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Chapitre 1 Contexte médical et Problématique  
 
Problématique médicale 
 

Aujourd’hui encore, les pathologies cardiovasculaires représentent toujours la 
première cause de mortalité dans les pays développés (1/5 en Europe, 1/6 aux 
Etats-Unis). Parmi elles, nous pouvons citer les plus importantes, les coronaropathies, 
affectant les artères coronaires. L’une des principales causes est l’athérosclérose 
coronarienne. L’accumulation de plaques d’athéromes, c’est-à-dire des dépôts 
anormaux principalement de lipides et de calcium sur les parois des artères coronaires, 
entraîne la réduction de la lumière vasculaire. L’évolution de ces plaques 
athéromateuses peuvent engendrer des complications, telles que l'angor (ou angine de 
poitrine), l'infarctus du myocarde, l’insuffisance cardiaque, voire une mort subite. 

Afin d’établir un diagnostic, l’imagerie médicale a une place déterminante 
notamment pour préciser la nature, la localisation et le degré de gravité des lésions 
coronariennes ou/et myocardiques. On peut citer les modalités d’imagerie, telles que 
l’imagerie par ultrasons (IVUS), par résonance magnétique (IRM, URMF), par rayons 
X (angiographie RX et tomodensitomètre X multidétecteurs), ou l’imagerie nucléaire 
(PET, SPECT).  

Cependant, l’angiographie coronarienne RX (ou coronarographie) reste la modalité 
de référence permettant de déterminer avec précision le degré et le nombre de 
sténoses coronariennes ainsi que le nombre de vaisseaux atteints, malgré les 
importants progrès techniques réalisés ces dernières années des autres modalités 
d’imagerie. En effet, elle dispose de résolutions spatiale et temporelle supérieures aux 
autres systèmes d’acquisition, d’une visualisation temps réel du remplissage des 
artères grâce à la dynamique d’acquisition et d’une vision de l’ensemble de l’arbre 
des coronaires. 

S’effectuant par cathétérisme (insertion d’un cathéter), la coronarographie génère 
des images RX de projection 2D des artères coronaires (gauche ou droite) enrichies de 
produit de contraste radio-opaque (riche en iode) selon plusieurs incidences (i.e. 
différents angles de projection). 

Les types de traitement envisagés sont soient médicamenteux (bêtabloquants, 
inhibiteurs calciques, etc.), soient minimalement invasifs (angioplastie transluminale, 
avec ou sans pose d’un stent) relevant de la cardiologie interventionnelle et/ou, soit un 
acte de chirurgie cardiaque lourde (pontage coronarien). Seuls ces deux derniers 
traitements permettent la restauration du flux sanguin dans les coronaires.  

C’est le traitement par angioplastie coronaire transluminale percutanée (PTCA) qui 
est le moins invasif, le moins couteux, le plus rapide, avec la récupération du patient 
la plus précoce et qui est donc le plus souvent préconisé.  L’angioplastie consiste à 
insérer par voie endovasculaire un catheter muni d’un ballonnet à son extrémité 
jusqu’à la sténose (la zone à traiter) sous contrôle radiologique (selon une incidence 
donnée dans un plan 2D). Le gonflage du ballonnet va alors écraser la plaque 
d'athérome contre la paroi vasculaire. Le gonflage et dégonflage de ce ballonnet 
peuvent être répétés plusieurs fois jusqu’au retrait du catheter. Dans la très grande 
majorité des cas, l’angioplastie est complétée par la mise en place et le déploiement 
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d’une endo-prothèse métallique ou stent (maintenant la lumière artérielle à son 
diamètre normal), ce qui améliorera le résultat initial et diminue le risque de 
re-sténose (reformation de la sténose). Plus d’un million d’angioplasties coronaires 
percutanées sont réalisées dans le monde chaque année pour traiter notamment 
l’angine de poitrine et l’infarctus du myocarde. Un patient à forte suspicion de lésions 
coronaires est souvent directement orienté vers une salle de cardiologie 
interventionnelle pour y passer une coronarographie, puis dans la continuité 
immédiate une PTCA. Le cardiologue interventionnel ne dispose donc pas de données 
préopératoires pour réaliser cette angioplastie (permettant la revascularisation 
coronaire). La représentation 3D des artères coronaires est, de ce fait, construite à 
partir des observations issues seulement de la coronarographie (acquises selon une 
incidence donnée dans un plan 2D).  

Néanmoins, bien que des progrès aient été réalisés à la fois sur les instruments 
(guides, ballons coaxiaux et prothèses) et sur la technique (antérogrades, rétrogrades), 
le résultat de l’intervention reste très dépendant de l’expérience de l’opérateur ainsi 
que du tableau clinique. En effet, la nature 2D des observations angiographiques RX, 
la présence de calcification au niveau de la sténose, les conformations géométriques 
parfois irrégulières des vaisseaux (fortes tortuosités, longueur et localisation de la 
lésion) et le mouvement des structures (lié au battement cardiaque) sont à l’origine 
des difficultés rencontrées dans la réalisation du geste interventionnel.  A cause de 
toutes ces difficultés, la précision de ce geste thérapeutique minimalement invasif est 
de ce fait impactée avec la réapparition à moyen terme de la lésion au niveau de 
l’endoprothèse.    
 
Systèmes d’angiographie RX 
 
Systèmes d’angiographie coronarienne RX conventionnelle ou monoplane 
 
Le système d’angiographie mono-plan ou standard est composé de: 
 

- un arceau en forme de C (C-arm) formé d’un tube RX (émetteur) et d’un 
détecteur numérique plan d’image. Cet arceau est conçu de manière à couvrir 
une large gamme d’incidences autour du patient.  

- un socle en L sur lequel repose le C-arm, fixé au sol, mais, pouvant tourner 
selon un axe vertical. 

- une table motorisée de radiologie (sur laquelle repose le patient) pouvant se 
translater sur 3 degrés de liberté (voire 4). 

Ce type d’angiographe permet l’acquisition de projections 2D des artères selon des 
incidences choisies par l’opérateur. Cette série d’images acquises suivant plusieurs 
angles de vue permettra au cardiologue de reconstruire mentalement le réseau 
coronarien. Néanmoins, le système mono-plan, se caractérise par une mobilité très 
réduite du couple émetteur/détecteur RX avec un seul mode statique d’acquisition. 
 
Systèmes d’angiographie RX Bi-plan 
 

Le système biplan, se caractérise par deux couples émetteur/détecteur RX, 
permettant une double acquisition RX simultanée. Il permet d’acquérir simultanément 
deux séquences d’images d’angiographie sous des incidences orthogonales (frontale 
et latérale). Ces deux séries d’images vont permettre au cardiologue interventionnel 
une représentation mentale 3D de la structure coronaire. 
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Fig.1. Système angiographique rotationnel Siemens Artis Zeego (et son mouvement). 
 

Systèmes d’angiographie RX Rotationnel 
 

L’imagerie angiographique coronarienne R-X de nouvelle génération, l’imagerie 
rotationnelle, permet d’obtenir des vues multiples (une série d’images) des coronaires, 
sous différents angles de vues, lors d’une même injection de produit de contraste et 
lors de la rotation continue du système d’acquisition autour du patient. Une vision 
pseudo 3D est fournie au chirurgien permettant d’obtenir un diagnostic le plus fiable 
possible. Il doit cependant continuer à se représenter mentalement cette structure en 
3D. Ce système rotationnel exploite des capteurs 2-D et une rotation limitée à 180 
degrés autour du patient, effectuée en l’espace de 4 à 5 battements cardiaques pour 
acquérir une séquence de 80 à 150 projections. Contrairement aux systèmes mono ou 
bi-plans, les projections coniques acquises ne sont pas soustraites. Par ailleurs, le 
débordement du produit de contraste dans l’aorte introduit une zone sombre qui réduit 
fortement le contraste entre les coronaires et les tissus. Ce système rotationnel, se 
caractérise par des mouvements plus sophistiqués et diversifiés du couple 
émetteur/détecteur RX en combinant le mouvement d’arc en C avec celle du socle en 
L.  
 
Système rotationnel Siemens Artis Zeego DynaCT 
 

La radiologie interventionnelle associe l’imagerie radiologique avec une 
intervention chirurgicale. Assisté par un robot, le méolecim va déplacer la chaîne 
image autour du patient our visualizer l’organe d’interêt des image de projection RX. 

Parmi les systèmes d’angiographie interventionnelle de dernière génération, le 
C-arm rotationnel Siemens Artis Zeego robotisé (voir Fig.1) offre une très bonne 
souplesse de positionnement de par sa conception multi-axe (avec ses 6 degrés de 
liberté) et est particulièrement adapté aux salles de cardiologie interventionnelle et 
aux procédures exigeantes en termes de couverture et d’imagerie 3D avancée. Ce 
système fait partie intégrante de la plate-forme TheraImage du CHU de Rennes à 
Pontchaillou. 
 
Limites et difficultés liées à l’angiographie coronarienne RX 
 

Bien que l’angiographe RX (et quel que soit son type) permette de réaliser aussi 
bien le diagnostic que l’angioplastie, il fournit des observations angiographiques RX 
acquises selon une incidence donnée dans un plan 2D. Une interprétation mentale de 
ces observations en temps réel s’avère délicate mais nécessaire pour se représenter ces  
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Fig.2. Amélioration des différents du calibrage de l’angiographe rotationnel. 
 

structures coronariennes 3D complexes. Une représentation imprécise peut entrainer 
des difficultés lors des phases diagnostique (localisation et caractérisation de la 
sténose), de planning (choix de ballon et stent, etc.) et d’intervention (montée du 
cathéter, déploiement du stent, etc.).  

De par le principe d’acquisition RX par projection, les structures coronaires 
peuvent se superposées entre elles ou à d’autres structures environnantes (vertèbres, 
cage thoracique, cathéter d’injection, poumons, etc.) et alors confondus (effet de 
superposition) ou déformés (effet de raccourcissement des longueurs et variation du 
facteur d’agrandissement). L’aspect morphologique des artères coronaires peut donc 
être faussé.  

Une autre limitation concerne le caractère invasif de ces examens. Le nombre 
d’acquisitions d’images 2D+T sous différentes incidences, et donc le nombre 
d’injections de produit de contraste afin de visualiser les artères coronaires, peut alors 
se révéler élevés pour un patient si son anatomie coronaire s’avère complexe. La dose 
d’irradiation du patient augmentera en fonction du nombre d’incidences envisagées et 
dans une autre mesure du personnel hospitalier réalisant cet examen plusieurs fois par 
jour et durant de nombreuses années. Le risque de complication lié à ce produit n’est 
pas à négliger (réaction allergique ou encore risque d’insuffisance rénale).  

L’objectif de ce travail de thèse de doctorat concerne l’amélioration de la 
reconstruction 3D des coronaires afin d’améliorer le diagnostic, ainsi que la sécurité 
et la précision des interventions minimalement invasives. Dans un premier temps, une 
contribution majeure vise à améliorer l’étape de calibration du système d’imagerie 
rotationnelle R-X (Fig.2).  

Dans un second temps, une contribution majeure vise à proposer une nouvelle 
méthode de reconstruction des coronaires par compensation de mouvement (Fig.3). 
 
Chapitre 2 Calibrage du système d’angiographie rotationnel 

 
Le chapitre 2 décrit l’étape de calibrage du système d’angiographie rotationnel. En 

effet, puisque la rotation du C-arm ne suit pas en routine clinique une courbe 
circulaire idéale autour du patient, des artéfacts significatifs, une détérioration de la 
résolution spatiale de la reconstruction et des informations anatomiques erronées 
surviennent. La géométrie d’acquisition est généralement représentée par la matrice 
de projection, qui peut être divisée en paramètres intrinsèques et extrinsèques. Ce sont 
les paramètres intrinsèques qui sont affectés par les déformations mécaniques du 
C-arm durant sa rotation. A cause de l’effet de couplage entre ces deux matrices 
intrinsèques et extrinsèques, il est difficile de les calibrer indépendamment de manière  
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Fig.3. Amélioration des différents étapes de la reconstruction 3D coronaire par compensation de 
mouvement. 

 

 
 

Fig.4. Vue d’ensemble de l’approache proposée  de calibration. 
 

précise. Nous avons donc proposé un nouvel algorithme de calibrage basé objet 
inspiré de la méthode de Xu et al [23]. dédié au système robotisé Artis Zeego (Fig. 4.).  

Premièrement, cet algorithme est basé sur l’estimation des paramètres géométriques 
du système à partir d’acquisitions d’un fantôme tubulaire classique de calibration 
(contenant des marqueurs radio-opaques, ici des billes d'acier de deux diamètres 
différents, réparties selon un ordre particulier et disposées sur une trajectoire 
hélicoïdale).  

Les résultats expérimentaux montrent que l’algorithme proposé est plus précis et 
plus rapide que l’algorithme original proposé par Xu et al [23].  

Deuxièmement, nous transposons les géométries de projection dans le système de 
coordonnées du C-arm. Puisque le système d’angiographie Siemens Artis Zeego est 
plus flexible que les systèmes C-arm traditionnels, il propose en effet davantage de 
positions d’acquisition, telles que Head, Left, Right, Table15, Table30. Parmi celles-là, 
nous en choisissons 3 représentatives pour évaluer notre méthode de calibrage. Nous 
avons proposé des modèles de mouvement des géométries de projection en 
considérant objectivement et systématiquement tous les facteurs possibles. Ces 
modèles de mouvement permettent de simplifier la procédure de calibration en routine 
clinique. The résultats expérimentaux indiquent que les modèles de mouvement 
proposés ont une précision acceptable afin estimer les paramètres d’acquisition. La 
position Head a le moins de déviation et la position Left a une déviation faible. Ces 
deux positions peuvent être modélisées par une simple transformation rigide. La 
position Table30 a la déviation la plus importante et peut être modélisé par une 
translation résiduelle. Nous avons évalué notre algorithme de calibrage seulement sur 
le fantôme physique tubulaire hélicoïdal.  

 
Chapitre 3 

 
Deux approches de reconstruction à partir d’angiographie coronaire rotationnelle 

sont généralement considérées : 
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Fig.5. Vue d’ensemble de l’approche propose de reconstruction avec compensation de 

mouvement 2D 
 

(i) La première envisage la reconstruction avec les projections qui sont associées à 
une même phase du cycle cardiaque (ou à une même position du coeur dans l’espace); 
le nombre de projections est de l’ordre de 4 à 6 (ce nombre peut augmenter avec le 
nombre de phases considérées en repos c.a.d jugées sans mouvement). Ce sous 
échantillonnage angulaire conduit à résoudre un problème inverse mal posé difficile à 
résoudre du fait de la complexité des images. 

(ii) La deuxième catégorie de méthodes passe par une estimation préalable du 
mouvement des artères coronaires sur l’ensemble du cycle cardiaque, de manière à 
l’incorporer dans la procédure de reconstruction tomographique et exploiter toutes les 
projections (i.e. 80 – 150 projections) dans la reconstruction de l’arbre coronaire, à un 
instant donné. Cela revient à réaliser une reconstruction compensée en mouvement. 

Le chapitre 3 décrit la reconstruction 3D proposée par compensation de mouvement 
2D. Elle corrige le déplacement résiduel à chaque projection afin d’augmenter le 
nombre d’images de projection disponible. Les étapes de reconstruction sont les 
suivantes (Fig.5.): l’opérateur de projection, la segmentation des projections acquises, 
le recalage iconique, la reconstruction initiale et la reconstruction avec compensation 
de mouvement.  

Nous avons opté pour l’opérateur de projection Distance Driven simplifié proposé 
par Oukili [29]. Cet opérateur de projection est plus rapide que celui de distance 
driven et de ray driven. Le recalage d’image est l’étape primordiale de cette méthode 
de reconstruction avec compensation de mouvement. Nous avons adopté comme 
mesure de similarité l’information Mutuelle (MI) avec un terme de rigidité. Cette 
fonction de coût permet d’éviter une étape de segmentation vasculaire et d’extraction 
des lignes centrales afin de réaliser un recalage précis et robuste. Pour optimiser cette 
fonction de coût, nous avons utilisé la méthode Advanced Adaptive Stochastic 
Gradient Descent (ASGD) [43]. Son coût calculatoire est plus faible et sa robustesse 
est meilleure qu’une descente de gradient classique (GD). La reconstruction 
synchronisée sur l’ECG initiale [27] utilise seulement les images de projection 
correspondant à la même phase cardiaque. Tandis que la reconstruction avec 
compensation de mouvement utilise des images projection des différentes phases 
cardiaques recalées. Nous avons adopté une reconstruction statistique itérative basée 
on MAP et l’a priori 𝐿0 [7]. La méthode proposée a été évaluée sur des données 
simulées de référence CAVAREV [46] qualitativement puis quantitativement à travers 
différentes métriques, ainsi que sur des données réelles cliniques issues d’un 
angiographe rotationnel GE du CHU Pontchaillou de Rennes. Les résultats 
expérimentaux indiquent que la méthode proposée améliore visuellement la qualité de 
la reconstruction. Le contraste et les détails des reconstructions sont améliorés par 
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compensation de mouvement. En augmentant la taille de la fenêtre temporelle 
associées aux phases cardiaques prises en compte dans la méthode de reconstruction 
avec compensation de mouvement, les artefacts d’image. L’amélioration de la qualité 
des images augmentent la visibilité des structures vasculaires ce qui permet de 
l’envisager en routine clinique pour le diagostic ou les actes minimalement invasifs 
des artères coronaires.  
 
 
Chapitre 4 
 

Le dernier chapitre reprend les principales contributions de cette thèse de doctorat 
et propose des perspectives de recherche concernant des futurs modèles de 
mouvement du système Artis Zeego. 
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Abstract 

C-arm CBCT is a widely used X-ray angiography imaging system. From these 
images, 3D reconstruction of the coronary arteries can provide more information in 
the interventional surgery of the cardiovascular diseases. For this dissertation, we 
have improved the 3D reconstruction quality of coronary artery by two ways. One 
way is modeling the data acquisition geometry. This calibration work will correct the 
non-ideal acquisition geometry. The geometry deviation may cause the artifact of the 
3D reconstruction. The work has been applied on the advanced Artis-Zeego C-arm 
system. The other way is developing a 3D reconstruction method based on 2D motion 
compensation.  

Chapter 2 describes the calibration work. We propose a new and complete data 
calibrating algorithm of Artis-Zeego C-arm system. First, we proposed an extended 
analytic algorithm based on the classical helical phantom to estimate the geometry 
parameters. The phantom geometries is easy to obtain in the experiment environment. 
All the geometries can be calculated from three intermediate vectors. In order to 
estimate the three intermediate vectors, we propose to calculate the projection of the 
axes paralleled to 𝑥 axis and more projection of the axes paralleled to 𝑦 axis. The 
experiment results indicate that the proposed algorithm is more accurate and increases 
the efficiency than the original algorithm.  

Second, we convert the projection geometries to the C-arm coordinate system. We 
propose to estimate the nominal C-arm system by minimizing the oscillation results 
from the displacement of the phantom. The converted geometries can be independent 
of the placement of the calibration phantom. This procedure can simplify the 
alignment procedure of the iso-center before calibration.  

Last, Zeego system has more flexibility than the traditional C-arm. It provides more 
work positions, such as Head, Left, Right, Table15, Table30. We choose three 
representative work positions to realize the experiment. They are Head, Left, Table30 
work positions. We proposed the movement models of the projection geometries by 
considering all the possible influencing factors objectively and systematically. The 
movement models can integrate the refinement and the prediction of the acquisition 
geometry. These movement models can simplify the calibration procedure in the 
clinical operations. The experiment results indicate that the proposed movement 
models have an acceptable precision to estimate the acquisition parameters. Head 
position has the least deviation and Left position has minor deviation. The two 
positions can be modeled as a single mean rigid motion. Table30 position has the 
most severe deviation and should be modeled with a residual translation part.  

Chapter 3 describes the 3D reconstruction by 2D motion compensation. We 
propose a complete 2D motion compensation method. The method corrects the 
residual motion of each projection to increase the number of available projection 
images. The whole procedure includes 5 steps. They are maximum intensity forward 
projection, segmentation of the acquired projection, registration, initial and motion 
compensated 3D reconstruction. We adopt the simplified distance driven (𝑃𝑆𝐷𝐷) to 
generate the maximum intensity forward projection. This projector is faster than 
distance driven and ray driven. Registration is the key part of the whole method. We 
adopt the mutual information (MI) with rigidity penalty to be the cost function. This 
cost criterion can avoid the extraction of the centerline of the vessels and do the 
registration accurately and robustly. To realize the optimization of the cost criterion, 
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we adopt the advanced adaptive stochastic gradient descent (ASGD) method. The 
algorithm costs less and more robust than the classical gradient descent (GD). The 
initial reconstruction adopt the few projection images at the same cardiac phase, 
whereas the motion compensated reconstruction use the corrected projection images 
at more cardiac phases. We adopt the iterative reconstruction based on MAP and 𝐿0 
prior to realize the reconstruction. The experiment results indicate that the proposed 
method has improved the 3D reconstruction quality. Improvements in the visual 
image quality are apparent. The contrast and details of the reconstructions are 
enhanced by the motion compensation. The artifact decreases when using a wider 
gating window of the motion compensation reconstruction. The improvement in the 
image quality increased the visibility of vessels and clinical usability of 3D coronary 
artery. This will be helpful for a better interventional planning.  
 
Keywords: Artis-Zeego, calibration, helical phantom, C-arm movement models, 3D 
reconstruction, motion compensation  
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Chapter 1 Introduction 

1.1 Background 

1.1.1 Medical and Technological Background 

1.1.1.1 Coronary Heart Disease and Coronary Atherosclerosis 

The heart is a muscle, about the same size as an adult human fist. Blood is pumped 
from the heart to the lungs, where it collects oxygen. This oxygen-rich blood is then 
pumped back to the heart and then to organs throughout the body through arteries. 
The blood then returns to the heat through the veins and is pumped to the lungs again. 
This is called circulation [1].  

Coronary arteries are the heart’s network of blood vessels. They exist on the surface 
of the heart, and they supply the heart muscle with oxygen. If the coronary arteries are 
narrow, the supply of oxygen-rich blood to the heart may become too low, especially 
during physical activity [1].  

At first, this reduction in blood flow may not produce any symptoms, but as fatty 
deposits, or plaques, build up in the coronary arteries, signs and symptoms may 
emerge.  

Coronary Heart Disease (CHD) is believed to start with injury or damage to the 
inner layer of a coronary artery. This damage causes fatty plaque deposits to build up 
at the site of the injury. These deposits consist of cholesterol and other cellular waste 
products. The accumulation is called atherosclerosis. See Fig.1.1, this is the example 
of coronary atherosclerosis. It means the hardening of an artery specifically due to an 
atheromatous plaque. Atherosclerosis is asymptomatic for decades because the 
arteries enlarge at all plaque locations, thus there is no effect on blood flow. Even 
most plaque ruptures do not produce symptoms until enough narrowing or closure of 
an artery, due to clots, occurs. Signs and symptoms only occur after severe narrowing 
or closure impedes blood flow to different organs enough to induce symptoms. Most 
of the time, patients realize that they have the disease only when they experience 
other cardiovascular disorders such as stroke or heart attack. These symptoms, 
however, still vary depending on which artery or organ is affected [2].  

Marked narrowing in the coronary arteries, which are responsible for bringing 
oxygenated blood to the heart, can produce symptoms such as the chest pain of angina 
and shortness of breath, sweating, nausea, dizziness of light-headedness, 
breathlessness or palpitations. Abnormal heart rhythms called arrhythmias are another 
consequence of ischemia.  
  Coronary heart disease is today the leading cause of death worldwide. It represents 
the first one among people over sixty and the second one among the youngest, with a 
number of deaths that yearly amounts to 3.8 million for men and 3.4 million for 
women. Coronary heart disease results from atherosclerosis, a vessel wall disease that 
leads over time to the accumulation of atheromatous plaques within the arterial walls. 
They involve morphological modifications of the lumen with the formation of 
stenosis that often results in thrombotic occlusion and acute ischemic syndromes  
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Fig.1.1 coronary artery blockage caused by coronary atherosclerosis 
 
(angina pectoris, myocardial infarction). The first symptom of atherosclerotic cardio- 
vascular disease is a heart attack or sudden cardiac death (death within one hour of 
onset of the symptom). The symptoms of coronary heart disease include angina, 
shortness of breath (dyspnea) and heart attack [2].  

CHD cannot be cured, but with today’s technology, it can be managed effectively. 
Treatment involves lifestyle changes, and possibly some medical procedures and 
medications. Lifestyle recommendations include quitting smoking, eating a healthy 
diet, and exercising regularly. Surgery can open or replace blocked arteries, if the 
blood vessels have become very narrow, or if symptoms are not responding to 
medications. Laser surgery involves making several tiny holes in the heart muscle, 
which encourages the formation of new blood vessels. Coronary bypass surgery uses 
a blood vessel from another part of the body to create a graft that can bypass the 
blocked artery. The graft may come from the leg or an inner chest-wall artery. 
Angioplasty and stent placement use a catheter inserted into the narrowed part of the 
artery. A deflated balloon is passed through the catheter to the affected area. When the 
balloon is inflated, it compresses the fatty deposits against the artery walls. A stent, or 
mesh tube, maybe left in the artery to help keep it open [1].  

1.1.1.2 Imaging Examination Technology 

Imaging examination is a very important diagnostic technique, which plays a quite 
significant role in the early screening, therapy, assessment before and after operation 
of the coronary heart disease [3]. In the following section, we will introduce some 
important imaging examination technologies of CHD.  
 
a. Non-invasive examination 
 
a.1 X-ray plain radiography 
 

X-ray plain radiography can show the pulmonary circulation of the patients with 
suspicious CHD. It also can examine that if there are left ventricle enlargement and 
myocardial infarction. X-ray plain radiography can reveal some complication of 
myocardial infarction, such as ventricular aneurysm. X-ray plain radiography has the 
advantages of simple operation and low cost. However, it can only be the auxiliary 
means of the clinical examination of CHD [3].  
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a.2 Cardiac CT imaging 
 

The cardiac CT includes Electron Beam Computed Tomography (EBCT) and 
Multi-Slice Computed Tomography (MSCT). EBCT has the advantages of high 
dynamic resolution and high scan speed. However, EBCT has low spatial resolution, 
poor overall image quality. The equipment of EBCT is also too expensive. EBCT is 
gradually replaced by MSCT [4]. MSCT can clearly display the vessel lumen and wall 
of the coronary artery. Meanwhile, MSCT can be used to calculate the size of the 
calcified plaque. MSCT has high sensitivity and specificity in the evaluation of the 
coronary stenosis and can greatly reduce the motion artifacts and false positive. 
However, there are also some limitations in the clinical application. For example, the 
heart movement and breathing will lead to motion artifacts. For the patients whose 
heart rate is too fast, the examination can’t be finished in one-breath-hold. Some 
blocker drugs should be injected to decrease the heart rate [5]. Currently, more 
advanced spiral CT has been developing. For example, 256-slices CT has the 
scanning time less than 1 cardiac cycle, which reduce the motion artifacts greatly. 
Now, MSCT has been recognized as the best non-invasive imaging examination 
technology of CHD [6]. 

In addition, Single Photon Emission Computed Tomography (SPECT), Positron 
Emission Tomography (PET), Magnetic Resonance Imaging (MRI) and 
echocardiogram are all important non-invasive examination technologies. 
 
b. Invasive examination  
 
b.1 Intravascular ultrasound 
 

Intravascular Ultrasound (IVUS) is one new interventional ultrasound diagnosis 
technology that has been developed recent years. It uses a micro-ultrasound probe 
mounted at the apex of the heart catheter to generate the ultrasonic signals. The 
signals will be used to detect the size of the vascular cavity, the structure of vessel 
wall, the character of atherosclerotic plaque. IVUS has obvious advantages in judging 
coronary atherosclerotic plaque stability, assessing coronary stenosis. IVUS is 
recognized as the gold standard for evaluating the vulnerability of coronary 
atherosclerotic plaque [7]. However, IVUS is invasive and not suitable to early 
screening. In addition, IVUS is limited by the diameter of the catheter. Therefore, 
there are many difficulties in coronary artery with small diameter and severe stenosis 
[8].  

 
 

Fig.1.2 Illustration of PTCA and stent implantation 
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b.2 Coronary artery angiography  
 

Coronary artery angiography (CAG) is the most widely used diagnosis technology 
of CHD. It can visualize the coronary arterial tree fully and reveal the location and 
abnormal degree of the lesions [9]. Currently, coronary angiography is the gold 
standard for the diagnosis of coronary atherosclerosis and the degree of vascular 
stenosis. CAG is indispensable for identifying the disease, determining the prognosis 
and developing the next treatment plan. CAG also can provide the basis and guidance 
for other coronary artery examination and interventional therapy. However, CAG can 
only show the shape of the lumen of the coronary artery and has limited information 
for the internal structure of the vessel wall and plaque characterization [9-10]. 
Currently, Quantitative coronary angiography (QCA) can make up the weakness of 
the visual evaluation. The 3D reconstruction technology of the coronary artery is 
helpful to improve the diagnosis accuracy. Coronary angiography is the topic of our 
dissertation. 

1.1.1.3 Percutaneous Coronary Intervention 

Percutaneous Coronary Intervention (PCI) is the therapeutic method that dredges 
the narrow and occlusive lumen by cardiac catheterization to improve the myocardial 
perfusion. To perform the interventional therapy, the physicians need to use a 
puncture needle with 1-2mm. The needle enters the vascular system by the superficial 
artery, then, the catheter is sent to the opening part of the coronary artery under the 
guidance of the coronary angiography imaging system. The vascular condition was 
revealed after the injection of the coronary agent by catheter. The physicians can use 
catheters to treat the lesions of the patients [11].  

PCI mainly include Percutaneous Coronary Angioplasty (PTCA) and Coronary 
Artery Stenting (CASI) and so on [12]. See Fig.1.2, for PTCA, the catheter is 
delivered to the ostium of the coronary artery that needs to be expanded by femoral 
artery or the radial artery. Then, the balloon with the corresponding size is transported 
along the guide wire to the narrow segment of the coronary artery. The balloon will be 
expanded with appropriate pressure and time according to the characteristics of the 
lesions to achieve the purpose of stenosis elimination. Recent years, PTCA has been 
constantly improved, which has been the basic method of interventional therapy of 
coronary heart disease.  

Coronary Artery Stenting inserts the stent into the narrow segment of the coronary 
artery to support the vascular wall and to keep the blood flowing. The stents are 
usually a network with gaps and made of stainless steel or alloy material. CASI can 
reduce the elastic recoil after PTCA and close the coronary dissection. After stenting, 
the new endothelial cells can cover the appearance of the stent. The stent was 
eventually wrapped in the vascular wall. The vessels will keep the open state. CASI is 
a great progress in the cardiac interventional therapy. It can protect the safety of the 
patients with complex coronary artery anatomy and applicable to the patients with 
acute coronary artery occlusion [13]. PTCA and CASI have a significant effect in 
saving the lives of patients with acute myocardial infarction, improving the treating 
and curing rate, increasing the life quality of the patients with myocardial infarction. 
Coronary angiography imaging system plays a significant role in the aid and guidance 
of the interventional therapy.  
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Fig.1.3 Biplane angiography system 

1.1.2 Traditional Angiography System 

For the traditional X-ray angiography system, an injection of contrast agent during 
acquisition permits to easily visualize the coronary tree, delineate its branching 
pattern, and outline the inner diameter of a coronary artery. Multiple images are 
acquired by changing the angles of the X-ray system to visualize the coronary tree 
from different perspectives [14]. However, this traditional 2D angiography produces a 
2D silhouette that could misrepresent the true anatomic characteristics of the 3D 
vessel lumen.  

There are two main limitations of this angiography [15]: vessel overlap and vessel 
foreshortening. Vessel overlap occurs with superimposition of two images and can be 
recognized by experienced angiographers. Foreshortening of a vessel segment could 
be unrecognized and result in missed lesions, underestimation of stenosis severity, and 
inaccurate lesion length measurements. Except the two limitations, vascular bending 
and non-optimal view are also huge challenges for the vascular pathological study of 
the traditional X-ray angiography system [16-20].  

