bi-moment creates stresses with of opposite sign in the web. Consequently, in order to “push” the 

vertical plastic neutral axis into the flange, the bi-moment has to inverse the stresses created by 

the major-axis bending moment and hence it has to be twice the resistance of the web. 

( ) webplywswf BfytthB ,,

2

Ed 2
2

1
=−≤  ( 4.112 ) 

It is considered that the position of the vertical neutral axis varies linearly through the web with 

increasing bi-moment. Hence, one may determine the moment resistance in presence of a bi-

moment by Eq. ( 4.113 ). 
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For bi-moments exceeding the value of 2Bpl,web the vertical plastic neutral axis transits through the 

flange up to its position yB,pl obtained under the sole influence of a bi-moment. Compared to the 

numerical simulation a slightly non-linear variation is justified for the variation of the position of 

the vertical plastic neutral axis. The moment resistance may therefore be obtained with Eq. ( 4.114 

) if the vertical plastic neutral axis passes through the flange. 
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The absolute values should be used for of all the quantities in Eqs.( 4.112 ) to ( 4.114 ). The 

interaction curve is compared to the numerical results in Figure 4-134. It appears that the 

interaction curve corresponds rather well to the numerical results. 

 

Figure 4-134: Comparison between numerical results and interaction curve 
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In the following the interaction curve is developed for the case that the major-axis bending 

moment and the bi-moment are of opposite sign. In this case, the axial stresses sum up in the web 

of the cross-section. Consequently, the vertical neutral axis only transits through the flange and 

its position varies between the tips of the flanges and yB,pl. Even if the location of vertical plastic 

neutral stays in the flange two specific features of the interaction behaviour lead to its 

complexification as may be observed in Figure 4-131: 

• For small bi-moments the major-axis bending moment resistance is not reduced. 

The plateau length is equal to the value of the bi-moment that is necessary for full 

yielding of the section under an applied moment My (BMy,pl – Eq. ( 4.70 )). 

• The maximum bi-moment that may be resisted by the cross-section exceeds the 

plastic bi-moment (Bmax – Eq. ( 4.110 )). 

For simplicity it is considered that the interaction curve is constituted by two plateaus – one 

horizontal corresponding to BMy,pl and one vertical corresponding to twice the bending moment 

leading to Bmax. The two plateaus are linked by a slightly non-linear curve that considers 

approximatively the interaction behaviour. The interaction curve may consequently be expressed 

by Eq. ( 4.115 ) and Eq. ( 4.116 ). 
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The interaction curve is compared to the numerical results in Figure 4-135. The proposed 

equations are satisfactory again. 

 

 

Figure 4-135: Comparison between numerical results and interaction curve 
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Before, only cases with low shear force have been treated. If the shear force exceeds the value of 

0,5, its influence on the resistance should be accounted for. Here, it is proposed to consider its 

influence by reducing the thickness of the web as shown in Eq. ( 4.117 ). 

( ) wtt ρ−= 1Vw,  
( 4.117 ) 

 
The reduction factor ρ can be determined with the expression given in Eurocode 3 Part 1-1 

recalled in Eq. ( 4.15 ). This reduced web thickness tw,V is introduced into Eq. ( 4.70 ), ( 4.106 ), ( 

4.107 ), ( 4.109 ), ( 4.111 ) and ( 4.112 ) to obtain the corresponding values of BMy,pl,V, yB,pl,V, ys,w,V, 

WB,pl,V, My,Bmax,V, Bpl,web,V. The interaction equations developed in this paragraph may then be 

applied with these reduced quantities. In order to visualize the quality of the proposed interaction 

equations, Figure 4-136 represents the ratio between the resistance predicted by the interaction 

equations and the resistance obtained numerically by MNA calculations. It may be observed that 

the results are very satisfactory for the studied cross-sections. It seems that the interaction 

equations yield more precise results for tall sections than for small sections. This is due to the fact 

that the influence of the fillets on the warping characteristics, as for example yB,pl, are not included 

in the derivation of the formulae. Indeed, their relative influence decreases with the height of the 

cross-section. Nevertheless, the results are in the large majority of cases safe-sided and 

sufficiently precise. A higher precision may only be obtained if the interaction equations that are 

already rather complex, include additional parameters. Last, it should be noted that, for simplicity, 

a linear interaction may always be considered between the major-axis bending moment and the 

bi-moment. 

 

Figure 4-136: Ratio between resistance predicted by proposed interaction equations and resistance 

obtained by MNA 

4.4.4.4.3 Interaction between minor-axis bending, torsion and shear force 

Figure 4-137 and Figure 4-138 represent the results obtained for the interaction between minor-

axis bending, shear force and the bi-moment. Again, it may be observed in Figure 4-137 that the 

bi-moment may highly reduce the cross-section capacity under combined shear and bending 
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the shortest member (L = 1,5h), the shear force does not exceed 50% of the plastic shear force 

resistance that is supposed to be equal to: 

3
2ply,

y

f

f
btV =  

( 4.118 ) 

 

 

Figure 4-137: Mz-Vy-B interaction diagram for UPE 200 – Mz-Vy-plane 

Figure 4-138 characterizes very clearly the interaction behaviour between minor-axis bending 

and the bi-moment. In particular, it is shown that: 

• The interaction behaviour between minor-axis bending and bi-moments is 

symmetric, 

• For low levels of minor-axis bending or bi-moments, it may be admitted that the 

corresponding plastic resistance is not reduced (plateau length = 0,1Mz,pl and 

0,1Bpl, respectively), 

• The interaction curve linking both plateaus may be linear. 
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Figure 4-138: Mz-Vy-B interaction diagram for all studied sections – Mz-B-plane 

The interaction curve represented in Figure 4-138 may be expressed by Eq. ( 4.119 ). 
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4.4.5 Other selected load cases 

 General 

In the following, two specific load cases are treated in order to highlight the complexity of the 

interaction behaviour in some cases. First, the interaction equations applicable for the case of 

combined major-axis bending, shear force and torsion are extended to the case of an applied axial 

force ofr double symmetric I sections. Then the case of a U section subject to combined axial force 

and major-axis bending is treated. This load combination may seem trivial on a first sight, but it is 

shown that due to the mono-symmetry of the U section, the interaction is again complex even for 

simple load combinations. 

 Combined axial force, bending and torsion for double symmetric I sections 

In many cases I sections are subject to an axial force (even if rather small) additionally to bending 

and torsion. Consequently, this load case is of practical interest and should be treated. It is 

proposed to extend the interaction equations introduced in paragraph 4.4.4.2.2 for the case of 

combined major-axis bending, shear force and bi-moment to the case of an additional axial force. 

The equations not considering the axial force are recalled hereafter: 
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Depending on the relative importance of the axial force and the shear force, the axial force may 

only reduce the bending moment resistance of the web (relatively small axial force) or it may 

contribute to the reduction of the major-axis bending moment resistance of the flange. Several 

cases should be distinguished as shown in the following table. Clearly, the interaction conditions 

become rather complex. They are based on the assumption that the combined action of the axial 

force and the shear force is, in priority, resisted by the web of the section; the bi-moment is only 

resisted by the flange. Consequently, the major-axis bending moment resistance is the sum of the 

residual plastic bending moment of the web (for combined action “N+Vz” lower than the resistance 

of the web) and the residual bending moment resistance of the flange (reduced by the bi-moment 

and by the axial force that may not be carried by the web). 
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Table 4-30: Interaction between major-axis bending, shear force, axial force and bi-moment 

Value of the 
shear force 

Value of the 
axial force 

Value of the major-axis bending moment resistance 
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It should be noted that for the studied load case of combined major-axis bending, shear force, axial 

force and bi-moment other proposals exist as the one published in (Ludwig 2014) that has been 

derived based on the PIFM (see 4.2.2.3.1). However, the obtained equations are obviously not 

simpler to apply than the ones proposed in Table 4-30 (see 4.2.2.3.1). Clearly, the interaction 
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behaviour between more than two or three internal forces and moments may not be treated by a 

simple equation even in the case of double symmetric sections. Through the next paragraph it is 

demonstrated that the interaction behaviour of U sections is even more complex although, on the 

first sight, the rather simple interaction of combined major-axis bending and axial force is studied. 

 Combined axial force and major-axis bending for U sections 

The interaction between major-axis bending and the axial force has also been discussed in 

reference (Kalameya 2008). Based on some numerical simulations the author showed that the 

interaction may be treated as for I sections. Indeed, so as to obtain the interaction equation the 

following stress distribution is supposed (see Figure 4-139). 

 

Figure 4-139: Supposed plastic stress distribution under combined major-axis bending and axial 

force for U sections 

However, one may observes that the proposed plastic stress distribution also leads to a resulting 

minor-axis bending moment equal to: 

wCyNM ,z ×=  ( 4.120 ) 

 

Consequently, this stress distribution is not valid, as, due to the condition of static equilibrium, 

the minor-axis bending moment cannot be generated without an external load. In fact, in case of 

combined major-axis bending and axial force the plastic neutral axis cannot be horizontal as this 

would always lead to a resulting minor-axis bending moment. So as to obtain a valid plastic stress 

distribution the neutral axis has to be inclined crossing one flange and the web as shown in Figure 

4-140. 
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Figure 4-140: Valid plastic stress distribution for U sections under combined major-axis bending 

and axial force 

The axial force creating this stress distribution is given in Eq. ( 4.121 ). 

( )fwy txtxfN 21 2+=  ( 4.121 ) 

Based on this stress distribution it is also possible to determine the major-axis bending moment 

resistance as shown in Eq. ( 4.122 ). 
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So as to obtain the value of the major-axis bending moment resistance given in Eq. ( 4.122 ), it is 

necessary to determine the distances x1 and x2 first. One condition is expressed by Eq. ( 4.121 ). 

The second condition needed for the calculation of x1 and x2 may be expressed by Eq. ( 4.123 ) 

indicating that the plastic stress distribution should not generate a minor-axis bending moment. 

Here, it should be noted that no condition is used concerning the bi-moment as it may arise from 

the stress distribution as for the case of the plastic major-axis bending moment (stress induced 

bi-moment). 
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Based on Eq. ( 4.121 ) and ( 4.123 ), one obtains the following expressions for the distances x1 and 

x2. 
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Observing Eqs. ( 4.124 ) and ( 4.125 ), one may remark that they represent very well the extreme 

cases of zero axial force and an axial force equal to the plastic axial force Npl of the section. Indeed, 

if the axial force is zero the distances x1 and x2 become zero, too. Consequently, the plastic neutral 

axis passes through the web at mid-height. Hence, the major-axis bending resistance is not 

reduced. If the axial force equals Npl the distance x2 is equal to b-tw/2 and x1 is equal to h-tf. 

Following the mid-line model of the cross-section considered for the determination of x1 and x2, 

the plastic neutral axis is tangential to the theoretical intersection between one flange and the web 

but passes just outside the section. Obviously, Eqs. ( 4.124 ) and ( 4.125 ) are rather complex to 

use in the practice. However, they describe the interaction behaviour as shown based on the 

following example of a UPE 200 section subject simultaneously to a major-axis bending moment 

and a compression axial force. The plastic stress distribution is represented for the case of a 

section subject to a compression axial force of 350 kN and a major-axis bending moment of 

27 kNm in Figure 4-141. Depending on this axial force, it is possible to determine the position of 

the plastic neutral axis with Eqs. ( 4.124 ) and ( 4.125 ). One obtains: 

mmx 3,1601 =   

mmx 98,232 =   

In Figure 4-141 one may recognize that there is slight difference between the results of Eqs. ( 

4.124 ) and ( 4.125 ) and the MNA simulations. In fact, the plastic neutral axis crosses the web at 

a higher level than predicted by Eq. ( 4.124 ). However, this may also be explained based on the 

plastic stress distribution resulting from the MNA simulation. Indeed, Eqs. ( 4.124 ) and ( 4.125 ) 

have been derived based on the assumption that the stresses are constant through the thickness. 

Yet, in Figure 4-141 one may observe that the neutral axis is inclined in the lower flange. 

Consequently, the lower flange carries more compression stresses and hence the web has to carry 

less compression stresses to ensure static equilibrium. This leads to differences observed for the 

position of the plastic neutral axis. Yet, the major-axis bending moment resistance obtained based 

on the calculated values of x1 and x2 is equal to 24,7 kNm and hence close to the value obtained by 

the MNA simulations (≈ difference 10%). 
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Figure 4-141: Stress distribution at plastic limit state - UPE200 under combined compression and 

major-axis bending 

Nevertheless, it has to be noted that for high axial forces the differences may be greater as the 

plastic neutral axis crosses only the flange as shown in Figure 4-142. In this case Eqs. ( 4.124 ) and 

( 4.125 ) may obviously not be applied. Yet, here it seems not straightforward to develop 

supplementary analytical interaction equations that cover this case. Indeed, this would lead even 

to equations that are more complex. Rather, it seems preferable to apply the adapted version of 

PIFM (see paragraphs 4.2.2.3.2 and 4.5). The resulting interaction curve is compared to the MNA 

results in Figure 4-143. 

 

Figure 4-142: Stress distribution at plastic limit state – UPE200 under combined compression and 

major-axis bending – High axial force 

 

Figure 4-143 clearly shows that the adapted PIFM may predict well the complex interaction. Also, 

it is recalled that PIFM has been derived in reference (Kindmann et al. 1999b) based on 
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equilibrium conditions on the cross-section. Therefore, it respects the stress distribution at the 

plastic limit state discussed here before. Yet, as it is based on the mid-line model, PIFM cannot 

represent exactly the stress distribution obtained for high axial forces illustrated in Figure 4-143. 

Nevertheless, the adapted PIFM leads to very satisfactory results. 

 

Figure 4-143: UPE200 under combined compression and major-axis bending – Comparison between 

MNA and adapted PIFM 

 Conclusions 

In this section, two different interaction cases have been studied. First the rather complex load 

case of combined major-axis bending-shear force-axial force-bi-moment has been treated for the 

rather simple double symmetric I section. Then the “simple” interaction between axial force and 

major-axis bending has been studied for the rather complex U section. In both cases, it has been 

shown that analytically derived interaction equations are complex and difficult to apply in the 

practice. As practical engineers use more and more numerical tools, it may be considered that an 

analytical method implemented numerically is acceptable for the practice as resistance model. 

The Partial Internal Force Method PIFM developed by Kindmann is derived analytically based on 

some key assumptions. Throughout the present Chapter, some of the assumptions have been 

shown to be too conservative (see stress induced bi-moments). Also, owing to the extensive 

experimental and numerical study on the plastic interaction including shear forces and torsional 

actions the PIFM is adapted to the observed “real” behaviour. The adaptions are summarized the 

following paragraph. Additionally, the proposed method is again validated with reference to the 

totality of the performed MNA simulations. 
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4.5 Proposed resistance model 

Throughout the present Chapter the plastic interaction has been studied for double and mono-

symmetric I sections as well as for U sections subject to complex load cases including applied 

torsion. Several interaction equations have been proposed that yield precise results. However, 

with increasing complexity of the specific case (cross-section and load combination) the 

interaction equations became also more complex. Consequently, it did not seem straightforward 

to develop interaction equations that cover all possible cases. Rather, it has been shown that an 

adaption of the PIFM method proposed by Kindmann may lead to safe-sided and economical 

results. The introduced adaptions are summarized hereafter: 

• The stress induced bi-moment that is, in some cases, necessary for the complete 

yielding of cross-section is determined iteratively. 

• The influence of the fillets on the cross-section resistance is considered. The fillets 

are used to carry internal forces and moments in the following order of priority: 

1. Major-axis bending moment 

2. Minor axis bending moment 

3. Axial force 

Consequently, a completely continuous interaction space is ensured. 

• The interaction between the shear force Vy and the other internal forces and 

moments is neglected. 

• The interaction between the shear force Vz and the other internal forces is adapted 

to the results of the experimental and numerical studies performed in this Chapter: 

1. A cut-off limit equal to 0,5Vz,pl is taken into account. 

2. The shear area is equal to the area of the web. 

3. If the shear force exceeds the cut-off limit, the yield stress of the web is 

reduced by the factor ρ given in Eq. ( 4.6 ). 

Again, the importance of the stress induced bi-moment has to be highlighted. However, up to this 

point it has not been detailed how the stress induced bi-moment interact with an externally 

applied bi-moment in the framework of the adapted PIFM. In order to explain this problematic 

Figure 4-144 shows major-axis bending-bi-moment interaction diagram for UPE sections again. 
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Figure 4-144: Major-axis bending-bi-moment interaction diagram for UPE sections 

It should be recalled that a negative bi-moment (following the sign conventions used here) is 

necessary for the full yielding of the cross-section under major-axis bending only. Figure 4-145 

represents the results obtained for the UPE 200 section again as well as the interaction curve 

obtained with the originally proposed PIFM. 

 

Figure 4-145: Major-axis bending-bi-moment interaction diagram for UPE sections 

In Figure 4-145, it may be observed that the interaction behaviour is in general very well 

represented by PIFM. However, for low bi-moments considerable differences may be recognized, 

too. Obviously, the problem is that the original PIFM does not consider the stress induced bi-

moment. The MNA results clearly indicated that the major-axis bending moment is not reduced 

until the externally applied bi-moment Bext exceeds the value of the stress induced bi-moment 

(B < 0). For higher negative bi-moments the PIFM is in very good accordance to the numerically 

determined resistances. On the other side of the interaction diagram PIFM leads to a non-
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negligible strength reduction even for small bi-moments. So as to obtain a continuous interaction 

curve, it is considered that the stress induced bi-moment BSI influences the resistance even for 

small positive values of the externally applied bi-moment Bext. However, in case of high externally 

applied bi-moments the stress induced bi-moment has obviously no importance. Consequently, 

the value of Bext is modified for the calculation as follows: 

SI

pl

ext
extPIFMext B

B

B
BB 










−+= 1,  ( 4.126 ) 

 

Eq. ( 4.126 ) is applied if the stress induced bi-moment and the externally applied bi-moment are 

of opposite sign. If both are of the same sign the bi-moment Bext,PIFM is determined by Eq. ( 4.127 ). 

SIPIFMext BB =,   if )()( SIext BabsBabs ≤  

extPIFMext BB =,   elsewise 
( 4.127 ) 

 

The value of Bext,PIFM is then used for the design with the adapted Partial Internal Force Method. 

Admittedly, the proposed procedure is of empirical and phenomenological nature. Nevertheless, 

it represents very well the interaction behaviour observed in the extensive numerical study 

presented throughout this Chapter. In order to validate the approach, the case of the UPE 200 

section subject to combined major-axis bending and bi-moments is considered again. The 

interaction curve obtained by the adapted PIFM as well as the MNA results are represented in 

Figure 4-146. This figure clearly shows that the adapted PIFM represents closely the interaction 

behaviour of the UPE 200 section obtained by the MNA simulations. 

 

Figure 4-146: Major-axis bending-bi-moment interaction curve – MNA simulations and design 
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In Figure 4-146 the proposed design approach has been validated for the example of a UPE 200 

sections under major-axis bending and a bi-moment. Hereafter, it is validated with reference to 

the totality of MNA simulations performed in the framework of this thesis. These simulations 

contain the calculations presented throughout this Chapter as well as the MNA calculations 

performed in Chapter 5 for the characterisation of the member behaviour. The simulations 

comprise a large domain including 29 sections presented in Figure 4-48 and Annex C. These 

sections have been subject to combined axial force, bi-axial bending, shear forces and torsion of 

variable relative importance leading to a total number of nearly 10000 MNA simulations. The 

scope of the numerical study is summarized in Table 4-31. It should be noted that the fabrication 

process, welded or hot-rolled, does not influence the plastic cross-section resistance but only the 

member resistance studied in Chapter 5. Also, one may remark that several sections given in Table 

4-31 are not compact (or of class 1 or class 2 in the terminology of EN 1993-1-1). Yet, as the MNA 

simulations performed to characterize the plastic cross-section resistance do not consider second 

order effects, they also attain their plastic limit state in simple and combined loading. 
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Table 4-31: Scope of the parametric study on plastic cross-section resistance 

Cross-section 

Combination of internal forces and moments 

My 

Vz 
Mz 

Vy 

My 

Vz 

B 

Mz 
Vy 
B 

My 
Mz 

My 
Mz 
B 

My 

Vz 

Mz 
B 

My 

Mz 
N 

My 

Mz 

Vz 
N 

My 

Mz 

Vz 
B 

My 

Mz 

Vz 
N 
B 

HEAA 1000 x x          
HEAA 800 x x x x x x x x x x x 

IPE 600 x x x x        
IPE 500 x x x x x x x x x x x 
IPE 360 x x x x        
HEA 280 x x x x        
HEB 220 x x x x        
HEB 200 x x x x x x x x x x x 
HEA 100 x  x         
HEM 100  x  x        

HR 290.3.300.141     x x  x   x 
HR 500.4.300.201 x x x x x x x x x x x 
HR 770.5.400.171 x x x x x x x x x x x 

W 1330.10.280.152 x x x x x x x x x x x 
W 850 5,5.300.122     x x  x   x 
W 850.5,5.200.142     x x  x   x 
W 650.5.180.102 x x x x x x x x x x x 

IMS 1500.12.300.25.262,1.253 - 
ψmono = 0,2 

x           

IMS 1500.12.300.25.168,3.253 - 
ψmono = 0,7 

x           

IMS 1500.12.300.253 − ψmono = 1,0 x           
IMS 600.12.220.19.192,2.193 - 

ψmono = 0,2 
x x x x        

IMS 600.12.220.19.123,4.193 - 
ψmono = 0,7 

x x x x        

IMS 600.12.220.19.51,3.193 - 
ψmono = 0,975 

x x x x        

IMS 600.12.220.193 - ψmono = 1,0 x           
IMS 500.10,2.200.16.125.163 - 

ψmono = 0,61 
x x x x x x x x x x x 

IMS 500.10,2.200.16.75.163 - 
ψmono = 0,9 

x x x x x x x x x x x 

IMS 200.9.200.15.150.153 - 
ψ = 0,41 

x x x x x x x x x x x 

IMS 200.9.200.15.125.153 - 
ψmono = 0,61 

x x x x x x x x x x x 

IMS 96.5.100.8.87.83 - ψmono = 0,2 x x x x        

IMS 96.5.100.8.56.83 - ψmono = 0,7 x x x x        
IMS 96.5.100.8.23,3.83 - 

ψmono = 0,975 
x x x x        

IMS 96.5.100.83 - ψmono = 1,0 x           

UPE 80 x x x x x x x x x x x 
UPE 200 x x x x x x x x x x x 
UPE 360 x x x x x x x x x x x 

1Hot-rolled section with invented dimensions – HR h.tw.bf.tf 
2Welded section – W h.tw.bf.tf 
3Mono-symmetric I section – IMS h.tw.bfu.tfu.bfl.tfl 
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Figure 4-147 shows that the results are very satisfying. In case of high shear forces Vz, the results 

are slightly more safe-sided than the mean value as the plastic shear force resistance is limited to 

the shear force resistance of the web for all types of cross-section (hot-rolled and welded double 

symmetric I sections, mono-symmetric I sections and U sections). However, the maximum 

deviation on the safe side is only of approximatively 25%. This seems acceptable. Nevertheless, it 

should be noted that highly mono-symmetric cross-sections (ψmono = 0,975) are not considered in 

the following figure. For theses section the adapted PIFM may be up to 50% safe-sided as the 

assumptions concerning the plastic stress distribution are not valid anymore as the local warping 

resistance is mobilised. 

 

Figure 4-147: Comparison between MNA results and plastic resistance predicted by adapted PIFM 

It should be noted again, that the load amplification factor obtained with the adapted PIFM is 

based on the internal forces and moments calculated through MNA simulations. 

Consequently, the results consider the real internal forces and moments acting in the member. 

Yet, it has been shown that the MNA simulations lead to the creation of a warping hinge for 

members subject to torsion and hence high Saint Venant’s torsional moments may arise along the 

member. Therefore, the plastic failure of the member is always linked to the interaction between 

the Saint-Venant’s torsional moment with the other internal forces and moments. It is recalled 

that if the internal forces and moments are determined by an elastic analysis, it is generally not 

necessary to consider the Saint Venant’s torsional moment in the verification of resistance of I and 

U sections. Indeed, the interaction including the bi-moment is always design relevant because the 

bi-moment is overestimated by this type of analysis as shown in Figure 4-148. The difference 

between Figure 4-148 and Figure 4-147 is the type of analysis performed to obtain the internal 

forces and moments. In Figure 4-147 the internal forces and moments are determined with plastic 

analysis (MNA) whereas they are determined with elastic analysis in Figure 4-148. Consequently, 

the high Saint-Venant’s torsional moments arising after the formation of the plastic warping hinge 

are not considered in Figure 4-148. Nonetheless, one may observe that the strength predictions 
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are generally safe-sided and even more conservative than the results shown in Figure 4-147. This 

observation has already been confirmed throughout paragraph 4.4.4 dedicated to plastic 

interaction including torsion. Again, the results of highly mono-symmetric I sections are not 

represented. Obviously, the results would be even more conservative in case of interaction 

including torsion. 

 

Figure 4-148: Comparison between MNA results and plastic resistance predicted by adapted PIFM 

based on elastically determined internal forces and moments 

Figure 4-148 shows that an elastic analysis may lead to rather conservative results for the plastic 

cross-section interaction that is a practical failure mode for short members of compact section. In 

these cases it could be economically interesting to account for the plastic torsional system reserve. 

Inversely, for longer members the effect of elasto-plastic instability, discussed in Chapter 5, leads 

to failure taking place before the plastic limit state is attained.  

The plastic torsional system reserve may obviously be accounted for in rigorous MNA simulations 

as performed in this Chapter. Nonetheless, in practice the software necessary to perform these 

type of analysis is not widespread. In paragraph 4.4.4.1 a two-step elastic analysis method has 

been proposed to take benefit of the plastic behaviour of members subject to torsion. It has 

however been shown that the Saint-Venant’s torsional moments start to increase over 

proportionally before the plastic warping hinge is completely created (yielding of the complete 

section at mid-span for example). As a simplified method, it is proposed here to consider that an 

applied torsional load is carried exclusively through Saint-Venant’s torsional moments when the 

internal forces and moments attain a load level corresponding to 80% of the plastic resistance of 

the most loaded cross-section. 

In order to illustrate this analysis procedure, the example treated in paragraph 4.4.4.1 is studied 

again: 
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• The member is of HEB 200 section (without fillets) subject to a constant major-

axis bending moment of 119,6 kNm and a torsional moment applied at mid-span 

of 21,8 kNm. 

• The length of the member is equal to 1,1 m. 

• The member possess fork end support. 

• The member is fabricated from steel S 235. 

The first order elastic analysis of this member leads to the following maximum internal forces and 

moments: 

My,Max = 119,6 kNm 

Mx,St.V,max = 1,577 kNm 

Mx,w,max = 10,9 kNm 

Mx,tot,max = 10,9 kNm 

Bmax = 5,41 kNm² 

The load factor linked to the plastic warping hinge (Rpl,LA) is obtained with the adapted PFIM: 

Rpl,LA = 0,777 

Therefore, it is considered that the torsional load is exclusively carried by Saint-Venant’s torsion 

starting from a load factor of 0,8 * 0,777 = 0,622. 

The static system of the member is transformed and a warping hinge is introduced at mid-span. 

The new member is loaded with a constant major-axis bending moment of 42,26 kNm ((1-

0,622)My,max) and a torsional moment of 8,25 kNm applied at mid-span (2*(1-0,622)Mx,tot,max). The 

member is analysed elastically a second time with these loads. 

The resulting internal forces and moments necessary to check the resistance of the member can 

be obtained as the sum of the internal forces and moments determined at the load level 

corresponding to the formation of the warping hinge and those determined by elastic analysis of 

the member possessing the warping hinge. Consequently, one obtains: 

My,Max = 119 kNm (= 0,622*119 kNm + 45,26 kNm) 

Mx,St.V,max = 5,11 kNm (= 0,622*1,577 kNm + 4,13 kNm) 

Mx,tot,max = 10,9 kNm (= 0,622*10,9 kNm + 4,13 kNm) 

It is recalled that neither the bi-moment nor the warping torsional moment, which act in the 

member at its plastic limit state, can be determined exactly.  

The plastic resistance of the member can be checked based on the internal forces and moments 

determined after the second calculation step. For the example, the plastic interaction of the 
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HEB 200 section subject to a Saint-Venant’s torsional moment of 5,11 kNm and a major-axis 

bending moment of 119 kNm is checked. The adapted PIFM is again applied to obtain: 

Rpl = 0,877 

The rigorous MNA analysis of this member leads to a load factor at the plastic limit state of 

Rpl,MNA = 0,94. 

The example studied above shows that the proposed procedure may be sufficiently precise for 

one example. Figure 4-149 shows a more global evaluation of the two-step analysis method 

applied to members of double symmetric I and U section subject a combination of internal forces 

and moments including torsion. The procedure is not applied to members of mono-symmetric 

section due to the effect of local warping. Also, members failing predominantly by the shear force 

Vz are not studied as they do not possess a significant plastic torsional system reserve. Figure 

4-149 indicates that the proposed two-step analysis procedure may be globally satisfactory. 

Indeed, the obtained results are comparable to those represented in Figure 4-147 (the internal 

forces and moments are obtained by MNA). Figure 4-150 shows a statistical evaluation of the two-

step elastic analysis method in order to quantify its accuracy further on. 

 

Figure 4-149: Comparison between MNA results and plastic resistance predicted by adapted PIFM 

based on two-step elastic analysis 

In Figure 4-150, one may observe that the number of unsafe results is rather low and that the 

obtained strength predictions are very precise for the majority of cases. Indeed, the strength 

predictions attains between 0,8 and 1,0 of the numerically obtained resistance for 

approximatively 85% of the studied cases. Also, the proposed method is obviously much more 

precise than the design method based on a simple elastic analysis (compare Figure 4-149 and 

Figure 4-148). 
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Figure 4-150 : Ratio between plastic load amplification factor obtained with two-step elastic 

analysis and plastic load amplification factor obtained with plastic analysis of the members 

 

4.6 General conclusions concerning the plastic cross-section resistance 

Chapter 4 has concerned the plastic cross-section resistance of double and mono-symmetric I 

sections as well as of U sections under complex combination of internal forces and moments 

including torsion. The literature review presented in paragraph 4.2 has shown that major 

international standards do not propose any comprehensive design approach for open sections 

subject to a combination between the axial force, bi-axial bending and torsion. Additionally, it has 

been shown that there are high discrepancies in the definition of the resistance to the shear force 

acting parallel to the web. In order to verify the shear force resistance predictions given in the 

three major standards AISC 360-10, AS 4100:1998 and Eurocode 3 Part 1-1 ten laboratory tests 

have been performed and presented in paragraph 4.3. These tests as well as supplementary 

numerical simulations revealed that: 

• The definition of the plastic shear force Vz,pl given in Eurocode 3 may be safely applied 

for compact sections (hw<<72ε/η) and sections fabricated from steel grades up to 

S355. 

• However, the shear resistance cannot be linked to a shear area exceeding the area of 

the web but it is directly associated with the level of strain hardening that may be 

attained by the cross-section. 

• For slender cross-sections (hw≈72ε/η) and cross-sections fabricated from steel 

grades higher than S355, especially the strength prediction of Eurocode 3 may become 

unsafe. 
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• Yet, as the strain hardening is of importance it should be accounted for. Comparisons 

between the Continuous Strength Method (explicitly considering strain hardening) 

and the numerical simulations showed good agreement. 

The laboratory tests have also been used to validate the numerical model that has been employed 

in paragraph 4.4 to study the interaction between, in particular, bending, shear forces and torsion. 

More than 10000 MNA simulations have been performed. For “simple” load combination 

analytical interaction formulae have been derived based on the MNA results. However, for more 

complex load cases and mono-symmetric sections, analytical interaction formulae, based on a 

presumed plastic stress distribution, may become very complex and difficult to use in the practice. 

Additionally, they are not consistent in all cases with the real physical interaction behaviour of the 

sections. Therefore, it seemed more convenient to adapt the Partial Internal Force Method PIFM 

to the results obtained through the laboratory tests and those obtained by the numerical 

simulations. In particular the following ameliorations have been introduced: 

• The stress induced bi-moment, in some cases necessary for the complete yielding 

of the cross-section, is accounted for. 

• The influence of the fillets is considered. 

• The PIFM strength predictions are adapted to the real interaction behaviour; in 

particular the cut-off limits observed in the MNA simulations are introduced. 

In order to predict the strength of members reliably in the whole slenderness range, it was 

absolutely necessary to study the plastic cross-section resistance as it represents the ultimate 

resistance of short members (of compact cross-section) not sensitive to member instability and 

member second order effects. The following Chapter concerns the resistance of longer specimen 

whose resistance is reduced due to the effect of member instability. 
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5.1 Introduction 

Figure 5-1 shows again the ultimate resistance curve describing the general behaviour of an 

arbitrary member subject to an arbitrary combination of internal forces. The plastic resistance of 

short members not sensitive to member instability has been studied in Chapter 4 and a design 

approach has been proposed. In Chapter 5, the member resistance is studied and a resistance 

model is proposed covering double symmetric and mono-symmetric I sections as well as U 

sections. The resistance model is based on an extensive numerical study presented in paragraph 

5.6. This study is performed with the numerical model presented and validated in Chapter 3. It is 

recalled that it has been shown that the member resistance can be evaluated with the “Shell” 

model whereas the plastic section resistance has been studied with a “Solid” model in order to 

take accurately into account the possible influence of the fillets. 

 

Figure 5-1: Ultimate resistance curve of an arbitrary member subject to an arbitrary combination of 

loads 

So as to obtain reliable numerical results, the geometrical and material imperfections that highly 

influence the member resistance should be accounted for. The real physical imperfections are of 

random nature and cannot be reproduced in a parametric study. Consequently, it is absolutely 

necessary to replace the random imperfections by equivalent calculation imperfections that 

reproduce safe-sided strength predications. However, the strength prediction should not be non-

economic. Therefore, the calculation imperfections should only be as severe as necessary. Hence, 

before the parametric study leading to the resistance model is performed, the influence of 

assumed calculation imperfections is studied in paragraph 5.2. Additionally, this paragraph 

presents a study on the influence of loading sequence. Indeed, it is not possible to justify a priory 

that a proportional increase of the loads leads to the same ultimate resistance as a sequential 

loading increase (for example: the member is loaded by a bending moment first and a torsional 

moment is applied in a second load step). As the numerical model is used in selected cases to 

highlight problems and inconsistencies linked to design models proposed in the past, the 
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calibration of the numerical model has to be done before the proposals on the design of members 

subject to combined axial force, bending and torsion are discussed in detail in paragraph 5.4. 

Paragraph 5.5 then presents a theoretical study addressing the elastic critical loads and second 

order equilibrium of members with open cross-section. This study is performed in order to obtain 

a theoretical background on the behaviour of members with open cross-sections subject to an 

arbitrary combination of internal forces and moments. The theoretical basis obtained in 

paragraph 5.5 is then used to develop the resistance model in the last paragraph of this Chapter. 

It is recalled that one of the objectives of this thesis is the development of a simple design method 

that may be easily accepted in the practice. This simple design method should therefore not 

significantly change the habit of practical engineers and consequently an extension of the well 

accepted Eurocode 3 Part 1-1 interaction equations adressing member stability is intended. Yet, 

it has to be noted that these interaction equations possess inherent limitations and 

approximations leading to a certain scatter of results even in their initial field of application (in 

particular members subject to combined axial force and bi-axial bending - see paragraph 5.3). A 

simple extension of these interaction equations to an even more complex load case including 

torsion is therefore suceptible to increase the scatter of results and it may lead to less precise 

results. Yet, this is explicitely accepted here in order to propose a simple and safe design method. 

Nonetheless, reasons leading to an increased scatter are discussed and quantified in paragraph 

5.6. Additionally to the extension of the Eurocode 3 Part 1-1 interaction equations, a second 

design method based on the OIC format is proposed in the last part of this thesis with the objective 

to eliminate some of the reasons linked to the limited precision of the extended interaction 

equations. However, the proposed OIC is only developed for double symmetric I sections. 
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5.2 Numerical study – Particular modelling aspects 

5.2.1 Influence of assumed imperfections on the ultimate member resistance 

 General 

In order to predict the ultimate resistance of members by means of numerical simulations (GMNIA 

– geometric and material non-linear analysis with imperfection), it is indispensable to realistically 

assume physical imperfections of the studied member. It is possible to distinguish between 

geometric imperfections, i.e. initial member/plate out-of-straightness, and material imperfection, 

i.e. residual stresses. Especially, for double symmetric I sections residual stress distributions are 

well known and typical stress distributions are accepted for long time (see paragraph 5.2.1.2 and 

references (Tebedge 1973), (Young 1975), (ECCS 1976), (ECCS 1984)). Yet, for welded double 

symmetric I sections research is going on up to present days so as to account realistically for the 

influence of the fabrication process (Thiébaud 2014). Moreover, to the author’s knowledge no 

results for the residual stress pattern of hot-rolled U sections have been published so far. This lack 

of information for U sections should therefore be closed in order to reliably simulate the 

behaviour of U-shaped members. Additionally, it is shown in paragraph 5.2.1.6 that there is certain 

lack of knowledge concerning the equivalent geometric imperfection to be used when U-shaped 

members are analysed. 

In any case, it is indispensable to ensure that the assumed geometric imperfection represent the 

real behaviour of the physical member. Hence, it seems inevitable to study the influence of 

assumed imperfections on the ultimate resistance in detail. It is highlighted that existing 

recommendations for I-shaped members may not be applied directly to U-shaped members. 

 Residual stresses for double symmetric I sections 

Due to the fabrication process, steel sections are subject to an initial state of stresses. These 

stresses, generally referred to as residual stresses, are auto-equilibrated and depend essentially 

on the fabrication process itself, the form of the section and post fabrication heat treatment. Post 

fabrication heat treatment can highly reduce the amount of residual stresses. However, members 

used for buildings are generally not treated with the objective to reduce residual stresses. 

Therefore, the potential beneficial effect of heat treatment is not considered in the following. 

For hot-rolled I sections basically two shapes of distribution of residual stresses may be found in 

the literature as show in Figure 5-2: the triangular shape and the parabolic shape (see references 

(Young 1975), (ECCS 1976), (ECCS 1984), (Lindner et al. 1998)). The amplitude of the residual 

stresses is generally fixed depending on the section geometry. In (ECCS 1984) the triangular shape 

of Figure 5-2a) is proposed. The lower value of 0,3fy is applicable to sections for which the ratio 

between the height of the section and the width of the flanges exceeds 1,2. A more complex 

parabolic shape has been proposed in (Young 1975) and adopted in (ECCS 1976) as shown in 

Figure 5-2b). Similar patterns are proposed in (Lindner  et al. 1998) and (Boissonnade 2012). The 

distribution of residual stresses used in this last reference is given in Figure 5-3. 
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a) b) 

Figure 5-2: Possible distributions for residual stresses of I sections a) (ECCS 1984) and b) 

(Young 1975) 

 

 

Figure 5-3: Possible distributions for residual stresses of I sections (Boissonnade et al. 2012) 

The residual stress patterns proposed in Figure 5-3 and Figure 5-2b) are similar. However, 

depending on the form of the section the amplitudes of the maximum stresses may be different. 

For example, based on the geometry of an IPE 500 section, the stresses σc1, σc2 and σT used in 

(Young 1975) are equal to: 

σC1 = -62,4 MPa 

σC2 = -212 MPa 

σT = 145 MPa 

In order to evaluate the influence of the residual stress pattern on the ultimate resistance, it is 

proposed to study a member of IPE 500 sections made of S 235 and subject to constant major-axis 

bending. It should be noted that the residual stresses proposed in (Young 1975) (see above) are 

neither auto-equilibrated over the section nor over the plates. Additionally, the amplitudes of the 
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residual stresses (compression and tension) appear to be higher than measured in the past (see 

(Tebedge et al. 1974) – and paragraph 5.2.1.5). The ultimate resistance factor obtained for the 

three different residual stress shapes are given in Figure 5-4.  

 

 

Figure 5-4: Ultimate resistance depending on the distribution of residual stresses for IPE 500 

In Figure 5-4, one can observe that the results obtained on the basis of the triangular shape are 

practically identical with the results obtained based on the parabolic shape proposed in 

(Boissonnade 2012). Conversely, the use of the parabolic residual stress pattern proposed in 

(Young 1975) leads to more favourable results. As the amplitude of tensile stresses in the flanges 

is higher than for the other proposals this finding does not seem surprising. In fact, the ultimate 

resistance related to lateral instability of a member depends highly on its lateral stiffness. This 

lateral stiffnes is reduced due to the yielding of the compressed flange. Thanks to higher tensile 

residual stresses the lateral stiffness of the member possessing the residual stress pattern 

proposed in (Young 1975) is less reduced for the same applied bending moment. Consequently, it 

is understandable that this member obtains the highest ultimate resistance. 

However, as stated above, measurements imply that this residual stress pattern is too favourable. 

Therefore, the triangular residual stress pattern is used for numerical studies of hot-rolled 

sections as proposed in (ECCS 1984). 

For welded sections one may distinguish between sections fabricated from hot-rolled or flame cut 

plates. Depending on the fabrication process of the plates, two different shapes can be found in 

the literature as shown in Figure 5-5 and Figure 5-6. 
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 Flange  Web  

a1 0,075bf 0,075(h-2tf) 

a2 0,125bf 0,125(h-2tf) 

Figure 5-5: Residual stress distribution for welded sections made of rolled plates (ECCS 1984) 

 

 

 

 Flange Web 

a1 bf/20 (h-2tf)/10 

a2 9bf/20 8(h-2tf)/10 

a3 9bf/40 - 

Figure 5-6: Residual stress distribution for welded sections made of flame cut plates 

(Chacon et al. 2009) 

Figure 5-7 shows how the residual stress pattern for welded profiles influences their ultimate 

resistance. Again, an IPE 500 section is studied. Yet, it is supposed to be subject to the welded 

residual stress patterns. 

It can be seen that the ultimate resistance of members is generally higher if the section is 

fabricated from flame cut plates. For this example the difference attains 16% for a slenderness of 

1,0. As the amplitude of the residual stresses is less than for sections made of hot-rolled plates, 

this result is not surprising. Also, it can be observed that the ultimate resistance curve of the 

member made of flame cut plates crosses the Euler curve at a slenderness of about 1,6 (member 

length is 990 cm). Obviously, this slenderness is rather high, but it can be considered at the upper 

bound of the practical range. For this case the load displacement curves are given in Figure 5-8 to 

Figure 5-10. It can be seen that the displacements and the torsional twist are not out of practical 

limits. 
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Up to date the favourable influence of the residual stress pattern for flame cut plates is not 

accounted for in the Eurocode provisions. However, it appears that the gain of resistance may be 

non-negligible at least in some cases. A larger study would be necessary to confirm the results and 

to propose an amelioration of the current provisions. Yet, this study is not performed in the frame 

work of the present thesis. 

 

Figure 5-7: Influence of residual stress pattern on the ultimate resistance of welded sections 

 

Figure 5-8: Load – Lateral displacement curve for the member made of flame cut plates at a 

slenderness of 1,6 
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Figure 5-9: Load – Vertical displacement curve for the member made of flame cut plates at a 

slenderness of 1,6 

 

Figure 5-10: Load – Torsional twist curve for the member made of flame cut plates at a slenderness 

of 1,6 

 Residual stresses for welded mono-symmetric I sections 

In this paragraph the residual stress pattern of welded mono-symmetric I sections is of interest. 

To the authors knowledge neither physical measurements nor numerical simulations concerning 

the residual stress distribution of mono-symmetric I sections have been published up to date. So 

as to obtain a realistic residual stress distribution it might be envisaged to perform thermo-

mecanical analyses as done for U-shaped members in paragraph 5.2.1.5.3. Yet, it seems that the 

simulation of the welding process is even more delicate than the simulation of the cooling of hot-

rolled members. Obviously, simple cooling of a steel member is a much simpler process than 
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the residual stress pattern numerically on the basis of the residual stress distribution for welded 

sections fabricated from hot-rolled plates as represented in Figure 5-11. The adaption concerns 

the width of a1 and a2 at the lower flange and the lower part of the web. 

 

 

 a1 a2 
Upper 
Flange  

0,075bf,sup 0,125bf,sup 

Lower 
Flange 

0,075bf,inf 0,125bf,inf 

Web 0,075(h-2tf) 0,125(h-2tf) 

Figure 5-11 : Assumed residual stress distribution for welded mono-symmetric I sections 

An auto-equilibrated stress distribution is then calculated iteratively based on the finite (shell) 

element model used in the framework of this thesis. The calculation is performed as long as the 

equilibrium conditions represented in Eqs. ( 5.1 ) to ( 5.4 ) are not respected.  

∫ == 0dAN σ  ( 5.1 ) 

∫ == 0zdAM y σ  ( 5.2 ) 

∫ == 0ydAM z σ  ( 5.3 ) 

∫ == 0dAB σω  ( 5.4 ) 

 

In Figure 5-12a) the results of this procedure are represented for a welded mono-symmetric 

section section W478.10,2.200.16.125.16 (W.hw.tw,bf,sup.tf,sup.bf,inf.tf,inf) fabricated from S235. The 

residual stress distribution is represented for a similar welded double symmetric section 

W478.10,2.200.16. For both members the residual stresses are symmetrical about the z-axis. Yet, 

whereas the residual stresses are also distributed symmetrically about the y-axis for the double 

symmetric section, one may observe differences concerning the residual stresses in the mono-

symmetric I section. Indeed, one may observe that the width of the upper flange in tension is 

greater than in the lower part. Nonetheless, this difference is already partially imposed by the 

assumed residual stress distribution given in Figure 5-11. Also, one may observe that the 

amplitude of the tension residual stresses exceed the yield stress of 235 MPa. Yet, physically it 

seems questionable that the residual stresses exceed the yield stress of the steel but the applied 

procedure needs to increase the amplitude of the residual stresses to obtained an auto-

equilibrated distribution. 
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a) Welded mono-symmetric I section b) Welded double symmetric I section 

Figure 5-12 : Residual stress distribution for welded sections of hot-rolled plates 

Figure 5-13 represenst the deformed shape of the member at the end of the applied procedure. If 

the deformed shape is shown in “true scale” the displcaments are not visible. Only after an 

amplification by a factor of 2200, the displacements can be observed. They are concentrated at 

the member ends and only of local nature. One may therefore conclude that a global equilibrium 

is respected. 
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a) Deformed shape – true scale 

 

b) Deformed shape – amplified by factor 2200 

 

Figure 5-13: Derfomed shape of the member with residual stresses 

In this paragraph the residual stress distribution for welded mono-symmetric I sections is studied. 

A simplified procedure is applied so as to obtain an auto-equilibrated distribution based on an 

assumed distribution similar to welded double symmetric I sections. Admittedly, this procedure 

is not fully consistent as an initial distribution is imposed. A more detailed study based on physical 

measurements and possibly numerical simulations would be desireable to get a clearer idea on 

residual stress pattern and the amplitudes. Yet, this study is not the priority of the present thesis 

and is therefore not performed in the following. 

 Equivalent geometric member imperfection for I sections 

Member geometric imperfections should account for the out-of-straightness of the member along 

its length. Due to the fabrication process the member is not perfectly straight. Generally, it has an 

initial in- and out-of-plane deflection and an initial twist. These “real” geometric imperfections are 

generally not known. In order to simulate the behaviour of the member realistically, a practical 

hypothesis for the form of the geometric imperfection has to be made. Most numerical studies are 

based on eigenmode affine imperfections with an amplitude of L/1000 as recommended in 

(CEN 2007a). For I-shaped members, one may find a detailed analysis that confirms these 

recommendations in reference (Boissonnade et al. 2012). Consequently, the parametric study is 

based on this assumption for the geometric member imperfection. 
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 Residual stresses for U sections 

5.2.1.5.1 Form and amplitude 

Physical tests on residual stresses could not be found in the literature for U sections. Previous 

research projects concerning stability of U sections are based on a residual stress distribution 

similar to I sections as in (FOSTA 2004) and (de Louw 2007). This distribution is represented in 

Figure 5-14. However, it can be shown that the residual stresses are not equilibrated. In fact, an 

axial force and a minor-axis bending moment results from this distribution. 

 

Figure 5-14: Distribution of residual stresses for U sections used in the literature (see (FOSTA 2004), 

(de Louw 2007)) 

Hereafter, the equilibrium conditions represented by Eqs. ( 5.1 ) to ( 5.4 )as well as the general 

form of the residual stress pattern shown in Figure 5-15 are used to determine an auto-

equilibrated residual stress distribution. Since U sections are generally symmetric about their 

major-axis, conditions ( 5.2 ) and ( 5.4 ) are automatically respected. Conversely, the conditions 

represented by Eqs. ( 5.1 ) and ( 5.3 ) depend on the residual stress pattern and is applied 

hereafter. Following Figure 5-15, the stresses along the web (only one half of the web is 

considered) can be expressed Eq. ( 5.5 ). 
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Figure 5-15: General form of residual stresses 
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The distribution of the residual stresses over the flange width can be expressed by: 
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Introducing Eqs. ( 5.5 ) and ( 5.6 ) in the conditions represented by Eqs. ( 5.1 ) and ( 5.3 ) results 

in: 
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Solving the integrations of Eqs. ( 5.7 ) and ( 5.8 ) and reorganising the resulting expressions lead 

to the value of the unknown x1 and x2 given in Eqs. ( 5.9 ) and ( 5.10 ). 
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One notices that the value of x2 does not depend on the cross-section dimensions and that it is 

equal to the value used in Figure 5-14. However, the value of x1 depends on the cross-section 

dimensions and is only equal to the value of Figure 5-14, if the product btf is equal to 0,74hwtw. 

The following table gives the value of x1 for various U sections. 

Table 5-1: Amplitude of residual stresses depending on the cross-section 

Section btf/hwtw x1 

UPE80 1,326 -2,326 

UPE120 0,923 -1,923 

UPE160 0,858 -1,858 

UPE200 0,824 -1,824 

UPE270 0,704 -1,704 

UPE330 0,513 -1,513 

UPE400 0,421 -1,421 
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The value of x1 following Figure 5-14 is -1,74 and therefore corresponds to a medium sized U 

section. It should be noted that the values of x1 and x2 are non-dimensional and have to be scaled. 

The influence of the amplitude of the residual stresses is studied hereafter. 

5.2.1.5.2 Sensitivity study 

In the framework of the research project FOSTA P554, addressing the influence of torsion on the 

resistance of steel sections, several laboratory tests have been performed and documented in 

reference (FOSTA 2004). Next, laboratory tests on U-shaped members is utilized to calibrate the 

residual stress model. The tests were performed on a UPE 200 cross-sections loaded at mid-span. 

The tests are summarized in Table 5-2. One may note that an eccentricity of 68,5 mm corresponds 

to a load applied through the centroid of the flanges. The eccentricities of 18,5 mm to 38,5 mm 

correspond to loads applied in the vicinity of the web (distance between the shear centre and the 

web plane is 28,5 mm). 

Table 5-2: Tests performed on UPE 200 sections 

Name of 
the test 

Length of the 
member (mm) 

Yield stress 
(MPa) 

Lateral eccentricity of the 
force // shear centre 

(mm) 
Ultimate load (kN) 

BE-3-1 2800 409 68,5 43,0 

BE-3-22 2800 400 18,5 57,4 

BE-3-3 4000 392 38,5 31,8 

BE-3-41 4000 409 28,5 34,5 

BE-3-42 4000 389 68,5 30,4 

 

The tests are recalculated numerically based on measured geometric imperfections and four 

different amplitudes of the residual stresses. The residual stress at the intersection between the 

web and the flange for each residual stress model tested is equal to: 

• 0 MPa – without residual stresses 

• 35,25 MPa 

• 117,5 MPa 

• 235 MPa 

Figure 5-16 shows the ratio between the ultimate resistance obtained by the numerical 

simulations and the ultimate resistance obtained in the laboratory tests. One notices in particular 

that, surprisingly, increasing the amplitude of the residual stresses increases the ultimate 

resistance in all cases. 
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Figure 5-16: Comparison between ultimate resistance obtained through GMNIA to by physical tests 

In order to understand this behaviour, one should keep in mind the distribution of stresses due to 

the major-axis bending and the bi-moment, recalled in Figure 5-17 (see also Chapter 4). 

As can be seen in Figure 5-17 and Figure 5-15 the maximum compression residual stress is 

situated at the neutral axis of the section under combined major-axis bending and bi-moment (in 

the web). Additionally, the stresses due to major-axis bending are partially reduced by the 

residual stresses in the compressed flange and in the upper part of the web. The compression 

stresses are increased only in a small zone near the flange’s tip. Globally, the residual stresses 

decrease the stresses induced by the loading and consequently, if residual stresses are included 

into the analysis, the results become more favourable. 

  

a) Positive major-axis bending b) Positive bi-moment 

Figure 5-17: Distribution of axial stresses due to a) the major-axis bending moment and b) the bi-

moment 
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The results shown above may have convinced some authors to neglect residual stresses in order 

to avoid their favourable effect on the ultimate resistance (see for example (la Poutré 1999) and 

(Kalameya 2008)). However, as shown in Figure 5-18, the conclusion given above is not true for 

all load cases. In fact, in case of U sections subject to an axial force, the results show that 

considering residual stresses lead to a lower ultimate resistance. Obviously, the maximum 

residual compression stress situated in the centre of the web increases the compression stresses 

induced by the axial force. In case of U sections this superposition unfavourably affects the lateral 

stiffness of the member and therefore leads to a lower ultimate resistance (see paragraph 5.5.6.2). 

One may therefore conclude that the amplitude of the residual stresses cannot be chosen only by 

considering the least favourable value, as it depends on the loading situation. It should rather be 

calibrated with reference to physical tests and measurements of residual stresses. Unfortunately, 

to the author’s knowledge no residual stress measurements have been published up to now. In 

order to validate the residual stress model developed based on equilibrium conditions and 

comparison to physical tests further on, it is therefore proposed to simulate the cooling process 

of hot-rolled sections by a thermo-mechanical analysis in the following paragraph. 

 

Figure 5-18: Influence of the residual stress amplitude on the ultimate resistance of a member 

subject to compression 

 

5.2.1.5.3 Themo-mechanical simulations of the cooling process of hot-rolled sections 

So as to obtain the residual stress distribution for hot-rolled sections thermo-mechanical 

simulations are performed hereafter. For similar analysis, concerning residual stresses resulting 

from welding or flame cutting (see references (Li et al. 2012) and (Thiébaud 2014)), it has 

however been shown that the studied problem may be considered as uncoupled. Consequently, it 

is possible to treat the thermal and the mechanical analysis separately. Indeed, in a first step the 

temperature distribution over the cooling time and across the section is determined by a thermal 

analysis. This analysis is performed based on the thermal properties of steel defined in 

Eurocode 3 Part 1-2 (CEN 2005b), an emissivity ε of 0,55 and a convection coefficient h of 
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7 W/m²K. The thermal properties are represented in Figure 5-19. In a second step, the 

temperature history obtained at each node of the finite element model is introduced as nodal load 

into the mechanical model. 

 

 

Figure 5-19 : Thermal properties of steel following Eurocode 3 Part 1-2 

The values of the emissivity and the convection coefficient have been calibrated in order to obtain 

a temperature evolution close to measurements performed during the cooling process of a 

HEB 200 section published in references (Alpsten 1968) and (Alpsten 1972). The points of 

measurement are shown in Figure 5-20 and the obtained evolution of the temperature is given in 

Figure 5-21. 

 

Figure 5-20 : Points of temperature measurements as published in reference (Alpsten 1968) 
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Figure 5-21 : Evolution of the temperature during cooling of a HEB 200 section 

Figure 5-21 shows that the simulation is in good agreement with the measurements. Also, it may 

be noted that the temperature gradient through the section is highest in the first fifteen minutes 

of the cooling process. It is recalled that the residual stresses result from the temperature strains 

caused be the stress gradient over the section. Therefore, it appears that the first phase of cooling 

is most important for creation of the residual stresses. 

As mentioned, the second step of the calculation is purely mechanical based on temperature 

depending material properties. These material properties are represented in Figure 5-22. The 

curves have been determined by measurements and the results have been published in references 

(Alpsten 1968) and (Lee et al. 2012). 

 

Figure 5-22: Temperature depending mechanical properties of steel 

In order to validate the applied procedure for the determination of the residual stresses, the 

example of a double symmetric H section is studied first. The obtained results are compared to 

physical measurements published in reference (Alpsten 1972). 
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As the studied section is double symmetric, it is possible to perform the simulation on one quarter 

of a section. This quarter model is meshed with solid elements of type Solid 185 (from ANSYS 

element library). The finite element model is represented in Figure 5-23. The length of the model 

is equal to 4h. Due to symmetry conditions the vertical displacement is restrained at the bottom 

of the model, representing the mid-height of the physical section and lateral displacement is 

restrained at the outer face of the model representing the mid-plane of the web of the physical 

section. These boundary conditions are also represented schematically in Figure 5-23. 

Additionally, the axial displacement of the whole section is restrained on one member extremity. 

 
 

Figure 5-23: Quarter model of HEB200 section 

The residual stresses obtained with the FEM simulations are compared to those determined by 

Alpsten in Figure 5-24. Obviously, the agreement is very satisfying, both in terms of the amplitude 

and distribution of the residual stresses. Consequently, the procedure described here before, is 

used next to determine the residual stresses for hot-rolled U sections. 
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Figure 5-24: Residual stresses obtained by FEM simulation compared to residual stresses 

determined in (Alpsten 1972) 
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only at mid-height (but as before over the total length) as schematically represented in Figure 

5-25. 
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Figure 5-25: Boundary conditions for U section 

The results of the thermal simulation are represented in Figure 5-26. When the results are 

compared to the thermal analysis of the HEB section (see Figure 5-21), one may remark that the 

temperature difference between the tip of the flange and the fillet zone is highly reduced. Indeed, 

over the total time range, the temperature is nearly identical in Points 1 and 3 for the UPE 200 

section. This observation may be understood easily as the fillet zone is less insulated because the 

second part of the flange is missing compared to I sections. Consequently, the fillet zone is closer 

to the air and cools down as rapidly as the tip of the flange. The temperature gradient between 

Points 1 and 2 is similar to the case of I sections. 

 

Figure 5-26 : Evolution of the temperature during cooling for UPE 200 section 

In order to visualize the thermal results further on, Figure 5-27 and Figure 5-28 show the 

temperature distribution over the cross-section at 48,5s and 284s after the start of the cooling 
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Figure 5-27: Temperature distribution over UPE section at 48,5s – T in °C 

 

Figure 5-28: Temperature distribution over UPE section at 284s – T in °C 

Observing Figure 5-27 and Figure 5-28, it becomes obvious that the section cools down the 

slowest approximatively at the middle of the flange. The flange’s tip and the fillet zone cools faster. 

However, the temperature gradient over the flange is less pronounced as for I sections of similar 

shape. Since the web’s thickness is much less than the flange’s thickness (tw = 6 mm and 

tf = 11 mm for UPE 200), it is not surprising to observe that the web cools much faster than the 

flanges. 

The temperature history obtained by the thermal analysis is now introduced as nodal loads into 

the mechanical model. The residual stress distribution obtained at the end of the mechanical 

analysis is represented in Figure 5-29. It may be observed that the stress distribution is 

approximatively constant up to the middle of the flange. Then it decreases and the stresses 

become negative (compression) near the flange’s tip. Additionally, one may remark that the 

maximum tensile stress is not situated in the fillet zone but in the flange. This seems consistent 

with the results of the thermal analysis as the section cools down less rapidly at this point (see 

Figure 5-27). The variation of the residual stresses seem also to be slightly different than supposed 
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in paragraph 5.2.1.5.1. Indeed, they are constant over nearly half of the web and then vary linearly. 

This result may also be explained with reference to thermal analysis that shows homogenous 

cooling for the zones of the web that are far from the flange. Last, one should note that the 

maximum value of the tensile residual stress is approximatively equal to 80 MPa. The maximum 

compression stress is slightly higher and attains approximatively 105 MPa. 

 

Figure 5-29: Residual stress distribution for UPE 200 obtained by FEM simulation 

Last, the results determined for a more compact UPE 80 are represented in Figure 5-30. The 

distribution of the residual stresses over the flange is very similar to what has been obtained for 

the UPE 200 section. Conversely, the residual stresses vary over the total height of the web 

because of the proportion of the section. Indeed, the ratio between the web height and the flanges 

width is rather low compared to the UPE 200 section (1,6 compared to 2,5). Therefore, the 

temperature varies over the total height of web during cooling as represented in Figure 5-31 and 

Figure 5-32 whereas it attains a nearly constant value over half of the web for the UPE 200 section 

(see Figure 5-27 and Figure 5-28). 
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Figure 5-30: Residual stress distribution for UPE 80 obtained by FEM simulation 

 

 

Figure 5-31: Temperature distribution over UPE section at 43,5s – T in °C 
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Figure 5-32: Temperature distribution over UPE section at 187s – T in °C 

Regarding the results obtained for the two U sections studied here before, it may be concluded 

that the simplified residual stress distribution of paragraph 5.2.1.5.1 is not exactly identical to the 

finite element simulations. Indeed, the stresses do not vary linearly over the flange and the web.  

The influence of the distribution on the resistance of a U-shaped member is quantified based on 

the following three examples: 

• Member of UPE 200 section subject to constant major-axis bending (noted as 

UPE200_M); 

• Member of UPE 80 sections subject to constant major-axis bending (noted as 

UPE 80_M); 

• Member of UPE 80 section subject to an axial compression force (noted as 

UPE 80_N). 

All members are supposed to possess fork end supports. 

Figure 5-33 represents the ultimate resistance curves for the three examples and compares the 

results obtained based on residual stress obtained by the thermo-mechanical simulations (noted 

as _ResStrThermoMech) with the results obtained based on the residual stress model determined 

in paragraph 5.2.1.5.1 with a value of the residual stress at the intersection between the flanges 

and the web of 80 MPa (noted as _ResStrModel). It can be easily observed that, even if the residual 

stress model developed in paragraph 5.2.1.5.1 on the basis of equilibrium conditions is not exactly 

identical to the results obtained through the themo-mechanical simulations, the GMNIA 

simulations yield very close results for all three cases. One may therefore conclude that the 

simplified residual stress model can be applied to simulate the ultimate resistance of U-shaped 

members. This is done in the framework of this thesis. It would also be possible to use directly the 

residual stress pattern determined by the thermo-mechanical analysis. Nonetheless, this study 

has been performed in order to obtain general information on the distribution and amplitude of 

the residual stresses. A deeper investigation might be necessary to determine the residual stresses 
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more precisely based on the exact thermal conditions of the hot-rolling and cooling processus 

(including exact initial temperature, etc.). 

 

Figure 5-33: Ultimate resistance curve of UPE 200 subject to axial compression and major-axis 

bending 

 Equivalent geometric member imperfection for U sections 

5.2.1.6.1 Form and amplitude 

Several numerical studies concerning the stability of U-shaped members have been performed in 

the past as for example in (de Louw 2007), (la Poutrée 1999), (FOSTA 2004) and 

(Kalameya 2008). Even if the previous mentioned authors studied the same type of member, the 

applied geometric member imperfection differs from one author to the other. Table 5-3 

summarizes the geometric member imperfection used in the mentioned studies. Each of the 

authors claims to have used the form of the imperfection leading to a lower bound value of the 

resistance, i.e. that the chosen imperfection is safe-sided compared to other possible 

imperfections. As obviously no general agreement exists on the geometric member imperfection 

to be used for U-shaped members, it seems inevitable to check which assumption is valid. Various 

shapes of imperfection are studied hereafter. They are presented in Figure 5-34. 

Table 5-3: Geometric member imperfection used in previous studies 

Reference Form of the imperfection 
Amplitude of the 

imperfection 
Load case 
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(FOSTA 2004) 
and 
(de Louw 2007) 

Eigenmode affine in the positive 
direction (EM+) 

L/1000 My+Mx 

(la Poutrée 1999) 
Lateral imperfection directed to 

the flange’s tip (v+) 
L/1000 My+Mx 

(Kalameya 2008) 
Lateral imperfection directed to 

the flange’s web (v-) 
L/400 My+Mz+N 
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Figure 5-34: Possible forms of geometric member imperfection used for GMNIA 

The numerical simulations performed in the following do not include the residual stresses in 

order to quantify the sole effect of the geometric member imperfections. 

5.2.1.6.2 Sensitivity study 

5.2.1.6.2.1 Member subject major-axis bending 

First, the load case of constant major-axis bending is considered. The following comparisons are 

based on a member of UPE 200 section with fork supports at both ends. The amplitude of the 

imperfections is varied between L/2000 and L/500. Figure 5-35 to Figure 5-37 show the “ultimate 

resistance curves” representing the ratio between the bending moment at ultimate limit state and 

the plastic bending moment resistance. 

 

Figure 5-35: Ultimate resistance curve for imperfection amplitude of L/2000 
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Figure 5-36: Ultimate resistance curve for imperfection amplitude of L/1000 

 

 

Figure 5-37: Ultimate resistance curve for imperfection amplitude of L/500 
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distribution under major-axis bending is linked to a stress induced bi-moment (negative following 

the sign conventions used here). 

 

Figure 5-38: Elastic and plastic stress distribution and warping function for a UPE 200 section 

The influence of these resulting bi-moments, on the cross-section resistance has been discussed 

in Chapter 4. Here, Figure 5-35 to Figure 5-37 clearly show their influence on the resistance for 

the perfectly straight member. In fact, the stress induced bi-moment and the associated torsional 

rotation create out-of-plane second order effects leading to the observed reduction. It is also 

interesting to show the displacements at the ultimate limit state. Figure 5-39 shows this result for 

member possessing a lateral-torsional buckling slenderness of approximatively 1,0. As can be 

seen the member has mainly rotated about its longitudinal axis and, in a less important amount, 

laterally displaced. 

 

Figure 5-39: Displaced shape of the section at mid-span at the ultimate limit state for the perfectly 

straight member 

In order to fully understand the results shown in Figure 5-35 to Figure 5-37, it is also of interest 

to recall the stresses induced by the different internal moments and depending on the sense of the 

deformation. 
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My > 0 � w < 0 Mz > 0 � v < 0 B > 0 � f > 0  

a) b) c) d) 

Figure 5-40: Elastic stress distribution for a U section under a) major-axis bending, b) minor-axis 

bending and c) the bi-moment and d) resulting deformed shape 

It is recalled that compression stresses are defined as negative. Figure 5-40 shows that if all 

internal moments are positive: 

• The maximum (compression) normal stress results at the tip of the upper flange; 

• The stresses due to minor-axis bending and the bi-moment counterbalance at a 

certain degree at the upper flange; 

• The stresses due to major-axis bending and the bi-moment counterbalance at a 

certain degree along the web; 

• A positive bi-moment is associated with a positive torsional twist. 

Consequently, the displaced shape, represented in Figure 5-39 is consistent with the stress-

induced bi-moment (negative stress induced bi-moment generates negative torsional twist). 

In Figure 5-35 to Figure 5-37, it can be seen that the form of the ultimate resistance curves 

resulting from the imperfections v+, EM+ and f- are similar. Also, the resulting ultimate 

resistances for these imperfections are, for all values of the relative slenderness and amplitudes 

of the imperfection, less than the ultimate resistance of the perfectly straight member. As these 

imperfections amplify the effect of the stress induced bi-moment, this result is not astonishing. 

Moreover, by increasing the amplitude of the imperfection the difference with respect to the 

perfectly straight member increases, too. It should be noted that the absolute value of the 

imperfection also increases with the member slenderness (member length). 

