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ABSTRACT

Structural steel members with open cross-section are, in the majority of cases, subject to a
combination of axial force and mono- or bi-axial bending. Nonetheless, owing to specific use, they
may be subject to torsion as well. Indeed, crane girders are subject to torsion as the crane,
circulating at the upper or lower flange, induces horizontal loads applied outside of the shear
centre of the girder. Also, members with U section, sometimes used as edge girders, are generally
subject to torsion as the vertical load acts through the web and it is consequently applied outside
of the shear centre. Even if torsional loads are of practical interest for steel members of open
section, the European standard for the design of steel structures, Eurocode 3, does not contain a
generally accepted design method addressing the resistance of these members. Consequently, the
main objective of this thesis is to fill the gap in the current standard. So as to attain this objective
the behaviour of members of open section subject to complex load combinations is studied

theoretically, experimentally and numerically.

First, a finite element model is developed. In particular, the influence of the fillets of hot-rolled
members and the influence of the calculation imperfections are studied. This study helped to
complete the recommendations for numerical simulations that have been developed especially
for members with double symmetric I sections and that may consequently not be applied directly

to U-shaped members.

In a second step, the plastic cross-section resistance is studied based on ten laboratory tests and
an extensive numerical simulation campaign. The laboratory tests have been performed in order
to characterise the interaction between the major-axis bending moment and the shear force.
Indeed, it appeared that existing design models for this load configuration may yield highly
different results. The tests together with supplementary numerical simulations highlight the
influence of strain hardening on the shear resistance. It is shown that only a design model, which
explicitly considers the level of strain hardening in a given section, may reliably predict the shear
resistance. An example of such a design model is the “Continuous Strength Method”. The study is
then extended to plastic interaction for mono-symmetric sections and to plastic interaction
including the effect of torsion. In case of applied torsion, the member generally possesses a non-
negligible plastic torsional system reserve that cannot be accounted for by simple elastic analysis.
In order to overcome this limitation, a two-step elastic analysis method is proposed that should,
however, only be applied in practice if no specific “Serviceability Limit State” criteria are
formulated for the studied members. Based on an extensive parametric study simplified
interaction equations are proposed for the plastic cross-section resistance. Yet, as these
interaction equations become very complex in some cases, it appeared more straightforward to
adapt the “Partial Internal Force Method” to the results obtained by the numerical simulations

and the laboratory tests. The resulting design method is shown to be sufficiently precise.

The last part of this thesis is dedicated to the resistance of the member including second order
effects and the effect of elasto-plastic instability. Existing design methods for members with or

without torsion are discussed and compared to selected numerical simulations. Resulting
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limitations and inconsistencies in these methods are then analysed. In order to get more insights
into the behaviour of members subject to torsion, a theoretical study is performed based on the
assumption of elastic material behaviour. The critical elastic loads are determined and it is shown
that in some cases pre-buckling displacements should be considered. Indeed, for U-shaped
members under minor-axis bending or bi-axial bending critical loads not considering the
influence of pre-buckling displacements are not representative of the member behaviour.
Subsequently to the investigations concerning elastic instability, the elastic second order
equilibrium of the member is studied to redevelop the analytical background of available design
methods addressing the resistance of members subject to a compression axial force and bi-axial
bending. These investigations are also used to highlight the parameters that should be
additionally accounted for if the member is also subject to torsion. Based on the theoretical
developments and a second extensive numerical study covering more than 10 000 configurations
(form of the section + load case) an extension of the Eurocode 3 Part 1-1 interaction equations for
the member resistance is proposed. It is shown that the approach is sufficiently precise for
member with compact and slender double symmetric I section. The proposal becomes more
conservative for short U-shaped members due to the simple approximation of the plastic cross-
section interaction. Finally, it appears that the interaction equations are very conservative for

members with mono-symmetric [ section due to their high plastic torsional system reserve.

A second design approach is developed in the format of the “Overall Interaction Concept” (OIC)
for members with compact double symmetric [ section in order to overcome the conservatism of
the interaction equations linked to the approximation of the plastic cross-section interaction. The
OIC proposal is shown to be at least as precise as the Eurocode 3 interaction equations (even in
their initial field of application) and it is even more precise for members with short to

intermediate lengths.
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RESUME ETENDU

Les barres en acier a section ouverte sont généralement soumises a une combinaison de flexion
bi-axiale et d’effort normal. Cependant, dans certain cas, ces barres sont également soumises a un
moment de torsion. En effet, les poutres de roulement sont sollicitées par de la torsion en raison
du fonctionnement de 'appareil de levage qui induit des charges horizontales appliquées en
dehors du centre de cisaillement de la section de la poutre. Aussi, les barres en U, souvent utilisées
comme poutres de rive, sont sollicitées en torsion étant donné que les charges sont généralement

appliquées dans le plan moyen de I'ame de la section et donc en dehors du centre de cisaillement.

Actuellement, la résistance des barres soumises a de la torsion ne peut pas étre vérifiée sauf par
une analyse numérique complexe. Mais, dans la pratique des bureaux d’étude, ce type d’analyse
n’est pas facilement réalisable a cause d’'un manque des logiciels adaptés. C’est pourquoi, cette
these a pour objectif de définir un modele de résistance qui peut facilement étre utilisé dans les

bureaux d’étude. En particulier, il est envisagé:

e D’étudier le comportement des barres soumises a une combinaison complexe
d’effort par voies théorique, expérimentale et numérique ;

e De développer un modeéle de résistance fiable pour déterminer la résistance
plastique de la section ;

e De développer un modeéle de résistance fiable pour déterminer la résistance de la

barre prenant en compte I'effet de I'instabilité élasto-plastique.

Afin d’atteindre ces objectives, la théorie nécessaire pour comprendre le comportement des
barres a section ouverte soumises a de la torsion est présentée. Il est montré qu’en élasticité le
comportement est équivalent a celui des barres soumises a une combinaison d’effort axial de
traction et d'un moment de flexion. Dans la suite de cette these, nous démontrons que cette

équivalence peut étre étendue dans le domaine plastique.

Avant I'étude proprement dite du comportement des barres en acier soumises a de la torsion, un
modele numérique par éléments finis est établi. Il est apparu nécessaire d’étudier en détail la
modélisation des congés de raccordement des barres en acier laminées a chaud. En effet, les
congés ont une influence non négligeable sur la distribution des contraintes de cisaillement créées
par le moment de torsion de Saint-Venant. En plus, on leur attribue généralement un effet
favorable pour la résistance a l'effort tranchant. L'étude numérique a révélé que seule une
modélisation par éléments finis volumiques est capable de représenter fidelement la distribution
des contraintes provoquées par la torsion sur des sections laminées a chaud et ainsi seule une
modélisation volumique peut précisément prédire la résistance de la section. Les congés
possedent également une influence sur la résistance des barres si une configuration particuliére
est étudiée (configuration = combinaison entre section de la barre et chargement). En revanche,
nous avons pu montrer que l'influence des congés disparait lorsque la résistance est représentée
dans un diagramme de type x-A (facteur de réduction - élancement réduit). De plus, il est possible

de démontrer qu'une modélisation par éléments finis de type coque est capable de reproduire le



comportement en torsion des barres sans congés. Ses deux conclusions seulement ont permis
d’établir une base de données de résultats numériques contenant plus que dix milles cas de barres.
Ce grand nombre de cas, nécessaire pour étudier tous les parametres qui influencent le probléme
traité, n'a pas pu étre simulé avec une modélisation volumique en raison de la durée du calcul
numérique. Afin d’assurer la fiabilité des résultats, les deux modéles numériques (modélisation
volumique et modélisation en coque) ont été validés par rapport a des résultats expérimentaux

publiés dans le passé.

Ensuite, la résistance plastique de la section est étudiée. Cette résistance représente le cas limite
de la résistance de la barre dans son ensemble si sa sensibilité a I'instabilité élasto-plastique
devient négligeable (par exemple pour les barres courtes). C’est pourquoi il est indispensable de

porter une attention particuliére a la caractérisation du comportement plastique de la section.

Tout d’abord, nous avons analysé les modeles de résistance disponibles dans la littérature. Il a

alors été mis en évidence que :

e Leséquations d’interaction plastique proposées dans I'Eurocode 3 Partie 1-1 pour
le cas d’'une combinaison d’effort normal et de flexion bi-axiale sont plus précises
que les formules d’interaction données par la norme Américaine AINSI/AISC 360-
10 et que celles données par la norme Australienne AS 4100 ;

e La définition de l'aire de cisaillement des sections laminées a chaud differe
largement dans les trois normes citées, ce qui conduit a des résistances a 'effort
tranchant tres différentes ;

e C(Ces trois normes ne contiennent pas de modele de résistance satisfaisant pour les

sections soumises aux effets de torsion.

Afin de franchir les limitations observées, nous avons présenté deux autres modeles de résistance.
Le premier est basé sur une distribution prédéfinie des contraintes. Ces contraintes sont ensuite
augmentées itérativement jusqu'a ce que la section soit entierement plastifiée. Ce modeéle
nécessite une implémentation numérique. Le second modéle est basé sur la méthode « Partial
Internal Force Method » (PIFM) introduite dans la référence (Kindmann etal. 1999a). Les
limitations de la version initiale de cette méthode ont été analysées et nous avons proposé des
adaptations qui améliorent la précision de cette méthode pour les sections soumises a une
combinaison d’effort axial et de flexion bi-axiale. Toutefois, ces deux dernieres méthodes sont
basées sur certaines hypothéses, notamment concernant l'aire de cisaillement des sections
laminées a chaud. Par conséquent, il est apparu nécessaire de valider I'’hypothése concernantI’aire
de cisaillement par voie expérimentale. En tout, dix barres en acier laminées a chaud ont été
testées en laboratoire. Ensuite, nous avons complété les résultats par des analyses numériques
avec le modéle volumique prenant en compte l'effet supposé des congés. Ces simulations
supplémentaires ont porté sur une plus grande variété de géométries de section et de nuances

d’acier. Cette étude a permis de montrer que :
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e Le modéle de résistance a I'effort tranchant (et ainsi la définition de l'aire de
cisaillement) donné dans 'Eurocode 3 Partie 1-1 est satisfaisant pour les sections
compactes (faible rapport hauteur/largeur) ;

o L'effet des congés sur la résistance a l'effort tranchant des sections en I est
cependant faible. En effet, les sections sans congés de raccordement atteignent
pratiquement la méme résistance a l'effort tranchant que les mémes sections
possédant des congés ;

e La résistance a l'effort tranchant est en effet lié a 'écrouissage de l'acier. Par
conséquent, le modele de résistance de 'Eurocode 3 Partie 1-1 peut devenir in-
sécuritaire dans certains cas si le niveau d’écrouissage atteignable par la section
n’est pas suffisant ;

e Un modele de résistance qui tient spécifiquement compte du niveau d’écrouissage
possible dans une section donnée, comme la « Continuous Strength Method », est
capable de prédire plus fidéelement la résistance a I'effort tranchant des sections

avec ou sans COHgéS de raccordement.

L’étude est ensuite élargie sur l'interaction plastique entre effort tranchant V, et moment de
flexion autour de I'axe de forte inertie pour les sections en U et en | mono-symétrique et sur
l'interaction plastique entre effort tranchant V, et moment de flexion autour de I'axe de faible
inertie pour les sections en I mono-symétrique et doublement symétrique ainsi que pour les
sections en U. Pour chaque cas, une formule d’interaction est proposée. A la suite de ces
investigations, I'impact de la torsion sur la résistance plastique est étudié. D’abord, I'influence du
type d’analyse (élastique ou plastique) est discutée. Nous avons montré que la résistance
plastique des barres a section ouverte est fortement influencée par la réserve plastique en torsion
de la barre. En effet, I'étude numérique révele que la rigidité en gauchissement de la barre diminue
a 'endroit de la plastification de la section la plus chargée jusqu’a la formation d’'une « rotule en
gauchissement ». Apres la formation de cette rotule plastique, les charges peuvent continuer
d’augmenter alors que la torsion est reprise uniquement par les contraintes de cisaillement
associées au moment de torsion de Saint-Venant tandis qu’elle était reprise majoritairement par
la torsion non-uniforme et en particulier par le bi-moment avant I'apparition de la rotule. Ainsi, la
ruine plastique de la barre dans son ensemble n’est pas provoquée par une interaction d’efforts
internes a 'endroit le plus chargé (selon une analyse élastique) mais cette ruine est provoquée
par la plastification de la barre sur toute sa longueur due a l'interaction du moment de torsion de
Saint-Venant avec les autres efforts internes. L'augmentation de l'importance relative des
moments de torsion de Saint-Venant ne peut pas étre prédite par une simple analyse élastique de
la barre. Cependant, I’habitude actuelle qui consiste a vérifier la résistance de la section (ou de la
barre) en se basant sur une analyse élastique pour la détermination des efforts internes et en

négligeant le moment de torsion de Saint-Venant dans l'interaction plastique reste acceptable

parce que cette approche donne, pour les cas pratiques, toujours une estimation de résistance plus
faible que sila réserve plastique en torsion est considérée. Toutefois, il peut étre économiquement
intéressant de prendre en compte la réserve plastique en torsion. C’'est pourquoi nous avons

proposé une méthode d’analyse élastique en deux étapes qui est capable de représenter le
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comportement plastique des barres a sections ouvertes en torsion. Cette méthode doit étre limitée
aux barres courtes, non sensibles aux effets d’instabilité élasto-plastique et aux barres non
soumises a des critéres particuliers d’Etat Limite de Service étant donné que la mobilisation de la
réserve plastique en torsion implique aussi une augmentation non négligeable de la rotation en

torsion qui ne peut pas étre déterminée fidélement par le modeéle d’analyse simplifié.

Ala suite de I'examen du comportement plastique des barres, I'interaction plastique d'une section
sous effet combiné du bi-moment, des moments de flexion et de 'effort tranchant V, est étudiée.
Nous avons proposé des formules d’interaction « simplifiées » pour les sections en I mono et
doublement symétrique et pour les sections en U. Cependant, la complexité des expressions
développées augmente considérablement avec la mono-symétrie de la section et avec le cas
d’interaction considéré. Nous avons montré qu’une seule formule ou méme un nombre limité de
formules d’interaction ne peut pas étre développé pour couvrir une interaction entre I'effort axial,
la flexion bi-axiale et le bi-moment. Il est apparu plus prometteur d’adapter davantage la méthode
PIFM aux résultats obtenus par I'étude paramétrique concernant la résistance plastique de la
section. Les adaptions ont été validées par rapport aux résultats numériques et nous avons pu

démontrer la bonne précision de 'approche proposée.

Apres avoir mis au point un modele de résistance pour les barres (courtes) qui peuvent atteindre
leur résistance plastique théorique, nous avons abordé la résistance des barres sensibles a
l'instabilité élasto-plastique. Afin de caractériser leur comportement une large campagne de
simulations numériques a été réalisée avec I'objectif de couvrir au maximum la globalité des
parameétres qui étaient susceptibles d’influencer le probleme. Ainsi, une totalité d’environ 10 000
configurations (section + cas de charge) a été traitée. Cependant, avant de commencer cette
campagne numérique, il a été indispensable d’étudier 'influence des imperfections de calcul sur
le résultat numérique obtenu. En effet, les barres en acier possedent des imperfections physiques
concernant leur géométrie (imperfections géométriques) et concernant leur matériau
(imperfections matérielles). Ces imperfections sont en réalité de nature arbitraire et ne peuvent
donc pas étre reproduites directement lors des simulations numériques. Il est alors nécessaire de
les remplacer par des imperfections équivalentes afin d’obtenir une limite basse sécuritaire qui
couvre l'effet le plus défavorable des imperfections réelles. Dans la littérature, il existe des études
détaillées concernant les imperfections équivalentes pour les barres a section en I doublement
symétrique. En revanche, pour les sections en I mono-symétriques et particulierement pour les
sections en U, certaines informations ou recommandations ne sont pas détaillées et d’autres sont
contradictoires. Nous avons alors réalisé une étude spécifique pour caractériser 'influence des
imperfections sur les résultats des simulations numériques. Cette étude a permis d’obtenir les

résultats suivants :

e Lesrecommandations concernant les imperfections géométriques appliquées aux
sections en [ doublement symétriques ne peuvent pas étre transposées
directement aux sections en U. Il est absolument nécessaire de vérifier que les

imperfections amplifient I'effet des charges, ce qui n’est pas évident en raison de
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I'influence du bi-moment résultant de la distribution des contraintes internes (a
ne pas confondre avec le bi-moment généré par des charges de torsion).

e Les imperfections géométriques locales (de plaque) doivent étre appliquées avec
une longueur d’'onde (dans le sens de la barre) identique pour les semelles et 'ame
de la section sinon la charge ultime obtenue numériquement ne correspond pas a
une limite basse.

e Une distribution auto-équilibrée de contraintes résiduelles (due au processus de
fabrication de la barre en acier - ici laminage a chaud) a été déterminée pour les
sections en U a l'aide des conditions d’équilibre interne et par simulation

thermomécanique. Les deux approches donnent des résultats proches.

ATlissue de I'étude concernant les imperfections de calcul, nous avons discuté différents modeles
de résistance disponibles dans la littérature pour les barres a section ouverte soumises a un
chargement complexe incluant des charges de torsion. A 'aide du modele numérique validé, il a
été possible de mettre en évidence certaines limitations des approches étudiées. Afin d’obtenir
une connaissance plus détaillée du comportement théorique des barres en torsion une étude

analytique est ensuite réalisée.

L’instabilité élastique (supposant un comportement élastique du matériau) est la base d’un grand
nombre de modéles de résistance a l'instabilité des barres en acier. C'est pourquoi, nous I'avons
étudiée en détail. En particulier, nous avons montré que les déplacements de pré-flambage
(généralement négligés) ont une influence majeure sur la charge critique des barres en U fléchies
autour de leur axe de faible inertie et en flexion bi-axiale. Pour ces cas-1a, la charge critique n’est
pas représentative du comportement élasto-plastique de la barre si elle ne tient pas compte des
déplacements de pré-flambage. Aussi, nous avons pu identifier les cas dans lesquels une barre en
U peut étre sensible a I'instabilité élastique si elle est soumise a un moment M, agissant autour de
I'axe de faible inertie. L’étude analytique a également permis de déterminer les modes propres
d’instabilité élastique qui sont ensuite utilisés comme imperfection équivalente lors de I'étude
analytique de I'équilibre élastique au second ordre de la barre. Nous avons étudié 1'équilibre

élastique pour différent cas de charge, y compris des charges de torsion, avec I'objectif :

e De (re-)démontrer la base théorique du modele de résistance proposé
actuellement dans I'Eurocode 3 Partie 1-1 pour la résistance des barres en acier a
section doublement symétrique soumises a une combinaison d’effort axial et de
flexion bi-axiale ;

e D’obtenir des parametres supplémentaires nécessaires pour décrire le

comportement théorique des barres soumises, en plus, a un moment de torsion.

Cette étude théorique a mis en évidence qu’il n’est pas possible de développer un modéle
entierement analytique décrivant la résistance des barres soumises a un chargement complexe.
En effet, les hypothéses nécessaires pour obtenir des solutions analytiques sont en partie

contradictoires (par exemple pour l'approximation de la déformée et de la distribution des
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moments de flexion et de torsion). C'est pourquoi, certaines approximations doivent étre

acceptées lors du développement du modéle de résistance.

Ce modéle de résistance est développé dans la derniere partie de la thése. Tout d’abord, le modéle
existant pour les barres soumises a un effort axial et a de la flexion bi-axiale est étendu au cas de
la torsion. Aussi, nous avons élaboré des extensions nécessaires pour couvrir entierement des

sections mono-symétriques. Les extensions proposées sont :

o Suffisamment précises pour couvrir les barres a section doublement symétrique,
sensibles ou non a l'instabilité locale de voilement. La perte de précision du modele
de résistance par rapport au cas des barres soumises uniquement a un effort axial
et a de la flexion bi-axiale est négligeable pour la pratique ;

e Sécuritaires pour les barres a section en U courtes en raison de I'approximation
nécessaire de l'interaction plastique complexe pour ce type de section. Seul une
complexification considérable pourrait améliorer la précision des formules
d’interaction pour les barresen U ;

e Tres sécuritaires pour les barres a section en I mono-symétrique en raison de la
réserve plastique en torsion tres prononcée. Cette réserve plastique ne peut pas
étre prise en compte dans le cadre de la proposition mais elle influence la
résistance des barres, méme celles de longueur intermédiaire. Il pourrait étre
envisagé de prendre en compte la réserve plastique a 'aide du modele d’analyse
élastique en deux étapes proposé dans le cadre de cette these. Cependant, ce type
d’analyse n’est pas recommandé ici pour les barres a section mono-symétrique
étant donné que la rotation de torsion obtenue au niveau de charge « Etat Limite
de Service » (ELS) ne correspond pas a la rotation de torsion réelle de la barre a ce
niveau de charge (déterminée par une analyse plus précise - analyse plastique).
Par conséquent, il ne peut pas étre assuré que les critéres ELS sont réellement

respectés.

L’'imprécision observée pour le modele de résistance basé sur des formules d’interaction est
partiellement due a I'approximation de I'interaction plastique. Afin de franchir cette limite propre
aux formules d’interaction, des modéles de résistance plus globaux comme le « Overall Interaction
Concept » (OIC) ont été développés dans le passé. Cette approche exprime la résistance d’'une
barre dans le format y-A et peut ainsi lier de facon continue la résistance plastique exacte d’'une
barre courte avec la résistance a 'instabilité élasto-plastique d’'une barre longue. L'OIC a fait ses
preuves pour les profils creux. Par conséquent, il semblait intéressant d’étudier si cette approche
était également capable de représenter fidélement la résistance des barres a section ouverte. A
I'aide du développement théorique et de la base de données de résultats numériques, une
approche simple dans le format OIC a été proposée pour les barres en [ doublement symétrique
soumises a une combinaison d’effort axial, de flexion bi-axiale et de torsion. Nous avons pu
montrer que cette proposition est au moins aussi précise que les formules d’'interaction et elle est

plus précise que celles-ci pour les barres de longueur faible ou intermédiaire.



NOTATIONS, ACRONYMS AND DEFINITIONS

Definitions:
Hereafter, several terms that are referred to throughout this thesis are defined.

Equivalent structural geometric imperfection:

Geometric imperfection included in the analysis influencing the behaviour and resistance of a

structure as a whole like out-of-straightness of columns.

Equivalent geometric member imperfection:

Geometric imperfection included in the analysis of a given member generally not influencing the
behaviour of a structure as a whole (in specific cases an influence may exist). This imperfection is
applied to replace the influence of arbitrary physical geometric imperfections of members (for
example: initial curvature of the member) and to induce member instability modes during

numerical simulations (lateral-torsional buckling, flexural buckling, etc.).
Equivalent geometric (local) plate imperfection:

Geometric imperfection included in the analysis of a given member and applied to its constituting
plates (flanges and web of the section) generally not influencing the behaviour of a structure as a
whole (in specific cases an influence may exist). This imperfection is applied to replace the
influence of arbitrary physical geometric imperfections of the cross-section (for example: initial
curvature of the web) and to induce local plate instability modes during numerical simulations

(local buckling.).

Internal forces and moments:

Forces and moments transiting through a member or a structure necessary to equilibrate the

effect of the applied loads (for example: axial force, bending moments, shear force, etc.).
Internal moments:

For simplicity, the term of internal moments is used if only moments transit through a member
(including bending moments, torsional moments and the bi-moment but excluding the axial force

and the shear forces).

Serviceability Limit State:

State beyond which specified service requirements for a structure or a structural member are no

longer met.

Plastic Limit State:
State associated with plastic failure of a member or a section without considering imperfections

or geometric non-linearity.
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Plastic resistance factor:

Load factor associated with the Plastic Limit State.

Ultimate Limit State:

State associated with collapse or with other similar forms of structural failure.

Ultimate resistance curve:

Curve presented in the A-y format linking the relative slenderness | with the ultimate resistance

represented by the ratio Ru: (ultimate resistance factor) to Ry (plastic resistance factor).

Ultimate resistance factor:

Load factor associated with the ultimate resistance of a member (or structure).
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Acronyms:

The following abbreviations are used in this thesis:

CSM: Continuous Strength Method

DSM: Direct Strength Method

FEM: Finite Element Method

FOSTA: Forschungsvereinigung fiir Stahlanwendung (German steel research association)

GMNIA: Geometrical and Material Non-linear Analysis including imperfections

LA: Linear (elastic) analysis
LBA: Linear buckling analysis
MNA: Material Non-linear Analysis (not including imperfections and the effect of geometric

non-linearity)

OIC: Overall Interaction Concept

Notations

It should be noted that Eurocode 3 notations are used as far as possible in the framework of this

thesis. The main notations used here are defined below:

Capital Latin letters:

A: Area

Ap: Area contained in the contour of the mid-line of a hollow section
B: Bi-moment

Bpi: Plastic resistance to the bi-moment

Br: Resistance to the bi-moment

C: Centroid of the cross-section

Cmrt: Moment factor according to Eurocode 3 Part 1-1
Cry: Moment factor according to Eurocode 3 Part 1-1
Crmz: Moment factor according to Eurocode 3 Part 1-1
E: Young’s modulus (of steel)

Fy: Lateral point load (along y-axis)

F.: Vertical point load (along z-axis)
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It:
Iw:
L:

Lih 1cbmz:

Mp:

Ms:

Mr:

My:
Misev:
Mistvr:
My w:

MX,W,R:

My kd:
My cr:

My,cr,l:

My,cr,ll:
My mna:

My,pl:

My,Rk;

My,ult:

Shear modulus (of steel)

Polar second moment of area
Major-axis second moment of area
Minor-axis second moment of area
Torsion constant

Warping constant

Member length

Threshold length for elastic instability of U-shaped members subject to minor-axis

bending

Bending moment at member ends according to Eurocode 3 Part 1-1
Bending moment at mid-span of the member according to Eurocode 3 Part 1-1
Applied torsional moment

Internal total torsional moment

Saint Venant's torsional moment

Resistance to the Saint Venant’s torsional moment

Warping torsional moment

Resistance to the warping torsional moment

Major-axis bending moment

Design value of the major-axis bending moment

Critical major-axis bending moment for lateral-torsional buckling

Critical major-axis bending moment explicitly not considering pre-buckling

displacements

Critical major-axis bending moment explicitly considering pre-buckling displacements
Major-axis bending moment at plastic limit state obtained through MNA simulation
Plastic resistance to the major-axis bending moment

Major-axis bending moment resistance

Characteristic value of the major-axis bending moment resistance

Major-axis bending at ultimate limit state (generally obtained by laboratory test or
GMNIA analysis)
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M,
Mz,Ed:
Mz,cr:

Mz,cr,l:

Mz,cr,lI:

M, MNa:

M pi:
MZ,R:
Mz,Rk;

Mz,ult:

NEd:

Nery :
Nerz :
Ncr,t H

Nwmna:

NR:
NRk:

Nui:

Rb,L:

Ryp,L+G:

Rcr,G:

Minor-axis bending moment
Design value of the minor-axis bending moment
Critical minor-axis bending moment

Critical minor-axis bending moment explicitly not considering the effect of pre-

buckling displacements

Critical minor-axis bending moment explicitly considering the effect of pre-buckling

displacements

Minor-axis bending moment at plastic limit state obtained through MNA simulation
Plastic resistance to the minor-axis bending moment

Minor-axis bending moment resistance

Characteristic value of the minor-axis bending moment resistance

Minor-axis bending moment at ultimate limit state (generally obtained by laboratory
test or GMNIA analysis)

Axial force

Design value of the axial force

Critical axial force for flexural buckling about the major-axis
Critical axial force for flexural buckling about the minor-axis
Critical axial force for torsional buckling

Axial force at plastic limit state obtained through MNA simulation
Plastic resistance to the axial force

Resistance to the axial force

Characteristic value of the resistance to the axial force

Axial force at ultimate limit state (generally obtained by laboratory test or GMNIA

analysis)

Load factor associated with the cross-section resistance (including the effect of local

buckling) according to OIC

Load factor associated with the ultimate member resistance (including the effect of

local buckling and member buckling modes) according to OIC

Load amplification factor to attain the critical load for member instability according to
OIC (also denoted as d.cr)
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Rcr,G*:

Rcr,L:

Rel,ov:

Rel,MyN .

Rpl,MNA:

Rpl,OV:

Rppmyn:

Rult:

V.
Vz,Ed:
V2 mna:
Vopi:
Vz,pl,w:
Vz,RI
Vz,Rk:

Vz,ult:

Vy,Ed:

Vy.MNAI

Load amplification factor to attain the critical load for member instability considering
that the torsion constant I; equals 0 (=neglecting the Saint-Venant's torsional stiffness

of the member - also denoted as o)

Load amplification factor to attain the critical load for cross-section instability

according to OIC

Load amplification factor to attain the elastic cross-section resistance considering all

internal forces and moments

Load amplification factor to attain the elastic cross-section resistance only considering

the major-axis bending moment and the axial force
Load amplification factor to attain the plastic cross-section resistance according to OIC

Numerically determined load factor associated with the plastic limit state (determined
through MNA simulations)

Load amplification factor to attain the plastic cross-section resistance considering all

internal forces and moments

Load amplification factor to attain the plastic cross-section resistance only considering

the major-axis bending moment and the axial force

Numerically determined load factor associated with the ultimate member resistance
Shear centre of the cross-section

Temperature

Transverse shear force (associated with My)

Design value of transverse shear force

Transverse shear force at plastic limit state obtained through MNA simulation
Plastic resistance to the transverse shear force

Plastic resistance of the web to the transverse shear force

Resistance to the transverse shear force

Characteristic value of the transverse shear force resistance

Transverse shear force at ultimate limit state (generally obtained by laboratory test or
GMNIA analysis)

Horizontal shear force (associated with M)
Design value of horizontal shear force

Horizontal shear force at plastic limit state obtained through MNA simulation
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Vypi:
Vy_R:

Vyric

Vy,ult:

Plastic resistance to the horizontal shear force
Resistance to the horizontal shear force
Characteristic value of the horizontal shear force resistance

Horizontal shear force at ultimate limit state (generally obtained by laboratory test or
GMNIA analysis)

Notations - Small Latin letters:

bt

€o:

€z:

mz:

Horizontal dimension (used for rectangular hollow sections)
Width

Width of the flange

Eccentricity of a load

Amplitude of an equivalent geometric imperfection
Eccentricity of a load along the z-axis

Eccentricity of a load along the y-axis

Yield strength

Ultimate strength

Total height of a section (also used for Convection coefficient in paragraph 5.2.5.1)
Height of the web

Polar radius of gyration

Interaction factor according to Eurocode 3 Part 1-1
Interaction factor according to Eurocode 3 Part 1-1
Interaction factor according to Eurocode 3 Part 1-1
Interaction factor according to Eurocode 3 Part 1-1

Half wavelength of local plate imperfections

Distributed torsional load

Ratio between the major-axis bending moment M, and the plastic major-axis bending

moment resistance My

Ratio between the minor-axis bending moment M, and the plastic minor-axis bending

moment resistance M|
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n: Ratio between the axial force N and the plastic resistance Np

p: Circumference associated with the mid-line of a hollow section
r: Radius of the fillets of hot-rolled sections

rit Inner corner radius of a rectangular hollow section (RHS)
Io: Outer corner radius of a rectangular hollow section (RHS)

t: Thickness of a plate

te: Thickness of the flanges

tw: Thickness of the web

u: Longitudinal displacement of the centroid (along the x-axis)
v Lateral displacement of the centroid (along the y-axis)

Vi First derivative of v with respect to x

V! Second derivative of v with respect to x

w: Vertical displacement of the centroid (along the z-axis)

Wt First derivative of w with respect to x

Wx:  Second derivative of w with respect to x

X: Abscissa
Ve Position of the centroid of a section along the y-axis
Vst Distance between the shear centre and the centroid of a section along the y-axis

ysw:  Distance between the shear centre and the web of a section along the y-axis (used for U

sections)
Zc: Position of the centroid of a section along the z-axis
Zs: Distance between the shear centre and the centroid of a section along the z-axis

Notations - Greek letters:
o Imperfection factor

owigk:  Minimum load amplifier of the design loads to reach the characteristic resistance of the

most critical cross-section according to Eurocode 3 Part 1-1
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Oler -

Olcr:

Oler, I+

Oler, 11+

Olcr,op-

By:
Bz:

yox

A L+G-

ALT:

Xop:

A TF:
Ay

A

Est

Etn

RS

Load amplification factor to attain the critical load for member instability considering
that the torsion constant I; equals 0 (=neglecting the Saint-Venant’s torsional stiffness of

the member - also denoted as R¢.¢* in OIC notations)

Load amplification factor to attain the critical load for member instability according to

(also denoted as R, in OIC notations)

Load amplification factor to attain the critical load for member instability explicitly not

considering the effect of pre-buckling displacements

Load amplification factor to attain the critical load for member instability explicitly

considering the effect of pre-buckling displacements

Load amplification factor to attain the critical load for out-of-plane instability of a member
without considering the effect of flexural buckling about the major-axis (according to
Eurocode 3 Part 1-1)

Wagner constant considering the asymmetry of a section with respect to the z-axis
Wagner constant considering the asymmetry of a section with respect to the y-axis
Reduction factor

Reduction factor considering the effect of local buckling according to OIC

Reduction factor considering the effect of local buckling and member buckling modes

according to OIC
Reduction factor associated with lateral-torsional buckling

Reduction factor of a structural component for out-of-plane buckling according to
Eurocode 3 Part 1-1

Reduction factor associated with torsional-flexural buckling

Reduction factor associated with flexural buckling about the major-axis
Reduction factor associated with flexural buckling about the minor-axis
Emissivity used in thermal analyses

Yield strain

Strain associated with the start of strain hardening

Warping decay factor

Ultimate strain

Torsional twist
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>

>
o

7\-L+G:

7\.LT:

First derivative of the torsional twist
Second first derivative of the torsional twist

Partial (safety) factor for failure modes linked to stability
Generalized imperfection
Relative slenderness (denoted as A throughout the text)

Local relative slenderness of a member according to OIC (denoted as A, throughout the
text)

Global relative slenderness of a member according to OIC (denoted as Ar+c throughout the
text)

Relative slenderness with respect to lateral-torsional buckling (denoted as Arr
throughout the text)

Global relative slenderness of a structural component for out-of-plane buckling according to

Eurocode 3 Part 1-1 (denoted as Aop throughout the text)

Relative slenderness with respect to torsional buckling (denoted as A: throughout the
text)

Relative slenderness with respect to torsional-flexural buckling (denoted as Arr
throughout the text)

Relative slenderness with respect to flexural buckling about the major-axis (denoted as

Ay throughout the text)

Relative slenderness with respect to flexural buckling about the minor-axis (denoted as
Az throughout the text)

Poisson’s ratio
Stress

Warping function
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On the Design of Steel Members with Open Cross-Sections Subject to Introduction
Combined Axial Force, Bending and Torsion

1.1 Context

In practice, steel members are mainly subject to a combination of axial force and major-axis or bi-
axial bending. Especially, for members of open-cross section, torsional loads should be avoided as
much as possible. Yet, in some cases, the application of torsion is inevitable. For example, crane
girders (see beams painted in blue of Figure 1-1), i.e. girders supporting moveable cranes,
experience torsion as the loads resulting from the braking of the carriage are generally introduced
in the upper flange and therefore above the shear centre. Sometimes, the erection process leads
to loads applied outside the shear centre, too. A typical example is a girder supporting a pre-cast
slab that is typically supported by the flange of the cross-section. The torsional load may even
increase if it is not possible to cast the additional part of the slab symmetrically. This situation
should obviously be avoided. Also, U-shaped members are generally subject to torsional moments
as the loads are introduced through the web and consequently with an eccentricity to the shear
centre. In some cases, U sections may also be used for architectural reasons as shown in Figure
1-2. Hence, even if members of open cross-sections are less frequently used in case of torsion, this
load case is of practical interest and should be treated in design standards. However, the major
international steel design standards do not include explicit and practical recommendations for the

design of steel members subject to combined axial force, bending and torsion.

LT

Figure 1-1: Example of a crane girder



On the Design of Steel Members with Open Cross-Sections Subject to Introduction
Combined Axial Force, Bending and Torsion

Figure 1-2: Example of U-shaped member used for architectural reasons

The European standard for the design of steel structures, EN 1993-1-1 — Eurocode 3: Design of
steel structures - Part 1-1: General rules and rules for buildings (CEN 2005a) only addresses the
design of members subject to combined axial force and bi-axial bending on behalf of the well

accepted interaction equations reproduced in Eq. ( 1.1 ).
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One notices that two distinct design criteria have to be fulfilled. The first design criterion
considers the second order effects created by the axial force and the influence of equivalent
imperfection about the major-axis (mainly considered in y;) and the second criterion considers
the second order effects of the axial force and the equivalent imperfection about the minor-axis
(mainly considered in y). The second order effects arising from lateral torsional buckling are
mostly accounted for through the reduction factor yir. The interaction factors ki account for
possible plasticity (in case of compact sections - sections of class 1 and 2 following (CEN 2005a))
and consequently non-linear interaction between the internal forces. Additionally, they consider
partially the second order effects arising from the axial force and the major-axis bending moment.
The theoretical derivation of the interaction formulae is discussed extensively in references
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(Boissonnade et al. 2002), (Boissonnade et al. 2004), (Villette 2004), (Greiner etal. 2006) and
(ECCS 2006). Here it is not be discussed in detail.

The interaction factors may be determined by Annex B of EN 1993-1-1 as shown in Figure 1-3 and
Figure 1-4. A second method for the determination of the interaction factors k; is proposed in
Annex A of the same standard. However, this method is not represented here as it is applied less

frequently in the practice due to its complexity (see Annex A of this thesis).

It should be noted that independently from the method used for the determination of the
interaction factors, the field of application of the interaction formulae represented in Eq. ( 1.1 ) is

limited to:

e Members with constant cross-section along their length;

e Members with double symmetric cross-section;

e Members possessing cross-sections not sensitive to distortional buckling;
e Members without any intermediate lateral restraint;

e Members not subject to applied torsional moments.

In recent years, several research projects aimed at closing some of the gaps listed above. In
particular, one may cite references (Kaim 2004) and (Kalameya 2008) proposing an extension to
mono-symmetric I and U sections respectively. In reference (Aswandy 2007) the extension of the
interaction equations to members with intermediate lateral restraints is investigated. Finally, the
extension of the interaction equations to tapered members (members with non-constant cross-
section over their length) is studied in (Marques et al. 2014). It should be mentioned that all of the
research works cited here before concentrate on extensions based on Annex B interaction factors
as these possess a wider practical application. One should also note that the proposals given to
overcome the limits of the interaction Eurocode 3 Part 1-1 interaction formulae have not been

integrated into the current version of this design standard.
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b) Members with lateral torsional buckling

Figure 1-3: Annex B of EN 1993-1-1 - Determination of interaction factors k;; for a) members not
susceptible to lateral torsional buckling and b) members susceptible to lateral torsional buckling
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For members with sway buckling mode the equivalent uniform moment factor should be taken Cyy = 0.9 or
Cyg. = 0.9 respectively.

Cry , Caz and Cyar 7 should be obtained according to the bending moment diagram between the relevant
braced ponts as follows:
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Additionally to the interaction formulae, the current version of Eurocode 3 Part 1-1 proposes the
general method for lateral and lateral torsional buckling of structural components in order to
overcome some of the limits of the interaction formulae. This method may be represented by Eq.
(1.2)
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Conversely to the interaction equations, the general method may be applied to members of non-

>1,0 (1.2)

constant cross-section and intermediate lateral restraints. However, it is limited to combined
major-axis bending and axial force. Consequently, members subject to an additional minor-axis
bending moment or torsional moments cannot be treated. Therefore, this method seems even
more limited than the interaction formulae represented in Eq. ( 1.1 ) if their extensions proposed
in (Kaim 2004), (Aswandy 2007), (Kalameya 2008) and (Marques et al. 2014) are considered.
Also, the general method is limited to sections symmetric about their minor-axis. Hence, the

stability of U-shaped members cannot be verified using this method.

The two methods mentioned before should be applied to verify the resistance of the member
including member second order effects and member imperfection. This verification becomes
relevant when the members are slender and fail before they attain the resistance of the most
loaded cross-section. However, even for the cross-section resistance, i.e. the resistance of short
members that do not fail by member instability, Eurocode 3 Part 1-1 does not give clear design
rules for compact sections likely to attain full yielding in case of combined internal forces

including torsion. Due to this lack of provisions, the cross-section design is limited to the elastic
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resistance. For [ sections a proposal has been made by Mirambel in reference
(Mirambell et al. 2016) to close this gap. This proposal is discussed in detail in Chapter 4 of this
thesis. Anyhow, it is not applicable to U sections and therefore cannot completely eliminate the

restrictions of Eurocode 3 Part 1-1.

Consequently, it may be concluded that even if some research effort has been spent to extend the
field of application of the Eurocode 3 Part 1-1 methods, up to date there exists no practical

approach for the design of members of open cross-section subject to torsion.