During coronary angiography, the selection of the optimal view is dependent on 
each patient’s anatomy and the ability of the physician to identify the optimal imaging 
projection to better visualize a specific segment of the coronary artery [21-22].  

See Fig.1.3, to improve the limitation of traditional angiography, the biplane 
imaging system have been adopted to minimize artifacts through the acquisition of 
two orthogonal views of the vessel segment of interest [23-24]. However, traditional 
angiography has remained a subjective, operator-dependent imaging modality. To 
improve the diagnostic accuracy of angiography, multiple projections are necessary 
according to view angles. Angiographic techniques using automated rotation with 3D 
reconstruction have been invented [25-26]. Rotational angiography can provide more 
angiographic information than traditional angiography and the acquired projection 
images can be utilized for 3D volumetric reconstruction because of the acquisition 
technique. In general, images are acquired over a large angle using high-speed 
iso-centric rotation of a C-arm. Rotational angiography has several important imaging 
advantages over traditional angiography. The rotational angiography can provide a 3D 
image. It also provides a less operator-dependent method of acquiring images. It 
acquires markedly more information than traditional angiography that can be used for 
patient care decisions. Rotational angiography has been demonstrated to require less 
radiation and contrast than traditional angiography.  
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(a)                                 (b) 
                                                

Fig.1.4. Acquisition procedure by a C-arm CT. 

1.1.3 3D Rotational Angiography System 

Over the last decade, the combination of well-defined rotational techniques and 
powerful computer technology has resulted in clinically useful 3D rotational 
angiography (3D-RA) systems [15]. 3D angiography improves the accuracy of 
traditional techniques. The contrast and radiation exposure will decrease. The 
interventions will be performed with precision guidance using this new imaging 
technique. In clinical, the physician with 3D X-ray angiography will be able to 
identify inaccurate 2D vessel lengths, quantify the tortuosity of a vessel, and identify 
the optimal angle to better estimate a vessel lesion [27-28]. 3D rotational angiography 
facilitates the performance of the procedure and provides critical information that 
modifies the treatment technique or eliminates unnecessary therapy. During 
interventional procedures, 3D angiography can be used to identify and assist the 
placement of an exactly sized coronary stent. 3D angiography has the potential to 
deeply impact patient care during the invasive and interventional procedures. This 
technique has the significant impact on the diagnosis and treatment of patients with all 
forms of vascular disease.  

Another hand, 3D rotational angiography can be performed with acceptable patient 
radiation dose, comparable to cardiac CT. The modification to the current exposure 
modulation protocols can significantly reduce the ED (effective dose) of 3DRA in 
many patients while maintaining the high quality for clinical usefulness of imaging 
[29]. 

3D C-arm imaging system is a machine for the rotational angiography. It has been 
continuously improved over the years. It uses the 2D X-ray projection data acquired 
with detector to generate the 3D reconstruction. Although C-arm CT data acquisition 
is increasingly automated for ease of use, the following steps are usually involved 
[30]. See Fig.1.4, First, the patient needs to be optimally positioned such that the 
region of interest is visible in all X-ray views acquired during a rotation around the 
patient; With the patient properly placed, the C-arm is initially driven into the end 
position, then a safety run is performed during which the C-arm is slowly moved into 
the actual C-arm CT start position. This safety run is required to rule out collision 
during the actual scan. After the C-arm has reached its start position, a short 
fluoroscopic X-ray pulse is applied to initialize the automatic exposure control. At this  
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(a) Arits zee ceiling-mounted system          (b) Artis zee floor-mounted system 
 

Fig.1.5. Traditional 3D rotational C-arm system with two axes (Artis-zee family) 
 

point, the system is ready to begin a 3D run during which the C-arm rotates from the 
start position to its end position. Then raw data acquisition is performed by activating 
a dead-man switch. During the acquisition, the contrast agent should be injected 
continuously.  

3D reconstruction is based on the acquisition of rotational projection sequences 
with or without electrocardiogram (ECG) triggering. The reconstruction procedure is 
used to transform the projection into volume information. This volume data represents 
the X-ray absorption of the object of interest in each voxel position. The data consists 
of the CA-enhanced vascular structures as well as other objects with X-ray absorption 
capability surrounding the vessels. In combination with 2D fluoroscopic or 
radiographic imaging, the information provided by 3D C-arm imaging can be very 
valuable for therapy planning, guidance, and outcome assessment for complicated 
interventions [31].  

1.1.3.1 Traditional 3D rotational C-arm system 

A traditional 3D rotational C-arm CT system often comprises a stand and a C-arm 
gantry to which the flat panel detector (or image intensifier), X-ray tube, and 
collimator are attached. In theory, the C-arm keeps the X-ray tube, collimator, and 
detector exactly aligned under varying view angles. See Fig.1.5, Artis zee family 
(Siemens AG, Healthcare Sector, Forchheim, Germany) are the state-of-the-art 
rotational C-arm systems. Fig.1.5 (a) is the ceiling-mounted C-arm system. Fig.1.5 (b) 
is the floor-mounted system. This kind of 3D C-arm CT system has two rotation axes 
and involves a mechanically fixed center of rotation commonly referred to as 
iso-center. The C-type gantry can be rotated and translated to increase patient 
coverage and access. In the following of this section, we introduce the main 
components of this C-arm system.  

 
a. X-ray source 

 
The X-ray tube, X-ray generator, and X-ray control system are crucial components 

of any C-arm imaging system. They determine tube voltage, tube current, and 
irradiation time, respectively. These exposure parameters are essential for X-ray 
imaging, since contrast-detail perceptibility and dose depend on them. 
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(a) Primary angle α                 (b) Secondary angle β 
 

Fig.1.6 Illustration of the acquisition angles of C-arm system. 
 
b. Flat-panel detector  
 

Until the 1990s, C-arm systems for real-time angiography imaging used to rely on 
X-ray image intensifiers (XRIIs). This technology has a number of inherent 
disadvantages that limit its utility. For example, the convex input screen of XRIIs 
results in a non-homogeneous image quality across the output image. In addition, 
scatter processes of light and electrons within the image intensifier limit the contrast 
resolution. Another limitation is the patient access as well as the flexibility during 
angulation due to the large size of XRIIs. Nowadays, the advanced rotational C-arm 
system, for example, Artis-zee family is equipped with flat-panel detector (FD). Flat 
detector either avoids or at least reduces some of the major disadvantages of image 
intensifiers. The most important technical advantages of flat detectors are: 
homogeneous image quality across the entire image area resulting in distortion-free 
images; position-independent spatial resolution; tightly enclosed square or rectangular 
active imaging areas offering improved patient access [30].  

  
c. C-arm gantry 

 
The C-arm configuration owes its name to its C-shape. The detector and the image 

acquisition system are mounted on the top extreme of the C-arm gantry, and X-ray 
tube and collimator are mounted on the bottom extreme. 

In clinical acquisition, we need to change the point of view to observe the vessel. 
The gantry system is able to provide two degrees of freedom. See Fig.1.6, α is the 
rotation angle or primary angle (PA), when α > 0, we have a Right Anterior Oblique 
(RAO) view, and for α < 0, we obtain a Left Anterior Oblique (LAO) view. β is the 
angulation angle or secondary angle (SA), when β > 0, we have the Cranial (CRA) 
view, and when β < 0, we have the Caudal (CAU) view. When we set α = 0, β = 0, 
we call it as Anterior-Posterior (AP). There is a mechanically fixed center of rotation 
commonly referred to as the isocenter.  

The distance between X-ray source and the detector is defined as focal length. The 
focal length can be adjusted, the X-ray source remains at a constant position while the 
detector moves up and down.  
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d. Scan protocol 

 
The clinical C-arm CT scan protocols means a careful choice of imaging 

parameters such as system dose, scan time and pixel binning at the detector and so on. 
Pixel binning means that the outputs of neighboring detector pixels are combined into 
one reading.  

1.1.3.2 Artis-Zeego C-arm 

Artis-Zeego is one of the new Artis Zee family of interventional imaging systems. 
It is the first multi-axes system that can be positioned as the way you want. And it can 
be controlled with far greater ease and precision than a traditional floor or 
ceiling-mounted system. With its multi-axes movement, this system provides greater 
positional flexibility and broader coverage (more angulations, head-to-toe coverage, 
multiple work positions)-including large volume cross-sectional images up to 47 cm 
in diameter. The robotic technology integrated into the system makes it possible to 
position the C-arm exactly according to the view required, anywhere in a sphere 
around the patient. The movement of system can be coordinated with the operating 
table, which means that the physician is allowed to operate at an optimal position 
[32-33]. See Fig.1.7, Artis-Zeego system is equipped with a flat panel detector, the 
X-ray source, the arc-support, the collimator, the robotic arm, the robotic shoulder and 
so on. In Fig.1.7 (1)-(12), we can see the movement of each axis. The C-arm keeps 
the detector exactly aligned with collimator and X-ray source, detector and collimator 
rotate in synchronization, X-ray source is built into the C-arm below the collimator 
[34].  

The height of the table and the SDD (source to detector) can be adjusted, all the 
geometry can be read from DICOM acquisition data. See Fig.1.8, A is DTO (table to 
object distance), the imaging region must be placed on the isocenter, the source, the 
isocenter and the middle of detector are collinear. G is SDD (source to detector 
distance), B is SAD (source to axis or isocenter distance), C is source to patient 
distance, D, E, F are the relative positions between isocenter and table system.  

 

 
 

Fig.1.7. Movement of Artis Zeego 
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(1) Rotation of the stand 

 
(2) Axis of movement 1 

 
(3) Axis of movement 2 

 
(4) Axis of movement 3 

 
(5) Axis of movement 4 

 
(6) Rotation of C-arc  

(7) Orbital movement of C-arc  
 
(8) Rotation of the detector 
 
(9) Ascend and descend the C-arc 
 
(10)  Ascend the detector 
 
(11)  Lateral displacement 

 
(12) Longitudinal displacement 

 
 

 
 

Fig.1.8. Geometry of the Zeego CBCT system. 
 

Artis-Zeego offers more positioning flexibility than conventional systems. It 
provides more work positions [34]. In Fig.1.9, we plot all the work positions: Head 
Side, Left Side, Right Side, Left Side with Table rotated by 30°, Left Side with Table 
rotated by 15°. We should choose one of them first when we do a 3D acquisition.  

Its isocenter height can be adjusted to the operator, reducing the physician fatigue 
associated with long procedures. And Artis-Zeego can be parked compactly to give 
the clinical team easier access to the patient, making it an ideal solution for hybrid 
rooms, see Fig.1.9(g) , by freeing up space in the angio lab and OR, Zeego enables 
your clinical teams to work faster and more efficiently [32-33].  

This system provides an enhanced 3D imaging (syngo DynaCT) for greater 
precision. syngo DynaCT is a unique form of rotational angiography that uses special 
reconstruction algorithms to generate CT-like images in less than one minute directly. 
Artis zeego with syngo DynaCT enables large volume coverage that rivals a 
traditional CT scanner, ideal for obese patients; portrait volume imaging, ideal for 
liver, spine and carotids; with syngo DynaCT 360, it delivers large-organ, soft-tissue 
images in just 6 seconds. It also provides 3D images at the lowest possible dose levels, 
for neuro applications, it can achieve an effective dose of 0.3 mSv [35].  
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(a) Transfer patient 
 
 

   
 

(b) Head Side 
 
 

   
 

(c) Left Side 
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(d) Right Side 
 
 

   
 

(e) Left Side, Table rotated by 30° 
 
 

   
 

(f) Left Side, Table rotated by 15° 
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(g) Park 
 

Fig.1.9. Work Positions of Artis-Zeego System. (copyright by Siemens) 

1.2 Objective 

For this dissertation, we try to improve the quality of the 3D reconstruction by two 
ways. First, we improve the calibration work that will reduce the 3D artifacts due to 
the non-ideal geometry. Second, we propose a new 3D reconstruction method that 
based on 2D motion compensation to improve the 3D imaging quality. We introduce 
the two research topics in the following.  

1.2.1 Geometric Calibration 

C-arm gantry rotation is subject to geometrical distortion, such as the motion of the 
X-ray source and detector differing significantly from a simple circular orbit. For 
example, the gravity-induced mechanical flex would cause such non-idealities. 
However, some CBCT reconstruction algorithms such as FDK filtered 
back-projection [36] assume a circular source-detector trajectory, it requires an 
accurate calibration method to account for geometric non-idealities (e.g. displacement 
of the x-ray source, rotation/tilt of the detector, changes in source-to-detector 
distance), such non-idealities in the source-detector orbit can result in a 
misregistration, a loss of detail, and image artifacts. So in order to reconstruct the 
volume data from projection images with high spatial resolution, the geometric 
calibration of the imaging system is required before the clinical data acquisition. The 
calibration should be performed periodically, approximately every 6 months or 
whenever hardware changed. In general, geometric calibration relates the 3D 
coordinates (𝑥, 𝑦, 𝑧) of voxels in the reconstructed image to the 2D coordinates 
(𝑢, 𝑣) of pixels in the projection image. Geometric calibration usually consists of two 
stages [37]: (i) characterization of pose through the range of source-detector orbit; (ii) 
correction of geometric non-idealities in the process of 3D reconstruction. Methods of 
pose characterization include the use of tracking systems and the image-based method, 
for the first one, a tracking system is used to monitor mechanical motion [38]; for the 
image-based calibration, we often operate on the projection acquired from a 
calibration phantom [39]. A classical calibration method is based on a helical phantom 
of BBs from which projection matrices are computed.  



Chapter 1 Introduction 

14 
 

 
 

Fig.1.10. The angiography imaging system model. 
 

A projection matrix is often used to describe the linear relationship between 3D 
voxel coordinates and 2D pixel coordinates, or a set of geometric parameters 
describing the imaging system such as source and detector positions, detector rotation 
angles and etc. Fig.1.10. illustrates the angiography imaging system model of 
cone-beam imaging. Plane G is the focal plane, plane D is the image plane, 𝒔 is the 
X-ray source, distance F is the focal length. The optical axis is the line passing 
through 𝒔 perpendicular to G, the optical axis intersects D at point 𝑠′, called the 
principal point. This is a perspective projection. We have three coordinate systems, 
the camera system (𝑋, 𝑌, 𝑍) built on the X-ray source, the world 
system(𝑋𝑤, 𝑌𝑤, 𝑍𝑤) built arbitrarily and the detector pixel coordinate system(𝑢, 𝑣). 
Now, we transfer 3D world coordinates to detector pixel coordinates [40]. First, we 
perform a transformation from the 3D world coordinate system (𝑋𝑤, 𝑌𝑤, 𝑍𝑤) to 3D 
camera coordinate system(𝑋, 𝑌, 𝑍):  

 

                           [
𝑋
𝑌
𝑍
] = ,𝑅 𝑇- [

𝑋𝑤
𝑌𝑤
𝑍𝑤
1

]                       (1.1)                                                    

 
Where matrix R is a 3×3 rotation matrix and T is a translation vector. R and T 

constitute the extrinsic parameters. 
Second, a perspective projection is applied to the angiography context:  

 

                              [
𝑈
𝑉
𝑊
] = 𝐼 [

𝑋
𝑌
𝑍
]                          (1.2)                                         

𝑢 =
𝑈

𝑊
, 𝑣 =

𝑉

𝑊
 when 𝑊 ≠ 0 

 
Where matrix I is the matrix of the intrinsic parameters. An expression for intrinsic 
matrix I is: 
 

                           𝐼 = [
𝐹𝑘 0 𝑢𝑠
0 𝐹𝑘 𝑣𝑠
0 0 1

]                       (1.3)  

 
Where k is the inverse pixel size, F is the focal length and (𝑢𝑠, 𝑣𝑠) are coordinates of 
the principal point on the image plane coordinates. Equations (1.1) and (1.2) can be 
combined as follows: 
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Fig.1.11. Illustration of ECG-gating reconstruction. 5 cardiac cycles for this acquisition, the gating 
windows are given for a selected phase at 70% of the R-R interval.  
 

                         [
𝑈
𝑉
𝑊
] = 𝐼,𝑅 𝑇- [

𝑋𝑤
𝑌𝑤
𝑍𝑤
1

]                       (1.4) 

𝑢 =
𝑈

𝑊
, 𝑣 =

𝑉

𝑊
 when 𝑊 ≠ 0 

 
The projection matrix P is defined as intrinsic and extrinsic matrices: 
 

𝐸 = ,𝑅 𝑇- 
                               𝑃 = 𝐼𝐸                            (1.5) 

1.2.2 3D Reconstruction Method 

3D reconstruction of coronary arteries from X-ray projections requires the 
acquisition of angiographic data along a circular short-scan trajectory (i.e., 180° −
220°) during continuous CA injection. See Fig.1.11,in theory, the vessel to reconstruct 
should be stationary and motionless during the acquisition procedure, though this 
assumption is not achievable in cardiac imaging. The breathing and patient movement 
can be eliminated by the setup and instruction. The cardiac motion of the heart must 
be resolved with complex strategies such as ECG-gating or motion compensation 
reconstruction techniques [31]. ECG-gated reconstruction uses only a subset of 
images which correspond to a particular cardiac phase and the 3D result of the 
coronary is for that specific time. Usually, for the end-systolic and late-diastolic 
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cardiac phases, cardiac movement has the least motion. It is a good choice for the 
gating to provide a high reconstruction quality. A gating window is often used to do 
the gating reconstruction. Multiple images are taken from each heartbeat (i.e., 3-5 
projection per gating window). This is an ill-posed problem. Iterative reconstruction 
methods can overcome this problem by incorporating a priori assumptions in the 
reconstruction process [41].  

When the chosen window is too wide, motion artifacts will occur. Now, we can 
introduce motion compensated method. These methods try to estimate the cardiac 
motion and incorporate it into the tomographic reconstruction. There are 2D and 3D 
motion compensation approaches for 3D coronary reconstruction. 3D motion 
compensation uses the 3D centerline information to determine the motion-vector filed 
before reconstruction. 2D motion compensation tries to correct the residual motion of 
each projection images [42-43] and apply more projections in the reconstruction.  

1.3 Proposed Method 

Here, we describe the proposed methods of the two improvements briefly. For the 
calibration, we propose a new calibration algorithm of the data acquisition geometries 
of Zeego system. For the 3D reconstruction, we propose a new 3D reconstruction 
method by 2D motion compensation to improve the 3D quality.  

For the calibration work, in order to estimate the acquisition geometry of 
Artis-Zeego C-arm system, we propose a new data calibrating method. First, we 
propose an extended analytic algorithm based on the classical helical phantom to 
estimate the acquisition geometry parameters. The algorithm adopt the invariant 
characteristics of the perspective projection to calculate three intermediate vectors, all 
the geometry parameters can be calculated from these three intermediate vectors. 
Then, we estimate the nominal C-arm system by minimizing the oscillation from the 
displacement of the phantom. All the geometries are transferred to this system that is 
independent of the phantom placement. Last, we consider separately the intrinsic and 
extrinsic parameters and propose different movement models by the estimated 
posterior information. Since this C-arm system is more complex and flexible than the 
traditional C-arm, we analyze three representative work positions: Head side, Left 
side, Left Side with Table rotated by 30° position (Table30°briefly in the following) 
and propose different movement models.  

For the 3D reconstruction work, we try to improve the reconstruction method by a 
new 2D motion compensation method. This method corrects the residual motion of 
each projection and makes more projection images with different cardiac phases 
available for the reconstruction. The whole procedure includes forward projection, 
preprocessing of the acquired projection, registration, 3D reconstruction. Each step 
will affect the final reconstruction. We try to improve each step in our algorithm. For 
the forward projection, we adopt the simplified distance driven projector 𝑃𝑆𝐷𝐷 to 
generate a forward projection of the initial reconstruction. For the key problem of 
registration, we adopt the 2D registration algorithm based on the classical mutual 
information (MI) combined with a novel rigidity penalty. This cost criterion avoids 
the extraction of the centerline of the vessels and does the registration accurately and 
robustly. An advanced optimization method called adaptive stochastic gradient 
descent (ASGD) is applied to decrease the computation time of the registration part. 
For the 3D reconstruction algorithm, we combine the iterative reconstruction 
algorithm with the 2D motion compensation.  
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Fig.1.12. The procedures of the improvements of the 3D reconstruction. 

1.4 Outline 

The main work of the proposed 3D reconstruction improvements are showed in 
Fig.1.12. The main content of each chapter is described as follows:  

Chapter 1: Introduction. This chapter introduces the main background of the 
dissertation. First, we introduce the clinical background of angiography CBCT system 
and the latest Artis-Zeego C-arm system. Second, we introduce the main problems to 
be solved, including calibration and 3D reconstruction. Third, we describe the main 
methods to resolve the problems. Last, we describe the outline of our dissertation. 

Chapter 2: Calibration. See Fig.1.12 (a), this chapter describes the work about 
calibration. For the first part, we introduce the background of calibration work. For 
the second part, we introduce some classical calibration algorithms and then we 
propose our extended calibration algorithm by a classical helical phantom. We show 
the evaluation results in this part. For the third part, we introduce some classical 
movement models of C-arm system, then we propose our movement models of this 
advanced Zeego system. For Zeego system, we transfer the estimated geometry to the 
nominal C-arm coordinates, then, our different predictive movement models are 
proposed on the above estimated geometry. We evaluate the proposed models in this 
part. For the last part, we discuss and conclude our work of this chapter.  

Chapter 3: 3D Reconstruction by motion compensation. See Fig.1.12 (b), this 
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chapter describes the work about 3D reconstruction by motion compensation. First, 
we introduce the background of the work of motion compensated reconstruction. 
Second, we introduce some classical methods. Third, we propose a complete 
reconstruction method by 2D motion compensation. The main parts of this 
reconstruction procedure include forward projection, registration, 3D reconstruction, 
processing of the acquired projection. We describe each step in details, especially the 
registration part. Fourth, we evaluate this reconstruction algorithm. Last, we discuss 
and conclude our work of this chapter.  

Chapter 4: Summary and Prospect. We make a summary and propose some future 
prospects. First, we make a conclusion of the main work of Chapter 2 and Chapter 3. 
Second, we propose some plans of the future study to improve the calibration work 
and the reconstruction by 2D motion compensation.  
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Chapter 2 Geometric Calibration 

2.1 Introduction 

This chapter describes the 3D reference object-based calibration methods for 
determining the geometric alignment parameters for cone-beam scanners. Recently, 
cone-beam computed tomography (CBCT) with flat-panel detector has become a 
powerful technique in the interventional therapy. The imaging system rotates around 
the patient to obtain sequence of projection images. The projection images with the 
same cardiac phase are used to generate a 3D reconstruction of the coronary arteries.  

When we do the 3D reconstruction, we often have the following model [1]:  
 

                            𝐴𝒇 + 𝒃 = 𝒀                            (2.1)                                
             
𝒇 is the 3D vector of the unknown image intensity, 𝒀 is the 2D vector of the 
projection image, 𝒃  means the acquisition noise, 𝐴  is the system matrix, the 
calculation of the system matrix will affect the reconstruction result directly [2].   

Many approaches were developed to generate the system matrix, including voxel 
driven [3], separable footprint (SF-TT) [4], ray driven [5], and distance driven [6] and 
so on. The simplified distance driven [7] projector 𝑃𝑠𝑑𝑑  was proved to be faster and 
comparable accurate than the classical ray driven (RD) and Separable Footprint 
(SF-TT), in this chapter, we use this projector in the following reconstruction.  
Fig.2.1 represents the CBCT acquisition, 𝒇 is the 3D object which located between 
the X-ray source s and the flat-detector, the distance from source to detector (SDD) is 
called focal length. We define the C-arm coordinate system (𝑜1, 𝑥, 𝑦, 𝑧), the origin 𝑜1 
usually locates on the iso-center of the C-arm system, α is the rotation angle, x axis 
points to the initial position (α = 0) of s, z axis is along the rotation axis of the X-ray 
system, y axis is defined by right-handed criteria, the unit vector of each coordinate 
system is(𝑖, 𝑗, 𝑘), with‖𝑖‖ = ∆𝑥, ‖𝑗‖ = ∆𝑦,‖𝑘‖ = ∆𝑧, (∆𝑥, ∆𝑦, ∆𝑧) represent the voxel 
size. The distance from source s to origin 𝑜1  is SAD. We define the detector 
coordinate system as (𝑜2, 𝑢, 𝑣). 𝑜2 = (𝑢𝑠, 𝑣𝑠) is the principal point of the system, 𝑢 
is parallel to y axis, 𝑣 is antiparallel to z axis, (∆𝑢, ∆𝑣) represent the pixel size. The 
source system locates on the X-ray source s, 𝑥𝑠 is anti-parallel to z axis, 𝑦𝑠 is 
anti-parallel to y axis, 𝑧𝑠 is anti-parallel to x axis.  

There are three main steps for generating the system matrix by projector 
operator 𝑃𝑠𝑑𝑑  based on simplified distance driven [7]. See Fig.2.2, First, for each 
voxel n, we compute the conic projections of the eight cubic vertices. Second, we 
draw the smallest rectangles enclosing these projection points and we assume that the 
probability that a photon emitted by this voxel x will be detected in the rectangular 
surface (𝐴𝑇) is 1. Last, we calculate the overlap surface between each pixel and the 
rectangular area (𝐴𝑃), and the coefficients of the projection matrix is inferred as an 
area ratio such as: 𝑎,𝑢𝑘 , 𝑣𝑙; 𝒏- = 𝐴𝑃 𝐴𝑇⁄ .  

For the first step, we should use the acquisition geometry to calculate the cone 
beam perspective projection. We calculate the extrinsic matrix as follows:  
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Fig.2.1. Acquisition geometry of 3D cone-beam imaging system. 
 

 
 

Fig.2.2. Principle of the simplified distance-driven method proposed in [7]. 
 

𝑅𝑠𝑜𝑢𝑟𝑐𝑒
𝑐−𝑎𝑟𝑚 = [

0 𝑠𝑖𝑛(𝛼) −cos (𝛼)

0 −cos (𝛼) −𝑠𝑖𝑛(𝛼)

−1 0 0

] 

 
𝑇𝑐−𝑎𝑟𝑚
𝑠𝑜𝑢𝑟𝑐𝑒 = ,0,0, 𝑆𝐴𝐷-′ 

 
𝑅𝑐−𝑎𝑟𝑚
𝑠𝑜𝑢𝑟𝑐𝑒 = (𝑅𝑠𝑜𝑢𝑟𝑐𝑒

𝑐−𝑎𝑟𝑚)′ 
 
                         𝐸 = ,𝑅𝑐−𝑎𝑟𝑚𝑠𝑜𝑢𝑟𝑐𝑒, 𝑇𝑐−𝑎𝑟𝑚

𝑠𝑜𝑢𝑟𝑐𝑒-                      (2.2) 
 
The superscript and subscript represent two coordinate systems respectively.  

The intrinsic matrix is: 
 

                        𝐼 = [
𝑆𝐷𝐷 0 0
0 𝑆𝐷𝐷 0
0 0 1

]                        (2.3) 

 
The projection matrix is: 

 
                               𝑃 = 𝐼𝐸                             (2.4) 
 
If we have one point 𝑀 = (𝑥, 𝑦, 𝑧, 1)𝑇  on the 3D object, we can compute its 
projection point 𝑚 = (𝑢, 𝑣, 1) by 𝑃: 
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                              𝑠𝑚 = 𝑃𝑀                           (2.5) 
 
We deduce the formulation of 𝑢, 𝑣 by (2.2)-(2.5), we have (2.6): 
 

𝑢 = 𝑆𝐷𝐷 ∙ (−𝑧) (−𝑐𝑜𝑠(𝛼) ∙ 𝑥 − 𝑠𝑖𝑛(𝛼) ∙ 𝑦 + 𝑆𝐴𝐷)⁄  
    𝑣 = 𝑆𝐷𝐷 ∙ (𝑠𝑖𝑛(𝛼) ∙ 𝑥 − 𝑐𝑜𝑠(𝛼) ∙ 𝑦) (−𝑐𝑜𝑠(𝛼) ∙ 𝑥 − 𝑠𝑖𝑛(𝛼) ∙ 𝑦 + 𝑆𝐴𝐷)⁄   (2.6) 
𝑢, 𝑣 are with the physical unit.  

However, in practical applications, due to the errors associated with machine 
manufacturing system integration and gravity, the real path of the imaging system will 
deviate from the ideal circle. So these deviations will cause the inaccurate 
correspondence between 3D object and 2D projection, equation (2.6) will not be 
correct. This will result in some significant artifacts and the degeneration of spatial 
resolution of the reconstruction or the erroneous anatomical information.  

A calibration procedure will take into account the geometric nonidealities and 
calculate the geometric parameters. These parameters should be considered in the 
reconstruction algorithm.  

In computer vision, the acquisition geometry is generally represented by a 
projection matrix, which can be divided into intrinsic and extrinsic matrices [8]. The 
intrinsic parameters of C-arm can be affected by its mechanical deformation during 
the C-arm movement. Due to the coupling effect between intrinsic and extrinsic 
matrices, it is difficult to calibrate the two matrices independently with high accuracy. 
Multi-images [9] estimated the two matrices more accurate. However, the operation 
procedure by the algorithm was too tedious. Gorges [10] proposed another method to 
estimate the intrinsic parameters. However, the accuracy was not good enough. 
Another way to consider this problem is to calculate the defined geometry parameters 
of the cone-beam imaging instead of the whole projection matrix [11-15]. We follow 
this second way in our approach. 

A dedicated phantom is often used in the calibration work. Strobel [8] and Rougée 
[16] used the classical projection matrix method on the classical phantom. The 
classical phantom carried beads regularly arranged along a helical trajectory. Zhang 
[17] proposed a calibration algorithm on a plate phantom. Cho [13] proposed an 
analytic algorithm based a cylinder phantom, which has 24 steel ball bearings in two 
plane parallel circles. Mennessier [15] proposed a direct analytic algorithm on a cubic 
phantom. Nine geometry parameters for each view can be determined by three 
intermediate parameters. Among these phantom, the classical helical phantom, plate 
phantom, cubic phantom are easy to obtain in the experiment environment. The 
algorithm based on the plate phantom can’t estimate the intrinsic parameters at each 
angle separately. The cubic phantom has too few markers to prevent from the effect of 
acquisition noise. There are a lot of other methods with their designed phantoms [11, 
12, 14].  

As we know, it is not easy to place the phantom center to the iso-center of the 
acquisition system exactly. Ford [18] developed an algorithm that can estimate 
geometry related to iso-center and not require precise positioning of the phantom at 
the iso-center. This method is based on the algorithm of Cho [13]. However, this 
method will lose the accuracy when the title angles are large. We propose the 
algorithm to estimate the nominal C-arm coordinate system in our imaging system.  

Another hand, some researchers built the movement models [9], [19-22] of the 
geometry parameters. These models improve the accuracy by the model refinement. 
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Fig.2.3. Flowchart of the proposed data calibrating algorithm 
 
The models can estimate and predict the geometry at each acquisition position and 
angle. These models may be based on some assumptions or the posteriori information 
of the motion by the calibration. Dumay [19] first proposed an ideal C-arm movement 
model, which was not accurate in the real condition. Gorges et al [9] evaluated the 
geometry by the multi-images algorithm. They analyzed the characteristics of the 
geometry parameters and take the estimated geometry as the posteriori information of  
their models. Li et al. [22] adopted some posteriori information proposed by Gorges 
et al [9] and proposed a new C-arm movement model. However, this method did not 
consider the residual deviation of the gantry and was difficult to calculate. There are 
many other movement models [20, 21]. However, all of these are based on the 
traditional C-arm system. The simple assumptions of the above models are not 
suitable for Zeego system due to its complex movement.  

The proposed data calibrating method is illustrated in Fig.2.3. In part 2, we propose 
to estimate the acquisition geometries of a set of orientation and paths of the C-arm 
system. The proposed extended algorithm is more reliable and easier to perform than 
the original algorithm. In part 3, we transfer the geometry to the nominal C-arm 
system. Then, we proposed and calibrate the movement models of the projection 
geometries. In part 4, we have the evaluation result of the proposed method.  

