
HAL Id: tel-01814863
https://theses.hal.science/tel-01814863v1

Submitted on 13 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming Support for a Delay-Tolerant Web of
Things

Maël Auzias

To cite this version:
Maël Auzias. Programming Support for a Delay-Tolerant Web of Things. Mobile Computing. Uni-
versité de Bretagne Sud, 2017. English. �NNT : 2017LORIS462�. �tel-01814863�

https://theses.hal.science/tel-01814863v1
https://hal.archives-ouvertes.fr

THÈSE / UNIVERSITÉ DE BRETAGNE SUD
UFR Sciences et Sciences de l’Ingénieur

sous le sceau de l’Université Européenne de Bretagne

Pour obtenir le grade de :
DOCTEUR DE L’UNIVERSITÉ DE BRETAGNE SUD

Mention : Informatique
École Doctorale SICMA

présentée par

Maël Auzias
IRISA Institut de Recherche en Informatique et
Systèmes Aléatoires

Programming Support
for a

Delay-Tolerant Web of Things

Thèse soutenue le 03-10-2017,
devant la commission d’examen composée de :

M. Frédéric GUINAND
Professeur des universités, Université Le Havre / Président

M. Nicolas MONTAVONT
Professeur des universités, IMT Atlantique / Rapporteur

M. Michaël MRISSA
Professeur des universités, Université de Pau et des Pays de l’Adour / Rapporteur

Mme. Pascale LAUNAY
Maître de Conférences, Université de Bretagne-Sud / Examinatrice

M. Yves MAHÉO
Maître de Conférences HDR, Université de Bretagne-Sud / Directeur de thèse

M. Frédéric RAIMBAULT
Maître de Conférences, Université de Bretagne-Sud / Encadrant de thèse

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

À Maryse

2

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Acknowledgements

Acknowledgements below are for various persons that help me finishing this work,
each by its own way. Since some are non-English speakers yet primarily concerned
by these, there are written in appropriate language.

I thank a lot all my colleagues, especially Armel, Ali, Kader, Romain H., Pamela,
Alan, Lucas B., Marc, Romain D., Mathieu, Lionel, Delphine, Raounak, Rymel and
Nader, as well as my friends, Xavier, Matti, Aurélia, Audrey L., Victor, Margot,
Lucas M., Milad, Lucas G., Carlos, Nano, Alba, Andreea M., Anna, AB, Luís, Elena,
Daniele, and Andrea C., who help me by both pushing me to work over the clock
but also by relaxing with agreeable moments shared altogether.

Merci aussi aux pouer-mouers qui ont aidé soit en bons moments via slack, soit
en fournissant des pistes et conseils dans le domaine professionnel mais aussi pour
Rust et OW.

Moc děkuju Míše a Peťe za společně strávené momenty, které mi pomohli se
uvolnit, když jsem potřeboval. Taky moc děkuju Markétě a Magdaléně za jejich
výbornou práci na Czech Vibes Sounds, která mi poskytla příjemné melodické
prostředí, díky němuž jsem se mohl soustředit na vypracování mojí doktorantské
práce.

Merci François, Marie-Claude, ke la don’ a moin la chance woir zot ti péï, resours’
à moin. Merci Mylène aussi, sem’ moin, tou lé jours pou avancer.

Merci à ma famille pour le soutien, les encouragements et la motivation que vous
avez sû me donner, notamment Maryse par le biais de ces mots rapportés.

Merci à Vincent Creuze et Jean-Paul Rigault pour leur lettre de recommandation
ainsi que les discussions que nous avons eu et qui m’ont remotivé.

Merci enfin à Yves et Frédérique, mon directeur de thèse et mon co-encadrant,
pour m’avoir guider et aider tout au long de ce travail, ainsi qu’à Mario, Sylviane
et Anne sans qui le labo ne pourrait pas fonctionner.

3

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

4

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Contents

List of Figures 9

List of Tables 11

1 Introduction 13

1.1 Context . 13

1.1.1 Intermittently Connected IoT 14

1.1.2 Communication in Intermittently Connected IoT 14

1.1.3 Programming Support in Intermittently Connected IoT 16

1.2 Proposal . 18

1.3 Thesis Outline . 19

2 State of the Art 21

2.1 Challenged Networks . 22

2.1.1 Delay-Tolerant Networking . 22

2.1.2 Opportunistic Networking . 25

2.2 IoT Programming . 29

2.2.1 Resource-Oriented Approach 30

2.2.2 Service-Oriented Approach . 33

2.2.3 Other Approaches and Systems 35

2.3 DT and Opportunistic Computing . 36

2.3.1 Pragmatic Programming . 36

2.3.2 Programming Paradigms . 37

2.4 Discussion . 40

3 BoaP 43

3.1 Presentation of BP and CoAP . 44

3.1.1 Bundle Protocol (BP) . 44

3.1.2 IBR-DTN . 45

3.1.3 Constrained Application Protocol (CoAP) 50

3.1.4 Californium . 54

3.1.5 BP and CoAP: Arose Challenges 58

5

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

3.2 CoAP Transposition for a BP-binding 59

3.2.1 Fundamental Adjustments . 59

3.2.2 Enhancements . 63

3.3 BoaP Stack . 66

3.3.1 IBR-DTN Java API . 66

3.3.2 BoaP Prototype . 68

3.3.3 Comparison of CoAP and BoaP Features 74

3.4 Discussion . 75

4 Evaluations 77

4.1 Preliminary Tests . 78

4.1.1 Latency Between BP Endpoints and Daemon 78

4.1.2 Validating BoaP in a small network 79

4.2 Experimentations . 83

4.2.1 Experimentations Platform . 83

4.2.2 Scenarios . 87

4.2.3 Results of the Levy Walk Experiments 94

4.2.4 Results of the KAIST Experiments 98

4.3 Conclusion . 100

5 LILWENE 101

5.1 Overview . 102

5.1.1 Proposal . 103

5.1.2 LILWENE Presentation . 103

5.2 Service Description . 108

5.2.1 Descriptors Overview . 108

5.2.2 Mandatory Fields . 109

5.2.3 Description Examples . 113

5.3 Service Advertisement and Discovery 114

5.3.1 Publish-Subscribe Interface 114

5.3.2 Topics . 115

5.3.3 Advertisement . 116

5.3.4 Discovery . 117

5.3.5 Registry Notifications . 118

6

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

5.4 Service Invocation . 119

5.4.1 Client Side . 119

5.4.2 Service Provider Side . 120

5.4.3 Group Invocation . 120

5.4.4 Request Options . 121

5.5 API and Implementation Elements 122

5.5.1 Client Application API . 123

5.5.2 Service API . 128

5.5.3 Registry Processing . 130

5.6 Conclusion . 132

6 Conclusion 135

6.1 Summary . 135

6.2 Perspectives . 138

Appendices 141

A Experiments Review: Table i

B Service Descriptor: Binary Format and Parameters v

B.1 LILWENE Descriptors . v

B.2 Parameters . vi

B.3 Description Examples: Binary Content xi

Bibliography xv

7

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

8

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

List of Figures

3.1 CoAP Message Format . 51

3.2 Californium Architecture (from M. Kovatsch’s thesis reused with per-
mission, main Cf developers) . 57

3.3 IBR-DTN, Java API and BoAP Stack 67

3.4 Java API Stack . 68

3.5 Sequence Diagram: Procedure to Fetch a Bundle from the IBR-DTN
Daemon . 69

3.6 Connection between a BoAP Client and a BoAP server with full stack 73

4.1 BoaP Test: Scenario 1 . 80

4.2 BoaP Test: Scenario 2 . 81

4.3 Measures of the RTT obtained in the two tested scenarios 82

4.4 Swarm Architecture . 85

4.5 Graphical representation of kaist traces 88

4.6 Levy Walk mobility with 50 m radio range, without BoaP caching . . 95

4.7 Levy Walk, 50 m radio range, without BoaP caching: Comparison . . 96

4.8 Levy Walk, 50 m radio range, with Cache Enabled Nodes 97

4.9 kaist Experiments Results . 98

4.10 kaist Comparison . 99

5.1 lilwene Overview . 104

9

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

10

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

List of Tables

3.1 CoAP Options . 53

3.2 Comparison of CoAP and BoaP Features 75

4.1 Platform Performance: rtts Measurements (ms) 86

4.2 Quantitative Comparison of Scenarios 93

A.1 Experiment Parameters Review . i

B.1 Parameters Types . vii

B.2 Parameters Constraints . ix

B.3 Binary Overview . xi

11

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

12

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

1
Introduction

Contents
1.1 Context . 13

1.1.1 Intermittently Connected IoT 14

1.1.2 Communication in Intermittently Connected IoT 14

1.1.3 Programming Support in Intermittently Connected IoT . 16

1.2 Proposal . 18

1.3 Thesis Outline . 19

1.1 Context

The Internet of Things (iot) is an emerging paradigm aiming to enhance our ev-
eryday life through automation and optimization tasks related to transport logistic,
healthcare domain, smart-home and smart-enterprise, and so forth. According to
Gartner, in 2020, there will be 26 billions of things for a market exceeding $300
billion. This new market has been invested by big companies, such as Samsung,
Amazon or Google, that are developing things for the iot and try to stay ahead of
their concurrents by proposing emerging and innovative products. For instance, a
message could be displayed on an exit door suggesting to take an umbrella since
the weather station, located at the end of the street, sent an alert to it. This same
umbrella could vibrate, ring or send a message to the owner’s smartphone when he
leaves without it.

The things are everyday objects equipped with a computer, usually an inexpen-
sive single board, a small battery and a short-range wireless communication means.
They are expected to be cheap and their power of action lies in their large number
and high diversity to compensate their constrained battery and power-processing.
The concept of thing can also be extended to more powerful and far more expensive
objects such as smartphones, drones or cars.

The iot becomes more and more ubiquitous in our environment yet giving a
precise definition of iot is a challenge since different visions coexist and research

13

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

points of views vary widely. These visions categorize the iot paradigm into different
concepts at different levels. In [1], Atzori et al. illustrate the iot as a convergence
of three different visions focused: 1. on the things themselves, 2. on the Internet
aspect, and 3. on the semantic aspect. Another possible categorization is presented
in [2], within which Gubbi et al. propose an application-scattered vision that goes
from personal user to national utility involving other applications such as medical
treatments, home automation, transport logistic, community service.

1.1.1 Intermittently Connected IoT

The things are often equipped with short-range radio interfaces, undergo energy-
saving constraints that shutdown their radio interfaces, can be mobile (e.g., when
embedded on robots or carried by humans) or can be deployed in area lacking of
network infrastructure (e.g., in developing countries or in sparsely populated area
as Laponian in Finland [3]). Under those challenging circumstances, it is clear that
the things suffer from disconnections and difficulties to access a reliable network.
Also, despite being aware of these networking challenges, current studies on iot
consider the iot as an interconnected-extension of Internet. In the meantime, there
is a growing support for the claim that things are not able to connect to Internet in
many context. This thesis targets these contexts in which frequent disconnections
are the norm rather than the exception. These targeted networks are known as
Intermittently Connected Networks (icn). As a postulate for this study, because of
the lack of reliable communication-means, things communicate through hop-by-hop
exchanges.

For example, such contexts can be illustrated by a town hosting sensors and
actuators in and out the city center, possibly far away. These sensors would gather
data on the environment (e.g., counting the number of cars passing through a tun-
nel or a bridge, measuring air-pollution) and actuators would cooperate to enhance
environment quality (e.g., modify speed limit on road signs equipped with screens,
close or open roads to move or lessen traffic jam). Because of the infrastructure
costs (e.g., deployment, maintenance, individual things subscription-plans) and lim-
itations (e.g., gray or white areas coverage is even overpriced when possible) this
network is deployed without relying on any infrastructure.

1.1.2 Communication in Intermittently Connected IoT

For several years, great effort has been devoted to the study of communication chal-
lenges in icn. A research group of the Internet Research Task Force (irtf), the dt-
nrg (Delay-Tolerant Networking Research group), proposed an architecture as well
as a protocol to exchange messages between nodes where no infrastructure is present.
This architecture, the Delay-Tolerant Networking (dtn) architecture [4], was his-
torically needed for Inter-Planetary Networks (ipn). It defines an infrastructure-less
communication system and is a substitute when Internet Protocols cannot be relied

14

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

upon. It provides communication means without assuming a connected path be-
tween a message’s source and its destination. It supports a wide naming-syntax to
identify nodes without relying on ip addresses, and allows dtn nodes to exchange
variable-length messages. To do so, these messages are transmitted, possibly over
multiple paths, according to the store-carry-and-forward mechanism [5].

The store-carry-and-forward mechanism allows to exchange messages between
two nodes that never meet and without any continuous end-to-end path by exploiting
node storage and through hop-by-hop forwarding between intermediary nodes. A
message is stored temporarily on a node while the node is moving. This message
is thus carried by its mobile host that will take advantage of contact opportunities
by forwarding it to other devices when possible so the message eventually reaches
its destination. In traditional networks, all along a packet route, from its source to
its destination, there is only one single copy of this packet at all time. Each time
the packet is forwarded, it is deleted from the previous node. On the contrary, for
efficiency and reliability reasons, dtn nodes usually forward several copies of each
message they store. As a result, it can be said that a message is disseminated in a
delay-tolerant network.

Such system could be deployed in the previous example illustrating the city
equipped with sensors and actuators. Messages between the things would be ex-
changed thanks to mobile sensor and actuators. dtn is designed to work well when,
in this case, things are mobile. It can also be useful when things are actually fixed
but rely upon data-mules (buses, tramways or even metros equipped with specific
devices) that literally move messages from devices to devices. These data-mules can
also be considered as things.

One specific protocol defines how to process such messages: Bundle Protocol
(bp) [6]. bp is the de facto standard protocol over the dtn architecture to exchange
messages. These messages, called bundles, are composed of one primary block en-
closing bundle metadata, zero or more Meta-Extension Block (meb [7]) that can
trigger specific processing on the carrier, and one, or more, payload blocks. Bun-
dles copies are disseminated in the network according to the store-carry-and-forward
mechanism. The decision of a bp node to forward a copy of a bundle and to which
intermediary node, results from a routing algorithm. bp rfc does not specify any
routing algorithm. However, such algorithm or protocol is required to determine best
intermediary nodes to which forward bundles. Many routing algorithms, proposed
by the research community, exist nonetheless: epidemic, statistically oriented, loca-
tion focused, socially based and so forth. bp implementations need to be completed
with such algorithm and they usually embed several algorithms by default.

In the remaining, “dtn” stands for the architecture itself, whereas “dtns” rep-
resents networks following the dtn architecture, and dt-iot means Delay-Tolerant
Internet of Things. The dt-iot represents iot paradigm with a dtn approach at
the networking level.

15

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

1.1.3 Programming Support in Intermittently Connected IoT

bp-based platforms can provide a solution for the connectivity challenge identified
for the dt-iot. However, dtn and bp only solve the connectivity challenge and do
not provide any support to easily program things cooperation. bp can be likened
to a unreliable transport protocol for dtns. A middleware is needed on top of a
bp-based platform.

Middleware systems for the iot are more and more inspired by the Web [8].
Indeed, things are usually considered as client or server. Clients request servers
through regular http methods or through communication means relying on proto-
cols similar to http. Then, servers answer with responses embedding regular http
code response. This architecture and programming style are directly inherited from
the traditional Web. Traditional Web is to the Internet what the Web of Things
(wot) is to the iot. In this thesis, the term wot is then used to qualify middleware
systems that follow traditional Web principles. In many contexts and applications
the traditional Web is lightweight in terms of network usage, ram and cpu, scalable
and easy to apprehend and comprehend. For these reasons, it makes sense to reuse
Web technologies for the iot.

The rest architecture [9] allows to go further than just Web principles. The
rest architecture is a set of several constraints: client/server architecture, stateless
server, cacheable responses, layered design, uniform interface and, optionally, code-
on-demand. It enforces scalability, interoperability, portability, performance and
simplicity of interactions between restful nodes. All these properties greatly benefit
to a wot context, thus this thesis’ contributions are explicitly investigated to be
restful.

Resource-Oriented Approach

restful wot can be categorized in two different approaches. The first approach is
resource-oriented. In this approach the things host resources that are, according to
w3c [10], considered as an “item of interest, in an information space, identified by
a uri”.

Several protocols and implementations encompass this approach. One stands out
as an emerging, Web-oriented and restful protocol: Constrained Application Pro-
tocol (coap [11]). coap is a request/response-based protocol that allows resource-
constrained devices, such as things, to interact together asynchronously. Relying on
udp, a retransmission mechanism is defined in order to provide reliable exchange.
Requests and responses respectively contain http methods and http statuses, with
some slight semantic differences on http statuses.

The context of this thesis is focused on the dt-iot. Also, since Web-oriented
systems are investigated, the context can be narrowed down to the Delay-Tolerant
Web of Things (dt-wot). Besides, if coap seems to be a great candidate for a dt-
wot programming support, it cannot be used as is. Indeed, since coap has been

16

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

designed with traditional network in mind, some of its features are unfit for dtns.
For instance, coap, relying on udp, uses ip addresses and port as communication-
entrypoints whereas dtns may not rely on ip at all. Moreover, its congestion control
and retransmission mechanisms are not suitable as is for dtns. A work on these
unfitting features to transpose coap into a dtn context is required.

Service-Oriented Approach

Resource-oriented systems provide little means to describe, identify and discover the
resources, especially in dtn context were no node can act as a centralized registry.
The lack of such mechanisms is inherently fulfilled by the Service-Oriented Approach.
Indeed, this approach is composed of a set of rules defining the description of services,
their advertisement/discovery and their invocation.

In addition to the resource-oriented approach, the service-oriented approach is
also considered in this thesis, both being compatible with rest. This approach relies
on and encompasses what is usually called service-oriented architecture, service-
oriented networking and service-oriented computing. Generally speaking, “soa”
stands for Service-Oriented Architecture, but in the remaining of this thesis soa
stands for Service-Oriented Approach.

Going from resource-oriented solutions to soa solutions offers more means and
possibilities. Service description, service advertisement and service discovery are
ones of the main concerns in soa platforms. soa solutions are constituted of three
different entities: registry, clients and service providers. Service providers describe
their own service functionalities and capacities in a document called a service de-
scriptor. This descriptor is published into the registry. Clients find service providers
thanks to registry lookups and can then invoke service providers directly.

Thanks to their loosely coupled and late binding properties, soa systems are
adapted for dtns. Indeed, in such environment no node can be relied upon as a
registry, so the discovery challenge needs to be overcome. Furthermore, dtn nodes
undergo specific networking constraints that must be taken into consideration in the
service description. For instance, it would be very useful that a service informs when
it is available (i.e., when is its host awake), until when it is expected to be available
and in which location it can be requested. These details are not often meaningful in
traditional networks and are thus left out. coap exploits a discovery and description
mechanism [12], but it is too limited to suit dtns: it relies on a direct exchange
between nodes and resource descriptions do not provide all needed details in dtn
environment. Very few works in the dtn literature address soa even though it
seems really pertinent to enable service-oriented systems in these networks.

17

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

1.2 Proposal

The objective of this thesis can be summed up as: how to provide a programming
support for the dt-wot? First a resource-oriented solution is sought. Indeed,
since it is a common way to solve the programming challenge within the iot, it
makes sense to follow this practice that was already proven as lightweight and scal-
able in traditional networks. Second, a service-oriented solution is sought. It aims
to provide means for discovery and resource/service description that lack in the
resource-oriented approach.

Contributions of this thesis are explicitly investigated to be as close as possible
to existing standards (rfc and architectures). In fact, standards are well known,
reliable, tested and approved. They also ease programmers implementation and
developing tasks as they already understand the standards.

To address the two problems stated above, the following contributions are pro-
posed and presented in this thesis:

• The first contribution is the proposition of a resource-oriented programming
support to enable a dt-wot. It consists in a transposition of coap through
fundamental adjustments and enhancements to use bp as binding. These
modifications and adaptations are implemented into a prototype named boap.
Most coap features are respectfully transposed into boap and are compliant
with rfc 7252 (e.g., serialization, con/non messages, deduplication, and so
forth).

• An original method to evaluate middleware systems in dtns is proposed. This
method relies on an emulation platform, provided by Swarm/Docker, exploit-
ing two different kinds of node mobility: an artificial one and a reality-based
one. Accurately evaluating protocols and implementations is a challenge in
dtns. Only coarse-grained simulations are usually done since node mobil-
ity, scenarios, radio-range, radio-interferences, node-networking behaviors are
approximated. The current literature shows no consensus on experimenting
methods and approximations. Only real world experiments could provide pre-
cise data but very few are done due to their cost. In this thesis, implementa-
tions running on nodes were not simulated. Indeed, to assess boap performance
it is first deployed in a small physical network. Afterwards, an emulation sys-
tem is used, relying on Swarm/Docker. This architecture is adapted to dtn
context: it emulates network nodes while simulating network links. Experi-
ment results are closer to real-world deployment than simulation-based results.
These experiments ascertained that boap is reliable enough and could even be
used to support a restful and service-oriented middleware for dt-wot.

• An soa and restful programming support built with iot in mind and adapted
to dtn environments comes as the last contribution. This service-oriented

18

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

middleware lies on top of boap and is named lilwene1. The specifications
of this middleware define a service descriptor as short as possible yet fully
enclosing service details and providing fields for future usage. These descrip-
tors are advertised through a publish/subscribe interface into topics supported
by bp endpoint identifications. The registry architecture is directory-less and
each node participates in the advertisement and discovery. Each node hosts
a local registry that gathers service descriptors. These clients can then dis-
cover service providers and invoke them. A service invocation, supported by
boap, introduces a couple of new options compared to boap. An api and an
implementation elements are also described.

1.3 Thesis Outline

The remainder of the thesis is organized as follows.

Chapter 2 reviews dtn architecture, bp protocol and introduces opportunistic
networking. Then both resource and service oriented approaches and protocols for
both iot and dt-iot are presented.

Chapter 3 presents the bp and coap protocols and implementations at a tech-
nical level. Then, coap modifications and adaptations, composed of fundamental
adjustments and enhancements, are proposed to provide a Delay-Tolerant coap.
Next, a prototype, stemming from these adaptations, named boap is described. A
comparison between coap and boap features, that are compliant for most of them,
concludes this chapter. In addition, this chapter also presents an interface with a
bp implementation (ibr-dtn).

Chapter 4 introduces boap evaluations. First, boap is deployed in a small phys-
ical network and then in a simulated network with emulated nodes in four different
experiments: three using an artificial model for the nodes mobility and the last one
using reality-based traces. To assess boap performances a new emulator system
relying on Swarm/Docker is proposed to provide an emulation environment.

Chapter 5 contains the proposition of the restful and service oriented middle-
ware support named lilwene1. It details service discovery and advertisement, and
service invocation means coupled with an api and some implementation elements.

Chapter 6 concludes the document and broadens next challenges of this work.

1lilwene: Light services middleware for delay tolerant Web-of-things Networks

19

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

20

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

2
State of the Art

Contents
2.1 Challenged Networks . 22

2.1.1 Delay-Tolerant Networking 22

2.1.2 Opportunistic Networking 25

2.2 IoT Programming . 29

2.2.1 Resource-Oriented Approach 30

2.2.2 Service-Oriented Approach 33

2.2.3 Other Approaches and Systems 35

2.3 DT and Opportunistic Computing 36

2.3.1 Pragmatic Programming 36

2.3.2 Programming Paradigms 37

2.4 Discussion . 40

Studies in relation with the contributions of this thesis are reviewed below. First,
challenged networks are defined. The challenged networks are categorized in two
visions: Delay-Tolerant Networking (dtn) and Opportunistic Networking. In this
section, the dtn architecture as well as the bundle protocol (bp) are explained
in details since the contributions of this thesis rely on those. The opportunistic
networking paradigm is presented in a broader manner with a focus on routing
algorithms since most of the research works concern such algorithms.

Afterwards, the different approaches of programming supports for the Internet of
Things (iot) or the Web of Things (wot) are presented and are categorized accord-
ing to their approach that is either resource-oriented or service-oriented. Since this
categorization is coarse-grained, additional category is also considered and named
‘other’. In this section, coap is detailed in depth for the same reasons dtn and bp
are.

Finally, in like manners that iot/wot programming supports are reviewed, works
on programming supports in dtn context are presented. They are categorized as
pragmatic programming and programming paradigms.

21

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

2.1 Challenged Networks

Traditional Internet protocols rely on implicit assumptions such as continuous bi-
directional end-to-end path between any pair of nodes, low error rates and low
message loss, a single route for network packets is enough to reach acceptable com-
munication performance, and short and roughly symmetric round-trip delays. In
2003 [5], Fall identified as challenged networks any network in which one of these
assumptions cannot be met. To work around these challenges networks nodes com-
municate through hop-by-hop exchanges according to the store-carry-and-forward
mechanism. When a node emit a message, it temporarily stores the message and
carries it while moving. When it encounters another node it forwards a copy of this
message. If the encountered node was the message’s destination then the message
is considered as delivered, otherwise the node is just an intermediary node and will
forward copies of the message too.

Challenged networks has been targeted by many studies and projects. These
works usually identified themselves as being part of either the disruption/delay-
tolerant networks (dtns) research field or the Opportunistic Networks (OppNets)
research field. Historically, dtn approaches were the first to target challenged net-
works and more specifically Interplanetary Networks (ipn). However, the dtn archi-
tecture and the Bundle Protocol were not a good fit for all the terrestrial scenarios.
In order to support communication in these scenarios another approach emerged
that is identified as Opportunistic Networking. As presented by Pelusi et al. in [13],
the exact difference between opportunistic and dtns approaches is not clear and is
generally just a vocabulary choice. In this document, dtn approaches are networks
and applications relaying on dtn (rfc 4838 [4]) and bp (rfc 5050 [6]) opposed to
OppNet approaches that frequently present the studied networks as Disconnected
Mobile Ad Hoc Networks.

2.1.1 Delay-Tolerant Networking

Earliest studies on challenged networks are related to the Delay-Tolerant Networking
architecture (dtn) stemming from the historic need to provide communication for
challenged networks that were ipn. Due to very long distances, even at the speed
of light, the latency is more than 1 second for Earth-to-Moon distance and varies
between 4 and 24 minutes for Earth-to-Mars distance. ipn suffer from long and
variable delays and disconnections because of their continuous movement and all
celestial objects disrupting their network links that require a line-of-sight.

In May 2001, in order to support deep space exploration communication be-
tween Earth and the different satellites and space probes, an architecture for the
ipn is defined by Vint Cerf et al. in [14]. The architecture relies on a store-and-
forward overlay network on top of a transport layer. In 2003, Fall proposed the term
Delay-Tolerant Networking (dtn) to describe and encompass all types of long-delay,
disconnected, disrupted or intermittently connected networks, where unreliable con-

22

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

nectivity may be experienced [5]. Finally, in 2007, two important rfc are written:
one, written by Vint Cerf et al., describes the dtn architecture itself [6] and the
other one, written by Keith Scott et al., defines a protocol to exchange messages in
a dtn overlay [4].

The dtn architecture (rfc 4838, [4]) aims to provide architectural guidelines for
protocols in challenging networks according to the following design principles:

• Messages vary in length and can be long. Stream and small packets shall be
avoided.

• Node identification syntax must enable a wide range of addressing conventions
to better support interoperability.

• Node storage are at disposition to provide needed resources for the store-carry-
and-forward mechanism.

• Security means shall protect the network from undesirable traffic.

• The means to help the network to better deliver data according to the applica-
tions’ needs shall be available (such as classes of service, lifetime of messages
and delivery options).

The Bundle Protocol (bp, rfc 5050) [6] is the de facto standard for the bundle-
layer of the dtn architecture [4]. The bp forms a message-based overlay that follows
the store-carry-and-forward principle. The bp defines the format of the messages,
called bundles, and the logic layout to process them.

As a network overlay, the bp relies on convergence layers that abstract subnet-
specific protocols to transport bundles (e.g., tcp, udp, ltp). Bundles have a lifetime
and will be deleted if it expires. In order to overcome network disruptions and high
delays, the bp uses a cache, on nodes, to store bundles. These bundles are either
processed by an application (if the destination is on the node), or forwarded to other
nodes towards the bundle destination. A bp endpoint is identified by an Endpoint
Identification (eid) that takes the form of a uri. A bp endpoint can either be a
singleton or a set of bp nodes that register themselves with a common eid, thus
allowing multicast-like operations to be performed.

The bp bundles have to be routed from node to node. Despite being required
to determine to which node forward a bundle, the bp specification does not fix a
routing method. Nonetheless, many routing algorithms exist, each of them intended
to be adapted to a networking context (e.g., the mobility of the nodes) or to a type
of application. A key characteristic of a routing algorithm is its choice to allow
multiple copies of a bundle in the network (e.g., as in the epidemic approach). Since
the beginning of the research for these networks routing algorithms has drawn much
attention: as early as 2006 a survey was done on routing protocols in dtns [15].

Bundles are constituted of one primary block (header), then zero or more ex-
tension blocks called called Metadata Extension Blocks (meb) [7], and one or more

23

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

payload blocks. The primary block carries options that influence the treatment per-
formed by the nodes that forward and receive the bundle. For example, a Report-
When-Bundle-Delivered option will make the destination node emit an adminis-
trative bundle when receiving the bundle. Extension blocks can be used to make
specific processing decisions regarding bundles, e.g., routing decisions.

The bundles have a ttl and will be deleted from node’s storage when it expires.
The optimized ttl value is, at my best knowledge, not defined. In fact, the perfect
value differs according to the different kind networks. Some networks may work with
lower delivery ratio, while other would require a higher, or even highest, delivery
ratio. These delivery ratio are related to the ttl value: with a very short ttl
the bundles are likely to die before reaching their destination, on the contrary with
an infinite ttl the bundle will reach its destination before dying. These previous
extreme values have another important side effect. Indeed, the network storage
usage is directly impacted by the ttl value. With a very short value fewer nodes
will store the bundles (and not for long), so their storage shall not be saturated. In
contrast, with a very long ttl, a lot of nodes will have to store a lot of bundles,
hence saturating their storage.

The bp does not offer a reliable means of communication since it relies on in-
tercontact to forward messages and nodes’ mobility. Nevertheless, a built-in mech-
anism, named “custody transfer”, aims to enhance reliability. The custody transfer
requests that a bp node takes the responsibility for delivering a bundle to its desti-
nation. The responsibility is released when the node forwards the bundle to another
node accepting this responsibility.

Several BP implementations exist. Interplanetary Overlay Network (ion [16])
or Postellation [17], for instance, are designed for spacecraft flight software whereas
ibr-dtn [18] is more suitable for constrained nodes with a small ram usage in
comparison with dtn2 [19] that was one of the first bp implementation. ibr-dtn
is one of the most up-to-date implementation with an active community. Also,
because it is friendly with resource constrained nodes, thanks to its ram usage, it
is the implementation chosen for this thesis since the iot, composed of resource-
constrained nodes, is at the core of this thesis’s context.

The ibr-dtn implementation runs a daemon that stores, carries and forwards
bundles to other dtn nodes in the network. Added to this daemon a couple of
command line tools are provided by the Linux package that offer to send and receive
messages, to synchronize folders between different hosts, and so forth. The daemon
and the tools communicate via an api. The entrypoint of this api is a tcp socket.

This way of implementing the bp in a separate daemon process (accessible via
a tcp socket or another inter-process communication facility) is a versatile system:
the bp daemon can be detached from a sensor node and placed on a more powerful
node if the sensor is too constrained. On the down side, it induces an additional
delay. It should also be noted that ibr-dtn is not the only implementation that
follows this system, suggested in [6], dtn2 does too.

24

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

In this thesis, dtn is considered as mature and complete. Indeed, despite relying
on unfinished business, such as ipnd [20]1, the neighbor discovery of dtn, and
the very limited of real-world deployments, the dtnrg (Delay-Tolerant Networking
Research group), which proposed the architecture, has been wound down in April
20162. Also, for this reason, no contribution are sought on the dtn, per say, that is
at the base of all contributions.

2.1.2 Opportunistic Networking

The opportunistic networking approach stems from both dtn approach and Mobile
ad hoc Networking (manet) approach. Mobile ad hoc Networks (manets) do not
cover all challenges and generally consider node density as high enough to mask
away the node mobility by constructing “stable”, connected end-to-end paths, as in
the wired Internet. The approach of opportunistic networking does not assume that
an end-to-end connected path exists between a pair of nodes and does not consider
the node mobility as a problem but rather as an exploitable opportunity to link
disrupted paths. These networks are either identified as Intermittently Connected
manets (icmanets) or Disconnected manets (dmanets) that rely on the same
store-carry-and-forward mechanism from dtn approach. Thus, when a node does
not have a good next hop to forward the data, it simply stores the data locally
without discarding it, as would occur in a manet, and waits for an opportunity to
forward it. Nevertheless, the Bundle Protocol is not a good match for all the various
terrestrial scenarios.

Most part of OppNet studies are focused on routing algorithms. Routing algo-
rithms in OppNet aim to two different objectives that are: maximize the probability
of message delivery while minimizing the delay each message experiences during de-
livery. The probability of message delivery, i.e. the delivery ratio, is the ratio of
received messages to emitted messages.

2.1.2.1 Forwarding Algorithms

The literature generally refers to forwarding algorithms rather than routing algo-
rithm. This is due by the fact that no route is assumed to exist between any pair
of nodes, hence algorithms determine which node is the best forwarding target op-
posed to routing algorithms that determine the shortest path to reach a packet’s
destination.

These algorithms are not only for OppNet but also dtns. It is common for
this kind of study to interchange the words ‘OppNet’ and ‘dtn’. Several ap-
proaches have been adopted to achieve reliable communication in such networks.
These various approaches are detailed below and classified as either deterministic,

1Mentioned as such in last dtnrg meeting at ietf-87 while dtnrg was closing down.
2See the mail at: https://archive.fo/08Hhm

25

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

https://archive.fo/08Hhm

content-based, stochastic, context-aware (where contexts are approximated by de-
tails extracted from location-based or social-based data) and mobility-based.

Deterministic Forwarding

Deterministic algorithms are a great fit with controlled environments or when the
contacts are scheduled or predictable.

One algorithm that does not focus on any controlled environment but remains
deterministic is the Epidemic Routing protocol proposed by Vahdat and Becker [21].
The simplistic forwarding algorithm is to forward a copy of every message to all its
neighbors (except the one who sends it). If this protocol offers the best delivery
ratio, it also consumes a lot of nodes storage and medium usage leading to high
energy consumption and poor scalability. These downsides are studied by Tseng
et al. in [22] who conclude that it can seriously degrade the network performance,
especially in high-density regions or if the resources are scarce.

Spyropoulous et al. [23] proposed two single-copy based protocols: Direct Trans-
mission and Randomized Routing Algorithm. With Direct Transmission, a node
forwards a message only if it is in contact the destination. In Randomized Routing
Algorithm, a message is forwarded based on a probability score. These protocols,
unlike Epidemic Routing, produce very low network traffic but are convenient only
if the node mobility is well known or highly predictable.

Time To Return (ttr) [24] is another forwarding algorithm that targets envi-
ronment with predictable mobility. The context targeted by this work is rescue in
emergency scenarios. The protocol takes advantage from the fact that all medi-
cal personnel in such context are coordinated by a leader that assigns actions and
maximum time to return to the base for security reasons.

Content-Based Forwarding

Another class of forwarding protocol is based on the content messages contain and
profile of interest of network nodes.

SocialCast [25] is a content-based forwarding algorithm providing a pub-
lish/subscribe interface. A publisher originally delivers a fixed number of copies
of the message to carrier nodes. A message carrier will deliver a copy of the message
to subscribers it meets or will delegate the message to another node that is selected
as a more feasible carrier.

dodwan [26] follows a different approach of content-based that relies on a pub-
lish/subscribe interface. Each node periodically informs its neighbors about the
messages it is carrying and that match neighbors interest profiles. When a neighbor
misses a message carried by another host, then the neighbor requests a copy of this
message.

26

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Stochastic Forwarding

A couple of studies aimed to limit the number of messages generated by the Epidemic
Routing protocol by adopting a stochastic approach. This is the case of Spray-and-
Wait [27] proposed by Spyrpoulos et al.. It is inspired from flooding-based forwarding
algorithms since it makes no use of information on network topology or knowledge
of the past encounters of nodes, however, it significantly reduces the transmission
overhead by limiting the total number of copies that can be transmitted per single
message.

The same authors proposed a follow-up of Spray-and-Wait: Spray-and-focus [28].
Its difference with the Spray-and-Wait algorithm lies in the Focus phase. Unlike
Spray-and-Wait, a node, after forwarding all the allowed copies of a message, can
delegate the message it carries to another node according to a given forwarding
criterion.

Context-Aware Forwarding

There are also forwarding algorithms that base their forwarding decision on data
extracted from their context. These contexts are location- (or movement-) based
and social-based. It should be noted that the social interactions of network nodes
differ from the social interactions of their carriers. From a networking point of view,
a social interaction is represented by an intercontact of two networks nodes while
the carriers of these network nodes may not communicate at all.

Location-Based Several location-based forwarding algorithms exist. MaxProp [29]
is designed for vehicle-based networks. These networks are usually composed of net-
work nodes with large storage capacity and energy source, but experience short
contact duration. To overcome these short contact durations, MaxProp proposes a
prioritization of packets to be forwarded, or dropped according to their priority.

In MobySpace [30], a node computes the closeness of its neighbors to the desti-
nation of a message it wants to forward. The closeness of two nodes is computed
according to the probability of an intercontact to occur between these two nodes.

To overcome the moderate delivery ratio of ttr [24], due to the one-copy ap-
proach, the ttr algorithm has been modified in order to propose Propttr and
PropNttr [31]. Propttr uses MaxProp for the forwarding to direct neighbors and
then the neighbors use ttr for the delivery. PropNttr follows the same rules but
uses MaxProp for neighbors and neighbors of neighbors and so forth until the hop
count of the message is equal to N.

Social-Based prophet [32] is a social-based forwarding algorithm. prophet as-
sumes that node movement is not random and that it is possible to identify mobility
patterns. Thus, its forwarding decisions are taken according to delivery probabilities

27

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

that are estimated from the frequency of encounters, i.e. the probability to deliver
a message to a certain destination node increases whenever it comes within sight,
and decreases overtime in case no meeting occurs.

Following a similar approach, HiBOp [33, 34] relies on the history of contact and
the place where two nodes last met each other. An algorithm [35], by Vu et al.,
relies on encounters patterns between network nodes. After studying on real traces
of Wi-Fi and Bluetooth traces over 6 months the authors concluded that the contact
patterns are regular and predictable. tao [36] also extracts details from contacts
between mobile nodes and infostations since it targets hybrid networks.

Eiko et al. propose a forwarding algorithm [37] electing specific node as message
broker. Mobile nodes run a community detection algorithm in order to determine
which node has the shortest path to all other nodes in the community. Then,
this node acts as the message broker within its community. A similar approach
is proposed for SimBet [38] where two metrics are used: one to find best nodes
to connect between communities and one to find best nodes to deliver messages
within communities. BubbleRap [39] algorithm relies on communities. Specifically,
authors propose a method to detect communities, then when a node has a message,
it forwards it to a node closer of the destination’s community.

Mobility-Based Forwarding

Finally, there are works on forwarding algorithms focusing on specific mobility.
In [40], Goodman et al. propose to deploy infostations with strong radio signal
in an area to provide one-hop forwarding. Opposed to this approach, of fixed net-
work node, data-MULE system [41] and the message-ferrying approach [42] exploit
mobile nodes that follow a determined route to provide a reliable link opportunity.

2.1.2.2 Communication Middleware

Despite a majority of studies on forwarding algorithms, there are also projects and
works that propose middleware systems in order to ease application programming. A
common addressing and routing schemes shared by middleware systems in dtns and
OppNet are content-based: the data being moved in the networks are forwarded
and shared according to their content. In order words, the network enables its nodes
to share content based on their interest.

Haggle [43] is a content-sharing system involving mobile users. Each node de-
scribes its interests and lists the content items it locally stores. When two nodes
meet, they exchange their interests and then share items of content that match other
interests.

c3po framework [44] provides ad hoc communication means to smartphones
relying on legacy Wi-Fi as well as Bluetooth to create an opportunistic network.
This communication system aims to be deployed for specific social events (e.g.,

28

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

shows, sports, concert and so forth) to share content among people without Internet
access.

dodwan [45] middleware proposes cooperation of neighboring devices to deploy
component-based applications. Each devices hosts a deployment manager that can
retrieve software components (applications) from other nodes while sharing its own
software components. The middleware also provides communication means adapted
to OppNet and exploits multi-hop exchanges.

A middleware architecture is proposed in [46] by Helgason et al.. It supports
the dissemination of contents within a wireless ad hoc domain and with the wired
Internet. The access to service of their platform is done through a publish/subscribe
interface. This architecture has been implemented and tested using their Android
implementation. Finally, for a large scale evaluation, they simulated their system
on omnet++.

cameo, proposed in [47] and part of the scampi project [48] (Service Platform
for Social Aware Mobile and Pervasive Computing), is a context-aware middleware
that collects and manages context information from physical and virtual worlds.
Thanks to these data, the system determines user’s profile and social behavior that
applications can exploit. This middleware aims to ease the development of social
applications in OppNet.