The form of the ultimate resistance curves associated with imperfections f+, EM- and v- may be 

more surprising. It can be seen that, depending on their absolute amplitude, these imperfections 

may lead to higher or lower resistances than those obtained for the perfectly straight member and 

for the members subject to imperfections f-, EM+ and v+. In order to understand these results 
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Figure 5-39 and Figure 5-40 should be studied again. It may be observed that imperfections 

generating a positive torsional rotation (f+, EM- and v-) lead to a reduction of the torsional twist 

generated by the stress induced bi-moment. Hence, these imperfections may have a stabilizing 

effect. In order to illustrate this observation, it is interesting to compare the stress distribution 

and the deformed shape at the ultimate limit state for the case of the perfectly straight member 

and a member subject to an imperfection f+. Figure 5-41 and Figure 5-42 show the results for a 

member possessing a relative slenderness of 0,85. 

In Figure 5-42 one may observe that the deformed shape of the perfectly straight member is 

characterized by the in-plane displacement and a non-negligible torsional rotation. Contrariwise, 

it may be seen in Figure 5-41 that the imperfection f+ nearly completely counterbalance the effect 

of the stress induced bi-moment. Consequently, in this case the imperfection has a favourable 

effect on the behaviour of the member leading to a higher member resistance. 

 

 

a) b) 

Figure 5-41: a) Von Mises stress and b) deformed shape at mid span for the member of 2,9 m 

length subject to imperfection f+ of L/2000 
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a) b) 

Figure 5-42: a) Von Mises stress and b) deformed shape at mid span for the perfectly straight 

member of 2,9 m length 

Moreover, for higher absolute amplitudes, these imperfections may even lead to a greater strength 

reduction than the imperfections amplifying the effect of the stress induced bi-moments. This may 

again be explained based on the stress distribution and deformed shape obtained at the ultimate 

limit state. Figure 5-43 shows the result calculated for the imperfection f+ and an out-of-

straightness of the compressed flange of L/500. As in Figure 5-41 and Figure 5-42 the member 

length is 2,9 m. 

 

Figure 5-43: Von Mises stresses at mid span for the member of 2,9 m length subject to 

imperfection f+ of L/500 

It may be observed that the amplitude of the imperfection is high enough to counterbalance 

entirely the effect of the stress induced bi-moment and to reverse the torsional twist. In the chosen 

system the torsional twist is positive indicating a positive bi-moment. Also, the lateral 

displacement directed to the web indicates a positive minor-axis bending moment. Consequently, 
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the configuration represented in Figure 5-40 is obtained and the maximum compression stress is 

situated at the tip of the upper flange. Conversely, the maximum tension stress is obtained at the 

intersection between upper flange and the web in case of the perfectly straight member. It should 

be mentioned that positive minor-axis bending, as obtained for the configuration represented in 

Figure 5-40, has a negative effect on the (elastic) stability of U-shaped members as is shown in 

paragraph 5.5.6.2. Therefore, this member fails at a lower load level than the members subject to 

a negative minor-axis bending moment. 

Finally, it should be mentioned that the imperfections v- and EM- have less tendency to 

counterbalance the effect of the stress induced bi-moment than the imperfection f+ as they 

obviously have a smaller (EM-) torsional rotation component or no torsional rotation component 

at all (v-). 

One may summarize the results obtained for the case of constant major-axis bending, as follows: 

• Due to the stress induced bi-moment even the perfectly straight member suffers a 

reduction of its ultimate resistance; 

• Imperfections that possess displacement components directed in the same sense 

as the displacements created by the stress induced bi-moment (v+, EM+ and f-) 

lead always to ultimate resistances that are lower than the one obtained for the 

perfectly straight member; 

• Imperfections that possess displacement components directed in the opposite 

sense than the displacements created by the stress induced bi-moment (v-, EM- 

and f+) may lead to higher or lower ultimate resistances than the one obtained 

for the perfectly straight member depending on the absolute amplitude of the 

imperfection; 

• The obtained resistance based on the imperfection v-, EM- and f+ are higher than 

the ultimate resistance of the perfectly straight member, if they do not result in an 

unfavourable deformed shape (= unfavourable combination of My, Mz and B), i.e. if 

they do not entirely counterbalance the effect of the stress induced bi-moment; 

• If the imperfections v-, EM- and f+ generate a positive torsional twist and a lateral 

displacement directed to the web (positive minor-axis bending moment) at the 

ultimate limit state, they lead to resistances lower than those obtained for the 

perfectly straight member. 

5.2.1.6.2.2 Member subject to combination of major-axis bending and torsion 

Next, it is shown that the previous conclusions depend on the applied loads. We might now 

consider the case of a U-shaped member loaded by a vertical point load at mid-span applied at the 

intersection between the web and the upper flange. Consequently, the applied load induces a 

rotation in the negative direction (f-). The following figures give the ultimate resistance curves 

depending on the form of the imperfection and its amplitude for a member of UPE 200 section 

made of S235. 
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Figure 5-44: Ultimate resistance curve for imperfection amplitude of L/2000 

 

Figure 5-45: Ultimate resistance curve for imperfection amplitude of L/1000 
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Figure 5-46: Ultimate resistance curve for imperfection amplitude of L/500 

As before, Figure 5-44 to Figure 5-46 show that the curves associated with the different forms of 

imperfection move from each other with increasing amplitude. Also, it can be seen that the 

differences between the curves are higher for high values of the relative slenderness. Again, this 

can be explained based on the behaviour of the perfectly straight member. In fact, for small 

amplitudes of the applied geometric imperfection, the first order torsional twist created by the 

applied torsional moment (and – in a less important amount – by the stress induced bi-moment) 

predominates the behaviour of the member. The imperfections directed in the same direction as 

the first order torsional twist amplify the effect only by small amounts and the imperfections 

directed in the other sense stabilize the member only slightly. When the amplitude of the 

imperfection is increased, both effects, destabilizing and stabilizing, are amplified. Therefore, the 

curves move from each other. The same is true for higher values of the relative slenderness and 

hence longer members. In fact, as the torsional load is introduced by an eccentrically applied point 

load, the value of the torsional moment decreases for longer members (the point load necessary 

to attain the same value of the major-axis bending moment for longer members is lower than for 

short members). Additionally, it can be seen that the effect of a sole torsional imperfection is again 

more pronounced than the effect of an imperfection in form of lateral displacement or in form of 

the eigenmode. For a high amplitude of the imperfection f+ and a sufficiently high relative 

slenderness (in this case >1,2) and thus small values of torsional moments, the imperfection f+ 

may even fully counterbalance the applied torsional moment and lead to an unfavourable 

deformed shape (see also Figure 5-43). In this case the imperfection f+ becomes most 

unfavourable again. The previous observations lead to the following conclusions: 

• The applied torsional moment creates a first order torsional twist inducing second 

order effects and instability; 
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• The imperfections v-, EM- and f+ may be favourable, if they do not counterbalance 

entirely the first order displacements and the effect of the stress induced bi-

moment; 

• If the amplitude of the imperfections v-, EM- and f+ is high enough to 

counterbalance the first order displacements and the effect of the stress induced 

bi-moment fully, they are unfavourable as they then lead to unfavourable 

displacements and associated internal moments (see paragraph 5.2.1.6.2.1); 

• The imperfections v+, EM+ and f- are always unfavourable compared to the 

perfectly straight member, as they amplify the first order displacements; 

• The effect of a torsional imperfection is higher than the effect of lateral 

imperfection. 

Last, the following paragraph studies members subject to an axial compression force. 

5.2.1.6.2.3 Member subject to compression 

Hereafter, the influence of the form of the imperfection for a member subject to axial compression 

is evaluated. Again, the imperfection forms used in 5.2.1.6.2.1 and 5.2.1.6.2.2 are studied. 

Additionally, a pure vertical imperfection w- is tested. As before, members of UPE 200 section are 

studied. 

The results, represented in Figure 5-47 to Figure 5-49, show that, conversely to the load cases of 

pure major-axis bending and a combination of major-axis bending and torsion, the perfectly 

straight member follows the curve describing the theoretical behaviour (section resistance up to 

a relative slenderness of 1,0 and elastic buckling for higher values of the slenderness). Obviously, 

the load case of an axial compression force does not create stress induced bi-moments and 

associated torsional twist or any other effect susceptible to generate second order effects. 

The imperfection w- is the most favourable one. As the major-axis second moment of area Iy of the 

section equals approximatively 10 times the minor-axis second moment of area Iz, second order 

effects arising from in-plane displacements are much less important than the second order effects 

resulting from lateral displacements. 
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Figure 5-47: Ultimate resistance curve for imperfection amplitude of L/2000 

 

Figure 5-48: Ultimate resistance curve for imperfection amplitude of L/1000 
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Figure 5-49: Ultimate resistance curve for imperfection amplitude of L/500 

It can also be seen that the vertical imperfections w- leads to results close to the ultimate 

resistances obtained when a torsional imperfection is applied (the curves associated with f+ and 

f- are superposed). This can be explained on behalf of Figure 5-50 to Figure 5-52. In fact, all three 

imperfections lead to a similar deformed shape at the ultimate limit state that is characterized by 

a torsional rotation of the section. Also, one may observe that the stress distribution is similar. In 

fact, for both torsional imperfections one of the flanges tips (upper in case of f+ and lower in case 

of f-) and the intersection of the other flange with the web have yielded at mid-span. The 

imperfection w- leads to yielding at the intersection between the upper flange and the lower 

flange. This yielding seems to be more pronounced than in case of the torsional imperfection. 

Conversely, the lower flange’s tip stays elastic, even if the stresses are close to the yield strength. 

Additionally, it can be seen from Figure 5-51 and Figure 5-52 why the ultimate resistance curves 

associated with the imperfection f+ and f- literally overlay. In fact, both imperfections lead to 

(exactly) the same ultimate limit state, however symmetrically inversed. 
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Figure 5-50: von Mises stresses and deformed shape at the ULS for the member subject to 

imperfection w- 

 

Figure 5-51: von Mises stresses and deformed shape at the ULS for the member subject to 

imperfection f- 
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a)  b)  

Figure 5-52: von Mises stresses and deformed shape at the ULS for the member subject to 

imperfection f+ - a) view from above and b) view from below 

The ultimate resistance curves, represented in Figure 5-47 to Figure 5-49, also show that the effect 

of an imperfection v+ is not the same as the effect of the imperfection v-. In order to understand 

this difference, Figure 5-53 represents the stress distribution and the (amplified) deformed shape 

at the ultimate limit state for both forms of the imperfection for an amplitude of L/1000 and a 

member length of 2600 mm. Obviously, both imperfections lead to a failure characterized by 

lateral instability. In case of the imperfection v- a positive minor-axis bending moment, 

compressing the flanges tips, results from the displacements. It is shown in paragraph 5.5.6.2, that 

positive minor-axis bending has a destabilizing effect on the stability of U sections whereas 

negative minor-axis bending tends to stabilize the member. This effect explains the (rather 

important) difference between an applied positive respectively negative lateral imperfection. 

a) b) 

Figure 5-53: von Mises stresses and deformed shape at the ULS for the member subject to a) 

imperfection v+ and b) imperfection v- 

Last, it should be noted, that the ultimate resistance curves associated with the imperfections v+ 

and EM+ as well as v- and EM- overlay for a wide range of the relative slenderness. Only, for small 

values of the relative slenderness the results differ (compare especially v- and EM- in Figure 5-48 
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and Figure 5-49). For these short members the first eigenmode corresponds to a combination of 

vertical displacement and torsional rotation. For longer members the first eigenmode is 

characterized by a sole lateral displacement. Consequently, the applied imperfection EM+ and EM- 

are equal to the applied imperfection v+ and v-, respectively. 

The results presented in this paragraph lead to the conclusions that in case of axial compression: 

• The vertical imperfection leads to the highest ultimate resistance (apart from the 

perfectly straight member); 

• The lateral imperfections (v- and v+) are more unfavourable than only torsional 

imperfection; 

• The lateral imperfection v- creating a positive minor-axis bending moment leads 

to the most unfavourable result. 

Also, through the entire paragraph 5.2.1.6.2 it has been shown that there is no single form of the 

geometric imperfection that always leads to a lower bound for the ultimate resistance. Sometimes 

it is argued that a geometric imperfection based on the deformation of the perfect structure at 

ultimate limit state leads to the most unfavourable result (Peer et al. 2015). However, in 

paragraphs 5.2.1.6.2.1 and 5.2.1.6.2.2, one may observe that this is not always true. In fact, it has 

been shown that an imperfection directed in the opposite direction to the first order 

displacements under the applied loads can lead to a lower ultimate resistance than other 

imperfections as it creates the most unfavourable combination of internal forces and moments. 

Consequently, in order to determine the most critical form of geometric imperfection, it would be 

necessary to first calculate (elastically) the internal forces and moments under the applied loads 

and different forms of the geometric imperfection and then determine which geometric 

imperfection creates the most unfavourable combination of internal forces and moments. 

However, even this procedure may not generally lead to a certain lower bound for ultimate 

resistance as, for hyperstatic structures, a redistribution of internal forces due to plasticity may 

lead to more favourable results than expected. One may also argue that the real geometric 

imperfection is completely independent from the applied loads and that the equivalent 

geometrical imperfection is a concept to reproduce realistic ultimate resistances. Based on the 

previous study it seems therefore justified to perform GMNIA calculations of U-shaped members 

based on an equivalent geometric member imperfection affine to the first member eigenmode 

provided that it is directed in the same sense as the first order displacements. An amplitude of 

L/1000 seems justified. If the first member eigenmode is not directed in the same sense as the 

first order displacements, an amplitude of –L/1000 should be applied. 
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 Equivalent geometric plate imperfection 

5.2.1.7.1 Form and amplitude 

As for the member itself, its constituting plates possess a certain degree of out of straightness. The 

influence of this geometric imperfection should be accounted for in GMNIA simulations in order 

to capture the behaviour of the member at its section level (local instability). As these 

imperfections concern the plates not the member or the cross-section as a whole the obtained 

conclusions does not depend on the form of the cross-section (I- or U-shaped section). Therefore, 

the study is based on I sections hereafter. 

Different recommendations concerning the inclusion of local geometric imperfection exist. 

Eurocode 3 Part 1-5 (CEN 2007a) recommends scaling the local buckling eigenmode to 80% of 

the fabrication tolerances. The resulting amplitudes are given in Table 5-4. 

Table 5-4: Local geometric imperfection based on fabrication tolerances 
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For sake of simplicity reference (CEN 2007a) recommends in the same section the values of Table 

5-5. 

Table 5-5: Simplified local geometric imperfection 
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However, some doubts concerning the safe-sided character of eigenmode affine imperfection may 

arise if one argues in the following way: Local buckling modes may be concentrated in the zone of 

maximum loading. If a member is subject to end moments only, the maximum loading lies near a 

restraint. Yet, if the member is slender enough, it may also be sensitive to global (member) 

buckling. Therefore, the maximum amplitude of the displacement at the ultimate limit state of the 
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member is in the span. If the local imperfection only affects the zone near the restraints, the critical 

section, leading to the failure of the member, may not be affected by the local imperfection. In 

order to avoid this shortcoming, Boissonnade proposes to include local imperfections 

independently from the local eigenmode by modifying the node coordinates of the FEM model 

(Boissonnade et al. 2012). This author introduced a sine shaped local imperfection with a wave 

length lwave/2 equal to the depth of the considered plate (bf/2 for the flanges and hw for the web) 

with an amplitude of lwave/2 /400. This approach has been investigated further on in (Nseir 2015). 

This last author investigated, amongst others, whether the wave length should be chosen 

independently for the flange and the web, or if the local imperfection of the web and the flange 

should possess the same wave length. The numerical simulations performed in (Nseir 2015) 

permitted the conclusion that the use of a common wavelength equal to the medium width of the 

flange and the web leads to reasonable results. As this study only concerned closed sections, these 

conclusions are validated in the next paragraph for open sections.  

5.2.1.7.2 Sensitivity study 

Hereafter four different configurations for the application of the local imperfection are studied: 

• The half wave lengths of the sine shaped local imperfection are independent and equal to 

approximately the panel width “a” (height of the web or width of half a flange for I sections 

– noted as “Independent wave lengths” hereafter) 

• The half wave lengths are equal to hw for both, the web and the flanges (noted as “Wave 

length of web” hereafter) 

• The half wave lengths are equal to bf/2 for both, the web and the flanges (noted as “Wave 

length of flange” hereafter) 

• The half wave lengths are equal to the average value of the independent wave lengths of 

the first configuration as represented by Eq. ( 5.11 ) (noted as “Medium wavelength” 

hereafter). 

2
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2/ 







+

−
= w

wf

wave h
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l  ( 5.11 ) 

For all configurations the amplitude is chosen to be the panel width divided by 200 as proposed 

in Eurocode 3 Part 1-5. 

The geometries of the eighteen (nine sections per load case) studied sections are given in Table 

5-6. The dimensions of the different plates are chosen so that sections 1 to 3 are class 4 sections 

due to their web, sections 4 to 6 are class 4 sections due to their flanges and sections 6 to 9 are 

class 4 sections due to web and flanges (section classes according to Eurocode 3 Part 1-1 

(CEN 2005a)). The results are given in Figure 5-54 and Figure 5-55. 
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Table 5-6: Geometry of studied sections 

Section Geometry for load case My Geometry for load case N 

1 

hw (mm) 475 hw (mm) 475 
tw (mm) 3,83 tw (mm) 11,3 
bf (mm) 200 bf (mm) 200 
tf (mm) 12,5 tf (mm) 12,5 

2 

hw (mm) 475 hw (mm) 475 
tw (mm) 3,17 tw (mm) 9,5 
bf (mm) 200 bf (mm) 200 
tf (mm) 12,5 tf (mm) 12,5 

3 

hw (mm) 475 hw (mm) 475 
tw (mm) 2,38 tw (mm) 6,33 
bf (mm) 200 bf (mm) 200 
tf (mm) 12,5 tf (mm) 12,5 

4 

hw (mm) 473,0 hw (mm) 486,8 
tw (mm) 7,00 tw (mm) 15 
bf (mm) 200 bf (mm) 200 
tf (mm) 6,89 tf (mm) 6,61 

5 

hw (mm) 476,1 hw (mm) 489,7 
tw (mm) 7,00 tw (mm) 15 
bf (mm) 200 bf (mm) 200 
tf (mm) 5,36 tf (mm) 5,14 

6 

hw (mm) 479,1 hw (mm) 492,6 
tw (mm) 7,00 tw (mm) 15 
bf (mm) 200 bf (mm) 200 
tf (mm) 3,86 tf (mm) 3,7 

7 

hw (mm) 486,0 hw (mm) 486,5 
tw (mm) 3,83 tw (mm) 11,3 
bf (mm) 200 bf (mm) 200 
tf (mm) 7,00 tf (mm) 6,74 

8 

hw (mm) 489,1 hw (mm) 489,4 
tw (mm) 3,17 tw (mm) 9,5 
bf (mm) 200 bf (mm) 200 
tf (mm) 5,47 tf (mm) 5,29 

9 

hw (mm) 492,1 hw (mm) 492,3 
tw (mm) 2,38 tw (mm) 6,33 
bf (mm) 200 bf (mm) 200 
tf (mm) 3,95 tf (mm) 3,87 

 

The resistance predicted by the effective width method proposed in of Eurocode 3 Part 1-5 is 

chosen as reference results. Figure 5-54 and Figure 5-55 show that, depending on the chosen 

configuration for the local imperfection the ultimate resistance may vary of about 5%. Also, one 

notices that the Eurocode provisions are not always safe-sided compared to the numerical 

calculation. Especially, in case of compression, the Eurocode effective width method (EWM) is 

unsafe in the majority of cases and it is more unsafe for sections situated at the limit between class 

3 and class 4 (sections 1, 4 and 7). However, it is recalled that the numerical calculation performed 

here cannot be used to conclude on the safe-sided nature of the EWM as the results of the 
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numerical calculation depend on the applied hypotheses. Only an extensive numerical study 

accompanied by physical tests would yield satisfying conclusions. 

Also, concerning the choice of an equivalent geometric imperfection, it seems difficulty to draw a 

general conclusion. However, it can be observed that using independent wavelengths and the 

wavelength of the web for both, the web and the flange, leads in the majority of the cases to the 

most favourable results. This tendency may be explained as follows: When using independent 

wavelengths the interaction between flange and web local buckling is disturbed by the difference 

of the wavelengths. In order to illustrate this statement Figure 5-56 shows the displacement 

(scaling factor 15) of section 8 subject to major-axis bending. It can be observed that the two 

wavelengths interference for the local buckling of the flange. This interference might be a reason 

for the generally higher ultimate resistance. When the wavelength of the web is used, it can be 

argued that the curvature of the plates is lower at ultimate limit state as in case of medium or 

flange (shorter) wavelengths. Therefore, the stresses in the plate due to plate flexure become 

higher and influence in a more important amount the ultimate resistance of the section. 

 

Figure 5-54: Comparison of ultimate resistance of members with local imperfection subject to 

major-axis bending 
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Figure 5-55: Comparison of ultimate resistance of members with local imperfection subject to 

compression 

 

 

 

Figure 5-56: Deformed shape at ultimate limit state of section 8 subject to major-axis bending 

On the basis of the simulations performed here and on the basis of the conclusions obtained by 

other authors (see especially (Nseir 2015)), it is proposed to use, for the flanges and the web, sine 

shaped local imperfections possessing the average wavelength defined by Eq. ( 5.11 ). 

5.2.2 Influence of loading sequence 

For combined axial force and bending, it has been shown that the loading sequence has only little 

influence on the ultimate member resistance (see for example (Taras 2012)). Contrariwise, no 

study exists that confirms this conclusion for applied torsion. It seems therefore necessary to 

study the influence of the loading sequence on the ultimate member resistance for the case of 

torsional loads. 

Hereafter, a torsional moment is introduced by an eccentrically applied vertical load as shown in 

Figure 5-57. Consequently, the value of the applied torsional moment depends directly on the 

value of the maximum bending moment as shown in Eq. ( 5.12 ). 
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L

e
MM yT 2=  ( 5.12 ) 

Obviously, the value of the torsional moment is greater for shorter members and higher 

eccentricities, for given value of the major-axis bending moment. 

 

Figure 5-57: Introduction of torsion by an eccentrically applied vertical load 

Hereafter, the example of a member of IPE 500 cross-section is studied. The load is supposed to 

be applied at one flanges tip. Consequently, the eccentricity e is equal to 100 mm. The length of 

the studied member is 2520 mm. In order to obtain the ultimate resistance of the member, GMNIA 

calculations are performed. In Figure 5-58, the resulting load-displacement curves correspond to: 

1. Proportional loading: My and MT are applied simultaneously up to failure. The 

resulting moments are noted as My0 and MT0. 

2. Priority My: My is applied first up to a given value My0 and then MT is applied up to 

failure. 

3. Priority MT: MT is applied first up to a given value MT0 and then My is applied up to 

failure. 

The values of MT0 and My0 correspond to the major-axis bending moment and the torsional 

moment obtained at failure for the case of proportional loading. For load cases 2 and 3, the 

torsional moment cannot be introduced by the vertical load. In these cases, the vertical load is 

applied without an eccentricity and an additional torsional moment is applied. 

In Figure 5-58, it can be observed that the obtained ultimate resistances are very close for the 

three cases. In fact, the differences are less than 0,1%. The discontinuity in the curves associated 

with load cases “Priority My” and “Priority MT” correspond to the application of the second load 

component. For the case “Priority My”, it can be seen that the torsional twist increases very little 

up to the point of introduction of the torsional moment. The small torsional rotation developing 

before the introduction of the torsional moment is due to the applied geometrical member 

imperfection. 

For the case of “Priority MT”, one notices that the torsional twist developing during the first step 

of loading (only MT) is greater than the one obtained for proportional loading. As the torsional 

moment corresponding to the same load factor is greater in this case than in the case of 

e 
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proportional loading this observation is not surprising. After introducing the major-axis bending 

moment, the torsional twist continues to increase, however not as rapidly as before. At this point 

the torsional twist increases only due to second order effects (the externally applied torsional 

moment is not increased anymore). These second order effects become important near the limit 

point and therefore lead to an acceleration of the increase rate of the torsional twist. 

 

Figure 5-58: IPE 500 - L = 2520 mm - e = 100 mm 

Figure 5-59, Figure 5-60 and Figure 5-61 compare the von Mises stress distribution at the ultimate 

limit state for the three cases. Obviously, there is no noticeable difference. It can therefore be 

concluded that the load sequence has only negligible influence on the behaviour of the member if 

torsion is introduced by an eccentrically applied vertical force. 

 

Figure 5-59: Von Mises stress distribution at ultimate limit state for proportional loading 
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Figure 5-60: Von Mises stress distribution at ultimate limit state – priority Mt 

 

Figure 5-61: Von Mises stress distribution at ultimate limit state – priority My 

 

5.2.3 Influence of local plate instability on ultimate member resistance 

 General 

Depending on the cross-section and member slenderness, local buckling may more or less affect 

the ultimate resistance of the member. The numerical simulations performed in the framework of 

the parametric study accounts for the influence of local instability by introducing a plate 

imperfection in form of sine waves as discussed in paragraph 5.2.1.7. Nevertheless, it seems also 

interesting to determine the ultimate resistance of members made of slender cross-sections 

without the influence of local instability. Indeed, this helps to quantify the exact influence of the 

local instability on the overall member resistance. Additionally, as two simulations on the whole 

member are performed, the data basis of results is enlarged. Consequently, the developed 

resistance model can be validated on the basis of a greater number of tests. The first simulation is 

performed on the member subject to plate and member imperfection without any further 

preconisation. The second simulation is performed on a “locally restrained” model excluding local 

buckling by creating rigid cross-section along the member with beam elements. This principle is 
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shown in Figure 5-62. The beam elements (Beam4 of the ANSYS element library – see 

(ANSYS 2016)) are directly defined by their mechanical characteristics (A, Iy, Iz, It, Iw). The 

geometrical dimensions are only used for the visualisation and do not influence the calculation. 

The used beam elements are supposed to possess only bending stiffness corresponding to out-of-

plane bending of the restrained plate. The other mechanical characteristics are negligible small. 

The necessary out-of-plane bending stiffness of these beam elements is determined in the next 

paragraph. 

 

Figure 5-62: Locally restrained model of an I-shaped member 

 Calibration of rigid beam elements 

Hereafter, the minimum stiffness of the beam elements is determined based on two examples. The 

two cross-sections given in Table 5-7 are studied. Section 1 is of class 4 due to the slenderness of 

the web and Section 2 is of class 4 due to the slenderness of its flanges (section classisfication 

according to Eurocode 3 Part 1-1). 

Table 5-7: Studied cross-sections 

Parameter Section 1 Section 2 

Height (mm) 500 290 

Thickness of the web (mm) 3 10 

Width of the flanges (mm) 300 300 

Thickness of the flanges 
(mm) 

20 7 

Relative plate slenderness of 
the web (CEN 2007a) 

2,758 0,365 

Relative plate slenderness of 
the flange (CEN 2007a) 

0,352 1,112 

Aeff/Abrut following 
(CEN 2007a) 

0,873 0,852 

 



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Member Resistance 

 

310 
 

The stiffness of the beam elements is determined based on the out-of-plane bending stiffness of 

the restrained plate (web or flange) supposed to be of class 1 in compression. The corresponding 

limit width to thickness ratios defined in (CEN 2005a) are recalled hereafter. 

Web in compression ( ) ε33
lim

=thw    

Flange in 

compression 
( ) ε92

lim
=tb    

Depending on the previous values and the height of the web and the width of the flanges, fictitious 

web and flange thicknesses are determined. The class 1 out-of-plane bending stiffnesses D of the 

flanges and the web may consequently be determined with Eq. ( 5.13 ). 

( )2
3

112 ν−
=

Et
D

 
( 5.13 ) 

This value is then multiplied by the length lShell of the shell element (dimension along the x-axis of 

the member). Consequently, the reference stiffness of the beam elements is given by Eqs. ( 5.14 ) 

and ( 5.15 ). 

For the web ( ) Shell

webCl

webbeam l
Et

EI
2

3

,1

,
112 ν−

=  ( 5.14 ) 

For the flange ( ) Shell

flangeCl

flangebeam l
Et

EI
2

3

,1

,
112 ν−

=  ( 5.15 ) 

The minimum stiffness EImin necessary to restrain the cross-section is determined as an integer 

multiple of these reference stiffnesses. The factor applied to the reference stiffness is noted as “a” 

in Figure 5-63 and Figure 5-64. These two figures represent the results obtained for the two cross-

sections defined in Table 5-7 subject to an axial compression force, a plate imperfection as defined 

in paragraph 5.2.1.7 and a member imperfection affine to the first member eigenmode (flexural 

buckling about the minor-axis). Both members are fabricated from steel S235. The relative 

slenderness given along the abscissa of the following diagrams is calculated based on gross section 

properties. 
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Figure 5-63: Ultimate member resistance obtained with restrained section 1 

 

Figure 5-64: Ultimate member resistance obtained with restrained section 2 

By observing the two previous figures, one may note that the numerically obtained strength 

reduction due to local buckling (ratio between ultimate load factor of the non-restrained model 

Rult,Stiff,0 and the restrained model Rult,Stiff,25) corresponds very well to the strength reduction 

predicted by Eurocode 3 Part 1-5 (CEN 2007a). Consequently, the numerical results seem 

consistent for both cases. One may observe that the minimum stiffness necessary to restrain the 

web of the cross-section is much less than the stiffness needed for the flanges. In fact, it seems 

sufficient to use the reference stiffness given in Eq. ( 5.14 ) to prevent local buckling of the web. 

On the contrary, it is necessary to apply at least ten times the reference stiffness of equation ( 5.15 

) to the beam elements to restrain the flanges. Also, the influence of local buckling on the member 

resistance is of importance over a greater range if the flanges are sensitive to local buckling. As 

the local buckling of the flanges not only affects the cross-section resistance but also the lateral 

stiffness against flexural buckling, this observation does not seem surprising. 
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In order to visualize the obtained results further on Figure 5-65 represents the load-displacement 

curves for the member made of Section 1. The lateral displacement is measured at the intersection 

between the upper flange and the web. 

It can be seen that the curves corresponding to the stiffness multiplier “a” greater than zero are 

practically superposed, and this not only in the pre-buckling range but also in the post-buckling 

range. Contrariwise, the member, whose intermediate sections are not restrained, fails at a lower 

axial compression level due to local instability of its slender web. 

 

Figure 5-65: Load-displacement curve – Section 1 – L = 2500 mm 

Last, Figure 5-66 and Figure 5-67 represent the von Mises stress distribution and deformed shape 

at the ultimate limit state (maximum load) and for the points noted as 1a and 1b in Figure 5-65 

for the unrestrained model and the restrained one (a = 10). Both figures clearly confirm that the 

unrestrained model fails in predominant local buckling whereas the restrained model attains the 

elasto-plastic lateral buckling load. Especially, Figure 5-67 shows that even far behind the ultimate 

limit state local buckling does not occur for the restrained model. 
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a) unrestrained model b) restrained model (a = 10) 

Figure 5-66: Von Mises stresses and deformed shape at ultimate limit state - Section 1 - L = 

2500 mm 

 

 

a) unrestrained model b) restrained model (a = 10) 

Figure 5-67: Von Mises stresses and deformed shape at point 1a and 1b - Section 1 - L = 2500 mm 

The present paragraph has shown that rigid beam elements may be applied to prevent local 

buckling. The rigid beam elements are applied at each longitudinal element division of the 

member. It has been shown that the stiffness of the beam elements restraining the flanges of the 

cross-section should be at least ten times the reference stiffness given in Eq. ( 5.15 ). For the beam 

elements restraining the web, the stiffness may be less. However, in order to be homogenous a 

stiffness multiplier of 10 is applied for both cases as shown in Eqs. ( 5.16 ) and ( 5.17 ). It is recalled 

that the cross-section characteristics (A, Iz, It, Iw), other than the second moment of area associated 

with out-of-plane bending of the restrained plate, are set to 0. 

For the web ( ) Shell

flangeCl

flangebeam l
Et

EI
2

3

,1

,
112

10
ν−

=  ( 5.16 ) 
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For the flange ( ) Shell

flangeCl

flangebeam l
Et

EI
2

3

,1

,
112

10
ν−

=  ( 5.17 ) 

 

5.3 Design proposals for the resistance of members subject combined axial force and 

bi-axial bending without torsion 

5.3.1 General 

One of the main objectives of this thesis is to propose an extension of the Eurocode 3 interaction 

equations for members subject to combined axial force and bi-axial bending to the case of applied 

torsion. Therefore, only these provisions are detailed further more in the following paragraphs. 

Other international steel design standards contain different approaches to address the member 

resistance under complex load combinations. However, the vast majority proposes the design 

based on interaction equations as done in Eurocode 3. The design equations given in AISC 360-10 

have been presented rapidly in Chapter 1. However, as it does not account for the cross-section 

dimensions, this approach may be rather safe-sided as has already shown in Chapter 4 for the 

resistance of the section. 

In the following, the Eurocode 3 Part 1-1 interaction equations are detailed in their original field 

of application. Then two extensions proposed for mono-symmetric I sections and U sections 

published in references (Kaim 2004) and (Kalameya 2008) are presented. 

5.3.2 Double symmetric members 

The interaction equations proposed in paragraph 6.3.3 of Eurocode 3 Part 1-1 are recalled in Eqs. 

( 5.18 ) and ( 5.19 ). In case of slender sections, the moments ∆My,Ed and ∆Mz,Ed should be included 

because they account for the possible shift between the gravity centre of the effective section and 

the gravity centre of the gross section. As stated in Chapter 1, the interaction factors kij can be 

obtained with Annex A or B of Eurocode 3 Part 1-1. In general, Annex A, developed on a theoretical 

basis (see reference (Boissonnade et al. 2002)) leads to more precise results compared to 

numerical simulations as shown in reference (ECCS 2006). Yet, due to its complexity, this 

approach is much less used in the design practice. Moreover, it can be noted that the difference 

between both methods is less than 10% in average. 
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The expressions of the interaction factors of Annexe B of Eurocode 3 Part 1-1 (CEN 2005a) are 

recalled in Table 5-8. 

Annex B has been criticised in the past for two main reasons. First, the empirical calibration of the 

interaction coefficients leads to rather pronounced discontinuity between the member resistance, 

determined with Eqs. ( 5.18 ) and ( 5.19 ) and the plastic cross-section resistance. Yet, it is obvious 

that with simplified interaction equations the complex plastic cross-section behaviour discussed 

in Chapter 4 cannot be represented precisely. It seems that only global methods as OIC can ensure 

a complete continuity. 

A second point of criticism that is sometimes pointed out is linked to the expressions of the 

equivalent uniform moment factor Cm,i recalled in Figure 5-68 (see reference (Villette 2004)). In 

fact, the equivalent uniform moment factor should account for the influence of the bending 

moment diagram on the second order effects resulting from the axial force. This is considered in 

Annex A of the current version of Eurocode 3 Part 1-1 (CEN 2005a) by introducing the term 

NEd/Ncr,i as shown in Figure 5-69. Consequently, the second order effects are very well represented 

in the elastic case by the Annex A expressions. Yet, regarding Figure 5-68, one may easily remark 

that the axial force is not included into the expression of the Annex B Cm,i factors. Nevertheless, 

one should keep in mind that the Annex B approach has been developed empirically based on 

physical tests and numerical simulations. Moreover, the expressions of interaction factors kij have 

been derived based on the assumption that the factors Cm,i are correct and consequently the 

possible lack of precision of the equivalent uniform moment factors is compensated by the 

expression of the interaction factors. Also, these last contain the term NEd/Ncr,i and consequently 

consider empirically its effect on the second order amplification of the bending moments. 
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Table 5-8: Annex B interaction factors for members sensitive to lateral-torsional buckling 

Interaction 
factor 

Class 1 and Class 2 sections Class 3 and Class 4 sections 
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Figure 5-68: Annex B equivalent uniform moment factors 

 

Figure 5-69: Annex A equivalent uniform moment factors 

Last, it hast to be underlined that for the design practice, it is absolutely of no interest how a 

resistance model has been developed (empirically or analytically). Conversely, it is of importance 

that the resistance model is generally safe but not non-economic. Therefore, both approaches, 

analytical and empirical based design models, are valid in general provided that they result in an 

adequate level of precision. 

In the next paragraph, extensions to mono-symmetric I and U sections proposed in references 

(Kaim 2004) and (Kalameya 2008) are presented. Both have been developed mostly empirically 

on the basis of numerical simulations. 
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5.3.3 Extension of the Eurocode 3 Part 1-1 interaction equations to mono-symmetric I and U 

sections 

First, the extension to U-shaped members is presented. In reference (Kalameya 2008) the 

following interaction equation is proposed: 
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( 5.20 ) 

The U sections considered in the present thesis are always compact. Consequently, the terms 

∆My,Ed and ∆Mz,Ed vanish. It should be noted that only the equation considering the out-of-plane 

second order effects is proposed by Kalameya. Following his research, interaction between in-

plane buckling and lateral-torsional buckling does not occur for U-shaped members. This, 

however, is only true if one considers members that are not restrained laterally along the span. If 

the member possesses lateral restraints the relative slenderness associated with buckling about 

the major-axis may become relevant and in this case the member may fail by interaction between 

in-plane buckling and lateral-torsional buckling. Therefore, the proposal of Kalameya should only 

be applied for laterally unrestrained members. 

Kalameya proposes and validates the use of the interaction factors used in Annex B. Only, the 

specific expression for the factor kzy for members of class 1 and class 2 sections with a relative 

slenderness λz lower than 0,4 is supressed. Also, he recommends to limit the minor-axis bending 

resistance to 1,25Mel,Rk so as to avoid to favourable results compared to the numerical simulations. 

Using the same interaction factors for I and U sections is clearly advantageous and leads to simple 

and uniform design equations. Yet, it should be noted that it is not completely mechanically 

consistent as the cross-section interaction is obviously different and, in some cases, more complex 

than for I sections (see Chapter 4). However, as stated previously, for a practical design approach 

a certain lack of mechanical consistency may be accepted. The proposal of Kalameya is studied 

further on in paragraph 5.6.4.4. 

Next, the proposed extension to mono-symmetric I sections is presented. In references 

(Kaim 2008) and (Greiner et al. 2011) the following interaction equations are given: 
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( 5.23 ) 

where: 

χLT,cf: is the reduction factor for lateral-torsional buckling calculated with reference to 

 the compressed flange (the flange that is compressed by the major-axis bending 

 moment); 

My,Rk,cf: is the bending moment resistance associated with the compression flange; 

My,Rk,lf: is the bending moment resistance associated with the larger flange; 

My,Rk,sf: is the bending moment resistance associated with the smaller flange. 

Eq. ( 5.21 ) represents the interaction between in-plane buckling and lateral-torsional buckling. 

In this formula it is not distinguished between the sign of the bending moment. The absolute value 

of the major-axis bending moment should be used. However, the reduction factor χLT is to be 

calculated with reference to the compression flange (based on a relative slenderness calculated 

with My,Rk,cf). 

For the out-of-plane instability, two interaction formulae are proposed in order to account for the 

pronounced difference between the case of the smaller flange in compression and the larger flange 

in compression. It should be noted that the signed values of the bending moment has to be 

introduced into Eqs. ( 5.22 ) and ( 5.23 ). Following reference (Kaim 2004) a positive bending 

moment compresses the smaller flange and a negative bending moment compresses the 

larger flange. In case of elastic design the bending moment resistance used in Eqs. ( 5.21 ) to ( 

5.23 ) should be calculated with reference to the compression flange. 

If the larger flange is in compression the effect tensions flange yielding has to be considered for 

sections of class 3 and class 4. In reference (Kaim 2004), the application of the conditions given in 

Eq. ( 5.24 ) is proposed and validated. 
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The interaction factors used in Eqs. ( 5.21 ) to ( 5.23 ) are given in Table 5-9. It may be noted that 

for the factor kzy the expressions used for double-symmetric sections are again utilized. 

Conversely, specific expressions are given for the factor kyy. 
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Table 5-9: Interaction factors for mono-symmetric I sections 

Interaction 
factor 

Class 1 and Class 2 Class 3 and Class 4 
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As for U section relatively simple design equations are proposed. However, the case of an applied 

minor-axis bending moment has not been addressed. This certainly is a limitation especially for 

crane girders that are often mono-symmetric and subject to a minor-axis bending moment that 

results from the operation of the crane. 

Here before, the extensions of the Eurocode 3 interaction equations for the resistance of U-shaped 

members and members of mono-symmetric I section have been presented. Rather simple design 

expressions based on Annex A are proposed in references (Kalameya 2008), (Kaim 2004) and 

(Greiner et al. 2011). Nevertheless, the extensions contain still some limitations. In particular, the 

proposal of Kalameya can only be applied to U sections without lateral restraints as buckling about 

the major-axis is not accounted for. The proposal made for mono-symmetric I sections is limited 

to the case of combined major-axis bending and axial force. Consequently, it cannot be applied to 

crane girders. Yet, these members are always subject to additional torsion as the minor-axis 

bending moment is introduced through point load applied with an eccentricity to the shear centre. 

In paragraph 5.6, the proposals are evaluated in their field of application and possible extensions 

to the case of applied torsion are presented. Additionally, it is investigated if the proposal for 

mono-symmetric I sections can be easily extended to applied minor-axis bending and if the 

proposal for U sections may be safely adapted to the case of laterally restrained members for 

which the interaction between flexural buckling about the major-axis and lateral-torsional 

buckling may become relevant. 
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5.4 Review of design proposals for members with open section subject to combined 

axial compression, bending and torsion 

5.4.1 General 

Hereafter, the main design models proposed in the past for the resistance of members subject to 

combined axial force, (bi-axial) bending and torsion are discussed. Table 5-10 recalls the field of 

application as well as the limitations of the design approaches proposed in the past. It appears, 

that none of these design models has a field of application covering I and U sections subject to all 

internal forces and moments. Nevertheless, it seems interesting to study these proposals in detail 

in order to verify their consistency in their specific field of application and to judge whether they 

may be extended to be more general cases. 

Table 5-10: Summary of design approaches for the resistance of members subject to torsion 

Proposal 
(Reference) 

Field of application 
Limitation Form of the 

section 
Load case 

BSI and Nethercott 
(Nethercott et al. 1989) 

I and U sections My, Mz, MT No axial force N 

Aachen I 
(FOSTA 2004) 

I sections N, My, Mz, MT 
May not be applied to U 

sections 

Aachen II 
(Stangenberg 2007) 

I and U sections 
N (for I sections), 

My, Mz, MT 
No axial force in case of mono-

symmetric sections 

Aachen III 
(Naumes 2009) 

I N, My, Mz, MT 
May not be applied to U 

sections 

Berlin* 

(Glitsch 2008) 
I sections My, Mz, MT 

No axial force  
May not be applied to U 

sections 

Eindhoven 
(de Louw 2007) 

U sections 

My, MT – loads 
applied in the 

web plane 

No axial force and minor axis 
bending 

May not be applied to I sections 
*included in Annex E of EN 1993-6 (CEN 2007b) 

In order to unify the presentation of the design approaches Eurocode 3 notations are used as 

much as possible. 
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5.4.2 Great Britain: BS 5950-1:2000 and SCI Publication 057 

In BS 5950-1:2000 (BSI 2000) no specific information is given on the design of members subject 

to torsion. However, the former national British standard refers to SCI Publication 057 

(Nethercot et al. 1989) for the design criteria covering members in this situation. According to this 

publication, the two following design criteria (Eqs. ( 5.25 ) and ( 5.27 )) should be satisfied at the 

ultimate limit state for I- and U-shaped members. 
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where:  

BSmLTC ,
 : is the equivalent uniform moment factor for lateral-torsional buckling defined in 

(BSI 2000); 

BSmzC ,
 :  is the equivalent uniform moment factor for minor-axis bending defined in 

 (BSI 2000); 

EdTz ,,σ  :  is the design axial stress due to “indirect” minor-axis bending resulting from torsional 

rotations (see Eq. ( 5.28 )); 

Edw,σ  :  is the design axial stress due to the bi-moment. 

The equivalent uniform moment factors CmLT,BS and Cmz,BS consider the influence of the distribution 

of the bending moment on the ultimate resistance of the member. Since CmLT,BS also applies in case 

of major-axis bending only, the proposed approach ensures continuity (see (BSI 2000)). 

Nonetheless, in this case, the resistance is limited to the theoretical resistance of the most loaded 

section My,Rk. 

It is to be noted that the factors CmLT,BS and Cmz,BS should not be confounded with the equivalent 

uniform bending moment factors used in Eurocode 3 Part 1-1 that account for the influence of the 

form of the bending moment diagram on the second order effects created by an axial compression 

force. 
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The first criterion represents the member resistance including the second order effects and 

instability. The second criterion is used to verify that the cumulated stresses resulting from the 

different internal forces and moments do not exceed the yield stress fy. For this second design 

check, the second order effects are only included partially. Indeed, second order effects are not 

considered for the stresses resulting from the minor-axis bending moment and the bi-moment. 

On the contrary, the term σz,T,Ed represents the stresses resulting from the major-axis bending 

moment acting on the twisted member. Due to the twist the principal axis of the rotated member 

are not identical anymore to the axis of the loads. The resulting stresses σz,T,Ed may be determined 

with Eq. ( 5.28 ). Eq. ( 5.29 ) gives the expression proposed in reference (Nethercott et al. 1989) 

for the determination of the stresses resulting from the bi-moment.  
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As the second interaction criterion limits the design to the elastic resistance, this approach may 

obviously be rather conservative, especially for short members and compact sections. 

In reference (Nethercott et al. 1989), the expression of the interaction factor kT is justified with 

reference to the one used in the interaction formula between axial force and major-axis bending 

provided in (BSI 2000) and represented by Eqs. ( 5.30 ) and ( 5.31 ), for members non-susceptible 

of lateral-torsional buckling. 
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Also, the similitude to the corresponding interaction factor given in Annex B of Eurocode 3 Part 1-

1 cannot be overseen: 
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It is recalled that the interaction factor considers the influence of second order effects and the 

influence of the cross-section interaction. Consequently, using the same factor for the interaction 

between axial force and major-axis bending and for the interaction between major-axis bending 

and the bi-moment, by simply replacing the term NEd/NRk by My,Ed/My,Rk, does not seem 
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mechanically consistent a priory. Nevertheless, for a simple and practical design approach some 

mechanical inconsistencies could possibly be accepted if they contribute to the simplification of 

the design approach without losing the safe-sided character. 

In paragraph 5.5.7 addressing the elastic second order equilibrium of the member, the case of a 

double symmetric I section subject to bi-axial bending and torsion is treated and the elastic 

interaction formula given in Eq. ( 5.33 ) is obtained (see (Stangenberg 2007) and paragraph 5.5.7 

for more details). As the former British standard limits the design to the elastic resistance it seems 

completely consistent to compare the interaction criterion represented by Eq. ( 5.25 ) to the 

analytically derived condition given in Eq. ( 5.33 ). Yet, it is to be noted that the following 

interaction criterion does not take into account the form of the bending moment diagram 

considered through the factors CmLT,BS and Cmz,BS in Eq. ( 5.25 ). 
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In order to eliminate the equivalent geometric imperfection f0, it is generally replaced by (see for 

example (Greiner 2001) and (Stangenberg 2007)): 

22

0

,

,

.

,

,
1

1
1 λχλ

χ
ηϕ LT

LTz

w

Rd

Rdz

cry

zcr

Rdy

Rdz

I

I

B

M

M

N

M

M
+−−==














+  ( 5.34 ) 

After some reorganisation, one obtains an analytical interaction formula of equivalent format as 

the one given in Eq. ( 5.25 ). 
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Some differences between the two formulae might be observed. The analytic interaction formula 

shows that the first order minor-axis bending moment should also be multiplied by the interaction 

factor taking into account second order effects (here the term multiplied is used rather than 

“amplified” as kT may be less than 1,0 as shown later). Also, the supplementary bi-moment 
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resulting from first order lateral displacement (MyvI/δT) is not taken into account by the British 

approach. Finally, the proposed interaction factor does not correspond exactly to the one derived 

analytically. The two interaction factors are compared in Figure 5-70 supposing that the applied 

bending moment just reaches the lateral-torsional buckling resistance χMy,Rd and that the member 

is subject to constant bending. Obviously, the interaction factor proposed in reference 

(Nethercott et al. 1989) is constant for a given ratio between the applied bending moment and the 

lateral-torsional buckling resistance moment. The maximum value is 1,5. On the contrary, the 

analytical interaction factor varies depending on the relative slenderness and can even reach 

values lower than 1,0. As explained in (Greiner 2001) for the case of interaction between axial 

force and major-axis bending, the reason for this surprising behaviour is purely mathematic. In 

fact, by replacing the equivalent imperfection η with Eq. ( 5.34 ) the part of the major-axis bending 

moment is overestimated (as the factor χ partially considers second order effects already). In 

order to keep the equivalence, the interaction factor has to compensate this effect. Consequently, 

it is not surprising that the interaction factor proposed in (Nethercot et al. 1988) is highly 

conservative with regard to the analytical one.  

 

Figure 5-70: Comparison of interaction factors 

It has been shown that the proposal of Nethercot may be conservative for I sections compared to 

the analytical solution. 
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5.4.3 Design rules proposed at RWTH Aachen 

 General 

At the German university RWTH Aachen three distinct design proposals have been published by 

Sedlacek in 2004 (FOSTA 2004), Stangenberg in 2007 (Stangenberg 2007) and Naumes in 2009 

(Naumes 2009). Principally, they are all based on the same mechanical background, i.e. 

interaction between second order internal forces. For an I section, they can be determined 

analytically for simple load cases (see paragraph 5.5.7). For constant bending moments they are 

given in Eqs. ( 5.37 ) to ( 5.39 ). The influence of member imperfection is not accounted for at this 

stage. 

Based on the second order moments, the design approaches presented at RWTH Aachen are 

developed and discussed hereafter. 

 Proposal RWTH Aachen I 

The first proposal was published in 2004 in (FOSTA 2004). The second order internal forces and 

moments are introduced in the quadratic interaction between major-axis bending and combined 

minor-axis bending and the bi-moment given in Eq. ( 5.40 ). Figure 5-72 compares different forms 

of interaction equations and shows that the quadratic interaction can be very conservative if no 

cut-off limit is introduced. It is recalled that the major-axis bending does not interact with the bi-

moment and the minor-axis bending moment if its value is less than the major-axis bending 

moment resistance of the web (see Chapter 4). 
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Introducing the second order moments and the imperfections, represented by the factor η (see 

Eq. ( 5.34 ), into the interaction equation leads to: 
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In order to obtain a design criterion, the equivalent imperfection η is again replaced by the 

expression given in Eq. ( 5.42 ). 
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Introducing Eq. ( 5.42 ) into Eq. ( 5.41 ) leads to the following interaction criterion. 
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As the last term of Eq. ( 5.43 ) is always less than 1,0, it is neglected in reference (FOSTA 2004). 

Here, it should be mentioned that, owing to this simplification, the interaction becomes linear 

again. Consequently, the benefit of the quadratic interaction used in equation ( 5.40 ) is lost. 

Additionally, the bi-moment created by the lateral displacement is neglected. After reorganising, 

Sedlacek presents the following interaction formula: 

The factor Czw introduces the influence of second order effects. However, it is not clear how this 

factor has been derived. Again, it may be astonishing that the factor Czw is less than one. Yet, one 

should remember that the term My/χLTMy,Rd already contains an important part of the second 

order effects and therefore overestimates the influence of major-axis bending. The factor Czw has 

to counterbalance this overestimation by reducing the influence of the other internal moments.  
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Sedlacek extends his proposal by the influence of the axial force using the same hypotheses as 

before. The resulting interaction criterion is represented in Eq. ( 5.46 ). 

 

where:  

NRkyM
,,  : is the characteristic value of the moment resistance for major axis bending reduced 

in the presence of an axial force (see Eq. ( 5.52 )); 

NLT,χ  : is the reduction factor due to lateral-torsional buckling, reduced in the presence of 

an axial force; 

NzwC ,  : is a factor accounting for second order effects for out-of-plane displacements; 

Nϖ  : is a factor accounting for the influence of torsional buckling on the second order 

effects. 

Observing Eq. ( 5.46 ), one notices that the axial force is not considered explicitly. In fact, its 

influence is accounted for by reducing the major-axis bending resistance and the reduction factor 

for lateral-torsional buckling. Its influence concerning second order effects is accounted for in the 

interaction coefficients Czw,N and ωN and the factor 1-N/Ncr,z. 

The first term of the interaction formula, My,Ed/χLT,NMy,Rd,N, can be compared to the criterion given 

in §6.3.4 of Eurocode 3 Part 1-1 recalled in Eq. ( 5.49 ). 
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When in-plane second order effects and the equivalent geometric imperfection are not considered 

αult,Rk corresponds to the amplification factor applied to major-axis bending and the axial force to 

attain the section resistance. Consequently, one may introduce the equality given in Eq. ( 5.50 ). It 

should however also be noted that the amplification factor αult,Rk considers a proportional increase 

of both the major-axis bending moment and the axial force, whereas My,Rk,N is calculated based on 

a constant value of the axial force. Yet, the main principle is identical. 
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To determine the reduction factor χLT,N, (or χop with Eurocode notation), in reference 

(FOSTA 2004), it is proposed to use the reduction curve of paragraph 6.3.2.2 of (CEN 2005a) based 

on the relative slenderness for out-of-plane instability λLT,N (λop) and by increasing the 

imperfection factor α by the influence of the axial force as shown in Eq. ( 5.51 ). 
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It should be noted that Eq. ( 5.51 ) may lead to imperfection factors that are even more 

unfavourable than the ones for lateral buckling under axial compression only, especially for hot-

rolled I sections whose flanges’ thickness is less than 100 mm (applicable buckling curve for 

minor-axis buckling is c or better). It would certainly be more consistent to limit the imperfection 

factor to the one applicable for the case of flexural buckling under the axial force. 

For the reduction of the major-axis bending moment resistance, a simplified approach is given by 

Eq. ( 5.52 ). 
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It should be noted that the interaction formula ( 5.52 ) is unsafe compared to the interaction 

formula of EN 1993-1-1 and compared to the analytical solution as shown in Figure 5-71 for the 

section IPE 200 (
A

Aw  = 0,4035). Figure 5-71 also shows the results obtained by applying the 

interaction provided in Eurocode 3 Part 1-1. 
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Figure 5-71 : Interaction between major axis bending and axial force for the section IPE 200 

The proposed interaction may be highly unsafe, especially for low and medium axial forces (15-

20% for IPE 200). The unsafe character of the proposed interaction is mainly due to the omission 

of the factor 0,5 associated with the web area in Eq. ( 5.52 ). Whether or not this factor is 

deliberately omitted or if the omission is only due to oblivion is not clear. 

Finally, some comments concerning the factor Nϖ  should be made. Its formulation appears 

rather complicated and its actual meaning is not obvious. Yet, it may be rewritten as follows: 
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Regarding Eq. ( 5.54 ), it is obvious that the factor Nϖ  accounts for second order effects resulting 

from torsional buckling modes. 

In summary, it has been shown that, despite of the analytical derivation of the proposal, some 

inconsistencies remain. Also, the continuity between section resistance and member resistance is 

abandoned. Last, the rather complex presentation of the proposal may certainly lead to 

difficulties, if one intends to apply the method by hand. A less complex and more comprehensive 

representation of the proposal may be given by the equations Eqs. ( 5.55 ) to ( 5.57 ). 
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Eqs. ( 5.55 ) to ( 5.57 ) represent the exact same method but written in a more comprehensive 

way. Of course, the discontinuity between section resistance and member resistance and the 

previously mentioned inconsistencies are maintained. Additionally, it seems questionable 

whether or not this method is applicable to mono-symmetric I and U sections as the effects of their 

mono-symmetry is not accounted for. 

 Proposal RWTH Aachen II 

In 2007, Stangenberg published a new method based on a similar mechanical background as the 

proposal Aachen I. Stangenberg introduces the second order internal moments in the modified 

linear interaction of Eq. ( 5.58 ). 
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The proposed interaction equation is compared to the analytical results obtained with the adapted 

PIFM (se Chapter 4) in Figure 5-72. Also, the quadratic interaction proposed in (FOSTA 2004) is 

represented. As stated before, the quadratic interaction may be rather conservative and does not 

represent precisely the interaction behaviour. The proposal introduced by Stangenberg is more 

precise. 
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Figure 5-72: Plastic My-Mz-B interaction for an IPE 300 section 

After introducing the expressions of the internal moments and the expression of the generalized 

imperfection η, Stangenberg obtains: 
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Stangenberg expresses the first order lateral displacement and torsional twist by: 
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Introducing Eqs. ( 5.60 ) and ( 5.61 ) into Eq.( 5.59 ), he obtains: 
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As the factor 1/(1+My,Ed/My,cr) is always less than 1, Stangenberg neglects it in the following. Also, 

the second term of Eq. ( 5.62 ) is neglected. Here it should be noted that this term, noted as ηI 

hereafter, is not always less than 0. Obviously, the term is equal to 0, if the value of major-axis 

bending moment just reaches the resistance to lateral-torsional buckling of the member, χLTMy,Rd. 

The following figures show the evolution of the term with the slenderness and the load factor 

αL=My,Ed/χMy,Rd. Figure 5-73 shows that it has its maximum for a relative slenderness of about 1,0. 

 

Figure 5-73: Evolution of η1with the slenderness – αL = 0,5 

Depending on the reduction factor, the slenderness λopt maximizing ηI, is given in Table 5-11. 

Table 5-11: Slenderness maximizing η1 depending on the reduction curve 

Reduction curve Slenderness λopt 

a0 0,987 
a 0,979 
b 0,965 
c 0,950 
d 0,921 

 

Figure 5-74 shows that the load factor maximizing η1 is equal to 0,5. This value does not depend 

on the reduction curve. Both, Figure 5-73 and Figure 5-74, demonstrate that the maximum value 

of η1 increases when the imperfection factor α, associated with the reduction curve (of 

Eurocode 3 Part 1-1), decreases. Anyhow, η1 does not excess the value of 0,13 (αL = 0,5 and 

reduction curve a0). Even if the value of η1 is not important, neglecting it is not justified a priori. 

However, as the factor 1/(1+My,Ed/My,cr), being always less than 1,0, is neglected and as other 

empirical factors considering the variability of the moments and cross-section characteristics are 

introduced, the safety margin may be sufficient. 
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Figure 5-74: Evolution of η1 with the load factor – slenderness equals λopt 

Eq. ( 5.63 ) shows the final proposal for I sections subject to bi-axial bending and torsion. 
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The coefficient C1 represents the variability of the bending moment diagram. The coefficient C1,η 

is introduced in order to correct the ratio between the lateral displacement component and the 

torsional twist component of the eigenmode as it is not equal to cr (see also paragraph 5.5.7) in 

case of variable bending moments. However, Stangenberg does not provide a literal expression 

for the correction factor C1,η. Consequently, a numerical determination of this parameter is 

necessary based on the definition of Eq. ( 5.64 ). 
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The coefficient C1,E considers the ratio between the minor-axis bending moment and bi-moment 

of the imperfect member considering second order effects: 
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Finally, the coefficients kδ,θ and kδ,z take into account the influence of variable minor-axis and bi-

moments. Yet, again no literal expressions are provided for C1,E, kδ,θ and kδ,z. However, it seems 

understandable that the literal expressions of C1,E, C1,h, kδ,θ and kδ,z are omitted. Indeed, depending 

on the cross-section geometry, the exact shape of the moment diagrams, the support conditions 

and the torsional characteristics the parameters may vary highly. 
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Following the same reasoning as before, Stangenberg proposes a design criterion for U sections 

under bi-axial bending and torsion: 
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The coefficients βz and βw consider the form of the plastic cross-section interaction. They are given 

in Eqs. ( 5.67 ) and ( 5.68 ). 
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It can be noted that the slight non-symmetry in the interaction between the major-axis and the bi-

moment is neglected in Eq. ( 5.66 ) (see Chapter 4). The linearized cross-section interaction is 

compared to the values obtained with the adapted PIFM (noted as aPIFM in the following 

diagrams). Figure 5-77 also represents the interaction curve proposed in Chapter 4 of this thesis. 

 

Figure 5-75: Plastic My-Mz interaction for UPE 220 
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Figure 5-76: Plastic My-B interaction for UPE 220 

 

Figure 5-77: Plastic Mz-B interaction for UPE 220 

The previous figures show that the linearized interaction curves proposed by Stangenberg can 
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shown that the cut-off limits should not exceed ten percent of both ratios Mz/Mz,pl and B/Bpl. Also, 

it should be noted that the plastic interaction may obviously only be applied if the studied member 

is of compact cross-section and not too slender in order to attain a failure mode characterised by 

complete yielding of the most loaded section. This problem is highlighted based on the example 

of the cross-section given in Table 5-12. Hereafter, the hot-rolled cross-section with invented 

dimensions is studied. This section is also used in the parametric study presented in paragraph 
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slender web. The flanges are of class 3. The studied member is subject to a point load applied at 

mid-span at the upper flange’s tip. 

Table 5-12: Studied cross-section 

Cross-section HR770.5.400.17* 

A 172,8 cm² 

Iz 18134 cm4 

Iy 209428 cm4 

It 131,01 cm4 

Iw 25705928 cm6 

Class 4** 

My,pl (S235) 1362,4 kNm 

My,eff (S235) 1233,9 kNm 

Mz,pl (S235) 320,3 kNm 

Mz,eff = Mz,el (S235) 213,08 kNm 

Bpl (S235) 120,34 kNm² 

Bef f= Bel (S235) 80,00 kNm² 
* Hot-rolled section HR.h.tw.b.tf 

** Web of class 4 and flanges of class 3 

The results are presented in form of the ultimate resistance curve given in Figure 5-78. The 

relative slenderness is determined based on the critical load amplification factor and the load 

amplification factor leading to the plastic cross-section resistance as defined by Eq. ( 5.69 ). 

Gcr

pl

R

R

,

=λ  ( 5.69 ) 

Figure 5-78 clearly highlights that the resistance model proposed by Stangenberg may be very 

unsafe for members of slender cross-section. Obviously, a linear interaction should apply in these 

cases. For longer members the results may seem more surprising. Indeed, the proposal 

approaches the results obtained numerically and may even become safe-sided, although a non-

linear interaction is applied. Here, two main factors may explain these results: 

• For longer members the influence of section slenderness (and therefore local 

buckling) becomes negligible. 

• The favourable factor 1/(1+My,Ed/My,cr) is neglected by Stangenberg in order to 

simplify his proposal (compare Eqs. ( 5.62 ) and ( 5.63 )). 
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Figure 5-78: Ultimate resistance curve of the studied member 

The first point may be highlighted based on the deformed shape and von Mises stress distribution 

for the two members of a length of 4,0 m and 10,8 m represented in Figure 5-79 (the load 

introduction as well as the stiffener at mid-span are not represented). Figure 5-79 a) clearly shows 

the formation of local buckles in the flange at mid-span indicating a failure caused by interaction 

between local and member instability. Conversely, the longer member fails predominantly by 

elasto-plastic member instability as indicated by yielding of the upper flange at mid-span. One 

may note that the two members are also calculated with the restrained model (see paragraph 

5.2.3). These supplementary calculations allow the quantification of the influence of local buckling 

on the member resistance. Indeed, for the two members, one obtains the following ratios between 

the calculation considering local buckling (linked to the load amplification factor Rult,NR) and the 

calculation not considering the influence of local buckling (linked to the load amplification factor 

Rult,R): 
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, =
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Member of 10,8 m of length: 966,0
,

, =
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The ratios obtained for the two members confirm the conclusions concering the failure mode 

influenced by local plate instability. 
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a) Length = 4,0 m b) Length = 10,8 m 

 
Figure 5-79: Deformed shape and residual stress distribution  

Additionally, it may be shown that the omission of the factor 1/(1+My,Ed/My,cr) may be rather 

conservative as highlighted in Figure 5-80. It is recalled that this factor is linked to the ratio 

BEd/BRd. Consequently, the possible reduction of up to 30% for the working ratio of the bi-moment 

is neglected leading to less unsafe results when the proposal of Stangenberg is applied to long 

members. 

 

Figure 5-80: Evolution of the factor 1/(1+My,Ed/My,cr) 

Last, for I sections, Stangenberg proposes an extension of Eq. ( 5.63 ) to an additional axial force 
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( 5.70 ) 

Eq. ( 5.70 ) represents several disadvantages. The first one is certainly the complexity of the 

presentation that leads to an unreadable design criterion. Additionally, it should be noticed that if 

the axial force tends to zero, Eq. ( 5.70 ) does not tend to the proposal for bi-axial bending and 

torsion without axial force due to the difference in the cross-section interaction. Also, for the case 

of an additional axial force, the term introducing the influence of the imperfection is kept (second 

term of Eq. ( 5.70 )) whereas it has been neglected for combined bi-axial bending and torsion. The 

resulting discontinuity may be confusing for potential users. Moreover, the proposed non-linear 

interaction dismisses the proposal again for slender sections (class 3 or class 4) and for slender 

members attaining a purely elastic limit state. 

 Proposal RWTH Aachen III 

A last proposal developed at RWTH Aachen is made by Naumes in 2009. He proposed the 

following format based on a linear interaction between internal forces and moments: 
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where: 

qMz and qB: are coefficients taking into account the shape of the minor axis bending/ bi-moment 

diagram 

Compared to the previous design methods proposed at RWTH Aachen, the present proposal has 

the advantage of being much more compact even if it has been developed based on the same 

mechanical background. As Stangenberg, Naumes proposes to keep the influence of the 

imperfection in the design concept through the term ∆nR. Additionally, one notices that out-of-

plane second order effects created by axial forces are not accounted for, conversely to the two 
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previous design proposals. This omission might lead to unsafe results in cases of high axial forces 

and interaction with a minor-axis bending moment. Moreover it is not clear whether the first 

order minor-axis bending moment and first order bi-moment include the components created by 

the first order displacements (Mz = Myf; Mw = Myv/δT – see Eqs. ( 5.60 ) and ( 5.61 )). 

Naumes gives an analytic expression for the factors qMz and qMw: 
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where: 

Mz,m and Bm: are the modal minor-axis bending moment and bi-moments (resulting from the 

eigenmode) 

Mz,0 and B0: are the maximum first order minor-axis bending and bi-moments 

In order to facilitate the determination of the factor qMz, Naumes provides literal expressions so 

that (1-qmZ) is equivalent to the Cmz factor given in Annex A of Eurocode 3 Part 1-1 (CEN 2005a). 

However, no expression is given for qB. Yet, one might argue that, as the warping moment is 

certainly not the predominant component for the resistance of the member, it is not necessary to 

account for the influence of the form of the bi-moment. In some situations, especially for members 

with high warping decay factors εT (and therefore bi-moments concentrated in small zones), 

neglecting the form of the warping moment may be conservative. 