2.2 Geometric Calibration 

2.2.1 Classical Method 

We introduce some classical calibration algorithms for cone-beam imaging systems 
in this part. They are the classical projection matrix method, iterative parametric 
method, multi-images method and some advanced algorithms.  

2.2.1.1 Classical projection matrix method 

As described in equation (2.5), the projection matrix connects each 3D point 
 𝑀𝑖 = ( 𝑋𝑖,  𝑌𝑖,  𝑍𝑖, 1)

𝑇and it 2D projection 𝑚𝑖 = ( 𝑢𝑖 ,  𝑣𝑖 , 1)𝑇 , 𝑖 = 1,…𝑁. We have the 
projection matrix as: 
 

                      𝑃 = [
𝑝11 𝑝12 𝑝13 𝑝14
𝑝21 𝑝22 𝑝23 𝑝24
𝑝31 𝑝32 𝑝33 𝑝34

]                    (2.7)                        

 
We combine (2.5) and (2.7) to obtain a new equation (2.8) as:  
 
                              𝑈𝑝 = 0                            (2.8) 
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with 
𝑝 = (𝑝11, 𝑝12, … 𝑝34)

𝑇 
 

𝑈 = [

𝑀1
𝑇

0

0
𝑀1
𝑇

−𝑢1 ∗ 𝑀1
𝑇

−𝑣1 ∗ 𝑀1
𝑇

…
𝑀𝑁
𝑇

…
0

…
−𝑢𝑁 ∗ 𝑀𝑁

𝑇

] 

                                                                                                        
Where U is a 2N×12 matrix, 𝑝 is a vector containing the 12 elements of 𝑃. Then, we 
set 𝑝34 = 1 to decrease to 11 degrees of freedom. We need at least 6 non-planar 
points to resolve these equations. The solution to (2.8) is well known as the 
eigenvector of 𝑈𝑇𝑈 associated with the smallest eigenvalue. All the parameters can 
be extracted from 𝑃 as follows [8]:  
 

𝒑𝒊 = (𝑝𝑖1, 𝑝𝑖2, 𝑝𝑖3)
𝑇, 𝑖 = 1,2,3 

 
𝑡 = 1/‖𝑝3‖ 

 
𝑢𝑠 = 𝑡

2 × (𝒑𝟏 ∙ 𝒑𝟑) 
 

𝑣𝑠 = 𝑡
2 × (𝒑𝟐 ∙ 𝒑𝟑) 

 
𝐹 = 𝑡2 × ‖𝒑𝟏 × 𝒑𝟑‖ 

 
𝒓𝟏 = t/𝐹 × (𝒑𝟏 − 𝑢𝑠𝒑𝟑) 

 
𝒓𝟐 = t/𝐹 × (𝒑𝟐 − 𝑣𝑠𝒑𝟑) 

 
𝒓𝟑 = 𝑡 × 𝒑𝟑 

 
𝒕𝒙 = 𝑡 × (𝑝14 − 𝑢𝑠)/𝐹 

 
𝒕𝒚 = 𝑡 × (𝑝24 − 𝑣𝑠)/𝐹 

 
𝒕𝒛 = 𝑡 

 

𝐼 = [
𝐹/𝑘𝑥 0 𝑢𝑠
0 𝐹/𝑘𝑦 𝑣𝑠
0 0 1

] 

 
𝑅 = ,𝒓𝟏, 𝒓𝟐, 𝒓𝟑-

𝑇  
 

𝑇 = [𝒕𝒙, 𝒕𝒚, 𝒕𝒛]
𝑇
 

  
                                     𝐸 = ,𝑅,𝑇-                              (2.9) 
 
𝑘𝑥, 𝑘𝑦 are the inverse of the pixel size. 𝐹 is the focal length. 𝑢𝑠, 𝑣𝑠 are the principal 
point. 𝐼 is the intrinsic matrix. 𝐸 is the extrinsix matrix composed by the rotation 
matrix 𝑅 and translation vector 𝑇. 
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2.2.1.2 Iterative parametric method 

An improvement of the classical projection matrix algorithm is the classical 
iterative parametric method [16]. The initial parameters are estimated by the 
projection matrix method. The refined parameters are obtained through the 
minimization of the projection error: 
 

𝑃 = 𝐼𝐸 
 
                      𝜀𝑟(𝑃) =

1

𝑛
∑ ‖𝑃𝑀𝑖 −𝑚𝑖‖

2𝑛
𝑖=0                    (2.10) 

 
For the research results, there is little difference between the classical projection 

matrix method and this iterative method when the calibration markers are enough. 
However, this iterative method turned out to be superior when the markers are few 
[16]. The two classical methods are based on the classical helical phantom.  

2.2.1.3 Multi-images method 

Although the estimated projection matrix is known with a sub-pixel projection error, 
its decomposition into intrinsic and extrinsic parameters is known to be unstable [9].        
Multi-images algorithm can provide more reliable intrinsic and extrinsic parameters. 
To reduce the statistical noise, calibration can be repeated with varying extrinsic 
parameters and fixed intrinsic parameters. Thereby, the inter-dependence between 
both sets of parameters is reduced, so that reliable intrinsic parameters are estimated.  

For a given C-arm orientation, N images of the helix phantom are taken, with the 
phantom being moved in both rotation and translation between each image acquisition. 
This step is called multi-image calibration. The common intrinsic parameters I and 
extrinsic parameters ( 𝐸𝑗 , 𝑗 = 1,…𝑁 ) are then estimated simultaneously by 
minimizing the mean residual projection error 𝑅𝑚 as follows, the initial parameters 
can be calculated by the classical projection matrix method:  
 

𝑅𝑚 = 1 𝑁⁄ ∑ 𝜀𝑟( 𝑃𝑗)
𝑁
𝑗=0                           (2.11) 

 
with 
 

𝜀𝑟( 𝑃𝑗) =
1

𝑛
∑ ‖ 𝑃𝑗𝑀𝑖 −𝑚𝑖‖

2𝑛
𝑖=0   

 
 𝑃𝑗 = 𝐼 𝐸𝑗 , 𝑗 = 1,…𝑁 

 
From (2.11), we obtain the robust and accurate intrinsic parameter 𝐼 and we choose 
one  𝐸𝑗 to be the current extrinsic parameter.  

2.2.1.4 Other methods 

We introduce other two representative calibration algorithms in this section. These 
methods depend on their specific designed phantom. 
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a. Zhang’s planar calibration algorithm  
 

This algorithm [17] is one classical method in computer vision area. This technique 
was applied to the angiography acquisition system [21, 22]. The method requires the 
acquisition of a planar pattern at a set of few orientations and the motion needs not to 
be known. Let 𝑚̃ = ,𝑢, 𝑣, 1-𝑇 be an augmented 2D point, 𝑀̃ = ,𝑋, 𝑌, 𝑍, 1-𝑇is the 3D 
point, then the pinhole model can be represented as:  

 
                            𝑠𝑚̃ = 𝐼,𝑅 𝑡-𝑀  ̃                         (2.12) 
 
As the method adopts the planar phantom, the points with 𝑍 = 0 of the world 
coordinate can be denoted 𝑀̃ = ,𝑋, 𝑌, 1-𝑇. We rewrite (2.12) as: 
 
                              𝑠𝑚̃ = 𝐻𝑀̃                          (2.13) 
 
with  
 

𝐻 = 𝐼,𝑟1 𝑟2 𝑡- 
 
Since 𝑟1 and 𝑟2 are orthonormal, we have the constraints for each view:  
 

                         [ 𝑉12
𝑇

(𝑉11 − 𝑉22)
𝑇
] 𝑑 = 0                       (2.14) 

 
Where  
𝑉𝑖𝑗 = [𝑕𝑖1𝑕𝑗1, 𝑕𝑖1𝑕𝑗2 + 𝑕𝑖2𝑕𝑗1, 𝑕𝑖2𝑕𝑗2, 𝑕𝑖1𝑕𝑗3 + 𝑕𝑖3𝑕𝑗1, 𝑕𝑖2𝑕𝑗3 + 𝑕𝑖3𝑕𝑗2, 𝑕𝑖3𝑕𝑗3]

𝑇
 

 

𝐵 = 𝜆𝐼−𝑇𝐼−1 ≡ 𝜆 [

𝐵11 𝐵12 𝐵13
𝐵12 𝐵22 𝐵23
𝐵13 𝐵23 𝐵33

] 

 
Note that B is symmetric, we define it by a 6D vector:  
 
                    𝑑 = ,𝐵11, 𝐵12, 𝐵22, 𝐵13, 𝐵23, 𝐵33-𝑇                 (2.15) 
 
For n angles of the acquired images, we can stack equation (2.14) as: 
 
                              𝑉𝑑 = 0                             (2.16) 
 

Once 𝑏 is estimated, the intrinsic parameters that are considered to be constant and 
extrinsic parameters for each view can be obtained, see [17] for all details. 
 
b. Mennessier’s analytic algorithm  
 

This algorithm proposed a direct analytic algorithm on a cubic phantom [15]. Each 
view is treated independently, and no restrictions are made on the position of the cone 
vertex, or on the position or orientation of the detector. The simple object consists of 
six points, two per orthogonal line. The algorithm can provide the unique analytic 
solution for our application in angiography system. See Fig.2.4 in the following, they 
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have the same imaging system.  
First note that a location 𝑃𝑟 is given by the (2.17) in the world coordinate system:  
 

                  𝑷𝒓 = 𝒔 + 𝐹𝒏̂ + (𝑢̃ − 𝑢𝑠)𝒖̂ + (𝑣̃ − 𝑣𝑠)𝒗̂              (2.17) 
 
Every 3D point r that projects to the same detector location 𝑷𝒓 belongs to the line 
passing through the source point 𝒔 and this detector location: 
 

*𝒓|𝒓 = 𝒔 + 𝑡(𝑷𝒓 − 𝒔), 𝑡 ∈ 𝑅+ 
 
               = *𝒓|𝒓 = 𝒔 + 𝑡((𝑢̃ − 𝑢𝑠)𝒖̂ + (𝑣̃ − 𝑣𝑠)𝒗̂ + 𝐹𝒏̂+           (2.18) 
 
Then, the cone-beam projection of an arbitrary point r onto the detector is given by: 
 

𝑢̃(𝒓) = 𝑢𝑠 + 𝐹
(𝒓 − 𝒔)𝒖̂

(𝒓 − 𝒔)𝒏̂
 

 

𝑣̃(𝒓) = 𝑣𝑠 + 𝐹
(𝒓 − 𝒔)𝒗̂

(𝒓 − 𝒔)𝒏̂
 

                                                                (2.19)  
(2.19) is converted into a set of simpler equations as follows, involving three 
intermediate unknown vectors 𝒂, 𝒃, 𝒄. The nine geometric parameters will be obtained 
directly from these three vectors. 

First, the main simplification consists of shifting the origin of the detector pixel 
coordinates by:  
 

𝑢 = 𝑢̃ − 𝑢𝑐 
 

                               𝑣 = 𝑣̃ − 𝑣𝑐                          (2.20) 
 
(𝑢𝑐, 𝑣𝑐) is the projection of the origin of the world coordinate system. Combing 
equations (2.19) with (2.20), we can deduce the equation (2.21).  
 

𝑢 =
𝒂 ∙ 𝒓

𝒄 ∙ 𝒓 + 1
 𝑣 =

𝒃 ∙ 𝒓

𝒄 ∙ 𝒓 + 1
 

                                                                 (2.21)             
Consider a cubic calibration object with 6 points so that the raw detector images 
(𝑢𝑐, 𝑣𝑐), (𝑢̃1, 𝑣̃1), … (𝑢̃6, 𝑣̃6) of the points 𝑟0, 𝑟1, … 𝑟6 can be individually identified, 
where for some known positive constant k.  
 

𝑟1 = (𝑘, 0,0), 𝑟2 = (−𝑘, 0,0) 
 

𝑟3 = (0, 𝑘, 0), 𝑟4 = (0,−𝑘, 0) 
 
                        𝑟5 = (0,0, 𝑘), 𝑟6 = (0,0, −𝑘)                   (2.22) 

 
After applying equation (2.22) in (2.21), we obtain six pairs of equations from 

which to determine 𝒂, 𝒃, 𝒄. See [15] for more details.  
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Fig.2.4. Geometry of the calibration algorithm. One general position of the scanner, world 
coordinate system is built on the phantom. 

 

2.2.2Proposed Calibration Method  

2.2.2.1 System geometry of cone-beam scanner 

Mennessier et al. [15] proposed an analytical calibration algorithm from the cubic 
phantom. Xu et al. [23] applied the algorithm to the classical helical phantom. We 
extend this algorithm further to make it more robust and easier to implement. We 
build the world coordinate system on the phantom. 𝑧 axis is along the longitudinal 
direction of the phantom. We make a line from the 𝑛0th marker perpendicular to 𝑧 
axis, the intersection is the origin 𝑶𝒑 . 𝑥  axis is along this line, 𝑦 axis is the 
direction that subjects to right-handed coordinate system. The detector is a flat-panel 
detector without distortion and with known numbers of rows and columns of square 
pixels and known pixel size. See Fig.2.4, the scanner geometry can be described by 9 
parameters. Three scalars 𝑢𝑠, 𝑣𝑠 , 𝐹 and four vectors 𝒖̂, 𝒗̂, 𝒏,̂ 𝒔. They are all expressed 
in terms of the phantom system. Three unit vectors (𝒖̂, 𝒗̂, 𝒏̂) represent the detector 
orientation and they can be specified using three Euler angles. The vectors 𝒖̂, 𝒗̂ are 
parallel to the row and the column of the detector respectively. 𝒏̂ is the direction 
perpendicular to the detector plane. 𝒔 is the position of the X-ray source. A 3D point 
in the world system is denoted by 𝒓. The cone-beam projection of point 𝒓 in pixel 
units is (𝑢̃, 𝑣̃). Piercing point (𝑢𝑐, 𝑣𝑐) is defined as the projection of the origin 𝑶𝒑. 
Principle point (𝑢𝑠, 𝑣𝑠) is the orthogonal projection of the source position 𝒔 onto 
the detector. 𝐹 is the focal length, meaning the perpendicular distance from the 
source to the detector. For the calibration, the phantom is placed within the field of 
view. The longitudinal axis of the phantom is roughly parallel to the rotation axis of 
C-arm. The center of the phantom coincides roughly with the iso-center of the 
acquisition system. The phantom is imaged during the dynamic acquisition according 
to a detector orientation. The geometry parameters will be estimated at each 
acquisition angle independently and no requirement of the scanning motion and 
others.   

2.2.2.2 Calibration phantom 

The calibration phantom consists of 108 steel ball bearings (BBs) embedded in the 
plastic wall of a cylindrical phantom, see Fig.2.4, the 108 spheres are made up of  
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Fig.2.5. 2D projection image, when the angle β = 0. The sequence of alternating large and small 
spheres represent a binary string with an 8 bit encoding, this established a unique 2D and 3D 
correspondence according to a projection angle and phantom position.  

 
noncorrosive steel with two different radii arranged along a helical-shaped path, the 
large spheres have a diameter 3.2 mm and the small spheres have a diameter of 1.6 
mm. The radius of the cylinder is 70 mm, there are 40 BBs spaced over the angle of 
2π, the distance between two BBs is 1.3 mm, so the pitch of the helical curve is 52 
mm. 

As shown in Fig.2.5, the distribution of BBs is designed with an 8 bit encoding 
according to a projection angle and phantom position. Indeed, we can label the 
alternating large and small spheres as a binary string. An arbitrary subsequence with 
the length more than 8 can provide enough information to identify the location of each 
sphere within the whole binary string. In this chapter, we set the secondary angle 𝛽 of 
the C-arm system to zero. From Fig. 2.5, we see that the projection of the spheres 
located from bottom to top. The large spheres have of course a bigger projection area 
than the small spheres. Most projection points are visible and some minor overlaps 
appear at the position with high curvature and noncircular. We use the encoding 
method to find the unique correspondence between each BB and their projection [24]. 

We skip the overlapped projection points and extract the centroid of each 
non-overlapped projection area. In this chapter, we adopt the ellipse fitting algorithm 
of Li et al. [25] to extract the centroid of the projected markers. We encode each 
extracted centroid by its projection area. The bigger area corresponds to 1 and the 
smaller one corresponds to 0. These subsequences can help us find the unique 
correspondence between the 3D and 2D. We label the 2D projected points by 
𝑛 = 1, . .108.  

2.2.2.3 Geometry estimation      

We choose one work position of Zeego system. The center of the phantom is placed 
approximately near to the iso-center of the acquisition system. The longitudinal 
direction of the phantom is aligned roughly to the rotation axis. 

As we described above, for each angle, we define the system geometry by 9 
parameters, detector orientation (𝒖̂, 𝒗̂, 𝒏̂)  which can be represented by Euler 
angles 𝜃, 𝛾, 𝜂, source to detector distance 𝐹, principal point (𝑢𝑠, 𝑣𝑠), source position 
𝒔. These parameters can be estimated by three intermediate vectors 𝒂, 𝒃, 𝒄. The 
projection coordinates (𝑢̃, 𝑣̃) and the vectors 𝒂, 𝒃, 𝒄 have the following relationship 
[15].  
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𝑢 =
𝒂 ∙ 𝒓

𝒄 ∙ 𝒓 + 1
  𝑣 =

𝒃 ∙ 𝒓

𝒄 ∙ 𝒓 + 1
 

                                                                      (2.23) 
where 𝑢, 𝑣, 𝒂, 𝒃, 𝒄 are defined as: 
 
                        𝑢 = 𝑢̃ − 𝑢𝑐   𝑣 = 𝑣̃ − 𝑣𝑐                     (2.24)                          
 

𝒂 =
(𝑢𝑠 − 𝑢𝑐)𝒏̂ + 𝑓𝒖̂

−𝒏̂ ∙ 𝒔
 

𝒃 =
(𝑣𝑠 − 𝑣𝑐)𝒏̂ + 𝑓𝒗̂

−𝒏̂ ∙ 𝒔
 

𝒄 =
𝒏̂

−𝒏̂ ∙ 𝒔
 

                                                                      (2.25)  
all the geometry parameters can be obtained by known intermediate vectors 𝒂, 𝒃, 𝒄: 
 

𝜀𝑓 = −𝑠𝑝𝑠𝑔𝑛(𝒂 × 𝒃 ∙ 𝒄) 
 

𝒖̂ =
𝜀𝑓(𝒃 × 𝒄)

‖𝒃 × 𝒄‖
  𝒗̂ =

−𝜀𝑓(𝒂 × 𝒄)

‖𝒂 × 𝒄‖
 

 

𝒏̂ =
−𝜀𝑓(𝒄)

‖𝒄‖
 

 

𝐹 =
𝜀𝑓‖𝒂 × 𝒄‖

‖𝒄‖2
=
𝜀𝑓‖𝒃 × 𝒄‖

‖𝒄‖2
 

 

𝑢𝑠 =
(𝒂 ∙ 𝒄)

‖𝒄‖2
+ 𝑢𝑐   𝑣𝑠 =

(𝒃 ∙ 𝒄)

‖𝒄‖2
+ 𝑣𝑐 

 

𝒔 =
−𝑠𝑝
‖𝒄‖

(
𝒂 ∙ 𝒄

‖𝒂 × 𝒄‖
𝒖̂ +

𝒃 ∙ 𝒄

‖𝒃 × 𝒄‖
𝒗̂ − 𝜀𝑓𝒏̂) 

                                                                      (2.26) 
𝑠𝑝 = −1  for the cone-beam imaging system. 𝒂, 𝒃, 𝒄  were estimated by the 
projection of  the points located on the coordinate axes of the cubic phantom [15]. 
Our proposed algorithm applies these formulations to the helical phantom. Compared 
with the algorithm of Xu et al. [23], the proposed algorithm can estimate 𝒂, 𝒃, 𝒄 
more robustly and eliminate the degeneration correction procedure of Xu’s method.  
 
a. Estimation of 𝒂, 𝒃, 𝒄 
 

To estimate 𝒂, 𝒃, 𝒄  robustly, we try to estimate  (𝑎𝑥, 𝑏𝑥, 𝑐𝑥), (𝑎𝑦 , 𝑏𝑦, 𝑐𝑦),
(𝑎𝑧, 𝑏𝑧, 𝑐𝑧) separately.  
 
a.1 Estimation of 𝑎𝑧, 𝑏𝑧, 𝑐𝑧  
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Fig.2.6. Illustration to calculate the projection points on the 𝑧 axis. 
 
a.1.1 Projection of 𝑧 axis  
 

We use the same way as Xu [23] to calculate the projection of 𝑧 axis and 𝑢𝑐, 𝑣𝑐. 
We have the coordinate of 𝑛𝑡𝑕 marker on the phantom as according to the helical 
arrangement formed a circular helix of radius 𝑅𝑕 and pitch 2 𝑏0: 
 

𝒓𝒏 = (𝑅𝑕 cos 𝑛, 𝑅𝑕 sin 𝑛, 𝑏0 ∗  𝑛) 
with 

 𝑛 = (𝑛 − 𝑛0) ∗ 2 𝑁⁄  
                           𝑏0 = 𝑁 2 ⁄ ∗ 𝑏                         (2.27) 
 
𝑛 = 1, . . 𝑁𝑃,𝑁𝑃 = 108, 𝑛0 =55, N=40, 𝑅𝑕 = 70𝑚𝑚, 𝑏 = 1.3𝑚𝑚. See Fig.2.6, we 
try to find a group of parallelograms, each parallelogram is composed by 4 
markers 𝑟𝐴, 𝑟𝐵, 𝑟𝐶 , 𝑟𝐷: 

𝒓𝑨 = (𝑅𝑕 cos 𝐴, 𝑅𝑕 sin 𝐴, 𝑏0 ∗  𝐴) 
𝒓 = (𝑅𝑕 cos 𝐵, 𝑅𝑕 sin  𝐵, 𝑏0 ∗  𝐵) 
𝒓𝑪 = (𝑅𝑕 cos 𝐶 , 𝑅𝑕 sin 𝐶 , 𝑏0 ∗  𝐶) 
𝒓𝑫 = (𝑅𝑕 cos 𝐷 , 𝑅𝑕 sin 𝐷 , 𝑏0 ∗  𝐷) 

 𝐴 =  𝑛,    𝐵 =  𝑛 + 2  
                       𝐶 =  𝑛 + 3 ,    𝐷 =  𝑛 +                    (2.28)  
 

The label of each marker is: 
 

𝑛𝐴 = 𝑛,   𝑛𝐵 = 𝑛 + 𝑁 
                     𝑛𝐶 = 𝑛 + 3𝑁 2⁄   𝑛𝐷 = 𝑛 + 𝑁 2⁄                  (2.29) 
 
(𝑛𝐴, 𝑛𝐵, 𝑛𝐶 , 𝑛𝐷) ∈ (1, 𝑁𝑃), so we should seek 𝑛 ∈ (1, 𝑁𝑃 − 3𝑁 2⁄ ).  

There is a geometric basis of perspective projection. The projection of the 
intersection point of two lines is exactly the intersection point of the two projection 
lines. As seen in Fig.2.6, the projection of 𝑟𝐴, 𝑟𝐵, 𝑟𝐶 , 𝑟𝐷 are 𝑟𝐴′, 𝑟𝐵′, 𝑟𝐶′, 𝑟𝐷′ respectively, 
and the intersection point of 𝑟𝐴𝑟𝐶 and 𝑟𝐵𝑟𝐷 is:  
 
                     𝒓𝒏𝒁 = (0,0, 𝑏0 ∗ ( 𝑛 + 3 2⁄ ))                   (2.30) 
 
The intersection point of 𝑟𝐴′𝑟𝐶′ and 𝑟𝐵′𝑟𝐷′ is 𝑟𝑛𝑍′, these points are the projection of 
𝒓𝒏
𝒁  and compose the projection of the 𝑧  axis. 𝑟𝑛𝑍′  can be calculated by the 

intersection of the two projection lines 𝑟𝐴′𝑟𝐶′ and 𝑟𝐵′𝑟𝐷′.  
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Fig.2.7. Illustration of the projection of the axes paralleled to 𝑥 axis. 𝑘 = 1,−1 
 

a.1.2 Calculation of 𝑎𝑧 , 𝑏𝑧 , 𝑐𝑧 
 
Since 𝑛 ∈ (1, 𝑁𝑃 − 3𝑁 2⁄ ), the projected points are enough to estimate 𝑝𝑧 =

(𝑎𝑧, 𝑏𝑧, 𝑐𝑧).  
Given a set of 𝒓𝒏𝒁 = (0,0, 𝑍𝑛𝑍) and 𝑟𝑛𝑍′ = (𝑢𝑛𝑍′, 𝑣𝑛𝑍′), equation (2.21) could be 

written as: 
 
                               𝐴𝑧𝑝𝑧 = 𝑏                          (2.31) 
 
Where  

𝐴𝑧 = *

𝑍𝑛
𝑍

0

0
𝑍𝑛
𝑍

−𝑢𝑛
𝑍′𝑍𝑛

𝑍

−𝑣𝑛
𝑍′𝑍𝑛

𝑍

…
…

…
…

…
…

+ 

 
𝑏 = ,𝑢𝑛

𝑍′ 𝑣𝑛
𝑍′… …-′ 

 
We adopt the SVD method [26] to resolve (2.31). The steps are:  
(i) Find the SVD, 𝐴𝑧 = 𝑈𝐷𝑉𝑇       
(ii)Set 𝑏′ = 𝑈𝑇𝑏 
(iii)Find the vector 𝑦 defined by 𝑦𝑖 = 𝑏𝑖′/𝑑𝑖, 𝑖 =1,2,3, where 𝑑𝑖 is the 𝑖𝑡𝑕 diagonal 
entry of 𝐷. 
(iv)The solution is 𝑝𝑧 = 𝑉𝑦. 
 
a.2 Estimation of 𝑎𝑥, 𝑏𝑥, 𝑐𝑥 
 
a.2.1 Projection of the axes paralleled to 𝑥 axis  
 

See Fig.2.7, we propose to calculate the projection of two axes paralleled to 𝑥 axis, 
differently from calculating the projection of 𝑥 axis proposed by Xu [23].This will 
not only improve the estimation accuracy of 𝑎𝑥, 𝑏𝑥, 𝑐𝑥 , but also resolve the 
degeneration problem in Xu [23].  

We try to find another group of parallelograms, each one is composed by 4 markers, 
see Fig.2.7, we have the following expressions: 
 

𝒓𝑨 = (𝑅𝑕 cos 𝐴, 𝑅𝑕 sin 𝐴, 𝑏0 ∗  𝐴) 
𝒓 = (𝑅𝑕 cos 𝐵, 𝑅𝑕 sin  𝐵, 𝑏0 ∗  𝐵) 
𝒓𝑪 = (𝑅𝑕 cos 𝐶 , 𝑅𝑕 sin 𝐶 , 𝑏0 ∗  𝐶) 
𝒓𝑫 = (𝑅𝑕 cos 𝐷 , 𝑅𝑕 sin 𝐷 , 𝑏0 ∗  𝐷) 
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 𝐴 =  𝑖   𝐵 =  𝑖 + 2 𝑘 

                       𝐶 = − 𝑖 + 2 𝑘   𝐷 = − 𝑖                   (2.32) 

 
The label of each marker is:  

 
𝑛𝐴 = 𝑖  𝑛𝐵 = 𝑖 + 𝑁𝑘 

                    𝑛𝐶 = 2𝑛0 − 𝑖 + 𝑁𝑘  𝑛𝐷 = 2𝑛0 − 𝑖                 (2.33) 
 
𝑘 =  1, (𝑛𝐴, 𝑛𝐵, 𝑛𝐶 , 𝑛𝐷) ∈ (1, 𝑁𝑃).  

𝑘 = 1, we seek 𝑖1 ∈ ,max(1,2𝑛0 + 𝑁 − 𝑁𝑃, 𝑛0 + 1) ,min(𝑁𝑃 − 𝑁, 2𝑛0 − 1)-,  
𝑖1 ≠ 𝑛0 +𝑁/2. 
𝑘 = −1, we seek 𝑖2 ∈ ,max(1 + 𝑁, 2𝑛0 − 𝑁𝑃) ,min(𝑁𝑃, 2𝑛0 − 𝑁 − 1, 𝑛0 −
1)-,𝑖2 ≠ 𝑛0 − 𝑁/2. 