Other major international standard propose different interaction formulae. Nevertheless, the field
of application is very close to the European interaction equations. As an example, the American
national standard ANSI/AISC 360-10 may be cited. For double symmetric cross-sections, it
proposes the following interaction equation for combined axial compression and bi-axial bending

(the notations of Eurocode 3 Part 1-1 are used as far as possible):
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It should be noted that the moments My g4 and M, g4 should include global and member second
order effects. The effect of local instability is considered through a reduction of the plastic cross-
section resistances Nrk, Myrk and Mzrk. In case of mono-symmetric or unsymmetrical cross-
sections the maximum resulting von Mises stress, including second order effects, should be less
than the yield strength. Hence, a possible plastic resistance is not accounted for leading to very
safe-sided results for compact sections. Moreover, the case of applied torsional loads is not treated

explicitly.

Only two major international design standards have been rapidly presented here. However, it
appears that the resistance of members subject to torsion in not satisfactorily addressed in any

major steel design standards.

In the past, several design approaches were proposed for the resistance of members subject to
torsion as summarized in Table 1-1. Yet, except the proposal entitled “Berlin” none of them has
been incorporated in Eurocode 3. The proposal entitled “BSI and Nethercott” was recommended
in the former British standard BS 5950-1 (BSI 2000). Nonetheless, it was not considered for
Eurocode 3. In Chapter 5 of this thesis, the proposals will be analysed in detail. Still, even without
detailing these approaches further on, it may be seen that none of them possesses a field of
application sufficiently wide to be applied to I- and U-shaped members subject to combined axial

force, bi-axial bending and torsion.
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Probosal Field of application
h p Shape of the Limitations
(reference) oction sl arae
BSI and Nethercott . .
(Nethercott et al. 1989) [ and U sections My, M, Mt No axial force N
Aachen [ . . .
(FOSTA 2004) [ sections N, My, M,, Mt Not applicable to U sections
Aachen I Iand U sections N (for I sections), | No axial force in case of mono-
(Stangenberg 2007) My, M, Mz symmetric sections
Aachen 111 . . :
(Naumes 2009) [ sections N, My, M,, Mz Not applicable to U sections
Berlin® . No axial force
(Glitsch 2008) I sections My, My, Mr Not applicable to U sections
Eindh My, Mt - loads No axial force and minor axis
(de tlou‘:‘zl(e)gn U sections applied in the bending
web plane Not applicable to I sections

‘included in Annex A of EN 1993-6 (CEN 2007b)

Last, it seems interesting to mention that “global design methods”, as the Direct Strength Method
DSM and the Overall Interaction Concept OIC, have become more and more popular in the last
decade compared to interaction formulae as the ones proposed in Eurocode 3 Part1-1 or

ANSI/AISC 360. These global design approaches generally promise:

e Full continuity between cross-section and member resistance;
e Mechanically consistent and comprehensible resistance predictions;
e Simple and direct design equations.

Recently, several research projects promoted OIC especially for tubular cross-sections as
illustrated in references (Taras2011), (Boissonnadeetal.2013), (Li2014), (Nseir 2015),
(Boissonnade et al. 2017). Thanks to these studies a fully continuous and consistent design
approach for the resistance of rectangular and circular hollow sections under combined axial force

and bi-axial bending has been developed. The principle of OIC is illustrated in Figure 1-5.
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Figure 1-5: Main principle of OIC
As shown in Figure 1-5, OIC is based on 7 steps that are:

e Determination of the load amplification factor leading to the plastic limit state of
the cross-section: Ry

e Determination of load amplification factor leading to local instability of the cross-
section: R L.

e Determination of the cross-section slenderness: A,

e Determination of the cross-section resistance reduction depending on the cross-
section slenderness: y.

e Determination of load amplification factor leading to member instability: Rerc

e Determination of the member slenderness: Ai+c

e Determination of the member resistance reduction depending on the cross-
section slenderness: yL+c

Even if the OIC seems promising, up to date open cross-section have been treated in a rather
limited extend in references (Kettler 2008) and (Taras 2011) addressing the cross-section and in-
plane member resistance of double symmetric I sections. In particular, applied torsion and out-
of-plane instability including torsional twist (flexural torsional buckling, lateral torsional) have

not been in the centre of OIC research yet. Also, the resistance of members of mono-symmetric
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cross-sections has not been treated. Therefore, it seems that an important research effort is still
necessary to extend OIC to open cross-sections and complex combination of internal forces and

moments as well as interaction between different modes of instability.
1.2 Objectives and scope of the thesis

The three main objectives of this thesis directly result from the limitations of the steel design

standards outlined before:

e Study of the behaviour of members subject to combined axial compression, bi-axial
bending and torsion.

e Derive design provisions addressing the plastic cross-section resistance of open
sections subject to combined axial compression, bi-axial bending and torsion.

e Derive design provisions addressing the resistance of members subject to
combined axial compression, bi-axial bending and torsion.

Moreover, it is intended to propose rules that represent an extension of the well-accepted design
provisions given in Eurocode 3 Part 1-1 in order to facilitate the acceptance for practical design
engineers. Yet, the possibility of design rules based on a global design concept as the OIC is studied
as this approach may contribute to the simplification and unification of the design provisions

currently available in steel design standards.

However, due to the large field of parameters that will be included in the study performed to
achieve the objectives of this thesis the scope of the research presented hereafter had to be limited

to:

e Double symmetric I sections whose cross-section may be sensitive to local plate
buckling or not (class 1 to class 4 sections in the terminology of Eurocode 3 Part 1-
1). I sections may be fabricated from hot rolling or welding.

e Compact welded mono-symmetric I sections and hot-rolled U sections of type
UPE always attaining their theoretical plastic cross-section resistance if member
instability becomes negligible (class 1 or class 2 in the terminology of

Eurocode 3 Part 1-1).

1.3 Structure of the thesis

This first chapter has given a short introduction showing that the resistance of members subject
to torsion in addition to axial compression and bending is not treated satisfactorily in the current

design standards. In consequence, three main objectives for this thesis are formulated.

Chapter 2 addresses briefly the theory of torsion necessary to understand the behaviour of
members with open cross-section. The difference to members with closed sections is highlighted

and it is shown why open cross-sections may be sensitive to torsion.

10
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In order to develop a comprehensive design approach covering the resistance of I- and U-shaped
members, an extensive numerical study is necessary. The Finite Element model used for this
purpose is presented in detail in Chapter 3. Different modelling techniques are investigated in
order to represent as precisely as possible the physical member. The Finite Element model is then

validated with reference to analytical results and physical tests found in the literature.

Chapter 4 is dedicated to the plastic cross-section resistance and interaction relevant for the
design of short and compact members. Especially global design methods (for example OIC)
employ the plastic cross-section resistance also as key parameter for the design of long and
slender members. Consequently, the plastic cross-section resistance under combined loading is
of importance when the member resistance is addressed. In a first step design approaches found
in standards and in the literature are reviewed and discussed. This analysis leads to several
questions. In order to obtain the elements necessary to give satisfactory answers, a campaign of
physical tests as well as an extensive numerical study are performed and the results are

presented. Finally, a practical design approach is proposed and validated.

Chapter 5 then addresses the member resistance including second order effects and the effect of
elasto-plastic instability. The design proposal developed in this chapter is based on an extensive
numerical study. In order to ensure the reliability of the numerical simulations the influence of
assumed calculation imperfection on the obtained results is studied. After this, the design
proposals given in Table 1-1 are discussed in detail. With the help of the validated finite element
model, limitations and inconsistencies of these design approaches are highlighted.

So as to develop a design approach covering members of open cross-section under a complex load
combination including torsion, it appears necessary to study their behaviour theoretically. In a
first step, analytical solutions for the elastic critical loads of I- and U-shaped members are recalled
and extended. After this an analytical study derives second order internal forces and moments for
members in combined axial force, bi-axial bending and torsion. These analytical solutions are
helpful to identify which parameters are essential to describe the member stability. Thereafter,
the data basis of numerical simulations, covering more than 10 000 cases, is used for the
development of a simple design model. Indeed, so as to facilitate the acceptance of the design
model in practice, it is intended to propose an extension of the Eurocode 3 Part 1-1 interaction
equations addressing the member instability. This extension should not significantly increase the
complexity of the interaction equations in their current field of application. Consequently, a
certain loss of precision is explicitly accepted. Nonetheless, a second design approach is
elaborated in the OIC format so as overcome some limitations of the Eurocode 3 Part 1-1

interaction equations.

Finally, Chapter 6 summarizes the original contributions of this thesis and details future research

needs required to extend the results of this thesis.

11
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1.4 Assumptions and definitions

The developments presented in the framework of this thesis are based on the system of axis
shown in Figure 1-6.

0, = W xi T 0, = W x
. ﬁ;v,x ey =Vx
\% Z
™S \al € X, U
Wi g |,
Y+

Figure 1-6: Reference system

It has to be insisted on the definition of positive displacement and internal forces and moments as
the sign convention is of high importance for non-symmetric cross-sections. Hereafter it is
assumed that:

e Compression stresses are negative and tension stresses are positive;

e A negative axial force creates tension stresses in the section;

e A positive major-axis bending moment creates compression stresses in the upper
flange (z > 0);

e A positive minor-axis bending moment creates compression stresses for positive
y-coordinates (tips of the flanges for U section and right part of the flange for I
sections - see Figure 1-6);

e A positive bi-moment (see Chapter 2) creates compression stresses if both
coordinates y and z are positive, i.e. at the right tip of the upper flange, or negative,
i.e. at the left tip of the lower flange.

Figure 1-7 represents the positive directions of the bending moments and the bi-moment. It has
to be noted that the web of the U section is always supposed to be situated on the left of the
centroid (y < 0).

12
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Figure 1-7: Definition of positive moments
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2.1 General

The present Chapter provides a brief review of the elastic theory of torsion. However, the
discussion represented hereafter concentrates on points that necessary to understand the results
presented in Chapters 4 and 5. Very detailed presentations on the theory of torsion may be found
in many publications as for example in (Vlassov1962), (Tmoshenko etal.1970)
(de Ville de Goyet 1989), (Friemann et al. 2005) and (Bazant et al. 2010).

2.2 Stresses and internal forces and moments resulting from torsional loads

The two main terms to be distinguished in the following are twisting and warping. Figure 2-1

represents both for the example of an I section.

a) Torsional twist ¢ b) Warping 1
Figure 2-1: Representation of a) torsional twist and b) warping

For a double symmetric [ section warping generates axial displacements of the flanges (associated

to rotation V) in Figure 2-1). Members loaded by constant torsional moment and possessing no

restraint to these axial displacements, or warping, along their length and at their ends are
exclusively subject to “pure” or “Saint Venant’s” torsion, denoted as Mys.v hereafter. In this case
the cross-sections along the member are only subject to shear stresses. The associated stress
pattern depends on the cross-section shape as recalled in Figure 2-2. It may be observed that the
shear stresses are practically uniformly distributed over the thickness of a thin walled closed
cross-sections. Indeed, there is a small variation of the shear stresses through the thickness. In
case of open cross-section, the shear stresses resulting from Saint Venant’s torsion vary linearly
over the thickness. Consequently, the lever arm of the stress resultants is only of about half of the

16
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plates thickness whereas it is equal to the distance between the plates of the rectangular hollow
section (a and b in Figure 2-3) leading to a much higher resistance to Saint Venant’s torsion this
type of section (see Table 2-1).

DR e
N 7 i
& “
& ”
I w 7TVZP+T
% w
)M\ w%:
== N——— N ‘
a) b)

Figure 2-2: Shear stress distribution in open and closed cross-sections

As mentioned the Saint Venant’s torsional moment that can be resisted by a rectangular hollow
section (RHS) may be calculated in a simplified manner by multiplying the resulting forces in each
plate with the lever arm accordingly to Figure 2-3 and Eq. ( 2.1).

|<

Figure 2-3: Calculation of the Saint Venant’s torsional moment resistance for RHS

f / f
MStVR:Tyxaxbxt+—yxb><axt=2A =L (2.1)
= A &
and
Ap:axb (22)

The product standard for structural hollow sections EN 10210-2 (CEN 2006) gives the following
expression considering the through thickness variation of the shear stresses. In Eq. ( 2.4 ), r, and
ri are the outer and the inner corner radius, respectively.
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For a double symmetric I sections one may obtain a simplified expression of the plastic Saint
Venant’s torsional moment neglecting the fillets as given in Eq. ( 2.5 ) (see also reference
(Ludwig 2014)).

M gz =£ltj (3b-tf)+ iltfv(3hw +zw) (25)

V33 J36

The exact plastic Saint Venant’s torsional moment resistance of hot-rolled I sections may be
determined based on Finite Element calculations or with reference (Naida 1923). Figure 2-4
represents a comparison for the most commonly used European I profiles. For cross-sections of
type HEAA, the fillets may increase the Saint Venant’s torsional moment resistance by up to 30%
as the contribution of the slender webs to the plastic Saint Venant's torsional moment resistance
is rather low. Inversely, for the very compact sections of type HEM the relative contribution of the
fillets is only of about 7% because the compact web contributes in a greater amount as for the
other section series.

1.35 X IPE series
—~ 130 HEAA series
\_; ' HEA series
o
T 1.25 HEB series
2
2 A HEM series
> 1.20 X
23 M X x X X
~ 1.15 < X & X X X
% X X X
= X X
= 1.10 A s A
g A
;105 ASTAA™AMAL LA A A A a sy A 4 1
s L
1.00
0 200 4 0 800 1000

00 h (mm) 60

Figure 2-4: Contribution of the fillets to the plastic St. Venant's torsional moment resistance

Even if the fillets may have a non-negligible influence on the plastic Saint Venant’s torsional
moment (and on the torsional constant ;) of hot-rolled open cross-sections, their Saint Venant’s
torsional stiffness is much less than those of closed cross-sections as shown in Table 2-1. This

table compares selected hot-rolled I sections and rectangular hollow sections possessing
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approximatively the same major-axis second moment of area I;. Obviously, rectangular hollow
sections are much more efficient to resist torsion as demonstrated by the ratio of the plastic Saint
Venant’s torsional moment resistances Myscv,piris/Mxsev,pli- In case of pure Saint Venant'’s torsion,
the torsional constant I; also highly influences the behaviour of the member as the torsional twist

@ only depends on its value, the value of the torsional moment and the member length as

represented in Eq. ( 2.6 ) and Eq. ( 2.7).

M

x,St.V
== (2.6)
Yx=7ar
M, sy
=22 (2.7)
4 GI

t

Here before, it has been insisted on the case of Saint Venant's torsion. However, in general, Saint
Venant's torsion is of theoretical nature as it supposes that cross-section warping is not restrained
along the member or at its ends and that the torsional moment is constant along the member. In
practice, load introduction or boundary conditions (fixed end of cantilevers) always represent a
certain degree of warping restraint. Yet, as warping displacements are very low for closed cross-
sections or T sections, pure torsion may be considered in these cases. Conversely, warping
displacements may not be neglected for I or U sections. In Figure 2-1, it may be observed that
warping can be associated to differential longitudinal displacements of the parts of the cross-
section. A warping restraint therefore induces axial stresses into the cross-section. In this
situation torsion is carried partly through the shear stresses arising from Saint Venant’s torsion
and by axial stresses (and shear stresses resulting from the variation of these axial stresses over
the member length) resulting from warping torsion (also referred to as restrained torsion). The
distribution of the axial and shear stresses resulting from warping torsion are schematically
represented in Figure 2-5 for an [ section and Figure 2-6 for a U section. Yet, it may be noted that
the shear stresses resulting from restrained torsion are rather low and may be neglected in
practice when the cross-section resistance under combined bending, axial force and torsion is
studied (see Chapter 4). Inversely, the axial stresses have to be accounted for in the interaction.
They may be determined with Eq. ( 2.8 ). The concept of the warping function o, necessary for the
determination of the warping constant I, and the stress distribution in the cross-section is

recalled in paragraph 2.5.

B
o =—0 2.8
T (2.8)
and / =Iw2dA (2.9)
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I profiles Rectangular hollow sections RHS Differences
My st pl My stv,pl

vame | em) | oy | 629 | oy | vame | pem) | ) | | O e | |
IPE 200 1943 6.98 1.58 22.4 200x100x6.3* 1829 1475 28.3 28.1 211 17,9 1,25
IPE 550 67120 123 14.42 106 mooxwm?&m.m 65813 64388 445 151 523 30,9 1,42
HEA 300 18260 85.17 11.07 88.3 wmoxHMoxH%N 17254 19189 154 103 225 13,9 1,17
HEA 900 422100 736.8 54.75 252 800x350x25** | 429183 294730 1544 426 400 28,2 1,69
HEB 240 11260 102.7 11.99 83.2 400x100x6.3* 10813 3565 58.3 479 34.7 4,87 0,58
HEB 700 256900 830.9 57.04 241 700x350x20** | 253053 203311 1119 314 244 19,6 1,30
HEM 220 14600 315.3 24.79 117 wooxmmoxum.* 14273 15675 172.46 91.9 49.7 6,96 0,79
HEM 600 | 237400 1564 85.21 285 750x350x15** | 232084 172392 942 250 110 11,1 0,88

*see reference (CEN 2006)
**free profiles not included in cross-section catalogues
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a) Axial stresses b) Shear stresses

Figure 2-5: Distribution resulting from restrained torsion for an | section

b

a) Axial stresses b) Shear stresses
Figure 2-6: Distribution stresses resulting from restrained torsion for a U section

Figure 2-5 shows that the axial stresses resulting from restrained torsion mostly transit through
the flanges of I sections. The web is not subject to these axial stresses and may consequently
always carry additional stresses generated by a supplementary axial force or major-axis bending
moment. Inversely, the stresses resulting from warping torsion transit through the flanges and
the web of U sections. Therefore, if these sections are subject to a bi-moment equal to the plastic
bi-moment, no additional axial force or bending may be resisted. Obviously, the stress distribution

directly influences the plastic cross-section resistance studied in Chapter 4 of this thesis.
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2.3 Amplitude of Saint Venant’s and warping torsion for open cross-sections

Through the previous paragraph, the two concepts of Saint Venant’'s and warping torsion have
been recalled. Eq. ( 2.10 ) shows that the total torsional moment may be expressed as the sum of

both torsional moments.

M, =M gy +M,, (2.10)

X,tot

Eqg. (2.10 ) may also be expressed in terms of the derivatives of the torsional twist:

M., =Gl —ElLop,.. (2.11)

As in Eq. ( 2.10 ) the first term of the right hand side of Eq. ( 2.11 ) corresponds to the Saint
Venant's torsional moment and the second term corresponds to the warping torsional moment.
By rearranging Eq. ( 2.11 ) as shown in Egs. ( 2.12 ) and ( 2.13 ), it is possible to derive the
parameter ¢ indicating the relative importance of warping torsion to the total torsional moment
as represented in the Figure 2-8 and Figure 2-9. It should be noted that the parameter &: is specific

for a member of a given cross-section and length.

M., I*
xol oy (2.12)
G]t go,x 8,2 ¢,m
Gl
g =L EIZ (2.13)

So as to illustrate the influence of &, we consider the example of a member of HEB 400 cross-
section. The length of the member is varied in order to vary the parameter &.. It is supposed that
the member possesses fork end supports and is loaded by a torsional moment Mr of 10 kNm

applied at mid-span as represented schematically in Figure 2-7.

Figure 2-7 : Studied member subject to an applied torsional moment

Figure 2-8 and Figure 2-9 show the distribution of the torsional moments and the distribution of
bi-moments depending on the member length and consequently depending on the parameter &..
Obviously, the distribution and the value of the total torsional moment My, composed of the
Saint Venant’s torsional moment M.y and the warping torsional moment My, does not depend
on the member length. On the contrary, Figure 2-8 clearly demonstrates that the relative
importance of the warping torsional moment decreases with increasing member length (and
increasing parameter g;). For short members (L =200 cm for & =1,20) the warping torsional

moment attains nearly 90% of the total torsional moment at the member ends. For longer
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members the warping torsional moment vanishes near the fork supports. At mid-span, where
warping is restrained (warping has to vanish due to symmetry conditions), the warping torsional

moment equals the total torsional moment in all cases.

6.00 D Mx,tot = Mx,St,V + Mx,w
/ = Myw—€t=1,20
4.00 My w — €t = 3,60
My w — €¢=9,59
2.00 ’
(S
g 0.00
= 0.p0 0.20 0.40 0.60 0.80 1.00
=
-2.00
-4.00
/
-6.00
x/1(-)

Figure 2-8: Distribution of warping torsional moment and the total torsional moment depending on
parameter &

Figure 2-9 represents the distribution of the bi-moment along the member length. As expected,
the bi-moment vanishes at the member ends because the fork supports do not generate a warping
restraint. At mid-span the bi-moment attains its maximum. The exact distribution of the bi-
moment between the member ends and mid-spans depends on the parameter & again. With
increasing & the variation of the bi-moment becomes more and more non-linear. For a value of &
close to 10 (L = 1600 cm), the bi-moment is concentrated at mid-span near the warping restraint

and the other parts of the member are only subject to low bi-moments.

9.00 —B-&=1,20

8.00 B—¢&t=3,60

B-¢e:=9,59

7.00

6.00

5.00

4.00 /\

3.00

B (kNm?)

2.00

1.00

0.00

0.00 0.20 0.40 0.80 1.00

0.60
x/L(-)
Figure 2-9: Distribution of bi-moment depending on parameter &;
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As an increasing value of parameter ¢ indicates decreasing influence of warping torsion, & is
referred to as warping decay factor hereafter. For practical lengths, members with open cross-
section generally possess rather low values of the warping decay factors (between 1 and 10).
Consequently, they are always subject to mixed torsion, i.e. a combination between Saint Venant’
s and warping torsion whose relative magnitude results from the exact value of the warping decay
factor. Contrariwise, due to their high Saint Venant’s torsional stiffness, members with closed
cross-sections possess warping decay factors highly exceeding 10. Warping torsion may therefore
be neglected in general. The same is true for T sections as their warping constant is very low (see

paragraph 2.5).

2.4 Equivalence between members subject to torsion and members subject to
bending and tension axial force

First, the member represented in Figure 2-10 is considered. It is assumed that this member
possesses fork end supports and that it is subject to a distributed torsional load my. Admittedly,
this loading condition is of pure theoretical nature but it is used to highlight an important point
concerning the behaviour of members subject to torsion.

m
\/—»—»—»—»-x-—»—»—»\/

A\ A

| L

Figure 2-10: Member on fork end supports subject to a distributed torsional load
For the given loading and support conditions, the behaviour of the member may be characterised

with the differential equation provided hereafter:

X

Elo..—GlLo, =m (2.14)

It appears that Eq. ( 2.15 ) is of the same format as the differential equation characterising the

member subject to a distributed vertical load represented in Figure 2-11.

lllli&liﬁH.llHd
X X—
/\ /\

|

Figure 2-11 : Member on point supports subject to a distributed vertical load

The differential equation characterising the in-plane second order equilibrium of the member
of Figure 2-11 is recalled in Eq. ( 2.15).

24



On the Design of Steel Members with Open Cross-Sections Subject to Basic Theory of Torsion

Combined Axial Force, Bending and Torsion

EI w (2.15)

Yo Lxxxx

+ Nw,xx = qz

Similarly to the case of members in torsion, it is possible to define the parameter ey specific for a

given member (it is recalled that an axial compression force is defined as positive here):

-N

2.16
B (216)

gy, =L
By comparing Eqgs. ( 2.14 ) and ( 2.15 ), one may remark that the vertical load corresponds to the
torsional load, the axial tension force corresponds to the Saint Venants’ torsional stiffness of the
member and the bending stiffness corresponds to the warping stiffness of the member. Moreover,
it is possible to develop an equivalence between the internal forces and moments as shown in
Table 2-2.

Member in bending Member under torsion

Bending moment: M | = El w

Bi-moment: B=-El ¢

Shear force: V, = EI w .

Warping torsional moment: M, =—-El ¢

Resulting vertical force (in the global

Total torsional moment:

coordinate system):

Vz,Gl()b = Elyw,xxx - Nw,x M

x,tot

= _E]wgo,xxx + G]I¢,x = Mx,w + Mx,St.V

So as to illustrate the results of Table 2-2, it is proposed to study the example of a member of

IPE 500 section. Two cases are distinguished:

1) The member is subject to a uniformly distributed torsional load my of 1 kNm/m
generating a combination of bi-moment B, warping torsional moment My and
Saint Venant’s torsional moment Mystyv.

2) The member is subject to a uniformly distributed vertical load g, generating a

combination of major-axis bending moment and a shear force. Additionally, the

member is subject to an axial tension force N.

The behaviour of these two members is similar if the two specific parameters & and eu are equal.

Consequently, the axial tension force necessary to equalize &; and eu is determined as follows:

(2.17)

25



On the Design of Steel Members with Open Cross-Sections Subject to Basic Theory of Torsion
Combined Axial Force, Bending and Torsion

1
N=-GI =+ (2.18)

t
w

For the studied member of IPE 500 section the axial tension force is equal to N = -28297,6 kN. The
two members are studied for different member lengths so as to highlight the influence of the
parameters & and em. The studied lengths and the corresponding values of & and ew are given in
Table 2-3.

Length (mm) Factors ¢ and em
200 1,057
500 2,642
1000 5,283
2000 10,566

Both members are calculated through an elastic analysis to obtain the resulting internal forces
and moments. It should be noted that the member subject to torsion is analysed without
considering second order effects (not existing for this case) whereas the second order effects are
accounted for for the member in bending. The obtained distribution of the bi-moment and the
major-axis bending moment are represented in Figure 2-12. As in paragraph 2.3, Figure 2-12
clearly shows the influence of the warping decay factor &.. Again, the relative influence of the bi-
moment decreases with the length of the given member (and hence with increasing &;). For the
shortest member the distribution is nearly parabolic and the maximum bi-moment can be
estimated with m,L?/8. The difference between the obtained value and the value calculated
precisely is only of about 10%. Inversely, the relative value of maximum bi-moment (with
reference to myL?/8) decreases rapidly and it attains only approximatively 7% of the value m,L?/8
for the longest member. Also, one observes that the flatness of the curves increases with
increasing warping decay factor. The observed torsional behaviour of the member has already
been described in paragraph 2.3. Figure 2-12 reveals that the second order behaviour of members
subject to tension axial forces and bending is identical to the behaviour of members under torsion.
Indeed, the relative value of the major-axis bending moment is exactly equal to the relative value
of the bi-moment. The major-axis bending moment is normalised with reference to q,L?/8
representing the maximum first order moment M,. The flattening of the curves is linked to the
major-axis bending moment created by the axial tension force. Understandingly, this moment is
lower near the end supports as the vertical displacement is low. Inversely, the effect of this second
order moment is very high at mid-span as the vertical displacement obviously attains its

maximum there.
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Figure 2-12: Distribution of the bi-moment and the major-axis bending moment along the
members

It seems also interesting to study the evolution of the Saint-Venant’s torsional moment along the

members of different lengths. The results are represented in Figure 2-13. Again, it is clear that the

relative influence of the torsional moment increases with increasing member length and

increasing warping decay factor &:. It is shown that the Saint-Venant’s torsional moment can be

linked to the axial tension force and more precisely to the resulting vertical force (in the global

coordinate system) generated by the vertical displacement and the axial force. The equivalence

between the in-plane second order equilibrium of member in bending and the equilibrium of

members subject to torsion has been established in elasticity for a long time. In paragraph 5.6.4 it

is shown that the equivalence may also be applied in the plastic domain.

1.00

——M, i, ,/m,L/2) - L=200mm ® Nw'/(ql/2)-L=200mm
== M, .v/M,L/2) - L=500mm Nw'/(qL/2) - L = 500mm
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= 1.00 ——M, /M, L/2) - L=2000mm A Nw'/(qL/2) - L=2000mm
~ 0.80 4
—
o
< 0.60
3 040 Lo
o~
5 0.20 ~ X
— 0.00
N ]
3 -0.200p0 0.20 0.40 ~yy 0.80
£ -040 ———
"> 060
&
> -0.80
=
-1.00
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Figure 2-13: Distribution of the Saint-Venant’s torsional moment and Nw  along the members

In the previous paragraphs, the warping stiffness has been referred to several times. The warping

stiffness and the warping function are also important terms in Chapters 4 and 5 addressing the
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cross-section and member resistance for members of I and U sections. Consequently, it seems

interesting to recall the derivation of the warping function in the next paragraph.
2.5 Warping function for open cross-sections

Let us consider the open cross-section of arbitrary shape represented in Figure 2-14. The centroid
of the cross-section is denoted as C and its shear centre is denoted S. Also, the distance rs between
the shear centre and the tangent to the cross-section passing through the point P is represented.
Along the cross-section the position of the point P is measured with the length coordinate s.
Additionally, the point P may move axially along the x axis and perpendicular to the mid-line of
the cross-section. The axial displacement is denoted as “u” and the displacement perpendicular to

the sections mid-line is denoted as &.

It is assumed that the shear strains in the middle surface of the walls of the cross-section is

negligible (Wagner’s assumption). This may be expressed by:

:0—@4_6_5

_ (2.19)
Vs Os Ox

Let us now consider that the cross-section is subject to a torsional rotation ¢. It is assumed that

the cross-section shape does not change after deformation (cross-section is rigid but free to warp).

Consequently, the displacement £ may be expressed as shown in Eq. ( 2.20 ).

S=or, (2.20)

In order to obtain the longitudinal displacement of the point P, Eq. ( 2.19 ) is rearranged and

integrated with respect to s.
u:—j§¢h+ua (2.21)

In Eq. (2.20), uais an integration constant and physically represents the axial displacement at the

origin of the length coordinate s.
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Eq. (2.20) is now introduced into Eq. ( 2.21 ) to obtain:

u:—jrsdsqo’x +u, (2.22)
At this point the warping function is introduced and defined as:

o= j r.ds (2.23)

It has been considered that the cross-section is only subject to a torsional rotation. As no axial
force is applied, the resultant of axial stresses has to be equal to zero. Based on this condition, the
integration constant u, can be assimilated to the mean value of the warping function over the

cross-section as demonstrated in reference (Vlassov 1962). One obtains:

u, =%J‘I;ﬁqudA:%Iqut ds ds (2.24)

A generalized form of the warping function may be introduced as:
— 1
- - 2.25
w J.rxds A“.rst ds ds (2.25)

For simplicity the generalized warping function is denoted as o hereafter. Also, it has been shown
in reference (Vlassov 1962) that the integration constant vanishes if the origin of the length
coordinate s is chosen at the centre of torsion and therefore, following the theorem of Maxwell-

Betti, at the shear centre of the cross-section.

The generalized warping function is represented in Figure 2-15 for [ and U sections studied in the

framework of the present thesis.
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Figure 2-15: Warping function for | and U sections

Here before it has been implicitly assumed that the cross-section may be assimilated to its mid-
line in order to derive the warping function. For the majority of practically used cross-sections, as
for I and U sections, this is sufficiently precise. Nevertheless, in some cases this assumption may
lead to non-negligible errors. In fact, in reference (de Ville de Goyet 1989), it is shown that the
complete warping function may be expressed as the sum of global warping (first term in Eq. ( 2.26
)) and local or secondary warping (second and third term in Eq. ( 2.26 )), i.e. differential
longitudinal displacements over the thickness of a cross-section’s plate.

a):J.rsds+(s—1;)s,+S, ﬂwﬂb)—s (2.26)
h &2
JLCOS ( 5 J

and y2 =1—22 (2.27)

Figure 2-16 illustrates global and local warping of an I section.
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a) Global warping b) Local warping
Figure 2-16: Global and local warping of an | section

In particular, local warping has to be accounted for when the warping constant calculated based
on the global warping functions vanishes as for T or L sections. The influence of local warping is
quantified in Table 2-4 (see also (de Ville de Goyet 1989) and (Boissonnade 2002)).

Table 2-4: Influence of local warping

Cross-section Iw local
L b 1
o , i
f------- T - 1 _t
; T
E 373 £lh=
T h : b +W( f)3
! 144 36
—hi—
—
I A
L ht | —[h—t +(b—t ]
: e +lo-r )
i 1]
—— T
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2.6 Summary

The present chapter gave a short review about the theory of torsion especially for members with

open cross-section. The developments discussed before have been presented in many

publications in the past and should not be considered as an original contribution of this thesis. In

particular, it has been recalled that:

The torsional behaviour of members with open cross-section is equivalent to the
second order equilibrium of members subject to an axial tension force and
bending;

Members with open cross-section are always subject to mixed torsion, i.e. a
combination of Saint-Venant’s and warping torsion;

The relative magnitude of these two types of torsional moments can be estimated
based on the warping decay factor &

Saint-Venant’s torsion generates shear stresses that vary linearly over the
thickness of the plates of the cross-section;

Warping torsion generates shear and axial stresses. Both may be considered as
constant over the thickness of the plates of the I and U sections;

The distribution of axial stresses resulting from the bi-moment is affine to the
warping function o that is cross-section specific;

In general only global warping has to be considered for open cross-sections apart
from cross-sections composed of plates crossing each other in one point (L, T

sections).
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3.1 General

Chapter 3 presents in detail the finite element model that is used throughout this thesis to study
the behaviour of members with open cross-section subject to torsion. First, the general modelling
choices concerning boundary conditions and load introduction are explained. Then, the modelling
of the member itself is investigated. In particular, paragraph 3.3 discusses the numerical
modelling of hot-rolled sections including their fillets. Different modelling techniques are
investigated and validated with reference to theoretical results and laboratory tests. Based on

these comparisons a numerical model is chosen for the use in Chapters 4 and 5.

3.2 General description of the finite element model

3.2.1 Material law and equivalent imperfections

Depending on the type of analysis, different material laws are applied in the framework of this
thesis. They are defined in Table 3-1.

Type of analysis Objective Material law

Determination of elastic
Linear Analysis (LA) distribution of internal forces Elastic
and moments

Linear Buckling Analysis (LBA) Determination of critical loads Elastic

Material non-linear analysis
(without imperfection and
second order effects - MNA)

Determination of the plastic

) . Elastic - perfectly plastic
Ccross-section resistance p yp

Geometrical and Material Non-
linear Analysis of the Imperfect
member (GMNIA)

Determination of the ultimate Multi-linear
member resistance (see Figure 3-1)

Table 3-1 also defines the objective that is associated with the different types of analysis. It should
be noted that the MNA simulations are performed without equivalent geometric imperfections
because they are used to determine the theoretical plastic cross-section resistance without
considering the influence of instability. Therefore, geometric non-linearity is not included neither
in this type of analysis. Conversely, the GMNIA simulations are performed to characterize the
member behaviour and the member resistance. Consequently, they should include the effect of
imperfections and the second order effects. If not otherwise indicated, the member imperfections
are applied affine to the first (member) eigenmode obtained through the LBA simulations with an
amplitude of L/1000 in this type of analysis. For members of slender section, local plate

imperfections are also included. They are defined by sine-waves of amplitude h./200 for the web
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and bt/400 for the flanges (as recommended in (CEN 2007a). The influence of the wave length is
studied in paragraph 5.2.1.7. Additionally to the equivalent geometric imperfections, residual
stresses are introduced for the GMNIA simulations accordingly to reference (ECCS 1984). It is to
be noted that a deeper investigation on the influence of assumed imperfections (geometric
imperfections and residual stresses) on the member resistance is presented in paragraph 5.2. This
paragraph is only intended to give the general information necessary for the simulations

performed in Chapter 3.

s

3.2.2 Finite elements used in this thesis
3.2.2.1 General

In the framework of this thesis, the commercial finite element program ANSYS v17.0 is used. In
the following, a short presentation is given for all types of finite elements employed here. Detailed

information may be obtained in reference (ANSYS 2016).
3.2.2.2 Beam4

Beam 4 is a uniaxial finite element with two nodes at its ends and six degrees of freedom for each
of these nodes. A third optional node is used for the element orientation. The cross-section
characteristics (Area, second moments of area, torsional constant, etc.) are not defined by its
geometry but directly by entering the numerical values of these characteristics. This type of beam
element is only used in order to simulate stiff cross-sections along the member and rigid links

between different types of elements (see paragraph 5.3).
3.2.2.3 Beam 188

As Beam 4, the finite element Beam 188 is defined by two nodes at the element ends and a third
node defining the element orientation. Beam 188 has seven degrees of freedom at the nodes
including warping. The cross-section is defined by its geometry and the corresponding cross-
section characteristics are calculated by ANSYS. Beam 188 is suited for plastic analysis. In order
to obtain a smooth stress distribution and to respect the zero shear stress condition at the cross-

section boundaries, the section has to be discretised in a sufficient number of cells. Each cell
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contains four section integration points as shown in Figure 3-2. It should also be noted that

Beam 188 is based on Timoshenko beam theory including shear-deformation effects relevant for

short beams.
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3.2.2.4 Shell 181

Shell 181 is a four-node shell element with six degrees of freedom at each node. The number of
integration points may be defined by the user. However, an odd number has to be chosen. At least
three integration points through the thickness are applied: one at the centre and one at each
boundary surface. For all shell elements ANSYS uses the Simpson integration rule. In case of non-
linear stress distribution at least 5 integration points through the thickness should be used. Here,
9 integration points are used in order to represent precisely the distribution of shear stresses due
to the Saint Venant'’s torsional moment. Also, one may note that the element Shell 181 is based on
the Mindlin-Reissner theory (first order shear-deformation theory) considering shear
deformations through the thickness of the plate. This element is suited for thin to moderately thick

shell structures and it may therefore be used to model steel members.
3.2.2.5 Solid 185

Solid 185 is an eight node volume finite element. It possesses three degrees of freedom at each
node (3 translations). The rotational degrees of freedom are not accounted for. Enhanced strain
formulations are used so as to handle shear locking and volumetric locking recommended for

bending-dominated problems.
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3.2.3 Boundary conditions and loading
3.2.3.1 General

In case of finite beam elements, the application of boundary conditions and loading is rather trivial
as both may be applied directly at the nodes defining the element as only one node is associated
to a given section along the member length. However, when the physical member is modelled with
shell or solid finite elements, the application of boundary conditions and loading is much more
delicate as a given cross-section along the member length is defined by a certain number of
nodes (depending on the mesh density). Also, the application of loads or boundary conditions are
applied at only one node may lead to numerical convergence problems and unphysical high
strains and stresses as well as local instabilities in the vicinity of the application node. Therefore,
some precaution must be taken in order to apply loads and boundary conditions to shell or solid

model.
3.2.3.2 End supports for | sections

In paragraph 3.3, several techniques are presented to model the cross-section. However, for all
models (except the beam model) the same principles are employed to model the theoretical
boundary conditions (e.g. fork end supports) and load introduction. Figure 3-3 represents

schematically the end supports of two models, one consisting of shell elements and the other

consisting of solid elements.

a) Shell model b) Solid model

Figure 3-3: Rigid Beam elements to prevent local instability at the support location

In order to prevent local instability at the end section and to avoid the previously mentioned
problem of unphysical high stresses at the end sections, the mid-line of the two models is meshed
with rigid beam elements of type Beam 4 represented in violet in the following figures. In some
references as (Boissonnade 2012) and (Hayeck 2017), the rigid beam elements are replaced by

kinematic conditions. Here, it is preferred to introduce beam elements as the kinematic conditions
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used in ANSYS are linearized and therefore not suited in case of large deformations (see “cerig”
command in (ANSYS 2016)).

3.2.3.3  End supports for U sections

In case of U sections, neither the centroid nor the shear centre is located in the section itself.
Consequently, the application of boundary conditions may seem more delicate than for I sections.
The real physical boundary condition depend on the design of the joints of the (U-shaped) member
with the connected structural elements. Obviously, there is a rather important variety of possible
designs (end plats, angle sections ...) and, depending on the design, the physical boundary
conditions may be more or less close to idealised boundary conditions considered in the
numerical model. In particular, it may be noted that a complete fork support may not be realised
physically as the warping function does not vanish neither over the whole web nor over the whole
flanges of U sections (see Chapter 2). If for example the web of the U section is connected by angle
sections or partial depth endplates to a column, the warping displacements are always restrained
at a certain degree. For I sections, this is not the case because the warping function vanishes over
the whole web. Consequently, connecting the web of an I-shaped beam to a column does not
restrain warping. Admittedly, it would be desirable to represent as precisely as possible the
physical boundary conditions in the numerical model to capture their (beneficial) effect. Still, this
seems delicate due to the variety of possible design. Rather, it is proposed to determine lower
bound results for U-shaped members based on the assumption of ideal fork end supports. In order
to allow free warping the axial displacements is restrained at one member end at the mid-height
of the web (level of the centroid and the shear centre). At this point, the warping function vanishes
and warping may therefore freely develop if necessary. In order to prevent lateral displacements
and torsional twist, lateral restraints are applied at the upper and lower flange at the intersection
with the web. Figure 3-4 illustrates the application of the boundary conditions for U-shaped
members.

Figure 3-4: End fork condition applied at a U-shaped member
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3.2.3.4 lLoad introduction

Point loads introduced in the span are applied as nodal forces. In order to prevent the cross-
section from local buckling, a stiffener is created at the point of load introduction as shown in
Figure 3-5. This represents the practical habit. Otherwise, it would have been possible to

introduce rigid beam elements as done for the application of the boundary conditions.

Z

Figure 3-5: Introduction of point load at mid-span

Applied major- and minor-axis bending moments and axial forces are introduced by nodal forces
distributed over the cross-section following a plastic stress distribution as represented for the
case of major-axis bending in Figure 3-6. Consequently, the values of the nodal forces depend on
the width of the neighbouring elements and the node location.

