N

N

Programming Support for a Delay-Tolerant Web of
Things
Maél Auzias

» To cite this version:

Maél Auzias. Programming Support for a Delay-Tolerant Web of Things. Mobile Computing. Uni-
versité de Bretagne Sud, 2017. English. NNT: 2017LORIS462 . tel-01814863

HAL Id: tel-01814863
https://theses.hal.science/tel-01814863

Submitted on 13 Jun 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01814863
https://hal.archives-ouvertes.fr

UNIVERSITE

BRETAGNE

THESE / UNIVERSITE DE BRETAGNE SUD

UFR Sciences et Sciences de I'lngénieur
sous le sceau de I'Université Européenne de Bretagne

Pour obtenir le grade de :

DOCTEUR DE L'UNIVERSITE DE BRETAGNE SUD
Mention : Informatique
Ecole Doctorale SICMA

Programming Support
for a

Delay-Tolerant Web of Things

présentée par

Maél Auzias

IRISA Institut de Recherche en Informatique et
Systemes Aléatoires

Thése soutenue le 03-10-2017,
devant la commission d’examen composée de :

M. Frédéric GUINAND
Professeur des universités, Université Le Havre / Président

M. Nicolas MONTAVONT
Professeur des universités, IMT Atlantique / Rapporteur

M. Michaél MRISSA
Professeur des universités, Université de Pau et des Pays de I’Adour / Rapporteu

Mme. Pascale LAUNAY
Maitre de Conférences, Université de Bretagne-Sud / Examinatrice

M. Yves MAHEO
Maitre de Conférences HDR, Université de Bretagne-Sud / Directeur de thése

M. Frédéric RAIMBAULT
Maitre de Conférences, Université de Bretagne-Sud / Encadrant de these

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

A Maryse

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

Acknowledgements

Acknowledgements below are for various persons that help me finishing this work,
each by its own way. Since some are non-English speakers yet primarily concerned
by these, there are written in appropriate language.

I thank a lot all my colleagues, especially Armel, Ali, Kader, Romain H., Pamela,
Alan, Lucas B., Marc, Romain D., Mathieu, Lionel, Delphine, Raounak, Rymel and
Nader, as well as my friends, Xavier, Matti, Aurélia, Audrey L., Victor, Margot,
Lucas M., Milad, Lucas G., Carlos, Nano, Alba, Andreea M., Anna, AB, Luis, Elena,
Daniele, and Andrea C., who help me by both pushing me to work over the clock
but also by relaxing with agreeable moments shared altogether.

Merci aussi aux pouer-mouers qui ont aidé soit en bons moments via slack, soit
en fournissant des pistes et conseils dans le domaine professionnel mais aussi pour

Rust et OW.

Moc dékuju Mise a Pete za spoletné stravené momenty, které mi pomohli se
uvolnit, kdyz jsem potfeboval. Taky moc dékuju Markété a Magdaléné za jejich
vybornou préaci na Czech Vibes Sounds, kterda mi poskytla piijemné melodické
prostredi, diky némuZz jsem se mohl soustfedit na vypracovani moji doktorantské
prace.

Merci Frangois, Marie-Claude, ke la don’ a moin la chance woir zot ti péi, resours’
a moin. Merci Myléne aussi, sem’ moin, tou lé jours pou avancer.

Merci & ma famille pour le soutien, les encouragements et la motivation que vous
avez sii me donner, notamment Maryse par le biais de ces mots rapportés.

Merci a Vincent Creuze et Jean-Paul Rigault pour leur lettre de recommandation
ainsi que les discussions que nous avons eu et qui m’ont remotivé.

Merci enfin a Yves et Frédérique, mon directeur de thése et mon co-encadrant,
pour m’avoir guider et aider tout au long de ce travail, ainsi qu’a Mario, Sylviane
et Anne sans qui le labo ne pourrait pas fonctionner.

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

Contents

List of Figures
List of Tables

1 Introduction
1.1 Context
1.1.1 Intermittently Connected IoT
1.1.2 Communication in Intermittently Connected IoT
1.1.3 Programming Support in Intermittently Connected IoT
1.2 Proposal
1.3 Thesis Outline

2 State of the Art
2.1 Challenged Networks
2.1.1 Delay-Tolerant Networking
2.1.2 Opportunistic Networking
2.2 ToT Programming
2.2.1 Resource-Oriented Approach
2.2.2 Service-Oriented Approach
2.2.3 Other Approaches and Systems
2.3 DT and Opportunistic Computing
2.3.1 Pragmatic Programming
2.3.2 Programming Paradigms

2.4 DIscussiono

3 BoaP
3.1 Presentation of BP and CoAP
3.1.1 Bundle Protocol (BP)
3.1.2 IBR-DTN
3.1.3 Constrained Application Protocol (CoAP)
3.1.4 Californiumo
3.1.5 BP and CoAP: Arose Challenges

5

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

11

13
13
14
14

18
19

21
22
22
25
29
30
33
35
36
36
37
40

3.2 CoAP Transposition for a BP-binding 59

3.2.1 Fundamental Adjustments 59
3.2.2 Enhancements L. 63
3.3 BoaP Stack 66
3.3.1 IBR-DTN Java APL 66
3.3.2 BoaP Prototype 68
3.3.3 Comparison of CoAP and BoaP Features 74
3.4 Discussion 75
Evaluations 77
4.1 Preliminary Tests 78
4.1.1 Latency Between BP Endpoints and Daemon 78
4.1.2 Validating BoaP in a small network 79
4.2 Experimentations Lo 83
4.2.1 Experimentations Platform 83
4.2.2 Scenarios . . . o. ... 87
4.2.3 Results of the Levy Walk Experiments 94
4.2.4 Results of the KAIST Experiments 98
4.3 Conclusion 100
LILWENE 101
5.1 OVerviewo 102
5.1.1 Proposal 103
5.1.2 LILWENE Presentation 103
5.2 Service Description 108
5.2.1 Descriptors Overview 108
5.2.2 Mandatory Fields o0 109
5.2.3 Description Examples 113
5.3 Service Advertisement and Discovery 114
5.3.1 Publish-Subscribe Interface 114
5.3.2 Topicso 115
5.3.3 Advertisement 116
5.3.4 Discovery e 117
5.3.5 Registry Notifications 118
6

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

5.4 Service Invocation L
54.1 Client Side
5.4.2 Service Provider Side
5.4.3 Group Invocation
5.4.4 Request Options
5.5 API and Implementation Elements
5.5.1 Client Application APT
5.5.2 Service API
5.5.3 Registry Processing oo
5.6 Conclusion
6 Conclusion
6.1 Summary
6.2 Perspectives
Appendices

A Experiments Review: Table

B

Service Descriptor: Binary Format and Parameters
B.1 LILWENE Descriptors,
B.2 Parameters