The intersection point of 𝑟𝐴𝑟𝐶 and 𝑟𝐵𝑟𝐷 is: 
 

𝒓𝑖1
𝑿 = (𝑅𝑕 cos 𝑖1 , 0, 𝑏0 ) 

                         𝒓𝑖2
𝑿 = (𝑅𝑕 cos 𝑖2 , 0, −𝑏0 )                  (2.34) 

 
 
Their projection points 𝑟𝑖1

𝑋′, 𝑟𝑖2
𝑋′ compose the projection of the two axes paralleled to 

𝑥 axis. They can be calculated by the intersection of lines 𝑟𝐴′𝑟𝐶′ and 𝑟𝐵′𝑟𝐷′. 
 
a.2.2 Calculation of 𝑎𝑥 , 𝑏𝑥, 𝑐𝑥 

 
Given a set of 𝒓𝑖1

𝑿 = (𝑋𝑖1
𝑋 , 0, 𝑍𝑖1

𝑋), 𝒓𝑖2
𝑿 = (𝑋𝑖2

𝑋 , 0, 𝑍𝑖2
𝑋) and 𝑟𝑖1

𝑋′ = (𝑢𝑖1
𝑋′, 𝑣𝑖1

𝑋′), 𝑟𝑖2
𝑋′ =

(𝑢𝑖2
𝑋′, 𝑣𝑖2

𝑋′), we define 𝑝𝑥 = (𝑎𝑥, 𝑏𝑥, 𝑐𝑥). Equation (2.23) could be written as: 
 
                                𝐴𝑥𝑝𝑥 = 𝑏                         (2.35) 

 
where 
 

𝐴𝑥 =

[
 
 
 
 
 𝑋𝑖1

𝑋

0

0
𝑋𝑖1
𝑋

−𝑢𝑖1
𝑋′𝑋𝑖1

𝑋

−𝑣𝑖1
𝑋′𝑋𝑖1

𝑋

…
𝑋𝑖2
𝑋

0…

…
0
𝑋𝑖2
𝑋

…

…
−𝑢𝑖2

𝑋′𝑋𝑖2
𝑋

−𝑣𝑖2
𝑋′𝑋𝑖2

𝑋

… ]
 
 
 
 
 

 

 
𝑏 = [𝑏𝑢𝑖1 𝑏𝑣𝑖1 … 𝑏𝑢𝑖2  𝑏𝑣𝑖2… ]

′
 

 
𝑏𝑢𝑖1 = 𝑢𝑖1

𝑋′ + 𝑐𝑧𝑍𝑖1
𝑋𝑢𝑖1

𝑋′ − 𝑎𝑧𝑍𝑖1
𝑋 

𝑏𝑣𝑖1 = 𝑣𝑖1
𝑋′ + 𝑐𝑧𝑍𝑖1

𝑋𝑣𝑖1
𝑋′ − 𝑏𝑧𝑍𝑖1

𝑋 
𝑏𝑢𝑖2 = 𝑢𝑖2

𝑋′ + 𝑐𝑧𝑍𝑖2
𝑋𝑢𝑖2

𝑋′ − 𝑎𝑧𝑍𝑖2
𝑋 

𝑏𝑣𝑖2 = 𝑣𝑖2
𝑋′ + 𝑐𝑧𝑍𝑖2

𝑋𝑣𝑖2
𝑋′ − 𝑏𝑧𝑍𝑖2

𝑋 
 
𝑎𝑧 , 𝑏𝑧 , 𝑐𝑧 have already been calculated in a.1. We use the same algorithm as described  
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Fig.2.8. Examples to illustrate the projection of the axes paralleled to 𝑦 axis. 𝑘 =  1, 𝑛 = 0 
 

in a.1 to solve the equation (2.35).  
 
a.3 Estimation of 𝑎𝑦, 𝑏𝑦, 𝑐𝑦 
 
a.3.1 Projection of the axes paralleled to 𝑦 axis  
 

In Fig.2.8, we propose to calculate the projection of four axes paralleled to the 𝑦 
axis. The projection of the paralleled axes can be found by the parallelogram:  
 

𝒓𝑨 = (𝑅𝑕 cos 𝐴 , 𝑅𝑕 sin 𝐴, 𝑏0 ∗  𝐴) 
𝒓 = (𝑅𝑕 cos 𝐵, 𝑅𝑕 sin  𝐵, 𝑏0 ∗  𝐵) 
𝒓𝑪 = (𝑅𝑕 cos 𝐶 , 𝑅𝑕 sin 𝐶 , 𝑏0 ∗  𝐶) 
𝒓𝑫 = (𝑅𝑕 cos 𝐷 , 𝑅𝑕 sin 𝐷 , 𝑏0 ∗  𝐷) 

 
 𝐴 =  𝑗   𝐵 =  𝑗 + 2 𝑘 

 
 𝐶 = − 𝑗 + (2𝑛 + 1) 𝑘  

                         𝐷 = − 𝑗 + (2𝑛 − 1) 𝑘                    (2.36) 
                             
The label of each marker is: 

 
𝑛𝐴 = 𝑗  𝑛𝐵 = 𝑗 + 𝑁𝑘 

𝑛𝐶 = 2𝑛0 − 𝑗 + 𝑁(2𝑛 + 1)𝑘/2 
                     𝑛𝐷 = 2𝑛0 − 𝑗 + 𝑁(2𝑛 − 1)𝑘/2                  (2.37) 
                                                    
𝑘 =  1, 𝑛 = 0,1, (𝑛𝐴, 𝑛𝐵 , 𝑛𝐶 , 𝑛𝐷) ∈ (1, 𝑁𝑃).  
𝑘 = 1, 𝑛 = 0, 𝑗1 ∈ ,max (1,2𝑛0 + 𝑁/2 − 𝑁𝑃, 𝑛0 − 𝑁/4 + 1),min (𝑁𝑃 − 𝑁, 2𝑛0 −
𝑁/2 − 1)-, 𝑗1 ≠ 𝑛0 +𝑁/4. 
𝑘 = 1, 𝑛 = 1, 𝑗2 ∈ ,max (1,2𝑛0 + 3𝑁/2 − 𝑁𝑃, 𝑛0 + 𝑁/4 + 1),min (𝑁𝑃 − 𝑁, 2𝑛0 +
𝑁/2 − 1)-, 𝑗2 ≠ 𝑛0 + 3𝑁/4. 
𝑘 = −1, 𝑛 = 0, 𝑗3 ∈ ,max (1 + 𝑁, 2𝑛0 + 𝑁/2 − 𝑁𝑃),min (𝑁𝑃, 2𝑛0 − 𝑁/2 − 1, 𝑛0 +
𝑁/4 − 1)-, 𝑗3 ≠ 𝑛0 − 𝑁/4  
𝑘 = −1, 𝑛 = 1, 𝑗4 ∈ ,max (1 + 𝑁, 2𝑛0 − 𝑁/2 − 𝑁𝑃),min (𝑁𝑃, 2𝑛0 − 3𝑁/2 −
1, 𝑛0 − 𝑁/4 − 1)-, 𝑗4 ≠ 𝑛0 − 3𝑁/4  

The intersection point of 𝑟𝐴𝑟𝐶 and 𝑟𝐵𝑟𝐷 is: 
 

𝒓𝒋𝟏
𝒀 = (0, 𝑅𝑕 sin 𝑗 , 𝑏0 /2) 

 𝒓𝒋𝟐
𝒀 = (0, 𝑅𝑕 sin 𝑗 , 3𝑏0 /2) 
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 𝒓𝒋𝟑
𝒀 = (0, 𝑅𝑕 sin 𝑗 , −𝑏0 /2) 

                       𝒓𝒋𝟒
𝒀 = (0, 𝑅𝑕 sin 𝑗 , −3𝑏0 /2)                 (2.38)  

 
Their projection points 𝑟𝑗1

𝑌′ , 𝑟𝑗2
𝑌′ , 𝑟𝑗3

𝑌′ , 𝑟𝑗4
𝑌′compose the projection of the axes parallel to 

x axis, they can be calculated by the intersection of lines 𝑟𝐴′𝑟𝐶′ and 𝑟𝐵′𝑟𝐷′. 
 
a.3.2 Calculation of 𝑎𝑦 , 𝑏𝑦, 𝑐𝑦 

 

These projection of four axes provide more data. We use the same way as described 
in a.2 to calculate 𝑎𝑦, 𝑏𝑦, 𝑐𝑦.  
 
b. Degeneration elimination 

 

The algorithm of Xu [23] may have two kinds of degeneration. First, the projection 
of 𝑥 axis may degenerate to one point. Second, the projection of the parallelogram 
may degenerate to a line. The degeneration correction is troublesome, decreasing the 
efficiency.  

For the first kind of degeneration, the projection of x axis may degenerate to one 
point, then, 𝑎𝑥 = 𝑏𝑥 = 0, 𝑐𝑥 can’t be determined. Now, as seen in a.2, this problem is 
tackled by the projection of the axes paralleled to x axis.  

For the second degeneration, it may reduce the available intersection points that 
used to determine the calibration parameters. This kind of degeneration only exists 
when we calculate the projection of the axes paralleled to x axis and y axis. Now, as 
seen in a.2 and a.3, we have more projection points to estimate 𝑎𝑥, 𝑏𝑥 , 𝑐𝑥  and 
𝑎𝑦, 𝑏𝑦, 𝑐𝑦 . Therefore, we propose a simple threshold method to deal with it. 
If  𝑑(𝑟𝐴′𝑟𝐵′, 𝑟𝐶′𝑟𝐷′) < 𝑑𝑇 , the second degeneration occurs, the correspondent 
quadrilaterals would not be adopted.  
 
c. Intrinsic and extrinsic matrices 
 

The definition of the intrinsic matrix 𝐼: 
 

                    𝑰 = *
𝐹 ∗ (𝑘𝑥)

−1 0 𝑢𝑠

0 𝐹 ∗ (𝑘𝑦)
−1

𝑣𝑠
0 0 1

+               (2.39) 

 
𝑘𝑥, 𝑘𝑦 represent the pixel size of the detector plane.  

The extrinsic matrix 𝐸: 
 

𝑅 = ,𝒖̂, 𝒗̂, 𝒏̂-𝑇 
𝑻 = −𝑅 ∙ 𝒔 

                              𝐸 = ,𝑅, 𝑻-                          (2.40) 
                                                 
𝒖̂, 𝒗̂, 𝒏̂ mean the detector orientation. 𝒔 is the position of the X-ray source.  
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Fig.2.9 Dumay’s C-arm geometric model 
 

2.3Modeling C-Arm Movement 

2.3.1Classical Model 

2.3.1.1 Dumay’s model 

Dumay et al. [19] first proposed an ideal C-arm movement model. In Fig.2.9, 𝑂𝑠 is 
the X-ray source, α, 𝛽 are rotation axes, the world coordinate system 𝑋𝑤 − 𝑌𝑤 − 𝑍𝑤 
locates on the iso-center o, the camera coordinate system 𝑋𝑠 − 𝑌𝑠 − 𝑍𝑠. They have 
several ideal hypotheses:  
1, 𝛼 axis and 𝛽 axis are orthogonal and intersect at the iso-center o. 
2, the central X-ray beam passes the iso-center o and is orthogonal with the α axis 
and 𝛽 axis.  
3, the projections of the 𝛼 axis and 𝛽 axis in the imaging plane are parallel with the 
horizontal u and vertical axis v of the image respectively.   
4, the principle point (𝑢𝑠, 𝑣𝑠) is at the center of the image plane and fixed. The focal 
length SDD and the distance from source to the rotation axis (SAD) are fixed. 

This model represents the ideal acquisition geometry. We have the formulation of 
the intrinsic matrix 𝐼 and extrinsic matrix 𝐸[19,27]:  

 

𝐼 = [
𝑆𝐷𝐷 0 𝑢𝑠
0 𝑆𝐷𝐷 𝑣𝑠
0 0 1

] 

 

𝑅𝛼 = [
0 𝑠𝑖𝑛(𝛼) − cos(𝛼)

0 − cos(𝛼) −𝑠𝑖𝑛(𝛼)
−1 0 0

] 

 

𝑅𝛽 = [

1 0 0
0 cos (β) −𝑠𝑖𝑛(β)

0 𝑠𝑖𝑛(β) cos (β)
] 

 



Chapter 2 Geometric Calibration                      

38 
 

 
 

Fig.2.10 Gorges’s C-arm geometric model 
 

𝑇 = ,0,0, 𝑆𝐴𝐷-′ 
 
                            𝐸 = ,𝑅𝛽𝑅𝛼, 𝑇-                         (2.41) 
 
In practice, however, none of the ideal hypotheses for simplification purposes can be 
guaranteed due to the mechanical flaws. Therefore, Dumay’s model contains 
systematic errors that cannot be ignored.  

2.3.1.2 Gorges’s model 

Gorges et al. [28] adopted the multi-image calibration algorithm [9] to assess the 
physical behavior of the C-arm for medical augmented reality application. From the 
knowledge of the main characteristics of the C-arm, realistic models of the acquisition 
geometry are proposed. As seen in Fig.2.10, the main adopted characteristics of the 
C-arm system are:  
1, the focal length SDD=F is constant, the principle point𝑂𝑖 = (𝑢𝑠, 𝑣𝑠), 𝑢𝑠 changes 
with respect to the 𝛼 axis rotation, 𝑣𝑠 is constant. The SDD and the angles 𝛼, 𝛽 
measured by sensors are reliable.  
2, the two rotation axes are stable and independent.  
3, the motion around 𝛼 axis has a residual translation that proportional to this 
rotation axis vector.  

The expression of the intrinsic I and extrinsic matrices E are:  
 

𝐼 = [
𝑆𝐷𝐷 0 𝑢𝑠
0 𝑆𝐷𝐷 𝑣𝑠
0 0 1

] 

 
𝑢𝑠 = ∑ 𝑢𝑖

3
𝑖=0 𝛼𝑖  

 
𝐸 = 𝐸0𝐸𝛽𝐸𝛼 

 
𝐸𝛽 = [𝑅𝛽|(𝐼 − 𝑅𝛽)𝑃𝛽] 

 
λ = ∑ 𝜆𝑖

3
𝑖=0 𝛼𝑖  
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Fig.2.11 Li’s C-arm geometric model. 
 
                       𝐸𝛼 = ,𝑅𝛼|(𝐼 − 𝑅𝛼)𝑃𝛼 + 𝜆𝑟𝛼-                  (2.42) 
 

𝑅𝛼, 𝑅𝛽 are the rotation around the two axes, 𝑃𝛼 , 𝑃𝛽 are the point on the axes, 𝑟𝛼 is  
the rotation axis, 𝑢𝑖 , 𝜆𝑖 are the coefficients. The expression of the movement model is: 
 
                    𝑀 = {𝐸0, 𝑟𝛼, 𝑃𝛼 , 𝑟𝛽 , 𝑃𝛽 , 𝑢𝑖 , 𝜆𝑖; 𝐹, 𝑣𝑠}                 (2.43) 

 
The refinement of the parameters can be obtained by minimizing the projection error: 
 
                        𝐺 = ∑ ‖𝑥𝑖

𝑗
− 𝑃𝑋𝑖

𝑤‖   𝑖,𝑗                       (2.44) 
 

i is the index of control points, j is the index of orientations, 𝑋𝑖𝑤 and 𝑥𝑖
𝑗  are the 

world coordinates of the control points and its 2D projection position. The 
multi-images algorithm [9] of Gorges’s model is too tedious to implement.  

2.3.1.3 Li’s model 

Li et al. [22] adopted the posteriori information from Gorges [9] and proposed a 
new C-arm movement model objectively and systematically. See Fig.2.11, 𝑂𝑠 is the 
X-ray source, 𝛽 axis passes o and is perpendicular to the plane of circle o, there are 
world coordinate system 𝑋𝑤 − 𝑌𝑤 − 𝑍𝑤 , camera coordinate system 𝑋𝑠 − 𝑌𝑠 − 𝑍𝑠 , 
image coordinate system 𝑋𝑖 − 𝑌𝑖 − 𝑍𝑖, movement coordinate system 𝑋𝑎 − 𝑌𝑎 − 𝑍𝑎. 

For this C-arm movement model, there were several new hypotheses: 
1, 𝛼 axis and 𝛽 axis may neither intersect with each other nor be perpendicular. 
2, the central X-ray beam may not pass o and naturally not be perpendicular to the 𝛼 
axis and 𝛽 axis. 
3, there is no direct connection between the image axes u v and the projection of the 
𝛼 axis and 𝛽 axis.  
4, the principal point 𝑂𝑖 = (𝑢𝑠, 𝑣𝑠), it changes with respect to the C-arm orientation. 
The focal length SDD is considered to be constant.  
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Fig.2.12 The relationship between the coordinate systems in Li’s model 
 

The initial estimation of intrinsic I and extrinsic matrix E: 
 

𝐼 = [
𝑆𝐷𝐷 0 𝑢𝑠
0 𝑆𝐷𝐷 𝑣𝑠
0 0 1

] 

 
𝑢𝑠(𝛼, 𝛽) = ∑ ∑ 𝑎𝑗𝑗𝛼

𝑛−𝑚𝛽𝑚𝑛
𝑚=0

𝑁1
𝑛=0   

 
𝑣𝑠(𝛼, 𝛽) = ∑ ∑ 𝑏𝑗𝑗𝛼

𝑛−𝑚𝛽𝑚𝑛
𝑚=0

𝑁2
𝑛=0   

 
Where 𝑁1, 𝑁2 are the degrees of the polynomial functions. 𝑗𝑗 = 𝑛(𝑛 + 1)/2 + 𝑚.  
 

𝐸𝛼 = 0
𝑅𝛼 (𝐼 − 𝑅𝛼)𝑃𝛼
0 1

1 
 

𝐸𝛽 = [

1
0

0
cos 𝛽

0
− sin 𝛽

0
𝑟 sin 𝛽

0
0

sin 𝛽
0

cos 𝛽
0

𝑟 − 𝑟 cos𝛽
1

] 

 
                         𝐸 = (𝐸0𝐸𝛽𝐸𝛼𝐸𝑎𝑠)

−1
                       (2.45) 

 
𝑎𝑗,𝑏𝑗 are the coefficients of the polynomial expansion of the principal point. See 
Fig.2.12, 𝐸0 is the transformation from world system to the reference coordinate 
system. 𝐸𝛽 and 𝐸𝛼  represent the rotation transformation about 𝛼 and 𝛽 axes, 𝐸𝑎𝑠 
is the transformation from movement system to camera system, 𝑟 is the radius of the 
circle. All of these parameters can be calibrated by this C-arm movement model 𝑀, 
see [22] for more details.   

The refinement of the estimation can be obtained by minimizing the projection 
error:  

𝐺 = ∑ ‖𝑥𝑖
𝑗
− 𝑃𝑋𝑖

𝑤‖𝑖,𝑗   
 
With  
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𝑃 = 𝐼𝐸 
The movement model is: 
 
                     𝑀 = {𝑟, 𝑟𝛼 , 𝑃𝛼 , 𝐸𝑎𝑠, 𝐸0, 𝐹, 𝑎𝑗𝑗 , 𝑏𝑗𝑗}                (2.46) 

 
i is the index of control points, j is the index of orientations, 𝑋𝑖𝑤 and 𝑥𝑖

𝑗  are the 
world coordinates of the control points and its 2D projection position.  

There are many other proposed movement models. We compared 4 representative 
movement models in Table.2.1. We found that Gorges’s model is easy to perform and 
the posterior information is more reliable. The disadvantage of Gorges’s model is that 
the model only considers the traditional C-arm with a deviation along the rotation axis. 
Next, we proposed our movement model that will be suitable for the Zeego system.  
 

2.3.2 Proposed Movement Model 

2.3.2.1Recalculation to C-arm coordinate system 

In part 2.2, the acquisition geometry is under the phantom coordinate system. The 
extrinsic matrix can be transformed to the nominal iso-center system (C-arm system), 
which is independent of the phantom placement. See Fig.2.13, we see the geometry of 
Zeego system. This six-joint robot has a broader coverage and multi work positions.   
We plot 3 representative work positions: Head side, Left side, Table 30 in Fig.2.13 (a),  
(b) and (c). In Fig.2.13, we plot all the relative coordinate systems. The origin of the 
phantom coordinate system is 𝑶𝒑, the coordinate axes are defined as described in 
 
 Dumay’s model 

[19] 
Cañero’s model 
[21,29]  

Gorges’s model 
[9,28] 

Li’s model 
[22] 

Priori 
Hypotheses 

Ideal intrinsic 
and extrinsic  
 

Ideal intrinsic. 
General 
extrinsic. 

No 
Posteriori model 

Variable 
principal point 
General 
extrinsic 

Parameters to 
be calibrated 

None 
 
 

𝑅𝑤 , 𝑡𝑤 , 𝜃, 𝜖, ‖𝐶‖ 
𝑑𝑥 , 𝑑𝑦 , 𝑅𝑑 , 𝑡𝑑 , 𝑡𝑖 

𝐸0, 𝑟𝛼 , 𝑃𝛼, 𝑟𝛽 , 𝑃𝛽 , 𝜆𝑖 𝑟𝛼 , 𝑃𝛼 , 𝐸𝑎𝑠, 𝐸0 
𝑟, 𝑓, 𝑎𝑗 , 𝑏𝑗 

Calibration 
algorithm and 
phantom 

None 
 
 

Zhang’s 
algorithm [17] 
Plate phantom 

Multi-images 
Algorithm [9] 
Helical phantom 

Zhang’s 
algorithm [17] 
Plate phantom 

Optimization 
for refinement 

No 
 

Yes Yes Yes 

Advantages Simple 
 
 

Improved 
precision 

High precision. 
Easy to perform. 
 

High 
precision. 
Flexible. 

Disadvantages 
 
 

Low precision Complex Tranditional 
C-arm only 
 

Complex 
Rigid motion 
only 

 
Table 2.1. The comparisons of the C-arm movement models. 
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(a)                          (b) 
 

 
 

(c)                           (d) 
 

Fig. 2.13. Geometry of Zeego System. Work positions include Head, Left, Table 30. (a) is the 
Head position, (b) is the Left position, (c) is Table 30 position, (d) is the geometry of the 

trajectory. 
 
2.2.2.1. The table system is defined by the Zeego system, the origin 𝑶𝒕 locates on the 
edge of the table, 𝒙𝒕 points to the right side of the patient along the edge of the table, 
𝒚𝒕 is perpendicular to the table plane, 𝒛𝒕 subjects to the right-handed system. The 
C-arm system with the origin is the nominal iso. 𝒙𝒄 is antiparallel to 𝒚𝒕, 𝒚𝒄 is 
parallel to 𝒙𝒕, 𝒛𝒄 is parallel to 𝒛𝒕. The C-arm system will be coordinated with the 
operating table automatically. X-ray source 𝑶𝒔  (same as 𝒔 defined above), iso, 
principle point (𝑢𝑐𝑐, 𝑣𝑐𝑐) are collinear in the condition of ideal geometry. The source 
system locates at the X-ray source 𝑶𝒔, 𝒙𝒔 is parallel to 𝒚𝒄, 𝒚𝒔 is antiparallel to 𝒛𝒄, 
𝒛𝒔 is antiparallel to 𝒙𝒄. The detector coordinate system is defined as shown in Fig. 
2.13 (d). See Fig.2.13 (d), the ideal trajectory plane is a circle with the origin iso, the 
radius is the source to axis SAD, 𝒛𝒄 is the normal vector of this plane. For the Head 
position, the table is placed in the horizontal direction, the plane of the C shaped 
gantry is perpendicular to the table plane. For the Left position, the plane of the C 
shaped gantry rotates, the table is fixed. For the Table30 position, the table plane is 
rotated by 30°, and the C gantry plane also rotates so that the two planes are 
perpendicular.  

We define 𝑹𝒑𝒄 , 𝑻𝒑𝒄  as the rotation and translation from C-arm system to phantom 
system. We have the following approximation.  
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The apparent displacement of the phantom as the gantry rotates corresponds to:  
 

𝑑𝑥 = 𝑡1 cos 𝛼 + 𝑡2 sin 𝛼 
𝑑𝑦 = −𝑡1sin 𝛼 + 𝑡2cos 𝛼 

                              𝑑𝑧 = 𝑡3                            (2.47) 
𝑡1, 𝑡2, 𝑡3 are the components of the translation 𝑻𝒑𝒄 . 

The magnification is defined as: 
 

𝑆𝐴𝐷𝑐 = 𝑆𝐷𝐷 − 𝐷𝐴𝐷𝑐 
                         𝑀𝑐 = 𝑆𝐷𝐷 ∗ (𝑆𝐴𝐷𝑐)−1                    (2.48) 
 
The superscript means the parameter under this system. DAD means detector to 
gantry axis distance, SAD means source to gantry axis distance, SDD source to 
detector distance. 

The piercing point (𝑢𝑐𝑐, 𝑣𝑐𝑐) is defined as:  
 

𝑢𝑐
𝑐 = 𝑢𝑐

𝑝 +𝑀𝑐 ∙ 𝑑𝑧 
                           𝑣𝑐𝑐 = 𝑣𝑐

𝑝 +𝑀𝑐 ∙ 𝑑𝑦                      (2.49) 
 

The source position under C-arm system is defined as:  
 
                           𝑷𝑺𝒄 = 𝑹𝒑𝒄𝑷𝑺

𝒑
+ 𝑻𝒑

𝒄                         (2.50) 
 

We minimize the apparent sinusoidal oscillations in detector offset and the apparent 
offset and tilt of the source trajectory plane to estimate the C-arm system. The 
objective function is: 
 
                            𝑔 = 𝜎𝑣𝑐

2 + 𝑍𝑠̅̅ ̅
2
+ 𝜎𝑍𝑠

2                        (2.51) 
 
𝜎𝑣𝑐 , 𝜎𝑍𝑠 are the standard deviation of  𝑣𝑐𝑐 , 𝑍𝑆𝑐. 𝑍𝑠̅̅ ̅ is the mean of 𝑍𝑆𝑐. We use the 
Powell method [30] to realize the optimization. The objective function should be 
calculated over the calibration angles with minor deviation.  

We have the criterion to choose the calibration angles with minor deviation: 
 

𝐿𝑆𝛼𝑆𝛼+T𝑠 = ‖𝑷𝑺𝜶
𝒑
− 𝑷𝑺𝜶+𝑇𝑠

𝒑
‖ 

𝜃 = 𝛼𝑠/2 
𝐿 = 2𝑆𝐴𝐷𝑐 sin 𝜃 

                        If     |𝐿𝑆𝛼𝑆𝛼+1 − 𝐿| ≤ 𝐿𝑡                    (2.52) 
 
Then, angles 𝛼, 𝛼 + 𝛼𝑠  are chosen as the angles with minor deviation.𝑆𝛼  is the 
source position at angle 𝛼, 𝑇 is the sampling interval angle between two adjacent 
calibration angles. 𝐿𝑡 is the threshold. 

The initialization of 𝑹𝒑𝒄  can be estimated at the reference angle 𝛼 = 0.  
 
                              𝑹𝒑𝒄 = 𝑹𝑺𝒄𝑹𝒑𝑺                           (2.53) 
 
with the ideal assumption 
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                         𝑹𝑺𝒄 = [
0 0 −1
0 −1 0
−1 0 0

]                     (2.54) 

                                                                        
𝑹𝒑
𝑺  is the estimated extrinsic matrix. We adopt the source trajectory of the chosen 

calibration angles to compute the circle fitting, the circle center is 𝑷𝒊𝒔𝒐
𝒑 . 𝑷𝒊𝒔𝒐𝒄 = 𝟎, 

from (2.53), we have the initialization of 𝑻𝒑𝒄 :  
 
                          𝑻𝒑𝒄 = −𝑹𝒑𝒄𝑷𝒊𝒔𝒐

𝒑
                            (2.55) 

 
Last, we transform the extrinsic matrix: 
 

𝑸 = [
𝑹𝒑
𝒄 𝑻𝒑

𝒄

0 1
] 

 
                             𝑬𝒄 = 𝑬𝒑𝑸𝑻                           (2.56) 

 
𝑬𝒄: extrinsic matrix in C-arm system. T means the transposition.  

2.3.2.2 Modeling C-arm movement 

We propose different movement models based on the estimated geometry. As in Fig. 
2.13, we have three representative work positions of the 3D acquisition: Head, Left 
and Table 30. The orientation is classically described by two angles: 𝛼 right/left 
anterior orientation (RAO/LAO), 𝛽  cranio-caudal (CC). The two angles can be 
measured in real-time by sensors. For this chapter, we set 𝛽 = 0.  

The projection matrix at angle 𝛼 can be modeled as: 
 

𝑷𝜶 = 𝑰𝜶𝑬𝜶 
𝑬𝜶 = 𝑬𝟎𝑫𝜶 

                             𝑬𝟎 = ,𝑹𝟎|𝑻𝟎-                        (2.57) 
                                                    
𝑰𝜶  and 𝑬𝜶  is the intrinsic and extrinsic matrix at angle 𝛼 . 𝑬𝟎(𝛼 = 0)  is the 
reference matrix. 𝑫𝜶 means the motion around axis 𝛼. In 2.4.1 and 2.4.2, we have 
the analyzed characteristics of 𝑰𝜶 and 𝑫𝜶. In the following 2.4.3, we test many 
possible models. 

We model 𝑰𝜶 by 𝑢𝑠, 𝑣𝑠 , 𝐹. 𝐹 is constant, 𝑢𝑠, 𝑣𝑠 can be modeled as polynomial 
functions: 

 
𝑢𝑠(𝛼) = ∑ 𝑝𝑢𝑖𝛼

𝑁−𝑖𝑁
𝑖=1    

                         𝑣𝑠(𝛼) = ∑ 𝑝𝑣𝑖𝛼
𝑁−𝑖𝑁

𝑖=1                      (2.58) 
 

𝑝𝑢, 𝑝𝑣 are the vector coefficients of the polynomial expansion, N is the order.  
𝑫𝜶  can be modeled as a mean rotation motion for the Head and Left work 

positions: 
 

                        𝑫𝜶 = ,𝑹𝜶|(𝑰 − 𝑹𝜶)𝑷𝜶-                    (2.59) 
                                               
𝑹𝜶 is the mean rotation matrix around axis 𝛼, 𝑷𝜶 is the fixed point on the rotation 
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axis 𝒓𝜶. 
𝑫𝜶 can be modeled as a mean rotation motion with minor residual translation for 

the Table 30 position: 
 

                    𝑫𝜶 = ,𝑹𝜶|(𝑰 − 𝑹𝜶)𝑷𝜶 + 𝑻𝜶-                    (2.60) 
 

𝑻𝜶 is the uncertain residual translation:  
 

𝑻𝜶 = [𝑇𝑥(𝛼), 𝑇𝑦(𝛼), 𝑇𝑧(𝛼)]
𝑇

 

𝑇𝑥(𝛼) = ∑ 𝑝𝑇𝑥𝑖𝛼
𝑀−𝑖𝑀

𝑖=1   
𝑇𝑦(𝛼) = ∑ 𝑝𝑇𝑦𝑖𝛼

𝑀−𝑖𝑀
𝑖=1   

                        𝑇𝑧(𝛼) = ∑ 𝑝𝑇𝑧𝑖𝛼
𝑀−𝑖   𝑀

𝑖=1                   (2.61) 
     
𝑇𝑥(𝛼), 𝑇𝑦(𝛼), 𝑇𝑧(𝛼) are the components of 𝑻𝜶. 𝑝𝑇𝑥, 𝑝𝑇𝑦, 𝑝𝑇𝑧 are the coefficients 
vectors of polynomial expansion of each component, M is the order.  

We have the following three representative models to build the projection matrix: 
 

𝑀𝑕𝑒𝑎𝑑 , 𝑀𝑙𝑒𝑓𝑡    
 
                 0,1=*𝜃0,  0, 𝛾0, 𝑻𝟎, 𝒓𝜶, 𝑷𝜶, 𝑝𝑢, 𝑝𝑣; 𝛼, 𝐹+              (2.62) 

 
𝑀𝑡𝑎𝑏𝑙𝑒30   
 
            2={𝜃0,  0, 𝛾0, 𝑻𝟎, 𝒓𝜶, 𝑷𝜶, 𝑝𝑇𝑥, 𝑝𝑇𝑦, 𝑝𝑇𝑧 , 𝑝𝑢, 𝑝𝑣; 𝛼, 𝐹}         (2.63) 

 
𝜃0,  0, 𝛾0 are three Euler angles of 𝑅0. 
𝑇0 is the translation vector of 𝐸0. 
𝛼, 𝐹 are the ideal parameters read from sensor data. 

2.3.2.3 Calibrating the models 

The initial parameters can be estimated by the above parts. The accurate model 
parameters can be calibrated by minimizing the projection error𝐸𝑓.  

For the models, we have the follows:  
 𝑘=0,1,2 = 𝑎𝑟𝑔 𝑚𝑖𝑛(𝐸𝑓) 

 
With 
 

𝐸𝑓 =
∑ 𝜀(𝑃𝑗)𝑗𝜖𝑎𝑛𝑔𝑙𝑒

𝑛
 

 

ε(𝑃𝑗) =
∑ ‖𝑃𝑗𝑋𝑖

𝑐 − 𝑞𝑖‖
𝑚
𝑖=0

𝑚
 

                                                                (2.64) 
𝑃𝑗 is the projection matrix build from the movement models. 𝑋𝑖𝑐 means the 3D 
coordinates of each marker under C-arm system. 𝑞𝑖 is the 2D projection coordinates 
of each marker. 𝑚 is the number of markers, 𝑛 is the number of the calibration 
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angles.  𝑘=0,1,2 mean the three models. We use Levenberg-Marquardt algorithm [31] 
to realize the optimization.  

2.3.2.4 Implementation of the proposed movement models 

We perform the acquisition of the phantom from some projection angles by a 
sampling interval 𝛼𝑇. First, we calculate the geometry by the proposed calibration 
algorithm. Second, we recalculate the geometry to the C-arm system. Third, we 
calibrate the proposed movement models. Finally, we generate all the needed 
geometries of the 3D reconstruction by the movement models.  

2.4 Experimental Result 

The experiments were performed on three representative imaging positions of 
Artis-Zeego: Head, Left, Table30. We set the focal length SDD = 𝐹 = 1199 mm, 
SAD = 785 mm, pixel size in each direction 𝑘𝑥 = 𝑘𝑦 =0.616 mm/pixel. The 
projection image has the resolution of 480×616 pixels. The protocol for the 3D 
reconstruction is 8sDR. We divide the whole dataset into two parts, the calibration 
dataset and the test dataset. The sampling interval 𝛼𝑇  =10°. 

The calibration dataset is defined as:  
 

𝑃𝑕𝑒𝑎𝑑 = *(𝛼, 𝛽)|𝛽 = 0 𝛼 ∈ *−160
°, −150°, … ,0°, 10°, 20°++ 

𝑃𝑙𝑒𝑓𝑡 = *(𝛼, 𝛽)|𝛽 = 0 𝛼 ∈ *−160
°, −150°, … , 0°, 10°, 20°++ 

𝑃𝑡𝑎𝑏𝑙𝑒30 = *(𝛼, 𝛽)|𝛽 = 0 𝛼 ∈ *−80
°, −70°, … , 0°, … , 90°, 100°++ 

The test dataset is defined as: 
 

𝑃𝑕𝑒𝑎𝑑
𝑇 = *(𝛼, 𝛽)|𝛽 = 0 𝛼 ∈ *−165°, −155°, … ,5°, 15°, 25°++ 
𝑃𝑙𝑒𝑓𝑡
𝑇 = *(𝛼, 𝛽)|𝛽 = 0 𝛼 ∈ *−165°, −155°, … , 5°, 15°, 25°++ 
𝑃𝑡𝑎𝑏𝑙𝑒30
𝑇 = *(𝛼, 𝛽)|𝛽 = 0 𝛼 ∈ *−75°, −65°, … , 85°, 95°++ 

2.4.1 Geometry estimation  

2.4.1.1 Geometry estimation of the proposed algorithm 

We apply the proposed helical algorithm and Xu’s algorithm [23] to the calibration 
dataset. We compare the two algorithms in two aspects: the precision and the 
efficiency. 𝑑𝑇 = 2.  