Obviously, the plastic stress distribution only represents a limit case. Sometimes, it is preferred to
introduce point loads at the member ends based on an elastic stress distribution. Nonetheless,
this also represents only a limit case. Physically the stress distribution changes with ongoing
yielding and evolves between elastic distribution and plastic distribution. Additionally, in the real
structure, end moments are only introduced in a given member if this member is continuous or
possesses moment-resisting connections providing a certain level of (warping) restraint. As it is
intended to obtain lower bound resistances, the members are analysed supposing fork end
supports as detailed in paragraph 3.2.3. Therefore, a simplification has to be accepted for the
introduction of end moments. Also, it may be shown that the distributions of forces (based on
elastic or plastic stress distribution) does not significantly influence the obtained member

resistance.
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Figure 3-6: Introduction of an applied major-axis bending moment

3.3 Section modelling

3.3.1 Different possibilities to model fillets

In order to account for the influence of the fillets on the cross-section and member resistance of
hot-rolled sections, different techniques may be applied. They are presented hereafter and
evaluated in the following paragraphs.

A first approach consists in the use of shell elements with modified thickness (see for example
(Kettler 2008)). Here, it is proposed to modify the thickness of shell elements in the web in the
zone of the fillets. Figure 3-7 shows an IPE 200 section modelled by the “modified thickness

technique”. This model is referred to as “Shell var” (var = variable thickness) in paragraph 3.3.2.

{

Shell var

Iy

(T T T

Figure 3-7: Modelling the fillets by shell elements of variable thickness
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In (Taras 2011), the fillets are modelled by beam elements of rectangular hollow sections. The
height and width of the hollow section as well as the thickness of its walls are chosen here to
obtain the same torsion constant and area for the numerical I section as for the physical section.
The out-of-plane and in plane bending stiffness are well approximated. The nodes of the beam
elements are common with the shell elements and situated at the theoretical centroid of the fillets.
Figure 3-8, shows the IPE 200 section whose fillets are modelled by rectangular hollow sections.

This model is referred to as “Shell-Beam 1” in paragraph 3.3.2.

CTTT O T]

T

I T T T 1T 1T T1T71

Shell-Beam 1

T T T 11

1

1

(T

[T 1T

Figure 3-8: Modelling the fillets by rectangular hollow section beam elements

Similarly to the previous approach, the fillets may be modelled by beam elements possessing the
exact geometry of the fillets. Additional nodes are created at the centroid of each fillet. These
nodes are then attached to the shell model (at nodes A and B of Figure 3-9) by rigid beam elements
as shown in Figure 3-9. Again an IPE 200 section is shown to demonstrate this approach. This

model is referred to as “Shell-Beam 2” in paragraph 3.3.2.

TT

Shell-Beam 2

Figure 3-9: Modelling fillets by beam elements of identical geometry
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The next approach evaluated here consists of a combination of shell and solid elements. The zone
of the section that can be assimilated to plates is modelled by the shell elements and the fillet zone
is modelled by solid elements as shown in Figure 3-10. The shell elements are attached to the solid
elements by non-flexible contact (always bounded - MPC technology of ANSYS; see reference
(ANSYS 2016)). A full continuity between the different elements can therefore be considered. This
approach is advantageous as the fillet geometry can, depending on the solid element density, be
modelled perfectly. The real stiffness of the fillet zone, offering the restraint to the flanges and the
web, is accounted for. This model is referred to as “Shell-Solid” in paragraph 3.3.2.

A clear inconvenient of this technique is the longer calculation time as the model possesses more
degrees of freedom as a simple shell model or a model consisting of a combination of shell and

beam elements (the calculation times are evaluated at the end of this paragraph).

]
&
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Last, the member is modelled entirely with solid elements. As no interface between different
element types exists, full continuity between the finite elements can be ensured. Additionally, the
section geometry is most reliably approximated. However, the use of solid elements implies longer
calculation time as mentioned before. Figure 3-11 shows the solid model of an IPE 200 section.

This model is referred to as “Solid” in paragraph 3.3.2.
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3.3.2 Study on the influence of meshing density

3.3.2.1 General

Hereafter, the influence of the meshing density is studied. In particular three points need to be

taken into special consideration:

e The element width: If the mesh is too coarse, the numerical result may be
unreliable as the distribution of stresses and displacements are less well
approximated. Also, as the distribution of residual stresses is not uniform over the
cross-section but linear or quadratic (see paragraph 5.3), the number of elements
over the cross-section and consequently their width has to be calibrated in order
to represent the residual stresses (in particular as the residual stresses are
generally introduced as constant per finite element).

e The element aspect ratio: Here, the aspect ratio is defined as ratio between
element length and element width (here the element length refers to the element
dimension along the x-axis of the member and the element width refers to the
dimension of the element in the plane of the cross-section; i.e. the y-z plane of the
flanges). The use of finite elements of quadratic shape (element length = element
width; aspect ratio = 1) generally yields the most reliable results. However, for long
members, using finite elements of quadratic shape leads to an important number
of elements and therefore excessive calculation times. Hence, it seems interesting
to study the influence of the aspect ratio of the element in order to optimize the
meshing density with reference to calculation time.

e The number of elements to represent local buckling: A special issue arises for
slender (class 4 in the terminology of Eurocode 3 Part 1-1 (CEN 2005a)) sections.

Indeed, a minimum number of elements is necessary to represent the formation of
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local buckles. If too few elements are used, the curvature of the buckle may not be

sufficiently approximated and the numerical result may be less precise.

The mentioned topics are studied in the following paragraphs.

3.3.2.2 Element width for stocky and medium slender cross-sections

In the following, the influence of the element width is studied for stocky and medium slender
sections whose ultimate resistance is not influenced by local plate instability. The influence of the
element width is studied for several examples through GMNIA simulations including the residual
stress pattern represented in Figure 3-14 and Figure 3-15 as well as a geometric member
imperfection affine to the first member (or global) Eigen mode with an amplitude of L/1000. The
material behaviour is supposed multi-linear including strain hardening (see Figure 3-1) . All
studied members are fabricated from steel S235.

The first example is a member of IPE 240 section without fillets (the modelling of the fillets is
addressed in paragraph 3.3.3) subject to a constant bending moment of 56,92 kNm and a
compression axial force of 379,3 kN (this load combination leads to full yielding of the section).
The length of the member is varied between 800 mm and 7000 mm. For the second example the
same configuration is studied but the section is supposed to be welded. The meshing density is
characterised by the number of elements per flange. The element width of the finite elements in
the web is the same as the one in the flanges. For all cases, the element aspect ratio is 1 (elements
width = element length).

Figure 3-12 shows the results obtained for the member made of hot-rolled IPE 240 section. The
reference value is the result obtained with a meshing density of 20 elements per flange (as being
the mesh with the highest density). As can be seen the results for the different densities are rather
close. If at least 8 elements are used along the width of the flange, the difference to the reference

value is less than 1%.
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Figure 3-12: Ultimate resistance as a function of the meshing density for a hot-rolled section
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Figure 3-13 presents the results for the member made of a welded “IPE 240” section (the
reference results are those obtained for 26 elements per flange). Here, it may be observed that the
meshing density is of more importance than for hot-rolled sections. In fact, at least 12 to 16
elements per flange are needed in order to converge to the reference value. Also, it can be seen
that the difference between the coarse meshes (4 and 6 elements per flange) and the finest
meshing densities increases with the member length. This observation seems somewhat
surprising because the effect of the imperfections generally vanishes for members of high length
and high member slenderness. Figure 3-12 represents a similar tendency but much less
pronounced. The problem of the coarser meshes is not studied further in here. Rather, a

sufficiently fine mesh is chosen to ensure reliable results.

It may be understood why a denser mesh is necessary for welded sections than for hot-rolled
sections if the specific residual stress patterns of Figure 3-14 and Figure 3-15 are studied. It can
be seen that the variation of the residual stresses is much higher and much more concentrated for
welded sections than for hot-rolled sections. Indeed, Figure 3-15 shows that the residual stresses
for welded sections varies from +f; to -0,25f, on a distance representing only 5% of the panel
width (web height or flange width). Obviously, a smaller element width is necessary to represent

this variation.
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Figure 3-13: Calculated ultimate resistance as a function of the meshing density for a welded
section
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Figure 3-15: Residual stress distribution for a welded section

In order to confirm the previous findings, the meshing density is evaluated next for the more
complex load case of Figure 3-16. The member is made of an IPE 300 section without fillets. It is
subject to axial compression and to a lateral and vertical point load applied on the upper flange at

mid-span as represented in Figure 3-16.

!

—F _
_, | IPE 300 Fy=F/5 -—
N° N=M, .,/11,6cm

L/2 L/2

Figure 3-16: Member subject to compression, bi-axial bending and torsion
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The results obtained for this most complex load combination are given in Figure 3-17 to Figure
3-19. Additionally to the cases of hot-rolled and welded residual stress pattern, the case of a
section without residual stresses is represented in Figure 3-17. It can be observed that if the
member is not subject to any residual stresses, the meshing density seems not to be of importance.
Indeed, the differences between the different meshing are much less than 1% and consequently

negligible.
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Figure 3-17: IPE 300 section without residual stresses

In case of residual stresses corresponding to hot-rolled sections, one may again remark that 8
elements per flange are sufficient to obtain reliable results. Inversely, the mesh should be rather
dense for the case of welded sections. Figure 3-19 shows again that at least 12 to 16 elements
along the flange are necessary in order to converge to the reference results. As before, one may
observe the surprising behaviour of longer members with the coarsest mesh of 8 elements per
flange. In order to obtain reliable results 16 elements per flange are consequently used for
members of welded sections in the following.
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Figure 3-18 : IPE 300 section with residual stresses of hot-rolled sections
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Figure 3-19 : IPE 300 section with residual stresses of welded sections
3.3.2.3 Element aspect ratio

As mentioned previously, the second point that has to be discussed is the aspect ratio of the finite
elements. In Figure 3-21, the results of the member used in the first example of paragraph 3.3.2.2
(equivalent IPE 240 section subject to My = 56,92 kNm and N = 379,3 kN) are represented. In
every case the element width corresponds to a number of 8 elements per flange (residual stresses
according to hot-rolled sections).

As can be seen, up to an aspect ratio of 7, the results differ very few from the reference (aspect
ratio = 1). The sole remarkable difference is obtained for the member of 7 m length meshed with

elements of an aspect ratio of 10.

However, the load case of constant internal forces, creating uniformly distributed stresses along

the member, may be favourable when the aspect ratio is studied. Therefore, the case of the
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member shown in Figure 3-20 is studied. The member is consequently subject to a combination
of major-axis bending and torsion (and shear forces for the shortest specimen).

N L =2800 mm
Zp =-215 mm
yp =25 mm

\/ \/
JAN JAN
O L2 L2 0

Figure 3-20: Member subject to non-uniform bending and torsion (Figure from reference
(FOSTA 2004)

The element width corresponds to a number of 8 elements per flange.
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Figure 3-21: Calculated ultimate resistance as a function of the aspect ratio of the finite element

Figure 3-22 shows that the aspect ratio seems to have more influence on the calculated ultimate
resistance in case of variable internal forces. It is to be noted that the maximum difference is
obtained for short members. In case of longer members, the difference becomes negligible (less
than 0,5%). Hence, one might also argue that it is not the aspect ratio that needs to be calibrated
but the number of elements along the member length. The results depending on the number of
elements are represented in Figure 3-23.
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Figure 3-22: Calculated ultimate resistance as a function of the aspect ratio of the finite element
for a hot-rolled section under non-uniform bending and torsion
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Figure 3-23: Calculated ultimate resistance as a function of the element division along the member
for a hot-rolled section under non-uniform bending and torsion

It can be seen in Figure 3-23 that the element division along the member length seems to be a
more meaningful parameter to assess the quality of the finite element model. In fact, the error of
each model with respect to the reference (8 elements per flange and 150 divisions along the
member) varies much less than the error represented in Figure 3-22 (error as a function of the
element aspect ratio). It can be concluded that it is not the aspect ratio of the finite element that
is at the origin of the error but a too small element division along the member. As the internal
forces acting in the member are non-uniform and hence the stresses are also non-uniform along
the member, a minimum number of elements is needed to represent this non-uniform stress
distribution. Figure 3-23 also shows that the maximum error is always obtained for the shortest
member. As the cross-section is compact (IPE 200: class 1 following Eurocode 3 terminology), the
stockiest member of 1 m of length is susceptible to attain a certain amount of its plastic resistance.

Therefore, the finite element mesh should be fine enough to represent the extent of plasticity. In
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Figure 3-24, one may see that, depending on the element division along the member, the yielded
zone on the top flange differs. In fact, the model possessing the coarsest mesh (Figure 3-24 a)
predicts the greatest plastic zone. However, the peak plastic strain is much smaller than the peak
plastic strain calculated by the model with the finest mesh (Figure 3-24 d). One may also remark
that the continuity of the plastic strain between the finite elements is not entirely respected in the
model represented in Figure 3-24 a) and Figure 3-24 b), whereas the plastic strain spreads
continuously over the elements in Figure 3-24 c) and Figure 3-24 d) (it is to be noted that the
results determined at the integration points are represented and not the averaged results over
the element).

Therefore, in the following at least 100 element divisions along the member is used for the finite

element model.
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3.3.2.4 Element width for slender cross-sections

Hereafter, cross-sections that are sensitive to local buckling are referred to as slender cross-
sections (class 4 section in the terminology of Eurocode 3). For these sections the meshing has to
be capable of reproducing local instability. Obviously, the mesh would be too coarse if there is
only one finite element along the presumed local buckle. Conversely, a very fine mesh would again
lead to longer calculation time. Hence, it is of interest to study the influence of the number of finite
elements along the local buckle on the calculated ultimate resistances. Here, two welded sections
are studied. They are noted as W.h.ty.br.ts:

e W.500.9,5.200.12,5 (web is sensitive to local buckling - class 4 web)
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e W.500.7.200.5,36 (flange is sensitive to local buckling - class 4 flange)

The studied members are subject to constant major-axis bending. The Figure 3-27 and Figure 3-28
compare the results obtained through GMNIA calculations. These calculations include the typical
residual stress pattern for welded sections (see Figure 3-15), a member imperfection affine to the
first Eigen-mode for lateral-torsional buckling with an amplitude of L/1000 and a local
imperfection. It is chosen to apply a local imperfection of sinusoidal shape. The longitudinal
extension of one half wave of the local imperfection (see Figure 3-25) is chosen to be the mean
value of the sum of half the flange width and the web height (twice the medium length of half the
flange width and the web height) as shown in Eq. ( 3.1 ). In the perpendicular direction the local
imperfection extends over the width of the considered plate (over b/2 for the flanges and over hy,

for the web - see Figure 3.2).

(3.1)

B Half wave length _

Wave length

Figure 3-25: Definition of wave length for the sinusoidal imperfection

The amplitude of the imperfection is chosen to be equal to h,,/200 for the web and b¢/400 for the
flanges (a deeper investigation on the influence of the local imperfection on the member
resistance is presented in paragraph 5.2.1.7). Figure 3-26 shows the applied local imperfection for
one example with an increased amplitude for a better representation. It should be noted that the

number of elements per quarter wave (half of the local buckle) is 10 for the given example.
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Figure 3-26: Local imperfection applied to an I-shaped member

Figure 3-27 and Figure 3-28 compare the ultimate load factors obtained based on different
numbers of elements per quarter wave. In order to facilitate the comparison between both

members, the scale of the ordinate axes (representing the ratio Ruyi/Ruit10) is the same.

As expected, the figures clearly show that the coarsest mesh yields the least reliable results. Also,
one may observe that a coarser mesh leads to unsafe results (up to 5% for W.500.7.200.5,36 - see
Figure 3-28). This may be explained by the fact that curvature of the plate due to local buckling is
less well approximated by a coarse mesh. Consequently, the stresses resulting from local buckling
are lower in this case (again it is referred to paragraph 5.2.1.7 giving details on the influence of
the local imperfection). Finally, the figures show that the differences between the mesh densities
decrease with the member length. Here the interaction between member instability (lateral-
torsional buckling) and section instability is the probable reason. In fact, the sensitivity of the
member to lateral torsional buckling increases with the member length. Therefore, the stresses

are lower at the Ultimate Limit State and hence the cross-section is less sensitive to local buckling.

However, the tendencies discussed above are much more pronounced in case of the section with
slender flanges. As the flanges contribute much more to the bending resistance of the section than
the web, local buckling of the flanges has a greater influence on the section and member resistance
than local buckling of the web. Consequently, the differences between a coarse mesh and a fine

mesh are less pronounced for the section with a slender web.

On the basis of the results presented in Figure 3-27 and Figure 3-28, it is concluded that at least 4

elements per quarter wave seem to be necessary to obtain reliable results.
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Figure 3-27: Influence of element number along the local buckle - W500.9,5.200.12,5
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Figure 3-28: Influence of element number along the local buckle - W.500.7.200.5,36
3.3.2.5 Summary on meshing density

Through paragraph 3.3.2, the influence of the meshing density on the ultimate resistance has been
analysed. This study permits to conclude on the following points:

e For hot-rolled sections, 8 finite elements of constant width per flange are sufficient
to obtain reliable results;

e For welded sections, at least 16 finite elements of constant width per flange are
necessary to account for the residual stress distribution;

e For stocky and medium slender sections (not sensitive to local buckling), the
member should be divided into at least 100 elements along its length;

e For slender sections (sensitive to local buckling), the element division along the
length depends on the wave length of the presumed local buckle; it seems

necessary to use at least 4 elements along one quarter wave;

55



On the Design of Steel Members with Open Cross-Sections Subject to Finite Element Model
Combined Axial Force, Bending and Torsion

e The aspect ratio of the finite element is not of primary importance for the
numerically determined ultimate resistance of the member; however the number
of elements along the member should respect the prescription given above. Also,

in order to avoid excessively long elements, the aspect ratio is limited to 3
hereafter.
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3.3.3 Evaluation of the stiffness of the different modelling techniques

3.3.3.1 General

In Chapter 2, it has been recalled that the fillets of hot-rolled sections may have a non-negligible
influence to the cross-section characteristics, especially to those linked to Saint Venant’s torsion
as the torsion constant I; and the Saint Venant’s torsional moment resistance Mystvr. It seems
therefore interesting to study how the influence of the fillets may be precisely accounted for. In
paragraph 3.3.1, different modelling techniques have been presented. They are evaluated

hereafter in two steps:

e First, elastic critical loads are calculated for different load cases in order to
evaluate the precision of the bending, torsional and warping stiffness obtained
with the different modelling techniques.

e In a second step (see paragraph 3.3.4) the plastic cross-section resistances
obtained with the different models are compared for simple and combined load
cases.

The sections used for this sub study as well as their geometric and mechanical characteristics are

given in Table 3-2.

In order to evaluate the quality of the approximation of the mechanical characteristics by the

different modelling techniques, the elastic critical loads are calculated for the following modes:

e Major-axis flexural buckling;
e Minor-axis flexural buckling;
e Torsional buckling;

e Lateral-torsional buckling.

Different lengths are studied for each member so that the relative slenderness is varied between

approximately 0,1 and 2 supposing that the member is made of S235.

For the following comparisons the reference value is obtained with the analytical expressions
based on the theoretical values of the cross-section constants Iy, I, I et .. In fact, in order to
validate the numerical model in a last step with reference to physical tests, it is necessary to
reproduce as precisely as possible the physical cross-section and its mechanical characteristics.
Hereafter only selected results are presented. Nevertheless, they are representative of the totality

of results.
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Section Geometry Mechanical characteristics
h [mm] 200 A [cm2?] 28,484
tw [mm] 5,5 Iy [cm?] 1943,2
IPE 200 [mm] 100 I, [cm*] 142,37
tr [mm] 8,5 I [cm?] 6,884
r [mm] 12 I [cm§] 13052
h [mm] 550 [cm2] 134,42
tw [mm] 11,1 Iy [cm?] 67117
IPE 550 [mm] 210 I, [cm*] 2667,6
tr [mm] 17,2 I [cm?] 122,16
r [mm] 24 [w [cmS$] 1,893.10¢
h [mm] 180 [cm2] 97,051
tw [mm] 14 Iy [cm?] 5098,3
HEM 160 [mm)] 166 I, [cm4] 1758,8
tr [mm] 23 I; [cm?] 163,63
r [mm] 15 Iw [cmé] 108380
h [mm] 300 [cm2] 149,08
tw [mm] 11 Iy [cm?] 25166
HEB 300 [mm] 300 I, [cm*] 8562,8
tr [mm] 19 I [cm?] 185,87
r [mm] 27 [w [cm$] 1,69.10¢
h [mm] 790 [cm2] 285,83
tw [mm] 15 Iy [cm?] 303443
HEA 800 [mm] 300 [, [cm*] 12639
tr [mm] 28 I; [cm?] 606,77
r [mm] 30 [w [cm®] 18,35.10¢

3.3.3.2 Major-axis flexural buckling

Hereafter, the results for the different models are compared for the case of major-axis flexural
buckling. In addition to the models presented in paragraph 3.3.1 the results of two beam models,
noted as Timoshenko and Bernoullj, are included in the following figures in order to illustrate the
influence of shear deformations on the critical load for small values of the relative slenderness
(short members). In fact, the difference between both beam models can be directly linked to shear
deformation, not considered by the Bernoulli beam model, as both beam models are identical in

all other points.

The reference value is the result obtained by the Timoshenko beam elements considering the

influence of shear deformations. The results are represented as function of the relative
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slenderness Ay defined by (it may be noted that all sections can be considered as compact, i.e.

susceptible to attain the plastic resistance Ny if second order effects are negligible):

_ N /
y === (3.2)
Ncr,y
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Figure 3-29: Comparison of the critical loads obtained by the different models — IPE 200
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Figure 3-30: Comparison of the critical loads obtained by the different models — HEM 160
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Figure 3-31: Comparison of the critical loads obtained by the different models — HEA 800

The influence of shear deformation on the critical axial force for major-axis buckling can be
identified easily in the previous figures. For a relative slenderness of approximately 0,1 the
difference attains 40 to 90%. Between models considering the shear deformations (all but beam
model Bernoulli) and the Bernoulli beam model. Even for more realistic values of the relative
slenderness (between 0,4-0,6) the influence of shear deformation does not completely disappear,

yet it is much less pronounced (3-10%).

The results obtained by the other models correspond very well to the reference result. The

differences are in most cases lower than 1% and consequently negligible.

3.3.3.3 Minor-axis flexural buckling

As for the case of major-axis buckling, the models are compared hereafter. The reference value is
again the result obtained with the Timoshenko beam model considering the influence of shear
deformations. The results presented next are again given as a function of the relative slenderness
following the definition of Eq. ( 3.3 ).

A:= |2 (3.3)

Figure 3-32 to Figure 3-34 highlight the influence of shear deformation for a small relative
slenderness again. Additionally, the results confirm that all studied models represent well the
major- and minor-axis bending stiffness of the member. The results are even closer to each other

than in the case of major-axis buckling.
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Figure 3-32: Comparison of the critical loads obtained by the different models — IPE 550
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Figure 3-33: Comparison of the critical loads obtained by the different models — HEB 300
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Figure 3-34: Comparison of the critical loads obtained by the different models — HEA 800
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3.3.3.4 Torsional buckling

Figure 3-35 to Figure 3-37 compare the quality of the models to predict the critical load for

torsional buckling. The reference result may be obtained with Eq. ( 3.4 ).

1 2

N, = T(G[t +EI, ”—2j (3.4)
2 I

and

_ [N

A = N"’ (3.5)

crt

In the case of torsional buckling, the difference between the two beam models is negligible.
However, it seems that the representation of the torsional stiffness of the member is more delicate
than the modelling of the bending stiffness. In fact, the differences between the studied models
are much more pronounced than before. The model giving the results the closest to the reference
is the one combining shell and solid elements; the difference is generally less than 1%. The model
combining shell and rectangular beam elements also yields very satisfactory results. The models
“Shell var” and “Shell-Beam 2” give similar but generally the least exact results. For these twos
models, it may be observed that the difference to the reference result increases with the member
length. It should be recalled that for high member lengths the critical load is mainly influenced by
the Saint Venant's torsional stiffness of the member as shown in Eq. ( 3.4 ). In fact, with increasing
length the value of the critical axial force for torsional buckling attains a limit value as the term
El,n?/L? tends to zero. Based on the results, one may therefore conclude that the warping stiffness
is predicted satisfactorily by models “Shell var” and “Shell-Beam 2” (small differences to the
reference value for small lengths) whereas the torsional stiffness is poorly approximated. This
discrepancy may be attributed to the fact that the continuity of material is not respected in the
zone of the fillets. Indeed, for both models, “Shell var” and “Shell-Beam 2”, the geometry of the
fillets is precisely modelled but the fillets are not in continuous contact with the web and the flange
and consequently, the continuity of material is not ensured (continuity of the warping function).
The model combining shell and beam elements of rectangular hollow section does not possess the
mentioned continuity, either, as the geometry of the fillets is not modelled directly. However, as
the geometry of the rectangular hollow section is calibrated so that the torsional constant and the
area of the section are equivalent to the real section, the torsional stiffness as well as the flexural
stiffnesses are well approached. The “Solid” model and the “Shell-Solid” model perfectly respect
the continuity of the material and consequently yield very satisfactory results.
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Figure 3-35: Comparison of the critical loads obtained by the different models — IPE 200
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Figure 3-36: Comparison of the critical loads obtained by the different models — IPE 550
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Figure 3-37: Comparison of the critical loads obtained by the different models — HEB 300
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3.3.3.5 Lateral-torsional buckling

Last, the influence of the fillet modelling is evaluated for the case of lateral-torsional buckling. As
for the case of torsional buckling, the differences between the studied models cannot be overseen
in Figure 3-38 to Figure 3-40. The “Solid” model and the model combining shell and solid elements
yield the best results. Since the continuity between the different zones of the section is best

represented (besides the case of beam models), the quality of the models is not surprising.

Again, the models “Shell-Beam 2” and “Shell-var” represent the stiffness the least well. The
differences with respect to the reference attain 5 to 10%. Yet, the model “Shell var” gives slightly
more accurate results. Nonetheless, it appears that the differences between these two models and
the other models are much less pronounced than for the case of torsional buckling. This may be
understood because, additionally to the torsion constant and to the warping constant, the second
moment of area about the minor-axis highly influences the value of the critical moment M (more
than the critical axial force for torsional buckling). This is recalled by the analytical expression
represented in Eq. ( 3.6 ) (applicable for the case of constant major-axis bending). Eq. ( 3.6 ) also

shows that the influence of the torsional constant of the section is reduced as it is divided by ..

2 2
o | GI, L
M _=FEl — |24+ —L__ 3.6
y,cr z L2 Iz EIZ 72_2 ( )
and
— M
Aur = |28 3.7
LT Iv; ( )

y.cr

Finally, one may observe that the model “Shell-Beam 1” confirms its good quality to represent the
torsional stiffness of the member. In most cases, the results are comparable to the more complex
“Solid” and “Shell-Solid” models.
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Figure 3-38: Comparison of the critical loads obtained by the different models — IPE 200
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Figure 3-39: Comparison of the critical loads obtained by the different models — HEB 300
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Figure 3-40: Comparison of the critical loads obtained by the different models — HEA 800

3.3.3.6  Conclusion

Here before various numerical investigations were performed with the objective to evaluate the
different models with respect to their quality to represent the real stiffness of the member,
especially for the case of hot-rolled cross-sections whose fillets have a considerable influence on
the torsional stiffness of the beam. The results permit to conclude that:

e All models represent very well the major- and minor-axis bending stiffness;

e The “Solid” model and the model “Shell-Solid” represent best the torsional stiffness

of the section;

e The model “Shell-Beam 1”, combining shell and beam elements of rectangular

hollow section also represent very well the torsional stiffness of the section;
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e The models “Shell-Beam 2” and “Shell var” are the least well suited to represent
the torsional stiffness of the section.

As it has been shown that the models “Shell-Beam 2” and “Shell var” are not capable to reproduce

satisfactorily the torsional stiffness of the member, they is not be considered in the following.

It should be recalled that the reference values are obtained based on analytical expressions using
the theoretical mechanical cross-section characteristics. This is justified as the goal of the
comparison is to conclude on what modelling technique may be used to reproduce most precisely
the cross-section characteristics of a physical member so as to recalculate laboratory tests used

in a last step for the final validation of the numerical model.

3.3.4 Plastic section resistance

3.3.4.1 General

The sections of Table 3-2 are used hereafter in order to evaluate whether the different types of
section modelling are capable to represent well the plastic distribution of the stresses over the
cross-section and consequently the plastic cross-section resistance. In order to obtain the plastic
limit load, material non-linear analyses (MNA) are performed supposing an elastic-perfectly
plastic material behaviour. It is recalled that this type of analysis only includes material non-
linear effects. Geometric non-linearity as well as imperfections are not included. Also, it should be
noted that residual stresses are not introduced here. In general, their influence on the plastic limit
state is negligible owing to the ductility of steel. Nonetheless, if instability (local buckling or

member buckling) was studied, residual stresses should be accounted for.

3.3.4.2 Mono-axial bending and axial force

The members studied hereafter are supposed to be subject to a constant distribution of major-
axis bending, minor-axis bending or the axial force. Also, they are supposed to possess fork end
supports. Figure 3-41, Figure 3-42 and Figure 3-43 show the results for the cases of major-axis
bending, minor-axis bending and axial force, respectively. One may observe that all models yield
results very close to the reference values for all cross-sections and member lengths. The results
are slightly conservative compared to the theoretical plastic cross-section resistance but the
differences are negligible. [t should also be mentioned that the results do not depend on the length
as second order effects (geometric non-linearity) are excluded from the numerical simulations
(MNA).
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Figure 3-41: Comparison of different models regarding the plastic major-axis bending resistance
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Figure 3-42: Comparison of different models regarding the plastic minor-axis bending resistance
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Figure 3-43: Comparison of different models regarding the plastic axial force resistance
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3.3.4.3 Torsion

The case of applied torque differs from the cases treated before. In fact, an applied torsional
moment generally creates a combination of bi-moments, warping torsional moments and Saint
Venant's torsional moments. Hence, for a section subject to an applied torque, the numerically
obtained section resistance corresponds to an interaction between several internal moments. The
importance of each component (B, Mys:.v, Mxw) depends on the length of the member and on the

torsional characteristics of the section, i.e. on the warping decay factor er (see Chapter 2).

Hereafter, the case of a member made of a HEB 300 cross-section is considered. Conversely to the
cases studied before, it is assumed that the member is fixed at one end (all degrees of freedom
blocked including warping) and entirely free at the other end. At the free end, a torsional moment
is applied. The resulting rotation-bi-moment and rotation-total torsional moment diagrams are

given next for different member lengths and therefore different warping decay factors er.
It is interesting to observe in the following figures that:

e The “Solid” model as well as the “Shell-Solid” and the “Shell-Beam 1” model yield
very similar results; the “Beam” model shows some differences to the other
models;

e Independently of the member lengths, the maximum bi-moment is constant and
equal to approximatively 30 kNm? However, the plastic bi-moment obtained for
the “Solid” and the “Shell” models varies slightly between 32 kNm? and 30 kNm?
whereas the plastic bi-moment is always equal to 28,8 kNm? in case of the beam
model;

e (Conversely to the observation mentioned above, the maximum total torsional
moment depends highly on the member length and varies between
approximatively 69 kNm for the shortest member and about 25 kNm for the
longest one;

e Additionally, it may be seen that when the member attains its plastic bi-moment
resistance, the total torsional moment continuous to increase;

e The plastic bi-moment resistance may be attained for small torsional twists if the
member is rather short. Contrariwise, for longer members, the torsional twist
necessary to attain the full plastic bi-moment seems excessive (0,40 rad for a

member length of 12h = 3600 mm).
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Figure 3-44: Relation between torsional rotation at free end and a) bi-moment B at fixed end and
b) torsional moments M at fixed end for a member length of 600 mm (gt = 0,40)
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Figure 3-45: Relation between torsional rotation at free end and a) bi-moment B at fixed end and
b) torsional moments M, at fixed end for a member length of 1800 mm (gr = 1,19)
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Figure 3-46: Relation between torsional rotation at free end and a) bi-moment B at fixed end and
b) torsional moments M, at fixed end for a member length of 3600 mm (gr = 2,39)

In order to explain the previous observations, it seems interesting to recall the theoretical
distribution of internal moments obtained by an elastic analysis for the studied member as shown
in Figure 3-47 and Figure 3-48. One may observe that the torsional moment is nearly completely
carried through warping torsion (see Figure 3-47). Conversely, for the member length of
3600 mm (Figure 3-48), the Saint Venant's torsional moment exceeds the warping torsional
moment apart from the zone near the fixed end. Consequently, the total torsional moment may
attain higher values for short members as the shear stresses resulting from the warping torsional
moment may be neglected (see also Chapter 4). The plastic warping torsional moment resistance
of the HEB 300 section is about 217,31 kNm whereas the plastic Saint Venant’s torsional moment
resistance is only of 19,0 kNm (see Chapter 2 - Egs. ( 2.1 ) and ( 2.3 )).
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It has also been observed in Figure 3-44 to Figure 3-46 that even if the plastic bi-moment is
attained the total torsional moment continues to increase. This can be explained as follows: the
bi-moment is exclusively carried by the flanges of the cross-section. When they have completely
yielded (or nearly) a warping hinge is created as the effective warping stiffness of the member
nearly vanishes at the member end. Yet, supplementary torsional moments may be carried
through shear stresses resulting from Saint Venant’s torsional moment. As the flange has yielded,
these shear stresses transit through the web until it has entirely yielded. A deeper discussion on

the plastic behaviour of members in torsion is given in paragraphs 4.4.4.1 and 5.6.4.2.
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Figure 3-47: Distribution of bi-moment and torsional moments — short member L = 600 mm
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Figure 3-48: Distribution of bi-moment and torsional moments — long member L = 3600 mm

Last, the difference between the beam model and the models containing solid and/or shell
elements is of interest. As before a mechanical explanation may be given. In fact, it may be
observed in Figure 3-49 and Figure 3-50 that the axial stresses attain the yield stress of 235 MPa
in case of the beam model whereas they attain 271,2 MPa in case of model “Shell-Beam 1”.
However, for both models, the maximum von Mises stress is equal to the yield stress. Figure 3-51
shows why the axial stresses exceed the yield stress in case of the shell model. Indeed, stresses in
the z and y directions develop at the fixed end and allow the axial stresses oy to exceed the yield
stress according to the von Mises yield criterion. A similar result has been highlighted in reference
(Gongalves et al. 2014) for the bending moment shear force interaction (see also paragraph
3.3.4.4). As the beam model only considers axial stresses oy and shear stresses 1.y and 1, the effect
of a multi-axial stress interaction in the von Mises yield criterion is obviously not considered.
Therefore, the maximum bi-moment obtained with the beam model equals the theoretical plastic
bi-moment whereas the maximum bi-moment obtained with the shell and solid model may exceed
the theoretical plastic bi-moment resistance. It is recalled that the bi-moment acting in the cross-

section is obtained by integrating the axial stresses following Eq. ( 3.8 ).

szaa)dA (3.8)
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Figure 3-49: Beam model - L = 600 mm - Distribution of a) axial stresses and b) von Mises stresses
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Figure 3-50: Model Shell-Beam 1 - L = 600 mm - Distribution of a) axial stresses and b) von Mises
stresses
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Figure 3-51: Model Shell-Beam 1 - L = 600 mm - Distribution of stresses a) o; and stresses b) g;

Up to this point, it has been shown that the studied models are very close and may therefore be
used to determine the plastic resistance of hot-rolled sections including the influence of the fillets.
Eurocode 3 Part 1-1 (CEN 2005a) attributes a rather important influence to the fillets concerning
the shear resistance. Consequently, it seems interesting to validate the different modelling

techniques also for the bending moment-shear interaction.

3.3.4.4 Interaction between major-axis bending and shear force

Last, the interaction between major-axis bending and shear force is studied. It is supposed that
the members possess fork end conditions and that they are subject to bending moments varying
linearly from +Mjy to -My leading to a constant distribution of the shear force over the member
length. Hereafter, the case of a HEB 300 cross-section is treated again. Figure 3-52 shows the
interaction curve obtained by the different models as well as the interaction curve predicted by
Eurocode 3 Part 1-1 (CEN 2005a). It should be noted that only the area of the web is considered
as shear area (excluding the fillets). A detailed discussion on the plastic shear resistance and the

corresponding shear area is given in chapter 4.

Figure 3-52 clearly shows the difference between the results obtained on the basis of beam
elements and the results obtained by the other models. Independently of the applied shear force,
the beam model always attains the plastic major-axis bending moment resistance. In order to
understand these somewhat surprising results, the stress distribution at the plastic limit state

deserves being studied.
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Figure 3-52: Numerical determined interaction between major-axis bending and vertical shear
force

Figure 3-53 shows the stress distribution obtained with the beam model. It may be observed that
the axial stresses reach the yield stress of 235 MPa at the supports. It seems that there is no
interaction between these stresses and the shear stresses. Also, one may observe that the shear
stresses greatly exceed the yield stress in shear. It is obvious that the beam model is not suited if
the interaction between shear force and bending moments are studied. Here, one may suppose
that the interaction between shear stresses resulting from the shear force and the axial stresses

is not correctly considered in the von Mises yield criterion.
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Figure 3-53: Distribution of a) axial stresses oy, b) shear stresses 1, and c) von Mises stresses for a
member length of 1800 mm obtained by beam model

In order to compare the results obtained with the other models Figure 3-54 shows the interaction
curve again. Obviously, the models “Shell-Beam 1”, “Shell-Solid” and “Solid” yield very similar
results. The differences are negligible. As for the beam model, the plastic stress distributions at
the ultimate limit state are given for a member of 1800 mm of length in Figure 3-55 and Figure
3-56 for the model “Shell-Beam 1” and the “Solid” model.
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Figure 3-54: Numerically determined interaction curves between major-axis bending and vertical
shear force

The following two figures show that both models, “Shell-Beam 1” and “Solid”, yield nearly identical
stress distributions at the ultimate limit state. As the continuity of the material in the fillet zone is

better represented by the “Solid” model, the stress distribution is smoother, too.
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Figure 3-55: Distribution of a) axial stresses oy, b) shear stresses 1, and c) von Mises stresses for a
member length of 1800 mm obtained from Shell-Beam 1 model
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Figure 3-56: Distribution of a) axial stresses oy, b) shear stresses 1, and c) von Mises stresses for a
member length of 1800 mm obtained from solid model

The present paragraph has shown that the “Beam” model is not suited to study the bending
moment-shear forces interaction. Conversely, models “Shell-Beam 1”, “Shell-Solid” and “Solid”
predict nearly identical results and can therefore be used in the following.

3.3.4.5 Conclusion

Paragraph 3.3.4 presented a comparison of different modelling techniques for hot-rolled cross-
sections. The objective was to determine whether or not the models are capable to represent the
theoretical plastic cross-section resistance. It has been shown that:

e All models yield very similar results for the case of applied bending moments and
axial forces;

e For the case of an applied torsional moment and especially for the case of bending
moment-shear force interaction the beam model yields poor results as the
interaction between shear stresses and axial stresses does not seem to be well

represented;
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e Models “Solid”, “Shell-Solid” and “Shell-Beam 1” yield very similar results including
for the case of applied torsion and bending-shear force interaction.

It has been shown that the models “Solid”, “Shell-Solid” and “Shell-Beam 1” (combining Shell
elements and beam elements of rectangular hollow section to model the fillets) yield very similar
results for all studied cases. However, as the model “Shell-Beam 1” contains beam elements not
capable to correctly represent the interaction between shear and axial stresses, it may not be
excluded that the results are affected in certain situations and complex load interactions.
Therefore, this model is not used to study the influence of fillets. As the calculation time is nearly
identical for both models, “Solid” and “Shell-Solid”, the “Solid” model is used to study the influence

of the fillets of hot-rolled sections.

Paragraphs 3.3.3 and 3.3.4 studied the influence of different modelling techniques for the
modelling of hot-rolled cross-section and in particular the modelling of their (fillets.
Eurocode 3 Part 1-1 accepts, conversely to other international standards as (ANSI 2010) and
(Standard Australia 1998), that the fillets increase the shear resistance of hot-rolled cross-
sections compared to welded cross-sections. Consequently, the fillets have to be included
explicitly in numerical simulations so as to quantify their influence on the plastic section
resistance. However, the use of solid elements implies longer calculation times, that may be
acceptable for the study of the plastic cross-section resistance. It should be noted a typical MNA
simulation performed in the framework of this paragraph takes about 30 min to 60 min
depending on the member length if it is performed with models “Solid” and “Shell-Solid”.
Conversely, the same simulations take only about 5 min to 15 min if they are performed with
model “Shell-Beam 1”. Therefore, an extensive parametric study concerning the member
resistance including second order effects does not seem feasible with a solid model because the
length of the member enters as supplementary parameter leading to a greater number of cases to
be studied. Also, it has been shown several times for simple load cases not including torsion, for
example in reference (Taras 2011), that the fillets do not influence the general behaviour of a
member. In fact, if the member resistance is given in relative terms in a A-y diagram the results
are practically identical whether or not the fillets are included into the simulation. Consequently,
it seems interesting to study if these conclusions may be extended to the case of members subject

to applied torsional moments.
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3.3.5 Influence of the fillets on the member resistance

In order to study the influence of the fillets on the behaviour of members subject to combined
bending and torsion, the example represented in Figure 3-57 is treated. The member is made of
IPE 500 cross-section fabricated from steel grade S235. It is subject to constant major-axis
bending and to a torsional moment applied at mid-span. The value of the torsional moment is

calculated as a function of the member length by:
b
MT = My E ( 39 )

Eqg. ( 3.9 ) accounts for the fact that torsional moments are generally introduced by loads applied
with an eccentricity to the shear centre. In fact, the torsional moment applied here is equal to a
torsional moment that would be introduced by a vertical point load applied at mid-span half way
between the web and the flange’s tip and creating the maximum bending moment My (that is

applied at the member ends for studied example).