B.3 Description Examples: Binary Content

Bibliography

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

135
135
138

141

vi

X1

XV

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

List of Figures

3.1 CoAP Message Format 51
3.2 Californium Architecture (from M. Kovatsch’s thesis reused with per-
mission, main Cf developers) 57
3.3 IBR-DTN, Java API and BoAP Stack 67
34 Java API Stack 68
3.5 Sequence Diagram: Procedure to Fetch a Bundle from the IBR-DTN
Daemon 69
3.6 Connection between a BoAP Client and a BoAP server with full stack 73
4.1 BoaP Test: Scenario 1, 80
4.2 BoaP Test: Scenario 2 0L 81
4.3 Measures of the RTT obtained in the two tested scenarios 82
4.4 Swarm Architecture oo 85
4.5 Graphical representation of KAIST traces 88
4.6 Levy Walk mobility with 50 m radio range, without BoaP caching . . 95
4.7 Levy Walk, 50 m radio range, without BoaP caching: Comparison . . 96
4.8 Levy Walk, 50 m radio range, with Cache Enabled Nodes 97
4.9 KAIST Experiments Results 98
4.10 KAIST Comparison o 99
5.1 LILWENE OVerview v i ii it 104
9

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

10

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

3.1
3.2

4.1
4.2

Al

B.1
B.2
B.3

List of Tables

CoAP Options. 53
Comparison of CoAP and BoaP Features 75
Platform Performance: RTTs Measurements (ms) 86
Quantitative Comparison of Scenarios 93
Experiment Parameters Review i
Parameters Typeso vii
Parameters Constraints ix
Binary Overview xi
11

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

12

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

Introduction

Contents
1.1 Comtext 13
1.1.1 Intermittently Connected IoT 14
1.1.2 Communication in Intermittently Connected IoT 14
1.1.3 Programming Support in Intermittently Connected IoT . 16
1.2 Proposal i e e e e e e e e 18
1.3 Thesis Outline 19

1.1 Context

The Internet of Things (10T) is an emerging paradigm aiming to enhance our ev-
eryday life through automation and optimization tasks related to transport logistic,
healthcare domain, smart-home and smart-enterprise, and so forth. According to
Gartner, in 2020, there will be 26 billions of things for a market exceeding $300
billion. This new market has been invested by big companies, such as Samsung,
Amazon or Google, that are developing things for the 1oT and try to stay ahead of
their concurrents by proposing emerging and innovative products. For instance, a
message could be displayed on an exit door suggesting to take an umbrella since
the weather station, located at the end of the street, sent an alert to it. This same
umbrella could vibrate, ring or send a message to the owner’s smartphone when he
leaves without it.

The things are everyday objects equipped with a computer, usually an inexpen-
sive single board, a small battery and a short-range wireless communication means.
They are expected to be cheap and their power of action lies in their large number
and high diversity to compensate their constrained battery and power-processing.
The concept of thing can also be extended to more powerful and far more expensive
objects such as smartphones, drones or cars.

The 10T becomes more and more ubiquitous in our environment yet giving a
precise definition of 10T is a challenge since different visions coexist and research

13

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

points of views vary widely. These visions categorize the 10T paradigm into different
concepts at different levels. In [1], Atzori et al. illustrate the 10T as a convergence
of three different visions focused: 1. on the things themselves, 2. on the Internet
aspect, and 3. on the semantic aspect. Another possible categorization is presented
in [2], within which Gubbi et al. propose an application-scattered vision that goes
from personal user to national utility involving other applications such as medical
treatments, home automation, transport logistic, community service.

1.1.1 Intermittently Connected IoT

The things are often equipped with short-range radio interfaces, undergo energy-
saving constraints that shutdown their radio interfaces, can be mobile (e.g., when
embedded on robots or carried by humans) or can be deployed in area lacking of
network infrastructure (e.g., in developing countries or in sparsely populated area
as Laponian in Finland [3]). Under those challenging circumstances, it is clear that
the things suffer from disconnections and difficulties to access a reliable network.
Also, despite being aware of these networking challenges, current studies on IoT
consider the 10T as an interconnected-extension of Internet. In the meantime, there
is a growing support for the claim that things are not able to connect to Internet in
many context. This thesis targets these contexts in which frequent disconnections
are the norm rather than the exception. These targeted networks are known as
Intermittently Connected Networks (ICN). As a postulate for this study, because of
the lack of reliable communication-means, things communicate through hop-by-hop
exchanges.

For example, such contexts can be illustrated by a town hosting sensors and
actuators in and out the city center, possibly far away. These sensors would gather
data on the environment (e.g., counting the number of cars passing through a tun-
nel or a bridge, measuring air-pollution) and actuators would cooperate to enhance
environment quality (e.g., modify speed limit on road signs equipped with screens,
close or open roads to move or lessen traffic jam). Because of the infrastructure
costs (e.g., deployment, maintenance, individual things subscription-plans) and lim-
itations (e.g., gray or white areas coverage is even overpriced when possible) this
network is deployed without relying on any infrastructure.

1.1.2 Communication in Intermittently Connected IoT

For several years, great effort has been devoted to the study of communication chal-
lenges in ICN. A research group of the Internet Research Task Force (IRTF), the DT-
NRG (Delay-Tolerant Networking Research group), proposed an architecture as well
as a protocol to exchange messages between nodes where no infrastructure is present.
This architecture, the Delay-Tolerant Networking (DTN) architecture [4], was his-
torically needed for Inter-Planetary Networks (IPN). It defines an infrastructure-less
communication system and is a substitute when Internet Protocols cannot be relied

14

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

upon. It provides communication means without assuming a connected path be-
tween a message’s source and its destination. It supports a wide naming-syntax to
identify nodes without relying on 1P addresses, and allows DTN nodes to exchange
variable-length messages. To do so, these messages are transmitted, possibly over
multiple paths, according to the store-carry-and-forward mechanism [5].

The store-carry-and-forward mechanism allows to exchange messages between
two nodes that never meet and without any continuous end-to-end path by exploiting
node storage and through hop-by-hop forwarding between intermediary nodes. A
message is stored temporarily on a node while the node is moving. This message
is thus carried by its mobile host that will take advantage of contact opportunities
by forwarding it to other devices when possible so the message eventually reaches
its destination. In traditional networks, all along a packet route, from its source to
its destination, there is only one single copy of this packet at all time. Each time
the packet is forwarded, it is deleted from the previous node. On the contrary, for
efficiency and reliability reasons, DTN nodes usually forward several copies of each
message they store. As a result, it can be said that a message is disseminated in a
delay-tolerant network.

Such system could be deployed in the previous example illustrating the city
equipped with sensors and actuators. Messages between the things would be ex-
changed thanks to mobile sensor and actuators. DTN is designed to work well when,
in this case, things are mobile. It can also be useful when things are actually fixed
but rely upon data-mules (buses, tramways or even metros equipped with specific
devices) that literally move messages from devices to devices. These data-mules can
also be considered as things.

One specific protocol defines how to process such messages: Bundle Protocol
(BP) [6]. BP is the de facto standard protocol over the DTN architecture to exchange
messages. These messages, called bundles, are composed of one primary block en-
closing bundle metadata, zero or more Meta-Extension Block (MEB [7]) that can
trigger specific processing on the carrier, and one, or more, payload blocks. Bun-
dles copies are disseminated in the network according to the store-carry-and-forward
mechanism. The decision of a BP node to forward a copy of a bundle and to which
intermediary node, results from a routing algorithm. BP RFC does not specify any
routing algorithm. However, such algorithm or protocol is required to determine best
intermediary nodes to which forward bundles. Many routing algorithms, proposed
by the research community, exist nonetheless: epidemic, statistically oriented, loca-
tion focused, socially based and so forth. BP implementations need to be completed
with such algorithm and they usually embed several algorithms by default.