We adopt the mean projection error to evaluate the accuracy of the estimated 
geometries. The mean projection error (mpe) of each angle is calculated as: 

 

𝑚𝑝𝑒 =
∑ ‖𝑃𝑗𝑋𝑖

𝑝 − 𝑞𝑖‖
𝑚
𝑖=0

𝑚
 

                                                            (2.65) 
𝑋𝑖
𝑝 means the 3D coordinates of each marker under phantom system. 𝑞𝑖 is the 2D 

projection coordinates of the center of each marker. 𝑚 is the number of markers. 𝑃𝑗 
is estimated projection matrix by the two algorithms. We plot the mpe over all the  
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(a) Head side position                      (b) Left side position 
 

 
(c) Table 30 position 

 
Fig.2.14. Mean projection error of the two algorithms (a) Head side position (b) Left side position 

(c) Table30 position. Blue start is the result by our approach. Red cross is the result by Xu’s 
algorithm.  

 
 Computation time (s) 
 Head Left Table30 

Xu’s 
algorithm 

12.59 12.54 12.66 

proposed 10.29 10.40 10.42 
 

Table 2.2. Computation time of the two algorithms 
 
 mean std Mean fitting error (order=2,3,4) 
 Head Left Table30 Head Left Table30 
𝐹 1196.67 2.9

9 
1197.10 3.3
1 

1196.89 3.
2 

2.59/2.60/2.5
7 

3.38/3.37/3.4
0 

2.48/1.54/1.4
0 

𝑢𝑠 238.32 5.51 242.53 6.06 243.21 5.0
1 

2.81/2.79/2.8
2 

4.55/4.48/4.5
4 

3.59/3.42/3.3
6 

𝑣𝑠 316.88 6.75 318.52 7.18 313.83 5.1
9 

4.37/4.30/3.9
5 

3.86/3.41/3.1
4 

3.56/3.63/3.5
2 

 
Table 2.3. Intrinsic parameter analysis 

 
calibration angles of the two algorithms in Fig.2.14. We calculate the mean 
computation time of the two algorithms in Table 2.2.  
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From Fig.2.14 and Table 2.2, we can see that the proposed algorithm has a lower 
projection error than Xu’s algorithm. Meanwhile, the proposed algorithm decreases 
the computation time as it eliminates the degeneration correction procedure.  
 

2.4.1.2 Intrinsic parameter analysis 

We calculate the mean and standard deviation of each intrinsic parameter 𝑢𝑠, 𝑣𝑠 , 𝐹 
in Table 2.3. We use the polynomial function to fit the parameters according to 
different order. The fitting errors are also showed in Table 2.3.  

Observing the results in table 2.3, we found that the deviation of 𝐹 is quite small 
related to its length, we can consider it to be constant. 𝑢𝑠 , 𝑣𝑠 are variable, considering 
the fitting error and the complexity of the order, we choose the third order fitting 
polynomial. 

 

2.4.2 Estimation of C-arm coordinate system 

2.4.2.1 Estimation of C-arm system 

We set 𝐿𝑡=0.6 mm. We plot the source trajectories both under the phantom 
coordinate system and C-arm coordinate system in Fig.2.15. Left column is the source 
trajectory under phantom system. Right column is the source trajectory under C-arm 
system, the blue represent the estimated source position, the red one is the ideal circle 
trajectory.  

We can see that the source trajectory plane under C-arm system has a tilt angle to 
the ideal circle trajectory plane for Head and Left position. For Table position, the 
source trajectory under C-arm system has an oscillation, not located in the same 
plane. 
 

         
 

(a) Head position 
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(b) Left position 
 

         
 

(c) Table30 position 
 

Fig.2.15. Source trajectory under phantom and C-arm coordinate system (a) Head side position (b) 
Left side position (c) Table30 position. 
 

 Head Left Table30 
|𝛼𝑒𝑟𝑟|(°) 0.536 0.175 

 
0.378 0.246 

 
0.128 0.104 

𝑟𝛼 -0.0024,0.0001,-0.9999 
 0.0012,0.0095,0.0001 

-0.0013,-0.0047,-0.9999 
 0.0017,0.0053,0.0001 

 

-0.0012,0.0007,-0.9999 
 0.0024,0.0075,0.0001 

𝜃𝛼(°) 0.265 0.478 0.233 0.213 0.298 0.297 
    
𝑃𝛼 -2.591,0.586,0.007 

 10.542,6.861,0.030 
1.486,3.149,-0.016 
 3.274,11.94,0.051 

-2.365,-1.483,-0.001 
 8.875,2.441,0.009 

 
Table 2.4. Extrinsic parameter analysis 

 

2.4.2.2 Extrinsic parameter analysis 

We analyze the extrinsic parameters related to C-arm system. We have the equation 
to describe it: 
 
                             𝑬 = 𝑬𝟎𝑫𝜶                          (2.66) 
 
𝑬𝟎 is the extrinsic matrix at the reference position (𝛼 = 𝛽 = 0). 𝑫𝜶 means the 
movement around 𝛼 axis. 𝑬, 𝑬𝟎 can be estimated by the proposed method. 𝑫𝜶 can  
be obtained by 𝑬𝟎−1𝑬. 
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We suppose the motion 𝑫𝜶 can be modeled as a mean rigid motion, defined as:  
 

                    𝑫𝜶 = ,𝑹𝜶+𝜶𝒆𝒓𝒓|(𝑰 − 𝑹𝜶+𝜶𝒆𝒓𝒓)𝑷𝜶-                 (2.67) 
                                           
𝑹𝜶 is the rotation matrix, which can be represented by the rotation vector 𝒓𝜶 and 
sensor angle 𝛼  by Rodrigue formulation. The translation 𝑻𝜶  of 𝑫𝜶  can be 
represented as 𝑹𝜶 and 𝑷𝜶.  𝑷𝜶 is a fixed point on the rotation vector 𝒓𝜶. 𝑷𝜶 is a 
fixed point on the rotation vector 𝒓𝜶. 

We calculate the mean and standard deviation of the parameters 𝛼𝑒𝑟𝑟, 𝒓𝜶, 𝜃𝛼, 𝑷𝜶 in 
table 2.4. 𝛼𝑒𝑟𝑟 is the residual angle between the current calculated angle and the 
sensor angle. 𝒓𝜶  is the rotation vector of current calibration angles. 𝜃𝛼  is the 
deviation angle of the current rotation vector 𝒓𝜶 to 𝒓̅𝜶, 𝒓̅𝜶 is the mean rotation 
vector of all calibration angles. 𝑷𝜶 is the fixed point on the current rotation vector 
𝒓𝜶.  

See table 2.4, 𝛼𝑒𝑟𝑟 is small enough, so that the rotation angle is receivable by the 
sensor data. 𝒓𝜶 is stable and 𝜃𝛼 has small mean and standard deviation. The two 
values prove that the assumption of rotation matrix 𝑹𝜶 is correct. 𝑷𝜶 has a big 
deviation, we should consider more about the translation part.  

2.4.3 Test of different possible movement models 

We adopt the calibration dataset to calculate different movement models, and apply 
the calibrated movement models to the test dataset. Here, we consider intrinsic and 
extrinsic parameters respectively. We have 4 models: 𝑚𝑖, 𝑚0, 𝑚1,𝑚2. 𝑚𝑖 is the ideal 
geometry of the acquisition trajectory. 𝑚0 has the ideal intrinsic parameters and the 
rigid extrinsic parameters. 𝑚1 has the variable principle point and the rigid extrinsic 
parameters. 𝑚2 has the variable principle point and the rigid extrinsic parameters 
added with residual translation.  

We have the following formulations:  
 
𝑚𝑖   
 
                           𝑖=*𝛼, 𝐹, 𝑢𝑠, 𝑣𝑠, 𝑆𝐴𝐷+                     (2.68) 
 
𝑚0   
 
                   0=*𝜃0,  0, 𝛾0, 𝑻𝟎, 𝒓𝜶, 𝑷𝜶; 𝛼, 𝐹, 𝑢𝑠, 𝑣𝑠+                (2.69) 
 
𝑚1   
 
                   1=*𝜃0,  0, 𝛾0, 𝑻𝟎, 𝒓𝜶, 𝑷𝜶, 𝑝𝑢, 𝑝𝑣; 𝛼, 𝐹+                (2.70) 
 
𝑚2   
             2={𝜃0,  0, 𝛾0, 𝑻𝟎, 𝒓𝜶, 𝑷𝜶, 𝑝𝑇𝑥, 𝑝𝑇𝑦, 𝑝𝑇𝑧 , 𝑝𝑢, 𝑝𝑣; 𝛼, 𝐹}            (2.71) 
 
𝛼, 𝐹, S D are read from sensor data. 𝑢𝑠, 𝑣𝑠 are the center pixels of the detector. 
𝜃0,  0, 𝛾0 are three Euler angles of 𝑹𝟎.  𝑻𝟎  is the translation vector of 



Chapter 2 Geometric Calibration                      

51 
 

𝑬𝟎. 𝑝𝑇𝑥, 𝑝𝑇𝑦, 𝑝𝑇𝑧 are the coefficient vectors of polynomial of the residual translation 
vector 𝑻𝜶, see (2.61). 𝑝𝑢, 𝑝𝑣 are the coefficient vectors of polynomial of estimated 
𝑢𝑠, 𝑣𝑠, see (2.58).  

We calculate the projection error by these models in table 2.5. For the Head 
position, 𝑚1 has smaller error than others, 𝑚𝑖 and 𝑚0 has acceptable small error. 
This may indicate that the acquisition trajectory is stable and more close to a circle. 
For the Left side position, 𝑚1 is the best model. 𝑚𝑖 has much more error than Head 
position. This illustrates that the deviation results in the variation of the intrinsic 
parameters. For the last Table30 work position, this is the most complex motion. 
𝑚𝑖,𝑚0 can’t provide the acceptable error, 𝑚2 can compensate this deviation. This 
indicates that there are some uncertain residual deviations. Next, we apply 𝑚1 to 
Head and Left side position, 𝑚2 to the Table30 position. 
 
 
𝛼(°) -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 
𝑚𝑖 1.19 1.08 0.94 0.96 0.67 0.94 0.49 0.50 0.62 0.58 0.63 0.97 0.75 
𝑚0 1.39 1.51 1.34 1.14 1.81 0.98 1.36 1.44 1.05 1.44 1.00 1.58 1.04 
𝑚1 0.36 0.32 0.30 0.43 0.59 0.56 0.30 0.36 0.39 0.44 0.45 0.63 0.54 
𝑚2 1.31 1.19 1.05 1.13 0.88 1.04 0.72 0.72 0.69 0.73 0.69 0.69 0.92 

 
(a) calibration dataset at Head position 

 
𝛼(°) -105 -95 -85 -75 -65 -55 -45 -35 -25 -15 5 15 25 
𝑚𝑖  1.23 1.13 1.06 0.82 1.13 0.59 0.88 0.52 0.48 0.58 0.61 0.72 0.82 
𝑚0 1.39 1.56 1.24 1.52 1.23 1.73 0.94 1.37 1.42 1.24 1.28 1.03 1.03 
𝑚1 0.30 0.33 0.35 0.30 0.62 0.50 0.56 0.34 0.38 0.35 0.40 0.50 0.57 
𝑚2 1.25 1.20 1.13 0.93 1.26 0.78 0.97 0.71 0.74 0.64 0.73 0.80 1.15 

 
(b) test dataset at Head position 

 
𝛼(°) -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20    
𝑚𝑖  3.37 3.49 3.49 3.47 3.52 3.30 2.85 2.24 1.54 0.91 0.51 0.94 1.32 
𝑚0 1.21 0.76 0.85 1.63 1.18 0.74 1.58 2.54 1.93 2.54 3.01 3.30 3.84 
𝑚1 0.54 0.68 0.60 0.72 0.65 0.98 0.54 0.95 0.46 0.44 0.43 0.40 0.41 
𝑚2 0.99 0.99 0.81 0.88 0.55 0.92 0.44 0.93 0.43 0.46 0.49 0.53 0.61 

 
(c) calibration dataset at Left position 

 
𝛼(°) -105 -95 -85 -75 -65 -55 -45 -35 -25 -15 5 15 25 
𝑚𝑖  3.26 3.58 3.77 3.41 3.67 3.28 3.12 2.50 1.70 1.23 1.61 1.35 2.04 
𝑚0 0.85 0.95 3.38 1.28 1.22 1.29 1.27 1.02 1.71 2.43 4.17 4.34 4.92 
𝑚1 0.42 0.59 0.79 0.51 0.73 0.56 0.60 0.67 0.51 0.46 1.59 1.29 2.00 
𝑚2 0.99 0.98 2.88 0.73 0.74 0.57 0.48 0.62 0.51 0.43 1.51 1.37 2.43 

 
(d) test dataset at Left position 

 

𝛼(°) -70 -60 -50 -40 -30 30 40 50 60 70 80 90 100 
𝑚𝑖  8.07 6.57 6.93 9.52 10.4 3.18 3.80 3.15 2.79 3.05 2.18 2.04 1.85 
𝑚0 2.40 2.92 0.78 4.95 7.25 0.86 1.05 1.35 1.63 1.36 2.24 3.56 3.05 
𝑚1 1.07 3.68 2.02 1.99 3.98 1.15 0.69 1.06 1.42 0.68 0.82 0.77 1.79 
𝑚2 1.00 3.93 2.36 1.75 3.85 0.96 0.59 0.97 1.17 0.63 0.60 0.65 1.40 

 
(e) calibration dataset at Table30 position 
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𝛼(°) -65 -55 -45 -35 -25 25 35 45 55 65 75 85 95 
𝑚𝑖  6.91 6.49 6.91 10.5 9.27 2.94 3.32 3.23 3.50 3.14 2.32 2.29 2.46 
𝑚0 3.67 1.71 1.32 6.82 6.64 0.96 0.83 0.85 0.89 1.09 1.76 1.42 3.85 
𝑚1 3.52 3.17 1.44 3.66 3.37 1.57 0.71 0.51 0.70 0.79 0.93 1.02 0.78 
𝑚2 3.05 3.02 1.34 3.51 3.06 0.95 0.70 0.57 0.70 0.69 0.83 0.69 0.47 

 
(f) test dataset at Table30 position. 

 
Table 2.5 2D mean projection error (pixel) of different movement models 

2.4.4 Geometry deviation of Zeego system 

If the Zeego system has no geometry deviation, the obtained 3D object by DynaCT 
and the ideal geometry and the acquired projection are consistent [32]. Here, we 
calculate the 2D projection error observed for the real motion of Zeego system.  

We generate a simulated 2D projection by the system matrix. The system matrix is 
generated by the simplified distance-driven [7] projector with the ideal geometry. 
Second, we extract the 2D centroid coordinates of the projected spheres from the 
projection images. They are the generated simulated projection and the clinical 
acquired projection. Last, we calculate the mean error between the two extracted 2D 
coordinates of each angle.  

See Fig.2.16, we plot the 2D projection error in horizontal (u) and vertical (v) 
directions. We found that the above consistence assumption is invalid. The acquisition 
system has obvious geometry deviations related to the ideal geometry. The deviation 
of Head position is minor. The machine motion along u direction has an obvious 
smooth deviation according to the rotation angles for the Left position. The geometry 
deviation has an oscillation for the Table position, especially along v direction.  

We calculate the 2D projection error for the calibration and test angles. We show 
the results of some angles in table 2.6. For Head position, the mean error is 1.44 
pixels (equals to 0.89 mm), and the biggest error is 1.94 pixels (equals to 1.19 mm). 
This means that Head position has the least deviation. For Left position, the mean 
error is 1.98 pixels (equals to 1.22 mm), and the biggest error is about 3.31 pixels 
(equals to 2.04 mm).This means that the Left position may have more system 
deviation. For Table30 position, the mean error is 4.85 pixels (equals to 2.99 mm), 
and the biggest error is about 10.02 pixels (equals to 6.17 mm). This means that the 
deviation for this position is the most severe.  
 

      
    

(a)Head position                           (b) Left position 
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(c)Table30 position 
 

Fig.2.16 2D projection error in horizontal and vertical directions of the Zeego system 
 
𝛼(°) -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 
Head 1.30 1.33 1.28 1.18 1.71 1.15 1.52 1.72 1.39 1.85 1.55 1.87 1.39 
Left 2.35 2.38 2.44 2.48 2.45 2.22 2.14 2.18 1.22 1.24 1.43 1.70 2.20 
𝛼(°) -70 -60 -50 -40 -30 30 40 50 60 70 80 90 100 

Table30 4.95 4.97 4.74 7.85 9.92 2.35 2.16 3.32 3.88 3.54 4.70 5.94 5.58 

 
(a) calibration dataset 

 
 
𝛼(°) -105 -95 -85 -75 -65 -55 -45 -35 -25 -15 5 15 25 
Head 1.28 1.41 1.18 1.49 1.12 1.75 1.30 1.53 1.69 1.59 1.94 1.40 1.11 
Left 2.20 2.48 3.31 2.38 2.53 2.35 2.26 1.56 1.23 1.32 2.64 2.55 3.26 
𝛼(°) -65 -55 -45 -35 -25 -15 -5 45 55 65 75 85 95 

Table30 4.93 4.37 4.96 9.27 9.18 7.52 4.09 5.11 2.93 3.44 4.24 3.96 6.07 
 

(b) test dataset 
 

Table 2.6 2D projection error of Zeego system (in pixels) 
 

2.4.5 Evaluation of the proposed movement models 

2.4.5.1 3D reconstruction 

We reconstruct the spheres by the estimated geometries and do the comparisons. 
We adopt the clinical acquired projections to realize the reconstruction. The 
acquisition angles include both calibration and test angles (39 angles). The projection 
matrix method [8] is a classical and widely used method. Here, the comparisons 
include three geometries, the ideal geometry, the estimated geometry by projection 
matrix method, the estimated geometry generated by the proposed movement model 
method.  

First, we remove the background by some morphological operators and extract the 
projection of the spheres. Second, the system matrices for the 3D reconstruction are 
generated by the ideal and the two estimated geometries. Last, we use the iterative 
reconstruction method [1] to realize the reconstruction. This method adopts the MAP  
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with 𝐿0 prior for the ill-posed problem.  
The ray-casting algorithm [33] is the classical volume rendering method. We adopt 

it to visualize the 3D reconstruction of the spheres. All the rendering parameters are 
identical for each visualization result. See Fig.2.17, (a) are the reconstructed results of 
Head position. (b) are the reconstructed results of Left position. (c) are the 
reconstructed results of Table30 position. Left column is the reconstruction with ideal 
geometries, middle is the reconstruction by classical projection matrix method, right 
column is the reconstruction by the proposed movement model method.  

From Fig.2.17 (a), we found that there are no obvious differences among the three 
geometries in (a). The Head position is close to an ideal circle. From Fig.2.17 (b), we 
see that for the Left position, the 3D object without calibration (ideal geometry) has 
an obvious artifacts and degenerated spatial resolution. The 3D object with the 
estimated geometries eliminates the artifacts and improves the spatial resolution. The 
proposed method has comparable effect as the projection matrix method. From 
Fig.2.17 (c), we found that for the Table position, it has the most severe geometry 
deviation. The 3D object without calibration has much artifacts and low spatial 
resolution. The estimated geometries by the proposed correct the geometry deviation 
well.   
 

 
 

(a) Head position 
 

 
 

(b) Left position 
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(c) Table30 position 
 

Fig.2.17. Reconstructed 3D spheres by the geometries 
 

 
 

Ideal Geometry Classical projection 
matrix method 

Proposed movement 
model method 

Head Left Table30 Head Left Table30 Head Left Table30 
Computation 
time(s) 

0.013 0.014 0.0095 64.61 63.54 64.55 26.79 26.30 27.97 

 
Table 2.7 Computation time of the algorithms 

2.4.5.2 Efficiency of the algorithms 

We calculate the computation time to generate all the projection matrices along the 
acquisition trajectory by the step of 2° . The ideal projection matrices and the 
estimated projection matrices by the classical method are calibrated at each 
acquisition angles. The proposed movement models are calibrated by the calibration 
dataset, then, all the projection matrices are generated respectively by these models. 

In Table 2.7, we see that the proposed movement model method has less 
computation time than the classical projection matrix method.  

As a conclusion, we can prove that the proposed movement model method can 
estimate and predict the geometries with acceptable accuracy. Meanwhile it can 
increase the efficiency of the calibration process. 
 

2.5 Discussion  

We proposed a complete data acquisition modeling method of Artis-Zeego C-arm 
CBCT system. First, we proposed an extended calibration algorithm on a classical 
helical phantom. The phantom is easy to obtain in the experiment environment. For 
the helical algorithm, we propose to calculate the projection of the axes paralleled to 
𝑥 axis and more projections of the axes paralleled to 𝑦 axis. These will not only 
improve the estimation accuracy of 𝑎𝑥, 𝑏𝑥, 𝑐𝑥 and 𝑎𝑦, 𝑏𝑦, 𝑐𝑦, but also resolve the 
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degeneration correction problem. The experiment proves that the proposed algorithm 
is more accurate and increases the efficiency than the original algorithm [23].  

In this work, we set the secondary angle 𝛽 to be zero. However, the angle 𝛽 is 
often to be a non-zero angle in the clinical acquisition. The projection of the helical 
curve may be intersected under this condition. It is not easy to label these markers. In 
order to resolve this problem, we can use a rough prediction model by extending the 
proposed models with some ideal assumptions. The nearest projection to the rough 
predictive position is treated as the correspondent projection. This work will be done 
in the future.  

Second, we convert the projection geometries to the C-arm coordinate system. The 
geometry parameters are independent of the placement of the calibration phantom. 
Our estimation method adopted the estimated parameters by the helical algorithm, 
minimizing the oscillation results from the displacement of the phantom. This 
procedure can simplify the alignment procedure of the iso-center before the 
calibration.  

Last, as Zeego system has more flexibility than the traditional C-arm, it provides 
more work positions including Head, Left, Right, Table15,Table30. We choose three 
representative work position Head, Left, Table30 to perform the experiments. The 
complex mechanical motion of each work position was designed by the machine. The 
deviation of the machine may result from the gravity and other mechanical problems. 
We proposed the movement models by analyzing all the posterior information and 
considering all the possible factors objectively and systematically. The movement 
models can integrate the refinement and the prediction of the acquisition geometry. 
They will simplify the calibration procedure in the clinical operation. The 
experimental results can prove the validity of these models.  

Many data acquisition models had been proposed for the traditional C-arm system, 
however, few models were proposed on the advanced Zeego system. This work fills 
this vacancy well.  

Due to the lack of the clinical patient acquisition, we only apply the proposed 
algorithm to the phantom reconstruction. The application and evaluation of the 
clinical coronary artery reconstruction will be done in the future.  

2.6 Conclusion 

For this chapter, we proposed an extended calibration algorithm based on the 
classical helical phantom. Then, we consider the C-arm system transformation and 
model the movement based on the estimated posterior information. In this chapter, we 
consider three representative work positions: Head side, Left side and Table30. The 
experiment results indicate that the proposed helical calibration algorithm is more 
accurate and robust than the original algorithm [23]. The estimation of the C-arm 
system is reliable. The movement models have an acceptable precision to estimate the 
acquisition parameters. The models also increase the efficiency of the clinical 
calibration work. Head position has the least deviation and Left position has minor 
deviation. They can be modeled as a single mean rigid motion. Table30 position has 
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the most severe deviation and should be modeled with a residual translation part.  
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Chapter 3 3D Reconstruction by Motion Compensation 

3.1 Introduction 

C-arm based Percutaneous coronary intervention (PCI) is a common procedure for 
the diagnosis and treatment of coronary heart disease (CHD), in which X-ray 
coronary angiography is one of the most commonly utilized method to assess CHD 
and is still considered as the gold standard in clinical procedures [1]. To better assist 
PCI procedures, many efforts have been devoted to perform 3D tomographic 
reconstruction of high-contrast coronary arteries using angiograms rotationally 
acquired on a C-arm. However, because of the vessel motion induced by respiratory 
and heart beating, accurate 3D reconstruction of coronary vessels still remain a 
challenge [1]. Poor reconstruction affects the accuracy of quantitative coronary 
analysis (QCA) measurement, such as the length and diameter of the vessel branch or 
lesion. Inaccurate measurement may lead to incorrect selection of treatment apparatus 
and would reduce the effectiveness of the treatment consequently.  

ECG-gated and motion compensation are two primary ways to handle vessel 
motion for 3D reconstruction of coronary arteries.  

In ECG-gated reconstruction for a specific selected cardiac phase, a subset of 
angiograms is selected for reconstruction according to recorded ECG signal. The 
optimal phase should be the one with least motion phase, such as end-systolic and 
late-diastolic cardiac phases. In lack of the recorded ECG signal, the optimal phase 
should be determined. Rasche [2] and Blondel [3] adopt the image content to fine the 
optimal phase. Rasche reconstruct at each phase in one cardiac cycle and compare the 
intensity distribution. The reconstruction at the optimal phase should have a narrower 
intensity distribution because of the lack of blurring. However, this method needs too 
much computation effort. Another hand, Blondel used a line-integral method to 
estimate the optimal phase. For each raw projection image, each horizontal line is 
integrated to create one vertical line. They place all the vertical line of all the 
projection in the cardiac cycle to compose a picture. The composed picture indicates 
the variation of the intensity and can be used to estimate the optimal phase. This 
method is easy to perform and needs less computation effort.  

Nearest-neighbor (NN) [4] and finite-window gating [5] are two commonly used 
strategies for selecting sinograms. The nearest neighbor gating [4] was the first 
proposed approach that used one image at the desired phase for each cycle. Next, the 
researchers used the finite gating window [5] around the desired phase. The shape of 
this window can be a rectangular or cosine-squared or a half-bell. If we use the 
standard filtered back-projection algorithm, the center images of each gating window 
contribute most and the other projections at the edges of the window contribute 
according to the weight from the window definition. Multiple images around the 
desired phase will result in better-gated reconstructions. The commonly used 
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reconstruction method, such as Feldkamp’s (FDK) method [6], is quite sensitive to the 
angular coverage of the angiorams. Small gating window causes under-sampling 
problem and the reconstruction will have severe streak artifacts. Increasing gating 
window can reduce the streak artifacts but will introduce more motion artifacts. 
Recent years, prior knowledge regularization iterative reconstruction has been 
proposed to handle this problem [7-16]. By imposing proper prior regularization can 
suppress the artifacts significantly even using quite few angiograms. These methods 
have shown promising results.  

Motion compensation is a commonly used technique for 3D coronary artery 
reconstruction. Motion compensated reconstruction has two main categories: 3D 
motion compensated reconstruction and 2D motion compensated reconstruction.3D 
motion compensation works in the 3D image space, while 2D motion compensation 
works in the 2D projection space.  

Blondel [17] and Tang [18] proposed the 3D motion compensation based on the 3D 
motion vector field. These approaches use the 3D centerline information of the 
cardiac vessel throughout multiple cardiac phases to determine the motion-vector. In 
theory, all the projection images can be used for reconstruction after motion 
correction. This strategy can significantly increase the overall signal-to-noise ratio 
while reducing artifacts caused by gating. However, the accurate estimation of the 
motion-vector field throughout different cardiac phases remains challenging and 3D 
motion estimation is also a strong ill-posed problem with high computation cost, Zeng 
[19] and Hansis [20] proposed the motion periodicity or regularization assumptions to 
tackle this problem.  

In principle, fully 3D motion compensation can compensate for arbitrary motion, 
and more powerful than 2D compensation. However, the object of interest is spatially 
sparse and the motion inside the gating window is limited and smooth. Therefore, the 
2D motion compensation also can perform well. There are three main approaches of 
2D motion compensation reconstruction: landmark-based, model-based, and 
projection-based. Schafer [21] and Perrenot [22] proposed the landmark-based 
registration for the 3D reconstruction of stents. Two radiopaque marker balls on each 
side of the stent are used for tracking the stent motion in the projections during the 
cardiac cycle. The projections are then transformed accordingly to compensate for the 
motion. Lebois [23] proposed a model-based learning method to realize 2D motion 
compensation. They use an extensive projection dataset to learn the model. The 
residual motion of the actual projection image is corrected according to the model. 
Hansis [24] proposed the projection-based 2D motion compensation based on vessel 
centerline segmentation. The forward-projection of the 3D centerline is compared 
with the actual detected 2D centerlines to estimate the transformation. Then, the 
residual motion can be corrected by warping the actual projection to the 
reference-motion state. However, the segmentation of vasculature centerlines in the 
acquired projection data is also a difficult problem. Recently, Schwemmer proposed 
another projection-based 2D motion compensation reconstruction method [25]. The 
method used the normalized cross-correlation (NCC) [26] as the similarity metric of 
the registration and the modified FDK reconstruction algorithm [27] to realize the 
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compensated reconstruction.  
In this chapter, we propose a new projection-based 2D motion compensation 

reconstruction method. We correct the residual motion by a 2D-2D registration based 
on mutual information, avoiding the complex vessel centerline segmentation.  

In section 2, we introduce some classical methods. In section 3, we describe each 
step of our proposed method. In section 4, we show the experiment results of our 
method. In section 5 and 6, we make some discussion and conclusion.  

3.2 Classical reconstruction method 

3.2.1 3D Motion Compensated Reconstruction 

In this section, we introduce the 3D motion compensated reconstruction by Blondel 
et al. [17], which is based on the 4D motion vector field. They proposed a dynamic 
tomographic algorithm that compensated for the coronary artery motion along the 
cardiac contraction, by taking advantage of 4D motion field. The algorithm used all 
available images, independently from the cardiac phase at which they were acquired. 
We introduce this 3D motion compensation reconstruction briefly in the following. 
 
a. 4D parametric motion field 
 

A 4D motion field was pre-computed before the 3D motion compensation 
reconstruction. First, they define a reference time in the cardiac cycle time, then, the 
reconstruction of the coronary artery centerlines are performed at a particular cardiac 
cycle time t. The 3D reconstruction process typically results in a 3D centerline model.  
Then, they compute the 4D motion of the coronary arteries from the 3D centerline 
model.  

The motion field was parameterized by a 4D tensor product of B-splines, which 
was adapted to cardiac motion fitting. The position of 3D point 𝑋 = (𝑥, 𝑦, 𝑧) at time 
t in 4D B-solid motion is given by the relationship: 
 

      Φ(𝑝, 𝑋, 𝑡) = 𝑋 + ∑ 𝐵𝑖(𝑥) .∑ 𝐵𝑗(𝑦) .∑ 𝐵𝑘(𝑧)𝑘 (∑ 𝐵𝑙𝑙 (𝑡) ∙ 𝑝𝑖𝑗𝑘𝑙)/𝑗 /𝑖     (3.1) 

*𝐵𝑖+𝑖, {𝐵𝑗}𝑗 ,
*𝐵𝑘+𝑘 are the B-spline function bases along space coordinates, *𝐵𝑙+𝑙 is 

the B-spline function basis along time coordinate and 𝑝𝑖𝑗𝑘𝑙  is the 3D vector at 
control point given by indices i,j,k,l, belonging to the global parameter vector p. 
Φ(𝑝, 𝑋, 𝑡) provides the new position after motion of any 3D point at time 𝑡. 

The motion model is then fitted to a given specific dataset using a large scale 
optimization process. The optimal motion maximizes an energy function combining 
an external energy, evaluating the superimposition of projected deformed 3D 
centerline points with vessels in the angiograms and an internal regularizing energy.            