So as to highlight the problem linked to the omission of the out-of-plane second order effects 

arising from the axial force, it is proposed to study the example of a member made of HEB 200 

section fabricated from steel S235. The member is subject to an axial compression force and a 

lateral point load applied at mid-span generating a minor-axis bending moment but no torsion (it 

is applied through the shear centre). The loads are increased proportionally and the ratio between 

the minor-axis bending moment and the axial force is equal to 7,35 cm. The results obtained by 

the numerical simulations as well as by the application of the proposal from Naumes are given in 

Figure 5-81. Additionally, the strength prediction obtained with the Eurocode 3 interaction 

formulae and Annexe B of the same standard are represented. 
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Figure 5-81: Ultimate resistance curves for a member of HEB 200 section subject to combined 

minor-axis bending and compression force 

It may seem astonishing that the proposal of Naumes is safe-sided over the whole range of the 

slenderness. For short members, this seems natural as Naumes supposes a linear interaction 

between the minor-axis bending moment and the axial force. Obviously, this is rather 

conservative. On the contrary, for longer members sensitive to second order effects the safe-sided 

nature of the proposal seems more surprising as the amplification factor 1/(1-NEd/Ncr,z) is omitted 

for the minor-axis bending moment. Yet, it should be noted that the parameter αult,k representing 

the working degree of the member about its major-axis includes second order effects and the 

member imperfection. For the studied case the proposal may therefore be rewritten as shown 

in Eq. ( 5.75 ). 
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The last term at the left-hand side of Eq. ( 5.75 ) varies between approximatively 0,01 and 0,05. 

Consequently, it is nearly negligible for the studied case. Contrarywise, it may be seen that the first 

term representing the working degree of the member with respect to the axial force includes the 

in-plane and the out-of-plane buckling reduction factor. The reduction factor χy varies between 

1,0 for the shortest member to 0,34 for the longest member. Hence, it contributes highly to the 

strength reduction and counterbalances the omission of the amplification factor 1/(1-NEd/Ncr,z) 

that should theoretically be associated with the minor-axis bending moment. It should however 

be noted that this is not conceptually correct as shown by the two curves linked to the numerical 

simulations, GMNIA Imperfection v and GMNIA Imperfection v and w, including respectively a sole 

lateral imperfection of amplitude L/1000 and a combination of lateral and vertical Imperfection 

both of amplitude L/1000. As can be seen the vertical imperfection has no effect on the member 

strength. Indeed, the failure is characterized by flexural buckling about the minor-axis in both 

cases. The second order effects arising from the vertical imperfection are negligible.  
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Additionally, depending on the member geometry, the results of the Eq. ( 5.71 ) may become 

unsafe. Indeed, if the sensitivity of the member for in-plane and out-of-plane buckling is very 

different (if Iy >> Iz), the omission of the out-of-plane second order effects cannot be covered 

anymore by the in-plane reduction factor. So as to illustrate this problem a member of HEAA 800 

section is studied. This member is subject to constant minor-axis bending and an axial 

compression force. The values of the axial force and the minor axis-bending moment is chosen to 

obtain a ratio (Mz/Mz,pl)/(N/Npl) = 6,7 (if the minor-axis bending moment attains the value of Mz,pl, 

the axial force attains 0,15Npl). Figure 5-82 shows that the studied proposal may be unsafe for this 

member. Conversely, the Eurocode 3 Part 1-1 interaction equations represent very well the 

behaviour of the member as the second order effects amplifying the minor-axis bending moment 

are accounted for. For short members the interaction equations as well as the proposal of Naumes 

become more conservative as the exact plastic cross-section interaction is not represented. 

 

Figure 5-82: Ultimate resistance curves for a member of HEAA 800 section subject to combined 

minor-axis bending and compression force 

It can be concluded that Naumes’ proposal for the extension of the “General Method” of §6.3.4 of 

the current version of Eurocode 3 Part 1-1 may or may not be safe-sided depending on the 

member geometry and depending on the relative importance of the in- and out-of-plane second 

order effects. 

Last, one may note that the domain of application of the proposed method is extended to U 

sections without any modification. Consequently, additionally to the problems highlighted here 

before, the flexural-torsional buckling mode is not accounted for. As, for U-shaped members, this 

mode combines in- and out-of-plane displacements, the separate treatment of both (as done 

through the introduction of the term 1/(αult,kχop) seems delicate. 
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 Summary of design proposal made at RWTH Aachen 

Through the previous paragraphs the design proposals made at RWTH Aachen have been 

discussed. It may be noted that they can be rewritten in a very similar format as shown in Eqs. ( 

5.76 ) to ( 5.78 ). The main differences between the three proposals are associated with the 

hypothesis concerning the cross-section interaction (non-linear or linear). Additionally, proposals 

Aachen I and Aachen II include the effect of the member displacements on the internal moments. 

In fact, Aachen I includes explicitly the complementary term My,Edf and Aachen II the effects 

linked to the displacements f and v but the explicit values of the displacement components are 

replaced by analytical expressions. Yet, this leads to an increased complexity for the presentation 

of proposal Aachen II. Moreover, it seems obvious that the “analytical” expressions used are only 

approximate for complex load combinations. Therefore, it seems more convenient to keep the 

displacements explicitly in the interaction equations (if necessary). Also, in practice the analysis 

of the structure is done by a numerical simulation in nearly every case. Consequently, the engineer 

possesses directly the information of the torsional twist and the displacements. In proposal 

Aachen III the additional minor-axis bending moment arising from the torsional twist and the 

additional bi-moment arising from lateral displacements seem to be neglected. In paragraph 5.6, 

it is investigated, based on comparisons to GMNIA simulations, whether or not it is necessary to 

consider the displacements. 
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Proposal Aachen II: 
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Proposal Aachen III: 
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It is recalled that all three proposal may be unsafe in certain conditions even if they appear to be 

rather complex. 

5.4.4 Design rule proposed at TU Berlin 

In the framework of the German national research project P554 (FOSTA 2004) that involved three 

universities (TU Berlin, RWTH Aachen and RU Bochum), several design proposals were 

developed. The proposal developed by RWTH has already been presented as proposal Aachen I in 

paragraph 5.4.3.2. The design proposal of TU Berlin, presented in (Glitsch 2008) is detailed 

hereafter. It should be noticed that this proposal has been adopted in Eurocode 3 Part 6 – Crane 

Supporting Structures (CEN 2007b) for double and slightly to medium mono symmetric I sections 

(mono symmetric sections for which the ratio between the second moment of area of the flanges 

about their major-axis is not less than 0,2 – -0,67 ≤ ψmono ≤ 0,67). Yet, it is invalidated by the 

French National Annex (CEN 2011b). As the proposals of Nethercot and Naumes, Glitsch proposes 

the linear interaction between major-axis bending, minor-axis bending and the bi-moment 

represented in Eq. ( 5.79 ). This proposal has been derived empirically based on numerical 

simulations conversely to the proposals made by RWTH Aachen that are based on a theoretical 
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basis. Consequently, the empirical interaction factors kw, kzw and kα are used to adapt the model 

to the observed resistances. 
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where:  

wk , zwk , αk  : are interaction factors given in Eqs. ( 5.80 ) to ( 5.82 ) 
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The bi-moment is multiplied by three coefficients given by the expressions of Eqs ( 5.80 ) to ( 5.82 

). Obviously, the factor kα accounts for the influence of second order effects. As the interaction 

factor used in paragraph 5.4.2, kα overestimates the second order effects on the bi-moment arising 

from the major-axis bending moment compared to an elastic analysis. It is recalled that these 

second order effects are already partially included in the reduction factor χLT (the analytically 

determined amplification factor is used in Eq. ( 5.62 ) and it is equal to 1/(1+My/My,cr)). 

The factor zwk is supposed to represent the modification of the torsional behaviour of the member 

and in particular the effect of the warping hinge. It can be observed that if the minor-axis bending 

moment Mz,Ed equals the moment resistance for minor-axis bending Mz,Rk (omitting 
1Mγ  as it is 1,0 

according to (CEN 2005a)) the factor kzw equals 0, i.e. the member may always attain the plastic 

minor-axis bending resistance in case of combined minor-axis bending and torsion (without My). 

Yet, it has been shown in Chapter 4 that this is not true. In particular, it has been shown that, if the 

warping hinge is accounted for, high Saint-Venant’s torsional moments may arise. The failure of 

short moments is then always associated with complete yielding over their total length. 

Additionally, for relatively long members susceptible to fail by instability, the torsional 

modification of the member leads to a high increase of the torsional twist that may not be 

acceptable in practice. The effect of this factor on the safety level of this proposal is evaluated 

further on in paragraph 5.6.4.2. 
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Following the explanations given in reference (Glitsch 2008) the last component of the interaction 

factors, kw, is supposed to account for the interaction between major-axis bending and the bi-

moment. However, it appears that its expression given in Eq. ( 5.80 ) can absolutely not ensure 

the continuity of the design approach for members subject to low major-axis bending moments. 

Also, it should be noted that the factor kw has been calibrated supposing that the other factors are 

valid. Consequently, it seems that this factor rather compounds for uncertainties of the design 

approach. Figure 5-83 shows the calibration of the factor based on a limited number of numerical 

simulations. This figure, taken from reference (Glitsch 2008), gives the value of kw necessary to 

yield the same strength prediction with the model as the one obtained numerically. Obviously, 

there is a high scatter. The expression of kw is calibrated in order to obtained safe-sided lower 

bound strength predictions. Anyhow, it can be observed that the factor kw only varies between 0,7 

and 0,5. Moreover, Glitsch recommends the use of his proposal only if the ratio BEd/BRk is less than 

0,5. Consequently, the factor kw varies only in the range of 10% to 15% and hence, the need to 

introduce a purely empirical factor that varies this slightly is not obvious here. 

 

Figure 5-83 : Calibration of the factor kw – Figure taken from reference (Gltisch 2008) 

5.4.5 Design rule proposed at Eindhoven University of Technology 

In 1999 and 2007 two research reports concerning lateral-torsional buckling of U-shaped 

members subject to major-axis bending and torsion were published at Eindhoven University of 

Technology ((La Poutrée 1999) and (De Louw 2007)). In order to conclude on a design rule four 

experimental and approximately 350 numerical tests were conducted. Finally, both projects 

propose a design formula introducing the effect of torsion by a modified relative slenderness for 

lateral-torsional buckling. A similar approach has been proposed by (Kindmann et al. 2002). 

However, it is based on lateral-torsional buckling curve of DIN 18800-2 (DIN 1990). As these three 

approaches are similar, only the most recent proposition published in references (De Louw 2007) 

and (Snijder et al. 2008) is presented in the following. The proposed design approach is given Eqs. 

( 5.83 ) to ( 5.88 ). 
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where:  

MTλ : is the ideal relative slenderness accounting for the influence of torsion on lateral-torsional 

buckling 

Tλ : is the ideal relative slenderness accounting for torsion 

 

For a better understanding of the method, the buckling curve resulting from the design proposal 

is shown in Figure 5-84. 
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Figure 5-84 : Reduction curve for lateral-torsional buckling of channel section 

Figure 5-84 clearly shows the plateau of the reduction factor up to a relative slenderness of 0,8. 

The corresponding reduction factor is equal to 0,67. For high slendernesses exceeding 1,5 the 

reduction of the lateral-torsional buckling resistance due to torsion may be neglected. 

In (De Louw 2007), the plateau value of 0,67 for the reduction factor is explained on the basis of 

the GMNIA numerical results. Figure 5-85 presents the example of a member of UPE 80 section 

subject to a uniformly distributed load applied in the plane of the web at the upper flange. 

 

Figure 5-85 : Reduction factor calculated with the reference to bending moment resistance of the 

section 

It seems that the reduction factor does not approach a value of 1,0 for small values of the relative 

slenderness. It even decreases after passing through a maximum value of approximately 0,83 for 

a relative slenderness of 0,67. However, this behaviour can be easily explained by the fact that de 

Louw proposes to apply the reduction factor to the bending moment only. Obviously, the 

reduction factor cannot tend to 1 for zero slenderness (representing the case of cross-section 

resistance) in this situation as the bi-moment (and minor-axis bending due to torsional rotation) 
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is not included explicitly. Moreover, in case of variable bending, the shear force may also cause the 

failure of the member. Besides the restricted domain of application, the fixed plateau value for the 

reduction factor is a clear disadvantage of de Louw’s proposal as it may lead to highly conservative 

results for small slendernesses, especially in cases where only a small amount of torsion is applied. 

It may be recalled that global design approaches as OIC refer the reduction factor to the cross-

sectional resistance under combined loading. If this is done for the present case, the reduction 

factor χ should tend to 1,0 (cross-section resistance) for short members as shown in Figure 5-86 

(curve “GMNIA global”) for the example of the UPE 80 member of Figure 5-85. This figure also 

represents the results of de Louw with reference to the plastic bending moment resistance My,pl. 

 

Figure 5-86 : Reduction factor calculated with the reference to bending moment resistance of the 

section and global section resistance 

The grey curve of Figure 5-86 is obtained by the application of Eqs. ( 5.89 ) and ( 5.90 ) to the 

numerical results obtained by de Louw. 
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The section resistance is calculated numerically with the adapted PIFM considering the full plastic 

limit state (based on first order internal forces and moments). Yet, it should be kept in mind that 

the formation of the plastic warping hinge (see Chapter 4) somewhat disturbs the theoretical 

approach as the bi-moment does not increase proportionally with the major-axis bending 

moment. Consequently, the ultimate resistance curve linked to “GMNIA Global” does not seem to 

tend to unity for zero slenderness neither. This problematic is not treated further on in this 

paragraph. Rather, it is addressed in paragraph 5.6.5 when the possibility of OIC based design is 

studied for members under torsion. 
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Nevertheless, Figure 5-87, representing the totality of the GMNIA results used in reference 

(De Louw 2007), shows that a reduction curve based on the principles of a global concept can be 

appropriate for the design of members subject to a combination of internal forces, in the present 

case major-axis bending and bi-moments. 

 

 

Figure 5-87: Introduction of a global reduction curve for U-shaped members 

The “safe curve” represented in Figure 5-87 is defined in Eqs. ( 5.91 ) and ( 5.92 ). This simple 

design expressions yields results that capture the tendencies of the GMNIA calculations well. 

Compared to the reduction curves for flexural and lateral-torsional buckling, the proposed “safe 

curve” does not include a plateau for a small relative slenderness. Additionally, it is clear that the 

natural scatter of the results due to the complex configuration of a mono-symmetric section under 

combined bending and torsion cannot be covered precisely. Anyhow, it is obvious that with one 

single expression containing only two parameters, i.e Rpl and Rcr,G the complexity of the load case 

cannot be treated in detail. 
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Nonetheless, Eqs. ( 5.91 ) and ( 5.92 ) should not be understood as design proposal but as an 

indication that a global concept can lead to satisfactory strength prediction. Consequently, global 

methods seem worth to be studied in more detail also for complex load cases. However, it should 

also be noted that the case studied here does not include many parameters. Indeed, only U-shaped 

members are addressed. Additionally, torsion is introduced by a vertical load applied through the 

web of the member. This is obviously of practical interest. Yet, the importance of the torsional 

moment is directly linked to the major-axis bending moment and, due to the small eccentricity 
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between the shear centre and the applied load, it is rather low. If the torsional moment is 

introduced independently from major-axis bending, the design curve would not be applicable 

anymore. So as to propose a more general design approach the influence of the torsional moment 

should certainly be accounted for (see paragraph 5.6). 

5.4.6 Summary of the proposals and comparison to physical tests 

Table 5-13 presents a summary of the proposals discussed here before. It is clear that the majority 

of the approaches consist in interaction formulae. As shown in the corresponding paragraphs, 

their main difference is the form of the cross-section interaction (linear or non-linear). On the 

contrary, TU Eindhoven proposes a simplified and conservative method that consists in modifying 

the lateral-torsional buckling (ltb) slenderness of the member to account for the influence of 

torsion. However, due to its calibration it is the most restrictive method. 

Table 5-13: Summary of the proposal presented in paragraph 5.4 

Proposal 
(Reference) 

Form 
Domain of application 

Form of the section Load case 

BSI and Nethercott 
(Nehtercott et al. 1989) 

linear interaction 
formula 

I and U sections My, Mz, MT 

Aachen I 
(FOSTA 2004) 

linear interaction 
formula 

I sections N, My, Mz, MT 

Aachen II 
(Stangenberg 2007) 

non-linear 
interaction formula 

I and U sections 
N (for I sections), My, 

Mz, MT 

Aachen III 
(Naumes 2009) 

linear interaction 
formula 

I and U sections N, My, Mz, MT 

Berlin 
(Glitsch 2008) 

linear interaction 
formula 

I sections My, Mz, MT 

Eindhoven 
(de Louw 2007) 

modified relative ltb 
slenderness 

U sections 
My, MT – loads 

applied in the web 
plane 

 

In order to facilitate the evaluation of the methods, it is proposed to compare them to physical 

tests. In the literature only a limited number of tests on members subject to a combination of 

flexure, axial force and torsion can be found. The following comparisons are based on the tests 

performed during the research project P554 (FOSTA 2004). The physical tests are summarized in 

Table 5-14. More details on the load introduction, support conditions and realisation of the tests 

are given in (FOSTA 2004) and Chapter 3 addressing the numerical model used in the framework 

of this thesis. 
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Table 5-14: Physical tests performed in the framework of research project P554 

Name of the test Cross-section Member length (cm) Load case 

BE-1-1 IPE 200 280 My+MT 

BE-1-21 IPE 200 280 My+ Mz+MT 

BE-1-22 IPE 200 280 My+ Mz+MT 

BE-1-3 IPE 200 280 My+ Mz+MT 

BE-1-4 IPE 200 400 My+MT 

BE-1-51 IPE 200 400 My+ Mz+MT 

BE-1-52 IPE 200 400 My+ Mz+MT 

BE-1-6 IPE 200 400 My+ Mz+MT 

BE-2-1 HEB 200 400 My+MT 

BE-2-21 HEB 200 400 My+ Mz+MT 

BE-2-22 HEB 200 400 My+ Mz+MT 

BE-2-3 HEB 200 400 My+ Mz+MT 

BE-2-4 HEB 200 560 My+MT 

BE-2-51 HEB 200 560 My+ Mz+MT 

BE-2-52 HEB 200 560 My+ Mz+MT 

BE-2-6 HEB 200 560 My+ Mz+MT 

BE-3-1 UPE 200 280 My+MT 

BE-3-21 UPE 200 280 My+MT 

BE-3-22 UPE 200 280 My+MT 

BE-3-3 UPE 200 400 My+MT 

BE-3-41 UPE 200 400 My+MT 

BE-3-42 UPE 200 400 My+MT 

BO-I-1 UPE 200 400 My+N+MT 

BO-I-2 UPE 200 400 My+N+MT 

BO-I-3 UPE 200 400 My+N+MT 

BO-I-4 UPE 200 400 My+N+MT 

BO-I-5 UPE 200 600 My+N+MT 

BO-I-6 UPE 200 600 My+N+MT 

BO-I-7 UPE 200 600 My+N+MT 

BO-I-8 UPE 200 600 My+N+MT 

BO-II-1 HEB 200 500 My+N+MT 

BO-II-1a HEB 200 500 My+N+MT 

BO-II-2 HEB 200 500 My+N+MT 

BO-II-3 HEB 200 800 My+N+MT 

BO-II-4 HEB 200 800 My+N+MT 

BO-II-5 HEB 200 500 Mz+N+MT 

BO-II-6 HEB 200 500 Mz+N+MT 

BO-II-7 HEB 200 800 Mz+N+MT 

BO-II-8 HEB 200 800 Mz+N+MT 
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It is recalled that most of the presented methods are limited in their field of application. 

Nevertheless, it is interesting to evaluate the proposed design methods outside the initial field of 

application in order to judge whether an extension may be envisaged. The results of the 

comparisons are given in Table 5-15. In this table the light green background colour indicates that 

the evaluated physical tests lie in the field of application of the method. Conversely, the orange 

background colour shows that the physical test is out of scope of the method. In order to apply the 

methods outside their initial field of applications the following extensions are introduced: 

• Aachen I and Aachen III: extension to U sections without any modification of the 

method. 

• Aachen II: extension to U sections with compression without any modification of 

the method. 

• Berlin : extension to the case of compression axial force by applying the 

Eurocode 3 interaction criteria (6.61 and 6.62) and Eurocode 3 Annexe B for the 

determination of the interaction coefficients. 

• Eindhoven: extensions to I sections without any modification and extension to 

applied compression axial force and minor-axis bending by applying the 

Eurocode 3 interaction criteria (6.61 and 6.62) and Eurocode 3 Annexe B for the 

determination of the interaction coefficients. 

Also, it should be recalled that the proposal Aachen I introduces the influence of an axial force to 

the major-axis bending resistance. Therefore, it cannot be modified to members subject to an axial 

force but not subject to major-axis bending. As the proposal BSI/Nethercott is based on the 

interaction formula provided in the former British standard and not based on the principles of 

Eurocode 3, no extension to the case of axial compression is applied. 

Last, it has to be recalled that the proposals Aachen II and Aachen III use coefficients that are not 

literally defined. These coefficients are set to 1,0 for the comparison. This is surely representative 

of what would be done in the practice if no other information is available. 
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Table 5-15: Comparison of test results and proposed methods 

Name of the test 
BSI 

RultBSI/RultTest 
Aachen I 

RultAaI/RultTest 
Aachen II 

RultAaII/RultTest 
Aachen III 

RultAaIII/RultTest 
Berlin 

RultBer/RultTest 
Eindhoven 

RultEind/RultTest 

BE-1-1 0,730 0,937 0,969 0,969 0,908 1,208 

BE-1-21 0,532 0,694 0,850 0,682 0,829 0,960 

BE-1-22 0,496 0,657 0,811 0,650 0,801 0,941 

BE-1-3 0,372 0,442 0,589 0,405 0,482 0,487 

BE-1-4 0,789 0,939 0,931 0,978 0,896 1,105 

BE-1-51 0,562 0,703 0,793 0,695 0,775 0,874 

BE-1-52 0,565 0,707 0,797 0,698 0,779 0,879 

BE-1-6 0,395 0,464 0,592 0,421 0,474 0,480 

BE-2-1 0,582 0,853 0,863 0,848 0,866 0,905 

BE-2-21 0,522 0,818 0,889 0,759 0,894 0,902 

BE-2-22 0,513 0,804 0,874 0,746 0,879 0,886 

BE-2-3 0,330 0,584 0,600 0,496 0,585 0,606 

BE-2-4 0,620 0,852 0,829 0,858 0,850 0,875 

BE-2-51 0,520 0,776 0,803 0,718 0,814 0,814 

BE-2-52 0,391 0,634 0,659 0,603 0,696 0,729 

BE-2-6 0,390 0,632 0,656 0,601 0,693 0,727 

BE-3-1 0,358 0,579 0,507 0,574 0,548 1,192 

BE-3-21 0,376 0,573 0,488 0,566 0,511 1,001 

BE-3-22 0,359 0,535 0,453 0,529 0,470 0,893 

BE-3-3 0,415 0,596 0,483 0,601 0,513 0,922 

BE-3-41 0,397 0,560 0,453 0,564 0,490 0,839 

BE-3-42 0,375 0,564 0,460 0,570 0,499 0,952 

BO-I-1 n.a. 0,532 0,431 0,523 0,468 0,781 

BO-I-2 n.a. 0,594 0,477 0,581 0,541 0,977 

BO-I-3 n.a. 0,545 0,672 0,481 0,524 0,712 

BO-I-4 n.a. 0,625 0,725 0,545 0,604 0,869 

BO-I-5 n.a. 0,569 0,461 0,584 0,494 0,758 

BO-I-6 n.a. 0,577 0,453 0,590 0,507 0,824 

BO-I-7 n.a. 0,585 0,586 0,596 0,546 0,767 

BO-I-8 n.a. 0,602 0,566 0,599 0,559 0,840 

BO-II-1 n.a. 1,059 0,997 1,001 1,057 1,113 

BO-II-1a n.a. 1,043 0,905 0,934 1,003 1,047 

BO-II-2 n.a. 1,031 0,824 0,879 0,964 0,997 

BO-II-3 n.a. 0,938 0,797 0,892 0,915 0,935 

BO-II-4 n.a. 0,940 0,593 0,772 0,905 0,900 

BO-II-5 n.a. n.a. 1,050 0,799 0,944 0,986 

BO-II-6 n.a. n.a. 0,917 0,761 0,846 0,886 

BO-II-7 n.a. n.a. 1,040 0,843 0,942 0,972 

BO-II-8 n.a. n.a. 1,066 0,802 0,894 0,923 

Maximum 0,789 1,059 1,066 1,001 1,057 1,208 

Minimum 0,330 0,442 0,431 0,405 0,468 0,480 

Mean value 0,481 0,701 0,716 0,685 0,723 0,884 

Standard deviation 0,125 0,175 0,198 0,159 0,190 0,156 
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Regarding Table 5-15, it may again be observed that the proposal “Eindhoven” is the most 

restrictive one. However, in combination with the Eurocode 3 interaction formulae, it yields 

rather satisfactory results. In fact, the mean value and the standard deviation of the results are 

clearly better than for the other proposals. Since, this proposal is the simplest one, this 

observation is even more remarkable. Nevertheless, in some cases, outside its initial range of 

application, the proposal may be too unsafe. Especially in case of torsional loads higher than the 

ones used to calibrate the method, as for the tests BE-1-1 (IPE 200 – point load applied at the mid 

of one flanges cantilever), BE-1-3 (as BE-1-1), BE-3-1 (UPE 200 – point load applied on the flange 

through the gravity centre of the section), BO-II-1 (HEB 200 – point load applied at one flange’s 

tip) and BO-II-2 (as BO-II-1), the proposal yields to optimistic values. Conversely, if the member 

is subject to bi-axial bending and torsion with high proportion of minor-axis bending, the modified 

proposal is very conservative (BE-1-3, BE-1-6). This last observation is also true for the other 

proposals. 

The proposal “BSI/Nethercott” is also rather simple to apply. However, one may observe that most 

of the results are very conservative. This is certainly due to the limitation to the elastic resistance 

for the effects of torsion (stresses created by indirect minor-axis bending and the bi-moment). 

Also, it has been shown in paragraph 5.4.2 that the interaction factor considering the interaction 

between bending and torsion is rather conservative. 

The proposal “Berlin” currently adopted in Eurocode 3 Part 6 (CEN 2007b) yields rather 

satisfactory results in its initial field of application. As mentioned the proposal seems however to 

be highly conservative in case of combination between major-axis bending, high minor-axis 

bending and torsion (tests BE-1-3 and BE-1-6). Additionally, the proposal seems to be very 

conservative in case of U sections (BE-3-x and BO-I-x). This is most likely due to the form of 

interaction between the internal forces. Obviously, the mono-symmetry of U sections leads to a 

more complex interaction behaviour as shown in Chapter 4 presenting the study on the plastic 

cross-section resistance. In order to account for this complexity in more detail, proposal Aachen II 

introduces a specific interaction formula for U sections. Consequently, the results are slightly 

closer to the tests for U sections. However, the difference is only of about 10%. This also indicates 

that the simplified cross-section interaction formulae do not fully account for the complex 

interaction behaviour of U sections. For I sections, the proposal Aachen II yields rather 

satisfactory and safe-sided results certainly due to the consistent mechanical background. Yet, in 

case of combined minor-axis bending, axial force and torsion (tests BO-II-5 – BO-II-8) the proposal 

seems to lead to too optimistic values. Here, the exact determination of the (non-literally defined) 

interaction factors may lead to an amelioration. Nonetheless, for practical engineers, the 

determination of these interaction coefficients is impossible due to the lack of literal expressions. 

The method “Aachen I” yields in most cases similar results as the proposal “Aachen II” despite of 

the inconsistencies discussed in paragraph 5.4.3.2. As for the proposals “Berlin” and “Aachen II”, 

the proposal “Aachen I” is very conservative for U sections. Conversely, in case of I sections subject 

to combined axial force, major-axis bending and torsion, proposal “Aachen I” may be slightly too 
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favourable, especially for short members (member length = 5 m for tests BO-II-1 – BO-II-2 and 

8 m for BO-II-3 and BO-II-4). 

Last, it is interesting to discuss method Aachen III. It can be seen that all results are safe-sided, 

accepted for the case BO-II-1 that is (very) slightly un-conservative. As for the other proposals 

provided by the researches from RWTH Aachen and the proposal “Berlin”, the method is very 

conservative for U sections. Again, the form of the cross-section interaction may be contested. 

Also, in presence of combined major-and high minor-axis bending the proposal seems to be too 

conservative (tests BE-1-3 and BE-1-6). Nevertheless, this proposal leads in general to satisfactory 

results, as reflected by the standard deviation of 0,159. Yet, the results are in the majority of cases 

very safe-sided. The safe-sided nature of the proposal may be explained by the fact that the 

interaction factor for the bi-moment is always taken to one. This is certainly very conservative for 

most cases. Also, it should be noted that none of the tested U-shaped members failed in a flexural-

torsional buckling mode that is not considered in approach Aachen III. Yet, the high conservatism 

of the approach observed for U-shaped members may cover the conceptual problems. 

The results may be summarized as follows: 

• The proposal calibrated for I sections (all except Eindhoven) are very conservative 

for U sections; 

• Proposals Aachen I, Aachen II and Berlin yield very similar, mostly very safe-sided, 

results; 

• Proposal BSI/Nethercott is too safe-sided and yields non-economic results due to 

the limitation to elastic resistance for the effects of torsion; 

• Proposal Aachen III yields satisfactory results, especially for I sections; 

• Proposal Eindhoven combined with the Eurocode 3 Part 1-1 interaction formulae 

yields the most economic results. Yet, in some cases, outside its initial scope, the 

method may be too unsafe as the influence of the relative importance of torsion is 

not considered directly. 

Finally, it should be noted that the results obtained in physical tests always contain a certain 

amount of incertitude partially explaining the scatter of the resistances predicted by the design 

models. It should also be recalled that U-shaped members currently lie outside of the scope of the 

Eurocode 3 interaction formulae. Therefore, the extension of certain methods to U sections 

subject to axial force by applying these interaction formulae is certainly discussable. However, 

this extension has been performed here for comparison. 
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5.4.7 Conclusion 

The present paragraph has given a review of design methods proposed for the verification of the 

stability behaviour of members made of open cross-sections subject to a combination of internal 

forces and moments including torsion. Most of the design proposals are based on simplified 

interaction of quasi analytically determined 2nd order internal forces (the second order internal 

forces are analytically determined for a reference load case and empirical parameters are 

introduced to account for differences to other load cases). The differences in these interaction 

formulae are mainly due to the factors accounting for second order effects, especially on minor-

axis bending and the bi-moment. It has been shown in the previous paragraph that these 

interaction formulae might be very conservative for U-shaped members. 

A different approach has been used at TU Eindhoven for U sections subject to vertical loads 

applied in the plane of the web. It is proposed to modify the relative lateral-torsional buckling 

slenderness empirically to account for the effect of torsion. By comparison to physical tests, it has 

been shown that this method might be introduced to the Eurocode 3 interaction formulae. 

However, in this case some modifications should be included in order to account for the form of 

the cross-section and the relative importance of torsion (bi-moment) on the cross-section 

resistance. It is recalled that the method has only been calibrated for U-shaped members subject 

to a uniformly distributed load or a point load applied through the web. Also, it is recalled that this 

method may be highly conservative for short member due to the plateau value for the reduction 

factor χLT of 0,67. As the influence of torsion is exclusively accounted for by increasing the relative 

slenderness for lateral-torsional buckling, this method cannot be applied to members without 

major-axis bending. 

In the following paragraphs the theoretical basis necessary to develop the simplified design 

approach is presented. In particular, the elastic critical loads and the elastic second order 

equilibrium is of interest. This theoretical study is performed in order to get more insights into 

the behaviour of members under complex combination of internal forces and moments. 
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5.5 Analytical solutions 

5.5.1 General 

Paragraphs 5.3 and 5.4 gave a review of existing provisions for the design of members subject to 

a complex load combination including applied torsion. Several times, it has been made reference 

to analytically derived second order internal forces and moments in order to highlight the 

development of the proposed design approaches. Consequently, it seems of interest to dedicate 

the following section to the theoretical analysis of members with open sections subject to complex 

load combinations. After the recall of the theoretical basis necessary for the following 

developments in paragraphs 5.5.2 to 5.5.4, paragraphs 5.5.5 and 5.5.6 address the problem of 

elastic member instability and finally paragraph 5.5.7 concerns the second order equilibrium of 

the member. Admittedly, the analytical solutions cannot directly be transposed as design model 

for steel members as these always experience at least partial yielding even if the section is slender. 

Moreover, it is shown in the following that analytical solutions can only be obtained based on 

some key assumptions especially concerning the deformed shape of the member and that these 

key assumptions are contradictory in some cases. Therefore, the analytical solutions diverge in 

any case from the real behaviour of the member. Nevertheless, the theoretically derived results 

give relevant information about the parameters influencing the second order effects and member 

instability. Additionally, when the analytical solutions are compared to existing design models, it 

can be highlighted which effects are already covered and which effects have to be included in 

order to extend them to more complex cases. 

5.5.2 Assumptions 

In the framework of the theoretical study, the following assumptions are considered: 

• The material is homogenous and isotropic. 

• The material behaves linearly elastic (in this paragraph only elastic instability and elastic 

second order equilibrium is of interest). 

• The cross-section is rigid and not prone to local instability or distortion. 

• The cross-section is constant along the member. 

• The cross-sections of the deformed member stays plane (warping is accepted). 
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5.5.3 System of axis and kinematics 

It is recalled that the developments presented in this thesis are based on the system of axis shown 

in Figure 5-88. 

 
 

Figure 5-88: Reference system 

Also, it is recalled that positive bending moments and a positive bi-moment generate compression 

axial stresses for positive ordinates y and z, i.e. at the right tip of the upper flange (and at the left 

tip of the lower flange for the bi-moment). Consequently, the positive moments are oriented as 

shown in Figure 5-89. It is to be noted that tension stresses are defined as positive. In order to 

respect common convention compression axial force is considered to be positive. 

 

Figure 5-89: Definition of positive internal moments 

As can be seen in Figure 5-88, it is supposed that the torsional twist acts about the shear centre. 

Consequently, the displacements of an arbitrary point of the cross-section can be determined with 

Eq. ( 5.93 ). 
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( ) ( )( ) ( ) ( )( ) xxxxx vwzwvyuxU ,,,,, sincossincos)( ωϕϕϕϕϕ −−−+−=  

( 5.93 ) ( ) ( ) ( )( )ϕϕ cos1)sin()( −−−−−= SS yyzzvxV  

( ) ( ) ( )( )ϕϕ cos1)sin()( −−−−+= SS zzyywxW  

If one assumes that the torsional twist is small and consequently that the trigonometric functions 

may be approximated by sin(f) = f and cos(f) = 1, the displacement field can be simplified to 

(de Ville de Goyet 1989):  

( ) ( ) xxxxx vwzwvyuxU ,,,,,)( ωϕϕϕ −−−+−=  

( 5.94 ) ( )ϕSzzvxV −−=)(  

( )ϕSyywxW −+=)(  

Generally, the displacement field given in Eq. ( 5.94 ) is simplified rather on by neglecting the 

higher order terms w,xf and v,xf. It yields the linearized displacement field of Eq. ( 5.95 ). 

xxx zwyvuxU ,,,)( ωϕ−−−=  

( 5.95 ) ( )ϕSzzvxV −+=)(  

( )ϕSyywxW −−=)(  

The choice of the displacement field may have a non-negligible influence on the equilibrium 

equation of the member and especially on the critical loads if pre-buckling deflections are 

considered (see paragraph 5.5.4.4 for more details). Hereafter, critical loads for elastic member 

instability as well as differential equations describing the second order equilibrium of the member 

are developed based on the energy method. 

5.5.4 Energy method, equilibrium of the member and critical loads 

 General 

Throughout paragraph 5.5.4 the theoretical background necessary for the development of the 

critical loads as well as the second order equilibrium of the member is compiled. In the first part 

of this paragraph the potential energy of the member is developed. Then the system of differential 

equations describing the second order static equilibrium is determined based on the first 

variation of the potential energy. Finally, paragraph 5.5.4.4 presents the determination of the 

second variation of the potential energy of the member that is used to develop the critical loads. 

In particular, it is shown that, if the influence of pre-buckling displacements is considered, many 

additional terms influencing the critical loads arise compared to the classical approach neglecting 

first order displacements. 
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 Energy method 

Hereafter, the energy method is used to determine the equilibrium of the member and the critical 

loads. The total potential energy of a member is the sum of the strain energy Πi and the work of 

the applied loads Πe as shown in Eq. ( 5.96 ). 

∫∫∫∫ ∫ −−−Ε=Π+Π=Π UdVFVdVFWdVFdVd xyzei σ  ( 5.96 ) 

In the following, it is supposed that the influence of the work of an axial force is negligible due to 

the high axial stiffness of steel members. 

As mentioned previously, the material is supposed to be linear elastic. Therefore, the stress tensor 

can be expressed as a linear function of the strain tensor: 

Ε=Kσ  ( 5.97 ) 

Hence, the strain energy is given by: 

∫ Ε=Π dVKi

2

2

1
 ( 5.98 ) 

The elastic strain tensor is defined by Eq. ( 5.99 ). 
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In the framework of the theory of beams the strains along the y- and z-axis Εyy and Εzz and the 

associated shear strain in the plane y-z are neglected. Thus, the strain tensor simplifies to: 
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 ( 5.100 ) 

Following theory of small strains (Cauchy strain tensor), the different components Eαβ of the strain 

tensor are defined by Eq. ( 5.101 ). 

( )βαβααβ ,,,,
2

1
rrRR TT −=Ε

 
( 5.101 ) 

Here, R and r are the vectors defining the position of an arbitrary point of the undeformed member 

(r) and the deformed member (R). They are given in Eqs. ( 5.102 ) and ( 5.103 ). 
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By introducing the displacement field given in Eq. ( 5.94 ), one may express the strains as shown 

in Eq.( 5.104 ). 
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,

22
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,,,,,,,
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+++−−−+−=Ε

 
( 5.104 ) 

( ) xyxsxy zz ,,,2 ϕωϕ −−−=Ε  

( ) xzxsxz yy ,,,2 ϕωϕ −−=Ε  

The state of equilibrium of the member is characterized by the condition that the first variation of 

the potential energy of the member vanishes: 

( )
0

40

=∂−

∂−∂+∂+∂→=Π∂

∫
∫ ∫

VdVolF

WdVolFdVolEEEEGEEE

y

zxyxyxzxzxxxx
 ( 5.105 ) 

The member is in a critical state representing elastic instability if the second variation of the 

potential energy vanishes, too as given in Eq. ( 5.108 ). 

( )( )
( ) ( )( )
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2222
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xyxyxyxzxzxz

xxxxxx

 
( 5.106 ) 

Both, conditions ( 5.105 ) and ( 5.106 ), are used in the following paragraphs to determine the 

second order equilibrium of the member and then its critical loads linked for a given load case. 
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 Differential equation characterizing the second order static equilibrium of the member 

The differential equation characterizing the second order equilibrium of the member may be 

determined based on the first variation of the total potential energy given in Eq. ( 5.105 ). Eq. ( 

5.107 ) presents the first variation of the elastic strains necessary for the following developments. 

( ) ( )
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( 5.107 ) 
( )[ ] xysxy zz ,,

2

1
ϕω ∂+−−=Ε∂  

( )[ ] xzsxz yy ,,
2

1
ϕω ∂−−=Ε∂  

 

In order to obtain the first variation of the total energy of the member, the variation of the lateral 

and vertical displacements VF and WF of the load application point given in Eq. ( 5.108 ) are also 

needed. 

( ) ϕ∂−+∂=∂ SFF yywW
 

( 5.108 ) 

( ) ϕ∂−−∂=∂ SFF zzvV
 

Eqs. ( 5.107 ) and ( 5.108 ) are introduced in the expression of the first variation of the total 

potential energy of the member as shown in Eq. ( 5.109 ). 
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 ( 5.109 ) 

The system of differential equations describing the static equilibrium of the member is 

determined by integrating Eq. ( 5.109 ) has to be integrated by parts so that the terms in the 

integral are only linked to first variations of the displacement functions u, v, w, f (and not to their 

derivatives as in Eq. ( 5.109 )). The detail is omitted again. The result is given directly in Eq. ( 5.110 

). 
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( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )[ ]
( ) ( )[ ]

( )

( )[ ] ( )[ ]

( )

( )
L

xt

L

x

L

x

L

xzy

L

xz

L

xz

L

xz

L

xz

L

xyz

L

xy

L

xy

L

xy

L

xy

L

xs

L

xs

L

xs

L

xs

L

xyz

L

x

L

x

L

x

SFy

x

SFz

x

xxt

x

xx

x

xxzyxxzxxzxxz

x
xxyzxxyxxyxxy

x xxsxxsxxsxxs

xxyzxxxxx

GIBBM

wMwMvMvMM

vMvMwMwMvwNywNy

vNzvNzNrwNwvNvuN

dxzzvqdxyywq

dxGIdxB

dxMwMwMvM

dxMvMvMwM

dx
wNywNyvNzvNz

NrwNwvNvuN

0,0,
0

,0,

0,0,0,0,0,

0,0,0,0,0,0,

0,0,0,0,0,0

,,,

,,,,,

,,,,,

,,,,,,,,

,,

2

,,,,,

2

2

2

2

ϕϕϕϕϕϕβ

ϕϕϕϕβ

ϕϕϕ

ϕϕϕϕ

ϕϕ

ϕϕϕ

ϕϕβϕϕ

ϕϕβϕϕ

ϕϕϕϕ

ϕϕ

∂+∂−∂+∂−

∂+∂+∂−∂+∂−

∂+∂−∂−∂+∂−∂+

∂−∂−∂−∂−∂−∂−

∂−−∂−∂−+∂−

∂−∂+

∂+∂+∂+∂+

∂+∂−∂−∂+













∂−∂−∂+∂+

∂+∂+∂+∂+
=Π∂

∫∫

∫∫

∫

∫

∫

 
( 5.110 ) 

The same result has been obtained for example in reference (de Ville de Goyet 1989). The system 

of differential equations is now obtained by considering that the terms linked to the variations of 

the displacement functions vanish in the integrals. The terms outside the integral represent the 

boundary conditions. The resulting system of differential equations is given in Eqs. ( 5.111 ) to ( 

5.114 ). 

[ ] 0, =∂uN x  ( 5.111 ) 

( ) ( ) ( )[ ] 0
,,,,,, =∂−++− wqMMNyNw zxxzxxyxxsxx ϕϕ  ( 5.112 ) 

( ) ( ) ( )[ ] 0
,,,,,, =∂−−++ vqMMNzNv yxxyxxzxxsxx ϕϕ  ( 5.113 ) 

( ) ( ) ( ) ( )
( ) ( ) ( )

0
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2

,,,,,

,,,,,,,,,
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ϕ

ϕϕβ

ϕβϕ

SFySFzxxtxxxxzyxxz

xxyzxxyxxsxxsxxyz

zzqyyqGIBMwM

MvMwNyvNzNr
 ( 5.114 ) 

 

Hereafter, it is considered that the axial force is constant along the member length. Consequently, 

Eq. ( 5.111 ) may be omitted hereafter. Also, the definition of the internal moments given in ( 5.115 

) to ( 5.117 ) may be introduced into the system of differential equations. By doing so, the system 

used in paragraph 5.5.7 is obtained as shown in Eqs. ( 5.118 ) to ( 5.120 ). 

xxyy wEIM ,=  ( 5.115 ) 
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xxzz vEIM ,=  ( 5.116 ) 

xxwEIB ,ϕ−=  ( 5.117 ) 

 

( ) zxxsxxxxzxxxxy qNyNwMwEI =−++ ,,,, ϕϕ
 

( 5.118 ) 

( ) yxxsxxxxyxxxxz qNzNvMvEI =++− ,,,, ϕϕ  ( 5.119 ) 

( )
( ) ( ) ( ) xSFySFzxxtxxxxwwxxzyxxz

xxyzxxyxxsxxsxxyz

mzzqyyqGIEIMwM

MvMwNyvNzNr
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,,,,,
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2

2

2

ϕϕϕβ

ϕβϕ
 ( 5.120 ) 

 

 Elastic stability and state of indifferential equilibrium 

In order to obtain the elastic critical loads it is necessary to determine the second variation of the 

total potential energy of the member. So as to facilitate the lecture of the development, the 

expression of the axial strain is split in two parts: exx,1 and exx,2. 

2,1, xxxxxx εε +=Ε
 

( 5.121 ) 

( ) ( ) xxxxxxxxxxxxx vwzwvyu ,,,,,,1, ωϕϕϕε −−−+−=  ( 5.122 ) 

( ) xsxxsxxxxx yvzwv ,,,

2

,

22

,

2

,2,
2

1
ϕϕϕρε −+++=  ( 5.123 ) 

Eqs. ( 5.121 ) to ( 5.123 ) are introduced into the condition represented by Eq. ( 5.106 ) so as to 

obtain: 
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 ( 5.124 ) 

The second variations of εxx,1 and εxx,2 as well as the second variations of Εxy and Εxz are given in 

Eqs. ( 5.125 ) to ( 5.128 ). 
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( 5.125 ) 
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 ( 5.126 ) 

( )[ ] xysxy zz ,

2

,

2

2

1
ϕω ∂+−−=Ε∂  ( 5.127 ) 

( )[ ] xzsxz yy ,

2

,

2

2

1
ϕω ∂−−=Ε∂  ( 5.128 ) 

Hereafter, it is considered that the terms containing second variations ∂² are negligible compared 

to terms containing only first variations. Consequently, the previous equations simplify and one 

obtains Eqs. ( 5.129 ) to ( 5.132 ). 

ϕϕε ∂∂+∂∂−=∂ xxxxxx vzwy ,,1,
2 22  ( 5.129 ) 

( ) ( ) ( ) ( )( )( ) xxsxxsxssxxxx wyvzyyzzwv ,,,,

2

,

222

,

2

,2,

2 22 ∂∂−∂∂+∂−+−+∂+∂=∂ ϕϕϕε
 

( 5.130 ) 

02 =Ε∂ xy  
( 5.131 ) 

02 =Ε∂ xz  ( 5.132 ) 

Eqs. ( 5.129 ) to ( 5.132 ) as well as the expressions of the strains εxx,1 and εxx,2 are introduced into 

Eq. ( 5.124 ). It should be noticed that the term (∂εxx,2)2 is of higher order than the other terms. Its 

influence is therefore neglected in the following. The expression of the second variation of the 

total potential energy of the member is given in Table 5-16. 
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Table 5-16 : Second variation of the total potential energy of the member 
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If one considers that the pre-buckling displacements are negligible, the second variation of the 

total potential energy becomes: 
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( 5.133 ) 

Eq. ( 5.133 ) corresponds to the classical approach previously developed various times. It should 

be noted that the supplementary terms given in Table 5-16 do not appear if the development is 

based on the linearized displacement field of Eq. ( 5.95 ) as the coupled terms w,xf and v,xf are 

neglected. 

By reorganising the terms given in Table 5-16 it is possible to highlight terms linked to the 

classical approach neglecting the influence of pre-buckling displacements and terms linked to pre-

buckling vertical and lateral displacements and pre-buckling torsional twist as shown in Table 

5-17. 

It has already been stated that the elastic critical load is a key parameter to evaluate the sensitivity 

of a member to second order effects and to elastic instability. It is used in all current design 

standards to assess the member resistance. Therefore, the next paragraph is dedicated to the 

development of the elastic critical loads. Also, the influence of pre-buckling displacements is 

highlighted. 
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Table 5-17: Summary of the second variation of the total potential energy of the member 
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5.5.5 Determination of the critical loads for I-shaped members  

 Common approach neglecting pre-buckling displacements 

5.5.5.1.1 Members under major-axis bending 

The expressions for the critical bending moment developed in this paragraph a known for a long 

time and are partially included in the European standard (see for example (CEN 2014)). However, 

in order to illustrate the approach used in the following paragraphs for more complex cases, it 

seems justified to treat the well-known problem of elastic lateral-torsional buckling of I-shaped 

members again. 

For the case of double symmetric I sections subject to constant major axis bending, expression ( 

5.133 ) reduces to: 

02 ,
2
,

2
,

2
,1 =∂∂−∂+∂+∂=Π∂∂ ∫∫ dxvMdxGIEIvEI xxyxTxxwxxz ϕϕϕ  ( 5.134 ) 

Supposing that the member possesses end fork conditions, the variations of the displacements 

may be expressed by sine functions as given in Eqs. ( 5.135 ) and ( 5.136 ). 
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By solving the integral of Eq. ( 5.134 ) and deriving with reference to the unknowns of the 

displacement functions, the following system is obtained: 
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The elastic critical moment resulting from Eq. ( 5.137 ) is: 
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Other authors use different formats for the obtained solution. In (FOSTA 2004), 

(Stangenberg 2007) and (Naumes 2009), the elastic critical moment is expressed by: 
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Using this format, the elastic critical moment is shown to be equal to the critical axial force for 

lateral buckling multiplied by a distance (or radius) cr. 

Based on Eq. ( 5.139 ), the lateral displacement at the critical state can be expressed as a function 

of the torsional twist at the critical state and the distance cr: 
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It is recalled that vcr corresponds to the lateral displacement component of the eigenmode and fcr 

corresponds to the torsional twist component of the eigenmode. The sign “-”yields directly form 

the definition of the system of axis (also see Figure 5-90). 

The distance cr depends on the torsional behaviour of the member. In fact, if the torsion constant 

It becomes negligible (supposing that the length and the 2nd moment of area do not change), the 

torsional twist component of the first eigenmode of the member is predominant. Hence, the 

distance cr tends to: 

2

h

I

I
c

z

w
r ==

 
( 5.141 ) 

Consequently, the lower flange does not displace laterally and the whole section rotates about the 

intersection between lower flange and web. If, however, the torsion constant It is very high the 

distance cr also attains high values. In these cases the eigenmode is characterised by a low 

torsional twist component. Figure 5-90 shows the displaced member for the two extreme cases. 

 
 

a) b) 

Figure 5-90: Shape of the eigenmode for a) a section with low torsional stiffness and b) as section 

with high torsional stiffness 

Obviously, open sections, as I and U sections, possess a rather low torsional stiffness. Therefore, 

their behaviour is closer to the one shown in Figure 5-90a) than to the one shown in Figure 5-90b). 

The behaviour in Figure 5-90b) is representative for closed sections. 

Similarly to the development of the critical major-axis bending moment, one may determine a 

critical minor-axis bending moment. Its expression is given in Eq. ( 5.142 ). Nevertheless, it is 

shown in paragraph 5.5.5.2 that, if pre-buckling displacements are taken into account, the elastic 

instability under minor-axis bending does not have a physical meaning for I sections. 

C 

fcr 

vcr 
C vcr 
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In steel construction, beams are very often subject to varying bending moments. Moreover, so as 

to optimize their use, I sections may be mono-symmetric. It seems therefore interesting to 

redevelop the critical major-axis bending moment for this slightly more complex configuration. In 

this case, the Wagner constant βz does not vanish (compare Eqs. ( 5.143 ) and ( 5.134 )). 

Consequently, the second variation of total internal energy Π of the member becomes:  
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Considering the case of a uniformly distributed vertical load and using the sine approximation of 

the displacement functions, the following expression is obtained for the critical bending moment: 
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The analytical expressions of the constants C1, C2 and C3 are given in Eqs. ( 5.145 ) to ( 5.147 ). 
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It is obvious that the expression is more complex than the one developed for the case of double 

symmetric I sections under constant bending. The factors C1, C2 and C3 introduce the influence of 

the bending moment diagram, the effect of the vertical eccentricity of an applied load with respect 

to the shear centre and the influence of the mono-symmetry of the section. The precision of the 

analytical values given in Eqs. ( 5.145 ) to ( 5.147 ) depend on the mechanical characteristics Iz, Iw, 

It and βz as well as on the distance zq and the form of the bending moment diagram. Indeed, these 

parameters influence the exact form of the eigenmode and consequently the precision of the sine 

approximation. In order to take account of the influence of, especially the mono-symmetry of the 

section characterized by the Wagner constant, reference (CEN 2007c) defines the constants C1, C2 

and C3 depending on the sign of the maximum bending moment, the form of the bending moment 

diagram and the value ψ that is representative of the mono-symmetry of the cross-section (see 

Chapter 4). 
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The distance from the centre of torsional twist to the shear centre of the section is in this case 

given by Eq. ( 5.148 ). 
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Hereafter, the development is extended to the case of combined major-axis bending and axial 

forces. 

5.5.5.1.2 Members under combined major-axis bending and compression 

Here, it is supposed that both axial force and major-axis bending moment may be amplified 

proportionally. The expression of the second variation of potential energy of a double symmetric 

member subject to a constant bending moment is given by Eq. ( 5.149 ). 
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Again, the integration is performed to obtain the system given in Eq. ( 5.150 ). 
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After various reorganisation steps, the critical amplification factor is obtained as follows: 
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For the more complex case of a member subject to a variable bending moment and possessing a 

mono-symmetric cross-section (symmetric with respect to its minor-axis) the critical 

amplification factor is directly given in Eqs. ( 5.152 ) and ( 5.153 ). 
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The former expression for the critical amplification factor has been presented in a similar way in 

(Stangenberg 2007). It is obvious that Eq. ( 5.153 ) is not suitable for hand calculation. Also, its 

precision depends, even more than for the “simple case” of mono-symmetric I sections subject to 

variable bending, on the mechanical characteristics, the exact form of the bending moment 

diagram and additionally it depends on the ratio between the major-axis bending moment and the 

axial force. In order to obtain precise values of the load amplification factor it seems therefore 

more convenient to use specialised programs as, for example, LTBeamN presented in reference 

(Beyer et al. 2015).  

 Influence of pre-buckling displacements 

5.5.5.2.1 General 

Throughout the previous paragraph, it has been considered that pre-buckling (or first order) 

displacements are negligible. Yet, it can be shown that their influence may be rather important. If 

first order displacements are taken into account, the second variation of the total potential energy 

becomes: 
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 ( 5.154 ) 

Obviously, the expression given in Eq. ( 5.154 ) is much more complex than the classical 

expression not accounting for first order displacements. For the general case of combined flexure 

and compression the analytical derivation of the critical loads leads to highly complex 

formulations. Therefore, only the case of a double symmetric I section subject to constant mono-

axial bending is treated hereafter. 
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5.5.5.2.2 I-shaped member subject to constant major-axis bending 

If pre-buckling displacement are considered one obtains the following second variation of the 

total potential energy of the member for the case of a double symmetric I section under constant 

bending: 
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Again, it is supposed that the buckling displacements ∂f and ∂v are of sinusoidal form. After 

solving the integration and deriving with respect to the unknown displacements, one obtains the 

following system: 
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Hence, the critical major axis bending moment for lateral-torsional buckling reads: 
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( 5.157 ) 

The previous expression has been derived several times in the past (see for example 

(de Ville de Goyet 1989), (Vinnakota et al. 1975)). Compared to Eq. ( 5.139 ) giving the expression 

of the critical moment when pre-buckling deflections are neglected, Eq. ( 5.158 ) contains the 

supplementary factor fzy. If the minor-axis second moment of area Iz is negligible compared to the 

second moment of area Iy, the factor fzy tends to unity. This assumption is generally considered for 

I-shaped members. Figure 5-91 shows the evolution of the factor fzy for commonly used I sections. 

One notices that the pre-buckling flexure has an influence especially on the elastic critical moment 

for small H sections. In fact, up to a height of approximatively 300 mm, the consideration of pre-

buckling deflection leads to a critical moment that is up to 20% higher than the value calculated 

without the influence of pre-buckling displacements. For greater H sections the influence 

decreases rapidly as the flanges’ width stays approximatively constant and consequently the 

minor-axis second of area stays approximatively constant, too. 
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Figure 5-91: Factor fzy for commonly used I sections 

Even if the difference between the critical moment calculated with the common formula of Eq. ( 

5.139 ) and the formula ( 5.157 ) may seem very important for some sections, it should be noted 

that it is not an error to use Eq. ( 5.139 ) combined with the methods assessing member stability 

given in Eurocode 3, as these methods have been calibrated based on the value predicted by Eq. ( 

5.139 ). However, it might be necessary to include the effects of pre-buckling displacements for 

global methods as OIC. This can be shown directly, based on the next load case. 

We consider an I-shaped member subject to minor-axis bending. For this configuration, on obtains 

Eq. ( 5.158 ) for the critical bending moment about the minor-axis. 
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( 5.158 ) 

As the major-axis second moment of area Iy is always greater than the minor-axis second moment 

of area Iz the factor 1-Iy/Iz is always be negative. Consequently, equation ( 5.158 ) does not yield a 

numerical value and it may therefore be concluded that the phenomenon of elastic instability of I 

sections under minor-axis bending is not physical. Contrariwise, if the critical moment is 

calculated with the expression represented by Eq. ( 5.142 ), i.e. without considering the influence 

of pre-buckling displacements, a numerical value of the critical minor-axis bending moment is 

obtained (even if rather high) and consequently, in some case erroneous conclusions could be 

obtained concerning the sensitivity to instability of I sections under minor axis bending. 

Current steel design standards as reference (CEN 2005a) consider implicitly the influence of pre-

buckling displacements as they suppose that a member subject to minor-axis bending only can 

always attain the resistance of its most loaded section without any reduction due to member 

instability. 
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5.5.5.2.3 Consideration of pre-buckling flexure and pre-buckling torsional twist 

If a member is subject to additional first order torque, it might be necessary to consider the 

resulting twist for the determination of the critical load. For a double-symmetric I section the 

second variation of the total potential energy becomes in this case: 
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( 5.159 ) 

Eq. ( 5.159 ) leads to the system represented in Eq. ( 5.162 ) for the determination of the critical 

bending moment My,cr. 
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It is recalled that the pre-buckling torsional twist is noted f whereas the amplitudes of the 

buckling displacements are notedw, v and f. The solution of ( 5.160 ) leads to expression ( 5.161 

) for the critical moment accounting for pre-buckling flexure and torsional twist: 
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( 5.161 ) 

One may observe that expression ( 5.161 ) respects the continuity with the common expression 

of the critical moment not accounting for pre-buckling displacements (Eq. ( 5.139 )) and the 

expression of the critical moment only accounting for pre-buckling flexure (Eq. ( 5.157 )). 

It should be recalled that Eq. ( 5.161 ) has been developed based on the assumption of small 

torsional twist f (sin(f) = f and cos(f) = 1). This condition may be accepted for rotations less 

than 20° or 0,3 rad. If the torsional twist is greater, it would be necessary to develop the angular 

functions more accurately, for example by cos(f) = 1-f²/2. However, in practice, the condition of 
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small twist may certainly considered as respected because higher twist would not be compatible 

with the boundary conditions. 

In order to illustrate the influence of the pre-buckling displacements on the critical moment, 

Figure 5-92 represents the evolution of the factor fzy.f for the torsionally compact section 

HEM 160 (high torsional stiffness compared to other open sections) and the rather slender section 

IPE 550. 

 

Figure 5-92: Influence of the pre-buckling displacements on the critical moment 

It can be seen that pre-buckling displacements may increase the critical moment of about 15% to 

45% depending on the form of the section. Obviously, the highest increase is reached for high pre-

buckling twist. However, it has to be noticed that Figure 5-92 includes the influence of both, pre-

buckling flexure and torsional twist. So as to identify the sole influence of torsional twist, Figure 

5-93 shows the evolution of the ratio fzy/fzy.f (fzy representing the influence of pre-buckling 

flexure). 

 

Figure 5-93: Influence of pre-buckling torsional twist on the critical moment 
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Figure 5-93 shows that the pre-buckling torsional twist has much less influence on the critical 

moment than pre-buckling flexure for compact sections. In fact, for the section HEM 160 the factor 

fzy, characterizing the influence of pre-buckling flexure, is equal to 1,23. Even for very high pre-

buckling torsional twist the ratio fzy.f/fzy does not exceed this value. Also, up to a value of 0,2 rad 

the ratio fzy.f/fzy does not exceed 1,05, signifying that pre-buckling twist has an influence of less 

than 5% on the value of the critical moment. In case of the torsionally slender IPE 550 section, 

important pre-buckling twist may influence the value of the critical moment more than pre-

buckling flexure. Nevertheless, the influence remains rather small with a maximum value of 12%. 

Also, it should be noted again, that a pre-buckling torsional twist of 0,3 rad seem rather excessive 

for practical cases. Consequently, it seems justified to neglect its influence on elastic stability 

hereafter. 

 Conclusions 

Paragraph 5.5.5 presented a discussion on the critical loads for I-shaped members. First, the well-

known expressions for the elastic critical bending moment have been redeveloped in order to 

illustrate the approach applied for more complex cases. It has been shown that the expression 

become rather complex especially for combined axial compression and major-axis bending. For 

these more complex cases the application of specialised programs as LTBeamN (see reference 

(Beyer et al. 2015)) is therefore recommended as they allow the practical engineer to determine 

rapidly precise values of the critical loads. In the last part of this paragraph the influence of pre-

buckling displacements is quantified. Eqs. ( 5.157 ) and ( 5.158 ) describing respectively the 

major- and minor-axis critical bending moment including the influence of pre-buckling 

displacements. These expressions have also been developed previously. Here, it has been shown 

that for practically used I sections under major-axis bending the influence of pre-buckling 

displacements may attain about 30% for small and compact H sections. For section heights of 

more than 400 mm the difference is less than 10%. Also, the theoretical developments imply that 

I-shaped members are not sensitive to elastic instability if they are subject to minor-axis bending 

only. This finding is not surprising and has been accepted for a long time. Yet, it is only obtained if 

the pre-buckling displacements are considered. Therefore, it seems necessary to take them into 

account for global design models as OIC that use the critical load amplification factor as key 

parameter for the resistance predictions. 

Last, an expression of the critical loads has been developed that takes into account the influence 

of pre-buckling torsional twist. To the author’s knowledge, this expression has not been developed 

in this form previously. It has however been shown that the influence of pre-buckling torsional 

twist may be neglected for practical cases, i.e. for torsional twists less than 0,3 rad. 

Next, the case of U-shaped members is treated and it is shown that the influence of pre-buckling 

displacements is even more pronounced than for I sections. 
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5.5.6 Determination of critical loads for U-shaped members 

 Common approach neglecting pre-buckling displacements 

As for I sections, the critical loads are determined in a first step without considering the influence 

of pre-buckling displacements in this paragraph. In paragraph 5.5.6.2 the study is then extended 

to the effect of pre-buckling displacements. 

If pre-buckling displacements are neglected, the second variation of the potential energy reduces 

to: 
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( 5.162 ) 

At this point it should be noted that due to the form of the section some differences exist between 

the expression given here before and the one applicable for I sections: As hot-rolled U sections are 

always symmetric about their major-axis the parameter βz vanishes. Conversely, the parameter βy 

never vanishes as U sections are never symmetric about the minor-axis. These two points also 

imply that the axial force is linked to the term yc (last term of the third line of Eq. ( 5.162 )) that 

represents the lateral distance between the shear centre and the centroid. 

Hereafter, critical loads are developed for some special cases as for I shaped sections. First, the 

case of major axis bending is studied. Supposing a uniformly distributed load applied at a vertical 

distance ez from the shear centre the second variation of the potential energy becomes: 
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Obviously, this expression is identical to the expression given for I sections. Hence the critical 

moment is identical and given by Eq. ( 5.164 ). 
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Similarly, the critical moment about the minor-axis may be expressed by Eq. ( 5.165 ). 
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It is recalled that, in the reference system used here, the positive minor-axis-bending moment 

compresses the flanges tips and the negative minor-axis bending moment compresses the web of 

the U section. Due to the mono-symmetry about the z-axis the value of Mz,cz is in an important 

range of member length less than My,cr as shown in Figure 5-94 and Figure 5-95 for a UPE 120 
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section and a UPE 330 section made of S235. Also, the relative slenderness for lateral-torsional 

buckling under minor-axis bending seems to be non-negligible. In paragraph 5.5.5.2.2 it has been 

shown that I section are not sensitive to elastic instability when they are subject to minor-axis 

bending. Yet, this conclusion cannot be transferred directly to U sections as is shown in the 

following paragraphs. 

 

Figure 5-94: Comparison between critical major and minor axis moments for UPE 120 section 

 

Figure 5-95: Comparison between critical major and minor axis moments for UPE 330 section 

 Influence of the pre-buckling displacements 

5.5.6.2.1 General 

It has been shown that pre-buckling displacements may have an important influence on the 

critical loads of a member. For I sections, this phenomenon has been studied several times in the 

past (for example in (de Ville de Goyet 1988), (Vinnakota et al. 1975)). However, the influence of 

pre-buckling displacements has not been studied explicitly for U sections before. In the previous 

paragraph, it has been shown that the critical moment Mz,cr and the associated relative slenderness 
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may be in a practical range and not negligible. Therefore, it seems even more important to study 

the (theoretical) phenomenon of elastic instability under minor-axis bending in order to justify 

whether or not instability may occur for this load case. The second variation of the total potential 

energy of the member for the problem studied in the following is given by Eq. ( 5.166 ). 
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5.5.6.2.2 U-shaped members subject to constant major-axis bending 

As before, the elastic critical major-axis bending moment can be obtained based on the second 

variation of the total potential energy represented in Eq. ( 5.166 ). Again, the displacement 

functions are supposed to be of sine shape. Consequently, one obtains the expression of the critical 

major-axis bending moment My,cr,II taking into account the effect of pre-buckling displacements in 

Eq. ( 5.167 ). Additionally, Eq. ( 5.168 ) presents the expression for My,cr,I, obtained if pre-buckling 

displacements are neglected. Obviously, both expressions correspond to the solution obtained for 

I-shaped members. 
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It can be observed that the influence of pre-buckling displacements is again introduced by the 

term 1 - Iz/Iy. In order to highlight the influence of the pre-buckling displacements on the critical 

major-axis bending moment for U sections, Figure 5-96 gives the ratio between My,cr,II and My,cr,I 

for standard hot-rolled UPE sections. 

 

Figure 5-96 : Ratio between My,cr,II and My,cr,I for UPE sections 
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next, that in case of minor-axis bending and bi-axial bending, U-shaped members show non-

negligible differences compared to I-shaped members under minor-axis bending. 

5.5.6.2.3 U-shaped members subject to constant minor-axis bending 

First, the case of constant minor-axis bending is considered. The second variation of the potential 

energy reads: 
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Eq. ( 5.169 ) leads to the following system: 
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By solving ( 5.170 ), one obtains the expression of the critical minor-axis bending moment for 

elastic instability: 
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Conversely, if the effect of the pre-buckling displacements is neglected, the expressions given in 

Eqs. ( 5.173 ) and ( 5.174 ) are obtained. 
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Comparing Eqs. ( 5.171 ) and ( 5.172 ) to Eqs. ( 5.173 ) and ( 5.174 ), one may observe that the 

influence of pre-buckling displacements is represented by the term 1-Iy/Iz. Consequently, as for 

major-axis bending, the ratio between the major- and the minor-axis second moment of area is 

the key parameter introducing the effect of pre-buckling displacements into the expression of 

elastic instability. 

Also, it has to be distinguished between positive and negative minor-axis bending as the absolute 

values of the elastic critical loads are not identical for the two cases due to the mono-symmetry of 

the cross-section with respect to the minor-axis. It is recalled that positive minor-axis bending 

compresses the tips of the flanges. If expressions given in Eqs. ( 5.173 )and ( 5.174 ) are compared 

to each other, one may recognise that the absolute value of the negative elastic critical moment is 

always greater than the positive one implying that U-shaped members are less sensitive to elastic 

instability in case of negative minor-axis bending than for positive minor-axis bending. 

If pre-buckling displacements are considered, again two different expressions for the positive and 

negative elastic critical moment associated with minor-axis bending are obtained. However, 

analysing Eq. ( 5.172 ), one may observe that it always yields a positive result as the Wagner 

constant βy is always positive in the reference system used here and the term 1-Iy/Iz is always 

negative as it is supposed that Iy is associated with the major-axis. Consequently, the analytical 

solution, taking into account the influence of pre-buckling displacements, implies that U-shaped 

members subject to negative minor-axis bending are never sensitive to elastic instability. 