In the remaining, “DTN” stands for the architecture itself, whereas “DTNs” rep-
resents networks following the DTN architecture, and DT-10T means Delay-Tolerant
Internet of Things. The DT-10T represents 10T paradigm with a DTN approach at
the networking level.

15

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

1.1.3 Programming Support in Intermittently Connected Io™T

BP-based platforms can provide a solution for the connectivity challenge identified
for the DT-10T. However, DTN and BP only solve the connectivity challenge and do
not provide any support to easily program things cooperation. BP can be likened
to a unreliable transport protocol for DTNs. A middleware is needed on top of a
BP-based platform.

Middleware systems for the IoT are more and more inspired by the Web [8].
Indeed, things are usually considered as client or server. Clients request servers
through regular HTTP methods or through communication means relying on proto-
cols similar to HTTP. Then, servers answer with responses embedding regular HTTP
code response. This architecture and programming style are directly inherited from
the traditional Web. Traditional Web is to the Internet what the Web of Things
(WoT) is to the 10T. In this thesis, the term WoT is then used to qualify middleware
systems that follow traditional Web principles. In many contexts and applications
the traditional Web is lightweight in terms of network usage, RAM and CPU, scalable
and easy to apprehend and comprehend. For these reasons, it makes sense to reuse
Web technologies for the 10T.

The REST architecture [9] allows to go further than just Web principles. The
REST architecture is a set of several constraints: client/server architecture, stateless
server, cacheable responses, layered design, uniform interface and, optionally, code-
on-demand. It enforces scalability, interoperability, portability, performance and
simplicity of interactions between RESTful nodes. All these properties greatly benefit
to a WoT context, thus this thesis’ contributions are explicitly investigated to be
RESTful.

Resource-Oriented Approach

RESTful WoT can be categorized in two different approaches. The first approach is
resource-oriented. In this approach the things host resources that are, according to
w3c [10], considered as an “item of interest, in an information space, identified by
a URI".

Several protocols and implementations encompass this approach. One stands out
as an emerging, Web-oriented and RESTful protocol: Constrained Application Pro-
tocol (CoAP [11]). CoAP is a request/response-based protocol that allows resource-
constrained devices, such as things, to interact together asynchronously. Relying on
UDP, a retransmission mechanism is defined in order to provide reliable exchange.
Requests and responses respectively contain HTTP methods and HTTP statuses, with
some slight semantic differences on HTTP statuses.

The context of this thesis is focused on the DT-10T. Also, since Web-oriented
systems are investigated, the context can be narrowed down to the Delay-Tolerant
Web of Things (DT-WoT). Besides, if COAP seems to be a great candidate for a DT-
WoT programming support, it cannot be used as is. Indeed, since CoAP has been

16

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

designed with traditional network in mind, some of its features are unfit for DTNs.
For instance, CoAP, relying on UDP, uses IP addresses and port as communication-
entrypoints whereas DTNs may not rely on IP at all. Moreover, its congestion control
and retransmission mechanisms are not suitable as is for DTNs. A work on these
unfitting features to transpose CoAP into a DTN context is required.

Service-Oriented Approach

Resource-oriented systems provide little means to describe, identify and discover the
resources, especially in DTN context were no node can act as a centralized registry.
The lack of such mechanisms is inherently fulfilled by the Service-Oriented Approach.
Indeed, this approach is composed of a set of rules defining the description of services,
their advertisement/discovery and their invocation.

In addition to the resource-oriented approach, the service-oriented approach is
also considered in this thesis, both being compatible with REST. This approach relies
on and encompasses what is usually called service-oriented architecture, service-
oriented networking and service-oriented computing. Generally speaking, “SOA”
stands for Service-Oriented Architecture, but in the remaining of this thesis SOA
stands for Service-Oriented Approach.

Going from resource-oriented solutions to SOA solutions offers more means and
possibilities. Service description, service advertisement and service discovery are
ones of the main concerns in SOA platforms. SOA solutions are constituted of three
different entities: registry, clients and service providers. Service providers describe
their own service functionalities and capacities in a document called a service de-
scriptor. This descriptor is published into the registry. Clients find service providers
thanks to registry lookups and can then invoke service providers directly.

Thanks to their loosely coupled and late binding properties, SOA systems are
adapted for DTNs. Indeed, in such environment no node can be relied upon as a
registry, so the discovery challenge needs to be overcome. Furthermore, DTN nodes
undergo specific networking constraints that must be taken into consideration in the
service description. For instance, it would be very useful that a service informs when
it is available (i.e., when is its host awake), until when it is expected to be available
and in which location it can be requested. These details are not often meaningful in
traditional networks and are thus left out. CoAP exploits a discovery and description
mechanism [12], but it is too limited to suit DTNs: it relies on a direct exchange
between nodes and resource descriptions do not provide all needed details in DTN
environment. Very few works in the DTN literature address SOA even though it
seems really pertinent to enable service-oriented systems in these networks.

17

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

1.2 Proposal

The objective of this thesis can be summed up as: how to provide a programming
support for the DT-WoT? First a resource-oriented solution is sought. Indeed,
since it is a common way to solve the programming challenge within the 10T, it
makes sense to follow this practice that was already proven as lightweight and scal-
able in traditional networks. Second, a service-oriented solution is sought. It aims
to provide means for discovery and resource/service description that lack in the
resource-oriented approach.

Contributions of this thesis are explicitly investigated to be as close as possible
to existing standards (RFC and architectures). In fact, standards are well known,
reliable, tested and approved. They also ease programmers implementation and
developing tasks as they already understand the standards.

To address the two problems stated above, the following contributions are pro-
posed and presented in this thesis:

e The first contribution is the proposition of a resource-oriented programming
support to enable a DT-WoT. It consists in a transposition of CoAP through
fundamental adjustments and enhancements to use BP as binding. These
modifications and adaptations are implemented into a prototype named BoaP.
Most CoAP features are respectfully transposed into BoaP and are compliant
with RFC 7252 (e.g., serialization, CON/NON messages, deduplication, and so
forth).

e An original method to evaluate middleware systems in DTNs is proposed. This
method relies on an emulation platform, provided by Swarm/Docker, exploit-
ing two different kinds of node mobility: an artificial one and a reality-based
one. Accurately evaluating protocols and implementations is a challenge in
DTNs. Only coarse-grained simulations are usually done since node mobil-
ity, scenarios, radio-range, radio-interferences, node-networking behaviors are
approximated. The current literature shows no consensus on experimenting
methods and approximations. Only real world experiments could provide pre-
cise data but very few are done due to their cost. In this thesis, implementa-
tions running on nodes were not simulated. Indeed, to assess BoaP performance
it is first deployed in a small physical network. Afterwards, an emulation sys-
tem is used, relying on Swarm/Docker. This architecture is adapted to DTN
context: it emulates network nodes while simulating network links. Experi-
ment results are closer to real-world deployment than simulation-based results.
These experiments ascertained that BoaP is reliable enough and could even be
used to support a RESTful and service-oriented middleware for DT-WoT.

e An SOA and RESTful programming support built with 10T in mind and adapted
to DTN environments comes as the last contribution. This service-oriented

18

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

middleware lies on top of BoaP and is named LILWENE'. The specifications
of this middleware define a service descriptor as short as possible yet fully
enclosing service details and providing fields for future usage. These descrip-
tors are advertised through a publish /subscribe interface into topics supported
by BP endpoint identifications. The registry architecture is directory-less and
each node participates in the advertisement and discovery. Each node hosts
a local registry that gathers service descriptors. These clients can then dis-
cover service providers and invoke them. A service invocation, supported by
BoaP, introduces a couple of new options compared to BoaP. An API and an
implementation elements are also described.