The criterion we optimize is:  



Chapter 3 3D Reconstrruction by Motion Compensation           

62 
 

 

 

         Ψ(𝑝) = ∑ ∑ 𝑟𝑛𝑋∈𝜒𝑛∈𝑁 (𝑚𝑛(Φ(𝑝, 𝑋, 𝑡𝑛))) + 𝛼Reg𝑅3×𝑅Φ(𝑝, 𝑋, 𝑡𝑛) (3.2) 

𝜒 is the set of points describing the 3D centerline model, 𝑁 is the set of images from 
which the motion is estimated, 𝑚𝑛 is the projection matrix associated with frame n, 
𝑟𝑛 is the multi-scale vessel detector, Reg𝑅3×𝑅Φ(𝑝, 𝑋, 𝑡𝑛) is the regularity measure 
on Φ in space and time.  
 
b. Motion compensated 3D reconstruction 
 

Taking advantage of the 4D parametric motion field, they designed a dynamic 
reconstruction algorithm. X is the position of a physical 3D point, t is the acquisition 
time, 0 is considered as the reference time, at which we want to reconstruct the linear 
attenuation map. 𝜇  𝑅3 × 𝑅 → 𝑅 is the linear attenuation of any physical 3D point, 
varying along time. The motion application Φ𝑡  𝑅3 × 𝑅 → 𝑅3 represents the position 
at a given time of the 3D point that was in a given position at the reference time.  

Supposing the linear attenuation remains constant along the acquisition time, with 
neglecting the contrast agent propagation and diffusion affects. It is equivalent to:  

 
                  𝜇(Φ𝑡(𝑋), 𝑡) = 𝜇(Φ0(𝑋), 0) = 𝜇(𝑋, 0)               (3.3) 

 
The discrete problem to be solved can be stated as: 
 
                              𝑅Φ ∙ 𝜇 = 𝑑                           (3.4) 
 
𝑅Φ is the matrix associated with the projection operator in motion. 𝑑 is the discrete 

subtracted sinogram data. The coefficient 𝑅𝑗𝑖,𝑘
Φ  in matrix 𝑅Φ be the contribution of 

the voxel 𝑘 to the pixel value 𝑗𝑖, belonging to frame 𝑖. Denoting 𝑆𝑗𝑖 the solid angle 

with vertices the corners of pixel 𝑗𝑖 and the X-ray source position S(𝑡𝑖). For the 
dynamic case, they take the motion field into account by replacing the voxel cube 𝐶𝑘 

by its image under the 3D motion field Φ𝑡𝑖:  

 

                       𝑅𝑗𝑖,𝑘
Φ = 𝑣𝑜𝑙 .𝑆𝑗𝑖 ∩Φ𝑡𝑖(𝐶𝑘)/                     (3.5) 

 
Let 𝑐𝑘 be the center of the voxel cube 𝐶𝑘, 𝑚𝑖 is the projection matrix associated 

with frame i, 𝑅𝑗𝑖,𝑘
Φ  has a practical scheme:  
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Fig.3.1. Workflow of the projection-based 2D motion compensated reconstruction 
 

                  𝑅𝑗𝑖,𝑘
Φ = {

𝑣𝑜𝑙(𝐶𝑘)   if 𝑚𝑖 .Φ𝑡𝑖(𝑐𝑘)/ ∈ 𝑃𝑗𝑖

0       else                     
                (3.6) 

 
The motion only impacts the projection operator matrix 𝑅Φ, many reconstruction 
techniques can be appropriate for this compensated 3D reconstruction.  

3.2.2 2D Motion Compensated Reconstruction 

We introduce the projection-based 2D motion compensation reconstruction method 
from rotational X-ray angiography by Hansis [24] shortly. We show the workflow of 
the projection-based 2D motion compensated reconstruction method in Fig.3.1. First, 
we generate the initial ECG gated reconstruction of the coronary arteries for the 
desired cardiac phase. Then, we calculate the maximum intensity forward projection 
from the initial ECG gated reconstruction at each acquisition angle. Next, we correct 
the residual motion of each current projection image by the registration process. The 
registration process is performed between each forward projection and the 
corresponding pre-processed current projection. Last, we generate the compensated 
reconstruction by the motion corrected projection images. This procedure can be 
repeated for many cycles to obtain a refinement result.  

 
a. Initial reconstruction and forward projection 

 
An initial ECG-gated reference reconstruction is calculated [27] for the desired 

cardiac phase, using a suitable gating window. The maximum intensity forward 
projection 𝑃𝑖  of the initial reconstruction is calculated according to the projection 
geometry of 𝑃𝑖  at each acquisition angle.  
 
b. Pre-processing of the forward and current projection 
 

The vessel centerlines are detected in both the forward projection and the current 
projection by the proposed centerline filtering algorithm. The algorithm includes the 
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multi-scale vessel filter, directional maxima detection, and hysteresis thresholding. 
The resulting centerline map is created after these three steps and it has a value at 
each centerline pixel 𝑝⃗ and zero everywhere else.  
 
c. Registration 
 

The current detected projection centerline 𝐶𝐹  is used as model points 𝑀 =

*𝑚⃗⃗⃗𝑖+𝑖=1
𝑁𝑚  and the detected forward projection centerline 𝐶𝑃  as data points 𝐷 =

{𝑑𝑖}𝑖=1

𝑁𝑑 . 𝑁𝑚 and 𝑁𝑑 are the numbers of model points and data points respectively. 

The Levenberg-Marquardt iterative closest point algorithm (LMICP) [28] was 
adopted to match the corresponding centerlines from 𝐶𝑃to 𝐶𝐹. The transformation 
parameters 𝑎⃗ of a transformation 𝑇𝑎⃗⃗ can be found such that an error function 𝐸(𝑎⃗) 
is minimal. The error function is defined as:  

 

                𝐸(𝑎⃗) = ∑ 𝐸𝑖(𝑎⃗)
𝑁𝑑
𝑖=1 = ∑ (𝑅̃𝑀 .𝑇𝑎⃗⃗(𝑑𝑖)/)

2
𝑁𝑑
𝑖=1             (3.7) 

 
𝑅𝑀(𝑝⃗) is the Euclidean distance of a point 𝑝⃗ to its closest point in 𝑀. 𝑅̃𝑀(𝑝⃗) is 
𝑅𝑀(𝑝⃗) clipped to a threshold 𝑅𝑚𝑎𝑥: 
 

                   𝑅̃𝑀(𝑝⃗) = {
𝑅𝑀(𝑝⃗),  𝑅𝑀(𝑝⃗) ≤ R𝑚𝑎𝑥

𝑅𝑚𝑎𝑥 ,  𝑅𝑀(𝑝⃗) > R𝑚𝑎𝑥
                  (3.8) 

 
The well-known Levenberg-Marquard algorithm [28] was adopted to realize the 
minimization of (3.7). The LMICP algorithm requires the calculation of a Jacobian 
matrix 𝐽 ∈ 𝑅𝑁𝑑×𝑁𝑎. 𝑇𝑎⃗⃗ is the bilinear transformation. The entries of 𝐽 are given by: 
 

                       𝐽𝑖𝑗 = 𝜕𝐸𝑖 𝜕𝑎𝑗 = [∇⃗⃗⃗𝑎𝐸𝑖(𝑎⃗)]𝑗⁄                    (3.9) 

𝑎𝑗 are the elements of 𝑎⃗ and ∇⃗⃗⃗𝑎 is the gradient with respect to 𝑎⃗. ∇⃗⃗⃗𝑎𝐸𝑖(𝑎⃗) can be 

write:  
 

          ∇⃗⃗⃗𝑎𝐸𝑖(𝑎⃗) = 2𝑅̃𝑀 .𝑇𝑎⃗⃗(𝑑𝑖)/ (∇⃗⃗⃗𝑎𝑇𝑎⃗⃗(𝑑𝑖)) ∙ (∇⃗⃗⃗𝑅̃𝑀 .𝑇𝑎⃗⃗(𝑑𝑖)/)        (3.10) 

 
d. Compensated reconstruction 
 

The current projection data must be transformed according to the optimum 
transformation parameters 𝑎⃗ determined by the registration process. The resulting 
transformation 𝑇𝑎⃗⃗

′  are applied to generate the motion corrected projection data 𝑃̃.  
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Fig.3.2. Workflow of the proposed 2D motion compensated reconstruction 
 

The value at point 𝑝⃗ of the corrected projection can be found as 𝑃̃(𝑝⃗) = 𝑃(𝑇𝑎⃗⃗
′(𝑝⃗)). 

Bilinear interpolation is taken in the current projection data for sampling point 𝑇𝑎⃗⃗
′(𝑝⃗). 

The corrected projection data will be the input of the compensated reconstruction. The 
motion compensation can be applied several times to achieve better results. After one 
motion compensation cycle, the improved reconstruction will facilitate the centerline 
determination in forward and current projections (a more accurate mating).  

3.3 Proposed reconstruction method 

In this chapter, we propose a new projection-based 2D motion compensation 
reconstruction method. The workflow can be seen in Fig.3.2. First, we use a simple 
and automatic preprocessing method to extract the coronary arteries. Second, the 
intial reconstruction and motion compensated reconstruction are realized by the 
Maximum a Posteriori (MAP) iterative reconstruction algorithm [7], which is more 
powerful to deal with the ill-posed problem. Third, we adopt the simplified distance 
driven projector 𝑃𝑆𝐷𝐷 [29] to generate the forward projection. Last, we adopt the 
mutual information (MI) [30] and rigidity penalty (RP) [31] as the cost function of the 
registration. This avoids the complex and difficult vessel centerline extraction process. 
We use the advanced adaptive stochastic gradient descent (ASGD) algorithm [32] to 
realize the optimization. The algorithm makes the registration process more fast and 
accurate. Therefore, the proposed reconstruction method is fully automatic, fast, and 
easy to implement. We describe each step in this section.  

3.3.1 Preprocessing of the Current Projection 

For the original acquired projection images, we perform a set of preprocessing 
steps to segment the vessel structure. We denote the original projection as 𝑝𝑜𝑟𝑖. We 
show the operations as follows:  
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Fig.3.3. Illustration of the reconstructed phase and gating window 
 
a. converting the contrast: 𝑝1 = −𝑙n (𝑝𝑜𝑟𝑖/max (𝑝𝑜𝑟𝑖)) 
b. 2D 3×3 Gaussian low pass filtering to suppress the noise: 𝑝2 = 𝑙𝑜𝑤𝑝𝑎𝑠𝑠(𝑝1) 
c. top-hat filtering morphological operator [33] with the neighborhood 10×10 to 

enhance the vessel structure: 𝑝3 = 𝑡𝑜𝑝𝑕𝑎𝑡(𝑝2). 
d. a threshold operator and then a dilation morphology operators [33] on 𝑝3 to build 

the vessel mask 𝑝𝑚𝑎𝑠𝑘.  
e. We adopt 𝑝𝑚𝑎𝑠𝑘 to estimate the background 𝑝𝑏𝑔  by the joint interpolation 

algorithm [34].  
f. the segmented projection 𝑝𝑏𝑔𝑟 = 𝑙𝑛𝑝𝑏𝑔 − 𝑙𝑛𝑝𝑜𝑟𝑖 

3.3.2 Initial Reconstruction 

We perform the advanced MAP iterative reconstruction method based on 𝐿0  prior 
[7] to realize the initial and compensated reconstruction, see 3.3.2.2. This algorithm 
has a better performance to deal with the ill-posed inverse problem.  

3.3.2.1 Reconstructed phase 

Fig. 3.3 is the illustration of the ECG signal and the gating window. We suppose the 
patient has a regular cardiac motion. Let 𝑡 ∈ ,0,1- be the reconstructed phase, which 
is the relative distance percentage between two consecutive R-peaks in the ECG 
signal. The parameterω ∈ ,0,1- controls the width of the gating window. T is the 
cardiac cycle. The projection phases 𝜏𝑖 ∈ (𝑡 − ω/2, 𝑡 + ω/2) will be used in the 
each cardiac cycle.  

We perform the line-integral method [3] to visualize the cardiac motion and 
corresponding phases in the case of lacking the ECG record:  
a. For each original projection 𝑝𝑜𝑟𝑖, we segment the vessel as a binary image 𝑝𝑜𝑟𝑖𝑏 . We 
sum up pixels along each horizontal line of each binary image to generate one vertical 
line. 
b. All the vertical line components from the segmented projections were placed 
together. The resultant image can illustrate the shifting of contrast during the cardiac 
motion.  
c. Some morphology operations can be applied to make the resultant image clear. 
d. The curve is almost periodic and the rest phase with less motion can be determined. 
The interval between two R-peaks is the period of the cardiac cycle T.  
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3.3.2.2 3D Reconstruction algorithm  

We describe the reconstruction algorithm briefly. The problem can be formulated as 
[7]: 

 
                              A f + b = Y                         (3.11) 
            
A is the projection operator matrix referred as system matrix. f is the vector of the 3D 
unknown image volume, b is the acquisition noise, Y is the vector of the 2D projection 
data.  

According to Bayesian theory, the estimation of f can be obtained by the objective 
function:  

 

                  𝑓 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑓>0*−𝐿(𝑌|𝑓) + λ𝑅(𝑓)+                (3.12) 

 
𝐿(𝑌|𝑓)  is the log-likelihood function reflecting the statistical features of the 
projection data. Generally, the statistical feature of the observed projection data can be 
modeled as the Gasussian distribution. Therefore, the projection data is supposed to 
be stationary during the acquisition time. 𝑅(𝑓) is the image prior information. λ is a 
positive weight parameter. 𝑓 has a positive hypothesis.  
  I is the number of the measured projection images, the ideal projection data 𝑔:  
 

𝑔𝑖 = ,𝐴𝑓-𝑖 
                           𝑔 = ,𝑔1, 𝑔2, … 𝑔𝐼-                                                                       
                           𝑌 = ,𝑦1, 𝑦2, … 𝑦𝐼-                       (3.13)  
 
𝜎𝑖
2 is the variance, 𝐿(𝑌|𝑓) can be deduced by the probability density function 

of 𝑔𝑖 as follows:  
 

𝑝(𝑔𝑖) = .1 √2 𝜎𝑖2⁄ / 𝑒𝑥𝑝(− (𝑦𝑖 − 𝑔𝑖)
2 2𝜎𝑖

2⁄ ) 

𝑙𝑖(𝑔𝑖) = −𝑙𝑛 𝑝(𝑔𝑖) = (𝑦𝑖 − 𝑔𝑖)
2 2𝜎𝑖

2⁄ + 𝑙𝑛√2 𝜎𝑖2 

           −𝐿(𝑌|𝑓) = ∑ 𝑙𝑖(𝑔𝑖) =
𝐼
𝑖=1 ∑ ((𝑦𝑖 − 𝑔𝑖)

2 2𝜎𝑖
2⁄ + 𝑙𝑛√2 𝜎𝑖2)

𝐼
𝑖=1    (3.14) 

                                                                          
We often use the Gibbs prior to model 𝑅(𝑓): 
 

𝑓 = [𝑓1, 𝑓2, … 𝑓𝐽]                                                      

                    𝑅(𝑓) = ∑ ∑ 𝜔𝑗𝑘𝑘∈𝑁𝑗
𝐽
𝑗=1  (𝑓𝑗 − 𝑓𝑘)                (3.15) 
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𝐽 is the length of the vector 𝑓. 𝑁𝑗 is the neighborhood of voxel j, 𝜔𝑗𝑘 is a positive  
weight parameter,   is the symmetric potential function which penalize the pairwise 
differences between voxels.  

We have the definition of 𝐿0  prior [7]:  
 

                             𝐿0(𝑡) = ‖𝑡‖0                         (3.16) 

‖𝑡‖0 means the number of the non-zero elements. However, the optimization of 
𝐿0  prior is a NP hard problem. In this algorithm, we use the following non-convex 
function to approach to 𝐿0  prior [7]:  

                        𝐿0(𝑡, 𝜌) = |𝑡| (|𝑡| + 𝜌)⁄                      (3.17) 

We decrease the value of 𝜌 gradually according to the iteration.  
The Separable Paraboloidal Surrogate (SPS) algorithm [35] was adopted to realize 

the optimization. We update the intensity of each voxel simultaneously as [7]:  

𝑉(𝐴𝑇𝐴) = (∑ 𝑎𝑖1
2𝐼

𝑖=1 … ∑ 𝑎𝑖𝐽
2𝐼

𝑖=1 )
𝑇
. 

𝜕𝑅(𝑓𝑗)

𝜕𝑓𝑗
=

k N
j


 𝜔𝑘𝑗 ̇(𝑓𝑗 − 𝑓𝑘) 

𝑓𝑘+1 = 𝑓𝑘 +
𝐴𝑇(Y−𝐴𝑓𝑘)

𝑉(𝐴𝑇𝐴)
+ 𝛽

𝜕𝑅(𝑓)

𝜕𝑓 𝑓=𝑓𝑘

  

                     ( 𝑓𝑘+1)𝑗 = 𝑚𝑎𝑥((𝑓𝑘+1)𝑗, 0)                     (3.18) 

( 𝑓𝑘+1)𝑗 represents the j th voxel of the (k+1) th iteration. 
When we reconstruct the phase 𝑡 with the gating window width ω for the initial 

reconstruction, Y is composed by the projection data 𝑝𝑏𝑔𝑟with the phases 𝜏𝑖 ∈
(𝑡 − ω/2, 𝑡 + ω/2) in each cardiac cycle. We denote the reconstruction at phase 𝑡 
as 𝑓𝑡.  

3.3.2.3 Simplification of the system matrix 

We adopt the simplified distance driven projector 𝑃𝑆𝐷𝐷 [29] to generate the system 
matrix 𝐴 according to the acquisition geometries. This projector was proved to be 
faster and comparable accurate than the classical Ray-driven (RD) [36] and Separable 
Footprint (SF-TT) [37]. Xie [7] proposed to generate a 3D binary mask M of the 
image volume 𝑓 to reduce the storing space of 𝐴.  

As we described in chapter 2, 𝑎,𝑢𝑘 , 𝑣𝑙; 𝒏- is the coefficient of the system matrix 𝐴, 
𝒏 is the voxel of the image volume 𝑓, (𝑢𝑘, 𝑣𝑙) is the pixel position in the detector. 
We combine 𝑃𝑆𝐷𝐷 with the 3D mask M to reduce the computation cost. We have:  
 

                    {
𝑎,𝑢𝑘, 𝑣𝑙; 𝒏- 𝑏𝑦 𝑃𝑆𝐷𝐷     𝑖𝑓 𝑀(𝒏) = 1

𝑎,𝑢𝑘 , 𝑣𝑙; 𝒏- = 0           𝑖𝑓 𝑀(𝒏) = 0
               (3.19) 
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3.3.3 Maximum Intensity Forward Projection 

a. Thresholding 
 

Generally, vascular structure has the high-contrast in the 3D image. Therefore, we 
can use a simple thresholding operation to remove the background structures in the 
initial 3D cardiac vasculature reconstruction. 𝑇𝑟 ∈ ,0,1- is the thresholding parameter, 
L is the largest voxel value of the initial reconstruction.The initial reconstruction after 
thresholding is denoted as 𝑓𝑡𝑇. We have the following operation:  

 

                 𝑓𝑡𝑇(𝒏) = {
𝑓𝑡(𝒏)   𝑖𝑓  𝑓𝑡(𝒏) ≥ 𝑇𝑟 ∗ 𝐿  

0          𝑖𝑓  𝑓𝑡(𝒏) < 𝑇𝑟 ∗ 𝐿  
                (3.20) 

 
b. Forward projection 
 

We also use the projector 𝑃𝑆𝐷𝐷 [29] to generate the forward projection 𝑝𝑓𝑤𝑝 of 
𝑓𝑡
𝑇 at each acquisition angle i. We have the expression as: 
 

                          𝑝𝑓𝑤𝑝𝑖 = 𝐴𝑖 ∗ 𝑓𝑡𝑇                         (3.21) 

 
𝐴𝑖 corresponds to angle i and is the part of system matrix 𝐴.  

3.3.4 Image Registration 

Image registration is the significant step in the proposed 2D motion compensated 
reconstruction method. The registration of a fixed image (reference image) 

𝑝𝑓𝑤𝑝 Ω𝑓 ∈ ℝ
2 → ℝ to the moving image (floating image) 𝑝𝑏𝑔𝑟 Ω𝑚 ∈ ℝ2 → ℝ  can 

be formulated as an optimization problem:  
 

                     𝜇̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜇𝐶(𝑇𝜇; 𝑝𝑓𝑤𝑝, 𝑝𝑏𝑔𝑟, Ω𝑓)               (3.22) 

𝑇𝜇  is a parameterized coordinate transformation. Ω𝑓 → Ω𝑚 often represents the 
overlapped domain. The transformation 𝑇𝜇  is modeled by the parameters 𝜇. C is the 
cost function and the solution 𝜇̂ is the parameter vector that minimizes this cost 
function.  

We plot the registration procedure in Fig.3.4. The cost function C introduces the 
steps of sampler, transformation and interpolation. Registration means to resolve the 
optimization problem, multi-resolution scheme is often adopted. We describe the 
concrete algorithm of each step in the following.  
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Fig.3.4. Illustration of the registration process. 

3.3.4.1 Computing of cost function 

Mutual information is a basic concept from information theory. It can measure the 
statistical dependence on information redundancy between two random variables or 
the amount of information that one variable contains about the other. The iconic 
registration based on mutual information (MI) was first proposed by Maes et al. [30] 

The registration criterion of mutual information is that if the MI of the two images 
in the overlapped domain is maximal, the two images are geometrically aligned. This 
iconic matching criterion is very powerful for our motion compensated reconstruction 
application [38]. We can apply it to the projection image without prior segmentation, 
feature extraction or other complex preprocessing.  
 
a. Definition of mutual information 
 

There are two random variables 𝐴  and B, 𝜌𝐴(𝑎), 𝜌𝐵(𝑏)  are their marginal 
probability distributions, 𝜌𝐴𝐵(𝑎, 𝑏) is their joint probability distribution. If A and B 
are statistically independent, we have 𝜌𝐴𝐵(𝑎, 𝑏) = 𝜌𝐴(𝑎) ∙ 𝜌𝐵(𝑏). If they are related 
by a one-to-one mapping (maximally dependent), 𝑇  is the transformation, we 

have 𝜌𝐴(𝑎) = 𝜌𝐵(𝑇(𝑎)) = 𝜌𝐴𝐵(𝑎, 𝑇(𝑎)). The mutual information 𝐼(𝐴, 𝐵) measures 

the degree of dependence of A and B by measuring the distance between the joint 
distribution 𝜌𝐴𝐵(𝑎, 𝑏) and the independence distribution 𝜌𝐴(𝑎) ∙ 𝜌𝐵(𝑏) [30].  

The definition of mutual information (MI) by means of the Kullback-Leibler 
measure is:  
 

                     𝐼(𝐴, 𝐵) =
,a b

 𝜌𝐴𝐵(𝑎, 𝑏)𝑙𝑜𝑔
𝜌𝐴𝐵(𝑎,𝑏)

𝜌𝐴(𝑎)∙𝜌𝐵(𝑏)
            (3.23)                                     

Another definition of the mutual information is related to the entropy of images: 
 

𝐼(𝐴, 𝐵) = 𝐻(𝐴) + 𝐻(𝐵) − 𝐻(𝐴, 𝐵) 
 = 𝐻(𝐴) − 𝐻(𝐴|𝐵)                                                                                                                                                      
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                           = 𝐻(𝐵) − 𝐻(𝐵|𝐴)                      (3.24) 
 
𝐴, 𝐵 represent the image intensity. 𝐻(𝐴) and 𝐻(𝐵) being the Shannon entropy of A 
and B respectively, 𝐻(𝐴, 𝐵)  is their joint entropy, 𝐻(𝐴|𝐵)  and 𝐻(𝐵|𝐴)  the 
conditional entropy of A given B and of B given A respectively:  

𝐻(𝐴) = −
a

 𝜌𝐴(𝑎)𝑙𝑜𝑔𝜌𝐴(𝑎) 

𝐻(𝐴, 𝐵) = −
,a b

 𝜌𝐴𝐵(𝑎, 𝑏)𝑙𝑜𝑔𝜌𝐴𝐵(𝑎, 𝑏) 

                  𝐻(𝐴|𝐵) = −
,a b

 𝜌𝐴(𝑎)𝑙𝑜𝑔𝜌𝐴|𝐵(𝑎|𝑏)                (3.25) 

 
b. Criterion 

 
Let 𝐼𝐹(𝑥) denote the image intensity in the fixed image (reference image) 𝑝𝑓𝑤𝑝 

at pixel position 𝑥, 𝐼𝑀(𝑇𝜇(𝑥)) is the intensity at the transformed position 𝑇𝜇(𝑥) in the 
moving image (floating image) 𝑝𝑏𝑔𝑟. 𝑇𝜇(𝑥) is the parametric transformation. The 
image intensity values of two images to be registered are random variables. The 
registration criterion states that if the MI is maximal, the two images are 
geometrically aligned and the current 𝜇̂ is the optimal transformation parameters.  

In the general application, the two images are only partially overlapped, the 
overlapped domain will change when 𝜇  is varied. Estimations of the marginal 
𝜌𝐹,𝜇(𝐼𝐹), 𝜌𝑀,𝜇(𝐼𝑀) and joint distribution 𝜌𝐹,𝑀,𝜇(𝐼𝐹, 𝐼𝑀)  can be obtained by 
normalization of the respective histogram𝑕𝜇(∙). We have the following formulations: 
 

𝜌𝐹,𝜇(𝐼𝐹) = 𝑕𝜇(𝐼𝐹) ∑ 𝑕𝜇(𝐼𝐹)𝐼𝐹
⁄   

𝜌𝑀,𝜇(𝐼𝑀) = 𝑕𝜇(𝐼𝑀) ∑ 𝑕𝜇(𝐼𝑀)𝐼𝑀
⁄   

                 𝜌𝐹,𝑀,𝜇(𝐼𝐹, 𝐼𝑀) = 𝑕𝜇(𝐼𝐹 , 𝐼𝑀) ∑ 𝑕𝜇(𝐼𝐹, 𝐼𝑀)𝐼𝐹,𝐼𝑀
⁄            (3.26) 

 
𝑕𝜇(𝐼𝐹), 𝑕𝜇(𝐼𝑀) are the image intensity histogram of the fixed image 𝐼𝐹  and the 
moving image 𝐼𝑀 . 𝑕𝜇(𝐼𝐹, 𝐼𝑀)  is the joint image intensity histogram. All the 
histograms can be computed by binning the image intensity values 𝐼𝐹(𝑥), 𝐼𝑀(𝑇𝜇(𝑥)), 

(𝐼𝐹(𝑥), 𝐼𝑀(𝑇𝜇(𝑥))) for the current overlapping domain 𝑥 ∈ Ω𝜇Ω𝑓. In order to do 

this efficiently, the moving and fixed image intensities are binned linearly rescaled to 
the range ,0, 𝑛𝑀 − 1-  and ,0, 𝑛𝐹 − 1-  respectively, 𝑛𝑀 × 𝑛𝐹  being the total 
number of bins in the joint histogram. Typically, we use 𝑛𝑀 × 𝑛𝐹=256. However, the 
histogram method may not accurate to update the joint probability 𝜌𝐹,𝑀,𝜇(𝐼𝐹, 𝐼𝑀)[39]. 

We adopt the B-spline Parzen window, which was first proposed by Viola [39] and 
Thévenaz [40] as a classical method to calculate the joint probabilities. We have the 
following formulation of the Parzen window joint histogram:  
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𝜌𝐹,𝑀,𝜇(𝐼𝐹, 𝐼𝑀) =
1

|Ω𝜇|
∑ 𝜂𝐹(𝐼𝐹 𝜎𝐹 − 𝐼𝐹(𝑥𝑖) 𝜎𝐹⁄⁄ )𝑥𝑖∈Ω𝜇

×  

                       𝜂𝑀 .𝐼𝑀 𝜎𝑀 − 𝐼𝑀 .𝑇𝜇(𝑥𝑖)/ 𝜎𝑀⁄⁄ /                 (3.27) 

 
𝜂𝐹 and 𝜂𝑀 represent the fixed and moving B-spline Parzen window kernels [39] used 
to distribute an intensity over the neighboring bins. The scaling constants 𝜎𝐹 and 𝜎𝑀 
equal to the intensity bin widths.  

We can have the marginal discrete probabilities from the joint discrete probability 
[39]:  

𝜌𝐹,𝜇(𝐼𝐹) =
MI
 𝜌𝐹,𝑀,𝜇(𝐼𝐹, 𝐼𝑀) 

                      𝜌𝑀,𝜇(𝐼𝑀) =
IF

 𝜌𝐹,𝑀,𝜇(𝐼𝐹, 𝐼𝑀)                  (3.28)                                   

 
The similarity function 𝐼(𝐼𝐹 , 𝐼𝑀) is then expressed by the expression:  
 

𝐼(𝐼𝐹 , 𝐼𝑀) =  𝐻(𝐼𝐹) + 𝐻(𝐼𝑀) − 𝐻(𝐼𝐹 , 𝐼𝑀) 

                     =  −∑ 𝜌𝐹,𝑀,𝜇(𝐼𝐹, 𝐼𝑀)𝑙𝑜𝑔2𝐼𝐹,𝐼𝑀

𝜌𝐹,𝑀,𝜇(𝐼𝐹,𝐼𝑀)

𝜌𝐹,𝜇(𝐼𝐹)𝜌𝑀,𝜇(𝐼𝑀)
        (3.29)     

           
The optimal registration parameter 𝜇̂ is found from: 

 

                     𝜇̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝜇 − 𝐼(𝑇𝜇; 𝐼𝐹 , 𝐼𝑀, Ω𝜇)                 (3.30) 

 
The cost function to be minimized is equals to the mutual information similarity 
metric. However, the registration problem is ill-posed for the non-rigid transformation, 
a regularization term (penalty term) Ψ is often introduced to constrain 𝑇𝜇. Indeed, the 
cost function may have multiple local minima. The local minimum that selected as the 
solution 𝜇̂ depends on the optimization algorithm and the initial alignment of the 
images. This regularization term Ψ(𝑇𝜇) is added to the cost function to penalize the 
undesirable deformation and consequently to reduce the number of local minima. 

The registration formulation should be rewritten as follows:  
 

                 𝜇̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝜇 − 𝐼(𝑇𝜇; 𝐼𝐹 , 𝐼𝑀, Ω𝜇) + 𝛾Ψ(𝑇𝜇)            (3.31)                         

 
𝛾 is a constant that weights the similarity against regularity.  
 
c. Regularization 
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We adopt the rigidity penalty proposed by Staring [31] in our non-rigid registration. 
The projection images that are to be registered often contain both structures that 
deform and ones that remain rigid. This regularization adds a local rigidity penalty 
term to penalize the deformation of rigid objects. Three conditions were combined in 
the penalty term to model the local rigid transformation.  

For a displacement field 𝑇𝜇(𝑥) to be rigid, it must hold that: 
 

                       𝑇𝜇(𝑥) = 𝑥 + 𝑇(𝑥) = 𝑅𝑥 + 𝑡                  (3.32) 
 
𝑅  and 𝑡  are the rotation matrix and translation vector respectively.  𝑟𝑖𝑗  is the 
component of 𝑅. Three conditions on 𝑇𝜇(𝑥) can be derived.   

Affinity condition:  
 

                     𝐶𝑘𝑖𝑗(𝑥) =
𝜕2𝑇𝜇𝑘

(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗
, for all 𝑘, 𝑖, 𝑗 = 1,2           (3.33) 

 
For the rigid transformation,  𝐶𝑘𝑖𝑗(𝑥) = 0. 