Conversely, the expressions for the critical minor-axis bending moment can give a numerical value 

for members under positive moments Mz implying that U-shaped members can, in some 

conditions, be sensitive to elastic instability for this load case. As Eq. ( 5.172 ) always yields a 

greater value than Eq. ( 5.171 ), this last equation is kept hereafter. 

It is interesting to note that Eq. ( 5.171 ) only yields a value for the critical minor-axis bending 

moment, if the radicand is positive. This may be expressed by Eq. ( 5.175 ). 
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As the Wagner constant βy is cross-section specific, it seems more convenient to express the 

condition expressed by Eq. ( 5.175 ) as a function of the member length as shown in Eq. ( 5.176 ). 
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Eq. ( 5.176 ) indicates that it exists a threshold value of the length Lth,ltb,Mz that characterizes 

whether a U-shaped member is sensitive to elastic instability under minor-axis bending or not. In 

fact, if the length of the member exceeds the threshold length Lth,ltb,Mz, the member is not 
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sensitive to elastic instability under Mz and, contrariwise if the length of the member is less 

than Lth,ltb,Mz, the U-shaped member becomes sensitive to elastic instability under Mz! This 

observation may seem contrary to the natural feeling that a long member of a given cross-section 

is more sensitive to elastic instability than a shorter one with the same cross-section. 

Table 5-18 summarizes the resulting threshold lengths for different cross-sections. Also, the ratio 

between the threshold length and the height of the cross-section is given. It appears that the value 

of Lth,ltb,Mz is small; nevertheless the lengths are still in the practical range. 

Table 5-18: Threshold values Lth,ltb,Mz for different hot-rolled U sections 

Section 
Threshold length Lth,ltb,Mz 

(mm) 
Lth,ltb,Mz/h 

UPE 80 942,9 11,79 

UPE 140 1246 8,90 

UPE 200 1680 8,40 

UPE 270 2146 7,95 

UPE 400 2817 7,04 

 

In order to study if elastic instability due to minor-axis bending is of interest, Figure 5-97 and 

Figure 5-98 show the evolution of the critical minor-axis bending moment and the relative 

slenderness over the length for a member of UPE 140 section and one of UPE 270 section. The two 

members are supposed to be fabricated from steel S235.  

 

 

Figure 5-97: Critical moment Mz,cr and relative slenderness for a member of UPE 140 section subject 

to constant minor axis bending 
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Figure 5-98: Critical moment Mz,cr and relative slenderness for a member of UPE 270 section subject 

to constant minor axis bending 

In Figure 5-97 and Figure 5-98, it can be seen that the relative slenderness for both members are 

very low. Also, one may note that the curves are represented up to the threshold length and 

consequently, the curves end abruptly at a given slenderness associated with the maximum length 

giving a numerical value of the critical moment. Yet, one may observe that the slenderness linked 

to the threshold length is not the maximum slenderness attained by a given member. Indeed, for 

both sections it appears that the curve representing the slenderness passes through a maximum 

and then slightly decreases. The length minimizing the critical minor-axis bending moment (and 

hence the maximizing the slenderness) can be obtained by deriving Eq. ( 5.171 ) with respect to 

the length L. The resulting expression is set equal to zero and then reorganised to isolate the 

length. The only admissible solution of the problem is given in Eq. ( 5.177 ). 
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The obtained results are compared for different U sections in Table 5-19. 
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Table 5-19: Member lengths minimising the critical minor-axis bending moment 

Section LMz.cr,max (mm) 
λMz.cr,II (LMz.cr,max) for 

S235 

UPE 80 804,9 0,335 

UPE 140 1132,8 0,318 

UPE 200 1549,7 0,328 

UPE 270 1987,9 0,331 

UPE 400 2579,8 0,311 

 

Table 5-19 highlights that the maximum relative slenderness linked to elastic instability under 

minor-axis bending is just above 0,3. It should be recalled that, if pre-buckling flexure is not 

considered, the maximum relative slenderness may attain 0,6 for practical cases (see Figure 5-94 

and Figure 5-95). 

In order to validate the analytical expression of the elastic critical minor-axis bending moment, 

elastic second order calculations (GNIA) including an imperfection about the z-axis 

(half sine wave; amplitude = L/1000) are performed. It is proposed to study a member of UPE 200 

section subject to constant positive minor-axis bending (web is in tension). The load displacement 

curves obtained by the numerical simulation are plotted in Figure 5-99 and Figure 5-100. 

It should be noted that the lateral displacement represented in Figure 5-99 refers to the node 

situated at the theoretical intersection between upper flange and web. Both figures suggest that 

the behaviour of the member may become highly non-linear for short lengths indicating the 

importance of second order effects. Conversely, for member lengths exceeding approximatively 

2000 mm the behaviour of the member is practically linear. Figure 5-99 and Figure 5-100 also 

represent the value of the critical minor-axis bending moment calculated with Eq. ( 5.171 ). It can 

be seen that the calculated values represent well the real behaviour of the member. Obviously, 

GNIA calculations may not yield a single value of the critical moment. Generally, it is accepted to 

consider the point of inflection of the load-displacement curve as done for example in reference 

(Erkmen et al. 2011). Based on this definition, it can be concluded that the given results are very 

satisfactory compared to the GNIA calculation. 
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Figure 5-99: Load-displacement curve for member of UPE 200 section 

 

Figure 5-100: Load-displacement curve for member of UPE 200 section 

The previous figures show that the member behaviour becomes non-linear at a certain value for 

the minor-axis bending moment for members whose lengths does not exceed 1680 mm. 

Conversely, for member lengths of 2000 mm and 2400 mm, the behaviour is nearly completely 

linear (see especially Figure 5-100). Hence, second order effects and instability may be considered 

negligible for these member lengths. 

In order to permit an easier visualisation of the behaviour, Table 5-20 presents the mid-span 

displacement of the member possessing a length of 1200 mm. 

Table 5-20 shows that the member displaces principally along the y-axis up to a certain value of 

the minor-axis bending moment. Starting from approximatively 120 kNm the torsional twist of 
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the member increases rapidly. When the bending moment approaches the value of Mz,cr,II, the 

torsional twist becomes non-negligible (see displacement for Mz = 153 kNm). 

Table 5-20: Evolution of the displacement of the member with increasing minor-axis bending 

 

Figure 5-101 presents the displacement of the entire member for Mz = 450 kNm. On may easily 

observe that the deformation is principally characterized by an important torsional twist. 

Applied bending 

moment Mz (kNm) 
Deformed shape at mid-span 

9,00 

 

 

120,0 

 

 

153,0 

 

 

285,2 

 

 

450,0 
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Figure 5-101: Deformed shape of the member for Mz = 450 kNm 

It also seems interesting to compare the values of the critical moments Mz,cr,I and Mz,cr,II with 

increasing member length for the example given before (UPE 200 with fork supports subject to 

constant minor-axis bending). In Figure 5-102 one may observe that the difference between the 

two expressions of the critical minor-axis bending moment increases heavily with the member 

length. Near the threshold length (L/h = 8,4) the ratio between Mz,cr,II and Mz,cr,I exceeds the value 

of 2,0 indicating that the member is much less sensitive to elastic instability than predicted by the 

critical minor-axis bending moment Mz,cr,I, neglecting the influence of pre-buckling displacements. 

Also, it can be seen that the pre-buckling displacements have a greater influence on elastic stability 

of U-shaped members under minor-axis bending than for those subject to major-axis bending. For 

this load case the ratio My,cr,II and My,cr,I attains its maximum of approximatively 1,3 for a UPE 80 

cross-section (see Figure 5-96). 

 

Figure 5-102: Difference between Mz,cr,II and Mz,cr,I for a UPE 200 section 
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It has been shown that it is crucial to consider the pre-buckling deflection for the determination 

of the elastic critical moment Mz,cr,z for U sections. If they are not considered, the influence of elastic 

instability may be highly overestimated. Yet, conversely to the case of I-shaped members, U-

shaped members might be sensitive to elastic member instability in some configurations even if 

they are subject to a sole minor-axis bending moment. Again, it appears that global design 

methods as OIC should be based on the elastic critical load considering the influence of pre-

buckling displacements as, if this is not done, the behaviour of the member is not well represented 

by the critical load amplification factor. 

5.5.6.2.4 U sections subject to bi-axial bending 

Hereafter, it is proposed to study elastic instability in case of bi-axial bending. The second 

variation of the total potential energy of the member in case of constant bending moments is 

recalled in Eq ( 5.178 ). The terms linked to pre-buckling displacements are provided in the third 

line of Eq. ( 5.178 ). 
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Based on the approximation of the displacements by a sine half wave, it is possible to determine 

the expressions of the critical load amplification factor. Again, the index “I” indicates that pre-

buckling displacements are not considered and the index “II” indicates that pre-buckling 

displacements are accounted for. 
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One may note that Eq. ( 5.179 ) has also been derived in reference (Cheng et al. 2013) based on 

the assumption that pre-buckling displacements are negligible. 
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In order to visualize the differences between the two expressions, a U-shaped member of UPE 200 

cross-section is studied again. The member is supposed to be subject to constant bi-axial bending 

and to possess a length of 4 m. As before, the member possesses fork supports at its ends. The 

obtained interaction curves are represented in Figure 5-103 for a value of the critical amplification 

factor αcr of 2,0. Note again that positive minor-axis bending compresses the flanges’ tips. 

 

Figure 5-103: My-Mz interaction curve for elastic instability of the studied member – αcr = 2.0 

Figure 5-103 clearly highlights the difference between the two formulations of the critical load 

amplification factor. The difference is maximum for negative minor-axis bending. It is recalled that 

for this load case the more precise approach considering pre-buckling displacements suggests 

that the member is not sensitive to elastic instability if it is only subject to minor-axis bending. 

Consequently, for bi-axial bending, the minor-axis bending moment possesses a stabilizing effect 

on the member. In fact, it can be seen that with increasing negative minor-axis bending (absolute 

value), the major-axis bending moment has to increase, too so as to obtain the same critical load 

amplification factor. This behaviour is not well represented by the approach that neglects pre-

buckling displacements. 

For the case of positive minor-axis bending one may also observe considerable differences. It can 

be seen that the curve associated with the expression αcr,II does not cross the abscissa indicating 

that the member is not sensitive to elastic instability for positive minor-axis bending only. This 

observation may be confirmed by recalling that the threshold length for the UPE 200 cross-section 

is less than the length of the member: Lth,ltb,Mz = 1680 mm. Again, this behaviour is not correctly 

represented by the approach neglecting the influence of pre-buckling displacements because the 

corresponding curve crosses the abscissa at Mz,cr,I/αcr = 19,86 kNm. Even if the studied member is 

not sensitive to elastic instability under minor-axis bending only, a positive moment Mz has a 
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slightly negative effect on elastic instability as is shown by the interaction curve linked to αcr,II. 

Indeed, the minimum is obtained for a positive value of the moment Mz whose value may be 

obtained with Eq. ( 5.181 ). The corresponding value of the major-axis bending moment is given 

in Eq. ( 5.182 ). 
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Throughout the previous paragraphs, it has been shown that the problem of elastic instability is 

very complex for U-shaped members in bending. It has been highlighted that, in some cases, they 

may be sensitive to elastic instability when they are subject to minor-axis bending only. 

Consequently, second order effects may arise and potentially lead to a reduction of the member 

resistance. This result is in complete opposition to the general accepted theory for I-shaped 

members. However, if pre-buckling displacements are considered, it may be shown that the 

sensitivity to elastic instability under minor-axis bending is much less pronounced as might be 

concluded if pre-buckling displacements are not considered in the derivation of the elastic critical 

load. Also, it is recalled again that the elastic critical loads do not directly represent the resistance 

of the member but they are only a parameter that enters the design model. Consequently, it seems 

interesting to study the ultimate resistance of U shaped members under minor-axis bending even 

if this somewhat forestall the parametric study presented in paragraph 5.6. 

5.5.6.2.5 Elasto-plastic instability of U-shaped members subject to minor-axis bending 

In order to evaluate the influence of elastic instability under minor-axis bending moments on the 

ultimate resistance of U-shaped members the example of a UPE 200 section is studied. In the 

previous paragraph, it has been shown that members possessing lengths greater than the 

threshold length Lth,ltb,Mz are not sensitive to elastic instability under minor-axis bending. 

However, for shorter members elastic instability may occur. Yet, the slenderness of members 

made from steel S235 is rather low for these lengths. Therefore, different steel grades are studied. 

For the example, it is supposed that the member is subject to constant minor-axis bending 

compressing the tips of the flanges and that it possesses fork supports at its ends. The GMNIA 

simulations are performed including the residual stress pattern for the UPE 200 section 

determined in paragraph 5.2.1.5 and an equivalent imperfection along the z-axis with an 

amplitude of L/1000. Additionally, it is to be noted that rigid beam elements are applied along the 
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member so as to avoid local instability and distortion (see paragraph 5.2.3). Consequently, the 

failure of the member is caused by elasto-plastic instability or by exceeding the ultimate section 

resistance characterized by the strain limit of 15%. 

The obtained ultimate resistances are represented in the following figures. In Figure 5-104 the 

ultimate resistance is given as a function of the relative slenderness calculated with the value of 

Mz,cr,I. Conversely, Figure 5-105 represents the results as a function of the relative slenderness 

determined with Mz,cr,II considering the influence of pre-buckling displacements. Both figures 

show that U-shaped members may be sensitive to elasto-plastic instability. In fact, it may be 

observed that some members do not attain the full plastic section resistance. Nevertheless, the 

maximum strength reduction is only of about 10%. By comparing Figure 5-104 and Figure 5-105, 

one may again recognize the influence of the pre-buckling displacements on the critical moment 

about the minor-axis (that enters the relative slenderness). If they are not included calculation of 

Mz,cr, the relative slenderness does not well represent the behaviour of U-shaped members as 

shown in Figure 5-104. This figure seems to indicate that the ultimate resistance first decreases 

with the relative slenderness and then increases again. The increase of the resistance after passing 

through a minimum is directly linked to the influence of the pre-buckling displacements on the 

critical moment. Indeed, it has been shown in the previous paragraphs that U-shaped members 

are not sensitive to elastic member instability if their length exceeds the threshold length. Figure 

5-105 confirms this theoretical result. For members whose length exceeds the threshold length, a 

critical minor-axis bending moment cannot be calculated. Consequently, their slenderness is 

defined as zero and their ultimate resistance is represented on the axis of ordinates. Obviously, 

these members always attain at least their plastic section resistance. It may be noted that the 

longer specimen may attain a higher resistance as the strain hardening can spread to a greater 

extend through the section before the maximum accepted strain is attained in the numerical 

simulations. Members that are shorter than the threshold length may be sensitive to elasto-plastic 

instability. Figure 5-105 represents this fact well as the ultimate resistance of a given member 

decreases with its slenderness. For relative slendernesses higher than 0,4 elasto-plastic instability 

can reduce the resistance of the member. Yet, even in Figure 5-105 it seems that the resistance 

may increase close to the threshold length. This can be explained based on the precision of the 

analytical result. In fact, in paragraph 5.5.6.2.3, it has been shown that the theoretical 

developments become less precise for members whose length is close to the threshold limit. 

Nevertheless, it is shown that the critical moment considering the effect of pre-buckling 

displacements represents well the behaviour of the member. However, it can also be seen that a 

relative slenderness of 0,4 can only be attained for members of high strength steel. For the widely 

used steel grades S235 and S355 the relative slenderness cannot exceed 0,4 due to the short 

threshold lengths. Therefore, it does not seem necessary to consider member instability in case of 

U-shaped members subject to minor-axis bending in today’s practice. 
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Figure 5-104: Ultimate resistance of a member of UPE 200 section under minor-axis bending – 

reduced slenderness based on Mz,cr,I 

 

Figure 5-105: Ultimate resistance of a member of UPE 200 section under minor-axis bending – 

reduced slenderness based on Mz,cr,II 

5.5.6.2.6 Conclusion 

This paragraph presented a theoretical study concerning elastic instability of I- and U-shaped 

members. The well-known expressions of the critical major-axis bending moment applicable to I- 

and U- shaped members are developed. Yet, the classical expressions do not account for first order 

pre-buckling displacements. In order to evaluate their influence, a second series of equations for 

the elastic critical loads including the effect of pre-buckling displacements has been determined. 

In particular, it has been shown that: 

• For I-shaped members under major-axis bending the difference between My,cr,I and 

My,cr,II is about 30% in case of compact H sections and less for more slender H and I 

sections; 
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• For I-shaped members under minor-axis bending, the consideration of pre-buckling 

displacements proves that this type of members is never sensitive to elastic instability 

under Mz; 

• For U-shaped members, it has been shown that the influence of pre-buckling 

displacements highly influences the elastic critical loads especially in case of minor-

axis bending and bi-axial bending; 

• U-shaped members are not sensitive to elastic instability under minor-axis bending if 

the bending moment leads to a compression of the web (negative minor-axis bending); 

• U-shaped members under positive minor-axis bending may be sensitive to elastic 

instability if their length is less than a threshold value (see Eq. ( 5.176 ))!; 

• The threshold value of the member length depends on the cross-section 

characteristics; 

• The GMNIA analyses performed on U-shaped members under minor-axis bending 

have shown that for steel grades up to S460 the influence of member instability does 

not reduce the theoretical plastic resistance Mz,pl. For steel grades between S690 and 

S960 the maximum reduction due to member instability is of about 10%. Hence, it is 

not necessary to consider member instability under Mz for U section for the current 

design practice. Yet, if UPE section (or U section of similar form) are utilized with steel 

grades higher than S460 a reduction might be considered. Again, for steel construction 

this not of practical interest today, but for other industrial fields (crane construction), 

it might be necessary to account for a resistance reduction. Also, local and distortional 

buckling modes may then influence the member behaviour. 

This paragraph has shown that the pre-buckling (or first order displacements) may have a non-

negligible influence on the elastic critical loads, especially for U-shaped members. However, this 

does not imply that the use of the classical expressions not considering the pre-buckling 

displacements leads to erroneous results when they are used with the reduction curves as the 

ones of Eurocode 3 Part 1-1. Indeed, these curves have been calibrated based on the elastic critical 

loads not including pre-buckling displacements. Therefore, these last should be applied in the 

framework of the member stability checks of Eurocode 3. Additionally, as resistance models in 

current standards are based on interaction equations, it is possible to determine are “partial 

resistance” with reference to each individual internal force and moment. Consequently, one may 

directly account for the fact that members are generally not sensitive to instability when they are 

subject to minor-axis bending only. Yet, the OIC resistance model is based on global load 

amplification factors associated with plastic section resistance and elastic instability. The 

previous paragraphs have shown that, for U-shaped members, the relative slenderness may 

become rather high for members under minor-axis bending. However, their resistance should 

only be reduced in special cases. Consequently, a future reduction curve calibrated for this load 

case might be rather complex if it is based on the classical approach for the critical loads. 
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Conversely, if pre-buckling displacements are considered for the determination of the elastic 

critical loads the reduction curve could be given in the Eurocode format. Therefore, it is 

recommended here to use a critical load amplification factor including the influence of pre-

buckling displacements when a global design concept is used, at least in case of open sections. 

It should be noted that only selected load cases have been studied. Obviously, a general expression 

covering all configurations of members with arbitrary open section subject to a complex 

combination of loads would not be practical anymore. Even, the expressions developed before are 

already complex. Yet, their precision is affected when the shape of the bending moment diagrams 

are not uniform but variable. Consequently, it seems more straightforward to use numerical 

programs for the determination of critical loads (for example LTBeamN). Nevertheless, the 

analytical approach concerning the problem of elastic stability has given relevant information 

especially on the influence of pre-buckling displacements. Additionally, it has been recalled that 

the form of the eigenmode can be described by the parameter cr representing the ratio between 

the modal lateral displacement and the modal torsional twist. This result are used in the next 

paragraphs concerning the elastic second order equilibrium of the imperfect member under the 

applied loads. It is assumed that the imperfections are affine to the first eigenmode and that it is 

consequently characterised by an amplitude v0 or f0 and the ratio of v0 to f0 defined by the 

parameter cr. 

5.5.7 Elastic second order equilibrium of the member 

 General 

After the study concerning the elastic critical loads presented in the previous paragraphs, the 

second order equilibrium of the member is of interest. The second order internal forces and 

moments are derived for the imperfect member based on elastic theory. The member 

imperfection is chosen affine to the eigenmode that has been determined throughout paragraphs 

5.5.5 and 5.5.6. The following study is performed in order to get more insights into the non-linear 

behaviour of members subject to torsion in view to develop a consistent design model for the 

member stability. Nevertheless, due to the limitation to elastic theory, the obtained results cannot 

be transferred directly to the ultimate member resistance. A certain empirical calibration is 

necessary as has been done in the past for the elaboration of the interaction formulae addressing 

the case of members subject to combined bi-axial bending and axial forces. This calibration is done 

in paragraph 5.6. 

The determination of the second order internal forces and moments is based on the system 

represented in ( 5.183 ). This system of differential equations governs the elastic behaviour of a 

member with open cross-section that is subject to an arbitrary combination of loads. Again, it is 

supposed that the axial force is constant and consequently, the differential equation linked to the 

axial displacement of the centroid can be omitted. 
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( ) zxxsxxxxzxxxxy qNyNwMwEI =−++ ,,,, ϕϕ  

( 5.183 ) 
( ) yxxsxxxxyxxxxz qNzNvMvEI =++− ,,,, ϕϕ  

( )
( ) ( ) ( ) xSFySFzxxtxxxxwxxzyxxz

xxyzxxyxxsxxsxxyz

mzzqyyqGIEIMwM
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In general, system ( 5.183 ) cannot be solved analytically. In order to approximate the solution, 

suitable functions have to be used for the displacements v, f, w. For the case of a member subject 

to a sinusoidal torsional load and to bi-axial bending whose distribution is affine to a sine half 

wave the displacements may be approximated by sine half waves as before provided that the 

member possess fork end conditions: 
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For more complicated cases (cantilever beam, more complicated moment distributions), an 

analytical determination of the second order internal forces becomes nearly impossible (at least 

for hand calculations) as the displacements functions have to account of the greater complexity of 

the configuration. Consequently, it would be necessary to use serial functions of higher degree. So 

as to simplify the presentation, it is proposed to keep the reference case as simple as possible. 

System ( 5.183 ) is used hereafter in order to determine the internal forces and moments 

considering second order effects and imperfection. These internal forces and moments are used 

to verify the resistance of the critical, i.e. most loaded, section. 

In the following, system ( 5.183 ) is solved for I- and U- shaped section for selected load cases. In 

a first step, solutions are detailed for simple load cases in order to allow the full understanding of 

the approach. In a second step, more complex load cases, including torsion and axial forces are 

considered. 
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 Members of double symmetric I section subject to constant major-axis bending 

In order to illustrate the adopted method, it is proposed to determine the second order internal 

forces and moments for the very simple case of members with double symmetric I section subject 

to constant major-axis bending. The development shown hereafter has been used, in a more or 

less similar way by several authors as in references (FOSTA 2004), (Stangenberg 2007), 

(Naumes 2009) and (Taras 2011). 

In case of constant major-axis bending, system ( 5.183 ) simplifies to: 

( ) 0,0,, =+− xxxxyxxxxz MvEI ϕϕ  

( 5.185 ) 

( ) 0,,,0, =−++− xxtxxxxwxxxxy GIEIvvM ϕϕ  

Eq. ( 5.185 ) assumes that the member is subject to a geometrical imperfection composed of a 

torsional twist f0 and a lateral displacement of the centroid v0. As stated above, it is considered 

hereafter that imperfection is affine to the eigenmode. For the studied case, the eigenmode is of 

sine shape. As shown in paragraph 5.5.5, the modal lateral displacement of the centroid can be 

expressed as a function of the modal torsional twist. Consequently, it may be written: 
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The imperfection and the approximation of the displacement functions are introduced into Eq. ( 

5.185 ) to obtain: 
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Based on Eq. ( 5.187 ), one may determine the amplitude of the lateral displacement: 
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 ( 5.189 ) 

The lateral displacement obtained in Eq. ( 5.189 ) is introduced in Eq. ( 5.188 ). After several 

intermediate steps, one obtains an expression of the torsional twist represented in Eq. ( 5.190 ). 
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The second order lateral displacement may therefore be expressed as a function of the torsional 

twist as shown in Eq. ( 5.191 ). 
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Consequently, the second order moments are: 
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At this point the second order internal moments are introduced into a cross-section resistance 

interaction formula. Consequently, a form of interaction between the bending moments and the 

bi-moment has to be chosen. The analytical developments presented here suppose a linear elastic 

material behaviour. Therefore, a linear interaction is adopted and the resistance of the section is 

checked using the criterion represented by Eq. ( 5.194 ). 
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Introducing Eqs. ( 5.192 ) and ( 5.193 ) into Eq. ( 5.194 ), one obtains: 
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 ( 5.195 ) 

On may note that the second and first order major-axis bending moments are identical based on 

the assumptions of small displacements (and especially small torsional twist). This assumption is 

generally respected for the case of lateral-torsional buckling under major-axis bending only. 
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Eq. ( 5.195 ) may be simplified as follows. 
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For double symmetric I sections, the bi-moment resistance and the minor axis bending moment 

resistance are proportional as shown in Eq. ( 5.197 ). 
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Introducing Eq. ( 5.197 ), the literal expressions of the critical moment and the critical axial force 

into Eq. ( 5.196 ) leads to: 
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In order to transform this interaction formula into the commonly used format of the reduction 

curve, the reduction factor χLT and lateral-torsional buckling slendernesses λLT are introduced: 
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At ultimate limit state, the applied bending moment is just equal to the bending moment resistance 

and the criterion consequently equals 1,0. Hence, one obtains: 
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At this stage, the generalized imperfection η is defined as proposed and justified by 

(Rondal and Maquoi 1979) for the case of flexural buckling. 
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It should be noted that the expression of the generalized imperfection has been empirically 

justified and calibrated with physical tests and numerical simulations for flexural buckling. The 

resulting expression of the reduction factor χ represents very well the flexural buckling behaviour 

of members. Yet, in case of lateral-torsional buckling the reduction curve is of slightly different 

form than in case of flexural buckling. Consequently, the possibility of introducing a modified form 

for the reduction curve has been discussed several times as for example in (Villette 2004). 

However, in order to keep a similar form for reduction curves for the cases of flexural buckling 

and lateral-torsional buckling, many authors followed the proposal of Rondal and Maquoi as for 

example (Stangenberg 2007), (Naumes 2009) and (Taras 2011). If this is accepted, one obtains 

the expressions of the “lateral-torsional buckling curve” proposed in paragraph 6.3.2.2 of 

Eurocode 3 Part 1-1 (CEN 2005a), i.e. the “Lateral-torsional buckling curves – General case”: 
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In order to obtain accurate results, the combination of the imperfection factor α and the limit 

slenderness λLT,0 should obviously depend on the residual stress pattern (as it is not accounted for 

explicitly in the given solution), i.e. the section geometry, and additionally on the torsional 

characteristics of the member expressed by the factor εT. 
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Some researchers, (Stangenberg 2007), (Naumes 2009) and (Taras 2011), decided not to 

introduce the torsional behaviour of the member in the imperfection but to keep it explicitly in 

the expression of the reduction curve. Their approach leads to the following expression of the 

resistance criterion. 
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The previously cited authors (Stangenberg, Naumes and Taras) chose to introduce the generalized 

imperfection of Eq. ( 5.208 ). 
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By introducing this expression of the generalized imperfection η into Eq. ( 5.207 ) one obtains: 
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The solution of the second order Eq. ( 5.209 ) is given in Eqs. ( 5.210 ) and ( 5.211 ). 
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This solution is also given in (Stangenberg 2007) and (Naumes 2009). Contrarily, Taras chose to 

replace the generalized imperfection by: 
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Independently of the chosen expression of the generalized imperfection, the difference between 

Eqs. ( 5.210 ) and ( 5.211 ) and the current Eurocode provision (see Eqs. ( 5.204 ) and ( 5.205 ), 

cannot be overseen. In fact the torsional behaviour of the member is directly accounted for in Eqs. 

( 5.211 ) by the ratio of the squares of the slendernesses λLT and λz and indirectly (and very 

roughly) in Eq. ( 5.204 ) by the imperfection factor and limit slenderness, α and λLT,0. Obviously, 

replacing the influence of the torsional behaviour, depending not only on the cross-section but 

also on the member length, by a constant value for the imperfection factor α leads to a loss of 

accuracy. However, a more simple expression of the reduction curve is obtained. Yet, if both 

methods (Eqs. ( 5.204 ) and ( 5.205 ) and Eqs. ( 5.210 ) and ( 5.211 )) are equally well calibrated 

(for example by defining an imperfection factor depending on the torsional behaviour of the 

member for the Eurocode reduction curve), they should be equally accurate as the same 

theoretical background is used. 

In this paragraph, the determination of the second order internal forces and moments has been 

presented for a very simple load case in order to facilitate the understanding of the following 

developments. Hereafter, the influence of the axial force is introduced. Then, an additional minor-

axis bending moment is studied. For both load cases, Eurocode 3 Part 1-1 proposes resistance 

models. The assumptions necessary to obtain the Eurocode design equations are presented and 

discussed. Then the study is extended to the case of an applied torque and a simplified design 
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equation is derived based on similar assumptions. Also, it is shown how the OIC approach may be 

derived for selected load cases including torsional loads. 

 Members of double symmetric I secion subject to major-axis bending and axial force 

Before addressing the case of combined internal forces and moments including torsion, it seems 

interesting to address the complex cases of combined major-axis bending and axial force and 

combined bi-axial bending and axial force. The following developments recall the scientific 

background of the Eurocode 3 Part 1-1 interaction formulae. Consequently, the two following 

paragraphs are helpful for the discussion on how the existing interaction formulae may be 

extended to the case of applied torsion. 

It is assumed that the major-axis bending moment and the axial force are amplified 

simultaneously. The ratio of the lateral displacement and the torsional twist at the point of elastic 

out-of-plane instability is therefore given by Eq. ( 5.213 ). 

r

crzcr

ycr
c

NN

Mv
−=

−
=

α

α

ϕ ,

 ( 5.213 ) 

If the member is subject to major-axis bending only, the ratio between lateral displacement and 

torsional twist is equal to the ratio between the elastic critical bending moment and the elastic 

critical force for flexural buckling about the minor-axis. This result has already been used in the 

previous paragraphs. If, however, the bending moment My becomes negligible compared to the 

axial force, the product αcrN tends to the critical lateral buckling force Ncr,z. In this case the ratio 

v/f tends to infinity. Consequently, eigenmode is characterised by a sole lateral displacement v; 

hence, the extreme cases of a member subject to an axial force or a major-axis bending moment 

only are well represented. It may be noted that Eq. ( 5.213 ) has also been used in 

(Stangenberg 2007). 

As before, it is considered that the member possesses and eigenmode affine imperfection. For the 

studied case the governing system of differential equations is given in Eqs. ( 5.214 ) and ( 5.215 ) 

(the displacement functions have already been introduced). 
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Based on Eq. ( 5.214 ), it is possible to determine the amplitude of the lateral displacement as 

provided by Eq. ( 5.216 ). 
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Eq. ( 5.216 ) is introduced into Eq. ( 5.215 ). After some calculation steps not described here, the 

following expression is obtained: 
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Here, it is recalled that a compression axial force is considered positive. Introducing Eq. ( 5.217 ) 

into ( 5.216 ) leads to the following expression of the lateral displacement. 
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The second order minor-axis bending moment as well as the second order bi-moment can now be 

determined based on the expressions of the lateral displacement and the torsional twist. 
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In order to validate the previous development, it is proposed to compare the second order internal 

forces and moments and second order displacements obtained by application of Eqs. ( 5.217 )to ( 

5.220 ) to finite element results (GNIA simulations). The studied member is of IPE450 section. It 

is subject to an axial force of 100 kN and a constant major-axis bending moment of 50 kNm. Also, 

the member is supposed to possess an eigenmode affine imperfection with an amplitude of 

0,01 rad for the torsional twist component. This choice is arbitrary and only used for the 

validation of the expressions developed here before. The lateral displacement component is 

calculated following Eq. ( 5.218 ). The results are represented in Table 5-21. 
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Table 5-21: Comparison of analytically and numerically determined second order quantities 

Length (mm) 
Second order 

quantity 
Analytical result 

Finite element 
result 

Analytic/FE 

2700 

f (rad) 0,000644 0,000644 1,00 

v (cm) -0,0171 -0,0171 1,00 

Mz (kNm) -0,8151 -0,8165 0,998 

B (kNm²) 0,1447 0,1447 1,00 

3600 

f (rad) 0,00112 0,00112 1,00 

v (cm) -0,03292 -0,03292 1,00 

Mz (kNm) -0,8822 -0,8837 0,998 

B (kNm²) 0,1421 0,1421 1,00 

4500 

f (rad) 0,00173 0,00173 1,00 

v (cm) -0,05654 -0,05654 1,00 

Mz (kNm) -0,9699 -0,9710 0,999 

B (kNm²) 0,1400 0,1400 1,00 

5400 

f (rad) 0,00248 0,00248 1,00 

v (cm) -0,09076 -0,09076 1,00 

Mz (kNm) -1,0811 -1,0830 0,998 

B (kNm²) 0,1392 0,1392 1,00 

6750 

f (rad) 0,00392 0,00392 1,00 

v (cm) -0,1709 -0,1709 1,00 

Mz (kNm) -1,3029 -1,3030 1,00 

B (kNm²) 0,1410 0,1410 1,00 

 

In order to analyse the results more easily, they are also represented graphically in Figure 5-106. 

As can be seen all analytically determined second order quantities practically coincide with the 

numerical calculation. 
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Figure 5-106: Comparison of analytically and numerically determined second order quantities 

Next, it is proposed to study the example of a member subject to a uniformly distributed vertical 

load applied on the upper flange of a HEB 260 cross-section and directed downwards. The value 

of the applied axial force is 800 kN and the maximum major-axis bending moment is 150 kNm. 

The results are represented in Figure 5-107. 

 

Figure 5-107: Comparison of analytically and numerically determined second order quantities 

Clearly, the analytically determined solutions are less precise in case of variable bending than for 

constant bending. Nonetheless, the maximum deviation is only of about 4,5%. 

Several reasons for the differences may be given. First, the assumption of a sine shaped eigenmode 

does not hold anymore in case of variable bending. Also, the value of the ratio v/f has to be 

corrected. For example, if the HEB 260 member of 390 cm of length is considered, the value of cr 

= v/f calculated analytically is equal to - 13,70 cm. The numerical calculation yields of value of 

- 12,11 cm. Nevertheless, the differences are still acceptable.  
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As before, the previously determined second order internal moments Mz and B are introduced in 

the linear cross-section interaction formula. One obtains: 
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 ( 5.221 ) 

It should be noted that in-plane second order effects and imperfection are not accounted for in Eq. 

( 5.221 ). If one intends to include in-plane imperfection, one obtains the additional second order 

major-axis bending moment given in Eq. ( 5.222 ). 
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If the in-plane second order effects are introduced into the linear interaction formulae, one 

obtains Eq. ( 5.223 ). 
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 ( 5.223 ) 

Obviously, Eq. ( 5.223 ) resembles very few to the Eurocode 3 interaction formula applicable for 

the studied case. In order to obtain the expression proposed in the European standard, it is 

necessary to take a step backwards and consider separately in-plane second order effects created 

by the axial force and out-of-plane second order effects created by the major-axis bending 

moment. 

If one neglects the out-of-plane second order effects in a first step, Eq. ( 5.224 ) is obtained as 

design criterion: 
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In order to develop the Eurocode 3 interaction formulae, it is now supposed that the equivalent 

geometric imperfection is expressed by the buckling curve as shown in Eq. ( 5.225 ). Thus, one 

also respects continuity with the buckling check for a member only subject to axial compression 

only. 

( )

R

Ryycr

R

N

MN

N

w
,,

0

11

χ

χχ 









−−

=  
( 5.225 ) 

When Eq. ( 5.225 ) is introduced into Eq. ( 5.224 ), it is possible to obtain the format used by Annex 

A of Eurocode 3 Part 1-1 (see references (Boissonnade et al. 2002), (Boissonnade et al. 2004) and 

(Villette 2004): 

1

1 ,

,

≤











−

+

Ry

ycr

y

y

Ry
M

N

N

M

N

N
µ

χ
 

( 5.226 ) 

ycr

ycr

y
NN

NN

,

,

1

1

χ
µ

−

−
=  

It should be noted that Eq. ( 5.226 ) can only be derived if the resistance criterion represented in 

Eq. ( 5.224 ) is strictly equal to 1,0. Consequently both, Eq. ( 5.224 ) and Eq. ( 5.226 ), only yield 

the same result at the ultimate limit state. 

In the next step, the second order effects created by the major-axis bending moment are 

introduced by the reduction factor χLT as defined by Eq. ( 5.204 ). It yields: 
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The factor Cmy considers the influence of variable bending moments. The factor CmLT has to account 

for the difference between the analytically derived design expression given in Eq.( 5.223 ) and the 

Eurocode 3 format given in Eq. ( 5.227 ). Obviously, a purely analytical expression for CmLT cannot 

be envisaged and therefore it has been calibrated empirically to consider implecitely the effect of 

the coupling terms not included in Eq. ( 5.227 ). It is to be noted that, whereas Eq. ( 5.223 ) takes 
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into account the out-of-plane second order effects created by the axial force (minor-axis bending 

moment due to v0), Eq. ( 5.227 ) does not. Consequently, Eurocode 3 introduces a second 

verification criterion derived similarly as Eq. ( 5.227 ) but based on an out-of-plane imperfection 

v0. One obtains: 
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The derived solution may seem mechanically consistent at first view. However, the supposed 

equivalent imperfections do not have a strictly physical sense as in Eq. ( 5.228 ) the member is 

supposed to be subject to an initial imperfection of v0 and pure compression on one hand for the 

determination of the reduction factor χz and the interaction factor kzy and, on the other hand, the 

same member is supposed to be subject to an imperfection affine to the first member eigenmode 

and pure bending leading to the reduction factor χLT. Obviously, the real member cannot be subject 

to two different forms of member imperfections simultaneously. Physically, it seems much more 

consistent to suppose that the member possesses one single imperfection (that should be a 

combination of lateral and vertical displacements and a torsional twist leading to the resistance 

criterion of Eq. ( 5.223 )). Nevertheless, the exact form and amplitude of this geometrical 

equivalent imperfection would still be conceptual. Therefore, in order to obtain simple solutions 

it may certainly be admitted that for calculation purposes the member is treated independently 

for the case of buckling under axial force and lateral-torsional buckling under the major-axis 

bending moment. Here, it should be recalled that, up to this point, only elastic interaction has been 

considered. Annexe A of Eurocode 3 Part 1-1 introduces the influence of plasticity by the factors 

Cij.  

Last, it should be noted that Annex B of Eurocode 3 Part 1-1 proposes different formulations for 

the interaction factors kij (see Table 5-8). Yet, these last have been calibrated on a pure numerical 

and experimental basis and consequently they cannot be derived analytically as shown here 

before. Still, it is recalled again that even the interaction factors in the format of Annex A of 

Eurocode 3 Part 1-1 need empirical calibration. 

As an alternative to the interaction equation, Eurocode 3 proposes a second design method that 

might be applied in case of combined bending and axial force. The so called “General method” of 

paragraph 6.3.4 of (CEN 2005a) is expressed by the condition given in Eq. ( 5.229 ). 
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As Annex B, this method proposed and developed in (Müller 2003) cannot be derived by a strictly 

analytical approach. However, it follows the principle of the derivation leading to Eq. ( 5.223 ). In 

fact, the term αult represents the in-plane behaviour of the member and may consistently be 

defined by the first two terms of Eq. ( 5.223 ) as follows: 
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( 5.230 ) 

Eq. ( 5.230 ) supposes that the bending moment diagram is affine to a sine half wave. Elsewise, an 

equivalent sinusoidal moment factor has to be introduced to account for the influence of the 

bending moment diagram on the second order amplification. 

The factor χop represents the reduction of the in-plane resistance of the member due to out-of-

plane second order effects. In order to be consistent to the analytical solution of Eq. ( 5.223 ), it 

should therefore be equal to: 
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Eq. ( 5.231 ) shows that if the ratio between internal loads and critical loads is important the 

second term of this equation tends to 0 and the reduction factor tends to 1,0. This obviously 

respects the physical background as in this case second order effects are negligible. However, it 

does not seem evident to link Eq. ( 5.231 ) to the well-known format of the buckling curves. Yet, if 

the key parameters of the buckling curve (factor α and plateau length λ0) are well calibrated, the 

general method may lead to satisfactory results. One may note that the “General method” is based 

on a purely empirical calibration of the reduction factor. The interaction between axial force and 

bending moment on the instability is roughly taken into account by a linear interpolation between 

the reduction curves for lateral and lateral-torsional buckling. Additionally, it is recalled that the 

general method may lead to rather conservative strength predictions in some cases as in- and out-

of-plane second order effects are both included in the approach. Nonetheless, it seems interesting 

to compare the results obtained by the general method to a genuine elastic second order 

calculations and to the analytically obtained “general method” characterized by the reduction 

factor χop,Analyt. It is proposed to consider the example of a member made of IPE 300 cross-section 

fabricated of steel S235. The member is supposed to be subject to a constant major-axis bending 

moment of 92,64 kNm and a compression axial force of 358 kN. Under this load combination the 
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first fibre of the cross-sections attains the yield stress and consequently the studied combination 

corresponds to the elastic limit load. In order to compare the general method proposed by Müller 

(general method – EC3/Müller’s approach) it is necessary to recalculate the applied imperfection 

f0 entering the genuine second order calculation and the analytically derived “general method”. 

The imperfection f0 is determined based on Eq. ( 5.232 ) recalled hereafter: 
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Depending on the member length, the torsional twist component of the imperfection may 

therefore be determined with Eq. ( 5.233 ). 
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Following Eurocode 3, the imperfection factor “α” should be set to 0,21 corresponding to buckling 

curve a. The second order calculations are performed based on an eigenmode affine imperfection 

whose torsional twist component possesses the amplitude calculated with Eq. ( 5.233 ). 

Additionally, a sine shaped vertical imperfection corresponding to the in-plane buckling curve “a” 

is introduced. It should be recalled that the same imperfection has been used to determine the 

analytically based general method. Also, one should note that the factor αult,k used in the general 

method is calculated based on the elastic resistance of the member so that the obtained results 

are comparable. 

Figure 5-108 shows the elastic ultimate resistance curve determined for the three studied 

approaches. It may be observed that the analytical approach and the elastic second order 

calculation yield identical results. The percentage difference, also represented in Figure 5-108 by 

the green curve, is generally less than 1%. The general method of Eurocode 3 Part 1-1, noted as 

EC3-Müller, also yields satisfactory results. Yet, for longer members the EC3 general method 

seems to loose precision. In fact, the difference between this approach and elastic second order 

calculation attains approximatively 10% as shown by the blue curve represented in Figure 5-108. 

Nevertheless, if one considers the simplicity of the Eurocode 3 general method compared to the 

analytical solution, the precision is very satisfactory. 

Last, it should though be pointed out that the general method is not entirely consistent in case of 

U-shaped members as in and out-of-plane behaviour are coupled and consequently cannot be 

separated as shown in this approach. Yet, again an empirical calibration might lead to satisfactory 



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Member Resistance 

 

416 
 

results and may avoid overly complex design equations. Nonetheless, it is recalled that the simple 

extension to minor-axis bending proposed by Naumes in reference (Naumes 2009) by simply 

adding the working degree of the member with reference to minor-axis bending can be unsafe as 

shown in 5.4.3.4. 

 

Figure 5-108: Comparison between the general method and genuine second order calculations 

The present paragraph has shown that a purely analytical approach addressing the stability of 

members subject to major-axis bending and axial force is possible for the elastic case. Yet, the 

obtained design expression is rather complex even for the simple configuration of constant 

bending and a double symmetric I section. It has then been discussed rapidly how the complex 

analytical solution is adapted to obtain the design equations in the Eurocode 3 format. This format 

is not fully consistent from a mechanical point of view but as a certain empirical calibration is 

necessary to adapt the resistance model to plasticity and the influence of variable bending, the 

lack of consistency can be accepted in order to obtain simple and sufficiently precise design 

expressions. 

In the following the influence of an applied torque is studied from a theoretical point of view. 

 Members subject bending and torsion 

Hereafter, it is considered that the member is subject to a constant major-axis bending moment 

and a distributed torsional load. So as to develop analytical expressions it is supposed that the 

distribution of the torque follows a sinusoidal shape. Also, it is supposed that the member 

possesses an initial geometric imperfection affine to the first eigenmode. The governing system of 

differential equations is given in Eq. ( 5.234 ). The amplitude of the torsional load is noted as mx. 
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In a first step, the system ( 5.234 ) is treated without the influence of the imperfection. The 

reduced system is given in Eq. ( 5.235 ). 
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The lateral displacement can be expressed as a function of the torsional twist by: 
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Eq. ( 5.236 ) is introduced in the system ( 5.235 ). After some reorganisation, the expression of the 

second order torsional twist is obtained as shown in Eq. ( 5.237 ). 
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The torsional load mx can be replaced by the first order torsional twist given in Eq. ( 5.238 ). 
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If Eq. ( 5.238 ) is introduced into Eq. ( 5.237 ) a new expression of the second order torsional twist 

is obtained. 
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The following expression of the second order lateral displacement is determined by introducing 

Eq. ( 5.239 ) into Eq. ( 5.236 ). 
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As before, the second order minor-axis bending moment and the second order bi-moment are 

determined. 
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The previous results have also been obtained in (FOSTA 2004), (Stangenberg 2007) and 

(Naumes 2009). The second order minor-axis bending moment and the second order bi-moment 

resulting from the imperfection have been determined in 5.5.7.2 (see Eqs. ( 5.192 ) and ( 5.193 )). 

They are introduced into Eq. ( 5.241 ) and ( 5.242 ) and the final expressions of the MzII and BII are 

obtained as provided in Eqs. ( 5.243 ) and ( 5.244 ). 
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It should be noted that the internal moments created by the imperfection are amplified by the 

factor α2nd.l = 1/(1-My/My,cr), whereas the internal forces due to first order torsion are amplified 

by the factor α2nd.q = 1/(1-(My/My,cr)2). In order to illustrate the difference between both 

amplification factors, Figure 5-109 shows their evolution as a function of the ratio between the 

applied bending moment and the critical bending moment. 



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Member Resistance 

 

419 
 

 

Figure 5-109: Comparison between amplification factors 

As can be seen from Figure 5-109, the amplification of the internal moments due to the 

imperfection is obviously more severe than the amplification of the internal forces due to first 

order torsion. However, the difference becomes pronounced only if the major-axis bending 

moment is closed to the elastic critical moment (My/My,cr > 0,70). 

In order to check the validity of the developed amplification factors, second order displacements 

are numerically calculated for the example of a member of IPE 300 section subject to major-axis 

bending and a sinusoidal distributed torsional load. The value of αcr = My,cr/My is varied between 

3 and 15. Table 5-22 summarizes the geometric and mechanical characteristics of the section and 

Table 5-23 gives the lengths of the studied members and the corresponding amplification factors. 

Table 5-22: Section geometry and mechanical characteristics 

Section Geometry Mechanical characteristics 

IPE 300 

h (mm) 300 A (cm2) 53,8 

tw (mm) 7,1 Iy (cm4) 8356 

b (mm) 150 Iz (cm4) 604 

tf (mm) 10,7 It (cm4) 20,1 

r (mm) 15 Iw (cm6) 12600 

 

Table 5-23: Value of second order amplification factors for different member lengths 

Length (mm) αcr α2nd.l =  1/(1-1/αcr) α2nd.q =  1/(1-1/αcr²) 

915 15 1,071 1,004 

1027 12 1,091 1,007 

1192 9 1,125 1,012 

1475 6 1,200 1,029 

2153 3 1,500 1,125 
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First, the second order displacements are calculated with GNIA simulations for the member 

subject to the major-axis bending moment and the geometric imperfection only. The geometric 

imperfection is chosen to be affine to the first eigenmode. The amplitudes of the torsional twist 

component of the eigenmode is chosen to be equal to 0,1 rad. The corresponding amplitudes for 

the lateral displacement of the imperfection can be calculated depending on the member length 

with Eq. ( 5.186 ). The values are given in Table 5-24. 

Table 5-24: Second order minor axis displacement and torsional twist – only geometrical 

imperfection 

Length 
(mm) 

α2nd.l v0 (cm) 
Analytical Results Numerical Results 

vII (cm) fII (rad) vII (cm) fII (rad) 

915 1,071 1,482 0,105 0,0071 0,105 0,0071 

1027 1,091 1,491 0,135 0,0091 0,135 0,0091 

1192 1,125 1,507 0,188 0,0125 0,188 0,0126 

1475 1,200 1,530 0,307 0,0200 0,307 0,0201 

2153 1,500 1,640 0,816 0,0500 0,820 0,0505 

 

Table 5-24 shows that the analytical and the numerical results are in excellent agreement in case 

of the imperfect member subject to major-axis bending only. 

Next, the member subject to a combination of major-axis bending and a sinusoidal torsional load 

is studied. Here, the member is supposed to be perfectly straight, i.e. without any geometric 

imperfection. The torsional load is calibrated so as to obtain a first order torsional twist of 0,1 rad 

at mid span. 

Table 5-25: Second order minor axis displacement and torsional twist – only torsional load 

Length α2nd.q mx (kNm/m) 
Analytical Results Numerical Results 

fII (rad) vII (cm) fII (rad) vII (cm) 

915 1,004 383,07 0,099 0,1004 0,099 0,1005 

1027 1,007 244,46 0,125 0,1007 0,125 0,1007 

1192 1,012 137,59 0,169 0,1012 0,169 0,1013 

1475 1,029 61,210 0,263 0,1029 0,263 0,1029 

2153 1,125 15,302 0,612 0,1125 0,613 0,1126 

 

As before the analytical and numerical solutions are in excellent agreement. Finally, Table 5-26 

considers the imperfect member subject to a sinusoidal torsional load and major-axis bending. 

The imperfection is the one considered in Table 5-24 and the torsional load is the one considered 

in Table 5-25. 
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Table 5-26: Second order minor axis displacement and torsional twist – combination of geometrical 

imperfection and torsional load 

Length v0 (cm) mx (kNm/m) 
Analytical Results Numerical Results 

fII (rad) vII (cm) fII (rad) vII (cm) 

915 1,482 383,07 0,204 0,1075 0,204 0,1077 

1027 1,491 244,46 0,260 0,1098 0,260 0,1099 

1192 1,507 137,59 0,357 0,1154 0,357 0,1141 

1475 1,530 61,210 0,570 0,1229 0,570 0,1230 

2153 1,640 15,302 1,428 0,1625 1,433 0,1631 

 

Again, Table 5-26 shows the excellent agreement between theory and numerical calculation. It 

should be noted that, if the member is subject to a torsional load and geometrical imperfection, 

the second order lateral displacement and torsional twist correspond to the sum of the same 

second order displacements for the individual cases represented in Table 5-24 (only geometric 

imperfection) and Table 5-25 (only torsional load). 

As the analytical results are validated by numerical calculation, the second order moments are 

introduced in the linear interaction formula as shown in Eq. ( 5.245 ). 
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So as to obtain a design equation, the imperfection has to be replaced. It would obviously be 

possible to replace it by a numerical value. Nonetheless, the geometric imperfection is replaced 

by the generalised imperfection η  again (see Eq. ( 5.202 ) again for the definition of η). 
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In paragraph 5.5.7.2, it has been shown that the lateral-torsional buckling curve can be expressed 

by Eq. ( 5.247 ). If Eq. ( 5.247 ) is exactly equal to 1,0, an expression of the generalised imperfection 

can be determined as represented in Eq. ( 5.248 ). 
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By introducing Eq. ( 5.248 ) into Eq. ( 5.246 ) one obtains: 
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( 5.249 ) 

Eq. ( 5.249 ) is now reorganised using Eq. ( 5.250 ). 
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The resulting interaction formula is given in Eq. ( 5.251 ). 

1

1

1

1

2

,,

2

,,

,,

≤

























−+

+

+

+

+
RyLT

y

RyLT

y
LTLT

cry

yR

I

cry

y

I

Rz

y

RyLT

y

M

M

M

M

M

MB

B

M

MM

M

M

M

χχ
λχ

ϕ

χ
 

( 5.251 ) 

It is recalled that the same procedure has been applied in references (Stangenberg 2007) and 

(FOSTA 2004) (see paragraph 5.4.3 describing the design proposals made at RWTH Aachen). The 

resulting expression may seem again somewhat surprising as the factor introducing second order 

effects to the first order torsional twist and the bi-moment is always less than 1 and even 

decreases if the applied major-axis bending moment approaches the critical bending moment. Yet, 

this directly results from the substitution of the generalised imperfection by Eq. ( 5.248 ). Again, 

it is to be noted that this substitution is only completely consistent if the member reaches its 

ultimate limit state by pure lateral-torsional buckling under major-axis bending only, i.e. if Eq. ( 

5.247 ) is strictly equal to 1,0. Assuming that this is true, the member would obviously not be able 

to carry an additional bi-moment. Therefore, the derived interaction equation is not completely 

consistent from a mechanical point of view as the replacement of the generalised imperfection 

overestimates the working degree of the member under My. Also, it is recalled that a similar 

approach has been used to derive the axial force – major-axis bending interaction formulae in the 

Eurocode 3 format. In order to cover the lack of consistency empirically calibrated interaction 

factors have been introduced. 

Based on Eq. ( 5.245 ), it is possible to derive a design concept with a different approach. To do so 

Eq. ( 5.245 ) is rewritten as shown hereafter: 
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As in paragraph 5.5.7.2 the non-dimensional parameters χ and λ are introduced and one obtains 

Eq. ( 5.253 ). 
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At this point the new form of the generalized “imperfection” of Eq. ( 5.254 ) is introduced to obtain 

the equation of second degree that may be used to determine the resistance of the member. 
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Here, it may be argued that the designation “imperfection” is not suited anymore as η considers, 

in addition to the geometrical imperfection, the influence of the ratio between first order major-

axis bending and the bi-moment and the influence of first order torsional twist. However, the 

designation of “generalized imperfection” is kept hereafter, since the function of this term is the 

same as the one in the classical design concept of buckling curves, i.e. reduce the resistance with 

respect to the theoretical case of the perfect member. 

The equation of second degree is solved so as to determine the reduction factor χ: 
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This is exactly the same format as the classical buckling curve given in §6.3.1.2 of 

Eurocode 3 Part 1-1 (CEN 2005a) for the case of flexural buckling and in §6.3.2.2 of the same 

standard for the case of lateral-torsional buckling. 

If one intends to keep the classical formulation of the generalized imperfection, the influence of 

the minor axis bending moment due to the torsional twist and the influence of the first order bi-

moment can be considered in the format of the reduction curve as shown in Eq. ( 5.258 ) to ( 5.261 

). 
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The form of the factor rM is due to the hypothesis of linear interaction behaviour between the 

internal moments. It describes the reduction of the major-axis bending moment resistance 

reduced by the influence of minor-axis bending and the bi-moment. The given solution represents 

well the extreme cases: if the member is not subject to torsion the solution given in paragraph 

5.5.7.2 is obtained and if the section resistance of the member is attained by the sole influence of 

the bi-moment, the reduction factor is 0, even for small slendernesses. It would be possible to 

introduce a non-linear interaction so as to account for the possible plastic reserve. Here, this is 

not done as the theoretical development shown in this paragraph is not intended to lead to a 

precise design model.  

The developed reduction curve may directly be compared to the design method proposed at 

TU Eindhoven (see references (de Louw 2007) and (Snijder et al. 2008)) for U-shaped members 

subject to loads applied through the plane of the web. It may be observed that the reduction curve 

developed here confirms the tendencies included into the empirically determined reduction curve 

proposed by de Louw. In fact, the reduction factor χ does not tend to unity for small slendernesses 

as the member is subject to the bi-moment. For long members and hence high values of the 

relative slenderness the influence of torsion is neglected by de Louw. This is also shown to be right 

by the theoretical developments as, for the studied case of U-shaped members loaded through the 

web, the applied torsional moment and the resulting bi-moment tend to zero for long members. 

Consequently, the theoretical derived factor rm tends to 1,0 and the design reduction curve 

becomes identical to the reduction curve applicable to lateral-torsional buckling of members 

subject to a sole major-axis bending moment. 

If the same approach is applied to members under torsion and bi-axial bending the interaction 

formulae given in Eq. ( 5.264 ) can be derived (see Stangenberg 2007).  
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As before the generalized imperfection η is introduced and then replaced by Eq. ( 5.248 ). 

Consequently, the new form of the interaction formula given in Eq. ( 5.264 ) is obtained. 

It may be recalled that an equivalent interaction equation is derived by Stangenberg as presented 

in paragraph 5.4.3.3. Conversely to Eq. ( 5.264 ), he proposes a non-linear interaction between the 

second order internal forces and moments and he replaces the first order torsional twist and first 

order lateral displacement by analytical expressions. Additionally, Stangenberg neglects the term 

in the second line of Eq. ( 5.264 ) and the factor 1/(1+My/My,cr). His proposal is recalled in Eq. ( 

5.265 ). It is also recalled that the factors C1, C1,h, C1,E, kδ,θ and kδ,z introduce the influence of variable 

moment distribution. 
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Obviously, the expression given in Eq. ( 5.265 ) seems less readable than Eq. ( 5.264 ). Again, one 

may state that it seems more advantageous to keep the values of the first order displacement and 

the first order torsional twist directly in the interaction equation as these values can be 

determined easily with current design software. 

Similarly to the case of combined major-axis bending and torsion, the design model can be 

represented in form of a buckling curve. The interaction equation of the second order internal 
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forces and moments is given in Eq. ( 5.266 ). Here, a more complex linearized interaction is 

supposed to account more precisely for plasticity. Consequently, interaction factors kMy, kMz and 

kB are introduced. 
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Eq. ( 5.265) is rewritten as follows: 
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It can be observed that the generalized imperfection contain the interaction factors kMz and kB. 

However, they are neglected in this expression in order to ensure the continuity with the load case 

of pure major-axis bending. In fact, it is the form of the reduction curve itself that already accounts 

for the influence of the non-linear interacion. Consequently, the generalised imperfection takes its 

usual form.  

Again, Eq. ( 5.267 ) is transformed into the buckling curve format as shown by Eq. ( 5.271 ). 
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The solution of the previous equation of the second degree is given in Eqs. ( 5.272 ) and ( 5.273 ). 
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Here, the buckling curve is given with reference to the major-axis bending moment resistance. Yet, 

it may be more convenient to determine a reduction factor that is applied to the complete loading. 

To do so, the plastic load amplification factor is first expressed by Eqs. ( 5.274 ) and ( 5.275 ). 
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The global reduction factor χG can be expressed based on the plastic load amplification factor Rpl 

and the load amplification factor leading to the failure of the member Rult as given in Eq. ( 5.276 ). 
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Obviously, the factor Rult is also equal to the ratio of the applied bending moment and the bending 

moment resistance reduced by the influence of buckling. One may therefore write: 
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At this point, it is possible to combine Eqs. ( 5.276 ) and ( 5.277 ) so as to express the reduction 

factor χMy as a function of χG: 
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Next, the relative slenderness linked to the major-axis bending moment has to be replaced by a 

global slenderness associated with the global load combination. Consequently, the critical load 

amplification factor is expressed with Eq. ( 5.279 ). 
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The global slenderness is defined with Eq. ( 5.280 ). 
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Eqs. ( 5.278 ) and ( 5.280 ) are now introduced into Eqs. ( 5.272 ) and ( 5.273 ) to rewrite the 

global buckling curve as shown in Eqs. ( 5.281 ) and ( 5.282 ). 
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The expressions of the terms ηimp, ηMz and ηB are recalled in Eqs. ( 5.283 ) to ( 5.285 ). 
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One may note that equations ( 5.281 ) and ( 5.282 ) are fully continuous to the reduction curve 

that applies for members under major-axis bending if the interaction factor kMy becomes 1,0. 

Obviously, this should be the case. Additionally, the terms ηMz and ηB vanish and the ratio between 

the plastic load amplification factor Rpl and My/My,pl equals 1,0 for members subject to a sole 

moment My. For combined load cases the interaction factors kMy, kMz and kB account for the 

interaction behaviour between the internal forces and moments. Yet, they also account for the 

influence of elasto-plastic instability as for longer member, the plastic interaction supposed in Eq. 

( 5.266 ) is not valid anymore. For these members the interaction factors should tend to the ratio 

between the plastic resistance and the elastic resistance of the individual internal moment. Also, 

the moment distribution influences the importance of second effects. Consequently, a correction 
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factor might be necessary comparable to the equivalent (uniform or sinusoidal) moment factor Cm 

used in case of axial-force – major-axis bending moment interaction.  

The calibration of the different factors necessary to account as precisely as possible for the effects 

not considered in the analytical development is not done in this paragraph. Nevertheless the 

derived global reduction curve allows the identification of several key parameters (additionally 

to Rpl and Rcr) that should probably be considered for the proposal of a global design buckling 

curve: 

• The relative ratio between major-axis bending and minor-axis bending introduced 

by the factor mzy; 

• The relative ratio between major-axis bending and the bi-moment introduced by 

the factor mby; 

• The importance of first order displacements vI and fI; 

• The ratio between the plastic load amplification factor Rpl and the utilization grade 

of the member with respect to the major-axis bending moment only (or more 

generally the utilization grade of the member to the internal forces and moments 

generating second order effects). 

It should be noted that a similar approach has been applied in reference (Taras 2011) to derive a 

global reduction curve for in-plane buckling of members subject to combined axial force and 

mono-axial bending. He obtained the following expressions: 
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In Eqs. ( 5.286 ) and ( 5.287 ): 

• The factor c0 represents the ratio between Rpl and the utilisation grade of the 

member with respect to the axial force N/Npl (generating second order effects); 

• The factors kni* and kmi* represents the plastic interaction behaviour between the 

axial force and the bending moment and the transition behaviour from plastic 

interaction to elastic interaction with increasing member slenderness (only 

compact sections are treated); 

• The factor Cms represents the influence of the bending moment diagram on the 

second order effects; 

• The factor η0 is equal to the ratio (M/Mpl)/(N/Npl) and consequently represents 

the relative importance between the bending moment (about the major- or minor-

axis) and the axial force. 
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Obviously, the expression proposed in (Taras 2011) accounts for the same influences as the 

expressions proposed here for the interaction between major- and minor-axis bending and the bi-

moment. 

Before the design model is calibrated, in paragraph 5.6 based on an extensive numerical study, 

the theoretical developments is extended to combined torsion and axial forces in the next 

paragraph.  

 Members subject to combined bi-axial bending, axial force and torsion 

The system of differential equations given in Eq. ( 5.235 ) is extended to the case of an applied 

axial force and bi-axial bending. Hereafter, only the case of a double symmetric I section is treated. 

For the studied configuration, the system of differential equations is given in Eq. ( 5.288 ). 

( ) 00,,, ϕϕ zzxxxxzxxxxy MNwqNwMwEI ++=++  

( 5.288 ) ( ) 00,,, NvMqNvMvEI yyxxxxyxxxxz ++=+− ϕϕ  

0
2
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As before, the system of Eq. ( 5.288 ) can only be solved supposing appropriate approximations of 

the displacement functions and the imperfection. Again, a sine half wave is assumed. Hence, so as 

to obtain consistent results the externally applied loads qz, qy and mx as well as the resulting 

bending moments should also respect the shape of a sine half wave in order to generate the 

assumed displacements. Consequently the loads qz and qy can be replaced by the bending 

moments following Eqs. ( 5.289 )and ( 5.290 ). 
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As for the case of combined major-axis bending and torsion, it has to be noted that there is a 

certain inconsistency concerning the shape of the bending moment diagram supposed for the 

analytical developments. Again, to account for the influence for the eigenmode affine 

imperfection, it has to be supposed that the bending moment is constant leading to the 

amplification factor 1/(1-My/My,cr). Contrariwise, to account for the effect of the applied torsional 

load the bending moment diagrams are supposed to be affine to a half sine wave leading to the 

amplification factor 1/(1-My2/My,cr2). Yet, this inconsistency has to be accepted so as to obtain 

relatively simple expressions of the second order displacements and the resulting second order 

internal forces and moments. In order to account for the influence of the bending moment diagram 
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correction factors have to be introduced (equivalent moment factors). This is not done at this 

point of the developments so as to keep the expressions simple. Additionally, to simplify the 

lecture of the second order major-and minor axis bending moment as well as the second order bi-

moment given in Eqs. ( 5.291 )to ( 5.293 ), the quantities defined in Eqs. ( 5.294 ) to ( 5.297 ) are 

introduced. It should be noted that the expressions given in Eqs. ( 5.291 )to ( 5.293 ) have been 

derived several times in the past (see for example (Kaim 2004)). 
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In order to obtain an interaction equation that may be applied to the member design the explicit 

values of the imperfections have to be replaced. It may be accepted that out-of-plane (here 

combination of v0 and f0) and in-plane imperfection (w0) need not be applied simultaneously. 

Consequently, one might consider to study two sets of second order internal moments, one 

exclusively containing the influence of in-plane imperfection and the other containing only out-

of-plane imperfection. However, it should be noted that this approach could not lead to the 

Eurocode 3 Part 1-1 interaction formulae. Admittedly, these last treat independently the 

reduction for in-plane and out-of-plane buckling (introduced by the factors χy and χz, respectively) 

but the reduction factor introducing the effect of lateral-torsional buckling and the corresponding 

out-of-plane imperfection is considered in both interaction equations. Therefore, it appears that 

the interaction formulae proposed in Eurocode 3 Part 1-1 are partially inconsistent as they 

assume, for the same member, an out-of-plane imperfection only for the major-axis bending 

moment and they consider that second order effects do not arise from the combination of the out-

of-plane imperfection and the axial force. Nonetheless, observing the second order internal 

moments derived before for the case of combined axial force, bi-axial bending and torsion, it 

seems evident that a completely consistently derived analytical design approach is impossible to 

develop for an arbitrary combination of loads. 

It is recalled that one of the objectives of this thesis is to propose a simple extension of the 

interaction formulae provided in Eurocode 3 Part 1-1 to members subject to additional torsional 

loads. The interaction formulae have been derived based on the works of several researches based 

on extensive analytical and numerical studies as well as physical tests. They have proven to be 

sufficiently safe and economic to be applied in the practice to members subject to combined axial 

force and bi-axial bending. Therefore, it is admitted hereafter that all effects and terms included 

in the second order internal moments not linked to an applied torsional load are already 

considered in the interaction factors kij of the Eurocode 3 interaction formulae. Conversely, the 

influence of the terms linked to an applied torsional load should be quantified in the following. 