1.3 Thesis Outline

The remainder of the thesis is organized as follows.

Chapter 2 reviews DTN architecture, BP protocol and introduces opportunistic
networking. Then both resource and service oriented approaches and protocols for
both IoT and DT-I0T are presented.

Chapter 3 presents the BP and CoAP protocols and implementations at a tech-
nical level. Then, CoAP modifications and adaptations, composed of fundamental
adjustments and enhancements, are proposed to provide a Delay-Tolerant CoAP.
Next, a prototype, stemming from these adaptations, named BoaP is described. A
comparison between CoAP and BoaP features, that are compliant for most of them,
concludes this chapter. In addition, this chapter also presents an interface with a
BP implementation (IBR-DTN).

Chapter 4 introduces BoaP evaluations. First, BoaP is deployed in a small phys-
ical network and then in a simulated network with emulated nodes in four different
experiments: three using an artificial model for the nodes mobility and the last one
using reality-based traces. To assess BoaP performances a new emulator system
relying on Swarm/Docker is proposed to provide an emulation environment.

Chapter 5 contains the proposition of the RESTful and service oriented middle-
ware support named LILWENE!. It details service discovery and advertisement, and
service invocation means coupled with an API and some implementation elements.

Chapter 6 concludes the document and broadens next challenges of this work.

lLILWENE: Light services middleware for delay tolerant Web-of-things Networks

19

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

20

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

State of the Art

Contents
2.1 Challenged Networks 22
2.1.1 Delay-Tolerant Networking 22
2.1.2 Opportunistic Networking 25
2.2 IoT Programming 29
2.2.1 Resource-Oriented Approach 30
2.2.2 Service-Oriented Approach 33
2.2.3 Other Approaches and Systems 35
2.3 DT and Opportunistic Computing 36
2.3.1 Pragmatic Programming 36
2.3.2 Programming Paradigms 37
2.4 Discussion0 oo e e e e e e e 40

Studies in relation with the contributions of this thesis are reviewed below. First,
challenged networks are defined. The challenged networks are categorized in two
visions: Delay-Tolerant Networking (DTN) and Opportunistic Networking. In this
section, the DTN architecture as well as the bundle protocol (BP) are explained
in details since the contributions of this thesis rely on those. The opportunistic
networking paradigm is presented in a broader manner with a focus on routing
algorithms since most of the research works concern such algorithms.

Afterwards, the different approaches of programming supports for the Internet of
Things (10T) or the Web of Things (WoT) are presented and are categorized accord-
ing to their approach that is either resource-oriented or service-oriented. Since this
categorization is coarse-grained, additional category is also considered and named
‘other’. In this section, CoAP is detailed in depth for the same reasons DTN and BP
are.

Finally, in like manners that 10T /WoT programming supports are reviewed, works
on programming supports in DTN context are presented. They are categorized as
pragmatic programming and programming paradigms.

21

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

2.1 Challenged Networks

Traditional Internet protocols rely on implicit assumptions such as continuous bi-
directional end-to-end path between any pair of nodes, low error rates and low
message loss, a single route for network packets is enough to reach acceptable com-
munication performance, and short and roughly symmetric round-trip delays. In
2003 [5], Fall identified as challenged networks any network in which one of these
assumptions cannot be met. To work around these challenges networks nodes com-
municate through hop-by-hop exchanges according to the store-carry-and-forward
mechanism. When a node emit a message, it temporarily stores the message and
carries it while moving. When it encounters another node it forwards a copy of this
message. If the encountered node was the message’s destination then the message
is considered as delivered, otherwise the node is just an intermediary node and will
forward copies of the message too.

Challenged networks has been targeted by many studies and projects. These
works usually identified themselves as being part of either the disruption/delay-
tolerant networks (DTNs) research field or the Opportunistic Networks (OppNets)
research field. Historically, DTN approaches were the first to target challenged net-
works and more specifically Interplanetary Networks (1PN). However, the DTN archi-
tecture and the Bundle Protocol were not a good fit for all the terrestrial scenarios.
In order to support communication in these scenarios another approach emerged
that is identified as Opportunistic Networking. As presented by Pelusi et al. in [13],
the exact difference between opportunistic and DTNs approaches is not clear and is
generally just a vocabulary choice. In this document, DTN approaches are networks
and applications relaying on DTN (RFC 4838 [4]) and BP (RFC 5050 [6]) opposed to
OPPNET approaches that frequently present the studied networks as Disconnected
Mobile Ad Hoc Networks.

2.1.1 Delay-Tolerant Networking

Earliest studies on challenged networks are related to the Delay-Tolerant Networking
architecture (DTN) stemming from the historic need to provide communication for
challenged networks that were IPN. Due to very long distances, even at the speed
of light, the latency is more than 1 second for Earth-to-Moon distance and varies
between 4 and 24 minutes for Earth-to-Mars distance. 1PN suffer from long and
variable delays and disconnections because of their continuous movement and all
celestial objects disrupting their network links that require a line-of-sight.

In May 2001, in order to support deep space exploration communication be-
tween Earth and the different satellites and space probes, an architecture for the
IPN is defined by Vint Cerf et al. in [14]. The architecture relies on a store-and-
forward overlay network on top of a transport layer. In 2003, Fall proposed the term
Delay-Tolerant Networking (DTN) to describe and encompass all types of long-delay,
disconnected, disrupted or intermittently connected networks, where unreliable con-

22

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

nectivity may be experienced [5]. Finally, in 2007, two important RFC are written:
one, written by Vint Cerf et al., describes the DTN architecture itself [6] and the
other one, written by Keith Scott et al., defines a protocol to exchange messages in
a DTN overlay [4].

The DTN architecture (RFC 4838, [4]) aims to provide architectural guidelines for
protocols in challenging networks according to the following design principles:

e Messages vary in length and can be long. Stream and small packets shall be
avoided.

e Node identification syntax must enable a wide range of addressing conventions
to better support interoperability.

e Node storage are at disposition to provide needed resources for the store-carry-
and-forward mechanism.

e Security means shall protect the network from undesirable traffic.

e The means to help the network to better deliver data according to the applica-
tions’ needs shall be available (such as classes of service, lifetime of messages
and delivery options).

The Bundle Protocol (BP, RFC 5050) [6] is the de facto standard for the bundle-
layer of the DTN architecture [4]. The BP forms a message-based overlay that follows
the store-carry-and-forward principle. The BP defines the format of the messages,
called bundles, and the logic layout to process them.

As a network overlay, the BP relies on convergence layers that abstract subnet-
specific protocols to transport bundles (e.g., TCP, UDP, LTP). Bundles have a lifetime
and will be deleted if it expires. In order to overcome network disruptions and high
delays, the BP uses a cache, on nodes, to store bundles. These bundles are either
processed by an application (if the destination is on the node), or forwarded to other
nodes towards the bundle destination. A BP endpoint is identified by an Endpoint
Identification (EID) that takes the form of a URI. A BP endpoint can either be a
singleton or a set of BP nodes that register themselves with a common EID, thus
allowing multicast-like operations to be performed.