Orthonormality condition: 
 

      O𝐶𝑖𝑗(𝑥) = ∑ .
𝜕𝑇𝜇𝑘

(𝑥)

𝜕𝑥𝑖
+ 𝛿𝑘𝑖/ (

𝜕𝑇𝜇𝑘
(𝑥)

𝜕𝑥𝑗
+ 𝛿𝑘𝑗) − 𝛿𝑖𝑗

2
𝑘=1 , for all 𝑖, 𝑗 = 1,2  (3.34) 

 

For the rigid transformation, we have ∑ 𝑟𝑘𝑖𝑟𝑘𝑗
2
𝑘=1 = 𝛿𝑖𝑗 and 

𝜕𝑇𝜇𝑖
(𝑥)

𝜕𝑥𝑗
= 𝑟𝑖𝑗 − 𝛿𝑖𝑗, then,  

O𝐶𝑖𝑗(𝑥) = 0. 
Properness: 

 
𝑃𝐶(𝑥) = det(𝑅) − 1 

                           𝑟𝑖𝑗 =
𝜕𝑇𝜇𝑖

(𝑥)

𝜕𝑥𝑗
+ 𝛿𝑖𝑗.                       (3.35)  

For the rigid transformation, 𝑃𝐶(𝑥) = 0.  
We have the definition of the rigidity penalty term Ψ(𝑇𝜇)  as the sum of all these 

conditions squared:  
 

Ψ(𝑇𝜇; 𝐼𝑀) =
1

∑ 𝑐(𝑥+𝑇(𝑥))𝑥
∑ 𝑐(𝑥 + 𝑇(𝑥))𝑥   

           × {𝑐𝐴𝐶 ∑ 𝐴𝐶𝑘𝑖𝑗(𝑥)
2 + 𝑐𝑂𝐶 ∑ 𝑂𝐶𝑖𝑗(𝑥)

2 + 𝑐𝑃𝐶𝑃𝐶𝑖,𝑗𝑘,𝑖,𝑗 (𝑥)2}      (3.36) 

 
In order to distinguish between rigid and non-rigid tissue, the total penalty term is 

weighted by a rigidity coefficient 𝑐(𝑥) ∈ ,0,1- of the tissue type at position 𝑥. The 
weights 𝑐𝐴𝐶 , 𝑐𝑂𝐶  and 𝑐𝑃𝐶 determine the relative strength of each of the three terms. 
The rigidity coefficient 𝑐(𝑥) is set to 0 for pixels 𝑝 in completely non-rigid tissue, 
and 1 for rigid tissue, for other tissue types a value of 𝑐(𝑥) is chosen between 0 and 
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1. The rigidity coefficient image only has to be defined on the moving image, as we 
calculate the cost function from fixed image to moving image. For our application, 
unconstrained non-rigid registration (local deformation) severely compressed the 

vasculature, which can be avoided with the use of Ψ(𝑇𝜇).  

3.3.4.2 Multi-resolution strategy 

Some researches show that the subsampling of the high-resolution images can be 
applied without deteriorating the registration robustness [41-42]. Important speed-ups 
can be realized by using a multi-resolution optimization strategy, starting with a 
coarsely sampled image for efficiency and increasing the resolution during the 
optimization proceeds for accuracy. We adopt the Gaussian pyramid [41-42], which 
means that the images are applied smoothing by Gaussian filtering and 
down-sampling.  

3.3.4.3 Approximation by subsampling 

When we calculate the cost function based on mutual information, it is not 
necessary to loop over all the pixels 𝑥 ∈ Ω𝜇of the fixed image, a subset may suffice. 
In order to reduce the computation time, many subsampling stochastic gradient 
descent optimization method adopt the random subsampling, which selects a subset of 
pixels from the fixed image randomly for each iteration [43]. Random subsampling 
will reduce the computational cost substantially, without compromising registration 
accuracy.  

3.3.4.4 Geometric Transformation  

We apply firstly the affine transformation to model the rigid deformation field, 
secondly, the B-spline transformation to model the local deformation field on 
non-rigid deformation.  
 
a. Affine transformation 
 

The affine transformation is defined as: 
 

                        𝑇𝜇(𝑥) = 𝐸(𝑥 − 𝑐) + 𝑡 + 𝑐                  (3.37) 
 
𝑐 is the center of the image. 𝐸 is a matrix that includes the rotation, scaling, shearing. 
𝑡 is the translation. The parameters 𝜇 are formed by 𝐸, 𝑡. 
 
b. B-spline transformation 
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We use a cubic B-spline to model the local deformation [44]:  

                 𝑇𝜇(𝑥) = 𝑥 +
x Nxk
 𝑙𝑘𝛽

3((𝑥 − 𝑥𝑘)/𝜎)             (3.38) 

𝑥𝑘 are the control points. 𝛽3(𝑥) is the cubic multidimensional B-spline polynomial. 
𝑙𝑘 is the B-spline coefficient vectors. 𝜎 is the B-spline control point spacing, a small 
spacing of control points allows modeling of highly local non-rigid deformations. 𝑁𝑥 
is the set of all control points within the compact support of the B-spline at 𝑥, this 
means that the transformation of a point can be computed from only a couple of 
surrounding control points. The control points 𝑥𝑘 are defined on a regular grid of the 
fixed image. The parameters 𝜇 are formed by the coefficients 𝑙𝑘 . 𝑛1, 𝑛2  are the 
number of control points of each direction of 2D image, 𝑠1, 𝑠2 are the image size of 
each direction, then 𝑛1 ≈ 𝑠1 𝜎1⁄ , 𝑛2 ≈ 𝑠2 𝜎2⁄ . The number of parameters is 𝑛1 × 𝑛2 ×
2.  

3.3.4.5 B-spline Interpolation 

In general, when we calculate the mutual information, 𝑇𝜇(𝑥) will not locate at a 
grid point of moving image M. 𝐼𝑀(𝑇𝜇(𝑥)) must be obtained by the interpolation. We 
use the 3 order B-spline to do the interpolation [44], it is also be used to generate the 
final corrected projection after registration.  

3.3.4.6 Optimization methods 

To resolve the registration problem in equations (3.30) and (3.31), we commonly 
use an iterative optimization to obtain the optimal transformation parameter vector 𝜇̂.  

We have the following formulation:  
 

                     𝜇𝑘+1 = 𝜇𝑘 + 𝑠𝑘𝑑𝑘,  𝑘 = 0,1,2,…                 (3.39) 

                                
𝑑𝑘 is the searching direction at iteration 𝑘. 𝑠𝑘 is the scalar gain factor that controls 
the step size, this can be determined by a line search or a predefined function of 𝑘. 

Classically, Powell’s multidimensional direction set method was used combined 
with the Brent’s one-dimensional line search algorithm [45]. However, the specific 
cost function of mutual information can lead to an analytic expression of its gradient, 
according to this, researchers proposed many effective optimization [43]. We adopt 
the most advanced adaptive stochastic gradient descent (ASGD) algorithm [32] to do 
the optimization. ASGD algorithm is the development based on the gradient descent 
(GD) algorithm and the Robbins-Monro (RM). The algorithm needs less parameters 
and tends to be faster and more robust than GD and RM. We describe the three 
algorithms as follows: 

 
a. Gradient descent (GD) [43]:  
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                         𝜇𝑘+1 = 𝜇𝑘 − 𝑠𝑘𝑔(𝜇𝑘)                     (3.40) 
 

Gradient descent takes steps in the direction of the negative gradient of the cost 
function, which is the derivative of the cost function evaluated at the current position 
𝜇𝑘. 

The gradient 𝑔(𝜇𝑘) has a general formulation:    
 

𝐶(𝜇) = Φ(
1

|Ω𝜇|
∑ 𝜉 .𝐼𝐹(𝑥𝑖), 𝐼𝑀(𝑇𝜇(𝑥𝑖))/𝑥𝑖∈Ω𝜇

)  

              𝑔(𝜇𝑘) = 𝜕𝐶 𝜕𝜇⁄
𝜇=𝜇𝑘

=
1

|Ω𝜇|
∑

𝜕𝑇𝜇
𝑇

𝜕𝜇𝑥𝑖∈Ω𝜇

𝜕𝐼𝑀

𝜕𝑥

𝜕𝜉

𝜕𝑣

𝜕Φ

𝜕𝑢
           (3.41) 

                        
The search direction 𝑑𝑘 = −𝑔(𝜇𝑘). More details of 𝑔(𝜇𝑘) can be seen in [43]. 
𝑠𝑘 can be determined by a line search algorithm [43].  
 
b. Robbins-Monro (RM) [43]:  
 

The function 𝑔(𝜇𝑘) is replaced by an approximation 𝑔̃𝑘 resulting in the following:  
 

𝜇𝑘+1 = 𝜇𝑘 − 𝑠𝑘𝑔̃𝑘 
𝑠𝑘 = 𝑠 (𝑘 + 𝐻)

𝛼⁄  
𝑠 > 0,𝐻 ≥ 1, 0≤ α ≤ 1 

                      𝑔̃𝑘 =
1

|𝐵𝑘|
∑

𝜕𝑇𝜇
𝑇

𝜕𝜇𝑥𝑖∈𝐵𝑘

𝜕𝐼𝑀

𝜕𝑥

𝜕𝜉

𝜕𝑣

𝜕Φ

𝜕𝑢
                  (3.42) 

 
The search direction 𝑑𝑘 = −𝑔̃𝑘 is the approximation of the gradient 𝑔(𝜇𝑘), this 

approximation 𝑔̃𝑘 is done by randomly subsampling a subset 𝐵𝑘 of the fixed image 
every iteration k. RM is much faster than GD because of the random sampling, while 
without compromising on accuracy [43]. However, 𝑠, 𝐻, α depend on the specific 
problem, the set of these parameters complicate the application of this algorithm.  
 
c. Adaptive stochastic gradient descent (ASGD) [32]:  

 
𝜇𝑘+1 = 𝜇𝑘 − 𝑠𝑘𝑔̃𝑘 

𝑠𝑘 = 𝑠(𝑚𝑘) = 𝑠/(𝑚𝑘 + 𝐴𝑎) 
𝑚𝑘+1 = ,𝑚𝑘 +  (−𝑔̃𝑘

𝑇𝑔̃𝑘−1)-
+ 

,ξ-+ = 𝑚𝑎𝑥(ξ, 0) 

 (ξ) =  𝑀𝐼𝑁 +
 𝑀𝐴𝑋 −  𝑀𝐼𝑁

1 − ( 𝑀𝐴𝑋  𝑀𝐼𝑁⁄ )𝑒−ξ/ϵ
 

                       𝑀𝐴𝑋 > 0,  𝑀𝐼𝑁 < 0, ϵ > 0                     (3.43) 
 

For  , we define a general sigmoid shape with  (0) = 0. The step size 𝑠𝑘 is 
adaptive and evaluated at the iteration time 𝑚𝑘. 𝜇0, 𝑚0, 𝑚1 are user-defined initial 
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conditions. The new introduced parameters are  𝑠, 𝐴𝑎,  𝑀𝐴𝑋 ,  𝑀𝐼𝑁 , ϵ . 𝐴𝑎  is user 
defined, empirically, a reasonable setting is to use 𝐴𝑎 =20. The ASGD algorithm 
proposed in [32] is shown as follows:  
 
1. Compute 𝑠 
 
Step 1: Compute C 
 

𝐽𝑖 =
𝜕𝑇𝜇

𝜕𝜇
(𝑥𝑖, 𝜇0) 

                         C≡ 1

|Ω𝜇|
∑ 𝐽𝑖

𝑇
𝑥𝑖∈|Ω𝜇|

𝐽𝑖                       (3.44) 

                                                                  
Step 2: Compute 𝜎4 
 

                 𝜎42 = 𝑚𝑖𝑛𝑥𝑗∈Ω𝜇𝛿
2/(‖𝐽𝑗‖𝐹

2
+ 2√2‖𝐽𝑗𝐽𝑗

𝑇‖
𝐹
)             (3.45)                                 

δ appears to be unaffected by the choice of the similarity measure. Empirically, we 
can set δ to be the average pixel size of the images. 
 

Step 3: Generate 𝑁𝜇  instances of 𝜇𝑘  according to  𝜇𝑘~𝑁(𝜇0, 𝜎42𝐼𝑖) , 𝐼𝑖  is the 

identity matrix. 
 

Compute for each 𝜇𝑘  the exact cost function derivative  𝑔 , the approximated 
derivate 𝑔̃𝑘, and the approximation error 𝜀𝑘 = 𝑔 − 𝑔̃𝑘. Note that, to compute 𝑔̃𝑘, a 
new set of pixels 𝐵𝑘 must be selected for each 𝜇𝑘.  
 
Step 4: Compute 𝜎1, 𝜎3        
 

𝜎1
2 =

1

𝑁𝜇 1

N

n




 ‖𝑔(𝜇𝑛)‖

2/𝑡𝑟(𝐂) 

                      𝜎32 =
1

𝑁𝜇 1

N

n




 ‖𝜀(𝜇𝑛)‖

2/𝑡𝑟(𝐂)                  (3.46) 

 
Step 5: Compute 𝑎𝑀𝐴𝑋 
 

            𝑎𝑀𝐴𝑋 = 𝐴𝑎𝛿/𝜎1𝑚𝑖𝑛𝑥𝑗∈Ω𝜇 0𝑡𝑟(𝐽𝑗𝑪𝐽𝑗
𝑇) + 2√2‖𝐽𝑗𝑪𝐽𝑗

𝑇‖
𝐹
1
−
1

2      (3.47) 

 
Step 6: Compute 𝜂 and 𝑠    
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𝐸‖𝑔‖2 =
1

𝑁𝜇 1

N

n




 ‖𝑔(𝜇𝑛)‖

2 

𝐸‖𝜀‖2 =
1

𝑁𝜇 1

N

n




 ‖𝜀(𝜇𝑛)‖

2 

𝜂 =
𝐸‖𝑔‖2

𝐸‖𝑔‖2 + 𝐸‖𝜀‖2
 

                              𝑠 = 𝑎𝑀𝐴𝑋 𝜂                         (3.48) 
 
2. Compute parameters  𝑀𝐴𝑋 ,  𝑀𝐼𝑁 , ϵ 
 
Step 1: Set  𝑀𝐴𝑋 = 1 and compute  𝑀𝐼𝑁 
 
                             𝑀𝐼𝑁 = 𝜂 −  𝑀𝐴𝑋                      (3.49) 
 
Step 2: Compute ϵ 
 

𝑉𝑎𝑟(𝜀𝑘
𝑇𝜀𝑘−1) = 𝜎3

4‖𝑪‖𝐹
2  

                          ϵ = κ√𝑉𝑎𝑟(𝜀𝑘𝑇𝜀𝑘−1)                      (3.50) 

 
κ is a defined constant.  
 
3. Start the optimization defined by (3.43). Convergence is assumed after K 

iterations:  
 
                               𝜇̂ = 𝜇𝐾                            (3.51)                                               
 
The ASGD algorithm is more robust than the RM algorithm [32], because of its 
adaptive step size prediction.  

3.3.5 Motion Compensated Reconstruction  

After the registration of 𝑝𝑓𝑤𝑝 and 𝑝𝑏𝑔𝑟, the corrected projection data 𝑝𝑐𝑝𝑟 must 
be generated according to the obtained optimum transformation 𝑇𝜇. The intensity 
value of the corrected projection at point 𝑝 can be given by 𝑝𝑐𝑝𝑟(𝑥) = 𝑝𝑏𝑔𝑟(𝑇𝜇(𝑥)), 
𝑝𝑏𝑔𝑟 is the preprocessed current projection. We also adopt the 3 order B-spline to do 
this interpolation. We use the same reconstruction algorithm as initial reconstruction. 
When we reconstruct at the phase 𝑡 with the gating window width ω𝑐  for the motion 
compensated reconstruction, Y is composed by the corrected projection data 
𝑝𝑐𝑝𝑟 with the phases 𝜏𝑖 ∈ (𝑡 − ω𝑐/2, 𝑡 + ω𝑐/2) in each cardiac cycle.  
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3.3.6 Multiple Iterations 

The motion compensated reconstruction procedure can be repeated for several 
cycles to achieve high refinement. After one motion compensation cycle, the quality 
of the 3D reconstruction has been improved, which generate a better maximum 
intensity forward and the more accurate transformation parameters.  

3.4. Experiments and Results 

In this section, we will present the results of each step described in 3.3. They are 
the cardiac phase selection, segmentation, image registration and the motion 
compensated reconstruction.  

3.4.1 Simulation Data 

CAVAREV (CArdiac VAsculature Reconstruction EValuation) [46] is a public and 
open platform for the evaluation of cardiac vasculature reconstruction algorithms 
from C-arm CT (rotational angiography). The platform proposes the evaluation 
measures which are independent from the reconstruction algorithm.  

It has two simulated dynamic projection datasets based on the 4D XCAT phantom 
with contrasted coronary arteries which was derived from real patient CT/MR data. In 
the first dataset, the vasculature undergoes a continuous periodic motion. The second 
dataset contains aperiodic heart motion by including additional breathing motion.  

We assume a breath hold acquisition, and we use the cardiac motion-only dataset 
for our experiment. The acquisition scenario and geometry calibration was obtained 
from a standard protocol of a clinical angiographic C-arm system (Artis Zee system). 
The acquisition time is T=5.3s with N=133 simulated projection images created from 
an equiangular 200° acquisition of a software phantom. The heart rate of the periodic 
cardiac motion is 80bpm. It means there are totally 7 cardiac cycles, about 19 
projection images of one cycle. Phase zero corresponds to an R-peak in the ECG. The 
projection images have a height of 𝑆𝑦 = 960 pixels and width of 𝑆𝑥 = 960 pixels 
with an isotropic resolution of 0.32 mm. The isocenter-source distance (SAD) and the 
source-detector distances (SDD) of the imaging system are about 80cm and 120cm, 
respectively. The projection matrices 𝑃𝑖 ∈ 𝑅3×4, 𝑖 ∈ *1, …𝑁+ were obtained from an 
offline calibration of the clinical C-arm system. The simulation projections were 
generated by the projection matrices 𝑃𝑖  .We adopted the calibrated geometries 𝑃𝑖 in 
the reconstruction. All the reconstructions were calculated in a volume of 
196×196×196 voxels, isotropic voxel size is 0.5 mm.  

3.4.1.1 Cardiac motion phase selection 

  We adopt the method described in 3.3.2.1 to visualize the cardiac motion and  
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Fig.3.5 Cardiac motion and phase visualization 

 
corresponding phase, as shown in Fig.3.5. See Fig.3.5, we find that there are about 7 
motion cycles, which can reflect the cardiac cycles indirectly. We select the phase 
with the least motion to be the rest phase, 𝑡𝑟 = 0.4 (end-systolic). The phase with 
stronger motion is  𝑡𝑠 = 0.7 . The two are the evaluation phases. The initial 
reconstruction and the motion compensated reconstruction can be performed with 
different gating window settings. A relatively small gating window 𝜔 for the initial 
reconstruction can avoid motion blur. We adopt a larger gating window ω𝑐 for the 
compensated reconstruction to increase the image contrast and reduce artifacts.  

For the rest phase 𝑡𝑟, the gating window of 𝜔 = 0.15 was adopted as the input of 
the initial reconstruction. We set the gating window widths ω𝑐 = 0.15,0.3,0.45,0.6 
for the compensated reconstruction. For the phase with stronger motion 𝑡𝑠, we adopt a 
narrow gating window of 𝜔 = 0.05 to realize its initial reconstruction. We set 
ω𝑐 = 0.05,0.1,0.2,0.4 to realize the compensated reconstruction.   

3.4.1.2 Segmentation and Image Registration 

a. Segmentation of the original projection 
 

As described in 3.3.1, our approach does not require any complex segmentation of  
the coronaries and is fully automatic. Figure 3.6 shows one typical example of the 
preprocessing of the original projection data. The projection image corresponds to the 
phase 𝑡 = 0  of the first cardiac cycle. (a) is the original projection, (b) is the binary 
mask of the vessel structure. (c) is the estimated background. (d) is the extracted 
vessel structure. We observe that the vessel structure is extracted well from the 
original projection.  
 
b. Image registration 

 
In the motion compensated reconstruction, the parameters of the registration are set 

as: 𝑇𝑟=0.05, the intensity bin widths 𝜎𝐹 = 𝜎𝑀=16, random subsampling of 2048 
pixels, the order of B-spline transformation and interpolation is 3. Optimization 
parameters are 𝐴𝑎 = 20, δ = 0.6, 𝑚0 = 𝑚1 = 0, 𝑁𝜇=10, κ = 0.1, K=500. The  
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(a) Original projection                  (b) Mask of vessel structure 

 

  
(c) Background estimation               (d) Vessel structure extraction 

 
Fig.3.6 Preprocessing of the original projection 

 
number of resolution levels is 4, the rows and columns of the images have the same 
sampling factor, the sampling factor of each resolution level is 8, 4, 2, 1. We apply 
Robbins-Monro (RM) method for the affine transformation with 300 iterations, and 
adaptive stochastic gradient descent (ASGD) for the B-spline transformation with 500 
iterations. Figure 3.7 shows one example of the registration result of the proposed 
algorithm. The initial reconstruction of the rest phase 𝑡𝑟 was adopted to generate the 
forward projection. The forward projection was generated at the phase 𝑡 = 0.1 of the 
first cardiac cycle. We plot the checkerboard to facilitate the qualitative evaluation of 
the registration accuracy. (a) 𝑝𝑓𝑤𝑝 is the forward projection, (b) 𝑝𝑏𝑔𝑟  is the 
preprocessed current projection, (c) 𝑝𝑐𝑝𝑟_𝐴 is corrected projection after single affine 
registration, (d)  𝑝𝑐𝑝𝑟_𝐴𝐵 is the corrected projection after affine combined local 
deformation registration. Comparing (a), (b), and observing the vessel structure that 
indicated by the arrows, we find that there is obvious displacement (the arrow below) 
and also some local deformation (the arrow above) between the forward projection 
and the preprocessed current projection. Comparing (a), (b), (c), we find that 𝑝𝑐𝑝𝑟_𝐴 
corrects the displacement effectively (see the lower arrows of (a), (b) and the two 
arrows of (c)). Comparing (a), (c), (d), we find that 𝑝𝑐𝑝𝑟_𝐴𝐵 corrects the local 
deformation effectively (see the higher arrows of (a), (b) and the arrow of (d)).  
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(a) 𝑝𝑓𝑤𝑝                            (b) 𝑝𝑏𝑔𝑟 

 

  
(c) 𝑝𝑐𝑝𝑟_𝐴                          (d) 𝑝𝑐𝑝𝑟_𝐴𝐵 

 
Fig.3.7. Checkerboard images showing the qualitative evaluation of image registration 

3.4.1.3 Motion compensated reconstruction evaluation 

We designate the method proposed by Schwemmer [25] as method S. It is the latest 
research of 2D motion compensated reconstruction. The ECG-gated 𝐿0  prior 
iterative reconstruction method [7] and method S [25] are taken as two reference 
methods. We use two iterative cycles in the motion compensated reconstruction.  

 
a. Qualitative evaluation of the motion compensated reconstruction 
 

The qualitative evaluation is carried out visually. We plot the reconstruction results 
at the two evaluation phases and also use the ray-casting algorithm [47] to visualize 
the 3D reconstruction. The volume rendering parameters are identical for each 
reconstruction result.  

We have 3 reconstruction results of each ω𝑐: the result by ECG-gated iterative 
reconstruction [7], the reconstruction by method S [25], the reconstruction by the 
proposed method. Fig.3.8 shows the reconstruction at the rest phase 𝑡𝑟. Fig.3.9 shows 
the reconstruction at phase 𝑡𝑠.  
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(a)  ω𝑐 = 0.15 
 

 
 

(b)  ω𝑐 = 0.3 
 

 
 

(c) ω𝑐 = 0.45 
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(d) ω𝑐 = 0.6 
 
Fig.3.8. Reconstructions of the simulation data at the rest phase 𝑡𝑟 with different gating window 
widths ω𝑐.  Left column is the result by ECG-gated iterative reconstruction [7], middle column is 
the reconstruction by method S [25], right column is the reconstruction by the proposed method.  
 

 
 

(a)  ω𝑐 = 0.05 
 

 
 

(b)  ω𝑐 = 0.1 
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(c) ω𝑐 = 0.2 
 

 
 

(d) ω𝑐 = 0.4 
 

Fig.3.9. Reconstructions of the simulation data at the stronger motion phase  𝑡𝑠 with different 
gating window widths  ω𝑐. Left column is the result by ECG-gated iterative reconstruction [7], 
middle column is the reconstruction by method S [25], right column is the reconstruction by the 
proposed method.  
 

We observe the reconstructions in Fig.3.8 and Fig.3.9. We find that the ECG-gated 
reconstruction [7] achieves worse result than the two motion compensated 
reconstructions and the effect is more obvious when we increase the gating window 
width.  

The proposed method has a better result than method S [25] in the artifact level, 
visibility, details of the vessel structure. The proposed method achieves better quality 
with wider gating window.  

The improvement of image quality at the stronger motion phase 𝑡𝑠 is also obvious. 
This indicates that the proposed method can obtain a high 3D quality even at a 
non-optimal phase.  
 
b. Quantitative evaluation of the motion compensated reconstruction 
 

Rohkohl [48] introduced the metric 𝑄3𝐷(𝑓) to evaluate the accuracy of the 
reconstructed cardiac vasculature morphology. The simulated dataset has 133  
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ω𝑐 of the rest phase 

𝑡𝑟 
0.15 0.3 0.45 0.6 

ECG-gated iterative 
recon. (no m.c.) [7] 

0.741 0.733 0.702 0.692 

Method S [25] 0.750 0.758 0.774 0.780 
Proposed method 0.762 0.767 0.792 0.813 
ω𝑐 of the stronger 
motion phase 𝑡𝑠 

0.05 0.1 0.2 0.4 

ECG-gated iterative 
recon. (no m.c.) [7] 

0.718 0.715 0.707 0.705 

Method S [25] 0.763 0.766 0.769 0.771 
Proposed method 0.770 0.773 0.778 0.781 

 
Table.3.1. 𝑄3𝐷(𝑓) values of the reconstruction results. m.c. means motion compensation. 

 
projection images and each projection corresponds to one motion state. CAVAREV 
platform provides the static binary reference volume 𝑓𝑖𝑟 representing the ground truth 
of the coronary arteries at each motion state i. 𝑓  is the 8 bit quantization 
reconstruction.  

The motion state based quality metric 𝑄𝑖(𝑓) can be computed by the following 
formulations:  
 
                  𝑄𝑖(𝑓) = 𝑚𝑎𝑥𝑎∈*0,…,255+𝐷𝑠𝑐(𝑓𝑖𝑟 , 𝑇(𝑓, 𝑎))              (3.52) 
 
𝐷𝑠𝑐 is the Dice similarity coefficient defined as [49]: 
 
             𝐷𝑠𝑐(𝑓1, 𝑓2) = 2∑ 𝑓1(𝑥) ∙ 𝑓2(𝑥)𝑥 (∑ 𝑓1(𝑥) + 𝑓2(𝑥)𝑥 )⁄          (3.53) 

 
𝐷𝑠𝑐 ranges from 0, for no spatial overlap, to 1, for a perfect match. 𝑇(𝑓, 𝑎) is a 
threshold function to generate a binary volume of 𝑓, we have the definition as:   
 

                      𝑇(𝑓, 𝑎)(𝒏) = {
1    𝑓(𝒏) ≥ 𝑎

0    𝑓(𝒏) < 𝑎
                    (3.54) 

 
Then, the quality metric 𝑄3𝐷(𝑓) searches the image frame whose motion phase fits 
best to the reconstruction, it can be computed as: 
 
                     𝑄3𝐷(𝑓) = 𝑚𝑎𝑥𝑖∈*1,…,133+𝑄𝑖(𝑓)                    (3.55) 

 
We show the quantitative evaluation metric value 𝑄3𝐷(𝑓) of the reconstruction 

results in Table 3.1. It can be seen that the ECG-gated reconstruction [7] has a lower 
metric value than the two motion compensated reconstruction. Its metric value 
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decreases with the wider gating window width. The proposed method has a better 
metric value than method S. The reconstruction of phase 𝑡𝑠 has the comparable 
metric values as phase 𝑡𝑟.  

Compared with other methods in the ranking list of CAVAREV, 𝑄3𝐷(𝑓) value of 
the proposed method is at the top of the list (second place).  

3.4.1.4 Reconstruction from improved calibration 

As described in 3.4.1, the simulation dataset was generated by the calibrated 
projection matrices 𝑃𝑖 ∈ 𝑅3×4, 𝑖 ∈ *1, … ,133+, which were obtained from an offline 
calibration of the C-arm system [46]. In the above section 3.4.1.3, we adopt 𝑃𝑖  to 
evaluate the reconstruction algorithm conveniently. In this section, we come back and 
try to evaluate the contribution effect of calibration work in the reconstruction by the 
simulated data. We still use the cardiac motion-only dataset provided by CAVAREV.  

We still adopt the proposed 2D motion compensated method to realize the 
reconstruction. Now, the reconstruction is done from two geometries: the calibrated 
geometries and the ideal geometries. The geometries can be applied in two steps of 
the 2D motion compensated reconstruction. One is the steps of the initial and 
compensated reconstruction. The acquisition geometry will affect the calculation of 
the system matrix 𝐴, which connects the 2D projection data and the 3D image volume. 
The other is the step of forward projection. We need to use the geometry at each 
acquisition angle to generate the forward projection.  

We select the reconstruction phase 𝑡𝑟 = 0.4, 𝜔 = 0.15 for the initial reconstruction, 
ω𝑐 = 0.15,0.3,0.45,0.6 for the motion compensated reconstruction. We denote the 

reconstruction from calibrated geometries as  𝑓𝐺𝑐 , the reconstruction with ideal 

geometries as 𝑓𝐺𝑖 . All the reconstruction parameters are the same as in section 3.4.1.3.  

 
a. Qualitative evaluation of the reconstruction  
 

We plot the reconstruction results of 𝑓𝐺𝑐  and 𝑓𝐺𝑖  in Fig.3.10. The volume 

rendering parameters [47] are identical for each reconstruction.  

As displayed in Fig.3.10,  𝑓𝐺𝑖  has the obvious degenerated vessel structure and 

artifacts and the some parts of the vessel structure is not improved with the wider 

gating window. Another hand, 𝑓𝐺𝑐 has the complete vessel structure and the structure 

achieves less artifacts with the wider gating window. This shows that the calibration 
work is essential for the 2D motion compensated reconstruction.  
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(a) ω𝑐 = 0.15, 𝑓𝐺𝑖                     (b) ω𝑐 = 0.15, 𝑓𝐺𝑐  

 

           

(c) ω𝑐 = 0.3, 𝑓𝐺𝑖                       (d) ω𝑐 = 0.3, 𝑓𝐺𝑐  

 

           

(e) ω𝑐 = 0.45, 𝑓𝐺𝑖                     (f) ω𝑐 = 0.45, 𝑓𝐺𝑐  
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(g) ω𝑐 = 0.6, 𝑓𝐺𝑖                      (h) ω𝑐 = 0.6, 𝑓𝐺𝑐 

 
Fig.3.10. Reconstructions with calibrated and ideal geometries. 

 
ω𝑐 of the rest phase 

𝑡𝑟 
0.15 0.3 0.45 0.6 

recon.  𝑓𝐺𝑖   0.688 0.690 0.702 0.706 

recon. 𝑓𝐺𝑐  
0.762 0.767 0.792 0.813 

 
Table.3.2. 𝑄3𝐷(𝑓) values of the reconstructions with calibrated and ideal geometries. 

 
b. Quantitative evaluation of the reconstruction 
 

We show the evaluation metric 𝑄3𝐷(𝑓) [48] of the two kinds of reconstructions in 

Table.3.2. From Table.3.2, we see that 𝑓𝐺𝑐 has a better metric value than 𝑓𝐺𝑖. The 

calibration work has a significant contribution in the reconstruction result. The 
combination of the calibration work and 2D motion compensated reconstruction will 
make the 3D reconstruction of coronary artery more accurate and fast.  

3.4.2 Real Clinical Data 

We adopt the real clinical dataset to evaluate the proposed method. The data was 
acquired on a GE C-arm CT system from Ponchaillou Hospital (Rennes, France). 117 
projection images were acquired during a 155° rotation of the C-arm gantry.  

The distance from source to detector (SDD) is 1050 mm, and the distance from 
source to iso-center (SAD) is 720 mm. The resolution of the projection image is 
512×512, the isotropic pixel size is 0.2875 mm. No patient breathing motion exists 
over the acquisition and projection images have good contrast in the vessels. All the 
reconstructions were calculated in a volume of 256×256×256 voxels with isotropic 
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Fig.3.11. Cardiac motion and phase visualization 

 
voxel size 0.5 mm. We adopt the ideal geometries in our reconstruction and ignore the 
geometry deviation.  

3.4.2.1 Cardiac motion phase selection 

We adopt the described method in 3.3.2.1 to visualize the cardiac motion and 
corresponding phase. As shown in Fig.3.11, there are 5 available cardiac cycles and 
17 projection images of one cardiac cycle T. The two reconstructed phases are: rest 
phase 𝑡𝑟 = 0.35 (end-systolic) and the stronger motion phase 𝑡𝑠 = 0.65 .  