These terms are recalled in Eqs. ( 5.298 ) to ( 5.300 ). One may note that the torsional load 

generates a bi-moment that is amplified through the influence of torsional (DT) and lateral-

torsional (DM) buckling. Also, the torsional load induces a twist fI. As the first order bi-moment, 

the twist is amplified by the factors 1/DM and 1/DT. Additionally, as the principal axis of the 

twisted member are not aligned anymore with the axis of the load supplementary bending 

moments My,Mx and Mz,Mx arise and they are amplified by the effect of flexural buckling about the 

respective axis. It should be noted here that the bi-moment generated by lateral displacement (see 

Eq. ( 5.270 ) for example) is not influenced by the torsional load and is consequently supposed to 

be accounted for by the Eurocode 3 interaction factors as stated above for all other effects not 

linked to first order torsion. 
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In paragraph 5.5.7.4, it has been shown that if the equivalent geometric imperfections is replaced 

by the generalized imperfection η, the bi-moment is not associated with the factor 1/DM anymore 

but with the factor 1/(1 + My/My,cr) (compare Eqs. ( 5.252 )and ( 5.253 )). Consequently, the bi-

moment is not amplified but reduced if the major-axis bending moment approaches the critical 

moment. The reason leading to this surprising observation has been discussed in paragraph 

5.5.7.4. The numerical study presented in paragraph 5.6 is therefore very helpful to verify if a 

second order amplification of the bi-moment by the factor 1/DM is necessary or not. 

 Conclusions 

In paragraph 5.5.7 the elastic second order equilibrium of the member was of special interest. In 

particular, it was intended to develop analytical expressions of the second order internal forces 

and moments as well as analytical interaction equations in order to facilitate the comparison to 

the existing design models and to highlight the main parameters influencing the member 

resistance. 

First, the well-known lateral-torsional buckling curves of Eurocode 3 Part 1-1 (CEN 2005a) have 

been re-derived as reference case. Also, the amelioration of the reduction curve developed by 

several researchers (see references (Stangenberg 2007), (Naumes 2009) and in particular 

(Taras 2011)) has been presented and compared to the existing design approach for lateral-

torsional buckling of I-shaped members. It has been shown that the main difference between the 

currently standardised reduction curve and the proposals consist in the consideration of the 

torsional behaviour of the member that is only roughly approximated by the imperfection factor 

α in Eurocode 3 Part 1-1 and more precisely considered by the ratio between λLT2 and λz2 in the 

proposals. Here, it should be noted that the proposal made by Taras is accepted as amendment to 

the current version of Eurocode 3 Part 1-1 and is therefore provided in the future version of this 

standard. 

After the treatment of the reference case, the investigations have been extended to members 

under combined axial force and major-axis bending, major-axis bending and torsion, axial force 

and bi-axial bending and finally to combined axial force, bi-axial bending and torsion. For the case 

of combined axial force and major-axis bending, it has been shown that the Eurocode 3 interaction 

formulae can only be derived if a certain inconsistency is accepted for the applied geometric 

imperfections. It is recalled that the development supposes that the member is subject to the 

entire lateral imperfection leading the reduction factor χz for the axial force and in the same time 
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to an imperfection affine to the first member eigenmode for lateral-torsional buckling leading to 

the reduction factor χLT. Obviously, this is assumption is not physical but it allows the development 

of relatively simple design expression. The interaction formulae account empirically for their 

inconsistency by the calibration of the interaction factors, in particular the calibration of the factor 

kzy. For the same load case Eurocode 3 Part 1-1 proposes the “general method” in its paragraph 

6.3.4. This method replaces the influence of the equivalent geometric imperfection and the 

resulting second order internal forces and moments by a global reduction factor χop for out-of-

plane instability. It has been shown that this approach, despite of its empirical nature, can give 

rather satisfactory results compared to elastic second order calculations (GNIA) in its field of 

application. In paragraph 5.4.3.4, it has however already been shown that an extension to minor-

axis bending moments as proposed in reference (Naumes 2009) may lead to unsafe results. 

The analytical developments for combined major-axis bending and torsion were of interest as 

they have shown that the empirically developed design proposal of (de Louw 2007) and 

(Snjider et al. 2008) can be justified analytically. The extension to the case of bi-axial bending and 

torsion clearly pointed out that, even if the proposal of Stangenberg included a plastic interaction, 

the introduction of simplifying assumptions and empirical factors accounting for different effects 

as the bending moment diagram leads to a loss of precision.  

The load case of combined bi-axial bending and torsion has also been used as example to 

demonstrate how a global reduction curve following the principles of the OIC approach can be 

derived. Several terms and influences that may be accounted for have been highlighted. 

Last, the case of combined axial force and bi-axial bending as well as axial force, bi-axial bending 

and torsion have been treated. Again, it has been demonstrated that certain inconsistencies have 

to be accepted when the Eurocode 3 interaction equations are developed for combined axial force 

and bi-axial bending. In the past, these inconsistencies have been covered by an empirical 

calibration of the interaction factors. It appeared absolutely necessary to study these last both 

cases from a theoretical point of view so as to emphasise which effects are already empirically 

covered by the current interaction formulae and which terms should additionally be included if 

the Eurocode 3 design method is extended to applied torsion. 

In the following paragraph, the member resistance is addressed based on an extensive numerical 

study. A database of numerically determined member resistances is constituted and used to 

develop a simple and practical design approach. 
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5.6 Numerical parametric study 

5.6.1 General 

The following paragraphs present a numerical study performed to develop a simple and practical 

design approach for I- and U-shaped members subject to an arbitrary combination of loads. The 

previous paragraph presented a detailed theoretical study that has been performed in order to 

highlight the key parameters of the studied problem. Consequently, the results of the theoretical 

study represent the framework of the resistance model and the following numerical study is used 

to adjust and validate the design approach. 

The numerical study consists in over 10 000 GMNIA calculations. This high number of simulations 

has been carried out so as to cover a sufficiently wide range of cross-sections and load cases as 

detailed in paragraph 5.6.2. The numerical calculations are realised with the model validated in 

Chapter 3. Additionally, the conclusions of paragraph 5.2, concerning particular modelling 

aspects, are considered. Therefore, the following simulations are based on: 

• A shell model not considering the fillets of hot-rolled sections according to the 

investigations of paragraph 3.3.5; 

• A residual stress pattern for I sections according to reference (ECCS 1984); 

• A residual stress pattern for U sections according to the investigations of 

paragraph 5.2.1.5; 

• An equivalent member imperfection affine to the first member eigenmode 

directed in the appropriate direction (see paragraph 5.2.1.6) and with an 

amplitude of L/1000; 

• An equivalent sinusoidal plate imperfection with an amplitude of hw/200 for the 

web and bf/400 for the flange and a half wave length of lwave/2 = (hw+ (bf-tw)/2)/2 

according to paragraph 5.2.1.7; 

• A multi-linear material law following the recommendations of reference 

(ECCS 1984) with a yield stress of 235 MPa if not indicated otherwise (the 

influence of the yield stress is also studied in paragraph 5.6.2.4); 

• A proportional increase of the applied loads according to paragraph 5.2.2. 

It should also be noted that members of slender cross-section are analysed twice: first they are 

calculated without considering the influence of local plate instability (see paragraph 5.2.3) and 

then a second calculation is performed on the model not containing the rigid beam elements 

applied to avoid local buckling. The first simulation allows the treatment of a greater variety of 

cross-section geometries without the influence of local buckling. Moreover, by comparing the 

results obtained by both simulations it is possible to quantify the influence of local buckling on 

the member resistance. 
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The next paragraph details the choices concerning the parametric field of the numerical study. 

5.6.2 Scope of the parametric study 

 Representation of the results 

Hereafter, the results obtained with the GMNIA simulations are presented in form of ultimate 

resistance curves as schematically represented in Figure 5-110. This choice is somewhat different 

of what has been done in numerous research works studying the member resistance in the past 

(see for example references (Ofner 1997), (Villette 2004), (Kaim 2004) and (Kettler 2008)). In 

fact, the mentioned authors chose a representation in form of interaction curves as for example 

shown in Figure 5-111 (member of IPE 500 section subject bending moment varying from My to 

0 – data obtained from reference (Ofner 1997)). However, the cited research works concerned 

interaction between not more than three internal forces and moments. In the framework of the 

present thesis at least four internal forces and moments can act simultaneously in the member (N, 

My, Mz, B). For short members the additional shear force may also influence the member 

resistance. Consequently, it appears to be unpractical to represent the results in form of 

interaction diagrams hereafter. Additionally, the interaction diagrams do only roughly give 

information about the member behaviour in terms of sensitivity to elasto-plastic instability. 

Conversely, the ultimate resistance curve of Figure 5-110 clearly highlights several zones: short 

members can attain the theoretical (plastic) section resistance and are not much influenced by the 

effect of member instability whereas longer members suffer from an important strength reduction 

due to their sensitivity to imperfections and second order effects. Finally, the failure of members 

possessing high values of the relative slenderness may be highly influenced by the effect of elastic 

instability. For members in bending, a certain post buckling reserve due to torsional rotations may 

also be observed leading to an ultimate resistance curve crossing the Euler curve. Finally, in order 

to represents the results in form of interaction curves at least six to eight points per curve are 

necessary. Consequently, many authors chose to study only three to four different values of the 

member slenderness. In the framework of this thesis, at least eight member lengths are studied to 

cover the whole range of the ultimate resistance curve. Therefore, the numerical simulations 

presented hereafter also contribute to extend the database of member resistances obtained in the 

past. 
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Figure 5-110: Schematic representation of an ultimate resistance curve 

 

 

Figure 5-111: Representation of member resistance in form of interaction diagram 
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 Cross-sections 

Table 5-27 summarises the dimensions of the studied sections. The sections are chosen to obtain 

a sufficient variety in terms of: 

• Ratio h/b representing the sensitivity to lateral-torsional buckling (with 

increasing ratio h/b sections become more sensitive to lateral-torsional buckling 

in practice); 

• Web slenderness varying from compact (class 1) to slender (class 4); 

• Flange slenderness varying from compact (class 1) to semi-compact (class 3); 

• Ratio between web and flange slenderness representing the restraining effect 

from the flange to the web that reduces the local buckling sensitivity of the web in 

practice; 

• Warping decay factor εT. 

Table 5-27: Dimensions of studied sections 

Cross-
section type 

Notation h (mm) tw (mm) b (mm) tf (mm) 

U 

UPE 80 80 4 50 7 

UPE 200 200 6 80 11 

UPE 360 360 12 110 17 

Double 
symmetric I 

HEB 200 200 9 200 15 

IPE 500 500 10,2 200 16 

HEAA 800 770 14 300 18 

HR290.3.300.14 290 3 300 14 

HR500.4.300.20 500 4 300 20 

HR770.5.400.17 770 5 400 17 

W650.5.180.10 650 5 180 10 

W1330.10.280.15 1330 10 280 15 

W850.6.300.12 850 6 300 12 

W850.5,5.200.14 850 5,5 200 14 

Mono-
symmetric I 

Notation h (mm) tw (mm) 
bfsup 

(mm) 
bfinf 

(mm) 
tf (mm) 

IMS1 200 9 200 150 15 

IMS2 200 9 200 125 15 

IMS3 500 10,2 200 125 16 

IMS4 500 10,2 200 75 16 



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Member Resistance 

 

439 
 

Figure 5-112 illustrates the ratios between the slenderness of the web and the flanges. 

Additionally, the section are represented in Annex C. 

 

Figure 5-112 : Web and plate slenderness of studied sections in bending 

It should be noted that the parametric study does not contain sections that are of class 4 due to 

their flanges as these sections are of less practical interest, especially for the field of building 

construction that is covered in the framework of this thesis. 

 Load cases 

In this thesis members subject to combined axial force, bi-axial bending and torsion are studied. 

Consequently, the resistance is influenced by the degree of bi-axiality, and the relative importance 

of internal forces and moments to each other. Moreover, the form of the bending moment diagram 

influences the ultimate resistance. Here, it is considered that the members are mainly subject to 

bending. This certainly covers practical cases in particular for members subject to torsion. 

Consequently, the following rather low utilisation degrees are considered systematically for the 

axial force: 

• N/Npl = 0 noted as “N0”; 

• N/Npl = 0,15 noted as “N15”; 

• N/Npl = 0,30 noted as “N30”. 

However, in order to validate the obtained solution, a certain number of members are studied 

under predominant axial force. It is recalled that the loads are increased proportionally. 

Therefore, the axial force attains the given reference value only if the member attains its full 

plastic section resistance. 

The bi-axiality of bending is characterised by an angle in the My-Mz interaction diagram. In the 

following five angles are chosen as represented in Figure 5-113 for an IPE 500 section. It may be 

noted that the members are in most cases subject to predominant major-axis bending because 

this corresponds to the mechanical performance of I and U sections and therefore matches to the 
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practical habit. The bi-axiality is noted as MyMz0, MyMz15, MyMz30, MyMz60 and MyMz90 in the 

following depending on the studied angle. 

 

Figure 5-113: Definition of bi-axiality 

Throughout this paragraph the three load case of Table 5-28 are studied. Load cases P1 and P2 

correspond to point loads applied at mid-span. In case of load case P1 it is considered that the 

member possesses simple supports at its ends and for load case P2 the member is supposed to 

possess fixed ends (yet, warping is not restrained). Load case M corresponds to a constant bending 

moment distribution. Even for this load case, the torsional moment MT is introduced as point 

moment depending on the value of the major-axis bending moment. Its value is calculated by Eq. 

( 5.301 ). The introduced torsional moment is therefore equal to the torsional moment that would 

be introduced by a point load applied at mid-span creating the same maximum bending moment 

M for a member on fork supports (depending on the bi-axiality, the major- or minor-axis bending 

moment is considered).  

 

L

e
MMM totxT 42 , ==  ( 5.301 ) 

Table 5-28:Distribution of moments My, Mz and Mx along the member 
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Eq. ( 5.301 ) shows that the applied torsional moment is proportional to the maximum bending 

moment and the eccentricity e. Different eccentricities are studied as defined in Table 5-29, Table 

5-30 and Table 5-31. 

Table 5-29: Lateral load eccentricities for I sections 

Load eccentricity Representation 

Ecc0 

 

ey = 0 

ez = 0 

EccY1 

 

ey = bf/4 

ez = 0 

EccY2 

 

ey = bf/2 

ez = 0 

EccY3 

 

ey = bf 

ez = 0 
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Table 5-30: Lateral load eccentricities for U sections 

Load eccentricity Representation 

Ecc0 

 

ey = 0 

ez = 0 

EccY1 

 

ey = 3yS,w 

ez = 0 

EccY2 

 

ey = yS,w 

ez = 0 

EccY3 

 

ey = bf-tw/2+yS,w 

ez = 0 
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Table 5-31: Vertical load eccentricities for I and U sections 

Load eccentricity Representation 

EccZ1 

  

 

ey = 0 

ez = (h-tf)/4 

EccZ2 

 

 

ey = 0 

ez = (h-tf)/2 

EccZ3 

 

 

ey = 0 

ez = (h-tf) 

 

It should be noted that the load eccentricities have not been chosen to represent necessarily the 

most practical configurations but rather to modify the relative importance of the applied torsional 

moment compared to the bending moments. 

Finally, Table 5-32 represents the field of the systematic parametric study. So as to vary the 

slenderness of the member, eight lengths are studied included in the interval of 5,5bf and 60bf 

(70bf for some members without torsion and for low bi-axiality of bending). Also, it is recalled that 

additional simulations are performed in order to study the influence of high axial compression 

forces and the influence of the steel grade. 
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Table 5-32: Field of the parametric study for I sections 

Load case Cross-section Axial force Bi-axiality Eccentricity 

M 

HEB 200 
IPE 500 

HEAA 800 
HR290.3.300.14 (HR1) 
HR500.4.300.20 (HR2) 
HR770.5.400.17 (HR3) 
W650.5.180.10 (W1) 

W1330.10.280.15 (W2) 
W850.6.300.12 (W3) 

W850.5,5.200.14 (W4) 
IMS1 
IMS2 
IMS3 
IMS4 

N0 
N15 
N30 

MyMz0 
MyMz15 
MyMz30 
MyMz60 

Ecc0, EccY1, 
EccY2, EccY3 

MyMz90 
Ecc0, EccZ1, 
EccZ2, EccZ3 

P1 
P2 

HEB 200 
IPE 500 

HR500.4.300.20 (HR2) 
HR770.5.400.17 (HR3) 
W650.5.180.10 (W1) 

W1330.10.280.15 (W2) 
IMS1 
IMS2 
IMS3 
IMS4 

N0 
N30 

MyMz0 
MyMz30 

Ecc0, EcY1, 
EccY3 

MyMz60 
Ecc0, EcZ1, 

EccY3 

 

Table 5-33: Field of the parametric study for U sections 

Load case Cross-section Axial force Bi-axiality Eccentricity 

M 
P1 
P2 

UPE80 
UPE200 
UPE360 

N0 
N15 
N30 

MyMz0 
MyMz15 
MyMz30 

Ecc0, EccY1, 
EccY2, EccY3 

MyMz60 
Ecc0, EccZ1, 
EccZ2, EccY3 

MyMz90 
Ecc0, EccZ1, 
EccZ2, EccZ3 

 

 Influence of the steel grade on the ultimate member resistance 

In paragraph 5.6.1, it is stated that the members studied in the framework of the parametric study 

are supposed to be fabricated from steel S235. The investigations performed on U-shaped 

members under high minor-axis bending in paragraph 5.5.6.2.5 indicated that the steel grade may 

have an influence as it can increase the member slenderness (associated with elastic instability 

under Mz) above 0,4 leading to a certain strength reduction due to elasto-plastic instability. 

Nonetheless, the effect of elasto-plastic member instability only influences U-shaped members 

subject to minor-axis bending for steel grades higher than S460. This seems out of the field of 

application of today’s practice. The influence of the steel grade on the ultimate resistance of 
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members subject to other load cases is quantified in this paragraph on the basis of three different 

members under complex loading. The examples are represented in Table 5-34. In this table the 

notations introduced in paragraph 5.6.2 are used. The GMNIA calculations are performed 

including geometric member and plate imperfection as well as the appropriate residual stress 

pattern. It is recalled that the amplitude of the residual stresses is considered as constant and not 

as proportional to the yield stress. 

 

Table 5-34: Members studied to characterize the influence of the steel grade on the member 

resistance 

Example Section 
Load 
Case 

Axial 
force 

Bi-
axiality 

Eccentricity 
Steel 
grade 

IPE500_P1_N30_MyMz30_EccY1 IPE500 P1 0,3Npl 30° EccY1 
S235 
S355 
S460 

W2_P1_N30_MyMz0_EccY1 W1330.10.280.15 P1 0,3Npl 0° EccY1 
S235 
S355 
S460 

UPE200_P1_N0_MyMz15_EccY2 UPE200 P1 0 15° EccY2 
S235 
S355 
S460 

 

The ultimate resistance curves are given in Figure 5-114, Figure 5-115 and Figure 5-116 for the 

three studied cases. The global slenderness used along the abscissa is calculated in the OIC format 

by Eq. ( 5.303 ). For the following examples, the effect of local buckling is excluded as described in 

5.2.3. 

 

Gcr

pl
G

R

R

,

=λ  ( 5.302 ) 
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Figure 5-114: Ultimate resistance curves for IPE 500_P1_N30_MyMz30_EccY1 

 

 

Figure 5-115: Ultimate resistance curves for W2_P1_N30_MyMz0_EccY1 
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Figure 5-116: Ultimate resistance curves for UPE200_P1_N0_MyMz15_EccY2 

Figure 5-114 to Figure 5-116 clearly indicate that the influence of the steel grade can be neglected 

in the framework of the parametric study. For both I sections the ultimate resistance curves 

associated with the different steel grades overlay nearly perfectly over the whole range of the 

relative slenderness. For the U-shaped member slight differences may be observed in Figure 

5-116. It may seem somewhat surprising that the resistance linked to steel grade S460 is less than 

for the other steel grades for medium to high values of the slenderness even if the relative 

influence of the residual stresses is lower. Yet, it is recalled that the residual stresses may have a 

favourable effect on the member resistance for certain load cases and in particular for major-axis 

buckling (see paragraph 5.2.1.5). Anyhow, the differences are less than 5% and can be neglected 

hereafter. 

5.6.3 Overall results 

In paragraphs 5.6.4 and 5.6.5 design methods for the resistance of members subject to a 

combination of a compression axial force, bi-axial bending and torsion is developed. Before this is 

done it seems interesting to represent a global view of the results obtained through the parametric 

study. In Figure 5-117 all numerically determined resistances for members possessing compact 

section (or sections treated as compact as discussed in paragraph 5.2.3) are represented. The 

results obtained for members of non-compact and slender cross-section are not given so as to 

facilitate the interpretation of Figure 5-117.  

In Figure 5-117 one may observe a very high scatter of the numerically obtained resistances. For 

example, depending on the configuration (load case, cross-section) a member possessing a 

relative slenderness of 0,5 may attain between 55% and, at least, 150% of its numerically 

determined plastic resistance (calculated with MNA simulation). It should be noted that the 

GMNIA simulations are stopped when the member attains 150% of its plastic resistance as this 

high resistance reserve is, in particular, linked to the effect of strain hardening. Since the objective 

of this thesis is not the quantification of the strain hardening reserve on the member resistance 

the simulations have not been carried on with higher loads so as to limit the calculation time. In 
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any case, the high scatter of the results seems consistent with the wide range of the parametric 

study. Nonetheless, some of the results should be studied in more detail. In fact, it appears that 

even for rather high values of the relative slenderness (0,8…1,0), many members exceed their 

numerically determined plastic resistance. 

 

Figure 5-117: Global view of the results of the parametric study 

In order to understand this surprising observation, a member of HR.290.3.300.14 section is 

studied. The section is prevented from local plate instability as discussed in paragraph 5.2.3. The 

member posseses a length of 8,1 m and fork supports at its ends. It is subject to a constant major-

axis bending moment and a torsional moment applied at mid-span corresponding to the case 

EccY3. Consequently, it is subject to rather high torsion. The resulting member slenderness is 

equal to 0,6. 

Figure 5-118 represents the evolution of the load factor with the torsional twist of the member at 

mid-span. One may observe that the member resistance exceeds the load factor of 1,0 associated 

with the plastic resistance of the members. The load displacement curve is characterised by three 

stages: first, the member behaves linearly in the elastic range, for a load factor of approximatively 

0,60 the stiffness of the member decreases due to initiation of yielding but the member does not 

fail by elasto-plastic instability. In fact, starting from a torsional twist of 1,00 the stiffness of the 

member increases again. Finally, the member attains its ultimate resistance for a load factor of 

1,10. Obviously, the value of the torsional twist is extremely high as also represented in Figure 

5-119. 
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Figure 5-118 : Lpad displacement curve for member HR290.3.300.14_M_N0_MyMz0_EccY3_L8100 

Figure 5-119 shows the von Mises stress distribution for the studied member as well as its 

deformed shape at ULS. One may easily observe that the member has yielded over practically its 

total length and it has even attained the strain hardening in the flanges and at the supports. Most 

importantly, it appears that the member undergoes an extremely high torsional twist that is 

certainly not acceptable in practice, even at ULS. 

 

Figure 5-119 : Von Mises stress distribution and deformed shape of member 

HR290.3.300.14_M_N0_MyMz0_EccY3_L8100 at its Ultimate Limit State 

It seems that it is necessary to define a limit torsional twist that could be accepted at ULS. 

Nonetheless, the torsional twist that can be accepted at ULS, i.e. that does endanger the structural 

elements attached to the studied member, highly depends on the design of the structure, and in 

particular, it depends on the deformation capacity of the secondary members and joints. Rather 

than to define a limit torsional twist based on the design of the structure and its joints, it is 

proposed to define a limit torsional twist based on experience. In fact, even members not subject 

to torsion may endure rather high values of the torsional twist at ULS. Since, the research projects 

that led to the development of the Eurocod 3 Part 1-1 interaction equations did not include any 
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limit concering the maximum torsional twist of the member, it seems that these values are 

acceptable (see (Offner 1997), (Müller 2003), (Boissonnade et al. 2004) and (ECCS 2008)). In the 

framework of this thesis approximatively 5000 memebers only subject to a combination of bi-

axial bending and compression axial force have been treated. Figure 5-120 represents the 

maximum torsional twist obtained for theses members as a function of the ratio L/bf. It should be 

noted that members possessing a ratio L/bf of 70 are not subject to high degrees of bi-axial 

bending (only 15°). Therefore, the maximum torsional twist is less than for shorter members. 

It seems that very long members subject to high degrees of bi-axiality (60°) may also experience 

very high mid-span torsional twists. Yet, these members are at the limit of the practical range.  

 

Figure 5-120 : ULS maximum torsional twist at mid-span for members under bi-axial bending and 

compression axial force 

Globally, the maximum torsional twist that is not exceeded by the majority of the studied members 

is of about 0,5 rad to 0,6 rad. Therefore, it is proposed to limit the torsional twist to 0,6 rad even 

for members subject to torsion. One might argue that in case of applied torsion a higher 

mamximum twist should be accepted. Nonetheless, the maximum acceptable torsional twist does 

obviously not depend on the applied loads but on the design of the structure. Hence, the same 

maximum value should be considered for members not subject to torsion and members subject 

to torsion. 

If the torsional twist limit of 0,6 rad is introduced, the ultimate resistance of many members 

reduces. For the example studied above (see HR.290.3.300.14_M_N0_MyMz0_EccY3_L8100 Figure 

5-118) the global reduction factor χMB reduces from 1,1 to 0,7. Figure 5-121 shows the global view 

of the results including the limit of f ≤ 0,6 rad.  
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Figure 5-121: Global view of the results of the parametric study – Maximum torsional twist is 

limited to 0,6 rad 

It appears that even with the introduced limit torsional twist, some members attain very high 

resistances in the slenderness range of 0,8 to 1,0. At this point, the theoretical study performed on 

U-shaped members in paragraph 5.5.6.2.5 may be recalled. Indeed, it has been shown that the 

value of the critical load amplification factor is highly influenced by the first order displacements, 

especially in presence of high minor-axis bending moments. The influence of first order (or pre-

buckling) displacements is much less pronounced for I-shaped members. If the first order 

displacements are accounted for for the calculation of the critical loads, the global view of the 

results changes again as represented in Figure 5-122. The differences are visible for U-shaped 

members under high minor-axis bending and for I- and U-shaped members under minor-axis 

bending only. Indeed, for these last members, the relative slenderness becomes zero. The results 

obtained for these members are consequently aligned on the axis of ordinates. Nonetheless, there 

are still some members that attain a surprisingly high resistance. These members may mobilise a 

significant level of strain hardening before they fail by elasto-plastic instability as is discussed in 

detail in paragraph 5.6.4.2.1. 
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Figure 5-122: Global view of the results of the parametric study – Maximum torsional twist is 

limited to 0,6 rad 

In this paragraph a global view on the results has been presented. The observations led to the 

definition of a maximum torsional twist that is accepted at ULS. Even if the numerical simulations 

indicate that a given member may carry higher loads, the load level corresponding to its Ultimate 

Limit State is considered for a maximum torsional twist of f = 0,6 rad for the development of the 

design model. 

5.6.4 Design based on interaction formulae 

 General 

In paragraph 5.4 several methods proposed for the design of members subject to combined bi-

axial bending, axial forces and torsion have been presented and discussed in detail. It has been 

shown that some of these proposals are highly complex and not suited for the design practice. 

Additionally, most of the proposals are limited in their field of application concerning for example 

the load combination and form of the cross-section. Therefore, these proposals is not evaluated in 

detail in the following. Hereafter, it is proposed to evaluate the design method developed at TU 

Berlin, presented in paragraph 5.4.4 and recalled in Eqs. ( 5.303 ) to ( 5.305 ). 
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It is recalled that this proposal is also limited as the axial force is not considered. Nevertheless, if 

this proposal ensures a sufficient safety level for bi-axial bending and torsion, it may be envisaged 

to extend it to an additional axial compression force. 

In addition, a very simple extension of the Eurocode 3 Part 1-1 interaction equations is studied in 

the following. It is proposed to simply add the utilisation ratio of the bi-moment to the interaction 

equations.  
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The interaction factors kyw and kzw are intended to account for several effects: 

• The form of the (plastic) cross-section interaction; 

• The transition effect between plastic and elastic failure for compact sections; 

• The second order effects arising from axial force and major-axis bending. 

In Chapter 4, it has been shown that the bi-moment and the minor-axis bending moment are affine 

and transit only through the flanges for double symmetric I sections. The plastic cross-section 

interaction with other internal forces and moments is therefore identical. Also, the study on U 

sections under combined minor-axis bending and bi-moments revealed that a linear interaction 

between both can be considered safely and with acceptable precision. For simplicity, the proposed 

cut-off lengths for the interaction are not considered for the member resistance hereafter (see 

paragraph 4.4.4). Admittedly, this leads to a certain discontinuity between member and section 

resistance but this has to be accepted here in order to obtain sufficiently simple design equations. 

Also, this does not increase significantly the discontinuity between member and section resistance 

that already exists for members under combined bi-axial bending and axial forces. 

The second order effects influencing the bi-moment are linked to the critical major-axis bending 

moment and the critical axial force for torsional buckling as represented in Eq. ( 5.312 ). It is 

recalled that the amplification factors can be derived analytically but only based on certain 

hypotheses concerning the equivalent imperfection that in some cases are contradictory (see 

paragraph 5.5.7.5). Paragraphs 5.5.7.4 and 5.5.7.5 revealed that the second order amplification of 

the bi-moment and the minor-axis bending moment arising from major-axis bending are identical. 

Conversely, the second order amplification arising from the axial force is linked to the critical axial 

force for flexural buckling about the minor-axis for the minor-axis bending moment. For members 

of I and U sections without intermediate restraints or members with intermediate restraints 

against torsional twist and lateral displacements, the critical axial force for minor-axis bending is 
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generally lower than the critical axial force for torsional buckling. Only, for short members the 

torsional buckling mode may be relevant but in this case the second order amplification of the 

bending momemts and the bi-moment is rather low. With the objective of a simple design 

approach, it is therefore proposed to consider that the second order amplification of the bi-

moment can be safely linked to the critical axial force for minor-axis buckling. Based on the 

assumptions discussed here before, it may be considered that the interaction factors kyw and kzw 

can be expressed similarly to the interaction factors kyz and kzz. The proposed expressions are 

summarised in Table 5-35. Additionally, it is proposed to use the expressions of Annex B for the 

determination of the equivalent uniform moment factor Cmw. For the studied cases of a torsional 

moment applied at mid-span the factor Cmw is consequently equal to 0,9. On the safe-side a value 

of 1,0 could also be used. Admittedly, the proposal made here is empirically and in some points 

not fully mechanically consistent. Nevertheless, a fully consistent design method based on 

analytical expressions seems neither envisagable nor practical as highlighted in paragraphs 

5.5.7.4 and 5.5.7.5 as well as in paragraph 5.4.3.3. Therefore, a certain empiricism has to be 

accepted. The precision as well as the level of safety is studied in paragraphs 5.6.4.2, 5.6.4.3 and 

5.6.4.4. 

Table 5-35 : Definition of interaction factors kyw and kzw 

Interaction 
factor 

Class 1 and Class 2 sections Class 3 and Class 4 sections 
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Finally, it was shown in paragraph 5.5.7.5 that several terms arise from the effect of an applied 

torsional moment. They are recalled in Eqs. ( 5.309 ) to ( 5.315 ). 
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The necessity to consider these terms is also investigated when the possible design models are 

compared to the numerical results of the parametric study. 

 Members with double symmetric I sections 

5.6.4.2.1 Double symmetric I-shaped members of compact section subject to combined bi-axial 

bending and torsion 

Through this paragraph the two design approaches recalled and presented in paragraph 5.6.4.1 

are investigated. It should be noted that the numerical results, that are the basis for the following 

comparisons, are obtained for members fabricated from steel S235 and possessing fork end 

supports. The influence of the yield stress has been shown to be negligible for practical cases in 

paragraphs 5.5.6.2.5 and 5.6.2.4. Also, all members considered here may attain the full plastic 

resistance of their most loaded section as local plate instability is prevented (see paragraph 5.2.3). 

The cases studied in this paragraph are in the field of application of the design model noted as 

TU Berlin and proposed in references (FOSTA 2004) and (Glitsch 2008). First, this design method 

is evaluated with reference to the parametric study. The design approach is compared to the 

totality of numerical results in Figure 5-123. It appears that the results possess a very important 

scatter (the standard deviation equals 0,31) that cannot be accepted even for the complex cases 

tested here. It seems that some of the results obtained with this method are very unsafe with ratios 

attaining 2,00 and more for individual cases and many results exceed the value of 1,10 for the 
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ratio χMethod/χGMNIA. The observed results somewhat confirm the interrogations concerning 

method TU Berlin summarised in paragraph 5.4.4. 

 

Figure 5-123: Ratio between predicted resistance by approach TU Berlin and numerically obtained 

resistance 

In order to highlight the problem linked to method TU Berlin again, Figure 5-124 represents the 

minor-axis bending moment at the predicted ultimate limit state for this method. The studied 

member is subject to combined minor-axis bending and torsion. Following the conventions 

introduced in paragraph 5.6.2 the studied case is noted as IPE500_M_N0_MyMz90_EccZ2 

(constant minor-axis bending and a torsional moment applied at mid-span equal to 2Mzh/L). 

 

Figure 5-124: Evolution of the predicted and calculated minor-axis bending moment at limit load 

The predicted minor-axis bending moment at the ultimate limit state (represented by the ratio 

Mz/Mz,pl – TU Berlin) is compared to: 

• The minor-axis bending moment obtained through the GMNIA simulations 

(Mz/Mz,pl – GMNIA Mult); 
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• The minor-axis bending moment that is obtained when the member is subject to 

the loads corresponding to the GMNIA peak load but when it is calculated with a 

first order elastic analysis (Mz/Mz,pl – GMNIA MzI). 

Obviously, when the member is designed with the method proposed by TU Berlin, it always attains 

the plastic minor-axis bending moment resistance owing to the factor kzw that becomes equal to 0 

in these cases. The results of the GMNIA simulations indicate however that the plastic minor-axis 

bending moment is not attained, especially for short members. Indeed, Figure 5-125 shows that 

the member with a length of 1000 mm does not fail through elasto-plastic instability but rather 

by complete yielding along its length due to the combined influence of the internal forces and 

moments and, in particular, due to the Saint-Venant’s torsional moment arising after the 

formation of the warping hinge. 

  

a) von Mises stresses b) shear stresses σxz 

Figure 5-125 : Failure of the member of 1000 mm of length 

Even if the member does not attain its full plastic minor-axis bending moment resistance, the 

formation of the warping has a beneficial effect on the obtained resistance as a redistribution of 

the torsion takes place. Nonetheless, it should be noted that yielding of the member leads to a non-

negligible increase of the torsional twist. So as to study this increase Table 5-36 gives the values 

of the torsional twist at the ultimate limit state (ULS) and at the serviceability limit state (SLS) 

obtained by the GMNIA simulation and compares the values to theses torsional twists obtained by 

linear elastic analysis of the member at the corresponding load levels. For simplicity, it is 

considered that the ratio between the loads at ULS and SLS is equal to 1,5 (this value corresponds 

to the factor of combination of a variable action for a ULS load combination according to 

(CEN 2003)). Table 5-36 shows that the difference between the respective torsional twists at the 

ULS load level attains a value of 15,26. As expected this ratio is rather high due to yielding and the 

corresponding loss of stiffness. Yet, generally it is not necessary to check the displacements at the 

ULS load level and therefore this ratio has no particular interest for the practice. Conversely, the 

displacements should be checked at the SLS load level in order to ensure the functioning of the 

structure, the comfort of people and/or the appearance of the structure (CEN 2003). Obviously, 
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in order to verify the serviceability limit states reliably, the calculated displacements should 

correspond to the real displacements taken by the structure and consequently, the ratio between 

fpl and fel should be close to 1,0 (as generally the analysis of the structure is performed 

elastically). Though, in Table 5-36, one may observe that even for the SLS load level the ratio is 

rather high and attains 5,80. The elastic serviceability limit check would therefore highly 

underestimate the real torsional twist. Nevertheless, the torsional twist obtained by the member 

may be still acceptable. Contrariwise, for longer member this may not be the case anymore. 

Table 5-36: Torsional twist obtained by elastic and plastic analysis of the studied member of 1,0 m 

of length 

Load level 
Torsional twist obtained 
by GMNIA simulation fpl 

(rad) 

Torsional twist obtained 
by linear elastic analysis 

fel (rad) 
fpl/fel 

ULS: Rult 0,1143 (≈ 6,5°) 0,00749 15,26 

SLS: Rult/1,5 0,0289 (≈ 1,6°) 0,00498 5,80 

 

In order to illustrate the issue of the torsional twist at the serviceability limit state the specimen 

of 8,2 m of Figure 5-124 is considered hereafter. It is recalled that, owing to the warping hinge and 

strain hardening, the member attains and exceeds its theoretical plastic minor-axis bending 

moment resistance. Hereafter, the ULS load level is limited to the plastic minor-axis bending 

moment resistance as also predicted by the design model of TU Berlin. The resulting torsional 

twists are given in Table 5-37. One may observe that the ratios between the torsional twist 

determined by plastic and by elastic analysis are lower than for the case of the short member as 

the load level is limited to Mz,pl and consequently the spreading of yielding is limited, too. 

Nevertheless, the ratio between the torsional twist at SLS load level obtained by plastic analysis 

and elastic analysis attains still 1,34. Moreover, the obtained torsional twist of approximatively 

0,3 rad seems rather high and may probably not be accepted in all practical cases at the 

serviceability limit state. 

Table 5-37: Torsional twist obtained by elastic and plastic analysis of the studied member of 8,2 m 

of length 

Load level 
Torsional twist obtained 

by GMNIA simulation 
fGMNIA (rad) 

Torsional twist obtained 
by linear elastic analysis 

fel (rad) 
fGMNIA/fel 

ULS: Mz,pl 0,584 (≈ 33,5°) 0,328 1,78 

SLS: Mz,pl/1,5 0,293 (≈ 16,8°) 0,219 1,34 

 

Finally, it seems interesting to study the difference between the curves linked to MzI (minor-axis 

bending moment obtained through elastic analysis) and to Mz,ult (minor-axis bending moment 

obtained through GMNIA simulations). In case of members subject to an axial force or a major-
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axis bending moment it is not astonishing to observe differences between the internal forces and 

moments determined through first order elastic and through second order plastic analysis. Yet, 

for the studied case second order effects (amplification of moments) do not exist as has been 

demonstrated in paragraph 5.5.5.2.3 concerning the elastic critical loads (and consequently the 

influence of second order amplification) for I-shaped members under minor-axis bending. The 

difference between both minor-axis bending moments has to be attributed to the high torsional 

twist to which the member is exposed. The minor-axis bending moment acting initially in the 

principal system of axis of the member acts on the rotated member at the ultimate limit state. In 

most practical cases, the torsional twist is rather low and consequently the effect is neglected (for 

example for lateral-torsional buckling problems). However, for members subject to torsion the 

twist may increase highly leading to a reduction of the effective minor-axis bending moment 

acting in the member. Obviously, this reduction is accompanied with a creation of a major-axis 

bending moment. Anyhow, it is clear that the design model proposed at TU Berlin does not capture 

the described behaviour and it cannot ensure that the member failure is not produced by yielding 

of the cross-section at the supports due to the Saint-Venant’s torsional moment that arises after 

the formation of the warping hinge. Again, this highlights that the effect of the warping hinge 

should be considered in the analyses and for the determination of the internal forces and moments 

but not directly in the design equation. Indeed, if the proposed two-step elastic analysis performed 

(see paragraph 4.5). 

It should however be noted that the bi-moment (determined by a first order elastic analysis of the 

tested members) may attain rather high values and in particular exceed the value of 50% of the 

plastic bi-moment resistance of the tested members. It is recalled that Glitsch recommends to 

apply the proposed design model only up to the limit of 0,5Bpl. If this limit is explicitly introduced 

as a supplementary design check combined with Eq. ( 5.303 ) the method TU Berlin highly reduces 

its unsafe character as shown in Figure 5-126. It is clear that the method becomes much safer but 

the scatter continues to be at the upper bound of what can be accepted (standard deviation of 

0,20). If the bi-moment is limited to 0,5Bpl the factor kw (see Eq. ( 5.304 )) only varies between 0,7 

and 0,6 and consequently the product kwBEd/Bpl varies only between 0,35 and 0,30. On might 

argue again that a constant value of 0,7 for kw could be acceptable especially with regard to the 

rather important scatter of the results obtained with this design model. 
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Figure 5-126: Ratio between predicted resistance by approach TU Berlin + limitation of the bi-

moment and numerically obtained resistance 

Figure 5-126 shows that, despite the introduction of the limitation of the bi-moment, some of the 

results are still rather unsafe. As an example, a member of HR770.5.400.17 (HR3) section is 

considered. It is subject to constant bi-axial bending with MyMz60 and a torsional moment 

corresponding to case EccY2. Figure 5-127 shows that the member attains its full plastic cross-

section resistance for low values of the slenderness and even more due to the effect of strain 

hardening. For values of the relative member slenderness exceeding 0,2 the strength is reduced 

due to the effect of elasto-plastic instability. For higher values of the relative member slenderness 

the decrease of strength reduction appears to decelerate and finally to stop at a relative 

slenderness of about 0,9. It should be noted that the resistance of the member possessing the 

highest relative slenderness is not limited by the effect of elasto-plastic instability but by the 

torsional twist (the limit has been defined at 0,6 rad ≈ 35° - see paragraph 5.6.3). 

 

Figure 5-127: Ultimate resistance curve for a member of HR770.5.400.17 section subject to bi-axial 

bending and torsion 
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In Figure 5-127 one may observe that the design model proposed at TU Berlin is unsafe compared 

to the numerical results for intermediate values of the member slenderness. For low to 

intermediate values (0,1 … 0,6) of the relative slenderness the resistance obtained with the design 

model is limited by the condition BEd ≤ 0,5Bpl. For longer members the bi-moment becomes less 

than the defined limit. The pronounced kink in the curve associated with the design model can be 

explained based on the combined influence of the factors kw, kzw and kα. In fact, Figure 5-128 shows 

that the product of these factors increases only slightly for small values of the relative slenderness 

but starting from a relative slenderness of 0,60 the increase is accelerated. This acceleration is, in 

particular, due to the factor kα that introduces the second order amplification 1/(1-My/My,cr). The 

other two factors are nearly constant especially for a relative slenderness up to 0,60 owing to the 

limitation of the bi-moment to 0,5Bpl. Consequently, the factor kα seems to counterbalance the too 

optimistic values of the factors kzw and kw for the studied case if the relative slenderness is 

sufficiently high. 

 

Figure 5-128: Evolution of the factor ki of design model TU Berlin with the relative slenderness 

On the basis of the comparisons presented here before it is recommended to modify the design 

model proposed initially at TU Berlin as follows: 

• The factor kzw should be considered equal to 1,0 at least for members exceeding a 

given length/relative slenderness; 

• If the factor kzw is considered less than 1,0 the resistance of the member to the 

arising Saint-Venant’s torsional moment has to be checked (verification of the 

cross-section resistance at the supports under combined bi-axial bending, shear 

forces and Saint-Venant’s torsional moment). It is emphasized that the Saint-

Venant’s torsional moment used for this design check cannot be obtained by a 

simple elastic analysis because the effect of the plastic warping hinge is not 

considered in this type of analysis; 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0.00 0.20 0.40 0.60 0.80 1.00

F
a

ct
o

r 
k i

(-
)

λG (-)

kw

kzw

ka

kzw*kw*ka



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Member Resistance 

 

462 
 

• Additionally to the design formula represented by Eq. ( 5.303 ) it should be 

checked that the bi-moment is less than 50% of the (plastic) bi-moment resistance 

of the member. 

Up to this point of the present paragraph the proposal of TU Berlin has been evaluated and it has 

been shown that several points should be amended so as to ensure a sufficient level of safety with 

reference to the numerical simulations performed here. It appears again that the reduction of the 

bi-moment by the factors kzw and kw may lead to unsafe results as the failure due to the Saint-

Venant’s torsional shear stresses of the sections at the supports is not checked. It is recalled that 

the necessity to verify the cross-section with reference to the Saint-Venant’s torsional moment is 

not in contradiction with the conclusions of Chapter 4 and the common habit. Indeed, generally 

the Saint-Venant’s torsional is neglected for the design of members of open cross-section. This is 

acceptable if the member is analysed through elastic analysis that does not consider the formation 

of the warping hinge. The high Saint-Venant’s torsional moments arising after the formation of the 

warping should however not be neglected (as done by method TU Berlin) if the plastic 

redistribution of the torsional moment is accounted for (see paragraph 4.4.4.1 again). 

Hereafter, the proposal introduced in Eqs. ( 5.307 ) and ( 5.308 ) of this thesis are evaluated. It is 

recalled that these equations represent a very simple extension of the Eurocode 3 Part 1-1 

interaction formulae and could therefore easily be introduced in a future version of the European 

standard for the design of steel structures. 

Figure 5-129 shows a statistical evaluation of the proposal. Clearly, it appears that a sufficient 

level of safety may be ensured. Only 4% of the results are unsafe and the maximum unsafe result 

attains a ratio of approximatively 1,09. This seems acceptable. The scatter of the results appears 

to be rather high but for the totality of all studied members the standard deviation is of 16%, but, 

regarding the complexity of the studied cases, this value could be accepted. Nevertheless, one may 

observe that an important number of case is very safe-sided. In fact, 33% of the strength 

predictions are less than 70% of the value obtained through the GMNIA simulations. So as to 

analyse these results further on Figure 5-130 represents the ratio χMethod/χGMNIA depending on the 

relative lateral-torsional buckling slenderness of the members. 



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Member Resistance 

 

463 
 

 

Figure 5-129: Ratio resistance obtained with Eqs. ( 5.307 ) and ( 5.308 ) and numerically obtained 

resistance 

Figure 5-130 shows that the resistances predicted by Eqs. ( 5.307 ) and ( 5.308 ) are very 

conservative in particular for: 

• Low values of the relative slenderness (λTL = 0 for combined minor-axis bending 

and torsion): for these cases the creation of the warping hinge leads to the 

observed conservatism; the precision of the results can be increased if the plastic 

torsional system reserve is considered in the analyses see paragraphs 4.4.4.1 and 

4.5); 

• For high values of the relative slenderness: these results are obtained for members 

of welded section that are somewhat disadvantaged by the attribution of a rather 

conservative reduction curve for lateral-torsional buckling; 

• For intermediate values of the relative slenderness: in this case the results are 

obtained for members subject to high values of the applied torsional moment. 

Consequently, the resistance is influence partially by the torsional system reserve 

and partially by the effect of high torsional twist. 

The two last points are discussed further on hereafter. 
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Figure 5-130 : Ratio between resistance obtained with interaction equations and the numerically 

obtained resistance depending on the relative member slenderness 

Figure 5-131 represents the results obtained for the welded sections. Again, the safe-sided nature 

of the interaction equations (in fact, the conservatism should not be attributed to the interaction 

equations but rather to the elastic analysis performed to obtain the internal forces and moments) 

is easily observed for low values of the relative slenderness. For intermediate to high values of λLT 

one may remark two groups of results. The first group (encircled in orange) is arranged in form 

of an arc possessing the highest precision for a relative slenderness of approximatively 1,00. For 

lower and higher values of λLT the obtained resistances recede from the numerical reference 

values. The second group (encircled in violet) is rather conservative independently from the 

relative slenderness. 

 

Figure 5-131: Ratio resistance obtained with interaction equations and numerically obtained 

resistance depending on the relative member slenderness – welded sections 

The arrangement in form of an arc of the results for the welded members can be linked to the 

general shape of the reduction curve as shown in Figure 5-132. In fact, the typical shape of the 
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ultimate resistance curve for members of welded section subject to major-axis bending can be 

observed. In fact, this curve is characterised by 3 inversions of the sign of its curvature: for the 

given example it changes from concave to convex at relative slenderness of about 0,7 then it 

changes back to concave at a slenderness of about 1,2 and finally it changes again at a relative 

slenderness of about 1,6 from concave to convex. Contrariwise, the reduction curve proposed in 

Eurocode 3 Part 1-1 (§6.3.2.2 of (CEN 2005a)) does not possess the mentioned changes of the 

curvature. Consequently, the discrepancy between the predicted results and the numerically 

obtained resistances depend on the slenderness. In Figure 5-132, it can be seen that both curves 

approach for a slenderness λLT of about 0,70 explaining the arrangement of the results in form of 

an arc in Figure 5-131. Obviously, the exact difference between the numerical results and the 

predicted resistance depend on the relative importance of the major-axis bending moment in the 

global loading (Figure 5-131 presents results for members under combined bi-axial bending and 

torsion). 

 

Figure 5-132 : Ultimate resistance curve for a member of W650.5.180.10 (W1) section under 

constant major-axis bending 

So as to understand the difference observed for the two distinctive groups of results represented 

in Figure 5-131 the example of the member of welded section W650.8.180.10 (W1) is considered. 

This member is subject to constant bi-axial bending MyMz60 and it is subject to an intermediate 

value of the applied torsional moment (EccY2) in a first case and subject to a high torsional 

moment (EccY3) in a second case. 

The results obtained for the first case, W1_N0_MyMz60_EccY2, are given in Figure 5-133 and 

Figure 5-134. Figure 5-133 shows the load displacement curve linking the torsional twist to the 

ratio between load factor RLoad and the plastic limit load amplification factor Rpl. Not surprisingly, 

the curve is characterised by a first linear part up to a torsional twist of 0,04 rad. The curve 

becomes than non-linear due to increasing yielding. The peak load is attained for a ratio RLoad/Rpl 

of 0,5. After passing through the peak load the curve descends. Figure 5-134 shows the von Mises 

stress distribution at the peak load level. It can be observed that the upper flange has yielded due 

to the combined influence of the applied loads and second order internal forces and moments. The 
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lateral stiffness of the upper flange tends consequently to 0 leading to failure by elasto-plastic 

instability. These observations do not seem astonishing and represent the expected failure mode 

for this member. 

 

Figure 5-133 : Load-displacement curve for W1_N0_MyMz60_EccY2 

 

Figure 5-134: von Mises stresses for W1_N0_MyMz60_EccY2 at its peak load level 

It is now interesting to compare the results obtained for the member subject to an intermediate 

torsional moment and for the member subject to high torsion. For this last member, the results 

are represented in Figure 5-135, Figure 5-136 and Figure 5-137. Figure 5-135 clearly shows that 

the behaviour of the two members are different. Indeed, the load-displacement curve of the 

second member is characterised by four parts: approximatively linear behaviour up to a torsional 

twist of 0,07 rad; non-linear behaviour with decreasing stiffness up to a torsional twist of 0,16 rad; 

non-linear behaviour but with increased stiffness up to torsional twist of 0,35 rad and finally the 
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stiffness decreases a second time until the failure load is attained for a load ratio of RLoad/Rpl = 0,7. 

For this member the failure mode can also be characterised by elasto-plastic instability but at a 

higher level of yielding. Indeed, the increase of the stiffness after first yielding is due to the effect 

of strain hardening. 

 

Figure 5-135: Load-displacement curve for W1_N0_MyMz60_EccY3 

Figure 5-136 and Figure 5-137 represent the von Mises stress distribution at points A and B for 

the studied member. At point A (Figure 5-136), the upper flange has yielded approximatively as 

for the first member represented in Figure 5-134. Yet, it appears that the upper flange possesses 

still sufficient stiffness to avoid failure by elasto-plastic instability and to attain a strain level that 

is linked to starting strain hardening. With starting strain hardening the upper flange increases 

its stiffness according to the defined strain hardening modulus of the material.  
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Figure 5-136: von Mises stresses for W1_N0_MyMz60_EccY3 at point A of the load-displacement 

curve 

Finally, Figure 5-137 shows that the member has yielded over great parts of its length due to the 

applied minor-axis bending moment and to the Saint-Venant’s torsional moment that is generated 

after the formation of the warping hinge. At this point, nearly the whole flange attains a stress of 

325 MPa and consequently has attained a significant level of strain hardening. Nonetheless, the 

effect of elasto-plastic instability leads to the failure of the member. 

 

Figure 5-137: von Mises stresses for W1_N0_MyMz60_EccY3 at the peak load level – point B of the 

load-displacement curve 
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It has to be admitted that the results obtained for the two previous examples are certainly very 

sensitive to the practical design of the load introduction and the end supports. The design may 

enable the first member subject to intermediate torsional moments to attain strain hardening 

before it fails by elasto-plastic instability. Conversely, it cannot be excluded that the practical 

design may lead to failure by elasto-plastic instability of the second member before it reaches 

strain hardening. Also, it should be noted that the calculation options for the numerical 

simulations may influence the obtained resistances as well. If the calculation is continued for the 

first member, it might attain strain hardening after passing through a valley of the load-

displacement curve. Here, the calculation was not pursued further on and it has been considered 

that the first limit point corresponds to the failure of the member, even if this may be discussable 

for the present case. Anyhow, it may be concluded that a lower bound of the resistance of the 

studied members in torsion is linked to elasto-plastic instability without significant strain 

hardening. This failure mode is well represented by the simplified interaction formulae proposed 

in Eqs. ( 5.307 ) and ( 5.308 ). Depending on the practical design, the member may attain strain 

hardening of the material leading to a failure obtained at a higher load level. This corresponds to 

an upper bound resistance. The interaction equations do not represent this failure mode and may 

therefore be rather conservative for these cases. Yet, it is also to be noted that the torsional twist 

linked to the upper bound resistance is rather high even if it seems still acceptable at the ultimate 

limit state (0,45 rad).  

Last, it is recalled that the members evaluated up to this point were simulated without considering 

the influence of local plate instability (see paragraph 5.2.3). Consequently, they may always attain 

the strain level necessary for yielding and even for strain hardening. Yet, if local plate instability 

is not prevented the members may also fail before they form the warping hinge or attain the strain 

levels necessary for strain hardening. Consequently, depending on the slenderness of the section 

(class of the section in the terminology of Eurocode 3 Part 1-1), the resistance of the member may 

also be less than the upper bound resistance obtained for W1_N0_MyMz60_EccY3. So as to 

illustrate the influence of the plate slenderness on the resistance, this last member is studied again 

but without constraining the possibility of local plate instability. The obtained load-displacement 

curve is represented in Figure 5-138. It may be observed that the load-displacement curve is again 

characterised by four parts. Before yielding is initiated, the member behaves linearly up to a 

torsional twist of approximatively 0,075 rad. Then yielding starts to spread throughout the 

member and reduces its stiffness significantly, but at a torsional twist of about 0,16 rad the 

stiffness of the member increases again due to strain hardening. The load can be increased further 

on and the peak load is attained for a torsional twist of approximatively 0,31 rad. 
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Figure 5-138: Load-displacement curve for W1_N0_MyMz60_EccY3 not restrained against local 

plate instability 

The distribution of the von Mises stresses for the studied member is represented at point A of the 

load-displacement curve in Figure 5-139. As the flanges can be considered as compact (class 1), it 

is not surprising that they can yield over their total width. Yet, one may also remark that local 

plate instability starts to be induced. Indeed, owing to the upcoming out-of-plate flexure, the stress 

distribution is not uniform in the web along the member length. Finally, Figure 5-140 shows the 

von Mises stress distribution at point B of the load-displacement curve. At this point the member 

has passed its peak load and one may observe that local buckles have formed as indicated by the 

yield line pattern. Indeed, the yield lines pass through the valleys and summits of the local buckles. 

Due to the effect of local instability the member may not resist any supplementary load and, in 

particular, it cannot reach the load level obtained for the same member restrained from local 

buckling. A deeper evaluation of the resistance model for members of slender section is given in 

paragraph 5.6.4.2.3. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

R
Lo

a
d
/R

p
l
(-

)

Torsional twist (rad)

B
A



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Member Resistance 

 

471 
 

 

Figure 5-139: von Mises stresses for W1_N0_MyMz60_EccY2 not restrained against local plate 

instability at point A of the load-displacement curve 

 

 

Figure 5-140: von Mises stresses for W1_N0_MyMz60_EccY3 not restrained against local plate 

instability at point B of the load-displacement curve 

Last, it should be noted that some of the strength predictions obtained with the interaction 

formulae of Eqs. ( 5.307 ) and ( 5.308 ) are unsafe (see Figure 5-130). These unsafe results are 

obtained for rather long members. Two examples of the unsafe results are represented in Figure 

5-141. The members are made of HR770.5.400.17 (HR3) and they are subject to bi-axial bending 
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and torsion. One may observe that the degree of bi-axiality only influences slightly the results. For 

short members the interaction equations are very conservative as the plastic cross-section 

interaction is not well represented. Also, the effect of the warping hinge is not considered at this 

stage of the study. With increasing relative slenderness, the strength predictions of the interaction 

equations approach the numerical results and become slightly unsafe. The maximum un-

conservatism reaches 6,8% for the case HR3_N0_MyMz15_EccY2 with a length of 12,9 m. This may 

certainly be accepted in particular as the number of unsafe results is rather small as shown in 

Figure 5-130. 

 

Figure 5-141: Ultimate resistance curves of member HR 770.5.400.17 subject to bi-axial bending 

and torsion 

Additionally, it should be noted that the slight unsafe character of the proposal does not result 

from the applied torsional moment but is rather due to the interaction equations and interaction 

factors used for the case of combined bi-axial bending as shown in Figure 5-142. Figure 5-142 

represents the results obtained for the members studied in Figure 5-141 but not subject to 

torsion. As before, one may observe that the resistance of short members is predicted rather safely 

but not as conservative as in case of applied torsion because the warping hinge does obviously not 

influence the member behaviour. It appears that the design model becomes unsafe (up to 14%) 

for members with intermediate slenderness (member length between 8,1 m and 12,9 m). The 

discrepancy between the numerical results and the interaction equations (combined with 

interaction factors of Annex B of (CEN 2005a)) appear to be even greater than in case of applied 

torsion. For longer members the results of the interaction equations approach the reference 

results again. Here, the maximum un-conservatism appears to be slightly higher than observed in 

the past when the interaction equations were evaluated for the case of combined bi-axial bending 

and axial force (see for example (Lindner 2001), (Villette 2004) and (ECCS 2006)). Indeed, in the 

mentioned references the maximum unsafe result was equal to approximatively 1,10 (ratio 
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RMethod/RGMNIA). Though, it seems that the case of bi-axial bending has not been of principal interest, 

at least in these references. Therefore, it may not be surprising to obtain slightly more unsafe 

results for individual cases. 

 

Figure 5-142: Ultimate resistance curves of member HR 770.5.400.17 subject to bi-axial bending 

without torsion 

The reason for the unsafe results has not been discussed in detail before. It might possibly be 

linked to the interaction factors kzy and kzz recalled hereafter for the case of compact cross-

sections that can potentially attain their plastic resistance. 
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Eqs. ( 5.316 ) and ( 5.317 ) consider the second order effects and additionally the transition 

between plastic interaction for short members and elastic interaction for longer members (see 

paragraphs 5.6.5.1 and 5.6.5.4 for more details). Obviously, the interaction factors only depend on 

the axial force and not on the major-axis bending moment. In case of bi-axial bending the 

interaction factors are consequently equal to Cmz and 0,6Cmz (kyz = 1 and kzz = 0,6 for constant 

bending) and might therefore not entirely capture the mentioned effects (second order effects 

arising from major-axis bending). Nonetheless, the observed discrepancy for bi-axial bending is 

not studied further on as it is not the objective of this thesis. Here, the interaction equations are 

accepted as valid in their initial field of application. 

Throughout the present paragraph members of compact section subject to combined bi-axial 

bending and torsion have been studied. In particular, it has been shown that: 

• The design proposal of TU Berlin initially proposed in references (Glitsch 2008) 

and (FOSTA 2004) may be rather unsafe as the warping hinge is accounted for 
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without any verification of the resistance to the Saint-Venant’s torsional moment 

that arises; 

• The unsafeness of the proposal TU Berlin is reduced if the factor kzw is considered 

equal to 1,0 and if the bi-moment is explicitly limited to 0,5Bpl. Yet, in some cases 

the limitation of the bi-moment can lead to rather conservative results for the 

design practice; 

• The proposed simple extension of the Eurocode 3 Part 1-1 interaction equations, 

currently applicable for the case of combined bi-axial bending and axial forces, has 

proven to be satisfactory for the case of bi-axial bending and torsion; 

• The proposal may lead to rather safe-sided results for i) short members as the 

plastic cross-section interaction is only approximated, ii) for members of 

intermediate length if strain hardening is mobilised before the member fails by 

elasto-plastic instability and iii) for long members of welded sections due to the 

conservative attribution of reduction curve d (h/b > 2) for lateral-torsional 

buckling; 

• In some cases the proposal may lead to slightly unsafe results but this is due to the 

definition of the interaction factors for the case of bi-axial bending (and axial 

force). Indeed, the interaction equations may be unsafe, in some cases, in their 

current field of application (in particular for bi-axial bending without axial force). 

Based on the investigations and conclusions presented in this paragraph, the design method 

TU Berlin is not studied further on. Rather, the proposed extension of the interaction equations 

provided in Eurocode 3 Part 1-1 is privileged as design method. Hereafter, the proposal is studied 

further on for the case of combined axial compression force and bi-axial bending. 

5.6.4.2.2 Double symmetric I sections subject to combined bi-axial bending, axial forces and torsion 

Figure 5-143 represents the statistical evaluation of the proposed extension of the interaction 

formulae (Eqs. ( 5.307 ) and ( 5.308 )). It may be observed that the design proposal may again be 

safely applied to check the resistance of members subject to a complex combination of axial 

compression force, bi-axial bending and torsion. Only, very few results are slightly unsafe (0,4% 

of the 3300 cases considered here). Also, it appears that the scatter of the results is even less than 

in case of members that are only subject to bi-axial bending and torsion. This may be understood 

as the supplementary axial compression forces induces additional second order effects. Therefore, 

the studied members are less capable of activating the plastic torsional system reserves. 

Nonetheless, it appears that the design approach is in general rather safe-sided. Indeed, the mean 

value of the ratio χMethod/χGMNIA is equal to 0,75. 
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Figure 5-143: Ratio between resistance obtained with Eqs. ( 5.307 ) and ( 5.308 ) and numerically 

obtained resistance 

It is again interesting to study the precision of the proposed design approach as a function of the 

relative slenderness. First, Figure 5-144 represents the results depending on the maximum value 

of the relative member slenderness. Depending on the case, the maximum slenderness may 

therefore correspond to flexural buckling about the minor-axis or to lateral-torsional buckling. 

Based on this representation of the results, it seems difficult to obtain a clear tendency. In fact, the 

scatter of the results is nearly independent from the maximum slenderness. Therefore, the results 

are represented again depending on the overall member slenderness λG in Figure 5-145. 

 

Figure 5-144: Ratio between resistance obtained with interaction equations and the numerically 

obtained resistance depending on the relative member slenderness 

Figure 5-145 clearly indicates interesting tendencies. First, one may again remark that some 

results are rather safe-sided even for high values of the member slenderness. These cases, 

encircled in orange, concern welded section as in paragraph 5.6.4.2.1. In fact, the attribution of the 

buckling curves do not represent precisely the resistance for long welded specimen, in particular 
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if they are subject to significant major-axis bending. For the other members, it is possible to 

identify a clear tendency: The scatter of the results decreases with the member slenderness and 

the precision of the proposed design model increases with the member slenderness. This 

observation confirms once more the influence of the torsional plastic system reserve that allows 

members of low slenderness to attain rather high resistances. With increasing slenderness the 

plastic torsional system reserve loses its beneficial effect as failure by elasto-plastic instability 

becomes relevant before the warping hinge is generated through significant yielding of the most 

loaded section. Furthermore, the relative bi-moment reduces with the member length (hence with 

increasing warping decay factor) and consequently the potential plastic system reserve decreases, 

too. Moreover, it is recalled again that the plastic cross-section interaction is only roughly 

approximated by the interaction equations and consequently, their precision is decreased 

additionally for short members. This is, however, not a specific problem for members subject to 

torsional but a problem that is of general nature for (simplified) interaction equations. 

 

Figure 5-145: Ratio between resistance obtained with interaction equations and the numerically 

obtained resistance depending on the relative member slenderness 

In order to illustrate the results of Figure 5-145 in more detail, Figure 5-146 represent the 

ultimate resistance curves for member of IPE 500 section subject to axial force, major-axis 

bending and torsion with different ratios my/n (=(My/My,pl)/(N/Npl)). First, one may observe that 

the curves are very close, both, for the numerically determined ultimate resistance curves and for 

the strength predictions obtained with the proposed interaction equations. As the sensitivity of 

the members to instability under axial force and to instability under a major-axis bending moment 

is similar, this result is not surprising. As the same reduction curves are attributed to the IPE 500 

section for lateral-torsional buckling and for flexural buckling about the minor-axis, the 

interaction formulae are capable to reproduce the behaviour of the studied members. Though, it 

is obvious that the strength predictions do not tend to unity for zero slenderness as it should be 

in theory and consequently, the interaction equations may become very safe-sided for short 

members. The reason for the observed discrepancy has been discussed before (plastic cross-

section interaction and plastic torsional system reserve). Nonetheless, it is clear that the results 
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of the interaction equations become closer to the numerical obtained results with increasing 

slenderness. This indicates that the second order effects are satisfactorily accounted for through 

the interaction factors kij. Last, it seems interesting to study the curve linked to my/n = 0 (only 

axial compression force and torsion) in more detail. It appears that this curve is the most 

favourable case if one considers the numerical results. Especially, for intermediate values of the 

relative slenderness, the results are up to 10% more favourable than the other cases. The 

observed difference can be attributed to the second order effects arising from the applied axial 

force and major-axis bending moments and the failure mode of the member. Indeed, the axial 

compression force induces, in particular, second order effects about the minor-axis. The critical 

axial force for torsional buckling is relatively high for the studied cases and consequently, the 

amplification of the torsional twist and consequently the bi-moment is relatively low. Conversely, 

the major-axis bending moment, applied for the other cases, induces a second order amplification 

of the torsional twist and the bi-moment. Consequently, the strength reduction is slightly more 

pronounced than in case of combined compression axial force and torsion only. 

 

Figure 5-146: Ultimate resistance curves of member of IPE500 section subject to major-axis 

bending, axial force and torsion 

A second example is given in Figure 5-147. The studied members of IPE 500 section are subject to 

bi-axial bending, torsion and a compression axial. Similarly, to the members treated in Figure 

5-146, it is seen that the results predicted by the interaction curves are practically identical for a 

given slenderness, independently of the ratio between the major-axis bending moment and the 

axial force. The minor-axis bending moments does not significantly influence the obtained results 

compared to the members of Figure 5-146. Conversely, the difference between the numerically 

obtained ultimate resistance curves are more pronounced than for members not subject to minor-

axis bending. It is recalled that, in the framework of this thesis, the value of the minor-axis bending 

moment is directly linked to the value of the major-axis bending moment through the degree of 

bi-axiality. Consequently, the members subject to low major-axis bending are also subject to 
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relatively low minor-axis bending (my/n = 0,43 and my/n = 0,17). Hence, the relative influence of 

the second order effects amplifying minor-axis bending is lower. Additionally, it is obvious that 

depending on the relative influence of the different internal forces and moments, the plastic cross-

section interaction may be more or less non-linear. In paragraph 5.6.5 it is shown that the form of 

the plastic cross-section interaction possesses an influence on the member resistance even for 

intermediate values of the relative slenderness. Therefore, it appears that the combined influence 

of the second order effects and the form of the plastic cross-section interaction leads to the 

differences between numerically determined ultimate resistance curves. It seems that the 

simplified interaction equations do not cover precisely the mentioned influences, especially 

concerning the cross-section interaction. 