IPE 500

L/2 | L/2

[ -T-‘ P—

Figure 3-57: IPE500 subject to combined bending and torsion

The three different cases represented in Figure 3-58 are studied. Here the torsional characteristics
as well as the plastic major-axis bending moment are of special interests. The cross-section
characteristics are given in Table 3-3 for each model. Obviously, the characteristics are identical
for the models not considering the fillets. Table 3-3 also shows that the fillets contribute to about
4% to the major-axis bending moment, 28% to the torsion constant, 36% to the plastic Saint
Venant’s torsional moment and 1% to the warping constant. Obviously, the fillets especially

influence the cross-section characteristics related to Saint Venant’s torsion.
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Figure 3-59 represents the results obtained by GMNIA calculations of the three models for
different member lengths. The resistance is represented with reference to the plastic bending
moment resistance. As the member is subject to combined bending and torsion (creating a bi-
moment, a warping torsional moment and a Saint Venant’s torsional moment), the plastic bending
moment is not attained even for short members, whatever the model is. It can be seen that, both
the solid model not considering the fillets and the shell model yield quasi identical results. This
observation confirms the quality of the shell model for the case of applied torsion. Additionally, it
may be seen that the influence of the fillets is nearly negligible, especially for short members
(attaining the plastic cross-section resistance under combined bending and torsion) and long
members (Arr> 1,4 - failure characterized by elastic instability). Some differences may be
identified for members of medium length. This may be attributed to the contribution of the fillets

to the torsional stiffness of the member (see Figure 3-60 and Figure 3-61).
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Figure 3-59: Reduction of the ultimate bending moment with the relative lateral-torsional buckling
slenderness

Figure 3-60 and Figure 3-61 show the evolution of the torsional twist and the lateral displacement
at mid-span with the applied major-axis bending moment for the member possessing a lateral-
torsional buckling slenderness of about 1,0 (L =5400 mm). The negative sign for the lateral
displacement directly results from the sign conventions (positive torsional twist leads to negative
lateral displacement). Nonetheless, as the section is double symmetric, the sign is not of primary

importance.

It may note that the shell model and the solid model not including the fillets yield identical results
again. Owing to higher torsional stiffness of the member with the fillets, the torsional twist and
the lateral displacement at a given load level are lower than for the members without fillets.
Consequently, the resulting second order internal forces, in particular bi-moment and minor-axis
bending moment, are lower too. Thus, the member possessing fillets may resist a higher applied
major-axis bending moment. The difference is of about 8%. Nevertheless, it has to be noted that
the fillets do not modify the general behaviour of the member. In fact, due to the higher Saint
Venant's torsional stiffness, the critical load is higher and the relative slenderness is lower for the
member with fillets. Consequently, it is not surprising that its resistance is slightly higher than the
resistance of the member with the same dimensions not possessing the fillets. Nonetheless, a
single ultimate resistance curve is capable of describing the behaviour of both members.
Therefore, a design model may be developed based on a numerical study of members without
fillets. If the torsional characteristics are included into this design model, it is able to predict the
ultimate resistance of members made of hot-rolled sections as reliably as the resistance of

members made of welded sections.
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Figure 3-60: Evolution of the torsional twist at mid span with the applied bending moment
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bending moment
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3.3.6 Choice of the numerical model

The present paragraph aimed at comparing different types of numerical models with respect to
the stiffness of the member and the plastic resistance for elementary load cases (mono-axial
bending, axial force or torsion) and combined major-axis bending and shear force. The modelling
of the fillets of hot-rolled sections was of special interest. It has been shown that, depending on
the type of modelling, the results may vary. Indeed, the first part of this paragraph, concerning the
elastic member buckling loads, has shown that even if model “Shell-Beam 2” and the model “Shell
var” represent very closely the real geometry of the section, these models represent the least
precisely the torsional stiffness of the member. The models containing solid elements in the zone
of the fillets and the beam model represent best the torsional stiffness as they not only represent
perfectly the section geometry but also model the closest the continuity of the material
(representation of the warping function over the fillets!). This continuity can only be
approximated very roughly by the models “Shell var” and “Shell-Beam 2”. Hence, these two
models are not capable to represent the real torsional stiffness of the member. As the models
“Shell-Beam 2” and “Shell var” yield poor results for the torsional stiffness, they have been
excluded from the subsequent comparisons. Model “Shell-Beam 1” does not represent the
continuity of the material neither, but the geometry of the rectangular hollow section,
representing the fillets, is specifically calibrated so as to obtain the exact torsion constant and area
of the physical section that is modelled. Therefore, model “Shell-Beam 1” is capable to represent

precisely the stiffness of the studied hot-rolled member.

The second part of this paragraph has compared the quality of the different models to attain the
full plastic resistance of the section. It has been demonstrated that the models yield similar results
for the elementary load cases of major- and minor-axis bending, axial force and applied torque.
Conversely, in case of interaction between major-axis bending and shear force, it has been shown
that the beam model does not consider the interaction between shear stresses resulting from the
shear force and axial stresses. Consequently, the beam model may not be used for the parametric
studies. Models “Shell-Beam 1”, “Shell-Solid” and “Solid” yield again very close results. Yet,
obviously, the model “Shell-Beam 1” does not perfectly represent the continuity of the material
and therefore leads to stress distribution that are less smooth than for the solid model. Also, as
this model contains beam elements to model the fillet zone, the shear stress-axial stress
interaction is not well represented as shown for the beam model. Since it is intended to study the
influence of the fillets of hot-rolled cross-sections on their plastic cross-section resistance, it
seems necessary to base the corresponding numerical simulations on a model that represents the
best the continuity of the material and the stress distribution. As the model “Shell-Solid” does not
reduce the calculation time compared to the solid model, this last is used in the mentioned study.
Yet, it has to be noted that the calculation time necessary for the solid model is up to ten times
higher than for the shell model. Hence, it is not possible to perform a parametric study on the
member resistance based on the solid model. Therefore, the last section of this paragraph studied
the influence of the fillets on the member resistance. It has been confirmed that the fillets do not

influence the general behaviour of the member but only increase the torsional stiffness and the
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cross-section resistance. These observations allows the parametric study concerning the member
resistance to be performed based on the shell model not considering the fillets. The difference
between hot-rolled sections and welded section is introduced exclusively through the residual

stress pattern.

3.4 Comparison of the numerical model to physical tests

3.4.1 General

The numerical model should well represent the reality. Therefore, the best way to validate the
numerical model is to compare it to results from physical tests. In reference (FOSTA 2004), a total
number of 74 tests on I- and U-shaped sections are documented. The tests have been performed
at the three German universities: TU Berlin, RWTH Aachen and RU Bochum. The tests realised at
TU Berlin are recalculated hereafter using the model described in the previous paragraphs. A
selection of results is given next. Supplementary comparisons to laboratory tests performed in the

framework of the present research project are detailed in Chapters 4.

In order to capture the behaviour of the member precisely, the geometrical imperfections
measured in (FOSTA 2004) are introduced in the model. Also, the measured stress-strain curve of

the steel is used.

3.4.2 Tests performed at TU Berlin

3.4.2.1 Numerical Model

So as to reproduce the conditions of the physical tests, the load introduction and support
conditions should be as close as possible to the conditions chosen in the laboratory. The two

following figures show the load introduction and support configuration used in the physical tests.
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Figure 3-62: Support configuration used for the physical test (figure from (FOSTA 2004))
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Figure 3-63: Load introduction used for the physical test (figure from (FOSTA 2004))

As can be seen in Figure 3-63, the load is introduced through a frame fixed to the member. This
frame is also considered for the numerical model as shown in Figure 3-64. The support conditions

are kept as described in paragraph 3.2.3.2 of this report.
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Figure 3-64: Numerical model of the physical tests performed at TU Berlin

Hereafter, the tests are recalculated with a solid model. In paragraph 3.4.2.5 the results obtained

by the shell model are compared to the results of the solid model.

3.4.2.2 Results for | sections

First, the test shown in Figure 3-65 is considered. The member is fabricated from an IPE 200
section and it is loaded by a point load applied with a vertical and horizontal eccentricity with
respect to the shear centre. Consequently, the member is subject to combined major-axis bending,
shear force and torsion. Figure 3-66 to Figure 3-68 provide the load displacement plots. The
lateral and vertical displacements are measured at the centroid of the cross-section at mid-span.
The vertical displacement is directed downwards. For the torsional twist and the vertical

displacement, the sign conventions used in the framework of this thesis are applied.

e —
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yp =25 mm
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Figure 3-65: Physical test BE-1-4 (from (FOSTA 2004))
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Figure 3-66: Lateral displacement of the centroid at mid-span
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Figure 3-67: Torsional rotation of the centroid at mid-span
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Figure 3-68: Vertical displacement of the centroid at mid-span

Figure 3-66 to Figure 3-68 clearly indicated that:

e The numerical simulation and the laboratory test attain practically the same peak
load. Indeed, the member reaches a maximum load of 21,9 kN in the physical test.
The numerically obtained value is 21,8 kN. Obviously, the difference is negligible.

e Theinitial stiffness of the member is also very well approximated by the numerical
model. Nonetheless, it appears that the load-displacements curve slightly diverge
starting from a load of approximatively 10 kKN. Near the peak load, the load
displacement curves approach again.

o Theload-displacement curves are also very close after the peak load level.

It may be concluded that the numerical model precisely predicts the behaviour of the studied
member. A more global evaluation is given in paragraph 3.4.2.4. The next paragraph represents

the results obtained for a U-shaped member.

3.4.2.3 Results for U sections

Hereafter, the results obtained for the test shown in Figure 3-69 are presented. The cross-section
of the member is a UPE 200. The member is subject to a point load applied through the plane of
the web with a vertical eccentricity of 215 mm with respect to the shear centre. Consequently, it
is again subject to combined major-axis bending, shear force and torsion. The load displacement

plots are given in Figure 3-70 to Figure 3-72.
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Figure 3-69: Physical test BE-3-22 (from FOSTA 2004))
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Figure 3-70: Lateral displacement of the centroid at mid-span
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Figure 3-71: Torsional rotation of the centroid at mid-span
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Figure 3-72: Vertical displacement of the centroid at mid-span

In Figure 3-70 to Figure 3-72, one may observe in particular;

e The peak load is quasi identical for the laboratory test and the numerical
simulation. Again, the difference is approximatively equal to 1%.

e The initial stiffness of the member with reference to the lateral and the vertical
displacement seems to be less well represented than for the IPE 200 section. The
torsional twist is however extremely well represented. It is recalled again that the
lateral and the vertical displacement have been calculated at the centroid based on
the torsional twist and a reference displacement in (FOSTA 2004). This may result
in certain imprecision that complicate the comparison.

e The numerical load-displacement curves are also rather close to the laboratory
tests after the peak load. Only the lateral displacement is not well represented. Yet,

in general the load-displacement curves correspond very well.

As for the double symmetric I section, the numerical simulation represents precisely the physical
test for the member of UPE 200 section. A global evaluation of the numerical model with reference

to the physical tests is given next.

3.4.2.4 Summary of the results

Figure 3-73 gives an overview of the totality of the tests. As can be seen the numerical model gives
very satisfactory results. In fact the maximum difference is about 4%. Also, it can be noted that the
GMNIA results are safe-sided for all I-shaped members (tests 1-13). However, for U-shaped
members one numerical result is unsafe. Nonetheless, the maximum unsafe difference is only of
about 4%. Yet, for test 15, noted as BE-3-21 in reference (FOSTA 2004), local buckling at the
supports has been observed in the laboratory. This explains, at least partly, the over-estimation
of the GMNIA resistance.
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Figure 3-73: Comparison of all physical tests performed at TU Berlin
3.4.2.5 Influence of the fillets on the test results

In paragraph 3.3.5 it has been shown that the fillets do not influence the general behaviour of
the member (represented in the A-y format). Hereafter, this is confirmed again for the case of the

physical tests. For this objective, the results obtained for the test BE-1-1 are represented for the
case of:

e “Shell model” without fillets;
e “Solid” model without fillets;
e “Solid” model with fillets.

Figure 3-74 represents the test setup. The numerical simulations are performed including the

classical residual stress pattern, measured geometric imperfections as well as the measured

Y

material law.
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Figure 3-74: Physical test BE-1-1 (from FOSTA. 2004))
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Figure 3-75: Evolution of the applied load with the lateral displacement of the centroid at mid span
for test BE-1-1
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Figure 3-76: Evolution of the applied load with the torsional twist at mid span for test BE-1-1

Figure 3-75 and Figure 3-76 show that the “Shell” and the “Solid” model yield practically identical
results if the fillets are not modelled. Conversely, it may be observed that the “Solid” model with
fillets leads to a higher ultimate resistance for this individual case. This is not surprising as the
fillets add torsional stiffness to the member leading to a lower torsional twist and a lower lateral
displacement for a given load level. Hence, second order internal moments are also lower and

yielding of the cross-section starts at a higher load level.

The example treated above allows the conclusions of paragraph 3.3.5 to be confirmed. It is shown
that the “Shell” model is equivalent to the “Solid” model if the fillets are not considered.
Additionally, paragraph 3.3.5 has shown that the influence of the fillets vanish when the resistance

is represented in the A-y format, i.e. with reference to the real cross-section characteristics.
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Consequently, the parametric study concerning the ultimate member resistance may be

performed based on the less time consuming shell model.

3.4.3 Conclusions

Throughout the present chapter the numerical model used in the framework of this thesis was
presented, discussed and validated extensively. This preparatory work was absolutely necessary
in order to ensure that the numerical model is capable to predict reliably the resistance of
members subject to complex load combinations creating interaction between axial force, bi-axial
bending and torsion. Moreover, due to the complexity of the problem treated here, a very high
number of parametric calculations has to be performed in order to develop a resistance model in
Chapters 4 and 5. Therefore, the numerical model should be sufficiently efficient to perform the

parametric studies in a reasonable amount of time.
In particular, the following points were of special interest and have been studied:

e Meshing density of hot-rolled and welded cross-sections for different load cases
and for different values of the section slenderness (cross-section classes);

e Modelling techniques for the fillets of hot-rolled cross-sections;

e Influence of fillets on the member resistance;

e (Choice and validation of the numerical model.

The different studies presented in the present chapter concerning the points mentioned above

made it possible to conclude that:

e The meshing density should be different for hot-rolled and welded sections in
order to represent the distribution of different residual stress pattern;

e In the longitudinal direction, at least 100 finite elements should be used to
precisely account for the spread of plasticity in material non-linear calculations;

e For slender cross-sections sensitive to local buckling, a higher element density is
necessary in the longitudinal direction in order to represent the presumed local
buckle reliably;

e The influence of the fillets on the plastic cross-section resistance may only be
studied with a solid model due to the limitations of the shell and beam finite
elements concerning the interaction between axial and shear stresses. Also, only
the solid elements are capable of representing the continuity of material in the
fillet zone;

o Thefillets do influence the resistance of members fabricated from hot-rolled cross-
sections as they increase notably the torsion constant I; yet the general member
behaviour is not modified;

o The comparisons between the numerical model and physical tests performed in
the framework of a previous research project have shown that the numerical
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model is reliable and capable to predict the resistance of members under complex

load combinations including cases with torsional loads.

The present chapter only consisted in a general presentation and validation of the numerical
model. Specific questions resulting from the study of the member resistance, as for example the
sensitivity to loading path and assumed imperfections are studied in Chapter 5. Also,
supplementary validations of the numerical models used here are given in Chapter 4, concerning

the cross-section resistance and Chapter 5 concerning the member resistance.

Obviously, the numerical simulations as well as the real behaviour of the member always contain
a certain amount of incertitude. Therefore, the numerical simulations can only approach the
reality with a given tolerance. Based on the investigations presented in this chapter and in
particular the comparisons to physical tests, it may be concluded that the precision of the model
used here is of about +5-10%. In the following, extensive parametric studies are performed to
characterize the behaviour of members of open cross-section subject to a combination of internal
forces and moments including torsion. Therefore, a very high number of parameters is susceptible
to have a certain influence. Nonetheless, only parameters possessing an influence of more than
5% percent may be characterised owing to the natural scatter of the numerical results. Yet, this
“limitation” seems to be completely acceptable. Additionally, it should be noted that the practical
design of the ideal numerically modelled boundary conditions may also possess an influence that
could be even higher than 5%. However, the influence of the design of supports and restraints on
the member resistance cannot be studied in the framework of this thesis. Hereafter, it is intended

to develop lower bound solutions based on idealised boundary conditions.
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4.1 Introduction

The ultimate resistance of an arbitrary member subject to an arbitrary combination of loads may
be represented by a characteristic curve linking the resistance to the relative slenderness A.
Hereafter, this curve is referred to as ultimate resistance curve of the member. Its form is
schematically represented by the dots in Figure 4-1. In this figure the resistance is given by the
ratio Ru: to Ry,1., designating the load amplification factor leading to the failure of the member and

the load amplification factor leading to the failure of the most loaded cross-section, respectively.

1.20 Cross section resistance
1.00 Euler curve
Arbitrary member with
0.80 arbitrary loads
& 0.60
=
mj
0.40
0.20
0.00

0.00 020 040 060 080 100 120 140 160 180 2.00
3

Figure 4-1: Ultimate resistance curve of an arbitrary member subject to an arbitrary combination of
loads
The reduced slenderness used as abscissa in Figure 4-1 may be expressed by Eq. (4.1).

g R, (4.1)
Rcr,G

The form of the ultimate resistance curve is not specific to any design model but describes the

behaviour of a member in a general way. Two main regions may be distinguished in Figure 4-1:

1) Failure of the member is mainly characterized by the failure of the most loaded
cross-section;
2) Failure of the member is characterized by elasto-plastic (member) instability.

Depending on the cross-section and the load combination, the width of the two regions may vary.
Anyhow, the member always attains at least the full cross-section resistance of its most loaded
section in region 1). Depending on the compactness of the cross-section, this resistance may be
plastic, elastic or even less if the section is sensitive to local buckling before it attains its elastic
resistance. For very short members, the resistance may, in some cases, exceed the cross-section
resistance due to the spread of plasticity through the member and through the cross-section even

for slender sections with limited plastic reserve.
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In region 2) the member suffers from a strength reduction (Ru/Rpr< 1,0) due to the effect of
member imperfection and member instability. For long members the ultimate resistance curve
may cross the Euler curve associated with pure elastic instability. However, this is generally linked
to excessive displacements as shown in (Taras 2011). Consequently, this post-critical resistance

reserve should be neglected for members.

In order to predict the ultimate member resistance with sufficient precision, both regions of the
ultimate resistance curve have to be studied and characterized. The present Chapter concentrates
on region 1) characterized by cross-section failure. Moreover, hereafter, the plastic cross-section
resistance is of special interest due to the lacks in Eurocode 3 Part 1-1. Indeed, the resistance of
slender cross-sections may be treated with the effective width method (EWM) proposed in
(CEN 2005a). Yet, it may be noted that the EWM was in the centre of criticism due to its complexity
(see for example (Nseir 2015) and (Boissonnade et al. 2017)). However, it is still widely accepted
as it possesses an extensive range of application. Also, the resistance of semi-compact cross-
sections can be treated with the methods proposed in the current version of Eurocode 3 Part 1-1.
Additionally, in order to close the discontinuity between compact (or class 2) and semi-compact
(or class 3) sections a continuous design method has been proposed in the framework of the RFCS
project SEMI-COMP in reference (RFCS 2009).

Conversely to the resistance of slender and semi compact sections, the plastic resistance of
compact sections subject to complex combination of internal forces and moments, including
torsion, has not been sufficiently investigated and may not be treated neither with the provisions
of Eurocode 3 Part 1-1 nor with other international standards as is shown in paragraph 4.2.
Therefore, the plastic interaction is studied in the present Chapter based on laboratory tests (see

paragraph 4.3) and an extensive numerical study (see paragraph 4.4).
4.2 Assessing the plastic cross-section resistance

4.2.1 Plasticinteraction in various standards
4.2.1.1 Internal forces and moments creating only axial stresses

In the past, many proposals have been made to assess the plastic cross-section interaction. In
Europe the works of (Djalaly1975), (Rubin1978), (Rubin 2000), (Rubin 2005),
(Kindmann et al. 1999), (Vilette 2004) and (Ludwig 2014) may be cited. This long, but incomplete
list shows that the plastic section resistance has been studied for a long time and is still of interest

for current researchers.

Hereafter, it is proposed to review only the methods included in major current design standards.
Also, the review is limited to open sections (I and U). A more detailed review is given for example
in (Villette 2004).

The following tables summarise the interaction formulae for combined bending and compression
given in (ANSI 2010), (Standard Australia 1998) and (CEN 2005a).
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Table 4-1: Interaction criterion given in the North American steel building design standard -
ANSI/AISC 360-10

Load case Criterion
Neg 8| Myga  Mega | 4o for  Nea 5029
NRd My,Rd Mz,Rd Rd
N+My+M,
M
Neg +—2E9 1 <10 for Neg 0,20
2Ngg M, rq Rd

Table 4-2: Interaction criterion given in the Australian steel building design standard —

AS 4100:1998

Cross-section Load case Criterion
M
N+M, My—Ed <10 and My, gy = M, gg(1-n)
N,y,Rd
M
General N+M, —2E9_ <10 and My, gy = M, gys(1-1)
N,z,Rd
NEd My Ed Mz Ed
+—2—+—==—<10
N+My+M., Nrg Myrs M;gq
M
_—¥Ed <40 and
N+My M.y ra
MN,y,Rd = 1,1 8My,Rd(1 - n) S My,Rd
M
, —2zEd <10 and
Double symmetric I N+M, N.z.Rd
section 2
My 2 ra =M, gy (1 -n )3 M, rd
e V4
My ed + M: £q <10 and
N+M,+M, My N Rra M;n Rd
y=14+(n)<20
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Cross-section Load case Criterion

M
_—¥Ed <40 and

My y ra
' , 05h L,
N+My MN,y,Rd = My,Rd if NEd < Mi O,25NRd,}/—MO
1-n

My,y rd =M, rq 1-05a <M, gy elsewise

Mz <10 and

M
Double symmetric N.z.Rd

i . hyt,f
I section N+M, My ».ra = M, ra if N, < wlwly
Mo

n-a\?

M,z ra = Mz,Rd[1_[1 aj J elsewise
a B
[Ag/,y,Ed ] +(A342,Ed ] <10 and
N+M,+M, N.y.Rd N.z,Rd

a=2, ﬁ=5h21,0
NRd

By comparing Table 4-1, Table 4-2 and Table 4-3, one may note that the North American design
standard proposes certainly the simplest design approach. Also, as the same formulae are used
for the cases of mono-axial bending and axial force and bi-axial bending, full continuity of the
interaction space is guaranteed. However, one might wonder if the North American interaction
formulae are not overly safe-sided for common cases like double symmetric I sections (see Figure
4-2, Figure 4-3 and Figure 4-4).

Both, the Australian and European design standards propose a set of formulae applicable for a
given combination of internal forces and moments. However, Eurocode 3 is the only standard
presented here considering the influence of the cross-section proportions by introducing the
factor “a” (ratio between area of web area and the total area of the cross-section). In order to
compare the three approaches in more detail, the following figures give the resulting interaction
curves My-M, for three values of the axial force: 0,0; 0,3 Ny and 0,6 Ny, For Eurocode 3 two curves
are shown corresponding to the upper and lower bound of European profiles (HEM 100 -a=0,16
and HEAA 800 - a = 0,51). Finally, the analytical interaction curve, based on a theoretical plastic

stress distribution for the combination of axial force and bi-axial bending is represented.
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Figure 4-2: M,-M, Interaction curve without axial force N/N, =0
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Figure 4-3: M,-M, Interaction curve with N/N, = 0,30
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Figure 4-4: My-Mz Interaction curve with N/Npl = 0,60

The previous figures clearly show that the design provisions of the North American standard are
very safe-sided. Moreover, the conservatism increases with increasing axial force. Nevertheless,
it can be noted that in case of combined major-axis bending and axial force (m, = 0), very good
agreement with the analytical result is obtained. Both, AS 4100 and Eurocode 3 Part 1-1 capture
very well the form of the cross-section interaction. However, as the Australian standard does not
include any parameter accounting for the exact proportions of the cross-section, the proposed
interaction curve may be far away from the analytical result, especially in case of cross-sections
with high values of the coefficient a (a tending to 0,50). It appears that the Australian provisions
yield satisfactory results for cross-sections possessing an a value of approximatively 0,15-0,25.
Yet, one may also see that the provisions given for combined axial force and major-axis bending

are unsafe for the given examples.

Eurocode 3 Part 1-1 seems to approximate the best the interaction behaviour of double
symmetric | sections subject to a combination of axial force and bi-axial bending even if the
interaction formulae are not excessively more complex than the ones proposed in AS 4100. As
Eurocode 3 Part 1-1 accounts for the cross-section proportions by introducing the factor a, the
results are in better agreement with the analytical results. Nevertheless, the European provisions
may also lead to unsafe results in some cases. In Figure 4-3 and Figure 4-4, it can be seen that the
results are (too) unsafe for the cross-section of high a value (a = 0,51) and values of m; in the range
between 0,7 and 0,9. Admittedly, the double symmetric I sections are rarely subject to such high
minor-axis bending moments.

Last, Figure 4-5 shows the interaction curves for the current case of combined axial force and
major-axis bending. It is seen that the bi-linear approximation of AISC 360-10 fits very well the
lower bound interaction curve. For cross-section with higher a values, it may however be very
conservative. As before, the provisions of AS4100 seem to be calibrated to cross-sections
possessing medium values of a. Also, as a cut-off value for the axial force of approximatively

0,15N;; has been defined, the provisions can be unsafe for low values of axial forces. The same
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tendency can be seen for the European provisions. Especially, for cross-sections with high a
values, this may lead to unacceptable unsafe results. Conversely, the European interaction curve
fits very well the analytical results for high axial forces. Again the cross-section proportion factor

a is very beneficial.

—EC3 Part1-1-a=0,16
08 A — Analytic-a=0,16
—— Analytic—a =0,51
— AISC 360-10
50.6 -
£ EC3Part1-1-a=0,51
2
1}
€04 -
0.2 -
00 T T T T L
0.0 0.2 0.4 0.6 0.8 1.0
m, = Mv/Mv,pl

Figure 4-5: My-N interaction diagram (m, = 0)

Here before, the N-M,-M; cross-section interaction curves provided in three major international
standards have been compared. It should be noted that none of the standards provides specific
rules for other open cross-sections, as U sections or mono-symmetric [ sections. The American
provisions are explicitly applicable to all shapes of cross-sections, a reason why these rules may
be very conservative for double symmetric I sections. The Australian standard proposes a linear
interaction that certainly leads to very conservative results for compact U sections. Finally, the
European standard silently omits other open cross-sections. It is implicitly mentioned that an
elastic cross-section interaction may always be applied to sections not sensitive to local buckling.
Also, it should be noted that none of the mentioned design provisions considers the influence of
axial stresses due to the bi-moment in case of plastic interaction (see paragraph 4.2.1.2.2 for more
details). The North American design standard as well as Eurocode 3 Part 1-1 propose an elastic
interaction that, obviously, leads to very conservative results if only few torsion is applied to the
member. Paragraph 4.2.1.2 gives more details on the influence of torsion on the cross-section

interaction.
Based on the comparison presented here before, it may be concluded that:

e Very simple design provisions may be over conservative for the specific case of
double symmetric I sections, as observed for AISC 360-10.

e More complex design provisions, as given in Eurocode 3 Part 1-1 and
AS 4100:1998 may approximate more precisely the real cross-section

interaction.
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e Specific design provisions for other open sections are not included in the studied
design standards.

The last point listed above may be very well understandable. Obviously, including specific rules
for other than double symmetric I sections would lead to an even more extended set of interaction

formulae that would be more or less complex depending on the desired precision.
4.2.1.2 Interaction between shear and axial stresses
4.2.1.2.1 Cross-section resistance under pure shear
As before the provisions given in AS 4100, AISC 360-10 and Eurocode 3 Part 1-1 are compared for
the shear resistance. All three standards define a plastic shear resistance equal to:

Voird = TrRaAv (4.2)

The aspect of the plastic shear resistance is equal. However, for the yield shear stress trq and the
shear area, different definitions are used. The North American and the Australian design standard
define trq as 0,6f;. Eurocode 3 uses a more precise definition based on the von Mises yield criterion

of (omitting the partial factor ymo equal to 1,0):
f}’
TRd = ﬁ ~ 0,57fy ( 4'3 )

The difference is about 5% and may be neglected. Yet, the difference in the definition of the shear

area is much more pronounced. Figure 4-6 illustrates the shear areas used in the different codes.

[
7 e N7
{ Z= | \ M ) -
a) Eurocode 3 Part 1-1 b) AISC 360-10 c)AS 4100

Figure 4-6: Shear areas for double symmetric hot-rolled | sections and shear parallel to the web

For a better visualization, Figure 4-7 shows the relative difference between the shear areas for the
two European steel profile series, IPE and HEA, representing approximatively the lower and the
upper bound.
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Figure 4-7: Comparison between shear areas A,, defined in different standards

It can be seen that Eurocode 3 may be very economic compared to ANSI/AISC 360-10 and
AS 4100. Especially for H sections the difference may attain 25%-30% compared to the North
American standard and up to 35% compared to the Australian standard. These last give very
similar results apart from H sections with small fillets and thick flanges (HEA 100 - HEA 330). For

hot-rolled U-sections the results are similar.

In case of welded sections, Eurocode 3 allows (optionally) the use of n = 1,2 (=overstrength factor
for shear) times the web area as shear area. Hence, the difference between the standard is in the
same range as for hot-rolled sections (IPE, HEA 600 and wider). It should be noted, that only

AS 4100 introduces a particular formula for mono-symmetric [ sections given in Eq. ( 4.4 ).

B 2V, i
z,Rd—
0,9 4 [maxel (4.4)
Tmed,el
Where:

Tmaxel: 1S the maximum elastic shear stress
Tmed,el 1S the average elastic shear stress

Finally, it should be noted that the plastic shear resistance might be used up to a limit web
slenderness defined in Table 4-4. For more slender webs, shear buckling has to be accounted for.
For a better comparison, the values provided in AISC 360-10 and AS 4100 are presented with
Eurocode 3 notation. If the overstrength factor n is used with a value greater than 1,0, the limit
slenderness for shear buckling has to be decreased in Eurocode 3. It can be observed that the limit

slenderness is in the same range.

109



On the Design of Steel Members with Open Cross-Sections Subject to Plastic Cross-Section

Combined Axial Force, Bending and Torsion Resistance
Eurocode 3 Part 1-1 AISC 360-10 AS 4100
72¢/M 67¢ 77¢

In practice, the shear force is not acting alone in the section, but it is accompanied by a bending
moment. The interaction equations provided in different standards are discussed in the next
paragraph.

4.2.1.2.2 Combination of major-axis bending and shear force

AISC 360-10 gives a very simple design provision as the interaction needs not to be accounted for.
It should only be checked that:

e The maximum normal stress is less than the yield stress f, and;
e The maximum shear stress is less than 0,6f,.

As plasticity is not accounted for, these design rules may, however, be very conservative,
especially for low shear forces. It may be noted that these provisions are applicable for all load
combinations creating shear and axial stresses (including the load case of combined bending and
torsion).

Eurocode 3 Part 1-1 specifies a set of interaction formulae. The principle is to reduce the bending
moment resistance due to the influence of shear as given in Egs. ( 4.5 ) and ( 4.6 ) for the M-V,

interaction.
4
M v,Rd: M y,c,Rd lf —Ld_ < 0,5
/ ’ pl,Rd
(4.5)
2
M | = {Wp,,y - %}fy <M, elsewise
and
2w ’
p=|—E-1] <1,0 (46)
VpI,Rd

[t can be seen that the interaction between major-axis bending and shear is neglected up to a value
of Virda/Vipirda = 0,5. For higher values of the shear force, a parabolic reduction is applied (see
Figure 4-8).

AS 4100 proposes the following interaction:

M
V 2mra= Vi Rd [2’2 - (1’6 My’Ed H (4.7)

y,Rd
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In order to compare to Eurocode Eq ( 4.7 ) is reorganised to obtain:

11 v z,m,Rd

M,y g =| — — —2MmFS g <M 48
yV.Rd {8 1’6VpI,RdJ v,Rd v,Rd (4.8)

Eq. (4.8 ) shows that the interaction between the shear force and the major-axis bending moment
can be omitted up to a value of 0,6V, for the shear force. For higher shear forces, a linear
reduction of the major-axis bending moment should be adopted. The minimum value of the
resistance moment obtained for Vgq/V,p = 1 is equal to 0,75Mrq. The two proposals are compared
in Figure 4-8 and Figure 4-9 for a HEA 280 and a HEAA 1000 cross-section. Also, a numerical
interaction curves, noted as “Solid model”, is included (see paragraph 4.4.1). The numerical
calculation is based on an elastic-perfectly plastic material law without strain hardening

performed on a solid model of a beam subject to a point load at mid-span.

The two figures indicate that the Eurocode 3 interaction curve based on the shear area given in
Figure 4-6 yields unsafe results compared to the numerical results not considering strain
hardening. Especially, in the case of the compact HEA 280 section, (area of the fillets is rather
important), the Eurocode provisions seem to be up to 40% unsafe. Conversely, if only the web
areais considered as shear resisting, the Eurocode provisions are closer to the numerical solution,
especially in case of the compact section. The provisions given in the Australian standard are also
unsafe compared to the numerical results, yet, less than the Eurocode 3 interaction. The unsafe
nature of both proposals may be explained by the shear area that is used. As mentioned, if only
the area of the web is considered as shear area, the Eurocode provisions are safe-sided for the
studied cross-sections. A detailed study on the shear force-bending moment interaction is
presented in paragraphs 4.3 and 4.4.

1.00
0.90
0.80
0.70

® 4 ¢ 0 o

> 0.40 ¢ Solid model
030 [l EC 3V,

==FEC3 Vpw

== AS 4100

oo o0t

0.00 0.10 0.20 0.30 040 0.50 0.60 0.70 0.80 0.90 1.00 1.10
IVlult/NIpI

Figure 4-8 : Interaction between shear force V, and bending moment M, for a HEA 280 cross-
section
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Figure 4-9 : Interaction between shear force V, and bending moment M, for a HEAA 1000 cross-
section

4.2.1.2.3 Combination of bending, shear force and torsion

Last, it is interesting to study the interaction between bending, torsion and shear force defined in
different standards. Yet, neither AISC 360-10 nor AS 4100 provide an interaction rule for this load
case (for open sections). As stated previously, AISC 360-10 imposes explicitly an elastic
calculation without interaction. In AS4100 no specific provisions are given. Conversely,
Eurocode 3 Part 1-1 provides a specific paragraph on torsion and interaction between torsion and
shear. It is stated that for open section the shear resistance V., should be reduced by the influence
of shear stresses resulting from torsion. For U and I sections, two different interaction formulae

are given:

For I sections:

VTR = 1_7t’i\/IRd (49)
PLE 125754 "

For U sections:

Tt Ed Tw,Ed
14 = 1—-— — . V
pl,T.Rd ( 12570y 7y ] pl,Rd (4.10)

The stress 1.rq corresponds to the shear stress created by Saint Venant's torsional moments, and
the shear stress tw,zqa corresponds to shear created by warping torsional moments. Obviously, for
[ sections, these last are neglected in the interaction as they only affect the flange (see Chapter 2).
However, it may be noted that the axial stresses resulting from the bi-moment are not included in
the interaction equations. As has been recalled in Chapter 2, an open cross-section carries torsion
mainly by warping torsion. Consequently, the axial stresses induced by the bi-moment are not

negligible in many cases (see paragraph 4.4).
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In order to eliminate the possible insecurity, Mirambell recently proposed an amendment to
Eurocode 3 Part 1-1 introducing specific plastic interaction formulae for combined major-axis
bending, bi-moments and shear forces for double symmetric [ sections (Mirambell 2016). His
proposition is based on a predefined plastic stress distribution. It is supposed that the bending
moment creates an axial force in the flanges and the bi-moment creates a flange bending moment.
Consequently, the interaction between major-axis bending and the bi-moment of the sections is
replaced by an interaction between bending moment and axial force of the flange that may be
considered as a rectangle. The theoretical considerations of Mirambell are illustrated through
Figure 4-10.

Figure 4-10: Interaction between major-axis bending and bi-moment for a double symmetric |
section

Hence, one may express the moment resistance of the flanges by:

B
M pri = (1 - JMf,Rd (4.11)

Rd

By introducing the axial stress ow due to the bi-moment, given in Eq. ( 4.12 ), Mirambell transforms
Eq. (4.11)into Eq. (4.13).

Owra =7 Iy (4.12)

(4.13)

He introduces the factor a in order to account for plasticity. If full plasticity is accounted for, this
factor should be equal to 1,5. If the resistance to the bi-moment is limited to the elastic resistance,
the factor a is obviously equal to 1,0. Mirambell proposes a factor of 1,25 in order to account only
partially for the plastic reserve. One might argue that this ensures that the torsional twist does
not increase excessively. However, it should be noted that for practical cases, high values of the

bi-moment may only be attained for very short members. In these cases, the member may yield
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without attaining an unreasonable torsional twist. Inversely, longer members only yield in
presence of high torsional twist and consequently the Serviceable Limit State may become
relevant for the design. Also, the relative part of the bi-moment in the total load carried by the
member reduces (see Chapter 2). Hence, a value of 1,5 for the factor a would certainly be
acceptable (see paragraph 4.4.4). Last, it should be noted that following Eq. ( 4.13 ), the resistance
of the whole cross-section is reduced. The proposal is therefore safe-sided as the stresses due to
the bi-moment do not transit through the web. In presence of a bi-moment, the major-axis bending

moment resistance should thus be at lowest the bending moment resistance of the web.

In presence of a vertical shear force V,, Mirambell proposes to reduce the major-axis bending
moment resistance as indicated in Eurcode 3 Part 1-1 and shown in Eqgs. ( 4.14 ), ( 4.15 ) and (
4.16).

My,B,V,Rd:M web,Rd (1 ~ Pz )pB + pBMf,Rd

ht (4.14)
=[i=piloy =t + bt (1, ),
2
pro=| i1 (4.15)
pl, T ,Rd
(4.16)

Regarding Eqgs. ( 4.14 ) to ( 4.16 ), one might wonder why the resistance of the web should be
reduced due to the influence from Saint Venant's torsion (reduced shear force resistance Vyi1rd)
whereas the resistance of the flanges is supposed to be affected only by the influence of the bi-
moment. In order to underline this remark, it may be recalled that for practical cases of I sections
whose flanges are thicker than the web, the Saint Venant’s torsional shear stresses are higher in
the flanges than in the web. Therefore, one might suppose that the resistance of the flanges should
be reduced as well, at least for high Saint Venant’s torsional moments. A detailed study concerning

the plastic cross-section interaction including the effect of torsion is presented in paragraph 4.4.

Through this paragraph, it has been shown that Eurocode 3 contains some provisions for the
interaction between the shear force V, and shear stresses due to Saint-Venant’s and warping
torsion (for U sections). However, the European standard does not contain any provision for the
interaction between the shear force Vy and shear stresses due to torsion. It is recalled that the
shear stresses due to Vy and due to warping torsion are affine in the flanges of I sections.
Therefore, one might expect a reduction of the shear force resistance. Moreover, the current
version of Eurocode 3 Part 1-1 does not include any plastic interaction formula for major-axis
bending and the bi-moment. In order to close this lack, Mirambell proposes interaction formulae
based on a predefined plastic stress distribution. Yet, some questions remain in particular
concerning the interaction with shear stresses arising from Saint-Venant’s and warping torsion.

Additionally, it should be noted that the proposal may not be applied to U sections as the bi-
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moment also transits through their web. Consequently, the interaction behaviour is more complex

(see paragraph 4.4.2).
4.2.1.2.4 Conclusion

The previous paragraph has compared rules on plastic section resistance and interaction given in

three major steel design standards. It has been shown that:

e AISC 360-10 may be very conservative for the interaction between axial force and
bi-axial bending;

e AS4100 and Eurocode 3 predict rather well the interaction between axial force
and bi-axial bending. However, by introducing the cross-section proportion factor
“a”, Eurocode 3 yields more precise results;

e AISC 360-10 neglects the interaction between shear and axial stresses. However,
only the elastic resistance of the section may be exploited;

e The shear resistance V, provided in AS 4100 and Eurocode 3 Part 1-1 seems to
be too optimistic, when compared to numerical simulations (elastic-perfectly
plastic material). The influence of strain hardening is studied in paragraph 4.3;

e Only Eurocode 3 Part 1-1 explicitly includes a reduction for the plastic section
resistance due to shear stresses created by Saint Venant’s and warping torsional
moments. However, the interaction between the shear force Vy and shear stresses
due to (in particular warping) torsional moments is neglected;

e None of the cited standards includes the axial stresses created by the bi-moment
for the reduction of the plastic section resistance;

e The amendment proposal by Mirambell introducing the interaction mentioned in
the previous point closes a lack in Eurocode 3 Part 1-1 concerning the interaction
between major-axis bending and torsion but this proposal does not close all

inconsistencies.