OppNeting is not a very good candidate to substitute to dtn since routing
algorithms as well as middleware systems are based on many hypothesis. These
hypothesis are made on various parameters that include node mobility, node density,
links dynamicity, node knowledge (e.g., on its geolocation), storage capacity and so
on. No similar hypothesis are made in this thesis. Furthermore, middleware systems
are rarely based on standard protocols unlike contributions of this thesis. Here again,
this work does not aim to contribute on OppNet, per say. Nevertheless, the overall
solutions (boap and lilwene) could be deployed in OppNet.

2.2 IoT Programming

The iot interests various actors and workers such as researchers or companies, that
all work to help the iot becoming a reality. A considerable part of these works
are focused on middleware in order to allows developers to build application for
the iot. As shown by several reviews [49, 50, 51, 52], many projects and studies on
middleware adapted to the iot exist. Several architectures and designs exist for mid-
dleware systems and these works categorize these systems in different approaches.
The service oriented approach is a common category to all these works. Other
categories include data-based (database oriented, or data focused), agent-based and
actor-focused, event-based or even object-oriented. Another categorization is pro-
posed in this thesis with only two approaches: resource-oriented approach (roa)
and service-oriented approach (soa).

29

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

These two approaches are supported by various works. roa has already been
studied in the context of iot [53, 54] and soa too [55, 56, 57, 58]. Differentiating
one approach from the other is not straightforward. Indeed, they are close to one
another and are sometimes mistaken for one another. Both approaches involve
clients that request either resources (roa) or services (soa). To allow these clients
to request resources or services, each client needs to discover them beforehand.
This is done thanks to a discovery mechanism. The first difference between roa
and soa lies in this mechanism. In roa systems, discovery is rather basic, simple
and not included by default. On the contrary with soa, discovery mechanism is a
requirement that is carefully described and defined. It usually provides searching and
filtering capabilities. The discovery relies on descriptors that contain information to
request, or to invoke, a resource, or a service. In roa, these descriptors commonly
contain a very limited set of information that are elementary. Such information is
for example their identification and location, with an optional field to inform what
type of data the resource can return. On the opposite, service descriptors provide
all functional and non-functional details of a service. In some cases, several message
exchanges are required to gather all details of one service. Finally, roa and soa
differ a lot on the invocation aspect. With soa, the sets of invocation methods for
each service can widely vary whereas roa systems frequently exploit the four main
http methods (get, post, put and delete) for all resources. From a higher
point of view, soa can be seen as an abstraction layer put over an roa system. As
for roa system, the Web is a well-known example: web page are the resources and
web browsers are the clients.

In practice, according to Guinard et al. [8], service-oriented approaches are usu-
ally too heavy and complex for simple objects that populate the iot. This is a
challenge that this thesis aim to overcome by investigating the soa contribution
towards restful principles. Indeed, both roa and soa commonly follows a restful
style that is considered as lighter than other styles. As presented in [59] by Pautoasse
et al., there are two styles of services: “big” Web services and restful web services.
Pautasso et al. quantitatively compare these two services styles in [59]. The article
points out strengths and weakness of both styles. One of the strength for restful
web services is its low hardware requirements that allows a simple system for a low
cost. As stated before, this low cost characteristic steps out as an important aspect
in this thesis since it is a dt-wot context where things have constrained resources.

2.2.1 Resource-Oriented Approach

Works identifying themselves as resource-oriented in the iot usually follow a restful
approach. In [53], Guinard et al. propose to design the iot with Web technologies
(html, http), suggest to follow best-practice based on rest and present several
prototypes that would extend the World Wide Web according to their resource
oriented architecture. rest defines five constraints that are: 1. a client-server ar-
chitectural style to enforce a loose coupling hence enabling independent evolution

30

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

for both sides, 2. stateless servers to ensure server scalability, 3. a cache to improve
network efficiency as well as client satisfaction since cached response are instantly
available, 4. a uniform interface to simplify the software architecture and the vis-
ibility of interactions, 5. a layered-system for all its well-known advantages. One
optional constraint is added to these five ones: the code-on-demand. This con-
straint enables clients to download code, e.g. applet or script. This reduces the
number of required features by clients that can be extended after deployment. It
can be noted that rest defines four interface constraints being: 1. identification
of resources: each resource should be identifiable and conceptually separated from
the representation of the resource, 2. manipulation of resources through represen-
tations: each resource should be completed by metadata providing required details
to process the resource, 3. self-descriptive messages: each message should inform
on the representation format of the resource (mime), 4. and, hypermedia as the
engine of application state (hateoas): paths to related resources and/or actions of
a resource being requested should be available by following hyperlinks, this can be
likened to the coap uri path well-known, that follows rfc 5785 [60] .

Three prototypes adopting these constraints are then presented. The first one
is a smart gateway. Smart gateways are a common solution to fill the gap between
traditional Internet and wsn or other networks composed of component not able to
connect to the Internet. The second prototype is a proxy to transparently translate
regular http requests/responses from Internet into proprietary protocols to a sensor
and actuator network. This proxy also keeps in a cache the responses in order to
minimize the number of exchanges with sensors and actuators. This proxy also offers
smarter features such as monitoring (a client subscribe to a resource and receives
notifications when its states reach a threshold). Taking benefit of the previous
prototype, the last is a Web dashboard to remotely monitor and control energy
consumption. In [54], Dar et al. oppose roa to soa in the context of iot. This
study adopts the roa and proposes an architecture inspired by rest to interconnect
business processes with iot resources.

CoAP

At the moment, one standard protocol can be seen as the archetype of roa in
iot: coap. coap [11] offers an application layer protocol that allows resource-
constrained devices to interact together asynchronously. It is designed for machine-
to-machine use cases and is compliant with the rest architecture style. coap defines
a simple messaging layer, with a compact format, that runs over udp (or dtls
when security is enabled). Its low header overhead and low complexity simplify the
processing of messages by constrained nodes. On top of this message layer, coap
uses request/response interactions between clients and servers.

If a node needs to send a message in a reliable fashion, in spite of udp unre-
liability, then the node will send the message and wait for an acknowledgment. If
no acknowledgment is received, the node will retransmit the message several times

31

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

with an exponential back-off. These messages are referred to as con (confirmable),
in contrast to non messages (non-confirmable) that nodes can afford to lose.

coap applications and resources are identified by uris following the coap scheme
(or coaps with DTLS). Group messaging is also possible with coap, by specifying a
multicast address in the uri host part. This allows several resources to be accessed
with a single request.

coap requests are derived from the main http methods (get, put, post or
delete) and the responses from http statuses. put creates a resource, get re-
trieves it, post updates it and delete deletes it. As for the responses, coap uses
http statuses with some slight semantic differences. Informational and redirection
http statuses are not used in coap. In addition to its udp binding, coap differs
from http regarding its message options. Messages may have one or more options.
The list of options includes Content-Format, Accept, Max-Age, Uri-Host, Uri-Path,
Uri-Port, Uri-Query.

An original work worth citing is the Observe option, [61]. A client subscribes to
resource updates by sending a get request with the Observe option so the server
sends notifications upon resource modifications.

udp is the standard binding for coap. However, several other bindings have
already been envisaged. The informational Internet Draft [62] examines the require-
ment of several alternative transport protocols for coap, and mentions the potential
interest in using the bp. To our knowledge, only the sms binding has led to an actual
test implementation [63]. On the other hand, coap has also been used as a soap-
binding itself described in the Internet Draft [64] and presented in the article [65]
where this system is deployed in a wsn.

Different works relate coap usage. In [66], coap is deployed in a cargo to
monitor the different containers (temperature, humidity, voltage). In [67], coap is
used in a wide area for sensor and actuator use-case. It should be noted that in this
last article, sensors and actuators are equipped with communication means relying
on cellular network. This system is considered in this thesis to be too expensive,
especially when the number of sensors and actuators increases.

coap also supports elementary description and discovery mechanism. It ref-
erences [68] for description and [12] for discovery in its section defining resource
discovery.

The description of coap resource is defined in [68] as Web Linking. A link
is described as a typed connection between two resources. This typed connection
contains attributes in the form of a set of key/value pairs. Web Linking offers
different attributes that provide hint on different target, or link, characteristics
such as its media type. The set of defined attributes is very limited and does not
provide any means to define specific attribute of a resource, or service, that would
be interesting in a dt-wot context such as an interface, or an agenda. It should be
noted that coap also defines a new Web Linking attribute to inform what Content-
Format a resource can return.

32

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Once the resource are described, then can be discovered. coap discovery involves
of two steps. The first is to discover all coap nodes, the second is to discover hosted
resources (if any) on these nodes. Discovering all coap nodes is done through a
request sent to the multicast address of coap. These two steps can be merged into
a single one, as explained below. A strong constraint on the default port number
is imposed by the rfc of coap. Indeed, a coap server must listen to the default
port to support the discovery. coap servers can host resource on an additional
port if needed. The rfc6690, core Link Format [12], defines how to use Web
Linking to discover resources hosted on a server. When a client wants to discover
hosted resource it needs to send a get request to the server. A well-known uri
is used as a default entry point to which the request are directed. A client can
send its request either by using unicast or multicast to discover all resources of all
coap nodes at once. core Link Format also defines additional attributes that are
claimed to “describe information useful in accessing the target link ”, unfortunately
these attributes do not provide any means to defined meaningful attributes in a
dt-wot context.

2.2.2 Service-Oriented Approach

Many proposals of soa middleware systems target the iot, wsns, or ubiquitous
environments. While none of these works target dtn environments they actually
target networks that share similarities with dtns, e.g. devices with constrained
resources, noncontinuous connectivity. It can be wondered if these works can be
adapted into an soa middleware for dtn. Unfortunately, very few studies actually
propose systems that can be adapted as is in a dt-iot context.

In the following, works on soa middleware systems are categorized according
to their characteristic that make them more or less adaptable to a dt-iot context.
Sometimes this characteristic lies in their design decisions, e.g. usage of big ser-
vices [59]. There are works for which this characteristic lies in their objectives. Such
works propose soa middleware systems for the iot while generally aiming, as a tacit
secondary objective, to fill the gap between traditional Internet and wsn. However,
this thesis does not consider Internet as being part of the context. Another char-
acteristic that makes soa middleware systems unadaptable for the dt-iot context
is the focus on semantic techniques while leaving design principles aside. Finally,
there are studies and works that demonstrate appealing architecture and vision that
could inspire this thesis contribution. These works present restful and decentral-
ized architectures.

2.2.2.1 Big Services

Systems such as Hydra [69] or ubicoap [70] rely on protocols that are not considered
as resource friendly, i.e. consuming too much cpu, ram or battery. There are
systems that require too many exchanges of messages. It is the case of music [71]

33

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

for its discovery or a work by Guinard et al., [72] where the services are scanned in
order to report their availability status to a central system whereas dtn architecture
advises to minimize them. Being in a dt-iot context heavy protocols such as soap
should be avoided. Also, dtn advises to minimize messages exchanges so these
approaches should not be adopted into this thesis context. Furthermore, it would
be interesting to rely on other and decentralized systems in order to determine if a
service is available since centralized architecture are not efficient at all in dtns. It
would also be interesting if clients were informed beforehand when a service is not
available.

2.2.2.2 Integration with Internet

Studies such as kasom [73], Tinysoa [74] or the one proposed by Anastasi [75]
aim to integrate wsns into the traditional Internet in order to extends the Inter-
net with such networks. kasom [73] provides tools for the registration, discovery,
composition, and orchestration of services. kasom also proposes to found Knowl-
edge Management services according to a semantic description of low and high level
resources of the wsn. Tinysoa [74] proposes a language-agnostic api to exploit
wsn capabilities. They provided an api to a set of programmers to evaluate their
perception and intention of use. Several simple applications were developed as well
as a more complex one for a real-world problem (agricultural monitoring) that has
been in use for several months. The system proposed in [75] helps to configure wsn
functionalities and exploit them in the form of Web services. Industrial systems as
Xively [76], Carriots [77], Echelon [78], are based on cloud platform to provide their
services. It relies on a centralized architecture that cannot be adapted to dtn con-
text without heavy modifications that would render the dtn systems very different
from its original system.

These propositions rely on service-oriented approaches but their objectives differ
from the goals of this thesis. One of their goal is to integrate, or exploit, Internet
connectivity. This vision is not specific to these works. Indeed, as the research
team of choreos project [79] puts in their perspective of soa for the iot [55]: “the
Internet of Things will cooperate with the Internet of Services”.

2.2.2.3 Semantic Style

asawoo [58] and sensei [57] are two projects adopting a semantic approach. In
asawoo, reasoners process ontologies in order to determine how to achieve a goal.
For more details on asawoo, see below. In sensei, some models are proposed to
describe iot components, data and capture relations between different data provider
and data descriptor.

While semantic tools clearly help to build soa middleware systems, especially
for description of services, looking up services and composing of services, it is a
research domain in which the main objectives of this thesis do not lie.

34

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

2.2.2.4 RESTful and Decentralized Style

Finally, there are works suggesting some appealing architecture characteristics to
provide soa middleware in iot, that could be adapted in dt-iot systems. In par-
ticular, ubirest [80] that relies on a restful architecture. This work introduces a
network-agnostic connectivity layer that can be likened to the bp convergence layer,
and exploit both unicast and multicast, namely ubirest point-to-point and ubirest
group. The middleware relies on a refinement of the rest style, called Pervasive-
rest (p-rest), presented in [81]. It is an adaptation of rest at different level of
abstraction to offer flexibility, genericity, and dynamism. The approach of this work
supports the idea previously presented that rest is promising in the context of this
thesis. mosden [82] is a middleware providing a plugin architecture that enable
to load applications in the form of plugins distributed through mobile application
stores such as Google Play. mosden is built on top of gsn [83] that relies on a
decentralized p2p architecture. Servilla [84] is an soa system that introduces a new
binding model based on semantic that can be eager or lazy, and persistent or tran-
sient (any of the four combinations). It also offers three forms of service invocation:
on-demand, periodic and event-based. In Servilla, each node hosts its own registry.
Decentralized systems, restful architecture and distributed registries are valuable
methods for dtn environments.

2.2.3 Other Approaches and Systems

The categorization of roa and soa is at a coarse-grained level. Some middleware
systems do not entirely fit in these categories. These systems generally embed de-
vices management, devices communication as well as application-layer programming
support. They are, for the most part, industrial projects that mask out their real
approach, that might be roa or soa.

Industrial Projects

Kura [85], by Eclipse, proposes devices communications, network and gateway man-
agement for an iot integration through a Java/OSGi-based implementation. Mi-
croEJ [86], an industrial middleware, follows the same approach and relies on mi-
croJVM that is a Java virtual machine for embedded systems. iotivity [87], later
merged into AllJoyn [88], are client-server oriented. AllJoyn purpose is to enable
devices to communicate with other devices around them and also to ease device
management operations. A device’s abilities are advertised through an xml docu-
ment. Z-Wave [89] and BACnet [90] protocols are compatible with AllJoyn thanks
to third-party. lwm2m [91], by Open Mobile Alliance, is a protocol for device man-
agement. It is client-server oriented. It relies on udp, and, like very few, on sms too.
WhereX, presented in [92], is an event-based middleware, proposes the identification
of different objects in different contexts for enterprise systems.

35

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Research Studies

In [93], a middleware is proposed to allow various ubiquitous devices to discover one
another and link them with web resources or services. Perera et al. present mos-
den [82] that suggests things collaboration where more-constrained devices request
more-powerful nodes to execute data processing on their behalf.

Traditional programming supports for the iot (roa, soa or other) cannot be
ported as is in dtn context. Indeed, if dtn and iot share similar constraints,
assumptions made for iot networks and dtns vary a lot. Because of these differences,
designs and architectures of iot protocols or programming supports naturally make
them unsuitable for dtn networks. Nonetheless, the work of this thesis lies in
this specific challenge that is to port, adapt and transpose iot protocols into dtn
context.

2.3 DT and Opportunistic Computing

In addition to networking challenges, dtns and OppNet also present programming
challenges. The Opportunistic Computing aims to solve these challenges. Indeed,
Conti et al. presented the concept of Opportunistic Computing in [94, 95] that con-
siders a broader vision of OppNet encompassing autonomic computing and social
networking aspects to enable collaborative computing tasks in such environments.
Several programming styles that are used for traditional networks cannot be used
to program application in dtns and OppNet. Indeed, when a system requires a lot
of message exchanges or very short delays, i.e. default time outs are impractical in
dtns, it cannot be easily adapted in such challenged networks.

Few implementations and prototype are actually available and they vary from
each other in their decisions and assumptions on network nodes capacities, mobil-
ity patterns or objectives. These differences stem from the wide range of possible
scenarios OppNet can be deployed in but also on what challenges and objectives
challenged networks are deployed for.

Among studies focusing on application and programming in dtns, and OppNet,
two categories emerge and are review below.

2.3.1 Pragmatic Programming

A general manner to develop applications in both OppNet and dtns is to adopt a
pragmatic approach. As Ott puts it in [96]: dtns are “in nature and generally used
by specifically developed applications”.

In other words, when studies deploy applications in such networks, the studies
focus more on environmental context and objectives rather than design of application
and programming principles. It is the case of works deployed to monitor wildlife

36

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

(zebras [97] and whales [98]), or [99] that aims to be deployed in Vehicular Ad hoc
Networks to help finding a place to park or inform drivers on weather conditions.

Thedu, the system proposed in [100], aim to use an Internet proxy to which
mobile nodes can send web queries, likened to queries to a search engine. The
results of these web queries are then stored by the proxy and several results are
prefetched in order to maximize chances of providing the most useful responses
first. The contribution of this study lies in their aggressive but selective prefetching
practices.

In the snc project [3], part of the n4c project [101], the objective is to provide
an Internet access to remote areas. More specifically to the Laponia region in north-
ern Sweden where there is no infrastructure and thus, no Internet connectivity. A
gateway with Internet connectivity through a line-of-sight was used as an entrypoint
of the mobile part of the network. Helicopters are also used as data-mules to carry
bundles over the mountains. Three differents applications were tested: e-mail, not
so instant messaging and web access.

A similar work is presented by Lindgren in [102]. A gateway allows its users to
connect to Facebook from a dtn network. The system enables users to read their
news feed, post status and photos, comment and like the posts of other people.

In [103], Pitkanen et al. propose to use wlan hotspot and dtn messaging to
reduce the load on cellular networks. Their proposal can also be used in order
to provide Internet access to nodes without cellular connectivity. To test their
proposition they implemented a prototype implementation of a mobile DTN-based
web browsing. They conclude that the node density in the area of commercial and
community hotspots is sufficient to satisfy the majority of the requests issued by
pedestrians within 20 minutes.

Ott and Kutscher, in [96], propose an Internet access to mobile users using
existing applications relying on http. They suggest that prefetching techniques
can be used in order to gather large resources into bundles in response to a single
request, as is the case in [100]. Prefetching techniques not only reduce the number of
requests/responses but also fasten the satisfaction of mobile users since the resource
they may be interested in can be embedded in bundles enclosing response’s data of
their queries.

dodwan, that is both an implementation of a forwarding protocol and a mid-
dleware, has been instantiate in an application suite [104]. Application suite include
a news stream, a messaging (both text and voice) app, mail service and file sharing.
All applications are contained in an opportunistic network.

2.3.2 Programming Paradigms

Despite a common pragmatic approach, there are also some proposition on protocol
adaptations, and suggestions of design principles to develop dtn applications. Such
studies, reviewed below, generally focus on adapting the Web (http, mime), or soa

37

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

into dtns.

Web Approach

Ott and Kutscher [105] propose a protocol design and a system architecture to
enable access to web pages in a delay-tolerant network thanks to a slightly enhanced
variant of http running on top of bp. Two architectures are envisioned. The first
one involves only dtn nodes, Web servers and Web clients are not connected to
Internet, whereas the second architecture suggests to use a proxy at the edge of the
dtn network that is also connected to Internet. The second architecture aims to
provide Internet-Web access.

In [106], Wood et al. decouple http from tcp. The aim of their work is to
enable the exploitation of http and mime in dtns. They consider http as well-
understood by applications and as an enabler to deploy applications into dtns as
well as move content in dtns.

Service-Oriented Approach

Service-Oriented Approach is common in dtns and OppNet. In fact, the Oppor-
tunistic Computing [94] and service provisioning in OppNet [107] emerged at the
same time. In [107], the authors consider service provisioning as a key feature of
Opportunistic Computing. While some studies focus on the social aspect of services
and Opportunistic Computing, there are also studies focused on service invocation
mechanisms and service composition.

Added to the service-oriented approach, there exist a few studies that propose a
different approach to develop application in dtns such as the tuple space [108, 109]
paradigm.

Social Oriented Social aspect has been exploited by several research studies.
That is the case of the middleware named cameo [47] (presented above). The au-
thors of [47] introduce the social-awareness as a fundamental requirement to develop
optimized systems and applications [in OppNet]. They even qualify their network-
ing context as opportunistic mobile social networks, which demonstrates their focus
on the social aspect.

In [110], social structures are considered to extract a metric representing node’s
social significance. This metric is used to determine best paths between nodes and
create a sub-graph of the network in order to find best placements of services within
the network.

In [111], authors suggest to exploit social information to determine whereto and
how data should be disseminated in order to optimize content availability. The
system they propose and evaluate is named ContentPlace according to different
social-oriented policies.

38

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

casa Research team casa presents a clear interest in services and OppNet. dod-
wan [45, 104, 112] is one example of this interest.

Another study focuses on service invocation over a content-based communica-
tion [113]. This study details the invocation mechanisms, how the client satisfaction
can be increased by exploiting the potential multiplicity of service providers and
how techniques of network healing can reduce the network load. Network healing
techniques consist to remove unnecessary messages from the network storage.

Finally, a work studies discovery and composition of services in OppNet [114].
It proposes, simulates and compares a choreography-based and an orchestration-
based algorithms based. It concludes that orchestration-based algorithm reaches a
better success ratio than the choreography-based algorithm. Nevertheless, it induces
longer delays in the composition process.

asawoo asawoo [115] project is the closest project and most related to this
thesis’s objectives: it is a service-oriented system that uses restful or Web proto-
cols and is tolerant to disconnection. asawoo stands for: Adaptive Supervision of
Avatar/Object Links for the Web of Objects. asawoo proposes a whole architecture
to deploy wot applications where physical objects, things, are extended through vir-
tualized avatars. Avatars, that may run on different objects, are context-aware and
adapt to environment changes. Avatar architecture relies on multiagents systems
based on restful and Web services. These avatars uses http and coap to commu-
nicate. This Web platform follows eight requirements among which a disconnection
tolerance. A proposal to fulfill this specific requirement is presented in [116]. It
proposes a disruption-tolerant communication middleware between avatars, hosted
in the cloud, and their objects when they are not connected to the cloud. This
middleware exploits by two dtn adapters. The first is c3po [44] (presented above),
and the other one is ibr-dtn interfaced through a Java api (developed during this
thesis).

asawoo services capabilities and functionalities are semantically described
thanks to a Web ontology language. Service descriptors are then advertised through
restful put requests sent to other nodes. These requests are either unicast or
multicast. Another possibility to discover service descriptors is to request other
nodes with a get request to which nodes answer with their own service descriptors.
Invocation mechanism relies on restful requests/responses and is improved by sup-
porting four non-functional parameters dedicated to requests that are: caching (to
allow intermediaries nodes can reply to the request if they carry a valid response),
time (to inform a date at which the client does not need a response anymore), spatial
(to circumscribe at a coarse grain the area in which the messages can be forwarded),
and asynchronous communication (to allow a client to inform a specific endpoint to
which the response should be sent).

Both programming styles (pragmatic development and based on paradigms)
come with their own advantages and defaults. Pragmatic solutions are usually fine-

39

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

tuned for specific scenarios or solve concretely identified problems but are not so
optimized when deployed in other scenarios. Yet, this is not a blocking issue since
they do not intend to do more than what they were developed to. On the other
hand, solutions based on paradigms are not necessarily fully-optimized for all sce-
narios but they provide solid bases to developers for new applications. It is this
orientation that this thesis contributions are made. More specifically in the line
of work of [105, 106] for which objectives are to support a Web-enabled dtn by
adapting http.

2.4 Discussion

dtn and OppNet differentiate to one another not only on the challenges they are
focused on but also on their approaches. Indeed thanks to its wound-down dtnrg,
dtn researchers produced rfcs and Internet Drafts in order to formalize and stan-
dardize architecture and protocols. The challenges targeted by the dtn research field
usually stem from scenarios like ipn or bringing Internet to remote areas. As for the
opportunistic networking, challenges targeted are commonly include communication
in a defined local and wide areas without communication infrastructure. Solutions,
apart from the vast variety of routing algorithms, traditionally follow a pragmatic
approach and there is, at my best knowledge, no rfc on opportunistic network-
ing/computing. This thesis sits on both sides of research fields aiming to provide
programming supports close to standard protocols while targeting infrastructure-less
scenarios.

The iot is an emerging paradigm that draws a lot of interest and investment.
Despite all the work and means put into it and despite many works on middleware
systems for the iot very few protocols stood out as standards. Furthermore, even
though iot and dtn share similarities there is no standard protocols of iot that
can be deployed as is in a dtn context. This thesis aims to fill this gap by defining
dtn-enabled protocols inspired from iot standards, hence supporting a dt-iot.

After reviewing dtn, OppNet and iot programming models the programming
styles of dtn and opportunistic contexts are presented. Far fewer studies focus on
these contexts compared to the iot, and, as shown, very few works target standard
protocols adaptation. Such studies gain the benefice of relying on well-known, tested
and approved protocols. In my opinion, more studies should adopt such approach
and this is an approach that this thesis contributions follow in order to inherit these
advantages.

To conclude, despite many works on middleware systems for the iot, several
application deployments in dtns as well as a couple of works on programming
paradigms in the context of dtn there is no emerging standard protocols or design
principles for a dt-iot context that bears both constraints of iot context and dtn
context. Nevertheless, several studies show appealing approaches and characteris-
tics. A lot of approaches exist but roa and soa are considered in most of the

40

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

works. The rest architecture is also a silver lining coupled with http concepts (as
the request/response codes).

Two protocols, bp, intended to be a standard, and coap already a standard,
step out as promising. The former, bp, overcomes the communication challenge
identified in the dt-iot context while the latter can be transposed into a delay-
tolerant protocol. Once transposed it could support an roa middleware system.
This roa system could then support an soa middleware systems. Both systems
would then be adapted to both wot and dtn contexts.

41

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

42

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

3
BoaP

Contents
3.1 Presentation of BP and CoAP 44

3.1.1 Bundle Protocol (BP) . 44

3.1.2 IBR-DTN . 45

3.1.3 Constrained Application Protocol (CoAP) 50

3.1.4 Californium . 54

3.1.5 BP and CoAP: Arose Challenges 58

3.2 CoAP Transposition for a BP-binding 59

3.2.1 Fundamental Adjustments 59

3.2.2 Enhancements . 63

3.3 BoaP Stack . 66

3.3.1 IBR-DTN Java API . 66

3.3.2 BoaP Prototype . 68

3.3.3 Comparison of CoAP and BoaP Features 74

3.4 Discussion . 75

The previous chapter presented coap and bp as the two most important proto-
cols for this thesis. This chapter, being the core of the contributions, presents the
work done to adapt coap over bp and a prototype of this adaptation named boap.

This chapter first reminds the designs of bp and coap. One implementation
for each protocol is also presented from a technical point of view. The protocol
correlations and dissociations are highlighted to: a. justify that they are a good
match, and b. show the rising challenges when coap is put on top of bp as is. coap
adaptations stem from those challenges and are detailed below. A prototype of an
adapted coap over bp, named boap, has been implemented. It relies on a Java api
to communicate with the ibr-dtn daemon. Both this Java api and then boap are
presented. Their performances are measured in the next chapter in a real network
and then in a simulated one with emulated nodes running boap.

43

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

3.1 Presentation of BP and CoAP

This section presents the most important aspects of both bp and coap. Besides, it
should be noted that even if bp aims to provide an application layer for dtns, it
is considered as a communication layer in this work. In like manners, even though
coap defines itself as a “web transfer protocol” it is considered in this work as an
application layer protocol, as its own name implies.

3.1.1 Bundle Protocol (BP)

The bp is the standard protocol to exchange messages within the dtn architecture [5]
networks. The bp forms a message-based overlay that follows the store-carry-and-
forward principle. The bp defines the format of the messages, called bundles, and
the logic layout to process them but does not define any routing algorithm yet many
exist.

As a network overlay, the bp relies on subnet-specific protocols called Conver-
gence Layers to transport bundles, e.g. tcp, udp or even specific transport protocol
such as Licklider Transmission Protocol (ltp) [117] that is already oriented as delay
tolerant. In order to overcome network disruptions and high delays, the bp uses a
cache to store bundles. These bundles are either processed by an application (if the
destination is hosted on the node), or forwarded to other nodes towards the bundle
destination. A bp endpoint, i.e. bundle destination or bundle source, is identified
by an Endpoint Identification (eid) that takes the form of a uri. A bp endpoint
can either be a singleton or a set of bp endpoints that register themselves with a
shared eid, thus allowing multicast-like operations to be performed. Nevertheless,
a bundle cannot be sent from such eid.

Bundles are constituted of one primary block (header), then zero or more Meta-
data Extension Blocks (meb [7]), and one or more payload blocks. The primary
block carries options that influence the treatment performed by the intermediary
nodes forwarding the bundle as well as the treatment performed by the bundle des-
tination(s) that receives the bundle. For example, enabling Report-When-Bundle-
Delivered option will make the destination node emit an administrative bundle when
receiving the bundle. Extension blocks, called meb, can be used to make specific
processing decisions regarding bundles, e.g. routing decisions.

The bundles have a ttl and will be deleted when it expires. With shorter ttl
value the network storage, or nodes’ cache, shall not be saturated, on the contrary,
with infinite ttl the bundles will never be deleted and all the nodes storage would
rapidly be saturated. The optimized ttl value greatly depends on the deployed
network: some may prefer a lower delivery ratio due to constrained storage nodes
while other networks may involve nodes with bigger storage that would permit longer
ttl.

The bp does not offer a reliable means of communication. Nevertheless, a built-in

44

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

mechanism, named “custody transfer”, aims to improve its reliability. The custody
transfer requests that a bp node takes the responsibility for delivering a bundle to
its destination. This responsibility is released when the node forwards the bundle to
some other node accepting this responsibility. The message can be under custody
only if the destination is a singleton.

3.1.2 IBR-DTN

Several bp implementations exist but ibr-dtn [18] stands out. Indeed, even if dtn2
was first adopted by the community its last release is four years old, on the contrary
ibr-dtn is still under active development with at least one update or merged pull
request every two months1.

ibr-dtn choice is motivated by two facts: 1. this thesis’s context is the dt-iot,
formed by constrained nodes, and 2. that ibr-dtn is a ram-friendly implementation
of bp. Indeed, as exposed in the introduction, the iot is formed of many constrained
devices that have very limited battery and communication means. These commu-
nications means, usually Bluetooth or Wi-Fi, offer limited range-radio and, due to
their battery, the things are most likely to suffer from sleeping cycle: during their
sleep their communication interface is turned off to save up energy. Furthermore the
things are expected to be part of our environment but usually follow an architecture
where their data are uploaded into far away servers. These data are not accessible
when the infrastructure is damaged or ineffective making the system incompetent
despite the fact that the data are present locally, on the things themselves.

The ibr-dtn implementation, just like dtn2, comes in the form of a daemon.
The choice of using a daemon is motivated by the rfc defining dtn [6]. This
daemon discovers its neighbors to which it forwards to and receives bundles from.
The daemon also takes care of the bundle storage, receiving and delivering them to
and from its registered endpoints.

A registered endpoint is an application able to send and receive bundles. Com-
munication between endpoints and daemon is possible through a tcp socket by
means of textual exchanges. The socket to which endpoints bind is owned by the
daemon. This solution to communicate offers different advantages: it is language
agnostic and it also permits very constrained nodes (not powerful enough to run
their own daemon) to register endpoints on a more powerful node hosting an ibr-
dtn daemon. Nevertheless it comes with its downsides too: due to the sequential
nature of a socket it is not possible to parallelize bundle receptions (or emissions).
Another downside is that the socket induces an evident additional delay that, even
though it is negligible, might create a bottleneck.

As endpoints communicate with the daemon through a textual tcp socket an
api is defined and available2. A bp endpoint sends commands and data to which

1https://archive.fo/ECSIX
2http://archive.fo/2KBwm

45

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

https://archive.fo/ECSIX
http://archive.fo/2KBwm

the daemon answers with one-line responses. If a command is successful then its
response starts with a code: 200 , a 100 -code response inquires that more informa-
tion is expected from the bp endpoint. Several endpoints can be connected to the
daemon and registered. When the daemon receive a bundle it checks if the bundle
destination. If the destination node is itself it checks if an application is registered
as the destination uri. If one is then the daemon notify the endpoint by sending a
602 NOTIFY [...] , if none is then it stores the bundle until an application registers
as the destination uri or until the bundle lifetime expires. It is the charge of the
daemon to deliver received bundles to their rightful local endpoints by respecting
three steps that are: 1. notifying the endpoint, 2. storing the bundle, 3. return
metadata and data when requested by the endpoint.

An exchange between the daemon and an endpoint to register, send or receive
a bundle requires several commands. The succession of commands and responses
needed to perform these simple actions can be likened to conversations. Conversa-
tions always start with a command sent by the endpoint to register, send or receive
a bundle. Upon reception of a bundle for a local endpoint, the daemon notifies the
endpoint through the tcp socket by sending a 602 NOTIFY [...] . These notifica-
tions may be sent at any time, even during a conversation to send a bundle between
two successive commands. These notifications are not considered as a conversation
initiation as it is the duty of the endpoint to fetch the notified bundles when the
endpoint is ready. Conversations are always ended by a daemon response. This last
response acknowledges that the last command is successful. When an error occurs
the endpoint may continue the conversation until the daemon acknowledges the last
command as successful. These conversations differ with sessions on their start and
end. Sessions are expected to be started, or ended, with a same procedure call, e.g.
command, being open , or close . However in the case of ibr-dtn, a conversation
can be started by a specific command that is different for each action.

Three actions are detailed below with their full conversation logged and ex-
plained: registration, bundle emission and bundle reception. In the examples, to
visually differentiate daemon outputs and endpoint inputs an artificial number sign
(#) is added before each daemon response and its banner. The daemon can be
requested to switch into its extended protocol mode. This mode allows more com-
mands such as neighbor list , neighbor protocols and neighbor connections but
these commands are not presented in this work even though following examples
were executed in this mode.

3.1.2.1 Registration

An application becomes a bp endpoint once it is registered as an endpoint to
the ibr-dtn daemon. An endpoint registers itself by sending the command
set endpoint <eid> , where <eid> is replaced by the path part of the eid. An
example of an endpoint registration with the daemon is shown in List. 1 where the
endpoint register as Mars. If the node name is dtn://node then the whole eid will

46

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

be dtn://node/Mars. It can be seen that the daemon answers to each command
with a 200 -coded response.

1 #IBR-DTN 1.0.1 (build 1d1df7b) API 1.0
2 protocol extended
3 #200 SWITCHED TO EXTENDED
4 set endpoint Mars
5 #200 OK

Listing 1: IBR-DTN Conversation: Endpoint Registration

3.1.2.2 Bunde Emission

While registering an endpoint require only one command, once the daemon is in
protocol extended mode, sending a bundle require, at least, three different steps,
with two commands, illustrated below:

1. The first step is to enter the command bundle put plain that informs the dae-
mon that a bundle needs to be created so the endpoint can provide metadata
and data of the bundle in order to send it. To this, the daemon answers with
a 100 -coded response acknowledging the request and notifying the endpoint
that the daemon is ready to receive bundle details.

2. The second step is then to provide the bundle details that are the bundle meta-
data such as the source, the destination, the flag, the options, the timestamp,
that will be put into the primary block, and also provide the bundle payload
blocks (at least one). In the example presented in List. 2, the bundle has only
one payload block representing the content "Hello\n" encoded in base64, see
line 17 in List. 2. The end of this input is marked by a double empty lines.

3. Finally, the command bundle send informs that the bundle is complete, e.g.
no further modifications are expected, and requests the daemon to disseminate
the bundle as soon as it can.

3.1.2.3 Bundle Reception

When a bundle is received by the daemon, it verifies if the endpoint is lo-
cally registered. If it is, then the daemon sends a notification to the end-
point through the socket. In the example in List. 3 the notification is the
first line: 602 NOTIFY BUNDLE <timestamp> <seq_nr> <source_eid> , where <timestamp>
marks the timestamp of the bundle creation, <seq_nr> is the sequence number and
<source_eid> identifies the bundle source endpoint. After this notification, four
commands are then required to fetch the bundle:

47

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

1 bundle put plain
2 #100 PUT BUNDLE PLAIN
3 Source: api:me
4 Destination: dtn://59/Phobos
5 Processing flags: 144
6 Timestamp: 1479823174254
7 Reportto: dtn:none
8 Custodian: dtn:none
9 Lifetime: 1800

10 Sequencenumber: 0
11 Blocks: 1
12

13 Block: 1
14 Flags: LAST_BLOCK
15 Length: 2
16

17 SGVsbG8K
18

19

20 #200 BUNDLE IN REGISTER
21 bundle send
22 #200 BUNDLE SENT

Listing 2: IBR-DTN Conversation: Bundle Emission

1. bundle load <timestamp> <seq_nr> <source_eid> requests the daemon to load
the bundle into its bundle register. The bundle is identified by the three
parameters <timestamp> <seq_nr> <source_eid> present in the notification.

2. bundle info requests the metadata of the bundle loaded in the register, such
as the flags, timestamp, source, destination, lifetime, number of blocks and
the length of each block.

3. payload [<block_offset>] get [<data_offset> [<length>]] requests the con-
tent of the payload block identified by the parameter <block_offset> . The
other parameters, [<data_offset> [<length>]] , can be used to request a sub-
set of the payload data.

4. bundle delivered <timestamp> <seq_nr> <source_eid> acknowledges the bundle
so the daemon can unload it from its bundle register and delete it from its
storage.

If a bundle is composed of several payload blocks, the line Blocks: 1 , line 11 in
List. 3, will show the actual number of payload blocks present. Metadata of each
payload blocks (its number, its flags, its length) will then be sent by the daemon.
The command payload get is needed one time for each of the payload blocks. The
payload content may be split into several lines if it contains many data.

48

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

1 #602 NOTIFY BUNDLE 533138377 1 dtn://139/uxyLjauFpklhUsoA
2 bundle load 533138377 1 dtn://139/uxyLjauFpklhUsoA
3 #200 BUNDLE LOADED 533138377 1 dtn://139/uxyLjauFpklhUsoA
4 bundle info
5 #200 BUNDLE INFO 533138377 1 dtn://139/uxyLjauFpklhUsoA
6 Processing flags: 144
7 Timestamp: 533138377
8 Sequencenumber: 1
9 Source: dtn://139/uxyLjauFpklhUsoA

10 Destination: dtn://139/Sender
11 Reportto: dtn:none
12 Custodian: dtn:none
13 Lifetime: 3600
14 Blocks: 1
15

16 Block: 1
17 Flags: LAST_BLOCK
18 Length: 45
19 Encoding: skip
20

21 payload 0 get 0 0
22 #200 PAYLOAD GET
23 Length: 45
24 Encoding: base64
25

26 VHVlIE5vdiAyMiAxNDo1OTozNyBDRVQgMjAxNiBmcm9tIHBjLW1uYS0xMzkg
27

28 bundle delivered 533138377 1 dtn://139/uxyLjauFpklhUsoA
29 #200 BUNDLE DELIVERED ACCEPTED

Listing 3: IBR-DTN Conversation: Bundle Fetching

3.1.2.4 Neighbor Discovery

A beaconing system has been implemented in ibr-dtn in order to discover neigh-
bors. This system relies on the Internet Draft ipnd [20] considered as unfinished
business3. A beacon is a small announcement usually sent via broadcast, or mul-
ticast, embedding canonical name of its emitter. When a neighbor receives this
beacon it can then initiate exchanges, e.g. of bundles or routing informations, and
add the node to its neighbor list. A beacon is composed the following fields:

• Version,

• Flags,

• Sequence number: increment at each beacon sent,

• eid length: byte length of the canonical eid,
3Mentioned as such in last dtnrg meeting at ietf-87 while dtnrg was closing down.

49

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

• Canoncical eid: eid of the beacon’s emitter,

• an optional service block since ipnd also supports a basic service discovery,

• an optional value that informs on the beacon period.

Four flags are currently defined and informs on the presence of: a. Source eid
should always be set, b. Service Block, c. Neighborhood Bloom Filter: this filter
helps to determine if a link is bi-directional, d. Beacon Period.

ibr-dtn provides various options to customize neighbor discovery. These options
include: a. Disable/enable, b. Version to be used, c. Address to which send beacons,
d. Short beacon (to add or remove the service block), e. Cross-layering: if set the
daemon do not advertise its own address and neighbors are expected to extract it
from sender ip address.