 

Figure 5-147: Ultimate resistance curves of member of IPE500 section subject to major-axis 

bending, axial force and torsion 

Before the case of members with slender and semi-compact cross-section section is studied, it 

seems interesting to compare the precision of the proposed extension of the interaction equations 

to torsion with the precision of original interaction equations proposed in Eurocode 3 Part 1-1 in 

their field of application. The results are represented in Table 5-38. First, it appears that the 

results obtained for members not subject to torsion are somewhat more safe-sided in average and 

slightly less precise than shown in references (ECCS 2006) and (Lindner 2001). It should however 

be noted that the evaluations performed in the mentioned references concern a less extended 

number of cross-sections. Therefore, it does not seem surprising that the dispersion of the results 

is higher. One may also observe that the interaction equations may be unsafe, especially in case of 

bi-axial bending. As discussed in paragraph 5.6.4.2.1 the discrepancy may be linked to the 

interaction factors kzz and kyz. It can be noted that members under bi-axial bending without axial 

force are not treated in references (ECCS 2006) and (Lindner 2001). Due to the approximation of 

the plastic cross-section interaction the strength prediction may be rather safe-sided for the 
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interaction equations even for members not subject to torsion. For members subject to torsion 

the results represented Table 5-38 indicate that: 

• The interaction equation are more conservative for members subject to torsion 

than for members not subject to torsion due to the plastic torsional system reserve 

that is not accounted for at this point. The results are most safe-sided for combined 

axial force, minor-axis bending and torsion as the plastic torsional system reserve 

is very pronounced for this load case; 

• The standard deviation of the results for members subject to torsion is acceptable 

and close to the standard deviation of members not subject to torsion. Yet, in case 

of bi-axial bending the standard is rather high. This is due to two opposite 

tendencies: the results may be very safe-sided for short members subject to high 

minor-axis bending owing to the plastic torsional system reserve; conversely the 

results may be unsafe for long members due to the interaction factors kyz and kzz 

that do not account for the influence of the major-axis bending moment. 

• The maximum un-conservatism of the results is of 10% and it is lower than for 

members not subject to torsion. As only few results are unsafe (see Figure 5-130 

and Figure 5-145) the safety level seems acceptable. 

Table 5-38: Evaluation of the interaction equations for members subject and not subject to torsion 

Load case 

Members subject to torsion – Ratio 
χMehtod/χGMNIA 

Members not subject to torsion – 
Ratio χMehtod/χGMNIA 

Mean σ Min Max Mean σ Min Max 

N+My(+Mx) 0,77 0,11 0,45 1,05 0,88 0,10 0,67 1,04 

N+Mz(+Mx) 0,65 0,11 0,42 1,04 0,88 0,12 0,48 1,11 

My+Mz(+Mx) 0,77 0,16 0,37 1,10 0,86 0,11 0,52 1,17 

N+My+Mz(+Mx) 0,76 0,10 0,43 1,09 0,84 0,10 0,50 1,13 

Overall 0,75 0,13 0,37 1,10 0,86 0,11 0,48 1,17 

 

It is also interesting to represent the results of Table 5-38 depending on the (overall) member 

slenderness as shown in Table 5-39. Obviously, the scatter of the results is rather homogenous for 

the chosen slenderness ranges even if all load cases are considered together. For the shortest 

members the scatter is maximum as the importance of the plastic torsional system reserve 

depends on the load case. Nonetheless, the value of 0,135 is acceptable for the complex load 

combinations studied here. Additionally, one may observe that the mean value of the ratio 

χMehtod/χGMNIA is most safe-sided for short members and then increases. For members with values 

of relative slenderness exceeding 1,50 the mean value decreases again as the strength predictions 

become safe-sided due to the attribution of the reduction curves especially for welded members 

as already shown in Figure 5-145. 
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Table 5-39: Evaluation of the interaction equations for members subject to torsion 

Member 
slenderness 

Members subject to torsion – Ratio 
χMehtod/χGMNIA 

Mean 
Standard 

deviation σ 

λ ≤0,30 0,640 0,135 

0,30 < λ ≤0,60 0,764 0,117 

0,60 < λ ≤1,00 0,807 0,100 

1,00 < λ ≤1,50 0,814 0,091 

1,50 < λ 0,775 0,105 

 

The statistical evaluation of the proposal represented by Eqs. ( 5.307 ) and ( 5.308 ) as well as the 

detailed comparison to the numerical results shows that the design method is globally satisfying, 

yet somewhat conservative. The conservatism is, in particular, due to the plastic torsional system 

reserve that is not exploited here. It has already been shown that the plastic torsional system 

reserve can be compared to the catenary effect for members in bending that is generally not 

accounted for for the design in non-accidental situations. Nevertheless, this membrane effect is 

beneficial even if the failure of the member is caused by instability as shown by this last example 

treated for members of compact double symmetric I section. The following member is considered: 

• The member is of IPE 500 section (without fillets) subject to a vertical point load 

of applied at mid-span at the theoretical intersection between the upper flange and 

the web. Consequently, it is subject to major-axis bending only; 

• The length of the member is equal to 5,4 m; 

• The member possess fork end support; 

• The member is fabricated from steel S 235. 

Hereafter, two cases are considered: First, the member is treated including the membrane effect 

by restraining the axial displacement at its two ends (member A). Then the axial displacement is 

liberated at one of the ends (member B). 

Figure 5-148 shows the evolution of the axial tension force in the two members. Obviously, the 

catenary effect as well as the axial force do not develop if the member does not possess axial 

displacement restraints at both ends. On the contrary, owing to the boundary conditions an axial 

tension force arises in member A leading to a higher peak load as shown in Figure 5-149. 
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Figure 5-148: Evolution of the axial tension force for member with and without catenary effect 

Figure 5-149 represents the load displacement curves for the two members (the lateral 

displacement is measured at the theoretical intersection between the upper flange and the web). 

Additionally, the value of a point load leading to the plastic major-axis bending moment (P(My,pl)) 

and of a point load leading to the lateral-torsional buckling resistance obtained with §6.3.2.2 of 

Eurocode 3 Part 1-1(CEN 2005a). It may be observed that the member B not developing the 

catenary effect exceeds the predicted resistance and then fails by elasto-plastic instability. The 

peak load of approximatively 200 kN may be easily identified as the load-displacement curve for 

member B possesses a clear maximum. Conversely, member A developing the catenary action 

does not possess a maximum load as pronounced as for member B. In fact, one may observe that 

the two members behave similarly up to a lateral displacement of approximatively 20 mm. It 

appears that member B possesses a higher stiffness in this first part of the diagram. This might be 

surprising at first sight but one should keep in mind that the catenary action leads to an axial 

tension force that, combined with the applied loads, induces yielding earlier than in case of 

member B not developing catenary action and the associated tension force. However, at a 

displacement of approximatively 20 mm, member B loses rapidly its stiffness and attains its peak 

load of 200 kN for a lateral displacement of 22 mm. Owing to the catenary action, member A may 

resist additional loads and attains its first limit point for a lateral displacement of 58 mm. The 

point load attains approximatively 220 kN at this point. The increase represents roughly 10%. 

However, after passing through the first limit point the applied load may again rise owing to the 

catenary action that becomes more pronounced with increasing displacements. Nonetheless, the 

attained displacements are high and may be incompatible with the design leading possibly to 

localised failure of the structure. For non-accidental design situation, this would not be acceptable 

and consequently the increase of the peak load of 71% (!) could not be exploited in practice. 

Nonetheless, the increase of the peak load of 10% associated with the first limited point attained 

by member A developing the catenary action could potentially accounted for even in non-

accidental design situations as it is not associated with excessive displacements as shown in 

Figure 5-151. 
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Figure 5-149: Load displacement curves for member with and without catenary effect 

The obtained results may be analysed further on with the aid of Figure 5-150, Figure 5-151 and 

Figure 5-152. Figure 5-150 represents the von Mises stress distribution for member when it 

reaches its peak load. Clearly, the displacements are rather low and yielding is concentrated at 

mid-span over half of the flange. Additionally, it can be seen that the stresses in the other parts of 

the member are rather low (observe stresses in the web near the member ends). 

 

Figure 5-150: von Mises stresses and deformed shape of the member without catenary action at 

peak load level 

Figure 5-151 represents the von Mises stress distribution and the deformed shape of the member 

A when it attains its first limit point. Compared to the member B represented in Figure 5-150, one 

may observe that the stresses along member A are higher. The increase of the stresses obvisously 

results from the increased load and second order effects (2nd order minor-axis bending moment 

and 2nd order bi-moment) but also from the axial tension force that develops owing to the catenary 

action (observe again the stresses in the web near the member ends). One may also observe that 

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 50.00 100.00 150.00 200.00 250.00

P
 (

kN
)

Lateral displacement v (mm)

Member with catenary effect

Member without catenary effect

P(My,pl)

P(My,b,Rd)



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Member Resistance 

 

483 
 

the displacements linked to the first limit point are not excessive and can be accepted at ultimate 

limit state. Figure 5-152, representing the von Mises stress distribution as well as the 

displacements of member A when it attains its peak load, indicates that the member has (nearly) 

completely yielded over its total length due to the axial tension force (von Mises stresses between 

235 MPa and 250 MPa). Moreover, it can be observed that a certain strain hardening reserve is 

activated as the stresses exceed 235 MPa. Additionally, the displacements become very high at 

this point (torsional twist attains 1 rad at mid-span!) and cannot be accepted for a non-accidental 

design situation. 

This last example treated here does not concern the proper objective of the present thesis but it 

is used to emphasize that the interaction equations and other provisions given in 

Eurocode 3 Part 1-1 explicitly neglect certain strength reserves (catenary action) that may 

potentially attain about 10% and more. The increased conservatism of the proposed extension of 

the Eurocode 3 Part 1-1 interaction equations to the case of applied torsion is due to the specific 

torsional behaviour of members with open cross-section (generation of a warping hinge) that is 

comparable (qualitatively and quantitatively) to the catenary action explicitly neglected by the 

currently available Eurocode 3 provisions. Therefore, it seems acceptable to neglect the plastic 

torsional system reserve as well for the simplified resistance model as the observed increase of 

the conservatism for members subject to torsion is only of theoretical (numerical) nature as the 

plastic system reserve cannot be excluded in the numerical simulations contrariwise to the 

catenary action. Indeed, if the catenary action was accounted for in case of members subject to 

combined axial force and bi-axial bending the average value of the Eurocode 3 strength 

predictions would be approximatively equal to the average value obtained for members 

additionally subject to torsion. 

 

Figure 5-151: von Mises stresses and deformed shape of the member with catenary action at first 

limit point 
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Figure 5-152 : von Mises stresses and deformed shape of the member with catenary action at peak 

load level 

Throughout the present paragraph, the proposed extension of the Eurocode 3 Part 1-1 interaction 

formulae, applicable to the design of members under combined bi-axial bending and axial force, 

are evaluated and it is shown that satisfactory results are obtained. The reasons for very 

conservative as well as for unsafe strength predictions have been discussed in detail. Also, it 

appears that it is not necessary to account for neither the minor-axis bending moment that results 

from the torsional twist and major-axis bending nor the major-axis bending moment that results 

from the torsional twist and minor-axis bending (fMy and fMz – derived in the theoretical study 

presented in paragraph 5.5.7.5). In fact, even without this term sufficient safety is ensured and the 

scatter of the results is satisfactory. 

In the following the resistance model is evaluated for members of slender and semi-compact 

cross-section (class 3 and class 4 sections in the terminology of Eurocode 3 Part 1-1). 

  



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Member Resistance 

 

485 
 

5.6.4.2.3 Double symmetric I sections subject to combined bi-axial bending, axial forces and torsion – 

Sections of class 3 and 4 

Up to this point, local plate buckling has been prevented in the numerical simulations by the 

application of rigid beam elements over the sections of the members as described in paragraph 

5.2.3. Consequently, all members could attain the plastic resistance of their most loaded section if 

the effect of member instability was negligible. In the present paragraph the influence of local 

plate instability is studied and the comparisons are therefore based on the numerical simulations 

performed without the rigid beam elements. It is to be noted that only members whose cross-

sections are slender or semi-compact are considered hereafter. These sections are recalled in 

Figure 5-40. 

Table 5-40: Studied slender and semi-compact cross-sections  

Section 
Web slenderness 

hw/tw 
Flange slenderness 

(bf-tw)/(2tf) 

HR290.3.300.14 87,3 10,6 

HR500.4.300.20 115,0 7,4 

HR770.5.400.17 147,2 11,6 

W650.5.180.10 126,0 8,8 

W850.6.300.12 137,7 12,3 

W850.5,5.200.14 149,5 6,9 

W1330.10.280.15 130,0 9,0 

 

So as to account for the effect of local plate instability the effective width method proposed in 

paragraph 4 of Eurocode 3 Part 1-5 (CEN 2007a) is applied for slender cross-sections (class 4). 

For semi-compact sections (class 3) the plastic reference resistances (My,pl, Mz,pl, Bpl) are replaced 

by the elastic reference resistances (My,el, Mz,el, Bel). Owing to the stiffener applied at mid-span and 

to the modelling of the support conditions, local buckling resulting from an applied point load has 

not to be checked. Conversely, due to the slenderness of the web all sections considered here are 

sensitive to shear buckling. In case of high shear forces the provisions given in paragraph 5 and 7 

of EN 1993-1-5 are applied. They are recalled in Table 5-41. The last calculation step represents 

the interaction between the shear force and the bending moment. If an axial force is applied, the 

plastic bending moment resistance of the section as a whole My,pl as well as the plastic bending 

moment resistance linked to the flanges only Mf,Rd should be reduced. In the framework of this 

thesis, the members may also be subject to significant minor-axis bending moments and bi-

moments that can, potentially, also reduce the major-axis bending moment resistance. Their 

influence is accounted for by calculating analytically My,pl and Mf,Rd in presence of the bi-moment 

and the minor-axis bending moment (and the axial force). 
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Table 5-41 : Resistance of the section to shear buckling 

Calculation step Expressions to be used 

Shear buckling coefficient 

2
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Relative slenderness of the web 
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=  

Reduction factor 
w

w
w

λ
χ

83,0
=  

Shear resistance of the web* 
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 *The contribution of the flange is neglected here. 

First, the results obtained for members that are not subject to torsion are represented in Figure 

5-153 in order to evaluate the precision of the original interaction equations for class 3 and class 

4 sections. It may be observed that the precision as well as the scatter of the results is very similar 

to the case of compact sections. Indeed, the obtained mean value of the ratio χMethod/χGMNIA is equal 

to 0,84 (=0,86 for members of compact section) and the standard deviation of the same ratio is 

equal to 0,12 (=0,11 for members of compact section). 
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Figure 5-153: Ratio between resistance obtained with Eqs. ( 5.307 ) and ( 5.308 ) and numerically 

obtained resistance – members not subject to torsion 

Figure 5-153 shows that some of the results may be rather conservative. In the majority of cases 

very safe-sided results are linked to high minor-axis bending moments as shown in Figure 5-154 

that represents the results depending on the degree of bi-axiality. It is clearly shown that the 

results become more and more safe-sided with increasing minor-axis bending moment. The very 

safe-sided nature of the Eurocode 3 Part 1-5 effective width method in case of minor-axis bending 

has been discussed in references (Brune 1998) and (Rusch et al. 2004). It appears that the 

effective width determined with the Eurocode 3 Part 1-1 provisions is too conservative for flanges 

in bending (see in particular (Brune 1998)). 

Figure 5-154 also shows that the scatter of the results seems to be more pronounced for longer 

members that are sensitive to member instability. Here, it appears that the interaction equations 

combined with the effective width method only covers roughly the interaction between member 

instability (flexural buckling, lateral-torsional buckling) and local plate instability especially in 

case of combined bi-axial bending and compression axial forces. For combined compression axial 

forceand minor-axis bending however, it appears that the interaction between member instability 

and local plate instability is more precisely accounted for. In fact, in Figure 5-154 one may observe 

that the results are very conservative for low values of the relative slenderness as the member is 

not sensitive to lateral-torsional or flexural buckling. Consequently, the failure is mainly due to 

local plate instability and hence the conservatism of the effective width method causes the 

observed discrepancy. For longer members the sensitivity to lateral-torsional and flexural 

buckling increases and the failure of the member is caused by interaction between local plate 

instability and member instability. For these case the strength predictions approach the 

numerically obtained results. 

Finally, it is observed that the unsafe results are linked to members subject to major-axis bending 

only and to combined axial force and major-axis bending. Additionally, the unsafe results are 

obtained for longer members for which the sensitivity to local plate instability decreases. Here, it 

seems that the attribution of the reduction curve for lateral-torsional buckling leads to the un-
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conservatism of the design method. It may be noted that unsafe results, yet closer to the reference 

results, have been obtained for the same members prevented from local plate instability (studied 

in paragraph 5.6.4.2.2). Nonetheless, it is recalled that these members are made of hot-rolled 

sections but with “invented” dimensions (see Table 5-40) so as to increase the diversity of the 

studied sections. Obviously, the Eurocode 3 reduction curves have not been calibrated for these 

sections and therefore a slight unsafeness can be accepted. 

 

Figure 5-154: Ratio between resistance obtained with Eqs. ( 5.307 ) and ( 5.308 ) and numerically 

obtained resistance – members not subject to torsion 

Here before, the design method has been evaluated for members not subject to torsion in order to 

obtain a clear idea of the precision of the interaction formulae combined with the effective width 

method in their original field of application. It has been shown and confirmed that the effective 

width method may be rather conservative for sections under minor-axis bending and hence 

flanges in bending. 

Next, the proposed extension of the interaction equations is evaluated for members subject to 

combined axial compression force, bi-axial bending and torsion. Figure 5-155 indicates that the 

interaction equations may be safely applied. Nonetheless, it seems that the results are rather 

conservative again (mean value = 0,68). The conservative nature of the proposal may however be 

explained based on the results shown here before for members not subject to torsion and based 

on the conclusions of paragraph 5.6.4.2.2. Indeed, due to the bi-moment resulting from torsion the 

distribution of the axial stresses is non uniform in the flanges (flanges in bending). For this 

situation the effective width method proposed in Eurocode 3 Part 1-1 has been shown to be rather 

conservative (see reference (Brune 1998)). Additionally, for short members the effect of the 

warping hinge leads again to redistribution of the internal forces and moments resulting from 

torsion and consequently the safe-sided nature of the proposal is amplified. 
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Figure 5-155: Ratio between resistance obtained with Eqs. ( 5.307 ) and ( 5.308 ) and numerically 

obtained resistance – members subject to torsion 

If the results of Figure 5-155 are represented as function of the relative slenderness, on may easily 

recognize that the difference between the numerically obtained resistances and the design model 

decreases with increasing member slenderness. Nonetheless, in some cases the strength 

predicted by the design model are very conservative independently from the relative member 

slenderness (results encircled in orange in Figure 5-156). As before, these results are not 

principally due to the applied torsional moment but they may be explained based on the inherent 

limits of the Eurocode 3 design model in its initial field of application. In particular, one may cite 

again: 

• The conservatism of the reduction curves for lateral-torsional buckling when they 

are applied to welded members of intermediate to high values of the relative 

slenderness; 

• The conservatism of the effective width method for members under minor-axis 

bending; 

• The roughly approximated interaction between local plate instability and member 

instability for members under bi-axial bending. 

The mentioned reasons for the discrepancy between the design model and the numerical results 

are only slightly amplified by the applied torsional moment. As the objective of this thesis is not 

the amelioration of the Eurocode 3 Part 1-1 interaction equations themselves but their extension 

to the case of applied torsion the resulting conservatism has to be accepted. 
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Figure 5-156: Ratio between resistance obtained with Eqs. ( 5.307 ) and ( 5.308 ) and numerically 

obtained resistance – members subject to torsion 

5.6.4.2.4 Conclusions 

Throughout paragraphs 5.6.4.2.1, 5.6.4.2.2 and 5.6.4.2.3 the resistance of members of double 

symmetric I section has been studied. Members of compact section as well as of semi-compact and 

slender section have been considered. In particular, it has been shown that: 

• The design model initially proposed at TU Berlin may be very unsafe and leads to 

a significant scatter of the results. So as to obtain safe-sided strength predictions, 

the design model should be modified by adding the verification that the bi-moment 

is less than 0,5Bpl. Additionally, the reduction of the bi-moment resulting from the 

factor kzw should not be accounted for if the member exceeds a given length (length 

linked to the plateau of the reduction curve for lateral-torsional buckling could be 

used); 

• The proposed simple extension of the Eurocode 3 Part 1-1 interaction equations 

(see §6.3.3 of (CEN 2005a)) leads to satisfactory results without a significant 

complexification of the design approach; 

• The proposal leads, however, to rather conservative results for short members 

subject to high torsion due to the effect of the warping hinge and the resulting 

redistribution of torsion. This strength reserve can be compared (quantitatively 

and qualitatively) to the catenary action that develops for members in the 

structure but that is not accounted for in the current Eurocode 3 resistance model 

for non-accidental design situations; 

• For members of slender cross-section the proposed extension of the interaction 

equations appears to be satisfying again but the conservatism is increased 
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especially for short members due to the combined effect of the specific torsional 

behaviour of members with open section and the conservatism of the effective 

width method of Eurocode 3 Part 1-1 (CEN 2005a). 

In the following, it is investigated if the design models, proposed for mono-symmetric sections in 

the past, (see paragraph 5.3) can also be extended to the case of applied torsion. First, 5.6.4.3 

concerns mono-symmetric I sections. Paragraph 5.6.4.4 is then dedicated to U sections. 

 Members with mono-symmetric I sections 

5.6.4.3.1 General 

In paragraph 5.3.3 a proposal for the extension of the Eurocode 3 interaction formulae to mono-

symmetric I sections has been presented (see also reference (Kaim 2004)). The interaction 

equations are recalled hereafter: 
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Additionally, tension flange yielding should be checked with Eq. ( 5.321 ). 
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It is clear, that the proposal can only be used to check the resistance of members that are not 

subject to an additional minor-axis bending moment or to additional torsion. Hereafter, it is 

therefore checked first if the interaction equations may be extended to the case of applied minor-

axis bending moments (paragraph 5.6.4.3.2) and then the extension to an applied torsional 

moment is investigated in paragraph 5.6.4.3.3. It should be noted that only members of compact 

cross-section are studied hereafter. 
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5.6.4.3.2 Mono-symmetric I sections under combined bi-axial bending and axial forces 

Before the extension to bi-axial bending is studied, it seems necessary to obtain a clear idea on the 

precision of the design proposal of Kaim in its initial field of application. Therefore, the interaction 

equations are evaluated first for mono-symmetric members only subject to a compression axial 

force and a major-axis bending moment in Figure 5-157. It appears that the interaction equations 

are rather conservative. Indeed the mean value of the ratio χMethod/χGMNIA is equal to 0,71. 

Nonetheless, the scatter of the results seems to be acceptable as the standard deviation is only of 

about 9%. 

 

Figure 5-157: Ratio between resistance obtained with Eqs. ( 5.307 ) and ( 5.308 ) and numerically 

obtained resistance – members subject to combined axial force and major-axis bending 

In order to analyse the obtained results further on, Figure 5-158 represents the ultimate 

resistance curves of members of section IMS500.10,2.200.16.125.16 (IMS3) subject to combined 

axial force and major-axis bending. The load cases M (constant bending), P1 (point load applied 

at mid-span – simple supports at member ends) and P2 (point load at mid-span – fixed supports 

at member ends) are studied. Figure 5-158 confirms the conservatism of the design approach over 

the total range of the member slenderness. Nonetheless, it seems that the overall tendencies of 

the member behaviour are captured by the interaction equations. In fact, one may observe that 

both, the GMNIA simulations and the interaction equations, predict that members subject to load 

case P2 possess a higher resistance up to a relative slenderness of approximatively 1,40. For 

higher values of the member slenderness the difference between the load cases becomes 

negligible. It should be noted that the shortest member subject to load case P2 fails by shear 

buckling in the plastic range. Consequently, a significant resistance reserve can be mobilised by 

strain hardening and the member attains a very high load level. The resistance model does not 

consider this strain hardening reserve and hence the predicted resistance cannot exceed the 

theoretical plastic resistance (obtained through MNA simulations). Nonetheless, one may observe 

that the strength prediction is close to the plastic resistance of the most loaded section. 

Additionally, for load cases P1 and M, the interaction equations are rather safe-sided even for the 

shortest members. Again, the reason for this conservatism is the approximation of the cross-
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section interaction. This conservatism has also been observed in reference (Kaim 2004). In order 

to ameliorate the strength predictions of the interaction formulae a large study seems to be 

necessary. Yet, hereafter this conservatism is accepted and the extension to bi-axial bending and 

torsion is studied in priority. 

 

Figure 5-158: Ultimate resistance curves for members of section IMS3 subject to combined axial 

compression force and major-axis bending 

It is proposed to extend the interaction equations to an applied minor-axis bending moment as 

provided in Eqs. ( 5.322 ) to ( 5.324 ) (the partial factor γM1 is omitted here). For simplicity, the 

expressions of the interaction factors kzy and kzz used for double symmetric sections are used 

again. Admittedly, these interaction factors do not exactly cover the behaviour of mono-

symmetric members as both the plastic cross-section interaction and the second order effects 

arising from the axial force are somewhat different than for double symmetric members. This 

inconsistency is however accepted here. 
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Figure 5-159 shows the evaluation of the interaction equations extended to the case of bi-axial 

bending. It appears that the design model is again rather safe-sided but the conservatism is not 

increased. Indeed, it appears that the resistance model is even more precise if an additional minor-

axis bending moment is applied. In Table 5-42, gives a quantitative evaluation of Eqs. ( 5.322 ) to 

( 5.324 ). 
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Figure 5-159: Ratio between resistance obtained with Eqs. ( 5.322 ) to ( 5.324 ) and numerically 

obtained resistance – members subject to combined axial force and bi-axial bending 

Table 5-42 indicates that Eqs. ( 5.322 ) to ( 5.324 ) lead to satisfying strength predictions for mono-

symmetric members and, in particular, it confirms that the precision is higher for member subject 

to bi-axial bending and an axial force than for those only subject to combined major-axis bending 

and axial forces. 

Table 5-42 : Precision of interaction equations for mono- and double symmetric members 

χMethod/χGMNIA 
Eqs. ( 5.322 ) to ( 5.324 ) 

for mono-symmetric 
sections under N + My + Mz 

Eqs. ( 5.322 ) to ( 5.324 ) for 
mono-symmetric sections 

under N + My 

Mean 0,79 0,72 

Standard deviation σ 0,08 0,09 

Mean + 2σ 0,95 1,00 

Maximum 1,09 0,94 

Minimum 0,56 0,55 

 

So as to analyse the global results in more detail, Figure 5-160 represents the ultimate resistance 

curves of members of section IMS500.10,2.200.16.125.16 (IMS3). As before, the results are rather 

conservative for short members whose resistance is influenced by the plastic cross-section 

resistance. Yet, for longer members the strength predictions obtained with Eqs. ( 5.322 ) to ( 5.324 

) become closer to the numerically determined ultimate resistance curves. Especially, for 

members under a combination of minor-axis bending and axial compression forces the design 

model yields very precise results. It appears that the precision of the interaction equations 

improves with the relative importance of the minor-axis bending moment. Indeed, an increase of 

the minor-axis bending moments also increases the tendency of the member to fail by flexural 

buckling about the minor-axis rather than by lateral-torsional buckling. Since the failure mode of 
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minor-axis flexural buckling appears to be covered more precisely by the interaction equations 

their precision is ameliorated for longer members if a minor-axis bending moment is applied. 

 

Figure 5-160: Ultimate resistance curves for members of section IMS3 subject to combined axial 

compression force and bi-axial bending 

The present paragraph evaluated the proposal of reference (Kaim 2004) for mono-symmetric 

members subject to a combination of an axial compression force and a major-axis bending 

moments. It has been shown that the design approach is conservative. Then an extension in the 

Eurocode 3 format is proposed in order to cover mono-symmetric member that are also subject 

to an additional minor-axis bending moment. Again, the results are rather conservative especially 

for short members as the complex cross-section interaction is only roughly approximated. In the 

following paragraph an extension to applied torsion is studied. 

5.6.4.3.3 I Mono-symmetric I sections under combined bi-axial bending, axial forces and torsion 

Similarly to the case of members of double symmetric I section, the interaction equations are 

extended by the term linked to the bi-moment as shown in Eqs. ( 5.325 ) to ( 5.327 ). One should 

note that this extension is only partially justified. Indeed, the bi-moment and the minor-axis 

bending moment are affine in the flanges as for double symmetric I sections but, conversely to 

these last sections, the interaction is not linear as discussed in Chapter 4. For a simplified design 

model the resulting discontinuity between cross-section and member resistance is however 

accepted. 

0,1
,

,

,,

, ≤+++
R

Ed
yw

Rz

Edz

yz

RycfLT

Edy

yy

Ry

Ed

B

B
k

M

M
k

M

M
k

N

N

χχ
 ( 5.325 ) 

0,1
,

,

,,

, ≤+++
R

Ed
zw

Rz

Edz

zz

RycfLT

Edy

zy

RTF

Ed

B

B
k

M

M
k

M

M
k

N

N

χχ
 ( 5.326 ) 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20

χ
=

 R
u

lt
/R

p
l
(-

)

λG (-)

IMS3_M_N30_MyMz0_Ecc0 - GMNIA
IMS3_M_N30_MyMz0_Ecc0 - Eqs. ( 5.326 ) - ( 5.328 )
IMS3_M_N30_MyMz15_Ecc0 - GMNIA
IMS3_M_N30_MyMz15_Ecc0 - Eqs. ( 5.326 ) - ( 5.328 )
IMS3_M_N30_MyMz30_Ecc0 -GMNIA
IMS3_M_N30_MyMz30_Ecc0 - Eqs. ( 5.326 ) - ( 5.328 )
IMS3_M_N30_MyMz60_Ecc0 - GMNIA
IMS3_M_N30_MyMz60_Ecc0 - Eqs. ( 5.326 ) - ( 5.328 )
IMS3_M_N30_MyMz90_Ecc0 - GMNIA
IMS3_M_N30_MyMz90 - Eqs. ( 5.326 ) - ( 5.328 )

1/λ2



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Member Resistance 

 

496 
 

0,1
,

,

,,

, ≤++−
R

Ed
zw

Rz

Edz

zz

RycfLT

Edy

zy

Rz

Ed

B

B
k

M

M
k

M

M
k

N

N

χχ
 ( 5.327 ) 

 

Figure 5-161 represents a statistical evaluation of the design model. Obviously, the interaction 

equations are very conservative. Also, the scatter appears to be higher (σ = 0,14) than the one 

obtained for mono-symmetric members not subject to torsion (σ = 0,08). 

 

Figure 5-161: Ratio between resistance obtained with Eqs. ( 5.325 ) to ( 5.327 ) numerically 

obtained resistance 

In order to understand the reasons for this high conservatism, Figure 5-162 first represents the 

obtained ratio χMethod/χGMNIA depending on the relative member slenderness. One may observe a 

clear tendency in Figure 5-162. Indeed, the results are highly (over) conservative for short 

members and become less safe-sided for longer ones. Starting for a member slenderness of 

approximatively 1,1, the accuracy of the interactions equations is comparable to the precision 

obtained for members not subject to torsion. This has been expected because the plastic cross-

section resistance is only roughly approximated. 
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Figure 5-162: Ratio between resistance obtained with Eqs. ( 5.325 ) to ( 5.327 ) numerically 

obtained resistance depending on the member slenderness 

Figure 5-163 represents the obtained results for the example of members of IMS3 section subject 

to constant bi-axial bending moments, a compression axial force and a torsional moment applied 

at mid-span. Again, it is obvious that the results are highly safe-sided for short members. As the 

importance of the torsional moment decreases with the member length, it is not surprising that 

the interaction equations become more accurate for relatively high values of the member 

slenderness (> 1,2). Additionally, Figure 5-163 highlights that there is an important difference 

between members subject to torsion (EccY1, EccY2 and EccY3) and members that are not subject 

to torsion. Even if the plastic cross-section interaction between the axial force and the bending 

moments is not precisely predicted, the accuracy of the interaction equations is much higher for 

short members not subject to torsion. This difference may be attributed to the more complex 

interaction, especially between the minor-axis bending moment and the bi-moment and 

additionally to the plastic torsional system reserve. It should be noted that the plastic load 

amplification factor used as reference in Figure 5-163 is the one obtained by MNA simulations 

(Rpl,MNA) and it is consequently linked to the plastic limit state of the member as a whole and not 

to the creation of the warping hinge (Rpl,LA). The difference between both factors, Rpl,MNA and Rpl,LA, 

is illustrated in Figure 5-164. 
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Figure 5-163: Ultimate resistance curves for members of IMS3 section subject to combined bi-axial 

bending, axial compression forces and torsion 

Figure 5-164 clearly shows that the plastic torsional system reserve has a huge effect on the plastic 

resistance of the member in case of mono-symmetric members. Indeed, the effect of the plastic 

redistribution of the stresses resulting from torsion is even higher than for members of double 

symmetric section. In fact, the ratio Rpl,MNA/Rpl,LA attains approximatively 1,30 in average for 

double symmetric sections. For mono-symmetric sections it appears that the difference between 

the two plastic load amplification factors can attain much higher values. Yet, this is 

understandable because the warping hinge is generated when the warping stiffness of the yielded 

section is sufficiently low compared to the initial warping stiffness. For mono-symmetric sections 

subject to warping, the lower flange generally yields rapidly and the cross-section consequently 

loses its warping stiffness faster than double symmetric sections as represented in Figure 5-165 

(se also paragraph 4.4.4.3). 

 

Figure 5-164: Difference between Rpl,MNA and Rpl,LA depending on the member slenderness 
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Figure 5-165 shows that the warping hinge is generated for a load factor corresponding to 62,5% 

of the plastic limit load of the member obtained through MNA simulations. It is recalled that, 

depending on the load case, the warping hinge is generated at load levels corresponding to 75%-

90% of Rpl,MNA in case of double symmetric I sections (see paragraph 4.4.4.2). The pronounced 

plastic torsional system reserve leads to the observed high conservatism for short members of 

mono-symmetric I section. Again, it is emphasized that the torsional system reserve may be 

included in the analysis for the determination of the internal forces and moments. Yet, in this case 

the torsional twist of the member should not be limited by Serviceability Limit State criteria. 

Indeed, the simplified plastic analysis method proposed in the framework of this thesis is 

obviously not capable to predict the torsional twist after yielding has initiated. Generally, the 

member has already started to yield at the load level corresponding to the Serviceable Limit State 

if the plastic torsional system reserve is accounted for as discussed in paragraph 5.6.4.2.1 for 

members of double symmetric section. As the torsional system reserve is even more pronounced 

for member of mono-symmetric section, the problematic of the determination of the torsional 

twist at Serviceability Limit State seems even more critical. 

 

Figure 5-165: Evolution of the internal forces and moments with the load factor – MNA simulation 

of IMS3_M_N30_MyMz30_EccY2_L2200 

Paragraph 5.6.4.3 addressed the resistance of mono-symmetric I sections subject to combined 

axial forces, bi-axial bending and torsion. First, the proposal of Kaim published in reference 

(Kaim 2004) has been extended to applied minor-axis bending moments. It has been shown that 

the resulting interaction equations may be safely applied even if they are conservative due to the 

approximation of the plastic cross-section interaction. Then the extension to applied torsion is 

studied. The proposed simplified interaction equations are even more conservative than for 

members without torsion as the plastic torsional system reserve possesses a huge influences on 

the resistance. Nonetheless, it seems that the conservatism has to be accepted if the member is 

analysed elastically (elastic determination of internal forces and moments). In fact, due to the 

pronounced plastic reserve of the member, the torsional twist at the Serviceability Limit State 

cannot be reliably determined in general. In practice, torsional loads on members of mono-
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symmetric I section often result from their use as crane girders. In these cases the Serviceability 

Limit State criteria are very strict and the beneficial effect of the plastic torsional system reserve 

should not be considered. 

 Members with U sections 

5.6.4.4.1 General 

The research on the resistance of members fabricated from compact U sections has been of much 

less interest in the past than research of cold-formed slender U sections or the resistance on I 

sections. Especially, lateral-torsional buckling has not been investigated sufficiently. This lack of 

information led to the attribution of the most severe lateral-torsional buckling curve (curve d) to 

U-shaped members in Eurocode 3 Part 1-1 (Maquoi 2015). Recent research on members 

fabricated from U sections has been published in (Kalameya 2008). Nevertheless, it has been 

shown in paragraph 5.2.1.6 that the numerical simulations performed in this reference are based 

on very severe geometrical imperfection. Therefore, it seems necessary to reinvestigate the 

resistance of U-shaped members to lateral-torsional buckling based on the geometrical 

imperfections and residual stresses determined in paragraphs 5.2.1.5 and 5.2.1.6. 

5.6.4.4.2 Lateral-torsional buckling resistance 

First, the load case of constant major-axis bending is studied. The obtained results are represented 

for different hot-rolled U sections in Figure 5-166. 

 

Figure 5-166: Ultimate resistance curve for U-shaped members subject to constant major-axis 

bending 
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difference between the curves is approximatively 6% and therefore nearly negligible from a 

practical point of view. Also, it is obvious that the studied U-shaped members are not very 
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due to instability is at maximum 20%. Moreover, for a slenderness of approximatively 1,2 the 

ultimate resistance curves cross the Euler curve linked to elastic instability. 

Additionally, to the numerically obtained ultimate resistance curves Figure 5-166 represents 

possible reduction curves for lateral-torsional buckling. It is recalled that the current version of 

Eurocode 3 Part 1-1 imposes the use of reduction curve d. Clearly, this choice is highly safe-sided 

in case of constant bending. Also, one may observe that the shape of this buckling curve does not 

at all represent the behaviour of the studied U-shaped members. It appears that at least the lateral-

torsional buckling curve “a” could be applied. One might even consider to apply the reduction 

curve a0 even if this curve is only defined for buckling of members subject to an axial force. 

Next, it is shown that, conversely to the case of an I section, the load case of an applied point load 

at mid-span can be unfavourable for U sections compared to constant bending. Figure 5-167 

represents the obtained ultimate resistance curves with reference to the ratio My,ult/My,pl and to 

the relative slenderness λLT. The numerical results are compared to the Eurocode 3 Part 1-1 

(lateral-torsional) buckling curve c and d. Observing Figure 5-167, it may seem astonishing that 

the members of UPE 240 and UPE 300 section do not attain the full plastic major-axis bending 

moment resistance for small values of the relative slenderness. One should note that these 

members do not fail under the sole influence of major-axis bending but rather under combined 

shear force and major-axis bending. The shortest members fail under a predominant shear force 

even before the major-axis bending moment leads to yielding of the flanges. For longer members 

the shear force decreases and the plastic major-axis bending moment resistance is not affected 

anymore. Therefore, the ultimate resistance curves increase up to the value of the relative 

slenderness from which elasto-plastic instability influences the resistance of the member. Short 

members of sections UPE 80 and UPE 120 also fail in predominant shear. However, owing to their 

compact webs significant strain hardening is mobilised and consequently, the influence of the 

shear force on the major-axis bending moment cannot be represented in the chosen reference 

system of Figure 5-167. 

 

Figure 5-167: Ultimate resistance curve for U-shaped members subject to a constant point load 

applied at mid-span through the shear centre 
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It seems that a more convenient representation of the results is the one of Figure 5-168. In this 

figure the resistance of the member is expressed by the ratio Rult/Rpl. Consequently, one may easily 

identify the failure mode of the members. Indeed, for low values of the relative slenderness, all 

members attain the plastic resistance of the most loaded section (Rult ≥ Rpl); longer members fail 

by elasto-plastic instability. For the studied members, the plateau length, defining the limit 

between failure by plastic section resistance and failure by elasto-plastic instability, is 

approximatively equal to 0,3. 

 

Figure 5-168: Ultimate resistance curves with reference to Rult/Rpl – Load case P1 

Both, Figure 5-167 and Figure 5-168, show that the resistance of U-shaped members subject to a 

point load at mid-span is much more effected by elasto-plastic instability than the resistance of 

the same members subject to constant bending. The reason for this astonishing result may be 

attributed to the imperfection sensitivity of the mono-symmetric U sections. In paragraph 5.2.1.6, 

it has been shown that the choice of the shape of the equivalent imperfection as well as the 

direction may heavily influence the resistance of the member. The results represented in Figure 

5-167 and Figure 5-168 are based on an eigenmode affine imperfection possessing a lateral 

displacement component directed towards the tips of the flanges. The second order minor-axis 

bending moment consequently induces compression in the web. If the examples shown in Figure 

5-168 are recalculated with an imperfection directed in the opposite sense the results of Figure 

5-169 are obtained. Obviously, the results are much more favourable than those obtained 

previously. They are also more favourable than the results obtained for constant bending. 
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Figure 5-169: Ultimate resistance curves with reference to Rult/Rpl – Load case P1 

So as to analyse the results further on, Figure 5-170 shows the load-lateral displacement curve for 

two member of UPE 300 section possessing a length of 4 m. The curve in light blue shows the 

results obtained for the member subject to an imperfection with a lateral displacement 

component directed to the web (Eigenmode- - EM-) and the curve in orange represents the results 

of the same member but with an imperfection directed in the opposite sense (Eigenmode+ - EM+). 

It can be easily observed that the second order effects arise much faster for the member subject 

to EM-. 

 

 

Figure 5-170: Load-displacement curve for member of UPE 300 section with a length of 4 m 

Finally, Figure 5-171 shows the distribution of the von Mises stresses for the two members of 

Figure 5-170. For an easier visualisation of the results, the stiffener used for load introduction is 

not represented. 
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Comparing, Figure 5-171a) and b), one may easily observe that the member subject to 

imperfection EM+ attains a higher load level characterised by yielding that extends over a longer 

part of the member. In particular, this member yields under tension stresses at the bottom flange 

and under compression stresses at the intersection between the upper flange and the web. 

Conversely, the member subject to imperfection EM- yields only at the upper flange’s tip under 

compression due to the combined action of major-axis bending introduced by the point load and 

second order minor-axis bending and the second order bi-moment. It has been shown in 

paragraph 5.5.6.2.4 that a positive minor-axis bending moment compressing the flange’s tips can 

have a negative influence on elastic and elasto-plastic instability. This has also been confirmed in 

paragraph 5.2.1.6 (presenting a study on imperfection sensitivity). Consequently, the resistances 

of members subject to an imperfection EM- is significantly less than those of the members subject 

to EM+ for the studied load case of a point load applied at mid-span. It is recalled that this is not 

always the case for a constant major-axis bending moment due to the stress induced bi-moment 

that may counterbalance the effect of imperfection EM-. Therefore, the obtained results may be 

more favourable than those obtained with imperfection EM+ (see paragraph 5.2.1.6). As the stress 

induced bi-moment is concentrated at-mid span for load case P1, it has much less effect than for 

constant major-axis bending moment and consequently has not the mentioned favourable effect 

on the member resistance. 

Last, it should be mentioned that it seems justified here to base the choice of the lateral-torsional 

buckling curve on the results obtained with imperfection EM- not only as this ensures a lower 

bound solution but also as, due to the fabrication tolerances, it cannot be guaranteed that the point 

load is perfectly applied through the shear centre in practice. A slight eccentricity may have a huge 

effect on the resistance because it can lead to displacements generating a failure mode similar to 

the one represented in Figure 5-171a). 

Finally, it can be concluded that the results represented in this paragraph justify the attribution 

of the Eurocode 3 reduction curve c for lateral-torsional buckling of U-shaped members. This 

choice covers the unfavourable failure mode leading to positive second order minor-axis bending 

moments compression the flanges’ tips. Nevertheless, curve c is very safe-sided if the member fails 

under negative minor-axis bending (compressing the web). Consequently, it might be considered 

to authorize the use of reduction curve a in case of bi-axial bending with negative Mz. Yet, in 

practice, the definition of different reduction curves for major-axis bending only and for bi-axial 

bending seems to complicate the design and is therefore not pursued here. 
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a) Imperfection Eigenmode- b) Imperfection Eigenmode+ 

Figure 5-171: Distribution of von Mises stresses at the Ultimate Limit State for the member of 

UPE 300 section with a length of 4 m 

5.6.4.4.3 Interaction between bi-axial bending and axial force 

It is recalled that the current provisions given in Eurocode 3 Part 1-1 do not include interaction 

equations that can be applied to U-shaped members. In paragraph 5.3.3 an extension of the 

interaction equations proposed in reference (Kalameya 2008) has been presented. The 

interaction equations applicable to members of compact U sections are recalled in Eqs. ( 5.328 ) 

and ( 5.329 ). 
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The reduction factor linked to torsional-flexural buckling (χTF) is calculated based on the critical 

axial force Ncr,TF. Its expression is recalled in Eqs. ( 5.330 ) and ( 5.331 ). 
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Also, it should be noted that the reduction factor χTF is calculated with the European buckling 

curve c. 

It is recalled that Kalameya does not include Eq. ( 5.328 ) in his proposal as he considers buckling 

about the major- (y-) axis as negligible. Obviously, major-axis flexural buckling can take place if 

the member is sufficiently restrained against displacements along the minor-axis. So as to 

illustrate the influence of buckling about the major-axis, the example of a member of UPE 200 

section is considered hereafter. The member is supposed to: 

• possess fork supports at its end and to possess four equally spaced intermediate 

restraints; 

• possess a total length of 4,6 m; 

• be fabricated from S235; 

• be subject to combined major-axis bending and axial force with a ratio 

(My/My,pl)/(N/Npl) equal to 0,5. 

For the studied case, the first eigenmode is, not surprisingly, characterised by displacements along 

the z-axis only without torsional twist and displacements along the y-axis as shown in Figure 

5-172 (the displacement boundary conditions as well as the applied loads are not represented). 

Modal displacements along the z-axis 

 

 

 

a) isometric view b) view from above 

Figure 5-172: First eigenmode of the studied member 

The member of Figure 5-172 is hereafter analysed through a GMNIA simulation including residual 

stresses, a geometric imperfection affine to the first eigenmode directed downwards with an 

amplitude of 4,6 mm (L/1000) and an additional geometric imperfection in the lateral direction 

with the same amplitude. Generally, it is not necessary to introduce this last supplementary 
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geometric imperfection but this done here in order to ensure that the lateral buckling mode may 

appear if it is relevant. Indeed, if the lateral imperfection is not introduced, lateral buckling is not 

always initiated even in cases where it is relevant (members without lateral restraints). 

Figure 5-173 presents the load displacement curve of the member with reference to the axial 

compression force and the vertical displacement (here positive downwards). The numerical 

results represent a typical load displacement curve indicating failure by elasto-plastic instability. 

The peak load is obtained in point A and corresponds to an axial force of 410 kN and a major-axis 

bending moment of 17 kNm. The resulting ratio (My/My,pl)/(N/Npl) is equal to 0,54. It is slightly 

higher than the same ratio calculated for the applied loads due to the second order effects.  

 

Figure 5-173: Load displacement curve of the studied member 

Figure 5-174 and Figure 5-175 represent the von Mises stress distribution for the member at its 

ultimate limit state (Point A of Figure 5-173) and at Point B further downwards on the load-

displacement curve. On may easily observe yielding of the member in its upper part due to the 

combined action of the axial force and the bending moments. Moreover, the deformed shape 

represented in Figure 5-175 suggests the failure mode of major-axis flexural buckling. Owing to 

the intermediate lateral restraints the member possesses practically no out-of-plane 

displacements (along the y-axis). 
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Figure 5-174: Von Mises stress distribution of the member at Point A of Figure 5-173 

 

Figure 5-175: Von Mises stress distribution of the member at Point B of Figure 5-173 

The example studied here before clearly indicated that major-axis flexural buckling is a relevant 

failure mode for U-shaped members. Admittedly, this failure mode only occurs if the member is 

sufficiently restrained against out-of-plan displacements. Still, in practice members often possess 

these restraints and therefore the failure mode of major-axis flexural buckling is also of practical 

interest. 

It should however be noted that Eq. ( 5.329 ) also covers partially the failure mode of major-axis 

flexural buckling even if it is not intended to do so. Indeed, for the member studied before the 

critical axial force for minor-axis buckling Ncr,z as well as for torsional buckling Ncr,T are much 

higher than the critical axial force for major-axis buckling. The critical axial force for torsional-

flexural buckling is calculated depending on Ncr,T and the critical axial force for major-axis flexural 

buckling Ncr,y with Eq. ( 5.344 ). If Ncr,T is much higher than Ncr,y the resulting critical axial force for 

torsional flexural buckling simply tends to Ncr,TF = Ncr,y. Consequently, the failure mode of major-

axis flexural buckling is also introduced into Eq. ( 5.329 ) through the critical axial force Ncr,TF. 

Nonetheless, the second order effects linked to the major-axis bending moment are not covered 

completely by the interaction factor kzy associated with My in Eq. ( 5.329 ) as this factor has been 

calibrated for combined minor-axis flexural buckling and lateral-torsional buckling. Therefore, it 
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seems more consistent to verify the resistance of U-shaped members with Eqs. ( 5.329 ) and ( 

5.328 ) so as to ensure that all failure modes are covered. However, it may seem somewhat 

inconsistent to keep the reduction factor for torsional-flexural buckling in Eq. ( 5.329 ) as it 

represents rather an interaction between torsional buckling and buckling about the major-axis. 

Nonetheless, it is recalled that in case of failure by pronounced major-axis buckling, Eq. ( 5.328 ) 

becomes relevant for design. Additionally, as the interaction factor have not been calibrated for 

torsional buckling modes it is recommended here to keep the reduction factor χTF in Eqs. ( 5.329 

) and ( 5.328 ) so as to ensure the safeness of the strength predictions. The resulting inconsistency 

is accepted for the ease of application. Additionally, the objective of this thesis is not to develop a 

completely new set of interaction equations for U-shaped members but to extend existing 

proposal to the case of torsion, in particular if these proposal are already in the format of 

Eurocode 3 Part 1–1. Obviously, the extension can only be envisaged if sufficient safeness is given 

for members not subject to torsion. Therefore, both interaction equations (Eqs. ( 5.329 ) and ( 

5.328 )) are evaluated with reference to the numerical GMNIA simulations for members under 

combined axial force and bi-axial bending, including members subject to point loads (load cases 

P1 and P2).  

First, the case of combined compression axial force and constant bending moments is investigated. 

It should be noted that this case has already been treated in reference (Kalameya 2008). So as to 

facilitate the interpretation of the cases studied in the previous paragraph, i.e. members under a 

sole major-axis bending moment, are note studied again.  

Figure 5-176 represent a statistical evaluation of the interaction equations ( 5.328 ) and ( 5.329 ). 

It is clear that the approach may be safely applied. Indeed, no single result in unsafe. Additionally, 

the mean value of the results is approximatively equal to 0,85 and consequently rather 

satisfactory. Last, it should be noted that the standard deviation of 8% is also acceptable especially 

for the given complexity of the studied case.  

 

Figure 5-176: Ratio between predicted resistance and numerically obtained resistance 
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So as to analyse the results further on, Figure 5-177 shows the numerically obtained ultimate 

resistance curves as well as the strength predictions obtained with Eqs. ( 5.328 ) and ( 5.329 ) for 

the example of a member of UPE 200 section. Clearly, the results confirm the complexity of the 

studied case. In particular, one may observe that: 

• There is an important gap between the curve linked to combined axial force and 

major-axis bending and the curves linked to combined axial force and bi-axial 

bending. This gab can be explained based on the failure mode as for the case of 

members under major-axis bending only. Indeed, the stress induced bi-moment 

leads to a favourable failure mode in case of constant major-axis bending. 

Conversely, the applied positive minor-axis bending moment induces compression 

in the flanges tips and consequently leads to an unfavourable failure mode causing 

the observed gap even if for low minor-axis bending; 

• The curves linked to combined bi-axial bending and a compression axial force are 

very close, especially for in the low slenderness range. For higher values of the 

relative slenderness, the three curves seem to move from each other; 

• The general shape of the ultimate resistance curves linked to the design model 

appears to correspond well to the GMNIA predicted ultimate resistance curves. 

The resistance predicted for the member subject to combined axial force and 

major-axis bending is obviously very safe-sided as the favourable effect of the 

stress induced bi-moment is not accounted for. The curves linked to bi-axial 

bending are also safe-sided but less. The limitation of the minor-axis bending 

resistance to 1,25Mel,z seems to be too conservative. The curve linked to combined 

axial force and minor-axis bending seems to be rather safe-sided, too. Again, the 

limitation to MR = 1,25Mel,z leads to the observed discrepancies as shown in Figure 

5-178. 

 

Figure 5-177: Ultimate resistance curves for a member of UPE 200 section subject to combined 

axial force and bi-axial bending 
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Figure 5-178 shows that it seems acceptable to use the full plastic minor-axis bending moment as 

reference value. Actually, the strength prediction obtained are very close to the numerical values 

especially for short members whose failure is characterised by important yielding. For longer 

members, the improvement of the precision through the introduction of Mz,pl is also visible. 

Obviously, for these long members the precision of the results of the interaction equations is 

highly increased for the members subject to high minor-axis bending moments 

(UPE200_N15_MyMz60 and UPE200_N15_MyMz90) but it is much less increased for the cases 

subject to low minor-axis bending moments as they less influence the resistance of the member. 

Additionally, it has to be noted that the precision of the results also depend on the form of the 

plastic interaction between the internal forces and moments. In fact, for the more compact UPE 80 

section, the strength predictions are less precise compared to the numerically determined 

reference values, even if the interaction equations ( 5.328 ) and ( 5.329 ) are based on the plastic 

minor-axis bending moment resistance. 

 

Figure 5-178: Ultimate resistance curves for a member of UPE 200 section subject to combined 

axial force and bi-axial bending 

Figure 5-179 compares the numerically determined ultimate resistance curves to the strength 
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members subject to axial force and minor-axis bending very well. Nonetheless, if the relative 

slenderness decreases the precision of the design model decreases, too because the plastic cross-

section interaction is not represented sufficiently precisely to obtain results that are closer to the 

numerically determined resistance. This is illustrated by Figure 5-180. 

 

Figure 5-179: Ultimate resistance curves for a member of UPE 80 section subject to combined axial 

force and bi-axial bending 

Figure 5-180 represents the ratio between the plastic load amplification factor determined 

through MNA calculations of the studied members and the plastic load amplification factor 

determined based on the plastic linear interaction of Eq. ( 5.334 ). 
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Figure 5-180 clearly indicates that the plastic cross-section interaction is significantly more non-

linear for the UPE 80 section than for the UPE 200 section for the given load combinations. Indeed, 

the ratio between the non-linear plastic load amplification factor Rpl,MNA and the linear one Rpl,L 

attains 1,22 for the UPE 80 section whereas the difference between both amplification is only of 

about 10% for the UPE 200 section. Therefore, the simplified interaction used in Eqs. ( 5.328 ) and 

( 5.329 ) is much more precise for short members of UPE 200 section than for the same members 

of UPE 80 section as shown in Figure 5-178 and Figure 5-179. In general, the precision of the 

interaction equations depends on the importance of the non-linearity of the plastic cross-section 

interaction. With the objective to propose a simple and safe-sided design method, it has to be 

accepted to loose precision in some cases. Additionally, it is recalled that the discrepancy for short 

U-shaped members is not significantly increased compared to short members of I section 

designed based on the interaction equations of Eurocode 3 Part 1-1. Here, it appears that only 

global design methods, as the Overall Interaction Concept (OIC), that are based on a precisely 

determined plastic load amplification factor could improve the strength prediction for short 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

χ
=

  R
u

lt
/R

p
l
(-

)

λG (-)

UPE80_N15_MyMz0 - GMNIA

UPE80_N15_MyMz0 - Method

UPE80_N15_MyMz15 - GMNIA

UPE80_N15_MyMz15 - Method - Mplz

UEP80_N15_MyMz30 - GMNIA

UPE80_N15_MyMz30 - Method - Mplz

UPE80_N15_MyMz60 - GMNIA

UPE80_N15_MyMz60 - Method - Mplz

UPE80_N15_MyMz90 - GMNIA

UPE80_N15_MyMz90 - Method - Mplz

1/λ2



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Member Resistance 

 

513 
 

members. The quality of the OIC approach is investigated in paragraph 5.6.5 for complex load 

combinations but only for I-shaped members. 

 

Figure 5-180: Importance of non-linearity on the plastic interaction of U section 

Hereafter the load cases P1 and P2 are studied. It should be noted that these load case have not 

been considered in reference (Kalameya 2008). 

First, Figure 5-181 represents a global evaluation of the interaction equation for load cases P1 and 

P2. It may be seen that the interaction equations are more conservative than in case of constant 

bending moments. The mean value of the ratio χMethod/χGMNIA is only of about 0,71 (0,85 for 

constant bending moments). Also, the scatter of the results is higher as represented by the 

standard deviation that attains 0,12 (0,08 for constant bending). Nonetheless, there only very few 

unsafe strength predictions and the design method can therefore be applied even for variable 

bending moments.  

 

Figure 5-181: Ratio between predicted resistance and numerically obtained resistance 
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In order to get a clearer idea of the reasons leading to the conservatism of the design approach, 

the example of a UPE 200 section under combined axial force and bi-axial bending is studied in 

Figure 5-182. The numerical results show that short members may attain a significant level of 

strain hardening. In fact, the shortest specimen of case UPE200_N15_MyMz0 fails due to the high 

transversal shear force. As the member is short and the cross-section is compact, neither local no 

member instability influences the resistance. Strain hardening may therefore be completely 

mobilised and increases the ultimate resistance by a ratio fu/fy = 1,53 compared to the plastic 

resistance of the member. The strain hardening reserve that can be mobilised by the most loaded 

section decreases with increasing value of the minor-axis bending moment as the shear force Vz, 

leading to yielding of the web, interacts with the minor-axis bending moment. In case of combined 

minor-axis bending and axial force, a higher level of the strain hardening reserve can be reached 

by the most loaded section as the interaction with the shear force Vz vanishes. For longer specimen 

the reduction due to elasto-plastic member instability can be easily observed. Figure 5-182 shows 

that the behaviour of the members subject to point loads applied at mid-span is similar to the 

members under constant bending moments. Again, the case of major-axis bending is much more 

favourable than the case of bi-axial bending. Nonetheless, the gap between the curve linked to 

MyMz0 and the other curves is less pronounced than in case of constant bending moments as the 

stress induced bi-moment loses its influence because it only acts in the proximity of the load 

application. As before, the curves linked to bi-axial bending are very close with a maximum 

difference of about 10% for intermediate and high values of the relative slenderness. For 

combined minor-axis bending and axial force, one may observe that the shape of the ultimate 

resistance curve is different than in case of constant bending moments (see Figure 5-177). In fact, 

the reduction is much less pronounced for the longer specimen. This difference results certainly 

from the shape of the bending moment diagram because for the bi-triangular moment 

distribution, introduced by the point load, the second order effects are less important. 

Nonetheless, the second order effects appear to be well accounted for by the interaction equations, 

both, in case of constant minor-axis bending as shown in Figure 5-177 and in case of variable 

bending as represented in Figure 5-182. Yet, for shorter specimen the strength predictions of the 

interaction equations become rather conservative. This is the case, not only for minor-axis 

bending and axial force, but also for combined bi-axial bending and axial force. For the cases 

studied here, it seems that the discrepancy results not from the approximation of the cross-section 

interaction but rather from the influence of strain hardening. In fact, Figure 5-178, treating the 

same members subject to constant bending moments, show that the plastic cross-section 

resistance is sufficiently approximated for this combination of internal forces and moments 

(owing to the higher degree of non-linearity of the interaction, this is not the case for the UPE 80 

section studied in Figure 5-180). 

For longer members the effect of elasto-plastic instability seems to be overestimated again by the 

interaction equations leading to rather conservative results in the range of intermediate to high 

values of the relative slenderness. The differences are in the same range as for constant bending 

moment diagrams. 
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Figure 5-182: Ultimate resistance curves for a member of UPE 200 section subject to combined 

axial force and bi-axial bending – Load case P1 
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simplicity of the applied interaction equations. It seems necessary to enlarge the study in order to 

ameliorate the precision of the design approach. Nonetheless, this is not done here. Rather, it is 

studied if the interaction equations may be extended to the case of an applied torsional moment 

as done in paragraphs 5.6.4.2 and 5.6.4.3 for double and mono-symmetric I sections. 

5.6.4.4.4 Interaction between bi-axial bending, axial force and torsion 

Hereafter, the extension of the interaction equations to the load case of an applied additional 

torsional moment is studied. As for I sections, it is supposed that the expression of the interaction 

factor kyz and kzz can be applied to the bi-moment. It should however be recalled that this may be 

discussable for U sections because, contrariwise to I sections, the bi-moment and the minor-axis 

bending moment are not affine in the section. Nonetheless, it has been shown that the plastic 

interaction between the bi-moment and the minor-axis bending moment may be described by a 

interaction but it possesses two cut-off limits (Mz = Mz,pl if B ≤ 0,1 Bpl and B = Bpl if Mz ≤ 0,1 Mz,pl). 

Moreover, the interaction between major-axis bending and the bi-moment has been shown to be 

slightly un-symmetric. Yet, for the ease of application, these special features of the plastic cross-

section interaction are not accounted for in the interaction equations describing the member 

resistance. In any case, for longer members, the effect of elasto-plastic instability leads to failure 

before the most loaded section of the member attains complete yielding and hence the cross-

section interaction becomes more and more linear with the member length (see paragraph 5.6.5.3 

for a deeper discussion). Therefore, only the resistance prediction for short members is affected. 

Since the torsional plastic system reserve has even a higher influence on the member behaviour 

than the assumed shape of the plastic cross-section interaction curve, it seems acceptable to 

neglect its cited specific features. For very short members, this simplification leads again to a 

discontinuity in the design method. But, this discontinuity is not higher than the existent one for 

members not subject to torsion. 

In the following, the majority of the members have to be considered as sensitive to elasto-plastic 

instability (minimum relative member slenderness is always higher than 0,2, i.e. the assumed 

plateau length linked to the respective failure modes of flexural, flexural-torsional and lateral-

torsional buckling). Yet, some members are only subject to combined minor-axis bending and 

torsion, and hence, they are not sensitive to elasto-plastic instability. 

Figure 5-183 represents a global evaluation of the results obtained with the interaction equations. 

Again, it appears that the design model is rather conservative. In particular, the conservatism is 

increased compared to members not subject to torsion. Indeed, the mean value of the ratio 

χMethod/χGMNIA decreases from 0,79 for members not subject to torsion to approximatively 0,70 for 

members subject to torsion and the standard deviation increases from 0,08 to 0,13. Nonetheless, 

this loss of precision of the interaction equations is partially due to some very safe-sided results 

obtained for short members with values of the overall member slenderness lower than 0,2 as 

shown in Figure 5-184. If these short members possessing an overall slenderness of less than 0,2 

are not accounted for, the mean value of the ratio χMethod/χGMNIA is equal to 0,73 and the standard 

deviation reduces slightly to 0,12. The resistance of the shortest members is again highly 
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influenced by the plastic torsional system reserve that is not considered in the interaction 

equations. Yet, it is recalled that a simplified method has been proposed to account for this 

supplementary strength reserve during the analysis of the member. In any case, it seems that a 

reduction of 6% (or even of 9% if short members are considered) is acceptable for the more 

complex load case of an applied torsional moment. 

 

Figure 5-183: Ratio between predicted resistance and numerically obtained resistance 

In Figure 5-184, the ratio χMethod/χGMNIA is represented as a function of the relative slenderness λG. 

As mentioned above, very conservative results are obtained for short members and members not 
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applied adapted PIFM leads to very precise results for the plastic cross-section interaction, it is 

clear that the generation of the warping hinge and consequently the supplementary system 

reserve leads to very conservative results, as this effect is not considered in the interaction 

equations. For members that are also subject to minor-axis bending and/or to an axial force, the 

approximation of the plastic interaction between the bi-moment and the other internal forces and 

moments on the cross-section level also contributes to the loss of precision of the interaction 

equations. At this point it appears that only a more precise approximation of the shape of the 

plastic cross-section interaction between the four internal forces and moments (My, Mz, N, B) may 

ameliorate the precision of the results. 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

< 0,30 < 0,35 < 0,40 < 0,45 < 0,50 < 0,55 < 0,60 < 0,65 < 0,70 < 0,75 < 0,80 < 0,85 < 0,90 < 0,95 < 1,00 < 1,05

F
re

q
u

e
n

cy
 (

%
)

χMethod/χGMNIA (-)

safe unsafe



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Member Resistance 

 

518 
 

 

Figure 5-184: Ratio between resistance obtained with Eqs. ( 5.328 ) and ( 5.329 ) and numerically 

obtained resistance 

It is recalled that the design method presented in reference (Stangenberg 2007) and in paragraph 

5.4.3.3 considers a specific cross-section interaction for U-shaped members. This design approach 

has been validated in (Stangenberg 2007) for combined bi-axial bending and torsion but, despite 

the more precise approximation of the plastic cross-section interaction, this author obtains a 

mean value of the ratio χMethod/χGMNIA of 0,75. Consequently, the specific interaction leads only to 

an increase of about 5% of the precision compared to the simplified interaction equations 

proposed here and only in a more restrained field of application (Stangenberg does not include a 

compression axial force for U-shaped members). It appears that only a significant increase of the 

complexity of the interaction factors could lead to an appreciable amelioration of the precision of 

the interaction factors. Therefore, the conservatism of the interaction equations is accepted here 

for the complex combination of internal forces and moments including torsion. 

 Summary of the design of members subject to torsion based on interaction equations 

Hereafter, the design proposals developed and validated in paragraph 5.6.4 are summarised. For 

double symmetric I sections the current Eurocode 3 Part 1-1 interaction equations provided for 

the member design are extended as shown in Eqs. ( 5.335 ) and ( 5.336 ) (the partial factors γM1 

are omitted here). The interaction factors kij are based on the Annex B expressions of 

Eurocode 3 Part 1-1 (CEN 2005a). They are recalled in Table 5-45. 
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Table 5-43 : Interaction factors kij for double symmetric I sections 

Interaction 
factor 

Class 1 and Class 2 sections Class 3 and Class 4 sections 
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So as to adapt the interaction equations to the case of U-shaped members, the torsional flexural 

buckling mode should be accounted for as shown in Eqs. ( 5.337 ) and ( 5.338 ). It may be noted 

that the interaction coefficients kij given in Table 5-45 may be used. 
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Finally, the resistance of mono-symmetric I sections can be verified with the interaction formulae 

given in Eqs. ( 5.339 ) to ( 5.341 ). The specific interaction factors kyy and kzy of Table 5-44 should 

be used as recommended by Kaim in reference (Kaim 2004). The interaction factors kyz, kyw, kzz 

and kzw may be used as provided in Table 5-43. 
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Table 5-44: Specific interaction factors for mono-symmetric I sections 

Interaction 
factor 

Class 1 and Class 2 Class 3 and Class 4 
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The investigations presented in paragraph 5.6.4 revealed in particular that: 

• A very simple extension of the Eurocode 3 Part 1-1 interaction equations may be 

sufficiently precise for the case of members of double symmetric I section subject 

to a complex combination of compression axial force, bi-axial bending and torsion. 

For short members, the extended interaction equations appear to be rather 

conservative mainly due to the plastic torsional system reserve. Its influence has 

been discussed in this paragraph and it is concluded that one may optionally take 

benefit of the creation of the warping hinge. However, this should be done in the 

analysis and not directly in the interaction equations; 

• The proposed extension of the interaction equations may also be applied to double 

symmetric sections of semi-compact or slender section (class 3 and class 4 

sections in the terminology of Eurocode 3 Part 1-1). Nonetheless, the 

conservatism is increased due to the inherent conservatism of the design approach 

of Eurocode 3 Part 1-1 (discontinuity between class2 and class 3 sections, 

conservatism of the effective width method) and due to the plastic torsional 

system reserve that may in some cases be mobilised even for short members of 

semi-compact and slender section; 

• The interaction equations proposed by Kaim in reference (Kaim 2004) for mono-

symmetric I sections may be extended to members subject to minor-axis bending 

and torsion. For members subject to a combination of axial force and bi-axial 

bending the approach is satisfactory and leads to rather precise results. However, 

the interaction equations become very conservative for applied torsion due to the 

pronounced plastic torsional system reserve that influences the member 

resistance even for intermediate to high values of the member slenderness. 