It has also been shown that the more or less complex interaction formulae can only predict
approximatively the interaction behaviour between internal forces and moments. Especially, the
case of combined bending, shear force and torsion is approximated very roughly. Obviously,
formulae yielding more precise results are certainly far more complex (see for example
(Ludwig 2014) and (Kindmann etal. 1999)). In the following, two methods implemented by
programming are presented. The first method consists in step-by-step calculation of yielding of
the cross-section. The second approach corresponds to the design method proposed by Kindmann
in reference (Kindmann etal. 1999). The use of numerical tools for the plastic cross-section
interaction certainly changes the habit of the vast majority of design engineers. However, a fast
and precise determination of the plastic cross-section resistance may contribute to the acceptance
of numerical automatized tools. Yet, simple interaction equations that may be applied by hand-
calculation should always be proposed, at least for some cases (simple cross-section form, simple
interaction cases between two or three internal forces), in order to verify the consistency of the

obtained numerical results.
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4.2.2 Numerical tools for the cross-section interaction
4.2.2.1 General

Sophisticated numerical simulations based on the finite element method can obviously determine
the plastic resistance of an arbitrary cross-section subject to an arbitrary combination of internal
forces and moments. However, this approach is certainly not suited for the current practice of
engineering offices. Nevertheless, practical engineers do increasingly use numerical tools to
establish calculation notes and to check the resistance of the studied sections and members, as for
the simplest case Excel spread sheets. Therefore, it seems of interest to investigate the possibility
of simple numerical tools determining the plastic cross-section resistance. In the following

paragraphs, two procedures are presented.
4.2.2.2 lterative calculation based on predefined elastic stress distribution

The first procedure proposed here is based on a step-by-step increase of the loads. The cross-

section is discretised in a certain number of cells as shown in Figure 4-11.

Figure 4-11: Discretisation of the cross-section into cells

Based on a predefined elastic stress distribution the load factor that leads to yielding of the first
cell of the section is determined iteratively. For double symmetric I sections the elastic stress

distribution is recalled in Figure 4-12 for the different internal forces and moments.
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Figure 4-12: Elastic stress distribution for a double symmetric | section

Starting from the point of first yield the load factor is increased stepwise. At each step the load
increment, which leads to yielding (based on the von Mises yield criterion) of the next cell of the
cross-section, is estimated. Then, the yielded cells are deactivated and the cross-section
characteristics are recalculated for the section composed of non-yielded cells. Again, the stresses
are distributed elastically over the non-yielded section. The procedure is illustrated in Figure 4-13
and Figure 4-14 for the example of a HEB 200 section without fillets subject to an axial force of
600 kN, a major-axis bending moment of 20 kNm and a minor-axis bending moment of 40 kNm.
The section is supposed to be fabricated from steel S235. Green zones indicate that the cells do
not have reached the yield stress, blue zones indicate yielding in compression and red zones
indicate yielding in tension. Figure 4-13 also represents the principal system of axis that changes
its position and orientation with ongoing yielding.
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Figure 4-13: Spreading of yielding through the cross-section with increasing load factor
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The procedure described above may be applied to an arbitrary combination of internal forces and
moments. It should be noted that it is supposed that the distribution of the shear stresses does not
depend on the orientation of the principal system of axis, i.e. for example shear stresses due to Vy
and due the warping torsional moment My, are always supposed to transit through the flanges in

case of an I section.

The presented iterative procedure is precise compared to theoretical results. However, it should
be noted that it is based on a presumed elastic distribution of stresses that has to be determined
previously. Additionally, the plastic shear resistance cannot be determined directly but it has to
be based on the assumption of a shear area. Due to the two problems mentioned just before, it is
obvious that this approach cannot be applied for arbitrary forms of cross-sections. Yet, for
commonly used steel sections, the elastic distribution of the stresses is known and may be

included.

The calculation time depends on the number of cells necessary to obtain sufficiently precise
results. In particular, in case of complex load combinations, as the one studied here before, and
even more in presence of a Saint Venant’s torsional moment, an important number of cells may
be necessary. As the shear stress varies through the thickness of the plate (web or flange), at least
6 to 8 cells through the thickness are necessary to obtain satisfactory results. Therefore the
calculation is slowed down. Nevertheless, it is still faster than a rigorous plastic finite element

analysis.

In the next paragraph the method proposed by Kindmann in reference (Kindmann et al. 1999a) is

presented.
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4.2.2.3  Partial internal force method — PIFM
4.2.2.3.1 Initially proposed version of PIFM

For open cross-sections composed of three plates perpendicular to each other, a quasi-analytical
method for the plastic interaction between all eight internal forces and moments has been
proposed by Frickel and Kindmann in references (Kindmannetal. 1999a) and
(Kindmann et al. 1999b). The so-called “Partial Internal Force Method” is based on the principle
that the internal forces may be distributed to the three constituting plates depending on their
stiffness and location in the reference system. The reference system is located at the mid-height
of the web and oriented as shown in Figure 4-15. It should be noted that the reference system
represented in Figure 4-15 is rotated by 180° compared to the system used in the framework of
the present thesis.

bO/Z i bo/2
to [ :-}-, ---------------- )
ag/?2
ts
. y
- D
ag/?2
—
v :
bu/2 i bu/2

Figure 4-15: Cross-section definition for PIFM

Obviously, the reference system yDz is generally not coincident with the principal axis of the
section (this would only be the case for double symmetric [ sections). Hence, the internal forces

and moments have to be transformed in the reference system first. It yields:

NN (4.17)
M, =M, cosa—M,sina+ Nz (4.18)
M- =M cosa+M,sina— Ny, (4.19)
B-=B+M,(vs—yp)+ M. (z5—2p)+ Non (4:20)
V., =V, cosa—V_sina (4.21)
V-=V_cosa+V, sina (4.22)

120



On the Design of Steel Members with Open Cross-Sections Subject to Plastic Cross-Section

Combined Axial Force, Bending and Torsion Resistance

M— =M, =V, (z5-2,)+V.(vs = ¥p) (4.23)
_ 4.24

xStV MSt.V ( )

It should be noted that the Saint Venant’s torsional moment and the axial force are independent

from the cross-section system of coordinates.

After the transformation to the reference system, the internal forces and moments creating shear

are distributed to the three plates. One obtains:

V.= Y M (4.25)
) a,
IV L (4.26)
x,StVuf — x,St.V I
t
V= V- (4.27)
I, (4.28)
Mx,St.V,w :Mx,St‘V I_
t
,,I:E_Mrw (4.29)
: 2 a,
VYL (4.30)
x,sev,if — My sy I_

t
It is recalled that the indices “uf” and “If” refer to the upper flange, the lower flange and the web,

respectively.

For each plate, an interaction between the plate’s shear force and the plate’s torsional moment is

introduced as given in Eq. ( 4.31).

2 2
1 M. gy + ( M. gy J + (LJ - p<l (4.31)
2 MPIaX,Sfy 2Mpl,x,St.V V

pl

This interaction formula assumes a shear stress distribution in the plate as shown in Figure 4-16.

TMx, StV

TMx, StV |
TV TMx,St.V

TMx,St.V

Figure 4-16: Assumptions of the shear stress distribution in a plate (Kindmann et al. 1999a)
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If the factor p is less than 1,0, the corresponding plate may carry additional axial stresses. In order
to account for the interaction between shear and normal stresses, the yield stress of the plate is

reduced to:

I (132)

One may note that Eq. ( 4.32 ) is in accordance with the von Mises yield criterion. The reduction
can be neglected if the factor p is less than 0,25 (Kindmann et al. 1999b). This may however lead
to a certain discontinuity for the resistance model. It would be preferable to adopt continuous

conditions as for example given in (CEN 2005a) and (Standard Australia 1998).

Based on the reduced yield stress, the plastic resistance of each plate is calculated by:

_ 4.33

Npl,r,uf - buftuffy,red ( )
b2t . b. (4.34)

_ _ uf .
Mpl,r,uf - Tf:v,red - Npl,r,uf T
Npl,r,web = hwlwfy,red ( 4.35 )
_ hat,, _ h,, (4.36)
pl,r,web — Tfy,red — 4V pl,z,web T

Noteir =bytyy fy rea (4.37)
byty by (4.38)

Mpl,r,bgf = Tfy,red = sz,r,zf T

In a next step, the internal forces and moments creating axial stresses have to be distributed over
the three plates. Based on equilibrium considerations, Kindmann obtains the following four

equations:
N =N, +N, ,+N, (4.39)
M :(le_Nuf)%JrMy,web (440)
M. =M, +My =Ny, —Nyyy (4.41)
a (4.42)

B =M, -M, )%g + (N = Ny )7g

It should be noted that the axial forces N.; Nirand Ny, as well as the bending moments M,; Mjrand
Mep refer to the centroid of the corresponding plate. Up to this step they are not known. For the

flanges, however, it is possible to write the following condition:
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M; B 443
My e = > _a_:Muf ~ Ny Yy ( )

g

(4.44)

M- B-
= 22 +—=M,-N,y,

aq

If ,we

Mugwe and Mgy are the bending moments in the upper and lower flange calculated in the reference
system. At the plastic limit state, a quadratic interaction between the moments and the axial force

in the flanges can be considered. It yields:

2 2
Muf +{ Nuf ] — |Ml¢f',wc + Nufyuf +£ lef J
Mpl,r,uf Npl,‘r,uf ‘ Mpl,r,uf ‘ Npl,‘r,uf (445 )
2
M, . N, N,
:k_ﬂﬁL+25M A |+[ Y J <1,0
Mpl,r,uf Npl,r,uf Npl,r,uf

M, N N, 2_|le,wc+leylf|+ Ny ’
M |

2
M .
_ If ,we +25 le |+ le < 1,0
M, ., N

pl.rlf

pl.zlf

(4.46)

with:

_ 2y (4.47)

uf buf

2
Sy = ;% (4.48)
If

As the moments My and My are known, Eqs. ( 4.45 ) and (4.46 ) can be solved for the unknown

axial forces Nyrand Ny One obtains:

M . M .
Nofiin =Notear| =0, = o2 41 ——owe for yowe 5 oS (4.49)
uf ,min plouf uf uf M M uf
pl,ruf pluf
M ’c MM wce
Nopin = Notear| =0 =[O +1+ e for — e <25, (4.50)
v S U § M M -
plruf pl,tuf
M . Mu we
Nymax = Npieag| O + 5% + 141 for — >0, (4.51)
uf ,max pluf uf uf M M uf
plruf pl,tuf
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M . M .
_ o) uf ,we uf ,we 4.52
Nosomax =Ntz —5uf + 5uf +]—— for 0y <26, ( )
pliruf pl,ruf

The solution for the axial force in the lower flange may be obtained by simply changing the indices
“uf” to “If” in Eqs. ( 4.49 ) to ( 4.52 ). Obviously, Egs. ( 4.49 ) to ( 4.52 ) can only be solved
numerically if the radicand is positive. Therefore, it is possible to determine a condition for the

bending moment in the flanges:

uf ,we — | M; _ B- | < 5; +1 (453 )
M, . |2Mpl,r,uf agMpl,r,t(/'|

yue || M LB |S 52 +1 (4.54)
Mpl,r,lf| |2Mpl,r,[f agMpl,r,1f|

As can be seen, Egs. (4.53 ) and ( 4.54 ) allow checking whether the cross-section is able to resist
the applied minor-axis bending moment and bi-moment (transformed to the reference system).
At this point, it is still necessary to check the resistance to the applied axial force and major-axis
bending moment. Both can be resisted by the full web of the cross-section and the part of the

flanges not fully utilized by the minor-axis bending and the bi-moment.

It is shown in Egs. ( 4.55 ) to ( 4.56 ), that the axial force in the flanges has to be included in the

interval:

Nuf,min < uf < Nuf,max ( 455 )
N_lf,min = NZ/" < N_lf,max ( 4.56 )

As the web is not utilized yet, the web’s axial force has to be included in the interval:

N, <N, ,<N (457)

pl,t,w web — V¥ pl,r,w

Consequently, the total axial force has to respect the conditions expressed by Eq. ( 4.58).

NminSNSNmax (458)
and:
N=N,4+Ny+N, (4.59)
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_ 4.60

Nmin - le',min + Nuf,min - Npl,r,web ( )
_ 4.61

Nmax - N[/',max + Nuf,max + Npl,r,web ( )

Similarly, the major-axis bending moment should respect the following condition:

M- <M-<M- (4.62)

y,min y y,max

Finally, depending on the value of the axial force, the minimum and maximum values of the
bending moment are given in Table 4-5.

Nmin <N
a o
- (N + Npl,r,w - 2N1/',min )75 for and
N< thf,max + N[/',min - Npl,z',w
a N, +N, . —N <N
g s If, l,T,w
_ (Nuf,max _ N{f,min )7 uf ,max If ,min pl,t,w
Jomin A ) for and
_4NV; [Npl,r,w_(NLgf,max+le,min_N)z] N<Nu ,maX+le,min+Npl,r,w
pl,t,w
NLgf,max + le,min + Npl,r,w <N
a
g
- (2thf',max + Npl,r,w - N)? for and
N <N,
Nw SN
a
(N + Npl,r,w 2Nuf,min )Tg for and
N< thf,min + le,max - Npl,r,w
(Nl Jmax Nu ,min )% Nuf,min " le',max - Npl,r,w =N
yamax i , for and
w
+ W [NPI,T»W a (Nuf,min + le,max - N)Z] N< ngf,min + N_lf',max + Npl,r,w
plz,w
Nuf,min + le,max + Npl,‘r,w <N
a
(2le,max +Npl,TW_N)7g for and
N <N,

The plastic resistance conditions redeveloped here before have been derived in reference

(Kindmann et al. 1999b). They are summarized hereafter:
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2 2
l Mx,SLV,uf + Mx,St.V,uf + Vu/ — p < 1 ( 4.63 )
2 Mpl,x,SLV,uf 2Mpl,x,St4V,uf Vpl,u_f
2 2
1 M s N M, gy N Vo | _ p<l (4.64)
2 Mpl,x,StAV,w 2Mpl,x,St.V,w Vpl,w
2 2
l Mx,St.V,[f + Mx,St.V,[f + V[f — p<l (4.65)
2 Mpl,x,St.V,[f 2Mpl,x,St.V,lf Vpl,[f
M- B |
uf ,we | | z 2 4.66
lem,., am |S5“f+1 (460)
pl.Tuf pl.Tuf g pl.zuf
. M- B-
po || Mo |35;.+1 (4.67)
pllf | |2Mp, L |
NmmSNSNmaX (468)
< M-<M- (4.69)
y,min y ¥, max

It should be recalled that the internal forces and moments used in Eqgs. ( 4.63 ) to ( 4.69 ) are not
the ones calculated in the principal axes system of the section. This may be confusing for the use
in practice as the interaction formulae given in most current standards refer to internal forces and
moments in the principal system of the cross-section. However, it seems very interesting to verify
the resistance of a great number of practically used sections by only seven interaction criteria.
Obviously, the number of interaction criteria to be used decreases if the section is not subject to
all eight internal forces and moments. Nevertheless, the described procedure seems somewhat
too complicated for practical use by hand-calculation. An implementation in a numerical tool

seems necessary as has been done by Kindmann and Wolf (see reference (Wolf et al. 2014)).

Even if the PIFM is of quasi-analytical nature, it has been highly criticised several times for
example in (Kriiger 1999), (Werner 1999), (Rubin 1999), (Rubin 2000), (Rubin 2005). The

reasons for the different critical remarks are presented hereafter based on two examples.

Itis proposed to compare the plastic major-axis bending moments obtained with PIFM for the two
sections of Figure 4-17 with analytical results based on the plastic stress distribution also given
in Figure 4-17. It is supposed that the section is made of steel S235. The analytical results and the
PIFM plastic moments are compared in Table 4-6. Based on the supposed axial stress distribution,
the analytical major-axis plastic moments are identical. Conversely, the PIFM method predicts a

plastic moment of about 5% less for the U section. At a first look, this result seems astonishing.

Before this result is explained, it is proposed to compare the results for a second example.
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Figure 4-17: U and | cross-section and supposed plastic stress distribution under major axis bending
only

Table 4-6: Comparison of plastic major axis bending moment for an | and U section

Analytic My, ;1 [kKNm]

PIFM My, [kNm]

y.pl, y,planalytic
My, p1,pieM/ My, planal

I section

89,63

89,63

1,000

U section

89,63

84,86

0,947

The section represented in Figure 4-18 is considered and studied under combined bi-axial

bending and axial compression.

200
[ 1t=15

tw=9

200

Figure 4-18: HEB 200 cross-section without fillets

It is again supposed that the section is made of steel S235. It is subject to an axial force of 1125 kN,
a major-axis bending moment of 60,84 kNm and a minor-axis bending moment of 29,77 kNm. This
combination of internal forces and moments leads to full yielding of the cross-section, as shown
in Figure 4-19. The stress distribution is obtained by a numerical calculation of the cross-section

discretised into cells with the method presented in paragraph 4.2.2.2.

In Figure 4-19 the blue zones correspond to compression axial stresses and the red zone
corresponds to tension axial stresses. The neutral axis is represented in green. As the section has
(nearly) entirely yielded under the applied loads, the plastic load amplification factor for the given
loading is equal to 1,0. If, however, the PIFM method is applied iteratively, the obtained plastic
load amplification factor is equal to 0,838. Consequently, PIFM is nearly 20% safe-sided.
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In order to understand this difference, it is interesting to determine the internal forces and
moments associated with the stress distribution shown in Figure 4-19. Obviously, one obtains an
axial force of 1125 kN, a major-axis bending moment of 60,48 kNm and a minor-axis bending
moment of 29,77 kNm. However, one also obtains a bi-moment of 2,74 kNm?. Hereafter this
bi-moment is referred to as “stress induced bi-moment” Bg; as it directly results from the axial

stress distribution and not from an externally applied load.

The stress induced bi-moment also explains the differences noted for the example of the U section.
In fact, in order to obtain a full plastic stress distribution, a bi-moment is necessary. As the stress
induced bi-moment is not considered in the derivation of PIFM, as already highlighted in
(Kindmann 1999b), (Rubin 2000), (Rubin 2005) and (Kettler 2008), the PIFM may be very safe-
sided, especially for U-shaped sections and I sections under combined bi-axial bending and

compression.

However, despite the safe-sided nature of the proposed method, it may be concluded that the

PIFM presents several advantages:

e It gives a small number of interaction formulae treating a great variety of cross-
section shapes and combination of internal forces and moments;

o The treatment of the interaction between shear and axial stresses is of special
interest as it is not treated satisfactorily in Eurocode 3 and other standards,
especially for torsion;

e If PIFM is implemented numerically, its application is easy and yields rapidly
results.

Nevertheless, it has also been shown that PIFM presents some disadvantages. In particular, it
should be noted that:

e The complexity of PIFM disables it from being used manually,
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e For certain load cases, the initially proposed PIFM may be highly conservative
compared to results obtained based on a generally accepted presumed plastic
stress distribution,
e For compact hot-rolled sections, the fillets may have a non-negligible influence on
the plastic resistance but they are not included in PIFM that, consequently, yield
conservative results.

The present paragraph has shown that it is possible to derive a design model that, based on
theoretical developments, is able to predict the resistance of open cross-sections subject to an
arbitrary combination of internal forces and moments. Also, the design expressions ensure a
complete continuity in the interaction space between all eight internal forces and moments.
However, the resulting design expressions are complex and cannot be applied by “hand” in
practice. Therefore, a numerical implementation is necessary. Additionally, PIFM cannot take into
account all phenomena necessary to predict the “real” cross-section resistance (in particular the
stress induced bi-moment). Consequently, it seems that PFIM is promising; however it needs some

adaptations in order to predict economically the plastic cross-section resistance.
4.2.2.3.2 Adaptation of PIFM

In paragraph 4.2.2.3.1, it has been shown that the PIFM is a very promising method to assess the
plastic cross-section resistance of complex sections. Nevertheless, it has also been shown, that due
to the hypothesis concerning zero stress induced bi-moments, PIFM may lead to very conservative
results. It has to be noted, that for an arbitrary combination of loads and an arbitrary cross-
section, the stress induced bi-moment necessary for full yielding cannot be determined
analytically. In order to allow a more economic design, it seems interesting to adapt PIFM in the

following way:

e Introduction of the stress induced bi-moments: First, an initial load amplification
factor ap is determined not considering the bi-moment necessary for full yielding.
In a second step, the stress induced bi-moment leading to the maximum load
amplification factor ¢ is calculated iteratively.

e Introduction of the fillets for hot-rolled sections: Due to the position of the fillets,
it is considered that they yield in priority under major-axis bending. If the major-
axis bending moment carried by the fillets is less than the resistance of the fillets
they may be utilized by the minor-axis bending moment (if present). If the fillets
may carry additional loads, it is used to resist the axial force (if present).

Obviously, the proposed adaptations absolutely need a numerical implementation. However, this
seems not to be disadvantageous, as already the initially proposed PIFM has to be implemented

numerically.

The proposed procedure is applied hereafter. First, the example of the previous paragraph is
considered again (HEB 200 without fillets, N = 1125 kN, My = 60,84 kNm, M, = 29,77 kNm, S235).
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The plastic load factor obtained by the modified PIFM is equal to 0,992. Hence, the difference to
the iterative procedure given in paragraph 4.2.2.2 is negligible. Finally, the iteratively determined
stress induced bi-moment necessary for full yielding of the cross-section is equal to 2,736 kNm?
and consequently, it is equal to the one determined based on the Step-by-Step procedure

presented in the previous paragraph.

In order to validate the adaptations further on, the My-M, interaction curves for a HEB 180
(including the fillets) section are determined for three values of the axial force. The reference
results are obtained with the Step-by-Step procedure presented in the previous paragraph. Figure

4-20 shows that both methods yield very close results.

Step-by-Step
1.00
Modified PIFM

0.80

0.20 1 R

0.00
0.00 0.20 0.40 0.60 0.80 1.00

Mv/Mv,pl

Figure 4-20: Interaction curve My-M, for HEB 180

In order to quantify the influence of the proposed adaptations of PIFM, Figure 4-21 shows
interaction curves for the previous example again. Obviously, if no axial force is applied, the
results are rather close. Yet, the initially proposed PIFM is slightly safe-sided for high major-axis
bending moments as the influence of the fillets is neglected. The difference is of about 3%. It
should be noted that for combined major- and minor-axis bending without axial force the stress
induced bi-moment is not necessary to yield the section entirely. Conversely, if an axial force is
applied to the section in addition to bi-axial bending, yielding of the section is accompanied by a
stress induced bi-moment that is not considered in the initially proposed PIFM. In Figure 4-21 the
influence of this bi-moment may be clearly identified and it is confirmed that the results may be
very conservative and non-economic if the PIFM is applied as proposed by Kindmann (not

considering stress induced bi-moments).
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Figure 4-21: Interaction curve My-M, for HEB 180 - Comparison between initially proposed and
modified PIFM

The present paragraph presented and validated several adaptations of the Partial Internal Force
method proposed by Kindmann in references (Kindmannetal. 1999a) and
(Kindmann et al. 1999b). The introduction of the influence of the fillets and, especially, the
introduction of stress induced bi-moments lead to precise and more economic results.
Nevertheless, further investigations are still necessary, especially for the interaction between
internal forces and moment creating axial stresses and internal forces and moments creating
shear stresses. Indeed, in this case the interaction behaviour is based on several key assumptions
as the shear area. These key assumptions absolutely need validation. Consequently, a specific
experimental and a numerical study are presented in paragraph 4.3 with the objective to

characterize the bending shear interaction.
4.2.3  Conclusions

Paragraph 4.2 has presented several approaches to assess the plastic cross-section resistance.
First, approaches proposed in current design standards have been compared. It has been shown
that:

e Eurocode 3 Part 1-1 yields satisfactory results for the cases of combined bi-axial
bending and axial force (including the extreme cases if one of the internal forces
and moments is zero). Nevertheless, the current provisions may be too optimistic
for low axial force and applied major-axis bending (especially for sections with
high ratio h/b). It seems that Eurocode 3 provisions may be unsafe for the major-

axis bending-shear force interaction (compared to elastic-perfectly plastic

analysis), as the shear area for V, seems to be overestimated;

e The interaction formulae provided in the Australian standard AS 4100:1998 also
yield satisfactory results. However, it seems that they have been calibrated for
rather compact sections (ratio h/b is small). In case of interaction between major-
axis bending and transversal shear force, AS 4100 also seems to yield unsafe
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results due to a too optimistic definition of the shear area; however, AS 4100 is less
unsafe than Eurocode 3;

e The North American standard AISC 360-10, yields safe-sided results for the
interaction between axial force and mono-axial bending. In case of bi-axial bending
the results may be even considered as too safe-sided. AISC 360-10 considers that
interaction between shear and axial stresses may be neglected for open sections.
However, for the individual internal force or moment only the elastic resistance
may be exploited;

e None of the cited standards introduces a specific plastic interaction between
torsion and other internal forces. Only Eurocode 3 roughly addresses this
interaction problem, however the sole influence of shear stresses due to the Saint
Venant's torsional moment and the warping torsional moment (for U sections) is
introduced. Neither the axial stress due to the bi-moment nor the interaction
between shear stresses due to the warping torsional moment and the shear force
Vy are accounted for;

e An amendment to Eurocode 3 Part 1-1 has been proposed recently in order to
(partially) close the lack observed concerning plastic interaction including torsion.

Yet, the proposal seems to be inconsistent in certain points.

Based on the previous remarks, one may summarize that empirical formulations, even rather
complex as in case of a combination between bi-axial bending and shear, always possess certain
limitations. Therefore, analytical and numerical methods describing the plastic interaction have
been studied in the second part of paragraph 4.2. The Partial Internal Force method has been
presented and an adaptation has been proposed in order to account for the influence of the fillets
and of the stress induced bi-moments, necessary for the full yielding of the cross-section in case
of combined bi-axial bending and compression. Also, a Step-by-Step procedure based on a
presumed elastic stress distribution has been presented. Both methods yield practically identical
results. However, the modified Partial Interaction Method possesses the advantage to be very time
efficient. Even if both methods are very precise, they are based on key assumptions especially for

the shear resistance. Consequently, the following points of interrogation remain:

e  Which definition of the shear area yields safe-sided but economic results?

e  What cut-off value of the shear force should be used in combination with major-
axis bending?

e Is it safe-sided to neglect the interaction between shear stresses resulting from
warping torsion and from the horizontal shear force?

e Isitsafe-sided to neglect the interaction between axial stresses resulting from the
bi-moment and from other internal forces and moments or should an interaction
be included as proposed in reference (Mirambel et al. 2016)?

e Is it possible to develop a safe-sided, economic and simple design method that
continuously predicts the plastic cross-section resistance of open section (in

particular I and U sections)?

132



On the Design of Steel Members with Open Cross-Sections Subject to Plastic Cross-Section
Combined Axial Force, Bending and Torsion Resistance

In order to find appropriate solutions to these questions, the following two paragraphs present
the results of a series of laboratory tests (paragraph 4.3) and of an extensive numerical study
(paragraph 4.4).

4.3 Laboratory tests performed at University of Applied Sciences of Western
Switzerland

4.3.1 Motivation

Paragraph 4.2 has shown that the definition of the shear area and consequently the shear
resistance for hot-rolled [ sections may be very different in the major international design codes
as recalled in Table 4-7. Also, the interaction between bending and shear forces is treated
differently. This may lead to rather important discrepancies between the code predicted
resistances. Therefore, it seems interesting to evaluate the resistance models proposed in the
studied standards. Hereafter, the cross-section resistance is studied based on laboratory tests.
Furthermore, the laboratory tests serve to validate the numerical model used in the extensive

numerical study presented in paragraph 4.4.

EN 1993-1-1 AS 4100 AISC 360-10
| <7 ] ~7 \ - )
N V2N

4.3.2 Choice of the test specimen and test program

In order to explain the choice of the specimen tested in the laboratory, it seems interesting to
recall the general form of the major-axis bending shear force interaction curve proposed in
EN 1993-1-1. Figure 4-22 shows that the Eucorode 3 interaction curve is characterized by 4
special features:

e (Cut-off limit linked to 0,5V, If the shear force does not exceed 50% of the plastic
shear resistance of the cross-section, the major-axis bending moment resistance is
not reduced;

e (Cut-offlimitlinked to M, r: If the major-axis bending moment does not exceed the
bending moment resistance associated with the flanges only, the shear resistance

of the cross-section is not reduced;
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e A quadratic interaction is proposed between the two cut-off limits;
e The plastic shear resistance proposed by Eurocode 3 exceeds the plastic shear
resistance of the web by approximatively 15% to 30% depending on the

dimensions of the fillets and the thickness of the flanges.

The supplementary shear resistance mentioned in point 4 is sometimes attributed to the influence
of strain hardening. However, it seems that there is no comprehensive numerical, theoretical or
experimental study that justifies the shear area defined in Eurocode 3. Therefore, the laboratory

tests are designed in particular to investigate the validity of the Eurocode 3 shear resistance

reserve.
1.00 Y
E h
0.90 urocode 3 shear I
strength reserve -
0.80 A 4 1
|
0.70 ..
Cut-off limit M, , ¢ |
o 0.60 |© 4 |
>
Z |
>~‘ 0.40 l
0.30 I Cut-off
: | [Limitosv,
0.20
|
0.10 |
e=—FEC 3 Vpl
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0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
IVlv,ult/“/Iv,pl

Figure 4-22: M,-V, interaction curve proposed in EN 1993-1-1

In order to study members subject to high shear forces, three point bending tests are performed.
The cross-sections are chosen so as to maximize the Eurocode 3 shear strength reserve as shown
in Table 4-8.

Table 4-8: Studied cross-sections

Cross-section Shear strength
reserve
HEA 220 36%
HEB 180 36%
IPE 270 25%

The three studied cross-sections are tested with two member lengths in order to vary the ratio
between the shear force and the bending moment. The following figures represent the tests in the

corresponding interaction diagrams. As can be seen in Figure 4-23 the shortest length for each
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member is chosen so as to attain the plastic shear resistance of the member without interaction
with the bending moment. The resistances of the longer specimen are situated in the interaction
zone of the diagrams. It should be noted that for the IPE 270 cross-section, the shortest member

is also situated in the interaction zone of the diagram in order to avoid excessively short members.
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Figure 4-23: Laboratory tests for HEA 220 in the interaction diagram
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Figure 4-24: Laboratory tests for HEB 180 in the interaction diagram
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Figure 4-25: Laboratory tests for IPE 270 in the interaction diagram

As the shear strength reserve is sometimes attributed to strain hardening, it is also interesting to
study its influence by testing the two steel grades S235 and S355 possessing a ratio between the
ultimate strength f, and the yield strength f; of f./f, of 1,53 and 1,44 respectively. Consequently,

strain hardening is less pronounced in case of S355.

Table 4-9 summarizes the specimen tested in the laboratory of University of Applied Sciences of

Western Switzerland in Fribourg.

Table 4-9: Summary of test specimen

Cross- Nogg;gal Member Web Web
Designation . y length heighth,, | thickness | hy/twe
section stress T ] 4, ]
[MPa] v
HEA220_S235_L420 420
235 26,9
HEA220_S235_L840 840
HEA 220 188,0 7,0
HEA220_S355_L420 420
355 33,0
HEA220_S355_L840 840
HEB180_S235_L540 540
235 17,9
HEB180_S235_L810 810
HEB 180 152,0 8,5
HEB180_S355_L540 540
355 22,0
HEB180_S355_L810 810
IPE270_S355_L540 540
IPE 270 355 257,8 6,6 48,0
IPE270_S355_1810 810
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4.3.3 Testset-up

As mentioned before, three point bending tests are performed in order to characterize the
interaction behaviour and shear resistance of the studied specimen. The tested members are
placed on a trolley in a reaction frame (see Figure 4-26). The trolley is used to simplify the
exchange of the specimen at the end of each test.

The theoretical simple support conditions are realized in the laboratory tests by three elements
(see Figure 4-27):

o U composed of three steel plates used to adjust the position of the steel plate in
contact with the specimen before the start of the test;
e Steel cylinder free to move;

o Steel plate in contact with the test specimen uniformly introducing the load.

At mid-span the test specimen is in contact with the reaction frame via a semi-cylindrical steel
element. The tests are performed under displacement control and the load is introduced by a
hydraulic jack situated beneath the trolley. The test layout is represented in Figure 4-26 and

Figure 4-27 showing an ongoing laboratory test.

Column of the reaction frame

Cross head

Test specimen

Trolley
Hydraulic jack

Figure 4-26: Test set up - General view
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Top loading plateau connected to the
reaction frame

Support at mid-span restraining the
vertical displacement of the specimen
Studied specimen

LVDT - Linear Variable Displacement
Transducers

Support at member end used to introduce
the imposed displacement

Trolley

Hydraulic jack

Figure 4-27: Test set up - Detailed view

Figure 4-26 and Figure 4-27 also show that stiffeners are applied at the member ends (at the
theoretical support) and at mid-span in order to avoid local buckling at the supports. During the
test the displacement of the hydraulic jack as well as the displacements of two LVDTs are
measured. The LVDTs are applied at mid-span on both sides of the member. Figure 4-28 shows a
front view of an ongoing test with the LVDT.

Figure 4-28: Test set up - Detailed view of supports and LVDT
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4.3.4 Preparatory measurements
43.4.1 General

So as to interpret the results of the laboratory tests correctly, it is necessary to possess knowledge
of the parameters influencing these results. In case of the tests presented next, the resistance is in
particular influenced by the real yield strength and the material behaviour as well as the real
geometry of the cross-section. In order to determine these parameters, preparatory

measurements of the cross-section geometry and the material behaviour have been performed.
4.3.4.2 Dimensions of the cross-sections

The geometric dimensions of the cross-sections have been measured with an electronic slide
gauge. The position of the measurements along the cross-section and the member are represented
in Figure 4-29. As can be seen the dimensions have been determined for three intermediate
sections along the member. For each intermediate section, the thickness has been measured twice
for the upper flange, the lower flange and the web, respectively. In addition to the thicknesses, the

height of the cross-section and the width of the flanges have been measured for each intermediate

section.
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Figure 4-29: Measurements of cross-section dimensions

The following tables show examples for the obtained dimensions. The other measurements are
summarized in Annex C. Table 4-10, Table 4-11 and Table 4-12 show that the fabrication
tolerances defined in EN 10034 (CEN 2011) are respected. Additionally, it can be seen that the
dimensions exceed in general the nominal values except for the thickness of the flanges that is

lower than its nominal value for the studied sections.
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Table 4-10: Measured dimensions for test HEA220_S235_1420

Measure 1 Wemaie 2 Measure 3 Mean Nominal value
value (Tolerance)
220,00
bru [mm] 221,20 220,29 220,54 220,67 (+4:-2)
taur [mm] 10,68 10,80 10,43 e 11.00
tauz [mm] 10,77 10,47 10,56 (+2.5;-1.5)
220,00
br; [mm] 220,60 220,25 220,73 220,53 (+4:-2)
tan [mm] 10,73 10,88 10,80 oo 1100
ta;z [mm] 11,00 10,93 10,82 (+2.5;-1.5)
210,00
h  [mm] 210,26 211,47 210,8 210,84 (13:2)
tw1 [mm] 7,17 7,17 7,35 o 700
twz [mm] 7,22 7,20 731 (+0.7;-0.7)
Table 4-11: Measured dimensions for test HEB180_S355_L540
Measure 1 s Measure 3 Mean Nominal value
value (Tolerance)
180,00
bpu [mm] 180,39 179,91 179,72 180,01 (+4:-2)
tou [mm] 13,59 13,70 13,51 e 1400
tauz [mm] 13,72 13,59 13,61 (+2.5;-1.5)
180,00
br; [mm] 180,25 180,10 179,92 180,09 (+4:-2)
tan [mm] 13,46 13,59 13,58 e 14,00
tarz [mm] 13,62 13,58 13,57 (+2.5;-1.5)
h  [mm] 180,40 180,33 180,44 180,39 180,00
(+3;-2)
tw1 [mm] 8,31 8,15 8,23 . 650
twz [mm] 8,35 8,19 838 (+1;-1)
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Table 4-12 : Measured dimensions for test IPE270_S355_L540

Measure 1 Measure 2 Measure 3 et Nominal value
value (Tolerance)
135,00
br,u [mm] 135,20 135,12 135,31 135,21 (+4;-2)
tau [mm] 9,63 9,63 9,41 10.20
9,55 (+2.5;-1.5)
tauz [mm] 9,57 9,51 9,57 e
135,00
be; [mm] 135,16 135,17 135,49 135,27 (+4;-2)
tan [mm] 9,64 9,59 9,53 10,20
9,65 (+2.5;-1.5)
trz [mm] 9,72 9,56 9,84 D
270,00
h [mm] 270,57 270,24 270,39 270,40 (+4;-2)
twa [mm] 6,90 6,70 6.85 6,60
6,81 (+0.7;-0.7)
tw2 [mm] 9,62 6,74 6,72 R

4.3.4.3 Tensile tests characterizing the material behaviour

The stress strain-behaviour of the material was determined for each studied member by tensile
tests. So as to obtain precise results representing the entire cross-section, one necked coupon was
cut out of each plated part of the section as shown in Figure 4-30 (left and right part of the upper
and lower flange and web). Consequently, five coupon tests were performed for each specimen.
In order to determine the Young’s modulus of the specimen the coupons were loaded until they
reached approximatively the middle of the plastic plateau. Then they were released and loaded
again. The initial inclination associated with this second load step corresponds to the Young’s
modulus. After the determination of the Young’s modulus, the load is increased up to failure with

a constant strain rate of 0,045%/s.

b/4 :b/4
hw/2
_i_
hw/2
'b/4: 'b/4!

Figure 4-30: Position of the coupons
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Figure 4-31 and Figure 4-32 show the obtained material law for the HEB 180 section fabricated
from steel S235 and S355, respectively. The results are represented in terms of engineering
stresses and engineering strains, i.e. both are calculated with reference to the initial cross-section

area of the coupon specimen.

The two following figures show that the material behaves homogenously as the curves practically
overlap for each specimen up to the initiation of failure. With the initiation of failure, however, the
curves diverge. Yet, the divergence starts at very high strain levels that may not be attained in the
laboratory tests of the entire members. The figures also show that, for both steel grades, the
nominal yield strength is largely exceeded (35% in case of S235 and 16% in case of S355). Also, it
may be observed that the steel used respects the minimum total strain at failure of 15% defined
in reference (CEN 2005a) and the minimum ratio between the yield strength and the ultimate
strength of 1,1 defined in the same reference. The results of the tensile tests are summarized in
Table 4-13. The values given in this table represent the mean value of the five tensile tests

performed for each section.

Table 4-13: Results of tensile tests

Young’s
Section and steel modulus E Yield strength f;, | Tensile strength £./5 ()
grade (MPa) (MPa) f, (MPa) o
HEA 220 S235 191118 315,07 44743 1,42
HEA 220 S355 190882 412,79 518,29 1,26
HEB 180 S235 191554 302,56 435,90 1,44
HEA 180 S355 181900 409,32 509,11 1,24
IPE 270 S355 186144 408,48 497,98 1,22
500
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Figure 4-31: HEB 180 - L = 810 mm - S235
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Figure 4-32: HEB 180 - L = 810 mm - S355

4.3.5 Three point bending laboratory tests

Table 4-14 summarizes the ultimate loads obtained in the laboratory tests. The failure of the
specimen was characterized by local buckling of the web in the plastic range as represented in
Figure 4-33 and Figure 4-34. Especially in Figure 4-33, one may also identify the formation of four

plastic hinges (marked by the orange circles) indicating that a certain post buckling reserve has

been activated in the tests (see also paragraph 4.3.6.3).

Table 4-14: Peak loads obtained in the laboratory tests

. Measured yield Member length Maximum load
Cross-section strength (mean (mm) (kN)
value) (MPa)
420 1147,6
302,6 (S235)
840 884,2*
HEA 220
420 1297,2
398,0 (S355)
840 1021,0
540 1156,4*
316,0 (S235)
810 885,8
HEB 180
540 1262,2
369,0 (S355)
810 998,8*
540 1140,4
IPE 270 380,0 (S355)
810 963,8

*Peak load not attained due to displacement limits of the hydraulic jack
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Figure 4-34: Failure of test IPE 270_S355_L810 by local buckling of the web

It should be noted that the tests HEA 220_S235_L840, HEB 180_S235_L540 and
HEB 180_S355_L810 could not be conducted up to the peak load as the displacements exceeded
the capacity of the hydraulic jack. The deformed specimen of test HEB 180_S235_L540 is
represented in Figure 4-35. It may be observed that local buckling may not be identified visually
when the test had to be aborted.
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Figure 4-35: Specimen HEB 180 in $235 of 540 mm of length at abort of the test

4.3.6  Numerical simulations of the laboratory tests
4.3.6.1 Presentation of the numerical model

In order to recalculate the laboratory tests numerically, the finite element model detailed in
Chapter 3 is slightly adapted. The whole member is modelled with ANSYS solid element
“Solid 185”. The metal plates serving as supports and the stiffeners are modelled with the same
finite element. The imposed displacement is introduced linearly below the metal plates as
illustrated schematically by the blue triangles in Figure 4-36. The plates are free to rotate about
the point of application of the imposed displacements. The rigid support created by the metal
demi-sphere at mid-span in the laboratory test is represented in the numerical model by blocking

the vertical displacement of the upper flange at mid-span.