The BP bundles have to be routed from node to node. Despite being required
to determine to which node forward a bundle, the BP specification does not fix a
routing method. Nonetheless, many routing algorithms exist, each of them intended
to be adapted to a networking context (e.g., the mobility of the nodes) or to a type
of application. A key characteristic of a routing algorithm is its choice to allow
multiple copies of a bundle in the network (e.g., as in the epidemic approach). Since
the beginning of the research for these networks routing algorithms has drawn much
attention: as early as 2006 a survey was done on routing protocols in DTNs [15].

Bundles are constituted of one primary block (header), then zero or more ex-
tension blocks called called Metadata Extension Blocks (MEB) |7], and one or more

23

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

payload blocks. The primary block carries options that influence the treatment per-
formed by the nodes that forward and receive the bundle. For example, a Report-
When-Bundle-Delivered option will make the destination node emit an adminis-
trative bundle when receiving the bundle. Extension blocks can be used to make
specific processing decisions regarding bundles, e.g., routing decisions.

The bundles have a TTL and will be deleted from node’s storage when it expires.
The optimized TTL value is, at my best knowledge, not defined. In fact, the perfect
value differs according to the different kind networks. Some networks may work with
lower delivery ratio, while other would require a higher, or even highest, delivery
ratio. These delivery ratio are related to the TTL value: with a very short TTL
the bundles are likely to die before reaching their destination, on the contrary with
an infinite TTL the bundle will reach its destination before dying. These previous
extreme values have another important side effect. Indeed, the network storage
usage is directly impacted by the TTL value. With a very short value fewer nodes
will store the bundles (and not for long), so their storage shall not be saturated. In
contrast, with a very long TTL, a lot of nodes will have to store a lot of bundles,
hence saturating their storage.

The BP does not offer a reliable means of communication since it relies on in-
tercontact to forward messages and nodes’ mobility. Nevertheless, a built-in mech-
anism, named “custody transfer”, aims to enhance reliability. The custody transfer
requests that a BP node takes the responsibility for delivering a bundle to its desti-
nation. The responsibility is released when the node forwards the bundle to another
node accepting this responsibility.

Several BP implementations exist. Interplanetary Overlay Network (10N [16])
or Postellation [17], for instance, are designed for spacecraft flight software whereas
IBR-DTN [18] is more suitable for constrained nodes with a small RAM usage in
comparison with DTN2 [19] that was one of the first BP implementation. IBR-DTN
is one of the most up-to-date implementation with an active community. Also,
because it is friendly with resource constrained nodes, thanks to its RAM usage, it
is the implementation chosen for this thesis since the 10T, composed of resource-
constrained nodes, is at the core of this thesis’s context.

The IBR-DTN implementation runs a daemon that stores, carries and forwards
bundles to other DTN nodes in the network. Added to this daemon a couple of
command line tools are provided by the Linux package that offer to send and receive
messages, to synchronize folders between different hosts, and so forth. The daemon
and the tools communicate via an API. The entrypoint of this API is a TCP socket.

This way of implementing the BP in a separate daemon process (accessible via
a TCP socket or another inter-process communication facility) is a versatile system:
the BP daemon can be detached from a sensor node and placed on a more powerful
node if the sensor is too constrained. On the down side, it induces an additional
delay. It should also be noted that IBR-DTN is not the only implementation that
follows this system, suggested in [6], DTN2 does too.

24

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

In this thesis, DTN is considered as mature and complete. Indeed, despite relying
on unfinished business, such as IPND [20]', the neighbor discovery of DTN, and
the very limited of real-world deployments, the DTNRG (Delay-Tolerant Networking
Research group), which proposed the architecture, has been wound down in April
20162. Also, for this reason, no contribution are sought on the DTN, per say, that is
at the base of all contributions.

2.1.2 Opportunistic Networking

The opportunistic networking approach stems from both DTN approach and Mobile
ad hoc Networking (MANET) approach. Mobile ad hoc Networks (MANETS) do not
cover all challenges and generally consider node density as high enough to mask
away the node mobility by constructing “stable”, connected end-to-end paths, as in
the wired Internet. The approach of opportunistic networking does not assume that
an end-to-end connected path exists between a pair of nodes and does not consider
the node mobility as a problem but rather as an exploitable opportunity to link
disrupted paths. These networks are either identified as Intermittently Connected
MANETs (ICMANETs) or Disconnected MANETs (DMANETs) that rely on the same
store-carry-and-forward mechanism from DTN approach. Thus, when a node does
not have a good next hop to forward the data, it simply stores the data locally
without discarding it, as would occur in a MANET, and waits for an opportunity to
forward it. Nevertheless, the Bundle Protocol is not a good match for all the various
terrestrial scenarios.

Most part of OPPNET studies are focused on routing algorithms. Routing algo-
rithms in OPPNET aim to two different objectives that are: maximize the probability
of message delivery while minimizing the delay each message experiences during de-
livery. The probability of message delivery, i.e. the delivery ratio, is the ratio of
received messages to emitted messages.

2.1.2.1 Forwarding Algorithms

The literature generally refers to forwarding algorithms rather than routing algo-
rithm. This is due by the fact that no route is assumed to exist between any pair
of nodes, hence algorithms determine which node is the best forwarding target op-
posed to routing algorithms that determine the shortest path to reach a packet’s
destination.

These algorithms are not only for OPPNET but also DTNs. It is common for
this kind of study to interchange the words ‘OPPNET’ and ‘DTN’. Several ap-
proaches have been adopted to achieve reliable communication in such networks.
These various approaches are detailed below and classified as either deterministic,

!Mentioned as such in last DTNRG meeting at IETF-87 while DTNRG was closing down.
2See the mail at: https://archive.fo/08Hhm

25

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

https://archive.fo/08Hhm

content-based, stochastic, context-aware (where contexts are approximated by de-
tails extracted from location-based or social-based data) and mobility-based.

Deterministic Forwarding

Deterministic algorithms are a great fit with controlled environments or when the
contacts are scheduled or predictable.

One algorithm that does not focus on any controlled environment but remains
deterministic is the Epidemic Routing protocol proposed by Vahdat and Becker [21].
The simplistic forwarding algorithm is to forward a copy of every message to all its
neighbors (except the one who sends it). If this protocol offers the best delivery
ratio, it also consumes a lot of nodes storage and medium usage leading to high
energy consumption and poor scalability. These downsides are studied by Tseng
et al. in [22] who conclude that it can seriously degrade the network performance,
especially in high-density regions or if the resources are scarce.

Spyropoulous et al. [23] proposed two single-copy based protocols: Direct Trans-
mission and Randomized Routing Algorithm. With Direct Transmission, a node
forwards a message only if it is in contact the destination. In Randomized Routing
Algorithm, a message is forwarded based on a probability score. These protocols,
unlike Epidemic Routing, produce very low network traffic but are convenient only
if the node mobility is well known or highly predictable.

Time To Return (TTR) [24] is another forwarding algorithm that targets envi-
ronment with predictable mobility. The context targeted by this work is rescue in
emergency scenarios. The protocol takes advantage from the fact that all medi-
cal personnel in such context are coordinated by a leader that assigns actions and
maximum time to return to the base for security reasons.

Content-Based Forwarding

Another class of forwarding protocol is based on the content messages contain and
profile of interest of network nodes.