However, if the plastic torsional system reserve is accounted for yielding is 

initiated for load levels lower than the one corresponding to the Serviceability 

Limit State. Consequently, the torsional twist determined by elastic analysis does 

not correspond to the real torsional twist experienced by the member. The plastic 

torsional system reserve should therefore not be accounted for in the simplified 

design method if Serviceable Limit State criteria are formulated for the studied 

member; 

• The Eurocode 3 Part 1-1 reduction curve c may be applied to verify the resistance 

of U-shaped members to lateral-torsional buckling. Also, it has been shown that 

the interaction equation proposed in reference (Kalameya 2008) should be 

extended to capture the effect of flexural buckling about the minor-axis. Depending 

on the degree of non-linearity of the cross-section interaction, the simplified 

interaction equations may be rather conservative. Additionally, the interaction 

equations become even more conservative for short members subject to torsion 

due to the plastic torsional system reserve and the increased non linearity of the 

plastic cross-section interaction. 
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Throughout this paragraph it has also been shown that the interaction equations may be rather 

conservative even if the plastic torsional system reserve is not pronounced as for members subject 

to low torsional loads or for members not subject to torsion at all. The observed conservatism for 

these cases is due to the simplified approximation of the cross-section interaction between the 

internal forces and moments. In order to improve the precision the complexity of the interaction 

equations had be significantly increased. In recent years, the ongoing research on the OIC design 

model has shown that a continuous strength prediction is possible based on a globalised reduction 

curve (see for example references (Taras 2011)). Nonetheless, the cited works concentrate on 

members of hollow sections or members of open section not sensitive to lateral-torsional 

buckling. As the OIC approach appears to be promising it is studied hereafter for the case of 

members of double symmetric I section subject to compression axial forces, bi-axial bending and 

torsion. The interaction between flexural buckling and lateral-torsional buckling is studied. 

However, only members of compact section are considered and consequently, the interaction 

between local buckling and member instability is not accounted for. 
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5.6.5 Design based on OIC approach – Double symmetric I sections 

 General requirements for the OIC approach to be developed 

In the previous paragraph, a design approach based on interaction equations has been proposed 

covering members of double and mono-symmetric I sections as well as of U sections. The proposal 

can be considered as simple extension of the well accepted Eurocode 3 interaction equations. 

Nonetheless, it can be stated again that the interaction equations have certain disadvantages, 

linked for example to the discontinuity between section and member resistance. The OIC 

approach introduced in references (Boissonnade et al. 2013) and (Boissonnade et al. 2017) aims 

to overcome these limitations by defining a continuous reduction curve. Also, in paragraph 5.5.7.4 

it has been shown that the OIC approach may be derived quasi-analytically even for complex load 

cases including torsion. Therefore, the present paragraph tempts to introduce an analytically 

derived OIC reduction equation that may be applied to members of double symmetric I section 

under combined axial force, bi-axial bending and torsion. It is intended that the proposal 

represents as much as possible the currently available design approaches for the extreme case of: 

• Flexural buckling addressed currently by the European buckling curves; 

• Lateral-torsional buckling addressed by the lateral-torsional buckling curve 

introduced by Taras in reference (Taras 2011); 

• Instability under combined axial force and minor-axis bending addressed by the 

OIC approach proposed by Taras in reference (Taras 2011). 

The generalised form of the analytically derived reduction formula considered as basis for the 

following development is given in Eqs. ( 5.342 ) and ( 5.343 ). 
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In Eqs. ( 5.342 ) and ( 5.343 ) several new notations have been introduced to generalise the 

reduction formula presented in paragraph 5.5.7.4. In particular: 

• Rpl,MyN represents the plastic load amplification factor for the section subject only 

to combined major-axis bending and axial force; 

• Rpl,ov represents the plastic load amplification factor for the section subject to the 

all present internal forces and moments; 
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• finstab represents the transition between failure mode characterized by the plastic 

cross-section resistance and a failure mode characterized by elasto-plastic 

instability. 

The ratio between both factors, Rpl,MyN and Rpl,ov, indicates the importance of the major-axis 

bending moment and the axial force to the total loading. Obviously, if the member is exclusively 

subject to an axial force, a major-axis bending moment or a combination of both, the ratio between 

Rpl,MyN and Rpl,ov becomes 1,0. Also, if the member is not subject, neither to major-axis bending nor 

to an axial force, Rpl,MyN tends to infinity. Indeed, in this case the strength of the member is not 

reduced as the other internal forces and moments do not induce member instability. It should be 

noted that, if the member is restrained against torsional twist, the major-axis bending moment 

does not induce instability anymore. In this case, the My should not be considered in the factor 

Rpl,MyN. Yet, in the framework of the following study, restrained members are not considered. 

The aspect of the reduction formula given in Eqs. ( 5.342 ) and ( 5.343 ) is rather simple and it is 

intended to keep the proposal developed hereafter as simple as possible. Consequently, the goal 

of the present paragraph is to introduce an OIC approach that includes as few parameters as 

possible and the parameters included should be provided by numerical tools as far as possible. In 

particular, the key parameters Rpl and RStab,MB can be determined numerically by the adapted PIFM 

introduced in Chapter 4 and LTBeamN (including an extension accounting for first order 

displacements), respectively. 

It should be noted that the investigations presented in the following do not include the influence 

of the interaction between plate instability and member instability. Therefore, only the results 

obtained based on the “locally restrained” (see paragraph 5.2.3) model are exploited hereafter. 

Additionally, only the load case of constant bending moments is considered in the framework of 

the following study. 

The generalised form of the proposed OIC approach is slightly different from the approaches 

representing the extreme cases. Hence, before the complex load cases including interaction 

between flexural and lateral-torsional buckling are studied, it is necessary to examine if and how 

the existing proposals for lateral-torsional buckling and flexural buckling under combined axial 

force and minor-axis bending have to be adapted to respect the format chosen here. 
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 OIC approach for lateral-torsional buckling 

For double symmetric I sections a precise reduction formula has been proposed by Taras in 

reference (Taras 2011). It is recalled that this proposal is introduced into the future version of 

Eurocode 3 Part 1-1. Consequently, it seems desirable to develop the OIC approach as a 

continuous extension of this design method for lateral-torsional buckling. The proposal is recalled 

in Eqs. ( 5.344 ) and ( 5.345 ). The factor f used in these equations considers the influence of the 

variable bending moment diagram on the ultimate resistance. As stated previously, only constant 

bending is of interest hereafter and consequently the factor f can be omitted in the framework of 

the current study. 
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Depending on the geometry of the section and the fabrication process Taras proposes the 

imperfection factors given in Table 5-45. The factor βLT introduced in Table 5-45 is defined in Eq. 

( 5.346 ). 
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Table 5-45: Imperfection factors to be used with Eqs. ( 5.344 ) and ( 5.345 ) 

Case Imperfection factor α 

Hot-rolled section h/b > 1,2 0,12βLT ≤ 0,34 

Hot-rolled section h/b ≤ 1,2 0,16βLT ≤ 0,49 

Welded section 0,21βLT ≤ 0,64 

 

The analytical development of the proposal given in Eqs. ( 5.344 ) and ( 5.345 ) has been re-

demonstrated in paragraph 5.5.7.2. It is recalled that the ratio λLT2/λz2 considers the torsional 

characteristics of the member explicitly in the reduction formula. Also, the term (λz-0,2) has been 

considered to increase the precision of the proposal. However, for the development of the OIC 

approach it seems somewhat inconvenient to use several different types of member slenderness 

to characterise the failure mode. In reference (Naumes 2007), it is proposed to replace the ratio 

λLT2/λz2 by the ratio αcr*/αcr where αcr* represents the load amplification factor leading to elastic 

instability supposing that the torsion constant It is equal to 0 and αcr represents the load 



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Member Resistance 

 

526 
 

amplification factor considering the real torsional constant of the cross-section. In order to be 

consistent with the OIC notations, αcr is denoted as Rcr and αcr* is denoted as Rcr* in the following. 

These both factors may be obtained easily with numerical tools. Yet, it should be noted that both 

ratios are not identical. Indeed, for double symmetric I sections subject to constant major-axis 

bending the ratio Rcr,G*/Rcr,G (αcr*/αcr) is equal to: 
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Conversely, the ratio between squares of the lateral-torsional and the flexural slenderness is equal 

to: 
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For the sections studied here, the ratio between both types of slenderness is smaller than the ratio 

between the load amplification factors. Consequently, if the same imperfection factor α is used, 

the results become safe-sided. Yet, in Taras' the term (λz-0,2)contains the relative slenderness 

for flexural buckling about the minor-axis that is always higher than the lateral-torsional buckling 

slenderness for the same member under constant major-axis bending. If the slenderness λz is 

replaced by the lateral-torsional buckling slenderness the use of the same imperfection factor α 

would therefore lead to unsafe results compared to the reference method represented by Eqs. ( 

5.344 ) and ( 5.345 ). Hence, so as to rewrite the reference design model in the intended OIC format 

the imperfection factor α has to be calibrated again. Indeed, Figure 5-185 shows that the proposed 

OIC approach seems slightly too unsafe if the imperfection fators α proposed by Taras is used 

directly without any adaption. It is recalled that paragraph 5.5.6.2 emphasized that pre-buckling 

displacement may have a significant influence on the stability of U-shaped members subject to 

minor-axis bending moments. It has been concluded that the pre-buckling displacements should 

be accounted for if a global method as OIC is developed for these sections. In order enable a 

continuity, it is therefore proposed to include the effect of pre-buckling displacements also for the 

I-shaped members considered here. 
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Figure 5-185: Ratio between predicted resistance and numerically obtained resistance  

For the calibration of the generalised imperfection the studied cross-sections are divided into the 

three classes given in Table 5-45 as in case of the reference method. First, the case of welded 

sections is studied.  

Figure 5-186 represents the exact imperfection factor α that should be used with the proposed 

OIC format to obtain the same ultimate resistance as the one obtained numerically. It is shown 

that the imperfections to be used are very similar for the four studied sections. It can be observed 

easily that the value of the imperfection factor increases up to a relative slenderness of about 0,9 

and the decreases independently of the cross-section. The maximum value of the imperfection 

factor to be used is of about 0,60 and 0,66. 

The observed evolution of the imperfection factor represents well the importance of the 

equivalent imperfection on the behaviour of members, i.e.: 

• For low values of the relative slenderness the member failure is characterised by 

resistance of the most loaded section – the geometric imperfection does not highly 

influence the resistance; 

• For high values of the relative slenderness the member failure is characterised by 

elastic instability – again, the geometric imperfection influences the resistance 

only slightly; 

• For intermediate values of the relative slenderness the member failure is 

characterised by elasto-plastic instability – the geometric imperfection highly 

influences the resistance of the member. 

Here, one might consider to link the value of the imperfection factor α to the relative slenderness 

so as to account its evolution. Yet, in the framework of the present thesis this is not investigated 

further on in order to keep simple expressions of the generalised imperfection. Moreover, other 

influences not studied in this paragraph, as the form of the bending moment diagram, may have 

an influence on the evolution of the value of the imperfection factor to be used. 
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It should be noted that the maximum value of the imperfection factor of 0,66 is close to the 

imperfection factor obtained when the provisions of Table 5-45 are applied. Indeed, as the ratio 

between the section modulus for major-axis bending and the section modulus for minor-axis 

bending is rather high, the limit value of the imperfection factor of 0,64 is always applicable. For 

practically used welded sections, these high ratios of the section moduli seem rather usual. 

However, in order to verify whether lower values of the imperfection factor may be accepted (and 

hence a variation of the imperfection factor a with the ratio Wy,el/Wz,el) according to Table 5-45 

the less commonly welded sections of Table 5-46 are studied additionally. 

 

Figure 5-186 : Evolution of the imperfection factor α for welded sections 

 

Table 5-46: Complementary welded sections used to calibrate generalised imperfection 

Section Wy,el Wz,el βLT α 

W200.9.200.15 596,05 200,1 1,73 0,36 
W390.11.300.19 2332,1 570,26 2,02 0,42 
W500.4.300.20 3091,6 600,0 2,27 0,48 

W330.7,5.160.11,5 699,85 98,27 2,67 0,56 
 

Figure 5-187 confirms the observations of Figure 5-186 concerning the imperfection factor α. In 

particular, it can be noticed that the maximum value of the imperfection factor α is obtained for 

intermediate values of the relative slenderness of about 0,8 to 0,9. However, conversely to the 

other sections, W330.7,5.160.11,5 and W500.4.300.20 do not possess a pronounced summit but 

rather a plateau that extends from a relative slenderness of 0,6 to approximatively 1,1. It might be 

interesting to investigate this difference in more detail. Yet, this is not done here, as it does not 

contribute to an appreciable increase of the precision of the simple design approach. Additionally, 

it may be observed that the imperfection factor to be used in the proposed OIC format does not 

noticeably depend on the ratio between both section moduli Wy,el and Wz,el. In fact, following the 

provisions of Table 5-45 sections W200.9.200.15 and W390.11.300.19 should possess 
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imperfection factors that are lower than for sections W500.4.300.20 and W330.7,5.160.11,5. Yet, 

somewhat surprisingly this not the case here. Nevertheless, this may be understood and explained 

based on the difference between the critical loads that are used in the reference approach and the 

proposed OIC approach. It is recalled that the OIC approach proposed here is based on the critical 

load considering pre-buckling displacements. For the compact cross-sections W200.9.200.15 and 

W390.11.300.19 this leads to a distinct increase of the critical moment and consequently a 

reduction of the relative slenderness compared to the one used in the reference approach. Hence, 

in order to obtain the same reduction factor χ for the same member the imperfection factor has 

to be higher for the OIC approach than for the reference model. Nevertheless, the increase of the 

imperfection factor α for compact sections leads to more uniform distribution its value. 

 

Figure 5-187: Evolution of the imperfection factor α for welded sections 

For sake of simplicity, it is proposed to apply a value of 0,58 for the imperfection factor. This value 

is shown to lead to satisfactory results in terms of precision of the OIC resistance model as 

represented in Figure 5-188. 
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Figure 5-188: Ratio between predicted resistance and numerically obtained resistance – OIC 

α = 0,58 

Next, members fabricated from hot-rolled sections are studied. Again, so as to increase the variety 

of section geometries used for the calibration of the imperfection factor, additional sections are 

included into the following study. The imperfection proposed by the reference model for lateral-

torsional buckling are given for all studied hot-rolled sections in Table 5-47. It is recalled again 

that sections noted as HR possess invented dimensions and that the fillets are not included in the 

numerical simulations (and, of course, in the calculation of the cross-section characteristics). 

On may note that the sections are chosen so as to represent, as much as possible, the whole range 

of the imperfection factor α. Table 5-47 shows that, in practice, the upper and the lower bound of 

the imperfection factor cannot be attained for hot-rolled sections with a ratio h/b smaller than 1,2 

due to their geometry. It seems that the variation is limited between 0,24 and 0,32 (yet, the 

influence of the fillets increases the variation of the imperfection factor in practice). Additionally, 

one may observe in Table 5-47 that the value of α is in the same range for both classes of hot-

rolled sections (h/b ≤ 1,2 and h/b > 1,2). Nevertheless, the deeper sections with h/b > 1,2 – 

IPE 500, HEAA 800 and HEAA 1000 – attain the limit value of 0,34 for the imperfection factor due 

to their high section modulus about the major-axis compared to the section modulus about their 

minor-axis. 
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Table 5-47: Hot-rolled sections used for the calibration of the imperfection factor α 

h/b Section Wy,el Wz,el βLT α 

≤ 1,2 

HR450.15.600.30 7926 3600,4 1,48 0,24 

HEB 200 596,05 200,1 1,69 0,27 

HEA 360 1903,9 525,2 1,73 0,28 

HR1200.15.1000.20 26909,2 6667,3 1,90 0,30 

HR290.3.300.14 1192,8 420,0 2,01 0,32 

> 1,2 

HEM 340 4575,7 1274,6 1,89 0,23 

HR500.4.300.20 3016,9 600,0 2,24 0,27 

HR770.5.400.17 5562,5 906,8 2,48 0,30 

IPE 500 1909,4 213,8 2,99 0,34 

HEAA 800 5288,6 541,1 3,13 0,34 

HEAA 1000 8225,4 632,1 3,61 0,34 

 

The evolution of the imperfection factor to be applied with the proposed OIC approach is first 

represented in Figure 5-189. 

 

Figure 5-189: Evolution of the imperfection factor for hot-rolled sections with h/b > 1,2 

As for the welded section one may observe that the imperfection factor tends to zero for low 

values of the slenderness, then it increases and reaches its maximum for a relative slenderness of 

about 1,0 and finally its value decreases. However, it seems that the curves for the studied hot-

rolled sections do not possess a clear peak for an intermediate slenderness but rather a plateau. 

Also, the decrease of the necessary value of the imperfection factor is much slower than observed 

for the welded sections. Here, it is proposed again to introduce a constant value of the 

imperfection factor for simplicity. A value of α = 0,42 seems reasonable as shown by the diagram 

of Figure 5-190 representing the distribution of the ratio χMethod to χGMNIA. It is clear that the 
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proposed approach is very precis as none of the predictions is more than 2% unsafe and more 

than 8% conservative.  

 

Figure 5-190: Ratio between predicted resistance and numerically obtained resistance – OIC 

α = 0,42 for hot-rolled sections with h/b > 1,2 

Last, hot-rolled sections possessing a ratio smaller than 1,2 between their height and the width of 

their flanges are studied. As before, the evolution of the imperfection factor that has to be applied 

so that the OIC predicted resistance just equals the numerically determined resistance is 

represented in Figure 5-191. It should be noted that the studied range of the relative slenderness 

is much more limited than before due to the section geometry. Indeed, as has been stated in 

paragraph 5.6.2, the length of the members is limited to approximatively 50 to 60 times the width 

of the flanges (depending on the load case). This leads to a rather small maximum relative 

slenderness for the compact section whose results are represented in Figure 5-191. Nevertheless, 

one may again easily observe that shape of curves linked to the evolution of the imperfection 

factor α with the relative slenderness is similar as for the case of the welded sections and hot-

rolled sections with h/b > 1,2. In particular, it is shown that the maximum value of α is attained 

for a relative slenderness of approximatively 0,8 to 1,0. Yet, the variation of the curves is much 

higher than for the sections studied before. Additionally, it does not seem evident to highlight one 

single parameter that could explain the order of the different curves of Figure 5-191. In fact, 

neither the ratio Wel,y to Wel,z nor the ratio Iy/Iz. It seems that a complex interaction between 

several parameters leads to the discrepancies that are perceived in Figure 5-191. Consequently, a 

deeper investigation with supplementary numerical simulations appears necessary to give a clear 

explanation of the results. However, at this study is not performed hereafter. In order to keep the 

design approach simple, it is rather chosen to propose again a sufficiently safe-sided constant 

value of the imperfection factor α. Here, the value of 0,75 seems acceptable as it only leads to 

slightly unsafe resistance predictions for members at the extreme limit of the practical range. For 

example the resistance is overestimated by 4% for a member with a length of 12 m (without any 

intermediate restraint!) fabricated from a HEB 200 section. 
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Figure 5-191: Evolution of the imperfection factor for hot-rolled sections with h/b ≤ 1,2 

The quality of the proposal is shown again with the diagram given in Figure 5-192. It can be 

observed that, even if there is a rather important variation of the imperfection factor in Figure 

5-191, the precision of the OIC approach seems satisfactory if it is based on a constant value of 

0,75 for α. Yet, it is to be noted that the approach is more conservative as for the cases of welded 

sections and hot-rolled sections with h/b > 1,2). Nonetheless, a mean value of 0,94 and a standard 

variation of 0,42 seems to be acceptable. 

 

Figure 5-192: Ratio between predicted resistance and numerically obtained resistance – OIC 

α = 0,42 for hot-rolled sections with h/b ≤ 1,2 

Finally, Figure 5-193 compares the overall results of the proposed OIC approach to the resistance 

model proposed in reference (Taras 2011) and to the design rule provided in the current version 

of Eurocode 3 Part 1-1 (CEN 2005a). First, it is clear that the European provisions for the lateral-

torsional buckling of I sections are not very satisfactory compared to the two other proposals. 

Especially, for welded sections the applied lateral-torsional buckling curve is too safe-sided as has 
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already been shown rapidly in paragraph 5.2.1.2. In some cases the design approach may also be 

rather unsafe. Yet, the unsafe cases concern members at the limit of the practical range as the 

member with a length of 12 m fabricated from HEB 200 section. The proposal of Taras is also 

unsafe for these cases but only of about 10%. It is recalled that an increased imperfection factor 

is used for the proposed OIC approach in order to reduce the un-conservatism for this and other 

extreme cases. Consequently, the proposal introduced here is less unsafe (only of about 4%). 

Additionally, one may remark that the scatter of the results obtained with the proposed OIC 

approach is very small. So as to evaluate the approaches further on, Table 5-48 summarizes the 

mean value and the standard deviation as well as the maximum and minimum value of the ration 

χMethod/χGMNIA for the three design models. 

 

Figure 5-193: Ratio between predicted resistance and numerically obtained resistance 

Table 5-48 validate the quality of the proposed design model. The approach proposed by Taras 

yields results that are very close to the proposal. Yet, the standard deviation is slightly higher and 

in some cases Taras’ approach is more unsafe (the unsafe cases have been described before). 

Finally, the statistical evaluation confirms the poor quality of the Eurocode 3 provisions for the 

tested members. The lateral-torsional buckling curve provided in its paragraph 6.3.2.2 may yield 

very safe as well as rather unsafe results. Nevertheless, it should be noted that the field of 

application of §6.3.2.2 of Eurocode 3 Part 1-1 is very large as it may be applied to all types of open 

sections with arbitrary boundary conditions and constant or variable bending. Hence, it may be 

accepted that the precision for a special case is less than the precision of the proposals that have 

been calibrated explicitly for double symmetric I sections. The field of application of Taras’ 

proposal includes double symmetric I sections subject to constant or variable bending. 

Consequently, it also exceeds the domain of the study presented here. Therefore, the evaluation 

of the different approaches does not strictly imply the general superiority of the proposed OIC 

approach over the other design models but only a higher quality in its field of application studied 

here: Double symmetric I sections under constant major-axis bending. Nonetheless, owing to the 

generalised formulation of the OIC approach the extension to other load cases and cross-sections 

seems feasible. Hereafter, the OIC format is, in a first step, applied and calibrated for buckling 
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under combined compression axial force and minor-axis bending and in paragraphs 5.6.5.4, 

5.6.5.5, 5.6.5.6 it is extended step-by-step to combined minor- and major-axis bending, combined 

major-axis bending and axial force and combined minor-and major-axis and axial force. Finally, 

paragraph 5.6.5.7 concerns the extension of the OIC approach to applied torsion. 

Table 5-48: Evaluation of different approaches for lateral-torsional buckling of double-symmetric I 

sections 

χMethod/χGMNIA 
Proposed OIC 

format 
LTB Taras 

Eurocode 3 Part 1-1 - 
§6.3.2.2 

Mean value  0,955 0,959 0,926 

Standard deviation  0,054 0,070 0,110 

Maximum value  0,792 0,764 0,636 

Minimum value  1,047 1,122 1,201 

 

 OIC approach for flexural buckling under combined minor-axis bending and axial force 

Hereafter, the OIC approach proposed in (Taras 2011) for the studied load case is transformed 

into the chosen format. First, Taras’ proposal is recalled in Eqs. ( 5.349 ) and ( 5.350 ). 
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The different parameters that are included in this approach are defined in Eqs. ( 5.351 ) to ( 5.355 
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Regarding the definitions of the parameters, it is recalled that: 

• c0 represents the importance of the axial force in the overall loading and is 

consequently equal to the ratio Rpl,MyN/Rpl,ov (even if the major-axis bending 

moment is not considered in the paragraph the notation Rpl,MyN is conserved to 

keep the presentation uniform) ; 

• kni and kmi are the interaction factors of a simplified (multi-linear) plastic 

interaction between minor-axis bending and axial force; 

• kni* and kmi* represent the transition behaviour between plastic interaction for 

short members and elastic interaction for long members, the factor ρ introduces 

the influence of the form of the section (ρ  = 0,6 for the studied case); 

• ηimp introduces the effect of the equivalent imperfection; it is linked to the 

slenderness for flexural buckling determined based on Ncr,z and Npl.  

Consequently, it appears that several parameters can be replaced easily to be rewritten in the OIC 

format chosen here as shown in Eqs. ( 5.356 ) and ( 5.357 ). If the function fInstab, representing the 

effect of instability and consequently the transition between plastic and elastic cross-section 

interaction, is equal to kni* + kmi*CmSη0, Eqs. ( 5.356 ) and ( 5.357 ) are identical to the approach 

proposed in reference (Taras 2011). However, in the framework of the current study, it is 

intended to use numerical obtained values of the plastic load amplification factor and 

consequently to base the proposed OIC approach on the analytical non-linear plastic cross-section 

interaction. This is also advantageous because for more complex load cases including up to five 

internal and moments a simple linearized interaction forces (N, My, Mz, B, Vz) does not seem 

practical (see also Chapter 4). 
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The numerical simulations presented hereafter have shown that the precision of the approach is 

increased if the parameter φ is rewritten in the following form. 
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Obviously, if the member is subject to a sole axial force (or a sole major-axis bending moment), 

fInstab should be equal to 1,0 as recalled through the analytical developments represented in 

paragraph 5.5.7.2. For combined load cases, it has been shown in paragraph 5.5.7.4 that the 

parameter fInstab should tend to Rpl,MyN/Rpl,ov for short members that are not sensitive to second 

order effects. Evidentially, this ratio tends to 1,0 if the minor-axis bending moment vanishes and 

hence a continuous transition from members under axial force and members subject to combined 

axial force and minor-axis bending is ensured. For longer member that are sensitive to instability 

the resistance cannot be expressed by a plastic interaction between the internal forces and 

moments at the most loaded section (including second order effects). Indeed, the member fails by 

elasto-plastic instability before the cross-section has entirely plastified and this even for compact 

sections as shown in Figure 5-194 for a member of HEB 200 section subject to combined axial 

force and minor-axis bending and possessing a length of 7,0 m. On may clearly observe that only 

the tips of the flanges plastify whereas the web and the centre part of the flanges stay completely 

elastic. So as to account for this difference the value of fInstab has to depend on the member 

slenderness. However, fInstab should again be equal to 1,0 if the member is only subject to an axial 

force even for long members because the form of the reduction curve itself describes the 

transition behaviour for simple load cases. 

It should be noted that Annex A of the current version of Eurocode 3 Part 1-1 (CEN 2005a) 

explicitly considers the transition behaviour by the factors Cij (see Annex A). Yet, the provided 

expressions are very complex and unpractical for the use in engineering offices. Hereafter, it is 

rather intended to adopt a similar approach as the one proposed by Taras through Eqs. ( 5.353 ) 

and ( 5.354 ). Key parameters are consequently the relative slenderness λ, the cross-section 

specific factor ρ and the equivalent sinusoidal moment factor Cms. 

 

Figure 5-194: Member of HEB 200 section failing by elasto-plastic instability 

It is recalled that only constant bending moments are of interest and consequently, the equivalent 

sinusoidal moment factor becomes (see (Taras 2011)): 
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The index z in Eq. ( 5.359 ) indicates that the equivalent sinusoidal moment factor is related to the 

behaviour about the minor-axis. 

The proposed expression for the parameter fInstab is given in Eq. ( 5.360 ). 
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Eq. ( 5.360 ) represents a linear transition from a plastic interaction to an elastic interaction. The 

elastic interaction is characterised by the ratio Rel,MyN to Rel,ov. Similarly, to the case of plastic 

interaction Rel,MyN is the load factor leading the elastic limit state of the member under combined 

major-axis bending and axial force only whereas Rel,ov is the load amplification factor that leads to 

the elastic limit state of the member considering all internal forces and moments. The speed of 

this transition between plastic and elastic interaction is modulated with the product Cms,zρλMB. 

Additionally, a cut-off value of Rel,MyN/Rel,ov is introduced as, obviously, the elastic interaction is the 

limit case for long members. The numerical study revealed that a value of 0,8 for the factor ρ leads 

to sufficiently precise results as presented in the following. This limit value is attained for values 

of the relative slenderness of about 1,25 (depending on the value of the factor Cms,z the value 

varies). 

For the studied load case the two elastic load amplification factors are defined as follows: 
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( 5.362 ) 

It should be noted that the equivalent sinusoidal moment factor Cms,z introduced in Eq. ( 5.362 ) 

so as to account for the influence of the bending moment diagram on the second order 

amplification. The amplification factor itself is not accounted for in Eq. ( 5.362 ). It is shown by 

comparisons to the GMNIA results that the second order amplification is already sufficiently 

included in the design model through the shape of the reduction curve. Yet, in case of long 

members sensitive to flexural buckling it is necessary to include the influence of the bending 

moment diagram that is not accounted for in the original form of the reduction curve. This is done 

here by the introduction of the equivalent sinusoidal moment factor into the expression of Rel,ov. 

Figure 5-195, Figure 5-196 and Figure 5-197 present the ultimate resistance curves obtained for 

members fabricated from sections HEB 200, IPE 500 and W850.6.300.12, respectively. All figures 

show that the OIC predicted resistance is in very good agreement with the numerical results. It is 
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shown that the relative importance between the axial force and the minor-axis bending moment 

(represented by the ratio mz/n = (Mz/Mz,pl)/(N/Npl)) has a great influence on the form of the 

ultimate resistance curve. It may be observed that the reduction of the member resistance 

increases with the relative importance of the minor-axis bending moment. This reduction is 

already very pronounced for relative small minor-axis bending moments (mz/n = 0,2). It appears 

that a lower bound of the reduction curve is attained for a ratio mz/n = 3,3 (the exact value is not 

determined here). Observing the curves linked to high values of the minor-axis bending moment 

(mz/nz = 3,3 and mz/nz = 6,7), it seems somewhat surprising that, between both curves, it is the 

curve linked to lower minor-axis bending moments (mz/nz = 3,3) that leads to a (slightly) higher 

strength reduction. This finding seems to be in opposition to what has been observed for the 

curves linked to lower values of the minor-axis bending moment. Yet, this observation respects 

the general tendencies for the behaviour of members under combined major-axis bending and 

axial force: 

• The applied minor-axis bending moment decreases the relative slenderness as it 

does not affect the critical load amplification factor Rcr,G but reduces the plastic 

load amplification factor Rpl,ov (observe that end of the ultimate resistance curves 

for a given section are not located at the same value of the relative slenderness 

even if the member length is the same independently from the value of the minor-

axis bending moment); 

• For the same member slenderness an increased minor-axis bending moment has 

generally a negative effect on the member resistance as it leads to more 

pronounced second order effects; 

• For very high values of the minor-axis bending moment, and consequently low 

values of the axial force, the influence of second order effects decreases and the 

influence of the minor-axis bending moment becomes favourable. Indeed, if the 

member is subject only to minor-axis bending, the reduction factor tends to 1,0 

(omitting the influence of strain hardening) and the relative slenderness tends to 

0 as minor-axis bending moments do not induce elastic instability for double 

symmetric I sections (see paragraph 5.5.5.2). 

The interaction between these tendencies is rather complex and depends on the geometry of the 

cross-section. Nevertheless, it appears that the proposed OIC format represents very well the 

resistance of members under combined axial force and minor-axis bending. For the studied 

examples the highest difference between the ultimate resistance and the resistance predicted 

through the OIC approach is only of about 10% (safe-sided) obtained for a member of IPE 500 

section of 2 m of length subject to combined axial force and minor-axis bending with a ratio mz/n 

of 0,5 (see Figure 5-196). 
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Figure 5-195: Ultimate resistance curves for a member of HEB 200 section subject to combined 

axial force and minor-axis bending 

 

Figure 5-196: Ultimate resistance curves for a member of IPE 500 section subject to combined axial 

force and minor-axis bending 
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Figure 5-197: Ultimate resistance curves for a member of W850.6.300.12 (W3) section subject to 

combined axial force and minor-axis bending 

Finally, Figure 5-198 and Figure 5-199 represent a statistical evaluation of the proposed OIC 

approach. Obviously, the vast majority of the predicted resistances is situated in the interval of 

0,9χGMNIA … 1,05χGMNIA. However, these cases concern two very short members subject to high 

major-axis bending. For these two examples, the numerically determined resistances attain 

1,23Rpl and 1,31Rpl whereas the OIC predicted resistances only attain 0,951 and 0,965, 

respectively. As the OIC model is explicitly limited to a maximum value of 1,0 for the “reduction” 

factor χ it seems reasonable to limit the GMNIA strength to the theoretical plastic resistance of the 

most loaded cross-section for the comparison. If this is done the results represented in Figure 

5-199 are obtained and confirm the quality of the proposal in terms of precision. 

 

Figure 5-198: Ratio between OIC predicted resistance and numerically obtained resistance 
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Figure 5-199: Ratio between OIC predicted resistance and numerically obtained resistance – not 

considering case exceeding the plastic cross-section resistance 

Last, Table 5-49 compares the proposed OIC approach with the OIC proposal of Taras and the 

provisions given in Eurocode 3 Part 1-1. All methods yield a mean value of the ratio χMethod/χGMNIA 

close to 1,0. Yet, the standard deviation of the results determined with the Eurocode 3 Part 1-1 

interaction equations (with Annex B for the interaction coefficients kij) is slightly higher than for 

both OIC proposals. Despite the (slight) differences between the design models it may be 

concluded that all three approaches are satisfactory to predict the resistance of I shaped members 

under combined axial force and minor-axis bending. 

Table 5-49: Evaluation of different approaches for flexural buckling of double-symmetric I sections 

under combined axial force and minor-axis bending 

χMethod/χGMNIA 
Proposed OIC 

format 
Taras’ OIC 
proposal 

Eurocode 3 Part 1-1 - 
§6.3.3 + Annex B 

Mean value  0,984 0,990 0,977 

Standard deviation  0,027 0,025 0,052 

Maximum value  0,911 0,912 0,841 

Minimum value  1,057 1,060 1,028 

 

Through the two previous paragraphs the OIC format has been calibrated to the case of lateral-

torsional buckling in presence of major-axis bending only and flexural buckling in presence of 

combined axial force and minor-axis bending. It has been shown that a strength prediction in the 

OIC format may be very precise even if it is based only on a few parameters that may be 

determined with straightforward and easy to apply numerical tools. Nonetheless, it has to be 

admitted that the proposal can only be considered as an adaption of existing design provisions as 

the OIC design model proposed in reference (Taras 2011). Hereafter, the OIC approach is 

extended to load cases that are not covered yet by the Overall Interaction Concept. 
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 OIC approach for lateral-torsional buckling under combined major- and minor-axis 

bending 

The proposed OIC format is recalled again for the studied load case in Eqs. ( 5.363 ), ( 5.364 ) and 

( 5.365 ). 
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The main parameters included in Eqs. ( 5.363 ), ( 5.364 ) and ( 5.365 ) are defined for the load case 

of combined major-axis and minor-axis bending in Eqs. ( 5.366 ) to ( 5.369 ). 
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Obviously, the factor Rpl,ov given in Eq. ( 5.367 ) cannot be expressed by an analytical expression 

due to the highly non-linear character of the major-axis – minor-axis bending interaction. For the 

application of the design model it is determined based on the adapted PIFM presented in 

Chapter 4. Additionally, it is to be noted that the cross-section shape factor ρ is equal to 0,8 and 

that, in absence of an axial force, the equivalent uniform moment Cms,z becomes 1,0. Depending on 

the form and the fabrication process, the imperfection factor has been calibrated in paragraph 0. 

The obtained values are recalled in Table 5-50. Note again that the factor Rcr* is calculated without 

considering the Saint-Venant’s torsional stiffness of the member (It = 0). 
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Table 5-50: Imperfection factor α for lateral-torsional buckling 

Cross-section Imperfection factor α 

Hot-rolled sections h/b ≤ 1,2 
cr

cr

R

R*
75,0=α  

Hot-rolled sections h/b > 1,2 
cr

cr

R

R*
42,0=α  

Welded sections 
cr

cr

R

R*
58,0=α  

 

As before, the numerically obtained ultimate resistance curves are compared to the proposed 

design model for three examples. Figure 5-200 shows the results for the welded section 

W850.5,5.200.14, Figure 5-201 shows the results for the hot-rolled section IPE 500 (h/b > 1,2) 

and Figure 5-202 shows the results for the hot-rolled section HEB 200 (h/b < 1,2). The results are 

represented as a function for the degree of bi-axiality given by the ratio 

mz/my = Mz/Mz,pl/(My/My,pl). 

For the welded section the simple OIC design approach is shown to be rather satisfying as for the 

majority of the case the results are very close to the reference values obtained numerically. Yet, in 

some cases the proposal is slightly unsafe (maximum ratio Rult,OIC/Rult,GMNIA ≈ 1,055). In Figure 

5-200, it may also be observed that the OIC approach seems the least well suited for the welded 

members under major-axis bending only. The discrepancy is mainly due to the shape of the 

reduction curve itself because it does not well represent the changes of the curvature present in 

the numerically obtained ultimate resistance curve. It may be recalled that the typical shape of the 

ultimate resistance curve of welded members in major-axis is characterised by three inversions 

of the sign of the curvature. For given example (observe the green curve in Figure 5-200) it 

changes from concave to convex at relative slenderness of about 0,85 then it changes back to 

concave at a slenderness of about 1,14 and finally it changes again at a relative slenderness of 

about 1,5 from concave to convex. 
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Figure 5-200: Ultimate resistance curves for a member of W850.5,5.200.14 (W4) section subject to 

combined major-axis and minor-axis bending 

The complex form of the ultimate resistance curve for welded members under major-axis bending 
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Figure 5-201 shows that the proposed OIC approach is again very satisfactory when it is applied 

to members of IPE 500 section. Conversely to the case of the welded member studied before the 

reduction curve practically overlaps the ultimate resistance curve associated with the member 

subject to major-axis bending only. For high minor-axis bending moments (mz/my = 1,732) the 

proposed approach loses its precision. Nonetheless, the difference is of about 20% (safe-sided) 

obtained for a member with a length of 12 m. This member seems to be at the limit of the practical 

range (or even beyond) and consequently the discrepancy certainly acceptable. 
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Figure 5-201: Ultimate resistance curves for a member of IPE 500 section subject to combined 

major-axis and minor-axis bending 

Finally, Figure 5-201 represents the results of members fabricated from HEB 200 section. For this 

compact section (h/b < 1,2) one may observe many differences compared to the two sections 

studied before. First, obviously the ultimate resistance curves obtained numerically are very close 

to each other independently of the degree of bi-axiality. This may be understood as both, the ratio 

between the bending moment resistances My,pl/Mz,pl and the ratio between the second moment of 

area about the major- and the minor-axis, are much lower than the same ratios for sections 

IPE 500 and W850.5,5.200.14. Consequently, it seems that the initiation of instability is not as 

much affected by an increase of the minor-axis bending moment as for the less compact sections 

(in terms ratio h/b) studied Figure 5-200 and Figure 5-201. Still, one may note that the maximum 

safety margin is only of about 25% for the extreme case of a member of HEB 200 section with a 

length of 12 m subject to bi-axial bending with a ratio mz/my equal to 1,732. 

 

Figure 5-202: Ultimate resistance curves for a member of HEB 200 section subject to combined 

major-axis and minor-axis bending 
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In order to improve the design model for compact hot-rolled sections a modification of the 

transition function is proposed. Indeed, it seems that the transition from plastic to elastic cross-

section interaction is modified as, with increasing minor-axis bending, instability is initiated 

differently for these compact sections. Consequently, the several requirements concerning the 

modification may be formulated: 

• The resistance prediction for compact sections (h/b < 1,2) should be ameliorated; 

• The resistance prediction for other types of sections should not be deteriorated; 

• The resistance prediction for the previously studied load cases should not be 

affected (combined axial force and minor-axis bending as well as only major-axis 

bending). 

These requirements indicate that the modification should be a function of the bi-axiality and 

should vanish if the member is subject to major-axis bending only. Therefore, it is obviously 

necessary to include the parameter my/mz. Also, the modification should be a function of the 

geometry of the cross-section and vanish for sections that possess a tall ratio h/b. The comparison 

to numerical simulations has highlighted that the ratio Iz/Iy leads to more precise results than a 

modification based on the ratio h/b or (b/h). In order to consider the specific behaviour of 

compact sections, it is proposed to adapt the transition function fInstab as follows: 
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Admittedly, the factor fyz is of purely empirical nature. Yet, it represents well the tendencies 

observed Figure 5-200, Figure 5-201 and Figure 5-202. In particular the precision of the proposed 

OIC approach is highly improved for compact sections as shown in Figure 5-203.  
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Figure 5-203: Ultimate resistance curves for a member of HEB 200 section subject to combined 

major-axis and minor-axis bending – modified function fInstab,2 

So as to highlight the quality of the proposed design model further on, Table 5-51 represents a 

comparison of its precision to the results obtained with the Eurocode 3 Part 1-1 interaction 

equations. Table 5-51 clearly shows that: 

• The modification of the function fInstab increases the precision of the proposal for 

compact sections without deteriorating the results for other types of sections; 

• The scatter as well as the mean value of the results obtained with the OIC approach 

combined with the modified function fInstab,2 is very homogenous for all section 

types; 

• If the initial expression of the function fInstab is applied the OIC approach is slightly 

more conservative and the standard deviation of the ratio χOIC/χGMNIA is increased. 

Nonetheless, the even the OIC approach without the modified function fInstab,2 

seems to be less conservative than the interaction equations proposed in 

Eurocode 3 Part 1-1; 

• The standard deviation of the results obtained with the interaction equations 

proposed in Eurocode 3 Part 1-1 is significantly higher for all section types than 

the one obtained with the OIC approach (combined with the modified function 

fInstab,2); 

• The standard deviation and especially the mean value of the results obtained with 

the interaction equations proposed in Eurocode 3 Part 1-1 varies significantly 

depending on the type of the cross-section. 
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Table 5-51: Statistical evaluation of OIC approach and Eurocode 3 Part 1-1 interaction formulae 

 
OIC with 

modification of 
finstab 

OIC without 
modification of 

finstab 

EC 3-1-1 
Interaction 

formulae 

Welded 
sections 

Mean value 
χOIC/χGMNIA 

0,988 0,988 0,899 

Standard deviation 
χOIC/χGMNIA 

0,048 0,048 0,071 

HR sections 
h/b > 1,2 

Mean value 
χOIC/χGMNIA 

0,945 0,942 0,956 

Standard deviation 
χOIC/χGMNIA 

0,055 0,057 0,100 

HR sections 
h/b < 1,2 

Mean value 
χOIC/χGMNIA 

0,954 0,888 0,843 

Standard deviation 
χOIC/χGMNIA 

0,053 0,096 0,092 

Overall 

Mean 
value χOIC/χGMNIA 

0,964 0,950 0,911 

Standard deviation 
χOIC/χGMNIA 

0,055 0,073 0,097 

 

Globally, the comparison shows that the OIC approach seems to better represent the behaviour of 

the tested members under combined major-axis and minor-axis bending. Nevertheless, this 

cannot be understood as final conclusion on the superiority of the OIC approach over the 

interaction equations as they possess a larger field of application. Still, it seems remarkable that 

the rather simple OIC format is capable to represent precisely the complex interaction of major-

axis and minor-axis bending for members of open sections. 

Finally, Figure 5-204 and Figure 5-205 illustrate again the particular problem linked to the 

interaction equations of Eurocode 3 Part 1-1. In fact, they represent rather well the behaviour of 

slender members. On the contrary, the resistance of shorter specimen is not well represented as 

the plastic interaction is approximated only roughly by the interaction equations. This results in 

a safety margin of over 20% for short members subject to combined major-axis and minor-axis 

bending. 
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Figure 5-204: Ultimate resistance curves for a member of IPE 500 compared to strength predictions 

obtained with Eurocode 3 Part 1-1 interaction formulae 

In addition to what has been observed in Figure 5-204, Figure 5-205 shows that the strength 

prediction of Eurocode 3 Part 1-1 may be rather conservative for long members of compact 

section as the interaction factors kij determined with Annex B (CEN 2005a) do not seem to include 

the specific transition behaviour between plastic and elastic interaction for compact sections 

possessing a ratio h/b inferior to 1,2 (this is also the case for the OIC approach based on the initial 

formulation of the function fInstab). 

 

Figure 5-205: Ultimate resistance curves for a member of HEB 200 compared to strength 

predictions obtained with Eurocode 3 Part 1-1 interaction formulae 
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methods proposed in the recent past and its precision even higher than the one of the currently 

applicable Eurocode 3 Part 1-1 interaction equations (applied with the Annex B interaction 

factors). Nonetheless, it should be noted, that the load cases studied before have the common 

particularity that only one of the internal forces and moments generates second order effects and 

instability (major-axis bending or axial force). Indeed, the minor-axis bending moment applied in 

the last two paragraphs is amplified by the effect of instability but does not generate second order 

effects itself. Consequently, minor-axis bending does not interact with the instability mode of 

flexural buckling if it is combined with an axial force and it does not interaction with the instability 

mode of lateral-torsional buckling if it is combined with the major-axis bending moment. In the 

next paragraph, the resistance of members subject to combined major-axis bending and axial 

compression forces is studied. For this load combination both internal forces and moments 

generate second order effects and instability. Therefore, a certain interaction between both modes 

of instability is expected. Moreover, due to the in-plane displacements the major-axis bending 

moment is amplified by the axial force. Hence, the load case studied next is of much higher 

complexity as the ones previously investigated. 

 OIC approach for combined major-axis bending and axial force 

Before the OIC approach is compared to the numerical results, it seems interesting to analyse the 

member behaviour depending on the cross-section. In the following, three sections are 

considered: the compact HEB 200 section, the IPE 500 section sensitive to lateral-torsional 

buckling and the welded section W850.6.300.12 that is also sensitive to lateral-torsional buckling. 

In all cases the results are represented as a function my/n = (My/My,pl)/(N/Npl). 

First, Figure 5-206 represents the ultimate resistance curves obtained for the members of 

HEB 200. It is recalled that the same range of member lengths is studied (5b … 55b) but the 

resulting range of relative slenderness obviously depends on the sensitivity of the member for the 

given mode of instability (flexural buckling, lateral-torsional buckling or combination of both). 

When one observes the ultimate resistance curves for the members of HEB 200 section, one 

identifies several interesting points: 

• Obviously, the members are less sensitive to lateral-torsional buckling than to 

flexural buckling. In fact, one easily observes that the curve linked to my/n = ∞ 

(N = 0) is much higher in the diagram than the curve linked to my/n = 0 (My = 0). 

Nonetheless, this result is expected as the HEB 200 section is rather compact and 

not very sensitive to lateral-torsional buckling as is also suggested by the 

association of the Eurocode 3 Part 1-1 reduction curves: curve a for lateral-

torsional buckling and curve c for minor-axis buckling; 

• With increasing axial force, the ultimate resistance curves descend in the diagram 

and approach the curve associated with the case of buckling under a sole axial 

force. But the decrease of the resistance with increasing axial force is not linear; 

• For very low values of the axial force (up to my/n = 20) the influence of the axial 

force seems to be negligible. For low values of the relative slenderness the 
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resistance of the member with my/n = 0,05 is even slightly higher than the 

resistance of the member under pure major-axis bending. Yet, the difference is 

very low (<1%) and may simply be due to the numerical calculation tolerances; 

• The influence of the axial force becomes visible for a ratio my/n of about 6,7. 

However, the decrease of the ultimate resistance curves appear to stop up to a 

ratio my/n = 0,2 as both curves (as well as all intermediate curves that are not 

represent to facilitate the lecture of the diagram) practically overlap; 

• When the axial force is increased further on (my/n = 0,05), the ultimate resistance 

curve approaches the curve linked to a sole axial force again. 

Globally, one may conclude that the ultimate resistance curves follow the expected scheme. 

Indeed, all curves are situated between the curves linked to the extreme load cases of major-axis 

bending only and axial force only. 

 

Figure 5-206 : Ultimate resistance curves for members of HEB 200 section under combined major-

axis bending and axial force 

Next, Figure 5-207 shows the results obtained for the members of IPE 500 section. One may 

observe that: 

• The ultimate resistance curves are much closer to each other than for the members 

of HEB 200 section. Again, this does not seem surprising as members of IPE 500 

section appear to be equally sensitive to flexural buckling and lateral-torsional 

buckling as suggested by the attribution of reduction curve b for both flexural 

buckling about the minor-axis and lateral-torsional buckling; 

• For longer members the results obtained for the member subject to a sole axial 

compression force become more favourable than the results linked to the member 

under uniform major-axis bending. This may again be attributed to the favourable 

effect of the torsional twist that can even lead to ultimate resistance curves 

crossing the Euler curve (see for example paragraph 5.2.1.2); 
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• If one observes the ultimate resistance curves in more detail, it appears that the 

curves linked to combined major-axis bending and axial forces lie beneath the 

curves linked to the extreme cases of my/n = 0 and my/n = ∞. For these cases, there 

seems to be a noticeable interaction between both modes of instability. 

Based on the observation, one may conclude that the behaviour of members of IPE 500 section 

seems to be more complex than the behaviour of members fabricated from more compact sections 

as for example HEB 200. 

 

Figure 5-207 : Ultimate resistance curves for members of IPE 500 section under combined major-

axis bending and axial force 

Last, the case of the welded section W850.6.300.12 (W3) is studied. Here, it is recalled that local 

instability is not accounted for in the numerical simulations in the framework of OIC (see 

paragraph 5.2.3). Figure 5-208 shows in particular that: 

• The ultimate resistance curves are again rather close, but less than for the 

members of IPE 500 section. This seems somewhat in contrary to what is 

predicted by Eurocode 3 Part 1-1 (buckling curve c and lateral-torsional buckling 

curve d) but it is recalled that the provisions given in the European standard for 

lateral-torsional buckling of members of welded section appear to be conservative 

(see paragraphs 5.2.1.2 and 5.6.4.2); 

• Also, as for the members of IPE 500 section the curves for intermediate values of 

the ratio my/n do not lie between the curves associated with the extreme values 

my/n = 0 and my/n = ∞. But, it seems that the behaviour of the members 

represented in Figure 5-208 is even more complex because the curve associated 

with combined major-axis bending and low axial force (my/n = 3,3) lies above the 

curve of the member subject to a sole major-axis bending moment and the curve 

associated with combined major-axis bending and high axial force lies below the 

curve linked to the member subject to a sole axial force. Based on the observations 

of the members of IPE 500 section it could have been expected that the interaction 
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between flexural and lateral-torsional buckling decreases the resistance of the 

members. Yet, a low axial force (my/n = 3,3) seems to possess a favourable effect; 

• The favourable effect of a low axial force can be explained based on the specific 

lateral-torsional buckling behaviour of welded members. Indeed, in Figure 5-208 

on may again observe that the ultimate resistance curves of the members subject 

to major-axis bending possesses a different shape, characterised by three changes 

of the curvature (concave to convex at λG ≈0,8; convex to concave at λG ≈1,1; again 

concave to convex at λG ≈1,4…1,5) than the curves associated with an axial force. 

Due to the several changes of the curvature, the ultimate resistance curves of 

welded sections under major-axis bending only possesses a certain notch for 

values of the relative slenderness between 0,6 and 1,1. A low axial force seems to 

straighten the curve and consequently leads to higher results for intermediate 

values of the relative slenderness; 

• For relative high values of the axial force (my/n = 1,0), the interaction between 

flexural buckling and lateral-torsional buckling leads again to a descend of the 

ultimate resistance curve beneath the curve associated with the extreme case 

my/n = 0. 

It appears that the behaviour of welded members is even more complex than the behaviour 

observed for the members of IPE 500 section. Nonetheless, in paragraph 0 it has already been 

accepted to apply the same form of the reduction curve for welded members and for members of 

hot-rolled section for the case of lateral-torsional buckling. The slight loss of precison can be 

accepted. For the development of the OIC approach for interaction between flexural buckling and 

lateral-torsional buckling it is not intended to obtain a higher precison than for the case of the 

individual instability modes but to develop a sufficiently precise approach that ensures a 

necessary level of safety. 

 

Figure 5-208 : Ultimate resistance curves for members of W850.6.300.12 section under combined 

major-axis bending and axial force 
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The study of the ultimate resistance curves represented in Figure 5-206, Figure 5-207 and Figure 

5-208 has highlighted that the key factor for the development of the OIC design method is the 

determination of a suitable imperfection factor that i) should tend to the value of the imperfection 

factor applicable for the extreme cases of my/n = 0 and my/n = ∞ and ii) should represent 

sufficiently precisely the interaction between flexural buckling and lateral-torsional buckling. 

Depending on the cross-section, the imperfection factors for the proposed OIC approach are 

recalled in Table 5-52. It is also recalled that the critical load amplification factor Rcr is calculated 

based on the gross section characteristics and that Rcr* is calculated neglecting the Saint-Venant’s 

torsional stiffness of the member (It = 0). In case of combined major-axis bending and axial force, 

both factors are calculated for the studied load combination. As the major-axis bending moment 

is constant along the member the analytical expressions derived in paragraph 5.5.5.2 can be 

applied. 

Table 5-52: Imperfection factors for the proposed OIC approach 

Cross-section 
Imperfection factor for minor-

axis flexural buckling αN 
Imperfection factor for lateral-

torsional buckling αMy 

Hot-rolled h/b ≤ 1,2 49,0  
cr

cr

R

R*
75,0  

Hot-rolled h/b > 1,2 34,0  
cr

cr

R

R*
42,0  

Welded 49,0  
cr

cr

R

R*
58,0  

 

Here, it is proposed to define the interaction of the imperfection factors based on the critical loads 

of the individual instability mode as follows: 
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Eq. ( 5.372 ) represents a simple linear interaction between the imperfection factors but with the 

addition of a function fInteract that increases the imperfection factor to account for the interaction 

between flexural buckling and lateral-torsional buckling. Obviously, this function should vanish if 

the member is subject to an axial force only or to major-axis bending only. Additionally, it should 

affect less the resistance of short members, which are not sensitive to instability, than the 

resistance of the longer counterparts. Finally, it seems justified to consider that the interaction is 

more pronounced if the amplification factors for the individual imperfection mode of flexural and 

lateral-torsional buckling are close.  
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A very simple expression of the interaction function finteract respecting these three criteria is given 

in Eq. ( 5.373 ). 
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The third factor of Eq. ( 5.373 ) represents the sensitivity of a given member under a given load 

combination to the interaction between the two studied mode of instability. It varies between 0 

and 1,0. The specific imperfection factor αinteract introduces the influence of the imperfection on 

the interaction and the factor λG translates the transition between short and long members. This 

factor has to be calibrated. As, depending on the form of the cross-section and the fabrication 

process, the interaction between the modes of instability is more or less pronounced it is proposed 

to determine a specific factor αInteract for welded sections, hot-rolled sections with h/b < 1,2 and 

hot-rolled sections with h/b > 1,2. The calibration is performed with the objective to determine a 

design model that ensures at least the level of safety and precision of the Eurocode 3 Part 1-1 

interaction formulae. When these interaction equations (together with Annex B of 

Eurocode 3 Part 1-1) are applied to the studied examples, the statistical values of Table 5-53 are 

obtained. 

Table 5-53: Statistical evaluation of Eurocode 3 interaction equations 

Mean χEC3/χGMNIA 0,918 

Standard deviation σ χEC3/χGMNIA 0,076 

Mean + 2 σ 1,071 

Maximum χEC3/χGMNIA 1,109 

Minimum χEC3/χGMNIA 0,730 

 

The calibration of the imperfection interaction factor αιnteract represents an optimisation problem. 

As optimisation criterion it is chosen to minimize the standard deviation of the results. 

Additionally, a boundary value of Mean + 2σ of 1,08 is introduced in order ensure a sufficient level 

of safety. The results of the optimisation problem are given in Table 5-54. It is shown that the 

proposed OIC approach yields results that are at least equally precise as the Eurocode 3 

interaction equations. Especially, the results of the compact hot-rolled sections (h/b < 1,2) are 

very precise. Admittedly, the interaction between the instability modes is the least pronounced 

for these sections. The precision for members of hot-rolled sections with h/b > 1,2 and welded 

members is somewhat less but still very acceptable compared to the provision given in 

Eurocode 3 Part 1-1. 
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Table 5-54 : Evaluation of the imperfection factor αInteract 

Section αιnteract 
Mean 

χOIC/χGMNIA 
σ  

χOIC /χGMNIA 
Mean + 

2 σ 
Maximum 
χOIC /χGMNIA 

Minimum 
χOIC/χGMNIA 

Hot-rolled 
h/b<1,2 

0,07 0,962 0,026 1,015 1,021 0,912 

Hot-rolled 
h/b>1,2 

0,18 0,958 0,050 1,057 1,042 0,861 

Welded 0,30 0,900 0,089 1,079 1,036 0,744 

Overall - 0,939 0,068 1,075 1,042 0,744 

 

Figure 5-209 and Figure 5-210 compare the strength prediction obtained with the proposed OIC 

approach and the provisions given in Eurocode 3 Part 1-1 to the numerically determined ultimate 

resistance curves. Clearly, the OIC approach proposed here provides very precise results for the 

members of IPE 500 section over the whole range of the relative slenderness. For the extreme 

cases of my/n = 0 and my/n = ∞ the difference is negligible between the numerical results and the 

strength predictions. In case of interaction between flexural and lateral-torsional buckling one 

may observe slight differences but the proposal is close to the reference results and only slightly 

safe-sided. 

 

Figure 5-209: Ultimate resistance curves for members of IPE 500 section compared to OIC strength 

prediction 

Figure 5-210 shows that the Eurocode 3 interaction equations together with the Annex B 

interaction factors represent well the resistance of the members, too. Nevertheless, it appears that 

for longer members the strength predictions deviate from the reference results and this even for 

the member subject to major-axis bending only. For members subject to major-axis bending only, 
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the factor Rcr*/Rcr linked to the imperfection factor αMy in the OIC approach appears to be 

beneficial again. 

Figure 5-210 also shows that the Eurocode 3 strength predictions derive from the reference 

results for short members under combined major-axis bending and torsion. For these cases the 

difference between the results can be explained based on the simplified approximation for the 

cross-section interaction in the interaction equations. 

 

Figure 5-210: Ultimate resistance curves for members of IPE 500 section compared to OIC strength 

prediction 

The developments and comparisons presented in this paragraph have shown that the OIC 

resistance model is capable to represent reliably the strength of members under combined axial 

force and major-axis bending even if this load case is highly complex and leads to interaction 

between the instability modes of minor-axis flexural and lateral-torsional buckling. The OIC 

approach leads to results that appear to be even more precise than the Eurocode 3 strength 

predictions especially for short members thanks to the continuous transition between the exact 

plastic cross-section resistance and failure by elasto-plastic instability. In the next paragraph, the 

OIC approach is applied to members subject to combined bi-axial bending and compression axial 

force. Consequently, paragraph 5.6.5.6 evaluates the OIC resistance model for a combination of 

the cases studied in the four previous paragraphs: 0 – OIC for members under major-axis bending 

only; 5.6.5.3 – OIC for members under combined axial compression force and major-axis bending; 

5.6.5.4 – OIC for members under bi-axial bending; 5.6.5.5 – OIC for members under combined axial 

compression force and major-axis bending. 
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 OIC approach for combined bi-axial bending and axial force 

Hereafter, the OIC approach developed in the previous paragraphs is evaluated for combined axial 

compression forces and bi-axial bending. It is recalled that the bending moments as well as the 

axial force are constant along the member. Also, all sections can be considered as class 1 (in the 

terminology of Eurocode 3 Part 1-1) as local plate instability is excluded in the numerical 

simulations (see paragraph 5.2.3). Before the proposed design model is applied, it seems 

necessary to recall the calculation steps for combined bi-axial bending and axial forces. This is 

done in Table 5-55. 

Table 5-55: OIC calculation steps for combined axial compression force and bi-axial bending 

Calculation steps Detail 

(Numerical) 
Determination of key 
factors 

ovplR , : Load amplification factor to attain the plastic limit state 

 of the most loaded section considering all internal forces 
 and moments 
 

MyNplR , : Load amplification factor to attain the plastic limit state 

 of the most loaded section considering only major-axis 
 bending and the axial compression force 
 

ovelR , :  Load amplification factor to attain the elastic limit state 

 of the most loaded section considering all internal forces 
 and moments 
 

MyNelR , :  Load amplification factor to attain the elastic limit state 

 of the most loaded section considering only major-axis 
 bending and the axial compression force 
 

GcrR , : Load amplification factor to attain the elastic critical 

 load of the member subject to all loads (considering 
 the influence of first order displacements) 
 
*
,GcrR : Load amplification factor to attain the elastic critical 

 load of the member without its Saint-Venant’s 
 torsional stiffness subject to all loads (considering  the 
 influence of first order displacements) 
 

zcrN , : Elastic critical axial force for minor-axis flexural 

 buckling 
 

cryM , : Elastic critical moment for lateral-torsional buckling 

 

Gλ : Global relative member slenderness 
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The elastic load amplification factors can be easily determined with the literal expressions given 

in Eqs. ( 5.374 ) and ( 5.375 ). One may notice that the equivalent sinusoidal moment factor is only 

linked to the minor-axis bending moment. Due to the geometry of the studied sections the critical 

axial force for major-axis buckling is always rather high and consequently the sinusoidal moment 

factor Cms,y is always close to one. Consequently, the present study cannot conclude on the 

necessity to apply Cms,y in Eqs. ( 5.374 ) and ( 5.375 ). In the future, other bending moment 

distributions and members with lateral restraints should be studied in order to check whether or 

not to use it is necessary to use Cms,y linked to My. 











+

=

ely

y

pl

MyNel

M

M

N

N
R

,

,

1
 

( 5.374 ) 











++

=

elz

z
zms

ely

y

pl

ovel

M

M
C

M

M

N

N
R

,

,

,

,

1
 

( 5.375 ) 

 

At this point, no specific factor has been introduced for the load case of combined bi-axial bending 

and axial force. The design approach presented in Table 5-55 corresponds to a simple combination 

of the developments presented in the previous paragraphs. 

The precision of the proposed OIC approach is compared to the Eurocode 3 Part 1-1 interaction 

formulae in Figure 5-211 (only examples including bi-axial bending and axial compression forces 

are evaluated). It may be observed that the OIC approach seems to be slightly too unsafe in case 

of combined bi-axial bending and axial compression. Nonetheless, the general shape of the 

distribution is satisfactory. It should be noted that the numerically obtained resistances exceeding 

the theoretical plastic resistance of the member are again limited to the plastic limit state of the 

member for the comparison because the OIC approach developed here explicitely excludes the 

influence of strain hardening. Anyhow, only the results of very short members are affected. 
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Figure 5-211: Ratio between OIC predicted resistance and numerically obtained resistance – not 

considering cases exceeding the plastic cross-section resistance 

In order to analyse the unsafe results Figure 5-212 represents the ultimate resistance curves as 

well as the OIC approach for a member of HEB 200 section subject to bi-axial bending and an axial 

force. The GMNIA results are also represented for the extreme cases of an axial force combined 

with major-axis bending (MyMz0) and with minor-axis bending (MyMz90), respectively. So as to 

facilitate the lecture of the diagram the OIC approach is not represented for these case. A 

comparison has already been made in the previous paragraphs. 

In Figure 5-212, one may easily identify the transition between the extreme cases MyMz0 and 

MyMz90. Again, it can be observed that small minor-axis bending moments only influence slightly 

the major-axis bending resistance (compare curves linked to MyMz0, MyMz15 and MyMz30). 

However, whereas all curves were very close for all degrees of bi-axiality in absence of an axial 

force, it is clear that the axial force causes a significant descent of the ultimate resistance curve 

linked to MyMz60 in the diagram. The proposed OIC approach represents well the resistance of 

the members with minor-axis bending moments of low and medium importance (MyMz15 and 

MyMz30). The maximum discrepancy is of about 15% (safe-sided) for these cases and 

intermediate values of the relative slenderness. The resistance of members under bi-axial bending 

with a predominant minor-axis bending moment is however not well represented. Indeed, it 

appears that the unsafe nature of the proposed OIC approach increases with the slenderness. It is 

recalled that the specific factor fzy has been calibrated in paragraph 5.6.5.4 to account for the 

specific plastic-elastic transition behaviour for members of compact section (h/b ≤ 1,2). It seems 

that this factor is too favourable in case of a supplementary applied axial compression force. It is 

therefore proposed to modify this factor to ensure a sufficient level of safety. 
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Figure 5-212: Ultimate resistance curves and OIC approach for a member of HEB 200 section under 

combined major-axis bending and axial force 

The modification of the factor fzy should not affect the load cases studied before. Additionally, the 

new formulation of the factor fzy should represent the following tendencies: 

• fzy should decrease with decreasing ratio my/n. In particular: if the axial force 

vanishes it should be equal to the case of bi-axial bending only and if the bending 

moment My vanishes it should be 0 to represent the plastic-elastic transition 

behaviour for case of combined axial force and minor-axis bending ; 

• fzy should decrease with increasing sensitivity to flexural buckling of the member, 

i.e. with the ratio N/Ncr,z. 

Both points represent well the physical meaning of the factor fzy that is intended to reproduce the 

slower transition between plastic and elastic interaction for members of compact section sensitive 

to instability under bi-axial bending with a high minor-axis bending moment. Again, it is proposed 

to introduce a formulation that is as simple as possible to ensure a sufficient level of safety. 

Therefore, it is proposed to modify the factor fzy as follows. 
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The amelioration of the results is represented in Figure 5-213. By comparing Figure 5-212 and 

Figure 5-213, one may easily identify the improvement of the results for the case 
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HEB 200_N30_MyMz60. Over the whole range of the relative slenderness the results are safe-

sided. Yet, it is also clear that the relative difference between the numerically obtained ultimate 

resistance curves linked to the cases HEB200_N30_MyMz15 and HEB200_N30_MyMz30 and to the 

case HEB200_N30_MyMz60 is not completely obtained by the OIC resistance model. 

 

Figure 5-213: Influence of the modified factor fzy on the precision of the proposed OIC approach  

It seems also interesting to compare the numerical results to the resistances predicted by the 

Eurocode 3 interaction equations as shown in Figure 5-214. As for the load cases studied before, 

it is obvious that the interaction equations are very safe-sided for short to intermediate long 

members due to the roughly approximated plastic-cross-section interaction. The strength 

predictions become closer to the reference values for longer members as the cross-section 

interaction becomes linear and it is therefore better represented by the Eurocode design model. 

Nonetheless, it appears that the proposed OIC approach possesses a better precision for this 

specific case of the member of HEB 200 section subject to bi-axial bending and a compression axial 

force. 

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

χ
=

  R
u

lt
/R

p
l
(-

)

λG (-)

HEB200_N30_MyMz15 - GMNIA

HEB200_N30_MyMz15 - OIC

HEB200_N30_MyMz30 - GMNIA

HEB200_N30_MyMz30 - OIC

HEB200_N30_MyMz60 - GMNIA

HEB200_N30_MyMz60 - OIC



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Member Resistance 

 

565 
 

 

Figure 5-214: Ultimate resistance curves and EC3-Part 1-1 interaction equations for a member of 

HEB 200 section under combined major-axis bending and axial force 

Next, members of IPE 500 section are studied in Figure 5-215. Again, the GMNIA results are 

represented for all degrees of “bi-axiality” (0° … 90°) but in order to simplify the comparison the 

OIC predicted resistance are only represented for the members that are subject to bi-axial 

bending. It should be noted that the factor fzy is approximatively equal to 1,0 for all cases due to 

the high value of ratio Iy/Iz for the IPE 500 section. 