Figure 4-36: Numerical simulation of the laboratory tests — Side view

145



On the Design of Steel Members with Open Cross-Sections Subject to Plastic Cross-Section
Combined Axial Force, Bending and Torsion Resistance

Figure 4-37: Numerical simulation of the laboratory tests — Isometric view

It should be noted that the classical residual stress pattern is included into the numerical model
of the member and that the measured stress-strain behaviour is adopted as material law in the
numerical GMNIA simulations. As the initial plate imperfection has not been measured, the
numerical simulations include a sine shaped plate imperfection with varying amplitude. The
influence of the amplitude of the imperfection is highlighted in the following paragraph.

4.3.6.2 Comparison between numerical model and laboratory tests

Table 4-15 presents the comparison of the GMNIA results and the laboratory tests. As stated
previously, the plate imperfection has not been measured. Therefore, the laboratory tests are
recalculated based on a sine shape imperfection introduced to the web. The amplitude of this
imperfection is varied between h,,/50000 and hy/500 as shown in Table 4-15 and Figure 4-38. It
may be observed that, independently from the applied local imperfection, the numerical results
are rather close to the laboratory tests. Yet, with increasing amplitude of the imperfection, the
simulations become more and more safe-sided. Consequently, it appears that the tested members
were only subject to very low imperfections and in particular imperfections much lower than the
tolerances authorized by the fabrication standard EN 1090-2 (CEN 2011).

When the load displacements curves obtained with the numerical simulations are studied, one
may observe that the amplitude of the imperfection does not influence the pre-buckling zone. Yet,
with increasing amplitude, local buckling is initiated at lower load levels. Also, after buckling, the
load decreases less abruptly for higher amplitudes of the imperfection than in the case of small
imperfections (compare curves associated with h,/500 and h.,/50000 in Figure 4-38). This is not
surprising as the webs affected by a higher imperfection are also subject to higher out-of-plane
bending before local buckling affects the resistance of the member. In case of webs with low
imperfection, the out-of-plane bending moments increase abruptly with the initiation of local
buckling generating an abrupt decrease of the load with increasing applied displacements.
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Figure 4-38: Load-displacement curve obtained numerically for test HEA220_S235_L420

Table 4-15: Comparison between test results and GMNIA simulations

Peak load Peak load Peak load Peak load Peak load
Deshaeio I — hGMNIA - GMNIA - GMNIA -h GMNIA -
Fureab (KN) w/50000 hw/10000 hw/1000 hw/500
(kN) (kN) (kN) (kN)
HEA220_S235_1.420 1147,6 1081,2 1041,1 970,00 946,76
HEA220_S235_1.840 884,2* 855,95 849,72 827,61 817,45
HEA220_S355_L420 1297,2 1293,7 1252,8 1180,2 1153,4
HEA220_S355_1L840 1021,0 1036,3 1033,0 1011,5 999,54
HEB180_S235_1.540 1156,4* 1085,9 1069,0 1032,4 1016,8
HEB180_S235_1.810 885,8 872,77 872,7 869,47 866,4
HEB180_S355_L540 1262,2 1200,6 1193,6 1153,7 1139,9
HEB180_S355_1L810 998,8* 975,76 975,65 975,51 975,05
IPE270_S355_L.540 1140,4 1128,7 1089,1 1018,7 990,96
IPE270_S355_1.810 963,8 1001,2 989,0 944,79 924,52
Mean value Fucmnia/FuitLab 0,979 0,964 0,929 0,916
Standard deviation Fuemnia/FuitLab 0,033 0,039 0,058 0,065

* Peak load not attained due to displacement limits of the hydraulic jack

By observing the results given in Table 4-15 in more detail, it may seem surprising that the
numerical simulations are safe-sided for the tests HEA220 _S235_1.840, HEB180_S235_L540 and
HEB180_S355_L810 even if they do not attain their peak load in the laboratory. However, the load
displacement curves show that these tests are very close to their ultimate load in the laboratory
as represented in Figure 4-39. In Figure 4-39, one may also recognize that the load-displacement

curve obtained by the GMNIA simulation has a slightly different shape than the one obtained by
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the laboratory tests. In fact, one may distinguish four phases in the load-displacement curve of the
numerical simulation corresponding respectively to 1) linear elastic behaviour, 2) the start of
yielding and the passage through the yield plateau, 3) strain hardening up to plastic shear buckling
and 4) finally the decrease of load in the post buckling stage. Especially, for loads corresponding
to the beginning of yielding, the real behaviour of the specimen seems to be smoother. Indeed, the
passage through the yield plateau cannot be clearly identified in the laboratory test. It should be
noted that the numerical simulations are based on the material behaviour obtained by uni-axial
tensile tests. For the compact members failing in shear it seems that the tensile tests may not
exactly represent the material behaviour. However, even if there are some differences in the load
displacement curves, Figure 4-40 and Figure 4-41 show that the deformed shape of the physical
member corresponds very well to the numerical simulation. It can be seen that a plastic hinge

(again marked with an orange circle) is formed near the stiffener at mid-span.
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Figure 4-39: Load-displacement curve for test HEA220_S235_1840

Figure 4-40: Photo for test HEA220_S235_L840
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The numerical simulation of this test has been conducted further on up to the formation of local

buckling under a high shear force (in the plastic domain) as shown in Figure 4-42 and Figure 4-43.

44 compares the deformed shape obtained in the numerical simulations and the

Last, Figure 4

the results correspond very well.

L420. Obviously,

S355_

laboratory test HEA220
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lr -

Figure 4-44: Deformed shape at ultimate end of the test HEA220_S355_L420

This paragraph presented a comparison between the laboratory tests characterizing the major-
axis bending-shear force interaction and the corresponding numerical simulations. It could be
shown that the GMNIA calculations represent very well the obtained results in terms of peak load,
failure mode and deformed shape. However, in some cases the load-displacement curve is slightly
smoother at the beginning of yielding for the laboratory tests than for the simulations. Yet, this
does not alter the quality of the GMNIA results. Therefore, it may be concluded that the numerical
model is capable to correctly simulate the real behaviour of the member and it is consequently be

used for the parametric study presented paragraph 4.4.
4.3.6.3 Comparison between laboratory tests and resistance models

Hereafter, the ultimate resistance obtained in the laboratory is compared to different resistance
models. The  proposals of Eurocode 3 Part1-1 (CEN 2005a) and  AS4100
(Standard Australia 1998) are recalled in Table 4-16.
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Table 4-16: Major-axis bending - shear interaction proposed in EN 1993-1-1 and AS 4100

Standard Interaction formula Shear area
o Vi
M, 2=M, g if <0,5
pl,Rd
pAs
My,Rd: {Wp,’y - 4 W }fy < My’c’Rd elsewise
EN 1993-1-1 " A, =A-2bt, +(t,+2r),
and:
2V ’
p=—=LL 1| <1,0
Vpl,Rd
11 V i
AS 4‘100 My,V,Rd =\ My,Rd SMy,Rd Av =A_2btf
8 L6V, ra

Recently, the strain based Continuous Strength Method (CSM) has been developed in order to

consider especially the strain hardening and deformation capacity of compact stainless steel

cross-sections (Gardner et al. 2013). It has been extended to sections made from structural steel

(noted as S...) in bending and combined bending and compression (Liew etal. 2015) and to

stainless steel sections in combined bending and shear (Saliba etal. 2014). Hereafter, it is

evaluated for the cross-sections tested here. The applied method is recalled in Table 4-17 to Table

4-19.
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Table 4-17: CSM for major-axis bending resistance

Calculation steps Expression
Cross-section 7 = i
lend P
slenderness o,
CSM axial deformation Eosy = 0_’_2356 <15¢
capacity 1, g
E,=0015—>—F Ju
Strain hardening STTT3-1,0 for %\1 =13
modulus
E, =0015E for 7 > 13
fy
CSM axial stress Ocsu :fy +Esh(5cSM_5y)
2
E, W, |e¢& /4 €
CSM Bending resistance | M, = Mpl |+ —sh el | ZCSM _ 1| _|]1——<L ZCsM
E W, ¢ w, g,
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Table 4-18: CSM for shear resistance

Calculation steps Expression
R Ty
Web slenderness A,=|—
TCV
15y,
CSM deformation Yeor, = 062 _, . y
capacity in shear oM T =33 = 0,1+
W }/y
Shear strain hardening G =_ELu
modulus T2+ v)
CSM shear stress Tesy =7, F Gsh(VCSM - 7/y)

Shear resistance of the _ *
web Vcsu =Tesud

2
Contribution of the bf ,CSM — an

c M
flanges fesm

M, cou = bfthCSM(hw 'Hf)

Overall shear resistance 1% v
. = +V,
of the cross-section CSM " w,CSM * " bf CSM

Table 4-19: Major-axis bending — shear interaction based on CSM resistances

Calculation steps Expression
Mg,
Bending resistance =
M 5
. _ Ve
Shear resistance =
Vesu

M
if 7,>0,5 and 77, > —L then

CSM
Interaction Y, v v 2
Ed +(1— -"*CSMJ 22— _1] <1,0
M g, M iy Ww,CSM
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It should be noted that the CSM procedure for the shear resistance and the major-axis bending
shear interaction has been developed based on physical tests of welded plate girders
(Saliba et al. 2015). Consequently, the shear area considered in that study has been set equal to
the area of the web. For the comparison represented in Table 4-21, it is considered that the shear
area is again equal to the area of the web not including the fillets of the studied hot-rolled cross-
sections. Therefore, it may be notably smaller than the shear area defined in EN 1993-1-1 as
summarized in Table 4-20. The influence of the definition of the shear area is discussed further in
paragraph 4.3.7 and 4.4.2.

: Ay asa100 Avgrca/Avasaioo | Aw = hwxty
- 2 V’ ’ ” -
Cross-section AV,EC3 (Cm ) (sz) (_) (sz) AV,EC3/AW ( )
HEB 180" 20,00 14,73 1,36 12,92 1,55
HEA 220" 21,14 16,49 1,28 13,16 1,61
IPE 270" 22,55 19,01 1,19 16,47 1,37

*nominal section dimensions are used

Obviously, the application of CSM to the major-axis bending-shear interaction leads to a slightly
increased calculation effort especially in order to determine the deformation capacities. Yet, as it
considers explicitly the effect of strain hardening, one might suppose that it yields more precise
results compared to laboratory tests and numerical calculations. Table 4-21 presents the
comparison between the laboratory tests and the ultimate resistance obtained when the different

resistance models are applied.

Laboratory test Vurees/Vutrab | Vuigasa100/VulgLab Vaurecsm/ Vg Lab Vvl:;ti':;]\g/u\iu;':b
HEB180_S235_540 0,629 0,463 0,558 0,807
HEB180_S235_810 0,773 0,605 0,669 0,907
HEB180_S355_540 0,748 0,552 0,635 0,813
HEB180_S355_810 0,886 0,697 0,740 0,926
HEA220_S235_420 0,644 0,502 0,589 0,697
HEA220_S235_840 0,821 0,651 0,672 0,751
HEA220_S355_420 0,776 0,608 0,692 0,754
HEA220_S355_840 0,967 0,772 0,741 0,813
IPE270_S355_540 0,924 0,786 0,770 0,820
IPE270_S355_810 0,896 0,814 0,826 0,858
Mean 0,807 0,645 0,689 0,815
Standard deviation 0,115 0,121 0,083 0,070
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Table 4-21 shows that the method used in the Australian standard AS 4100 is clearly the least
precise one of the approaches studied here. Especially, the ultimate resistance obtained for the
very compact HEB 180 and HEA 220 sections are overly safe-sided compared to the physical tests.

Also, the standard deviation confirms the poor quality of this proposal.

The strength predictions obtained with Eurocode 3 Part 1-1 seem satisfactory. Only, for tests
HEB180_S235_540 and HEA220_S235_420 the provisions seem to be too safe-sided. However,
these tests concern very compact sections that additionally possess an important strain hardening

reserve. Indeed, the measured ratios f./f; are equal to 1,44 and 1,42, respectively.

The Continuous Strength Method, used with a shear area equal to hy.tw, yields conservative results
if the strain limitation yLim of 15% is considered. Nonetheless, it appears that the standard
deviation is very satisfactory. As tensile tests have been performed the real strain limit is known.
Hence, it is possible to neglect the limitation of 15%. If this is done, CSM gives even better results.
Especially, the low standard deviation of 7% for this complex interaction problem seems very
satisfying. In order to evaluate the proposal further on, supplementary calculations are presented

in the following paragraph.
4.3.7 Complementary numerical simulations and comparison to resistance models

In the previous paragraph, the laboratory tests have been compared to design models proposed
in standards and in the literature. Obviously, this comparison cannot be considered as complete
because of the limited number of physical tests. Also, the tests have been designed in order to
study very compact sections fabricated from steel with considerable strain hardening reserve.
Hereafter, some complementary numerical simulations are presented with the objective to extend
the comparisons. In particular, the cross-section compactness (sensitivity to shear buckling) and
the influence of the ratio f,/f; (strain hardening reserve) are studied. Additionally, the influence
of the fillets on the shear resistance is of special interest. The calculations are performed with the
same model as before. In paragraph 4.3.6.2 it has been shown that the amplitude of the plate
imperfection was very low for the studied members. Yet, for the following simulations the
amplitude is chosen to be equal to h,,/200 as recommended in reference (CEN 2007a). This is
justified here as the execution standard EN 1090-2 authorizes this value as out-of-plane tolerance
for the web. Consequently, sections may possess this high amplitudes of geometric imperfection

in practice.

The parameters of the complementary simulations are summarized in Table 4-22 and Table 4-23.
First, the compact sections HEA220 and the IPE270 section are re-examined considering steel
S460 and steel S690 in order to quantify the influence of the strain hardening reserve for compact
sections (see Table 4-22). After this, supplementary hot-rolled sections (HR) with invented
dimensions are studied. The dimensions are chosen so that the web slenderness is close to the
limit of shear buckling, i.e. 72¢ following the provisions of Eurocode 3 Part 1-1. In order to
quantify the influence of the fillets for slender sections, they are studied considering the fillets
(HR11-HR31) and without fillets (HR12-HR32) (see Table 4-22). Finally, the influence of strain

hardening on the ultimate bending moment resistance is investigated for the compact sections
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HEA 100, HEB 220 and HEA 280 (see Table 4-23). Inversely to the other tests, the shear force is
rather low for these last three simulations and should, in theory, not reduce the major-axis
bending resistance. In order to study exclusively the cross-section resistance, without the
influence of lateral torsional buckling, the out-of-plane displacements are restrained at the

intersection between the web and the two flanges.

Yield Member
Designation Cross-section stress/Tensile T hw/twe (-)
strength (MPa) gt

HEA220_S460_L420 420
460/570 37,58

HEA220_S460_L840 840

HEA220

HEA220_S690_L420 420
690/770 46,02

HEA220_S690_L840 840

[PE270_S460_L540 540
460/570 52,91

IPE270_S460_L810 810

IPE 270

IPE270_S690_L540 540
690/770 64,80

[PE270_S690_L810 810

HR11_S355_L874 847
HR.437.7,5.135,9.6.15" 355/470 69,99

HR11_S355_L1311 810

HR21_S460_L780 780
HR.390.7,5.135,9.6.15" 460/570 70,02

HR21_S460_L1170 1170

HR31_S460_L654 654
HR.327.7,5.135,9.6.0" 690/770 69,90

HR31_S460_L981 981

HR12_S355_L874* 847
HR.437.7,5.135,9.6.0 355/470 68,47

HR12_S355_L1311* 810

HR22_S460_L780™ 780
HR.390.7,5.135,9.6.0" 460/570 69,17

HR22_S460_L1170* 1170

HR32_S460_L654™ 654
HR.327.7,5.135,9.6.0" 690/770 70,32

HR32_S460_L981" 981

* HR.A.B.C.D.E = Hot-rolled cross-sectionh=A; tw=B; br=C; tr=D; rr=E
** Hot-rolled cross-section without fillets
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Yield
Designation Cross-section stress/Tensile
strength (MPa)

Member

length (mm) hw/twe (-)

HEA100_S235_L1440" HEA100 235/360 1440 16,00
HEB220_S235_L3300" HEB220 235/360 3300 19,79
HEA280_S235_L4050" HEA280 235/360 4050 30,50

*with nominal section dimensions

The results obtained for the complementary calculations are given in Table 4-24 and Table 4-25.
Table 4-24 represents the members failing predominantly due to the shear force and Table 4-25

represents the members failing in bending.
Regarding Table 4-24 it seems interesting to note that:

e The fillets have only negligible influence on the shear resistance. Indeed, the
obtained resistance is only of about 5%-10% higher for sections HR11-HR31 (with
fillets) whereas their shear area (Eurocode 3) exceeds the shear area of sections
HR12-HR32 (without fillets) by approximatively 18%-24%.

e The Eurocode 3 strength predictions are safe-sided on average. Additionally, the
low standard deviation seems satisfying. However, for high strength steels the
predicted resistance becomes unsafe.

e The Australian steel construction standard as well as CSM yield very similar results
in terms of mean value and standard deviation. Also, both methods are generally

safe-sided.
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Test Vacemia (kN) Vult,EC3/( Y)ult,GMNIA Vult,ASél—lOE-/)Vult,GMNIA Vult,CSM{ -\;ult,GMNIA

HEA220_S460_L420 629,00 0,892 0,696 0,791
HEA220_S460_L840 539,57 1.024 0,812 0,780
HEA220_S690_L420 859,18 0,988 0,773 0,809
HEA220_S690_L840 734,64 1133 0,904 0,811
IPE270_S460_L540 589,58 1015 0,856 0,840
[PE270_S460_1L810 551,92 0,881 0,801 0,808
IPE270_S690_L540 793,20 1133 0,955 0,896
[PE270_S690_1L810 741,38 0,983 0,894 0,864
HR11_S355_1L874 641,71 0,983 0,952 0,956
HR11_S355_L1311 491,32 0,989 0,960 1.030
HR21_S460_L780 752,11 1,019 0,979 0,943
HR21_S460_L1170 622,26 0,957 0,919 0,940
HR31_S690_L654 975,93 1,072 1012 0,935
HR31_5690_1L981 853,96 0,963 0,908 0,888
HR12_S355_L874 623,43 0,905 0,931 0,935
HR12_S355_L1311 472,13 0,952 0,950 0,983
HR22_5460_L780 738,16 0,917 0,943 0,931
HR22_S460_L1170 594,84 0,917 0,911 0,923
HR32_S690_L654 958,35 0,940 0,960 0,942
HR32_5690_1981 814,47 0,907 0,896 0,881
Mean value Vg Method/ Vuit.aMnia 0,979 0,901 0,894
Standard deviation Vyigmethod/ Vult.amnia 0,073 0,078 0,069

In order to analyse the results further on, Figure 4-45 and Figure 4-46 show the stress distribution
at ultimate limit state for the tests HEA220_S460_L420 (Eurocode 3 is safe-sided) and
HR31_S690_L654 (Eurocode 3 is unsafe). It may be observed that the stress distribution is very
similar for both sections. Indeed, the web has yielded in shear between the fillets. Moreover, in
both cases the stresses nearly attain the ultimate strength of steel due to the high influence of
strain hardening (570 MPa for S460Q and 770 MPa for S690Q). It should be noted that Figure 4-45

and Figure 4-46 represent “true stresses” and not “engineering stresses” (Geng = Grrue/ (1+€kng))-
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The shear strains attain high values of 12% and 6% for tests HEA220_S460_L420 and
HR31_S690_L654. However, the strains respect the minimum strain capacity defined in
Eurocode 3 Part 1-1.

Figure 4-45 and Figure 4-46 show that the stresses are nearly uniform over the web. Yet, they
decrease rapidly at the connection of the web with the flanges. It seems that plasticity is not
capable to spread into the fillets and the flanges as supposed by the shear area defined by
Eurocode 3. Consequently, it becomes obvious that the safety margin of the shear strength
prediction directly depends on the level of strain hardening attained by the cross-section. It has
been shown that strain hardening leads generally to safe-sided results for the shear strength
predicted by Eurocode 3. However, for less compact sections and steel grades possessing only
limited strain hardening reserve (S460 and S690) the results may become unsafe.
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Figure 4-45: Distribution of a) shear stresses and b) von Mises stresses at the ultimate limit state
for test HEA220_S460 _L420
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Figure 4-46: Distribution of a) shear stresses and b) von Mises stresses at the ultimate limit state
for test HR31_S690_L654
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Plastic Cross-Section

Resistance

Table 4-25 represents the results of the compact members failing predominantly in bending

(Vzut/Vzpi < 0,5). For the three members, the ultimate limit state is characterized by local buckling

in the plastic range of the compressed flange at mid-span as shown for test HEA280_S235_1.4050

in Figure 4-47.

1.01138
41.932

82.8526

123.773

164.694

205.614

246.535
287.456

328.376

369.297

Figure 4-47: von Mises stress distribution and local buckling at ULS for HEA280_S235_L4050

These last tests are performed in order to quantify the influence of strain hardening on the major-

axis bending resistance. Table 4-25 clearly shows that strain hardening highly influences the

resistance not only in case of shear but also for bending. Only CSM considers this influence and

consequently yields more economic results than Eurocode 3 and the Australian steel standard.

These standards are limited to the plastic bending moment resistance and therefore give very

conservative results compared to the simulations.

Table 4-25: Major-axis bending resistance of very compact sections

Muitec3/Mult,cmnia

Muit,as4100/ Muit,cMNIA

Muitcsm/Muit,gmnia

Test Muicemnia (KN) ) () )
HEA100_S235_1L1440 43,46 0,625 0,625 0,738
HEB220_S235_1.3300 172,00 0,685 0,685 0,813
HEA280_S235_L4050 180,30 0,716 0,716 0,739

Mean value MuiMethod/Mult,cmnia 0,676 676 0,763
Standard deviation MuyjMethod/Mult.cmnia 0,046 0,106 0,043
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4.3.8 Conclusions

The objective of the laboratory tests was to validate the numerical model used for the parametric
study and to obtain more insights into the real interaction between major-axis bending and the
shear force. It has been shown that the numerical model is satisfactory as it predicts the ultimate

limit load as well as the failure mode obtained by the laboratory tests.

The laboratory tests as well as the supplementary calculations and comparisons to code

provisions have shown that:

e Strain hardening highly influences the ultimate resistance of compact sections
failing in shear and bending.

e Generally, the strength predictions of Eurocode 3, AS4100 and CMS are safe-
sided. However, Eurocode 3 may become unsafe for cross-sections close to the
limit of shear buckling and/or high strength steels. It has been shown that the
Eurocode 3 safety problem is linked to the definition of the shear area as it
implicitly includes a minimum level of strain hardening. Yet, if this level of strain
hardening cannot be attained by the cross-section, Eurocode 3 becomes unsafe.

Obviously, in today’s practice, compact sections are generally not used with steels S460 and S690,
in particular when they are subject to bending. However, provisions given in standards should be
safe in their field of application. Consequently, a reduction of the shear area may be justified,
especially as it has also been shown that the fillets do not have a considerable influence on the
shear resistance. By reducing the shear area to the area of the web (without fillets), the Eurocode 3
provisions of the shear resistance of welded and hot-rolled sections would be unified and the
application would be simpler for the engineer. Nevertheless, strain hardening does have an
important impact on the major-axis bending-shear force interaction (see also paragraph 4.4.1.3)
and should therefore be considered in order to obtain an economic design. This can be done if the
over strength factor n (see paragraph 4.2.1.2.1) is applied to welded and hot-rolled sections and

if it is linked to the available strain hardening reserve (for example ratio f,/f;).

CSM proposes to introduce explicitly the influence of strain hardening into the design equations.
Admittedly, this leads to more complex interaction equations. Yet, it also leads to less scattered
results than considering strain hardening implicitly by increasing the shear resistant area. It is
recalled again that the shear area to be used in combination with CSM is the area of the web
without the fillets (= (h - 2tf).tw). The slight increase of the resistance due to the presence of fillets
is taken into account through the critical shear stress 1. that is used as key parameter to

determine the shear strain capacity in CSM.

Finally, it should be noted that even if the Eurocode shear area for hot-rolled sections was limited
to the area of the web, the design would not become non-economic as only very compact sections
are highly impacted. Yet, these sections are in general not used when the shear resistance becomes

determining for the design.

161



On the Design of Steel Members with Open Cross-Sections Subject to Plastic Cross-Section
Combined Axial Force, Bending and Torsion Resistance

4.4 Parametric study and resistance model

4.4.1 General remarks
4.4.1.1 Studied cross-sections

Hereafter, the plastic cross-section resistance of I and U sections is studied based on an extensive
parametric study. This study is based on FEM calculation taking into account a bilinear elastic-
perfectly plastic material law excluding local buckling and member second order effects (MNA

calculations - see paragraph 4.4.1.3).

In order to account for the influence of the section geometry, the compactness as well as the ratio
h/b¢ are varied. The studied cross-sections are represented in Figure 4-48. In addition, mono-
symmetric I sections are considered by reducing/increasing the width of the flanges of the double
symmetric I sections. It is considered that the mono-symmetric sections are always welded and

hence do not possess fillets.
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Figure 4-48: Cross-sections considered for the parametric study
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4.4.1.2 load cases

Throughout the present paragraph, the plastic interaction between internal forces and moments
creating exclusively axial stresses (N, My, M, B) and internal force and moments creating shear
stresses (V, Vy, Mystv, Mxw) is of special interest. In fact, the interaction behaviour between
internal forces and moments creating exclusively axial stresses may be treated quasi-analytically.
Conversely, the interaction between axial stresses and shear stresses can only be treated
“analytically” based on some key assumption as the definition of a shear area or the form of the
plastic distribution of shear stresses. As has been shown previously, these key assumption may
differ greatly from one standard to another. Therefore, it is absolutely necessary to investigate the
bending moment-shear force interaction. For double symmetric [ sections, this study has already
been advanced greatly owing to the laboratory tests and complementary simulations presented
in paragraph 4.3. Hereafter, the investigations on bending moment-shear force interaction are
completed for U and mono-symmetric | sections based on numerical analyses. Moreover, the
influence of torsion on the resistance of the cross-section is studied in detail. However, it has to
be noted that this study is much more delicate as a study on the interaction behaviour between
axial force and (bi-axial) bending as the shear stresses, resulting from the shear force, are always
linked to the variation of the internal moments along the member length. Consequently, it is
practically inevitable to perform the numerical simulation on the whole member subject to
variable bending or torsion. On the first sight, this fact may seem insignificant but it has a major
influence on the interpretation of the obtained results. Indeed, as the whole member is modelled
and the internal forces vary along its length, the plasticity spreads along the member accordingly
to plastic zone theory. Due to the spreading of plasticity, the member possesses a certain plastic
reserve. Also, it has been shown in reference (Gongalves et al. 2014) and in Chapter 3 that the load
introduction may create a complex stress field combining in-plane and through thickness stresses
that are generally neglected in the interaction. These secondary stresses may have a beneficial
effect on the von Mises yield criterion leading to resistances exceeding the theoretical plastic
cross-section resistance. Inversely, it is much less delicate to study the interaction between axial
force and bending as the forces and moments may be introduced as constant along the member.
Consequently, all sections yield simultaneously and the member does not have any supplementary
reserve (or only numerical reserve due the simulation precision). The maximum loads therefore
correspond (quasi) exactly to the analytical values. Hence, in this case the interaction can be
evaluated very precisely. However, in case of, for example, bending shear interaction, the
influence of plastic zones somewhat disturbs the theoretical cross-section interaction behaviour.
Also, it should be noted that if torsion is applied, the bi-moment, the warping torsional moment
and the Saint Venant’s torsional moment always interact as recalled in Chapter 2. In fact, it is not
possible to apply one of the previous moments independently from the others. Hence, it becomes
even more delicate (or nearly impossible) to study the individual influence of one of the torsional
components on the interaction. Nevertheless, in case of torsion the maximum respective torsional
moments are generally not located at the same abscissa of the member. Additionally, it is shown
that the warping torsional moment is insignificant and may be neglected when the interaction is

studied (see paragraph 4.4.4).
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So as to limit the influence of the exact form of the bending moment distribution and load
introduction on the numerical results, different load cases are studied hereafter (see Table 4-26).
The member is always considered to possess fork supports at its ends. Load cases LC2 and LC3
resemble, however, for load case LC2 the member length is varied to obtain different values of
the shear force, whereas, for load case LC3, the ratio between the end moments is varied to
obtain different values of the shear force. Load case LC4 consists in the application of a constant
bending moment combined with pure shear. Admittedly, this load case is not of practical interest,
yet, it permits to study the interaction behaviour without the influence of yield zones (as both
internal forces are constant). It therefore yields a lower bound of the interaction. Hereafter, it is
only used when the bending shear force interaction is studied and it is not used in case of applied

torsion.

For hot-rolled cross-sections the fillets may have a certain influence on the interaction behaviour
in presence of shear stresses. Yet, for the case of major-axis bending - shear force interaction, it
has been shown in paragraph 4.3.7 that the fillets do not increase considerably the shear force
resistance. Nevertheless, it seems important to include the fillets explicitly in the simulations in
order to predict as precisely as possible the interaction behaviour especially in presence of

torsion.
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Table 4-26: Load cases studied for the caracterisation of the M-V, cross-section interaction

Distribution of bending
Load case
moment and shear force
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4.4.1.3 Material model

The results presented in paragraph 4.3.7 imply that the plastic shear resistance of hot-rolled I

sections should be limited to the plastic shear resistance of the web only in order to be consistent

with the resistances obtained for predominant bending and for the resistances of welded sections.

However, it has been shown that strain hardening may increase the shear resistance considerably.

Hereafter, the influence of strain hardening is highlighted again for the major-axis bending - shear

force interaction curve. The numerical analyses are performed without considering geometric
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second order effects and geometric imperfection (MNA). The calculation is stopped when the limit

strain (von Mises) of 15% is exceeded.

The results are given for two examples in Figure 4-49 and Figure 4-50. Obviously, as before strain
hardening increases the shear resistance notably. Yet, one may observe again that even with strain
hardening the Eurocode 3 plastic shear resistance is not attained for all calculations. It might
however be acceptable to use the Eurocode 3 plastic shear resistance for very compact sections.
Nevertheless, one should also observe that the obtained bending resistance exceeds the
theoretical plastic moment resistance by up to 65%! It is recalled again, that neither Eurocode 3
nor other international standards consider this strain hardening reserve for the bending
resistance. Therefore, in order to be consistent with the definition of the plastic bending moment
resistance, the following simulations are based on an elastic-perfectly plastic material law.
Obviously, it is not possible to consider strain hardening only for the shear stresses and not for
the axial stresses in the numerical simulations. However, the influence of strain hardening may be
introduced by simply changing the reference resistance for the individual internal force (for
example accept a bending moment resistance higher than the plastic bending moment or a shear
resistance equal to Eurocode 3 shear resistance). The resistance may for example be based on the
strain capacity of the section as rigorously done by the Continuous Strength Method presented in

paragraph 4.3.6.3. The general aspect of the interaction curve is not influenced by the reference

resistance.
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Figure 4-49: M-V, plastic cross-section interaction diagram for HEA 100 with strain hardening

167



On the Design of Steel Members with Open Cross-Sections Subject to Plastic Cross-Section
Combined Axial Force, Bending and Torsion Resistance

1.20
1.10 5
1.00
0.90

< 0.80

50.70
=~70.60

S

2 0.50
>§~ 0.40 A Solid Model LC1
0.30 Solid Model LC4
020 [ e=mmfC3vV,
0.10
0.00

~
;
| 2
>
>

> » "

—EC3V,,

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
|V|y,MNA/|V|y,pI (')

Figure 4-50: M-V, plastic cross-section interaction diagram for HEA 280 with strain hardening

In the following, the cross-sections represented in Figure 4-48 are studied for combined loading.
Step by step, the interaction behaviour of double and mono-symmetric I sections and U sections

are evaluated for the load cases of:

e Major axis bending and associated shear force

e Minor axis bending and associated shear force

e Bending, shear force and torsion

e Complex interaction including bi-axial bending, shear forces, axial forces and

torsion

4.4.2 Interaction between major-axis bending and shear force
4.4.2.1 Double symmetric | sections

Through paragraph 4.3 the interaction between major-axis bending and the shear force has been
studied in detail for double symmetric [ sections in three point bending. A series of ten laboratory
tests as well as several supplementary GMNIA calculation led to the conclusion that the
Eurocode 3 shear area may be unsafe in some conditions. Hereafter, several complementary MNA
calculations are performed in order to confirm these calculations for a greater variety of cross-

sections. Additionally, the influence of the load case is studied based on the following examples.

First, the section HEA 280 is studied. The numerical results are given in Figure 4-51. Figure 4-51
also gives the interaction curve provided by Eurocode 3 Part 1-1 (EC 3 V) and the interaction
curve EC 3 V,,w based on the provisions of Eurocode 3 but considering a shear area A, equal to
the area of the web (hw x tw).
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Figure 4-51: M-V, cross-section interaction diagram for HEA 280

As can be seen, the numerical results are rather close for load cases LC1 to LC3. One may also
recognize the influence of the yield zones and complex stress interaction. In fact, for load cases
LC1 to LC3, the maximum bending moment of the member exceeds the plastic bending moment
(Mmna > Mp) even if the simulations do not include the effect of strain hardening. Inversely, for
load case 4 (constant bending moment + pure shear) the maximum bending moment is always
less (or equal) than the plastic moment resistance as all sections of the member yield
simultaneously. Additionally, Figure 4-51 confirms that Eurocode 3 seems to overestimate the
plastic shear resistance. It can be observed that the numerically obtained shear resistance only

attains the shear resistance of the web.

In order to compare the results obtained for the different load cases further on, the following
figures show the stress distributions at plastic limit state for the members subject to
approximatively 0,5Vp at their PLS. Consequently, the failure occurs in the interaction zone
between major-axis bending and the shear force. It may be observed that the stress distribution
is similar for LC1 to LC3 in the vicinity of the plastic hinge explaining again why the results are
nearly identical.
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Figure 4-52: HEA 280 subject to point load at mid-span (LC1)
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Figure 4-53: HEA 280 subject to inverse moments at member ends (LC2)
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Figure 4-54: HEA 280 subject to moments at member ends —y = 0,4 (LC3)

The results obtained for the other cross-sections are given next. However, as it has been shown
that the load case possesses only insignificant influence on the obtained results, hereafter load
cases LC2 and LC3 are not considered anymore. LC4 is kept for the comparison as it represents

the lower bound of the resistance.

Figure 4-55 to Figure 4-58 clearly confirm the conclusions obtained for the cross-section HEA 280.

In particular, it is observed that:

e Due to the spreading of plasticity and complex stress interaction in the yield zone
the ultimate moment obtained by MNA calculations may exceed the theoretical
plastic moment resistance of the cross-section.

e The plastic shear resistance of the cross-section is overestimated by
Eurocode 3 Part 1-1. It is recalled again that the influence of strain hardening, not
considered here, may increase the ultimate shear resistance.

Also, it is interesting to note that the shear resistance may be more or less close to the shear
resistance of the web depending on the cross-section geometry. For compact cross-sections, for

which the fillet area is rather tall the numerically obtained shear resistance exceeds the shear
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resistance of the web by approximatively 10 to 20% (HEA 100, HEB 220, HEA 280). However, for
cross-sections with smaller fillets compared to the cross-section geometry, the shear resistance
coincides practically with the shear resistance of the web (IPE 360, IPE 600).

The present paragraph confirms the conclusions concerning the plastic major-axis bending shear
force interaction obtained based on the laboratory tests. Additionally, it has been shown that the
load case has only an insignificant influence on the obtained resistance (apart from load case 4
that is only of theoretical nature). In the following paragraphs the study concerning the plastic

cross-section resistance is extended to U sections and mono-symmetric I sections.
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Figure 4-55: M-V, plastic cross-section interaction diagram for HEA 100
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Figure 4-56: M-V, plastic cross-section interaction diagram for HEB 220
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Figure 4-57: M-V, plastic cross-section interaction diagram for IPE 360
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Figure 4-58: M-V, plastic cross-section interaction diagram for IPE 600

4.42.2 U sections

Before the major-axis bending-shear force interaction is addressed, it seems necessary to review

essential points concerning the resistance of U sections subject to major-axis bending only. In

paragraph 4.2.2.3, it has been shown that the definition of the plastic major-axis bending

resistance is much more delicate than for I sections as illustrated by the discussion published in
references (Kindmann et al. 1999b), (Rubin 2000) and (Rubin 2005). In order to recall the

problem Figure 4-59 represents the elastic and plastic stress distribution for a UPE section under

major-axis bending as well as the warping function of a UPE 200 cross-section without fillets.
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Figure 4-59: Representation of a) elastic and b) plastic stress distribution and c) the warping
function

The theoretical elastic and plastic moment resistance can be obtained by integrating the stresses
over the section. For a UPE 200 section without fillets fabricated from steel S235 (f;, = 235 MPa),
one obtains:

My,e1= 43,60 kNm
M,,,1=50,25 kNm

However, if the stresses are integrated over the cross-section, one also obtains the bi-moments:
Buy,er = 0 kNcm? (associated with the elastic moment resistance M,,¢)
Buy,pi = -1321,13 kNcm? (associated with the plastic moment resistance My,;)

It should be noted that the elastic stress distribution does not generate a bi-moment as the
“partial” bi-moments resulting from the stress distribution in the flanges are equilibrated by the
“partial” bi-moment resulting from the stress distribution along the web. It is possible to

determine an analytical expression of the stress induced bi-moment as given in Eq. ( 4.70 ).

2
h—t V't h—t ). (bf_w_ys,wj
By =1, %ymﬁ( ;’ )tf v2, - 22 (h—tf)tf (4.70)
2
3(];—%} t;
= 2 (4.71)
Yaw = t

6(19 - gjtf (-1, ),

The distance ys, is equal to the distance along the y-axis between the shear centre and the plane
of the web. One may note that ys. is also equal to the distance between the plane of the web and
the zero of the warping function. Table 4-27 gives the value of the stress induced bi-moment for
three U sections (fillets are included into the calculation of ys). These stress induced bi-moments

induce a torsional twist to the member even if it is subject to major-axis bending only (see Chapter
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5). Yet, it is recalled that the bi-moment is linked to the second derivative of the torsional twist.
Consequently, the resulting torsional twist is low especially for short member that may attain
their full plastic resistance. Obviously, longer members under bending are sensitive to lateral-
torsional buckling (if there are not restrained) and may therefore not attain the full plastic major-
axis bending moment. It should be noted that it is not necessary to consider the stress induced bi-
moment in the interaction between major-axis bending and the shear force as it directly yields

from the stress distribution and consequently does not lead to a strength reduction.

Stress induced bi-moment

Cross-section . .
associated with My, (kNcm?)

UPE 80 -87,51
UPE 200 -1321,13
UPE 360 -10357,79

For the interaction between major-axis bending and the associated shear force, it may be
supposed that U sections behave similarly as double symmetric | sections as only the lateral
position of the flanges changes. However, neither of the standards studied in paragraph 4.2
explicitly treat the case of U-sections. Hereafter, the results of the calculations performed on
sections UPE 80, UPE 200 and UPE 360 are represented. In paragraph 4.4.2.1 it has been
demonstrated that the load case does not have any significant influence on the plastic interaction
behaviour. Therefore, only load cases LC1 and LC4 are kept for the analysis. It is recalled that the
members are supposed to possess end fork supports and the material is supposed to behave

elastic - perfectly plastic (no strain hardening).

Figure 4-60 to Figure 4-62 confirm that the Eurocode 3 plastic interaction formula, recalled
hereafter, may be safely applied to U sections if it is based on the plastic shear resistance of the

web.
pA. o V.,
M, v~ {Wpl,y 4 }f SM, if v <05 (4.72)
w z,pl
2V, ’
p= { == 1} <10 elsewise (4.73)
z,pl
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Figure 4-60 : M,-V, plastic cross-section interaction diagram for UPE 80
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Figure 4-61 : M-V, plastic cross-section interaction diagram for UPE 200
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Figure 4-62 : M,-V, plastic cross-section interaction diagram for UPE 360

4.4.2.3 Mono-symmetric | sections

Hereafter, the interaction behaviour of mono-symmetric I sections is studied. It is supposed that
the sections are welded. Consequently, fillets are not accounted for. Accordingly to the conclusions
of paragraph 4.4.1.3 the MNA calculations are based on an elastic-perfectly plastic material law
neglecting strain hardening. It has been shown that the shell model represents very well the
plastic interaction for welded cross-sections without fillets. Therefore, the following calculations
are performed exclusively with the shell model. As the load case does not have any significant
influence either, it is supposed that the studied members possess fork supports at their ends and

that they are subject to a point load applied at mid-span.

As before several section geometries are studied to characterize the My-V, plastic cross-section

interaction. The cross-section geometries are based on 4 cross-sections:

e HEA100
e [PE 360
e [PE600

e W1450.12.300.25

The mono-symmetry of the cross-section is obtained by varying the flanges’ widths. The thickness
of the flanges is kept constant for all calculations. The mono-symmetry is characterizes hereafter

by the parameter mono defined by equation ( 4.74 ).