For the rest phase  𝑡𝑟 , we set  𝜔 = 0.2  for initial reconstruction and  ω𝑐 =
0.2,0.4, 0.6,0.8 for motion compensated reconstruction. For the stronger motion 
phase 𝑡𝑠 , we set 𝜔 = 0.05 for initial reconstruction and ω𝑐 = 0.05,0.1,0.2,0.4 for 
motion compensated reconstruction.  

3.4.2.2 Segmentation and Registration 

a. Segmentation of the original projections 
 
Figure 3.12 shows one typical example of the preprocessing of the original 

projection data. The projection image corresponds to the phase 𝑡𝑟 of the first cardiac 
cycle. (a) is the original projection, (b) is the binary mask of the vessel structure. (c) is 
the estimated background, (d) is the extracted vessel structure. We observe that the 
vessel structure was extracted well from the original projection.  
 
b. Image registration 
 

In the clinical experiment, the parameters of the registration are set as: 𝑇𝑟=0.05, 
𝜎𝐹 = 𝜎𝑀 =16, random subsampling of 2048 pixels, the order of B-spline 
transformation and interpolation is 3. Optimization parameters are  𝐴𝑎 = 20, δ =
0.6,𝑚0 = 𝑚1 = 0, 𝑁𝜇=10, κ = 0.1, K=500. The number of resolution level is 4, the 
row and columns of the images have the same sampling factor, the sampling factor 
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(a) Original projection                  (b) Mask of vessel structure 

 

  
(c) Background estimation               (d) Vessel structure extraction 

 
Fig.3.12. Preprocessing of original projection data 

 
of each resolution level is 8, 4, 2, 1. We apply Robbins-Monro (RM) method for the 
affine transformation with 300 iterations, and adaptive stochastic gradient descent 
(ASGD) for the B-spline transformation with 500 iterations.  

Figure 3.13 shows one example of the registration image result of the proposed 
algorithm. The initial reconstruction of the rest phase 𝑡𝑟 was adopted to generate the 
forward projection. The forward projection was generated at the phase 𝑡 = 0.65 of 
the second cardiac cycle. We plot the checkerboard to facilitate the qualitative 
evaluation of the registration accuracy. (a) is the forward projection 𝑝𝑓𝑤𝑝, (b) is the 
preprocessed current projection 𝑝𝑏𝑔𝑟, (c) is the corrected projection after single affine 
registration 𝑝𝑐𝑝𝑟_𝐴 , (d) is the corrected projection after affine combined local 
deformation registration 𝑝𝑐𝑝𝑟_𝐴𝐵 . Comparing (a), (b), and observing the vessel 
structure that indicated by the arrows, we find that there is obvious displacement (the 
two arrows below) and also some local deformation (the arrow above) between the 
forward projection and the preprocessed current projection. Comparing (a), (b), (c), 
we find that 𝑝𝑐𝑝𝑟_𝐴 corrects the displacement effectively (see the three arrows). 
Comparing (a), (c), (d), we find that 𝑝𝑐𝑝𝑟_𝐴𝐵  corrects the local deformation 
effectively (see the two arrows of (d)). 
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(a) 𝑝𝑓𝑤𝑝                             (b) 𝑝𝑏𝑔𝑟 

  
(c) 𝑝𝑐𝑝𝑟_𝐴                            (d) 𝑝𝑐𝑝𝑟_𝐴𝐵 

 
Fig.3.13. Checkerboard images showing the qualitative evaluation of image registration 

3.4.2.3 Motion compensated reconstruction evaluation 

The ECG-gated 𝐿0 prior iterative reconstruction method [7] and method S [25] are 
the reference methods. We apply 2 iteration cycles to realize the motion compensated 
reconstruction of method S and the proposed method. 

 
a. Qualitative evaluation and comparison 
 

We plot the reconstruction results at the two evaluation cardiac phases by volume 
rendering [47] to evaluate qualitatively and compare these 3 methods from real 
clinical data. Fig.3.14 shows the reconstruction at the rest phase 𝑡𝑟. Fig.3.15 shows 
the reconstruction at phase 𝑡𝑠. All the volume rendering parameters are identical.  

We compare the three reconstruction results from real clinical data with the same 
ω𝑐  in Fig.3.14. It can be seen that the two reconstruction results by motion 
compensated methods have an obvious improvement than the one by ECG-gated [7]. 
The proposed method has a better result than the reference method S [25] in the 
artifact level, visibility, contrast and details of the vessel structure.  

We compare the three reconstructions with different ω𝑐  in Fig.3.14. The 
reconstruction by ECG-gated achieves more artifacts with the wider gating window 
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width. The motion compensated reconstruction by the proposed method achieves 
better quality with wider ω𝑐. The proposed motion compensated reconstruction with 
ω𝑐 of 0.8 achieves the best result.   
 
 

 
 

(a) 
 

 
 

(b) 
 

 
 

(c) 
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(d) 
 

Fig.3.14. Reconstructions of the real clinical data at the rest phase  𝑡𝑟 with different gating 
window widths ω𝑐. (a) ω𝑐 = 0.2 (b) ω𝑐 = 0.4 (c) ω𝑐 = 0.6 (d) ω𝑐 = 0.8. Left column is 
the result by ECG-gated iterative reconstruction [7], middle column is the reconstruction by 
method S [25], right column is the reconstruction by the proposed method.  
 
 

 
 

(a) 
 

 
 

(b) 
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(c) 
 

 
 

(d) 
 
Fig.3.15. Reconstructions of the clinical data at the phase with stronger motion 𝑡𝑠 with different 
gating window widths ω𝑐. (a) ω𝑐 = 0.05 (b) ω𝑐 = 0.1 (c) ω𝑐 = 0.2 (d) ω𝑐 = 0.4. Left 
column is the result by ECG-gated iterative reconstruction [7], middle column is the 
reconstruction by method S [25], right column is the reconstruction by the proposed method.  
 

We compare the three reconstruction results with the same ω𝑐 in Fig.3.15. It can 
be seen that the two reconstruction results by motion compensated methods have an 
obvious improvement than the one by ECG-gated [7]. The proposed method has a 
better result than the reference method S [25] in the artifact level, visibility and 
contrast of the vessel structure.  

We compare the three reconstructions from clinical data with different ω𝑐  in 
Fig.3.15. The reconstruction without motion compensation achieves more artifacts 
with the wider gating window width. The reconstruction by the proposed method 
achieves the better quality with the wider gating windows. The compensated 
reconstruction with ω𝑐 = 0.4 at phase 𝑡𝑠 achieves an acceptable quality.  

Comparing Fig.3.14 and Fig.3.15, the improvement of image quality at the stronger 
motion phase is even higher . The results illustrate that the proposed method can 
obtain an acceptable 3D quality even at the non-optimal phase with stronger residual 
motion.  
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3.5 Discussion  

The evaluation results show that our proposed 2D motion compensation leads to an 
improved 3D coronary reconstruction both for the rest phase with less motion and the 
phase with stronger motion. In Fig.3.8 from simulated data and Fig.3.14 from clinical 
data, the contrast and detail of the reconstructions are enhanced by the motion 
compensation at the optimum rest phase. In Fig.3.9 from simulated data and Fig.3.15 
from clinical data, the improvement in image quality is also obvious for the phase 
with stronger motion.  

The 3D artifact increases strongly with increasing gating window width for 
ECG-gated iterative reconstruction [7]. This may results from two reasons. First, in a 
wider gating window, there exists the residual motion that will corrupt the ECG-gated 
iterative reconstruction. Second, this iterative reconstruction often needs a 
segmentation of the coronaries with high precision.  

Another hand, the artifact is much lower when using motion compensation, which 
largely compensates the residual motion. As the gating window width increases, the 
overall image noise decreases and the contrast of the vessels improves. Motion 
compensation can obtain a better result even without a high precise segmentation of 
the coronary artery.  

Motion compensation makes the use of a wider gating window possible, giving a 
better coronary reconstruction quality, while avoiding motion blur and a strong 
increase in anatomy errors. And a good trade-off between accuracy, computation time 
and visual image quality, it was decided to use a gating window of 0.6 with 
rectangular window of the rest phase, 0.4 of the stronger motion phase.  

When we perform the ECG-gated reconstruction, we should estimate the optimal 
phase. However, the positions of the optimal reconstruction phases in the cardiac 
cycle are different due to individual condition, and the precise optimal phase is 
difficult to calculate. This may lead to the reconstruction artifacts directly by 
ECG-gated method. As shown in Fig.3.9 and Fig.3.15, we can obtain a good quality 
3D visualization even with a non-optimum phase by the proposed method.  

There are also some limitations of our approach. First, for the pre-processing of the 
original projection, we need to set the parameters manually. The segmentation result 
of the coronary arteries is not with a high precision. Second, for the registration part, 
we also need to tune the parameters manually. Sometimes, the method is not very 
effective for some tiny local deformation. Last, the iterative reconstruction algorithm 
adopted in the step of the initial and motion compensated reconstruction costs too 
much computation time.  

3.6 Conclusion 

The proposed 2D projection-based motion compensation reconstruction method has 
been evaluated and compare with two reference methods [7, 25]. The whole 
procedure of the proposed method includes forward projection, preprocessing of the 
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acquired projection, registration, 3D reconstruction. Each step will affect the final 
reconstruction. We try to improve each step in our algorithm. For the forward 
projection, we adopt the simplified distance driven projector 𝑃𝑆𝐷𝐷 to generate a 
forward projection of the initial reconstruction. For the key problem of registration, 
we adopt the 2D registration algorithm based on the classical mutual information (MI) 
combined with a novel rigidity penalty. This cost criterion avoids the extraction of the 
centerline of the vessels and does the registration accurately and robustly. An 
advanced optimization method called adaptive stochastic gradient descent (ASGD) is 
applied to decrease the computation time of the registration part. For the 3D 
reconstruction algorithm, we combine the iterative reconstruction algorithm with the 
2D motion compensation.  

The two reference methods are ECG-gated iterative reconstruction [7], and the 
latest 2D motion compensated reconstruction by Schwemmer [25]. The experiment 
data include the simulated data and the clinical data. We have the qualitative 
evaluation for both simulated and clinical data, and quantitative evaluation for the 
simulated data.  

The method improved the ECG-gated reconstruction results for both simulated and 
clinical data. Improvements in the visual image quality are apparent for both rest and 
stronger motion phases. As the 3D reconstruction with better quality at different 
phases can be achieved, a series of 3D reconstructions can be used to assess dynamic 
properties of the coronary arteries, like displacements and speeds. The considerable 
improvement in the image quality results from motion compensation increases the 
clinical usability of 3D coronary artery reconstruction. The combination of the 
calibration work and 2D motion compensated reconstruction will make the 3D 
reconstruction of coronary artery more accurate and fast.  
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Chapter 4 Summary and Prospect 

4.1. Summary 

4.1.1 Discussion 

In this thesis, we have focused on the data acquisition modeling of Artis-zeego 
system and motion compensated reconstruction of coronary arteries from X-ray 
rotational angiography. 

The first part about calibration work, we propose a new and complete data 
calibrating method of Artis-Zeego C-arm system. First, we proposed an extended 
analytic algorithm based on the classical helical phantom to estimate the geometry 
parameters. For the classical helical phantom, at beginning, it was designed for the 
classical projection matrix algorithm and parametric iterative calibration algorithms. It 
was convenient to be obtained in the experimental environment than other specific 
phantom. The two classical calibration algorithms can estimate the projection matrix 
accurately, however when we try to extract the intrinsic and extrinsic parameters, it is 
difficult to obtain a stable solution. For our method, we not only adopt the 
convenience of the helical phantom, but also can estimate the intrinsic and extrinsic 
parameters accurately and conveniently.  

Second, in order to model the complex motion of Artis-Zeego, we transfer all the 
geometry parameters to the nominal C-arm system by minimizing the oscillation from 
the rotation displacement around the physical phantom. All the geometries are 
independent of the phantom placement, which is very important for some clinical 
function of this interventional system. This method is easier to perform than Ford [1] 
and quite suitable for our Zeego system.  

Last, as Artis-Zeego system which offers new potentialities for image guided 
interventions is more complex and flexible than the traditional C-arm. There are two 
obvious differences between this novel interventional C-arm and the traditional one. 
One difference is that this advanced interventional system can achieve more work 
position results from its multi-axes, while the traditional C-arm achieves limited 
region with two rotation axes. The work positions of Artis-Zeego include Head side, 
Left side, Right side, Table15, Table30 position. The work position can’t be set 
arbitrarily, instead, we just can choose one of them. In this dissertation, we analyze 
three representative work positions separately. The other, the motion of this 6 axes 
robotic system is more sophisticated, it is not the simple rigid motion or the rigid 
motion with some deviation along the rotation axis. To resolve this problem, we adopt 
the posterior information. We consider the intrinsic and extrinsic parameters 
separately and propose different movement models based on the estimated posterior 
information through image matching. The models are more convincing than any prior 
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assumptions.  
For our method, because the main deviation motion may occur around 𝛼 axis, we 

only consider the condition that secondary angle 𝛽 is zero. It is easy to extend our 
models when 𝛽 is not zero, see 4.2 in the following.  

The second part is about 3D reconstruction of coronary arteries by 2D motion 
compensation. We propose a complete procedure, which corrects the residual motion 
of each projection to increase the number of available projection images. The whole 
procedure includes maximum intensity forward projection, preprocessing of the 
current projection, registration, initial and motion compensated reconstruction. For the 
forward projection, we adopt the simplified distance driven projector (𝑃𝑆𝐷𝐷) to 
generate the maximum intensity forward projection, which is faster than distance 
driven (DD) and ray driven (RD) and have comparable accuracy. For the key part of 
iconic registration, we adopt the registration algorithm based on the classical mutual 
information (MI) with the novel rigidity penalty. This cost criterion can avoid the 
extraction of the centerline of the vessels and do the registration accurately and 
robustly. Another hand, we adopt the advanced adaptive stochastic gradient descent 
(ASGD) to do the nonlinear optimization of intensity-based image registration, which 
has less computation cost and is more robust than gradient descent (GD). For the 3D 
reconstruction algorithm from 2D X-ray rotational coronary angiography, we adopt 
the MAP iterative reconstruction. Comparing with the motion compensation method 
by Schwemmer et al. [2], the proposed 2D motion compensation algorithm has a 
better 3D reconstruction quality.     

As our method adopt the 2D motion compensation combined with iterative 
reconstruction. This kind of iterative reconstruction algorithm can reduce artifact 
when the projection images are few. However, this reconstruction costs too much. 
Indeed, we calculate the computation time of the proposed reconstruction with clinical 
data (𝜔𝑐 = 0.4, 𝑡 = 𝑡𝑟) . The whole computation includes the image registration 
processing and forward projection updating. We use the double core processor of Intel 
I5, 8G RAM memory. The intensity based image registration cost of each projection 
pair is about 40 s, the 3D reconstruction costs about 5 minutes, the maximum intensity 
forward projection only costs 0.26 s for each projection angle. The registration time 
can be reduced by parallel computing，but the iterative reconstruction still costs too 
much time.  

As described in chapter 3, it is significant and necessary to do the calibration. The 
combination of the two improvements (calibration and 2D motion compensation) will 
make the 3D reconstruction of coronary artery more fast and accurate.  

4.1.2 Conclusion 

We have improved the 3D reconstruction of coronary arteries from rotational 
angiography effectively by data acquisition modeling of C-arm CBCT and 2D motion 
compensation. For the calibration work, we developed an analytic algorithm through 
the rotational projections of the classical helical phantom to estimate the geometry 
parameters. This physical phantom is easy to be obtained in the experiment 
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environment. Then, we transfer the geometry to the C-arm system transformation. 
Last, we model the rotational movement based on the estimated posterior information 
by image matching, we consider three representative work positions: Head side, Left 
side, Table30 positions. The experiment results indicate that the proposed algorithm 
on the helical phantom is more accurate and robust than the original algorithm. We 
have the results that the focal length is constant, the smooth variation of the principle 
point should be considered in the models. The movement models have an acceptable 
precision to predict the acquisition parameters at any acquisition position. Experiment 
tests also indicate that Head position has the least deviation. Left position has minor 
deviation. The two positions can be modeled as a mean rigid motion. Table30 
positions has the most severe deviation，it can be modeled as a mean rigid motion 
added with a residual translation. These models will simplify the calibration work 
greatly for the clinical application.  

For the 3D reconstruction work of coronary arteries, we propose the complete 2D 
motion compensation method for the rotational X-ray angiography data. The proposed 
method has improved the 3D reconstruction quality of coronary arteries. 
Improvements in the visual image quality are apparent for both rest phase (estimated 
optimal phase) and other phase with stronger motion. The contrast and details of the 
reconstructions are enhanced by the motion compensation. The 3D artifact increases 
strongly with increasing gating window width for the uncompensated reconstructions. 
The artifact decreases when using a wider gating window of the motion compensated 
reconstruction. As a tradeoff consideration, a gating window of 40% width of the 
cardiac cycle is an appropriate choice in the clinical applications. The improvement in 
the image quality increased the visibility of vessels and clinical usability of 3D 
coronary artery. This will be helpful for a better interventional planning. As this 
method can be applied to different phases, a series of 3D reconstructions (4D) can be 
obtained to asses some dynamic properties of the coronary arteries. The combination 
of calibration and 2D motion compensation will improve the 3D reconstruction image 
further.  

4.2. Suggesting new direction of study 

4.2.1 Future Study of Zeego movement models 

We propose the future research plan of the movement models of Zeego system in 
this section. We only consider the condition of 𝛽 = 0  in chapter 2 for the 
simplification. The complete movement models should consider the condition of 
𝛽 ≠ 0, which is widely used in the clinical application. We describe the research plan 
in the following. 
 
a. Data supplement 
 

We should supplement the data as: 
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Fig.4.1 illustration of the projection of the helical phantom when 𝛽 is non-zero. 
 

𝑃𝑕𝑒𝑎𝑑 = *(𝛼, 𝛽)|𝛽 ∈ *−40
°, −30°, … ,0°, 30°, 40°+ 

 𝛼 ∈ *−160°, −150°, … ,0°, 10°, 20°++ 

𝑃𝑙𝑒𝑓𝑡 = *(𝛼, 𝛽)|𝛽 ∈ *−40
°, −30°, … ,0°, 30°, 40°+ 

 𝛼 ∈ *−160°, −150°, … , 0°, 10°, 20°++ 
𝑃𝑡𝑎𝑏𝑙𝑒30 = *(𝛼, 𝛽)𝛽 ∈ *−40

°, −30°, … ,0°, 30°, 40°+ 
                   𝛼 ∈ *−80°, −70°, … , 0°, … , 90°, 100°++                  
 
b. Calibrating the complete movement models 
 
b.1 Labeling the projection markers 
 

As shown in Fig.4.1, the projection of the helical curve is intersected in the case of 
𝛽 ≠ 0. We extend the previous movement model in chapter 2 roughly with the ideal 
assumptions to tackle the label problem.  

Intrinsic matrix is built as:  
 

𝐼 = *

𝑓 ∗ (𝑑𝑥)
−1 0 𝑢𝑠

0 𝑓 ∗ (𝑑𝑦)
−1

𝑣𝑠
0 0 1

+ 

𝑢𝑠(𝛼) = 𝑝𝑢1𝛼
3 + 𝑝𝑢2𝛼

2 + 𝑝𝑢3𝛼 + 𝑝𝑢4 
                  𝑣𝑠(𝛼) = 𝑝𝑣1𝛼3 + 𝑝𝑣2𝛼2 + 𝑝𝑣3𝛼 + 𝑝𝑣4               (4.1) 
 
We assume that 𝑓 is constant and 𝑢𝑠 , 𝑣𝑠 are modeled only as the polynomial of 𝛼.  

Extrinsic matrix is built as: 
 

                             𝐸 = 𝐸0𝐷𝛽𝐷𝛼                           (4.2) 
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where𝐸0 = ,𝑅0|𝑇0- , 𝐷𝛽 = ,𝑅𝛽|(𝐼 − 𝑅𝛽)𝑃𝛽-  with 𝑟𝛽 = (0,−1,0)𝑇 , 𝑃𝛽 = (0,0,0)𝑇 . 

𝐷𝛼 has the same expression as described in chapter 2.  
The rough movement model of projection matrix 𝑃 is built as: 

 
                              𝑃 = 𝐼𝐸                             (4.3) 

 
The projection marker position can be estimated as: 

 

                             𝑚 = 𝑃𝑀                            (4.4) 
 
𝑀 is the 3D coordinates of each marker. The nearest detected 2D coordinates to the 
predictive 2D coordinates 𝑚 is labeled as the projection of 𝑀.  
 
b.2 Modeling the intrinsic parameters  
 

For the supplementary data, we have the acquisition sequences corresponding to 
different nonzero 𝛽 values. We estimate the acquisition geometries of the sequences 
by the algorithm proposed in chapter 2.  

We model the principal point 𝑢𝑠, 𝑣𝑠  as the polynomial function of 𝛼, 𝛽:   

𝑢𝑠(𝛼, 𝛽) = 
3 3

0 0n m 
 𝑎𝑗𝛼

𝑛−𝑚𝛽𝑚 

                      𝑣𝑠(𝛼, 𝛽) = 
3 3

0 0n m 
 𝑏𝑗𝛼

𝑛−𝑚𝛽𝑚                  (4.5) 

 
b.3 Modeling 𝑅𝑝𝑐 , 𝑇𝑝𝑐, 𝐷𝛼 
 

We adopt the acquisition sequence when 𝛽  is zero and perform the same 
procedure as chapter 2. All the following extrinsic parameters should be transformed 
to C-arm system.  

 

𝑄 = [
𝑅𝑝
𝑐 𝑇𝑝

𝑐

0 1
] 

 
                              𝐸 = 𝐸𝑝𝑄𝑇                           (4.6) 

b.4 Modeling 𝑟𝛽 , 𝑃𝛽  

 
We adopt the acquisition sequence when α = 0  and estimate the geometries 

around the rotation axis 𝛽. We model the movement around 𝛽 axis.  
 

                         𝐷𝛽 = ,𝑅𝛽|(𝐼 − 𝑅𝛽)𝑃𝛽-                      (4.7) 



Chapter 4 Summary and Prospect                

106 
 

 

𝑟𝛽 is the rotation axis of 𝑅𝛽, 𝑃𝛽 is the fixed point on the axis. They can be calibrated 

by the estimated geometries.  
 
b.5 refinement  
 

We use all the acquisition data to do the refinement. The models can be extended 
as: 

 
𝑀𝑕𝑒𝑎𝑑 , 𝑀𝑙𝑒𝑓𝑡    

 0,1={𝜃0,  0, 𝛾0, 𝑇0, 𝑟𝛽 , 𝑃𝛽 , 𝑟𝛼, 𝑃𝛼 , 𝑎𝑗 , 𝑏𝑗; 𝛼, 𝛽, 𝑓} 

 
𝑀𝑡𝑎𝑏𝑙𝑒30   

           2={𝜃0,  0, 𝛾0, 𝑇0, 𝑟𝛽 , 𝑃𝛽 , 𝑟𝛼, 𝑃𝛼 , 𝑝𝑇𝑥, 𝑝𝑇𝑦, 𝑝𝑇𝑧 , 𝑎𝑗 , 𝑏𝑗; 𝛼, 𝛽, 𝑓}        (4.8) 

 
This work will be done in the future. 
 

4.2.2 Future Study of 2D Motion Compensated Reconstruction 

We propose the future research plans of the projection-based 2D motion 
compensated reconstruction in this section.  

We propose to apply the move advanced multi-feature mutual information 
(α − MI) in the projection-based 2D motion compensation reconstruction. α − MI 
adopts not only image intensity, but also the features that describe local image 
structure. The registration error is improved compared to standard MI registration 
[3-6].  

We derive the analytical derivative of 𝛼 − MI, which makes it possible to apply in 
the previous ASGD optimization method.  
 
a. Definition of 𝛼 − MI 
 

Define 𝑧(𝑢𝑖) = ,𝑧1(𝑢𝑖), … , 𝑧𝑑(𝑢𝑖)- to be a vector of dimension d containing all 
feature values at point 𝑢𝑖. 𝑧𝑓(𝑢𝑖) is the feature vector of the fixed image 𝐼𝐹  at point 

𝑢𝑖, and 𝑧𝑚 .𝑇𝜇(𝑢𝑖)/ is that of the moving image 𝐼𝑀 at the transformed point 𝑇𝜇(𝑢𝑖). 

𝑧𝑓𝑚 .𝑢𝑖 , 𝑇𝜇(𝑢𝑖)/ is the concatenation of the two feature vectors:  

 

                 𝑧𝑓𝑚 .𝑢𝑖 , 𝑇𝜇(𝑢𝑖)/ = 0𝑧𝑓(𝑢𝑖), 𝑧𝑚 .𝑇𝜇(𝑢𝑖)/1               (4.9) 
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Three kNN graphs are constructed:  

Τ𝑖
𝑓
=

1

k

p
 ‖𝑧𝑓(𝑢𝑖) − 𝑧

𝑓(𝑢𝑖𝑝)‖ 

Τ𝑖
𝑚(𝜇) =

1

k

p
 ‖𝑧𝑚 .𝑇𝜇(𝑢𝑖)/ − 𝑧

𝑚 .𝑇𝜇(𝑢𝑖𝑝)/‖ 

           Τ𝑖
𝑓𝑚
(𝜇) =

1

k

p
 ‖𝑧𝑓𝑚 .𝑢𝑖 , 𝑇𝜇(𝑢𝑖)/ − 𝑧

𝑓𝑚 .𝑢𝑖𝑝, 𝑇𝜇(𝑢𝑖𝑝)/‖      (4.10) 

 
A graph-based estimator for 𝛼 − MI is defined as [5]:  
 

             𝛼 −𝑀𝐼̂(𝜇; 𝐼𝐹 , 𝐼𝑀) =
1

𝛼−1
𝑙𝑜𝑔

1

𝑁𝛼
 

1

N

i
 (

Τ𝑖
𝑓𝑚
(𝜇)

√𝑇
𝑖
𝑓
𝑇𝑖
𝑚(𝜇)

)

2𝛾

         (4.11)  

γ = 𝑑(1 − 𝛼), 0 < 𝛼 < 1(user defined constant). N is the number of pixels in the 
overlapped domain, d is the length of the feature vector.  
 
b. Analytical derivative of 𝛼 − MI  

 
We deduce the derivative 𝜕 𝜕𝜇⁄ 𝛼 −𝑀𝐼̂(𝜇; 𝐼𝐹 , 𝐼𝑀) in this section. For compact 

notation, we define  

𝐺𝑖(𝜇) =
Τ𝑖
𝑓𝑚
(𝜇)

√𝑇
𝑖
𝑓
𝑇𝑖
𝑚(𝜇)

  

               𝑑𝑖𝑝
𝑓𝑚(𝜇) = 𝑧𝑓𝑚 .𝑢𝑖 , 𝑇𝜇(𝑢𝑖)/ − 𝑧

𝑓𝑚 .𝑢𝑖𝑝, 𝑇𝜇(𝑢𝑖𝑝)/         (4.12) 

Then  
 

               α −𝑀𝐼̂(𝜇; 𝐼𝐹 , 𝐼𝑀) =
1

𝛼−1
𝑙𝑜𝑔

1

𝑁𝛼
 

1

N

i
 (𝐺𝑖(𝜇))

2𝛾
           (4.13) 

 
The derivative of 𝛼 − 𝑀𝐼̂ equals: 

𝜕

𝜕𝜇𝑗
𝛼 −𝑀𝐼̂(𝜇; 𝐼𝐹 , 𝐼𝑀) 

                  = −2𝑑

∑ 𝐺𝑖(𝜇)
2𝛾𝑁

𝑖=1 1

N

i
 𝐺𝑖(𝜇)

2𝛾−1 𝜕

𝜕𝜇𝑗
𝐺𝑖(𝜇)                (4.14) 

The derivative of 𝐺𝑖(𝜇) is written as： 
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      𝜕

𝜕𝜇𝑗
𝐺𝑖(𝜇) = (

𝜕

𝜕𝜇𝑗
Τ𝑖
𝑓𝑚(𝜇) −

1

2
Τ𝑖
𝑓𝑚(𝜇)𝑇𝑖

𝑚(𝜇)−1
𝜕

𝜕𝜇𝑗
𝑇𝑖
𝑚(𝜇)) √𝑇𝑖

𝑓
𝑇𝑖
𝑚(𝜇)⁄  (4.15) 

 

And the derivative of Τ𝑖
𝑓𝑚(𝜇) and 𝑇𝑖𝑚(𝜇) are:  

𝜕

𝜕𝜇𝑗
Τ𝑖
𝑓𝑚(𝜇) = 

1

k

p


𝜕

𝜕𝜇𝑗
√𝑑𝑖𝑝

𝑓𝑚(𝜇)𝑇𝑑𝑖𝑝
𝑓𝑚(𝜇) 

= 
1

k

p


1

2
‖𝑑𝑖𝑝

𝑓𝑚(𝜇)‖
−1 𝜕

𝜕𝜇𝑗
.𝑑𝑖𝑝

𝑓𝑚(𝜇)𝑇𝑑𝑖𝑝
𝑓𝑚(𝜇)/ 

=
1

k

p


𝑑𝑖𝑝
𝑓𝑚(𝜇)𝑇

‖𝑑
𝑖𝑝
𝑓𝑚(𝜇)‖

𝜕

𝜕𝜇𝑗
𝑑𝑖𝑝
𝑓𝑚(𝜇) 

=
1

k

p


𝑑𝑖𝑝
𝑓𝑚(𝜇)𝑇

‖𝑑
𝑖𝑝
𝑓𝑚(𝜇)‖

[
𝜕𝑧𝑚

𝜕𝑥𝑖
.𝑇𝜇(𝑢𝑖)/

𝜕𝑇𝜇

𝜕𝜇𝑗
(𝑢𝑖) −

𝜕𝑧𝑚

𝜕𝑥𝑖
.𝑇𝜇(𝑢𝑖𝑝)/

𝜕𝑇𝜇

𝜕𝜇𝑗
(𝑢𝑖𝑝)] 

(4.16) 
𝜕

𝜕𝜇𝑗
Τ𝑖
𝑚(𝜇) can be derived similarly.   

For the feature vector 𝑧(𝑢𝑖), features that describe the local structure of images 
supply supplementary knowledge, which may improve the registration. All the 
features are invariant to rotation and translation. All the feature images can be derived 
from the original image, and can be computed before registration [6-7]. This work 
will be done in the future.  

4.2.3 Motion Compensation Reconstruction with Calibration on Zeego System 

In Chapter 3, we observe the contribution of the calibration work in the motion 
compensation reconstruction. In this section, we propose some experiment plan to 
observe the two improvements on Zeego system. The objects of the experiment are 
the dynamic cardiac phantom and the helical calibration phantom.  

The procedure of our experiments includes two steps. First, as the calibration 
should be updated every six months or after some mechanical changes [8-9]. We 
should do the calibration to acquire three latest acquisition sequences of the helical 
phantom at Head side, Left side, Table 30 positions. Second, we do the acquisition of 
the dynamic cardiac phantom to obtain three sequences. The position, protocol, 
parameter setting of the two acquisition performances should be the same. We 
evaluate the contributions of the two improvements. We have three comparisons.  

Comparison I, we do the 3D reconstruction with motion compensation and without 
motion compensation. The reconstruction is performed with calibrated geometry. This 
comparison can prove the contribution of the 2D motion compensation.  

Comparison II, we do the 3D reconstruction by 2D motion compensation with the 
estimated geometry and with the ideal geometry. For the 3D reconstruction, the 
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estimated geometry can be applied in two components of the whole procedure. One is 
the compensated reconstruction algorithm. The estimated geometry can correct the 
correspondence between the 3D space and the 2D projection. The other is the 
maximum intensity forward projection. We can generate the forward projection by the 
two geometries. This comparison can prove the contribution of the calibration work.  

Comparison III, we combine the calibrated geometry and the proposed motion 
compensation reconstruction. The result will be compared with the DynaCT result. All 
of this designed experiments need to be done in the future.  
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