It should be noted that the ibr-dtn Linux package also provides several tools
that allow to send/receive bundle, synchronize a directory or ping a node.

3.1.3 Constrained Application Protocol (CoAP)

General Concept

coap [11] offers an application layer protocol that allows resource-constrained de-
vices, i.e. the things, to interact together asynchronously. It is designed for machine-
to-machine use-cases and is compliant with the Representational State Transfer
(rest) architecture style. coap defines a complete messaging layer, with a compact
format, that runs over udp (or dtls when security is enabled). coap requests are
derived from the main http methods (get, put, post or delete) and the re-
sponses from http statuses. For the requests, put creates a resource, get retrieves
it, post updates it and delete deletes it. As for the responses, coap uses http sta-
tuses with some slight semantic differences. These features (methods and response
codes) make coap easily translated into to http making it seamlessly integrated
into the already existing web. However, informational and redirection http sta-
tuses are not used in coap. The format of coap messages is illustrated in Fig. 3.14.
Its low header overhead and low complexity make serializing and parsing simple
for constrained nodes. On top of this message layer, coap uses request/response
interactions between clients and servers.

4Figure 7 from the coap rfc

50

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Message Format

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Ver T TKL Code Message ID

Token (if any, TKL-bytes long)
Options (if any)

0xff Payload (if any)

Figure 3.1: CoAP Message Format

All messages start with the version number of coap. This field, Ver , is a 2-bit
unsigned integer. The current version of coap is 01. If a node needs to send a
message in a reliable fashion, in spite of udp unreliability, then the node will send
the message and wait for an acknowledgment. If no acknowledgment is received after
a customizable time out, the node will retransmit the message several times with an
exponential back-off until the nodes reaches max_retransmit that is the maximum
number of emission for a message. This retransmission mechanism aims to overcome
the udp unreliability. These messages are referred to as con (confirmable), in
contrast to non messages (non-confirmable) that nodes can afford to lose. T field
informs which type the message is. The type is a 2-bit unsigned integer and the four
message types are: (0) Confirmable, (1) Non-confirmable, (2) Acknowledgement,
(3) Reset. Reset messages are sent when a received message cannot be processed
properly due to missing context, e.g. a node that just rebooted and receives a
response could send back a reset message. Code field is an 8-bit unsigned integer
that indicates whether the message is a request or a response and what is the request
method (get, post, put, or delete) or the response status. Message ID field is
an 16-bit unsigned integer used to detect message duplication and match messages
of type Acknowledgement/Reset to messages of type Confirmable/Non-confirmable.
Token field is used to match request and response. Since it is a variable length field,
TKL , 4-bit unsigned integer, indicates how many byte(s) the token is. After the
header, and the token if any, the message presents zero or more options. Finally,
if the message embeds a payload, a marker 0xff identifies the beginning of the
payload data.

Options

Existing options are listed in Tab. 3.1. Some are repeatable. A repeatable option
is an option that may appear more than once in a message. Repeatable options are
identified by a cross in the column named R in Tab. 3.1. The semantic of ETag
option differs whether it is in a request or a response. An ETag is a local identifier
used to differentiate between distinct representations of the same resource. In a
response, the ETag depicts the current representation of the resource. In a request,
a client can provide multiple ETag values, since the option is repeatable, so the
server can answer with 2.03 Valid if the resource matches with one of these ETag
values. This allows clients to ask if their resource presentation is still valid while

51

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

preventing to the server to send the whole resource. If-Match and If-None-Match
options are used for conditional request. If the condition(s) is not fulfilled then the
server must answer with a 4.12 Precondition Failed response. These option values
are usually an ETag5. If an If-Match ETag matches a representation of a resource
then the condition is fulfilled. Uri-* options, being Uri-Host , Uri-Port , Uri-Path
and Uri-Query , are used to specify the target resource of a request. It is important to
embed the Uri-Host within a request option as a server may have several hostnames
and must be able to identify each resource. Proxy-* options, being Proxy-Uri and
Proxy-Scheme , are used when the request is send through a forward-proxy. Proxies
may have valid cached responses that they can send directly to clients. Location-*
options, being Proxy-Path and Proxy-Query , are embedded in 2.01 Created response
to indicate where the resource requested by a post is located. The path, and query,
are relative to the uri of the request. Size1 option is an integer used in 4.13
Request Entity Too Large to indicate the maximum size in byte of request entity
that the server is able and willing to handle. When a request, or a response, with
a payload is sent the Content-Format option is used to identify the representation
format of the payload. This option is related with the Accept option that a client
sent in a request to inform the server which Content-Format is preferred. If the
server cannot send the request resource in the representation format indicated by
the Accept option then the server must answer with a 4.06 Not Acceptable. For
obvious reason Content-Format option is not repeatable, Accept option isn’t neither
yet a client may accept different Content-Format . Some resources are valid for a
specific duration and thus may be cached. To specify how long a resource can be
cached the Max-Age option is used. The lifetime of the resource is a number of
second encoded in an integer.

Adressing and Multicast

coap applications and resources are identified by uris following the coap scheme
(or coaps with dtls), defined as coap:// host [:port] / path-abempty [?query], e.g.
coap://zeus.foo.bar:7800/museum/outside-light?number=3. The host part is com-
pulsory, the path identifies the resource within the scope of the host and port (5683
by default), and the query part details the resource access. Other protocols than
udp are already considered as coap binding: section 3 of rfc 7252 [11] suggests
that “other transports such as SMS, TCP, or SCTP” can be used as coap binding
and also specifies that udp-lite and udp zero checksum are not supported by coap.

Group messaging is also possible with coap, by specifying a multicast address in
the uri host part. This allows several resources to be accessed with a single request.
Before answering a multicast request, the servers are expected to wait a leisure time.
This wait aims to avoid network congestion in the case many servers would answer
the request at the same time. Also the servers are encouraged to not answer at all
“if it doesn’t have anything useful to respond”. The coap applications should be

5Entity-tag

52

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

No. R Name Format Length (byte)
1 x If-Match opaque 0-8
3 Uri-Host string 1-255
4 x ETag opaque 1-8
5 If-None-Match empty 0
7 Uri-Port uint 0-2
8 x Location-Path string 0-255
11 x Uri-Path string 0-255
12 Content-Format uint 0-2
14 Max-Age uint 0-4
15 x Uri-Query string 0-255
17 Accept uint 0-2
20 x Location-Query string 0-255
35 Proxy-Uri string 1-1034
39 Proxy-Scheme string 1-255
60 Size1 uint 0-4

Table 3.1: CoAP Options

aware that a request is received through multicast as their expected behavior should
be adapted.

CoAP Extensions

In some cases a client may want to track a resource, either for history or to take
action. Such client could be heater that needs to knows the temperature of the
room, to stay up-to-date it may request a temperature sensor frequently to heat
more or less in order to stabilize the room temperature. In order to minimize the
number of request/response while optimizing this scenario a coap extension has been
proposed: the Observe option, rfc 7641 [61]. This rfc allows a client, the heater
in our case, to register as an observer to a resource, the temperature, by sending an
extended get request. The server, temperature sensor, returns the current state of
this resource and add the client to a list of observers that will receive notifications
upon resource modifications.

Because coap relies on udp large resources (such as firmware update) cannot
be sent through regular coap messages as they are not likely to fit a single udp
datagram. To overcome this issue, an update of coap has been proposed: the block-
wise transfers, rfc 7959 [118]. This update provides the needed means to transfer
rather large resources that could not fit into one udp datagram while following
coap constraints and architecture. It defines the requirement for the request, the
notifications, the caching, the reordering and the transmission of such resources.

53

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

3.1.4 Californium

Many coap implementations exist. Some are oriented for constrained devices (for
Contiki), other for smartphones, other for servers. Among these multiple implemen-
tations written in Go, C, C#, Java, and so forth, some come as web application,
as Web Browser plug-in, framework or even as command line tool. For this work,
Californium (Cf) is the coap implementation of reference as it is open-source and
under very active development: more than 5 updates per month in the third quarter
of 2016, there is almost 30 developers who contributed to the source code (that is
about 74k lines) that has been migrated into Eclipse Foundation. However, being
written in Java it is not oriented for constrained devices. Cf implementation does
not only provide coap features, rfc 7252, but also the Observe option, rfc 7641,
and the Block-wise Transfers, rfc 7959. Below some server and client examples are
shown. These examples are based on the example from the source code of Cf itself.

To implement a coap server by using Cf a resource must be implemented first.
A coap resource is already present: CoapResource. It replies with a 4.06 Not
Allowed response for every method. The easiest way to implement a new resource
is to extend this class as shown in List. 4. The extended class overrides methods
handleGET, handlePOST, handlePUT, handleDELETE according to its needs for the
respective request methods get, post, put, and delete. If a resource only need
to answer to get request then it only overrides the method handleGET. Once,
at least, one resource is implemented then it can be added to a CoapServer and,
finally, the CoapServer can be started. After following these three steps: 1. override
CoapResource methods, 2. add the resource to a server, 3. start the server; the
coap server is up and running.

Let’s take a deeper look at the List. 4. In the example below only get and post
method are overrode. Others methods (put, delete) will then replies with a 4.06
Not Allowed response. The method handleGET is the callback executed when, as
its name indicates, a get request is received. In this call back, the method call
respond of the class CoapExchange answers a 2.05 Content directly to the client by
embedding a payload set as the parameter. In the method handlePOST the exchange
is marked as accepted. The method call accept of CoapExchange first tests if the re-
quest’s type is con and if the request has not yet been acknowledged and then, if the
condition succeed, sends an acknowledgment to inform the client that the exchange
has arrived and a separate message is being computed and sent soon. In the main
method a new CoapServer is created to which is added a CoapResourceExample
and then the server is started. To request such server, or resource, a client example
is shown in List. 5 and 6.

54

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

1 public class CoapResourceExample extends CoapResource {
2

3 public CoapResourceExample(String name) {
4 super(name);
5 }
6

7 @Override
8 public void handleGET(CoapExchange exchange) {
9 exchange.respond("hello world");

10 }
11

12 @Override
13 public void handlePOST(CoapExchange exchange) {
14 exchange.accept();
15 // .. slow creation processing
16 exchange.respond(CREATED);
17 }
18

19 public static void main(String[] args) {
20 CoapServer server = new CoapServer();
21 server.add(new CoapResourceExample("example"));
22 server.start();
23 }
24 }

Listing 4: Cf Resource Example

Cf provides two different ways to request coap resource. It can either be syn-
chronous or asynchronous. In List. 5 the request is sent (see l.5), without any option,
and the response is waited on this same line. Upon reception the payload is put into
the destination variable and printed.

1 String destination = "coap://californium.eclipse.org:5683/test";
2 CoapClient client = new CoapClient(destination);
3

4 // Blocking call:
5 String content = client.get().getResponseText();
6 System.out.println("Response: " + content);

Listing 5: Cf Client: Synchronous Example

In List. 6 an asynchronous client is presented. A nested class handles the received
response (or the error).

55

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

1 String destination = "coap://californium.eclipse.org:5683/test";
2 CoapClient client = new CoapClient(destination);
3

4 client.get(new CoapHandler() {
5 @Override
6 public void onLoad(CoapResponse response) {
7 String content = response.getResponseText();
8 System.out.println("Response: " + content);
9 }

10

11 @Override
12 public void onError() {
13 System.err.println("FAILED");
14 }
15 });

Listing 6: Cf Client: Asynchronous Example

Cf api is easy to use and, being focused on scalability, offers high performance.
Fig. 3.2 presents the Californium Architecture. To ease the reading, in the following
description Java class names are used ignoring whether it is an actual class, abstract
class or interface name.

Messages are received in their raw format by a Connector, usually a udp or dtls
connector, and passed to InboxImpl that uses DataParser to parse messages. Once
parsed, the messages are processed by the Matcher that matches incoming responses
with the outgoing requests into the right Exchange. An Exchange is created when
a request is received, or sent, and ends in the case: a. the last response has arrived
and is acknowledged, b. a request or response has been rejected from the remote
endpoint, c. the request has been canceled, or d. a request or response timed
out. Working with the Matcher, the Deduplicator aims to detect, and optionally
drop, the duplicated messages (both con and non). Once a message is matched in
an Exchange it is sent to the CoapStack that actually retransmits messages when
needed, keep track of the registered observers (rfc 7641) or reassembles the different
blocks (rfc 7959). When the message (response or request) is ready and needs to
be transfered to client or server, the CoapStack forwards through MessageDeliver
it.

When a coap client sends a request, or a client produces a response, the message
is sent by CoapStack through StackTopAdapter down to the Outbox. The Outbox,
after some tests, i.e. is the destination set?, calls the DataSerializer to produce
the raw data of the message that is then sent directly through the Connector.

Optionally a class can implement the interface MessageInterceptor to log or
produce statistics on the number of sent/received con/non requests/responses.

An interested reader will find more details on Cf performances in [119]. This pub-
lication presents Californium as focused on scalability rather than resource-efficiency

56

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Client / Server

CoapEndpoint

MessageInterceptorMessageInterceptor

Matcher

MessageInterceptor

Deduplicator

Message
Exchange

Message

Message

Exchange

Message

Message
Exchange

Message
Exchange

Connector

Outbox
(Impl)

Data
Serializer

Inbox
Impl

Data
Parser

RawDataRawData

Request
Exchange

Response

CoapResource

CoapClient

Response
Exchange

Request

CoapStack MessageDelivererStackTopAdapter

Blockwise Layer
Observe Layer
Token Layer

Reliability Layer

Figure 3.2: Californium Architecture (from M. Kovatsch’s thesis reused with per-
mission, main Cf developers)

57

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

and demonstrates its responsiveness by outperforming all other platforms Cf is
benchmarked against. It should be remarked that one of the author of [119] is the
first author of coap(rfc 7252) [11], Constrained restful Environments Link For-
mat (rfc 6690) [12] and the second author of block-wise transfer (rfc 7959) [118]:
Z. Shelby.

With the insight provided above on both bp and coap, the next subsection
highlights their common and distinct concepts to first justify the choice of these
protocols and then expose the challenges that arose.

3.1.5 BP and CoAP: Arose Challenges

As considered in rfc 7252, other protocols than udp could be used as a binding.
Prototyping a bp binding for coap could be done by putting each coap message
into a bp bundle and preserving all the coap features that had been designed for
the traditional udp binding. Nevertheless this naive approach does not take in
consideration dtn specificities and does not take advantage of the bp specifications.
Indeed, the bp is not a transport-layer protocol and offers richer capabilities than
udp. Therefore several mechanisms of the bp can be exploited to enhance a coap/bp
prototype and improve its performances. Coming along these enhancements there
are also several challenges that arise. In this subsection the incompatibilities between
bp and coap are highlighted and possible enhancements are discussed.

The first incompatibility is the endpoint addressing. Even if other protocols
than udp are mentioned in coap, its tightly reliance on concepts such as ip address
and port number makes it challenging to be deployed over other kind of networks.
An Internet Draft proposed sms as coap transport [120], not active anymore, but
tackles this issue by using a service center. Such solution is not feasible in dtn
networks. Another solution would be to use ip address in bp endpoints but this
constraint is too strong especially when a convergence layer may not lie on top of
an ip transport protocol.

Another, yet related, incompatibility is the multicast support of coap. The
communication group that the multicast provides can be used to request several
coap resource at once. Again, as bp is not related to ip at any layer the multicast
support cannot be simply put over bp.

In dtns the number of messages must be minimized. Added to this, the meaning
of con is two fold: a. the message packet has not been lost during its transport,
and b. the endpoint was active, so it received and started to process the request.
These two reasons, minimum number of messages opposed to con reemission and
the dual semantic of acknowledgements, make the con mechanism challenging and
some choices are to be made. Indeed, a node may be active and receive a con
request for a local endpoint that is not active. Should an acknowledgement be sent
in this case? Should the node wait for the endpoint to be active again? Any response
to these questions are not trivial and deserve discussions as well as comparisons of

58

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

different solutions.

coap uses a parameter in order to limit an endpoint data rate towards a non
responding node. Its default value, an average, is 1 byte per second. While this
mechanism avoids congestion in traditional network there are use-cases where it
would be harmful to restraint a request (or response). For instance a node may
send a request to a coap resource and may need to send another request, before
the first one is answered, to a coap resource hosted on the same host. Waiting an
artificial time because of this data rate would induce additional delay in a network
that already suffer from delays and disruptions.

Last but not least, caching mechanism is an important aspect of coap protocol:
several section defines why to use it, i.e. to limit network traffic, to improve perfor-
mance, to access resources of sleeping devices, and for security reasons, and also how
to used. It is mainly used through proxy servers. In dtns nodes there is no node
reliable enough that could provide proxy services. The coap caching mechanism
cannot be ported as is into bp networks.

Also to conclude bp and coap presentation, it can be noticed a paradoxical way
both protocols present themselves. The bp goal is to disseminate messages (bundles)
in a challenged network but presents itself as an application layer protocol. In the
mean time, coap presents itself as a restful transfer protocol while it actually
provides a whole logic processing with deduplication means, caching mechanisms,
considering exchange packet units as requests and responses (and not as neutral-kind
messages) and even carries “Application Protocol” in its own name.

The next section presents the proposed solutions for the challenges presented be-
low. Some of these challenges are answered in a practical way by being implemented
in the boap prototype, while others were not implemented but proposed solutions
are still detailed.

3.2 CoAP Transposition for a BP-binding

As seen just before, even if bp seems to be a good candidate as a coap binding, some
incompatibilities between the two protocols remain. These incompatibilities need to
be solved in order to provide a protocol as close as coap with bp binding. Solutions
to these incompatibilities are presented below as both fundamental adjustments and
adaptations.

3.2.1 Fundamental Adjustments

Fundamental adjustments stem from incompatibilities between coap and bp. These
fundamental adjustments focus on addressing, multicast, con meaning, and caching
incompatibilities.

59

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

3.2.1.1 Addressing

As explained above, coap relies on concepts such as ip address and port number.
This tight reliance makes it challenging to put a binding protocol that is not fol-
lowing ip, such as bp. A solution would be to force bp node identification to an
ip address. But this solution is not feasible: some convergence layers do not use ip
addresses, in the cases ip addresses are used it is usually dynamic, the node identifi-
cation would be under a heavy constraint and finally node would lose the possibility
of having multiple hostnames. Another solution, that actually seems natural, would
be to merge coap and bp node identifications. Indeed, both identifications relies
on uri: in coap the uri-* options are inserted into the coap message to describe
the targeted resource, in bp uri details are in the bundle header as the string iden-
tifies the destination. Also, according to the bp, uri-query is not considered as
a part of the endpoint identification. Besides ibr-dtn treats an endpoint with a
query as a whole different endpoint, e.g. ibr-dtn daemon would consider that mes-
sages destined to dtn://node-id/app?param=a , dtn://node-id/app?param=b or
dtn://node-id/app as three different endpoints. By merging these two identifi-
cations at the bundle layer, coap options uri-Host, uri-Port and uri-Path are
therefore either meaningless or redundant. Indeed, the uri-Port option does not
have any use in networks running the bp as the nodes do not have any port. As
for the host and the path uri options, these are redundant with the bundle meta-
data and should not be added into the bundle payload because it would induce an
unnecessary overweight. However, the uri-Query option must remain at coap level.

Added to the network addressing, the addressing scheme of the uri should be
considered too. While the coap rfc specifies to use the uri scheme coap when
udp is used (or coaps with dtls), there is no mention of alternative transport
layers. As the registered dtn scheme is not yet precisely defined, it is suggested to
use a coap-compatible scheme in which host [:port] is replaced by any alphanumeric
string, that typically represents a node or a group of nodes. This scheme could be
named coap+dtn, as suggested in [62].

3.2.1.2 Multicast

coap supports requests sent to a group of servers by using an ip multicast address
in the uri. In the bp, an eid can be a group of different applications running on
different nodes, in other words a set of bp endpoints. This feature can be used as
a substitute to the ip multicast group, thus allowing requests to be sent to several
destinations at once.

If a node needs to send an identical request to a list of N servers then it sends a
single bundle to the eid to which the N servers registered to. The other alternative
would be to produce N requests, one for each server, and disseminate each of these
requests as if they were regular and different requests. The gain of multicast requests
is clear: without multicast there would be N identical requests disseminated within

60

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

the network instead, with multicast, only one single request is. The gain of storage
in the network is equal to N − 1 multiplied by the number of nodes carrying the
message multiplied by the size of the bundle. This gain also has an equivalent in
energy gain as N − 1 bundles multiplied by the number of forwarding are saved up
as transmission or reception.

Note that it can also be interesting to combine the multi-payload with the mul-
ticast. In short, one bundle can carry several responses (or requests) while being
sent to several bp endpoints.

The Observe option could also be implemented using this group of bp endpoints.
To register as a resource observer bp endpoints only need to register to a specific
group eid to which the server would send the notifications.

3.2.1.3 Confirmable Messages

Added to the fact that dtn design principles constrain applications to minimize the
number of round-trip exchanges and that the dynamic behavior of dtn networks
induce long and very often very variable delays then dtn applications should not
rely on a heavy reliability. This is why it can be expected that applications are most
likely to use non messages instead of con.

However, con messages may be useful in some circumstances, i.e. when a client
sends a configuration update to ensure that the update occurred. con messages are
used to ensure two distinct facts: a. the request packet has not been lost during
its transport, and b. the endpoint was active, so it received and started to process
the request. The most important parameter to use con messages in dtns is the
time-out before the first reemission. This time-out should be equal to the upper
bound of the time required by a bundle to cross the network, plus the time for a
destination boap node to resume from its potential sleep cycle (as node may sleep
to save battery), plus the time to cross the network again. Calculating, or setting,
the time a bundle needs to cross a network is mostly empirical. In fact the lack of
real-world dtns makes it hard to estimate this time duration.

As part of a another solution that is more in line with dtn, several features of
bp can be used as con substitution:

• Custody Transfer : it can be assumed that, by using the custody transfer, a
message have smaller risk to be dropped from the network and is more likely
to reach its destination.

• Report-When-Bundle-Acknowledged-By-Application option: this option re-
quests that the bp daemon running on the destination node generates an
administrative bundle once the request-bundle is received and taken in charge
by the application (in our case the boap layer). This administrative bundle
can be a substitute to the coap acknowledgment. Setting this option for con
messages avoids taking care of the acknowledgment at the coap level as it

61

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

is sent directly by the bp daemon. The similar option Report-When-Bundle-
Delivered is not so convenient because it does not involve the bp application
(i.e. boap in our case) and therefore prevents boap from piggybacking the
acknowledgment to the response if it is quickly available. Added to this, the
bundle may be delivered but the application may be stopped (or in sleeping
mode) and the bundle could reach its lifetime before the application is awoken.
This would be an issue as the acknowledgement would have been sent inspite
of the fact the request may never be processed by the application.

• Expedited class of service: there are three classes of service for bundles. The
classes are, from the least to the most important, bulk, normal and expedited.
Higher-class bundles are forwarded with priority over others, as long as the
source is the same. If bulk (or normal) is used for non messages, it is suggested
that expedited be used for con messages in order to accelerate their transport,
and, hence, reduce the probability of their lifetime expiring.

Again, applications are expected to take into account the unreliability of the
underlying network so they should not require network reliability and thus use non.
This is also in the line with dtn constraints. In the meantime, if bp mechanisms
are not sufficient to substitute con occasionally re-emitting a request might be
acceptable if the minimal back-off duration is at least equal to twice the ttl of the
bundle, assuming that the ttl is well set to be equivalent to the duration a bundle
requires to reach its destination, plus the time for a destination boap node to resume
from its potential sleep cycle.

3.2.1.4 Caching

In coap, endpoints may cache responses of get requests in order to reduce the
response time and medium usage on future, equivalent requests. The option Max-
Age is set on a response to assign a duration of freshness to it. coap endpoints
are allowed to provide a cached response if it is sufficiently fresh. This caching
mechanism is only performed locally, that is, by the sender of the request, or by
a proxy (specified in the Proxy-URI option of the coap message) that issues the
request on behalf of this client.

For coap, the caching mechanism imports a lot: in coap rfc [11] four whole
different sections are dedicated to the caching mechanism. Whilst in the bp the
caching is not designed to fulfill a request, as bp does not consider messages as
request nor response anyway, it is still intrinsically present in its underlying layers.
In fact, the bp follows the dtn architecture that relies on the store-and-forward
concept, which can be likened to cache-and-forward provided that caching is close
to storing.

The caching mechanism goal, as presented in the coap rfc, is to reduce latency,
the network round-trips and the medium usage usage. In the context of the iot, and
even more in the dt-wot, the network usage must be reduced to its minimum. Not

62

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

only the network is usually characterized by a low bit rate but also using it requires
energy that comes at high price.

In a dtn network, this caching mechanism could be extended so that relay nodes
would also be allowed to provide a cached response, as if these relay nodes were
proxies. The gain in response time could therefore be drastically reduced. However,
some cross-layering is necessary to implement this mechanism: the bp relay node
must pass the bundle payload to a local boap proxy code in function of some boap-
level information. This information includes the uri but also the method type and
other coap options. These are normally only available in the payload of the bundle,
which should remain opaque.

Using an extension of the bp called “Metadata Extension Block” [7] could enable
this cross-layering support. A Metadata Extension Block (meb) is designed to carry
additional information used by bp nodes to make processing decisions regarding
bundles. In this case, the meb would contain all the necessary data about the
request so that the bp layer can trigger a local boap Proxy code that will potentially
send a boap response.

It should be noted that a double storage issue stems from the caching. According
to code design the cached responses may or may not be directly accessible from the
bp storage. If this is not the case a solution is required to access, read and parse
the stored bundles to detect valid responses and matching requests. Granted that
the caching mechanism is at a higher layer of the bundle storage it may not access
them directly, assuming the code respect the layered design. Additionally, once the
bundles have been parsed and the messages of interest detected, these responses
must be directly accessible so they can be sent back to the client. This implies
to store twice the still-valid responses and waste node storage. A better solution
would be to offer trusted applications the possibility to manage bundles (edit, send,
remove, send as, store longer) but the challenge of determining which application is
trustable rises with all the security concerns.

3.2.2 Enhancements

Added to the fundamental adjustments some enhancements are also proposed in
order to optimize a bp-binding for coap. These enhancements rely on a feature of
bp (e.g., multipayload), accept-option characteristic (e.g., that is not repeatable)
and enabling patch method.

3.2.2.1 Multi-payload

coap suggests that each coap message should fit into a single udp datagram. How-
ever, the bp allows several payload blocks to be included in the bundles. It is
common for a node to stay isolated during a significant period, without the possi-
bility to forward any message. In boap, it is thus recommended that all the boap

63

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

messages sharing the same destination should be appended into a single bundle,
each message being in a different payload block, until the bundle is ready to be
forwarded. This avoids the transport of several identical primary blocks. A bundle
header, e.g. primary block, is about 100 bytes therefore if ten requests or responses
are to be sent from one node to another adding all of them into one sole bundle
would spare 900 bytes. Not only energy will be saved up, as these 900 bytes won’t
be emitted, but storage in the network will be spared too. It must be reminded that
most of the primary block fields do not have a fixed size so the header size can vary
a lot.

The optimal size of bundles is defined as the biggest size for which the bundles
have very low risk of being fragmented during the forwarding operations. This
optimal size depends on the duration of contacts, the medium usage, the volume of
data the nodes need to forward. All those metrics depend on the mobility pattern,
the type of deployed network and the applications running. Nevertheless, it is safe
enough to assume that if the bundles fit in a packet unit of the convergence layer
there is low risk of being fragmented. If the convergence layer is tcp or udp then
according to ipv4, all hosts must be prepared to accept at least 576 bytes datagram.
Depending on the specific convergence layer 20 bytes may be used for the header
(tcp or udp) and 100 bytes for the bundle primary block leaving about 450 bytes for
the payload blocks to fit into a single packet unit. These values are just a magnitude,
again the bundle fields size are variable.

A boap request size with a few options and a short payload is about 25 bytes so
18 requests can fit an ipv4 datagram. The responses are more likely to be bigger as
there is a great chance of carrying a payload, so assuming a response weights twice
a request size it is then 9 responses that can fit in an ipv4 datagram.

Here again, the layered design imposes some limitations. Indeed, the osi model
ensures that the upper layer do not have to deal with the lower layer parameters.
In the case demonstrated here the maximal size of the transport layer datagram
influences the upper layer and the number of boap messages that should fit into one
bundle.

A good solution would be to set the limit of the bundle payload a boap imple-
mentation should not exceed and sum the messages sizes to check whether or not
it can fit in the same bundle. A better solution would be to leave this task to the
daemon that could automatically append bundle payload blocks to existing, and
not already forwarded, bundle sharing the same destination. If a bundle becomes
too big, and would imply fragmentation, then the daemon could split the payload
blocks into two different bundles of equivalent size. Nevertheless, note that adopting
an intermediary policy by dispatching the boap messages in more than one bundle
is generally not feasible because no information is available on the actual conver-
gence layers that will be used along the path, information that would be necessary
to ensure a beneficial dispatching while avoiding packet fragmentation. There are
also some networks relying on several convergence layers hardening even further this
adaptation.

64

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

3.2.2.2 Option Accept

A coap client and a server may need several exchange to determine which
Content-Format is both producible by the server and consumable by the client.
Indeed, as stated in the rfc: “If the preferred Content-Format cannot be returned,
then a 4.06 "Not Acceptable" MUST be sent as a response”. In this case, if the
client can process a different Content-Format then it sends another request with
a different Accept value. This may lead to several exchange before a client finally
find the right Accept value that the server can produce.

This kind of exchange is highly discouraged by the dtn architecture. Allowing
the Accept option to be repeatable could offer a significant benefit by preventing
these exchanges for negotiation. The advantage is not specific to boap but it is
particularly important to prevent unnecessary end-to-end transmissions in a dtn
network. Avoided exchanges would spare the network nodes energy consumption, as
fewer exchange are performed, and storage usage, as fewer messages are disseminated
in the network.

As a side note, the Accept option was, at first, repeatable. Indeed, the change
occurred between the version 13 and 14 of the Internet Draft over a “rough consen-
sus”. The repeatability of this option caused some problems with intermediaries and
caching6.

3.2.2.3 PATCH Method

If a resource need to be updated, then the method put shall be used. It this resource
happens to be large and the modification concerns only a couple of bit then the whole
resource still need to be sent in the put request. Using the method patch [121]
would allow the request to be far lighter as this method permits to only send the
difference between the actual state of the resource and its updated state.

For instance, if a resource weights several kilobytes but only one byte has been
modified then the request size would only be about several bytes and not kilobytes.

While this method would be great for dtns, coap also could benefit from it
too as some request could be lighter and may be easier to update as the block-wise
transfer would not be required in cases several datagram are needed.

To conclude, some of the adaptations presented below are actual fundamental
adjustments, such as the addressing and multicast, while others are enhancements,
such as the multipayload, repeatable Accept option or patch method. The con-
siderations about con messaging are yet an open challenge. Indeed, as there is no
deployed applications relying on the bp and even less using coap on top of that.
This is why, due to the lack of practical experience and real-world deployments, it
cannot be stated what is the best way of providing reliability in dtns. Some of
these adaptations are part of the prototype presented below, boap, that provides an

6See this first email of the discussion about this issue: http://archive.fo/XJiZm

65

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

http://archive.fo/XJiZm

adapted and redesigned coap with a bp binding.

3.3 BoaP Stack

To prototype coap with a bp binding three ways were considered. The first, as
simple as naive, is to capture and encapsulate coap udp datagrams into bundles but
this is not feasible because datagram destinations are ip addresses so all bp endpoints
should be identified by an ip address which is not a acceptable constraint. A second
possibility would be to adapt an existing coap implementation nonetheless even
in a Java implementations with a well structured layering, like Cf [119], replacing
the entire udp binding is not an option: many upper layers are too tightly coupled
with the notions of ip address and port to perform a straightforward adaptation for
the bp, in which these notions are irrelevant. A third solution would be to deploy
traditional coap clients that sends their requests to a local proxy. This proxy embeds
messages into bundles and disseminates it. This solution is being implemented and
tested as part of a team project, it also has been published during the thesis in the
article [116]. The last solution, the chosen one for this thesis, is to develop a new
implementation. boap is the name of the prototype developed with the objective
to firstly include a bp binding, and then potentially test some future extensions or
modifications of coap that would be suited for dtns. The bp binding of boap has
been developed thanks to the ibr-dtn api [18] presented above.

To prototype boap an ibr-dtn Java api is required to interface a Java program
with ibr-dtn. In the following, this api is illustrated then boap’s architecture, api
and coap compliant features are highlighted. The next chapter evaluate both the
api and the prototype.

3.3.1 IBR-DTN Java API

To fit into the software ecosystem of our research team boap have been implemented
in Java. However boap relies on ibr-dtn that has been implemented in C++.
Fortunately, as presented above, ibr-dtn provides a full functional api that is
language agnostic as it relies on a textual protocol through a network socket. This
is why, before prototyping boap, an underlying layer has been developed: a Java
ibr-dtn api that communicates with the ibr-dtn daemon through the textual
tcp socket. While this adaptation layer could be put into the boap implementation
it has been done as a self-content project for coupling reason. One of the main
objective, added to the obvious one of providing an ibr-dtn Java api, is to offer
an easy-to-use api. The source code is available online7 and was welcomed by the
community8.

7https://github.com/auzias/ibrdtn-api
8Johannes Morgenroth, main developer of ibr-dtn, acknowledged that “[the api] looks really

easy to use”: http://archive.fo/mwtur

66

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

https://github.com/auzias/ibrdtn-api
http://archive.fo/mwtur

Comm.
Input

Comm.
Output

Dispatcher

Sender Fetcher

BpApplication

BundleHandler

C
a

ch
in

g

UDP

BoapApplication

MessageHandler

MessageReceiver

BoapClient

TCP

BP daemon

TCP Convergence Layer

IP

TCP

IB
R

-D
T

N

BoaP

Java API

Figure 3.3: IBR-DTN, Java API and BoAP Stack

Fig. 3.3 presents, at high level, the three different software entities (ibr-dtn,
the Java api, and boap prototype). The Java api is detailed in this subsection.

It seems important to remind that the api, enabling the communication with
ibr-dtn daemon, passes through a network socket and that a whole conversation
is needed to send, or fetch, a single bundle. Also, due to the sequential nature of a
network socket, these conversations shall not be intermixed for endpoint: a bundle
cannot be fetched while a conversation is on going to send a bundle, it goes the
same way to respectively send, or fetch, a bundle while sending, or fetching, another
bundle. Nevertheless, users of the ibr-dtn Java api should be able to concurrently
send, or receive, several bundles. The conversations must be transparently sequen-
tialized from the users point of view. To ensure this, the bundles to be sent are
stacked up in a queue and are sent when there is no conversation ongoing. As for
incoming messages, the daemon notifies new bundles through the socket so the bp
can fetch them when there is no conversation ongoing.

The implementation architecture of this api is detailed below and shown in
Fig. 3.4 in the dashed rectangle named Java api. For clarity reasons, some utility
classes have been left out of the current presentation.

The input socket stream (from the daemon to the endpoint) is processed in a
thread on its own by the class CommunicatorInput. It actually reads the input
stream from the daemon socket, logs it, provides buffered bundles to fetch them
and processes the bundle notifications to notify Dispatcher. The main goal of the
Dispatcher is to keep track of the different conversations. For this, it uses states to
exclusively fetch or send bundles, one at a time. A fetching procedure is illustrated in
Fig. 3.5: it is assumed that the state of the endpoint is Dispatcher idle beforehand.
This sequence diagram relates with the List. 3 as this is the same procedure. It
can be seen on the Figure that the commands are sent from the Fetcher. The
Fetcher class is threaded and sends commands to the daemon through the class
CommunicatorOutput. Responses received by the CommunicatorInput updates the
Dispatcher’s state. This procedure ends when the bundle is acknowledged by the

67

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

UDP

C
a

ch
in

gBoapApplication

MessageHandler

MessageReceiver

BoapClient

IB
R

-D
T

N

BoaP

Ja
va

 A
P

I
TCP

BP daemon

TCP Convergence Layer

IP

TCP

Comm.
Input

Comm.
Output

Dispatcher

Sender Fetcher

BpApplication

BundleHandler

Figure 3.4: Java API Stack

application and that the daemon confirms that this acknowledgement is successful.
The Dispatcher state is then set back to idle.

To send bundles, the class Sender is used. It also runs within its own thread.
The Fetcher and Sender procedures are very close and both follow the example
provided in List. 3 and List. 2.

From a higher level, the BpApplication provides means to create a bp endpoint,
set its name (eid), set a specific bundle handler – implementation of the interface
BundleHandler as the code example in List. 7 –, and sends bundles.

1 public class PrintingHandler implements BundleHandler {
2 @Override
3 public void onReceive(Bundle bundle) {
4 System.out.println("Received bundle:" + bundle.toString());
5 }
6 }

Listing 7: BundleHandler Example

A full example of the implemented api is shown in List. 8 where a bp endpoint
named Phobos set the PrintingHandler shown in the List. 7 and sends a bundle to
another endpoint that is identified by the uri dtn://mars/Deimos.

3.3.2 BoaP Prototype

boap offers means to deploy both boap resources and boap clients. In the follow-

68

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Dispatcher
Communicator

Input
IBR-DTN
Daemon

602 NOTIFY

Notification

IDLE

FETCHING
RunFetcher

load bundle

200 LOADED

State update

LOADING
info

200 INFO

metadata

State update

INFO_BUFFERED

payload get

200 PAYLOAD

data

State update

DATA_BUFFERED

bundle delivered

200 DELIVERED
State update

BUNDLE_READY

IDLE

State update

Response

data

Java call

Command

Figure 3.5: Sequence Diagram: Procedure to Fetch a Bundle from the IBR-DTN
Daemon

ing both resource and client api are presented and illustrated with examples. The
prototype implementation is compared to Cf implementation, as it is the imple-
mentation of reference for this work. The architecture of boap is then explained
with a highlight of the caching mechanism and finally a table sums up what are the
coap compliant features, what has been left out for future work and what has been
adapted.

3.3.2.1 BoaP API

An interface named MessageHandler, presented in List. 9, is defined and provides
both callback methods for requests and responses. A boap endpoint is expected
to implement this interface in order to be able to process received requests and/or
responses. If it is true that two different interfaces could have been defined, one for
requests and one for responses, here a single interface is defined to allow resource
requesting from resource providers. Indeed, if it seems unnatural for a client to
receive a request a resource provider may need to send request to others resource
providers. If the callbacks *Method(Request rq) are executed for each request the
method response(Response rp) is executed only if the endpoint sent a request.

Above, when presenting Cf api, a resource example was presented, see List. 4.
Here, a similar resource endpoint developed with boap is presented List. 10. Note
that for clarity reason only the interface implementation is presented and unimpor-
tant methods are not shown. The creation of a boap endpoint is shown below in the

69

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

1 public static void main(String[] args) {
2 // Create BP endpoint with the uri-path being "Phobos"
3 BpApplication bpApp = new BpApplication("Phobos");
4 //Set the Handler that will process the received bundles
5 bpApp.setHandler(new PrintingHandler());
6 // Create a bundle
7 final String destination = "dtn://mars/Deimos";
8 Bundle bundle = new Bundle(destination);
9 bundle.setPayload("Payload\n".getBytes());

10 // Send the created bundle
11 bpApp.send(bundle);
12 }

Listing 8: IBR-DTN Java API Example

1 public interface MessageHandler {
2 // Requests
3 public void GETMethod(Request rq);
4 public void PUTMethod(Request rq);
5 public void POSTMethod(Request rq);
6 public void DELETEMethod(Request rq);
7 // Response
8 public void response(Response rp);
9 }

Listing 9: MessageHandler Interface

client example and is the same for both client and resource. The Response construc-
tor returns, if a request is sent as parameter, a response with the request’s source set
as response’s destination, also if an integer is provided too then the response code
is set to matching the integer, i.e. a 404 parameter would set the response code to
4.04 Not Found.

To request this boap resource, a client must be created in a first time,
then a request built and finally sent to the boap resource. This whole pro-
cess is shown in List. 11. The class ClientHandler implements the interface
MessageHandler, here again, for clarity reasons, only the important methods are
shown: Response(Response rp) method just print the payload of every received
responses. In the method main a BoapEndpoint is created with the uri-path part
being "client".

It should be noted that coap group messaging, provided by multicast for tra-
ditional networks, can be ported into dtns by using non-singleton endpoint: every
application registering at their own local daemon as, for instance, dtn://group/boap
will be able to receive the same messages that are sent to this uri. This bp means
can be used as a substitute of coap group messaging.