IZ C. - ]Z
W pony = 70— (4.74)
]z,cFl + Iz,TF

It should be noted that:

e For double symmetric cross-section ¥mono = 0;
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e For mono-symmetric sections whose tension flange’s second moment of area is
. U
greater than the compression flange’s second moment of area Wmono < 0;
e For mono-symmetric sections, whose compression flange’s second moment of

area is greater than the tension flange’s second moment of area Wnono > 0 (common

case).
[ ] [ ]
[ ]
M
1
b) Wmono > 0 C) Wmono = 1
[ ] [ ]
a) Wmono = 0
[ ] [ ]
d) Wmono < 0 e) Wmono = -1

Figure 4-63: Derivation of mono-symmetric cross-section from their double symmetric original

So as to illustrate the influence of the mono-symmetry parameter ymono, Figure 4-64 represents

the IPE 600 section and its mono-symmetric derivatives.

— ——] ——— —— ——
—— —— —= [ak}
W mono = 0 Y mono = 0,2 W mono = 0,7 W mono = 0,975 WY mono = 1

Figure 4-64: Geometry of IPE 600 section and of its mono-symmetric derivatives

First, the results obtained for the HEA 100 cross-section and its mono-symmetric derivatives are
given in Figure 4-65. The results for all cross-sections are represented in the same diagram. For a
given section, the obtained resistance is given with reference to its own theoretical plastic
resistance. Consequently, if two different cross-sections possess a ratio Muii/Mpi; of 1,0 they do
not possess the same value of the ultimate moment but they attain their respective plastic moment
resistance at plastic limit state. Also, Figure 4-65 shows the standardized interaction curves based

on the plastic moment resistance of each cross-section and the plastic shear resistance of the web.
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Itis proposed here to apply the same simplified interaction equation as used for double symmetric

[ sections again.

It may be observed that, for the plastic cross-section interaction, it has no influence whether the
smaller flange is in compression or in tension. In fact, the results obtained for the same absolute
value of wmono practically overlap. Additionally, it can be seen that the results are grouped. A
major difference can only be observed for the T cross-section (#mono = +1). Nevertheless, it seems
that the general form of Eurocode 3 plastic cross-section interaction yields safe-sided results, if it

is based on the shear resistance of the web and the plastic moment resistance of the cross-section.

@ Ymono = 1,0 = Wmono = -1,0 —EC3 Vpl,w‘ Wmono = 1,0
@ Vmono = 0,975 X Wmono = -0,975 —FEC3 Vp|_w- Wmono = 0,975
B VYmono = 0,7 X Wmono = -0,7 —FEC3 Vp|,w- Wmono = 0,7
A Vmono =0,2 =WYmono = -0,2 —— EC 3 Vpiw- Wimono = 0,2
1.30
1.20 AAmyy
1.10 S I
1.00 SN N
0.90
0.80
0.70
0.60
0.50
0.40
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0.20
0.10
0.00

Vz,MNA,i/ Vz,pI,EC3,i ()
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*se 3R >
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Figure 4-65: Numerical M,-V, plastic cross-section interaction for HEA 100 and its mono-symmetric
derivatives

In addition to the interaction curve, it seems interesting to study the stress distribution over the
cross-section, especially for the case of high mono symmetry and high shear forces. Figure 4-66
and Figure 4-67 show the results obtained for the cross-section of Wmono = 0,975 and ¥ meno = 1,0
and a shear force at the plastic limit state of 1,1 Vw0975 and 0,95 Vpiw,1.0, respectively. For a better

representation, the stiffener and the force applied at mid-span are not represented.

It can be seen that, at the plastic limit state, the cross-section at mid-span has entirely yielded.
Also, one may observe the influence of plastic zones, leading to a spreading of plasticity along the
member. For both cases, the compressed flange and the lower part of the cross-section yields due
to axial stresses at mid-span. However, the shear stress distribution in the web differs. In fact,
Figure 4-66 shows that the total height of the web yields due to shear for the mono-symmetric
section with y = 0,975. Contrariwise, in the case of the T section, the shear stresses only lead to
yielding of the upper part of the web as the axial stresses already utilize completely the lower part.
Consequently, it seems not astonishing that the major-axis bending moment resistance suffers a
higher strength reduction at a given load level of the shear force for T sections than for mono-
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symmetric sections possessing two flanges. Obviously, the interaction formula given for double
symmetric sections is not fully consistent in the case of mono-symmetric I sections as the plastic
neutral axis in bending is not located at mid-height of the web. However, its application leads to
safe results. Consequently, its application may be accepted. Also, applying the same interaction

equation contributes to the unification of the design formulae.
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Figure 4-66: Stress distribution for ymono = 0,975 and L = 2h at PLS
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Figure 4-67: Stress distribution for ymono = 1,0 and L = 2h at PLS

Hereafter, the results obtained for other section geometries are represented. As it has no influence
whether the tension flange is the smallest or not, only results corresponding to a positive value of

the factor ymono are given.
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Figure 4-68: Numerical M,-V, plastic cross-section interaction for IPE 360 and its mono-symmetric

derivatives
1.20
1.10
1.00
0.90
R .
E:. 0.60 —EC3 Vpl,w_Wmono =10
Zoso | M Vreo=07
<§‘ 0.40 ——EC 3V wWmono = 0,7
S 030 | A VYmono=02
090 || —EC3 Vo Vinono = 0.2
0‘10 + \Vmono = 0’0 ’
0.00 =EC 3 Vpl,w_Wmono = O'O
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10
My,MNA,i/My,pI,i(')

Figure 4-69: Numerical My-V, plastic cross-section interaction for IPE 600 and its mono-symmetric
derivatives
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Figure 4-70: Numerical M,-V, plastic cross-section interaction for W 1450.12.300.25 and its mono-
symmetric derivatives

Figure 4-68 to Figure 4-70 confirm the conclusions obtained for the cross-section HEA 100 and its
derivatives. The interaction formula yields only one slightly unsafe result in case of the T section
based on IPE 360. Yet, the member length is equal to 1,5 times the section height and consequently
atthe very lower bound of practical interest. Hence, it is concluded that the Eurocode 3 interaction
formula may be applied if it is based on the shear resistance of the web and the plastic moment of
the cross-section. It seems also justified to neglect the influence of the shear force on the plastic

moment resistance if the ratio V,/V,i is less than or equal to 0,5.
4.4.3 Interaction between minor-axis bending and shear force
4.4.3.1 Double symmetric | sections

In the following, the interaction between minor-axis bending and the associated shear force is
studied. Admittedly, the interaction is of less practical interest as the interaction between major-
axis bending and the associated shear force because the shear force acting parallel to the flanges
is even less important than the shear force acting parallel to the web in practical cases. Yet,
Eurocode 3 does not propose any provisions and therefore, it seems necessary to study this load
case. For I sections, the M,-V, plastic interaction may be assimilated to the interaction for a simple
plate as the shear stresses only transit through the flanges. However, in order to evaluate the
influence of the fillets and the web on the resistance of the cross-section, three different section
geometries are studied. As before, the member is supposed to possess end fork supports and the
material is supposed to follow an elastic perfectly plastic material law. The results are represented
in Figure 4-71 to Figure 4-73. Also, the interaction curve resulting from the application of Egs. (
4.75) and ( 4.76) is represented.
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Figure 4-71 to Figure 4-73 show again that load cases LC1 and LC2 yield very similar results. Yet,
L.C4 leads to rather conservative results, especially for shear forces less than 70% of the plastic
shear resistance defined by Eurocode 3. This can again be explained as LC4 supposes that shear
force and bending moment are completely independent. Therefore, the beneficial influence of the

variation of the bending moment is not considered.

On Figure 4-71 to Figure 4-73, one may observe that there is a plateau on the interaction curve
for low values of the bending moment. This plateau is especially pronounced for the cross-section
HEAA 1000. In fact, if the applied bending moment M, is less than the minor-axis bending moment
resistance of the web (and of the fillets), there is no interaction as the shear stresses only transit
in the flanges. Admittedly, the plateau is not of practical interest as the shear force cannot attain
high values if the bending moment tends to 0. Also, the strains necessary to mobilize the yielding
of the web are very high and, depending on the cross-section, may exceed the minimum strain at
failure of 15% defined by Eurocode 3 Part 1-1.

The following figures clearly show that the interaction between minor-axis bending and the
associated shear force may be neglected. Indeed, it should be noted that shear forces exceeding
the value of 0,5V are linked to very short members with lengths of about 1,5 times the flanges
width.
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Figure 4-71 : M,-V, plastic cross-section interaction diagram for HEM 100
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Figure 4-72: M,-V, plastic cross-section interaction diagram for HEA 280
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Figure 4-73: M,-V, plastic cross-section interaction diagram for HEAA 1000

4.4.3.2 U sections

Plastic Cross-Section

Resistance

The following figures represent the results obtained for the three U sections UPE 80, UPE 200 and
UPE 360. For the UPE 80 section the results for load cases LC1 and LC2 are represented. For the
other sections only LC1 is considered as the load case has again only insignificant influence on the

results. Figure 4-74 to Figure 4-76 also represent the quadratic interaction curve given in Eq. (
4.79 ) and Eq. (4.80).

z z

p=0

M oLV =M ,pl(l_p)
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The figures given hereafter, show that the interaction curve is safe-sided. It may even be
considered that the interaction is negligible as before for I sections. Only for shortest member of
UPE 80 section this would be unsafe. However, the member length is of only once the member

height. Obviously, such short members are again out of the range of practical interest.
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Figure 4-74 : M-V, plastic cross-section interaction diagram for UPE 80
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Figure 4-75 : M,-V, plastic cross-section interaction diagram for UPE 200
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Figure 4-76 : M,-V, plastic cross-section interaction diagram for UPE 360

4.4.3.3 Mono-symmetric | sections

Last the interaction between minor-axis bending and the shear force V, is studied for mono-
symmetric [ sections. Before the interaction behaviour is addressed, it is necessary to go back to
the plastic minor-axis bending moment. In fact, as for U sections under major-axis bending, mono-
symmetric I section cannot entirely yield under applied minor-axis bending without stress
induced bi-moments as may be observed in Figure 4-77. By integrating the plastic stress

distribution over the cross-section one obtains the plastic minor-axis bending moment of:

2 2
. b2t (4.79)
— _ uf"uf Il .
Mz,pl _Mz,pl,uf +Mz,pl,.lf _Tfy + 4 fy
The resulting bi-moment is given in Eq. ( 4.84 ).
_ 4.80
By..i= _(ZS,usz,pl,uf _ZS,lsz,pl,lf) ( )

“«wn

The sign “-” in Eq. ( 4.80 ) directly results from the sign convention used in the framework of this
thesis. The distances zsur and zs)f represent the distances between the shear centre and the upper
flange and the shear centre and the lower flange, respectively. The same expression has also been
derived in reference (Glitsch 2008). Obviously, the bi-moment vanishes for double symmetric I
sections, as the distances zsr and zsr are equal, and for T sections as they do not possess a second
flange. Between these two extrema and depending on the cross-section geometry the stress
induced bi-moments develops. Yet, as before these stress induced bi-moments do not decrease

the plastic section resistance to minor-axis bending moments.
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Figure 4-77: Elastic and plastic stress distribution and warping function for a mono-symmetric |
section

The two following figures represent the interaction behaviour for sections HEA 100 and its mono-
symmetric derivatives as well as section IPE 600 and its mono-symmetric derivatives. The length
of the members is varied between twice the section height and 8 times the section height. Figure
4-78 and Figure 4-79 show that even for the shortest members the shear force is rather low.
Moreover, it may be observed again, that the shear force does not reduce the plastic minor-axis
bending moment. Also, as stated before, the stress induced bi-moment develops in all cases and
allows the cross-section to attain its theoretical plastic resistance.
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Figure 4-78: M,-V, plastic cross-section interaction diagram for HEA 100 and its mono-symmetric
derivatives
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Figure 4-79: M,-V, plastic cross-section interaction diagram for IPE 600 and its mono-symmetric
derivatives

4.4.3.4 Conclusions

Before the case of applied torsion is studied in detail it seems necessary to summarize the results
obtained here before for the interaction between major-axis bending and shear forces as well as
minor-axis bending and shear forces. The numerical study based on MNA simulations has shown
that:

e Complex 3 dimensional stress fields developing at the plastic hinge as well as the
spreading of plasticity along the member have a beneficial effect on the cross-
section resistance leading to bending moments at plastic limit state that exceed the
theoretical plastic bending moment resistance in case of low shear forces.

e Inpractice, the load case has only insignificant influence on the generation of these
3 dimensional stress fields or the spreading of plasticity. The cross-section
interaction behaviour is therefore independent from the load case.

e The Eurocode 3 plastic interaction formula for combined major-axis bending and
shear force given for double symmetric I sections may also be applied for U
sections and mono-symmetric I sections.

e For practical cases, the minor-axis bending moment is not reduced by the influence
of shear forces. Consequently, it is recommended to neglect the interaction.

e Stress induced bi-moments are necessary for mono-symmetric [ sections to yield
entirely under minor-axis bending and for U sections to entirely yield under major-
axis bending.

e These stress induced bi-moments do not influence the cross-section interaction

behaviour as they directly result from the stress distribution. However, they
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induce a torsional twist to the member. Nevertheless, the torsional twist is low for
members sufficiently short to attain their plastic resistance without lateral-
torsional buckling (see Chapter 5).

e The shear resistance V, may be based on the shear area equal to the area of the
two flanges.

Hereafter the study is extended to the case of applied torsion.
4.4.4 Interaction between bending, shear force and torsion
4.4.4.1 Influence of the plastic torsional system reserve of the member

The study of the interaction behaviour presented in the previous paragraphs has been based on
MNA calculations and hence plastic analysis of the studied members. For statically determined
structures, as the members studied here, this is generally not remarkable as the internal forces
and moments evolve linearly with the applied loads up to the formation of the first plastic hinge.
Inversely, for statically non-determined structures, the internal forces and moments do not
increase linearly with the applied loads due to plastic redistribution after formation of the first
plastic hinge. For members subject to torsion, a certain parallelism to statically non-determined
structures may be observed as shown in Figure 4-80. This figure compares the ratio between the
major-axis bending moment and the bi-moment obtained by plastic analysis (MNA) and their
values obtained by linear elastic analysis (LA) of the same member (UPE 200 with a length of 1 m
subject to a point load with an eccentricity yr of approx. 14 cm). It can be seen that plastic and
elastic analysis yield the same value for the major-axis bending moment. However, for load factors
greater than 0,65, the difference between the bi-moment determined by plastic and elastic
analysis increases rapidly. In fact, due to yielding of the cross-section at mid-span, the warping
stiffness decreases locally. This leads to the formation of a “warping hinge” at mid-span. Yet, the
plastic limit state is not attained as the cross-section has not fully yielded and the additional
torsional moment may be carried by shear stresses resulting from Saint Venant’s torsion. In order
to illustrate this observation, Figure 4-81 shows the von Mises stress distribution for the studied
member for a load factor of 0,80 and 1,00 (corresponding to points [ and II in Figure 4-80). In
Figure 4-81a), it may be seen that the flanges of the cross-section have entirely yielded leading to
an important loss of warping stiffness at mid-span. However, the web is able to carry
supplementary stresses as it has not yielded over its total height. Therefore, the load may be
increased further on and the supplementary torsional moment is carried through shear stresses
generated by Saint Venant's torsion developing between the warping hinge and the supports of

the member.
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Figure 4-80: a) Ratio between internal moments obtained by plastic and elastic analysis at mid-
span and b) Evolution of the internal moments with the load factor
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Figure 4-81: Von Mises stresses at a) point | and b) point Il of Figure 4-80

The torsional system reserve described here before is not specific to U sections but to all open
sections possessing a considerable warping stiffness. Inversely, as the warping constant of T
sections is close to zero, axial stresses due to warping do not develop (this is discussed in more
detail in 4.4.4.3) and hence even before yielding is initiated, the torsional moment is carried
through Saint-Venant’s torsional shear stresses. Consequently, this type of section does not

possess any supplementary reserve.

The torsional system reserve may lead to a considerable increase of the load that may be carried
by the member. However, it should be noted that the torsional twist also highly increases
compared to an elastic analysis as the member loses its warping stiffness. If the torsional system
reserve is implicitly included in the design method, as has been done for example in reference
(Glitsch 2008) (see paragraph 5.4.4), the designer completely loses the control about the torsional
twist of the member at failure. Hence, the engineer is not capable to verify whether the

deformations of the member are compatible with its position in the real structure (stiffness,
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rotation capacity and resistance of the joints and connected members and equipment).
Additionally, it has been shown in Figure 4-81 that important Saint-Venant’s torsional moments
develop that lead to yielding of the member over its length. These Saint-Venant’'s torsional
moments may obviously not be determined with an elastic analysis based on the initial warping
stiffness of the member. However, they should be accounted for if the torsional system reserve is

exploited. It may therefore be concluded that:

e Members of open cross-section that have a considerable warping stiffness (I and U
sections but not T sections) possess a certain plastic torsional system reserve that
leads to the complete yielding of the whole member and not only to yielding of the
most loaded cross-section.

e The plastic torsional system reserve is mobilised after the creation of a warping
hinge and leads to a considerable increase of the loads that may be carried by the
member.

e After formation of the warping hinge, the torsional behaviour of the member has
completely changed; additional torsional moments are not carried principally
through warping torsion but exclusively by Saint-Venant’s torsion. Due to the
small Saint-Venant’s torsional stiffness (Gl;) of members with open cross-section
the torsional twists highly increase after formation of the warping hinge.

e For simplified design based on an elastic analysis of the member the plastic
torsional system reserve should be neglected. Yet, it may be accounted for when

the member is analysed plastically.

A simplified method to account for the torsional plastic system reserve may be developed based
on the equivalence between the second order (in-plane) equilibrium of members under combined
axial tension forces and bending and the behaviour of members of open section subject to torsion
as has been discussed for the case of elastic analysis in paragraph 2.4. This equivalence can be
extended into plasticity. So as to illustrate this fact, a member of IPE 500 section with a length of
5,4 mis studied. The member, fabricated from steel S235, is subject to a vertical point load at mid-
span. Finally, it is supposed that the member possess simple supports at its ends that are both
restrained against axial displacement. The static system of the member is represented in
Figure 4-82.
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IPE 500

5400 mm

It is supposed to be restrained against lateral displacement and torsional twist along its total
length to prevent the member from lateral-torsional buckling. The member is analysed through
second order plastic analysis but without imperfection (GMNA). The material is supposed to
follow an elastic-perfectly plastic law. The second order effects have to be accounted for to
represent the equivalence of a member in bending to members under torsion. Finally, it should be
noted that the member is modelled with beam elements in order to avoid local plate instability
before the formation of the plastic hinge. As the shear force is low the interaction with the major-

axis bending moment can be neglected and consequently, the beam elements can be used.

The obtained load displacement curve is shown in Figure 4-83. It may be observed that it is

characterised by five sections:

e A nearly linear part up to a vertical displacement of approximatively 12 mm: in
this section of the load displacement diagram the member attains the elastic
major-axis bending moment at a load level of Pwy, = 248 kN. With starting yielding
the stiffness of the member decreases but less as would be expected for members
in bending due to the beneficial second order effects arising from the tension axial
force.

e Atamid-span vertical displacement of approximatively 27 mm the plastic hinge in
bending is formed and the member therefore loses its total bending stiffness.

e After the formation of the plastic bending hinge the applied load continuous to
increase due to the catenary effect. Also, the stiffness of the member increases as
the catenary effect is amplified with increasing vertical displacement.

e At a vertical mid-span displacement of approximatively 275 mm, the section
located at mid-span starts to be highly used by the increasing axial force and
consequently the stiffness decreases again up to the complete transformation of
the plastic bending hinge into a plastic axial displacement hinge.

o Finally, after the formation of the plastic axial displacement hinge the load cannot
increase anymore and the peak load is therefore attained at a vertical mid-span

displacements of approximatively 370 mm.
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Figure 4-83 : Load displacement curve

It seems also interesting to compare the evolution of major-axis bending moment as well as the
evolution of the axial force with the vertical displacement at mid-span. In Figure 4-84, one may
clearly identify the catenary effect. Indeed, the axial force is practical equal to zero up to a vertical
mid-span displacement of 12 mm. At this point, the member starts to yield at mid-span as the
elastic major-axis bending moment is attained. Due to spreading of yielding, the vertical
displacements increase rapidly and consequently, the axial force as well as the catenary effect
increase. The plastic bending hinge is generated at a vertical displacement of 27 mm (Point A of
Figure 4-84). As the member is statically determined (for vertical loads), the bending moment
cannot be redistributed. Moreover, the bending moment at mid-span reduces and practically
vanishes when the axial force attains its maximum value for a vertical displacement of 370 mm
(Point B of Figure 4-84).
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Figure 4-84 : Evolution of the major-axis bending moment and the axial force with the load factor

The axial stress distribution for the member is represented in Figure 4-85 for point A of Figure

4-84. The plastic hinge generated by the major-axis bending moment may be easily identified.
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Due to the increasing axial force, the major-axis bending moment has to decrease at mid-span and
this is possible as the member does not possess any global bending stiffness after the formation
of the plastic bending hinge. The supplementary load is transferred to the supports by the axial
force and the member consequently behaves similarly to a cables. Finally, Figure 4-86 presents
the distribution of axial stresses at mid-span at B of Figure 4-84 (the deformed shape is not
represented). The observed stress distribution clearly indicates yielding under the tension axial
force at mid-span. It should be noted that the maximum value of the axial stress exceeds 235 MPa
as “real” stresses are represented and not “engineering stresses”. For high strains the differences

between both become relevant (Greal = Gengin(1+€)).
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The example treated above reveals that the plastic torsional system reserve of members of open
cross-section subject to torsion is similar to the catenary effect for members subject to bending.
For members in bending the catenary effect is exploited in particular in fire design situations and
for structures subject to blast loads (FABIG 2002). Indeed, in this design situation one can accept
the failure of the structural element accompanied with high displacements. For other design
situations, this is generally not acceptable. Consequently, the catenary effect is not accounted for
for the design of members in non-accidental design situations. If the plastic torsional system
reserve is exploited the torsional twist also increases highly. Yet, for short members it may be
economic to account for the plastic warping hinge, as the torsional twist does not attain
unacceptable high values in all cases. Here, it is proposed to allow for the plastic torsional system
reserve in the analysis of the member and hence for the determination of the internal forces and
moments but only in cases where the torsional twist is not incompatible with the deformation
capacity of the possible structural elements attached to the member, i.e. especially for short

members that are not sensitive to the effect of elasto-plastic member instability.

Anyhow, it appears that a completely analytical method cannot be developed as members subject

to torsion are generally also subject to a complex interaction with over internal forces and
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moments as for example major-axis and minor-axis bending and consequently it is not possible to
determine exactly the load factor linked to the creation of the warping hinge. In fact, the plastic
warping hinge is generated when yielding of a given cross-section along the member leads to a
significant loss of the warping stiffness at this location. Still, first, it is difficult to define exactly
what is “significant” and second, even if “the significant loss” may be quantified it seems even more
difficult to determine the load combination that leads to this loss. In general, one may determine
the load that leads to the elastic limit state and the load that leads to the plastic limit state of a
section with a sufficient precision. Inversely, a load combination that results in a given reduction
of the stiffness of a given section cannot be obtained easily.

As a simplified approach one could envisage to perform the analysis of the member in two steps:

e In a first step, the loads are increased up to complete yielding of the cross-section
along the member that is subject to the maximum combination of major-axis
bending, minor-axis bending, vertical shear force, axial force and the bi-moment.
It is considered that the plastic warping hinge is generated at this load level.

e In a second step, the static system is transformed by generating a warping hinge
at the location determined in the first step. The loads are then increased up to
yielding of the member under the combination of major-axis bending, minor-axis
bending, vertical shear force, axial force and the Saint-Venant’s torsional

moment.

Obviously, depending on the boundary conditions, intermediate restraints and applied loads,
several plastic warping may be generated before the plastic resistance of the member as a whole
is attained. These more complex situations should only be treated by rigorous plastic analysis if it

is intended to account for the torsional plastic system reserve.
So as to illustrate the possible procedure, the following example is treated:

e The member is of HEB 200 section (without fillets) subject to a constant major-
axis bending moment of 119,6 kNm and a torsional moment applied at mid-span
of 21,8 kNm.

e The length of the member is equal to 1,1 m.

e The member possess fork end support.

e The member is fabricated from steel S235.

Admittedly, this example may not be very current in practice (especially concerning the loading
conditions) but it is used here for the ease of representation of the effects to be studied. The first
order elastic analysis of this member leads to the following maximum internal forces and

moments:

My_MaX = 119,6 kNm
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Mystvmax = 1,577 KNm
My w,max= 10,9 KNm
My totmax = 10,9 KNm
Bmax = 5,41 kNm?

The distributions of the internal forces and moments linked to torsion are represented in Figure
4-87 and Figure 4-88. Due to the short length and consequently the low value of the warping decay
factor &;, the member is principally subject to warping torsion and major-axis bending. The part

of Saint-Venant’s torsion is nearly negligible.
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Figure 4-87: Distribution of the internal torsional moments
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Figure 4-88: Distribution of the bi-moment

Based on the method that is developed in the following paragraphs (adaption of PIFM), it is
possible to determine a plastic load amplification factor for the given load combination. It should
be noted that only the bi-moment and the major-axis bending moment are considered because
only these two act simultaneously at mid-span. The warping torsional moment is shown to be

negligible in all cases in the following paragraphs.
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The load factor linked to the plastic warping hinge (Rpiwh) is obtained with the adapted PFIM
(validated in paragraphs 4.4.4 to 4.5):

Rpiwh = 0,777

The obtained result indicates that the plastic warping hinge is generated at load level
corresponding to 78% of the applied loads. Nevertheless, the member may resist additional loads
owing to the plastic torsional system reserve. The static system of the member is transformed and
a warping hinge is introduced at mid-span. The new member is loaded with a constant major-axis
bending moment of 26,67 kNm ((1-0,777)My,max) and a torsional moment of 4,86 kNm applied at
mid-span (2*(1-0,777)Mxotmax)- The distribution of the obtained internal moments linked to
torsion are again represented in Figure 4-89 (only the additional moments are represented). The
additional torsional moment is carried exclusively through Saint-Venant's torsion as a result of
the formation of the plastic warping hinge and consequently, neither an additional warping

torsional moment nor an additional bi-moment are generated.
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Figure 4-89: Distribution of the internal torsional moments for the member with warping hinge

The resulting internal forces and moments necessary to check the resistance of the member can
be obtained as the sum of the internal forces and moments determined at the load level
corresponding to the formation of the warping hinge and those determined by elastic analysis of

the member possessing the warping hinge. Consequently, one obtains:
Mymax = 119 kNm (= 0,777*119 kNm + 26,67 kNm)

My stvmax = 3,66 KNm (= 0,777*%1,577 KkNm + 2,43 kNm)

Mywmax < 8,39 KNm

My totmax = 10,9 KNm (= 0,777*%10,9 kNm + 2,43 kNm)

Bmax < 4,16 KNm?
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It should be noted that neither the bi-moment nor the warping torsional moment, which act in the
member at its plastic limit state, can be determined exactly. Obviously, the bi-moment has to
decrease in order to allow the major-axis bending moment to increase at mid-span. At this location
the member has entirely yielded when it attains the load level corresponding to the assumed
plastic warping hinge and it stays entirely yielded up to the plastic limit state of the member.
Consequently, the bi-moment at mid-span is always just equal to the bi-moment resistance of the

section reduced by the influence of the major-axis bending moment.

The plastic resistance of the member can be checked based on the internal forces and moments
determined after the second calculation step. For the example, the plastic interaction of the
HEB 200 section subject to a Saint-Venant’s torsional moment of 3,66 kKNm and a major-axis

bending moment of 119 kNm is checked. The adapted PIFM is again applied to obtain:
Rpi=1,00
The member consequently just attains its plastic limit load.

So as to analyse the obtained result the member is calculated numerically with a MNA simulation
based on the solid model of the studied member. The numerical results are represented in Figure
4-90 and Figure 4-91. Figure 4-90 represents the evolution of the major-axis bending moment,
the total torsional moment and the bi-moment with the vertical displacement at mid-span. The
reference values (My,max, Mxtotmax and Bmax) are those obtained at the supposed plastic limit state

of the member that has been determined here before.

In Figure 4-90, one may easily recognize the creation of the warping hinge for a vertical
displacement of 2,4 mm. At this point the bi-moment attains its maximum. As the member has not
completely yielded (also see Figure 4-93), the load can increase further on. Hence, the bi-moment
has to decrease in order to allow an augmentation of the major-axis bending moment. The total
torsional moment however increases further on (in Figure 4-90 the curves associated with My o
and M, are superposed) and the additional torsion is carried by the Saint-Venant’s torsional
moment creating shear stresses over the member. The maximum load is attained for a vertical
displacement of approximatively 25 mm. At this point the member has (nearly) completely
yielded (also see Figure 4-95) and does therefore not possess any additional stiffness (the
material is supposed to behave elastic-perfectly plastic here). As the member has lost its complete
stiffness the displacement increases without an increase of neither the major-axis bending
moment nor the total torsional moment. Therefore the bi-moment stays constant, too. It is
however to be noted that the major-axis bending moment does not completely attain the

maximum value predicted by the simplified analysis method. The difference is of about 6%.
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Figure 4-90: Evolution of the internal moments with the vertical displacement

Figure 4-91 represents the evolution of the major-axis bending moment and the bi-moment as a
function of the load factor. Again, a load factor of 1,0 corresponds to the plastic limit state
predicted by the simplified two step analysis method. Also, the load level corresponding to the
predicted generation of the warping hinge (noted as Rpwn) as well as the load factor
corresponding to first yield are represented. One may observe that the load level corresponding
to the theoretical generation of the warping hinge is close to the load level linked to the maximum
value of the bi-moment. Yet, it is to be noted that the evolution of the bi-moment is non-linear
before the warping hinge is created. In fact, one may observe that the evolution of the bi-moment
starts to be non-linear at a load level situated between first yield and the assumed generation of
the warping hinge (point A of Figure 4-91). This indicates that the torsional load starts already to
be carried by an increasing part of Saint-Venant’s torsion at a lower load level than assumed by
the simplified analysis. The Saint-Venant's torsional moment in the member is consequently
higher than predicted and hence the plastic limit state is attained at a lower load level than the
one obtained with the simplified method. This leads to the unsafe strength prediction observed

for the simplified analysis method.
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Figure 4-91 : Evolution of the internal moments with the load factor

Figure 4-92 shows the von Mises stress distribution over the member at the load level
corresponding to point A of Figure 4-91. At this point the evolution of the bi-moment with the load
factor becomes non-linear. Clearly, the member has already yielded in the flanges over an

important part of its length. Yet, the web stays nearly completely elastic.

I I
7.09456 57.7402 108.386 159.032 209.677
32.4174 83.063 133.709 184.354 235

Figure 4-92 : Von Mises stresses at point A of Figure 4-91

Figure 4-93 and Figure 4-94 show the von Mises stress distribution as well as the distribution of
the shear stresses over the member when it attains the load level corresponding to point B of
Figure 4-91. Obviously, yielding has continued to spread over the member. Indeed, at this load
level the flanges have nearly completely yielded over their total length. It is shown in Figure 4-94
that the flanges do not yield exclusively under axial stresses resulting from the major-axis bending
moment but also due to the shear stresses resulting from Saint-Venant’s torsion. Additionally, the

von Mises stresses have increased in the web of the member.
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Figure 4-93: Von Mises stresses at point B of Figure 4-91

As the member is subject to a constant bending moment, the shear stresses represented in Figure
4-94 result from the Saint-Venant’s torsional moment (the shear stresses resulting from the
warping torsional moment are nearly negligible due to the high corresponding resistance of the
section). Also, they are much higher than expected based on the Saint-Venant's torsional moment
determined with the elastic analysis. At the shown load level Mys.v is equal to 1,22 kNm following

and elastic analysis. Consequently, the shear stresses should be equal to:

M
Tweb — x, StV tw — 1722]{an O,9Cm: 23,0Mpa ( 4_81 )
1, 48,01cm
M
Tﬂange = L t,= 1’22kNm l,SCm = 38,3Mpa ( 4.82 )

I " 4801em’
Obviously, the results indicate that the Saint-Venant’s torsional moment is already much higher
than predicted by the elastic analysis (the shear stresses attain nearly 3 times the value of Egs (
4.81)and (4.82)).

e I
-135.44 -75.2444 -15.0489 45.1466 105.342
-105.342 -45.1466 15.0489 75.2444 135.44

Figure 4-94: Shear stresses at point B of Figure 4-91
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Finally, Figure 4-95 represents the von Mises stress distribution at the plastic limit state of the
member. One may easily observe that the member has practically completely yielded due to the
arising Saint-Venant’s torsional moment. Additionally, it is clear that the torsional twist is rather
important and in particular much higher than at points A and B of Figure 4-91 (the displacement
of the members are represented in Figure 4-92, Figure 4-93, Figure 4-94 and Figure 4-95 in true

scale).

4@
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Figure 4-95: Von Mises stress distribution at the plastic limit state

The results represented above show that a simplified two step elastic analysis may
approximatively represent the complex plastic behaviour of members subject to torsion. In order
to ensure a sufficient level of safety, the creation of the warping hinge should however be
considered before the plastic limit state of the most loaded section under the combination of the
bi-moment and other internal forces and moments is obtained. At this point of the thesis, the
proportion of the plastic load amplification factor that should be associated with the creation of
the plastic warping hinge is not determined. Before this is done, the interaction between the bi-
moment and the other internal forces and moments is studied in detail in paragraphs 4.4.4.2,
4.4.4.3 and 4.4.4.4. These investigations are based on MNA simulations of the members under
combined bending, shear force and torsion. Consequently, the plastic limit state of these members
is always linked to complete yielding over their total lengths owing to the generation of the plastic
warping hinge and the resulting Saint-Venant’s torsional moment. Nonetheless, at the location of
the plastic warping hinge, yielding is due to the combination of the bi-moment with the other
internal forces and moments acting in the same section. Consequently, the plastic interaction
behaviour can be studied at this location even if the ratio between the bi-moment and the other
internal forces and moments is not the one predicted by an elastic analysis. Anyhow, it is to be

noted that the internal forces and moments are determined by integrating the stresses over the
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section. Therefore, the interaction diagrams, presented in the following, are always based on the

real internal forces and moments acting in the studied section (if not otherwise indicated).

Last, it should be noted that the design methods and interaction equations developed hereafter
remain valid if the internal forces and moments are determined based on an elastic analysis of the
member as the bi-moment is overestimated in this case. Consequently, an elastic analysis is always

safe-sided, as is also shown in the following paragraphs.
4.4.4.2 Double symmetric | sections
44421 Plastic reference resistances to torsion

The plastic bi-moment is one of the reference values that is used hereafter. However, its value is
not defined in any standard. For double symmetric I sections it may be determined by integrating

the plastic stress distribution of the section. One obtains the following expression:

bZ
B, =thf(h—zf)]; :%(h—tf) (483)

In Chapter 2, it has been recalled that the bi-moment is associated with the warping torsional
moment that attains its maximum at the same location as the bi-moment. Hence, on might suppose
that an interaction between warping torsional moment and bi-moment is necessary. As shown by
Eq. (4.84 ), the plastic warping torsional moment is equal to the plastic shear force resistance of
one flange multiplied with the lever arm between the flanges. Anyhow, the resistance to the
warping torsional moment is very high compared to the value of the warping torsional moment
that may act on the members in practice. Consequently, it has no influence on the resistance of the

cross-section (see paragraph 4.4.4.2.2).

y
Mx,w,p,=bftf(h—tf)£= ”2’ (h—tf) (4.84)

V3

4.4.4.2.2 Interaction between major-axis bending, torsion and shear force

As for the case of interaction between bending and shear force, the following figures represent
interaction diagrams obtained based on numerical MNA simulations of members subject to LC1
(point load applied at mid-span). Obviously, as three internal forces and moments interact
(neglecting the warping torsional moment and the Saint Venant’s torsional moment that do not
influence the interaction), the representation of the results is more complex than before. Indeed,
it is necessary to show two interaction diagrams that represent respectively the V,-M, plane and

the B-M, plane of the interaction space.

Additionally to the numerical results, the Eurocode 3 Part 1-1 interaction curve for the major-axis
bending shear force interaction (without torsion) and an analytical interaction curve between the

bi-moment and the major-axis bending moment (without shear forces) are represented in the
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diagrams. The analytical interaction curve B - My is based on the same hypothesis concerning the
distribution of stresses as the interaction curve proposed by Mirambell (see paragraph 4.2.1.2.3),
i.e. the bi-moment is distributed over the flanges as flange bending moment and the bending
moment is distributed to the web and the flange. In the flange, the bending moment induces an

axial force. The equation representing this interaction is:

B 4.85
M, =M, , ~ 1= 1_[B_J M, 15 ( )
pl
Eq. (4.85 ) may also be expressed as resistance criterion as follows:
B <10 M, <M, =M, ~M (4.86)
=5 WMy =y plweb .l »plfl
pl
M,-M ’
y v, pl,web + i S 1,0 lf M >M I veb (487 )
M y y.pliwe
v.pl.fl pl

Eq. (4.86) to ( 4.87 ) may be easily adapted for the case of applied shear:

pA> .V
M,, .= [Wpl,y y ny if 14 > 03

4¢
" ! (4.88)
and p :{21/2 _1j
pl,z
B 4.89
My,B,V,pl :My,V,pl —(1= 1= — My,pl,ﬂ ( )
Bp,
Or as interaction equations:
B £ M <M M., M (4.90)
W = 190 if y — vV, plweb — "Ly V. pl - v,plfl '
pl
M. -M ’
[ y y,V,p/,web] + B < 1,0 lf My >Mprlweb (491)
M B o
y.pl,fl pl

The presentation of the interaction formula ( 4.85 ) is slightly different from the one used by
Mirambell recalled in Eq. ( 4.92 )Erreur ! Source du renvoi introuvable.. [t should be noted that
the notations used in this thesis are introduced into Eq. ( 4.85 ). Also, the partial factor ymo is
omitted here. The main difference between Eq. (4.92 ) and Eq. ( 4.85) is the factor considering the
influence of the bi-moment. In fact, Mirambell only considers partial plasticity by the reference

resistance of 1,25f; (for full plasticity the factor should be 1,5f; - see paragraph 4.2.1.2.3).
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(4.92)

Also, Eq. (4.92 ) does not consider that the interaction may be neglected if the major-axis bending
moment is less than the major-axis bending resistance of the web. Admittedly, this case is
obviously of less practical interest. In case of high shear forces Mirambell proposes the following
adaption, equivalent to Eq. ( 4.95 ). Again, he considers a reduction of the web resistance due to

the bi-moment.

My,B,V,Rd:Mwe@Rd(l_sz)PB + M pq (4.93)
In the following, the numerical results are represented. First, Figure 4-96 and Figure 4-97 give the
results obtained for the section HEB 220. The influence of the bi-moment may be easily identified.
Regarding Figure 4-96, it is clear that the major-axis bending - shear resistance of a member with
a given length is reduced by the action of the bi-moment. For very short members (L = 3h)
however, it is not the bi-moment that leads to failure but the shear resistance as shown in Figure
4-98 and Figure 4-99.
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Figure 4-96 : M,-V.-B plastic interaction for HEB 220 - V,-M, plane

206



On the Design of Steel Members with Open Cross-Sections Subject to Plastic Cross-Section

Combined Axial Force, Bending and Torsion Resistance
1.10 ¢ L=3h
B L=3.5h
1.00 A L=4h
0.90 L=5h
0.80 ® L=7h
0.70 tf 1‘5’:
—_ 0.60 e |nteraction curve - Vz =0
— 0.50 v
£ 040
2
= 0.30 ®
0.20 o H A
0.10 ®
0.00 o L
0O 01 02 03 04 05 06 07 08 09 1 11 1.2
IVIy,MNA/NIV,pI (')

Figure 4-97 : M,-V.-B plastic interaction for HEB 220 — B-M, plane

In Figure 4-98, the axial stress distribution shows the interaction between the bi-moment and the
major-axis bending moment in the flanges. It should be noted again that the axial stresses exceed
the yield stress of 235 MPa due to a 3 dimensional stress field created at the plastic hinge.
Consequently, a supplementary resistance reserve is mobilized explaining why the numerical
results exceed the analytical plastic resistance. In Figure 4-98 one may also observe that the axial
stresses do not transit through the web, as it is entirely utilized by the shear force as shown in
Figure 4-99. In this figure one may recognize that the shear stresses are constant through the
thickness of the web. Hence, they are not resulting from Saint Venant’s torsion (creating shear
stresses varying linearly over the thickness - see Chapter 2) but from the shear force V, as

indicated.

—

B |
—280 —155.556 -31.1111 93.3333
-9 3 31.1111

217.778
-217.778 6 280

3.333 155.55

Figure 4-98: Axial stress distribution at PLS for section HEB 220 under combined M,-B-V, — Case I of
Figure 4-96
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Figure 4-99: Shear stress distribution at PLS for section HEB 220 under combined M,-B-V,— Case I of
Figure 4-96

Figure 4-100 to Figure 4-103 present the results obtained for section IPE 600 and HEA 100. As
before the influence of the bi-moment and the shear force may be easily identified. Also, the

interaction curves applicable for the extreme cases of respectively zero shear force and zero bi-

moment represent very well the interaction behaviour.
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Figure 4-100 : M,-V.,-B plastic interaction for IPE 600 — V,-M, plane
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Figure 4-101 : M,-V,-B plastic interaction for IPE 360 — B-M, plane
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Figure 4-102 : M,-V,-B plastic interaction for HEA 100- V.-M, plane
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Figure 4-103 : M,-V,-B plastic interaction for HEA 100 — B-M, plane

The previous figures have shown that the proposed interaction corresponds very well to the

numerically determined resistances for selected examples. Hereafter, the interaction conditions

are compared to the totality of the numerical simulations preformed for the characterization of

the plastic major-axis bending-shear force-bi-moment interaction.