Figure 5-215 shows that the proposed OIC approach leads to very precise results for all cases. 

Additionally, the relative difference between the ultimate resistance curves is very well 

represented by the design model. The maximum difference is only of about 10% (safe-sided) and 

hence completely acceptable and even more as no result is unsafe. 

 

Figure 5-215: Ultimate resistance curves and OIC approach for a member of IPE 500 section under 

combined major-axis bending and axial force 

As before, the results obtained by the Eurocode 3 Part 1-1 interaction equations are compared 

with the numerical results, too. Not surprisingly, one may observe that the resistance is not well 
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represented for short members because the plastic interaction is not well represented. For longer 

members the results become satisfactory again as the cross-section interaction becomes simpler. 

For intermediate to long members the precision of both design models studied here is therefore 

comparable. 

 

Figure 5-216: Ultimate resistance curves and EC3-Part 1-1 interaction equations for a member of 

IPE 500 section under combined major-axis bending and axial force 

Last, members fabricated from the welded section W1330.10.280.15 (W2) are studied in Figure 

5-217. It is recalled that local plate instability is excluded in the numerical calculations and that 

hence the resistance of the shortest members tends to the plastic resistance of the most loaded 

section. Figure 5-217 highlights again the good precision of the proposed OIC approach even for 

the members of the welded section W2 that are very sensitive to lateral-torsional buckling. For 

longer members however, the proposed design model seems to move slightly away from the 

reference results. Nevertheless the maximum difference is approximatively of 18% (safe-sided) 

for the longest member. For the shorter members, the design model is very precise as it tends to 

the non-reduced plastic cross-section resistance. One may observe one unsafe result obtained for 

the case W2_N15_MyMz60 with a length of 1,12 m. Still, the difference is only of 5% and hence 

acceptable. Moreover, it should be noted that this is the most unsafe result of all studied members. 

This underlines again the good quality of the proposed OIC approach. 
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Figure 5-217: Ultimate resistance curves and OIC approach for a member of W1330.10.280.15 (W2) 

section under combined major-axis bending and axial force 

The Eurocode 3 interaction equations are not compared in detail for this welded sections. Rather, 

it is proposed to evaluate statistically the OIC approach for all cases and to compare the results 

the Eurocode 3 Part 1-1 interaction equations. This is done in Table 5-56 and Figure 5-218. Both 

clearly indicate that the OIC approach ensures a safety level that is very similar to the 

Eurocode 3 Part 1-1 interaction formulae for the tested members. Furthermore, it appears that 

the OIC approach is even slightly more precise than the current European design model for 

members under combined bi-axial bending and compression axial forces. In particular, one should 

observe that the standard deviation of the results is smaller for the OIC approach and that the 

most unsafe result predicted by the OIC approach is much closer to the reference value than in 

case of the interaction equations (see Table 5-56). 

Table 5-56: Statistical evaluation of studied design models 

χMethod/χGMNIA OIC approach 
Eurocode 3 Part 1-1 interaction 

equations 

Mean 0,907 0,873 

Standard deviation σ  0,067 0,079 

Mean + 2σ  1,041 1,031 

Maximum  1,056 1,135 

Minimum  0,728 0,662 

 

Figure 5-218 represents graphically the statistical evaluation. It can be observed that the scatter 

is rather low and, in particular, lower than the one obtained for the interaction equations as also 

indicated in Table 5-56. 
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Figure 5-218: Ratio between predicted resistance and numerically obtained resistance 

This paragraph presented the development of the OIC approach for I-shaped members under 

combined compression axial forces and bi-axial bending. It has been shown that a sufficient level 

of safety and precision can be attained. In particular, the OIC design model possess the advantage 

that the level of precision is homogenous over the whole range of the relative slenderness as the 

resistance is predicted continuously through the reduction curve. The (slightly) higher standard 

deviation of the Eurocode 3 Part 1-1 interaction equations results from the roughly approximated 

plastic cross-section interaction for members of short and intermediate length. 

Finally, it is recalled that a supplementary empirical calibration of the factor fzy had to be done for 

the OIC approach to cover safely the resistance of compact sections (h/b ≤ 1,2). Obviously, this 

calibration is strictly valid only for the cases tested here and should therefore be validated for a 

greater number of cross-sections. This cannot be done in the framework of the present thesis. 

Rather, it is proposed to evaluate the developed OIC approach for an applied torsional moment. 

Obviously, the specific behaviour of members of open section (creation of the warping hinge) may 

possibly lead to a higher scatter of the results again. Yet, this has to be accepted as only a plastic 

analysis of the member could capture precisely this effect. 

 Extension of the OIC approach to torsion 

Hereafter, the OIC approach developed in paragraphs 0, 5.6.5.3, 5.6.5.4, 5.6.5.5 and 5.6.5.6 is 

extended to the case of an applied torsional moment. As before, the bending moments as well as 

the axial compression forces are constant along the member length. The OIC approach presented 

in Table 5-55 is applied together with Eq. ( 5.376 ) for the factor fzy. It should be noted that no 

modification is introduced at this point to account for the case of an applied torsional moment. 

Indeed, the value of the bi-moment enters directly into the calculation of the plastic load 

amplification factor Rpl,ov. 

First, Figure 5-219 shows a statistical evaluation of the results obtained with the proposed OIC 

approach. The plastic load amplification factor used as a key factor of the design method is directly 
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determined by a MNA simulation. Consequently, the plastic torsional system reserve is accounted 

for in all cases. Nonetheless, it appears that the scatter of the results is slightly higher and the 

precision of the strength predictions is slightly lower than for members under combined bi-axial 

bending and compression axial forces. Yet, the results are certainly acceptable, especially when 

they are compared to the strength predictions obtained with the method introduced in paragraph 

5.6.4.2 as shown in Table 5-57. 

 

Figure 5-219: Ratio between OIC predicted resistance and numerically obtained resistance – 

Rpl,ov,MNA 

Table 5-57 represents a comparison of the precision obtained by the OIC approach and the design 

method proposed in paragraph 5.6.4.2 for double symmetric I sections. Additionally, the statistical 

evaluation of the Eurocode 3 Part 1-1 interaction equations is represented. This last method is 

only applied to members (of the parametric study) subject to bi-axial bending (constant bending 

moments) and axial forces but not subject to torsion. 

Table 5-57 confirms that the proposed OIC approach is rather satisfying. In particular, one 

observes that OIC approach applied to members subject to a compression axial force, bi-axial 

bending and torsion is only slightly less precise than the strength predictions obtained with the 

Eurocode 3 Part 1-1 interaction equations applied to members not subject to torsion. Also, Table 

5-57 shows that the OIC approach appears to yield more precise results than the proposed 

extension of the Eurocode 3 Part 1-1 interaction equations owing to the continuous strength 

prediction starting form the exact plastic cross-section interaction up to a failure characterised by 

elasto-plastic instability. 

The obtained results are analysed further on based on selected examples. 

  

0.00

0.05

0.10

0.15

0.20

0.25

< 0,50 < 0,55 < 0,60 < 0,65 < 0,70 < 0,75 < 0,80 < 0,85 < 0,90 < 0,95 < 1,00 < 1,05 < 1,10 < 1,15 < 1,20

F
re

q
u

e
n

cy
 (

%
)

χOIC/χGMNIA (-)

safe unsafe



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Member Resistance 

 

570 
 

Table 5-57: Statistical evaluation of different design approaches 

χMethod/χGMNIA OIC approach 
Extension of interaction 
formulae (Eqs. ( 5.307 ) 

and ( 5.308 )) 

Eurocode 3 interaction 
equations without 

torsion 

Mean 0,84 0,75 0,87 

Standard deviation σ 0,11 0,11 0,08 

Mean + 2σ 1,06 0,97 1,03 

Maximum 1,12 1,03 1,13 

Minimum 0,52 0,42 0,66 

 

Table 5-57 as well as Figure 5-219 have shown that some of the strength predictions of the OIC 

approach may be unsafe. A majority of these unsafe results is obtained for welded members of 

rather low relative slenderness as shown for the examples of Figure 5-220. This figure represents 

the results obtained for a member of welded section W650.5.180.10 (W1) subject to an axial 

compression force, bi-axial bending (degree of bi-axiality = 60°) and different levels of torsion. 

The numerically determined ultimate resistance curves are of very similar shape. Indeed, the 

resistance of very short members may exceed the plastic resistance obtained with MNA 

calculations (considering the effect of the plastic warping hinge). The resistance decreases rapidly 

for values of the relative slenderness between 0,15 and 0,40. In this range of the slenderness the 

OIC approach seems to be too favourable. Nonetheless, on the unsafe side, the maximum 

discrepancy is of approximatively 12%. This difference is lower than the maximum unsafe 

strength prediction of the Eurocode 3 Part 1-1 interaction equations in their initial field of 

application (13% - see Table 5-57) and seems therefore acceptable.  

 

Figure 5-220: Ultimate resistance curves for a member of welded section W650.5.180.10 (W1) 

subject to combined axial compression force, bi-axial bending and torsion 
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amplification factor determined numerically by MNA simulations. In order to understand the 

observed discrepancy a member of IPE500 section subject to combined axial force, minor-axis 

bending and torsion is studied in Figure 5-221. This Figure also represents the results obtained 

for the members not subject to torsion as reference case. In fact, one may observe again that the 

OIC approach is very precise for combined compression axial force and minor-axis bending (see 

paragraph 5.6.5.3). The strength predictions are practically identical to the numerical results for 

this load case. Conversely, one may observe rather important discrepancies if an additional 

torsional moment is applied. For very short members, the difference may attain up to 50% on the 

safe-side due to the strain hardening reserve of the member. Nonetheless, strain hardening is 

explicitly not accounted for in the proposed design model. The difference observed for very short 

members is hence not of the most interest. Contrariwise, it seems interesting to study the 

differences for values of the relative slenderness in the range between 0,2 and 0,8. It appears that 

the members subject to torsion attain a significantly higher resistance in this slenderness range 

than the members not subject to torsion. The OIC approach, however, predicts resistances that 

are less for members subject to torsion than for the members only subject to an axial force and 

minor-axis bending. Obviously, strain hardening possesses a non-negligible influence on the 

member resistance even for intermediate values of the relative slenderness as represented in 

Figure 5-222, Figure 5-223, Figure 5-224 and Figure 5-225. 

 

Figure 5-221: Ultimate resistance curves for a member of welded section IPE500 subject to 

combined axial compression force, bi-axial bending and torsion 
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might consider to introduce a supplementary parameter considering the possible strain 

hardening reserve in case of applied torsional moments for certain sections. It is recalled that 

welded members appear to fail at a lower stress level for intermediate and high values of the 

relative slenderness (see Figure 5-220). A deeper investigation is necessary in order to capture 

precisely this resistance reserve. Yet, other parameters as the bending moment diagram also 

influence significantly the member resistance and should therefore be studied as well. In the 

framework of the present thesis, this is not done. 

 

Figure 5-222 : Von Mises stresses and deformed shape for IPE500_M_N15_MyMz90_Ecc0 

 

Figure 5-223: Von Mises stresses and deformed shape for IPE500_M_N15_MyMz90_EccZ1 
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Figure 5-224: Von Mises stresses and deformed shape for IPE500_M_N15_MyMz90_EccZ2 

 

 

Figure 5-225: Von Mises stresses and deformed shape for IPE500_M_N15_MyMz90_EccZ3 

Up to this point the OIC approach is applied with the plastic load amplification factor Rpl,ov 

obtained with MNA calculations (Rpl,ov,MNA) performed on the whole member. In practice, the 

internal force and moments, acting in the structure and its constituting members, are, in most 

cases, determined through elastic analysis. Consequently, the plastic torsional system reserve 

cannot be accounted for directly. The plastic load amplification factor determined based on the 

elastically calculated internal forces and moments (Rpl,ov,LA) corresponds therefore to the 

formation of the (first) plastic warping hinge. Hence, the value of the plastic load amplification 

factor Rpl,ov,LA is lower than the value of Rpl,ov,MNA and, accordingly, the ratio Rpl,MyN/Rpl,ov is 

overestimated. Nevertheless, underestimating the plastic load amplification factor Rpl,ov should 

lead to more conservative results than in case of the exactly determined factor Rpl,ov,MNA, especially 

for short members. Figure 5-226 shows a statistical evaluation of the OIC approach when it is 

applied with the plastic load amplification factor corresponding to the formation of the plastic 

warping hinge. As expected the results are more conservative and the scatter is slightly higher. 

Nonetheless, differences to the OIC approach applied with Rpl,ov,MNA are rather low.  



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Member Resistance 

 

574 
 

 

Figure 5-226: Ratio between OIC predicted resistance and numerically obtained resistance – Rpl,ov,LA 

It is to be noted that the results obtained based on Rpl,ov,LA are more conservative compared to the 

results obtained based on Rpl,ov,MNA, especially for short members as shown in Figure 5-227 and 

Figure 5-228. Nonetheless, the difference is only of about 10 to 20% in average for members 

possessing a relative slenderness lower than 0,6. Additionally, one may observe that for longer 

members the results are identically. This observation is not surprising as the plastic load 

amplification factor Rpl,ov has only very few influence on the obtained global reduction factor 

starting from a relative slenderness of approximatively 1,25 (=1/(0,8Cms,zfyz – see Eq. ( 5.370 ) and 

Table 5-55 for the definition of the transition function finstab). In fact, for a higher value of the 

relative slenderness the function fInstab is equal to the ratio Rel,MyN/Rel,tot. In this slenderness range 

Rpl,ov is only used to determine the relative slenderness itself. Also, one may observe that the 

approach based on Rpl,ov,LA is less unsafe for intermediate values of the relative slenderness. This 

seems also understandable as the plastic torsional system reserve is only mobilised for short 

members or if the member is subject to high torsion as the members of Figure 5-224 and Figure 

5-225. 
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Figure 5-227: Ratio between OIC predicted resistance and numerically obtained resistance – Rpl,ov,LA 

 

Figure 5-228: Ratio between OIC predicted resistance and numerically obtained resistance – 

Rpl,ov,MNA 

The comparison presented above allows the conclusion that the OIC approach may be applied 

based on the plastic amplification factor Rpl,ov,LA determined with the internal forces and moments 

obtained with an elastic analysis. The loss of precision with respect to the OIC approach based on 

Rpl,ov,MNA is not significant. Moreover, it appears that the OIC approach should not be based on the 

value of Rpl,ov,MNA (considering the formation of the plastic warping hinge) over the total range of 

the relative slenderness but only up to a limit slenderness. Indeed, Figure 5-228 shows unsafe OIC 

strength predictions for values of the relative slenderness between 0,2 and 0,6. 

It is proposed here to determine a plastic load amplification factor to be used with the OIC 

approach as follows: 
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0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

χ O
IC

/χ
G

M
N

IA
(-

)

λG (-)

safe

unsafe

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

χ O
IC

/χ
G

M
N

IA
(-

)

λG (-)

safe

unsafe



On the Design of Steel Members with Open Cross-Sections Subject to 
Combined Axial Force, Bending and Torsion 

Member Resistance 

 

576 
 

( )( )2,0
2,0

,,,,

,,, −
−

−= G
LAovplMNAovpl

MNAovplovpl

RR
RR λ   if  4,02,0 ≤< Gλ  ( 5.379 ) 

LAovplovpl RR ,,, =       if 4,0>Gλ  ( 5.380 ) 

 

It should be noted that an iteration has to be performed to determine the factor Rpl,ov with Eq. ( 

5.379 ) as the value of the relative slenderness λG depends itself on the factor Rpl,ov. Nonetheless, 

it has been shown that the application of Rpl,ov,LA over the total range of the relative slenderness 

does not lead to a significant loss of precision. Consequently, the OIC approach may always be 

based on Rpl,ov,LA for simplicity. 

Finally, it is obvious that the determination of the factor Rpl,ov,MNA seems delicate in practice 

because the software necessary to perform elasto-plastic analysis of a member considering its 

torsional characteristics including the warping stiffness is not widespread in the present practice. 

Additionally, this type of software is usually capable to account for geometric second order effects 

and imperfections. Consequently, the member resistance could directly be checked through a 

GMNIA simulation without significant supplementary effort compared to a MNA simulation. 

Therefore, it is certain that the factor Rpl,ov,MNA is practically never determined in practice (here it 

is emphasized again that Rpl,ov,MNA is determined through a MNA simulation of the member as a 

whole and not only by a plastic calculation of the most loaded section). In paragraphs 4.4.4.1 and 

4.5 a simplified method for the plastic analysis of the member has been introduced. It is recalled 

that this method consists in the following steps: 

1) Linear elastic analysis performed for the determination of the load factor 

corresponding to the generation of the plastic warping hinge (=Rpl,ov,LA) and of the 

internal forces and moments acting in the member at this load level; 

2) Introduction of a warping hinge into the numerical model of the member; 

3) Application of the loads corresponding to 0,9Rpl,ov,LA; 

4) Linear elastic analysis performed up to complete yielding of the member ends 

under the combination of the possible axial force, shear force, major- and minor-

axis bending moment as well as the Saint-Venant’s torsional moment (including 

the Saint-Venant’s torsional moment corresponding to 0,8Rpl,ov,MNA). The limit load 

can be determined with the adapted Partial Internal Force Method (aPIFM) 

introduced in Chapter 4. 

This simplified “plastic” analysis may be applied to obtain an approximate value of Rpl,ov,MNA. The 

OIC approach can then be used as before including Eqs. ( 5.378 ) to ( 5.380 ) for the determination 

of the “effective” plastic load amplification factor. Table 5-58 represents the statistical evaluation 

of the developed OIC approach based on the plastic load amplification factor linked to the 

generation of the plastic warping hinge (Rpl,ov,LA) and the OIC approach based on the plastic load 

amplification factor obtained with the simplified elastic analysis. Eqs. ( 5.378 ) to ( 5.380 ) are only 
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applied in the second case. One may observe that the precision is slightly increased if the second 

approach is applied. Additionally, it is shown that the conservatism is highly reduced for short 

members thanks to the better approximation of the real plastic load amplification factor. This is 

also graphically shown in Figure 5-229. 

Table 5-58: Statistical evaluation of OIC design approach 

χOIC/χGMNIA OIC approach - Rpl,ov,LA  
OIC approach - Rpl,ov,LA,II 
with simplified plastic 

analysis 

Mean 0,805 0,813 

Standard deviation σ 0,116 0,098 

Mean + 2σ 1,038 1,008 

Maximum 1,030 1,051 

Minimum 0,399 0,483 

 

Figure 5-229 represents the ratio χOIC/χGMNIA as a function of the relative member slenderness. 

The results represented in this Figure are obtained with the load amplification factor Rpl,ov 

determined with the simplified “plastic” analysis. For short members, the obtained strength 

predictions are very close to the results determined based on the factor Rpl,ov,MNA. Additionally, 

thanks to the introduction of Eqs. ( 5.378 ) to ( 5.380 ) only very few results are unsafe (≈2%). For 

the longer members the results are obviously identical to those presented in Figure 5-228 based 

on Rpl,ov,LA. Nonetheless, it appears that many results are still rather conservative. So as to get a 

clearer idea, Figure 5-230 represents the results of the OIC approach again but considering the 

maximum reduction factor χGMNIA equal to 1,0, i.e. if the numerically determined factor χGMNIA 

exceeds 1,0 it is artificially set equal to 1,0 for the comparison. 

 

Figure 5-229: Ratio between OIC predicted resistance and numerically obtained resistance – Rpl,ov 

obtained with simplified plastic analysis 
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Figure 5-230 indicates that the proposed OIC approach is very conservative for members of 

intermediate relative slenderness whose resistance is influenced by the effect of strain hardening 

even if they fail by elasto-plastic instability as for the examples given in Figure 5-223, Figure 5-224 

and Figure 5-225. In order to ameliorate the strength prediction for these members, “encircled” 

in orange in Figure 5-230, it might be necessary to modify the plateau length in case of high 

torsional loads. This is not done here, but may be in the centre of interest of future research 

projects that should also introduce the effect of variable bending moment diagrams in the OIC 

approach. 

 

Figure 5-230: Ratio between OIC predicted resistance and numerically obtained resistance – Rpl,ov 

obtained with simplified plastic analysis – χGMNIA considered equal to 1,0 at maximum 

 

 Summary of the OIC approach for the resistance of members of double symmetric I section 

In paragraph 5.6.5 an OIC approach for the resistance of members of double symmetric I sections 

subject to combined axial compression force, bi-axial bending and torsion has been developed 

based on a simplification of the analytical developments presented in paragraph 5.5.7.4. Also, it 

was intended to propose an OIC approach that may be continuously linked to design methods 

developed in the past in the OIC format as done in reference (Taras 2011). So as to obtain a 

sufficiently precise approach covering the complex situation studied here, several parameters had 

to be calibrated empirically based on the numerical data basis. In particular: 

• The imperfection factor αMy for lateral-torsional buckling; 

• The imperfection factor αMyN considering the interaction between minor-axis 

flexural buckling and lateral-torsional buckling; 

• The transition function fInstab considering the influence of elasto-plastic instability 

on the cross-section interaction of the most loaded section (transition between 

plastic and elastic interaction) and the factor fzy considering specifically the 

influence of the minor-axis bending moment on the transition behaviour of 

compact section (h/b < 1,2); 
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• The effective plastic load amplification factor for short members subject to torsion 

considering the influence of the possible plastic torsional system reserve. 

 
The obtained design model is summarised in Table 5-59. 

 

Table 5-59: OIC calculation steps for combined axial compression force and bi-axial bending 

Calculation steps Detail 

(Numerical) 
Determination of key 
factors 

ovplR , : Load amplification factor to attain the plastic limit state of 

 the most loaded section considering all internal forces and 
 moments (in case of an applied torsional moment it should be 
 distinguished between Rpl,MB,MNA and Rpl,MB,LA) 
 

MyNplR , : Load amplification factor to attain the plastic limit state of the 

 most loaded section considering only major-axis bending and 
 the axial compression force 
 

ovelR , :  Load amplification factor to attain the elastic limit state of the 

 most loaded section considering all internal forces and 
 moments 
 

MyNelR , :  Load amplification factor to attain the elastic limit state of the 

 most loaded section considering only major-axis bending and 
 the axial compression force 
 

GcrR , : Load amplification factor to attain the elastic critical 

 load of the member subject to all loads (considering 
 the influence of first order displacements) 
 
*
,GcrR : Load amplification factor to attain the elastic critical 

 load of the member without its Saint-Venant’s torsional 
 stiffness subject to all loads (considering the influence of first 
 order displacements) 
 

zcrN , : Elastic critical axial force for minor-axis flexural  buckling 

cryM , : Elastic critical moment for lateral-torsional buckling 

 

Gλ : Global relative member slenderness 
 
If the plastic torsional system reserve is accounted for: 

2,0≤Gλ : MNAovplovpl RR ,,, =  

4,02,0 ≤< Gλ : 
( )( )2,0

2,0

,,,,

,,, −
−

−= G
LAovplMNAovpl

MNAovplovpl

RR
RR λ  
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The design model presented in Table 5-59 has proven to be very satisfactory and it appears to be 

even more precise than the well accepted Eurocode 3 Part 1-1 interaction equations in their 

original field of application (without torsion). Especially the continuous strength prediction from 

short members, attaining the plastic resistance of their most loaded section, to long members, 

failing by elasto-plastic instability, is a very beneficial feature of the OIC approach. Yet, it should 

be noted that the study presented before was limited to members of double symmetric I section 

subject to constant bending moments and a constant axial force. In many situations the axial force 

can be considered as constant in practice. Conversely, the bending moments generally vary over 

the member length. Consequently, it is of great practical interest to pursue the investigations to 

include the effect of variable bending moments. Additionally, the following points merit further 

research: 

• The developed OIC approach is based on the critical amplification factor 

considering first order displacements. Yet, the determination is delicate in practice 

and requires generally specific software that is not widespread today. An 

alternative might be the calculation of a critical amplification factor for the 

member only subject to loads generating axial forces and major-axis bending. 

Consequently, the disturbing influence of minor-axis bending (and torsion) on the 

critical loads is eliminated (as is also done if the critical loads are calculated 

through GNIA simulations); 

• In case of relatively high torsion, members may mobilize a certain level of strain 

hardening reserve leading to increased resistances that are not precisely predicted 

by the developed OIC approach. It might be investigated if an increased plateau 

length can be applied for these situations. However, it seems necessary to ensure 

that yielding is not initiated at Serviceability Limit State, because the torsional 

twist (as well as the other displacements of the member) can not be determined 

through elastic analysis in this case anymore; 

• The strain hardening reserve may be very beneficial for short members (or 

members possessing sufficient restraints against instability) and may therefore 

lead to more economic design. A possible design approach considering strain 

hardening is CSM as presented in Chapter 4. It may be interesting to couple the OIC 

design model with CSM; 

• The effects of lateral restraints have not been investigated. The restraints may 

increase heavily the member resistance due to the stabilizing effect of member 

segments that are less loaded than their neighbour segments. For a practical 

design approach the influence of the lateral restraints should therefore be 

investigated. 
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5.7 Conclusions 

Chapter 5 investigated the resistance of members subject to compression axial forces, bi-axial 

bending and torsion. The design models developed in the last part of this Chapter have been 

calibrated based on an extensive numerical study. Obviously, the results of the GMNIA simulations 

depend highly in the assumed imperfections. Consequently, it appeared necessary to study the 

influence of these imperfections on the numerically determined resistance in paragraph 5.2 

before the parametric study has been performed. It has been shown that the influence of the 

imperfections have been studied in detail for double symmetric I sections. Conversely, for mono-

symmetric sections and especially for U sections, it existed an important lack of information 

concerning geometric imperfections and residual stresses to be used for GMNIA simulations. 

Therefore, specific studies have been presented in paragraph 5.2.1 with the objective to get more 

detailed insights on assumed calculation imperfections. In particular, it has been shown that: 

• The recommendations for I-shaped members concerning geometric imperfection 

cannot be transposed to U-shaped members without any preconisation; 

• The residual stress pattern used in previous studies for U section should be 

modified. A more precise residual stress distribution has been developed based on 

the internal equilibrium conditions of a U section and thermo-mechanical 

simulations of the cooling process after hot-rolling. 

One of the objectives of this thesis was the development of a design approach for members subject 

to torsion in the format of the Eurocode 3 Part 1-1 design models and in particular in the format 

of the interaction equations. Consequently, the initial field of application of these interaction 

equations is recalled in paragraph 5.3. It has also been recalled that the field of application is 

rather restrained especially concerning the type of the section. In particular, mono-symmetric I 

sections and U sections are not covered. Two extension of the interaction equations presented in 

references (Kaim 2004) and (Kalameya 2008) addressing mono-symmetric I sections and U 

sections have then been presented. Nonetheless, both proposals possess certain limitations even 

for members not subject to torsion. Consequently, it was necessary to complete these two design 

models before an extension to applied torsion could be envisaged. 

In paragraph 5.4 design approaches proposed in the past for I- and U-shaped members subject to 

torsion have been discussed in detail. It has been shown that: 

• The design proposals are either based on theoretical studies or based on purely 

empirical investigations; 

• The theoretically based design models may be very complex and still inconsistent 

or incomplete in some conditions leading to very unsafe results as has been 

revealed by comparison to selected GMNIA simulations.; 

• The empirically developed design models may also be very unsafe if they are 

applied outside the scope of the parametric study they are based on; 
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• Only the proposal “TU Berlin” published in reference (Glitsch 2008) discussed the 

plastic torsional system reserve rapidly, even if it highly influences the behaviour 

of members of open section subject to torsion. This last design approach considers 

the beneficial effect of the formation of the plastic warping hinge but it does not 

ensure neither that the member does not fail under the Saint-Venant’s torsional 

moment that arises in consequence of the warping hinge nor it ensures that the 

torsional twist does not attain excessively high values.  

Nonetheless, it is certain that all of the design approaches developed in the past contributed to a 

better understanding of the behaviour of members subject to torsion. 

So as to develop a simplified design model in the framework of this thesis paragraph 5.5 addressed 

the theoretical basis of the member behaviour. First, elastic instability has been studied and, in 

particular, the influence of the first order displacements on the critical loads of U-shaped members 

has been highlighted. In fact, it appears that if pre-buckling displacements are not considered the 

critical loads imply that U-shaped members are sensitive to elastic instability under minor-axis 

bending in many cases. However, if the pre-buckling displacements are included, it is shown that 

elastic instability under minor-axis bending is only of interest in certain conditions. These 

conditions have been discussed. Moreover, it has been shown that, in today’s practice, the 

resistance of hot-rolled U-shaped members is not affected by elasto-plastic instability if they are 

only subject to minor-axis bending moments as the relative slenderness cannot attain sufficiently 

high values. Indeed, only for members made of high strength steel (> S460) a noticeable strength 

reduction due to elasto-plastic instability is observed. 

In the framework of the study concerning elastic instability it was possible to obtain the 

eigenmode that is used as form of the equivalent geometric imperfection introduced into the 

system of differential equations describing the second order equilibrium of the member. The 

system is solved for special cases in order to determine the parameters influencing the second 

order amplification of the internal forces and moments. It has been shown that it is possible to 

obtain analytical solutions for simple load cases as for example members under major-axis 

bending. The obtained solutions have also been developed in the past in several references (see 

(Stangenberg 2007), (Naumes 2009) and (Taras 2011)). Nevertheless, it appears that a complete 

(simple) analytical solution is not possible anymore for complex load cases including combined 

axial force and bi-axial bending or even combined axial force, bi-axial bending and torsion. Indeed, 

in these cases the displacement functions cannot be approximated by simple sine half waves. Also, 

some contradictory hypotheses are necessary for the approximation of the distribution of the 

bending moments and torsion. Moreover, even if it would be possible to obtain analytical second 

order internal forces and moments for complex load cases, they have to be introduced into an 

approximation of the interaction for the most loaded section. Consequently, it became obvious 

that a completely analytically based design model cannot be developed and therefore some 

inconsistencies had to be accepted in the following. Anyhow, the analytical developments revealed 

which second order effects are already included in the Eurocode 3 Part 1-1 interaction equations 

and the empirically determined Annex B (CEN 2005a) interaction factors and consequently it has 
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been pointed out which additional parameters and effects might additionally influence the 

behaviour of members subject to torsion. Also, an analytically based OIC approach has been 

developed for the case of combined bi-axial bending and torsion. 

In paragraph 5.6 the database of numerically determined ultimate resistances is then used to 

calibrate and simplify the analytical OIC design approach. Additionally, this design model is 

extended to other load cases including combined major-axis bending and axial force. The 

proposed OIC approach is able to capture sufficiently precisely the behaviour of members under 

complex load combinations owing to the continuous strength prediction over the total range of 

relative member slenderness. Nonetheless, significant research effort has to be made in the future 

in order to extend the proposal to members under variable bending moments, members of non-

compact and slender cross-section and members with lateral restraints. For these more complex 

cases, an extension of the Eurocode 3 Part 1-1 interaction equations to torsion is proposed in the 

framework of this thesis. This proposal may however be rather conservative as the plastic cross-

section interaction is not well approximated. Yet, the conservatism is not significantly increased 

compared to the initial field of application of the interaction equations for members of double 

symmetric I section or members of U section. Indeed, in average the difference is of about 10%. In 

order to ameliorate the precision of the interaction equations for short members, a simplified 

plastic analysis of members subject to torsion is proposed. Yet, this approach should only be 

applied if the members do not possess a specific limitation of the torsional twist at the 

Serviceability Limit State. For members of mono-symmetric I section the proposed extension of 

the interaction equations may however be very conservative in the low slenderness range owing 

to the pronounced plastic torsional system reserve. Due to their structural use, Serviceability 

Limit State criteria are generally formulated for members of mono-symmetric I section. Therefore, 

the plastic torsional system reserve should not be accounted for by simplified analysis because 

the torsional twist cannot be determined reliably at the Serviceability Limit State. 
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6.1 Summary and conclusions 

The three main objectives of the present thesis directly resulted from the limitations of the 

currently available design rules provided in the European standard for the design of steel 

structures, in particular Eurocode 3 Part 1-1 (CEN 2005a), for members with open cross-section 

subject to torsion. Indeed, it appears this standard does not give any design rule addressing the 

resistance of members of I and U sections subject to a combination of an axial compression force, 

bi-axial bending and torsion. For the section resistance, the current version of 

Eurocode 3 Part 1-1 does formulate limited design rules but these are partially inconsistent and 

contradictory. Therefore, this thesis intended to: 

• Study the behaviour of members subject to combined axial compression forces, bi-

axial bending and torsion. 

• Derive design provisions addressing the plastic cross-section resistance of open 

sections subject to combined axial compression, bi-axial bending and torsion. 

• Derive design provisions addressing the resistance of members subject to 

combined axial compression, bi-axial bending and torsion. 

In order to achieve these, objectives the thesis has been structured in five main Chapters that may 

be summarised as follows: 

• Chapter 1 set the context of the present thesis and recalled the limitations of existing 

design rules for I- and U-shaped members. The main objectives of the thesis were 

formulated and the methodology used to attain these objectives was outlined. 

• Chapter 2 compiled the theoretical background necessary to understand the 

behaviour of members with open cross-section subject to torsion. In particular, the 

reasons for the sensitivity of open sections to torsion compared to closed sections are 

recalled. Additionally, the equivalence of the second order equilibrium of members 

under a tension axial force and bending to members under torsion was explained in 

the elastic domain. Throughout the thesis it was subsequently shown that this 

equivalence could be extended to the plastic behaviour. 

• Chapter 3 was dedicated to the construction and validation of a finite element model 

capable to predict reliably the section and member resistance studied in the following 

Chapters. The modelling of the fillets of hot-rolled sections was of special interest as 

these may highly influence the section resistance in case of applied torsion. It has been 

shown that only a solid model is capable to reproduce precisely the flow of the shear 

stresses over the cross-section containing fillets. The member resistance is also 

influenced by the presence of the fillets if an individual member is studied. 

Nonetheless, it could be demonstrated that, if the member resistance is normalised 

with reference to the real section characteristics (for example in a χ-λ diagram), the 

difference vanishes between sections with fillets and sections without fillets. 

Additionally, it has been shown that a shell model without fillets may yield equivalent 
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results as a solid model without fillets even for members subject to torsion. These two 

conclusions only allowed the construction of a database of member resistances 

containing approximatively 10 000 configurations (combinations of cross-sections 

and load cases) that is used in Chapter 5 to develop a design model. Indeed, due to the 

calculation time, it would not have been possible to study such a high number of cases 

with the solid finite element model. 

• Chapter 4 addressed the plastic interaction between internal forces and moments 

including the effect of torsion. First, a review of the major international standards for 

the design of steel structures revealed several interesting points. In particular, it was 

shown that: 

o The precision of the Eurocode 3 Part 1-1 plastic cross-section interaction 

formulae for combined axial force and bi-axial bending is superior to the 

interaction formulae proposed in the North American Steel Design Standard 

AINSI/AISC 360-10 and the Australian Steel Design Standard AS 4100; 

o The shear area Avz is defined differently for hot-rolled sections in the three 

cited standards leading to a non-negligible discrepancies in the obtained shear 

strength prediction; 

o None of the cited standards treats the effect of torsion on open sections 

satisfactorily. 

In order to overcome the limitations of the standardised plastic cross-section 

interaction equations, two alternative design approaches have been presented. The 

first one is based on a presumed plastic distribution of the stresses resulting from the 

applied internal forces and moments. These stresses are the iteratively increased up 

to complete yielding of the studied section. The second approach is the Partial 

Internal Force Method (PIFM) introduced by Kindmann (Kindmann et al. 1999a). The 

limitations of this second method were highlighted and an adaptation has been 

proposed. Nonetheless, all studied approaches are based on key assumptions based 

on the distribution of the stresses. Especially, the hypothesis concerning the plastic 

distribution of the shear stresses resulting from the transvers shear force Vz appeared 

to be critical. Therefore, it appeared of major-interest to study the strength of the 

section to this shear force before an extension/adaptation of the design rules to the 

case of torsion could be envisaged. This study was performed based on a campaign of 

laboratory tests and numerical simulations. It was shown that: 

o The ultimate shear strength of compact H and I sections obtained by the 

laboratory tests and the numerical simulations is very high and exceeds even 

the shear strength predicted in Eurocode 3 Part 1-1; 

o The shear resistance is however only slightly influenced by the presence of 

fillets. The difference between sections with fillets and equivalent sections 

without fillets is quite low and attains only of about 5%-10%; 
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o The “overstrength” predicted by Eurocode 3 Part 1-1 is linked to the effect of 

strain hardening and consequently the strength prediction may be unsafe if 

the level of strain hardening is insufficient (for high strength steels and/or if 

the web slenderness close to the limit for shear buckling); 

o A design model explicitly considering the effect of strain hardening as the 

Continuous Strength Method (CSM) may increase the precision of the shear 

strength predictions. 

The campaign of laboratory tests has also been used to validate the finite element 

model further on. This numerical model is then used to elaborate missing design rules, 

especially for mono-symmetric I and U sections under combined bending and shear 

force. After this, the investigations are extended to the plastic interaction including 

torsion. First, the influence of the type of analysis is discussed. Indeed, it is shown that 

the plastic torsional system reserve highly influences the Plastic Limit State of a 

member and that the generation of the plastic warping hinge leads inevitably to the 

yielding of the member along its whole length. The Plastic Limit State is therefore 

limited by the interaction between the Saint-Venant’s torsional moment with other 

internal forces and moments. Consequently, a simple elastic analysis followed by a 

cross-section verification is not capable to capture the plastic behaviour of members 

in torsion. Nonetheless, the cross-section resistance may be checked based on elastic 

analysis and without considering the Saint-Venant’s torsional moment as the 

obtained resistance is then linked to the creation of the warping hinge and hence 

always lower than the resistance associated with the Plastic Limit State of the 

member. In certain conditions, it may be interesting to account for the plastic 

torsional system reserve and therefore a simplified two-step elastic analysis 

procedure is proposed. Still, this method should only be applied to short members 

and if no particular Serviceability Limit State criteria are formulated for the studied 

member as the displacements and especially the torsional twist may be highly 

increased due to the formation of the plastic warping hinge. After the analysis of the 

plastic behaviour of members subject to torsion, the plastic cross-section interaction 

including the effect of the bi-moment was studied. Simplified plastic interaction 

equations were proposed for double and mono-symmetric I sections under bending 

moments, shear forces and bi-moments. It has however been shown that the 

complexity of this interaction equations is highly increased for mono-symmetric 

sections and for complex load combinations. Therefore, an adaptation of the PIFM 

appeared to be more constructive. The PIFM is consequently adapted to the results of 

the parametric study concerning the plastic cross-section and it is shown that the 

introduced adaptations may lead to very satisfactory results. 

• Chapter 5 concerned the resistance of members subject to torsion. As the 

development of the design models was based on an extensive numerical study, it was 

absolutely necessary to study the influence of assumed calculation imperfections on 
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the obtained results. It was shown that relevant information and guidelines exist for 

double symmetric I sections. Inversely, for mono-symmetric sections, in particular U 

sections, the existing habits and recommendations are partially contradictory. A 

comprehensive study of the influence of the calculation imperfections is therefore 

performed and this study yield the following results: 

o The recommendations for equivalent member imperfection for members with 

I section cannot be directly transposed to U-shaped members. The resistance 

of U-shaped members may be determined numerically based on an Eigen 

mode affine geometric imperfection but it has to be ensured that the effect of 

the imperfection amplifies the first order displacements. Due to the effect of 

the stress induced bi-moment, this last remark is not self-evident. 

o Local plate imperfection should be introduced with the same wave-length for 

the web and the flanges (in longitudinal direction of the member) as elsewise 

the formation of local buckles may be disturbed by the interference between 

the different wave-lengths. The interference may lead (slightly) higher 

ultimate resistances. 

o An auto-equilibrated residual stress pattern is proposed for U sections based 

on the internal equilibrium conditions of the section and thermo-mechanical 

simulations. 

Following the study on calculation imperfections, different design approaches for the 

member resistance, particularly in presence of torsion, are discussed. With the help 

of the numerical model certain lacks and inconsistencies in these design models are 

highlighted and it is shown that none of them is complete. In order to get more 

insights into the behaviour of members with open cross-section subject to torsion a 

theoretical study is then performed. 

The elastic critical loads are the basis of the assessment of the member stability. 

Therefore, they are studied again. In particular, the effect of pre-buckling 

displacements is highlighted and it is shown that they may have a considerable 

influence on the critical loads for U-shaped members under minor-axis bending. 

Indeed, only if pre-buckling displacements are accounted for, the critical loads may 

be representative of the member resistance for these cases. The study of the elastic 

instability also allowed the determination of the Eigen modes that are used 

subsequently as equivalent member imperfection for the theoretical study of the 

elastic second order equilibrium of the member. Different load cases are studied 

theoretically with the aim to outline the theoretical basis of the currently available 

design methods for the stability of members subject to a combination of axial 

compression force and bi-axial bending and to highlight the additional parameters 

arising if the member is subject to torsion. The theoretical study emphasized again 

that a completely analytical derived design method is not possible to the different 

assumptions that are necessary to obtain a closed form solution. In some cases, these 
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assumptions are contradictory and therefore, a certain degree of inconsistency has to 

be accepted. The last part of Chapter 5 was dedicated to the development of design 

rules. First, the design rules based on existing interaction equations are extended to 

the case of applied torsion. Also, it was necessary to close some lacks of the existing 

interaction equations for mono-symmetric sections. Indeed, the interaction equations 

for mono-symmetric I sections have been extended to applied minor-axis bending 

moments. For U-shaped member, the influence of in-plane buckling had to be 

quantified. For applied torsion it appeared that: 

o The proposed simple extension to torsion appeared to be very satisfactory for 

double symmetric I sections with compact and non-compact or slender 

section. The loss of precision compared to the resistance predictions obtained 

for a member under a compression axial force and bi-axial bending has been 

shown to be negligible in practice. 

o For U-shaped members, the interaction equations may be more conservative 

for short members, not only in case of applied torsion, due to the roughly 

approximated plastic cross-section interaction. Nonetheless, only an 

increased complexity would lead to an amelioration. So as to maintain the 

interaction equations simple for the practical application a higher 

conservatism is accepted for U-shaped members than for members of double 

symmetric I section. 

o For members with mono-symmetric I section, the interaction equations may 

be even more conservative than for U-shaped members. In fact, it has been 

shown that the plastic torsional system reserve is very pronounced for 

members of mono-symmetric I section and consequently influences the 

resistance of these members even for intermediate values of the relative 

slenderness. It might be envisaged to apply the simplified two step elastic 

analysis method to account for the effect of the plastic torsional system 

reserve. However, this is not pursued further on in the framework of this 

thesis because the torsional twist may increase highly compared to the value 

obtained by an elastic analysis. Serviceable Limit State criteria could therefore 

not be checked reliably. 

The conservatism of the interaction equations can be partially attributed to the 

approximate representation of the plastic cross-section interaction. This is a clear 

limitation of the design methods based on interaction equations. In order to obtain 

more precise and continuous strength predictions, global methods as the OIC 

approach have been introduced in the recent years. The OIC approach has been shown 

to be very promising especially for hollow sections and, consequently, it appeared to 

be interesting to investigate the possibility to extend this straightforward design 

method to members with open sections. Based on the database of numerical results a 

simple OIC approach has been proposed for members of double symmetric I section 
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subject to a combination of compression axial force, bi-axial bending and torsion. This 

design approach is, at least, as precise as the interaction equations and even more 

precise for low to intermediate values of the relative slenderness. 

6.2 Original contributions of the present thesis 

The original contributions of the present thesis may be summarised and categorised as follows: 

 

Numerical simulations and influence of assumed calculation imperfections: 

• Recommendations for equivalent geometric member imperfection have been 

derived for U-shaped members; 

• A residual stress pattern has been developed for U sections based on equilibrium 

conditions and thermo-mechanical simulations; 

• The influence of local plate imperfections have been studied for members with 

open section and recommendations on the shape to be used have been deduced. 

 

Behaviour of members subject to torsion: 

• In particular, the plastic behaviour of members subject to torsion has been studied 

and the influence of the plastic torsional system reserve on the section and the 

member resistance is highlighted; 

• A simplified two-step elastic analysis method is proposed and shown to be 

sufficiently precise. However, it has to be emphasized here that this procedure 

should only be applied if the member is not subject to particular Serviceable Limit 

State criteria. 

 

Plastic cross-section resistance: 

• Based on laboratory tests, the shear resistance of hot-rolled members (with fillets) 

has been studied and it is shown that strain hardening has an important effect on 

the resistance; 

• Numerical simulations have been performed to extend the results of the 

laboratory tests to welded sections, other steel grades and other section 

geometries. It could be concluded that the shear resistance is mainly linked to the 

strain hardening reserve of the studied section and that the fillets have only very 

little effect. It is shown that a design model considering explicitly the effect of 

strain hardening, as the Continuous Strength Method, is better suited to predict 

theshear resistance than the empirical increase of the shear area for hot-rolled 

sections as done in Eurocode 3 Part 1-1 (CEN 2005a); 
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• Based on MNA simulations the interaction between shear forces and bending 

moments is studied and it is shown that the shear force Vy may be neglected for 

mono- and double symmetric I and U sections in practice; 

• “Simplified” interaction equations are developed for open sections subject to 

torsion but it is shown that the expressions may become very complex for mono-

symmetric sections; 

• An adaptation of the Partial Internal Force Method is proposed. In particular, the 

influence of the fillets for hot-rolled sections, the empirically observed shear force-

bending moment interaction and the effect of the stress induced bi-moment are 

introduced. 

 

Theoretical study of elastic buckling: 

• The elastic critical loads represent an important factor to characterise the stability 

of members but only if they consider all relevant effects. In the framework of this 

thesis, it has been shown that it is necessary to account for the pre-buckling (or 

first order) displacements for U-shaped members under minor-axis bending and 

bi-axial bending. If this is not done, the sensitivity of these members to elasto-

plastic instability is not reliably represented by the elastic critical loads. 

 

Simplified design of members using interaction equations: 

• An extension of the Eurocode 3 Part 1-1 interaction equations to the case of 

applied torsion is proposed. This extension is sufficiently precise and satisfactory 

for members with double symmetric I section; 

• The resistance of U-shaped members is studied and the influence of in-plane 

buckling is introduced into an existing extension of the Eurocode 3 Part 1-1 

interaction equations (see reference (Kalameya 2008)). This failure mode is 

shown to be relevant for members possessing intermediate lateral restraints; 

• The interaction equations are subsequently extended to U-shaped members 

subject to torsion. The proposal is rather conservative for short members as the 

complex plastic cross-section interaction can only be roughly approximated with 

simplified interaction equations; 

• An existing proposal for the resistance of members with mono-symmetric I section 

(see reference (Kaim 2004)) is extended to an applied minor-axis bending 

moment; 

• The interaction equations applicable to members with mono-symmetric I section 

are extended further on to an applied torsional moment. The resulting expression 

are simple to use but very conservative. For members possessing low to 

intermediate values of the relative member slenderness, the approximation of the 
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plastic cross-section interaction and the high plastic torsional system reserve 

leads to the observed conservatism. 

 

Straightforward design method based on OIC approach: 

• A consistent OIC approach has been developed of members with double symmetric 

compact I section based on a theoretical basis and with the help of the database of 

numerical results. 

• As far as possible, the OIC approach has been developed to continuously link 

existing design proposals for lateral-torsional buckling under major-axis bending 

and minor-axis flexural buckling for members subject to a combination of a 

compression axial force and a minor-axis bending moment. 

• The interaction between flexural buckling and lateral-torsional buckling is studied 

and a specific imperfection factor αInteract and an interaction function are proposed 

considering the specific interaction effect for members of different shape (ratio 

h/b) and different fabrication process (hot-rolled/welded). 

• The OIC approach is extended to the load case of combined compression axial 

force, bi-axial bending and torsion. The resulting design model appears to be 

precise and even more precise than the well excepted Eurocode 3 Part 1-1 

interaction equations (even in their initial field of application) owing to the 

continuous strength prediction from short members, attaining the plastic limit 

state, to long members failing in a elasto-plastic buckling mode. 

6.3 Future research 

Obviously, this thesis could not respond to all problems that arise for members with open cross-

section subject to torsion. Further research is necessary and in particular the following points 

merit deeper investigations: 

 

Consolidation of the results and extension to other practical cases: 

• The numerical parametric study comprises a totality of more than 10 000 

configurations. However, it was not possible to study extensively the influence of 

the bending moment diagram and the distribution of the torsional moment. Only 

cases that appear to be common in practice have been treated. Therefore, other 

bending moment diagrams as well as other sources of torsional loads should be 

studied. 

• In the framework of this thesis hot-rolled U-shaped members are studied. Today 

the use of cold formed channel sections become more and more frequent. 

Therefore, the study should be extended to cold formed sections. This also implies 

that the influence of distortion has to be characterised. 
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• Mono-symmetric I sections are also often slender. Their behaviour and resistance 

may thus be influenced by local plate instability. Consequently, additional mono-

symmetric I sections should be studied. 

 

Extension of OIC approach: 

• The OIC approach developed in the framework of this thesis may be applied to 

members with compact double symmetric I section subject to a complex load 

combination including torsion. Yet, the approach is limited to constant bending 

moment diagrams. Consequently, the influence of the bending moment 

distribution should be investigated. Also, members with non-compact and slender 

section should be studied. 

• The OIC approach should also be extended to members with mono-symmetric I 

section and U section. Due to the complex plastic cross-section interaction, 

simplified design methods based on interaction equations are rather conservative 

for short and intermediate member lengths. The OIC approach, based on the exact 

plastic cross-section interaction may possibly contribute to more economic design. 

• For very short members with of compact cross-section, strain hardening increase 

the resistance. This beneficial effect may be accounted for by the Continuous 

Strength Method (CSM). It may therefore be of interest to study how the OIC 

approach could be coupled with CSM. 

• In practice, members often possess intermediate restraints decreasing the 

sensitivity to instability. The influence of these intermediate restraints needs to be 

characterised in detail. 
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8.1 Annex A: Recall of Annex A of EN 1993-1-1 :2005 

Hereafter, the expressions of the Annex A interaction factors of Eurocode 3 Part 1-1 (CEN 2005a) 

are recalled. 

 

Figure 8-1: Table A.1 of Eurocode 3 Part 1-1 (CEN 2005a) 
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Figure 8-2: Table A.1 continued of Eurocode 3 Part 1-1 (CEN 2005a) 

 

Figure 8-3: Table A.1 of Eurocode 3 Part 1-1 (CEN 2005a) 
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8.2 Annex B: Measured geometry and material law for the laboratory tests performed 

at University of Applied Sciences of Western Switzerland 

Figure 8-4 recalls the points of measurements of the cross-section dimensions. 

 

Figure 8-4: Measurements of cross-section dimensions 

 

Table 8-1 to Table 8-10 represent the results of the measurements of the cross-section dimensions 

of the specimen tested in the laboratory. 

Table 8-1: Measured dimensions for test HEA220_S235_L420 

 Measure 1 Measure 2 Measure 3 
Mean 

value 

Nominal value 

(Tolerance) 

bFl,u [mm] 221,20 220,29 220,54 220,67 
220,00 

(+4;-2) 

tfl,u1 [mm] 10,68 10,80 10,43 

10,62 
11,00 

(+2.5;-1.5) 
tfl,u2 [mm] 10,77 10,47 10,56 

bFl,l [mm] 220,60 220,25 220,73 220,53 
220,00 

(+4;-2) 

tfl,l1 [mm] 10,73 10,88 10,80 

10,82 
11,00 

(+4;-2) 
tfl,l2 [mm] 11,00 10,93 10,82 

h [mm] 210,26 211,47 210,8 210,84 
210,00 

(+3;-2) 

tw,1 [mm] 7,17 7,17 7,35 

7,24 
7,00 

(+0.7;-0.7) 
tw,2 [mm] 7,22 7,20 7,31 

b/4 b/4 

b/4 b/4 

hw 

hw/4 

hw/4 

tFl,u,1 tFl,u,2 

tFl,l,1 tFl,l,2 

tw,1 

tw,2 

L/4 L/4 L/4 L/4 

Measure 1 Measure 2 Measure 3 
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Table 8-2: Measured dimensions for test HEA220_S235_L840 

 Measure 1 Measure 2 Measure 3 
Mean 

value 

Nominal value 

(Tolerance) 

bFl,u [mm] 221,52 220,72 220,35 220,53 
220,00 

(+4;-2) 

tfl,u1 [mm] 10,75 10,72 10,81 

10,62 
11,00 

(+2.5;-1.5) 
tfl,u2 [mm] 10,52 10,41 10,52 

bFl,l [mm] 220,42 220,75 221,09 220,75 
220,00 

(+4;-2) 

tfl,l1 [mm] 10,65 10,91 10,71 

10,74 
11,00 

(+4;-2) 
tfl,l2 [mm] 10,59 10,72 10,85 

h [mm] 210,61 210,42 211,25 210,76 
210,00 

(+3;-2) 

tw,1 [mm] 7,14 7,19 7,20 

7,23 
7,00 

(+0.7;-0.7) 
tw,2 [mm] 7,21 7,32 7,34 

 

Table 8-3: Measured dimensions for test HEA220_S355_L420 

 Measure 1 Measure 2 Measure 3 
Mean 

value 

Nominal value 

(Tolerance) 

bFl,u [mm] 220,50 221,32 220,62 220,81 
220,00 

(+4;-2) 

tfl,u1 [mm] 10,83 10,74 10,78 

10,76 
11,00 

(+2.5;-1.5) 
tfl,u2 [mm] 10,76 10,71 10,75 

bFl,l [mm] 220,67 220,51 220,10 220,43 
220,00 

(+4;-2) 

tfl,l1 [mm] 10,79 10,94 10,70 

10,67 
11,00 

(+4;-2) 
tfl,l2 [mm] 10,56 10,56 10,45 

h [mm] 211,97 211,90 212,18 212,02 
210,00 

(+3;-2) 

tw,1 [mm] 7,33 7,18 7,20 

7,29 
7,00 

(+0.7;-0.7) 
tw,2 [mm] 7,23 7,37 7,45 
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Table 8-4: Measured dimensions for test HEA220_S355_L840 

 Measure 1 Measure 2 Measure 3 
Mean 

value 

Nominal value 

(Tolerance) 

bFl,u [mm] 220,42 221,19 220,98 220,86 
220,00 

(+4;-2) 

tfl,u1 [mm] 10,95 10,65 10,78 

10,80 
11,00 

(+2.5;-1.5) 
tfl,u2 [mm] 10,82 10,89 10,71 

bFl,l [mm] 220,53 220,75 220,25 220,51 
220,00 

(+4;-2) 

tfl,l1 [mm] 10,72 10,83 10,69 

10,80 
11,00 

(+4;-2) 
tfl,l2 [mm] 10,92 10,79 10,82 

h [mm] 211,52 211,84 211,35 211,57 
210,00 

(+3;-2) 

tw,1 [mm] 7,19 7,12 7,35 

7,24 
7,00 

(+0.7;-0.7) 
tw,2 [mm] 7,29 7,17 7,32 

 

Table 8-5: Measured dimensions for test HEB180_S235_L540 

 Measure 1 Measure 2 Measure 3 
Mean 

value 

Nominal value 

(Tolerance) 

bFl,u [mm] 180,33 180,11 181,00 180,48 
180,00 

(+4;-2) 

tfl,u1 [mm] 13,85 13,88 13,86 

13,81 
14,00 

(+2.5;-1.5) 
tfl,u2 [mm] 13,86 13,67 13,76 

bFl,l [mm] 180,81 181,12 180,92 180,72 
180,00 

(+4;-2) 

tfl,l1 [mm] 13,75 13,71 13,74 

13,76 
14,00 

(+2.5;-1.5) 
tfl,l2 [mm] 13,56 13,67 13,76 

h [mm] 180,26 181,17 180,93 180,79 
180,00 

(+3;-2) 

tw,1 [mm] 8,34 8,26 8,34 

8,27 
8,50 

(+1;-1) 
tw,2 [mm] 8,34 8,41 8,42 
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Table 8-6: Measured dimensions for test HEB180_S235_L810 

 Measure 1 Measure 2 Measure 3 
Mean 

value 

Nominal value 

(Tolerance) 

bFl,u [mm] 180,25 180,34 179,93 180,17 
180,00 

(+4;-2) 

tfl,u1 [mm] 13,91 13,85 13,95 

13,86 
14,00 

(+2.5;-1.5) 
tfl,u2 [mm] 13,78 13,87 13,82 

bFl,l [mm] 180,59 180,72 180,21 180,51 
180,00 

(+4;-2) 

tfl,l1 [mm] 13,62 13,71 13,82 

13,76 
14,00 

(+2.5;-1.5) 
tfl,l2 [mm] 13,85 13,72 13,83 

h [mm] 181,14 180,72 180,9 180,85 
180,00 

(+3;-2) 

tw,1 [mm] 8,25 8,19 8,29 

8,26 
8,50 

(+1;-1) 
tw,2 [mm] 8,27 8,32 8,21 

 

Table 8-7: Measured dimensions for test HEB180_S355_L540 

 Measure 1 Measure 2 Measure 3 
Mean 

value 

Nominal value 

(Tolerance) 

bFl,u [mm] 180,39 179,91 179,72 180,01 
180,00 

(+4;-2) 

tfl,u1 [mm] 13,59 13,70 13,51 

13,62 
14,00 

(+2.5;-1.5) 
tfl,u2 [mm] 13,72 13,59 13,61 

bFl,l [mm] 180,25 180,10 179,92 180,09 
180,00 

(+4;-2) 

tfl,l1 [mm] 13,46 13,59 13,58 

13,57 
14,00 

(+2.5;-1.5) 
tfl,l2 [mm] 13,62 13,58 13,57 

h [mm] 180,40 180,33 180,44 180,39 
180,00 

(+3;-2) 

tw,1 [mm] 8,31 8,15 8,23 

8,27 
8,50 

(+1;-1) 
tw,2 [mm] 8,35 8,19 8,38 
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Table 8-8: Measured dimensions for test HEB180_S355_L810 

 Measure 1 Measure 2 Measure 3 
Mean 

value 

Nominal value 

(Tolerance) 

bFl,u [mm] 180,21 180,75 180,31 180,42 
180,00 

(+4;-2) 

tfl,u1 [mm] 13,51 13,82 13,76 

13,72 
14,00 

(+2.5;-1.5) 
tfl,u2 [mm] 13,62 13,79 13,82 

bFl,l [mm] 180,59 180,72 180,21 180,51 
180,00 

(+4;-2) 

tfl,l1 [mm] 13,91 13,65 13,79 

13,76 
14,00 

(+2.5;-1.5) 
tfl,l2 [mm] 13,85 13,72 13,66 

h [mm] 181,14 180,72 180,9 180,85 
180,00 

(+3;-2) 

tw,1 [mm] 8,25 8,19 8,29 

8,26 
8,50 

(+1;-1) 
tw,2 [mm] 8,27 8,32 8,21 

 

Table 8-9 : Measured dimensions for test IPE270_S355_L540 

 Measure 1 Measure 2 Measure 3 
Mean 

value 

Nominal value 

(Tolerance) 

bFl,u [mm] 135,20 135,12 135,31 135,21 
135,00 

(+4;-2) 

tfl,u1 [mm] 9,63 9,63 9,41 

9,55 
10,20 

(+2.5;-1.5) 
tfl,u2 [mm] 9,57 9,51 9,57 

bFl,l [mm] 135,16 135,17 135,49 135,27 
135,00 

(+4;-2) 

tfl,l1 [mm] 9,64 9,59 9,53 

9,65 
10,20 

(+2.5;-1.5) 
tfl,l2 [mm] 9,72 9,56 9,84 

h [mm] 270,57 270,24 270,39 270,40 
270,00 

(+4;-2) 

tw,1 [mm] 6,90 6,70 6.85 

6,81 
6,60 

(+0.7;-0.7) 
tw,2 [mm] 6,62 6,74 6,72 
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Table 8-10 : Measured dimensions for test IPE270_S355_L810 

 Measure 1 Measure 2 Measure 3 
Mean 

value 

Nominal value 

(Tolerance) 

bFl,u [mm] 135,21 135,19 135,44 135,28 
135,00 

(+4;-2) 

tfl,u1 [mm] 9,43 9,61 9,55 

9,56 
10,20 

(+2.5;-1.5) 
tfl,u2 [mm] 9,52 9,59 9,63 

bFl,l [mm] 135,35 135,17 135,41 135,31 
135,00 

(+4;-2) 

tfl,l1 [mm] 9,96 9,82 9,73 

9,82 
10,20 

(+2.5;-1.5) 
tfl,l2 [mm] 9,83 9,65 9,92 

h [mm] 270,21 270,59 270,35 270,38 
270,00 

(+4;-2) 

tw,1 [mm] 6,85 6,63 6,71 

6,70 
6,60 

(+0.7;-0.7) 
tw,2 [mm] 6,59 6,71 6,69 

 

In the following, the material behaviour represented by the stress-strain curves is shown. The 

position of the coupons are recalled in Figure 8-5 

 

Figure 8-5: Position of the coupons 
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Figure 8-6: HEB 180 – S235 

 

Figure 8-7: HEA 220 – S235 

 

Figure 8-8: HEB 180 – S355 

0

50

100

150

200

250

300

350

400

450

500

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

σ
[M

P
a

]

ε [%]

Upper flange - left

Upper flange - right

Web

Lower flange - left

Lower flange - right

0

50

100

150

200

250

300

350

400

450

500

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

σ
[M

P
a

]

ε [%]

Upper flange - left

Upper flange - right

Web

Lower flange - left

Lower flange - right

0

100

200

300

400

500

600

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

σ
[M

P
a

]

ε [%]

Upper flange - left

Upper flange - right

Web

Lower flange - left

Lower flange - right



On the Design of Steel Members with Open Cross-Sections Subject to 

Combined Axial Force, Bending and Torsion 

Annexes 

 

615 

 

 

 

Figure 8-9: HEA 220 – S355 

 

Figure 8-10: IPE 270 – L = 810 mm – S355 
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8.3 Annex C: Sections used for the parametric study concerning the member 

resistance 

Hereafter, the sections used in the framework of the study concerning the member resistance are 

represented. In order to simplify the visualisation all sections are shown with the same scale. The 

dimensions of the sections are recalled in Table 8-11. It is recalled that the hot-rolled sections 

noted as HR possess invented dimensions. Also, it is recalled that the fillets of hot-rolled sections 

are not included in the numerical simulations. 

Table 8-11: Dimensions of studied sections 

Cross-

section type 
Notation h (mm) tw (mm) b (mm) tf (mm) 

U 

UPE 80 80 4 50 7 

UPE 200 200 6 80 11 

UPE 360 360 12 110 17 

Double 

symmetric I 

HEB 200 200 9 200 15 

IPE 500 500 10,2 200 16 

HEAA 800 770 14 300 18 

HR290.3.300.14 290 3 300 14 

HR500.4.300.20 500 4 300 20 

HR770.5.400.17 770 5 400 17 

W650.5.180.10 650 5 180 10 

W1330.10.280.15 1330 10 280 15 

W850.6.300.12 850 6 300 12 

W850.5,5.200.14 850 5,5 200 14 

Mono-

symmetric I 

Notation h (mm) tw (mm) 
bfsup 

(mm) 

bfinf 

(mm) 
tf (mm) 

IMS1 200 9 200 150 15 

IMS2 200 9 200 125 15 

IMS3 500 10,2 200 125 16 

IMS4 500 10,2 200 75 16 
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HR 500.4.300.20 

 

Figure 8-11 : Studied hot-rolled I sections 
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Figure 8-12 : Studied hot-rolled U sections 
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Figure 8-13 : Studied double symmetric welded sections 
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Figure 8-14 : Studied mono-symmetric welded sections 

 

 



Résumé 

Des barres en acier à section ouverte sont, dans la majorité des cas, soumises à une combinaison 

d’effort normal et de flexion bi-axiale. Cependant, en raison de leur utilisation elles peuvent 

également être soumises à un moment de torsion. Même si les barres à section ouverte peuvent 

être soumises à des charges de torsion en pratique, l’Eurocode 3, ne définit pas comment la 

résistance de la barre peut être déterminée dans ces conditions. Ce pourquoi, l’objectif principal 

de cette thèse est de remplir cette lacune. Pour atteindre cet objectif, le comportement des barres 

métalliques soumises à une combinaison complexe de charges est étudié par voie théorique, 

expérimentale et numérique. Tout d’abord, la résistance plastique des barres est étudiée. En cas 

de torsion, il a été montré que les barres à section ouverte possèdent une réserve plastique 

importante qui ne peut pas être mise en évidence à l’aide d’une simple analyse élastique. Afin de 

tenir compte de l’effet bénéfique de la réserve plastique en torsion, une méthode d’analyse 

simplifiée est développée et validée par des analyses numériques. Ensuite, l’interaction plastique 

entre les efforts internes est étudiée. Des essais en laboratoire ont été réalisés afin de caractériser 

l’interaction entre l’effort tranchant et le moment de flexion. L’étude est ensuite étendue à l’aide 

de simulations numériques sur des cas d’interaction plus complexes incluant notamment des 

moments de torsion. Les essais accompagnés par l’étude numérique ont permis de mettre au point 

un modèle de résistance basé sur la méthode « Partial Internal Force Method » développée dans 

le passé. La dernière partie de la thèse concerne la résistance des barres à l’instabilité. Un modèle 

de résistance incluant l’effet de l’instabilité élasto-plastique est développé pour les barres 

métalliques en présence de torsion. Cette méthode est basée sur une extension des formules 

d’interaction proposées dans l’Eurocode. Afin de franchir certaines limitations liées à cette 

méthode, un deuxième modèle de résistance est développé pour les barres en I dans le format du 

« Overall Interaction Concept ». 

 

Abstract 

Structural steel members with open cross-section are, in the majority of cases, subject to a 

combination of axial forces and mono- or bi-axial bending. Nonetheless, owing to specific use they 

may be subject to torsion as well. Even if torsional loads are of practical interest for steel members 

of open section, the European standard for the design of steel structures, Eurocode 3, does not 

contain a generally accepted design method addressing the resistance of these members. 

Consequently, the main objective of this thesis is to close the lack in the current standard. So as to 

attain this objective the behaviour of members of open section subject to a complex load 

combination has been studied theoretically, experimentally and numerically. First, the plastic 

resistance of steel members has been analysed. It has been shown that members subject to torsion 

may possess a high plastic system reserve that cannot be predicted by simple elastic analysis. So 

as to account for the beneficial effect of the plastic reserve, a simplified analysis method has been 

developed and validated with numerical simulations. After this, the plastic interaction between all 

internal forces and moments has been studied. Several laboratory tests have been performed to 

characterise the interaction between bending moments and the shear force. The study is then 

extended to more complex interaction cases including torsion by means of numerical simulations. 

The laboratory test and the numerical simulations allowed the development of a precise 

resistance model based on the “Partial Internal Force Method” developed in the past. The last part 

of this thesis was dedicated to the member resistance including instability. A resistance model has 

been developed based on the Eurocode 3 interaction equations. So as to overcome some of the 

limitations linked to this method, a second design approach is developed based on the “Overall 

Interaction Concept”. 
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