70

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

1 public class ResourceExample implements MessageHandler {
2

3 public void GETMethod(Request rq) {
4 // Return a response with the response code "2.05 Content"
5 Response response = new Response(rq, 205);
6 // Charge the payload
7 response.setPayload("hello world");
8 // Send the response
9 this.send(response);

10 }
11

12 public void POSTMethod(Request rq) {
13 // Return a response with rq’s source as destination
14 Response response = new Response(rq);
15 // ... creation (assumed successful)
16 // Set the response code "2.01 Created"
17 response.setCode(201);
18 // Send the response
19 this.send(response);
20 }
21 }

Listing 10: BoaP Resource Example

3.3.2.2 BoaP and Cf API Comparison

With Cf, to create a resource endpoint, a class must be extended whereas in boap
an interface must be implemented. The advantage of using an interface is that it
allows a class to be extended while also implementing the interface, hence a boap
resource can also extend a class. Cf resources cannot be extended without adding
a sublayer of abstraction. This minor difference can be masked away in boap by
developing a default resource endpoint and extended it.

As for client: boap does not provide native means to develop a synchronous
one unlike Cf does, otherwise both Cf and boap asynchronous client are similar as
they rely on an interface. An attentive reader may have notived that there is no
onError() method for boap client. In fact, since dtn endpoints should be aware
of the context they are in, missing responses processing should be common and a
callback for this specific event is not required.

If boap prototype provides a single interface for both client and resource it is
to allow Java inheritance without additional sublayer. Furthermore it also eases
resource provider to request other resource providers as they need to implement only
one interface: this can be likened to service composition by considering resources as
services, more details on this are in the chapter 5.

71

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

1 public class ClientHandler implements MessageHandler {
2 public void response(Response rp) {
3 System.out.println("Response payload: " + rp.getPayload());
4 }
5

6 public static void main(String[] args) {
7 // Create BoaP endpoint with the uri-path being "client"
8 BoapEndpoint boapClient = new BoapEndpoint("client");
9 // Set the handler to the client

10 boapClient.setMessageHandler(new ClientHandler());
11 // Create the message:
12 final String destination = "dtn://callisto/resourceExample";
13 Request rq = new Message(destination, Code.GET);
14 rq.setPayload("payload".getBytes());
15 // Send the request
16 boapClient.send(rq);
17 }
18 }

Listing 11: BoaP Client Example

3.3.2.3 BoaP Architecture

The boap implementation is composed of three main classes that are MessageReceiver,
the interface MessageHandler and BoapEndpoint. Again, for clarity reasons, some
utility classes have been left out of this high level explanation.

The MessageReceiver class relies on a BpApplication of the ibr-dtn Java api
to receive the bundles. Upon reception, the bundles are parsed as boap messages
and tested to verify if they were already received (duplicate) or not. Duplicate
messages are expected as most of routing protocol in dtns uses multiple copies
of bundles to increase the delivery ratio. If the message is not a duplicate, then
the messages are forwarded to the application through the implementation of the
interface MessageHandler presented above. It processes the requests and responses
as defined in the implementation of the interface developed by the programmer. If
the message is a request, it is processed and answered by sending back a response.
If a default endpoint should be provided by the prototype then, by default, the
responses would be 5.01 Unimplemented.

The class BoapEndpoint is used to create a boap endpoint, set its name (path
part of the uri), set a specific message handler – implementation of the interface
MessageHandler – to receive messages, and sends requests. An example of this class
is presented in List. 11 line 8 and below.

The implementation architecture of this api is illustrated in Fig. 3.6 in the dashed
rectangle named BoaP. For clarity reasons, some utility classes have been left out
of the current presentation. The boap client and server use the boap prototype to
request or provide resources. In this example the bp convergence layer is tcp. The

72

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Relay node(s)

C
+

+ IBR-DTN
BP daemon

TCP Convergence Layer

IP

TCP

TCP

BP daemon

TCP Convergence Layer

C
+

+

IP

TCP

Client node

Comm.
Input

Comm.
Output

Dispatcher

Sender Fetcher

BpApplication

BundleHandler

Ja
va

 F
ra

m
ew

or
k

C
a

ch
in

g

IB
R

-D
T

N
B

oa
P

UDP

BoapApplication

MessageHandler

MessageReceiver

BoapClient

TCP

BP daemon

TCP Convergence Layer

C
+

+

IP

TCP

Server node

Comm.
Input

Comm.
Output

Dispatcher

Sender Fetcher

BpApplication

BundleHandler

C
a

ch
in

g

UDP

BoapApplication

MessageHandler

MessageReceiver

BoapServer

Figure 3.6: Connection between a BoAP Client and a BoAP server with full stack

client emits a request that will be forwarded to relay nodes, its neighbors, when
possible. The request destination node may not be among these neighbors thus the
request may need to be forwarded by several nodes before reaching its destination.
When the request reaches the server it is processed and the response is sent back.
Due to the node mobility, the relay nodes may be different and so is the number of
hops needed to reach the source of the request. As a reminder, it is worth noting
that the relay nodes do not require the application layer (boap) to disseminate the
boap messages.

3.3.2.4 Caching in BoaP

Completing boap prototype a caching mechanism has also been developed. This
caching, opposed to its representation on the Fig. 3.6 is composed of several classes
plus a modification of the ibr-dtn daemon. Indeed, as exposed in 3.2.1.4, to provide
a caching mechanism the needed cross-layering is provided by the modification of
the ibr-dtn daemon. This modification is as small as possible and its only aims is
to actually forward the stored bundles. Every bundle stored by the node are sent
in a udp datagram to a local port. This modification is represented in the Fig. 3.6
by the dashed line binding the ibr-dtn daemon and the caching tile. The caching
mechanism, on boap side, relies on a udp listener that creates a new Bundle each
time the daemon forward one. This Bundle is passed through to the Deserializer
of boap. If the message is not a boap message then the bundle is ignored; otherwise
if the bundle either is a:

idempotent request then the caching service looks up for a matching still fresh

73

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

response. If such a response is found then it is sent to the source of the request,
otherwise the request is dropped.

successful response and still fresh then the response is stored. When its freshness
times out, the response is deleted.

Of course, this caching mechanism is very simple as every node receiving an idem-
potent request will potentially answer. Without any other tests, i.e. is the request
already fulfilled ?, a dense network could rapidly be flooded. To implement an op-
timized caching mechanism, heavy modifications on ibr-dtn are required. Indeed,
the caching mechanism should be able to request the daemon to stop the dissem-
ination of the answered request. In the actually state a boap node may answer
a request while the ibr-dtn daemon still stores it and forwards it though it has
been answered. Furthermore, by forwarding it to another node that have a cached
response the network is flooded even more. Another ibr-dtn modification needed
would be to forward bundle only once it has been tested for a cached response. These
modifications are not possible without cross-layering that would unfortunately in-
duces loosing all advantages that a well layered design provides.

A possible improvement to the caching mechanism would be a network healing
means. A network healing mechanism aims to delete fulfilled requests from the
network. Doing so not only free some storage but it also saves energy as requests and
responses are not disseminated anymore. The implementation of the cache feature
is naive: not only the node still disseminate the request to which it answered but it
does not check if the response has already been sent by another node. As boap, and
its caching feature, is just a prototype this network healing is the next step towards
an improved implementation. This next implementation could reduce the number
of sent responses when the caching feature is enabled.

3.3.3 Comparison of CoAP and BoaP Features

boap is mostly compliant with the rfc 7252: Tab. 3.2 lists the most important
features and concepts of coap on one column and, on another column, this feature is
marked as compliant, or adapted, in boap. Apart from some options considerations,
the multicast substitute, the probing rate being ignored and the caching relying on
a cross-layering boap prototype can be considered as a coap implementation with
a bp binding.

Also, a difference between coap and boap caching lies in types of nodes that
are part of the caching mechanism. In coap it is mainly proxies that act as cache
enabled nodes, in fact there is few reasons other clients or service providers receive
a request for which they are not the recipient and there is no reason such request
would be parsed and answered. In dtns messages are literally stored, carried and
forwarded by any node in the network that may be, or not, a boap cache enabled
node. In other words, any node in a dtn network may answer a cached response to
any request.

74

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

CoAP Features BoaP
Status Comment

Asynchronous Compliant
Request/Response Compliant
rest Compliant
uri Identification Compliant
http methods Compliant
Response Codes Compliant
con/non Compliant con must be used as little as possible
Deduplication Compliant
Req/Resp Matching Compliant
Message Format Compliant
Options Adapted Accept : repeatable, uri-* : removed, expect

Uri-query

Multicast Adapted Any non-singleton uri can be used as sub-
stitute

Probe rate Adapted Not implemented
Caching Adapted Any intermediaries may answer, rely on

cross-layering

Table 3.2: Comparison of CoAP and BoaP Features

3.4 Discussion

A presentation of both bp and coap introduced this chapter. For each protocol
an implementation is also presented at a technical level illustrated by examples of
interactions with the ibr-dtn daemon (bp) and code usage of Californium (coap).
This first part aimed to provide a good insight on the reasons these protocols can
be a good fit.

However, coap remains unadapted for dtn context and cannot be used as is over
bp. A transposition of coap is needed. The challenges arose for this transposition
are detailed, including addressing, multicast, con message and caching, and for each
challenge several solutions are considered to finally propose the best one. These
challenges are identified as fundamental adjustments but the transposition of coap
over bp also consists of optimizations. These optimizations focus on exploiting bp
multi-payload, making the option Accept repeatable and reintroducing the patch
method.

Afterwards, two implementations were presented, a Java api9 and a Java pro-
totype: the first one provides an easy-to-use Java ibr-dtn interface and the other
one, boap, prototypes a transposed coap over bp. boap main goal is to provide a
proof-of-concept base to perform some tests and evaluate the feasibility of a boap
deployment in larger networks. While it is functional, it cannot be assumed to be

9Referenced in the official documentation of ibr-dtn: https://archive.fo/7I6RY

75

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

fully-optimized: for instance, the simple caching mechanism would need a network-
healing means.

Indeed, caching implementation is quite simple. Besides, the caching mechanism
requires a cross-layering: the layered design is not respected anymore which takes
away this solution from the standard protocol it is based on. This cross-layering can
be masked away thanks to a meb that could be used to inject specific code that can
be triggered by the daemon. Such code could then follow the logic of answering a
request if a matching and still valid response is locally stored. Then the code could
delete the request from its storage since it has been fulfilled. Injecting code into a
meb has already been proposed by Borrego et al. [122] for routing purposes in order
to move the routing algorithms from the host to the message.

Many features of boap are compliant with coap features. A proxy could be
implemented to enable the cooperation between coap and boap nodes lying at the
edge of two networks. Such proxy can be likened to gateways that are commonly
used to integrate an icn or a wsn to the Internet.

This prototype provides a platform to verify the feasibility of this protocol trans-
position and is evaluated in the following chapter. This prototype is also the core
base of an soa solution to enable a Delay-Tolerant Web of Things (dt-wot) pre-
sented in chapter 5.

76

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

4
Evaluations

Contents
4.1 Preliminary Tests . 78

4.1.1 Latency Between BP Endpoints and Daemon 78

4.1.2 Validating BoaP in a small network 79

4.2 Experimentations . 83

4.2.1 Experimentations Platform 83

4.2.2 Scenarios . 87

4.2.3 Results of the Levy Walk Experiments 94

4.2.4 Results of the KAIST Experiments 98

4.3 Conclusion . 100

While the previous chapter presented the core base protocols of this work and
their implementations, this chapter focuses on validating boap prototype through
several tests and experimentations. This chapter aims to verify if the prototype
boap is not nullified when deployed. To ensure this, boap is tested with few nodes
in a small network involving no more than one client and one server, optionally an
intermediate node too. These preliminary tests, considered as a proof-of-concept,
are done to ensure that there is not any side effect or bug that would invalidate the
prototype. These tests are fast to deploy and allow to quantify boap round-trip-times
(rtt) between client’s request and server’s response. These rtts are also compared
to the theoretic ones. During these tests boap is also compared to Californium (Cf),
a coap implementation. These tests are detailed in the first section.

Another aim of the current chapter is to determine if boap performs well in
larger network. To answer this question boap is deployed in a network involving
50 network nodes. The nodes are emulated, using Docker, in a simulated wireless
network. For these experimentations the network nodes follow two different mobility
patterns: one simulated, based on a well-known mathematical model deployed in
three different densities, and the other based on real gps traces. The cache feature,
that enables intermediate nodes to answer a request if they carry a response that

77

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

is still fresh, is also introduced in these experiments to quantify its capabilities to
fulfill exchanges that would not have been without it.

4.1 Preliminary Tests

Preliminary tests aim to verify if boap does not suffer from any bug or side effect
that would discredit, impair or render unusable the prototype. Since boap lies on
top of a Java api that provides means to communicate with ibr-dtn daemon it’s
important to attest that there is not any long delay added by this layer. In the
following, the tests of Java api is presented followed by the deployment of boap in
a small physical network.

4.1.1 Latency Between BP Endpoints and Daemon

Because a long delay at the Java api layer would negatively impact upper layers
and more specifically boap, cross-layering latencies are measured. A cross-layering
latency is the duration a message requires to cross the different layers. There are
two different cross-layering latencies that are considered: top-down and bottom-up.
In following measurements, the top-down one is the duration between the call of
the method send() and the acknowledgement of the daemon, as opposed to the
bottom-up one that is the duration between the notification of a new bundle from
the daemon and the bundle being ready to be consumed.

To determine if the api performs well in bundle reception and emission cross-
layering latencies are quantified according to the following procedure:

1. A timer called "emission" is started when a bp endpoint is created,

2. this endpoint produces 500 bundles, with small payload, and sends them (the
daemon receives and stores them),

3. the timer "emission" is stopped once the daemon acknowledged the last bundle,

4. another timer, called "reception", is started when the destination endpoint is
created,

5. the endpoint consumes the 500 bundles and dies right after,

6. the timer "reception" is stopped.

Average duration to process the 500 bundles is calculated as so: both durations
processes spent in user and kernel space are quantified by using the Linux tool time.
Then these values are summed up and finally divided by the number of bundles to
determine an average value of cross-layering latencies.

78

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

The average latency to send (or fetch) a bundle to (or from) the daemon is
about 3.5 ms with a standard deviation of 0.25 ms. These results were averaged
over twenty runs. ibr-dtn tools, provided in the Linux package of ibr-dtn, are
ten times faster. However this comparison is not really fair as these tools do not log
the socket exchanges unlike the Java api. The latency of 3.5 ms may seem long,
however it must be clear that this latency is not the duration that two nodes require
to exchange a bundle. Indeed, these measurements were performed locally and are
independent of connections or network dynamic.

To better understand the effect of this delay, let’s assume a humidity sensor
suffering from a long cross-layering latency of 10 seconds. The sensor makes a
measurement put it into a bundle a sends it the to daemon. The bundle needs
10 seconds between its creation and the daemon’s acknowledgement. If a mobile
node passes close by and creates an intercontact duration of 3 seconds, then the
two daemons may have enough time to exchange the bundle. The risk induced from
a long cross-layering latency is to miss the opportunity to forward a bundle if this
bundle is created 10 seconds, in this example, before the end of the intercontact
duration. However bp applications are not expected to produce bundle according to
the presence of neighbors because their behaviors must be totally independent from
connections and disconnections events.

A delay of several seconds would have invalidated the prototype lying on top of
this api. Nevertheless, whilst the Java api is slower than the ibr-dtn tools, it is
not critical as the induced delay is negligible, does not undermine boap performance
and does not slow down the communication procedure in a way that would make
the bp endpoints lost opportunities of connections.

4.1.2 Validating BoaP in a small network

In the following, boap prototype is deployed in order to ascertain that it offers rea-
sonable performance when the connectivity is good while supporting long discon-
nections, following tests were conducted in a small physical network in two scenarios
named: intermittent connection and data-mule. To validate this prototype, boap
rtts of a request/response exchange between a client and a server, on both boap
and Cf, have been assessed by these tests.

4.1.2.1 Testing Setup

In these tests boap used non messages whereas coap implementation, Cali-
fornium [119], used con messages. In fact, since boap runs over bp it does not
need to retransmit a new boap message as these are stored until they can be for-
warded when a connection appears, on the contrary Cf runs over udp that does
not have any message buffer. Note that since the implementation of udp is a part
of the kernel therefore it is faster than an implementation of the bp that needs to
run above its convergence layer and consequently induces delay. On the installation

79

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

made for the tests, an icmp ping is 50 times faster than a ibr-dtn ping (done with
ibr-dtn tools). It is then expected that for a stable connection boap is slower that
Cf. The following tests are deployed on Linux computers embedding 1 Go ram, a
dual 32-bit Atom processor cadenced at 1.60 GHz running Debian Wheezy (kernel
3.2).

The rtt is measured in function of the duration of disconnection. The rtt is
defined as the duration between the time the client calls the send() method and
the time when the response is received back.

4.1.2.2 Two Testing Scenarios

Two different scenarios were deployed for these tests:

intermittent connection This first scenario can be pictured as a sensor that fol-
lows a cycle of periodical sleeping and waking phases. The client and the
sensor are always in ranged of each another, and the client goal is to log mea-
surements of the sensor. Each time the sensor wakes up, the client sends a
requests. Note that, for such a scenario, the option observe should be used
instead as it better fit the needs when a resource need to be monitored. Fig. 4.1
represents this scenario. The link, represented by the dashed line, between the
client, on the left, and the sensor, on the right, is cut off according to the sleep-
ing cycle of the sensor. In this scenario the boap client sends a non request
while the coap one needs to send a con requests. During the experiment,
the requests are sent just after the link between the client and the server has
been interrupted. This interruption lasts for what is called the disconnection
duration. coap implementation is therefore forced to use its retransmission
mechanism, which is triggered after a certain amount of time defined by the
coap parameter ack_timeout but the number of requests sent is limited by
the max_retransmit value. Two values of ack_timeout were tested (15
and 30 seconds). As for boap the request is sent to the daemon which waits for
the reestablishment of the link to forward the request, hence no retransmission
are needed as the request is stored (thus not lost nor dropped).

REV 1.2

2011-08-08

Client Sensor

Figure 4.1: BoaP Test: Scenario 1

data-mule In this second scenario there is not any connected end-to-end path at
any time between the client and the server. The client sends non requests to
the server periodically (every 30 seconds). In this context, “sends” means that
requests are added locally to the ibr-dtn daemon queue every 30 seconds,

80

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

whether the node is isolated or not. As shown in Figure 4.2, a third node, I,
is used as an intermediary relay node (simulating a data-mule) that also runs
ibr-dtn so that bundles can be transmitted between the client and the server.
Note that the intermediary node does not need to have boap implementation
to transport boap messages.

A cycle of connections/disconnections is enforced in the network, composed of
four successive periods:

1. during ∆ seconds, only the link between the client node and node I is
active;

2. during ∆/2 seconds, both links are inactive;

3. during ∆ seconds, only the link between I and the server node is active;

4. during ∆/2 seconds, both links are inactive again. Next period is period
number 1.

Fig. 4.2 represents the three different states throughout the four successive
periods. The disconnection duration, ∆, displayed in abscissa in Figure 4.3b
is the time during which boap nodes are isolated. Of course, this scenario has
not been tested with Cf as udp datagrams could not be transmitted to the
server and would automatically be lost or dropped. Indeed, even with static
routing rules the datagrams could, at best, be sent to the node I but as udp
does not store any datagram then the messages would not travel further.

REV 1.2

2011-08-08

Client SensorI

REV 1.2

2011-08-08

Client SensorI

1.

2.

REV 1.2

2011-08-08

Client SensorI

REV 1.2

2011-08-08

Client SensorI

3.

4.

Figure 4.2: BoaP Test: Scenario 2

4.1.2.3 Results of Preliminary Tests

As for the first scenario, the obtained rtts are displayed in Fig 4.3a. The two curves
for Cf (one for each value of ack_timeout begin 15 and 30 s) exhibit a stair-like
shape, as expected, due to the exponential back-off. However, boap is almost linear,
with a slope close to 1. boap is slightly slower than Cf when disconnections are very
short or when the disconnection durations coincide with the retransmission back-off
time, yet boap is definitively faster than Cf when disconnections stop between two
dates of retransmission. That is because boap does not wait to transmit requests.

81

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

During this experiment the bp beaconing, used to discover the neighbors, was
set to 1 second. For fairness, the coap parameter ack_timeout could have been
set to 1 second too. However if the disconnections are expected to be long then the
coap client would rapidly flood the network each time it needs to send a request
and the max_retransmit value would be reached before the link would be up
again. In such circumstances the messages are most likely to never be received at
all.

As for the second scenario, Fig 4.3b shows the obtained rtt values. With the
emission dates uniformly distributed and with the two extreme rtt values being
2∆ seconds and 5∆ seconds then the expected average of the optimal and theoretic
rtt is y = 3.5∆ seconds. In practice, the measured rtt s are slightly longer due
to the reconnection cost (beaconing), and the processing of boap messages that are
neglected in the optimal and theoretic rtt value. These results show that boap can
perform reasonably even when the client and the server never meet.

Disconnection (s)

0

100

200

300

400

0 100 200 300 400

R
T

T
 (

s)

Disconnection (s)

CoAP/UDP 15
CoAP/UDP 30
BoaP

(a) Intermittent direct connectivity (b) No end-to-end connectivity

R
T

T
 (

s)

0 100 200
0

200

400

300 400 500

600

800

1000

 BoaP
y = 3.5 ∆

Figure 4.3: Measures of the RTT obtained in the two tested scenarios

As a conclusion, the Java api used to communicate with ibr-dtn provides rea-
sonable performance and does not slow down the reactivity of bp endpoints that
rely on it. As for the test in a small network, it can be said that Cf is fast and
can easily overcome short disconnections. However, if long disconnections are to be
expected or if a connected end-to-end path between client and server is unlikely to
exist, then, boap is a better alternative. In other words, the bp can be an effective
substitute to udp as a coap binding: boap does not largely degrade transmission
delays when disconnections are short, and, contrary to coap/udp implementations,
it continues to play its role when the connectivity is strongly intermittent or when
no connected end-to-end path exist. These preliminary tests were performed on
constrained devices: Atom 32-bit processors cadenced at 1.6 GHz with only 1 Go
ram. Even if these resources are a bit more than what the things can be expected to
embed, rtts are still very close to the theoretical ones even if the api and prototype

82

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

are not focused on performance.

Finally, according to these results, it can be attested that boap tests verified
that the prototype works as expected and offer good performance. Experiments,
involving mobility and a bigger number of nodes were conducted and are presented
below.

4.2 Experimentations

In the following, experimentations with boap deployed in a dtn network of 50 nodes
in movements are presented. These movements forces the nodes to connect and dis-
connect with one another making the network suffers from delays and disruptions.
These experimentations aim to attest whether or not boap is suitable for dtn net-
works and that there is not any side effect that would nullified it while keeping good
performances. Validating boap is an important step for the work of this thesis as
boap is only the first step to provide a restful and soa middleware on top of it. If
boap is not suitable for dtn networks there is no reason to design any middleware
over it for the dt-wot.

The experiments environment is presented in the following subsection, next sub-
section presents the results for each scenario, and more specifically for: 1. Levy
Walk, 2. Levy Walk with cache, 3. kaist traces with and without cache.

4.2.1 Experimentations Platform

4.2.1.1 Swarm

Real-world experiments are financially expensive but provide evaluations of high
quality. On the contrary, simulation tools are financially cheap but only offer to
model nodes behavior and thus provide evaluations of lower quality. Since a pro-
totype, boap, has already been implemented and that the measurements should be
as close as possible to their real-world values then simulation tools are left aside.
Indeed, simulations do not offer the possibility of running real code, opposed to mod-
elized code. By using a modelized code the benefits of having a developed prototype
are lost as measurements would not reflect the prototype code but the modelized
ones. Furthermore, simulation tools are usually based on discrete time. Discrete
time is both an advantage and a drawback: experiments of several hours can be
done in minutes but it actually masks away long operations (such as queries to a
database) by shorting them into a single time period. So, in such cases, discrete
time actually twists the performance results for the better.

A solution between simulation and real-world experiment has been chosen: net-
work nodes are virtualize with containers. Hence, the prototype code is reused,
the deployment is cheaper than real-world experiments and also reproducible. Con-

83

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

tainers scalability lies in the fact that the container kernel is not virtualized nor
emulated (opposed to what a virtual machine would do) but actually shared with
the host. Thus, while it is not possible to seamlessly run another operating system
in a container, a container is far lighter, in terms of ram and cpu usage, than a
virtual machine. The container solution used for these experiments was Docker and
more specifically Swarm that is a native clustering tool for Docker offering to use
the resources of a pool of Docker hosts abstracted as a sole one. Once coupled with
a multi-host networking overlay, Swarm is a powerful, yet lightweight, tool that
enables a whole experiment platform.

Figure 4.4 represents the architecture that was deployed for the experiments
explained here in a top-down manner. The containers simulate the things. Each
container runs an instance of boap and the ibr-dtn daemon, dtnd. Added to these
two processes, the containers run an iptable script that allows, or disables, the
communication with other containers according to the mobility pattern.

The plug-in Weave is a multi-host networking overlay that lets the containers
share the same lan and that supports multicast. It runs as a container on each
Docker agent. A Docker agent is a host running a Docker daemon and being part
of the Swarm.

Underneath the deployed containers is the Swarm environment. Swarm can be
described as an orchestrator. The Swarm is composed of a cluster of hosts running
Docker daemon pooled together. Then each time the Swarm is requested to start a
container it will start it according to a strategy. In the case of the experiment, the
strategy that was used is described on the Swarm documentation as: optimizes for
the node with the least number of containers, i.e. the biggest number of containers
running on a host is at most one more than the lowest number of containers running
on any host. Thanks to this strategy, the Docker agents resources are then evenly
distributed among the containers, and the containers are evenly hosted among the
Docker agents.

Under the Swarm environment are the Docker daemons themselves. These ones
run directly over the kernel of the cluster nodes. During the experiment each con-
tainer ran several processes that were:

dtnd the ibr-dtn daemon.

BoaP either a client or server application. Optionally the boap cache feature was
run on specific nodes for some experiments.

iptable a script that would first drops all packets, and then accepts packets from
specific ip addresses according to the mobility pattern.

If Linux containerization has been used for a long time to experiment, using
Docker is quite new. EmuStack [123], for instance, is a work that proposes an emu-
lation platform for dtn networks based on OpenStack and Docker. Their platform,
unlike the one proposed in this work, differentiates two types of nodes: one, that

84

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

needs multiple network interface cards, manages network resources, CPU, memory,
emulation network. Other nodes, connected to this manager, host emulated nodes.
This solution being centralized is not as scalable as the one presented above. It
should also be noted that, unlike the platform proposed above, the emulated nodes
follow a discrete time which means that the experimentations are not as close as
real-world deployment. ns-31, a discrete-event network simulator, would enable such
architecture. Many parameters (almost a thousands) define the behavior of physical
and network layers which make it too complex to be parameterized, for little bene-
fit, according to what is usually done in the experiments. Indeed, the one, one of
the network simulators accepted by the community, only model node behavior and
the communication links are as simple as: when two nodes are connected they can
exchange any data without any challenge. Another tool, Common Open Research
Emulator (core) [124], provides similar features through containerization and em-
ulations networking layer 3 and above. Besides being a very similar tool it provided
no benefit to the Swarm solution. Also Swarm solution emulates networking layer
2 and above which bring emulation closer to real-world deployment.

Network

Cluster
node

Cluster
node

Cluster
node

Kernel Kernel Kernel

Swarm

dtnd
container

BoaP

dtnd
container

BoaP

dtnd
container

BoaP dtnd
container

BoaP

dtnd
container

BoaP

dtnd
container

BoaP dtnd
container

BoaP

dtnd
container

BoaP

dtnd
container

BoaP

WeaveWeaveWeave

Figure 4.4: Swarm Architecture

4.2.1.2 Performances of the Network and the Application

In order to ascertain that no layer introduce a critical latency the performance of
the different layers are assessed. In fact, just like for the Java ibr-dtn api, it is
important to attest that the experiment platform does not critically degrade the
networking performances. To do so, the following rtts, presented in Table 4.1, are
measured:

Agent Network The rtt named Agent Network is a simple icmp rtt. There are
two measurements presented: one sent from a Docker agent to itself and one
sent from a Docker agent to another Docker agent.

1https://archive.fo/QLF8y

85

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

https://archive.fo/QLF8y

Swarm Overlay Network The Swarm Overlay Network rtt is also an icmp rtt.
It must be differentiated with the Agent Network one as it done over the Swarm
environment through the plug-in Weave. Because a Docker agent hosts several
containers then the rtt between two containers sharing the same Docker agent
may be shorter than the rtt between two containers hosted on two different
Docker agents. For this reason, rtts are measured as both: loopback (a
container pings itself), locally (a container pings another container on the
same host), and remotely (a container pings another container hosted on a
another host).

It should be noted that there is only two Agent Network rtts as, at this level,
the loopback and local rtts are the same.

ibr-dtn Network The ibr-dtn Network rtt is measured by using the command
dtnping, that sends a ping to a destination to which the daemon, on the
destination, answers with a pong. Just like Swarm Overlay Network rtt,
there is three measurements (loopback, local and remote).

boap Request/Response The last rtt measured is a boap request/response
round-trip-time, again three measurements are presented.

These rtts were runs ten times the standard deviations are below 13%. On av-
erage, a cluster node icmp ping rtt to itself lasts 0.035 ms and lasts 0.226 ms when
the destination is another cluster node. Within Swarm environment, on average, a
container icmp ping rtt to itself lasts 0.048 ms, lasts 0.065 ms when the destination
is another container on the same host and 0.456 ms if the destination is hosted on
another cluster node. On average, ibr-dtn endpoints ping rtt lasts 1.09 ms when
the destination is itself, 2.22 ms when the destination is locally hosted and 2.39 ms
when the destination is hosted on another cluster node. ibr-dtn daemons com-
municate over tcp which is an upper layer than icmp needs to communicate. This
latency is explained by the tcp handshakes and acknowledgements. The last latency
measured is boap where a whole request is sent to a destination and is answered
right away. The rtt is measured just before sending the request and just after re-
ceiving the response on the application layer. On average, a local request/response
rtt lasts 68.9 ms, 74.6 ms when the container is on the same host and 79.4 ms when
the container is hosted on a distant node. This latency can seem big but it can be
explained by the communication between bp endpoints and ibr-dtn daemon that
is done through a textual tcp stateful communication api.

Loopback Local Remote
Agent Network 0.035 0.226
Swarm Overlay Network 0.048 0.065 0.456
ibr-dtn Network 1.09 2.22 2.39
boap Request/Response 68.9 74.6 79.4

Table 4.1: Platform Performance: rtts Measurements (ms)

86

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

It should be noted that if the latencies are too short then the experiment platform
is not realistic. Indeed, if the simulated network offers better performances than a
real-world wireless network then the simulated network get away from a realistic
one. Even though the boap rtt appears to be costly it is still acceptable and not
critical as the radio interferences and the delay to connect two nodes are ignored.

Performance of the experiment platform, relying on Docker Swarm, is fast enough
between interconnected nodes: about 70 ms for a request/response rtt. This rtt
value is the minimal rtt in a connected environment. In the experiment platform, a
contact duration of one second between two nodes can be utilized to fulfill a request,
or at least forward it. In real-world, such fast contact may not be utilized: indeed
delay for two nodes to connect to each other with Bluetooth or Wi-Fi is usually
longer than one second. These utilized contacts could be part of a long chain of
forwarding that allows a request (or a response) to be received. For this reason the
platform might not be as realistic as possible. For a more realistic platform these
short contacts should be ignored, for an even better realism all the contacts should
be reduced of the connection delay. Another solution to this challenge of realism
could be to modify the radio range. Indeed, with a shorter radio range then the short
contacts would be deleted. Nevertheless this solution implies two other challenges:
the contacts that were a bit longer than these short contacts become short contact
themselves, and the radio interferences are still ignored.

4.2.2 Scenarios

Mobility patterns, node behaviors and processing of connections history are detailed
here to better understand the following experiments. There are two different node
mobilities used for these experiments:

Levy Walk Mobility Levy Walk, presented by Rhee et al. in [125], is a math-
ematical model based on statistic of human mobility and simulates it better
than Random Way Point mobility. Indeed, as exposed in experiment reviews,
see 4.2.2.2, several studies tried to correct, or at least compensate, its known
flaws. In the experiments, 50 nodes move according to this mobility within an
open squared area during one hour. Three different densities (high, medium
and low) are deployed by modifying the size of the area while conserving the
same number of node. These three densities were empirically chosen after a
set of experiments with different values and are in the range of the various
experiments reviewed in 4.2.2.2. The different densities actually force three
different kind of networks. The different experiments are named:

lwhd In the Levy Walk High Density scenario there are very rare disconnec-
tions.

lwmd The Levy Walk Medium ario is characterized by more frequent discon-
nections.

87

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

lwld As for the Levy Walk Low Density scenario, the connections opportu-
nity are rarer and contact durations shorter.

kaist Mobility kaist mobility is based on real-world gps traces, [126]. This
dataset provides 92 movement gps traces of students in the kaist campus
(Daejeon, Korea). This is one of the dataset of crawdad that is not focused
on the occurrence/duration of contacts but in effective human mobility. While
most node speed is close to human walk speed, some have a higher speed and
represent student mobility in cars. Unlike Levy Walk the nodes are not in an
open area but follow defined paths, such as roads, and are not as uniformly
distributed as Levy Walk in the area. The graphical representation of these
traces, likened to a heat map, over the world map can be seen in the Fig. 4.5.
This experiment scenario is named kaist.

Figure 4.5: Graphical representation of kaist traces

Before executing the experiments a processing is required to go from the nodes
positions (either simulated with Levy Walk or gps-based from kaist) to the nodes
connections and disconnections. From the nodes positions and their radio range,
the connection history is calculated for every single node. For each node, identified
by an ip address, and at each position, the reachable nodes are listed creating the
history of connections and disconnections. When a node comes in range of another
node then its ip address is enabled to accept the traffic from and to it. When a node
leaves the range of another node then its ip address is set to drops the traffic from

88

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

and to it. A script is created for each node, this script drops or accepts the packets
from the specified ip addresses simulating the network as it would be if the nodes
were really moving accordingly to the positions. This history of connections is put
into a script using iptable Linux tool.

In the experiments, a node is a device being part of an intermittently connected
network in which the bp is the transport protocol. Among the 50 nodes, there
are clients, servers and regular nodes. The clients request resources hosted on the
servers, the servers answer these requests. As for the regular nodes, they do not
request nor answer message though they actually relay messages thanks to their
cache and the store-carry-and-forward concept implemented by ibr-dtn. For the
experiments, the percentage of clients and servers are set to 20% and the rest are
regular nodes. Lacking of real-world dtn applications, these ratios were empirically
chosen after a set of experiments performed with different percentages. Note that
the results of these experiment are not presented in this document and match the
range of client/server ratio of various experiments reviewed in 4.2.2.2.

The clients behavior aims to model a smartphone usage but the lack of study
on the smartphone usage and network behavior2 forces the model to be intuitively
designed. Two behaviors aim at reproducing two different kind of applications usage
that are automatic requesting, e.g. background requesting, and on demand request-
ing, e.g. web, email, instant message service. More specifically, the two behaviors
are as follow:

Automatic At start, between 3 and 7 servers are randomly selected. Each client
sequentially requests one server after another at a fixed period of P seconds,
P being randomly picked only once between 30 and 300 seconds.

On demand (human action) At start, between 3 and 7 servers are randomly se-
lected. Each client sequentially requests one server after another after a vari-
able period of R seconds, R being randomly picked each time between 60
and 120 seconds.

All clients stop sending requests a while before the end of the experiment. In
the Levy Walk scenarios, that last 60 min, the requests sending is stopped at 15
min before the end of the experiment. This is done to let time to the network
to disseminate requests and responses to reach a stable state at the end of the
experiment.

4.2.2.1 Quantitative Characterization of the Scenarios

A quantitative characterization of the scenarios is provided below. This characteriza-
tion aims to put experiment results in perspective, to provide the key to understand

2Studies, such as [127], focus the psychological traits and compulsive behavior related to the
smartphone usage but not the networking behavior of smartphones.

89

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

these results and to compare the four scenarios, e.g. especially finding a Lewy Walk
scenario comparable to kaist scenario. The Tab. 4.2 presents the four scenarios
with six characteristics that are:

Square Side The square side defines the length, in meter, of the square enclosing
the nodes in their mobility. While it can easily be determined for Levy Walk
scenarios, since it is a parameter, it must be noted that for the kaist scenario
defining the exact limitations or the enclosed area is mostly empirical: the
traces are not contained in a well defined square and removing areas where
there is no traces is complicated as it tends the area to be only composed of
few buildings and roads.

In the following experiments, the square sides vary between 500 and 2500 m.
The kaist area is estimated between 2000 and 2200 m.

Node density The node density is directly calculated according to the number
of nodes in the experiment, which is a constant: 50, divided by the area
of the experiment. Assuming that all nodes have the same radio range this
metric seems a natural one to estimate the connectivity and stability of an
icn. Indeed, the number of network links logically increases with the node
density.

Experiments densities go from 8.0 x 10−6 to 2.0 x 10−4 nodes/m2 for Levy
Walk experiments, as for the kaist one it is estimated between 1.25 x 10−5

nodes/m2 and 1.03 x 10−5 nodes/m2 which places it between lwmd and lwld.

Coverage Ratio Assuming that the nodes are uniformly positioned in the network
area, the coverage ratio3 aims to represent network sparseness. This ratio is
calculated by dividing the covered_area by the experiment_area, where:
covered_area = number_of_nodes ∗ (π ∗ radio_range2). When this metric
exceeds 1 it induces that all the experiment area can be covered by the wireless
communication. This metric depends on the area size itself, the number of
nodes in the network and the radio range.

In the experiments, the different node densities differ by two order of magni-
tudes. This directly affects the coverage ratio that goes from 157% down to
6.3% for Levy Walk scenarios. These values may seem very far away from each
other but they were chosen after many experimentations to select three differ-
ent kinds of networks being: stable/reliable, mostly disconnected and rarely
connected. The kaist coverage ratio is between 8.11 and 9.82%, as expected
its value is within the range of lwmd and lwld just like node density and
square side values.

Average degree of node against time The average number of network connec-
tions per network node, or average number of edges per vertex, or average

3The coverage ratio presented in this document does not have any similarity with its financial
homonym: the measure of a company’s ability to meet its financial obligations.

90

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

degree of node, aims to give an overview of how much the network nodes are
actually interconnected. If the average degree of node is high during all the
experiments then it can be assumed that the network is meshed. On the con-
trary if this average is very low then it means that the nodes rarely meet one
another.

Tab. 4.2 shows that a lower density allows fewer links per node. Indeed, in
lwhd the number of network links does not fall behind 16 and goes above 25
which represents half of the nodes. In lwmd, the number of links is between
1.2 and 2.4, as for lwld the number of links does not exceed 1.7 and sometimes
falls under 1 which implies that most nodes are isolated. It should be noticed
that for this characteristic kaist is not between lwmd and lwld values.
kaist average degree of node is not really comparable to other Levy Walk
scenarios and is greater than lwmd values despite its lower node density and
lower coverage ratio.

cdf of contacts durations The Cumulative Distribution Function (cdf) of con-
tact duration shows the percentage of distribution of the contact durations.
With longer contact durations, a network can be considered as more stable.
In contrast with shorter contact durations, a network can be considered as
more dynamic. Also, for the same reasonably low-density, the faster the nodes
move, the shorter the contact durations will be but they are likely to be more
frequent too.

cdf of contact durations are shown in Tab. 4.2. As it can be seen, the cdf of
contacts durations do not greatly differ as both three scenarios use the Levy
Walk model. As for kaist scenario there are more long contact duration as
the experiment lasts longer but, just like Levy Walk experiments, 90% of the
contacts durations are below 10 seconds..

Contact matrices To better understand the difference between following results a
means to visually compare the contact behaviors in the four experiments was
sought. The contact behaviors can be measured and analyzed in many ways
and a 2 dimensional graphic is proposed here. A contact matrix represents
both the cumulative link duration of each node with every other node and the
number of contacts of each node with other nodes. The matrices in Tab. 4.2
represents these different data in a single matrix as follow:

• the lower-left corner of a matrix represents the cumulative contact dura-
tions of each node with other ones: the longer two nodes are in contact,
the whiter the color is. The contact durations are expressed in percentage
of the whole experiment timespan, i.e. to reach 100% of contact duration
two nodes must be in the range of each other during the whole experi-
mentation. On the contrary two nodes that never meet will share a black
color.

• the upper-right corner of a matrix represents the number of contact of
each node with every other ones: if the number of contacts increases then

91

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

the gray-scale color becomes whiter. The number of contacts between the
nodes are normalized: the biggest number of contacts between two nodes
is represented as a white value (100%) while the least number of contact is
represented as a black one (0%), therefore it cannot be used to relatively
compare two different experiments but the emerging patterns still provide
hints to understand the node interactions at a network level.

The lwhd matrix is undoubtedly lighter than the others. Since the Levy Walk
mobility is supposed to model the human mobility and since the kaist density
and coverage ratio are enclosed in the range of lwmd and lwld values it could
be expected that same patterns are shown by the three matrices. Nevertheless
kaist matrix is clearly lighter than the others and specific patterns are shown.
This difference can be explained by the average degree of node that already
differs from Levy Walk experiments.