SocialCast [25] is a content-based forwarding algorithm providing a pub-
lish /subscribe interface. A publisher originally delivers a fixed number of copies
of the message to carrier nodes. A message carrier will deliver a copy of the message
to subscribers it meets or will delegate the message to another node that is selected
as a more feasible carrier.

DODWAN [26] follows a different approach of content-based that relies on a pub-
lish /subscribe interface. Each node periodically informs its neighbors about the
messages it is carrying and that match neighbors interest profiles. When a neighbor
misses a message carried by another host, then the neighbor requests a copy of this
message.

26

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

Stochastic Forwarding

A couple of studies aimed to limit the number of messages generated by the Epidemic
Routing protocol by adopting a stochastic approach. This is the case of Spray-and-
Wait [27] proposed by Spyrpoulos et al.. It is inspired from flooding-based forwarding
algorithms since it makes no use of information on network topology or knowledge
of the past encounters of nodes, however, it significantly reduces the transmission
overhead by limiting the total number of copies that can be transmitted per single
message.

The same authors proposed a follow-up of Spray-and-Wait: Spray-and-focus [28§].
Its difference with the Spray-and-Wait algorithm lies in the Focus phase. Unlike
Spray-and-Wait, a node, after forwarding all the allowed copies of a message, can
delegate the message it carries to another node according to a given forwarding
criterion.

Context-Aware Forwarding

There are also forwarding algorithms that base their forwarding decision on data
extracted from their context. These contexts are location- (or movement-) based
and social-based. It should be noted that the social interactions of network nodes
differ from the social interactions of their carriers. From a networking point of view,
a social interaction is represented by an intercontact of two networks nodes while
the carriers of these network nodes may not communicate at all.

Location-Based Several location-based forwarding algorithms exist. MaxProp [29]
is designed for vehicle-based networks. These networks are usually composed of net-
work nodes with large storage capacity and energy source, but experience short
contact duration. To overcome these short contact durations, MaxProp proposes a
prioritization of packets to be forwarded, or dropped according to their priority.

In MobySpace [30], a node computes the closeness of its neighbors to the desti-
nation of a message it wants to forward. The closeness of two nodes is computed
according to the probability of an intercontact to occur between these two nodes.

To overcome the moderate delivery ratio of TTR [24], due to the one-copy ap-
proach, the TTR algorithm has been modified in order to propose PropTTR and
PropNTTR [31]. PropTTR uses MaxProp for the forwarding to direct neighbors and
then the neighbors use TTR for the delivery. PropNTTR follows the same rules but
uses MaxProp for neighbors and neighbors of neighbors and so forth until the hop
count of the message is equal to N.

Social-Based PROPHET [32] is a social-based forwarding algorithm. PROPHET as-
sumes that node movement is not random and that it is possible to identify mobility
patterns. Thus, its forwarding decisions are taken according to delivery probabilities

27

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

that are estimated from the frequency of encounters, i.e. the probability to deliver
a message to a certain destination node increases whenever it comes within sight,
and decreases overtime in case no meeting occurs.

Following a similar approach, HiBOp [33, 34] relies on the history of contact and
the place where two nodes last met each other. An algorithm [35|, by Vu et al.,
relies on encounters patterns between network nodes. After studying on real traces
of Wi-Fi and Bluetooth traces over 6 months the authors concluded that the contact
patterns are regular and predictable. TAO [36] also extracts details from contacts
between mobile nodes and infostations since it targets hybrid networks.

Eiko et al. propose a forwarding algorithm [37] electing specific node as message
broker. Mobile nodes run a community detection algorithm in order to determine
which node has the shortest path to all other nodes in the community. Then,
this node acts as the message broker within its community. A similar approach
is proposed for SimBet [38] where two metrics are used: one to find best nodes
to connect between communities and one to find best nodes to deliver messages
within communities. BubbleRap [39] algorithm relies on communities. Specifically,
authors propose a method to detect communities, then when a node has a message,
it forwards it to a node closer of the destination’s community.

Mobility-Based Forwarding

Finally, there are works on forwarding algorithms focusing on specific mobility.
In [40], Goodman et al. propose to deploy infostations with strong radio signal
in an area to provide one-hop forwarding. Opposed to this approach, of fixed net-
work node, data-MULE system [41] and the message-ferrying approach [42]| exploit
mobile nodes that follow a determined route to provide a reliable link opportunity.

2.1.2.2 Communication Middleware

Despite a majority of studies on forwarding algorithms, there are also projects and
works that propose middleware systems in order to ease application programming. A
common addressing and routing schemes shared by middleware systems in DTNs and
OPPNET are content-based: the data being moved in the networks are forwarded
and shared according to their content. In order words, the network enables its nodes
to share content based on their interest.

Haggle [43] is a content-sharing system involving mobile users. Each node de-
scribes its interests and lists the content items it locally stores. When two nodes
meet, they exchange their interests and then share items of content that match other
interests.

Cc3PO framework [44] provides ad hoc communication means to smartphones
relying on legacy Wi-Fi as well as Bluetooth to create an opportunistic network.
This communication system aims to be deployed for specific social events (e.g.,

28

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

shows, sports, concert and so forth) to share content among people without Internet
access.

DODWAN [45] middleware proposes cooperation of neighboring devices to deploy
component-based applications. Each devices hosts a deployment manager that can
retrieve software components (applications) from other nodes while sharing its own
software components. The middleware also provides communication means adapted
to OPPNET and exploits multi-hop exchanges.

A middleware architecture is proposed in [46] by Helgason et al.. It supports
the dissemination of contents within a wireless ad hoc domain and with the wired
Internet. The access to service of their platform is done through a publish /subscribe
interface. This architecture has been implemented and tested using their Android
implementation. Finally, for a large scale evaluation, they simulated their system
on OMNET++.

CAMEO, proposed in [47] and part of the SCAMPI project [48] (Service Platform
for Social Aware Mobile and Pervasive Computing), is a context-aware middleware
that collects and manages context information from physical and virtual worlds.
Thanks to these data, the system determines user’s profile and social behavior that
applications can exploit. This middleware aims to ease the development of social
applications in OPPNET.

OPPNETIng is not a very good candidate to substitute to DTN since routing
algorithms as well as middleware systems are based on many hypothesis. These
hypothesis are made on various parameters that include node mobility, node density,
links dynamicity, node knowledge (e.g., on its geolocation), storage capacity and so
on. No similar hypothesis are made in this thesis. Furthermore, middleware systems
are rarely based on standard protocols unlike contributions of this thesis. Here again,
this work does not aim to contribute on OPPNET, per say. Nevertheless, the overall
solutions (BoaP and LILWENE) could be deployed in OPPNET.

2.2 IoT Programming

The IoT interests various actors and workers such as researchers or companies, that
all work to help the 10T becoming a reality. A considerable part of these works
are focused on middleware in order to allows developers to build application for
the 10T. As shown by several reviews [49, 50, 51, 52|, many projects and studies on
middleware adapted to the 10T exist. Several architectures and designs exist for mid-
dleware systems and these works categorize these systems in different approaches.
The service oriented approach is a common category to all these works. Other
categories include data-based (database oriented, or data focused), agent-based and
actor-focused, event-based or even object-oriented. Another categorization is pro-
posed in this thesis with only two approaches: resource-oriented approach (ROA)
and service-oriented approach (SOA).