Figure 4-104 presents the comparison between the MNA simulations and the interaction

conditions defined by Eq. ( 4.89 ). Obviously, the results are very satisfactory both in terms of

scatter and in terms of precision. Yet, for some simulations of the IPE 360 section, the proposal

seems to be slightly unsafe. In order to explain this, the example of a member with a length of

1260 mm is studied in more detail. The member is made of IPE 360 section and it is subject to a

point load applied at mid-span at the upper flange’s tip (Point I in Figure 4-104).
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Figure 4-104: Comparison between MNA simulations and interaction curve of Eq. ( 4.89 )

Figure 4-105 shows the evolution of the major-axis bending My and of the total torsional moment

My ot as well as of the bi-moment B with the applied loads for the example I of Figure 4-104. Again,
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one may observe the specific behaviour of members with open sections subject to torsion that has
been discussed in detail in paragraph 4.4.4.1. Indeed, the bending moment and the total torsional
moment increase linearly with the load factor whereas the bi-moment attains its maximum at a
given load level and then decreases due to the formation of a plastic warping hinge. After the
formation of this warping hinge the applied load may increase further on. However, it is recalled
that the supplementary torsional load is exclusively carried by Saint-Venant’s torsion leading to
yielding of the member over its total length. For the studied example Figure 4-106 illustrates the
von Mises stress distribution at the plastic limit state.

Generation of the
warping hinge
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0.70
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Figure 4-105: Evolution of the internal forces with the applied load

The von Mises stress distribution represented in Figure 4-106 clearly shows that the member has
yielded over its total length. At mid-span, the member yields predominantly under combined
major-axis bending, bi-moment and the shear force (see Figure 4-107). Inversely, at its ends, the
member yields under shear stresses resulting from the Saint Venant’s torsional moment that
highly increases after the formation of the plastic warping hinge as shown by the representation
of the shear stress distribution in Figure 4-108.
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Figure 4-106: Distribution of von Mises stresses at plastic limit state for example | of Figure 4-104
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Figure 4-107: Distribution of axial stresses at plastic limit state for example | of Figure 4-104

Especially, the shear stress distribution in the flanges given in Figure 4-108 b) clearly indicates
the presence of high Saint Venant’s torsional moments. This example confirms, once more, the
conclusions of paragraph 4.4.4.1 dedicated to the plastic behaviour of members in torsion.
Moreover, it appears that, depending on the case, there can be a slight interaction between the
Saint-Venant's torsional moment arising between the supports and the plastic warping hinge and
the internal forces and moments acting in the plastic warping hinge itself. Nonetheless, the
interaction leads only to a small supplementary reduction of the plastic section resistance. Hence,
the influence of the Saint-Venant’s torsional moment can be neglected for the interaction between

the internal forces and moments acting in the warping hinge.
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a) Shear stresses Tx; b) Shear stresses Tyy
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Figure 4-108: Distribution of shear stresses at plastic limit state for example | of Figure 4-104

It should again be emphasized that the objective of the present paragraph is not the development
of a design method describing the plastic resistance of a member as a whole, i.e. including the
plastic system reserve resulting from the formation of plastic warping hinge, but rather the
development of a design method (interaction equations) that describes the plastic interaction that
leads to the formation of the plastic warping hinge in the first place. The supplementary plastic
system reserve should be covered in the analysis as described in paragraph 4.4.4.1. Consequently,
it is not unsafe to accept the provisions of the current version of Eurocode 3 Part 1-1 that indicate
that the influence of the Saint Venant’s torsional moment may be neglected for members of open
section (§6.2.70f (CEN 2005a)). In fact, these provisions are, implicitly, based on elastic analysis
and hence they do not consider the formation of a warping hinge leading to higher resistances. In
order to underline this fact Figure 4-109 represents the comparison of the MNA results to the
interaction curve again. Yet, hereafter, it is considered that the internal forces and moments used
in the interaction equation have been determined based on an elastic analysis of the member.
Obviously, the results obtained with the interaction formulae are less precise as before because
the bi-moment used in the formulae is not the bi-moment really acting in the studied section.
Indeed, the elastic analysis overestimates the bi-moment. Also, due to this fact the scatter of the
results is increased. Nevertheless, it seems that the results are still acceptable. Additionally, it is
shown that neither the Saint Venant’s torsional moment nor the warping torsional moment need
to be accounted for (as the results do not become unsafe if both are neglected). Hence, the

verification is simplified.
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Figure 4-109: Comparison between MNA simulations and interaction curve of Eq. ( 4.89 ) used with
elastic analysis

Last, the proposal of Mirambell is compared to the MNA simulations. As before two diagrams
present the comparisons. In Figure 4-110 the internal forces and moments used in the interaction
formulae are those obtained by the MNA simulations and in Figure 4-111 the internal forces and
moments are determined by elastic analysis. For both cases the proposal of Mirambell is less
precise than the interaction formulae defined in Eq. ( 4.89 ). Especially, if the design is based on
an elastic analysis, the precision is poor and the scatter is important for Mirambell’s proposal. Yet,
it should however be noted that, by introducing a plastic adaption factor equal to 1,25 (and not

equal to analytical factor of 1,50) Mirambell seems to accept this scatter
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Figure 4-110: Comparison between MNA simulations and proposal Mirambell — Eq. ( 4.93 ) used

with plastic analysis
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Figure 4-111: Comparison between MNA simulations and proposal Mirambell - Eq. ( 4.93 ) used

with elastic analysis

4.4.42.3 Interaction between minor-axis bending, torsion and shear force

In paragraph 4.4.3.1 it has been shown that the interaction between the shear force and the minor-
axis bending moment may be neglected. It is shown hereafter that this hypothesis may also be

considered in case of the more complex interaction including torsion.

It is recalled that the stresses resulting from the minor-axis bending moment and the bi-moment
are affine in the flanges. Yet, depending on the sign of bending moment and the bi-moment, the
stresses may add in the upper flange and neutralise in the lower flange or inversely (see Chapter
2 for stresses resulting from the bi-moment). Anyhow, owing to the distribution of the stresses in
the flange a linear interaction may be considered. Hereafter, the example of the HEA 280 section
is studied. Again, two diagrams are given in order to characterize the interaction behaviour. Figure
4-112 represents the V,-M, plane of the interaction space and Figure 4-113 represents the B-M,
plane. As before, one may observe that the shear force parallel to the flanges does generally not
influence the plastic minor-axis bending resistance. Only for extremely short members, outside of

the practical range, the shear force slightly reduces the resistance.
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Figure 4-112: M,-V,-B plastic interaction for HEA 280 - V,-M, plane

Figure 4-113 shows that the linear interaction fits very well the real interaction behaviour of the

section. It should however be recalled that the internal forces used in Figure 4-112 and Figure

4-113 are those obtained by the MNA analysis and hence the real internal forces and moments

acting in the plastic warping hinge. Here, it is shown again that, conversely to the hypothesis done

by certain authors, the bi-moment does not vanish entirely after the formation of the warping

hinge (see reference (Glitsch 2008) and Chapter 5). Indeed, after the formation of the warping

hinge, the plastic failure of the member is always due to the Saint Venant’s torsional moment

leading to the yielding of the member over its total length. Depending on the case, the failure of

the member may occur before the minor-axis bending moment is close to the plastic minor-axis

resistance of the section at-mid span.
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Figure 4-113: M,-V,-B plastic interaction for HEA 280 — B-M, plane

If the interaction is based on elastic analysis the results become, in some cases, very conservative

as shown in Figure 4-114.
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Figure 4-114: M,-V,-B plastic interaction for HEA 280 — B-M, plane - internal forces and moments
obtained by elastic analysis

The pronounced difference between elastic and plastic analysis may be explained with Figure
4-115 showing the evolution of the internal forces with the applied loads of case I of Figure 4-114.
It can be seen that the bi-moment decreases highly after the formation of the warping hinge.
Consequently, the plastic system reserve is even more pronounced than in the case of combined
major-axis bending and torsion. In fact, as the web of the I section is not utilized by the stresses
resulting from minor-axis bending and the corresponding shear force, it may be entirely used by
the shear stresses resulting from the arising Saint Venant’s torsional moment. In case of combined
major-axis bending, shear force and torsion the web is already utilized by the shear stresses
resulting from the shear force and the axial stresses generated by the major-axis bending moment.
Hence, the plastic system reserve is generally less pronounced than for combined minor-axis
bending, torsion and shear force.

1.00
0.90
0.80
0.70
0.60
0.50
0.40

Mi/Mi,max (')

0.30
0.20 M

0.10 Mx,tot =

=B

z

M + M

x,St.V X,W/

0.00

000 010 020 030 040 050 060 070 080 090 100
V,/V

y,max (')

Figure 4-115: Evolution of the internal moments with the applied loads
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4.4.4.2.4 Conclusions

Through the present paragraph the interaction between bending, torsion and the shear force has
been investigated in detail for double symmetric I sections. It has been shown that the torsional
plastic system reserve highly influences the member behaviour. In fact, owing to the formation of
a plastic warping hinge the torsional load is redistributed and carried through a Saint Venant’s
torsional moment that is negligible before yielding of the member is initiated. This system reserve
may highly increase the resistance of the member compared to an elastic analysis. Yet, after the
formation of the warping hinge, the torsional twist may also highly increase. Therefore, the
torsional plastic system reserve should only be accounted for if the torsional twist is not
incompatible with the member in the structure. Generally, the internal forces and moment are
determined by an elastic analysis in practice. Consequently, the interaction equations, that
precisely predict the cross-section resistance based on the real internal forces acting in the
section, may be rather conservative. However, this conservatism has to be accepted as it ensures

that the torsional twist does not increase excessively.
4.4.4.3  Mono-symmetric | sections
44431 Plastic bi-moment resistance

In paragraph 4.4.3.3 it has been shown that the mono-symmetric I sections can only fully yield
under minor-axis bending if a stress-induced bi-moment arises. The numerical simulation have
indicated that the stress-induced bi-moment is generated and consequently full yielding of the
mono-symmetric I section under M, may be attained. If the section is subject to a bi-moment, the
problematic is similar. In fact, the section can only entirely yield if a minor-axis bending moment
M. arises as represented in Figure 4-116. However, due to the static equilibrium conditions, a

minor-axis bending moment can only be induced by an external load.
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a) Elastic stress distribution b) Plastic stress distribution

Figure 4-116: Elastic and plastic stress distribution for a mono-symmetric | section subject to a bi-
moment

In presence of an externally applied minor-axis bending moment, the bi-moment resisted by the

cross-section may therefore exceed the plastic bi-moment resistance determined under a sole bi-
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moment. The minor-axis bending moment leading to the maximum bi-moment can be determined
with Eq. ( 4.94 ). It should be noted, that following the sign convention used in this thesis M gmax

and the corresponding maximum bi-moment Bnax are of the same sign.

2 2
M _ [buftuf _byty J (4.94)
z,Bmax
: 4 4 [

The expression of the corresponding maximum bi-moment may be derived based on the stress

distribution given in Figure 4-116b).

bit . b2t
5 :[ wl bty ny (4.95)

stz
4 S.uf 4 S.if

In Eq. ( 4.95), zsur and zs)r correspond to the distance between the shear centre and the centroid

of the upper and lower flange, respectively.

The plastic bi-moment may also be obtained based on the stress distribution shown in Figure
4-116b) and by neglecting the stresses associated with M;gmax represented in light blue. One

obtains:

bt bpt, t, 1
B, :Mm[ u/4llf; 11‘41}‘ }(h_u?f_%}fy (4.96)

Depending on the cross-section dimensions the upper or the lower flange may be determining for
the value of the plastic bi-moment. Nevertheless, it is to be noted that the plastic bi-moment
should only be considered as a reference value as the real plastic stress distribution under an
applied bi-moment is obviously not the one represented in orange in Figure 4-116b). Indeed, in
any case the yielding of the flanges starts from the flange’s tips and evolves to the centre of the
flanges. Yet, the numerical simulations presented in the following paragraphs justify that the

expression given in Eq. ( 4.98 ) is acceptable.
4.4.4.3.2 Interaction between major-axis bending, torsion and shear force

First, the interaction between major-axis bending, the associated shear force and the bi-moment
is studied. As before, the mono-symmetry is introduced by reducing the width of the lower flange.
The following figures represent the results obtained for the modified IPE 600 section.
Additionally, the interaction curves applicable for the extreme cases of respectively negligible bi-
moment and negligible shear force are represented. For the major-axis bending-bi moment
interaction, the interaction curve used for double symmetric sections is used again. Yet, the value
of My ni1 is calculated based on the weaker of the two flanges (see Eq. ( 4.98 )) and the plastic bi-
moment is obtained with Eq. ( 4.96).

B 497
M,y =M, —|1- 1—[3—] M (4.97)

y v,pl, fl
pl
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In the following, the mono-symmetry parameter y is varied between 0,2 (slightly mono-
symmetric) and 0,975 (highly mono-symmetric). Figure 4-117 and Figure 4-118 show that the
proposed interaction curves are in good agreement with the numerical results and may therefore

ed Axial Force, Bending and Torsion

2

considered as satisfying.
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Figure 4-117: Major-axis bending - shear force - bi-moment interaction for IPE 600m mono = 0,2
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Figure 4-118: Major-axis bending - shear force - bi-moment interaction for IPE 600m mono = 0,7

On the contrary, to the case of slightly and medium mono-symmetric sections, the results obtained
for the highly mono-symmetric section seem to be much less satisfying especially if one observes

the M,-B plane represented in Figure 4-119. Obviously, the plastic bi-moment resistance is much

higher than predicted with Eq. ( 4.97 ).
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Figure 4-119: Major-axis bending - shear force - bi-moment interaction for IPE 600m Ymono = 0,975

So as to highlight the reason of this surprising results, Figure 4-120 represents the stress

distribution for a IPE 600m section possessing a Wmono Value of 0,975. The section is subject to a

vertical point load applied at mid-span at the upper flange’s tip. For the represented load step, the

bi-moment just attains the value of the plastic bi-moment defined in Eq. ( 4.96 ).It may be observed

that the lower flange has yielded due to the influence of the bi-moment. Contrariwise, the upper

flange has not reached the yield stress in any point. However, it can also be observed that the axial

stresses vary through the upper flange from approximatively -90 MPa to 150 MPa at the right tip
and from -150 MPa to 90 MPa at the left tip. This indicates that the local warping stiffness and

associated resistance is mobilised (see Chapter 2). It is evident that the supposed stress

distribution shown in Figure 4-116 is not valid anymore for highly mono-symmetric sections.

il

BOCCEECEN

Figure 4-120: Plastic stress distribution for IPE 600m ymono = 0,975 at load factor corresponding to

Bpl
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The stress distribution at the plastic limit state is represented in Figure 4-121. Especially, the
distribution of axial stresses in the upper flange indicates clearly the mobilisation of the local
warping resistance. In fact, after the yielding of the lower flange the mono-symmetric section acts

like a T section whose behaviour is prescribed by local warping.
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—— }:§§=:== _ji::__ -

I0COROOAN

.252324
.194641
.136958
.079276
-.021593
.03609
.093772
.151455
.209138
.26682

17.5456
41.7072

65.8688

$0.0304 |
114.192

138.354 |
162.515 |
186.677 !
210.838 I 1 |

235

BOCOREC AN
BOUCNREEN

a) von Mises stresses over the section and axial stresses in b) Axial strains
the upper flange

Figure 4-121: Stress and strain distribution for IPE 600m ymono = 0,975 at plastic limit state

Also, it should be noted that inversely to double and slightly or medium mono-symmetric sections
the reduction of the warping stiffness due to yielding of the lower flange appears to be insufficient
to generate a real warping hinge. Consequently, the bi-moments continues to increase in the most
loaded section at mid-span. Indeed, the diagram represented in Figure 4-122, gives the ratio
between the initial warping constant I, of the section and the effective warping constant of the
section with yielded lower flange (T section I, = 10320 cm*). Figure 4-122 points out that the
decrease of the warping constant for the highly mono-symmetric IPE 600m Wymono = 0,975 section

is much less pronounced than for the less mono-symmetric sections.
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Figure 4-122: Ratio between warping constant for the mono-symmetric | section and warping
constant of the associated T section for different ymono values

Additionally, it seems interesting to represent the influence of the local bi-moment resistance on
the overall bi-moment resistance. The overall plastic bi-moment including the local warping has
been determined numerically. By observing Figure 4-123 it becomes obvious that for mono-
symmetric sections the local effects leading to an increased plastic bi-moment can be neglected in
general. However, for highly mono-symmetric sections, as the IPE 600m Wmono = 0,975, the local

effects are nearly as important as the global plastic bi-moment.
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Figure 4-123: Ratio between total plastic bi-moment including local effects and plastic bi-moment
obtained with Eq. ( 4.96 )for different Ymono values

It is obvious that the local bi-moment influences considerably the behaviour of highly mono-
symmetric [ sections. However, Figure 4-121b) also shows that the yielding may be accompanied
by very high axial strains depending on the exact geometry of the section. Therefore, the local
effects are not accounted for and the observed conservatism is accepted here for the resistance
model.

4.4.43.3 Interaction between minor-axis bending, torsion and shear force

The plastic interaction curve for combined minor-axis bending torsion and the shear force is

derived based on the assumed distribution of axial stresses represented in Figure 4-116. In
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particular, the local effects leading to an increased plastic bi-moments are not considered

hereafter. Again, this leads to certain conservatism for highly mono-symmetric sections.

It should be recalled that the interaction between the shear force Vy and the minor-axis bending
moment has been shown to be negligible. Also, as the minor-axis bending moment and the bi-
moment are affine in the flanges a linear interaction may be considered again. Yet, due to the
mono-symmetry of the section this linear interaction possesses two special features as discussed

in paragraph 4.4.4.3.1:

e In presence of a minor-axis bending moment, the maximum bi-moment that can
be resisted by the section is higher than the theoretical plastic bi-moment (not
considering local effects).

e A stress induced bi-moment is necessary for the complete yielding of the section

subject to minor-axis bending only.

As the interaction behaviour is not symmetric it has to be distinguished between the two cases
that the bi-moment and the minor-axis bending moment are of the same sign and that the minor-
axis bending moment and the bi-moment are of opposite sign. The following interaction equations
may be applied:

M, and B are of the same sign:

M.-M

B, =B |- z-Bmax it M.>M (4.99)
pl.Mz max . z z,Bmax .
Mz,B,pl _Mz,Bmax
MZ
By =B, + (Bmax -B, )M— ift M, <M_ g . (4.100)
z,Bmax
M, and B are of opposite sign:
B, -B,-(8,-8, | it M, >M,
pimz — Ppt — \Ppi T Puzpl M if: z =" z,Bmax ( 4.101 )
z,pl

It should be noted that the absolute values should be used for all quantities used in Egs. (4.99 ) to
(4.101 ). The quality of the proposed interaction curve is presented in Figure 4-124 giving the
results obtained for a modified HEA 100 section whose lower flange is reduced to a width of
87 mm (Wmono = 0,2). Obviously, the interaction curve is in in good agreement to the MNA results.
Yet, it might be confusing for the engineer that the bi-moment resistance exceeds the plastic bi-
moment when the minor-axis bending moment is increased up to Mz gmax. For simplified desing it

seems more appropriate to consider a plateau for the plastic bi-moment up to the value of M, gmax.
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Also, it seems more convinient to present the interaction formulae as a function of the bi-moment.

The proposed interaction formulae for simplified design are given in Egs. (4.102 ) to ( 4.104 ).

1.50 ®V,,,=02-L=3h
A Viono=02-L=4h
1.00 Wimono = 0,2 - L=6h
(Jd
A Wmnono = 0,2 - L=9h
0.50 \ Interaction curve
= 0.00
o 0 1.20
o . :
E
s -0.50
o0
-1.00
-1.50

IVlz,MNA/IVIZ,pI (-)

Figure 4-124 : Minor-axis bending - bi-moment interaction for HEA 100m Wmono = 0,2

M, and B are of the same sign:

B
Mz,B,pl :Mz,pl _(Mz,pl _Mz,Bmax)B_ ( 4102 )
pl
M, and B are of opposite sign:
Mz,B,pl :Mz,pl if: B < BMz.pl (4103 )
B-B
Mz,B,pl :Mz,pl 1_—szl if: B > BMz.p] ( 4.104 )
Bpl _BMZ.pl

The proposed interaction curve is compared to the MNA results in the following figures. Again,
one may observe that the proposal represents well the interaction behaviour for slightly and
medium mono-symmetric sections. However, it becomes rather conservative for highly mono-
symmetric members as shown in Figure 4-127 as the local warping effects become relevant in this

case.
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Figure 4-125: Minor-axis bending - bi-moment interaction for IPE 600 m Ymono = 0,2
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Figure 4-126: Minor-axis bending - bi-moment interaction for IPE 600 m Wmono = 0,7
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Figure 4-127: Minor-axis bending - bi-moment interaction for IPE6G00 m Ymono = 0,975

The study on mono-symmetric I sections presented throughout the three previous paragraphs
shows that simplified interaction formulae may be derived based on a presumed plastic stress
distribution. However, for highly mono-symmetric cross-sections the supposed stress
distribution is not valid anymore due to local warping effects that increase the plastic bi-moment.
These local effects may attain approximatively the same magnitude as the “global” plastic bi-

moment. Yet, for simplified design they are not considered.
4.4.4.4 U sections
44441 Plastic bi-moment

Before interaction equations are developed for U sections under combined bending, torsion and
shear forces, it seems interesting to determine an expression of the plastic bi-moment resistance
that is used as reference value in the interaction formulae. It is possible to calculate the plastic bi-
moment resistance based on the plastic stress distribution represented in Figure 4-128. In order
to obtain the plastic bi-moment, the position of the neutral axis should be determined. The
horizontal neutral axis has to be located at the mid-height of the cross-section for symmetry
reasons. The position of the vertical neutral axis, characterized by the distance noted as ygy in
Figure 4-128 a), is not known a priori. It can be calculated based on the assumption that the major-
axis bending moment vanishes as expressed by Eq. ( 4.105 ) (due to the form of the plastic stress
distribution, the axial force and the minor-axis bending moment vanish independently from the

value of ygp1). Consequently, the position of the vertical neutral axis is given by Eq. (4.106 ).

Wt

M, =0= TW {val” _%thf(h _tf)_(b_%w _yB,pljtf(h _tf) f (4.105)
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Figure 4-128: a) Plastic stress distribution for a U section subject to a positive bi-moment and b)
warping function
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Vo _b 1 ot (4.106)
"2 8 (h-t,)e,
2
3(b-—“vjtf
2 (4.107)

Vsw =

o=t +l-r ke

The position of the vertical plastic neutral axis allows the determination of the plastic bi-moment
as given by Eq. (4.108 ) and Eq. ( 4.109).

Bplz%,plfy (4.108)
(h—t, P y
— S w B,pl
VVB,pl - 4 ys,w +2(h_tf)tfys,wy3,pl[l_ 2_): J
(4.109)

n ey

It should be noted that, as the vertical plastic neutral axis is not located at the same point as the
zero of the warping function in the flanges (distance ys.w — see Table 4-28), the cross-section may
resist a slightly higher bi-moment than the plastic bi-moment resistance if the section is also

subject to a certain major-axis bending moment My, gmax.

Table 4-28: Comparison of yg 5 and ysw

Cross-section yB,pl (Mm) Vsw (Mmm)
UPE 80 18,74 20,96
UPE 200 25,57 31,48
UPE 360 21,66 37,46
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Table 4-29 gives the value of the plastic bi-moment By and the maximum bi-moment Bmax that the
cross-section can resist in presence of the major-axis bending moment Mygmax. Again, it is

supposed that the cross-section is fabricated from steel grade S235.

Cross-section B, (kNm?) Bimax (KNm?) My Bmax (KNm)
UPE 80 0,0966 0,09716 0,535
UPE 200 1,1372 1,1540 5,771
UPE 360 6,8998 7,2323 43,309

The expressions of the maximum bi-moment Bnax and the associated major-axis bending moment
My Bmax are given in Eqgs. (4.110 ) and ( 4.111).

1 (h - tf)ztwys,w

2
t
Bmax =3 —+(h_tf)ys2,wtf +(h_tf{b_3w_y“"wj tf f;) (4110)

2 2

My,Bmaxzz(ys,w —ypz)(h—tf)fffy (4.111)

Here, it should be noted that, contrarily to the case of major-axis bending (see paragraph 4.4.2.2),
the maximum bi-moment Bnax is not considered as plastic bi-moment as the major-axis bending
moment My gmax, Necessary to attain this bi-moment does not develop naturally for a U section
subject to torsion only. Indeed, it cannot develop as static equilibrium would not be respected.
Inversely, the stress-induced bi-moment By, necessary to attain My, results directly from the

stress distribution and develops even if the cross-section is subject to major-axis bending only.
4.4.4.4.2 Interaction between major-axis bending, torsion and shear force

The following figures represent the results of the numerical simulations. The internal forces and
moments at the plastic limit state are, as before, determined according to the stress distribution
in the cross-section. Consequently, these internal forces and moments correspond exactly to the

internal forces acting in the most loaded section.

In Figure 4-129, the influence of the shear force and the bi-moment on the plastic major-axis
bending resistance may be easily identified again. If the cross-section is subject to combined
major-axis bending and shear force the interaction curve applicable to double symmetric I
sections may be safely applied as has already been shown in paragraph 4.4.2.2. When a torsional
load is applied to the member, the cross-section is subject to an additional bi-moment reducing
the combined major-axis bending-shear resistance. Consequently, with increasing bi-moments
the numerically determined resistances tend to zero in the My-V, interaction diagrams for the

members of a given length.
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Figure 4-129 : M,-V,-B interaction diagram for UPE 360 — M,-V,-plane

The interaction diagram given here before in the M-V, plane resembles to the interaction diagram
obtained for double symmetric I sections. However, it should be noted that the interaction
diagram is not symmetric in the B-My plane as, depending on the sign of the bi-moment and major-
axis bending moment the axial stresses may add or neutralise in the web as recalled in Figure
4-130.

Ysw

o<0 - >0 .N

+ -
o<0

+ >0 /

a) Elastic stress distribution due to My >0 b) Elastic stress distribution due to B >0

Figure 4-130: Elastic stress distribution due to a) positive major-axis bending and b) positive bi-
moments

The results of the MNA simulations performed for three UPE sections are represented in Figure
4-131. In order to simplify the lecture, the following diagrams contain only the cases not affected
by a strength reduction due to the shear force. Observing Figure 4-131, one may recognize the

mentioned asymmetry of the interaction curve.
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Figure 4-131: M,-B interaction curve for UPE sections obtained by MNA calculations

Hereafter, interaction equations are based on the stress distribution and the position of the plastic
neutral axis.

First, the case of interaction between a bi-moment and a major-axis bending moment of the same
sign (both either positive or negative) is investigated. If both internal moments are of the same
sign, the axial stresses neutralise in the web. The vertical plastic neutral axis may therefore be
situated in the web or in the flanges as shown for the case of a UPE 200 section subject to a low
bi-moment (Figure 4-132) and to a high bi-moment (Figure 4-133). In the flange the position of
the vertical neutral axis varies between yg 1 and the edge of the web.
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Figure 4-132: Plastic stress distribution for low bi-moments and high major-axis bending moments
- vertical plastic neutral axis in the web
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Figure 4-133: Plastic stress distribution for high bi-moments and low major-axis bending moments
- vertical plastic neutral axis in the flange

The vertical plastic neutral axis is situated in the web in case of high major-axis bending moments
and low bi-moments. Eq. (4.112 ) gives the limit bi-moment that leads to a plastic vertical neutral
axis that is just located at the edge between the web and the flange. Condition ( 4.112 ) expresses
that the vertical plastic neutral axis is located in the web if the bi-moment is less than twice the
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bi-moment resistance of the web. The factor of “2” may be explained as follows: In absence of a bi-
moment, the positive major-axis bending moment creates compression stresses at the upper part
of the web and tension stresses at the lower part of the web. It has been shown that the positive
bi-moment creates stresses with of opposite sign in the web. Consequently, in order to “push” the
vertical plastic neutral axis into the flange, the bi-moment has to inverse the stresses created by

the major-axis bending moment and hence it has to be twice the resistance of the web.

. 4.112
Bgy < E(h - t_/')ztwys,wfy = 2BP1~W@1’ ( )

It is considered that the position of the vertical neutral axis varies linearly through the web with
increasing bi-moment. Hence, one may determine the moment resistance in presence of a bi-
moment by Eq. (4.113).

M

y.B.pl =

Wt B 4113
Mo _T(zB—Edij (441)

For bi-moments exceeding the value of 2By web the vertical plastic neutral axis transits through the

pl,web

flange up to its position ygp obtained under the sole influence of a bi-moment. Compared to the
numerical simulation a slightly non-linear variation is justified for the variation of the position of
the vertical plastic neutral axis. The moment resistance may therefore be obtained with Eq. (4.114

) if the vertical plastic neutral axis passes through the flange.

1.5
h’t, t, | Bea = 2By e (4.114)
My,B,pl = My,pl - ) fy o 2tf (h - tf(yB,pl - _j( : fy

2 )\ B,-2B

pl pl,web

The absolute values should be used for of all the quantities in Eqs.( 4.112 ) to ( 4.114 ). The
interaction curve is compared to the numerical results in Figure 4-134. It appears that the

interaction curve corresponds rather well to the numerical results.
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Figure 4-134: Comparison between numerical results and interaction curve
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In the following the interaction curve is developed for the case that the major-axis bending
moment and the bi-moment are of opposite sign. In this case, the axial stresses sum up in the web
of the cross-section. Consequently, the vertical neutral axis only transits through the flange and
its position varies between the tips of the flanges and yg 1. Even if the location of vertical plastic
neutral stays in the flange two specific features of the interaction behaviour lead to its

complexification as may be observed in Figure 4-131:

e For small bi-moments the major-axis bending moment resistance is not reduced.
The plateau length is equal to the value of the bi-moment that is necessary for full
yielding of the section under an applied moment My (Bwmy,pi - Eq. (4.70)).
e The maximum bi-moment that may be resisted by the cross-section exceeds the
plastic bi-moment (Bmax - Eq. (4.110)).
For simplicity it is considered that the interaction curve is constituted by two plateaus - one
horizontal corresponding to Buy,1 and one vertical corresponding to twice the bending moment
leading to Bmax. The two plateaus are linked by a slightly non-linear curve that considers

approximatively the interaction behaviour. The interaction curve may consequently be expressed
by Eq. (4.115) and Eq. (4.116).

Mgra=M ifB< By, (4.115)

y,pl

(4.116)

L5
B,,—B
_ Ed My, pl .
Mygra=M, , - (My,p, —2M |, prax 3 B elsewise
pl — PMy,pl

The interaction curve is compared to the numerical results in Figure 4-135. The proposed

equations are satisfactory again.
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Figure 4-135: Comparison between numerical results and interaction curve
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Before, only cases with low shear force have been treated. If the shear force exceeds the value of
0,5, its influence on the resistance should be accounted for. Here, it is proposed to consider its
influence by reducing the thickness of the web as shown in Eq. (4.117 ).

ZW,V:(l_p)tw (4117)

The reduction factor p can be determined with the expression given in Eurocode 3 Part 1-1
recalled in Eq. ( 4.15 ). This reduced web thickness twyv is introduced into Eq. ( 4.70 ), (4.106 ), (
4.107),(4.109), (4.111 ) and (4.112 ) to obtain the corresponding values of Buy v, Y8 pLv, Ysw,v,
Weply, MyBmaxv, Bpiweby. The interaction equations developed in this paragraph may then be
applied with these reduced quantities. In order to visualize the quality of the proposed interaction
equations, Figure 4-136 represents the ratio between the resistance predicted by the interaction
equations and the resistance obtained numerically by MNA calculations. It may be observed that
the results are very satisfactory for the studied cross-sections. It seems that the interaction
equations yield more precise results for tall sections than for small sections. This is due to the fact
that the influence of the fillets on the warping characteristics, as for example yg ), are not included
in the derivation of the formulae. Indeed, their relative influence decreases with the height of the
cross-section. Nevertheless, the results are in the large majority of cases safe-sided and
sufficiently precise. A higher precision may only be obtained if the interaction equations that are
already rather complex, include additional parameters. Last, it should be noted that, for simplicity,

a linear interaction may always be considered between the major-axis bending moment and the

bi-moment.
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Figure 4-136: Ratio between resistance predicted by proposed interaction equations and resistance
obtained by MNA

4.4.4.4.3 Interaction between minor-axis bending, torsion and shear force

Figure 4-137 and Figure 4-138 represent the results obtained for the interaction between minor-
axis bending, shear force and the bi-moment. Again, it may be observed in Figure 4-137 that the
bi-moment may highly reduce the cross-section capacity under combined shear and bending

moments. Inversely, the influence of the shear force is negligible. It should be noted that, even for
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the shortest member (L = 1,5h), the shear force does not exceed 50% of the plastic shear force
resistance that is supposed to be equal to:

Vo —obt (4.118)

/,
y.pl s ﬁ
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Figure 4-137: M,-V,-B interaction diagram for UPE 200 — M,-V,-plane

Figure 4-138 characterizes very clearly the interaction behaviour between minor-axis bending

and the bi-moment. In particular, it is shown that:

e The interaction behaviour between minor-axis bending and bi-moments is
symmetric,

e For low levels of minor-axis bending or bi-moments, it may be admitted that the
corresponding plastic resistance is not reduced (plateau length = 0,1M,; and
0,1By, respectively),

e The interaction curve linking both plateaus may be linear.
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Figure 4-138: M,-V,-B interaction diagram for all studied sections — M,-B-plane

The interaction curve represented in Figure 4-138 may be expressed by Eq. (4.119).

B 4119
M, = M“{Ll - B—] <M,, ( )

pl

4.45 Other selected load cases
4451 General

In the following, two specific load cases are treated in order to highlight the complexity of the
interaction behaviour in some cases. First, the interaction equations applicable for the case of
combined major-axis bending, shear force and torsion are extended to the case of an applied axial
force ofr double symmetric I sections. Then the case of a U section subject to combined axial force
and major-axis bending is treated. This load combination may seem trivial on a first sight, butitis
shown that due to the mono-symmetry of the U section, the interaction is again complex even for

simple load combinations.
4.4.5.2 Combined axial force, bending and torsion for double symmetric | sections

In many cases I sections are subject to an axial force (even if rather small) additionally to bending
and torsion. Consequently, this load case is of practical interest and should be treated. It is
proposed to extend the interaction equations introduced in paragraph 4.4.4.2.2 for the case of
combined major-axis bending, shear force and bi-moment to the case of an additional axial force.

The equations not considering the axial force are recalled hereafter:

pA. V.
Mo = (W””}’ 4, ny ' Ven 700
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Depending on the relative importance of the axial force and the shear force, the axial force may
only reduce the bending moment resistance of the web (relatively small axial force) or it may
contribute to the reduction of the major-axis bending moment resistance of the flange. Several
cases should be distinguished as shown in the following table. Clearly, the interaction conditions
become rather complex. They are based on the assumption that the combined action of the axial
force and the shear force is, in priority, resisted by the web of the section; the bi-moment is only
resisted by the flange. Consequently, the major-axis bending moment resistance is the sum of the
residual plastic bending moment of the web (for combined action “N+V,” lower than the resistance
of the web) and the residual bending moment resistance of the flange (reduced by the bi-moment

and by the axial force that may not be carried by the web).
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Table 4-30: Interaction between major-axis bending, shear force, axial force and bi-moment

Value of the
shear force

Value of the
axial force

Value of the major-axis bending moment resistance

pA,
My,N,pl = [Wpl,y - _]fy

2
with: p:[h jvf J
wiwJ y

N <1,0
ht.f,
v B
VZ SO,S and: My,N,B,pl :My,N,pl - 1_ 1_(?J My,pl,ﬂ
Z,pl p[
M M 1 1 ( B J {1 N ]
NBpl My g T AT AT ST - 1/l
N 10 VsN,B,p V5P Bpl f/f VP
hwtwf:v
Wlth ]\[ﬂ :N_hwtwjfy
2
_ PA,
My,N,V,pl - (Wpl,y - 4t ny
2
with: p = 27, —1+ N
P < 190 Vpl,z u wfv
B
V. and: My,N,V,B,pl :My,N,V,pl —|1= /1= B_ My,pl,ﬂ
v "
z,pl
B N Ny
M,N,V,B, 1=M,l,ﬂ_ 1= 1-| — 1,1
y p yip Bpl 2% tff yp
p>1,0 B
2V,
with: Nﬂ N - hwtw_fy
z,pl

It should be noted that for the studied load case of combined major-axis bending, shear force, axial

force and bi-moment other proposals exist as the one published in (Ludwig 2014) that has been

derived based on the PIFM (see 4.2.2.3.1). However, the obtained equations are obviously not

simpler to apply than the ones proposed in Table 4-30 (see 4.2.2.3.1). Clearly, the interaction
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behaviour between more than two or three internal forces and moments may not be treated by a
simple equation even in the case of double symmetric sections. Through the next paragraph it is
demonstrated that the interaction behaviour of U sections is even more complex although, on the

first sight, the rather simple interaction of combined major-axis bending and axial force is studied.
4.4.5.3 Combined axial force and major-axis bending for U sections

The interaction between major-axis bending and the axial force has also been discussed in
reference (Kalameya 2008). Based on some numerical simulations the author showed that the
interaction may be treated as for I sections. Indeed, so as to obtain the interaction equation the

following stress distribution is supposed (see Figure 4-139).

£ [ -

| +

Figure 4-139: Supposed plastic stress distribution under combined major-axis bending and axial
force for U sections

However, one may observes that the proposed plastic stress distribution also leads to a resulting

minor-axis bending moment equal to:

M, = Nxye, (4.120)

Consequently, this stress distribution is not valid, as, due to the condition of static equilibrium,
the minor-axis bending moment cannot be generated without an external load. In fact, in case of
combined major-axis bending and axial force the plastic neutral axis cannot be horizontal as this
would always lead to a resulting minor-axis bending moment. So as to obtain a valid plastic stress
distribution the neutral axis has to be inclined crossing one flange and the web as shown in Figure
4-140.
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Figure 4-140: Valid plastic stress distribution for U sections under combined major-axis bending
and axial force

The axial force creating this stress distribution is given in Eq. (4.121).

N = fy(xltw + 2x2tf) (4.121)

Based on this stress distribution it is also possible to determine the major-axis bending moment

resistance as shown in Eq. ( 4.122).

M,y = m+(h—thb—tW—x2)tf f (4.122)

4

So as to obtain the value of the major-axis bending moment resistance given in Eq. (4.122 ), itis
necessary to determine the distances x; and x; first. One condition is expressed by Eq. ( 4.121 ).
The second condition needed for the calculation of x; and x, may be expressed by Eq. ( 4.123 )
indicating that the plastic stress distribution should not generate a minor-axis bending moment.
Here, it should be noted that no condition is used concerning the bi-moment as it may arise from
the stress distribution as for the case of the plastic major-axis bending moment (stress induced
bi-moment).

t X
Mz =0= |:x1twyc,w _2x2tf(b_gw__2_yc,wj:|fy (4123 )

X2.
2
t t N
x,=b-tr— p-to| - Yew (4.124)
2 2) 4 f,
t.x
xlzzL(b_t_w_&_yc’Wj (4.125)
twyC,w 2 2
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Observing Eqs. (4.124 ) and ( 4.125 ), one may remark that they represent very well the extreme
cases of zero axial force and an axial force equal to the plastic axial force N of the section. Indeed,
if the axial force is zero the distances x; and x; become zero, too. Consequently, the plastic neutral
axis passes through the web at mid-height. Hence, the major-axis bending resistance is not
reduced. If the axial force equals Ny the distance x, is equal to b-tw/2 and x; is equal to h-t:
Following the mid-line model of the cross-section considered for the determination of x; and x,
the plastic neutral axis is tangential to the theoretical intersection between one flange and the web
but passes just outside the section. Obviously, Egs. ( 4.124 ) and ( 4.125 ) are rather complex to
use in the practice. However, they describe the interaction behaviour as shown based on the
following example of a UPE 200 section subject simultaneously to a major-axis bending moment
and a compression axial force. The plastic stress distribution is represented for the case of a
section subject to a compression axial force of 350 kN and a major-axis bending moment of
27 kNm in Figure 4-141. Depending on this axial force, it is possible to determine the position of
the plastic neutral axis with Egs. (4.124 ) and ( 4.125 ). One obtains:

x; =160,3mm

x, =23,98mm

In Figure 4-141 one may recognize that there is slight difference between the results of Egs. (
4.124 ) and ( 4.125 ) and the MNA simulations. In fact, the plastic neutral axis crosses the web at
a higher level than predicted by Eq. ( 4.124 ). However, this may also be explained based on the
plastic stress distribution resulting from the MNA simulation. Indeed, Eqs. ( 4.12