The experiments were performed at least twice to verify no error occurred during:
thanks to the experiment platform the experiments are close to be reproducible and
results do not differ over 3%.

4.2.2.2 Experiments Review

An experiments review has been done to define the experiment parameters in co-
herence with what the community usually does. 86 articles are referenced, see A.1.
This review highlights the wide ranges of parameters values that are used among
very different scenarios deployed for various, diverse objectives.

Very few real-world experiences occurred, two famous ones both involve animals,
[97, 98], and very few emulations are done in this field. In fact, experiments are
usually done with discrete-time simulations. An interested reader will find more
details in the similar, yet deeper, work done in [128].

Tab. A.1 references 86 papers that presents simulations or emulations. In an
attempt to compare and present what is usually done, some quantitative character-
istics are extracted from theses papers. These quantitative characteristics are the
area size of the simulations, the radio range of the devices, the number of nodes, the
coverage ratio, the node mobility, the simulator used and the experimentation du-
ration. The number of quantitative characteristics available for the different study
varies a lot: some only name the simulator tool and others provide in depth details
of the simulation set of parameters. Moreover, in the referenced works, some used
crawdad [129] traces where the number of nodes is not always written down in the
paper, the radio range often not available and the area not well defined.

92

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Experiment name lwhd lwmd lwld kaist
Square side (m) 500 1750 2500 2000 ∼ 2200
Square area (km2) 0.25 3.0625 6.25 4 ∼ 4.84
Node density (nodes/m2) 2.0 x 10−4 1.6 x 10−5 8.0 x 10−6 1.25 x 10−5 ∼ 1.03 x 10−5

Coverage ratio (%) 157 12.8 6.3 9.82 ∼ 8.11
Average degree of node
against time

0

5

10

15

20

25

00:00 00:10 00:20 00:30 00:40 00:50 01:00

Timeline (hh:mm)

0

1

2

3

4

5

6

7

00:00 00:10 00:20 00:30 00:40 00:50 01:00

Timeline (hh:mm)

0

1

2

3

4

5

6

7

00:00 00:10 00:20 00:30 00:40 00:50 01:00

Timeline (hh:mm)

0

1

2

3

4

5

6

7

01:00 04:00 08:00 11:00 14:00 18:00 21:00

Timeline (hh:mm)

cdf of contacts dura-
tions

0

0.2

0.4

0.6

0.8

1

00:00 00:10 00:20 00:30 00:40 00:50
0

0.2

0.4

0.6

0.8

1

00:00 00:10 00:20 00:30 00:40 00:50
0

0.2

0.4

0.6

0.8

1

00:00 00:10 00:20 00:30 00:40 00:50
0

0.2

0.4

0.6

0.8

1

00:00 00:10 00:20 00:30 00:40 00:50

Contact matrices (lower-
left corner: cumulative
contact duration, upper-
right corner: number of
contact of each node with
every other ones)

0 10 20 30 40

0

10

20

30

40

0 10 20 30 40

0

10

20

30

40

0 10 20 30 40

0

10

20

30

40

0 10 20 30 40

0

10

20

30

40

Table 4.2: Quantitative Comparison of Scenarios

93

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

As stated in [128], only 15% of the published paper on experiment are repeatable
and 12.1% mention the simulator version used. The reproducibility of the experi-
ments presented in this thesis is in one of the focus of this work. The credibility
of the experiments was also one of the objectives and Tab. A.1 aimed to give an
overview of the parameters ranges usually chosen so the parameters selected for this
work were not out of band and more likely to be realist. It is not claimed that the
node mobility, the Levy Walk or the kaist traces, node behavior and network link
are all very realist but it is the closest this work could be despite the “poor state of
simulation based studies in the network community”, as wrote Kurkowski et al..

Among the papers review in Tab. A.1 only one study did not use a discrete
time simulator tool. Only 8.3% studies used several traces, and as few as 11.7%
used crawdad traces. Among the 75% studies that used mathematical models to
generate the nodes mobility, 82.2% used the Random Way Point despite its known
flaws. Several papers though applied some tweaks to correct these flaws.

4.2.3 Results of the Levy Walk Experiments

In Fig. 4.6 three metrics are represented against time on each graph. Each metric
represents a number of messages:

• the number of sent requests (from the client to the servers),

• the number of received requests (that is also the number of sent responses),

• the number of received responses.

In the first experiment, see Fig. 4.6a, lwhd, all requests are received by the
servers and all responses are received by the clients. In this experiment the density
is so high that the network can be likened to a connected manet within which a
routed end to end path exist between every nodes in the network. The messages are
actually received so fast that the three plots overlap.

In the second experiment, see Fig. 4.6b, medium density, 91% of the requests are
received by the servers. Among these received requests, and produced responses,
12% will not be received by the clients. Overall 79% of the sent requests will receive
a response.

In the last experiment, see Fig. 4.6c, low-density, 67% of the requests are received
by the servers. Among these received requests, and produced responses, 19% will not
be received by the clients. Overall 49% of the sent requests will receive a response.

In Fig. 4.7 the two graphics represent the comparison between the different ex-
periments. The Fig. 4.7a represents the number of received requests in the three
different experiments, as for the Fig. 4.7b it represents the number of received re-
sponses in the different experiments. It is clear that with a lower the density the
number of connections decreases and the message dissemination is challenged. This
is why the number of received responses is higher when the density increases.

94

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

These results are coherent with the intuition given by the quantitative charac-
teristics. In fact, as expected, if the area becomes bigger then the density lowers
and with a lower density the links are rarer so the exchanges are less frequent due to
the fewer opportunities. This is why the ratio of delivered responses decreases when
the node density decreases. It can be noticed that the curves representing received
requests and received responses share similar form with the received responses one
being delayed. This is explained by the fact that a response cannot be received if
the request was not received beforehand and that the more requests are received
the more responses are received too. It can also be noticed some steps in received
messages, both requests and responses. These steps are explained by the network
nodes getting closer allowing messages to reach their destination.

25

50

75

100

15 30 45 60

N
um

be
r

of
 M

es
sa

ge
s

(%
)

Time (min)

Sent Requests
Received Requests

Recevied Responses

(a) lwhd

25

50

75

100

15 30 45 60

N
um

be
r

of
 M

es
sa

ge
s

(%
)

Time (min)

Sent Requests
Received Requests

Recevied Responses

(b) lwmd

25

50

75

100

15 30 45 60

N
um

be
r

of
 M

es
sa

ge
s

(%
)

Time (min)

Sent Requests
Received Requests

Recevied Responses

(c) lwld

Figure 4.6: Levy Walk mobility with 50 m radio range, without BoaP caching

95

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

25

50

75

100

15 30 45 60

N
um

be
r

of
 M

es
sa

ge
s

(%
)

Time (min)

Sent Rq
500

1750
2500

(a) Received Requests

25

50

75

100

15 30 45 60

N
um

be
r

of
 M

es
sa

ge
s

(%
)

Time (min)

Sent Rq
500

1750
2500

(b) Received Responses

Figure 4.7: Levy Walk, 50 m radio range, without BoaP caching: Comparison

4.2.3.1 Enabling Cache Feature

In the experiment results presented below, the caching feature is enabled. The
caching feature enables intermediate nodes to answer a request if they carry a re-
sponse that is still fresh. Each of the previous experiment has been deployed twice
again with some Cache Enabled Nodes (cen). The first experiments had 0 cen, the
Fig. 4.8 presents these experiments with with 20% and 40% of cens in the networks.

In Fig. 4.8a, as the network is closer to a fully connected manet than an icn,
there is actually no difference with and without cen: 100% of the requests are
answered, all the lines overlap in the graphic and more than three fourth of the
requests are answered in less than 0.5 second. Nevertheless, in the Fig. 4.8b and 4.8c
the effect of the cache feature becomes clearer. In the lwmd, the percentage of
received responses without any cache is 79%. Introducing 20% of nodes as cens in
the network brings this percentage up to 99.6%. The number of received requests
stays the same while only 90% of requests has been received by the server. Having
more responses received by the client than requests received by the server proves
that the cache feature not only works but also improves the number of fulfilled
requests. Indeed, 9% of the requests has not been received by the server but has
been answered by the cens directly.

It is clear than going from 0 to 20% of cens improves the number of received
responses. In lwmd and lwld the number of received responses are respectively
increased by 20.6% and 36.4%.

However, increasing from 20% to 40% of cens does not always improve the
number of received responses. For instance there is no improvement in the lwmd
between 20% and 40% of cen. However, as it can be seen in the Fig. 4.8b, the
responses are received faster. In like manner, the lwld does not show a big im-
provement on the number of received responses, yet again the responses are received

96

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

25

50

75

100

15 30 45 60

N
um

be
r

of
 M

es
sa

ge
s

(%
)

Time (min)

Sent Rq
Received Rq

0% CEN
20% CEN
40% CEN

(a) lwhd

25

50

75

100

15 30 45 60

N
um

be
r

of
 M

es
sa

ge
s

(%
)

Time (min)

Sent Rq
Received Rq

0% CEN
20% CEN
40% CEN

(b) lwmd

25

50

75

100

15 30 45 60

N
um

be
r

of
 M

es
sa

ge
s

(%
)

Time (min)

Sent Rq
Received Rq

0% CEN
20% CEN
40% CEN

(c) lwld

Figure 4.8: Levy Walk, 50 m radio range, with Cache Enabled Nodes

97

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

25

50

75

100

1 6 12 18 24

N
um

be
r

of
 M

es
sa

ge
s

(%
)

Time (h)

Sent Requests
Received Requests

Received Responses

(a) 0 CEN

25

50

75

100

1 6 12 18 24

N
um

be
r

of
 M

es
sa

ge
s

(%
)

Time (h)

Sent Requests
Received Requests

Received Responses

(b) 20% CEN

25

50

75

100

1 6 12 18 24

N
um

be
r

of
 M

es
sa

ge
s

(%
)

Time (h)

Sent Requests
Received Requests

Received Responses

(c) 40% CEN

Figure 4.9: kaist Experiments Results

faster.

4.2.4 Results of the KAIST Experiments

Just like the previous experiments with Levy Walk some nodes are clients, some are
servers and others are regular nodes. Among the regular nodes a varying percentage
are actually cen, this percentage varies from 0 to 40%. For the same reasons
as before, the clients stop sending any request 40 minutes before the end of the
experiment to reach a stable state. Also, the bundles lifetime is set to 60 minutes,
which is the default.

Fig. 4.10 depicts the results of kaist experiment: gps-based mobility, involving
either 0, 20 or 40% cens. In all experiments, a bit less than 32% of the requests
have been received. In the first experiment that does not involve the cache feature,
27.6% of the response are received, which means that 4.2% emitted responses are not

98

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

25

50

75

100

1 6 12 18 24
N

um
be

r
of

 M
es

sa
ge

s
(%

)
Time (h)

Sent Rq
Received Rq

0 CEN
10 CEN
20 CEN

Figure 4.10: kaist Comparison

received. The number of received responses corresponds to 86.72% of the received
requests. In the second experiment, with 20% cens, the percentage of received
responses increases to 35.46%, which is 111.4% of the received requests. Indeed,
thanks to the cache feature, the number of received response has been improved by
28.4%. As for the last experiment, with 40% cens, the number of received responses
increases to 39.6%, 124.42% of the received requests. The number of responses has
been improved by 43% compared to when no cens were in the network.

Fig. 4.10 shows the three different experiment merged into one graphic. It high-
lights the fact that the number of received responses is improved when the number
of cens increases.

The kaist scenario is compared to the lwld as their coverage ratio are the
closest. Also, since the Levy Walk model reproduces the human mobility, similar
results are expected between lwld and the kaist scenario. Because kaist experi-
ment lasts more than 20 hours, unlike Levy Walk ones that only last one hour, then
to compare boap performance between Levy Walk and kaist scenario it must be
done through the first hour of experiment. Moreover it must be clear that bundles
lifetime is set to one hour in all experiments, which means that no bundle expire
during Levy Walk experiment but they expire in less than 1/20 of the kaist lifes-
pan. Focusing on the first hour of the experiment, with 40% of cen, the kaist
scenario only reach 45% of received responses while the lwld reaches about 75% of
received responses.

Several facts explain this difference. First, differences between Levy Walk and
kaist experiments are highlighted by the quantitative characterization: even if the
node density of kaist is enclosed between the node density of lwmd and lwld
experiment, it must be noticed that the average degree of node differs a lot. Second,
according to the matrices there are hints that kaist nodes are part of groups that
move together. This may be the social aspect of the mobility that might not be
well reproduced in the Levy Walk model, or is enforced in kaist traces. Finally,

99

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

the Levy Walk model generates the node mobilities in an empty area while real-
world traces follow paths such as the streets. These differences lower the chance of a
message being disseminated over the network as it is more likely to stay in a group
till its lifespan expires.

4.3 Conclusion

In this chapter all the results were treated from a point of view where clients send
requests that are received, processed and answered by the servers. The number of
sent responses, received responses and received responses are compared between one
another. There is another way to analyze these results. If we assume that the clients
are actually servers and that their requests are actually notifications (requested
through the observe option even before the start of the experimentation) then the
number of received requests in the figures can be considered as received responses or
notifications. The number of received responses can either be ignored or considered
as acknowledgements. This shift in the point of view of the data is easily explained,
mobility put aside, in a real-world use-case: a smart city [130] where the different
resources (noise, light, temperature, humidity pollution, and so forth) are logged into
the city hall. It must be clear that with this shift of point of view the results, and
experiment, with the cache feature enabled should be ignored. Indeed, the requests
of the experiment are considered as observe-notifications and the cache feature do
not cache the requests. Considering this shift, the number of received notifications
in the lwmd scenario goes from 79% up to 91% and, in the lwld scenario, goes
from 49% up to 67%. In the lwhd scenario, it stays at 100%. As for the kaist
scenario, the number of received notifications goes up 27.6% to 32%.

After these experiments and results analysis, it can be concluded that boap,
when the nodes mobility is at the advantage of message exchange, performs well in
small and larger network. This conclusion seems a natural one since boap relies on
bp and that nodes’ mobility, with radio range, are the main two parameters that
impact message exchange opportunities. Despite the cache mechanism there is no
apparent risk to its scalability for even bigger network. With the insight provided
by the experiment, boap do not seem as optimized as it should be. Its limits lies
in the layered architecture of bp that do not allow bundle manipulation as precise
as needed. For instance, the caching mechanism could be enhanced: no response
would be sent if a node already carries a response for a request it was about to
answer. Healing mechanisms could even be deployed. In other words, even if the
layered architecture proved to bring many benefit it actually restricts applications
above bp overlay. This is unfortunate since, in dtn networks, optimizations could
save up power and battery and thus lengthens lifetime of things.

100

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

5
LILWENE

Contents
5.1 Overview . 102

5.1.1 Proposal . 103

5.1.2 LILWENE Presentation 103

5.2 Service Description . 108

5.2.1 Descriptors Overview . 108

5.2.2 Mandatory Fields . 109

5.2.3 Description Examples . 113

5.3 Service Advertisement and Discovery 114

5.3.1 Publish-Subscribe Interface 114

5.3.2 Topics . 115

5.3.3 Advertisement . 116

5.3.4 Discovery . 117

5.3.5 Registry Notifications . 118

5.4 Service Invocation . 119

5.4.1 Client Side . 119

5.4.2 Service Provider Side . 120

5.4.3 Group Invocation . 120

5.4.4 Request Options . 121

5.5 API and Implementation Elements 122

5.5.1 Client Application API 123

5.5.2 Service API . 128

5.5.3 Registry Processing . 130

5.6 Conclusion . 132

101

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

This thesis objective is twofold: how to provide both resource-oriented and
service-oriented programming supports to enable a Delay-Tolerant Web of Things
(dt-wot). A resource-oriented approach has been proposed by adapting coap over
bp. This proposition has been validated by its protocol evaluation and will be used
as a core-base of the next proposal.

In order to fulfill the second objective of this thesis, a last contribution is pre-
sented in this chapter named lilwene: Light services middleware for delay tolerant
Web-of-things Networks. This proposal, restful and relying on boap, natively of-
fers additional means such as service description, service discovery/advertisement
and service invocation compared to a resource-oriented approach.

All theses mechanisms are presented in depth in this chapter that is introduced
by a differentiation between resource and service. This contribution also contains
four design principles, likened to the rest constraints, that aim to give guidelines
when design a service-oriented framework. Finally, to give a technical understanding
of lilwene, an api as well as implementation elements are also presented.

5.1 Overview

lilwene aims to provide more features than a resource-oriented framework, such
as boap, by following a service-oriented approach. First of all, differences between
resource and service must be cleared. w3c, in [10], defines a resource as an “item
of interest, in an information space, identified by a uri”. So far, with boap, the
resources were considered as a simple self-content item of interest. Service-oriented
approach covers additional features such as description of services (i.e., to inform on
the needed details of their capacities and functionalities to request them), seman-
tical descriptions of services, advertisement and discovery of services, and service
composition.

To support these features, an abstraction layer can be put on top of boap to treat
the resources as services in a service-oriented approach. lilwene proposal provides
these features, and more specifically focuses on the description, advertisement and
discovery as well as requesting mechanisms. Semantical description and service
composition are out of the scope of this work.

In other words, lilwene answers to questions such as how to describe the ser-
vices?, how to discover them?, and how to invoke them?. Several propositions are
exposed to answer each one of these questions while remaining consistent with boap,
staying aware of dtn constraints and continuing to be friendly with constrained de-
vices that populates the iot.

102

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

5.1.1 Proposal

As explained before, rest approach follows 6 constraints: loosely-coupled clients/servers,
stateless servers, servers are accessed through uniform interfaces, the system must
be layered, and responses can be cacheable. The rest-architecture constraints pro-
vide several advantages. lilwene, just like boap on which it relies, follows these
constraints to benefit from these advantages.

In like manners, four design principles were identified for the solution presented
here. These design principles aim to optimize reactivity and efficiency of a soa
middleware in dtn environments such as lilwene, by taking into account both
dtn and soa challenges. These principles are:

Local Registry Since there is no node in the network assumed to be well con-
nected, stable enough or even reliable then each node must host its own local
registry. This principle stems from network environment and constraints.

Full and Concise Description Being in a dtn environment, the number of ex-
changes must be kept to its minimum. For that reason, the discovery must
be done with the minimal number of messages. Because of this, service de-
scriptions must enclose all required details to issue successful request at first
attempt. This principle prevents waste of energy and storage for disseminating
unnecessary messages.

Correction Each client application must cooperate with its own local registry in
order to modify service descriptors locally stored that are assumed to be incor-
rect. A descriptor can be considered incorrect according to its error-responses,
for example if it answers with the code 5.01 Not Implemented to a request sent
with an http method wrongly advertised as implemented. Doing so prevent
clients to send future requests that would result as an error. This principle
prevents waste of energy and storage for disseminating unsuccessful requests.

Update In the same way, registries must also cooperate with their local clients and
ensure that clients are aware of any descriptors update. This principle enforces
reactivity and can prevent unsuccessful requests too.

These four design principles aim to minimize the number of exchanges and errors
by providing directives and guidelines to the registries, clients and service providers.
These design principles ensure that local applications cooperate and correct them-
selves but also that the medium usage of the network and node battery are not
wasted. These constraints are present throughout the whole chapter.

5.1.2 LILWENE Presentation

Fig. 5.1 illustrates the lilwene overview presenting interactions between the dif-
ferent actors of the platform that are: client applications, service providers, their

103

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

client

registry

DTN nodeDTN nodeDTN node

eid1

service

eid3
eid1/update

description

SUBSCRIBER

group/sensor

topic

SUBSCRIBER

group/main

description

SUBSCRIBER

group/sensor

topic

SUBSCRIBER

group/main

Descriptors

descriptors,

notifications

topic

eid

topic name put request get request

descriptor response

correction

group/main

group/actuator

group/sensor

description

SUBSCRIBER

topic

SUBSCRIBER

group/maingroup/sensor

registry registry registry

Figure 5.1: lilwene Overview

description documents (descriptors), local registries, their subscribers and topics.
The platform is described in depth in the remaining of this chapter. Nevertheless,
a brief presentation at a high level may help the reader to apprehend the whole
platform.

A lilwene node can host zero or more client applications, zero or more ser-
vices and must host one registry. The services providers, at their creation, send
their descriptor to their local registry. Registries take full care of the advertisement
and discovery mechanisms through a publish/subscribe interface relying on topics.
Clients request their local registry to discover descriptors by expressing their needs.
The clients can then request (e.g., invoke) the services providers.

Services

A service, or service provider, is an application that can be requested in order to
produce an outcome. Services may be co-hosted on lilwene nodes with client
applications. In lilwene, a service provider is identified by its unique bp eid.

At its creation, a service must send its descriptor to its local registry. Its local
registry takes care of its advertisement. In Fig. 5.1, the service sends its descriptor
to its local registry.

104

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

When a service plans to stop its activity, it must send a specific descriptor to its
registry. The registry advertises it to inform clients that the service is not accessible
and shall not be requested anymore. Additionally, if the service has been invoked
by a little number of clients, the service may send this descriptor directly to these
clients.

Clients

A client is an application that discovers service providers thanks to a registry and
that invokes service providers. An application can be both client and service. Also,
just like service providers, a client is identified by its unique bp eid. In Fig. 5.1,
this eid is identified by /eid1.

If a client receives a service descriptor, invokes this service and receives an error-
response then a test must be run to determine if this error could be prevented by
modifying the service descriptor. If it can, then a correction must be sent to the
local registry to modify the descriptor. This modification prevents local clients to
send a similar request to the same service that would automatically result as an
error-response.

Since a client can also be a service provider, it is important to differentiate mes-
sages for internal management (e.g., reception of service descriptors) and messages
from other endpoints (e.g., either client’s requests or service’s responses). Process-
ing messages for internal management is common to all lilwene clients, whereas
messages from other endpoints are specific for each client. To ensure that the mes-
sages for internal management are separated from other messages a second bp eid is
built by appending /registry to the first bp eid. In other words, clients have then
two different bp eids: the first is used to invoke the services, to receive services’
responses and clients’ requests, while the second one is used to communicate with
the local registry and thus receive service descriptors or registry updates and to send
corrections.

Topics

lilwene topics are exploited by lilwene registries to advertise and discover ser-
vice descriptors through a publish/subscribe, or pub/sub, interface. A topic is a
logical channels identified by, and named after, a non-singleton bp eid. A registry
advertises a service by publishing a descriptor into a topic and can discover services
by subscribing to one, or more, topic.

Topics can be dynamically created. Having several topics enables a categoriza-
tion of service descriptors allowing a more flexible means to the discovery. Reg-
istries can choose which topics they subscribe to according to the needs of their
client applications. However, registries must know all available topics. To ensure
that all registries discover all topics then each new topic name is advertised into

105

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

a main topic: dtn://group/.well-known/discovery. All registries must at least
subscribe to this main topic. In a degraded mode, a list of available topics can be
embedded on lilwene nodes and registries could be limited to these topics. In such
case, the main topic becomes useless. In a last resort, all topics can be merged into
one, the main topic, that will be used to publish all service descriptors.

In Fig. 5.1, there are three topics. The main one, identified by group/main, con-
tains the names of the two others identified by group/actuator and group/sensor.
These two topics have several service descriptors that can be discovered by registries
as long as they subscribe to these topics.

Registries, Advertisement and Discovery

lilwene registries take in charge the advertisement and discovery of service
providers. To do so they exploit the pub/sub interface to disseminate and gather
service descriptors. Service providers interact with registries at two different mo-
ments. First, when a service is created and sends its descriptor to its local registry
so the registry can advertise it, second when a service stops its activity and sends a
specific descriptor to inform that the service should not be requested anymore. Such
case is illustrated in Fig. 5.1, where a service sends its descriptor to the registry that
publishes it into the topic group/actuator. Registries interact more with client
applications. First, clients request registries to discover services, second clients send
corrections of erroneous service descriptors to prevent future request that would re-
sult as an error-response. Finally, registries also notifies descriptors modifications,
updates to clients as well as new descriptors that may interest a client. These
interactions are illustrated in Fig. 5.1 on the left node.

A local registry is accessible to the bp eid that it must register in to its bp dae-
mon: dtn://node-id/.well-known/registry. This eid is used to communicate
with client applications. However, having only one eid is not enough, indeed topics
are also bp eids and in order to subscribe to a topic a registry must have at least
one other bp eid: dtn://group/.well-known/discovery, that is the main topic.
Additionally, a register will have one more eid for each subscription to a topic. For
instance, in Fig. 5.1 the two left-nodes registries have three eids: one singleton each
and two subscriptions, whereas the right-node registry only subscribe to two topics:
the main one and group/sensor.

lilwene supports two kinds of discovery:

proactive Registries can publish/advertise, on behalf of services, descriptors into
a topic. This is considered as a proactive discovery as these descriptors will
be disseminated over time and other nodes only need to subscribe to a topic
to receive these.

reactive Another kind of discovery is the reactive one. In contrast to the proactive
discovery, registries in need for new descriptors must publish a request into

106

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

the main topic. This request is received by other registries that can answer
with their matching-stored descriptors, if any.

It is the duty of the registries to determine if a descriptor should be published and
if a request should be sent.

Application Programming Interface

1 public interface LilweneClient {
2 public void create(String eid, ClientHandler handler);
3 public void discoverServices(Needs needs);
4 public void requestService(Descriptor descriptor, Request request);
5 }
6

7 public interface LilweneService {
8 public void create(String eid, ServiceHandler handler, Descriptor

descriptor);↪→

9 public void update(Descriptor descriptor);
10 public void update();
11 public void stop();
12 }
13

14 // The registry is a required tool and does offer an API since its processing is
transparent.↪→

Listing 12: LILWENE API

List. 12 shows the two java interfaces that developers must implement to program
lilwene clients and service providers. There is not any api method for the registry.
Indeed, this entity is required and must remain transparent for the developers using
lilwene. Nevertheless, some of registry processings are shown in the section that
presents the api and implementation elements.

On the client side there are three methods. One for creation, another to discover
services and the last to request services through their rest interface. The first
method, to create a client, requires the uri-path of the client uri and a handler to
process service’s responses. This method also creates a second endpoint, by append-
ing /registry, with a specific handler, to communicate with the local registry. This
second endpoint is used to request the registry, process the registry notifications and
send descriptor corrections. To discover services, a client express its needs in the
variable needs. It is an implementation matter to choose an ontology fitting the
use-case needs of the lilwene network. Finally, the last method is used to actually
invoke the services through their rest interface. For this method only requires the
descriptors and the request. This method extracts from the descriptor some details
to determine if the request is valid.

107

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

At its creation a server needs the uri-path of the service, a handler to process
client’s requests and a descriptor that describes the service functionalities and capa-
bilities. The method update() , that can optionally takes a Descriptor as argument,
is used when the service modified its descriptor. It increments the descriptor number
and sends it to the registry for advertisement. When a service stops, it must send
to its local registry a specific and small descriptor that informs the service died so
clients do not request it anymore.

5.2 Service Description

To be usable and useful a service middleware needs to provide all the means clients
need to successfully request services. To request the services, the clients need to learn
their presence, capacities, functionalities and semantic. These details are contained
in a document called the service description, or descriptor.

Descriptors must be as concise and complete as possible to minimize the number
of messages disseminated in the network. It is important to minimize the number
of messages before a successful request can be issued. Indeed, dtn networks are
deployed in contexts where the connectivity is usually a challenge, messages must
be assumed as easily lost due to many reasons, e.g. storage shortage, nodes failure
and so on. To maximize the services’ discovery, the number of exchange between
clients and service providers must be kept at a minimum. The best being to include
all the needed services’ details in a sole document to disseminate it over the network.
Hence, once clients get this document, they can directly and successfully request the
service without any extra exchange.

All descriptor fields are presented in this section. More details, binary format
and parameters descriptions, can be found in Appendix B. Also, due to the network-
ing environment specific details are added to traditional descriptive information of
service providers. These details are an agenda, at which a service is not sleeping be-
cause of battery considerations, a descriptor-version number, to let registries know
which descriptor is newer, a deadline, at which the service is not expected to be
available anymore, and a geographic restriction defining an area from which the
service can be requested.

After a general overview of descriptors fields, each field is detailed in depth. This
section is concluded by two examples and completed by appendix B that presents
the binary format of descriptors and optional uri parameters.

5.2.1 Descriptors Overview

The different descriptors fields, detailed below, that each service must provide in its
own description document are:

• Identification: to allow clients to send their requests to the right endpoint,

108

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

• Interface of the implemented http methods and enabled options: to prevent
clients to request services through unimplemented http methods,

• Accepted inputs and outputs: to prevent clients to send (or received) data
that servers (or clients) could not process,

• Ontology document: to inform clients on the semantic of the service,

• Non-functional details: version, deadline, agenda, geographic restriction and
optional free field,

• Parameters descriptions (if needed): to provide to the clients all needed details
so they can properly use the service.

In this list, there are two different level of detail: mandatory fields and optional pa-
rameter description. All these details are embedded in a binary document following
the format described in appendix B according to the syntax:

<identification> 0x20 <interface> <inputs> 0xffff <outputs> 0xffff
<ontology document id> <version> <deadline> <agenda> <conditional
requesting> 0x3b3b <parameters>

Appendix B also contains the details of the parameters description.

5.2.2 Mandatory Fields

The choices leading to the descriptor’s content of the mandatory fields as well as
their content are detailed here.

5.2.2.1 Identification

The first thing a client needs to request a service is an identification of its endpoint.
In traditional networks it could be the network socket or a uri the service is hosted
at. However, in dtn environments, nodes are not identified by their ip addresses
as these ones are expected to be highly dynamic. This means that hosts of services
cannot be identified through ip addresses so services cannot neither. In fact, with
bp, entrypoints of both nodes and hosted applications are uris.

All requests, and responses, for a service will go to, and come from, its spe-
cific uri. More than the communication entrypoint it is also the identifica-
tion of the service as all singleton uri are unique. The entrypoint of service
would look like dtn://door-lock1C3AD/room12A/status, where dtn is the scheme,
door-lock1C3AD is the node identification, /room12A/status is the path of the ser-
vice.

109

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

5.2.2.2 Interface and Observe Option

Following the rest architecture style and using the common interface of put, get,
post, patch, delete and the option observe, is not enough to ensure that client
do not request a service through an unimplemented method. For instance, it can-
not be assumed that a door lock sensor would implement put, post, patch or
delete but only the get, and optionally observe option. Electric shutters may
also implement put but not post nor patch.

This is why, in order to prevent clients requesting unimplemented http methods,
lilwene descriptors must include the list of implemented http methods.

5.2.2.3 Input and Output

Services sometimes require inputs and sometimes produce outputs. For example, a
camera service can send either pictures or videos to its clients. Clients that can only
process pictures just need to request the picture type of output from this service, and
more specifically the types of pictures (png, jpg, tiff, raw, ...). However, if a client
is interested in the sound of the recorded video then the service cannot fulfill the
client’s need. In this case clients must be informed that the service cannot provide
the file type needed before a client request it.

Service usually need to receive or send resources. It may be sound, picture,
video, text file or binary file in many of the content format known as mime. These
resources could be configuration files sent to services or recordings requested from
clients. Clients and services are assumed to only process a subset of all the content
formats available. In order to avoid a 4.06 Not Acceptable error response or reception
of files that cannot be processed, the clients need to know beforehand what are the
content formats a service can receive in and send out.

In lilwene, service providers must inform the clients of both the mime they
can consume and produce by including two lists in their service descriptor. This is
why two lists, one for the input mime and one for the output mime, are included in
the description document. It is assumed that a service provider can process same
content formats regardless of the http method it was invoked with.

5.2.2.4 Ontology Document

As there is not one ontology to rule them all and for more flexibility, the choice of
ontology specifications is left to programmers. Works on ontologies for the iot, such
as [131], or the nasa jpl ontology [132] are good candidates for this proposition. As
shown by [133, 134], the semantic in the iot context is of interest. These works also
provide means to determine how to semantically describe the services in lilwene
environment.

In the iot a lot of similar small devices are expected to be present within a same

110

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

small area. It could be door lock sensors, light bulbs or heaters. All these similar
devices are likely to share the same ontology document.

In lilwene, all ontology documents must be identified by a unique id. The form
of this id is an implementation matter and out of the scope of this work, yet in the
remaining of this document the id is assumed to be the md5 hash of the ontology
document. If a service A discovered a service B’s description and they both have
the same semantic and ontology document then, to keep descriptions as small as
possible, service A’s description document can point to B’s ontology. A local db
(that could be a hashtable<id, document>) of ontology documents must be kept
up to date. A document is erased when no service description points it out anymore.

5.2.2.5 Non-Functional Details

Added to the functional details used to request services, there are other details that
need to be taken in consideration. These details are the version of the description
document, service deadline, agenda of sleeping cycles, optional free fields and geo-
graphical restriction. The needs of the clients to get these details are presented in
the following with their means to fulfill these needs.

Version After an update a service may not process the same Input/Output or it
could stop answering to specific method, e.g. post implementation could have been
merge into put after a refactoring. This update could lead to unsuccessful requests.
To avoid such error, the clients must be informed of these changes and especially
be able to determine which description is newer. The version field aims to solve
this issue. Besides, if the details included in the description are still correct after
a service update then there is no need to disseminate the same description of the
service just for a newer version.

The version number does not identify the version of the service itself but the
service description one. The version number is actually used to request the clients
to delete the previous service description. By doing this, registries can clear their
db of unnecessary descriptors and prevent the clients to unsuccessfully request older
version.

The zero value is restricted: it must be used only when a service stops its activity
and will die. Publishing a service description < id : 0 > informs that the service
died so the clients do not request it anymore and its descriptor shall be deleted.

If the service had a bug or an error in its description (e.g. wrongly advertising
the method post to be implemented) and if this service had the bug corrected then
it should send a patch request to its previous client to inform them of the bug fix.
This request stems from the auto-correcting constraint: clients that receives an error
response 5.01 Not Implemented must have updated their local descriptor so they do
not send a request with the same method. This patch request informs the clients
that the error is corrected and that the stored descriptor must be updated.

111

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Deadline Being in a dtn wot environment, services are hosted by things. They
may be deployed for a specific duration, i.e. a few days or hours, when they are
deployed for specific occasions or events such as festivals, town markets or concerts.

In other words, there is no service that are expected to last indefinitely. To avoid
the risk of clients requesting a non-existing service the description must include a
deadline at which the service should not be requested anymore. This deadline is an
epoch date. When this deadline is reached the service description must be removed
from the registry.

Agenda The things could have a sleeping policy aiming for a longer battery du-
ration. It could be to turn off its communication means at regular hours, such as
every nights. The clients should be informed of such policy so they do not send
any request that may fail because the service host is sleeping. That is why, added
to its deadline, an agenda is added to inform the clients at which date the service
is unreachable. The agenda takes the form of a cron entry with the last argument
being a duration of the sleep in minutes instead of the command to execute.

Just like cron, the precision of the agenda is kept at the minute. Indeed, as the
things may follow sleeping cycle and by lacking of stable connection their clock are
likely to shift in the long run. This is why the agenda precision should be considered
as a coarse-grained one.

Optional Free Field In some case, service providers could be required to evaluate
their qos, or provide location of fixed devices. In lilwene descriptors, the field
named optional free frield is free to be used and encoded as needed by the users as
long as this field is terminated by a specific marker.

Geographic Restriction Services may provides their capabilities on screen or
speakers. Their clients should then be restricted to a specific area. In order to
inform lilwene clients of the area constraints of such services a field is added into
the descriptors. In order words, lilwene services can set restrictions to be only
requested by clients present within a defined area. Some works already use location
of the nodes for specific decision in dmanet. For instance in [135] the node’s location
is used for routing decision.

Because the bp, and more specifically the implementation ibr-dtn, respects the
layered model and because the lower layers involved in the dissemination should not
have to treat data such as the location of the node itself, then the bundles cannot be
restrained to a specified area. Hence, the description will be disseminated further
and discovered by far away clients. Nonetheless, this is not a negative effect. Indeed,
the clients discovering this service are aware that the service exists and know how,
and from where, they can request it. Some nodes may even move themselves to this
area to request the service. It is the client duty to check if it is allowed to emit a
request.

112

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

5.2.3 Description Examples

In the following two examples illustrate the possibilities of lilwene descriptor.
These two example are presented in binary format in the appendix B.

Simple Temperature sensor

This service offers to respond the current temperature of the entity "fridge". Its
identification is dtn://fridge-sensor/temperature. It implements the get re-
quest and the observe option to periodically push the current temperature. The
temperature is sent in the payload of the responses as text/plain (3). The ontology
document is assumed to be in another bundle-payload block and the document-id
here is the md5 hash: 95 28 59 ... 77 7a fa. The version of the service is 0x13.
Its deadline is calculated at boot time for a duration of ten years and the sensor
never sleeps (as it is actually plugged). The parameter "variation" is used to set
the temperature window within which the client do not want observe notifications,
e.g. if set to 3, the client will not receive a notification unless the fridge temperature
decreases or increases of 3 degrees. It must be restricted to positive value under ten.
This service description would be:

See B.3 for the full binary content of this description.

Configurable Light Bulb

In this other example, a light bulb service manages a colored light bulb. Its iden-
tification is dtn://light0a/access. The light can be turned off and on through
put request using the parameter "turn". It responds its state and color through
a get request as text/plain (3). The ontology document is not provided, but the
md5 hash is present: a6 28 59 ... 77 7a fb. The version is 0x10. The deadline
of the service is 4 years. It sleeps during day time, from 9:00 a.m. to 6:00 p.m.
The color can optionally be set through put request using either a hexadecimal
value with the parameter "hex" or send three parameters "r", "g" and "b". The
parameter "hex" is in the parameter group number 1 while "r", "g" and "b" are
in the parameter group 2 because, as they are redundant, they should not be used
together. "hex" is a string constrained by the regular expression [0-9a-fA-F]+1. A
real implementation of this service may use an int instead of a string for simplicity.
The parameter "turn" is both in parameter groups 1 and 2. Its description would
then be:

See B.3 for the full binary content of this description.

1Regular expression is one of the different contents a string can represents. These different
contents are presented in B.2.

113

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

5.3 Service Advertisement and Discovery

As presented above the advertisement and discovery mechanisms are done by reg-
istries through topics with a pub/sub interface. The details and specificities of these
mechanisms are exposed here.

5.3.1 Publish-Subscribe Interface

It actually makes sense in the wot to offer pub/sub mechanism as lot of things
are expected to share similar interests and produce or consume data from interests-
based-topics fed by the things themselves. In [136], a middleware architecture for a
mobile peer-to-peer content distribution is presented. This middleware disseminates
data in a dtn network in a content-centric manner, opposed to the destination-based
the bp follows. To do so the content is structured into logical topics that are ac-
cessed through a publish/subscribe interface. Among the examples presented in the
paper [136] there is one about relaying sensor data, that can be likened to the wot
context. Another work on pub/sub mechanism for service support in the context
of mobile devices with wireless connexion is presented by Caporuscio et al. in [137].
Relying on a decentralized pub/sub in a dtn network for advertisement/discovery
of services offers opportunities of collaboration among nodes to help one another to
discover new services.

In our case, the producers, and consumers, are respectively the registries of
service-node and the registries of client-node (they may be both). As for the data
relayed, they are not sensor’s data but service descriptors. If the bp provides little
means to natively support a publish/subscribe interface, some usage constraints can
be set in order to support it.

The bp supports two different types of endpoints: singleton endpoint and non-
singleton endpoint, where endpoints are identified by uris. The non-singleton
endpoints, called group uri, are uris locally created by an application when it
registers its endpoint as this uri. An example for this kind of uri could be
dtn://group/multicast, if a node sends a message to this uri then all appli-
cations that locally registered as dtn://group/multicast can receive the same
bundle. In like manners, if all nodes host an application that registered to the uri
dtn://group/bcast then a bundle sent to this uri can be received by all nodes of
the network.

Having similar applications hosted on all nodes of the network enables a pub/sub
mechanism. The subscriptions are effective by the registration of these applications
to the bp daemon. In our case, the identification of a topic is its uri itself. The
publication of a message is done by setting the destination to the uri (topic) the
node wants to publish in.

This pub/sub mechanism is used for the advertisement and discovery of services.
Indeed, the service descriptions are published to a topic to which registries can

114

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

subscribe to in order to discover the service descriptions.

An extension of coap exist, as Internet Draft [138], defining a pub/sub interface.
This interface follows a centralized architecture by relying on a broker that acts
as a coap server but also proposes a brokerless architecture within which each
node hosts its own broker. A broker interface must implements several operations:
discovery, create, publish, subscribe, unsubscribe, read, and remove. As an analogy,
the pub/sub interface proposed in this thesis covers five operations that are:

create Topic creation, by publish its name into the main topic,

publish Publishing a service descriptor,

unpublish Publishing a service descriptor with a version number equals to zero,
that has the effect of deleting this descriptor on registries (it has no equivalent
in the coap pub/sub interface),

subscribe Subscribing to a topic, by registering a new bp eid to the bp daemon,

unsubscribe Unsubscribing to a topic, by unregistering an existing bp eid to the
bp daemon,

5.3.2 Topics

Several topics coexist in lilwene network. Topics can be dynamically created.
Registries shall know all topics, so to discover new topic their name are advertised
into a main topic: dtn://group/.well-known/discovery. Two kind of topics exist:
the main one and others. Other topics are also called subtopics. Their specificities
are presented in the following.