29

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

These two approaches are supported by various works. ROA has already been
studied in the context of ToT [53, 54] and SOA too [55, 56, 57, 58|. Differentiating
one approach from the other is not straightforward. Indeed, they are close to one
another and are sometimes mistaken for one another. Both approaches involve
clients that request either resources (ROA) or services (SOA). To allow these clients
to request resources or services, each client needs to discover them beforehand.
This is done thanks to a discovery mechanism. The first difference between ROA
and SOA lies in this mechanism. In ROA systems, discovery is rather basic, simple
and not included by default. On the contrary with SOA, discovery mechanism is a
requirement that is carefully described and defined. It usually provides searching and
filtering capabilities. The discovery relies on descriptors that contain information to
request, or to invoke, a resource, or a service. In ROA, these descriptors commonly
contain a very limited set of information that are elementary. Such information is
for example their identification and location, with an optional field to inform what
type of data the resource can return. On the opposite, service descriptors provide
all functional and non-functional details of a service. In some cases, several message
exchanges are required to gather all details of one service. Finally, ROA and SOA
differ a lot on the invocation aspect. With SOA, the sets of invocation methods for
each service can widely vary whereas ROA systems frequently exploit the four main
HTTP methods (GET, POST, PUT and DELETE) for all resources. From a higher
point of view, SOA can be seen as an abstraction layer put over an ROA system. As
for ROA system, the Web is a well-known example: web page are the resources and
web browsers are the clients.

In practice, according to Guinard et al. 8], service-oriented approaches are usu-
ally too heavy and complex for simple objects that populate the 1oT. This is a
challenge that this thesis aim to overcome by investigating the SOA contribution
towards RESTful principles. Indeed, both ROA and SOA commonly follows a RESTful
style that is considered as lighter than other styles. As presented in [59] by Pautoasse
et al., there are two styles of services: “big” Web services and RESTful web services.
Pautasso et al. quantitatively compare these two services styles in [59]. The article
points out strengths and weakness of both styles. One of the strength for RESTful
web services is its low hardware requirements that allows a simple system for a low
cost. As stated before, this low cost characteristic steps out as an important aspect
in this thesis since it is a DT-WoT context where things have constrained resources.

2.2.1 Resource-Oriented Approach

Works identifying themselves as resource-oriented in the 10T usually follow a RESTful
approach. In [53], Guinard et al. propose to design the 10T with Web technologies
(HTML, HTTP), suggest to follow best-practice based on REST and present several
prototypes that would extend the World Wide Web according to their resource
oriented architecture. REST defines five constraints that are: 1. a client-server ar-
chitectural style to enforce a loose coupling hence enabling independent evolution

30

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

for both sides, 2. stateless servers to ensure server scalability, 3. a cache to improve
network efficiency as well as client satisfaction since cached response are instantly
available, /. a uniform interface to simplify the software architecture and the vis-
ibility of interactions, 5. a layered-system for all its well-known advantages. One
optional constraint is added to these five ones: the code-on-demand. This con-
straint enables clients to download code, e.g. applet or script. This reduces the
number of required features by clients that can be extended after deployment. It
can be noted that REST defines four interface constraints being: 1. identification
of resources: each resource should be identifiable and conceptually separated from
the representation of the resource, 2. manipulation of resources through represen-
tations: each resource should be completed by metadata providing required details
to process the resource, 3. self-descriptive messages: each message should inform
on the representation format of the resource (MIME), 4. and, hypermedia as the
engine of application state (HATEOAS): paths to related resources and/or actions of
a resource being requested should be available by following hyperlinks, this can be
likened to the CoAP URI path well-known, that follows RFC 5785 [60] .

Three prototypes adopting these constraints are then presented. The first one
is a smart gateway. Smart gateways are a common solution to fill the gap between
traditional Internet and WSN or other networks composed of component not able to
connect to the Internet. The second prototype is a proxy to transparently translate
regular HTTP requests/responses from Internet into proprietary protocols to a sensor
and actuator network. This proxy also keeps in a cache the responses in order to
minimize the number of exchanges with sensors and actuators. This proxy also offers
smarter features such as monitoring (a client subscribe to a resource and receives
notifications when its states reach a threshold). Taking benefit of the previous
prototype, the last is a Web dashboard to remotely monitor and control energy
consumption. In [54], Dar et al. oppose ROA to SOA in the context of 10T. This
study adopts the ROA and proposes an architecture inspired by REST to interconnect
business processes with 10T resources.

CoAP

At the moment, one standard protocol can be seen as the archetype of ROA in
I0T: COAP. CoAP [11] offers an application layer protocol that allows resource-
constrained devices to interact together asynchronously. It is designed for machine-
to-machine use cases and is compliant with the REST architecture style. CoAP defines
a simple messaging layer, with a compact format, that runs over UDP (or DTLS
when security is enabled). Its low header overhead and low complexity simplify the
processing of messages by constrained nodes. On top of this message layer, CoAP
uses request /response interactions between clients and servers.

If a node needs to send a message in a reliable fashion, in spite of UDP unre-
liability, then the node will send the message and wait for an acknowledgment. If
no acknowledgment is received, the node will retransmit the message several times

31

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

with an exponential back-off. These messages are referred to as CON (confirmable),
in contrast to NON messages (non-confirmable) that nodes can afford to lose.

CoAP applications and resources are identified by URIs following the coap scheme
(or coaps with DTLS). Group messaging is also possible with CoAP, by specifying a
multicast address in the URI host part. This allows several resources to be accessed
with a single request.

COAP requests are derived from the main HTTP methods (GET, PUT, POST or
DELETE) and the responses from HTTP statuses. PUT creates a resource, GET re-
trieves it, POST updates it and DELETE deletes it. As for the responses, COAP uses
HTTP statuses with some slight semantic differences. Informational and redirection
HTTP statuses are not used in CoAP. In addition to its UDP binding, CoAP differs
from HTTP regarding its message options. Messages may have one or more options.
The list of options includes Content-Format, Accept, Max-Age, Uri-Host, Uri-Path,
Uri-Port, Uri-Query.

An original work worth citing is the Observe option, [61]. A client subscribes to
resource updates by sending a GET request with the Observe option so the server
sends notifications upon resource modifications.

UDP is the standard binding for coAP. However, several other bindings have
already been envisaged. The informational Internet Draft [62] examines the require-
ment of several alternative transport protocols for CoAP, and mentions the potential
interest in using the BP. To our knowledge, only the SMS binding has led to an actual
test implementation [63]. On the other hand, CoAP has also been used as a SOAP-
binding itself described in the Internet Draft [64] and presented in the article [65]
where this system is deployed in a WSN.

Different works relate CoAP usage. In [66], CoAP is deployed in a cargo to
monitor the different containers (temperature, humidity, voltage). In [67], CoAP is
used in a wide area for sensor and actuator use-case. It should be noted that in this
last article, sensors and actuators are equipped with communication means relying
on cellular network. This system is considered in this thesis to be too expensive,
especially when the number of sensors and actuators increases.

COAP also supports elementary description and discovery mechanism. It ref-
erences [68] for description and [12]| for discovery in its section defining resource
discovery.