5.3.2.1 Main Topic

As explained above, the advertisement/discovery is done with a content-centric ori-
entation through a publish/subscribe interface inherited from the non-singleton eid
(or group uri) of bp. The advertisement is done by publishing a service descriptor
into a topic. Topics are non-singleton bp eid and follow the construction of uris,
that actually identify them. There must be at least one topic in a lilwene network
that is considered as the main topic. This topic, assuming that the network scheme
is dtn, is:

dtn://group/.well-known/discovery

If there is only one topic then all registries must subscribe to it and descriptors
must be published into it. In lilwene all nodes must have one registry that registers
to its bp daemon as this uri and processes the received bundles to update the local
db of service descriptors.

115

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

5.3.2.2 Subtopics

When there are a lot of service providers, publishing all service descriptors into a
single topic may flood the registries as they would process and store every single
service descriptor whereas clients may only be interested in a small subset of these
providers. For this reason, and to overcome this challenge, added to the main
topic, dtn://group/.well-known/discovery, lilwene nodes can use subtopics.
Using subtopics allows to scatter the topics so the clients can only subscribe to the
subtopics they are interested in. Henceforth, by selecting only a subset of subtopics
they receive a subset of service descriptors, the ones they are interested in. As an
illustration, a list of subtopics could be:

dtn://group/.well-known/discovery/sensor/temperature
dtn://group/.well-known/discovery/actuator/temperature
dtn://group/.well-known/discovery/sensor/light
dtn://group/.well-known/discovery/actuator/light
dtn://group/.well-known/discovery/security/sensor/door-lock
dtn://group/.well-known/discovery/security/actuator/door-lock

This scattering lessens the registries db size as some clients may exclusively be
interested in the temperature environment or the security. If a client requires both
temperature- and light-related descriptors then its registry can subscribe to both
subtopics. When subtopics are dynamically created, the main topic must not be
used to publish service descriptor but rather to advertise subtopics.

It must be noticed that it is the duty of developers to not pollute subtopics and
not create a large amount of subtopics tightly related.

5.3.3 Advertisement

Service descriptions are published with the http method put and not post. In-
deed, put has been chosen as it is an idempotent method, unlike post, and that a
registry receiving multiple times the same service descriptor must stay in the same
state.

Since the service providers only send their own descriptor to their local registry
then it is the duty of the registries to determine if it is better to publish it or wait
for a discovery request. To publish a descriptor into a topic, registries only have
to set the descriptor bundles’ destination to this topic’s uri and send it. If there
is only one topic, the main one, then the destination of the bundle must set to
it, otherwise descriptors must be published in the best matching subtopic. A node
should avoid to create new subtopic and use an already existing subtopic. In the case
no matching subtopic exists, a lilwene registry can advertise a service descriptor
into a new subtopic. The decision to determine whether or not a descriptor should be
advertised is a matter of implementation, such decision could take into consideration
node storage estimated through the average number of bundles being disseminated,

116

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

number of descriptor already existing, and so forth. A subtopic is considered created
when its uri is advertised into the main topic. Advertising subtopics ensures that
other registries can discover these subtopics and thus subscribe to these.

To summarize, in lilwene, a descriptor is advertised by publishing a put re-
quest, embedding the document, into a (sub)topic. This request will not be acknowl-
edged nor answered and must be published in at most one (sub)topic. If a subtopic
is dynamically created then its name must be advertised into the main topic.

5.3.4 Discovery

Clients need to discover services before invoking, or requesting, them. Local reg-
istries store service descriptors. To access them a client application only needs to
describe its needs and send a get request to its local registry. The registry will
then answer with known descriptors or try to discover new ones if none matched the
client’s needs.

There are two kinds of discovery: proactive and reactive. The proactive dis-
covery offers means to the registries to discover descriptors by only subscribing to
(sub)topics whereas with the reactive discovery a registry is required to sent a re-
quest beforehand.

5.3.4.1 Proactive Discovery

In lilwene, the advertisement is done by publishing descriptors into one (sub)topic,
that could be dynamically created. Each local registry have a unique eid that is
dtn://node-id/.well-known/registry, where node-id is different for each node.
This configuration is not enough to let registries receive the descriptors. Indeed,
the descriptors are embedded in bundles that are sent to non-singleton bp eid. A
registry, to receive these descriptors, must then register to its bp daemon as these
non-singleton bp eids. This registration represents the action of topic subscription.
Indeed, after registering as a topic (i.e., a non-singleton bp eid), the bp daemon
will then forward every bundles that have this eid set as destination.

A lilwene registry is then composed of at least two eids: its unique one and
the main topic. In network with subtopics, registry can subscribe to one or more
subtopic following the same procedure of registering as an additional bp endpoint.
Handler for each descriptor receivers is the same as the processing of each descriptor
is the same regardless of the subtopic it was received.

On a technical point of view, a registry can instantly discover new descriptors by
subscribing to a new topic. Indeed, thanks to the store-carry-and-forward principle,
a bp daemon stores descriptors in bundles. These bundles could be sent to a topic
that the local registry of this node did not subscribe to. The local registry could
receive a client request that would trigger a new subscription. This new subscription
could be a topic that the bp daemon carries bundles for, triggering the daemon to

117

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

sends all stored bundles to the registry new eid. To summarize, a node may store
new descriptors in bundles that can be processed immediately as soon as the registry
subscribes to a new topic since the bp daemon will then deliver bundles embedding
descriptors to the registry through its subscription.

5.3.4.2 Reactive Discovery

In lilwene the descriptors are not automatically published. This could harm a
network wherein, for instance, a lot of various services are present but a few clients
are. In such network clients’ storage would be saturated with published descriptors
while clients may be interested in just a small portion of these services. To solve
this issue the registries can locally hold the descriptors by waiting for a request.
Upon reception of a request from a registry for new descriptors, then registries that
received this request can answer by sending the stored descriptors matching the
needs expressed in the request.

To put it differently, a lilwene registry can embed its client’s needs into a get
request and publish it into the main topic so other registries will answer with their
needs-matching descriptors. This second kind of discovery is called the reactive
discovery since, unlike the proactive one, a request is required before any descriptor
can be discovered.

5.3.5 Registry Notifications

Clients may keep in memory the service descriptions they received earlier. These
descriptions may become out-dated and a client may request a service using an
http method that is not supported anymore while the local registry has an up to
date service descriptor. These situations must be avoided. These situations waste
network resources by disseminating requests that would result as error-responses
disseminated while the information that may avoid such request was stored on the
client node in the first place.

A solution to this issue would be to use the local registry as a proxy for the
request. The clients would send their requests locally to the registry and then the
registry would either sends an error to the client if the request would result as an
error or emit the request itself. However this complicates the architecture because
the clients would require the registry to preprocess all the requests, look-up the
service descriptor into the db, emit request on behalf of the client or, in some cases,
answer back on behalf of the services. In addition, the source of the bundles would
have to be forged so the responses are directed towards the clients themselves and
not the registry, but any system relying on message forgery poses security concerns.
Furthermore clients and registry would be tightly bound together which is something
that must be avoided in software architecture, especially when these softwares are
services.

118

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Another solution would be to request the client a permission to the registry. The
permission would be requested by sending the actual request to the registry that
would preprocess it to authorize or not the client to send it. But then again, the
registry and clients would be tightly bound together, the registry would have more
db look-ups to perform and this would solution would induce additional delay.

In lilwene, another solution is chosen and can be described as push notifica-
tions, likened to observe additional responses, from the registry to the clients when
a newer service descriptor is received. When a registry receives an updated descrip-
tor then this new version is forwarded by the registry to the clients that requested
this descriptor before. This is why in lilwene the registry must track its clients and
the descriptions it sends back to them. If a newer version of a service is received,
the registry must notify this update to all the local clients that received this descrip-
tor. This mechanism is a direct consequence of the fourth design principle named
update and aims to improve lilwene reactivity and efficiency. These updates, or
notifications, must be sent to the client’s eid used for internal management.

5.4 Service Invocation

As stated in lilwene overview, invocation mechanisms lie on boap. Nevertheless,
some specific behaviors must be respected by both clients and services to enhance
the usability of the system as a whole.

5.4.1 Client Side

Request Testing Before Emission

Before a client sent a request, it must perform several tests to decrease its risk to
receive an error-response. These tests are executed to ensure that the service is still
alive (i.e., service’s deadline not reached), not sleeping (i.e., according to its agenda),
that the http method is implemented by the service, and, if possible, if any, that
the client is in the restricted geographic area.

If all these tests are passed, then it can be assumed that there is only few risk
that the request will not be successfully answered. These risks are failures of network
or intermediary nodes, or that an error was present in the service descriptor.

Error-Reponse Processing

Despite the wariness before sending a request, error-responses can still be sent by
services. These messages, responses carrying an error, must be analyzed to further
decrease unsuccessful exchange risk. Thus, if a client receives an error-response
then a verification must be done in order to determine if the error could have been

119

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

avoided with a modification on this service’s descriptor. Such avoidable error could
be a response with a code 5.01 Not Implemented, this error can be avoided by tagging
the http method of the request as unimplemented. This modification is one of the
four principle design: correction. Corrections aim to prevent local clients to send
similar request that would automatically result as an error.

A correction is sent by a client to its local registry with a patch request. The
request must contain the version number of the service description, so the local
registry can ignore the patch if a newer version of the description was received, and
the modification. Once the registry received a correction from a client then the
registry must send a notification to all local clients that had received this service
descriptor before. This is likened to the update principle design.

5.4.2 Service Provider Side

There are use-cases where a service may receive an ununderstandable request or
a request that could automatically result as an error-response. Avoiding these re-
quests enhances the system as a whole and prevents network resources to be wasted
by disseminating both requests and error-responses. This is why, in such cases, ser-
vices must check if these requests could be avoided either by respecting its current
descriptor, either by updating its descriptor.

If the current descriptor would not have permit such request, then it can be
assumed that the descriptor on the client’s node is out-dated. To remedy this
matter, the current descriptor can be directly sent to the client’s registry that will
be treated as an update, since the current stored descriptor is out-dated on this
client node. On the contrary, if the current descriptor permits such request and
that a descriptor update could solve this matter then the service must update its
descriptor and disseminate it. It can also send a copy directly to the client’s registry.

5.4.3 Group Invocation

With lilwene, and bp, it is technically possible to invoke several service providers
at once by using a non-singleton eid. If all similar service providers register to their
bp daemon with the same non-singleton eid, then this eid can be used to invoke
all of them at once. Doing so saves up network resources as each intermediary node
would carry a single request instead of carrying one for each provider.

The optional free field of service descriptor can be used to inform on the non-
singleton eid, assuming that the service providers have a means to determine what
this common eid should be. Proposing such means is out of the scope of this thesis.
Also, when a group is invoked, if a request results as an error-response, the service
providers might not respond.

Different communication modes can be used when a group of service providers
is invoked. These modes are:

120

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Anycast When invoking a group, the client may be interested by a single response.
For instance a client may want to check whether it is raining or not by re-
questing the group of humidity sensors from outside. A single response would
be enough to deduce the weather yet all the sensors may answer. Requesting
a single one from the group would lower the chance to get a response and slow
down the process as it may not be the fastest exchange possible. Nevertheless
if all sensors send back a response then the network resources may be wasted.
The client could simply drop all responses coming after the first one, or a
network healing mechanism could be deployed. Network healing mechanisms
are exposed further in the conclusion chapter.

This communication mode is anycast as the client is interested in at least
one response. It is the responsibility of the client to choose how to process
responses coming after the first one, that could simply be dropped.

Multicast Opposed to the case above, there are situations when a client may want
to receive as many responses as possible. For instance, a client could have the
objective to log every room temperatures of a house. In this case, the client
would then send a request to a group and as many responses as possible would
be needed.

This communication mode is multicast as the client needs as many responses
as possible. No healing mechanism is expected to be used as the client is
interested in all the responses.

5.4.4 Request Options

Three options are proposed for lilwene invocation requests:

Caching Option lilwene requests can be marked as public by using the Bundle
Metadata Extension Block (meb [7]) so the intermediary nodes can read the
request and answer it if they carry a cached and still fresh response for the
public request. Responses of these public requests shall be marked as public
too.

Time Option The second option takes the form of a date. This date is the expira-
tion date at which the requesting client does not need the response anymore.
Thus, if the requested service provider cannot compute its response fast enough
then it shall not emit the response.

A lifetime bundle embedding a request with this option shall not share the
same value, i.e. the bundle lifetime and the option date are not expected to
coincide. Indeed, this option value can be a very far date and, in the case the
bundle expiration coincides with it, the bundle will occupy node storage for a
long, unnecessary duration. Nevertheless, for the response, the bundle lifetime
must not exceeds this option value. Indeed, the client does not need the data

121

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

after the date, so if the bundles carrying this data are deleted then it will not
prevent the client to reach its goal.

Spatial Option The last option exploits node’s location. When the nodes have
access to their location (e.g., thanks to a system like gps), this detail can be
used by client to impose a spatial condition on the service providers. This
option can be used to receive located responses.

This option defines an area within which service providers are allowed to an-
swer. Outside of this area, provider’s responses do not interest the client.

5.5 API and Implementation Elements

To support the architecture presented, this section shows different code examples
of a possible lilwene implementation. Implementation elements of the middleware
relying on the boap prototype as well as the ibr-dtn Java framework are also
presented in order to provide a technical understanding of this middleware. In the
following, the implementation-elements examples are framed to visually differentiate
them from the api-code examples.

1 public interface LilweneClient {
2 public void create(String eid, ClientHandler handler);
3 public void discoverServices(Needs needs);
4 public void requestService(Descriptor descriptor, Request request);
5 }
6

7 public interface LilweneService {
8 public void create(String eid, ServiceHandler handler, Descriptor

descriptor);↪→

9 public void update(Descriptor descriptor);
10 public void update();
11 public void stop();
12 }
13

14 // The registry is a required tool and does offer an API since its processing
shall be transparent.↪→

Listing 13: LILWENE API

As a reminder, List. 13 shows the lilwene api that offers seven methods, three
for clients and four for services. These methods are shown in api examples below
with their implementation elements. Added to these api methods, some registry
tasks are illustrated too through code examples.

122

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

5.5.1 Client Application API

Added to the three client api methods, code-elements are shown for accessing a
service descriptor, processing a registry notification and processing an error-response
with a correction sent to the registry.

5.5.1.1 Client Creation

Creation of a client application does not require many information, just the path-
part of a uri and a message handler. The message handler can be likened to the
BundleHandler (see 3.3.1) or BoaPMessageHandler (see 3.3.2.1), and is user defined.
The code to create a client is then similar to the code presented in List. 14. In
this example the variable eid represents the path-part of the uri and MyHandler
represents the user-defined handler to process responses.

1 final String eid = "client-endpoint";
2 LilweneClient lClient = new LilweneClient();
3 lClient.create(eid, new MyHandler());

Listing 14: LILWENE: Client Registration

Underlying mechanisms of this api methods are two bp endpoint-registrations.
The first one, the main one, will be used to set the source of the service requests
and will be used by the service provider to send back the responses to this endpoint.
The second one, exclusively used locally with the registry for internal management,
is used to both request, correct and receive service descriptors and registry updates.

1 public void create(String eid, LilweneMessageHandler handler) {
2 this.clientApp = new BoapApplication(eid);
3 this.clientApp.setHandler(handler);
4 this.descriptorReceiver = new BoapApplication(eid + "/registry");
5 this.descriptorReceiver.setHandler(LILWENE.DescriptionHandler());
6 }

Listing 15: Client Registration

List. 15 shows the create() method implementation. A lilwene client is an
application able to request its local registry to access service descriptors and able
to request distant services too. To create a LilweneClient two parameters are
needed: a name, path-part of the client’s eid, that is represented by the eid variable
and a user-defined handler that is represented by the handler variable. It should
be noticed that the constructor create two different BoapApplication to which

123

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

correspond the main endpoint, identified by the clientApp variable, and the second
one, descriptorReceiver, that is used to communicate with the local registry.

5.5.1.2 Descriptors Requesting

List. 16 presents an example of a client requesting its local registry. The process to
express the client’s needs, contained in the needs variable, is considered to be out
of the scope of this work. Variable lClient represents a lilwene client.

1 Needs needs = new Needs();
2 // ... Operations to express client’s needs ...
3 lClient.discoverServices(needs);
4 // The response will be processed by the handler of the client endpoint that

communicates with the registry↪→

Listing 16: LILWENE: Local Registry Requesting

In List. 16, a lilwene client requests all descriptors matching its needs that
the local registry discovered. If the local registry discovered none, then the local
registry can either create new topic-subscribers or request other registries; otherwise
all matching descriptors are returned. Each future update on the service descriptors
that were sent by the local registry will be notified to the client-endpoint that finishes
by /registry.

This api example may rely on implementation element exposed in List. 17.

1 public void requestRegistry(Needs needs) {
2 String localRegistry = "dtn://" + LOCAL_NODE_ID + "/.well-known/registry";
3 Request registryRequest = RequestGET(localRegistry);
4 registryRequest.setPayload(needs.serialize());
5 this.descriptorReceiver.send(registryRequest);
6 }

Listing 17: Local Registry Requesting

List. 17 is quite simple to detail. It creates a boap request sent by the endpoint
descriptorReceiver. The registry processing of such request can be explained as:
the registry lookups in its db, and sends back the matching service descriptors, if
any. The client processing to treat the registry response is presented further below.

5.5.1.3 Selecting and Requesting a Service

lilwene clients may live for a long time and send several requests during

124

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

their lifetime. As an implementation choice, to send its requests, a client re-
lies on a RequestSender objects. The objective of a RequestSender is to ful-
fill client’s needs, represented in needs variable, by sending a request to a ser-
vice matching client’s needs. It is assumed that a RequestSender implements
Observer interface to observe the clientDB variable to which it has a reading ac-
cess. A RequestSender can use both client eid to send requests. The method
select(List<DescriptorPointer> descriptorPointers, Needs needs) selects
out and returns the DescriptorPointer matching at best the needs.

1 public RequestSender(LilweneClient owner, Needs needs) {
2 this.owner = owner;
3 this.needs = needs;
4

5 Descriptor service = select(this.owner.getClientDB(), needs);
6 if (service == null) {
7 this.owner.getClientDB().addObserver(this);
8 requestRegistry(needs);
9 } else {

10 this.sendRequest(service);
11 }
12 }
13

14 public void update(Observable o, Object arg) {
15 // Select the best match according to the needs:
16 Descriptor descriptor = select(descriptorPointers, needs);
17 // If a descriptor matches the needs, then request the service:
18 if (descriptor != null) {
19 this.sendRequest(descriptor);
20 this.owner.getClientDB().deleteObserver(this);
21 }
22 // Otherwise, wait for next update
23 }
24

25 private void sendRequest(Descriptor descriptor) {
26 this.owner.requestService(descriptor, needs.getRequest());
27 }

Listing 18: Selecting a Service to Request

List. 18 shows an example of a RequestSender with its different methods. Upon
creation, by a lilwene client, it is added by its owner as an observer to the owner
clientDB. At its creation, the RequestSender verifies if there is an existing de-
scriptor in the clientDB matching its needs. If there is not any, then it request the
registry with the method requestRegistry(needs) (l.7) and wait for an update.
Upon clientDB update, all RequestSenders are notified and their update() meth-
ods are executed. During an update, a RequestSender verify if there is an existing
descriptor matching its needs, if there is not any, it wait for the next update ; if

125

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

there is one then RequestSender requests it and then stops observing.

5.5.1.4 Service Requesting

List. 19 shows an example of the code to request a service.

1 // Request creation
2 byte[] requestPayload = payload.serialize();
3 Request serviceRequest = Request(METHOD.GET, payload);
4

5 lClient.requestService(descriptor, serviceRequest);

Listing 19: LILWENE:Requesting a Service

To request a service two conditions must be checked: is the service still alive?
and is the service awake?. This code is simple and very similar to the request sent
to the local registry during the discovery phase with a few tests. List. 20 shows
what the implementation could be.

1 public void requestService(Descriptor descriptor, Request request) {
2 // First of all, check if the service is still alive
3 if (descriptor.getDeadline() > now()) return;
4 // Then check if the service is awake:
5 if(! document.getAgenda().isAwake()) {
6 this.rescheduleRequest(descriptor, request)
7 } else {
8 this.boapApp.send(descriptor.getDestination(), request);
9 }

10 }

Listing 20: Requesting a Service

5.5.1.5 Processing Registry Response

In this lilwene implementation, each client manages a db, identified in the code
by the clientDB variable. This db can be likened to a hash-table for which the
keys are services’ eid and values are pointers to services’ descriptors contained in
the registry db. Clients are granted read-only access to the registry db. Thus, in
this implementation, When a registry sends descriptors, it actually sends pointers
to its own db.

In List. 21, shows the processing done to memorize pointers to descriptors sent by
the registry. The client db is assumed to be observed, thus if any process is waiting

126

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

for a descriptor to send a request, it can be woke up as soon as the clientDB is
updated thanks to the registry response.

1 private void processRegistryResponse(List<DescriptorPointer> descriptorPointers)
{↪→

2 // Add all descriptor pointers into the client DB:
3 clientDB.add(descriptorPointers);
4

5 // Notify observers:
6 clientDB.notifyObservers();
7 }

Listing 21: Processing Registry Response

5.5.1.6 Processing a Registry Notification

In these implementation examples, descriptors are assumed to be stored in a db
shared between client applications (in read-only) and the registry. Client applica-
tions have a direct access in order to minimize the number of requests with the local
registry: clients have access to previously requested descriptors so they do not need
to request it again. In List. 22 we review what happens when the registry received
a newer service descriptor. In this case, as stated in 5.3.5: upon service descriptor
update, the local registry must notify the clients that requested this descriptor. This
notification contains the service descriptor-document (or its pointer) so the client
does not need to request it, thus avoiding another local exchange.

The variable update carries the pointer of the updated service descriptor. It is
assumed that the client db is a hashtable where the keys are the service endpoints
and the values are the descriptor-pointers.

1 public void updateProcessing(DescriptorPointer update) {
2 // If the service descriptor is not memorized, exit the method although,

optionally, the descriptor can also be memorized if it is not a PATCH
request (fixing a faulty descriptor) but if the descriptor is complete

↪→

↪→

3 if (!clientDB.contains(update.getEndpoint())) {
4 return;
5 }
6 // Otherwise, replace the service descriptor:
7 clientDB.replace(update.getEndpoint(), update);
8 // Notify observers:
9 clientDB.notifyObservers();

10 }

Listing 22: Registry Update Processing

127

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

5.5.1.7 Processing an Error Response

As explained in 5.4.1, clients must correct service descriptors if an error-response
is received and that this error could be avoided with a corrected service descriptor.
In List. 23 the method corrigible() return the object Descriptor containing the
corrected service descriptor if the response error code is among the corrigible ones,
otherwise the returned value is null. This code is executed for every single response
with an error code.

1 Descriptor correctedDocument = null;
2 correctedDocument = serviceDocument.corrigible(response);
3 // If the error do not permit any correction, exit.
4 if (correctedDocument == null) return;
5 // Otherwise request the local registry to update the document
6 localRegistry.requestCorrection(correctedDocument);

Listing 23: Processing Error Response

5.5.2 Service API

The three methods api of service applications, being create(..), update() and
stop() are presented below.

5.5.2.1 Service Creation and Descriptor Update

The service creation process is very similar to the client creation one since both
require an eid and a handler. List. 24 illustrates this creation as well as a descriptor
update.

1 final String eid = "service-endpoint";
2 Descriptor descriptor = new Descriptor();
3 // ... Operations to set descriptor fields ...
4 LilweneService lService = new LilweneService();
5 lService.create(eid, new MyServiceHandler(), descriptor);
6 this.descriptorVersion = 0; // Incremented in update()
7

8 // Descriptor update
9 lService.update(descriptor);

Listing 24: LILWENE: Service Creation

In List. 26, two different update() methods can be seen. One uses an optional
argument: the descriptor. The descriptor-fields setters can be used in combination

128

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

with the method update() instead of using update(Descriptor descriptor). The
process of update is as simple as sending a put request to the local registry. The reg-
istry determines if the descriptor should be directly published into a topic, proactive
discovery, or if it should wait for a request, reactive discovery.

1 public void create(String eid, LilweneMessageHandler handler, Descriptor
descriptor) {↪→

2 this.boapApp = new BoapApplication(eid);
3 this.boapApp.setHandler(handler);
4

5 // Descriptor advertisement (to the registry)
6 this.update(descriptor);
7 }
8

9 public void update(Descriptor descriptor) {
10 this.descriptor = descriptor;
11 this.update();
12 }
13

14 // Increment the descriptor version and send the descriptor to the local
registry:↪→

15 public void update() {
16 this.descriptorVersion++;
17 this.descriptor.setVersion(this.descriptorVersion);
18 byte[] payload = this.descriptor.serialize();
19 Request descriptorRq = Request(LOCAL_REGISTRY_EID, METHOD.PUT, payload);
20 this.boapApp.send(descriptorRq);
21 }

Listing 25: Service Creation

5.5.2.2 Dying Service

When a service stops, its descriptor should be advertised. This descriptor must have
only two fields: the service identification (eid) and the version number set to zero.
A registry receiving such descriptor can then remove the service descriptor from its
db. List. 26 shows the implementation of the method stop() that should be used
to advertise a dying service.

129

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

1 public void stop() {
2 // Clear all the fields except the identification
3 this.descriptor.clear();
4 // Set the version to zero.
5 this.descriptorVersion = -1; // Incremented to zero in update()
6 this.update();
7 }

Listing 26: Service Creation

5.5.3 Registry Processing

The registry must be as transparent as possible for developers using lilwene. This
is why there is not any api call available to the developers. Nevertheless, some im-
plementation elements are exposed below for a better understanding of the registry
entity.

5.5.3.1 Registry Initiation

As explained in 5.3.3, each local registry may subscribe to one (or more, if available)
topics. In the following code, List. 27, the local registry subscribes to three different
topics that are:

• dtn://group/.well-known/discovery/light ,

• dtn://group/.well-known/discovery/shutter , and

• dtn://group/.well-known/discovery , the main topic.

All messages received through these topics are processed by the same handler as
explained before.

1 // Local registry singleton-endpoint creation
2 String eid = ".well-known/registry";
3 BpApplication registry = new BpApplication(eid, new SubscriptionHandler());
4 // Subscribing to the topics
5 String[] topics = {"dtn://group/.well-known/discovery",
6 "dtn://group/.well-known/discovery/shutter",
7 "dtn://group/.well-known/discovery/light"};
8

9 for (int i = 0; i < topics.length; i++) {
10 DescriptorReceiver.subscribe(topics[i]);
11 }

Listing 27: Registry Creation

130

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

5.5.3.2 Descriptor Reception

A registry, just like client applications, have several eids: one singleton eid for its
identification and communication with local client and one, or more, non-singleton
eid for each topic subscription. These non-singleton eids receive descriptor and
are represented by variables DescriptorReceiver in the following code examples.
At DescriptorReceiver creation a handler is set. This handler is common to all
DescriptorReceiver: each time a descriptor is received the handler checks if a
descriptor for the same service provider is already stored, then the handler checks
the version number and if it is zero then the descriptor is removed from the db,
else if it is lower or equal then the registry ignores the descriptor, else if the version
number is greater then it replaces the descriptor. If no descriptor was stored for this
service, the registry simply adds it in the db. Then, the registry must check whether
clients’ needs match this new descriptors and notify them of this new descriptor.
Furthermore, the registry must notify all clients to which the registry sent an older
version of this descriptor previously.

1 for(Iterator i = documents.iterator(); i.hasNext();) {
2 ServiceDescription document = i.next();
3 // If the document is already stored ..
4 if(!documentsDb.contains(document)) {
5 String id = document.getEndpoint;
6 int storedDocumentVersion = documentsDb.get(id).getVersion();
7 // .. and if the version is zero:
8 if(document.getVersion() == 0) {
9 // Delete the document, as the service is stopped

10 documentsDb.remove(document);
11 }
12 // .. otherwise if the version is newer:
13 else if(storedDocumentVersion < document.getVersion()) {
14 // Notify the client of the descriptor update
15 List<Client> clients = documentsDb.getClientsOf(document);
16 for(Client c : clients) {
17 c.notify(document);
18 }
19 // Replace the document
20 documentsDb.replace(document);
21 }
22 // Otherwise store it.
23 } else {
24 documentsDb.store(document);
25 }
26 }

Listing 28: Descriptor Reception

Code shown in List. 28 presents the processing that a registry is expected to per-

131

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

form when it receives a message containing one or more descriptors. The variable
documents is assumed to contain all the parsed service descriptors sent in the mes-
sage. The object descriptorsDb is the entity that stores all the descriptors. This
code may be contained within a method descriptorsDb.update(documents) called
by the common handler of DescriptorReceiver, DescriptorReceiverHandler,
upon reception of a new descriptors.

5.6 Conclusion

lilwene is a Service-Oriented Approach middleware provided by an abstraction
layer on top of boap. It enables a services-style programming instead of a resource-
style one. lilwene features presented here respect the four design principles identi-
fied and exposed at the beginning of this chapter (full and concise description, local
registry, correction and update) while following dtn and rest constraints and tak-
ing into account dtn and wot challenges. While this middleware architecture have
not been implemented, it has been thought through from abstract concepts down
to an api with implementation elements. The natural next step for lilwene would
be to actually develop it by relying on the architecture, design principles, guidelines
and keys provided in this document.

The proposition of this service platform has been designed for icn. With that in
mind, it may be worth questioning its applicability in the traditional networks using
the classic coap over udp. Does porting this proposition would have drawbacks?
What would they be? How to overcome them?

With traditional networking in mind it is assumed that coap and udp are de-
ployable, thus the network must be routed and end-to-end path are assumed to exist
with sparse disconnections. Inasmuch as the store-carry-and-forward principle does
not apply anymore, then the messages are not stored on nodes that are not the
destination.

As a result the nodes will not be able to receive the requests that are not sent
towards them directly. Under those circumstances the intermediate nodes cannot
send the cached responses to other nodes, as there is not any intermediate anymore,
apart from proxies themselves but then it falls in the regular coap caching mecha-
nism. This implies that the cache feature will be useful only locally, as described in
[11] or through proxies.

The discovery is also impacted. The topics must take a different form, fortunately
coap supports multicast request, see [11, section 8], therefore the discovery can be
made through this multicast requesting by embedding the topic name, or uri, when
subtopics are used. The pub/sub coap interface [138] could also be used as a
substitute. All clients would then receive these but they may drop the description
of subtopics they did not subscribe to.

Apart for these two modifications, cache feature and discovery mechanism, all the

132

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

aforementioned propositions subsist and remain valid. That is to say, the described
platform is also a good candidate for the traditional networking environment.

Other solutions that tackles the identified challenges usually do not rely on stan-
dard and known protocols but rather provide a full stack middleware solution. My
solution provides a high-level programming interface while respecting standards and
well-known architectures. Nevertheless, there are still limitations and open chal-
lenges such as service composition and optimizations, that would be enabled by
stepping away from the layered design although this one greatly helps in traditional
networks.

133

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

134

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

6
Conclusion

Contents
6.1 Summary . 135

6.2 Perspectives . 138

6.1 Summary

The emerging paradigm of Internet of Things (iot) is usually considered in the liter-
ature as an extension of Internet. Things are often equipped with short-range radio
interfaces, undergo energy-saving constraints that shutdown their radio interfaces,
can be mobile (e.g., when embedded on robot or carried by humans) or can be de-
ployed in area lacking of network infrastructure. For these reasons, they are likely
to suffer from frequent and long delays and disconnections. This context, related
to iot can be described as the dt-iot: Delay-Tolerant Internet of Things to which
the Delay-Tolerant Networking (dtn) architecture as well as Bundle Protocol (bp)
provide means to overcome communication challenges.

This thesis studied programming-support systems in this dt-iot. According
to [59], one of the strength of Web principles is its low hardware requirements.
This requirement characteristic befits well in dt-iot context. For this reason,
programming-supports of this thesis were investigated to be Web-oriented and
restful. Furthermore, contributions of this thesis were willingly researched to be as
close as possible to existing standards since they are well known, reliable, tested and
approved. Web-oriented solutions for the iot are part of the so-called Web of Things
(wot). The programming-supports of this thesis were then focused on a Delay-
Tolerant Web of Things (dt-wot). Two different objectives were aimed during
this thesis: proposing one resource-oriented and one service-oriented programming-
support for a dt-wot.

Naturally, two solutions were proposed. The first one, resource-oriented, is in-
spired by Constrained Application Protocol (coap) and was extensively evaluated.
The second solution is a service-oriented one relying on a publish/subscribe mech-

135

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

anism to fulfill discovery needs. These solutions are both restful, follow design
principles of dtn and were designed to be adapted to the iot context.

BoaP

The first programming-support is resource-oriented. A transposition of coap for
a bp-binding has been proposed. This transposition is composed of fundamen-
tal adjustments (addressing, multicast, confirmable message and caching), and en-
hancements (multi-payload, accept option, patch method). Stemming from these
fundamental adjustments and enhancements a prototype, named boap, has been
implemented. boap is compliant with many coap features and concepts such as its
serialization, message deduplication, request/response matching, uri identification,
con/non particularities, options. Being in a bp network, and according to the
store-carry-and-forward principle, messages are stored on and carried by interme-
diary nodes. Taking benefit of this, a caching mechanism has been implemented
too. This mechanism enables intermediary nodes to answer a request they carry if
they also carry a fresh response for a similar request. This caching mechanism has
two consequences: it increases the number of fulfilled requests and it shortens their
round-trip-time.

Because of the design principles of dtn, and more precisely the fact that the
number of round-trip exchanges should be minimized, timeout of retransmissions
of con messages must receive particular considerations. Retransmissions should be
avoided, and default values of time-out for coap shall not be reused in a dtn. This
proposal natively inherits all coap characteristics (such as low overhead, straight-
forward mapping to http, multicast support) and respects all dtn design principles
in the same time.

It can be wondered if the Bundle Protocol is the best match for a transposition of
coap into an Intermittently Connected Network (icn). Indeed, if bp is the de facto
standard protocol to exchange messages in dtns, it is not adopted by the whole
community [139]. Nevertheless, and despite its known flaws [140], bp is currently
the only protocol for opportunistic networks that is technically defined in depth,
adopted by a large community according to the number of bp implementations and
considered to be deployed by national agencies such as the nasa [141]. Additionally,
the contributions of this thesis were investigated to be as close as existing standard,
and bp is the closest protocol to reach a standard status that supports message
exchanges in icn.

Experiments

boap performance has been evaluated: it has been deployed in a small physical
network, then emulated in a network of 50 nodes following two different mobility
patterns: an artificial one (Levy Walk) and reality-based one (from crawdad).

136

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

The emulations relied on an original deployment using Docker Swarm and focused
on reproducibility. Unlike simulations, emulations are not usual to evaluate dtn
systems. These experiments aimed to ensure that the prototype boap worked well
in dtn networks as well as validating the proposal of coap transposition. These
evaluations provided the conclusion that it is reliable enough for the networks it was
deployed in.

During emulations, network links were simulated in a binary manner: they were
either null (disconnected), either virtually not limited (connected). The realism
of network links can then be questioned: there is no radio-interferences, no delay
reproducing the connection between two nodes, and the data-rate is not limited
at all. Nevertheless, modelizing network-links that way is still acceptable in the
research community within which evaluations are commonly done through simula-
tions. Moreover, since the current literature shows no consensus on experimenting
methods and approximations, it is unclear if this specific approximation is a real
threat to validity.

LILWENE

The second programming-support proposed was a service-oriented solution. Bene-
fiting from a tested, reliable resource-oriented middleware, boap served has a base
of this solution named lilwene1. This solution is restful and follows a service-
oriented approach (soa).

In this proposal, four principles are suggested to help designing an optimized,
reactive and efficient soa middleware in dtn environments. These four principles
fully take into considerations the design principles of dtn, are adapted to iot context
and are conceived with service-oriented approach in mind. They are: 1. Local
Registry (each node takes part of the advertisement/discovery aspect by hosting its
own registry), 2. Full and Concise Description (so clients can successfully request
the services while keeping at a minimum the number of round-trip exchanges), 3.
Correction (client applications can correct service descriptor stored locally believed
to contain errors), and 4. Update (upon reception of a new service descriptor, local
registries notify all local client that requested similar descriptions).

lilwene proposal contains service description guidelines. All mandatory and
optional fields are listed. These fields enclose traditional information such as identi-
fication, entrypoint and requesting interface, as well as particular information related
to the specific environment. This particular information includes service deadline
(date at which a service is not expected to be available anymore), service agenda
(that inquires when a service’s host is sleeping), and a geographic restriction (for
services that provide their capabilities in a restricted area).

These documents are advertised, and discovered, through a publish/subscribe
mechanism relying on bp non-singleton eid. This pub/sub mechanism supports

1Light services middleware for delay tolerant Web-of-things Networks

137

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

several topics, and defines how to discover topics that can be dynamically created.
A client application can request description documents through regular requests to
its local registry that will then send back matching descriptions. Service invocation
is also presented and some options are also suggested. Finally, this proposal contains
some implementation elements as well as an api to provide all required details to
implements lilwene.

6.2 Perspectives

Many open challenges that would be interesting to solve remain. Solving those would
undoubtedly enhance the contributions of this thesis but are not developped in this
document as they are considered to be out of the scope of this current work. These
open challenges affect for instance security aspect, service composition in lilwene,
real-world experiments and a boap/coap proxy. Added to these open challenges,
and as a continuity of this thesis, three specific works may offer valuable outcomes,
and are presented below. They are: improving boap caching feature, implementing
network healing means and assessing performances in dtns relatively to idealistic
ones.

Improving Caching Feature

The current implementation of boap-caching feature can be optimized in order to
reduce its impact on the volume of data emitted by nodes. Indeed, in its current
state a node automatically answers with a cached response whenever a matching-
request is received by this node. Meanwhile, even if the request was answered, the
bundle containing this request is not deleted. Worse than not deleted, this bundle
is still disseminated in the network as any other regular bundle. Since the request
was fulfilled, it should not be disseminated in the network anymore as it is just
waste, pollution. The consequence is that when another node receives this bundle,
containing a request that has already been fulfilled, the receiving node may also
answer to it. This simplistic implementation does not optimize medium usage at
all. Another issue with the current implementation of boap-caching feature is that
bundles of interest (valid and fresh responses) are stored twice on the node: one in
the bp daemon storage and another at the application level. Indeed, since ibr-dtn
does not support a direct access to its bundles database, these bundles, and more
especially their payload, need to be stored on a different location. This means that
the node’s storage is not optimized since there is a duplication of data.

An optimization can be implemented. Assuming that the caching endpoint on
a node has a read-access to all stored bundles then an additional verification can
be implemented. When a request is received and that the node has a matching and
fresh response then, before sending this response, the caching endpoint should verify
whether a locally stored bundle already carries a response for the request’s source

138

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

or not. If the node has one, it implies that another node already answered to the
request, hence no more response is needed. In other words, before a node answers to
a request, it should check if a response is already stored locally. This would optimize
medium usage and save up both energy and storage.

This optimization could be further enhanced. In the case a request is received
and that this request has already been fulfilled (i.e., a bundle locally stored is sent
to the request’s source with a matching response) then the bundle that contains
the request could be dropped. Dropping this bundle would stop its dissemination
hence optimizing medium usage and saving energy and storage again. However,
ibr-dtn does not permit such bundle manipulation that does not respect a strict
layered design. Nonetheless, the Metadata Extension Block (meb [7]) could be
exploited to implement this feature with bp. This extension block can be used to
carry additional details related to the content of the payload. These details can then
be used to trigger specific actions on these bundles. In this case, there could be two
details: the token of the message (that is shared between request and response),
and the message type (either a request or a response). By exploiting these two
information, a ibr-dtn daemon can then detect and drop the bundle containing a
request when it carries both matching request and response.

A meb embedding a code to execute has also been proposed by Borrego et
al. [122]. In their proposal, the meb embeds routing-logic. This not only release
the daemon to take care of the routing algorithm but also enable to dynamically
support new routing algorithms without nodes update.

Network Healing

Network healing mechanisms aim to cure network from unwanted messages by dis-
seminating vaccines. A vaccine is a short message that informs that specific messages
can be removed from the cache as their destination already received it or do not need
it anymore. Messages that can be removed are all messages that have been received
and all messages that are not needed anymore. For instance, in lilwene, when a
service dies it publishes a service description with a version-number equals to zero.
This specific value, zero, is explicitly used to request registries to delete this service
description so it is not requested anymore hence avoiding to disseminate requests
that would not be answered. This mechanism, likened to healing ones, could be
enhanced: node storing both this service description and requests for this service
could drop the requests to save resources (i.e., medium, energy and storage usage).
Network healing challenge has already been identified and tackled in [142]. In this
publications, two means are proposed to reduce the network waste of “invocation
leftovers”. The first means is named safe healing. Once a client received the first
response, it produces a specific control message. This control message requests the
relay nodes to delete its request and all responses. The second means is named
aggressive healing. This healing is produced by the provider when it emits its re-
sponse. The control message requests other nodes to delete the matching request.

139

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Other mechanisms that explicitly request to cancel the dissemination of a message
exist, see [143, 144, 145].

Adding network healing mechanism, that could be implement by exploiting meb,
to both boap and lilwene would surely benefit both of them by improving the
medium usage hence saving up both energy and storage.

Assessing Idealistic Performance in DTNs

dtns can be modelized as Time-Varying Graphs (tvg [146]), or Temporal Net-
works [147], and theoretical studies on tvg can be applied in dtn environments. In
other words, some known algorithms for tvg are transposable in dtns, and some
quantitative characteristics can be extracted from it. Quantitative characteristics
presented along the evaluations of boap (node density, coverage ratio, average de-
gree of node against time, cdf of contacts durations) can then be completed. For
instance, as presented by Casteigts [146], horizons can be calculated. The horizon
of a node is the set of all nodes that, according to the evolution of the network, are
reachable in the future. In other words, if a node emits a message, its horizon is all
nodes that can receive this message.

tvg can help to better characterize inter-contacts and the general communica-
bility of the network. tvg can also be a reference to precisely evaluate a dtn system
performance. Indeed, by exploiting horizons, it is possible to determine, with preci-
sion, when a message can be received by another node. For instance, in the context
of boap or lilwene deployment, it is then possible to determine the exact and ear-
liest date a request can be received by the server(s), and when their response(s) can
be received by the client. It is also possible to determine if such message cannot be
received at all. Therefore, for every message it is possible to determine if it can be
received (delivery ratio), and to calculate idealistic duration needed to be received
(rtt). Thus, these idealistic delivery ratio and durations can be correlated with
experimental ones in order to evaluate the performance of a communication middle-
ware (such as boap). Nowadays, evaluations are not cross-checked and usually done
in an absolute manner, i.e. without comparing it to anything else.

The research community shows an emerging interest for experiment fidelity. In-
vestigating further horizons and combining it with an open, emulation-based ex-
perimenting platform focused on reproducibility would enable a new way of testing
algorithms, and protocol implementations. These tools would allow more realistic
evaluations and help the community to reach a consensus on experimenting meth-
ods.

140

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Appendices

141

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

A
Experiments Review: Table

In section 4.2.2.2, an experiment review references a table of 86 articles that were
reviewed to gather quantitative characterizations and to justify chosen parameter
value (density, radio-range, mobility) for this thesis’s experiments. This table is
presented below.

Table A.1: Experiment Parameters Review

Ref Area
(m2)

Radio
Range

of
nodes

Coverage
Ratio

Mobility Simulator Duration

[148] 1.23E+5 100 100 s
[149] 1.95E+6 100 RWP GloMoSim 1000 s
[150] 1.00E+6 150 RWP GloMoSim 1000 s
[151] 1.00E+6 150 RWP GloMoSim 1000 s
[152] 1.00E+6 100 RWP SWANS 1000 s
[153] 4.00E+2 5 20 3.93 Close to

none
100000 s

[154] 1.58E+7 126 0.009 map based ONE 12 h
[155] 1.00E+8 custom

RWP
12 h

[156] 1.80E+6 250 120 13.089 ns-2 120 s
[157] 34 DTNSIM 160 d
[158] 2.50E+9 250 450 0.035 Traffic

simulator
OMNET++ 2 h

[159] 2.50E+3 300 15 1696 RWP Qualnet 200 s
[160] 92 KAIST

with AP
ONE 24 h

[161] 3.00E+4 10 100,
2000

1.047,
20.94

ONE 24 h

[162] 2.50E+9 1000,
5000

158 2.37 300 s

[163] 6.00E+4,
1.00E+6

50 RWP ns-2 3000 s

i

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Ref Area
(m2)

Radio
Range

of
nodes

Coverage
Ratio

Mobility Simulator Duration

[32] 4.50E+6 50,
100

50 0.087,
0.349

custom custom 3600 s

[164] 2.06E+4 3540 Bologna
car traffic

custom ONE-like 3600 s

[165] 1.00E+6 150 80 5.65 RWP ns-2 400 s
[166] 2.10E+4,

4.00E+4
30 50,

200
3.53, 6.72 RWP GloMoSim 4500 s

[167] 1.00E+6 64 RWP,
Manhat-
tan Grid

4500 s

[168] 3.60E+5 200 10,
90

3.49, 31.41 ns-2 500 s

[169] 8.37E+5,
1.68E+6

30,
60

ns-2 500 s

[170] 9.00E+4 12 OMNET++ 60 min
[171] 1.21E+4,

6.25E+4
30 25,

64
1.13, 14.95 RWP GloMoSim 600 s

[172] 2.50E+5 90 RWP ONE 70000 s
[25] 1.60E+7 250 100 1.23 Social net-

work baed
8 h

[173] 1.56E+6 125 HCMM
[174]

90000 s

[175] contiki, cooja
[176] 275 4 CORE
[177] 9.00E+4 10 30,

60
0.10, 0.21 RWP custom

[178] 9.00E+4 10 50 0.17 RWP custom
[41] 4.00E+6 25 100 RWP, ran-

dom walk
custom

[179] 1.44E+6 250 10 1.36 custom
[143] 4.00E+4 15 16 0.28 custom
[180] 120 1 custom
[181] 100 CBM[182] dtn Java
[183] Exata
[184] 2.25E+6 250 10,

400
0.87, 34.9 RWP GloMoSim

[144] 1.00E+5,
5.00E+4

250 10,
250

39.27,
490.87

RWP GloMoSim

[185] 9.00E+4 50 50 4.36 RWP GloMoSim

ii

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Ref Area
(m2)

Radio
Range

of
nodes

Coverage
Ratio

Mobility Simulator Duration

[186] 1.00E+6 250 50 9.81 Steady-
State
RWP

GloMoSim

[187] 1.00E+6 250 50 9.81 RWP J-Sim
[188] 1.00E+6 100 J-Sim
[189] 2.50E+5 30 60 2,

2500
0.022,
28.27

RWP Madhoc

[190] 1.20E+2 30 20 471.24 Random
Walk

MATES[191]

[192] 4.50E+5 10
250

50 0.035,
21.81

Monarch

[42] 2.50E+7 40 RWP ns-2
[193] 1.00E+6,

4.50E+5
250 50 9.82, 21.82 RWP ns-2

[194] 4.50E+5 250 50 21.82 RWP ns-2
[195] 5.00E+5 50 RWP ns-2
[196] 1.20E+6 200 10 1.0471975512 ns-2
[197] 42,

70
ns-2

[198] 2.56E+4 40 50,
250

9.82, 49.09 ns-2

[199] 9.00E+4 10 100 0.35 ns-2
[200] 4.00E+6 250 200 Random

Direction
Model

OMNET++

[107] 1.00E+6 20 20 0.025 RWP OMNET++
[201] 1.00E+6 200 50 6.28 RWP OMNET++
[201] 4.00E+6 200 100 3.14 RWP OMNET++
[202] 1.00E+6 100 RWP OMNET++
[203] 5.00E+2 50 OMNET++
[204] 4.00E+8 250 260000 127.63 OMNET++
[205] 4.00E+6 100 70 0.55 [206] ONE
[207] 1.00E+6 20 18,

66
0.023,
0.083

RWP ONE

[208] 1.53E+7 140 RWP,
Helsinki
City Sce-
nario

ONE

[207] 1.53E+7 20 50 10,
200

8.2E-004,
0.10

RWP,
SPMBM,
OPP

ONE

iii

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Ref Area
(m2)

Radio
Range

of
nodes

Coverage
Ratio

Mobility Simulator Duration

[209] 4.00E+6 10 70 0.0055 ONE
[210] 2.50E+7,

1.50E+8
51 OPNET

[211] 100 600 OPNET
[212] PlanetLab
[213] 6.40E+9 500 500 0.061 RWP STRAW
[214] 1.00E+6 200 50 6.28 RWP SWANS
[215] 8.10E+5 150 RWP SWANS
[216] 4.00E+4 10 50,

200
0.39 Simplified

Way Point
SWANS

[217] 100 Waxman
[218] 1.00E+3 200 16,

32
2010, 4021 [219]

[220] Dartmouth
[221] Generated

via com-
mercial
tool

[222] H06, MIT,
ETH

[223] 1.00E+6 10 44 0.014 HCMM
[224] KAIST
[225] 9.00E+6 100 Localized

Random
Walk

[226] 4
[227] 6.25E+4 20 8, 72 0.16, 1.45
[228] 1.00E+4 20,

100
[229] 3.00E+5,

7.68E+5
50 53 1.39

iv

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

B
Service Descriptor: Binary Format and

Parameters

In section 5.2, lilwene service descriptor is presented. This appendix details the
binary format of this descriptor for all its fields as well as service parameters.

B.1 LILWENE Descriptors

The different fields of service descriptors were details in section 5.2 and are :

• Identification,

• Interface of the implemented methods and enabled options,

• Accepted inputs and outputs,

• Ontology document,

• Non-functional details:

– version,
– deadline,
– agenda,
– geographic restriction,
– optional free field.

All these details are embedded in a binary document following the format de-
scribed below according to the syntax:

<identification> 0x20 <interface> <inputs> 0xffff <outputs> 0xffff
<ontology document id> <version> <deadline> <agenda> <geographic
restriction> 0x3b3b <parameters>

The field <identification> is encoded in ascii and the value 0x20 marks the
end of this field. <interface> a fixed-size field of 1 byte. The lists of inputs and

v

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

outputs fields are both ended by the value 0xffff. These fields are a list of unsigned
short values with the special value 0xefff used as the dash-optimization: if a subset
of a list is constituted of successive unsigned short, then a dash ’-’ can be used
between the first and last integer of this subset of successive values. This shortens
lists, for example the list 3,5,8,9,10,11 becomes 3,5,8-11. The field <ontology
document id> is a fixed-size field of 8 int that contains the md5 sum of the ontology
document embedded in the next payload block of a bundle containing its descriptor.
The field <version>, and <deadline>, are both fixed-size fields of respectively 1
byte and 1 long. Then comes the field <agenda>: it is encoded in ascii, the value
0x3b marks the ends of an agenda entry as it may need several ones. Following
the <agenda>, the field <geographic restriction>, when present, is contained in
the remaining bytes between the last agenda entry and the final mark of 0x3b3b.
Because the end of this field is marked by 0x3b3b there is a possibility of error in the
parsing. Indeed, there is no assumption that this value is not in the <geographic
restriction> field. To avoid parsing error, the first byte of this field must represent
the size in octets this fields needs. Its size may differs according to the complexity
of the described area. Thanks to this, the parser knows beforehand how many
octets it should read. Removing the 0x3b3b-marker would be possible if the field
<geographic restriction> was not optional. However, without the marker the
parser cannot determine if it reads this field or the <parameter> one. As for the
parameter format it is detailed below.

B.2 Parameters

Some services may require parameter as input. It can be simple query parameters
to set output options, e.g. get dtn://temp-sensor41/status?unit=celsius, or
a more complicated one such as get dtn://camera-a94/picture?grayscale=1&
resize_h=256&resize_w=256&epoch_date=624245100. A sub-document of the
service description details the available parameters constraints. Each parameter
must be described through its different fields that are: id, type, flags/group and
constraint.

In order to ease the reading of the following a human readable representation is
used according to the syntax:

<id>:<usage>:<argument>, where <usage> include type and flags/group. For
deeper details on the parameter description format see B.2 where it is fully described.

Parameter Id

First of all, the parameters, just like the service providers, must be identified. To
ensure this, the variable id is given and is the means of identification. This is this
id that must be used in the request to set this parameter. Each parameter id must
be unique within a service description, an example could be:

vi

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

unit: [..]

This field is limited to alphanumeric values and must start with a letter.

Parameter Types

The different types of parameters are the well-known: boolean, byte, int, long,
float, string and enum. After its id, the document entry must inform on the type
of the parameter:

unit:string [..]

This parameter is encoded in a byte, see Tab. B.1. Only four bits are used to
encoded this information. The used bits are the lsbs, as for the four msbs: they
are used for parameter constraints, explained further.

Table B.1: Parameters Types

Value Type
0b0000 boolean
0b0001 signed byte
0b0010 signed int
0b0011 signed long
0b0101 signed float
0b0110 string
0b0111 enum

According to Tab. B.1, the previous description becomes:

unit:7 [..]

Parameter Methods

Parameters may not be used, or useful, for every method. For instance, a
fan service could be requested by get dtn://car/fan13/speed?unit=rpm to
get the current speed of the fan and by post –data "unit=rpm&speed=120"
dtn://car/fan13/speed to set the speed.

In the previous examples, the parameter speed is used with the post but method
not the get one. In the meantime, the parameter unit is used for both methods.
In order to inform the clients of the matching between parameters and methods,
the parameter field named methods must be set. For instance, with the previous
example, the parameters description would be:

unit:7,GET-POST [..]
speed:2,POST [..]

Same as the parameter type, this field is encoded as a byte. The two msb are left

vii

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

cleared, while the bits from the 6th down to the 1st are: observe(5), delete(4),
patch(3), post(2), put(1), get(0). Hence the previous examples become:

unit:7,5 [..]
speed:2,4 [..]

Assuming that the ontology describes the returned speed unit as rpm by default
then this parameter is optional with the get method yet remaining required for the
post. Following this byte, a second one informs if the field is optional. The two
bytes are encoding in the same format. The previous examples become:

unit:7,5,4 [..]
speed:2,4,4 [..]

Parameter Groups

In the previous post example there are two different parameters: unit=rpm
and speed=120. If the fan service understands revolutions per minute (rpm) as
much as Hertz (H) as much as radiant per second (w) units, then these requests:
"unit=rpm&speed=120", "unit=H&speed=2" and "unit=w&speed=13" produce the
same result. Other requests with other set of parameters that this service could re-
ceived are: "rpm=120", "H=2" and "w=13" producing the same result again. So far,
this is a matter of ontology, but let’s take a look at these parameters descriptions:

unit:7,5,4 [..]
speed:2,4,4 [..]
rpm:2,4,4 [..]
h:2,4,4 [..]
w:2,4,4 [..]

According to these parameters’ descriptions a client cannot determine which
subset of parameters it should use for a post request. These descriptions only
inform that these parameters can be used with post requests, nevertheless the client
should not use all of them. Indeed, sending a request with "unit=H&speed=2&H=2"
would be redundant, so the clients need a means to determine which parameter(s)
need(s) to be used with which other parameter(s). This issue can be solved by
providing a byte within which each bit represents a unique group. A group is a
subset of parameters that must be used together. A group is represented by a bit
of the parameter groups field and all parameters sharing a common bit represent a
group, and thus must be used together. With the previous example, this field would
be:

unit:7,5,4,1 [..]
speed:2,4,4,1 [..]
rpm:2,4,4,2 [..]
h:2,4,4,4 [..]
w:2,4,4,8 [..]

viii

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Meaning that unit and speed must be used together while speed, rpm, h and w
should be used alone.

Parameter Constraints

Parameters may be constrained, i.e., byte, int, short, long and float could have
some range restrictions. string type parameters could be constrained as alpha-only
or alphanumeric values. To inform clients of the parameter restrictions it may have
the three msbs of the byte defining the type of the parameter are used as detailed
on the Tab. B.2.

Table B.2: Parameters Constraints

Value boolean byte, int, long, float string enum
0b0000 Default is false Max. value defined Alpha only Single value
0b0001 Default is true Min. value defined Integers only List
0b0010 Reserved Range defined Decimals only Sorted list
0b0011 Reserved Multi-range defined Alphanum. only Reserved
0b0100 Reserved Reserved Alphanum. and space only Reserved
0b0101 Reserved Reserved url encoded Reserved
0b0101 Reserved Reserved Regexp defined Reserved
0b1000 No constraint

boolean constraints

Default value When a boolean is optional the service may inform whether,
by default, the value is true or false.

byte, int, long, float constraints

Maximum/Minimum value defined There are many reasons why a number
should be restricted to a maximum or minimum value. An example could be the
maximum speed of a fan or the minimum temperature an AC can aim for. The
clients being informed of these extreme values can then respect these constraints
and avoid getting 4.09 Conflict error response.

In the following examples the speed parameter has a maximum value defined
that is 360 and the ac parameter has a minimum value defined that is 10.

speed:2,4,4,1:360
ac:0x12,4,4,1:10

ix

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Range defined For the same reasons explained above a number should be
restricted between two extreme values. A motor may be restricted between −5V <
tension < +5V . The following example demonstrate such a case:

tension:0x22,4,4,1:-5_5

Multi-range defined Some service may not support whole range of values
or may allow several range of values. For instance a motor may not be able to
apply the tension 0V as residual electronic tension may persist so the service would
not accept the full range −5V < tension < +5V but two ranges that would be
−5V < tension < 0, 0 < tension < +5V , hence excluding the zero volt tension
using another parameter to stop the motor. Multi-ranged parameters can be defined
as follow:

tension:0x32,4,4,1:-5_0,0_5

string constraints As for the string parameters the constraints Alpha only,
Integers only, Decimals only, Alphanumeric only, Alphanumeric and space only and
url encoded speak for themselves and do not require anymore details. Neverthe-
less, the Regexp defined constraint must include the specific regular expression that
the string must follow. The regular expression syntax must follow the Extended
Regular Expressions syntax. If the string is expected to be a valid ipv4 address the
parameter could be described as follow:

tension:0x32,4,4,1:(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)
\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)
\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)
\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)

Note that instead of using complex regexps it is wiser to use more parameters
with simpler constraints. The regular expression for an ip address is really complex
for resource-constrained things. Using four bytes would be far simpler and would
save some cpu processing and thus energy too.

enum constraints and specificity The constraint Single value expected, List ex-
pected and Sorted List expected speak for themselves and do not require any addi-
tional detail. However, it should be noticed that enum type is the only parameter
that must include some details. These details are in the form of a list of the possible
values of the enum. An enumeration of the different coap request types would be:

cpRqType:7,4,0,1:con,non,ack,rst

No constraint If ever the msb of the parameter type field is set then there is no
constraint on the parameter and the clients are free to use them as needed.

x

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Parameter Description Format

So far, representation of the parameter descriptions is made to be human readable
with the syntax:

<id>:<usage>:<argument>

Nevertheless, the sub-document itself is in a binary format. The <id> field must
be composed of alphanumeric ascii values. A separator after the first field marks
the beginning of the <usage> field, its value is 0x20. The <usage> field is a fixed
size field of 4 bytes long. The remaining bytes encode the <argument> field, if any.
When a range or a multi-range is defined, there is not any separator as the length of
each number is known beforehand. If the argument represents a regular expression,
then it is encoded in base64 ascii values. In the case of an enum the same restrictions
of the <id> field must be respected and a separator marks the beginning of the next
enum value, the separator value is 0x2c. To mark the end of a parameter description
the value 0x20 is written.

In the following table, Tab. B.3, parameter examples are encoded in hexadecimal:

tension:0x22,4,4,1:-5_5
cpRqType:7,4,0,1:con,non,ack,rst

Table B.3: Binary Overview

id sep. usage argumentconstraint type methods optional group
tension : range byte post post 1 from -5 to 5
74 65 6e 73
69 6f 6e

20 2 2 4 4 1 B5 20

cpRqType : single value enum post con,non,ack,rst
63 70 52 71
54 79 70 65

20 0 7 4 0 1 63 6f 6e 2c 6e 6f
6e 2c 61 63 6b 2c
72 73 74 20

B.3 Description Examples: Binary Content

Simple Temperature sensor

Following hexadecimal values represent the service descriptor presented in 5.2.3.

64 74 6e 3a 2f 2f 66 72 69 64 67 65 2d 73 65 6e 73 6f 72 2f 74 65 6d
70 65 72 61 74 75 72 65 20 41 ff ff 03 ff ff 95 28 59 ec 92 e9 f3 da 8b
57 75 0e ee 77 7a fa 13 6a 85 70 2d 3b 3b 76 61 72 69 61 74 69 6f 6e 20
22 40 00 01 00 0a 20

xi

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Configurable Light Bulb

Following hexadecimal values represent the service descriptor presented in 5.2.3.

64 74 6e 3a 2f 2f 6c 69 67 68 74 30 61 2f 61 63 63 65 73 73 20 03 ff
ff 03 ff ff 95 28 59 ec 92 e9 f3 da 8b 57 75 0e ee 77 7a fa 10 5f 3d 30
29 30 20 39 20 2a 20 2a 20 2a 20 33 32 34 30 30 3b 3b 74 75 72 6e 20 04
20 03 6f 6e 2C 6f 66 66 20 68 65 78 20 56 22 01 5b 30 2d 39 61 2d 66 41
2d 46 5d 2b 20 72 20 82 22 02 20 67 20 82 22 02 20 62 20 82 22 02 20

xii

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Publications

[1] N. Le Sommer, L. Touseau, Y. Mahéo, M. Auzias, and F. Raimbault. “A
Disruption-Tolerant RESTful Support for the Web of Things”, in 4rd International
Conference on Future Internet of Things and Cloud, Vienna, Austria, August 2016,
IEEE.

[2] M. Auzias, Y. Mahéo and F. Raimbault. “CoAP over BP for a Delay-Tolerant
Internet of Things”, in 3rd International Conference on Future Internet of Things
and Cloud, Rome, Italy, August 2015, IEEE.

xiii

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

xiv

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Bibliography

[1] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things:
A survey. Computer Networks, 54(15):2787–2805, 2010.

[2] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (iot): A vision, architectural elements, and
future directions. Future generation computer systems, 29(7):1645–1660, 2013.

[3] Anders Lindgren, Avri Doria, Jan Lindblom, and Mattias Ek. Networking
in the land of northern lights: two years of experiences from DTN system
deployments. In Proceedings of the 2008 ACM workshop on Wireless networks
and systems for developing regions, pages 1–8. ACM, 2008.

[4] Vinton G. Cerf, Scott C. Burleigh, Robert C. Durst, Kevin Fall, Adrian J.
Hooke, Keith L. Scott, Leigh Torgerson, and Howard S. Weiss. Delay-Tolerant
Networking Architecture. IETF RFC 4838, November 2007.

[5] Kevin Fall. A Delay-Tolerant Network Architecture for Challenged Internets.
In Proceedings of ACM SIGCOMM03, August 2003.

[6] Keith Scott and Scott Burleigh. Bundle Protocol Specification. IETF RFC
5050, April 2007.

[7] Susan Flynn Symington. Delay-Tolerant Networking Metadata Extension
Block, May 2011.

[8] Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde. From
the internet of things to the web of things: Resource-oriented architecture and
best practices. In Architecting the Internet of Things, pages 97–129. Springer,
2011.

[9] Roy Thomas Fielding. Architectural styles and the design of network-based
software architectures. PhD thesis, University of California, 2000.

[10] W3C. Architecture of the world wide web, volume one.

[11] Zach Shelby, Klaus Hartke, and Carsten Bormann. Constrained Application
Protocol (CoAP). IETF Internet Draft, June 2014.

[12] Zach Shelby. Constrained RESTful Environments (CoRE) Link Format, Au-
gust 2012.

[13] Luciana Pelusi, Andrea Passarella, and Marco Conti. Opportunistic Network-
ing: Data Forwarding in Disconnected Mobile Ad Hoc Networks. IEEE Com-
munications Magazine, 44(11):134–141, November 2006.

xv

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[14] Vince Cerf, Scott Burleigh, Adrian Hooke, Leigh Togerson, Robert Durst,
Keith Scott, Eric Travis, and Howie Weiss. Interplanetary Internet (IPN):
Architectural Definition. IETF Internet Draft, May 2001.

[15] Zhensheng Zhang. Routing in intermittently connected mobile ad hoc networks
and delay tolerant networks: overview and challenges. IEEE Communications
Surveys & Tutorials, 8(1):24–37, 2006.

[16] Scott Burleigh. Interplanetary overlay network. In Consumer Communications
and Networking Conference (ieeeccnc), Proceedings of the 4th, pages 222–226.
IEEE, 2007.

[17] Marc Blanchet. Postellation: an enhanced delay-tolerant network (dtn) im-
plementation with video streaming and automated network attachment. In
SpaceOps 2012, page 1279621. 2012.

[18] Michael Doering, Sven Lahde, Johannes Morgenroth, and Lars Wolf. IBR-
DTN: an efficient implementation for embedded systems. In Proceedings of the
3rd ACM workshop on Challenged networks, pages 117–120. ACM, September
2008.

[19] Dtn2 documentation.

[20] Daniel Brown, Richard Altmann, Daniel Brown, and Ronald in ’t Velt. DTN
IP Neighbor Discovery (IPND). IETF Draft, May 2016.

[21] Amin Vahdat and David Becker. Epidemic Routing for Partially Connected
Ad Hoc Networks. Technical report, Duke University, April 2000.

[22] S. Y. Ni, Y. C. Tseng, Y. S. Chen, and J. P. Sheu. The Broadcast Storm Prob-
lem in a Mobile Ad Hoc Network. In Proceedings of the 5th annual ACM/IEEE
international conference on Mobile computing and networking, pages 151–162.
ACM/IEEE, 1999.

[23] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S Raghavendra.
Single-copy routing in intermittently connected mobile networks. In Sensor
and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. 2004
First Annual IEEE Communications Society Conference on, pages 235–244.
IEEE, 2004.

[24] Ramon Martí, Sergi Robles, Abraham Martín-Campillo, and J Cucurull. Pro-
viding early resource allocation during emergencies: The mobile triage tag.
Journal of Network and Computer Applications, 32(6):1167–1182, 2009.

[25] Paolo Costa, Cecilia Mascolo, Mirco Musolesi, and Gian Pietro Picco. Socially-
Aware Routing for Publish-Subscribe in Delay-Tolerant Mobile Ad Hoc
Networks. IEEE Journal On Selected Areas In Communications (JSAC),
26(5):748–760, June 2008.

xvi

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[26] Julien Haillot and Frédéric Guidec. A Protocol for Content-Based Communica-
tion in Disconnected Mobile Ad Hoc Networks. Journal of Mobile Information
Systems, 6(2):123–154, 2010.

[27] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S. Raghaven-
dra. Spray and Wait: an Efficient Routing Scheme for Intermittently Con-
nected Mobile Networks. In 2005 ACM SIGCOMM workshop on Delay-
tolerant networking (WDTN’05), pages 252–259, Philadelphia, PA, USA, 2005.
ACM.

[28] Thrasyvoulos Spyropoulos, K. Psounis, and C.S. Raghavendra. Spray and fo-
cus: Efficient mobility-assisted routing for heterogeneous and correlated mobil-
ity. In Pervasive Computing and Communications Workshops, 2007. PerCom
Workshops ’07. Fifth Annual IEEE International Conference on, pages 79–85,
March 2007.

[29] John Burgess, Brian Gallagher, David Jensen, and Brian Neil Levine. Max-
Prop: Routing for Vehicle-Based Disruption-Tolerant Networks. In 25th In-
ternational Conference on Computer Communications (INFOCOM’06), pages
1–11, Barcelona, Spain, April 2006. IEEE CS.

[30] Jérémie Leguay, Timur Friedman, and Vania Conan. Dtn routing in a mobility
pattern space. In Proceedings of the 2005 ACM SIGCOMM workshop on
Delay-tolerant networking, pages 276–283. ACM, 2005.

[31] Abraham Martín-Campillo and Ramon Martí. Energy-efficient forwarding
mechanism for wireless opportunistic networks in emergency scenarios. Com-
puter Communications, 35(14):1715–1724, 2012.

[32] Anders F. Lindgren, Avri Doria, and Olov Schelen. Probabilistic Routing
in Intermittently Connected Networks. In Proceedings of the The 1st Interna-
tional Workshop on Service Assurance with Partial and Intermittent Resources
(SAPIR 2004), Fortaleza, Brazil, August 2004.

[33] Chiara Boldrini, Marco Conti, Jacopo Jacopini, and Andrea Passarella. Hi-
BOP: a History Based Routing Protocol for Opportunistic Networks. In Marco
Conti, editor, International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM 2007), pages 1–12, Helsinky, Finland, 2007.
IEEE CS.

[34] Chiara Boldrini, Marco Conti, and Andrea Passarella. Exploiting users’ so-
cial relations to forward data in opportunistic networks: The hibop solution.
Pervasive and Mobile Computing, 4(5):633–657, 2008.

[35] Long Vu, Quang Do, and Klara Nahrstedt. 3r: Fine-grained encounter-based
routing in delay tolerant networks. In World of Wireless, Mobile and Multime-
dia Networks (WoWMoM), 2011 IEEE International Symposium on a, pages
1–6. IEEE, 2011.

xvii

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[36] Ali Makke, Nicolas Le Sommer, and Yves Mahéo. TAO: A Time-Aware Oppor-
tunistic Routing Protocol for Service Invocation in Intermittently Connected
Networks. In 8th International Conference on Wireless and Mobile Commu-
nications (ICWMC 2012), pages 118–123, Venice, Italy, June 2012. Xpert
Publishing Services.

[37] Eiko Yoneki, Pan Hui, Shu-Yan Chan, and Jon Crowcroft. A Socio-Aware
Overlay for Publish/Subscribe Communication in Delay Tolerant Networks. In
10th ACM/IEEE International Symposium on Modeling, Analysis and Simu-
lation of Wireless and Mobile Systems (MSWiM), pages 225–234, Crete Island,
Greece, October 2007. ACM.

[38] Elizabeth M. Daly and Mads Haahr. Social Network Analysis for Routing
in Disconnected Delay-tolerant MANETs. In Proceedings of the 8th ACM
International Symposium on Mobile Ad Hoc Networking and Computing (Mo-
bihoc’07), pages 32–40, Montreal, Quebec, Canada, 2007. ACM.

[39] Pan Hui, Jon Crowcroft, and Eiko Yoneki. Bubble rap: Social-based forward-
ing in delay-tolerant networks. IEEE Transactions on Mobile Computing,
10(11):1576–1589, 2011.

[40] David J Goodman, Joan Borras, Narayan B Mandayam, and Roy D Yates.
Infostations: A new system model for data and messaging services. In Vehicu-
lar Technology Conference, 1997, IEEE 47th, volume 2, pages 969–973. IEEE,
1997.

[41] Sushant Jain, Rahul Shah, Waylon Brunette, Gaetano Borriello, and Sumit
Roy. Exploiting Mobility for Energy Efficient Data Collection in Wireless
Sensor Networks. MONET, 11(3):327–339, 2006.

[42] Wenrui Zhao, Mostafa Ammar, and Ellen Zegura. A Message Ferrying Ap-
proach for Data Delivery in Sparse Mobile Ad Hoc Networks. In Proceedings
of the Fifth International Symposium on Mobile Ad Hoc Networking and Com-
puting (Mobihoc 2004), Tokyo, Japan, May 2004. ACM.

[43] James Scott, Pan Hui, Jon Crowcroft, and Christophe Diot. Haggle: a Net-
working Architecture Designed Around Mobile Users. In IFIP Conference
on Wireless on Demand Network Systems and Services (WONS 2006), Les
Ménuires, France, January 2006.

[44] Nicolas Le Sommer, Pascale Launay, and Yves Mahéo. A Framework for
Opportunistic Networking in Spontaneous and Ephemeral Social Networks.
In 10th Workshop on Challenged Networks (CHANTS’2015), Paris, France,
September 2015. ACM.

[45] Frédéric Guidec, Nicolas Le Sommer, and Yves Mahéo. Opportunistic Software
Deployment in Disconnected Mobile Ad Hoc Networks. International Journal
of Handheld Computing Research, 1(1):24–42, 2010.

xviii

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[46] Ólafur Helgason, Sylvia T Kouyoumdjieva, Ljubica Pajević, Emre A Yavuz,
and Gunnar Karlsson. A middleware for opportunistic content distribution.
Computer Networks, 107:178–193, 2016.

[47] Valerio Arnaboldi, Marco Conti, and Franca Delmastro. CAMEO: A Novel
Context-Aware Middleware for Opportunistic Mobile Social Networks. Perva-
sive and Mobile Computing, 2013.

[48] Marco Conti, Franca Delmastro, and Andrea Passarella. Mobile service plat-
forms based on opportunistic computing: The scampi project. Mobile Com-
puting, page 25, 2013.

[49] Soma Bandyopadhyay, Munmun Sengupta, Souvik Maiti, and Subhajit Dutta.
Role of middleware for internet of things: A study. International Journal of
Computer Science & Engineering Survey (IJCSES), 2(3):94–105, 2011.

[50] Mohammad Abdur Razzaque, Marija Milojevic-Jevric, Andrei Palade, and
Siobhán Clarke. Middleware for internet of things: a survey. IEEE Internet
of Things Journal, 3(1):70–95, 2016.

[51] Carlos Albuquerque, Aércio Cavalcanti, Felipe S Ferraz, and Ana Paula Fur-
tado. A Study on Middleware for IoT: A comparison between relevant arti-
cles. In Proceedings on the International Conference on Internet Computing
(ICOMP), page 32. The Steering Committee of The World Congress in Com-
puter Science, Computer Engineering and Applied Computing (WorldComp),
2016.

[52] Anne HH Ngu, Mario Gutierrez, Vangelis Metsis, Surya Nepal, and Michael Z
Sheng. Iot middleware: A survey on issues and enabling technologies. IEEE
Internet of Things Journal, 2016.

[53] Dominique Guinard, Vlad Trifa, and Erik Wilde. A resource oriented archi-
tecture for the web of things. In Internet of Things (IOT), 2010, pages 1–8.
IEEE, 2010.

[54] Kashif Dar, Amir Taherkordi, Harun Baraki, Frank Eliassen, and Kurt Geihs.
A resource oriented integration architecture for the internet of things: A busi-
ness process perspective. Pervasive and Mobile Computing, 20:145–159, 2015.

[55] Thiago Teixeira, Sara Hachem, Valérie Issarny, and Nikolaos Georgantas. Ser-
vice oriented middleware for the internet of things: a perspective. In Towards
a Service-Based Internet, pages 220–229. Springer, 2011.

[56] Valérie Issarny, Nikolaos Georgantas, Sara Hachem, Apostolos Zarras, Panos
Vassiliadist, Marco Autili, Marco Aurelio Gerosa, and Amira Ben Hamida.
Service-oriented middleware for the future internet: state of the art and re-
search directions. Journal of Internet Services and Applications, 2(1):23–45,
2011.

xix

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[57] Suparna De, Payam Barnaghi, Martin Bauer, and Stefan Meissner. Service
modelling for the internet of things. In Computer Science and Information Sys-
tems (FedCSIS), 2011 Federated Conference on, pages 949–955. IEEE, 2011.

[58] Michael Mrissa, Lionel Médini, and Jean-Paul Jamont. Semantic discovery and
invocation of functionalities for the web of things. In WETICE Conference
(WETICE), 2014 IEEE 23rd International, pages 281–286. IEEE, 2014.

[59] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web ser-
vices vs. big’web services: making the right architectural decision. In 17th
international conference on World Wide Web, pages 805–814. ACM, 2008.

[60] Mark Nottingham and Eran Hammer-Lahav. Defining well-known uniform
resource identifiers (uris). IETF Draft, May 2016.

[61] Klaus Hartke. Observing Resources in the Constrained Application Protocol
(CoAP). IETF RFC, September 2015.

[62] Bilhanan Silverajan and Teemu Savolainen. CoAP Communication with Al-
ternative Transports. IETF Internet Draft, July 2014.

[63] Nenad Gligoric, Tomislav Dimcic, Dejan Drajic, Srdjan Krco, Igor Dejanovic,
Nhon Chu, and Aleksandar Obradovic. CoAP over SMS: Performance eval-
uation for machine to machine communication. In 20th Telecommunications
Forum (TELFOR 2012), pages 1–4, Belgrade, Serbia, November 2012. IEEE
CS.

[64] Guido Moritz. SOAP-over-CoAP Binding. IETF Internet Draft, June 2011.

[65] Guido Moritz, Frank Golatowski, and Dirk Timmermann. A lightweight soap
over coap transport binding for resource constraint networks. In 8th IEEE
International Conference on Mobile Adhoc and Sensor Systems (MASS), pages
861–866. IEEE CS, 2011.

[66] Koojana Kuladinithi, Olaf Bergmann, Thomas Pötsch, Markus Becker, and
Carmelita Görg. Implementation of coap and its application in transport
logistics. In Proceedings of the Workshop on Extending the Internet to Low
Power and Lossy Networks (IP+SN 2011), Chicago, IL, USA, April 2011.

[67] Jouni Mäenpää, Jaime Jiménez Bolonio, and Salvatore Loreto. Using reload
and coap for wide area sensor and actuator networking. EURASIP Journal
on Wireless Communications and Networking, 2012:1–22, 2012.

[68] Mark Nottingham. Web Linking, October 2010.

[69] Markus Eisenhauer, Peter Rosengren, and Pablo Antolin. Hydra: A develop-
ment platform for integrating wireless devices and sensors into ambient intel-
ligence systems. In The Internet of Things, pages 367–373. Springer, 2010.

xx

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[70] Mauro Caporuscio, Pierre-Guillaume Raverdy, and Valerie Issarny. ubisoap:
A service-oriented middleware for ubiquitous networking. IEEE Transactions
on Services Computing, 5(1):86–98, 2012.

[71] Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein Hallsteinsen,
Jorge Lorenzo, Alessandro Mamelli, and Ulrich Scholz. Music: Middleware
support for self-adaptation in ubiquitous and service-oriented environments.
In Software engineering for self-adaptive systems, pages 164–182. Springer,
2009.

[72] Dominique Guinard, Vlad Trifa, Stamatis Karnouskos, Patrik Spiess, and
Domnic Savio. Interacting with the soa-based internet of things: Discovery,
query, selection, and on-demand provisioning of web services. IEEE transac-
tions on Services Computing, 3(3):223–235, 2010.

[73] Iván Corredor, José F Martínez, Miguel S Familiar, and Lourdes López.
Knowledge-aware and service-oriented middleware for deploying pervasive ser-
vices. Journal of Network and Computer Applications, 35(2):562–576, 2012.

[74] Edgardo Avilés-López and J Antonio García-Macías. Tinysoa: a service-
oriented architecture for wireless sensor networks. Service Oriented Computing
and Applications, 3(2):99–108, 2009.

[75] Gaetano F Anastasi, Enrico Bini, Antonio Romano, and Giuseppe Lipari. A
service-oriented architecture for qos configuration and management of wireless
sensor networks. In Emerging Technologies and Factory Automation (ETFA),
2010 IEEE Conference on, pages 1–8. IEEE, 2010.

[76] I LogMeIn. Xively, 2015.

[77] Carriots.

[78] Echelon Corporation.

[79] Amira Ben Hamida, Fabio Kon, Gustavo Ansaldi Oliva, Carlos Dos Santos,
Jean-Pierre Lorré, Marco Autili, Guglielmo De Angelis, Apostolos Zarras,
Nikolaos Georgantas, Valérie Issarny, et al. An integrated development and
runtime environment for the future internet. The Future Internet, pages 81–92,
2012.

[80] Mauro Caporuscio, Marco Funaro, Carlo Ghezzi, and Valérie Issarny. ubirest:
A restful service-oriented middleware for ubiquitous networking. In Advanced
Web Services, pages 475–500. Springer, 2014.

[81] Mauro Caporuscio, Marco Funaro, and Carlo Ghezzi. RESTful service archi-
tectures for pervasive networking environments. In REST: from Research to
Practice, pages 401–422.

xxi

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[82] Charith Perera, Prem Prakash Jayaraman, Arkady Zaslavsky, Peter Christen,
and Dimitrios Georgakopoulos. Mosden: An internet of things middleware for
resource constrained mobile devices. In 47th Hawaii International Conference
on System Sciences (HICSS), pages 1053–1062. IEEE, 2014.

[83] Karl Aberer and Manfred Hauswirth. Middleware support for the "internet of
things". 5th Workshop of Digital Enterprise Research Institute, 2006.

[84] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Servilla: a flexible
service provisioning middleware for heterogeneous sensor networks. Science of
Computer Programming, 77(6):663–684, 2012.

[85] Eclipse. Kura.

[86] Microej.

[87] AllSeen Alliance. Iotivity, 2015.

[88] Massimo Villari, Antonio Celesti, Maria Fazio, and Antonio Puliafito. Alljoyn
lambda: An architecture for the management of smart environments in iot. In
Smart Computing Workshops (SMARTCOMP Workshops), 2014 International
Conference on, pages 9–14. IEEE, 2014.

[89] Yan Rodriguez and Ben Garcia. Programmable multi-function z-wave adapter
for z-wave wireless networks, 2012. US Patent 8,117,362.

[90] ASHRAE Standard. Standard 135-2005, bacnet-a data communication proto-
col for building automation and control networks. American Society of Heat-
ing, Refrigerating and Air-Conditioning Engineers, Atlanta, GA, 2005.

[91] Linyi Tian. Lightweight m2m (oma lwm2m). OMA device management work-
ing group (OMA DM WG), Open Mobile Alliance (OMA), 2012.