The description of CoAP resource is defined in [68] as Web Linking. A link
is described as a typed connection between two resources. This typed connection
contains attributes in the form of a set of key/value pairs. Web Linking offers
different attributes that provide hint on different target, or link, characteristics
such as its media type. The set of defined attributes is very limited and does not
provide any means to define specific attribute of a resource, or service, that would
be interesting in a DT-WoT context such as an interface, or an agenda. It should be
noted that CoAP also defines a new Web Linking attribute to inform what Content-
Format a resource can return.

32

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

Once the resource are described, then can be discovered. CoAP discovery involves
of two steps. The first is to discover all CoAP nodes, the second is to discover hosted
resources (if any) on these nodes. Discovering all CoAP nodes is done through a
request sent to the multicast address of CoAP. These two steps can be merged into
a single one, as explained below. A strong constraint on the default port number
is imposed by the RFC of CoAP. Indeed, a CoAP server must listen to the default
port to support the discovery. CoAP servers can host resource on an additional
port if needed. The RFC6690, CoRE Link Format [12], defines how to use Web
Linking to discover resources hosted on a server. When a client wants to discover
hosted resource it needs to send a GET request to the server. A well-known URI
is used as a default entry point to which the request are directed. A client can
send its request either by using unicast or multicast to discover all resources of all
CoAP nodes at once. CoRE Link Format also defines additional attributes that are
claimed to “describe information useful in accessing the target link”, unfortunately
these attributes do not provide any means to defined meaningful attributes in a
DT-WoT context.

2.2.2 Service-Oriented Approach

Many proposals of SOA middleware systems target the IoT, WSNs, or ubiquitous
environments. While none of these works target DTN environments they actually
target networks that share similarities with DTNs, e.g. devices with constrained
resources, noncontinuous connectivity. It can be wondered if these works can be
adapted into an SOA middleware for DTN. Unfortunately, very few studies actually
propose systems that can be adapted as is in a DT-I0T context.

In the following, works on SOA middleware systems are categorized according
to their characteristic that make them more or less adaptable to a DT-I0oT context.
Sometimes this characteristic lies in their design decisions, e.g. usage of big ser-
vices [59]. There are works for which this characteristic lies in their objectives. Such
works propose SOA middleware systems for the 10T while generally aiming, as a tacit
secondary objective, to fill the gap between traditional Internet and wWsN. However,
this thesis does not consider Internet as being part of the context. Another char-
acteristic that makes SOA middleware systems unadaptable for the DT-10T context
is the focus on semantic techniques while leaving design principles aside. Finally,
there are studies and works that demonstrate appealing architecture and vision that
could inspire this thesis contribution. These works present RESTful and decentral-
ized architectures.

2.2.2.1 Big Services
Systems such as Hydra [69] or ubiCoAP [70] rely on protocols that are not considered
as resource friendly, i.e. consuming too much CPU, RAM or battery. There are

systems that require too many exchanges of messages. It is the case of MUSIC [71]

33

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

for its discovery or a work by Guinard et al., [72] where the services are scanned in
order to report their availability status to a central system whereas DTN architecture
advises to minimize them. Being in a DT-10T context heavy protocols such as SOAP
should be avoided. Also, DTN advises to minimize messages exchanges so these
approaches should not be adopted into this thesis context. Furthermore, it would
be interesting to rely on other and decentralized systems in order to determine if a
service is available since centralized architecture are not efficient at all in DTNs. It
would also be interesting if clients were informed beforehand when a service is not
available.

2.2.2.2 Integration with Internet

Studies such as KASOM 73|, TinysOA [74] or the one proposed by Anastasi [75]
aim to integrate WSNs into the traditional Internet in order to extends the Inter-
net with such networks. KASOM [73] provides tools for the registration, discovery,
composition, and orchestration of services. KASOM also proposes to found Knowl-
edge Management services according to a semantic description of low and high level
resources of the WSN. TinySOA [74] proposes a language-agnostic API to exploit
WSN capabilities. They provided an API to a set of programmers to evaluate their
perception and intention of use. Several simple applications were developed as well
as a more complex one for a real-world problem (agricultural monitoring) that has
been in use for several months. The system proposed in |75] helps to configure WSN
functionalities and exploit them in the form of Web services. Industrial systems as
Xively [76], Carriots |77], Echelon [78], are based on cloud platform to provide their
services. It relies on a centralized architecture that cannot be adapted to DTN con-
text without heavy modifications that would render the DTN systems very different
from its original system.

These propositions rely on service-oriented approaches but their objectives differ
from the goals of this thesis. One of their goal is to integrate, or exploit, Internet
connectivity. This vision is not specific to these works. Indeed, as the research
team of CHOReOS project |79] puts in their perspective of SOA for the 10T [55]: “the
Internet of Things will cooperate with the Internet of Services”.

2.2.2.3 Semantic Style

ASAWO0O [58] and SENSEI [57] are two projects adopting a semantic approach. In
ASAWOO, reasoners process ontologies in order to determine how to achieve a goal.
For more details on ASAW00, see below. In SENSEI, some models are proposed to
describe 10T components, data and capture relations between different data provider
and data descriptor.

While semantic tools clearly help to build SOA middleware systems, especially
for description of services, looking up services and composing of services, it is a
research domain in which the main objectives of this thesis do not lie.

34

Programming Support for a Delay-Tolerant Web of Things Maél Auzias 2017

2.2.2.4 RESTful and Decentralized Style

Finally, there are works suggesting some appealing architecture characteristics to
provide SOA middleware in 10T, that could be adapted in DT-I0oT systems. In par-
ticular, ubiREST [80] that relies on a RESTful architecture. This work introduces a
network-agnostic connectivity layer that can be likened to the BP convergence layer,
and exploit both unicast and multicast, namely ubiREST point-to-point and ubiREST
group. The middleware relies on a refinement of the REST style, called Pervasive-
REST (P-REST), presented in [81]. It is an adaptation of REST at different level of
abstraction to offer flexibility, genericity, and dynamism. The approach of this work
supports the idea previously presented that REST is promising in the context of this
thesis. MOSDEN [82] is a middleware providing a plugin architecture that enable
to load applications in the form of plugins distributed through mobile application
stores such as Google Play. MOSDEN is built on top of GSN [83] that relies on a
decentralized P2P architecture. Servilla [84] is an SOA system that introduces a new
binding model based on semantic that can be eager or lazy, and persistent or tran-
sient (any of the four combinations). It also offers three forms of service invocation:
on-demand, periodic and event-based. In Servilla, each node hosts its own registry.
Decentralized systems, RESTful architecture and distributed registries are valuable
methods for DTN environments.

2.2.3 Other Approaches and Systems

The categorization of ROA and SOA is at a coarse-grained level. Some middleware
systems do not entirely fit in these categories. These systems generally embed de-
vices management, devices communication as well as application-layer programming
support. They are, for the most part, industrial projects that mask out their real
approach, that might be ROA or SOA.

Industrial Projects

Kura [85], by Eclipse, proposes devices communications, network and gateway man-
agement for an 10T integration through a Java/OSGi-based implementation. Mi-
croEJ [86], an industrial middleware, follows the same approach and relies on mi-
croJVM that is a Java virtual machine for embedded systems. IoTivity [87], later
merged into AllJoyn [88], are client-server oriented. AllJoyn purpose is to enable
devices to communicate with other devices around them and also to ease device
management operations. A device’s abilities are advertised through an XML docu-
ment. Z-Wave [89] and