[92] Antonio Puliafito, Angelo Cucinotta, Antonino Longo Minnolo, and Angelo
Zaia. Making the internet of things a reality: The wherex solution. In The
Internet of Things, pages 99–108. Springer, 2010.

[93] Michal Nagy, Artem Katasonov, Michal Szydlowski, Oleksiy Khriyenko, Sergiy
Nikitin, and Vagan Terziyan. Challenges of middleware for the internet of
things. INTECH Open Access Publisher, 2009.

[94] Marco Conti, Silvia Giordano, Martin May, and Andrea Passarella. From
opportunistic networks to opportunistic computing. IEEE Communications
Magazine, 48(9):126–139, September 2010.

[95] Marco Conti and Mohan Kumar. Opportunities in Opportunistic Computing.
Computer, 43:42–50, 2010.

xxii

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[96] Jörg Ott and Dirk Kutscher. Applying dtn to mobile internet access: An
experiment with HTTP. Universität Bremen,” TRTZI-050701, 2005.

[97] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan Peh,
and Daniel Rubenstein. Energy-efficient Computing for Wildlife Tracking:
Design Tradeoffs and Early Experiences with ZebraNet. In Proceedings of
the 10th International Conference on Architectural Support for Programming
Languages and Operating Systems (APLOS X), pages 96–107, San Jose, CA,
USA, 2002. ACM.

[98] Tara Small and Zygmunt J Haas. The shared wireless infostation model: a
new ad hoc networking paradigm (or where there is a whale, there is a way).
In Proceedings of the 4th ACM international symposium on Mobile ad hoc
networking & computing, pages 233–244. ACM, 2003.

[99] Kamini Kamini and Rakesh Kumar. Vanet parameters and applications: A
review. Global Journal of Computer Science and Technology, 10(7), 2010.

[100] Aruna Balasubramanian, Yun Zhou, W Bruce Croft, Brian Neil Levine, and
Aruna Venkataramani. Web search from a bus. In Proceedings of the second
ACM workshop on Challenged networks, pages 59–66. ACM, 2007.

[101] N4c project.

[102] Anders Lindgren. Social networking in a disconnected network: fbDTN: face-
book over DTN. In Proceedings of the 6th ACM workshop on Challenged
networks, pages 69–70. ACM, 2011.

[103] Mikko Pitkänen, Teemu Kärkkäinen, and Jörg Ott. Opportunistic web access
via wlan hotspots. In Pervasive Computing and Communications (PerCom),
2010 IEEE International Conference on, pages 20–30. IEEE, 2010.

[104] Yves Mahéo, Nicolas Le Sommer, Pascale Launay, Frédéric Guidec, and Mario
Dragone. Beyond Opportunistic Networking Protocols: a Disruption-Tolerant
Application Suite for Disconnected MANETs. In 4th Extreme Conference
on Communication (ExtremeCom’12), pages 1–6, Zürich, Switzerland, March
2012. ACM.

[105] Jörg Ott and Dirk Kutscher. Bundling the Web: HTTP over DTN. In Work-
shop on Networking in Public transport (WNEPT 2006), Waterloo, Ontario,
Canada, August 2006.

[106] Lloyd Wood, Peter Holliday, Daniel Floreani, and Ioannis Psaras. Moving
data in DTNs with HTTP and MIME. In ICUMT, pages 1–4, 2009.

[107] Andrea Passarella, Mohan Kumar, Marco Conti, and Eleonora Borgia.
Minimum-Delay Service Provisioning in Opportunistic Networks. IEEE Trans-
actions on Parallel and Distributed Systems, 22(8):1267–1275, 2010.

xxiii

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[108] Abdulkader Benchi, Pascale Launay, and Frédéric Guidec. A P2P Tuple Space
Implementation for Disconnected MANETs. Peer-to-Peer Networking and Ap-
plications, 8(1):1–16, January 2015.

[109] Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman. LIME: Linda
Meets Mobility. In Proceedings of International Conference on Software En-
gineering (ICSE 99), pages 368–377, 1999.

[110] P. Pantazopoulos, I. Stavrakakis, A. Passarella, and M. Conti. Efficient social-
aware content placement in opportunistic networks. In Wireless On-demand
Network Systems and Services (WONS), 2010 Seventh International Confer-
ence on, pages 17–24, February 2010.

[111] Chiara Boldrini, Marco Conti, and Andrea Passarella. Contentplace: Social-
aware data dissemination in opportunistic networks. In Proceedings of the 11th

International Symposium on Modeling, Analysis and Simulation of Wireless
and Mobile Systems, MSWiM ’08, pages 203–210, New York, NY, USA, 2008.
ACM.

[112] Frédéric Guidec, Pascale Launay, Nicolas Le Sommer, and Yves Mahéo. Ex-
perimentation with a DoDWAN-based Application Suite for Opportunistic
Computing (demo proposal). In 4th Extreme Conference on Communication
(ExtremeCom’12), pages 1–2, Zürich, Switzerland, March 2012. ACM.

[113] Yves Mahéo and Romeo Said. Service Invocation over Content-Based Commu-
nication in Disconnected Mobile Ad Hoc Networks. In 24th International Con-
ference on Advanced Information Networking and Applications (AINA’10),
pages 503–510, Perth, Australia, April 2010. IEEE CS.

[114] Fadhlallah Baklouti, Nicolas Le Sommer, and Yves Mahéo. Opportunistic Ser-
vice Composition in Pervasive Networks. In IFIP Wireless Days Conference,
Porto, Portugal, March 2017. IEEE.

[115] Michaël Mrissa, Lionel Médini, Jean-Paul Jamont, Nicolas Le Sommer, and
Jérôme Laplace. An Avatar Architecture for the Web of Things. IEEE Internet
Computing, 19(2):30–38, March 2015.

[116] Nicolas Le Sommer, Lionel Touseau, Yves Mahéo, Maël Auzias, and Frédéric
Raimbault. A Disruption-Tolerant RESTful Support for the Web of Things.
In International Conference on Future Internet of Things and Cloud (icfiotc),
Proceedings of the 4th, pages 17–24, Vienna, Austria, August 2016. IEEE.

[117] Stephen Farrell, Vinny Cahill, Dermot Geraghty, Ivor Humphreys, and Paul
McDonald. When TCP breaks: Delay-and disruption-tolerant networking.
IEEE Internet Computing, 10(4):72–78, 2006.

[118] Carsten Bormann and Zach Shelby. Block-Wise Transfers in the Constrained
Application Protocol (CoAP), August 2016.

xxiv

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[119] Matthias Kovatsch, Martin Lanter, and Zach Shelby. Californium: Scalable
Cloud Services for the Internet of Things through CoAP. In Proceedings of the
International Conference on the Internet of Things (IoT 2014), Cambridge,
MA, USA, October 2014. ACM Press.

[120] Markus Becker, Kepeng Li, Koojana Kuladinithi, and Thomas Poetsch. Trans-
port of CoAP over SMS. IETF Internet Draft, August 2014.

[121] Peter Van Der Stock and Anuj Sehgal. Patch Method for Constrained Appli-
cation Protocol (CoAP). IETF ID, March 2015.

[122] Carlos Borrego, Sergi Robles, Angela Fabregues, and Adrián Sánchez-
Carmona. A mobile code bundle extension for application-defined routing in
delay and disruption tolerant networking. volume 87, pages 59–77. Elsevier,
2015.

[123] Haifeng Li, Huachun Zhou, Hongke Zhang, Bohao Feng, and Wenfeng Shi.
EmuStack: An OpenStack-Based DTN Network Emulation Platform. Mobile
Information Systems, 2016(6540207):15, October 2016.

[124] Jeff Ahrenholz. Comparison of core network emulation platforms. In IEEE
Military Communications Conference (MILCOM), pages 864–869, 2010.

[125] Injong Rhee, Minsu Shin, Seongik Hong, Kyunghan Lee, Seong Joon Kim,
and Song Chong. On the levy-walk nature of human mobility. IEEE/ACM
transactions on networking (TON), 19(3):630–643, 2011.

[126] Mongnam Han, Youngseok Lee, Sue B. Moon, Keon Jang, and Dooyoung Lee.
CRAWDAD dataset kaist/wibro (v. 2008-06-04). Downloaded from http:
//crawdad.org/kaist/wibro/20080604, June 2008.

[127] Yu-Kang Lee, Chun-Tuan Chang, You Lin, and Zhao-Hong Cheng. The dark
side of smartphone usage: Psychological traits, compulsive behavior and tech-
nostress. Computers in Human Behavior, 31:373–383, 2014.

[128] Stuart Kurkowski, Tracy Camp, and Michael Colagrosso. MANET Simulation
Studies: the Incredibles. ACM SIGMOBILE Mobile Computing and Commu-
nications Review, 9:50–61, 2005.

[129] James Scott, Richard Gass, Jon Crowcroft, Pan Hui, Christophe Diot, and
Augustin Chaintreau. Crawdad dataset cambridge/haggle (v. 2006-09-15).
CRAWDAD wireless network data archive, 2006.

[130] José M Hernández-Muñoz, Jesús Bernat Vercher, Luis Muñoz, José A Galache,
Mirko Presser, Luis A Hernández Gómez, and Jan Pettersson. Smart cities at
the forefront of the future internet. In The Future Internet Assembly, pages
447–462. Springer, 2011.

xxv

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

http://crawdad.org/kaist/wibro/20080604
http://crawdad.org/kaist/wibro/20080604

[131] Sara Hachem, Thiago Teixeira, and Valérie Issarny. Ontologies for the internet
of things. In Proceedings of the 8th Middleware Doctoral Symposium, page 3.
ACM, 2011.

[132] Robert G Raskin and Michael J Pan. Knowledge representation in the se-
mantic web for earth and environmental terminology (sweet). Computers &
geosciences, 31(9):1119–1125, 2005.

[133] Zhexuan Song, Alvaro A Cárdenas, and Ryusuke Masuoka. Semantic mid-
dleware for the internet of things. IEEE Internet of Things 2010, pages 1–8,
2010.

[134] Amarnath Palavalli, Durgaprasad Karri, and Swarnalatha Pasupuleti. Se-
mantic internet of things. In Semantic Computing (ICSC), 2016 IEEE Tenth
International Conference on, pages 91–95. IEEE, 2016.

[135] Nicolas Le Sommer and Yves Mahéo. Location-Aware Routing for Service-
Oriented Opportunistic Computing. International Journal on Advances in
Networks and Services, (3):225–235, 2012.

[136] Ólafur R Helgason, Emre A Yavuz, Sylvia T Kouyoumdjieva, Ljubica Pajevic,
and Gunnar Karlsson. A mobile peer-to-peer system for opportunistic content-
centric networking. In Proceedings of the second ACM SIGCOMM workshop
on Networking, systems, and applications on mobile handhelds. ACM, 2010.

[137] Mauro Caporuscio, Antonio Carzaniga, and Alexander L Wolf. Design and
evaluation of a support service for mobile, wireless publish/subscribe ap-
plications. Software Engineering, Technical report IEEE Transactions on,
29(12):1059–1071, 2003.

[138] Michael Koster, Ari Keranen, and Jaime Jimenez. Publish-Subscribe Broker
for the Constrained Application Protocol (CoAP), March 2015.

[139] Lloyd Wood, Peter Holliday, Daniel Floreani, and Wesley M. Eddy. Sharing
the Dream: the Consensual Hallucination Offered by the Bundle Protocol.
In Internation Congress on Ultra Modern Telecommunication (ICUMT’09),
pages 1–2. IEEE, 2009.

[140] Lloyd Wood, Wesley M. Eddy, and Peter Holliday. A bundle of problems. In
Aerospace conference, 2009 IEEE, pages 1–17. IEEE, 2009.

[141] Andrew Jenkins, Sebastian Kuzminsky, Kevin K Gifford, Robert L Pitts, and
Kelvin Nichols. Delay/disruption-tolerant networking: flight test results from
the international space station. In Aerospace Conference, 2010 IEEE, pages
1–8. IEEE, 2010.

[142] Romeo Said. Middleware for Service Provision in Disconnected Mobile Ad Hoc
Networks. PhD thesis, Université de Bretagne-Sud / Université Européenne
de Bretagne, February 2011.

xxvi

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[143] Jonah P Tower and Thomas DC Little. A Proposed Scheme for Epidemic
Routing With Active Curing for Opportunistic Networks. In 2008 22nd
International Workshops on Advanced Information Networking and Applica-
tions (AINA Workshops), pages 1696–1701, Gino-wan, Okinawa, Japan, 2008.
IEEE.

[144] Khaled A. Harras, Kevin C. Almeroth, and Elisabeth M. Belding-Royer. Delay
Tolerant Mobile Networks (DTMNs): Controlled Flooding in Sparse Mobile
Networks. In IFIP Networking Conference, Waterloo, Ontario, CANADA,
May 2005.

[145] Ling jyh Chen, Chen hung Yu, Cheng long Tseng, Hao hua Chu, and Cheng
fu Chou. A Content-Centric Framework for Effective Data Dissemination in
Opportunistic Networks. IEEE Journal of Selected Areas in Communications,
2008.

[146] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola San-
toro. Time-Varying Graphs and Dynamic Networks. International Journal of
Parallel, Emergent and Distributed Systems (IJPEDS), 27(5):387–408, 2012.

[147] Petter Holme and Jari Saramäki. Temporal networks. Physics reports,
519(3):97–125, 2012.

[148] Brad Williams and Tracy Camp. Comparison of broadcasting techniques for
mobile ad hoc networks. In Proceedings of the 3rd ACM international sympo-
sium on Mobile ad hoc networking & computing (MobiHoc’02), pages 194–205,
Lausanne, Switzerland, 2002. ACM.

[149] Vincent Lenders, Martin May, and Bernhard Plattner. Service Discovery in
Mobile Ad Hoc Networks: A Field Theoretic Approach. In Proceedings of
the IEEE 6th International Symposium on a World of Wireless, Mobile, and
Multimedia Networks (WoWMoM 2005), pages 120–130, Taormina, Italy, June
2005. IEEE press.

[150] Zhenguo Gao, Ling Wang, Mei Yang, and Xiaozong Yang. CNPGSDP: An
efficient group-based service discovery protocol for MANETs. Computer Net-
works, 50(16):3165–3182, November 2006.

[151] Christian Glacet, Marco Fiore, and Marco Gramaglia. Temporal connectiv-
ity of vehicular networks: The power of store-carry-and-forward. In IEEE
Vehicular Networking Conference (VNC 2015), pages 52–59, Kyoto, Japan,
December 2015. IEEE.

[152] Einar W Vollset and Paul D Ezhilchelvan. Design and Performance-Study
of Crash-Tolerant Protocols for Broadcasting and Reaching Consensus in
MANETs. In Proceedings of the 24th IEEE Symposium on Reliable Distributed
Systems, volume 0, pages 166–178, Washington, DC, USA, 2005. IEEE Com-
puter Society.

xxvii

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[153] Qun Li and Daniela Rus. Sending Messages to Mobile Users in Disconnected
Ad-hoc Wireless Networks. In Proceedings of the Sixth Annual International
Conference on Mobile Computing and Networking, pages 44–55, Boston, Au-
gust 2000. ACM Press.

[154] Gabriel Sandulescu and Simin Nadjm-Tehrani. Opportunistic dtn routing with
window-aware adaptive replication. In Proceedings of the 4th Asian Conference
on Internet Engineering, pages 103–112. ACM, November 2008.

[155] Khaled A. Harras and Kevin C. Almeroth. Transport Layer Issues in De-
lay Tolerant Mobile Networks. In Proceedings of IFIP Networking, Coimbra,
Portugal, May 2006.

[156] Ritesh Shah and Norman C. Hutchinson. Delivering Messages in Disconnected
Mobile Ad-Hoc Networks. In Proceedings of ADHOC-NOW 2003, Montreal,
October 2003.

[157] Ling-Jyh Chen, Chen-Hung Yu, Tony Sun, Yung-Chih Chen, and Hao hua
Chu. A Hybrid Routing Approach for Opportunistic Networks. 2006.

[158] Ilias Leontiadis, Paolo Costa, and Cecilia Mascolo. Persistent Content-based
Information Dissemination in Hybrid Vehicular Networks. In Proc. of the 7th
IEEE International Conference on Pervasive Computing and Communications
(Percom09), Galveston, TX, USA, March 2009.

[159] Sébastien Baehni, Chirdeep Singh Chhabra, and Rachid Guerraoui. Selective
Information Dissemination in a Mobile Environment. In Proceedings of the
6th Middleware Conference, December 2005. Extended version.

[160] Mikko Pitkänen, Teemu Kaärkkäinen, and Jörg Ott. Mobility and Service Dis-
covery in Opportunistic Networks. In International Workshop on the Impact
of Human Mobility in Pervasive Systems and Applications (PerMoby 2012),
pages 204–210, Lugano, Switzerland, March 2012. IEEE CS.

[161] Balazs E Pataki and Levente Kovacs. Sensor data collection experiments with
chaoster in the fed4fire federated testbeds. In Wireless and Mobile Com-
puting, Networking and Communications (WiMob), 2014 IEEE 10th Interna-
tional Conference on, pages 306–313. IEEE, 2014.

[162] Hu Zhou and Suresh Singh. Content based multicast (CBM) in ad hoc net-
works. In Proceedings of the 1st ACM International Symposium on Mobile
Ad Hoc Networking and Computing (Mobihoc’00), pages 51–60, Boston, Mas-
sachusetts, 2000. IEEE Press.

[163] Afonso Ferreira, Alfredo Goldman, and Julian Monteiro. Performance Evalu-
ation of Routing Protocols for MANETs with Known Connectivity Patterns
using Evolving Graphs. Wireless Networks, 16(3):627–640, 2010.

xxviii

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[164] John Whitbeck, Yoann Lopez, Jérémie Leguay, Vania Conan, and Marcelo
Dias de Amorim. Push-and-track: Saving infrastructure bandwidth through
opportunistic forwarding. Pervasive and Mobile Computing, 8(5):682–697,
2012.

[165] Andronikos Nedos, Kulpreet Singh, and Siobhan Clarke. Service*: Distributed
Service Advertisement for Multi-Service, Multi-Hop MANET Environments.
In Proceedings of 7th IFIP International Conference on Mobile and Wire-
less Communication Networks (MWCN’05), Marrakech, Morocco, September
2005.

[166] Dipanjan Chakraborty, Anupam Joshi, Yelena Yesha, and Tim Finin. To-
ward distributed service discovery in pervasive computing environments. IEEE
Transactions on Mobile Computing, 5(2):97– 112, February 2006.

[167] D.E. Cooper, P. Ezhilchelvan, and I. Mitrani. Encounter-based message prop-
agation in mobile ad-hoc networks. Ad Hoc Networks, 7(7):1271–1284, 2009.

[168] Françoise Sailhan and Valérie Issarny. Scalable Service Discovery for MANET.
In Proceedings of the 3rd IEEE International Conference on Pervasive Com-
puting and Communications (PerCom’2005), Hawaii, USA, March 2005. IEEE
Press.

[169] Nedos Andronikos, Kulpreet Singh, Raymond Cunningham, and Siobhan
Clarke. Probabilistic discovery of semantically diverse content in manets.
IEEE Transactions on Mobile Computing, 2009.

[170] Marios Logothetis, Kostas Tsagkaris, and Panagiotis Demestichas. Applica-
tion and mobility aware integration of opportunistic networks with wireless
infrastructures. Computers & Electrical Engineering, 39(6):1609–1624, August
2013. Special Issue on Wireless Systems: Modeling, Monitoring, Transmission,
Performance Evaluation and Optimization.

[171] Dipanjan Chakraborty, Anupam Joshi, and Yelena Yesha. Integrating service
discovery with routing and session management for ad-hoc networks. Ad Hoc
Networks, 4(2):204–224, 2006.

[172] Marco Conti, Emanuel Marzini, Davide Mascitti, Andrea Passarella, and
Laura Ricci. Service Selection and Composition in Opportunistic Networks.
In 9th International Wireless Communications and Mobile Computing Con-
ference (IWCMC 2013), pages 1565–1572, Cagliari, Italy, July 2013.

[173] Chiara Boldrini, Marco Conti, and Andrea Passarella. Autonomic Behaviour
of Opportunistic Network Routing. Inderscience International Journal of Au-
tonomous and Adaptive Communications Systems, 1(1):122–147, 2008.

xxix

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[174] Chiara Boldrini, Marco Conti, Andrea Passarella, et al. Users mobility models
for opportunistic networks: the role of physical locations. Proc. of IEEE
WRECOM, page 23, 2007.

[175] Isam Ishaq, Jeroen Hoebeke, Ingrid Moerman, and Piet Demeester. Observing
CoAP groups efficiently. Ad Hoc Networks, 37, Part 2:368–388, February 2016.

[176] Keith Scott, Tamer Refaei, Nirav Trivedi, Jenny Trinh, and Joseph P Macker.
Robust communications for disconnected, intermittent, low-bandwidth (dil)
environments. In 2011-MILCOM 2011 Military Communications Conference,
pages 1009–1014. IEEE, 2011.

[177] Gunnar Karlsson, Vincent Lenders, and Martin May. Delay-Tolerant Broad-
casting. pages 369–381, February 2007.

[178] Vincent Lenders, Gunnar Karlsson, and Martin May. Wireless Ad Hoc Pod-
casting. In SECON ’07. 4th Annual IEEE Communications Society Conference
on Sensor, Mesh and Ad Hoc Communications and Networks, pages 273–283.
IEEE CNF, June 2007.

[179] Yongtao Wei, Jinkuan Wang, Junwei Wang, and Zhenqi Wang. A double-slot
based delay/disruption tolerant routing algorithm for iot. IEEE 14th Interna-
tional Conference on Communication Technology, pages 1027–1031, 2012.

[180] Marco Bonola, Lorenzo Bracciale, Pierpaolo Loreti, Raul Amici, Antonello
Rabuffi, and Giuseppe Bianchi. Opportunistic communication in smart city:
Experimental insight with small-scale taxi fleets as data carriers. Ad Hoc
Networks, 43:43–55, June 2016.

[181] Thrasyvoulos Spyropoulos, Thierry Turletti, and Katia Obraczka. Routing in
Delay-Tolerant Networks Comprising Heterogeneous Node Populations. IEEE
Transactions on Mobile Computing, 8(8):1132–1147, August 2009.

[182] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S Raghavendra.
Performance analysis of mobility-assisted routing. In Proceedings of the 7th
ACM international symposium on Mobile ad hoc networking and computing,
pages 49–60. ACM, 2006.

[183] Rubén Martínez-Vidal. Architectures for Aeronautical Opportunistic Network-
ing. PhD thesis, Universitat Autónoma de Barcelona, November 2015.

[184] Uday Mohan, Kevin C. Almeroth, and Elizabeth M. Belding-Royer. Scalable
Service Discovery in Mobile Ad hoc Networks. In Proceedings of 3rd Inter-
national IFIP-TC6 Networking Conference, volume 3042 of LNCS, Athens,
Greece, May 2004. Springer.

[185] Paal E. Engelstad, Yan Zheng, Rajeev Koodli, and Charles E. Perkins. Service
Discovery Architectures for On-Demand Ad Hoc Networks. Ad Hoc and Sensor
Wireless Networks, 1, 2006.

xxx

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[186] O.V. Drugan, T. Plagemann, and E. Munthe-Kaas. Building resource aware
middleware services over manet for rescue and emergency applications. In
IEEE 16th International Symposium on Personal, Indoor and Mobile Ra-
dio Communications (PIMRC 2005), volume 2, pages 816–820, Germany, sep
2005. IEEE Press.

[187] Jerry Tyan and H. Mahmoud, Qusay. A network layer based architecture for
service discovery in mobile ad hoc networks. In 17th Ann. IEEE Canadian
Conf. Electrical and Computer Eng. (CCECE 04), volume 3, pages 1379– 1384,
Niagara Falls, Canada, May 2004. IEEE Press.

[188] Roberto Baldoni, Roberto Beraldi, Leonardo Querzoni, Gianpaolo Cugola,
and Matteo Migliavacca. Content-Based Routing in Highly Dynamic Mo-
bile Ad Hoc Networks. Journal of Pervasive Computing and Communication,
1(4):277–288, dec 2005.

[189] Luc Hogie, Pascal Bouvry, Frédéric Guinand, Grégoire Danoy, and Enrique
Alba. A Bandwidth-Efficient Broadcasting Protocol for Mobile Multi-hop Ad
hoc Networks. In Proceedings of the International Conference on Networking,
Mauritius, April 2006. IEEE CS.

[190] Joseph Kopena, Evan Sultanik, Gaurav Naik, Iris Howley, Maxim Peysakhov,
Vincent Cicirello, Moshe Kam, and William Regli. Service-Based Computing
on Manets: Enabling Dynamic Interoperability of First Responders. IEEE
Intelligent Systems, 20(5):17–25, 2005.

[191] Evan A Sultanik, Maxim D Peysakhov, and William C Regli. Agent transport
simulation for dynamic peer-to-peer networks. In International Workshop on
Multi-Agent Systems and Agent-Based Simulation, pages 162–173. Springer,
2005.

[192] Amin Vahdat and David Becker. Epidemic routing for partially connected ad
hoc networks, 2000.

[193] U. C. Kozat and L. Tassiulas. Network Layer Support for Service Discovery
in Mobile Ad Hoc Networks. In Proceedings of IEEE/INFOCOM-2003, April
2003.

[194] R.S.D. Wahidabanu and G. Fathima. A New Queuing Policy for Delay Toler-
ant Networks. International Journal of Computer Applications, 1(20):56–60,
February 2010.

[195] Milenko Petrovic, Vinod Muthusamy, and Hans-Arno Jacobsen. Content-
Based Routing in Mobile Ad Hoc Networks. In Proc. of the 2nd Annual Inter-
national Conference on Mobile and Ubiquitous Systems: Networking and Ser-
vices (MobiQuitous’05), San Diego, California, USA, July 2005. IEEE Press.

xxxi

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[196] Jorg Ott, Dirk Kutscher, and Christoph Dwertmann. Integrating DTN and
MANET Routing. In Proceedings of the 2006 SIGCOMM workshop on Chal-
lenged networks, pages 221–228, 2006.

[197] Andronikos Nedos, Kulpreet Singh, Raymond Cunningham, and Siobhan
Clarke. A Gossip Protocol to Support Service Discovery with Heterogeneous
Ontologies in MANETs. In Proceeedings of the 3rd IEEE International Con-
ference on Wireless and Mobile Computing, Networking and Communications
(WiMOB 2007), pages 53–53, White Plains, New York, USA, October 2007.
IEEE Press.

[198] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Hei-
demann, and Fabio Silva. Directed diffusion for wireless sensor networking.
Networking, IEEE/ACM Transactions on, 11(1):2–16, 2003.

[199] Zijian Wang, Eyuphan Bulut, and Boleslaw K. Szymanski. Service Discovery
for Delay Tolerant Networks. In Proceedings of the 5th Workshop on Het-
erogeneous, Multi-Hop, Wireless and Mobile Networks (HeterWMN 2010), in
conjunction with Globecom 2010, pages 136–141, Miami, FL, USA, December
2010. IEEE CS.

[200] Paolo Costa and Gian Pietro Picco. Semi-Probabilistic Content-Based
Publish-Subscribe. In 25th International Conference on Distributed Comput-
ing Systems (ICDCS 2005), pages 575–585, Columbus, Ohio, USA, jun 2005.
IEEE Computer Society.

[201] Mirco Musolesi and Cecilia Mascolo. CAR: Context-Aware Adaptive Routing
for Delay Tolerant Mobile Networks. IEEE Transactions on Mobile Comput-
ing, 8(2):246–260, 2009.

[202] Guiseppe Sollazzo, Mirco Musolesi, and Cecilia Mascolo. TACO-DTN: A
Time-Aware COntent-based dissemination system for Delay Tolerant Net-
works. In Proceedings of the 1st international MobiSys workshop on Mobile
opportunistic networking (MobiOpp ’07), pages 83–90, New York, NY, USA,
jun 2007. ACM Press.

[203] Alfredo Goldman, Paulo Floriano, and Afonso Ferreira. A Tool for Obtaining
Information on DTN Traces. In 4th Extreme Conference on Communication
(ExtremeCom’12), Zürich, Switzerland, March 2012. ACM.

[204] Ilias Leontiadis and Cecilia Mascolo. Opportunistic Spatio-Temporal Dissem-
ination System for Vehicular Networks. jun 2007.

[205] André Marques Poersch, Daniel F. Macedo, and José Marcos S. Nogueira.
Resource Location for Opportunistic Networks. In Proceedings of the 5th In-
ternational Conference on New Technologies, Mobility and Security (NTMS
2012), pages 1–5, Istanbul, Turkey, May 2012. IEEE CS.

xxxii

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[206] Samuel C Nelson, Albert F Harris III, and Robin Kravets. Event-driven, role-
based mobility in disaster recovery networks. In Proceedings of the second
ACM workshop on Challenged networks, pages 27–34. ACM, 2007.

[207] Marci Nagy, Teemu Kärkkäinen, and Jörg Ott. Enhancing Opportunistic Net-
works with Legacy Nodes. In Proceedings of the 9th Workshop on Challenged
Networks (CHANTS 2014), pages 1–6, Maui, Hawaii, USA, September 2014.
ACM.

[208] Mikko Pitkänen, Teemu Kärkkäinen, and Jörg Ott. Opportunistic Web Ac-
cess via WLAN Hotspots. In Proceedings of the 8th International Conference
on Pervasive Computing and Communications (PerCom 2010), pages 20–30.
IEEE CS, March 2010.

[209] Christoph P. Mayer and Oliver P. Waldhorst. Routing in hybrid Delay Tolerant
Networks. Computer Communications, pages 44–55, July 2014.

[210] Li Li and Louise Lamont. A Lightweight Service Discovery Mechanism for
Mobile Ad hoc Pervasive Environment using Cross-Layer Design. In Proc.
of the 2nd Mobile Peer-to-Peer Computing Workshop (MP2P, PerCom’05),
Hawaii, USA, March 2005.

[211] Sha Hua, Yang Guo, Yong Liu, Hang Liu, and Shivendra S Panwar. Scalable
video multicast in hybrid 3g/ad-hoc networks. Multimedia, IEEE Transactions
on, pages 402–413, April 2011.

[212] Alejandro Tovar, Travis Friesen, Ken. Ferens, and Bob McLeod. A DTN
Wireless Sensor Network for Wildlife Habitat Monitoring. In Proceedings of the
23rd Canadian Conference on Electrical and Computer Engineering (CCECE
2010), pages 1–5, May 2010.

[213] Sandor Dornbush and Anupam Joshi. StreetSmart Traffic: Discovering and
Disseminating Automobile Congestion Using VANET’s. In 65th Semi-Annual
Vehicular Technology Conference (VTC2007 07-Spring), pages 11–15, Dublin,
Ireland, April 2007. IEEE CS.

[214] Khaled Alekeish and Paul Ezhilchelvan. Consensus in Sparse, Mobile Ad Hoc
Networks. IEEE Transactions on Parallel and Distributed Systems, 23(3):467–
474, 2012.

[215] Fatemeh Borran, Ravi Prakash, and André Schiper. Extending
Paxos/LastVoting with an Adequate Communication Layer for Wireless Ad
Hoc Networks. In 2008 Symposium on Reliable Distributed Systems, pages
227–236. IEEE, 2008.

[216] Thabotharan Kathiravelu, Thabotharan Kathiravelu, and Arnold Pears. What
& When?: Distributing Content in Opportunistic Networks. In Arnold Pears,

xxxiii

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

editor, Proc. International Conference on Wireless and Mobile Communica-
tions (ICWMC ’06), pages 64–64, 2006.

[217] Yili Gong, Yongqiang Xiong, Qian Zhang, Zhensheng Zhang, Wenjie Wang,
and Zhiwei Xu. Anycast Routing in Delay Tolerant Networks. In Proceed-
ings of the Global Telecommunications Conference (GLOBECOMM’06), San
Francisco, CA, USA, November 2006.

[218] Mirco Musolesi, Cecilia Mascolo, and Stephen Hailes. EMMA: Epidemic Mes-
saging Middleware for Ad Hoc Networks. volume 10, pages 28–36, August
2005.

[219] Mirco Musolesi, Stephen Hailes, and Cecilia Mascolo. An ad hoc mobility
model founded on social network theory. In Proceedings of the 7th ACM in-
ternational symposium on Modeling, analysis and simulation of wireless and
mobile systems, pages 20–24. ACM, 2004.

[220] Pan Hui, Jeremie Leguay, Jon Crowcroft, James Scott, Timur Friedman, and
Vania Conan. Osmosis in Pocket Switched Networks. In First International
Conference on Communications and Networking in China, pages 1–6, Beijing,
China, oct 2006. ACM.

[221] ólafur Helgason, Sylvia T. Kouyoumdjieva, Ljubica Pajević, Emre A. Yavuz,
and Gunnar Karlsson. A Middleware for Opportunistic Content Distribution.
Computer Networks, pages –, 2016.

[222] Sacha Trifunovic, Bernhard Distl, Dominik Schatzmann, and Franck Legen-
dre. WiFi-Opp: Ad-hoc-less Opportunistic Networking. In Proceedings of the
6th ACM workshop on Challenged networks (CHANTS’11), pages 37–42, Las
Vegas, Nevada, USA, September 2011. ACM.

[223] Elena Pagani and Gian Paolo Rossi. Interest-driven forwarding for delay-
tolerant mobile ad hoc networks. In Proceedings of the 9th International
Wireless Communications and Mobile Computing Conference (IWCMC 2013),
pages 718–723. IEEE CS, 2013.

[224] Pan Hui, Anders Lindgren, and Jon Crowcroft. Empirical evaluation of hybrid
opportunistic networks. In 1st International Conference on Communication
Systems and Networks (COMSNETS 2009), pages 1–10, Bangalore, India,
January 2009. IEEE CS.

[225] Yongping Xiong, Limin Sun, Wenbo He, and Jian Ma. Anycast Routing in
Mobile Opportunistic Networks. In IEEE Symposium on Computers and Com-
munications (ISCC’10), pages 599–604, Riccione, Italy, June 2010. IEEE CS.

[226] Johannes Morgenroth, Tobias Pögel, and Lars Wolf. Live-streaming in delay
tolerant networks. In Proceedings of the 6th ACM workshop on Challenged
networks, pages 67–68. ACM, September 2011.

xxxiv

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

[227] Chiara Boldrini, Marco Conti, and Andrea Passarella. Context and Resource
Awareness in Opportunistic Network Data Dissemination. In The Second
IEEE WoWMoM Workshop on Autonomic and Opportunistic Communica-
tions (AOC 2008), Newport Beach, CA, USA, June 2008.

[228] Jie Wu and Fei Dai. Broadcasting in Ad Hoc Networks Based on Self-Pruning.
In Proceedings of the Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOMM 03), volume 3, pages 2240–2250, San Fran-
cisco, California, USA, 2003. IEEE CS.

[229] Yu Yang, Hossam Hassanein, and Afzal Mawji. A New Approach to Service
Discovery in Wireless Mobile Ad Hoc Networks. In Proceedings of the IEEE
International Conference Communication (ICC 2006), Istanbul, Turkey, June
2006. IEEE Press.

xxxv

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

xxxvi

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

n d’ordre : 462
Université de Bretagne Sud
Centre d’Enseignement et de Recherche Y. Coppens - rue Yves Mainguy - 56000 VANNES
Tél : + 33(0)2 97 01 70 70 Fax : + 33(0)2 97 01 70 70

Abstract

The Internet of Things (iot) is usually presented
as a set of things interconnected through a net-
work that is, in practice, Internet. However,
there exist many contexts in which the connec-
tivity is intermittent due to short-range wire-
less communication means or energy constraints.
The Delay Tolerant Networking (dtn) architec-
ture and the Bundle Protocol (bp) are known to
overcome this communication challenge as they
provide communication means by relying on a
store-carry-and-forward mechanism.

This thesis aims to provide programming
supports adapted to both iot and dtn contexts.
For this, both dtn and iot (dt-iot) challenges
are studied and several design principles are pro-
posed. These principles aim to optimize reactiv-
ity and efficiency of applications targeting the
dt-iot context.

The first contribution is the definition of a
resource-oriented programming support, named
boap, to enable a dt-iot. It provides a protocol
based on request/response thanks to a transpo-
sition of coap (Contrained Application Proto-
col). This transposition consists of fundamental
adjustments and enhancements to use bp as the
underlying transport protocol.

boap has been implemented and tested in a
small physical network. A method to evaluate
middleware systems in dtns is presented. A tool
implementing this method has been developed.
It relies on a virtualization platform that sim-
ulates network contacts and emulates network
devices. This tool was used to run experimenta-
tions that assessed the validity of boap.

Finally, another programming support is in-
vestigated. It follows a service-oriented ap-
proach and respects rest (Representational
State Transfer) constraints. It is built on top
of boap with iot in mind and is adapted to dtn
environments. Its discovery/advertisement ex-
ploits a publish/subscribe interface. Service de-
scriptors contain specific fields to inform on the
availability of the service providers.

Résumé

L’internet des Objets (iot) est habituellement
présenté comme l’ensemble d’objets interconnec-
tés à travers un réseau qui est, en pratique, Inter-
net. Or, il existe beaucoup de cas où la connec-
tivité est intermittente à cause des interfaces ra-
dio courte-portées et des contraintes d’économie
d’énergie. L’architecture de réseautage tolérant
les délais (dtn) ainsi que le Bundle Protocole
(bp) sont considérés comme des solutions viables
pour résoudre ce genre de challenges grâce au
mécanisme store-carry-and-forward.

Cette thèse vise à fournir des supports de
programmation adaptés autant à l’iot qu’au
contexte dtn. Dans ce but, les challenges rel-
evant du dtn et de l’iot(dt-iot) sont étudiés et
quelques principes de design logiciels sont pro-
posés. Ces principes ont pour but d’optimiser
la réactivité et l’efficacité des applications ayant
pour cible un contexte dt-iot.

La première contribution est la défini-
tion d’un support de programmation orienté
ressources, nommé boap. Ce support fournit
un protocole de requête/réponse grâce à une
transposition de coap (Contrained Application
Protocol). Cette transposition est composée
d’ajustements fondamentaux et d’améliorations
pour utiliser bp en tant que couche de transport.

boap a été implémenté et testée dans un pe-
tit réseau physique. Une méthode pour évaluer
des intergiciels dans des réseaux dtns est présen-
tée. Un outil implémentant cette méthode a été
développé. Il repose sur une plateforme de vir-
tualisation qui simule les contacts réseaux tout
en émulant les nœuds du réseau. Cet outil a été
utilisé pour exécuter des expériences pour éval-
uer la validité de boap.

Enfin, un autre support de programma-
tion est examiné. Celui-ci adopte une ap-
proche orientée service et respecte les contraintes
rest (Representational State Transfer). Il se
repose sur boap a été créé avec l’iot en tête
et est adapté à l’environnement dtn. La
découverte exploite une interface de publica-
tions/souscriptions. Les descripteurs de ser-
vices contiennent des champs spécifiques pour
informer de la disponibilité de leur fournisseurs.

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

Programming Support for a Delay-Tolerant Web of Things Maël Auzias 2017

	List of Figures
	List of Tables
	Introduction
	Context
	Intermittently Connected IoT
	Communication in Intermittently Connected IoT
	Programming Support in Intermittently Connected IoT

	Proposal
	Thesis Outline

	State of the Art
	Challenged Networks
	Delay-Tolerant Networking
	Opportunistic Networking

	IoT Programming
	Resource-Oriented Approach
	Service-Oriented Approach
	Other Approaches and Systems

	DT and Opportunistic Computing
	Pragmatic Programming
	Programming Paradigms

	Discussion

	BoaP
	Presentation of BP and CoAP
	Bundle Protocol (BP)
	IBR-DTN
	Constrained Application Protocol (CoAP)
	Californium
	BP and CoAP: Arose Challenges

	CoAP Transposition for a BP-binding
	Fundamental Adjustments
	Enhancements

	BoaP Stack
	IBR-DTN Java API
	BoaP Prototype
	Comparison of CoAP and BoaP Features

	Discussion

	Evaluations
	Preliminary Tests
	Latency Between BP Endpoints and Daemon
	Validating BoaP in a small network

	Experimentations
	Experimentations Platform
	Scenarios
	Results of the Levy Walk Experiments
	Results of the KAIST Experiments

	Conclusion

	LILWENE
	Overview
	Proposal
	LILWENE Presentation

	Service Description
	Descriptors Overview
	Mandatory Fields
	Description Examples

	Service Advertisement and Discovery
	Publish-Subscribe Interface
	Topics
	Advertisement
	Discovery
	Registry Notifications

	Service Invocation
	Client Side
	Service Provider Side
	Group Invocation
	Request Options

	API and Implementation Elements
	Client Application API
	Service API
	Registry Processing

	Conclusion

	Conclusion
	Summary
	Perspectives

	Appendices
	Experiments Review: Table
	Service Descriptor: Binary Format and Parameters
	LILWENE Descriptors
	Parameters
	Description Examples: Binary Content

	Bibliography

